
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

637

Advisory Board: W. Brauer D. Giles J. Stoer

Y. Bekkers J. Cohen (Eds.)

Memory Management
International Workshop IWMM 92
St. Malo, France, September 17-19, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-Strage 1
W-7500 Karlsruhe, FRG

Juris Hartmanis
Department of Computer Science
Cornell University
5149 Upson Hall
Ithaca, NY 14853, USA

Volume Editors

Yves Bekkers
IRISA, Campus de Beaulieu
F-35042 Rennes, France

Jacques Cohen
Mitchum School of Computer Science, Ford Hall
Brandeis University, Waltham, MA 02254, USA

CR Subject Classification (1991): D.1, D.3-4, B.3, E.2

ISBN 3-540-55940-X Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55940-X Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Drnckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Preface

Storage reclamation became a necessity when the Lisp function cons was originally
conceived 1 . That statement is simply a computer-oriented version of the broader precept:
Recycling becomes unavoidable when usable resources are depleted. Both statements suc-
cinctly explain the nature of the topics discussed in the International Workshop on Memory
Management (IWMM) that took place in Saint-Malo, France, in September 1992. This vol-
ume assembles the refereed technical papers which were presented during the workshop.

The earlier programming languages (such as Fortran) were designed so that the size of
the storage required for the execution of a program was known at compile time. Subsequent
languages (such as Algol 60) were implemented using a stack as a principal data-structure
which is managed dynamically: information pushed onto a stack uses memory space which
can be later released by popping.

With the introduction of structures (also called records) in more recent programming
languages, it became important to establish an additional run-time data structure: the
heap, which is used to store data, cells containing pointers to other cells. The stack.heap
arrangement has become practically universal in the implementation of programming lan-
guages. An important characteristic of the cells in the heap is that the data they contain
can become "useless" since they are not pointed to by any other cells. Reclamation of the
so-called "useless cells" can be performed in an ad hoc (manual) manner by having the
programmer explicitly return those ceils to the run-time system so that they can be re-
used. (In ad hoc reclamation the programmer has to exercise great caution not to return
cells containing valuable data.) This is the case of languages like Pascal or C which provide
primitive procedures for returning useless cells. In the case of languages such as Lisp and
Prolog reclamation is done automatically using a run-time process called garbage.collection
which detects useless cells and makes them available for future usage.

Practically all the papers in this volume deal with the various aspects of managing and
reclaLming memory storage when using a stack-heap model. A peculiar problem of memory
management strategies is the unpredictability.of computations. The undecidability of the
halting problem implies that, in general, it is impossible to foresee how many ceils will be
needed in performing complex computations.

There axe basically two approaches for performing storage reclamation: one is incrv.
mental, i.e., the implementor chooses to blend the task of collecting with that of actual
computation; the other is what we like to call the mafiana method - wait until the en-
tire memory is exhausted to trigger the time-consuming operation of recognizing useless
cells and making them available for future usage. A correct reclamation should ensure the
following properties:

- No used cell will be (erroneously) reclaimed.
- All useless cells will be reclaimed.

Violating the first property is bound to have tragic consequences. A violation of the second
may not be disastrous, but could lead to a premature halting of the execution due to the
lack of memory. As a matter of fact, conservative collectors have been proposed to trade a
(small) percentage of unreclaimed useless cells for a speedup of the collection process.

An important step in the collection is the identification of useless cells. This can be
achieved by marking all the useful cells and sweeping the entire memory to collect useless

a The reader is referred to the chapter on the History o] Lisp, by John McCarthy, which ap-
peared in History of Programming Languages, edited by Richard L. Wexelblat, Academic
Press, 1981, pp 173-183.

VI

(unmarked) cells. This process is known as mark-and.sweep. Another manner of identifying
useless cells is to keep reference counts which are constantly updated to indicate the number
of pointers to a given cell. When this number becomes zero the cell is identified as useless.
If the mark-and-sweep or the reference count techniques fail to locate any useless cells, the
program being executed has to halt due to lack of storage. (A nasty situation may occur
when successive collections succeed in reclaiming only a few cells. In such cases very little
actual computation is performed between consecutive time-consuming collections.)

Compacting collectors are those which compact the useful information into a contiguous
storage area. Such compacting requires that pointers be properly readjusted. Compacting
becomes an important issue in paging systems (or in the case of hierarchical or virtual
memories) since the compacted useful information is likely to result in fewer page faults,
and therefore in increased performance.

An alternative method of garbage-collection which has drawn the attention of imple-
mentors in recent years is that of copying. In this case the useful cells are simply copied
into a "new" area from the "old" one. These areas are called semi-spaces. When the space
in the "new" area is exhausted, the "old" and "new" semi-spaces are swapped. Although
this method requires twice the storage area needed by other methods, it can be performed
incrementally, thus offering the possibility of real-time garbage-collection, in which the
interruptions for collections are reasonably short.

The so-called generational garbage-collection is based on the experimental fact that
certain cells remain used during substantial periods of the execution of a program, whereas
others become useless shortly after they are generated. In these cases the reclaiming strategy
consists of bypassing the costly redundant identification of "old generation" cells.

With the advent of distributedand parallel computers reclamation becomes considerably
more complex. The choice of storage management strategy is, of course, dependent on the
various types of existing architectures. One should distinguish the cases of:

1. Distributed computers communicating via a network,
2~ Parallel shared-memory (MIMD) computers, and
3. Massively parallel (SIMD) computers.

In the case of distributed reclamation it is important that collectors be fault tolerant: a
failure of one or more processors should not result in loss of information. The term on-the-
fly garbage-collection is (usually) applicable to parallel shared-memory machines in which
one or more processors are dedicated exclusively to collecting while others, called mutators,
are responsible for performing useful computations which in turn may generate useless cells
that have to be reclaimed.

Some features of storage management are language-dependent. Presently, one can distin-
guish three major paradigms in programming language design: functional, logic, and object.
oriented. Although functional languages, like Lisp~ were the first to incorporate garbage-
collection in their design, both logic and object-oriented language implementors followed
suit. Certain languages have features that enable their implementors to take advantage of
known properties of data in the stack or in the heap so as to reduce the execution time
needed for collection and/or to reclaim as many useless cells as possible.

In the preceding paragraphs we have briefly defined the terms: mark-and.sweep, refer-
ence count, compacting, copying, incremental, generational, conservative, distributed, par-
allel, on-the-fly, real-time, and language-dependent features. These terms should serve to
guide the reader through the various papers presented in this volume.

We suggest that non-speclalists start by reading the three survey papers. The first
provides a general overview of the recent developments in the field; the second specializes
in distributed collection, and the third deals with storage management in processors for logic
programs. The other chapters in this volume deal with the topics of distributed, parallel, and

VII

incremental collections, collecting in functional, logic, and object-oriented languages, and
collections using massively parallel computers. The tlnal article in this volume is an invited
paper by H. G. Baker in which he proposes a "reversible" Lisp-like language (i.e., capable of
reversing computations) and discusses the problems of designing suitable garbage-collectors
for that language.

We wish to thank the referees for their careful evaluation of the submitted papers, and
for the suggestions they provided to the authors for improving the quality of the presenta-
tion. Finally, it is fair to state that, even with technological advances, there will always be
limited memory resources, especially those of very fast access. These memories will likely
remain costlier than those with slower access. Therefore many of the solutions proposed at
the IWMM are likely to remain valid for years to come.

July 1992 Yves Bekkers
Jacques Cohen

P r o g r a m C o m m i t t e e

Chair
Jacques Cohen

Members
Joel F. Bartlett
Yves Bekkers
HanwJurgen Boehm
Manrice Bruynooghe
Bernard Lang
David A. Moon
Christian Queinnec
Dan Sahlin
Taiichi Yuasa

Brandeis University, Waltham, MA, USA

DEC, Palo Alto, CA, USA
INRIA-IRISA, Rennes, France
Xerox Corporation, Palo Alto, CA, USA
Katholieke Universiteit, Leuven, Belgium
INRIA, Le Chesnay, France
Apple Computer, Cambridge, MA, USA
Ecole Polytechnique, Palaisean, France
SICS, Kista, Sweden
Toyohashi Univ. of Tech., Toyohashi, Japan

We thank all the people who helped the program committee in the refereering pro-
cess, some of whom are listed below: K. Ali, M. Ban~tre, P. Brand, A. Callebou, P. Fradet,
S. Jansson, P. Magnusson, A. Mari6n, R. Moolenaar, A. Mulkers,
O. Ridoux, A. Sanlsbury, T. SjSland, L. Ungaro, P. Weemeeuw.

Yves Bekkers

Workshop Coordinator

INRIA-IRISA, Rennes, France

S p o n s o r e d b y

INRIA
University of Rennes I

CNRS-GRECO Programmation

I n c o o p e r a t i o n w i t h

ACM SIGPLAN

Table of Con ten t s

S u r v e y s

Uniprocessor Garbage Collection Techniques
Paul R. Wi l son . 1

Collection Schemes for Distributed Garbage
S.E. Abdullahi , E .E . Miranda, G.A. R ingwood . 43

Dynamic Memory Management for Sequential Logic Programming Languages
Y. Bekkers , 0 . R idoux , L. Ungaro . 82

D i s t r i b u t e d S y s t e m s I

Comprehensive and Robust Garbage Collection in a Distributed System
N.C. Juul, E. Jul . 103

D i s t r i b u t e d S y s t e m s I I

Experience with a Fault-Tolerant Garbage Collector in a
Distributed Lisp System

D. Plain]ossg, M. Shapiro . 116

Sealable Distributed Garbage Collection for Systems of Active Objects
N. Venkatasubramanian , G. Agha, C. Talcott . 134

Distributed Garbage Collection of Active Objects with no
Global Synchronisation

I. P u a u t . 148

Parallelism I

Memory Management for Parallel Tasks in Shared Memory
K.G. Langendoen, H.L. Muller, W.G. Vree . 165

Incremental Multi-Threaded Garbage Collection on
Virtually Shared Memory Architectures

T. Le Sergent , B. B e r t h o m i e u . 179

Functional l a n g u a g e s

Generational Garbage Collection for Lazy Graph Reduction
J. Seward . 200

A Conservative Garbage Collector with Ambiguous Roots for
Static Typeehecking Languages

E. Ghaii loux . 218

An Efficient Implementation for Coroutines
L. M a t e u . 230

An Implementation of an Applicative File System
B.C. Heck, D.S. Wise . 248

Logic Programming Languages I
A Compile-Time Memory-Reuse Scheme for Concurrent Logic Programs

S. Duvvuru, R. Sundararajan, E. Tick, A. V. S. SastrSt, L. Hansen,
X. Zhong . 264

Object Oriented Languages
Finalization in the Collector Interface

B. Hayes . 277

Precompiling C + + for Garbage Collection
D.R. Edelson . 299

Garbage Collection-Cooperative C + +
A. D. Samples . 315

Logic Programming Languages II
Dynamic Revision of Choice Points During Garbage Collection
in Prolog [II/III]

J.F. Pique . 330

Ecological Memory Management in a Continuation Passing Prolog Engine
P. Tarau . 344

Incremental
Replication-Based Incremental Copying Collection

S. Nettles~ J. O'Toole, D. Pierce, N. Haines . 357

Atomic Incremental Garbage Collection
E.K. Kolodner, W.E. Weihl . 365

Incremental Collection of Mature Objects
R.L. Hudson, J.E.B. Moss . 388

Improving Locality
Object Type Directed Garbage Collection to Improve Locality

M.S. Lain, P.R. Wilson, T.G. Moher .. 404

Allocation Regions and Implementation Contracts
V. Delacour ... 426

Parallelism II

A Concurrent Generational Garbage Collector for a Parallel Graph Reducer
N. Rb~jemo . 440

Garbage Collection in Aurora : An Overview
P. Weemeeuw, B. Demoen . 454

XI

M a s s i v e l y P a r a l l e l A r c h i t e c t u r e s

Collections and Garbage Collection
S.C. Merrall, J .A . Padget . 473

Memory Management and Garbage Collection of an
Extended Common Lisp System for Massively Parallel SIMD Architecture

T. Yuasa . 490

I n v i t e d Speaker
NREVERSAL of Fortune - The Thermodynamics of Garbage Collection
H.G. Baker . 507

A u t h o r I n d e x . 525

Uniprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA

(wilson@cs.ut exas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmill
collection. Incremental techniques can kccp garbage concction pause times
short, by interleaving small amounts of collection work with program execu-
tion. Generationalschemes improve efficiency and locality by garbage collect-
ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

1 A u t o m a t i c S t o r a g e R e c l a m a t i o n

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a '~free" or "dispose" statement, garbage
collected systems free the programmer from this burden. The garbage collector's
function is to find data objects I that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a "dangling pointer" into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 M o t i v a t i o n

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when olher
modules are not interested in a particular object.

1 We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

Since liveness is a global property, this introduces nonlocal bookkeeping into
routines that might otherwise be orthogonal, composable, and reusable. This book-
keeping can reduce extensibility, because when new functionality is implemented,
the bookkeeping code must be updated.

The unnecessary Complications created by explicit storage allocation are espe-
cially troublesome because programming mistakes often introduce erroneous behav-
ior that breaks the basic abstractions of the programming language, making errors
hard to diagnose.

Failing to reclaim memory at the proper point may lead to slow memory leaks,
with unreclaimed memory gradually accumulating until the process terminates or
swap space is exhausted. Reclaiming memory too soon can lead to very strange be-
havior, because an object's space may be reused to store a completely different object
while an old pointer still exists. The same memory may therefore be interpreted as
two different objects simultaneously with updates to one causing unpredictable mu-
tations of the other.

These bugs are particularly dangerous because they often fail to show up re-
peatably, making debugging very difficult; they may never show up at all until the
program is stressed in an unusual way. If the allocator happens not to reuse a par-
ticular object's space, a dangling pointer may not cause a problem. Later, in the
field, the application may crash when it makes a different set of memory demands,
or is linked with a different allocation routine. A slow leak may not be noticeable
while a program is being used in normal ways--perhaps for many years--because
the program terminates before too much extra space is used. But if the code is in-
corporated into a long-running server program, the server will eventually exhaust
its swap space, and crash.

Explicit allocation and reclamation lead to program errors in more subtle ways
as well. It is common for programmers to statically allocate a moderate number of
objects, so that it is unnecessary to allocate them on the heap and decide when and
where to reclaim them. This leads to fixed limitations on software, making them fail
when those limitations are exceeded, possibly years later when memories (and data
sets) are much larger. This "brittleness" makes code much less reusable, because the
undocumented limits cause it to fail, even if it's being used in a way consistent with
its abstractions. (For example, many compilers fail when faced with automatically-
generated programs that violate assumptions about "normal" programming prac-
tices.)

These problems lead many applications programmers to implement some form of
application-specific garbage collection within a large software system, to avoid most
of the headaches of explicit storage management. Many large programs have their
own data types that implement reference counting, for example. Unfortunately, these
collectors are often both incomplete and buggy, because they are coded up for a one-
shot application. The garbage collectors themselves are therefore often unreliable,
as well as being hard to use because they are not integrated into the programming
language. The fact that such kludges exist despite these problems is a testimony to
the value of garbage collection, and it suggests that garbage collection should be
part of programming language implementations.

In the rest of this paper, we focus on garbage collectors that are built into a
language implementation. The usual arrangement is that the allocation routines of

the language (or imported from a library) perform special actions to reclaim space,
as necessary, when a memory request is not easily satisfied. (That is, calls to the
"deallocator" are unnecessary because they are implicit in calls to the allocator.)

Most collectors require some cooperation from the compiler (or interpreter), as
well: object formats must be recognizable by the garbage collector, and certain in-
variants must be preserved by the running code. Depending on the details of the
garbage collector, this may require slight changes to the code generator, to emit
certain extra information at compile time, and perhaps execute different instruction
sequences at run time. (Contrary to widespread misconceptions, there is no conflict
between using a compiled language and garbage collection; state-of-the art imple-
mentations of garbage-collected languages use sophisticated optimizing compilers.)

1.2 The Two-Phase Abs t r ac t ion

Garbage collection automatically reclaims the space occupied by data objects that
the running program can never access again. Such data objects are referred to as
garbage. The basic functioning of a garbage collector consists, abstractly speaking,
of two parts:

1. Distinguishing the live objects from the garbage in some way, or garbage detec-
tion, and

2. Reclaiming the garbage objects' storage, so that the running program can use
it.

In practice, these two phases may be functionally or temporally interleaved, and
the reclamation technique is strongly dependent on the garbage detection technique.

In general, garbage collectors use a "liveness" criterion that is somewhat more
conservative than those used by other systems. In an optimizing compiler, a value
may be considered dead at the point that it can never be 'used again by the running
program, as determined by control flow and data flow analysis. A garbage collec-
tor typically uses a simpler, less dynamic criterion, defined in terms of a root set
and reachability from these roots. At the point when garbage collection occurs ~ all
globally visible variables of active procedures are considered live, and so are the
local variables of any active procedures. The root set therefore consists of the global
variables, local variables in the activation stack, and any registers used by active
procedures. Heap objects directly reachable from any of these variables could be
accessed by the running program, so they must be preserved. In addition, since the
program might traverse pointers from those objects to reach other objects, any ob-
ject reachable from a live object is also live. Thus the set of live objects is simply
the set of objects on any directed path of pointers from the roots.

Any object that is not reachable from the root set is garbage, i.e., useless, because
there is no legal sequence of program actions that would allow the program to
reach that object. Garbage objects therefore can't affect the future course of the
computation, and their space may be safely reclaimed.

2 Typically, this happens when allocation of an object has been attempted by the running
program, but there is not sufficient free memory to satisfy the request. The allocation
routine calls a garbage collection routine to free up space, then allocates the requested
object.

1.3 O b j e c t R e p r e s e n t a t i o n s

Throughout this paper, we make the simplifying assumption that heap objects are
self-identifying, i.e., that it is easy to determine the type of an object at run time.
Implementations of statically-typed garbage collected languages typically have hid-
den "header" fields on heap objects, i.e., an extra field containing type information,
which can be used to decode the format of the object itself. (This is especially useful
for finding pointers to other objects.)

DynamicMly-typed languages such as Lisp and Smalltalk usually use tagged
pointers; a slightly shortened representation of the hardware address is used, with
a small type-identifying field in place of the missing address bits. This also allows
short immutable objects (in particular, small integers) to be represented as unique
bit patterns stored directly in the "address" part of the field, rather than actually
referred to by an address. This tagged representation supports polymorphic fields
which may contain either one of these "immediate" objects or a pointer to an object
on the heap. Usually, these short tags are augmented by additional information in
heap-allocated objects' headers.

For a purely statically-typed language, no per-object runtime type information is
actually necessary, except the types of the root set variables. 3 Once those are known,
the types of their referents are known, and their fields can be decoded [App89a,
Gol91]. This process continues transitively, allowing types to be determined at every
pointer traversal. Despite this, headers are often used for statically-typed languages,
because it simplifies implementations at little cost. (Conventional (explicit) heap
management systems often use object headers for similar reasons.)

2 Basic Garbage Collection Techniques

Given the basic two-part operation of a garbage collector, many variations are possi-
ble. The first part, distinguishing live objects from garbage, may be done in several
ways: by reference counting, marking, or copying. 4 Because each scheme has a major
influence on the second part (reclamation) and on reuse techniques, we will introduce
reclamation methods as we go.

2 .1 R e f e r e n c e C o u n t i n g

In a reference counting system [Co160], each object has an associated count of the
references (pointers) to it . Each time a reference to the object is created, e.g., when
a pointer is copied from one place to another by an assignment, the object's count
is incremented. When an existing reference to an object is eliminated, the count is

3 Conservative garbage collectors [BW88, Wen90, BDS91, WH91] are usable with little or
no cooperation from the compiler--not even the types of named variables--but we will
not discuss them here.

4 Some authors use the term "garbage collection" in a narrower sense, which excludes
reference counting axtd/or copy collection systems; we prefer the more inclusive sense
because of its popular usage and because it's less awkward than "automatic storage
reclamation."

H E A P S P A C E

:"171-7 !1 ' 1. ! |

R O O T
SET

' I , I I I ' ' 1 ' 1 | !

' 2
I = .

!

' 2

' 1

Fig. 1. Reference counting.

decremented. (See Fig. 1.) The memory occupied by an object may be reclaimed
when the object's count equals zero, since that indicates that no pointers to the
object exist and the running program could not reach it.

(In a straightforward reference counting system, each object typically has a
header field of information describing the object, which includes a subfield for the
reference count. Like other header information, the reference count is generally not
visible at the language level.)

When the object is reclaimed , its pointer fields are examined, and any objects
it holds pointers to also have their reference counts decremented, since references
from a garbage object don't count in determining liveness. Reclaiming one object
may therefore lead to the transitive decrementing of reference counts and reclaiming
many other objects. For example, if the only pointer into some large data structure

becomes garbage, all of the reference counts of the objects in that structure typically
become zero, and all of the objects are reclaimed.

In terms of the abstract two-phase garbage collection, the adjustment and check-
ing of reference counts implements the first phase, and the reclamation phase occurs
when reference counts hit zero. These operations are both interleaved with the ex-
ecution of the program, because they may occur whenever a pointer is created or
destroyed.

One advantage of reference counting is this incremental nature of most of its
operationmgarbage collection work (updating reference counts) is interleaved closely
with the running program's own execution. It can easily be made completely incre-
mental and real time; that is, performing at most a small and bounded amount of
work per unit of program execution.

Clearly, the normal reference count adjustments are intrinsically incremental,
never involving more than a few operations for any given operation that the program
executes. The transitive reclamation of whole data structures can be deferred, and
also done a little at a time, by keeping a list of freed objects whose reference counts
have become zero but which haven't yet been processed yet.

This incremental collection can easily satisfy real time requirements, guarantee-
ing that memory management operations never halt the executing program for more
than a very brief period. This can support real-time applications in which guaran-
teed response time is critical; incremental collection ensures that the program is
allowed to perform a significant, though perhaps appreciably reduced, amount of
work in any significant amount of time. (A target criterion might be that no more
than one millisecond out of every two-millisecond period would be spent on storage
reclamation operations, leaving the other millisecond for "useful work" to satisfy the
program's real-time purpose.)

There are two major problems with reference counting garbage collectors; they
are difficult to make efficient, and they are not always effective.

The Prob l em wi th Cycles The effectiveness problem is that reference counting
fails to reclaim circnlar structures. If the pointers in a group of objects create a
(directed) cycle, the objects' reference counts are never reduced to zero, even if
there is no path to the objects from the root set [McB63].

Figure 2 illustrates this problem. Consider the isolated pair of objects on the
right. Each holds a pointer to the other, and therefore each has a reference count
of one. Since no path from a root leads to either, however, the program can never
reach them again.

Conceptually speaking, the problem here is that reference counting really only
determines a conservative approzimation of true liveness. If an object is not pointed
to by any variable or other object, it is clearly garbage, but the converse is often not
true.

It may seem that circular structures would be very unusual, but they are not.
While most data structures are acyclic, it is not uncommon for normal programs to
create some cycles, and a few programs create very many of them. For example, nodes
in trees may have "backpointers," to their parents, to facilitate certain operations.
More complex cycles are sometimes formed by the use of hybrid data structures

HEAP SPACE

~ . - - t . . ~

, 1 ' 1
I r a . ~ /

ROOT
SET ! !

' 1 , 1

, 2

Fig. 2. Reference counting with unreclaimable cycle.

which combine advantages of simpler data structures, and the like.
Systems using reference counting garbage collectors therefore usually include

some other kind of garbage collector as well, so that if too much uncollectable cyclic
garbage accumulates, the other method can be used to reclaim it.

Many programmers who use reference-counting systems (such as Interlisp and
early versions of Smalltalk) have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before they become a nuisance. This
has a negative impact on program structure, and many programs still have storage
"leaks" that accumulate cyclic garbage which must be reclaimed by some other
means. 5 These leaks, in turn, can compromise the real-time nature of the algorithm,

5 [Bob80] describes modifications to reference counting to allow it to handle some spe-
cial cases of cyclic structures, but this restricts the programmer to certain stereotyped

8

because the system may have to fall back to the use of a non-real-time collector at
a critical moment.

The Efficiency Prob lem. The efficiency problem with reference counting is that
its cost is generally proportional to the amount of work done by the running program,
with a fairly large constant of proportionality. One cost is that when a pointer is
created or destroyed, its referent's count must be adjusted. If a variable's value is
changed from one pointer to another, two objects' counts must be adjusted--one
object's reference count must be incremented, the other's decremented and then
checked to see if it has reached zero.

Short-lived stack variables can incur a great deal of overhead in a simple reference-
counting scheme. When an argument is passed, for example, a new pointer appears
on the stack, and usually disappears almost immediately because most procedure ac-
tivations (near the leaves of the call graph) return very shortly after they are called.
In these cases, reference counts are incremented, and then decremented back to their
original value very soon. It is desirable to optimize away most of these increments
and decrements that cancel each other out.

Defer red Reference Count ing . Much of this cost can be optimized away by spe-
cial treatment of local variables [DB76]. Rather than always adjusting reference
counts and reclaiming objects whose counts become zero, references from the local
variables are not included in this bookkeeping most of the time. Usually, reference
counts are only adjusted to reflect pointers from one heap object to another. This
means that reference counts may not be accurate, because pointers from the stack
may be created or destroyed without being accounted for; that, in turn, means that
objects whose count drops to zero may not actually be reclaimable. Garbage collec-
tion can only be done when references from the stack are taken into account.

Every now and then, the reference counts are brought up to date by scanning the
stack for pointers to heap objects. Then any objects whose reference counts are still
zero may be safely reclaimed. The interval between these phases is generally chosen
to be short enough that garbage is reclaimed often and quickly, yet still long enough
that the cost of periodically updating counts (for stack references) is not high.

This deferred reference counting [DB76] avoids adjusting reference counts for
most short-lived pointers from the stack, and greatly reduces the overhead of ref-
erence counting. When pointers from one heap object to another are created or
destroyed, however, the reference counts must still be adjusted. This cost is still
roughly proportional to the amount of work done by the running program in most
systems, but with a lower constant of proporti6nMity.

There is another cost of reference-counting collection that is harder to escape.
When objects' counts go to zero and they are reclaimed, some bookkeeping must be
done to make them available to the running program. Typically this involves linking
the freed objects into one or more "free lists" of reusable objects, out of which the
program's allocation requests are satisfied.

patterns.

It is difficult to make these reclamation operations take less than several instruc-
tions per object, and the cost is therefore proportional to the number of objects
allocated by the running program.

These costs of reference counting collection have combined with its failure to
reclaim circular structures to make it unattractive to most implementors in recent
years. As we will explain below, other techniques are usually more efficient and
reliable.

(This is not to say that reference counting is a dead technique. It still has advan-
tages in terms of the immediacy with which it reclaims most garbage, 6 and corre-
sponding beneficial effects on locality of reference; 7 a reference counting system may
perform with little degradation when almost all of the heap space is occupied by live
objects, while other collectors rely on trading more space for higher efficiency. Ref-
erence counts themselves may be valuable in some systems. For example, they may
support optimizations in functional language implementations by allowing destruc-
tive modification of uniquely-referenced objects. Distributed garbage collection is
often done with reference-counting between nodes of a distributed system, combined
with mark-sweep or copying collection within a node. Future systems may find other
uses for reference counting, perhaps in hybrid collectors also involving other tech-
niques, or when augmented by specialized hardware. Nonetheless, reference counting
is generally not considered attractive as the primary garbage collection technique on
conventional uniprocessor hardware.)

For most high-performance general-purpose systems, reference counting has been
abandoned in favor of tracing garbage collectors, which actually traverse (trace out)
the graph of live objects, distinguishing them from the unreachable (garbage) objects
which can then be reclaimed.

2.2 Mark -Sweep Col lect ion

Mark-sweep garbage collectors [McC60] are named for the two phases that implement
the abstract garbage collection algorithm we described earlier:

1. Distinguish the live objects from the garbage. This is done by tracing--starting at
the root set and actually traversing the graph of pointer relationships--usually
by either a depth-first or breadth-first traversal. The objects that are reached
are marked in some way, either by altering bits within the objects, or perhaps
by recording them in a bitmap or some other kind of table.

2. Reclaim the garbage. Once the live objects have been made distinguishable from
the garbage objects, memory is swept, that is, exhaustively examined, to find
all of the unmarked (garbage) objects and reclaim their space. Traditionally, as
with reference counting, these reclaimed objects are linked onto one or more free
lists so that they are accessible to the allocation routines.

s This can be useful for finalization, that is, performing "clean-up" actions (like closing
files) when objects die [Rov85].
DeTreville [DeTg0] argues that the locality characteristics of reference-counting may be
superior to those of other collection techniques, based on experience with the Topaz
system. However, as [WLM92] shows, generational techniques can recapture some of this
locality.

]0

There are three major problems with traditional mark-sweep garbage collectors.
First, it is difficult to handle objects of varying sizes without fragmentation of the
available memory. The garbage objects whose space is reclaimed are interspersed
with live objects, so allocation of large objects may be difficult; several small garbage
objects may not add up to a large contiguous space. This can be mitigated somewhat
by keeping separate free lists for objects of varying sizes, and merging adjacent free
spaces together, but difficulties remain. (The system must choose whether to allocate
more memory as needed to create small data objects, or to divide up large contiguous
hunks of free memory and risk permanently fragmenting them. This fragmentation
problem is not unique to mark-sweep--it occurs in reference counting as well, and
in most explicit heap management schemes.)

The second problem with mark-sweep collection is that the cost of a collection
is proportional to the size of the heap, including both live and garbage objects. All
live objects must be marked, and all garbage objects must be collected, imposing a
fundamental limitation on any possible improvement in efficiency.

The third problem involves locality of reference. Since objects are never moved,
the live objects remain in place after a collection, interspersed with free space. Then
new objects are allocated in these spaces; the result is that objects of very different
ages become interleaved in memory. This has negative implications for locality of
reference, and simple mark-sweep collectors are often considered unsuitable for most
virtual memory applications. (It is possible for the "working set" of active objects to
be scattered across many virtual memory pages, so that those pages are frequently
swapped in and out of main memory.) This problem may not be as bad as many
have thought, because objects are often created in clusters that are typically active
at the same time. Fragmentation and locality problems are is unavoidable in the
general case, however, and a potential problem for some programs.

It should be noted that these problems may not be insurmountable, with suffi-
ciently clever implementation techniques. For exa~nple, if a bitmap is used for mark
bits, 32 bits can be checked at once with a 32-bit integer ALU operation and condi-
tional branch. If live objects tend to survive in clusters in memory, as they apparently
often do, this can greatly diminish the constant of proportionality of the sweep phase
cost; the theoretical linear dependence on heap size may not be as troublesome as
it seems at first glance. As a result, .the dominant cost may be the marking phase,
which is proportional to the amount of live data that must be traversed, not the total
amount of memory allocated. The clever use of bitmaps can also reduce the cost of
allocation, by allowing fast allocation from contiguous unmarked areas, rather than
using free lists.

The clustered survival of objects may also mitigate the locality problems of re-
allocating space amid live objects; if objects tend to survive or die in groups in
memory [ttay91], the interspersing of objects used by different program phases may
not be a major consideration.

At this point, the technology of mark-sweep collectors (and related hybrids) is
rapidly evolving. As will be noted later, this makes them resemble copying collectors
in some ways; at this point we do not claim to be able to pick a winner between
high-tech mark-sweep and copy collectors.

11

2.3 Mark-Compact Collectiox~

Mark-compact collectors remedy the fragmentation and allocation problems of mark-
sweep collectors. As with mark-sweep, a marking phase traverses and marks the
reachable objects. Then objects are compacted, moving most of the live objects
until all of the live objects are contiguous. This leaves the rest of memory as a
single contiguous free space. This is often done by a linear scan through memory,
finding live objects and "sliding" them down to be adjacent to the previous object.
Eventually, all of the live objects have been slid down to be adjacent to a live
neighbor. This leaves one contiguous occupied area at one end of heap memory, and
implicitly moving all of the "holes" to the contiguous area at the other end.

This sliding compaction has several interesting properties. The contiguous free
area eliminates fragmentation problems so that allocating objects of various sizes
is simple. Allocation can be implemented as the incrementing of a pointer into a
contiguous area of memory, in much the way that different-sized objects can be
allocated on a stack. In addition, the garbage spaces are simply "squeezed out,"
without disturbing the original ordering of objects in memory. This can ameliorate
locality problems, because the allocation ordering is usually more similar to subse-
quent access orderings than an arbitrary ordering imposed by a garbage collector
[CG77, Cla79].

While the locality that results from sliding compaction is advantageous, the
collection process itself shares the mark-sweep's unfortunate property that several
passes over the data are required. After the initial marking phase, sliding compactors
make two or three more passes over the live objects [CN83]. One pass computes the
new locations that objects will be moved to; subsequent passes must update pointers
to refer to objects' new locations, and actually move the objects. These algorithms
may be therefore be significantly slower than mark-sweep if a large percentage of
data survives to be compacted.

An alternative approach is to use a two-pointer algorithm, which scans inward
from both ends of a heap space to find opportunities for compaction. One pointer
scans downward from the top of the heap, looking for live objects, and the other
scans upward from the bottom, looking for a hole to put it in. (Many variations
of this algorithm are possible, to deal with multiple areas holding different-sized
objects, and to avoid intermingling objects from widely-dispersed areas.) For a more
complete treatment of compacting algorithms, see [Knu69, CN83].

2.4 Copy ing G a r b a g e Col lect ion

Like mark-compact (but unlike mark-sweep), copying garbage collection does not
really "collect" garbage. Rather, it moves all of the live objects into one area, and
the rest of the heap is then known to be available because it contains only garbage.
"Garbage collection" in these systems is thus only implicit, and some researchers
avoid applying that term to the process.

Copying collectors, like marking-and-compacting collectors, move the objects
that are reached by the traversal to a contiguous area. While compacting collec-
tors use a separate marking phase that traverses the live data, copying collectors
integrate the traversal of the data and the copying process, so that most objects

12

need only be traversed once. Objects are moved to the contiguous destination area
as they are reached by the traversal. The work needed is proportional to the amount
of live data (all of which must be copied).

The term scavenging is applied to the copying traversal, because it consists of
picking out the worthwhile objects amid the garbage, and taking them away.

/k Simple Copying Collector: "S top -and-Copy" Using Semispaces. A very
common kind of copying garbage collector is the semzspace collector [FY69] using
the Cheney algorithm for the copying traversal [Che70]. We will use this collector as
a reference model for much of this paper, s

In this scheme, the space devoted to the heap is subdivided into two contigu-
ous semispaces. During normal program execution, only one of these semispaces is
in use, as shown in Fig. 3. Memory is allocated linearly upward through this "cur-
rent" semispace as demanded by the executing program. This is much like allocation
from a stack, or in a sliding compacting collector, and is similarly fast; there is no
fragmentation problem when allocating objects of various sizes.

When the running program demands an allocation that will not fit in the un-
used area of the current semispace, the program is stopped and the copying garbage
collector is called to reclaim space (hence the term "stop-and-copy"). All of the
live data are copied from the current semispace (fromspace) to the other semispace
(tospace). Once the copying is completed, the tospace semispace is made the "car-
rent" semispace, and program execution is resumed. Thus the roles of the two spaces
are reversed each time the garbage collector is invoked. (See Fig. 4.)

Perhaps the simplest form of copying traversal is the Cheney algorithm [Che70].
The immediately-reachable objects form the initial queue of objects for a breadth-
first traversal. A "scan" pointer is advanced through the first object, location by
location. Each time a pointer into fromspace is encountered, the referred4o-object
is transported to the end of the queue, and the pointer to the object is updated
to refer to the new copy. The free pointer is then advanced and the scan contin-
ues. This effects the "node expansion" for the breadth-first traversal, reaching (and
copying) all of the descendants of that node. (See Fig. 5. Reachable data structures
in fromspace are shown at the top of the figure, followed by the first several states
of tospace as the collection proceeds--tospace is shown in linear address order to
emphasize the linear scanning and copying.)

Rather than stopping at the end of the first object, the scanning process simply
continues through subsequent objects, finding their offspring and copying them as
well. A continuous scan from the beginning of the queue has the effect of removing
consecutive nodes and finding all of their offspring. The offspring are copied to the
end of the queue. Eventually the scan reaches the end of the queue, signifying that
all of the objects that have been reached (and copied) have also been scanned for

s As a historical note, the first copying collector was Minsky's collector for Lisp 1.5 [Min63].
Rather than copying data from one area of memory to another, a single heap space was
used. The live data were copied out to a file, and then read back in, in a contiguous
area of the heap space. On modern machines this would be unbearably slow, because file
operations--writing and reading every llve object--are now many orders of magnitude
slower than memory operations.

13

ROOT
t ' s ~ e w s

FROMSPACE TOSPACE

Fig. 3. A simple semispace garbage collector before garbage collection.

descendants. This means that there are no more reachable objects to be copied, and
the scavenging process is finished.

Actually, a slightly more complex process is needed, so that objects that are
reached by multiple paths are not copied to tospace multiple times. When an object
is transported to tospace, a forwarding pointer is installed in the old version of the
object. The forwarding pointer signifies that the old object is obsolete and indicates
where to find the new copy of the object. When the scanning process finds a pointer
into fromspace, the object it refers to is checked for a forwarding pointer. If it has
one, it has already been moved to tospace, so the pointer it has been reached by is
simply updated to point to its new location. This ensures that each live object is
transported exactly once, and that all pointers to the object are updated to refer to
the new copy.

ROOT
SET

iii
0

FROMSPACE

14

TOSPACE

Fig. 4. Semispace collector after garbage collection.

Efficiency of Copying Collect ion. A copying garbage collector can be made ar-
bitrarily efficient if sufficient memory is available [Lar77, App87]. The work done at
each collection is proportional to the amount of live data at the time of garbage col-
lection. Assuming that approximately the same amount of data is live at any given
time during the program's execution, decreasing the frequency of garbage collections
will decrease the total amount of garbage collection effort.

A simple way to decrease the frequency of garbage collections is to increase the
amount of memory in the heap. If each semispace is bigger, the program will run
longer before filling it. Another way of looking at this is that by decreasing the
frequency of garbage collections, we are increasing the average age of objects at
garbage collection time. Objects that become garbage before a garbage collection
needn't be copied, so the chance that an object will n e v e r have to be copied is

15

ROOT A t

B

E

I I I

F
iI

t
I I

I i

i~ I!!!!ii!!!!!lli!!!!l J!!l
~ n B ~
Scan Free

Scan Free

Scan Free

a B~ c D ~
Scan Free

v)

Scan Free

Fig. 5. The Cheney algorithm of breadth-first copying.

16

increased.
Suppose, for example, that during a program run twenty megabytes of memory

are allocated, but only one megabyte is live at any given time. If we have two three-
megabyte semispaces, garbage will be collected about ten times. (Since the current
semispace is one third full after a collection, that leaves two megabytes that can be
allocated before the next collection.) This means that the system will copy about half
as much data as it allocates, as shown in the top part of Fig. 6. (Arrows represent
copying of live objects between semispaces at garbage collections.)

On the other hand, if the size of the semispaces is doubled, 5 megabytes of free
space will be available after each collection. This will force garbage collections a
third as often, or about 3 or 4 times during the run. This straightforwardly reduces
the cost of garbage collection by more than half, as shown in the bottom part of
Fig. 6.

2.5 Non-Copying Impl ic i t Collect ion

Recently, Baker [Bak92] has proposed a new kind of non-copying collector that with
some of the efficiency advantages of a copying scheme. Baker's insight is that in a
copying collector, the "spaces" of the collector are really just a particular implemen-
tation of sets. Another implementation of sets could do just as well, provided that it
has similar performance characteristics. In particular, given a pointer to an object,
it must be easy to determine which set it is a member of; in addition, it must be easy
to switch the roles of the sets, just as fromspace and tospace roles are exchanged in
a copy collector.

Baker's non-copying system adds two pointer fields and a "color" field to each
object. These fields are invisible to the application programmer, and serve to link
each hunk of storage into a doubly-linked list that serves as a set. The color field
indicates which set an object belongs to.

The operation of this collector is simple, and isomorphic to the copy collector's
operation. Chunks of free space are initially linked to form a doubly-linked list, and
are allocated simply by incrementing a pointer into this list. The allocation pointer
serves to divide the list into the part that has been allocated and the remaining "free"
part. Allocation is fast because it only requires advancing this pointer to point at
the next element of the free list. (Unlike the copying scheme, this does not eliminate
fragmentation problems; supporting variable sized objects requires multiple free lists
and may result in fragmentation of the available space.)

When the free list is exhausted, the collector traverses the live objects and
"moves" them from the allocated set (which we could call the fromset) to another
set (the toset). This is implemented by unlinking the object from the doubly-linked
fromset list, toggling its mark field, and linking it into the toset's doubly-linked list.

Just as in a copy collector, space reclamation is implicit. When all of the reachable
objects have been traversed and moved from the fromset to the toset, the fromset
is known to contain only garbage. It is therefore a list of free space, which can
immediately be put to use as a free list. (As we will explain in section 3.3, Baker's
scheme is actually somewhat more complex, because his collector is incremental.)
The cost of the collection is proportional to the number of live objects, and the
garbage ones are all reclaimed in small constant time.

+

,'- t
I

i i

i

i

i i

I
I

I
I

I~

@

+

C
~

Q
~

~o

]8

This scheme has both advantages and disadvantages compared to a copy collec-
tor. On the minus side, the per-object constants are probably a little bit higher, and
fragmentation problems are still possible. On the plus side, the tracing cost for large
objects is not as high. As with a mark-sweep collector, the whole object needn't be
copied; if it can't contain pointers, it needn't be scanned either. Perhaps more impor-
tantly for many applications, this scheme does not require the actual language-level
pointers between objects to be changed, and this imposes fewer constraints on com-
pilers. As we'll explain later, this is particularly important for parallel and real-time
incremental collectors.

2.6 Choosing Among Basic Techniques

Treatments of garbage collection algorithms in textbooks often stress asymptotic
complexity, but all basic algorithms have roughly similar costs, especially when we
view garbage collection as part of the overall free storage management scheme. Al-
location and garbage collection are two sides of the basic memory reuse coin, and
any algorithm incurs costs at allocation time, if only to initialize the fields of new
objects.

Any of the efficient collection schemes therefore has three basic cost components,
which are (1) the initial work required at each collection, such as root set scanning,
(2) the work done at per unit of allocation (proportional to the amount of allocation,
or the number of objects allocated) and (3) the work done during garbage detection
(e.g., tracing).

The latter two costs are usually similar, in that the amount of live data is usually
some significant percentage of the amount of garbage. Thus algorithms whose cost is
proportional to the amount of allocation (e.g., mark-sweep) may be competitive with
those whose cost is proportional to the amount of live data traced (e.g., copying).

For example, suppose that 10 percent of all allocated data survive a collection,
and 90 percent never need to be traced. In deciding which algorithm is more effi-
cient, the asymptotic complexity is less important than the associated constants.
If the cost of sweeping an object is ten times less than the cost of copying it, the
mark-sweep collector costs about the same as as copy collector. (If a mark-sweep
collector's sweeping cost is billed to the allocator, and it's small relative to the cost
of initializing the objects, then it becomes obvious that the sweep phase is just
not terribly expensive.) While current copying collectors appear to be more efficient
than current mark-sweep collectors, the difference is not large for state-of-the art
implementations.

Further, real high-performance systems often use hybrid techniques to adjust
tradeoffs for different categories of objects. Many high-performance copy collectors
use a separate large object area [CWB86, UJ88], to avoid copying large objects from
space to space. The large objects are kept "off to the side" and usually managed
in-place by some variety of marking traversal and free list technique.

A major point in favor of in-place collectors (such as mark-sweep and treadmill
schemes) is the ability to make them conservative with respect to data values that
may be pointers or may not. This allows them to be used for languages like C, or off-
the-shelf optimizing compilers [BW88, Bar88, BDSgl], which can make it difficult
or impossible to unambiguously identify all pointers at run time. A non-moving

]9

collector can be conservative because anything that looks like a pointer object can
be left where it is, and the (possible) pointer to it doesn't need to be changed. In
contrast, a copying collector must know whether a value is a pointer--and whether
to move the object and update the pointer. For example, if presumed pointers were
updated, and some were actually integers, the program would break because the
integers would be mysteriously changed by the garbage collector.

2.7 P r o b l e m s wi th a S imple Ga rbage Col lec tor

It is widely known that the asymptotic complexity of copying garbage collection is
excellent--the copying cost approaches zero as memory becomes very large. Tread-
mill collection shares this property, but other collectors can be similarly efficient if the
constants associated with memory reclamation and reallocation are small enough.
In that case, garbage detection is the major cost.

Unfortunately, it is difficult in practice to achieve high efficiency in a simple
garbage collector, because large amounts of memory are too expensive. If virtual
memory is used, the poor locality of the allocation and reclamation cycle will gener-
ally cause excessive paging. (Every location in the heap is used before any location's
space is reclMmed and reused.) Simply paging out the recently-allocated data is
expensive for a high-speed processor lUng84], and the paging caused by the copy-
ing collection itself may be tremendous, since all live data must be touched in the
process.)

It therefore doesn't generally pay to make the heap area larger than the available
main memory. (For a mathematical treatment of this tradeoff, see [Lar77].) Even
as main memory becomes steadily cheaper, locality within cache memory becomes
increasingly important, so the problem is simply shifted to a different level of the
memory hierarchy [WLM92].

In general, we can't achieve the potential efficiency of simple garbage collection;
increasing the size of memory to postpone or avoid collections can only be taken so
far before increased paging time negates any advantage.

It is important to realize that ~his problem is not unique to copying collectors.
A l l garbage collection strategies involve similar space-time tradeoffs--garbage col-
lections are postponed so that garbage detection work is done less often, and that
means that space is not reclaimed as quickly. On average, that increases the amount
of memory wasted due to unreclaimed garbage. 9

While copying collectors were originally designed to improve locality, in their
simple versions this improvement is not large, and their locality can in fact be worse

than that of non-compacting collectors. These systems may improve the locality of
reference to long-lived data objects, which have been compacted into a contiguous
area. However, this effect is swamped by the pattern of references due to allocation.

9 Deferred reference counting, like tracing collection, also trades space for time--in giving
up continual incremental reclamation to avoid spending CPU cycles in adjusting refer-
ence counts, one gives up space for objects that become garbage and axe not immediately
reclaimed. At the time scale on which memory is reused, the resulting locality character-
istics must share basic performance tradeoff characteristics with generational co]lectors
of the copying or mark-sweep varieties, which will be discussed later.

20

Large amounts of memory are touched between collections, and this alone makes
them unsuitable for a virtual memory environment.

The major locality problem is not with the locality of compacted data, or with
the locality of the garbage collection process itself. The problem is an indirect result
of the use of garbage collection--by the time space is reclaimed and reused, it's likely
to have been paged out, simply because too many other pages have been allocated
in between. Compaction is helpful, but the help is generally too little, too late. With
a simple semispace copy collector, locality is likely to be worse than that of a mark-
sweep collector, simply because the copy collector uses more total memory---only
half the memory can be used between collections. Fragmentation of live data is not
as detrimental as the regular reuse of two spaces, i~

The only way to have good locality is to ensure that memory is large enough to
hold the regularly-reused area. (Another approach would be to rely on optimizations
such as prefetching, but this is not feasible at the level of virtual memory--disks
simply can't keep up with the rate of allocation because of the enormous speed
differential between RAM and disk.) Generational collectors address this problem
by reusing a smaller amount of memory more often; they will be discussed in Sect.
4. (For historical reasons, is widely believed that only copying collectors can be
made generational, but this is not the case. Generational mark-sweep collectors are
somewhat harder to construct, but they do exist and are quite practical [DWtt+90].

Finally, the temporal distribution of a simple tracing collector's work is also
troublesome in an interactive programming environment; it can be very disruptive
to a user's work to suddenly have the system become unresponsive and spend sev-
eral seconds garbage collecting, as is common in such systems. For large heaps, the
pauses may be on the order of seconds, or even minutes if a large amount of data
is dispersed through virtual memory. Generational collectors alleviate this problem,
because most garbage collections only operate on a subset of memory. Eventually
they must garbage collect larger areas, however, and the pauses may be considerably
longer. For real time applications, this may not be acceptable.

3 Incremental Tracing Collectors

For truly real-time applications, fine-grained incremental garbage collection appears
to be necessary. Garbage collection cannot be carried out as one atomic action
while the program is halted, so small units of garbage collection must be interleaved
with small units of program execution. As we said earlier, it is relatively easy to
make reference counting collectors incremental. Reference counting's problems with
efficiency and effectiveness discourage its use, however, and it is therefore desirable
to make tracing (copying or marking) collectors incremental.

In most of the following discussion, the difference between copying and mark-
sweep collectors is not particularly important. The incremental tracing for garbage

10 Slightly more complicated copying schemes appear to avoid this problem [Ung84, WM89],
but [WLM92] demonstrates that cyclic memory reuse patterns can fare poorly in hierar-
chical memories because of recency-based (e.g., LRU) replacement policies. This suggests
that freed memory should be reused in a LIFO fashion (i.e., in the opposite order of its
previous allocation), if the entire reuse pattern can't be kept in memory.

21

detection is more interesting than the incremental reclamation of detected garbage.
The difficulty with incremental tracing is that while the collector is tracing out

the graph of reachable data structures, the graph may change--the running program
may mutate the graph while the collector "isn't looking." For this reason, discus-
sions of incremental collectors typically refer to the running program as the mutator
[DLM+78]. (From the garbage collector's point of view, the actual application is
merely a coroutine or concurrent process with an unfortunate tendency to modify
data structures that the collector is attempting to traverse.) An incremental scheme
must have some way of keeping track of the changes to the graph of reachable objects,
perhaps re-computing parts of its traversal in the face of those changes.

An important characteristic of incremental techniques is their degree of conser-
vatism with respect to changes made by the mutator during garbage collection. If
the mutator changes the graph of reachable objects, freed objects may or may not
be reclaimed by the garbage collector. Some floating garbage may go unreclaimed
because the collector has already categorized the object as live before the muta-
tor frees it. This garbage is guaranteed to be collected at the next cycle, however,
because it will be garbage at the beginning of the next collection.

3.1 Tricolor Mark ing

The abstraction of tricolor marking is helpful in understanding incremental garbage
collection. Garbage collection algorithms can be described as a process of traversing
the graph of reachable objects and coloring them. The objects subject to garbage
collection are conceptually colored white, and by the end of collection, those that
will be retained must be colored black. When there are no reachable nodes left to
blacken, the traversal of live data structures is finished.

In a simple mark-sweep collector, this coloring is directly implemented by setting
mark bits--objects whose bit is set are black. In a copy collector, this is the process of
moving objects from fromspace to tospace--unreached objects in fromspace are con-
sidered white, and objects moved to tospace are considered black. The abstraction of
coloring is orthogonal to the distinction between marking and copying collectors, and
is important for understanding the basic differences between incremental collectors.

In incremental collectors, the intermediate states of the coloring traversal are
important, because of ongoing mutator activity--the mutator can't be allowed to
change things "behind the collector's back" in such a way that the collector will fail
to find all reachable objects.

To understand and prevent such interactions between the mutator and the col-
lector, it is useful to introduce a third color, grey, to signify that an object has been
reached by the traversal, but that its descendants may not have been. That is, as the
traversal proceeds outward from the roots, objects are initially colored grey. When
they are scanned and pointers to their offspring are traversed, they are blackened
and the offspring are colored grey.

In a copying collector, the grey objects are the objects in the unscanned area
of tospace---the ones between the scan and free pointers. Objects that have been
passed by the scan pointer are black. In a mark-sweep collector, the grey objects
correspond to the stack or queue of objects used to control the marking traversal,

22

and the black objects are the ones that have been removed from the queue. In both
cases, objects that have not been reached yet are white.

Intuitively, the traversal proceeds in a wavefront of grey objects, which separates
the white (unreached) objects from the black objects that have been passed by the
wave--that is, there are no pointers directly from black objects to white ones. This
abstracts away from the particulars of the traversal algorithm--it may be depth-first,
breadth-first, or just about any kind of exhaustive traversal. It is only important that
a well-defined grey fringe be identifiable, and that the mutator preserve the invariant
that no black object hold a pointer directly to a white object.

The importance of this invariant is that the collector must be able to assume
that it is "finished with" black objects, and can continue to traverse grey objects
and move the wavefront forward. If the mutator creates a pointer from a black object
to a white one, it must somehow coordinate with the collector, to ensure that the
collector's bookkeeping is brought UP to date.

Figure 7 demonstrates this need for coordination. Suppose the object A has been
completely scanned (and therefore blackened); its descendants have been reached
and greyed. Now suppose that the. mutator swaps the pointer from A to C with the
pointer from B to D. The only pointer to D is now in a field of A, which the collector
has already scanned. If the traversal continues without any coordination, C will be
reached again (from B), and D will never be reached at all.

I nc r emen ta l approaches There are two basic approaches to coordinating the col-
lector with the mutator. One is to use a read barrier, which detects when the mutator
attempts to access a pointer to a white object, and immediately colors the object
grey; since the mutator can't read pointers to white objects, it can't install them
in black objects. The other approach is more direct, and involves a write barrier---
when the program attempts to write a pointer into an object, the write is trapped
or recorded.

Write barrier approaches, in turn, fall into two different categories, depending on
which aspect of the problem they address. To foil the garbage collector's marking
traversal, it is necessary for the mutator to 1) write a pointer to a white object into
a black object and 2) destroy the original pointer before the collector sees it.

If the first condition (writing the pointer into a black object) does not hold,
no special action is needed--if there are other pointers to the white object from
grey objects, it will be retained, and if not, it is garbage and needn't be retained
anyway. If the second condition (obliterating the original path to the object) does
not hold, the object will be reached via the original pointer and retained. The two
write-barrier approaches focus on these two aspects of the problem.

Snapshot-at-beginning collectors ensure that the second condition cannot happen--
rather than allowing pointers to be simply overwritten, they are first saved so that
the collector can find themo Thus no paths to white objects can be broken without
providing another path to the object for the garbage collector.

Incremental update collectors are still more direct in dealing with these trouble-
some pointers. Rather than saving copies of all pointers that are overwritten (because
they might have already been copied into black objects) they actually record pointers
stored into black objects, and catch the troublesome pointers at their destination,

23

A A

Before After

Fig. 7. A violation of the coloring invariant.

rather than their source. That is, if a pointer to a white object is copied into a black
object, that new copy of the pointer will be found. Conceptually, the black object (or
part of it) is reverted to grey when the mutator "undoes" the collector's traversal.
(Alternatively, the pointed-to object may be greyed immediately.) This ensures that
the traversal is updated in the face of mutator changes.

3.2 Baker's Incremental Copying.

The best-known real-time garbage collector is Baker's incremental copying scheme
[Bak78]. It is an adaptation of the simple copy collection scheme described in Sect. 2.5,
and uses a read barrier for coordination with the mutator. For the most part, the
copying of data proceeds in the Cheney (breadth-first) fashion, by advancing the scan
pointer through the unscanned area of tospace and moving any referred-to objects

24

from fromspace. This background scavenging is interleaved with mutator operation,
however.

An important feature of Baker's scheme is its treatment of objects allocated by
the mutator during incremental collection. These objects are allocated in tospace
and are treated as though they had already been scanned--i.e., they are assumed to
be live. In terms of tricolor marking, new objects are black when allocated, and none
of them can be reclaimed; they are never reclaimed until the next garbage collection
cycle, n

In order to ensure that the scavenger finds all of the live data and copies it to
tospace before the free area in newspace is exhausted, the rate of copy collection
work is tied to the rate of allocation. Each time an object is allocated, an increment
of scanning and copying is done.

In terms of tricolor marking, the scanned area of tospace contains black objects,
and the copied but unscanned objects (between the scan and free pointer) are grey.
As-yet unreached objects in fromspace are white. The scanning of objects (and
copying of their offspring) moves the wavefront forward.

In addition to the background scavenging, other objects may be copied to tospace
as needed to ensure that the basic invariant is not violated--pointers into fromspace
must not be stored into objects that have already been scanned, undoing the collec-
tor's work.

Baker's approach is to couple the collector's copying traversal with the muta-
tot's traversal of data structures. The mutator is never allowed to see pointers into
fromspace, i.e., pointers to white objects. Whenever the mutator reads a (potential)
pointer from the heap, it immediately checks to see if it is a pointer into fromspace;
if so, the referent is copied to tospace, i.e., its color is changed from white to grey.
In effect, this advances the wavefront of greying just ahead of the actual references
by the mutator, keeping the mutator inside the wavefront. 12

It should be noted that Baker's collector itself changes the graph of reachable
objects, in the process of copying. The read barrier does not just inform the collector
of changes by the mutator, to ensure that objects aren't lost; it also shields the
mutator from viewing temporary inconsistencies created by the collector. If this
were not done, the mutator might encounter two different pointers to versions of the
same object, one of them obsolete.

This shielding of the mutator from white objects has come to be called a read
barrier, because it prevents pointers to white objects from being read by the program
at all.

The read barrier may be implemented in software, by preceding each read (of a
potential pointer from the heap) with a check and a conditional call to the copying-
and-updating routine. (Compiled code thus contains extra instructions to implement

n Baker suggests copying old live objects into one end of tospace, and allocating new objects
in the other end. The two occupied areas of tospace thus grow toward each other.

1~ Niisen's variant of Baker's algorithm updates the pointers without actually copying the
objects--the copying is lazy, and space in tospace is simply reserved for the object before
the pointer is updated [Ni188]. This makes it easier to provide smaller bounds on the time
taken by list operations, and to gear collector work to the amount of allocation--including
guaranteeing shorter pauses when smaller objects are allocated.

25

the read barrier.) Alternatively, it may be implemented with specialized hardware
checks and/or microcoded routines.

The read barrier is quite expensive on stock hardware, because in the general
case, any load of a pointer must check to see if the pointer points to a fromspace
(white) object; if so, it must execute code to move the object to tospace and update
the pointer. The cost of these checks is high on conventional hardware, because they
occur very frequently. Lisp Machines have special purpose hardware to detect point-
ers into fromspace and trap to a handler[Gre84, Moo84, Joh91], but on conventional
machines the checking overhead is in the tens of percent for a high performance
system.

Brooks has proposed a variation on Baker's scheme, where objects are always
referred to via an indirection field embedded in the object itself [Bro84]. If an object
is valid, its indirection field points to itself. If it's an obsolete version in tospace, its
indirection pointer points to the new version. Unconditionally indirecting is cheaper
than checking for indirections, but would still incur overheads in the tens of percent
for a high-performance system. (A variant of this approach has been used by North
and Reppy in a concurrent garbage collector [NR87].) Zorn takes a different approach
to reducing the read barrier overhead, using knowledge of important special cases
and special compiler techniques. Still, the time overheads are on the order of twenty
percent [Zor89].

3.3 The Treadmil l

Recently, Baker has proposed a non-copying version of his scheme, which uses
doubly-linked lists (and per-object color fields) to implement the sets of objects
of each color, rather than separate memory areas. By avoiding the actual moving of
objects and updating of pointers, the scheme puts fewer restrictions on other aspects
of language implementation. 13

This non-copying scheme preserves the essential efficiency advantage of copy col-
lection, by reclaiming space implicitly. (As described in Sect. 2.5, unreached objects
on the allocated list can be reclaimed by appending the remainder of that list to the
free list.) The real-time version of this scheme links the various lists into a cyclic
structure, as shown in Fig. 8. This cyclic structure is divided into four sections.

The new list is where allocation of new objects occurs during garbage collection--
it is contiguous with the free list, and Mlocation occurs by advancing the pointer that
separates them. At the beginning of garbage collection, the new segment is empty.

The from list holds objects that were allocated before garbage collection began,
and which are subject to garbage collection. As the collector and mutator traverse
data structures, objects are moved from the from list to the to list. The to list is
initially empty, but grows as objects are "unsnapped" (unlinked) from the from list
(and snapped into the to list) during collection.

The new list contains new objects, which are allocated black. The to-list contains
both black objects (which have been completely scanned) and grey ones (which have

13 In particular, it is possible to deal with compilers that do not unambiguously identify
pointer variables in the stack, making it impossible to use simple copy collection.

26

Allocation _t

Scanning,,~,
r

\
\

\
\

\
\

\
\

N e w

To

F r e e
\

\
\

' F r o m

Fig. 8. Treadmill collector during collection.

been reached but not scanned). Notg the isomorphism with the copying a lgor i thm--
even an analogue of the Cheney algorithm can be used. It is only necessary to have
a scan pointer into the from list and advance it through the grey objects.

Eventually, all of the reachable objects in the from list have been moved to the
to list, and scanned for offspring. When no more offspring are reachable, all of the
objects in the to-list are black, and the remaining objects in the from list are known
to be garbage. At this point, the garbage collection is complete. The from list is now
available, and can simply be merged with the free list. The to list and the new list
both hold objects that were preserved, and they can be merged to form the new
to-list at the next collection. 14

14 This discussion is a bit oversimplified; Baker uses four colors, and whole lists can have
their colors changed ins tan taneous ly by changing the sense of the bit pa t t e rns , r a the r

27

The state is very similar to the beginning of the previous cycle, except that the
segments have "moved" partway around the cycle---hence the name "treadmill."

Baker describes this algorithm as being isomorphic to his original incremental
copying algorithm, presumably including the close coupling between the mutator
and the collector, i.e., the read barrier.

Conse rva t i sm in Baker ' s scheme. Baker's garbage collector uses a somewhat
conservative approximation of true liveness in two ways. 15 The most obvious one
is that objects allocated during collection are assumed to be live, even if they die
before the collection is finished. The second is that pre-existing objects may become
garbage after having been reached by the collector's traversal, and they will not
be reclaimed--once an object has been greyed, it will be considered live until the
next garbage collection cycle. On the other hand, if objects become garbage during
collection, and all paths to those objects are destroyed before being traversed, then
they will be reclaimed. That is, the mutator may overwrite a pointer from a grey
object, destroying the only path to one or more white objects and ensuring that the
collector will not find them. Thus Baker's incremental scheme incrementally updates
the reachability graph of pre-existing objects, only when grey objects have pointers
overwritten. Overwriting pointers from black objects has no effect, however, because
their referents are already grey. The degree of conservatism (and floating garbage)
thus depends on the details of the collector's traversal and of the program's actions.

3.4 Snapsho t -a t -Beg inn ing wr i t e -ba r r i e r a lgor i thms

If a non-copying collector is used, the use of a read barrier is an unnecessary expense;
there is no need to protect the mutator from seeing an invalid version of a pointer.
Write barrier techniques are cheaper, because heap writes are several times less com-

mon than heap reads. Snapshot-at-beginning algorithms use a write barrier to ensure
that no objects ever become inaccessible to the garbage collector while collection is
in progress. Conceptually, at the beginning of garbage collection, a copy-on-write
virtual copy of the graph of reachable data structures is made. That is, the graph of
reachable objects is fixed at the moment garbage collection starts, even though the
actual traversal proceeds incrementally.

Perhaps the simplest and best-known snapshot collection algorithm is Yuasa's
[Yuag0]. If a location is written to, the overwritten value is first saved and pushed on
a marking stack for later examination. This guarantees that no objects will become
unreachable to the garbage collector traversal--all objects live at the beginning of
garbage collection will be reached, even if the pointers to them are overwritten. In
the example shown in Fig. 7, the pointer from B to D is pushed onto the stack when
it is overwritten with the pointer to C.

Yuasa's scheme has a large advantage over Baker's on stock hardware, because
only heap pointer writes must be treated specially to preserve the garbage collector

than the patterns themselves.
15 This kind of conservatism is not to be confused with the conservative treatment of point-

ers that cannot be unambiguously identified. (For a more complete and formal discussion
of various kinds of conservatism in garbage collection, see [DWH+90].)

28

invariants. Normal pointer dereferencing and comparison does not incur any extra
overhead.

On the other hand, Yuasa's scheme is more conservative than Baker's. Not only
are all objects allocated during collection retained, but no objects can be freed during
collection--all of the overwritten pointers are preserved and traversed. These objects
are reclaimed at the next garbage collection cycle.

3.5 I n c r e m e n t a l U p d a t e Wr l t e -Bar r i e r Algor i thms

While both are write-barrier algorithms, snapshot-at-beginning and incremental up-
date algorithms are quite different. Unfortunately, incremental update algorithms
have generally been cast in terms of parallel systems, rather than as incremental
schemes for serial processing; perhaps due to this, they have been largely overlooked
by implementors targeting uniprocessors.

Perhaps the best known of these algorithms is due to Dijkstra et al. [DLM+78].
(This is similar to the scheme developed independently by Steele [Ste75], but simpler
because it does not deal with compactification.) Rather than retaining everything
that's in a snapshot of the graph at the beginning of garbage collection, it heuristically
(and somewhat conservatively) attempts to retain the objects that are live at the
end of garbage collection. Objects that die during garbage collection--and before
being reached by the marking traversal--are not traversed and marked.

To avoid the problem of pointers escaping into reachable objects that have already
been scanned, such copied pointers are caught at their destination, rather than their
source. Rather than noticing when a pointer escapes from a location that hasn't
been traversed, it notices when the pointer escapes into an object that has already
been traversed. If a pointer is overwritten without being copied elsewhere, so much
the better--the object is garbage, so it might as well not get marked.

If the pointer is installed into an object already determined to be live, that
pointer must be taken into account--it has now been incorporated into the graph
of reachable data structures. Such pointer stores are recorded by the write barrier--
the collector is notified which black objects may hold pointers to white objects, in
effect reverting those objects to grey. Those formerly-black objects will be scanned
again before the garbage collection is complete, to find any live objects that would
otherwise escape. (This process may iterate, because more black objects may be
reverted while the collector is in the process of traversing them. The traversal is
guaranteed to complete, however, and the collector eventually catches up with the
mutator.)

Objects that become garbage during garbage collection may be reclaimed at the
end of that garbage collection, not the next one. This is similar to Baker's read-
barrier algorithm in its treatment of pre-existing objects--they are not preserved if
they become garbage before being reached by the collector.

It is less conservative than Baker's and Yuasa's algorithms in its treatment of
objects allocated by the mutator during collocation, however. Baker's and Yuasa's
schemes assume such newly-created objects are live, because pointers to them may
get installed into objects that have already been reached by the collector's traversal.
In terms of tricolor marking, objects are allocated "black", rather than white--they
are conservatively assumed to be part of the graph of reachable objects. (In Baker's

29

algorithm, there is no write barrier to detect whether they have been incorporated
into the graph or not.)

In the Dijkstra et al. scheme, objects are assumed not to be reachable when
they're allocated. In terms of tricolor marking, objects are allocated white, rather
than black. At some point, the stack must be traversed and the objects that are
reachable at that time are marked and therefore preserved.

We believe that this has a potentially significant advantage over Baker's or
Yuasa's schemes. Most objects are short-lived, so if the collector doesn't reach those
objects early in its traversal, they're likely never to be reached, and instead to be
reclaimed very promptly. Compared to Baker's or Yuasa's schemei there's an ex-
tra computational cost--by assuming that all objects allocated during collection
are reachable, those schemes avoid the cost of traversing and marking those that
actually are reachable. On the other hand, there's a space benefit with the incre-
mental update schemc the majority of those objects can be reclaimed at the end
of a collection, which is likely to make it worth traversing the others. (In Steele's
algorithm, some objects are allocated white and some are not, depending on the col-
ors of their referents [Ste75]. This heuristic attempts to allocate short-lived objects
white to reclaim their space quickly, while treating other objects conservatively to
avoid traversing them. The cost of this technique is not quantified, and its benefits
are unknown.)

3.6 Choos ing A m o n g Inc remen ta l Techniques

In choosing an incremental collection design, it is instructive to keep in mind the
abstraction of tricolor marking, as distinct from mechanisms such as mark-sweep or
copy collection. For example, Brooks' collector [Bro84] is actually a write barrier
algorithm, even though Brooks describes it as an optimization of Baker's scheme) 6
Similarly, Dawson's[Daw82] copy collection scheme is cast as a variant of Baker's,
but it is actually an incremental update scheme, similar to Dijkstra et al.'s; objects
are allocated in fromspace, i.e., white.

The choice of a read- or write-barrier scheme is likely to be made on the basis
of the available hardware. Without specialized hardware support, a write barrier
appears to be easier to implement efficiently, because heap pointer writes are much
less common than pointer traversals.

Appel, Ellis and Li [AEL88] use virtual memory (pagewise) access protection
facilities as a coarse approximation of Baker's write barrier[AEL88, AL91, Wil91].
Rather than checking each load to see if a pointer to fromspace is being loaded, the
mutator is simply not allowed to see any page that might contain such a pointer.
Pointers in the scanned area of tospace are guaranteed to contain only pointers into
tospace. Any pointers from fromspace to tospace must be from the unscanned area,
so the collector simply access-protects the unscanned area, i.e., the grey objects.
When the mutator accesses a protected page, a trap handler immediately scans the

16 The use of uniform indirections may be viewed as avoiding the need for a Baker-style
read barrier--the indirections isolate the collector from changes made by the mutator,
allowing them to be decoupled. The actual coordination, in terms of tricolor marking, is
through a write barrier.

30

whole page, fixing up all the pointers (i.e., blackening all of the objects in the page);
referents in fromspace are relocated to tospace (i.e., greyed) and access-protected.

Unfortunately this scheme fails to provide meaningful real-time guarantees in the
general case. (It does support concurrent collection, however, and greatly reduces
the cost of the read barrier.) In the worst case, each pointer traversal may cause the
scanning of a page of tospace until the whole garbage collection is complete. 17

Of write barrier schemes, incremental update appears to be more effective than
snapshot approaches--because most short-lived objects are reclaimed quickly--but
with an extra cost in traversing newly-allocated live objects. This cost might be re-
duced by carefully choosing the ordering of root traversal, traversing the most stable
structures first to avoid having the collector's work undone by mutator changes.

Careful attention should be paid to write barrier implementation. Boehm, Demers
and Shenker's [BDS91, Boe91] incremental update algorithm uses virtual memory
dirty bits as a coarse pagewise write barrier. All black objects in a page must be
re-scanned if the page is dirtied again before the end of a collection. (As with Appel,
Ellis and Li's copy collector, this coarseness sacrifices real-time guarantees, while
supporting parallelism. It also allows the use of off-the-shelf compilers that don't
emit write barrier instructions along with heap writes.)

In a system with compiler support for garbage collection, a list of stored-into
locations can be kept, or dirty bits can maintained (in software) for small areas of
memory, to reduce scanning costs and bound the time spent updating the marking
traversal. This has been done for other reasons in generational garbage collectors,
as we will discuss in Sect. 4.

4 G e n e r a t i o n a l G a r b a g e C o l l e c t i o n

Given a realistic amount of memory, efficiency of simple copying garbage collection
is limited by the fact that the system must copy all live data at a collection. In most
programs in a variety of languages, most objects live a very short time, while a small
percentage of them live much longer [LH83, Ung84, Sha88, Zor90, DeT90, Hay91/.
While figures vary from language to language and program to program, usually
between 80 and 98 percent of all newly-allocated objects die within a few million
instructions, or before another megabyte has been allocated; the majority of objects
die even more quickly, within tens of kilobytes of allocation.

(Heap allocation is often used as a measure of program execution, rather than
wall clock time, for two reasons. One is that it's independent of machine and im-
plementation speed--it varies appropriately with the speed at which the program
executes, which wall clock time does not; this avoids the need to continually cite
hardware speeds, is It is also appropriate to speak in terms of amounts Mlocated for

17 Ralph Johnson has improved on this scheme by incorporating lazier copying of objects
to fromspace [Joh92]. This decreases the maximum latency, but in the (very unlikely)
worst case a page may still be scanned at each pointer traversal until a whole garbage
collection has been done "the hard way ~ .

is One must be careful, however, not to interpret it as the ideal abstract measure. For
example, rates of heap allocation are somewhat higher in Lisp and Smalltalk, because
more control information and/or intermediate data of computations may be passed as
pointers to heap objects, rather than as structures on the stack.

3]

garbage collection studies because the time between garbage collections is largely
determined by the amount of memory available. 19 Future improvements in compiler
technology may reduce rates of heap allocation by putting more "heap" objects on
the stack; this is not yet much of a problem for experimental studies, because most
current state-of-the-art compilers don't do much of this kind of lifetime analysis.)

Even if garbage collections are fairly close together, separated by only a few
kilobytes of allocation, most objects die before a collection and never need to be
copied. Of the ones that do survive to be copied once, however, a large fraction sur-
vive through many colleclions. These objects are copied at every Scavenge, over and
over, and the garbage collector spends most of its time copying the same old objects
repeatedly. This is the major source of inefficiency in simple garbage collectors.

Generational collection [LH83] avoids much of this repeated copying by segregat-
ing objects into multiple areas by age, and scavenging areas containing older objects
less often than the younger ones. Once objects have survived a small number of scav-
enges, they are moved to a less frequently scavenged area. Areas containing younger
objects are scavenged quite frequently, because most objects there will generally die
quickly, freeing up space; copying the few that survive doesn't cost much. These
survivors are advanced to older status after a few scavenges, to keep copying costs
down.

(For historical reasons and simplicity of explanation, we will focus on genera-
tional copying collectors. The choice of copying or marking collection is essentially
orthogonal to the issue of generational collection, however [DWH+90].)

4.1 Mul t ip l e Subheaps wi th Varying Scavenge Frequencies

Consider a generational garbage collector based on the semispace organization: mem-
ory is divided into areas that will hold objects of different approximate ages, or gen-
erations; each generation's memory is further divided into semispaces. In Fig. 9 we
show a simple generational scheme with just two age groups, a New generation and
an Old generation. Objects are allocated in the New generation, until its current
semispace is full. Then the New generation (only) is scavenged, copying its live data
into the other semispace, as shown in Fig. 10.

If an object survives long enough to be considered old, it can be copied out of the
new generation and into the old, rather than back into the other semispace. This
removes it from considoeration by single-generation scavenges, so that it is no longer
copied at every scavenge. Since relatively few objects live this long, old memory will
fill much more slowly than new. Eventually, old memory will fill up and have to be
garbage collected as ~hll. Figure 11 shows the general pattern of memory use in this
simple generational scheme. (Note the figure is not to scale---the younger generation
is typically several times smaller than the older one.)

The number of generations may be greater than two, with each successive gener-
ation holding older objects and being scavenged considerably less often. (Tektronix

19 Allocation-relative measures axe still not the absolute bottom-line measure of garbage
collector efficiency, though, because decreasing work per unit of allocation is not nearly
as important if programs don't allocate much; conversely, smaller percentage changes in
garbage collection work mean more for programs whose memory demands are higher.

Younger Generation

ROOT

32

Fig. O. A generational copying garbage collector before garbage collection.

33

v~.. r--

%

. .2 i

~ J

Younger Generation

ROOT
SET %

f
t

Older Generation

Fig . 10. Generational collector after garbage collection.

Fi
rs

t (
N

ew
)

G
en

er
at

io
n

M
em

or
y

Se
co

nd

M
em

or
y

C
O

4~

F
ig

.
11

.
M

em
or

y
us

e
in

 a
 g

en
er

at
io

na
l

co
py

 c
ol

le
ct

or
 w

it
h

se
m

is
pa

ce
s

fo
r

ea
ch

 g
en

er
at

io
n.

35

4406 Smalltalk is such a generational system, using semispaces for each of eight
generations [CWB86].)

4.2 Detec t ing Intergenerational References

In order for this scheme to work, it must be possible to scavenge the younger gen-
eration(s) without scavenging the older one(s). Since liveness of data is a global
property, however, old-memory data must be taken into account. For example, if
there is a pointer from old memory to new memory, that pointer must be found at
scavenge time and used as one of the roots of the traversal. (Otherwise, an object
that is live may not be preserved by the garbage collector, or the pointer may simply
not be updated appropriately when the object is moved. Either event destroys the
integrity and consistency of data structures in the heap.)

In the original generational collection scheme [LH83] scheme, no pointer in old
memory may point directly to an object in new memory; instead it must point to a
cell in an indirection table, which is used as part of the root set. Such indirections are
transparent to the user program. This technique was implemented on Lisp machines
such as the MIT machines [Gre84] and Texas Instruments Explorer [Cou88]. (There
are minor differences between the two, but the principles are the same. 2~

Note that other techniques are often more appropriate, especially on stock hard-
ware. Using indirection tables introduces overhead similar to that of Baker's read
barrier. A pointer recording technique can be used instead. Rather than indirecting
pointers from old objects to young ones, normal (direct) pointers are allowed, but
the locations of such pointers are noted so that they can be found at scavenge time.
This requires something like a write barrier [Ung84, Moo84]; that is, the running
program cannot freely modify the teachability graph by storing pointers into objects
in older generation.

The write barrier may do checking at each store, or it may be as simple as main-
taining dirty bits and scanning dirty areas at collection time [Sha88, Sob88, WM89,
Wi190].21; the same mechanism might support real-time incremental collection as
well.

The important point is that all references from old to new memory must be
located at scavenge time, and used as roots for the copying traversal.

Using these intergenerational pointers as roots ensures that all reachable objects
in the younger generation are actually reached by the collector; in the case of a copy
collector, it ensures that all pointers to moved objects are appropriately updated.

As in an incremental collector, this use of a write barrier results in a conservative
approximation of true liveness; any pointers from old to new memory are used as

s0 The main difference is that the original scheme used per-generation entry tables, indirect-
ing and isolating the pointers into a generation. The Explorer used exit tables, indirecting
the pointers out of each generation; for each generation, there is a separate exit table for
pointers into each younger generation[Cou88].

21 Ungar and Chambers' improvement [Cha92], of our "card marking" scheme [WM89,
Wfl90] decreases the cost per heap write by using whole bytes as dirty bits. Given the
byte write instructions available on common architectures, the overhead is only three
instructions per potential pointer store, at an increase in bitmap size and per-garbage
collection scanning cost.

36

roots, but not all of these roots are necessarily live themselves. An object in old
memory may already have died, but that fact is unknown until the next time old
memory is scavenged. Thus some garbage objects may be preserved because they
are referred to from objects that are floating (undetected) garbage. This appears not
to be a problem in practice lUng84, UJ88].

It would also be possible to track all pointers from new memory into old memory,
allowing old memory to be scavenged independently of new memory. This is more
costly, however, because there are typically many more pointers from old to new than
from new to old. This is a consequence of the way references are typically created--
by creating a new object that refers to other objects which already exist. Sometimes
a pointer to a new object is installed in an old object, but this is considerably less
common. This asymmetrical treatment allows allows object-creating code (like Lisp's
frequently-used cons operation) to skip the recording of intergenerational pointers.
Only non-initializing stores into objects must be checked for intergenerational refer-
ences; writes that initialize objects in the youngest generation can't create pointers
into younger ones.

Even if new-to-old pointers are not recorded, it may still be feasible to scavenge
a generation without scavenging newer ones. In this case, all data in the newer
generations may be considered possible roots, and they may simply be scanned for
pointers [LIt83]. While this scanning consumes time proportional to the amount of
data in the newer generations, each generation is usually considerably smaller than
the next, and the cost may be small relative to the cost of actually scavenging the
older generation. (Scanning the data in the newer generation may be preferable to
scavenging both generations, because scanning is generally faster than copying; it
may also have better locality.)

The cost of recording intergenerational pointers is typically proportional to the
rate of program execution i.e., it's not particularly tied to the rate of object creation.
For some programs, it may be the major cost of garbage collection, because several
instructions must be executed for every potential pointer store into the heap. This
may slow program execution down by several percent. (It is interesting to note that
this pointer recording is essentially the same as that required for a write barrier
incremental scheme; the same cost may serve both purposes.)

Within the framework of the generational strategy we've outlined, several im-
portant questions remain:

1. Advancement policy. How long must an object survive in one generation before
it is advanced to the next? lUng84, WM89]

2. Heap organization. How should storage space be divided and used between gen-
erations, and within a generation [Moo84, Ung84, Sha88, WM89]? How does the
resulting reuse pattern affect locality at the virtual memory level [Ung84, Zor89,
WM89], and at the level of high-speed cache memories [Zor91, WLM92]?

3. Traversal algorithms. In a tracing collector, the traversal of live objects may
have an important impact on locality. In a copying collector, objects are also
reordered in memory as they are reached by the copy collector. What affect does
this have on locality, and what traversal yields the best results [Bla83, StaB4,
And86, WLM91]?

4. Collection scheduling. For a non-incremental collector, how might we avoid or

37

.

mitigate the effect of disruptive pauses, especially in interactive applications
lUng84, WM89]? Can we improve efficiency by careful "opportunistic'scheduling
[WM89, tIay91]? Can this be adapted to incremental schemes to reduce floating
garbage?
Intergeneralional references. Since it must be possible to scavenge younger gen-
erations without scavenging the older ones, we must be able to find the live
pointers from older generations into the ones we're scavenging. What is the best
way to do this [WM89, BDS91, App89b, Wil90]?

5 Conclusions

Recent advances in garbage collection technology make automatic storage reclama-
tion affordable for use in high-performance systems. Even relatively simple garbage
collectors' performance is often competitive with conventional explicit storage man-
agement lApp87, Zor92]. Generational techniques reduce the basic costs and dis-
ruptiveness of collection by exploiting the empirically observed tendency of objects
to die young; stock hardware incremental techniques may even make this relatively
inexpensive for hard real-time systems.

We have discussed the basic operation of several kinds of garbage collectors, to
provide a framework for understanding current research in the field. A key point is
that standard textbook analyses of garbage collection algorithms usually miss the
most important characteristics of collectors--namely, the constant factors associated
with the various costs, including locality effects. These factors require garbage col-
lection designers to take detailed implementation issues into account, and be very
careful in their choices of features.

Features also interact in important ways. Fine-grained incremental collection is
unnecessary in most systems without hard real-time constraints. Coarser incremen-
tal techniques may be sufficient, because the modest pause times are acceptable
[AEL88, BDS91], and the usually-short pauses of a stop-and-collect generational
system may be acceptable enough for many systems lung84, WM89]. (On the other
hand, the write barrier support for generational garbage collection could also sup-
port an incremental update scheme for incremental collection; if this recording is
cheap and precise enough, it might support fine-grained real-time collection at little
cost.)

In this introductory survey, we have not addressed the increasingly important ar-
eas of parallel [Ste75, KS77, DLM+78, NR87, AEL88, SS91] and distributed [LQP92,
RMA92, J J92, PS92] collection; we have also given insufficient coverage of conserva-
tive collectors, which can be used with systems not originally designed for garbage
collection [BW88, Bar88, Ede90, Wen90, WH91]. These developments have consid-
erable promise for making garbage collection widely available and practical; we hope
that we've laid a proper foundation for discussing them, by clarifying the basic issues.

Acknowledgments

I am grateful to innumerable people for enlightening discussions of heap management
over the last few years, including David Ungar, Eliot Moss, Henry Baker, Andrew

38

Appel, Urs Hoelzle, Mike Lam, Tom Moher, Henry Lieberman, Patrick Sobalvarro,
Doug Johnson, Bob Courts, Ben Zorn, Mark Johnstone and David Chase. Special
thanks to Hans Boehm, Joel Bartlett , David Moon, Barry Hayes, and especially to
Janet Swisher for help in the preparation of this paper.

References

[AEL88]

[AL91]

[AndS6]

[App87]

[App89~

[App89b]

[App91]

[Bak78]

[Bak92]

[BarS8]

[BDS91]

[Bla83]

[Bob80]

[Boe91]

[Bro84]

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent garbage
collection on stock multiprocessors. In SIGPLAN Symposium on Programming
Language Design and Implementation, pages 11-20, Atlanta, Georgia, June
1988.
Andrew W. Appel and Kai Li. Virtual memory primitives for user programs.
In Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), pages 96-107, Santa Clara,
California, April 1991.
David L. Andre. Paging in Lisp programs. Master's thesis, University of Mary-
land, College Park, Maryland, 1986.
Andrew W. Appel. Garbage collection can be faster than stack allocation.
Information Processing Letters, 25(4):275-279, June 1987.
Andrew W. Appel. Runtime tags aren't necessary. Lisp and Symbolic Compu-
tation, 2:153-162, 1989.
Andrew W. Appel. Simple generational garbage collection and fast allocation.
Software Practice and Experience, 19(2):171-183, February 1989.
Andrew W. AppeL Garbage collection. In Peter Lee, editor, Topics in Advanced
Language Implementation Techniques, pages 89-100. MIT Press, Cambridge,
MA, 1991.
Henry G. Baker, Jr. List processing in real time on a serial computer. Com-
munications of the ACM, 21(4):280-294, April 1978.
Henry G. Baker, Jr. The Treadmill: Real-time garbage collection without mo-
tion sickness. ACM SIGPLAN Notices, 27(3):66-70, March 1992.
Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Techni-
cal Report 88/2, Digital Equipment Corporation Western Research Laboratory,
Palo Alto, California, February 1988.
Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel gar-
bage collection. In SIGPLAN Symposium on Programming Language Design
and Implementation, pages 157-164, Toronto, Ontario, Canada, June 1991.
Ricld Blau. Paging on an object-oriented personal computer for Smalltalk. In
ACM SiGMETRICS Conference on Measurement and Modeling of Computer
Systems, Minneapolis, Minnesota, August 1983. Also appears as Technical Re-
port UCB/CSD 83/125, University of California at Berkeley, Computer Science
Division (EECS), Berkeley, California, August 1983.
Daniel G. Bobrow. Managing reentrant structures using reference counts. ACM
Transactions on Programming Languages and Systems, 2(3):269-273, July 1980.
Hans-Juergen Boehm. Hardware and operating system support for conservative
garbage collection. In 1EEE International Workshop on Object Orientation In
Operating Systems, Palo Alto, California, October 1991. IEEE Press.
Rodney A. Brooks. Trading data space for reduced time and code space in
real-time collection on stock hardware. In SIGPLAN Symposium on LISP and
Functional Programming, pages 108-113, Austin, Texas, August 1984.

39

[Bwss]

[CG77]

[Cha92]

[the70]

[Cla79]

[CN83]

[CohS1]

[Col6O]

[0ou88]

[CWB86]

[Daw82]

[DB76]

[DeT90]

[DLM+78]

[DWtt + 90]

[Ede90]

[FY69]

[Go191]

Ha~s-Juergen Boehm and Mark Weiser. Garbage collection in an uncoopera-
tive environment. Software Practice and Experience, 18(9):807-820, September
1988.
Douglas W. Clark and C. Cordell Green. An empirical study of list structure
in LISP. Communications of the ACM, 20(2):78-87, February 1977.
Craig Chambers. The Design and Implementation of the SELF Compiler, an
Optimizing Compiler for an Object-Oriented Programming Language. PhD the-
sis, Stanford University, March 1992.
C. J. Cheney. A nonrecursive fist compacting algorithm. Communications of
the ACM, 13(11):677-678, November 1970.
Douglas W. Clark. Measurements of dynamic list structure use in Lisp. IEEE
Transactions on Software Engineering, 5(1):51-59, January 1979.
Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms
for garbage collection. A CM Transactions on Programming Languages and Sys-
tems, 5(4):532-553, October 1983.
Jacques Cohen. Garbage collection of linked data structures. Computing Sur-
veys, 13(3):341-367, September 1981.
George E. Collins. A method for overlapping and erasure of lists. Communica-
tions of the ACM, 2(12):655-657, December 1960.
Robert Courts. Improving locality of reference in a garbage-collecting memory
management system. Communications of the ACM, 31(9):1128-1138, Septem-
ber 1988.
Patrick J. Caudill and Allen Wirfs-Brock. A third-generation Smalltalk-80 im-
plementation. In Norman Meyrowitz, editor, ACM SIGPLAN Conference on
Object Oriented Programming Systems, Languages and Applications (OOPSLA
'86), pages 119-130, September 1986. Also published as ACM SIGPLAN No-
tices 21(11):119-130, November, 1986.
Jeffrey L. Dawson. Improved effectiveness from a real-time LISP garbage col-
lector. In SIGPLAN Symposium on LISP and Functional Programming, pages
159-167, August 1982.
L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremental, automatic
garbage collector. Communications of the ACM, 19(9):522-526, September
1976.
John DeTreville. Experience with concurrent garbage collectors for modula-2+.
Technical Report 64, Digital Equipment Corporation Systems Research Center,
Palo Alto, California, August 1990.
Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation. Communi-
cations of the ACM, 21(11):966-975, November 1978.
Alan Demers, Mark Weiser, Barry Hayes, Daniel Bobrow, and Scott Shenker.

Combining generational and conservative garbage collection: Framework and
implementations. In Conf. Record of the Seventeeth Annual ACM Symposium
on Principles of Programming Languages, pages 261-269, Las Vegas, Nevada,
January 1990.
Daniel Ross Edelson. Dynaanic storage reclamation in C++. Technical Report
UCSC-CRL-90-19, University of California at Santa Cruz, June 1990.
Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector for
virtual-memory computer systems. Communications of the A CM, 12(11):611-
612, November 1969.
Benjamin Goldberg. Tag-free garbage collection for strongly-typed program-
ming languages. In SIGPLAN Symposium on Programming Language Design

40

[Gre84]

[Hay91]

[JJ92]

[Joh91]

[Joh92]

[Knu69]

[KS77]

[Lar77]

[LH83]

[LQP92]

[McB63]

[McC60]

[Min63]

[Moo84]

[Ni188]

[NR87]

[PS92]

iRMA92]

and Implementation, pages 165-176, June 1991. Toronto, Ontario, Canada.
Richard Greenblatt. The LISP Machine. McGraw Hill, 1984. D.R. Barstow,
H.E. Shrobe, E. Sandewall, eds.
Barry Hayes. Using key object'opportunism to collect old objects. In ACM
SIGPLAN Conference on Object Oriented Programming Systems, Languages
and Applications (OOPSLA '91), pages 33-46, Phoenix, Arizona, October 1991.
ACM Press.
Neils-Christian Juul and Eric Jul. Comprehensive and robust garbage collection
in a distributed system. In International Workshop on Memory Management,
St. Malo, France, September 1992. Springer-Verlag Lecture Notes in Computer
Science series.
Douglas Johnson. The case for a read barrier. In Fourth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IV), pages 96-107, Santa Clara, California, April 1991.
Ralph E. Johnson. Reducing the latency of a real-time garbage collector. A CM
Letters on Programming Languages and Systems, 1(1):46-58, March 1992.
Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamen-
tal Algorithms, chapter 2.3.5, pages 406-422. Addison-Wesley, Reading, Mas-
sachusetts, 1969.
H.T. Kung and S.W. Song. An efficient parallel garbage collection system and
its correctness proof. In IEEE Symposum on Foundations of Computer Science,
pages 120-131, Providence, Rhode Island, October 1977.
R. G. Larson. Minimizing garbage collection as a function of region size. SIAM
Journal on Computing, 6(4):663-667, December 1977.
Henry Lieberman and Carl ttewitt. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM, 26(6):419-429, June 1983.
Bernard Lung, Christian Queinnec, and Jos6 Piquet. Garbage collecting the
world. In ACM Symposium on Principles of Programming, pages 39-50, Albu-
querque, New Mexico, January 1992.
J. Harold McBeth. On the reference counter method. Communications of the
ACM, 6(9):575, September 1963.
John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine. Communications of the ACM, 3(4):184-195, April 1960.
Marvin Minsky. A LISP garl~age collector algorithm using serial secondary
storage. A.I Memo 58, Project MAC, MIT, Cambridge, Massachusetts, 1963.
David Moon. Garbage collection in a large Lisp system. In Conference Record
of the 198~ ACM Symposium on Lisp and Functional Programming, pages 235-
246, Austin, Texas, August 1984.
Kelvin Nilsen. Garbage collection of strings and linked data structures in real
time. Software, Practice and Experience, 18(7):613-640, July 1988.
S. C. North and J. It. Reppy. Concurrent Garbage Collection on Stock Hard-
ware, pages 113-133. Number 274 in Lecture Notes in Computer Science.
Springer-Veflag, September 1987.
David Plalnfosse and Marc Shapiro. Experience with fault tolerant garbage
collection in a distributed Lisp system. Ifi International Workshop on Memory
Management, St. Malo, France, September 1992. Springer-Verlag Lecture Notes
in Computer Science Series.
G. Ringwood, E. Miranda, and S. Abdullahi. Distributed gaxbage collection. In
International Workshop on Memory Management, St. Malo, France, September
1992. Springer-Vetlag Lecture Notes in Computer Science series.

4]

[Roy85]

[Sha88]

[Sob88]

[SS91]

[StaS4]

[Ste75]

[UJS8]

lUngs4]

[Wen90]

[WHgl]

[wilgo]

[wil91]

~WLM91]

[WLM92]

[WM89]

Paul Rovner. On adding garbage collection and runtime types to a strongly-
typed, statically checked, concurrent language. Technical Report CSL-84-7,
Xerox Palo Alto Research Center, Palo Alto, California, July 1985.
Robert A. Shaw. Empirical Analysis of a Lisp System. PhD thesis, Stanford
University, Stanford, California, February 1988. ALso appears as Technical Re-
port CSL-TR-88-351, Stanford University Computer Systems Laboratory, 1988.
Patrick G. Sobalvarro. A lifetime-b~ed garbage collector for LISP systems on
general-purpose computers. B.S. thesis, Massachusetts Institute of Technology,
Electrical Engineering and Computer Science Department, Cambridge, Mas-
sachusetts, 1988.
Ravi Sharma and Mary Lou Sofia. Parallel generationaJ garbage collection. In
ACM SIGPLAN Conference on Object Oriented Programming Systems, Lan-
guages and Applications (OOPSLA '91), pages 16-32, Phoenix, Arizona, Octo-
ber 1991.
James William Stamos. Static grouping of small objects to enhance perfor-
mance of a paged virtual memory. ACM Transactions on Programming Lan-
guages and Systems, 2(2):155-180, May 1984.
Guy L. Steele Jr. Multiprocessing compactifying garbage collection. Commu-
nications of the ACM, 18(9):495-508, September 1975.
David Ungar and Frank Jackson. Tenuring policies for generation-based storage
reclamation. In A CM SIGPLAN Conference on Object Oriented Programming
Systems, Languages and Applications (OOPSLA '88), pages 1-17, San Diego,
California, September 1988. ACM. Also published as ACM SIGPLAN Notices
23(11):1-17, November, 1988.
David M. Ungar. Generation scavenging: A non-disruptive high-performance
storage reclamation algorithm. In ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on Practical Software Development Environments, pages
157-167, Pittsburgh, Pennsylvania, April 1984. Also distributed as ACM SIG-
PLAN Notices 19(5):157-167, May, 1987.
E.P. Wentworth. Pitfalls of conservative garbage collection. Software, Practice
and Experience, 20(7):719-727, July 1990.
Paul R. Wilson and Barry Hayes. The 1991 OOPSLA workshop on garbage col-
lection in object oriented systems. In Addendum to the proceedings of OOPSLA
'91, Phoenix, Arizona, 1991.
Paul R. Wilson. Some issues and strategies in heap management and mem-
ory hierarchies. In OOPSLA/ECOOP '90 Workshop on Garbage Collection
in Object-Oriented Systems, Ottawa, Ontario, Canada, October 1990. Also in
SIGPLAN Notices 23(1):45-52, January 1991.
Paul R. Wilson. Operating system support for small objects. In IEEE In-
ternational Workshop on Object Orientation In Operating Systems, Palo Alto,
California, October 1991. IEEE Press. Revised version to appear in Computing
Systems.
Paul R. Wilson, Michael S. Lain, and Thomas G. Moher. Effective static-graph
reorganization to improve locality in garbage-collected systems. In SIGPLAN
Symposium on Programming Language Design and Implementation, pages 177-
191, Toronto, Canada, June 1991.
Paul R. Wilson, Michael S. Lain, and Thomas G. Moher. Caching considera-
tions for generational garbage collection. In SIGPLAN Symposium on LISP
and Functional Programming, San Francisco, California, 1992.
Paul R. Wilson and Thomas G. Moher. Design of the opportunistic garbage
collector. In A CM SIGPLAN Conference on Object Oriented Programming Sys-

42

[Yuag0]

[Zor89]

[Zorg0]

[Zor91]

[Zo~92]

terns, Languages and Applications (OOPSLA '89), pages 23-35, New Orleans,
Louisiana, October 1989.
Taichi Yuasa. Real-time garbage collection on general-purpose machines. Jour-
nal of Systems and Software, 11:181-198, 1990.
Benjamin Zorn. Comparative Performance Evaluation of Garbage Collection
Algorithms. PhD thesis, University of California at Berkeley, Electrical En-
gineering and Computer Science Department, Berkeley, California, December
1989. Also appears as Technical Report UCB/CSD 89/544, University of Cali-
fornia at Berkeley.
Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage col-
lection. In 1990 ACM Conference on Lisp and Functional Programming, pages
87-98, Nice, France, June 1990.
Benjamin Zorn. The effect of garbage collection on cache performance. Tech-
nical Report CU-CS-528-91, University of Colorado at Boulder, Dept. of Com-
puter Science, Boulder, Colorado, May 1991.
Benjamin Zorn. The measured cost of conservative garbage collection. Tech-
nical report, University of Colorado at Boulder, Dept. of Computer Science,
Boulder, Colorado, 1992.

This article was processed using the ISTEX macro package with LLNCS style

COLLECTION SCHEMES FOR DISTRIBUTED GARBAGE

Saleh E Abdullahi, Eliot E Miranda and Graem A Ringwood
Department of Computer Science

Queen Mary and Wesffield College
University of London

LONDON E1 4NS
yakubu K eliot [gal" @dcs.qmw.ac.uk

Abstract: With the continued growth in interest in distributed systems,
garbage collection is actively receiving attention by designers of
distributed languages [Bal, 1990]. Distribution adds another dimension

of complexity to an already complex problem. A comprehensive
review and bibliography of distributed garbage collection literature up
to 1992 is presented. As distributed collectors are largely based on
nondistributed collectors these are first briefly reviewed. Emphasis is
give~ to collectors which appeared since the last major review [Cohen,

I981]. Collectors are broadly classified as those that identify garbage

directly and those that identify it indirectly. Distributed collectors are

reviewed on the basis of the taxonomy drawn up for nondistributed
collectors.

1.0 Introduction

Garbage collection is a necessary evil of computer languages which employ

dynamic data structures. Abstractly, the state of a computation expressed in such
languages can be understood as a rooted, connected, directed graph. Some edges,
roots, are distinguished in that they provide entry points into the graph. The
vertices of the computation graph are represented by cells, the units of allocation
and deallocation of contiguous segments of store. (Nothing will be assumed
about the sizes of cells.) Edges of the graph are represented by pointer fields

44

within cells. Roots are pointers to vertices from the execution stack, global

variables or registers. As a computation proceeds the graph changes by the

addition and deletion of vertices and edges. As a result, some portions of the

graph become disconnected. These disconnected subgraphs are known as garbage.

References within cells

Roots

stack

Fe~isters

global

Fig 1. A representative, though small, state of a computation.

Without reutilization, the finite store available for allocating new vertices

diminishes to zero. The process by which the store occupied by discarded cells can

be reutilized is called garbage collection.

The earliest forms of store management placed the responsibility for allocation

and reclamation on the programmer. Today this is considered too errorprone if

not burdensome and a wide variety of languages provide automatic allocation

and reclamation as part of their runtime system~ Recent reports for various

languages are: Smalltalk [Krasner, 1983; Ungar, 1984; Caudill, 1986; Miranda, 1987];

Prolog [Appleby et al, 1988]; ML [Li, 1990]; C++ [Bartlett, 1990; Detlefs, 1990a;

Edelson and Pohl, 1990], Modula-2+ [DeTreviUe, 1990; Juul, 1990] and Modula-3

[Hudson and Diwan, 1990].

An important addition to the terminology of garbage collection was introduced by

Dijkstra [1978]. The process which adds new vertices and adds and deletes edges is

called the mutator. The mutator is an abstrac~on of the running program. The

process which reclaims garbage is called the collector. Historically, the major

45

disadvantage of automatic collection was that it significantly detracted from the

performance of the mutator, both by introducing unpredictable, long pauses and

using large proportions of available processing cycles. Measurements of early

Smalltalk-80 implementations indicate that 20% to 70% of the time was spent
collecting garbage [Krasner, 1983]. For I isp, collection overheads of between 10%

and 40% were reported [Steele, 1975; Wadler, 1976], with pause t imes of 4.5
seconds every 79 seconds [Foderaro, 1981]. Over the previous decade much

progress has been made; and the current state-of-the-art for Smalltalk-80 is less

than 5% collector overhead, with typically better than 100 millisecond pause-
times [Ungar, 1992].

Efficient garbage collection is so useful and so difficult to make unobtrusive that it

has been a field of active research for over three decades. It constitutes a major

concern for language designers. Knuth [1973] invented some and analysed other
collectors which appeared prior to 1968. Cohen [1981] performed a public service

with a survey of papers up to 1981. While there have since been numerous

papers on garbage collection, they have tended to be language specific. Some

languages allow optimizations which are not generally applicable. The semantics

of a language does restrict the topology of the computation graph and graphs may

be: cyclic; acydic or tree-like. The topology in turn restricts the type of collector
which can be employed.

A significant complication to the problem of garbage collection since Cohen [1981]

has arisen with the spreading web of distributed systems [Bal, 1990]. According to

Bal: "A distributed computing system consists of multiple autonomous

processors, nodes, that do not share primary memory, but cooperate by sending

messages over a communications network."" The advantages of distribution are:

- improved performance through parallelism;

- increased availability and reliability through redundancy;

- reduced communication by dispersion of processing power to where it is
needed and

- incremental growth through the addition of nodes and communication
links.

The convincing factor is the economic consequences to which these advantages
give rise. While distributed applications can be built directly on top of operating

systems, Bal [1990] puts forward convincing arguments for programming

48

languages which contain all the necessary constructs for dis t r ibuted

programming. For such languages, the computation graph is distributed over a

number of nodes. The absence of a homogeneous address space and the high cost

of communication relative to local computation make distributed garbage

collection a significantly more complex problem than collection on a single node.

The purpose of this paper is to give as comprehensive as possible a review and

bibliography of distributed garbage collectors, subject to space limitations. As

distributed collectors are generally based on nondistributed collectors the latter are

first briefly classified. Special attention is given to incremental and concurrent

collectors which are directly relevant to distribution. Emphasis will be placed on

papers and trends published since Cohen [1981]. The majority of these papers

relate to object-oriented languages, but for the ideal of treating different languages

uniformly, herein, objects will be referred to as cells. The final section reviews

distributed collectors on the basis of the taxonomy drawn up for single node

collectors.

2.0 Single Node Collectors

Following Cohen [1981] the collection process consists of:

1) identification and

2) reclamation of garbage for reuse.

The way in which garbage is identified distinguishes two classes of collectors.

Garbage identification can be made directly, identifying cells that become

disconnected from the computation graph or indirectly by identifying the cells

forming the computation graph; what then remains must be garbage (and

unallocated store).

The form of reclamation is dependent on how the free store is managed. It can

either be managed as a freelist (equally well a bitmap or buddy system) or a heap.
If managed by a freelist, garbage is coalesced into the list. If managed as a heap,
the division between the allocated and unallocated store is indicated by a single

pointer, the top of heap, and reclamation can be performed either by compacting
or by copying.

47

(Garbage Collect/off

J
J

)

Rc~almalion

Store Management

Fredist ~ (Heap

Compact ())

Fig 2. The garbage collection problem.

Various collectors have been proposed which seek to optimise different criteria.

Some aim to minimize the total percentage time spent collecting garbage; some

aim to minimize the period of time taken in any one invocation of the collector

(to provide predictable performance for realtime or interactive programming);

some aim to minimize the space overhead (the memory required to identify and

collect garbage); sore? are concerned with localization which is important for the

efficient use of virtual memory. The next section gives a brief survey developing

a taxonomy in terms of the advantages and disadvantages of different species.

2.1 Direct identification of garbage

Direct identification of garbage can be made using a reference count. In its

simplest form, a cell holds a count of the number of references to it [Collins, 1960].

If as a result of a mutator operation the count falls to zero, the cell is garbage, since

it can no longer be reached from a root. The collector can immediately reclaim

48

the cell and recursively decrement the counts of its referents and reclaim those

whose count also fall to zero. Naturally enough, this process is known as

recursive freeing.

A feature of reference counting is that garbage is reclaimed immediately it is

identified. One of a number of disadvantages of reference counting is the space

overhead of the count. It has been observed [Krasner, 1983] that the majority of

cells have a small reference count. Consequently, the size of the count field of a

cell is chosen to be smaller than is needed to represent all possible references.

Typically, systems allocate one byte to hold the reference count. Once a count

reaches the ceiling, saturation, it is not altered and no longer accurately reflects

the number of references to a cell. To cheapen the test for saturation a count is

saturated if the signed byte is negative, allowing the count to record from 0 to 127

references.

Clark's measurements of LISP programs (see [Deutsch and Bobrow, 1976; Field

and Harrison, 1988]) show that about 97% of list cells have a reference count of 1.

This suggests an extreme form of saturation using a singlebit count [Friedman

and Wise, 1977]. A clear bit is used to indicate a single reference to ceil. When a

second reference to the cell is created the bit is set. Once set the bit cannot be

cleared because it cannot be determined, without great cost, if the cell has more

than one reference.

To reclaim cells that acquire more than one reference during their lifetime, it is

necessary to employ a second type collector. Because of the predominance of

single references, this collector will be invoked considerably less often than if it

were used on its own. Singlebit reference counts are efficient and have the

additional advantage in that they can be stored in cell pointers rather than the cell

itself. Duplicating a pointer then does not require access to the cell to adjust the

count.

49

2.2 Indirect identification of garbage

A second disadvantage of reference counting is the difficulty it has with

reclaiming circular structures. The reason for this is the locality of
indentification. It is expensive to determine if the destruction of one local

pointer has disconnected a portion of the graph. A disconnected cyclic structure

will have no vertices connecting it with the roots of the computation graph but
each of its cells will have a nonzero reference count.

Some reference counting schemes do exist that attempt to reclaim cyclic garbage,

but they are tedious, complex [Friedman and Wise, 1979], lack generality [Bobrow,

1980] and have significant computational overhead [Brownbridge, 1985; Hughes,

1985; Rudalics, 1986; Watson, 1986]. The problem can be overcome by requiring

that the programmer explicitly break cycles of references or, more typically, by
supplementing reference counting with second collector that identifies garbage
indirectly [Goldberg and Robson, 1983].

Collectors that identify garbage indirectly take a global aspect. Traversing the

computation graph from the roots and visiting all vertices will identify those cells

which are definitively not garbage. By default, the unvisited part of the store is

garbage or unallocated. By such means, cyclically connected subgraphs which
become disconnected are (indirectly) identified and can be collected.

Mark-and-sweep collectors postpone collection until the free store is exhausted.
Mutation is then temporarily suspended. Identification and reclamation are

treated as sequential phases. The first phase traverses the computation graph

marking all accessible cells. In its simplest form a single markbit is sufficient to

indicate whether or not a cell is pointed to by other cells reachable from a root.

This markbit is comparable with a singlebit reference count. A difference is that

for the markbit, those cells whose counts are equal to zero are declared garbage

while the others are part of the computation graph. The marking phase
concludes when all accessible cells have been marked. A sweep of the entire store
reclaims the unmarked cells and clears the marked ones [McCarthy, 1960].
Singlebit reference counting is further distinguished from mark-and-sweep by the
periods in which the bits holds accurate information. For mark-and-sweep the

50

information is only consistent at the end of the sweep phase. For reference

counting it is made consistent after every mutation.

The free storage can be managed as a freelist or a heap. With heap management

reclamation can be achieved by comF~ction. For fixed size cells, compaction can

be performed by sweeping the heap twice [Cohen, 1967]. In the first pass, two

pointers are used, one starting at the bottom of the heap, the other at the top. The

pointer to the top of the heap scans down until it points to a marked cell. The

pointer to the bottom of the heap scans up until it points to an unmarked cell. At

this point, the contents of the marked cell are copied to the unmarked cell

(assuming the cells are the same size.), the markbit cleared and forwarding
pointer to the new cell placed in the old position. When the two pointers meet,

all marked cells have been unmarked and compacted in the upper part of the

heap. The second scan is needed for readjusting pointers to moved cells. Any

cells that refer to cells in the compacted area are adjusted by following forwarding

pointers.

Martin [1982] combines the marking phase with a rearrangement of the pointers

so that they can be moved more readily. Carsson, Mattsson and Bengtsson [1990]

present a variation in which during the mark phase the pointer fields of the

accessible" cells (not the whole cells) are copied into a table and the cells are

marked as visited. After sorting the addresses the reachable cells are compacted by

sliding the cells to one end of the store.

If the store is managed as a freelist and the computation graph contains cells of

differing sizes, allocation will in general fragment the free store. When an

allocation request is made, the free list may contain no free cells of the required

size, but may contain cells larger than that required. Typically, the allocator will

satisfy the request by splitting a larger cell into an allocated cell, and a remaining

free fragment. Over time, the freelist becomes composed of smaller and smaller

fragments. Eventually a situation occurs where no free cell is large enough to

meet the allocation yet the total size of free space is sufficient. The allocation can

be met by coalescing the fragments into a single, or at least larger, cells. This is

done by compacting the cells forming the computation graph. Some systems use

compaction as an independent storage management technique to backup another

garbage collection scheme. For example, in BrouHaHa Smalltalk [Miranda, 1987]

the allocator checks that the total size in free cells is sufficient and if so invokes

51

the compactor. A mark-and-sweep garbage collector is used as a last resort if

compaction would prove futile.

3.0 Incremental and Concurrent Collectors

Section 2 identified three processes associated with garbage collection: mutation

(M), indentification (I) and reclamation (R). What distinguishes the majority of

collectors up to [Cohen, 1981] is that these processes are sequenced. As reference

counting reclaims garbage as soon as it is detected, mutation can be followed by

cascades of IR operations as a result of recursive freeing. In contrast, indirect

identification postpones collection until the free store is exhausted; only at the

end of each MIR cycle is the store, generally, in a consistent state.

As Ungar [1984] reported, Fateman found that mark-and-sweep takes up 25% to

40% of the computation time of Franz-Lisp programs. Wadler [1976] reported that

typical Lisp programs spend from 10% to 30% of their time performing collection.

As such, mark-and-sweep is unsuitable for reactive (interactive and reaitime)

applications, because even if the garbage collector goes into action infrequently,

on such occasions as it does it requires large amounts of time.

While reference counting is somewhat better in this respect because the grain size

of the processes is smaller, a significant amount of time is spent in identification

[Steel, 1975; Ungar, I984]. Every mutator operation on a cell requires that the

counts of its referents' be adjusted. Furthermore, significant time is spent in

recursive freeing: 5% on Berkeley Smalltalk and 1.9% on Dorado Smalltalk

implementations [Ungar, 1984]. Because recursive freeing is unbounded, the

simple form of reference counting in which the collector immediately reclaims

all the cells freed by a mutation is also unsuitable for reactive applications.

52

3.1. Deferred, direct collectors

The overhead of immediate reference counting can be reduced by deferring

recursive freeing. Using doubly linked freelist store management [Weizenbaum,

1962; 1963], a newly deaUocated cell can be placed on the end of the freelist but its

referents not immediately processed. This cell is considered for reuse when it

advances to the head of the list. Only at this t ime are the counts of its referents

decremented; any falling to zero are added to the end of the freelist.

This deferred reference count ing technique is time efficient and provides a

smoother collection policy, one not so vulnerable to unbounded mutator delays

of immediate reference counting. However, it is no longer true that after each

MI operation all garbage has been identified let alone reclaimed. Collectors

which, by design, do not necessarily identify and reclaim all garbage in a single

invocation are said to be incremental.

A similar scheme is that of Glaser and Thomson [Field and Harrison, 1988], which

uses a to-be-decremented stack instead of a doubly-linked list. In this scheme cells

are added to the to-be-decremented stack if they have a count of one which

requires decrementing. When cells are allocated from the stack their count is

already one, hence this scheme manages to elide many garbage identification

operations.

Deutsch and Bobrow [Deutsch, 1976] observe that, frequently, over a series of

reference counting operations the net change in a cell's count will be small, if not

nil. For example,' when duplicating a cell reference as a stack parameter to a

procedure call, the cell will acquire a reference that will be lost once the procedure

returns. If adjusting such volatile references can be deferred, many garbage

identification operations can be eliminated.

Baden [1983], proposes such a scheme for Smalltalk-80 which was used by

Miranda [1987]. References to cells from roots, such as the stack, are not included

in a cells count. Instead, root reference to cells are recorded in the Zero Count

Table (ZCT). If a reference to a new cell is pushed on the stack (the typical way by

which new cells join the computation graph), it is placed in the ZCT since it has a

zero count and is only referenced from the stack. When a nonroot reference

53

counting operation causes a cells' count to fall to zero the cell is also placed in the

ZCT because it might be referenced from a root. If the ZCT fills up or when no

more free store is available, the collector initially attempts to reclaim cells in the

ZCT. Firstly, reference counts are stabilized, made consistent, by increasing the

count of all cells referred to from the roots. The ZCT is emptied by scanning and

any referenced cell with a zero count is freed. Finally, the stack is scanned and the

counts of all cells referred to from the stack are decremented. During this process

any cells whose counts returns to zero are placed in the ZCT, since they are now

only referenced from the stack.

Using this technique, stack pushes and pops reduce to ordinary data-movement

operations, that is, they can be made without identification operations. Baden's

measurements of a Smalltalk-80 system suggest that this method eliminates 90%

of the reference count manipulations, and reduces the total time spent on

reference counting by half [Baden, I983]. A slight disadvantage is that sweeping

the ZCT causes a pause in mutation, however typical pause times are of a few

milliseconds [Miranda, 1987]. A further disadvantage is the extra storage required

by the ZCT between reclamations.

3.2 Concurrent mark-and-sweep

The major advantage of deferred reference counting is that garbage collection is

fine grained and interleaved with mutation, making it suitable for interactive

and realtime applications [Goldberg, 1983]. The major disadvantage of indirect

identification is the long interruptions of the mutator by the collector. Dijkstra

[1978] described a modification of mark-and-sweep in which the mutator and the

collector operate concurrently. Put another way, the collector operates on-the-fly.
It was in the context of this algorithm that the terminology mutator and collector

processes was coined.

In the simple mark-and-sweep scheme, of Section 2, concurrency is prevented by

interference of identification by the mutator. If a reference to a new cell is added

after the sweep has passed over it, the new cell will not be correctly identified as

part of the computation graph. Dijkstra achieves a decoupling of the mutator

54

from the collector by introducing a third state for a cell. The three states, referred

to as colours: white (unmarked); black (marked) and gray, can be represented by

two mark bits. The mutator prevents collection of a newly allocated white cell by

turning it grey at the time of allocation.

Marking blackens any cell traced from a root. Ceils will be either black, grey or

white. As previously, white cells are unreachable from the roots. Grey cells will

be those allocated since the last collection but missed by during the marking

phase. In the sweep phase white cells are reclaimed and other shades are

whitened. Baker [1992] has recently proposed a realtime collector similar to

Dijkstra's where any invocation of the collector is bounded in time.

3.3 Scavenging collectors

The generality and modularity of mark-and-sweep account for the attention it has

received in the past three decades. It can however be inefficient because of its

global nature. The marking phase inspects all accessible cells while the sweeping

phase traverses the whole store. The sweep time is proportional to the size of the

store and in virtual memory systems, the collector may access numerous pages on

secondary store, an inherently slow process.

When the store is managed as a heap the costly sweep phase of the mark-and-

sweep collectors can be eliminated by combining the identification and collection

phases. This requires two heaps, historically called semispaces [Baker, 1978]. The

mutator begins operating in the fromspace. When there is no free space, the

collector scavenges fromspace. A scavenge is a simultaneous traversal and copy

of the computation graph from the fromspace to the tospace. This combination of

copying and tree traversal has the added advantage of improving locality. When

each cell is moved to tospace a forwarding pointer is left behind. After a

scavenge, the fromspace becomes free, and can be reused. The two semispaces are

flipped and the mutator continues.

Baker's original scheme is also realtime. Collection is interleaved with mutation

but any invocation of the collector is bounded. A consequence of this is that the

55

mutator must handle forwarding pointers. If the mutator encounters a reference

to a forwarding pointer it updates the reference, so avoiding subsequent

forwarding .

Scavenging schemes trade space for t ime since they require two heaps.

Consequently they have much higher space overheads than either mark-and-

sweep or reference counting algorithms.

3.4 Generational scavengers

Lieberman and Hewitt [1983] observed that most newly created cells die young,

and that long-lived cells are typically very long-lived. Their collector segregates

cells into generations, each with its own pair of semispaces. Each generation may

be scavenged without disturbing older ones giving rise to incremental collection.

Younger generations to be scavenged more frequently. The youngest generation

will be filled most rapidly, but when flipping very few of its cells survive. This

drastically reduces the amount of copying needed to maintain the generation.

Generations can be created dynamically when the youngest generation fills up

with cells that survive several flips.

Ungar's [1984] generation scavenging collector exploits the same cell lifetime

behaviour as Li.~berman and Hewitt. This collector classifies cells as either new or

old. Old cells reside in a region of memory called Old Space (OS). All old cells

that reference new ones are members of the Remembered Set (RS). Cells are

added to RS as a side effect of the mutator. Cells that no longer refer to new cells

are removed from RS when scavenging. All new cells must be reachable from

cells in RS. Thus, RS behaves as roots for new cells and any traversal of new cells

can start from KS.

Three heaps are used for new cells: new space (NS) (a large nursery heap where

new cells are spawned); past survivor (PS) space (which holds new cells that have

survived previous scavenges), and future survivor (FS) space (which remains

empty while the mutator is in operation). A scavenge copies live new cells from

NS and PS to FS space, and flips PS and FS. At the end of the scavenge, no live

56

cel~s are left in NS and it can be reused. Cells that have survived more than a

prescribed number of flips are moved to OS, a process called tenuring.

With Ungar's collector the mutator is stopped during scavenging. This allows

dispensing with forwarding pointers which achieves performance gains. While

explicitly not concurrent, the collector is incremental because generations are
small, pause times are short. By carefully tailoring the size of NS, FS and PS an

implementation of Ungar's scheme for Smalltalk manages to keep scavenge

times to a median of 150 milliseconds occurring every 16 seconds [Ungar, 1984].

Although generational collectors collect intragenerational cycles, they cannot

collect intergenerationat, cycles of references through more than one generation.

Further, some schemes do not attempt to scavenge older generations. [Ungar

1984] leaves the reclamation of such garbage to offline reorganization, where a
full garbage collection is done after the system has stopped. The current ParcPlace

[1991] Smalltalk-80 generational garbage collector is backed up by an incremental
collector, a mark-and-sweep collector, and a compactor which garbage collects OS.

Although generation collectors are one of the most promising collection

techniques, they suffer poor performance if many cells live a fairly long time, the

so-called premature tenuring problem. Ungar and Jackson propose an adaptive

tenuring scheme based on extensive measurements of real Smalltalk runs

[Ungar, 1988; 1992]. This scheme varies the tenuring threshold depending on

dynamically measured cell lifetimes. It also proposes a refinement that has been

included in the ParcPlace [1991] collector. In systems like Smalltalk, interactive

response is at a premium but the system contains many large cells that don't

contain references to other cells, mainly bitmaps and strings. To avoid copying

these cells they are segregated in a LargeCellSpace, and tenured to OS when

necessary.

A generational scavenging collector that adapts to the allocation patterns of

applications was recently presented by Hudson and Diwan [1990]. This

generational scavenging collector has a variable number of fixed size (power of 2)

generations. The generations are placed in store at contiguous addresses. The
generation number is apparent from the most significant address bits. Each
generation has its own tospace, fromspace, and KS (remembered set). KS is fed
indirectly via a buffer containing addresses of possible intergenerational pointers.

57

The feeder may filter out duplicates, intragenerational pointers, and nonpointers.

When scavenging more cells than a generation can accommodate, a new

generation is inserted. To retain the ordering, the younger generations are

shuffled backwards during scavenging.

Other generation-based collectors include: opportunistic collectors [Wilson and

Moher, 1989]; ephemeral collectors and the Tektronix Smalltalk collector. In
terms of usage, all three commercial U.S. Smalltalk systems (DigiTalk, Tektronix
and ParcPlace systems) have adopted generational automatic storage reclamation

[Ungar and Jackson, 1988]. The SML NJ compiler [Wilson, 1992] also uses a

generational collector. Deimer et al [1990] have investigated a generational

scheme combined with a conservative mark-and-sweep garbage collector

designed for use with Scheme, Mesa and C intermixed in one virtual memory.

Wilson, Lam and Moher [1990] show that, typically, generational garbage

collectors have poor locality of reference, but careful attention to memory

hierarchy issues greatly improves performance. They attributed the small success
recorded by several researchers in their attempts to improve locality in heaps to
two flaws in the traversal algorithms. They failed to group data structures in a

manner reflecting their hierarchical organization, and more importantly, they

ignored" the disastrous grouping effects caused by reaching data structures from a

linear traversal of hash tables (i.e. in pseudo-random order).

Incremental collectors that copy cells when the mutator addresses them have also

been looked at by White [1980J and Kolodner [Kolodner et al, 1989; Kolodner,

1991]. These reorder cells in the order they are likely to be accessed in the future,

giving improved locality. However, the technique requires special hardware.
Other reordering optimizations that don't require special hardware work by

reordering pages within larger units of disk transfer [Wilson, 1992].

4.0 Distributed Collectors

Following Hudak and Keller [1982] distributed collectors are characterized by:
i) a set of nodes; comprising any number of processors sharing a single

58

address space;

ii) connected by a communication network;

iii) where each node holds a portion of the computation graph and

iv) each node has at least one mutator.

In distributed systems, processing is distributed over all nodes. Each node has

direct access only to cells that reside in its local heap~ A reference to a cell in the

same node is said to be local. A reference to a cell on another node is said to be

remote. Access to a remote cell is achieved by sending a message to the node that

holds it, which then performs any necessary operation.

The issues of distributed garbage collection are very much the issues of

distribution:

i) concurrency, communication and synchronization;

ii) communication overheads;

iii) messages may be lost, delivered out of order or duplicated;

iv) fault tolerance.

After discussing the effects of distribution on the computation graph the

following sections present various distributed collectors based on the previous

taxonomy. The final section addresses fault tolerance issues. Table 1 summarizes

the main characteristics of the collectors described.

4.1 Distributed computation graphs

To exploit the parallelism of a distributed system, the computation graph has to

be distributed over all nodes. The vertices of the graph are naturally partitioned

according to physical distribution, but there is no principle that prevents a ceil

migrating between nodes. Each node could contain roots of the graph but it is

more usual that the roots lie on the node on which the computation was

initiated. A remote reference is necessarily indirect. It first references a local

export record. The export record references an entry record on a remote node. In

turn, the entry record directly references the remote cell.

59

The import and export records might naturally be grouped in tables but the export

record could equally well be a proxy cell. The triple indirection causes some

overhead for a remote reference which adds another dimension to the problem of

nonlocality. The entry table acts as additional local roots for the local partition of

the computation graph. The local roots and the entry table will allow the local

part of a graph to be collected independently. Given the potential parallelism,

incremental and concurrent collectors appear the most appropriate for distributed

systems. The problem of collection, then, naturally decomposes into the problem

of local collection and global collection of the entry and exit tables.

Further tables may be used to record the cells they reference remotely. E1-

Habbash, Horn and Harris [1990] use an additional private table. The private

table provides location independent addressing. Storage is part i t ioned into

clusters, each with its own set of tables. A cluster is a logical partition of cells (a

passive node) in contrast to the natural physical partition (of active nodes). A

cluster is a group of cells which are expected to form a locality set. Cells in the

cluster reference other clusters via defined ports. The import table gives a

location hint about each external cell referenced from the cluster. The export

table is the entry point for the public cells in the cluster which can be externally

referenced. Public cells in the cluster are given unique public identifiers (PIDs).

Private cells are not known outside the cluster and can only be referenced by the

cells in the same cluster. The private cells are given local identifiers (LIDs),

which are, in fact, private table entries in the cluster.

Clusters are the unit of management, the objective being to increase the locality of

reference within a cluster. Removing nonreferenced cells from a cluster is

considered a contribution to increasing the locality of reference of the cluster.

Subgraphs which are only reachable from the export table may be removed to that

cluster's archival cluster. Whenever an archived cell is referenced from any

cluster, that cell and its subgraph are moved into the duster. In this way, cells

may migrate from cluster to cluster, via archival clusters. Archived cells which

are not referenced from any cluster will remain in the archival cluster. Starting

from the roots in the cluster, and traversing the subgraphs rooted at them, any

cells connected in these graphs must remain in the cluster. The other cells which

are not reachable from the roots are moved away to maintain a high locality of

reference in the cluster. Nonreachable public cells in the cluster cannot be

considered as garbage because they may be referenced from other clusters, but on

60

the other hand they are not part of the locality in the cluster. The private cells

which are not reached from any public cells (roots or nonroots) in the cluster are

definitely garbage, and can be reclaimed. Archival collection is controlled by

setting time limits.

A similar approach is used by Moss [1990] in the Mneme project. Mneme

structures the heap of cells into files. A file has a set of persistent roots and

contains a collection of cells that can refer to each other us ing short cell

identifiers. Cells in one file can refer to cells in other files via a device called a

forwarder. A forwarder is a local standin or proxy for a cell in another file. Thus,

to refer to a cell in another file, one refers to a local cell marked as a forwarder; the

forwarder can contain arbitrary information about how to locate the cell at the

other end. Each file can be garbage collected independently. Moss calls the import

table the incoming reference table (IRT). Both the Moss and E1-Habbash collectors

are intended for use in a persistent environment.

4.2 Distributed direct identification of garbage

The locality of identification in reference counting has a number of attractive

consequences for distributed systems. The collector visits cells only when the

mutator does. Cells can be reclaimed locally as soon as they become inaccessible.

One of the earliest distributed reference counting collectors performs all of the

reference count ing operations by spawning remote asynchronous tasks on

appropriate processors [Hudak and Keller, 1982]. This ensures that actions are

atomic. The nontrivial part of the adaptation is to guarantee that indentification

operations (increment and decrement reference counts) are executed in the order

they were generated. If this were not the case, a reference count may prematurely

reach zero. Simple remote reference count ing requires synchronizat ion of

communication between cooperating nodes.

Lermen and Maurer [1986] ignore part of the problem by assuming that the

under ly ing communicat ion protocol preserves the order of messages. The

assumpt ion can be enforced if either the system provides fixed rout ing or

provides a message protocol that indicates the order in which they are sent.

61

An extension of reference counting which eliminates both synchronization and

the need to preserve the order of messages is weighted reference counting (WRC).

It was developed independently by Thomas [1981], Watson and Watson [1987] and

Bevan [1987]. The idea is that each cell is allocated a standard reference count

when created and at all subsequent times the sum of weights on the pointers to a

cell is equal to the reference count. A reference with a weight W is equivalent to

W references each with a weight 1. When a reference is duplicated it is

unnecessary to access the cell. Rather, the weight of the pointer is equally divided

between itself and the copy. The sum of the weights then remains unchanged. In

this respect, WRC can be unders tood as a generalization of singlebit reference

counting when the bit is located with the pointer. The advantage for distribution,

is that no communication is required when a remote reference is copied. When a

reference is destroyed, however, the pointer weight must be decremented from

the reference count of the cell in order to preserve the rule that sum of the

weights must equal the reference count. As usual, if a cell's count falls to zero it

can be reclaimed.

Because the reference weight is always a power of two to allow for duplication,

the log of the weight can be stored instead of the whole weight. This provides an

important reduction in the space requirement for each reference. However,

when a weight is to be subtracted from a count it must be converted (by shifting).

Indirection is used to handle undertow which occurs when a reference weight of

one needs to be copied.

An unfortunate consequence of indirection is that a reference, its indirection and

the cell to which it refers may reside on different nodes. In this case, accessing a

cell requires addit ional messages. Generational reference counting (GRC),

Benjamin [1989] solves this problem. Each reference is associated with a

generation. Each cell is initially given a zero generation reference, any copy of an

ith generation reference is an (i+l)th generation reference. Each cell has a table,

called a ledger, which keeps track of the number of outstanding references from

each generation. If a cell's ledger has no outs tanding references from any

generation, then the cell is garbage and its space can be reclaimed. GRC has a

significantly lower communicat ion overhead but greater computat ional and

space requirements than ord inary reference counting. Its communica t ion

overhead is similar to WRC, namely one acknowledged message for each copy of

62

an interprocessor reference and a corresponding extra space associated with each

reference.

Vestal [1987] describes a collector that uses a distributed fault tolerant reference

counter. Each cell maintains a conservative list of sites referencing it. Each site of

this list keeps the count of references it has for that cell, Atomic update of the list

is required when a site first references a cell. The cycle-detection algorithm is

seeded with some cell suspected of being part of a dead cycle. The algorithm

essentially consists of trial deletion of the seed and checking if this brings all the

counts in the cycle to zero.

4.3 Distributed indirect collectors

One of the first distributed indirect identification collectors was the marking-tree

collector, [Hudak and Keller, 1982]. It is an adapta t ion to a dis t r ibuted

environment of the previously described Dijkstra [1978] concurrent mark-and-

sweep. Each mutator and collector on each node has its own task-queue. Each

task locks all cells it intends to access to prevent race conditions. To prevent

deadlock, if a task finds that some cell was already locked all locked cells are

released and the task requeued. Since cells involved in a task may reside on

different processors, this locking mechanism introduces high processing time and

communication overhead when the collector and the mutator have high degrees

of contention to shared cells. There is a single root of the whole distributed

graph. The collector collects one node after another beginning with the root

node. It can reclaim all garbage including cycles. The marking-tree collector

operates in a functional graph reduction envi ronment and need not handle

arbitrary pointer manipulation. Because it does not batch remote mark tasks, it

imposes high message traffic. Space needed for storing these requests cannot be

determined in advance.

Similar mark-and-sweep collectors also inspired by Dijkstra's parallel collector

were described by Augusteijn [1987] and Vestal [1987]. All processors cooperate in

both phases of the collection but marking can proceed in parallel with mutation.

In Vestal's [1987] collector, the cell space is split into logical a r e a s in which parallel

68

collection may occur. Areas are a logical grouping of cells, and there is no control

over site boundary crossing. The space overhead is proportional to the number of

cells and to the number of areas, since each cell maintains an array of four colours

for each existing area in the system. This collector does not take advantage of

locality: each collector performs a global transitive closure starting at the root of

one area, hence crossing boundaries.

Mohammed-Ali [1984], Hughes [1985] and Couvert [see Shapiro et al, 1990]

describe variants of mark-and-sweep collectors applicable to the distributed

environment. For these all nodes synchronise at the start of a local mark phase;

At the end they perform a global rendezvous to exchange information about the

global reachability. Each node then proceeds in parallel to a local sweep phase. A

global rendezvous is inherently costly and nonscalable.

Mohammed-Ali [1984] presented two different approaches, 'global' and 'local'

collectors with minimal space overheads. In the global approach, mutation is

globally suspended for the entire collection. The collector handles arbitrary

pointer manipulations and resolve some of the space and communication

problems of the marking-tree collector.

Mohammed-Ali ' s [1984] 'locaF collector simplifies collection by s imply

abandoning the attempt to recover cyclic garbage that spans several nodes. Each

node asynchronously and independent ly performs local collection without

involving any other node. If the freed storage is large enough the node's mutator

will continue. Otherwise, it will invoke global collection. To allow a node to

perform local garbage collection, it has to know which of its local cells are

reachable from remote cells. Cells that have references from other nodes are

assumed to be accessible in each local garbage collection. This situation persists

until the next global collection invocation.

In the collectors given by Mohammed-Ali, the issue of lost or transit messages is

solved by first assuming that the communication channel between each pair of

nodes is order-preserving. An alternative solution is to keep message counts in

each node. Before a garbage collection is completed, a check is made to ensure

that the number of reply messages equals the message count. The space overhead

of the collectors are not easily determined. In addition to InTable and OutTable

64

which keep track of incoming and outgoing references, there is TempTable that

keeps in transit references and several message queues.

Hughes' collector [Hughes, 1985] is based on Mohammed-Ali's 'local' collector but

reclaims cyclic garbage. Its main idea is to pipeline a number of collections over

the entire network. This is achieved with the use of a synchronous termination

detection algorithm based on instantaneous communication. Synchronous

termination, however, may invalidate the collector for architectures comprising

many nodes. On the other hand, the approach may be unsuitable when local

heaps are large since the contribution of one node must always consist of a

complete scan of its local heap. In a special operating mode the creation of a

remote reference has to be accompanied by an access to the referenced node

[Rudalics, 1986].

A modification of the generation scavenging used for Berkeley Smalltalk [Ungar,

1984] was given by Schelvis and Bledoeg [1988] for a distributed SmaUtalk

collector. In addition to OS, NS, PS and FS which hold ceils according to their age,

there is additional subspace, KS, that contains all replicated cells. RS is like OS,
except that it contains the same cells in the same order on every node. Newly

created cells are stored in NS~ When NS becomes full, it and PS are garbage

collected by scavenging. The roots of the computation graph are the set of new

and survivor cells referenced from OS, RS or remote nodes. This root set is

dynamically updated by checking on stores of pointers to NS. All cells in the

graph are moved to NS, except for sufficiently old cells, which are moved to OS.

At the end of a traversal NS is empty. Since most new cells soon die, PS fills up

relatively slowly and, therefore, collection of the much bigger OS and RS is

necessary less frequently.

Detection of dead cells in the distributed system is accomplished by a system wide

mark-and-sweep collector. All nodes are checked if they have pointers to a

particular cell. The graph of living cells is traversed, the cells accessed are

marked, and at the end the space of unmarked cells is reclaimed or "swept".

Although, the global mark-and-sweep collector handles both local and distributed

cycles well, it does not work properly when not all nodes are able or willing to
cooperate~

65

4.4 Hybrid collectors

When local collectors are independent they need not be homogeneous. One node

may employ reference counting, another concurrent mark-and-sweep. Global and

local collection may employ different collectors. Bennett [1987] describes a scheme

which uses both a reference counting collector and a mark-and-sweep collector in

his prototype distributed Smalltalk-80 system. A single table in each node, the

RemoteCellTable (RCT) holds local cells that are remotely referenced. Bennett

relies on facilities provided by the local Smalltalk memory manager to enumerate

local cells (proxy cells) that indirectly reference remote cells. There are two

distributed garbage collectors in Bennett's scheme, a fast algorithm that does not

reclaim internode cycles, and a slower one that does. The algorithms are initiated

by a user on one of the nodes.

The first reference counting collector relies on remotely referenced cells in

alternating collection phases being distinguishable. Each cell has a flag in the RCT

that identifies cells created since the start of a collection phase. These are similar

to the grey cells of Dijkstra's [1978] collector. During each phase, each node

enumerates its local proxies and sends a message for each proxy that increases the

external reference count of the remote cell in its RCT entry. After this marking

phase all remotely referenced cells have a nonzero external reference count. Each

node then scans its RCT and removes those cells with a zero external reference

count that were created before the start of the collection. Any such cells not �9

referenced locally will be reclaimed by the node's local garbage collector.

This algorithm does not detect and reclaim internode cycles. The second, slower

collector is a distributed mark-and-sweep algorithm that proceeds from those cells

in the RCT that also have local references. These cells are followed for references

to proxies and messages are sent to the remote nodes of these proxies to continue

the scan remotely. (Bennett's system is implemented on PS Smalltalk which

employs deferred reference counting. The internal reference count of a cell is

therefore readily available.) At the end of this phase internode cycles will not

have been marked and can be removed from the RCT.

DeTreville [1990] combines reference count ing and mark-and-sweep in a

concurrent collector for Modula-2+. The collector was used in a distr ibuted

66

between pairs of sites; no global mechanism is necessary. The collectors' interface

is designed for maximum independence from other components.

Shapiro et al detail various message protocols. Given a reference, the finder

protocol locates the cell referred to. This protocol also handles cell deletion and

node crashes. Other protocols include reference-sending, cell-migration, cycle

detection and abnormal termination protocols. To deal with lost messages or

those in transit, events are timestamped by a local, monotonically increasing

clock. Each transmitted message is stamped with the value of the clock on

transmission.

In Shapiro et al, [1990], the universe of cells is subdivided into disjoint spaces.

Each space maintains the vector of highest timestamps received from other

nodes. Each disjoint space maintains a list of potential incoming and outgoing

references, called respectively the Cell Directory Table (CDT) and the External

Reference Table (ERT). A CDT entry is stamped with the clock value of the last

received message.

When a mutator exports a reference to another node, it is first added to the local

CDT. Both the CDT and the ERT are overestimates. Local garbage collection

proceeds from both local roots and the CDT and will remove garbage entries in

the ERT. In turn, this allows previously referenced CDTs to be collected. The

interface between the global collector and other components (i.e. the mutator and

the cell finder) is limited to just the CDT and ERT. Updates to a CDT or ERT can

occur in parallel with other activities. No synchronization is needed between the

global service and the local collector or mutator. The main weakness of the

collector is that it fails to detect interspace cycles of garbage. It proposes migrating

locally unreachable cells, leaving cycle removal to a local garbage collector. Total

ordering of spaces is used to avoid thrashing but this has its limitations.

Lang et al [1992] describe a fault-tolerant distributed collector that is largely

independent of how nodes collect their local space and doesn't need centralized

control nor global stop-the-world synchronization. It allows for multiple

concurrent collections, doesn't require migration of cells (cf Shapiro et al) and yet

reclaims all garbage cells including distributed cycles.

67

between pairs of sites; no global mechanism is necessary. The collectors' interface

is designed for maximum independence from other components.

Shapiro et al detail various message protocols. Given a reference, the finder

protocol locates the cell referred to. This protocol also handles cell deletion and

node crashes. Other protocols include reference-sending, cell-migration, cycle

detection and abnormal termination protocols. To deal with lost messages or

those in transit, events are timestamped by a local, monotonically increasing

clock. Each transmitted message is stamped with the value of the clock on

transmission.

In Shapiro et al, [1990], the universe of cells is subdivided into disjoint spaces.

Each space maintains the vector of highest timestamps received from other

nodes. Each disjoint space maintains a list of potential incoming and outgoing

references, called respectively the Cell Directory Table (CDT) and the External

Reference Table (ERT). A CDT entry is stamped with the clock value of the last

received message.

When a mutator exports a reference to another node, it is first added to the local

CDT. Both the CDT and the ERT are overestimates. Local garbage collection

proceeds from both local roots and the CDT and will remove garbage entries in

the ERT. In turn, this allows previously referenced CDTs to be collected. The

interface between the global collector and other components (i.e. the mutator and

the cell finder) is limited to just the CDT and ERT. Updates to a CDT or ERT can

occur in parallel with other activities. No synchronization is needed between the

global service and the local collector or mutator. The main weakness of the

collector is that it fails to detect interspace cycles of garbage. It proposes migrating

locally unreachable cells, leaving cycle removal to a local garbage collector. Total

ordering of spaces is used to avoid thrashing but this has its limitations.

Lang et al [1992] describe a fault-tolerant distributed collector that is largely

independent of how nodes collect their local space and doesn't need centralized

control nor global stop-the-world synchronization. It allows for multiple

concurrent collections, doesn't require migration of cells (cf Shapiro et al) and yet

reclaims all garbage cells including distributed cycles.

68

In Lang et al [1992] nodes are organized into 'groups'. A group is a set of nodes

willing to cooperate together in a group collection. Nodes cooperate to collect

garbage local to a group by means of a concurrent mark-and-sweep collector. Each

group gives a unique identifier to each GC cycle. Multiple overlapping group

collections can be simultaneously active. When a node fails to cooperate, the

group it belong is reorganized to exclude it and collection continues.

The collector uses export and entry records as described in Section 4.1 but calls

them exit and entry items respectively. Entry items have a reference count of exit

items referencing them (up to messages in transit). Reclaiming an exit i tem

requires a decrement message to be sent to the referenced entry item. If this

action brings its counter to zero, the entry item is reclaimed. This mechanism for

reclaiming entry items (the only one available) is safe since non cooperative

nodes (or nodes that are down) do not send decrement messages and thus the

cells they refer to cannot be reclaimed. Messages with acknowledgements and

timeout are used to detect failed or non cooperating nodes.

The distributed collection begins with group negotiation. Nodes cooperatively

determine group formation. All entry items of nodes within the group are

marked w.r.t, the group. An entry item is marked hard if it is "needed outside

the group" or it is "accessible from a root of a node in the group". It is mark soft if

it is only referenced from inside the group. The initial marks of the entry items

of a group are determined locally to the group by means of a reference counter.

The reference counter allows the determination of the number of references that

are outside a group. The marks of entry items are then propagated towards exit

items through local collection. Similarly, the marks of exit items are propagated

towards entry items they reference (if it is within the group) through group

collection. This is repeated until marks of entry or exit items of the group no

longer evolve. At this point the group is disbanded,

At the end of the marking, all entry items that are directly or indirectly accessible

from a root or from a node outside the group are marked hard. Entry items

marked soft can only be part of inaccessible cycles local to the group and can thus

be safely reclaimed by the reference counting mechanisms. In the case of dead

cycles, dead entry items in the cycle eventually receive decrement messages from

all the dead exit items that reference them. Hence their reference counts decrease

60

to zero and they are eventually reclaimed by the usual reference counting

mechanism.

Liskov and Ladin [1986], describe a fault tolerant distributed garbage detection

based on their highly available centralized service. This service is logically

centralized but physically replicated and so claims to achieve high availability and

fault-tolerance. A client dialogues with a single replica; replicas stay up-to-date by

exchanging background "gossip" messages. The failure assumptions are realistic:

nodes may crash (in a fail-stop manner) and recover, messages may be lost or

delivered out of order. All cells and tables are assumed backed up in stable

storage. Clocks are synchronized and message delivery delay is bounded. These

requirements are needed for the centralized service to build a consistent view of

the distributed system.

Liskov and Ladin's [1986] distributed garbage collector relies on local mark-and-

sweep, extended with the ability to identify the part of the graph between some

incoming and outgoing reference. Each local collector informs the centralized

service about the paths. The root used for tracing is the union of its local root

with the set of local public cells. Local collectors query the centralized service

about the real accessibility of their public cells to better estimate their root. Dead

intersite cycles are detected by the centralized service. Based on the paths

transmitted, the centralized service builds the graph of internode references and

detects dead cycles with a standard collector.

The problem of collection for reliable distributed systems was also addressed by

Detlefs [1990a; 1990b; 199I]. Transactions in reliable, distributed systems are

serializable and recoverable. An atomic collector must also preserve the

consistency of data after hardware (and software) crashes. Thus, each transaction

by the collector must be logged. After a crash, recovery can be redone by replaying

the log of transactions or, if nonvolatile storage (disk) survives the crash,

recovery may use this as the starting point if more efficient. Other work

concerned with making garbage collection cooperate transparently with a

transaction protocol was done by Kolodner [1989,1991].

5.0 Summary

70

An attempt has been made to give some structure to a review of distributed

garbage collection. A problem has been that any conceptual scheme has so many

exceptions. Collectors were broadly classified as those that identify garbage

directly and those that identify it indirectly. Emphasis was given to collectors that

appeared since the last major review of garbage collection [Cohen, 1981].

Table I gives a summary of characteristics of the distributed collectors described in

the review. The collectors were evaluated in terms of the issues noted in Section

4.0 The following abbreviations are used in the table:

Msg => Message

Ack => Acknowledgement

Cnt => Count

M => Marking

C => Copying

RC => Reference Counting

GS => Generation Scavenging

Comm => Communication

Synchro => Synchronization

Where qualification is required, as in pause, space and communication overhead,

a rank of low, medium and high is used. These are relative terms and an order or

further explanation is, where available, given in brackets.

A comprehensive bibliography on the subject follows. The number of references

in the bibliography bear witness to the attention garbage collection is receiving,

particularly distributed garbage collection. Despite this attention, a lot still

remains to be done. About 80% of the distributed collectors reviewed in this

paper have not been implemented.

Acknowledgements

We would like to thank Andrew Nimmo, Tim Kindberg and Xu Wang for

reading the draft and offering useful suggestions.

D
IS

T
R

IB
U

T
E

D

G
A

R
B

A
G

E

C
O

L
L

E
C

T
IO

N

A
L

G
O

R
IT

H
M

S

A
lg

or
it

hm
 L

oc
al

 P
au

se

G
C

T

ec
h

H
ud

ak

JV
l

L
ow

K

el
le

r
IP

ar
al

le
l]

M
oh

'd
-A

li
~/

C
 i

H
ig

h/

L
ow

t.
is

ko
v-

~

H
ig

h
L

ad
in

(S

ys
-w

id
r

m
ar

ki
ng

)

R
ud

al
ic

s
,~

t/C
 H

ig
h

(S
ys

-w
id

r
M

ar
ki

ng
)

L
er

m
en

-
~C

L

ow

M
au

re
r

(R
ec

ur
si

vc

fr
ee

in
g)

A

ug
us

te
i~

n
V

I
M

ed
iu

m

(P
ar

al
le

l]

B
en

ne
tt

~

/
~C

B
ev

an

?.
 C

~p
ac

e
C

om
m

.
Sy

nc
hr

o.

~u
pp

or
t f

or
 D

et
ec

ti
on

 o
f

D
et

ec
tio

n
of

 O
rd

er
 o

f
H

an
dl

in
g

O
ve

rh
ea

d
O

ve
rh

ea
d

O
ve

rh
ea

d
oc

al
it

y
of

 i
nt

er
-s

pa
ce

os

t
m

es
sa

ge

of
 N

od
e

"e
fe

re
nc

e
cy

cl
es

V

le
ss

as
e(

s)

cr
as

h/
do

w
n

C
ol

le
ct

or
/

M
ed

iu
m

L

oc
ki

ng

~o
ne

Y

es

N
ot

M

us
t b

e
N

ot

M
ut

at
or

(S

ys
w

id
e

=o
ns

id
er

ed

)r
es

er
ve

d
C

on
si

de
re

d
Q

ue
ue

m

ar
ki

ng

ra
bi

es
 a

nd
 ~

ig
h

Sy

st
em

N

'o
ne

P

ar
ti

al
ly

M

sg
qu

eu
es

.i
M

as
te

r)

w
id

e
(O

nl
y

th
e

B
ac

k
up

 o
f

ce
lls

 a
nd

ta

bl
es

St
at

e,
 M

sg

0o
un

t,
P

ar
en

tI
d

R
ef

cn
t,

 a
ck

&

 in
co

m
pl

.
re

pl
ie

s
C

ol
ou

ri
ng

Fi
m

e-
St

am
 F

M
us

tb
e

N
ot

~r

 O
rd

er
-

)r
es

er
ve

d
C

on
si

de
re

d

C
om

m
en

t

It
 is

 n
on

 c
om

pa
ct

in
g.

M

ut
at

io
n

an
d

co
ll

ec
ti

on

ar
e

do
ne

 i
n

pa
ra

ll
el

.
G

iv
es

 a
 g

en
er

al

~r
ot

oc
ol

 f
or

 d
is

tr
ib

ut
ed

m

ar
ki

ng

G
lo

ba
l

~r
es

er
vi

ng

S
ch

em
e)

~r

 M
s[

-C
nt

L
ow

R

em
ot

e
C

el
l

T
ab

le

L
ow

R

ef
er

en
ce

(R

ec
ur

si
v(

 C
nt

 a
nd

 lo
g

fr
ee

in
g)

of

 w
ei

gh
ts

 H
ig

h
C

lo
ck

Y

es

'Y
es

P

ar
ti

al
ly

N

ot

:R
ep

li
ca

s
:R

ep
li

ca
s)

(C

en
tr

al
iz

e
',R

ep
ly

Im

po
rt

an
t

ce
nt

ra
l

S
er

vi
ce

)
~,

te
ch

an
is

m

in
v.

)
.~

_e
di

um

N
on

e
~o

ne

fe
s

P
ar

ti
al

iy

B
at

ch

~(
Sy

sw
id

e
',M

sg
 A

ck

~s
g)

m

ar
ki

ng
)

:n
t)

Y
es

N
ot

N

ot

Im
po

rt
an

t C
on

si
de

re
d

:)
(3

x
re

f
R

ef
er

en
ce

N

ot

N
e

P
ar

ti
al

ly

M
us

tb
e

Y
es

 (
R

ep
ly

:o

pt
ed

)
de

le
ti

on

=
on

si
de

re
d

A
ck

 C
nt

)
>r

es
er

ve
d

&
 A

ck
 C

nt
)

on
ly

,
H

ig
h

S
yn

ch
ro

-
N

ot

Y
es

 (
Sy

n-

~,
ep

ly

M
us

tb
e

N
ot

',S

yn
ch

ro
-

ni
ze

r
2o

ns
id

er
ed

 r

M
ec

ha
ni

sm

~r
es

er
ve

d
D

is
cu

ss
ed

~i

ze
r)

~s

g-
C

nt

G
C

. P
re

se
nt

 b
ot

h
gl

ob
al

an

d
lo

ca
l G

C
 s

ch
em

es
.

Fa
ul

t
to

le
ra

nt
ba

se
d

on

hi
gh

ly

av
ai

la
bl

e
ce

nt
ra

li
ze

d
se

rv
ic

es
.

H
ig

h
N

on
e

Y
es

Y

es

P
ar

ti
al

ly

T
ab

le

',R
ep

li
ca

s)
 (

S
ys

w
id

e
',R

ep
ly

U

pd
at

e.
)

M
ar

ki
ng

)
M

ec
ha

ni
sm

~(

In
te

r-

N
on

e
P

ar
ti

al
ly

N

o
~l

ot

:n
~c

es
s

S
to

re

~o
ns

id
er

ed

:e
fe

re
nc

e)

A
cc

es
s)

In
sp

ir
ed

 f
ro

m
 C

he
ne

y
an

d
B

ak
er

 C
ol

le
ct

or
s.

A

lw
ay

s
co

ll
ec

t g
ar

ba
ge

at

 n
ex

t c
yc

le

G
iv

es
 p

ro
to

co
l f

or
 a

di

st
. r

ef
. c

ou
nt

in
g

In
sp

ir
ed

 f
ro

m
 D

ij
ks

tr
a

N
ot

Y

es

D
is

cu
ss

ed
 (

R
ep

li
ca

-
ti

on
)

N
O

t
'

N
ot

[m

po
rt

an
t C

on
si

de
re

d

Pa
ra

ll
el

 C
ol

le
ct

or
 b

ut

co
nc

ur
re

nc
y i

s o
n

th
e

gc

~
ro

c
e

s
s

 n
ot

 p
ro

ce
ss

or

Fo
r

D
is

tr
ib

ut
ed

Sm

al
lt

al
k.

 C
ol

le
ct

io
n

is
 d

on
e

by
 p

re
ve

nt
io

n.

D
es

ig
n

fo
r

D
is

tr
ib

ut
ed

Sy

st
em

s.
 U

se
s

in
di

re
c-

ti

on
 w

hi
ch

 m
ay

 b
e

on

di
ff

 P
E

 w
it

h
re

f
ce

ll
s

D
IS

T
R

IB
U

T
E

D

G
A

R
B

A
G

E

C
O

L
L

E
C

T
IO

N

A
L

G
O

R
IT

H
M

S

A
lg

or
it

hm
 L

oc
al

 P
au

se

,7
,C

Fe

ch

W
at

so
n-

R

 C

L
ow

W

at
so

n
R

ec
ur

si
ve

fr

ee
in

g)

B
en

ja
m

in

RC

lo
w

(R

ec
ur

si
ve

/t

ee
in

g)

S
ch

el
vi

s
"[

G
S

B
le

do
eg

M

ed
iu

m

S
ha

pi
ro

M

~o

w

Pl
ai

nf
os

se

',P
ar

al
le

l)

G
ru

be
r

L
an

g-

M

~l
ed

iu
m

Q

ue
in

ne
c-

,cu

rre
nc

y)
Pi

qu
et

V
lo

ss

C

L
ow

~a
bb

as
h-

M

H

ar
is

-
H

or
n

~e
T

re
vi

ll
e

R
C

/
M

LO
w

5p
ac

e
C

om
m

.
5y

nc
hr

o.

~u
pp

or
t f

or
 D

et
ec

ti
on

 o
f O

et
ec

ti
on

 o
f

O
rd

er
 o

f
H

an
dl

in
g

O
ve

rh
ea

d
O

ve
rh

ea
d

O
ve

rh
ea

d
oc

al
it

y
of

 i
nt

er
-s

pa
ce

os

t
m

es
sa

ge

of
 N

od
e

,e
fe

re
nc

e
cy

cl
es

~d

es
sa

ge
(s

)
cr

as
h/

do
w

n
R

ef
er

en
ce

(I

nt
er

-
N

on
e

?a
rt

ia
ll

y
N

o
~/

ot

N
ot

N

ot

C
nt

 a
nd

 L
og

 ~
ro

c~
s

',S
to

re

~o
ns

id
er

ed

Im
po

rt
an

t C
on

si
de

re
d

of
 w

ei
gh

ts

-e
fe

re
nc

e)
]

A

cc
es

s)

G
en

er
at

io
n

D
(I

nt
er

-
N

on
e

P
ar

ti
al

ly

N
o

~,
lo

t
N

ot

N
ot

C

ou
nt

 a
nd

m

~c
es

s
S

to
re

~o

ns
id

er
ed

Im

po
rt

an
t C

on
si

de
re

d
L

ed
ge

r
,,e

fe
re

nc
e)

A

cc
es

s)

E
nt

ra
nc

e
H

ig
h

N
on

e
Y

es

(l
nc

re
m

en
-

Y
'e

s(
R

ep
ly

,
N

ot

Y
es

 (
R

ep
ly

T

ab
le

,
',R

ep
li

ca

ta
ll

y)

w
it

h
A

cc
es

sP
at

h
[m

po
rt

an
lA

cc
es

sP
at

h
ln

fo
/r

ef

ae
ap

)
A

cc
es

sP
at

h
)

(C
D

T
,E

R
T

)
L

ow

N
on

e
~'

es

Y
es

Y

es

N
ot

Y

es
 (

F
in

de
r

',S
pa

ce
s)

(M

ig
ra

ti
on

)
',T

im
es

ta
m

p
[m

po
rt

an
t

~r
ot

oc
ol

)
)f

 e
ve

nt
s)

E

nt
ry

 a
nd

M

ed
iu

m

V
er

yL
ow

G

ro
up

s
Y

es
 (G

ro
up

-
tie

s
N

ot

Y
es

 (G
ro

up

E
xi

t i
te

m
s

B
at

ch
)

w
id

e
co

nc
ur

-
'M

sg
 A

ck
,

[m
po

rt
an

! R
e-

or
ga

ni
-

re
nt

 m
ar

k-

Fi
m

e-
ou

t
)

za
ti

on
)

m
g

&
 R

C
)

~n
co

m
b~

U

nd
et

er
-

N
on

e
Y

es
 (

Fi
le

s)
 Y

es

X
lo

t
N

ot

N
o

...
.

~e
fe

re
nc

e
m

in
e

(M
ig

ra
ti

on
)

2o
ns

id
er

ed

[m
po

rt
an

t
Fa

bl
e

C
om

m
en

t

D
es

ig
ne

d
fo

r
Pa

ra
ll

el

Sy
st

em
s.

 U
se

s
in

di
re

c-

ti
on

 w
hi

ch
 m

ay
 b

e
on

di

ff
 P

E
 w

it
h

re
f

ce
lls

.
D

es
ig

n
fo

r
D

is
tr

ib
ut

ed

Sy
st

em
s.

 I
nd

ir
ec

ti
on

s
ar

e
gu

ar
an

te
ed

 to
 b

e
on

sa

m
e

PE
 w

it
h

th
ei

r
re

f
D

es
ig

ne
d
fo
r

Di
st
ri
bu
te
d S
ma
ll
ta
lk

Su
it

ab
le

 f
or

 l
ow

-l
ev

el

D
is

tr
ib

ut
ed

 o
bj

ec
t

re
po

rt
,

L
ow

N

on
e

Y
es

E

xp
or

t a
nd

iC

lu
st

er
s)

?r

iv
a t

e
Fa

bl
es

e

Y
es

"

-F
or

 R
E

F
~S

pa
ce

s)

~e
di

um

te
r-

~R
ip

gc
h)

Pa
rt
ia
ll
y

[
.

A
ss

ig
n'

nt

Y
es

(A

rc
hi

va
l

C
lu

st
er

M

il~
ra

tio
n)

Y

es
 (

Sy
s-

w

id
e

M
ar

ki
ng

)

N
ot

N

ot

N
ot

C

on
si

de
re

d

M
ot

D

is
cu

ss
ed

su
pp

or
t S

ys
te

m
.

Su
it

ab
le

 f
or

 v
er

y
la

rg
e

or
 w

or
ld

-w
id

e
ne

ts
 o

f
po

ss
ib

ly
 h

et
er

og
en

eo
us

~r
oc
es
so
rs
.

A
im

ed
 a

t G
C

 la
rg

e
~e

rs
is

te
nt

 s
to

re
 in

 a

di
st

ri
,

en
vi

ro
nm

en
t

A
im

ed
 a

t G
C

 in
 O

bj
ec

t-

[m
po

rt
an

t C
on

si
de

re
d

O
ri

en
te

d
di

st
ri

bu
te

d
)e

rs
is

te
nt

 e
nv

ir
on

m
en

t

N
ot

N

ot

A
im

ed
 a

t G
C

 in
 a

D

is
cu

ss
ed

 D
is

cu
ss

ed

sh
ar

ed
 m

em
or

y
m

ul
ti

pr
oc

es
so

r

r'O

73

6 Bibliography

Almes G, Borning A and Messinger E (1983) Implementing a Smalltalk-80

system on the Intel 432: a feasibility study, in Smalltalk-80: Bits of History,
Words of Advice, Addison-Wes]~.y 175-187

Appleby K, Carlsson M, Haridi S, and Sahlin D (1983) Garbage collection for

Prolog based on WAM, Comm. ACM 31, 719-741
Augusteijn L (1987) Garbage collection in a distributed environment, in

PARLE'87 - Parallel Architectures and Languages Europe, LNCS 259,
Springer-Verlag, 75- 93.

Baden SB (1983) Low-overhead storage reclamation in the Smalltalk-80 virtual
machine, in Smalltalk-80: Bits of History, Words of Advice, Addison-

Wesley, 331-342
Baker HG (1978) List Processing in real-time on a serial computer, Comm ACM

21, 280-294

Baker HG (1992) The treadmill: real-time garbage collection without motion
sickness, SIGPLAN NOTICES 27(3), March 1992, 66-70

Bal H (1990) Programming Distributed Systems, Prentice Hall
Ballard S and Shirron S (1983) The design and implementation of

VAX/Smalltalk-80, in Smalltalk-80: Bits of History, Words of Advice,
Addison-Wesley, 127-I50

Bartlett JF (1990) A generational, compacting garbage collector for C++,
ECOOP/OOPSLA'90 Workshop on Garbage Collection.

Bates RL, Dyer D and Koomen/AGM (1982) Implementation of Interlisp on the

VAX, ACM Symposium on Lisp and Functional Programming, Pittsburgh,
Pennsylvania, 15-18 August 1982, 81-87.

Ben-Ari M (1984) Algorithms for on-the-fly garbage collection, ACM Transactions
on Programming Languages and Systems 6, 333-44.

Bennett JK (1987) The design and impiementation of distributed Smalltalk,
OOPSLA "87, SIGPLAN Notices 22(12), 318-330.

Bengtsson M and Magnusson B (1990) Real-time compacting garbage collection,
ECOOP/OOPSLA '90 Workshop on Garbage Collection.

Benjamin G (1989) Generational reference counting: A reduced communication

distributed storage reclamation scheme in Programming Languages Design
and Implementation, SIGPLAN Notices 24, ACM Press, 313-321.

74

Bevan DI (1987) Distributed garbage collection using reference counting, in

PARLE "87 - Parallel Architectures and Languages Europe, LNCS 259,
Springer-Verlag 176-187.

Boehm HJ and Weiser M (1988) Garbage collection in an uncooperative
environment, Software Practice and Experience 18(9), 807-820.

Bobrow, 13(3 (1980) Managing reentrant structures using reference counts,
TOPLAS 2(3) 269-273.

Brooks RA, Gabriel RP and Steele GL (1982) S-1 Common lisp implementation,

ACM Symposium on Lisp and Functional Programming, Pittsburgh,
Pennsylvania, 15-18 August 1982. 108-113.

Brownbridge DR (1985) Cyclic reference counting for combinator machines, in
Functional Programming Languages and Computer Architecture, LNCS 201,
Springer-Verlag, 273-288.

Carlsson S, Mattsson C and Bengtsson M (1990) A fast expected-time compacting
garbage collection algorithm., ECOOP/OOPSLA '90 Workshop on Garbage

Collection.

Chambers C Ungar D and Lee E (1989) An efficient implementation of SELF, A
dynamically-typed object-oriented language based on prototypes. OOPSLA
'89, SIGPLAN Notices 24(10), ACM, 49-70.

Cohen J and Trilling L (1967) Remarks on Garbage Collection using a two level
storage (sic) BIT 7(1), 22-30

Cohen J (1981) Garbage collection of linked data structures, ACM Computing
Surveys 13(3) 341-367.

Collins GE (1960) A Method for overlapping and erasure of lists, Comm. of the
ACM 3(12) 655-657.

Courts R (1988) Improving locality of reference in a garbage-collecting memory
management system, Comm. of the ACM 31(9) t128-1138.

Dawson JL (1982) Improved effectiveness from a real-time lisp garbage collector,

1982 ACM Symposium on Lisp and Functional Programming, Pittsburgh,
Pennsylvania August 15-18o 159-167.

Dellar CNR (1980) Removing backing store adrrdnistration from the CAP
operating system, Operating System Review 14(4) 41-49.

Detlefs DL (1990a) Concurrent garbage collection for C++, CMU-CS-90-119 School
of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA 15213.

Detlefs DL (1990b) Concurrent, atomic garbage collection~ ECOOP/OOPSLA'90
Workshop on Garbage Collection.

75

Detlefs DL (1991) Concurrent, Atomic Garbage Collection, PhD Thesis,Dept of

Computer Science, Carnegie Mellon Univ, Pittsburgh, PA 15213 CMU-CS-

90-177, November 1991.
Demers A, Weiser M, Hayes B, Boehm H, Bobrow D and Shenker S (1990)

Combining generational and conservative garbage collection: framework
and implementations, in ACM Symposium on Principles of Programming

Languages, 261 - 269.
DeTreville J (1990) Experience with garbage collection for Modula-2+ in the

Topaz Environment, ECOOP/OOPSLA'90 Workshop on Garbage Collection.

Deutsch LP and Bobrow DG (1976) An efficient, incremental, automatic garbage

collector. Comm ACM 19(9) 522-526.
Deutsch LP (1983) The Dorado Smalltalk-80 Implementation: Hardware

architecture's impact on software architecture, in Smalltalk-80: Bits of
History, Words of Advice, Addison-Wesley, 113-125.

Dijkstra EW, Lamport L, Martin A J and Steffens EFM (1978) On-the-fly

garbage collection: An exercise in cooperation, Comm ACM 21(11) 966-975.

Edelson D and Pohl I (1990) The case for garbage collector in C++,

ECOOP/OOPSLA "90 Workshop on Garbage Collection.

E1-Habbash A, Horn C and Harris M (1990) Garbage collection in an object

oriented, distributed, persistent environment., ECOOP/OOPSLA'90

Workshop on Garbage Collection.

Falcone JR and Stinger JR (1983) The Smalltalk-80 Implementation at Hewlett-

Packard, in Smalltalk-80: Bits of History, Words of Advice, Addison-Wesley,

79-112
Fenichel RR and Yochelson JC (1969) A LISP garbage-collector for virtual-

memory computer systems, Comm ACM 12, 611-612

Ferreira P (1990) Storage reclamation., ECOOP/OOPSLA'90 Workshop on

Garbage Collection.

Field AJ and Harrison PG (1988) Functional Programming, Addison-Wesley.

Fisher DA (1974) Bounded workspace garbage collection in an address-order

preserving list processing environment, Info. Processing Letters 3(1), 29-32.

Foderaro, JK, Fateman, RJ (1981) Characterization of VAX maxsyma in
Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic
Computation, 14-19.

Friedman DP and Wise DS (1976) Garbage collecting a heap which include a

scatter table, Info. Processing Letters 5(6), 161-164.
Friedman DP and Wise DS (1977) The one-bit reference count, BIT (17), 351-359.

76

Friedman DP and Wise DS (1979) Reference counting can manage the circular
environments of mutual recursion, Info. Processing Letters 8(1), 41-45.

Gabriel RP and Mansinter L M (1982) Performance of lisp systems, 1982 ACM
Symposium on Lisp and Functional Programming, Pittsburgh,
Pennsylvania, 15-18 August 1982, 123-142.

Garnett NH and Needham RM (1980) An Asynchronous garbage collector for
the Cambridge file server, Operating System Review 14(4), 36-40.

Gelernter H, Hansen JR and Gerberrich CL (1960) A FORTRAN-compiled list
processing language, JACM 7(2), 87-101.

Goldberg A and Robson D (1983) Smalltalk-80: The Language and its
Implementation, Addison-Wesley, 674-681

Hansen WJ (1969) Compact list representation: definition, garbage collection,
and system implementation, Comm ACM 12(9), 499

Hayes, B (1990) Open systems require conservative garbage collectors,
ECOOP/OOPSLA'90 Workshop on Garbage Collection.

Hayes B (1991) Using key object opportunism to collect old objects, OOPSLA'91,
SIGPLAN Notices 26(11), ACM, 33-46

Hoare CAR (1974) Optimization of store size for garbage collection, Info.
Processing Letters 2(6), 165-166.

Hudak, P(1982) Object and Task Reclamation in Distributed Applicative
Processing Systems, PhD Thesis, University of UtaK

Hudak, P and Keller R M (1982) Garbage collection and task deletion in
distributed applicative processing systems, ACM Symposium on Lisp and
Functional Programming, Pittsburgh, Pennsylvania, August 1982, 168-178.

Hudak P (1986) A semantic model of reference counting and its abstraction
(detailed summary), Proceedings of 1986 ACM Conference on Lisp and
Functional Programming, Massachusetts Institute of Technology, 351-363.

Hudson, R and Diwan A(1990) Adaptive garbage collection for Modula-3 and
Smalltalk., ECOOP/OOPSLA '90 Workshop on Garbage Collection.

Hughes, J (1984) Reference counting with circular structures in virtual
memory, spplicative dystems, TR Programming Research Group, Oxford
Univ.

Hughes, J (1985) A distributed garbage collection algorithm, in Functional
Programming Languages and Computer Architecture, LNCS 201, Springer-
Verlag, 256 - 272.

77

Johnson D (1991) The case for a real barrier, Proceedings of the Fourth

International Support for Programming Languages and Operating Systems

(ASPLOS IV), 96-107.

Jones SLP (1987) The Implementation of Functional Programming Languages,
Prentice-Hall.

Jonkers HBM (1979) A gast garbage compaction algorithm. Info. Processing Letters
9(1) 26-30.

Juul NC (1990) Report on the ECOOP/OOPSLA'90 Workshop on Garbage

Collection in Object-Oriented Systems.
Kafara D, Washabaugh D and Nelson J (1990) Garbage collection of actors,

ECOOP/OOPSLA '90 Proceedings of Workshop on Garbage Collection, I26-34
Kain RY (1969) Block structures, indirect addressing and garbage collection.

Comm ACM 12(7) 395-398.

Knuth DE (1973) The Art of Computer Programming; Vol 1: Fundamental
Algorithms, Addision-Wesley, Reading, Mass.

Kolodner E, Liskov B and Weihl W (1989) Atomic garbage collection: managing

a stable heap, Proceedings of 1989 ACM SIGMOD International Conference
on the Management of Data, 15-25.

Kolodner E (1991) Atomic incremental garbage collection and recovery for Large
stable heap, implementing persistent object bases: principles and practice,
Fourth International Workshop on Persistent Object Systems, Morgan-
Kaufmann Publishers, San Mafeo, California.

Krasner G (ed) (1983) Smalltalk-80: Bits of History, Words of Advice, Addison-
Wesley.

Lang, B, Queinnec C, and Piquer J (1992) Garbage collecting the world,
Proceedings of the 19th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL'92), 1992.

Lermen C W and Maurer D (1986) A Protocol for Distributed Reference

Counting, Proceedings of 1986 ACM Conference on Lisp and Functional
Programming, Massachusetts Institute of Technology, 343-350.

Li K (1988a) Real-time concurrent collection in user mode, ECOOP/OOPSLA'90
Workshop on Garbage Collection.

Li K Appel AW, and Ellis JR (1988b) Real-time concurrent collection on stock
multiprocessors, ACM SIGPLAN "88 Conference on Programming
Language Design and Implementation, 11-20.

Lieberman H and Hewitt C (1983) A real-time garbage collector based on the
lifetimes ot objects. Comm ACM 26(6), 419-429.

78

Lindstrom G (1974) Copying list structures using bounded workspace, Comm
ACM 17(4), 198-202.

Liskov B and Ladin R (1986) Highly-available distributed services and fault-

tolerant distributed garbage collection, in Proceedings of the 5th symposium
on the Principles of Distributed Computing, ACM, 29-39

Martin JJ (1982) An efficient garbage compaction algorithm, Comm ACM 25(8),

571-581.

McCarthy J (1960) Recursive functions of symbolic expressions and their

computation by machine: Part I, Comm ACM 3(4), 184-195.
McCullough PL (1983) Implementing the Smalltalk-80 system: The Tektronix

experience, in Smalltalk-80: Bits of History, Words of Advice, Addison-
Wesley, 59-78

Meyers R and Casseres D(1983) An MC68000-Based SmaUtalk-80 System, in

Smalltalk-80: Bits of History, Words of Advice, Addison-Wesley, 175-187.

Miranda E (1987) BrouHaHa - a portable Smalltalk interpreter, OOPSLA'87,

SIGPLAN Notices 22(12), ACM, 354-365

Mohammed-All K A (1984) Object-Oriented Storage Management and Garbage

Collection in Distributed Processing Systems, Academic Dissertation, Royal
Institute of Technology, Dept of Computer Systems, Stockholm, Sweden.

Moon D.(1984) Garbage collection in a large lisp system, 1984 ACM Symposium

on Lisp and Functional Programming, 235-246.

Morris FL (1978) A time- and Space-efficient garbage compaction algorithm.

Comm ACM 21(8), 662-665.

Morris FL (1979) On a comparison of garbage collection techniques, Comm ACM

22(10), 571.
Moss JEB (1990) Garbage collecting persistent object stores, ECOOP/OOPSLA'90

Workshop on Garbage Collection.
Newell A and Tonge FM (1960) An introduction to IPL-V, Comm ACM 3,

205 - 211.
Newman IA, Stallard RP and Woodward MC (1982) Performance of parallel

garbage collection algorithms, Computer Studies 166, Sept 1982.

Nilsen K and Schmidt WJ (1990) Hardware support for garbage collection of

linked objects and arrays in real time, ECOOP/OOPSLA'90 Workshop on

Garbage Collection. October 1990.
Nilsen K (1988) Garbage collection of strings and linked data structures in real

time, Software Practice and Experience 18(7), July 1988, 613 - 640.
North SC and Reppy JH (1987) Concurrent garbage collection on stock hardware

79

in Functional Programming Languages and Computer Architecture, LNCS

274 Springer-Verlag, 1987, 113 - 133.
ParcPlace (1991) Objectworks\Smalltalk Release 4 User's Guide, Memory

Management 229-237
Queinnec C, Beaudoing B, and Queille J (1989) Mark DURING sweep rather than

mark THEN sweep, in PARLE '89 - Parallel Architectures and Languages
Europe. LNCS 365, Springer-Verlag.

Rudalics M, (1986) Distributed copying garbage collection, Proceedings of 1986
ACM Conference on Lisp and Functional Programming, Massachusetts

Institute of Technology, 364-372.
Schelvis M and Bledoeg E (1988) The implementation of a distributed Smalltalk,

ECOOP Proceedings, August 1988 LNCS 322.

Schelvis M (1989) Incremental distribution of timestamp packets: a new

approach to distributed garbage collection, OOPSLA'89, SIGPLAN Notices

24(10), ACM, 37-48.

Schorr H and Waite WM (1967) An efficient machine-independent procedure

for garbage collection in various list structures, Comm ACM 10(8), 501-506.
Sharma R and Sofia M L (1991) Parallel generational garbage collection,

OOPSLA 91, SIGPLAN Notices 26(11), ACM, 16-32

Shapiro M, Plainfosse D and Gruber O (1990) A garbage detection protocol for a

realistic distributed object-support system., ECOOP/OOPSLA'90 Workshop

on Garbage Collection. October 1990.

Standish TA (1980) Data Structures Techniques, Addison-Wesley, Reading,

Mass., 1980.

Steele GL (1975) Multiprocessing compactifying garbage collection. Comm ACM
18(9), 495-508.

Thomas RE, (1981) A dataflow computer with improved asymptotic

performance, MIT Laboratory for computer science report MIT/LCS/TR-265
Terashima M and Goto E (1978) Genetic order and compactifying garbage

collector, Info. Processing Letters 7(1), 27-32.

Ungar DM and Patterson DA (1983) Berkeley Smalltalk: who knows where the

time goes?, in Smalltaik-80: Bits of History, Words of advice, Addison-
Wesley 189-206.

Ungar D (1984) Generation scavenging: a non-disruptive high performance

storage reclamation algorithm, in Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, April 1984, 157-167.

80

Ungar D and Jackson F (1988) Tenuring policies for generation-based storage
reclamation, OOPSLA'88, SIGPLAN Notices 23(11), ACM, 1-17.

Ungar D and Jackson F (1992) An adaptive tenuring policy for generation
scavengers, TOPLAS 14(1), 1-27.

Vestal S C (1987) Garbage Collection: An Exercise in Distributed, Fault-Tolerant

Programming. PhD Thesis, Dept. of Computer Science, University of

Washington, Seattle WA (USA), January 1987.
Wadler PL (1976) Analysis of an algorithm for real-time garbage collection,

Comm ACM 19(9), 491-500.
Watson I (1986) An analysis of garbage collection for distributed Systems, TR

Dept Comp. Sc., U. Manchester.
Watson P and Watson I (1987) An efficient garbage collection scheme for

parallel computer architecture, in PARLE "87 - Parallel Architectures and

Languages Europe, LNCS 259, 432 - 443.

Wegbreit B (1972) A generalised compacting garbage collector, Computer

Journal 15(3) 204-208.
Weizenbaum J (1962) Knotted list structures, Comm ACM 5(3), 161 -165.
Weizenbaum J (1963) Symmetric list processor, Comm ACM 6(9), 524 -544.
White JL (1980) Address/memory management for a gigantic Lisp environment,

or GC considered harmful, Conference Record of the 1980 Lisp Conference,
119-127.

Wilson PR and Moher TG (1989) Design of the opportunistic garbage collector,

OOPSLA'89, SIGPLAN Notices 24(10), ACM, 23-35.
Wilson PR (1990) Some issues and strategies in heap management and memory

Hierarchies, ECOOP/OOPSLA'90 Workshop on Garbage Collection
Wilson PR, Lain MS and Moher TG (1990) Caching considerations for

generational garbage collection: a case for large and set-associative caches.,

TR UIC-EECS-90-5, December 1990.
Wilson P R (1992) Comp.compiler Usenet discussion, February 1992
Wilson PR, Lam MS and Moher TG (1991) Effective "static-graph"

reorganization to improve locality ~n garbage-collected systems,
Proceedings of the ACM SIGPLAN '91 Conference on Programming
Language Design and Implementation. Toronto, Ontario, Canada, 177-191.

Wolczko M and Williams I (1990) Garbage collection in high-performance
system, ECOOP/OOPSLA'90 Workshop on Garbage Collection. October 1990.

Woodward MC (1981) Multiprocessor garbage collection - a new solution,
Computer Studies 115

81

Zave DA (1975) A fast compacting garbage collector, Info Processing Letters 3,
167-169.

Zorn B (1989) Comparative performance evaluation of garbage collection
Algorithms, PhD Thesis, EECS Dept, UC Berkeley.

Zorn, B (1990) Designing systems for evaluation: A case study of garbage
collection., ECOOP/OOPSLA'90 Workshop on Garbage Collection.

Dynamic Memory Management for Sequential
Logic Programming Languages

Y. Bekkers, O. Ridoux and L. Ungaro

IRISA/INRIA-Rennes
Campus UniversitaJre de Beaulieu
35042 Rennes CEDEX - FRANCE

Email {bekkers, r idoux, ungaro } @ ir isa. fr

Abs t rac t . Logic programming languages are becoming more complex with
the introduction of new features such as constraints or terms with an equality
theory. With this increase in complexity, they require more and more sophis-
ticated memory management. This survey gives an insight into the memory
management problems in sequential logic programming language implemen-
tations; it also describes the presently known solutions. It is meant to be
understood by non-specialists in logic programming with good knowledge
of memory management in general. We first describe a "usefulness logic" for
run-time objects. Usefulness logic defines non-garbage objects. Next, memory
management systems are presented from the most trivial original run-time
system, with no real concern for memory problems, to elaborated run-time
systems with memory management closely observing the usefulness logic. Fi-
nally, the choice of a garbage collection technique is discussed in relation with
logic programming specificities.

1 I n t r o d u c t i o n

1.1 T h e s c o p e o f t h i s s u r v e y

Logic programming languages are increasing in complexity with the introduction of
new features such as suspension mechanisms, constraints or higher-order terms. With
this increase in complexity, memory management becomes a pr imary concern. The
problem with logic programming run-time systems is to avoid memory leaks which
may be introduced by the implementat ion of the non-determinism of the language.
Wadler [47] defines a m e m o r y leak 1 as a feature o f a program that causes it to use
more space than one would ezpect. Accuracy of memory management techniques
in logic programming languages implementations is crucial. Accuracy concerns the
ability to decide which objects are useless, regardless of a particular program, only
taking into account the characterist ics of the representat ion func t ion implemented
by the run-time system. Of course, taking into account the caracteristics of programs
to define the completeness of memory management makes full accuracy impossible
to achieve.

The paper contains five sections.

1 Wadler cMls it space leak

83

- In the first section, we explain, in an informal manner, the usefulness logic of
standard logic programming run-time systems. Usefulness logic defines which
objects are currently useful.

- Next, we briefly describe the implementations of the first logic programming
system, and show its inefficiency.

- Then, we describe how usefulness logic can be implemented. Mechanisms spe-
cific to logic programming, namely "early reset" and "variable shunting", are
presented.

- Then, memory management of objects used in the implementation of extensions
to logic programming is discussed.

- In the last section, we discuss lower-level aspects of garbage collection, for
example the pros and cons of "copy" or "mark and compact" techniques, or
the ability to introduce some kind of generation garbage collector.

1 . 2 O t h e r r e l a t e d i s s u e s

In this presentation, some important issues are left aside.

For instance, the memory management of OR-parallel systems which makes gar-
bage collection algorithms more complex. Some important contributions are by Cie-
pielewski and Haridi [21], and Warren [52]. More recent contributions are [11, 23,
25, 27, 53]. Another contribution concerning concurrent logic programming with fiat
guarded Horn clauses is found in [44].

Parallel or real-time implementation of garbage collectors for logic programming
is not presented. A study on this topic can, for example, be found in [10]. Real-time
behavior was also one of the incentives in [37] to introduce some kind of generational
garbage collector.

Another issue left aside here is the management of the program, called the clause-
base in logic programming. In most logic programming systems, the clause-base can
be modified using built-in predicates such as a s s e r t and r e t r a c t . One would like the
retracting of a clause to provide the opportunity of recovering memory. However,
dynamic representation usually contains pointers to clauses. Those pointers may
become dangling if the memory occupied by clauses is recovered as soon as they
are retracted. The problems are magnified if "structure-sharing", see w is used.
These problems have been studied in [31]. h dialect of Prolog, ~Prolog [35], proposes
a more disciplined way of modifying the program. In this case, the dynamic part of
the program is submitted to the general memory management scheme implemented
for dynamic objects [14].

Other areas of memory may grow when executing a logic program. They are the
symbol and constant tables. In most implementations, these areas are not reclaimed.
Athough this is an important matter, this problem is left aside in this survey.

Nothing is said either, in this survey, on compile-time garbage collection, a pro-
mising technique which is just beginning to be investigated for logic programming
purposes.

84

2 P e c u l i a r i t i e s o f l o g i c p r o g r a m m i n g s y s t e m s

2.1 R u n - t i m e s y s t e m of a non-de te rmin i s t i c language

Logic programming systems perform a search through a search-tree. Each node of
the search-tree is decorated with a goal-statement which is a list of goals, i.e. terms
containing logical variables. The root is decorated with the initial goal-statement.
Transitions between search-nodes produce bindings of logical variables and the bin-
dings produced along the path leading from the root to a given search-node form a
binding slate.

r e a d (f (a)) .
r e a d (f (b)) .

t rans(U,V) : - analyze(U,W),
gen(W,V).

analyze(f(T),T).

gen(Z,g(Z)) .

use(R) : - . . .

�9 - read(X), trans(X,Y), use(Y).

CP1 : read(X) trmas(X,Y) use(Y)

J k
trans(f(a),Ytuse(Y) trans(f(b),Y),,,, use(Y)

analyze(f(a),W) gen(W,Y) use(Y) ,
e

gen(a,Y) use(Y) i

use(g(a)) use(g(b)) t t
| e
~ m
e u

Fig. 1. A simple program and its search-tree

We will use the program in figure 1 throughout this survey. A search-tree for this
program is partly shown on the figure.

Here is an explanation of the program for "non-prologers'. The program repre-
sents a translation process. It reads, translates and finally uses terms, one at a time.
The translation is done in two steps: an analysis step which extracts some of the
content of the input term, and a generation step which integrates the extracted
content within some new structure.

A characteristic of this program is that the predicate read has two clauses, hence,
there are two possible input terms, f (a) and :~ (b). They will be non-deterministically
chosen by the run-time system and treated sequentially. Notice that these two terms
stand for arbitrarily large data structures. The important thing is that, at some
point of the treatment, some parts of these structures become useless for the rest of
the computation.

2.2 I m p l e m e n t a t i o n of the search

A sequential Prolog system executes a depth-first traversal of the search-tree and the
state of the system is a stack of goal-statements. This stack is called the backtrack-

85

stack and each of its elements is called a choice-point. A choice-point holds a goal-
statement plus a reference to alternate clauses for that goal. For the sake of simplicity,
we consider the "current goal-statement", CGS, as being at the top of that stack
although it is usually held in registers.

In the example, one can see the two branches of the search-tree corresponding
to the two input terms. Let us consider the search process as being at the node
marked t. At this stage there are two active goal-statements:

- the current goal-statement use (g (a)),
- a single choice-point read(X) trans(X,Y) use(Y) called CP1.

Usually, there is not much difference between two successive states in the stack,
hence a new goal-statement is represented with some objects already used in the
representation of previous (older) goal-statements. The modifications of structures,
essentially variable substitutions, are recorded into a list called the trailwhich is used
later to recover the previous states, i.e. to backtrack. In the example at position t,
there are two active goal-statements, the current one, t, and CP1 to which the run-
time system will backtrack to start the exploration of the second branch of the
search-tree. At this stage of the computation the goal use(Y) is common to the two
goal-statements and its representation can be shared by the representation of the
the active goal-statements. Most implementations of logic programming languages
follow this sharing method, which is called the OR-sharing technique. With such a
technique, only the current choice-point can be readily accessed. In order to access
saved choice-points, an interpretation of the trail is necessary.

2.3 Usefulness logic of logic p r o g r a m m i n g r u n - t i m e sys tems

We call usefulness logic of a programming language implementation the logic that
determines which run-time objects are useful, without referring to a particular pro-
gram. This notion is not usually exhibited, because it is trivial in the case of func-
tional programming:

useful objects are those accessed when following references from some roots.

But this notion is more complicated in logic programming implementations that
call for the OR-sharing technique:

useful objects are those accessible from the choice-points, each one interpreted
using its own binding state.

The difficulty is that only the current binding state is readily represented. The
usefulness logic of logic programming can be split into the three following principles.

1. The first principle, stated by Bruynooghe [17], is that all accesses to useful ob-
jects come from the active goal-statements. This suggests a marking procedure
which executes a traversal of goal-statements found in the backtrack-stack. This
principle implies that the well known "cut" operation of Prolog may recover
some memory space, since it destroys choice-points. For non-prologers, the cut
operation is an extra-logical predefined predicate that allows one to suppress
choice-points. It is used for committing the search to some choices.

86

2. The second principle, pointed out by Bekkers et al. [9], is that some binding
values may become useless in the course of the exploration of a branch in the
search-tree. A given variable binding is relevant only for the goal-statements
which are under the arc which produces the binding itself. If a variable is seen
only from nodes higher in the search-tree than its binding, then this binding is
useless.
In the example, consider the search at point t, the substitution [X <- f (a)] is
useless because, CGS has no access to X, and CP1 accesses X but is above the arc
which produces the binding. It is then possible to suppress the binding at that
point. This technique is named early reset in [3]. The resetting of the variable
and the discarding of its trail element are also described in [7]. Bruynooghe [17]
describes a weaker version, called virtual backtracking, where variables are not
reset to free, but where it is avoided to mark resetable binding values. The term
early reset derives its name from the fact that variables, like X in the example,
are reset to the free state before moving back up in the search-tree (i.e. before
backtracking).

3. The third principle is that some variables may become irreversibly substitu-
ted [29]. We use the notation < s u b s t i t u t i o n s ; l i s t - o f - g o a l s > to describe a
goal-statement and exhibit the substitutions of variables.
At position t in the search-tree, the goal-statements are:

<[] ; read(X) , t r ans (X ,Y) , use(Y)>
<[Y <- g (a)] ; use(Y)>.

Variable Y is free in a goal-statement and bound in another one. Hence, it is fair
to represent the variable and its binding at the same time.
But when the search is at node t t , there is only one goal-statement:

<IV <- g(b)] ; use(v)>.
In this case, variable Y is bound in every goal-statement. Hence, at position t t ,
it is useless to represent the variable V. A more concise representation would be

<[] ; u se (g (b))> .
Optimization consists in replacing an occurrence of a variable with its binding
value. This has been named variable shunting in [29]. Some compile-time optimi-
zations can be considered as a trivial form of variable shunting. In our example,
the variable identifiers u, v, T, Z, R are treated by any decent compiler as na-
ming devices and never lead to a variable creation at run-time. This is because
there is no choice-point between the creation of the variable and its subtitution.

The three previous principles describe the requirement of an ideal memory ma-
nagement. It was gradually implemented in Prolog run-time systems. Several gene-
rations were necessary. Our presentation follows this historical and didactic progres-
sion.

3 Prehistory: lack of garbage collection

3.1 R e c l a i m i n g space u p o n b a c k t r a c k i n g o n l y

The first Prolog interpreter (Marseille, [39]) was designed with no real concern for
memory efficiency. Memory allocated during a procedure call is not reclaimed before

87

backtracking occurs. This is really not sufficient since it means, by analogy with
functional languages, that a procedure body survives the procedure exit. However,
reclaiming memory upon backtracking (instant reclaiming in short) is very important
as it is a way of recovering an unbounded amount of memory at a constant cost.
Hence, in general, systems should preserve such a capability.

o backtrack stack

I lanalyze(X,W) gen(W,Y). I

X Y

trail ~ 1 1 ~ i 1 ~ ~

I read(X) trans(X,Y) serf) I

Fig. 2. Simple memory organization

Trivial memory management is illustrated on figure 2. Consider the computation
as being at node t of the example. Goals analyze(X,W) gen(W,Y) are kept in memory
and may eventually be buried under new objects, by the execution of the goal use (W),
although they are useless for the rest of the computation.

3.2 St ruc tu re - sha r ing versus term-copying

Mimicking the implementation of other languages, the first implementations of logic
programming languages used classical Boyer and Moore's "structure-sharing" [13] to
represent goals and terms. It is a well-known technique which represents a term with
a pair of pointers, one to a static model in the program and the other to a dynamic
"environment" which gives the values of variables. This is a "static" sharing, which
uses pieces of program to represent dynamic objects. It must not be confused with
the previously mentioned OR-sharing technique.

A new representation of terms, usually called structure copying, was proposed
independently in [32] and in [16]. It uses copy and amounts to creating new data
structures to represent a term instance. This method currently prevails over struc-
ture sharing because it simplifies garbage collection algorithms. The problem with
structure-sharing comes from the indexed arrays used to represent the binding envi-
ronments. Such arrays are difficult to compact. In most implementations, in classical
WAM for example, only binding values are represented by copies. Lists of goals, lo-
cated in the local stack, are usually represented with structure-sharing, but in [48]
the choice is explicitly left open.

Few Prolog implementations use copies for the representation of lists of goals.
Typical examples are Prolog implementations running on MALI [28, 14]. MALI is

88

a memory management machine which offers a kernel of commands well suited for
logic programming: terms construction, terms traversM, variable binding, etc. It fully
encompasses OR-sharing and does not preclude the use of the other sharings. Thanks
to its Lisp-like term construction capability, goals copying is very natural in MALI.

It is hard to compare the memory efficiencies of the two schemes as one can
construct examples of programs where structure sharing is better than structure
copying, and it is also possible to construct programs where it is the contrary.

3.3 Spl i t t ing m e m o r y into local and global spaces

The Edinburgh implementation [49] is the first to benefit from memory management
efforts. Memory space is divided into two spaces, the local slack and the global slack.

t he local s tack contains the "control part" of goal-statements, i.e. parts of goals
that are statically known to become useless when deterministically returning
from a procedure (execution of a goal). Hence, some memory can be reclaimed
before backtracking, which is an improvement over previous systems.

t h e global s tack contains the "data part" of goal-statements, i.e. the representa-
tion of binding values which are compound terms. In general, space in the global
stack cannot be reclaimed before backtracking because objects there, like Lisp
list constructions, can survive procedure exits.

backtrack stack \,

local ~ ~ ~ [~ , ~ i i ~ i : : i i ~ i : i i] CGS] [~ X) t r a n s ~ X , y) u s e ~

x Y

Fig. 3. Local and global spaces

A "deterministic return from a procedure" iS such that no choice-point shares the
representation of the procedure body. Indeed, the procedure body cannot be removed
from the stack on exit if a choice-point maintains access to it. This is concretely
detected by the presence of a choice-point above the procedure body in the local
stack. This technique, sometimes called "environment protection" [2], is illustrated

89

on figure 3: consider the search at node t, goals such as analyze(X,~/) gen(W,Y) have
been removed, but not the goals read(X) trans(X,u because the choice-point CP~
maintains access to them.

When a goal is "erased", the local stack abstractly decreases but actual decrea-
sing depends on the concrete representation of goal-statements: in the case of a
goal-copying technique, it really decreases as each goal is erased, but with a simple
structure-sharing technique, see w it decreases at the procedure exit. An enhan-
cement of the management of environments in structure sharing allows environment
trimming [3]. It consists in ordering the variables in a clause so as to allow indivi-
dual removal of each variable from the local, stack as soon as it disappears from goal
statements.

With a local stack, classical tail recursion optimization (TRO) becomes pos-
sible [50] and allows the programming of infinite loops or "perpetual processes"
which do not consume memory space [51].

The WAM [48, 2], which is usually considered as a standard for Prolog imple-
mentations, uses this two-stack organization.

4 C l a s s i c a l p e r i o d : g a r b a g e c o l l e c t i o n

Despite the previous improvement, the global stack, also called the heap, needs to bc
garbage collected. It generally grows indefinitely during a perpetual process, even if
the local stack does not. To complete itg two-stack structure sharing scheme, War-
ren [49] proposes a mark and compact garbage collector for discarding inaccessible
cells from either end of environments 2 in the global stack.

4.1 Blind traversal o f goal-statements

Bruynooghe proposed an improved garbage collection scheme [17]. The proposal
by Bruynooghe is to implement a traversal of the goal-statements found in the
backtrack-stack, following all references without interpretation. However, such a tra-
versal is blind in the sense that it follows references in a Lisp-like manner. This is
conservative but not accurate because it does not respect the usefulness logic of logic
programming systems (it satisfies principle 1, but neither 2 nor 3).

At step f of the example, all the objects in the heap, g(a) and f(a) , are marked
and kept in memory (see figure 4).

4.2 Ignor ing useless bindings, ear ly rese t

To comply with principle 2, "some binding values may become useless", it is neces-
sary to consider the binding status of goal-statements. Several authors have imple-
mented this principle [15, 8, 6, 37, 5, 3, 42]. The condition for applying early reset of
variables is shown in figure 5. It shows that the variables which can be reset are those
that are not seen by a goal statement older than the variable binding. The early reset
technique consists in traversing each choice-point (goal-statement) in the backtrack-
stack from top to bottom while marking traversed objects. Between traversals of

2 they are called frames in his papers

90

backtrack st ac~k .

l ~(~s I[[read(X)trans(X,Y) use(Y~
] il L_ . > . .

hepa ~a)~:i:~:i: / t~iII!I~"~'~:~z~:'~:~ ~ I~!~l!:

Fig. 4. Blind traversal of active goal-statements

consecutive choice-points, say CPn and CPn-1, the trail segment corresponding to
CP , is scanned in a search for trail elements corresponding to unmarked variables.
The unmarked variables are unbound and their trail elements are discarded.

C P . - 1 CP~ - - -

t 1
creation of X substitution of X

time Vi >_ n
CPi does not access X

Fig. 5. Condition for applying early reset

Usually in the WAM, the trail is implemented as a stack, hence a compaction
of the trail is required. With MALI, two other solutions have been implemented.
The first solution is to represent the trail with a list and an element in this list is
simply discarded by the garbage collector. The second solution is to put an extra
field within the variables and to use this field as a link between substituted variables
to represent the trail; in that case the trailing information is automatically discarded
with the discarding of the variable. In usual WAM implementations, some variables
are represented by a slot inside a data structure representing one of the terms in
which the variable occurs. Hence, the last solution presented here is not realistic for
such a representation.

The early reset algorithm is illustrated in figure 6: at step t in the example,
variable X is only accessible from choice-point CP1. It is free in this goal-statement,
hence the space occupied by the binding value, f (a) , can be reclaimed. Note that
term f (a) stands for an arbitrary large structure. As a result, the early reset gain
of is unbounded.

This algorithm is correct because such a variable is not accessible from already
visited goal-statements, since it is not marked, and is not seen as a bound variable

91

backtrack star , , ,

CP1 ~ CGS
" ' ~ I! i read(X) trans(X~Y) use(Y~

heap [il!!l [!}iiii~ilt !!!s.:.:.ii ~!!!~iiiiii!i i ~!~! iii!]
iill iiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiilliii

.-~"

trail ~!i[iI!lliii[i[!flii!l (

Fig. 6. Ignoring useless bindings: early reset

from the remaining goal-statements because they are older than the trail element
(see figure 5). The binding value of such a variable is useless.

4.3 Shun t ing i r revers ibly subs t i t u t ed variables

Variable shunting consists in finding variables which are only seen in their bounded
state, and then replacing pointers to such variables with their binding values. Such
variables are those for which no choice points have been created (or they have been
destroyed by cut operations) between creation time and binding time. There are
several ways of implementing variable shunting.

CPn - 1 CPn

creation of X substitution of X

time age of creation

age of substitution

Fig. 7. Condition for applying variable shunting

First imp lemen ta t i on , t ime-s tamping : Let the age of a variable be the serial
number of the choice-point just created after that variable. For systems in which
the location of objects in memory respects the order of creation, the age of the
variable can be directly deduced from its location; otherwise, it has to be explicitly
memorized as a field in the variable.

92

In terms of age, variable shunting can be applied when the age of the variable
is the same as the age of its substitution 3, as illustrated on figure 7 where both
the creation of variable X and its substitution are time-stamped n. With a top-to-
bottom traversal of goal-statements of the backtrack-stack, the algorithm works in
two non-consecutive steps:

1. While scanning the trail segment corresponding to a choice-point CPn, for any
trail element concerning a variable of age n, the variable is made recognizable
with a special tag called shunted and the trail element is taken out from the
trail. Such a variable is not accessible in its free state and can be shunted.

2. When encountering a reference to a bound variable which has been tagged shun-
ted, this reference is replaced by the binding value of the variable.

This algorithm which we call time-slamping has been implemented in [6, 10], two
versions of MALI used in PrologII/MALI run-time system [28]. Variable shunting has
also been implemented in SICStus Prolog [19], see [41] where benchmarks showing
the usefulness of the approach are presented.

Second imp lemen ta t ion , v i r tua l saving: The general technique consists in tra-
versing goal-statements in the backtrack-stack from bottom to top (the opposite of
the previous traversM) and marking traversed objects. We call this technique vir-
tual saving because it proceeds as if it were recreating the backtrack-stack. Virtual
saving has been implemented in [38] a version of MALI used in AProlog run-time
system [14].

To avoid traversing irrelevant binding values, the traversal (and marking) does
not go through bound (non-shunted, see later) variables. As for the top-to-bottom
traversal, a treatment is applied to the trail, between the traversals of two consecutive
choice-points. The treatment used in the bottom-to-top traversal can be expressed
as follows: let CP,_I and CP, be two consecutive choice-points, all choice-points
up to n - 1 have been marked; then two operations (sub-traitements) are performed
onto the trail segment corresponding to CP~.

In the first sub-treatement, the segment is scanned in a search for trail elements
corresponding to unmarked variables; such variables are tagged "shunted" but not
marked; their substitutions are untrailed.

Then, in the second sub-treatement, the binding value of every remaining trail
element is traversed and marked. The binding values of shuntable variables do not
need to be marked at that time. If necessary, they will be marked later while encoun-
tering shunted variables. While marking the binding values, some bound variables
can, in turn, be met. Their bindings should not be followed. Either, it is a substitu-
tion relevant to that trail segment; hence, it will be marked by this second pass. Or,
it is a substitution relevant to a trail segment not yet visited; therefore, to respect
usefulness logic one must not follow the binding value.

So as to completely comply with principle 3 of usefulness logic, the two sub-
treatements should be done sequentially, in the present order.

z The age of a substitution is the seriM number of the choice-point just created after that
substitution

93

As with the previous technique, every occurrence of a reference to a shunted
variable is later replaced with the corresponding binding value.

This algorithm is correct because a trail element concerning an unmarked va-
riable relates to a variable which was not seen as a free variable by previously tra-
versed choice-points. In w it is shown that a top to bottom traversal followed by
a bottom-to-top traversal of the backtrack-stack achieves early reset and variable
shunting.

N o t all s u b s t i t u t i o n s a re t r a i l ed : In most implementations, substitutions are
recorded in the trail only if the variable is older than the last choice-point. If the
substitution is not recorded in the trail, the variable is directly marked shunted when
it is substituted.

A b o u t t h e i n t e r e s t o f var iab le shun t ing : What variable shunting saves is only
the representation of the variables. Hence, the gain is a constant amount if the
representation of a variable has a constant size. However, as logical variables become
more complex (types, constraints) their representation may become arbitrarily large
(see w and the gain becomes more substantial.

Note that in most implementations of the WAM, a variable is usually represented
by a slot in one of the structures in which it occurs. Therefore, in many cases the
variable does not occupy any proper space, so that variable shunting may recover
nothing. However, Sahlin showed in [40] that one can construct a program where
variable shunting reclaims space in a WAM implementation. Another advantage
with variable shunting is that it makes accesses to subsequent binding values more
direct.

However, it is better not to be dependent on the "embodied-slot" trick because:

- some variables 4 need a proper representation,
- it does not work for complex variables,
- it complicates memory management.

For all these reasons some implementations may not use the trick.

5 R e n a i s s a n c e : i m p l e m e n t i n g P r o l o g e x t e n s i o n s

The development of extensions to Prolog started very early with PrologII [46] d i f / 2
and f reeze/2 predefined predicates. The implementation of these two extensions has
often been studied [12, 18]. Recent well-known extensions towards constraints pro-
gramming can be found in PrologIII [22] and CHIP [24]. Another recent extension,
~Prolog, introduces ~terms and their higher-order unification procedure. With these
recent developments, new low-level mechanisms have been introduced to implement
usefulness logic. Two requirements can be recognized:

1. suspending goals and awakening them on variable bindings;
2. rewriting terms.

they are called unsafe variables in the WAM terminology

94

Two solutions have been proposed for implementing these mechanisms. The first
solution consists in using a new binary structure which is an extension of the already
known variable, the attributed variable, c.f. w The second solution consists in
keeping the variable as is, while allowing multiple reversible substitutions thereof.
The mechanism is usually implemented using a so-called value trail, c.f. w

5.1 A t t r i b u t e d var iab les

In order to implement extensions to Prolog, a new type of variable has been in-
troduced; we call it atfributed variables, as in [29]. It has also been called closures
in [5] or suspensions in [18]. In these systems, attributed variables have been used
to implement delay and constraint extensions into Prolog. An attributed variable is
like a variable with an extra term attached to it, its attribute. Attributed variables
have been generalized in [38] under the name of mutable terms (in short muterms). A
Prolog level variant, called meta-structure, has also been proposed in [36] to provide
a Prolog system with a user-extendible unification procedure.

From the point-of-view of memory management, the property of this binary
structure is that the attribute is only accessible when the variable is free. This
property must be used to improve the completeness of the garbage collector. The
idea is to force the garbage collector to treat this structure as a normal variable.
In this way, it straightforwardly reclaims the space occupied by the attribute when
the attributed variable is shunted. Here the gain obtained with variable shunting
becomes very important because attributes can be terms of any complexity.

Attributed variables, or their extensions, provide easily a reversible 5 term re-
writing mechanism. For example, they have been used to implement ;~terms in
AProlog [14] 6. With this method, histories of flreductions are automatically recorded
in the trail through substitutions of attributed variables. For some reasons, essen-
tially because of cut operations, the reversibility of rewriting may become useless.
In that case, variable shunting automatically simplifies the representation of terms
by discarding non-flreduced versions of terms.

With this method one can simulate multiple reversible assignments by creating
a new attributed variable each time a new value has to be assigned.

5.2 M a n a g e m e n t o f gene ra l a f f ec t a t i on o f var iab les

An alternative solution to attributed variables, is to allow direct multiple reversible
affectations of the same variable. This solution has been implemented by Toura'i-
vane [43] for PrologIII, a Prolog with constraints. It has also been used, under the
name value trail, and multi-value trail, in CHIP [1], another constraint logic pro-
gramming language, from ECRC.

Each time a variable is modified, its previous value is saved in the trail. Roots
of accesses to useful objects are: primary accesses which come from the active goal-
statements in the backtrack-stack and secondary accesses which come from values
saved in some trail elements.

5 undone upon backtracking
6 In fact, for this application, muterms have used

95

As stated by the usefulness logic, some trail elements are useless (i.e. they must
not be considered as secondary accesses). The following mechanisms are meant to
implement a cleaning of the trail to fulfill principles 2 and 3 of the usefulness logic
in the context of value trails.

X X

heap

c5
trail

Fig. 8. Cleaning the trail

To specify which trail elements are useless, we use the already defined notion of
age (w In the example of figure 8, the age of the variable x is i - 1 and the ages of
trail elements v2 and v3 are both i + 1. There are two kinds of useless trail elements:

- those having the same age as the variable, for example v0; when backtracking,
they restore a value to a variable which disappears immediately. This is a case
of variable shunting.

- those for which there exists an older trail element with the same age for the
variable, for example v3; they are useless because they restore a value which is
immediately overwritten.

The overall algorithm consists in a "cleaning of the trail", to implement variable
shunting, followed by a marking phase, to implement early reset, followed by a
compaction of the stacks.

C l e a n i n g t h e t ra i l : The cleaning of the trail discards useless trail elements: this is
done by scanning the trail from bot tom to top and reversing pointers. Pointers are
reversed to give access from the variables to the list of their values. See figure 8, at
this stage there are only two trail elements in the trail.

T h e m a r k i n g : Marking proceeds from primary accesses found in choice-points and
secondary accesses found in the trail, in decreasing order of ages. As usual, to im-
plement usefulness logic, each traversal is done according to an age; in the example

96

. (traversed according to age i
X~- ~

I I N li!il
[__ j>i

X

Fig. 9. Useless value of variable: early restoration

of figure 8, the value of x at age i - 1 is vl and its value at age i is v2. When traver-
sing a variable according to age i, let j be the age of the most recent trail element
concerning this variable 7.

- if j < i: the more recent value v of the variable is visible according to age i,
so the value and all trail elements of the list are useful. Value v is immediately
traversed according to age i and all trail elements of the list are marked.

- if j > i: the more recent value of the variable is a useless value (v4 in figure 9).
The actual vMue of the variable according to age i is the previous value v2
saved in the trail. This value v2 is immediately restored and traversed according
to age i and all trail elements of the list, except for the last one, are marked.
This operation, called "early restoration", corresponds to "early reset" in this
implementation.

When traversing the trail section of age i, unmarked trail elements are discarded
and values contained in marked trail elements are traversed under age i - 1.

6 Different kinds of garbage collectors

Now that we have seen the requirements of memory management in the context of
logic programming, we will discuss the implementation of garbage collectors in this
context. At this level, classical traversal techniques which have been developed for
functional programming can be borrowed:

- copying garbage collectors [26, 20], Which are known to be simple and extensible
towards real-time garbage collectors [4],

- mark and compact garbage collectors, usually a variant of the Morris algo-
r i thm [34]; regarding logic programming: the most interesting property of these
garbage collectors is that they preserve the order of object locations. This makes

remember that pointers in the trail have been reversed, so trail elements concerning a
variable are easily found

97

the computation of the age of objects easy, and also allows instant reclaiming
upon backtracking.

6.1 Copying versus m a r k and compact garbage-col lectors

It is commendable to cause removal of elements from the search-stack to bring about
an immediate recovery of memory. This is very cost-effective because an unbounded
amount of memory can be recovered at a constant cost.

A frequent claim among implementors is that backtracking is incompatible
with copying garbage-collectors. The reason that is given is that copying garbage-
collectors usually move objects regardless of the structure of the backtrack-stack.
Hence, instant reclaiming becomes impossible. This is why most existing implemen-
tations use mark and compact methods [5, 3, 42].

Assume, n is the number of non-garbage cells. The cost of a copy garbage collector
is usually proportional to n. The cost of the compaction phase of mark and compact
algorithm is generally proportional to the total amount of memory, i.e. the sum
garbage and non-garbage. Sahlin proposes in [40] an improvement of the algorithm
in [3] which makes it proportional to nlogn.

In the following, we describe how a copying technique, applied individually to
each active goal-statement, can be combined to allow instant reclaiming.

Copying f rom the newest to the oldest choice-point: Copying from the ne-
west to the oldest choice-point implements naturally early reset, w With the
top-to-bottom copy garbage collector, variable shunting can be implemented at the
extra expense of a new field within variables containing a time-stamp, see 4.3. Ho-
wever, the top-to-bottom copy places an object close to the most recent choice-point
that uses it. This does not allow instant reclaiming because the same object may be
used by older segments, see figure 10.

Fig. 10. Top to bottom copy collector modifies location order

Copying f rom the oldest to the newest choice-point: Applying a copying
garbage-collector from the oldest to the newest choice-point preserves a sufficient
amount of the creation order to implement instant reclaiming. This is the method

98

already mentioned as "virtual saving", see w Virtual saving is compatible with
instant reclaiming because an object and the oldest choice-point that uses the object
are placed in the same memory segment.

The drawback of the bottom-to-top copy method is that it does not help in
implementing early reset of variables.

Combin ing bo t t om- to - t op and t o p - t o - b o t t o m copies: The three desired be-
haviors can be obtained with a sequential combination of two copies:

- top-to-bottom copy to implement early-reset;
- then bottom-to-top copy to implement variable shunting and to allow instant

reclaiming.

Both copies have a time complexity which is linear with respect to the number of
useful cells. It is important to terminate the sequence with the bottom-to-top copy
as it is the one which allows instant reclaiming.

A cheap but incomplete garbage collector is offered by the bottom-to-top
copy alone. Both versions, the cheap one and the complete one, are offered in
MALIv06 [38].

6.2 Segmented garbage collection for Prolog

Segmented garbage collection, a kind of generation garbage collection [45, 33, 30],
adapted to Prolog, was first proposed by Pittomsvils, Bruynooghe and Willems [37].
These ideas have been developed and implemented by some authors [5, 3, 43]. The
main idea for Prolog is well summarized by Appleby & all in [3]:

When a choice-point is created, all structures in the heap that are not gar-
bage will remain non-garbage until the choice-point is removed upon back-
tracking.

The main idea is to segment memory into two parts: an old segment and a
new segment. The two segments are delimited by some choice-point CPcc. Memory
space is reclaimed in the new segment only. All objects in the old segment are useful.
As usual, when references are created from the old segment to the new one, these
references have to be considered as accesses. By chance, a Prolog run-time system
records such reference creations in the trail, and the collector simply has to scan the
trail to find them.

One drawback in relating the generational behavior of the collector to the search-
stack is that the write boundary of the generational collector may be left (by the
interpreting system) in such a state that the old segment is empty (or almost empty).
For example, deterministic programs would never be in a position to benefit from the
advantages of generation collection. A solution is to create artificial choice-points.
This amounts to the use of the trail exclusively as a write boundary.

99

Ear ly rese t and s egmen ted co l l ec to r s -We can distinguish two strategies
concerning the "early reset":

- the first strategy considers that all references from the old segment are useful [3].
This leads to an incomplete (conservative) garbage collection: the collector does
not traverse structures in the old segment, but early reset is not applied on
variables in the old segment.

- the second strategy traverses structures in the old segment in order to be able to
correctly perform early reset. This seems to retain the advantages of generation
garbage collection. However, in the case of a compacting collector, it saves the
compacting of the old segment [43].

7 Conclusion

We have described the usefulness logic of run-time objects in logic programming lan-
guage implementations. The usefulness logic of Prolog and its extensions highlights
three points, which are:

1. only active choice-points are roots of useful terms;
2. some binding values may become useless, allowing early reset;
3. some variables may become irreversibly substituted, allowing variable shunting.

Complying with the third principle is particularily cost efficient for the imple-
mentation of extended Prolog systems. In AProlog, for example, it participates in
cleaning useless versions of non-flreduced terms. In PrologIII and CHIP, it partici-
pates in cleaning the representation of constraints. In both cases, it automatically
throws away versions that are useless for representing choice-points.

Modern logic programming systems implement the three points using two stra-
tegies related to the priority given to memory management and to the design of an
abstract intermediate machine.

The first strategy is to enhance the implementation of an abstract machine al-
ready designed for some dialect of Prolog and to implement the usefulness logic for
the data-structures of the preexisting machine. The main target of this strategy is
the WAM.

The second strategy is to design a minimal package that implements the use-
fulness logic for some general data-structures, regarless of of any Prolog dialect.
The package can then be used for designing an abstract intermediate machine. An
example of this strategy is MALI.

The first strategy should be chosen for immediate efficiency of well-known Pro-
log dialects (say Standard Prolog). The second strategy is advantageously used for
complex and/or experimental logic programming systems.

Usefulness logic is a difficult concept to formalize. It is basically an abstraction
of an operational semantics for a programming language, which maps every object
of implementation in the domain {useful,not-useful}. Moreover, it requires that the
operational semantics should not betray the reality of memory usage: in Prolog, for
instance, it must describe the OR-sharing mechanism.

I00

This concept is seldom exhibited because it is trivial and implicit in memory ma-
nagement for functional languages, and it is a concept which has currently only few
examples. We can connect the notion of usefulness logic to the solution that Wadler
proposes to fix some space leaks problems [47]. He modifies a garbage collector so
that it replaces every occurrence of (c a r (cons x y)) (resp. (cd r (c o n s x y))) by
x (resp. y). This means that the garbage collector is given a more intimate knowledge
of the semantics of the language s than the ordinary box model. So, what Wadler
proposes is in fact a new usefulness logic for non-strict functional programming. It is
important to restrict the scope of the new usefulness logic to non-strict semantics be-
cause otherwise the equalities (c a r (cons x y)) = x and (cd r (cons x y)) = y
are false (e.g. (c a r (cons x BOTTOM)) = BOTTOH in a strict semantics). This illus-
trates the connection between a usefulness logic and a semantics. The usefulness logic
should be faithful to the semantics, but the semantics must be operational enough
to express that x has always a smaller representation than (c a r (cons x y)) .

8 Acknowledgements

This survey paper has greatly benefited from comments by Maurice Bruynooghe and
Dan Sahlin.

R e f e r e n c e s

1. A. Aggoun and N. Beldiceanu. Time stamps techniques for the trailed data in cons-
tralnt logic programming systems. In Sdminaire de Programmation Logique de Trdgas-
tel, pages 487-509, CNET, Framce, 1990.

2. H. A~t-Kaci. The WAM: A (Real) Tutorial. Technical Report 5, DEC Paris Research
Laboratory, 1990. Revised in Warren's Abstract Machine: A Tutorial Reconstruction,
MIT Press, 1991.

3. K. Appleby, M. Caxlsson, S. ttaridi, and D. Sahhn. Garbage collection for Prolog based
on the WAM. CACM, 31(6), 1988.

4. H.G. Baker. List-processing in real-time on a serial compater. CACM, 21(4):280-294,
1978.

5. J. Barklund. A Garbage Collection Algorithm for Tricia. Technical Report 37B, UP-
MAIL, Uppsala University, 1987.

6. Y. Bekkers, B. Caner, O. Ridoux, and L. Ungaro. MALI: a memory with a real-time
garbage collector for implementing logic programming languages. In 3rd Syrup. Logic
Programming, IEEE, 1986.

7. Y. Bekkers, B. Canet, O. Ridoux, and L. Ungaro. A memory management machine
for Prolog. In Informatique-85, Symposium Sovidto-.Franqais, pages 111-117, Tallin,
1985.

8. Y. Bekkers, B. Canet, O. Ridoux~ and L. Ungaro. A memory management machine
for Prolog interpreters. In S-~. T~rnlund, editor, 2nd Int. Conf. Logic Programming,
pages 343-351, Uppsala University~ 1984.

9. Y. Bekkers, B. Caner, O. Ridoux, and L. Ungaro. A short note on garbage collection
in Prolog interpreters. Logic Programming Newsletter, (5), 1983.

s Note that ordinary functional garbage collectors do not h~ve this knowledge.

101

10. Y. Bekkers and L. Ungaro. Implementing parallel garbage collector for Prolog. In A.
Voronkov, editor, Russian Conf. Logic Programming, Leningrad, 1991. LNCS 592.

11. D.J. Bevan. Distributed garbage collection using reference counting. In PARLe,
pages 176-187, 1987.

12. P. Boizumault. A general model to implement dif and freeze. In E. Shapiro, editor,
3rd Int. Conf. Logic Programming, London, 1986. LNCS 225.

13. R.S. Bayer and J.S. Moore. The sharing of structure in theorem-proving programs. In
B. Meltzer and D. Mitchie, editors, Machine Intelligence, pages 101-116, Edinburgh
University Press, 1972.

14. P. Brisset. Compilation de)~Prolog. Th~se, Universit6 de Rennes I, 1992.
15. M. Bruynooghe. Garbage collection in Prolog implementations. In J.A. Campbell,

editor, Implementations of Prolog, pages 259-267, Ellis Horwood, 1984.
16. M. Bruynooghe. The memory management of Prolog implementations. In Logic Pro-

gramming Workshop, Debrecen, Hungary, 1980. Revised in S-~. Ts and K.L.
Clark (editors), Logic Programming, pages 83-98, Academic Press, 1982.

17. M. Bruynooghe. A note on garbage collection in Prolog interpreters. In 1st Int. Conf.
Logic Programming, 1982.

18. M. Carlsson. Freeze, indexing and other implementation issues in the WAM. In J.L.
Lassez, editor, $th Int. Conf. Logic Programming, pages 40-58, MIT Press, Melbourne,
1987.

19. M. Carlsson and J. Widen. SICStus Prolog User's Manual. Research Re-
port SICS/R88007C, SICS, 1988.

20. C.J. Cheney. A nonrecursive list compacting algorithm. CACM, 13(11):677-678, 1970.
21. A. Ciepielewsld and S. ttaridi. Storage Models for Or-Parallel Execution of Logic

Programs. Technical Report Report TRITA-CS-8301, Royal Institute of Technology,
Stockholm, 1983.

22. A. Colmerauer. Opening the Prolog III universe. Byte Magazine, 12(9), 1987. Special
Issue on Logic Programming.

23. J. Crarnmond. A garbage collection algorithm for shared memory parallel processors.
Int. J. on Parallel Processing, 17(6):497-522, 1988.

24. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. The constraint
logic programming language CHIP. In Int. Conf. on Fifth Generation Computer Sys-
tems, pages 693-702, Tokyo, 1988.

25. M. Dorochevsky, K. Schuerman, A. V6ron, and J. Xu. Constraint handling, garbage
collection and execution model issues in ElipSys. In A. Beaumont and G. Gupta, edi-
tors, ICLP'91 Workshop on Parallel Execution of Logic Programs, pages 17-28, 1991.

26. R.R. Fenichel and J.C. Yochelson. A LISP garbage-collector for virtual-memory com-
puter systems. CACM, 12(11):611-612, 1969.

27. A. Goto, Y. Kimura, T. Nakagawa, and T. Chikayanla. Lazy reference counting: an
incremental garbage collection method for parallel inference machines. In 5th Int. Conf.
and Syrup. on Logic Programming, pages 1241-1256, 1988.

28. S. Le Hnitouze. Mise en oeuvre de PrologII/MALL Th&se, Universit6 de Rennes I,
1988.

29. S. Le Huitouze. A new data structure for implementing extensions to Prolog. In P.
Deransart and J. Matuszyliski, editors, Int. Work. Programming Languages Implemen-
tation and Logic Programming, 1990. LNCS 456.

30. H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of
objects. CACM, 26(6):419-429, 1983.

31. T.G. Lindholm and R.A. O'Keefe. Efficient implementation of a defensible semantics
for dynamic Prolog code. In .$th Int. Conf. Logic Programming, MIT Press, Melbourne,
Australia, 1987.

102

32. C.S. MeUish. An alternative to structure-sharing in the implementation of a Prolog
interpreter. In Work. Logic Programming, Debrecen, Hungary, 1980.

33. D. Moon. Garbage collection in a large Lisp system. In ACM Con]. Lisp and Functional
Programming, 1990.

34. F.L. Morris. A time and space efficient garbage compaction algorithm. CACM,
21(8):662-665, 1978.

35. G. Nadathur and D. Miller. An overview of)~Prolog. In K. Bowen and R. Kowalski,
editors, Syrup. Logic Programming, pages 810-827, 1988.

36. U. Neumerkel. Extensible unification by metastructures. In Meta-Programming in
Logic Programming, pages 352-363, Leuven, Belgium, 1990.

37. E. Pittomvils, M. Bruynooghe, and Y.D. Wlllems. Towards a real-time garbage collec-
tor for Prolog. In 2nd Syrup. Logic Programming, IEEE, 1985.

38. O. Ridoux. MALIv06: Tutorial and Reference Manual. Publication Interne 611, IRISA,
1991.

39. P. Roussel. Prolog : manuel de rdfdrence et d'utilisation. Technical Report, G.I.A.
Universit~ Aix-Marseille, 1975.

40. D. Sahlin. Making Garbage Collection Independent of the Amount of Garbage. Re-
search Report SICS/R-87/87008, SICS, 1987.

41. D. Sahlin and M. Carlsson. Variable Shunting for the WAM. Research Report SICS/R-
91/9107, SICS, 1991.

42. J. Schimpf. Garbage collection for Prolog based on twin cells. In 2nd NACLP Work-
shop on Logic Programming Architectures and Implementations, MIT Press, 1990.

43. Touraivane. La rdcupdration de mdmoire dans les machines non d~terministes. Th~se,
Universit~ d'Aix-Marseille, 1988.

44. K. Ueda and M. Morita. A new implementation technique for fiat GHC. In D.H.D.
Warren and P. Szeredi, editors, 7th Int. Conf. Logic Programming, pages 3-17, MIT
Press, Jerusalem, 1990.

45. D. Ungar. Generation scavenging: a non-disruptive high performa~ace storage reclama-
tion algorithm. SIGPLAN Notices, (ACM), 19(5):157-167, 1984.

46. M. Van Caneghem. L'anatomie de PrologII. Th~se de doctorat d'&at, Universit6
d'Aix-Marseille, 1984. Also in L'anatomie de PrologII, Intert~dition, Paris, 1986.

47. P.L. Waxiler. Fixing some space leaks with a garbage collector. Software -- Practice
and Experience, 17(9):595-608, 1987.

48. D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI Interna-
tional, 1983.

49. D.H.D. Warren. Implementing Prolog - - Compiling Logic Programs, Vol. 1 and 2.
D.A.I. Research Report 39, 40, University of Edinburgh, 1977.

50. D.H.D. Warren. An improved Prolog implementation which optimises tail-recursion.
In Work. Logic Programming, Debrecen, Hungary, 1980.

51. D.H.D. Warren. Perpetual processes - - an unexploited Prolog technique. Logic Pro-
gramming Newsletter, (3), 1982.

52. D.S. Warren. Efficient Prolog memory management for flexible control strategies. In
1984 Int. Syrup. Logic Programming, IEEE Computer Society Press, Atlantic City, N J,
1984.

53. P. Weemeeuw and B. Demoen. A la recherche de la m~moire perdue, or: memory
compaction for shared memory multiprocessors--design and specification. In S. De-
bray and M. Hermenegildo, editors, 2nd North American Conf. on Logic Programming,
pages 306-320, 1990.

This article was processed using the I_$TEX macro package with LLNCS style

Comprehens ive and Robust Garbage Collection
in a Distr ibuted System

Niels Christian Juul & Eric Jul

DIKU, Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK 2100 Copenhagen O, Denmark

Phone: +45 35 32 18 18 Fax: +45 35 32 14 01 E-mail: {ncjuulleric}@diku.dk

Abs t rac t . The overall goal of the Emerald garbage collection scheme is to provide
an efficient "on-the-fly" garbage collection in a distributed object-based system
that collects all garbage, and that is robust to partial failures.
The first goal is to collect all garbage in the entire distributed system; we say
that the collection is comprehensive in contrast to conservative collectors that
only collect most garbage. Comprehensiveness is achieved by employing a system-
wide mark-and-sweep collection based on concurrently running collectors, one on
each node.
The second goal of our collector is to be robust to partial failures. When facing
node failures the collector will progress in the available parts of the system and,
when necessary, wait for temporarily unavailable nodes to become available again.
The scheme is being implemented on a network of VAXstations at DIKU. The full
scheme employs two concurrent mark-and-sweep collectors on each node in the
distributed system, one for comprehensiveness, one for expediency. Concurrency
is achieved by using an object protection and faulting mechanism.

Keywords : Garbage collection [mark-and-sweep, faulting, comprehensive], Dis-
tributed systems [distributed control, termination detection, fault-tolerance], Con-
currency, Object-oriented systems, Robustness, Emerald, Algorithm.

1 I n t r o d u c t i o n

The first goal of our distributed garbage collection scheme is to collect all garbage in a
entire distributed system. We have introduce the term comprehensive collection to denote
such schemes. In contrast, partial or conservative collection is a priori non-comprehensive.
In general, the garbage collection problem can be formulated as a graph problem, where
the vertices in the graph are objects and each directed arc represents a reference from
one object to another. In contrast to a more conservative collection, a comprehensive
collection essentially needs to perform a system-wide traversal of the graph in order to
identify which objects are still in use and which are garbage. We attain a comprehensive
collection by combining a basic mark-and-sweep collection scheme with mechanisms for
concurrency and distribution.

Unfortunately, any comprehensive collector in a distributed system will, due to large
network overheads, have problems collecting garbage fast enough to keep up with new
object allocations. Thus, it is necessary to supplement our collector with an expedient,
but conservative collector. In this paper, we concentrate on the issues relating to com-
prehensive collection.

104

The second primary goal is robustness to partial failures. In large distributed systems,
the probability of failures becomes significant. Thus, we cannot expect the entire system
to be available concurrently long enough to complete a comprehensive collection. This
l~as lead us to investigate robust garbage collectors. A robust garbage collection scheme
must cope with both short and long term unavailable parts of the system--partly by
adapting its behavior to the situation, and partly by compromising on its goals.

While still being comprehensive, the collector must be able to survive during tempo-
rary unavailability. The collector must progress in the available parts of the system and
wait for the needed, but unavailable, parts to become available again.

When more permanently unavailable parts block the comprehensive collection, both
robustness and expediency demand that garbage is collected in the available parts. This
may be achieved by another collector that collects garbage in the available parts of
the system only. Such a collection cannot be comprehensive as long as the "liveness"
of references from unavailable parts is unknown. Based on a conservative estimate of
root objects, taking objects potential reachable from unavailable parts into account, this
supplementary collector may collect garbage in the available part of the system. By careful
selection of the additional root objects, this collection may be nearly comprehensive in
the available parts of the system.

The full garbage collection scheme, which is based on at least two collectors on each
node, must also reduce the latency introduced into applications. Thus, each collector
works concurrently with other processes. The necessary synchronization constraints in-
troduced by this concurrency are achieved by protecting objects, that have not been
traversed by the collector, from being mutated by other processes.

Our approach has been to implement such a collection scheme for the Emerald Lan-
guage [Hutchinson 87b, Raj 91]. Emerald is a distributed, object-based systera [Black 86,
Black 87, 3ul 88b], based on a compiler generating native machine code [Hutchinson 87a]
and a run-time system [Jul 88a], designed to take advantage of run-time garbage collec-
tion.

The objects handled by the run-time system in Emerald may be migrated between the
nodes of the distributed system. Immutable objects may be replicated instead of moved;
the replicas will always have consistent states because their state does not change. To
survive node crashes, any object may checkpoint its current state to other nodes and/or
stable storage. A checkpoint is a passive copy, from which an object may be recovered,
if the real object has been lost during a node failure. Emerald is based on reliable inter-
node communication, thus only nodes may fail. In our model, nodes are autonomous and
have failed-stop semantics.

In summary, the Emerald garbage collection scheme does a comprehensive and con-
current collection of all garbage in the distributed system, while being robust to node
failures. The full scheme employs two faulting, mark-and-sweep collectors on each node
in the distributed system.

Before presenting our comprehensive and robust solution to the distributed garbage
collection problem in details, the goals of distributed garbage collection are described
(Sect. 2). Based on these, an overview of recently and related work on distributed garbage
collection is given (Sect. 3), followed by a sketch of the basic Emerald garbage collection
scheme (Sect. 4).

The Emerald solution is detailed in the following sections. First (Sect. 5), we discuss

105

comprehensive garbage detection in a failure-free distributed system, and next (Sect. 6),
the expedient collection of local garbage is discussed. Then robustness to failures is added,
using distributed control and a distributed termination detection algorithm (Sect. 7).
Sect. 8 gives some remarks on storage reclamation, and finally, we summaries our contri-
bution (Sect. 9).

2 G o a l s in D i s t r i b u t e d G a r b a g e C o l l e c t i o n

Distributed garbage collection is not only faced with the traditional problems of garbage
collection, the very nature of distribution poses further challenges, specifically, robust-
ness to partial failures is a goal that impacts all other goals. We identify the following
general goals in garbage collection schemes. The consequences, when taking robustness
into consideration, are described in the rightmost column:

Genera l goals R o b u s t n e s s cons idera t ions

Compre-
hensiveness

All garbage is collected, e.g., no
memory leakage.

Continually adapting to the current
available parts, while waiting for
unavailable parts to become avail-
able again as necessary.

C o ncu r r ency The collector and mutators run Mutators must not be blocked by a
concurrently on all nodes, collector due to unavailable parts.

Exped iency Delivery of garbage for recycling
in a speed comparable to the
speed of new allocation requests.

Collection must complete despite
unavailable parts.

Efficiency Limited overhead per byte of
storage collected introduced by
each step and the total number
of steps needed.

Failures and their circumvention
must be handled efficiently. Addi-
tional overhead due to robustness
must be limited and mainly paid
when failures are present.

Cor rec tness Only garbage must be collected,
e.g., no dangling references.

References to unavailable parts
and references in checkpointed files
must remain valid.

An ideal scheme would fulfill all of these goals; unfortunately, this is not possible in
general. A comprehensive collection depends on all nodes in the distributed system, thus,
the mere presence of communication delays in distributed garbage collection often rules
out the possibility of fulfilling the goals of comprehensiveness and expedience by a single
collector. Thus, a trade-off between comprehensiveness and expediency is necessary.

By trading off comprehensiveness, we achieve a partial collection, i.e., only part of
the garbage is collected. Figure 1 describes the various degrees of partial collection, from
collection of nothing, to collection of all garbage, with a broad variety of conservative
collectors, which are able to collect only part of the garbage, in between. From the most

106

N o n e . P a r t i a l . A l l

I , I I I
No Conservative Node-local Node-group Comprehensive
collection collection collection collection collection

Fig. 1. The degree of partial garbage collection

conservative collectors like Boehm-Weiser [Boehm 88] and Mostly-Copying [Bartlett 88]
to comprehensive collectors like the ones implemented for POOL [Augusteijn 87] and
Emerald [Juul 92]. In between, we find collectors based on smaller or larger parts of
the system with conservative estimates of references from other parts. In distributed
systems these may span from one node, over groups of nodes, to nearly all nodes. As
a supplementary, expedient collector Emerald employs such a node-local collector on
each node. The Galileo and SOR projects are examples of such node-group collectors
[Mancini 91, Shapiro 90]. Also [Lang 92] describes distributed collection schemes, which
eventually reclaims all inaccessible objects. The partitioning and grouping techniques
in the distributed environment, has many similarities to non-distributed techniques like
area collection and the partitioning used by generational scavenging.

3 R e l a t e d W o r k

Distributed systems like POOL [Augusteijn 87, Beemster 90], Galileo [Mancini 91], Ar-
gus [Liskov 86], and those implemented in the SOR project [Shapiro 90, Shapiro 91] all
employ garbage collection. These distributed garbage collectors fulfill most of the previ-
ous mentioned goals. They do, however, compromise on various aspects of the goals to
be able to achieve some of the others.

In general, the non-comprehensive collectors are able to collect more efficiently, while
being both expedient and robust to node-failures. The solution described by Shapiro to
be implemented in project SOR is robust but may fail to collect all garbage, instead,
it has the potential for being expedient. Lang, Queinnec, and Piquet further refine the
scheme based on independent node collectors to cooperate for various groups of nodes.
The scheme is expected [Lung 92] to be comprehensive under the assumption that each
distributed (interconnected) graph of garbage objects is contained in a group of nodes,
which do not fail during the collection of the group, i.e., failures during the collection are
not tolerated.

The collector for Galileo is implemented as a global stop-and-copy collection of objects
on stable storage. If nodes become unavailable a fault-tolerant adaption enables a non-
comprehensive collection to complete. The scheme may limit the collection to a subset
of nodes and thus only blocking mutators on those nodes. A comprehensive collection is,
however, not guaranteed.

A comprehensive collection is often more costly and assumes a simple failure model
or no failure at all. The collection scheme for the POOL system' is based on global
synchronization of node-local mark-and-sweep collectors, and to be comprehensive it
depends on complete node availability. The garbage collector for POOL, as described in
[Augusteijn 87], does not cope with failures in the distributed system.

107

The idea of node-locM collectors that cooperate has also been used by Liskov and
Ladin in Argus. The cooperation is made possible by introducing a logically centralized,
but physically replicated, highly available service for cross-node references. Any such
reference is registered at the service, which also does cross-node garbage cycle detection.
The service is based on synchronized local clocks and bounded delays of cross-node
message exchanges.

4 T h e E m e r a l d G a r b a g e C o l l e c t i o n S c h e m e

Based on the ideas in [Jul 87, Jul 88a, Jul 88b], [Juul 92] describes the design and im-
plementation of a garbage collection scheme for the distributed, object-based system,
Emerald, which fulfills all the goals listed in Sect. 2. The solution Combines the compre-
hensiveness of mark-and-sweep collection with distribution and concurrency. The primary
methods to achieve concurrency and robustness are distributed control, object protection
and faulting, and the use of more than one collector concurrently.

Robustness to partial failures in a distributed system can be achieved when all parts
work independently. Still cooperation is needed, but distributed control makes partial
failures less threatening to the system. Robustness to partial-failures in distributed sys-
tems has lead us to implement our garbage collector without using centralized control.

4.1 The Basic Mark-and-sweep Algorithm

Our basic algorithm is based on a concurrent variant of mark-and-sweep garbage col-
lection. The mark-phase is done concurrently with user processes running by protecting
non-marked objects from being used by the running processes with a garbage collection
fault mechanism similar to a page-fault mechanism in a virtual memory system [Appel 88,
Appel 91]. In Emerald such a protection and faulting mechanism is already available in
the implementation of remote invocation. Thus, the utilization of the mechanism by the
garbage collector is nearly free.

The mark-phase of our basic algorithm uses the traditional three color settings: white,
gray, black. Objects are marked either white (potentially garbage), gray (alive with ref-
erences under consideration), or black (alive with references considered). Furthermore, a
root set of objects is given, i.e., the active processes and the "always present" objects.

The mutators may run without problems in the black objects and the algorithm
assures that mutators execute in black objects only. They may reference other black or
gray objects, but the gray objects are protected. Thus, a mutator, which tries to use a
gray object, will be suspended while a fault handler marks it black and traverses it to
ensure that the objects, it references, are marked and protected. This way mutators are
only faced with black objects. When the collection is started, all objects are white, and
all mutators are stopped. Before each mutator is resumed, it is marked black, and its
references is marked at least gray. The mark-phase is finished when all gray objects have
been traversed and marked black, i.e., when the gray set is empty.

4.2 The Garbage Collection Invariants

The following invariants form the basis of our garbage collection algorithm. A detailed
description of the basic algorithm and its implementation is found in [Juul 92]. The

108

general assumption is that garbage stays garbage. The collection scheme is based upon
this assumption and five invariants.

Invar lant 1 (Progression).

During garbage collection objects become darker, never lighter, i.e., shading is a monotone
function moving objects from white to gray, and from gray to black.

Invar iant 2 (Muta tors) .

Mutators execute in black objects only.

Invar ian t 3 (No black-to-white references).

No black-to-white references, i.e., a black object contains references to gray and black
objects only.

�9 Invar iant 4 (Fault ing).

Gray objects are protected, thus any attempt to access a gray object is withhold until the
faulting mechanism has changed the object from gray to black (by shading its references
at least gray).

Invar ian t 5 (Terminat ion) .

No gray objects indicates that black objects are the surviving ones, whereas the whites
are all garbage (and thus reclaimable).

4.3 The Dual Collector Scheme

The Emerald garbage collection scheme consists of two sets of collectors, which are all
applied concurrently. The global scheme, using one collector on each node in the system,
continuously adapts to the current situation and strives to fulfill comprehensiveness while
giving up on expediency. The local scheme foresees the failures of many parts of the system
by performing an independent and expedient, but non-comprehensive, local collection on
each node.

The comprehensive collection is achieved by one concurrent, mark-and-sweep collector
on each node, which cooperate as one global garbage collector across the entire network of
Emerald nodes. The set does a comprehensive collection of all garbage, while various parts
of the distributed system may be temporarily unavailable. A second set of collectors does
an independent, partial collection on each node. These node-locM collectors do a more
expedient collection of local garbage without being comprehensive. Both sets of collectors
proceed simultaneous and in parallel (on-the-fly) with the running processes. Each set
of collectors adds robustness to the garbage collection scheme. The global collection by
waiting for needed but unavailable nodes to become available again while progressing
the collection in the available parts of the system. Whereas each local collector is able
to collect local garbage while the rest of the system is unavailable. This further adds
efficiency and expedience to the scheme, as most objects tend to be short lived and local
[Lieberman 83, Schelvis 88, Jul 88b, lZudalics 86].

109

5 C o m p r e h e n s i v e G a r b a g e C o l l e c t i o n

In terms of a graph, a comprehensive collection must partition the distributed graph of
objects, connected by references, in two very well-defined parts. One containing exactly all
the objects reachable from the distributed root set, and another containing the rest, i.e.,
all the garbage. During a comprehensive garbage collection, the graph must be traversed
from the root set to identify the reachable objects, i.e., the closure of the root set. To
ensure the collection of all garbage, the references in the root set and the references inside
the objects must be identified exactly.

In general, any traversing algorithm has this property. Thus, the basic algorithm,
even in the distributed case, can be based on either mark-and-sweep or copying collec-
tion. With focus on garbage detection, which is the harder part of the problem in the
distributed case, the mark-and-sweep algorithm has been chosen due to its nice separation
of garbage detection from garbage reclamation. Our current implementation pays little
attention to compaction and locality of references. Though copying collectors may waste
up to half of the available memory, they might be considered in future implementations
where compaction is combined with object mobility.

In the comprehensive garbage collection scheme in Emerald any node may take initia-
tive to a new global collection cycle and inform the other nodes in the distributed system
about the decision. Each collector progress on its own node by initiating the collection
and doing the marking. References to non-resident objects must, however, be treated
differently. To the mutators on the node, we pretend that the non-resident objects are
already black, while we accumulate references to them in the non-resident gray set. When
the gray set of resident objects has been emptied, the non-resident objects are handled
by sending a shade request to the node hosting the object. Meanwhile, remote requests
to shade objects resident on our node are handled by putting these references in our
gray set of resident objects. Each shade request is acknowledged by the node hosting the
object, to let the requesting node remove the reference from the non-resident gray set.
Thus, a gray reference will stay in the non-resident gray set until the node hosting the
object guarantees that the object is at least gray, i.e., gray or black.

The mark-phase is finished when both gray sets are empty on all nodes. This global
state is stable, in contrast to the state both gray sets empty on a single node. The global
state is detected by a two-phase commit protocol. For simplicity, the global termination
detection could be detected by approving a coordinator node. The current solution is,
however, prepared for robustness to partial failures.

The cooperating collectors, constituting the global collection, may run very indepen-
dent on each node. They only need to coordinate their actions on three topics:

1. When to start, i.e., when mutators must be stopped and the local part of the dis-
tributed set of root objects constructed.

2. During the mark-phase, i.e., when a non-resident object is shaded by requesting the
node hosting the object and acknowledging the action back to the requesting node.

3. To determine when the mark-phase is finished, a distributed termination detection
protocol must detect the all gray set is empty situation.

All nodes may decide to initiate a new cycle of the comprehensive collection and let
this knowledge sieve to the other nodes. By adding the information (the cycle number)
about a progressing collector in all inter-node messages, any node will become aware of

110

the situation before it engages in the transfer of objects or references with the started
nodes. Though the garbage collectors may start at different wall clock time, we are able
to identify a common logical clock where no collector were started before and all were
started after.

6 A D u a l N o d e - L o c a l G a r b a g e C o l l e c t o r

Due to both expediency and robustness the set of global comprehensive collectors has
been extended with another set of independent local collectors.

The local collectors provide expediency by not depending on inter-node communi-
cation, and robustness by only using available nodes. We have chosen not to add a
node-group collector scheme as a third, intermediate scheme. We find the clustering of
nodes irrelevant to our current testbed of only a dozen nodes, to pay the additional cost
of maintaining tables of incoming and outgoing references from each node. Furthermore,
the two collector scheme is enough to fulfill our goals, thus a third scheme would not add
substantiMly benefits.

The node-local collector is conservative in its definition of the root set, but not in
its identification of references between objects. The conservative approach is acceptable,
as this collector is supplementary to the comprehensive scheme. The node-local collector
will collect local garbage only, i.e., garbage which has never been reachable from other
nodes.

The implementation is fairly simple. It takes advantage of a general mechanism that
marks objects potentially reachable from other nodes as ReferenceGivenOut. When a
reference to a resident object is exported to another node, the object is marked as known
from outside. Though that reference may later be dropped, the object stays marked
during the rest of its lifetime. These marked objects are added to the root set of the
node-local collector. When this collector finds references to non-resident objects, they
are simply skipped.

Beside the extended root set and the missing needs to communicate with other nodes,
the local collector uses exactly the same algorithm as does the global collector on each
node. The two collectors on each node need, however, to synchronize, as they are working
on the same data. Thus, they have their own data structures and mark fields for color
information. To prevent either of them from reclairrfing objects, later needed by the other,
the two collectors may not have a non-empty set of resident gray objects concurrently.
On each node this is achieved by only starting the local collector when the global has an
empty resident gray set, which is achievable without communication delays, and by only
starting the global collector between the end of the mark-phase and the start of the next
local collection.

7 R o b u s t G a r b a g e C o l l e c t i o n

The comprehensive global garbage collection scheme is threatened by node failures, as
these influence the global state as well as the individual collectors.

The failure model is failed-stop, thus, by keeping its main state on stable storage, the
collector on each node may always restart in a globally well-defined state. As an aside,
a node failure is by itself an effective garbage collection, as a restarting node gets all

111

storage reclaimed, except checkpointed objects. These are saved, e.g., on stable storage,
and recovered after the failure. This means that live references may reside on nodes
currently unavailable due to a failure.

From a global point of view, node failures may influence the garbage collection as follows:

B e f o r e a g a r b a g e co l l ec t i on No harm.

D u r i n g t h e s t a r t o f a n e w co l l ec t ion Nodes may become out of step concerning the
global garbage collection state.

D u r i n g t h e m a r k - p h a s e The global invariants about colors and muta-
tors may be broken.

F i n i s h i n g t h e m a r k - p h a s e The global termination detection needs reli-
able information about all nodes.

D u r i n g t h e s w e e p - p h a s e No harm.

Robustness to node failures, i.e., to partial failures of the distributed system, must
take the above situations into account. The problems occur exactly in the situations
where the collectors on each node need to coordinate their action (see the listing of the
very same three points in Sect. 5).

7.1 S t a r t i n g a N e w C o l l e c t i o n

It is fairly easy to assure that restarted nodes adapt to the global situation. The presented
mechanism to ensure synchronization by tagging all inter-node messages, will also force
a restarted node to enter the same garbage collection cycle before it engages in mutating
the object graph. If it keeps running locally only, it may, however, not be aware of the
progressing global garbage collection on the other nodes, until one of these sends out shade
requests or tries to detect global termination. This will eventually happens, and when it
does, the restarted node may immediately adapt to the situation, without breaking the
global invariants. From a global point of view, all actions, done by the restarted node
until then, have taken place before the logical global clock of the start of the mark-phase.

7.2 A R o b u s t M a r k - P h a s e

During the mark-phase, node failures have several impacts. Both while a node is failed
and when it is recovered.

When recovering, a node will restart its collection, but come up with references to non-
resident objects. It will need to send out shade requests for these references, even though
it might have done so before the failure occurred. Shading is an idempotent function, thus
no invariant is broken, only performance is degraded (but this is insignificant compared
to the node crash and reboot sequence). The scheme also covers the cases where a shade
request has been sent but the reply was lost. For better performance, a node may save
its received acknowledgements to remote shade requests on stable storage and use this
information when recovered.

112

While a node is unavailable, other nodes may have references to objects on it. They
cannot shade these objects until the node is available again. For simplicity, we have
implemented the shade request mechanism as a repeated broadcast with exponentiMly
back-off. Thus, non-acknowledged requests will be sent out until they are eventually
acknowledged.

7.3 Dis t r ibu ted Termina t ion Detec t ion

The detection of the global state all gray set are empty can be difficult when nodes may
fail independently and randomly often. To achieve comprehensiveness we must ensure
that all nodes have finished their mark-phase and that no request is in transit.

The latter is ensured by the acknowledgement of shade requests. The references in the
non-resident gray set are kept there until an acknowledgement is received by the shade
reply mechanism (Sect. 5).

The two-phase commit protocol can be started by any node. A node may do so when
it believes that the collection is done. Such a decision is based on its own status and
the network traffic. More precisely, both gray sets of the node must be empty, and no
nodes must have been broadcasting shade requests for a while. The termination detection
protocol is robust to temporary node failures; it only depends on nodes being pairwise
available. The current implementation depends on each node being aware of all other
nodes in the system. This assumption holds in the current Emerald prototype. A system
with a very large number of nodes should use another protocol.

8 S t o r a g e R e c l a m a t i o n

Though we emphasis on garbage detection, a short presentation of the reclamation part
of our garbage collection scheme is given here to complete the picture.

The sweep-phase of all our collectors (both local and global) has been relinquished
from the mark-phase in a scheme similar to the mark-during-sweep scheme proposed in
[Queinnec 89]. On each node one common sweeper takes care of the sequential traversal
of the node-local heap.

The scheme is based on marking with the current garbage, collection cycle number,
instead of marking objects black, gray, or white. The gray information is kept aside
already, as this information is used by the faulting mechanism also. During the mark-
phase the current cycle number represent the color black, and the previous cycle, the
color white. Objects marked with lower numbers are identified garbage, waiting for the
sweeper to pass by and reclaim them. At the end of the mark-phase the previous cycle
number becomes a garbage indicator, just like white indicates garbage when the mark-
phase is finished. When the next garbage collection cycle is started, the cycle number is
incremented, effectively turning all objects to be considered white until they are marked
again. New objects are always born with the current cycle number, i.e., black.

The sweeper is interleaved with the allocation routines, i.e., each time a new allocation
request is received, the allocator tries to reclaim the same amount of storage from the
heap. It does so starting from its current sweep position in the heap and moves forwards
(viewing the heap as a circular list of objects) until the requested amount is reclaimed
or no more objects marked with old cycle numbers exist.

113

9 Conclusion

The Emerald garbage collection scheme has reached its goals by running two mark-and-
sweep collectors on each node in the distributed system:

- The global collectors cooperate to achieve a comprehensive collection of all garbage.
- The global collectors are robust to node failures. The collection progresses on the

available nodes as fast as possible before they wait for the still needed, but failed,
nodes to become available again. All nodes need not be available concurrently.

- The local collection ensures that local garbage is collected on a per node basis inde-
pendent of the current status of other nodes, thus achieving an expedient collection.

- The garbage collection faulting mechanism has made concurrency with mutators
possible and thus limit the length of pauses introduced by garbage collection on user
processes.

The measurements and experiments with the implementation will present a definite
evaluation of the presented collection scheme. Due to a very untimely disk crash whereby
parts of the current implementation were lost, an evaluation of the prototype is, unfor-
tunately, not available as this article goes to press.

Acknowledgement

We gladly acknowledge the comments and proof-reading by Birger Andersen. Also the
comments from the anonymous referees helped clarifying several points in the presenta-
tion; they are hereby acknowledged.

References

[Appel 88]

[Appel 91]

[Augusteijn 87]

[Bartlett 88]

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collec-
tion on stock multiprocessors. In ACM SIGPLAN'88 Conference on Pro-
gramming Language Design and Implementation, Proceedings in: SIGPLAN
Notices 23(7), pages 11-20, ACM, SIGPLAN, Association for Computing Ma-
chinery, Georgia, USA, July 1988.
Andrew W. Appel and Kai Li. Virtual memory primitives for user programs.
In Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS-IV Proceedings in: SIGPLAN
Notices 26(4), pages 96-107, ACM SIGARCH/SIGOPS/SIGPLAN and IEEE
Computer Society, TC MM / TC VLSI / TC OS, ACM Press, Santa Clara,
California, USA, April 1991. Simultaneous published a~ SIGARCH Computer
Architecture News 19(2) and SIGOPS Operating Systems Review 25, special
issue.
Lex Augusteijn. Garbage collection in a distributed environment. In J. W.
de Bakker, A. J. Nijman, and P. C. Treleaven, editors, PARLE'87, Parallel Ar-
chitectures and Languages Europe, Volume II: Parallel Languages, Proceedings
published in: Lecture Notes in Computer Science 259, pages 75-93, ESPRIT,
Eindhoven, The Netherlands, Springer-Verlag, June 1987.
Joel F. Bartlett. Compacting Garbage Collection with Ambiguous Roots. WRL
Research Report 88/2, Digital, Western Research Laboratory, Palo Alto, CA,
USA, February 1988.

114

[Beemster 90]

[Black 86]

[Black 87]

[Boehm 88]

[Hutchinson 87a]

[Hutchinson 87b]

[Jul 87]

[Jul 88a]

[Jul 88b]

[Juul 92]

[Lang 92]

[Lieberman 83]

Marcel Beemster. Back-end aspects of a portable POOL-X implementation. In
Pierre America, editor, Parallel Database Systems (PRISMA Workshop) Pro-
ceedings published in: Lecture Notes in Computer Science 503, pages 193-228,
PRISMA project, supported by the Dutch Stimuleringaprojectteam lnformati-
caonderzoek (SPIN}, Springer-Verlag, Noordwijk, The Netherlands, September
1990.
Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object struc-
ture in the Emerald system. In OOPSLA'86, ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications, Proceedings
published in: SIGPLAN Notices 21(11), pages 78-86, October 1986.
Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.
Distribution and abstract types in Emerald. 1EEE Transactions on Software
Engineering, 13(1):65-76, January 1987.
Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoopera-
tive environment. Software- Practice FJ Experience, 18(9):807-820, September
1988.
Norman C. Hutchinson. Emerald: An Object-Based Language for Distributed
Programming. PhD thesis, Department of Computer Science, University of
Washington, Seattle, Washington, January 1987. Technical Report 87-01-01.
Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy,

and Eric Jul. The Emerald Programming Language Report. Technical Re-
port 87-10-07, Department of Computer Science, University of Washington,
Seattle, Washington, October 1987. Also available as DIKU Report (Blue se-
ries) no. 87/22, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark and as TR no. 87-29, Department of Computer Science,
University of Arizona, Tucson, Arizona.
Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobility in the Emerald system. In Proceedings of the Eleventh A CM Sympo-
sium on Operating Systems Principles, pages 105-106, Association for Com-
puting Machinery, December 1987. Extended abstract only; full paper pub-
lished as [Jul 88b].
Eric Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis,
Department of Computer Science, University of Washington, Seattle, Wash-
ington, December 1988. Technical Report no. 88-12-6. Also available as DIKU
Report (Blue series) no. 89/1 from Department of Computer Science, Univer-
sity of Copenhagen, Denmark.
Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained
mobilty in the Emerald system. A CM Transactions on Computer Systems,
6(1):109-133, February 1988.
Niels Christian Juul. Comprehensive, Concurrent, and Robust Garbage Col-
lection in the Distributed, Object-Based System, Emerald. PhD thesis, DIKU,
Department of Computer Science, University of Copenhagen, Denmark, 1992.
In preparation.
Bernard Lang, Christian Queinnec, and Jos6 Piquet. Garbage collecting the
world. In Proceedings o-f the 19th Annual A CM SIGPLAN.SIGA CT Sympo-
sium on Principles of Programming Languages (POPL'9s ACM SIGPLAN
and ACM SIGACT, Association for Computing Machinery, Albuquerque, New
Mexico, USA, January 1992.
Henry Lieberman and Carl Hewitt. A real-time garbage collector based o n the
lifetimes of objects. Communications of the ACM, 26(6):419-429, June 1983.

115

[Liskov 86]

[Mancini 91]

[Queinnec 89]

[Raj 91]

[Rudalics 86]

[Schelvis 88]

[Shapiro 90]

[Shapiro 91]

Barbara Liskov and Rivka Ladin. Highly-available distributed services and
fault-tolerant distributed garbage collection. In Proceedings of the 5th an-
nual A CM Symposium on Principles of Distributed Computing (PODC'5),
pages 29-39, Association for Computing Machinery, Vancouver (Canada), Au-
gust 1986.
Luigi V. Mancini, Vittoria Rotella, and Simonetta Venosa. Copying garbage
collection for distributed object stores. In Proceedings of the Tenth Symposium
on Reliable Distributed Systems, IEEE Computer Society, TC Distributed Pro-
cessing, Pisa, Italy, September 1991.
Christian Queinnec, Barbara Beaudoing, and Jean-Pierre Queille. Mark DUR-
ING sweep rather than mark THEN sweep. In E. Odijk, M. Rein, and J.-C.
Syre, editors, PARLE'89, Parallel Architectures and Languages Europe, Vol-
ume I: Parallel Architectures, Proceedings published in: Lecture Notes in Com-
puter Science 365, pages 224-237, ESPRIT, Springer-Verlag, Eindhoven, The
Netherlands, June 1989.
Rajendra K. Raj, Ewan D. Tempero, Henry M. Levy, Andrew P. Black, Nor-
man C. Hutchinson, and Eric Jul. Emerald: A general-purpose programming
language. Software - Practice ~ Experience, 21(1):91-118, January 1991.
Martin Rudalics. Distributed copying garbage collection. In William L. Schelis
and John H. Williams, editors, 1986 A CM Symposium on LISP and Functional
Programming, Proceedings of, pages 364-372, ACM SIGPLAN / SIGACT /
SIGART, Association for Computing Machinery, Cambridge, Massachusetts,
USA, August 1986.
Marcel Schelvis and Eddy Bledoeg. The implementation of Distributed
Smalltalk. In S. Gjessing and K. Nygaard, editors, ECOOP'88, European
Conference on Object-Oriented Programming, Proceedings published in: Lec-
ture Notes in Computer Science 322, pages 212-232, Springer-Verlag, Oslo,
Norway, August 1988.
Marc Shapiro, David Plainfoss6, and Olivier Gruber. A garbage detection
protocol/or a realistic distributed object-support system. Rapport d'e Recherche
INRIA 1320, INRIA-Rocquencourt, Paris, France, November 1990.
Marc Shapiro. A fault-tolerant, scalable, low-overhead distributed garbage
detection protocol. In Proceedings of the Tenth Symposium on Reliable Dis-
tributed Systems, IEEE Computer Society, TC Distributed Processing, Pisa,
Italy, September 1991.

This article was processed using the IgTEX macro package with LLNCS style

Exper ience w i th a Fault-Tolerant Garbage
Col lector in a Dis tr ibuted Lisp S y s t e m

David Plainfoss~ and Marc Shapiro

INRIA Project SOR, Rocquencourt BP 105, 78153 Le Chesnay CEDEX, FRANCE
David.Plainfosse@inria.fr

Abstract . In order to evaluate our fault-tolera~at distributed garbage collec-
tion protocol, we have built a prototype implementation within a distributed
Lisp system, Transpire, replacing Piquer's native indirect reference count dis-
tributed garbage collector. This paper presents our protocol and highlights
implementation issues on Transpive. In particular, we describe the prototype
and the alterations required to fit into the Transpive distributed program-
ming model. The message and CPU performance of our protocol axe measured
and its fault-tolerance evaluated. We conclude that the cost of our protocol
is close to Piquers's , although our protocol has greater functionality.

1 I n t r o d u c t i o n

Garbage collection (GC) has recently become of increasing interest in distributed
systems [6, 9]. The motivations for such a service are numerous. First, transparency:
Just as modern distributed systems support transparent, uniform placement of and
invocation on both local and remote objects, so should they also support transpar-
ent .object management, including reclamation. Second, storage management is a
complex task, not to be managed by users. Distributed GC is even harder than lo-
cal GC because the locM collectors must be coordinated~ to consistently keep track
of changing references between spaces. This consistency problem is further compli-
cated by the common failures of distributed systems such as lost, duplicated, and
late messages, and crashes of individual spaces.

Distributed garbage collection poses a challenging problem: reclaiming all kinds
of data structures while achieving efficiency, scMability and fault-tolerance. In spite
of the difficulty, a number of proposals have attempted to design a distributed GC
that fulfills all these requirements. The great number of incomplete proposals (see
Sect. 6) reflects how difficult the challenge is. However, the combination of severM
complementary techniques may lead to an almost perfect algorithm. For instance,
combining Lang et al. cyclic distributed GC [6] with our fault-tolerant algorithm
could gain a fault-tolerant and cyclic garbage collector.

To address these issues, we have designed a fault-tolerant distributed garbage
collector protocol, hereafter called the SGP protocol [13, 14] based on reasonable,
weak assumptions. It scales to any number of nodes. It continues to function correctly
in the presence of lost, duplicated, or out-of-order messages, or of (fail-stop) node
crashes; it allows objects to migrate or become deleted while referenced.

117

In order to evaluate the SGP protocol, we have prototyped it on a distributed
Lisp, Transpire [12], implemented at INRIA, running on a multi-Transputer board
hosted by a Sun server machine. For the purpose of this evaluation, we replaced
Piquer's original Indirect Reference Count (IRC) garbage collector [11], provided
with Transpive, with a prototype implementation of the SGP protocol. SGP provides
all the functionality of Piquer's GC, and in addition is resilient to message or site
failures. The motivations for this approach are the following:

- ease of prototyping the algorithm in a functional language,
- use of an existing, easy-to-use, clean, distributed programming environment,
- existence of a local tracing collector as required by SGP,
- possibility of comparison with Piquer's GC.

The organization of this paper is the following. Section 2 describes briefly the SGP
protocol, and highlights mechanisms implemented on Transpire. Section 3 reviews
the distributed programming model of Transpive and its implementation. In par-
ticular, issues relevant to the SGP implementation are highlighted. Then, in Sect.
4, we further describe the implementation itself. Section 5, presents performance
measurements of our prototype implementation. Section 7 concludes the paper. We
compare our performance results with Piquer's.

2 B r i e f D e s c r i p t i o n o f t h e S G P p r o t o c o l

We consider a collection of spaces connected by an unreliable non-FIFO channels. A
space is either a process, a processor or a group of machines. Spaces may contain one
or more applications called mutators performing independant computations. Muta-
~ors allocates dynamically objects in their space. An Object is located in a single
space but may migrate. Objects may contain references to other objects located in
the same or in remote spaces. Local objects are accessed through standard pointers
whereas remote objects are accessed via remote pointers. An object accessible from
at least one remote space is called public, as opposed to private objects. A public
object belongs to a single space, its owner. Public and private objects are dynamic
sets. That is, any non-garbage private object may become public and vice-versa. For
instance, a public object only remotely referred by a single space may migrate to
that space. After migration, the object is considered as private. Basically, the dis-
tributed GC is in charge of tracking remote accessibility of public objects. Private
objects do not concern us and are reclaimed by the local GCs.

The mutator rests upon two separate layers of object management (see Fig. 1).
The bottom layer is independent of object semantics, structure, or programming lan-
guage: this is the distributed garbage collection specified in [14] and described briefly
herein. The distributed garbage collection only propagates accessibility information
supplied by the upper layer.

The upper layer is a (language-specific) run-time, extended to interface with our
distributed GC. In the upper layer, one finds storage management (object allocation,

118

//f• Application

m m ~ m D m - - m n ~ m m m

I E,~t ~ / E~y ~ Shan~

Fig. 1. Relationships between processes and main data. structures

and local tracing garbage collection) as well as remote invocation functions (i.e.
communication stubs).

The two layers share information in the form of incoming and outgoing references.
An incoming reference is called an entry item and an outgoing reference is called an
exit item. Cooperation between layers is limited to simple interactions to maintain
consistency between entry and exit items.

Mutators in different spaces communicate via RPC-style invocation, i.e. by mes-
sages. An invocation is mediated by mechanically-generated stubs for marshalling
and unmarshalling messages; a stub interfaces between the application and the sys-
tem, encoding typed information into a typeless form. The arguments and results in
an invocation contain any mixture of pure data, references, and migrating objects.
When sending or receiving a message, the stub creates either an entry or exit item
for the reference or the object embedded in the message.

To provide fault-tolerance, extra time and ownership information is piggy-backed
onto the existing mutator messages. Occasional control messages are exchanged, in
the background, to remove inaccessible entry items.

The SGP protocol relies on the existence of any standard local tracing garbage
collector. The distributed protocol is based on a conservative extension of reference
counting. Each space maintains a list of potential incoming and outgoing references,
respectively called the entry table and exit table. Both the entry table and the exit
table are conservative estimates. If two different spaces possibly refer to a single
object of space A, each will be assigned an entry item in A. This differs from refer-
ence counting, and in particular from Piquer's IRC, because we need an entry per
remote space to deal with unreliable communication. This policy renders entry item

119

deletion an idempotent operation and permit tolerating lost or duplicated message.
In the former case any subsequent control messages received will allow us to reclaim
previously garbage entry items. The latter case will have no effect since all garbage
entry items would have been been previously collected.

Local garbage collection proceeds from the union of the local root and the entry
tables and removes object and entries in the exit table. Since local GC starts from
the union of the local root with the (conservatively estimated) entry table, all non-
reachable local objects are true garbage. Each local GC cleans the entry table of
useless entry items. In turn, exit tables are used to clean remote entry table, yielding
successively better estimates.

When an exit item on space A is deleted, the corresponding entry item on space
B can be removed. To this effect, a delete message can be sent from space A to space
B. However this message can be duplicated or lost. To guard against loss, periodic
use messages are sent from A to B containing the list of all existing exit items on A
pointing to B; by comparison space B can deduce entry items that are not reachable,
and remove them. In the remainder of the paper, control message refers to both use
and delete messages.

One common problem in distributed systems is the message delivery delay. Mes-
sages containing references must be taken into account to guard again.qt unsafe
reclamation. Suppose that one space B sends a message to a space A containing
a reference to a given object, say x. At the same time, a control message is sent
from space A to space B to inform that the remote pointer on object x has been
discarded. If object ~ is not locally referenced upon receiving the delete message, it
will be remove from the entry table and collected at the next local GC.

To avoid this problem, we keep on each space a vector of highest t imestamps
and we t imestamp entry items. When sending a reference, the stub creates the
entry items and store in it the value of the local clock. The same value is used to
t imestamp the mutator message. Upon receiving a muta tor message, the receiver
compares the t imestamp value extracted from the message with the one found in
the vector of highest timestamps. This vector contains a space identifier and an
associated t imestamp for each remote space. A t imestamp is increased each time
a message is received. If the corresponding entry in the vector does not yet exist
the initial value can be taken from the message. Control messages carry the current
value of the t imestamp vector corresponding to the target space. Upon receiving a
control message, the t imestamp value found in the message is compared to the value
in the entry items to detect messages in transit.

Since our distributed protocol is based on reference counting, it fails to collect
cycles 1 .

1 A separate sub-protocol [14] copes with inter-spa~e cycles but its description is out the
scope of this paper as it has not been implemented on this prototype.

120

3 Transpive

A garbage collector interacts closely with the programming model, as shown in Sect.
2. in particular, the way references are created, copied and sent is a crucial issue.
For this reason, we first describe the programming model of Transpive, concentrating
on key points related to the SGP implementation. Transpive is a distributed Lisp
designed to provide a programming model as close as possible to a centralized Lisp,
and in particular:

- to provide location-transparent invocation,
- to supply the basic functionality required by a distributed application through

a small number of concepts,
- to provide a set of extensions, easily portable to another Lisp or runtime systems.

Transpive is layered on a Lisp interpreter. 2 One Lisp interpreter runs on each
Transputer processor and interacts with the others through message passing. The
underlying runtime system ensures FIFO, reliable message channels. Consequently,
we have simulated message failures to evaluate the fault-tolerance aspects of SGP.

3.1 S e n d i n g a n d Rece iv ing Messages

Transpive provides a function, e x t - s e n d () , to send a typed message to Transpive
thread, addressed by a identifier t axge t_ id and a port number po r t . a . The f u n c t i o n
argument is used for marshalling/unmarshalling the msg given as argument. We have
extended this function to accept an added argument :

e x t - s e n d (msg function thread_id port_n d e l a y)

The last argument, delay, simulates messages failures: out-of-order, delayed,
lost, or duplicated messages. The target thread t b x e d . i d receives the message by
calling the function rece ive l rom_any:

msg :ffi receive_from_any()

A Transpive message is a structure composed of several fields :

s t ruc t ms E {
d a t a
S 01~L~Ce

t a rge t
send_t~t~e
func t ion

; t h e m e s s a g e d a t a
; t h e s e n d e r thread_id
; the ta rge t thread_id
; the type of the m e s s a g e
; function for marshalling and unmarshalling

; additional SGP fields:
timestamp ; value of the sender Lisp local clock
delay ; simulates unreliable messages}

2 The current implementation runs on Le_Lisp [4], a fast Lisp interpreter implemented at
INRIA. But the distributed model of Trauspive is generic and easily portable to another
Lisp dialect or functional language.

121

All these fields have default values. The func t i on is used to marshal and unmar-
shal the object referenced by the da ta field. Several alternative marshalling semantics
are provided by Transpire. Transpive servers use an efficient marshalling function
low..Xevel which does not generate remote pointers but copies values to the target
Lisp.

We have added two fields to the standard Transpire message structure. The SGP
protocol timestamps mutator messages to protect against unsafe, late or duplicate
messages (see Sect. 2). The ti~estatap field is managed by the stubs, a This extension
has no consequence on the other message functions. The field delay is used to
simulate message failures, and is set from the delay argument of ext -aend() .

The effect of the delay value is the following:

0 corresponds to the default normal delivering FIFO order,
+n corresponds to a delayed message,
-1 corresponds to a lost message,
- 2 corresponds to a duplicated message.

The delay is enforced by the receive_froLmay() function which delivers the
message to the application according to the value of the delay field. The +n value
indicates the number of times the messages is read in the queue without being
delivered to the corresponding thread.

3.2 R e m o t e References

Transpire supports transparent fined-grained object sharing. Lisp is a typeless lan-
guage which only manipulates cons cells. Consequently, Transpive allows one to pass
and access remotely any cons cell. The creation of remote references is totally trans-
parent to the programmer. The corresponding data structures are created as a side
effect of message passing. Specifically, stubs are responsible for detecting cons cells in
messages and creating the corresponding entry or exit items to access the remotely
referenced objects. Lisp does make any distinction between references and plain ob-
jects. Therefore, in that model, a reference is created for each cons cell passed in the
message. Thus, each cons cell of a list may be accessed independently from other
cells. This policy is required to keep the same semantics as any local Lisp. However,
it creates a large amount of exit and entry items and worsens locality.

Transpire provides a cache memory associated with remote references. On first
access to a public object through a remote reference, a replica of the object is copied
to the local cache of the referencing Lisp. All subsequent read accesses to this object
will be local, in the cache.

Conversely, an attempt to write a replica invalidates all other replicas. Ownership
of the object is migrated to the Lisp which has attempted the write access. This
scheme is well adapted to functional languages, such as Lisp, where read accesses
are much more frequent than writes.

3 Actually, the timestamp field is initialized at creation of a message. Stubs are responsible
for updating the timestamp associated with each descriptor as explained in Sect. 2.

122

A public object always points to a descriptor. For this purpose, Transpive ob-
jects have been extended with an extra field, called back pointer, to access their
corresponding descriptor. In order to save space, plain private objects don't refer to
any descriptor and their back pointer is set to NULL. Depending on the existence
or not of a cached replica, a descriptor acts either as a local handler on its cached
replica, or as a remote pointer to a public object. With respect to the SGP model, a
Transpire descriptor acts partly both as an entry and an exit item. It contains the
following fields when corresponding to an exit items:

- The identification of the owner Lisp where the object is located,
- an OID which uniquely identifies the object throughout the system,
- a status, indicating whether the cached replica is valid or not,
- a "weak pointer" to the local replica; this pointer is not taken into account by

the local garbage collector. Initially, this pointer is set to NULL. It is updated
upon receiving a copy.

An additional field is present when the descriptor acts as an entry item:

- a list of pairs ((lisp_id timestamp) . . .). The first one identifies a Lisp holds holds
a remote pointer to that particular object. The second one is increased each time
a message containing a reference to that object is sent to that lisp.

Each Lisp maintains a table of valid descriptors (TOD) indexed by OID of public
objects. As a descriptor contains only a weak pointer to the local replica, another
data structure, the list of public objects (LPO), is maintained to prevent public
objects.from being collected by the local GC. When an object becomes public, it is
added to the LPO. When the last remote reference to this object is discarded, and
becomes again private, it is removed from the LPO.

Upon sending a Lisp list composed of cells, the stub generates an OID and
allocates a descriptor for each cell of the list. For instance, a call to e x t - s e n d ((1 2
3)) will lead to generate three OIDs and three descriptors for (1 2 3), (2 3) and
(3). This is inherent in the Lisp object model and unfortunately leads to large space
overhead.

Transpive provides, along with descriptors, a number of functions to access and
set each field of a descriptor. These functions will be used in the remainder of this
paper and are introduced to improve readability of source Lisp code. They are listed
below in the same order as the list of fields given above:

desc:m get_desc(obj)
get_owner(get_desc(obj))
get_oid(desc)
get_replica (desc)
set_owner(desc, lisp_id)
set_oid(desc, old)

; reads obj's back-pointer and returns descriptor
; returns ogner field of obj's descrpitor
; get oid~s field of desc
; get cached replica through weak pointer
; set owner field with the Lisp identifier lisp_id
; set oid field of the argument descriptor desc

get_timestanp(desc, lisp_id) ; get the timestamp value embodies in
the descriptor for a particular Lisp

123

The function get_desc(obj) takes an object as argument and returns its back
pointer (i.e. its descriptor). The function g e t _ r e p l i e a (d e s c) returns the cached
replica object (if it exists) of the descriptor desc. 4

/ i
I ~

C~chc Cachc

invalid)

Lisp A Lisp B Lisp C

- - ~ we~fitpointtr -> backpoitm~

Fig. 2. remote references, descriptors and cache memory

Figure 2 shows three Lisps running on three different Transputers. Object x,
owned by Lisp B is public and remotely accessible from Lisps A and C . Lisp A
has already accessed object z from some root RA and therefore has a replica of
x jn its local cache. A's reference to z points directly to the cached replica z ' . In
contrast, Lisp C has never accessed object z although it is accessible from its root
R e �9 Consequently, the reference to z points to the corresponding descriptor. Object
y is a plain private object accessible from its local root R A . Note that y does not
refer to any descriptor because it is not public.

We have extended this descriptor to handle administrative information specific
to the SGP protocol. As stated in Sect. 2, the SGP model assumes one entry item
per remote space. In Transpire, a single descriptor may be referenced by several re-
mote Lisps, and a counter associated to each descriptor embodies the corresponding
reference count. We have adapted the SGP model to fit into the Transpive implemen-
tation of remote references. A new field has been added to each descriptor, pointing
to a list of pairs. Each pair contains a Lisp identifier and a t imestamp value. The
Lisp identifier refers to a Lisp which remotely points to the corresponding public
object. The t imestamp value is updated each t ime a reference to the object is sent
to this Lisp. The counter has been retained for compatibility but serves no useful
purpose. 5

4 We t r ied to use the s a m e var iables n a m e s in t he pa pe r . In p a r t i c u l a r a d e s c r i p t o r will

always be named as desc in pseudo code.
5 However, we are in the process of removing them to compare memory consumption

124

4 P r o t o t y p i n g t h e S G P o n T r a n s p i v e

In the SGP protocol, a remote reference is created when a mutator passes a reference
in a message. In other words, a creation message is a mutator message containing at
least one reference. A use message (see Sect. 2) is sent by our collector to inform the
owner Lisp which remote references have been discarded. We briefly describe here
how we have implemented our protocol using the Transpive mechanisms introduced
in Sect. 3.

4.1 T i m e s t a m p s

Each Lisp maintains a vector of highest timestamps called the I-ITS vector. The
HTS vector is updated each time a Lisp receives a mutator message. To handle
the HTS vector, we have modified the original Transpive server of message. This
server receives all the messages exchanged between mutators and forwards them to
the target thread. Actually, a call to the e x t - s e n d () function sends a message to
a target thread via this server. Each time the message server receives a muta tor
message it extracts the timestamp, updates the corresponding entry of the HITS
vector, then queues the message for the receiver.

PROCEDURE s e r v e r . l s g ()
msg : message;
WHILE t r u e do

msg : - rece ive_ from_anyO
I F msg. t imestmap GREATER THAN h t s [amg. sender] THEN

h s t [msg.sender] :ffi u g . t i m e s t a a p
queue the message to the t a r g e t thread

ELSE

ignore the message
END END E~D

4.2 C l e a n u p o f P u b l i c O b j e c t s

In Transpive, garbage collection of a descriptor occurs in several steps. Figure 3,
shows the sequence of events involved in the collection of a public object. As stated
earlier in Sect. 3, a descriptor is useless when the back pointer of its local replica
does not reference it. Here are the relevant events:

1. On Lisp A the last reference to the local replica z ' of z is discarded.
2. On Lisp A, a local GC occurs. The replica is collected'and its descriptor pointer

is updated.
3. The matching descriptor on Lisp A is then collected by the cleaning function

cleanup_rod.
4. Consequently, a control (use) message is sent to the owner Lisp B.

between the SGP and IRC protocols.

125

5. On Lisp B, the SGP server receives the delete message and removes the corre-
sponding object from the LPO.

6. On Lisp B, public object x is not locally referenced. It will be collected at the
next local GC.

L~pA delete:j15566601, ...], HTS[B] LispB

4

Fig. 3. Chronology of events in garbage collecting public objects x of Lisp B

SGP model assumed that entry items were collected by the local GC. The dis-
tributed programming model of Transpive enforces a totally different scheme for
collecting descriptors. As stated earlier in Sect. 3.2, SGP's exit table is modelled
by the TOD in the Transpive model and exit items are represented by descriptors.
In contrast to exit items, a descriptor refers either a local object or a replica. Con-
versely each public object or replica points to its descriptor through its back pointer.
Consequently, a descriptor cannot be collected as long as its replica is not collected.
For this reason, garbage collection of descriptors proceeds in two steps. First, the
local cached replica is collected and its back pointer is set to NULL. Later, the previ-
ously pointed descriptor is considered as garbage and will be collected by a cleanup
function as shown by the code below:

FUNCTION cleanup_rod() : descriptors_list

BEGIN critical section

FOREACH desc IN TOD DO

IF replica's back pointer refers to desc THEN

add desc's OID to the use_list for the corresponding owner_lisp
ELSE

removes desc from the rod
END END

END critical section

return TOD;

END

126

This function c leanup_rod() , cleans the TOD by removing useless descriptors.
Each time a descriptor is detected, its OID is added to the o i d s _ l i s t if the descriptor
is still valid. As an optimization, the messages are not sent at once to the correspond-
ing Lisp, but rather buffered. 6 A high priority Transpive daemon f l u s h m s g _ l i s t is
responsible for traversing the list of messages and sending control messages as shown
by the code below :

PROCEDURE flush_msg_list()
BEGIN critical section
FOREACH (target_lisp oids_list) pair IN use_list DO

msg.timestamp :ffi get_hts(target_lisp)
msg.data :ffi oids_list
ext-send(msg, low_level(), target_lisp, GC_PORT, random())

END
reset use list to nil

END critical section
END

A control message is composed of the following fields:

- the corresponding entry of the vector of highest timestamps h t s ,
- the list, l_obj_id, of valid OIDs depending

Message lists are composed of pairs (l i s p _ i d l_obj_ id) . The first element is a lisp
identifier and the second a list of OIDs. The function traverses the whole u s e . l i s t
and sends to each target Lisp a corresponding subset of the valid OIDs. Note that
e x t - s e n d calls are done with a delay argument. The function random() , in the
code fragment above, generates a random value corresponding to either a delay,
a lost, or a duplicated message. The function ge t_h t s is used to t imestamp the
control messages and prevents a public object to be discarding if a reference is in
transit (see Sect. 2). All these control messages are sent to a specific Transpive port
associated with our SGP server. Note that we have to bypass the normal reference
marshalling scheme in order to avoid the creation of remote pointers when sending
control messages. The low_level Transpire marshalling function is used to avoid
the creation of descriptors. This function marshalles control messages as a vector of
integers and bypassed the traditional reference sending layer.

4.3 S G P S e r v e r

Each Lisp runs a server dedicated to receiving and processing control (delete and
use) messages. The former kind contains a vector of unreachable OIDs whereas the
latter contains whole sublist of the reachable OIDs between two Lisps (see Sect. 2).
The sgp_server is activated each time a control message is sent from some remote
Lisp by the f l u sh_ re s t_ l i s t mentioned above. It extracts the relevant components
of the control message and forwards them to appropriate function to update the
local TOD.

e We haven't tried yet to piggy back delete or use messages on mutator messages.

127

PROCEDURE sgp_server()
WHILE true DO

; wait for control message

msg : = receive_from_any()

oids_list : = msg.data

msg_timestamp :- ms$.timestamp

; process control messages
FOREACH old IN oid_list

desc := get_desc(oid)

IF get_timestamp(desc) >= msg_timestampTHEN

delete_desc(desc)

ELSE

a message in transit contains a reference to this descriptor

END END END END

4.4 S G P I n t e r f a c e w i t h local G C

Le_Lisp provides an number of system signals. For instance, the signal gca larm is
activated just after each local garbage collection. This signal can be used to check
the collection process to detect, for instance, a memory overflow. This signal invokes
a user-defined function, which is a Null function by default. In our case, this function
is responsible for cleaning the TOD and the L P O . Although it was stated in [14] that
this cleanup could occur in parallel with other processing (only update of individual
elements needs to be atomic), we implemented the whole procedure in a critical
section as a quick first approximation.

PROCEDURE gcarlarm_sgp()

BEGIN

BEGIN critical section

; removes from LPO previous public objects

LPO :- cleanup_ipo(LPO)

; cleanup the TOD of useless descriptors

TOD := cleanup_tod(TOD)

END critical section

END

The problem with this scheme is that the cleanup of remote pointers is bound
to some local GC. This can lead to a memory overflow (in both implementations i.e
Piquer's and SGP) since TOD cleanup is always delayed until after a local GC at
the remote Lisp. This problem arises when a Lisp holds many remote pointers but
uses only a small amount of its local memory. Since local GC is invoked on the basis
of memory use, garbage remote references may not be collected for a long while.
As a result, a high number of potentially garbage public objects are not collected,
leading to a memory overflow. To avoid this problem, the cleanup protocols should
be called not only after local GC, but also periodically.

!28

5 Experiments

In this section, we analyse the measured performance of our SGP prototype and
compare it with the IRC implementation. Two kinds of performance are discussed:
the number of messages and their frequency andthe CPU overhead due to both kind
of distributed GC.

5.1 C P U o v e r h e a d

We have measured the CPU overhead due to our SGP implementation. We compare
these results with the native distributed GC of Transpive. We have run two applica-
tions : a merge sort and a matrix multiplication. The measurements were taken on a
Parsytec board composed of four Transputers (T800) with one megabyte of memory
each, hosted by a Sun. We have measured each application twice on the same data
to take into account the copies of objects. Since Transpive copies public objects, re-
sults are always better the second time. However these measures have been repeated
dozens of times to be sure of the results and have shown extremely low variance.

Table 1. CPU performance measurements

CPU time in seconds Overhead (%)
Application Without DGC IRC SGP SGP/IRC
(sort 100) 3.8 3.2 4~ 3.9 5.5 4.1 17~ 5%
(sort 200) 5.6 4.4 6.7 5.2 8.1 5.9 20% 12%'

(multmat 20 20) 11.1 7.8 12.0 8.7113.5 9:8[!!:9~ 12.3%

Table 1 shows the performance measurements. The results conform with Piquer's.
We have disconnected the function responsible for sending control messages on each
Lisp in order to avoid interrupting applications, but we kept all the control data
management in order to measure the overhead on mutators until sending control
messsage. The overhead measured is due to managing control da ta structures this
represents the mutator part of the SGP protocol. Our SGP implementation is on
average 10% slower than Piquer's and 20% slower than without any DGC. This
slight overhead is encouraging. First, our basic motivation was to evaluate the SGP
prototype; as a consequence, we did not pay too much attention to optimizations and
kept a big part of Piquer's data structure management (for compatibility reasons).
Second, the fanlt-tolerance property of the SGP protocol requires a some additional
work, compared with Piquer's approach which largely justifies some added cost. For
instance, we update descriptor timestamps each time a reference is sent.

5.2 Message O v e r h e a d

A second kind of measurements concerns the number of control messages sent, and
their frequency. Our message sending protocol is different from Piquer's and slows

129

down local processing a little because group OIDs into a single structure, instead
of sending a unique OID per control message. We have chosen, the former policy
because it reduces message traffic. As shown on Table 2, this "buffering" strategy
dramatically reduces the number of control messages sent in SGP compared with IRC
protocol. Note that the number of control messages sent does vary a little between
the two executions. Note also that we obtain the same results whatever the size of
the list in the merge sort application. This shows that our message sending policy is
somewhat independent of the number of objects sent between Lisps, although this
buffering strategy may retain a big amount of floating garbage. For that reasons,
this strategy should not have two much impact on control message frequency. This
is particulary true when locality is very poor and the number of remote references
is large, such as in Transpive.

Table 2. Control message measurements

Control Messages
Appfication IRC SGP IRC - SGP
(sort 100) 31 28 10 8 21 20
(sort 200) 41 39 10 8 31 31

(multmat 20 20) 101 96 20 18 81 78

6 R e l a t e d W o r k

Distributed garbage collection, is a difficult problem which has only been addressed
partially. One key reason is that while most proposals rely on centralized techniques,
adapting such techniques to distributed environments is not a straightforward task.
Stop the world algorithms require costly termination mechanisms when facing dis-
tribution, whereas reference counting is completely defeated by common messages
failures. In order to adapt those techniques to distributed environments, many re-
cent proposals try to relax traditional invariants [2, 11, 15] whereas others rely on
reliable communication protocols [3, ?, 6, 10]. The former family algorithms is usu-
ally based on reference counting. Therefore they cannot garbage collect distributed
cycles and must assume that such graphs are rare. The second family ensure better
liveness but all known algorithms are not resilient to message failures [6], may be
completely defeated by space failures [3], or fail to address large network [9]. Our
protocol belongs to the former family and bears some similarities to a number of
proposals based on reference counting [2, 11]. Unlike those approaches, however, we
maintain an entry item per source space that permits us to tolerate message loss
whilst avoiding the dangers of duplicated messages.

Dickman [2] proposes Optimizing Weighted References Counting improving tradi-
tional Weighted Reference Counting [1, 15] in two aspects: message failures resilience
and indirection cells. Resilience to message failures is provided through a weak in-
variant that requires that each object weight (total weight) is always greater or

130

centralized service to build a consistent view of the distributed system. Each local
collector informs the centralized service about incoming and outgoing references, and
about the paths between incoming and outgoing references. The path computation is
expensive but necessary for reclamation of distributed garbage cycles. Based on the
paths transmitted, the centralized service builds the graph of inter-site references,
and detects garbage (including dead cycles) with a standard tracing algorithm. The
centralized service informs LGCs of accessibility of objects.

In a later paper [5] Ladin and Liskov simplify and correct the deficiencies of the
above proposal, ac' ~pting Hughes' algorithm and loosely synchronized local clocks.
Hughes' algorithm eliminates inter-space cycles of garbage, thereby eliminating the
need for an accurate computation of the paths and for the central service to maintain
an image of the global references. Furthermore, the centralized service determines
the garbage threshold date, making a termination protocol unnecessary.

Recently Lang et al. [6] describe an original proposal to combine reference count
and mark and sweep. The algorithm collect distributed cycles within predefined
groups. Groups are dynamic collections of spaces (i.e a space may be removed or
added during garbage collection) and may overlap or include other groups. The al-
gorithm relies both on counters and local GC to perform mark and sweep within a
group. Reference counts must be kept accurate, hence message failures are not toler-
ated. Group GC is conservative with respect to inter-group references: any subgraph
referenced from outside the group is not collected until a larger group is formed
encompassing the entire graph; therefore liveness is not guaranteed. Thus, large cy-
cle reclamation requires extending group size such that the group includes all spaces
that hold a cycle vertex. Distributed garbage collection of very large networks is pro-
posed through a hierarchy of included groups. Included groups benefit from larger
groups GC that perform some of their work. However, large group GCs are longer
than smaller ones and therefore retain more floating garbage. For that reason, the
authors assume that large group GCs are rare compared to small group GCs.

In [8] Lins and Jones combine Weighed Reference Counting with Lins'local algo-
rithm for Cyclic Reference Counting [7] to address distribution issues. As a result,
they propose a simple algorithm to garbage collect cycles in a distributed environ-
ment. The general idea of the algorithm is to perform a local mark-scan whenever
a reference to a shared graph is deleted. That is, a mark-scan is initiated each time
an object is suspected of belonging to a garbage cycle (i.e when its counter is decre-
mented down to one). The mark phase decrements counters each time it visits an
object belonging to the subgraph. At the end, all nodes with counters equal to zero
are part of a dead cycle and may be safely reclaimed. Lins [7] improves the basic
idea to perform the mark-scan lazily. Spurious objects are not scanned at once but
instead they are queued in a special list. When the allocator fails to supply memory
the corresponding list is scanned in order to reclaim potential garbage cycles. Un-
fortunately, mark-scan of subgraphs must be computed in critical sections. In other
words, two different spaces cannot invoke cycle detection concurrently.

131

equal to the sum of all remote reference weights (partial weights). The weak in-
variant permit tolerating message loss but duplicated message remains problematic.
The algorithm avoid the creation of indirections cells when partial weights cannot
be split. However, this is enforced through a special nu l l weight value. In this
case, the total weight is always greater than the sum of partial weights preventing
the object from being reclaimed by error. However, liveness is not ensured for weak
objects which conform only the weak invariant. For this reason, the author assumes
than the algorithm is always used in conjunction with a global tracing collector to
reclaim garbage distributed cycles and weak objects.

In [11] Piquet describes his Indirect Reference Count (IRC) algorithm which
improves Weighted Reference Count [1] by avoiding indirection cells. The algorithm
also eliminates the need for increment messages that may conflict with decrement
messages in traditional schemes. Thus, creation and duplication of a remote pointer
are performed locally without informing the space where the object is located. In
order to achieve local creation/duplication, remote pointers have been extended with
a new field, nartaed an indirect pointer. The indirect pointer serves only distributed
GC purposes, and refers either to an object or to another remote pointer. The
whole set of remote pointers referencing a single object forms a distributed graph
which can be traversed using indirect pointers. Mutators never use indirect pointers,
instead relying on the direct pointers to access objects in a single hop. As with
others proposals relying on reference counting, the IRC algorithm is not resilient
to message failures: liveness is not enforced against message loss and safety is not
preserved against duplicated message.

Mancini and Shrivastava [10] describes an efficient and fault-tolerant distributed
garbage collector based on reference counting. Resilience to space or message failures
is supported granted to an RPC mechanism extended with detection and killing of
orphans. A special protocol is used to cope with duplication of remote references.
This protocol makes an early short-cut of potential indirections even if they are never
used. Two alternatives are proposed to deal with distributed cycles : traditional and
inefficient global mark and scan, and per object cycle detection based on an heuristic.
The first one is notoriously inefficient and the second one does not collect all cycles.

Hughes [3] describes an elegant algorithm based on timestamps and local trac-
ing. The algorithm timestamps objects and relies on the premise that garbage ob-
jects' timestamps remain constant whereas non-garbage objects' timestamps increase
monotically. A timestamp threshold is computed to distinguish garbage from non-
garbage objects. Objects that carry timestamps less than the threshold can be safely
reclaimed. Unfortunately, the threshold computation relies on a termination algo-
rithm which is notoriously costly and not scalable. Moreover, the algorithm is not
resilient to space failures since a failed space prevents increasing the threshold, hence
blocking garbage collection on all other nodes.

In contrast to many proposals that attempt to compute on each space the global
accessibility of objects. Liskov and Ladin [9] rely on their highly available central-
ized service to compute global accessibility of objects on a single space. This ser-
vice is physically replicated, hence achieving high availability and fault-tolerance.
All objects and tables are assumed to be backed up in stable storage. Clocks are
synchronized and message delivery delay is bounded. These assumptions allow the

132

7 C o n c l u s i o n

We have experimented with the SGP protocol on Transpive. The choice of Tran-
spive allowed us to quickly implement the SGP protocol and to learn few lessons,
although the distributed model of Transpive is quite different from SGP's. The orig-
inal SGP model did not take into account the replication of objects. Consequently,
we have adapted the SGP protocol into the replication model of Transpive. As a
result, collection of out-going references --descriptors in the Transpive model-- is
more complex and slower than we expected. This increases the conservative aspect
of the SGP and can be troublesome if memory is heavily in demand. A solution to
decrease the delay for collecting out-going references is to decoupled local GC from
SGP. Moreover, the fine grained sharing support of Transpive is definitely an unco-
operative environment for a distributed GC. In particular, memory consumption is
heavy since it requires a huge number of entries in the control data structures. As
a consequence, it increases the overhead of SGP on application and the frequency
of local GC. The performance results are encouraging but need to be improved , to
minimize the overhead on applications. The buffering policy reduces dramatically
the number of control messages. The resilience to message failures has been demon-
strated. This result validates our design guideline. However, the fault-tolerance to
space failures and duplicate messages remain to be investigated. Although, the SGP
design relies on a very different distributed programming model, the prototype be-
haves correctly with respect to the safety property. It demonstrates that the SGP
protocol is generic and adaptable. Therefore, it is a good candidate for a system
service.

Acknowledgments

The design of the SGP protocol has been done in collaboration with Olivier G r u b e r
of INRIA/RODIN. We wish to thank our colleagues of INRIA/ICSLA for their
help and their availability to answering questions on Transpire, in particular Jos6
Piquer , and Luis Mateu . Many thanks also to Daniel 1%. Edelson and P e t e r
Dickman for commenting on drafts of this paper.

R e f e r e n c e s

1. BEVAN, D. I. Distributed garbage collection using reference counting. In PARLE'87--
Parallel Architectures and Languages Europe (Eindhoven (the Netherlands), June
1987), no. 259 in Lecture Notes in Computer Science, Springer-Verl~g, pp. 117-187.

2. DICKMAN, P. Optimising weighted reference counts for scalable fanlt-tolerant dis trib-
uted object-support systems. (submitted to publication)~ 1992.

3. HUGHES, J. A distributed garbage collection algorithm. In Functional Languages and
Computer Architectures (Nancy (France), Sept. 1985), J.-P. Jouannaud, Ed, no. 201
in Lecture Notes in Computer Science, Springer-Verlag~ pp. 256-272.

4. J. CHAILLOUX, M. DEVIN, J. M.H. Le_lisp : A portable and efficient lisp system.
In Proc. 1984 ACM Symposium on Lisp and Functionnal Programming (Aug. 1984),
pp. 108-120.

133

5. LADIN, R., AND LISKOV, B. Garbage collection of a distributed heap. In Int. Conf.
on Distributed Computing Sys. (Yokohama (Japan), June 1992).

6. LANG, B., QUEINNEC, C., AND PIQUER, J. Garbage collecting the world. In Proc. of
the 19th A nnual A CM SIGPLA N-SIGA CT Syrup. on Principles of Programming Lang.
(Albuquerque, New Mexico (USA), Jan. 1992).

7. LINS, R. D. Cyclic reference counting with lazy mark-scan. Tech. Rep. TR-77, Uni-
versity of Kent, Computing Labotory Canterbury (England), Aug. 1991.

8. LINS, R. D., AND JONES, R. Cyclic weighted reference counting. Tech. Rep. TR-95,
University of Kent, Computing Labotory Canterbury (England, Mar. 1992.

9. LISKOV, B., AND LADIN, R. Highly-avMlable distributed services and fault-tolerant
distributed garbage collection. In Proceedings of the 5th Symposium on the Principles
of Distributed Computing (Vancouver (Canada), Aug. 1986), ACM, pp. 29-39.

10. MANCINI, L., AND SHRIVASTAVA, S. K. Fault-tolerant reference counting for garbage
collection in distributed systems. The Computer Jounal 34, 6 (Dec. 1991), 503-513.

11. PiQuErt, J .M. Indirect reference-counting, a distributed garbage collection ~dgo-
rithm. In PARLE'91--Parallel Architectures and Languages Europe (Eindhoven (the
Netherlands), June 1991), vol. I of Lecture Notes in Computer Science, Springer-Verlag,
pp. 150-165.

12. PIQUER, J. M. ParallJiisme et distribution en Lisp. PAD thesis, Ecole Polytechnique,
Massy France, Jan. 1991.

13. PLAINFOSSI~, D., AND SHAPIRO, M. Distributed garbage collection in the system is
good. In Proc. of the International Workshop on Object-Orientation in Operating
Systems (1991), pp. 94-99.

14. SHAPIRO, M., GatmErt, O., AND PLAn~FOSSg, D. A garbage detection protocol for
a realistic distributed object-support system. Rapport de Recherche 1320, Institut
National de la Recherche en Informatique et Automatique, Rocquencourt (France),
Nov. 1990.

15. WATSON, P., AND WATSON, I. An efficient garbage collection scheme for parallel
computer architectures. In PARLE'87--Parallel Architectures and Languages Europe
(Eindhoven (the Netherlands), June 1987), no. 259 in Lecture Notes in Computer Sci-
ence, Springer-Verlag.

This article was processed using the ~TF_tX macro package with LLNCS style

Scalable Distributed Garbage Collection
for Systems of Active Objects*

Nalini Venkatasubramanian**, Gul Agha and Carolyn Talcott
email: nalini@cs.uiuc.edu, agha@cs.uiuc.edu, clt@sail.stanford.edu

1 University of Ilhnois, Urbana-Champaign, IL 06120, USA
2 Stanford University, Stanford, CA 94305, USA

Abst rac t . Automatic storage management is important in highly parallel
programming environments where large numbers of objects and processes are
being constantly created and discarded. Part of the difficulty with automatic
garbage collection in Systems of active objects, such as actors, is that an active
object may not be garbage if it has references to other reachable objects,
even when no other object has references to R. This is because an actor may
at some point communicate its mail address to a reachable object thereby
making itself reachable. Because messages may be pending in the network ' the
asynchrony of distributed networks makes it difficult to determine the current
topology. Existing garbage collection schemes halt the computation process
in order to determine if a currently inaccessible actor may be potentially
active, thus precluding a real-time response by the system. We describe a
generation based algorithm which does not require ongoing computation to
be halted during garbage col]ection. We also outhne an informal proof of the
correctness of the algorithm.

K e y w o r d s : actors, asynchrony, distributed systems, generation scavenging,
network clearance, broadcast and bulldoze communication, snapshot.

1 Introduction

We describe a garbage collection algorithm, HDGC (hierarchical distributed garbage
collection), for systems of active objects distributed across a network of nodes. An
important advantage of our algorithm is that it is non-disruptive: it does not halt
or otherwise interfere with the ongoing computation process. A novel feature is the
recording of a GC-snapshot to obtain a consistent local and global view of the acces-
sibility relation. The algorithm is described in terms of the actor model. However,
it is applicable to any language supporting dynamic creation and reconfiguration
of objects (passive or active), executed on a network with a global name space dis-
tributed across the nodes 3. The HDGC algorithm can be adapted to a wide range

* This research was partially supported by DARPA contract NAG2-703, by DARPA and
NSF joint contract CCR 90-07195, by ONR contract N00014-90-J-1899, and by the Dig-
ital Equipment Corporation.

** Current address: Hewlett Packard Company, 19111 Pruneridge Avenue MS44UT, Cu-
pertino, CA 95014, USA.

3 This memory architecture is often referred to as distributed shared memory

135

of parallel architectures including fine, medium or large grained MIMD machines,
message passing, shared memory or distributed shared memory machines, or net-
works of workstations. This paper presents the conceptual aspects of the algorithm.
An implementation effort is in progress. There are numerous possible optimizations.
These are discussed briefly in the conclusion.

The Actor Model [Hew77, Agh86] provides a good abstraction for discussing
concurrent computation in distributed systems. Here, the universe contains compu-
tational agents called actors. Each actor has a conceptual location (its mail address)
and a behavior. The only way one actor can influence the actions of another actor is
to send the latter a communication. Communication between actors is asynchronous,
and every communication sent will be delivered after some finite but unbounded de-
lay (fairness of mail delivery). If an actor a knows the mail address of an actor/3,
then/3 is called a forward acquaintance of a and a is called an inverse acquaintance
of/3. An actor can send communications only to its forward acquaintances. Mail
addresses of actors may be communicated: thus the interconnection topology is dy-
namic. We call the actor addresses occurring in a communication the acquaintances
of that communication. On receiving a communication, an actor processes the mes-
sage and as a result may cause one or more of the following actions: (1) creation of
a new actor, (2) alteration of its behavior and its acquaintances, (3) transmission of
a message to an existing actor. Every actor is equipped with a mailbox that queues
incoming communications.

In order to make sense of the notion of distributed memory management we need
to refine the abstract actor model to account for local grouping of actors on nodes
(processing units) and to account for the network interconnecting these nodes. We
assume that the network consists of channels linking pairs of nodes. Each channel
consists of a pair of directed links (one in each direction) with infinite message
buffers. We require that message order is preserved across a single link and that the
network routing satisfies certain progress-only constraints that will be made precise
in the next section. In addition to normal messages between actors, there will also
be special messages used for GC.

Traditionally, garbage is detected by starting with some pre-defined root set and
forming the transitive closure of the acquaintance (referenced objects) relation. In
actor-like systems there are two problems. First, the acquaintance relation is dis-
tr ibuted and changes dynamically. Thus we must find a way of establishing a GC
start t ime and determining the acquaintance relation as of this point in time, as a
distributed snapshot. Second, simply following acquaintance links from the root set
is not adequate. This is because, using that definition, a non-reachable actor can
become reachable, at some later time, by communicating its address to a reachable
actor. These problems are addressed in the HDGC algorithm by first obtaining a (lo-
cally and globally) consistent snapshot of the acquaintance relation, then computing
reachability according to an algorithm that accounts for actors that are potentially
reachable relative to the snapshot. The HDGC algorithm is conservative, i.e., it iden-
tifies only a subset of inaccessible objects during a GC. For example, a potentially
reachable object may become inactive without communicating its mail address to
any reachable object. However, all unreachable objects will be collected by some
subsequent GC.

The remainder of the paper is organized as follows. In w we outline the full HDGC

136

algorithm. In w we present the algorithm for establishing a consistent snapshot of
the acquaintance relation at the start of GC. In w we define teachability and present
an algorithm for marking reachable objects. w contains an informal outline of a proof
of correctness. w contains concluding remarks.

2 H i e r a r c h i c a l D i s t r i b u t e d G a r b a g e C o l l e c t i o n

A hierarchical organization partitions a distributed system into smaller subsystems.
These subsystems may in turn be further partitioned. The topmost level of the
hierarchy is the entire system. The lowermost level of the hierarchy has a single node
per subsystem. There may be zero or more intermediate levels. The organization of
the distributed system into subsystems may be static or dynamic (eft [LQP92]). The
motivation for dividing a large, distributed system into smaller subsystems is to
avoid the bottleneck inherent in global resource management.

To accurately determine garbage in a subsystem at any level other than the
top level, it is necessary to know which internal actor addresses have been com-
municated to some external actor. Such actors are called the receptionists of the
subsystem. They must be considered reachable (part of the root set) for a GC local
to the subsystem. A receptionist table is constructed by adding an actor whenever a
reference to that actor is passed out of the subsystem. This provides a conservative
approximation to reachability. It can be improved by determining when entries in
the receptionist tables are no longer accessible, but this requires global cooperation.
The approximation can also be improved by maintaining a reference count of the
number of outstanding references to each receptionist (cf. [SGP90, LQP92]). This
also entails some overhead.

We present the HDGC Algorithm in the context ofa two level hierarchy, i.e. global
and node level collections. The generalization to hierarchies with intermediate levels
is relatively straightforward. We can use any of the traditional algorithms for local
GC. The best algorithm to use will depend on the granularity of the nodes as well as
on particular application domains. It is not necessary for all nodes to use the same
algorithm.

The HDGC algorithm consists of five steps: Pre-GC, DistributedScavenge, Local-
Clear Initiation, Local-Clear, and Post-GC. There is a unique (per subsystem) special
actor designated as the GC-root actor. Requests for GC go to the GC-root actor and
sequencing of the GC steps are synchronized through the GC-root actor. Thus the
algorithm does not require a global clock in the system. We describe the purpose of
each step below. The steps are initiated and carried out by communication of GC
related messages. Details are given in the following sections. The behavior of the
GC-root actor will be described after these details have been filled in.
Step 1: P re -GC. In a system with distributed state there is no uniquely determined
global state. Thus to compute some property of the state it is generally necessary to
determine a global snapshot that determines a consistent view of the state. In the
case of the acquaintance relation for an actor system, the problem of obtaining a
consistent global snapshot involves an additional subtilty. The asynchrony of com-
munication together with the ability to communicate acquaintances means that at
any given time, there can be communications in the network whose acquaintances

137

are no longer acquaintances of the sender, and not yet acquaintances of the receiver.
This means that before a snapshot of the acquaintance relation can be taken, the
network must be cleared of such communications. During the pre-GC step each node
is notified that a GC has been initiated, and the network i~ cleared of messages in
transit at the time GC was initiate. This defines a local start-of-GC time on each
node that is globally consistent. Each node records GC information relative to its
start-of-GC time that will persist throughout the duration of the GC. The combined
local information forms a consistent global snapshot of the system state that is ade-
quate to determine the reachability of each actor in the system. We call this the GC
snapshot. A detailed description of information and of the process of recording the
GC snapshot is presented in section 3.
S t e p 2" The Distributed S c a v e n g e P h a s e . During this step, actors that are
non-garbage relative to the GC snapshot are marked touched. The definition of non-
garbage and the distributed scavenge algorithm for marking non-garbage actors is
described in section 4.
S t e p 3: L o c a l - C l e a r I n i t i a t i o n . Each node in the system is informed that the
distributed scavenge phase has completed and local clearance begins. On each node,
objects not marked touched are cleared from local memory, according the nodes
method of memory management, and any other actions (updating receptionist tables,
etc.) entailed by this reclamation are carried out.
S t e p 4: L o c a l - C l e a r P h a s e . This step detects when all nodes have completed the
local clearance initiated in the previous step.
S t e p 5: P o s t G C B r o a d c a s t s . This step informs each node that the current GC
is complete: each node can now note that GC is no longer in progress and update
necessary information to reflect this state. At the end of this step a new GC can be
initiated at anytime.

Note that if GC is purely local, Step 2 becomes non-distributed and the synchro-
nization provided by Steps 1, 3 and 5 are unnecessary.

3 Asynchrony in Distributed GC

In this section we describe how the start-of-GC time is established and how the
recording of the GC snapshot is accomplished. The key idea is that in addition to
ordinary (actor-to-actor) communications, new types of messages are introduced that
propagate through the network in pre-established patterns, and can thus be used for
various forms of synchronization. To describe these messages, we make additional
assumptions about the network topology.

3.1 Message Rout ing in the Network

For simplicity we restrict our attention to networks of nodes that form two dimen-
sional grids. Such a grid contains an m x n array of nodes. Each node is designated
by a pair of integers (el , a2), where 1 < al < m and 1 < a2 < n. A node (al , a2), is
an Fne~ghborofa node (bl,bz) if either al = bl + 1 and a2 = b2, or a2 = b2§ 1 and
al = b~. Similarly, a node (al ,a2) , is a Bneighbor of a node (bl,b2) if al = b~ - 1
and a2 = b2, or a2 = b2 - 1 and al = bl. Connecting each Fneighbor/Bneighbor

138

pair of nodes X / Y is a channel comprised of a pair of unidirectional FIFO links,
one from X to Y and one from Y to X. An Fpath is a path in the network that
progresses only along Fneighbor links. A path in the network that progresses only
along Bneighbor links is a Bpath. We call (1, 1) the s~art node of the system. It is the
unique node from which there exists an Fpath to every other node in the system.
Dually, we call (m, n) the finish node. It is the unique node from which there exists
a Bpath to every other node in the system.

Ordinary messages are assumed to be routed from the node where the sender
resides to the node where the receiver resides via paths that are progress-only in the
sense that the paths contain at most one Fpath segment and at most one Bpath
segment. Thus the route of an ordinary message is either an Fpath, a Bpath, an
Fpath followed by a Bpath, or a Bpath followed by an Fpath.

In addition to ordinary messages, we introduce two kinds of node-to-node mes-
sages: broadcast messages and bulldoze messages. These messages propagate to every
node in the system, and are used for synchronization and network clearance. The
node-to-node messages may also contain information indicating actions to be car-
ried out. Broadcast messages are propagated from the start node to all the nodes
in the network, along some subset of links. The protocol for propagating a broad-
cast message is illustrated in Figure 1. Each node has a designated set of broadcast
predecessors and broadcast successors. A node can issue a broadcast message to its
broadcast successors only after it has received the message from all of its broadcast
predecessors. The broadcast is considered complete when the finish node has received
messages from all of its broadcast predecessors.

BC ~ _ I BC I BC l BC l 1

: "

node and travel along indicated route to every node in the network.]

139

There are two types of bulldoze messages, Fbulldoze messages and Bbulldoze
messages. Fbulldoze messages are initiated at the start node and propagate along all
Fneighbors links. Non-start nodes in the network issue an Fbulldoze message to their
Fneighbors only after they receive Fbulldozc message from all of their Bneighbors.
Dually, Bbulldoze messages are initiated at the finish node and propagate along all
Bneighbor links, and non-finish nodes in the network can issue a Bbulldoze message
to its Bneighbors only after it receives the Bbulldoze message from both its Fneigh-
bors. The propagation of a bulldoze message forms a wave as illustrated in Figure 2.
Bulldoze messages traverse every channel in the network and, by the FIFO assump-
tion on links, force messages already in the network to be cleared along the direction
of the bulldoze. A broadcast message does not in general traverse all forward links
in the network. Thus the number of messages needed to accomplish a broadcast is
less than the number of messages needed to accomplish a bulldoze.

3.2 O b t a i n i n g a C o n s i s t e n t G C S n a p s h o t

A GC snapshot consists of acquaintance and active status information that de-
termines a consistent global view of the state of the system at start-of-GC time.
Each node records, for each of its actors, its GC-acquaintances, its GC-inverse-
acquaintances, and whether or not it was active at start-of-GC time. The GC-
acquaintances of an actor are the current acquaintances, plus any acquaintances
in messages in the network prior to the start of actual garbage collection. This
is a safe approximation of the actors acquaintances, and insures that actors actu-
ally forgotten by one actor but sent in messages during GC will not be lost. The
GC-inverse-acquaintances of an actor the set of actors having that actor as a GC-
acquaintance. This information is used to account for apparently unreachable actors
that might communicate their mail addresses to a reachable actor. The GC acquain-
tance information is used only for GC and can be discarded when the GC for which
it was created is complete.

For a global snapshot of the state of the system, we need to guarantee that
both local consistency and global consistency have been achieved. Every node in the
system needs a point of reference in time with respect to which it determines the
accessibility or inaccessibility of actors in its memory. Once a node has established
this point and recorded the necessary information, we have attained local consistency.
Global consistency is a point in time when all participating nodes have agreed on a
particular state of the distributed system.

In order to determine which messages were in the network prior to the start of
GC and which entered after, ordinary messages are given tags to classify them as old
or new messages. Old (resp. new) messages are messages which were created prior
to (resp. after) the time of the GC snapshot. When GC is initiated, all messages
in the network are tagged old. During the process of recording the GC snapshot,
the network will be cleared of old messages by means of the forward and backward
bulldoze messages explained above.

To obtain the GC snapshot, first a pre-GC message is broadcast to every node
in the system. When a node receives the pre-GC broadcast message, it initializes
the GC-acquaintances of each actor residing on that node with (1) its current ac-
quaintances and (2) all acquaintances contained in messages currently residing in

140

F B

Initiated
FB

F B

h ,a
F B

F B

FB

~ j
w FB

i "
Ip"

FB

FB

iw

(a)

BB

~ L

~Wh~

BB

F

d h ~
I �9

BB

BB

(b)

BB

BB

' L
I r

B B

J h

\
BB
Initiated

Fig. 2. The Forward and Backward Bulldoze Wavefronts: The figure shows the forward
(FB) and backward bulldoze (BB) messages traversing through the network as a wave-
front. The FB messages are initiated at the start node and travel along Fpaths until they
reach the f inish node. The BB messages are initiated at the f inish node and travel along
Bpaths until they reach the 8tart node.

its mail queue. Any acquaintances contained in old messages subsequently obtained
from the network are added to the GC-acquaintances. I t also initializes GC-inverse-
acquaintances to be empty. When the pre-GC broadcast is complete, a pre-GC Fbull-
doze message is initiated (by the finish-node). When the pre-GC Fbulldoze message
passes a node, it marks as active any objects with non-empty mailqueue. The active
status of this node is retained for the current GC even though the node may become
inactive during GC. Any messages subsequently communicated f rom tha t node are
be tagged new. The new tag on a message guarantees the recipient of the message

141

that any acquaintances communicated in the message have already been accounted
for. When the Fbulldoze message reaches the finish node a Bbulldoze message is ini-
tiated. When the Bbulldoze message passes a node, this signals that the recording
of GC-acquaintances is complete. The node sends I-know-you messages from each of
its actors to each GC-acquaintance of that actor. When an I-know-you message from
actor A to actor B is received then actor A is added to the GC-inverse-acquaintances
of actor B. A second forward and backward bulldoze phase is required to clear the
network of I-know-you messages. This is initiated by the start node upon completion
of the first backward bulldoze wave. When the second forward/backward bulldoze
wave is complete, the start node sends a pre-GC-complete message to the root node.
At this point, all old and I-know-you messages in the system have been cleared from
the network and the snapshot information is recorded.

The backwards bulldoze messages are needed for both the recording of GC-
acquaintances and GC-inverse-acquaintances, since the forward bulldoze only clears
forwards links and there may be messages traversing backwards links that need to
be recorded. To see this, note that after an object, say A, has received the pre-
GC Fbulldoze message it can send only new messages. However, it may receive old
messages from an actor H which has not yet received the pre-GC Fbulldoze message
(see Figure 3).

Initiated
v

Bulldoze Wave

/
I /

/
/

/

Bulldoz / /

Y / /
/

f

messages, it can receive and old messages from object H which has not yet received the
bulldoze wave.

142

4 Detect ion of garbage

In this section we give a definition of reachability that takes into account the ability
of an active object to become known by communicating its mail address. We then
present an algorithm for marking objects that are reachable according to this defi-
nition. We conclude with a description of the behavior of the GC-root actor, which
provides an overview of the complete HDGC algorithm.

4.1 D e f i n i t i o n o f r e a c h a b i l i t y

The definition of reachable objects in an actor-based system is derived from the
work of Kafura et al [KWN90]. The root set is a pre-defined set of actors from
which reachability is traced. It includes actors referenced in the current computation
state of the system (environment variables, control structures like stacks etc.). A
GC snapshot of the system state determines a conservative approximation of the
acquaintance relation. As mentioned in the introduction, in an actor computation,
the transitive closure of this relation starting from the root set is not adequate
to determine teachability, since an inverse acquaintance of a reachable actor may
communicate its mail address at any point of time to its reachable acquaintance,
thereby making itself reachable. Thus we cannot ignore the inverse acquaintances in
determining teachability.

An actor which is currently processing messages or has messages pending in the
network or in its mail queue is an active actor, otherwise, it is an inactive actor.
An inactive actor which is not connected by the transitive closure of the inverse
acquaintance relation to an active actor is a permanently inactive actor. An actor
that is permanently inactive can never communicate its mail address and can be
safely regarded as unreachable. The set of reachable actors is defined inductively as
the least set such that:

- A root actor is a reachable actor.
- Every forward-acquaintance of a roachable actor is reachable.
- If an actor is reachable, then every inverse acquaintance of that actor which is

not permanently inactive is reachable.

A garbage actor is an actor which is not reachable according to the above definition.

4.2 D i s t r i b u t e d S c a v e n g i n g

The algorithm for marking the reachable objects in the system, distributed scaveng-
ing, follows the inductive definition of reachability. To record the reachable objects,
each object of the system has associated with it an object-status which may be
touched, untouched or suspended. Touched objects are objects which are known to
be reachable. Untouched objects have not yet been visited during GC. Objects that
remain untouched at the completion of GC are unreachable. Suspended objects are
inactive objects that are inverse acquaintances of reachable (touched) objects. If
an active inverse acquaintance of such an object is found then the object will be-
come touched. An object that remains suspended at the completion of GC is also

143

unreachable. When GC is initiated all actors in the system have status untouched.
Any actors created after the start of GC on a node are marked as touched.

The marking of objects is accomplished by propagation of GC and GC-1 messages

from the roots and by backpropagation of GC-ack and G C ' l ack messages. It is
initiated at the GC-root by sending GC messages to all the root actors. It is complete
when GC-acks have been received by the GC-root from all root actors. The process
of touching the accessible nodes is carried out in accordance with the Principle of
Monotonicily which states that once an actor has been marked as touched during a
GC, it cannot subsequently be untouched or suspended during the same GC. Below
we summarize the actions caused by receipt of one of the GC marking messages.

A GC message from actor B to actor A is processed as follows:

- if A is touched then a GC-ack message is sent to B from A
- if A is untouched then A becomes touched, and

* a GC message is sent to each GC acquaintance of A,

* a GC -1 message is sent to each GC inverse acquaintance of A,

* When GC-ack/GC-lack messages have been received from all GC acquain-
tances and GC inverse acquaintances, a GC-ack is sent to B from A.

- if A is suspended then A becomes touched, and

. a GC message is sent to the GC-acquaintances of A,
* When GC-ack messages have been received from all GC acquaintances and

outstanding GC-lack messages have been received from GC inverse acquain-
tances (to GC -1 messages sent at suspension time) then a GC-ack is sent to
B fror~ A.

A GC -1 message from actor B to actor A is processed as follows:

- if A is touched then a GC-lack is sent to B from A
- if A is untouched then

. if A is active then A becomes touched, and proceeds as in the GC message
case,

. if A is inactive, then A becomes suspended and sends GC -1 m.essages to its

GCinverseacquaintances. When GC-lack messages have been received from
all GC inverse acquaintances, a GC-lack is sent to B from A.

- if A is suspended then it remains suspended and sends a GC-lack to B

This basic distributed scavenging algorithm can be adapted to provide a gener-
ational version by extending Ungar's Generation Scavenging scheme lUng84]. A tag
field associated with every actor which encodes the generation to which the actor
belongs. When a GC is called, the generation bits in the tag field of accessible objects
are altered. This is logically equivalent to moving the object from one generation
to another. The copy-count bits, also a part of the tag field, are used to implement
a tenuring policy and are incremented whenever the object survives a GC. When
this count reaches a threshold value, the object is tenured from ScavengeSpace to
Oldspace.

144

4.3 B e h a v i o r o f a G C - r o o t a c t o r

An overall view of HDGC is given by describing the behavior of the GC-root actor.
The GC-root actor remembers whether or not a GC is currently in progress. We
summarize below the actions of the GC-root actor for each message it can receive.

- GC-initiate: This can come from any node wishing to initiate a GC. If a GC is
not in progress, then a pre-GC broadcast is initiated at the start node and the
GC-root remembers that a GC is in progress, otherwise the sender is informed
that a GC is in progress.

- pre-GC-complete: This is sent by the start node when the second f /b bulldoze
wave is complete. The distributed scavenge phase is initiated by sending GC
messages to each root actor. When GC-acks have been received from all the root
actors, a Local-Clear-Init broadcast is initiated at the start node. Local clearance
is begun at each node when this broadcast is received.

- Local-Clear-Complete: This is sent by the finish node when the local clearance
is complete. A post-GC broadcast is initiated at the start node.

- GC-complete: This is sent by the finish node when the post-GC broadcast is
complete. Now each node marks all messages as old and all remaining actors as
untouched [by flipping the interpretation of the tags]. The GC-root now remem-
bers that GC is not in progress and is ready to initialize another GC.

5 I n f o r m a l s k e t c h o f C o r r e c t n e s s f o r H D G C

The correctness of the Hierarchical Distributed Garbage Collection Scheme is ex-
pressed by the following four theorems. The first two represent safety properties and
the last two represent liveness properties.

T h e o r e m l . A non-garbage actor will not be collected by the distributed garbage
collection algorithm.

T h e o r e m 2. The user program progresses as normal without any semantic interfer-
ence with the dislributed garbage collection algorithm.

T h e o r e m 3. The HDGC scheme terminates for every execution.

T h e o r e m 4 . Every garbage object will eventually be collected.

To establish these theorems we assume that a GC is initiated only under the
following conditions.
Ini t ia l Condi t ions :

- All actors in the system are untouched
- Messages in the system are of one kind - Old messages

We recall the properties of actors and the underlying network that we have
assumed.

1. There are a finite number of actors in the system.

145

2. Along a single link in the network messages are communicated in a FIFO fashion.
3. Message routing is progress-only in the sense described in section 2.
4. The muta tor cooperates with the collector. Any new actors crea~ed during GC

are created as touched actors, and any new messages created during GC are
tagged as new.

5. The muta tor does not interfere with the collector. The muta tor does not modify
data used during GC - - the GC-acquaintances and GC-inverse-acquaintances of
an actor, an actors active status and other GC status information, or a messages
old/new tag.

6. A garbage actor can never become non-garbage.

We have not specified the details of how a node carries out it local clearance but
we make certain requirements. Namely, that only untouched or suspended objects on
a node are collected, and that local clearance at a node terminates. The correctness
theorems follow from the HDGC step lemmas and GC invariant lemmas stated below.
A rigorous proof of these lemmas is beyond the scope of this paper and will appear
in a forthcoming publication.

5.1 H D G C S t e p L e m m a s

The following lemmas express the crucial properties of each of the steps of the
HDGC algorithm. For informal proofs of these lemmas, see [Ven91]. Recall that
the GC snapshot consists of the GC-acquaintances, GC-inverse-acquaintances, and
active status for each actor in the system. This information together with the root
set determines a consistent global view of the reachability relation for the purposes
of the GC.

L e m m a 1. 1. The pre-GC step terminates
2. At the end of pre-GC, all messages in the network are new and all

objects existing prior to initiation of GC are marked untouched.
3. At the end of pre-GC, the GC snapshot is a consistent distributed

snapshot of the acquaintance relation relative to the start-of-GC
time.

L e m m a 2. 1. The Distributed Scavenge phase marks all objects that are reachable
according to the GC snapshot as t o u c h e d .

2. The DislributedScavenge phase marks all objects that are unreach-
able according to the GC snapshot as u n t o u c h e d or s u s p e n d e d .

3. The Distributed Scavenge phase terminates.

L e m m a 3. The Local-Clear-Initiation terminates and local clearance is initiated on
every node in the system.

L e m m a 4 . The Local-Clear step terminates.

L e m m a 5 . The termination of GC is correctly detected and all the nodes in the
system are informed of the same.

146

L e m m a 6. 1. The GC snapshot persists through out the duration of a given GC.
2. The touching process is monotonic, i.e., once an actor has been

marked as touched during a GC, it cannot subsequently be un-
touched or suspended during the same GC.

3. Only one GC can be active in the system at a point in time.

6 C o n c l u s i o n s a n d f u t u r e w o r k

In this paper, we have proposed a novel algorithm for garbage collection in scalable
distributed systems of active objects called hierarchical distributed garbage collec-
tion. An informal sketch of the proof of correctness of HDGC has been outlined.
A formal proof of correctness will appear in a forthcoming paper. To formalize the
proof of a distributed garbage collection algorithm, we formally express the GC pro-
cess as a transition relation and show that the possible computations of the system
satisfy the step lemmas and that these in turn imply the desired correctness prop-
erties. The key concept for our formalization is to classify actors into object-level
(application) actors and meta-level (system) actors. Meta-level actors can access in-
formation about object-level actors that other object-level actors cannot access. In
particular, they can modify fields in the data structures representing object-level ac-
tors such as status, tags, mailqueue, acquaintances, and behavior. Some meta-level
actors simply serve as resource managers for a node. This provides encapsulation of
the resource management facilities, and allows us to deal with system management
and application management within a single unified f ramework-- the actor model.

Any mechanism for efficient GC in a large system must be conservative. Genera-
tional storage management techniques are conservative and they exploit character-
istic reference patterns observed in many applications [Ung84]; we therefore believe
that they are well-suited to machines with large numbers of processing elements. As
we avoid physically moving objects across generations, this scheme also turns out to
be less error prone because interprocessor management of forwarding pointers can
get very complex and frustrating. In actor based systems, GC involves more than
data deallocation. An actor is a basic entity within which behavior (code), commu-
nication information and task processing information is embedded. When an actor
is deleted, all resource management responsibilities associated with an actor disap-
pear. Memory management in Actors is more than a data management facility, it is
a process management facility as well.

What we have avoided in this paper is a detailed discussion of optimizations
to the t tDGC scheme. A consideration of various deficiencies of the this scheme has
revealed some optimizations which can reduce the time and space overheads encoun-
tered in synchronization, name translation and bookkeeping. In addition to possible
optimizations, this research has also brought to the surface many interesting issues.
Compaction of memory to obtain locality, static analysis for optimal actor alloca-
tion and placement, lifetime analysis, and extensions of the HDGC algorithm to
exhibit fault tolerance and real-time behavior are a few. We believe that the ability
to design efficient, scalable, concurrent systems does not lie in esoteric programming
paradigms and architectures that are difficult to comprehend. It lies in representing
applications as well classified, intuitive specifications and organizing hardware re-

147

sources to render flexible and manageable concurrency using natural strategies such
as hierarchical resource management.

R e f e r e n c e s

[Agh86]

[Hew77]

[KWNg0]

[LQP92]

[SGPg0]

[Ung84]

[Vengl]

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, Mass., 1986.
C. Hewitt. Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence, 8-3:323-364, June 1977.
Dennis Kafura, Doug Washabaugh, and Jeff Nelson. Garbage collection of ac-

torrs. In Norman Meyrowitz, editor, 1990 ECOOP/OOPSLA Proceedings, pages
126-134, Ottawa, Canada, October 1990. ACM Press.
Bernard Lang, Christian Queinnec, and Jos6 Piquer. Garbage Collecting the
World. In Nineteenth Annual ACM SIGPLAN/SIGACT Symposium on Princi-
ples of Programming Languages, 39-50, 1992.
Marc Shapiro, Ofivier Gruber, and David Plainfosse. A garbage detection pro-
tocol for a realistic distributed object-support system. Technical Report 1320,
INRIA, November 1990.
David M. Ungar. Generation scavenging - a non-disruptive high performance
storage reclamation algorithm. In Software Engineering Symposium on Practical
Software Development Environments, pages 157-167. Pittsburgh, PA, April 1984.
Nalini Venkatasubramanian. Hierarchical garbage collection in scalable dis-
tributed systems. Master's thesis, University of Illinois, Urbana-Champalgn,
Dept. of Computer Science, Urbana, IL, forthcoming 1991.

This article was processed using the ~,TEX macro package with LLNCS style

Distributed Garbage Collection of Act ive Objects
with No Global Synchronisation

Isabelle Puaut

II~ISA / INRIA Campus de Beaulieu
35042 Rennes C~dex FaANCE.

e-mat[: puaut~irisa.fr

Abs t rac t . This paper presents an algorithm to perform distributed garbage
collection of objects possessing their own thread of control (active objects).
The relevance of garbage collection in a system of active objects is briefly
discussed. The collector is comprised of a collection of independent local col-
lectors loosely coupled to a global collector. The mutator (application), the
local collectors and the global garbage collector run concurrently. Distributed
cycles of garbage are detected. The algorithm does not require that the com-
munication channels be reliable: messages may be lost, duplicated, or may
arrive out of order. Moreover, local collectors are only loosely synchronised
to help detecting global garbage.

1 I n t r o d u c t i o n

Parallel object-oriented languages and distributed object-based systems have ap-
peared recently as a suitable paradigm for distributed computing [1]. Although not
all these languages and systems use garbage collection, we argue that garbage col-
lection is to be preferred to user-controlled memory management for the following
reasons:

- programmer-controlled memory management is notoriously error-prone. The
programmer tends to make two mistakes. One mistake is that he fails to free
a resource when it is no longer used. This leads to performance degradation.
The second mistake is that he returns a resource that is still used. Both mis-
takes are difficult to detect and recover from, especially in systems managing
persistent data.

- a better division of responsibility is obtained when the system does what it
does best (manage resources), and the programmer does what programmers do
best (design systems). The task of programming becomes easier when no longer
concerned with memory management. Programs become shorter and thus easier
to maintain.

- in distributed applications, it is unlikely that a programmer could design a cor-
rect and efficient distributed algorithm for managing distributed data.

Additional reasons appear when using objects possessing their own thread of
control (active objects). It is significantly more difficult to manage active objects than
passive data because both reachability and state must be considered. Furthermore,

149

as active objects not only consume memory space, but also processing capacity, it
is even more imperative that active garbage objects be identified quickly.

Garbage collection in an object-based system raises three distinct problems: dis-
tinguishing references from other data in objects, detecting garbage objects and
reclaiming the space occupied by these objects. This paper focuses on the second
problem.

The remainder of this paper is organised as follows. Section 2 presents briefly
garbage collection in a system of active objects and justifies the need for the devel-
opment of an original distributed garbage collector. Section 3 describes the principles
of the algorithm assuming a reliable environment. Section 4 extends this algorithm
to allow the parallel execution of the mutator and the collector, and to cope with un-
reliable communications. Section 5 analyses briefly the performance of the algorithm
in terms of messages, time and space overhead. We conclude in Section 6.

2 G a r b a g e C o l l e c t i o n o f A c t i v e O b j e c t s : T h e P r o b l e m

2.1 Def ini t ion of garbage in a sys tem of act ive objec ts

In sequential programming languages with dynamic memory allocation (i. e. list pro-
cessing languages, object-oriented languages), storage can be modelled by a directed
graph: a node of the graph is a memory cell and an edge is a reference from one
memory cell to another. A memory cell is said to be garbage if it cannot be ac-
cessed through a path from a distinguished cell (the root) leading to that cell (it
is not reachable from the root cell) [2]. But this definition is not suited to systems
managing active objects as discussed below.

In the following we assume that an. object is composed of data and of one or
several threads of control that operate on that data. The object data is a sequence
of memory cells, each containing either an atomic value or a reference to anothe~
object. An object is running when at least one of its threads is executing. It is
inactive when all of its threads are inactive. An object may activate another object
through message passing, if it is running arid if its data embeds a reference to the
other object. When activating another object, an object may communicate a subset
of its data to the activated object.

Note that the computing model described above is quite general and is used in
many concurrent object-oriented languages (e.g. [3, 4, 5]). Therefore, the proposed
garbage collector may be retained for a wide variety of concurrent object-oriented
languages and systems.

Garbage collection in systems of active objects was first addressed for the actor
computation model [6] and later refined in [7]. Only a brief definition of garbage in
a system of active objects is given here; further details can be found in [7].

Informally, an object is garbage if its absence from the system cannot be detected
by external observation, excluding from its consumption of memory and processor
resources. To make this idea more concrete, root objects are introduced, to designate
objects that are always needed. The root objects are the objects which have the
ability to directly interact with the external world, via I/O devices, external naming,
etc. Root objects are assumed to be always running. Intuitively, an object is garbage
either if it is inactive and cannot be activated in the future, or if it cannot send

150

information to or receive information from a root object. In other words, an object
is garbage if:

- it is not a root object,
- it cannot potentially receive a message from a root object,
- it cannot potentially send a message to a root object.

In the above definition, the term potentially requiree further clarification. An
object that cannot at a given time directly activate a root object (because it is
either inactive or does not possess a reference to a root object) may do so later
because it may be activated by another object that gives it a reference to the root
object. There exists a set of transformations that change the system of objects from
a representation of what can currently happen to what can potentially happen. Let
us consider which objects in Figure 1 are garbage.

Legend:

ZX root object

0 running object

r3 inactive object

- -* reference

/

[~ objects : d,e,f

Fig. 1. A system of active objects

Objects e and f are garbage because they cannot potentially communicate with
the root object r. Object d is garbage because it cannot be activated. Objects b and
c are not garbage because they can communicate to object a their own reference
and then can be indirectly activated by the root object r through a later on. Note
that the definition of garbage in a system of active objects is actually different from
the definition of garbage in sequential systems, which is based only on reachability.
Objects b and c are not garbage, although they are not reachable from a root object.
Note also that when using the definition of garbage given above, both running and
inactive objects may be garbage (both e and f are garbage).

One key property of garbage objects is that they cannot become non-garbage
(stability property). This is because an object is determined to be garbage only if
there is no possibility of communication between it and a root object. Therefore,
once an object is garbage, there is no sequence of transformation which could cause
it to become non-garbage.

151

2.2 W h y a new d i s t r i b u t e d ga rbage col lector ?

Numerous garbage collection Mgorithms have been proposed since the birth of the
first programming languages with dynamic memory allocation. Most of them apply
only to non-distributed passive objects [2]. Fewer collectors have been developed for
distributed systems (see [8, 9, 10] for examples) but the vast majority of them focus
on determining object teachability which, as seen before, is too weak a criterion for
detecting garbage in a system of active objects. Few algorithms detect distributed
active garbage objects [11, 12] but either use a more limited model of computation
or enforce global synchronisation.

A distributed garbage collector similar to the one proposed in this paper is the
garbage collector described in [12] for a distributed system of actors. Like our garbage
collector, this technique relies on independent local garbage collectors and a global
garbage collector, both using marking. However, unlike our proposition, the garbage
collector of [12] enforces global synchronisation to detect global garbage, and assumes
reliable communications.

Another related garbage collector was developed for the EMERALD object-based
programming system [3, 13]. While EMERALD provides active objects, the garbage
collector designed for this system is based exclusively on object teachability (all
running objects are designated as being root objects). Moreover, like the distributed
garbage collector described in [12], it enforces global synchronisation to detect global
garbage and assumes reliable message transmission.

The distributed garbage detection protocol described in [14], like ours, supports
unreliable communication channels. No global mechanism is required to detect global
garbage. This protocol only uses information local to each node or exchanged be-
tween pairs of nodes. However this protocol, unlike ours, only considers object reach-
ability and does not detect distributed cycles of garbage.

Our algorithm is in some aspects similar to the one described in [15]. Like this
algorithm, our global collector is based on (possibly out-of-date) information on
inter-node references that permits the elimination of global synchronisation when
detecting global garbage. Unlike [15], node crashes and crash recovery are not con-
sidered. Only node unavailability is supported. However, in contrast to [15], we detect
garbage in a system of active objects and require neither synchronised clocks nor
bounded message transmission delay.

3 B a s i c P r i n c i p l e s o f t h e G a r b a g e C o l l e c t o r

3.1 S y s t e m m o d e l

An object is an active entity whose data contains references to other objects. A refer-
ence to an object is a unique name that is not reused when the object is deleted. The
universe of objects is subdivided into spaces (e.g. the local memory of a processor,
or a disk unit). At any time, an existing object is located in exactly one space. Each
space has its own local root object. The global root object is conceptually formed
of the union of M1 local root objects. It is assumed that it is possible to distinguish
a local reference (to an object in the same space) from a remo~e reference (to an

152

object in another space). Like many other garbage collectors (e.g. [14, 16]), indi-
rection tables are used to distinguish between local and remote references. We also
distinguish between local objects (referepced only by objects of the same space and
having only local references), and global objects (having remote references and/or
referenced by an object of another space). Local objects are assumed to be much
more numerous than global objects. Objects communicate through message passing.
The references embedded in a message are distinguished from atomic values. When
two objects located in different spaces communicate, messages are sent across the
corresponding spaces.

Space S Space T

Fig. 2. A distributed system of active objects

An example of a distributed system of active objects is shown in Figure 2. Spaces
are denoted with capital letters (S,T), objects with lower-case letters (a,b,c). A
message sent from space S to space T is noted S ~ T : {contents}. A reference to
an object x is noted @x. The term mutator is used to refer to the overall computation
achieved by the objects.

In this section, message transmission is assumed reliable and FIFO (tWO succes-
sive messages from a space S to a space T are received in the order sent). It is also
assumed that the mutator is halted during local garbage collection. These assump-
tions are made to simplify the description of the principles of the garbage collector
and are relaxed in section 4.

The garbage collector is comprised of a collection of local garbage collectors (one
per space) loosely coupled to a global garbage collector (Figure 3). Local garbage
collectors identifies and reclaim objects that can be determined to be garbage by
using only local information (local garbage). In the example shown in Figure 2, k
and f are local garbage. Objects that need inter-space communication to determine
if they are garbage are retained by the local garbage collectors. The number of such
objects increases while the mutator executes.

The global collector identifies the garbage objects whose detection requires inter-
space communication (global garbage). Periodically, each local collector running on
a space S sends information to the global collector. This information includes the
subgraph of S's object graph needed for the identification of global garbage. The
global collector records the subgraphs sent by the local collectors and processes this
information asynchronously in order to detect global garbage.

Local Collector

153

Fig. 3. Architecture of the distributed garbage collector

The local and global collectors are both based on a colouring algorithm, which
is first described. The local collectors and the global collector are then presented in
turn.

3.2 A s i m p l e c o l o u r i n g a l g o r i t h m to d e t e c t g a r b a g e a c t i v e o b j e c t s

A simple algorithm based on marking is proposed in [7] to detect garbage in a sys-
tem of active objects. It is assumed that the muta tor is halted during the marking
process. Three colours are used to mark the objects: objects coloured white cannot
potentially communicate with a root object; objects coloured grey could communi-
cate with a root object if they were activated; objects coloured black can potentially
communicate with a root object. Initially, all objects are marked white, except for
root objects which are marked black. The five rules given in table 1 are applied
continuously until no new marking is done.

Table I. Marking rules

Rule 1 : Mark black all objects referenced by black objects.
Rule 2 : Mark black all running objects having a reference to a black object.
Rule 3 : Mark black all running objects having a reference to a grey object.
Rule 4 : Mark grey all inactive objects having a reference to a black object.
Rule 5 : Mark grey all inactive objects having a reference to a grey object.

The first rule marks black the objects that can directly receive a message from
a non-garbage object. Rule 2 marks black the objects that can directly activate a
black object. Rule 3 marks black the objects that can directly activate a grey object.

154

Rule 4 marks grey the inactive objects having a reference to a non-garbage object.
Rule 5 marks grey the inactive objects that could (if they were activated) send a
message to a grey object.

When no new marking can be done, all black objects are considered to be non-
garbage. Grey and white objects are garbage and can be reclaimed. An object is
marked at most twice: once grey and once black. The termination of marking follows.
Two algorithms implementing the above marking rules are given in [7].

3.3 Loca l g a r b a g e c o l l e c t o r

Detection of local garbage

Let us consider an object x located in a space S that is potentially referenced by
an object y located in another space. Object x must be retained even if it is inactive
because it may be activated by y. A running object having remote references must
be retained because it may activate a remote object. An inactive object containing
a remote reference must be retained only if it can potentially be activated.

The marking rules described above are used to detect the local garbage of space
S. Initially, the following objects of space S are coloured black: the root object of
space S, remotely referenced objects and running objects having remote references.
The inactive objects containing remote references are coloured grey. All the other
objects of space S are coloured white. When marking is complete, all white and
grey objects are garbage and can be reclaimed, without any synchronisation with
the other spaces.

Table 2. Local garbage collection

Initialisation: black

grey

white

End of Local Collection: black

Local Garbage

Space fi

{a,b,i;

{}
{c,k}

{a,b,c,i}
{k}
{}
{k}

Space T

{J,g}

{h,e,q
{d,e,g,h,j]

{}
{q
{q

The progress of local collection in space S of Figure 2 is shown in table 2. At
the end of the local marking, objects k and f are identified as garbage and can be
reclaimed.

155

Cooperation to the detection of global garbage

Periodically, a local collector running on a space S identifies the objects that are
needed for the detection of global garbage. The references contained in these objects
are then sent to the global collector that processes them asynchronously. The objects
needed for detecting global garbage are the objects affected by remote references,
that is objects that can potentially communicate with remote objects (they may be
local or global to space S).

The objects needed for the detection of global garbage are identified by applying
the marking rules given in section 3.2, in which colours are renamed. Initially, the
running objects containing remote references and the remotely referenced objects
are marked REMOTE (analogous to black). The inactive objects containing remote
references are marked POSSIBLYREMOTE (analogous to grey). The other objects are
marked LOCAL (analogous to white). When marking is finished, REMOTE objects
are used to detect global garbage (objects a, b, c and i for the space S of Figure 2).
All the references contained in these objects form a subgraph of S's graph of objects
(shown below for the space S of the example).

The subgraph is then sent to the global collector as a list of edges. In our ex-
ample, we get the list (< a, root >< b, inactive >). (< c, running >< a, root >).(<
i, running >< j, unknown >). As the state of object j is not known by space S, it is
sent as unknown to the global collector. The state of j will be known by the global
collector when merging the informations sent by the local collectors.

3.4 Global garbage collector

The global collector is a logically centralized service that maintains a graph G which
is the merge of the subgraphs sent by the local collectors. Since local collectors do
not synchronise with each other when sending information to the global collector,
the global collector must be able to detect whether G represents a consistent vision
of the system state. This issue is examined before giving a more detailed description
of the global collector.

Consistent global states and garbage collection

Let us consider a distributed system composed of n processes p/, 1 < i < n
communicating through message passing on reliable communication channels cij,
1 < i , j < n, where cij denotes the communication channel between Pi and pj.

156

Message transmission is assumed to be finite, but not necessarily bounded. Each
process Pi has a private local state. The state of any communication channel is the
set of messages sent by process pi and not yet received by process pj. The execution of
a process consists of a sequence of events. The events are classified according to three
categories: send, receive, and internal where internal events modify only the process
local state. A global system state if comprised of the processes local states and the
communication channels states. A global state is qualified as being consistent (or is
called global snapshot [17, 18]) if for each message captured as received in a process
local state, the message is captured as sent in the sender local state. An interesting
feature of global snapshots is that they can be used to detect stable properties [17].

Consistency of a global system state may be determined through the use of vector
timestamps [18, 19] that t imestamp events occurring in a distributed system. Each
process Pi has a clock VT~ consisting of a vector of length n, where n is the number
of processes. With each event of process Pi, VTi "ticks" by incrementing its own
component of its clock, VTi[i]. Ticking is considered to occur before any event; the
t imestamp of an event is the clock value after ticking. Each message gets a piggy-
backed t imestamp consisting of the sender clock. The receiver pi of the t imestamped
message updates its clock with the componentwise maximum of its clock and the
t imestamp contained in the message, that is, VTi := sup(VTi,t), where t is the
t imestamp of the message and sup(C, C I) = [max(C[1], C'[1]) max(C[n], C~[n])].
Figure 4 shows an example of events t imestamping using vector t imestamps (arrows
denote message transmission).

[1,o,o] [2,o,o1
Process Pl I

Process p2 [0,-'~, O] [~2,2 ,0]

Process p3 t
[0,0,1]

G1 G2
,3,o] _

E2,3,o , -

/E010,21 t2,4,3]"-
Fig. 4. Vector timestamps

Assuming that VT~ corresponds to the clock of process Pi t imestamping its local
state lsi, a global state is consistent [18] if:

Vi Vj V ~ [i] >_ V ~ [i]

For instance, in Figure 4, the system state in G1 is a consistent state, while the
system state in G2 is not consistent (VTs[2] > VT212]): the message sent from P2 to
Ps is captured as received in P3 state and not yet sent in P2 state.

Vector t imestamps can be used to detect global garbage due to the stability
property of garbage: once an object is garbage, it remains garbage forever.

157

The protocol

Events are t imestampcd using vector timestamps. Each space S maintains a
vector t imestamp VTs. The information sent by the local collector of space S to the
global collector is t imestamped with the clock VTs corresponding to the construction
of this information. Note that the information sent to the global collector must
contain the states of the communication channels in order to obtain a consistent
state. This is described in the following paragraph.

The local collectors and the global collector communicate through asynchronous
message passing. In this way, the local collectors are not blocked while global garbage
is detected. Two types of messages are used (see table below): Info is sent by a local
collector to the global collector, and contains the information needed to detect global
garbage; Delete is sent by the global collector to a local collector to notify that some
objects are garbage.

Global Collector

Maintains a global graph G composed of objects needed for the detection
of global garbage. G is composed of the subgraphs sent by the local
collectors and the clocks at which these subgraphs were computed

--+ Info(S,Edges, Trans, VTs)

Receipt of information from the space S; it includes a list of references
(Edges), a list of references that are possibly in-transit (Trans) and the
timestamp at which this information was computed.

Delete(S,list_of_obj)

Sending of a message notifying S that the objects belonging to list_oI_ob j
are garbage.

The global collector represents G as a set of edges labelled with the space that
sent them. An edge is a tuple (< idl, starer > < id2, state2 >), where idl and id2 are
names of objects and statel and state~ are states of objects (i.e. running, inactive
or root). The global collector also stores the timestamps of the last information sent
by the local collectors (VT1, .. ,VT~).

Upon receipt of an Info(Si,Edges, Trans, VTs)message, the global collector re-
places the edges of G that are labelled with Si by the edges contained in Trans and
Edges. The t imestamp VTI of the old subgraph sent by Si is replaced by VTs. The
global collector then checks if G is consistent (i.e. Vi Vj VTi[i] >_ V~/~[i]). If G is
not consistent, nothing is done. Otherwise, the global collector traces G using the
marking algorithm described in paragraph 3.2. Initially, all objects whose state is
root are marked black. The marking rules are applied until no new marking is done.
When marking is finished, all the objects whose colour is white or grey are garbage.
All white or grey objects labelled with space S are gathered in a list I. The message

158

Delete(S,l) is then sent to space S.

Recording the state of the communication channels

The global collector needs to know the states of the communication channels
in order to establish a consistent state. The only informations relevant to garbage
collection are the references contained in in-transit messages, hence this is the only
information sent to the global collector. Note that a reference @x contained in a
message may be considered in-transit although received without incorrect behaviour
of the global collector. Indeed, this implies only that G has an extra-edge containing
@x which results in delaying the detection of x as garbage. Consequently, each
message need not be acknowledged. Each time a message is sent, the references
contained in the message are stored; it only remains to free the storage needed to
store these references.

Assuming FIFO channels I a message m : S ----* T : {..., @x, ...} is received when T
has acknowledged a message sent after m; the space needed to keep track of @x can
then be freed. In addition to the vector VTs, used to t imestamp the information sent
to the global collector, each space S has a vector of clocks Htss (for highest), used to
free the memory occupied by possibly in-transit references. Htss[7] indicates that
the last message received by S from T was sent at T 's t ime Htss[7]. The following
actions must be executed when sending and receiving messages:

- Sending of m : S ~ T : {..., @x, ...}
(where m corresponds to the sending of a message from an object y to an object
z)

- increment VTs,
- store ~rans = < z, x,T, VTs[S] >, that indicates that a reference from z to

x is in transit and was sent to space T at S's t ime VTs[S],
- send m to space T together with the vector clock of the sender and the

sending clock of the last message from T to S:
m = S ~ T{..., @z, ...VTs, Htss[7]}.

- Receipt by S of a message from T < ..., VTT, HT~sT[S] >.
- update VTs with VTT,
- update Htss[T] with VTT[T],
- delete all trans = < x, y, T, VTs [5~ > such as VTs IS] < HtsT[S].

When S sends information to the global collector, the list of possibly in-transit
references are included in this information.

Guaranteeing global garbage is eventually deleted

While not formally proved, the global collector does not detect an object as
garbage although it is not, because the global collector processes a global snapshot
of the system. We wish to show there that all global garbage is eventually deleted.
Three properties are needed to ensure that progress is made:

(Dynl) A local collector sends new information to the global collector in finite
time

159

This property can be ensured by performing the detection of local garbage at
regular finite intervals, and sending information to the global collector after a fixed
number of local garbage collections.

(DynP) In-transit references are known to be received in finite lime

The technique used to keep tr, ack of the states of the communication channels,
although it does not need extra communications, does not satisfy this property.
Indeed, if a space S stops sending messages to space T after the receipt of a message
rn from T, T will never know m wa~ received. In order to satisfy (Dyn2), each space
S must send to another space T at least one message in a finite time interval.

(Dyn3) A consistent stale is detected in finite lime

This property is not directly satisfied by the proposed protocol. Indeed, the
global collector may detect a consistent state only after a very long delay (this delay
may also be infinite). A practical approach to attempt reducing this delay, when
the spaces physical clocks are loosely synchronised, is to send information to the
global collector at predetermined physical times. The spaces are in this case loosely
synchronised to send information to the global collector. However, although this
technique may seem realistic from a practical point of view, it still does not ensure
that a consistent state is obtained in finite time.

A panic mode of the global collector, less efficient that the normal mode given
in the previous paragraphs is defined in order to satisfy (Dyn3). In panic mode,
all the spaces must synchronise with each other for obtaining a consistent state.
The protocol given in [18] can be used for that purpose. Panic mode and normal
mode can be combined into a judicious mixture depending on how short of free
store the system is. We define a nervous mode, in which each local collector has a
panic threshold PT. PT is the maximum allowable number of messages containing
information sent to the global collector before a consistent state is obtained. When
the number of messages sent to the "global collector exceeds PT without obtaining a
consistent state, the system enters the panic mode. A computation of global snapshot
is initiated. In this way, the system can balance garbage collection costs against the
urgency of its need for storage.

4 E x t e n s i o n s o f t h e B a s i c A l g o r i t h m

4.1 Concur rency be tween m u t a t o r and collector

Halting the mutator while garbage objects are detected leads to unpredictable inter-
ludes in the computation. Such interludes are annoying for users running interactive
computations and are unacceptable for applications having real-time requirements.
The technique described in [12] can be used to execute concurrently the mutator
and the local collectors: the mutator participates to the marking of objects when
modifying the object graph. We focus here on allowing the local and global collectors
to proceed in parallel, with as few synchronisation as possible.

The global and local collectors must cooperate for the deletion of global garbage.
Indeed, the global objects contained in a space are shared between the local collector

160

of this space and the global collector: it would be incorrect to delete a global object
while it is used by the local collector, e.g. during local marking. Deletion of a global
object is achieved by the local collector of the space containing this object. Upon
receipt of a Delete(S,x) request, z is marked as "deleted". The actual deletion of x
is done by the local collector during its next reclamation cycle.

The marking of objects for the detection of local garbage and the marking of
objects for the detection of global garbage are independent. Two distinct coiour
fields can be used to achieve these two marking cycles in parallel. The same colour
field can however be used if these two marking cycles are done sequentially.

4.2 Unre l iab le communicat ions

Until now, we have considered reliable and FIFO communication channels between
spaces. In true distributed systems, additional features must be taken into account.
A message may be lost, duplicated or arrive our of order. Byzantine failures are ruled
out: message contents are not altered during transmission. Delivered messages arrive
in finite (but not necessarily bounded) time. When considering that messages may
be lost, it is assumed that transmission of sufficiently many messages will eventually
cause at least one to be received.

Two kinds of messages exist in our system: mutator messages and collector mes-
sages, the latter being used for the detection of global garbage (Info and Delete
messages). It is assumed that the mutator knows how to deal with unreliable chan-
nels (e.g. by sending again lost messages and removing duplicates). Our algorithm
tolerates message loss, duplication and non-FIFO ordering independently of the so-
lutions adopted by the mutator.

Message loss

Assuming that the local collectors send information periodically to the global
collector, the loss of a message Info will only cause a delay in the detection of global
garbage. The loss of a message Delete(S,x) is also tolerated since garbage objects
remain garbage: the global collector will still detect �9 as garbage during its next
marking phase.

The loss of a mutator message will not cause the incorrect deletion of objects.
The only objects that could be incorrectly identified as garb'age are the objects whose
reference is contained in the lost message. All references contained in a message m
sent from S to T are considered to be in transit until T has acknowledged a message
sent by S after m (m is either received or lost). Thus, no object is incorrectly
identified as garbage. If m contains the last reference to object x, x will eventually
be detected as garbage (as soon as S will detect that m is either received or lost).

Non-FIFO ordering

Our use of timestamps to guard against possibly in-transit references works well
if channels are FIFO, i.e. if messages are received in the order sent (if at all). With
a small extension, our algorithm can tolerate some amount of non-FIFO ordering.
Non-FIFO orderings are acceptable if the following acceptance condition is added for
receiving mutator messages m = S �9 T : {...} :

161

H sT[S] > VTs[S3

A message m sent from S to T is rejected, i.e. considered as being lost, if it arrives
after a message sent from S to T after m (all late mutator messages are considered
lost). Late Info messages received by the global collector are also eliminated, because
they carry out-of-date information. An Info message sent by a space S is accepted
if the following acceptance condition is verified:

VT < VTs,

where VTs is the timestamp of the last information sent by S. Non-FIFO ordering
of Delete(S,x) messages are harmless since garbage objects remain garbage.

Duplicated messages

The duplication of an Info message is already taken into account by the accep-
tance condition of messages on the global collector, given in the previous paragraph.
The duplication of a Delete(S,x) message is treated by making the action executed
when this message is received idempotent: z is marked "deleted" if it still exists and
is not already marked "deleted". Since object identifiers are not reused, there can be
no confusion of object identifiers. If object names were reused, stronger assumptions,
like bounded transmission delay would have to be done.

4.3 M o r e ava i l ab i l i ty

The global collector stores only (possibly out-of-date) information sent by the local
collectors. It can therefore be replicated without any problem. A local collector sends
information to a single replica of the global collector (the global collector is seen by
its user as a centralized service). Information is then propagated to all other replicas
in the background. This permits garbage to be collected even if some of the replicas
are unavailable and removes the bottleneck of a centralized global collector.

5 P e r f o r m a n c e e v a l u a t i o n

Cost of the proposed garbage collection algorithm is briefly considered according
to three different measures: in terms of messages, memory space, and computation
time.

Messages

The only additional foreground messages are those needed to detect global gar-
bage. Assuming messages have unbounded size, if n is the number of spaces in
the system, only n + 1 messages are required to detect an object x as garbage (n
Info messages and one Delete(S,z) message). However, although the number of sent
messages is low, there may be a long delay between the time an object becomes
garbage and the time it is effectively detected as garbage. However, all garbage

162

is eventually detected. In real systems, where messages have bounded size, more
than one message may be sent in order to communicate information to the global
collector. The number of edges, and thus the number of messages actually sent
strongly depends on the percentage of global objects in a space.

Memory space

Four or two bits per object are required for marking, depending upon whether
local marking and marking the objects used for the detection of global garbage are
done in parallel or not.

Two clock vectors per space S are required : VTs and Htss. In addition, the
global objects must be identified. This is usually done by using two tables: one for
remotely referenced objects and the other for objects containing remote references.

The global collector stores a set of edges necessary to detect global garbage. The
memory space occupied by this set is strongly dependant on the degree of locality
exhibited by the mutator. If n is the number of objects of the global graphe G,
2 * n bits are required for marking these objects. The set of edges can for example
be represented as a list or a matrix depending on the structure of G. Assuming
G is represented as a list of edges, each list element contains two object references.
Experimental results on the structure of G will help knowing the best representation
for G and the space occupied by this representation.

Finally, each message must be timestamped; however, such a requirement is al-
ready common in distributed systems.

Computation time

Mainly three factors have to be considered : local marking, that is used to detect
local garbage, the collection of information by each space for the detection of global
garbage and global marking, that actually detects global garbage. We use the algo-
rithm described in [7] for marking. This algorithm has a time complexity of O(n2),
where n is the number of objects.

6 Conc lus ions

In this paper we have proposed an algorithm to perform distributed garbage col-
lection of active objects. Autonomous local garbage collectors detect and reclaim
local garbage, without synchronising with each other. Global garbage (even form-
ing distributed cycles) is identified asynchronously by a logically centralized global
garbage collector. The computation is not halted while detecting garbage objects
and only weak synchronisation is required between the local collectors. This weak
synchronisation is paid by a delay in the detection of global garbage. The algorithm
is based on weak assumptions on the communication channels: messages may be lost,
duplicated or arrive out of order. However, there are several limitations of the collec-
tor described in this paper. These limitations, and future work needed for removing
them, are discussed below.

First, some quantitative information on objects can improve the performance of
the garbage collector. In particular, the following knowledge would be useful:

163

- the percentage of objects needed to detect global garbage,
- the variations of the lifetimes of objects,
- the percentage of cyclic structures.

The first point is of prime necessity because it allows to choose the frequency
of global garbage detection. It also permits to know how much information is sent
to the global collector. If too much information is sent, it would be interesting to
study if an additional conservative technique for detecting global garbage (like the
one described in [14]) could lower the overall cost of garbage collection. Having an
idea of the lifetimes of objects would help knowing if a generational method [20] is
adequate for the collection of garbage in a system of active objects. The percentage
of cyclic structures, and more particularly of distributed cycles would show whether
detecting distributed cycles is of prime importance or not. An implementation of the
algorithm, currently under way in the GOTHIC distributed object-based system [21]
will help tuning the algorithm.

Object migration was not considered here: its influence on the proposed garbage
collector has to be taken into account. Finally, the algorithm presented in this paper
has not been proved correct. This is an area which needs further investigation.

A c k n o w l e d g e m e n t s

Thanks to Val~rie Issarny, Michel Ban&tre and Ciars Bryce for valuable comments
on earlier drafts of this paper.

R e f e r e n c e s

1. Roger S. Chin and Samuel S. Chanson. Distributed object-based programming sys-
tems. ACM Computing Surveys, 23(1):91-124, March 1991.

2. J. Cohen. Garbage collection of linked data structures. ACM Computing Surveys,
13(3):341-367, September 1981.

3. A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract
types in emerald. IEEE Transactions on Software Engineering, 13(1):65-76, January
1987.

4. M. Benveniste and V. Issarny. ArtCrlE : un langage paxall~le & objets. Research report
642, IRISA, March 1992.

5. A. Yonezawa and M. Tokoro, editors. Object-Oriented Concurrent Programming. MIT
Press Series in Computer Systems, 1987.

6. G. Agha. Actors : A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

7. D. Kafura, D. M. Washabaugh, and J. Nelson. Garbage collection of actors. In Proc.
of the 1990 ECOOP/OOPSLA Conference, pages 126-133, 1990.

8. P. Watson and I. Watson. An efficient garbage collection scheme for parallel computer
architectures. In Proc. of Conf. PARLE, volume 259 of Lecture Notes in Computer
Science, pages 432-443, Eindhoven, 1987. Springer Verlag.

9. L. Augusteijn. Garbage collection in a distributed environment. In Proc. of Conf.
PARLE, volume 259 of Lecture Notes in Computer Science, pages 75-93, Eindhoven,
1987. Springer Verlag.

164

10. M. Schelvis. Incremental distribution of timestamp packets: A new approach to dis-
tributed garbage collection. In Prac. of 1989 OOPSLA Conference, pages 37-48, Oc-
tober 1989.

11. P. Hudak and R. M. Keller. Garbage collection and task deletion in distributed ap-
plicative processing systems. In Proc. of the ACM Conf. on LISP and Functional
Programming, pages 168-178, 1982.

12. D. M. Washabaugh and D. Kafura. Distributed garbage collection of active objects.
In icdcs11, pages 369-376, May 1991.

13. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the emerald
system. ACM Transactions on Computer Systems, 6(1):109-133, February 1988.

14. M. Shapiro, D. Plainfoss~, and O. Gruber. A garbage detection protocol for a realistic
distributed object-support system. Research report 1320, INRIA, November 1990.

15. B. Liskov and R. Ladin. Highly-available distributed services and fault-tolerant dis-
tributed garbage collection. In Proe. of 5th International Symposium on the Principles
of Distributed Computing, pages 29-39, Alberta, Canada, August 1986.

16. J. Hughes. A distributed garbage collection algorithm. In Proc. ACM Conference on
Functional Programming Languages and Computer Architecture, volume 201 of Lecture
Notes in Computer Science, pages 256-272, Nancy (France), September 1985. Springer
Verlag.

17. K. M. Chandy and L. Lamport. Distributed snapshots : Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February
1985.

18. F. Mattern. Virtual time and global states in distributed systems. In Proc. Int.
Conf. on Parallel and Distributed Algorithms, pages 215-226. North-Holland Publish-
ing, 1988.

19. C.J. Fidge. Timestamps in message-passing systems that preserves the partial ordering.
In Proc. 11th Australian Comp. Conf., February 1988.

20. H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of
objects: Communications of the ACM, 26(6):419--429, June 1983.

21. Michel Bans Yasmina Belhamissi, and Isabelle Puaut. Some features of gothic:
a distributed object-based system. In 1992 International Workshop on Object-
Orientation in Operating Systems (I- W O 0 0 S '9P), Paris, France, September 1992.

Memory management for parallel tasks in shared memory

K.G. Langendoen H.L. Mul ler W.G. Vree

Univers i ty of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

koen@fwi.uva.nl

Abstract. Three memory management strategies for sl ared-memory multiprocessors that
support two-space copying garbage collection are presented. These strategies exploit the
fork-join task structure of the divide-and-conquer paradigm by equipping each task with a
private heap that can be locally collected independently of other processors and tasks. The
memory management strategies use a virtual address space to allocate private heaps such
that the efficient copying collectors do not need to be adapted to handle physically scattered
heaps. When the allocation strategies run out of the virtual address space, an expensive
compaction operation has to be performed. Results from a detailed simulation, however,
show that this happens so infrequently that the costs are negligible in practice.

1 Introduction

An important property of logic, object-oriented, functional, and other high-level programming
languages is their automatic management of dynamically allocated storage. The language sup-
port system provides the user with a virtually unlimited amount of storage by running a garbage
collector to reclaim storage that is no longer in use. The efficiency of the garbage collector
is important for the application's performance, especially when the underlying computational
model (e.g., graph reduction) allocates lots of temporary storage.

From the three classes of garbage collection algorithms (reference counting, mark&scan,
and copying collectors), the copying collectors perform best on systems with large memories
[Har90] for two reasons. First, they only traverse live data, which usually accounts for only
a small fraction of the total heap space, while mark&scan collectors access every heap cell
twice. Secondly, copying collectors compact the live data into one consecutive block, which
facilitates the fast allocation of (variable sized) nodes by advancing the free pointer instead of
manipulating a linked list of free cells and managing the reference counts.

Now that shared-memory multiprocessors are widely in use, it is important to develop
runtime support systems that efficiently manage the storage allocated by parallel programs.
This raises the question of how to adapt the efficient sequential copying collectors to run on
such parallel machines, while making the best use of the available hardware support.

Existing copying garbage collectors that support general purpose parallel applications on
shared-memory multiprocessors collect the complete heap in shared memory at once. As a
consequence, global synchronisation is needed to control the garbage collections (see Section 2)
and half of the shared heap is reserved for to-space. For the class of (fork-join) task parallelism,
however, it is possible to provide each task with a private hea~, which can be locally collected
independently of other processors and tasks; the memory manager exploits the properties of

166

fork-join parallelism: tasks only communicate when creating new tasks or returning results,
while parent tasks wait for the results of all their children before resuming execution.

The scattered heaps of join tasks complicate the pointer classification of the local collector
when copying live data to reclaim garbage space. The memory management strategies, as
described in Section 3, handle this problem by allocating storage blocks in a virtual address
space. A set of parallel benchmark programs (Section 4) is used to evaluate the basic scheme
and two improvements on a multiprocessor simulator.

2 Copying garbage collection for multiprocessors

Cheney's two-space copying collection algorithm as described in [Che70] is the basis of many
(parallel) copying garbage collectors. The available heap space is divided into two equal parts:
the from-space and the to-space. During normal computation new nodes are allocated in from-
space by advancing the free-space pointer through the from-space. When the heap space in the
from-space has been consumed, all live nodes are evacuated (i.e. copied) to the empty to-space
by the garbage collector.

[global data [I from-s-pace I to-space]
T flip +

[,globaldata II to-space l from-space"l
Figure 1: Memory layout for two-space collector

The evacuation starts with copying the nodes in from-space that are referenced by root
pointers in the global data area, which contains for example the call stack. Then the nodes in
to-space are scanned for pointers to objects in from-space that still have to be copied. This
process is repeated until the to-space contains no more references to nodes in from-space. The
strict separation of global data and the heap allows the collector to efficiently detect with one
compare instruction whether a pointer refers to a node in from-space or not. After evacuating
all live nodes, the roles of the two semi spaces are f l ipped, and ordinary computation is resumed.

A stlaightforward adaptation of a copying collector to run on a multiprocessor is to let
all processors participate in a global evacuation operation: processors allocate large blocks of
storage in the shared global heap, and if one processor detects the exhaustion of the (global)
from-space, it synchronises with the other processors to start garbage collection. The evacuation
of live nodes proceeds with all processors scanning parts (pages) of the to-space in parallel. To
handie possibly shared data objects, processors lock each individual node in from-space when
inspecting its status and, if necessary, copying it to to-space. This method is, for example, used
in MultiLisp [Hal84] and GAML [Margl].

To reduce the locking overhead of the above method, ttle Parlog implementation described
in [Cra88] partitions the heap among the processors, so that each processor can collect its own
part of the heap. Whenever a processor handles a remote pointer to a live node in another part
of the heap, it places a reference to the pointer in the corresponding processor's Indirect Pointer
Stack (IPS). After a plain evacuation operation, each processor scans its IPS buffer, which
contains (new) roots into its private heap, updates the pointers to point to copies in to-space,
and continues with scanning the new objects in to-space. Now only the accesses to the IPSes
have to be guarded with locks instead of each heap object.

167

A rather different approach to use copying collectors on parallel multiprocessors is described
in [AEL88]: one processor reclaims all the garbage, while the others proceed with their normal
computational work. The synchronisation between the collector and the other processors (mu-
tators) is accomplished through standard hardware for virtual memory. When the evacuation of
live nodes starts, the collector copies all root nodes to the to-space, and marks the virtual memory
pages of the to-space as inaccessible to the mutators. Then the mutators immediately resume
execution in the to-space, while the collector scans the to-space page by page for references to
nodes in from-space that still have to be evacuated. Whenever the collector has finished a page
of the to-space, it makes that page accessible to the mutators. If a mutator tries to access an
object in a not-yet-scanned page in to-space, the hardware generates an access violation trap.
This triggers the collector to handle the referenced page immediately, whereafter the mutator
resumes execution.

The common disadvantages of the above copying garbage collection algorithms for mul-
tiprocessors are that they waste half of the shared heap, which is reserved for the to-space,
and that they require global synchronisation operations. The inherently global nature of these
algorithms also raises efficiency problems when scaling to large (hierarchical) shared-memory
multiprocessors: the single virtual memory collector can not keep up with many mutators, while
the parallel scan of the other algorithms overloads the memory bandwidth.

3 Local copying garbage collection

A possible scheme for copying garbage collectors on shared-memory multiprocessors that has
not been explored before is to provide each parallel process with its own heap and perform
garbage collection per process locally. This approach is attractive since it avoids global syn-
chronisation and cooperation of processors, while the reserved amount of to-space can be
reduced by limiting the maximum heap size of a process and time-sharing a common to-space.
Collecting a process, however, requires access to all global root pointers into the local heap. This
makes the scheme unattractive for general parallel processes that can exchange arbitrary data, in
particular heap pointers, since recording the roots from outside is a space and compute intensive
task. Instead we restrict ourselves to a task model with limited communication capabilities: the
divide-and-conquer model, also known as the fork-join model.

The divide-and-conquer paradigm is an important method to structure parallel applications
and has been extensively studied, see for example [Vre89]. It (hierarchically) decomposes a
problem into independent subproblems, solves those subproblems in parallel, and combines the
results into the solution of the original problem. The divide-and-conquer paradigm is applicable
to a wide range of applications and can be implemented efficiently on most parallel machine
architectures since divide-and-conquer applications usually generate a controlled number of
coarse-grain tasks with a restricted communication pattern: only at the begin and end of a task,
data has to be exchanged.

The fork-join task structure of divide-and-conquer parallelism allows efficient incorporation
of the above local copying collector scheme in a shared-memory multiprocessor. At runtime
a divide-and-conquer application (recursively) unfolds into a tree shaped task structure, see
Figure 2a. Each task is provided with a "private" part of the shared heap where it allocates
storage during its execution. Interior tasks (1, 2, and 3) are suspended during the execution of
their child tasks, so only leaf tasks (4, 5, 6, and 7) can reclaim their garbage locally; in Section 5

(a)

168

?

(b)

Figure 2: fork-join tree (a) with limited inter-task pointers (b).

we discuss how this restriction can be relaxed.
The garbage collection of a leaf task with a two-space copying collector requires the al-

location of a contiguous to-space and access to alt roo t pointers into the private heap. The
latter requirement is hard to fulfil in general, but the divide-and-conquer model causes the leaf
tasks to execute without any external interaction, hence, a leaf task can not pass a pointer to
any other active task; there are no pointers between tasks 4 and 5 in Figure 2b. The absence
of communication between leaf tasks, however, does not rule out data sharing since tasks can
execute different subproblems that contain pointers to shared data in common ancestor heaps.
For example, tasks 4 and 5 can share data that resides in the heap of task 2, or even in task 1.
To prevent tasks from passing pointers through their ancestor's heap, we require that shared
data is read-only. As a consequence, pointers from interior tasks to leaf tasks do not exist; for
example, there are no pointers from task 2 to either task 4 or task 5 as shown in Figure 2b.
Some programming languages already meet this "read-only" requirement. Others can satisfy it
by preprocessing the parents' data before forking the child jobs. In [LV91b], for example, an
adaptation for lazy functional languages is discussed.

Since the divide-and-conquer paradigm limits the inter-task pointers to references to ancestor
data, there are no "external" root pointers into the heap of a leaf task. This allows the garbage
of a leaf task to be reclaimed with a local sequential copying collector, which only scans the
task's call stack for root pointers. Note the resemblance with generation scavenging garbage
collectors [LH83] where often the youngest generation (cf leaf tasks) is collected, but not the
older generations (cf interior tasks).

We would like to use the sequential copying collector for interior tasks too. When an interior
task resumes execution it becomes a leaf task again since all its offspring has already ended their
execution. By having the child tasks link their heap to the parent's heap when returning their
result, the parent can also reclaim its garbage locally provided that it can handle a scattered heap.
The scattered heap can not be avoided by reserving space in the parent heap in advance since the
size of a result is unknown when creating a child task and results can become arbitrarily large.

3.1 Scattered heaps

Collecting a scattered heap is not straightforward if the private heaps of tasks are arbitrarily
allocated in the multiprocessor's shared memory because then the linked-up heaps of interior
tasks may interleave. This complicates the evacuation of live nodes since it is no longer possible

169

to distinguish pointers to objects in from-space and pointers to global (ancestor) data with a
single compare instruction. For example, suppose the-fork-join tree of Figure 2a has been laid
out in memory as shown in Figure 3a. After leaf tasks 4 and 5 have tenninated and linked their
heap to the parent task, task 2 resumes execution and the storage configuration changes to 3(b);
the heap of task 2 is no longer contiguous.

(a) 1 c 111316t 17 1
L - - ~ L - - J t t---J J

(b) I 2 1 1 1 3 1 6 1 2 1 7 ~
t_.-_.__~t_._J 1L.__J I

Figure 3: Storage layout with inter-task pointers.

When task 2 runs out of free space, it allocates a to-space at the right of task 7 and starts
evacuating the live nodes. The search for pointers to live nodes in the heap of task 2 is
complicated by the presence of heap 1, which breaks the simple memory layout of Figure 1
where global data and the from-space each have a contiguous address space. Note that task 2's
internal pointers from the right part to the left part or vice versa must be distinguished from
the inter-task pointers to 1. In principle the problem of distinguishing global and local data
can be solved by means of a lookup table that records the owner of each storage block, but
this would degrade performance because of extra memory references and table management
overhead. Instead we will use a virtual address space to allocate storage such that task heaps
never interleave with ancestor heaps.

3.2 The Basic Allocation Scheme, BAS

To support efficient evacuation of live data in scattered parent heaps, it is sufficient to enforce
that a task's private heap is allocated to the right of all its a n c e s t o r heaps. This causes a strict
separation of the task's (scattered) private data and its global ancestor data, so pointers can be
classified with one instruction as in the sequential case. The basic allocation scheme (BAS)
accomplishes the strict separation by always allocating a new heap at the right of the most
recently allocated one. Virtual memory hardware is used to relocate the released physical space
of the from-space to the right end after a garbage collect.

The basic scheme results in a window of physical memory moving from left to right through
the virtual address space, see the example in Figure 4. When task 2 resumes execution in 4(d),
its scattered heap encloses the heap of task 3, but this has no effect on the garbage collector
since task 2 to does not refer to data of task 3; it only refers to data of task 1.

The window with available physical memory (W) has to be at least as large as the size of the
largest private heap since tasks allocate their to-space in the window when collecting garbage.
By limiting the maximum task size, we significantly lower the 50% waste of memory reserved
for to-space of the (sequential) copying collectors since tasks can time-share W as a common
to-space. The costs of this limit are that large tasks have to collect their garbage more often.
Note that we can control this space-time trade-off by adjusting the value of the maximum task
size. It suffices to reserve a 1 / (p+l) fraction of the total memory size on a multiprocessor with

170

(a) ~J2J3J4J516J7j [W[

(b) 1i]213D~5161714J lwl

(c) ~ 5 [" ~ 4 1 7 1 6 J IWl

(d) fi-IT[3 2r-2<]21716J lwl
Figure 4: BAS: (a) initial configuration, (b) after collecting 4, (c) after collecting 7 and 6,
(d) "after resuming 2.

p processors, so p large tasks can execute in parallel. If the shared to-space is a bottleneck,
which we do not expect in (small) shared memory systems, a pool of to-spaces can be provided.

When the window W has completely moved to the right azld all vbtual address space has
been consumed, a global action is required to reclaim the unused holes in the virtual address
space that have resulted from the local garbage collects. To preserve the ordering between the
tasks, the virtual space is compacted by sliding the private heaps to the left. Besides adjusting the
page tables, all physical pages have to be scanned for pointers to objects in virtually "moved"
pages, so they can be relocated to their new positions. This expensive compaction method
limits the usefulness of the storage allocation scheme to systems where the virtual address space
greatly exceeds the size of the physical memory because then compactions are rarely needed.

3.3 The V.irtual Al loca t ion Scheme, VAS

We can improve the basic memory management's rapid consumption of the virtual address space
by reusing holes on the fly. Holes in the virtual address space can be freely reused for new
private heaps as long as the task ordering is preserved: tasks must be allocated to the right of
their ancestors. Thus instead of always allocating memory at the right end, the enhanced Virtual
Allocation Scheme (VAS) allocates a task's heap in the lowest free part of the virtual address
space that lies to the right of the task's parent.

The VAS works well for the common case of a divide-and-conquer application that unfolds
into a task tree with small interior tasks and big leaf tasks. After the interior control tasks have
divided the work into independent components, the leaf tasks run for a long time to compute the
partial solutions. Under the basic storage allocation scheme these leaf tasks move to the right
each time the garbage collector is invoked, but under VAS these tasks remain in a small part of
the virtual address space. A leaf task that needs to allocate a to-space can usually reuse the most
recently released from-space of another task since there are no allocation constraints between
leaf tasks; the only constraints are between interior tasks and leaf tasks.

Figure 5 shows the effects of VAS for the same example as with the basic scheme in Figure 4.
Now the positions of leaf tasks 4, 5, 6, and 7 just permute, but do not shift to the right. In
comparison with the basic scheme, the VAS administration is slightly more complicated since
it has to record the holes in the virtual address space and the position of each task's parent.

171

(a) I-1-1213141516171 Iwl

(b) 51617141 I lWl

(c) 1112F31715N6141 IWl lwl
Figure 5: VAS: (a) initial configuration, (b) after collecting 4, (c) after collecting 7 and 6,
(d) afterresuming 2.

3.4 The Circular Allocation Scheme, CAS

Both previous storage allocation schemes use paging hardware to implement a large virtual
address space. Obviously, this limits their applicability to multiprocessors with such hardware
support, while those schemes also need a considerable amount of memory to store the page
table. For example, the complete page table for a 4 Gbyte virtual address space on a MC88000
architecture with 4Kbyte pages occupies 4 Mbytes of physical memory. In addition the usage of
a page as the unit of storage results in wasted heap space due to internal memory fragmentation.
This has a strong effect on parallel applications that unfold into a large task tree where each
interior task occupies a private page of memory that is only partially fi lied with useful data. Both
sources of memory loss are tackled by the following allocation scheme that allocates storage in
a virtual address space, but does not require paging hardware at all.

The Circular Allocation Scheme (CAS) uses a fixed translation scheme to map virtual
addresses onto physical addresses. The upper bits of a virtual address are simply replaced by
zeros to obtain the physical address. This gives a virtual address space that is wrapped circularly
through the physical address space, see Figure 6. The "ghost" images of tasks 1, 2, and 3 cause
a repeated pattern of holes in the virtual address space that extends right of the physical space.

v i r t ua l a d d r e s s m a c e I /

1 1 1 1 - z 3 I M""

l il { I I?lz131 1
~ y $ | ~ l aOOFC.$$ $~CC

Figure 6: Circular Address Space

The CAS strategy uses the same allocation policy as VAS: a task's heap is allocated at the
lowest available virtual address above the task's parent. Unlike VAS, however, CAS has to skip
over the ghost images when looking for a free hole. For example, if task 3 wants to extend
s heap with another two contiguous pages to the right of task 2, then CAS can not allocate it
directly after its own heap, but has to allocate it in the large hole after the ghost image of task 1
as depicted in Figure 7.

Observe that the holes in the virtual address space are just a repetition of the physical holes.
To take advantage of this redundancy by recording the status of the physical space only, the
CAS strategy regards virtual addresses as the concatenation of a cycle-counter (most significant

172

Figure 7: CAS after extension of task 3.

bits) and a base address in the physical space (least significant bits): addr -- cycle:base. When
allocating storage to the right of a parent task located at address cycle:base, CAS first tries to
locate a suitable hole at the right of the base in physical memory. If CAS succeeds then it
returns cycle:hole as the start address of the new storage block, else CAS increases the cycle
counter and starts looking at the beginning of the physical memory and returns (cycle+l):hole
on success.

If the CAS strategy fails to allocate a large contiguous block due to external memory
fragmentation, the scattered free space has to be compacted by sliding the tasks down to the
left. This compaction only adjusts the base parts of pointers, but it is more expensive than
with the two previous schemes since all data has to be copied as well. In the previous example
compaction is needed when task 3 in Figure 7 wants to allocate 3 pages to perform .garbage
collection. The compacted memory layout is shown in Figure 8.

Figure 8: CAS after sliding compaction

Note that the sliding compaction has not compressed the virtual space, so an even more
complex compaction method is needed when CAS runs out of the virtual address space: aU
cycle parts of pointers have to be cleared which requires a permutation of the tasks in physical
memory to preserve the task ordering in the virtual address space.

The advantages of the CAS strategy are that there is no need to maintain the page tables
since the address mapping is fixed; in fact it can be implemented in hardware by cutting the
upper address pins of the processor! The fixed mapping also implies that CAS is not bound to
the usage of pages, so heaps can have arbitrary sizes to avoid (imernal) memory fragmentation.
The CAS strategy, however, can only compete with the VAS strategy if both physical and virtual
compaction operations are rarely needed.

4 Evaluation

To evaluate the performance of the three above mentioned memory allocation strategies, we have
studied their behaviour by running a set of benchmark programs on a multiprocessor simulator.
The programs are explicitly annotated to denote the parallel tasks, compiled and linked with
one of three memory management schemes, and executed concurrently under control of a
multiprocessor simulator that collects performance statistics. In particular we are interested

173

program description runtime # tasks mere. usage # garb.coll.
fit v A fast Fourier transform on a vector 1.5 15 1,846,985 14-36

queens n

wave i

compdab

15-puzzle

of v (= 2048) points, arrays are rep-
resented as lists [HV92].
A divide and conquer solution to the
n (= 10) queens problem [LV91a].
A mathematical model of the tides in
the North Sea. It consists of a se-
quence ofi (= I0) iterations [Vre89].
An image processing application that
labels all four connected pixels into
objects [Sto87, ERW90].
A branch and bound program to solve
the 15-puzzle. The iterative deepen-
ing search strategy is used [Gla92].

1.4 165 3 2 5 , 1 2 1 164-172

1.7 41 197,072 59-61

1.6 465 1,178,347 464-476

28.0 24625 28,045,720 24624-24736

Figure 9: Benchmark programs; the simulated runtimes in seconds are for BAS on a 4 processor
system; the memory usage is the number of words (32 bits) claimed in the heap; the range of
garbage collects over all runs.

in the amount of memory wasted due to memory fragmentation, and the usage of the virtual
address space. For CAS the number of physical compactions is also important information.

The benchmark programs are written in a lazy functional language that supports the divide-
and-conquer paradigm through the saTzdwich primitive [Vre90], which is used to annotate
parallel tasks explicitly at the source level. The programs, as described in Figure 9, have been
selected on two criteria: the program should be non-trivial, and the program's task structure is
expected to put strong demands on the memory allocation algorithm.

The FAST compiler [HGW91, LH92] translates the functional benchmark programs into
equivalent C programs that can be used in combination with a copying garbage collector. The
compiler, for example, maintains an explicit c..dl stack to bring all pointers under control of the
garbage collector. In addition the compiler recognises the sandwich construct and generates
code to force the shared task data into read-only form, and to call the runtime support system
with a list of tasks that need to be scheduled for execution.

The runtime support system, which is coded in C, handles the scheduling and memory
allocation of tasks. Three different versions have been constructed, implementing the storage
allocation schemes of Section 3. The common task scheduler employs a list-scheduling policy
and maintains a global stack of runnable tasks, where newly created tasks are deposited and idle
processors look for work.

When tasks run out of heap space, they double their heap size by allocating a new block if
enough global memory is available, otherwise the garbage collector is invoked. When a task
finishes, its result is compressed by invoking the garbage collector, whereafter the unused heap
space is returned to the global pool. In this pilot implementation we have not directly made use
of virtual memory hardware, but rather simulated the allocation schemes with one large chunk
of physical memory. This suffices to collect the statistics about the memory consumption of the
benchmark programs.

Instead of running the programs and run time support systems on a real shared-memory
multiprocessor, we have simulated the parallel execution. This has the advantage that we can

174

easily use different design parameters, and can obtain statistics without disturbing the execution.
The multiprocessor simulator is a stripped version of the MiG simulator [MLH92], which is
developed to study cache coherency and bus saturation effects of parallel functional programs:
Instead of tracing the memory references at the level of bus transactions as in the original, the
multiproeessor simulator only counts the number of executed instructions, loads, and stores, but
semaphore primitives are fully simulated to get realistic synchronization behaviour. Because of
this underlying execution model we have restricted ourselves to simulations of systems with 4
processors. For a single processor system, the simulator provides accurate execution times for
the benchmark programs within a 15% range of the actual measured times on a SUN 4/690.

BAS

At first, we study the behaviour of the basic allocation scheme of Section 3.2, which aiways
allocates new storage at the right end of the virtual memory space. Table 1 summarises the
results of the benchmark programs for the basic scheme with 1024 word (= 4Kbyte) pages. The
column labeled "physical" lists the maximal amount of heap words in use at any moment in
time during the execution of the application. This number does not include code and static data
that are located in separate segments, nor does it include the space needed for the page tables,
but it does account for the memory fragmentation inside pages. The second column contains
the highest virtual address used by the application, and it shows that the simplistic basic scheme
consumes large quantities of virtual memory space. The 15-puzzle, for example, allocates 200
times as much virtual space as physically needed.

program physical virtual claim rate
fft 2048
queens 10
wave 10
comp_lab
15-puzzle

1,261,568 3,917,823 2.67 Mw/s
77,824 1,443,839 t.04 Mw/s
49,152 804,863 0.47 Mw/s

208,896 4,738,047 2.89 Mw/s
726,016 142,187,519 5.13 Mw/s

Table 1: Performance statistics of the basic scheme.

The ratio between virtual and physical memory usage depends strongly on the application's
input parameters and cannot be used as a meaningful characteristic in general. Instead we have
listed the application's claim rate (in Mwords/second) that shows how fast virtual memory is
consumed. The high claim rate of the 15-puzzle is partly caused by the large number of tasks,
which results in considerable memory fragmentation inside pages. The claim rate indicates
how frequently a compaction of the virtual address space is needed. In our benchmark, the
claim rates are at most ca. 5 Mwords/second, so an application can execute in a 1 Gword virtual
address space for at least 200 seconds without a compaction on a system with four 20 MIPS
processors. A 16 node processor system will (if the program has enough parallelism) consume
the same virtual space in roughly 50 seconds. A compaction would take ca. 1 second per Mbyte
of physical memory.

175

VAS

The results of using the VAS strategy are shown in Table 2. In comparison with the basic scheme,
the benchmark applications under VAS use slightly more physical memory, but the virtual
memory consumption has been significantly reduced to within a factor 2 of the application's
physical memory requirement. Therefore an application is unlikely to need an expensive
compaction to compress the virtual memory space, hence, the compaction operation probably
does not have to be implemented at all.

program physical virtual
fit 2048
queens 10
wave 10
comp..lab
15-puzzle

1,261,568 1,572,863
80,896 105,471
49,152 73,727

234,496 517,119
849,920 898,047

Table 2: Performance statistics of the VAS strategy.

The simulator records the allocation overheads, like managing the list of free pages, of the
memory management schemes. The differences, however, are marginal and only account for
ca. 0.5% of the total execution time in the usual case that no compactions are needed.

C A S

First we have run the benchmark programs under CAS with the same pagesize (1024 words) as
the basic and VAS strategies. The results in Table 3 show the number of compactions to recover
from physical memory fragmentation besides the physical and virtual memory usage

.program physical virtual compacts
fft 2048
queens 10
wave 10
compAab
15-puzzl e

1,261,568 1,703,935 0
76,800 159343 14
49,152 73,727 0

241,664 492,543 4
775,168 803,839 0

Table 3: CAS performance, pagesize 1024 words.

The difference in physical memory usage under CAS in comparison to VAS is caused by
their difference in allocation time, which results in different task scheduling decisions. The
virtual memory usage under CAS exceeds the physical memory usage only by a small factor,
just like for VAS. Note that only the queens and comp_lab applications perform compactions to
compress the physical memory space.

Next we have run CAS with a small pagesize of 32 words to lower the internal memory
fragmentation, see Table 4. To our surprise some programs need more physical and virtual
memory; only the queens and 15-puzzle benefit from the small pagesize. The increase is caused
by the internal overhead to administrate the linked list of heap blocks. The "wasted" space
forces the large tasks to allocate another block just before finishing their computation, and since
tasks double their heapsize when running out of storage only a small fraction is actually used.

176

program physical virtual compacts
fft 2048
queens 10
wave 10
compAab
15-puzzle

1,586,176 2,359,295 0
49,760 109,759 9
60,000 134,143 10

245,792 452,671 4
467,072 1,066,655 1

Table 4: CAS performance, pagesize 32 words.

The number of compactions listed in the performance results is a worst case value since the
applications have been simulated on a multiprocessor with the minimum amount of physical
memory needed by the specific application. Adding about 50% extra memory decreases the
number of compactions to zero in all cases. Thus the CAS scheme performs well if the amount
of physical memory in the shared-memory multiprocessor is somewhat larger than the absolute
minimum required by the application.

S t ress ing the a l loca t ion schemes

The benchmark results for VAS and CAS show that the applications can be efficiently executed
in a surprisingly small virtual address space. This is a consequence of the scheduler that traverses
the fork-join tree in a depth-first manner, hence at any moment the allocation strategies only
have to satisfy a logarithmic number of the task allocation constraints (depth of the tree). To test
the limits of the allocation schemes we therefore created a synthetic application, called spine,
that unfolds into a degenerated tree: a linear list. The spine of interior tasks forces the allocation
schemes to allocate new tasks at the right end. The results for a spine of length 512 on a 4
processor system with 1024 word pages are presented in Table 5.

strateg: 1
BAS
VAS
CAS

physical virtual comp claim rate
393,216 17,105,919 8.6 Mw/s
393,216 2,117,631 1.1 Mw/s
393,216 793,599 27 0.4 Mw/s

Table 5: Performance statistics of spine.

The symhetic spine program allocates virtual address space somewhat faster than the bench-
mark applications: a claim rate of 8.6 Mwords/second versus 5.1 for the 15-puzzle. The large
difference in virtual address consumption between the basic scheme and VAS is caused by leaf
tasks that have allocated address space fm beyond the growing spine: whenever such a leaf
task finishes its computation, the garbage collector is invoked to compress the result and the
reclaimed space at the right of the spine can be reused for new tasks. The CAS strategy needs
even less virtual address space because of the 27 physical compactions: they also reclaim the
virtual address space that resides in the currently highest cycle.

The total amount of virtual space claimed by the spine program can be made arbitrarily large
by increasing the length of the spine, but the moderate claim rate limits the virtual compaction
frequency to a low value for all three memory management strategieS.

177

5 Conclusions and future work

It is possible for divide-and-conquer applications on shared-memory multiprocessors to use a
local copying garbage collector; executing tasks reclaim their garbage independently of other
tasks and processors. The avoidance of global synchronisations to control garbage collects
has been achieved by assigning private heaps to individual tasks. The memory management
strategies handle the resulting scattered heaps of join tasks by allocating storage in a virtual
address space so that active (leaf) tasks never interleave with their suspended ancestors. By time-
sharing the to-space and limiting the maximum task size, the 50% waste of memory reserved
for the to-space can be significantly reduced.

From the simulation results we conclude that both the VAS ,and CAS schemes are feasible
memory management strategies since in exceptional cases only they have to issue an expensive
compaction operation to reclaim wasted address space. The synthetic spine program shows that
~applications can consume an unlimited amount of virtual address space, but for the benchmark
programs the needed size of the virtual address space is less 'than three times the physically
required amount of memory, hence, no compactions ~u'e requircd. The CAS strategy, however,
does occasionally compress the data in physical memory to overcome fragmentation of free
space. The number of these physical compactions is negligible when the applications run in
a memory whose size is 1.5 times the application's minimally required amount of physical
memory.

The multiprocessor simulator also provides figures for the performance consequences of
CAS and VAS since the runtime support code for managing the free list, compacting the address
space, etc. is traced too. However, since the simulated differences are small we will not draw
conclusions about their relative performance. Instead we will measure the difference in a real
implementation; at the moment, both CAS and VAS are being implemented on a 4 node 88000
multiprocessor with 64 Mbytes of main memory and MMUs to support virtual memory.

The current implementation is based on the divide-and-conquer paradigm (the sandwich
annotation). We plan to extend the memory management strategies to cover the more general
spark&wait paradigm (for example, futures in LISP). This is not trivial since the parent task
continues to execute in parallel with its child tasks, while both CAS and VAS assume that parent
tasks are waiting and do not need to be garbage collected. We foresee that this conflict can be
solved by splitting the parent's heap in two parts: a fixed public part that contains data shared
with child tasks, and a private part where ~he parent can claim and collect storage as usual.

Acknowledgements

We would like to thank our colleagues Pieter Hartel, Rutger Hofman, Marcel Beemster, and the
referees for their helpful comments on draft versions of this paper.

References

[AEL88] A. Appel, J. Ellis, and K. Li. Real-time concurrent collection on stock multipro-
eessors. Proceedings conf. on Programming Language Design and Implementation,
pages 11-20, 1988.

t78

[CheT0]

[era88]

[ERW90]

[Gla921

[Hal84]

[HargO]

[HGW91]

[HV92]

[LH83]

[LI,I92]

[LV91a]

[LV91b]

[Mar91]

[MLH92]

[Sto87]

lyre89]

[Vre90]

C. J. Cheney. A non-recursive list compacting algorithm. CACM, 13(11):677-678,
November 1970.
J. Crammond. A garbage collection algorithm for shared memory parallel .rocessors.
Int. Journal of Parallel Programming, 17(6):497-522, 1988.
H. Embrechts, D. Roose, and P. Wambacq. Component labelling on a MIMD
multiprocessor, prepublished report, Dept. of Comp. Sci., Katholieke Universiteit
Leuven, Belgium, I990.
J. Glas. The parallelization of branch and bound algorithms in a functional program-
ruing language. Master's thesis, Dept. of Comp. Sys, Univ. of Amsterdam, April
1992.
R. Halstead. Implementation of multilisp: Lisp on a muhiprocessor. Proceedings
ACM syrup. LISP amt Functional Programming, pages 9-17, 1984.
P. H. Hartel. A comparison of three garbage collection algorithms. Structured
programming, 11(3): 117-127, 1990.
P. H. Hartel, H. W. Glaser, and J. M. Wild. Compilation of functional languages
using flow graph analysis. Technical report CSTR 91-03, Dept. of Electr. and Comp.
Sci, Univ. of Southampton, UK, January 1991.
P. H. Hartel and W. G. Vree. Arrays in a lazy functional language - a case study:
the fast Fourier transform. Technical report CS-92-02, Dept. of Comp. Sys, Univ. of
Amsterdam, May 1992.
Henry Liebermann and Carl Hewitt. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM, 23(6):419-429, 1983.
K. G. Langendoen and P. H. Hartel. FCG: a code generator for lazy functional
languages. Technical report CS-92-03, Dept. of Comp. Sys, Univ. of Amsterdam,
May 1992.
K. G. Langendoen and Wo G. Vree. Eight queens divided: An experience in parallel
functional programming. In R. Dietrich J. Darlington, editor, Declarative program-
ming, pages 101-115, Sasbachwalden, West Gerraany, November 1991. Springer
Verlag.
K. G. Langendoen and W. G. Vree. FRATS: a parallel reduction strategy for shared
memory. In M. Wirsing J. Maluszynski, editor, 3rd Programming language imple-
mentation and logic programming, LNCS 528, pages 99-I 10, Passau, West Germany,
August 1991. Springer Verlag.
L. Maranget. GAML: a parallel implementation of lazy ML. In R. J. M. Hughes,
editor, 5th Functional programming languages and computer architecture, LNCS
523, pages 102-123, Cambridge, Massachusetts, September 1991. Springer Verlag.
H. L. Muller, K. G. Langendoen, and L. O. Hertzberger. MiG: Simulating parallel
functional programs on hierarchical cache architectures. Technical report'CS-92-04,
Dept. of Comp. Sys, Univ. of Amsterdam, June 1992.
Q. F. Stout. Supporting divide-and-conquer algorithms for image processing. J.
Parallel and Distributed Computing, 4(1):95-115, February 1987.
W. G. Vine. Design considerations" for a parallel reduction machine. PhD thesis,
Dept. of Comp. Sys, Univ. of Amsterdam, December 1989.
W.G. Vree. Implementation of parallel graph reduction by explicit annotation and
program transformation. Mathematical FoupMations of Computer Science 1990,
LNCS 452, pages 135-151, 1990.

Incremental Multi-threaded Garbage Collection

on Virtually Shared Memory Architectures

Thierry Le Sergent, Bernard Berthomieu

Laboratoire d'Automatique et d'Analyse des Syst~mes du CNRS
7, Avenue du Colonel Roche, 31077 Toulouse Cedex, France

e-mail: lesergen@laas.fr, bernard@laas.fr

Abstract: This paper describes a multl-threaded and incremental garbage collector
operating on shared memory architectures. The technique was developed for parallel
implementations of the language LCS, a high level parallel programming language.

An incremental, page trap based, collection algorithm operates locally on each
of the processors. Processors alternatively plays the role of mutator and collector.
The processors cooperate for collection and mutation; idling processors perform part
of the collection task for the others until they acquire some work. The progress of
collectors versus allocations is conlrolled by a scan credit mechanism that guaran-
tees a responsive execution of the application. There is no static partitioning of the
storage among the processors; pages are dynamically allocated to any processor, for
specific purposes.

Two implementations are discussed: the fu'st is suitable for operation on a
shared memory architecture; the second provides garbage collection services as add-
ed functionality to a distributed shared virtual memory service.

1 Introduction

This paper presents a garbage collection technique suitable for muld-threaded applications
running on multiprocessor targets with a shared memory abstraction. The shared memory ab-
straction can be provided by the architecture, or vir0__~ally, obtained through the Distributed
Shared Virtual Memory paradigm [LH89][CBZ91]. The multi-threaded applications may be
the result of compilation of programs written in programming languages with explicit or de-
duced parallelism. The different threads of control of the application are assumed to share a
single address space, a global storage allocation and reclamation discipline is thus required.

These techniques were designed for implementing a parallel virtual machine and compil-
er for the language LCS [Ber88][BGG91], an extension of the language Standard ML
[MTH90] with processes based upon the CCS formalism [Mil80]. However, most of the re-
suits are independent of this context; similar techniques would be required for parallel imple-
mentations of many programming languages with transparent memory management. In
distributed implementations of LCS, the algorithms presented here are complemented by al-
gorithms for distributed scheduling, load balancing, and a few other distributed functions

180

which cannot be discussed here. A complete account of the experiment is presented in the f'trst
author's forthcoming thesis [LeS92].

The starting point of our technique is [ELA88]. The heap space is organized in pages; an
incremental page based collection algorithm operates locally on each of the processors. Un-
like Ellis et al., we reject the idea of having specialized collector or rnutator threads. Instead,
eaclr thread here altexnatively plays the role of mutator and collector. This allows a better co-
operation of several threads for performing a single collection, when required, or working to-
gether to make the whole application progress. We can have at any time a varying number of
collectors and/or mutators; the progress of collection versus allocation is controlled by a spe-
cific scan credit mechanism. The several processes share a virtual space of references, as in
[Hal84]; but the assignment of storage to each processor is not statically determined. Instead,
pages are dynamically allocated to the processors, for specific purposes. The page manage-
ment algorithms guarantee the consistency of the information held in the pages.

Integrating the garbage collection mechanism with the other paradigms present in the un-
derlying architecture received much attention. Two implementations of the allocation/recla-
marion algorithms are proposed. The In'st is suitable for shared memory services directly
provided by physically shared memory architectures. A second targets systems with physical-
ly distributed memories. In this case, the page allocation and collection services are provided
together with a virtually shared memory service, as added functionality, rather than running
on top of it.

Section 2 reviews and discusses versus our goals a number of mechanisms taken from
existing garbage collection techniques. The collection method is presented in section 3. Sec-
tion 4 suggests a canonical implementation on shared memory architectures while section 5
investigates an implementation with a distributed shared virtual memory service. We con-
clude with some remarks prompted by a prototype implementation of the algorithms and dis-
cussion of some possible variants and enhancements.

2 Architecture

2.1 Copying collection techniques

Garbage collecting techniques have been developed for a long time; reference [Cob81] sur-
veys a number of algorithms. A convenient terminology for discussing memory allocation
and reclamation techniques is that of mutators and collectors. A thread is a mutator when it
allocates new storage, or updates existing storage; it is typically the application to be run. A
thread is a colector when the operations it peffoaans are relevant to storage reclamation. The
storage is assumed to be organized as a set of cells, possibly referring each others and residing
in a heap. A number of references to such cells, called the root, constitute the context (or reg-
isters) of each mutating thread.

Among the methods based upon transitivity of references, the copying methods certainly
are the most satisfying. They consist in copying the reachable cells from a first space called
thefromSpace, into another space, called the toSpace. They yield fast collectors, since only
the cells reachable from the root are visited; they are able to reclaim circular structures and
they have the effect of compacting the heap, which reduces page thrashing. However, copying

181

techniques generally yield a poor storage occupancy, but most of that space is not permanent-
ly required.

The basic stop and copy version of the technique suffers the essential drawback of requir-
ing the mutator to s t ~ while the collector is proceeding, resulting in relatively long latency.
Baker's variant [Bak78] was aimed at solving this drawback. The mutator is resumed imme-
diately after the cells referenced in the root data have been copied and their references updated
in the root data. The cells copied are left unseanned. The mutator must only operate on cells
in toSpace. For achieving this, each access from the mutator to a cell residing infromSpace
forces its copy into toSpace, if it was not copied yet, and updates its reference. A pointer, B,
points to the next available address for copying cells; another pointer, S, points after the last
cell scanned. New cells are allocated from a pointer T, initially set to the last available address
of toSpace, and decreasing towards the copy pointer B.

Conditions are established to make the whole mutator and collector process real-time, in
a certain sense; Baker's algorithm is incremental. For each allocation of one word of storage,
k words are scanned, where k is some non negative constant. For a program which has a max-
imum cell requirement of N words, with a half-heap size of t, the parameter k must be greater
than N/(t-N) to guarantee that scanning is terminated before pointer B reaches T [Bak 78].

Baker's method is costly if the test it requires at each access of a cell for determining if
it stands in toSpace or infromSpace is done by software. Ellis et al. [F_,LA88] satisfactorily
solved this drawback by using the memory protections facilities provided by the hardware to
prevent access of unscanned cells by the mutator. The heap is organized in pages; to e n f ~ e
the property that the mutator only sees scanned cels, all pages of the heap containing un-
scanned cells (i.e. between pointers S and B) are read-protected. An access to these pages by
the mutator would be trapped by the hardware and an exception would be raised; the
exception is handled by scanning the faulty page and then relaxingits protection, allowing the
mutator to resume.

2.2 Garbage collection for multi-threaded applications

We will only consider here parallel applications operating on a single virtual address space.
The complexity of collection algorithms proposed for multiple address spaces applications re-
suits from the absence of an observable global state, and the problem of migrations of cells
between the processors [Rud86].

The approach taken in [Hal84], also relying on a single virtual address space, is to have
a global heap statically and equally partitioned, each sub-heap being under control of one of
the (virtual) processors. Each processor executes on its sub-heap a collection algorithm based
upon Baker's, with its toSpace, local roots, and using local pointer variables T, S and B. The
changes brought to the basic algorithm for multiprocessor operation consist of a lock-bit as-
sociated with each address in toSpace and each cell infromSpace, to ensure atomicity of the
copy and update operations. A global synchronization ensures that all processors flip their
spaces before one of them starts the next collection.

The Multilisp trealJnent suffers two major drawbacks. Firstly, garbage collection is ini-
tiated when any of the sub-toSpaces is full, whatever the content of the others, yielding in
practice much more frequent garbage collections than would be required in the single-heap

182

~ase. Secondly, each processor must copy for itself all the cells only locally referenced (the
gray areas in figure 1 below), with no possible help from the other processes for scanning
these.

PE1

Figure 1. Sharing of heap cells

2.3 Architecture

The goal is to design the memory management layer for a virtual machine running LCS, an
experimental parallel programming language. LCS programs, in which parallelism is made
explicit, lend themselves naturally to parallel evaluation. However, typical LCS programs use
a very large number of threads, from a few to several thousands, or tens of thousands, most
of them very short lived. Consequently, the LCS virtual machine is constituted of a medium,
f~ted, number of processes, each handling execution of a number of LCS threads. A distrib-
uted scheduler, with a load balancing algorithm, distributes execution of the many LCS
threads on the fewer processes.

The shared memory abstraction is adequate for our purpose. LCS, like many other high
level languages, handles values which are generally trees, possibly with circularities. It would
be very expensive to transmit copies of such values by messages between processes; LCS val-
ues are nansmitted "by references". Another argument for the shared memory abstraction is
that typical LCS programs do not heavily rely on side-effects, yielding, in practice, relatively
few write access conflicts on the shared heap.

From the previous review, we will retain the two-space copying and compacting method
and the incremental technique [Bak78]. We will retain from [ELA88] the idea of using page
protection traps for protecting parts of the heap, with a recovery mechanism. This, despite the
added complication of a heap granularity distinct from the constituents of the heap (the cells),
makes Baker's method of incremental collection efficient. However, we will not retain the
specialized mutator and collector threads advocated in this reference, and have instead
threads which may be alternatively mutator or collector.

The page allocation mechanism allows processors to share the work of incremental scan;
the progress of allocation versus collection will be controlled by a credit mechanism. While
an incremental criterion similar to Baker's is maintained, idling processes are requested to
perform some scan until they acquire some work. Collection may then progress "in advance"
over the mutation, and this will reduce the amount of scan to be done after future allocations.
Using this mechanism, most of the potential advantages of collectors operating in parallel are
recovered, while preventing the storage overflow problems which are difficult to avoid with
asynchronous parallel collectors. In [-ELA88], this particular problem is delayed, rather than
avoided, by flipping spaces when occupancy of toSpace reaches some threshold, rather than
when toSpace is full. Alternatively, [BSD91] prevents overflow by controlling the scheduling
of the collector and mutator threads.

183

All processes share a single address space, but, conversely to [Hal84], the heap will not
be statically partitioned over the different processors; we will make use instead of a paged
heap, with pages dynamically allocated to any process. This treatment avoids the two major
drawbacks of a statically partitioned heap; no process plays a partic!dar role.

The collection technique is presented in the next three sections. The routines have been
split as "front-end" routines, those interfaced with the application, and "back-end" routines,
those directly using the storage services provided by the operating system.The front-end rou-
tines are discussed in the next section. The back-end routines may benefit from an encoding
matching the underlying operating system services. Two implementations of the back-end
routines are discussed. The fast, in section 4, is suitable for any virtual shared memory, target.
The second, in section 5, provides these routines together with a distributed shared virtual
memory service [LH89].

3 The multi-threaded garbage collector, front end routines

3.1 Storage services and layout of the storage of processes

The storage for each thread is constituted of a number of segments. Each segment is a contig-
uous address range partitioned in pages, all of the same size. A segment may be shared by
several threads. We will assume that the pages which constitute a segment can be individually
attached or detached from the address space of a thread, and that any access from a thread to
a page not currently part of its address space raises an exception for which a handler may be
set. These services are available on many stock operating systems; setting page protections at
user level is a feature of Unix SVR4 and Mach based operating systems. Depending on the
operating system, page protection facilities are either provided at thread level (otherwise shar-
ing their address space), or at process level (possibly sharing part of their vir_n__ml space); we
will use indifferently the words "thread", "process", "processor", or "site" in the following
sections, to mean a thread of congol associated with some shared storage for which page pro-
tections may be locally manipulated.

No assumptions are made about atomicity of updates on shared pages. The algorithms
will use page locks where atomicity need be enforced. Any attempt to lock a page already
locked should make the requesting process wait until the page is unlocked.

Each process will make use of three segments: two heap areas of identical size, referred
to as toSpace andfrornSpace, and a stack area. Each process shares with all others the heap
areas. Though each process privately extends or shrinks its stack segment, it is convenient to
have the stack segmentsshared by all processes so they can get help from the others for scan-
ning their stacks. We took this choice here, though the alternative choice of having process
stacks in private areas could have been taken as well, at the price of some extra complications
for detecting end of collection. Finally, each process privately owns a set of registers and the
three pointer variables, S, for scan, B, for copy, and T, for allocation of new cells; they also
handle a number of private or shared auxiliary variables. To avoid contention on variables S,
B and T, the processes will operate on different pages for each of these operations.

Pages are dynamically allocated to the processes, following a strategy to be made precise
in a latter section, and released after use. The different pages may hold information of differ-

184

ent nature (e.g. none, unscanned copies of cells, coherent cells, etc.), we will talk about the
state of a page to mean the nature of the information it holds. The use of the storage, and the
cooperation between the processes for achieving collection and allocations, are performed
through of a number of page allocation and liberation routines, one for each "kind" of pages
needed. These routines encapsulate the necessary synchronizations, and bookkeeping, for
pages.

3.2 Heap allocation

A page will be identified by any address in the range it provides. New ceils are allocated from
a pointer T; the procedure Allocate is always called with a current T defined. The usual
"end-of-heap" test is replaced here by an "end-of-page" test. When the cell (of size n) to be
allocated does not fit on the current page, the current page is freed and as many pages as re-
quired for allocating this cell are requested by a call to a l l o c P a g e 2 . The procedure
provides pages for n contiguous addresses, attaches them to the address space of the process,
and sets the local pointer T. If the required amount of pages cannot be allocated, then a flip
is initiated. Procedure f s 11 fills the space allocated and advances pointer To

Allocate (n, content)=

(iS spaceLeftOnPage(T) < n

then (freePageT() ;

Scan () ;

iS not (allocPageT (n))

then (Flip();

if not (allocPageT (n)) then FAIL)) ;

fill (T, n, content)) ;

In general, cells may overflow the page size. The solution proposed in [ELASg] is m as-
sociate with each page a "crossing" flag, set for pages not beginning with a new cell. The al-
ternative taken here is slightly more space consuming, but allows to scan pages individually.
It consists of associating with the crossing flag the minimum information needed to scan the
part of the cell starting the page. This added information allows the scanner to see that part of
cell as a complete cell; it would typically hold an indication of the nature of the cell, which
detexmines a scanning method, and the size taken on the page. This information cannot stand
in the pages themselves since it must not take any address slot. When crossing a p~ge bound-
ary, procedure f i 11 releases the current T page by a call to f r e e P ageT, and fills the cross-
ing information for the following page.

3.3 Incremental Scan

Each thread alternatively plays the role of mutator and collector. Following Baker's incre-
mental technique, each allocation of a word in the heap forces to scan a number K of words.
The scan is performed after the page currently filled is released, rather than performed after
each allocation; this reduces the overhead on allocations. A procedure al locPageS pro-
vides, and attaches, the next page to be scanned. It sets the scan pointer S, if some incremental

185

scan is required, or, otherwise, returns false. Procedure freePageS releases page S when
its scan is complete. This is repeated until acall to a l l o c P a g e S returns false, meaning ei-
ther that no more incremental scan is currently required, or that collection is complete. The
pages are locked while being scanned, to prevent concurrent scanning by another processor
(allocPageS locks, freePageS unlocks).

Scan () =

while allocPageS ()

do (scanPage () ;

freePageS ()) ;

Mutation continues after end of collection has been detected, until toSpace is full; this
also contributes to decrease the average cost of allocations. The progress of scan versus allo-
cations is controlled by a credit mechanism soon to be described.

3A Copying

Copies of cells resulting from scan are done on pages allocated by a third procedure, a l -
locPageB. Copies are allocated from a pointer B. For allowing the scanner to work on a
page basis, the cells are copied on pages distinct from those on which new cells are allocated.
The procedure a l l o c P a g e B locks the pages it allocates, attaches them to the address space
of the thread, and sets pointer B. f r eeP a geB detaches the current B page, so that any further
access to this page will provoke an access violation, and unlocks the page. The lock prevents
other processors from attempting a scan of the page while it is being f',lled. In practice,
s c a n P a g e would make use of the crossing information for pages, for determining the loca-
tion and size of the first cell on the page~

scanPage () =

if allocPageB (threshold)

then (for all cell in page of S

do scanCell (cell) ;

freePageB ())

else FAIL;

All processes share, and have authorized access to, all pages offromSpace. To prevent
cells from being copied concurrently, the page on which an old cell stands is locked until the
cell is copied, its copy-bit updated, and its forwarding address set.

scanCell (cell) =

for all cell' referenced in cell

do (lock (cell') ;

if not (copied(cell')) then Copy (cell');

update reference to cell' in cell;

unlock (cell')) ;

186

The Copy routine copies cells from B and sets their copy-bit and forwarding address.
The low level procedure copy advances B; it also releases the current B page and fills the
crossing information of the following page when crossing a page boundary. If a cell does not
fit on the current B page, then that page is freed and as many contiguous pages as required are
requested by a call to a l l o e P a g e B .

Copy (cell) =

(if spaceLeftOnPage(B) < size (cell)

then (freePageB () ;

if not(allocPageB(size(ce!l))) then FAIL);

forward=B;

copy (cell, B) ;

mark_copied (cell) ;

set_forwarding addr(cell,forward));

3.5 Scan on page access exception

Any attempt from a processor to access a page not part of its current address space raises an
access exception. Upon an access exception, a handler routine, Hand le , is invoked, which
performs some ~eatment, and the computation is resumed at the instruction that caused the
exception. There are a number of reasons for which a page accessed may not be part of the
current address space of a process, including the case where the page has been Idled with cop-
ies of cells, but has not been scanned yet. As in Ellis's algorithm, the mutator expects to see
scanned cells only.

On that instance of access exception, the handing procedure first attaches the page to the
address space of the process. The page is then locked to prevent concurrent scan by another
process, and it is scanned. Upon completion of scan, the page is freed and unlocked (by a call
to freePageS). Conversely to [ELA88], all page protections here can be manipulated at
user level.

From now on, that particular page holds cells with consistent references, and no excep-
tion will be raised when accessing it from that process. But the page is still non-attached by
the other processes. It is assumed that, given a page of toSpace, a process can decide if this
page was scanned or not. The handling routine, which is the same for all processes, should
first check that the faulty page has not been scanned yet, before scanting it; otherwise it just
attaches the page.

3.6 Stack allocation and scanning

Stacks are the most usual technique for implementing parameter passing. If application stacks
were encoded in the heap, with stack frames encoded as cells, then only the stack pointer
would be part of the root references of a process. But, essentially for efficiency reasons, func-
tion call stacks are often encoded as arrays, in a dedicated area. It is this entire array which
must then be considered root data by the collector. Moreover, stacks may grow very large on
languages favoring recursion, such as LCS; scanning the full stacks at flip time, as should be

187

done for all root references, might break the low latency requirement for the mutation process,
as noticed in [Bak78] and [ELA88].

Stack frames are allocated on contiguous pages in an area distinct from the heap. After a
flip, all the pages below the topmost stack page are detached from the address space of the
thread. Only the topmost page is scanned as part of the root data. The other pages will be
scanned on access exceptions or by incremental scan. This strategy implies that stack pages
may be scanned individually, without knowledge of the boundaries of stack frames. This con-
straint is easily satisfied if multi-words values are allocated not in the stack area, but in the
heap instead, at the price of an extra indirection. The stack should only hold references to heap
cells and constant values, which must be encoded as if they ~,ere occurring in a heap cell.

On an access exception on a stack page, the handler routine scans the faulty stack page
and the mutator is resumed. Stack pages are scanned by the previous s c a n P a g e routine (we
may assume a predefined crossing information, identical for all stack pages), only words at
addresses below the stack pointer are scanned.

As for the heap, the stacks must be incrementally scanned. A number k' of stack words
must be scanned for each word allocated, so that the stacks, of total size s, are scanned before
toSpace is filled. Parameter k' depends upon the size s of the stacks, known at flip-time. The

smallest number of words allocated between two flips is t/(k+l), where t is the size oftoSpace
and k is Baker's parameter for the heap. Allocating that amount of words should force a com-
plete scan of the stacks; consequently: k' = (k+l)*s/t 1.

Practically, the words in the stacks and those in the heap are globally considered, and
K---k+k' words are scanned for each word allocated. Parameter K is adjusted at flip time, fi'om
a fixed k and a parameter k' computed from the previous equation. The routine a 1 l o o p age $
allocates either an heap page or a stack page, as long as some is available. Furthermore, since
we choose to have the stack areas shared by all processes, any process is able to scan the stack
of any other. Finally, in order to favor cells which have the longest life expectancy, the stack
pages are allocated by allocPageS from bottom to top.

3.7 Idling processes and the scan credit

Processors idling by lack or work are requested, through a background procedure, to per-
form some scan until they get some work (by a scheduling and load balancing mechanism not
discussed here). The words scanned from the b a c k g r o u n d procedure or upon access excep-
tions are considered as words scanned "in advance" for allocations to come (a credit on the
amount of words to be incrementally scanned).

In order to fulfil the low latency requirement, the credit mechanism is implemented with
two credits: A local credit (one per thread), decremented by f r e e P a g e T (of the amount of
words allocated on the page, multiplied by constant K) and incremented after scanning a page

1. Baker uses k' = k's/n, where n is the amount of words in the heap when collection is com-
plete. The difference comes here from the fact that flip does not occur at end of collection,
but when toSpace if full. n is unknown at flip-time, then, but an upper bound is deducible from
k and t, by n = t*k/(k+l).

188

(upon an access exception handling or a local incremental scan), and a shared credit, incre-
mented by freePageS when it is invoked from the background procedure.

When allocating, a process uses a maximum amount of its local credit. If the process has
to do some scan (i.e. if its local credit is negative), then it t'u-st checks the shared credit. If the
shared credit cover its debt, then no scan is performed and the shared credit is decremented
of the local debt. Otherwise, the local debt is decreased of the shared credit, the shared credit
is reset and scan proceeds. Finally, when a processor is idling, it first transfers its local credit
to the shared credit, so daat other processes can benefit of it, before scanning for the other pro-
cessors.These computations, as well as the test deciding if incremental scan is required, are
encapsulated in the procedures freePageT, freeP~geS and allocPageS.

The scan credit mechanism brings two main advantages. Locally, it makes incremental
scan lazier; the amount of words scanned on access traps or by idling processors are subtract-
ed from the amount of words to be incrementally scamned. Globally, It allows the processors
to cooperate for scanning, some of them performing part of the scan task for the others, with
an actual parallelism. The number of collectors is dynamic and the algorithm controls the
progress of the collectors versus the amount of data allocated.

3.8 Flip

A thread notices that wSpace is full when a call of a l l o c P a g e T returns false; it then ini-
tiates a flip. A synchronization of all threads is necessary befo~'e the local flips take place, to
prevent the different threads from working with different views of the heap. Then, all threads
stop mutation, release the pages they held, and start a local f l i p procedure. It must be no-
ticed that, when a flip occurs, the previous collection is necessarily complete; all threads are
then either idle or mutating.

The f 1 i p procedure itself first consists of inverting the roles of the to and from spaces.
Each thread then attaches to its address space all the pages offromSpace (the former toSpace)
and detaches all the pages of toSpace. The pages of toSpace will be attached on request. All
stack pages are also detached, except the topmost page. The thread then initializes its local
bookkeeping information and variables (including a T page for non-initiators), and scans its
registers and top stack page. Mutation is subsequently resumed.

The initial attachment of the pages offromSpace avoids nested access exception han-
dling. The initial detachment of all pages of toSpace is the consequence of the strategy re-
tained for page management. This strategy is to force an access exception in a process every
time this process has no precise knowledge of the content of a page; the access exception han-
dler will determine the exact natare of the contents of the faulty page, and perf~m the ade-
quate treatment. To avoid detachment of pages attached in several processes, the page
management guarantees that, once a page is made available to a mutator, it will never need to
be detached from any process until the next flip.

3.9 States of pages, and transitions

Pages have states, identifying the nature of their contents. Initially, and just after a flip, the
pages offromSpace have no significant state and are attached in all processes. The stack Imges

189

have one among two states: Scanned, or Unscanned. The pages of toSpace are initially de-
tached from all processes and all of them initially have state Empty. The figure below depicts
the different possible states and transitions of a page in toSpace, with meanings obvious from
the previous sections.

~ fi'eePage$

Figure 2. The different states of a page in toSpace

Consistency of the information held by the pages requires that the l ~ e s in gray states in
figure 2 are locked by the processor which set them in that state; they must not be available
m the other processors until they leave that state.

Pages may be released by freePageB, freePageT or freePageS even if not com-
pletely l-dled. In order to maintain a reasonable mean page occupancy of the storage, a policy
of reallocating partially f'dled pages may be adopted. Given a threshold h, a page will be said
full if less than h address slots are available on tl~t page. Partially filled pages in state Copy
will be reallocated by a ! l o c P a g e B , partially filled pages in state W r i t t e n will be reallo-
cated by a l l o c P a g e T (when the size requested is not greater than threshold h, in both cas-
es). This explains some of the transitions in the above graph.

4 A canonical implementation of the back-end routines

4.1 Page pools

Pages must be allocated according to their state. A convenient encoding, easing retrieval of
pages, is to store addresses identifying these pages in different data slructures, according to
their states. We shall need five, shared, pools of pages:

The EMPTY pool holds pages which have never been allocated. If empty pages are cho-
sen to be the consecutive pages following the last allocated page in the toSpace segment, then
it is not necessary to actually record their addresses; a shared page pointer protected by a
semaphore is sufficient, incremented of the page size after each allocation of an empty page.

190

The WRITTEN pool holds the partially filled pages in state Written. Totally filled pages
in state Written need not be recorded since they will never be reallocated. A semaphore pro-
tecting a linked list of page addresses is a suitable encoding.

The next three pools hold pages in state Copy. The STACK pool holds all anscanned
stack pages (which can be thought of as pages in state Copy); the COPYP pool holds partially
filled pages and the COPY pool holds full pages. Implementation of the access exception han-
dler and of the page allocation routines will be made easier if, first, we have the ability of re-
moving a page identified by its address from these pools, and, second, if the three pools are
protected as a whole from concurrent updates. These pools may be represented by double-
linked lists, and a semaphore, reques~d by Handle, allocPageS, allocPageB and
freePageB should protect access to all t~c~ pools.

In the handler routine for access exception, it is necessary to check if a page is in state
Copy, betbre scanning it. To avoid scanning the pools then, it is convenient to keep that in-
formation in a page table. This page table must also record some additional bookkeeping in-
formation which is summarized now.

4.2 The page table

The page table must be shared by all processes. What need to be recorded for operation of the
algorithms is a Scanned/Unscanned bit for each stack page, a lock bit for each heap page, plus,
for each page in toSpace:
�9 A Copy/Written bit.
�9 A crossing information. Its minimum size is that of a few bits specifying a scanning

method, plus the number of bits for recording at most the page size (in words).
�9 The next available address slot on the page (for reallocations, scan, etc.); need to be large

enough to hold the page size (in words).
�9 Room for encoding the pools discussed above as linked lists.

Let us assume that each page holds 4K bytes and that toSpace holds at most 16M bytes
(that should cover the needs for most applications). Then 64 bits per page of toSpace are
largely sufficient for storing the bookkeeping information. That amounts to 0.2 percent of
toSpace; a fairly reasonable amount. In addition, a bit table, with one bit per page, is required
for the stack area.

4.3 Page allocators and protection violation handler

Procedure allocPageT will first try to reuse a partially filled page from pool WRrITEN,
if any is available and if the size requested is not greater than threshold h. Otherwise, it will
attempt to allocate a range of pages from pool EMPTY. f r e e P a g e T sets the state of page T
to W r i t t e n and, if the page is only partially filled, records it in the pool WRrITF3q. The
other effects of a l l o c P a g e T and f r e e P a g e T have been discussed in section 3.

Procedure a l l o c P a g e S repeatedly tries to find an unscanned page until either one is
available, or no more scan is required, either because end of collection has been detected, or
because no incremental scan is currently required. In each attempt, it In'st tries to allocate an
unscanned stack page (from bottom to top) from the STACK pool, then it attempts to use a

191

page from pool COPY, and finally a page from pool COPYP. While searching for a page in
these pools, it requests the semaphore protecting these pools. Procedure freePageS sets the
state of page S to w r i t t e n , and saves it into the pool WRITTEN if partially fdled.

a l l o c P a g e S is also in charge of detecting end of collection. A shared U n s c a n n e d
counter is maintained to detect end of collection. This counter records the number of pages
allocated for copies of cells which are still unscanned. 1"his counter is initially set to the num-
ber of unscanned stack pages after flip; it is incremented every time a page is taken from
EM]aTY by a l l o c P a g e B , and decremented every time a page is released by f r e e P a g e S .
Collection is complete when this counter reaches 0. Obviously, this counter must be protected
from concurrent updates.

The scan credit mechanism is easily implemented with two counters, one being shared
and protected by a semaphore. Both credits are initially 0, and reset to 0 by flip. The local
credit is decremented by f r e e P a g e T of the amount of words allocated on the page being
freed since it was last allocated (multiplied by the incremental scan parameter K), and incre-
mented by f r e e P a g e S of the amount of words on the page freed. The shared credit is in-
cremented by f r e e p a g e S when called from the b a c k g r o u n d procedure invoked when
processors are idling.

Procedure a 1 l o c P a g e B first checks if the size requested fits into the space available on
the page S being scanned. If this is the case, then it is this page which is also allocated for
copying, and B is set to the first available address on that page. Otherwise, a l l o c P a g e B
tries to allocate either a partially f'dled page in state Copy, from pool COPYP, if any, or a
range of pages from pool EMtrIT. If pages B and S are distinct, then procedure f r e e P a g e B
detaches the current B page, sets its state to Copy, stores it in the COPY pool (if full), or COP-
YP pool (if partially filled), and finally unlocks it.

The handler for access exceptions must request the semaphore protecting the three Copy
pools before attempting to scan the faulty page. It then locks the page and checks if its Copy
bit is still set. If this is the case, it removes the page from the pool it lied into. The Copy pool
semaphore is then released; the page is scanned, if required, and is unlocked.

4.4 Flip

?all processes must flip synchronously. There may be several processes simultaneously notic-
ing the necessity of a flip; multiple simultaneous flip initiations must be prevented. It may
also happen that some processes do not locally notice the necessity of a flip (e.g. because
these processes currently do not allocate data in the heap); so a mechanism is needed to make
all processes aware of the necessity of a flip.

Selection of an initiator is easily implemented with the help of a semaphore./unong the
potential initiators, the first that could acquire the resource broadcasts a signal to the other
processors and waits for all of them to reply. It then releases the semaphore and broadcasts
another signal, enabling local flips on all processors. This solution is basically similar to that
used for MuI-T [KHM89].

A number of variables must also be initialized at flip time. These include the On-
s c a n n e d counter, the shared and local credit counters, the current pointer T (needs to be
allocated for non-initiators; the initiator does it from the A l l o c a t e procedure), and the in-

192

cremental scan parameter K, which must be adjusted after each flip since it depends upon the
total stack sizes at flip time. We can assume that the initiator takes care of initialization of the
shared counters, in addition to the initialization of its local data.

5 Providing Garbage Collection with a Distributed Shared Virtual
Memory service

5.1 Goals

This section a4dresses the implementation of the algorithm on distributed memory architec-
tures. The concept of Distributed Shared Virtual Memory (DSVM for short) [LH89][CBZ91]
provides a shared memory abstraction for a physically distributed memory architecture. A
first approach would be to implement the algorithms discussed in sections 3 and 4 on top of
a DSVM service, since it supplies the required abstraction (assuming some implementation
of semaphores is available).

An alternative, hopefully yielding better performances by reducing the page traffic, is to
provide a garbage collection service as an added functionality to a DSVM service, rather than
built on top of it. This section specifically investigates this issue. The abstract procedures dis-
cussed in section 3 need not be altered, only the implementation of back-end routines should.
Page management for the allocation and garbage collection service will be integrate.A, in some
sense, with the page management required for providing the DSVM service.

We will assume our application to run on a number of (virtual) processors, or "sites". All
processors virtually share a single address space through a DSVM service. As before, each
processor owns part of the roots of the application and shares with the others all cells in the
heap, and possibly its stack pages. The management of control information will rely here on
message passing.

5.2 Page managers

The allocation/collection algorithms require to maintain some bookkeeping information for
pages (crossing information, state information, etc.). These information cannot be saved with-
in the pages, since that would break the required continuity of address space across pages, The
solution taken is to partition the management of state information for pages between the pro-
cessors, the local bookkeeping information being kept in some specific area on each proces-
sor. We will farmer assume that each processor is statically assigned a range of pages to
manage, and that each processor is aware of the distribution of page management.

This strategy is exactly Kai Li's Fixed Distributed Manager strategy for providing the
distributed shared memory service [LH89]. Upon receiving an access request for a page it
manages, a processor takes the adequate decision, according to the state of that particular
page, and then, once access is enabled for that page, the page is transferred to the requester.

193

5.3 Allocation of pages for new cells

Locally, the processors must organize the information concerning the pages they handle; the
method proposed in section 4, with a page table and page pools, is still adequate here. In order
to minimize the communication traffic, the processors preferably allocate for their own usage
the pages they manage. In order to allow all pages to be allocated, the processors that manage
pages that may be allocated for storing new cells (or free pages, for short), are organized as a
virtual ring; a distributed algorithm takes care of allocation of these pages to the whole set of
processors. Initially, all sites are in the ring, and the successor of each site is given by some
predefined ordering known by all sites.

EvLay site records the remote site that replied to its last request for a free page, initially
set to the next site in the ring; this site is referred to as its remote free page allocator in the
sequel. A site receiving an allocation request for a free page will handle it as if it was a local
request. If the request can be satisfied locally, then a range of addresses is returned to the re-
quester. Otherwise, two cases may occur: either the request may s011 be satisfied by another
site in the ring, in this case the processor transmits the request to its own remote free page
allocator; or no site in the ring may satisfy the request, in this case, a failure message is sent
to the requester, which will initiate a flip upon reception of the message.

If a demand is satisfiable, then it must be satisfied before it realizes a complete turn of
the ring of sites managing free pages. Any site not managing any free page will never manage
any in the future; sites may only leave the ring. The condition is checked as follows: each site
visited by a request compares the identifier of the requesting site (say i) with its own identifier
(say j) and that of its remote free page allocator (say k). The previous condition, and the way
remote free page allocators are maintained, imply that no site between j and k (in the initial
ring) manages free pages, thus, the request cannot be satisfied if the requester stands between
j and k (in this ordering).

Upon a successful reply to its request for free pages, a processor updates its remote free
page allocator to be the site that satisfied its request, except in the infrequent case of a multi-
pages request. In this last ease, the remote free page allocator is not updated since the request
may have visited sites that manage free pages, though none of them could cover its demand.

Freeing a page in state Written consists of requesting the manager of the page to perform
a local release of the page. Locally, one proceeds as in sections 3 and 4.

5.4 Allocation of pages for scan

For incremental scan, the processors must be able to allocate the whole set of pages that re-
quire scan. Conversely to the case of free pages, or of pages for copies, it is not sufficient here
to organize the sites managing pages to be scanned as a ring. The problem is that the number
of pages to be scanned managed on a site does not monotonically decrease. As long as a pro-
cessor manages pages in state Empty, these may be allocated for copying cells and conse-
quently become pages to be scanned. Using a particular allocation strategy for allocating
pages for copies, and with some additional constraints on cell sizes, the ring structure could
still be used, as shown in [LB91], but these constraints are not assumed here.

]94

The sites managing pages to be scanned will be organized as a virtual distributed queue.
Initially, all sites agree on the first and the last site in the queue (these can be statically deter-
mined, or dynamically, for instance at flip time). The algorithms guarantee that any request
for a page to be scanned either will reach the first site in the queue, which will reply to the
request, or, if the queue is empty, will reach a site that detected end of collection, which will
propagate this information to the requester.

An implementation of the algorithm is feasible using four variables per site. Each site
records the last site having provided to it a page to be scanned, that's its remote allocator f o r

pages to scan. In addition, each site in the queue maintains its successor site in the queue (ini-
thlly the next site according to some predefined ordering, or itself if the site is the last in the
queue). Each site also maintains a variable holding the site it believes to be the last in the
queue (the last for short), and, finally, a flag indicating if the site has detected end of collec-
tion. The insertion and removal protocols for maintaining the queue guarantee that, by tran-
sitivity of the remote allocator f o r pages to scan references (resp. last references), the first
(resp. the last) site in the queue is actually reached. Further, they guarantee that the successor

variable on each site either holds an indication that the site is not in the queue, or, if that site
is in the queue, holds its successor in the queue (itself if it is the last in the queue). If the queue
is empty, then the last known site in the queue necessarily detected end of collection, and has
its specific flag set.

For the same reasons than for allocation of free pages, each site preferably allocates for
itself the pages to be scanned that it manages. To help detection of end of collection, each site
locally maintains an Unscanned counter, handled similarly to the Onscanned colmter dis-

cussed in section 4, but relative to the pages it manages. This counter maintains the number
of pages allocated for copies (local or remote) the scan of which did not terminate yet. A re-
quest for a page to be scanned (local or remote) is delayed by a site until either a page to be
scanned is locally available, or the U n s c a n n e d counter reaches zero.

When a request cannot be locally satisfied, the site, if not in the queue or if not the fn'st
in the queue, transmits the request to its own remote allocator f o r pages to scan, which han-
dles the request as if it was locally issued. Any site visited which is aware of end of collection
replies negatively to the requester, making it aware of end of collection. If the receiver of a
request is currently the first in the queue, then, either it currently manages some pages to be
scanned, in which case it sends one to the requester, or it does not manage any of them, in
which case it leaves the queue and then transmits the request to its successor in the queue.
Furthermore, if the receiving site is also the last in the queue and does not manage any page
to be scanned, then collection is complete; the site sets its end-of-collection flag, replies neg-
atively to the request, making the requester aware of end of collection, and leaves the queue
(which becomes empty). A site enters the queue, following the last in the queue, when not
currently in the queue and acquiring the management of a page holding copies (see 5.5).

This solution may appear rather "centralized"; a queue is actually the most natural struc-
ture here, due to the non-monotonicity of the number of pages to be scanned on each site. In
addition, it should be noted that the solution proposed realizes a balancing of pages to be
scanned over the sites. Acquiring a page to be scanned from the queue may lead to copy some

195

cells which, as long as the requesting site can provide pages for these copies, will be locally
copied. This treatment has thus the potential effect of locally creating pages to be scanned.

Freeing a scanned page consists of requesting the manager of the page to perform a local
release of the page. Locally, one proceeds as in section 3 and 4.

5.5 Allocation of pages for copies

The allocation of pages for copies uses an algorithm similar to the one used for allocation of
free pages. However, it is necessary that these two virtual rings are distinct, since the local
allocation strategies for free pages and pages for copies differ (for copies, one first tries to
allocate a partially filled page ,n state Copy, rather than Written). Each site maintains a remote
aUocator for pages for copies, managed similarly to the remote allocator for free pages.

The algorithm for detection of end of collection assumes that collection is complete if
and only if all local Ons c a n n e d counters hold the value 0. In order to maintain the property,
a site able to reply to a request for a page for copies, for itself or for another site, must join
the queue of sites managing pages to be scanned (if not in the queue yet) before returning the
required range of pages to the requester.

Feeing a page holding copies consists of requesting the manager of the page to perform
a local release of the page. Locally, one proceeds as in section 3 and 4.

5.6 Page locks and page protection violations

The pages in states S-allocated or B-allocated, as well as the pages holding cells being copied,
must be locked to enforce consistency of their content. Instead of using a lock bit here, as was
done in section 4, it is more efficient, considering that the shared memory is obtained through
exchanges of pages, to request these pages to their manager with exclusive write access. The
protection will be relaxed when the page is freed by the processor to which it was granted. It
is the manager of the page which will enforce the exclusive access and make all requests for
that page wait until the page is freed. Implementation of this primitive should not require any
additional effort, since it is also required for implementing the DSVM service.

When an access violation is trapped by a processor, it must not necessarily scan the page.
If the same distribution of the page management task is taken for both the DSVM service and
the collection service, then handling access traps in the mutation process does not require any
additional message. In both cases, it is enough, when trapping a protection violation, to ask
the manager of the page for the action to be taken.

5.7 Distributing the scan credit mechanism

As in section 4, a local credit counter is maintained by each processor. The shared credit
counter is here distributed over the processors; the actual shared credit is the sum of these lo-
cally maintained shared credits. The following discipline is adopted for maintaining the
shared credit counters:
�9 When an idle processor scans for another, it decrements the remote shared counter.
�9 An idle processor first transfers its credits (local and shared) with its first request for a

page to be scanned, since the credits cannot be used locally.

196

�9 When using the shared credit, a processor does not use the full available credit (which is
distributed over the processors), but uses the shared credits of the processr it visited for
finding a free page, and, if scanning is still necessary, the shared credit of all processors
visited for finding a page to be scanned.
With this method, the distribution of the shared credit mechanism does not require any

additional message.

5.8 Flip

The necessary synchronization of all processors preceding the flip requires a distributed syn-
chronization algorithm. This algorithm must prevent from maltiple, simultaneous, flips, by
electing an initiator among the sites that noticed the necessity of flip, and must ensure that all
sites flip. An ad hoc algorithm, requiring a pause on each processor corresponding to the time
necessary for transmitting four messages, is discussed in [LeS92], to which the reader is re-
directed for details.

6 Discussion and Experiments

6.1 Enhancements

We assumed so far a fixed number of threads, each alternatively acting as a mutator or as a
collector. Allowing a varying number of threads, instead of a fixed number, may be conve-
nient for implementation of programming languages in which programs typically use fewer
threads than LCS, with longer life expectancy. This may also be convenient for dynamically
adapting the execution of LCS programs on the parallel virtual machine to the physical re-
sources available. Augmenting, or reducing, the number of threads in the shared memory case
(section 4) does not imply a large work, the main task for an entering process is to acquire a
local context from one of the other threads; similarly, a leaving process must transmit its root
data to one of the remaining processes. This can be achieved through some load balancing
mechanism. In the distributed case, in addition, the storage managed by a leaving process has
to be redistributed over the other processes, and an entering process must acquire from the
others some storage to manage, unless the storage is simultaneously updated. In any case, all
sites must be made aware of introductions or deletions of sites, and a reconflguration of the
page tables and distributed algorithms is required.

Dynamic extension of the heap size and/or stack size is another desirable enhancement
of the basic algorithms.

To avoid having to move the contents of the heap, heap size adjustment would typically
occur at flip-time, before the local flips take place. At that time, the content offromSpace is
irrelevant and that area can be replaced by another, of the, required size, possibly at another
place in the virtual space. Just before the next flip, the currentfromSpace will be adjusted ac-
cordingly, to match the size of the current toSpace (or according to some heuristics for heap
size dynamic adjustment). Besides moving an (empty) area, the adjustment also consists of
updating the page tables accordingly.

197

Dynamically extending the stack should not be difficult too, provided the stack does not
hold any reference to itself (that hypothesis was assumed in section 3). If the stack segment
cannot be grown in place, then it must be detached and reattached at a place where it can be
grown. As for the heap, an update of the page tables is requhed.

An enhancement of heap allocation that does not appear feasible at that time, unless tak-
ing strong limitations on the size of cells, is to use page protection traps for avoiding the end-
of-page test required in routine A l l o c a t e , similarly to the solution proposed in lapp88].
The problem here is that the heap may contain interleaved attached and detached pages, or
ranges of pages. Consequently, the fact that some address is enabled (resp. not enabled) at a
given distance from pointer T in some process does not imply that all addresses in between
are enabled (resp. not enabled).

Other desirable enhancements include implementing a generational collector on this
ground. This has to be investigated, but we cannot foresee any major reasons preventing from
adding generational capabilities to our collector.

6.2 Experiments

The incremental scan, plus the use of page protection traps for enforcing the scan of pages
holding copies, should provide a low latency collection mechanism with an acceptable loss
of performances compared to a stop and copy collector. This has been confu'med by the ex-
periments.

A version of the (sequential) LCS virtual machine equipped with an incremental collec-
tor based upon the algorithms given in section 3 was prototyped, and its performances were
compared with those of the currently available implementation of LCS, which uses a stop and
copy-depth-fast collector, and with those of a version using a stop and copy-bread-fast col-
lector. The different versions were compared on various benchmarks; the table in figure 3 be-
low shows the results for a benchmark consisting of running an implementation of the Knuth-
Bendix rewrite-rule completion algorithm on an example set of rules. All collection algo-
rithms were implemented in C; all were run with a heap-size of 16MB (8MB per space); all
runs required 58 flips.

s/c s/c incr incr
b-first d-first 8kB 64kB

Collection time/Total time (%) 19.7 26.3 24.3 22.1
Relative mutation time 1 0.97 1.14 1.11
Relative collection time 1 1.42 1.50 1.28
Relative total time 1 1.07 1.21 1.14

Figure 3. Performances of stop and copy and incremental versions

For this benchmark, an overhead of 21% in total mutation+collection time was observed for
the incremental version, compared to the stop and copy-breadth-fast version. For reasons
which will not be detailed here, the current implementations of LCS use a depth-first variant
of the stop-and-copy collection algorithm. The depth-first version is slightly faster than the
breadth-first version, for mutation, but significantly slower for collection (the algorithm uses

198

a pointer-reversal technique for achieving a depth-first copy of the active cells). Compared to
the latter version, the overhead of the incremental algorithm decreases to 13% in total time.

The 21% overhead observed for the incremental version, versus the stop and copy-
breadth-first version may seem high, compared to the 4% overhead claimed in [ELA88]; this
figure requhes some comments.
�9 First, the stop-and-copy versions have been used for several years and have been careful-

ly optimized, which was not the case for the incremental version. The overhead should
be slightly reduced by a careful optimization of the incremental version.

�9 The Collection time/Total time ratio observed for this benchmark is rather high; it was
more often below 10% in the other benchmarks we tried. Considering that the overhead
is greater for collection than for mutation, the typical total overhead should be lower.

�9 Another factor that influences the overhead is the ratio between words scanned on access
faults and those scanned by incremental scan; again, this ratio was rather high here. Not
surprisingly, it has been observed that the overhead decreases with that ratio. This stress-
es the need for a careful implementation of the access handier routine and of the page
protection mechanisms, both at the application level and at operating system level.

�9 Finally, we exercised the incremental version for several page sizes, ranging from 8kB
to 64kB. The smaller number of access faults on heap pages resulting from larger pages
makes the overhead decrease when the page size increases. But, obviously, using large
pages affects responsiveness of the applications.
As a conclusion, the typical overhead of the sequential incremental version, compared to

the fastest stop-and-copy version, can be expected to be around 10%. This may be considered
an acceptable overhead, considering the benefits of the incremental version with respect to
responsiveness.

The scan credit mechanism, and the global page allocation, should allow processes to ef-
fectively cooperate for both collection and mutation. A simplified version of the parallel col-
lection algorithm has been prototyped to run on a stock workstation running an SVR4 based
operating system, and integrated in a preliminary version of the parallel virtual machine tor
LCS. The virtual machine is constituted of a number of processes (typically four to sixteen),
running on distinct processors when allowed by the hardware. The effect of lazy scanning of
the heap due to the credit mechanism could be precisely observed: processes lacking of work
(including those waiting for 1/13 operations to complete) perform some scan for themselves,
and then for the other processes. This is particularly interesting for interactive applications;
most of the scan work is then done while the user is typing commands, with less overhead on
the computations themselves.

Unfortunately, no fair performance figures can be provided yet for the parallel imple-
mentation. The task of properly integrating the memory management layer with the other
components of the virtual machine is still in progress. However, an additional overhead is to
be expected, compared to the sequential incremental version, due to the locks required for en-
forcing consistency of pages, in the shared memory version, or to the latency of page trans-
fers, in the distributed version. With several processors running a single-threaded application,
we should recover the advantages of parallel collectors; for multi-threaded applications, there

199

should be an overhead on total mutation time, compared to the same application run on a sin-
gle processor, but we should also observe an improvement in elapsed time.

References

[App 88] A.W. Appel, Simple Generational Garbage Collection and Fast Allocation, Soft-
ware Practice and Experience 19(2): 171--183, February 1988

[Bak 78] H.G. Baker, Jr., List Processing inReal Time on a Serial Computer, Commumca-
tions of the ACM, 21(4), April 1978

[Ber 88] B. Berthomieu, LCS: une implantation de CCS, In A. Arnold, editor, Troisidme
colloque C-cube, Angoul~me, France, D6cembre 1988

[BDS 91] H-J. Boehm, A. J. Demers, and S. Shenker, Mostly Parallel Garbage Collection,
In ACM SIGPLAN'89 Conference on Programming Language Design and lmple-
mentation, June 1989.

[BGG 91] B. Berthomieu, D. Giralt, and J.-P. Gouyon, LCS Users Manual, LAAS Report
91226, CNRS-LAAS, June 1991

[CBZ 91] J.B. Carter, J. K. Bennet, and W. Zwaenepoel, Implementation and Performance
of Munin, In Proceedings of the Thirteenth ACM Symposium on Operating Sys-
tems Principles, October 1991.

[Coh 81] J. Cohen, Garbage Collection of Linked Data Structures, Computing Surveys,
13(3), September 1981

[ELA 88] J.R. Ellis, K, Li, and A. W. Appel, Real-time Concurrent Collection on Stock
Multiprocessors, In SIGPLAN'88 Conference on Programming Language Design
andlmplementation, June 1988. Also Digital SRC Research Report number 25

[Hal 84] R.H. Halstead Jr., Implementation of Multilisp: Lisp on a Multiprocessor, In 1984
ACM Symposium on LISP and Functional Programming, August 1984

[KHM 89] D. A. Kranz, R. H. Halstead Jr., and E. Mohr, MuI-T: A High-Performance Paral-
lel Lisp, In SIG PLAN'89 Conference on Programming Language Design and Im-
plementation, June 1989

[LB 91] T. Le Sergent, and B. Berthomieu, Un ramasse miettes distribu6 incr6mental sur
une m6moire virtuelle partag6e distribu6e, LAAS Report 91373, CNRS-LAAS,
Novembre 1991.

[LeS 92] T. Le Sergent, M6thodes d'ex6cution, et machines virtueUes parall~les, pour
l'implantation distribu6e du langage de programmation LCS, PhD. thesis, 1992
(forthcoming).

[LH 89] K. Li, and P. Hudak, Memory Coherence in Shared Virtual Memory Systems,
ACM Transactions on Computer Systems, 7(4):321--359, November 1989

[Mil 80] R. Milner, A Calculus of Communicating System, LNCS volume 64, Springer-
Verlag, 1980

[MTH 90] R. Milner, M. Tofte, and R. Harper, The Definition of Standard ML, The MIT
Press, 1990

[Rud 86] M. Rudalics, Distributed Copying Garbage Collection, In 1986 ACM Conference
on LISP and Functional Programming, August 1986.

Generat ional Garbage Col lect ion
for Lazy Graph R e d u c t i o n

Julian Seward*
sewardj@uk.ac.man.cs

A b s t r a c t

Although the LISP community have been exploiting the fruits of generational garbage
collection for some time, little attempt has been made to apply these ideas in lazy functional
language implementations. This paper attempts to plug that gap.

The action of overwriting an unevaluated thunk with its final value, known as updagiug,
is central to lazy reduction systems. Unfortunately, updating creates pointers from older
to younger generations. A simple two-generation scheme which allows heap occupancy to
approach 100% is presented. This collector is a hybrid semispace and mark-scan collector.
We show that keeping track of old-to-new pointers imposes virtually zero time and space
overhead on the mutator. Consequently a net performance gain can be had by using
generational collection.

This paper describes how a generational collector was incorporated into a standard
G-machine interpreter. Detailed performance measurements presented indicate that a sig-
nificant improvement in overall performance is achieved, compared to both semispace and
compacting mark-scan collectors. Some interesting variants of the basic scheme are dis-
cussed. Finally, a possible compiled-code implementation is presented.

K e y w o r d s

Garbage collection, Generational, Graph reduction, Lazy, Functional, Updating.

1 Introduction

1.1 The problem

Recent work indicates there is much to be gained by employing a garbage collection strat-
egy which exploits celt lifetimes. Quite a few generational schemes have been suggested
and implemented with considerable success. A recent example is Standard ML of New
Jersey [App92].

* Author's address: Department of Computer Science, Victoria University of Manchester, Oxford Road,
Manchester M13 9PL, UK. Tel: +44 61 275 6291 Fax: +44 61 275 6236

201

Observations show that if a cell survives one garbage collection, it is likely to survive
several more. The central principle of any generational collector is to segregate cells which
look like they wilt last a long time, and collect them much less frequently than the rest.
When heap occupancy is high, this could be a big win over non-generational schemes.

A key problem is how to deal with pointers from older to newer generations. Such
pointers are created in a lazy reduction system when unevaluated expressions, or thunks,
are overwritten with their final value. This action is known as updating. With strict
languages like SML and LISP, updating is unnecessary, so old-to-new pointers only appear
if assignment is used. This may explain the lack of takeup of generational ideas in the
lazy arena.

This paper describes how a generational collector was incorporated into a standard
G-machine interpreter [Joh87]. Detailed performance measurements indicate that a sig-
nificant improvement in overall performance is achieved, compared to both semispace and
compacting mark-scan collectors. The mutator is not significantly impeded by the need
to detect old-to-new pointers, and heap utilisation may approach 100%.

1.2 Structure of paper

Three main sections discuss theory, results and further work:

Sect ion 2 derives a suitable generational collector by merging two well-known non-
generational collectors. Next, relevant details of the G-machine implementation in
question are examined. A strategy for dealing with updates is defined, and we
consider under what circumstances this will work well.

Sect ion 3 presents detailed performance results for the generational collector. We
also compare its performance to the same G-machine using a semispace collector,
and a compacting mark-scan collector. This provides an illuminating insight into
the relative strengths and weaknesses of the new collector.

Sect ion 4 introduces some optimisations which have not yet been implemented. It
also discusses how this collector might be integrated into a compiled-code reduction
system which employs "info-table" style cell tags, as implemented in the STG
machine [Pey91] and the Chalmers G-machine [Joh87].

2 A g e n e r a t i o n a l c o l l e c t o r

2.1 A starting point: the semispace collector

Two important properties that a good sequential garbage collector should possess are:

• Compac t ion . It is widely accepted that allocating from a contiguous block is
essential for good mutator performance.

• Efficiency. Functional language implementations place tremendous demands on
their collectors. For example, the Chalmers LML compiler [Aug84] frequently
achieves an allocation rate well in excess of a megabyte per second on widely

202

available workstations. If we demand that garbage collection takes at most 20% of
execution time, we imply a minimum recovery rate of five times the allocation rate.
A few back-of-the-envelope calculations+reveal that the recovery rate required begins
to approach the instruction rate of the processor. Clearly, efficiency is paramount.

Possibly the most promising candidate is the semispace collector [Che70]. It is very
simple to implement. An absolutely crucial property is that collection tirne depends only
on the number of llve cells in the heap. Consequently we can achieve a recovery rate
asymptotically approaching infinity simply by making the heap arbitrarily large t.

The high recovery rate of Chalmers LML mentioned above is attained by employing
just such a collector. Unfortunately, the semispace scheme has three flaws, all of which
we now attempt to correct.

1. H e a p occupancy is l i m i t e d t o 50%. Not only does this cause a serious under-
utilisation of a valuable resource, it is also extremely annoying to find that one's
program has run out of space when there are megabytes of memory which could be
used if only the collector made better use of available resources.

Proponents of semispace collection have in the past claimed that a virtual memory
system alleviates the problem since "the unused semispace is simply paged out,
freeing up real memory for the current semispace'. Recently, a few voices of dissent
have pointed out that this causes large amounts of paging in practice. The author
would like to go further and point out that argument is absolutely invalid. For
the argument to stand would require disk I/O transfers to operate sustainedly at
memory speeds.

In any case, not everyone has a virtual memory machine.

2. Old cells are copied repeat ly . This problem is shared with all non-generational
compacting schemes. It seems a pity to)vaste time indiscriminately moving old cells
again and again given that we can identify the majority of them at very little cost.

3. Local i ty is appalling. The mutator cyclically visits every cell in the heap before
returning to the start. This constitutes'worst-case behaviour from the viewpoint of
both the cache and the virtual memory system.

This all looks like bad news. Let us restate the advantages of semispace collection:

1. Speed . In a sparsely occupied heap the semispace method outperforms all others
by a considerable margin.

2. Simplicity. Ease of implementation is important.

3. Space. No auxiliary data structures are required.

If it were possible to use this collector as the basis of a hybrid system, we might be
on to a good thing. It is important to get heap utilisation as high as possible, so we next
look at a second collector.

1 In practice, collection time is also proportional to the number of roots, but this effects all implementations
equally.

203

2.2 The compact ing mark-scan collector

Such a collector has the advantage of allowing heap utilisation up to 100%. Operation is
three-phase, as follows:

1. M a r k the accessible graph. This involves a recursive traversal, starting from all
root pointers.

2. Compact . All live ceils are slid to one end of the heap, leaving a contiguous free
biock.

3. Fix up pointers . Since all live cells have moved, it is necessary to adjust pointers
to ceils so as to reflect their new locations. Root pointers are similarly adjusted.

This is expensive. Phase (2) involves a complete scan of the heap even if occupancy
is low. So simply adding an arbitrary amount of memory does not necessarily increase
collector efficiency in this case. In practice, measurements show that at low occupancy,
this collector performs badly compared to the semispace collector. When occupancy gets
higher, though, they are more evenly matched.

A naive implementation requires an auxiliary stack to guide the mark phase. In the
worst case, this can be as big as the heap itself. We also need a table in which to record
the new locations of cells after phase (2), although in practice it is possible to re-use the
mark-stack for this.

At the cost of considerable extra complication, both the mark and fixup phases can
be done in constant space. Marking using pointer reversal alleviates the need for a mark
stack [P'ey87]. Using Jonker's in-place compaction algorithm [Jon79], references to cells
are chained together, so the new-address table is eliminated.

2.3 Merging the two

The following combination, suggested in [San91], is a variant of the generational collector
employed in SML-NJ [App92]. Appel's collector, like this one, divides the heap into two
generations. However, both generations are collected by copying, so occupancy cannot
exceed 50%, a serious limitation. We employ the compacting max'k-scan scheme to collect
the older generation, and thereby allow occupancy arbitrarily close to 100%.

As depicted in Figure 1, the heap is divided into three regions, OldSpace, ToSpace
and FromSpace . The latter two are equally sized. Old cells are kept in the section
delimited by H e a p S t a r t and OldEnd. New cells are allocated in FromSpace , moving
towards HeapEnd . Eventually F romSpace becomes full. A copying collection then
moves all live cells in FromSpace to ToSpace, adding them to the end of OldSpace.
OldEnd is moved along to reflect this, so the cells collected enter the OldSpace. Such
an event is called a minor collection. The remaining space is split again and allocation in
the now diminished FromSpace resumes.

After some number of minor collections have gone by, O ldEnd will have advanced
past OldMax. We then perform a compacting mark-scan collection of the entire heap,
that is to say, of OldSpace, since a minor collection has just been performed. Hopefully,
this major collection causes OldEnd to retreat considerably towards HeapSta r t , in

204

New cell
,,,~ Old generation cells , allocation
, , = " &

Space Space Space

t t t t
HeapStart OldEnd OldM~x HeapEnd

Figure 1: Heap organisation for generational collection

which case we proceed as normal. But if O l d E n d still exceeds O l d M a x , it is neces-
sary to deem tlle heap full and abandon execution. Clearly, then, maximum allowable
occupancy is defined by OldMax . This setting also has a bearing on overall eftlciency.
Experimentation shows a va~ue of 90% gives acceptable performance.

Alas, there is a problem. When a cell in OldSpace is updated, it may acquire
pointers to cells in F romSpace . During a minor collection, F r o m S p a c e cells are moved,
invalidating such pointers. So it is necessary to keep a record of ail such updates, and
fix up the O ldSpace cells after each minor collection. But more than that , such cells
must act as a source of roots during the minor collection, for it is concievable that a
F r o m S p a c e cell is referred to only from OldSpace .

So we need an auxiliary array of pointers to old-space ceils which have been updated.
Henceforth, this array is referred to as the forward reference table. Supposing a cell at
location = is updated. Under what conditions is it necessary to put = into the table?

�9 x must be in OldSpace: x < O l d E n &

�9 The new contents of x must contain one or more pointers.

�9 At least one of these pointers should point to P romSpace .

The second and third tests are optional. They reduce the required forward reference table
size somewhat, but not a lot. When a minor collection is performed, the table acts as a
source of roots.

The viability of our scheme depends on

�9 The required size of the forward reference table.

�9 How much of an overhead the update tests impose on the mutator.

In the next section we present figures which indicate that for typical programs, at least
97% of all updates are in the new generation. Consequently, if F r o m S p a c e contains, say,
300000 closures, approximately 10000 words of forward reference table are needed. In the
STG machine, all closures contain at least 2 words, frorn which it is possible to conclude

205

that the table size is only about 1.5% of overall heap size. Old-space updates occur when
there is a significant delay between the creation of a thunk and its updating, because in
the delay, the root cell may well be transported into the old generation. Most programs
update the majority of their thunks quickly, and thereby cause few old generation updates.
However, a degenerate case that has up to 20% of its updates in the old generation has
been discovered. This is somewhat alarming, but hopefully it does not occur very often.

We need, therefore, a way to deal with the rare situation where the forward reference
table becomes full. In this case the minor collection can be started early, at the cost of a
little extra inefficiency.

2 . 4 D e t a i l s o f i m p l e m e n t a t i o n

The collector was incorporated into a G-machine interpreter written in Sun Pascal. The
system is based closely on the supercombinator language presented in [Pey87]. Impor-
tantly, the only data structures supported are lists. Programming in the language is a
bit like working with a lazy variant of LISP. All heap cells are the same size, with the
following layout:

�9 T a g - l b y t e

�9 M a r k bit - 1 byte

�9 Left poin ter - 4 bytes

�9 Right po in ter - 4 bytes

The equal sizedness of all cells has an important bearing on this paper: all updates are
done by copying. There are no indirection nodes. Despite this, most of the work described
here is also relevant to systems using indirection nodes.

The use of an interpreter to gather timing information is also of some concern.
Whether or not the relative timings presented below accurately reflect what would happen
in a compiled-code implementation is a matter for debate. Nevertheless, our interpreter
does make significant demands on the heap. Running on a Sun-4]330, it averages around
200000 G-codes per second with heap allocation varying from 45000 to 60000 cells per
second. This is roughly equivalent to half a megabyte per second, a third of the observed
allocation rate of Chalmers LML on the same machine. It seems therefore reasonable to
assume the conclusions drawn below are valid for compiled-code implementations too.

3 P e r f o r m a n c e resul t s

3.1 T e s t p r o g r a m s

Four test programs were employed.

�9 S T G : A STG machine simulator. This 3800 line program parses a Core s file,
converts it to STG code, then runs a STG machine simulation. The parser and

As discussed in [Pey91], Core is a simple functional language used as an intermediate form in the Glasgow
Haskell compiler.

206

Core-to-STG conversions take a lot of heap. Simulation was kept to a minimum so
as to hold heap residency high.

�9 TreeGrow: Binary tree traversal. This program was specifically designed to take
a lot of heap and have a mean-to-peak residency ratio approaching 100%. It builds
a large binary tree which is subsequently traversed a number of times, counting
the number of nodes. To make things more interesting, the tree is inverted before
counting. The inversion forces a complete copy to be made. Consequently average
residency is about 75% of peak.

�9 Pr imes: Generates an infinite list of primes using a lazy sieve of Erasthones. This
program has a low residency, and is extremely lazy.

�9 Queens: All 92 solutions to the 8 queens problem (generated in an inefficient way,
so as to give significant run time). Also relatively low residency.

Timings below were obtained by running each program three times under the relevant
conditions and averaging. Unless otherwise stated, measurements were obtained with a
Sun-4/330 with 32 megabytes of real memory. Results are organised as follows.

Firstly, variation of the following quantities with heap size is shown:

�9 Garbage collection time.

�9 Proportion of updates in the old generation.

�9 Maximum size of the forward reference table.

Next we demonstrate that the gains from generational collection far outweigh the
additional mutator cost, especially when heap residency is high, whilst still giving perfor-
mance as good as semispace collection when the heap is nearly empty. This is done by
running the T reeGrow and Queens programs using semispace and compacting mark-
scan (CMS) collectors as well as with the generational scheme.

The generational scheme presented above has one parameter which can be adjusted:
the maximum proportion of the heap that the old generation may occupy. In terms of
Figure 1, this is the value of OldMax. We show how collection time varies with this
quantity and thereby justify the choice of 90% used in all other measurements.

3 . 2 G e n e r a t i o n a l c o l l e c t o r p e r f o r m a n c e

All heap sizes quoted are in cells. For the purposes of comparison, the maximum known
residencies of the test programs are shown below. Average mutator time is also shown.
Variation of mutator time with heap size is very small.

Maximum
Program Residency
STC
TreeGrow
Primes
Queen s

89000
112000
20800
22500

Avg Mutator
Time
70.3 =E 0.3
48.2 4- 0.2
329.5 4- 2.5
616.0 4- 8.2

207

3.2.1 Co l l ec t ion T i m e vs Heap Size

Collection time is presented as a percentage of average

Heap Size
100000
120000
140000
160000
180000
200000
240000
280000
350000
400000
500000

mutator time.

STG TreeGrow Primes Queens
10.9 16.3 2.08
7.17 14.8 1.87
5.94 9.19 13.7 1.84
5.34 10.1 12.9 1.64
5.01 11.2 12.4 1.50
4.97 7.23 11.5 1.50
5.05 8.26 10.6 1.35
4.43 6.20 9.92 1.21
4.40 6.55 9.04 1.20
4.20 4.37 8.56 1.03
3.59 4.34 7.98 1.01

The high-residency cases, STG and TreeGrow are encouraging. Given that STG
has a maximum residency of 89000 cells, it is impressive that the collection time is only
11% of mutator time with a 100000 cell heap. Even small increases in heap size cause this
figure to fall rapidly.

The TreeGrow program shows similar good collection times even when the heap is
only marginally larger than the maximum residency. In this case, collection time falls off
jerkily as the heap expands. This curious phenomenon merits further investigation.

The Queens program does not exercise the heap very much, hence the low collection
times. It is doubtful whether a semispace collector could do much better in this case.

Unfortunately the Pr imes program, which also has a moderate residency, runs
against these otherwise hopeful results. This is due to the rather unusual dynamic
behaviour of the program. Section 3.2.4 discusses the matter further.

3.2.2 Forward Reference Table Size vs H e a p Size

The sizes presented are the maximum observed forward reference table size at minor-
collection time.

Heap Size STG TreeGrow
100000 510
120000 802
140000 903 37
160000 1113 39
180000 675 37
200000 809 36
240000 1193 37
280000 1624 47
350000 2293 40
400000 2733 48
500000 3393 45

Primes Queens
4418 2009
4330 2005
4210 2010
4435 1996
4384 2013
4314 1991
4339 2000
4338 1998
4493 1997
4387 2016
4315 1904

208

The results are curious, but encouraging. For TreeGrow, P r imes and Queens,
the table size is essentially independant of heap size. Why could this be? A plausible
hypothesis is as follows. As the heap expands, the interval between new-space collections
increases. Consequently, it becomes more and more likely that updates overwrite new-
space rather than old-space cells. On the other hand, since the mutator runs for longer
between minor collections, it has the potential to generate more updates and therefore
more old-space updates. Let the term thunk delay denote the number of reductions which
elapse between the creation of a thunk and the updating of it. If we now assume that the
thunk delays have a negative exponential distribution, the two phenomena could cancel
each other out.

The STG results suggest that, despite a few kinks, table size in this case is propor-
tional to heap size. Even in this case, that's quite acceptable. From all the measurements
above, the maximum table size is 4493 entries. Hence, table size to heap size is

4493
= 0 .45%

500000 • 2

This is a conservative estimate, assuming all closures (in a variable-closure-size heap) are 2
words long. As mentioned in Section 2.3, it is not a disaster even if the table does overflow
from time to time: we simply have to start the minor collection before F romSpace is
full.

3.2.3 Old Space U p d a t e s as a p ropor t ion of Tota l U p d a t e s

This title is not quite accurate. What is actually shown is the percentage of all updates
which require an entry in the forwaxd reference table. Recall that such an entry need be
made only for those old-space updates for which the overwriting cell contains pointers,
one or more of which point to the new generation.

He@ Size] STG---[TreeGrow
i 0 0 0 0 0 1.56 -

120000 11.53 -
i

140000 il .40 0.246
160000 1.19 0.235
180000 1.10 0.208
200000 1.14 0.142
240000 1.17 0.140
280000 1.06 0.097
350000 0.89 0.086
400000 0.90 0.068
500000 0.81 10.044

Primes
31.3
27.2
24.0
21.5
19.8
17.7
15.0
13.1
10.6
9.31
7.69

0.876
0'799
0.787
0.745
0.692
0.687
0.625
0.594
0.562
0.526
0.492

Once again, the P r imes result spoils otherwise encouraging news. We look at this
in the next section. For the others, it is instructive to see that the maximum proportion
of updates entered in the forward reference table is about 1.6%, and in many cases
dramatically lower.

209

[2, 3, 5, 7] f 'N f'N f N f'N
- [s, 9, 10, 11, 12 ...l

Multiple-of-2-filter

Multiple-of-3-filter

Multiple-of-5-filter

- - - Multiple-of-7-frlter

Figure 2: The infinite sieve of Erasthones, immediately after 7 has been discovered prime

Although not listed here, the total number of updates in old-space, whether or
not the overwriting cell contains pointers, was also recorded. This indicates that about
two-thirds of all old-space updates had to be entered into the forward reference table.
Ignoring Pr imes , this means that at worst 97.6% of all updates are not in old-space.
This is important, because we can detect a non old-space update simply by comparing
the updated address with the old-space-end pointer, OldEnd. Provided both values are
in registers, this imposes a tiny overhead on this 97.6% of all updates.

3.2.4 Effect of dynamic behav iour on pe r fo rmance

Many systems rely on statistical properties of the problem in hand to get good performance
in the majority of cases. Freak cases that do not "play along" cause severe performance
degradation. For example, virtual memory systems and caches lose effectiveness if the
programs being run do not exhibit enough locality. Similarly, if everyone in the country
decides to telephone the Prime Minister at the same time, the phone system will virtually
collapse.

Unfortunately for us, a generational collector is just such a system. For it to work
well, it is necessary for old-space updates to only be a very small proportion of all updates.
We observe that the P r imes program has a large number of old-space updates and hence
an inordinately large collection time. An important question is why there should be so
many old-space updates.

Figure 2 shows the sieve in progress. The printing mechanism "pushes" a barrage
of filters along the candidate list of numbers [8, 9, 10, 11, 12 ...]. Candidates which get
through are prime and join the output list [2, 3, 5, 7]. Each new prime also attaches
a "is-not-a-multiple-of-me" filter to the barrage. In the example, the next successful
candidate, 11, attaches a fifth filter.

After a while, many prime numbers will have been produced, so there is a corre-
spondingly large collection of filters. To get the next prime, the printing mechanism kicks
the leftmost filter, which in turn kicks its neighbour. Demand is propagated through all
filters, right up to the candidate list. Now, clearly the first few filters, for multiples of
2, 3, 5 and 7, filter out the majority of candidates, so it may be a long time before a
hopeful makes it back to the leftmost filters. These have all been awaiting update for a

210

lo~ag time, and may well have been transported to old-generation by a minor collection.
Consequently, a heavy burden is imposed on the collector.

So there is at least one program to which generational collection does not respond
well. Is that a good reason to abandon this approach? We believe not.

Although collector performance in this case is not as good as we would like, it is not
bad: perhaps two or three times the cost of semispace collection in a moderate-sized
heap.

The other three programs examined respond extremely well to generational col-
lection. In particular, it is significant that the STC~ program, of considerable
complexity (3800 lines of code), works well. It seems a pity to throw away this
large average-case performance gain.

�9 One hopes that most programs update most of their thunks quickly, so average-case
behaviour is almost always exhibited.

Examining the distribution of thunk delays (defined in Section 3.2.2) provides more
information than merely looking at the average value. It would appear that the effective-
ness of generational collection in an environment with updates depends centrally on this
distribution. Further work in this area could be very useful.

3 . 3 P e r f o r m a n c e r e l a t i v e t o n o n - g e n e r a t i o n a l c o l l e c t o r s

3.3.1 W h a t measures are of significance?

In this section, we hope to answer the following questions:

* Does generational collection really give significant performance benefits?

�9 To what extent is the mutator impaired by the need to record old-space updates?

What is the best way to measure collector efficiency? First, observe that for most
types of collectors, efficiency can be improved to some extent simply by making the heap
larger. Observe also that in many cases, the utility of functional programs is limited
not by collection time, but by the size of heap needed to keep collection time down to a
reasonable level

Other workezs [San91] have measured GC efficiency in terms of the rate at which
free heap is reclaimed. We suggest a more natural measure is to directly relate how heap
size and overall run time are related. Results be!ow are phrased in this way.

Two programs, T r e e G r o w and Queens were selected as well-behaved representa-
tives with high and low residencies respectively. They were run with a range of heap
sizes, using a semispace collector, a compacting mark-scan collector, and the generational
collector. In the latter case~ old-space maximum size was set to 90% of overall heap size,
as for the measurements above.

211

3.3.2 T h e T r e e G r o w program

Average m u t a t o r t ime

Mutator
Collector Time
Semispace 50.0 4- 1.'6
CMS 48.0 4- 2.6
Generational 48.2 4- 0.4

Mutator time with each different collector was averaged over all runs. Measurement
noise seems to swamp any detectable variation in the generational case.

Overall r un t ime

Heap Size
130000
140000
150000
160000
170000
180000
190000
200000
250000
300000
400000
500000
600000
700000
800000
900000
1000000

Semispace CMS Generational
(heap overflow) 112.3 57.1
(heap overflow) 97.6 52.9
(heap overflow) 88.5 53.3
(heap ovel~ow) 83.5 53.6
(heap overflow) 79 .3 53.8
(heap overflow) 76 .3 54.4
(heap overflow) 73.2 51.8
(heap overflow) 71.0 52.1
113.1
77.6 62.0 51.5
63.6 59.9 50.5
59.4 57.0 50.5
57.6 56.5 50.7
55.0 56.6 50.5
56.2 56.0 50.7
53.2 55.2 50.5
52.2 57.0 50.4

The generational collector outperforms the other two under at all heap sizes, spec-
tacularly so when the heap is relatively small. Recall that maximum residency of this
program is about 112000 cells. It is noteworthy that generational GC time does not
improve much once heap size exceeds about 140000 cells. This suggests that residency
can get up to about 80% with practically no performance penalty. The second significant
observation is that the generational collector outdoes the semispace collector even when
the heap is very large, the best-case for semispace collection.

Requ i r ed heap sizes

Finally we phrase the question the other way round, and ask how much heap is needed
to get overall run time down to a given level. Heap sizes are approximate.

212

Overalltime Semispace
65' 390000
60 490000
55 700000

CMS Generational
270000 <125000
400000 125000
900000 140000

These figures speak for themselves.

3.3.3 The Queens p rogram

Peak residency of 22500 cells gives extremely low residency at all heap sizes used (22.5%
down to 2.25%), so the semispace collector can be expected to do well.

Average m u t a t o r t ime

Collector
Semispace
CMS

nerational

Mutator
Time
621.5 ~ 21.3
614.1 ~ 3.4
617.8 • 11.8

As before, measurement noise predominates.

Ga rbage collection t ime

Because heap occupancy is so small, garbage collection time is similarly small. Presenting
overall run times is made rather meaningless by the measurement noise for mutator time,
so only the garbage collection time is shown. Observe in many cases how it declines to
less than 1% of mutator time.

Heal) Size
100000 38.38
200000 17.45
300000 11.26
400000 7.97
500000 7.03
600000 5.59
700000 5.06
800000 4.32
900000 3.65
1000000 3.07

Semispace ! CMS
76.94

] 65.30
61.52
60.35
58.23
58.19
57.27
56.74
56.20
56.55

Generational
12.85
9.65
7.53
6.58
6.54
6.42
5.86
5.30
4.99
4.89

As expected, compacting mark-scan collection does badly because of the low res-
idency. The semispace collector draws ahead of the generational collector as peak oc-
cupancy sinks beneath about 4% (corresponding to 562500 cells), but collection time in
both cases is so small that this makes little difference.

213

The conclusion to be drawn here is that the generational collector outperforms the
other two once heap residency is above a few percent, and does spectacularly well in the
important cases where residency approaches 100%. Also significant is the fact that no
significant impairment of mutator performance can be detected in the generational case.

3.4 Old space size as a p r o p o r t i o n of t o t a l heap size

At any given heap size, there is another parameter to adjust: what proportion of the heap
the old-space may occupy. In terms of Figure 1, this is the position of OldMax. Since
this value defines the absolute maximum heap occupancy allowed, we would like to get
it as high as possible consistent with reasonable performance. However, both a very high
and very low setting degrade efficiency, since:

�9 As O l d M a x decreases, the frequency of major collections increases. Major collec-
tions are expensive.

�9 As OldMax increases, the frequency of minor collections increases, so the interval
between them decreases. This erodes the effectiveness of generational collection,
since it decreases the average age of cells moved to the old generation.

A secondary consideration is that minor collections, although cheap, are not free,
especially if there are a lot of roots around (a large G-machine stack or a lot of
old-space updates).

This suggests there is some mid-range setting which gives optimal efficiency. Clearly,
this depends both on the dynamic properties of the particular program being run, and
on the relative speeds of the compacting mark-scan and semispace collectors. We can
only hope the former effect does not make much difference, select a "representative" test
program and conduct some trial runs to arrive at a value.

Figures below are for the STG program 3. Absolute heap size is held constant at
200000 cells whilst the proportion allocated to the old-generation is varied from 45% to
97.5%. The program has a maximum residency of 89000 cells (44.5% of the heap).

Old-space size Total GC time
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
97.5%

6.22
5.14
4.98
4.78
4.66
4.28
4.39
3.98
4.21
4.31
4.51
4.52

a R u n o n a Sun-4c/60, 8 megabytes real memory.

214

Forward reference
table allocation
New cell

t _ Old generation ceils allocation

t f Space Space

t t t
HeapStart OldEnd OldMax

.om j
Space

t
HeapEnd

Figure 3: Putting the forward reference table in the heap

Despite a small wiggle, this suggests that any size from 70% to 90% will do, and
even going up to 97.5% does little harm. This is good, since it means heap utilisation
approaching 100% is quite feasible.

4 Opt imisat ions to the basic scheme

Once it is established that generational collection does not impose an excessive burden
on the mutator, a large design space opens up. In this section, some ideas which may
improve performance are discussed. None of them have been implemented, though, due
to lack of time.

4.1 Put t ing the forward reference table in the heap

Having a forward reference table which may overflow, or be underutilised, independantly
of what's going in ~he heap, is a nuisance. An obvious place to put the table is right at
the top of the heap, as shown in Figm'e 3. Minor collections now occur when new-cell
allocation crashes into the top of the table. This is the usual "two stacks in one array"
trick in disguise. The advantage is it gets rid of a separate table. On the other hand,
it does make minor collections a little more frequent, with the associated costs discussed
in Section 3.4. Hopefully, if the program being run is well-behaved, it will not generate
many old-space updates, so the diminution in F romSpace size is minimal.

Another, more elegant solution is available for systems which can update using
indirection nodes. All old-space updates are done with indirections. Each indirection
node contains a field which is used to point to another indirection node, so, as old-space
updates occur, a linked list of indirection nodes is built up. This list is, in effect, the
forward reference table.

215

4.2 Making FromSpace larger than ToSpace

The reason we make ToSpace the same size as F romSpace is to cope with the worst
case mlnor-collection wherein all F romSpace cells are live. In practice this rarely hap-
pens. The collector is at its most effective when the number of live F romSpace ceils is
minimised. Observations show that typically less than 10% of F romSpaee cells are live
at minor collection time, with many programs getting below 3%. Values above 30% are
rare. Andrew Appel quotes a corresponding figure of 1.87% in [App92].

Given that increasing F romSpace size increases collector efficiency, it seems a
great pity to waste most of ToSpaee. The Big Idea here is to monitor F romSpace
residency, and dynamically adjust the relative T o S p a e e / F r o m S p a e e ratio accordingly.
It appears that F romSpace residency changes relatively slowly, so guessing the required
next ToSpaee size, as, say, 50% more than the previous F romSpaee residency keeps
things safe in the face of F romSpace residency increases of up to 50% between adjacent
minor collections.

Since we clearly cannot guarantee anything about residency changes, there must be
a way to deal with the case where the live cells of F romSpace do not fit into the allocated
ToSpaee. We observe (as in [San91]) that the heap is always in a consistent state during
semispace collection. Consequently, if ToSpace overflows during a minor collection, the
minor collection can be abandoned and the major collector called instead. Given that
major collections are expensive, this had better happen only extremely rarely. The key
question is how to make a good guess of how big to make ToSpace after each minor
collection. All manner of clever schemes come to mind: it will be interesting to see how
well they perform.

4.3 Multiple minor collections before merging

All the previous variants suffer from an annoying deficiency in that the old generation
grows ever larger at every minor collection. This forces the occasional major collection
even if none of the live cells collected during minor collections is really destined to become
"genuine" old generation data.

It is easy to modify the collector to do multiple minor collections before merging the
result of a minor collection onto the old generation. An interesting question is exactly
when such a merge should occur. We might stipulate that this happen whenever the
semispace residency exceeds, say, 20%. For a program with low residency, this means the
system acts perpetually like a semispace collector. Alternatively, the merging could take
place every n'th minor collection.

Quite how such a scheme affects performance is unknown. Since the existing imple-
mentation works well in the majority of cases, perhaps development should concentrate
on improving the worst case, as typified by the P r imes program.

A word of warning about these complicated schemes is in order. The more parame-
ters which can be twiddled, the smaller is the chance that we will ever arrive at an optimal
setting, or even that one setting is optimal for all programs. Building mathematical models
of collector-mutator performance may help, but at the end of the day it is often down to
time consuming experimentation.

216

4 . 4 C o m p i l e d c o d e i m p l e m e n t a t i o n

A popular way to implement fast case-analysis in compiled implementations is by having
the tag field of each cell point to a so-called "info table". For every possible action, the
info table contains a pointer to the code that performs the action for this type of cell.
Further details may be found in [Joh87] and [Pey91].

In [Sangl], the details of doing both semispace and compacting mark-scan collection
using info tables are presented. The only remaining problem is how to create entries in
the forward reference table.

When a cell is updated, we need to decide whether to put its address in the table.
In the crudest approach, this involves a comparison of the address being updated with
OldEnd, followed if necessary by a call to a routine EnterIntoFPTable which enters this
address into the table. In the following C code, the address being updated is in UpdAddr.
The code then is:

if (UpdAddr <= 01dEnd) EnterIntoFPTable ();

Statistics fl'om Section 3 show the vast majority of updates fail the test. Assuming
UpdAddr and OldEnd are in registers, as explained in [Pey91], the overhead for most
updates could be as low as two or three instructions.

A more refined approach only inserts an old-space updated cell into the forward
reference table if it contains pointers and one or more of these points to new-space. What
we need here is to invent a new method, which:

| Does nothing if the cell contains no pointers.

�9 Does nothing if the cell contains pointer% but they all point to old-space.

�9 Otherwise, adds the address of the cell to the forward reference table.

To achieve this, it is necessary to allocate a new info table slot for this action, and
write code to perform it for every kind of cell. Since these pieces of code "know" the
layout of the cells they operate on, this is a fairly cheap operation. Supposing that
EnterlntoFPTableDISP is the displacement for this method in info tables, our code might
now look like this (neglecting typecasting):

if (UpdAddr <= 01dEnd)
(* ((*UpdAddr) + EnterIntoFPTableDISP)) ();

In English, this means: "if UpdAddr is in OldSpace, call the EnterIntoFPTable method
for the cell pointed to by UpdAddr'.

5 Conc lus ions

This paper provides strong evidence that generational garbage collection is viable for
lazy reduction systems. The small added mutator costs are greatly outweighed by better
garbage collector performance. We showed how the central question of recording old-space
updates can be dealt with at very Httle space and time cost.

217

It is also, unfortunately, apparent that generational collection makes certain assump-
tions about statistical-level dynamic behaviour of programs. The primary factor here is
the distribution of delays between the creation of a thunk and its updating. It may be
that these have a negative exponential distribution. Generational collection works well
when most such delays axe very small. In the few cases where these assumptions do not
hold, performance will not be as favourable. However, there is a strong argument to be
made that for the vast majority of programs these assumptions are valid. Significantly, a
3800 line program runs very well with this collector.

Finally, some modifications were suggested. Whether or not these are a good idea
awaits further work.

6 Acknowledgements

A special thank-you to David Rushall, who implemented large sections of our G-machine
interpreter LazySu on which this work is based. Dave also wrote much of the STG
machine simulator used as a benchmark, and spent many hours debugging and testing.

Financial support was provided by the Science and Engineering Research Council.

Bibliography

lApp92] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[Aug84] L. Augustsson. A compiler for lazy ML. In Proceedings of the 1984 ACM
Symposium on Lisp and Functional Programming, pages 218-227, Austin, Texas,
August 1984.

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM, 13:677-678, November 1970.

[Joh87] T. Johnsson. Compiling Lazy Functional Languages. PhD thesis, Chalmers
Tekniska HSgskola, GSteborg, Sweden, 1987.

[Jon79] H. B. M. Jonkers. A fast garbage compaction algorithm. Information Processing
Letters, 9:26-30, July 1979.

[Pey87] S.L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall International Series in Computer Science. Prentice-Hall
International (UK) Ltd, London, 1987.

[Pey91] S.L. Peyton Jones. The spineless tagless g-machine: second attempt. Publication
forthcoming, 1991.

ISan91] Patrick M. Sansom. Dual-mode garbage collection. In Proceedings of the 1991
Glasgow Functional Programming Workshop, 1991.

A Conservative Garbage Collector with Ambiguous
Roots for Static Typechecking Languages

Emmanue l C H A I L L O U X 1'2

1 LIENS (URA 1327) : Laboratoire d'Informatique de l'Ecole Normale Snp~rieure
Address: 45 rue d'Ulm, 75230 Paris Cedex 05, France.

Electronic mail: Emmanuel.Chailloux@ens.fr
2 LITP (URA 248) : Laboratoire d'Informatique Th6orique et Prograznmation

Institut Blaise Pascal - 4, place Jussieu - UPMC - 75252 Paris Cedex 05, France.

A b s t r a c t . In a static typechecking language, such as ML, the type infor-
mation produced by the typechecker can be forgotten during execution. But
in many cases, a minimal type information (tag) is needed for the Garbage
Collector (GC). In this paper, I propose a simple, safe and efficient GC al-
gorithm which does not use any tags to distinguish immediate values and
pointers.
This GC is a conservative Mark~Sweep (which does not move objects) with
ambiguous roots (there is a possibility of ambiguity between immediate
values and pointers). It is used for a runtime library added to C for an ML
compiler to C (CeML) where basic data types are identical to those in C
(int, float). However the GC uses a disambiguating strategy which is shown
to be safe. It can be used also for other polymorphic languages with static
typechecking and uniform data representation.

Introduction

CeML [6] is a new ML dialect (derived f rom C A M L [18]) which differs main ly by
its typechecker and its module system. The CeML typechecker includes a new func-
t ional type constructor which indicates the function arity. I ts compila t ion model uses
the C language as a portable assembly language. Because of some characteristics of
functional languages, the C language is not the best target language because it has
no exception handler and no memory management . It is thus necessary to add a
runt ime l ibrary which includes a m e m o r y management , a mechanism for total and
partial applications and exceptions. This paper presents only the memory manage-
ment of this runt ime l ibrary (completely described in [5],[6]).

The main goals of this ML implementa t ion are :

- to be as efficient as C when ML programs are wri t ten in imperat ive style and to
be as efficient as best ML implementa t ion for functional style programs.

- to be portable : the C generated programs must be running on different com-
puters.

- to be interoperable : the C generated programs can be merged with other safe
generated C programs from other compilers.

219

For this purpose, the runtime library is driven by these constraints, in particular by
the memory management. First, I shall present these constraints and their implica-
tions for the implementation. I shall then describe a MarkltSweep [13] with ambiguous
roots [4] [3] and its distinguishing algorithm between basic values and pointers, in
comparison with another GC (Stop~tCopy [14] with tags). This will lead to a final
discussion of the use of tag objects and to a comparison with other GC without tags
and other ML implementations.

1 C o n s t r a i n t s f o r t h e C e M L I m p l e m e n t a t i o n

To each CeML variable the CeML code generator associates a C variable, and to each
CeML function a C function. With its more informative typechecker the C functions
also have an arity corresponding to the CeML arity detected during typechecking.
The closure environment is given to a C function as supplementary arguments by
h-lifting [9](because there are no local functions in C). It seems interesting to use
the C calling protocol and the same data representation as C for CeML basic data
types. With the direct mapping between ML and C variables, it is preferable not
to move objects, in particular the variables during GC, because in this case it is
necessary to push pattern matching variables into the root set. For example, for the
following function :

let rec sum_list = function [] -> 0 J a::l -> a+(sum_list I);;

there are two cases which depend on whether the GC moves objects or not :

- if objects are not moved, then only the argument of sum_list function is pushed;
- if objects are moved, there are two pushes for a and 1 in the second case of the

Pattern matching.

From this, I obtain the following constraints :

- data representation is uniform (each value uses 32 bits) :
�9 basic data types are the same as in C : inr and f l o a t ,
�9 structured values are represented by a pointer (also 32 bits);

- C calling protocol is used;
- objects do not move;
- root set must be independent from the C stack;
- C functions manage the trace of their arguments and their local variables into

the root set.

These constraints are interesting because immediate values are not tagged (this
is not necessary in ML [1]), and they allow the direct use of the C functions partic-
ularly the arithmetic operators. Because ML is a polymorphic language, the static
typechecking is not sufficient to distinguish the immediate values and pointers at
compile time. So, the root set can contain immediate values and it is necessary to
make a distinction between immediate values and pointers.
The following GC is a conservative GC with uniform data representation without
tags for immediate values.

220

2 Memory Management

Here, I present a new Mark~Sweep algorithm with ambiguous roots. I describe the
data representation, the partitioning of memory, the root set and the algorithm used
during the Mark phase to distinguish immediate values and pointers.

2.1 d a t a t y p e r e p r e s e n t a t i o n

All objects have a uniform representation (e.g. 32 bits). In order to distinguish pair,
list and other concrete types, a type field is necessary. Records, vectors, strings
and closures are considered to be different vectors and need two fields : one for the
number of elements and the other for the type (cf. figure 1).

~ b j

in~mediat~ valu~

rAb~l~ ~ype el~l el~2 ~l~n

Fig. I. Data type representation

Integers" and floating point numbers use a word as well. Double precision floating
point numbers are not implemented, but they can be represented as a pointer toward
a four word storage. Records and vectors have the same representation. Strings are
a special kind of vectors. Each element (word) contains four characters. The address
of the first element corresponds to the C character pointer (char *) of the string.
Closures are represented by a fixed field, which contains arity of the C function, and
a variable part including its environment values.

2.2 p a r t i t i o n i n g of m e m o r y

The heap is partitioned into chunks (cf. figure 2). Each chunk contains objects of the
same size (powers of two). There are nbzones sets of chunks called zone (from 23 to

221

2 2+n~~ bytes). Objects greater than one chunk are arranged into several chunks.
This partitioning of memory is a variant of the B I B O P (Big Bag Of Pages [16])
algorithm. For our implementation, the chunk size is four kilobytes and nbzones is
equal to ten.

availabll mmmory (3~ bits) [O~OsOxff~fffff~

h~atp

0xo first chunk chunk i im~ cnun~ n 0xffffffff

~ :::%"-':::.~:~:2::~::

n

chunk llst

c o t a t *~ o chunk km~icngs to z me two and n i l 16 byte elemmnn8

Fig. 2. Partitioning memory

2.3 f ree l is ts

Each predefined zone has a list of available elements (of. figure 3).

fete liB= i~teEval =ono 1 -- [A. B] U [C. D]

zen~ 1 A ~ ~ ~

Fig. 3. Free Lists

2.4 roo t set

The root set is represented by a statically allocated independent stack. This stack
allows for the preservation of immediate values or pointers. Sometimes there is a
double use between this stack and the C stack, but in order to be independent of
the C stack this representation is necessary. This feature preserves programs against
the C optimizations which can move out objects from the C stack. Each C function

222

needs to trace its arguments and its local variables into root set when it is necessary
(when the typechecker can not determine if an argument is a immediate value).

This stack is also used for the general apply mechanism (when a direct call to
a C function is not possible because the argument is a closure, or during a partial
application).

2.5 in i t i a l m e m o r y s t a t e

At the beginning, the heap is empty. Each zone can grow dynamically. The first
allocation for a zone is ten chunks. The following allocations are computed by the
growing function, after the Sweep phase. This orientation allows for a control of the
heap evolution.

2.6 a l l o c a t i o n

There are two kinds of object allocation.
The first one is used for small objects less than one chunk in size. This first

case has two alternatives. If the object size is known (for example one cons uses four
words) and the corresponding free list is not empty, then the allocation is completed;
if not, a GC is invoked. If the object size is not known, then the zone to be used has
to be computed.

The second one is used for big objects. If the object size is greater than a chunk,
then the object uses several contiguous chunks.

2.7 r e c o v e r y

When a zone is full, one must recover some space. There are two phases. The first
phase (Hark) marks each object indicated by the root set, and the second (Sweep)
preserves only these objects.

Mark. For each value inside the root set, a discriminating algorithm distinguishes
between an immediate value and a pointer. In this last case, the structured object is
marked and the process is applied to its structure elements. Actually, this algorithm
uses the C stack, but it can change by using pointer reversal as described in [10].

Sweep. For each chunk in use, its corresponding free list is updated by all the un-
marked elements. This algorithm explores all used memory. This is an implementa-
tion which wants to be simpler. If the responsible zone which raised the GC is too
small after memory recovery, then a new chunk is allocated for this zone.

3 Distinguishing Algorithm

When the GC explores an object, it runs four tests to assure that it is in the presence
of a pointer, as follows :

- is the pointed object in the heap?

223

- does this address belong to a chunk in use?
- is the pointed object correctly aligned for this chunk?
- is there an object allocated to this address?

If the answer to these four questions is yes, then the object can be an address
and the pointed object will be marked; otherwise, the object is an immediate value.
Because all the pointed objects have a type field, it is possible to check if there is an
object allocated to this address.

3.1 s a f e ty o f t h e a l g o r i t h m

Let H be the heap, corresponding to the interval [HB, HE], and let Ci be a chunk
inside H. Each chunk has the same size which is noted chunk_size. Each chunk
contains elements of the same size : element_size(Ci) = 2 2+n bytes wi th 1 < n g
nbzones (for example I use nbzones -- 10). Each chunk is well aligned inside the
heap : CB is the corresponding address of the beginning of the chunk which verifies
CB modulo chunk_size = 0 (this is a simplification of CB--HB modulo chunk_size --
0, because HB modulo chunk_size -= 0).
If ob j is a CeML value, we can determine if o b j is a basic value (val) or a value
inside the heap (adz') :

if ob j • [HB, HE] -'+ val
else let C = which_chunk(obj)

let shift = (obj - c B) modu lo (e l e m e n t _ s i z e (C))
if s h i f t # 0 ---* val
else if obj[1] = empty --~ val

else --~ a d r

If an immediate value, such as an integer, has a value which cannot be distin-
guished from a correct memory address, then this integer is considered as a pointer
and the correct ML object pointed at this address is explored and preserved.

3.2 p r o b a b i l i t y o f b a d d i s t i n c t i o n

Conflict probability is the probability of being inside the heap times the probability
of being well aligned. The worst case appears when all the chunks are used.

Peon filet = Pinsideheap * Pweltallgned

where for a heap of m Mbytes and for a chunk size of 4 kilobytes, we have m * 28
chunks, then the address space contains 232 bytes, and gives the following probabil-
ity :

m * 2 2o m

Pin~ideheap- 23 ~ - - 21 ~

224

I call "zone" the set of chunks corresponding to the same size elements. The
object size inside a zone i is 2 i+2 bytes. The probability of being well aligned inside
a zone is the product of the probability of being inside a zone times the probability
of being well aligned inside this zone.

I assume the same space occupation for each zone. The probability of being well
aligned inside long objects is comparatively small.

Then :

PEi*wellali#nedin~idei "" Pel * Pwellallgnedinsidei
1 1

nbzones 2 i+2

l~ -~

nbzones

E PEi*weltalignedin~idei
i=1

,7~t~zorles
1 i

= ~ nbzones * ~i+2
i = l

r~bzones
1 v--, i

nbzones 2i+2
i=1

nbzones
1 1 1

- n b z o n e s * ' f i * E 2-7
i=1

1 1 1
1

-= nbzones ~ 4 . nbzones

And :

Pcon]lict "~- Pinsideheap * Pwellali#ned
m 1 m

< ~ * 4 �9 nbzones - nbzones * 214

With a use of 5 Mbytes of memory for the heap (m = 5) and ten zones (nbzones =
10), the error probability PconlUct is x 7 "

This small probability is acceptable (1/32768). In general though, the full use of
chunks is not equiprobable. In fact, there are more small objects than large objects
such as constructors, references, lists, pairs and closures. The factor is about 4 times
greater in a more standard case, but the entire heap is not always in use and the
distinction has a smaller probability.

3.3 r e m a r k

This GC cannot be used in the Lisp family (or any dynamic typechecking language)
because it, is not possible, dynamically, to determine the object type. This feature
is a consequence of the same representation of the immediate values and pointers.

225

That, an integer can have the value of a correct pointer, for example, represents a
CeML object. In this case, the typeof function returns a bad result.
For this reason, the symbol = which is polymorphic has the semantic of eq (equality
for immediate values or sharing for structured objects) and not the semantic of equal
(equality of structures). This is a problem for the programmer, but this is more
coherent with the language definition because the ML polymorphism is parametric,
i.e. it does not look at the form of the function arguments.

4 Comparison and discussion

First, I present a comparison between the previous GC algorithm and a StopkCopy
GC for CeML. This comparison allows for a discussion of tags and boxed objects for
the GC. I then compare CeML with other ML dialects.

4.1 compar ison with a S top&Copy GC for CeML

Another GC was implemented for CeML. It was a StopaCopy with boxed objects
inside the heap. When the arguments are given to the function they need to be
unboxed. Inside the heap, each object has a word to describe its type. The main
difference concerns the immediate values. Because objects can move, there is a dif-
ferent representation for the values and the variables into the root set. The variable
address is pushed into the root set.

I give tile execution time (Unix user time) for three examples in figure 4 : I t l i s l ; ,
Oct and Mapl3ct. They manipulate all three polymorphic functions : I c l i s l ; (iter-
ation on the lists) tests the optimized total application, Oct (Church integers) the
general apply mechanism and Map0ct (Church integer lists) the partial application.

The times are given in seconds. The times in parentheses correspond to new
optilnizations which are not supported by the Stop~Copy version.

t DS3100[Stop&CopylMark&Sweep (Art)]
Itr.i ,l -0,s I 017 (0,3) I

i ,8 I 0,7 I
I Hap0ct] ~ I 4,3 (2,9)]

Fig. 4. Experimental results

Iu the two CeML GC implementations, which establish a direct correspondence
between ML functions and C functions, it is possible to use some C tools for the
execution profiling. For example, the p ix ie tool, for the MIPS computer, profiles the
optimized C program. This tool gives the time and the call number for the allocation
and recovery functions. For example, the example Oct does not use recovery memory.
The difference between the two times comes from the boxing and unboxing of objects
needed for the Stop~Copy GC. This feature is discussed in the next subsection (4.2).

226

4.2 p r o b l e m s w i t h tags o r b o x e d o b j e c t s

With this pixie tool it is possible to interpret these experimental results. For the
StopttCopy, each value inside the heap or the root set is boxed by its type. The
immediate values are boxed when they belong to a structured object, but they are
not boxed when they are given as arguments to a C function (in order to follow the
implementation constraints). From this data representation some difficulties appear
with polymorphic functions. The different kinds of polymorphism are well described
in [15], but the terminology does not distinguish between polymorphic parameters
and polymorphic results. To make this distinction, I note the term polymorphism
in input for a function if one or more parameters are polymorphic and the term
polymorphism in output if its result is polymorphic. Let us look at these two cases :

- polymorphism in input. When an argument, corresponding to a polymorphic pa-
rameter; must be stored inside the heap, allocation needs to know the argument's
type. The type of each argument corresponding to a polymorphic parameter must
then be given as a supplementary argument to the C function. The number of
arguments grows for the polymorphic function.

- polymorphism in output. If a function is polymorphic in output, its result can be
given to a second function polymorphic in input. In this case, the second function
needs to know the result's type. These two kinds of applications thus coexist.
The first one is the standard application which returns the result value. The
second one returns the result value with its type. For the following function :

let double f x = f (f x);;

f needs to know the type of (f x) dynamically. In this case the application
mechanism becomes slow.

These problems are similar if the data representation is not uniform ([12]).

Another possibility is to use one bit (tag) to make the distinction between immediate
values and pointers. This solution is adopted in Lisp systems. This is reasonable for
dynamic typechecking languages because at any time a Lisp program can check the
object type (since it is not satisfying to be ambiguous). In ML, though, the solu-
tion which preserves the uniform data representation and takes up little memory,
loses the entire 32 bits of immediate values (to 31 bits) and the addressable memory
space. One possibility is to use the higher bit to distinguish immediate values and
pointers for each created integer in which case it is necessary to mask this bit. We
have the same problem if the lower bit (lowtag) equals 1 for the immediate values is
chosen. The last standard possibility is to use the lower bit which equals 0 for the
immediate values, but in this case the multiplication and the division of integers are
no longer efficient and the pointers are no longer aligned. In this latter case, each
memory access must be indexed. As a result, the performances are very dependent
on the processor. In any given case, if it is possible to find a good tag for a data
type, this data representation is not good for the set of data types, particularly in
the case of a compiler to C language.

227

4.3 re la ted work on GC wi thou t tags

My GC was insp!red by the work of Boehm and Weiser ([4]). Their GC has a different
representation of chunks, which are a multiple of 4Kb and contain mark bits. They
use the C stack as root set. This point increases the tests to determine immediate
values and pointers (because inside the C stack we can find many immediate values
which should not be pushed into the root set).

Bartlett in [3] distinguishes two object classes : those which are directly referenced
by the root set and the others. The first ones are left in place and the other objects
can be moved. This method can be used for ML. With a direct mapping between
pattern variables and local C variable though, we need to push the pattern variables
into the root set. Then the root set increases.

In [8], Goldberg associates a frame_gc_routine for each function call which knows
how to trace the function frame. For the polymorphic functions, their frame_gc_routine
are parametrized by the types of the polymorphic function. In the case of a poly-
morphic function nested inside another polymorphic function, the type informations
are given at each level. For that, the GC starts from the bottom of the stack and the
deduction of type for the polymorphic arguments reflects the execution' process. This
method works well for ML, but a complete implementation is needed to measure its
performances.

Edelson presents in [7] a generational Mark,~Sweep collector for C++. he uses a
buddy [10] system for the allocator. His GC is type.accurale, i.e. every value that
the collector interprets as a pointer is statically typed to be a pointer. This is the
opposite for ML which does not have this information because the polymorphic
functions do not make any distinctions between immediate values and pointers.

4.4 compar ison wi th o thers ML dialects

I compare this CeML implementation with the main ML compilers divided in two
farnilies CAML and SML for the following implementations : CAML, CAML-LIGHT
[11], SML-NJ [2] and SML2C [17]. The compiler performances are measured for ten
programs (figure 5) on a DecStation DS3100 (MIPS R2000). These tests describe
the main characteristics of the functional languages (data representation, complete
and partial application, polymorphism, pattern matching, exceptions and imperative
features) and allow us to measure the performances of these GC. The times are given
in seconds by the Unix command time. Only the user time is considered.

An ML implementation depends mainly on its compilation model for the applica-
tion, on data type representation and on its GC algorithm. It is thus not possible to
separate the GC time from the execution time. There are only two programs which
use only the C stack rather than using the heap in CeML. For all other programs
though, the heap is fully used and the GC performances can be compared. CeML
performances are satisfactory in comparison to the C compiler (in many cases the
C program generated by the CeML compiler is very similar to the equivalent hand-
written C program) and with the best ML implementations. There are however two
types of programs that do not verify these good performances : the very functional
programs (close to A-calculus as in the case of Church integers) and programs which
use too much exception handling. In the first case, the partial application and the

228

DS3100 CAML
Test V2-6.1 light CeML
1 Fibonacci 6.7 42.0 2.5
2 Takeuchi 18.51
3 Integral 4

5
6 Sieve
7 ItList
!8 Church int
[9 TakExcept

CountStr 12.5
Reverse 14.6[

7.5
4.6
5.4

24.2
lO,,SigmaVect

SML
NJ 0.66 SML2C! What is mMnly tested?

4.7 14.5 integers
12.4 0.7 4.6 11.3 function calls (3 args)
6.71 1.4 1.4 3.8 floats, loop
1.3 1.9 6.6 19.3 strings
9.6 2.2 2.6 6.4 list processing

1'3.2 2.4 410 i0.7 list processing, functionals
7.2 3.1 2.1 4.0 list processing, functionals

10.4 6.41 1.2 4.8 functionals, polymorphism
1813 15.4 7.2 14.5 exceptions

vectors

Fig.5. Experimental results

application of closures given as arguments forbid application optimization. In the
second case, the exception handling mechanism is above all dependent on the C
compiler implementation. On Unix system, the setjtap/:l.ongjrap library, which is
used in CeML runtime library, generates too much work (it saves the bitmasks for
signals,...) to implement the exceptions well. Since the partial application and the
intensive use of exceptions are in fact scarce, they do not put into question the CeML
implementation choices.

With its more informative typechecker (arity of functions, expressions decorated
with their types), the CeML compiler yields excellent optimizations for the total
application and the immediate value manipulation. But these optimizations are not
always possible. When the application depends on a functional argument, then its
arity is lost for the application optimization. The execution speed then varies ac-
cording to the ratio of non-optimized application / optimized application. Its GC,
with ambiguous roots, avoids the ~agging of immediate values. The distinguishing
algorithm, between an immediate value and a pointer, slows the GC down, but
the benefits achieved through the uniform representation of data is, in most cases,
greater than the slowdown, it is particularly well suited to the implementation of
parametric polymorphism.

Conclusion

This GC, 14ark~Sweep with ambiguous roots, satisfies the initial constraints, i.e.
permits the representation of basic ML types by basic C types al~d the use of the
direct C function call. It also allows us to push the parameter variables and local
variables, but not the pattern matching variables. This GC seems simple (less than
700 lines) but it is more efficient than the other implementation of a StOl~Copy
for CeML. Moreover it facilitates good optimizations for the application (as seen in
the previous examples) which is the other main feature for the functional language
compilers. Finally, the efficiency of a CeML program depends on the ratio between
optimized application and non-optimized application (as the profiling C tools show).

229

It is completely independent of the C implementation, but it is appropriate for a
word size (32 bits, or in the future 64 bits). Finally, it is pleasant to profit from
the static typechecking for the GC and to show the good properties of ML for its
implementation.

Acknowledgement

I would like to thank Bernard Serpette for the discussions on " to tag or not to tag"
and for his remarks on the draft of this paper.

References

1. APPEL, A. Runtime Tags Aren't Necessary. Lisp and Symbolic Computation (1989).
2. APPEL, A., MCQUEEN, D., AND DAVm, B. A Standard ML Compiler, Functional

Programming Languages and Computer Architecture (1987).
3. BARTLETT, J. F. Compacting Garbage Collection with Ambiguous Roots. Tech. Rep.

88/2, Digital Equipement Corporation (WRL), Feb. 1988.
4. BOEHM, H., AND WEISER, M. Garbage Collection in an Uncooperative Environment.

Software - Practice and Experience (Sept. 1988).
5. CHAILLOUX, E. Compilation des langages]onctionnels : CeML un traducteur ML vers

C. Th~se d'universit$, Universit$ Paris VII, Nov. 1991.
6. CHAILLOUX, E. An Efficient Way of Compiling ML to C. In Workshop on ML and its

Applications (San Francisco, June 1992), ACM SIGPLAN.
7. EDELSON, D. A Mark-and-Sweep Collector for C++. In Principles O] Programming

Languages (Albuquerque, 1992), ACM.
8. GOLDBEI~G, B. Tag-Free Garbage Collection for Strongly Typed Programming Lan-

guages. In Programming Language Design and Implementation (1991), ACM.
9. JOHNSSON, T. Lambda lifting: transforming programs to recursive equations. In Con-

]erence on Functional Programing Languages and Computer Architecture. LNCS ~01
(Nancy, 1985), ACM, Springer Verlag.

10. KNUTH, D. The Art of Computer Programming : Fundamental Algorithms, vol. 1.
Addison Wesley 3821, 1973.

11. LEROY, X. The ZINC experiment : an economical implementation of the ML language.
Tech. Rep. 117, INRIA, Feb. 1990.

12. LErtov, X. Unboxed Objects and Polymorphic Typing. In Principles Of Programming
Languages (Albuquerque, 1992), ACM.

13. McCARTHY, J. Recursive Functions of Symbolic Expressions and Their Computation
by Machine. Communications of the ACM (1960).

14. MINSKY, M. A Lisp Garbage Collector Algorithm Using Serial Secondary Storage.
Tech. Rep. Memo 58, MIT, Cambridge, Massachussets, 1963.

15. MORRISON, R., DEARLE, A., CONNOR, R. C. II., AND BROWN, L. An Ad ttoc Ap-
proach to the Implementation of Polymorphism. In Transaction on Programming [Jan.
guages ans Systems (1991), ACM.

16. STEELE, G .L . Data Representation in PDP-10 Mac Lisp. In MACSYMA Users
Conference (1977).

17. TARDITI, D., AND ACHArtYA, A. A Guide to SML2C. Tech. rep., CMU-CS, June 1991.
18. WEIS, P., APONTE, M. V., LAV1LLE, A., MAUNV, M., AND SUAREZ, A. The CAML

Reference Manual. Tech. Rep. 121, INRIA, Sept. 1990.

This article was processed using the ISTEX macro package with LLNCS style

A n Efficient I m p l e m e n t a t i o n for Corout ines

Luis Mateu

INRIA-Rocquencourt &
Universidad de Chile

Abstract . Emulating coroutines with first-class continuations imposes an
unacceptable overhead in managing function frames when there is an in-
tensive exchange of control. This paper presents a high-performance imple-
mentation for a restricted class of continuations. These continuations are
exploited in a simple coroutine mechanism, reaching a rate of 430,000 con-
trol exchanges per second on a modern RISC processor. As an extra feature,
first-class continuations are recovered from the restricted class.
Keywords: coroutines, continuations, garbage collection, dynamic variables,
shallow binding

1 I n t r o d u c t i o n

A coroutine is a kind of concurrent process, getting and passing control explicitly.
The simplest way to implement them is to use multiple stacks, one for each coroutine.
The problem with this approach is that whenever memory resources are limited,
the deepest function recursion must be traded off against the maximal number of
simultaneous coroutines. Yet, predicting the deepest function recursion is generally
impossible.

On the other hand, Scheme [Rees & Clinger 86] has abstracted a wide variety of
control structures -- including coroutines and escapes-- into just one general control
operator named c a l l - w i t h - c u r r e n t - c o n t i n u a t i o n (or, in its abbreviated form,
e a l l / e e) . This operator reifies its continuation into a first-class function, which can
then be treated just as any other function in Scheme. The continuation of c a l l / e e
is the rest of the computation from its application point. In Scheme, coroutines can
be obtained by reifying the continuation of a computation to emulate the exchange
of control [Haynes et al 86].

Scheme continuations can be implemented by allocating function frames in the
general heap, where they are managed by a normal garbage collector. In this way,
there is no trade off to be solved because all frames share the same heap and deep
function recursion is treated by normal heap exhaustion. With some optimizations
[Clinger et al 88], this memory organization haz a small overhead for normal proce-
dural applications.

However, we state in Sect. 2 that Scheme continuations could not be an effective
way to emulate coroutines, because once a continuation has been reified, the only
way to recycle the captured frames is by triggering an expensive general garbage
collection, in which all the objects are involved.

* Postal address : INRIA, B~t. 8, Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 LE
CHESNAY CEDEX, France. Email Address: mateu@margaux.inria.fr.

231

The goal of this paper is to introduce a fast implementation technique for a re-
stricted class of continuations. These continuations are used in a simple coroutine
mechanism, solving effectively those problems having a natural solution with corou-
tines, i.e. the performances are competitive with alternative procedural solutions. If
concurrency were to be added among the features of Scheme, to have a fast corou-
tine mechanism (i.e. context switch facility) is also of paramount importance and is
solved by our model.

The basic idea is to allocate frames in a dedicated heap, managed by a genera-
tional Stop and Copy garbage collector. We add a new object class, the hooks, which
are used to store the continuation of suspended coroutines. Thus continuations can
be only held in hooks. When the frame memory is exhausted, an inexpensive garbage
collection recycles unreachable frames. This collection is cheap since it is only ap-
plied to the frame heap compared, as in the Scheme case, to the whole general heap.
This is possible, since the roots are found in the hooks, which are bounded by the
number of coroutines.

In Sect. 3 we present the set of coroutine primitives and we show that they
recover the Scheme notion of first class continuations. Also, we apply them to solve
the same-fringe problem in an elegant way. In sections 4 and 5 we implement them.

In Sect. 7 we compare the performances of our heap organization to several stack
organizations, showing that the main overhead comes from the locality loss in mem-
ory access. So in Sect. 8 we introduce an optimization for normal applications which
reduces most of this overhead. With this optimization and others, the execution time
overhead for normal applications is around 11%, compared to a stack based imple-
mentation providing no coroutine facility. In Sect. 9 we compare the performances of
a coroutine based solution of the same-fringe problem against the trivial procedural
solution. Some possible extensions are discussed in Sect. 10.

2 F i r s t - c l a s s c o n t i n u a t i o n s a n d t h e s a m e - f r i n g e p r o b l e m

The same-fringe problem determines whether the sequence of leaves --the fringe--- of
two trees are the same. This problem is easily solved with three coroutines as shown
in the next section. The first compares the leaf sequences returned sequentially
by the other two coroutines, each of them traversing one of the trees recursively.
When arriving at a leaf, a coroutine traversing a tree passes the control to the
comparing coroutine. Later, the coroutine is resumed at the same point where it
had been suspended, to continue traversing that tree. In this section we examine
the performances of a garbage collector when first-class continuations are used to
emulate suspension and resumption of the coroutines in the same-fringe problem.

As stated in the introduction, a trivial implementation of Scheme continuations is
achieved by allocating frames in the general heap. Unfortunately, memory allocated
for frames is much more important that memory allocated for normal objects so
garbage collection activity increases, thus degrading performance. This heavy frame
allocation is not visible in a stack organization, because frame lifetime is very short,
thus frames are popped as soon as they are pushed.

For applications not using the Scheme continuations intensively, several imple-
mentation strategies are discussed in [Clinger el al 88] and [Hieb et al 90]. These

232

strategies reduce the associated overhead by using a stack cache to execute normal
call/return behavior, but transferring frames from the stack to the general heap
when a continuation is reified. In some strategies frames are also transferred from
the heap to the stack when a continuation is invoked.

Now, let us consider using first-class continuations to emulate the coroutines in
the same-fringe problem. The suspension of a tree traversal is achieved by reifying
its continuation, and the resumption by invoking it. To traverse a tree recursively,
a function is called at every internal node. This function allocates a frame in the
stack cache. However, sooner or later that frame will be transferred to the heap
by a continuation capture at a leaf. Therefore any optimization introduced to treat
normal call/return behavior will be useless, because all frames will be captured by
a continuation.

Considering that the size of each transferred frame is at least the size of a cons
cell, and there is an additional space overhead in creating a callable continuation,
we become aware that the garbage collection activity will be much more important
than in a trivial solution which flattens the trees into lists prior to comparison. Thus
performances will be unacceptably slow for the first-class continuation solution.

3 C o r o u t i n e s as second class cont inuat ions

In fact, the aim of using coroutines to solve the same-fringe problem is firstly, to
decrease the additional memory requirements to Mlocate a new list in the tree flat-
tening solution, and secondly, to reduce the execution time overhead incurred in
managing that memory. When emulating coroutines with first-class continuations,
we can see that the former is successful, because the surviving frames at memory ex-
haustion are just those present in the branch of the current node in the tree traversal,
and not the whole. Yet, for the latter, it is just the opposite that has been obtained.

Therefore, beginning with this section, we will be concerned with reducing the
memory management overhead incurred to treat coroutines when frames are allo-
cated in a heap. To achieve this goal we will introduce a coroutine definition based
on continuations. Although these continuations are not first-class functions as in
Scheme, we will show that c a l l / c o can still be obtained from our coroutines.

We start by defining the new type hook. A hook is a continuation holder encap-
sulating a limited set of legal operations. Hooks are first-class objects, i.e. they have
an unlimited extent and they can be passed as arguments to functions, returned
from functions, and stored in data structures. They are created and manipulated
with the following operations (an accurate semantics is presented in the appendix) :

�9 (c o r o u t i n e f) with ~= (lambda (hook) ...)
This primitive is used to create a coroutine. It allocates a new hook filled with
the continuation of the c o r o u t i n e form. Then the f function is applied on the
hook. When f returns, the continuation current lyheld in the hook is invoked on
the returned value.

�9 (escape hook val)
This primitive allows a coroutine to exit, passing control to another coroutine. It
invokes the continuation held in hook on va l . This means that va l is returned

233

as the value of the coroutine or suspend/resume! form that was the last to fill
the hook.

�9 (suspend/resume! hook val)
This primitive allows the suspension of the current coroutine, resuming another
previously suspended coroutine. Therefore this is a kind of explicit context switch
mechanism between coroutines. It exchanges the current continuation with the
continuation held in hook, and invokes this latter on val.

The primitives coroutine and suspend/resume! are used to capture contin-
uations just as call/cc in Scheme. However, continuations can't be obtained as
first-class objects, because there is no legal operation reading the hook contents
directly. Yet, the original first class continuations are recovered by defining :

(define (call/cc fun)
(corout ine

(lambda (hook)
(fun

(lambda (value)
(escape hook value))))))

The inner lambda that is passed to fun emulates the Scheme continuations. It is
actually a first-class function because closures are first-class in Scheme. Note that the
continuation held in a hook is not lost when escape is used, so it can be reinvoked.
In this way, multiple returns from function applications are also recovered.

Nevertheless, just using this newly defined call/cc gives no performance ad-
vantages over the Scheme first-class continuations. We will see that an efficient
implementation can be conceived for applications creating a moderate number of
coroutines but heavily exchanging control, as in the following solution for the same-
fringe problem :

;;;a leaf reader
(define (make-walker tree)

(coroutine
(lambda (hook)

;;arecursive traversal
(define (walk tree)

(cond
((not (pair? tree))

(suspend/resume!
hook tree))

(else
(walk (car tree))
(walk (cdr tree)))))

;;returns the hook
;;to the client
(suspend/resume! hook hook)
;;starts the traversal
(walk t ree)
;;signa~ the end
'end)))

; ; ;The coraparator
(define (same-fringe tree-a tree-b)

; ; s t a r . the two ~afreaders
(def ine hook-a

(make-walker tree-a))
(def ine hook-b

(make-walker tree-b))
;;loops on the leaves
(let loop ()

(l e t ((l e a f - a (suspend/resume!
hook-a 'void))

(leaf-b (suspend/resume!
hook-b 'void)))

(cond
((not (eq? leaf-a leaf-b))

#f)

((eq? leaf-a 'end)
#t)

(else
(loop))))))

234

4 I m p l e m e n t i n g s e c o n d c l a s s c o n t i n u a t i o n s

Let us consider a Scheme implementation passing arguments in registers and al-
locating a fixed size frame at function entry. This frame is allocated in a special
heap controlled by the frame memory manager presented in next section. A frame
contains the following fields :

�9 ' tag: A frame identifier used by the frame memory manager. This tag can be a
pointer to a structure containing the frame layout.

�9 r e t a d d r : The caller return address.
�9 oldfp: The call~.r frame address. The fields retaddr and oldfp represent the

implicit continuation passed to every function.
�9 Some optional static frame pointers: Present, only when the function accesses

variables located in lexically enclosing functions.
�9 Some variables : The programmer defined variables, the function arguments and

some intermediate values, which are held in registers initially, but need to be
saved when a function call uses some of those registers and also at register
exhaustion.

Upon function entry, a frame is allocated and initialized with the caller infor-
mation. The frame address is placed in a dedicated register named current frame
pointer or simply fp. At return~ fp is restored with the caller frame address and a
jump to the caller return address is done. Since a frame can still be useful even after
function return, it can't be freed as easily as in a stack implementation. When there
is no more memory for allocating frames, the frame memory manager reorganizes
the heap by pruning frames that are no longer reachable from the current frame
pointer or a continuation held in a hook.

A hook is a structure allocated in the general heap. It contains a t a g identifier
used by the memory manager and a field named cfp which is a pointer to a capture
frame structure. A capture frame is a special frame created at a continuation capture
for storing the information needed to invoke that continuation. Excepting a hook,
there is no other first-class object pointing to a capture franae. A capture frame is
allocated in the special frame heap and contains the following fields :

�9 t a g : A capture frame identifier.
�9 r e t a d d r : The return address to jump to when invoking the continuation.
�9 o l d f p : The frame address of the function being suspended.
�9 hook : The address of the hook involved in the continuation capture and which

will be linked to this capture frame.
�9 n e x t c f p : This pointer is used by the frame memory manager.

Figure 1 shows the linking between a hook, a normal frame and a capture frame.
Using these hook and capture frame structures, the coroutine primitives are

implemented as follows:

(c o r o u t i n e f) : A capture frame c fp is allocated with tag , r e t a d d r and o l d f p
filled as upon normal function entry. Next, hook is allocated to hold the contin-
uation of the r form. Then the following code is executed :

235

General Heap : Frame Heap
g

~176 I ,, oldfp ,
tag retadd caller

: : / I ! ~ ~ I I f r a m e cfp ~ , ,

�9 " . . r , b l e . I

A hook ~ A capture frame A normal frame

Fig. 1. Hook and frame linking.

r hook
hook---~cfp= cfp
cfp--~nsxt cfp: listcfp
listcfp= r
fp: efp
escape(hook, :f(hook))

;; The capture frame and the hook
;; are made to point at each other.
;; The capture frame is chained in a list,
;; for reasons which we will ezplain later.
;; The capture frame becomes the current
;; frame and f is invoked.

Note that upon normal return of f , this form does an escape through the current
hook contents.

�9 (escape hook val) : A normal return is done as if the current frame was the
capture frame referenced by hook.

fp= hook--~efp
return val

�9 (suspend/resume! hook val) : A capture frame cfp is allocated with ~;ag,
r e t a a a r and o l d f p filled as upon normal function entry. Then the following
code is executed :

f p = hook--*cfp

hook---~cfp= cfp
cfp-~nex~cfp: listcfp
listefp: r
return v a l

;; The capture frame in hook
;; becomes the current frame.
;; Then hook is linked to cfp.
;; The capture frame is chained
;; in a list, as in c o r o u t i n e .
;; A normal return is made from
;; the new current frame.

Figure 2 shows the frame and hook chaining for an example of function call tree.
Frames have been enumerated according to allocation order. While working with
frame 1, a coroutine is created, so the hook H and the capture frame 2 are allocated.
Then the frame 3 is allocated for the function starting that coroutine. Next, using
suspend/resume: through the hook H, that coroutine is suspended and the work
with frame 1 resumed, so the capture frame 4 is allocated. A function call allocates
frame 5 where a suspend/ resume ! through hook H creates the capture frame 6 and
resumes the work with frame 3. Another function call allocates the frame 7 from
where an escape through hook H is done, resuming the work with frame 5. Finally

236

a normal return resumes the work with frame 1 from where a last function is called
allocating frame 8.

�9 ~ A capture flame
%..o"

A normal frame

~ A hook

A continuation

A pointer to a first
class object

Fig. 2. An example of function call tree.

Initially, the hook H has been linked to frame 2, but the two successive
sunpend/resume! operations link it to frame 4 and then frame 6. Note that frame
7 hasn't been captured, so its memory is available for new allocation. In the same
way, the capture frames 2 and 4 aren't reachable from any hook, so the memory
taken by frames 2 and 4 and then frame 3 is also available.

5 An efficient m e m o r y m a n a g e r for f r ames

We split memory management into two almost independent garbage collectors. The
first is the general garbage collector managing first class objects such as cons cells,
symbols, vectors, etc. and especially hooks. The second is the frame only memory
manager --including capture frames-- which is presented in this section. This frame
memory manager is a simplification of the generational Stop and Copy garbage
collector described in [Nakajima 88] and [Appel 89].

Frame allocation is implemented as follows. At the beginning of a cycle, there is
an empty buffer which we will name the primary buffer. Two registers h p 2 i m i t and
hp point at the start and the end of this buffer. A frame is a}located by subtracting
its size from hp and comparing the new hp against the hp.li~a• register to test the
buffer overflow. It is important to note that there is no need to initialize frames,
instead the primary buffer is cleaned of dangling references by initializing it to zero
or nil after a general garbage collection.

When the primary buffer overflows, it holds the frames for the complete function
call tree from the beginning of the cycle. As stated in the previous section, some
branches of this tree are unreachable, so the reachable ones are appended to another
buffer which we will name the secondary buffer. Then a new cycle begins with an
empty primary buffer.

The reachable frames are firstly, those captured by the current frame which sig-
naled the overflow, and secondly, frames that have been captured by a continuation
held in a hook. However, for the latter, it has been necessary to create a capture

237

frame in the primary buffer from where they are reachable. Therefore coroutine
and suspend/resume ! chain the capture frames that they create in a list which we
will name the primary capture frame list or simply l is l ;cfp . In addition, some of
these capture frames are no longer referenced by a hook, because their initial hook
has been used to capture another continuation, so they are considered unreachable
unless another continuation captures them.

We outline a simple copying collector to transfer frames to the secondary buffer.
We say that this collector prunes frame trees.

1. For each capture frame C in l i s t c f p :
(a) If C points to a hook no longer linked to C, continue with the next capture

frame in l i s t c f p .
(b) Reverse the dynamic chain obtained from C by following the oldfp field

as far as a frame located in the secondary buffer or a frame that has been
marked as already transferred.

(c) For each frame F in this new chain :

i. Make a copy of F in the secondary buffer. This copy will be named F'.
The size of F is determined from the l;ag field.

ii. Link oldfp in F' to the copy of the caller frame which is just the previ-
ously transferred frame.

iii. Set a mark in the tag field in F indicating that F has been transferred.
iv. Link oldfp in F to the address of F'.
v. If F has some static pointers, since the referenced frames are in the

dynamic chain, they have already been transferred, so relink any static
pointer to its new address. This address is found in the o ldfp field of
the referenced frame.

(d) Let C' be the copy ofC. C' points to a hook having the r field linked to C.
Link cr to C'. Then chain C' into a list which we will name the secondary
capture frame list.

2. Transfer in a similar way the dynamic chain obtained from the current frame
pointer.

3. Set l i s ~ c f p to the empty list.

Afterwards, the execution must be resumed with a primary buffer reduced to
the size of the remaining memory in the secondary buffer. Thus, when the primary
buffer overflows again, all new frames are guaranteed to find room in the secondary
buffer, even when all of them are reachable. When this frame pruning is triggered
after a primary buffer overflow, we call it a minor pruning.

If the primary buffer becomes too small --assume a quarter of its initial size--
make a major pruning. A major pruning exchanges the primary and secondary
buffers and the primary and secondary capture frame lists, and then does a nor-
mal pruning. Most old frames transferred to the secondary buffer aren't reachable,
so they won't be recopied and the secondarY buffer will regain a reasonable size.

Figure 3 shows the primary and secondary buffers before pruning the tree of Fig.
2. Frame 1 is the only frame already located in the secondary buffer. Figure 4 shows
the buffers once the frames reachable through hook H have been transferred. Finally,
Fig. 5 shows the buffers once the pruning has finished.

238

Seccmdary buffer] Heap i Primary buffer

Fig. 3. Frame tree before pruning.

Secondary buffer : Heap : Primary buffer
i :.

~ addre, ss

Fig. 4. Buffer contents after transferring frames reachable through hook H.

Secondary buffer : Heap ",
g

w

fp] ."
|

m

B

g

Primary buffer

(empty)

Fig. 5. Final pruned frame tree.

239

Having an unlimited extent, a hook might become garbage for the rest of the
execution. Its captured frames will therefore appear to be reachable forever to the
frame memory manager. These useless frames will fill the secondary buffer increas-
ing the pruning frequency and so degrading performance. Hence, if after a major
pruning the secondary buffer is filled up to a given percentage, a general garbage
collection must be triggered to discard the unreferenced hooks. However, this situa-
tion should occur rarely because it is the normal heap exhaustion which will trigger
the collection.

6 S y n c h r o n i z a t i o n b e t w e e n f i r s t - c l a s s o b j e c t a n d f r a m e

m e m o r y m a n a g e m e n t

During a general garbage collection; a subtle synchronization with the frame memory
manager must be done to recover the frame space captured by garbage hooks. To
achieve this goal, while doing the general garbage collection, a special major pruning
is carried out simultaneously as follows:

1. Make a minor pruning to free the primary buffer.
2. Exchange primary and secondary buffers.
3. Set the secondary capture frame list to empty.
4. Transfer the frames reachable from the current frame to the secondary buffer.

The pointers held in those frames are roots for the general garbage collector.
5. Start the general garbage collector.
6. For each hook proved reachable by the general garbage collector :

(a) Transfer the frames captured by the hook to the secondary buffer.
(b) Chain the copy of the associated capture frame in the secondary capture

frame list.
(c) The pointers held in the transferred frames are roots for the general garbage

collector.

Note that the method used by the general garbage collector doesn't matter. It
could be a Stop and Copy or a Mark and Sweep collector with or without generations,
etc.

Our frame memory manager and the general memory manager, as a whole, can be
seen as a generational garbage collector [Lieberman & Hewitt 83], with the first two
generations reserved for frames only. The complexity associated with generational
memory management comes from the need to trace pointers from older generations
to newer generations. These pointers are the result of object mutating operations
such as set-ca.v!, v e c t o r - s e t ! , etc. However, frame chaining can't be altered in
the frame heap, so pointers from secondary buffer to primary buffer can't exist and
therefore no tracing is needed. Yet, coroutine suspension can link a hook --in an old
generation-- with a newer frame, hence the necessity to introduce capture frames
which just serve to trace hook mutations.

240

7 Performance analysis for applications lacking coroutines

In this section we evaluate the overhead that the memory organization described
in previous sections carries to applications not using coroutines. To measure this
overhead we have implemented it in F1 [Seniak 91]. F1 is a compiler for a small
lisp, generating assembler code for Sparcs. It uses the 31 Sparc registers as much
as possible, but without calling on window registers. F1 doesn't treat floating point
numbers, so no test is needed in integer arithmetic operations.

We show in table 1 the timings for the Gabriel benchmarks [Gabriel 85]. Timings
include our heap organization as well as various stack implementations which test
or don' t test overflow and chain or don' t chain frames. We include also the perfor-
mances of a mixed stack/heap strategy which we explain in the next section. The
measurements have been done on a SUN/670MP, having a 64 Kb cache.

To measure the overhead associated with tagging, we added the tags to the frame
chaining stack organization, then this overhead was the additional execution time.
To measure the overhead associated with frame pruning, we doubled the work by
transferring surviving frames to a third intermediate buffer while pruning, then an-
other pruning transferred the same frames to the secondary buffer. The pruning
overhead was the difference with respect to our heap organization. Having the over-
head of frame chaining, tagging and pruning, the remaining unexplained overhead
was due to the locality loss in memory access.

Therefore the proposed organization has an overhead of 18% when compared
with a stack implementation testing the overflow. However with the optimizations
described in the next section, we reduce that overhead to a 11%.

The surprisingly small overhead of frame pruning is explained because the mean
lifetime of frames is very short in conventional applications. The frames surviving
to a minor pruning are those that are reachable from the current frame, excepting
those that are already in the secondary buffer. Therefore, the number of transferred
frames is the depth of the call tree a~ primary buffer overflow, less the minimal
depth reached during the cycle. However, considering the locality of function call
depth from which Sparc register windows are inspired, this number is very small. In
fact, we have measured a 1 to 2 % o f frames surviving to a minor pruning, and a 2
to 5% surviving to a major pruning.

The locality loss is the main penalty for this heap organization. A normal stack
organization presents a high degree of locality, explained also by the locality of
function call depth. However, our organization allocates frames sequentially, flushing
cache lines at almost every function call. In fact the 5.2% was obtained solely when
the primary buffer was limited to a size by 16 or 32 Kb, to give an opportunity to
the 64 kb cache to hold it completely, otherwise the overhead was greater.

8 Optimizing performances of frame allocation

The following minor v~riation is inspired from the stack/heap strategy described in
[Clinger et al 88].

Upon normal function entry, after frame allocation, the fp and hp registers have
the same value. If this still holds at return, no capture frame could be allocated,

241

so the frame memory can be reused safely. Therefore, at return, the fp and hp are
compared and when they are equal, the allocated frame is freed by adding its size
to the hp register. Moreover, when there is no captured continuations, a function
calling another function will get the hp register with the same value that it had
before the call, so it will also free its frame at return. Thus, frames will be pushed
and popped in the primary buffer, just as in a stack, and the application will exhibit
the locality of a stack organization.

During a continuation capture, the hp register is adjusted to allocate a capture
frame. When that continuation is invoked, the hp register is not restored, so its fur-
ther comparison against fp will fail, and all frames allocated before the continuation
capture will not be freed. In this way, the frames captured by a continuation are
guaranteed not to be reused for new allocation. Frames allocated after the capture
frame will continue with the normal push and pop discipline.

Therefore, in normal applications, there is a gain in the locality of memory access,
but there is also a loss in performing the test at function return. Although this test
is useless when coroutines are exploited intensively, we have adopted it, because we
desired a minimal penalty for normal applications and the measurements had shown
that the gains were greater than the losses.

Another optimization adopted is the suppressing of frame tagging. In fact, the
tags can be placed at primary buffer overflow for the reachable frames only. The
tags can be deduced from the return address by using a binary tree, a hash table
or, in some architectures, just including it in the code around the return address.
The performance of an implementation with the stack/heap optimization and tag
suppression is shown in table 1.

Finally, other optimizations are possible, even though we didn't adopt them.
First, the overflow test at function entry can be suppressed by placing the frame
heap in the stack space of a Unix process and organizing it as in Fig. 6. In this
way, the test is done at continuation captures only, while at deep recursion the
primary buffer grows automatically, Second, the return test can also be suppressed
in functions which are known not to capture continuations by inspecting the static
function call tree. In addition, those functions don't need the frame chaining. Third
and last, established optimizations such as function integration and inlining can be
applied to further reduce the call/return overhead.

9 P e r f o r m a n c e a n a l y s i s f o r t h e s a m e - f r i n g e p r o b l e m

Tables 2, 3 and 4 show the performances obtained by three solutions for the same-
fr inge problem. Each version compares 10 times two trees containing 100,000 cons
cells.

The first solution is based on coroutines, so it does no allocation in the general
heap, instead it captures a continuation at every leaf. Although the stack/heap
optimization is present, it is useless, and therefore there is a low locality in memory
access. Table 2 shows performances when varying the primary buffer size and the
total frame heap size.

The second solution uses c a l l / c c to emulate the coroutine context switch. For
implementing c a l l / c o we used a variation of the stack/heap strategy where a general

242

Secondary Buffer

Alternative
Secondary Buffer

Lower ~ Grows
automatically

Addresses ha Unix

Fig. 6. A buffer organization allowing the suppression of the overflow test and simplifying
the first ancestor search when implementing shallow binding. At a major pruning, frames
are transferred from the secondary buffer to the alternative secondary buffer or vice versa.

garbage collection is triggered immediately after a frame heap overflow. We are
constrained to do so because the first-class status of Scheme continuations exclude
any frame pruning without proving that the continuation which captured a frame is
not referenced by another first-class object.

The third solution flattens the trees, i.e. it chains the leaves of each tree into two
lists before comparing them, resulting in a high general garbage collection activity.
We used a Stop and Copy collector with no generations.

The measurements show that the version using c a l l / c c is far the slowest. They
show also that there is a performance crosspoint between the coroutine and the
tree flattening solutions when objects survive in average one collection cycle in the
tree flattening version. Therefore the latter will win especially when coupled to a
generational garbage collector where objects rarely survive to one generation.

However, we think that coroutines must not be seen as a means to speed up
applications. Instead, they are a powerful abstraction tool which can greatly sim-
plify programming. The aim of presenting these measurements is to show that our
coroutines aren't expensive even when used intensively as in same-fringe. In fact, in
the coroutine version, same-fringe reaches a rate of 430,000 suspea~t/resume! per
second. Yet, if same-fringe is considered as a subpart of a more complex system, the
coroutines solution could win when a generational approach is not desired, because
the programming paradigm involves too much object mutations, such as in object
oriented systems.

10 E x t e n s i o n s

In this section we discuss some possible extensions to the memory organization
described previously. We start by introducing a hint to implement shallow binding
for dynamic variables; next, we discuss a way to treat dynamic escapes efficiently;
and finally, we consider allocating dynamic objects in the frame heap.

243

Dynamic variables have been traditionally implemented in high-performance
Lisps by using shallow binding, because the time needed to create, access and delete
a dynamic variable is constant. However, combining shallow binding with coroutines
or first-class continuations introduces a subtle complication. When transferring con-
trol between coroutines, the dynamic environment must first be unwound from the
current frame up to a common ancestor with the target frame, and then, rewound
down to the target frame.

This overhead in restoring dynamic environments can discourage language de-
signers to add dynamic variables, because even when these variables are not used,
coroutine users must pay at least the cost of finding the common ancestor to discover
that there is no dynamic environment to restore: This seaIch can be accelerated by
chaining the frames containing dynamic variables in a special list. Yet, adding a
single dynamic variable to the program, introduces an additional overhead in any
control exchange between coroutines.

Therefore we point out an interesting property for the buffer organization of Fig.
6 when using the frame pruning of Sect. 5. For every frame f l pointing to a frame
f~, the following holds :

address(f1) < address(h)

Hence, finding the common ancestor between two frames is as easy as unwinding
the two dynamic chains up step by step, alternating in such a way that the chain
containing the lower address frame is unwound first. The unwinding stops when the
same frame is found. Thus, when there is no dynamic environment to be restored,
the overhead associated with the search of the common ancestor is reduced to a
single test.

Another desirable extension is a way to treat dynamic extent continuations effi-
ciently. These continuations are useful to implement fast escapes such as longjmp in
C. A dynamic extent continuation can only be invoked by a function that is a child
of the function which captured that continuation. The capture of a dynamic extent
continuation is implemented by allocating a hook and a dynamic capture frame,
much as r is implemented. A dynamic capture frame is a capture frame,
but the fact that the former is referenced by a hook isn't enough to consider that
frame reachable as is the case for the latter: the former must also be referenced by
a reachable frame. Thus, there is no need to trigger an expensive general garbage
collector to recover frames captured by a dynamic extent continuation. Detecting
the illegal use of a dynamic continuation is achieved as follows : at a frame pruning,
when a hook is linked to a dynamic capture frame considered no longer reachable,
that hook is redirected to a special capture frame containing an error handler in its
return address.

Finally, in a stack based organization, dynamic extent objects can be allocated
efficiently in the stack. In our heap organization, such objects can also be treated
efficiently, because the compiler can be modified to include layout information to
be used at frame pruning. This information must describe where to find pointers
to dynamic objects in the frames of functions allocating, or receiving in arguments,
such objects.

244

11 Conclusions

In conceiving our memory organization for frames, we were inspired from [Appel 87]
which states that garbage collection can be faster than stack allocation if very large
heaps are coupled with a Stop and Copy collector. Although the original idea is
not practical with current memory configurations, we found that it was reasonable
when applied to Spaghetti stacks [Bobrow & Wegbreit 73], because stack memory
requirements are much smaller than heap memory requirements. Then, we realized
that adding generations to frame pruning was easy, because pointers from older
frames to newer frames can't exist. Finally, experimentation established that frames
have a very short life time, reaching to a point where frame pruning is almost costless.
Therefore, large frame heaps are not recommended because the smaller ones are more
efficient in presence of memory caches.

In this paper we concentrated on proving that this memory organization can be
used effectively to implement a simple class of coroutines. However, we are conscious
that the primitives we have introduced don't have all the desired power required
from coroutines. Yet, they don't extract the full power of the memory organization.
For example, additional power can be obtained by including two new primitives to
capture a continuation in a previously existing hook and to displace a continuation
from one hook to a second hook. Such additions would not affect the performances
of the frame pruner.

Acknowledgements

The author wishes to thank Nitsan SSniak for his valuable explanations about the
working of his F 1 compiler, Christian Queinnec for interesting discussions concerning
the semantics of continuations and helpful remarks on the writing of this paper, and
David De Roure for precious improvements brought to this paper.

References

[Appel 87] Andrew W. Appel : "Garbage Collection Can Be Faster Than Stack Allocation,"
Information Processing Letters 25t 1987, 275-279.

[Appel 89] Andrew W. Appel: "Simple Generational Garbage Collection and Fast Alloca-
tion", Software-Practice and Experience, 19(2), February 1989, 171-183.

[Bobrow & Wegbreit 73] Daniel G. Bobrow and Ben Wegbreit : "A Model and Stack Im-
plementation of Multiple Environments~" Communications of the ACM, i6(10), October
1973, 591-603.

[Clinger et a188] William D. Clinger, Anne H. Hartheimer and Eric M. Ost: "Implemen-
tation Strategies for Continuations," Proceedings of the I988 ACM Conference on Lisp
and Functional Programming, July 1988, 124-131.

[Gabriel 85] Richard P. Gabriel : Performance and Evaluation of Lisp Systems, the MIT
Press, 1985.

[Haynes et al 86] Christopher T. Haynes, Daniel P. Friedman and Mitchell Wand: "OI>-
taJning Coroutines with Continuations", Computer Languages, 11(3/4), 1986, 143-153.

245

[Hieb et al 90] Robert Hieb, R. Kent Dybvig and Carl Bruggeman : "Representing Control
in Presence o f First-Class Continuations," Proceedings of the ACM SIGPLAN'90 Con-
]erence on Programming Language Design and Implementation, White Plains, New York,
June 20-22, 1990, 66-77.

[Lieberman &- Hewitt 83] Henry Lieberman and Carl Hewitt : "A Real-Time Garbage Col-
lector Based on the Lifetimes of Objects," Communications of the ACM, 26(6), June
1983, 419-429.

[Nakajima 88] Katsuto Nakajima : "Piling GC -- Efficient Garbage Collection for AI Lan-
guages -- ," Parallel Processing, M. Cosnard, M. 8. Barton and M. Vanneschi (Editors),
Elsevier Science Publishers B.V. (North Holland), IFIP, 1988, 201-204.

[Rees & Clinger 86] Jonathan A. Rees and William Clinger, eds.: "The Revised 3 Report
on the Algorithmic Language Scheme," SIGPLAN Notices, 21(12), December 1986.

[Seniak 91] Nitsan S6niak : Thdorie et pratique de Sqil, un langage intermddiaire pour la
compilation des langages fonctionnels, Th~se de Doctorat de l'Universit6 Paris 6, October
1991.

A p p e n d i x : D e f i n i n g c o r o u t i n e s f r o m S c h e m e c o n t i n u a t i o n s

In this appendix we give a semantics for the primitives presented in Sect. 3. The
formal behavior is obtained by defining each primitive from Scheme continuations.

;;;Coroutine c~ation
(def ine (corout ine fun)

(c a l l / c c
(lanbda (k)

(fun (make-hook k)))))

;;;Escaping
(def ine (escape ~ook val)

((hook-ref hook) va l))

;;;Suspension and resumption
(def ine (suspend/restme! hook val)

(call/cc
(lanbda (k)

(l e t ((o ld -k (hook-ref hook)))
(hook-set ! hook k)
(old-k v a l)))))

; ; ;The hook abstraction
(define (make-hook k)

(vec tor k))

(def ine (hook-ref hook)
(v e c t o r - r e f hook 0))

(def ine (hook-set! hook k)
(v e c t o r - s e t ! hook 0 k))

246

"rabid I. Performances of different implementations for frame allocation. The first three
columns correspond to the execution time of three stack implementations. The first one
does no stack overflow test nor frame chaining, the second adds stack overflow test and the
third adds both. We consider the second implementation as the "normal" stack implemen-
tation. The following four columns show the execution time of our heap implementation and
the relative overhead associated with tagging, frame pruning and locality loss, compared
to the normal stack implementation. Finally, the last column shows the performances of
our organization with the stack/heap optimization and tag elimination. All execution times
are expressed in seconds and the percentage appearing under each of them is the relative
overhead of the corresponding implementation~ compared with the normal stack implemen-
tation. Note that the sum of the relative overheads associated with frame chaining, tagging,
pruning and locality loss is the relative overhead of the heap implementation.

Gabriel benchmark timings (in seconds)
Benchmark Stack H~ p

name -ovf normal +frame 'total tag]pruning
test chaining

Puzzle 0.822 0.823 0.836 0.890
-0.1% 1.6% 8.1% 1.0% 0.1%

Boyer 0.885 0.930 1.658 1.210
-4.8% 13.7% 30.1% 5.6% 4.3%

Destru 1.700 1.730 1 .770 1.835
-1.7% 2.3% 6.1% 1.4% 0.3%

Browse 1.590 1.625 1 .700 1"840 {
-2.2% 4.6% 13.2% 3.4%i 2.5%

Div-rec 0.145 0.155 0.170 0.202
-6.5% 9.7% 30.6% 6.5%i 6.5%

Div-iter 0.140 0.140 0.140 0.142] ~
0.0% 0.0% 1.8% 0.0%] 0.0%

Deriv 0.2901 0.298 0.'315 0.3'45 ~
-2.5%! 5.9% 16.0% 3.4% 0.0%

Dderiv 0.338 0.345 0.372 0.415 ~
-2.2% 8.0% 20.3% 5.1% 2.9%

Triangle 8.895 9.190 9.935 10.810 !
-3.2%! 8.1% 17.6% 4 8%1 1.1%

Traverse 5.730' 5.875 6.355 7.200 1
-2.5% 8.2% 22.6% 5.2%',

1 Tak 0.043]0.046 0.053 0.061 ~
I-5.2% 15.8% 33.3%

Average [{-2 8%] 71% 18 2% 40% T9% . 7 - 1 % 18.2% 4.0% ~ %

Stack~
loc. II Heap
loss ~ _

5.5% 7.3%
1'.102

6.5%1118.5~
1.790

2.0%11 3.5%
: 1.765
2.8% 8.6%
m 0.'18'0
i8.1% 16.1~

0.140
1.8% 0.0%

01320
6.7% 7.6%

0.388
4.3% 12.3~

[0.42(
3.5% t3.4~

6.495
8.9% 10.6%

o.o55
6:9% ~!'0,~

15:2%111o.8~

247

T a b l e 2. Performances of a same-fringe solution based on coroutines. The columns show the
total size of the frame heap, the primary buffer size, the total amount of memory allocated
for frames, the percentage of frames surviving to a minor pruning, the number of minor
and major prunings, and finally, the execution time using the stack/heap implementation.

Same-fringe with coroutines
frame primary frames copied minor I major execution
heap buffer allocated frames pruningsiPrunings time

size (KB) size (KB) (KB) / (secs-)
128 8 97735 1.77% 12997 49 9.4
128 16 97735 1.57% 6300 32 9.3
128 32 97735 0.87% 3101 26 9.4
256 64 97735 0.47% 1538 7 9.6
512 128 97735 0.25% 766 1 10.9

Tab l e 3. Performances of a same-fringe solution with ca11/cc. The columns show the
total heap size, the total amount of memory allocated (mainly formed of frames and con-
tinuations), the memory copied during garbage collection (including the trees), the number
of garbage collections and the execution time using the stack/heap variation where the
general garbage collector is triggered immediately after a frame heap overflow.

Sam~fringe with c a l l / c c
heap
size

(KB)
7000

IO00C
1200C
1500C
2000C

allocated[copied
objects/object.,

j (KS)
96117f 189916
96117 ~ 82063
96117 . 58616
96117 [42204
96117 [28135

mmber ecution
)f GCs time

81 81.6
35 43.4
25 35.1
18 29.3
12 24.3

T a b l e 4. Performances of a same-fringe solution with tree flattening. The columns show
the total heap size for a Stop and Copy collector, the memory allocation in cons cells, the
total memory copied during garbage collection (including the two trees), the execution time
with a stack implementation and the execution time with our stack/heap implementation.

Same-fringe with tree flattening
heap allocated[copied number I execution
size objects [object: of GCs I time (secs.)

(KB I (KB) [(K B) [stacklstack/heap
1000t 25781 [23905 9 I 13"61 14.0
1200(25781 [32905 9 [16.8 I 17.1
1500{ 25781 / 11249 4 I 8.9 [9.3
2000(25781 L ~ 5 9 3 j 8.2 I 8.4

An Implementa t ion of an Appl icat ive File System*

Brian C. Heck and David S. Wise

Computer Science Department
Indiana University

Bloomington, IN 47405-4101 USA
Fax: +1 (812) 855-4829

Emall: heckb@cs, indiana, edu

Abst rac t . A purely functional file system has been built on top of pure
Scheme. It provides persistent structures and massive storage expected of
file systems, without expficit side-effects like read and write. The file system
becomes an additional, lazy argument to programs that would read from it,
and ~n additional result from functions that would alter it.
Functional programming on lazy structures replaces in-place side-effects with
a significant storage management problem, handled by conjoining the heap to
the file system. A hardware implementation of reference counting is extended
out to manage sectors, as well as the primary heap. Backing it is a garbage
collector of heap and of disk (i.e. UNiX's fsck), needed only at reboot.

CI~ categories and Subjec t Descriptors:
D.4.2 [Storage Management]: Storage hierarchies; D.1.1 [Applicative
(Funct ional) Programming]; E.2 [Data Storage Representat ions]: Linked
representations; H.0 [Information Systems].
Genera l Term: Design.

Addi t iona l Key Words and Phrases: Reference counting heap, mark/sweep
garbage collection, hardware, Scheme, functional programming.

1 Motivation

The acceptance of functional, or applicative, programming languages has been en-
couraging. However, as often as they are taught and used, their scope of application
has been restricted to formalism, to toy algorithms, and to simple systems. True,
"purity" has been constrained at higher levels, to yield success stories like l.isp's
(with side effects), Ml_'s [11] (without laziness), and maybe Haskell's [5] (under UNIX
I/O). With such constraints, however, they are unlikely to fulfill their acknowledged
promise for parallel processing.

In a formal context applicative languages are often used as the foundation for
semantics, for program analysis, and for rigorous documentation or proof. Although
one can argue that important, non-"toy" algorithms (like divide-and-conquer tree
searching or Strassen's matr ix multiplication) were first invented and are best taught

* Research reported herein was sponsored, in part, by the National Science Foundation
under Grant Number DCR 90-02797.

249

using functional style; nevertheless, even these are used in production from C or
Fortran source code.

Similarly, it has long been understood that Landin's streams [9], or lazy evalua-
tion, allows a simple system to be expressed as an applicative program [4, 6] whose
input is the stream s t d i n and whose output is the stream s tdou t . However, two
things essential to a full operating system are still missing from such models: some
kind of indeterminism, e.g. to interleave multiple, asynchronous inputs; and a per-
sistent file system to cushion users against failures. A reliable file system is essential
to allow recovery from a crash without rehearsing all of history, beginning when the
system was first installed. Designing and implementing the file system is the goal of
this project.

We expect two things from an Applicative File System (AFS). The first, already
mentioned, is the ability to establish critical data structures in persistent media--
commonly on a magnetic disk. Then all of ephemeral, primary memory might be
lost, yet the system can rapidly be restarted from data on disk, recovering the system
to a persistent configuration that recently preceded the catastrophe.

The second seems incidental: that files are larger than structures in main memory.
Sometimes they are stored in secondary memory because of sheer bulk; often they
are static over long periods. These properties derive from physical properties of the
storage medium, and our own habits in using it.

However, AFS must behave within the constraints of pure functional program-
ming: that the only operation is applying a function to arguments. Side effects are
not available; thus, the programmer can neither "read" nor "write" a file. He can,
however, traverse one stream-like parameter, and generate another one as a result.
Either may be "bound" to a name in a distinguished environment that is commonly
called a file directory.

The remainder of this paper is in six parts. The next section briefly contrasts
common serial structures with, in particular, linked trees, setting up the importance
of reference-counting hardware in Section 3. Similarly, Section 4 deals with streamed
input and output, setting up the file system described in Sections 5 and 6, formally
in the former, operationally in the latter. Finally, Section 7 presents a simple running
example, and Section 8 contrasts this with past work and offers conclusions.

2 S i d e - e f f e c t e d A g g r e g a t e s v s . R e c o p i e d T r e e s .

The only memory model we use is I_isp's (actually Scheme's) heap. Every data struc-
ture is built from binary nodes, a member of the recursive domain:

S = E + S x S ,

where E is a flat domain of elementary items. Conventional vectors, and their con-
ventional in-place updates are not used. If static, they are easily mimicked with
linked lists or (better yet) trees; so they are unnecessary. Moreover, it is possible to
recopy a perfect tree of n nodes, incorporating one change, by creating only lg n new
nodes. Therefore, side-effect-free updates are simulated cheaply and we can prohibit
side-effects, consistent with functional programming and lazy evaluation.

250

Since the only non-trivial structure is a list, the only file structure is a persis-
tent list. Because file updates, similarly, cannot be done by means of side-effects,
it is possible to sustain two, perhaps several, successive incarnations of a single file
simultaneously--merely as different lists, likely with shared substructure.

/.From the perspective of the database manager we have simplified the file system;
we need only to keep the most current of several surviving incarnations, even while
older ones are still bound and traversed elsewhere in the system. Later we shall
describe how lists in memory migrate off to disk as files, and vice versa.

The inital perspective is that the file consistency problem has simply been traded
for for a massive storage management problem. The manager or garbage collector
needs to handle both binary nodes in primary (ephemeral) memory and sector-
objects in secondary (persistent) memory. The remainder of this paper describes
how that system was built and how it runs.

3 R e f e r e n c e C o u n t i n g v s . G a r b a g e C o l l e c t i o n

We have built a system that has a hybrid storage manager; it has reference counting
machinery both in main memory as well as on disk, and it is backed up with garbage
collectors in both places.

A foundation to the system is the hardware implementation of Reference Count-
ing Memory (RCM) [17, 18]. RCM is reported elsewhere, and the interesting story
here is how AFS was laid over it. However, a brief overview of the hardware is
necessary first.

3.1 R e f e r e n c e C o u n t i n g in H a r d w a r e

RCM has been implemented as a device on a NeXT computer. Although its design
would support full memory speed, the first prototype appears as eight megabytes of
microsecond memory. It is configured as a half-meganode heap and an equal amount
of serial memory that "roots" RCM. A second version is being designed for parallel
processing; the description below presumes that there are several RCMs.

Every write of a pointer in RCM is a read-modify-write. That is, a new pointer
is overwritten at a memory location only with removal of a former reference in
that location during the same memory cycle. The algorithm to write a pointer is
dispatched from a processor to memory where the following C code is executed
uninterruptibly (as a. remote procedure local to d e s t i n a t i o n) :

struct node
{

integral RefCt;
node *left, *right;

};
void store(pointer, destination)

node *pointer, **destination;
{

dispatch incrementCount (pointer);

251

dispatch decrementCount (*destination);
*destination = pointer;

All these operations occur essentially in parallel, subject to two constraints: the incre-
ment is dispatched before the decrement, and the former content at the destination
is used just before it is overwritten. Both the fetch from destination and the store
there occur during the same memory cycle (read-modify-write). The sequentiality
of these three steps in uniprocessor C satisfies the constraints of a uniprocessor, al-
though we intend them to be nearly simultaneous in hardware. Again, the increment
and decrement are dispatched on-line, but they complete off-line.

Reference-counting transactions can be interleaved with similar ones dispatched
from other memories to the same destination, as long as increments/decrements
arrive at the targeted reference count as some merging of the orders in which they
were dispatched. A unique, non-caching path between any source-destination pair,
as on a bus or a banyan net meets this constraint.

At the destination address, both increments

void incrementCount(p)
node *p;

{
if St icky(p->RefCt) ;else p - > R e f C t + + ;

}

and decrements occur as atomic transactions.

void decrementCount(p)
node *p;

{
if (St icky(p->RefCt) [[- - (p ->RefCt)) ;else FREE(p) ;

}

The use of FREE above indicates return to the local available space list. Each of
lhese three operations requires only finite time; a node can return to available space
still containing live, yet-counted pointers [15]. Thus, one memory location can, on
one hand, handle a store and, on the other, act on a couple increments or decrements
during one memory cycle.

RCM is controlled by reading or writing to special memory registers. Notably,
new nodes of two types are allocated by reading from distinguished addresses. Be-
cause of this and because increments, particularly, must not be deferred, RCM is
written-through the cache and read without caching.

In addition, RCM has on-board support for the rotations required in Deutsch-
Schorr-Waite marking and has an on-line sweeper so that memory cycles for garbage
collection can beat stop-and-copy. Early benchmarks show it running MachScheme
(hobbled to use a recursive stack) faster than equivalent code using a RAM heap
[18].

252

MachScheme is MacScheme [13] ported to the Mach operating system on the
NeXT computer, and subsequently revised to use RCM for its heap of binary nodes.
We acknowledge Lightship for granting source-code access to MacScheme.

3.2 A F S o v e r MachScheme ove r R C M

AFS is then implemented over MachScheme which uses MacScherne's tagged pointers,
extended for RCM hardware. RCM provides two types of nodes in its randomly
Mlocated heap space. Nodes having addresses of the form 8n are terminal nodes
(floating-point numbers); nonterminal binary nodes have addresses of the form 8n+4.

MachScherne's tagging system and RCM design allows us 18-bit addresses into
our file system. With 1024-byte sectors this yields a quarter-gigabyte file system.
However, the effect of internal fragmentation reduces this. Moreover, the present
tests were run on a prototype file-system of 4000 sectors, so to demonstrate a space-
constrained configuration.

AFS's directory structure is modeled after UNIX [12, 14]. All files have an asso-
ciated data node (dnode) similar to a UNIX inode except that there are no indirect
pointers. Dnodes contain a single pointer to the unique first sector of the file.

Initially, we wanted to have files collected by reference counting on disk, like
those in UNIX. When we examined our design for sharing data we discovered that
we really needed to maintain reference counts on each sector. So we began to use
typed pointers for references from heap space to sectors, but this required reference
counting to interfere, dispatching additional disk transactions on every write or over-
write of a sector reference; they would be prohibitively expensive. What we needed
was a second RCM dedicated to keeping reference counts for sectors with count
information dispatched from the RCM MachScheme Was using. We, therefore, stole
enough nodes from the existing RCM to dedicate one per sector for the prototype
AFS.

As a result, all the reference counts both for nodes in memory, and for sectors on
disk are maintained by the same circuits in RCM. The difference is that a node whose
count drops to zero implicitly returns to available space. However, sector reference
counts are "nailed down" so that they cannot return to zero (and be handled like an
RCM binary node, instead of as a whole sector); thus, their counts must periodically
be scanned to find one-counts-- to be returned to the sector pool. (This scan will be
eliminated under the next version of RCM.)

3.3 G a r b a g e C o l l e c t i o n on Disk

It is desirable that any garbage collection be deferred as much as possible because
such a lengthy traversal is slow, particularly under multiprocessing and on disk.
Garbage collection on disk parallels UNIX's fsck; it is slow but it can be necessary--
especially for recovery after a catastrophe.

Moreover, MachScheme has its own garbage collector, using RCM's mark/sweep
hardware. In order that these two collectors not interfere with each other, the RCM-
resident counts on disk sectors are stored in two parts corresponding to the RCM-
sourced and to the on-disk references. Thus, MachScheme's internal collector recom-
putes the former, but does not traverse the disk. fsck roots from the current disk

253

directory, and traverses only the persistent memory; it requires a "quiet system,"
just like UNIX.

A sector on disk is composed of two parts: most of it is a compressed repre-
sentation of the Scheme expression. A preorder-sequential representation is used,
with tags indicating types immediately following. Circularities are detected and rep-
resented appropriately. Ten-bit pointers refer to positions in structure within that
sector (uncounted), or to expanded 24-bit (counted) off-sector references. They form
the second part of the sector--compressed at the end.

Thus, fsck need not traverse the first part of any sector, but must traverse and
count the references at the end. And when a sector is condemned because its reference
count drops to zero, all those forwarding references must be dereferenced.

3.4 D i r e c t o r i e s a n d W r i t e - o n l y - m e m o r y

The "file system" we discuss here is not built free-standing. In fact, it is nothing
more than a permanent UNIX file of four kilosectors, which models a small, private
random-access disk. UNIX utilities see it as a jumble of bits, and its UNiX-directory
entry is irrelevant to the description below.

Within it is at least one- -poss ib ly several successive--directories that we have
generated. The most recent one of those represents the "current" file system. As
discussed in Section 2, "creating," "deleting," or "changing" the binding of a file's
name is effected by recopying the directory (itself a file) to include that alteration.
Thenceforth, the f i l e _ s y s t e m is bound to the newer directory.

After a file binding is created, the bound structure soon migrates onto disk. Be-
cause any file binding must now refer to a structure entirely disk-resident, huge files
no longer need to consume heap in main memory. Manipulation of these files remains
the same as if they were resident in that heap--except for the delays associated with
file access, needed to copy sectors from it back into the heap.

The remaining problem is how to assure recovery of the file system after a sys-
tem crash. The entire file system is still rooted in some ephemeral register of the
computer, even though its entire content is resident on disk. However, the persistent
information there is useless unless its root can be found.

One word of permanent memory (or disk) is set aside as write-only-memory, to
receive a copy of the root of the file system after every update. (This contrasts with
Section 2 protocols.) Operationally, this seems to be a side effect, but this binding
is completely invisible to a running system, which uses its own ephemeral register
as its root of the file system. In effect, the memory-resident root of the file system
is copied into permanent memory, but nothing in this lifetime can use that copy;
therefore, it may as well "not exist."

Whenever a conventional operating system is rebooted, it uses this distinguished
address into permanent storage in order to root and to restore the file system as it
was when last stable. The system is restored to a configuration from the not-too-
distant-past, and comparatively little is lost, just as in UNIX.

Of course, the former streams, s t d i n and s t d o u t , are lost during a catastrophe,
and the reboot establishes a new s t d o u t ' and provides a new s ~ d i n ' , presumably
initiated by a user aware that the crash occurred and likely inquisitive of what files
survive in the aftermath.

254

4 Stdin and Stdout

S t d i n and s t d o u t are classically treated as special streams/files with read-once and
write-only privileges respectively. As discussed in Section 1, many researchers have
suggested using streams for I /O. Merging these two approaches under AFS provides
an elegant solution. (These ideas are not implemented in the current AFS due to
the eager nature of Scheme.)

As in any file in the system, s t d i n should become manifest in main memory
when a read operation is a t tempted upon it. The data structure representing s t d i n
should be a lazy list. The tail of the list would be a suspension which, when thawed,
creates a list with the head being a character read from the real input device (or
a p o r t - n o t - r e a d y token) and the tail being a copy of the original tail suspension.
This new pair is placed in the tail position of the manifest portion of the lazy list and
control returns. To get a character from the s ta l in file one simply takes the head of
the list. The user is responsible for keeping track of where she is in the s ta l in data
structure. Each computational thread has an incarnation of the file system, so each
may have a different opinion of what the next character to be read is. There is no
restriction that keeps a thread from rebinding its own s t d i n to a different device or
file.

No side-effects are necessary to maintain s t d i n because only the main thread
can write to the master file system. Until the main thread updates its version of
stdixt, the entire stream of characters up to the last actually read from the device
can remain memory resident (or swapped to disk). Updating the main file system to
reflect the current consumption of s ta l in by the main thread would be achieved by
the user installing what she perceives to be the tail of the current s ta l in as s t d i n '
in a new file system. An ideal t ime to perform this update would be just before
spawning a new thread. Due to reference counting, the list of characters would be
automatically collected as soon as all references to the older s t d i n no longer exist.

S tdou t may be handled by the classic w r i t e - o n l y - f i l e viewpoint with the file
system piping the s t d o u t file to a logical device (perhaps unique for each file system
which is active). The operating system may map each of the logical devices to an
actual output device performing any merge operations necessary.

5 Functionality

Notation from formal semantics is used to specify the types of AFS primitives.

Finite Sets
~r EP
EM

Persistent memory addresses
Main memory addresses
Identifiers as file names

Domains
S = E + (S x S)

a E A = P + M
8 E D = I---. p +

S-expressions
Addresses

Directories

p E R = A--~./V"

x E C = P ~ M •

255

Reference Count
Cache

An interface to the file system has been provided through the following com-
mands. All commands take an implicit file system and return a new system implic-
itly.

mkf

rmf

getf

mkdir

Inh

Ins

fsck

createfs

Ioad-fs

close-fs

: D ~ I ~ S ~ D

Makes 5" persistent and associates I with that persistent
structure in the new file system.
: D---+ I---+ D
Returns a new file system with no directory entry for I
: D - + I---~ S x D

Returns the data structure associated with I in D plus a
n e w D.

: D'--+ I"-~ D
Returns a new file system with an entry for the directory I .
: D--+ I---+ I----~ D

Returns a new file system with an association between the
existing file (the second identifier) with the first
identifier via a hard link.
: D---~ I - + I--+ D

Returns a new file system with an association between the
existing file (the second identifier) with the first
identifier via a soft link.
: D---~ D
Returns a new file system after a disk garbage collection.
Intended to be run only by the main thread.
: I ~ 2
Used to build a new, empty file system in the UNIX file I .
The user must install the system to use it.
: I - + D
Installs the file system contained in the UNIX file I into
the current Scheme session.
: D ---* _L
Stores the current file system into the UNIX file it
originated from and removes all file systems from the
Scheme session.

6 S y s t e m O p e r a t i o n s

AFS users have the ability to create hard and soft links in much the same manner as
in UNIX. (Cf. UNIX commands In and I n - s respectively.) As in UNIX, hard links
are counted references and soft links are uncounted. One interesting change, due to
the elimination of side-effects, is a modification in the behavior of hard links. (Soft

Direc tory-~l Directory-~2

F i lename 1st Sector F i lename 1st Sector

links behave exactly the same as their UNIX counterparts.) Following a hard link in
UNIX returns the most current version of the file; this behavior stems from UNiX
overwriting the file to install the new contents. However, AFS does not install the
new data structure into the existing file system. Figure 1 contains before and after
diagrams resulting from writing new "contents" to an existing hard link.

Initially, in the directory 6t, hard links L1 and L2 correlate to the disk resident
structure beginning with sector ~rl. Issuing the command "(mkf L1 (cons 6 15))"
creates a new file system in which 62, 52 still points to its old contents, but ~1 does
not. In 61 (the root of the old file system), both links still point to the old data
structure, ~rl.

t l 7rl

L 2 ?rl

Before - -
W i t h two h~rd links
to the same file.

Disk

Sector 7rl

22

L1 71"2

g2 ~1

A f t e r - -

W i t h one h a r d link
to each of two files.

Disk

Sector r l

256

Sector r2

E[N

Fig. 1. Result of requesting (~kt ~1 (cons 6 15)).

257

6.1 Fi le C r e a t i o n

A request for migration of a data structure c~ to disk initiates a preorder-sequential
compression [7] of ~ into a set of sectors P+. At some time (undefined but "soon")
after a request to make a data structure a file, the data structure will become persis-
tent. Currently, AFS has eager behavior inherited from Scheme, but implicit laziness
could be inserted. Lazy file write operations are consistent with most current op-
erating systems' views of files and buffers; until all buffers are flushed and the file
committed, no guarantees can be made about the state of the file. Laziness should
be transparent to the user except after a catastrophic system failure after which
the file system is guaranteed to come back up in some stable, pre-existing state; we
just cannot say exactly what state. (The user will learn to program confirmations
to s t d o u t that depend on successful commits to migration.)

Graphs migrated to disk may produce arbitrary graphs of sectors. In the trivial
case of a flat list of nonterminal nodes, all having unary reference counts, the file
becomes a flat list of sectors. One consideration for migration of graphs to disk is
that multiply referenced nodes provide opportunities for data sharing and introduce
a possibility of circularity. We assert that circularity in manifest graphs can be
detected and sector reference counts corrected to allow reference counting to collect
the disk structures [3].

As for suspensions, we would install them into the file system verbatim, that is,
unexpanded. The suspensions would remain persistent on disk, but heap resident
versions could be thawed and allowed to continue their work. Because Scheme is
eager, however, we don't provide for suspensions yet.

Figure 2 shows the data structure rooted at/~1 before and after it becomes per-
sistent. The content of pl is copied into a new heap node #~. This is immediately
followed by adding an entry to the resident sector cache associating the address of
the file's first sector, ~rl (a preallocated sector) with/~2- (The resident sector cache
which maps resident sector addresses to RCM addresses (X : P ~ M) reduces the
likelihood of having multiple copies of sectors heap resident, but more importantly,
it prevents costly disk accesses if a needed sector is found to have a cache entry.)
Next, the contents of/~1 's car and cdr fields are overwritten by forwarding pointers
to the file's first sector, rrl.

The modifications to the original data structure to insert forwarding pointers are
side-effects only at the level of implementation, not with respect to language seman-
tics. Further, we assert there is no net consumption of heap space by the migration
process. The recovery of the nodes containing forwarding pointers is completed dur-
ing the next garbage-collection cycle. Thus the space needed for the new node/~2 is
offset by recovery (in the future) of the pre-existing node/zl .

During compression, any multiply referenced, nonterminal nodes (/~k) encoun-
tered are treated as separate trees and are rooted at the head of a new sector 7rk
(and have their contents replaced by forwarding pointers as # l ' s was in the above
example). A pointer to 7rk is written into the current, compression buffer and the/zt~
is marked as disk resident (via a forwarding pointer as discussed below). Next, #k
is stacked for later compression onto disk (rooted at 7rk). The placement of multiply
referenced, nonterminal nodes at sector heads allows the sharing of that single data
structure by all its referents.

258

Initial configuration

~7

#10

~3 Disk
, . # 1

Resident Sector 2 e
] ~ L ~ [~ ~t'Addr'iCMAddr"

#1~ #12 #13

----" Disk

I I

1 1 1 ~ Sect.Addr. RCM Addr.

#1o ~ n #12 # l a

Fig. 2. Example of Data Migration: making #1 persistent.

259

While traversing the data structure, data from all uniquely referenced nodes and
multiply referenced terminal nodes is copied into the current compression buffer. (If
the buffer is full, a pointer to an empty sector is added and the buffer is written
to the sector preallocated for it. Processing continues with the new, empty buffer.)
Multiply referenced, terminal nodes are not assigned to unique sectors (to reduce
internal fragmentation).

Sector pointers encountered in the heap during compression are added to the
current sector as normal data along with one additional entry. At the end of every
sector, a set of off-sector references, as mentioned in Section 3.3, is maintained. This
list enables the disk's garbage collector to recalculate sector reference counts without
scanning the sector.

6.2 F i le a n d S e c t o r M i g r a t i o n f r o m Disk t o H e a p

A getf command is treated as a request to load the root sector of the file into the
heap. (The same mechanism is used to render sector addresses encountered in the
heap into heap addresses.) The sector address is clashed against the resident sector
cache. In the case of a hit (xTr r _L), the address of the heap resident copy of the
data structure is returned. A cache miss (xTr -- _L) forces a load of the desired sector
into the heap and the addition of an entry in the cache to reflect that action. A
traversal of the entire graph stored in the file will cause the file to be loaded into the
heap one sector at a time. This is not to say that the entire file will be heap resident
at any given time; if the file is sufficiently large that may not be possible).

7 E x a m p l e s

The first example is a file editor taken from Friedman's and Wise's [4] paper. The
example editor consumes a list of commands (stored in the file "commands"), applies
the commands to the contents of another file "rhyme", and returns a list. We then
install the list as a new version of the file "rhyme" in a new file system. The old
version of "rhyme" is never deleted; it is automatically reclaimed when no longer in
r i s e .

The editor has six basic commands:

type
repos
dele
ins
find

subst

-Pr ints characters up to the next newline.
-Repositions the cursor at the beginning of the text.
-Deletes the character to the right of the cursor.
-Inserts the given string to the left of the cursor.
-Finds the first occurrence of the given string to the right
of the cursor. Success is reported if the string is found.
Otherwise the cursor is advanced to the end of the text
and failure is reported.
-Locates the target string just as the find command
and replaces it with the replacement string. Reports
success or failure in the same manner as find.

260

MacScheme* Top Level Version 1.9 (Development)

>>> (createfs "fsys")

#t

>>> (load-fs "fsys")

#t

>>> (mkf "rhyme" (rcmlist #it #ih #\e #\space #iq #iu #ii #ic #ik

#\space #ib #Jr #io #i~ #in #inewline #if #io #ix))

#t

>>> (mkf "commands"

(rcmlist

(rcmlist find (rcmlist #\q #iu #ii #ic #ik #\space))

(rcmlist type)

(rcmlist dele)

(rcmlist dele)

(rcmlist ins (rcmlist #id))

(rcmlist subst (rcmlist #inewline) nil)

(rcmlist repos)

(rcmlist subst (rcmlist #iq #iu) (rcmlist #1s))

))

#t

>>> (mkf "rhyme" (editor (getf "commands") (getf "rhyme")))

#\:"find"(#iq #iu #ii #ic #\k #\space)

"Found: "(#\q #iu #\i #ic #ik #\space)

#i : "type"#ib#ir#io#iw#kn

#i : "dele"

#i : "dele"

#i :"ins" (#id)

#i : "subst" (#inewline) ()

"Found" (#inewline)

#\ : "repos"

#\ : "subst" (#iq #\u) (#is)

"Found*' (#\q #\u)

i : # t

261

>>> (getf "rhyme")

(#\t #\h #\e #\space #ks #\i #\c #\k #\space #\d #\o #\w #\n #\f

#\o #\x)

>>>

7.1 Example of Catastrophic Failure

When the system fails, AFS at tempts to return to a previous, stable state. It will
a t tempt to bootstrap the last version installed in the write-only memory discussed
in Section 3.4. In the example below a system is created with thir ty files (each with
a unique copy of the same S-expression for convenience). While executing we cause
the system to fail (via an interrupting control-C). To see how the system fared
under a failure we list the files to determine which file was last created. According
to the directory, "seed24" is the last file created intact. File "seed23" was probably
in the process of being written to disk, but since the new file system (with "seed23"
installed) was not written to the write-only-memory before the failure, the file is
lost. This behavior is consistent with most current file systems.

MacScheme* Top Level Version 1.9 (Development)

>>> (createfs "fsys")

#t

>>> (load-fs "fsys")

#t

>>> (mk-manyfiles "seed" (rcmlist i (rcmlist 4 5.4)) 30)

"C

Program received signal 2, Interrupt

(gdb) q

prototype : f~srn/cmsch

MacScheme~ Top Level Version 1.9 (DevelopmenZ)

>>> (load-fs "fsys")

#t

>>> (Is)

("f seed24" "Fri Mar 27 21:10:07 1992

" "f" "seed25" "Fri Mar 27 21:10:07 1992

" "f" "seed26" "Fri Mar 27 21:10:07 1992

" "2" "seed27" "Fri Mar 27 21:10:07 1992

" "f" "seed28" "Fri Mar 27 21:10:07 1992

" "f" "seed29" "Fri Mar 27 21:10:06 1992

262

" "d" ".." "Fri Mar 27 21:09:49 1992

" "d" " " "Fri Mar 27 21:09:49 1992

,,)

>>> (getf "seed24")

(1 (4 5.4))

>>>

8 C o n c l u s i o n s

Present treatment of the migration of data between layers of memory under func-
tional programming falls into two categories. Sometimes the problem is set aside,
and the language enjoys an absence of restriction on transactions that are "outside"
the program, as in MI_, lisp 1.5, or Scheme. Such languages do not extend very well
to parallel processing.

Other languages at tempt to isolate the problem: Backus's ASM in FP [1], William's
and Wimmer's histories in FI_ [16], and Lucassen's and Gifford's effect streams in
FX [10] are all serious efforts to encapsulate the "impure" file activity in order to
isolate it from the "pure" functional portion of the language. Haskell [5] follows this
tack. Alternatively, the time or scope for creation of persistent structures has been
restricted [2].

In contrast, this research neither partitions nor encapsulates data. This treat-
ment, in fact, would be transparent to the user if she were not required to partici-
pate, contributing some important declarations about her data. (ObjectStore [8], a
general database system, similarly depends on only a few type assertions.) This is
experimental work; one test of success is just to build a hierarchical memory in a
purely functional environment without any "barriers." Another is to make it work
well.

We have succeeded in the first test. The design and construction effort was not
straightforward, but the difficulties we encountered all had an elegant solution, ap-
propriately within the scope of the tools we had chosen.

Scheme is hardly an ideal language for this experiment; its lack of lazy evaluation
corrupts the transparent implementation of UNIX pipes for s t d i n and sZdout. How-
ever, a remarkably convincing test for such a generalized file system is to bring it to
life under a general-purpose programming environment. We have built a production
environment.

R e f e r e n c e s

1. John Backus. Can programming be liberated from the von Neumann style? A func-

tional style and its algebra of programs. Comm. ACM, 21,8 (August 1978), 613-641.

2. David J. McNaJly and Antony J. T. Davie. Two models for integrating persistence and

lazy functional languages. SICPLAN Notices, 26,5' (May 1991), 43-52.

263

3. Daniel P. Friedman and David S. Wise. Garbage collecting a heap which includes a

scatter table. Information Processing Letters 5,6 (Dec 1976), 161-164.

4. Daniel P. Friedman and David S. Wise. Aspects of appficative programming for file

systems. In Proc. of ACM Conf. on Language Design for Reliable Software, SIGPLAN

Notices 12,3 (Mar 1977), 41-55.

5. Paul Hudak, Simon Peyton Jones, and Philip Wadler (eds.). Report on the Program-

ming Language Haskell. SIGPLAN Notices 27,5 (May 1992), R1-R164.

6. Peter Henderson, Geraint A. Jones, and Simon B. Jones. The LispKit Manual. Tech.

Monograph PRG-32 (2 vols.), Programming Research Grp., Oxford Univ. (1983).

7. Donald E. Knuth. The Art of Computer Programming 1 (2nd edition), Reading, MA,

Addison Wesley (1973).

8. Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore

database system, Comm. ACM 34,10 (Oct 1991), 50-63.

9. P. J. Landin. A correspondence between ALGOL 60 and Church's lambda notation:

Part I. Comm. ACM 8,2 (Feb 1965), 89-101.

10. John M. Lucassen and David K. Gifford. Polymorphic effect systems. Conf. Rec. 15th

ACM Syrup. on Principles of Programming Languages (Jan 1988), 47-57.

11. R. Mflner, M. Torte, and R. Harper. The Definition of Standard ML. Cambridge, MA,

MIT Press (1990).

12. D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Bell System Tech.

J. 57,6 (3ul-Aug 1978), 1905-1930.

13. Lightship Software. MacScheme (~)Version 1.9 development. Beaverton, OR (1989).

14. K. Thompson. UNIX Implementation. Bell System Tech. J. 57,6 (Jul-Aug 1978),

1931-1946.

15. J. Weizenbaum. Symmetric list processor. Comm. ACM 6,9 (Dec 1963), 524-544.

16. John H. Williams and Edward Wimmers. Sacrificing simplicity for convenience: where

do you draw the fine? Conf. Rec. 15th ACM Syrup. on Principles of Programming

Languages (Jan 1988), 169-179.

17. David S. Wise. Design for a multiprocessing heap with on-board reference counting. In

P. Jouannaud (ed.), Functional Programming Languages and Computer Architecture,

Lecture Notes in Computer Science 201, Berlin, Springer (Sept 1985), 289-304.

18. David S. Wise, Caleb Hess, Willie Hunt, and Eric Ost. Uniprocessor performance

of a reference-counting hardware heap. Tech. Rept., Computer Science Department,

Indiana Univ. (in preparation).

A Compile-Time Memory-Reuse Scheme
for Concurrent Logic Programs

S. Duvvuru, R. Sundararajan, E. Tick,
A. V. S. Sastry, L. Hansen, and X. Zhong

University of Oregon, Eugene OR 97403, USA

Abs t r ac t . As large amounts of garbage are generated in concurrent logic
programs, it becomes necessary to salvage used memory frequently and effi-
ciently, with a garbage collector. Another approach is to detect when a data
structure becomes garbage and reuse it. In concurrent languages it is partic-
ularly difficult to determine when a data structure is garbage and suitable for
destructive update. Dynamic schemes, such as reference counting, incur space
and time overheads that can be unacceptable. In contrast, static-analysis
techniques identify data objects whose storage may be reused. Information
from static analysis can be used by the compiler in generating appropriate
instructions for reuse, incurring tittle or no runtime overhead. In this paper
we present a new static-analysis technique for reuse detection. We present
empirical performance measurements comparing the new scheme against bi-
nary reference counting (MRB). It is shown that a simple static analysis can
achieve most of the benefits of MRB and improve the execution time.

KEYWORDS: static analysis, garbage collection, abstract interpretation

1 I n t r o d u c t i o n

In logic and functional programming languages, variables have the single-assignment
property, i.e., a variable can be bound to a value at most once. In logic programming
languages, a logical variable starts its life as an undefined cell and may later hold a
constant, a pointer to a structure, or a pointer to another variable.. These languages
do not allow in-place update of bound data structures. Abstractly, the effect of an
update is achieved by creating a new copy of the structure, with some new portion
inserted into the copy.

The single-assignment property is elegant, because it is possible to use the avail-
ability of da ta as a means of process synchronization, similar to dataflow computa-
tion. However, this has the undesirable effect of resulting in large memory turnover,
due to excessive copying. Copying is wasteful in terms of both execution t ime and
storage requirement. The lack of economy in memory usage results in the prodigious
memory requirements by programs that update aggregate data structures. Garbage
collection needs to be invoked frequently as the heap space is limited. Large memory
bandwidth requirements and poor cache utilization hinder construction of scalable
and high performance architectures for parallel logic languages.

If it is known that there are no references to a da ta object (from any process other
than the one inspecting the object), then the structure can be reclaimed and used in

265

building other structures if necessary. The detection and reuse of such data objects
can be done either at compile-time through static analysis, known as compile-time
garbage collection, or at runtime (with additional data structures and instructions),
or by a combination of both.

In this paper, we present (in brief) a new static-analysis method for compile-time
garbage collection. We restrict ourselves to committed-choice logic programming
languages [19]. In Section 2, we provide a brief introduction to committed-choice
logic programming languages and review alternative methods for garbage collection
in such languages: the MRB scheme and Foster and Winsborough's static-analysis
technique [9]. In Section 3, we describe a new static-analysis scheme in the frame-
work of abstract interpretation. In Section 4, we present performance measurements
comparing our technique to MRB. Conclusions are summarized in Section 5.

2 R e v i e w

We start with a brief introduction to committed-choice logic programming before
discussing garbage collection methods. A committed-choice logic program [19] is a
set of guarded Horn clauses of the form H :- A1, . . . , A m : T1 , . . . ,Tn I B1 , . . . ,Bp
for m, n, p > 0. H is the clause head, Ai is an "ask" guard, 7~ is a "tell" guard, and
Bi is a body goal. For fiat languages, the guards can only be built-ins such as X =
~.1 We say that a goal a is reduced to a set of goals body i (or clause i commits) if a
successfully matches with the head of a clause i (i.e., without causing any bindings
to the variables of the goal) and the guards of clause i succeed. The ask guards
must succeed without binding any goal variable, whereas the tell guards can bind
variables.

A collection of clauses with the same head predicate and arity is known as a
procedure. When a goal can commit to more than one clause in a procedure, it
commits to one of them non-deterministically and the execution of other candidates
is aborted. Otherwise, structures appearing in the head and guard of a clause cause
suspension of execution if the corresponding argument of the goal is not sufficiently
instantiated. For example, in order for a goal foo(X) to commit to the following
clause,

foo([AIB]) : - t r u e : t rue a bar(A,B).

the argument X of the goal must already be bound to a list structure, whose head
(car) and tail (cdr) may be any term, even unbound variables. In the rest of the
paper, structures appearing in the head are referred to as incoming structures.

Logic languages dynamically construct and decompose terms, usually Mlocated
on a heap. The problem is to make efficient use of memory, specifically to reclaim
heap space which is no longer accessible. Heap space is allocated in varying sizes,
the management details of which do not concern us in this paper.

Although general reference counting [6] has the disadvantages of significant mem-
ory requirements and runtime overheads, the scheme can be efficiently approximated
with binary reference counting. A prime example of this approach is the Multiple Ref-
erence Bit (MRB) garbage collection scheme [4]. Advantages of the MRB are ease of

a Upper case identifiers denote variables and lower case identifiers denote atoms.

266

hardware implementation and reasonable execution speed [13]. In this scheme, mem-
ory is incrementally reclaimed with special c o l l e c t instructions that are generated
for each incoming structure. We illustrate this technique with abstract machine code
for the above clause:

foo 1 top:
try me_else foo_l_O
wait_list 1
read_car_variable I, 2
read_cdr variable 1 ,3
collect_list 1
put value 1,2
put_value 2,3
execute 2, bar_2_tOp

; set up continuation

; [AIB3
;X2=A
; X 3 = B

c o l l e c t l • c e l l
; s e t up c a l l t o b a x (A , B)

The collect_list instruction attempts to reclaim the list cell. The attempt suc-
ceeds if the MRB is off, in which case the cell is added to a free list. Separate free lists
are maintained for structures of varying sizes. When a structure is created, instead
of freshly allocating it from the heap, it is allocated from a free list. If the free lists
are used in a LIFO (last in, first out) manner, it is likely that the reclaimed cell is
still in the cache.

As mentioned above, c o l l e c t instructions are generated for each incoming struc-
ture. The MRB method per se does not involve compile-time determination of when
c o l l e c t instructions are needed~ and when they are not. Col lec t will reclaim the
memory allocated to a structure only if the structure is singly referenced. In other
words, all structures, regardless of their potential for reuse, will incur the overhead
of c o l l e c t instructions.

In contrast to MRB, which is a dynamic reuse method, we can apply static-
analysis techniques to the problem. The application of static program analysis to
infer properties of programs, and the use of this information to generate speciM-
ized and efficient code, have proved to be quite successful in functional and logic
languages. Analysis techniques for functional languages (e.g., [11, 10]) do not carry
over to logic programming because of the complexity of unification and the represen-
tation of bindings of the logical variable. Analysis techniques for sequentiM Prolog
(e.g., Mulkers [15] and Bruynooghe [2]) do not extend easily to concurrent logic lan-
guages, where no assumptions can be made on the order of execution of the goals
or about the interleaving of their execution. On the one hand, our approach is sim-
pler than that for Prolog because committed-choice programs do not backtrack and
therefore do not require trailing. On the other hand, the analysis is more complex
because we cannot reason about when some goal will start or finish executing, and
the related problem of concurrent interleaving.

One of the major implementation issues in functional languages is the efficient
implementation of the update operator on array data structures. The straightfor-
ward implementation would take linear time in the size of the array, as opposed to
constant time update in imperative languages. Through static anMysis of liveness of
the aggregates, the update operations can be optimized. The related research done
in this area are detecting single-threadedness of the store argument of the standard
semantics of imperative languages [18]~ and update analysis for a first-order lazy
functional language with flat aggregates by defining a non-standard semantics called
path semantics [1]. Both analyses have been formulated for sequential implementa-

267

tions.
Another important implementation area is shape analysis, the static derivation

of data structure composition. Recent work by Chase et al. [3] describes a more
accurate and efficient analysis technique than previous methods. They also describe
how this storage shape graph (SSG) method can be followed by reference-count
analysis. We do not discuss shape analysis for logic programs here. Furthermore,
recently there has been work on reordering the expressions in a strict functional
language with the objective of making most of the updates destructive [17].

Foster and Winsborough [9] address the reuse problem for concurrent logic pro-
grams with static analysis. They sketch a collecting semantics for Strand programs
in which a program state is associated with a record of the program components
that operated on it. The collecting semantics is then converted into an abstract in-
terpretation framework by supplying an abstract domain in order to identify single
consumers. The details of their method have not yet been reported (unpublished
draft [8]), hence it is premature to compare their scheme with ours.

3 Proposed Static Analysis

The reference counting schemes previously reviewed have the main deficiency of ex-
cess runtime overheads. We are not aware of any successful (efficient) implementation
of general reference counting for a parallel language. Binary reference counting, for
instance MRB, adds runtime overheads to the abstract machine instruction set in
which it is implemented. In this section, we propose a dataflow-analysis technique
to detect opportunities for reuse in committed-choice programs and use this infor-
mation (in the next section) to generate reuse instructions.

There are four distinct ways in which a variable can be used for sharing informa-
tion in concurrent logic programs. They are: Single producer-Single consumer (SS),
Single producer-Multiple consumer (SM), Multiple producers-Single consumer (MS),
and Multiple producers-Multiple consumer (MM). Since a variable may be bound
at most once in logic languages, the notion of multiple producers implies that there
are several potential producers but only one succeeds in write-mode unification. In
a successful committed-choice program, all other potential producers perform read-
mode unification. Ueda [23] defines the class of moded FGHC programs to be those
in which there are no competing producers. In legal moded FGHC "programs, MS
and MM variables do not exist. Saraswat [16] proposes a related language, Janus,
which allows only SS variables, each appearing only twice: as an "asker" and "teller,"
explicitly annotated by the programmer.

The purpose of our analysis is to determine which type of communication, SS
or SM, applies to each of the program variables. This information is used by the
compiler to generate reuse instructions (see Section 4.1). The algorithm is safe for
non-moded programs, but little reuse will be detected in programs where multiple
producers and consumers abound. Since most (not all) programming paradigms can
be implemented in moded programs, we expect accurate information to be produced
from our simplified analysis, for a large class of programs.

Structures appearing in the head and guard of a clause imply incoming data.
Thus if such a head structure is determined to be reusable, we can recycle its cells
when constructing a structure in the body. Consider the following clause:

268

p(X,t(L,C,R),Y) :-X < C : Y = t(NL,C,R) I p(X,L,NL).

If the second argument in the head, t (L , C , R) , may be reused, it would be best to
reuse it when constructing the structure t (NL,C,R) in the body. This is known as
instant reuse or local reuse. However, if no immediate use is possible, the reclaimed
cells should be stored away for future use. This is known as deferred reuse, and is
equivalen t to the co l l ec l ; operation defined earlier in the context of MRB.

We assume that the programs have been translated to a flattened, canonical
form. 2 In this form, all head arguments are unique variables. Flattening is achieved
by moving all unification in the head into the guard. Also, all procedure calls contain
only variables. For example, a call to procedure P (t) is flattened into a unification
X=t and a subsequent call P(X). In the following presentation, data objects that
have a single producer and single consumer are referred to as single-threaded and
data objects that have multiple consumers are referred to as multiple-threaded. We
assume, for the analysis, that the top-level components of structures appearing in
the head or guard are bound to non-variables. This assumption is discharged by
a runtime check (discussed in Section 3.3). We also assume that structure sharing
analysis has been done, and that the results of the analysis are available. We envision
sharing analysis similar to [21, 14], with two modifications. First, the analysis must
work for concurrent languages. Second, if it is determined that two variables may
share, no subsequenting grounding can undo this sharing.

3.1 M u l t i p l e T h r e a d e d n e s s o f S t r u c t u r e s a n d C o m p o n e n t s

To propagate the threadedness information safely and precisely, we have to under-
stand how the multiple threadedness of a structure affects the multiple threadedness
of its components and vice versa. The three questions that arise are:

- Is a substructure of a multiple threaded structure multiple threaded?
- Is it always the case that the structure becomes multiple threaded if one of its

substructures is multiple threaded?
- How does threadedness of one component of a structure affect another compo-

nent within the same structure?

If a structure is multiple threaded, it means that there are several consumers
accessing the structure. Each consumer can potentially access any substructure,
implying that each substructure may Mso have multiple consumers. Thus multiple
threadedness of a structure implies the multiple threadedness of its components.

Multiple threadedness of a component of a structure, however, does not always
mean that the structure becomes multiple threaded. Suppose a structure is built in
the body of a clause and it contains ~ head variable which is multiple threaded. A
head variable is simply a reference to an incoming argument which has already been
created. Only a pointer to that actual parameter resides in the structure built in
the body. Because the variable is not created inside the current structure, the reuse
of the structure does not affect the contents of the multiple-threaded component.
Therefore the structure does not become multiple threaded.

2 This is to simplify the presentation and is not a limitation of our method.

269

Now suppose a structure is built in the body of a clause and it contains a variable
local to the clause body (i.e., the variable does not appear in the head) and the vari-
able is multiple threaded. If the implementation creates variables inside structures,
then the the reuse of the structure may change the contents of the multiple-threaded
variable. In this case, we have to make the structure multiple threaded, to be safe.
If the implementation creates variables outside structures (the structure arguments
are linked to the variables by pointers), then multiple threadedness of a component
would never make the structure multiple threaded.

The answer to the third question depends on the sharing of the components of
the structures. If two subterms of a structure share, then multiple threadedness of
one makes the other subterm multiple threaded. In this paper, we assume that we
have the sharing information for all the program variables. 3

3.2 A b s t r a c t D o m a i n a n d O p e r a t i o n s

A variable can take values from the two-point complete lattice L whose least el-
ement is SS (Single producer/Single consumer) and the top is S M (Single pro-
ducer/Multiple consumer). The datafiow analysis is summarized below. A formal
t reatment of the analysis is given in [22].

I n i t i a l i z a t i o n The initial abstraction of the threadedness of variables is based on
the number of occurrences of a variable (and the variables it shares with) in the
head and the body. All occurrences of the same variable in the head and the
guards are counted as a single occurrence and each occurrence of a variable in
the body is counted individually.
If a variable occurs two or fewer times, it is initialized to SS. If it occurs more
than two times, it is initialized to SM. Note this implies that variables that occur
only in the guard (the Ask or the Tell part) are initialized to SS. The variables
that occur only in the guard will inherit their threadedness from other structures
with which they are matched/unified.
As an example of initialization and its interaction with sharing, consider the
following:

p(X,Y,Z) :- t rue : Y=Z i q(X,Y), r (Z) .

Variable X is initialized to SS because it occurs only twice. Assume that the tell
goal may cause Y and Z to share. Without considering sharing, the number of
occurrences of Y and Z are two each. However, considering sharing, we count four
occurrences of each. Thus we initialize each to SM.

H e a d - G o a l M a t c h i n g a n d G u a r d E x e c u t i o n The reduction of a goal by match-
ing with the head of a clause and successfully executing the guards is approxi-
mated as follows. Since we are dealing with canonicalized programs, goal-head
matching and the execution of guards involves a sequence of X = Term equa-
tions, where X is a variable and Term may be a variable, a constant or a struc-
ture. If both X and Term are SS then they remain SS. Otherwise they and their
subterms become SM, and so do the variables that share with them. This gives
us the initial abstract entry substitution.

3 If such information is not available, then we assume that all variables within a structure
share, and perform the analysis.

270

In reality, we further differentiate the guard into Ask and Tell parts, as reviewed
in Section 2. This is a minor distinction, but it allows a more precise deriva-
tion of threadedness information. Since Ask guards cannot bind goal variables,
threadedness does not propagate among goal variables. Tell guards are treated
most generally, allowing threadedness propagation among both goal and clause
variables. For a formal description of the abstract execution mechanism, see [22].

Loca l F i x p o i n t C o m p u t a t i o n Given an entry substitution for a clause, its exit
substitution is computed as follows. For a unit clause, the exit substitution is
the same as the entry substitution. Otherwise, compute the success substitution
of literal one, using the entry substitution of the clause as the call substitution.
Using the success substitution of literal i as the call substitution of literal i+1,
compute the success substitution of literal i+1. Since the body goals may execute
concurrently, we need to safely approximate their interleaved execution. This is
accomplished by treating the success substitution of the last body goal as the
call substitution of the first body goal and repeating the above process until a
fixpoint is reached [5]. This is called "local fixpoint computation." The success
substitution of the last body goal (after the local fixpoint computation) is the
exit substitution of the clause.

A b s t r a c t Success S u b s t i t u t i o n When all the body goals have been solved, the
current substitution is known as the abstract exit substitution of the clause.
Restricting the abstract exit substitution of a clause i, to the variables in the
environment of goal a (which unified with the head of clause i) and then com-
posing it with the abstract call substitution of a gives us one abstract success
substitution of goal a with respect to clause i. The least upper bound (lub) of
the abstract success substitutions of all the clauses whose heads matched with
the goal a is called the abstract success substitution of goal a. Since we do not
know at compile time which clause of a procedure will commit to a goal, we
have to take the least upper bound of the abstract success substitutions of all
the clauses in a procedure.

G l o b a l F i x p o l n t C o m p u t a t i o n Since a program in general may contain recur-
sive clauses, finding the abstract success substitution of goal involves a fixpoint
computation. To compute the abstract success substitution of a goal defined by
recursive procedure, we use the non-recursive clauses of the procedure to compute
an ini t ialapproximate success substitution. Using this as the first approximation
of the success substitution of the recursive calls in a recursive clause, we com-
pu t e the success substitutions of the recursive clauses and use this as the next
approximation. The process is iterated until a fixpoint is reached. We call this
"global fixpoint computation." Both the local and global fixpoint computations
will terminate since our abstract domains are finite and the abstract domain
operations are monotonic [20].

We outline the analysis for the QuickSort program as listed in Fig. 1. First, the
initial abstract substitution is computed for each program variable in each clause.
All program variables are initially assigned SS. On completing the analysis, we ob-
tain abstract substitutions for a~l program variables, which identifies which of the
incoming arguments are of types SS and SM. In the example above, it was deter-
mined that all four potential applications of reuse are safe: variables X1 in q/2, a/3,

271

q(Xl
q(Xl

,X2) :- Xl=[] : X2=[] I true.
,X2) :- Xl=[X3]X4] : xg=[x31xs]]
s(X4,X3,X5,X6),
q(XS,XT),
q(X6,X8),
a(XT,xg,x2).

a (X l , X 2 , X 3) : - X l = [] : X2=X3 I t r u e .
a (X l , X 2 , X 3) : - XI=[X4IX5] : X3=[X4JX6] I a (X 5 , X 2 , X 6) .

s (X I , X 2 , X 3 , X 4) : - Xl=[X51X6] , X5 > X2 : X4=[XS]XT] I s (X 6 , X 2 , X 3 , X T) .
s(XI,X2,X3,X4) :- Xl=[X5[X6], X5 =< X2 : X3=[X5[X7] I s(X6,X2,X3,X7).
s(Xl,X2,X3,X4) :- Xl=[] : X3=[], X4=[] I true.

Fig. 1. Flattened, Canonical Form of QuickSort Program

and s/4. In these four cases, the incoming variables represent incoming structures in
the head of the unnormalized clauses. A compiler can generate the appropriate reuse
instructions after the code for inspecting the head arguments. In the next section
we discuss the problem that arises if at runtime, unbound variables occur in the top
level of the structure.

3.3 T h e P r o b l e m of U n b o u n d Structure Arguments

The presence of uninstantiated variable(s) in the top-level of a structure renders the
structure unsuitable for reuse, even if the structure is single threaded. The reason is
because a producer of the unbound variable may bind its value after the enclosing
structure has been reused! This might result in an erroneous unification failure.

This problem may be avoided by always allocating variable cells outside of struc-
tures and placing only pointers, to the variable cells, inside structures. While this
permits reuse, it introduces extra dereference operations and may also increase mem-
ory consumption. These tradeoffs have been quantitatively analyzed by Foster and
Winsborough [9].

If outside allocation is not the storage management policy, then a variable check
of the top-level arguments must be conducted at runtimo. Usually when a struc-
ture is inspected by a consumer, the components of the structure are decomposed,
and copies of the elements placed in machine registers, or in the environment of
the consumer. During this decomposition, the runtime check is relatively cheap to
perform.

4 Experimental Results

In this section we review two alternative committed-choice language instruction-
set extensions for exploiting reuse information. The extensions are from the Strand
abstract machine and the PDSS emulator. These extensions are similar, and deserve
some explanation to put our empirical performance measurements in context. A
performance comparison between our method and MRB is presented. The main
purpose of this analysis is to illustrate that our analysis technique in fact works!

272

4.1 R e u s e I n s t r u c t i o n S e t s

Foster and Winsborough [9] describe a reuse instruction set for the Strand abstract
machine. The extension includes:

t e s t _ l i s t _ r (L , H , T) - - If a register L references a list structure, then place a
reference to the list in reuse register R, and place references, to the head and
tail, in H and T, respectively.

a s s i g n _ l i s t r (L) - - Place a reference to the list structure, referenced by reuse
register R, into register L, and let the structure pointer point to the head of the
list.

reuse_list_tail r(L) -- Place a reference to the list structure, referenced by
reuse register R, into register L, and let the structure pointer point to the tail
of the list. Here we avoid the write mode unification of the head cell.

The reuse instructions use an implicit operand, the reuse register R, or a set of
reuse registers. The reuse register is effectively a fast "free list" of currently reusable
structures. This method is an efficient way of managing reusable dead structures for
deferred reuse.

In contrast, the PDSS system [12] implements a reuse instruction set, designed
around the MRB method, for the KL1 abstract machine. Deferred reuse is based
on the c o l l e c t operation which places reusable structures in free lists. When a
new structure is required, it may be allocated from the free list. PDSS also includes
includes instructions for instant reuse. The extensions for instant reuse include:

- put_reus ed_func (Rvect, OldVect, Atom) -- Set the Rvect to point to the same

location as 01dvec t , set the name of functor to Atom.
- pu~; r e u s e d _ l i s t (R l i s t , 01dL i s t) - - Set Rl i s l ; to point to the same location

as pointed by 01dLis t .

Instant reuse is more efficient than deferred reuse since the intermediate move
onto the free list is avoided. However, recall f rom Section 3.3 that a runtime variable
check is needed for each structure argument. In our empirical experiments with reuse
analysis, presented in the next section, the PDSS system was used. Since PDSS
allocates unbound variables outside of structures, variable checks are not needed, so
our comparison is fair.

4.2 P e r f o r m a n c e

Measurements were made with the PDSS emulator running on a Sun SparcStation I.
Six small benchmark programs were analyzed: append, insert, primes, qsort, pascal,
and triangle. Insert constructs a binary tree of integers. Pr ime uses the Sieve of
Eratosthenes to generate prime numbers. Qsort is the s tandard quicksort algorithm
previously shown. Pascal generates the n th row of Pascal 's Triangle. Triangle finds
all solutions to the triangle puzzle of size 15. For each benchmark, three compiled
versions were generated:

N a i v e : A version with no collect nor reuse instructions, used as a basis for compar-
ison.

273

Col lec t : A version with collect instructions as generated by the existing PDSS
compiler.

Reuse: A version with instant reuse instructions (where appropriate) and no collect
operations.

Both reuse and collect can be used together in a hybrid scheme. However, in this
study we wish to compare the efficacy of reuse with that of the MRB scheme, and
therefore we do not present results concerning the hybrid. The heap usage patterns
in the benchmarks are presented in Table 1.

Table 1. Heap Usage and Execution Speed: Comparison of No Optimization, Collect, and
Reuse

Heap Usage (Words) Execution Time (see)
Program Naive Collect Reuse Naive Collect Reuse ~ Save :~
insert :1,500,000 6,314 6,314 52.2 53.6 50.5 5.8
append 5,000,000 6,202i 6,202 111.0 114.3 106.5 6.8
prime 323,786 12,128 12,158 11.1 11.3 10.5 7.1
qsort 8,000,000 61,725i 61,725 234.0 237.5 221.7 6.7
pascal 167,070 127,072 147,270 12.1 12.9 12.3 4.7
triangle 543,809 539,523 543,809 60.5 63.8 60.5 7.9

Reuse compared to Collect Optimization

The measurements in Table 1 reflect the behavior we expected from the bench-
marks. The benchmarks illustrate classes of full, partial, and no-reuse programs.
Insert, append, prime and qsort extensively use stream-based single producer/single
consumer communication. Our algorithm predicted potential for full instant reuse,
as confirmed in the table. In these benchmarks the heap memory requirements of
the reuse and collect versions are nearly identical. This demonstrates that it is pos-
sible to achieve as much efficiency as collect in benchmarks where a large number of
single-threaded structures are constructed.

In pascal, where only 50% = (167 ,070-147 ,270) / (167 ,070-127 ,072) of reusable
structures were actually reused, the heap requirements of the reuse version are only
slightly higher than that of the collect version. Inability to reuse all local data is
due to the imprecision of the analysis. In triangle, the board structure is multiple
threaded, i.e., has multiple consumers. The collect operations almost never succeed
in reclaiming memory and the memory requirements of the collect and naive versions
of the program are nearly the same. Since reuse is not possible, the reuse version is
the same as the naive version.

The memory requirements of the naive versions of the benchmarks can be several
times higher than the reuse and collect versions. The extent of memory reuse is highly
program dependent however. These measurements are meant only to illustrate how
our algorithm can exploit reuse when conditions are right.

To further illustrate the effectiveness of static analysis, the execution times of
the benchmarks are also presented in Table 1. By compiling reuse into the program,
the execution speed is consistently better than that obtained through the MRB

274

optimization. By implementing reuse more efficiently (than in PDSS), the savings
may be even higher. Note that in PDSS, even after stop-and-copy garbage collection,
the naive version of a benchmark runs as fast as, if not faster than, the collect version.
This lends support to our claim that in the absence of special hardware to implement
MRB, a good garbage collector is important. To better the combination of reference
counting and a good garbage collector, memory reuse is necessary.

In programs with a preponderance of multiple-consumer communication, the
collect operation simply adds runtime overhead without reclaiming memory. In such
a case, the program performs better if the collect operations are simply removed.
This is evident in triangle, for instance, where our analysis determined that there
is no scope for reuse. Thus the reuse version (i.e., naive version) outperforms the
collect version.

In programs where the majority of the structures have single consumers, the
collect operation is avoided wherever instant reuse is possible. This reduces the
overhead of free-list management. The reuse version is 6-8% faster than the collect
version in insert, append, prime, and qsort, where 100% instant reuse was possible.
Even in pascal, where instant reuse was only 50% as memory-efficient as collect, the
reuse version was 4.7% faster.

5 C o n c l u s i o n s a n d F u t u r e W o r k

We have shown that simple compile-time analysis can have as much benefit, in
reusing structure memory during program execution, as a hardware-based scheme
such as MRB. We have sketched an algorithm (formal details of which can be found
in [22]) that enables the compiler to automatically emit reuse instructions. Empirical
results indicate that reuse is comparable to the MRB scheme in terms of amount of
memory saved, and the execution speed is improved (4.7%-7.9%) in some cases.

One source of imprecision in our analysis is the inability to determine at compile
time the execution ordering among the goals. For instance, we anticipate that our
analysis is less precise than similar analysis for sequential Prolog, but there is little
hope of remedying this. Another source of imprecision is that mode analysis is cur-
rently not taken into account, potentially resulting in overly conservative derivation
of the threadedness of output variables [22]. Furthermore, if structure sharing anal-
ysis can provide detailed information about the shared subterms, then propagation
of threadedness can be made more precise. Of these three problems, integration of
mode analysis information seems most promising.

A key input to the analysis method is sharing information. Future plans include
implementing both sharing and reuse analysis within the Monaco system, a native-
code, shared-memory multiprocessor compiler for flat committed-choice languages
[7]. Instant reuse instructions must be incorporated into the architecture at the
appropriate level. With a robust implementation, the utility of the technique, for
large benchmarks, within a high-performance system, can be determined.

Acknowledgements
E. Tick was supported by an NSF Presidential Young Investigator award, with
matching funds granted by Sequent Computer Systems Inc. We thank the anony-

275

mous referees for helping us clarify the role of sharing in our analysis.

References

1. A. Bloss. Path Analysis and Optimization of Non-Strict Functional Languages. PhD
thesis, Yale University, Dept. of Computer Science, New Haven, May 1989.

2. M. Bruynooghe et al. Abstract Interpretation: Towards the Global Optimization of
Prolog Programs. In International Symposium on Logic Programming, pages 192-204.
San Francisco, IEEE Computer Society, August 1987.

3. D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of Pointers and Structures. In
SIGPLAN Conference on Programming Language Design and Implementation, pages
296-309, White Plains, NY, June 1990. ACM Press.

4. T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In Inter-
national Conference on Logic Programming, pages 276-293. University of Melbourne,
MIT Press, May 1987.

5. C. Codognet, P. Codognet, and tvl. Corsini. Abstract Interpretation of Concurrent
Logic Languages. In North American Conference on Logic Programming, pages 215-
232. Austin, MIT Press, October 1990.

6. L. P. Deutsch and D. G. Bobrow. An Efficient Incremental, Automatic Garbage Col-
lector. Communications of the ACM, 19:522-526, September 1976.

7. S. Duvvuru. Monaco: A High Performance Architecture for Concurrent Logic Pro-
grams. Master's thesis, University of Oregon, June 1992.

8. I. Foster and W. Winsborough. A Computational Collecting Semantics for Strand.
Research report, Argonne National Laboratory, 1990. unpublished.

9. I. Foster and W. Winsborough. Copy Avoidance through Compile-Time Analysis and
Local Reuse. In International Symposium on Logic Programming, pages 455-469. San
Diego, MIT Press, November 1991.

10. P. Hudak. A Semantic Model of Reference Counting and Its Abstraction. In Con-
ference on Lisp and Functional Programming, pages 351-363, Cambridge, 1986. ACM
Press.

11. P. Hudak and A. Bloss. The Aggregate Update Problem in Functional Programming
Languages. In SIGPLAN Symposium on Principles of Programming Languages, pages
300-314, New Orleans, January 1985. ACM Press.

12. ICOT. PDSS Manual (Version 2.52e). 21F Mita Kokusal Bldg, 1-4-28 Mita, Minato-
ku Tokyo 108, Japan, February 1989.

13. Y. Inamura, N. Ichiyoshi, K. Rokusawa, and K. Nakajima. Optimization Techniques
Using the MRB and Their Evaluation on the Multi-PSI/V2. In North American Con-
ference on Logic Programming, pages 907-921. Cleveland, MIT Press, October 1989.

14. D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable Aliasing
in Logic Programs. In North American Conference on Logic Programming, pages 154-
165. Cleveland, MIT Press, October 1989.

15. A. Mulkers, W. Winsborough, and M. Bruynooghe. Analysis of Shared Data Struc-
tures for Compile-Time Garbage Collection in Logic Programs. In International Con-
ference on Logic Programming, pages 747-762. Jerusalem, MIT Press, June 1990.

16. V. A. Saraswat, K. Kahn, and J. Levy. Janus: A Step Towards Distributed Constraint
Programming. In North American Conference on Logic Programming, pages 431-446.
Austin, MIT Press, October 1990.

17. A. V. S. Sastry and W. Clinger. Order-of-Evaluation Analysis for Destructive Updates
in Strict Functional Languages with Flat Aggregates. Technical Report CIS-TR-92-14~
University of Oregon, Computer Science Department, 1992.

276

18. D. Schmidt. Detecting Global Variables in Denotational Specifications. ACM Trans-
actions on Programming Languages and Systems, 7(2):299-310, 1985.

19. E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys, 21(3):413-510, September 1989.

20. J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Langua9 e Theory. MIT Press, Cambridge MA, first edition, 1977.

21. R. Sundararajan. An Abstract Interpretation Scheme for Groundness, Freeness, and
Sharing Analysis of Logic Programs. Technical Report CIS-TR-91-06, University of
Oregon, Department of Computer Science~ October 1991.

22. R. Sundararajan, A. V. S. Sastry, and E. Tick. Variable Threadedness Analysis for
Concurrent Logic Programs. In Joint International Conference and Symposium on
Logic Programming. Washington D.C., MIT Press, November 1992.

23. K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In Inter-
national Conference on Logic Programming, pages 3-17. Jerusalem, MIT Press, June
1990.

This article was processed using the ~-TEX macro package with LLNCS style

Final izat ion in the Col lector Interface

Barry Hayes

b h a y e s * c s . s t a n f o r d , edu Stanford University, Department of Computer Science,
Stanford, CA 94309, USA

Abstrac t . When a tracing garbage collector operates, it treats the objects
and pointers in the system as nodes and edges in a directed graph. Most col-
lectors simply use the graph to seek out objects that have become unreachable
from the root objects and recycle the storage associated with them.
A few collector designers have hit on the idea of using the trace to gather
other information about the connectivity of the graph, and notify user-level
code when an object is reachable from the roots, but only in a restricted
way. The user-level code typically uses this information to perform some
final action on the object, and then destroys even the restricted access to the
object, allowing the next pass of the garbage collector to recycle the storage.
Finalization is useful for appropriating the power of garbage collection to
manage nonLmemory resources. The resource in question can be embodied
in a memory object with finalization enabled. When the memory resource
is reachable only through restricted paths, the non-memory resource can be
recycled and the restricted access destroyed. The users of the resource need
not coordinate to manage, nor do they need to know that the resource is
precious or needs finalization.
This paper presents system-level details of five different implementations of
finalization in five different systems, and language-level details of several
languages that have defined similar mechanisms. These comparisons highlight
several areas of concern when designing a system with finalization.

1 I n t r o d u c t i o n

G a r b a g e collect ion is somet imes t ry ing to serve two a n t i t he t i c a l goals. F i rs t , some

languages and sys tems see collection solely as a way to make a finite m e m o r y resource

a p p e a r larger. The p r o g r a m m e r need not worry a b o u t m e m o r y because there is a

large supply, and the garbage collector helps m a i n t a i n the fiction. In this role, the

col lector mus t be invisible, lurk ing in the shadows, and no side effects of collection

should be a p p a r e n t to o ther code in the language.

Othe r languages and sys tems see ga rbage col lect ion as a va luable o p p o r t u n i t y

to learn more abou t the connec t iv i ty of objects , and t ry to make the informat ion

gleaned by the garbage collector avai lable to o ther code. The mos t c o m m o n use of this

in fo rmat ion is to implemen t weak or soft pointers . Ano the r is to dr ive finalization.

Fina l i za t ion takes m a n y var ied forms, but the goal is to c o m m u n i c a t e in format ion

a b o u t the connec t iv i ty of ob jec t s from the ga rbage col lector to o the r e lements of the

sys tem.

278

With finalization this connectivity information is used to let a module that man-

ages a resource know when no module other than itself has any remaining pointers

to an object in its resource pool. When it knows this, it can invoke code on the ob-

ject to do any clean-up that might be required~ and return the resource to the pool.

Without this connectivity information, the users of such a resource are required to

cooperate in the management of the object, and the code required can be difficult to

write, verify, and maintain. Making the connectivity information available allows the

resource to be managed in a simple way, and lends the power of garbage collection

to the management of other resources.

2 A Short History

Finalization seems to have grown from two different roots in computer science: the

desire to have soft pointers for ease in engineering, and the desire to do correctness

proofs in the presence of exception handling.

Soft pointers, also called weak pointers, are pointers that are not traced or

counted by the garbage collector. Typically, when the collector notes that there

are no hard pointers to an object, it collects the storage associated with the object

and sets the soft pointers to a known value, often zero or NIL 1. Soft pointers allow

a process to monitor an object and know if it has been collected without interfering

with the collection of the object.

Closely related to soft pointers are populations. A population is a clever kind of

hash table - - a "key" can be used to find a '~value'. Often these keys and values

are simply objects, and the address of the key is hashed to find the location of the

key/value pair. But when all other references to the key have vanished from the

system, it will never be used to look up the associated value. A population differs

from a simple hash table in that it is in bed with the collection system and does

not allow this reference to retain the key 2. Populations exist in many modern Lisp

system.

The other related concept, error recovery, is particularly relevant to systems

where the central focus is more on the data types than on the code, and where

correctness concerns are ~mportant. Many languages include a facility whereby a

block of code can have an attached clause that is executed if the block terminates

t One of the earliest soft pointer implementations was Interlisp-D's XPOINTERs [Xer85].
It did not change the values of soft pointers, but would just deallocate the object. Users
of soft pointers could have all the problems associated with dangling references that
garbage collection was supposed to have solved for them. Soft pointers were one of the
aptly-named "unsafe" features of the language.

2 If the garbage col]ector is also copying objects, the address of the object will be changing
from time to time, and that too provides motivation to make the garbage collector and
the population implementation interconnected.

279

abnormally. This is sometimes called "unwind protection," since it protects the block

in question from the call stack unwinding that occurs automatical ly when an error

throws control from the location of the error to a handler for that error. The unwind

protection code is expected to take any necessary activity to clean up after the

error-exit, and maintain any invariants needed in the program. Any program using

semaphores, for example, benefits from unwind protection, in that an error between

the points where the resource is locked and unlocked could otherwise cause the

resource to remain locked. The unwind protection code can clean up after the error,

and might be expected to return the resource to a consistent state and unlock it.

Often, the invariants are more closely associated with the da ta types than with

the code, and a correct program would have nearly the same unwind protection

associated with every block that declared an instance of that type. For example, if

a block declares a file, it might be expected that when the block is exited, either

normally or because of an error, the file's buffers will be flushed, and the file will be

closed. It would be perfectly acceptable to include the code to do this in an unwinding

clause of every block that declared a file, but for two things: programmers would

invariably miss a few, leading to subtle bugs, and the code would be less readable for

the constant clutter. Instead, the declaration of the type can be extended with what

is in essence the common unwind clause, and each block containing a declaration

can be assumed to have such a clause.

This type-centered formulation of final action extends to dynamically allocated

objects as well. When an object is about to be freed, either explicitly or by a garbage

collector, the same unwind phrase can be run. All instances of the type, allocated

on the stack or heap, receive the same final t reatment , and have a chance to correct

any invariants before they are returned to storage. C + + destructors are the best

known exemplar of this style, but C + + has no native garbage collection, and only

experimental exception handling.

The issues involved for finalization of stack variables center around exceptions

and error recovery [SMS81], and the issues involved for finalization of heap objects

center around the topology of the connections between objects.

3 S u r v e y o f F i n a l i z a t i o n

This section is a survey of systems where finalization is available. Where I have been

able to find out details about how the collection system works, I have presented as

complete a description of the system as I can. Previous work [AN88] has identified a

set of properties that might be desired from finalization. Some systems I know only

through language reference manuals and reports, and for these systems the summary

is often quite brief. I encourage anyone with knowledge of other finalization systems

or more complete knowledge of any of these systems to contact me.

280

3.1 Lisps

Almost every Lisp dialect has some form of hash tables, and a few have populations

that garbage collect inaccessible keys.

Scheme allows files to be closed automatically provided "it is possible to prove

that the [file] will never again be used for a read or write operation." [AAB+91,

Section 6.10,1] The garbage collector can be seen as constructing such a proof.

T [RAM84], a Lisp variant influenced by Scheme, has finalization for files but

for no other data types. Files are a highly trusted client of the collector, and the

collector explicitly calls a file routine to close all inaccessible flies near the end of

the collection. The files are known to be inaccessible by use of T's extensive weak

pointer system.

I have heard rumors that other Lisp implementations have similar finalization

hooks for trusted clients, but have been unable to track down any definitive sources.

3.2 Sun N e W S

The NeWS package from Sun is a windowing system using a liberally extended

PostScript, and includes a conceptually parsimonious finalization interface [Sun90].

There are two operations on pointer values, soften and harden. By defauit, a pointer

value is hard, but these operations take a pointer value of either firmness and turn

it into the firmness desired. A third operator, soft, queries the firmness of a pointer

without changing it.

soft: 3
II III II III

.._.._---0

"o

Obselete
event

Fig. I. NeWS Finalization

281

The garbage collector counts references, and maintains both a total count and

a count of the soft references for each object 3. Both reference counts are updated

as needed every time a pointer is changed - - they are always accurate between

execution of any two PostScript operators.

Whenever the counts of total references and soft references become equal and

are not both zero, the system generates an Obsolete event for that object. This can

happen only if a hard reference is deleted or made soft. It is expected that every

holder of a soft pointer will have expressed interest in the event.

3.3 E u c l i d

Euclid allows a module, implementing an abstract data type, to "include an initial

action which is executed whenever a new variable of the module type is created, and

a final action which is executed whenever such a variable is destroyed." [LHL+77,

page 22] If several module variables are declared, they are initialized in order of

declaration and finalized in reverse order. This is to allow later-declared objects to

access fully initialized, previously declared objects at initialization, and to guarantee

that at finalization no object will a t t empt to access a finalized object.

Euclid requires that initialization and finalization also run when an object is

explicitly allocated and freed. Presumably, the finalization code would also run if

the object is implicitly deallocated by garbage collection, but the definition does not

make this clear.

A sticky point comes up when trying to finalize dynamically allocated objects

in a sensible order. The system would like to guarantee that no object would have

any methods invoked on it after it has been finalized, but two or more objects may

cyclicly reference one another. If the collector finalizes one of the objects in the cycle,

it may still be reachable from another that requires access to the now finalized object.

There is no information available that would allow the collector to choose objects

to finalize wisely under these conditions. Finalization order of cyclic structures is a

problem in other languages, and will be examined in Section 4.4.

3.4 C + +

The C + + language is not defined to have a garbage collector, but has constructors

and destructors quite similar to the concepts found in Euclid [ES90]. The destructor

is a method of an object type, and will be called by the system when the storage for

an instance of that type is about to be returned to the system. It will be called as

a consequence of explicitly deleting the object, if the object is on the heap, and it

also will be called when a block declaring the object is exited, either normally when

3 There is also a third class of references, uncounted, that is not available to the user, but
is used by the system to break cycles among its structures.

282

the evaluation of the block is finished, or abnormally when the block is exited with

a break, continue, return, or goto.

Within a block the order of construction and destruction is defined just as in

Euclid: in declaration order for construction, and in reverse order for destruction.

Types in C + + have multiple inheritance, and so the initializers and finalizers for

each of the base classes, if any, have to be run at construction and destruction of

objects. "[To initialize a class object] the base classes are initialized in declaration

order [. . .] , then the members are initialized in declaration order [. . .] , then the

body of [the initializer] is executed. The declaration order is used to ensure that

sub-objects and members are destroyed in reverse order of initialization." [ES90,

page 292]

One problem with C + + destructors stems from compiler-generated temporaries.

Compiler-generated temporaries have no obvious scope, and so it is not clear when

to run the destructor method. Adding multiple threads of control to C + + in the

presence of destructors may also prove difficult, since pointers to objects may be

passed out of the static scope where the object is created.

There have been several proposals to date for adding garbage collection to C + +

[Bar89, Edeg0, Det91]. One of these [Det91] explicitly disables destructors due to

worries about compatibility. This is correct if the only purpose of the destructor is to

explicitly delete other objects it references - - the collector will do just that without

any help - - but will fail if the destructor has other effects.

3.5 M o d u l a - 3

Modnla-3 has garbage collection without finalization, but extensions have been pro-

posed [Hud91]. This proposal allows destructors similar to C + + and after each

collection invokes the destructors for the unreachable objects in order from youngest

to oldest. This is the same order they would be invoked in if the objects were stack-

allocated, but the problems in using this order of finalization for heap-allocated

objects is not addressed by the proposal.

Most Of these problems occur when the objects form cycles of reference, and

it seems reasonable that finalization should take the topological order, rather than

the chronological order, of the objects into account when ordering finalization. This

problem will be discussed in more detail in Section 4.4, and is common to almost all

implementations.

3.6 A d a 9X

Ada has no finalization, but the Ada 9X revision does [DoD91b, Section 7.4.6]. Fi-

nalization is available for limited types, a restricted abstraction where assignment

is not defined. Ada disallows objects of limited types in contexts where implicit

283

assignment or copy would be needed, and so avoids any problems that arise in fi-

nalization of temporary values [DoDgla, Section 3.2.3.1]. Finalization actions occur

when the scope of the program unit finishes, for static variables, and when objects

are explicitly deallocated, for allocated variables.

In addition, packages [DoD91b, Section 7.4.6] have a form of finalization. When

a generic package has an ezit handler, exiting the scope where the package is instan-

tiated will cause the handler to run, and the package can take final actions.

The two methods are similar, but if coordination among objects of the same type

is required at finalization, the use of limited types seems superior to exit handlers.

3.7 P a r c P l a c e S m a l l t a l k

Finalization in the Smalltalk system available from ParcPlace [Par90] is similar to

the NeWS finalization, but is a more direct descendant of populations. There is a

special type of array called a weak array, containing weak pointers; weak pointers

are not available anywhere in the system except these weak arrays.

The garbage collection subsystem contains both a generational collector for young

objects and an incremental collector for old objects. Both are tracing collectors - -

the generational collector is a copying scavenger and the incremental collector is

trace and sweep.

Pointers from weak arrays are traversed last in garbage collection, and when an

object is found to be inaccessible except through a weak array, the collection system

frees the storage associated with the object and stores the value zero in any weak

pointer that is a reference to a reclaimed object. The object is truly collected, and

the zeroing guarantees that there will be no dangling references.

To give finalization information back to the user, this simple weak pointer scheme

has been combined with a notification step much like the Obsolete event in NEWS.

After each garbage collection, any weak array that has had a pointer zeroed is sent

a "changed" message. The zeros in the array give the indices of elements that have

been collected; it is the responsibility of the user's code to make sure that any data

needed after the element is collected are present elsewhere, and that the "changed"

message is propagated to the collected object 's ezecutor, which is expected to take

the action needed to maintain the invariants.

Figure 2 shows an object held by a weak array, as well as other pointers. When

the other pointers are deleted, the object does not go away immediately. When the

garbage collector discovers that the object is reachable only via the weak array, the

object is collected and the array notified.

The usual programming idiom is to make the executor a shallow copy of the

object. This is a distinct object with identical values for all of its variables - - it points

to the same objects that the finalized object points to, and any information needed

284

to preserve invariants should be designed into the shared parts of the structure, not
the finalized object. By the time the executor gets control, the memory allocated to
the finalized object has been freed, and the object is unavailable to the executor.

object Weak
Array

IIII I I I I I P

F i n a l i z ~
object Weak

Array

Garbage Collection ,,, III II

Weak
Array

Fig. 2. Objectworks Finalization

3.8 A M L / X

The object-oriented design language AML/X [NLT+86] included a reference-counting
garbage collection system and finalization package. One of the driving goals in the
system was to study the interfacing between object-oriented systems and procedural
systems. Procedural protocols involving return of resources were enforced by using
finalization methods of objects JAN88, Atk89], but natural cycles in the objects
prevented some of the finalizations from occurring.

285

In order to get more reliable finalization of cycles, the design was carried from

the reference-counting collector to a tracing collector tAN88]. Each object has three

bits, "mark," "destroy," and "colour." The mark bit is the usual tracing collection

mark. The destroy bit shows if an object's finalization method must be or has been

called. The colour bit is used to ensure that only one object in a cycle is finalized.

All objects ha, e the colour and mark bit initially set to zero, and collection is a

five-phase process:

M a r k Mark all objects reachable from the system roots, and reset the "destroy" bit

on all reachable objects. Unreachable objects that were finalizaed by a previous

collection may have the destroy bit still set.

I d e n t i f y C a n d i d a t e s Examine each finalizable object in turn, setting the "de-

stroy" bit in all unmarked, uncoloured, finalizable objects that do not have their

destroy bit set, and setting the "colour" bit in them and all unmarked objects

reachable from them. This phase colours objects that cannot be reached from

the roots, but that are reachable from finalizable objects.

P r u n e If there are unreachable cycles of finalizable objects, at most one in each

cycle should be selected. To do this, every finalizable object is visited in turn,

and if it is coloured and its destroy bit is set, the destroy bit is cleared in all

unmarked objects coloured in the previous phase. The destroy bit in the first

object encountered in each cycle will not be reset unless the entire cycle is

reachable from another finalizable object.

Scan Each allocated object that is neither marked not coloured is deallocated, and

the mark and colour bits are cleared.

F ina l i ze For every object with the "destroy" bit set, call its finalization method.

The designers of this system noticed a few flaws in it. First, the system's arbitrary

choice of one object in a cycle can easily be wrong. It is difficult for users to predict

the effects of finalization when cycles are involved. This is a problem inherent in

cyclic finalizations, not a problem with this specific system.

Second, if an object's finalization method causes the object to become reachable

from the roots, the "destroy" bit is still set and the finalization method will be called

again on the next garbage collection. While an object from a resource pool may need

to have its finalization called many times through its lifetime, it seems as if some

kind of explicit "enable" call for finalization is needed to tell the difference between

the return of an object to a pool, and the return of an object to a client.

The complexity of finalization in the tracing system, including the retracing of

objects 4, drove one of the authors to consider other finalization techniques [Atk89].

The new proposal relies on weak pointers, much as the Objectworks system does.

4 The P-Cedar system, outlined in Section 3.10 uses a different marking strategy and only
a single mark bit to get almost exactly the same effect with none of the retracing.

286

Each finalizable object is paired with a forwarding object. All clients needing

access to the finalizable resource are given pointers to the forwarding object instead,

and all method calls to the forwarding object are passed to ' the client object - - the

forwarding object is invisible to the clients. The system maintains a weak pointer to

each forwarding object, and so when the last client pointer is deleted the forwarding

object is collected. The garbage collector then notifies a list of client~ that a collection

has occurred, and any finalizable object that has had its forwarding object collected

can be finalized.

This system and the Objectworks system differ in the level that forwarding ob-

jects are defined - - this system make them primitive, and Objectworks requires the

users to roll their own or create variants. In addition, the propagation of the in-

formation that indicates that an object has been freed is more clearly defined in

Objectworks. There does not seem to be an implementation of Atkins's system, and

that allows many issues to remain unaddressdd.

3.9 C e d a r - - T h e E a r l y Y e a r s

D-Cedar s, as implemented on the Xerox D-machines, uses a concurrent reference

counting collector and a secondary trace and sweep collector [Rov85]. The reference

counts are not always accurate for two reasons: references from the stacks are not

counted, and the stacks are scanned conservatively. When an object 's reference count

goes to zero, it is placed in a special zero count table but not deallocated, since

there may still be pointers to it from the stacks. Occasionally the garbage collector

conservatively scans the stacks looking for bit patterns that, if they are pointers,

point to objects with reference counts of zero s. In the end, any object that has a

reference count of zero and is not pointed to from a stack is collected or finalized.

There is no finalization available for objects declared statically in Cedar, but

typical programming practice is to explicitly create any objects needed in the block

and assign them to local reference variables. Some time after the block exits, the

collector will discover that the objects are no longer reachable, and they will be re-

claimed. The order of initialization is under user control, and the order of finalization

is determined by the topology of the interconnections among the objects.

s The Cedar system, inc!uding the Cedar language, has been implemented twice: the first
implementation ran on Xerox's family of machines, the Dorado, the Dandelion, the Dol-
phin and the Daybreak. The second implementation was designed for portability, and
currently runs on a number of standard platforms ir~cluding Unix and Posix. The stor-
age management has changed almost completely between the two implementations. To
keep the discussion on an even keel, the first implementation will be called D-Cedar, for
Dorado-Cedar, and the second P-Cedar, for portable Cedar.

s The implementation is more complex, in that all processes are halted just long enough for
the stacks to be copied, and the conservative search for pointers occurs in these copies.
The collector runs concurrently with all other active processes.

287

The model for finalization in D-Cedar is that a package will manage objects of a

certain type, and will be responsible for maintaining any invariants associated with

those objects. New objects of that type will only be created by calls to the package,

and when the package returns an object it may still have several private pointers

to that object. The clients need not do anything specific to manage the object, but

when the clients destroy the last pointer to the object, the package, which still holds

pointers to the object, should be notified that the clients can no longer use the

object.

Cedar is a typed language, and finalization in D-Cedar is strongly linked to types.

Associated with any finalizable type are a finalization queue and a positive number

indicating the count of package references. Any particular object of a finalizable type

can be explicitly enabled for finalization by a call to the storage manager. This call

sets a bit in the object 's header, and decrements the object 's reference count by the

package reference count. From that point, the object is reference counted normally.

When an object has a zero reference count and there is no pointer to it from

the stack, it is freed if the finalization bit in that object is not set. If the bit is set,

the collector clears the bit, sets the reference count for the object to be the package

count, determined from the object 's type, and adds the object to the finalization

queue for that type, allowing the package to do whatever is required with the object

to maintain its invariants 7.

In practice, the use of a type-wide count of package references proves to be fragile.

The package must ensure that it has the same number of pointers to every object

enabled for finalization, and the writing of packages where finalization is used is a

delicate affair. Catastrophic failures occurs when a dropped package pointer makes

a reference count negative.

Notice also that the object is changed from finalizable to not finalizable when

the finalization is run. The object may be explicitly set finalizable again, setting the

bit and reducing the reference count, but it is not automatic. This helps prevent

errors where the finalization code runs for each garbage collection without making

progress on finalizing the object. Instead, the code will be run once, and if the object

is neither made reachable nor re-enabled for finalization, it will be collected.

z When the package count is zero, this is what is sometimes called resurrection semantics,
since the object has no pointer to it, and yet the collector creates one to enqueue the
object. If you feel uncomfortable with the idea that thecollector is creating a pointer to
an object after the user has discarded all the pointers to it, recall that the call to the
collector to enable finalization allows the system to squirrel away a pointer to the object,
and that it is this pointer that is used to enqueue the object. In fact, that pointer exists
- - it is simply compressed into a single bit in the header of the object.

288

"x,••• Package
pointers: 3____

type: 17 ~ Fin queue:

refs: 2 [

Package 17

N

Onii

7 • Package
pointers: 3

type: 1 Fin queue:

refs: 0

Package 17

- - - - -

,,,,, , Garbage Collection ,,,, ,, , ,

refs: 4 [

Package 17

Fig. 3. D-Cedar Finalization

3 .10 C e d a r I I - - T h e R e v e n g e

Some of the weaknesses in the s torage managem en t in D-Cedar were addressed in P-

Cedar [ADH+89]. Ti le reference count ing collector was replaced with a conservat ive,

generat ional , mark-and-sweep collector. This freed the p rogrammer from the burden

of breaking reference cycles in complex da t a s tructures s.

s One of the common uses of finalization in D-Cedar was to break these cycles. For example,
a tree where every leaf points back to the root will never be collected by simple reference
counting - - when the last reference to the root other than the leaves is deleted, the root
will still have a non-zero count. A package count for the root would not make sense, since
the count at the root is the number of leaves, and that is variable, rather than structural.
But if a node is added above the root and all access takes place through that node, that
extra node can be enabled for finalization. When all references to it are gone, the leaves

289

Most of the work of finalization has been put into a package distinct from the

garbage collector. The finalization package is still tightly coupled to garbage collec-

tion, but the split seems valuable to insulate the two functions - - collection and

finalization - - from each other.

To enable an object for finalization, a client calls a routine in the finalization

package with a pointer to an object and a finalization queue. The package returns a

pointer called a finalization handle. Strictly speaking, it is the handle itself, not the

object, that is enabled for finalization. The only important operations available on

a finalization handle are disable finalization, re-enable finalization, and dereference.

The disable/re-enable calls do the obvious, and the dereference cail returns a pointer

to the object that was a parameter to the enable call that returned that handle. A

disabled finalization handle functions simply as an indirect pointer to the object.

The finalizer keeps the state needed to finalize objects; this is not the responsibility

of its clients, and they often ignore the finalization handle returned, knowing that

the finalization will occur nonetheless.

The collector traces from the roots, but does not trace through the finalization

package's state to objects that are enabled for finalization 9. At this point, any final-

izable object that has been seen by the trace is accessible from the roots, and should

not be finalized.

Only some of the objects unreachable from the roots are put on their finalization

queues. The intent is to mimic the effects of the reference counting finalization of

D-Cedar by only finalizing those objects that are not reachable from other finalizable

objects. If P points to Q, and both are finalizable and unreachable from the roots,

the system would like to finalize P. When P is put on its finalization queue, Q is

now reachable from the roots via the queue, and should not be finalized.

The objects to be queued are found by another marking phase of the collector.

It traces all of the pointers from unmarked finalizable objects, but does this without

initially marking the finalizable objects themselves. After this marking is finished,

any marked finalizable object was either marked by the first phase, and so is reach-

able from the roots, or was marked in the second phase, and so was reachable from

a finalizable object 1~ Any unmarked finalizable object is reachable through neither

still point to the root, but there are no pointers to the uber-root. The finalization for the
uber-root can walk the tree down to the roots and NIL the backpointers, allowing the
reference counter to discover that the tree's storage can be reclaimed.

9 The finafization package does not, in fact, keep pointers to the objects. The object pointed
to by a handle contains a field that is a disguised copy of the pointer to the object, and
the finalization package keeps a list of the currently enabled finalization handles. The
collector does not recognize the disguised pointers as pointers when doing the' trace.

10 At the moment, a finalizable object that is reachable from itself but no other finalizable
object is n o t finalized. This is considered to be a bug and will be changed. This might
present a danger to an object that has access to an object of the same type as itself,
since it might have to check the identity of the object against itself. For example, we

290

Finalizable I Finalization I
object] handle I Finalization

J queue
Finalization
package

o
oFjin~t I ban izable I t F i n e , on I F~aCuMffati~

Finalization
package

Garbage Collection

Finali
object [handle ~ F ~ z a t i o n

q
Finalization
package

Fig. 4. P-Cedar Finalization

method. The f inal izat ion package can safely enqueue each unmarked finalizable ob-

ject, and change its state to indicate that it has discharged its du ty - - the enqueued

objects are no longer enabled.

might have a system that writes a record to a log file for each file finalized. Imagine the
problems that might occur when the log file is closed.

291

4 Finalization Issues

As should be apparent, there is no consensus of opinion on how to design the interface

between the collector and its clients to allow for finalization. There are at least four

major decisions that a designer should consider in specifying a finalization interface:

decoupling, promptness, locking, and cycles.

4.1 D e e o u p l i n g

Aside from the Lisps that have a restricted group of cli_e,:s for finalization, systems

must be careful in how the results of tracing are communicated to the clients. If a

collector were to directly call some kind of finalization routine for a client, it would

risk aborting or looping the collection thread. Event and message systems have a

natural way of dealing with this problem, since the messages provide a decoupling

between the collector and its clients. Likewise, the Cedar queues let the collector

enqueue an object without worrying about the consequences of calling general client

code. Another option would be to fork a process from the collector for each client

needing to be finalized.

4.2 P r o m p t n e s s

When a resource is recovered soon after it is no longer reachable from its clients, we

say that it is promptly reclaimed. This measure is often applied to garbage collection,

and it is also a useful measure of finalization. The range of promptness in the systems

in Section 3 is broad.

The NeWS system recovers memory as soon as an object's reference count drops

to zero, and sends Obsolete events as soon as the last hard pointer is deleted. Prompt-

ness is a benefit of being a refe, rence counting collector. But objects that are unreach-

able from the roots and involved in cycles will never be recovered or finalized, and

so these objects can hardly be said to be promptly reclaimed. Reference counting is

both a boon and a b a n e for promptness.

Inexact collection, such as is found in generational collectors, has a similar effect.

An object may be considered reachable because there is a pointer to it from an old

object that is unreachable, but hasn't been collected yet. No object can guarantee

that it will be promptly collected or finalized.

Conservative collection confounds the issue even more [BW88]. Not only can an

object remain uncollected or unfinalized because of genuine pointers to it, but bit

patterns that the collector treats as pointers are enough to keep objects uncollected.

An application may earnestly exercise great care to NIL all of the pointers to an

object to make finalization or collection occur, only to have an errant integer prohibit

it.

292

Current collectors do not offer clients any options to help regulate the prompt-

ness of the service they get, and as object bases get larger and larger, generational

collectors will make this problem worse and worse. It seems as if a good rule of

thumb for fir, alization clients is to consider finalization to be a frill, and not to rely

on it for promptness or correctness.

4.3 L o c k i n g

All too often, the garbage collector and finalization routines are overlooked as a

source of parallelism in code, and parts of an aggregate structure will be finalized

even when other clients might still be using it. For example, consider a tree with

back-pointers from the leaves to the root, and an extra finalizable node at the top

that will break all the cycles to aid a reference counting collector. Great care must

be taken to ensure that this finalization does not occur while there is still a pointer

to an internal node. The process holding that pointer might be surprised to find that

the back-pointer is NIL.

Unfortunately, the .simple ways of locking out the finalization are not guaranteed

to work. For example, it might be thought that any process holding a pointer to

the finalizable uber-root node while examining the other nodes would be safe, but

compilers would look on the reference to the uber-root as dead, since it is not used,

and might optimize away the load of the pointer. This is just another manifestation

of collector/optimizer interactions, but lifted into the domain of finalization [Cha87,

Boe91].

Neither of the obvious solutions to this problem are attractive. The optimizer can

be prevented from performing some useful optimizations, but that ' s a performance

cost many might blanch to pay. Modules could supply client calls to ensure that

structures are not finalized when there is an active client, but this seems a violation

of modularity, since it reveals to clients of the package that objects are finalized.

4.4 Cyc l e s

When two or more finalizable resources are clients of one another in a cyclic order,

finalization becomes much more complex. The system might decide to take a conser-

vative view and finalize no object in the system. This guaranteed lack of promptness

leads to resource leaks similar to memory leaks from cycles in a reference counting

collector.

The system may try to guess an object in the cycle to finalize first, but if it

chooses incorrectly, another object may try to make client calls to the first finalized

object. The client of the finalized object may be unable to do anything reasonable

now that the resource embodied in the first object has been rescinded [AP87].

293

Any system that chooses to finalize all the objects in a cycle in an unpredictable

order dooms the programmer to adjudicating the correct order by use of mutual

exclusion primitives. But this violates modularity, since each object must be aware

of the cycles it might be involved in.

To break the symmetry of the cycle, some objects might use soft pointers to

point to other objects to indicate that they do not require the softly-held resource

at finalization, and would be willing to be finalized after the other resource. But this

means that the softly-held resource might be finalized while its client is still firmly-

held and active if the holder of the soft pointer is its sole client. It must be ready to

have the resource finalized at any point, not only just prior to its own finalization.

Finalization of cyclic structures is a problem that the garbage collector cannot

solve without further development on the interface between the languages and the

finalization package. The current interfaces seem to be too narrow to address all of

the situations that arise.

5 Conc lus ions

In many new systems and languages, garbage collection is considered indispensable.

Programs can be crafted without worrying about memory leaks or dangling pointer

bugs - - the memory will be recycled when it is no longer needed and not before

because the collector can guarantee when a memory object is no longer reachable

from the roots.

If other system elements are allowed access to the information gathered by the

garbage collector, they can make decisions about non-memory resource recycling,

and allow these resources to be managed in much the same way as garbage collected

memory.

Several recent researchers have tried to marry C + + destructors and garbage

collection to get finalization, but previous efforts in finalization and the problems

that have been encountered by users of finalization does not seem to be well known.

At least four systems, Objectworks, NEWS, D-Cedar, and P-Cectar, have been

built with a garbage collector that allows user code some access to the information

gathered by the collector. All four of these systems are in current use, but the

finalization features seem to be little-known in the systems community, and even

the memory management community.

6 T h a n k s

Many people helped with the gathering of information for this paper. Much of the leg-

work for citations was done by Frank Jackson, who also checked that my description

of ParcPlace Smalltalk was reasonably accurate. In that same vein, thanks to Stuart

294

Marks from Sun for the NeWS information, and Carl Hauser of Xerox PARC for the

Cedar information.

This work was funded by Dr. John Koza, the Northern California Chapter of

ARCS, Inc., and Xerox.

A A G a r d e n o f D e l i g h t s

Many people have been active in the discussion of changes to finalization at Xerox

PARC. The most active of these are Hans Boehm, Alan Demers, Carl Hauser, Chris-

tian Jacobi 11, and myself. There is a set of canonical examples we have been using in

discussion of problems with and extensions to finalization. Much of the text of this

section was provided by Carl Hauser; otherwise, it is hard to credit any particular

example to any particular person.

A.1 Fi le D e s c r i p t o r s

This example involves collection of non-memory, low level resources, and shows a

simple case where finalization is valuable.

Fig. 5. Simple Finalization

""••
File

\
~Descr ip tor : 42

Unix file descriptors are a resource that should be garbage-collected: to first

approximation, if there are no copies of a file-descriptor in a program, then that

file descriptor should be closed and freed. By allocating a memory object for each

opened file descriptor, and uniformly passing the memory object around as the

representative of the open file descriptor (instead of the file descriptor), we know to

close the file descriptor when the memory object becomes unreachable.

A.2 Buffered File

In this example, two objects, each of which should logically be enabled for finaliza-

tion, point to each other and form a cycle.

1~ Christian has shown the patience of a saint in letting us discuss the issues to death before
we actually do anything that will let him fix the problem with his code.

295

Suppose we have an OpenFile abstraction, a BufferedFile abstraction and a Buffer

abstraction. OpenFile objects contain file descriptors and hence need finalization

enabled. They also refer to a Buffer object - - the next buffer to be filled, for exam-

ple. BufferedFile is one of perhaps many abstractions built on OpenFile, and each

BufferedFile supplies the buffers used by its underlying OpenFile. BufferedFile's ob-

jects need finalization enabled to allow write buffers to be flushed prior to closing the

underlying OpenFile object. The Buffer abstraction provides a field in each object

for recording the owner of that buffer object so that low-level system interrupts that

refer to memory locations in the buffer can be correctly forwarded to the proper

OpenFile.

Since the Buffers are owned by BufferedFiles, this gives us a cycle containing two

finalizable objects: a BufferedFile points to an OpenFile, which points to a Buffer,

which points back to the BufferedFile.

Fig. 6. Cyclic Finalization

\ ~ OpenF'fle / Buffere~f lc

! / \
~Buffe r ODescriP tot: 42

A.3 Courier Handles

This example deals with "resurrection," when the finalization code for an object

makes the object accessible rather than letting it become garbage. In this exam-

ple, objects that are difficult to recreate are kept in a cache. Rather than being

deallocated, they are recycled.

In D-Cedar, handles for open Courier connections were serially reusable: a client

could use a connection for awhile, then give it back to the Courier package which

might eventually hand it to some other client. This was useful because opening a

connection is a heavyweight operation, so clients talking in rapid succession to the

same machine got a performance boost by reusing an already-established connec-

tion. To return connections to the pool when clients dropped them, finalization was

enabled for each CourierHandle. The Courier package gave out a handle to a single

client. When the client finished, it either gave the handle back or dropped it. In the
latter case, finalizing the object provided the missing giveback call.

296

Fig. 7. Caching Finalizable Objects

O~

Courier package

A.4 Log Fi les

Examples of this kind were not mentioned in the main body of the article, but

constitute another interesting problem with finalization. In this example, two differ-

ent finalization actions need to be attached to a single object, since it needs to be

finalized at two levels of abstraction.

Given an OpenFile abstraction, we might want to build a LogFile - - a file to

which clients could log records text records. When a LogFile is no longer accessible,

we would like to write one last record to it saying that the log file has now been

closed. The finalization for the LogFile, which writes the record, must be run before

the finalization for the OpenFile, which closes the file.

A.5 P o p u l a t i o n o f F i n a l i z a b l e O b j e c t s

This is another example where multiple finalizers exist for the same object, one

of which may resurrect the object. The order of finalization is important , but not

apparent to the system.

We may waat to build a cache of OpenFiles, to ensure that two clients requesting

the same file share the same OpenFile. If the cache's finalizer is run first, it cannot

know when the file's finalizer has finished, and risks having two OpenFiles for the

same file - - one newly opened and one not quite yet finalized. If on the other hand

the OpenFile's finalizer is run first, it cannot know if any pointers to the file remain,

and a call might occur after finalization.

References

[AAB+91] H. Abelson, N. I. Adams IV, D. H. Bartley, G. Brooks, Dybvig R. K., D. P.
Friedman, R. Halstead, C. Hanson, C.T. Haynes, E. Kohlbecker, D. Oxley,
K.M. Pitm~n, G . J . Rozas, G.L. Steel Jr., G . J . Sussman, and M. Wand.

297

Revised 4 report on the algorithmic language Scheme. A CM LISP Pointers, IV(3),
November 1991.

[ADH+89] R. Atkinson, Alan Demers, Carl Hauser, Christian Jacobi, Peter Kessler, and
Mark Weiser. Experiences creating a portable Cedar. SIGPLAN Notices,
24(7):261-269, July 1989.

[AN88] Martin C. Atkins and Lee R. Nackman. The active deallocation of objecs in
object-oriented systems. Software Practice and Experience, 18(11):1073-1089,
November 1988.

[AP87] S.G. Abraham and J. H. Patel. Parallel garbage collection on a virtual mem-
ory system. In 14th Annual international symposium on computer architecture,
page 26, June 1987.

[Atk89] Martin C. Atkins. Implementation Techniques for Object-OrientedSystems. PhD
thesis, University of York, Dept. Computer Science, University of York, Hesling-
ton, York, YO1 5DD, England., 1989.

[Bar89] Joel F. Bartlett. Mostly-copying garbage collection picks up generations and
C++. Technical report, Digital Western Reseaerch Laboratory, October 1989.

[Boegl] Hans-J. Boehm. Simple gc-safe compilation. In OOPSLA Workshop on Garbage
Collection in Object-Oriented Systems, I995, October 1991. Available by anony-
mous ftp from cs.utexas.edu in pub/garbage/GC91.

[BW88] Hans-J. Boehm and M. Weiser. Garbage collection in an uncooperative environ-
ment. Software Practice and Experience, 18(9):807-820, September 1988.

[Cha87] David R. Chase. Garbage Collection and Other Optimizations. PhD thesis, Rice
University, November 1987.

[DoD91a] Department of Defense. Mapping Rational, volume I of Ada 9X Mapping. Inter-
metrics, Inc., Cambridge, Massachusetts, August 1991.

[DoD91b] Department of Defense. Mapping Specification, volume II of Ada 9X Mapping.
Intermetrics, Inc., Cambridge, Massachusetts, August 1991.

[Det91] David L. Detlefs. Concurrent garbage collection for C++. Technical Report
CMU-CS-90-119, Carnegie-Mellon University, 1991.

[Ede90] D. Edelson. Dynamic storage reclamation in C++. Technical Report UCSC-
CRL-90-19, University of California at Santa Cruz, June 1990.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated Cq-q- Reference Man-
ual. Addison-Wesley Publishing Company, Reading, Mass, 1990.

[Hud91] Richard L. Hudson. Finalization in a garbage collected world. In OOPSLA
Workshop on Garbage Collection in Object-Oriented Systems, 1995, October
1991. Available by anonymous ftp from cs.utexas.edu in pub/garbage/GC91.

[LHL+77] B. W. Lampson, J. J. Homing, R. L. London, J. G. Mitchell, and G. J. Popek.
Report on the programming language euclid. SIGPLAN Notices, February 1977.

[NLT+86] Lee R. Nackman, Mark A Lavin, Russell H. Taylor, Walter C. Dietrich, Jr., and
David D. Grossman. AML/X: a programming language for design and manufac-
turing. In Proceedings of the Fall Joint Computer Conference, pages 145-159,
November 1986.

[Nyb89] Karl A. Nyberg, editor. The Annotated Ada Reference Manual. Grebyn Corpo-
rattan, Vienna, Virginia, 1989. [An annotated version of ANSI/MIL-STD-1815A-
1983, The Ada Reference Manual].

[Par90] ParcPlace Systems. ObjectWorks / Smalltalk User's Guide, Releoze 4. ParcPlace
Systems, Inc, Mountain View, CA, 1990.

[RAM84] Jonathan A. Rees, Norman I. Adams, and James R. Meechan. The T manual.
Technical report, Yale University, January 1984.

[Rov85] Paul Rovner. On adding garbage collection and runtime types to a strongly-
typed, staticly-checked, concurrent language. Technical Report CSL-84-7, Xerox

298

[SMSS~]

[SungO]

[Xer85]

Corporation, July 1985.
Richard L. Schwartz and P. M. Melliar-Smith. The finalization operation for
abstract types. In Proceedings of the 5th International Conference on Software
Engineering, pages 273-282, San Diego, California, March 1981.
Sun Microsystems. NeWS 2.2 Programmer's Guide. Sun Microsystems, Inc,
Mountain View, CA, 1990.
Xerox Corporation. [nterlist Reference Manual, volume 1. Xerox Corporation,
Palo Alto, CA, October 1985.

This article was processed using the IATEX macro package with LLNCS style

Precompiling C + + for Garbage Collection

Daniel R. Edelson

INRIA Project SOR, Rocquencourt BP 105, 78153 Le Chesnay CEDEX, FRANCE
Daniel.Edelson@inria.fr

Abstract . Our research is concerned with compiler-independent, efficient
and convenient garbage collection for C++. Most collectors proposed for
C++ have either been implemented in a library or in a compiler. As an
intermediate step between those two, this paper proposes using precompila-
tion techniques to augment a C++ source program with code to allow mostly
type-accurate garbage collection. There are two key precompiler transforma-
tions. The first is automatic generation of smart pointer classes. The pre-
compiler defines the smart pointer classes and the user utilizes them instead
of raw pointers. These smart pointers supply functionality that allows the
collector to locate the root set for collection. The second transformation
augments the C++ program with code that allows the garbage collector to
locate internal pointers within objects. This paper describes the precompiler
and the garbage collector. The paper includes a brief (1500 word) survey of
related techniques.

1 I n t r o d u c t i o n

The lack of garbage collection (GC) in C + + decreases productivity and increases
memory management errors. This situation persists principally because the common
ways of implementing GC are deemed inappropriate for CA-+. In particular, tagged
pointers are unacceptable because of the impact they have on the efficiency of integer
arithmetic, and because the cost is not localized.

In spite of the difficulty, an enormous amount of work has been and continues
to be done in attempting to provide garbage collection in CA-+. The proposals span
the entire spectrum of techniques including:

- compiler-based concurrent atomic mostly-copying garbage collection [12],
- library-based reference counting and mark-and-sweep GC [27],
- library-based mostly copying generational garbage collection [5],
- library-based reference counting through smart pointers [28, 29] (Smart pointers

are discussed momentarily),
- library-based mark-and-sweep GC using smart pointers [16],
- compiler-based GC using smart pointers [22],
- library-based mark-and-sweep and generational copying collection using macros

[21], and,
- library-based conservative generational mark-and-sweep GC [8, 11].

The vast number of proposals, without the widespread acceptance of any one, reflects
how hard the problem is.

300

In the past, we have proposed implementing GC strictly in application-code: GC
implemented in a library. The problem with this approach is that it requires too
much effort on the part of the end-user. The user must first chstomize/instantiate
the library, and then follow its rules. This is a tedious and error-prone process.

To solve our goal of compiler-independence, while keeping the associated com-
plexity to the user to a minimum, we are now proposing precompiling C-F+ programs
to augment them for garbage collection. The user still needs to cooperate with the
collector, but the likelihood of errors is reduced. In addition, the precompiler can
perform transformations that are independent of the actual garbage collection algo-
ri thm in use, making it very useful for experimentation in GC techniques.

A W o r d A b o u t S m a r t P o i n t e r s

A number of the systems that are considered in the related work section use smart
pointers, as does this collector. Therefore, this paper begins with an introduction to
the term.

C + + provides the ability to use class objects like pointers; these objects are
often called smart pointers [38]. Smart pointers allow the programmer to benefit
from additional pointer semantics, while keeping the syntax of the program largely
unchanged. Smart pointers use operator overloading to be usable in expressions
with the same syntax as normal pointers. For example, the overloaded assignment
operator = permits raw pointers to be assigned to smart pointers and the overloading
indirect member selection operator -> permits smart pointers to be used to access
data members and operations of the referenced object.

Smart pointers can be used for a variety for purposes. For example:

- reference counting [10, 27, 28, 29, 39],
- convenient access to both transient and persistent objects [36, 39],
- uniform access to local or distributed objects [24, 35, 37],
- synchronizing operations on objects [39, p. 464],
- tracing garbage collection [16, 18, 27],
- instrumenting the code,
- or others.

Section 2 discusses how existing systems use smart pointers for memory manage-
ment. A discussion of various issues concerning smart pointers can be found in [17].
Our implementation of smart pointers is presented in w

2 A B r i e f S u r v e y o f R e l a t e d W o r k

There is a significant body of related work, in the general field of GC, in (3++
software tools, and specifically in collectors for C++.

2.1 C o n s e r v a t i v e G C

Conservative garbage collection is a technique in which the collector does not have
access to type information so it assumes that anything that might be a pointer ac-
tually is a pointer [7, 8]. For example, upon examining a quantity that the program

301

interprets as an integer, but whose value is such that it also could be a pointer, the
collector assumes the value to be a pointer. This is a useful technique for accom-
plishing compiler-independent garbage collection in programming languages that do
not use tagged pointers.

Boehm, Demers, et al. describe conservative, generational, parallel mark-and-
sweep garbage collection [7, 8, 11] for languages such as C. Russo has adapted these
techniques for use in an object-oriented operating system written in C++ [32, 34].
Since they are fully conservative, during a collection these collectors must examine
every word of the stack, of global data, and of every marked object. Boehm discusses
compiler changes to preclude optimizations that would cause a conservative garbage
collector to reclaim data that is actually accessible [6]. Zorn has measured the cost of
conservative garbage collection and found that it compares favorably not just with
manual allocation, but even with optimized manual allocation [44].

Conservative collectors sometimes retain more garbage than type-accurate col-
lectors because conservative collectors interpret non-pointer data as pointers. Often,
the amount of retained garbage is small, and conservative collection succeeds quite
well. Other times, conservative techniques are not satisfactory. For example, Went-
worth has found that conservative garbage collection performs poorly in densely
populated address spaces [41, 42]. Russo has found that the programming style
must take into account the conservative garbage collector: naive programming leads
to inconveniently large amounts of garbage escaping collection [33, 34]. For example,
he has found it necessary to disguise pointers and manually break garbage cycles
[33]. To aid the programming task, he is investigating augmenting the conservative
garbage collector with weak pointers [30], i.e. references that do not cause objects
to be retained. Finally, we have tested conservative garbage collection with a CAD
software tool called ITEM [16, 26]. This application creates large data structures
that are strongly connected when they become garbage. A single false pointer into
the data structure keeps the entire mass of data from being reclaimed. Thus, our
brief efforts with conservative collection in this application proved unsuccessful.

As these examples illustrate, conservative collection is a very useful technique,
but it is not a panacea. Since it has its bad cases, it is worthwhile to investigate
type-accurate techniques for C++.

2.2 Pa r t i a l l y Conserva t ive

Bartlett's Mostly Copying Collector is a generational garbage collector for Scheme
[14] and C++ [39] that uses both conservative and copying techniques [4, 5]. This
collector divides the heap into logical pages, each of which has a space-identifier.
During a collection an object can be promoted in one of two ways: it can be physically
copied to a to-space page or the space-identifier of its present page can be advanced.

Bartlett's collector conservatively scans the stack and global data seeking point-
ers. Any word the collector interprets as a pointer may in fact be either a pointer or
some other quantity. Objects referenced by such roots must not be moved because,
as the roots are not definitely known to be pointers, the roots cannot be modified.
Such objects are promoted by having the space identifiers of their pages advanced.
Then, the root-referenced objects are scanned with the help of information provided
by the application programmer; the objects they reference are compactly copied to

302

the new space. This collector works with non-polymorphic C++ data structures,
and requires that the programmer make a few declarations to enable the collector
to locate the internal pointers within collected objects.

Detlefs implements Bartlett's algorithm in a compiler and uses type information
available to the compiler to generalize the collector. Bartlett's first version contains
two restrictions, the first of which is later eliminated:

1. internal pointers must be located at the beginnings of objects, and
2. heap-allocated objects may not contain unsure pointers.

An unsure pointer is a quantity that is statically typed to be either a pointer or a
non-pointer. For example, in "union (int i; node �9 p; } x;" x is an unsure pointer.

Detlefs relaxes these by maintaining type-specific map information in a header in
front of every object. During a collection the collector interprets the map informa-
tion to locate internal pointers. The header can represent information about both
sure pointers and unsure pointers. The collector treats sure pointers accurately and
unsure pointers conservatively. Detlefs' collector is concurrent and is implemented
in the cfron~ C++ compiler.

2.3 Type-Accura t e Techniques

Kennedy describes a C++ type hierarchy called OATH that uses both reference
counting and mark-and-sweep garbage collection [27]. In OATH, objects are accessed
exclusively through application-level references called accessors, that are very similar
to stubs because they duplicate the interfaces of their target objects. Accessors im-
plement reference counting on the objects that they reference. The reference counts
are used to implement a three-phase mark-and-sweep garbage collection algorithm
[9] that proceeds as follows. First, OATH scans the objects to eliminate from the
reference counts all references between objects. After that, all objects with non-zero
reference counts are root-referenced. The root-referenced objects serve as the roots
for a standard mark-and-sweep collection, during which the reference counts are re-
stored. Like normal reference counting, this algorithm incrementally reclaims some
memory. In addition, however, this algorithm reclaims garbage cycles.

In OATH, a method is invoked on an object by invoking an identically-named
method on an accessor to the object. The accessor's method forwards the call through
a private pointer to the object. This requires that an accessor implement all the same
methods as the object that it references. Kennedy implements this using preprocessor
macros so that the methods only need to be defined once. The macros cause both
the OATH objects and their accessors to be defined with the given list of methods.
While not overly verbose, the programming style that this utilizes is quite different
from the standard C-t-+ style and such long macros can make debugging difficult.

Goldberg describes tag-free garbage collection for polymorphic statically-typed
languages using compile-time information [23], building on work by Appel [2], who
in turn builds on techniques that were invented for Algol-68 and Pascal. Goldberg's
compiler emits functions that know how to locate the pointers in all necessary acti-
vation records of the program. For example, if some function ~ contains two pointers
as local variables, then another function would be emitted to mark from those point-
ers during a collection. The emitted function would be called once for every active

303

invocation of :T to trace or copy the part of the datastructure that is reachable
from each pointer. The collector follows the chain of return addresses up the run-
time stack. As each stack frame is visited, the correct garbage collection function
is invoked. A function may have more than one garbage collection routine because
different variables are live at different points in the function. Clearly, this collector
is very tightly coupled to the compiler.

Yasugi and Yonezawa discuss user-level garbage collection for the concurrent
object-oriented programming language ABCL/1 [43]. Their programming language
is based on active objects, thus, the garbage collection requirements for this language
are basically the same as for garbage collection of Actors [13, 25].

Ferreira discusses a C++ library that provides garbage collection for C++ pro-
grams [21]. The library supplies both incremental mark-and-sweep and generational
copy collection, and supports pointers to the interiors of objects. The programmer
renders the program suitable for garbage collection by placing macro definitions at
various places in the program. For example, every constructor must invoke a macro
to register the object and every destructor must invoke a complementary macro to
un-register the object. Another macro must be invoked in the class definition to add
GC members to the class, based on the number of base classes it has. To imple-
ment the remembered set for generations, the collector requires a macro invocation
on every assignment to an internal pointer. Ferreira's collector requires that the
programmer supply functions to locate internal pointers. It can also scan objects
conservatively to work without these functions.

Maeder describes a C++ library for symbolic computation systems whose imple-
mentation uses smart pointers and reference counting [29]. The library contains class
hierarchies for expressions, strings, symbols, and other objects that are called normal,
and reference-counting smart pointers are used exclusively to access the objects. To
improve the efficiency of assignment of reference counted pointer assignment, the ad-
dress of a discrete object serves as a replacement for the NUll pointer. This means
that pointers do not need to be compared with NUll. before being dereferenced to
modify the reference count. The smart pointers support debugging by allowing the
programmer to detect dangling references: rather than being deleted, an object is
marked deleted and subsequent accesses to the object cause an error to be reported.
Other functionality allows the programmer to detect memory leaks by reporting
objects that are still alive when the program terminates.

Madany et al. discuss the use of reference counting in the Choices object-oriented
operating system [28]. The hierarchy of operating system classes is shadowed by
parallel smart pointer classes, called ObjectStars. By programmer convention, the
system classes are accessed exclusively through ObjectStars, which implement refer-
ence counting on their referents. As identified by Kennedy in [27], returning reference
counting smart pointers from functions can sometimes result in dangling references.
This was observed to be true of the ObjectStars, and therefore the following conven-
tion was adopted: Whenever an ObjectStar is returned from a function, it must first
be assigned to a variable; it cannot be immediately dereferenced [15]. This prevents
that particular error.

304

3 G a r b a g e C o l l e c t i n g C + + C o d e

The program's dynamically allocated garbage collected objects are collectively re-
ferred to as the data structure. The collector's job is to determine which objects in
the data structure are no longer in use and to reclaim their memory. The appli-
cation has pointers into the data structure; these pointers are called roots and are
collectively referred to as the root set. Any object in the data structure that can be
reached by following a chain of references from any root is alive. The other objects
are garbage and should be reclaimed. The two hard problems are: 1) finding the
roots, and 2), locating pointers inside objects, called internal pointers.

3.1 R o o t s and S m a r t P o i n t e r s

This system uses smart pointers that implement indirection through a root table.
All of the direct pointers are concentrated in the root table and can therefore be
located by the collector. The term root is used to refer to the smart pointer objects.
In contrast, the built-in pointers, i.e. the pointers that are directly supported by the
compiler and the hardware, are called raw pointers.

A problem with smart pointers is that they can be nontrivial to code [17]. The
problem arises from emulating the implicit type conversions of raw pointers. For
example, a raw pointer of type T* can be implicitly converted to type const T*, based
on the safety of converting an unrestricted pointer to a pointer that permits only
read accesses. Also, derived class pointers can be converted to base class pointers,
reflecting the isa relationship between a derived class and its base classes. C++
allows smart pointers to emulate these type conversions using user-defined type
conversions. The need to add these user-defined type conversions makes generation of
the smart pointer classes inconvenient. They cannot be automatically produced from
a parameterized type, a template, because that does not supply the necessary type
conversions. While macros or inheritance can abbreviate the process, some coding
is required. Emitting smart pointer class definitions, rather than necessitating hand
coding, is one of the tasks of the precompiler.

The Root Table. The data structure that allows the collector to find the root set
is the root table. It it implemented as a linked list of cell arrays. Each cell array
contains its list link and many direct pointer cells. A cell may be active, in which
case it contains a direct pointer value, or it may be free, in which case it is in the
free list. A diagram of this data structure is presented in Fig. 1.

The application's smart pointers point to pointer cells rather than directly to
objects; the cells, in turn, contain the direct pointers. C++ objects implement this
in the following way. The initialization code for a root, i.e. the constructor, gets a
cell from the free list, optionally initializes the cell, and makes the root point to the
cell. The de-initialization code for a root, the destructor, adds the root's cell to the
free list. The overloaded indirection operators first dereference the indirect pointer
to fetch the direct pointer and then dereference the direct pointer. The overloaded
assignment operator causes assignment to a root to assign to the direct pointer rather
than to the indirect pointer.

305

Global data

[~ . . R o o t T a b l e

ii
The registers

Dynamic Objects

�9
'\

. t
/

Link in list of cell arrays
..... Link in free list of cells
........ Direct or indirect object pointer

f Head of the free list of cells
L Head of list of cell arrays

Fig. 1. The root table

Linked list removal usually requires a test and conditional branch to check for
the end of the list. In this implementation, however, when a cell is removed from
the free list, its value is immediately fetched. Tha t fetch is used to avoid the test
and branch. The last page of the last cell array is read-protected [3]. Attempting to
load the link stored in the first cell on the read-protected page causes the program
to receive a signal. The signal handler unprotects the page, links in and initializes
a new cell array, and read-protects the last page of the new array. A new diagram
of a cell array is presented in Fig. 2; the shaded area illustrates the read-protected
region.

S m a r t P o i n t e r Class De f in i t i ons . For every application class two smart pointer
classes are generated. One of them emulates pointers to mutable objects and the
other emulates pointers to const objects. When the application classes are related
through inheritance, the precompiler gives the derived class smart pointers user-
defined type conversions to the base class smart pointer types. A detailed description
of this organization can be found in [17].

The precompiler parses the program to determine what smart pointer classes
are needed and writes the classes to a file. Then, the preprocessed and otherwise
transformed application code is appended.

A typical smart pointer class is shown in Fig. 3. This shows the smart pointer
class for const objects. The associated smart pointer class for mutable objects derives
from this class.

S m a r t P o i n t e r Eff ic iency. Each smart pointer takes up two words in memory, one
for the indirect pointer and one for the direct pointer. The actual space overhead is
greater than that because the root table grows in increments of 8 kilobytes.

306

Global data

Root Table

, , ,

The registers

[] The specific cell that causes a trap

The read-protected memory region

Dynamic Objects

Fig. 2. The protected page of a cell array

The last cell array has its last page read protected. When the protection violation occurs,
a new array is allocated and linked to the others.

class Root C_T {
protected:

const T * * iptr; // The indirect pointer

public:
const T & operator*() const
const T * operator->() const
void operator=(const T * p)
void operator=(const Root_C_T r)
int operator==(const void * vp) const
int operator==(const T * tp) const
int operator!=(const void * vp) const
int operator!=(const T * tp) const

int operator==(const Root_C_T r) const
int operator!=(const Root C_T r) const

{ r e t u r n * * i p t r ; }
{ r e t u r n * i p t r ; }
{ * i p t r = p; }
{ * i p t r = * r . i p t r ; }
{ return *iptr == vp; }
{ return*iptr == t p ; }
{ r e t u r n * i p t r != vp; }
{ r e t u r n * i p t r != tp ; }
{ r e t u r n * i p t r == * r . i p t r ; }
{ r e t u r n * i p t r != * r . i p t r ; }

const T * value() r { return *iptr; }

};

Root_C_T() { iptr = (T**) _gc_RootTable.pop(); }
Root_C_T(const T * p) { iptr = (T**) _gc_RootTable.pop(p); }
Root_C_T(const Root_C_T ~ r) { iptr = (T**) _gc_RootTable.pop(*r.iptr); }
-RootC_T() { _gc_RootTable.push(iptr); }

Fig. 3. A smart pointer class for const objects of type T

307

Measurements of the efficiency of these smart pointers show them to be more
expensive than raw pointers but less expensive than reference counted pointers [16].
If a global register can be dedicated to the Root Table, then initiMizing a new smart
pointer requires two memory references and destroying one requires one memory
reference. Without a dedicated global register, the cost of each of construction and
destruction is increased by one memory reference. Accesses through a smart pointer
pay a one memory reference penalty due to the level of indirection.

3.2 Loca t ing In te rna l Po in te r s

Locating pointers within managed objects is the second task of the precompiler: the
precompiler parses type definitions and emits a gc() function per garbage-collected
type. This function identifies the internal pointer members to the garbage collector.

I n t e rna l Po in te r s and Type Tags. For every managed type the precompiler
emits a gc 0 function. The gc 0 function invokes an internal pointer, or ipO , function
on every pointer member of an object. The ip0 function is global to the program and
defined inline for efficiency. As an example, in the existing mark-and-sweep collector,
the ip0 function pushes internal pointer values onto the mark stack.

The precompiler emits code to register each managed type with the collector.
Registration consists of a call to _gcJegister 0 that passes in the type's gc 0 function
pointer. Each such registration causes the garbage collector to generate and return
a new type tag. Subsequent memory allocation requests pass in the tag, which is
stored in the object's allocator meta-information.

Three type tags are predefined: one for objects that contain no pointers, one for
objects that are entirely pointers, and one for foreign objects. Foreign objects are
only reclaimed manually, i.e. they are never garbage collected, and there is no type
information available for them. They are called foreign because they are ignorant
of the presence of the garbage collector. Support for foreign objects permits this
memory allocator to be the only one in the program; it can satisfy the dynamic
memory needs of the standard libraries by treating their allocation calls as requests
for foreign objects. Foreign objects are not examined by the collector; they should
only reference collected objects through smart pointers, not through raw pointers.

The C++ feature that makes this process convenient is overloadable dynamic
storage allocation operators: new and delete. These operators permit every class to
supply functions to handle memory allocation and deletion. In this case, operator
new for a managed class passes in the type tag to the memory allocator. The default,
global operator new passes in the type tag for foreign objects. A call to malloc0,
which circumvents new, also allocates a foreign object.

Figure 4 shows some sample input to the precompiler; the transformations for
locating internal pointers are shown in Fig. 5.

3.3 Finalization

If the programmer specifies a static member function named T::-gc_finalize(T*), then
that becomes the finalization function [31] for objects of type T. As in Cedar, final-
ization can be enabled or disabled for individual objects; the collector maintains a

class CL {
private:

CL * ptrl;
OTHER * ptr2;
static void _gc_finalize(CL *);
. . o

public:
, o ,

};

308

/* optional */

F ig . 4. A class with internal pointers

c l a s s CL {
p r i v a t e :

CL * p t r l ;
OTHER * p t r 2 ;
s t a t i c v o i d _gc f i n a l i z e (C L *);

public:
. , ,

private:
static _gc_tag_t _gc_tag;
static void _gc_(CL *);

public:
void * operator new(size t sz) { return malloc(sz,_gc_tag); }
void operator delete(void * p) { return free(p); }

};

// The inline ip() function...
inline void _gc_ip_(void * ptr) { _gc_MarkStack.push(ptr); }

// Emitted in exactly one .C file ...
void CL::_gc_(CL * ptr)
{

_gc_ip_(ptr->ptrl);
_gc_ip_(ptr->ptr2);

}

// the t y p e ' s gc () f u n c t i o n

// register type CL with the collector
_gc_tag_t CL::_gc_tag = _gc_register(&CL::_gc_, ~CL::_gc_finalize);

Fig . 5. The internal pointers transformation

309

bit with every object indicating whether or not the object needs finalization. By
default, finalization is enabled for an object whose class has a finalization function;
a library call is available to disable or to re-enable finalization for any object.

There are no restrictions on what a finalization function can do. This means that
a finalization function, which is only called when the object is unreachable, may
make the object reachable. Therefore, in order not to create dangling references, an
object is never reclaimed in a turn when it is finalized; it is only reclaimed after
another collection confirms that it is unreachable and that finalization is disabled
for it [19, 31].

A finalize function must be static, therefore, it may not be vktuat (i.e. dynamically
bound). However, since it is allowed to invoke virtual functions, the effect of a vktua]
finalize function is easily obtained.

3.4 Garbage Collect ion

The collector divides the heap into blocks that are used to allocate objects of uniform
size. Using an integer division operation and knowledge of where blocks begin and
end, the collector is able to make a pointer to the interior of an object (an interior
pointer) point to the beginning of the object. This is potentially expensive because
integer division can be expensive on RISC processors. Nonetheless, this ability is
needed because a pointer to the beginning of the object is necessary to locate the
object's type tag and mark bit. Forbidding interior pointers is impossible, firstly
because the collector is sometimes conservative, also because multiple inheritance in
C++ is generally implemented using interior pointers.

Garbage collection begins by examining every cell of the root table. For each cell,
the collector determines if the cell points to a page that is part of the heap. If so,
the value is pushed onto the mark stack. After all the roots have been pushed, the
collector begins the marking traversal.

Every time a value is popped from the mark stack, the collector determines
whether or not the value points into the heap, and if so, what object it references.
The collector fetches the object's mark bit. If the mark bit was already set, the
pointer is ignored. Otherwise, the bit is set and the type tag is fetched from the
allocator's meta-information. The type tag indexes into an array of type descriptors
that contain the gc 0 and finalization function pointers. The gc 0 function is called
with a pointer to the object; the gc 0 function pushes the internal pointers onto the
mark stack.

After the mark phase, the collector performs finalization and reclamation. For
every object, one of three cases is true:

1. The object is unmarked and has finalization enabled: The object is finalized and
its finalization bit is unset.

2. The object is allocated, unmarked, has finalization disabled, and is not a foreign
object: The object is reclaimed. If the object's page is now empty of objects,
then the page is added to the free page list. Otherwise, the object is added to
the free list for its size.

3. Neither of the above is true: No action is taken.

310

After this, garbage collection is finished and the application resumes execution. In
the next version this phase will be incremental.

3.5 this Pointers

In C++, whenever a method is invoked on an object, a pointer to the object is
passed to the method on the stack. This pointer is called the this pointer. Through
the this pointer the method can access the object's instance data. These pointers are
part of the root set, so the garbage collector should consider them.

There are a number of different ways of finding the this pointers. For example,
the precompiler could add a root local variable to every member function and assign
the this pointer to the root. This would be invasive and inefficient for small member
functions. Another way is to coarsely decode the stack and treat the first argument
to every function conservatively in case the argument is a this pointer. This requires
information about the stack frame layout that only the compiler has. In particular,
the first argument to a function call is not necessarily always placed at a consistent
offset in the stack frame. Thus, this either requires knowledge about the stack frame
layout for each individual function, or it requires treating virtually the entire stack
conservatively.

A pure copying collector must accurately find all pointers during every collection.
However, a collector that does not move all objects does not necessarily need to find
all the pointers. We do not to attempt to locate the this pointers. Instead, the
programmer must ensure that the following property is always true:

There may noi be an object whose only reference is through one or more

this pointers.

For example, the following code is illegal:

int main(void)

(new T)->method_X() ;
. , ,

)

This code is invalid because in method_X(), the object's only reference is the this
pointer.

If the programmer suspects that this restriction is accidentally being violated,
the collector can be configured to scan the stack conservatively in addition to using
the root table. Then, the collector can report th e presence of pointers on the stack
to objects that would otherwise be reclaimed. The debugger can then be used to
determine what code is responsible.

3.6 Control l ing the Precompi le r

By default, all of the class, struct, and union types that the precompiler sees are
assumed to be garbage collected. Thus, for all such types, the precompiler performs
its two transformations. In fact, a great many of these types are likely not to be

3 i l

managed. For example, while the vast majority of C++ files include the standard
header file <iostream. h>, emitting smart pointer types for the iostream classes would
unnecessarily slow down compilation because there is no need for them. As an opti-
mization, therefore, ther e are precompiler-specific ~pragmas to control generation of
garbage collection information, either at the granularity of the individual type, or at
much coarser granularity. (This functionality permits programmers to take control
of storage management for certain types if they so choose.)

3.7 Translation Unit Management

The precompiler processes every file in a multi-file program. Therefore, it is likely to
see the class definitions multiple times. Some of the transformations are performed
every time a file is compiled; others must be performed more selectively. In particular,
the modifications to the class definitions are always performed so that all of the code
in the program sees the same definitions. However, the gc 0 functions must not be
replicated every time the class definitions are seeing because that would define these
functions multiple times.

The precompiler uses the following heuristic to make the decision in most cases:
Produce the gc 0 functions in the same file that defines the first non-inline function
of the class. This rule tells the precompiler when to emit the gc 0 function for every
class that has at least one non-inline function. If a managed class does not have a
non-inline function member, then the precompiler will issue a warning. The user must
then add a #pragrna to the class telling the precompiler what file should contain the
definition of the class's gc 0 function. This technique is used in some C++ compilers
to determine when to emit the vtbl for a class [20, w

3.8 Status

The design and development of this system are both underway. The smart pointers
and the garbage collector are operational. The precompiler has been prototyped
using an existing C++ compiler as the starting point. The modified C++ compiler
parses the user's C++ code and emits smart pointers and other declarations. The
precompiler does not yet reintegrate the emitted code back into the original source
program. A complete reimplementation of the precompiler is in progress.

The SOR group at INRIA Rocquencourt has designed and is developing a dis-
tributed garbage collection algorithm [35]. The distributed garbage collector requires
local garbage collectors with support for finalization. This garbage collector serves
as the foundation for the distributed garbage collector.

3.9 Fu tu r e Work

This collector will be used as a platform for research on the interaction between
the collector and the virtual memory system. The areas of future research include
VM synchronized incremental and generational collection, and influencing collection
decisions based on the state of the virtual memory system.

312

4 C o n c l u s i o n s

C++ is a very well designed language considering its goals, however, the complexity
of its semantics is daunting. Adding to that complexity by requiring manual storage
reclamation makes programming in C++ difficult and error-prone.

Precompiling C++ programs for garbage collection is more convenient for the
programmer than a pure library-based approach. Simultaneously, it is portable and
not tied to any particular compiler technology. Also, it should reclaim more garbage
then a purely conservative approach.

A number of other systems use smart pointers, generally for reference counting.
Automatic generation of smart pointer classes can be of benefit to those projects.
Similarly, the transformation that locates internal pointers is independent of the
implementation of the GC algorithm, and could be used by other C++ garbage
collectors.

There are three main benefits to our approach. First, the precompiler can be
used as a garbage collector front-end and as a smart pointer generator. Second, this
is a convenient platform for research in garbage collection techniques and issues, and
will be used as such. Finally, the collector makes programming in C + + less complex
and safer, and may make garbage collection available to a large part of the C++
programming community.

Acknowledgements

This work has been supported in part by Esprit project 5279 Harness.
I am grateful to Marc Shapiro for supporting this work.

R e f e r e n c e s

1. ACM. Proc. PLDI '91 (June 1991). SIGPLAN Not. 26(6).
2. APPEL, A.W. Runtime tags aren't necessary. In Lisp and Symbolic Computation

(1989), vol. 2, pp. 153-162.
3. APPEL, A. W., AND LI, K. VirtuM memory primitives for user programs. In ASPLOS

Inter. Conf. Architectural Support for Programming Languages and Operating Systems
(Santa Clara, CA (USA), Apr. 1991), pp. 96-107. SIGPLAN Not. 26(4).

4. BARTLETT, J .F . Compacting garbage collection with ambiguous roots. Tech. Rep.
88/2, Digital Equipment Corporation, Western Research Laboratory, Palo Alto, Cali-
fornia, Feb. 1988.

5. BARTLETT, J. F. Mostly copying garbage collection picks up generations and C++.
Tech. Rep. TN-12, DEC WRL, Oct. 1989.

6. BOEHM, H.-J. Simple gc-safe compilation. Workshop on GC in Object Oriented
Systems at OOPSLA '91, 1991.

7. BOEHM, H.-J., DEMERS, A. J., AND SHENKER, S. Mostly parallel garbage collection.
In Proc. PLDI '91 [1], pp. 157-164. SIGPLAN Not. 26(6).

8. BOEHM, H.-J., AND WEISER, M. Garbage collection in an uncooperative environment.
Soflw. - Pract. Exp. 18, 9 (Sept. 1988), 807-820.

9. CHRISTOPHER, T. W. Reference count garbage collection. Softw. - Pract. Exp. 14, 6
(1984), 503-508.

313

10. COPLIEN, J. Advanced C§247 Programming Styles and Idioms. Addison-Wesley, 1992.
11. DEMErtS, A., WEISErt, M., HAYES, B., BOEHM, H., BOBrtow, D., AND SHENKEa, S.

Combining generational and conservative garbage collection: Framework and imple-
mentations. In Proc. POPL '90 (Jan. 1990), ACM, ACM, pp. 261-269.

12. DETLEFS, D. Concurrent garbage collection for C++. Tech. Rep. CMU-CS-90-119,
Carnegie Mellon, 1990.

13. DICKMAN, P. Trading space for time in the garbage collection of actors. In unpublished
form, 1992.

14. DYBVIG, K . R . The SCHEME Programming Language. Prentice Hall, Englewood
Cliffs, N.J., 1987.

15. DYKSTRA, D. Conventions on the use of ObjectStars, 1992. Private communication.
16. EDELSON, D. R. Comparing two garbage collectors for CA-+. In unpublished form,

1992.
17. EDELSON, D. R. Smart pointers: They're smart but they're not pointers. In Proc.

Usenix C-I-+ Technical Conference (Aug. 1992), Usenix Association, pp. 1-19.
18. EDELSON, D. R., AND POHL, I. A copying collector for CA-A-. In Proc. Usenix C§247

Conference [40], pp. 85-102.
19. ELLIS, J. Confirmation of unreachability after finalization, 1992. Private communica-

tion.
20. ELLIS, M. A., AND STaOUSTaUP, B. The Annotated C§247 Reference Manual. Addison-

Wesley, Feb. 1990.
21. FP.artEmA, P. Garbage collection in CA-+. Workshop on GC in Object Oriented

Systems at OOPSLA '91, July 1991.
22. GINTER, A. Cooperative garbage collectors using smart pointers in the CA-+ program-

ming language. Master's thesis, Dept. of Computer Science, University of Calgary, Dec.
1991. Tech. Rpt. 91/451/45.

23. GOLDBERG, B. Tag-free garbage collection for strongly typed programming languages.
In Proc. PLDI '91 [1], pp. 165-176. SIGPLAN Not. 26(6).

24. GROSSMAN, E. Using smart pointers for transparent access to objects on disk or across
a network, 1992. Private communication.

25. KAFURA, D., WASHABAUGH, D.j AND NELSON, J. Garbage collection of actors. In
Proc. OOPSLA/ECOOP (Oct. 1990), pp. 126-134. SIGPLAN Not. 25(10).

26. KARPLUS, K. Using if-then-else DAGs for multi-level logic minimization. In Ad-
vanced Research in VLSI: Proceedings of the Decennial Caltech Conference on VLSI
(Pasadena, CA, 20-22 March 1989), C. L. Seitz, Ed., MIT Press, pp. 101-118.

27. KENNEDY, B. The features of the object-oriented abstract type hierarchy (OATH). In
Proc. Usenix C++ Conference [40], pp. 41-50.

28. MADANY, P. W., ISLAM, N., KOUGIOURIS, P., AND CAMPBELL, R. H. Reification and
reflection in CA-A-: An operating systems perspective. Tech. Rep. UIUCDCS-R-92-
1736, Dept. of Computer Science, University of Illinois at Urbana-Champaign, Mar.
1992.

29. MAEDER, R. E. A provably correct reference count scheme for a symbolic computation
system. In unpublished form, 1992.

30. MILLER, J .S . Multischeme: A Parallel Processing System Based on MIT Scheme.
PhD thesis, MIT, 1987. MIT/LCS/Tech. Rep.-402.

31. ROVNER, P. On adding garbage collection and runtime types to a strongly-typed,
statically checked, concurrent language. Tech. Rep. CSL-84-7, Xerox PARC, 1984.

32. Russo, V. Garbage collecting an object-oriented operating system kernel. Workshop
on GC in Object Oriented Systems at OOPSLA '91, 1991.

33. Russo, V. There's no free lunch in conservative garbage collection of an operating
system, 1991. Private communication.

314

34. Russo, V. Using th e parallel Boehm/Weiser/Demers collector in an operating system,
1991. Private communication.

35. SHAPIRO, M., DICKMAN, P., AND PLAINFOSSI~, D. Robtist, distributed references and
acyclic garbage collection. In Syrup. on Principles of Distributed Computing (Vancou-
ver, Canada, Aug. 1992), ACM.

36. SHAPIRO, M., GOURHANT, Y., HABERT, S., MOSSERI, L., RUFFIN, M., AND VALOT,
C. SOS: An object-oriented operating system--assessment and perspectives. Comput.
Syst. 2, 4 (Dec. 1989), 287-338.

37. SHAPIRO, M., MAISONNEUVE, J., AND COLLET, P. Implementing references as chains
of links. In Workshop on Object Orientation in Operating Systems (1992). To appear.

38. STROUSTRUP, B. The evolution of C + + 1985 to 1987. In Proc. Usenix C§247 Workshop
(Nov. 1987), Usenix Association, pp. 1-22.

39. STROUSTRUP, B. The C'1-4- Programming Language, 2 nd ed. Addison-Wesley, 1991.
40. USENIX ASSOCIATION. Proc. Usenix C++ Conference (Apr. 1991).
41. WENTWORTH, E.P. An environment for investigating functional languages and im-

plementations. PhD thesis, University of Port Elizabeth, 1988.
42. WENTWORTH, E. P. Pitfalls of conservative garbage collection. Soflw. -Pract. Exp.

(July 1990), 719-727.
43. YASUGI, M., AND YONEZAWA, A. Towards user (application) language-level garbage

collection in object-oriented concurrent languages. Workshop on GC in Object Ori-
ented Systems at OOPSLA '91, 1991.

44. ZORN, B. The measured cost of conservative garbage collection. Tech. Rep. CU-CS-
573-92, University of Colorado at Boulder, 1992.

This article was processed using the LATEX macro package with LLNCS style

GC-cooperative C+-}-

A. Dain Samples*

Dept. of Electrical and Computer Engineering
University of Cincinnati

Cincinnati, OH 45221-0030
Dain.Samples@uc.edu

Abs t rac t . A garbage collector for Cq-q- should maintain the spirit of the
language as much as possible and yet provide mechanisms for reliable devel-
opment and debugging of programs utilizing garbage collection. This paper
proposes a design of such a system, including a minimal set of language
changes, and compile-time and runtime environment enhancements. The de-
sign provides support for many different kinds of garbage collection strategies
(copying, mark and sweep, generational, . . .), does not impose extensive over-
head on runtime objects that do not use garbage collection, and imposes as
few restrictions on programming style as possible.

1 I n t r o d u c t i o n

This work builds on and is to be contrasted with the work of Edelson [1-3], Bartlet t
[4,5], Detlefs [6], and Ginter [7]. All of these efforts have concentrated on user-
defined garbage collectors; that is, garbage collectors written in C + + as currently
defined without specific support from the compiler. The goal of a library of garbage
collectors unsupported by the compiler and language is laudable but, as their efforts
show, fraught with difficulties.

This proposal will concentrate on the design of the C + + language and compiler
to support (cooperate with) garbage collection (GC). Whereas previous work has
concentrated primarily on building garbage collectors within the current definition
of C-t-+, we are asking the question "What minimal changes to the language and
compiler would be necessary to provide direct, efficient support for a garbage col-
lection facility?" Such a facility would effectively be predefined much as the malloc
and free functions are defined; the facility is assumed to be part of the language
environment without specifying how it is implemented. A design of a GC facility for
C + + should not preclude a priori GC strategies; specifically, it should not preclude
copying collectors.

The design is preliminary and is presented for criticism and discussion. Consider
it a manifesto of desirable GC properties, an exploration of design ramifications,
and some explicit suggestions for implementation. We are currently developing a
prototype to empirically evaluate some of the design decisions.

To streamline what follows, we define some terms. C + + classes that have been
declared collectible are referred to as gc-classes or gc-types, their instantiations as

* This work supported by the Languages Development Unit of Borland, International

316

gc-objects, and the space in which they are collected as gc-space. Objects that are
pointed to by an application from outside gc-space are said to be rooted, and the
pointers are called roor Gc-objects to which there exists a path of pointers from a
rooted object are said to be grounded; rooted objects are trivially grounded. Pointers
to or into gc-objects are called gc-pointers. Gc-pointers into gc-objects are also called
embedded pointers (also called interior pointers by some). Variables that contain bit-
patterns that could be interpreted as gc-pointers but might actually be something
that just happens to look like a gc-pointer (e.g., an integer, a sequence of characters,
et'c.) are called ambiguous roofs. The act of informing the GC system that a pointer
may point to a gc-object is called registration.

Garbage collection strategies are categorized as either in-place or copying collec-
tors. In-place collectors do not move live objects once they are allocated, whereas
copying collectors may change the memory address of objects at any time during
garbage collection.

2 P r e v i o u s W o r k

Edelson has implemented at least two different collectors, an in-place mark-and-
sweep using root indirection [2] and a copying collector using root registration
[3]. Root indirection means the application can only manipulate indirect pointers
through a table; the collector uses the table to track objects in gc-space. Root regis-
tration means the application manipulates direct pointers, and a separate mechanism
is used to track pointers which the collector needs. Both collectors use smart point-
ers: class definitions that use their constructors, destructors, and an overloaded ->
operator to manipulate pointers in a controlled manner [8]. The C++ compiler was
not modified in either prototype to provide any cooperation for GC.

Bartlett's mostly-copying scheme [4,5] cleverly combines copying and conserva-
tive collection [9]. Those objects that are referenced by ambiguous roots are not
copied, while all other live objects are copied. The to- and from-spaces central to
the copying scheme are implemented by page promotion; pages of from-space mem-
ory containing objects referenced by ambiguous roots are simply redesignated as
to-space pages. In his applications, memory fragmentation and uncollected garbage
rates were surprisingly reasonable and a function of the selected page size [4]. He
later modified his collector to use a generation scavenging scheme [5].

Detlefs [6] also uses Bartlett's mostly-copying scheme but found that his appli-
cation (the AT&T cfront C++-to-C translator) had far too many ambiguous roots
and retained too much garbage. Most of the ambiguous roots came from extensive
use of unions in data structures; he found it necessary to restructure many of these
unions to alleviate the problem. He borrows from Modula-3 [10] the notion of traced
and unfraced objects and pointers; this is analogous to our collected versus uncol-
lected objects and pointers. However, we argue below that fraced and unlraced do
not adequately capture the notion of pointers that root objects.

Detlefs' implementation walked a thin line: he rejects any scheme that requires
a GC cooperative compiler, and yet proposes a scheme that nevertheless requires
enhancements to the C++ compiler. He justifies this decision by the fact that his
scheme can easily be integrated into existing compilers and that his approach pro-
motes portability.

317

Ginter's report [7] analyzes the impact on the C++ language if user-defined
garbage collectors are to be supported. His recommendations include enhancing the
declaration syntax of smart pointers and implementing mechanisms for determining
the structure of objects at runtime. His report points out many of the difficulties
of supporting user-defined collectors in C++, some of which" appear inherent to the
language.

We do not summarily reject the notion of user-defined collectors; however, the
problems pointed out by Ginter are difficult ones, and providing even incomplete
support requires significant changes to the C++ language. For instance, Ginter,
Edelson, and Detlefs all point out the problem for user-defined collectors when deal-
ing with C++'s t h i s pointer. The t h i s pointer is allocated on the stack for every
call of a member function. However, the user cannot extract the address of this
and therefore cannot register it with the GC system: this can be done only by the
compiler. Hence, our approach.

We are proposing that C++ compilers provide a garbage collection environment
as part of the system, not as a library routine. In this report, we explore what C++
compilers can do, the language enhancements required, and some of the implemen-
tation issues. We also explore the possible GC strategies that one can reasonably
expect C++ to support.

3 G o a l s o f t h e D e s i g n

As mentioned, the primary goal of this design is to retro-fit C++ with garbage
collection facilities while not changing the spirit of the language. That spirit, based
on the spiri t of C, can be summarized provocatively as: (1) Programmers should
be able to do anything they want, subject to their willingness to deal with the
consequences (side-effects and interactions oi~features whose invariants are violated).
(2) No one pays for any feature of the language that they do not use.

Based on this spirit, we consequently adopt the following goals for the system.
Adding GC to C++ should not force overhead on users that do not use it. When

GC is used, it should not interfere with software modules that do not use it. GC must
not interfere with the current and/or standard definitions of the language. That is,
a GC facility should not cause re-definition or loss of language features.

The dual of this requirement is that programmers that use GC must take the
responsibility either for not violating the invariants of the design, or for knowing how
to deal with the consequences. Almost any restriction imposed by a GC-cooperative
C++ compiler can be bypassed by a sufficiently determined programmer. The com-
piler therefore can take responsibility only for maintaining its GC invariants, but
cannot be expected to find any and all ways in which users may have violated those
invariants.

The language should be changed as little as possible. A strict goal of no change
was seen rather quickly to be unrealistic. Either all runtime objects would have to
be garbage collected--a major change to the design of the language and a violation
of the spirit of the language--or, at a minimum, programmers would need language
support to be able to specify which (classes of) objects are to be garbage collected.
A design consequence of this goal is that a program can have two dynamic memory

318

spaces: the space dedicated to objects that are to be garbage collected, and the usual
'heap' of dynamically allocatable memory.

Use of a garbage collector must not impose a complete dichotomy on runtime
objects: collected objects must be able to refer to, contain, and be contained in
non-collected objects, and vice versa. Gc-objects are not restricted to exist only in
gc-space: gc-objects should be instantiable as global, automatic, or heap objects, if
the programmer so desires. Obviously, only those that are in gc-space can and will
be automatically reclaimed. While it may be necessary to add data to an object to
support GC, it must be the case that objects of a type have exactly one memory
representation, no matter where they reside (global space, stack, heap, or gc-space).
Furthermore, it should be possible for the user to declare that a specific object is to be
automatically reclaimed. For instance, the programmer should not have to declare
a special class or data type to have arrays of characters (strings) automatically
reclaimed.

Arrays of gc-objects must be supported.
The design should support pointers into objects and pointer-to-member. For

instance, if a gc-object has an array of characters as an element, the programmer
should still be able to traverse that array with a pointer-to-char. Compiler and
runtime mechanisms must exist that allow correct reclamation of gc-objects that
have such 'embedded' pointers into them. ('Embedded' here refers to where the
pointer is pointing, and not to the location of the pointer itself.)

C unions and Pascal tagless variant records are a way of hiding information from
the compiler and/or exposing representation information to the user. Unions should
be supported wherever possible. (However, unions can be supported only with non-
or mostly-copying GC strategies; cf. w

It would be nice if the design did not preclude supporting multiple and dis-
contiguous gc-spaces, where each gc-space may have a different GC strategy. The
prototype being constructed does not yet support multiple gc-spaces, and so this
paper does not pursue this goal directly. The problem of cross-registration of root
pointers between GC strategies is complex enough that more data is needed on the
desirability of this feature to justify a design to support it at this time.

4 Impact on Language Design

Syntactic changes to the C + + language definition consist only of three additional
keywords: c o l l e c t e d , embedded, and heap. The programmer must be able to specify
which objects are to be reclaimed automatically, so classes of objects to be garbage
collected are declared to be of type c l a s s c o l l e c t e d (Figure 1).

If a program uses embedded pointers, then the programmer must either declare
such pointers to be embedded (Figure 2) 2, or ensure that any object so referenced
is rooted by some pointer to the object itself. We also note that declaring a pointer
embedded does not mean that its value is an address inside a gc-object, only that it
m a y be a pointer into a gc-object. The garbage collector will be required to determine
if it is.

2 Examples are cumulative, and use declarations from previous examples.

319

c l a s s c o l l e c t e d Gtype {
pub l ic :

char c a r t [3 2] ;

} Gobject;

Fig. 1. Declaration of a gc-type

void eg l (void)
{

char embedded* ep;
char* notep;

ep = ~Gobjec t . ca r r [3] ; // OK

notep = ~Gobjec t . ca r r [3] ; // Illegal

// At the least, the compiler should give

// a warning message for the above.

notep = (char *)&Gobject.carr[3]; // Legal

Fig. 2. Embedded pointers

The problem pointed out by Ginter [7] concerning the creation of this pointers
is solved by the use of embedded pointers. In his example (Figure 3, t ranslated into
our notation), the call of the member function Xfcn creates a t h i s pointer on the
stack that points to the (uncollected) Y object that is a member object of a b a s e

object. The b a s e object is allocated in gc-space, so the t h i s pointer is actually
an undeclared embedded pointer. The assignment of t h i s to X in Xfcn is therefore
legal in Ginter 's construction, although potentially creating a serious error for the
programmer . Since objects of type member are never allocated in gc-space except as
member elements of other objects, we do not want to have to declare the member
class to be c o l l e c t e d . Ginter suggests that an error message be emit ted every t ime
pointer to a t r a c e d object is stored into an u a t r a c e d pointer. This is no taccep tab le
since every invocation of a member function of member would create such an error
message.

Our solution is to declare class member what it is: embedded. Declaring c l a s s

e m b e d d e d member{ . . . } means tha t the t h i s pointer on the stack is appropriately
registered without forcing the unnecessary overhead of making member objects col-
lectible, and without the proliferation of runt ime error messages. Now, the assign-
ment X = t h i s can be flagged as an error by the compiler as the assignment of an
embedded pointer into an non-gc-pointer, a much more reasonable error message.

Gc-objects may be allocated on the heap by using the keyword heap with the
new operas likewise, non-gc-objects that are to be automatical ly reclaimed use the
keyword c o l l e c t e d in a similar manner (Figure 4). If neither modifier is present,
then an object of the indicated type is allocated from the space appropriate to that

class member* X;

class member {

public:

void Xfcn(void) { X = this; }
};

class collected base {

class member Y;

};

void Icn(void) {

class base* Z;

Z = new base;

(Z->Y) .Xfcn() ;

}

320

Fig. 3. Example of the this problem (from Ginter)

type. We also note in passing that the declaration of c s t r in Figure 4 must be
declared embedded.

void eg2(void)
{

char* s t r = new char[64]; / / a l loca ted on heap
Gtype* Gptr = new Gobject; / / a l l oca ted in gc-space
Gtype* Gptr2 = new heap Gobje~t; // allocated on heap

char embedded* cstr = new collected char[32]; // allocated in gc-space

Fig. 4. Use of new operator

5 R u n t i m e O r g a n i z a t i o n

The following description of the runtime organization is sufficiently detailed to allow
a straightforward (and probably slow) implementation, and does not go into any
detail on optimization techniques. This design has concentrated on generality while
keeping an eye on implementation issues with the belief that the design does not
preclude optimizations.

321

5.1 O b j e c t F o r m a t s

Three pieces of information are required about an object: how to traverse the object
(what other gc-objects does this one point to), GC-specific data (e.g., mark bits),
and finalization information (e.g., is there a destructor to be called when this object
is deallocated). This information is maintained in two objects, the gc-wrapper 3, and
the gc-descriptor. There is one gc-wrapper for each gc-object allocated, and one
gc-descriptor for each gc-type.

The first field of each gc-object is a pointer to its gc-wrapper; this field is hidden
from the programmer in the same way the virtual function table pointer is hidden.
One of the fields of the gc-wrapper is a pointer to the appropriate gc-descriptor.
(It is an implementation question as to whether a gc-object with virtual functions
will have two hidden pointers, or whether the gc-wrapper and the virtual table are
reached via a single pointer in the gc-object.)

The gc-descriptor, generated from the declaration of the gc-type in much the same
way as described by Detlefs [6], contains the location of all gc-pointers contained in
objects of this type.

Consider the code in Figure 5. All three pointers are referencing three views of
the same object. If any two of the pointers are set to n i l , then the remaining pointer
must root the object. Therefore the collected base class component(s) of a gc-object
must refer to the outermost containing object. This is effected by having the gc-
wrapper for the contained base object be the gc-wrapper for the containing object.
Therefore, in Figure 5, g c u B == gcwD. This, of course, has implications for the
initialization (construction) of gc-objects.

The , ' embedded ' concept frees us from requiring that base classes of collected
classes must also be collected. If base classes of gc-classes are not themselves gc-
classes, then declaring them embedded maintains the type discipline without the
overhead they would acquire if declared c o l l e c t e d . If the base classes are also
gc-classes, then pointers to the base components of a go-object do not need to be
declared embedded since the gc-wrapper for the contained base object (which is also
the gc-wrapper for the outermost containing object) contains all of the information
necessary for the collector.

5.2 A r r a y s o f G c - O b j e c t s

Arrays of gc-objects (let's call them gc-arrays) require a special gc-wrapper that each
gc-object in the array references as its own gc-wrapper. The gc-array's gc-wrapper
will contain a pointer to the base of the array, the number of elements in the array,
and the descriptor for the individual elements of the array. Gc-pointer-to-gc-object
behaves exactly as pointer-to-object behaves. If there is a reference to any element
of the gc-array, then the entire array can be scavenged.

3 The name gc-wrapper betrays an earlier design in which the data actually surrounded
the object. This presented problems for the definition of the C++ sizeof operator, so the
information was at least conceptually pulled into a separate runtime object.

322

class collected Base { int i; };
class embedded Vile { int i; };
class collected Derived: Vile, Base { int i; };
Base *bp;
Vile embedded* vp;
Derived *dp;

main()
{

dp = new Derived;
bp = (Base*)dp;
vp = (Vile embedded*)dp;
, . .

// layoutof Derived objects:
// gc_wrapper* gcw_D
/ / int 7ile::i
// gc_wrapper* gcw_B
// int Base::i
// int Derived::i

dp points here
vp points here
bp points here

Fig. 5. Base and derived cla.sses

5.3 N o n - G c - O b j e c t s A l l o c a t e d in G c - S p a c e

If a p rogrammer does not wish to track references to a particular dynamic object,
tha t object can be allocated in gc-space with a new c o l l e c t e d call. For instance,
the function

char embedded*

copy_name(char *cp)
{

char embedded* gcp = new collected charEstrlen(cp)+l];

strcpy(gcp, cp);

return gcp
}

returns a pointer to an instance of an array of characters that will be reclaimed
automatical ly when there are no references to the string: The declaration of any
character pointer that might end up pointing to or into this array of characters
must be declared embedded.

To track these non-gc-objects allocated in gc-space, a gc-type tha t contains the
non-gc-object or the array of non-gc-objects as its only member is constructed by the
compiler. Such non-ge-objects may not contain gc-objeets or pointers to gc-objects.
Objects containing gc-pointers or gc-objects should probably be declared collected

323

anyway, but the restriction avoids problems with the registration of gc-objects or
pointers-to-gc-objects in objects that are suddenly become gc-objects.

5.4 G c - W r a p p e r F o r m a t

Each gc-object and gc-pointer has a gc-wrapper; elements of a gc-array MI share the
same gc-wrapper, and a gc-object that has member gc-objects or gc-pointers shares
its gc-wrapper with its members. Hence the requirement for the pointer-to-object
field within a gc-wrapper in order to find the address of the outermost containing
object. The purpose of the gc-wrapper is two-fold: (1) to customize the information
necessary to trace an object or pointer, and (2) to be the proxy for the object or
pointer in a root set.

Currently, there are three gc-wrappers defined in the system; their formats are
indicated by the template class definitions in Figure 6.

enum gcwTag {
GCW_OBJ,
GCW_OBJPTR,
GCWARRAY,
};

template<class collected T> class gcw_obj {
gcwTag tag; // = GCW_OB3
T* objec t ;
gc_desc* gd;
gc_data d; }; // e.g., mark bits

template<class collected T> class gcw_obj {
// for global and local pointers
gcwTag tag; // = GCW_OBJPTR
T** objec t ; };

template<class co l l e c t ed T> class gcw_obj {
/ / fo r arrays with elements of type T
gcwTag tag; / / = GCW_ARRAY;
T* base;
g c d e s c * gd; / / the de sc r ip to r fo r the elements
int n; }; / / nor elts of the array

Fig. 6. Format of the gc-wrappers

It is interesting to note that, like virtual table pointers, gc-wrappers cannot be
directly defined within a C + + class hierarchy. Figure 7 shows a straightforward
a t tempt to implement pointers to gc-wrappers for all gc-objects by deriving all col-
lected objects from a GC_CLASS type. The code fragment in the main procedure
a t tempts to access the gc-wrapper for a UserDerived object. Because of C + + ' s

324

inheritance design, however, there are two gc-wrapper pointers to which the name
gcwp might refer in this context: the one associated with the UserDerived object by
inheritance from GC_CLASS, and the one associated with the base class UserBase. The
language definition of C + + currently does not have a mechanism for unambiguously
identifying either these two gc-wrapper pointers.

class GC_CLASS { public: GC_WRAPPER* gcwp; };

class UserBase : public GC_CLASS { ... }; // a collected class

class UserDerived : public GC_CLASS, // because UserDeriveds are collected

public UserBase // because user derived

{ . . . };
main() {

UserDerived* udp = new UserDerived;

... udp->gcwp .,.
}

Fig. 7. C++ ambiguous reference problem

While it is not within the proper scope of this paper to propose a solution to
this problem with C++ , perhaps a partial solution would be to allow some disam-
biguation via class names; e.g., udp->UserBase: : gcwp and udp->GC_CLASS: : gcwp.
However, it is still possible to construct a class hierarchy that has ambiguities that
cannot be so resolved. Suffice it to say that, because of this problem, a full prototype
of this design cannot be implemented within the C + + class hierarchy design without
significant work-arounds.

5.5 I m p l i c a t i o n s for A l l o c a t i o n

The greatest change to C + + implied by these design decisions involve the construc-
tors and the allocator. The compiler and runtime-system will have to be modified to
give each gc-object's constructors sufficient information to initialize the gc-wrappers.
More accurately, this information must be given to the registration routines that de-
termine how an object will be registered. The registration routines are conceptually
a part of the operation of the new operator for gc-classes. Specifically, two pieces
of information must be passed to the registration routines for gc-objects and gc-
pointers:

1. Where is the gc-object/gc-pointer being allocated? There are four possible val-
ues:
(a) On the stack (auto/local variables)
(b) Static/global space
(c) On the heap
(d) In gc-space

2. How is the ge-object/gc-pointer being allocated?
(a) By itself.

325

(b) As an element of an array; in which case the registration routines will need
to know the address of the first object in the array.

(c) as a (sub-)member of a gc-object; in which case the registration routines will
also need the base address of the outermost gc-object.

'Sub-member' refers to object member nesting. For example,

class collected Gin { ... };

class Not { ... Gin gin; ... };

class collected Gout{ ... Nog hog; ... };

class Nog2{ ... Gout gout; ... };

The registration routines for gc-class Gin need to know the address of the containing
gc-object. Therefore, when a Nog2 is allocated, the address of Gout, not Nog2 is
passed to the registration routines for Gin. This requirement also holds for base
class/derived class relationships.

Of course, user-defined new operators are prohibited for gc-classes.

5.6 P e r f o r m a n c e C o n s i d e r a t i o n s

The actual implementation of the gc-descriptor may be a table of offsets, or it may be
executable code that recursively invokes GC routines to mark or scavenge reachable
objects. Which is the best implementation has not yet been determined: the table
of offsets is smaller but slower, while the executable code is faster but requires more
memory. Detlefs [6] defined several encoding schemes for a trace description of gc-
objects.

Allocation and initialization of gc-wrappers when creating a gc-object or gc-
pointer will slow down allocation, and will need to be engineered carefully. In general,
every gc-object must have a gc-wrapper created and initialized for it since the gc-
object may be referenced by a traced gc-object. If it can be determined that an
object will never be so referenced (e.g., the address of a stack-allocated gc-object is
never computed) then the gc-wrapper is not necessary.

However, not every gc-object outside of gc-space need be registered: gc-objects
must be registered only if they contain references to other gc-objects. Automatic
(local, or stack) variables present a special performance problem since each invoca-
tion of a function may require each gc-object declared local to the function to be
registered. There are several optimizations that may be effective in reducing this
overhead; our first prototype sidesteps the whole issue by not registering objects on
the stack. Instead, in our experiments, we will measure the performance of conser-
vative collection of the stack versus that of full registration. This is to be contrasted
with the work of Appel [11], Goldberg [12], and Diwan, Moss, and Hudson [13] in
which a descriptor of the stack frame guides (non-conservative, precise) collection.

As mentioned above, the Modula-3 distinction between t r a c e d and matraced
pointers is not sufficient for this environment; combined with c o l l e c t e d and (im-
plied) uncollected objects, embedded declarations actually improve the ability of the
compiler to generate more efficient code. When an embedded gc-pointer points into
the middle of a gc-object, the beginning of that object must be found (which has
implications for the allocator; our prototype will be using the beginning-of-object

326

bitmap allocator described in Detlefs [6]). This search does not need to be performed
for pointers known to point to the head of a gc-object, only for pointers that have
been declared embedded.

Since we allow gc-objects to be allocated anywhere, gc-pointers will always have
to be checked to see if they point into gc-space. If this overhead is too onerous, then
we may need to explore either restricting gc-pointers to point only into gc-space,
or allowing the programmer to specify which gc-pointer variables always point into
gc-space and those which may point elsewhere.

5.7 R o o t Se ts

The root sets are the collection of objects outside of gc-space that may reference
gc-objects in gc-space. Each set is designed to simplify the registration and tracing
of each of the different kinds of objects and where they are allocated. For instance,
gcr_statics records the location of gc-objects and pointers in global data space. This
is most simply implemented as a compiler-initialized array of pointers. On the other
hand, the gcr_heap set may be most efficiently implemented as a doubly-linked list.
Therefore, we make no assumptions as to the implementation of the root sets. Indeed,
one implementation might be to have only one root set that contains the union of
all of the following sets.

gcr_statics: The set of all globally allocated gc-objects.
gcr_heap: The set of all objects allocated on the heap.
get_stack: The set of gc-objects allocated on the runtime stack.
gcr_staticptrs: The set of all globally allocated pointers to gc-objects.
gcr_stackptrs: The set of all pointers-to-gc-objeets allocated on the stack.
gcr_heapptrs: The set of all pointers-to-gc-objects allocated on the heap.
gcr_staticembptrs, gcr_stackembptrs, gcr_heapembptrs: The set of all embedded

pointers (pointers pointing into a gc-object). Embedded pointers require more
processing by the collector, so it makes sense to isolate them into their own root
sets. If experience shows otherwise, we can simplify things and include embedded
pointers into the root sets for gc-object-pointers.

There is a potential problem with gc-objects falsely being added to a root set. If
a gc-object or gc-pointer is put in a root set, then there must be a way of removing
it from that set when the object /pointer is reclaimed. For instance, if the compiler
sees the following:

class collected GI

class G2

class collected G3

. . .) ;

. . . G1 g l ;
� 9 G2 g 2 ;

�9 . .) ;
. . . ~;

then, assuming a straightforward implementation of root registration, any t ime a
new G2 is created on the heap, a G1 object is added to the gcr_heap root set. In a
straightforward implementation, a G1 object will be added to the heap root set even
when a G2 object is allocated in gc-space as part of a G3 object. We must carefully
handle the root set to make sure that the reference to g l in the root set allows 63
objects to be reclaimed. That is, when the only active reference to a G3 object is

327

the root set reference to its sub-member gl , then G3 needs to be reclaimed and gl
needs to be removed from the root set.

Edelson [2] calls these weak pointers. That is, they are pointers that do not make
the pointed-at object 'live'. The object is live only if an application pointer reaches
it from another live object or root. The easiest solution is for the collector to check
each member of the heap-space registration set to see if any gc-object in that set
is not in heap-space, but rather is in gc-space. If such an object is found in the
heap-space set, it is removed from the registration set and not traversed.

6 P r o g r a m m e r I m p a c t

There are still pitfalls in C + + that the programmer must aggressively guard against.
The programmer can get into serious trouble rather innocently. For instance, there is
not much to be done to guard against the following error except perhaps to provide
some run-time checking measures and suggest alternative coding styles. Consider
the code in Figure 8. If the call on randomFcn causes a garbage collection, the array,
which has no references to it anymore (p points beyond the end of the gc-array,
and po lygon has been set to n i l) , may be collected, in which case the last call on
a d j u s t () will fail. Even if po lygon is not set to n i l , the array might be moved.
In that case, p will most likely not be updated correctly because it is not pointing
into the gc-array. This is one place where problems caused by C++-encouraged
coding styles cannot be overcome. The programmer will just have to be aware of the
possibility of this error, and code appropriately. In Figure 8, the programmer should
consider the pointer p local to the loop.

One possibly mitigating solution to this problem is to append a byte to the end of
each gc-array. The address of this byte would keep the one-beyond pointers pointing
into the gc-array's space, rooting the array and allowing the pointer to be updated
if the array were moved.

Even more disastrous and mysterious bugs will occur when programmers over-
write information at the end of an array (e.g., with an off-by-one error on the length
of the array). What follows the array in gc-space could possibly be the gc-array's
gc-wrapper (depending on the allocation strategy used for gc-wrappers) or the gc-
wrapper field at the head of another gc-object. Such errors may cause very mysterious
behavior in the garbage collector, and could be very difficult to track down. Again,
this is not a problem isolated to garbage collection environments: it is an error that
is almost encouraged by C + + ' s pointer definition of arrays.

7 E v a l u a t i o n

The goal of this design was to find a minimum set of language enhancements and at-
tendant compile-time and runtime environment enhancements to support as many
different garbage collection strategies as possible. For any one garbage collection
strategy used by a C + + compiler, not all of this design will be necessary. For in-
stance, we are currently constructing a prototype that will keep track of root sets for

328

class collected Point
{

float x, y;

void adjust();
};

main()
{

Point* polygon = new Point [100];
Point* p;
�9 , ,

// adjust polygon
for (p = &polygon[O]; p < ~polygon[lO0]; p++)

p->adjust () ;
}

polygon = nil;
randomFcn() ;
--p->adjust(); // can fail!

Fig. 8. Array reference problem

global and heap spaces, but will do a conservative trace of the runtime stack. There-
fore, gc-objects and gc-pointers allocated on the stack will not incur the overhead of
root set registration.

In-place and copying differ primarily in the fact that copying collectors must find
every gc-pointer to or into a moved (and therefore live) gc-object in order to update
the pointer value; in-place collectors need only to find one valid gc-pointer for each
live gc-object. Copying collectors are possible to the extent the compiler can register
its temporaries. Expression temporaries derived from gc-pointers should be consid-
ered embedded and registered as such. If the compiler cannot maintain this invariant,
then copying collectors will not work. Bartlett's mostly-copying scheme is the next
best compactifying garbage collector that can be used in such an environment.

The only way tagless unions can be supported is if all pointers contained in the
union are treated as embedded pointers; i.e., all pointer fields of all possible overlaid
objects are first checked to see if they do indeed point to or into a gc-object. That
gc-object can then be considered reachable. Because this is a form of conservative
garbage collection, any gc-object marked by one of these possible pointers cannot
be moved because the pointer is only a possible pointer and cannot be updated.
Therefore, if a copying GC strategy is used, tagless unions containing pointers to
gc-objects cannot be supported at all.

We have successfully met many desirable goals. Only gc-objects and gc-pointers
have associated overhead. Objects that are not collected and do not reference col-
lected objects are the same as they were. In addition, we have solved some problems
noted by previous work in this area. The language changes are minimal, and previous
work has shown the efficacy of many of the ideas incorporated into the system.

329

In summary, the design is robust enough to support many different kinds of
garbage collection strategies, and offers many opportunities for efficient implemen-
tation of specific strategies.

R e f e r e n c e s

[1] Daniel Ross Edelson, "Dynamic Storage Reclamation in C++," Master's Thesis,
Univ. of California, Santa Cruz, UCSC-CRL-90-19, June 1990.

[2] Daniel Ross Edelson, "A Mark-and-Sweep Collector for C++," Conference Record
of the Nineteenth ACM Symposium on Principles of Programming Languages,
Albuquerque, NM (Jan. 19-22, 1992).

[3] Daniel Ross Edelson &: Ira Pohl, "A copying garbage collector for C++," Usenix
Cq-§ Conference Proceedings, Washington, D.C. (Apr. 1991).

[4] Joel F. Bartlett, "Compacting Garbage Collection with Ambiguous Roots," Dig-
ital Equipment Corp., Western Research Center, WRL 88/2, Feb. 1988.

[5] Joel F. Bartlett, "Mostly-Copying Collection Picks Up Generations and C++,"
Digital Equipment Corp., Western Research Center, TN-12, Oct. 1989.

[6] David L. Detlefs, "Concurrent Garbage Collection for C++," Carnegie-Mellon
Univ., CMU-CS-90-119, Pittsburgh, PA, May 1990.

[7] Andrew Ginter, "Design Alternatives for a Cooperative Garbage Collector for the
C++ Programming Language," Dept. of Computer Science, Univ. of Calgary,
Research Report No. 91/417/01, Calgary, Alberta, Canada, Jan. 1991.

[8] Bjarne Stroustrup, "The evolution of C++: 1985 to 1987," USENIX C§247 Work-
shop Proceedings (1987).

[9] Hans-Juergen Boehm & Mark Weiser, "Garbage Collection in an Uncooperative
Environment," Software-Practice Experience 18(Sept. 1988), 807-820.

[10] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow &
Greg Nelson, Modula-3 Report (revised), Digital Equipment Corp., Western Re-
search Center, 1988.

[11] Andrew W. Appel, "Runtime tags aren't necessary," Lisp and Symbolic Compu-
tation 2 (1989), 153-162.

[12] Benjamin Goldberg, "Tag-Free Garbage Collection for Strongly Typed Program-
ming Languages," Proceedings of the ACM-SIGPLAN 1991 Conference on Pro-
gramming Language Design and Implementation26 (June 26-28, 1991), 165-176.

[13] Amer Diwan, Eliot Moss & Richard Hudson, "Compiler Support for Garbage
Collection in a Statically Typed Language," Proceedings of the ACM-SIGPLAN
1992 Conference on Programming Language Design and Implementation 27 (June
17-19, 1992), 273-282.

This article was processed using the ~TEX macro package with LLNCS style

Dynamic Revision of Choice Points during
Garbage Collection in Prolog [II/III]

Jean Francois PIQUE

Groupe Intelligence Artificielle,
Universit6 Aix-Marseille II,

Luminy case 919,
13288 Marseille CEDEX 9, France

Email: jfp@gia.univ-mrs.fr

Abstract. We describe a technique allowing efficient reconsideration of all
the current choice points whenever the garbage collector is activated. It turned
out that this extra work usually saves time since the garbage collector will
have less structures to consider. Moreover this extra work will be deducted from
future work, if the search tree is not pruned. This technique also allows
recovery of space in the local stack of the wam~ thus making garbage
collection of this stack worthwhile.
There is no additional cost in space if a trail with (address,value) pairs is used.
The Dynamic revision algorithm can however be implemented with a standard
trail if space the same size as the trail contents is made available at garbage
collection time.

1 Introduction
The detection of the determinism of execution of a Prolog procedure enables the
environment (mainly the "local variable" space) to be recovered immediately when the
procedure terminates. It also increases the number of heap cells which can be reclaimed
by the garbage collector since choice points are avoided. However the detection of this
determinism, though fundamental for memory recovery, is an operation which often
cannot be taken very far during compilation.

To deal with this problem, the most frequent solution is to generate instructions which
enable this case to be detected dynamically. One constructs an index on the first
argument of the procedure, and code is generated which enables the instantiation of this
argument to be used [Warren 83]: This method is an acceptable compromise in relation
to the time required for compilation and the increase in size of the code generated
(between 20% and 100%). It makes use of the fact that the programmer has a tendency to
use first the arguments which are known at the time of the call.

Some implementations create an index on several arguments and/or integrate into
the selection code certain primitives located at the start of the rule body. However the
code generated quickly becomes complex and voluminous (especially when the number
of arguments grows). Worse, It has been shown that complete indexing is NP-complete in
the worst case [Hickey and Mudambi 89]. In addition, it is not compatible with
incremental modification of the procedure.

Here we propose a technique which makes it possible to re-examine the choice points
left in place. It consists, for each choice point, in restarting unification on the heads of as
yet unresolved clauses. This method therefore performs a selection which takes into
account all the arguments and the current constraints (disequations in the Prolog II+

331

compiler; disequations, inequations, list and boolean constraints in Prolog III), since their
processing is included inside unification [Pique 90a]. Moreover, using this-technique it is
easy to also take into account the test primitives and the arithmetical primitives compiled
"in line" and which are located at the start of the rule body.

From the point of view of garbage collection, dynamic revision enables a better result
to be obtained than is possible using global compilation with complete indexation
because the constraints of the current system are also taken into account.

The deletion of choice points is very useful because the number of living cells is
decreased and the time required to perform garbage collection is therefore also
decreased. It turns out that in a lot of cases dynamic revision plus garbage collection does
not last as long as garbage collection alone. In addition, it should be noted that the
duration of this operation will be partly deducted from future execution time (this is only
true if no cuts are involved) since choice points can easily be updated to refer to the next
effective alternative found by dynamic revision.

As a side effect the technique encourages declarative programming since it happens
to cancel 'a posteriori' (i.e. when the garbage collector is activated) the space overhead
which can occur with cut free programming. New Prolog programmers often leave a lot of
choice-points around, and with this technique they will be able to run their programs
anyway. An interesting feature that could be added to the system is the possibility to issue
a warning whenever unnecessary choice points are found.

In constraint systems, the unused parts of words containing free variables are used to
store information on the constraints of these variables [Van Caneghem 86]. A restoration
stack (or trail) consisting of pairs (address of the cell to restore, value to re-establish) must
therefore be used to be able to restore the constraints during backtracking. A trail with
pairs is needed for the implementation of constraints like dif in Prolog II [Colmerauer 81]
and for more general constraint solvers like Prolog III [Colmerauer 90], CHIP [Dincbas et
al. 88], and CLP(R) [Jaffar 87]. In a Prolog without constraints, only the address of the cell to
be restored has to be memorized in the trail, since the value to re-establish is always the
same. Constraints can however be implemented using a standard trail and space in the
copy stack [Le Huitouze and Ridoux 86, Carlsson 87].

The systematic use of pairs in the trail (which was not the case in the first Prolog II
implementations) leads to more efficient code and allows easy implementation of several
interesting techniques like variable time-stamping and dynamic revision of choice points.
Dynamic revision is possible with a standard trail if space with a copy of the trail content is
made available at garbage collection time, which is tantamount to create pairs with two
tables.

2 Dynamic Revision
Dynamic choice points revision enables a certain number of choice points to be
eliminated before activation of the Prolog garbage collector. This is done by attempting
to unify each rule head which has not yet been resolved until either unification succeeds
(the choice point then remains in place), or all the rules of the procedure have been
exhausted (the choice point is then deleted). The difficult part is to be able to run
alternatives left in the past without destroying the present state of computation.

The most suitable time to start dynamic revision is when the garbage collector is
activated. To be able to activate and control alternative head unifications, it is necessary
to differentiate the first real call (i.e. non expanded "in line") in a Prolog clause. It may also

332

be useful to be able to distinguish "in line" built-ins calls with and without side effects if
such "in line" calls exist.

We therefore introduce two new instructions: call_l, execute_l. These instructions
replace the instructions call, and execute when the latter are in the first call position:

L a/0: a :-b, c, d.
try me else L a2
allocate 0
aall_1 0, L_b/0, 0
call 0, L_c/0, 0
deallocate
execute 0, L d/0

La2: a :-b.
trust me else fail
exeaute_l 0, L_b/0

These instructions are also a good place for testing the advent of special events such
as: coroutine activation, user interrupt, need to call the garbage collector, external
interruption requiring asynchronous start of a Prolog program [Pique 90b], and so on. The
proceed instruction is also extended in order to perform this test.

Compared to the implementation described by Carlsson [Carlsson 1987], this method
performs the test earlier and in the environment of the rule concerned. However both
methods are equivalent for the sake of dynamic revision.

2.1 Technique of choice point re-examination
For each choice point currently in place, we simulate a backtracking and a continuation of
resolution on the possible altenatives. In order to be able to restore the current state of
the bindings, we use the fact that a trail entry contains a field for the old value of the
variable cell: the pseudo backtracking is performed by exchanging the value located in
the trail with the value located in the stacks (environment stack and copy stack). We have
thus re-established the content of the stacks before the call to the procedure, but without
having displaced the tops of the stacks. The information concerning the state of the
bindings of the current resolvent is therefore still present, but the bindings which are
older than the considered choice point are now in the upper part of the trail.

As an example, Figure 1 represents a state at time tn before the activation of dynamic
revision, xl, x2, x3 are free variables, al,a2,a3 their addresses, and bl b4 are bindings
obtained in the following steps:

cur. choice time xl x2 x3

tn_ 2 free I free free

tn_ 1 bl I b2 free
tn b4]02 h9

One should notice that in a constraint system, there may be several trail entries for the
same variable. For example the state of a variable may change from free to several
constrained states and then to bound. The order in which the value of a cell is exchanged
with the trailed value is therefore very important: from top to bottom when going in the
past, and bottom to top when going back from the past to the present time.

333

H
Heap !

xl x2 x3

i~ii,i,i,iii!!!~,!,i!~,!i!i,i!iiiiiiiiiiiii~iii i!i b4 !ii!i!!!!,i!iiii!i, b2 i!ilili ' b3 ! i,!,!~iii '

Trail

Stack "' "t'n" "2" "~$1 t t~. |

T H :::i::::::i::::i H :::::::i I ! t l liiiiiiiiil---1:14,ii!i !

B TOS

Fig 1
Figure 2 represents the stack modification which is performed before the revision of

the last choice point. This operation is equivalent to a backtracking as far as concerns the
binding of variables. However as far as concerns the state of the tops of the stacks it
differs: this state must not be modified.

Heap H~
xl x2 x3

~iiii~i~i~ii~i~!iii~iiii!!i!iii!iiiiiii!iii~!i~iiii~ii~ii~!i~iii~!iii~!i~!iii~!i~iii!ii!iii~ii!iiii~!ii!~iiii~!~ii~b2 Iiiiiiiiiiili~ii~iii!iii~!iiii~il i~iiJi!~iil I

Y221

TR

Trail N r

1:: :~ili i a l i x l a2]x21a3 al ~

,n-2~ t ,_1 ~ tn
S t a c k / I

ii!',iii',!!'ii!i!!ii~!!ii!iiiiii!!!iii! T H ii!i! i!!i T H

exchanged values

copied choice point

curB B,TOS
! t !

Fig. 2

Copy of curB choice with
modified top of stacks.

334

When a choice point is reconsidered, the arguments of the corresponding goal are
reconstituted from the information memorized in the choice point. The instruction
pointer is positioned on the alternative memorized in the choice point, and execution
runs until a rule head unifies or until all the rules in the procedure have been considered
without success. If there exists a rule head which unifies, the choice point is maintained,
otherwise the choice point is deleted.

This operat ion performs unification of the as yet unresolved rule heads.
Consequently, the current values of the stack tops must first be memorized in the fields
corresponding to the considered choice point, since the resolution may cause failures,
and thus restoration of stack pointers. It is also essential that when the re-examination of
choice points is activated there still remains enough space in the stacks to perform a
resolution.

Figure 3 describes the state of the stacks before the revision of the second choice
point:

H
Heap |

xl x2 x3

T r a ~

A

Stack ., [.n,-,2,. T~.i~. In

llili il I:.. 1
curB B, TOS

(2nd choice)

Copy of 2nd choice with
modified top of stacks.

Fig. 3

During unification of the head, an environment may be created by the allocate
instruction 1. This creation must not occur in relation to the examined choice point, but in
relation to the actual top of the stack. In most implementations this does not pose a
problem since there is a top pointer for the environment stack (TOS), and environments
and choice points are allocated relative to this pointer. However, one should consider the

1 The heap may also be extended by execution of the unification instructions.

335

way the TOS value is computed in case of bactracking. If it is directly computed from the
value of the B register (which is usual), the stack may be overwritten if an allocate
instruction is encountered during the search for an alternative. Parameterizing the
behavior of failure code is unacceptable, since the speed of Prolog depends so much on
its efficiency. Worse, the compiler often performs some optimizations based on the
hypothesis that the choice point and environment pointers have the same value when
these two structures are created [Turk 86].

To escape these problems, the solution is to copy the considered choice point frame
on top of the stack before the search for an alternative. This solution also has the
advantage of being compatible with all means of implementing the allocate instruction.
Only the copied choice point needs then to be modified to reflect the current tops of
stack.

When a choice point is maintained, its fields must be restored, and the bindings
eventually created by a head resolution must be removed. This is achieved by
performing the equivalent of a backtracking on this choice point, and then by re-
establishing the initial values of the fields.

2.2 Stopping execution, modified instructions

To stop execution at the relevant time, we need to modify the behavior of the following
instructions I during dynamic revision:

The instructions call_l, execute_l, or proceed stop execution and set the "choice point
maintained" variable at true. Execution stops after unification of the rule head and
processing of the builtins which are located at the start of the rule body and compiled
"in line".

The instructions trust and trust me else do not delete the choice point, but put the
address of a break instruction in the field containing the address of the alternatives.

The break instruction stops execution of one choice point revision and positions the
"choice point maintained" variable at false.

The following additional modifications are not indispensable, but make it possible to
benefit from the exploration of alternatives performed for reconsideration of the choice
point:

A current_alternative additional register is created for the sake of dynamic revision.

The instructions retry, retry_me_else, trust and trust me else memorize the contents
of field P of the choice-point (i.e. the address of the instruction) in the
current_alternative register, before changing the contents of the field.

If the choice point is maintained, the content of the P field is replaced by the value of
the current_alternative register.

1 It is easy to modify the semantics of a virtual instruction in an emulator, without any
cost. However, in case of direct code generation, a test for modified semantics should be added
(most current CI$C implementation use an emulator).

336

2.3 Impact on execution times

It should be noted that the duration of this task will be partly deducted from future
execution time (this is only true if no cut is involved). In addition, this operation can
reduce substantially the task of the garbage collector, since the number of structures to
mark and shift is reduced. This choice point deletion phase enables the following:

Recovery of space in the global stacks by making certain structures inaccessible.

- Recovery of space in the local stack when the deleted choice point is located at the top
of the stack (B > E) or if the environments are garbage collected.

2.4 Algorithm
In the following, we list the main algorithm in a Pascal like language.TOS denotes a
register containing the address of the top of the environment and choice point stack. The
main routine choice_revision is called before activation of the garbage collector.

VAR

B : ^ ChoicePoint;
E : ^ Environment;
TOS : union (^ ChoicePoint;

top_B : ^ ChoicePoint;
top_H : ^ PrologCell;
t op_TR : ^ TrailPair;
top_TOS : union (^ ChoicePoint;

PROCEDURE choice_revision;
VAR cur_B, up_B : ^ choicePoint;

TRI, TR2 : ^ TrailPair;
BEGIN
save all WAM registers (P,CP,N,B,E,H,HB, TR) ;
save Ai registers (N) ;
top_TR := TR;
top_H := H;
top_TOS: = TOS;
top_B := B;

set_mode_stop_at_call or break;
cur B := top_B;
up_B := top_B;
TR2 : = top_TR;
WHILE cur B <> bottom stack DO

BEGIN
TRI : = cur_B ̂ . TR;
exchange_trail_downwards (TRI, TR2) ;
IF choice_maintained (cur_B) THEN

up_B := cur_B;
ELSE IF cur B = top_B THEN

BEGIN up_B := cur_B^.B"
EISE

up_B^.B := cur B^.B;
cur B := cur B^.B~
TR2- :=~UT
~D;

exchange_trail_upwards (bottom_trail, t op_TR) ;
TR := top_TR;

{ Current choice point pointer }
{ Current environment pointer }

^ Environment); { Top of stack }

^ Environment);

{ Discard top choice point }
top_B := cur_B^.B END

{ Discard from chain }

{ restoration }

337

H := top_H;
restore all WAM registers;

restore Ai registers (N) ;

B := top_B; { The last maintained in place }
HB := top_B^.H;

IF E < B THEN
TOS := B;

ELSE
TOS := E + Environment size(E,P,CP);

unset mode_stop at call or break;
END;

{ Examines the choice point cur B }

FUNCTION choice maintained(cur B : ^ choicePoint) : boolean;
BEGIN
restore Ai from choice point (cur B);

{ Defining the state of the wam for this revision }
TOS := top_TOS;
TR := t op_TR;
H := top_H;
HB := cur B ̂ .H;
P := cur B^.P;

{ copy of choice point to allow a safe local backtracking }
B := copy choice to top(cur_B);
B ̂ .TR "= top TR;
B ̂ . H : = topH;
RUN PROLOG() ; { Try to find an alternative. }
IF NOT stop_at_break THEN { There exists one alternative: }

BEGIN { discard unification bindings. }
restore trail (top_TR, TR) ;
cur B^.P := current_alternative; { Skip failing rules }
choice maintained := TRUE; { Keep choice }
END

ELSE { No alternative resolves: discard choice point }
{ fail has already made the unbindings }

choice maintained := FALSE;
END;

The procedure exchange_trail exchange in a given trail segment the trail values with
the corresponding heap cells.

The procedure set_mode_stop_at_call or break changes the behavior of the warn
instructions as described above:

PROCEDURE set_mode_stop_at_call or break;
BEGIN
- Retry and retry_me_else : same as usual + memorize B^.P in

register "current alternative"~
- Trust and trust me else set BA.p at break address, and

do the same as above.
- Call 1, execute_l, and proceed stop the machine

with- "st op_at_break" false.
- Break stops the machine with "stop at break" true.
END;

2.5 Examples
The first test program is a tail recursive procedure extracting the positive values of a given
list. The program is run on a list of N values with alternate positive and negative values

338

and is created in a deterministic way (for N=5, L=[5,-4,3,-2,1,0]). The positive procedure will
then create a choice point one time out of two.

ptest (N,LI) :- alternate (N,L) , positive (L, LI) .

positive([], []).
positive([XiL], [XLLI]) :- X >= 0, positive(L, L1).
positive([XiL], L1) :- X < 0, positive(L, L1).

The following measurements show garbage collection results when the program is run
with a copy stack of 30 Kbytes (the implementation uses 8 bytes for one Prolog cell and 32
+8*(nb of arg) bytes for a choice point), gcl..gcn denote activations of the garbage
collector. A sequence of numbers in the table should be interpreted in the following order
(case 3 and 4 only apply in case of dynamic revision):

1. Number of cells collected in the copy stack.

Number of cells collected in the trail stack.

Number of choice points killed during dynamic revision (in parenthesis).

Tos address and Tos reduction after dynamic revision (in bytes).

l

4

?- ptest (1500,L) .

Table 1.

Standard wam

Copy, Trail

gcl 0,0 -> abort

With dynamic revision

Copy, Trail, Bkiil, Tos

1040, 259, (259), 888044 (-12432)
solution

If we consider the positive program, we notice that it is running in mode (+,-).
Therefore, each time the second clause is executed, a choice point is created, a value is
pushed on the trail, and an element of the initial list is included in the query list. This
explains the observed results (table 2): there are as many trail entries collected as choice
points deleted. Moreover when the program has progressed by n elements in the list, n/2
cells of the copy stack can be collected. This is why more and more choices are created on
the following steps by the program, since there is more space to work after each garbage
collection. It is important to note that it would not have been the case if the initial list were
part of the query.

?- ptest (1800,L).

Table

gel
gc2
gc3
gc4

2o

Standard wam

Copy, Trail

0,0 -> abort

With dynamic revision

Copy, Trail, Bkill~ Tos

136, 34, (34), 1632
272, 68, (68), 3264
544, 136, (136), 6528

1088, 272, (272), 13056
solution

Let us now consider the program qsort written in pure Prolog. This program will be
able to recover space in all stacks with dynamic revision:

qsort (L0,LI) :- qsort(L0, LI, []).

qsort ([] ,L,L) .
qsort ([Xl L0], R0, R2) :-

partition (X, L0, LI, L2),

339

qsort (LI,R0, [XIRI]),
qsort (L2, R1, R2) .

partition (_, [], [], []).
partition(X, [Y]L], [YILI], L2) :-

X>=Y,
partition (X, L, LI, L2).

partition(X, [Y}L], L1 , [YIL2]) :-
X<Y,
partition (X, L,LI, L2).

The second clause of partition is compiled in Prolog II in the code:

L partition2:
retry me else L_partition3
get_list A2
unify_variable A5
unify_variable A2
get_list A3
unifyvalue A5
unify_variable A3
compare A1 ge A5
execute I 3, L_partition/4

Here we should note that the "in line" expansion of the predefined rule '>=' means we
do not need the allocate instruction in partition~4 and only have to use temporary
variables. If the garbage collector is activated, all the choice points are discarded by
dynamic revision, and a substantial amount of space is recovered both in the copy stack,
the trail, and the stack of environments and choice points.

qtest(N, Ll) :- alist(N,L), qsort(L, Ll).

The following test is carried out on a list having the form [n, (n-1)/2, n-2, (n-3)/2, n-4, ...]
which will create choice points on half the number of calls to the partition procedure. The
test is launched with a copy stack of 30Kb, and an environment stack of 1Mb to cope with
deep left recursion in this program. The fields have the same meaning as above (Bkill
column is therefore the number of choice points deleted by dynamic revision at each gc
activation).

?- qtest (200,L).

~able 3.

gcl
gc2
gc3
gc4
gc5

Standard wam

Cop~, Trail

O, 0 -> ovf

Wam + dynamic revision

Copy, Trail, Bkill, Tos

3272, 1589, (1506), 984000 (-1088)
3272, 1648, (1630), 1081552 (-7488)
3272, 1652, (1628), 1184080 (-2624)
3272, 1657, (1626), 1288572 (- 832)
3272, 1830, (1615), 1396668 (-1024)
solution

One can notice the small reduction of Tos (for example 1088 bytes for 1506 choice
points deleted corresponding to 1506"(32+4"8)=96,384 bytes). This comes from the fact
that most times, in standard Wam, there are very few holes in the environment stack and
therefore it is not garbage collected in present implementations (holes can be caused by
environment trimming and deep cuts, followed by the creation of a choice point before
deallocation of the cut environment). In contrast to standard wam, dynamic revision
creates a lot of holes which are not recovered, meaning that it would be worthwhile to also
garbage collect the environment stack.

340

The third example is a program written with the dif constraint. By means of a relation
which gives the possible successor of each state, this program defines the list of possible
transitions from one given state, such that return to the directly previous state never
occurs (meaning that whenever the switch cycles in one direction, it must keep that
direction). In the given query, all the choice points can be discarded, except the one
created for the first call on the transition clause:

| |
transition (i, 3)
transition (I, 2)
transition (2, i)
transition (2,3)
transition (3, I)
transition (3, 2)

node list(0, []).
node-list (I, [Current]) .
node list (2, [Previous,Current]) :-

t~ansition(Previous, Current) .
node list (N, [Previous, Current, Next I L]) :-

N>2,
transition (Previous, Current),
dif(Previous,Next), /* install constraint */
N1 is N-l,
node list(Nl, [Current,NextlL]).

The first example is launched with a copy stack of 60 Kb. As in the previous example,
the top environment is responsible for the small reduction of the Tos during dynamic
revision. However it holds roughly the same value when garbage collection is activated,
meaning that part of the killed choice point space may be re-used when the environment
is deallocated. Anyway the space collected in the two other stacks is very substantial with
dynamic revision.

341

?- nodelist(2000,[lJL]).

Table 4.

Standard wam

Copy, Trail

gcl 3972, 248
gc2 2044, 120
gc3 1050, 62
gc4 544, 32
gc5 281, 17
gc6 144, 8
gc7 72, 4
gc8 43, 3
. ~ . , , .

gcl2

Wam + dynamic revision

Copy, Trail, Bkill, Tos
6177, 1571, (441), 963016 (- 0)
5054, 1311, (375), 1000408 (-56)
4135, 1070, (306), 949516 (- 0)
first solution

overflow

In the following measurement, the transition procedure has been modified in such a

way that choice points remain for transition 3: a dead end transition to 5 is added so that
the goal dif(1,X), transition(3,X) now has two solutions.

transition (i, 3) .
transition (i, 2) .
transition (2, i) .
transition (2, 3) .
transition (3, i) .
transition (3,2) .
transition (3, 5) .

Here are the results obtained in this case:

Table 5.

Standard wam

Co~, Trail
2867, 27
1040, 0
380, 0
136, 0

With dynamicrevision

Co~[, Trail, Bkill, Tos
5072, 1350, (441), 985116 (- 0)
3379, 921, (307), 1031216 (- 0)
2253, 615, (205), 1061916 (- 0)
1505, 411, (137), 1082416 (- 0)

gcl
gc2
gc3
gc4
gc5

2.6 Some time measurements

We will compare the cost of garbage collection alone and dynamic revision plus garbage
collection in two extreme programs running with a 60 Kb copy stack:

Table 6.
Nodelist i000 Compile

gc alone] 109 I 9
revision + go 18 + 20 2 + 9
gc/(rev+gc) ' 2.87 0.82

The first one is the nodelist program. The goal nodelist(1000,[1 1 i]) leads to a solution
after one call to the garbage collector in either case. With the dynamic revision algorithm,
all choice points but one are deleted before garbage collection is applied.

The second one is the compilation of a big term by the Prolog II compiler, which also
leads to a solution after one call to the garbage collector in either case. In this example, no
choice point can be recovered by the dynamic revision algorithm.

342

3 Conclus ion

We have described a procedure for dynamic revision of choice points during garbage
collection. This procedure allows more space to be recovered in all the warn stacks i.e. the
copy stack, the trail stack and the environment and choice point stack. This is done by
performing an anticipated shallow backtracking on all current choice points. It turns out
that the time spent in the revision procedure is often returned with interest by the
garbage collector,

4 Bibliography
[Bekkers et al. 86]

Bekkers Y., Caner B., Ridoux O., Ungaro L., 1986, A Memory with a Real-Time
Garbage Collector for Implementing Logic Programming Languages, Proc. of the
third Symposium on Logic Programming Conference, IEEE.

[Carlsson 87]
Carlsson M., 1987, "Freeze, Indexing, and Other Implementation Issues in the
WAM", Proc. of the Fourth International Conference on Logic Programming, MIT
Press, Lassez J.L. ed..

[Colmerauer 82b]
Colmerauer A., 1982, Prolog, Bases th6oriques et d6veloppements actuels, dans
TSI, vol. 2, n~ (AFCET-Bordas), aofit 1983, avec H. Kanoui et M. Van Caneghem.

[Colmerauer 901
Colmerauer A., 1990, An Introduction to Prolog III, Communications of the ACM,
july 90, vo133, n 7, pp 70-90.

[Dincbas et al. 88]
Dincbas M., Van Hentenrick P., Simonis H., Aggoun A., Graf T. and Berthier F.,
1988, The Constraint Logic Programming Language CHIP, Proceedings of the
International Conference on Fifth Generation Computer Systems (FGCS'88),vol 1,
Ohmsha Pubishers, Tokyo, pp 693-702.

[Jaffar 87]
Jaffar J. and Michaylov S., 1987, Methodology and Implementation of a CLP
System, Proc. 4th International Conference on Logic Programming (Melbourne
87), MIT Press, Cambridge, Mass., pp 196-218.

[Hickey et Mudambi 89]
Hickey T., Mudambi S., 1987, Global Compilation of Prolog, Journal of Logic
Programming, vol 7, N 3, nov 1989, pp 193-230..

[Le Huitouze et Ridoux 86]
Le Huitouze S., Ridoux O., 1986, Une exp6rience de r6alisation du Gel et du Dif
dans MALI, In Actes du S~minaire 1986 - Programmation en Logique, Tr6gastel,
France, CNET, Mai 1986.

[Morris 781
Morris F.L., 1978, A Time and Space Efficient Garbage Compaction Algorithm,
Communications of the ACM, Vo121, No 8.

343

[Naish 85]
Naish L., 1985, Negation and Control in Prolog, Ph.D. Thesis, Dept of Computer
Science, University of Melbourne.

[Pique 90al
Pique J.F., 1990, Compilation d'un prolog II modulaire, Habilitation ~ diriger des
recherches, Universit6 Aix-Marseille II, Groupe Intelligence Artificielle, Facult6
des Sciences de Luminy.

[Pique 90b]
Pique J.F., 1990, Definition of a Prolog Machine with Interrupts, New Computing
Techniques in Physics Research, D. Perret-Gallix & W. Wojcik ed., Editions du
CNRS, Paris 1990, pp 369-379.

[Touraivane 88]
Touraivane, 1988, R6cup6ration de m6moire dans Prolog III, Tt~se de Doctorat en
Informatique et Mathdmatiques, Universit6 d'Aix-Marseille II, Facult6 des
sciences de Luminy.

[Turk 86]
Turk A.K., 1986, Compiler Optimizations for the Warn, Proceedings of the Third
International Conference on Logic Programming, London, Springer-Verlag,
Shapiro E. ed., pp 657-662.

[Van Caneghem 86]
Van Caneghem M., 1986, L'anatomfe de Prolog II, InterEditions, Paris.

[Warren 77]
Warren D.H.D., 1977, Implementing Prolog: Compiling Predicate Logic Programs,
Dept. of A.I. Research Reports 39 & 40, Edinburgh, May 77.

[Warren 83]
Warren D.H.D., 1983, An Abstract Prolog Instruction Set, Technical Note 309,
Artificial Intelligence Center, SRI International, Menlo Park, Calif.

Ecological Memory Management
in a Continuation Passing Prolog Engine

Paul Tarau

Universit6 de Moncton,
Moncton N.B., Canada, E1A 3E9,

Email: tarau@info.umoncton.ca

Abst rac t . Starting from a simple 'ecological' metaphor, we introduce a new
memory management scheme (heap-lifting) implemented in BinProlog, a con-
tinuation passing style variant of WAM. We discuss copying garbage collec-
tion mechanisms based on heap-lifting and an OR-parallel execution model.
We point out some surprising similarities with related work on functional
languages and the difficulties that arise in the context of nondeterministic
execution. Finally, we describe the full implementation of two builtins: a re-
cursive copy_terra and a very fast heap-lihing based f i n d a l l and we evaluate
their impact on the performances of BinProlog.
Keywords: WAM, Prolog run time system, continuation passing style com-
pilation of Prolog, fast builtins for Prolog~ copying garbage collection.

1 Introduction

We suppose the reader is familiar with the WAM (see [14]) and at least one of
its runtime incarnations. Our BinProlog engine 1 is a variant of the WAM, spe-
cialized for efficient execution of binary programs ~. Binarization by continuation
passing introduced in [12] is the logic programming equivalent of CPS compilation
for functional languages (see [3] and [4]). We use it as a preprocessing step, work-
ing on a clause by clause basis. A clause like c(A) : - a (t) , e (A , B) , b (B) becomes
c(h,Con15) : - a (h , e (h , B , b (B , C o a t))) where Coat is a new variable representing
the continuation that is recursively passed between calls. Efficient WAM-support
deals with metavariables resulting from the transformation in the case of unit clauses
(for example the clause a(X) becomes a (X,Cont) : -Coa t) . We refer the reader to
[11] and [10] for a description of our compiler and our abstract machine.

The result of binarization is that we give up WAM's environments (the AND-
stack) and we put on the heap the continuation, recursively embedded in the last
arguments of our binary programs. As a consequence, the heap consumption of
the program goes up, although in some special cases, partial evaluation at source
level can deal with the problem (see [8]), showing that a heap-only approach is not
necessarily worse.

Simplicity of implementation and a small and clean run-time system have to
compensate for the more intensive heap-consumption, to be competitive in absolute
terms with well-engineered standard WAM implementations.

1 available by ftp from 139.103.16.2,215KLIPS on Sparcstation 2
2 programs with clauses having only one literal in the body

345

The high heap consumption was the starting point of our optimization effort. The
general view is that the WAM is a very space efficient engine. To raise reasonable
doubt about that, we suggest to compare the space consumption of the WAM on the
naive reverse benchmark, O(N2), with the size of useful data (the reversed list) that
is produced, O(N). One can argue that naive reverse is not a well-written Prolog
program and after all the WAM is much more efficient than, for instance, engines
without last call optimization or interpreters. For most of the programs, however,
when compared with their theoretical lower limit (i.e the size of the computed an-
swer) one must agree that the space complexity of WAM computations is almost
always higher. Obviously, an easy way to restore the equilibrium at some stage is
to copy the (possibly partially instantiated) answers and discard the space used for
computations.

Traditionally, Prolog garbage collectors are mark-and-sweep because they want to
preserve chronological order of heap and stack segments as required for backtracking,
although it is well known that their performance is proportional to the total size of
the heap instead of the size of useful data~ as is the case with copying algorithms.
Worst, this useful data is rather sparse in typical Prolog applications. In the case of
BinProlog, the extra heap consumption of binary programs is one more reason to
pay attention to copying techniques 3.

2 T o w a r d s a n e c o l o g i c a l P r o l o g e n g i n e

An ideal memory manager is 'ecological'. We want it to have a 'self-purifying'engine
that recuperates space not as a deliberate 'garbage-collection' operation but as a
natural 'way of life 'i.e something done inside the normal, useful activities the engine
performs.

2.1 The r a in - fo res t m e t a p h o r

In a rain-forest, a natural garbage-collection process takes place. Evaporated water
originating from the forest form clouds, and then condensed water falls back as rain 4.
Some heat (a Sun) is also needed to make things work.

In a Prolog engine terms are created on the heap. Although WAM's environment
stack does some limited and well intentioned garbage prevention (i.e. environment
trimming), often garbage collection ~s needed for large practical programs. The pos-
sibility of garbage prevention is reduced even more in BinProlog where continuations
go also on the heap.

Following the rain-forest metaphor, our objective is to set up a natural and
automatic memory recuperation cycle. Basically the heap is split in a small lower
half (the rain forest) and a large upper half (the clouds). The key idea is to fool
Prolog's execution mechanism to work temporarily in the upper half (evaporation)
and then let useful data 'fall back' in the lower half of the heap (rain) in a condensed

3 GC timings differ a lot for few and much garbage. However, by keeping the relative size
of useful data small with respect to the available memory, copying GC can be made fairly
efficient, as shown in [4].
well, in Canada it is mostly snow, but that's only an implementation detail

346

form (compaction by copying). The trick is very simple: as structure creation on the
heap is always done around the H pointer while everything else stays in BinProlog's
registers, all we have to do is temporarily set H to a location at the beginning of
the upper half of the heap and then let the engine work as usual. The figure 1 shows
this heap lifting technique and the position of the H pointer at various stages.

Final lifted II

Initial lifted H

Final H

Initial tt

Fig. 1. Heap-tiRing

Copying

L

,Computation

Upper half: sparse computations

Lower half: compact results

The metaphor ends when applied to recursive uses of the mechanism, but the
concrete implementation deals properly with this problem by saving the necessary
information on a stack and by ensuring a reasonable number of embedded heap-
splits.

3 F a s t h e a p - b a s e d b u i l t i n s

Let us start with a detailed description of a heap-based implementation for two
very useful Prolog primitives that will give an insight on how the principle can be
used in practice. They also have the potential to significantly speed-up the overall
performances of Prolog systems that decide to convert from classical assert-based
implementations to a heap-based technique.

3.1 Copy_term

Our copy_term primitive is implemented recurs ively. Variable cells in the source-
term are forced to point upward to their new copies, working as temporary value-
dictionaries. This ensures that variables seen as equivalence classes are transferred
to the copy. As they are trailed in this process, we simply unwind the trail at the
end and free them from their temporary values.

The algorithm is very compact. The C-code is given in appendix A.
There's an interesting similarity between this copying algorithm and the for-

warding technique used in the garbage collector of Appel [3]. The New-Jersey SML

347

garbage collector implements Cheney's [7] elegant, non-recursive algorithm to move
terms from a fromspace to a ~ospace. The basic idea is to use forwarded terms as a
breadth-first queue for the copying process. One can be attempted to adopt it for
copy_term in Prolog and get rid of recursion that has (in the worst case) a depth
proportional to the size of the heap. Actually a variant of this algorithm is used in
[5] for a parallel memory manager.

However, recursive calls can be more efficient on the average, at least on a Sparc-
station as they will span over register windows, while the non recursive algorithm
will do memory accesses. On the other hand, i f the tcrm is deeper than the number
of available register windows we pay back those gains, at least in part. The Fujitsu
chip in the Sparcstation 1 implements 7 register windows. When a call is made, 8
output registers of the caller simply overlap 8 input registers of the callee. However,
as far as recursion is bounded, one has to keep in mind that if a non-recursive pro-
cedure works on at most 24 registers, a recursive one using all the register windows
can span its work over 120 registers. Notice that the number of register windows is
expected to grow on future Sparc implementations. Although Cheney's algorithm is
obviously more space efficient and also preserves the shared nature of subterms, some
empirical study on the tradeoffs involved in typical uses of copy_term and primitives
that rely on it (like findall) is needed.

3.2 F i nda l l

We implemented both findall/3 and findall/4. The latter, (suggested by a public
domain version of R.A. O'Keefe) appends the answers to an existing list. We used
our fast copy_term to do it. Basically we execute the goal in the upper half s. Findall
is written as a failure driven loop in Prolog; using 3 builtins implemented in C.

findall_workhorse(X,G,_):-
lift_heap,
G,
findall_store_heap(X).

findall_workhorse(.... Xs):-
findall_load_heap(Xs).

findall(X,G,Xs,End):-findall_workhorse(X,G,[EndIXs]).

findall(X,G,Xs):-findallworkhorse(X,G,[[]JXs]).

The builtin lift_heap simply cuts the heap in half and temporarily assigns to
H the value of the middle of the heap. The previous value of H and the previous
HEAP_MARGIN used for overflow check are stacked. This allows for embedded calls
to findall to work properly.

Then the goal G is executed in the upper half of the heap.

5 Actually the ratio between the lower and the upper half is 1:4, 1:8 or even a higher power
of 2. This must be in principle the statistically expected ratio between the size of the
answer and the size of the computation that produces it.

348

The builtin findall_store_heap pushes a copy of the answer X, made by copy_term
to a an open ended list located in the lower half of the heap and starting from the
initial position of H, that grows with each new answer. Then it forces backtracking.

The failure driven prolog-loop ensures that in the case of a finite generation of
answers, they can all be collected by the builtin findall_load_heap starting from the
initial position of H and forming an open ended list. The space used is exactly the
sum of the sizes of the answers plus the size of the list cells used as glue. The builtin
findall_load_heap puts on the heap and returns a cons-cell containing the end of the
list and the list itself. It a!so removes from the stack H and HEAP_MARGIN, used
inside copy_term to check heap overflow. For findall/4 we return also the end of the
open ended list of answers, while for for findall/3 we close it with an empty list. The
total size of the Prolog and C code is about half of the usual assert based (correct)
implementation of findall.

The C-code of the 3 builtins is given in Appendix B. They are part of the main
switch of our WAM-loop. The implementation can be further accelerated by moving
it completely to C, but we left it in Prolog to allow tracing and to be able to use
the same builtins for other primitives.

Remark that at the end, all the upper half of the heap is freed. This means that
an amount of space proportional to the size of the computation is freed within time
proportional to the size of the answer.

One reason why findall is so simple and fast is that we have no constraints on
the relative position of the heap and the OR-stack. But what to do in the case
of general WAM? When executing in the upper half, we suppose that new objects
are always higher than old objects - impossible, as the AND stack is even higher!
However, by modifying the run-time checks to detect where a variable is located,
one can adapt this algorithm to standard WAM, with some additional cost. A better
solution is to allocate a temporary space higher than the AND-stack and execute
there, successively each recursive call to flndall. This implies however copying twice.
We think that we have here a a good example of implementation simplicity that is
lost in the case of standard WAM.

3.3 Pe r fo rmance evaluat ion

The table 1 compares the performances of our compiler with C-emulated and native
code Sicstus Prolog 2.1, all running on a Sparcstation IPC. The Sicstus compiler
is bootstrapped so that builtins are compiled to native code (the fastest possible
configuration). The reader can get the benchmarks by ftp from the BinProlog dis-
tribution (139.103.16.2). PERMS(8) is a nondeterministie permutation generator,
DET-ALLPERMS(8) is a deterministic all permutation program written in pure Pro-
log, FINDALL-PERMS(8) is a findall-based all-permutations program and BFIRST-
META is a breadth-first prolog meta-interpreter. The 3 permutation benchmarks
give an idea about the overhead of accumulating solutions (DET-ALLPERMS) and
the overhead of findall in both emulated and native Sicstus and emulated BinProlog.
As one can see on the PERMS(8) and DET-ALLPERMS(8) benchmarks BinPro-
log and emulated Sicstus are quite close on pure Prolog programs. Therefore, the
difference between DET-ALLPERMS(8) and FINDALL-PERMS(8) comes from the
implementation offindall. Together with the BFIRST-META benchmark, which also

349

uses findall, this shows how efficient our heap.lifting technique can be, when com-
pared with a fairly optimized assert-based approach.

Benchmark Sicstus 2.1 BIN-Prolog Sicstus 2.]
program Emulated Emulated Native

PERMS(8) 1.350 sec 1.200 see 0.639 sec
DET-ALLPERMS(8) 2.699 sec 3.040 sec 0.820 sec
FINDALL-PERMS(8) 13.089 sec 6.060 sec 11.219 sec
BFIRST-META 1.230 sec 0.420 sec 1.070 sec

Table 1. Performances

Timing is given by the s t a t i s t i c s (runt ime,_) predicate i.e. without garbage
collection or system time. However, on a 8 Megabytes Sparcstation IPC with 32
Megabytes of swapping space and OpenWindows, BinProlog took 44 seconds of real
time (as given by the rusage Unix primitive) to perform all the permutation bench-
marks, while Sicstus took 8 minutes (native) and more than 10 minutes (emulated)
because of the overall complexity of its memory management. Quintus Prolog had
a similar behaviour on a 16 Megabytes sun4 machine due to a huge number of stack
shifts (more than 2 minutes). As these figures indicate, keeping memory management
as simple and predictable as possible pays off.

4 Copying GC in the presence of backtracking

4.1 R e l a t e d work on f u n c t i o n a l languages

In a heap-intensive engine like BinProlog, as it is also the case with modern ML-
engines (see [3]), mark-and-sweep garbage collection with time complexity propor-
tional to the size of the heap is too expensive. This suggest a memory management
scheme for BinProlog that is based on a copying garbage collector. It is inspired by
the idea of resource-driven failure (RDF), described in [11], where the reader can
also find a working prototype in Prolog. RDF is triggered when some resource lim-
itation (stacks, CPU-time, etc.) occurs. Basically, we save (a compact copy) of the
current resolvent and its partial answer substitution, we force backtracking and we
work temporarily on another branch of the OR-tree. Later, when resources become
available we restart the computation from the saved copy.

As we pointed out before, binarization based compilation of logic programming
languages is very similar to the Continuation Passing Style compilation of func-
tional programs described in [4] and [3]. Although our design presented in [11] and
[10] was developed independently based on a very natural program transformation,
it is worthwhile to stretch some similarities that are consequences of the same con-
tinuation passing approach. The key idea of [3] is that heap based allocation and
deallocation by copying garbage-collection has a better amortized cost than stack
based allocation and deallocation, especially when a generational collector is used.

350

4.2 What's different with Pro log

This is also (almost) true in the case of binary logic programs. As far as there's
no backtracking involved, Appel's technique can be used to partially garbage-collect
in a very efficient way a deterministic, deep branch of a WAM-implemented SLD-
tree. However, in the presence of choice points, either we preserve chronological
ordering with a traditional mark-and-sweep garbage collection, or we ensure a form
of OR-parallel evaluation that has the same operational semantics as standard Prolog
execution. Let us describe this second alternative in more precise terms.

When evaluating binary definite programs using SLD-resolution, each step can
be seen as an unfolding step, starting from a clause of the form G ~- G, where G
is the original (atomic) goal of the program. Instead of the usual resolvent we are
dealing with a conditional answer of the form (G ~ B)O, where G is the original
goal, B is the body of the last clause used in the resolution process and 0 is the
composition of the substitutions used in resolution steps so far.

Whether resolution is terminated by a unit clause or it is in progress, (G ~-- B)O
is a logical consequence of the program that keeps all the information computed so
far by the SLD-derivation. In particular, it is possible to restart the derivation at
any time from (a compacted copy) of (G ~- B)O.

In terms of the engine, this means starting a new Prolog process with a copy
of the current resolvent 6, while the parent searches for another answer, efficiently
recovering its space by backtracking. More generally, overflow of other resources
(CPU-time, stack, trail) can trigger a similar action.

A possible implementation, given BinProlog's very small code overhead is to ere-
ate a new UNIX process. The presence of portable lightweight processes and parallel
forthcoming Unix kernels make this choice very appealing. Another possibility is to
implement a process queue inside BinProlog. This allows to be as lazy as possible
about allocating the new data areas Heap, Trail and OR-stack while the standard
Unix-based technique would start from a full copy. This choice has also the advantage
to be portable to non-Unix machines.

By giving high priority or even preference to the parent we obtain a fair OR-
parallel evaluation mechanism 7 similar to.iterative-deepening but more efficient as no
repeated computation is involved. This makes very attempting an uncompromising
approach that sacrifices Prolog execution order. Under this OR-parallel execution
model, each process efficiently recovers space by backtracking within fixed data areas,
while spanning a new process that continues the aborted computation starting with
minimal resources.

A possible scheduling mechanism, suitable for machines with relatively few but
very fast CPUs (like the multiprocessor versions of the Sparcstation 10) is based on
the following principle:

Processes that will free a resource must have higher priority than those which
ask for a resource.

6 that happens to be simply the instantiated body of the last matching binary clause,
accessible from the argument registers before the next EXECUTE instruction
fairness is implemented by ensuring higher or exclusive priority for the parents

351

As a consequence, the backtracking parent who's memory needs are diminishing has
priority over the forward executing child (who will soon ask for more as it comes
often from a memory consuming branch of the search tree that still may grow).
Hence work in an almost deterministic parent will die off very quickly so that its
resources can be reused. Garbage collected children will wait in small heaps with
empty trail and empty OR-stack until they are scheduled. Then data areas can grow
dynamically.

An interesting reference point is the Muse model described in [1] and [2]. The
main similarities are multiple parallel engines and the presence of a form of differ-
ential heap-copying. The main differences relative to Muse in our proposal are:

- process creation is only triggered by need i.e by a resource limitation
- a fair evaluation mechanism replaces Prolog's depth-first evaluation order
- efficient garbage collection is for free

In our case, OR-parallelism comes as a byproduct of resource management. The
intended architecture for our proposal is basically a Sparc-like RISC with one or a
few CPUs, as we do not necessarily want to maximise OR-parallelism, unless we are
constrained to do so by resource limitations. On the other hand, in Muse, as in the
Aurora model (see [6]), the main goal is to extract as much OR-parallelism as possi-
ble, the intended architecture being a shared memory switch-based multiprocessor.

4.3 P r e s e r v i n g P r o l o g e x e c u t i o n o r d e r

Let us see what's happening if we want to preserve Prolog execution order. One
problem is CUT. To solve it we have to suspend the parent until any child containing
a CUT that can affect the parent finishes. The same principle can be applied to
deal with I /O and side-effects. It leads to standard Prolog execution order. Similar
techniques have been used in the OR-parallel engines of [6], [1] and [2].

Let us see what happens if we want to use resource-driven failure as a garbage
collector for a sequential Prolog engine. The simplest is to execute the child pro-
cess in the upper half of the heap, as in our implementation of findall. The same ,
heap-splitting technique can be applied to deal with smaller and smaller reeursive
activations. The neat effect is that of a copying, multi-generationalgarbage collector.

By taking a closer look to possible implementations of an RDF based garbage
collector, the following possibilities arise:

- a programmer controlled RDF
- RDF triggered on predefined heap marks
- RDF by compiler generated annotations

In the case of a programmer controlled approach, a simple predicate

gc_call(Goal):-
findall(Goal,Goal,lnstances),
member(Goal,Instances).

352

found in the Craft of Prolog (see [9]), p.85) combined with our fast heap-based
findall can be used. We actually annotated in a few minutes our memory-hungry
real-time automatic Tetris player to port it to BinProlog. The program uses an
energy minimization algorithm to find a best fit for a falling bloc of an irregular
shape to an irregular ground made up of previously fallen blocs. Before gc c a l l
the program run out of heap in less than a second. After annotation with g c _ c a l l
the program was running for hours s. Execution on Prologs with mark-and-sweep
garbage collectors was quite unpleasant as the real-time effect of the falling blocs
was lost due to unexpected interruptions.

A more automatic approach is to use heap-marks. When the H pointer reaches
such a limit, the next EXECUTE instruction can wrap the current goal G inside
a go_ca l l , executing gc_ca l l (G) instead of G. As heap margin is checked anyway
by our EXECUTE instruction there's no additional cost involved. As continuations
are first-order objects in BinProlog, we can do this work only on the continuation
(actually an argument of the goal). The figure 2 shows a Prolog search tree with
gc_call margins and nodes subject to gc_calt.

* root of the search tree
I

........................... > gc_call margin

/ \

/ \

/ \

, �9 > node subject to gc_call

/ \ I lk
/ \ / f \

. , ,

............................ > gc_call margin

I \I I \

Pig. 2. Gc_cM1 margins

The heap marks where the split is enforced can be set by the programmer or
can be computed by the system heuristicelly, based on execution profiling data. The
formula we are currently using for findall has a predetermined upper/lower region
ratio of about 4 to h

#define HEAP_MIDDLE() \
(*HEAP_BASE+(wam[HeapStk].end-*HEAP_BASE)>>2))

Remark that HEAP_BASE is actually a pointer to a stack as calls can be embedded,
while wam[HeapStk] . end is the actual end of the heap.

s and playing the game much better than its author

353

Finally, compiler generated gc_ea l l annotations are possible. A preprocessor
that does abstract interpretation can spot out potential go_ca1:], points as memory
needs for execution of a given goal can be statically approximated reasonably well, at
least in the case of the very simple execution model of BinProlog. We are currently
working on the mathematics of such estimations. This approach has the advantage of
being portable to every Prolog having a heap-based fast findall, provided that it does
not create garbage itself as assert based implementations often do in the dynamic
code-space. Our heap-lifting technique, for example, ensures that execution-space is
fully recovered after copying, with no additional cost.

5 Conclusion

A key difference between memory management in Prolog and functional languages
comes from its OR-tree execution model. Basically branches of the tree do not need
to communicate or to be present in the storage simultaneously. This is a natural ad-
vantage that seems not exploited at its potential by current Prolog garbage-collection
technology that seems mostly inspired from Lisp memory management principles ex-
cept perhaps in elaborated but relatively high overhead memory managers like the
one presented in [5]. In this context, an interesting future work is to combine an inde-
pendent parallel memory manager like the MALI system of [5] with the OR-parallel
execution model for BinProlog.

In [13] a few garbage collection 'devils' lurking around in object-oriented systems
(like the indigestion devil = clustering of long lived objects) are described. Similar
thir, gs happen in the Prolog world too, quite often. As we described it in the sectioD
on performance evaluation of our heap-based findall, even top-quality commercial
systems like Quintus and Siestus 2.1 are not free from unexpected memory manage-
ment related behaviour. By keeping BinProlog as small as possible (49K C emulator,
20K Prolog compiler) we hope that the simplicity and the proven soundness of our
resource driven failure based proposal (with its sequential and OR-parallel imple-
mentations) will give robust and predictable Prolog systems while using Prolog's
obvious natural strength: its backtracking mechanism.

We have proposed here an 'ecological' approach to memory management. The
concept is probably more important than the actual implementation: the key idea
is to set up execution mechanisms that are able, while doing their natural, useful
activities to achieve memory management objectives. One such example is our heap-
lifting technique for implementing findall. This contrasts with the traditional view
of memory management as a dedicated, resource consuming activity.

Acknowledgements . This work is supported by NSERC (grant OGP0107411)
and the FESR of the Universit~ de Moncton. We thank the anonymous referees for
their constructive criticism, interesting comments and suggestions.

References

K. A. M. Ali and R. Karlsson. The Muse Or-Paxailel Prolog model and its per-
formance. In S. Debray and M. Hermenegildo, editors, Proceedings of the 1990
North American Conference on Logic Programming, pages 757-776, Cambridge, Mas-
sachusetts London, England, 1990. MIT Press.

354

2. K. A. M. All and R. Karlsson. Scheduling Or-Parallelism in Muse. In K. Furukawa,
editor, Proceedings of the Eighth International Conference on Logic Programming, pages
807-821, Cambridge, Massachusetts London, England, 1991. MIT Press.

3. A. Appel. A runtime system. Lisp and Symbolic Computation, (3):343-380, 1990.
4. A. Appel. Compiling with Continuations. Cambridge University Press, 1992.
5. Y. Bekkers and L. Ungaro. Two real-time garbage collectors for a prolog system. In

Proceedings of the Logic Programming Conference'91, pages 137-149. ICOT, Tokyo,
Sept. 1991.

6. M. Carlsson. Design and Implementation of an OR-Parallel Prolog Engine. Phd thesis,
SICS, 1990.

7. C. J. Cheney. A nonrecursive fist compacting algorithm. Communications of ACM,
11(13):677-678, Nov. 1970.

8. B. Demoen. On the transformation of a prolog program to a more efficient binary
program. Technical Report 130, K.U.Leuven, Dec. 1990.

9. R. A. O'Keefe. The Craft of Prolog. MIT Press, 1990.
10. P. Tarau. Program transformations and WAM-support for the compilation of definite

metaprograms. In Proceedings of the Russian Conference of Logic Programming. St-
Petersbourg, Sept. 1991.

11. P. Taran. A simplified abstract machine for the execution of binary metaprograms.
In Proceedings of the Logic Programming Conference'91, pages 119-128. ICOT, Tokyo,
Sept. 1991.

12. P. Tarau and M. Boyer. Elementary Logic Programs. In P. Deransart and
J. Matuszyfiski, editors, Proceedings of Programming Language Implementation and
Logic Programming, number 456 in Lecture Notes in Computer Science, pages 159-

173. Springer, Aug. 1990.
13. D. Ungar and F. Jackson. Outwitting gc devils: A hybrid incremental garbage collector.

OOPSLA '91 Garbage Collection Workshop Position Paper, 1991.
14. D. H. D. Warren. An abstract prolog instruction set. Technical Note 309, SRI Inter-

national, Oct. 1983.

A Code for copy_term in BinProlog 1.24

Copyright @ Paul Tarau 1992

Some MACKOS and functions:

- DEREF2 gets the last pointer in a reference chain and its value

- SETREF,GETREF sets and gets the value of a variable

- GETARITY extracts the arity form a cell

- VAR, INTEGER: type testing macros

- CHECK: overflow checking macro

- unwind_trail(To,From) - resets trailed variables

- NEXT - sets program counter P and jumps

- CONT - moves the continuation to register I and jumps

- UNIFAIL unify or signal failure

d e f i n e SAVED H (* (A-2))
d e f i n e SAVED_TR ((t e r m *) * (A - I))
#define SAVED_P ((instr)*A)

355

#define TR_TOP wam[TrailStk].top

#define TRAIL_IT(V) \
{CHECK(TR_TOP,TrailStk."trail overflow"); *TR_TOP++=(V);}

#define TRAIL_IF(V) \
if((V)<SAVED_H) TRAIL_IT(V)

term recursive_copy_term(h,t,ct,A)
register term h,t,ct,*A;

{ register cell val t;
DEREF2(t,val_t);
if(VAR(val_t)) /* deals with variables */

SETREF(ct,ct);
SETREF(t,ct);
TRAIL_IF(t); /* if older than SAVED_H */

}
else if(INTEGER(val t) ir !GETARITY(val_t))

SETREF(ct,val_t); /* deals with atomic objects */
else

SETREF(ct,h);
SETREF(h,val_t);
ct=h++; h+=(val_t=GETARITY(val_t));
CHECK(h,HeapStk,"heap overflow in copy_term");
while(val_t--) /* compound terms */

h=recursive_copyterm(h,++t,++ct,A);
}

return h;

term copy_term(h,t,A)
register term h,t,*A;

{ term ct,
bakHB=SAVED_H,
*bakTR=TR_TOP;
SAVED_H=h; /* to TRAIL only what's before h */
SETREF(h,h); /* makes a new variable to begin the copy */
ct=h++;

h=recursive_copy_term(h,t ,ct ,A); /* do the copy */

TR_TOP=unwind_trail(TR_TOP,bakTR); /* reset the trailed vats */
SAVED_H=bakHB; /* restore it as it was */
return h;

356

B C-code for f indalh 3 bui l t ins

Copyright @ Paul Tarau 1992

case LIFT_NEAP:
/* assert: we are in the "lower" half of the heap */

/* this is recursively tzue, for more than I split */

PUSHHEAP_MARKS(); /* remember where we are, for embedding */

*HEAP_BASE = *HEAP_MA~K = H; /* H in lower half */
H=HEAP_MIDDLE(); /* set starting H in upper half */

NEXT(l); /* continue with next instruction */

case FINDALL_STORE_HEAP:

/* assert: the answer is in the upper half, ready for copy */
H=*HEAP_MARK; /* get old H in lower half */

HAKE_LIST(); /* makes cons-cell for an answer */

acc=H++; SET~EF(acc,acc+2); acc=H++;

(term)wam[HeapStk],margin=HEAP_MIDDLE(); /* sets new margin */

H=copy_term(H,regs+1,A); /* copies the answer to lower half */

wam[HeapStk].margin=wam[HeapStk].end; /* resets heap-margin */
SETREF(acc,H);

HEAP_MARK=H; / set new H in lower half */

FAILURE() /* backtracks */

case FINDALL_LOAD_HEAP:

/* assert: all found answers are on a list in the lower half*/

H=acc=*HEAP_MARK; /* resets H to lower half and sets ace */

/* assert: the final list of answers is in ace */
/* (as if an ORACLE had put it there) */
/* everything done in the upper half can be forgotten safely */

PUSHVAL(acc);
MAKE_LIST(); /* makes a cons-cell */
PUSHVAL(acc++); /* puts the (open) end of the list on it */

PUSHVAL(*HEAP_BASE); /* puts the head of the list of answers*/

POP_HEAP_MARKS(); /* pops the stack of embedded findalls */
UNIFAIL(regs[lJ,acc) /* unify with the list of answers */

CONT(2); /* moves the continuation from regs[2] to tess[l] */

Replication-Based Incremental Copying Collection

Scott Nettles 1, James 0'Toole ~, David Pierce 3, Nicholas Haines 4

A b s t r a c t

We introduce a new replicatwn-baseJ copying garbage collection technique. We
have implemented one simple variation of this method to provide incremental garbage
collection on stock hardware with no special operating system or virtual memory
support. The performance of the prototype implementation is excellent: major
garbage collection pauses are completely eliminated with only a slight increase in
minor collection pause times.

Unlike the standard copying algorithm, the replication-based method does not
destroy the original replica when a copy is created. Instead, multiple copies may
exist, and various standard strategies for maintaining consistency may be applied.
In our implementation for Standard ML of New Jersey, the mutator continues to
use the from-space replicas until the collector has achieved a consistent replica of
all live da ta in to-space.

We present a design for a concurrent garbage collector using the replication-
based technique. We also expect replication-based gc methods to be useful in
providing services for persistence and distribution, and briefly discuss these pos-
sibilities.

K e y w o r d s : rep l ica t ion , ga rbage collection, inc rementa l col lect ion, concurrent collec-
t ion, r ea l - t ime ga rbage collection

1 I n t r o d u c t i o n

Copy ing ga rbage col lect ion (GC) is an i m p o r t a n t m e m o r y m a n a g e m e n t technique, b u t
i t s app l i ca t i on has been largely l imi ted to s i tua t ions t h a t can to le ra te G C pauses. There
have been n u m e r o u s schemes for inc rementa l or concurrent copying col lectors t h a t are

Authors' affdJations: InettlesQcs.cmu.edu, 3dp3OGandrew.cmu.edu, 4nickhOcs.c~m.edu, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
2otooleOlcsanit.edu, Laboratory for Computer Science, Massachusetts Institute of Technology, Cmn-
bridge, Massachusetts 02139.

This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronau-
tical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, Arpa Order No. 7597 and by the Air Force Systems Command and the Defense
Advanced Research Projects Agency (DARPA) under Contract F19628-91-C-0128.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

358

"real time," i.e. that limit GC pauses to small bounded intervals. Real-time collectors
interleave garbage collection with program execution, thus spreading out the copying
work so that the individual interruptions are unobtrusive. These incremental collectors
fall into one of two groups: those that require special hardware [61, and those that use
virtual memory protection [2].

The disadvantage of techniques which use special hardware is that they are not
portable. Techniques which use other operating system support such as the ability to con-
trol the virtual memory system are often not portable, and can be prohibitively costly
clue to the cost of trap handling or similar operations. We propose a new technique
for implementing incremental and concurrent copying collectors that requires no special
support from either hardware or operating system. In addition, it promises to be useful
for other algorithms that use col ying to provide features such as persistent data and
distributed computing.

We first introduce our general approach, based on nondestructive copying or repli-
cation. Next we outline our experimental implementation and present preliminary per-
formance measurements which demonstrate its excellent real-time behavior. Finally we
discuss the application of the replication-based technique to concurrent collection, and
suggest other applications.

2 The General Method

Copying collection works by copying all of the valid data from one region (from-space)
to another (to-space), leaving the garbage behind. We assume the reader is familiar with
the basic technique of copying collection as well as the notion of generational collection.
The key operations of copying collection are as follows:

�9 Copy an object from from-space into to-space, leaving a forwarding pointer in the
original from-space object.

�9 Forward a from-space pointer into to-space, if necessary copying the object it ref-
erences, and redirecting the pointer to the to-space copy.

�9 Scan a to-space object, forwarding all of the object's pointers.

The mutator can perform the following operations on objects: read a field, write a
field, and compare pointers for equality. Incremental GC requires that these operations
be interleavable with the operations of the garbage collector outlined above. (Concurrent
GC has much stricter requirements, discussed in section 5 below.)

Since the standard copying technique overwrites from-space objects with forwarding
pointers in the Copy operation, most incremental collectors require that the mutator use
only the to-space copy of an object. To maintain this invariant, the collection algorithm
must rely on low-level hardware support. (E.g. hardware support for following forwarding
pointers or trapping all attempts to access the unscanned portions of to-space.)

In contrast, our technique simply replicates the from-space object in to-space. A
forwarding pointer is placed in a special word reserved at the head of the from-space
object. Since the original object is not destroyed by the copying operation, any use
of the object may continue to reference the original object. However, because multiple
copies of an object may exist, read and write operations must adhere to one of several
consistency protocols.

359

If reads are permitted to access either copy, write operations must modify both to-
space and from-space replicas. Also, pointer-based equality tests must follow the for-
warding pointers in order to ensure that only to-space (or only from-space) pointers are
compared. In more sophisticated systems, where copying is used for purposes other than
GC and there may he more than two replicas of an object, the mutator must modify
all replicas (for this purpose we can make the forwarding chain circular by having a
'reversing pointer' in the newest replica). In this system, read operations can be freely
interleaved with any of the GC operations, but under some consistency protocols the
write operations may require synchronization with the collector, and care may be re-
quired to ensure that the mutator does not write from-space pointers into previously
scanned to-space replicas.

This general protocol of reading any copy and writing all copies is a standard one
used for maintaining replicated data, so we use the term "replication-based copying".
Another possibility is to have write operations modify only the newest version of an
object, in which ease the read operations for mutable objects must always read the newest
version. In section 5, we discuss this possibility, which may be preferable for concurrent
applications.

Note that these operations are distinct from that of updating the 'root set', that set
of pointers directly visible to the mutator (registers, the stack, etc.). At some point in
the GC process, these pointers must be updated. In a standard incremental collector,
this is done immediately after the 'flip' by a simple 'forward' operation to start the GC.
With a replication=based algorithm, it is possible to delay this step until just before the
flip, after copying all live data into to-space. By using this technique, the collector can
ensure that the mutator uses only from-space objects. In this case, there is no need for
the collector to synchronize with the mutator except very briefly at flip time. Notice
that this variation is not fully general, as it does not provide for more sophisticated uses
of copying.

The advantage of the above technique is that it allows for incremental collection with
no special hardware or OS support, but what are the disadvantages? First, it requires
one extra word per object for the forwarding pointer. Fortunately, this extra word
can often be absorbed into other object header words which are already present. The
second disadvantage is that the consistency protocol may make writes (and possibly reads
of mutable objects) more expensive. For some languages this would be unsatisfactory
because mutations are common. However, for applicative languages like SML, in which
side effects are less frequent and mutable objects are clearly distinguished by a type
system, this runtime cost is probably not a problem. The third disadvantage is that of
copying latent garbage, but this is an inevitable cost of any incremental method, and all
such garbage is discarded by the next collection. The final disadvantage is that tests of
pointer equality become more expensive. This may be a serious disadvantage for Lisp
family languages where the use of eq is common. It is probably less important for SML,
because equality testing is already expensive, and not as frequently used.

3 Implementat ion

We have built a prototype implementation of a replication-based incremental collector
for SML/NJ (version 66). In order to quickly test the utility of the replication=based
method, we chose to implement a simple variation of the general replication algorithm.

360

In this variation, the mutator uses only the from-space replicas. Therefore, the mutator
need not adhere to a consistency protocol, and so only one small change to the SML/NJ
compiler was required. The rest of the implementation work required modifications to
the standard SML/NJ garbage collector.

SML/NJ uses a simple generational copying collector [1], with two generations known
as new-space and old-space. The new-space is used for newly allocated data, and the
old-space contains data which has survived at least one collection. When the new-space
fills, a 'minor' collection is performed, copying data from the new-space to the old-space.
The compiler keeps a record (the 'store list') of all writes to mutable objects so that
references from the old-space into the new-space can be found during minor collection.
When the old-space fills, a 'major' copying collection is performed. Minor collections are
typically short and non-disruptive, but major collections are often lengthy.

Our implementation leaves minor collections as they are, but makes the major collec-
tions incremental, doing some portion of the major collection at each minor collection.
There are several reasons for this choice. First, it avoids having the allocator allocate
the forwarding word; instead it is added when objects are copied from new to old. This
avoids a change to the compiler backend's allocation primitives. Second, since the GC is
in control during a minor collection, it is convenient and cheap to do incremental work at
that time. By limiting the amount of incremental work done at each minor collection, we
can keep pauses brief, within a factor of, say, three times as long as for a minor collection
alone.

We use the strategy, described above, of only updating the root set when the GC
is complete. The mutator can therefore only see from-space objects. We use the store
list during each GC increment to update to-space versions and rescan them if necessary.
The SML/NJ compiler version 66 keeps a log of all mutations which store pointers, for
use by the generational collection algorithm. We modified the mutation log to include
all mutations, so that the incremental collector can update to-space. This avoided the
need to modify the compiler to add a write-all-replicas protocol.

In order to ensure that the garbage collector terminates, we must guarantee that all
live data will be replicated in to-space before from-space overflows with new data copied
by the minor collections. We want to restrict the amount of GC work done in each
increment, but still ensure that a 'flip' takes place before from-space is full. Otherwise,
when from-space fills, the incremental collector will have to perform a large amount of
remaining gc work, which will be tantamount to a major garbage collection pause.

In the prototype implementation, we guarantee that this will not happen by requiring
the incremental collector to copy more objects into to-space than were added to from-
space by the minor collection. Therefore, the duration of the incremental collector's
pauses can be controlled by adjusting the size of the new-space and the amount of
additional incremental copying done.

4 M e a s u r e m e n t s

The initial performance measurements for our prototype implementation are shown in
table 1. The table describes the garbage collector pauses which occurred during a single
test case. The test case compiled a significant part of the SML/NJ compiler, and was
run without paging activity on a DECstation 5000/200 equipped with 64 Mb of main

361

#minor mean modal max. 90%
pauses pause pause pause below

orig 5422 17ms 15ms 734ms 45ms
incr 5422 57ms 46ms 499ms 93ms

#major mean max. total
pauses, pause pause GC

48 2.2s 5.0s 201s
312s

Table I: Pause timings for stop-and-copy vs. incremental collectors.

memory. The incremental collector completely eliminates the major collection pauses of
2 to 5 seconds with which every SML/NJ user is aggravatedly familiar.

The minor pauses measured for the original collector represent the delay caused by a
collection of old-space into new-space. The minor pause time for the incremental collector
includes the generational collection of old-space into new-space and also the work done
by the incremental algorithm transporting objects in the from-space (old-space) to the
to-space.

The statistical distribution of the minor pause times are both unimodal, with pro-
nounced modes at at a pause time of less than 50ms, but with a long tail to several
hundred milliseconds. Our collector increases the mode, but its performance appears to
be interactive enough to remain acceptable to users.

The measured mean pause time for our collector is 57 milliseconds. We expect to
reduce that figure to 50ms or less by varying the control parameters of our implemen-
tation. Reducing the size of the new-space and the fraction of incremental work done
will shorten these pauses. Because our collector is incremental, we can also cut short the
incremental collection activity if it becomes too lengthy.

The total garbage collection time is increased by more than 50% relative to version 66
of the SML/NJ. We anticipate being able to reduce this to approximately 10% by simple
optimizations of our existing code (we believe most of this increase is due to the fact that
the prototype implementation performs a 'flip' operation twice as often as the standard
algorithm. There is no mutator time overhead in the current implementation.

#objects total overhead
copied size bytes % heap

all objects 27M 344Mb 108Mb 24%
mutable only 1.76M 18Mb 7Mb 2%

Table 2: Space overhead of forwarding words for incremental collector.

Table 2 shows the total space overhead of our system. The total size measurements
given in the table do not include the overhead for forwarding words, and the percentage
figure measures the amount of overhead bytes as a percentage of the total heap size,
including overhead. The prototype implementation uses a separate forwarding word for

362

every object, which results in a very high space overhead of 24% because a majority of
objects are two-word records ('cons cells') with a header word. However, we can reduce
the space overhead by storing the forwarding pointer and the header information in the
same word. In this scheme, a replicated object has header information on only the newest
copy. Any operation which needs the header information must follow forwarding pointers
to locate the newest copy of the object. In the write-newest protocol, this optimization
can be applied to all objects, eliminating the space overhead entirely.

However, in t~e write-all consistency protocol, even the newest replicas of mutable
objects require 'backwarding pointers', so this optimization cannot be applied to them.
In this case the space overhead would be reduced to just 2% of the heap, as shown in
the table. Certain operations such as s ize would need to follow the forwarding pointer
chain, as well as other low-level run-time operations such as tag checks.

5 Concurrent Col lec t ion

The same technique is applicable to a concurrent system, in which the collector and the
mutator run in parallel, as separate threads of a single process. This is only an advantage
in multi-processor systems, when the collector may be running on one processor while
the mutator (or mutators) is running on the others--in single-processor systems one is
merely sacrificing control over when the collector runs, which is pointless.

In a concurrent system, not only must the semantic operations of the collector and
mutator be independent, as discussed above, but the individual machine instructions of
each must be interleavable. This is a much stronger condition, but it is not hard to
satisfy in a concurrent version of the incremental collector described above.

First consider whether running our prototype incremental collector concurrently with
the mutator would produce read/write conflicts. The mutator only reads or writes from-
space replicas. The collector reads from-space replicas, but writes only to-space replicas.
The collector also writes the forwarding words of from-space replicas, which the mutator
does not access. Thus the collector will not interfere with the mutator. If the forwarding
word and the header word are merged, then the collector and the mutator could conflict
while accessing this word. However, as long as the collector can atomically update the
header word to install the forwarding pointer, there is no danger. The mutator will
either read the from-space replica's header word before it is overwritten, or follow the
forwarding pointer to the to-space replica.

Now consider whether the mutator will interfere with the collector. It can only
interfere by writing a word the collector is reading. But at worst this would cause the
collector to copy the wrong value to to-space and at some point this mistake would be
corrected in the process of updating to-space to reflect mutator writes. Thus the mutator
does not interfere with the collector.

Almost all of the synchronization needed to make our prototype incremental collector
concurrent is already present in the incremental collector, because the effects of mutator
stores are communicated to the collector indirectly through the store list. Implementing
a concurrent collector is simply a matter of managing the handoff of the current roots
and the store list, and synchronizing to forward the root pointer set when the collection
terminates.

363

6 R e l a t e d Works

Real-time incremental or concurrent garbage collection has been the goal of many re-
search projects in the past. Recent work includes that by Ellis, Li, and Appel [2], which
exemplifies the use of the virtual-memory system to control the GC behavior, and Hal-
stead [5], using hardware improvements. The first real-time copying collector, by Baker
[3] requires special hardware, and paved the way for many other such systems. Some
exi3ting algorithms work on stock hardware without operating systems suvport, such as
those by Brooks [4] and later North [8], but none of these show such small time and space
overheads as our technique.

7 Future Work

Since the overhead for this new technique appears to be acceptable, we believe it will
be useful when applied to several other interesting GC-related algorithms. These other
algorithms can all make use of copying to achieve some useful end other than collecting
garbage, and may be able to share some runtime and/or storage costs with the garbage
collector.

One such algorithm is used to implement persistent storage. One of us has im-
plemented a persistent storage system based on copying objects from the heap into a
persistent heap [7]. A major performance bottleneck is the need to scan the entire heap
for pointers to objects which have been copied. Nondestructive copying will eliminate
this scan.

We are also interested in using copying to implement mechanisms for distributed
computing, such as those required by object repositories. In these distributing computing
systems, data which will be replicated at a remote machine is copied into a message buffer,
linearizing it for transmission purposes. Again nondestructive copying will greatly lessen
the overhead of such copies. Also, we anticipate a simple interface between the local GC
described here and the global (distributed) GC required in such a system.

A final possibility is the technique of delayed hash consing. Here the system tries to
detect if two (immutable) objects are identical. If they are then they can be merged.
This merge can be implemented by nondestructively adding a forwarding pointer from
one object to the other. This technique may greatly reduce the amount of heap space
needed.

We are extending our implementation in these directions and exploring some ideas for
"opportunistic" GC [9], in which the timing of garbage collections is chosen to minimize
disruptiveness. We are investigating triggering GC within the nser-interaction loop,
immediately before prompting for input, and after long waits for input. As a start, we
are adding some very simple code to disable the incremental technique when the mutator
is compute-bound, reverting to the more efficient stop-and-copy collection, the pauses of
which will not be noticed during the compute delay.

8 Conc lus ions

We have introduced a promising new copying GC technique, replication-based copying.
This technique is especially well suited to languages like SML where mutations are rare.

364

We have implemented a simple incremental GC for SML/NJ based on this technique
and have obtained preliminary data showing our idea to be workable. We are continuing
work to make related algorithms equally practical.

AcI~nowledgments: Scott Nettles and James O'Toole would like to thank DEC's Sys-
tems Research Center for support as summer interns, during which time this idea was
originally conceived. Scott Nettles and David Pierce would like to thank Peter Lee for
support with the implementation. Thanks also to John Reppy for his suggestion to merge
the forwarding pointer and header word. Greg Morrisett provided many hours of helpful
conversation. Thanks to Penny Anderson, Mark Sheldon, Ellen Siegel and the Venari
group for proofreading.

References

[I] A. Appel. Simple generational garbage collection and fast allocation. Software-
Practice and Ezperience, 19(2):171-183, February 1989.

[2] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent garbage collection
on stock multiprocessors. In SIGPLAN Symposium on Programming Language Design
and Implementation, pages 11-20, 1988.

[3] H. G. Baker. List processing in real time on a serial computer. Communications of
the ACM, 21(4):280-294, 1978.

[4] Rodney A. Brooks. Trading data space for reduced time mad code space in real-time
garbage collection. In SIGPLAN Symposium on LISP and Functional Programming,
pages 256-262, 1984.

[5] Robert H. Halsteacl, Jr. Implementation of multilisp: LISP on a multiprocessor. In
ACM Symposium on LISP and Functional Programming, pages 9-17, 1984.

[6] David A. Moon. Garbage collection in a large lisp system. In Proceedings of the
1984 A CM Symposium on Lisp and Functional Programming, pages 235-246. ACM,
August 1984.

[7] Scott M. Nettles and J.M. Wing. Persistence + Undoability - Transactions. Tech-
nical Report CMU-CS-91-173, Carnegie Mellon University, August 1991.

[8] S. C. North and J.H. Reppy. Concurrent garbage collection on stock hardware. In
Gilles Kahn, editor, Functional Programming Languages and Computer Architecture
(LNCS ~7~), pages 113-133. Springer-Verlag, 1987.

[9] Paul R. Wilson and Thomas G. Moher. Design of the opportunistic garbage collector.
In Proceedings of A CM SIGPLA N 1989 Confereuce o ~ Object- Oriented Programming:
Systems, Languages, and Applications, 1989.

Atomic Incremental Garbage Collection

Elliot K. Kolodner 1 and William E. Weihl 2

1 IBM Science and Technology, Technion City, Haifa 32000, Israel.
email: kolodner@haifasc3.ibm.vnet.com

MIT Lab. for Computer Science, 545 Technology Square, Cambridge MA 02139, USA.
email: weihl@lcs.mit.edu

Abst rac t . A stable heap is storage that is managed automatically using
garbage collection, manipulated using atomic transactions, and accessed us-
ing a uniform storage model. These features enhance refiability and simplify
programming by preventing errors due to explicit deallocation, by masking
failures and concurrency using transactions, and by eliminating the distinc-
tion between accessing temporary storage and permanent storage. Stable
heap management is useful for programming languages for reliable distribut-
ed computing, programming languages with persistent storage, and object-
oriented database systems.
Many applications that could benefit from a stable heap (e.g., computer-
aided design, computer-aided software engineering, and office information
systems) require large amounts of storage, timely responses for transactions,
and high availability. We present garbage collection and recovery algorithms
for a stable heap implementation that meet these goals and are appropriate
for stock hardware. The collector is incremental: it does not attempt to collect
the whole heap at once. The collector is also atomic: it is coordinated with the
recovery system to prevent problems when it moves and modifies objects. The
time for recovery is independent of heap size, even if a failure occurs during
garbage collection.

1 I n t r o d u c t i o n

A stable heap is storage that is managed automatically using garbage collection, ma-
nipulated using atomic transactions, and accessed using a uniform storage model.
Automatic storage management, used in modern programming languages, enhances
reliability by preventing errors due to explicit deallocation (e.g., dangling references
and storage leaks). Transactions, used in database and distributed systems, provide
fault-tolerance by masking failures that occur while they are running. A uniform
storage model simplifies programming by eliminating the distinction between access-
ing temporary storage and permanent storage. Stable heap management will make

This paper reports on research done by the authors at the Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139.
The research was supported by the National Science Foundation under grant CCR-8716884,
by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-89-
J-1988, and by an equipment grant from Digital Equipment Corporation.
Keywords: database, distributed systems, garbage collection, object-oriented, persistence,
recovery, transactions.

366

it easier to write reliable programs and could be useful in programming languages
for reliable distributed computing [10, 24], programming languages with persistent
storage [1, 2], and object-oriented database systems [8, 26, 38, 40].

In earlier research [18, 19] we designed algorithms suitable for the implementation
�9 of small stable heaps. However, many applications that could benefit from a stable

heap (e.g., computer-aided design, computer-aided software engineering, and office
information systems) require large amounts of storage, timely responses for trans-
actions, and high availability. This paper presents a garbage collection algorithm
suitable for the large stable heaps necessary to support these applications.

A recovery system provides fault-tolerance for transactions; it manages informa-
tion that ensures that the effects of successful transactions persist across failures and
that unsuccessful transactions have no effect. A garbage collector typically moves
and modifies objects as it collects storage that is no longer in use. It moves objects
to improve locality of reference and reduce fragmentation; it modifies them in order
to speed its work arid reduce the amount of additional storage it requires. In a stable
heap the movement and modification of objects by the garbage collector may inter-
fere with the work of the recovery system; yet, the recovery system must be able to
recover the objects modified by the collector and find the moved ones when a failure
occurs. The collector must also have access to the recovery information; objects may
be reachable from this information that the collector would not otherwise retain. A
collection algorithm that solves these problems and is coordinated correctly with the
recovery system is called an atomic garbage collector.

In our earlier work we introduced this notion of atomic garbage collection and
presented an algorithm for it. We based our earlier atomic collector on a stop-
the-world copying collector; it suspends work on all transactions while it collects
and traverses the stable heap. These pauses grow longer as the heap grows larger.
Similarly, the recovery system used in our earlier work requires a traversal of the
whole stable object graph after a crash. For an application with a large stable graph,
this traversal delays recovery and reduces the availability of the application. The
exact heap size at which the pauses for garbage collection or the time for recovery
become intolerable depends on the application, its response time requirements, and
its availability constraints, as well as on hardware characteristics such as processor
speed.

Our current research builds on our previous research: we have designed an inte-
grated atomic garbage collector and recovery system appropriate for a large stable
heap on stock hardware. The collector is incremental; i.e., it does not at tempt to
collect the whole heap in one pause. The time for recovery is independent of heap
size even if a failure occurs during garbage collection, and can be shortened using
a checkpointing mechanism. The design is for a conventional processor with virtual
memory; no other special hardware is assumed.

This paper describes our algorithm for atomic incremental garbage collection and
its interaction with the recovery system. The first author's dissertation [20] describes
the recovery system in detail. In it we also show how to avoid the costs of atomic
garbage collection for volatile objects by dividing the heap into stable and volatile
areas. Storage management in the volatile area is provided cheaply by a normal
garbage collector; the more expensive atomic garbage collector is used only in the
stable area.

367

We have implemented a stable heap prototype to show the feasibility of our
algorithms. The current implementation of Argus [25] serves as the basis for the
prototype; we replaced its existing storage management and recovery algorithms.

There has been other work dealing with the problem of providing fault-tolerant
heap storage, but none of the solutions has been satisfactory. Some work (e.g., [7, 33])
provides persistence but not transactions, so it offers less functionality. PS-algol [2]
uses a stop-the-world garbage collector and does not permit garbage collection to
occur while transactions are in progress. It also uses a less general transaction model
and a recovery system that imposes a high run-time overhead. Earlier work on
Argus [29] uses a normal garbage collector, but treats all crashes as media failures;
as a result, recovery from a system failure is relatively slow, particularly for large
heaps. Our work grew out of an attempt to design a faster recovery system for Argus.

Detlefs's work [11] is the closest to ours; he has published an algorithm he calls
concurrent atomic garbage collection. In his algorithm the pauses for garbage collec-
tion and the time for recovery are independent of heap size, but the pauses are too
long. Each pause requires multiple synchronous writes to disk; furthermore, these
writes are random. Our algorithm is better integrated with the recovery system and
does not require any synchronous writes to disk.

Here is an overview of the structure of this paper. Section 2 presents our model
of a stable heap. Section 3 describes an approach to recovery called repeating histo-
ry [27]. Using the approach, modifications to objects in the heap follow a write-ahead
log protocol. The protocol ensures that the modifications are repeatable after a fail-
ure. Section 4 describes our algorithm for atomic incremental garbage collection. It
shows how to use the write-ahead log protocol to make the steps of an incremental
copying collector repeatable. It also discusses the interactions between the collector
and a recovery system. Section 5 discusses the applicability of our algorithm to other
recovery systems. Section 6 concludes with an evaluation of the algorithm.

2 S t a b l e H e a p s

We abstracted our model of a stable heap from the model of computation used by
Argus, a programming language for reliable distributed computing, for local com-
putation at each node in a distributed system. The stable heap model is also appro-
priate for object-oriented database systems and other programming languages with
persistent storage. We begin this section by describing the model. Then we discuss
the hardware and operating systems for which our design is appropriate.

2.1 System Model

In our model, computations on shared state run as atomic transactions [15], and
storage is organized as a heap. Transactions provide concurrency control and fault
tolerance; they are serializable and total. Serializability means that when transac-
tions are executed concurrently, the effect will be as if they were run sequentially
in some order. Totality means that a transaction is all-or-nothing; i.e., either it
completes entirely and commits, or it aborts and is guaranteed to have no effect.

368

A tl.ansaction consists of a series of short low-level recoverable actions: a read
action reads a single object, an update action modifies a single object, and an allo-
cate action creates a new object. These actions synchronize through logical mutual
exclusion locks on objects. In practice these mutual exclusion locks may be of a
coarser granularity. For example, in Argus most read and update actions are indivis-
ible. Indivisibility is enforced by allowing context switches only at low-level action
boundaries.

Objects shared among transactions must be atomic. Atomic objects provide the
synchronization and recovery mechanisms necessary to ensure that transactions are
serializable and total . Atomic objects can be mutable or immutable. Immutable
objects are always atomic because their values never change. For the purposes of
this paper we assume that the heap synchronizes access to mutable atomic objects
using standard read/write locking (i.e., shared for read, exclusive for write), and we
describe appropriate recovery mechanisms. Using the built-in types, a programmer
can build objects of user-defined atomic types [35] that exhibit greater concurrency
than the built-in atomic types with the aid of lazy nested top-level transactions [17,
32] and multi-level concurrency control [37].

A heap consists of a set of root objects and M1 the objects accessible from them.
Objects vary in size and may contain pointers to other objects. In a stable heap,
some programmer-specified roots are stable; the rest are volatile. The stable roots are
global. The stable state is the part of the heap that must survive crashes; it consists
of all objects accessible from the stable roots. The objects in the stable state must
be atomic. The volatile state does not necessarily survive crashes; it consists of all
objects that are accessible from the volatile roots, but are not part of the stable
state, e.g., objects local to a procedure invocation, objects created by a transaction
that has not yet completed, and global objects that do not have to survive crashes.

The programmer sees one heap containing both stable and volatile objects. He
can store pointers to stable objects in volatile objects, and can cause volatile objects
to become stable by storing pointers to them in an object that is already stable.
(A volatile object actually becomes stable when a transaction that makes it ac-
cessible from a stable object commits.) Transactions share a single address space
that contains both shared global objects and objects local to a single transaction;
the programmer does not need to move objects between secondary storage and a
transaction's local memory, or distinguish between local and global objects.

For the purposes of this paper we assume that all of the roots of the heap are
stable. The first author's dissertation [20] shows how to deal with volatile state.

2.2 I m p l e m e n t a t i o n P l a t f o r m

Our design is for conventional hardware - stock uniprocessors with virtual memory
No special-purpose hardware to support recovery or garbage collection is assumed.

The design requires an operating system that allows a program some control
over the virtual memory system. Primitives are needed to control when a page of
virtual memory can be written to the backing store and to set protections on pages.
The ability to preserve the backing store for virtual memory after a crash is also
required. Mach [30] satisfies these requirements; for the prototype we ported Argus
to run under it.

369

3 Recovery and Failure Model

Below we describe the storage architecture for a stable heap, the failure model,
recovery, and optimizations to recovery.

3.1 S t o r a g e A r c h i t e c t u r e

A recovery system provides fault-tolerance by controlling the movement of data
between the levels of a storage hierarchy. In a typical database there are four com-
ponents in the hierarchy: (1) main memory, (2) disk, (3) log, and (4) archive. We
assume a similar hierarchy for the design of our algorithms.

A database keeps its data on disk, which is non-volatile, and uses main memory,
which is volatile, as a cache or buffer pool. A buffer manager decides which pages to
keep in the cache; it reads pages from disk into main memory and writes modified
pages back to disk. The recovery system may constrain the buffer manager by pinning
a page in main memory; a pinned page may not be written back to disk until recovery
unpins it. For a stable heap, the main memory and disk together implement a one-
level store or virtual memory.

The log is a sequential file, usually kept on a stable storage device, to which
the recovery system writes information that it needs in order to redo the effects of a
committed transaction or undo the effects of an aborted transaction. A stable storage
device [21] is often implemented using a pair of disks; with very high probability, it
avoids the loss of information due to failure. The recovery system does not directly
write to the log on stable storage; rather, it spools information to a log buffer. When
a buffer fills, recovery writes it to disk asynchronously and begins spooling to the
next buffer. A well designed recovery system synchronously writes a buffer to stable
storage, or forces the log, only at transaction, commit when it must ensure that the
effects of the transaction survive failure, s In this paper when we say write to the log,
we mean spool to the log buffer. If we want to describe a synchronous write, we use
the phrase force the log. To distinguish the part of the log on stable storage from
the part in the log buffer, we call the former the stable log and the latter the volatile
log. When we use the word log without qualification, we mean the whole log, both
its stable and volatile parts.

The archive is an out-of-date copy of the database; it may be on disk or some
cheaper non-volatile medium such as magnetic tape.

3.2 F a i l u r e M o d e l

A recovery system deals with three kinds of failure: (1) transaction, (2) system,
and (3) media. A transaction fails when it aborts; the recovery system may use
information in main memory, on the disk, or in the log to ensure that the transaction
has no effect.

A system failure can be caused by software (e.g., inconsistent data structures in
the operating system) or hardware (e.g., power failure). When the system fails main

3 A high performance transaction system will use group commit [14] instead of forcing the
log for every transaction; this allows the buffer to fill before writing it to stable storage,
and commits many transactions at the same time.

370

memory is lost, but the disk and stable log survive. A system failure also aborts
transactions that are active when it occurs. The recovery system uses information
in the stable log and on the disk to recover the state of the heap. The recovered
heap reflects the cumulative effects of all the transactions that committed before the
failure, and none of the effects of aborted transactions. We also call a system failure
a crash.

A media failure occurs when a page or several pages of the disk get corrupted.
The recovery system uses the log together with the archive to recover the pages.

3.3 R e c o v e r y

Given the storage architecture and failure model described above, we describe a way
to do recovery, called repeating history, due to Mohan, et. al. [27]. We chose repeating
history because it is simple compared to previous recovery algorithms [4, 16, 23], and
easy to optimize.

The key to repeating history is the write-ahead log protocol, which we also call
the redo protocol. The recovery system follows the protocol for all modifications to
objects:

1. It pins the page on which the object resides in main memory. The buffer manager
may not write the pinned page to disk.

2. It modifies the object on the page.
3. It spools a record containing redo information to the log buffer. The record

contains the address at which the modification occurred and the new value.
4. At this point, the modification is complete and the protocol returns to its invoker.
5. After the redo record is in the stable log, the page is unpinned. The buffer

manager is then free to write the unpinned page back to disk.

The write-ahead log protocol ensures the following property: if a modification is
on disk, the redo record describing the modification is in the stable log. The repealing
history invariant, which simplifies recovery after a crash, follows directly from this
property:

I n v a r i a n t 3.1 (R e p e a t i n g H i s t o r y) The disk state that would be produced by ap-
plying the stable part of the redo log to the disk (i.e., carrying out each of the redo
actions in the order they are recorded in the log) is a 8tare that actually occurred at
some previous point in the computation. 4

The action of redoing the log is called repeating history.
To deal with transaction abort, the recovery system includes undo information

together with the redo information in the record it writes during the write-ahead
log protocol. The undo information may be logical, the name of an operation and
arguments to the operation, or physical, the previous state for the part of the ob-
ject that is modified. Usually logical information takes up less space in the log than

4 Formally, an invariant is a predicate on state; at first glance this statement of the repeat-
ing history invariant may not appear to be such a predicate. However, we can formalize
it by defining the redo function determined by the log, and defining a history variable
that captures the sequence of states through which the computation passes.

371

physical information. To abort a transaction, the recovery system undoes the trans-
action's updates in reverse order. Undoing an update is a modification so it follows
the write-ahead log protocol and writes a redo record describing the undo. A redo
record written by undo is called a compensatiou log record or CLR. There is no undo
information in a CLR; undo never has to be undone.

The repeating history invariant simplifies recovery after a crash. Recovery begins
by repeating history, i.e., applying the redo information in the stable log to the disk.
According to the invariant, this brings the database to a state from which it is valid
to abort the transactions that were active before the crash. 5 Then recovery completes
by using its normal method for transaction abort to abort the active transactions.

The repeating history invariant is also useful for our atomic garbage collector. In
the design of our collector, we depend on the invariant to bring the heap to a state
from which the collector can complete its work after a crash.

3.4 O p t i m i z a t i o n s

It is easy to optimize a recovery system based on repeating history, and to under-
stand why the optimizations work. LogicM undo is one such optimization. We briefly
describe two other optimizations below; both shorten recovery times after a system
failure.

First, the buffer manager writes a page-fetch record to the log each time it fetches
a page from disk into main memory, and an end-write record just after an updated
page of main memory reaches disk. These records contain the number of the page that
was read or written. Using these records, the recovery system can deduce a superset
of the pages that were dirty at the time of a system failure. When it repeats history,
it only has to apply redo records to the pages in this set.

Second, the recovery system checkpoints at regular intervals to keep the time
for recovery short. To checkpoint, it stops the system in a low-level quiescent state,
a state for which no transaction is in the middle of the write-ahead log protocol
(steps 1 - 4 of the protocol discussed in Sect. 3.3). Then it constructs and writes a
checkpoint record to the log. The record contains a list of the dirty pages at the time
of the checkpoint and for each page the log address of its last page-fetch record.
Using this information after a system failure, recovery deduces a point in the log
from which it starts repeating history. These checkpoints are cheap; they do not
require any synchronous writes, and they halt the system for very brief periods.

4 Atomic Incremental Garbage Collection

The principal requirement for our atomic garbage collector is that it be suitable for
a large heap. There are two implications: (1) the pauses associated with garbage
collection must be short enough to support interactive response times, and (2) the

Recovery is a bit more complicated for an update to an object that spans multiple pages.
For such an update the write-ahead log protocol pins all updated pages until individual
redo records describing the change to each page are in the stable log. After a crash,
recovery applies the redo records for a multi-page update only if all of its records are in
the stable log.

372

collector must interact well with virtual memory. Two general techniques have been
used to shorten garbage collection pauses: (1) incremental garbage collection [3], and
(2) dividing the heap into independently collectible areas [5]. Steps of an incremental
collector are interleaved with normal program steps such that the pause due to each
incremental step is smal l An incremental collector is also called real-time if there is
a bound on the longest possible pause. Many incremental collectors have been based
on Baker's algorithm [3], ~vhich is a copying collector.

A good division of the heap into independently collectible areas leaves few inter-
area references and places objects with similar lifetime characteristics into the same
area. For programs without persistent storage, one automatic way of dividing the
heap without programmer intervention is based on the age of objects; this is called
generational collection [22, 28, 34]. Generational collection depends on an observed
behavior of program heaps that new objects are more likely to become garbage than
old objects; it concentrates its work on the areas containing the youngest objects,
where the most storage will be reclaimed for the least amount of effort. Generational
collection might also be appropriate for persistent heaps; but this can be determined
only by studying reM workloads.

In this paper we discuss incremental collection. In the first author's disserta-
tion [20] we apply both techniques to shorten garbage collection pauses: we show
how to divide the heap into a stable area and a volatile area, and we use our atomic
incremental collector to collect the stable area.

For large heaps implemented in virtual memory, an important purpose of garbage
collection is to reorganize the heap to provide good paging performance. Reorganiz-
ing the heap requires a collector that can move objects, e.g., a copying collector.
Copying collectors can increase locality of reference and reduce paging by moving
objects that are referenced together to the same page [9, 28, 39]. 6

The other requirement for our algorithm is that it work well on stock hardware.
Without hardware assists, Baker's incremental garbage collector is expensive-it re-
quires a comparison on every heap reference. A variant of Baker's collector [6] sub-
stitutes a memory indirection for the comparison, but is still too expensive: Ellis,
Li and Appel [13] have shown how the virtual memory hardware on stock hardware
can be used to facilitate incrementM copying garbage collection with lower overhead.
Zorn [41] has suggested a similar technique, but it has a higher overhead.

We base our atomic incrementM garbage collector on the collector of Ellis, Li
and Appel (hereafter attributed to Ellis). Before describing our collector, we review
Ellis's collector, and we show how a copying collector interferes with recovery. Af-
ter describing our collector, we discuss its other interactions with recovery and its
performance.

4.1 I n c r e m e n t a l Co l l ec t ion

Ellis's collector is based on Baker's algorithm [3]. As in other copying collectors,
Baker divides memory into from-space and to-space. In one collection cycle, the

* The actual performance of these specific techniques (i.e., a measure of how much they
actually increase locMity) requires further investig~Ltion. Better ways to increase locality
may be discovered, but they will ~dso require copying.

373

collector copies the objects accessible from the roots from from-space to to-space.
As each object is copied, a forwarding pointer is inserted in its from-space copy.
Forwarding pointers preserve sharing in the object graph.

In Baker's algorithm the program doing useful computation (often called the
mutator [12]) and the collector run as coroutines subject to a synchronization con-
straint that we discuss below. The mutator calls the collector to do some work each
time it allocates a new object. When the garbage collector runs, it either s c a n s a

fixed number of locations in to-space (i.e., it converts from-space pointers in those
locations to to-space pointers, copying objects if necessary) or it f l i p s . At a flip to-
space becomes from-space, a new to-space is allocated, and the collector copies the
root objects to the new to-space. Baker's algorithm can be extended in the obvious
way to allow the collector and multiple mutators to run in separate threads.

R e a d B a r r i e r . Synchronization between the mutator and the collector depends on
the invariant that the mutator, which in the case of a transaction system includes
transactions, never sees a pointer into from-space. This invariant is established at a
flip: the root objects (i.e., those objects referenced by a register, a stack, or an own
variable) are copied to to-space, and the corresponding registers, stack locations and
own variables are updated to point to the to-space copies.

The invariant is enforced during the collection by the so-called "read barrier".
The read barrier prevents the program from seeing pointers into from-space. Baker's
implementation of the read barrier requires a comparison on every reference to the
heap.

Ellis suggests a cheap implementation of the read barrier. After the root set is
copied to to-space at a flip, the collector uses the virtual memory hardware to protect
the unscanned pages, of to-space against both reads and writes. When the program
tries to access an unscanned page, the collector fields the resulting trap and scans the
page, translating all from-space addresses on the page to the corresponding to-space
addresses. Scanned pages do not contain from-space addresses; the program never
accesses an unscanned page, so it never sees a from-space address.

Ellis's approach is cheap; it adds little to the overall garbage collection time
since there will be at most one trap per page of to-space. However, Ellis's collector
might not be as incremental as we would like. The distribution of read barrier traps
will be skewed to be very frequent just after a flip and each trap requires that a
whole page be scanned. Ellis suggests techniques for shortening the flip time and for
bounding the time taken to scan a single page. Nevertheless, the pauses for garbage
collection just after a flip might be long and frequent, thereby defeating the purpose
of incremental collection. The seriousness of this problem depends on the mutator 's
rate of access to the heap and locality of reference. Since we expect the rate of access
to a persistent heap to be low, we do not believe it will be a problem for us. We are
building a prototype tha~ will enable us to measure the length and frequency of the
pauses attr ibutable to the read barrier.

S c a n n i n g A n A r b i t r a r y Page . Ellis's algorithm requires the capability of scan-
ning an arbitrary page of to-space. This is not a problem if every memory location is

374

tagged to indicate whether or not it contains a pointer. However, tagging is expen-
sive. Instead a heap implementation may construct objects such that the first cell
contains a descriptor giving the objeet's low-level type, the objeet 's length, and the
positions of pointers in the objects. Since objects may cross page boundaries, the
collector needs an additional mechanism to scan an arbitrary page. For that purpose
it creates a data structure as it copies objects called the Last Object Table [31]. This
table is an array indexed by to-space page number; the entry for a page contains
the location of the last object on that page. To scan an arbitrary page, the collector
uses the Last Object Table to find the last object on the previous page. Then it
uses the object descriptors to parse the objects on the page, and find and scan their
pointers. 7

4.2 W h y C o p y i n g G C is n o t A t o m i c

Copying garbage collection is not atomic for several reasons. First, a copying col-
lector modifies from-space by inserting forwarding pointers in objects, and to-space
by copying and scanning objects. We assume that the object does not have an ex-
tra cell to hold the forwarding pointer; thus, the pointer overwrites a cell of the
object. Second, the collector moves objects, changing their addresses. We discuss
these two problems below; they were first described in a report on our previous re-
search [18, 19]. We describe solutions to the problems in Sect. 4.3. There are also
other interactions between the collector and the recovery system; we describe them
in Sect. 4.4.

M o d i f i c a t i o n s t o O b j e c t s . As a copying collector modifies from-space and to-
space, the pages of virtual memory are paged into volatile main memory and out to
disk by the buffer manager. A crash can easily leave the contents of the disk in an
inconsistent state. The following two examples show the kinds of problems that can
occur and that must be avoided by an atomic collector.

The first example, illustrated in Fig. 1, shows that forwarding pointers can be
lost. If an object is copied, but its forwarding pointer does not survive the crash,
then recovering on the basis of information already copied to to-space would not
preserve the sharing in the graph of accessible objects. Suppose the copying of the
object graph in Fig. 1.a were interrupted by a crash after objects A, B, and C had
been copied to to-space, but before the pointer to object C from object B had
been replaced by a to-space pointer. Figure 1.a shows virtual memory just before
the crash. Figure 1.b shows a possible state of the disk after the crash. The crash
occurred after pages 1 and 2 of from-space and pages 1 and 2 of to-space had been
written to disk, but before page 3 of from-space had been written. The forwarding
pointer for object C has been lost, even though the object has already been copied
to to-space.

7 In place of the Last Object Table, Ellis suggests using a crossing map, a bitmap that
contains a bit for each page of to-space. The bit is set if an object crosses the boundary
at the beginning of a page. To make sure that there are pages for which the bit is not set,
the allocator may waste space at the end of some pages. Using the Last Object Table,
the first object on an arbitrary page can be found faster, and the space taken by the
table is likely less than the wasted space in Ellis's scheme.

375

_

P

1

From-space

A
G
E

3

A
G
E
2

~ . ~ . . ~ ~ p

I G
E
1

I

To-space

1.a: Virtuad Memory Before a Crash

P

3

P
A
G ~ ~

2

P
A
G
E

From-space

A
G
E
3

P

G
E

2

A
G
E

1

To-space

1.b: Disk Just After Crash

Fig. 1. Lost Forwarding Pointer

The second example, illustrated in Fig. 2, shows that the contents of the cell
overwritten by the forwarding pointer can be lost. Figure 2.a shows an object copied
from from-space to to-space; a forwarding pointer was placed in the from-space copy.
The forwarding pointer overwrites a cell of the from-space copy. The page of from-
space on which the old object version resides is then written to disk. Figure 2.b
shows what happens if the system crashes before the new version in to-space reaches
the disk. The disk will not contain a valid version of the object after the crash. A cell
of the object has been overwritten with a forwarding pointer, and is not available
on the backing store for from-space. Neither is it available on the backing store for
to-space.

The example in Fig. 2 also shows that not all forwarding pointers are valid after

376

P
A
G
E

I
I

From-space To-space

2.a: Virtual Memory Just Before Crash

From-space

P

G

, I

To-space

2.b: Backing Store After Crash

Fig. 2. Lost Object Descriptor

a crash; in Fig. 2.b there is no object at the forwarding address. If the collector were
to be restarted after a crash, object A would never be recopied to to-space.

Approach. In our approach the atomic garbage collector runs below the level of user
transactions and provides for its own recovery. (It cannot run as a series of user level
transactions because that could lead to deadlock.) A user transaction consists of
low-level read, update and allocate actions. To allow atomic garbage collection, we
add two additional types of low-level actions: copy actions and scan actions. A copy
action copies a single object from from-space to to-space. A scan action scans a single
page of to-space. In Sect. 4.3 we show how to make these new actions recoverable
using the redo protocol and in Sect. 4.4 how to handle their synchronization with
read, update, and allocate actions.

M o v e m e n t o f O b j e c t s . A copying garbage collector moves objects. However, the
recovery system records values for objects in the log and these values contain the
names of other objects. This leads to a naming problem: what names should the
recovery system use in its log to refer to objects? There are two requirements on the
solution: (1) the identity of an object must be preserved across garbage collections,
and (2) the recovery system needs to find objects on disk after a failure.

Approach. There are two approaches to solving the naming problem: (1) the unique
object identifier (UID) approach and (2) the virtual address approach. When an
object value is written to the log using the UID approach, the pointers in it to other
objects are replaced by the UIDs of those objects. For fast recovery from system
crashes, the UID approach requires that a map of UIDs to virtual addresses also
be available (either in the log or in virtual memory) so that objects on disk can be
found.

377

In contrast, when an object value is written to the log using the virtual ad-
dress approach, pointers in it to other objects remain unchanged. For recovery from
media failure, the virtual address approach requires that translation information re-
lating object addresses before a garbage collection to addresses after a collection be
written to the log. Depending on the recovery algorithms, some of this translation
information may also be required for system crashes.

4.3 Making Copying Garbage Collection Atomic

After a failure during garbage collection, it is sufficient that the system be able to
complete the interrupted garbage collection. This requires that the recovery system
be able to restore the heap to a state from which the garbage collection can be
completed. This is exactly what the redo protocol does; its repeating history invariant
guarantees that the state reached by applying the redo log to the disk is an actual
state from the history of the system.

A copying collection consists of copy and scan actions. We show how to apply
the redo protocol to make these actions recoverable.

Copy Action. A copy action makes two modifications to memory: it inserts a for-
warding pointer in an object in from-space, and it copies that object to to-space.
Thus a naive application of the redo protocol would pin at least two pages (the
from-space page of the forwarding pointer and the to-space page of the copied ob-
ject) and it would write two redo records to the log. The redo record describing the
modification to to-space would contain the value of the object, so that the whole
object graph would be written to the log during the course of a collection.

To optimize the copy action we require that the recovery system be able to
recover from-space after a crash to its state at the last flip, except for the from-
space cells overwritten by forwarding pointers. The recovery system described in
Sect. 3 satisfies this requirement. In addition we ensure that the cells overwritten by
forwarding pointers are recoverable from the redo information we write to the log
for the copy: Since transactions do not modify from-space after a flip except for the
forwarding pointers, we can redo a copy by re-copying the object from from-space
to to-space and taking the cell overwritten by the forwarding pointer from the log.
Below we describe this optimized copy action; it requires only one page to be pinned
and writes small records to the log. Then we argue its correctness.

Here is the optimized copy action.

1. Pin the from-space page of the object cell that will be overwritten by the for-
warding pointer.

2. Copy the object to to-space and insert a forwarding pointer in its from-space
copy.

3. Spool a copy record to the log. The copy record contains the from-space ad-
dress of the object, the to-space address of its copy, and the contents of the cell
overwritten by the forwarding pointer.

4. The copy action is over and the collector can continue.
5. When the copy record is physically in the log, unpin the from-space page.

378

Allocated by Mutators
(does not require scanning)

... - 9 1 - - - - - n e w pointer

... ~ copy pointer

Copied by Garbage Collector
(requires scanning)

Fig. 4. Layout of To-space

to the argument: (1) the forwarding pointer in from-space is recovered correctly, and
(2) the object in to-space is recovered correctly. The first part is trivial because the
redo protocol guarantees correct recovery of the forwarding pointer.

To argue the second part, we rely on the repeating history invariant. After the
flip, the only modification to the from-space copy of an object is the insertion of a
forwarding pointer by a copy action of the collector. Thus, if we apply the redo log
to the disk (i.e., repeat history) up until the point in the log where the flip occurred,
the from-space object is recovered to the same state as at the time of the flip except
for the cell containing the forwarding pointer. As we continue to repeat history from
the time of the flip until the copy record, the from-space object does not change.
Thus, when we redo the copy, the correct value of the object is in from-space except
for the cell overwritten by the forwarding pointer. We recover the value for this cell
from the copy record.

Because of the dependenc e on from-space for the value of an object that needs
to be recopied, disk storage for the from-space object cannot be discarded until the
to-space copy has reached disk. This means that the disk storage for from-space
must be kept until both (1) the garbage collection is complete, i.e., all accessible
objects have been copied to to-space, and (2) every to-space copy has reached disk.
The discussion of the scan action will show that this condition must be made even
stronger.

Scan A c t i o n . A scan action scans a unit of to-space, looks for pointers into from-
space, and converts them into to-space pointers. The unit could be a single location,
an object, or a page. The page is the best unit for two reasons: (1) it is the unit
updated on disk atomically, so it is the natural unit of recovery, and (2) it is the unit
of synchronization for Ellis's incremental garbage collection algorithm. Choosing a
unit larger than a page would make the collector less incremental.

A scan action is made recoverable using the redo protocol. The redo protocol pre-
vents the problem of los t forwarding pointers mentioned in Sect. 4.2, i.e., it prevents
a to-space pointer to a copied object from reaching disk until the forwarding pointer

379

for the object is recoverable. However, a naive application of the redo protocol writes
a redo record containing the entire scanned page and would lead to the entire object
graph being written to the log, as in the case of the unoptimized copy action.

We optimize the scan action in two stages. First we replace its redo record by a
scan record that contains just the address of the scanned page. Then we eliminate
the scan record altogether.

First Optimization. Here is the optimized scan action.

1. Pin page to be scanned.

2. Scan page and update its from-space pointers to to-space pointers, copying ob-
jects as necessary using copy actions.

3. Spool a scan record containing the address of the page.

4. The scan action is over and the collector can continue.

5. Unpin the page.

Figure 5 shows the effects of a scan action. Figure 5.a shows virtual memory after
page 1 has been scanned. Figure 5.b shows the scan record for page 1 in the log.
Notice that copy records for objects A, B, and C precede the scan record.

P

G

E

3

P

A

G ~

2

P

G

1

F r o m - s p a c e

A

P
A
G
E
3

P

P

J
E

,11

T o - s p a c e

1
i,, |11 ,H

5.a: Virtual Memory

.

5.b: Log Showing Scan Record

S c a n

page 1

Fig. 5. The Scan Action

380

The address of the scanned page is sufficient to make the scan action repeatable.
By the time the scan record has been written to the log, there are copy records in
the log for all objects referenced by pointers on the scanned page. Tha t means that
when the redo log is applied to the disk, all of these objects will be copied to the
same place in to-space, and their forwarding pointers will be the same as when they
were first copied. Therefore when the page is re-scanned, all of its pointers will be
assigned the same values that they were assigned during the first scan.

Since the repeatability of the scan action depends on forwarding pointers in from-
space, from-space cannot be discarded until both the garbage collection is complcte
(every page of to-space has been scanned), and every scanned page has reached disk.
The writing of scanned pages to disk does not need to occur synchronously; rather,
the garbage collector informs the buffer page manager as it scans each page. Then
the buffer page manager can schedule the writes according to its own policies. The
buffer page manager must also provide an operation that allows the collector to
check if all of the scanned pages have been written.

Second Optimization. As a further optimization, we eliminate the spooling of the
scan record in Step 3 above. In the absence of a scan record, we unpin the scanned
page when copy records for all of the objects copied during the scan are in the log.
In addition the buffer page manager includes an indication that the page has been
scanned in the next end-write record it writes for the page.

For repeatability of the scan we depend on the copy records for objects copied
during the scan, the redo record for the first update to an object on the scanned
page, and the end-write record. The read barrier ensures that the redo record for the
update action will not be written to the log until the page of the updated object has
been scanned, and the scan action ensures that the scanned page will not reach disk
before the copy records on which it depends are in the log. Thus, to repeat history
we repeat the scan of the page just before redoing the first update to the page. If
there is an end-write record for a scanned page, we avoid repeating the scan because
the end-write record indicates.that the page reached disk.

S c a n n i n g An A r b i t r a r y Page . To allow the scanning of an arbitrary page of to-
space after a crash, the Last Object Table must also be recoverable. Fortunately, the
copy records contain sufficient information to recover the table. The collector keeps
the table in the stable heap. When repeating history the copy records act as redo
records for the table.

M o v e m e n t o f O b j e c t s . The information written to the log to solve the modifica-
tion problem solves the naming problem caused by the movement of objects. Each
copy record contains a from-space, to-space address pair for an object. There is one
copy record for each accessible object. This is precisely the translation information
required by the virtual address approach to solving the naming problem.

Size o f C o p y R e c o r d s . Assume that a pointer takes up four bytes. Tha t means
that the overhead for a copy record is greater than 12 bytes, four bytes for each
component plus the extra overhead to delineate the record and indicate its type.

381

P
A ~ V - - - - G
E
1

1~om-space To-space

3.a: Virtual Memory

7 : I
address oI i of ob'ect I~ cell

object L J i]

3.b: Log Showing Copy Record

Fig. 3. The Copy Action

P
A
G
E
1

Figure 3 illustrates the copy action.
First we show that the pinning optimization is correct, i.e., that only a single

page has to be pinned. It is easy to ensure that the cell in from-space overwritten
by the forwarding pointer resides entirely on a single page - - always overwrite the
first cell of the object and during allocation make sure that the first cell of an object
never crosses page boundaries. Thus, only one from-space page needs to be pinned
even if the object spans more than one page.

The to-space pages to which an object is copied do not need to be pinned. The
redo protocol pins pages to prevent partial modifications from reaching disk. Howev-
er, we can mask partial modifications to to-space by the copy action without pinning
pages. Following Baker we assume that the collector copies objects contiguously to
the low part of to-space and allocates by adding to a copy pointer; the mutator allo-
cates objects contiguously in the high part of to-space and allocates by subtracting
from a new pointer (illustrated in Fig. 4). Since the collector writes copy records to
the log in the order in which it copies objects, the copy pointer can be recovered
after a crash by looking at the last copy record in the stable log. Any partial mod-
ifications to to-space by copy actions whose copy records did not reach the log are
at addresses greater than the copy pointer. Thus, these modifications will never be
observed.

Next we show how to repeat the copy action using the information in the copy
record.

1. Using the from-space address of the object and the to-space address of the object
from the copy record, reinsert the forwarding pointer in from-space.

2. Re-copy the object from the from-space address in the record to the to-space
address.

3. Take the contents of the cell overwritten by the forwarding pointer from the copy
record and write it to its place in the to-space copy of the object.

Finally we argue that the repeat of the copy action is correct. There are two parts

382

This is high for small objects such as a cons cell in Lisp or a variant in Argus
(both are eight bytes). The importance of this issue depends on two factors: (1)
the frequency of small objects compared to larger objects, and (2) the overhead of
writing to the log. If there are few small objects, the total sp&ce taken up by copy
records in the log will be minor. If the overhead for writing is low, the extra overhead
for copy records will be tolerable.

A further optimization would reduce the log space taken by copy records: a block
copy action copies a group of objects consecutively to to-space and writes a single
block copy record to the log. To satisfy the redo protocol, the action pins all of the
from-space pages modified by the objects' forwarding pointers until the record is in
the stable log. The record contains the number of objects copied, the from-space
address and old contents of the cell overwritten by the forwarding pointer for each
object copied, and the to-space address of the first object copied. By re-copying the
objects in the same order after a crash, recovery can deduce the to-space addresses of
the remaining objects. A natural unit of blocking would be all of the objects copied
during the scan of a single to-space page.

4.4 O t h e r I n t e r a c t i o n s W i t h R e c o v e r y

In the previous sections we described the modification and movement problems and
our solutions to them. Here we describe three other interactions between garbage col-
lection and recovery: (1) synchronization between the garbage collector, the transac-
tion system and recovery, (2) roots in the recovery information, and (3) fast recovery
for a system failure during garbage collection.

S y n c h r o n i z a t i o n . Because the collector moves and modifies objects it must be
synchronized with the transaction system. Since it writes recovery information to the
log, it also has to be synchronized with the recovery system. This synchronization has
to be cheap. First we describe synchronization with transactions; then we describe
synchronization with the recovery system.

Synchronization With Transactions. Each transaction is a sequence of elementary
actions that read, update, and allocate individual objects. Our approach to synchro-
nization with transactions is to require that a flip occur in an action-quiescent state.
The system is action-quiescent when no elementary action is in progress. Since the
elementary actions are short, a flip is not significantly delayed by waiting for an
action-quiescent state. Given that a flip occurs in an action-quiescent state, the read
barrier ensures that a copying or scanning action of the atomic incremental garbage
collector only observes an object in an action-c0nsistent state.

The correctness of the above approach can be seen by viewing the system as a
multi-level transaction system with two levels [36]. At the high level, there are user
transactions; at the low level, there are elementary actions: update, read, allocate,
copy, and scan. A user transaction is made up of a sequence of read, update, and
allocate actions. The garbage collector uses copy and scan actions.

At the level of transactions, a transaction obtains read and write locks that it
holds for its duration. These locks ensure serializability at the transaction level.

383

At the level of actions, a synchronization mechanism ensures that only one action
accesses a given object at a time, so that an action always observes a consistent
object state. Since the garbage collection actions do not change the abstract values
of objects, they are invisible to the transaction level: an object can be copied or
scanned even while a transaction holds a write lock.

In the approach described above, synchronization' between garbage collection
actions and the other low-level actions is implemented cheaply by the read barrier.
At a flip the collector obtains a "lock" for every stable object at once by protecting
the unscanned pages of to-space. As each page of to-space is scanned, the "locks"
for the objects in it are released by changing its protection. Restricting flips to occur
in an action-quiescent state ensures that the collector obtains the "locks" at an
appropriate time.

Synchronization With the Recovery System. Because the collector writes to the log,
we must ensure that a garbage collection trap cannot occur inside a procedure of
the recovery system when it is in the middle of writing a record to the log. If it did,
the log would not be readable after a crash. A general solution for this problem is to
have the recovery system construct an entire record in memory outside of the heap
and then copy the record to the log buffer which is also outside of the heap. Clearly
no trap can occur while the record is being copied.

R o o t s fo r G a r b a g e C o l l e c t i o n in R e c o v e r y I n f o r m a t i o n . Because the collec-
tor runs while transactions are active, it must be careful to account for the modifi-
cations made by active transactions to ensure that no objects are lost. For example,
suppose a stable object A contains a pointer to object B, and that B is not acces-
sible from any other object. Now suppose that a transaction T modifies A to point
instead to some object C. If T aborts, the pointer to B should be restored, while i f T
commits, the pointer to C should be installed permanently, and B becomes garbage.
Suppose a collection takes place after T has modified A, but before it commits or
aborts. If T modified A directly, and the collector does not look at undo information,
the storage for B will be reclaimed. If T then aborts, there is no way to restore the
heap to its original state.

To solve this problem, the collector must use the redo and undo information main-
tained by the recovery system for active transactions in determining which objects
are accessible. An object must be considered accessible if (1) it is directly accessible
from the stable root; (2) it is directly accessible from undo or redo information for
an active transaction that has modified some other accessible object; or (3) it is
accessible from some other accessible object.

Since our system updates objects directly, the latest redo information for an
object is reflected in the state of the object in the heap, so the collector can ignore
redo information. However, the collector cannot ignore undo information in the log
records for active transactions. Reading the log during collection to find the records
for active transactions can be expensive. We show how to avoid this expense in the
first author's dissertation [20].

Fas t R e c o v e r y E v e n i f a C r a s h Occu r s D u r i n g G a r b a g e Co l l ec t i o n . Even
if a crash occurs in the middle of a collection, the time for recovery should be short

384

and independent of heap size. Fast recovery depends on the checkpoints and other
optimizations of the recovery system.

The copy and scan actions of the atomic incremental garbage collector have been
made atomic using the redo protocol. Therefore the optimizations that work for
repeating history and the redo protocol, checkpoints and end-write records, continue
to work for the atomic garbage collector. By increasing the frequency of checkpoints,
and the frequency at which dirty pages are written back to disk, the time for recovery
can be shortened.

In particular, if there is an end-write record in the log for a scanned page, that
page does not have to be rescanned during recovery. If there is a copy record for an
object in the log and there is also an end-write record for the page of from-space
holding the object's forwarding pointer, the forwarding pointer does not have to be
reinserted during recovery. If there is a copy record for an object in the log and there
is also an end-write record for the page(s) of to-space to which the object has been
copied, the object does not have to be recopied during recovery.

5 O t h e r R e c o v e r y S y s t e m s

In this paper we showed how to make an incremental collector atomic by dividing
its work into copy and scan actions. We made the copy and scan actions recoverable
using the redo protocol. In Section 3 we described an approach to recovery based on
repeating history. Our collector was designed with this recovery system in mind, but
the collector can also be incorporated into other recovery systems. We summarize
the constraints imposed by our collector on the recovery system by stating some of
the invariants that it must maintain.

1. From-space can be recovered to its state at the time of the last flip (using the disk
and the log), with the exception of the cells that were overwritten by forwarding
pointers.

2. The cell that gets overwritten by a tbrwarding pointer is on the disk for from-
space or it is in a copy record in the log.

3. The disk backing store for from-space is available until the garbage collection is
complete and every scanned page has reached disk.

In the first author's dissertation [20] we provide a complete description of a recovery
system that meets these constraints.

6 C o n c l u s i o n

A major goal in the design of any computer system is to achieve the required func-
tionality at the minimum cost. For recovery systems, this means that we would like
to pay a minimal run-time cost in order to ensure that the state can be recovered
quickly after a crash. The repeating history recovery algorithm and its accompanying
redo protocol have been designed with this goal in mind.

To keep the run-time cost of recovery low, designers of recovery systems

1. avoid random synchronous writes ~ to disk by writing to a log,

385

2. avoid synchronous writes to the log except for transaction commit,
3. and minimize writing to the log.

By basing the atomic garbage collector on the redo protocol, we avoided synchronous
I /O to disk and the log. Then we optimized the protocol for the copy and scan steps
to minimize writing to the log.

Our atomic garbage collector never delays itself or transactions because it is
waiting for the completion of a synchronous write to disk or to the log. In comparison,
Detlefs [11] focused on minimizing Writing to the log; as a result his concurrent
atomic garbage collector requires both random synchronous writes to the disk and
synchronous writes to the log.

We have completed the implementation of a stable heap prototype. In the future
we plan to measure the prototype. Unfortunately, the Argus implementation is itself
a prototype and has few users. Thus, we would also like to incorporate our atom-
ic incremental collector into an object-oriented database (OODB). An OODB will
provide a better platform for testing our algorithm.

R e f e r e n c e s

1. A. Albano, L. Cardelli, and R. Orsini. A Strongly Typed Interactive Conceptual Lan-
guage. A CM Transactions on Database Systems, 10(2):230-260, June 1985.

2. M. P. Atldnson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An
Approach to Persistent Programming. The Computer Journal, 26(4):360-365, 1983.

3. Henry Baker. List Processing in Real Time on a Serial Computer. Communications o]
the ACM, 21(4):280-294, April 1978.

4. Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Publishing Company, Reading,
Ma., 1987.

5. Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage
Collection. Technical Report MIT/LCS/TR-178, Laboratory for Computer Science,
MIT, Cambridge, Ma., May 1977.

6. Rodney A. Brooks. Trading Data Space for Reduced Time and Code Space in Real-
Time Garbage Collection on Stock Hardware. In Proceedings 1984 ACM Symposium
on Lisp and Functional Programming, pages 256-262, 1977.

7. Alfred Brown and John Rosenberg. Persistent Object Stores: An Implementation Tech-
nique. In Alan Dearie, GaJl M. Shaw, and Stanley B. Zdonik, editors, lmplementin 9
Persistent Object Bases: Principles and Practice/The Fourth International Workshop
on Persistent Object Systems, pages 199-212. Morgan-Kaufmann Publishers, San Ma-
teo, California, 1990.

8. M. Carey, D. DeWitt, J. Richardson, and E. Sheikta. Object and File Management in
the EXODUS Extensible Database System. In Proceedings of the 12th International
Con/erence on Very Large Databases, August 1986.

9. Robert Courts. Improving Locality of Reference in a Garbage-Collecting Memory
Management System. Communications of the ACM, 31(9):1128-1138, September 1988.

10. David Detlefs, Maurice Herlihy, and Jeannette Wing. Inheritance of Synchronization
and Recovery Properties in Avalon/C++. IEEE Computer, 21(12), December 1988,

11. David L. Detlefs. Concurrent, Atomic Garbage Collection. Technical Report CMU-
CS-90-177, Department of Computer Science, Carnegie Mellon University, Pittsburgh,
Pa., October 1990.

386

12. Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Stef-
fens. On-the-Fly Garbage Collection: An Exercise in Cooperation. Communications
of the ACM, 21(11):966-975, November 1978.

13. John R. Ellis, Kal Li, and Andrew W. Appel. Real-time Concurrent Collection on
Stock Multiprocessors. Technical Report 25, Systems Research Center, Digital Equip-
ment Corporation, Polo Alto, Ca., February 1988.

14. D. Gawlick and D. Kinkade. Varieties of Concurrency Control in IMS/VS Fast Path.
Database Engineering, 8(2):63-70, June 1985.

15. James N. Gray. Notes on Database Operating Systems. In R. Bayer, R. M. Graham,
and G. Seegmuller, editors, Operating Systems-An Advanced Course, volume 60 of Lec-
ture Notes in Computer Science, pages 393-481. Springer-Verlag, New York, 1978.

16. Theo Haerder and Andreas Reuter. Principles of Transaction-Oriented Database Re-
covery. ACM Computing Surveys, 15(4):287-317, December 1983.

17. Maurice P. Herlihy and Jeannette M. Wing. Avalon: Language Support for Reliable
Distributed Systems. In Proceedings o/the Seventeenth International Symposium on
Fault- Tolerant Computing, July 1987.

18. Elliot Kolodner, Barbara Liskov, and William Weild. Atomic Garbage Collection:
Managing a~ Stable Heap. In Proceedings o/ the 1989 ACM SIGMOD International
Conference on the Management o/Data, pages 15-25, June 1989.

19. Elliot K. Kolodner. Recovery Using Virtual Memory. Technical Report MIT/LCS/TR-
404, Laboratory for Computer Science, MIT, Cambridge, Ma., July 1987.

20. Elliot K. Kolodner. Atomic Incremental Garbage Collection and Recovery for a Large
Stable Heap. Technical Report MIT/LCS/TR-534, Laboratory for Computer Science,
MIT, Cambridge, Ma., February 1992.

21. Butler. W. Lampson. Atomic Transactions, volume 105 of Lecture Notes in Computer
Science, pages 246-265. Springer-Verlag, New York, 1981. This is a revised version
of Lampson and Sturgis's unpublished Crash Recovery in a Distributed Data Storage
System.

22. Henry Lieberman and Carl Hewitt. A Real-Time Garbage Collector Based on the
Lifetimes of Objects. Communications o/the ACM, 26(6):419--429, June 1983.

23. B.G. Lindsay, P.G. Selinger, C. Galtieri, J .N. Gray, R.A. Lorie, T . G . Price,
F. Putzolu, I. L. TraJger, and B. W. Wade. Notes on Distributed Databases. Tech-
nical Report RJ2571, IBM Research Laboratory, San Jose, Ca., July 1979.

24. Barbara Liskov. Overview of the Argus Language and System. Programming Method-
ology Group Memo 40, Laboratory for Computer Science, MIT, Cambridge, Ma.,
February 1984.

25. Barbara Liskov, Paul Johnson, and Robert Scheifler. Implementation of Argus. In
Proceedings of the Eleventh Symposium on Operating Systems Principles, November
1987.

26. David Maier, Jacob Stein, Allen Otis, and Alan Purdy. Development of an Object-
Oriented DBMS. In Proceedings of the Object-Oriented Programming Systems, Lan-
guages and Applications, pages 472-482, November 1986.

27. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. A Transaction Recov-
ery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-
Ahead Logging. Technical Report RJ6649~ IBM Almaden Research Center, San Jose,
Ca., January 1989.

28. David Moon. Garbage Collection in a Large Lisp System. In Proe. of the 1984 Sym-
pc, slum on Lisp and Functional Programming, pages 235-246, 1984.

29. Brian Old, Barbara Liskov, and Robert Scheifler. Reliable Object Storage to Sup-
port Atomic Actions. In Proceedings of the Tenth Symposium on Operating Systems
Principles, pages 147-159, December 1985.

387

30. Richard F. Raslfid. Threads of a New System. Unix Review, 4(8):37--49, August 1986.
31. Mark Reinhold. Personal communication.
32. Alfred Z. Spector, J. J. Bloch, Dean S. Daniels, R. P. Draves, Daniel Duchamp, Jef-

frey L. Eppinger, S. G. Menees, and D. S. Thompson. The Camelot Project. Database
Engineering, 9(4), December 1986.

33. Satish M. Thatte. Persistent Memory: A Storage Architecture for Object-Oriented
Database Systems. In U. Dayal and K. Dittfich, editors, Proceedings of the Interna-
tional Workshop on Object-Oriented Databases, Pacific Grove, CA, September 1986.

34. David Ungar. Generation Scavenging: A Non-disruptive High Performance Storage
Reclamation Algorithm. In A CM SIGSOFT/SIGPLAN Practical Programming Envi-
ronments Conference, pages 157-167, April 1984.

35. William Weihl and Barbara Liskov. Implementation of Resilient, Atomic Data Types.
A CM Transactions on Programming Languages and Systems, 7(2):244-269, April 1985.

36. Gerhard Weikum. A Theoretical Foundation of Multi-Level Concurrency Control.
In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on the Principles of
Database Systems, pages 31-42, Cambridge, Ma., March 1986.

37. Gerhard Weikum. Principles and Realization Strategies of Multilevel Transaction Man-
agement. ACM Transactions on Database Systems, 16(1), 1991.

38. Daniel Weinreb, Neal Feinberg, Dan Gerson, and Charles Lamb. An Object-Oriented
Database System to Support an Integrated Programming Environment. Submitted for
publication, 1988.

39. Paul R. Wilson, Michael S. Lain, and Thomas G. Moher. Effective "Static-graph" Re-
organization to Improve Locality in Garbage-Collected Systems. In Proceedings of the
ACM SIGPLAN '91 Conference on Programming Language Design and Implementa-
tion, pages 177-191, June 1991.

40. Stanley Zdonik and Peter Wegner. Language and methodology for object-oriented
database environments. In Proceedings of the 19th Annual Hawaiian Conference on
Systems Science, January 1986.

41. Benjamin G. Zorn. Comparative Performance Evaluation of Garbage Collection Al-
gorithms. Technical Report UCB/CSD 89/544, Computer Science Division (EECS),
University of California, Berkeley, Ca~fornia, December 1989.

This article was processed using the I~TEX macro package with LLNCS style

Incremental Collection of Mature Objects*

Richard L. Hudson 1 and J. Eliot B. Moss 2

1 University Computing Services
University of Massachusetts
Amherst, MA 01003, USA

hudson@cs.umass.edn
2 Object Systems Laboratory

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

moss@cs.umass.edu

AbstracL We present a garbage collection algorithm that extends generational scav-
enging to collect large older generations (mature objects) non-disruptively. The al-
gorithm's approach is to ptucess bounded-size pieces of mature object space at each
collection; the subtleties lie in guaranteeing that it eventually collects any and all
garbage. The algorithm does not assume any special hardware or operating system
support, e.g., for forwarding pointers or protection traps. The algorithm copies objects,
so it naturally supports compaction and reclustering.
Keywords: clustering, compaction, copying collection, garbage collection, garbage
collector toolkits, generation scavenging, incremental collection, mature objects, non-
disruptive collection.

1 Introduction

Generational garbage collection is very effective at reducing total garbage collection time.
The majority of the collections are also non-disruptive. However, as good as generational
collectors are, they can still be disruptive when the larger, older generations need to be
collected. To collect these older objects in a non-disruptive manner, we present an algorithm
that has the following properties:

Incremental: The maximum number of bytes moved at each incremental collection is small.
Compaction and Clustering: The algorithm supports compaction and reclustering of objects

via copying.
Efficient Implementation: The algorithm can be implemented on stock hardware and does

not rely on operating system features such as protected pages.

Bishop [Bishop, 1977] discussed how related objects should be placed in the same area
and references into these areas should be handled by a level of indirection so that each area
could be collected independently of other areas. Our algorithm borrows heavily from his
conceptual work describing areas that hold related objects. Our contribution is to show how
this can be used to create a collector with the above characteristics.

* This project is supported by National Science Foundation Grant CCR-8658074 and by Digital
Equipment Corporation and Apple Computer.

389

In Section 2 we discuss the problem of collecting older generations holding mature
objects and review some recent work in the area. In Section 3 we give an overview of
the collector. Section 4 presents our algorithm, while Section 5 shows an example of how
the algorithm works. Section 6 describes how to extend the algorithm to handle a potential
problem. Finally, Section 7 discusses some furore extensions to support additional techniques
that mitigate the disruptive behavior of garbage collection.

2 The Problem and Some History

This paper addresses the problem of collecting older objects incrementally, in the context
of a copying, scavenging collector. We insist on copying in order to support compaction
and clustering (e.g., hierarchical decomposition [W-dson et al., 1991]). Because copying
collectors move objects, we assume the safety property that all pointers (and pointer derived
quantifies) can be found and updated appropriately (see, e.g., [Diwan et al., 1992]).

Pieces of the problem of doing garbage collection non-disruptively have been worked
on for years. In this section, we will review some of these attempts and discuss some of their
drawbacks.

Baker [Baker, 1978] discussed the problem of constructing a non-disruptive garbage
collector. His solution was a modification of a stop-and-copy algorithm first discussed by
Fenichel and Yochelson [Fenichel and Yochelson, 1969]. Baker used a read barrier that
trapped all reads of old objects and then copied the objects or utxlated the pointers to moved
objects. White [White, 1980] suggested that collecting unre~hable objects was not as much
of a problem as improving the locality of reference of live objects, and proposed a scheme that
improved locality of reference of running programs but that collected unteachable objects
off-line. Both Baker and White assumed special pointer forwarding hardware support for
their algorithms.

Lieberman and Hewitt [Lieberman and Hewitt, 1983], Moon [Moon, 1984], and Ungar
[Ungar, 1984] all presented algorithms that reduced the running lime required by most
garbage collections by focusing attention on the youngest and most volalile generations of
objects. Lieberman and Hewitt relied on special hardware and a Baker-style algorithm to
achieve incremental performance. Moon also relied on the Lisp machine hardware to provide
a read barrier. Ungar was concerned only with young objects, and collected older objects
"off-line". This work made the time to perform most garbage collections reasonable and
the majority of collections non-disruptive. The drawback was the large cost and disruption
when large old generations needed to be collected.

Appel, Ellis, and Li [Appel et al., 1988] suggested collecting on stock hardware by using
read-protected or no-access pages in older generations: when a page is touched, it is scanned
and all pointers to moved objects are updated. For efficiency their algorithm depends on
two properties. First, the algorithm requires a fast protection fault reflection mechanism.
Providing such a fast mechanism may require modifying the operating system. Second,
the algorithm requires high k~ality of reference in the application being run. Without this
property, tim scanning resulting from touching several pages shortly after a collection would
make collection effectively disruptive.

Boehm [Boehm et al., 1991] showed how collectors could be made "mostly parallel" in
the trace phase of a collector. His algorithm also relies on using the page trap hardware and
operating system support to do bookkeeping during the mark phase. This choice reduces the
amount of mutator cooperation needed.

390

The Lisp Machine [Weinreb and Moon, 1981] demonstrated how linked lists could be
compacted using cdr-coding. Wilson [Wilson et al., 1991] showed how hierarchical decom-
position could also be used to compress data, in addition to improving locality of reference.
W'flson's scheme is similar to Moon's "approximately depth-first" algorithm [Moon, 1984]
and demonstrates the gains in locality that can be made by reclustering items based on
their reachability path characteristics. Unfortunately, mutation of objects requires periodic
reclustering. To allow this reclustering and compaction, the objects need to be moved and
pointers to the moved objects updated appropriately.

Lang [Lang and Dupont, 1987] showed how the incremental compaction of a large heap
can be done using a hybrid mark/sweep and copying collector. The algorithm copies as much
of the heap as there is contiguous free space during each collection thus compacting some
portion of the heap. The remaining live objects are not copied. Dead objects in arras where
live objects were not evacuated are marked and placed on a free list along with the large
evacuated area. This process incrementally continues until the entire heap is compacted.
This algorithm requires that all live objects be inspected and possible updated during each
pass of the collector. Such romping through memory becomes disruptive as the heap grows
large enough to affect the cache and virtual memory mechanisms.

Wilson [Wilson and Moher, 1989] tries to make his collector non-disruptive using tem-
poral opportunism, a technique that tries to hide long garbage collection by piggy-backing
onto long computations or onto long interactive pauses. Hayes lHayes, 1991] suggested key
object opportunism, which monitors key objects, When a key object become unreachable,
one attempts to collect the objects associated with it. By using the key object as an indicator
of when a group of objects become unreachable, the collector focuses its attention on a group
of objects that are likely to be unreachable. While temporal opportunism uses hints about
when to do collections, key object opportunism adds hints about where to do collections.

Bishop [Bishop, 1977] presented a garbage collection algorithm that divided the heap
into multiple areas. Users specified the area in which each object was allocated. These areas
were designed to be garbage collected individually. By collecting the areas independently,
the collections would not interfere with processes that did not use the area being collected.
In order to allow independent collection, each area kept track of pointers both into the area
and out of the area. Referencing an object in another area was accomplished using a level
of indirection.

Bishop pointed out that related areas could be collected at the same time. He handled
multiple area cycles of garbage either by collecting all areas involved in the cycle at the
same time, or by using copying to consolidate the cycle of objects into one mea. In his
thesis, Bishop presented an inductive proof to show that his technique of moving objects
guarantees that all unreachable objects are collected.

Bishop did not bound the size of an area or provide ways to collect individual areas
incrementally. In addition, his use of levels of indirection to communicate between areas
was a source of inefficiency.

Our mature object space algorithm does not require special hardware or special operating
system support, and it is not disruptive. It insures that all reachable objects are collected,
that they are moved in a manner consistent with compaction and clustering algorithms, and
that they are available immediately after each collection. Our algorithm also limits area size,
provides ways to collect individual areas incrementally, and eliminates levels of indirection
between areas.

391

3 Overview of the Garbage C o l l e c t o r

To collect young objects, we designed a garbage collection toolkit that supports generational
scavenging techniques. 3 Our algorithm for collecting mature objects is an extension of this
toolkit. We now offer an overview of the toolkit as a basis for explaining the extensions.

3.1 The Toolkit Concept

The toolkit divides the responsibility for, and support of, garbage collection into two parts:
a language-independent part, supplied by the toolkit, and a language (implementation)
specific part, nominally supplied by the language implementor. The language-independent
part consists mostly of the data structures and code for managing multiple generations and for
allocating heap objects. The language implementor must supply the following capabilities:
the ability to locate at scavenge-time all root pointers (those pointers outside the scavenged
generations that refer to objects in the scavenged generations), and the ability to locate
all pointers within a heap object, given a pointer to the object. The toolkit includes a
library of routines that an implementor can use to locate inter-generational pointers; it is the
implementor's responsibility to locate roots lying in the stack(s), registers, and any other
areas outside the heap.

3.2 The Structure of the Heap

The toolkit defines the structure of the heap and supplies the necessary allocation routines.
The heap consists of a number of generations. Generations are numbered 0, 1, 2 in order
of increasing age. In any given collection, a selected generation and all younger generations
will be scavenged. The total number of generations may vary over time.

Each generation consists of a number of steps. Steps segregate objects by age and/or
type within a generation, and during scavenging all surviving (reachable) objects in a given
step are copied to some other step. This promotion step may belong to the same or a different
generation, and by adjusting the promotion steps before scavenging, one can introduce new
steps, combine existing steps, etc. The number of steps in a generation may vary over time.

A primary function of steps is to eliminate the need for storing or maintaining any age
information in individual objects. This reduces storage and time costs, but also gives the
collector age information without imposing any requirements on object formats (which are
entirely the responsibility of the language implementor).

While the meaning of steps is somewhat arbitrary, we impose aconvention that the lowest
numbered step in a generation has the youngest objects in that generation, etc. Further, we
number the steps 0, 1, 2 such that every step in the system has a unique number. For
example generation 0 might have steps 0 and 1, generation 1 might have steps 2 through
4, and so on. A simple promotion policy is to promote survivors of step k to step k + 1. In
that case, the number of steps in a generation determines the number of scavenges (of that
generation) necessary to promote objects to the next generation.

Each step consists of a number of blocks. A block is 2 n bytes, aligned on a 2 n byte
boundary for some value ofn chosen when the system is built. A typical block size might be
64K bytes. The number of blocks in a step may vary over time. While the blocks of a step

For a more detailed discussion of the toolkit see [Hudson et al., 1991].

392

are usually not contiguous, a nursery may be set up to consist of a number of contiguous
blocks, so that one might more readily use a page trap (rather than an explicit limit check)
to detect nurse_~ overflow and trigger a scavenge.

Blocks have four primary advantages. FirsL they allow sizes of steps and generations
to change easily since the storage of a step need not be contiguous. Second, they allow
speedy determination of the generation, step, and promotion step of an object: the address
of the object is simply shifted right by n bits and indexes a block table containing the needed
information. Third, blocks match naturally with page trapping or card marking schemes
(both of which the toolkit supports). Fourth, they reduce the storage needed under some
circumstances when compared with copying collectors that use semi-spaces. If b bytes are
present in a generation before a scavenge and the survivors consume a bytes, then a semi-
space scheme uses 2 x b bytes whereas our scheme uses b + a bytes (modulo rounding
resulting from the block size). The degree of advantage depends on the survival rate a/b,
but may be significant in some applications.

Blocks do introduce a problem, however. They cannot handle objects larger than the
block size. To handle such objects we provide a large object space (LOS), as suggested in
[Ungar and Jackson, 1988]. In fact, it is probably a good idea to put into LOS any object that
consumes a significant fraction of a block; we used the heuristic threshold of 1/8 of a block.
Further, as also discussed in [Ungar and Jackson, 1988], any object that contains few pointers
and that exceeds some threshold in size should be stored in LOS to avoid the overhead
of copying. LOS uses free list allocation based on splay trees [Sleator and Tarjan, 1983,
Sleator and Tarjan, 1985, Jones, 1986] and, once allocated, an LOS object is never moved.
However, LOS objects still belong to a step, which is indicated by threading the objects onto
a doubly linked list rooted in the step data structure. When a LOS object is promoted, we
simply unchain it from one list and chain it into another. When scavenging is complete, any
LOS objects remaining on a scavenged step's LOS list are freed.

While the generation, step, and block, of a non-LOS object can be determined using
the simple shift and index technique, LOS may combine objects from different steps and
generations in the same block. Therefore, we store a back reference from a LOS object's
header to its containing step. It is relatively easy to determine the step given a pointer to the
base of an LOS object, but determining the step given a pointer into the middle of the object
requires locating the object header, which is supported but involves additional work.

3.3 Phases of a Scavenge

A scavenge consists of two phases. First, the root set for the scavenge is determined based on
the remembered sets, as well as the stack, register, and global variable contents. All objects
directly reachable from the roots are copied into new space, and the roots updated to point
to the copied object. All objects reachable from the new space objects are then copied over
using a non-recursive Cheney scan [Cheney, 1970]. 4 As each object is copied, a forwarding
pointer is left in the old copy, so that other references to the object can be updated as they
are encountered. Since the toolkit makes no assumptions about object format, language
implementors can define the details of the forwarding pointer format. The toolkit does

4 The toolkit might be adapted to support mark-sweep or other approaches to collection, but currently
it provides only copying collection. Also, it would not be hard to incorporate suggestions such as
hierarchical clustering [W'dson eta/., 1991].

393

determine automatically where to allocate the new copy of the object, given the object's size
(which must be determined by language-specific code).

Before a scavenge begins, the toolkit, following a dynamically modifiable plan supplied
by the language implementor, determines the generations to be scavenged and creates new
steps accordingly. It also sets up all the promotion step references. After a scavenge, all the
old steps of the scavenged generations are deleted and their blocks become available for
allocation.

These scavenge techniques work well for small heaps. In large heaps, however, scav-
enging older and older generations along with all younger generations becomes disruptive.
In order to avoid this disruption we limit the number of generations in the heap. Any object
that lives through several scavenges is moved into mature object space (MOS) where it is
collected using our non-disruptive algorithm.

4 T h e M a t u r e O b j e c t S p a c e A l g o r i t h m

We now describe mature object space, its structure and its collection algorithm. The com-
ponents used to implement this algorithm are the same as those used to implement the
garbage collection toolkit for young objects. In particular, the blocks, the remembered sets,
and the scanning and copying mechanisms are the same for both mature object space and
generational space.

First, we will describe how mature space is divided into areas. Second, we will discuss
the remembered set mechanisms used to track pointers between mature space areas. Third,
we will present the rules that determine where mature objects are placed. Fourth, we will
show how collection of an area results in objects being moved so that any unreachable object
is eventually isolated and collected.

4.1 The Structure of Mature Object Space

Mature object space is divided into areas, just as young object space is divided into gen-
erations. The structure of an area is similar to a generation in that all pointers into an area
can be found at scavenge time (i.e., each area has a remembered set). An area consists of
one or more blocks. These blocks are the same as the blocks used in young object space and
share the same bookkeeping functions, including quick determination of the area in which
the block resides, and during a collection, determination of the area to which an object
should be copied. In addition, blocks support determination of whether a pointer should be
recorded in a remembered set. Unlike generations in the heap, age information is no longer
interesting, so areas do not have steps.

Unlike Bishop's areas, our areas are sized so that each individual area can be collected
quickly. The collector works on one area at a time. The problem with a straightforward
implementation of Bishop's algorithm with limited area size is that a multiple area circular
structure might not be collected because local information is not sufficient to determine if
an object is globally unreachable. Hence, just as in Bishop's approach, we must migrate a
multi-area cycle of garbage into a single area in order to reclaim it. However, the limit on
area size makes this impossible if the linked structure is larger than can fit into a single area.
Since Bishop did not restrict the size of areas, he did not have this problem. Hence, the key
contribution of our algorithm is insuring that we reclaim large structures of garbage while
still imposing the limit on area size, so that collections will be non-disruptive.

394

To further describe the structure of MOS, we first introduce some terminology. Pointers
to mature objects from outside mature object space are root pointers. Root pointers reside in
young object space, large object space, on the stack, in registers, and in static areas. Objects
immediately reachable from roots are leaders. Objects that are not imm~iately reachable
from roots, but still reachable from objects in mature object space, are fol lowers.

We will use a wain metaphor to describe the algorithm. An area can be thought of as
a r~lroad car. The cars are used to hound the amount of work that is done during each
invocation of the collector. A group of cars holding a linked structure of objects can be
thought of as a train. Trains are used to group large related objects so that they can be
managed as a unit.

4.2 Roots and Remembered Sets

Each area has an associated remembered set, which allows us to find all pointers from
outside the area that refer to objects in the area. However, since we will scavenge an area
only when all young spaces are also scavenged, and since all scavenges process all roots
(stack(s), registers, static areas), remembered sets for areas need only track references from
other MOS areas. The remembered set for a train is simply the union of the remembered
sets of its cars, less any intra-train references.

A more subtle remembered set property comes from the fact that the algorithm processes
areas in round-robin order. To understand this, suppose we assign each area a sequence
number, and when an area is scavenged, it is assigned the next highest number. Then a
remembered set need only record references from higher numbered to lower numbered
areas. When an area is collected, its number will be the lowest, and hence we will be able to
find all the references from other areas into the collected area.

We gain two advantages from handling the remembered sets this way. First, we reduce
the total volume of remembered set information. If pointers are evenly distributed in terms
of the direction they point, the remembered sets would be half as big, but it is not clear that
the algorithm leads to such distributions, so the magnitude of this benefit is unclear. Second,
and perhaps more importantly, we do not have to update other area's remembered sets
when an area is scavenged. This is because none of the scavenged area's information could
possibly be recorded in the other area's remembered sets, since such entries would record
pointers from lower-numbered areas to higher-numbered ones, which our directionality rule
specifically does not record.

The toolkit leaves the structure of the remembered sets up to the language implementor.
The toolkit does, however, provide several alternative implementations including remem-
bering slots, objects, cards, or pages. See [Hosking et al., 1992] for performance studies
comparing the available techniques.

4.3 Collecting an Area in Mature Object Space

As previously mentioned, we process areas in round robin order, collecting one area (or car)
upon each scavenge of MOS (which implies that all young generations are also scavenged
at the same time).

There is a check that is always done before collecting a car:. if there are no root pointers
to the train whose car is about to be collected, then we check the train's remembered set. If
the remembered set is empty, then the entire wain can be reclaimed with no further effort. We

395

can readily enhance the remembered set bookkeeping to make the check efficient (though
possibly inaccurate for one round robin cycle of scavenging): record with each car the
number of extra-train references to objects in that car, and also keep a sum across all the
cars (easily updated as cars are collected (removed) or added).

Before After

? T ~ n A

T ~ n B

Fig. 1. Leaders in Train B are moved into another train.

When a car is collected we refer to it as a from car. Each reachable object in a from
car has an associated to car which is determined by how the object is reached. First, we
copy any objects in the car referred to by roots into either a new train or some other Wain
(Figure 1). Which wain we choose is a policy decision that does not affect the correctness
of the algorithm. Next, we scan the copied objects and copy over, in typical copy collector
style, all other objects in the from car reachable from objects in the other train.

At the same time we move objects being promoted from young generations into Wains
holding references to them, or if they are referred to by roots, into any wain. Since the young
generations are bounded in size, the volume of promoted objects is also bounded, so we can
bound the disruption caused by promotions 5.

At this point the from car may still contain reachable follower objects, but they must be
reachable only from other cars. Using the from car's remembered set, we locate all references
from outside the Wain to objects still in the from car, and move them to the wain containing
the reference. See Figure 2.

The only remaining reachable objects in the from car are reachable from other cars in the
same train. These objects are moved into the last car of the train as illustrated in Figure 3.
This leaves only unreachable objects in the car. The space for these objects is then recycled.

This is similar to Bishop's approach. If the train to which we want to move an object
is full, we add a car to that train and copy the object there. In any case, an object that is
reachable from outside the Wain being collected is moved to some other Wain (thus collapsing
garbage into fewer trains and eventually a single train), or (if unreachable) is reclaimed,

s Setting the size of young generations is a policy decision. The size can be limited by collecting young
generations more often or by promoting more objects into mature space during each collection.

396

]

Ii-

After

Train A

Train B

Fig. 2. Followers in Train B reachable from another train are moved there.

Before

CarA

[] ~ Train A

CarB

After

J GarA Garb

T~nA

Fig. 3. Other followers are moved to the last car.

Of course, we scan moved objects, and evacuate any remaining reachable objects from
the car. We collect cars in the order they were linked onto the train. Since we check to see if
an object is referred to by another train before we check references inside the train, objects
referred to directly from other trains will always moved out of this train. This is important
since a train might contain a multi-area cycle of objects that "belongs in" another train, i.e.,
is not reachable from the leaders of this train~

The objects that are referenced during any one invocation of the algorithm are just those
objects that are involved with the car where we are currently focused, eithex as a member
of the car or by pointing into the car. This locality is known ahead of time so the algorithm
will be able to provide the operating system hints about what locations it will need during
the next cycle of the collector.

Since the algorithm perkxlically copies all reachable objects in mature space, it reclusters
live objects at no additional cost. During the copying, we can apply sophisticated compaction
and clustering techniques such as those described by W'dson [W'dson et al., 1991]. In addi-
tion, this algorithm avoids the fragmentation that can occur with mark and sweep collectors.

397

4.4 Why the Collector Works

Having presented the collection algorithm, we now argue that it will eventually collect all
unreachable objects, even large cycles of garbage. Suppose we have some garbage that
threads through a number of trains. As we process the lowest numbered train, car by car,
one of three things will happen to each object: it will be detected as garbage and reclaimed;
it will be moved to another train; or it will be moved to another car of the same train (but not
a car of the new train). The last case will not repeat indefinitely, since eventually we reach a
situation where we have reclaimed or moved to other trains all objects reachable from roots
or other trains, and the remembered set of the current train will be empty. By induction,
then, in one round robin pass of the trains, the garbage structure will be compacted into a
single train. Again, we see that as we process, car by car, eventually the train's remembered
set will be empty and the garbage then reclaimed.

Each train pass may require objects to be copied several times to other cars in the train,
but each pass through the cars in a train will reduce the number of objects since any object
referenced from outside the train will be moved. By induction each pass through the cars on
a train will either reduce the size of the train or reclaim the entire train.

One way to conceptualiTe the algorithm is as pulling different threads or chains of objects
apart, until garbage is isolated and then reclaimed. Of course, smaller garbage structures are
reclaimed sooner and with less copying, but the point is that the algorithm is guaranteed to
reclaim garbage in a train or evacuate it into another train within O(n 2) car collections, where
n is the number of cars in the train. Since pieces of garbage structures can not be copied
back into a train from which they were evacuated, the algorithm takes at most one pass
through the trains to collect a garbage structure 6 while retaining the desired non-disruptive,
incremental behavior.

5 An Example

The next several figures illustrate a simple example of how the algorithm works. For
simplicity we will assume the maximum number of objects that caa fit in a car is 3. This
means that any given invocation of the collector will move at most three objects.

In Figure 4 we show three data structures. One structure, consisting of objects R, S, and
T, is reachable from a root. The structure consisting of object A and B is circular garbage
spanning two trains. The other slructure, consisting of objects C, D, E and F, forms a large
circular structure of garbage that can not fit into one car. We will show how the structure
C-D-E-F is isolated and freed and how A-B is consolidated and freed.

We start by applying the rules to train B. Is any object in the train reachable from outside
of train B? Both object A and object R are reachable so we focus our attention on car 1.
Leader R is evacuated to another train. The choice of which train is a policy decision. Here
we chose train A instead of creating a new train. Next follower B is reachable from train A
so it is evacuated to train A. Object C is only reachable from train B so C is moved into the
last car in train B. The space used for car I is now recycled. Figure 5 shows the slate of the
trains after the first invocation of the algorithm.

R might require two passes through the objects if the U, ain remembered set information is managed
as previously discussed.

398

Train A

Train B

R O O l ~

J

Car 1 Car 2 Car 3

Fig. 4. The starting configuration

Train A

Train B

R o o t ~

. . . . i

I
I
I

'1
Freed Car 1 Car 2 Car 3

Fig. $. Evacuate leader R, group A-B and copy C.

The second invocation of the collector focuses on car 2 in Figure 5. No objects are
referenced by roots, so we look for objects in car 2 referenced from outside train B. Object
S is referenced from train A, so we move S into train A. Since all cars in train A are full,
we need to add another car to make room for S. Finally, we look for objects referenced from
other cars in the train. Object D is moved into the l~ t car of the train. Car 3 is full so we
create a new car to make room for object Do The scanning of object D finds object E in car
2. E is evacuated into ear 4. This gives us the state found in Figure 6. Notice how the live
R-S-T structure is being extracted from the dead C-D-E-F structure.

On the next invocation of the algorithm we note that train B is still referenced so we
focus on car 3. Again no objects are referenced by roots. Follower T is referenced by aain
A so it is moved into train A. Object T is scanned but contains no references into car 3. Next
we consider references from within the train B, Object F is so referenced so it is moved into
car 4. The scan of object F finds a reference to C. Since car 4 is full a new cax is attached to
the end of the train and C is moved into it. At this point (shown in Figure 7) structure R-S-T
has been separated from structure C-D-E-F like pulling spaghetti out onto a fork.

The next invocation of the algorithm notes that train B has no references into it, so the

399

Train A

Train B

R o o t - -

Freed Car 2

I
I
I
I

Car 3 Car 4

Fig. 6. Evacuate follower S and copy D and E.

Train A

Train B

Roo!

Car6 Car7

Freed Car 3

I
I
I
I

Car 4 Gar 5

Fig.7. Large cyclic dead slracmres are isolated into one train.

entire train is recycled immediately. NoW that we isolated the structure C-D-E-F into one
train where it can be reclaimed even though it is larger than any area we incrementally
considered. This loves us with only train A.

In Figure 8, we note that train A has a reference from outside the train so we focus on
car 6. Since object R is reachable from a root we move it to another train. In this case we
create a new train C and move R into it. Structure A-B, which used to form a circular list
that spanned multiple trains, is now isolated and is recycled.

Figure 9 does not show recycled train B but does show the new train C that holds object
R. We now consider car 7. Object S is moved into the train C and object S is scanned for
references into car 7. ObjectT is found and moved into train C. Car 7 can now be recycled.

In Figure 10, what remains is a train with three neatly clustered live objects. These were
the only three reachable objects present at the beginning of the example. The algorithm
successfully grouped all unreachable objects into unreachable trains where they could be
freed without disruption.

400

T ~ n A

Car 6 Car 7

Train B I I I ! I I
I I I I g I
I t I I I I

Root - - I I I I t I
I _ . I ! I 1 I
Freed Train B

Fig. 8. Trains with no references can be freed.

Train A

New Train C

Root

I
I
i

Freed Car Car 7

N

Car8
1

Fig. 9. Evacuate R so cycle A-B can now be freed.

Train A I I ! I
1 I I I
I I I I
I I I I
I I I I
Freed Tre~ A

New Tr~n C I I ~

R o ~

C4r8

Fig. 10. Live sa-ucmre R-S-T is clustered into one train.

6 Popular objects

401

There is one possible way in which our algorithm as presented might be disruptive. Call an
object popular if there are many references to it. To copy a popular object, we must process
a large remembered set and update many pointers. 7 In fact, we cannot bound the number of
references to an object, so we cannot bound the work involved in moving an object.

Our solution is not to move such objects, analogously to the treatment of large objects.
We can detect popular objects (or popular cars, anyway) by considering the size of their
remembered set. If the remembered set size exceeds some threshold, we simply retain the
whole area, logically (but not physically) copying it and having it start a new train (if it is an
engine) or join the newest train (if it is a boxcar). With some cleverness we might be be able
to clear out some objects, but it may not be wollhwhile. The remembered set is discarded
and will be rebuilt over time as we cycle through all the other areas. We need only take
care that the threshold that determines popular versus non-popular areas is high enough that
we can still collect highly linked cyclic garbage. Thus, the threshold should be no smaller
than the number of pointers that fit in one area. We have yet to work out the details and
correctness argument.

7 Future Work

We can add Wilson's temporal opportunism to our algorithm with no problem. Hayes's
key object opportunism is more problematic since we assumed round-robin processing of
the areas. To process areas in arbitrary order, we would have to remember all inter-area
references (instead of just those pointing in one "direction") and we would have to deal
with updating remembered sets. We might avoid updating remembered sets by including a
"time-stamp" with remembered set entries, which would allow us to detect and ignore stale
entries, rather than having to remove them immedia!ely. The costs and benefits are unclear.

We envision a distributed version of the mature space algorithm. Though it falls outside
the scope of this paper, we intend to develop a version where each node in a distributed
system holds multiple complete trains. The algorithm does not change. If node A holds a
structure S without a leader, then S will be migrated to some train in node B that holds a
reference to S. If no node B is willing to accept the structure then either the structure will
be discarded or node B and node A would have to agree on some sort of "rent" so node A
could afford to retain S. Such a rental agreement would be equivalent to introducing a root
in node A referencing S.

The/dOS approach also seems promising for collect large persistent heaps for persistent
and database languages. Some details would need to be worked out to insure that the
algorithms makes as few secondary storage accesses as possible. It will probably pay to be
opportunistic and do whatever processing one can on parts of the heap that are brought into
main memory by normal application activity, as well as to exploit temporal opportunism to
make more progress during periods of light load, etc.

7 Large'objects could also be a problem, but we can put them in large object space just as we do for
the young generations.

402

8 Conclusions

We have described what we believe is the first efficient non-disruptive copy collection
algorithm for mature objects. The algorithm is incremental, supports fast allocation, and
supports compaction and clustering via copying. We believe this algorithm goes a long way
towards making garbage collection palatable for a variety of languages and long running
applications.

9 Acknowledgements

We appreciate Tony Hosking's work on impk,aenting the toolkit discussed here. Amer
Diwan and David Moon provided extensive comments on drafts of the paper. Other col-
leagues also rea0 and critiqued the paper. Finally, we thank Barry Hayes for challenging us
to implement key opportunism; it was thinki1~g about that problem that led to our invention
of the algorithm described here.

References

[Appel et a/., 1988] Andrew W. AppeL John R. Ellis, and Kai Li Realtime concurrent collection on
stock mulfiprocessors. In Proceedings of the ACM SIGPLAN "88 Conference on Programming
Language Design and Implementation (Atlanta, Georgia, June 1988), ACM SIGPLAN Not. 23, 7
(July 1988), pp. 11-20.

[Baker, 1978] H. G. Baker. List processing in real time on a serial computer. Communications of the
ACM21, 4 (April 1978), 280-294.

[Bishop, 1977] Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage
Collection. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1977.

[Boehm et a/., 1991] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage
collection. In [OOPSLA, 1991], pp, 157-164.

[Clmney, 1970] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM 13, 11 (November 1970), 677--678.

[Diwan eta/., 1992] Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for
garbage collection in a statically typed language. In Conference on Programming Language Design
andlmplementation (San Francisco, California, June 1992), SIGPLAN, ACM Press, pp. 273-282.

[Fenichel and Yochelson, 1969] Robert R. Fenichel and Jerome C. Yochelson. A LISP
garbage-collector for virtual-memory computer systems. Communications of the ACId 12, 11
(November 1969), 611-612.

[Hayes, 1991] Barry Hayes. Using key object opportun;sm to collect old objects. In
[OOPSLA, 1991], pp. 33--46.

[Hosking et al., 1992] Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanovi~. A comparative
performance evaluation of write barrier implementations. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (Vancouver, Canada,
October 1992)o To appear.

[Hudson et al., 1991] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F.
Weight. A language-independent garbage collector toolkit. COINS Technical Report 91-47,
University of Massachusetts, AndaersL September 1991. Submitted for publication.

[Jones, 1986] Douglas W. Jones. An empirical comparison of priority-queue and event-set
implementations. Conmumications of the ACM 29, 4 (April 1986), 300-311.

403

[Lang and Dupont, 1987] Bernard Lang and Francis Dupont. Incremental incrementally compacting
garbage collection. SIGPLAN ' 87 - Symposium on Interpreters and Interpretive Techniques
(1987), 253--263.

[Lieberman and Hewitt, 1983] Henry Lieberman and Carl Hewitt. A real-time garbage collection
based once lifetimes of objects. Communications of the ACM 26, 6 (june 1983), 419--429.

[Moon, 1984] David Moon. Garbage collection in a large Lisp system. In Proceedings of the ACM
Symposium on Lisp and FunctionalProgramming (Austin, TX, August 1984), pp. 235--246.

[OOPSLA, 199 I] Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (Phoenix, Arizona, October 1991), A CM SIGPLAN Not. 26, 11
(November 1991).

[Sleator and Tarjan, 1983] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. In Proceedings of the ACM SIGACT Symposium on Theory (Boston, Massachusetts,
April 1983), pp. 235-245.

[Sleator and Tarjan, 1985] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search t~ees. Journalofthe ACM 32, 3 (July 1985).

[Ungar, 1984] David Ongar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Developmem Enviromnems (Pittsburgh, Pennsylvania, April
1984), ACM SIGPLANNot. 19, 5 {May 1984), pp. i57-167.

[Ungar and Jackson, 1988] David Ungar and Frank Jackson. Tenuring policies for generation-based
storage reclamation. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (San Diego, California, September 1988),ACM SIGPLAN Not. 23,
11 (November 1988), pp. 1-17.

[Weinreb and Moon, 1981] Daniel Weinreb and David Moon. Lisp Machine Manual, third ed.
Massachusetts Institute of Technology, 1981.

[White, 1980] Jon L. White. Address/memory management for a gigantic Lisp environment or, GC
considered harmful. In Proceedings of the ACM Symposium on Lisp and Functional Programming
(Stanford, California, August 1980), ACM, pp. 119-127.

[Wilson et aL, 1991] Paul R. Wilson, Michael S. Lain, and Thomas G. Moher. Effective
"static-graph" reorganization to improve locality in garbage-collected systems. In Proceedings of
the ACM SIGPLAN '91 Conference on Programming Language Design and Implementation
(Toronto, Canada, June 1991), ACM SIGPLAN Not. 26, 6 (June 1991), pp. 177-191.

[Wdson and Moher, 1989] Paul R. Wilson and Thomas G. Moher. Design of the Opportunistic
Garbage Collector. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (New Orleans, Louisiana, October 1989), A CM SIGPLAN Not. 24, 10
(october 1989), pp. 23--35.

Object Type Directed Garbage Collection To
Improve Locality

Michael S. Lain 1, Paul R. Wilson 2, and Thomas G. Moher 1

1 University of Illinois at Chicago
2 University of Texas at Austin

Abst rac t . Most garbage collected systems have excessive need for RAM to
achieve reasonable performance without too much paging. The reason for
such poor locality is the way data are organized in the heap. Conventional
organization approaches such as breadth-first ordering do not always bring
objects in the same active working set together. When such co-active ob-
jects are distributed thloughout the heap (on different memory pages), high
paging costs will result from accessing objects during execution. To allevi-
ate such poor ordering, researchers have tried many different approaches:
depth-first ordering, dynamic reorganization, object creation ordering, and
hierarchical decomposition. Each of these approaches has its associated costs,
effectiveness, and limitations. This paper presents a new ordering approach
to improve locality. By paying a little attention to object type and format,
effective heuristics can be derived to group co-active objects together. To
investigate this idea, a number of such object type directed grouping tech-
niques are incorporated into a Scheme-48 system. Page fault reduction of up
to an order of magnitude was observed.

1 Introduction

Garbage collection was first introduced by McCarthy to reclaim heap (dynamically
allocated) storage automatically for the language Lisp [9]. This first proposed mark-
and-sweep scheme would have very poor locality in a virtual memory environment.
Because the majority of the heap-allocated data die young~ the surviving objects take
up only a small percentage of the entire heap space, but they tend to be distributed
throughout the heap. In a virtual memory operating system, the heap is divided
into virtual memory pages, and most of such pages have to be brought into RAM
in order to access the live objects. As a result, the paging costs of such a system
remain that of the entire heap size, while only 10 percent of the heap may actually
contain live data.

To alleviate this excessive paging cost, compacting can be done, as proposed in
the first stop-and-copy algorithm by Fenichel and Yochelson [7]. In "stop-and-copy"
collection, the heap is divided into two semi-spaces. Allocation is done in one space
until that space is filled. Then garbage collection is invoked to copy all surviving
objects in the filled space to the other space. Since only a small percentage of objects
remain alive, this copying process can usually compact the surviving objects into a
smaller area at the beginning of the other space. More room is made for future
allocation, and many fewer pages are needed to be brought in to access all of the
live objects.

405

However, even the compacted surviving data can be quite sizable. For heap-based
languages like Lisp and Smalltalk, surviving data means not only the data generated
through execution, but the system image of predefined library functions, typically
including the compiler, editor, browser, and-debugger. Because these functions re-
main alive throughout execution of every program, they have very different life-spans
from program-generated data, and should be isolated from program-generated data
to avoid creating short-lived data among them. Otherwise, program-generated data
can become garbage very soon and pollute the static quality of the system image.
The garbage spreads the system functions apart and more pages are needed to cover
the same amount of functions. To achieve this isolation, generational garbage collec-
tion can be used [8, 15]. By dividing the heap into different generations, program-
generated data are created in the younger generation, while the static system image
can be placed in the older generation with a minimal set of pages.

Even with compaction and generational collection, locality of reference for most
heap-based systems still remains unsatisfactory. Caudill reported that for Tektronix
Smalltalk, good performance is achieved only when most of the system is paged in
[3]. Apparently, there is some flaw in garbage collection that does not interact well
with modern virtual memory systems. To address the problem, this paper discusses
the flaw in the next section, then examines previously proposed solutions, and finally
presents our new approach to the locality problem.

2 T h e P r o b l e m a n d P r e v i o u s S o l u t i o n s

In seeking to improve locality of reference, many researchers have identified the
problem as the way heap data are rearranged during collection. Traditionally, the
Cheney algorithm has been the standard in implementing copying collectors because
of its simplicity [5]. The Cheney algorithm imposes a breadth-first ordering when
copying objects across semi-spaces.

To illustrate how breadth-first traversal can go wrong, consider a heap with a
root set of 10 linked lists. A breadth-first traversal will first copy the 10 list heads to
the new space. Then the 10 heads are scanned, and because they lead to the second
nodes, the second nodes of all 10 lists are brought over next. This copying of the list,
level by level, keeps repeating until all nodes are copied. Mixing these 10 individual
lists is generally a bad idea because elements within the same list are more likely to
be referenced together. Evenly distributing these lists means spreading the elements
within the same list apart, perhaps on different pages (figure 1).

A more sensible ordering is to copy one complete list at a time (figure 2). If the
head of one linked list is touched, the next most likely touched node is the second
one, because linked lists are traversed sequentially. Hence, the second node is, in
a sense, more "related" to the linked list head than anything else. To minimize
paging, we can lay out such related objects (elements of the same list) sequentially
by a depth-first traversal.

Many researchers have realized the problem of breadth-first traversal and have
tried improving locality by changing the garbage collector to use depth-first traversat
[10, 13, 6]. Unfortunately, the improvements achieved were disappointingly small.
The most recently reported number by Courts was an improvement of 10 to 15
percent [Cour88].

406

A root set of 10] inked lists: a, b, c, d, e, f, g, h, i, j

a

Ih

b c d e f

F
r

h i j -hhhl

Breadth-first Ordering

r',r r" r r r r r r'-

Fig. 1. Breadth-first Ordering of 10 lists

Why is the improvement from depth-first so insignificant? The main reason is
that linked lists are not the most common objects in a system image. The majority
of most system images are library functions. To achieve good locality, we need an
organization scheme that groups related functions together.

One major attempt at organizing heaps with a focus on function grouping was
reported by David Andre [1]. His most notable technique was using the creation
order (order of presentation to the compiler) of function code to organize system
image.

Organizing the system according to creation order makes sense because the cre-
ation order tends to bring related functions close to each other. In any sizable soft-
ware development effort, different files are used to contain different groups of related
functions. Consider a compiler divided into four phases: scanning, parsing, optimiz-
ing, and code generating; the scanning functions are normally placed in files different
from those for parsing, optimizing, and code generating. If we organize the object
code the way functions are laid out in files, we can preserve the grouping of related
functions. Then when the compiler is in the scanning phase, the needed page&in
scanning functions will be grouped in a minimal set of pages. When the scanning
phase is over, the set of parsing related functions are brought in. Again, they will
be grouped in another minimal set of pages. Since programmers by default tend to
write related functions in order, preserving the functions' compilation order in the
object code is generally a win.

407

A root set of 10 linked lists: a, b, c, d, e, f, g, h, i, j

m,-.

r
' t '

b e

El

,KI

d e

i

I

g h i j

,

i

i

!
i

r~, r~..u.r. �9
I..J' L..~ L.I'

Depth-first Ordering

r ~ .r3 .r3 F~ r ~, r ~. F. r."
L..~ LY LY I .J I_~ L..T

t

L.? L.T L.?

Fig. 2. Depth-first Ordering of 10 lists

We elaborated on Andre's ideas and implemented our version of function creation
ordering garbage collection [17]. The resulted locality improvement was about an
order of magnitude in page fault reduction. In our previous work, we have made
extensive use of four benchmarks: the Scheme-48 compiler, the Conform program,
the Boyer-Moore Theorem Prover, and the Zebu parser generator.

The Scheme-48 compiler consists of several thousand lines of Scheme-48 code. Its
front end performs input reading, macro expanding, and Source transformations. Its
back end generates static link objects (called closures), literal frames '(called tem-
plates) , and byte code object (called code vectors). The Conform program consists
of several hundred lines of code, implementing programming language type confor-
mance. The Boyer-Moore benchmark, consisting several hundred lines of code, is a
a rewrite-based theorem prover written by Bob Boyer, as part of Gabriel's suite of
Lisp benchmarks. The Zebu benchmark is a yacc-like parser generator that consists
of several thousand lines of code. It takes SLR and LALR(1) grammars in list forms
and generates a parsing-action table. All these programs execute millions of inter-
preted byte code instructions, allocate megabytes of data, and perform non-trivial
work. We believe they are good representatives of Lisp programs because they cover
a wide range of Lisp operations.

In addition to the function treatment, we added another technique called hier-
archical decomposition [17] to improve the locality of the remaining non-function
data structures. We chose to try a new traversal approach rather than staying with

Fig. 3. Depth-first Ordering & Tree

depth-first traversal because depth-first may not be the most optimal. Although
the previous example demonstrated that depth-first traversal is better at grouping
linked lists than breadth-first, linked lists are not the most common data structure.
We believe that most data structures are tree-like; unfortunately, depth-first ordering
tends to group a tree into vertical slices (figure 3).

408

Fig. 4. Hierarchical Decomposition Ordering a Tree

Our hypothesis is that tree structures should best be grouped in subtrees (figure
4). Tha t is, whenever we start with a node, we group it with its closest descendents
up to a few levels. This grouping should be better because it covers both children of

Fig. 5. OO1 Database

a node, while depth-first grouping usually covers only one. We also believe such hi-
erarchical decomposition will even be better for B-trees, where tree nodes have more
than two children. To enable such grouping, we have developed our own hierarchical
decomposition traversal algorithm (details discussed in [17]).

With hierarchical decomposition, the localit$" improvement was even greater than
creation ordering alone. However, our system image consisted of too much code,
not enough data, and did not demonstrate enough of hierarchical decomposition's
effectiveness. Hence, the O01 (Object Operations version 1) database benchmark,
also known as the "Sun Benchmark," published by Cattell of Sun Microsystems [2],
was implemented to further evaluate the effectiveness of hierarchical decomposition.
This benchmark basically creates a tree via standard binary tree balancing routines,
and creates data records at the leaf level of the tree. Such leaf-level records also
contain pointer fields to other leaf level records, resulting in a network throughout
the leaves (see figure 5). This database is huge, over five megabytes, 14 times the
size of our normal system image.

409

Unfortunately, upon testing the hierarchical decomposition scheme with the OO1
benchmark, the result was very disappointing: even a breadth-first ordered system
had better locality than a hierarchically decomposed system.

To explain such inconsistent results, the OO1 benchmark was modified such that
the pointer fields of the leaf level records were nullified. This extracted away the leaf-
level network from the structure and turned it into a pure tree. With such modified
structure, hierarchical decomposition again yielded better locality. Hence, it is not
that hierarchical decomposition failed to organize a tree, but rather that the data
structure was not a pure tree to begin with. This led us to the observation that the

410

effectiveness of a traversal algorithm depends heavily on how the data structure is
connected.

Since data structures are created and used so differently, it is understandable that
a fixed traversal cannot yield the optimal grouping for all cases. It is more likely that
each traversal works best with a certain class of data structure. This explains why
the improvements of depth-first over breadth-first have been so inconsistent, and
why hierarchical decomposition does better in some cases, and worse in others.

3 Object Type Directed Function Grouping

To achieve locality, related objects should be grouped together. The most successful
example of such was Courts' dynamically reorganizing garbage collector, on the TI
Explorer [6]. With hardware assists, this scheme can relocate objects on-the-fly. It
achieves excellent locality because objects are relocated and grouped exactly as they
accessed. With today's inexpensive RISC technology, few can afford the luxury of
Lisp machines. Still, a good grouping of related objects should be possible on stock
hardware.

In heap-based languages like Lisp or Smalltalk, data tags are often used to classify
objects in memory. Most languages, however, rarely use the tag information during
garbage collection. For instance, in Lisp garbage collection, whether an object is
a vector or cons cell is irrelevant. The collector is still going to copy and scan it
the same way. In practice, the object's type gives a good indication about how
the object is accessed. The access pattern can in turn be an excellent heuristic in
grouping related objects together.

Function Objects in $r These three co-act/~ o~jects should be grouped on lhe same page:

closu~: ~mp|ate: code vector

Scat~rmg them apm't may mc~r more paging du~ing f~nction invocation:

, , |

I

Fig. 6. Putting Scheme-48 Function Objects Together

411

In Scheme-48, a function is composed of a closure object (static links), a template
(literal frame), and a code vector. When a function is invoked, the closure is accessed,
the template is accessed through a pointer field of the closure, and then the code
vector is accessed through a pointer field of the template. Since all three objects are
used during function invocation, it makes sense to group them on the same memory
page so paging cost can be minimized. To perform such a grouping, the garbage
collector already has all the necessary information. While copying an object across
semi-spaces, the data tag can be examined. Should the tag indicate a closure object,
the pointer to the template could be scanned and the template copied. Likewise, the
pointer to the code vector could be scanned and the code vector copied (figure 6).

While the above grouping is logical and easy to perform, common breadth-first
traversal usually fails to bring these three together. Depth-first traversal, on the
other hand, will scan all pointer fields in the closure object next, and may bring too
many objects close to the closure before getting to the template and code vector.
To yield a good grouping, the most effective approach is to understand the internal
format of all objects, and explore the pointers that lead to the most related objects.
However, spending too much effort here can incur a large overhead for the garbage
collector. Hence, only a few common objects with common access patterns should
be targeted for optimization.

Because code is the most frequently accessed object in the heap, the most pro-
ductive optimization should be done on grouping related functions. In Scheme-48,
a function call is implemented by loading the function address from the template
(literal frame) of the executing function, then branching to that address. Thus, all
of the potentially callable functions can be found through the template. One way to
group the related functions is to scan through the template and copy the reachable
functions close to the currently scanned function. Because these reachable functions
in turn call other functions, the template scanning and function copying process has
to repeat until no more functions can be reached, or until all reachable functions
have already been copied.

With the function calling sequence:
MAIN calls FOO, FOO calls BAR

These should be grouped together:

MAIN FO0 BAR

t ~ l , t e "..l:mt~l~X~." -"

MAIN b'Y)O BAR

Fig. 7. Grouping Functions in a Calling Sequence

The function calling sequence is tree-like; execution starts from one root function,
this root function calls a set of second-level functions, and the second-level functions

412

in turn call more functions. Such function calling behavior means calling functions
should be grouped with the called functions. Then paging can be minimized between
function calls.

4 O b j e c t T y p e D i r e c t e d D a t a S t r u c t u r e G r o u p i n g

In addition to function objects, commonly used data types can also be used as
grouping heuristics. In Lisp, the most commonly used data type is the c o n s cell,
and its most commonly accessed patterns are depth-first trees and association lists
(not cdring down lists) [12]. Using this information, a garbage collector can be made
to recognize trees or association list, then perform different traversal algorithms as
appropriate. To guess the data structure that a cons cell heads is not really that
hard; a few levels of pointer traversal usually suffices. For instance, the cons cell in
an association list typically leads to a symbol in the car part, and a value in the cdr
part (this is based on programming experience, and Shaw's measurement that most
car fields lead to symbols when excluding other cons cells and NIL values [Shaw86]).
As for trees, both car and cdr parts lead to many other cons cells.

usocmtion list: binm-y tree:
(~fine fc~ '((a I) (b 2) (c 3))) (define bar '(((a). (I)), (s (I)))

a l b 2

Fig. 8. Common Data Structures

Upon determining the form of data structures, the traversal can be done ac-
cordingly, using, for instance, hierarchical decomposition for trees, and depth-first
traversal for association lists (this decision has not yet been proven optimal). In
practice, one data structure often leads to another data structure (for instance,
the leaf-level records of the OO1 database, figure 5). The specific traversal for the
currently traversed data structure may not be optimal for another one. So some
provision should be made to change the currently used traversnl when crossing a
data structure "boundary."

Again, object types can be used here. For instance, an association list is typically
made up of cons cells. While traversing the list, if any non-cons cell object has been
reached, it is a good indication that the boundary of the association list has been
reached, and that the non-cons cell object may not be appropriate to be grouped with
the cons cells. Actually, this decision depends on the kind of objects encountered.
For pointer-containing objects, they may be roots that lead to another structure of
a different nature. In this case, they deserve a deeper look, and perhaps a different
traversal treatment.

413

5 Implementation Details

Our testbed is the Scheme-48 system, a Lisp dialect originally written by Jonathan
Rees [11] (Scheme was invented by Steele and Sussman [14]). The system is divided
into a high-level user interface including the reader, compiler, and command inter-
preter (written in Scheme), and a low-level run-time system of byte code interpreter,
and garbage collector (written in C++). We use a generational garbage collection
scheme in which the heap is divided into three generations. The youngest generation
is used for creating new objects, the middle generation is used for promoted objects
from the youngest generation (which typically live through the program execution),
the oldest generation is used to store static objects such as the system image. Each
generation consists of a pair of semi-spaces; a stop-and-copy scheme is used to collect
surviving objects.

Our first step was to implement the type-directed function grouping. Since the
essence of this scheme is to group all the transitively called functions in a calling
sequence, fi,lding the root functions to begin with is vital. We did not want this
to incur too much collection overhead, so only three entry points in the Scheme-48
system are used as root functions: the main function, the reader, and the system
table-making routine. These are selected because most of the system primitive oper-
ations go through them indirectly. In addition, the specific function (program) being
run is also optimized. In Scheme-48, entering the function name at the command
prompt provides enough information for the garbage collector to locate the function
objects, so the function grouping can also be applied to any program before run-
ning. Generally, the more root functions to which we apply the function grouping
optimization, the better the locality.

During garbage collection, the root functions are copied to the new space one
at a time. After each function is copied, a scan is done on its pointer fields leading
to other functions. As a result, all the reachable functions get copied transitively
through the root function. The traversal order is basically depth-first, although not
all pointers are explored.

Naturally, function literal frames have more pointer fields than just those that
lead to other functions. Initially, these fields are skipped. To complete the garbage
collection, these fields need to be scanned. There are basically two ways in going back
to these pointers that have already been copied to the new space: remembering them
in a data structure, or re-scanning. We chose re-scanning because of its simplicity,
and because the total number of functions brought over due to the functions grouping
is relatively small.

Apart from the re-scanning, the only other major cost of the function grouping
traversal is checking the pointer fields. To determine whether .a pointer leads to a
function is easy: one indirection operation will lead to the closure object (the first
of the three components of a function). Because a Scheme-48 closure object has its
distinct data tag, one more compare operation suffices to indicate whether a pointer
leads to a function.

The next step was to implement the data structure grouping. As mentioned in
the section three, we cannot afford to invest too much overhead in analyzing object
internal semantics. So only cons cells and vectors are targets for optimization.

For cons cells, we followed Shaw's statistics in assuming that they are mostly

414

accessed as association lists or trees [12]. While performing the normal breadth-first
scanning phase of garbage collection, we added an extra object type check for cons
cells. If a cons cell is being scanned, a few levels of lookahead are performed to see
if it leads to a sequence of symbol/value pairs (i.e. it resembles an association list).
If so, a local depth-first traversal is started with the current cons cell. Depth-first
is used here because we want all cons cells of the association list to be grouped in
sequential order, and we expect them to be traversed sequentially during execution.

If the cons cell data structure does not resemble an association list, we assume it
is a tree. According to our previous hypothesis [17], our hierarchical decomposition
traversal is more suitable in grouping trees. So a local hierarchical decomposition
traversal is done here to create a tree grouping rooted at the currently scanned cons
cell.

Vector objects are detected exactly at the same place as cons cells, during normal
breadth-first scanning. Since vectors are used for so many different data structures,
we made the simplifying assumption that a tree-like structure is the most common.
Again, hierarchical decomposition is used.

To summarize our changes, we have basically augmented the standard breadth-
first scanning segment:

free = to_space; /* switch semi-spaces */
copy(root_set, lfree); /* copy root set over */
scan = t o _ s p a c e ; /* s t a r t scanning from the beg inn ing of t o _ s p a c e * /
while (scan < free)
{

if (IS_POINTER(scan))
copy(scan,~free); /* copy the referent of scan */

scan++ ;

by modifying it in the ~llowing way:

free = to_space;

copy(root_set, &free);

for (all root functions f) /* traverse and transitively copy related*/
explore_related_functions_from(f); /* functions*/

scan = to_space;
while (scan < free)
{

if (IS_POINTER(scan))
if (IS_CONS_CELL(scan))

if (LEAD_TO_ALIST(scan))/* association lists*/
/* use depth-first */

depth_first group(scan);
else

hier_decompose(scan);/* trees, use */
/* hierarchical decomposition */

415

else if

else

(IS_VECTOR(scan))
bier_decompose(scan);

/* vectors */
/* use hiereorchical */
/* decomposition */

copy(scan,~free); /* copy other kind of */
scan++; /* refererfts as before */

The functions IS_POINTER, IS_CONS_CELL, IS_VECTOR, and LEAD_TO_ALIST
all have constant costs. The other three: explore_related_functions_from ,
depth_first_group and bier_decompose have costs proportional to the numbers of
transitively copied objects; still, these copying costs were needed for the original
copying scheme anyway. We have just altered the copying order of some objects,
and added re-scanning costs for such pre-ordered objects.

6 The Experiment

Virtual memory simulation was used to measure the effectiveness of the grouping
techniques. The Scheme-48 run time system is instrumented such that memory refer-
ence traces can be collected during program execution. The collected reference traces
are then passed to a virtual memory simulator to simulate the paging behavior under
such memory references.

The virtual memory simulator maintains a LRU queue as in most operating
systems. Given a memory address, the virtual memory simulator computes the cor-
responding page number. If this page number is not in the LRU queue, it means this
page has never been paged in, so the page number is appended to the queue and its
position (queue length) returned. If the page number is already in the queue, then
its queue position is returned. Based on the queue positions, the page fault rate can
be computed for any number of pages of various sizes.

In the simulation, only references to the oldest generation (which contains the sys-
tem image) are collected. We neglected the younger generations because the grouping
traversal did not apply to newly created data. Such data die rather quickly and are
not usually worth the grouping effort. Techniques for dealing with newly created
data have been addressed in [16, 18]. Actually, objects that get promoted to the
middle generations may also benefit from the grouping techniques, but the effort is
hard to justify because we cannot tell when the program will finish after investing
the grouping effort on organizing the middle generation data.

7 Results

Our results are shown in Figures 9 - 22, as plots of page faults vs. memory size. A
4k page size was used in the simulation and then multiplied by the number of pages
to get the memory size. Figures 9 - 16 present graphs for the four non-database
benchmarks. Figures 17 - 22 show the graphs for the OO1 benchmark. The result
for every benchmark is displayed in regular size, and in expanded form to illustrate
the points of interest.

416

page faults

450000

400000

350000

300000

250000

200000

150000

100000

50000

I

50k lOOk 150k
memory size

breadth-first O
function-traversed o

function+dat a-traversed •

Fig. 9. The page faults from running the ScheIne-48 Compiler for different memory sizes

page faults

45000

40000

35000

30000

25000

20000

15000

IOO00

5000

, \ T T

~ breadth-first - 0 - - -

. - ? ' : ; : ' . ; : ; C _ : : : ' : : : : : : : " r = _ : 7 . . .

50k lOOk 150k 200k
memory size

Fig. 10. Focusing Oil the closer page faults for running the Scheme-48 Compiler

417

page faults i -r-'- ~ j u w

3000000 ~ breadth-first C
\ function-traversed

2500000

2000000 -

1500O00

1000000

500000

10k 20k 30k 40k 50k 60k
memory size

Fig. 11. The page faults from running the Boyer-Moore Theorem Prover for different mem-
ory sizes

page faults i I

breadth-first - ,5-
function-traversed

1500000 function+data-traversed - ~ -

1000000

500000

20k 30k 40k
memory size

Fig, 12. Focusing on the closer page faults for running the Boyer-Moore Theorem Prover

418

page faul t s i i i

b read th- f i r s t O
5000000 t~ func t ion- t raversed D

n c t i o n + d a t a - t r a v e r s e d •

4000000

3000000

2000000

1000000

20k 40k 6@ 80k
memory size

F ig . 13. The page faults from running the Conform Program for different memory sizes

page faul ts

5000

4000

3000

2000

1000

20k

I

b:
funct io

f u n c t i o n + d a t

I

:eadth-f irs t O
] - t raversed D -
~-traversed •

40k 60k 80k
m e m o r y size

F ig . 14. Focusing on the closer page faults for running the Conform Program

419

page faults

500000

400000

300000

200000

100000

I I I I

breadth-first -O--
function-traversed o -

data-traversed •

20k 40k 60k 80k
memory size

Fig . 15. The page faults from running the Zebu Parser Generator for different memory
sizes

page faults

140000

120000

100000

80000

60000

40000

20000

_•N.•
T I I

breadth-first 0 _
�9 function-traversed o

20k 25k 30k 35k
memory size

Fig . 16. Focusing on the closer page faults for running the Zebu Parser Generator

420

page fau|ts

120000

I00000

80000

60000

40000

20000

i breadth-first -O--
hier archicaVdecomposition + -

depth-first

' ' ~ ~2," �9 - 2 : 4 ~ ~

50k lOOk 150k
memory size

Pig. 17. The page faults from running the OO1 Database Lookup operation for different
memory sizes

page faults

20000

10000

hierarchical-decomposition { |
depth-first -~--- J

. I 1 ~ _ J

50k 100k 150k
memory size

Fig. 18, Focusing on the closer page faults for the 001 Database Lookup operation

421

page faults

90000

80000

70000

60000

50000

40000

30000

20000

100OO

I - - 1 I f

breadth-first 0
hierarchical-decomposition -+--

^ depth-first o

20k 40k 60k 80k
memory size

Fig. 19. The page faults from running the OO1 Database Traversal operation for different
memory sizes

page faults

20000

10000

" % bread-first O'
hierarchical-decomposition t

pth-first n

20k 40k 60k 80k
memory size

Fig. 20. Focusing on the closer page faults for the OO1 Database Traversal operation

422

page faults

100000

80000

60000

40000

20000

! I I

breadth-first ~ '
hierarchical-decomposition + - -

-first o

50k 100k 150k
memory size

Fig. 21, The page faults from running the OO1 Database Insert operation for different
memory sizes

page faults

20000

10000

" ~ I I I

bread-first @-
hierarchical-decomposition ;

,, ~ . ~ ~ ~ - = a . . ~

50k 100k 150k
memory size

Fig. 22. Focusing on the closer page faults for the 001 Database Insert Operation

423

For the four non-database benchmarks, results were collected for both related-
function grouping only and related-function grouping plus data structure grouping.
For these four benchmarks, the majority of the system image is composed of code,
so the effect of related function grouping was expected to be much more significant.
The effectiveness of adding the data structure grouping depends on the degree to
which association lists and trees were used in the benchmarks. Both the compiler
and the Boyer theorem prover use a fair number of association lists, so the page
fault differences are noticeable. In contrast, the Zebu parser generator and Conform
program rarely use any system data structures, so these curves look identical in the
regular graph (they are different on the expanded form).

When applying both grouping techniques, the drop in page faults is very sharp
for every benchmark, especially for the two larger programs (compiler and Zebu).
This improvement was found even with a very small amount of memory At 20k (five
4k pages of RAM), page faults are at least halved. The improvement increases to
over an order of magnitude for a long range of realistic memory sizes.

Our function grouping is basically achieving the same gain as Andre's function
creation ordering [1]. Both group related functions together by understanding some
common function characteristics. We compared our related function grouping results
with the creation ordering results from a previous paper (not shown in our graphs)
and our new results are marginally better.

The OO1 database benchmark is run in three different operations: lookup, traver-
sal, and insertion. Further details about these operations are described in [2].

Because the database is so much larger than the code for the three operations,
the function grouping effect is negligible; only the curves for both groupings are
displayed. The locality improvement comes mainly from data structure grouping.
Because the database is basically a tree, the scanning algorithm selects a hierarchical
decomposition strategy (and the object type analysis described in previous sections
to include only tree nodes).

We were also curious about how our hierarchical decomposition compared with
depth-first traversal. A depth-first organization of the database image was also cre-
ated and measured (also using object type analysis to include only tree nodes). There
is a definite drop in page faults while applying either hierarchical decomposition or
depth-first traversal. So there is definite advantage in organizing tree datastruc-
tures using schemes other than breadth-first ordering. The improvements, however,
are not as compelling and consistent as those for the non-database benchmarks.

It should be pointed out that breadth-first ordering is actually doing not too
bad to begin with. For all three operations, the drop is sharp up to around 20k of
memory, then the drop becomes much more gradual. With limited RAM size, such
performance is really not bad, considering the database size is five megabytes. One
explanation of such performance is the absence of hash tables, whose destructive
locality effects we discussed in our previous paper [17].

The lookup operation result surprised us the most because depth-first ordering
outperformed hierarchical decomposition. This contradicts our hypothesis that hier-
archical decomposition is best at organizing tree structures. Currently we are looking
for more tree benchmarks and ways to tune hierarchical decomposition.

One last point about the database benchmark is that although the data structure
is exactly the same for all three operations, different ways of accessing the data

424

structure make radical locality differences for different organization schemes. Here,
depth-first ordering seems to be the best, yielding the most consistent results for
organizing binary trees.

8 Conclusion

By examining readily available object type information, object access patterns can
be inferred, which can guide the garbage collector in better organizing heap data to
improve locality. This idea has been tested in a Scheme-48 system. Locality gain in
related functions grouping is up to an order of magnitude, and gain in data structure
grouping is up to 100 percent.

Before adopting such techniques, however, the first natural question is whether
the extra overhead outweighs the locality gain. Since garbage collection rarely occurs
in the system image, our relatively more expensive grouping traversal is needed only
after system compilation, and its benefits will last through all subsequent use. With
generational garbage collection, our techniques can be made even more applicable.
For the youngest generation that consists of young dying objects, quick and simple
breadth-first collection should be used. For older generations that contain promoted
objects, our more expensive grouping can be afforded, because older generations get
collected much less frequently, and the grouping effect will last for a long time.

We believe that grouping related functions is a very effective locality optimiza-
tion because function objects can he easily identified and their access pattern is
predictable. To group related functions, creation ordering is actually easier to im-
plement. However, the creation order may not always be available. For Smalltalk,
a predefined tree of classes already exists within the system, and more user-defined
classes can be added to tree. In such an environment, our newly developed function
traversal is more appropriate than creation ordering. The root of the Smalltalk class
can be used as our root function, and a traversal on subclass pointers should transi-
tively reach all the subclasses and'group them quite close to each other. In practice,
the polymorphic nature of class methods may make the grouping harder to apply,
hut customization techniques based on most common data types [ChUn89] should
help finding a grouping in spite of the missing types.

Data structure grouping is essentially a much harder problem, because the shapes
and connectedness of data structures vary so much. It is very hard (and perhaps un-
reasonable) to assume a typical operation on a complex data structure. Nevertheless,
there are clearly identifiable flaws in common breadth-first ordering, providing a clear
incentive to put more research effort into improving data structure locality.

9 Acknowledgements

We would like to thank Jon Solworth for providing access to the computer equipment
needed in conducting this research, and to the referees who offered several helpful
suggestions.

425

References

1. Andre, D.L.: "Paging in Lisp Programs," M.S. Thesis, University of Maryland, 1986.
2. Cattell, R.G.G.: Object Data Management. Reading, MA: Addison-Welsey.
3. Caudill, P., Wirfs-Brock, A.: "A third generation Smalltalk-80 implementation." OOP-

SLA '86 Conference Proceedings, pages 119-130, Portland, OR, September 1986.
4. Chambers, C., Ungar, D.: "Customization: Optimizing Compiler Technology for SELF,

a Dyn ~mically-Typed Object Oriented Language." Proc. SIGPLAN 89 Conference on
Programming Language Design and Implementation, June 1989.

5. Cheney, C.: "A nonrecursive fist compacting algorithm," Communications of the A CM,
13(11):677-678, November 1970.

6. Courts, R.: "Improving locality of reference in a garbage-collecting memory management
system." Communications of the ACM, 31(9):1128-1138, September 1988.

7. Fenichel, R., and Yochelson, J.: "A Lisp garbage-collector for virtual memory computer
systems." Communications of the ACM, 12(11):611-612, November 1969.

8. Lieberman, H., and Hewitt, C.: "A real-time garbage collector based on the lifetimes of
objects," Communications of the ACM, 26(6):419-429, June 1983.

9. McCarthy, J.: "Recursive functions of symbolic expressions and their computations by
machine, part I.," Communications of the ACM, 3(4):184-195, April 1960.

10. Moon, D.: "Garbage collection in a large Lisp system," 1984 ACM Symposium on LISP
and Functional Programming, pages 235-246, Austin, Texas, August 1984.

11. Rees, J.A., Clinger, W., et al.: "Revised Report on the Algorithmic Language Scheme,"
Sigplan Notice 21, .21,12 pages 37-39, December 1986.

12. Shaw, R.: Empirical analysis of a LISP System. PhD thesis, Stanford University,
February 1986.

13. Stamos, J.W.: "Static grouping of small objects to enhance performance of a paged
virtual memory," ACM Transactions on Programming Languages and Systems, 2(2),
May 1984, pp. 155-180.

14. Steele, G., Sussman, G.: The revised report on Scheme, a dialect of Lisp. MIT Artificial
Intelligence Memo, January 1978.

15. Ungar, D.: "Generation scavenging: A non-disruptive high performance storage recla-
mation algorithm." SIGSOFT/SIGPLAN Practical Programming Environments Con-
ference, pages 157-167, April 1984.

16. Ungar, D.: "The Design and Evaluation of a High Performance Smalltalk System,"
Ph.D. Thesis, UC Berkeley, UCB/CSD 86/287, March 1986.

17. Wilson, P., Lam, M., and Moher, T.: "Effective Static-graph Reorganization to Im-
prove Locality," Proc. SIGPLAN 91 Conference on Programming Language Design and
Implementation, June 1991.

18. Wilson, P., Lain, M., and Moher, T.: "Caching Considerations for Generational
Garbage Collection," 1992 A CM Conference on Lisp and Functional Programming, June
1992.

19. Zorn, B.: "Comparative Performance Evaluation of Garbage Collection Algorithms,"
Ph.D. Thesis UC Berkeley EECS Dept., 1989

This article was processed using the I#TEX macro package with LLNCS style

Allocation Regions &: Implementation Contracts

V, Delacour

1 Xerox PARC, 3333 Coyote Hill rd, Palo Alto, CA 94304, USA
2 INRIA, Domaine de Voluceau, 78153 Le Chesnay Cedex, France

A b s t r a c t . The purpose of this article is to advocate the use of two inter-
mediate level abstractions named allocation region and implementation con-
tract as the interface of language-independent memory management systems
(MMS).
The allocation regions are both sets of objects and memory domains (sets of
pages or sets of segments.) The implementation contracts represent symbol-
ically the capabilities of the memory management system: the set of object
formats and collection policies it supports. These two concepts give an inter-
mediate level of abstraction to describe and compare most existing garbage
collected MMS. We go further and advocate a full support for this level of
abstraction through a flexible memory management interface: the allocation
becomes a two step process in which (i) an allocation region is created with
an attached implementation contract, and (ii).objects are allocated in the re-
giom We show how to implement the abstraction, and how to take advantage
of it.

1 I n t r o d u c t i o n

The l~erformance of memory intensive programs Jn virtual memory is known to be
related to a so-called "locality of references" quality, which in turn must be in some
manner related to the way the objects are disposed in the memory space, because
many memory accesses result from traversals of the da ta structures.

An impor tan t differences between most MMS with a copying garbage collector
and most MMS with a non-copying garbage collector is that the former ones often
pack all kinds of objects together in a non-structured heap [1, 3, 20, 16, 4, 22],
whereas the latter ones are frequently used with a structured heap in which objects of
different kinds are sorted in different memory domains [23, 8, 7]. So, any comparison
of a pair of algorithms that fall respectively in these two categories compares not
only different collection methods (copying vs non-copying), but also two different
ways of organizing the memory space 3.

A careful s tudy of the existing garbage collected MMS shows tha t the heap
organization issues are in fact independent from those of garbage collection methods:
nothing precludes building a Mark&Sweep (MS) collector for a non-structured heap,
or (perhaps more interestingly) a copying collector for a structured heap. Moreover,
we observed that most garbage collection algorithms would easily accommodate
variable heap structures.

3 Making it difficult to draw any conclusion concerning either the relative merits of the
collection algorithms, or the relative merits of the heap organizations [24].

427

The two abstractions and the language independent MMS interface I propose in
this article contribute to the field in several ways:

1. As a description language, they are general enough to describe and compare in
a single framework very different MMS implementations.

2. As a target language they generalize the interfaces 6tiered by the existing MMS
in a way that opens new possibilities, such as the static or dynamic control of the
heap structure, which is also a control over the VM usage: the proposed MMS
interface gives ground to real-sized experiments in that direction.

3. The language-independent MM interface I propose in this article will help make
different languages inter-operate by providing a single back-end to different type
systems.

4. As a conceptual framework, the proposed concepts provide guidelines for the im-
plementor, which may help make the implementation of the MMS both efficient
and clear (this is admittedly a matter of personnal judgement).

1.1 Organ i za t i on of the Pape r

The next section (See. 2) presents the two abstractions of allocation regions and im-
plementation contracts, with a proposed interface for language independent memory
management systems. An example set of contracts is presented in Sec. 3. The fol-
lowing three sections of the paper proceed mainly from lower to higher level: Section
4 is mainly aimed at MMS implementors and shows how to implement the abstrac-
tion with different kinds of garbage collection policies, including the approximate
depth-first, region-preserving copying policy I implemented as part of the K2 Im-
plementation and Compilation Kit 4 (this is an example of copying collector for a
structured heap.) Section 5 is aimed at language implementors (ie: clients of a MMS
with a regions interface) and presents several basic strategies for structuring the
heap by distributing the objects amongst regions. A prospective section (See. 6)
cites research directions related to memory management, that could express results
in terms of regions. In Sec. 7 I give credit to related previous work.

2 A l l o c a t i o n R e g i o n s a n d I m p l e m e n t a t i o n C o n t r a c t s

2.1 Background

it is a fact that many MMS implementations with garbage collection actually deal
with multiple object formats and multiple memory management policies in separate
memory domains, but few or none of them take advantage of these capabilities to
offer a flexible and general interface: they are either rigidly tied to a particular
language, or in any advent use some fixed policy to segregate the objects in separate
populations.

A common characteristic of the existing implementations is that, when multi-
ple memory domains are used, one can associate a particular set of invariants and
assertions to each of these domains. Typical such invariants and assertions include:

4 The K2 Kit is made of two distinct parts: (i) a compiler for an intermediate-level language
due to N. S~niak [19], and (ii) a MMS [10].

428

- every object in the domain has the same size (KCL's cell types [23], Boehm and
Demers' garbage collector [7]),

- every object in the domain bears an object descriptor of some kind, giving the
garbage collector an uniform way to make its decisions (SRC Modula-3 [17],
KCL's cell types, most implementations which have a copying collector, most
implementations, at least in one memory domain . . .) ,

- every object in the domain is explorable (or non-explorable) by the garbage
collector (Boehm and Demers' garbage collector),

- every reachable object is pointed by exactly one cell, and bears a back pointer to
that cell, (relocatable bodies in KCL, or in Le-Lisp15 [8]),

-- every object in the domain is a two words cell, and each of the two words is a
tagged value (Le-Lispl5's list cells area),

- the objects in the domain must not be moved, for they can be pointed from the
outside (SRC Modula-3's non-collectable objects),

- etc.

I will call implementation contract the set of assertions attached to a memory
domain.

2.2 I m p l e m e n t a t i o n C o n t r a c t s

The implementation contract attached to a memory domain explicits the way the
objects are laid out, and thus prescribes how the garbage collector is to explore the
live data structures contained in the domain. Nothing precludes coding the contract
directly with a GC exploration method. Depending on the particular type of garbage
collector used, the way live objects are promoted (copy in the alternate semispace,
shift-compaction, marking in a b i tmap . . .) may be part of the contract, although
this is not mandatory: one may easily think of garbage collection policies in which
compaction does not occur at every collection cycle. On the other hand, the object
format does belong to the implementation contract, because the garbage collector
has to "understand" the object 's layout to explore it correctly 5.

C o n s e r v a t i v e Co l l e c to r s . We make here a special case of garbage collectors, only
to show that, after all, they are no special case, for they can be described in terms
of contracts. This section gives the peculiarities of parts of the implementation con-
tracts in such collectors.

When the objects in a memory domain may be designated by ambiguous pointers,
an identification method is usually part of the contract: given a (possible) pointer in

s Some may argue that in some contexts a garbage collector may need no context-
independant information at all (eg: tags) to perform the exploration of the live graph
of objects (for ex. [2]). This certMnly may be, but remains to be seen. In practice also,
such a claim can be made only within a particular type system, which does not suit
our objectives, since we want to build a language-independent memory management
interface.

429

the memory domain, the identification method tells (i) wether an allocated object
is designated by the pointer, and if so (ii) the base address of the object. 6.

For example, if every object in a given memory domain has the same fixed size,
and if the offset of the first object in the domain is known, a simple remainder
operation gives the identification method. This method is used for example by H-
J. Boehm and A. Demers [7], and by B. Schelter in AKCL's conservative garbage
collector [18] 7 .

With conservative garbage collectors as with "regular" ones, s tat ing explicitly the
implementat ion contracts attached to the memory domains allows one to describe
easily the strategies, and to compare the choices made by the implementors .

D i s c u s s i o n . It is worth noting that , whereas the set of object formats is in some
manner "buried into" the implementat ion of a memory management system, the
actual division of the memory space in separate domains is mostly arbitrary: adding
an extra domain changes virtually nothing to the implementat ion problem, as long
as no new contract is supported. This leads us to a straightforward generalization,
namely the allocation regions.

2.3 A l l o c a t i o n r e g i o n s

We define an allocation region to be a memory domain (set of pages, or of segments),
to which is at tached an unique implementation contract. Moreover, we will say that
any allocation takes place in a region. Depending on the MMS capabilities, regions
may be created at runtime, and destroyed at runtime (which is an unsafe operation,
unless is it is the result of some automated deduction on the program).

2.4 L a n g u a g e - I n d e p e n d e n t I n t e r f a c e s

The two abstractions described previously allow one to describe in simple terms ex-
isting implementat ions. A generalization yields a language-independent, simple and
high-level interface for memory management systems. Given a set of implementat ion
contracts supported by the system, the following two operations will be provided:

creation of a region (with an attached contract),
- allocation of objects in a region.

Among the desirable extensions of this minimal interface are the following:

6 In practice, different identification methods may be used, depending on some "degree of
ambiguity" of the pointer; eg, a pointer located in an execution stack might be considered
"more ambiguous" than a pointer located in an allocated object.

T Some conservative garbage collection algorithms do not even make use of an identification
method: for example, one of J. Bartlett's first mostly copying GCs [4] used to "fix" and
explore any object contained in a page that was designated by an ambiguous pointer
(this approach is acceptable because in Bartlett's implementation only the stack may
contain ambiguous pointers; in Boehm and Demers' one, any word in a live object is
considered to be an ambiguous pointer, so the above approach would most likely lead to
excessive retention.)

430

destruction of a region,
- region predicates.

The interface is language independent because the contracts concern only imple-
mentation properties of the objects, regardless of higher-level considerations such
as the type system, etc (this is why we call these abstractions intermediate-level.)
On top of such an interface, one can easily either (i) offer a malloc-l ike facility,
by automatically mapping the objects in regions - thus hiding the implementation
differences between different populations of objects, or rather (ii) let this interface
be the MMS interface, thus providing a target language to express implementation
choices, typically done at the language level, but possibly also on a per-application
basis.

The following section describes in more details a MMS interface in C.

2.5 T h e c o m p l e t e a b s t r a c t r eg ions i n t e r f a c e

Figure 1 presents an example interface, as may be offered by a portable memory man-
agement system. The mal loc friends are omitted. One goal is to provide as simple
an interface as can be made. Inevitably, parts of this interface are implementation-
dependent, because all memory management systems do not support the same set of
object formats. I signal the places where some amount of implementation-dependent
code may occur by a c o m m e n t : / * imp. dep. */ .

typedef struct
{ /* imp. dep. */ } region_t;

t y p e d e f enum
{ /* imp. dep. */ } con t rac t_ t ;

region_t *crea te_region(cont rac t_ t c /* , imp. dep. * /) ;

void *a l loca te (reg ion_ t *r /* , imp. dep. * /) ;

void destroy_region(region_t *r) ;

region_t *region_of(object_t obj);

Fig. 1. A proposed C interface for a memory management system supporting regions.

R e g i o n C r e a t i o n . When a region is created, an implementation contract must be
associated to it: Typically, most of the implementation contracts will demand
some extra parameter(s), such as the size of the objects in the region (or a range

431

of sizes), and possibly some boolean values expressing properties (one may think
of the "pointer-free" property), s

O b j e c t A l loca t ion . allocating an object in a region obviously asks for the region as
a parameter. Some additional parameters might be needed, such as a size and/or
a tag of some sort, depending on the contract, and thus on the implementation.

D e s t r u c t i o n of a Reg ion . this means deallocating all the objects in the region.
R e g i o n Re t r i eva l . this function returns the region the object belongs to (may be

used to implement type predicates).

In addition to the proposed interface, some extensions such as the static allocation
of regions together with allocation macros may provide increased efficiency. A MMS
implementation will typically offer a set of predefined implementation contracts,
such as the ones we already find in existing implementations. The following section
describes briefly the set of contratcs offered by a MMS I 'm currently developping.

3 Example Set of Contracts

This section describes briefly the set of contracts offered by a core Mark&Sweep (MS)
GC designed to be used either within PCR [21] as a generational, mostly parallel
GC (using H-J. Boehm's algorithm [6]), or independently as a simple Mark&Sweep
collector.

First, as in [7], the system distinguishes between pointer-containing (composite)
and pointer-free (atomic) objects. Composite objects are explored according to an
exploration mode (Table 1). The first three modes both view the objects as unstruc-
tured intervals of memory; they differ by the way they recognize pointers in these
intervals. The most liberal conservative mode (conservative2) accepts interior point-
ers, and is intended for the root objects (execution stacks in particular). These three
modes ask very little from the client of the MMS: no particular knowledge of the
internals of the system is required. The structured mode asks for a specialized explo-
ration function, which should obey a precise protocol in order to preserve desirable
properties of the exploration process (such as proper tail-recursion): these functions
are meant to be automatically generated by a compiler (from provided templates),
taking advantage of some knowledge on the objects structure.

Mode
Tagged

Conservativel
Conservative2
structured
pointer-~ee

Description
Each word in the object is a tagged value (either an immediate value
or a reference)
Each word is an ambiguous reference, interior pointers are not accepted
Interior pointers are accepted.
The object is explored by a specialized exploration function
No exploration (pseudo-mode)

Table 1. Exploration modes in a conservative MS collector.

8 Some may argue that an object oriented hierarchy of region types would be the right way
to go. That is probably right. Just waiting for a suitable, low-level language to happen.

432

Finally, each region contains either small objects, in which case a unique size is
part of the contract, or big objects (of any size bigger than half a page.) The page size
is a parameter of the implementation. It is expected that in practice any sr
implementation type will fall in the small objects category for any reasonable page
size; so the distinction between small and big objects should not be a hindrance.
Table 2 summarizes the contracts offered by the MMS, and their parameters.

Atomic I Tagged

Large I no parameter no parameter
Small size size

Composite
Conservativel I Conservative2
no parameter I no parameter

size [size

Structured
expl. func.

size, expl. func.

Table 2. The contracts and their parameters in a conservative MS collector

Internally, the system makes a difference between power-of-two sizes and other
small sizes. Also, a non-homogeneous region of small objects is used internally for
allocating bit-maps (with a buddy system). Future extensions may include a public
non-homogeneous mode for small objects. With the current set of contracts, non-
homogeneous populations must be implemented with sets of regions. As in [7], the
system offers a default taalloc-like interface, using an array of predefined regions
for various sizes of small objects, and another predefined region for the big objects;
these predefined regions use the "conservative1" exploration mode. As in [7], a similar
default interface for atomic objects is also offered (implemented with a second set
of predefined regions).

4 I m p l e m e n t i n g t h e A b s t r a c t i o n

This section is mainly aimed at MMS implementors. I'll show here how to im-
plement the abstraction in a garbage-collected system, assuming (for the sake of
brevity) one wants to modify an existing implementation. I'll discuss successively
the Mark&Sweep, relocatable bodies, and copying collection policies.

4.1 MarkgzSweep Col lectors

The exploration part of a garbage collector does not directly deal with the way object
are segregated in separate populations: it is only concerned with the object formats,
and more generally by the implementation contract: (i) where to find the mark bit,
given the address of the object - either in the object, or in a separate bit-map, (i i)
how to enumerate the explorable slots of an object, etc. So, the main part of the
garbage collector itself does not have to be modified at all because it already has
support for multiple contracts and in practice it has no concern for regions.

The sweep phase must construct one free list per region, so the region is a pa.
rameter to the sweep functions (instead of the size only, as in [7] or [23]). Since the
sweeping code is already capable of dealing with multiple object sizes, no particu-
lar difficulty arises. Lazy sweeping may be achieved by linking, for each region, the
pages to be swept.

433

4.2 Relocatable Bodies

Separate memory domains for relocatable bodies are often used with Mark&Sweep
garbage collectors, as an easy way to deal with the fragmentation induced by multiple
objects sizes (KCL [23], Le-Lisp [8].)

Sticking to the implementation, low level point of view, it may be worthwhile
considering the relocatable bodies as plain objects (and not as merely the second
parts of objects.) Part of these objects' contract is that they are pointed once,
and once only. Separate regions of relocatable bodies are implemented as easily as
separate regions of Mark&Sweep cells. I will not describe that further.

4.3 Region Preserving, Copying Collectors

With copying garbage collectors, the regions (ie: the grouping of the objects) should
be preserved by the copying process: one copying pointer per region is required.

The copy space associated to each region needs not be allocated before the copy-
ing process actually takes place, so the respective sizes of the regions may vary
according to the program's needs. A convenient solution is to have a pool of free
pages, and a separate count of available pages. Initially, all the pages in the pool are
available, So the count is equal to the size of the pool. Each time a page is allocated
to a region of copiable objects, two pages are discounted (instead of one), so that
enough pages remain in the pool when the count reaches zero. At this moment either
a garbage collection must be performed, or the heap must be expanded 9. I adopt
this approach in the portable garbage collector included in the K2 Implementation
and Compilation Kit (next section.)

4.4 Approximate Depth-First Copying Collectors

Independently from P. Wilson [22], I devised and implemented in 1990-91 a more
general adaptation of Moon's scheme [16] in a mostly copying garbage collector with
ambiguous roots and full support for regions [10]. This garbage collector is one of
the two parts of the K2 Implementation and Compilation Kit 1~

The region-preserving, approximate depth-first copying is implemented as fol-
lows: as described above (Sec 4.3), one copying pointer is required per region, so
there may be one copying page per region of copiable objects. To implement Moon's
approximate depth-first copying, one "local" scavenging pointer per region is used
in addition to the global, "Cheney" scavenging pointer [9]. (To avoid scanning some
locations twice, the last location reached by a local scavenging pointer in a copying
page is saved when that page is replaced.)

4.5 Implementing Dynamic Regions

The simplest way to implement the regions is probably to use plain runtime objects
(as opposed to diffuse informations in the code) identified by a pointer. The addresses

9 Such a decision can naturally be made be]ore the count reaches zero, according to some
gc-triggering policy (but this is an out of scope issue.)

10 The other part is a compiler for an intermediate language designed by N. S@niak [19].

434

of statically defined allocation regions may be included inline in some portions of
the code (in allocation macros for example) for efficiency; some portions of the
memory management system still have to cope with variable regions (and thus have
to dereference the pointer), but the performance cost of the abstraction is in practice
close to nought. Garbage collecting the dynamically created region objects poses no
particular problem except that some portions of the garbage collector"s code may
keep a pointer on a region object for some time, so it may be better not to move the
region objects. At the end of a GC, the regions which (i) do not contain any object,
and (ii) are not pointed as objects themselves are dead and can be collected.

In K2's gc the regions are identified by a small number. A "page tag" packs in
one word the region number and two attributes zone and mode representing both the
implementation contract and (for copiable objects) the logical from or to space the
page is in. Still, the GC accesses the regions objects through an array of pointers, to
allow for the dynamic creation/deletion of regions. The argument for such a solution
is that almost all the information needed by the gc to make (multi-way) decisions is
packed in a very compact way, and retrieved in only one memory access. In retrospect
however I think that using a pointer as a region identifier makes the implementation
simpler and is worth the extra word in the page headers. My new (in progress)
garbage collector uses this latter solution.

Having the abstract regions materialized as runtime objects has the advantage of
inspectability, and makes the implementation more clear. The region objects will typ-
ically hold the free lists (Mark&Sweep regions), or the allocation pointers (copying
regions), and a materialization of the contract attached to them : size and shape of
the objects, some property bits, specialized exploration functions, etc. Some of these
informations may be redundantly present more superficially (say, in page descrip-
tors) for efficiency reasons. Using pseudo regions for the free pages (or segments),
and for the "outside world" (holes in the address space, data-structures private to
the gc) may help make the garbage collector simple and efficient, for most of its ac-
tions may be driven by some compact representation of the contract, in a so-called
"object-oriented" manner.

5 Implementing with the Abstraction : Distributing the
Objects Into Regions

This section now turns to the language implementor's point of view. The actual way
objects are segregated into separate regions is quite naturally the result of some
trade-offs. The present section reviews a few aspects of the question.

5.1 Implementat ion Choices

The very nature of certain kinds of objects commands partly the way they are
implemented. For example, it is common in Lisp implementations to implement
differently (and in different memory areas) character strings and list cells. Such a
choice is easily expressed in terms of regions.

In quite the opposite manner, many implementations with a copying garbage
collector pack all kinds of objects together, and thus do not segregate the objects

435

according to their implementation. As a consequence (to maintain the unique con-
tract requirement), they use a very general encoding of the objects formats, often
with a header word (SRC Modula-3, SML-NJ [1]), but not always (Lucid Common
Lisp's list cells don't have a header word, but a distinguished pointer tag [20]). Using
a header word in each object trades some space for the simplicity of the implemen-
tation.

With its regions mechanism K2's collector, as any other efficient implementation,
allows one to use simultaneously very efficient, dedicated data formats (for list cells
for example), and more general, flexible formats (with, say, interpreted headers);
unlike other efficient memory management systems, K2's MMS and any MMS with
full support for allocation regions is not related to any type system, and allows one
to express the space/efficiency trade-offs in a high-level and flexible manner.

5.2 M a p p i n g T y p e s to Reg ions

An obvious way of segregating the objects in regions is to use a mapping from types
to regions. There is no particular reason why different types should be implemented
in different regions, or conversely why a single type (at the source language level)
could not be implemented in several regions.

As pointed out in previously, there is a space/other trade-off when a region's
contract supports multiple objects formats, for an object descriptor of some kind
may be needed. Among the reasonable uses of such "inhomogeneous" regions, one
may think of:

- ML types with multiple constructors (aka variant records),
- object oriented type subtrees (idem).

In a statically typed world, some automatic analyses may help determine a suit-
able mapping of types to regions, tailored for each particular program.

5.3 M a p p i n g Sizes to Reg ions

Mapping sizes to regions is the other obvious way of segregating the objects, for
memory areas (typically: pages) containing one-sized objects are easy to deal with
efficiently at the (MMS) implementation level. KCL uses this mapping for its so-
called cells types. Boehm and Demers also do (although they also distinguish between
pointer-free and non pointer-free objects). Boehm and Weiser initially reported some
fragmentation problems when many sizes were present in an application (because a
single object of one size mobilizes an entire page). A suitable rounding method now
remedies this inconvenience 11.

11 The rounding method used (due to R. Atkinson) is very clever: it consists in rounding
up to 3, (or 4 , or n) upper significant bits. The maximum loss of space with this method
is quite acceptable 21-n (25% with 3 bits), and the number of sizes is greatly reduced:
33 sizes between 0 and 512 with 3 bits. As a bonus, there is no loss for 2 n first sizes!

436

5.4 Discussion

The trade-offs for distributing the objects amongst regions may be different in small
heap and in large heaps. Large heap sizes may contain several thousands of pages,
far exceeding both the number of object sizes and the number of types present in the
running program. In such a situation, if no other information is available, the finest
distribution based on both sizes and types may be a good one. In other words there's
no particular reason to put the objects of one type in the same set of pages than
the objects of another type, unless we know that (i) the two given types of objects
are strongly related, and (ii) related objects have great chances to be together in
memory. In smaller heaps however, a fine grained distribution may introduce too
much fragmentation, that is, a less efficient usage of the memory space.

The above discussion as well as the preceding sections deals mostly the static
distribution of the objects in regions. Keeping in mind our goal, which is to group
the related objects, and conversely to separate unrelated objects, we can think of
allocating the objects in different regions according to less ordinary policies:

- Dynamic criteria : replace temporarily the allocation region in which to allo-
cate some kinds of objects. For example, in a compiler that would process one
procedure at a time, one may wish to (partly) switch regions each time a new
procedure is to be compiled.
Allocation site : allocate some kinds of objects in different regions, according to
their allocation site (the place in the source code where the allocation occurs).

- etc.

It should be noted that switching regions, either at places or at times carries no
semantics from the client's point of view (unless he makes use of predicates on the
regions). Unless some regions are explicitly destroyed, switching regions does not
affect the correctness of a program: in that respect, it can be compared to pragmas
in compiled code: pragmas can help (or hinder), but should not affect the semantics.

The grouping policies described above apply to individual programs, rather than
to language implementations; They should probably be used as the result of some
automatic program transformation, rather than explicitly. The next section presents
briefly two directions of research for such automatic program transformations.

6 Regions and Automatic Program Analysis

This section is mainly prospective, and expectedty far incomplete. Its purpose is to
hint research directions on "how to improve the memory usage automatically". The
two approaches I describe below would be much less promising if the resu l t s of the
analyses could not be expressed in terms of regions. The region abstractions provide
the natural back-end to take advantage of such analyses.

6 . 1 I n f e r e n c e o f E f f e c t s

Some automatic program analyses, initially aimed at automatic parallelization (for
example by Gifford and al. [14]), try to determine a partition of the set of objects

437

into separate and "non-interacting' populations. By allocating these populations in
different sets of pages (ie: in different regions), we can reduce the dilution of the
active data within the working set, and thus reduce the size of the working set.
For practical purposes, only an approximation of this analysis is probably desirable,
because the "non-interacting" requirement may be too strong.

6.2 Life t ime Analysis

Other analyses try to determine aatomatically the lifetime of objects or sets of ob-
jects [11], and may already produce enough information to insert some deallocation
statements at places in some programs. However, the explicit deallocation of indi-
vidual objects is not proven to be more efficient than the automatic reclamation
provided by a garbage collector. On the other hand, it is often the case that a whole
lot of temporary data structures are known to be dead a certain execution points.
In such a situation, creating and deleting dynamically a dedicated set of regions for
these objects would be the appropriate way of taking advantage of this knowledge.

6.3 Discussion

Both of the theoretical approaches described above are the matter of active research.
They both attack a non-decidable problem, but it is a fact that most actual programs
present many regularities that can be exploited automatically. This is especially true
when strongly typed programming languages such as ML are used. As a consequence,
these approaches should be considered promising and modern memory management
systems should provide some kind of abstract region support to help exploit them.

7 R e l a t e d W o r k

Although not present as such in existing implementations other than K2's garbage
collector, the allocation region abstraction is strongly hinted in some previous work.

Both KCL's memory management system and Boehm&Weiser's article were un-
doubtedly valuable sources of inspiration: the excellent performances of KCL on
memory-intensive programs more than demonstrate the importance of the memory
management policy in the global performances of an implementation, and shows
that some structuration of the memory space, with separate populations of objects
is probably a good option. KCL's system is completely dedicated to Common Lisp
and thus could not serve my purposes (building a portable, language independent
memory management system). I was nevertheless impressed by its simplicity and
its fitness: K2's memory management system may be viewed as a generalization
of KCL's one. The same remark applies to H-J. Boehm and A. Demers' portable
garbage collector, for their distinction between a tomic and composi te objects, as well
as the use of homogeneous populations of objects lead in some manner to the notion
of a language-independent implementation contract attached to an abstract region.

The whole idea of considering populations of objects as memory domains is prob-
ably quite ancient. For example, Bishop [5] uses areas as the basic unit for partial

438

garbage collection. A recent paper by D. Hanson [12] describes the benefit of allocat-
ing through a notion of abstract population (which is there called arena). Hanson
shows the advantage of allocating in such arenas in applications where the lifetime
(more exactly the death-time) of entire sets of objects may be predicted easily: he
shows that in the l c c compiler, a large part of the allocated objects are known to
be dead when the compilation of a function is finished: by allocating them in a ded-
icated arena he is able to deallocate them all at once. Also, it must be noted that
the Cedar language [15] does include a notion of zones, close to both our regions and
Hanson's arenas.

The concept of a language-independent memory management toolkit has been
made public by R. Hudson &al. [13], with an approach almost orthogonal to ours: the
interface offered by this toolkit focuses on generations management issues, whereas
all the memory space may be viewed as a single allocation region.

8 C o n c l u s i o n

The concepts we have presented in this paper give an intermediate level of abstrac-
tion to describe and compare most existing garbage collected MMS. When these
concepts are also supported by a MMS through an abstract regions interface, this
level of abstraction becomes as well a level of control: the client of the memory man-
agement systems may control either statically or dynamically the way objects are
grouped in memory.

We have presented in this paper how these concepts are only a slight generaliza-
tion of existing techniques, and how they could be implemented in existing or in new
memory management systems. We have presented how to use them in a language
implementation, and how promising theoretical approaches on memory management
could be put to use through the abstract interface we have proposed.

9 Acknowledgements

This paper has greatly benefited from comments by H-J. Boehm.

R e f e r e n c e s

1. A. Appel. A runtime system. Technical report, Princeton University, February 1989.
(DRAFT).

2. A. Appel. Runtime tags aren't necessary. Lisp and Symbolic Computation, 2, 6 1989.
3. A. Appel. Simple generational garbage collection and fast allocation. Software --

Practice and Experience, 19(2), February 1989.
4. J. F. Bartlett. Compacting garbage collection with ambiguous roots. Research Report

88/2, Digital Western Research Laboratory, Palo Alto, Cal., February 1988.
5. P. B. Bishop. Computer systems with a very large address space and garbage collection.

PhD thesis, MIT, Cambridge, MA, May 1977.
6. H-J. Boehm. Mostly parallel garbage collection. In SIGPLAN'91, pages 157-163.

Xerox PARC, 1991.

439

7. H. J. Boehm and M. Weiser. Garbage collection in an uncooperative environment.
Software - - Practice and Experience, 18(9), September 1988.

8. J. ChaJ]loux and al. Le-Lisp de I'INRIA, version 15.P. Le manuel de rdfgrence. INRIA,
Le Chesnay, 1986.

9. C. J. Cheney. A non-recursive List compacting algorithm. Communications of the
ACM, i3(11):677-678, 1970.

10. V. Delacour. Gestion m6moire automatique pour langages de prograrnmation de hant
nivean. Th~se de l'Universit6 Paris 6, LIX-INRIA, Paris, juin 1991.

11. A. Deutsch. On determining lifetime and aliasing of dynamically allocated data in
higher-order functional specifications. In Annual ACM Symposium on Principles of
Programming Languages, San Francisco, January 1990. ACM.

12. D. Hanson. Fast allocation and deallocation of memory based on object lifetimes.
Software -- Practice and Experience, 20(1), January 1990.

13. R. Hudson, J. Ehot Moss, A. Diwan, and C. Weight. A language-independent garbage
collector toolkit. Technical Report 91-47, University of Massachusetts, Amherts, 1991.

14. P. Jouvelot and D. Gifford. Parallel functional programming: the FX project. In
M. Cosnard and al, editors, Parallel and distributed algorithms, pages 257-267. North-
Holland, 1989.

15. B. Lampson. A description of the Cedar language: a Cedar language manual. Technical
Report 15, Xerox PARC, Palo Alto, CA, 1983.

16. D. A. Moon. Garbage collection in a large Lisp system. In Symposium on Lisp and
Functionnal Programming, Austin, Texas, 1984. ACM.

17. E. Muller and B. Kalsow. SRC Modula-3, version 2.05. Technical report, DEC, Palo
Alto, CA, 1992. Included in the public distribution of SRC Modula-3.

18. W. Schelter. AKCL : Austin Kyoto Common Lisp. University of Texas, Austin, De-
cember 1987. first release (akcl-1).

19. N. S6niak. Th6orie et pratique de Sqil, un langage interm6diaJre pour la compilation
des langages fonctionnels. Th~se de l'Universit6 Paris 6, LIX-INRIA, Paris, octobre
1991.

20. P.G. Sobalvarro. A lifetime-based garbage collector for Lisp systems on general-
purpose computers. Bachelor's thesis, MIT, Cambridge, MA, 1988.

21. M. Weiser, A. Demers, and C. Hauser. The Portable Common Runtime approach to
interoperabllity. In A CM 13th symposium on Operating Systems Principles, December
1989.

22. Paul R. Wilson. Effective "static-graph" reorganization to improve locality in garbage-
collected systems. In SIGPLAN'9t, pages 177-191, june 1991.

23. T. Yuasa and M. Hagiya. Kyoto Common Lisp report. Technical report, Research
Institute for Mathematical Sciences, Kyoto University, 1986.

24. B. Zorn. Comparative Performance Evaluation of Garbage Collection Algorithms. PhD
thesis, UCB, Berkeley, CA, 1989.

This article was processed using the ~TEX macro package with LLNCS style

A concurrent generational garbage collector

for a parallel graph reducer

Niklas R6jemo
Department of Computer Science

Chalmers University of Technology
412 96 G6teborg, SWEDEN

rojemo@cs.chalmers.se

This paper describes a garbage collector for an implementation of a lazy
functional language using parallel graph reduction. The garbage collector is
an extension to the Appel-EUis-Li garbage collecton The extension consists
of two parts:

Firstly, generations has been added: this often decreases the garbage col-
lection time with nearly 20%. This shows that generational garbage collec-
tion is useful even for a lazy functional language implemented with graph
reduction (which performs a lot of updates).

Secondl~ the Appel-Ellis-Li garbage collector has been changed so that
it can collect garbage processes (which is essential if we do speculative eval-
uation).

Keywords: garbage collection, graph reduction, concurrent, generations

Introduction

Normally, most garbage collectors introduce p a u ~ s in the normal execution of

the program. We want these pauses to be both rare and brief; i.e., we want the col-

lector to reclaim as much m e m o r y as possible with a min imum of work. This is

achieved if the garbage collector concentrates on nodes that are likely to be garbage.

Another way to decrease the annoyance of the pause is to collect garbage without

stopping the evaluation. The garbage collector described in this paper uses both tac-

tics.

Speculative evaluation is a nice programming concept which makes it easier for

the p rogrammer to use a parallel machine, by using free processes to evaluate

expressions that might be useful. We do not want to burden the programmer with

the task of detecting, and killing, speculative processes that do not contribute to the

final result of the program. The garbage collector described here will detect, and kill,

441

these garbage processes when collecting garbage.

Generational garbage collection, i.e., the idea to concentrate garbage collection on

the nodes that are most likely to be garbage, is not new. It is used in [Lib83] [Moo84]

lUng86] [App89] among others to great success. They all use the observation that

young nodes are more likely to be garbage than old nodes. By separating young

nodes and old nodes in different heap spaces it is possible for the garbage collector

to concentrate on the nodes that are most likely to be garbage. The garbage collector

does not need to work on the old nodes, except when there is not enough garbage

available to recycle among the new nodes (which happens rarely). There is a hidden

assumption here that nodes do not point at nodes younger than themselves as this

would force the garbage collector to scan the old nodes for pointers to young nodes

when deciding which young nodes that are garbage. This assumption is mostly true

for object oriented languages, LISP and strict functional languages, the few excep-

tions to the assumption that exist in an implementation can be handled with a small

overhead, which is paid when nodes are updated.

We are interested in the implementation of lazy functional languages using graph

reduction [PJ87] and parallel graph reduction [AJ89]. Unfortunately; there is a seri-

ous mismatch between graph reduction and generational garbage collection: a fun-

damental operation in a graph reducer is to update nodes representing unevaluated

expressions, and this is done frequently, which is a problem as the overhead of

checking pointers is paid for every update.

This paper describes a generational garbage collector that can work with an

implementation of a lazy functional language using graph reduction. With some

modifications, described below, generational garbage collection is useful also with

graph reduction, according to our measurements. The trick is to be selective when

tenuring a node (promoting it to an older generation).

Collecting garbage processes has been done before in [Hud82] [Hud83], among

others. Hudak gives an algorithm for concurrent garbage collection that can collect

garbage processes. He does however rely on cooperation between the mutators 1

and the garbage collector. The code for evaluation must therefore contain extra code

for garbage collection which might slow-down the evaluation even when no gar-

bage collector is running. Augustsson [Aug90] does not need any cooperation but

instead stops the evaluation during garbage collection.

1. The user's processes are called mumtors because they change all the data that
the garbage collector has cleaned up.

442

The garbage collector described in this paper uses the Appel-Ellis-Li garbage col-

lector [AEL88] as its base, but it can collect garbage processes with a small loss of

concurrency between mutators and garbage collector. The possibility to include

generational garbage collection in the Appel-Ellis-Li garbage collector is mentioned

in [AEL88] as future work, and have been implemented in the collector described in

this paper.

Generational garbage collection

A graph reducer (for a lazy language) normally creates many short lived objects

in the heap. These objects, for example function applications which are evaluated

shortly after creation, are what the garbage collector should concentrate on. There

may also exist long lived objects that never change, e.g., a table of reserved words

in a compiler, which we do not want to spend any garbage collection time on.

A way to distinguish these two types of object is to allocate all new objects in one

heap and then during garbage collection move old nodes to another heap. This con-

cept can be taken further by using more than two heaps and moving objects to suc-

cessively older heaps if they survive garbage collection in younger heaps. The

implementation in this paper uses only two generations as it simplifies the garbage

collector.

After we have decided how many generations to use, the problem of how to

decide when to move a node to an older generation appears. The normal method is

to count the number of garbage collections that the node has survived. The age

when a node is tenured varies from zero (i.e., a node is old if it survives any garbage

collection [App89]) and upwards. To prevent nodes that were created just before

garbage collection to be tenured our implementation uses an age of one (i.e., the sec-

ond time the garbage collector encounters a node it is considered old). As the imple-

mentation uses a large heap, normally 4-8 Mbytes of combined heap for the new

and the old generation, survival of two garbage collections indicates that the node

is quite stable.

Unfortunately some pointers among the old nodes will point at younger nodes.

These pointers must be followed when the garbage collector decides which nodes

that are garbage. A table of pointers, called the exception table, to these troublesome

pointers are therefore maintained, so that the garbage collector can find them with-

443

out scanning all old nodes. A slight variation of this method is used in [Ung86],

another method is to use an indirect table [Lib83]. If it is possible to update a pointer

in an old node then a test if the new pointer points at a young node is necessar~ in

which case the address of the new pointer is entered in the exception table. This test

can be done in software if updates are rare, otherwise this is a big problem.

A graph reducer evaluates a vrogram by successively re-writing the graph. This

causes a fundamental mismatch between generational garbage collection and graph

reduction, as graph reduction often updates pointers in previously allocated nodes.

These new pointer values might point at young nodes and can therefore put a heavy

load on the exception table. The overhead induced by checking every pointer when

updating a node is also expensive, as in addition to a simple store the code has to

check if the position stored in is old, and in that case check if the node pointed at is

young, in which case the updated address must be added to the exception table. The

solution proposed here is to only tenure nodes that are known never to be updated.

This condition restricts the possibility to use generations, but our measurements

clearly indicate that there are enough nodes that will never be updated to make gen-

erations useful. All constructor nodes belong to this group, as only what they point

at can be changed by the mutators, never the pointers themselves.

In fact, the only nodes that can be updated during normal evaluation are nodes

that represent un-evaluated applications with all their arguments available. By

never tenuring these nodes the need to update old nodes disappears. This removes

the need to check pointers when updating nodes, which makes generational gar-

bage collection feasible for a graph reducer.

There will still be pointers in the old heap that points at young nodes, but these

pointers are all created when the garbage collector moves young nodes to the old

heap. The penalty for checking these pointers and, if necessar)4 add them to the

exception table is not paid during normal evaluation, and does therefore not make

a big impact on the total execution time. The number of these "trouble" pointers

never exceeded 10% of the pointers in the old heap in any of the measured evalua-

tions. This means that approximately one word out of 20 in the old heap contains a

pointer that points at a young node. (The average node consists of four words where

two words are pointers.)

444

root node ~.~ i . .
exception table " N ~ i useo memory.

\ ~ Unused memory.

\freeipage list ~ From space.

l j o, a es.
7

~ I I I I I I I I I I ~ 1 I~ I ! ~ I I I I I I
from-space] | / to-space

/ l tenured destination pointer

destination pointer
scavenge pointer

Figure 1 The heap just after a minor garbage collection when the garbage collector
has copied the root-node and all young nodes accessible ~om the old nodes
to to-space.

I m p l e m e n t a t i o n

The garbage collection works as the Appel-Ellis-Li garbage collector [AEL88] but

uses two destination pointers instead of one (Figure 1), so that young and old nodes

can be separated during garbage collection. The additional destination pointer,

called tenured destination pointer, are used when a node that should be tenured is

found in from-space. The node is copied to the position given by the tenured desti-

nation pointer but is treated as usual otherwise. This will create pages that only con-

tains tenured nodes. The garbage collector does not need to look at these pages at

the next garbage collection as they are old and therefore have probably not turned

into garbage. The only thing necessary is to change the "trouble" pointers, but these

are easy to find because of the exception table. The mutators can therefore access the

old pages nearly immediately after the flip of to-space and from-space. When too

many pages are occupied by old nodes a major collection is done where all pages

are garbage collected. Currently the limit is when 30% of the available heap is used

for old nodes. The decision to use 30% is a compromise; a large old heap decreases

the number of major collections, but increases the danger that not enough free mem-

ory is available when a major collection is needed. None of our test programs had

any problem with the 30% limit~ In fact, they still worked with a limit of 40%, but

this did not give any significant speed-up.

445

C o l l e c t i n g g a r b a g e m u t a t o r s

The reason collecting garbage mutators is necessary in this implementation is that

the languages it is implemented for allows speculative evaluation. Speculative eval-

uation makes it easier to gain a higher utilisafion on a parallel machine, as spare

processors can be used to evaluate expressions that might be useful. The decision if

such a mutator is garbage, i.e., does not contribute to the final result of the program,

is related to the decision if a node is garbage. The garbage collector therefore seems

to be the ideal candidate to find, and kill, these garbage-mutators.

It is easy to collect garbage mutators if the garbage collector stops all mutators

during garbage collection and then decides which to restart after it knows which

parts of the graph that survived the garbage collection. This does however not use

the possibility to hide garbage collection by allowing the rnutators to continue

working during garbage collection.

The garbage collector described in this paper must also stop the mutators at the

start of the garbage collection, but this garbage collector can resume a mutator as

soon as the garbage collector reaches any node in the heap that the mutator is work-

ing on. Sharing can make this difficult, but a way around this problem is described

at the end of the next section.

Implementation

The garbage collector described in this paper is implemented for the <v,G>-

machine [AJ89], a parallel graph reducer for a shared memory machine. The work

of a mutator is represented by a linked list of frame-nodes in the heap (Figure 2).

Every frame node represents a function application, and includes pointers to all

arguments needed. New mutators are created by starting speculative evaluations

on e.g., function arguments that might be needed (Mutator B and C in Figure 2).

These speculative evaluations terminate when they have evaluated their top node

to head-normal form, or if the garbage collector kills them. Every mutator has a cor-

responding process-node in the heap which, among other thing, contains pointers

to the top node and the node the mutator is currently working on.

A garbage collection (both a minor one and a major one) starts by stopping all

mutators, which is done in the same way as in the previous garbage collector, and

continues approximately as the Appel-Ellis-Li garbage collector does. The differ-

446

Goal of mutator D.

I I Frame-node that survived garbage collection.

Garbage frame-node.

~ ! Node * is the
new goal of

i ~ i mutator E.

, !

The linked list The linked list
of mutator D. of mutator E.

-9,"
. t

The linked list
of mutator E

Figure 3 Mutator D is resumed unchanged after garbage collection, mutator E is
resumed but will stop after evaluating node * to weak-head normal form.
Mutator F is killed by the garbage collector.

ence is that our collector does not treat the registers of the mutators as root-pointers,

and can therefore not resume the mutators as early as the Appel-Ellis-Li garbage

collector can. Mutators are instead resumed, and their process-nodes are moved to

to-space, as soon as the garbage collector finds any node in their l inked list of frame-

nodes. If the found node is the goal of the mutator then the mutator can be resumed

immediately. The problem is if, due to sharing, the garbage collector finds another

node in the list (e.g., the *-node in Figure 3). It is not possible at this m o m e n t to

decide exactly how much of the linked list that mutator E works on that is not gar-

bage, as the collector m a y later find a pointer, that points at the goal node. It is how-

ever possible to say that at least all frame-nodes in the list up to, and including, the

�9 -node is useful. The garbage collector therefore creates a mutator that has the *-

.- ~Argument pointer.
Goal of mutator A. ~ , _~.==~. ~Link pointer.

C al o f
~ u t a t o r B. ',~---J:IGoal of mutator C.

,s

The linked list The linked list The linked list
of mutator A. of mutator B. of mutator C.

Figure 2 A snap-shot of the linked stack with three mutators. Argument pointers
which are not pointing at frame nodes under evaluation are not shown.

447

node as its goal node and resume this mutator. If the collector later finds that the

goal of mutator E is not garbage then it creates a mutator which has the same goal

as E but waits for the result of the evaluation of the *-node is available. This waiting

mechanism was already available in the <v,G>-machine where it was used to pre-

vent many mutators from evaluating the same frame-node, which is a waste of

resources.

All mutators that have not been resumed when the garbage collection has fin-

ished is killed. To kill a mutator means that its process-node is not moved to to-

space.

Performance

All measurements are from a Sequent Symmetry, a shared memory multi-proces-

sor machine with 16 Intel 386 processors running DYNIX V3.0.17.9.

A problem with testing garbage collectors is that their performance depends

heavily on the behaviour of the test program. The results included in this paper is

summarized in Figure 4.

The figure shows that generational garbage collection is approximately as useful

as concurrent garbage collection for these programs. This is very interesting as con-

current garbage collectors needs a parallel computer to achieve its speed-up, but

generational collection works on any single-cpu computer.

Another piece of information in the table is that generational and concurrent gar-

bage collection sometimes help each other (see gff and logic). One reason is that gen-

erational collection gives the resumed mutators earlier access to some nodes, as the

old nodes do not need to be garbage collected before they are available to the muta-

tors.

A description of the test programs now follows with more detailed graphs about

how time varies due to different choice of page sizes. The reason for testing with dif-

ferent page sizes is that small pages are better for the concurrency, as pages will be

available faster for the mutators after the start of a garbage collection, but are more

expensive during allocation, as we need to grab a new page more often. Larger

pages are cheaper when allocating, but increase the time before the garbage collec-

tor can release the page to the mutators.

where:

Eold
Gold
E

448

The table shows: 1 E~
Gold

the execution time when the previous garbage collector is used.
the previous garbage collection time.
the execution time with the new garbage collector with concurrent and/

or generational garbage collection enabled.

logic

graph
gff

kwic

concurrent

74%

78%

100%

59%

generational
only

94%

80%

82%

56%

both
theory meas.

70% ~-%

63%]66%
82% [75%

32%]49%

Figure 4 The values shows the new garbage collection time as a percentage of the
old garbage collection time. The theoretical value for both is calculated by:

concurrent only * generational only
The best possible value is 0% which means that the garbage collection
time is hidden by the normal evaluation.

logic

graph

proves a tautology in statement logic using natural deduction and

breadth-first searching. The program creates an enormous tree which con-

sist of a lot of old constructor nodes. It needs 4 garbage collection when

using a heap of 8 Mb. Logic slows down if small pages are used, but this

behaviour disappear when generational garbage collection is used. The

reason is that the non-generational collector copies all nodes back and

forth between the two spaces, but the generational collector soon consider

the node~ old and do not move them any more. This is, despite the few

garbage collections, a big win.

compiles a simple functional program into G-code. It needs 9 garbage col-

lections when using a heap of 4 Mb. There is a nice behaviour for old nodes

with only 645 pointers to young nodes among 410kb of old nodes. This is

449

%

120

110

100

90

80

70

The thick black line shows the exe-
cution time for our garbage collector

I L l with generational garbage collec-
tion, and, when two processors are

- used, concurrent garbage collection.

r i i i

One processor used,
i.e., the mutator is stopped until

the garbage collector is finished.
Figure 5

logic

tion time for our garbage collector with
code for generational garbage collection
but without using it. If compared with i.i~'iiill
the thin black line this line shows the
overhead paid for keeping track of the
age of nodes. i

~iii'iiiiiiiii--lThe thin black line shows our garbage collector
without code for generational garbage collection,

�9 . !i.e., it is only a concurrent garbage collector.
The reason it is faster than the previous garbage col-

'" ~ lector even with only one processor, for some page
...... •iI sizes, is due to more efficient coding.

100% means the same execution
time as with the previous non-
generational, non-concurrent
garbage collector.
This garbage collector always
uses 64k-bytes pages.

4k 8k 16k 32k 4k 8k 16k 32k Bytes/page
Two processors used,
i.e., the garbage collector can resume the mutator
before the garbage collection has finished.

This graph shows the execution time of logic using the new garbage col-
lector compared with the previous non-generational, non-concurrent gar-
bage collector.

very few compared to the approx imate 50000 pointers that exist in 410kb

of constructor nodes. Graph was not possible to run wi th the previous gar-

bage collector, w h e n the measu remen t s for Figure 6 was done, d u e to a

bug in the current vers ion of the LML-compiler for the <v,G>-machine.

450

%

110 -

105

graph
No code for generations

....... Code for generations
Use generations

�9 garbage collector without
. code for generations, no
concurrency and 32kbytes
pages.

100

95

90

Figure 6

----T
4k 8k 16k 32k 4k 8k 16k 32k Bytes/page

One processor Two processors

This graph shows the execution time of graph using different choices for
our garbage collector compared to our garbage collector with no code for
generations and 32kb page size.

gff solves a graph colouring problem. Gff needs 24 garbage collections when

using a heap of 6 Mb. The generation behaviour in this program is not very

good, as 40kB of old nodes contain 663 pointers to young nodes. There are

also very few useful nodes after garbage collection (only around 60kb

counting both old and young nodes Gff was not possible to run with the

previous garbage collector, when measurements for Figure 7 was done,

due to a bug in the current version of the LML-compiler for the <v,G>-

machine.)

451

%

110

105

100

gff No code for generations
Code for generations

i m Use generations.

. i .. i ...
............ i i The reference ilere is our
............ i i garbage collector without
............. i J code for generations, no
............ i i : concurrency and 32kbytes

............ ~:i i : i : : : : : i : : : i : : i pages ~

95 , ...

I
4k 8k 16k 32k 4k 8k 16k 32k Bytes /page

One processor Two processors

Figure 7 This graph shows the execution time of gff using different choices for
our garbage collector compared to our garbage collector with no code
for generations and 32kb page size.

k w i c c r e a t e s a l is t o f k e y w o r d s in c o n t e x t . I t n e e d s 18 g a r b a g e co l l ec t i ons u s i n g

a h e a p of 6 M b . K w i c w o r k s o n w o r d s , r e p r e s e n t e d as l ist o f c h a r a c t e r s ,

w h i c h a r e v e r y g o o d to t enure . T h e l a z y s e m a n t i c s d o e s h o w e v e r d i s t u r b

t h e n i ce p i c t u r e b y l e a v i n g u n e v a l u a t e d f r a m e n o d e s a m o n g the w o r d s

w h i c h r e s u l t s in t h e h i g h e s t o b s e r v e d n u m b e r of p o i n t e r s to y o u n g n o d e s ,

3809 p o i n t e r s in 260kb of o ld n o d e s . T h i s n u m b e r d e c r e a s e d w i t h t i m e as

t h e u n e v a l u a t e d f r a m e n o d e s b e c a m e e v a l u a t e d .

452

%
kwic

m

No code for generations
Code for generations
Use generations

105

95

90

Figure 8

i

4k 8k 16k

Two processors

4k 8k 16k 32k 32k Bytes/page

One processor

This graph shows the execution time of kwic using our garbage collector
compared with the previous garbage collector,

Future work

Future work is to find a way to tenure flame-nodes, without paying the overhead

to check all updates to them.One method to do this is to write protect old pages and

when a mutator tries to write to the page the protection is changed to allow writes

and the page is marked so that the garbage collector will scan the page dur ing the

next garbage collection. A problem is that frame-nodes might be updated with

shorter nodes in which case it is easy to l o b s)Tlc with the nodes when scavenging

the page. This problem can be solved by inserting a fill-node if the new node is

shorter than the frame-node it replaces, but this intToduces an extra cost.

Another way to make it possible to tenure nodes that can be updated is to keep a

pointer to all such nodes in the old pages. The garbage collector can remember all

453

nodes that can be updated which it moves to the old pages. This method is currently

under investigation and looks promising so far.

Another change is to use the fact that if an old constructor node points at a young

node (not a frame node in the current implementation) then this node can be pre-

maturely tenured. The reason is that the young node can not be garbage unless the

old constructor node is collected, so there is no reason for the garbage collector to

work on the young node unless it also checks the old node.

References

[AEL88]

lApp89]

[AJ89]

lAud90]

[Hud82]

[Hud83]

[Lib83]

[Moo841

[Pj87]

[Ung861

Andrew W. Appel John R. Ellis Kai Li
Real-time Concurrent Collection on Stock Multiprocessors.
Proceedings of SIGPLAN 88
Andrew W. Appel
Simple Generational Garbage Collection and Fast Allocation
Software - Practice and experience, volume 19, February 171-183
Lennart Augustsson and Thomas Johnsson
Parallel Graph Reduction with the <v,G>-Machine.
Proceedings of the 1989 Conference on Functional Languages and Computer
Architecture, 202-213, 1989
Lennart Augustsson
Garbage Collection in the <v,G>-machine or So much garbage, so little time.
PMG memo 73
Paul Hudak and Robert M. Keller
Garbage collection and task deletion in distributed applicative processing system.
ACM Symposium on LISP and Functional Programming, 167-178,1982
Paul Hudak
Distributed graph marking.
Research report 268, Yale University, January 1983
Henry Liberman and Carl Hewit
A real-time garbage collector based on the lifetime of objects.
Communications of the ACM, 23(6):419-429, 1983
David A. Moon
Garbage collection in large LISP system.
ACM Symposium on LISP and Functional Programming, 235-246, 1984
Simon L. Peyton Jones
The Implementation of Functional Programming Languages
Prentice-Hall 1987
David Ungar
The Design and Evaluation of a High Performance Smalltalk System.
MIT Press 1986

Garbage Col lec t ion in Aurora:
An overv i ew

Patrick Weemeeuw and Bart Demoen

K. U. Leuven, Dept. of Computer Science, Celestijnenlaan 200 A, B-30C1 Leuven.
E-mail: patrickQcs.kuleuven.~c.be, bimbartQcs.kuleuveu.ac.be

Abstrac t . Aurora is an OR-parallel Prolog system whose implementation
is based on the WAM, an r sequential implementation model. This
paper discusses several issues related to parallel Garbage Collection (GC) in
Aurora. The GC itself is a generalisation of GC techniques used for sequential
Prolog.
In order to make this paper self-contained, we focus on the general principles.
More specificMly, many optimisations are not discussed, insofar they are not
directly related to the GC process.

1 Introduction

Prolog is a high level programming language with implicit parallelism as one of
its most attractive features. Exploiting the OR-parallelism available in a Prolog
program can speed up the computation considerably. However, the faster the Prolog
system, the larger the problems are that users want to solve with it. Therefore, a
garbage collector is still necessary in many cases. Moreover, due to the particular
data structures used to represent the run time stacks in Aurora, holes may appear
on the stacks, which tend to increase considerably the memory consumption of the
system.

The Aurora system ([7]) is a prototype OR-parallel Prolog system with standard
Prolog semantics, implemented on a shared memory multiprocessor. Its implementa-
tion is based on an abstract machine (the WAM [11]), which is an efficient sequential
implementation model. The GC process we propose is a generalization of sequential
GC techniques.

Garbage collection for such a system is complicated by several factors. Firstly,
the data structures are more complex: each worker has, so to speak, its own view
on the shared search tree (see further), and extra information about the state of the
system is managed by a scheduler, which has to be kept consistent. Furthermore,
since there are multiple processes working at the same time on the data structures,
synchronization is necessary. This demands also for a parallel garbage collection al-
gorithm. And finally, garbage collection is complicated by often conflicting efficiency
considerations, for which it is not easy to find a suitable trade off.

This document is organized as follows. In section 2, we will illustrate how Prolog
programs specify search trees, and how a particular sequential Prolog implemen-
tation model (the WAM) is used to explore this tree. In the next section, this is
generalized to OR parallel execution, and some aspects related to memory manage-
ment are discussed. Then a section follows about segmented GC in sequential Prolog.

455

Finally, in section 5, these principles of segmented GC are generalized for parallel
GC in Aurora, and several related implementation aspects will be presented. Besides
this, we will also discuss some higher level strategic considerations, such as when to
perform GC, and for which parts of the search tree. Sections 2 and 4 can be skipped
by readers already familiar with Prolog implementations and "GC for such systems.

2 A s h o r t i n t r o d u c t i o n t o P r o l o g a n d i t s i m p l e m e n t a t i o n

In this section, we show in an intuitive way how Prolog programs correspond to
search trees, and how a Prolog engine is used to evaluate a program (i.e. to explore
such a search tree).

Readers already familiar with Prolog and the WAM will note that many as-
pects that are not directly relevant, have been omitted (such as theoretical aspects,
some language constructs (control operators, side effects), and some implementation
optimisations (tail recursion, environment trimming)).

2.1 P ro log p r o g r a m s

A Prolog program consists of a set of predicate definitions, and a query. A predicate
is a set of Horn clauses, each one specifying some alternative way to satisfy the
relation the predicate stands for. E.g. the relation aancestor~ could be specified as:
X is an ancestor of Y if X is a parent of Y, or if X is a parent of Z and Z is an
ancestor of Y. This is expressed by the predicate for ancestor, that consists of two
clauses."

ancestor(X,Y) *-- parent(X,Y).
ancestor(X,Y) *-- parent(X,Z), ancestor(Z,Y).

The variables occurring in a clause have a scope local to that clause. Clauses can be
facts, e.g.:

parent(John, Bill).
parent(Mary, Bill).
parent(Pete, Mary).

which states that John is a parent of Bill, and so on.
A query has the form

*- ancestor(Pete,X).

which states that Pete is an ancestor of some unknown X.
Generally speaking, executing a Prolog program means trying to match the query

with the predicates in the program, in order to find out whether the expression
stated in the query holds, and if so, for what values of the variables. Ignoring many
theoretical and technical aspects, a Prolog program can then be seen as a tree, with
the query at the top, and with branches for all the possible ways to satisfy the query.
The nodes show the successive transformations of the original query (called goals)
each time it is resolved with a matching predicate. Many branches are dead ended,
but some of them may lead to a solution. We call this tree the search tree.

456

ances~(p~)

//,.-.,\\
parent(Pete,X) parent(Pete,Z) ~mcestorfZ,X)

//:..\\
parent(Ma~,X) p~e~(Mary,Z'),ance~or(Z',X)

()j I
p~rent(BilLX) parent('Bill,Z' '),ance~torCL' ',X)

Fig. 1. Search tree-- the gray arrow shows the evaluation order

In figure 1, we show the search tree for the above program. Variable bindings are
shown beside the branches. A small square indicates a successful branch. The other
tip nodes represent goals where the leftmost subgoal cannot be further resolved,
which guarantees that the complete goal can not be solved.

Goals are matched with clauses using a process called unification. This means
that all variables occurring in the clause are renamed such that they are unique,
and then the head of the clause is matched with the goal literal: every two entities
in corresponding positions are constrained to be equal to each other. One particular
consequence of this is that variables can be assigned to only once on each path from
the root to a tip node in the search tree.

2.2 Prolog engines

A Prolog engine is a process that, given a query and a set of predicates, explores the
corresponding search tree and reports all successful branches, if any. This is done
in a depth first, left to right manner (see figure 1). We will first explain how one
branch is explored, and then how the machinery is extended to explore the whole
search tree.

E x p l o r i n g o n e b r a n c h
For each clause executed, an environment frame is created. An environment can

be compared to a stack frame for executing a procedure in an imperative language.
It holds the variables local to that clause, a reference to the parent environment and
a reference to the next instruction to be executed in tile parent environment (the so
called continuation pointer). The environment is deallocated when the corresponding

457

clause has completed its execution. The clause "ancestor(X,Y) ,- parent(X,Z), an-
cestor(Z,Y)." can then be interpreted in a procedural way as: to execute ancestor/2,
first call the procedure parent(X,Z), and then call ancestor(Z,Y) recursively. X and Y
are parameters of the procedure, through which variables in ancestor environments
can be accessed. Z is a local variable.

There is also a heap to hold the global bindings, which have to survive the lifetime
of the environment, and structures, which do not fit in the slot provided for a variable
in the environment. The heap never shrinks while exploring one branch.

b r a n c h env i ronmen t s tack heap s tack

anc~stor(l~te~)

I
I~ent(Pete,Z),~ce~r (Z,X)

I

l~rent(M~y,X)

tiii t

query

ancestor 2

ancestor 1

Fig. 2. Exploring one branch

Figure 2 shows the environment stack for the second branch at the moment that
the query has been reduced to parent(Mary, X). We have so to speak three nested
procedure calls (query, ancestor2 and ancestorl--ancestorl stands for the first clause
of the predicate ancestor/2) and are about to call the clause parent(Mary, Bill). The
header of each environment frame is shaded with gray. The variable X of the query
is still unbound. The environment ancestorl has no local variables.

B a c k t r a c k i n g
In order to explore the whole search tree, the engine is equipped with machinery

to restore a previous state (i.e. to backtrack). Each time a tip node in the search
tree is reached, the state can be restored to the one corresponding to the nearest
fork point in the tree, from where execution continues by taking the next branch.

Therefore, a choice point exists for each node on the current branch with yet
untried alternatives: it points to the next alternative clause to be taken, and saves
the abstract machine registers and the top of stack pointers at the moment of its
creation. A choicepoint is created when calling a predicate with more than one
matching alternative; the choicepoint is removed when trying the last alternative.
This way, the choicepointstack represents the yet unexplored part of the search tree.

458

Parts of the stacks created between two consecutive choicepoints are called segments.
Choicepoints are allocated on a separate stack.

environment stack

OLD

NEW
Ale @~c2

h ~ p stack trail stack

Fig. 3. Trailing a variable binding (OX is the address of variable X)

On backtracking, the parts of the stacks created since the last choicepoint are dis-
carded (i.e. the top of stack pointers are reset to the value saved in the choicepoint--
the implementation guarantees that no dangling references are possible). However,
all changes made to the older part of the stacks since the creation of the choicepoint,
have also to be undone. Therefore, every binding to a variable that is older than the
most recent choicepoint--these bindings are called coaditiono.s recorded on the
trail stack. On backtracking, this trail is rolled back to its previous size as well, at
the same time unbinding all variables whose address is recorded in the trail segment.

This is illustrated in figure 3, where X is bound by the second clause for parent /2
(second branch in the search tree). The address of X has been pushed on the trail
stack. The variable Z is unconditionally bound, as the choieepoint created for the
parent /2 call has been deleted before trying parents, and therefore the variable is
not recorded on the trail.

Note that a choice point also protects the environment stack. E.g. the environ-
ment for the clause ~a , - b, c, d. ~ can not be deallocated after d has finished its
execution as long as there are any untried alternatives for b, c or d (omitting tail
recursion optimization).

We call the ensemble of environment stack, choicepoint stack, heap and trail
stack, which record the current state of the computation, the execution stack in
short.

459

3 OR-parallel Prolog

OR-parallel execution of a Prolog program means that several alternatives are ex-
plored at the same time. In Aurora, multiple Prolog engines (called workers) ex-
plore in paraiiel each a part of the search tree (see figure 4). The upper part of the
branches being explored is shared among the processors; the lower part is private to
each worker. The advantage of this approach is that each worker can work emciently
on its own private branches, much the same way as in sequential Prolog.

ances~(P~X)

~m I r(Z"~)

Fig. 4. OR-p~rallel exploration of thc search tzec

Stacks are used to represent the branch of the search tree currently being ex-
plored (environment and heap), as well as the still unexplored part of the search
space (choicepoints and trail). The stacks are organised in a tree-like structure, rep-
resenting the relationship between multiple active branches. We will refer to this
tree structure as the execution tree, in analogy with the term execution stack. Each
path from the top to a tip in the execution tree corresponds to the stack group
(i.e. the ensemble of choicepoint, local, global and trail stacks) of one wor~er in se-
quentiai execution. The tips grow and shrink as execution proceeds, while the top
part is shared by all the workers. The scheduler keeps track of the shape of the
tree, by maintaining the parent-child relationship between public choicepoints. This
is illustrated in figure 5. The upper part shows the search tree, and the position of
workers W1 and W2. The lower part shows the execution stacks of W1 and W2. The
segments shaded in gray correspond to the common part in the search tree, and are
shared by both workers. The data structure for a choicepoint is extended to contain
information about the layout of the tree, and is now called a node. Nodes may still
exist when the enclosed choicepoint is logically dead (i.e. it represents no untaken
alternatives any more), to maintain connectivity of the execution tree.

460

trail heap

wl
environment

stack

Public

boundary

Private

W2
e~vlronmen~

~tack heap tr~l

t
i

I _ _

Fig. 5. Execution tree

The execution tree is divided in a public part (accessible to all workers) and a
private part (accessible for only one worker). The public part consists of non fork
z,nd fork nodes (i.e. choicepoints with only one and more than one child choicepoint
respectively), connected into a tree. The private part consists of linear chains of
nodes~ as in sequential Prolog.

3.1 T h e S R I m o d e l

As conditional bindings (i.e. bindings to variables that have to be undone on back-
tracking, or, alternatively, which can have a different value depending on which

461

branch at a lower level choicepoint is taken) can differ for distinct workers, one must
allow workers to maintain their own versions of conditional bindings in the shared
part of the tree. For Aurora, the SRI model [13, 12] is used to keep track of private
versions of such variables. Each conditional variable is represented by an index to a
Binding Array entry. In the Binding Array, the worker stores its (private) copy of
the binding (see figure 6).

Environment stack
(shared)

Fig. 8. A conditional binding

Binding Array Trail stack
(private) (shared)

I

I

t r a i l e n t r y

There are two Binding Arrays for each processor: a local and a global one, the
former containing conditional bindings of the local (environment) stack, the latter
containing the conditional bindings of the global stack (heap).

Maintaining the SRI model demands special tags, a more elaborate unification
algorithm, an extended trail (see below) and some more information in choicepoints
and environments (the indices of the Binding Array entries used up to that moment).
The main advantage of the SRI model is the constant bounded overhead during
sequential execution (typically 25% 1 .

Because workers have to be able to move around in the search tree, the trail
is extended: besides the addresses of the conditionally bound cells, it contains the
contents too. The trail stack mirrors the contents of the Binding Arrays exactly
(see figure 6): each worker sharing the trail segment in which the binding for X is
recorded, will have the binding 'Bill ~ in its Binding Array. Thus a worker can install
and de-install its binding arrays when it is moving around in the shared part of the
search tree.

462

3.2 Schedul ing

A worker can be in engine mode or in scheduler mode. In engine mode, it explores
one branch private to itself, much like in sequential Prolog. In scheduler mode,
the necessary cooperation between the processes is established: i.e. matching idle
workers with available work, maintaining the public part of the search tree, and the
synchronization for the execution of side effects.

Initially, there is only one task consisting of the whole search space, explored by
one worker. The boundary between public and private nodes resides at the topmost
node. As there are idle workers available, the busy worker is asked to make work
available by lowering its boundary between public and private nodes. The idle work-
ers can then take untried alternatives from the choicepoints made public. This way,
tasks are split up and divided among the workers.

The Aurora System provides several schedulers, each with its own heuristics for
maximizing parallelism and minimizing overhead[3, 4]. The interface between the
worker and the scheduler part is specified in [10].

When a worker has to perform a side effect that might have an effect on other
workers, it has to be leftmost in the search tree: otherwise the effect could differ
from the standard Prolog semantics. If the side effect cannot yet be carried out, the
current work is suspended by creating a dummy choicepoint at the tip branch with
only one alternative (corresponding to the current continuation) to allow resumption
at a later time during the execution. Suspension may also be triggered on behalf of
the scheduler, in order to make the worker move to more interesting work.

3.3 M e m o r y m a n a g e m e n t

Each worker creates always new data structures on its own stacks. The worker that
allocated the segment is called the owning worker. Physical stack space reclamation
is always done by the owning worker.

Four kinds of segments can be discerned: local, ghost, remote and public seg-
ments.

Local segments are private segments on the top of the own stacks. For such
segments, we have the same reclamation mechanism as in sequential Prolog. Each
time a next alternative of a local node is taken, a Uroll back" operation is performed
to the situation immediately after the creation of the choicepoint, discarding the
most recent segment. When the last alternative is taken, the choicepoint itself is no
longer needed and can be deallocated.

Ghost segments are segments that logically do not exist any more, but can not yet
be dealIocated from the stacks because other segments are allocated on top of them.
Their creation is illustrated in figure 7:W1 finishes its current task, and moves, by
lack of work on its own branch to the next alternative of node o, which is q. W1
cannot deallocate the segments/nodes c, d and e from its stacks, since W2 shares
them. It allocates the segment q on top of segment e. When W2 then finishes its
task and moves to the right part of the tree, nodes c, d and e are no longer needed,
but cannot be deallocated. They have become ghost nodes.

The chance that segments become ghost is related to the number of task switches.
The number of task switches is related to the number of workers, the number of

463

suspensions and the shape of the search tree. In Aurora, large chunks of unused
memory space can appear.

A ghost segment can only be reclaimed when a new task is started by the owning
worker, and there are no non ghost segments allocated on top of it.

Remote segments are private segments allocated on the stack of another worker,
or on the own stacks, with segments of another task allocated on top of them.
Such situations arise when workers have to suspend their work, and to take work
somewhere else in the tree. When a worker resumes the suspended branch, it must
consider the segments as remote.

For remote segments, no immediate reclamation is possible, since the owning
worker may have already created new segments on the stack group. The segment
group is only marked as reclaimable, and becomes a ghost segment group.

For public segments, the scheduler decides when these are no longer accessible.
This requires that the corresponding node has no alternatives left and that below
the node no worker is or may become active (i.e. the node has no child nodes any
more). The segments then become ghost segments.

Search tree

w3

Wl w2

Choicepoint stacks

|

| |

|
|
@ |
W1 W2 W3

Fig. 7. The creation of ghost segment~

On a logical level, each stack can be seen as a contiguous stretch of memory
with a reference to the top of the stack. On a lower level however, each stack is
implemented by a doubly linked list of memory blocks. Execution proceeds as if the
stack consists of one contiguous piece of memory, but at certain points, a check occurs
whether there is still enough memory available beyond the top of stack pointer to
avoid overflow, and, if necessary, a new block is allocated and linked to the previous
one. This imposes some less efficient memory usage, but offers much more flexibility.

464

4 GC for sequential Prolog

Garbage collection consists of three phases: a marking phase, a sweep and a com-
paction phase. We restrict the discussion to GC of the heap.

During the marking phase, all objects (potentially) still needed in the current
branch or from any frozen state, are identified.

To identify all objects reachable from the current (active) branch, the argument
registers and the variables in the environment chain starting from the current envi-
ronment, axe taken as a starting point for the marking. All the references found are
followed, and the reachable cells on the heap are marked and taken into account to
find further references. In [2], a clever algorithm is presented to mark in an ei~iclent
way all objects reachable from one cell.

To find all objects reachable from a frozen state, one has to consider that the
argument registers are saved in the choicepoint iteelf~ as well as a reference to the top
of the environment chain as it existed at that point of execution. Marking proceeds
in much the same way as for the active branch.

Everything reachable from the trail is also reachable from some choicepoint, and
does not have to be taken as a starting point for the marking.

During the compaction phA~e, all reachable objects on the heap are shifted to-
wards one end of the heap, making all unmarked cells that were scattered over the
heap available again at the other end. At the same time, references are updated to
reflect the new location of the objects.

The algorithm of Morris[8], which is based on a pointer reversal technique, is
often used for the compaction phase. It preserves the order of the cells, which is
necessary to be able to deallocate segments on backtracking.

Each cell has to be copied to its new location, and references to the cell have to
be updated. Therefore all cells pointing towards a cell are temporarily linked in a
data structure called a relocation chain. This is actually a pointer chain, starting at
the cell originally pointed to (the head), and continuing over all the cells pointing
originally to the head. The last cell contains the original contents of the head. This
structure is disambiguated by an appropriate annotation.

In the algorithm of Morris, a cell can not be contained in a relocation chain and
be the head of another one at the same timv---a situation that may arise due to
reference chains. Therefore, the compaction proceeds in two phases: an upward and
a downward one.

During the upward phase, the heap is scanned from the top towards the bottom.
For each marked cell, its relocation chain, if present, is updated first. The relocation
chain contains at this moment all the upward references to this cell. We know the
new location of the current cell--it can be derived from the total number of marked
cells and the number of cells already treated during the upward phase--and each cell
in the relocation chain is updated with a reference to the new location. The original
contents of the current cell is restored at the same time.

Then the contents of the cell is inspected, and if this is a reference to another
cell higher on the stack, the cell is included on its turn in the relocation chain of the
cell it points to.

During the downward phase, the heap is scanned in the opposite direction. For
each marked cell, the cells in its relocation chain are updated with the new position.

465

Then the contents of the cell is copied to the new location, while resetting the mark
bit. And finally, the cell is included in the relocation chain if it contains a downward
reference to another cell, so that the relocation chain of that cell will contain all
downward references.

This way, all cells are moved, and all internal pointers are updated accordingly.

The sweep phase between the marking and the compaction phase is necessary
to make sure that sll references will be updated during the compaction. Therefore,
all references from registers, trail and environments towards heap cells arc included
into the relocation chains before the compaction phase. Also the top of heap pointers
saved in the choicepoints must be taken care of.

4.1 Segmented garbage collection

In segmented GC[9], one restricts GC to those segments that have not yet been
collected before. Indeed, a choicepoint represents a frozen configuration, and every-
thing reachable in such frozen segments remains reachable until the last alternative
is taken from the corresponding choicepoint. Hence it is sufficient to collect each
segment only once.

In segmented GC, a reference is kept to the youngest choicepoint already col-
lected. This reference separates the new segments from the old, already collected
ones. It moves up while backtracking over it and downwards when garbage collec-
tion is done.

Marking then stops on this border: references into the old part are not followed.
The new trail segments contain all conditional bindings made while the new segments
were constructed; therefor, every potential reference from the old into the new part
can be found by scanning the new trail segments (see 3). Each such reference is
included in the relocation chain of the cell it points to, such that it will be updated
during the compaction phase. Compaction is then also done for the new parts of the
heap only.

5 G C f o r Aurora

In this section, we propose a garbage collection scheme for the Aurora System. Let's
first present the underlying principles.

1. Garbage collection is an expensive operation not directly contributing to the
solution of the query. Therefore we try to postpone it as long as possible. Since
memory reclamation is done much more efficiently by backtracking, we try to
maximize this possibility by deferring GC.

2. We take advantage of sequential optimizations, which should fit in nicely since
Aurora is based on an extension of the sequential model.

3. We want to avoid that workers have to wait because there is a garbage collection
in progress. Either they should join the garbage collection process, or be allowed
to proceed doing useful work, the latter being preferable.

4. We make all the data globally accessible, to allow for parallel execution. There-
fore we de-install the Binding Arrays, and take the trail information into account

466

instead. After the garbage collection, the binding array is reinstalled. This in-
volves some extra overhead when entering and leaving the garbage collection
mode, but on the other hand, this is compensated since these cells have not to
be treated during the marking and the compaction. As a consequence, there are
no downward intersegment references.

We used a concurrent approach: while certain parts of the execution tree are
under GC, some workers (but not all) may continue normal execution in the other
parts. Execution can always continue on a branch that does not have any segment
under GC. However, the scheduler must ensure that a worker, while it is looking for
a new task, cannot move to a position "n the execution tree that is under GC.

GC is always done on subtrees of the execution tree. These subtrees correspond
to one or more tasks, which are allocated on the stacks interspersed with other tasks
(and ghost segments, which represen~ ex-tasks). When we perform GC for a task, a
gap appears on the stack near the end of the task. The memory occupied by this gap
will only be effectively reclaimed (by unlinking the blocks from the doubly linked
list) insofar as it consists of a number of complete memory blocks. The upper bound
for the memory lost per task is then the size of a memory block: this is the maximum
size of the gap after a task that is not directly reclaimable.

This inability to reclaim all memory immediately is a consequence of the Aurora
memory model. If one wants to reclaim a gap at the end of a segment immediately,
one has no choice but to relocate all tasks allocated on top of the segment, which is
inefficient and induces a lot more synchronization constraints.

5.1 Genera l iza t ion of segmented GC for execut ion t rees

Each worker maintains a reference to the choicepoint on its branch that closes the
segment group most recently compacted (the mark). The mark moves up on back-
tracking over the node, and down when performing GC, exactly in the same way as
for sequential implementations, but now we have exactly one such reference on each
path from the top to a tip segment in the execution tree.

When a worker decides to initiate GC, this should at least include the active
branch up to the oldest uncollected segment, as this is the basis of segmented garbage
collection. However, all branches sharing this topmost segment have to be updated
with references to the new location of the cells in this segment. Therefore, we select
the whole subtree, with the top node immediately below the marked node and be-
longing to the current active branch for garbage collection. Multiple subtrees can be
compacted concurrently; each of these is uniquely defined by its topnode.

In sequential segmented garbage collection, a choicepoint is removed when its
last alternative is selected, and the corresponding segment is extended and becomes
subject to GC again. This is not the case in the public part: although the choicepoint
no longer logically exists, there remains a dead node in the execution tree. We still
treat this node for the GC as closing a segment group which is garbage collected.
This may result in some unreclaimed garbage in such segments. However, this is
negligible compared to the memory not immediately reclaimable between tasks.

467

5.2 Scheduler aspec{s

When a low memory condition arises, the scheduler decides which subtrees have to
be selected. For the first GC invocation, there is no choice but to collect the whole
execution tree. For the subsequent GC activations, the scheduler makes its selection
based on the expected amount of garbage in the subtree, the speculativeness of
the subtree and the position of the subtree. Note that when GC is postponed till
memory is completely exhausted, there is no choice but to include the subtree where
the worker is located that runs out of memory, as its execution cannot proceed until
some memory block has been freed.

The scheduler roughly estimates the amount of garbage by counting the num-
ber of uncollected segments, and may give preference to big subtrees to offset the
synchronization and initialization overhead. It could also try to postpone the GC
of suspended speculative branches~ as these may be cut away (by side effects in
other branches), which reclaims memory at no cost. Finally, the scheduler may try
in some situations to avoid GC in the leftmostbranch of the execution tree, as every
slow down in its execution may cause suspension of other branches (which must
be leftmost in the execution tree in order perform some side effect), which would
increase memory consumption. As all these aspects axe closely related to the general
scheduling policy, it is up to the scheduler implementor to decide which criteria are
used.

Each worker active in one of the selected subtrees, suspends its work on request
of the scheduler, and joins the GC process. As all data to be collected is globally
accessible, every idle worker joins the GC as well, because it is better to speed up
the GC process than to wait until new work becomes available in the tree.

The scheduler further isolates the subtree under GC for any other worker that
continues normal execution, to prohibit that it accesses the temporarily inconsistent
data when it looks for new work.

5.3 Sequences a n d series

Each subtree that has to be compacted is internally divided in a set of related
sequences (see figure 8). A sequence consists of a number of segments that can be
handled as a unit, both for synchronization and relocation. It corresponds to a
number of nodes belonging to the same task and consecutively allocated on the
same stack (with possibly some ghost nodes between them). All the nodes in a
sequence are non fork nodes, except possibly the last one. The segments occurring
in the same sequence can, after compaction, consecutively be allocated on the same
stack.

The operations to be done on these sequences depend on each other; e.g. to com-
pact the segments of a sequence in the upward direction, the upward compaction of
its child sequences has to be completed first. Hence, analogously to nodes, sequences
stand in a parent-child relationship to each other. An important property is that
inter-sequence references only occur between sequences, one being an ancestor of
the other.

On each sequence, a number of operations has to be applied in order. Each such
"job s (consisting of an operation and a sequence) ready for execution, is matched
with the next available worker in the pool of workers, for execution.

468

()

Branch~n
the search tree

W1 W2 W3
Choicepotnt stad~s

A

Fig. 8. Sequences

We call a set of consecutive sequences possibly separated by ghost segments,
a ser ie s . The complete stack then consists of one or more series, interleaved with
segments not involved in the GC, which have a fixed location. A series encompasses
the sei~uences that depend on each other for the address calculations and the actual
copying of the ceils. In figure 8, the sequences {a,b} and {c} belong to the same
series, but not {d}, as there are other segments with a fixed location in between.

5.4 T h e m a r k i n g p h a s e

Each subtree can be marked starting from the tip sequences, and gradually proceed-
ing upwards. Sequences %t the same depth" can be marked in parallel. If we do not
apply %arly reset of variables" (an optimization described in [2]), we can even maxk
in parallel from different choicepoints on the same branch.

The main difference with sequential marking is that the mark bit has to be tested
and set atomically. When two processors try to set the mark bit at the same time,
only one of them will see it as previously not set, allowing us to maintain the correct
count of marked cells per cell and per subtree.

Some provision must be made to maintain the correct count of marked cells for
each individual worker. By aligning the memory blocks, every reference can easily
be mapped to its memory block header, where the worker ID can be found.

469

5.5 T h e c o m p a c t i o n p h a s e

For the compaction, we use an ~aptccl version of the algorithm of Morris, presented
below.

The compaction phase proceeds as follows. There is an upward and a downward
phase for each subtree. For each segment that is treated during the upward phase,
the following conditions are satisfied:

1. the segments in the subtree below the segment have already been compacted in
the upward direction. Therefore, the relocation chains of the cells in the segment
are complete regarding the segments under it.

2. The worke~ that handles the segment is the only one having access to the seg-
ment. However, while inserting a cell in the relocation chain of a cell in an older
segment (reachable by an upward pointer), provisions have to be made for non
exclusive access to the higher segment. This can easily be done by an atomic
exchange instruction, since all we need to do is (a) get a copy of the contents of
the cell and (b) replace the contents with an annotated pointer to the cell in the
segment that contained the reference.

This way, workers start compacting upwards with the tip segments, and proceed
gradually towards the top of each subtree.

After the top segment of a subtree has been compacted in the upward direction,
the downward phase starts. As there are no downward intersegment pointers, this
phase can be started for each segment as soon as the destination of the cells is known
to be free (i.e. it can be overwritten). The downward phase has only to take care of
downward references within one segment, and of the actual copying of the cells.

The global Binding Array is compacted by a scan in downward direction over
the global stack. This pass can be integrated with the downward compaction phase.
Since the saved indices in the choicepoints have to be updated too, the scan is done
segment by segment, updating the corresponding choicepoint after each segment.
During the scan, an index is maintained to the next available global binding array
cell. Each time a binding array reference is met, this reference is updated to refer
to the next cell, while incrementing the index. All unreachable conditional variables
are already eliminated from the global stack at this moment, and all bindings that
became unconditional do not contain a binding array reference any more. When a
worker later reinstalls its binding arrays, it will find binding array indices in the
conditional variables, such that these refer to a compacted binding array segment.

5.6 D e p e n d e n c i e s b e t w e e n t h e G C o p e r a t i o n s

We can now list the preconditions for each operation on a sequence:

- mark
�9 The sequence has no child or all the children sequences have been marked

already.
- sweep

e The subtree has completely been marked.
- compact upwards

470

�9 The subtree has completely been swept;
�9 The sequence has no children or they are all compacted upwards;
�9 The destination of the youngest cell is known.

compact downwards
�9 The subtree has completely been compacted upwards;
�9 The sequence has no parent, or its parent has been compacted downwards;
�9 The destination of the youngest cell is fre: i.e. the previous sequence in the

series has completed this phase.

The destination of the youngest cell of a sequence can be computed as follows. We
know the start address for each series, which is fixed. Hence the destination of the
youngest cell of a tip sequence is always known, as the sum of the marked cells in
the sequences is known for each worker and each subtree from the marking phase.
The destination of the youngest cell of a non-child sequence can be derived with
the extra information of the number of marked cells in its descendant sequences,
obtained during their upward compaction.

Note that there exists always a partial order satisfying the requirements listed
above: no deadlock will occur. Indeed, the only possible conflict is between two se-
quences for which the parent-child relationship requires an order of execution oppo-
site to the order imposed by the predecessor-successor relationship holding between
the two sequences. This would only be possible for the downwards compaction. How-
ever, the previously allocated segment can never be the child of the current segment.

6 R e l a t e d w o r k

In [1], K. A. M. All presented an incremental GC scheme for WAM based OR-
parallel Prolog systems. His scheme is based on the observation that segmented GC
can be done as in sequential Prolog in the private part of the tree. By requiring that
each segment is already collected before it is made public, normal garbage is almost
eliminated in the public part. Ali also presented some details about the collection of
the global Binding Array and the trail.

The advantage of Ali's approach is its simplicity. There are however a number of
disadvantages. First, it does not solve the recuperation of the ghost segments. It also
introduces a significant delay for making nodes public, which is undesirable when
there is a lack of work. Then GC is triggered when nodes are made public, which is
unrelated to the memory usage. Consider for example a very broad, shallow subtree:
garbage collection will often be triggered unnecessarily. And finally, cells initially
not garbage in the public part may become garbage later, aithough this is unlikely.

In [5, 6], Dorochevsky presented and implemented a garbage collector for the
ElipSys System. The situation for ElipSys is somewhat different from Aurora, since
ElipSys also supports distributed architectures, where it. is undesirable for a worker
to write in the stack space of an other one.

The main advantage of his approach is that it is simple, retains all sequential
optimizations and is efficient. However, it is not a general approach, and for Aurora
it would have the same disadvantages as [1].

The paper gives some interesting figures as well about the amount of garbage in
the Binding Arrays (typically 70-90%).

471

7 Conclusion

In this paper we presented the design decisions and moat important implementation
aspects of a garbage collector for Aurora. The garbage collector is a generalisation
of well known techniques for sequential Prolog implementations. Hence, most of
the optimizations for the sequential case can be applied, and the GC process itself
is rather efficient, the major overhead being caused by the synchronization require-
ments. GC for private branches is neatly integrated in the general scheme, and causes
no synchronization overhead.

The garbage collector requires only a minimal extension of the already existing
Engine-Scheduler interface.

The major drawback of the implementation is that not all garbage can be re-
claimed (a gap remains after each task), but this aspect is inherent to the Aurora
design.

8 Acknowledgments

The interaction with the scheduler was greatly simplified by discussions with Mats
Carlsson and P6ter Szeredi.

This research is supported by ESPRIT Project 2471 (PEPMA) and the RFO-
AI-02 project, sponsored by DPWB of the Belgian government.

References

1. K. A. M. AlL Incremental garbage collection for or-parallel Prolo8 based on WAM.
Gigalips Workshop, April 20-21, 1989.

2. K. Appleby, M. Carlseon, S. Haridi, and D. Sahlin. Garbage collection for Prolog based
on WAM. Communications of the ACM, 31(6):719-741, June 1988.

3. A. Beaumont, S. Muthu Raman, P. Sseredi, and D. H. D. Warren. Flexible scheduling
of or-parallelism in Aurora: The Bristol scheduler. In PARLEgl: Conference on Parallel
Architectures and Languages Europe. Springer-Verlag, June 1991.

4. R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek, and R. Stevens. Scheduling or-
parallelism: an Argonne perspective. In K. A. Bowen, editor, Proceedings of the Fifth
International Conference and Sympo,ium on Logic Programming, pages 1590-1605.
MIT Press, 1988.

5. M. Dorochevsky. Gexbage collection in the or-parallel logic programming system glip-
Sys. ECRC, Technical Report DPS-85, 1991.

6. M. Dorochevsky, K. Schuerman, A. V~ron, and J. Xu. Constrelnt handling, garbage
collection and execution model issues in EllpSys. In A. Beaumont and G. Gupta, call-
tore, Parallel Ezeeation of Logic Programs, Proceedings of the IC[~P'91 Pre-Conference
Workshop, Lecture Notes in Computer Science 569, pages 17-28, June 1991.

7. E. Lusk, E.R. Butler, T. Dies, R. Olson, R. Overbeek, R. Stevens, D. H. D. War-
ren, A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsaon, A. Ciepielewski, and
B. Hausman. The Aurora or-parallel Prolog system. In Proceeding, of the International
Conference on Fifth Generation Computer Sllatems, pages 819-830, 1988.

8. F. L. Morris. A time- and space-efficient garbage compaction algorithm. Communica-
tion, of the ACM, 21(8):862-865, 1978.

472

9. E. Pittomvllz, M. Bruynooghe, and Y. WiUems. Towards a real time garbage collector
for Prolog. In Proeeedinga of the Second Sympoaium on Logic Programming, 1985.

10. P. Sseredi and M. Carlsson. The engine-scheduler interface in the Aurora or-parallel
Prolog system. Technical report, University of Bristol, Computer Science Department,
April 1990. TR 90-09.

11. D. H. D. Warren. An abstract Prolog instruction set. Technical report, SRI Interna-
tional, Artificial Intelligence Center, August 1983.

12. D. H. D. Warren. Or-parallel execution models of Prolog. In Proceeding8 of the In-
ternational Joint Conference on Theory and Practice of Software Deeelopment, pages
243-259, 1987.

13. D. H. D. Warren. The SRI model for or parallel execution of Prolog - abstract d~sign
and implementation. In Proceedingl of the Symposium on Logic Programming, pages
92-102, 1987.

This article was processed using the I~TEX macro package with LLNCS style

Collections and Garbage Collection

Simon C. Merrall and Julian A. Padget

Bath University, School of Mathematical Sciences*, Bath BA2 7AY, United Kingdom
Email: {sm, jap}llmaths .bath. ac .uk

Abst rac t . We present here a data parallel dialect of lisp, Plural EuLisp,
which is a relatively low-level abstract model of massively parallel process-
ing. It is not as rich as languages like Connection Machine Lisp and Paralation
Lisp but encompasses ideas integral to at least Paralation Lisp. However its
low-level nature makes the explanation of the underlying processor/memory
management mechanisms easier as the low level structures are closer to the
objects in Plural EuLisp. We describe how memory and processors are allo-
cated and garbage collected, with particular interest in heterogeneous data
parallel objects - which in general have been considered too expensive to be
supported seriously.

K e y w o r d s : Data Parallelism, Garbage Collection, Heterogeneous Collections, Lisp,
Processor/Memory Management, SIMD.

1 I n t r o d u c t i o n

In 1985 the Thinking Machines Connection Machine, a SIMD array processor with
4K of processing elements (PEs) scalable to 64K, represented a major step in mas-
sively parallel processing. Detailed descriptions of the operations and architecture of
the hardware have been pubiished'[7], in contrast relatively little has been published
on the implementation of the languages for the machine.

The three key functional languages are *Lisp, Connection Machine Lisp and Par-
alation Lisp, all of which are implementations of Common Lisp with data parallel
extensions. The languages are documented in great detail[13] [9] and various dis-
cussions of their semantics have been presented [11] [10] but no real details of their
implementations ar e ava, ilable [1] [t2].

At Bath we are interested in data parallel implementations of various symbolic
applications and so we require a functional language for our own massively parallel
computer, a MasPar MP-1011 (see Appendix A). We have been developing ParMa-
tion Lisp style extensions to EuLisp, our local, parallel dialect of lisp. A kernel of
data parallel lisp primitives implemented in rap! (see Appendix B) are encapsulated
in a EnLisp module to give a core language called Plural EuLisp. We consider it to
be intermediate between *Lisp and Paralation Lisp as it exhibits aspects of both lan-
guages. The kernel has also been used for implementations of Connection Machine

* This work has been partially supported through the British Council ARC Pro-
gramme, a Science and Engineering Research Council (SERC) Studentship, SERC grant
GR/G31048, International Computers Limited (SERC CASE award)

474

Lisp and Paralation Lisp. We are currently experimenting with these languages,
trying to identify useful modifications and extensions, or perhaps the functional
requirements for a new language.

Here we give a description of Plural EuLisp and briefly compare it to Paralation
Lisp. We then describe the memory/processor management system we have devised,
discussing its advantages and possible improvements that could be made in its op-
eration and efficiency. We describe the garbage collector and finish by discussing the
handling of front-end back-end references and how the power of the MasPar can be
applied to their resolution when garbage collecting.

2 Plural EuLisp

EuLisp is a parallel dialect of Lisp developed at Bath and in conjunction with aca-
demic and industrial researchers around Europe. The distinguishing features of the
language are modules for separate compilation, threads for multi-tasking and a fully
integrated object system based on classes and generic functions. A more detailed
description carl be found in [8].

We have extended EuLisp to allow use of the MasPar by adding a new module
called p l u r a l . This is a set of primitives which operate on a lisp object on each mem-
ber of a specified processor set. The primitives are too low-level to write programs
with and so they are encapsulated in another module called eubang, this provides a
new class called p l u r a l and a set of operators on that class.

An object of class p l u r a l has the appearance of a vector, but each element is
allocated on a separate processor. Two plurals are said to be conformant if they are
allocated on the same set of processors. Plurals in the same conformant set can be
operated on in parallel, for example we can cons each pair of elements together to
create a plural of cons-pairs. This gives us two key ideas:

- Allocating processor sets.
- Allocating objects on these processor sets.

The function m a k e - p l u r a l encapsulates both of these ideas. If given an integral
argument, n, it allocates a plural with n elements on the first suitable set of PEs
it identifies. If given a plural as an argument it allocates a plural conformant to
the argument, that is, on the same set of processors. In both cases each element
of the new plural contains () - - t h e empty list. The contents of a plural can be
referenced using the function p l u r a l - t e l the behaviour of which is similar to that
of v e c t o r - r e I and has a corresponding updator function.

(se tq p (make-plural 5))

=> #P(() () () () ())

((s e t t e r p l u r a l - r e f) p 1 '(1 a))

=> #P(() (I a) () () ())

Conversion methods for lists and vectors are supplied for convenience, the functions
l i s t - t o - p l u r a l and v e c t o r - t o - p l u r a l work as would be expected, creating a

475

new plural in which the values of the elements are taken from the elements of the
argument list/vector. Both functions can take an optional plural argument to which
the result will be conformant-- t runcat ing or padding as necessary.

The primitive operations are either supplied as additional functions, distinguished
from their serial counterparts by the - s suffix (indicating plural!) or as additional
methods to existing generic functions.

(setq q (list-to-plural '(55 44 33 22 ii) p))

=> #P(55 44 33 22 11)

(cons-s p q)

=> #P((SS) (44 i a) (33) (22) (l l))

(+ q q)

--> # P (l l 0 88 66 44 22)

In order to be able to write parallel code we require two more special functions. The
first of these is bang which takes two arguments: the first is a singular value and the
second is a plural. The result is a new plural conformant to the second argument
each element of which has been initialised with the first argument. The second is the
parallel conditional form called i f - s . The arguments are three expressions which
must deliver (conformant) plural values. The first expression is evaluated to give a
plural of values which are interpreted as booleans in the Lisp sense, that is either
() , for false, or non-() , for true. These values are then used to modify the active set,
evaluating the consequent on those processing elements for which the condition plural
is true and the alternative expression on the remainder. The result of evaluating
each arm of an • is a plural and these are then merged to form the result of the
conditional expression. If none of the processors are active for a form then it will
not be executed; this is important when defining recursive functions.

(de~un sum-list-s (list-s)
(if-s (eq-s list-s (bang () list-s))

(bang 0 list-s)
(+ (car-s list-s) (sum-list-s (cdr-s list-s)))))

The example above shows how it is, in principle, straightforward to define parallel
versions of functions, and this represents the control aspect of the massively parallel
abstract machine model. The other aspect is communications and the mechanism
supplied is modeled closely on that in Paralation Lisp.

Inter-processor communication is abstracted by the class, mappings, which are
created by the function match. A mapping describes how to create a plural in one
conformant set from the elements of a plural in another conformant set, the sets
can but do not have to be different. The programmer specifies which elements of the
source contribute to each element of the destination by matching a plural from each,
eq is used to decide which elements correspond to each other. Having created a map,
a plural conformant to the source can be moved clown it to create a plural in the
destination set. Move uses a specified combinator, some appropriate binary function,
to resolve collisions where more than one source element maps to a destination
element. Finally to resolve the case where a destination element receives no value
from the source plural move is passed a default value.

476

(setq from (list-to-plural '(nowhere first first second nowhere)))

=> #P(nowhere first first s e c o n d nowhere)

(setq map (match (list-to-plural '(first second third)) from))

=> #<mapping>

(move (list-to-plural '(a b c d e) from) map cons-s 'empty)

=> # P ((b . c) d empty)

This then introduces Plural EuLisp, a more formal specification is given in Ap-
pendix C. We consider it to be intermediate between *Lisp and Paralation Lisp as
its parallel operators are explicitly named and are all "flat". That is, there is no
concept of recursive parallelism as it is not possible to create a plural containing
plurals. This restriction is not present in Paralation Lisp (or Connection Machine
Lisp).

2.1 A C o m p a r i s o n to P a r a l a t i o n Lisp

A paralation is a set of (virtual) processors, a field belonging to a paralation has a
value for each element of that paralation. The parMation constructor, m a k e - p a r a l a t i o n
creates a special field in the new paralation, the index field, which enumerates the ele-
ments from 0, n - 1 and returns this as its result. Thus we can define m a k e - p a r a l a t i o n
in Plural EuLisp as follows.

(defun make-paralation (size)
(labels ((list-n-to (n)

(if (= n size) ()
(cons n, (list-n-to (+ size I))))))

(list-to-plural (list-n-to O))))

Fields belonging to the same paralation can be operated on in parallel. This is
similar to the idea of conformant sets of plurals. However the parallel operations
are specified by using e lwise which applies a given lisp form to each element of the
parameter fields. Thus the plural primitive cons-s could be defined using elwise:

(defun cons-s (a b) (elwise (a b) (cons a b)))

As already mentioned, the style of communication in Plural EuLisp is taken directly
from Paralation Lisp. The only difference is that whereas in Plural EuLisp we must
give a parallel combining function, for example cons-s , in Paralation Lisp we need
only give the singular form and the parallel form is derived from it.

(setq from (make-paralation 5))

=> #F(O 1 2 3 4)

(setq map (match (make-paralation 3)
(elwise (from) (list-ref '(() 0 0 I ()) from))))

477

=> #<mapping>

(setq data (elwise (from) (!ist-ref '(a b c d e) from)))

=> # F (a b c d e)

(move data map cons 'none)

=> #F(none (b . c) d none)

We do not intend to give a full description of the paralation model, merely to show
that Plural EuLisp represents a kernel that can be used to build higher level abstrac-
tions like Paralation Lisp. It could be argued that since the problem of implementing
such languages should not be too difficult, indeed details of such implementations
have been published [2], that Plural EuLisp has no real value in itself. This is true
if considered as a new language, but here we are interested in memory and proces-
sor management and so feel that the Plural EuLisp abstract machine model, being
lower-level than the Paralation model simplifies explanations of the underlying mech-
anisms.

3 S t o r a g e A l l o c a t i o n

A novel feature of the allocation scheme that has been implemented for Plural Eu-
Lisp is that different sized data structures can be allocated in parallel on different
processing elements. It is necessary to be able to do this if we are to support hetero-
geneous collections. Some sources suggest that this facility is not required and that,
for example, a field of structures can be best represented by a structure of fields. To
our mind heterogeneous collections and particularly collections of structures should
be supported because:

- They are in keeping with the spirit of Lisp.
- Operations on structures are, in general, slot references, and a generic slot refer-

ence on a SIMD architecture can be implemented using local indirect addressing
(LIA), which is a particular property of the MasPar.

3.1 P a r a l l e l Lisp O b j e c t s

Each processing element, contains a small garbage-collected heap. We have adopted
a 16-bit addressing system in which an address is an index into an array of 16-bit
words which serves as the heap. With this system we can address upto 128K of
memory, which is twice the size of MasPar's latest memory option and is rather
more space efficient than 32-bit addresses. When systems which have more local
memory than can be addressed like this become available we can change to a 32-bit
address system as space conservation will no longer be such a pressing issue.

A Parallel Lisp Object (PLO) is a set of lisp objects where each object is allocated
from the heap of a different PE. A PLO need not be homogeneous and as a result
of this the objects will, in general, be at a different locations on each PE. This also

478

means that the heaps will become exhausted at different rates. Consequently, to
specify a PLO we need an address for each P E - - a 16-bit plural (see Appendix B)
variable fulfills this requirement. The contents of the location indexed on each PE
contains the object 's heap header. The sixteen bits are split up as follows:

I 1 bitl~-----'-----ll bits --j4,-----4 bits ---~

IFree ISp oe -- ' ITYPe i

Fig. 1. Organisation of heap header

At tempt ing to cram the heap header into 16-bits causes some limitations within
the system. No more than 16 types and a max imum object size of 1024 slots (2048
bytes). However if we assume each element of a vector of size 1024 contains an
integer, which takes 2 bytes of header and 4 bytes of data (possibly more depending
on alignment) the total is ~ 8K. This is a sizable proportion of all the memory
available on a 16K machine.

The data component of the object is allocated in the next Space locations. The
heap allocation function mp-a l loc uses a table, t y p e _ i n f o _ t a b l e , which specifies
the size and alignment requirements of each type so that different objects can be
allocated on different PEs in a single parallel operation.

3.2 C o n t e x t s

Within Parala~ion Lisp the number of physical processors is hidden from the pro-
g rammer by the paralation construct. This can be thought of as a handle on a set
of virtual processors.

Plurals provide a similar mechanism with the Conformant Sets having the same
role as paralations. The function m a k e - p l u r a l can be used to request a new confor-
mant set of any size (n > 0). We can classify these requests by n as follows:

1. (n = nproc l) , this is a trivial case.
2. (n < nproc) , this is the most interesting case since we want unallocated proces-

sors to be available for other paralations.
3. (n > nproc) , we can consider this as a combination of cases 1 and 2.

We use the concept of a context to identify a processor set and allow us to handle
case 2. Each element of the processor array executes the globally broadcast instruc-
tion s t ream conditionally on its activity bit. So by making only those processors
within a context set active we can make sets of PEs independent. By considering
the array as a sequential string of processors we can identify a context by a start
processor number and a length. Figure 2 shows how a structure allocated on the
Array Control Unit (ACU, see Appendix B) specifies a set of processors on the Data
Parallel Unit (DPU).

1 The value of lhe mpl global variable nproc is the size of the processor array.

479

We hope to modify the system to treat the array as a rectangle rather than a
string, so that we allocate rectangular blocks. This will improve locality within a
context and make use of the nearest neighbour communication net meaningful. This
will be useful when implementing shaped paralations (and plurals) c.f. Sabot [10],
chapter 9.

ACU DPU
0 31 x p r o c

.o. o,.oo,

0 '~176176176 "~176 ""

�9 o.. o. H,, ,,

o ,
.... o., o,.o o,,,.
,o._,.,.. ,,, o ~
...... �9 ~ o.
,.,....,o,,~176
.... ~176 ,

.... o.a..,.o,,,oo,.,o.,,,..,.o,
,.,,,, ,o~

.... o.,,.. �9 �9

,o0.o,,ou,.o~

,,.on,-.,,.,o.,,.,,,..oo,,,,
,.o..~176176 �9
..... .~
,.O0001.H.,,..,,.,,,00..H0,0,
....... �9 o �9

S t a r t = 60 1

L e n q t h = 1 5 0

31 y p r o c 1023 i p r o c

Fig. 2. ACU structure specifying a context's processor set.

To execute functions within a context we deactivate all those processors not
within the context before calling the function. So for the context C we simply activate
each processor whose processor id (denoted by i p ro c ~) satisfies the expression:

(C.s ta r t < iproc < (C.s ta r t + C.length))

With contexts we are able to operate on portions of the array and we have moved
away from *Lisp style global array operations.

3.3 P l u r a l s

We can now see the basic form a plural will take. A Parallel Lisp Object combined
with a context, with conformant plurals sharing the same context. Before tying these
ideas up in a single concept we need to consider:

1. Methods of allocating contexts.
2. Giving the front end a handle on a PLO.

The Plural Space

Both of these problems are reconciled in a memory/processor management scheme
which uses a portion of the heap space called the plural space. A single offset specifies
a location on each PE which contains the address of an object on that PE, i.e. a
PLO.

Figure 3 shows how the plural space allows us to represent a Parallel Lisp Object
by a Single value on the front end. Everything in the plural space is an address,

2 * xproc is an mpl global plural containing each PE's number.

VaxStation

!
I O f f s e t = 2 I |

I
|
!
!
m

Fig. 3. Front End Integer

480

DPU

specifying a Parallel Lisp Object.

--Plural Space

--Free Space

--Heap Space

1023 --iproc

this makes management easier and there is no need for headers. The plural space is
located at the high end of memory and grows towards the low end, that is towards
the heap space. With simple Parallel Lisp Objects this is a very easy mechanism to
manage. Contexts however complicate the issue since they make it possible for the
plural space to be used at different rates on different PEs. As contexts can overlap
this means we cannot s imply allocate the next free plural space location on each
PE since they would not necessarily be the same. The basic mechanism described
here is similar to that used for zecs in Connection Machine Lisp [12]. However here
fragmentat ion can occur where as in CM Lisp it could not.

Contexts make it necessary to allocate plural space on only a portion of the array.
When we do this we want the plural space on the remaining PEs to be available for
later allocation. To allocate plural space for a PLO within a context of n elements we
must identify a contiguous set of n processors and an offset i such that the location
i in the plural space is free for each PE in the set. This will give us a new context
each time, if we also specify which PE the processor set must s tart at we will be
able to allocate plural space for an existing context.

The plural space is the same size 'on each PE. When the plural space is ex-
tended (initially the plural space has zero length) each new location is initialised
with management data. The high bit is set as a free flag, since we have a m a x i m u m
of somewhere around 7000 locations this bit will be clear if the location contains an
address (i.e. is not free). If the location is free the value in the low 15 bits is the
number of contiguous processors above (i.e. with higher Ypror for which the offset
is free.

The algorithm below identifies an 0ffse~ and a contiguous processor set of size
elements start ing at s t a r t _ P E satisfying the conditions described above.

start_PE -= - 1
for each offset in plural_space

if free?(pluraLspacetoffset])
potential_PEs = space(plural_space[offset]) > size

fi
if (potent iaLPEs) start_PE = reduceMin(iproc); fi
if (stavt_PE r -1) break; fi

ro f
r e t u r n (start_PE, offset)

481

If this fails to identify a processor set, the plural space is extended and the
set allocated from the new space. In the worst case, this algorithm runs in time
proportional to the size of the plural space; but this can be improved by starting
from the last offset allocated for a context, after garbage collection these can be set
to the top of the plural space again. If all the processors are active at the start of
the algorithm then any processor set will be identified. By modifying the active set
so that only one PE is active the algorithm will automatically identify a processor
set starting at that PE.

Having identified a set of processors and an offset into the plural space the
contents of the locations indexed by offset need to be modified in order to show they
are no longer free.

Below is a possible allocation pattern for the offset in question across the entire
array. We notice that the plural space management data in the free block immedi-
ately preceding the newly allocated block is now incorrect.

Free Newly Allocated

C o ~ t Incorrect Management Information

This only happens when a block is allocated from the middle of a free block. To
identify this block, i.e. which PEs it starts and finishes on, we f r s t identify all those
processors which precede the newly allocated block and for which this location in
the plural space is free. Below we indicate the processors in this set:

potential_PEs = free?(plural_space[offset]) ~g~ (iproc < start_PE)

We then activate all those potentiaLPEs whose immediate predecessor is not a
potentiaLPE. This identifies the first PE of every free block preceding the newly
allocated block, seq_prev is one of a pair of macros which allow the processor array
to be treated as a sequential string of processors.

if (potential_PEs ~& seq_prev(!potential_PEs))

I]

]rom_PE = reduceNax(iproc) to_PE = start_PE- 1

r educe l~ax(ip roc) will return an integer identifying the highest of the active
PEs. Thus we have identified the PE set to be renumbered (from_PE- to_PE). The
code to initialise a strip of the plural space can be used for the renumber operation by
applying it to only a segment of the processor array. Similar methods are employed
when freeing plural space, this is more complicated though since we need to merge
contiguous free space.

482

P l u r a l O r g a n i s a t i o n

We are now able to allocate contexts and PLOs using a single simple interface. Hav-
ing identified a contexts processor set we allocate an ACU structure which specifies
that set. So we can see that a plural is specified by a 32-bit context address and a
16-bit plural space offset.

Conformant plurals share the same context, they also share the same context
stack, which is used by i f - s . Since both the context and the context stack are
concerned with modifying the active set it seems reasonable to combine the two
concepts.

The context stack for each element of a context is represented by a list of () and
non-() values. To associate the context stacks with the context we create a plural
to contain them and store the offset of this plural in the context structure:

typedef struct MP_Context {

n a t u r a l s t a r t ;
n a t u r a l l e n g t h ;
n a t u r a l o f f s e t ;

} MP Context;

Now when executing functions within a given context, we first activate only those
processors which are in the context 's processor set. We then take the top of the
context stack for each member of the processor set and modify the active set further
depending on this value. A fl.ont end handle now consists of an offset, context address
pair which also gives us the internal context of the conformant set to which the plural
belongs. Two plurals are conformant if the address of their context handles are equal,
this makes it easy for the front end to check a set of arguments are conformant before
applying a parallel primitive.

4 G a r b a g e C o l l e c t i o n

We have decided not to support inter-processor references, i.e. all the structures
referenced on a PE are allocated on the same PE. As there will be a rich selection
of communication primitives which copy objects between processors we d o n o t feel
this to be too limiting a restriction. Hopefully a communication link between PEs
will serve as well as an inter-processor reference for most tasks. Because the heaps
are independent the processor array can be garbage collected in data parallel, the
fact that the heaps are different on each PE being the only real obstruction to an
efficient so]ution.

As the plural and heap spaces share the same address space, memory is exhausted
when the two regions are about to clash. A compacting garbage collector seems the
most appropriate choice as the plural space must always have room to grow into,
this also simplities the allocation process (see Section 3). A possible GC technique is
Stop and Copy in which the active structures are copied to an alternative memory
space, where they form a contiguous region. However this requires sacrificing half
our available memory for the "alternative" space. For this reason a Mark and Sweep

483

collector, where the active memory is marked and then compacted, seems the better
choice.

The active memory on a PE is identified by propagating a mark through the heap
space starting from each heap address in the plural space. These addresses in the
plural space correspond to references from the enclosing environment on the host.
When a front end handle on a collection is collected the memory used in the plural
space is freed. We do not go into the details here but point out that this process is
separate from the PE heap garbage collection. The pseudo-code below describes the
key points of the mark-phase.

current_offset = first_pluraLoffset
while (current_offset < last_pluraLoffset)

mark(plural_space[current_offset++])
current_offset

ellhw

mark(heap_objects)
free(heap_objects) = false
if (!atomic?(heap_objects))

index = 0
while (index < length(heap_objects))

mark(slot_ref(heap_objects,index++))
elihw

f i

Having identified the active memory, compaction is a highly data parallel process
and should run in time proportional to the largest number of objects (both active and
inactive) in any one heap. The compaction pseudo-code given here could possibly be
improved by at tempting to skip over contiguous blocks of free objects rather than
simply examining the next object on the PE each time. How well this would improve
the system behaviour is difficult to predict and would be highly dependent on the
allocation patterns.

current_heap_objects = bottom_of_heap
new_heap_space = bottom_of_heap
while (current_heap_objects < heap_space)

i f (!free? (current_heap_objects))
copy (new_heap_space, current_h eap_objec ts)
new_heap_space += size(current_heap_objects)

fi
current.heap_objects += size(current.heap_objects)
elihw

There are a few more updates we must make so that the heap is consistent, this
involves building a map of the heap so that we can resolve pointers to moved objects
in both the heap and the plural space, this is a costly process but a data parallel
version should not affect its behaviour adversely! [5] [6].

As mentioned above the compaction phase is a highly data parallel operation,
however this is not true of the mark phase. The recursive mark process will behave
optimally only when identical structures are being marked on each PE. We give an
example to show how the behaviour is less satisfactory when the structures being
marked differ between PEs. Consider two PEs with a cons cell on each, both con-
taining vectors of a 100 and 10 elements, but in different orders. Initially the cons
cell will be marked in parallel and a recursive call will be made to mark a vector.
After 10 iterations one of the PEs will have finished and will then have to remain

484

inactive for tile remaining 90 itera.tio~ls it takes for the second PE to finish. After
returning the process will be repeated for the second vector on each PE. If we ignore
the contents of the vectors we see that the process of marking a total of 110 vector
slots on each PE takes 200 mark vector slot iterations on both PEs.

In a SIMD processor array the globally broadcast instruction s t ream can only be
executed by the active PEs, if we can increase the number of part icipating proces-
sors we should improve the system's performance. The processors become inactive
because of the recursive calls which, by extending the parallel stacks, deactivate the
processors not making that call. Further because the PEs must all return at the same
t ime some may have to wait until this condition is satisfied. If we can implement an
iterative solution these situations should be eliminated and we will have achieved
the desired affect.

We have here an example of a general problem in SIMD programming, the broad-
casted instructions are applicable to all elements but PEs become inactive while
waiting for the worst case PE to complete. In some cases it is possible to make use
of the local indirect addressing a available on the MasPar to improve the situation.
Here we transform the code into an iterative version with explicit stack management ,
this means the operation will be applied to the top of the stack rather than the high-
est stack level as happens in recursion. This will require using more memory for the
stacks but will also use less C stack. In this special case we can use pointer reversal
to traverse the er~vironment and eliminate the need for a stack. Below is pseudo-code
outlining versions using pointer reversal and explicit stacks respectively. Both are
iterative and at the beginning of each iteration only the PEs which are still marking
will be active.

mark(heap_objects)
prey_objects = last_objects
while (!last_ob jects ? (heap_objec ts)

if (atomic?(heap_objects) II
visited?(heap_objects))

clear_flags(heap_objects)
free(heap_objects) = false
unshuffie(prev_objects, heap_objects)

else
shuffle(prey_objects, heap_objects)

fi
elihw

mark(heap_objects)
push(to_mark_stack, heap_objects)
while (!emptyi*(to_mark_stack))

heap_objects = pop(to_mark_stack)
free(heap_objects) = false
if (!atomic?(things_to_mark))

copy_push(to_mark_stack,
first(heap_objects),
length(heap_objects))

fi
elihw

Pointer Reversal Version Explicit Stack Version

This shows how if a heterogeneous set of heaps are independent, they can be ef-
fectively garbage collected in data parallel. Well defined GC techniques are directly
applicable to the compaction of the data parallel heaps and we expect the com-
paction phase to take time proportional to the max imum number of objects on any
PE. Implementing da ta parallel versions of the algorithms would be much harder
without the local indirect addressing available on the MasPar. The mark phase is
less straight forward but again we can take advantage of LIA to mark the heap in
t ime proportional to the maximum number of active objects on a PE. A direct data

a This is where the broadcast instruction is applied to a different location on each PE.

4 8 5

parallel conversion of a sequential marking algorithm would take time proportional
to the sum of the size of each structure differing between PEs. This is because where
the structures on PEs diverge the mark time is the sum of their seperate mark times.
This also gives us a possible method for dealing with generic operations on sets with
different size and content in general [14]. In the next section we consider a special
case of inter-processor references.

5 C o l l e c t i n g in a D i s t r i b u t e d E n v i r o n m e n t

Moving data between processors, be it from the host to the processor array or be-
tween processing elements, is a copying operation. These copies are new lisp objects
in their own right and with the exception of symbols, are not eq to the original. This
will not pose a problem for many applications but functional programmers may at
times want to make use of the eq behaviour of the objects they are manipulating.
It would be impractical for all objects on the processor array to have the correct
eq behaviour, so we introduce a special class of processor array object, an re-object,
which is a handle of an object on the front end. These can be moved between PEs
while preserving their eq properties. Fe-objects will also allow singular objects to be
dereferenced in parallel; the efficient implementation of such an operation is beyond
the scope of this paper. We do not suggest how such objects and their operations
would be supported at the language level but feel they should be available as:

- They are in keeping with the spirit of Lisp.
- Recursive parallel structures fit naturally into this scheme.

Currently an fe-object is a unique key under which the object is placed in a table
on the front end. This could possibly be improved by storing the address of the object
but this would require modifications to the front end garbage collector. Placing the
object in the table also prevents it from being garbage collected by the host if only
the processor array references it. Reclaiming all the free memory requires a global
garbage collector which spans both the host and the array. It is attractive to allow
the two components to still GC independently, using the asynchronous execution
model available on the MasPar the host and array could perform local GC during
idle time. Global GC is further complicated as circular references between the array
and the host are now possible.

H o s t E n v i r o n m e n t : M a s P a r

[Environment [----~P~u~a]han~t~e~----~', A C U
[, Root [. DPU[~iii~i~iiiii~iiiiiiiii

Front End

Table

I =~,....~......Object 1.~/'" ::ii!!iii iiiii iiiiiiiii:::: iiiii::::ii

Fig. 4. Examples of BE-FE structures

486

Figure 4 shows some possible back-end fl'ont-end structures, plural handle 2 is
legitimately held in the re-reference table since plural 1, which is still in the front
end environment points to it. Whereas object 1, and hence plural handle 3, are held
in the table only by virtue of a circular set of pointers and so should be removed
from the table so that they can be collected.

We use a method similar to that given by [3] to resolve front-end/back-end ref-
erences but using the re-reference table makes it possible to stabilise in a constant
number of iterations. The table allows us to follow all the possible references to the
back-end (possible in the sense some may no longer be present in the front-end en-
vironment). To do this we need to be able to find all the plural handles on the host
and determine which are in the re-reference table, the simple garbage collector will
require little modification to give us this information. These references are followed
on the MasPar and a list of front-end references is generated for each of these. Only
these objects will be used to create a new fe-reference table, effectively freeing those
no longer referenced by the processor array. To identify any circular structures we
first search on the MasPar for any plurals containing plurals, this will be a router
intensive operation but for a large number of front end to back end references and
vice versa should prove worthwhile. We now have a concise representation of the
references between the host and the MasPar in terms of the plurals they involve.
We can propagate a mark through this "map" to identify which plurals in the fe-
reference table should be retained. Any unmarked plurals are freed on the processor
array, and the fe-objects they contain can be eliminated before the new fe-reference
table is constructed, or they can be collected on subsequent garbage collections.

The techniques are, perhaps, not novel, but present an interesting use of a proces-
sor array in the resolution of complex structures. The problem of identifying circular
structures in the network of inter-processor references is essentially a graph prob-
lem. Data parallel machines are well suited to such problems [4] as a PE can be used
for each node of the graph and the arcs between nodes are handled by the router
mechanisms. Here we have applied this power to the management of a high level
data parallel language.

6 S u m m a r y

We have described here various techniques used in implementing a functional data
parallel language with emphasis on efficient memory/processor management. Of spe-
cial interest perhaps is the support for heterogeneous collections. This is made pos-
sible by the local indirect addressing available on the MasPar, which also permits us
to effectively garbage collect the resulting heterogeneous heaps in data parallel. This
gives us a Lisp system with around 600 Mega-bytes of memory (for a 16K MasPar
with 64K memory option) with 16384 garbage collectors operating on it. Finally
processor arrays, with their excellent PE to PE communications, are well suited
to solving graph oriented problems. We make use of this feature to resolve inter-
processor references when garbage collecting the environment distributed between
the host and MasPar.

487

7 A p p e n d i c e s

A M a s P a r M P - I : T e c h n i c a l S u m m a r y

The MasPar MP-1 is a massively parallel SIMD machine with 1024 processors scal-
able to 16384. The system comprises five major subsystems:

The Ar ray Cont ro l Uni t (ACU) controls the processor array by broadcasting
all PE instructions. It is also capable of independent program execution.

The Processor E lement Array (PE Array) executes the instruction stream broad-
cast by the ACU on each PE, conditional on the activity status. Each PE has
16K of local memory which can be expanded to 64K. The CPU consists of a
4-bit ALU and 192 bytes of scratch RAM.

C o m m u n i c a t i o n Mechanisms include:
- The 8-way X network for communication with neighbouring PEs.
- The global router, which gives random PE-to-PE communication via a hier-

archical crossbar.
- Two global busses, one for broadcasting data and instructions from the ACU

and one for consolidating the status responses of all the PEs to the ACU via
a logical OR-tree.

The Unix Subsys t em provides UNIX services to the data-parallel system, e.g.
job management.

The I / O Subsys t em supports high speed communication between the host and
parallel subsystem.

B M a s P a r P r o g r a m m i n g L a n g u a g e : M P L

Mpl is used to program the ACU and parallel array, it is based on K&R and C and
in the tradition of C it gives the finest control over the processor array. There are
three basic additions to K&R C:

- A variable can be declared as p lu ra l indicating it should be instantiated on all
PEs otherwise it is instantiated on the'ACU.

- Existing C control structures are extended to handle plural arguments, in which
case the activity status of the processor array is modified before broadcasting
the associated code.

- Language syntax has been added to support the use of the X-net and the global
router.

Below is a segment of mpl code showing: declaration of parallel variables (line
2), parallel expressions (line 4) and X-net (line 5) and router (line 6) communication
constructs:

(I) {
(2) plural int x, z;

(3) x = 1;

(4) z = x + i p r o c ;

(5) x = xnetNE[1].x + xnetSW[l].x;

(6) z = router[x~1024].x;

(7) }

488

C P l u r a l E u L i s p S e m a n t i c D e f i n i t i o n

We provide a br ief descr ip t ion of the kernel of P lu ra l EuLisp by means of the s igna-
tures of the essential opera t ions :

bang : T --~ plurM(T) - . plural(T)
m ake -p lu r a l : integer --~ plural(T)
� 9 : plural(integer) --~ plural(integer) --* map
move : ph~ral(T)-*m ap-~ (T--~T-~T)--*T--~plur al (T)

p F E1 --* o~ E singular
p F E2 ~ fl E plural(T)

= {~, = ~, Z~ e/~}
p F (bang E1 E2) --+ 7

p ~- E1 --* ~, a E integer
Z = {~ = 0, i = 0 . . . ~ }

p F (make - p l u r a l E1) --~ fl

p ~- E1 ~ a E pturM(T)

= {E~ -~ Z,, ~ # 0} u { ~ -~ ~;, ~ = 0}
or- (i ~ - s & E2 &) - ~ f l

p }- E1 ~ ~, or ~ plural(integer)
p ~- E2 --* fl, fl E plural(integer)

p~" (match E1 E2) ---* 7

p F E1 ~ a, a E plural(T)
p F E2 -~ fl, f l e m a p

flF E3 --* 7, 7 E T x T -- T
p t- E4 --* 6, 6 E singular

~ ~ ~}u{~ =~, k r (i , d) = ~ , } }

p ~- (move E1 E~ E3 E4) -~

R e f e r e n c e s

1. Bale, A. Implementing Lisp on the ICL Distributed Array Processor. Queen Mary
College, Dept. of Computer Science, 1986.

2. Blelloch, G. E. and Sabot, G. W. Compiling Collection-Oriented languages onto Mas-
sively Parallel Computers, volume 8, pages 119-134. Journal of Parallel and Dis-
tr ibuted Computing, 1990.

3. Lang et al. Gargbage Collecting the World. ACM Symposium on Principles of Pro-
gramming Languages, New York, 1992.

4. Evett, M. and Hendler, J. Achieving Computationally Effective Knowledge Repre-
sentation via Massively Parallel Lisp Implementation. Europal Workshop for High
Performance and Parallel Computing in Lisp, Nov 1990.

5. Fitch, J. P. and Norman, A. C. A Note on Compacting Garbage Collection, volume 10,
pages 31-34. The Computer Journal, July 1976.

489

6. Haddon, B. K. and WaJte, Q. M. A Compacting Procedure for variable-length storage
elements, volume 10, page 162. The Computer Journal, 1967.

7. Hillis, W. D. The Connection Machine. MIT Press, Cambridge, MA, 1985.
8. Padget, J. A. and Nuyens, G. The EuLisp Definition. to be published by the Commis-

sion of the European Communities, 1992.
9. Sabot, G. W. Paralation Lisp Reference Manual. Thin]ring Machines Corp., 1988.

Tech. Report PL87-11.
10. Sabot, G . W . The Paralation Model: Architecture Independent SIMD Programming.

MIT Press, Cambridge, MA, 1988.
11. Steele, G. L., Jr., and Hillis, W. D. Connection Machine Lisp: Fine-Grained Par-

allel Symbolic Processing, pages 279-297. ACM Conference on Lisp and Functional
Programming, 1986.

12. Steele, G. L., Jr., and Wholey, S. Connection Machine Lisp: A Dialect of Common
Lisp for Data Parallel Programming. International Conference on SuperComputing,
1987. TMC Tech. Report PL87-6.

13. Thinking Machines Corporation. *Lisp Reference Manual, 1988.
14. Tomboulian, S. and Pappas, M. Indirect Addressing and Load Balancing for Faster

Solution to Mandelbrot Set on SIMD architectures. MasPar Corporation Tech. Report,
October 1990.

This article was processed using the LATEX macro package with LLNCS style

Memory Management and Garbage Collection of
an Extended Common Lisp System for Massively

Parallel SIMD Architecture

Taiichi Yuasa 1

Toyohashi University of Technology, Toyohashi 441, Japan

Abs t rac t . We have developed an extended Common Lisp language and sys-
tem, called TUPLE, for massively parallel SIMD (Single Instruction stream,
Multiple Data stream) architecture. The system is an extension of Common
Lisp with features for SIMD parallel computation.
Unlike other Lisp languages on SIMD architecture, TUPLE supports the
programming model that there are a huge number of subset Common Lisp
systems running in parallel. For this purpose~ each processing element (PE)
of the target machine has its own heap in its local memory. In addition, there
is a full-set Common Lisp system with which the user interacts to develop
and execute parallel programs. The result is that there are huge number of
heaps with pointers across heaps.
This paper briefly introduces the TUPLE language and system , and then
describes the memory management and garbage collection of the TUPLE
system. In particular, we focus on the current implementation of TUPLE on
the SIMD machine MasPar MP-1 with at least 1.024 PEs.

1 I n t r o d u c t i o n

T U P L E (Toyohashi University Parallel Lisp Environment) is an extension of Com-
mon Lisp [6] with functions for massively parallel computation. The T U P L E system
is based on KCL (Kyoto Common Lisp [9]), a full-set Common Lisp system devel-
oped by the group including the author. The system is currently running on the
MasPar MP-1, a SIMD massively parallel computer with at least 1024 PEs. As the
original KCL is written partly in C and partly in Common Lisp, the T U P L E sys-
tem on the MasPar is written partly in MPL [15], the extended C language on the
M~sPar, and partly in TUPLE itself.

So far, several Lisp languages have been proposed for SIMD architectures. These
languages provide new data structures that can be handled in parallel. Examples
are: xappings in Connection Machine Lisp [7, 8, 12], paralations in Paralation Lisp
[4, 5], plurals in Plural Eulisp [2] and pvars in *Lisp [14, 13]. These languages share
a same computation model that the front-end processor dominates the entire control
flow and the PEs are used for parallel execution of operations on the extended data
structures. TUP LE adopts a different approach. Its computation model is that there
are a huge number of Lisp systems called PE subsystems running in parallel. These
PE subsystems executes programs in a subset Common Lisp. In addition, there is
a full-set Common Lisp system, called the front.end system, with which the user
interacts to develop and execute parallel Lisp programs. With this model, the user

491

can write most part of his or her parallel programs in the same way as in ordinary
sequential Lisp languages.

In order to realize this computation model of TUPLE, each PE subsystem must
at least have the ability for symbolic computation and list processing, as well as the
facility to transfer Lisp data objects to/from other PE subsystems and the front-end
system. To fulfill these requirements in an efficient way, the following decisions are
made for the TUPLE implementation.

- Each PE has its own heap where cons cells are allocated.
- Each PE can reference any Lisp objects in the heaps of other PEs or the front-

end.
- Pointers to a single data object are represented uniquely among all PEs and the

front-end.

The result is that there are a huge number of heaps (which are relatively small
except for the front-end heap) with pointers across heaps. As well as other parallel
architectures, communication among the PEs and the front-end is expensive in SIMD
architecture. Thus garbage collection is an important issue in implementing TUPLE
efficiently.

This paper reports the memory management and garbage collection of the TU-
PLE system. In particular, we focus on the current implementation of TUPLE on
the MasPar MP-1. Since the language and the computation model of TUPLE is
quite unique, we first introduce TUPLE through examples in Sections 2, 3, and 4,
particularly focusing on SIMD parallel list processing. Then we overview the imple-
mentation of TUPLE on the MasPar in Section 5. We then report the main issues
of this paper, data representation and garbage collection of TUPLE, in Sections 6
and 7, respectively. For the details of TUPLE, refer to [10]. For the performance
measurements of the TUPLE system on the MasPar, refer to [11].

2 A S i m p l e E x a m p l e

This section introduces the language and system of TUPLE, through a simple exam-
ple function abs that computes the absolute value of the given argument. In ordinary
Common Lisp, this function can be defined as follows.

(de:fun abs (x)
(i f (>= x 0) x (- x)))

That is, if the argument is greater than or equal to zero, then the function simply
returns the argument. Otherwise, the function returns the negative of the argument.
By replacing defua with defpefun, the similar function will be defined in the PE
subsystems.

(d e f p e f u n a b s (x)

(i~ (>= x 0) x (= x)))

When this PE .function is invoked, all PEs receive independent values, one value per
PE. Then those PEs that received non-negative numbers return the arguments. The
other PEs return the negatives of the arguments.

492

T U P L E runs on SIMD architecture, where no two PEs can execute different
instructions at the same time. What actually happens is the following. When the
PE function abs is invoked, those PEs that do not satisfy the condition becomes
inactive while the other PEs (i.e., those PEs that satisfy the condition) evaluate the
then clause. Then the activity of each PE is reversed and the previously inactive
PEs evaluate the else clause, while the previously active PEs are inactive.

Below is an example interaction between the user and the T U P L E system. The
top-level of TUP LE is similar to that of ordinary Common Lisp systems. The user
can input any Common Lisp form at the top-level. Then the form is (sequentially)
evaluated and the result is displayed.

Z tuple
TUPLE (Massively Parallel KCL)

>(defun abs (x)
(i~ (>= x o) x (- x)))

ABS

>(abs -3)
3

In order to start a parallel computation, the user has to supply a form in the extended
language of TUPLE.

>(defpefun abs (x)
(i~ (>= x 0) x (- x)))

ABS

> (ppe penumber)
#p(0 1 2 3 . . .)
>(ppe (abs (- penumber 2)))
#P(2 I 0 I . . .)

In this example, the user uses the ppe form that passes a PE form to PE subsystems
for evaluation and displays the results. This form is mainly used at the top-level of
T U P L E to supply a top-level form to the PE subsystems.

The penumber in the above example is a built-in constant in PE subsystems
which holds the processor number for each PE. The "first" processor has 0 as the
value of penumber, the "second" has 1, and so on. The second ppe form computes
the absolute value of pemmber - 2 by calling the PE function abs. Thus, the first
processor, for instance, returns 2 as the value.

Note that TUPLE uses distinct name spaces for ordinary sequential functions
and PE functions. In the example, abs names both the sequential function and the
PE function. This is because a PE function is defined in the PE subsystems, whereas
a sequential function is defined in the full-set Common Lisp system on the front-end
with which the user interacts.

The ppe form in the example displays the values returned by the PEs, but it does
not return the values. Actually, it returns "no value" in the terminology of Common
Lisp. The so-called "parallel values" or "plural values" are not first-class objects in
TUPLE. In order to obtain a single value from the values of PEs, the user has to use

493

a reduction operation. TUPLE supports a variety of reduction operations, such as
the one to choose the value returned by a specified PE, the one to randomly choose
a non-nil value among the returned values, and the one to sum up all the returned
values.

3 P a r a l l e l L i s t P r o c e s s i n g

As a typical example of parallel list processing, we will show how binary search
trees can be handled in TUPLE. In Lisp, each node of a binary search tree can be
represented as a list of three elements.

I v a l [~ I - ~ " ~ L ~

The first element is the value of the node, the second and the third elements are
respectively the left and the right subtrees of the node. Node values in the left subtree
are all less than the current node value, and node values in the right subtree are all
greater than the current node value. Ordinary binary search function can then be
defined so that it recursively descends the given binary search tree, to find the given
item in log n time, with n being the number of nodes in the tree.

In order to parallelize the binary search function, we assume that the entire
binary search tree is represented by disjoint P E trees, one per PE. Each PE tree
of a PE is itself a binary search tree that is constructed with cons cells in the PE
subsystem of the PE. If any pair of two PE trees are disjoint (i.e., have no common
node value), then we can regard the whole collection of the PE trees as a large binary
search tree. We will show later how such PE trees can be constructed in TUPLE.

The parallel version of the binary search function can be defined as follows.

(defpefun binary-search (tree item)
(if (null tree)

nil
(exif (= (car t r e e) item)

t
(b ina ry-sea rch

(i f (> (car t r e e) item)
(cadr t r e e)
(caddr tree))

item))))

The point here is that, when one of the PEs finds the item in its PE tree, the other
PEs need not go further. Rather, we would like to stop computation as soon as a
PE finds the item. Since this kinds of processor synchronization is common to many
parallel algorithms, we introduce a new construct ex i f (exclusive if). The ex i f form

(exif condition then-clause else-clause)

494

is similar to the ordinary i f form, but if some PEs satisfy the condition, then the
other PEs do not evaluate the else-clause. The parallel binary search function above
returns immediately if the current node value for some PE is equal to the item, in
which case that PE returns the true value t and the rest of the PEs return the false
value n i l . By computing the logical OR of all values returned by the function, we
can determine whether the item was found in one of the PE trees. Or, by asking
which PE returned the true value, we can determine in which PE tree the item is
registered. T U P L E supports reduction operations for these purposes.

In order to construct PE trees, we use the following PE function, which inserts
an item into one of the PE trees.

(defpefun bs-add (place n)
(cond ((some-pe (null (car place)))

(exif (binary-search (car place) n)
nil
(when (= (some-penumber

(null (car place)))
penumber)

(rplaca place
(list n nil nil)))))

((some-pe (= (caar place) n))
nil)

(t (bs -add
(i f (> (can t p l a c e) n)

(cda r p l a c e)
(cddar p l a c e))

n))))

To simplify the algorithm, we pass to the function the place holders of the current
subtrees. Each place holder is a cons cell whose ca r part points to the current
subtree. By replacing the car paxt of a place holder with a pointer to a new node,
we can easily expand a tree. Initially, each PE has an empty tree. This initialization
can be done by the following top-level form.

>(defpevar pe-tree (list nil))

This form defines a PE variable named p e - t r e e , whose initial value is the place
holder for the empty tree for each PE. By invoking the PE function bs-add, the
specified i tem will be inserted into one of the PE trees. For example,

>(ppe pe-tree)
#P((NIL) (NIL) (NIL) (NIL) . . .)
>(ppe (bs-add pc-tree 503))
#P(T NIL NIL NIL . . .)
>(ppe p c - t r e e)
#P(((503 NIL NIL)) (NIL) (NIL) (NIL) . . .)

By repeatedly invoking the function, we can construct PE trees in the PE local
memories.

495

The difficulty here is that we have to decide to which PE tree the specified item
is to be inserted. Perhaps the best choice will be to choose a PE that first reaches a
leaf. With this simple choice, the PE trees are kept balanced among PEs. To do this,
the PE function bs -add uses two built-in predicates some-pc and some-penuraber.
The predicate some-pe returns the true value to all PEs if its argument is true for
some PE, and sorae-penumber returns the processor number of such a PE to all
PEs. By comparing the value of some-penuraber with the processor number of each
PE, we can choose one of the PEs that satisfy a given condition. In the definition of
bs-add, if some PE reaches a leaf, then the other PEs just search their subtrees. If
some PE finds the item, then bs -add returns the false value, meaning that the i tem
is already in some of the PE trees. Otherwise, we choose one of the PEs that has
already reached a leaf and expand the leaf with a new node.

4 O t h e r P a r a l l e l F e a t u r e s

In addition to parallel list processing, the PE subsystems support parallel compu-
tation on fixnums, short-floats, characters, and vectors (one-dimensional arrays).
Among these, fixnums, short-floats, and characters are handled exactly in the same
manner as in the front-end Common Lisp system.

Vectors in PE subsystems are defined in the PE subsystems by the following
top-level form.

(defpevector v I0 nil)

This form creats a vector of length 10 in each PE subsystem and initializes the
vectors so that all elements are n21. The created vector becomes the value of the
PE variable named v. PE vectors are first-class objects as ordinary Common Lisp
vectors, and PE functions similar to Common Lisp functions on vectors are available
on PE vectors. For example, the form

(vset v • x)

replaces the i th element of the PE vector v with the value of the PE variable x.
This operation is performed by the PE subsystems in parallel. Note that the vector
index • and the new value x may be different among PE stfbsystems.

In addition to these "parallel objects", each PE subsystem can reference any ob-
jects in the front-end Common Lisp system. However, since communication between
the front-end and PEs is essentially sequential in most SIMD machines, operations to
obtain information in front-end objects are executed sequentially, one PE at a time.
Thus the only parallel operation on front-end objects are the equality comparison.

Another important feature is the communication facility among PE subsystems.
Since the actual communication network among PEs depends on the target machine,
T U P L E supports only two kinds of PE communications: mesh communications and
global communications. By a mesh communication, each PE can receive an object
from its north, east, west, or south neighbor. By a global communication, each PE
can receive an object from any specified PE. These communications are supported
by most SIMD machines and thus can be implemented directly by the hardware
communication networks.

496

TUP LE is designed so that each PE subsystem be as close to the front-end
Common Lisp system as possible. Below is the list of special forms and built-in
macros in the PE subsystems, that have counterparts in Common Lisp. They work
almost the same way as the corresponding Common Lisp forms.

and function progl

case if prog2

cond labels progn

declare let psetq

do let* quote

do* locally setq

dolist loop unless

dotimes macrolet when

flee or

Because of the SIMD nature, some parallel versions of Common Lisp functions
require uniqueness on their arguments. For example, the Common Lisp function
f u n c a l l is used to dynamically specify the function to invoke. The function to
invoke is given as the first argument to f u n c a l l . The PE function f t m c a l l works in
the same way, but in SIMD architecture, only one function can be invoked at a time.
Thus the PE function f u n c a l l requires its first arguments to be identical among all
PEs. Tha t is, when the following form is evaluated in PE subsystems,

(fuacall f x y)

all values of f in the PE subsystems must be identical.

5 I m p l e m e n t a t i o n O v e r v i e w

In this and the following sections, we will report implementation of T U P L E on the
MasPar MP-1. The MasPar MP-1 is a SIMD machine with at least 1024 PEs. This
machine consists of two parts: the front-end UNIX workstation and the back-end
called the data parallel unit (DPU). The back-end consists of the array control unit
(ACU), which broadcasts instructions to PEs, and the PE array, where PEs are
aligned in a two-dimensional array. A program on the MasPar consists of front-
end functions and ACU functions. Parallel computation begins by invoking an ACU
function from a front-end function. The memory size in each component is relatively
small. The size of the data memory in the ACU is 128 Kbytes and the size of the
memory in each PE is 16Kbytes. Virtual memory is not supported on these memories.

Before the current version, we implemented a prototype version of T U P L E [1](see
Figure 1). In that version, all PE functions (both built-in and user-defined) were
stored in the front-end memory. The paralle] evaluator also resided in the front-end.
In the prototype version, therefore, several subroutines were implemented on the
ACU, which are invoked by the parallel evaluator in the front-end. Since most of
the subroutines were responsible for small jobs such as popping up the PE stack,
communication betweez the front-end and the back-end took place frequently. Un-
fortunately, this communication is very slow and accordingly the performance of the
prototype version was not satisfactory.

497

First Edition

Front-End

call

N N
ACU

Second Edition

Q dowo
l o a d

Front-End ACU

Fig. 1. Two versions of TUPLE

m

|

|

"[N

To improve the performance, the current version of T U P L E stores all PE func-
tions in the ACU and the parallel evaluator runs in the ACU. When the user defines
a new PE function, the downloader in the front-end puts the function definition into
the ACU memory. Some front-end forms such as ppe downloads PE forms into the
ACU memory before passing control to the parallel evaluator. Thus, in the current
version, once triggered by the front-end, the entire parallel computation is performed
solely in the ACU and no communication takes place between the front-end and the
back-end.

To sum up, the current implementation of TU P LE on the MasPar uses three
kinds of heaps:

- the font-end heap where ordinary Common Lisp objects are allocated
- the PE heaps where PE cons cells are allocated
- the ACU heap where those objects common to all PE subsystems, such as PE

function objects (including built-in functions, user-defined functions, and func-
tion closures) and PE vector headers, are allocated

Any object in one of these heaps can be referenced from any component of the
MasPar system. For example, an object in the front-end heap may be referenced

498

from the ACU (as part of a user-defined function) and PEs (by broadcasting). Also,
a cons cell in a PE heap may be referenced from the front-end (by reductions), the
ACU, and the other PEs (by PE communications).

6 D a t a R e p r e s e n t a t i o n a n d A l l o c a t i o n

Figure 2 illustrates data representation of TUPLE. This representation is common
to all components of the MasPar system. By having the same representation, we
can avoid data conversion in communications among the components. The first four
formats are those used by the original KCL. As seen from the Figure, the two least
significant bits are used to distinguish these four formats. Since the third significant
bit of a character object is always 0, we extended the data representation of KCL
so that pointers to the ACU and PE heaps are distinguished by the bit pat tern 110
at the three least significant bits.

Iq 32 bits ~]

p o i n t e r t o F E ce l l :

~ x n u m -"

s h o r t - f l o a t :

c h a r a c t e r :

16 bits - - - - " H

p o i n t e r t o P E c o n s :

14 bits ~:-~ 14 bits

p o i n t e r t o A C U cell :

Fig. 2. Object representation of TUPLE

Figure 3 shows the data area of each PE that TU P LE handles directly. The run-
time stack of MPL is not shown in the Figure. The first words of the memory area
are used to allocate built-in constants a• t , and peauraber. Next to these words is
the PE global area, where user-defined global PE variables, eonstants~ and vectors
are allocated. This global area expands dynamically as the user defines PE variables

499

etc. Next is the PE stack area where local PE variables are allocated and temporary
values (including arguments to PE functions) are stored.

lower address

nil

PE number

PE global
area

PE stack

t

heap

GC bits

upper address

Fig. 3. Tile PE data area

Then there is a heap area where PE cons cells are allocated. Mark bits for PE
cons cells are separately stored in the last part of the data area. These mark bits are
used by the parallel garbage collector of TUPL E to reclaim unused PE cells (see the
next section). The total size of the data area is 8 Kbytes for the MasPar system that
has 16 Kbytes of local memory per PE. Half of the data area is used as the heap.
Since each cons cell occupies 8 bytes (i.e., 2 words), 512 cells are available per PE.

Cells in the ACU heap are homogeneous and each cell occupies four words. The
first word of a cell is used as the data tag and the GC mark bit. Use of the remaining
three words depends on the tag. For the ACU cell for a PE vector, these words
contain the name, the length, and the address of the PE vector in each PE global
area. Each user-defined global function is represented by an ACU cell whose three
words contain the name, the lambda list, and the body of the function.

Global PE variable bindings and global PE function bindings are represented
by ACU cells called A CU symbol cells. Each ACU symbol cell corresponds to an
ordinary front-end symbol, and no two ACU cells correspond to a same front-end

500

symbol. When a global PE variable is defined (typically by defpevar) or when a
global PE function is defined (typically by defpefua), a new ACU symbol cell is '~,,
created that corresponds to the name of the PE variable or the PE function if and
only if there exists no such ACU symbol cell. The downloader converts all references
to global PE variables and global PE functions in a PE form, to pointers to the
corresponding ACU symbol cells.

Each ACU symbol cell contains the address of the global PE variable in the
PE global area, the PE function object (pointer to an ACU cell), and the pointer
to the corresponding front-end symbol: The pointer to the front-end symbol cell is
mainly used in error messages in case unbound variables and undefined functions
are detected. On the other hand, each front-end symbol cell contains a pointer to
the corresponding ACU symbol cell, if one exists. This pointer is used mainly by the
downloader for conversions from front-end symbols to back-end symbols.

As of the front-end cells, cells other than symbol cells are represented exactly in
the same way as in the original KCL. Front-end symbol cells are extended so that
they can contain information on parallel computation such as the ACU routine that
handles a PE special form, and the pointer to the corresponding ACU symbol cell.
Thus modification of the front-end system was surprisingly small.

7 G a r b a g e C o l l e c t i o n

As already seen, the implementation of TUPLE on the MasPar has the following
unique features in relation with garbage collection.

1. It has multiple heaps: the front-end heap, the ACU heap, and a large number of
PE heaps.

2. Each cell in a heap may be referenced from any component of the MasPar system.
3. Communication between the front-end and the back-end is relatively slow.
4. PEs can execute instructions in parallel.

The second feature implies that garbage collection cannot be done separately for
each heap and that communications are inevitable between the front-end and the
back-end during garbage collection. The third feature requires some mechanism to
reduce communications during garbage collection. The last feature encourages us to
develop parallel algorithm for garbage collection on PE heaps.

The original KCL uses the conventional mark-and-sweep algorithm. Free cells of
the same size are linked together to form a free list. Some objects such as arrays
are represented by a fixed-length header cell which has a pointer to the body of
the object. For an array, for instance, array elements are stored in the body and the
header cell contains various information on the array, such as the dimensions. Bodies
are allocated in a special area called the relocar area and are relocated during the
sweep phase to make a large free space in the relocatable area. This implementation
is closely related with the fact that KCL is written in the C language. Since bodies
are always referenced via the header cells, we do not need to change the values of
C variables that hold KCL objects, even when bodies are relocated. Note that the
address of a C variable depends on the C compiler. Thus, this implementation of the
original KCL increases the portability of the system.

501

Since T U P L E is written in MPL, a data-parallel extension of the C language, we
essentially use the mark-and-sweep garbage collector for back-end heaps. Remember
that all cells in a back-end heap are homogeneous. This includes that we need only
one free list for each heap, and that no relocation is necessary once the size of the
heap is fixed.

The garbage collector of TUPLE is invoked when one of the free lists becomes
empty or when the relocatable area of the front-end becomes full. As in KCL, the
garbage collector consists of two phases:

1. the mark phase, when all cells in use are marked, and
2. the sweep phase, when each non-marked cell (i.e., garbage cell) is linked to a

free list and each body whose header cell is marked is relocated.

The sweep phase can be executed for each component of the MasPar, indepen-
dently of the other components, for the following reasons.

- Each garbage cell in a component is linked to a free list in the same component.
- There is no pointer that points to the body in the front-end directly from the

back-end. Even when a body is relocated in the front-end, no back-end pointers
need to be changed.

Therefore, we use the sweep phase routine of the original KCL without changes.
The sweep phase routine for ACU cells is obvious. It scans the entire ACU heap
and simply links non-marked cells to the free list of the ACU. The similar routine
works for cells in each PE heap, and this routine can be executed in parallel by all
PEs, without overhead such as PE synchronization. The global area of each PE may
contain vector bodies and thus we need to compactify the area during the sweep
phase. We will explain how the global area is compactified, in a later subsection.

The mark phase, on the other hand, is not so easy because it requires communi-
cations between the front-end and the back-end, and we had to exploit an efficient
algorithm, which we report in the following subsections. We first explain the marking
algorithm for PE cells, which is the most sophisticated part of the mark phase, and
then we explain the entire mark phase of the current implementation of T U P L E on
the MasPar.

7.1 M a r k i n g P E Cells

In order to mark PE cells efficiently in parallel, we use a special bit called the request
bit for each PE cell, as well as the ordinary mark bit. The request bits are used to
remember those PE cells whose c a r and c d r fields are to be taken care of by the
PE marking routine. Rather than recursively traversing pointers to PE cells, the PE
marking routine repeatedly scans the PE heaps and sets on the request bits of those
cells that are pointed to from within PE heaps. Here is the algorithm.

m o r e := t r u e ;
whi le m o r e do

m o r e := f a l s e ;
f o r i from 0 t o M - 1 do

i f i . r e q u e s t t h e n

502

if not i .mark then

mark_object (i.car) ;
mark_object(i.cdr) ;
i .mark := t r u e ;
more := t r u e ;

end i f
i.request := f a l s e ;

endif

endfor

endwhile

where M is the number of cells in each PE heap, i.request and i .mark are the
request bit and the mark bit, respectively, of the ith cell, and i.car and i.cdr are the
car and cdr fields of the ith cell, respectively. Note that this algorithm is intended to
be executed by all PEs in parallel. It is straightforward to implement this algorithm
in a SIMD parallel language such as MPL. We will show later how the request bits
are initialized.

This algorithm requires no extra stack space and thus is suitable for marking
on machines with very small amount of memory. Although the algorithm requires
one request bit per PE cell, the size of memory required for the entire request bits
of a PE is only M/64 words on 32-bit architectures. About the run-time efficiency
of the algorithm, the algorithm requires M 2 time in the worst case. If every cell i
(0 < i < M) points to the cell i - 1, then the body of the whi le statement can
mark only one cell per iteration. On the other hand, the ordinary recursive marking
algorithm requires M time in the worst case. Remember, however, that our target
is an SIMD architecture. Even if each PE can finish the marking in time M, the
entire execution may require M N time in the worst case, with N being the total
number of PEs, because of different shape of structures among PEs. In the current
implementation of TUPLE on the MasPar with 1024 PEs, M = 512 and N = 1024.
Thus the above algorithm is superior to the parallel version of the ordinary recursive
algorithm, in the worst case.

The parallel subroutine mark_object receives an object x for each PE and behaves
as follows.

1. If x is a pointer to a PE cell, then set on the request bit of the cell.
2. If x is a pointer to a front-end cell, then save it into the FE buffer. We will

explain below how this ease is handled.
3. If x is a pointer to an ACU cell, then call the ACU marking routine.

Note that the first two cases can be handled by PEs in parallel, but the last case
cannot because the ACU marking routine can handle one pointer at a time.

In the second case above, we use the buffer to temporarily store pointers to front-
end cells, in order to reduce communications between the front-end and the back-end.
This buffer consists of a single word per PE, and therefore the entire buffer can store
as many pointers as the total number of PEs. When the entire buffer becomes full,
all pointers in the buffer are block-transferred to the front-end and the front-end
marking routine is invoked.

If a PE receives a pointer p to a front-end cell as the argument to mark-object,
then it first tries to save p into its own buffer word w. However, the buffer word

503

may already be occupied by some pointer that was saved by a previous call of
mark.object. Even in that case, there may remain some free words in the buffer.
Even if the entire buffer is full, we can still have chance to find space in the buffer
because some pointers in the buffer may be duplicated. These considerations suggest
the possibility to defer control transfer to the front-end.

The algorithm below will be executed when there are more than one occupied
PEs, that is, those PEs that received a pointer p to a front-end cell as the argument
to mark_object and whose buffer word w is already occupied. In the algorithm, N
denotes the total number of PEs. We assume that PEs are numbered 1 to N and the
ith PE is denoted as Pi. By free PEs, we mean those PEs that received an object
other than a pointer to a front-end cell as the argument to mark_object and whose
buffer word w is not occupied yet.

1. Give a unique ordinal number ord to each occupied PE. Let Ns be the largest
ordinal number, i.e., the total number of occupied PEs. Let si denote the PE
number of the occupied PE that is given the ordinal number i.

2. Give a unique ordinal number oral to each free PE. Let Nd be the largest ordinal
number, i.e., the total number of free PEs. Let di denote the PE number of the
free PE with the ordinal number i.

3. For each occupied PE Psi such that 1 < i < min(Ns,Nd), save the pointer p
into the buffer word w of the ith free PE Pa,. This step consists of the following
substeps.
(a) For each occupied P E P , , such that 1 < i < min(N,, Nd),

tmp | oral 4= p
(b) For each free PE Pd, such that 1 < i < rain(N,, Nd),

dest | ~ di
(c) For each Pi such that 1 < i < rain(N,, Nd),

w | dest ~ trap
Here, "z | y ~ z" means to assign the value of z to the variable x of Py. This
operation includes PE communication from the source PE to Pu"

4. If Nd < N~, remove duplicated pointers in the entire buffer (which is full now)
as follows.
(a) Sort the pointers in the buffer so that the pointer value of the buffer word w

of Pi-1 becomes less than or equal to that of Pi for all i such that 1 < i < N.
(b) For each P~ (1 < i < N), if the pointer value in its buffer word w is equal to

that of P/_ 1, then clear w.
Then repeat Steps 1 to 3 once more. After that, if Nd < N, again, then block-
transfer the entire buffer to the front-end and invoke the marking routine of the
front-end. On return from the front-end marking routine,
(a) Clear the entire buffer.
(b) For each occupied P,, (Na < i <_ Ns),

w : ~ p

Operations in the algorithm are implemented efficiently on SIMD architecture such
as the MasPar. We can use well-known log N time parallel algorithms for giving
ordinal numbers in Steps 1 and 2 and for sorting the entire buffer in Step 4 (refer,
for example, to [3]). In the MasPar, these algorithms are implemented as system

504

libraries. Step 3 requires PE communications three times. These PE communications
are performed through the global PE communication network such as hyper cube,
and thus are highly efficient on many modern SIMD machines, including the MasPar.

7.2 The Mark Phase

To simplify the algorithm, TUPLE always starts garbage collection with the top-
level marking routine of the front-end. This routine scans the root locations in the
front-end memory such as stack entries, and traverses pointers while marking all
front-end cells it encounters. When it encounters a pointer to a cell in a back-end
heap, it temporarily stores the pointer in a buffer and keeps going. There are two
such buffers in the front-end: the ACU buffer for pointers to ACU cells and the
PE buffer for pointers to PE cells. The buffers are used to reduce overhead of the
communication between the front-end and the back-end.

When the ACU buffer becomes full, pointers in the buffer are block-transferred
to the ACU and the marking routine of the ACU is invoked. On the other hand,
when the PE buffer becomes full, the requesting routine is invoked, which sets on
the request bits of those PE cells that are pointed to by the pointers in the PE
buffer. When these routines return, execution of the top-level marking routine of the
front-end resumes.

Note that the PE marking routine described in the previous subsection is never
invoked during the top-level marking routine of the front-end. It is invoked only after
all root locations in the front-end memory have been scanned. Thus all PE cells that
are referenced from the front-end have been set their request bits on, at the first
invocation of the PE marking routine. This reduces the number of repetition of the
outermost loop of the PE marking routine:

The ACU marking routine traverses pointers and marks all ACU cells it encoun-
ters. When it encounters a pointer to a PE cell, it simply sets on the request bit of
the PE cell. Again, this is because we would like to defer the call to the PE marking
routine so that as many PE cells as possible have been set on their request bits when
the PE marking routine is invoked next time.

When the ACU marking routine encounters a pointer to a front-end cell, it does
not invoke the front-end marking routine immediately. Rather, it saves the pointer
into the FE buffer that is used to save pointers from PEs to the front-end. By using
that buffer, rather than another buffer in the ACU memory, we have the chance to
remove duplicated pointers to the front-end efficiently in parallel in the way described
in the previous subsection.

7.3 Compac t ion of the PE Global Areas

The global area of each PE may contain (global) PE variables and PE vectors. (In
this subsection, we treat PE constants as global PE variables, since the difference is
inessential in the context of garbage collection.) Since these may become garbage,
we have the chance to compactify the global area and leave space for more global
PE variables and PE vectors. In addition, compaction of the global area makes more
space for the PE stack.

505

The following design decisions of T U P L E makes it simple to compactify the PE
global area.

- The words of PE local memories at the same address are used for the same pur-
pose. They may constitute a single PE variable, or they may constitute elements
of a PE vector with the same index.

- Each PE variable is referenced only via an ACU symbol cell. Thus if the ACU
symbol cell becomes garbage, the PE variable also becomes garbage. When a
PE variable is relocated, we need to replace only the pointer in the ACU cell.

- Each PE vector is also referenced only via a header cell in the ACU. Thus if the
header cell becomes garbage, the entire PE vector becomes garbage. When a PE
vector is relocated, we need to replace only the pointer in the ACU header cell.

In order to keep track of the ACU cell that points to each word in the PE global
area, T U P L E has a table of backward pointers, in the ACU memory. Note that the
size of the table is equal to the maximum size of the global area in each PE, which
is 512 words for the current implementation on the MasPar with 16 Kbytes of local
memory per PE. This size is negligible when compared with the total size of the
ACU data memory. Note also that the table need to be updated only during the
sweep phase and when a new global PE variables or PE vector is being defined. Thus
the maintenance of the table causes no run-time overhead.

As the result of compaction, the PE global area shrinks toward the lower address,
and there becomes an open space between the global area and the stack area. This
space is used as the stack area once control returns to the top-level of TUPLE. That
is, the pointer that indicates the bot tom of the stack is reset to the first free word
when the execution of the current top-level form is finished.

7.4 P e r f o r m a n c e M e a s u r e m e n t s

So far, we have not yet made enough experiments to measure the performance of
this garbage collection algorithm. However, our experiences indicates the garbage
collector of the current version is more than twice as fast as the garbage collector in
the first prototype version. This is quite satisfactory for the following reasons.

- The first version did not have the ACU heap. Thus there was no pointer from
the front-end to the ACU. In addition, the sweep phase did not need to take
care of the the ACU memory,

- The first version used the same structure of the PE stacks and the PE heaps, as
the current version.

- The first version used the same parallel algorithm for sweeping the PE heaps as
the current version. Thus the time for the sweep phase was shorter (since it did
not take care of the ACU memory) in the first version.

These facts suggest that the marking routine of the current version is much (not just
twice) faster than the sequential, non-buffering marking routine of the first version.

506

Acknowledgements

Takashi Okazawa implemented the back-end part of the prototype version of TU-
PLE. Yoshitaka Nagano and Katsumi Hatanaka have been implementing the current
version in cooperation with the author. Taichi Yasumoto designed and implemented
the mark phase parallel algorithm jointly with the author. Toshiro Kijima joined
the design of the parallel algorithm and gave many useful suggestions based on his
experiences of designing and implementing his extended C language for SIMD par-
allel computation. The project of TUPLE is supported partly by Sumitomo Metal
Industries., Ltd. and partly by Digital Equipment Corporation.

The author is grateful for valuable comments from the referees.

References

1. Okazawa, T.: Design and Implementation of a Common Lisp System Extended for Mas-
sively Parallel SIMD Computer. Master's thesis (in Japanese), Toyohashi Univ. of Tech.
(1992)

2. Padget, J.: Data-Parallel Symbolic Processing. Proceedings of the DPRI symposium,
Boston (1992)

3. Quinn, M.: Designing Efficient Algorithms for Parallel Computers. McGraw-Hill (1987)
4. Sabot G.: Introduction to Paralation Lisp. Technical Report PL87-1, Thinking Machines
- Corporation (1987)

5. Sabot G.: The Paralation Model: Architecture Independent Parallel Programming. MIT
Press (1988)

6. Steele, G.: Common Lisp the Language. Digital Press (1984)
7. Steele, G., Hillis, D.: Connection Machine Lisp: Fine-Grained Parallel Symbolic Pro-

cessing. Proc. 1986 ACM Conf. on Lisp and Functional Programming (1986)
8. Wholey, S., Steele, G.: Connection Machine Lisp: a dialect of Common Lisp for data

parallel programming. Proe. Second International Conf. on Supercomputing (1987)
9. Yuasa, T.: Design and Implementation of Kyoto Common Lisp. Journal of Information

Processing, Vol.13, No.3 (1990)
10. Yuasa, T.: TUPLE - An Extension of KCL for Massively Parallel SIMD Architecture

- Draft for the Second Edition. available from the author (1992)
11. Yuasa, T.: TUPLE: An Extended Common Lisp for Massively Parallel SIMD Archi-

tecture. Proceedings of the DPRI symposium, Boston (1992)
12. Connection Machine Lisp Reference Manual. Thinking Machines Corporation (1987)
13. Introduction to Data Level Parallelism. Technical Report PR86-14, Thinking Machines

Corporation (1986)
14. *Lisp Reference Manual. Thinking Machines Corporation (1988)
15. MasPar Parallel Application Language (MPL) User Guide. MasPar Computer Corpo-

ration (1991)

This article was processed using the LATEX macro package with LLNCS style

NREVERSAL of Fortune t
The Thermodynamics of Garbage Collection

Henry G. Baker

Nimble Computer Corporation
16231 Meadow Ridge Way
Encino, California 91436

U.S.A.
(818) 501-4956 (818) 986-1360 (FAX)

A b s t r a c t

The need to reverse a computation arises in many contexts---debugging, editor undoing,
optimistic concurrency undoing, speculative computation undoing, trace scheduling, exception
handling undoing, database recovery, optimistic discrete event simulations, subjunctive
computing, etc. The need to analyze a reversed computation arises in the context of static
analysis--liveness analysis, strictness analysis, type inference, etc. Traditional means for
restoring a computation to a previous state involve checkpoints; checkpoints require time to
copy, as well as space to store, the copied material. Traditional reverse abstract interpretation
produces relatively poor information due to its inability to guess the previous values of
assigned-to variables.

We propose an abstract computer model and a programming language--~I'-Lisp--whose
primitive operations are injective and hence reversible, thus allowing arbitrary undoing without
the overheads of checkpointing. Such a computer can be built from reversible conservative
logic circuits, with the serendipitous advantage of dissipating far less heat than traditional
Boolean AND/OR/NOT circuits. Unlike functional languages, which have one "state" for all
times, q-Lisp has at all times one "state", with unique predecessor and successor states.

Compiling into a reversible pseudocode can have benefits even when targeting a traditional
computer. Certain optimizations, e.g., update-in-place, and compile-time garbage collection
may be more easily performed, because the information may be elicited without the difficult and
time-consuming iterative abstract interpretation required for most non-reversible models.

In a reversible machine, garbage collection for recycling storage can always be performed by a
reversed (sub)computation. While this "collection is reversed mutation" insight does not reduce
space requirements when used for the computation as a whole, it does save space when used to
recycle at finer scales. This insight also provides an explanation for the fundamental importance
of the push-down stack both for recognizing palindromes and for managing storage.

Reversible computers are related to Prolog, linear logic and chemical abstract machines.

1Apologies to Alan Dershowitz.

508

Introduction

T h o s e b e h i n d c r i e d "Forward!"
A n d t h o s e b e f o r e c r i e d "Back!"
T.B. Macaulay, Lays of Ancient Rome--Horatius (1842)

A physics revolution is brewing in computer science because many of the abstract models
traditionally used have failed to provide deep insight into parallel and distributed computation.
Discrete-time serial automata cannot faithfully model a relativistic world in which
communication is more expensive than computation. Standard Boolean AND/OR/NOT logic
found in all modern computers generates too much heat for use in high-performance 3D logic
circuits. Parallel imperative programs have proved to be a nightmare to debug. Lattice-based
compile-time analysis has reached its limits, yet significant problems in "aliasing/sharing",
"strictness/laziness" and "resource estimation" remain.

Physicists, on the other hand, routinely decide deep questions about physical systems--e.g.,
they can talk intelligently about events that happened 15 billion years ago. Computer scientists
retort that computer programs are more complex than physical systems. If this is true, then
computer scientists should be embarrassed, considering the fact that computers and computer
software are "cultural" objects--they are purely a product of man's imagination, and may be
changed as quickly as a man can change his mind. Could God be a better hacker than man? 2

Computation has heretofor been based on writing metaphors, either the chalkboard metaphor--
e.g., the von Neumann model---or the pen-and-paper metaphor---e.g., the functional/logical
model, rather than the mechanical metaphor of physics. The use of writing metaphors is
curious, since a large fraction of computation is devoted to the simulation of physical systems!

The property that makes the writing metaphor so attractive is that reading has very little cost
compared with writing; something can be read many times without alteration, and this property
can be used to broadcast information for inexpensive reuse at a number of different times or
locations. This property allows physical simulations to be instrumented in discreet ways not
allowed by Heisenberg's principle.

Mechanical systems do not have the advantage of inexpensive copying, because mechanical
objects can be in only one place at one time--they are conserved. While information can be
recorded in an arrangement of mechanical objects and this arrangement can be copied into a
similar arrangement of similar objects, the expense of this copying can be calculated and may be
quite large. The mechanical metaphor would thus seem to be at a hopeless disadvantage
compared with the writing metaphor for general purpose computing.

We have enjoyed the advantages of cheap copying so long, however, that w e h a v e difficulty
perceiving its penalties. Its most apparent disadvantage is that software companies have a
difficult time getting paid for their software--a significant irrtafion, but not important enough to
dramatically change the future of computing. Illegal cloning, however, demonstrates a major
problem with cheap copying--which of the copies is the "real" one, and how can multiple

2E.g., none of the Ten Commandments is concerned with yon Neumann's Machine, nor does Moses mention
ever seeing yon Neumann on the mountain where the Commandments were obtained.

509

copies be kept consistent? "Object-oriented computing", a current major software trend, has at
its core an assumption of object ident#y, which is the ability of a software object to have an
identity which distinguishes it from other objects. In physical terms, the identity of an object
must be conserved, meaning that it has a particular location which is different from the locations
of other objects. According to Alan Kay [Kay77], it is no accident that object-oriented
programming began with the Simula language for (physical) simulation.

A major problem in the programming of software simulations is in assuring that the simulations
are faithful to the "real" system--i.e., whether the software model obeys the same conservation
laws as the "real" system. If the real system is a physical system, then the conservation laws
are the laws of physics---e.g., the conservation of mass, energy, etc., while if the real system is
an economic one, then the conservation laws are the laws of economics--e.g., the conservation
of money. Much of the complexity of modern software systems can be traced to these
requirements--e.g., file backup and recovery, transaction models, type systems (including
those for physical units), etc. For example, if one physically removes a physical file from a
physical filing cabinet, it no longer resides in the filing cabinet, so that there is no possibility of
conflict. The reading of a software file, on the other hand, does not remove the f'de, so we must
go to extra trouble to avoid conflicts with writers and other readers. In short, we must use an
lot of computing "machinery" to simulate an innately conservative "mechanical" system.

Current computer languages are based on ideas from 3 modelswthe von Neumann random-
access memory, Church's lambda calculus, and Boolean logic networks. The serial nature of
yon Neumann RAM's shows up in conditionals, goto's, and assignments; this model has been
attacked by advocates of the functional/applicative/logic languages based loosely on a write-once
policy, which allows for more parallel execution while preserving Church-Rosser determinism.
Boolean circuits can be claimed by both the functional/logical and the RAM communities,
depending upon whether they are purely combinational or have feedback. All of these models,
however, assume 1) that the duplication of information is free; and 2) that the destruction of
information is free) A RAM reads a cell many times between writes, knowing that the value
will always be that of the last write; the S combinator cheerfully copies; and Boolean circuit
models may allow indefinite fanout. A RAM write wipes out the previous memory contents; the
K combinator knowingly kills; and Boolean AND's and OR's are not invertible.

Physical circuits have never lived up to these ideals. Physical storage (cores, DRAM's) must
be refreshed, fan-out is limited and too much heat is generated. Yet the physical systems of
which real computers are composed do not have these problems. All microscopic physical
processes are inherently conservative, which means that in addition to conserving mass, energy,
momentum, etc., they also conserve information. The fundamental theorem of mechanics states
that "phase space is incompressible" [Penrose89], which means that two separate "states"
cannot converge, nor can a single state diverge. Of course, separate points which are initially
"close" in phase space may become widely dispersed; this behavior has been termed chaotic,
even though chaotic mechanical systems still conserve information. It is this theorem that
produces the limits on a Carnot heat engine, because for a Carnot engine to produce work, it
must somehow summarize the information which describes the randomness in a high

3The "garbage collector" can erase a "write-once" memory in functional systems without contradiction, because
file memory has previously become inaccessible.

510

temperature reservoir using a smaller amount of energy in the lower temperature reservoir. It is
not the excess heat energy that must be exhausted into the lower temperature reservoir, but the
excess information! Since the reliability of encoding this information is inversely proportional
to the temperature, one can encode this information using less energy only when the exhaust
temperature is lower. 4

Electrical engineers spend a great deal of their time modelling traditional non-conservative two-
state Boolean logic with reversible physical processes, which are most uncooperative. Thus,
one must switch hundreds or thousands of electrons, and give up hundreds or thousands of
"kT's" to make sure that a single bit is transmitted reliably. If we want to utilize these devices to
compute conservative computations, we must then spend hundreds or thousands of devices to
reliably simulate conservatism. In other words, we have given up factors of 106-109 in time
and/or energy dissipation for nothing! Yet functional/logic programming, database
programming and many other computations (e.g., FFT's) either are, or can readily be
reorganized to be, conservative! Biological informationprocessing, for example, dissipates far
less heat/information. The processes used to copy DNA and transcribe RNA are mostly
conservative, or else the heat dissipated during cell mitosis in an embryonic chicken would
produce a hard-boiled egg!

If heat dissipation were the only problem with traditional computer models, the hardware
circuits underlying individual functional units such as multipliers and caches could be re-
implemented using conservative logic and thereby eliminate 80-90% of the wasted heat. We
would then not need to change the abstraction seen by the programmer or compiler; after all,
computer engineers have been hiding the physical truth from programmers for over 50 years.

Yet it is actually at the highest levels of computer usage where the traditional computer models
are wearing the thinnest. One finds it very difficult to ensure that an accounting system
"conserves money", or to ensure that a sort program "conserves records", or that a file system
"preserves information". It is difficult to program a compiler to optimize the use of registers in
the face of arbitrary control structures, or for parallel process to automatically "back down"
during an optimistic concurrency control. Static analysis has failed to routinely produce
important information, such as that needed for "escape analysis", "strictness analysis" and
"aliasing/sharing analysis". For example, Milner's elegant type inference algorithm is routinely
used to statically decorate ML programs with type information, which is useful for partial
correctness, but type information produces at most an order of magnitude performance
improvement over a dynamically typed system. Milner's algorithm can also be used to produce
deeper structure sharing information [Baker90UC], but we conjecture that this usage will bring
out the algorithm's latent exponential behavior. In short, static analysis techniques can produce
interesting information only when their computational complexity is hopelessly exponential.

As a result of these considerations, we advocate the use of models of computation which have
more structure because they obey more laws and restrictions. Strongly typed and functional
systems are restrictive in their own way; we advocate restrictions which inherently conserve
information--i.e., copying is expensive, and information destruction is impossible. Since

4Black holes seem to "eat" information; perhaps black holes are the "cooling fans" for the Biosphere of the
universe.

511

information is conserved, these programs are reversible; reversibility becomes a property as
important as the determinacy guaranteed by the Church-Rosser theorem. Because deciding
reversibility for bulk computations is generally unsolvable, we guarantee it instead by
constructing computations from reversible primitives which are reversibly composed.

While many computations are. obviously reversible----e.g., FFT's--a skeptic might wonder how
often this is true. For example, a sorting algorithm apparently throws away at least nologn bits
of information in the process of sorting n records. However, if the input records are given
"serial numbers", then the original order can be retrieved by resorting on the serial numbers.
Since the concatenation of serial numbers tothe input records is conservative, we find that it is
the erasure of these serial numbers at the end of sorting that inhibits reversibility, and not the
sorting operation itself. The Newton iterative square root algorithm Xi+l=(Xi+N/xi)12
exemplifies a large class of computations in which the output appears to be independent of the
input, since the Newton iteration produces the square root independent of the initial
approximation. Nevertheless, if this algorithm is run a fixed number of iterations on infinite
precision rational numbers, and if x0_>sqrt(N), it is reversible! 5 Newton's iteration essentially
encodes the initial conditions into lower and lower order bits, until these bits become
insignificant. It is the erasure of these low order bits through rounding and/or truncation that
dissipates the information needed for reversibility. In a sense, Newton's iteration converges
only because Newton's inverted iteration produces chaos.

Many arithmetic operations such as increment and negate are invertible. Multiplication,
however, opens up the possibility of multiplying a number by zero and losing all information
about the number. In this instance, we must have a "multiplication by zero" exception which is
analogous to "division by zero". Although multiplication is mathematically commutative, we
need check only one argument for zero, because we will then know the other argument was zero
in the case of a zero product.

Time warp [Jefferson85] was the first general scheme for reversing an arbitrary distributed
computation. However, the primitive message-passing actors upon which time warp is based
are traditional state machines; therefore, they can only be "rolled back" if they have saved copies
of previous states. If, on the other hand, these primitive actors are all themselves reversible,
then most of the clutter can be removed from this elegant scheme.

It is no accident that there is a significant overlap between those working on garbage collection
and those working on "undoing" computations for purposes such as nondeterministic search,
debugging, backup/recovery and concurrency control. However, the approach previously taken
has been to utilize garbage collection to help manage the data structures used for "undoing".
Our approach is exactly the opposi te- -we propose usin~ "undoing" to oerform garbage
collection. In other words, the concept of reversibility is too important to be left to garbage
collection and storage management. Garbage collection by undoing is more powerful than
traditional garbage collection, because it can be used even for Actor systems in which the
garbage may be quite active and thus hard to catch [Baker77].

5Curiously, inverting Newton's square root iteration itself requires taking a square root. However, the inputs for
these roots will always be rational2Perfect squares if the initial forward approximation is rational. If the initial
approximation is chosen so that x 0 -N is not a perfect square, then reversal can use this property as its stopping
criterion, and the algorithm becomes reversible even without the requirement for a fixed number of iterations.

512

G a r b a g e C o l l e c t i o n

Garbage collection is a favorite topic of researchers; the number of published papers on this
topic approaches 1,000. Yet, the necessity for "garbage collection" in a symbolic processing
system has troubled researchers from the beginning. That the symbolic computations required
in Artificial Intelligence (AI) applications generate "garbage" which must be recycled, has long
been a fundamental assumption; AI applications tend to "hypothesize and test", so the structures
created during hypothesizing must somehow be recycled when the test is not successful.

Despite its apparent popularity, garbage collection has never been a subfield of computer science
in its own right, because it is always seen as a semantics-preserving transparent opfim&ation in
a programming language implementation. Since it is by definition "invisible" to the
programmer, the topic itself continues to be "swept under the rug". Unfortunately, the rug has
developed a huge mound beneath it, because we cannot characterize on theoretical grounds the
costs and benefits of various garbage collection algorithms, but must rely on relatively crude
and ad hoc measurements. For example, we have no theoretical model which can tell us that
"generational" garbage collection is inherently better than non-generational garbage collection,
even though a number of measurements seem to bear this out.

Whether a computational object is "garbage" or not depends upon one's point of view. From
the point of view of the computation itself--i.e., the "mutator"--a garbage object becomes
inaccessible and cannot influence the future course of the computation. From the point of view
of the systemw"mutator" plus "collector", however, the object is still accessible, and will be
reclaimed by the collector.

Since it is the mutator which "loses" objects, and the collector which "finds" them, we have
another characterization of the mutator/collector interaction. What do we mean by "losing an
object"? Clearly, the object is not completely lost, because the collector can find it; however,
the mutator has "lost track" of it. More precisely, the mutator destroys its information about
locating the object, and it is up to the collector to regenerate this information. Intuitively, the
mutator is a "randomizing" influence, while the collector is an "ordering" influence.
Interestingly enough, the mutator and the collector must both be either dissipative, or both
conservative; one cannot be dissipative while the other remains conservative. If the collector is
conservative and the mutator non-conservative, then the collector must somewhere dissipate the
information it computes about which objects are garbage, since it creates a free-list with zero
entropy/information. Similarly, if the rnutator is conservative, then it doesn't produce garbage,
and the collector is trivially conservative.

The efficiency of a generational garbage collector comes from its ability to recover storage
before the mutator dissipates the information~ It can do this because it can localize easily
recovered garbage to a small fraction of the address space. If the newest generation consists of
1/256'th of the cells, and if half of these cells are garbage, then the temperature of this
generation is the number of cells divided by the amount of information = (N/256)/(N/256) = 1 ~
The generational eollector will have an input "temperature" of =1 ~ and an exhaust "temperature"
of =0.5 ~ A non-generational collector collecting the same amount of garbage would have an
input "temperature" of-- (N)/(.0204N) = 49 ~ and an exhaust "temperature" of 511/512'th of
that. Thus, a generational collector would be operating at a temperature ratio of 2:1, while a

513

non-generational collector would be operating at a temperature ratio of 1.002:1. Since the
efficiency of a "Carnot" GC is proportional to the ratio of input to exhaust temperatures, it is
easy to see why the generational Ca2 is more efficient. (Of course, no reasonable system would
operate a non-generational collector with such a small temperature differential.) Thus, the
effectiveness of a generational collector depends upon reclaiming a higher fraction of cells than a
full GC--i.e., a "dying" cell is statistically more likely to be young than old. ff this is not true,
then generational GC will not be effective.

R e f e r e n c e C o u n t i n g a n d F u n c t i o n a l P r o g r a m m i n g

The lambda calculus and combinators can be implemented using reference counting to collect
"garbage", because these models do not require directed cycles. Many implementations do use
directed cycles, however, for "efficiency" in implementing the Y combinator used to express
recursion. However, even with these Y combinator loops, reference counting can still be used
to collect garbage, because the Y loops are well-structured [Peyton-Jones87].

Functional languages cannot "overwrite" a storage location, because assignment is prohibited.
This property has been called the "write-once" property of functional languages, and this
property is shared with "logic languages"--e.g., Prolog. Since storage is never overwritten,
the entire history of the computation is captured, and it would seem that we are very close to
Charles Bennett's original thermodynamically efficient Turing Machine [Bennett73], which kept
track on a separate tape of all of its actions. However, standard functional language
implementations do not preserve the information regarding which branches were taken.

Interestingly, functional language implementations depend upon garbage collection to implement
all of the optimizations which require "side-effects". For example, MLNJ [Appel90] does
frame allocation on the garbage-collected heap, so that all garbage normally recycled by "stack
allocation" is performed by the garbage collector. Furthermore, the use of shallow binding for
the implementation of functional arrays [Baker91SB] allows the garbage collector to perform the
in-place "assignment" normally expected in an imperative language implementation.

Since functional programming is a "good thing", and since reference counting is sufficient for
these languages, it would seem that little more can be said. However, evidence is starting to
mount that the lambda calculus and combinators, which are pure models of substitution and
copying, may not be the best models for the highest performance parallel computers. Although
one reason for this is that copying may be a very expensive operation for a physical computer,
the major reason for the current interest in models which perform less copying---e.g., "linear
logic"--is the fact that a system which copies in an unrestricted fashion also loses track of
things, and requires a garbage collector.

Conservative Automata and Reversible Computation

A number of researchers have been studying the ultimate limits to computation from a physical
perspective in order to guide engineers in designing high performance computers. In particular,
these researchers have attacked a major problem for these computers--the generation of heat.
As computers become faster and smaller, the removal of heat becomes a very difficult problem.
One of the limitations on the number of active devices on a chip, for example, is the ability of
the chip package to remove the heat fast enough to keep the chip from immolating itself.

514

It was long conjectured that heat was an essential byproduct of computation, but Bennett
obliterated this conjecture by demonstrating a thermodynamically reversible computer
[Bennett73]. Because it is thermodynamically reversible, any excess energy given off during
one portion of the computation would be reabsorbed during another portion of the computation,
leaving the entire computation energy and entropy neutral. Bennett's results show that
computation in and of itself does not generate waste heat, but any erasure of information must
necessarily generate waste heat.

Fredkin and his collaborators [Toffoli80] [Margolus88] are refining Bennett's work to show
models for reversible logic which could be used on a thermodynamically-efficient logic chip.
They have exhibited techniques for logic design using conservative logic, which conserves
entropy by remaining reversible. They go on to show physics-like conservation principles, as
well as logical analogues to energy, entropy and temperature.

We were intrigued by their simulation of traditional AND/OR/NOT Boolean logic circuits using
reversible logic. In this simulation, each of the traditional gates is mapped into a configuration
of reversible logic gates, but these gates have a number of "garbage" outputs, in addition to the
simulated outputs. Bennett's key idea in making the emulation reversible is to mirror the
mapped circuit with a reversed version of itself, with each "garbage output" being connected to
the mirror image wire thus becoming a "garbage input" for the reversed circuit. So far, we have
"much ado about nothing", since the output of the reversed computation is exactly the same as
the original input! However, we can put additional reversible gates in between the mapped
circuit and its reverse, which can "sense" the output to either affect some other computation, or
to copy the final answer. Thus, just as the reversible computer collects its garbage bits with a
reversed computationmafter suitably summarizing the computation's result, we will utilize a
reversed computation to recycle other kinds of resources---e.g., storage and processors.

Reversible Pointer Automata

A pointer automaton can be constructed from Fredkin's conservative logic using his universal
simulation for non-conservative logic [Barton78] [Ressler81]. This simulation is not the most
efficient use of logic or space, however. We describe a reversible pointer automaton which is a
better model for a conservative higher level language.

Our reversible pointer automata will retain the f'mite state control and pointer registers, but with
some restrictions. We need to make sure that each instructions can be "undone", and must
therefore retain enough information about the previous state. All of the instructions are
exchanges, conditional exchanges, and primitive arithmetic/logical operations.
Arithmetic/logical instructions only come in forms that are invertible; e.g., replace the pair of
registers which encode a double-precision integer dividend by an integer quotient and an integer
remainder, with no change in the case of a zero divisor. Since the double-precision dividend
can be reconstituted from the divisor, quotient and remainder, the instruction is invertible.

The following are primitive machine operations, where x,y,z denote distinct registers, x:y
denotes a double-precision "register" constructed from the concatenation of x and y, and
a,b,e denote distinct constants. Some operations have additional constraints which cause

515

them to "stick" in the same state. Arithmetic operations on "integers" are performed modulo 2 w,
where w is the word size.

x <-> y; exchange x and y.
x <-> CAR(y); exchange x and CAR(y).
x <-> CDR(y); exchange x and CDR(y).
y := CONS(x,y) & x := nil; push x onto y and set x to nil.
if x=nil then swap(y,z); conditional exchange operation.
inc(x,y), semantics: x:=x+y; inverse is dec(x,y).
dec(x,y), semantics: x:=x-y; inverse is inc(x,y).
minus(x), semantics: x:=-x; inverse is minus(x).
mpy(x,y,z), 0~_x<z, semantics: x:y:=y*z+x; inverse is div(x,y,z).
div(x,y,z), 0~.x<z, semantics: x:=(x:y) rood z II y:=((x:y)-((x:y) mod z))/z; inv. is mpy(x,y,z).
rot(x,c) rotates the bit pattern in x by c bits; inverse is rot(x,-c)=rot(x,w-c).
xor(x,y), x,y distinct registers, has the semantics x:=x xor y; inverse is xor(x,y).
reverse(x) reverses the bits in register x; inverse is reverse(x).
macro for push(rl,r2): {car(free)<->rl; r2<->edr(free); r2<->free;}
macro for pop(r2,rl):

if consp(r2) and null(rl) then {r2<->free; r2<->cdr(free); car(free)<->rl ;}
macro for push(r): {push(r,stack);}
macro for pop(r): {pop(stack,r);}

This machine language is carefully designed in such a way that all operations are invertible.
This property requires restrictions on the topology of the program flowchart. We can "test" a
value in a register, but the value must be preserved during, or restored after, the operations
depending upon the test, so that when the program is reversed, we can test it again to reverse
the appropriate ann of the conditional. Suitably structured programs can be statically checked
for proper topology. Suzuki has proved [Suzuki82] that under these conditions 1) all reference
counts are preserved, and 2) garbage cannot be created. Since all cons cells on the free list start
out with a unity reference count, they always have a unity reference count--i.e., we have a
Linear Lisp. Overall reversibility thus depends upon reversible primitives reversibly composed.

Programming Style

An operation P will have a "right" inverse when there exists an inverse operation P' which
undoes the first operation--i.e., PoP'=I (the identity). For example, coPY and EQUAL are
essentially inverses of one another, as are "destructuring bind" and "backquote". We may not
be able to execute P' in an arbitrary state, however, because it may have conditions on it which
cannot be satisfied. When P' is attempted in a situation in which its preconditions fail, we say
that P' sticks, without doing anything else. Unlike most models, we do not map sticking states
into an overall computational failure, because failure loses all information about what failed and
how it failed, which is the whole point of reversible computation used for debugging.

The strangeness of the reversible programming style is due mainly to our lack of experience
with it. Every subcomputation must be reversible, which means that no information is
destroyed within the subcomputation. Loops in which the number of iterations is a priori f'uted
are trivial to reverse; other loops may require a counter to remember the number of iterations.

The hardest part of inverting an iterative program is to arrange that the loop iterations themselves
preserve information. While a loop can always store its information in the form of a "trail"
(analogous to the Prolog "trail"), the amount of storage required may grow quite rapidly. ~ag

516

ability to summarize the information within a fixed number of "state variables" is the reversible
comouter's analggue to the "tail recursiQn optimization", which transforms recursive functional
programs into iterative imperative programs.

A reversible computer can utilize the following optimization for loops. Most loop tests rarely
succeed, and hence produce little "information"; they cannot be dispensed with, however, else
the loop would never terminate. On a reversible computer the loop body can be iteratively
doubled in size, and when it has exceeded the final value, the loop can be backed up to the
correct point. This scheme involves only O(logn) tests instead of O(n), but the non-test work
may double. As a result, it is useful only if the test is expensive relative to the body.

Input is handled by saving the input stream as in many other reversible and functional systems
[Barton78] [Jefferson85]. Output could conceivably be "taken back" when reversed, as in pure
Time Warp [Jefferson85], or saved until there is no further possibility of reversing, and then
output, as in standard Time Warp.

~F-Lisp m Reversible Linear Lisp 6

In a companion paper [Baker92LL], we introduced Linear Lisp, which is a variant of Lisp in
which every cons cell has a unity reference count. In this section, we introduce a variant of
Linear Lisp called v-Lisp which looks very much like traditional Lisp, but all of its programs
are reversible. The primitive operations of ~I'-Lisp are many of the operations discussed in
previous sections. We make extensive use of swapping operations, as they are self inverses.

Lambda-expressions in 't-Lisp appear identical to those in traditional Lisp; they have a "lambda-
list" of formal parameters, and a "body" consisting of a sequence of expressions. There are
differences, however. The lambda-expression is considered to have a single "argument" which
is a list "destructured" by the given lambda-list, in the manner of ML. All of the variable names
appearing in the lambda-list must be distinct, and any reference to a free variable inside a q-Lisp
lambda-expression is the only reference to the variable to avoid violations of Iinearity.

The interpretation of a 'e-Lisp lambda-expression is that the "variables" occurring in its lambda-
list are "new" local variables distinct from any other variables which are bound to the respective
portions of the argument list, and the cons cells from the argument list itself are returned to the
free list during destructuring. The binding of these new variables is reversible, since each is a
new variable which had no previous value, and the original argument list can be trivially
recovered from the values of the distinct variables. The body of the lambda-expression consists
of a list of V-Lisp expressions, each of which is individually reversible, and which can be
reversed by reversing the execution of each of the computations in the reversed list. Any
changes to the values of the lambda-list variables during the execution of the body will be
reversed during reversed execution, thus reconstituting their values.

It is an error if any lambda-list variable still has a value t.a.t_thr cn~l of the execution of the
lambda-expression body, because linearity promises that every variable will be accessed exact/y
once within the body, and any such access returns the variable to its unbound state. In other
words, ~ g u m e n t list to a lambda-expression is completely consumed dudne its evaluation:

6Ex~a credit problem for the reader: why is it called ~F-Lisp?

517

the list itself is consumed during binding, and each of the bound values is then consumed
during the execution of the body. This property, along with the other properties of 'e-Lisp,
allows us to conclude th~ t all of the information necessary for the reverse execution of the
lambda expression is encoded into its returned value(s). Similarly, it is an error if any
expression in the body---except for the last--returns a value; i.e., these expressions must all be
operations with only side-effects, but not values. Of course, these side-effects are all
completely local, since linearity forces each free variable to belong to only one closure; i.e., any
"local" variables of an enclosing lambda which are referenced by a subsidiary lambda closure
can no longer be accessed by the enclosing lambda.

A lot-expression evaluates an expression and destructures it to bind several new distinct
variables (destructuring means never having to say CAR or CDR again). The body of a l e t
expression is a sequence of expressions, in which only the last can return ~t value. Like a
lambda-expression, it is an error for a let-expression to terminate while its bound_variables still
have values. These rules allow the reverse execution of a let-expression in the same way they
allow the reverse execution of a lambda-expression.

Nested expressions have an interesting interpretation. In general, a particular variable may
"occur" only once. The values of sub-expressions are conceptually bound to new intermediate
variables, so we could have decomposed nested expressions into an equivalent nest of l e t -
expressions. The values of all of the intermediate variables are immediately consumed by the
expression in which they are nested, so that they satisfy the restrictions on let-expressions. A
nested expression is thus executed in a manner analogous to a dataflow architecture in which the
values ("tokens") flow through the variables ("wires") and into the application nodes
("operators"); a variable without a value is analogous to a wire without a token. Multiple
arguments may be evaluated in parallel [Baker92LL].

The most difficult and interesting case is that of the if-then-else expression. This expression has
4(!) sub-expressions--a Boolean test expression, a Boolean predicate, and two arms, a then-
arm and an else-arm. If we were to execute the test expression in the normal fashion, then any
arguments passed to it would be consumed, and it would be difficult to remember the direction
of the evaluation during execution reversal. Therefore, we will evaluate the test expression
somewhat differently from the expressions of the arms. We evaluate the test expression to
determine the direction of the execution, and then we undo the test expression to restore the
values o f any o f its variables before executing the appropriate arm. The variables referenced in
the test expression must be referenced again in both arms, since otherwise they would not be
consumed. During reverse execution, the Boolean predicate is applied to the value previously
returned bv the if-then-else expression t9 determine which arm to execute. In order to keep the
programmer honest, this predicate is also applied to the value to be returned, to make sure that it
returns true on the then arm, and false on the else arm. To allow for more traditional
programming styles, we allow this boolean predicate to push some state on a hidden conditional
"history" stack during forwards execution, which is popped during reverse execution to
remember the direction of the branch. Since only a single bit of information is being saved for a
conditional expression, and only by some conditional expressions, this bit stack can be
implemented very efficiently. A clever optimizing compiler may be able to sometimes deduce
the reverse predicate which doesn't use the bit stack; functions like these will operate with
bounded history stacks and are analogous to tail recursion.

518

Here is a reversible version of the factorial function restricted to n>0 so as to be injective; the
result is 1 if and only if the "then" arm was taken, which forces n= 1.

(defun fact (n) (assert (and (integerp n) (> n 0)))
(if (onep n) #'onep n (* n (fact (i-n)))))

Our interpretation so far is approximately consistent with an applicative/functional interpretation
of the lambda-expression. We now give another, more operational, interpretation. Parameters
are not passed by copy or by reference, but by "swap-in, swap-out" [Harms91]. When a
variable is referenced as an argument in an expression, it is swapped out of the variable and into
the argument list structure, so that a side-effect of computing the expression is to make all of the
referenced variables unbound! This is why a variable should not appear more than once in an
expression--succeeding occurrence will be unbound. Results are also returned by swapping,
so that when a lambda-expression terminates, none of its local variables have any values.

'e-Lisp ~.VAr. and APPLY look similar to their traditional Lisp counterparts, and their familiar
appearance masks their metacircular ability to run backwards. There are some notable
differences, however. Since EVAr. must be reversible given only its computed value(s), Evm~
returns 3 values: the expression, the environment and the computed value. Am~r.Y is more
symmetrical--it is given a function and an argument list, and returns the function and its
value(s). Since many functions return multiple values, we make Appr.Y completely
symmetrical--it consumes an argument list and returns a value list, which must be destructured
by its recipient. We utilize these additional returned values to eliminate the need for the
interpreter itself to save state, although the interpreted program itself may do so.

The code for a recursive function is incrementally copied during a recursive evaluation in a Y-
like manner. Unfortunately, all of these copies become available at the end of the recursion and
must be recycled. A more "efficient" scheme might keep multiple copies of the code on a
separate "free list", so that they wouldn't have to be created during recursion. Tail recursive
functions can not only reuse their stack frame, but their code, as well! Linear Lisp [Baker92LL]
utilizes a more efficient scheme (similar to "copy on write") for managing copies.

Time and Space Complexity for a Reversible Garbage Collector

If we make the reasonable assumption (for a machine with a single level RAM memory) that the
inverse execution of each instruction takes exactly the same amount of time as its forward
execution, then the total time required is exactly double that of the non-collected computation,
plus whatever time is required to copy the answer.

If the entire computation finishes before being reversed, then "garbage collection" has not
helped at all. One can reverse portions of the computation at freer scales, however, and achieve
significant storage savings. In this case, the "answer" which must be copied before the reversal
is initiated is the summary of the computation "so far". In other words, we must "save" this
intermediate state for later mutation (and reversal) at a larger scale. The saving of this
intermediate state is equivalent to traditional marking!

The value returned f~om a subprogram is a good example. The "answer" can be copied, and a
reversal initiated to collect any excess storage that the subprogram used, before the caller

519

resumes "forward" motion again. This reversal is equivalent to the popping of a classical stack
frame. In fact, our "collection is reverse mutation" hypothesis can simulate most standard
garbage collection optimizations.

Reverse Execution Paging

Researchers have found that garbage collection algorithms have much less reference loc',dity
than "normal" programs. Garbage collectors therefore page extensively, and many garbage
collection improvements are aimed more at reducing the paging/caching costs than in reducing
the number of instructions executed.

If we perform a "full" garbage collection, then every node and every link must be traced,
requiring that every page/cache line be visited even if it has not otherwise been touched or
modified since the last garbage collection. If we perform a "partial" garbage collection in a
generational system, then optimizations exist to avoid visiting otherwise untouched or
unmodified pages. On the other hand, even a generational garbage collector will have to spend
some time tracing in the pages recently referenced or modified by the mutator.

If one believes the "garbage collection by reverse mutation" hypothesis, then the collector must
visit the same pages/cache lines as the mutator, but does not bother with reversing a lot of
extraneous computation not involved with pointers. As a result, the collector will tend to page
"more heavily" than the forward computation, simply because the reverse of the operations not
causing page faults are irrelevant to the task of garbage collection! Thus, although it may not
visit any more pages than the forward computation, the collector appears to be less efficient,
because it has less to do on each page.

If we know that collection is the reverse of mutation, we may be able to use this information to
greatly improve the paging of the collector. We fh'st note that the last-in, first-out (LIFO)
behavior of a stack works extremely well with the least-recently-used (LRU) page replacement
algorithm; even very small stack caches have high hit rates with LRU. It is also well known
that the optimal paging algorithm (OPT) can be computed by submitting the reversed reference
stream to an LRU algorithm. But we have already submitted our mutator program to the LRU
algorithm during forwards execution, so we can compute the information necessary to utilize the
OPT paging algorithm during the reversed execution (collection) phase!

Thus, while our garbage collection by reversed mutation would seem to exactly double the
execution time of the mutator, we might reduce the collection time in the context of a paged
implementation by utilizing the additional information generated during forward execution, and
thereby achieve a running time only a fraction longer than an uncollected computation. 7

Implications for Real Hardware

The biggest problem with an exchange-oriented architecture is the fact that it goes squarely
against the grain of one of the most universally-held assumptions about computation--that
copying by reference is free. Conversely, exchanges are cheaper than copies, even though

7For example, the TI Explorer GC "learns" locality by letting the running program copy incrementally; this
scheme seems to provide locality superior to that from any uniform (depth-first or breadth-fin'st) copying strategy.

520

"everyone knows" that exchanges take 3 copies, and that exchanges on a bus require atomic
(i.e., slow) back-to-back bus cycles.

That exchanges are expensive seems to be an "artifact of traditional Boolean--i.e., irreversible--
logic. One can conceive of other types of logic in which the same connection could be used for
signalling in both directions simultaneously---e.g., optical fiber. In fact, since all suitably small
physical systems are reversible, it is actually more difficult to build irreversible/non-exchange
architectures out of small components than to build reversible/exchange architectures.

Interestingly enough, one can find a precedent for exchange architecture in current cache
consistency protocols for MIMD multiprocessors. In order to cut down on the bus/network
traffic in the case that multiple writers are active, some cache line may be owned by a particular
processor. If another processor attempts to write to this line, then the ownership of the line may
be transferred to the other processor, in which case the first processor no longer owns it. While
the information going in the direction opposite to that of moving cache line is essentially a
"hole", it is not difficult to conceive of a more productive exchange protocol which would allow
them to immediately synchronize, for example.

The restricted fan-in/fan-out of exchange architectures provides relief to the designer of a PRAM
implementation, because the unlimited fan-in/fan-out of a CRCW PRAM architecture
[Corman90] is very expensive to achieve.

W h a t M a k e s t he F r e e - L i s t F r e e ?

Joseph Halpern, et al. [Halpern84], asked the question "what makes the free-list free?" We
believe that their paper could not properly answer the question, because it is a thermodynamic
question, not a semantic question. Our answer is that the free-list is free because it is storage
that is in the highest state of avail'ability; in thermodynamic terms, it is work. What is work?
Carnot's theorem tells us that work (available energy) can be produced from heat
(energy+randomness), by removing the randomness into a cooler reservoir. The free-list
always has exactly the same configurationwa semi-infinite sequence of cells (list of nil's)--i.e.,
the structure of the free-list is isomorphic to co, the first infinite ordinal. Since 1+c0=o,
allocating a cell from the free-list does not change its structure. Since the structure of the free-
list is always the same, it has zero entropy/information. No other simple structure for the free-
list would have as tittle entropy/information.

C o n c l u s i o n s a n d P r e v i o u s W o r k

We have advocated the use of reversible models of computation, and we have shown how a
particular model can be programmed to perform interesting computations. The property of
reversibility is very strong, and should allow static analysis of programs to produce deeper
information than is typically feasible with non-reversible models.

Hoare's, Dijkstra's and Pratt's logics all consider the operation of a program in reverse,
although to our amazement, no one seems to have taken up the retrospectively obvious line of
attack we here propose, s Abstract interpretation and type inference often consider the retrograde

8Linearity, even without reversibility, elegantly eliminates the aliasing problem which gives these logics fits!

521

execution of a program. Computer architects find that the reverse of reference strings are an
important concept in the study of memory hierarchies; e.g., the optimal page replacement
algorithm is the least-recently-used algorithm running on the reversed reference siring.

Our ~t'-Lisp bears much resemblance to dataflow architectures. Its argument-consuming
property neatly finesses the storage recovery problems addressed by [Inoue88].

The Deutsch-Schorre-~/aite "pointer-reversing" list tracing algorithm :~'Xnuth73] is a paradigm
of reference-count-conserving programming. Binding tree "re-rooting" [Baker78b] is an even
more sophisticated reference-count-conserving algorithm. Suzuki [Suzuki82] gives the
fundamental properties of pointer exchange and rotate instructions, Common Lisp's rot at e f
operation comes directly from this paper.

The unwLnd-pro t :ee t and wind-unwJ.nd operations of Common Lisp and Scheme,
respectively, offer a form of "undoing" computation. In fact, some implementations of w•
unwind utilize the reversible "state space" tree re-rooting [Baker78SB].

The reverse execution abilities of Prolog were initially touted, but never developed, and modem
Prologs cannot run predicates backwards (this is not the same as backtracking!). Subjunctive
computing has been proposed as a valuable programming style [Zelkowitz73] [Nylin76]
[Lafora84] [Heering85] [Leeman85] [Leeman86] [Strothotte87]. An enormous literature has
developed around reversibility for debugging [Balzer69] [Grishman70] [Archer84] [LeBlanc87]
[Feldman88] [Pan88] [Wilson89] [Tolmach90] [Agrawal91].

Hofstadter devotes a portion of his Pulitzer prize-winning book [Hafstadter79] to palindromes
and "crab canons", which are musical pieces that simultaneously have same theme going in both
the forward and reverse directions. One can conceive of the mutator process as playing a
theme, while the collector process plays the retrograde theme.

Bill Gosper was an early investigator [Beeler72] into the power of the Digital Equipment
Corporation's PDP-10 v.xcr~ instruction, which we have appropriated for our reversible
computer. Swapping has been given new life as a fundamental synchronization primitive in
shared-memory multiprocessor architectures in the form of the "compare-and-swap" operation,
which Herlihy has proven to be powerful and universal [Herlihy91].

Acknowledgements

We appreciate the discussions with Peter Deutsch, Richard Fateman, Richard Fujimoto, Bill
Gosper, Robert Keller, Nori Suzuki, Tommaso Toffoli, and David Wise about these concepts.

References
Abadi, M. & Plotkin, G.D. "A Logical View of Composition and Refinement". Proc. ACM POPL 18 (Jan.

1991),323-332.
Agrawal, H. et al. "An Execution-Backtracking Approach to Debugging". 1EEE Software 8,3 (May 1991),21-26.
Appel, A.W. *Simple Generational Garbage Collection and Fast Allocation". Soft. Prac. & Exper. 19,2

(Feb. 1989), 171-183.
Appel, A.W. "A Runtime System". Lisp & Symbolic Comput. 3,4 (Nov. 1990),343-380.
Archer, J.E., et al. "User recovery and reversal in interactive systems". ACM TOPLAS 6,1 (Jan. 1984),1-19.
Bacon, David F., et al. "Optimistic Parallelization of Communicating Sequential Processes". Proc. 3rd ACM

Sigplan PPOPP, Williamsburg, VA, April, 1991,155-166.

522

Baker, H.G. "Shallow Binding in Lisp 1.5". CACM 21,7 (July 1978),565-569.
Baker, H.G. "Unify and Conquer (Garbage, Updating, Aliasing, ...) in Functional Languages". Proe. 1990 ACM

Conf. on Lisp and Functional Progr., June 1990,218-226.
Baker, H.G. "The Nimble Type Inferencer for Common Lisp-84". Submitted to ACM TOPLAS, 1990.
Baker, H.G. "CONS Should not CONS its Arguments, or, A Lazy AIIOC is a Smart Alloc". ACM Sigplan Not.

27,3 (March 1992),24-34.
Baker, H.G. "Equal Rights for Functional Objects". ACM OOPS Messenger, 1992, to appear.
Baker, H.G. "Cache-Conscious Copying Collectors". OOPSLA'91 GC Workshop, Oct. 1991.
Baker, H.G. "Lively Linear Lisp - - 'Look Ms, No Garbage!'". ACM Sigplan Not., 1992, to appear.
Balzer, R.M. "EXDAMS: Extendable Debugging and Monitoring System". Proc. AFIPS I969 SJCC 34, AFIPS

Press, Montvale, NJ,567-580.
Barghouti, N.S. & Kaiser, G.E. "Concurrency Control in Advanced Database Applications". ACM Comput.

Surv. 23,3 (SepL 1991),269-317.
Barth, J. "Shifting garbage collection overhead to compile time". CACM 20,7 (July 1977),513-518.
Barth, Paul S., et al. "M-Structures: Extending a Parallel, Non-strict, Functional Language with State". Proc.

Funct. Progr. Langs. & Computer Arch., LNCS 523, Springer-Verlag, Aug. 1991,538-568.
Barton, Ed. Conservative Logic. 6.895 Term Paper, MIT, May, 1978.
Bawden, Alan. "Connection Graphs". Proe. ACM Conf. Lisp & Funct. Progr., Camb., MA, Aug. 1986.
Beeler, M., Gosper, R.W, and Schroeppel, R. "HAKMEM". AI Memo 239, MIT AI Lab., Feb. 1972.

Important items: 102, 103, 104, 149, 150, 161, 166, 172.
Benioff, Paul. "Quantum Mechanical Hamiltonian Models of Discrete Processes that Erase Their Own Histories:

Application to "luring Machines". lnt'L J. Theor. Phys. 21 (1982),177-201.
Bennett, Charles. "Logical Reversibility of Computation". IBM J. Res. Develop. 6 (1973),525-532.
Bennett, Charles. "Thermodynamics of Computation". lnt'L J. Theor. Phys. 21 (1982),905-940.
Bennett, Charles. "Notes on the History of Reversible Computation". IBM J. Res. Develop. 32,1 (1988),16-23.
Bennett, Charles. "Time/Spaca Trade-offs for Reversible Computation". SlAM J. Computing I8,4 (Aug. 1989).
Berry, G., and Boudol, O. "The Chemical Abstract Machine". ACM POPL 17, San Francisco, CA, Jan. 1990.
Chase, David. "Garbage Collection and Other Optimizations". PhD Thesis, Rice U., Nov. 1987.
Chert, W., and Udding, J.T. "Program Inversion: More than Fun!". Sci. of Computer Progr. 15 (1990),1-13.
Chen, W. "A formal approach to program inversion". Proc. ACM 18th Comp. 8ci. Conf., Feb., 1990,398-403.
Cheney, CJ. "A Nonrecursive List Compacting Algorithm". CACM 13,11 (Nov. 1970),677-678.
Clarke, E.M. "Synthesis of resource invariants for concurrent programs". ACM TOPLAS 2,3 (July 1980).
Cohen, Jacques. "Non-Deterministic Algorithms". Comput. Surveys 11,2 (June 1979),79-94.
Corman, T.H., et al. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.
Cousot, P., and Cousot, R. "Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints". Proc. ACM POPL 4 (1977),238-252.
Coveney, P.V. &Marcer, PJ. "Irreversibility and computation". Specs. in Sci. & Tech. 14,1 (1991?),51-55.
Deutsch, D. "Quantum Theory, the Church-Turing Hypothesis, and Universal Quantum Computers". Proc. Roy.

8oc. (1985).
Dijks~a, E.W. A Discipline of Programming. Prentiea-Ha11, Englewood Cliffs, NJ, 1976.
Dobkin, D.P., and Munro, J.I. "Efficient Uses of the Past". Proe. ACM FOCS 21 (1980),200-206.
Drescher, G.L. "Demystifying Quantum Mechanics: A Simple Universe with Quantum Uncertainty". Complex

Sys. 5 (1991),207-237.
Feldman, S., and Brown, C. "IGOR: A System for Program Debugging via Reversible Execution". Proc.

Sigplan/Sigops WS on Parl & Distr. Debugging, May 1988,112-123.
Feynman, Richard P., et al. The Feynman Lectures on Physics, Vol. L Addison-Wesley, Reading, MA, 1963.
Feynman, Richard P. "Quantum Mechanical Computers". Founds. of Physics 16,6 (1986),507-531.
Fisher, J. "Trace scheduling: A technique for global microcode compaction". IEEE Tr.. Comps. C-30,7

(July 1981),478-490.
Floyd, R.W. "Noodeterministic Algorithms". J. ACM 14,4 (Oct. 1967),636-644.
Fredkin, E., and Toffoli, T. "Conservative Logic". Int'l. J. Theor. Physics 21,3/4 (1982),219-253.
Girard, J.-Y. "Linear Logic". Theoretical Computer Sci. 50 (1987),1-102.
Grishman, R. "The debugging system AIDS". AFIPS 1970 SJCC 41, AFIPS Press, Montvale, NJ 1193-1202.
Halpern, J.Y., et al. "The Semantics of Local Storage, or What Makes the Free-List Free?". ACM POPL 11,

1984,245-257.
Harel, David. First Order Dynamic Logic. Springer-Vexlag LNCS 68, 1979.

523

Harms, D.E., and Weide, B.W. "Copying and Swapping: Influences on the Design of Reusable Software
Components". IEEE Trans. SW Engrg. 17,5 (May 1991),424-435.

Harrison, P.G. "Function Inversion". In Jones, N., et al, eds. Prec. Workshop on Partial Evaluation and Mixed
Computation, Gammel Avernaes, Denmark, Oct. 1987, North-HoUand, 1988.

Hederman, Lucy. "Compile Time Garbage Collection". MS Thesis, Rice U. Comp. Sci. Dept., Sept. 1988.
Heering, J., and Klint, P. "Towards monolingual programming environments". ACM TOPLAS 7,2

(April 1985),183-213.
Herlihy, Maurice. "Wait-Free Synchronization". ACM TOPLAS 11,1 (Jan. 1991),124-149.
Hofstadter, Douglas R. Gtdel, Escher, Bach: an Eternal Golden Braia. Vintage Bks., Random House,/flY, 1979.
Inoue, K., et al. "Analysis of functional programs to detect run-time garbage cells". ACM TOPLAS 10,4

(Oct. 1988),555-578.
Johnsson, T. "Lambda lifting: transforming programs to recurs.;ve equations". Prec. FPCA, Nancy, France,

Springer LNCS 201, 1985,190-203.
Kay, A.C. "Microelectronics and the Personal Computer". ScL Amer. 237,3 (Sept. 1977),230-244.
Keller, Robert M., et al. "An Architecture for a Loosely-Coupled Parallel Processor". Tech. Rep. UUCS-78-105,

Oct. 1978,50p.
Kieburtz, Richard B. "Programming without pointer variables". Prec. Conf. on Data: Abstraction, Definition and

Structure, Sigplan Not. 11 (special issue 1976),95-107.
Kieburtz, R. B. "The G-machine: a fast, graph-reduction evaluator'. Prec. IFIP FPCA, Nancy, France, 1985.
Kieburtz, Richard B. "A RISC Architecture for Symbolic Computation". Prec. ASPLOS II, Sigplan Not. 22,10

(Oct. 1987),146-155.
Korth, H.F., et al. "Formal approach to recovery by compensating transactions". Prec. 16th IntZ Conf. on Very

Large Databases, 1990.
Kung, H.T. & Robinson, J.T. "On optimistic methods for concurrency control". ACM Trans. on DB Sys. 6,2

(June 1981.).
Jefferson, David R. "Virtual Time". ACM TOPLAS 7,3 (July 1985),404-425.
Lafont, Yves. "The Linear Abstract Machine". Theor. Computer Sci. 59 (198g),157-1g0.
Lafont, Yves. "Interaction Nets". ACM POPL 17, San Franciso, CA, Jan. 1990,95-108.
Lafont, Yves. "The Paradigm of Interaction (Short Version)". Unpubl. manuscript, July 12, 1991, 18p.
Lafora, F, & Sofia, M.L. "Reverse Execution in a Generalized Control Regime". Comp. Lang. 9,314 (1984),

183-192.
Landauer, R. "Dissipation and Noise Immunity in Computation and Communication". Nature 335

(Oct. 1988),779-784.
LeBlanc, T.J., and Mellor-Crummey, J.M. "Debugging parallel programs with Instant Replay". IEEE Tr. Comp.

36,4 (April 1987),471-482.
Leeman, G.B. "Building undo/redo operations into the C language". Prec. IEEE 15th Annual Int'l. Syrup. on

Fault-Tolerant Computing, 1985,410-415.
Leeman, G.B. "A Formal Approach to Undo Operations in Programming Languages". ACM TOPLAS 8,1 (Jan.

1986),50-87.
Levy, E., et al. "An Optimistic Commit Protocol for Distributed T, ansaction Management". Prec. ACM

SIGMOD, Denver, CO, May 1991,88-97.
Lewis, H.R., & Papadimitriou, C.H. "Symmetric Space-bounded Computation". Theor. Comp. Sci. 19

(1982),161-187.
Lieberman, H., & Hewitt, C. "A Real-Time Garbage Collector Based on the Lifetimes of Objects". CACM 26, 6

(June 1983),419-429.
Lindstrom, Gary. "Efficiency in Nondeterministic Control through Non-Forgetful Backtracking'. Tech. Rep.

UUCS-77-114, Oct. 1977,18p.
MacLennan, B.L "Values and Objects in Programming Languages". Sigplan Not. 17,12 (Dec. 1982),70-79.
Manthey, M.J., & Moret, B.M.E. "The Computational Metaphor and Quantum Physics". CACM 26,2

(Feb. 1983),137-145.
Margolus, Norman. "Physics-Like Models of Computation". Elsevier North-Holland, Physica IOD (1984),81-95.
Margolus, Norman H. Physics and Computation. Ph.D. Thesis, MIT/LCS/TR-415, March 19g$,188p.
Mattson, R.L., et al. "Evaluation Techniques for Storage Hierarchies". IBM Sys. J. 9,2 (1970),78-117.
McCarthy, John. "The Inversion of Functions defined by Turing Machines". In Shannon, C.E., and McCarthy,

L, eds. Automata Studies, Princeton, 1956,177-181.
McDowell, C.E. & Helmbold, D.P. "Debugging concurrent programs". ACM Comput. Surv. 21,4

(Dec. 1989),593-622.

524

Miller, B.P. & Choi, J.-D. "A mechanism for efficient debugging of parallel programs". Proc. ACM PLDI,
1988,135-144.

Morita, K. "A Simple Construction Method of a Reversible Finite Automaton out of Fredkin Gates, and its
Relatea Problem". Trans. IEICE E 73, 6 (1990),978-984.

Nylin, W.C.Jr., and Harvill, J.B. "Multiple Tense Computer Programming". Sigplan Not. 11,12
(Dee. 1976),74-93.

Pan, D2., and Linton, M.A. "Supporting reverse execution of parallel programs". Proc. ACM SigplanlSigops
WS on Par. & Distr. Debugging, May 1988,112-123.

Penrose, R. The Emperor's New Mind: Concerning Computers, i~;~nds, and the Laws of Physics. Penguin Bks,
London, 1989.

Peyton-Jones, S.L. Th e Implementation of Functional Programming Languages. Prentice-Hall, NY, 1987.
Planck, Max. Treatise on Thermodynamics. Transl. Ogg, A., Dover Publ., NY, 1945.
Ressler, A.L. The Design of a Conservative Logic Computer and a Graphical Editor Simulator. M.S. Th., MIT,

1981, 128p.
de Roever, Willem P. "On Backtracking and Greatest Fixpoints". In Neuhold, Erich J., Ed. Formal Description

of Programming Concepts, North-Holland, Amsterdam, 1978.
Romanenko, Alexander. "Inversion and Metacomputation". ACM PEPM'91, New Haven, CT, June 1991,12-22.
Rosenschein, Stanley J. "Plan Synthesis: A Logical Perspective". Proc. IJCAI-81, Vancouver, Canada, Aug.

1981, 331-337.
Ruggieri, C. & Murtagh, T. P. "Lifetime analysis of dynamically allocated objects". ACM POPL '88,285-293.
Schorr, H., & Waite, W.M. "An efficient machine-independent procedure for garbage collection in various list

structures". CACM 10,8 (Aug. 1967),501-506.
Shoman, Y., and McDermott, D.V. "Directed Relations and Inversion of Prolog Programs". Proc. Conf. of 5th

Gen. Comp. Sys., ICOT, 1984.
Sleator, D.D. & Tarjan, R.E. "Amortized Efficiency of List Update and Paging Rules". CACM 28,2 (Feb.

1985),202-208.
Smith, J.M., and Maguire, G.Q., Jr. "Transparent concurrent execution of mutually exclusive alternatives', Proc.

9th lnt'l. Conf. on Distr. Computer Sys., Newport Bch., CA, June 1989.
Strom, R.E., et al. "A recoverable object store". IBM Watson Research Cir., 1988.
Strothotte, T.W., and Cormack, G.V. "Structured Program Lookahead'. Comput. Lang. 12,2 (1987),95-108.
Suzuki, N. "Analysis of Pointer ~Rotation'". CACM 25,5 (May 1982)330-335.
Toffoli, T. "Reversible Computing". MIT/LCS/TM-151, Feb. I980, 36p.
Toffoli, T. "Reversible Computing". In De Bakker & van Leeuwen, eds. Automata, Languages and

Programming, Springer-Verlag (1980),632-644.
Toffoli, T. "Bicontinuous Extensions of Invertible Combinatorial Functions". Math. Sys. Theor. 14

(1981),13-23.
Toffoli, T. "Physics and Computation". lnt'l. J. Theor. Phys. 21, 3/4 (1982),165-175.
Tolmach, A.P., and Appel, A.W. "Debugging Standard ML without Reverse Engineering". Proc. ACM Lisp &

Funct. Progr. Conf., Nice, France, June 1990,1-12.
Turner, D. "A New Implementation Technique for Applicative Langurges". SW.--Pract.&Exper. 9 (1979),31-49.
Vitter, J.S. "US&R: a new framework for redoing". ACM Syrup. on Pract. SW Dev. Envs., Pitts., PA, April

1984,168-176.
Wadler, P. "Views: A way for pattern matching to cohabit with data abstraction'. ACM POPL 14

(1987),307-313.
Wadler, P. "Is there a use for linear logic?". Proc. ACM PEPM'91, New Haven, June, 1991,255-273.
Wakeling, D. & Runciman, C. "Linearity and Laziness". Proc. Funct. Progr. & Comp. Arch., Springer LNCS

523, 1991,215-240.
Wilson, P.R. & Moher, T.G. "Demonic memory for process histories". Proc. Sigplan PLDI, June 1989.
Zelkowitz, M.V. "Keversible Execution". CACM 16,9 (Sept. 1973),566-566.
Zurek, W.H., ed. Complexity, Entropy and the, Physics of Information. Addison-Wesley, Redwood City, 1990.

Author Index

Abduliahi , Saleh E . 43

Agha, GUl . 134
Baker, Henry G . 507
Bekkers, Yves . 82
Ber thomieu, Bernard 179

Cha~loux, Emmanue l 218
Delacour, Vincent . 426
Demoen, Bar t . 454
Duvvuru, Sreeram . 264
Edelson, Daniel R . 299
Haines, Nicholas . 357
Hansen, Lars . 264
Hayes, Barry . 277

Heck, Brian C . 248
Hudson, Richard L 388

Jul, Eric . 103

Juul, Niels Chris t ian 103

Kolodner, Elliot K . 365
Lain, Michael S . 404

Langendoen, Koen G 165
Le Sergent, Thier ry 179
Mateu, Luis . 230
Merrall, Simon C . 4?3

Miranda, Eliot E . 43

Moher, T h o m a s G . 404

Moss, J. Eliot B . 388

Muller, Henk L . 165

Nett les, Scot t . 357

O'Toole, James . 35?
Padget , Julian A . 473
Pierce, David . 357
Pique, Jean-Fran~ols 330

Plainfosse, David . 116
Puaut , Isabelle . 148
Ridoux, Olivier . 82
Ringwood, Graem A 43
R6jemo, Nildas . 440
Samples, A. Dain . 315

Sa~try, A.V.S . 264
Seward, Julian . 200

Shapiro, Marc . 116

Sundaraxajan, Renga 264

Talcot t , Carolyn . 134

Tarau, Paul . 344

Tick, Evan . 264
Ungaxo, Lucien . 82
Venka tasubramanian , Naliul 134

Vree, Wire G . 165
Weemeeuw, Patr ick 454

Weilfl, William E . 3fi5

Wilson, Paul 1t . 1, 404

Wise, David S . 248

Yuasa, Taiichi . 490

Zhong, Xiaoxing . 2fi4

Lecture Notes in Computer Science
For information about Vols. 1-549
please contact your bookseller or Springer-Verlag

Vol. 550: A. van Lamsweerde, A. Fugetta (Eds.), ESEC '91.
Proceedings, 1991. XII, 515 pages. 1991.

Vol. 55hS. Prehn, W. J. Toetenel (Eds.), VDM '91. Formal
Software Development Methods. Volume 1. Proceedings, i991,
XIII, 699 pages. 1991.

Vol. 552: S. Prehn, W. J. Toetenel (Eds.), VDM '91. Formal
Software Development Methods. Volume 2. Proceedings, 1991.
XIV, 430 pages. 1991.

Vol. 553: H. Bieri, H. Noltemeier (Eds.), Computational Ge-
ometry - Methods, Algorithms and Applications '91. Proceed-
ings, 1991. VIII, 320 pages. 1991.

Vol. 554: G. Grahne, The Problem of Incomplete Information
in Relational Databases. VIII, 156 pages. 1991.

Vol. 555: H. Manrer (Ed.), New Results and New Trends in
Computer Science. Proceedings, 1991. VIII, 403 pages. 1991.

Vol. 556: J.-M. Jacquet, Conclog: A Methodological Approach
to Concurrent Logic programming. XII, 781 pages. 1991.

Vol. 557: W. L. Hsu, R. C. T. Lee (Eds.), ISA '91 Algorithms.
Proceedings, 1991. X, 396 pages. 1991.

Vol. 558: J. Hooman, Specification and Compositional Verifi-
cation of Real-Time Systems. VIII, 235 pages. 1991.

Vol. 559: G. Butler, Fundamental Algorithms for Permutation
Groups. XII, 238 pages. 1991.

Voi. 560: S. Biswas, K. V. Nori (Eds.), Foundations of Soft-
ware Technology and Theoretical Computer Science. Proceed-
ings, 1991. X, 420 pages. 1991.

Vol. 561 : C. Ding, G. Xiao, W. Shan, The Stability Theory of
Stream Ciphers. IX, 187 pages. 1991.

Vol. 562: R. Breu, Algebraic Specification Techniques in Ob-
ject Oriented Programming Environments. XI, 228 pages. 199 i.

Vol. 563: A. Karshmer, J. Nehmer (Eds.), Operating Systems
of the 90s and Beyond. Proceedings, 1991. X, 285 pages. 1991.

Vol. 564: I. Herman, The Use of Projective Geometry in Com-
puter Graphics. VIII, 146 pages. 1992.

Vol. 565: J. D. Becker, I. Eisele, F. W. Mtindemann (Eds.), Par-
allelism, Learning, Evolution. Proceedings, 1989. VIII, 525
pages. 1991. (Subseries LNAI).

Vol. 566: C. Delobel, M. Kifer, Y. Masunaga (Eds.), Deductive
and Object-Oriented Databases. Proceedings, 1991. XV, 581
pages. 1991.

Vol. 567: H. Boley, M. M. Richter (Eds.), Processing Declara-
tive Kowledge. Proceedings, 1991. XII, 427 pages. 1991.
(Subseries LNAI).

Vol. 568: H.-J. Btirckert, A Resolution Principle for a Logic
with Restricted Quantifiers. X, 116 pages. 1991. (Subseries
LNAI).

Vol. 569: A. Beaumont, G. Gupta (Eds.), Parallel Execution of
Logic Programs. Proceedings, 1991. VII, 195 pages. 199t.

Vol. 570: R. Berghammer, G. Schmidt (Eds.), Graph-Theoretic
Concepts in Computer Science. Proceedings, 1991. VIII, 253
pages. 1992.

Vol. 571: J. Vytopil (Ed.), Formal Techniques in Real-Time
and Fault-Tolerant Systems. Proceedings, 1992. IX, 620 pages.
1991.

Vol. 572: K. U. Schulz (Ed.), Word Equations and Related Top-
ics. Proceedings, 1990. VII, 256 pages. 1992.

Vol. 573: G. Cohen, S. N. Litsyn, A. Lobstein, G. Zrmor (Eds.),
Algebraic Coding. Proceedings, 1991. X, 158 pages. 1992.

Vol. 574: J. P. Ban~tre, D. Le Mrtayer (Eds.), Research Direc-
tions in High-Level Parallel Programming Languages. Proceed-
ings, 1991. VIII, 387 pages. 1992.

Vol. 575: K. G. Larsen, A. Skou (Eds.), Computer Aided Veri-
fication. Proceedings, 1991. X, 487 pages. 1992.

Vol. 576: J. Feigenbaum (Ed.), Advances in Cryptology -
CRYPTO '91. Proceedings. X, 485 pages. 1992.

Vol. 577: A. Finkel, M. Jantzen (Eds.), STACS 92. Proceed-
ings, 1992. XIV, 621 pages. 1992.

Vol. 578: Th. Beth, M. Frisch, G. J. Simmons (Eds.), Public-
Key Cryptography: State of the Art and Future Directions. XI,
97 pages. 1992.

Vol. 579: S. Toueg, P. G. Spirakis, L. Kirousis (Eds.), Distrib-
uted Algorithms. Proceedings, 199 I. X, 319 pages. 1992.

Vol. 580: A. Pirotte, C. Delobel, G. Gottlob (Eds.), Advances
in Database Technology - EDBT '92. Proceedings. XII, 551
pages. 1992.

VoI. 58 h J.-C. Raoult (Ed.), CAAP '92. Proceedings. VIII, 361
pages. 1992.

Vol. 582: B. Krieg-Brfickner (Ed.), ESOP '92. Proceedings. VIII,
491 pages. 1992.

Vol. 583: I. Simon (Ed.), LATIN '92. Proceedings. IX, 545 pages.
1992.

Vol. 584: R. E. Zippel (Ed.), Computer Algebra and Parallel-
ism. Proceedings, 1990. IX, 114 pages. 1992.

Vol. 585: F. Pichler, R. Moreno Dfaz (Eds.), Computer Aided
System Theory - EUROCAST '91. Proceedings. X, 761 pages.
1992.

Vol. 586: A. Cheese, Parallel Execution of Parlog. IX, 184 pages.
1992.

Vol. 587: R. Dale, E. Hovy, D. R~sner, O. Stock (Eds.), As-
pects of Automated Natural Language Generation. Proceedings,
1992. VIII, 311 pages. 1992. (Subsefies LNAI).

Vol. 588: G. Sandini (Ed.), Computer Vision - ECCV '92. Pro-
ceedings. XV, 909 pages. 1992.

Vol. 589: U. Banerjee, D. Gelernter, A. Nicolan, D. Padua (Eds.),
Languages and Compilers for Parallel Computing. Proceedings,
1991. IX, 419 pages. 1992.

Vol. 590: B. Fronhrfer, G. Wrightson (Eds.), Parallelization in
Inference Systems. Proceedings, 1990. VIII, 372 pages. 1992.
(Subseries LNAI).

Vol. 591: H. P. Zima (Ed.), Parallel Computation. Proceedings,
1991. IX, 451 pages. 1992.

Vol. 592: A. Voronkov (Ed.), Logic Programming. Proceed-
ings, 1991. IX, 514 pages, 1992. (Subseries LNAI).

Vol. 593: P. Loucopoulos (Ed.), Advanced Information Sys-
tems Engineering. Proceedings. XI, 650 pages. 1992.

Vol. 594: B. Monien, Th, Ottmann (Eds.), Data Structures and
Efficient Algorithms. VIII, 389 pages. 1992.

Vok 595: M, Levene, The Nested Universal Relation Database
Model. X, 177 pages. 1992.

Vol. 596: L.-H. Eriksson, L. Halln~is, P. Schroeder-Heister
(Eds.), Extensions of Logic Programming. Proceedings, 1991.
VII, 369 pages. 1992. (Subseries LNA[).

Vol. 597: H. W. Guesgen, J. Hertzberg, A Perspective of Con-
straint-Based Reasoning. VIII, I23 pages. 1992, (Subseries
LNAI).

VoI. 598: S. Brookes, M. Main, A. Melton, M. Mislove, D.
Schmidt (Eds.), Mathematical Foundations of Programming
Semantics. Proceedings, 1991. VIII, 506 pages, 1992.

Vol. 599: Th. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M.
Linster, F. Schmalhofer (Eds.), Current Developments in
Knowledge Acquisition - EKAW '92. Proceedings. XIII, 444
pages. I992. (Subseries LNAI).

Vol. 600: J. W. de Bakker, C. Huizing, W. P. de Roever, G.
Rozenberg (Eds.), Real-Time: Theory in Practice. Proceedings,
1991. VIII, 723 pages. 1992.

Vol. 601: D, Dolev, Z. Galil, M. Rodeh (Eds.), Theory of Com-
puting and Systems. Proceedings, 1992. VIII, 220 pages. 1992.

Voi. 602: I. Tomek (Ed.), Computer Assisted Learning. Pro-
ceedings, 1992. X, 615 pages. 1992.

Vol. 603: J. van Katwijk (Ed.), Ado: Moving Towards 2000.
Proceedings, 1992. Viii, 324 pages. 1992.

VoL 604: F. Belli, F.-J. Radermacher (Eds.), Industrial and
Engineering Applications of Artificial Intelligence and Expert
Systems. Proceedings, 1992. XV, 702 pages. 1992. (Subseries
LNAI).

Vol. 605: D. Etiemble, J.-C. Syre (Eds.), PARLE '92. Parallel
Architectures and Languages Europe. Proceedings, 1992. XVII,
984 pages. 1992.

Vol. 606: D. E. Knuth, Axioms and Hulls. IX, 109 pages. 1992.

Vol. 607: D. Kapur (Ed.), Automated Deduction - CADE-I 1.
Proceedings, 1992. XV, 793 pages. 1992, (Subseries LNAI).

Vol. 608: C. Frasson, G. Gauthier, G. I. McCalla (Eds.), Intelli-
gent Tutoring Systems. Proceedings, 1992. XIV, 686 pages.
1992.

Vol. 609: G. Rozenberg (Ed.), Advances in Petri Nets 1992.
VIII, 472 pages. 1992.

Vol. 610: F, yon Martial, Coordinating Plans of Autonomous
Agents. XIL 246 pages. 1992. (Subseries LNAI).

Vol. 611: M. P. Papazoglou, J. Zeleznikow (Eds.), The Next
Generation of Information Systems: From Data to Knowledge.
VIII, 310 pages. 1992. (Subseries LNAI).

Vol. 612: M. Tokoro, O. Nierstrasz, P. Wegner (Eds.), Object-
Based Concurrent Computing. Proceedings, 1991. X, 265 pages.
1992.

Vol. 613: J. P. Myers, Jr., M, J. O'Donnell (Eds.), Constructivity
in Computer Science. Proceedings, 1991. X, 247 pages. 1992.

Vol. 614: R. G. Herrtwich (Ed.), Network and Operating Sys-
tem Support for Digital Audio and Video. Proceedings, 1991.
XII, 403 pages. 1992.

Vol. 615: O. Lehrmann Madsen (Ed.), ECOOP '92. European
Conference on Object Oriented Programming. Proceedings. X,
426 pages. 1992.

Vol. 616: K. Jensen (Ed.), Application and Theory of Petri Nets
1992. Proceedings, 1992. VIII, 398 pages. 1992.

Vol, 617: V. Ma~fk, O. Stgp~inkowl, R. Trappl (Eds.), Advanced
Topics in Artificial Intelligence, Proceedings, 1992, IX, 484
pages. 1992. (Suhseries LNAI).

Voi. 618: P. M. D. Gray, R. J. Lucas (Eds.), Advanced Database
Systems. Proceedings, 1992. X, 260 pages. 1992.

Vol. 619: D. Pearce, H. Wansing (Eds.), Nonclassical Logics
and Information Proceedings. Proceedings, 1990. VII, 171 pages.
1992. (Subseries LNAI).

Vol. 620: A, Nerode, M. Taitslin (Eds.), Logical Foundations of
Computer Science - Tver '92. Proceedings. IX, 5 I4 pages. 1992.

Vol. 621: O. Nurrni, E. Ukkonen (Eds.), Algorithm Theory -
SWAT '92. Proceedings. VIII, 434 pages. 1992.

Vol. 622: F. Schmalhofer, G. Strube, Th. Wetter (Eds.), Con-
temporary Knowiedge Engineering and Cognition. Proceedings,
1991. XII, 258 pages. 1992. (Subseries LNAI).

Vol. 623: W. Kuich (Ed,); Automata, Languages and Program-
ming. Proceedings, 1992. Xtl, 721 pages. 1992.

Vol. 624: A. Voronkov (Ed.), Logic Programming and Auto-
mated Reasoning. Proceedings, 1992. XIV, 509 pages. 1992.
(Subseries LNAI).

Vol. 625: W. Vogler, Modular Construction and Partial Order
Semantics of Petri Nets. IX, 252 pages. 1992.

Vol. 626: E. B6rger, G. J'~ger, H. Kleine Brining, M. M. Richter
(Eds.), Computer Science Logic. Proceedings, 1991. VIII, 428
pages. 1992.

Vol. 628: G. Vosselman, Relational Matching. IX, 190 pages.
1992.

Vol. 629: I. M. Have1, V. Koubek (Eds.), Mathematical Foun-
dations of Computer Science 1992. Proceedings. IX, 521 pages.
1992.

Vol. 630: W. R. Cleavcland (Ed,), CONCUR '92. Proceedings.
X, 580 pages. 1992.

Vol. 631: M. Brnyn0oghe, M. Wirsing (Eds.), Programming Lan-
guage Implementation and Logic Programming. Proceedings,
1992. X1, 492 pages. 1992.

Vol. 632: H. Kirchner, G. Levi (Eds.), Algebraic and Logic Pro-
gramming, Proceedings, 1992. IX, 457 pages. 1992.

Vol. 633: D. Pearce, G. Wagner (Eds.), Logics in AI. Proceed-
ings. VIII, 410 pages. 1992. (Subseries LNAI).

Vol. 634: L. Boug6, M. Cosnard, Y. Robert, D. Trystram (Eds.),
Parallel Processing: CONPAR 92 - VAPP V. Proceedings. XVII,
853 pages, 1992.

Vol. 635: J. C. Derniame (Ed.), Software Process Technology.
Proceedings, 1992. VIII, 253 pages. 1992.

Vol. 636: G. Comyn, N. E, Fuchs, M, J, Ratcliffe (Eds.), Logic
Programming in Action. Proceedings, 1992. X, 324 pages. 1992.
(Subseries LNAI).

Vol. 637: Y. Bekkers, J. Cohen (Eds.), Memory Management.
Proceedings, 1992. XI, 525 pages. 1992.

Vol. 639: A. U. Frank, I. Campari, U. Formentini (Eds.), Theo-
ries and Methods of Spatio-Temporal Reasoning in Geographic
Space. Proceedings, 1992. XI, 431 pages. 1992.

Vol. 640: C. Sledge (Ed.), Software Engineering Education.
Proceedings, 1992. X, 451 pages. 1992.

	0 Front Matter
	1 Uniprocessor Garbage Collection Techniques
	2 Collection Schemes for Distributed Garbage
	3 Dynamic Memory Management for Sequential Logic Programming Languages
	4 Comprehensive and Robust Garbage Collection in a Distributed System
	5 Experience with a Fault-Tolerant Garbage Collector in a Distributed Lisp System
	6 Scalable Distributed Garbage Collection for Systems of Active Objects
	7 Distributed Garbage Collection of Active Objects with No Global Synchronisation
	8 Memory management for parallel tasks in shared memory
	9 Incremental Multi-threaded Garbage Collection on Virtually Shared Memory Architectures
	10 Generational Garbage Collection for Lazy Graph Reduction
	11 A Conservative Garbage Collector with Ambiguous Roots for Static Typechecking Languages
	12 An Efficient Implementation for Coroutines
	13 An Implementation of an Applicative File System
	14 A Compile-Time Memory-Reuse Scheme for Concurrent Logic Programs
	15 Finalization in the Collector Interface
	16 Precompiling C++ for Garbage Collection
	17 GC-cooperative C++
	18 Dynamic Revision of Choice Points during Garbage Collection in Prolog [II-III]
	19 Ecological Memory Management in a Continuation Passing Prolog Engine
	20 Replication-Based Incremental Copying Collection
	21 Atomic Incremental Garbage Collection
	22 Incremental Collection of Mature Objects
	23 Object Type Directed Garbage Collection To Improve Locality
	24 Allocation Regions &: Implementation Contracts
	25 A concurrent generational garbage collector for a parallel graph reducer
	26 Garbage Collection in Aurora: An overview
	27 Collections and Garbage Collection
	28 Memory Management and Garbage Collection of an Extended Common Lisp System for Massively Parallel SIMD Architecture
	29 REVERSAL of Fortune: The Thermodynamics of Garbage Collection
	30 Back Matter

