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Preface

Storage reclamation became a necessity when the Lisp function cons was originally
conceived’. That statement is simply a computer-oriented version of the broader precept:
Recycling becomes unavoidable when usable resources are depleted. Both statements suc-
cinctly explain the nature of the topics discussed in the International Workshop on Memory
Management (IWMM) that took place in Saint-Malo, France, in September 1992. This vol-
ume assembles the refereed technical papers which were presented during the workshop.

The earher programming languages (such as Fortran) were designed so that the size of
the storage required for the execution of a program was known at compile time. Subsequent
languages (such as Algol 60) were implemented using a stack as a principal data-structure
which is managed dynamically: information pushed onto a stack uses memory space which
can be later released by popping.

With the introduction of structures (also called records) in more recent programming
languages, it became important to establish an additional run-time data structure: the
heap, which is used to store data-cells containing pointers to other cells. The stack-heap
arrangement has become practically universal in the implementation of programming lan-
guages. An important characteristic of the cells in the heap is that the data they contain
can become “useless” since they are not pointed to by any other cells. Reclamation of the
so-called “useless cells” can be performed in an ad hoc (manual) manner by having the
programmer explicitly return those cells to the run-time system so that they can be re-
used. (In ad hoc reclamation the programmer has to exercise great caution not to return
cells containing valuable data.) This is the case of languages like Pascal or C which provide
primitive procedures for returning useless cells. In the case of languages such as Lisp and
Prolog reclamation is done automatically using a run-time process called garbage-collection
which detects useless cells and makes them available for future usage.

Practically all the papers in this volume deal with the various aspects of managing and
reclaiming memory storage when using a stack-heap model. A peculiar problem of memory
management strategies is the unpredictability.of computations. The undecidability of the
halting problem implies that, in general, it is impossible to foresee how many cells will be
needed in performing complex computations.

There are basically two approaches for performing storage reclamation: one is incre-
mental, i.e., the implementor chooses tc blend the task of collecting with that of actual
computation; the other is what we like to call the mafiana method - wait until the en-
tire memory is exhausted to trigger the time-consuming operation of recognizing useless
cells and making them available for future usage. A correct reclamation should ensure the
following properties:

~ No used cell will be (erroneously} reclaimed.
~ All useless cells will be reclaimed.

Violating the first property is bound to have tragic consequences. A violation of the second
may not be disastrous, but could lead to a premature halting of the execution due to the
lack of memory. As a matter of fact, conservative collectors have been proposed to trade a
(small) percentage of unreclaimed useless cells for a speedup of the collection process.

An important step in the collection is the identification of useless cells. This can be
achieved by marking all the useful cells and sweeping the entire memory to collect useless

1 The reader is referred to the chapter on the History of Lisp, by John McCarthy, which ap-
peared in History of Programming Languages, edited by Richard L. Wexelblat, Academic
Press, 1981, pp 173-183.
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(unmarked) cells. This process is known as mark-and-sweep. Another manner of identifying
useless cells is to keep reference counts which are constantly updated to indicate the number
of pointers to a given cell. When this number becomes zero the cell is identified as useless.
If the mark-and-sweep or the reference count techniques fail to locate any useless cells, the
program being executed has to halt due to lack of storage. (A nasty situation may occur
when successive collections succeed in reclaiming only a few cells. In such cases very little
actual computation is performed between consecutive time-consuming collections.)

Compacting collectors are those which compact the useful information into a contiguous
storage area. Such compacting requires that pointers be properly readjusted. Compacting
becomes an important issue in paging systems (or in the case of hierarchical or virtual
memories) since the compacted useful information is likely to result in fewer page faults,
and therefore in increased performance.

An alternative method of garbage-collection which has drawn the attention of imple-
mentors in recent years is that of copying. In this case the useful cells are simply copied
into a “new” area from the “old” one. These areas are called semi-spaces. When the space
in the “new” area is exhausted, the “old” and “new” semi-spaces are swapped. Although
this method requires twice the storage area needed by other methods, it can be performed
incrementally, thus offering the possibility of real-time garbage-collection, in which the
interruptions for collections are reasonably short.

The so-called generational garbage-collection is based on the experimental fact that
certain cells remain used during substantial periods of the execution of a program, whereas
others become useless shortly after they are generated. In these cases the reclaiming strategy
consists of bypassing the costly redundant identification of “old generation” cells.

With the advent of distributed and parallel computers reclamation becomes considerably
more complex. The choice of storage management strategy is, of course, dependent on the
various types of existing architectures. One should distinguish the cases of:

1. Distributed computers communicating via a network,
2. Parallel shared-memory (MIMD) computers, and
3. Massively parallel (SIMD) computers.

In the case of distributed reclamation it is important that collectors be fault tolerant: a
failure of one or more processors should not result in loss of information. The term on-the-
fly garbage-collection is (usually) applicable to parallel shared-memory machines in which
one or more processors are dedicated exclusively to collecting while others, called mutators,
are responsible for performing useful computations which in turn may generate useless cells
that have to be reclaimed.

Some features of storage management are language-dependent. Presently, one can distin-
guish three major paradigms in programming language design: functional, logic, and object-
ortented. Although functional languages, like Lisp, were the first to incorporate garbage-
collection in their design, both logic and object-oriented language implementors followed
suit. Certain languages have features that enable their implementors to take advantage of
known properties of data in the stack or in the heap so as to reduce the execution time
needed for collection and/or to reclaim as many useless cells as possible.

In the preceding paragraphs we have briefly defined the terms: mark-and-sweep, refer-
ence count, compacting, copying, incremental, generational, conservative, distributed, par-
allel, on-the-fly, real-time, and language-dependent features. These terms should serve to
guide the reader through the various papers presented in this volume.

We suggest that non-specialists start by reading the three survey papers. The first
provides a general overview of the recent developments in the field; the second specializes
in distributed collection, and the third deals with storage management in processors for logic
programs. The other chapters in this volume deal with the topics of distributed, paralle}, and
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incremental collections, collecting in functional, logic, and object-oriented languages, and
collections using massively parallel computers. The final article in this volume is an invited
paper by H. G. Baker in which he proposes a “reversible” Lisp-like language (i.e., capable of
reversing computations) and discusses the problems of designing suitable garbage-collectors
for that language.

We wish to thank the referees for their careful evaluation of the submitted papers, and
for the suggestions they provided to the authors for improving the quality of the presenta-
tion. Finally, it is fair to state that, even with technological advances, there will always be
limited memory resources, especially those of very fast access. These memories will likely
remain costlier than those with slower access. Therefore many of the solutions proposed at
the IWMM are likely to remain valid for years to come.
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Uniprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA
(wilson@cs.utexas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmiil
collection. Incremental techniques can keep garbage collection pause times
short, by interleaving small amounts of collection work with program execu-
tion. Generationalschemes improve efficiency and locality by garbage collect-
ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

1 Automatic Storage Reclamation

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a “free” or “dispose” statement, garbage
collected systems free the programmer from this burden. The garbage collector’s
function is to find data objects! that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a “dangling pointer” into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 Motivation

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when other
modules are not interested in a particular object.

! We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-criented programming.



Since liveness is a global property, this introduces nonlocal bookkeeping into
routines that might otherwise be orthogonal, composable, and reusable. This book-
keeping can reduce extensibility, because when new functionality is implemented,
the bookkeeping code must be updated.

The unnecessary complications created by explicit storage allocation are espe-
cially troublesome because programming mistakes often introduce erroneous behav-
ior that breaks the basic abstractions of the programming language, making errors
hard to diagnose.

Failing to reclaim memory at the proper point may lead to slow memory leaks,
with unreclaimed memory gradually accumulating until the process terminates or
swap space is exhausted. Reclaiming memory too soon can lead to very strange be-
havior, because an object’s space may be reused to store a completely different object
while an old pointer still exists. The same memory may therefore be interpreted as
two different objects simultaneously with updates to one causing unpredictable mu-
tations of the other.

These bugs are particularly dangerous because they often fail to show up re-
peatably, making debugging very difficult; they may never show up at all until the
program is stressed in an unusual way. If the allocator happens not to reuse a par-
ticular object’s space, a dangling pointer may not cause a problem. Later, in the
field, the application may crash when it makes a different set of memory demands,
or is linked with a different allocation routine. A slow leak may not be noticeable
while a program is being used in normal ways—perhaps for many years—because
the program terminates before too much extra space is used. But if the code is in-
corporated into a long-running server program, the server will eventually exhaust
its swap space, and crash.

Explicit allocation and reclamation lead to program errors in more subtle ways
as well. It is common for programmers to statically allocate a moderate number of
objects, so that it is unnecessary to allocate them on the heap and decide when and
where to reclaim them. This leads to fixed limitations on software, making them fail
when those limitations are exceeded, possibly years later when memories (and data
sets) ate much larger. This “brittleness” makes code much less reusable, because the
undocumented limits cause it to fail, even if it’s being used in a way consistent with
its abstractions. (For example, many compilers fail when faced with automatically-
generated programs that violate assumptions about “normal” programming prac-
tices.)

These problems lead many applications programmers to implement some form of
application-specific garbage collection within a large software system, to avoid most
of the headaches of explicit storage management. Many large programs have their
own data types that implement reference counting, for example. Unfortunately, these
collectors are often both incomplete and buggy, because they are coded up for a one-
shot application. The garbage collectors themselves are therefore often unreliable,
as well as being hard to use because they are not integrated into the programming
language. The fact that such kludges exist despite these problems is a testimony to
the value of garbage collection, and it suggests that garbage collection should be
part of programming language implementations.

In the rest of this paper, we focus on garbage collectors that are built into a
language implementation. The usual arrangement is that the allocation routines of



the language (or imported from a library) perform special actions to reclaim space,
as necessary, when a memory request is not easily satisfied. (That is, calls to the
“deallocator” are unnecessary because they are implicit in calls to the allocator.)
Most collectors require some cooperation from the compiler (or interpreter), as
well: object formats must be recognizable by the garbage collector, and certain in-
variants must be preserved by the running code. Depending on the details of the
garbage collector, this may require slight changes to the code generator, to emit
certain extra information at compile time, and perhaps execute different instruction
sequences at run time. (Contrary to widespread misconceptions, there is no conflict
between using a compiled language and garbage collection; state-of-the art imple-
mentations of garbage-collected langnages use sophisticated optimizing compilers.)

1.2 The Two-Phase Abstraction

Garbage collection automatically reclaims the space occupied by data objects that
the running program can never access again. Such data objects are referred to as
garbage. The basic functioning of a garbage collector consists, abstractly speaking,
of two parts:

1. Distinguishing the live objects from the garbage in some way, or garbage detec-
tion, and

2. Reclaiming the garbage objects’ storage, so that the running program can use
it.

In practice, these two phases may be functionally or temporally interleaved, and
the reclamation technique is strongly dependent on the garbage detection technique.

In general, garbage collectors use a “liveness” criterion that is somewhat more
conservative than those used by other systems. In an optimizing compiler, a value
may be considered dead at the point that it can never be used again by the running
program, as determined by control flow and data flow analysis. A garbage collec-
tor typically uses a simpler, less dynamic criterion, defined in terms of a reot set
and reachability from these roots. At the point when garbage collection occurs? all
globally visible variables of active procedures are considered live, and so are the
local variables of any active procedures. The root set therefore consists of the global
variables, local variables in the activation stack, and any registers used by active
procedures. Heap objects directly reachable from any of these variables could be
accessed by the running program, so they must be preserved. In addition, since the
program might traverse pointers from those objects to reach other objects, any ob-
ject reachable from a live object is also live. Thus the set of live objects is simply
the set of objects on any directed path of pointers from the roots.

Any object that is not reachable from the root set is garbage, i.e., useless, because
there is no legal sequence of program actions that would allow the program to
reach that object. Garbage objects therefore can’t affect the future course of the
computation, and their space may be safely reclaimed.

2 Typically, this happens when allocation of an object has been attempted by the running
program, but there is not sufficient free memory to satisfy the request. The allocation
routine calls a garbage collection routine to free up space, then allocates the requested
object.



1.3 Object Representations

Throughout this paper, we make the simplifying assumption that heap objects are
self-identifying, i.e., that it is easy to determine the type of an object at run time.
Implementations of statically-typed garbage collected languages typically have hid-
den “header” fields on heap objects, i.e., an extra field containing type information,
which can be used to decode the format of the object itself. (This is especially useful
for finding pointers to other objects.)

Dynamically-typed languages such as Lisp and Smalltalk usually use fagged
pointers; a slightly shortened representation of the hardware address is used, with
a small type-identifying field in place of the missing address bits. This also allows
short immutable objects (in particular, small integers) to be represented as unique
bit patterns stored directly in the “address” part of the field, rather than actually
referred to by an address. This tagged representation supports polymorphic fields
which may contain either one of these “immediate” objects or a pointer to an object
on the heap. Usually, these short tags are augmented by additional information in
heap-allocated objects’ headers.

For a purely statically-typed language, no per-object runtime type information is
actually necessary, except the types of the root set.variables.® Once those are known,
the types of their referents are known, and their fields can be decoded [App89a,
Gol91]. This process continues transitively, allowing types to be determined at every
pointer traversal. Despite this, headers are often used for statically-typed languages,
because it simplifies implementations at little cost. (Conventional (explicit) heap
management systems often use object headers for similar reasons.)

2 Basic Garbage Collection Techniques

Given the basic two-part operation of a garbage collector, many variations are possi-
ble. The first part, distinguishing live objects from garbage, may be done in several
ways: by reference counting, marking, or copying. * Because each scheme has a major
influence on the second part (reclamation) and on reuse techniques, we will introduce
reclamation methods as we go.

2.1 Reference Counting

In a reference counting system [Ccl60], each object has an associated count of the
references (pointers) to it. Each time a reference to the object is created, e.g., when
a pointer is copied from one place to another by an assignment, the object’s count
i8 incremented. When an existing reference to an object is eliminated, the count is

3 Conservative garbage collectors [BW88, Wen90, BDS91, WH91] are usable with little or
no cooperation from the compiler—not even the types of named variables—but we will
not discuss them here.

* Some authors use the term “garbage collection” in a narrower sense, which excludes
reference counting and/or copy collection systems; we prefer the more inclusive sense
because of its popular usage and because it’s less awkward than “antomatic storage
reclamation.”
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decremented. (See Fig. 1.) The memory occupied by an object may be reclaimed
when the object’s count equals zero, since that indicates that no pointers to the
object exist and the running program could not reach it.

(In a straightforward reference counting system, each object typically has a
header field of information describing the object, which includes a subfield for the
reference count. Like other header information, the reference count is generally not
visible at the language level.)

When the object is reclaimed, its pointer fields are examined, and any objects
it holds pointers to also have their reference counts decremented, since references
from a garbage object don’t count in determining liveness. Reclaiming one object
may therefore lead to the transitive decrementing of reference counts and reclaiming
many other objects. For example, if the only pointer into some large data structure



becomes garbage, all of the reference counts of the objects in that structure typically
become zero, and all of the objects are reclaimed.

In terms of the abstract two-phase garbage collection, the adjustment and check-
ing of reference counts implements the first phase, and the reclamation phase occurs
when reference counts hit zero. These operations are both interleaved with the ex-
ecution of the program, because they may occur whenever a pointer is created or
destroyed.

One advantage of reference counting is this incremental nature of most of its
operation—garbage collection work (updating reference counts) is interleaved closely
with the running program’s own execution. It can easily be made completely incre-
mental and real time; that is, performing at most a small and bounded amount of
work per unit of program execution.

Clearly, the normal reference count adjustments are intrinsically incremental,
never involving more than a few operations for any given operation that the program
executes. The transitive reclamation of whole data structures can be deferred, and
also done a little at a time, by keeping a list of freed objects whose reference counts
have become zerc but which haven’t yet been processed yet.

This incremental collection can easily satisfy real time requirements, guarantee-
ing that memory management operations never halt the executing program for more
than a very brief period. This can support real-tfme applications in which guaran-
teed response time is critical; incremental collection ensures that the program is
allowed to perform a significant, though perhaps appreciably reduced, amount of
work in any significant amount of time. (A target criterion might be that no more
than one millisecond out of every two-millisecond period would be spent on storage
reclamation operations, leaving the other millisecond for “useful work” to satisfy the
program’s real-time purpose.)

There are two major problems with reference counting garbage collectors; they
are difficult to make efficient, and they are not always effective.

The Problem with Cycles The effectiveness problem is that reference counting
fails to reclaim circular structures. If the pointers in a group of objects create a
(directed) cycle, the objects’ reference counts are never reduced to zero, even if
there is mo path to the objects from the root set [McB63].

Figure 2 illustrates this problem. Consider the isolated pair of objects on the
right. Each holds a pointer to the other, and therefore each has a reference count
of one. Since no path from a root leads to either, however, the program can never
reach them again.

Conceptually speaking, the problem here is that reference counting really only
determines a conservative approzimation of true liveness. If an object is not pointed
to by any variable or other object, it is clearly garbage, but the converse is often not
true.

It may seem that circular structures would be very unusual, but they are not.
While most data structures are acyclic, it is not uncommon for normal programs to
create some cycles, and a few programs create very many of them. For example, nodes
in trees may have “backpointers,” to their parents, to facilitate certain operations.
More complex cycles are sometimes formed by the use of hybrid data structures



HEAP SPACE
111 i
s r
ROOT
SET . .
g N1 A g FA K A
E

Fig. 2. Reference counting with unreclaimable cycle.

which combine advantages of simpler data structures, and the like.

Systems using reference counting garbage collectors therefore usually include
some other kind of garbage collector as well, so that if too much uncollectable cyclic
garbage accumulates, the other method can be used to reclaim it.

Many programmers who use reference-counting systems (such as Interlisp and
early versions of Smalltalk) have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before they become a nuisance. This
has a negative impact on program structure, and many programs still have storage
“leaks” that accumulate cyclic garbage which must be reclaimed by some other
means.® These leaks, in turn, can compromise the real-time nature of the algorithm,

5 [Bob80] describes modifications to reference counting to allow it to handle some spe-
cial cases of cyclic structures, but this restricts the programmer to certain stereotyped



because the system may have to fall back to the use of a non-real-time collector at
a critical moment.

The Efficiency Problem. The efficiency problem with reference counting is that
its cost is generally proportional to the amount of work done by the running program,
with a fairly large constant of proportionality. One cost is that when a pointer is
created or destroyed, its referent’s count must be adjusted. If a variable’s value is
changed from one pointer to another, {wo objects’ counts must be adjusted—one
object’s reference count must be incremented, the other’s decremented and then
checked to see if it has reached zero.

Short-lived stack variables can incur a great deal of overhead in a simple reference-
counting scheme. When an argument is passed, for example, a new pointer appears
on the stack, and usually disappears almost immediately because most procedure ac-
tivations (near the leaves of the call graph) return very shortly after they are called.
In these cases, reference counts are incremented, and then decremented back to their
original value very soon. It is desirable to optimize away most of these increments
and decrements that cancel each other out.

Deferred Reference Counting. Much of this cost can be optimized away by spe-
cial treatment of local variables [DB76]. Rather than always adjusting reference
counts and reclaiming objects whose counts become zero, references from the local
variables are not included in this bookkeeping most of the time. Usually, reference
counts are only adjusted to reflect pointers from one heap object to another. This
means that reference counts may not be accurate, because pointers from the stack
may be created or destroyed without being accounted for; that, in turn, means that
objects whose count drops to zero may not actually be reclaimable. Garbage collec-
tion can only be done when references from the stack are taken into account.

Every now and then, the reference counts are brought up to date by scanning the
stack for pointers to heap objects. Then any objects whose reference counts are still
zero may be safely reclaimed. The interval between these phases is generally chosen
to be short enough that garbage is reclaimed often and quickly, yet still long enough
that the cost of periodically updating counts (for stack references) is not high.

This deferred reference counting [DB76] avoids adjusting reference counts for
most short-lived pointers from the stack, and greatly reduces the overhead of ref-
erence counting. When pointers from one heap object to another are created or
destroyed, however, the reference counts must still be adjusted. This cost is still
roughly proportional to the amount of work done by the running program in most
systems, but with a lower constant of proportionality.

There is another cost of reference-counting collection that is harder to escape.
When objects’ counts go to zero and they are reclaimed, some bookkeeping must be
done to make them available to the running program. Typically this involves linking
the freed objects into one or more “free lists” of reusable objects, out of which the
program’s allocation requests are satisfied.

patterns.



It is difficult to make these reclamation operations take less than several instruc-
tions per object, and the cost is therefore proportional to the number of objects
allocated by the running program.

These costs of reference counting collection have combined with its failure to
reclaim circular structures to make it unattractive to most implementors in recent
years. As we will explain below, other techniques are usually more efficient and
reliable.

(This is not to say that reference counting is a dead technique. It still has advan-
tages in terms of the immediacy with which it reclaims most garbage,® and corre-
sponding beneficial effects on locality of reference;” a reference counting system may
perform with little degradation when almost all of the heap space is occupied by live
objects, while other collectors rely on trading more space for higher efficiency. Ref-
erence counts themselves may be valuable in some systems. For example, they may
support optimizations in functional language implementations by allowing destruc-
tive modification of uniquely-referenced objects. Distributed garbage collection is
often done with reference-counting between nodes of a distributed system, combined
with mark-sweep or copying collection within a node. Future systems may find other
uses for reference counting, perhaps in hybrid collectors also involving other tech-
niques, or when augmented by specialized hardware. Nonetheless, reference counting
is generally not considered attractive as the primary garbage collection technique on
conventional uniprocessor hardware.)

For most high-performance general-purpose systems, reference counting has been
abandoned in favor of tracing garbage collectors, which actually traverse (trace out)
the graph of live objects, distinguishing them from the unreachable (garbage) objects
which can then be reclaimed.

2.2 Mark-Sweep Collection

Mark-sweep garbage collectors [McC60] are named for the two phases that implement
the abstract garbage collection algorithm we described earlier:

1. Distinguish the live objects from the garbage. This is done by tracing—starting at
the root set and actually traversing the graph of pointer relationships—usually
by either a depth-first or breadth-first traversal. The objects that are reached
are marked in some way, either by altering bits within the objects, or perhaps
by recording them.in a bitmap or some other kind of table.

2. Reclaim the garbage. Once the live objects have been made distinguishable from
the garbage objects, memory is swept, that is, exhaustively examined, to find
all of the unmarked (garbage) objects and reclaim their space. Traditionally, as
with reference counting, these reclaimed objects are linked onto one or more free
lists so that they are accessible to the allocation routines.

8 This can be useful for finalization, that is, performing “clean-up” actions (like closing
files) when objects die [Rov85].

T DeTreville [DeT90] argues that the locality characteristics of reference-counting may be
superior to those of other collection techmiques, based on experience with the Topaz
system. However, as [WLM92] shows, generational techniques can recapture some of this
locality.
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There are three major problems with traditional mark-sweep garbage collectors.
First, it is difficult to handle objects of varying sizes without fragmentation of the
available memory. The garbage objects whose space is reclaimed are interspersed
with live objects, so allocation of large objects may be difficult; several small garbage
objects may not add up to a large contiguous space. This can be mitigated somewhat
by keeping separate free hists for objects of varying sizes, and merging adjacent free
spaces together, but difficulties remain. (The system must choose whether to allocate
more memory as needed to create small data objects, or to divide up large contiguous
hunks of free memory and risk permanently fragmenting them. This fragmentation
problem is not unique to mark-sweep—it occurs in reference counting as well, and
in most explicit heap management schemes.)

The second problem with mark-sweep collection is that the cost of a collection
is proportional to the size of the heap, including both live and garbage objects. All
live objects must be marked, and all garbage objects must be collected, imposing a
fundamental limitation on any possible improvement in efficiency.

The third problem involves locality of reference. Since objects are never moved,
the live objects remain in place after a collection, interspersed with free space. Then
new objects are allocated in these spaces; the result is that objects of very different
ages become interleaved in memory. This has negative implications for locality of
reference, and simple mark-sweep collectors are often considered unsuitable for most
virtual memory applications. (It is possible for the “working set” of active objects to
be scattered across many virtual memory pages, so that those pages are frequently
swapped in and out of main memory.) This problem may not be as bad as many
have thought, because objects are often created in clusters that are typically active
at the same time. Fragmentation and locality problems are is unavoidable in the
general case, however, and a potential problem for some programs.

It should be noted that these problems may not be insurmountable, with suffi-
ciently clever implementation techniques. For example, if a bitmap is used for mark
bits, 32 bits can be checked at once with a 32-bit integer ALU operation and condi-
tional branch. If live objects tend to survive in clusters in memory, as they apparently
often do, this can greatly diminish the constant of proportionality of the sweep phase
cost; the theoretical linear dependence on heap size may not be as troublesome as
it seems at first glance. As a result, the dominant cost may be the marking phase,
which is proportional to the amount of live data that must be traversed, not the total
amount of memory allocated. The clever use of bitmaps can also reduce the cost of
allocation, by allowing fast allocation from contigucus unmarked areas, rather than
using free lists.

The clustered survival of objects may also mitigate the locality problems of re-
allocating space amid live objects; if objects tend to survive or die in groups in
mernory [Hay91], the interspersing of objects used by different program phases may
not be a major consideration.

At this point, the technology of mark-sweep collectors (and related hybrids) is
rapidly evolving. As will be noted later, this makes them resemble copying collectors
in some ways; at this point we do not claim to be able to pick a winner between
high-tech mark-sweep and copy collectors.
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2.3 Mark-Compact Collection

Mark-compact collectors remedy the fragmentation and allocation problems of mark-
sweep collectors. As with mark-sweep, a marking phase traverses and marks the
reachable objects. Then objects are compacted, moving most of the live objects
until all of the live objects are contiguous. This leaves the rest of memory as a
single contiguous free space. This is often done by a linear scan through memory,
finding live objects and “sliding” them down to be adjacent to the previous object.
Eventually, all of the live objects have been slid down to be adjacent to a live
neighbor. This leaves one contiguous occupied area at one end of heap memory, and
implicitly moving all of the “holes” to the contiguous area at the other end.

This sliding compaction has several interesting properties. The contiguous free
area eliminates fragmentation problems so that allocating objects of various sizes
is simple. Allocation can be implemented as the incrementing of a pointer into a
contiguous area of memory, in much the way that different-sized objects can be
allocated on a stack. In addition, the garbage spaces are simply “squeezed out,”
without disturbing the original ordering of objects in memory. This can ameliorate
locality problems, because the allocation ordering is usually more similar to subse-
quent access orderings than an arbitrary ordering imposed by a garbage collector
[CG77, ClaT9).

While the locality that results from sliding compaction is advantageous, the
collection process itself shares the mark-sweep’s unfortunate property that several
passes over the data are required. After the initial marking phase, sliding compactors
make two or three more passes over the live objects [CN83]. One pass computes the
new locations that objects will be moved to; subsequent passes must update pointers
to refer to objects’ new locations, and actually move the objects. These algorithms
may be therefore be significantly slower than mark-sweep if a large percentage of
data survives to be compacted.

An alternative approach is to use a two-pointer algorithm, which scans inward
from both ends of a heap space to find opportunities for compaction. One pointer
scans downward from the top of the heap, looking for live objects, and the other
scans upward from the bottom, looking for a hole to put it in. {(Many variations
of this algorithm are possible, to deal with multiple areas holding different-sized
objects, and to avoid intermingling objects from widely-dispersed areas.) For a more
complete treatment of compacting algorithms, see [Knu69, CN83].

2.4 Copying Garbage Collection

Like mark-compact (but unlike mark-sweep), copying garbage collection does not
really “collect” garbage. Rather, it moves all of the live objects into one area, and
the rest of the heap is then known to be available because it contains only garbage.
“Garbage collection” in these systems is thus only implicit, and some researchers
avoid applying that term to the process.

Copying collectors, like marking-and-compacting collectors, move the objects
that are reached by the traversal to a contiguous area. While compacting collec-
tors use a separate marking phase that traverses the live data, copying collectors
integrate the traversal of the data and the copying process, so that most objects
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need only be traversed once. Objects are moved to the contiguous destination area
as they are reached by the traversal. The work needed is proportional to the amount
of live data (all of which must be copied).

The term scavenging is applied to the copying traversal, because it consists of
picking out the worthwhile objects amid the garbage, and taking them away.

A Simple Copying Collector: “Stop-and-Copy” Using Semispaces. A very
common kind of copying garbage collector is the semispace collector [FY69] using
the Cheney algorithm for the copying traversal [Che70]. We will use this collector as
a reference model for much of this paper.®

In this scheme, the space devoted to the heap is subdivided into two contigu-
ous semispaces. During normal program execution, only one of these semispaces is
in use, as shown in Fig. 3. Memory is allocated linearly upward through this “cur-
rent” semispace as demanded by the executing program. This is much like allocation
from a stack, or in a sliding compacting collector, and is similarly fast; there is no
fragmentation problem when allocating objects of various sizes.

When the running program demands an allocation that will not fit in the un-
used area of the current semispace, the program is stopped and the copying garbage
collector is called to reclaim space (hence the term “stop-and-copy”). All of the
live data are copied from the current semispace (fromspace) to the other semispace
(tospace). Once the copying is completed, the tospace semispace is made the “cur-
rent” semispace, and program execution is resumed. Thus the roles of the two spaces
are reversed each time the garbage collector is invoked. (See Fig. 4.)

Perhaps the simplest form of copying traversal is the Cheney algorithm [Che70).
The immediately-reachable objects form the initial queue of objects for a breadth-
first traversal. A “scan” pointer is advanced through the first object, location by
location. Each time a pointer into fromspace is encountered, the referred-to-object
is transported to the end of the queue, and the pointer to the object is updated
to refer to the new copy. The free pointer is then advanced and the scan contin-
ues. This effects the “node expansion” for the breadth-first traversal, reaching (and
copying) all of the descendants of that node. (See Fig. 5. Reachable data structures
in fromspace are shown at the top of the figure, followed by the first several states
of tospace as the collection proceeds—tospace is shown in linear address order to
emphasize the linear scanning and copying.)

Rather than stopping at the end of the first object, the scanning process simply
continues through subsequent objects, finding their offspring and copying them as
well. A continuous scan from the beginning of the queue has the effect of removing
consecutive nodes and finding all of their offspring. The offspring are copied to the
end of the queue. Eventually the scan reaches the end of the queue, signifying that
all of the objects that have been reached {and copied) have also been scanned for

% As a historical note, the first copying collector was Minsky’s collector for Lisp 1.5 [Min63].
Rather than copying data from one area of memory o another, a single heap space was
used. The live data were copied out to a file, and then read back in, in a contiguous
area of the heap space. On modern machines this would be unbearably slow, because file
operations—writing and reading every live object—are now many orders of magnitude
slower than memory operations.
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Fig. 3. A simple semispace garbage collector before garbage collection.

descendants. This means that there are no more reachable objects to be copied, and
the scavenging process is finished.

Actually, a slightly more complex process is needed, so that objects that are
reached by multiple paths are not copied to tospace multiple times. When an object
is transported to tospace, a forwarding poinier is installed in the old version of the
object. The forwarding pointer signifies that the old object is obsolete and indicates
where to find the new copy of the object. When the scanning process finds a pointer
into fromspace, the object it refers to is checked for a forwarding pointer. If it has
one, it has already been moved to tospace, so the pointer it has been reached by is
simply updated to point to its new location. This ensures that each live object is
transported exactly once, and that all pointers to the object are updated to refer to
the new copy.
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Fig. 4. Semispace collector after garbage collection.

Efficiency of Copying Collection. A copying garbage collector can be made ar-
bitrarily efficient if sufficient memory is available [Lar77, App87]. The work done at
each collection is proportional to the amount of live data at the time of garbage col-
lection. Assuming that approximately the same amount of data is live at any given
time during the program’s execution, decreasing the frequency of garbage collections
will decrease the total amount of garbage collection effort.

A simple way to decrease the frequency of garbage collections is to increase the
amount of memory in the heap. If each semispace is bigger, the program will run
longer before filling it. Another way of looking at this is that by decreasing the
frequency of garbage collections, we are increasing the average age of objects at
garbage collection time. Objects that become garbage before a garbage collection
needn’t be copied, so the chance that an object will never have to be copied is
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increased.

Suppose, for example, that during a program run twenty megabytes of memory
are allocated, but only one megabyte is live at any given time. If we have two three-
megabyte semispaces, garbage will be collected about ten times. (Since the current
semispace is one third full after a collection, that leaves two megabytes that can be
allocated before the next collection.) This means that the system will copy about half
as much data as it allocates, as shown in the top part of Fig. 6. (Arrows represent
copying of live objects between semispaces at garbage collections.)

On the other hand, if the size of the semispaces is doubled, 5 megabytes of free
space will be available after each collection. This will force garbage collections a
third as often, or about 3 or 4 times during the run. This straightforwardly reduces
the cost of garbage collection by more than half, as shown in the bottom part of
Fig. 6.

2.5 Non-Copying Implicit Collection

Recently, Baker [Bak92] has proposed a new kind of non-copying collector that with
some of the efficiency advantages of a copying scheme. Baker’s insight is that in a
copying collector, the “spaces” of the collector are really just a particular implemen-
tation of sets. Another implementation of sets could do just as well, provided that it
has similar performance characteristics. In particular, given a pointer to an object,
it must be easy to determine which set it is a member of; in addition, it must be easy
to switch the roles of the sets, just as fromspace and tospace roles are exchanged in
a copy collector.

Baker’s non-copying system adds two pointer fields and a “color” field to each
object. These fields are invisible to the application programmer, and serve to link
each hunk of storage into a doubly-linked list that serves as a set. The color field
indicates which set an object belongs to.

The operation of this collector is simple, and isomorphic to the copy collector’s
operation. Chunks of free space are initially linked to form a doubly-linked list, and
are allocated simply by incrementing a pointer into this list. The allocation pointer
serves to divide the list into the part that has been allocated and the remaining “free”
part. Allocation is fast because it only requires advancing this pointér to point at
the next element of the free list. (Unlike the copying scheme, this does not eliminate
fragmentation problems; supporting variable sized objects requires multiple free lists
and may result in fragmentation of the available space.)

When the free list is exhausted, the collector traverses the live objects and
“moves” them from the allocated set (which we could call the fromset) to another
set (the toset). This is implemented by unlinking the object from the doubly-linked
fromset list, toggling its mark field, and linking it into the toset’s doubly-linked list.

Just as in a copy collector, space reclamation is implicit. When all of the reachable
objects have been traversed and moved from the fromset to the toset, the fromset
is known to contain only garbage. It is therefore a list of free space, which can
immediately be put to use as a free list. (As we will explain in section 3.3, Baker’s
scheme is actually somewhat more complex, because his collector is incremental.)
The cost of the collection is proportional to the number of live objects, and the
garbage ones are all reclaimed in small constant time.



Fig. 6. Memory usage in a semispace GC, with 3 MB (top) and 6 MB (bottom) semispaces



18

This scheme has both advantages and disadvantages compared to a copy collec-
tor. On the minus side, the per-object constants are probably a little bit higher, and
fragmentation problems are still possible. On the plus side, the tracing cost for large
objects is not as high. As with a mark-sweep collector, the whole object needn’t be
copied; if it can’t contain pointers, it needn’t be scanned either. Perhaps more impor-
tantly for many applications, this scheme does not require the actual language-level
pointers between objects to be changed, and this imposes fewer constraints on com-
pilers. As we’ll explain later, this is particularly important for parallel and real-time
incremental collectors.

2.6 Choosing Among Basic Techniques

Treatments of garbage collection algorithms in textbooks often stress asymptotic
complexity, but all basic algorithms have roughly similar costs, especially when we
view garbage collection as part of the overall free storage management scheme. Al-
location and garbage collection are two sides of the basic memory reuse coin, and
any algorithm incurs costs at allocation time, if only to initialize the fields of new
objects.

Any of the efficient collection schemes therefore has three basic cost components,
which are (1) the initial work required at each collection, such as root set scanning,
(2) the work done at per unit of allocation (proportional to the amount of allocation,
or the number of objects allocated) and (3) the work done during garbage detection
(e.g., tracing).

The latter two costs are usually similar, in that the amount of live data is usually
some significant percentage of the amount of garbage. Thus algorithms whose cost is
proportional to the amount of allocation (e.g., mark-sweep) may be competitive with
those whose cost is proportional to the amount of live data traced (e.g., copying).

For example, suppose that 10 percent of all allocated data survive a collection,
and 90 percent never need to be traced. In deciding which algorithm is more effi-
cient, the asymptotic complexity is less important than the associated constants.
If the cost of sweeping an object is ten times less than the cost of copying it, the
mark-sweep collector costs about the same as as copy collector. (If a mark-sweep
collector’s sweeping cost is billed to the allocator, and it’s small relative to the cost
of initializing the objects, then it becomes obvious that the sweep phase is just
not terribly expensive.) While current copying collectors appear to be more efficient
than current mark-sweep collectors, the difference is not large for state-of-the art
implementations.

Further, real high-performance systems often use hybrid techniques to adjust
tradeoffs for different categories of objects. Many high-performance copy collectors
use a separate large object area [CWB86, UJ88], to avoid copying large objects from
space to space. The large objects are kept “off to the side” and usually managed
in-place by some variety of marking traversal and free list technique.

A major point in favor of in-place collectors (such as mark-sweep and treadmill
schemes) is the ability to make them conservative with respect to data values that
may be pointers or may not. This allows them to be used for languages like C, or off-
the-shelf optimizing compilers [BW&8, Bar88, BDS91], which can make it difficult
or impossible to unambiguously identify all pointers at run time. A non-moving
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collector can be conservative because anything that looks like a pointer object can
be left where it is, and the (possible) pointer to it doesn’t need to be changed. In
contrast, a copying collector must know whether a value is a pointer—and whether
to move the object and update the pointer. For example, if presumed pointers were
updated, and some were actually integers, the program would break because the
integers would be mysteriously changed by the garbage collector.

2.7 Problems with a Simple Garbage Collector

It is widely known that the asymptotic complexity of copying garbage collection is
excellent—the copying cost approaches zero as memory becomes very large. Tread-
mill collection shares this property, but other collectors can be similarly efficient if the
constants associated with memory reclamation and reallocation are small enough.
In that case, garbage detection is the major cost.

Unfortunately, it is difficult in practice to achieve high efficiency in a simple
garbage collector, because large amounts of memory are too expensive. If virtual
memory is used, the poor locality of the allocation and reclamation cycle will gener-
ally cause excessive paging. (Every location in the heap is used before any location’s
space is reclaimed and reused.) Simply paging out the recently-allocated data is
expensive for a high-speed processor [Ung84], and the paging caused by the copy-
ing collection itself may be tremendous, since all live data must be touched in the
process.)

It therefore doesn’t generally pay to make the heap area larger than the available
main memory. (For a mathematical treatment of this tradeoff, see [Lar77].) Even
as main memory becomes steadily cheaper, locality within cache memory becomes
increasingly important, so the problem is simply shifted to a different level of the
memory hierarchy [WLM92].

In general, we can’t achieve the potential eﬂiclency of simple garbage collection;
increasing the size of memory to postpone or avoid collections can only be taken so
far before increased paging time negates any advantage.

It js important to realize that this problem is not unique to copying collectors.
All garbage collection strategies involve similar space-time tradeoffs—garbage col-
lections are postponed so that garbage detection work is done less often, and that
means that space is not reclaimed as quickly. On average, that increases the amount
of memory wasted due to unreclaimed garbage.®

While copying collectors were originally designed to improve locality, in their
simple versions this improvement is not large, and their locality can in fact be worse
than that of non-compacting collectors. These systems may improve the locality of
reference to long-lived data objects, which have been compacted into a contiguous
area. However, this effect is swamped by the pattern of references due to allocation.

® Deferred reference counting, like tracing collection, also trades space for time—in giving
up continual incremental reclamation to avoid spending CPU cycles in adjusting refer-
ence counts, one gives up space for objects that become garbage and are not immediately
reclaimed. At the time scale on which memory is reused, the resulting locality character-
istics must share basic performance tradeoff characteristics with generational collectors
of the copying or mark-sweep varieties, which will be discussed later.
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Large amounts of memory are touched between collections, and this alone makes
them unsuitable for a virtual memory environment.

The major locality problem is not with the locality of compacted data, or with
the locality of the garbage collection process itself. The problem is an indirect result
of the use of garbage collection—by the time space is reclaimed and reused, it’s likely
to have been paged out, simply because too many other pages have been allocated
in between. Compaction is helpful, but the help is generally too litile, too late. With
a simple semispace copy collector, locality is likely to be worse than that of a mark-
sweep collector, simply because the copy collector uses more total memory—only
half the memory can be used between collections. Fragmentation of live data is not
as detrimental as the regular reuse of two spaces.!®

The only way to have good locality is to ensure that memory is large enough to
hold the regularly-reused area. (Another approach would be to rely on optimizations
such as prefetching, but this is not feasible at the level of virtual memory—disks
simply can’t keep up with the rate of allocation because of the enormous speed
differential between RAM and disk.) Generational collectors address this problem
by reusing a smaller amount of memory more often; they will be discussed in Sect.
4. (For historical reasons, is widely believed that only copying collectors can be
made generational, but this is not the case. Generational mark-sweep collectors are
somewhat harder to construct, but they do exist and are quite practical [DWH*90].

Finally, the temporal distribution of a simple tracing collector’s work is also
troublesome in an interactive programming environment; it can be very disruptive
to a user’s work to suddenly have the system become unresponsive and spend sev-
eral seconds garbage collecting, as is common in such systems. For large heaps, the
pauses may be on the order of seconds, or even minutes if a large amount of data
is dispersed through virtual memory. Generational collectors alleviate this problem,
because most garbage collections only operate on a subset of memory. Eventually
they must garbage collect larger areas, however, and the pauses may be considerably
longer. For real time applications, this may not be acceptable.

3 Incremental Tracing Collectors

For truly real-time applications, fine-grained incremental garbage collection appears
to be necessary. Garbage collection cannot be carried out as one atomic action
while the program is halted, so small units of garbage collection must be interleaved
with small units of program execution. As we said earlier, it is relatively easy to
make reference counting collectors incremental. Reference counting’s problems with
efficiency and effectiveness discourage its use, however, and it is therefore desirable
to make tracing (copying or marking) collectors incremental.

In most of the following discussion, the difference between copying and mark-
sweep collectors is not particularly important. The incremental tracing for garbage

10 Slightly more complicated copying schemes appear to avoid this problem [Ung84, WM89],
but {WLM92] demonstrates that cyclic memory reuse patterns can fare poorly in hierar-
chical memories because of recency-based (e.g., LRU) replacement policies. This suggests
that freed memory should be reused in a LIFO fashion (i.e., in the opposite order of its
previous allocation), if the entire reuse pattern can’t be kept in memory.
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detection is more interesting than the incremental reclamation of detected garbage.

The difficulty with incremental tracing is that while the collector is tracing out
the graph of reachable data structures, the graph may change—the running program
may mutate the graph while the collector “isn’t looking.” For this reason, discus-
sions of incremental collectors typically refer to the running program as the mutator
[DLM*78]. (From the garbage collector’s point of view, the actual application is
merely a coroutine or concurrent process with an unfortunate tendency to modify
data structures that the collector is attempting to traverse.) An incremental scheme
must have some way of keeping track of the changes to the graph of reachable objects,
perhaps re-computing parts of its traversal in the face of those changes.

An important characteristic of incremental techniques is their degree of conser-
vatism with respect to changes made by the mutator during garbage collection. If
the mutator changes the graph of reachable objects, freed objects may or may not
be reclaimed by the garbage collector. Some floating garbage may go unreclaimed
because the collector has already categorized the object as live before the muta-
tor frees it. This garbage is guaranteed to be collected at the next cycle, however,
because 1t will be garbage at the beginning of the next collection.

3.1 Tricolor Marking

The abstraction of tricolor marking is helpful in understanding incremental garbage
collection. Garbage collection algorithms can be described as a process of traversing
the graph of reachable objects and coloring them. The objects subject to garbage
collection are conceptually colored white, and by the end of collection, those that
will be retained must be colored black. When there are no reachable nodes left to
blacken, the traversal of live data structures is finished.

In a simple mark-sweep collector, this coloring is directly implemented by setting
mark bits—objects whose bit is set are black. In a copy collector, this is the process of
moving objects from fromspace to tospace—unreached objects in fromspace are con-
sidered white, and objects moved to tospace are considered black. The abstraction of
coloring is orthogonal to the distinction between marking and copying collectors, and
is important for understanding the basic differences between incremental collectors.

In incremental collectors, the intermediate states of the coloring traversal are
important, because of ongoing mutator activity—the mutator can’t be allowed to
change things “behind the collector’s back” in such a way that the collector will fail
to find all reachable objects.

To understand and prevent such interactions between the mutator and the col-
lector, it is useful to introduce a third color, grey, to signify that an object has been
reached by the traversal, but that ifs descendants may not have been. That is, as the
traversal proceeds outward from the roots, objects are initially colored grey. When
they are scanned and pointers to their offspring are traversed, they are blackened
and the offspring are colored grey.

In a copying collector, the grey objects are the objects in the unscanned area
of tospace—the ones between the scan and free pointers. Objects that have been
passed by the scan pointer are black. In a mark-sweep collector, the grey objects
correspond to the stack or queue of objects used to control the marking traversal,
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and the black objects are the ones that have been removed from the queue. In both
cases, objects that have not been reached yet are white.

Intuitively, the traversal proceeds in a wavefront of grey objects, which separates
the white (unreached) objects from the black objects that have been passed by the
wave—that is, there are no pointers directly from black objects to white ones. This
abstracts away from the particulars of the traversal algorithm—it may be depth-first,
breadth-first, or just about any kind of exhaustive traversal. It is only important that
a well-defined grey fringe be identifiable, and that the mutator preserve the invariant
that no black object hold a pointer directly to a white object.

The importance of this invariant is that the collector must be able to assume
that it is “finished with” black objects, and can continue to traverse grey objects
and move the wavefront forward. If the mutator creates a pointer from a black object
to a white one, it must somehow coordinate with the collector, to ensure that the
collector’s bookkeeping is brought up to date.

Figure 7 demonstrates this need for coordination. Suppose the object A has been
completely scanned (and therefore blackened); its descendants have been reached
and greyed. Now suppose that the mutator swaps the pointer from A to C with the
pointer from B to D. The only pointer to D is now in a field of A, which the collector
has already scanned. If the traversal continues without any coordination, C will be
reached again (from B), and D will never be reached at all.

Incremental approaches There are two basic approaches to coordinating the col-
lector with the mutator. One is to use a read barrter, which detects when the mutator
attempts to access a pointer to a white object, and immediately colors the object
grey; since the mutator can’t read pointers to white objects, it can’t install them
in black objects. The other approach is more direct, and involves a write barrier—
when the program attempts to write a pointer into an object, the write is trapped
or recorded.

Write barrier approaches, in turn, fall into two different categories, depending on
which aspect of the problem they address. To foil the garbage collector’s marking
traversal, it is necessary for the mutator to 1) write a pointer to a white object into
a black object and 2) destroy the original pointer before the collector sees it.

If the first condition (writing the pointer into a black object) does not hold,
no special action is needed—if there are other pointers to the white object from
grey objects, it will be retained, and if not, it is garbage and needn’t be retained
anyway. If the second condition (obliterating the original path to the object) does
not hold, the object will be reached via the original pointer and retained. The two
write-barrier approaches focus on these two aspects of the problem.

Snapshot-at-beginning collectors ensure that the second condition cannot happen—-
rather than allowing pointers to be simply overwritten, they are first saved so that
the collector can find them. Thus no paths to white objects can be broken without
providing another path to the object for the garbage collector.

Incremental update collectors are still more direct in dealing with these trouble-
some pointers. Rather than saving copies of all pointers that are overwritten (because
they might have already been copied into black objects) they actually record pointers
stored into black objects, and catch the troublesome pointers at their destination,
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Before After

Fig.7. A violation of the coloring invariant.

rather than their source. That is, if a pointer to a white object is copied into a black
object, that new copy of the pointer will be found. Conceptually, the black object (or
part of it) is reverted to grey when the mutator “undoes” the collector’s traversal.
(Alternatively, the pointed-to object may be greyed immediately.) This ensures that
the traversal is updated in the face of mutator changes.

3.2 Baker’s Incremental Copying.

The best-known real-time garbage collector is Baker’s incremental copying scheme
[Bak78]. It is an adaptation of the simple copy collection scheme described in Sect. 2.5,
and uses a read barrier for coordination with the mutator. For the most part, the
copying of data proceeds in the Cheney (breadth-first) fashion, by advancing the scan
pointer through the unscanned area of tospace and moving any referred-to objects
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from fromspace. This background scavenging is interleaved with mutator operation,
however.

An important feature of Baker’s scheme is its treatment of objects allocated by
the mutator during incremental collection. These objects are allocated in tospace
and are treated as though they had already been scanned—i.e., they are assumed to
be live. In terms of tricolor marking, new objects are black when allocated, and none
of them can be reclaimed; they are never reclaimed until the next garbage collection
cycle.!

In order to ensure that the scavenger finds all of the live data and copies it to
tospace before the free area in newspace is exhausted, the rate of copy collection
work is tied to the rate of allocation. Each time an object is allocated, an increment
of scanning and copying is done.

In terms of tricolor marking, the scanned area of tospace contains black objects,
and the copied but unscanned objects (between the scan and free pointer) are grey.
As-yet unreached objects in fromspace are white. The scanning of objects (and
copying of their offspring) moves the wavefront forward.

In addition to the background scavenging, other objects may be copied to tospace
as needed to ensure that the basic invariant is not violated—pointers into fromspace
must not be stored into objects that have already been scanned, undoing the collec-
tor’s work.

Baker’s approach is to couple the collector’s copying traversal with the muta-
tor’s traversal of data structures. The mutator is never allowed to see pointers into
fromspace, i.e., pointers to white objects. Whenever the mutator reads a (potential)
pointer from the heap, it immediately checks to see if it is a pointer into fromspace;
if so, the referent is copied to tospace, i.e., its color is changed from whitie to grey.
In effect, this advances the wavefront of greying just ahead of the actual references
by the mutator, keeping the mutator inside the wavefront.?

It should be noted that Baker’s collector itself changes the graph of reachable
objects, in the process of copying. The read barrier does not just inform the collector
of changes by the mutator, to ensure that objects aren’t lost; it also shields the
matator from viewing temporary inconsistencies created by the collector. If this
were not done, the mutator might encounter two different pointers to versions of the
same object, one of them obsolete.

This shielding of the mutator from white objects has come to be called a read
barrier, because it prevents pointers to white objects from being read by the program
at all. .

The read barrier may be implemented in software, by preceding each read {of a
potential pointer from the heap) with a check and a conditional call to the copying-
and-updating routine. (Compiled code thus contains extra instructions to implement

1 Baker suggests copying old live objects into one end of tospace, and allocating new objects
in the other end. The two occupied areas of tospace thus grow toward each other.

12 Nilsen’s variant of Baker’s algorithm updates the pointers without actually copying the
objects—the copying is lazy, and space in tospace is simply reserved for the object before
the pointer is updated [Nil88]. This makes it easier to provide smaller bounds on the time
taken by list operations, and to gear collector work to the amount of allocation—including
guaranteeing shorter pauses when smaller objects are allocated.
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the read barrier.) Alternatively, it may be implemented with specialized hardware
checks and/or microcoded routines.

The read barrier is quite expensive on stock hardware, because in the general
case, any load of a pointer must check to see if the pointer points to a fromspace
(white) object; if so, it must execute code to move the object to tospace and update
the pointer. The cost of these checks is high on conventional hardware, because they
occur very frequently. Lisp Machines have special purpose hardware to detect point-
ers into fromspace and trap to a handler[Gre84, Moo84, Joh91], but on conventional
machines the checking overhead is in the tens of percent for a high performance
system.

Brooks has proposed a variation on Baker’s scheme, where objects are always
referred to via an indirection field embedded in the object itself [Bro84]. If an object
is valid, its indirection field points to itself. If it’s an obsolete version in tospace, its
indirection pointer points to the new version. Unconditionally indirecting is cheaper
than checking for indirections, but would still incur overheads in the tens of percent
for a high-performance system. (A variant of this approach has been used by North
and Reppy in a concurrent garbage collector [NR87].) Zorn takes a different approach
to reducing the read barrier overhead, using knowledge of important special cases
and special compiler techniques. Still, the time overheads are on the order of twenty
percent [Zor89].

3.3 The Treadmill

Recently, Baker has proposed a non-copying version of his scheme, which uses
doubly-linked lists (and per-object color fields) to implement the sets of objects
of each color, rather than separate memory areas. By avoiding the actual moving of
objects and updating of pointers, the scheme puts fewer restrictions on other aspects
of language implementation.!3

This non-copying scheme preserves the essential efficiency advantage of copy col-
lection, by reclaiming space implicitly. (As described in Sect. 2.5, unreached objects
on the allocated list can be reclaimed by appending the remainder of that list to the
free list.) The real-time version of this scheme links the various lists into a cyclic
structure, as shown in Fig. 8. This cyclic structure is divided into four sections.

The new list is where allocation of new objects occurs during garbage collection—
it is contiguous with the free list, and allocation occurs by advancing the pointer that
separates them. At the beginning of garbage collection, the new segment is empty.

The from list holds objects that were allocated before garbage collection began,
and which are subject to garbage collection. As the collector and mutator traverse
data structures, objects are moved from the from list to the to list. The to list is
initially empty, but grows as objects are “unsnapped” (unlinked) from the from list
(and snapped into the to list) during collection.

The new list contains new objects, which are allocated black. The to-list contains
both black objects (which have been completely scanned) and grey ones (which have

'3 In particular, it is possible to deal with compilers that do not unambiguously identify
pointer variables in the stack, making it impossible to use simple copy collection.
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Fig. 8. Treadmill collector during collection.

been reached but not scanned). Note the isomorphism with the copying algorithm—
even an analogue of the Cheney algorithm can be used. It is only necessary to have
a scan pointer into the from list and advance it through the grey objects.

Eventually, all of the reachable objects in the from list have been moved to the
to list, and scanned for offspring. When no more offspring are reachable, all of the
objects in the to-list are black, and the remaining objects in the from list are known
to be garbage. At this point, the garbage collection is complete. The from list is now
available, and can simply be merged with the free list. The to list and the new list
both hold objects that were preserved, and they can be merged to form the new
to-list at the next collection.l4

14 This discussion is a bit oversimplified; Baker uses four colors, and whole lists can have
their colors changed instantaneously by changing the sense of the bit patterns, rather
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The state is very similar to the beginning of the previous cycle, except that the
segments have “moved” partway around the cycle—hence the name “treadmill.”

Baker describes this algorithm as being isomorphic to his original incremental
copying algorithm, presumably including the close coupling between the mutator
and the collector, i.e., the read barrier.

Conservatism in Baker’s scheme. Baket’s garbage collector uses a somewhat
conservative approximation of true liveness in two ways.}® The most obvious one
is that objects allocated during collection are assumed to be live, even if they die
before the collection is finished. The second is that pre-existing objects may become
garbage after having been reached by the collector’s traversal, and they will not
be reclaimed—once an object has been greyed, it will be considered live until the
next garbage collection cycle. On the other hand, if objects become garbage during
collection, and all paths to those objects are destroyed before being traversed, then
they will be reclaimed. That is, the mutator may overwrite a pointer from a grey
object, destroying the only path to one or more white objects and ensuring that the
collector will not find them. Thus Baker’s incremental scheme incrementally updates
the reachability graph of pre-existing objects, only when grey objects have pointers
overwritten. Overwriting pointers from black objects has no effect, however, because
their referents are already grey. The degree of conservatism (and floating garbage)
thus depends on the details of the collector’s traversal and of the program’s actions.

3.4 Snapshot-at-Beginning write-barrier algorithms

If a non-copying collector is used, the use of a read barrier is an unnecessary expense;
there is no need to protect the mutator from seeing an invalid version of a pointer.
Write barrier techniques are cheaper, because heap writes are several times less com-
mon than heap reads. Snapshoi-at-beginning algorithms use a write barrier to ensure
that no objects ever become inaccessible to the garbage collector while collection is
in progress. Conceptually, at the beginning of garbage collection, a copy-on-write
virtual copy of the graph of reachable data structures is made. That is, the graph of
reachable objects is fixed at the moment garbage collection starts, even though the
actual traversal proceeds incrementally.

Perhaps the simplest and best-known snapshot collection algorithm is Yuasa’s
[Yua90]. If a location is written to, the overwritten value is first saved and pushed on
a marking stack for later examination. This guarantees that no objects will become
unreachable to the garbage collector traversal—all objects live at the beginning of
garbage collection will be reached, even if the pointers to them are overwritten. In
the example shown in Fig. 7, the pointer from B to D is pushed onto the stack when
it 18 overwritten with the pointer to C.

Yuasa’s scheme has a large advantage over Baker’s on stock hardware, because
only heap pointer writes must be treated specially to preserve the garbage collector

than the patterns themselves.

% This kind of conservatism is not to be confused with the conservative treatment of point-
ers that cannot be unambiguously identified. (For a more complete and formal discussion
of various kinds of conservatism in garbage collection, see [DWH*90].)
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invariants. Normal pointer dereferencing and comparison does not incur any extra
overhead.

On the other hand, Yuasa's scheme is more conservative than Baker’s. Not only
are all objects allocated during collection retained, but no objects can be freed during
collection—all of the overwritten pointers are preserved and traversed. These objects
are reclaimed at the next garbage collection cycle.

3.5 Incremental Update Write-Barrier Algorithms

While both are write-barrier algorithms, snapshot-at-beginning and incremental up-
date algorithms are quite different. Unfortunately, incremental update algorithms
have generally been cast in terms of parallel systems, rather than as incremental
schemes for serial processing; perhaps due to this, they have been largely overlooked
by implementors targeting uniprocessors.

Perhaps the best known of these algorithms is due to Dijkstra et al. [DLM*78].
(This is similar to the scheme developed independently by Steele [Ste75], but simpler
because it does not deal with compactification.) Rather than retaining everything
that’s in a snapshot of the graph at the beginning of garbage collection, it heuristically
(and somewhat conservatively) attempts to retain the objects that are live at the
end of garbage collection. Objects that die during garbage collection—and before
being reached by the marking traversal—are not traversed and marked.

To avoid the problem of pointers escaping into reachable objects that have already
been scanned, such copied pointers are caught at their destination, rather than their
source. Rather than noticing when a pointer escapes from a location that hasn’t
been traversed, it notices when the pointer escapes into an object that has already
been traversed. If a pointer 18 overwritten without being copied elsewhere, so much
the better—the object is garbage, so it might as well not get marked.

If the pointer is installed into an object already determined to be live, that
pointer must be taken into account—it has now been incorporated into the graph
of reachable data structures. Such pointer stores are recorded by the write barrier—
the collector is notified which black objects may hold pointers to white objects, in
effect reverting those objects to grey. Those formerly-black objects will be scanned
again before the garbage collection is complete, to find any live objects that would
otherwise escape. (This process may iterate, because more black objects may be
reverted while the collector is in the process of traversing them. The traversal is
guaranteed to complete, however, and the collector eventually catches up with the
mutator.) :

Objects that become garbage during garbage collection may be reclaimed at the
end of that garbage collection, not the next one. This is similar to Baker’s read-
barrier algorithm in its treatment of pre-existing objects—they are not preserved if
they become garbage before being reached by the collector.

It is less conservative than Baker’s and Yuasa’s algorithms in its treatment of
objects allocated by the mutator during collocation, however. Baker’s and Yuasa’s
schemes assume such newly-created objects are live, because pointers to them may
get installed into objects that have already been reached by the collector’s traversal.
In terms of tricolor marking, objects are allocated “black”, rather than white—they
are conservatively assumed to be part of the graph of reachable objects. (In Baker’s
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algorithm, there is no write barrier to detect whether they have been incorporated
into the graph or not.)

In the Dijkstra et al. scheme, objects are assumed not to be reachable when
they’re allocated. In terms of tricolor marking, objects are allocated white, rather
than black. At some point, the stack must be traversed and the objects that are
reachable at that time are marked and therefore preserved.

We believe that this has a potentially significant advantage over Baker’s or
Yuasa’s schemes. Most objects are short-lived, so if the collector doesn’t reach those
objects early in its traversal, they’re likely never to be reached, and instead to be
reclaimed very promptly. Compared to Baker’s or Yuasa’s scheme; there’s an ex-
tra computational cost—by assuming that all objects allocated during collection
are reachable, those schemes avoid the cost of traversing and marking those that
actually are reachable. On the other hand, there’s a space benefit with the incre-
mental update scheme—the majority of those objects can be reclaimed at the end
of a collection, which is likely to make it worth traversing the others. (In Steele’s
algorithm, some objects are allocated white and some are not, depending on the col-
ors of their referents [Ste75). This heuristic attempts to allocate short-lived objects
white to reclaim their space quickly, while treating other objects conservatively to
avoid traversing them. The cost of this technique is not quantified, and its benefits
are unknown.)

3.6 Choosing Among Incremental Techniques

In choosing an incremental collection design, it is instructive to keep in mind the
abstraction of tricolor marking, as distinct from mechanisms such as mark-sweep or
copy collection. For example, Brooks’ collector [Bro84] is actually a write barrier
algorithm, even though Brooks describes it as an optimization of Baker’s scheme.!®
Similarly, Dawson’s[Daw82] copy collection scheme is cast as a variant of Baker’s,
but it is actually an incremental update scheme, similar to Dijkstra et al.’s; objects
are allocated in fromspace, i.e., white.

The choice of a read- or write-barrier scheme is likely to be made on the basis
of the available hardware. Without specialized hardware support, a write barrier
appears to be easier to implement efficiently, because heap pointer writes are much
less common than pointer traversals.

Appel, Ellis and Li [AEL88] use virtual memory (pagewise) access protection
facilities as a coarse approximation of Baker’s write barrierf[AEL88, AL91, Wil91].
Rather than checking each load to see if a pointer to fromspace is being loaded, the
mutator is simply not allowed to see any page that might contain such a pointer.
Pointers in the scanned area of tospace are guaranteed to contain only pointers into
tospace. Any pointers from fromspace to tospace must be from the unscanned area,
so the collector simply access-protects the unscanned area, i.e., the grey objects.
When the mutator accesses a protected page, a trap handler immediately scans the

6 The use of uniform indirections may be viewed as avoiding the need for a Baker-style
read barrier—the indirections isolate the collector from changes made by the mutator,
allowing them to be decoupled. The actual coordination, in terms of tricolor marking, is
through a write barrier.
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whole page, fixing up all the pointers (i.e., blackening all of the objects in the page);
referents in fromspace are relocated to tospace (i.e., greyed) and access-protected.

Unfortunately this scheme fails to provide meaningful real-time guarantees in the
general case. (It does support concurrent collection, however, and greatly reduces
the cost of the read barrier.) In the worst case, each pointer traversal may cause the
scanning of a page of tospace until the whole garbage collection is complete.!”

Of write barrier schemes, incremental update appears to be more effective than
snapshot approaches—because most short-lived objects are reclaimed quickly—but
with an extra cost in traversing newly-allocated live objects. This cost might be re-
duced by carefully choosing the ordering of root traversal, traversing the most stable
structures first to avoid having the collector’s work undone by mutator changes.

Careful attention should be paid to write barrier implementation. Boehm, Demers
and Shenker’s [BDS91, Boe91] incremental update algorithm uses virtual memory
dirty bits as a coarse pagewise write barrier. All black objects in a page must be
re-scanned if the page is dirtied again before the end of a collection. (As with Appel,
Ellis and Li’s copy collector, this coarseness sacrifices real-time guarantees, while
supporting parallelism. It also allows the use of off-the-shelf compilers that don’t
emit write barrier instructions along with heap writes.)

In a system with compiler support for garbage collection, a list of stored-into
locations can be kept, or dirty bits can maintained (in software) for small areas of
memory, to reduce scanning costs and bound the time spent updating the marking
traversal. This has been done for other reasons in generational garbage collectors,
as we will discuss in Sect. 4.

4 Generational Garbage Collection

Given a realistic amount of memory, efficiency of simple copying garbage collection
is limited by the fact that the system must copy all live data at a collection. In most
programs in a variety of languages, most objects live a very short time, while a small
percentage of them live much longer [LH83, Ung84, Sha88, Zor90, DeT90, Hay91].
While figures vary from language to language and program to program, usually
between 80 and 98 percent of all newly-allocated objects die within a few million
instructions, or before another megabyte has been allocated; the majority of objects
die even more quickly, within tens of kilobytes of allocation.

(Heap allocation is often used as a measure of program execution, rather than
wall clock time, for two reasons. One is that it’s independent of machine and im-
plementation speed—it varies appropriately with the speed at which the program
executes, which wall clock time does not; this avoids the need to continually cite
hardware speeds.!® It is also appropriate to speak in terms of amounts allocated for

17 Ralph Johnson has improved on this scheme by incorporating lazier copying of objects
to fromspace [Joh92]. This decreases the maximum latency, but in the (very unlikely)
worst case a page may still be scanned at each pointer traversal until a whole garbage
collection has been done “the hard way”.

12 Ope must be careful, however, not to interpret it as the ideal abstract measure. For
example, rates of heap allocation are somewhat higher in Lisp and Smalltalk, because
more control information and/or intermediate data of computations may be passed as
pointers to heap objects, rather than as structures on the stack.
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garbage collection studies because the time between garbage collections is largely
determined by the amount of memory available.!® Future improvements in compiler
technology may reduce rates of heap allocation by putting more “heap” objects on
the stack; this is not yet much of a problem for experimental studies, because most
current state-of-the-art compilers don’t do much of this kind of lifetime analysis.)

Even if garbage collections are fairly close together, separated by only a few
kilobytes of allocation, most objects die before a collection and never need to be
copied. Of the ones that do survive to be copied once, however, a large fraction sur-
vive through many collections. These objects are copied at every scavenge, over and
over, and the garbage collector spends most of its time copying the same old objects
repeatedly. This is the major source of inefliciency in simple garbage collectors.

Generational collection [LH83] avoids much of this repeated copying by segregat-
ing objects into multiple areas by age, and scavenging areas containing older objects
less often than the younger ones. Once objects have survived a small number of scav-
enges, they are moved to a less frequently scavenged area. Areas containing younger
objects are scavenged quite frequently, because most objects there will generally die
quickly, freeing up space; copying the few that survive doesn’t cost much. These
survivors are advanced to older status after a few scavenges, to keep copying costs
down.

(For historical reasons and simplicity of explanation, we will focus on genera-
tional copying collectors. The choice of copying or marking collection is essentially
orthogonal to the issue of generational collection, however [DWH*90].)

4.1 Multiple Subheaps with Varying Scavenge Frequencies

Consider a generational garbage collector based on the semispace organization: mem-
ory is divided into areas that will hold objects of different approximate ages, or gen-
erations; each generation’s memory is further divided into semispaces. In Fig. 9 we
show a simple generational scheme with just two age groups, a New generation and
an Old generation. Objects are allocated in the New generation, until its current
semispace is full. Then the New generation (only) is scavenged, copying its live data
into the other semispace, as shown in Fig. 10.

If an object survives long enough to be considered old, it can be copied out of the
new generation and into the old, rather than back into the other semispace. This
removes it from considgration by single-generation scavenges, so that it is no longer
copied at every scavenge. Since relatively few objects live this long, old memory will
fill much more slowly than new. Eventually, old memory will fill up and have to be
garbage collected as well. Figure 11 shows the general pattern of memory use in this
simple generational scheme. (Note the figure is not to scale—the younger generation
is typically several times smaller than the older one.)

The number of generations may be greater than two, with each successive gener-
ation holding older objects and being scavenged considerably less often. (Tektronix

19 Allocation-relative measures are still not the absolute bottom-line measure of garbage
collector efficiency, though, because decreasing work per unit of allocation is not nearly
as important if programs don’t allocate much; conversely, smaller percentage changes in
garbage collection work mean more for programs whose memory demands are higher.
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Fig.9. A generational copying garbage collector before garbage collection.
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4406 Smalltalk is such a generational system, using semispaces for each of eight
generations [CWB86).)

4.2 Detecting Intergenerational References

In order for this scheme to work, it must be possible to scavenge the younger gen-
eration(s) without scavenging the older one(s). Since liveness of data is a global
property, however, old-memory data must be taken into account. For example, if
there is a pointer from old memory to new memory, that pointer must be found at
scavenge time and used as one of the roots of the traversal. (Otherwise, an object
that is live may not be preserved by the garbage collector, or the pointer may simply
not be updated appropriately when the object is moved. Either event destroys the
integrity and consistency of data structures in the heap.)

In the original generational collection scheme [LH83] scheme, no pointer in old
memory may point directly to an object in new memory; instead it must point to a
cell in an indirection table, which is used as part of the root set. Such indirections are
transparent to the user program. This technique was implemented on Lisp machines
such as the MIT machines [Gre84] and Texas Instruments Explorer [Cou88]. (There
are minor differences between the two, but the principles are the same.??)

Note that other techniques are often more appropriate, especially on stock hard-
ware. Using indirection tables introduces overhead similar to that of Baker’s read
barrier. A pointer recording technique can be used instead. Rather than indirecting
pointers from old objects to young ones, normal (direct) pointers are allowed, but
the locations of such pointers are noted so that they can be found at scavenge time.
This requires something like a write barrier [Ung84, Moo84]; that is, the running
program cannot freely modify the reachability graph by storing pointers into objects
in older generation.

The write barrier may do checking at each store, or it may be as simple as main-
taining dirty bits and scanning dirty areas at collection time [Sha88, Sob88, WM89,
Wil90].2!; the same mechanism might support real-time incremental collection as
well.

The important point is that all references from old to new memory must be
located at scavenge time, and used as roots for the copying traversal.

Using these intergenerational pointers as roots ensures that all reachable objects
in the younger generation are actually reached by the collector; in the case of a copy
collector, it ensures that all pointers to moved objects are appropriately updated.

As in an incremental collector, this use of a write barrier results in a conservative
approzimation of true liveness; any pointers from old to new memory are used as

20 The main difference is that the original scheme used per-generation entry tables, indirect-
ing and isolating the pointers into a generation. The Explorer used ezit tables, indirecting
the pointers out of each generation; for each generation, there is a separate exit table for
pointers into each younger generation[Cou88).

Ungar and Chambers’ improvement [Cha92], of our “card marking” scheme [WM89,
Wil90] decreases the cost per heap write by using whole bytes as dirty bits. Given the
byte write instructions available on common architectures, the overhead is only three
instructions per potential pointer store, at an increase in bitmap size and per-garbage
collection scanning cost.

21
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roots, but not all of these roots are necessarily live themselves. An object in old
memory may already have died, but that fact is unknown until the next time old
memory is scavenged. Thus some garbage objects may be preserved because they
are referred to from objects that are floating (undetected) garbage. This appears not
to be a problem in practice [Ung84, UJ88].

It would also be possible to track all pointers from new memory into old memory,
allowing old memory to be scavenged independently of new memory. This is more
costly, however, because there are typically many more pointers from old to new than
from new to old. This is a consequence of the way references are typically created—
by creating a new object that refers to other objects which already exist. Sometimes
a pointer to a new object is installed in an old object, but this is considerably less
common. This asymmetrical treatment allows allows object-creating code (like Lisp’s
frequently-used cons operation) to skip the recording of intergenerational pointers.
Only non-initializing stores into objects must be checked for intergenerational refer-
ences; writes that initialize objects in the youngest generation can’t create pointers
into younger ones.

Even if new-to-old pointers are not recorded, it may still be feasible to scavenge
a generation without scavenging newer ones. In this case, all data in the newer
generations may be considered possible roots, and they may simply be scanned for
pointers [LH83]. While this scanning consumes time proportional to the amount of
data in the newer generations, each generation is usually considerably smaller than
the next, and the cost may be small relative to the cost of actually scavenging the
older generation. (Scanning the data in the newer generation may be preferable to
scavenging both generations, because scanning is generally faster than copying; it
may also have better locality.)

The cost of recording intergenerational pointers is typically proportional to the
rate of program execution i.e., it’s not particularly tied to the rate of object creation.
For some programs, it may be the major cost of garbage collection, because several
instructions must be executed for every potential pointer store into the heap. This
may slow program execution down by several percent. (It is interesting to note that
this pointer recording is essentially the same as that required for a write barrier
incremental scheme; the same cost may serve both purposes.)

Within the framework of the generational strategy we’ve outlined, several im-
portant questions remain:

1. Advancement policy. How long must an object survive in one generation before
it is advanced to the next? [Ung84, WM89)

2. Heap organization. How should storage space be divided and used between gen-
erations, and within a generation [Moo84, Ung84, Sha88, WM89]? How does the
resulting reuse pattern affect locality at the virtual memory level [Ung84, Zor89,
WM&89], and at the level of high-speed cache memories [Zor91, WLM92]?

3. Traversal algorithms. In a tracing collector, the traversal of live objects may
have an important impact on locality. In a copying collector, cbjects are also
reordered in memory as they are reached by the copy collector. What affect does
this have on locality, and what traversal yields the best results [Bla83, Sta84,
And86, WLM91]?

4. Collection scheduling. For a non-incremental collector, how might we avoid or
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mitigate the effect of disruptive pauses, especially in interactive applications
[Ung84, WM89]? Can we improve efficiency by careful “opportunistic”’scheduling
[WMB89, Hay91}? Can this be adapted to incremental schemes to reduce floating
garbage?

5. Intergenerational references. Since it must be possible to scavenge younger gen-
erations without scavenging the older ones, we must be able to find the live
pointers from older generations into the ones we’re scavenging. What is the best

way to do this [WM89, BDS91, App89b, Wil90]?

5 Conclusions

Recent advances in garbage collection technology make automatic storage reclama-
tion affordable for use in high-performance systems. Even relatively simple garbage
collectors’ performance is often competitive with conventional explicit storage man-
agement [App87, Zor92]. Generational techniques reduce the basic costs and dis-
ruptiveness of collection by exploiting the empirically observed tendency of objects
to die young; stock hardware incremental techniques may even make this relatively
inexpensive for hard real-time systems.

We have discussed the basic operation of several kinds of garbage collectors, to
provide a framework for understanding current research in the field. A key point is
that standard textbook analyses of garbage collection algorithms usually miss the
most important characteristics of collectors—namely, the constant factors associated
with the various costs, including locality effects. These factors require garbage col-
lection designers to take detailed implementation issues into account, and be very
careful in their choices of features.

Features also interact in important ways. Fine-grained incremental collection is
unnecessary in most systems without hard real-time constraints. Coarser incremen-
tal techniques may be sufficient, because the modest pause times are acceptable
[AEL88, BDS91], and the usually-short pauses of a stop-and-collect generational
system may be acceptable enough for many systems [Ung84, WM89]. (On the other
hand, the write barrier support for generational garbage collection could also sup-
port an incremental update scheme for incremental collection; if this recording is
cheap and precise enough, it might support fine-grained real-time collection at little
cost.)

In this introductory survey, we have not addressed the increasingly important ar-
eas of parallel [Ste75, KS77, DLM 78, NR87, AEL88, SS91] and distributed [LQP92,
RMA92, JJ92, PS92] collection; we have also given insufficient coverage of conserva-
tive collectors, which can be used with systems not originally designed for garbage
collection [BW88, Bar88, Ede90, Wen90, WHI1]. These developments have consid-
erable promise for making garbage collection widely available and practical; we hope
that we’ve laid a proper foundation for discussing them, by clarifying the basic issues.
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Abstract: With the continued growth in interest in distributed systems,
garbage collection is actively receiving attention by designers of
distributed languages [Bal, 1990]. Distribution adds another dimension
of complexity to an already complex problem. A comprehensive
review and bibliography of distributed garbage collection literature up
to 1992 is presented. As distributed collectors are largely based on
nondistributed collectors these are first briefly reviewed. Emphasis is
given to collectors which appeared since the last major review [Cohen,
1981]. Collectors are broadly classified as those that identify garbage
directly and those that identify it indirectly. Distributed collectors are
reviewed on the basis of the taxonomy drawn up for nondistributed
collectors.

1.0 Introduction

Garbage collection is a necessary evil of computer languages which employ
dynamic data structures. Abstractly, the state of a computation expressed in such
languages can be understood as a rooted, connected, directed graph. Some edges,
roots, are distinguished in that they provide entry points into the graph. The
vertices of the computation graph are represented by cells, the units of allocation
and deallocation of contiguous segments of store. (Nothing will be assumed
about the sizes of cells.) Edges of the graph are represented by pointer fields
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within cells. Roots are pointers to vertices from the execution stack, global
variables or registers. As a computation proceeds the graph changes by the
addition and deletion of vertices and edges. As a result, some portions of the
graph become disconnected. These disconnected subgraphs are known as garbage.

cell

stack
Roots  registers
global

References within cells
(Pointer fields)

0

Fig 1. A representative, though small, state of a computation.

Without reutilization, the finite store available for allocating new vertices
diminishes to zero. The process by which the store occupied by discarded cells can
be reutilized is called garbage collection.

The earliest forms of store management placed the responsibility for allocation
and reclamation on the programmer. Today this is considered too errorprone if
not burdensome and a wide variety of languages provide automatic allocation
and reclamation as part of their runtime system. Recent reports for various
languages are: Smalltalk [Krasner, 1983; Ungar, 1984; Caudill, 1986; Miranda, 1987};
Prolog [Appleby et al, 1988]; ML [Li, 1990]; C++ [Bartlett, 1990; Detlefs, 1990a;
Edelson and Pohl, 1990], Modula-2+ [DeTreville, 1990; Juul, 1990} and Modula-3
[Hudson and Diwan, 1990].

An important addition to the terminology of garbage collection was introuuced by
Dijkstra [1978]. The process which adds new vertices and adds and deletes edges is
called the mutator. The mutator is an abstraction of the running program. The
process which reclaims garbage is called the collector. Historically, the major
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disadvantage of automatic collection was that it significantly detracted from the
performance of the mutator, both by introducing unpredictable, long pauses and
using large proportions of available processing cycles. Measurements of early
Smalltalk-80 implementations indicate that 20% to 70% of the time was spent
collecting garbage [Krasner, 1983]. For lisp, collection overheads of between 10%
and 40% were reported [Steele, 1975; Wadler, 1976], with pause times of 4.5
seconds every 79 seconds [Foderaro, 1981]. Over the previous decade much
progress has been made; and the current state-of-the-art for Smalltalk-80 is less
than 5% collector overhead, with typically better than 100 millisecond pause-
times [Ungar, 1992].

Efficient garbage collection is so useful and so difficult to make unobtrusive that it
has been a field of active research for over three decades. It constitutes a major
concern for language designers. Knuth [1973] invented some and analysed other
collectors which appeared prior to 1968. Cohen [1981] performed a public service
with a survey of papers up to 1981. While there have since been numerous
papers on garbage collection, they have tended to be language specific. Some
languages allow optimizations which are not generally applicable. The semantics
of a language does restrict the topology of the computation graph and graphs may
be: cyclic; acyclic or tree-like. The topology in turn restricts the type of collector
which can be employed.

A significant complication to the problem of garbage collection since Cohen [1981]
has arisen with the spreading web of distributed systems [Bal, 1990]. According to
Bal: "A distributed computing system consists of multiple autonomous
processors, nodes, that do not share primary memory, but cooperate by sending
messages over a communications network."" The advantages of distribution are:
- improved performance through parallelism;
- increased availability and reliability through redundancy;
- reduced communication by dispersion of processing power to where it is
needed and
- incremental growth through the addition of nodes and communication
links.

The convincing factor is the economic consequences to which these advantages
give rise. While distributed applications can be built directly on top of operating
systems, Bal [1990] puts forward convincing arguments for programming
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languages which contain all the necessary constructs for distributed
programming. For such languages, the computation graph is distributed over a
number of nodes. The absence of a homogeneous address space and the high cost
of communication relative to local computation make distributed garbage
collection a significantly more complex problem than collection on a single node.

The purpose of this paper is to give as comprehensive as possible a review and
bibliography of distributed garbage collectors, subject to space limitations. As
distributed collectors are generally based on nondistributed collectors the latter are
first briefly classified. Special attention is given to incremental and concurrent
collectors which are directly relevant to distribution. Emphasis will be placed on
papers and trends published since Cohen [1981). The majority of these papers
relate to object-oriented languages, but for the ideal of treating different languages
uniformly, herein, objects will be referred to as cells. The final section reviews
distributed collectors on the basis of the taxonomy drawn up for single node
collectors.

2.0 Single Node Collectors

Following Cohen [1981] the collection process consists of:

1) identification and

2) reclamation of garbage for reuse.
The way in which garbage is identified distinguishes two classes of collectors.
Garbage identification can be made directly, identifying cells that become
disconnected from the computation graph or indirectly by identifying the cells
forming the computation graph; what then remains must be garbage (and
unallocated store).

The form of reclamation is dependent on how the free store is managed. It can
either be managed as a freelist (equally well a bitmap or buddy system) or a heap.
If managed by a freelist, garbage is coalesced into the list. If managed as a heap,
the division between the allocated and unallocated store is indicated by a single
pointer, the top of heap, and reclamation can be performed either by compacting

or by copying.
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(— Garbage Collection )

leenhﬁcahon D

Direct ( Indirec )

Fig 2. The garbage collection problem.

Various collectors have been proposed which seek to optimise different criteria.
Some aim to minimize the total percentage time spent collecting garbage; some
aim to minimize the period of time taken in any one invocation of the collector
(to provide predictable performance for realtime or interactive programming);
some aim to minimize the space overhead (the memory required to identify and
collect garbage); som= are concerned with localization which is important for the
efficient use of virtual memory. The next section gives a brief survey developing
a taxonomy in terms of the advantages and disadvantages of different species.

2.1 Direct identification of garbage

Direct identification of garbage can be made using a reference count. In its
simplest form, a cell holds a count of the number of references to it [Collins, 1960].
If as a result of a mutator operation the count falls to zero, the cell is garbage, since
it can no longer be reached from a root. The collector can immediately reclaim
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the cell and recursively decrement the counts of its referents and reclaim those
whose count also fall to zero. Naturally enough, this process is known as

recursive freeing.

A feature of reference counting is that garbage is reclaimed immediately it is
identified. One of a number of disadvantages of reference counting is the space
overhead of the count. It has been observed [Krasner, 1983] that the majority of
cells have & small reference count. Consequently, the size of the count field of a
cell is chosen to be smaller than is needed to represent all possible references.
Typically, systems allocate one byte to hold the reference count. Once a count
reaches the ceiling, saturation, it is not altered and no longer accurately reflects
the number of references to a cell. To cheapen the test for saturation a count is
saturated if the signed byte is negative, allowing the count to record from 0 to 127

references.

Clark’s measurements of LISP programs (see [Deutsch and Bobrow, 1976; Field
and Harrison, 1988]) show that about 97% of list cells have a reference count of 1.
This suggests an extreme form of saturation using a singlebit count [Friedman
and Wise, 1977]. A clear bit is used to indicate a single reference to cell. When a
second reference to the cell is created the bit is set. Once set the bit cannot be
cleared because it cannot be determined, without great cost, if the cell has more

than one reference.

To reclaim cells that acquire more than one reference during their lifetime, it is
necessary to employ a second type collector. Because of the predominance of
single references, this collector will be invoked considerably less often than if it
were used on its own. Singlebit reference counts are efficient and have the
additional advantage in that they can be stored in cell pointers rather than the cell
itself. Duplicating a pointer then does not require access to the cell to adjust the
count.
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2.2 Indirect identification of garbage

A second disadvantage of reference counting is the difficulty it has with
reclaiming circular structures. The reason for this is the locality of
indentification. It is expensive to determine if the destruction of one local
pointer has disconnected a portion of the graph. A disconnected cyclic structure
will have no vertices connecting it with the roots of the computation graph but
each of its cells will have a nonzero reference count.

Some reference counting schemes do exist that attempt to reclaim cyclic garbage,
but they are tedious, complex [Friedman and Wise, 1979], lack generality [Bobrow,
1980] and have significant computational overhead [Brownbridge, 1985; Hughes,
1985; Rudalics, 1986; Watson, 1986). The problem can be overcome by requiring
that the programmer explicitly break cycles of references or, more typically, by
supplementing reference counting with second collector that identifies garbage
indirectly [Goldberg and Robson, 1983].

Collectors that identify garbage indirectly take a global aspect. Traversing the
computation graph from the roots and visiting all vertices will identify those cells
which are definitively not garbage. By default, the unvisited part of the store is
garbage or unallocated. By such means, cyclically connected subgraphs which
become disconnected are (indirectly) identified and can be collected.

Mark-and-sweep collectors postpone collection until the free store is exhausted.
Mutation is then temporarily suspended. Identification and reclamation are
treated as sequential phases. The first phase traverses the computation graph
marking all accessible cells. In its simplest form a single markbit is sufficient to
indicate whether or not a cell is pointed to by other cells reachable from a root.
This markbit is comparable with a singlebit reference count. A difference is that
for the markbit, those cells whose counts are equal to zero are declared gafbage
while the others are part of the computation graph. The marking phase
concludes when all accessible cells have been marked. A sweep of the entire store
reclaims the unmarked cells and clears the marked ones [McCarthy, 1960].
Singlebit reference counting is further distinguished from mark-and-sweep by the
periods in which the bits holds accurate information. For mark-and-sweep the
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information is only consistent at the end of the sweep phase. For reference
counting it is made consistent after every mutation.

The free storage can be managed as a freelist or a heap. With heap management
reclamation can be achieved by compaction. For fixed size cells, compaction can
be performed by sweeping the heap twice [Cohen, 1967]. In the first pass, two
pointers are used, one starting at the bottom of the heap, the other at the top. The
pointer to the top of the heap scans down until it points to a marked cell. The
pointer to the bottom of the heap scans up until it points to an unmarked cell. At
this point, the contents of the marked cell are copied to the unmarked cell
(assuming the cells are the same size.), the markbit cleared and forwarding
pointer to the new cell placed in the old position. When the two pointers meet,
all marked cells have been unmarked and compacted in the upper part of the
heap. The second scan is needed for readjusting pointers to moved cells. Any
cells that refer to cells in the compacted area are adjusted by following forwarding
pointers.

Martin [1982] combines the marking phase with a rearrangement of the pointers
so that they can be moved more readily. Carsson, Mattsson and Bengtsson {1990]
present a variation in which during the mark phase the pointer fields of the
accessible’cells (not the whole cells) are copied into a table and the cells are
marked as visited. After sorting the addresses the reachable cells are compacted by
sliding the cells to one end of the store.

If the store is managed as a freelist and the computation graph contains cells of
differing sizes, allocation will in general fragment the free store. When an
allocation request is made, the free list may contain no free cells of the required
size, but may contain cells larger than that required. Typically, the allocator will
satisfy the request by splitting a larger cell into an allocated cell, and a remaining
free fragment. Over time, the freelist becomes composed of smaller and smaller
fragments. Eventually a situation occurs where no free cell is large enough to
meet the allocation yet the total size of free space is sufficient. The allocation can
be met by coalescing the fragments into a single, or at least larger, cells. This is
done by compacting the cells forming the computation graph. Some systems use
compaction as an independent storage management technique to backup another
garbage collection scheme. For example, in BrouHaHa Smalltalk {Miranda, 1987]
the allocator checks that the total size in free cells is sufficient and if so invokes
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the compactor. A mark-and-sweep garbage collector is used as a last resort if
compaction would prove futile.

3.0 Incremental and Concurrent Collectors

Section 2 identified three processes associated with garbage collection: mutation
(M), indentification (I) and reclamation (R). What distinguishes the majority of
collectors up to [Cohen, 1981] is that these processes are sequenced. As reference
counting reclaims garbage as soon as it is detected, mutation can be followed by
cascades of IR operations as a result of recursive freeing. In contrast, indirect
identification postpones collection until the free store is exhausted; only at the
end of each MIR cycle is the store, generally, in a consistent state.

As Ungar [1984] reported, Fateman found that mark-and-sweep takes up 25% to
40% of the computation time of Franz-Lisp programs. Wadler [1976] reported that
typical Lisp programs spend from 10% to 30% of their time performing collection.
As such, mark-and-sweep is unsuitable for reactive (interactive and reastime)
applications, because even if the garbage collector goes into action infrequently,
on such occasions as it does it requires large amounts of time.

While reference counting is somewhat better in this respect because the grain size
of the processes is smaller, a significant amount of time is spent in identification
[Steel, 1975; Ungar, 1984]. Every mutator operation on a cell requires that the
counts of its referents' be adjusted. Furthermore, significant time is spent in
recursive freeing: 5% on Berkeley Smalltalk and 1.9% on Dorado Smalltalk
implementations [Ungar, 1984]. Because recursive freeing is unbounded, the
simple form of reference counting in which the collector immediately reclaims
all the cells freed by a mutation is also unsuitable for reactive applications.
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3.1. Deferred, direct collectors

The overhead of immediate reference counting can be reduced by deferring
recursive freeing. Using doubly linked freelist store management [Weizenbaum,
1962; 1963}, a newly deallocated cell can be placed on the end of the freelist but its
referents not immediately processed. This cell is considered for reuse when it
advances to the head of the list. Only at this time are the counts of its referents
decremented; any falling to zero are added to the end of the freelist.

This deferred reference counting technique is time efficient and provides a
smoother collection policy, one not so vulnerable to unbounded mutator delays
of immediate reference counting. However, it is no longer true that after each
MI operation all garbage has been identified let alone reclaimed. Collectors
which, by design, do not necessarily identify and reclaim all garbage in a single
invocation are said to be incremental.

A similar scheme is that of Glaser and Thomson [Field and Harrison, 1988], which
uses a to-be-decremented stack instead of a doubly-linked list. In this scheme cells
are added to the to-be-decremented stack if they have a count of one which
requires decrementing. When cells are allocated from the stack their count is
already one, hence this scheme manages to elide many garbage identification
operations.

Deutsch and Bobrow [Deutsch, 1976] observe that, frequently, over a series of
reference counting operations the net change in a cell's count will be small, if not
nil. For example,” when duplicating a cell reference as a stack parameter to a
procedure call, the cell will acquire a reference that will be lost once the procedure
returns. If adjusting such volatile references can be deferred, many garbage
identification operations can be eliminated.

Baden [1983], proposes such a scheme for Smalltalk-80 which was used by
Miranda [1987]. References to cells from roots, such as the stack, are not included
in a cells count. Instead, root reference to cells are recorded in the Zero Count
Table (ZCT). If a reference to a new cell is pushed on the stack (the typical way by
which new cells join the computation graph), it is placed in the ZCT since it has a
zero count and is only referenced from the stack. When a nonroot reference
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counting operation causes a cells' count to fall to zero the cell is also placed in the
ZCT because it might be referenced from a root. If the ZCT fills up or when no
more free store is available, the collector initially attempts to reclaim cells in the
ZCT. Firstly, reference counts are stabilized , made consistent, by increasing the
count of all cells referred to from the roots. The ZCT is emptied by scanning and
any referenced cell with a zero count is freed. Finally, the stack is scanned and the
counts of all cells referred to from the stack are decremented. During this process
any cells whose counts returns to zero are placed in the ZCT, since they are now
only referenced from the stack.

Using this technique, stack pushes and pops reduce to ordinary data-movement
operations, that is, they can be made without identification operations. Baden’s
measurements of a Smalltalk-80 system suggest that this method eliminates 90%
of the reference count manipulations, and reduces the total time spent on
reference counting by half [Baden, 1983]. A slight disadvantage is that sweeping
the ZCT causes a pause in mutation, however typical pause times are of a few
milliseconds [Miranda, 1987]. A further disadvantage is the extra storage required
by the ZCT between reclamations.

3.2 Concurrent mark-and-sweep

The major advantage of deferred reference counting is that garbage collection is
fine grained and interleaved with mutation, making it suitable for interactive
and realtime applications [Goldberg, 1983]. The major disadvantage of indirect
identification is the long interruptions of the mutator by the collector. Dijkstra
[1978] described a modification of mark-and-sweep in which the mutator and the
collector operate concurrently. Put another way, the collector operates on-the-fly.
It was in the context of this algorithm that the terminology mutator and collector
processes was coined.

In the simple mark-and-sweep scheme, of Section 2, concurrency is prevented by
interference of identification by the mutator. If a reference to a new cell is added
after the sweep has passed over it, the new cell will not be correctly identified as
part of the computation graph. Dijkstra achieves a decoupling of the mutator
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from the collector by introducing a third state for a cell. The three states, referred
to as colours: white (unmarked); black (marked) and gray, can be represented by
two mark bits. The mutator prevents collection of a newly allocated white cell by
turning it grey at the time of allocation.

Marking blackens any cell traced from a root. Cells will be either black, grey or
white. As previously, white cells are unreachable from the roots. Grey cells will
be those allocated since the last collection but missed by during the marking
phase. In the sweep phase white cells are reclaimed and other shades are
whitened. Baker {1992] has recently proposed a realtime collector similar to
Dijkstra’s where any invocation of the collector is bounded in time.

3.3 Scavenging collectors

The generality and modularity of mark-and-sweep account for the attention it has
received in the past three decades. It can however be inefficient because of its
global nature. The marking phase inspects all accessible cells while the sweeping
phase traverses the whole store. The sweep time is proportional to the size of the
store and in virtual memory systems, the collector may access numerous pages on
secondary store, an inherently slow process.

When the store is managed as a heap the costly sweep phase of the mark-and-
sweep collectors can be eliminated by combining the identification and collection
phases. This requires two heaps, historically called semispaces [Baker, 1978]. The
mutator begins operating in the fromspace. When there is no free space, the
collector scavenges fromspace. A scavenge is a simultaneous traversal and copy
of the computation graph from the fromspace to the tospace. This combination of
copying and tree traversal has the added advantage of improving locality. When
each cell is moved to tospace a forwarding pointer is left behind. After a
scavenge, the fromspace becomes free, and can be reused. The two semispaces are
flipped and the mutator continues.

Baker's original scheme is also realtime. Collection is interleaved with mutation
but any invocation of the collector is bounded. A consequence of this is that the
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mutator must handle forwarding pointers. If the mutator encounters a reference
to a forwarding pointer it updates the reference, so avoiding subsequent
forwarding.

Scavenging schemes trade space for time since they require two heaps.
Consequently they have much higher space overheads than either mark-and-
sweep or reference counting algorithms.

3.4 Generational scavengers

Lieberman and Hewitt [1983] observed that most newly created cells die young,
- and that long-lived cells are typically very long-lived. Their collector segregates
cells into generations, each with its own pair of semispaces. Each generation may
be scavenged without disturbing older ones giving rise to incremental collection.
Younger generations to be scavenged more frequently. The youngest generation
will be filled most rapidly, but when flipping very few of its cells survive. This
drastically reduces the amount of copying needed to maintain the generation.
Generations can be created dynamically when the youngest generation fills up
with cells that survive several flips.

Ungar's [1984] generation scavenging collector exploits the same cell lifetime
behaviour as Lizberman and Hewitt. This collector classifies cells as either new or
old. OId cells reside in a region of memory called Old Space (OS). All old cells
that reference new ones are members of the Remembered Set (RS). Cells are
added to RS as a side effect of the mutator. Cells that no longer refer to new cells
are removed from RS when scavenging. All new cells must be reachable from
cells in RS. Thus, RS behaves as roots for new cells and any traversal of new cells
can start from RS.

Three heaps are used for new cells: new space (NS) (a large nursery heap where
new cells are spawned); past survivor (PS) space (which holds new cells that have
survived previous scavenges), and future survivor (FS) space (which remains
empty while the mutator is in operation). A scavenge copies live new cells from
NS and PS to FS space, and flips PS and FS. At the end of the scavenge, no live
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cel's are left in NS and it can be reused. Cells that have survived more than a
prescribed number of flips are moved to OS, a process called tenuring.

With Ungar's collector the mutator is stopped during scavenging. This allows
dispensing with forwarding pointers which achieves performance gains. While
explicitly not concurrent, the collector is incremental because generations are
small, pause times are short. By carefully tailoring the size of NS, FS and PS an
implementation of Ungar's scheme for Smalltalk manages to keep scavenge
times to a median of 150 milliseconds occurring every 16 seconds [Ungar, 1984].

Although generational collectors collect intragenerational cycles, they cannot
collect intergenerational, cycles of references through more than one generation.
Further, some schemes do not attempt to scavenge older generations. [Ungar
1984] leaves the reclamation of such garbage to offline reorganization, where a
full garbage collection is done after the system has stopped. The current ParcPlace
[1991] Smalitalk-80 generational garbage collector is backed up by an incremental
collector, a mark-and-sweep collector, and a compactor which garbage collects OS.

Although generation collectors are one of the most promising collection
techniques, they suffer poor performance if many cells live a fairly long time, the
so-called premature tenuring problem. Ungar and Jackson propose an adaptive
tenuring scheme based on extensive measurements of real Smalltalk runs
{Ungar, 1988; 1992]. This scheme varies the tenuring threshold depending on
dynamically measured cell lifetimes. It also proposes a refinement that has been
included in the ParcPlace [1991] collector. In systems like Smalltalk, interactive
response is at a premium but the system contains many large cells that don't
contain references to other cells, mainly bitmaps and strings. To avoid copying
these cells they are segregated in a LargeCellSpace, and tenured to OS5 when

necessary.

A generational scavenging collector that adapts to the allocation patterns of
applications was recently presented by Hudson and Diwan [1990]. This
generational scavenging collector has a variable number of fixed size (power of 2)
generations. The generations are placed in store at contiguous addresses. The
generation number is apparent from the most significant address bits. Each
generation has its own tospace, fromspace, and RS (remembered set). RS is fed
indirectly via a buffer containing addresses of possible intergenerational pointers.
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The feeder may filter out duplicates, intragenerational pointers, and nonpointers.
When scavenging more cells than a generation can accommodate, a new
generation is inserted. To retain the ordering, the younger generations are
shuffled backwards during scavenging.

Other generation-based collectors include: opportunistic collectors [Wilson and
Moher, 1989]; ephemeral collectors and the Tektronix Smalltalk collector. In
terms of usage, all three commercial U.S. Smalltatk systems (DigiTalk, Tektronix
and ParcPlace systems) have adopted generational automatic storage reclamation
[Ungar and Jackson, 1988]. The SML NJ compiler [Wilson, 1992] also uses a
generational collector. Deimer et al [1990] have investigated a generational
scheme combined with a conservative mark-and-sweep garbage collector
designed for use with Scheme, Mesa and C intermixed in one virtual memory.

Wilson, Lam and Moher [1990] show that, typically, generational garbage
collectors have poor locality of reference, but careful attention to memory
hierarchy issues greatly improves performance. They attributed the small success
recorded by several researchers in their attempts to improve locality in heaps to
two flaws in the traversal algorithms. They failed to group data structures in a
manner reflecting their hierarchical organization, and more importantly, they
ignored’ the disastrous grouping effects caused by reaching data structures from a
linear traversal of hash tables (i.e. in pseudo-random order).

Incremental collectors that copy cells when the mutator addresses them have also
been looked at by White [1980] and Kolodner [Kolodner et al, 1989; Kolodner,
1991]. These reorder cells in the order they are likely to be accessed in the future,
giving improved locality. However, the technique requires special hardware.
Other reordering optimizations that don't require special hardware work by
reordering pages within larger units of disk transfer [Wilson, 1992].

4.0 Distributed Collectors

Following Hudak and Keller [1982] distributed collectors are characterized by:
i) a set of nodes; comprising any number of processors sharing a single
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address space;
ii) connected by a communication network;
iii) where each node holds a portion of the computation graph and
iv) each node has at least one mutator.

In distributed systems, processing is distributed over all nodes. Each node has
direct access only to cells that reside in its local heap. A reference to a cell in the
same node is said to be local. A reference to a cell on another node is said to be
remote. Access to a remote cell is achieved by sending a message to the node that
holds it, which then performs any necessary operation.

The issues of distributed garbage collection are very much the issues of
distribution:

i) concurrency, communication and synchronization;

ii) communication overheads;

ili) messages may be lost, delivered out of order or duplicated;

iv) fault tolerance.
After discussing the effects of distribution on the computation graph the
following sections present various distributed collectors based on the previous
taxonomy. The final section addresses fault tolerance issues. Table 1 summarizes
the main characteristics of the collectors described.

4.1 Distributed computation graphs

To exploit the parallelism of a distributed system, the computation graph has to
be distributed over all nodes. The vertices of the graph are naturally partitioned
according to physical distribution, but there is no principle that prevents a cell
migrating between nodes. Each node could contain roots of the graph but it is
more usual that the roots lie on the node on which the computation was
initiated. A remote reference is necessarily indirect. It first references a local
export record. The export record references an entry record on a remote node. In
turn, the entry record directly references the remote cell.
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The import and export records might naturally be grouped in tables but the export
record could equally well be a proxy cell. The triple indirection causes some
overhead for a remote reference which adds another dimension to the problem of
nonlocality. The entry table acts as additional local roots for the local partition of
the computation graph. The local roots and the entry table will allow the local
part of a graph to be collected independently. Given the potential parallelism,
incremental and concurrent collectors appear the most appropriate for distributed
systems. The problem of collection, then, naturally decomposes into the problem
of local collection and global collection of the entry and exit tables.

Further tables may be used to record the cells they reference remotely. El-
Habbash, Horn and Harris [1990] use an additional private table. The private
table provides location independent addressing. Storage is partitioned into
clusters, each with its own set of tables. A cluster is a logical partition of cells (a
passive node) in contrast to the natural physical partition (of active nodes). A
cluster is a group of cells which are expected to form a locality set. Cells in the
cluster reference other clusters via defined ports. The import table gives a
location hint about each external cell referenced from the cluster. The export
table is the entry point for the public cells in the cluster which can be externally
referenced. Public cells in the cluster are given unique public identifiers (PIDs).
Private cells are not known outside the cluster and can only be referenced by the
cells in the same cluster. The private cells are given local identifiers (LIDs),
which are, in fact, private table entries in the cluster.

Clusters are the unit of management, the objective being to increase the locality of
reference within a cluster. Removing nonreferenced cells from a cluster is
considered a contribution to increasing the locality of reference of the cluster.
Subgraphs which are only reachable from the export table may be removed to that
cluster's archival cluster. Whenever an archived cell is referenced from any
cluster, that cell and its subgraph are moved into the cluster. In this way, cells
may migrate from cluster to cluster, via archival clusters. Archived cells which
are not referenced from any cluster will remain in the archival cluster. Starting
from the roots in the cluster, and traversing the subgraphs rooted at them, any
cells connected in these graphs must remain in the cluster. The other cells which
are not reachable from the roots are moved away to maintain a high locality of
reference in the cluster. Nonreachable public cells in the cluster cannot be
considered as garbage because they may be referenced from other clusters, but on



60

the other hand they are not part of the locality in the cluster. The private cells
which are not reached from any public cells (roots or nonroots) in the cluster are
definitely garbage, and can be reclaimed. Archival collection is controlled by
setting time limits.

A similar approach is used by Moss [1990] in the Mneme project. Mneme
structures the heap of cells into files. A file has a set of persistent roots and
contains a collection of cells that can refer to each other using short cell
identifiers. Cells in one file can refer to cells in other files via a device called a
forwarder. A forwarder is a local standin or proxy for a cell in another file. Thus,
to refer to a cell in another file, one refers to a local cell marked as a forwarder; the
forwarder can contain arbitrary information about how to locate the cell at the
other end. Each file can be garbage collected independently. Moss calls the import
table the incoming reference table (IRT). Both the Moss and El-Habbash collectors
are intended for use in a persistent environment.

4.2 Distributed direct identification of garbage

The locality of identification in reference counting has a number of attractive
consequences for distributed systems. The collector visits cells only when the
mutator does. Cells can be reclaimed locally as soon as they become inaccessible.
One of the earliest distributed reference counting collectors performs all of the
reference counting operations by spawning remote asynchronous tasks on
appropriate processors [Hudak and Keller, 1982]. This ensures that actions are
atomic. The nontrivial part of the adaptation is to guarantee that indentification
operations (increment and decrement reference counts) are executed in the order
they were generated. If this were not the case, a reference count may prematurely
reach zero. Simple remote reference counting requires synchronization of
communication between cooperating nodes.

Lermen and Maurer {1986] ignore part of the problem by assuming that the
underlying communication protocol preserves the order of messages. The
assumption can be enforced if either the system provides fixed routing or
provides a message protocol that indicates the order in which they are sent.
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An extension of reference counting which eliminates both synchronization and
the need to preserve the order of messages is weighted reference counting (WRC).
It was developed independently by Thomas [1981], Watson and Watson [1987] and
Bevan [1987]. The idea is that each cell is allocated a standard reference count
when created and at all subsequent times the sum of weights on the pointers to a
cell is equal to the reference count. A reference with a weight W is equivalent to
W references each with a weight 1. When a reference is duplicated it is
unnecessary to access the cell. Rather, the weight of the pointer is equally divided
between itself and the copy. The sum of the weights then remains unchanged. In
this respect, WRC can be understood as a generalization of singlebit reference
counting when the bit is located with the pointer. The advantage for distribution,
is that no communication is required when a remote reference is copied. When a
reference is destroyed, however, the pointer weight must be decremented from
the reference count of the cell in order to preserve the rule that sum of the
weights must equal the reference count. As usual, if a cell's count falls to zero it
can be reclaimed.

Because the reference weight is always a power of two to allow for duplication,
the log of the weight can be stored instead of the whole weight. This provides an
important reduction in the space requirement for each reference. However,
when a weight is to be subtracted from a count it must be converted (by shifting).
Indirection is used to handle underflow which occurs when a reference weight of
one needs to be copied.

An unfortunate consequence of indirection is that a reference, its indirection and
the cell to which it refers may reside on different nodes. In this case, accessing a
cell requires additional messages. Generational reference counting (GRC),
Benjamin [1989] solves this problem. Each reference is associated with a
generation. Each cell is initially given a zero generation reference, any copy of an
ith generation reference is an (i+1)th generation reference. Each cell has a table,
called a ledger, which keeps track of the number of outstanding references from
each generation. If a cell's ledger has no outstanding references from any
generation, then the cell is garbage and its space can be reclaimed. GRC has a
significantly lower communication overhead but greater computational and
space requirements than ordinary reference counting. Its communication
overhead is similar to WRC, namely cne acknowledged message for each copy of
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an interprocessor reference and a corresponding extra space associated with each
reference.

Vestal [1987] describes a collector-that uses a distributed fault tolerant reference
counter. Each cell maintains a conservative list of sites referencing it. Each site of
this list keeps the count of references it has for that cell. Atomic update of the list
is required when a site first references a cell. The cycle-detection algorithm is
seeded with some cell suspected of being part of a dead cycle. The algorithm
essentially consists of trial deletion of the seed and checking if this brings all the
counts in the cycle to zero.

4.3 Distributed indirect collectors

One of the first distributed indirect identification collectors was the marking-tree
collector, [Hudak and Keller, 1982]. It is an adaptation to a distributed
environment of the previously described Dijkstra [1978] concurrent mark-and-
sweep. Each mutator and collector on each node has its own task-queue. Each
task locks all cells it intends to access to prevent race conditions. To prevent
deadlock, if a task finds that some cell was already locked all locked cells are
released and the task requeued. Since cells involved in a task may reside on
different processors, this locking mechanism introduces high processing time and
communication overhead when the collector and the mutator have high degrees
of contention to shared cells. There is a single root of the whole distributed
graph. The collector collects one node after another beginning with the root
node. It can reclaim all garbage including cycles. The marking-tree collector
operates in a functional graph reduction environment and need not handle
arbitrary pointer manipulation. Because it does not batch remote mark tasks, it
imposes high message traffic. Space needed for storing these requests cannot be
determined in advance.

Similar mark-and-sweep collectors also inspired by Dijkstra's parallel collector
were described by Augusteijn [1987] and Vestal [1987]. All processors cooperate in
both phases of the collection but marking can proceed in parallel with mutation.
In Vestal's [1987] collector, the cell space is split into logical areas in which parallel
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collection may occur. Areas are a logical grouping of cells, and there is no control
over site boundary crossing. The space overhead is proportional to the number of
cells and to the number of areas, since each cell maintains an array of four colours
for each existing area in the system. This collector does not take advantage of
locality: each collector performs a global transitive closure starting at the root of
one area, hence crossing boundaries.

Mohammed-Ali [1984], Hughes [1985] and Couvert [see Shapiro ef al, 1990]

describe variants of mark-and-sweep collectors applicable to the distributed

environment. For these all nodes synchronise at the start of a local mark phase;
At the end they perform a global rendezvous to exchange information about the

global reachability. Each node then proceeds in parallel to a local sweep phase. A

global rendezvous is inherently costly and nonscalable.

Mohammed-Ali [1984] presented two different approaches, 'global' and 'local’
collectors with minimal space overheads. In the global approach, mutation is
globally suspended for the entire collection. The collector handles arbitrary
pointer manipulations and resolve some of the space and communication
problems of the marking-tree collector.

Mohammed-Ali's [1984] 'local’ collector simplifies collection by simply
abandoning the attempt to recover cyclic garbage that spans several nodes. Each
node asynchronously and independently performs local collection without
involving any other node. If the freed storage is large enough the node's mutator
will continue. Otherwise, it will invoke global collection. To allow a node to
perform local garbage collection, it has to know which of its local cells are
reachable from remote cells. Cells that have references from other nodes are
assumed to be accessible in each local garbage collection. This situation persists
until the next global collection invocation.

In the collectors given by Mohammed-Ali, the issue of lost or transit messages is
solved by first assuming that the communication channel between each pair of
nodes is order-preserving. An alternative solution is to keep message counts in
each node. Before a garbage collection is completed, a check is made to ensure
that the number of reply messages equals the message count. The space overhead
of the collectors are not easily determined. In addition to InTable and OutTable
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which keep track of incoming and outgoing references, there is TempTable that
keeps in transit refererces and several message queues.

Hughes' collector [Hughes, 1985] is based on Mohammed-Ali's 'local’ collector but
reclaims cyclic garbage. Its main idea is to pipeline a number of collections over
the entire network. This is achieved with the use of a synchronous termination
detection algorithm based on instantaneous communication. Synchronous
termination, however, may invalidate the collector for architectures comprising
many nodes. On the other hand, the approach may be unsuitable when local
heaps are large since the contribution of one node must always consist of a
complete scan of its local heap. In a special operating mode the creation of a
remote reference has to be accompanied by an access to the referenced node
[Rudalics, 1986].

A modification of the generation scavenging used for Berkeley Smalltalk {Ungar,
1984] was given by Schelvis and Bledoeg [1988] for a distributed Smalltalk
collector. In addition to OS, NS, PS and FS which hold cells according to their age,
there is additional subspace, RS, that contains all replicated cells . RS is like OS,
except that it contains the same cells in the same order on every node. Newly
created cells are stored in NS. When NS becomes full, it and PS are garbage
collected by scavenging. The roots of the computation graph are the set of new
and survivor cells referenced from OS, RS or remote nodes. This root set is
dynamically updated by checking on stores of pointers to NS. All cells in the
graph are moved to NS, except for sufficiently old cells, which are moved to OS.
At the end of a traversal NS is empty. Since most new cells soon die, PS fills up
relatively slowly and, therefore, collection of the much bigger OS and RS is
necessary less frequently.

Detection of dead cells in the distributed system is accomplished by a system wide
mark-and-sweep collector. All nodes are checked if they have pointers to a
particular cell. The graph of living cells is traversed, the cells accessed are
marked, and at the end the space of unmarked cells is reclaimed or "swept".
Although, the global mark-and-sweep collector handles both local and distributed
cycles well, it does not work properly when not all nodes are able or willing to
cooperate.
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4.4 Hybrid collectors

When local collectors are independent they need not be homogeneous. One node
may employ reference counting, another concurrent mark-and-sweep. Global and
local collection may employ different collectors. Bennett [1987] describes a scheme
which uses both a reference counting collector and a mark-and-sweep collector in
his prototype distributed Smalltalk-80 system. A single table in each node, the
RemoteCellTable (RCT) holds local cells that are remotely referenced. Bennett
relies on facilities provided by the local Smalltalk memory manager to enumerate
local cells (proxy cells) that indirectly reference remote cells. There are two
distributed garbage collectors in Bennett's scheme, a fast algorithm that does not
reclaim internode cycles, and a slower one that does. The algorithms are initiated
by a user on one of the nodes.

The first reference counting collector relies on remotely referenced cells in
alternating collection phases being distinguishable. Each cell has a flag in the RCT
that identifies cells created since the start of a collection phase. These are similar
to the grey cells of Dijkstra's [1978] collector. During each phase, each node
enumerates its local proxies and sends a message for each proxy that increases the
external reference count of the remote cell in its RCT entry. After this marking
phase all remotely referenced cells have a nonzero external reference count. Each
node then scans its RCT and removes those cells with a zero external reference
count that were created before the start of the collection. Any such cells not
referenced locally will be reclaimed by the node's local garbage collector.

This algorithm does not detect and reclaim internode cycles. The second, slower
collector is a distributed mark-and-sweep algorithm that proceeds from those cells
in the RCT that also have local references. These cells are followed for references
to proxies and messages are sent to the remote nodes of these proxies to continue
the scan remotely. (Bennett's system is implemented on PS Smalltalk which
employs deferred reference counting. The internal reference count of a cell is
therefore readily available.) At the end of this phase internode cycles will not
have been marked and can be removed from the RCT.

DeTreville [1990] combines reference counting and mark-and-sweep in a
concurrent collector for Modula-2+. The collector was used in a distributed
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between pairs of sites; no global mechanism is necessary. The collectors' interface
is designed for maximum independence from other components.

Shapiro et al detail various message protocols. Given a reference, the finder
protocol locates the cell referred to. This protocol also handles cell deletion and
node crashes. Other protocols include reference-sending, cell-migration, cycle
detection and abnormal termination protocols. To deal with lost messages or
those in transit, events are timestamped by a local, monotonically increasing
clock. Each transmitted message is stamped with the value of the clock on

transmission.

In Shapiro et al, [1990], the universe of cells is subdivided into disjoint spaces.
Each space maintains the vector of highest timestamps received from other
nodes. Each disjoint space maintains a list of potential incoming and outgoing
references, called respectively the Cell Directory Table (CDT) and the External
Reference Table (ERT). A CDT entry is stamped with the clock value of the last
received message.

When a mutator exports a reference to another node, it is first added to the local
CDT. Both the CDT and the ERT are overestimates. Local garbage collection
proceeds from both local roots and the CDT and will remove garbage entries in
the ERT. In turn, this allows previously referenced CDTs to be collected. The
interface between the global collector and other components (i.e. the mutator and
the cell finder) is limited to just the CDT and ERT. Updates to a CDT or ERT can
occur in parallel with other activities. No synchronization is needed between the
global service and the local collector or mutator. The main weakness of the
collector is that it fails to detect interspace cycles of garbage. It proposes migrating
locally unreachable cells, leaving cycle removal to a local garbage collector. Total
ordering of spaces is used to avoid thrashing but this has its limitations.

Lang et al [1992] describe a fault-tolerant distributed collector that is largely
independent of how nodes collect their local space and doesn't need centralized
control nor global stop-the-world synchronization. It allows for multiple
concurrent collections, doesn't require migration of cells (cf Shapiro et al) and yet
reclaims all garbage cells including distributed cycles.
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In Lang et al [1992] nodes are organized into 'groups’. A group is a set of nodes
willing to cooperate together in a group collection. Nodes cooperate to collect
garbage local to a group by means of a concurrent mark-and-sweep collector. Each
group gives a unique identifier to each GC cycle. Multiple overlapping group
collections can be simultaneously active. When a node fails to cooperate, the
group it belong is reorganized to exclude it and collection continues.

The collector uses export and entry records as described in Section 4.1 but calls
them exit and entry items respectively. Entry items have a reference count of exit
items referencing them (up to messages in transit). Reclaiming an exit item
requires a decrement message to be sent to the referenced entry item. If this
action brings its counter to zero, the entry item is reclaimed. This mechanism for
reclaiming entry items (the only one available) is safe since non cooperative
nodes (or nodes that are down) do not send decrement messages and thus the
cells they refer to cannot be reclaimed. Messages with acknowledgements and
timeout are used to detect failed or non cooperating nodes.

The distributed collection begins with group negotiation. Nodes cooperatively
determine group formation. All entry items of nodes within the group are
marked w.r.t. the group. An entry item is marked hard if it is "needed outside
the group” or it is "accessible from a root of a node in the group”. It is mark soft if
it is only referenced from inside the group. The initial marks of the entry items
of a group are determined locally to the group by means of a reference counter.
The reference counter allows the determination of the number of references that
are outside a group. The marks of entry items are then propagated towards exit
items through local collection. Similarly, the marks of exit items are propagated
towards entry items they reference (if it is within the group) through group
collection. This is repeated until marks of entry or exit items of the group no
longer evolve. At this point the group is disbanded.

At the end of the marking, all entry items that are directly or indirectly accessible
from a root or from a node outside the group are marked hard. Entry items
marked soft can only be part of inaccessible cycles local to the group and can thus
be safely reclaimed by the reference counting mechanisms. In the case of dead
cycles, dead entry items in the cycle eventually receive decrement messages from
all the dead exit items that reference them. Hence their reference counts decrease
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to zero and they are eventually reclaimed by the usual reference counting

mechanism.

Liskov and Ladin [1986], describe a fault tolerant distributed garbage detection
based on their highly available centralized service. This service is logically
centralized but physically replicated and so claims to achieve high availability and
fault-tolerance. A client dialogues with a single replica; replicas stay up-to-date by
exchanging background "gossip" messages. The failure assumptions are realistic:
nodes may crash (in a fail-stop manner) and recover, messages may be lost or
delivered out of order. All cells and tables are assumed backed up in stable
storage. Clocks are synchronized and message delivery delay is bounded. These
requirements are needed for the centralized service to build a consistent view of
the distributed system.

Liskov and Ladin's [1986] distributed garbage collector relies on local mark-and-
sweep, extended with the ability to identify the part of the graph between some
incoming and outgoing reference. Each local collector informs the centralized
service about the paths. The root used for tracing is the union of its local root
with the set of local public cells. Local collectors query the centralized service
about the real accessibility of their public cells to better estimate their root. Dead
intersite cycles are detected by the centralized service. jBased on the paths
transmitted, the centralized service builds the graph of internode references and
detects dead cycles with a standard collector.

The problem of collection for reliable distributed systems was also addressed by
Detlefs [1990a; 1990b; 1991]. Transactions in reliable, distributed systems are
serializable and recoverable. An atomic collector must also preserve the
consistency of data after hardware (and software) crashes. Thus, each transaction
by the collector must be logged. After a crash, recovery can be redone by replaying
the log of transactions or, if nonvolatile storage (disk) survives the crash,
recovery may use this as the starting point if more efficient. Other work
concerned with making garbage collection cooperate transparently with a
transaction protocol was done by Kolodner [1989,1991].
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5.0 Summary

An attempt has been made to give some structure to a review of distributed
garbage collection. A problem has been that any conceptual scheme has so many
exceptions. Collectors were broadly classified as those that identify garbage
directly and those that identify it indirectly. Emphasis was given to collectors that
appeared since the last major review of garbage collection [Cohen, 1981].

Table 1 gives a summary of characteristics of the distributed collectors described in
the review. The collectors were evaluated in terms of the issues noted in Section
4.0 The following abbreviations are used in the table:

Msg  =>Message

Ack => Acknowledgement
Cnt => Count

M => Marking

C => Copying

RC => Reference Counting
GS => Generation Scavenging

Comm => Communication

Synchro => Synchronization
Where qualification is required, as in pause, space and communication overhead,
a rank of low, medium and high is used. These are relative terms and an order or
further explanation is, where available, given in brackets.

A comprehensive bibliography on the subject follows. The number of references
in the bibliography bear witness to the attention garbage collection is receiving,
particularly distributed garbage collection. Despite this attention, a lot still
remains to be done. About 80% of the distributed collectors reviewed in this
paper have not been implemented.
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Abstract. Logic programming languages are becoming more complex with
the introduction of new features such as constraints or terms with an equality
theory. With this increase in complexity, they require more and more sophis-
ticated memory management. This survey gives an insight into the memory
management problems in sequential logic programming language implemen-
tations; it also describes the presently known solutions. It is meant to be
understood by non-specialists in logic programming with good knowledge
of memory management in general. We first describe a “usefulness logic” for
run-time objects. Usefulness logic defines non-garbage objects. Next, memory
management systems are presented from the most trivial original run-time
system, with no real concern for memory problems, to elaborated run-time
systems with memory management closely observing the usefulness logic. Fi-
nally, the choice of a garbage collection technique is discussed in relation with
logic programming specificities.

1 Introduction

1.1 The scope of this survey

Logic programming languages are increasing in complexity with the introduction of
new features such as suspension mechanisms, constraints or higher-order terms. With
this increase in complexity, memory management becomes a primary concern. The
problem with logic programming run-time systems is to avoid memory leaks which
may be introduced by the implementation of the non-determinism of the language.
Wadler [47] defines a memory leak' as a feature of a program that causes it to use
more space than one would ezpect. Accuracy of memory management techniques
in logic programming languages implementations is crucial. Accuracy concerns the
ability to decide which objects are useless, regardless of a particular program, only
taking into account the charactertstics of the representation function implemented
by the run-time system. Of course, taking into account the caracteristics of programs
to define the completeness of memory management makes full accuracy impossible
to achieve,
The paper contains five sections.

! Wadler calls it space leak
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— In the first section, we explain, in an informal manner, the usefulness logic of
standard logic programming run-time systems. Usefulness logic defines which
objects are currently useful.

— Next, we briefly describe the implementations of the first logic programming
system, and show its inefficiency.

— Then, we describe how usefulness logic can be implemented. Mechanisms spe-
cific to logic programming, namely “carly reset” and “variable shunting”, are
presented.

— Then, memory management of objects used in the implementation of extensions
to logic programming is discussed.

— In the last section, we discuss lower-level aspects of garbage collection, for
example the pros and cons of “copy” or “mark and compact” techniques, or
the ability to introduce some kind of generation garbage collector.

1.2 Other related issues

In this presentation, some important issues are left aside.

For instance, the memory management of OR-parallel systems which makes gar-
bage collection algorithms more complex. Some important contributions are by Cie-
pielewski and Haridi [21], and Warren [52]. More recent contributions are [11, 23,
25, 27, 53]. Another contribution concerning concurrent logic programming with flat
guarded Horn clauses is found in [44].

Parallel or real-time implenientation of garbage collectors for logic programming
is not presented. A study on this topic can, for example, be found in [10]. Real-time
behavior was also one of the incentives in [37] to introduce some kind of generational
garbage collector.

Another issue left aside here is the management of the program, called the clause-
base in logic programming. In most logic programming systems, the clause-base can
be modified using built-in predicates such as assert and retract. One would like the
retracting of a clause to provide the opportunity of recovering memory. However,
dynamic representation usually contains pointers to clauses. Those pointers may
become dangling if the memory occupied by clauses is recovered as soon as they
are retracted. The problems are magnified if “structure-sharing”, see §3.2, is used.
These problems have been studied in {31]. A dialect of Prolog, AProlog [35], proposes
a more disciplined way of modifying the program. In this case, the dynamic part of
the program is submitted to the general memory management scheme implemented
for dynamic objects [14].

Other areas of memory may grow when executing a logic program. They are the
symbol and constant tables. In most implementations, these areas are not reclaimed.
Athough this is an important matter, this problem is left aside in this survey.

Nothing is said either, in this survey, on compile-time garbage collection, a pro-
mising technique which is just beginning to be investigated for logic programming
purposes.
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2 Peculiarities of logic programming systems

2.1 Run-time system of a non-deterministic language

Logic programming systems perform a search through a search-tree. Each node of
the search-tree is decorated with a goal-statement which is a list of goals, i.e. terms
containing logical variables. The root is decorated with the initial goal-statement.
Transitions between search-nodes produce bindings of logical variables and the bin-
dings produced along the path leading from the root to a given search-node form a
binding state.

read(f(a)). CP; : read(X) trans(X,Y) use(Y)
read(£(b)).
trans(U,V) :- analyze(U,W), trans(f(a),Y) use(Y) trans(f(bz,Y) use(Y)

gen(W,V). .
analyze(£(T),T). analyze(f(a),W) gen(W,Y) use(Y)

gen(Z,g(2)). gen(a,Y) use(Y)
use(R) :- ...

.
]
]
:
]
[
]
’
0

use‘(g(a))t use(‘g(b) )ﬁ

[] ]
] .

T- /read(x), trans(X,Y), use(Y). : .

Fig.1. A simple program and its search-tree

We will use the program in figure 1 throughout this survey. A search-tree for this
program is partly shown on the figure.

Here is an explanation of the program for “non-prologers”. The program repre-
sents a translation process. It reads, translates and finally uses terms, one at a time.
The translation is done in two steps: an analysis step which extracts some of the
content of the input term, and a generation step which integrates the extracted
content within some new structure.

A characteristic of this program is that the predicate read has two clauses, hence,
there are two possible input terms, £{a) and #(b). They will be non-deterministically
chosen by the run-time system and treated sequentially. Notice that these two terms
stand for arbitrarily large data structures. The important thing is that, at some
point of the treatment, some parts of these structures become useless for the rest of
the computation.

2.2 Implementation of the search

A sequential Prolog system executes a depth-first traversal of the search-tree and the
state of the system is a stack of goal-statements. This stack is called the backtrack-
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stack and each of its elements is called a choice-point. A choice-point holds a goal-
statement plus a reference to alternate clauses for that goal. For the sake of simplicity,
we consider the “current goal-statement”, CGS, as being at the top of that stack
although it is usually held in registers.

In the example, one can see the two branches of the search-tree corresponding
to the two input terms. Let us consider the search process as being at the node
marked . At this stage there are two active goal-statements:

— the current goal-statement use(g(a)),
— a single choice-point read(X) trans(X,Y) use(Y) called CP;.

Usually, there is not much difference between two successive states in the stack,
hence a new goal-statement is represented with some objects already used in the
representation of previous (older) goal-statements. The modifications of structures,
essentially variable substitutions, are recorded into a list called the #rail which is used
later to recover the previous states, i.e. to backtrack. In the example at position t,
there are two active goal-statements, the current one, {, and CP1 to which the run-
time system will backtrack to start the exploration of the second branch of the
search-tree. At this stage of the computation the goal use(Y) is common to the two
goal-statements and its representation can be shared by the representation of the
the active goal-statements. Most implementations of logic programming languages
follow this sharing method, which is called the OR-sharing technique. With such a
technique, only the current choice-point can be readily accessed. In order to access
saved choice-points, an interpretation of the trail is necessary.

2.3 Usefulness logic of logic programming run-time systems

We call usefulness logic of a programming language implementation the logic that
determines which run-time objects are useful, without referring to a particular pro-
gram. This notion is not usually exhibited, because it is trivial in the case of func-
tional programming:

useful objects are those accessed when following references from some roots.

But this notion is more complicated in logic programming implementations that
call for the OR-sharing technique:

useful objects are those accessible from the choice-points, each one interpreted
using its own binding state.

The difficulty is that only the current binding state is readily represented. The
usefulness logic of logic programming can be split into the three following principles.

1. The first principle, stated by Bruynooghe [i7], is that all accesses to useful ob-
jects come from the active goal-statements. This suggests a marking procedure
which executes a traversal of goal-statements found in the backtrack-stack. This
principle implies that the well known “cut” operation of Prolog may recover
some memory space, since it destroys choice-points. For non-prologers, the cut
operation is an extra-logical predefined predicate that allows one to suppress
choice-points. It is used for committing the search to some choices.
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2. The second principle, pointed out by Bekkers et al. [9], is that some binding

values may become useless in the course of the exploration of a branch in the
search-tree. A given variable binding is relevant only for the goal-statements
which are under the arc which produces the binding itself. If a variable is seen
only from nodes higher in the search-tree than its binding, then this binding is
useless.
In the example, consider the search at point , the substitution [X <- £(a)] is
useless because, CGS has no access to X, and CP; accesses X but is above the arc
which produces the binding. It is then possible to suppress the binding at that
point. This technique is named early reset in [3]. The resetting of the variable
and the discarding of its trail element are also described in [7]. Bruynooghe [17]
describes a weaker version, called wirtual backiracking, where variables are not
reset to free, but where it is avoided to mark resetable binding values. The term
early reset derives its name from the fact that variables, like X in the example,
are reset to the free state before moving back up in the search-tree (i.e. before
backtracking).

3. The third principle is that some varables may become irreversibly substitu-
ted [29]. We use the notation <substitutions; list-of-goals> to describe a
goal-statement and exhibit the substitutions of variables.

At position { in the search-tree, the goal-statements are:

<[] ; read(X), trans(X,Y), use(Y)>

<[y <~ g(a)] ; use(¥)>.
Variable Y is free in a goal-statement and bound in another one. Hence, it is fair
to represent the variable and its binding at the same time.
But when the search is at node t1, there is only one goal-statement:

<Y <- g(v)] ; use(Y)>.
In this case, variable Y is bound in every goal-staternent. Hence, at position {1,
it is useless to represent the variable Y. A more concise representation would be

<[] ; use(g(v))>.
Optimization consists in replacing an occurrence of a variable with its binding
value. This has been named vartable shunting in [29]. Some compile-time optimi-
zations can be considered as a trivial form of variable shunting. In our example,
the variable identifiers U, ¥, T, Z, R are treated by any decent compiler as na-
ming devices and never lead to a variable creation at run-time. This is because
there is no choice-point between the creation of the variable and its subtitution.

The three previous principles describe the requirement of an ideal memory ma-
nagement. [t was gradually implemented in Prolog run-time systems. Several gene-
rations were necessary. Our presentation follows this historical and didactic progres-
sion.

3 Prehistory: lack of garbage collection

3.1 Reclaiming space upon backtracking only

The first Prolog interpreter (Marseille, [39]) was designed with no real concern for
memory efficiency. Memory allocated during a procedure call is not reclaimed before
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backtracking occurs. This is really not sufficient since it means, by analogy with
functional languages, that a procedure body survives the procedure exit. However,
reclaiming memory upon backtracking (instant reclaiming in short) is very important
as it is a way of recovering an unbounded amount of memory at a constant cost.
Hence, in general, systems should preserve such a capability.

backt\:rack stack

e TSCPI | oos
CGS N\
[analyze(X,W) gen(W,Y) | | [ read(X) trans(X)Y) use(Y)]
gla) wraa | A{ a) XFi][ YO
A

X_ Y

fadiied

trail

Fig. 2. Simple memory organization

Trivial memory management is illustrated on figure 2. Consider the computation
as being at node T of the example. Goals analyze(X,W) gen(W,Y) are kept in memory
and may eventually be buried under new objects, by the execution of the goal use (W),
although they are useless for the rest of the computation.

3.2 Structure-sharing versus term-copying

Mimicking the implementation of other languages, the first implementations of logic
programming languages used classical Boyer and Moore’s “structure-sharing” [13] to
represent goals and terms. It is a well-known technique which represents a term with
a pair of pointers, one to a static model in the program and the other to a dynamic
“environment” which gives the values of variables. This is a “static” sharing, which
uses pieces of program to represent dynamic objects. It must not be confused with
the previously mentioned OR-sharing technique.

A new representation of terms, usually called structure copying, was proposed
independently in [32] and in [16]. It uses copy and amounts to creating new data
structures to represent a term instance. This method currently prevails over struc-
ture sharing because it simplifies garbage collection algorithms. The problem with
structure-sharing comes from the indexed arrays used to represent the binding envi-
ronments. Such arrays are difficult to compact. In most implementations, in classical
WAM for example, only binding values are represented by copies. Lists of goals, lo-
cated in the local stack, are usually represented with structure-sharing, but in [48]
the choice is explicitly left open.

Few Prolog implementations use copies for the representation of lists of goals.
Typical examples are Prolog implementations running on MALI [28, 14]. MALI is
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a memory management machine which offers a kernel of commands well suited for
logic programming: terms construction, terms traversal, variable binding, etc. It fully
encompasses OR-sharing and does not preclude the use of the other sharings. Thanks
to its Lisp-like term construction capability, goals copying is very natural in MALL
It 1s hard to compare the memory efficiencies of the two schemes as one can
construct examples of programs where structure sharing is better than structure
copying, and it is also possible to construct programs where it is the contrary.

3.3 Splitting memory into local and global spaces

The Edinburgh implementation [49] is the first to benefit from memory management
efforts. Memory space is divided into two spaces, the locel stack and the global stack.

the local stack contains the “control part” of goal-statements, i.e. parts of goals
that are statically known to become useless when deterministically returning
from a procedure (execution of a goal). Hence, some memory can be reclaimed
before backtracking, which is an improvement over previous systems.

the global stack contains the “data part” of goal-statements, i.e. the representa-
tion of binding values which are compound terms. In general, space in the global
stack cannot be reclaimed before backtracking because objects there, like Lisp
list constructions, can survive procedure exits.

> [
i CGS

\ CPy
[read(X) trans }X Y) use/(Y)!

K[Z__] ng

local
stack

+
4

global
stack

trail

Fig. 3. Local and global spaces

A “deterministic return from a procedure” is such that no choice-point shares the
representation of the procedure body. Indeed, the procedure body cannot be removed
from the stack on exit if a choice-point maintains access to it. This is concretely
detected by the presence of a choice-point above the procedure body in the local
stack. This technique, sometimes called “environment protection” {2], is illustrated
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on figure 3: consider the search at node t, goals such as analyze(X,W) gen(W,Y) have
been removed, but not the goals read(X) trans(X,Y) because the choice-point CP;
maintains access to them.

When a goal is “erased”, the local stack abstractly decreases but actual decrea-
sing depends on the concrete representation of goal-statements: in the case of a
goal-copying technique, it really decreases as each goal is erased, but with a simple
structure-sharing technique, see §3.2, it decreases at the procedure exit. An enhan-
cement of the management of environments in structure sharing allows environment
trimming [3]. It consists in ordering the variables in a clause so as to allow indivi-
dual removal of each variable from the local, stack as soon as it disappears from goal
statements.

With a local stack, classical tail recursion optimization (TRO) becomes pos-
sible [50] and allows the programming of infinite loops or “perpetual processes”
which do not consume memory space [51].

The WAM [48, 2], which is usually considered as a standard for Prolog imple-
mentations, uses this two-stack organization.

4 Classical period: garbage collection

Despite the previous improvement, the global stack, also called the heap, needs to be
garbage collected. It generally grows indefinitely during a perpetual process, even if
the local stack does not. To complete its two-stack structure sharing scheme, War-
ren [49] proposes a mark and compact garbage collector for discarding inaccessible
cells from either end of environments? in the global stack.

4.1 Blind traversal of goal-statements

Bruynooghe proposed an improved garbage collection scheme [17]. The proposal
by Bruynooghe is to implement a traversal of the goal-statements found in the
backtrack-stack, following all references without interpretation. However, such a tra-
versal is blind in the sense that it follows references in a Lisp-like manner. This is
conservative but not accurate because it does not respect the usefulness logic of logic
programming systems (it satisfies principle 1, but neither 2 nor 3).

At step t of the example, all the objects in the heap, g(a) and f(a), are marked
and kept in memory (see figure 4).

4.2 Ignoring useless bindings, early reset

To comply with principle 2, “some binding values may become useless”, it is neces-
sary to consider the binding status of goal-statements. Several authors have imple-
mented this principle [15, 8, 6, 37, 5, 3, 42]. The condition for applying early reset of
variables is shown in figure 5. It shows that the variables which can be reset are those
that are not seen by a goal statement older than the variable binding. The early reset
technique consists in traversing each choice-point (goal-statement) in the backtrack-
stack from top to bottom while marking traversed objects. Between traversals of

2 they are called frames in his papers
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Fig.4. Blind traversal of active goal-statements

consecutive choice-points, say CP, and CP,.1, the trail segment corresponding to
CP,, is scanned in a search for trail elements corresponding to unmarked variables.
The unmarked variables are unbound and their trail elements are discarded.

~== CP,-1 CP, —-~

J, , i time vizn

T T CP; does not access X

creation of X  substitution of X

Fig. 5. Condition for applying early reset

Usually in the WAM, the trail is implemented as a stack, hence a compaction
of the trail is required. With MALI, two other solutions have been implemented.
The first solution is to represent the trail with a list and an element in this list is
simply discarded by the garbage collector. The second solution is to put an extra
field within the variables and to use this field as a link between substituted variables
to represent the trail; in that case the trailing information is automatically discarded
with the discarding of the variable. In usual WAM implementations, some variables
are represented by a slot inside a data structure representing one of the terms in
which the variable occurs. Hence, the last solution presented here is not realistic for
such a representation.

The early reset algorithm is illustrated in figure 6: at step { in the example,
variable X is only accessible from choice-point CPy. It is free in this goal-statement,
hence the space occupied by the binding value, £{a), can be reclaimed. Note that
term f(a) stands for an arbitrary large structure. As a result, the early reset gain
of is unbounded.

This algorithm is correct because such a variable is not accessible from already
visited goal-statements, since it is not marked, and is not seen as a bound variable
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Fig. 6. Ignoring useless bindings: early reset

from the remaining goal-statements because they are older than the trail element
(see figure 5). The binding value of such a variable is useless.

4.3 Shunting irreversibly substituted variables

Variable shunting consists in finding variables which are only seen in their bounded
state, and then replacing pointers to such variables with their binding values. Such
variables are those for which no choice points have been created (or they have been
destroyed by cut operations) between creation time and binding time. There are
several ways of implementing variable shunting.

& , ‘ i ~ time age Oicreatlon
T T age of substitution

creation of X substitution of X

Fig. 7. Condition for applying variable shunting

First implementation, time-stamping: Let the age of a variable be the serial
number of the choice-point just created after that variable. For systems in which
the location of objects in memory respects the order of creation, the age of the
variable can be directly deduced from its location; otherwise, it has to be explicitly
memorized as a field in the variable.
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In terms of age, variable shunting can be applied when the age of the variable
is the same as the age of its substitution®, as illustrated on figure 7 where both
the creation of variable X and its substitution are time-stamped n. With a top-to-
bottom traversal of goal-statements of the backtrack-stack, the algorithm works in
two non-consecutive steps:

1. While scanning the trail segment corresponding to a choice-point CP,,, for any
trail element concerning a variable of age n, the variable is made recognizable
with a special tag called shunted and the trail element is taken out from the
trail. Such a variable is not accessible in its free state and can be shunted.

2. When encountering a reference to a bound variable which has been tagged shun-
ted, this reference is replaced by the binding value of the variable.

This algorithm which we call time-stamping has been implemented in [6, 10], two
versions of MALI used in Prologll/MALI run-time system [28]. Variable shunting has
also been implemented in SICStus Prolog [19], see [41) where benchmarks showing
the usefulness of the approach are presented.

Second implementation, virtual saving: The general technique consists in tra-
versing goal-statements in the backtrack-stack from bottom to top (the opposite of
the previous traversal) and marking traversed objects. We call this technique wvir-
tual saving because it proceeds as if it were recreating the backtrack-stack. Virtual
saving has been implemented in [38] a version of MALI used in AProlog run-time
system [14].

To avoid traversing irrelevant binding values, the traversal (and marking) does
not go through bound (non-shunted, see later) variables. As for the top-to-bottom
traversal, a treatment is applied to the trail, between the traversals of two consecutive
choice-points. The treatment used in the bottom-to-top traversal can be expressed
as follows: let CP,_; and CP, be two consecutive choice-points, all choice-points
up to n — 1 have been marked; then two operations (sub-traitements) are performed
onto the trail segment corresponding to CP,.

In the first sub-treatement, the segment is scanned in a search for trail elements
corresponding to unmarked variables; such variables are tagged “shunted” but not
marked; their substitutions are untrailed.

Then, in the second sub-treatement, the binding value of every remaining trail
element is traversed and marked. The binding values of shuntable variables do not
need to be marked at that time. If necessary, they will be marked later while encoun-
tering shunted variables. While marking the binding values, some bound variables
can, in turn, be met. Their bindings should not be followed. Either, it is a substitu-
tion relevant to that trail segment; hence, it will be marked by this second pass. Or,
it is a substitution relevant to a trail segment not yet visited; therefore, to respect
usefulness logic one must not follow the binding value.

So as to completely comply with principle 3 of usefulness logic, the two sub-
treatements should be done sequentially, in the present order.

3 The age of a substitution is the serial number of the choice-point just created after that
substitution
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As with the previous technique, every occurrence of a reference to a shunted
variable is later replaced with the corresponding binding value.

This algorithm is correct because a trail element concerning an unmarked va-
riable relates to a variable which was not seen as a free variable by previously tra-
versed choice-points. In §6.1, it is shown that a top to bottom traversal followed by
a bottom-to-top traversal of the backtrack-stack achieves early reset and variable
shunting.

Not all substitutions are trailed: In most implementations, substitutions are
recorded in the trail only if the variable is older than the last choice-point. If the
substitution is not recorded in the trail, the variable is directly marked shunted when
it is substituted.

About the interest of variable shunting: What variable shunting saves is only
the representation of the variables. Hence, the gain is a constant amount if the
representation of a variable has a constant size. However, as logical variables become
more complex (types, constraints) their representation may become arbitrarily large
(see §5.1) and the gain becomes more substantial.

Note that in most implementations of the WAM, a variable is usually represented
by a slot in one of the structures in which it occurs. Therefore, in many cases the
variable does not occupy any proper space, so that variable shunting may recover
nothing. However, Sahlin showed in [40] that one can construct a program where
variable shunting reclaims space in a WAM implementation. Another advantage
with variable shunting is that it makes accesses to subsequent binding values more
direct.

However, it is better not tc be dependent on the “embodied-slot” trick because:

— some variables? need a proper representation,
— 1t does not work for complex variables,
— it complicates memory management.

For all these reasons some implementations may not use the trick.

5 Renaissance: implementing Prolog extensions

The development of extensions to Prolog started very early with Prologll [46] dif/2
and freeze/2 predefined predicates. The implementation of these two extensions has
often been studied [12, 18]. Recent well-known extensions towards constraints pro-
gramming can be found in PrologI!I [22] and CHIP [24]. Another recent extension,
AProlog, introduces Aterms and their higher-order-unification procedure. With these
recent developments, new low-level mechanisms have been introduced to implement
usefulness logic. Two requirements can be recognized:

1. suspending goals and awakening them on variable bindings;
2. rewriting terms.

* they are called unsafe variables in the WAM terminology
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Two solutions have been proposed for implementing these mechanisms. The first
solution consists in using a new binary structure which is an extension of the already
known variable, the attributed variable, c.f. §5.1. The second solution consists in
keeping the variable as is, while allowing multiple reversible substitutions thereof.
The mechanism is usually implemented using a so-called value trail, c.f. §5.2.

5.1 Attributed variables

In order to implement extensions to Prolog, a new type of variable has been in-
troduced; we call it attribuied variables, as in [29]. It has also been called closures
in [5] or suspensions in [18]. In these systems, attributed variables have been used
to implement delay and constraint extensions into Prolog. An attributed variable is
like a variable with an extra term attached to it, its aftribuie. Attributed variables
have been generalized in [38] under the name of mutable terms (in short muterms). A
Prolog level variant, called meta-siructure, has also been proposed in [36] to provide
a Prolog system with a user-extendible unification procedure.

From the point-of-view of memory management, the property of this binary
structure is that the attribute is only accessible when the variable is free. This
property must be used to improve the completeness of the garbage collector. The
idea is to force the garbage collector to treat this structure as a normal variable.
In this way, it straightforwardly reclaims the space occupied by the attribute when
the attributed variable is shunted. Here the gain obtained with variable shunting
becomes very important because attributes can be terms of any complexity.

Attributed variables, or their extensions, provide easily a reversible® term re-
writing mechanism. For example, they have been used to implement Aterms in
AProlog [14]°. With this method, histories of Areductions are automatically recorded
in the trail through substitutions of attributed variables. For some reasons, essen-
tially because of cut operations, the reversibility of rewriting may become useless.
In that case, variable shunting automatically simplifies the representation of terms
by discarding non-Breduced versions of terms.

With this method one can simulate multiple reversible assignments by creating
a new attributed variable each time a new value has to be assigned.

5.2 Management of general affectation of variables

An alternative solution to attributed variables, is to allow direct multiple reversible
affectations of the same variable. This solution has been implemented by Toural-
vane [43] for Prologlll, a Prolog with constraints. It has also been used, under the
name vaelue trail, and mulii-value trail, in CHIP [1], another constraint logic pro-
gramming language, from ECRC.

Each time a variable is modified, its previous value is saved in the trail. Roots
of accesses to useful objects are: primary accesses which come from the active goal-
statements in the backtrack-stack and secondary accesses which come from values
saved in some trail elements.

% undone upon backtracking
% In fact, for this application, muterms have used
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As stated by the usefulness logic, some trail elements are useless (i.e. they must
not be considered as secondary accesses). The following mechanisms are meant to
implement a cleaning of the trail to fulfill principles 2 and 3 of the usefulness logic
in the context of value trails.

Fig. 8. Cleaning the trail

To specify which trail elements are useless, we use the already defined notion of
age (§4.3). In the example of figure 8, the age of the variable X is ¢—1 and the ages of
trail elements v2 and v3 are both i+ 1. There are two kinds of useless trail elements:

— those having the same age as the variable, for example v0; when backtracking,
they restore a value to a variable which disappears immediately. This is a case
of variable shunting.

— those for which there exists an older trail element with the same age for the
variable, for example v3; they are useless because they restore a value which is
immediately overwritten.

The overall algorithm consists in a “cleaning of the trail”, to implement variable
shunting, followed by a marking phase, to implement early reset, followed by a
compaction of the stacks.

Cleaning the trail: The cleaning of the trail discards useless trail elements: this is
done by scanning the trail from bottom to top and reversing pointers. Pointers are
reversed to give access from the variables to the list of their values. See figure 8, at
this stage there are only two trail elements in the trail.

The marking: Marking proceeds from primary accesses found in choice-points and
secondary accesses found in the trail, in decreasing order of ages. As usual, to im-
plement usefulness logic, each traversal is done according to an age; in the example
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Fig. 9. Useless value of variable: early restoration

of figure 8, the value of X at age i — 1 is v1 and its value at age ¢ is v2. When traver-
sing a variable according to age %, let j be the age of the most recent trail element
concerning this variable 7:

— if § < i: the more recent value v of the variable is visible according to age 7,
so the value and all trail elements of the list are useful. Value v is immediately
traversed according to age ¢ and all trail elements of the list are marked.

— if j > i: the more recent value of the variable is a useless value (v4 in figure 9).
The actual value of the variable according to age i is the previous value v2
saved in the trail. This value v2 is immediately restored and traversed according
to age 1 and all trail elements of the list, except for the last one, are marked.
This operation, called “early restoration”, corresponds to “early reset” in this
implementation.

When traversing the trail section of age ¢, unmarked trail elements are discarded
and values contained in marked trail elements are traversed under age ¢ — 1.

6 Different kinds of garbage collectors

Now that we have seen the requirements of memory management in the context of
logic programming, we will discuss the implementation of garbage collectors in this
confext. At this level, classical traversal techniques which have been developed for
functional programming can be borrowed:

— copying garbage collectors [26, 20], which are known to be simple and extensible
towards real-time garbage collectors [4],

— mark and compact garbage collectors, usually a variant of the Morris algo-
rithm [34]; regarding logic programming: the most interesting property of these
garbage collectors is that they preserve the order of object locations. This makes

" remember that pointers in the trail have been reversed, so trail elements concerning a

variable are easily found
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the computation of the age of objects easy, and also allows instant reclaiming
upon backtracking.

6.1 Copying versus mark and compact garbage-collectors

It is commendable to cause removal of elements from the search-stack to bring about
an immediate recovery of memory. This is very cost-effective because an unbounded
amount of memory can be recovered at a constant cost.

A frequent claim among implementors is that backtracking is incompatible
with copying garbage-collectors. The reason that is given is that copying garbage-
collectors usually move objects regardless of the structure of the backtrack-stack.
Hence, instant reclaiming becomes impossible. This is why most existing implemen-
tations use mark and compact methods [5, 3, 42].

Assume, n is the number of non-garbage cells. The cost of a copy garbage collector
is usually proportional to n. The cost of the compaction phase of mark and compact
algorithm is generally proportional to the total amount of memory, i.e. the sum
garbage and non-garbage. Sahlin proposes in [40] an improvement of the algorithm
in [3] which makes it proportional to nlogn.

In the following, we describe how a copying technique, applied individually to
each active goal-statement, can be combined to allow instant reclaiming.

Copying from the newest to the oldest choice-point: Copying from the ne-
west to the oldest choice-point implements naturally early reset, §4.2. With the
top-to-bottom copy garbage collector, variable shunting can be implemented at the
extra expense of a new field within variables containing a time-stamp, see 4.3. Ho-
wever, the top-to-bottom copy places an object close to the most recent choice-point
that uses it. This does not allow instant reclaiming because the same object may be
used by older segments, see figure 10.

Fig.10. Top to bottom copy collector modifies location order

Copying from the oldest to the newest choice-point: Applying a copying
garbage-collector from the oldest to the newest choice-point preserves a sufficient
amount of the creation order to implement instant reclaiming. This is the method
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already mentioned as “virtual saving”, see §4.3. Virtual saving is compatible with
instant reclaiming because an object and the oldest choice-point that uses the object
are placed in the same memory segment.

The drawback of the bottom-to-top copy method is that it does not help in
implementing early reset of variables.

Combining bottom-to-top and top-te-bottom copies: The three desired be-
haviors can be obtained with a sequential combination of two copies:

— top-to-bottom copy to implement early-reset;
— then bottom-to-top copy to implement variable shunting and to allow instant
reclaiming.

Both copies have a time complexity which is linear with respect to the number of
useful cells. It is important to terminate the sequence with the bottom-to-top copy
as it is the one which allows instant reclaiming.

A cheap but incomplete garbage collector is offered by the bottom-to-top
copy alone. Both versions, the cheap one and the complete one, are offered in
MALIv06 [38].

6.2 Segmented garbage collection for Prolog

Segmented garbage collection, a kind of generation garbage collection {45, 33, 30},
adapted to Prolog, was first proposed by Pittomsvils, Bruynooghe and Willems [37].
These ideas have been developed and implemented by some authors [5, 3, 43]. The
main idea for Prolog is well summarized by Appleby & all in [3]:

When a choice-point is created, all structures in the heap that are not gar-
bage will remain non-garbage until the choice-point is removed upon back-
tracking.

The main idea is to segment memory into two parts: an old segment and a
new segment. The two segments are delimited by some choice-point CPg¢. Memory
space is reclaimed in the new segment only. All objects in the old segment are useful.
As usual, when references are created from the old segment to the new one, these
references have to be considered as accesses. By chance, a Prolog run-time system
records such reference creations in the trail, and the collector simply has to scan the
trail to find them.

One drawback in relating the generational behavior of the collector to the search-
stack is that the write boundary of the generational collector may be left (by the
interpreting system) in such a state that the old segment is empty (or almost empty).
For example, deterministic programs would never be in a position to benefit from the
advantages of generation collection. A solution is to create artificial choice-points.
This amounts to the use of the trail exclusively as a write boundary.
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Early reset and segmented collectors-We can distinguish two strategies
concerning the “early reset”:

— the first strategy considers that all references from the old segment are useful [3].
This leads to an incomplete (conservative) garbage collection: the collector does
not traverse structures in the old segment, but early reset is not applied on
variables in the old segment.

— the second strategy traverses structures in the old segment in order to be able to
correctly perform early reset. This seems to retain the advantages of generation
garbage collection. However, in the case of a compacting collector, it saves the
compacting of the old segment [43].

7 Conclusion

We have described the usefulness logic of run-time objects in logic programming lan-
guage implementations. The usefulness logic of Prolog and its extensions highlights
three points, which are:

1. only active choice-points are roots of useful terms;
2. some binding values may become useless, allowing early reset;
3. some variables may become irreversibly substituted, allowing variable shunting.

Complying with the third principle is particularily cost efficient for the imple-
mentation of extended Prolog systems. In AProlog, for example, it participates in
cleaning useless versions of non-freduced terms. In ProloglIl and CHIP, it partici-
pates in cleaning the representation of constraints. In both cases, it automatically
throws away versions that are useless for representing choice-points.

Modern logic programming systems implement the three points using two stra-
tegies related to the priority given to memory management and to the design of an
abstract intermediate machine.

The first strategy is to enhance the implementation of an abstract machine al-
ready designed for some dialect of Prolog and to implement the usefulness logic for
the data-structures of the preexisting machine. The main target of this strategy is
the WAM.

The second strategy is to design a minimal package that implements the use-
fulness logic for some general data-structures, regarless of of any Prolog dialect.
The package can then be used for designing an abstract intermediate machine. An
example of this strategy is MALI.

The first strategy should be chosen for immediate efficiency of well-known Pro-
log dialects (say Standard Prolog). The second strategy is advantageously used for
complex and/or experimental logic programming systems.

Usefulness logic is a difficult concept to formalize. It is basically an abstraction
of an operational semantics for a programming language, which maps every object
of implementation in the domain {useful,not-useful}. Moreover, it requires that the
operational semantics should not betray the reality of memory usage: in Prolog, for
instance, it must describe the OR-sharing mechanism.
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This concept is seldom exhibited because it is trivial and implicit in memory ma-
nagement for functional languages, and it is a concept which has currently only few
examples. We can connect the notion of usefulness logic to the solution that Wadler
proposes to fix some space leaks problems [47]. He modifies a garbage collector so
that it replaces every occurrence of (car (cons x y)) (resp. (cdr (cons x y))) by
x (resp. y). This means that the garbage collector is given a more intimate knowledge
of the semantics of the language® than the ordinary box model. So, what Wadler
proposes is in fact a new usefulness logic for non-strict functional programming. It is
important to restrict the scope of the new usefulness logic to non-strict semantics be-
cause otherwise the equalities (car (cons x y)) = x and (edr (cons x y)) = y
are false (e.g. (car (cons x BOTTOM)) = BOTTOM in a strict semantics). This illus-
trates the connection between a usefulness logic and a semantics. The usefulness logic
should be faithful to the semantics, but the semantics must be operational enough
to express that x has always a smaller representation than (car (coms x y)).
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Abstract. The overall goal of the Emerald garbage collection schemeis to provide
an efficient “on-the-fly” garbage collection in a distributed object-based system
that collects all garbage. and that is robust to partial failures.

The first goal is to collect all garbage in the entire distributed system; we say
that the collection is comprehensive in contrast to conservative collectors that
only collect most garbage. Comprehensiveness is achieved by employing a system-
wide mark-and-sweep collection based on concurrently running collectors, one on
each node.

The second goal of our collector is to be robust to partial failures. When facing
node failures the collector will progress in the available parts of the system and,
when necessary, wait for temporarily unavailable nodes to become available again.
The scheme is being implemented on a network of VAXstations at DIKU. The full
scheme employs two concurrent mark-and-sweep collectors on each node in the
distributed system, one for comprehensiveness, one for expediency. Concurrency
is achieved by using an object protection and faulting mechanism.

Keywords: Garbage collection {mark-and-sweep, faulting, comprehensive], Dis-
tributed systems [distributed control, termination detection, fault-tolerance], Con-
currency, Object-oriented systems, Robustness, Emerald, Algorithm.

1 Introduction

The first goal of our distributed garbage collection scheme is to collect all garbage in a
entire distributed system. We have introduce the term comprehensive collection to denote
such schemes. In contrast, partial or conservative collection is a priori non-comprehensive.
In general, the garbage collection problem can be formulated as a graph problem, where
the vertices in the graph are objects and each directed arc represents a reference from
one object to another. In contrast to a more conservative collection, a comprehensive
collection essentially needs to perform a system-wide traversal of the graph in order to
identify which objects are still in use and which are garbage. We attain a comprehensive
collection by combining a basic mark-and-sweep collection scheme with mechanisms for
concurrency and distribution.

Unfortunately, any comprehensive collector in a distributed system will, due to large
network overheads, have problems collecting garbage fast enough to keep up with new
object allocations. Thus, it is necessary to supplement our collector with an expedient,
but conservative collector. In this paper, we concentrate on the issues relating to com-
prehensive collection.
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The second primary goal is robustness to partial failures. In large distributed systems,
the probability of failures becomes significant. Thus, we cannot expect the entire system
to be available concurrently long enough to complete a comprehensive collection. This
has lead us to investigate robust garbage collectors. A robust garbage collection scheme
must cope with both short and long term unavailable parts of the system——partly by
adapting its behavior to the situation, and partly by compromising on its goals.

While still being comprehensive, the collector must be able to survive during tempo-
rary unavailability. The collector must progress in the available parts of the system and
wait for the needed, but unavailable, parts to become available again.

When more permanently unavailable parts block the comprehensive collection, both
robustness and expediency demand that garbage is collected in the available parts. This
may be achieved by another collector that collects garbage in the available parts of
the system only. Such a collection cannot be comprehensive as long as the ”liveness”
of references from unavailable parts is unknown. Based on a conservative estimate of
root objects, taking objects potential reachable from unavailable parts into account, this
supplementary collector may collect garbage in the available part of the system. By careful
selection of the additional root objects, this collection may be nearly comprehensive in
the available parts of the system.

The full garbage collection scheme, which is based on at least two collectors on each
node, must also reduce the latency introduced into applications. Thus, each collector
works concurrently with other processes. The necessary synchronization constraints in-
troduced by this concurrency are achieved by protecting objects, that have not been
traversed by the collector, from being mutated by other processes.

Our approach has been to implement such a collection scheme for the Emerald Lan-
guage [Hutchinson 87b, Raj 91]. Emerald is & distributed, object-based system [Black 86,
Black 87, Jul 88b], based on a compiler generating native machine code [Hutchinson 87a]
and a run-time system [Jul 88a}, designed to take advantage of run-time garbage collec-
tion.

The objects handled by the run-time system in Emerald may be migrated between the
nodes of the distributed system. Immutable objects may be replicated instead of moved;
the replicas will always have consistent states because their state does not change. To
survive node crashes, any object may checkpoint its current state to other nodes and/or
stable storage. A checkpoint is a passive copy, from which an object may be recovered,
if the real object has been lost during a node failure. Emerald is based on reliable inter-
node communication, thus only nodes may fail. In our model, nodes are autonomous and
have failed-stop semantics.

In summary, the Emerald garbage collection scheme does a comprehensive and con-
current collection of all garbage in the distributed system, while being robust to node
failures. The full scheme employs two faulting, mark-and-sweep collectors on each node
in the distributed system.

Before presenting our comprehensive and robust solution to the distributed garbage
collection problem in details, the goals of distributed garbage collection are described
(Sect. 2). Based on these, an overview of recently and related work on distributed garbage
collection is given (Sect. 3), followed by a sketch of the basic Emerald garbage collection
scheme (Sect. 4).

The Emerald solution is detailed in the following sections. First (Sect. 5), we discuss
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comprehensive garbage detection in a failure-free distributed system, and next (Sect. 6),
the expedient collection of local garbage is discussed. Then robustness to failures is added,
using distributed control and a distributed termination detection algorithm (Sect. 7).
Sect. 8 gives some remarks on storage reclamation, and finally, we summaries our contri-

bution (Sect. 9).

2 Goals in Distributed Garbage Collection

Distributed garbage collection is not only faced with the traditional problems of garbage
collection, the very nature of distribution poses further challenges. specifically, robust-
ness to partial failures is a goal that impacts all other goals. We identify the following
general goals in garbage collection schemes. The consequences, when taking robustness
into consideration, are described in the rightmost column:

General goals Robustness considerations
Compre- All garbage is collected, e.g., no Continually adapting to the current
hensiveness  memory leakage. available parts, while waiting for

unavailable parts to become avail-
able again as necessary.

Concurrency The collector and mutators run Mutators must not be blocked by a
concurrently on all nodes. collector due to unavailable parts.

Expediency  Delivery of garbage for recycling Collection must complete despite
in a speed comparable to the unavailable parts.
speed of new allocation requests.

Efficiency Limited overhead per byte of Failures and their circumvention
storage collected introduced by must be handled efficiently. Addi-
each step and the total number tional overhead due to robustness
of steps needed. must be limited and mainly paid

when failures are present.

Correctness  Only garbage must be collected, References to unavailable parts
e.g., no dangling references. and references in checkpointed files
must remain valid.

An ideal scheme would fulfill all of these goals; unfortunately, this is not possible in
general. A comprehensive collection depends on all nodes in the distributed system, thus,
the mere presence of communication delays in distributed garbage collection often rules
out the possibility of fulfilling the goals of comprehensiveness and expedience by a single
collector. Thus, a trade-off between comprehensiveness and expediency is necessary.

By trading off comprehensiveness, we achieve a partial collection, i.e., only part of
the garbage is collected. Figure 1 describes the various degrees of partial collection, from
collection of nothing, to collection of all garbage, with a broad variety of conservative
collectors, which are able to collect only part of the garbage, in between . From the most
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Fig. 1. The degree of partial garbage collection

conservative collectors like Boehm-Weiser [Boehm 88] and Mostly-Copying [Bartlett 88]
to comprehensive collectors like the ones implemented for POOL [Augusteijn 87] and
Emerald [Juul 92]. In between, we find collectors based on smaller or larger parts of
the system with conservative estimates of references from other parts. In distributed
systems these may span from one node, over groups of nodes, to nearly all nodes. As
a supplementary, expedient collector Emerald employs such a node-local collector on
each node. The Galileo and SOR projects are examples of such node-group collectors
[Mancini 91, Shapiro 90]. Also [Lang 92] describes distributed collection schemes, which
eventually reclaims all inaccessible objects. The partitioning and grouping techniques
in the distributed environment, has many similarities to non-distributed techniques like
area collection and the partitioning used by generational scavenging.

3 Related Work

Distributed systems like POOL [Augusteijn 87, Beemster 90], Galileo [Mancini 91}, Ar-
gus [Liskov 86], and those implemented in the SOR project [Shapiro 90, Shapiro 91] all
employ garbage collection. These distributed garbage collectors fulfill most of the previ-
ous mentioned goals. They do, however, compromise on various aspects of the goals to
be able to achieve some of the others.

In general, the non-comprehensive collectors are able to collect more efficiently, while
being both expedient and robust to node-failures. The solution described by Shapiro to
be implemented in project SOR is robust but may fail to collect all garbage, instead,
it has the potential for being expedient. Lang, Queinnec, and Piquer further refine the
scheme based on independent node collectors to cooperate for various groups of nodes.
The scheme is expected [Lang 92] to be comprehensive under the assumption that each
distributed {interconnected) graph of garbage objects is contained in a group of nodes,
which do not fail during the collection of the group, i.e., failures during the collection are
not tolerated.

The collector for Galileo is implemented as a global stop-and-copy collection of objects
on stable storage. If nodes become unavailable a fault-tolerant adaption enables a non-
comprehensive collection to complete. The scheme may limit the collection to a subset
of nodes and thus only blocking mutators on those nodes. A comprehensive collection is,
however, not guaranteed.

A comprehensive collection is often more costly and assumes a simple failure model
or no failure at all. The collection scheme for the POOL system'is based on global
synchronization of node-local mark-and-sweep collectors, and to be comprehensive it
depends on complete node availability. The garbage collector for POOL, as described in
[Augusteijn 87], does not cope with failures in the distributed system.
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The idea of node-local collectors that cooperate has also been used by Liskov and
Ladin in Argus. The cooperation is made possible by introducing a logically centralized,
but physically replicated, highly available service for cross-node references. Any such
reference is registered at the service, which also does cross-node garbage cycle detection.
The service is based on synchronized local clocks and bounded delays of cross-node
message exchanges.

4 The Emerald Garbage Collection Scheme

Based on the ideas in [Jul 87, Jul 88a, Jul 88b], [Juul 92] describes the design and im-
plementation of a garbage collection scheme for the distributed, object-based system,
Emerald, which fulfills all the goals listed in Sect. 2. The solution ¢ombines the compre-
hensiveness of mark-and-sweep collection with distribution and concurrency. The primary
methods to achieve concurrency and robustness are distributed control, object protection
and faulting, and the use of more than one collector concurrently.

Robustness to partial failures in a distributed system can be achieved when all parts
work independently. Still cooperation is needed, but distributed control makes partial
failures less threatening to the system. Robustness to partial-failures in distributed sys-
tems has lead us to implement our garbage collector without using centralized control.

4.1 The Basic Mark-and-sweep Algorithm

Our basic algorithm is based on a concurrent variant of mark-and-sweep garbage col-
lection. The mark-phase is done concurrently with user processes running by protecting
non-marked objects from being used by the running processes with a garbage collection
fault mechanism similar to a page-fault mechanism in a virtual memory system [Appel 88,
Appel 91]. In Emerald such a protection and faulting mechanism is already available in
the implementation of remote invocation. Thus, the utilization of the mechanism by the
garbage collector is nearly free.

The mark-phase of our basic algorithm uses the traditional three color settings: white,
gray, black. Objects are marked either white (potentially garbage), gray (alive with ref-
erences under consideration), or black (alive with references considered). Furthermore, a
root set of objects is given, i.e., the active processes and the “always present” objects.

The mutators may run without problems in the black objects and the algorithm
assures that mutators execute in black objects only. They may reference other black or
gray objects, but the gray objects are protected. Thus, a mutator, which tries to use a
gray object, will be suspended while a fault handler marks it black and traverses it to
ensure that the objects, it references, are marked and protected. This way mutators are
only faced with black objects. When the collection is started, all objects are white, and
all mutators are stopped. Before each mutator is resumed, it is marked black, and its
references is marked at least gray. The mark-phase is finished when all gray objects have
been traversed and marked black, i.e., when the gray set is empty.

4.2 The Garbage Collection Invariants

The following invariants form the basis of our garbage collection algorithm. A detailed
description of the basic algorithm and its implementation is found in [Juul 92]. The



108

general assumption is that garbage stays garbage. The collection scheme is based upon
this assumption and five invariants.

Invariant 1 (Progression).

During garbage collection objects become darker, never lighter, i.e., shading is a monotone
function moving objects from white to gray, and from gray to black.

Invariant 2 (Mutators).

Mutators execute in black objects only.

Invariant 3 (No black-to-white references).

No black-to-white references, i.e., a black object contains references to gray and black
objects only.

‘Invariant 4 (Faulting).

Gray objects are protected, thus any attempt to access a gray object is withhold until the
faulting mechanism has changed the object from gray to black (by shading its references
at least gray).

Invariant 5 (Termination).

No gray objects indicates that black objects are the surviving ones, whereas the whites
are all garbage (and thus reclaimable).

4.3 The Dual Collector Scheme

The Emerald garbage collection scheme consists of two sets of collectors, which are all
applied concurrently. The global scheme, using one collector on each node in the system,
continuously adapts to the current situation and strives to fulfill comprehensiveness while
giving up on expediency. The local scheme foresees the failures of many parts of the system
by performing an independent and expedient, but non-comprehensive, local collection on
each node.

The comprehensive collection is achieved by one concurrent mark-and-sweep collector
on each node, which cooperate as one global garbage collector across the entire network of
Emerald nodes. The set does a comprehensive collection of all garbage, while various parts
of the distributed system may be temporarily unavailable. A second set of collectors does
an independent, partial collection on each node. These node-local collectors do a more
expedient collection of local garbage without being comprehensive. Both sets of collectors
proceed simultaneous and in parallel (on-the-fly) with the running processes. Each set
of collectors adds robustness to the garbage collection scheme. The global collection by
waiting for needed but unavailable nodes to become available again while progressing
the collection in the available parts of the system. Whereas each local collector is able
to collect local garbage while the rest of the system is unavailable. This further adds
efficiency and expedience to the scheme, as most objects tend to be short lived and local
[Lieberman 83, Schelvis 88, Jul 88b, Rudalics 86].
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5 Comprehensive Garbage Collection

In terms of a graph, a comprehensive collection must partition the distributed graph of
objects, connected by references, in two very well-defined parts. One containing ezactly all
the objects reachable from the distributed root set, and another containing the rest, i.e.,
all the garbage. During a comprehensive garbage collection, the graph must be traversed
from the root set to identify the reachable objects, i.e., the closure of the root set. To
ensure the collection of all garbage, the references in the root set and the references inside
the objects must be identified exactly.

In general, any traversing algorithm has this property. Thus, the basic algorithm,
even in the distributed case, can be based on either mark-and-sweep or copying collec-
tion. With focus on garbage detection, which is the harder part of the problem in the
distributed case, the mark-and-sweep algorithm has been chosen due to its nice separation
of garbage detection from garbage reclamation. Our current implementation pays little
attention to compaction and locality of references. Though copying collectors may waste
up to half of the available memory, they might be considered in future implementations
where compaction is combined with object mobility.

In the comprehensive garbage collection scheme in Emerald any node may take initia-
tive to a new global collection cycle and inform the other nodes in the distributed system
about the decision. Each collector progress on its own node by initiating the collection
and doing the marking. References to non-resident objects must, however, be treated
differently. To the mutators on the node, we pretend that the non-resident objects are
already black, while we accumulate references to them in the non-resident gray set. When
the gray set of resident objects has been emptied, the non-resident objects are handled
by sending a shade request to the node hosting the object. Meanwhile, remote requests
to shade objects resident on our node are handled by putting these references in our
gray set of resident objects. Each shade request is acknowledged by the node hosting the
object, to let the requesting node remove the reference from the non-resident gray set.
Thus, a gray reference will stay in the non-resident gray set until the node hosting the
object guarantees that the object is at least gray, i.e., gray or black.

The mark-phase is finished when both gray sets are empty on all nodes. This global
state is stable, in contrast to the state both gray sets empty on a single node. The global
state is detected by a two-phase commit protocol. For simplicity, the global termination
detection could be detected by approving a coordinator node. The current solution is,
however, prepared for robustness to partial failures.

The cooperating collectors, constituting the global collection, may run very indepen-
dent on each node. They only need to coordinate their actions on three topics:

1. When to start, i.e., when mutators must be stopped and the local part of the dis-
tributed set of root objects constructed.

2. During the mark-phase, i.e., when a non-resident object is shaded by requesting the
node hosting the object and acknowledging the action back to the requesting node.

3. To determine when the mark-phase is finished, a distributed termination detection
protocol must detect the all gray set is empty situation.

All nodes may decide to initiate a new cycle of the comprehensive collection and let
this knowledge sieve to the other nodes. By adding the information (the cycle number)
about a progressing collector in all inter-node messages, any node will become aware of
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the situation before it engages in the transfer of objects or references with the started
nodes. Though the garbage collectors may start at different wall clock time, we are able
to identify a common logical clock where no collector were started before and all were
started after.

6 A Dual Node-Local Garbage Collector

Due to both expediency and robustness the set of global comprehensive collectors has
been extended with another set of independent local collectors.

The local collectors provide expediency by not depending on inter-node communi-
cation, and robustness by only using available nodes. We have chosen not to add a
node-group collector scheme as a third, intermediate scheme. We find the clustering of
nodes irrelevant to our current testbed of only a dozen nodes, to pay the additional cost
of maintaining tables of incoming and outgoing references from each node. Furthermore,
the two collector scheme is enough to fulfill our goals, thus a third scheme would not add
substantially benefits.

The node-local collector is conservative in its definition of the root set, but not in
its identification of references between objects. The conservative approach is acceptable,
as this collector is supplementary to the comprehensive scheme. The node-local collector
will collect local garbage only, i.e., garbage which has never been reachable from other
nodes.

The implementation is fairly simple. It takes advantage of a general mechanism that
marks objects potentially reachable from other nodes as ReferenceGivenOut. When a
reference to a resident object is exported to another node, the object is marked as known
from outside. Though that reference may later be dropped, the object stays marked
during the rest of its lifetime. These marked objects are added to the root set of the
node-local collector. When this collector finds references to non-resident objects, they
are simply skipped.

Beside the extended root set and the missing needs to communicate with other nodes,
the local collector uses exactly the same algorithm as does the global collector on each
node. The two collectors on each node need, however, to synchronize, as they are working
on the same data. Thus, they have their own data structures and mark fields for color
information. To prevent either of them from reclaiming objects, later needed by the other,
the two collectors may not have a non-empty set of resident gray objects concurrently.
On each node this is achieved by only starting the local collector when the global has an
empty resident gray set, which is achievable without communication delays, and by only
starting the global collector between the end of the mark-phase and the start of the next
local collection.

7 Robust Garbage Collection

The comprehensive global garbage collection scheme is threatened by node failures, as
these influence the global state as well as the individual collectors.

The failure model is failed-stop, thus, by keeping its main state on stable storage, the
collector on each node may always restart in a globally well-defined state. As an aside,
a node failure is by itself an effective garbage collection, as a restarting node gets all
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storage reclaimed, except checkpointed objects. These are saved, e.g., on stable storage,
and recovered after the failure. This means that live references may reside on nodes
currently unavailable due to a failure.

From a global point of view, node failures may influence the garbage collection as follows:

Before a garbage collection No harm.

During the start of a new collection Nodes may become out of step concerning the
global garbage collection state.

During the mark-phase The global invariants about colors and muta-
tors may be broken.

Finishing the mark-phase The global termination detection needs reli-
able information about all nodes.

During the sweep-phase No harm.

Robustness to node failures, i.e., to partial failures of the distributed system, must
take the above situations into account. The problems occur exactly in the situations
where the collectors on each node need to coordinate their action (see the listing of the
very same three points in Sect. 3).

7.1 Starting a New Collection

It 1s fairly easy to assure that restarted nodes adapt to the global situation. The presented
mechanism to ensure synchronization by tagging all inter-node messages, will also force
a restarted node to enter the same garbage collectlon cycle before it engages in mutating
the object graph. If it keeps running locally only, it may, however, not be aware of the
progressing global garbage collection on the other nodes, until one of these sends out shade
requests or tries to detect global termination. This will eventually happens, and when it
does, the restarted node may immediately adapt to the situation, without breaking the
global invariants. From a global point of view, all actions, done by the restarted node
until then, have taken place before the logical global clock of the start of the mark-phase.

7.2 A Robust Mark-Phase

During the mark-phase, node failures have several impacts. Both while a node is failed
and when it is recovered.

When recovering, a node will restart its collection, but come up with references to non-
resident objects. It will need to send out shade requests for these references, even though
1t might have done so before the failure occurred. Shading is an idempotent function, thus
no invariant is broken, only performance is degraded (but this is insignificant compared
to the node crash and reboot sequence). The scheme also covers the cases where a shade
request has been sent but the reply was lost. For better performance, a node may save
its received acknowledgements to remote shade requests on stable storage and use this
information when recovered.
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While a node is unavailable, other nodes may have references to objects on it. They
cannot shade these objects until the node is available again. For simplicity, we have
implemented the shade request mechanism as a repeated broadcast with exponentially
back-off. Thus, non-acknowledged requests will be sent out until they are eventually
acknowledged.

7.3 Distributed Termination Detection

The detection of the global state all gray set are empty can be difficult when nodes may
fail independently and randomly often. To achieve comprehensiveness we must ensure
that all nodes have finished their mark-phase and that no request is in transit.

The latter is ensured by the acknowledgement of shade requests. The references in the
non-resident gray set are kept there until an acknowledgement is received by the shade
reply mechanism (Sect. 5).

The two-phase commit protocol can be started by any node. A node may do so when
it believes that the collection is done. Such a decision is based on its own status and
the network traffic. More precisely, both gray sets of the node must be empty, and no
nodes must have been broadcasting shade requests for a while. The termination detection
protocol is robust to temporary node failures; it only depends on nodes being pairwise
available. The current implementation depends on each node being aware of all other
nodes in the system. This assumption holds in the current Emerald prototype. A system
with a very large number of nodes should use another protocol.

8 Storage Reclamation

Though we emphasis on garbage detection, a short presentation of the reclamation part
of our garbage collection scheme is given here to complete the picture.

The sweep-phase of all our collectors (both local and global) has been relinquished
from the mark-phase in a scheme similar to the mark-during-sweep scheme proposed in
[Queinnec 89]. On each node one common sweeper takes care of the sequential traversal
of the node-local heap.

The scheme is based on marking with the current garbage.collection cycle number,
instead of marking objects black, gray, ot white. The gray information is kept aside
already, as this information is used by the faulting mechanism also. During the mark-
phase the current cycle number represent the color black, and the previous cycle, the
color white. Objects marked with lower numbers are identified garbage, waiting for the
sweeper to pass by and reclaim them. At the end of the mark-phase the previous cycle
number becomes a garbage indicator, just like white indicates garbage when the mark-
phase is finished. When the next garbage collection cycle is started, the cycle number is
incremented, effectively turning all objects to be considered white until they are marked
again. New objects are always born with the current cycle number, i.e., black.

The sweeper is interleaved with the allocation routines, 1.e., each time a new allocation
request is received, the allocator tries to reclaim the same amount of storage from the
heap. It does so starting from its current sweep position in the heap and moves forwards
(viewing the heap as a circular list of objects) until the requested amount is reclaimed
or no more objects marked with old cycle numbers exist.
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9 Conclusion

The Emerald garbage collection scheme has reached its goals by running two mark-and-
sweep collectors on each node in the distributed system:

|

The global collectors cooperate to achieve a comprehensive collection of all garbage.
The global collectors are robust {0 node failures. The collection progresses on the

available nodes as fast as possible before they wait for the still needed, but failed,
nodes to become available again. All nodes need not be available concurrently.

|

The local collection ensures that local garbage is collected on a per node basis inde-

pendent of the current status of other nodes, thus achieving an ezpedient collection.

|

The garbage collection faulting mechanism has made concurrency with mutators

possible and thus limit the length of pauses introduced by garbage collection on user

processes.

The measurements and experiments with the implementation will present a definite
evaluation of the presented collection scheme. Due to a very untimely disk crash whereby
parts of the current implementation were lost, an evaluation of the prototype is, unfor-
tunately, not available as this article goes to press.
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Abstract. In order to evaluate our fault-tolerant distributed garbage collec-
tion protocol, we have built a prototype implementation within a distributed
Lisp system, Transpive, replacing Piquer’s native indirect reference count dis-
tributed garbage collector. This paper presents our protocol and highlights
implementation issues on Transpive. In particular, we describe the prototype
and the alterations required to fit into the Transpive distributed program-
ming model. The message and CPU performance of our protocol are measured
and its fault-tolerance evaluated. We conclude that the cost of our protocol
is close to Piquers’s , although our protocol has greater functionality.

1 Introduction

Garbage collection (GC) has recently become of increasing interest in distributed
systems [6, 9]. The motivations for such a service are numerous. First, transparency:
Just as modern distributed systems support transparent, uniform placement of and
invocation on both local and remote objects, so should they also support transpar-
ent .object management, including reclamation. Second, storage management is a
complex task, not to be managed by users. Distributed GC is even harder than lo-
cal GC because the local cotlectors must be coordinated, to consistently keep track
of changing references between spaces. This consistency problem is further compli-
cated by the common failures of distributed systems such as lost, duplicated, and
late messages, and crashes of individual spaces.

Distributed garbage collection poses a challenging problem: reclaiming all kinds
of data structures while achieving efficiency, scalability and fault-tolerance. In spite
of the difficulty, a number of proposals have attempted to design a distributed GC
that fulfills all these requirements. The great number of incomplete proposals (see
Sect. 6) reflects how difficult the challenge is. However, the combination of several
complementary techniques may lead to an almost perfect algorithm. For instance,
combining Lang et al. cyclic distributed GC [6] with our fault-tolerant algorithm
could gain a fault-tolerant and cyclic garbage collector.

To address these issues, we have designed a fault-tolerant distributec garbage
collector protocol, hereafter called the SGP protocol {13, 14] based on reasonable,
weak assumptions. It scales to any number of nodes. It continues to function correctly
in the presence of lost, duplicated, or out-of-order messages, or of (fail-stop) node
crashes; it allows objects to migrate or become deleted while referenced.
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In order to evaluate the SGP protocol, we have prototyped it on a distributed
Lisp, Transpive [12], implemented at INRIA, running on a multi-Transputer board
hosted by a Sun server machine. For the purpose of this evaluation, we replaced
Piquer’s original Indirect Reference Count (IRC) garbage collector [11], provided
with Transpive, with a prototype implementation of the SGP protocol. SGP provides
all the functionality of Piquer’s GC, and in addition is resilient to message or site
failures. The motivations for this approach are the following:

ease of prototyping the algorithm in a functional language,

— use of an existing, easy-to-use, clean, distributed programming environment,
existence of a local tracing collector as required by SGP,

possibility of comparison with Piquer’s GC.

!

The organization of this paper is the following. Section 2 describes briefly the SGP
protocol, and highlights mechanisms implemented on Transpive. Section 3 reviews
the distributed programming model of Transpive and its implementation. In par-
ticular, issues relevant to the SGP implementation are highlighted. Then, in Sect.
4, we further describe the implementation itself. Section 5, presents performance
measurements of our prototype implementation. Section 7 concludes the paper. We
compare our performance results with Piquer’s.

2 Brief Description of the SGP protocol

We consider a collection of spaces connected by an unreliable non-FIFO channels. A
space is either a process, a processor or a group of machines. Spaces may contain one
or more applications called mutators performing independant computations. Muta-
tors allocates dynamically objects in their space. An Object is located in a single
space but may migrate. Objects may contain references to other objects located in
the same or in remote spaces. Local objects are accessed through standard pointers
whereas remote objects are accessed via remote pointers. An object accessible from
at least one remote space is called public, as opposed to private objects. A public
object belongs to a single space, its owner. Public and private objects are dynamic
sets. That is, any non-garbage private object may become public and vice-versa. For
instance, a public object only remotely referred by a single space may migrate to
that space. After migration, the object is considered as private. Basically, the dis-
tributed GC is in charge of tracking remote accessibility of public objects. Private
objects do not concern us and are reclaimed by the local GCs.

The mutator rests upon two separate layers of object management (see Fig. 1).
The bottom layer is independent of object semantics, structure, or programming lan-
guage: this is the distributed garbage collection specified in [14] and described briefly
herein. The distributed garbage collection only propagates accessibility information
supplied by the upper layer.

The upper layer is a (language-specific) run-time, extended to interface with our
distributed GC. In the upper layer, one finds storage management (object allocation,
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Fig. 1. Relationships between processes and main data structures

and local tracing garbage collection) as well as remote invocation functions (i.e.
communication stubs).

The two layers share information in the form of incoming and outgoing references.
An incoming reference is called an entry item and an outgoing reference is called an
exil item. Cooperation between layers is limited to simple interactions to maintain
consistency between entry and exit items.

Mutators in different spaces communicate via RPC-style invocation, i.e. by mes-
sages. An invocation is mediated by mechanically-generated stubs for marshalling
and unmarshalling messages; a stub interfaces between the application and the sys-
tem, encoding typed information into a typeless form. The arguments and results in
an invocation contain any mixture of pure data, references, and migrating objects.
When sending or receiving a message, the stub creates either an entry or exit item
for the reference or the object embedded in the message.

To provide fault-tolerance, extra time and ownership information is piggy-backed
onto the existing mutator messages. Occasional control messages are exchanged, in
the background, to remove inaccessible entry items.

The SGP protocol relies on the existence of any standard local tracing garbage
collector. The distributed protocol is based on a conservative extension of reference
counting. Each space maintains a list of potential incoming and outgoing references,
respectively called the entry table and ezit table. Both the entry table and the exit
table are conservative estimates. If two different spaces possibly refer to a single
object of space A, each will be assigned an entry item in A. This differs from refer-
ence counting, and in particular from Piquer’s IRC, because we need an entry per
remote space to deal with unreliable communication. This policy renders entry item
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deletion an idempotent operation and permit tolerating lost or duplicated message.
In the former case any subsequent control messages received will aliow us to reclaim
previously garbage entry items. The latter case will have no effect since all garbage
entry items would have been been previously collected.

Local garbage collection proceeds from the union of the local root and the entry
tables and removes object and entries in the exit table. Since local GC starts from
the union of the local root with the (conservatively estimated) entry table, all non-
reachable local objects are true garbage. Each local GC cleans the entry table of
useless entry items. In turn, exit tables are used to clean remote entry table, yielding
successively better estimates.

When an exit item on space A is deleted, the corresponding entry item on space
B can be removed. To this effect, a delete message can be sent from space A to space
B. However this message can be duplicated or lost. To guard against loss, periodic
use messages are sent from A to B containing the list of all existing exit items on A
pointing to B; by comparison space B can deduce entry items that are not reachable,
and remove them. In the remainder of the paper, conirel message refers to both use
and delete messages.

One common problem in distributed systems is the message delivery delay. Mes-
sages containing references must be taken into account to guard against unsafe
reclamation. Suppose that one space B sends a message to a space A containing
a reference to a given object, say z. At the same time, a control message is sent
from space A to space B to inform that the remote pointer on object z has been
discarded. If object z is not locally referenced upon receiving the delete message, it
will be remove from the entry table and collected at the next local GC.

To avoid this problem, we keep on each space a vector of highest timestamps
and we timestamp entry items. When sending a reference, the stub creates the
entry items and store in it the value of the local clock. The same value is used to
timestamp the mutator message. Upon receiving a mutator message, the receiver
compares the timestamp value extracted from the message with the one found in
the vector of highest timestamps. This vector contains a space identifier and an
associated timestamp for each remote space. A timestamp is increased each time
a message is received. If the corresponding entry in the vector does not yet exist
the initial value can be taken from the message. Control messages carry the current
value of the timestamp vector corresponding to the target space. Upon receiving a
control message, the timestamp value found in the message is compared to the value
in the entry items to detect messages in transit.

Since our distributed protocol is based on reference counting, it fails to collect
cycles!.

! A separate sub-protocol {14] copes with inter-space cycles but its description is out the
scope of this paper as it has not been implemented on this prototype.
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3 Transpive

A garbage collector interacts closely with the programming model, as shown in Sect.
2. In particular, the way references are created, copied and sent is a crucial issue.
For this reason, we first describe the programming model of Transpive, concentrating
on key points related to the SGP implementation. Transpive is a distributed Lisp
designed to provide a programming model as close as possible to a centralized Lisp,
and in particular:

— to provide location-transparent invocation,

— to supply the basic functionality required by a distributed application through
a small number of concepts,

— to provide a set of extensions, easily portable to another Lisp or runtime systems.

Transpive is layered on a Lisp interpreter.? One Lisp interpreter runs on each
Transputer processor and interacts with the others through message passing. The
underlying runtime system ensures FIFQO, reliable message channels. Consequently,
we have simulated message failures to evaluate the fault-tolerance aspects of SGP.

3.1 Sending and Receiving Messages

Transpive provides a function, ext-send(), to send a typed message to Transpive
thread, addressed by a identifier target. id and a port number port_n. The function
argument is used for marshalling/unmarshailing the msg given as argument. We have
extended this function to accept an added argument :

ext-send (msg function thread_id port_n delay)

The last argument, delay, simulates messages failures: out-of-order, delayed,
lost, or duplicated messages. The target thread thred.id receives the message by
calling the function receive from. any:

msg := receive_from_any()

A Transpive message is a structure composed of several fields :

struct msg {

data ; the message data

source ; the sender thread_id

target ; the target thread_id

send_type ; the type of the message

function ; function for marshalling and unmarshalling
; additional SGP fields:

timestamp ; value of the sender Lisp local clock

delay ; simulates unreliable messages}

2 The current implementation runs on Le.Lisp [4], a fast Lisp interpreter implemented at
INRIA. But the distributed model of Transpive is generic and easily portable to another
Lisp dialect or functional language.
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All these fields have default values. The function is used to marshal and unmar-
shal the object referenced by the data field. Several alternative marshalling semantics
are provided by Transpive. Transpive servers use an efficient marshalling function
low_level which does not generate remote pointers but copies values to the target
Lisp.

We have added two fields to the standard Transpive message structure. The SGP
protocol timestamps mutator messages to protect against unsafe, late or duplicate
messages (see Sect. 2). The timestamp field is managed by the stubs.? This extension
has no consequence on the other message functions. The field delay is used to
simulate message failures, and is set from the delay argument of ext-send().

The effect of the delay value is the following:

0 corresponds to the default normal delivering FIFO order,
+n corresponds to a delayed message,

—1 corresponds to a lost message,

—2 corresponds to a duplicated message.

The delay is enforced by the receive_from_any() function which delivers the
message to the application according to the value of the delay field. The +4n value
indicates the number of times the messages is read in the queue without being
delivered to the corresponding thread.

3.2 Remote References

Transpive supports transparent fined-grained object sharing. Lisp is a typeless lan-
guage which only manipulates cons cells. Consequently, Transpive allows one to pass
and access remotely any cons cell. The creation of remote references is totally trans-
parent to the programmer. The corresponding data structures are created as a side
effect of message passing. Specifically, stubs are responsible for detecting cons cells in
messages and creating the corresponding entry or exit items to access the remotely
referenced objects. Lisp does make any distinction between references and plain ob-
jects. Therefore, in that model, a reference is created for each cons cell passed in the
message. Thus, each cons cell of a list may be accessed independently from other
cells. This policy is required to keep the same semantics as any local Lisp. However,
it creates a large amount of exit and entry items and worsens locality.

Transpive provides a cache memory associated with remote references. On first
access to a public object through a remote reference, a replica of the object is copied
to the local cache of the referencing Lisp. All subsequent read accesses to this object
will be local, in the cache.

Conversely, an attempt to write a replica invalidates all other replicas. Ownership
of the object is migrated to the Lisp which has attempted the write access. This
scheme is well adapted to functional languages, such as Lisp, where read accesses
are much more frequent than writes.

3 Actually, the timestamp field is initialized at creation of a message. Stubs are responsible
for updating the timestamp associated with each descriptor as explained in Sect. 2.
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A public object always points to a descriptor. For this purpose, Transpive ob-
Jects have been extended with an extra field, called back pointer, to access their
corresponding descriptor. In order to save space, plain private objects don’t refer to
any descriptor and their back pointer is set to NULL. Depending on the existence
or not of a cached replica, a descriptor acts either as a local handler on its cached
replica, or as a remote pointer to a public object. With respect to the SGP model, a
Transpive descriptor acts partly both as an entry and an exit item. It contains the
following fields when corresponding to an exit items:

!

The identification of the owner Lisp where the object is located,

an OID which uniquely identifies the object throughout the system,

a status, indicating whether the cached replica is valid or not,

— a “weak pointer” to the local replica; this pointer is not taken into account by
the local garbage collector. Initially, this pointer is set to NULL. It is updated
upon receiving a copy.

!

!

An additional field is present when the descriptor acts as an entry item:

~ alist of pairs ((lisp_id timestamp) ...). The first one identifies a Lisp holds holds
a remote pointer to that particular object. The second one is increased each time
a message containing a reference to that object is sent to that lisp.

Each Lisp maintains a table of valid descriptors (TOD) indexed by OID of public
objects. As a descriptor contains only a weak pointer to the local replica, another
data structure, the list of public objects (LPO}J, is maintained to prevent public
objects.from being collected by the local GC. When an object becomes public, it is
added to the LPO. When the last remote reference to this object is discarded, and
becomes again private, it is removed from the LPO.

Upon sending a Lisp list composed of cells, the stub generates an OID and
allocates a descriptor for each cell of the list. For instance, a call to ext-send ({1 2
3)) will lead to generate three OIDs and three descriptors for {1 2 3), (2 3) and
(3). This is inherent in the Lisp object model and unfortunately leads to large space
overhead.

Transpive provides, along with descriptors, a number of functions to access and
set each field of a descriptor. These functions will be used in the remainder of this
paper and are introduced to improve readability of source Lisp code. They are listed
below in the same order as the list of fields given above:

desc:= get_desc(obj) ; reads obj’s back-pointer and returns descriptor
get_owner(get_desc(obj)) ; returns owner field of obj’s descrpitor
get_oid(desc) ; get oid’s field of desc

get_replica (desc) ; get cached replica through weak pointer
set_owner(desc, lisp_id) ; set owner field with the Lisp identifier lisp_id
set_oid(desc, 0id) ; set oid field of the argument descriptor desc

get_timestamp(desc, lisp_id) ; get the timestamp value embodies in
the descriptor for a particular Lisp
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The function get._desc(obj) takes an object as argument and returns its back
pointer (i.e. its descriptor). The function get_replica(desc) returns the cached
replica object (if it exists) of the descriptor desc.*
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Fig. 2. remote references, descriptors and cache memory

Figure 2 shows three Lisps running on three different Transputers. Object z,
owned by Lisp B is public and remotely accessible from Lisps A and C. Lisp A
has already accessed object z from some root R4 and therefore has a replica of
z in its local cache. A’s reference to z points directly to the cached replica z’. In
contrast, Lisp C has never accessed object z although it is accessible from its root
Rc . Consequently, the reference to z points to the corresponding descriptor. Object
y is a plain private object accessible from its local root R4. Note that y does not
refer to any descriptor because it is not public.

We have extended this descriptor to handle administrative information specific
to the SGP protocol. As stated in Sect. 2, the SGP model assumes one entry item
per remote space. In Transpive, a single descriptor may be referenced by several re-
mote Lisps, and a counter associated to each descriptor embodies the corresponding
reference count. We have adapted the SGP model to fit into the Transpive implemen-
tation of remote references. A new field has been added to each descriptor, pointing
to a list of pairs. Each pair contains a Lisp identifier and a timestamp value. The
Lisp identifier refers to a Lisp which remotely points to the corresponding public
object. The timestamp value is updated each time a reference to the object is sent
to this Lisp. The counter has been retained for compatibility but serves no useful
purpose.’

* We tried to use the same variables names in the paper. In particular a descriptor will
always be named as desc in pseude code.
® However, we are in the process of removing them to compare memory consumption
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4 Prototyping the SGP on Transpive

In the SGP protocol, a remote reference is created when a mutator passes a reference
In a message. In other words, a creation message is a mutator message containing at
least one reference. A use message (see Sect. 2) is sent by our collector to inform the
owner Lisp which remote references have been discarded. We briefly describe here
how we have implemented our protocol using the Transpive mechanisms introduced
in Sect. 3.

4.1 Timestamps

Each Lisp maintains a vector of highest timestamps called the HTS vector. The
HTS vector is updated each time a Lisp receives a mutator message. To handle
the HTS vector, we have modified the original Transpive server of messages. This
server receives all the messages exchanged between mutators and forwards them to
the target thread. Actually, a call to the ext-send() function sends a message to
a target thread via this server. Each time the message server receives a mutator
message it extracts the timestamp, updates the corresponding entry of the HTS
vector, then queues the message for the receiver.

PROCEDURE server msg()
msg : message;
WHILE true do
msg := receive_from_any()
IF msg.timestamp GREATER THAN hts[msg.sender] THEN
hst [msg.sender] := msg.timestamp
queue the message to the target thread
ELSE
ignore the message
END END END

4.2 Cleanup of Public Objects

In Transpive, garbage collection of a descriptor occurs in several steps. Figure 3,
shows the sequence of events involved in the collection of a public object. As stated
earlier in Sect. 3, a descriptor is useless when the back pointer of its local replica
does not reference it. Here are the relevant events:

1. On Lisp A the last reference to the local replica ' of « is discarded.

2. On Lisp A, alocal GC occurs. The replica is collected ‘and its descriptor pointer
is updated.

3. The matching descriptor on Lisp A is then collected by the cleaning function
cleanup_tod.

4. Consequently, a control (use) message is sent to the owner Lisp B.

between the SGP and IRC protocols.
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5. On Lisp B, the SGP server receives the delete message and removes the corre-
sponding object from the LPQO.

6. On Lisp B, public object z is not locally referenced. It will be collected at the
next local GC.
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Fig. 3. Chronology of events in garbage collecting public objects z of Lisp B

SGP model assumed that entry items were collected by the local GC. The dis-
tributed programming model of Transpive enforces a totally different scheme for
collecting descriptors. As stated earlier in Sect. 3.2, SGP’s exit table is modelled
by the TOD in the Transpive model and exit items are represented by descriptors.
In contrast to exit items, a descriptor refers either a local object or a replica. Con-
versely each public object or replica points to its descriptor through its back pointer.
Consequently, a descriptor cannot be collected as long as its replica is not collected.
For this reason, garbage collection of descriptors proceeds in two steps. First, the
local cached replica is collected and its back pointer is set to NULL. Later, the previ-
ously pointed descriptor is considered as garbage and will be collected by a cleanup
function as shown by the code below:

FUNCTION cleanup_tod() : descriptors_list
BEGIN critical section
FOREACH desc IN TOD DO
IF replica’s back pointer refers to desc THEN
add desc’s 0ID to the use_list for the corresponding owner_lisp
ELSE
removes desc from the tod
END END
END critical section
return TOD;
END
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This function cleanup_tod(), cleans the TOD by removing useless descriptors.
Each time a descriptor is detected, its OID is added to the oids_1ist if the descriptor
is still valid. As an optimization, the messages are not sent at once to the correspond-
ing Lisp, but rather buffered.® A high priority Transpive daemon flush msg list is
responsible for traversing the list of messages and sending control messages as shown
by the code below :

PROCEDURE flush_msg_list()
BEGIN critical section
FOREACH (target_lisp oids_list) pair IN use_list DO
meg.timestamp := get_hts(target_lisp)
msg.data := oids_list
ext~send(msg, low_level(), target_lisp, GC_PORT, random())
END
reset use_list to nil
END critical section
END

A control message is composed of the following fields:

— the corresponding entry of the vector of highest timestamps hts,
— the list, 1_obj_id, of valid OIDs depending

Message lists are composed of pairs (1isp_id l.obj_id). The first element is a lisp
identifier and the second a list of OIDs. The function traverses the whole use_ 1ist
and sends to each target Lisp a corresponding subset of the valid OIDs. Note that
ext—send calls are done with a delay argument. The function random(), in the
code fragment above, generates a random value corresponding to either a delay,
a lost, or a duplicated message. The function get_hts is used to timestamp the
control messages and prevents a public object to be discarding if a reference is in
transit (see Sect. 2). All these control messages are sent to a specific Transpive port
associated with our SGP server. Note that we have to bypass the normal reference
marshalling scheme in order to avoid the creation of remote pointers when sending
control messages. The low_level Transpive marshalling function is used to avoid
the creation of descriptors, This function marshalles control messages as a vector of
integers and bypassed the traditional reference sending layer.

4.3 SGP Server

Each Lisp runs a server dedicated to receiving and processing control (delete and
use) messages. The former kind contains a vector of unreachable OIDs whereas the
latter contains whole sublist of the reachable OIDs between two Lisps (see Sect. 2).
The sgp-server is activated each time a control message is sent from some remote
Lisp by the flush msg 1list mentioned above. It extracts the relevant components
of the control message and forwards them to appropriate function to update the
local TOD.

5 We haven’t tried yet to piggy back delete or use messages on mutator messages.
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PROCEDURE sgp_server()
WHILE true DO
; wait for control message
msg ;= receive_from_any()
oids_list := msg.data
msg_timestamp := msg.timestamp
; process control messages
FOREACH oid IN oid_list
desc := get_desc(oid)
IF get_timestamp(desc) >= msg_timestamp THEN
delete_desc(desc)
ELSE
a message in transit contains a reference to this descriptor
END END END END

4.4 SGP Interface with local GC

Le_Lisp provides an number of system signals. For instance, the signal gcalarm is
activated just after each local garbage collection. This signal can be used to check
the collection process to detect, for instance, a memory overflow. This signal invokes
a user-defined function, which is a Null function by default. In our case, this function
is responsible for cleaning the TOD and the LPO . Although it was stated in {14] that
this cleanup could occur in parallel with other processing (only update of individual
elements needs to be atomic), we implemented the whole procedure in a critical
section as a quick first approximation.

PROCEDURE gcarlarm_sgp()
BEGIN
BEGIN critical section
; removes from LPO previous public objects
LPO := cleanup_lpo(LPO)
; cleanup the TOD of useless descriptors
TOD := cleanup_tod(TOD)
END critical section
END

The problem with this scheme is that the cleanup of remote pointers is bound
to some local GC. This can lead to a memory overflow (in both implementations i.e
Piquer’s and SGP) since TOD cleanup is always delayed until after a local GC at
the remote Lisp. This problem arises when a Lisp holds many remote pointers but
uses only a small amount of its local memory. Since local GC is invoked on the basis
of memory use, garbage remote references may not be collected for a long while.
As a result, a high number of potentially garbage public objects are not collected,
leading to a memory overflow. To avoid this problem, the cleanup protocols should
be called not only after local GC, but also periodically.
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5 Experiments

In this section, we analyse the measured performance of our SGP prototype and
compare it with the IRC implementation. Two kinds of performance are discussed:
the number of messages and their frequency andthe CPU overhead due to both kind
of distributed GC.

5.1 CPU overhead

We have measured the CPU overhead due to our SGP implementation. We compare
these results with the native distributed GC of Transpive. We have run two applica-
tions : a merge sort and a matrix multiplication. The measurements were taken on a
Parsytec board composed of four Transputers (T800) with one megabyte of memory
each, hosted by a Sun. We have measured each application twice on the same data
to take into account the copies of objects. Since Transpive copies public objects, re-
sults are always better the second time. However these measures have been repeated
dozens of times to be sure of the results and have shown extremely low variance.

Table 1. CPU performance measurements

CPU time in seconds Overhead (%)

Application  {[Without DGC] IRC | SGP | SGP/IRC

(sort 100) 3.8 3.2] 4.73.9] 5.54.1] 17% 5%

(sort 200) 5.6 44] 6.75.2] 8.15.9] 20% 12%
(multmat 20 20)[|11.1 7.8]12.0 8.7[13.5 9.8[11.9% 12.3%

Table 1 shows the performance measurements. The results conform with Piquer’s.
We have disconnected the function responsible for sending control messages on each
Lisp in order to avoid interrupting applications, but we kept all the control data
management in order to measure the overhead on mutators until sending control
messsage. The overhead measured is due to managing control data structures this
represents the mutator part of the SGP protocol. Our SGP implementation is on
average 10% slower than Piquer’s and 20% slower than without any DGC. This
slight overhead is encouraging. First, our basic motivation was to evaluate the SGP
prototype; as a consequence, we did not pay too much attention to optimizations and
kept a big part of Piquer’s data structure management (for compatibility reasons).
Second, the fault-tolerance property of the SGP protocol requires a some additional
work, compared with Piquer’s approach which largely justifies some added cost. For
instance, we update descriptor timestamps each time a reference is sent.

5.2 Message Overhead

A second kind of measurements concerns the number of control messages sent, and
their frequency. Our message sending protocol is different from Piquer’s and slows
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down local processing a little because group OIDs into a single structure, instead
of sending a unique OID per control message. We have chosen, the former policy
because it reduces message traffic. As shown on Table 2, this "buffering” strategy
dramatically reduces the number of control messages sent in SGP compared with IRC
protocol. Note that the number of control messages sent does vary a little between
the two executions. Note also that we obtain the same results whatever the size of
the list in the merge sort application. This shows that our message sending policy is
somewhat independent of the number of objects sent between Lisps, although this
buffering strategy may retain a big amount of floating garbage. For that reasons,
this strategy should not have two much impact on control message frequency. This
is particulary true when locality is very poor and the number of remote references
is large, such as in Transpive.

Table 2. Control message measurements

Control Messages

Application IRC SGP |IRC - SGP
(sort 100) 31 28/10 8i21 20
(sort 200) 41 39{10 8131 31

(multmat 20 20)/[101 96/20 18)81 78

6 Related Work

Distributed garbage collection, is a difficult problem which has only been addressed
partially. One key reason is that while most proposals rely on centralized techniques,
adapting such techniques to distributed environments is not a straightforward task.
Stop the world algorithms require costly termination mechanisms when facing dis-
tribution, whereas reference counting is completely defeated by common messages
failures. In order to adapt those techniques to distributed environments, many re-
cent proposals try to relax traditional invariants [2, 11, 15] whereas others rely on
reliable communication protocols [3, 7, 6, 10]. The former family algorithms is usu-
ally based on reference counting. Therefore they cannot garbage collect distributed
cycles and must assume that such graphs are rare. The second family ensure better
liveness but all known algorithms are not resilient to message failures [6], may be
completely defeated by space failures [3], or fail to address large network [9]. Our
protocol belongs to the former family and bears some similarities to a number of
proposals based on reference counting [2, 11]. Unlike those approaches, however, we
maintain an entry item per source space that permits us to tolerate message loss
whilst avoiding the dangers of duplicated messages.

Dickman [2] proposes Optimizing Weighted References Counting improving tradi-
tional Weighted Reference Counting [1, 15] in two aspects: message failures resilience
and indirection cells. Resilience to message failures is provided through a weak in-
variant that requires that each object weight (total weight) is always greater or
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centralized service to build a consistent view of the distributed system. Each local
collector informs the centralized service about incoming and outgoing references, and
about the paths between incoming and outgoing references. The path computation is
expensive but necessary for reclamation of distributed garbage cycles. Based on the
paths transmitted, the centralized service builds the graph of inter-site references,
and detects garbage (including dead cycles) with a standard tracing algorithm. The
centralized service informs LGCs of accessibility of objects.

In a later paper {5] Ladin and Liskov simplify and correct the deficiencies of the
above proposal, ac >pting Hughes’ algorithm and locsely synchronized local clocks.
Hughes’ algorithm eliminates inter-space cycles of garbage, thereby eliminating the
need for an accurate computation of the paths and for the central service to maintain
an image of the global references. Furthermore, the centralized service determines
the garbage threshold date, making a termination protocol unnecessary.

Recently Lang et al. [6] describe an original proposal to combine reference count
and mark and sweep. The algorithm collect distributed cycles within predefined
groups. Groups are dynamic collections of spaces (i.e a space may be removed or
added during garbage collection) and may overlap or include other groups. The al-
gorithm relies both on counters and local GC to perform mark and sweep within a
group. Reference counts must be kept accurate, hence message failures are not toler-
ated. Group GC is conservative with respect to inter-group references: any subgraph
referenced from outside the group is not collected until a larger group is formed
encompassing the entire graph; therefore liveness is not guaranteed. Thus, large cy-
cle reclamation requires extending group size such that the group includes all spaces
that hold a cycle vertex. Distributed garbage collection of very large networks is pro-
posed through a hierarchy of included groups. Included groups benefit from larger
groups GC that perform some of their work. However, large group GCs are longer
than smaller ones and therefore retain more floating garbage. For that reason, the
authors assume that large group GCs are rare compared to small group GCs.

In [8] Lins and Jones combine Weighed Reference Counting with Lins’local algo-
rithm for Cyclic Reference Counting [7] to address distribution issues. As a result,
they propose a simple algorithm to garbage collect cycles in a distributed environ-
ment. The general idea of the algorithm is to perform a local mark-scan whenever
a reference to a shared graph is deleted. That is, a mark-scan is initiated each time
an object is suspected of belonging to a garbage cycle (i.e when its counter is decre-
mented down to one). The mark phase decrements counters each time it visits an
object belonging to the subgraph. At the end, all nodes with counters equal to zero
are part of a dead cycle and may be safely reclaimed. Lins [7] improves the basic
idea to perform the mark-scan lazily. Spurious objects are not scanned at once but
instead they are queued in a special list. When the allocator fails to supply memory
the corresponding list is scanned in order to reclaim potential garbage cycles. Un-
fortunately, mark-scan of subgraphs must be computed in critical sections. In other
words, two different spaces cannot invoke cycle detection concurrently.
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equal to the sum of all remote reference weights (partial weights). The weak in-
variant permit tolerating message loss but duplicated message remains problematic.
The algorithm avoid the creation of indirections cells when partial weights cannot
be split. However, this is enforced through a special null weight value. In this
case, the total weight is always greater than the sum of partial weights preventing
the object from being reclaimed by error. However, liveness is not ensured for weak
objects which conform only the weak invariant. For this reason, the author assumes
than the algorithm is always used in conjunction with a global tracing collector to
reclaim garbage distributed cycles and weak objects.

In [11] Piquer describes his Indirect Reference Count (IRC) algorithm which
improves Weighted Reference Count [1] by avoiding indirection cells. The algorithm
also eliminates the need for increment messages that may conflict with decrement
messages in traditional schemes. Thus, creation and duplication of a remote pointer
are performed locally without informing the space where the object is located. In
order to achieve local creation/duplication, remote pointers have been extended with
a new field, named an indirect pointer. The indirect pointer serves only distributed
GC purposes, and refers either to an object or to another remote pointer. The
whole set of remote pointers referencing a single object forms a distributed graph
which can be traversed using indirect pointers. Mutators never use indirect pointers,
instead relying on the direct pointers to access objects in a single hop. As with
others proposals relying on reference counting, the IRC algorithm is not resilient
to message failures: liveness is not enforced against message loss and safety is not
preserved against duplicated message.

Mancini and Shrivastava [10] describes an efficient and fault-tolerant distributed
garbage collector based on reference counting. Resilience to space or message failures
is supported granted to an RPC mechanism extended with detection and killing of
orphans. A special protocol is used to cope with duplication of remote references.
This protocol makes an early short-cut of potential indirections even if they are never
used. Two alternatives are proposed to deal with distributed cycles : traditional and
inefficient global mark and scan, and per object cycle detection based on an heuristic.
The first one is notoriously inefficient and the second one does not collect all cycles.

Hughes [3] describes an elegant algorithm based on timestamps and local trac-
ing. The algorithm timestamps objects and relies on the premise that garbage ob-
jects’ timestamps remain constant whereas non-garbage objects’ timestamps increase
monotically. A timestamp threshold is computed to distinguish garbage from non-
garbage objects. Objects that carry timestamps less than the threshold can be safely
reclaimed. Unfortunately, the threshold computation relies on a termination algo-
rithm which is notoriously costly and not scalable. Moreover, the algorithm is not
resilient to space failures since a failed space prevents increasing the threshold, hence
blocking garbage collection on all other nodes.

In contrast to many proposals that attempt to compute on each space the global
accessibility of objects. Liskov and Ladin [9] rely on their highly available central-
ized service to compute global accessibility of objects on a single space. This ser-
vice is physically replicated, hence achieving high availability and fault-tolerance.
All objects and tables are assumed to be backed up in stable storage. Clocks are
synchronized and message delivery delay is bounded. These assumptions allow the
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7 Conclusion

We have experimented with the SGP protocol on Transpive. The choice of Tran-
spive allowed us to quickly imiplement the SGP protocol and to learn few lessons,
although the distributed model of Transpive is quite different from SGP’s. The orig-
inal SGP model did not take into account the replication of objects. Consequently,
we have adapted the SGP protocol into the replication model of Transpive. As a
result, collection of out-going references —descriptors in the Transpive model— is
more complex and slower than we expected. This increases the conservative aspect
of the SGP and can be troublesome if memory is heavily in demand. A solution to
decrease the delay for collecting out-going references is to decoupled local GC from
SGP. Moreover, the fine grained sharing support of Transpive is definitely an unco-
operative environment for a distributed GC. In particular, memory consumption is
heavy since it requires a huge number of entries in the control data structures. As
a consequence, it increases the overhead of SGP on application and the frequency
of local GC. The performance results are encouraging but need to be improved , to
minimize the overhead on applications. The buffering policy reduces dramatically
the number of control messages. The resilience to message failures has been demon-
strated. This result validates our design guideline. However, the fault-tolerance to
space failures and duplicate messages remain to be investigated. Although, the SGP
design relies on a very different distributed programming model, the prototype be-
haves correctly with respect to the safety property. It demonstrates that the SGP
protocol is generic and adaptable. Therefore, it is a good candidate for a system
service.
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Abstract. Automatic storage management is important in highly parallel
programming environments where large numbers of objects and processes are
being constantly created and discarded. Part of the difficulty with automatic
garbage collection in systems of active objects, such as actors, is that an active
object may not be garbage if it has references to other reachable objects,
even when no other object has references to it. This is because an actor may
at some point communicate its mail address to a reachable object thereby
making itself reachable. Because messages may be pending in the network, the
asynchrony of distributed networks makes it difficult to determine the current
topology. Existing garbage collection schemes halt the computation process
in order to determine if a currently inaccessible actor may be potentially
active, thus precluding a real-time response by the system. We describe a
generation based algorithm which does not require ongoing computation to
be halted during garbage collection. We also outline an informal proof of the
correctness of the algorithm.

Keywords:  actors, asynchrony, distributed systems, generation scavenging,
network clearance, broadcast and bulldoze communication, snapshot.

1 Introduction

We describe a garbage collection algorithm, HDGC (hierarchical distributed garbage
collection), for systems of active objects distributed across a network of nodes. An
important advantage of our algorithm is that it is non-disruptive: it does not halt
or otherwise interfere with the ongoing computation process. A novel feature is the
recording of a GC-snapshot to obtain a consistent local and global view of the acces-
sibility relation. The algorithm is described in terms of the actor model. However,
it is applicable to any language supporting dynamic creation and reconfiguration
of objects (passive or active), executed on a network with a global name space dis-
tributed across the nodes 3. The HDGC algorithm can be adapted to a wide range

* This research was partially supported by DARPA contract NAG2-703, by DARPA and
NSF joint contract CCR 90-07195, by ONR contract N00014-90-J-1899, and by the Dig-
ital Equipment Corporation.

** Current address: Hewlett Packard Company, 19111 Pruneridge Avenue MS44UT, Cu-
pertino, CA 95014, USA.

3 This memory architecture is often referred to as distributed shared memory
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of parallel architectures including fine, medium or large grained MIMD machines,
message passing, shared memory or distributed shared memory machines, or net-
works of workstations. This paper presents the conceptual aspects of the algorithm.
An implementation effort is in progress. There are numerous possible optimizations.
These are discussed briefly in the conclusion.

The Actor Model [Hew77, Agh86] provides a good abstraction for discussing
concurrent computation in distributed systems. Here, the universe contains compu-
tational agents called actors. Each actor has a conceptual location (its mail address)
and a behavior. The only way one actor can influence the actions of another actor is
to send the latter a communication. Communication between actors 1s asynchronous,
and every communication sent will be delivered after some finite but unbounded de-
lay (fairness of mail delivery). If an actor o knows the mail address of an actor £,
then 3 is called a forward acquaintance of & and « is called an inverse acquaintance
of 3. An actor can send communications only to its forward acquaintances. Mail
addresses of actors may be communicated: thus the interconnection topology is dy-
namic. We call the actor addresses occurring in a communication the acquaintances
of that communication. On receiving a communication, an actor processes the mes-
sage and as a result may cause one or more of the following actions: (1) creation of
a new actor, (2) alteration of its behavior and its acquaintances, (3) transmission of
a message to an existing actor. Every actor is equipped with a mailbox that queues
incoming communications.

In order to make sense of the notion of distributed memory management we need
to refine the abstract actor model to account for local grouping of actors on nodes
(processing units) and to account for the network interconnecting these nodes. We
assume that the network consists of channels linking pairs of nodes. Each channel
consists of a pair of directed links {one in each direction) with infinite message
buffers. We require that message order is preserved across a single link and that the
network routing satisfies certain progress-only constraints that will be made precise
in the next section. In addition to normal messages between actors, there will also
be special messages used for GC.

Traditionally, garbage is detected by starting with some pre-defined root set and
forming the transitive closure of the acquaintance (referenced objects) relation. In
actor-like systems there are two problems. First, the acquaintance relation is dis-
tributed and changes dynamically. Thus we must find a way of establishing a GC
start time and determining the acquaintance relation as of this point in time, as a
distributed snapshot. Second, simply following acquaintance links from the root set
is not adequate. This is because, using that definition, a non-reachable actor can
become reachable, at some later time, by communicating its address to a reachable
actor. These problems are addressed in the HDGC algorithm by first obtaining a (lo-
cally and globally) consistent snapshot of the acquaintance relation, then computing
reachability according to an algorithm that accounts for actors that are potentially
reachable relative to the snapshot. The HDGC algorithm is conserwative, i.e., it iden-
tifies only a subset of inaccessible objects during a GC. For example, a potentially
reachable object may become inactive without communicating its mail address to
any reachable object. However, all unreachable objects will be collected by some
subsequent GC.

The remainder of the paper is organized as follows. In §2 we outline the full HDGC
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algorithm. In §3 we present the algorithm for establishing a consistent snapshot of
the acquaintance relation at the start of GC. In §4 we define reachability and present
an algorithm for marking reachable objects. §5 contains an informal outline of a proof
of correctness. §6 contains concluding remarks.

2  Hierarchical Distributed Garbage Collection

A hierarchical organization partitions a distributed system into smaller subsystems.
These subsystems may in turn be further partitioned. The topmost level of the
hierarchy is the entire system. The lowermost level of the hierarchy has a single node
per subsystem. There may be zero or more intermediate levels. The organization of
the distributed system into subsystems may be static or dynamic (cf. [LQP92]). The
motivation for dividing a large, distributed system into smaller subsystems is to
avoid the bottleneck inherent in global resource management.

To accurately determine garbage in a subsystem at any level other than the
top level, it is necessary to know which internal actor addresses have been com-
municated to some external actor. Such actors are called the receptionists of the
subsystem. They must be considered reachable (part of the root set) for a GC local
to the subsystem. A receptionist table is constructed by adding an actor whenever a
reference to that actor is passed out of the subsystem. This provides a conservative
approximation to reachability. It can be improved by determining when entries in
the receptionist tables are no longer accessible, but this requires global cooperation.
The approximation can also be improved by maintaining a reference count of the
number of outstanding references to each receptionist (cf. [SGP90, LQP92]). This
also entails some overhead.

We present the HDGC Algorithm in the context of a two level hierarchy, i.e. global
and node level collections. The generalization to hierarchies with intermediate levels
is relatively straightforward. We can use any of the traditional algorithms for local
GC. The best algorithm to use will depend on the granularity of the nodes as well as
on particular application domains. It is not necessary for all nodes to use the same
algorithm.

The HDGC algorithm consists of five steps: Pre-GC, DistributedScavenge, Local-
Clear Initiation, Local-Clear, and Post-GC. There is a unique (per subsystem) special
actor designated as the GC-root actor. Requests for GC go to the GC-root actor and
sequencing of the GC steps are synchronized through the GC-root actor. Thus the
algorithm does not require a global clock in the system. We describe the purpose of
each step below. The steps are initiated and carried out by communication of GC
related messages. Details are given in the following sections. The behavior of the
GC-root actor will be described after these details have been filled in.

Step 1: Pre-GC. In a system with distributed state there is no uniquely determined
global state. Thus to compute some property of the state it is generally necessary to
determine a global snapshot that determines a consistent view of the state. In the
case of the acquaintance relation for an actor system, the problem of obtaining a
consistent global snapshot involves an additional subtilty. The asynchrony of com-
munication together with the ability to communicate acquaintances means that at
any given time, there can be communications in the network whose acquaintances
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are no longer acquaintances of the sender, and not yet acquaintances of the receiver.
This means that before a snapshot of the acquaintance relation can be taken, the
network must be cleared of such communications. During the pre-GC step each node
is notified that a GC has been initiated, and the network is cleared of messages in
transit at the time GC was initiate. This defines a local start-of-GC time on each
node that is globally consistent. Each node records GC information relative to its
start-of-GC time that will persist throughout the duration of the GC. The combined
local information forms a consistent global snapshot of the system state that is ade-
quate to determine the reachability of each actor in the system. We call this the GC
snapshot. A detailed description of information and of the process of recording the
GC snapshot is presented in section 3.
Step 2: The Distributed Scavenge Phase. During this step, actors that are
non-garbage relative to the GC snapshot are marked touched. The definition of non-
garbage and the disiributed scavenge algorithm for marking non-garbage actors is
described in section 4.
Step 3: Local-Clear Initiation. Each node in the system is informed that the
distributed scavenge phase has completed and local clearance begins. On each node,
objects not marked touched are cleared from local memory, according the nodes
method of memory management, and any other actions (updating receptionist tables,
etc.) entailed by this reclamation are carried out.
Step 4: Local-Clear Phase. This step detects when all nodes have completed the
local clearance initiated in the previous step.
Step 5: Post GC Broadcasts. This step informs each node that the current GC
is complete: each node can now note that GC is no longer in progress and update
necessary information to reflect this state. At the end of this step a new GC can be
initiated at anytime.

Note that if GC is purely local, Step 2 becomes non-distributed and the synchro-
nization provided by Steps 1, 3 and 5 are unnecessary.

3 Asynchrony in Distributed GC

In this section we describe how the start-of-GC time is established and how the
recording of the GC snapshot is accomplished. The key idea is that in addition to
ordinary (actor-to-actor) communications, new types of messages are introduced that
propagate through the network in pre-established patterns, and can thus be used for
various forms of synchronization. To describe these messages, we make additional
assumptions about the network topology.

3.1 Message Routing in the Network

For simplicity we restrict our attention to networks of nodes that form two dimen-
sional grids. Such a grid contains an m x n array of nodes. Each node is designated
by a pair of integers (a3, az), where 1 < a; < m and 1 < a3 < n. A node (a3, az), is
an Fneighbor of a node (by, bs) if either a; = b; + 1 and a = by, or az = bo + 1 and
a; = by. Similarly, a node (a1, az), is a Breighbor of a node (b1,b;) if a; = by — 1
and az = by, or az = b2 — 1 and a; = b;. Connecting each Fneighbor/Bneighbor
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pair of nodes X/Y is a channel comprised of a pair of unidirectional FIFO links,
one from X to Y and one from Y to X. An Fpath is a path in the network that
progresses only along Fneighbor links. A path in the network that progresses only
along Bneighbor links is a Bpath. We call (1,1) the start node of the system. It is the
unique node from which there exists an Fpath to every other node in the system.
Dually, we call (m, n) the finish node. It is the unique node from which there exists
a Bpath to every other node in the system.

Ordinary messages are assumed to be routed from the node where the sender
resides to the node where the receiver resides via paths that are progress-only in the
sense that the paths contain at most one Fpath segment and at most one Bpath
segment. Thus the route of an ordinary message is either an Fpath, a Bpath, an
Fpath followed by a Bpath, or a Bpath followed by an Fpath.

In addition to ordinary messages, we introduce two kinds of node-to-node mes-
sages: broadcast messages and bulldoze messages. These messages propagate to every
node in the system, and are used for synchronization and network clearance. The
node-to-node messages may also contain information indicating actions to be car-
ried out. Broadcast messages are propagated from the start node to all the nodes
in the network, along some subset of links. The protocol for propagating a broad-
cast message is illustrated in Figure 1. Each node has a designated set of broadcast
predecessors and broadcast successors. A node can issue a broadcast message to its
broadcast successors only after it has received the message from all of its broadcast
predecessors. The broadcast is considered complete when the finish node has received
messages from all of its broadcast predecessors.
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Fig.1. The Broadcast Wavefront: The figure shows the broadcast messages traversing
through the network as a wavefront. The broadcast messages are initiated at the start
node and travel along indicated route to every node in the network.
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There are two types of bulldoze messages, Fbulldoze messages and Bbulldoze
messages. Fbulldoze messages are initiated at the start node and propagate along all
Fneighbors links. Non-start nodes in the network issue an Fbulldoze message to their
Fneighbors only after they receive Fbulldoze message from all of their Bneighbors.
Dually, Bbulldoze messages are initiated at the finish node and propagate along all
Bneighbor links, and non-finish nodes in the network can issue a Bbulldoze message
to its Bneighbors only after it receives the Bbulldoze message from both its Fneigh-
bors. The propagation of a bulldoze message forms a wave as illustrated in Figure 2.
Bulldoze messages traverse every channel in the network and, by the FIFO assump-
tion on links, force messages already in the network to be cleared along the direction
of the bulldoze. A broadcast message does not in general traverse all forward links
in the network. Thus the number of messages needed to accomplish a broadcast is
less than the number of messages needed to accomplish a bulldoze.

3.2 Obtaining a Consistent GC Snapshot

A GC snapshot consists of acquaintance and active status information that de-
termines a consistent global view of the state of the system at start-of-GC time.
Fach node records, for each of its actors, its GC-acquaintances, its GC-inverse-
acquaintances, and whether or not it was active at start-of-GC time. The GC-
acquaintances of an actor are the current acquaintances, plus any acquaintances
in messages in the network prior to the start of actual garbage collection. This
is a safe approximation of the actors acquaintances, and insures that actors actu-
ally forgotten by one actor but sent in messages during GC will not be lost. The
GC-inverse-acquaintances of an actor the set of actors having that actor as a GC-
acquaintance. This information is used to account for apparently unreachable actors
that might communicate their mail addresses to a reachable actor. The GC acquain-
tance information is used only for GC and can be discarded when the GC for which
it was created is complete.

For a global snapshot of the state of the system, we need to guarantee that
both local consistency and global consistency have been achieved. Every node in the
system needs a point of reference in time with respect to which it determines the
accessibility or inaccessibility of actors in its memory. Once a node has established
this point and recorded the necessary information, we have attained local consistency.
Global consistency is a point in time when all participating nodes have agreed on a
particular state of the distributed system.

In order to determine which messages were in the network prior to the start of
GC and which entered after, ordinary messages are given tags to classify them as old
or new messages. Old (resp. new) messages are messages which were created prior
to (resp. after) the time of the GC snapshot. When GC is initiated, all messages
in the network are tagged old. During the process of recording the GC snapshot,
the network will be cleared of old messages by means of the forward and backward
bulldoze messages explained above.

To obtain the GC snapshot, first a pre-GC message is broadcast to every node
in the system. When a node receives the pre-GC broadcast message, it initializes
the GC-acquaintances of each actor residing on that node with (1) its current ac-
quaintances and (2) all acquaintances contained in messages currently residing in
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Fig. 2. The Forward and Backward Bulldoze Wavefronts: The figure shows the forward
(FB) and backward bulldoze (BB) messages traversing through the network as a wave-
front. The FB messages are initiated at the start node and travel along Fpaths until they
reach the finish node. The BB messages are initiated at the finish node and travel along
Bpaths until they reach the start node.

its mail queue. Any acquaintances contained in old messages subsequently obtained
from the network are added to the GC-acquaintances. It also initializes GC-inverse-
acquaintances to be empty. When the pre-GC broadcast is complete, a pre-GC Fbull-
doze message is initiated (by the finish-node). When the pre-GC Fbulldoze message
passes a node, it marks as active any objects with non-empty mailqueue. The active
status of this node is retained for the current GC even though the node may become
inactive during GC. Any messages subsequently communicated from that node are
be tagged new. The new tag on a message guarantees the recipient of the message
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that any acquaintances communicated in the message have already been accounted
for. When the Fbulldoze message reaches the finish node a Bbulldoze message is ini-
tiated. When the Bbulldoze message passes a node, this signals that the recording
of GC-acquaintances is complete. The node sends I-know-you messages from each of
its actors to each GC-acquaintance of that actor. When an I-know-you message from
actor A to actor B is received then actor A is added to the GC-inverse-acquaintances
of actor B. A second forward and backward bulldoze phase is required to clear the
network of I-know-you messages. This is initiated by the start node upon completion
of the first backward bulldoze wave. When the second forward/backward bulldoze
wave is complete, the start node sends a pre-GC-complete message to the root node.
At this point, all old and I-know-you messages in the system have been cleared from
the network and the snapshot information is recorded.

The backwards bulldoze messages are needed for both the recording of GC-
acquaintances and GC-inverse-acquaintances, since the forward bulldoze only clears
forwards links and there may be messages traversing backwards links that need to
be recorded. To see this, note that after an object, say A, has received the pre-
GC Fbulldoze message it can send only new messages. However, it may receive old
messages from an actor H which has not yet received the pre-GC Fbulldoze message
(see Figure 3).

Bulldoze Wave

Initiated

message

Fig.3. The Bulldoze Wavefront in Progress: The bulldoze wavefront is halfway through
the system. Although object A has started recording acquaintances and issues only new
messages, it can receive and old messages from object H which has not yet received the
bulldoze wave.




142

4 Detection of garbage

In this section we give a definition of redchability that takes into account the ability
of an active object to become known by communicating its mail address. We then
present an algorithm for marking objects that are reachable according to this defi-
nition. We conclude with a description of the behavior of the GC-root actor, which
provides an overview of the complete HDGC algorithm.

4.1 Definition of reachability

The definition of reachable objects in an actor-based system is derived from the
work of Kafura et al [KWN90]. The root set is a pre-defined set of actors from
which reachability is traced. It includes actors referenced in the current computation
state of the system (environment variables, control structures like stacks etc.). A
GC snapshot of the system state determines a conservative approximation of the
acquaintance relation. As mentioned in the introduction, in an actor computation,
the transitive closure of this relation starting from the root set is not adequate
to determine reachability, since an inverse acquaintance of a reachable actor may
communicate its mail address at any point of time to its reachable acquaintance,
thereby making itself reachable. Thus we cannot ignore the inverse acquaintances in
determining reachability.

An actor which is currently processing messages or has messages pending in the
network or 1n its mail queue is an active actor, otherwise, it is an inacizve actor.
An 1inactive actor which is not connected by the transitive closure of the inverse
acquaintance relation to an active actor is a permanently inactive actor. An actor
that 1s permanently inactive can never communicate its mail address and can be
safely regarded as unreachable. The set of reachable actors is defined inductively as
the least set such that:

— A root actor is a reachable actor.

— Every forward-acquaintance of a reachable actor is reachable.

— If an actor is reachable, then every inverse acquaintance of that actor which is
not permanently inactive is reachable.

A garbage actoris an actor which is not reachable according to the above definition.

4.2 Distributed Scavenging

The algorithm for marking the reachable objects in the system, distributed scaveng-
ing, follows the inductive definition of reachability. To record the reachable objects,
each object of the system has associated with it an object-status which may be
touched, untouched or suspended. Touched objects are objects which are known to
be reachable. Untouched objects have not yet been visited during GC. Objects that
remain untouched at the completion of GC are unreachable. Suspended objects are
inactive objects that are inverse acquaintances of reachable (touched) objects. If
an active inverse acquaintance of such an object is found then the object will be-
come touched. An object that remains suspended at the completion of GC is also
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unreachable. When GC is initiated all actors in the system have status untouched.
Any actors created after the start of GC on a node are marked as touched.

The marking of objects is accomplished by propagation of GC and felo messages
from the roots and by backpropagation of GC-ack and GClack messages. It is
initiated at the GC-root by sending GC messages to all the root actors. It is complete
when GC-acks have been received by the GC-root from all root actors. The process
of touching the accessible nodes is carried out in accordance with the Principle of
Monotonicity which states that once an actor has been marked as touched during a
GC, it cannot subsequently be untouched or suspended during the same GC. Below
we summarize the actions caused by receipt of one of the GC marking messages.

A GC message from actor B to actor A is processed as follows:

— 1if A 1s touched then a GC-ack message is sent to B from A
— if A is untouched then A becomes touched, and
¢ a GC message is sent to each GC acquaintance of A,
e aGCl message is sent to each GC inverse acquaintance of A,
o When GC-ack/ GC lack messages have been received from all GC acquain-
tances and GC inverse acquaintances, a GC-ack is sent to B from A.
— if A is suspended then A becomes touched, and
e a GC message is sent to the GC-acquaintances of A,
¢ When GC-ack messages have been received from all GC acquaintances and
outstanding GClack messages have been received from GC inverse acquain-

tances (to Gcl messages sent at suspension time) then a GC-ack is sent to
B from A.

A Gc'l message from actor B to actor A is processed as follows:

~ if A is touched then a GC~lack is sent to B from A
— if A is untouched then
o if A is active then A becomes touched, and proceeds as in the GC message
case,
o if A is inactive, then A becomes suspended and sends Gel messages to its
GCinverseacquaintances. When GClack messages have been received from
all GC inverse acquaintances, a GClack is sent to B from A.

— if A is suspended then it remains suspended and sends a GClack to B

This basic distributed scavenging algorithm can be adapted to provide a gener-
ational version by extending Ungar’s Generation Scavenging scheme [Ung84]. A tag
field associated with every actor which encodes the generation to which the actor
belongs. When a GC is called, the generation bits in the tag field of accessible objects
are altered. This is logically equivalent to moving the object from one generation
to another. The copy-count bits, also a part of the tag field, are used to implement
a tenuring policy and are incremented whenever the object survives a GC. When
this count reaches a threshold value, the object is tenured from ScavengeSpace to
Oldspace.
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4.3 Behavior of a GC-root actor

An overall view of HDGC is given by describing the behavior of the GC-root actor.
The GC-root actor remembers whether or not a GC is currently in progress. We
summarize below the actions of the GC-root actor for each message it can receive.

~ GC-initiate: This can come from any node wishing to initiate a GC. If a GC is
not in progress, then a pre-GC broadcast is initiated at the start node and the
GC-root remembers that a GC is in progress, otherwise the sender is informed
that a GC is in progress.

— pre-GC-complete: This is sent by the start node when the second f/b bulldoze
wave is complete. The distributed scavenge phase is initiated by sending GC
messages to each root actor. When GC-acks have been received from all the root
actors, a Local-Clear-Init broadcast is initiated at the start node. Local clearance
is begun at each node when this broadcast is received.

— Local-Clear-Complete: This is sent by the finish node when the local clearance
is complete. A post-GC broadcast is initiated at the start node.

— (GC-complete: This is sent by the finish node when the post-GC broadcast is
complete. Now each node marks all messages as old and all remaining actors as
untouched [by flipping the interpretation of the tags]. The GC-root now remem-
bers that GC is not in progress and is ready to initialize another GC.

5 Informal sketch of Correctness for HDGC

The correctness of the Hierarchical Distributed Garbage Collection Scheme is ex-
pressed by the following four theorems. The first two represent safety properties and
the last two represent liveness properties.

Theorem 1. A non-garbage actor will not be collected by the disiributed garbage
collection algorithm.

Theorem 2. The user program progresses as normal without any semantic interfer-
ence with the distribuied garbage collection algorithm.

Theorem 3. The HDGC scheme terminales for every erecution.
Theorem4. Every garbage object will eventually be collected.

To establish these theorems we assume that a GC is initiated only under the
following conditions.
Initial Conditions:

— All actors in the system are untouched
— Messages in the sysiem are of one kind - Old messages

We recall the properties of actors and the underlying network that we have
assumed.

1. There are a finite number of actors in the system.
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2. Along a single link in the network messages are communicated in a FIFO fashion.

. Message routing is progress-only in the sense described in section 2.

4, The mutator cooperates with the collector. Any new actors created during GC
are created as touched actors, and any new messages created during GC are
tagged as new.

5. The mutator does not interfere with the collector. The mutator does not modify
data used during GC — the GC-acquaintances and GC-inverse-acquaintances of
an actor, an actors active status and other GC status information, or a messages
old/new tag.

6. A garbage actor can never become non-garbage.

(Y]

We have not specified the details of how a node carries out it local clearance but
we make certain requirements. Namely, that only untouched or suspended objects on
a node are collected, and that local clearance at a node terminates. The correctness
theorems follow from the HDGC step lemmasand GC invariant lemmas stated below.
A rigorous proof of these lemmas is beyond the scope of this paper and will appear
in a forthcoming publication.

5.1 HDGC Step Lemmas

The following lemmas express the crucial properties of each of the steps of the
HDGC algorithm. For informal proofs of these lemmas, see [Ven91]. Recall that
the GC snapshot consists of the GC-acquaintances, GC-inverse-acquaintances, and
active status for each actor in the system. This information together with the root
set determines a consistent global view of the reachability relation for the purposes

of the GC.

—

Lemmal. The pre-GC step terminates

2. At the end of pre-GC, all messages in the network are new and all
objects existing prior to initiation of GC are marked untouched.

3. At the end of pre-GC, the GC snapshot 1s a consistent distributed
snapshot of the acquaintance relaiton relative to the stari-of-GC

time.

Lemma2. 1. The Distributed Scavenge phase marks all objects that are reachable
according 1o the GC snapshot as touched.

2. The DistributedScavenge phase marks all objects that are unreach-

able according to the GC snapshot as untouched or suspended.
3. The Distributed Scavenge phase terminates.

Lemma 3. The Local-Clear-Initiation terminates and local clearance 15 initiated on
every node in the sysiem.

Lemmad4. The Local-Clear step terminates.

Lemmab. The termination of GC is correctly detected and all the nodes in the
system are informed of the same.
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Lemma6. I. The GC snapshot persists through out the duration of a given GC.
2. The touching process is monotonic, t.e., once an actor has been
marked as touched during a GC, i cannot subsequently be un-
touched or suspended during the same GC.
3. Only one GC can be active in the system atl a point in time.

6 Conclusions and future work

In this paper, we have proposed a novel algorithm for garbage collection in scalable
distributed systems of active objects called hierarchical distributed garbage collec-
tion. An informal sketch of the proof of correctness of HDGC has been outlined.
A formal proof of correctness will appear in a forthcoming paper. To formalize the
proof of a distributed garbage collection algorithm, we formally express the GC pro-
cess as a transition relation and show that the possible computations of the system
satisfy the step lemmas and that these in turn imply the desired correctness prop-
erties. The key concept for our formalization is to classify actors into object-level
(application) actors and meta-level (system) actors. Meta-level actors can access in-
formation about object-level actors that other object-level actors cannot access. In
particular, they can modify fields in the data structures representing object-level ac-
tors such as status, tags, mailqueue, acquaintances, and behavior. Some meta-level
actors simply serve as resource managers for a node. This provides encapsulation of
the resource management facilities, and allows us to deal with system management
and application management within a single unified framework—the actor model.

Any mechanism for efficient GC in a large system must be conservative. Genera-
tional storage management techniques are conservative and they exploit character-
istic reference patterns observed in many applications {Ung84]; we therefore believe
that they are well-suited to machines with large numbers of processing elements. As
we avoid physically moving objects across generations, this scheme also turns out to
be less error prone because interprocessor management of forwarding pointers can
get very complex and frustrating. In actor based systems, GC involves more than
data deallocation. An actor is a basic entity within which behavior (code), commu-
nication information and task processing information is embedded. When an actor
is deleted, all resource management responsibilities associated with an actor disap-
pear. Memory management in Actors is more than a data management facility, it is
a process management facility as well.

What we have avoided in this paper is a detailed discussion of optimizations
to the HDGC scheme. A consideration of various deficiencies of the this scheme has
revealed some optimizations which can reduce the time and space overheads encoun-
tered in synchronization, name translation and bookkeeping. In addition to possible
optimizations, this research has also brought to the surface many interesting issues.
Compaction of memory to obtain locality, static analysis for optimal actor alloca-
tion and placement, lifetime analysis, and extensions of the HDGC algorithm to
exhibit fault tolerance and real-time behavior are a few. We believe that the ability
to design efficient, scalable, concurrent systems does not lie in esoteric programming
paradigms and architectures that are difficult to comprehend. It lies in representing
applications as well classified, intuitive specifications and organizing hardware re-
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sources to render flexible and manageable concurrency using natural strategies such
as hierarchical resource management.
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Distributed Garbage Collection of Active Objects
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Abstract. This paper presents an algorithm to perform distributed garbage
collection of objects possessing their own thread of control (active objects).
The relevance of garbage collection in a system of active objects is briefly
discussed. The collector is comprised of a collection of independent local col-
lectors loosely coupled to a global collector. The mutator {application), the
local collectors and the global garbage collector run concurrently. Distributed
cycles of garbage are detected. The algorithm does not require that the com-
munication channels be reliable: messages may be lost, duplicated, or may
arrive out of order. Moreover, local collectors are only loosely synchronised
to help detecting global garbage.

1 Introduction

Parallel object-oriented languages and distributed object-based systems have ap-
peared recently as a suitable paradigm for distributed computing [1]. Although not
all these languages and systems use garbage collection, we argue that garbage col-
lection is to be preferred to user-controlled memory management for the following
reasons:

— programmer-controlled memory management is notoriously error-prone. The
programmer tends to make two mistakes. One mistake is that he fails to free
a resource when it is no longer used. This leads to performance degradation.
The second mistake is that he returns a resource that is still used. Both mis-
takes are difficult to detect and recover from, especially in systems managing
persistent data.

— a better division of responsibility is obtained when the system does what it
does best (manage resources), and the programmer does what programmers do
best (design systems). The task of programming becomes easier when no longer
concerned with memory management. Programs become shorter and thus easier
to maintain.

— in distributed applications, it is unlikely that a programmer could design a cor-
rect and efficient distributed algorithm for managing distributed data.

Additional reasons appear when using objects possessing their own thread of
control (active objects). It is significantly more difficult to manage active objects than
passive data because both reachability and state must be considered. Furthermore,



149

as active objects not only consume memory space, but also processing capacity, it
is even more imperative that active garbage objects be identified quickly.

Garbage collection in an object-based system raises three distinct problems: dis-
tinguishing references from other data in objects, detecting garbage objects and
reclaiming the space occupied by these objects. This paper focuses on the second
problem.

The remainder of this paper is organised as follows. Section 2 presents briefly
garbage collection in a system of active objects and justifies the need for the devel-
opment of an original distributed garbage collector. Section 3 describes the principles
of the algorithm assuming a reliable environment. Section 4 extends this algorithm
to allow the parallel execution of the mutator and the collector, and to cope with un-
reliable communications. Section 5 analyses briefly the performance of the algorithm
in terms of messages, time and space overhead. We conclude in Section 6.

2 Garbage Collection of Active Objects: The Problem

2.1 Definition of garbage in a system of active objects

In sequential programming languages with dynamic memory allocation (i.e. list pro-
cessing languages, object-oriented languages), storage can be modelled by a directed
graph: a node of the graph is a memory cell and an edge is a reference from one
memory cell to another. A memory cell is said to be garbage if it cannot be ac-
cessed through a path from a distinguished cell (the root) leading to that cell (it
is not reachable from the root cell) [2]. But this definition is not suited to systems
managing active objects as discussed below.

In the following we assume that an object is composed of data and of one or
several threads of control that operate on that data. The object data is a sequence
of memory cells, each containing either an atomic value or a reference to another
object. An object is running when at least one of its threads is executing. It is
inactive when all of its threads are inactive. An object may activate another object
through message passing, if it is running and if its data embeds a reference to the
other object. When activating another object, an object may communicate a subset
of its data to the activated object.

Note that the computing model described above is quite general and is used in
many concurrent object-oriented languages (e.g. [3, 4, 5]). Therefore, the proposed
garbage collector may be retained for a wide variety of concurrent object-oriented
languages and systems.

Garbage collection in systems of active objects was first addressed for the actor
computation model [6] and later refined in [7]. Only a brief definition of garbage in
a system of active objects is given here; further details can be found in [7].

Informally, an object is garbage if its absence from the system cannot be detected
by external observation, excluding from its consumption of memory and processor
resources. To make this idea more concrete, root objects are introduced, to designate
objects that are always needed. The root objects are the objects which have the
ability to directly interact with the external world, via 1/0 devices, external naming,
etc. Root objects are assumed to be always running. Intuitively, an object is garbage
either if it is inactive and cannot be activated in the future, or if it cannot send
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information to or receive information from a root object. In other words, an object
is garbage if:

- it i1s not a root object,
- it cannot potentially receive a message from a root object,
- it cannot potentially send a message to a root object.

In the above definition, the term potentially requires further clarification. An
object that cannot at a given time directly activate a root object (because it is
either inactive or does not possess a reference to a root object}) may do so later
because it may be activated by another object that gives it a reference to the root
object. There exists a set of transformations that change the system of objects from
a representation of what can currently happen to what can potentially happen. Let
us consider which objects in Figure 1 are garbage.

A root object

Legend: G % Garbage objects : d,e,f

(O  running object
0O  inactive object

— reference

Fig.1. A system of active objects

Objects € and f are garbage because they cannot potentially communicate with
the root object r. Object d is garbage because it cannot be activated. Objects & and
¢ are not garbage because they can communicate to object a their own reference
and then can be indirectly activated by the root object » through a later on. Note
that the definition of garbage in a system of active objects 1s actually different from
the definition of garbage in sequential systems, which is based only on reachability.
Objects b and ¢ are not garbage, although they are not reachable from a root object.
Note also that when using the definition of garbage given above, both running and
inactive objects may be garbage (both e and f are garbage).

One key property of garbage objects is that they cannot become non-garbage
(stability property). This is because an object is determined to be garbage only if
there is no possibility of communication between it and a root object. Therefore,
once an object is garbage, there is no sequence of transformation which could cause
it to become non-garbage.
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2.2 Why a new distributed garbage collector ?

Numerous garbage collection algorithms have been proposed since the birth of the
first programming languages with dynamic memory allocation. Most of them apply
only to non-distributed passive objects [2]. Fewer collectors have been developed for
distributed systems (see [8, 9, 10] for examples) but the vast majority of them focus
on determining object reachability which, as seen before, is too weak a criterion for
detecting garbage in a system of active objects. Few algorithms detect distributed
active garbage objects [11, 12] but either use a more limited model of computation
or enforce global synchronisation.

A distributed garbage collector similar to the one proposed in this paper is the
garbage collector described in [12] for a distributed system of actors. Like our garbage
collector, this technique relies on independent local garbage collectors and a global
garbage collector, both using marking. However, unlike our proposition, the garbage
collector of [12] enforces global synchronisation to detect global garbage, and assumes
reliable communications.

Another related garbage collector was developed for the EMERALD object-based
programming system [3, 13]. While EMERALD provides active objects, the garbage
collector designed for this system is based exclusively on object reachability (all
running objects are designated as being root objects). Moreover, like the distributed
garbage collector described in [12], it enforces global synchronisation to detect global
garbage and assumes reliable message transmission.

The distributed garbage detection protocol described in [14], like ours, supports
unreliable communication channels. No global mechanism is required to detect global
garbage. This protocol only uses information local to each node or exchanged be-
tween pairs of nodes. However this protocol, unlike ours, only considers object reach-
ability and does not detect distributed cycles of garbage.

Our algorithm is in some aspects similar to the one described in [15]. Like this
algorithm, our global collector is based on (possibly out-of-date) information on
inter-node references that permits the elimination of global synchronisation when
detecting global garbage. Unlike [15], node crashes and crash recovery are not con-
sidered. Only node unavailability is supported. However, in contrast to [15], we detect
garbage in a system of active objects and require neither synchronised clocks nor
bounded message transmission delay.

3 Basic Principles of the Garbage Collector

3.1 System model

An object is an active entity whose data contains references to other objects. A refer-
ence to an object is a unique name that is not reused when the object is deleted. The
universe of objects is subdivided into spaces (e.g. the local memory of a processor,
or a disk unit). At any time, an existing object is located in exactly one space. Each
space has its own local root object. The global root object is conceptually formed
of the union of all local root objects. It is assumed that it is possible to distinguish
a local reference (to an object in the same space) from a remote reference (to an
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object in another space). Like many other garbage collectors (e.g. [14, 16]), indi-
rection tables are used to distinguish between local and remote references. We also
distinguish between local objects (referepced only by objects of the same space and
having only local references), and global objects (having remote references and/or
referenced by an object of another space}. Local objects are assumed to be much
more numerous than global objects. Objects communicate through message passing.
The references embedded in a message are distinguished from atomic values. When
two objects located in different spaces communicate, messages are sent across the
corresponding spaces.

14
©

=0

Space S Space T

Fig.2. A distributed system of active objecis

An example of a distributed system of active objects is shown in Figure 2. Spaces
are denoted with capital letters (5,7), objects with lower-case letters (a,b,c). A
message sent from space S to space T is noted S — T : {contents}. A reference to
an object z is noted @z. The term mutator is used to refer to the overall computation
achieved by the objects.

In this section, message transmission is assumed reliable and FIFo (two succes-
sive messages from a space S to a space T are received in the order sent). It is also
assumed that the mutator is halted during local garbage collection. These assump-
tions are made to simplify the description of the principles of the garbage collector
and are relaxed in section 4.

The garbage collector is comprised of a collection of local garbage collectors (one
per space) loosely coupled to a global garbage collector (Figure 3). Local garbage
collectors identifies and reclaim objects that can be determined to be garbage by
using only local information (local garbage). In the example shown in Figure 2,
and f are local garbage. Objects that need inter-space communication to determine
if they are garbage are retained by the local garbage collectors. The number of such
objects increases while the mutator executes.

The global collector identifies the garbage objects whose detection requires inter-
space communication (global garbage). Periodically, each local collector running on
a space S sends information to the global collector. This information includes the
subgraph of S’s object graph needed for the identification of global garbage. The
global collector records the subgraphs sent by the local collectors and processes this
information asynchronously in order to detect global garbage.
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Global Collector

Local Collector

Space S Space T

Local Collector

i

\J I

Fig. 3. Architecture of the distributed garbage collector

i

The local and global collectors are both based on a colouring algorithm, which
is first described. The local collectors and the global collector are then presented in
turn,

3.2 A simple colouring algorithm to detect garbage active objects

A simple algorithm based on marking is proposed in [7] to detect garbage in a sys-
tem of active objects. It is assumed that the mutator is halted during the marking
process. Three colours are used to mark the objects: objects coloured white cannot
potentially communicate with a roct object; objects coloured grey could communi-
cate with a root object if they were activated; objects coloured black can potentially
communicate with a root object. Initially, all objects are marked white, except for
root objects which are marked black. The five rules given in table 1 are applied
continuously until no new marking is done.

Table 1. Marking rules

Rule 1 : Mark black all objects referenced by black objects.

Rule 2 : Mark black all running objects having a reference to a black object.
Rule 3 : Mark black all running objects having a reference to a grey object.
Rule 4 : Mark grey all inactive objects having a reference to a black object.
Rule 5 : Mark grey all inactive objects having a reference to a grey object.

The first rule marks black the objects that can directly receive a message from
a non-garbage object. Rule 2 marks black the objects that can directly activate a
black object. Rule 3 marks black the objects that can directly activate a grey object.
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Rule 4 marks grey the inactive objects having a reference to a non-garbage object.
Rule 5 marks grey the inactive objects that could (if they were activated) send a
message to a grey object.

When no new marking can be done, all black objects are considered to be non-
garbage. Grey and white objects are garbage and can be reclaimed. An object is
marked at most twice: once grey and once black. The termination of marking follows.
Two algorithms implementing the above marking rules are given in [7].

3.3 Local garbage collector

Detection of local garbage

Let us consider an object  located in a space S that is potentially referenced by
an object y located in another space. Object = must be retained even if it is inactive
because it may be activated by y. A running object having remote references must
be retained because it may activate a remote object. An inactive object containing
a remote reference must be retained only if it can potentially be activated.

The marking rules described above are used to detect the local garbage of space
S. Initially, the following objects of space S are coloured black: the root object of
space S, remotely referenced objects and running objects having remote references.
The inactive objects containing remote references are coloured grey. All the other
objects of space S are coloured white. When marking is complete, all white and
grey objects are garbage and can be reclaimed, without any synchronisation with
the other spaces.

Table 2. Local garbage collection

rSpace S| Space T
Initialisation: black| {a,bi} | {j.g}

grey|  {} {d}
white| {ck} {h,e,f}
End of Local Collection: black{ {a,b,c,i} |{d,e,g,h,j}

grey| {k} {}
white {} {1}
Local Garbage {k} {1}

The progress of local collection in space S of Figure 2 is shown in table 2. At
the end of the local marking, objects & and f are identified as garbage and can be

reclaimed.
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Cooperation to the detection of global garbage

Periodically, a local collector running on a space S identifies the objects that are
needed for the detection of global garbage. The references contained in these objects
are then sent to the global collector that processes them asynchronously. The objects
needed for detecting global garbage are the objects affected by remote references,
that is objects that can potentially communicate with remote objects (they may be
local or global to space S).

The objects needed for the detection of global garbage are identified by applying
the marking rules given in section 3.2, in which colours are renamed. Initially, the
running objects containing remote references and the remotely referenced objects
are marked REMOTE (analogous to black). The inactive objects containing remote
references are marked PossIBLYREMOTE (analogous to grey). The other objects are
marked LocCAL (analogous to white). When marking is finished, REMOTE objects
are used to detect global garbage (objects @, b, ¢ and ¢ for the space S of Figure 2).
All the references contained in these objects form a subgraph of S’s graph of objects
{shown below for the space S of the example).

a

®

The subgraph is then sent to the global collector as a list of edges. In our ex-
ample, we get the list (< a, root >< b, inactive >). (< ¢, running >< a, root >).(<
i, running >< j, unknown >). As the state of object j is not known by space S, it is
sent as unknown to the global collector. The state of j will be known by the global
collector when merging the informations sent by the local collectors.

3.4 Global garbage collector

The global collector is a logically centralized service that maintains a graph G which
is the merge of the subgraphs sent by the local collectors. Since local collectors do
not synchronise with each other when sending information to the global collector,
the global collector must be able to detect whether G represents a consistent vision
of the system state. This issue is examined before giving a more detailed description
of the global collector.

Consistent global states and garbage collection

Let us consider a distributed system composed of n processes p;, 1 < i < n
communicating through message passing on reliable communication channels c;;,
I < 4,j < n, where ¢;; denotes the communication channel between p; and Pj-
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Message transmission is assumed to be finite, but not necessarily bounded. Each
process p; has a private local state. The state of any communication channel is the
set of messages sent by process p; and not yet received by process p;. The execution of
a process consists of a sequence of events. The events are classified according to three
categories: send, receive, and internal where internal events modify only the process
local state. A global system state if comprised of the processes local states and the
communication channels states. A global state is qualified as being consistent {or is
called global snapshot [17, 18]) if for each message captured as received in a process
local state, the message is captured as sent in the sender local state. An interesting
feature of global snapshots is that they can be used to detect stable properties [17].

Consistency of a global system state may be determined through the use of vector
timestamps {18, 19] that timestamp events occurring in a distributed system. Each
process p; has a clock VT consisting of a vector of length n, where n is the number
of processes. With each event of process p;, VT; "ticks” by incrementing its own
component of its clock, VT;[i]. Ticking is considered to occur before any event; the
timestamp of an event is the clock value after ticking. Each message gets a piggy-
backed timestamp consisting of the sender clock. The receiver p; of the timestamped
message updates its clock with the componentwise maximum of its clock and the
timestamp contained in the message, that is, VT; := sup(VT;,t), where ¢ is the
timestamp of the message and sup(C,C’) = [maz(C[1], C'[1]), ...maz(C[n], C'[n])].
Figure 4 shows an example of events timestamping using vector timestamps (arrows
denote message transmission).

G2
G1
(1,0, 0 2,0,0]
Process p1 N\ l [3,3,0]
Process pa2 [2,4,0]
BL0 2ol (200
Process ps { ~
[0,0,1] / [0 0,21 [2,4,3]

Fig.4. Vector timestamps

Assuming that V'T; corresponds to the clock of process p; timestamping its local
state Is;, a global state is consistent [18] if:

Vivi VLl > VT
For instance, in Figure 4, the system state in G1 is a consistent state, while the
system state in G2 is not consistent (V75[2] > VT3[2]): the message sent from p; to
ps is captured as received in p3 state and not yet sent in p; state.

Vector timestamps can be used to detect global garbage due to the stability
property of garbage: once an object is garbage, it remains garbage forever.
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The protocol

Events are timestamped using vector timestamps. Each space S maintains a
vector timestamp VTg. The information sent by the local collector of space S to the
global collector is timestamped with the clock VTg corresponding to the construction
of this information. Note that the information sent to the global collector must
contain the states of the communication channels in order to obtain a consistent
state. This is described in the following paragraph.

The local collectors and the global collector communicate through asynchronous
message passing. In this way, the local collectors are not blocked while global garbage
is detected. Two types of messages are used (see table below): Info is sent by a local
collector to the global collector, and contains the information needed to detect global
garbage; Delete is sent by the global collector to a local collector to notify that some
objects are garbage.

Global Collector

Maintains a global graph G composed of objects needed for the detection
of global garbage. G is composed of the subgraphs sent by the local
collectors and. the clocks at which these subgraphs were computed

— Info(S,Edges, Trans,VTs)

Receipt of information from the space S; it includes a list of references
(Edges), a list of references that are possibly in-transit (Trans) and the
timestamp at which this information was computed.

— Delete(S list_of_obj)

Sending of a message notifying S that the objects belonging to list_of.obj
are garbage.

The global collector represents G as a set of edges labelled with the space that
sent them. An edge is a tuple (< id;, state; >< idy, state; >), where id; and id; are
names of objects and state; and state; are states of objects (i.e. running, inactive
or root). The global collector also stores the timestamps of the last information sent
by the local collectors (VT, .. ,VT,).

Upon receipt of an Info(S;, Edges, Trans,VTs ) message, the global collector re-
places the edges of G that are labelled with S; by the edges contained in Trans and
Edges. The timestamp VT; of the old subgraph sent by S; is replaced by VTs. The
global collector then checks if G is consistent (i.e. Vi Vj VTi[s] > VT;[i]). If G is
not consistent, nothing is done. Otherwise, the global collector traces G using the
marking algorithm described in paragraph 3.2. Initially, all objects whose state is
root are marked black. The marking rules are applied until no new marking is done.
When marking is finished, all the objects whose colour is white or grey are garbage.
All white or grey objects labelled with space S are gathered in a list I. The message
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Delete(S,1} is then sent to space S.
Recording the state of the communication channels

The global collector needs to know the states of the communication channels
in order to establish a consistent state. The only informations relevant to garbage
collection are the references contained in in-transit messages, hence this is the only
information sent to the global collector. Note that a reference @z contained in a
message may be considered in-transit although received without incorrect behaviour
of the global collector. Indeed, this implies only that G has an extra-edge containing
@z which results in delaying the detection of 2 as garbage. Consequently, each
message need not be acknowledged. Each time a message is sent, the references
contained in the message are stored; it only remains to free the storage needed to
store these references.

Assuming FIFO channels, a message m : S — T': {..., @z, ...} is received when T’
has acknowledged a message sent after m; the space needed to keep track of @z can
then be freed. In addition to the vector VT, used to timestamp the information sent
to the global collector, each space S has a vector of clocks Hisg (for highest), used to
free the memory occupied by possibly in-transit references. Hisg[T] indicates that
the last message received by S from T was sent at T’s time Hisg[T]. The following
actions must be executed when sending and receiving messages:

— Sending of m: S — T : {..,Q@z, ...}
(where m corresponds to the sending of a message from an object y to an object
z)
- increment VTg,
- store trans = < z,z,T, VTs[S] >, that indicates that a reference from z to
z 1s in transit and was sent to space T at S’s time VT[],
- send m to space T together with the vector clock of the sender and the
sending clock of the last message from T" to S:
m=S—T{..,Qz,..VTs, Hiss[T]}.
— Receipt by S of a message from T < ...,VTr, Hisp[S] >.
- update VTgs with VT,
- update Hisg[T] with VT (T,
- delete all trans = < z,y,T,VTs[S] > such as VTs[S] < Htsr[S].

When S sends information to the global collector, the list of possibly in-transit
references are included in this information.

Guaranieeing global garbage is eventually deleted

While not formally proved, the global collector does not detect an object as
garbage although it is not, because the global collector processes a global snapshot
of the system. We wish to show there that all global garbage is eventually deleted.
Three properties are needed to ensure that progress is made:

(Dyn1} A local collector sends new information to the global collector in finite
time
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This property can be ensured by performing the detection of local garbage at
regular finite intervals, and sending information to the global collector after a fixed
number of local garbage collections.

(Dyn2)} In-transit references are known to be received in finite time

The technique used to keep track of the states of the communication channels,
although it does not need extra communications, does not satisfy this property.
Indeed, if a space S stops sending messages to space T after the receipt of a message
m from T, T will never know m was received. In order to satisfy (Dyn2), each space
S must send to another space T at least one message in a finite time interval.

(Dyn3) A consistent stale is detecied in finite time

This property is not directly satisfied by the proposed protocol. Indeed, the
global collector may detect a consistent state only after a very long delay (this delay
may also be infinite). A practical approach to attempt reducing this delay, when
the spaces physical clocks are loosely synchronised, is to send information to the
global collector at predetermined physical times. The spaces are in this case loosely
synchronised to send information to the global collector. However, although this
technique may seem realistic from a practical point of view, it still does not ensure
that a consistent state is obtained in finite time.

A panic mode of the global collector, less efficient that the normal mode given
in the previous paragraphs is defined in order to satisfy (Dyn3). In panic mode,
all the spaces must synchronise with each other for obtaining a consistent state.
The protocol given in [18] can be used for that purpose. Panic mode and normal
mode can be combined into a judicious mixture depending on how short of free
store the system is. We define a nervous mode, in which each local collector has a
panic threshold PT. PT is the maximum allowable number of messages containing
information sent to the global collector before a consistent state is obtained. When
the number of messages sent to the global collector exceeds PT without obtaining a
consistent state, the system enters the panic mode. A computation of global snapshot
1s initiated. In this way, the system can balance garbage collection costs against the
urgency of its need for storage.

4 Extensions of the Basic Algorithm

4.1 Concurrency between mutator and collector

Halting the mutator while garbage objects are detected leads to unpredictable inter-
ludes in the computation. Such interludes are annoying for users running interactive
computations and are unacceptable for applications having real-time requirements.
The technique described in [12] can be used to execute concurrently the mutator
and the local collectors: the mutator participates to the marking of objects when
modifying the object graph. We focus here on allowing the local and global collectors
to proceed in parallel, with as few synchronisation as possible.

The global and local collectors must cooperate for the deletion of global garbage.
Indeed, the global objects contained in a space are shared between the local collector
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of this space and the global collector: it would be incorrect to delete a global object
while it is used by the local collector, e.g. during local marking. Deletion of a global
object is achieved by the local collector of the space containing this object. Upon
receipt of a Delete(S,z) request, z is marked as ”deleted”. The actual deletion of =
is done by the local collector during its next reclamation cycle.

The marking of objects for the detection of local garbage and the marking of
objects for the detection of global garbage are independent. Two distinct colour
fields can be used to achieve these two marking cycles in parallel. The same colour
field can however be used if these two marking cycles are done sequentially.

4.2 Unreliable communications

Until now, we have considered reliable and FIFO communication channels between
spaces. In true distributed systems, additional features must be taken into account.
A message may be lost, duplicated or arrive our of order. Byzantine failures are ruled
out: message contents are not altered during transmission. Delivered messages arrive
in finite (but not necessarily bounded) time. When considering that messages may
be lost, it is assumed that transmission of sufficiently many messages will eventually
cause at least one to be received.

Two kinds of messages exist in our system: mutator messages and collector mes-
sages, the latter being used for the detection of global garbage (Info and Delete
messages). It is assumed that the mutator knows how to deal with unreliable chan-
nels (e.g. by sending again lost messages and removing duplicates). Our algorithm
tolerates message loss, duplication and non-FIFO ordering independently of the so-
lutions adopted by the mutator.

Message loss

Assuming that the local collectors send information periodically to the global
collector, the loss of a message Infe will only cause a delay in the detection of global
garbage. The loss of a message Delete(S,z) is also tolerated since garbage objects
remain garbage: the global collector will still detect # as garbage during its next
marking phase.

The loss of a mutator message will not cause the incorrect deletion of objects.
The only objects that could be incorrectly identified as garbage are the objects whose
reference is contained in the lost message. All references contained in a message m
sent from S to T are considered to be in transit until T has acknowledged a message
sent by S after m (m is either received or lost). Thus, no object is incorrectly
identified as garbage. If n contains the last reference to object &, z will eventually
be detected as garbage (as soon as S will detect that m is either received or lost).

Non-FIFO ordering

Our use of timestamps to guard against possibly in-transit references works well
* if channels are FIFO, i.c. if messages are received in the order sent (if at all). With
a small extension, our algorithm can tolerate some amount of non-rFiFo ordering.
Non-FIFo orderings are acceptable if the following acceptance condition is added for
receiving mutator messages m = § — T : {...} :
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Hisy [S] > VTs [S]

A message m sent from S to T is rejected, i.e. considered as being lost, if it arrives
after a message sent from S to T after m (all late mutator messages are considered
lost). Late Info messages received by the global collector are also eliminated, because
they carry out-of-date information. An Info message sent by a space S is accepted
if the following acceptance condition is verified:

VT < Vs,

where V Ty is the timestamp of the last information sent by S. Non-FIFo ordering
of Delete(S,z) messages are harmless since garbage objects remain garbage.

Duplicated messages

The duplication of an Info message is already taken into account by the accep-
tance condition of messages on the global collector, given in the previous paragraph.
The duplication of a Delete(S,z) message is treated by making the action executed
when this message is received idempotent: ¢ is marked ” deleted” if it still exists and
is not already marked ” deleted”. Since object identifiers are not reused, there can be
no confusion of object identifiers. If object names were reused, stronger assumptions,
like bounded transmission delay would have to be done.

4.3 More availability

The global collector stores only {possibly out-of-date) information sent by the local
collectors. It can therefore be replicated without any problem. A local collector sends
information to a single replica of the global collector (the global collector is seen by
its user as a centralized service). Information is then propagated to all other replicas
in the background. This permits garbage to be collected even if some of the replicas
are unavailable and removes the bottleneck of a centralized global collector.

5 Performance evaluation

Cost of the proposed garbage collection algorithm is briefly considered according
to three different measures: in terms of messages, memory space, and computation
time.

Messages

The only additional foreground messages are those needed to detect global gar-
bage. Assuming messages have unbounded size, if n is the number of spaces in
the system, only n + 1 messages are required to detect an object z as garbage (n
Info messages and one Delete(S,z) message). However, although the number of sent
messages is low, there may be a long delay between the time an object becomes
garbage and the time it is effectively detected as garbage. However, all garbage
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is eventually detected. In real systems, where messages have bounded size, more
than one message may be sent in order to communicate information to the global
collector. The number of edges, and thus the number of messages actually sent
strongly depends on the percentage of global objects in a space.

Memory space

Four or two bits per object are required for marking, depending upon whether
local marking and marking the objects used for the detection of global garbage are
done in parallel or not.

Two clock vectors per space S are required : VTg and Hiss. In addition, the
global objects must be identified. This is usually done by using two tables: one for
remotely referenced objects and the other for objects containing remote references.

The global collector stores a set of edges necessary to detect global garbage. The
memory space occupied by this set is strongly dependant on the degree of locality
exhibited by the mutator. If n is the number of objects of the global graphe G,
2 x nn bits are required for marking these objects. The set of edges can for example
be represented as a list or a matrix depending on the structure of G. Assuming
G is represented as a list of edges, each list element contains two object references.
Experimental results on the structure of G will help knowing the best representation
for G and the space occupied by this representation.

Finally, each message must be timestamped; however, such a requirement is al-
ready common in distributed systems.

Computation time

Mainly three factors have to be considered : local marking, that is used to detect
local garbage, the collection of information by each space for the detection of global
garbage and global marking, that actually detects global garbage. We use the algo-
rithm described in {7} for marking. This algorithm has a time complexity of O(n?),
where n is the number of objects.

6 Conclusions

In this paper we have proposed an algorithm to perform distributed garbage col-
lection of active objects. Autonomous local garbage collectors detect and reclaim
local garbage, without synchronising with each other. Global garbage (even form-
ing distributed cycles) is identified asynchronously by a logically centralized global
garbage collector. The computation is not halted while detecting garbage objects
and only weak synchronisation is required between the local collectors. This weak
synchronisation is paid by a delay in the detection of global garbage. The algorithm
is based on weak assumptions on the communication channels: messages may be lost,
duplicated or arrive out of order. However, there are several limitations of the collec-
tor described in this paper. These limitations, and future work needed for removing
them, are discussed below.

First, some quantitative information on objects can improve the performance of
the garbage collector. In particular, the following knowledge would be useful:
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- the percentage of objects needed to detect global garbage,
- the variations of the lifetimes of objects,
- the percentage of cyclic structures.

The first point is of prime necessity because it allows to choose the frequency
of global garbage detection. It also permits to know how much information is sent
to the global collector. If too much information is sent, it would be interesting to
study if an additional conservative technique for detecting global garbage (like the
one described in [14]) could lower the overall cost of garbage collection. Having an
idea of the lifetimes of objects would help knowing if a generational method [20] is
adequate for the collection of garbage in a system of active objects. The percentage
of cyclic structures, and more particularly of distributed cycles would show whether
detecting distributed cycles is of prime importance or not. An implementation of the
algorithm, currently under way in the GOTHIC distributed object-based system [21]
will help tuning the algorithm.

Object migration was not considered here: its influence on the proposed garbage
collector has to be taken into account. Finally, the algorithm presented in this paper
has not been proved correct. This is an area which needs further investigation.
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Abstract. Three memory management strategics for st ared-memory multiprocessors that
support two-space copying garbage collection are presented. These strategics exploit the
fork-join task structure of the divide-and-conquer paradigm by cquipping each task with a
private heap that can be locally collected independently of other processors and tasks. The
memory management strategics usc a virtual address space to allocate private heaps such
that the cfficient copying collectors do not necd to be adapted to handle physically scattered
heaps. When the allocation strategies run out of the virtual address space, an expensive
compaction operation has to be performed. Results from a detailed simulation, however,
show that this happens so infrequently that the costs arc negligible in practice.

1 Introduction

An important property of logic, object-oriented, functional, and other high-level programming
languages is their automatic management of dynamically allocated storage. The language sup-
port system provides the user with a virtually unlimited amount of storage by running a garbage
collector to reclaim storage that is no longer in usc. The efficiency of the garbage collector
is important for the application’s performance, especially when the underlying computational
model (e.g., graph reduction) allocates lots of temporary storage.

From the three classes of garbage collection algorithms (reference counting, marké&scan,
and copying collectors), the copying collectors perform best on systems with large memories
[Har90] for two reasons. First, they only traverse live data, which usually accounts for only
a small fraction of the total heap space, while mark&scan collectors access every heap cell
twice. Secondly, copying collectors compact the live data into onc consecutive block, which
facilitates the fast allocation of (variable sized) nodes by advancing the free pointer instead of
manipulating a linked list of free cells and managing the reference counts.

Now that shared-memory multiprocessors arc widely in use, it is important to develop
runtime support systems that efficiently manage the storage allocated by parallel programs.
This raises the question of how to adapt the cfficient scquential copying collectors to run on
such parallel machines, while making the best use of the available hardware support.

Existing copying garbage collectors that support gencral purpose parallel applications on
shared-memory multiprocessors collect the complete heap in shared memory at once. As a
consequence, global synchronisation is needed to control the garbage collections (see Section 2)
and half of the shared heap is reserved for to-space. For the class of (fork-join) task parallelism,
however, it is possible to provide each task with a private heap, which can be locally collected
independently of other processors and tasks; the memory manager exploits the properties of
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fork-join parallelism: tasks only communicate when creating new tasks or returning results,
while parent tasks wait for the results of all their children before resuming execution.

The scattered heaps of join tasks complicate the pointer classification of the local collector
when copying live data to reclaim garbage space. The memory management strategies, as
described in Section 3, handle this problem by allocating storage blocks in a virtual address
space. A set of parallel benchmark programs (Section 4) is used to evaluate the basic scheme
and two improvements on a multiprocessor simulator.

2 Copying garbage collection for multiprocessors

Cheney’s two-space copying collection algorithm as described in {Che70] is the basis of many
(parallel) copying garbage collectors. The available heap space is divided into two equal parts:
the from-space and the to-space. During normal computation new nodes are allocated in from-
space by advancing the free-space pointer through the from-space. When the heap space in the
from-space has been consumed, all live nodes are evacuated (i.e. copied) to the empty to-space
by the garbage collector.

[ global data || from-space | to-space |

TAip |
[ global data [| to-space | from-space |

Figure 1: Memory layout for two-space collector

The evacuation starts with copying the nodes in from-space that are referenced by root
pointers in the global data area, which contains for example the call stack. Then the nodes in
to-space are scanned for pointers to objects in from-space that still have to be copied. This
process is repeated until the to-space contains no more references 1o nodes in from-space. The
strict separation of global data and the heap allows the collector to efficiently detect with one
compare instruction whether a pointer refers to a node in from-space or not. After evacuating
all live nodes, the roles of the two semi spaces are flipped, and ordinary computation is resumed.

A straightforward adaptation of a copying collector to run on a multiprocessor is to let
all processors participate in a global evacuation operation: processors allocate large blocks of
storage in the shared global heap, and if one processor detects the exhaustion of the (global)
from-space, it synchronises with the other processors to start garbage collection. The evacuation
of live nodes proceeds with all processors scanning parts (pages) of the to-space in paratlel. To
handle possibly shared data objects, processors lock each individual node in from-space when
inspecting its status and, if necessary, copying it to to-space. This method is, for example, used
in MultiLisp {Hal84] and GAML [Mar91}.

To reduce the locking overhead of the above method, the Parlog implementation described
in [Cra88] partitions the heap among the processors, so that each processor can collect its own
part of the heap. Whenever a processor handles a remote pointer 10 a live node in another part
of the heap, it places a reference to the pointer in the corresponding processor’s Indirect Pointer
Stack (IPS). After a plain evacuation operation, each processor scans its IPS buffer, which
contains (new) roots into its private heap, updates the pointers to point to copies in to-space,
and continues with scanning the new objects in to-space. Now only the accesses to the IPSes
have to be guarded with locks instead of each heap object.
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A rather different approach to use copying collectors on parallel multiprocessors is described
in [AEL88): one processor reclaims all the garbage, while the others proceed with their normal
computational work. The synchronisation between the collector and the other processors {(mu-
tators) is accomplished through standard hardware for virtual memory. When the evacuation of
live nodes starts, the collector copies all root nodes to the to-space, and marks the virtual memory
pages of the to-space as inaccessible to the mutators. Then the mutators immediately resume
execution in the to-space, while the collector scans the to-space page by page for references to
nodes in from-space that still have to be evacuated. Whenever the collector has finished a page
of the to-space, it makes that page accessible to the mutators. If a mutator tries to access an
object in a not-yet-scanned page in to-space, the hardware generates an access violation trap.
This triggers the collector to handle the referenced page immediately, whereafter the mutator
resumes execution.

The common disadvantages of the above copying garbage collection algorithms for mul-
tiprocessors are that they waste half of the shared heap, which is reserved for the to-space,
and that they require global synchronisation operations. The inherently global nature of these
algorithms also raises efficiency problems when scaling to large (hierarchical) shared-memory
multiprocessors: the single virtual memory collector can not keep up with many mutators, while
the parallel scan of the other algorithms overloads the memory bandwidth.

3 Local copying garbage collection

A possible scheme for copying garbage collectors on shared-memory multiprocessors that has
not been explored before is to provide each parallel process with its own heap and perform
garbage collection per process locally. This approach is attractive since it avoids global syn-
chronisation and cooperation of processors, while the reserved amount of to-space can be
reduced by limiting the maximum heap size of a process and time-sharing a common to-space.
Collecting a process, however, requires access to all global root pointers into the local heap. This
makes the scheme unattractive for general parallel processes that can exchange arbitrary data, in
particular heap pointers, since recording the roots from outside is a space and compute intensive
task. Instead we restrict ourselves to a task model with limited communication capabilities: the
divide-and-conquer model, also known as the fork-join model.

The divide-and-conquer paradigm is an important method to structure parallel applications
and has been extensively studied, see for example [Vre89]. It (hierarchically) decomposes a
problem into independent subproblems, solves those subproblems in parallel, and combines the
results into the solution of the original problem. The divide-and-conquer paradigm is applicable
to a wide range of applications and can be implemented efficiently on most parallel machine
architectures since divide-and-conquer applications usually generate a controlled number of
coarse-grain tasks with a restricted communication pattern: only at the begin and end of a task,
data has to be exchanged.

The fork-join task structure of divide-and-conquer parallelism allows efficient incorporation
of the above local copying collector scheme in a shared-memory multiprocessor. At runtime
a divide-and-conquer application (recursively) unfolds into a tree shaped task structure, see
Figure 2a. Each task is provided with a “private” part of the shared heap where it allocates
storage during its execution. Interior tasks (1, 2, and 3) are suspended during the execution of
their child tasks, so only leaf tasks (4, 5, 6, and 7) can reclaim their garbage locally; in Section 5
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(a)

Figure 2: fork-join tree (a) with limited inter-task pointers (b).

we discuss how this restriction can be relaxed.

The garbage collection of a leaf task with a two-space copying collector requires the al-
location of a contiguous to-space and access to all root pointers into the private heap. The
latter requirement is hard to fulfil in general, but the divide-and-conquer model causes the leaf
tasks to execute without any external interaction, hence, a leaf task can not pass a pointer to
any other active task; there are no pointers between tasks 4 and 5 in Figure 2b. The absence
of communication between leaf tasks, however, does not rule out data sharing since tasks can
execute different subproblems that contain pointers to shared data in common ancestor heaps.
For example, tasks 4 and 5 can share data that resides in the heap of task 2, or even in task 1.
To prevent tasks from passing pointers through their ancestor’s heap, we require that shared
data is read-only. As a consequence, pointers from interior tasks to leaf tasks do not exist; for
example, there are no pointers from task 2 to either task 4 or task 5 as shown in Figure 2b.
Some programming languages already meet this “read-only” requirement. Others can satisfy it
by preprocessing the parents’ data before forking the child jobs. In [LV91b], for example, an
adaptation for lazy functional languages is discussed.

Since the divide-and-conquer paradigm limits the inter-task pointers to references to ancestor
data, there are no “external’” root pointers into the heap of a leaf task. This allows the garbage
of a leaf task to be reclaimed with a local sequential copying collector, which only scans the
task’s call stack for root pointers. Note the resemblance with generation scavenging garbage
collectors [LH83] where often the youngest generation (cf leaf tasks) is collected, but not the
older generations (cf interior tasks).

We would like to use the sequential copying collector for interior tasks too. When an interior
task resumes execution it becomes a leaf task again since all its offspring has already ended their
execution. By having the child tasks link their heap to the parent’s heap when returning their
result, the parent can also reclaim its garbage locally provided that it can handle a scattered heap.
The scattered heap can not be avoided by reserving space in the parent heap in advance since the
size of a result is unknown when creating a child task and results can become arbitrarily large.

3.1 Scattered heaps

Collecting a scattered heap is not straightforward if the private heaps of tasks are arbitrarily
allocated in the multiprocessor’s shared memory because then the linked-up heaps of interior
tasks may interleave. This complicates the evacuation of live nodes since it is no longer possible
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to distinguish pointers to objects in from-space and pointers to global (ancestor) data with a
single compare instruction. For example, suppose the fork-join tree of Figure 2a has been laid
out in memory as shown in Figure 3a. After leaf tasks 4 and 5 have terminated and linked their
heap to the parent task, task 2 resumes execution and the storage configuration changes to 3(b);
the heap of task 2 is no longer contiguous.
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Figure 3: Storage layout with inter-task pointers.

When task 2 runs out of free space, it allocates a to-space at the right of task 7 and starts
evacuating the live nodes. The search for pointers to live nodes in the heap of task 2 is
complicated by the presence of heap 1, which breaks the simple memory layout of Figure 1
where global data and the from-space each have a contiguous address space. Note that task 2’s
internal pointers from the right part to the left part or vice versa must be distinguished from
the inter-task pointers to 1. In principie the problem of distinguishing global and local data
can be solved by means of a lookup table that records the owner of each storage block, but
this would degrade performance because of extra memory references and table management
overhead. Instead we will use a virtual address space to allocate storage such that task heaps
never interleave with ancestor heaps.

3.2 The Basic Allocation Scheme, BAS

To support efficient evacuation of live data in scattered parent heaps, it is sufficient to enforce
that a task’s private heap is allocated to the right of all its ancestor heaps. This causes a strict
separation of the task’s (scattered) private data and its global ancestor data, so pointers can be
classified with one instruction as in the sequential case. The basic allocation scheme (BAS)
accomplishes the strict separation by always allocating a new heap at the right of the most
recently allocated one. Virtual memory hardware is used to relocate the released physical space
of the from-space to the right end after a garbage collect.

The basic scheme results in a window of physical memory moving from left to right through
the virtual address space, see the example in Figure 4. When task 2 resumes execution in 4(d),
its scattered heap encloses the heap of task 3, but this has no effect on the garbage collector
since task 2 to does not refer to data of task 3; it only refers to data of task 1.

The window with available physical memory (W) has to be at least as large as the size of the
largest private heap since tasks allocate their to-space in the window when collecting garbage.
By limiting the maximum task size, we significantly lower the 50% waste of memory reserved
for to-space of the (sequential) copying collectors since tasks can time-share W as a common
to-space. The costs of this limit are that large tasks have to collect their garbage more often.
Note that we can control this space-time trade-off by adjusting the value of the maximum task
size. It suffices to reserve a 1/(p-+1) fraction of the total memory size on a multiprocessor with



170

w
@ (1]2]3{4]5]617] T 1
w
() [1]2[3]X]5]617]4] [ I
w
© [203D51><T4]716] | |
w
@ [IRBX2><T2(7(6[ | ]

Figure 4: BAS: (a) initial configuration, (b) after collecting 4, (c) after collecting 7 and 6,
(d) after resuming 2.

p processors, so p large tasks can execute in parallel. If the shared to-space is a bottleneck,
which we do not expect in (small) shared memory systems, a pool of to-spaces can be provided.
When the window W has completely moved to the right and all virtual address space has
been consumed, a global action is required to reclaim the unused holes in the virtual address
space that have resulted from the local garbage collects. To preserve the ordering between the
tasks, the virtual space is compacted by sliding the private heaps to the left. Besides adjusting the
page tables, all physical pages have to be scanned for pointers to objects in virtually “moved”
pages, so they can be relocated to their new positions. This expensive compaction method
limits the usefulness of the storage allocation scheme to systems where the virtual address space
greatly exceeds the size of the physical memory because then compactions are rarely needed.

3.3 The Virtual Allocation Scheme, VAS

We can improve the basic memory management’s rapid consumption of the virtual address space
by reusing holes on the fly. Holes in the virtual address space can be freely reused for new
private heaps as long as the task ordering is preserved: tasks must be allocated to the right of
their ancestors. Thus instead of always allocating memory at the right end, the enhanced Virtual
Allocation Scheme (VAS) allocates a task’s heap in the lowest free part of the virtual address
space that lies to the right of the task’s parent.

The VAS works well for the common case of a divide-and-conquer application that unfolds
into a task tree with small interior tasks and big leaf tasks. After the interior control tasks have
divided the work into independent components, the leaf tasks run for a long time to compute the
partial solutions. Under the basic storage allocation scheme these leaf tasks move to the right
each time the garbage collector is invoked, but under VAS these tasks remain in a small part of
the virtual address space. A leaf task that needs to allocate a to-space can usually reuse the most
recently released from-space of another task since there are no allocation constraints between
leaf tasks; the only constraints are between interior tasks and leaf tasks.

Figure 5 shows the effects of VAS for the same example as with the basic scheme in Figure 4.
Now the positions of leaf tasks 4, 5, 6, and 7 just permute, but do not shift to the right. In
comparison with the basic scheme, the VAS administration is slightly more complicated since
it has to record the holes in the virtual address space and the position of each task’s parent.
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Figure 5: VAS: (a) initial configuration, (b) after collecting 4, (c) after collecting 7 and 6,
(d) after resuming 2.

3.4 The Circular Allocation Scheme, CAS

Both previous storage allocation schemes use paging hardware to implement a large virtual
address space. Obviously, this limits their applicability to multiprocessors with such hardware
support, while those schemes also need a considerable amount of memory to store the page
table. For example, the complete page table for a 4 Gbyte virtual address space on a MC88000
architecture with 4Kbyte pages occupies 4 Mbytes of physical memory. In addition the usage of
a page as the unit of storage results in wasted heap space due to internal memory fragmentation.
This has a strong effect on paralle] applications that unfold into a large task tree where each
interior task occupies a private page of memory that is only partially filled with useful data. Both
sources of memory loss are tackled by the following allocation scheme that allocates storage in
a virtual address space, but does not require paging hardware at all.

The Circular Allocation Scheme (CAS) uses a fixed translation scheme to map virtual
addresses onto physical addresses. The upper bits of a virtual address are simply replaced by
zeros to obtain the physical address. This gives a virtual address space that is wrapped circularly
through the physical address space, see Figure 6. The “ghost” images of tasks 1, 2, and 3 cause
arepeated pattern of holes in the virtual address space that extends right of the physical space.
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Figure 6: Circular Address Space

The CAS strategy uses the same allocation policy as VAS: a task’s heap is allocated at the
lowest available virtual address above the task’s parent. Unlike VAS, however, CAS has to skip
over the ghost images when looking for a free hole. For example, if task 3 wants to extend
its heap with another two contiguous pages to the right of task 2, then CAS can not allocate it
directly after its own heap, but has to atlocate it in the large hole after the ghost image of task 1
as depicted in Figure 7.

Observe that the holes in the virtual address space are just a repetition of the physical holes.
To take advantage of this redundancy by recording the status of the physical space only, the
CAS strategy regards virtual addresses as the concatenation of a cycle-counter (most significant
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Figure 7: CAS after extension of task 3.

bits) and a base address in the physical space (least significant bits): addr = cycle:base. When
allocating storage to the right of a parent task located at address cycle:base, CAS first tries to
locate a suitable hole at the right of the base in physical memory. If CAS succeeds then it
returns cycle:hole as the start address of the new storage block, else CAS increases the cycle
counter and starts looking at the beginning of the physical memory and returns (cycle+1):hole
on success.

If the CAS strategy fails to allocate a large contiguous block due to external memory
fragmentation, the scattered free space has to be compacted by sliding the tasks down to the
left. This compaction only adjusts the base parts of pointers, but it is more expensive than
with the two previous schemes since all data has to be copicd as well. In the previous example
compaction is needed when task 3 in Figure 7 wants to allocate 3 pages to perform garbage
collection. The compacted memory layout is shown in Figure 8.
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Figure 8: CAS after sliding compaction

Note that the sliding compaction has not compressed the virtual space, so an even more
complex compaction method is needed when CAS runs out of the virtual address space: all
cycle parts of pointers have to be cleared which requires a permutation of the tasks in physical
memory to preserve the task ordering in the virtual address space.

The advantages of the CAS strategy are that there is no need to maintain the page tables
since the address mapping is fixed; in fact it can be implemented in hardware by cutting the
upper address pins of the processor! The fixed mapping also implies that CAS is not bound to
the usage of pages, so heaps can have arbitrary sizes to avoid (internal) memory fragmentation.
The CAS strategy, however, can only compete with the VAS strategy if both physical and virtual
compaction operations are rarely needed.

4 Evaluation

To evaluate the performance of the three above mentioned memory allocation strategies, we have
studied their behaviour by running a set of benchmark programs on a multiprocessor simulator.
The programs are explicitly annotated to denote the paraliel tasks, compiled and linked with
one of three memory management schemes, and executed concurrently under control of a
multiprocessor simulator that collects performance statistics. In particular we are interested
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program (| description runtime  # tasks  mem. usage  # garb.coll.,

fitv A fast Fourier transform on a vector 1.5 15 1,846,985 14-36
of v (= 2048) points, arrays arc rep-
resented as lists [HV92],

queens n || A divide and conquer solution to the 1.4 165 325,121 164-172
n (= 10) queens problem [LV91a).

wave 1 A mathematical mode] of the tides in 1.7 41 197,072 59-61

the North Sea. It consists of a se-
quence of ¢ (= 10) iterations [Vre89].
comp.lab || Animage processing application that 1.6 465 1,178,347 464-476
labels all four connected pixels into
objects [Sto87, ERW90].

15-puzzle || A branch and bound program to solve 28.0 24625 28,045,720 24624-24736
the 15-puzzle. The iterative deepen-
ing search strategy is used [Gla92].

Figure 9: Benchmark programs; the simulated runtimes in seconds are for BAS on a 4 processor
system; the memory usage is the number of words (32 bits) claimed in the heap; the range of
garbage collects over all runs.

in the amount of memory wasted due to memory fragmentation, and the usage of the virtual
address space. For CAS the number of physical compactions is also important information.

The benchmark programs are written in a lazy functional language that supports the divide-
and-conquer paradigm through the sandwich primitive [Vre90], which is used to annotate
parallel tasks explicitly at the source level. The programs, as described in Figure 9, have been
selected on two criteria: the program should be non-trivial, and the program’s task structure is
expected to put strong demands on the memory allocation algorithm.

The FAST compiler [HGW91, LH92] translates the functional benchmark programs into
equivalent C programs that can be used in combination with a copying garbage collector. The
compiler, for example, maintains an explicit call stack to bring all pointers under control of the
garbage collector. In addition the compiler rccognises the sandwich construct and generates
code to force the shared task data into read-only form, and to call the runtime support system
with a list of tasks that need to be scheduled for execution.

The runtime support system, which is coded in C, handles the scheduling and memory
allocation of tasks. Three different versions have been constructed, implementing the storage
allocation schemes of Section 3. The common task scheduler employs a list-scheduling policy
and maintains a global stack of runnable tasks, where newly created tasks are deposited and idle
processors look for work.

When tasks run out of heap space, they double their heap size by allocating a new block if
enough global memory is available, otherwise the garbage collector is invoked. When a task
finishes, its result is compressed by invoking the garbage collector, whereafter the unused heap
space is returned to the global pool. In this pilot implementation we have not directly made use
of virtual memory hardware, but rather simulated the allocation schemes with one large chunk
of physical memory. This suffices to collect the statistics about the memory consumption of the
benchmark programs.

Instead of running the programs and run time support systems on a real shared-memory
multiprocessor, we have simulated the parallel execution. This has the advantage that we can



174

easily use different design parameters, and can obtain statistics without disturbing the execution.
The multiprocessor simulator is a stripped version of the MiG simulator [MLLH92], which is
developed to study cache coherency and bus saturation effects of parallel functional programs.
Instead of tracing the memory references at the level of bus transactions as in the original, the
multiprocessor simulator only counts the number of executed instructions, loads, and stores, but
semaphore primitives are fully simulated to get realistic synchronization behaviour. Because of
this underlying execution model we have restricted ourselves to simulations of systems with 4
processors. For a single processor system, the simulator provides accurate execution times for
the benchmark programs within a 15% range of the actual measured times on a SUN 4/690.

BAS

At first, we study the behaviour of the basic allocation scheme of Section 3.2, which always
allocates new storage at the right end of the virtual memory space. Table 1 summarises the
results of the benchmark programs for the basic scheme with 1024 word (= 4Kbyte) pages. The
column labeled “physical” lists the maximal amount of heap words in use at any moment in
time during the execution of the application. This number does not inciude code and static data
that are located in separate segments, nor does it include the space needed for the page tables,
but it does account for the memory fragmentation inside pages. The second column contains
the highest virtual address used by the application, and it shows that the simplistic basic scheme
consumes large quantities of virtual memory space. The 15-puzzle, for example, allocates 200
times as much virtual space as physically needed.

program physical virtual  claim rate
fft 2048 1,261,568 3,917,823 2.67 Mw/s
queens 10 71,824 1,443,839 1.04 Mw/s
wave 10 49,152 804,863 0.47 Mw/s
comp.lab | 208,896 4,738,047 2.89 Mw/s
15-puzzle | 726,016 142,187,519 5.13 Mw/s

Table 1: Performance statistics of the basic scheme.

The ratio between virtual and physical memory usage depends strongly on the application’s
input parameters and cannot be used as a meaningful characteristic in general. Instead we have
listed the application’s claim rate (in Mwords/second) that shows how fast virtual memory is
consumed. The high claim rate of the 15-puzzle is partly caused by the large number of tasks,
which results in considerable memory fragmentation inside pages. The claim rate indicates
how frequently a compaction of the virtual address space is needed. In our benchmark, the
claim rates are at most ca. 5 Mwords/second, so an application can execute in a 1 Gword virtual
address space for at least 200 seconds without a compaction on a system with four 20 MIPS
processors. A 16 node processor system will (if the program has enough parallelism) consume
the same virtual space in roughly 50 seconds. A compaction would take ca. 1 second per Mbyte
of physical memory.
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VAS

The results of using the VAS strategy are shown in Table 2. In comparison with the basic scheme,
the benchmark applications under VAS use slightly more physical memory, but the virtual
memory consumption has been significantly reduced to within a factor 2 of the application’s
physical memory requirement. Therefore an application is unlikely to need an expensive
compaction to compress the virtual memory space, hence, the compaction operation probably
does not have to be implemented at all.

program physical virtoal
ff1 2048 1,261,568 1,572,863
queens 10 80,896 105,471
wave 10 49,152 73,727
comp_lab 234,496 517,119
15-puzzle 849,920 898,047

Table 2: Performance statistics of the VAS strategy.

The simulator records the allocation overheads, like managing the list of free pages, of the
memory management schemes. The differences, however, are marginal and only account for
ca. 0.5% of the total execution time in the usual case that no compactions are needed.

CAS

First we have run the benchmark programs under CAS with the same pagesize (1024 words) as
the basic and VAS strategies. The results in Table 3 show the number of compactions to recover
from physical memory fragmentation besides the physical and virtual memory usage

program physical virtual compacts
fft 2048 1,261,568 1,703,935 0
queens 10 76,800 159,743 14
wave 10 49,152 73,727 0
comp_lab 241,664 492,543 4
15-puzzle | 775,168 803,839 0

Table 3: CAS performance, pagesize 1024 words.

The difference in physical memory usage under CAS in comparison to VAS is caused by
their difference in allocation time, which results in different task scheduling decisions. The
virtual memory usage under CAS exceeds the physical memory usage only by a small factor,
just like for VAS. Note that only the queens and comp_lab applications perform compactions to
compress the physical memory space.

Next we have run CAS with a small pagesize of 32 words to lower the internal memory
fragmentation, see Table 4. To our surprise some programs need more physical and virtual
memory; only the queens and 15-puzzle benefit from the small pagesize. The increase is caused
by the internal overhead to administrate the linked list of heap blocks. The “wasted” space
forces the large tasks to allocate another block just before finishing their computation, and since
tasks double their heapsize when running out of storage only a small fraction is actually used.
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program physical virtual compacts
fft 2048 1,586,176 2,359,295 0
queens 10 49,760 109,759 9
wave 10 60,000 134,143 10
comp.lab 245,792 452,671 4
15-puzzle 467,072 1,066,655 1

Table 4: CAS performance, pagesize 32 words.

The number of compactions listed in the performance results is a worst case value since the
applications have been simulated on a multiprocessor with the minimum amount of physical
memory needed by the specific application. Adding about 50% extra memory decreases the
number of compactions to zero in all cases. Thus the CAS scheme performs well if the amount
of physical memory in the shared-memory multiprocessor is somewhat larger than the absolute
minimum required by the application.

Stressing the allocation schemes

The benchmark results for VAS and CAS show that the applications can be efficiently executed
in a surprisingly small virtual address space. Thisis a consequence of the scheduler that traverses
the fork-join tree in a depth-first manner, hence at any moment the allocation strategies only
have to satisfy a logarithmic number of the task allocation constraints (depth of the tree). To test
the limits of the allocation schemes we therefore created a synthetic application, called spine,
that unfolds into a degenerated tree: alinear list. The spine of interior tasks forces the allocation
schemes to allocate new tasks at the right end. The results for a spine of length 512 on a 4
processor system with 1024 word pages are presented in Table 5.

strategy. | physical virtual comp claim rate
BAS 393,216 17,105,919 - 8.6 Mw/s
VAS 393,216 2,117,631 - L1Mw/s
CAS 393,216 793,599 27 0.4 Mw/s

Table 5: Performance statistics of spine.

The synthetic spine program allocates virtual address space somewhat faster than the bench-
mark applications: a claim rate of 8.6 Mwords/second versus 5.1 for the [5-puzzle. The large
difference in virtual address consumption between the basic scheme and VAS is caused by leaf
tasks that have allocated address space far beyond the growing spine: whenever such a leaf
task finishes its computation, the garbage collector is invoked to compress the result and the
reclaimed space at the right of the spine can be reused for new tasks. The CAS strategy needs
even less virtual address space because of the 27 physical compactions: they also reclaim the
virtual address space that resides in the currently highest cycle.

The total amount of virtual space claimed by the spine program can be made arbitrarily large
by increasing the length of the spine, but the moderate claim rate limits the virtual compaction
frequency to a low value for all three memory management strategies.
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5 Conclusions and future work

It is possible for divide-and-conquer applications on shared-memory multiprocessors to use a
local copying garbage collector; executing tasks reclaim their garbage independently of other
tasks and processors. The avoidance of global synchronisations to control garbage collects
has been achieved by assigning private heaps to individual tasks. The memory management
strategies handle the resulting scattered heaps of join tasks by allocating storage in a virtual
address space so that active (leaf) tasks never interlcave with their suspended ancestors. By time-
sharing the to-space and limiting the maximum task size, the 50% waste of memory reserved
for the to-space can be significantly reduced.

From the simulation results we conclude that both the VAS and CAS schemes are feasible
memory management strategies since in exceptional cascs only they have to issue an expensive
compaction operation to reclaim wasted address space. The synthetic spine program shows that
applications can consume an unlimited amount of virtual address space, but for the benchmark
programs the needed size of the virtual address space is less than three times the physically
required amount of memory, hence, no compactions are required. The CAS strategy, however,
does occasionally compress the data in physical memory to overcome fragmentation of free
space. The number of these physical compactions is negligible when the applications run in
a memory whose size is 1.5 times the application’s minimally required amount of physical
memory.

The multiprocessor simulator also provides figures for the performance consequences of
CAS and VAS since the runtime support code for managing the free list, compacting the address
space, etc. is traced too. However, since the simulated differences are small we will not draw
conclusions about their relative performance. Instead we will measure the difference in a real
implementation; at the moment, both CAS and VAS are being implemented on a 4 node 83000
multiprocessor with 64 Mbytes of main memory and MMUss to support virtual memory.

The current implementation is based on the divide-and-conquer paradigm (the sandwich
annotation). We plan to extend the memory management strategics to cover the more general
spark&wait paradigm (for example, fusures in LISP). This is not trivial since the parent task
continues to execute in parallel with its child tasks, while both CAS and VAS assume that parent
tasks are waiting and do not need to be garbage collected. We foresee that this conflict can be
solved by splitting the parent’s heap in two parts: a fixed public part that contains data shared
with child tasks, and a private part where the parent can claim and collect storage as usual.
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Abstract: This paper describes a multi-threaded and incremental garbage collector
operating on shared memory architectures. The technique was developed for parallel
implementations of the language L.CS, a high level parallel programming language.

An incremental, page trap based, collection algorithm operates locally on each
of the processors. Processors alternatively plays the role of mutator and collector.
The processors cooperate for collection and mutation; idling processors perform part
of the collection task for the others until they acquire some work. The progress of
collectors versus allocations is controlled by a scan credit mechanism that guaran-
tees a responsive execution of the application. There is no static partitioning of the
storage among the processors; pages are dynamically allocated to any processor, for
specific purposes.

Two implementations are discussed: the first is suitable for operation on a
shared memory architecture; the second provides garbage collection services as add-
ed functionality to a distributed shared virtual memory service.

1 Introduction

This paper presents a garbage collection technique suitable for multi-threaded applications
running on multiprocessor targets with a shared memory abstraction. The shared memory ab-
straction can be provided by the architecture, or virtually, obtained through the Distributed
Shared Virtual Memory paradigm [LH89][CBZ91]. The multi-threaded applications may be
the result of compilation of programs written in programming languages with explicit or de-
duced parallelism. The different threads of control of the application are assumed 1o share a
single address space, a global storage allocation and reclamation discipline is thus required.
These techniques were designed for implementing a parallel virtual machine and compil-
er for the language LCS [Ber881{BGG91], an extension of the language Standard ML
{MTH90] with processes based upon the CCS formalism [Mil80]. However, most of the re-
sults are independent of this context; similar techniques would be required for parallel imple-
mentations of many programming languages with transparent memory management. In
distributed implementations of LCS, the algorithms presented here are complemented by al-
gorithms for distributed scheduling, load balancing, and a few other distributed functions
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which cannot be discussed here. A complete account of the experiment is presented in the first
author’s forthcoming thesis [LeS92].

The starting point of our technique is [EL.A88]. The heap space is organized in pages; an
incremental page based collection algorithm operates locally on each of the processors. Un-
like Ellis et al., we reject the idea of having specialized collector or mutator threads. Instead,
each-thread here alternatively plays the role of mutator and collector. This allows a better co-
operation of several threads for performing a single collection, when required, or working to-
gether to make the whole application progress. We can have at any time a varying number of
collectors and/or mutators; the progress of collection versus allocation is controlled by a spe-
cific scan credit mechanism. The several processes share a virtual space of references, as in
[Hal84]; but the assignment of storage to each processor is not statically determined. Instead,
pages are dynamically allocated to the processors, for specific purposes. The page manage-
ment algorithms guarantee the consistency of the information held in the pages.

Integrating the garbage collection mechanism with the other paradigms present in the un-
derlying architecture received much attention. Two implementations of the allocation/recla-
mation algorithms are proposed. The first is suitable for shared memory services directly
provided by physically shared memory architectures. A second targets systems with physical-
Iy distributed memories. In this case, the page allocation and collection services are provided
together with a virtually shared memory service, as added functionality, rather than running
on top of it.

Section 2 reviews and discusses versus our goals a number of mechanisms taken from
existing garbage collection techniques. The collection method is presented in section 3. Sec-
tion 4 suggests a canonical implementation on shared memory architectures while section 5
investigates an implementation with a distributed shared virtual memory service. We con-
clude with some remarks prompted by a prototype implementation of the algorithms and dis-
cussion of some possible variants and enhancements.

2 Architecture

2.1  Copying collection techniques

Garbage collecting techniques have been developed for a long time; reference [Coh81] sur-
veys a number of algorithms. A convenient terminology for discussing memory allocation
and reclamation techniques is that of mutators and collectors. A thread is a mutator when it
allocates new storage, or updates existing storage; it is typically the application to be run. A
thread is a collector when the operations it performs are relevant to storage reclamation. The
storage is assumed to be organized as a set of cells, possibly referring each others and residing
in a heap. A number of references 1o such cells, called the root, constitute the context (or reg-
isters) of each mutating thread.

Among the methods based upon transitivity of references, the copying methods certainly
are the most satisfying. They consist in copying the reachable cells from a first space called
the fromSpace, into another space, called the toSpace. They yield fast collectors, since only
the cells reachable from the root are visited; they are able to reclaim circular structures and
they have the effect of compacting the heap, which reduces page thrashing. However, copying
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techniques generally yield a poor storage occupancy, but most of that space is not permanent-
ly required.

The basic stop and copy version of the iechnique suffers the essential drawback of requir-
ing the mutator to stop while the collector is proceeding, resulting in relatively long latency.
Baker’s variant [Bak78] was aimed at solving this drawback. The mutator is resumed imme-
diately after the cells referenced in the root data have been copied and their references updated
in the root data. The cells copied are left unscanned. The mutator must only operate on cells
in toSpace. For achieving this, each access from the mutator to a cell residing in fromSpace
forces its copy into toSpace, if it was not copied yet, and updates its reference. A pointer, B,
points to the next available address for copying cells; another pointer, S, points after the last
cell scanned. New cells are allocated from a pointer T, initially set to the last available address
of toSpace, and decreasing towards the copy pointer B.

Conditions are established to make the whole mutator and collector process real-time, in
a certain sense; Baker’s algorithm is incremental. For each allocation of one word of storage,
k words are scanned, where k is some non negative constant. For a program which has a max-
imum cell requirement of N words, with a half-heap size of t, the parameter k must be greater
than N/(t-N) to guarantee that scanning is terminated before pointer B reaches T [Bak 78].

Baker's method is costly if the test it requires at each access of a cell for determining if
it stands in toSpace or in fromSpace is done by software. Ellis et al. [ELA88] satisfactorily
solved this drawback by using the memory protections facilities provided by the hardware to
prevent access of unscanned cells by the mutator. The heap is organized in pages; to enforce
the property that the mutator only sees scanned cells, all pages of the heap containing un-
scanned cells (i.e. between pointers S and B) are read-protected. An access to these pages by
the mutator would be trapped by the hardware and an exception would be raised; the access
exception is handled by scanning the faulty page and then relaxingits protection, allowing the
mutator to resume.

2.2 Garbage collection for muliti-threaded applications

We will only consider here parallel applications operating on a single virtual address space.
The complexity of collection algorithms proposed for multiple address spaces applications re-
sults from the absence of an observable global state, and the problem of migrations of cells
between the processors [Rud86].

The approach taken in [Hal84], also relying on a single virtual address space, is to have
a global heap statically and equally partitioned, each sub-heap being under control of one of
the (virtual) processors. Each processor executes on its sub-heap a collection algorithm based
upon Baker’s, with its toSpace, local roots, and using local pointer variables T, 8 and B. The
changes brought to the basic algorithm for multiprocessor operation consist of a lock-bit as-
sociated with each address in toSpace and each cell in fromSpace, 10 ensure atomicity of the
copy and update operations. A global synchronization ensures that all processors flip their
spaces before one of them starts the next collection.

The Multilisp treatment suffers two major drawbacks. Firstly, garbage collection is ini-
tiated when any of the sub-foSpaces is full, whatever the content of the others, yielding in
practice much more frequent garbage collections than would be required in the single-heap
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case. Secondly, each processor must copy for itself all the cells only locally referenced (the
gray areas in figure 1 below), with no possible help from the other processes for scanning
these.

PE1

Figure 1. Sharing of heap cells

23 Architecture

The goal is to design the memory management layer for a virtual machine running LCS, an
experimental parallel programming language. LCS programs, in which parallelism is made
explicit, lend themselves naturally to parallel evaluation. However, typical LCS programs use
a very large number of threads, from a few to several thousands, or tens of thousands, most
of them very short lived. Consequently, the LCS virtual machine is constituted of a medium,
fixed, number of processes, each handling execution of a number of LCS threads. A distrib-
uted scheduler, with a load balancing algorithm, distributes execution of the many LCS
threads on the fewer processes.

The shared memory abstraction is adequate for our purpose. LCS, like many other high
level languages, handles values which are generally trees, possibly with circularities. It would
be very expensive to transmit copies of such values by messages between processes; LCS val-
ues are transmitted “by references”. Another argument for the shared memory abstraction is
that typical LCS programs do not heavily rely on side-effects, yielding, in practice, relatively
few write access conflicts on the shared heap.

From the previous review, we will retain the two-space copying and compacting method
and the incremental technique [Bak78]. We will retain from [ELAS8] the idea of using page
protection traps for protecting parts of the heap, with a recovery mechanism. This, despite the
added complication of a heap granularity distinct from the constituents of the heap (the cells),
makes Baker’s method of incremental collection efficient. However, we will not retain the
specialized mutator and collector threads advocated in this reference, and have instead
threads which may be alternatively mutator or collector.

The page allocation mechanism allows processors to share the work of incremental scan;
the progress of allocation versus collection will be controlled by a credit mechanism. While
an incremental criterion similar to Baker’s is maintained, idling processes are requested to
perform some scan until they acquire some work. Collection may then progress “in advance™
over the mutation, and this will reduce the amount of scan to be done after future allocations.
Using this mechanism, most of the potential advantages of collectors operating in parallel are
recovered, while preventing the storage overflow problems which are difficult to avoid with
asynchronous parallel collectors. In [ELA88], this particular problem is delayed, rather than
avoided, by flipping spaces when occupancy of toSpace reaches some threshold, rather than
when toSpace is full. Alternatively, [BSD91] prevents overflow by controlling the scheduling
of the collector and mutator threads.
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All processes share a single address space, but, conversely to [Hal84], the heap will not
be statically partitioned over the different processors; we will make use instead of a paged
heap, with pages dynamically allocated to any process. This treatment avoids the two major
drawbacks of a statically partitioned heap; no process plays a particular role.

The collection technique is presented in the next three sections. The routines have been
split as “front-end” routines, those interfaced with the application, and “back-end” routines,
those directly using the storage services provided by the operating system.The front-end rou-
tines are discussed in the next section. The back-end routines may benefit from an encoding
matching the underlying operating system services. Two implementations of the back-end
routines are discussed. The first, in section 4, is suitable for any virtual shared memorv target.
The second, in section 5, provides these routines together with a distributed shared virtual
memory service [LH89).

3  The multi-threaded garbage collector, front end routines

3.1 Storage services and layout of the storage of processes

The storage for each thread is constituted of a number of segments. Each segment is a contig-
uous address range partitioned in pages, all of the same size. A segment may be shared by
several threads. We will assume that the pages which constitute a segment can be individually
attached or detached from the address space of a thread, and that any access from a thread to
a page not currently part of its address space raises an exception for which a handler may be
set. These services are available on many stock operating systems; setting page protections at
user level is a feature of Unix SVR4 and Mach based operating systems. Depending on the
operating system, page protection facilities are either provided at thread level (otherwise shar-
ing their address space), or at process level (possibly sharing part of their virtual space); we
will use indifferently the words “thread”, “process”, “processor”, or “site” in the following
sections, to mean a thread of control associated with some shared storage for which page pro-
tections may be locally manipulated.

No assumptions are made about atomicity of updates on shared pages. The algorithms
will use page locks where atomicity need be enforced. Any attempt to. lock a page already
locked should make the requesting process wait until the page is unlocked.

Each process will make use of three segments: two heap areas of identical size, referred
to as toSpace and fromSpace, and a stack area. Each process shares with all others the heap
areas. Though each process privately extends or shrinks its stack segment, it is convenient to
have the stack segments shared by all processes so they can get help from the others for scan-
ning their stacks. We took this choice here, though the alternative choice of having process
stacks in private areas could have been taken as well, at the price of some extra complications
for detecting end of collection. Finally, each process privately owns a set of registers and the
three pointer variables, S, for scan, B, for copy, and T, for allocation of new cells; they also
handle a number of private or shared auxiliary variables. To avoid contention on variables S,
B and T, the processes will operate on different pages for each of these operations.

Pages are dynamically allocated to the processes, following a strategy to be made precise
in a latter section, and released after use. The different pages may hold information of differ-
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ent nature (e.g. none, unscanned copies of cells, coherent cells, etc.), we will talk about the
state of a page to mean the nature of the information it holds. The use of the storage, and the
cooperation between the processes for achieving collection and allocations, are performed
through of a number of page allocation and liberation routines, one for each “kind” of pages
needed. These routines encapsulate the necessary synchronizations, and bookkeeping, for

pages.
3.2 Heap allocation

A page will be identified by any address in the range it provides. New cells are allocated from
a pointer T; the procedure Allocate is always called with a current T defined. The usual
“end-of-heap” test is replaced here by an “end-of-page” test. When the cell (of size n) © be
allocated does not fit on the current page, the current page is freed and as many pages as re-
quired for allocating this cell are requested by a call © allocPageT. The procedure
provides pages for n contiguous addresses, attaches them to the address space of the process,
and sets the local pointer T. If the required amount of pages cannot be allocated, then a flip
is initiated . Procedure £1i11 fills the space allocated and advances pointer T,

Allocate (n,content) =

(if spaceleftOnPage(T) < n
then (freePageT():

Scan{}:

if not {(allocPageT(n)}

then (Flip():

if not(allocPageT(n)) then FAIL)});

£i1l1l{T,n,content)};

In general, cells may overflow the page size. The solution proposed in [ELAS88] is to as-
sociate with each page a “crossing” flag, set for pages not beginning with a new cell. The al-
ternative taken here is slightly more space consuming, but allows to scan pages individually.
1t consists of associating with the crossing flag the minirnum information needed to scan the
part of the cell starting the page. This added information allows the scanner to see that part of
cell as a complete cell; it would typically hold an indication of the nature of the cell, which
determines a scanning method, and the size taken on the page. This information cannot stand
in the pages themselves since it must not take any address siot. When crossing a page bound-
ary, procedure £111 releases the current T page by acall to £ reePageT, and fills the cross-
ing information for the following page.

3.3 Incremental Scan

Each thread alternatively plays the role of mutator and collector. Following Baker’s incre-
mental technique, each allocation of a word in the heap forces to scan a number X of words.
The scan is performed after the page currently filled is released, rather than performed after
each allocation; this reduces the overhead on allocations. A procedure allocPageS pro-
vides, and attaches, the next page to be scanned. It sets the scan pointer S, if some incremental
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scan is required, or, otherwise, returns false, Procedure freePageS releases page S when
its scan is complete. This is repeated until a call to allocPage$ returns false, meaning ei-
ther that no more incremental scan is currently required, or that collection 1s complete. The
pages are locked while being scanned, to prevent concurrent scanning by another processor
{(allocPages locks, freePages$ unlocks).

Scan () =
while allocPageS ()
do (scanPage();
freerPageS());

Mutation continues after end of collection has been detected, until toSpace is full; this
also contributes to decrease the average cost of allocations. The progress of scan versus allo-
cations is controlled by a credit mechanism soon to be described.

34 Copying

Copies of cells resulting from scan are done on pages allocated by a third procedure, al-
locPageB. Copies are allocated from a pointer B. For allowing the scanner to work on a
page basis, the cells are copied on pages distinct from those on which new cells are allocated.
The procedure a 11ocPageB locks the pages it allocates, attaches them to the address space
of the thread, and sets pointer B. f reePageB detaches the current B page, so that any further
access to this page will provoke an access violation, and unlocks the page. The lock prevents
other processors from attempting a scan of the page while it is being filled. In practice,
scanPage would make use of the crossing information for pages, for determining the loca-
tion and size of the first cell on the page.

scanPage () =
if allocPageB(threshold)
then (for all cell in page of S
do scanCell (cell):
freePageRB ()}
else FAIL;

All processes share, and have authorized access to, all pages of fromSpace. To prevent
cells from being copied concurrently, the page on which an old cell stands is locked until the
cell is copied, its copy-bit updated, and its forwarding address set.

scanCell (cell) =
for all cell’ referenced in cell
do (lock(cell’}:
if not(copied{cell’)) then Copy (cell’);
update reference to cell’ in cell;
unlock (cell’)});
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The Copy routine copies cells from B and sets their copy-bit and forwarding address.
The Iow level procedure copy advances B; it also releases the current B page and fills the
crossing information of the following page when crossing a page boundary. If a cell does not
fit on the current B page, then that page is freed and as many contiguous pages as required are
requested by a call to allocPageB.

Copy {(cell) =
(1f spaceLleftOnPage (B} < size{cell)
then (freePageB({);
if not(allocPageB(size(cell))) then FAIL);
forward=B;
copy (cell,B);
mark copied{cell);
set_forwarding addr{cell, forward));

3.5 Scan on page access exception

Any attempt from a processor 10 access a page not part of its carrent address space raises an
access exception. Upon an access exception, a handler routine, Handle, is invoked, which
performs some treatment, and the computation is resumed at the instruction that caused the
exception. There are a number of reasons for which a page accessed may not be part of the
current address space of a process, including the case where the page has been filled with cop-
ies of cells, but has not been scanned yet. As in Ellis’s algorithm, the mutator expects to see
scanned cells only.

On that instance of access exception, the handling procedure first attaches the page to the
address space of the process. The page is then locked to prevent concurrent scan by another
process, and it is scanned. Upon completion of scan, the page is freed and unlocked (by a cali
to freePages). Conversely to [EL.A8S], all page protections here can be manipulated at
user level.

From now on, that particular page holds cells with consistent references, and no excep-
tion will be raised when accessing it from that process. But the page is still non-attached by
the other processes. It is assumed that, given a page of foSpace, a process can decide if this
page was scanned or not. The handling routine, which is the same for all processes, should
first check that the faulty page has not been scanned yet, before scanring it; otherwise it just
attaches the page.

3.6 Stack allocation and scanning

Stacks are the most usual technique for implementing parameter passing. If application stacks
were encoded in the heap, with stack frames encoded as cells, then only the stack pointer
would be part of the root references of a process. But, essentially for efficiency reasons, func-
tion call stacks are often encoded as arrays, in a dedicated area. It is this entire array which
must then be considered root data by the collector. Moreover, stacks may grow very large on
languages favoring recursion, such as LCS; scanning the full stacks at flip time, as should be
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done for all root references, might break the low latency requirement for the mutation process,
as noticed in [Bak78] and [ELASS].

Stack frames are allocated on contiguous pages in an area distinct from the heap. Afier a
flip, all the pages below the topmost stack page are detached from the address space of the
thread. Only the topmost page is scanned as part of the root data. The other pages will be
scanned on access exceptions or by incremental scan. This strategy implies that stack pages
may be scanned individually, without knowledge of the boundaries of stack frames. This con-
straint is easily satisfied if multi-words values are allocated not in the stack area, but in the
heap instead, at the price of an extra indirection. The stack should only hold references to heap
cells and constant values, which must be encoded as if they were occurring in a heap cell.

On an access exception on a stack page, the handler routine scans the faulty stack page
and the mutator is resumed. Stack pages are scanned by the previous scanPage routine (we
may assume a predefined crossing information, identical for all stack pages), only words at
addresses below the stack pointer are scanned.

As for the heap, the stacks must be incrementally scanned. A number £’ of stack words
must be scanned for each word allocated, so that the stacks, of total size s, are scannied before
toSpace is filled. Parameter £* depends upon the size s of the stacks, known at flip-time. The
smallest number of words allocated between two flips is t/(k+1), where t is the size of toSpace
and k is Baker’s parameter for the heap. Allocating that amount of words should force a com-
plete scan of the stacks; consequently: k¥ = (k+1)*sitl,

Practically, the words in the stacks and those in the heap are globally considered, and
K=k+k' words are scanned for each word allocated. Parameter X is adjusted at flip time, from
a fixed k and a parameter k* computed from the previous equation. The routine allocPageS
allocates either an heap page or a stack page, as long as some is available. Furthermore, since
we choose to have the stack areas shared by all processes, any process is able to scan the stack
of any other. Finally, in order to favor cells which have the longest life expectancy, the stack
pages are allocated by allocPageS$ from bottom to top.

3.7 Idling processes and the scan credit

Processors idling by lack or work are requested, through a background procedure, to per-
form some scan until they get some work (by a scheduling and load balancing mechanism not
discussed here). The words scanned from the background procedure or upon access excep-
tions are considered as words scanned “in advance” for allocations to come (a credit on the
amount of words to be incrementally scanned).

In order to fulfil the low latency requirement, the credit mechanism is implemented with
two credits: A local credit (one per thread), decremented by £ reePageT (of the amount of
words allocated on the page, multiplied by constant X)) and incremented after scanning a page

1. Baker uses k’ = k*s/n, where n is the amount of words in the heap when collection is com-
plete. The difference comes here from the fact that flip does not occur at end of collection,
but when toSpace if full. n is unknown at flip-time, then, but an upper bound is deducible from
k and t, by n = t*k/(k+1).
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(upon an access exception handling or a local incremental scan), and a shared credit, incre-
mented by freePageS when it is invoked from the background procedure.

When allocating, a process uses a maximum amount of its local credit. If the process has
to do some scan (i.e. if its local credit is negative), then it first checks the shared credit. If the
shared credit cover its debt, then no scan is performed and the shared credit is decremented
of the local debt. Otherwise, the local debt is decreased of the shared credit, the shared credit
is reset and scan proceeds. Finally, when a processor is idling, it first transfers its local credit
to the shared credit, so that other processes can benefit of it, before scanning for the other pro-
cessors.These computations, as well as the test deciding if incremental scan is required, are
encapsulated in the procedures freePageT, freePsgeS and allocPageS.

The scan credit mechanism brings two main advantages. Locally, it makes incremental
scan lazier; the amount of words scanned on access traps or by idling processors are subtract-
ed from the amount of words to be incrementally scanned. Globally, It allows the processars
to cooperate for scanning, some of them performing part of the scan task for the others, with
an actual parallelism. The number of collectors is dynamic and the algorithm controls the
progress of the collectors versus the amount of data allocated.

38 Flip

A thread notices that toSpace is full when a call of allocPageT returns false; it then ini-
tiates a flip. A synchronization of all threads is necessary before the local flips take place, to
prevent the different threads from working with different views of the heap. Then, all threads
stop mutation, release the pages they held, and start a local £1ip procedure. It must be no-
ticed that, when a flip occurs, the previous collection is necessarily complete; all threads are
then either idle or mutating.

The £1ip procedure itself first consists of inverting the roles of the {0 and from spaces.
Each thread then attaches to its address space all the pages of fromSpace (the former toSpace)
and detaches all the pages of foSpace. The pages of toSpace will be attached on request. All
stack pages are also detached, except the topmost page. The thread then initializes its local
bookkeeping information and variables (including a T page for non-initiators), and scans its
registers and top stack page. Mutation is subsequently resumed.

The initial attachment of the pages of fromSpace avoids nested access exception han-
dling. The initial detachment of all pages of toSpace is the consequence of the strategy re-
tained for page management. This strategy is to force an access exception in a process every
time this process has no precise knowledge of the content of a page; the access exception han-
dler will determine the exact nature of the contents of the faulty page, and perform the ade-
quate treatment. To avoid detachment of pages attached in several processes, the page
management guarantees that, once a page is made available to a mutator, it will never need o
be detached from any process until the next flip.

39  States of pages, and transitions

Pages have states, identifying the nature of their contents. Initially, and just after a flip, the
pages of fromSpace have no significant state and are attached in all processes. The stack pages
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have one among two states: Scanned, or Unscanned. The pages of toSpace are initially de-
tached from all processes and all of them initially have state Empty. The figure below depicts
the different possible states and transitions of a page in toSpace, with meanings obvious from
the previous sections.

Figure 2. The different states of a page in toSpace

Consistency of the information held by the pages requires that the pages in gray states in
figure 2 are locked by the processor which set them in that state; they must not be available
to the other processors until they leave that state.

Pages may be released by freePageB, freePageT or freePages even if not com-
pletely filled. In order to maintain a reasonable mean page occupancy of the storage, a policy
of reallocating partially filled pages may be adopted. Given a threshold h, a page will be said
full if Iess than h address slots are available on that page. Partially filled pages in state Copy
will be reallocated by allocPageB, partially filled pages in state Written will be reallo-
cated by allocPageT (when the size requested is not greater than threshold h, in both cas-
es). This explains some of the transitions in the above graph.

4 A canonical implementation of the back-end routines

4.1 Page pools

Pages must be allocated according to their state. A convenient encoding, easing retrieval of
pages, is to store addresses identifying these pages in different data structures, according to
their states. We shall need five, shared, pools of pages:

The EMPTY pool holds pages which have never been allocated. If empty pages are cho-
sen to be the consecutive pages following the last allocated page in the toSpace segment, then
it is not necessary to actually record their addresses; a shared page pointer protected by a
semaphore is sufficient, incremented of the page size after each allocation of an empty page.
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The WRITTEN pool holds the partially filled pages in state Written. Totally filled pages
in state Written need not be recorded since they will never be reallocated. A semaphore pro-
tecting a linked list of page addresses is a suitable encoding.

The next three pools hold pages in state Copy. The STACK pool holds all unscanned
stack pages (which can be thought of as pages in state Copy); the COPYP pool holds partially
filled pages and the COPY pool holds full pages. Implementation of the access exception han-
dler and of the page allocation routines will be made easier if, first, we have the ability of re-
moving a page identified by its address from these pools, and, second, if the three pools are
protected as a whole from concurrent updates. These pools.may be represented by double-
linked lists, and a semaphore, requested by Handle, allocPageS, allocPageB and
freeprageB should protect access to all three pools.

In the handler routine for access exception, it is necessary to check if a page is in state
Copy, before scanning it. To avoid scunning the pools then, it is convenient to keep that in-
formation in a page table. This page table must also record some additional bookkeeping in-
formation which is summarized now.

4.2  The page table

The page table must be shared by all processes. What need to be recorded for operation of the

algorithms is a Scanned/Unscanned bit for each stack page, a lock bit for each heap page, plus,

for each page in toSpace:

» A Copy/Written bit,

* A crossing information. Its minimum size is that of a few bits specifying a scanning
method, plus the number of bits for recording at most the page size (in words).

+  The next available address slot on the page (for reallocations, scan, etc.); need to be large
enough to hold the page size (in words).

+  Room for encoding the pools discussed above as linked lists.

Let us assume that each page holds 4K bytes and that toSpace holds at most 16M bytes
(that should cover the needs for most applications). Then 64 bits per page of toSpace are
largely sufficient for storing the bookkeeping information. That amounts to 0.2 percent of
toSpace; a fairly reasonable amount. In addition, a bit table, with one bit per page, is required
for the stack area.

4.3 Page allocators and protection violation handler

Procedure allocPageT will first try to reuse a partially filled page from pool WRITTEN,
if any is available and if the size requested is not greater than threshold h. Otherwise, it will
attempt to allocate a range of pages from pool EMPTY. £reePageT sets the state of page T
to Written and, if the page is only partially filled, records it in the pool WRITTEN. The
other effects of allocPageT and f reePageT have been discussed in section 3.
Procedure allocPages repeatedly tries to find an unscanned page until either one is
available, or no more scan is required, either because end of collection has been detected, or
because no incremental scan is currently required. In each attempt, it first tries to allocate an
unscanned stack page (from bottom to top) from the STACK pool, then it attempts to use a
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page from pool COPY, and finally a page from pool COPYP. While searching for a page in
these pools, it requests the semaphore protecting these pools. Procedure £ reePagesS sets the
state of page S to Written, and saves it into the pool WRITTEN if partially filled.

allocPages is also in charge of detecting end of collection. A shared Unscanned
counter is maintained to detect end of collection. This counter records the number of pages
allocated for copies of cells which are still unscanned. This counter is initially set to the num-
ber of unscanned stack pages after flip; it is incremented every time a page is taken from
EMPTY by allocPageB, and decremented every time a page is released by freePages.
Collection is complete when this counter reaches 0. Obvicusly, this counter must be protected
from concurrent updates.

The scan credit mechanism is easily implemented with two counters, one being shared
and protected by a semaphore. Both credits are initially 0, and reset to 0 by flip. The local
credit is decremented by freePageT of the amount of words allocated on the page being
freed since it was last allocated (multiplied by the incremental scan parameter K), and incre-
mented by freePagesS of the amount of words on the page freed. The shared credit is in-
cremented by freePageS when called from the background procedure invoked when
processors are idling.

Procedure allocPagesB first checks if the size requested fits into the space available on
the page S being scanned. If this is the case, then it is this page which is also allocated for
copying, and B is set to the first available address on that page. Otherwise, allocPageB
tries to allocate either a partially filled page in state Copy, from pool COPYP, if any, or a
range of pages from pool EMPTY. If pages B and § are distinct, then procedure f reePageB
detaches the current B page, sets its state to Copy, stores it in the COPY pool (if full), or COP-
YP pool (if partially filled), and finally unlocks it.

The handler for access exceptions must request the semaphore protecting the three Copy
pools before attempting to scan the faulty page. It then locks the page and checks if its Copy
bit is still set. If this is the case, it removes the page from the pool it lied into. The Copy pool
semaphore is then released; the page is scanned, if required, and is unlocked.

4.4 Flip

All processes must flip synchronously. There may be several processes simultaneously notic-
ing the necessity of a flip; multiple simultaneous flip initiations must be prevented. It may
also happen that some processes do not locally notice the necessity of a flip (e.g. because
these processes currently do not allocate data in the heap); so a mechanism is needed to make
all processes aware of the necessity of a flip.

Selection of an initiator is easily implemented with the help of a semaphore. Among the
potential initiators, the first that could acquire the resource broadcasts a signal to the other
processors and waits for all of them to reply. It then releases the semaphore and broadcasts
another signal, enabling local flips on all processors. This solution is basically similar to that
used for Mul-T [KHM89].

A number of variables must also be initialized at flip time. These include the Un-
scanned counter, the shared and local credit counters, the current pointer T (needs to be
allocated for non-initiators; the initiator does it from the Allocate procedure), and the in-
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cremental scan parameter K, which must be adjasted after each flip since it depends upon the
total stack sizes at flip time. We can assume that the initiator takes care of initialization of the
shared counters, in addition to the initialization of its local data.

5  Providing Garbage Collection with a Distributed Shared Virtual
Memory service

51 Goals

This section a-dresses the implementation of the algorithm on distributed memory architec-
tures. The concept of Distributed Shared Virtual Memory (DSVM for short) [LH89]{CBZ91]
provides a shared memory abstraction for a physically distributed memory architecture. A
first approach would be to implement the algorithms discussed in sections 3 and 4 on top of
a DSVM service, since it supplies the required abstraction (assuming some implementation
of semaphores is available).

An alternative, hopefully yielding better performances by reducing the page traffic, is to
provide a garbage collection service as an added functionality to a DSVM service, rather than
built on top of it. This section specifically investigates this issue. The abstract procedures dis-
cussed in section 3 need not be altered, only the implementation of back-end routines should.
Page management for the allocation and garbage collection service will be integrated, in some
sense, with the page management required for providing the DSVM service.

We will assume our application to run on a number of (virtual) processors, or “sites”. All
processors virtually share a single address space through a DSVM service. As before, each
processor owns part of the roots of the application and shares with the others all cells in the
heap, and possibly its stack pages. The management of control information will rely here on
message passing.

5.2 Page managers

The allocation/collection algorithms require to maintain some bookkeeping information for
pages (crossing information, state information, etc.). These information cannot be saved with-
in the pages, since that would break the required continuity of address space across pages. The
solution taken is to partition the management of state information for pages between the pro-
cessors, the local bookkeeping information being kept in some specific area on each proces-
sor. We will furtner assume that each processor is statically assigned a range of pages to
manage, and that each processor is aware of the distribution of page management.

This strategy is exactly Kai Li’s Fixed Distributed Manager strategy for providing the
distributed shared memory service [LH89]. Upon receiving an access request for a page it
manages, a processor takes the adequate decision, according to the state of that particular
page, and then, once access is enabled for that page, the page is transferred to the requester.
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53  Allocation of pages for new cells

Locally, the processors must organize the information concerning the pages they handle; the
method proposed in section 4, with a page table and page pools, is still adequate here. In order
to minimize the communication traffic, the processors preferably allocate for their own usage
the pages they manage. In order to allow all pages to be allocated, the processors that manage
pages that may be allocated for storing new cells (or free pages, for short), are organized as a
virtual ring; a distributed algorithm takes care of allocation of these pages to the whole set of
processors. Initially, all sites are in the ring, and the successor of each site is given by some
predefined ordering known by all sites.

Evuiy site records the remote site that replied to its last request for a free page, initially
set to the next site in the ring; this site is referred to as its remote free page allocator in the
sequel. A site receiving an allocation request for a free page will handle it as if it was a local
request. If the request can be satisfied locally, then a range of addresses is returned to the re-
quester. Otherwise, two cases may occur: either the request may still be satisfied by another
site in the ring, in this case the processor transmits the request to its own remote free page
allocator; or no site in the ring may satisfy the request, in this case, a failure message is sent
to the requester, which will initiate a flip upon reception of the message.

If a demand is satisfiable, then it must be satisfied before it realizes a complete turn of
the ring of sites managing free pages. Any site not managing any free page will never manage
any in the future; sites may only leave the ring. The condition is checked as follows: each site
visited by a request compares the identifier of the requesting site (say i) with its own identifier
(say j) and that of its remote free page ailocator (say k). The previous condition, and the way
remote free page allocators are maintained, imply that no site between j and k (in the initial
ring) manages free pages, thus, the request cannot be satisfied if the requester stands between
j and k (in this ordering).

Upon a successful reply to its request for free pages, a processor updates its remote free
page allocator to be the site that satisfied its request, except in the infrequent case of a multi-
pages request. In this last case, the remote free page allocator is not updated since the request
may have visited sites that manage free pages, though none of them could cover its demand.

Freeing a page in state Written consists of requesting the manager of the page to perform
a local release of the page. Locally, one proceeds as in sections 3 and 4.

5.4  Allocation of pages for scan

For incremental scan, the processors must be able to allocate the whole set of pages that re-
quire scan. Conversely to the case of free pages, or of pages for copies, it is not sufficient here
to organize the sites managing pages to be scanned as a ring. The problem is that the number
of pages to be scanned managed on a site does not monotonically decrease. As long as a pro-
cessor manages pages in state Empty, these may be allocated for copying cells and conse-
quently become pages to be scanned. Using a particular allocation strategy for allocating
pages for copies, and with some additional constraints on cell sizes, the ring structure could
ctill be used, as shown in [LB91], but these constraints are not assumed here.
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The sites managing pages to be scanned will be organized as a virtual distributed queue.
Initially, all sites agree on the first and the last site in the queue (these can be statically deter-
mined, or dynamically, for instance at flip time). The algorithms guarantee that any request
for a page to be scanned either will reach the first site in the queue, which will reply to the
request, or, if the queue is empty, will reach a site that detected end of collection, which will
propagate this information to the requester.

An implementation of the algorithm is feasible using four variables per site. Each site
records the last site having provided to it a page to be scanned, that’s its remote allocator for
pages to scan. In addition, each site in the queue maintains its successor site in the queue (ini-
tially the next site according to some predefined ordering, or itself if the site is the last in the
queue). Each site also maintains a variable holding the site it believes to be the last in the
queue (the last for short), and, finally, a flag indicating if the site has detected end of collec-
tion. The insertion and removal protocols for maintaining the queue guarantee that, by tran-
sitivity of the remote allocator for pages to scan references (resp. last references), the first
(resp. the last) site in the queue is actually reached. Further, they guarantee that the successor
variable on each site either holds an indication that the site is not in the queue, or, if that site
is in the queue, holds its successor in the queue (itself if it is the last in the queue). If the queue
is empty, then the last known site in the queue necessarily detected end of collection, and has
its specific flag set.

For the same reasons than for allocation of free pages, each site preferably allocates for
itself the pages to be scanned that it manages. To help detection of end of collection, each site
locally maintains an Unscanned counter, handled similarly to the Unscanned counter dis-
cussed in section 4, but relative to the pages it manages. This counter maintains the number
of pages allocated for copies (local or remote) the scan of which did not terminate yet. A re-
quest for a page to be scanned (local or remote) is delayed by a site until either a page to be
scanned is locally available, or the Unscanned counter reaches zero.

When a request cannot be locally satisfied, the site, if not in the queue or if not the first
in the queue, transmits the request to its own remote allocator for pages to scan, which han-
dles the request as if it was locally issued. Any site visited which is aware of end of collection
replies negatively to the requester, making it aware of end of collection. If the receiver of a
request is currently the first in the queue, then, either it currently manages some pages to be
scanned, in which case it sends one to the requester, or it does not manage any of them, in
which case it leaves the queue and then transmiis the request to its successor in the queue.
Furthermore, if the receiving site is also the last in the queue and does not manage any page
to be scanned, then collection is complete; the site sets its end-of-collection flag, replies neg-
atively to the request, making the requester aware of end of collection, and leaves the queue
(which becomes empty). A site enters the queue, following the last in the queue, when not
currently in the queue and acquiring the management of a page holding copies (see 5.5).

This solution may appear rather “centralized”; a queue is actually the most natural struc-
ture here, due to the non-monotonicity of the number of pages to be scanned on each site. In
addition, it should be noted that the solution proposed realizes a balancing of pages to be
scanned over the sites. Acquiring a page to be scanned from the queue may lead to copy some
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cells which, as long as the requesting site can provide pages for these copies, will be locally
copied. This treatment has thus the potential effect of locally creating pages to be scanned.

Freeing a scanned page consists of requesting the manager of the page to perform a local
release of the page. Locally, one proceeds as in section 3 and 4.

5.5  Allocation of pages for copies

The allocation of pages for copies uses an algorithm similar to the one used for allocation of
free pages. However, it is necessary that these two virtual rings are distinct, since the local
allocation strategies for free pages and pages for copies differ (for copies, one first tries to
allocate a partially filled page in state Copy, rather than Written). Each site maintains a remote
allocator for pages for copies, managed similarly to the remote allocator for free pages.

The algorithm for detection of end of collection assumes that collection is complete if
and only if all local Unscanned counters hold the value 0. In order to maintain the property,
a site able to reply to a request for a page for copies, for itself or for another site, mest join
the queue of sites managing pages to be scanned (if not in the queue yet) before returning the
required range of pages to the requester.

Fecing a page holding copies consists of requesting the manager of the page to perform
a local release of the page. Locally, one proceeds as in section 3 and 4.

5.6 Page locks and page protection violations

The pages in states S-allocated or B-allocated, as well as the pages holding cells being copied,
must be locked to enforce consistency of their content. Instead of using a lock bit here, as was
done in section 4, it is more efficient, considering that the shared memory is obtained through
exchanges of pages, to request these pages to their manager with exclusive write access. The
protection will be relaxed when the page is freed by the processor to which it was granted. It
is the manager of the page which will enforce the exclusive access and make all requests for
that page wait until the page is freed. Implementation of this primitive should not require any
additional effort, since it is also required for implementing the DSVM service.

‘When an access violation is trapped by a processor, it must not necessarily scan the page.
If the same distribution of the page management task is taken for both the DSVM service and
the collection service, then handling access traps in the mutation process does not require any
additional message. In both cases, it is enough, when trapping a protection violation, to ask
the manager of the page for the action to be taken.

5.7 Distributing the scan credit mechanism

As in section 4, a local credit counter is maintained by each processor. The shared credit

counter is here distributed over the processors; the actual shared credit is the sum of these lo-

cally maintained shared credits. The following discipline is adopted for maintaining the

shared credit counters:

o When an idle processor scans for another, it decrements the remote shared counter.

= An idle processor first transfers its credits (local and shared) with its first request for a
page to be scanned, since the credits cannot be used locally.
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»  When using the shared credit, a processor does not use the full available credit (which is
distributed over the processors), but uses the shared credits of the processors it visited for
finding a free page, and, if scanning is still necessary, the shared credit of all processors
visited for finding a page to be scanned.

With this method, the distribution of the shared credit mechanism does not require any
additional message.

58 Flip

The necessary synchronization of all processors preceding the flip requires a distributed syn-
chronization algorithm. This algorithm must prevent from maltiple, simultaneous, flips, by
clecting an initiator among the sites that noticed the necessity of flip, and must ensure that all
sites flip. An ad hoc algorithm, requiring a pause on each processor corresponding to the time
necessary for transmitting four messages, is discussed in [LeS92], to which the reader is re-
directed for details.

6  Discussion and Experiments

6.1 Enhancements

We assumed so far a fixed number of threads, each alternatively acting as a mutator or as a
collector. Allowing a varying number of threads, instead of a fixed number, may be conve-
nient for implementation of programming languages in which programs typically use fewer
threads than LCS, with longer life expectancy. This may also be convenient for dynamically
adapting the execution of LCS programs on the parallel virtual machine to the physical re-
sources available. Augmenting, or reducing, the number of threads in the shared memory case
(section 4) does not imply a large work, the main task for an entering process is to acquire a
local context from one of the other threads; similarly, a leaving process must transmit its root
data to one of the remaining processes. This can be achieved through some load balancing
mechanism. In the distributed case, in addition, the storage managed by a leaving process has
to be redistributed over the other processes, and an entering process must acquire from the
others some storage to manage, unless the storage is simultaneously updated. In any case, all
sites must be made aware of introductions or deletions of sites, and a reconfiguration of the
page tables and distributed algorithms is required.

Dynamic extension of the heap size and/or stack size is another desirable enhancement
of the basic algorithms.

To avoid having to move the contents of the heap, heap size adjustment would typically
occur at flip-time, before the local flips take place. At that time, the content of fromSpace is
irrelevant and that area can be replaced by another, of the required size, possibly at another
place in the virtual space. Just before the next flip, the current fromSpace will be adjusted ac-
cordingly, to match the size of the current toSpace (or according to some heuristics for heap
size dynamic adjustment). Besides moving an (empty) area, the adjustment also consists of
updating the page tables accordingly.
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Dynamically extending the stack should not be difficult too, provided the stack does not
hold any reference to itself (that hypothesis was assumed in section 3). If the stack segment
cannot be grown in place, then it must be detached and reattached at a place where it can be
grown. As for the heap, an update of the page tables is required.

An enhancement of heap allocation that does not appear feasible at that time, unless tak-
ing strong limitations on the size of cells, is to use page protection traps for avoiding the end-
of-page test required in routine Allocate, similarly to the solution proposed in [App88].
The problem here is that the heap may contain interleaved attached and detached pages, or
ranges of pages. Consequently, the fact that some address is enabled (resp. not enabled) at a
given distance from pointer T in some process does not imply that all addresses in between
are enabled (resp. not enabled).

Other desirable enhancements include implementing a generational collector on this
ground. This has to be investigated, but we cannot foresee any major reasons preventing from
adding generational capabilities to our collector.

6.2 Experiments

The incremental scan, plus the use of page protection traps for enforcing the scan of pages
holding copies, should provide a low latency collection mechanism with an acceptable loss
of performances compared to a stop and copy collector. This has been confirmed by the ex-
periments.

A version of the (sequential) LCS virtual machine equipped with an incremental collec-
tor based upon the algorithms given in section 3 was prototyped, and its performances were
compared with those of the currently available implementation of LCS, which uses a stop and
copy-depth-first collector, and with those of a version using a stop and copy-bread-first col-
lector. The different versions were compared on various benchmarks; the table in figure 3 be-
low shows the results for a benchmark consisting of running an implementation of the Knuth-
Bendix rewrite-rule completion algorithm on an example set of rules. All collection algo-
rithms were implemented in C; all were run with a heap-size of 16MB (8MB per space); all
runs required 58 flips.

sf/c s/c incr incr
b-first d-first 8kB 64kB

Collection time/Total time (%) 197 263 24.3 22.1
Relative mutation time 1 0.97 1.14 1.11
Relative collection time 1 142 1.50 1.28
Relative total time 1 1.07 1.21 1.14

Figure 3. Performances of stop and copy and incremental versions

For this benchmark, an overhead of 21% in total mutation+collection time was observed for
the incremental version, compared to the stop and copy-breadth-first version. For reasons
which will not be detailed here, the current implementations of LCS use a depth-first variant
of the stop-and-copy collection algorithm. The depth-first version is slightly faster than the
breadih-first version, for mutation, but significantly slower for collection (the algorithm uses
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a pointer-reversal technique for achieving a depth-first copy of the active cells). Compared to

the latter version, the overhead of the incremental algorithm decreases to 13% in total time.

The 21% overhead observed for the incremental version, versus the stop and copy-
breadth-first version may seem high, compared to the 4% overhead claimed in [ELASS]; this
figure requiics some comments.

»  First, the stop-and-copy versions have been used for several years and have been careful-
ly optimized, which was not the case for the incremental version. The overhead should
be slightly reduced by a careful optimization of the incremental version.

«  The Collection time/Total time ratio observed for this benchmark is rather high; it was
more often below 10% in the other benchmarks we tried. Considering that the overhead
is greater for collection than for mutation, the typical total overhead should be lower.

*  Another factor that influences the overhead is the ratio between words scanned on access
faults and those scanned by incremental scan; again, this ratio was rather high here. Not
surprisingly, it has been observed that the overhead decreases with that ratio. This stress-
es the need for a careful implementation of the access handler routine and of the page
protection mechanisms, both at the application level and at operating system level.

« Finally, we exercised the incremental version for several page sizes, ranging from 8kB
to 64kB. The smaller number of access faults on heap pages resulting from larger pages
makes the overhead decrease when the page size increases. But, obviously, using large
pages affects responsiveness of the applications,

As a conclusion, the typical overhead of the sequential incremental version, compared to
the fastest stop-and-copy version, can be expected to be around 10%. This may be considered
an acceptable overhead, considering the benefits of the incremental version with respect to
responsiveness.

The scan credit mechanism, and the global page allocation, should allow processes to ef-
fectively cooperate for both collection and mutation. A simplified version of the parallel col-
lection algorithm has been prototyped to run on a stock workstation running an SVR4 based
operating system, and integrated in a preliminary version of the parallel virtual machine for
LCS. The virtual machine is constituted of a number of processes (typically four to sixteen),
running on distinct processors when allowed by the hardware. The effect of lazy scanning of
the heap due to the credit mechanism could be precisely observed: processes lacking of work
(including those waiting for 1/O operations to complete) perform some scan for themselves,
and then for the other processes. This is particularly interesting for interactive applications;
most of the scan work is then done while the user is typing commands, with less overhead on
the computations themselves.

Unfortunately, no fair performance figures can be provided yet for the paraliel imple-
mentation. The task of properly integrating the memory management layer with the other
components of the virtual machine is still in progress. However, an additional overhead is to
be expected, compared to the sequential incremental version, due to the locks reqguired for en-
forcing consistency of pages, in the shared memory version, or to the latency of page trans-
fers, in the distributed version. With several processors running a single-threaded application,
we should recover the advantages of parallei collectors; for multi-threaded applications, there
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should be an overhead on total mutation time, compared to the same application run on a sin-
gle processor, but we should also observe an improvement in elapsed time.
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Abstract

Although the LISP community have been exploiting the fruits of generational garbage
collection for some time, little attempt has been made to apply these ideas in lazy functional
language implementations. This paper attempts to plug that gap.

The action of overwriting an unevaluated thunk with its final value, known as updating,
is central to lazy reduction systems. Unfortunately, updating creates pointers from older
to younger generations. A simple two-generation scheme which allows heap occupancy to
approach 100% is presented. This collector is a hybrid semispace and mark-scan collector.
We show that keeping track of old-to-new pointers imposes virtually zero time and space
overhead on the mutator. Consequently a net performance gain can be had by using
generational collection.

This paper describes how a generational collector was incorporated into a standard
G-machine interpreter. Detailed performance measurements presented indicate that a sig-
nificant improvement in overall performance is achieved, compared to both semispace and
compacting mark-scan collectors. Some interesting variants of the basic scheme are dis-
cussed. Finally, a possible compiled-code implementation is presented.

Keywords

Garbage collection, Generational, Graph reduction, Lazy, Functional, Updating.

1 Introduction

1.1 The problem

Recent work indicates there is much to be gained by employing a garbage collection strat-
egy which exploits cell lifetimes. Quite a few generational schemes have been suggested
and implemented with considerable success. A recent example is Standard ML of New

Jersey [App92].
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Observations show that if a cell survives one garbage collection, it is likely to survive
several more. The central principle of any generational collector is to segregate cells which
look like they will last a long time, and collect them much less frequently than the rest.
‘When heap occupancy is high, this could be a big win over non-generational schemes.

A key problem is how to deal with pointers from older to newer generations. Such
pointers are created in a lazy reduction system when unevaluated expressions, or thunks,
are overwritten with their final value. This action is known as updating. With strict
languages like SML and LISP, updating is unnecessary, so old-to-new pointers only appear
if assignment is used. This may explain the lack of takeup of generational ideas in the
lazy arena.

This paper describes how a generational collector was incorporated into a standard
G-machine interpreter [Joh87]. Detailed performance measurements indicate that a sig-
nificant improvement in overall performance is achieved, compared to both semispace and
compacting mark-scan collectors. The mutator is not significantly impeded by the need
to detect old-to-new pointers, and heap utilisation may approach 100%.

1.2 Structure of paper

Three main sections discuss theory, results and further work:

e Section 2 derives a suitable generational collector by merging two well-known non-
generational collectors. Next, relevant details of the G-machine implementation in
question are examined. A strategy for dealing with updates is defined, and we
consider under what circumstances this will work well.

e Section 3 presents detailed performance results for the generational collector. We
also compare its performance to the same G-machine using a semispace collector,
and a compacting mark-scan collector. This provides an illuminating insight into
the relative strengths and weaknesses of the new collector.

¢ Section 4 introduces some optimisations which have not yet been implemented. It
also discusses how this collector might be integrated into a compiled-code reduction
system which employs “info-table” style cell tags, as implemented in the STG
machine [Pey91] and the Chalmers G-machine [Joh87].

2 A generational collector

2.1 A starting point: the semispace collector

Two important properties that a good sequential garbage collector should possess are:

e Compaction. It is widely accepted that allocating from a contiguous block is
essential for good mutator performance.

¢ Efficiency. Functional language implementations place tremendous demands on
their collectors. For example, the Chalmers LML compiler [Aug84] frequently
achieves an allocation rate well in excess of a megabyte per second on widely
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available workstations. If we demand that garbage collection takes at most 20% of
execution time, we imply a minimum recovery rate of five times the allocation rate.
A few back-of-the-envelope calculations reveal that the recovery rate required begins
to approach the instruction rate of the processor. Clearly, efficiency is paramount.

Possibly the most promising candidate is the semispace collector [Che70]. It is very
simple to implement. An absolutely crucial property is that collection time depends only
on the number of Lve cells in the heap. Consequently we can achieve a recovery rate
asymptotically approaching infinity simply by making the heap arbitrarily large!.

The high recovery rate of Chalmers LML mentioned above is attained by employing
just such a collector. Unfortunately, the semispace scheme has three flaws, all of which
we now attempt to correct.

1. Heap occupancy is limited to 50%. Not only does this cause a serious under-
utilisation of a valuable resource, it is also extremely annoying to find that one’s
program has run out of space when there are megabytes of memory which could be
used if only the collector made better use of available resources.

Proponents of semispace collection have in the past claimed that a virtual memory
system alleviates the problem since “the unused semispace is simply paged out,
freeing up real memory for the current semispace”. Recently, a few voices of dissent
have pointed out that this causes large amounts of paging in practice. The author
would like to go further and point out that argument is absolutely invalid. For
the argument to stand would require disk I/O transfers to operate sustainedly at
memory speeds.

In any case, not everyone has a virtual memory machine.

2. Old cells are copied repeatly. This problem is shared with all non-generational
compacting schemes. It seems a pity to waste time indiscriminately moving old cells
again and again given that we can identify the majority of them at very little cost.

3. Locality is appalling. The mutator cyclically visits every cell in the heap before
returning to the start. This constitutes*worst-case behaviour from the viewpoint of
both the cache and the virtual memory system.

This all looks like bad news. Let us restate the advantages of semispace collection:

1. Speed. In a sparsely occupied heap the semispace method outperforms all others
by a considerable margin.

2. Simplicity. Ease of implementation is important.
3. Space. No auxiliary data structures are required.

If it were possible to use this collector as the basis of a hybrid system, we might be
on to a good thing. It is important to get heap utilisation as high as possible, so we next
look at a second collector.

1 In practice, collection time is also proportional to the number of roots, but this effects all implementations
equally.
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2.2 The compacting mark-scan collector

Such a collector has the advantage of allowing heap utilisation up to 100%. Operation is
three-phase, as follows:

1. Mark the accessible graph. This involves a recursive traversal, starting from all
root pointers.

2. Compact. All live cells are slid to one end of the heap, leaving a contiguous free

biock.

3. Fix up pointers. Since all live cells have moved, it is necessary to adjust pointers
to cells so as to reflect their new locations. Root pointers are similarly adjusted.

This is expensive. Phase (2) involves a complete scan of the heap even if occupancy
is low. So simply adding an arbitrary amount of memory does not necessarily increase
collector efficiency in this case. In practice, measurements show that at low occupancy,
this collector performs badly compared to the semispace collector. When occupancy gets
higher, though, they are more evenly matched.

A naive implementation requires an auxiliary stack to guide the mark phase. In the
worst case, this can be as big as the heap itself. We also need a table in which to record
the new locations of cells after phase (2), although in practice it is possible to re-use the
mark-stack for this.

At the cost of considerable extra complication, both the mark and fixup phases can
be done in constant space. Marking using pointer reversal alleviates the need for a mark
stack [Pey87]. Using Jonker’s in-place compaction algorithm [Jon79], references to cells
are chained together, so the new-address table is eliminated.

2.3 Merging the two

The following combination, suggested in [San91], is a variant of the generational collector
employed in SML-NJ [App92]. Appel’s collector, like this one, divides the heap into two
generations. However, both generations are collected by copying, so occupancy cannot
exceed 50%, a serious limitation. We employ the compacting mark-scan scheme to collect
the older generation, and thereby allow occupancy arbitrarily close to 100%.

As depicted in Figure 1, the heap is divided into three regions, OldSpace, ToSpace
and FromSpace. The latter two are equally sized. Old cells are kept in the section
delimited by HeapStart and OldEnd. New cells are allocated in FromSpace, moving
towards HeapEnd. Eventually FromSpace becomes full. A copying collection then
moves all live cells in FromSpace to ToSpace, adding them to the end of OldSpace.
OldEnd is moved along to reflect this, so the cells collected enter the OldSpace. Such
an event is called a minor collection. The remaining space is split again and allocation in
the now diminished FromSpace resumes.

After some number of minor collections have gone by, OldEnd will have advanced
past OldMax. We then perform a compacting mark-scan collection of the entire heap,
that is to say, of OldSpace, since a minor collection has just been performed. Hopefully,
this major collection causes OldEund to retreat considerably towards HeapStart, in



204

New cell
“—— . Old generation cells allocation
Old To From
Space Space Space
HeapStart OldEad  OldMax HeapEnd

Figure 1: Heap organisation for generational collection

which case we proceed as normal. But if OldEnd still exceeds OldMax, it is neces-
sary to deem the heap full and abandon execution. Clearly, then, maximum allowable
occupancy is defined by OldMax. This setting also has a bearing on overall efficiency.
Experimentation shows a value of 90% gives acceptable performance.

Alas, there is a problem. When a cell in OldSpace is updated, it may acquire
pointers to cells in FromSpace. During a minor collection, FromSpace cells are moved,
invalidating such pointers. So it is necessary to keep a record of all such updates, and
fix up the OldSpace cells after each minor collection. But more than that, such cells
must act as a source of roots during the minor collection, for it is concievable that a
FromSpace cell is referred to only from OldSpace.

So we need an auxiliary array of pointers to old-space cells which have been updated.
Henceforth, this array is referred to as the forward reference table. Supposing a cell at
location z is updated. Under what conditions is it necessary to put z into the table?

e z must be in OldSpace: z < OldEnd.
e The new contents of £ must contain one or more pointers.
o At least one of these pointers should point to FromSpace.

The second and third tests are optional. They reduce the required forward reference table
size somewhat, but not a lot. When a minor collection is performed, the table acts as a
source of roots.

The viability of our scheme depends on

¢ The required size of the forward reference table.
¢ How much of an overhead the update tests impose on the mutator.

In the next section we present figures which indicate that for typical programs, at least
97% of all updates are in the new generation. Consequently, if FromSpace contains, say,
300000 closures, approximately 10000 words of forward reference table are needed. In the
STG machine, all closures contain at least 2 words, from which it is possible to conclude
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that the table size is only about 1.5% of overall heap size. Old-space updates occur when
there is a significant delay between the creation of a thunk and its updating, because in
the delay, the root cell may well be transported into the old generation. Most programs
update the majority of their thunks quickly, and thereby cause few old generation updates.
However, a degenerate case that has up to 20% of its updates in the old generation has
been discovered. This is somewhat alarming, but hopefully it does not occur very often.

We need, therefore, a way to deal with the rare situation where the forward reference
table becomes full. In this case the minor collection can be started early, at the cost of a
little extra inefficiency.

2.4 Details of implementation

The collector was incorporated into a2 G-machine interpreter written in Sun Pascal. The
system is based closely on the supercombinator language presented in [Pey87]. Impor-
tantly, the only data structures supported are lists. Programming in the language is a
bit like working with a lazy variant of LISP. All heap cells are the same size, with the
following layout:

s Tag - 1 byte

¢ Mark bit - 1 byte

o Left pointer - 4 bytes
¢ Right pointer - 4 bytes

The equal sizedness of all cells has an important bearing on this paper: all updates are
done by copying. There are no indirection nodes. Despite this, most of the work described
here is also relevant to systems using indirection nodes.

The use of an interpreter to gather timing information is also of some concern.
Whether or not the relative timings presented below accurately reflect what would happen
in a compiled-code implementation is a matter for debate. Nevertheless, our interpreter
does make significant demands on the heap. Running on a Sun-4/330, it averages around
200000 G-codes per second with heap allocation varying from 45000 to 60000 cells per
second. This is roughly equivalent to half a megabyte per second, a third of the observed
allocation rate of Chalmers LML on the same machine. It seems therefore reasonable to
assume the conclusions drawn below are valid for compiled-code implementations too.

3 Performance results

3.1 Test programs

Four test programs were employed.

e STG: A STG machine simulator. This 3800 line program parses a Core? file,
converts it to STG code, then runs a STG machine simulation. The parser and

2 As discussed in [Pey91], Core is a simple functional language used as an intermediate form in the Glasgow
Haskell compiler.
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Core-to-STG conversions take a lot of heap. Simulation was kept to a minimum so
as to hold heap residency high.

e TreeGrow: Binary tree traversal. This program was specifically designed to take
a lot of heap and have a mean-to-peak residency ratio approaching 100%. It builds
a large binary tree which is subsequently traversed a number of times, counting
the number of nodes. To make things more interesting, the tree is inverted before
counting. The inversion forces a complete copy to be made. Consequently average
residency is about 75% of peak.

o Primes: Generates an infinite list of primes using a lazy sieve of Erasthones. This
program has a low residency, and is extremely lazy.

¢ Queens: All 92 solutions to the 8 queens problem (generated in an inefficient way,
so as to give significant run time). Also relatively low residency.

Timings below were obtained by running each program three times under the relevant
conditions and averaging. Unless otherwise stated, measurements were obtained with a
Sun-4/330 with 32 megabytes of real memory. Results are organised as follows.

Firstly, variation of the following quantities with heap size is shown:

e Garbage collection time.
¢ Proportion of updates in the old generation.

o Maximum size of the forward reference table.

Next we demonstrate that the gains from generational collection far outweigh the
additional mutator cost, especially when heap residency is high, whilst still giving perfor-
mance as good as semispace collection when the heap is nearly empty. This is done by
running the TreeGrow and Queens programs using semispace and compacting mark-
scan (CMS) collectors as well as with the generational scheme.

The generational scheme presented above has one parameter which can be adjusted:
the maximum proportion of the heap that the old generation may occupy. In terms of
Figure 1, this is the value of OldMax. We show how collection time varies with this
quantity and thereby justify the choice of 90% used in all other measurements.

3.2 Generational collector performance

All heap sizes quoted are in cells. For the purposes of comparison, the maximum known
residencies of the test programs are shown below. Average mutator time is also shown.
Variation of mutator time with heap size is very small,

Maximum | Avg Mutator
Program | Residency | Time

STG 89000 70.3 £ 0.3
TreeGrow }| 112000 48.2 +£ 0.2
Primes 20800 3295+ 2.5

Queens 22500 616.0 £ 8.2
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3.2.1 Collection Time vs Heap Size

Collection time is presented as a percentage of average mutator time.

Heap Size || STG | TreeGrow | Primes | Queens
100000 109 |- 16.3 2.08
120000 717 | - 14.8 1.87
140000 5.94 |9.19 13.7 1.84
160000 5.34 | 10.1 12.9 1.64
180000 5.01 | 11.2 12.4 1.50
200000 497 {7.23 11.5 1.50
240000 5.05 | 8.26 10.6 1.35
280000 4.43 | 6.20 9.92 1.21
350000 4.40 [ 6.55 9.04 1.20
400000 4.20 | 4.37 8.56 1.03
500000 3.59 434 7.98 1.01

The high-residency cases, STG and TreeGrow are encouraging. Given that STG
has a maximum residency of 89000 cells, it is impressive that the collection time is only
11% of mutator time with a 100000 cell heap. Even small increases in heap size cause this
figure to fall rapidly.

The TreeGrow program shows similar good collection times even when the heap is
only marginally larger than the maximum residency. In this case, collection time falls off
jerkily as the heap expands. This curious phenomenon merits further investigation.

The Queens program does not exercise the heap very much, hence the low collection
times. It is doubtful whether a semispace collector could do much better in this case.

Unfortunately the Primes program, which also has a moderate residency, runs
against these otherwise hopeful results. This is due to the rather unusual dynamic
behaviour of the program. Section 3.2.4 discusses the matter further.

3.2.2 Forward Reference Table Size vs Heap Size

The sizes presented are the maximum observed forward reference table size at minor-
collection time.

Heap Size || STG | TreeGrow { Primes | Queens
100000 510 |- 4418 2009
120000 802 |- 4330 2005
140000 903 [ 37 4210 2010
160000 1113 | 39 4435 1996
180000 675 |37 4384 2013
200000 809 | 36 4314 1991
240000 1193 | 37 4339 2000
280000 1624 | 47 4338 1998
350000 2293 | 40 4493 1997
400000 733 | 48 4387 2016
500000 3393 | 45 4315 1904
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The results are curious, but encouraging. For TreeGrow, Primes and Queens,
the table size is essentially independant of heap size. Why could this be? A plausible
hypothesis is as follows. As the heap expands, the interval between new-space collections
increases. Consequently, it becomes more and more likely that updates overwrite new-
space rather than old-space cells. On the other hand, since the mutator runs for longer
between minor collections, it has the potential to generate more updates and therefore
more old-space updates. Let the term thunk delay denote the number of reductions which
elapse between the creation of a thunk and the updating of it. If we now assume that the
thunk delays have a negative exponential distribution, the two phenomena could cancel
each other out.

The STG results suggest that, despite a few kinks, table size in this case is propor-
tional to heap size. Even in this case, that’s quite acceptable. From all the measurements
above, the maximum table size is 4493 entries. Hence, table size to heap size is

4493

500000 33 = 04%%

This is a conservative estimate, assuming all closures {in a variable-closure-size heap) are 2
words long. As mentioned in Section 2.3, it is not a disaster even if the table does overflow
from time to time: we simply have to start the minor collection before FromSpace is
full.

3.2.3 Old Space Updates as a proportion of Total Updates

This title 1s not quite accurate. What is actually shown is the percentage of all updates
which require an entry in the forward reference table. Recall that such an entry need be
made only for those old-space updates for which the overwriting cell contains pointers,
one or more of which point to the new generation.

Heap Size || STG | TreeGrow | Primes | Queens
100000 1.56 | - 31.3 0.876
120000 1.53 |- 27.2 0.799
140000 1.40 | 0.246 24.0 0.787
160000 1.19 | 0.235 21.5 0.745
180000 1.10 | 0.208 19.8 0.692
200000 1.14 |0.142 17.7 0.687
240000 1.17 ] 0.140 15.0 0.625
280000 1.06 | 0.097 13.1 0.594
350000 0.89 | 0.086 10.6 0.562
400000 0.90 } 0.068 9.31 0.526
500000 0.81 | 0.044 7.69 0.492

Once again, the Primes result spoils otherwise encouraging news. We look at this
in the next section. For the others, it is instructive to see that the maximum proportion
of updates entered in the forward reference table is about 1.6%, and in many cases
dramatically lower.
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[2,3,5,7] - o, - [8,9,10,11,12 ..}

Multiple-of-2-filter
Multiple-of-3-filter
Multiple-of-5-filter
Multiple-of-7-filter

Figure 2: The infinite sieve of Erasthones, immediately after 7 has been discovered prime

Although not listed here, the total number of updates in old-space, whether or
not the overwriting cell contains pointers, was also recorded. This indicates that about
two-thirds of all old-space updates had to be entered into the forward reference table.
Ignoring Primes, this means that at worst 97.6% of all updates are not in old-space.
This is important, because we can detect a non old-space update simply by comparing
the updated address with the old-space-end pointer, OldEnd. Provided both values are
in registers, this imposes a tiny overhead on this 97.6% of all updates.

3.2.4 Effect of dynamic behaviour on performance

Many systems rely on statistical properties of the problem in hand to get good performance
in the majority of cases. Freak cases that do not “play along” cause severe performance
degradation. For example, virtual memory systems and caches lose effectiveness if the
programs being run do not exhibit enough locality. Similarly, if everyone in the country
decides to telephone the Prime Minister at the same time, the phone system will virtually
collapse.

Unfortunately for us, a generational collector is just such a system. For it to work
well, it is necessary for old-space updates to only be a very small proportion of all updates.
We observe that the Primes program has a large number of old-space updates and hence
an inordinately large collection time. An important question is why there should be so
many old-space updates.

Figure 2 shows the sieve in progress. The printing mechanism “pushes” a barrage
of filters along the candidate list of numbers (8, 9, 10, 11, 12 ...]. Candidates which get
through are prime and join the output list {2, 3, 5, 7). Each new prime also attaches
a “is-not-a-multiple-of-me” filter to the barrage. In the example, the next successful
candidate, 11, attaches a fifth filter.

After a while, many prime numbers will have been produced, so there is a corre-
spondingly large collection of filters. To get the next prime, the printing mechanism kicks
the leftmost filter, which in turn kicks its neighbour. Demand is propagated through all
filters, right up to the candidate list. Now, clearly the first few filters, for multiples of
2, 3, 5 and 7, filter out the majority of candidates, so it may be a long time before a
hopeful makes it back to the leftmost filters. These have all been awaiting update for a
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lopg time, and may well have been transported to old-generation by a minor collection.
Consequently, a heavy burden is imposed on the collector.

So there is at least one program to which generational collection does not respond
well. Is that a good reason to abandon this approach? We believe not.

o Although collector performance in this case is not as good as we would like, it is not
bad: perhaps two or three times the cost of semispace collection in a moderate-sized
heap.

e The other three programs examined respond extremely well to generational col-
lection. In particular, it is significant that the STG program, of considerable
complexity (3800 lines of code), works well. It seems a pity to throw away this
large average-case performance gain.

o One hopes that most programs update most of their thunks quickly, so average-case
behaviour is almost always exhibited.

Examining the distribution of thunk delays (defined in Section 3.2.2) provides more
information than merely looking at the average value, It would appear that the effective-
ness of generational collection in an environment with updates depends centrally on this
distribution. Further work in this area could be very useful.

3.3 Performance relative to non-generational collectors
3.3.1 What measures are of significance?

In this section, we hope to answer the following questions:
e Does generational collection really give significant performance benefits?
o To what extent is the mutator impaired by the need to record old-space updates?

What is the best way to measure collector efficiency? First, observe that for most
types of collectors, efficiency can be improved to some extent simply by making the heap
larger. Observe also that in many cases, the utility of functional programs is limited
not by collection time, but by the size of heap needed to keep collection time down to a
reasonable level.

Other workers [San91] have measured GC efficiency in terms of the rate at which
free heap is reclaimed. We suggest a more natural measure is to directly relate how heap
size and overall run time are related. Results below are phrased in this way.

Two programs, TreeGrow and Queens were selected as well-behaved representa-
tives with high and low residencies respectively. They were run with a range of heap
sizes, using a semispace collector, a compacting mark-scan collector, and the generational
collector. In the latter case, old-space maximum size was set to 90% of overall heap size,
as for the measurements above.
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3.3.2 The TreeGrow program

Average mutator time

Mutator
Collector Time
Semispace 50.0 £ 1.6
CMS 48.0 + 2.6
Generational || 48.2 + 0.4

Mutator time with each different collector was averaged over all runs. Measurement
noise seems to swamp any detectable variation in the generational case.

Overall run time

Heap Size || Semispace CMS | Generational
130000 (heap overflow) | 112.3 | 57.1
140000 (heap overflow) { 97.6 | 52.9
150000 (heap overflow) | 88.5 | 53.3
160000 (heap overflow) | 83.5 | 53.6
170000 (heap overflow) | 79.3 | 53.8
180000 (heap overflow) | 76.3 | 54.4
190000 (heap overflow) | 73.2 | 51.8
200000 (heap overflow) | 71.0 | 52.1
250000 113.1 - ]
300000 77.6 62.0 | 51.5

400000 63.6 59.9 | 50.5
500000 59.4 57.0 | 50.5
600000 57.6 56.5 | 50.7
700000 55.0 56.6 | 50.5
800000 56.2 56.0 | 50.7
900000 53.2 55.2 | 50.5
1000000 52.2 57.0 {50.4

The generational collector outperforms the other two under at all heap sizes, spec-
tacularly so when the heap is relatively small. Recall that maximum residency of this
program is about 112000 cells. It is noteworthy that generational GC time does not
improve much once heap size exceeds about 140000 cells. This suggests that residency
can get up to about 80% with practically no performance penalty. The second significant
observation is that the generational collector outdoes the semispace collector even when
the heap is very large, the best-case for semispace collection.

Required heap sizes

Finally we phrase the question the other way round, and ask how much heap is needed
to get overall run time down to a given level. Heap sizes are approximate.
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Overall time || Semispace | CMS Generational
65 390000 270000 | <125000

60 490000 400000 | 125000

55 700000 900000 } 140000

These figures speak for themselves.

3.3.3 The Queens program

Peak residency of 22500 cells gives extremely low residency at all heap sizes used (22.5%
down to 2.25%), so the semispace collector can be expected to do well.

Average mutator time

Mutator
Collector Time
Semispace 621.5 £ 21.3
CMS 614.1 4- 3.4
Generational || 617.8 & 11.8

As before, measurement noise predominates.

Garbage collection time

Because heap occupancy is so small, garbage collection time is similarly small. Presenting
overall run times is made rather meaningless by the measurement noise for mutator time,
so only the garbage collection time is shown. Observe in many cases how it declines to
less than 1% of mutator time.

Heap Size || Semispace | CMS | Generational
100000 38.38 76.94 | 12.85
200000 17.45 65.30 | 9.65
300000 11.26 61.52 | 7.53
400000 7.97 60.35 | 6.58
500000 7.03 58.23 | 6.54
600000 5.59 58.19 | 6.42
700000 5.06 57.27 | 5.86
800000 4.32 56.74 | 5.30
900000 3.65 56.20 } 4.99
1000000 3.07 56.55 | 4.89

As expected, compacting mark-scan collection does badly because of the low res-
idency. The semispace collector draws ahead of the generational collector as peak oc-
cupancy sinks beneath about 4% (corresponding to 562500 cells), but collection time in
both cases is so small that this makes little difference.
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The conclusion to be drawn here is that the generational collector outperforms the
other two once heap residency is above a few percent, and does spectacularly well in the
important cases where residency approaches 100%. Also significant is the fact that no
significant impairment of mutator performance can be detected in the generational case.

3.4 Old space size as a proportion of total heap size

At any given heap size, there is another parameter to adjust: what proportion of the heap
the old-space may occupy. In terms of Figure 1, this is the position of OldMax. Since
this value defines the absolute maximum heap occupancy allowed, we would like to get
it as high as possible consistent with reasonable performance. However, both a very high
and very low setting degrade efliciency, since:

o As OldMax decreases, the frequency of major collections increases. Major collec-
tions are expensive,

¢ As OldMax increases, the frequency of minor collections increases, so the interval
between them decreases. This erodes the effectiveness of generational collection,
since it decreases the average age of cells moved to the old generation.

A secondary consideration is that minor collections, although cheap, are not free,
especially if there are a lot of roots around (a large G-machine stack or a lot of
old-space updates).

This suggests there is some mid-range setting which gives.optimal efficiency. Clearly,
this depends both on the dynamic properties of the particular program being run, and
on the relative speeds of the compacting mark-scan and semispace collectors. We can
only hope the former effect does not make much difference, select a “representative” test
program and conduct some trial runs to arrive at a value.

Figures below are for the STG program®. Absolute heap size is held constant at
200000 cells whilst the proportion allocated to the old-generation is varied from 45% to
97.5%. The program has a maximum residency of 89000 cells (44.5% of the heap).

Old-space size || Total GC time
45% 6.22
50% 5.14
55% 4.98
60% 4.78
65% 4.66
70% 4.28
75% 4.39
80% 3.98
85% 4.21
90% 4.31
95% 4.51
97.5% 4.52

3 Run on a Sun-4¢/60, 8 megabytes real memory.
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Figure 3: Putting the forward reference table in the heap

Despite a small wiggle, this suggests that any size from 70% to 90% will do, and
even going up to 97.5% does little harm. This is good, since it means heap utilisation
approaching 100% is quite feasible.

4 Optimisations to the basic scheme

Once it is established that generational collection does not impose an excessive burden
on the mutator, a large design space opens up. In this section, some ideas which may
improve performance are discussed. None of them have been implemented, though, due
to lack of time.

4.1 Putting the forward reference table in the heap

Having a forward reference table which may overflow, or be underutilised, independantly
of what’s going in the heap, is a nuisance. An obvious place to put the table is right at
the top of the heap, as shown in Figure 3. Minor collections now occur when new-cell
allocation crashes into the top of the table. This is the usual “two stacks in one array”
trick in disguise. The advantage is it gets rid of a separate table. On the other hand,
it does make minor collections a little more frequent, with the associated costs discussed
in Section 3.4. Hopefully, if the program being run is well-behaved, it will not generate
many old-space updates, so the diminution in FromSpace size is minimal,

Another, more elegant solution is available for systems which can update using
indirection nodes. All old-space updates are done with indirections. Each indirection
node contains a field which is used to point to another indirection node, so, as old-space
updates occur, a linked list of indirection nodes is built up. This list is, in effect, the
forward reference table.
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4.2 Making FromSpace larger than ToSpace

The reason we make ToSpace the same size as FromSpace is to cope with the worst
case minor-collection wherein all FromSpace cells are live. In practice this rarely hap-
pens. The collector is at its most effective when the number of live FromSpace cells is
minimised. Observations show that typically less than 10% of FromSpace cells are live
at minor collection time, with many programs getting below 3%. Values above 30% are
rare. Andrew Appel quotes a corresponding figure of 1.87% in [App92].

Given that increasing FromSpace size increases collector efficiency, it seems a
great pity to waste most of ToSpace. The Big Idea here is to monitor FromSpace
residency, and dynamically adjust the relative ToSpace/FromSpace ratio accordingly.
It appears that FromSpace residency changes relatively slowly, so guessing the required
next ToSpace size, as, say, 50% more than the previous FromSpace residency keeps
things safe in the face of FromSpace residency increases of up to 50% between adjacent
minor collections.

Since we clearly cannot guarantee anything about residency changes, there must be
a way to deal with the case where the live cells of FromSpace do not fit into the allocated
ToSpace. We observe (as in [San91]) that the heap is always in a consistent state during
semispace collection. Consequently, if ToSpace overflows during a minor collection, the
minor collection can be abandoned and the major collector called instead. Given that
major collections are expensive, this had better happen only extremely rarely. The key
question is how to make a good guess of how big to make ToSpace after each minor
collection. All manner of clever schemes come to mind: it will be interesting to see how
well they perform.

4.3 Multiple minor collections before merging

All the previous variants suffer from an annoying deficiency in that the old generation
grows ever larger at every minor collection. This forces the occasional major collection
even if none of the live cells collected during minor collections is really destined to become
“genuine” old generation data.

It is easy to modify the collector to do multiple minor collections before merging the
result of a minor collection onto the old generation. An interesting question is exactly
when such a merge should occur. We might stipulate that this happen whenever the
semispace residency exceeds, say, 20%. For a program with low residency, this means the
system acts perpetually like a semispace collector. Alternatively, the merging could take
place every n’th minor collection.

Quite how such a scheme affects performance is unknown. Since the existing imple-
mentation works well in the majority of cases, perhaps development should concentrate
on improving the worst case, as typified by the Primes program.

A word of warning about these complicated schemes is in order. The more parame-
ters which can be twiddled, the smaller is the chance that we will ever arrive at an optimal
setting, or even that one setting is optimal for all programs. Building mathematical models
of collector-mutator performance may help, but at the end of the day it is often down to
time consuming experimentation.
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4.4 Compiled code implementation

A popular way to implement fast case-analysis in compiled implementations is by having
the tag field of each cell point to a so-called “info table”. For every possible action, the
info table contains a pointer to the code that performs the action for this type of cell.
Further details may be found in [Joh87] and [Pey91].

In [San91], the details of doing both semispace and compacting mark-scan collection
using info tables are presented. The only remaining problem is how to create entries in
the forward reference table.

When a cell is updated, we need to decide whether to put its address in the table.
In the crudest approach, this involves a comparison of the address being updated with
OldEnd, followed if necessary by a call to a routine EnterIntoFPTable which enters this
address into the table. In the following C code, the address being updated is in UpdAddr.

The code then is:
if ( UpdAddr <= 01dEnd ) EnterIntoFPTable ();

Statistics from Section 3 show the vast majority of updates fail the test. Assuming
UpdAddr and OldEnd are in registers, as explained in [Pey91], the overhead for most
updates could be as low as two or three instructions.

A more refined approach only inserts an old-space updated cell into the forward
reference table if it contains pointers and one or more of these points to new-space. What
we need here is to invent a new method, which:

¢ Does nothing if the cell contains no pointers.
¢ Does nothing if the cell contains pointers, but they all point to old-space.
o Otherwise, adds the address of the cell to the forward reference table.

To achieve this, it is necessary to allocate a new info table slot for this action, and

" write code to perform it for every kind of cell. Since these pieces of code “know” the
layout of the cells they operate on, this is a fairly cheap operation. Supposing that
EnterIntoFPTableDISP is the displacement for this method in info tables, our code might
now look like this (neglecting typecasting):

if ( UpdAddr <= 0ldEnd )
(* ((*UpdAddr) + EnterIntoFPTableDISP)) ();

In English, this means: “if UpdAddr is in OldSpace, call the EnterIntoFPTable method
for the cell pointed to by UpdAddr™.

5 Conclusions

This paper provides strong evidence that generational garbage collection is viable for
lazy reduction systems. The small added mutator costs are greatly outweighed by better
garbage collector performance. We showed how the central question of recording old-space
updates can be dealt with at very little space and time cost.
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It is also, unfortunately, apparent that generational collection makes certain assump-
tions about statistical-level dynamic behaviour of programs. The primary factor here is
the distribution of delays between the creation of a thunk and its updating. It may be
that these have a negative exponential distribution. Generational collection works well
when most such delays are very small. In the few cases where these assumptions do not
hold, performance will not be as favourable. However, there is a strong argument to be
made that for the vast majority of programs these assumptions are valid. Significantly, a
3800 line program runs very well with this collector.

Finally, some modifications were suggested. Whether or not these are a good idea
awaits further work.
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Abstract. In a static typechecking language, such as ML, the type infor-
mation produced by the typechecker can be forgotten during execution. But
in many cases, a minimal type information (tag) is needed for the Garbage
Collector (GC). In this paper, I propase a simple, safe and efficient GC al-
gorithm which does not use any tags to distinguish immediate values and
pointers.

This GC is a conservative Mark&Sweep { which does not move objects) with
ambiguous roots ( there is a possibility of ambigunity between immediate
values and pointers). It is used for a runtime library added to C for an ML
compiler to C (CeML) where basic data types are identical to those in C
(int, float). However the GC uses a disambiguating strategy which is shown
to be safe. It can be used also for other polymorphic languages with static
typechecking and uniform data representation.

Introduction

CeML [6] is a new ML dialect (derived from CAML [18]) which differs mainly by
its typechecker and its module system. The CeML typechecker includes a new func-
tional type constructor which indicates the function arity. Its compilation model uses
the C language as a portable assembly language. Because of some characteristics of
functional languages, the C language is not the best target language because it has
no exception handler and no memory management. It is thus necessary to add a
runtime library which includes a memory management, a mechanism for total and
partial applications and exceptions. This paper presents only the memory manage-
ment of this runtime library (completely described in [5],[6]).

The main goals of this ML implementation are :

-~ to be as efficient as C when ML programs are written in imperative style and to
be as efficient as best ML implementation for functional style programs.

~ to be portable : the C generated programs must be running on different com-
puters.

~ to be interoperable : the C generated programs can be merged with other safe
generated C programs from other compilers.
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For this purpose, the runtime library is driven by these constraints, in particular by
the memory management. First, [ shall present these constraints and their implica-
tions for the implementation. I shall then describe a Mark&Sweep [13] with ambiguous
roots [4] [3] and its distinguishing algorithm between basic values and pointers, in
comparison with another GC (Stop&Copy [14] with tags). This will lead to a final
discussion of the use of tag objects and to a comparison with other GC without tags
and other ML implementations.

1 Constraints for the CeML Implementation

To each CeML variable the CeML code generator associates a C variable, and to each
CeML function a C function. With its more informative typechecker the C functions
also have an arity corresponding to the CeML arity detected during typechecking.
The closure environment is given to a C function as supplementary arguments by
M-lifting [9](because there are no local functions in C). It seems interesting to use
the C calling protocol and the same data representation as C for CeML basic data
types. With the direct mapping between ML and C variables, it is preferable not
to move objects, in particular the variables during GC, because in this case it is
necessary to push pattern matching variables into the root set. For example, for the
following function :

let rec sum_list = function [J -> 0 | a::1 -> at+(sum_list 1);;
there are two cases which depend on whether the GC moves objects or not :

— if objects are not moved, then only the argument of sum_1ist function is pushed;
— if objects are moved, there are two pushes for a and 1 in the second case of the
pattern matching.

From this, I obtain the following constraints :

~ data representation is uniform (each value uses 32 bits) :
¢ basic data types are the same as in C : int and float,
e structured values are represented by a pointer (also 32 bits);
C calling protocol is used;
objects do not move;
root set must be independent from the C stack;
C functions manage the trace of their arguments and their local variables into
the root set.

|

|

|

These constraints are interesting because immediate values are not tagged (this
is not necessary in ML [1]), and they allow the direct use of the C functions partic-
ularly the arithmetic operators. Because ML is a polymorphic language, the static
typechecking is not sufficient to distinguish the immediate values and pointers at
compile time. So, the root set can contain immediate values and it is necessary to
make a distinction between immediate values and pointers.

The following GC is a conservative GC with uniform data representation without
tags for immediate values.
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2 Memory Management

Here, I present a new Mark&Sweep algorithm with ambiguous roots. I describe the
data representation, the partitioning of memory, the root set and the algorithm used
during the Mark phase to distinguish immediate values and pointers.

2.1 data type representation

All objects have a uniform representation (e.g. 32 bits). In order to distinguish pair,
list and other concrete types, a type field is necessary. Records, vectors, strings
and closures are considered to be different vectors and need two fields : one for the
number of elements and the other for the type (cf. figure 1).

ok}
[::::] immediate valus
=X pointex {32 binms)
ok © -
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< x € ype oo
i I 1
Pair;_::i;“', K l ]
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veorer __~F___ 11 1 ... 3

record

Fig. 1. Data type representation

Integers and floating point numbers use a word as well. Double precision floating
point numbers are not implemented, but they can be represented as a pointer toward
a four word storage. Records and vectors have the same representation. Strings are
a special kind of vectors. Each element (word) contains four characters. The address
of the first element corresponds to the C character pointer (char *) of the string.
Closures are represented by a fixed field, which contains arity of the C function, and
a variable part including its environment values.

2.2 partitioning of memory

The heap is partitioned into chunks {cf. figure 2). Each chunk contains objects of the
same size (powers of two). There are nbzones sets of chunks called zone (from 23 to
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22#nbzones hytes) QObjects greater than one chunk are arranged into several chunks.

This partitioning of memory is a variant of the BIBOP (Big Bag Of Pages [16])
algorithm. For our implementation, the chunk size is four kilobytes and nbzones is
equal to ten.

available memory (32 bita) [OxO0,0xfffffrrf}
heap
Ox0 first chunk chunk 1 lmst chunk n OxfLLLLLLL

1 empty
ampty

1 2
enpty
enpty

n ampty

chunk belongs to zone two and containa 16 bhyrte slements
chunk liast

Fig. 2. Partitioning memory

2.3 free lists

Each predefined zone has a list of available elements (cf. figure 3).

free list interval zzone 1 = [A,B}] U (C,D]

zone 1

Fig. 3. Free Lists

2.4 root set

The root set is represented by a statically allocated independent stack. This stack
allows for the preservation of immediate values or pointers. Sometimes there is a
double use between this stack and the C stack, but in order to be independent of
the C stack this representation is necessary. This feature preserves programs against
the C optimizations which can move out objects from the C stack. Each C function
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needs to trace its arguments and its local variables into root set when it is necessary
(when the typechecker can not determine if an argument is a immediate value).

This stack is also used for the general apply mechanism (when a direct call to
a C function is not possible because the argument is a closure, or during a partial
application).

2.5 1initlal memory state

At the beginning, the heap is empty. Each zone can grow dynamically. The first
allocation for a zone is ten chunks. The following allocations are computed by the
growing function, after the Sweep phase. This orientation allows for a control of the
heap evolution.

2.6 allocation

There are two kinds of object allocation.

The first one is used for small objects less than one chunk in size. This first
case has two alternatives. If the object size is known (for example one cons uses four
words) and the corresponding free list is not empty, then the allocation is completed;
if not, a GC is invoked. If the object size is not known, then the zone to be used has
to be computed.

The second one is used for big objects. If the object size is greater than a chunk,
then the object uses several contiguous chunks.

2.7 recovery

When a zone is full, one must recover some space. There are two phases. The first
phase (Mark) marks each object indicated by the root set, and the second (Sweep)
preserves only these objects.

Mark. For each value inside the root set, a discriminating algorithm distinguishes
between an immediate value and a pointer. In this last case, the structured object is
marked and the process is applied to its structure elements. Actually, this algorithm
uses the C stack, but it can change by using pointer reversal as described in [10].

Sweep. For each chunk in use, its corresponding free list is updated by all the un-
marked elements. This algorithm explores all used memory. This is an implementa-
tion which wants to be simpler. If the responsible zone which raised the GC is too
small after memory recovery, then a new chunk is allocated for this zone.

3 Distinguishing Algorithm

When the GC explores an object, it runs four tests to assure that it is in the presence
of a pointer, as follows :

— is the pointed object in the heap?
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— does this address belong to a chunk in use?
— 1is the pointed object correctly aligned for this chunk?
— is there an object allocated to this address?

If the answer to these four questions is yes, then the object can be an address
and the pointed object will be marked; otherwise, the object is an immediate value.
Because all the pointed objects have a type field, it is possible to check if there is an
object allocated to this address.

3.1 safety of the algorithm

Let H be the heap, corresponding to the interval [Hp, Hg], and let C; be a chunk
inside H. Each chunk has the same size which is noted chunk_size. Each chunk
contains elements of the same size : element_size(C;) = 221" bytes with 1 < n <
nbzones (for example I use nbzones = 10). Each chunk is well aligned inside the
heap : Cp is the corresponding address of the beginning of the chunk which verifies
Cg modulo chunk_size = 0 (this is a simplification of Cp—H g modulo chunk.size =
0, because Hp modulo chunk_size = 0).

If obj is a CeML value, we can determine if obj is a basic value (val) or a value
inside the heap (adr) :

if obj & [Hp, Hg] — val
else let C = which_chunk(obj)
let shift = (obj — Cp) modulo (element_size(C))
if shift #0 — val
else if obj[1] = empty - val
else — adr

If an immediate value, such as an integer, has a value which cannot be distin-
guished from a correct memory address, then this integer is considered as a pointer
and the correct ML object pointed at this address is explored and preserved.

3.2 probability of bad distinction

Conflict probability is the probability of being inside the heap times the probability
of being well aligned. The worst case appears when all the chunks are used.

Pconflict = Pinsideheap * Pwellaligﬂed

where for a heap of m Mbytes and for a chunk size of 4 kilobytes, we have m * 28
chunks, then the address space contains 232 bytes, and gives the following probabil-

ity :

mx220  m

Pinss'deheap = 2T = 912
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I call ”zone” the set of chunks corresponding to the same size elements. The
object size inside a zone i is 272 bytes. The probability of being well aligned inside
a zone is the product of the probability of being inside a zone times the probability
of being well aligned inside this zone.

I assume the same space occupation for each zone. The probability of being well
aligned inside long objects is comparatively small.

Pei*wellalignedinsidei = Pei * Pwe”alignedinsidei
1 1
= ok
nbzones 21t
Then :
nbzones
Pwellah'gned = Z PEi—weHaIignedinsidei
i=1
nbzones
1 1

= P —
; nbzones 2i+?2

nbzon
: i:es l
PR e
nbzones = & 242

1 1 nbzones 1
—— % —r
nbzones 2% &

SR R U
= nbzones 922~ 4xnbzones

And :

Pconflict = Pinaideheap * Pwellaligned
m 1 m
Som* = 1
212 " 4 xnbzones  nbzones * 2!

With a use of 5 Mbytes of memory for the heap (m = 5) and ten zones (nbzones =
10), the error probability P.opjiict is 5}-5

This small probability is acceptable (1/32768). In general though, the full use of
chunks is not equiprobable. In fact, there are more small objects than large objects
such as constructors, references, lists, pairs and closures. The factor is about 4 times
greater in a more standard case, but the entire heap is not always in use and the
distinction has a smaller probability.

3.3 remark

This GC cannot be used in the Lisp family (or any dynamic typechecking language)
because it is not possible, dynamically, to determine the object type. This feature
is a consequence of the same representation of the immediate values and pointers.
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That, an integer can have the value of a correct pointer, for example, represents a
CeML object. In this case, the typeof function returns a bad result.

For this reason, the symbol = which is polymorphic has the semantic of eq (equality
for immediate values or sharing for structured objects) and not the semantic of equal
(equality of structures). This is a problem for the programmer, but this is more
coherent with the language definition because the ML polymorphism is parametric,
1.e. it does not look at the form of the function arguments.

4 Comparison and discussion

First, I present a comparison between the previous GC algorithm and a Stop&Copy
GC for CeML. This comparison allows for a discussion of tags and boxed objects for
the GC. I then compare CeML with other ML dialects.

4.1 comparison with a Stop&Copy GG for CeML

Another GC was implemented for CeML. It was a Stop&Copy with boxed objects
inside the heap. When the arguments are given to the function they need to be
unboxed. Inside the heap, each object has a word to describe its type. The main
difference concerns the immediate values. Because objects can move, there is a dif-
ferent representation for the values and the variables into the root set. The variable
address is pushed into the root set.

I give the execution time (Unix user time ) for three examples in figure 4 : Itlist,
Oct and MapOct. They manipulate all three polymorphic functions : Itlist (iter-
ation on the lists) tests the optimized total application, Oct (Church integers) the
general apply mechanism and MapOct (Church integer lists) the partial application.

The times are given in seconds. The times in parentheses correspond to new
optimizations which are not supported by the Stop&Copy version.

DS3100{Stop& Copy|Mark&Sweep (AR)
ItList 0,8 0,7 (0,3)

Oct 1,8 0,7
MapOct 7,2 4,3 (2,9)

Fig. 4. Experimental results

In the two CeML GC implementations, which establish a direct correspondence
between ML functions and C functions, it is possible to use some C tools for the
execution profiling. For example, the pixie tool, for the MIPS computer, profiles the
optimized C program. This tool gives the time and the call number for the allocation
and recovery functions. For example, the example Oct does not use recovery memory.
The difference between the two times comes from the boxing and unboxing of objects
needed for the Stop&Copy GC. This feature 1s discussed in the next subsection (4.2).
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4.2 problems with tags or boxed objects

With this pixie tool it is possible to interpret these experimental results. For the
Stop&Copy, each value inside the heap or the root set is boxed by its type. The
immediate values are boxed when they belong to a structured object, but they are
not boxed when they are given as arguments to a C function (in order to follow the
implementation constraints). From this data representation some difficulties appear
with polymorphic functions. The different kinds of polymorphism are well described
in [15}, but the terminology does not distinguish between polymorphic parameters
and polymorphic results. To make this distinction, I note the term polymorphism
i input for a function if one or more parameters are polymorphic and the term
polymorphism 1n output if its result is polymorphic. Let us look at these two cases :

— polymorphism in inpui. When an argument, corresponding to a polymorphic pa-
rameter, must be stored inside the heap, allocation needs to know the argument’s
type. The type of each argument corresponding to a polymorphic parameter must
then be given as a supplementary argument to the C function. The number of
arguments grows for the polymorphic function.

— polymorphism in outlpui. If a function is polymorphic in ouiput, its result can be
given to a second function pelymorphic in input. In this case, the second function
needs to know the result’s type. These two kinds of applications thus coexist.
The first one is the standard application which returns the result value. The
second one returns the result value with its type. For the following function :

let double £ x = £ ( £ x);;

f needs to know the type of (f x) dynamically. In this case the application
mechanism becomes slow.

These problems are similar if the data representation is not uniform ({12]).

Another possibility is to use one bit (tag) to make the distinction between immediate
values and pointers. This solution is adopted in Lisp systems. This is reasonable for
dynamic typechecking languages because at any time a Lisp program can check the
object type (since it is not satisfying to be ambiguous). In ML, though, the solu-
tion which preserves the uniform data representation and takes up little memory,
loses the entire 32 bits of immediate values (to 31 bits) and the addressable memory
space. One possibility is to use the higher bit to distinguish immediate values and
pointers for each created integer in which case it is necessary to mask this bit. We
have the same problem if the lower bit (lowtag) equals 1 for the immediate values is
chosen. The last standard possibility is to use the lower bit which equals 0 for the
immediate values, but in this case the multiphication and the division of integers are
no longer efficient and the pointers are no longer aligned. In this latter case, each
memory access must be indexed. As a result, the performances are very dependent
on the processor. In any given case, if it is possible to find a good tag for a data
type, this data representation 1s not good for the set of data types, particularly in
the case of a compiler to C language.
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4.3 related work on GC without tags

My GC was inspired by the work of Boehm and Weiser ([4]). Their GC has a different
representation of chunks, which are a multiple of 4Kb and contain mark bits. They
use the C stack as root set. This point increases the tests to determine immediate
values and pointers (because inside the C stack we can find many immediate values
which should not be pushed into the root set).

Bartlett in [3] distinguishes two object classes : those which are directly referenced
by the root set and the others. The first ones are left in place and the other objects
can be moved. This method can be used for ML. With a direct mapping between
pattern variables and local C variable though, we need to push the pattern variables
into the root set. Then the root set increases.

In [8], Goldberg associates a frame_gc.routine for each function call which knows
how to trace the function frame. For the polymorphic functions, their frame_gc_routine
are parametrized by the types of the polymorphic function. In the case of a poly-
morphic function nested inside another polymorphic function, the type informations
are given at each level. For that, the GC starts from the bottom of the stack and the
deduction of type for the polymorphic arguments reflects the execution: process. This
method works well for ML, but a complete implementation is needed to measure its
performances.

Edelson presents in [7] a generational Mark&Sweep collector for C++. he uses a
buddy [10] system for the allocator. His GC is {ype-accurate, i.e. every value that
the collector interprets as a pointer is statically typed to be a pointer. This is the
opposite for ML which does not have this information because the polymorphic
functions do not make any distinctions between immediate values and pointers.

4.4 comparison with others ML dialects

I compare this CeML implementation with the main ML compilers divided in two
families CAML and SML for the following implementations : CAML, CAML-LIGHT
(11], SML-NJ [2] and SML2C [17]. The compiler performances are measured for ten
programs (figure 5) on a DecStation DS3100 (MIPS R2000). These tests describe
the main characteristics of the functional languages (data representation, complete
and partial application, polymorphism, pattern matching, exceptions and imperative
features) and allow us to measure the performances of these GC. The times are given
in seconds by the Unix command time. Only the user time is considered.

An ML implementation depends mainly on its compilation model for the applica-
tion, on data type representation and on its GC algorithm. It is thus not possible to
separate the GC time from the execution time. There are only two programs which
use only the C stack rather than using the heap in CeML. For all other programs
though, the heap is fully used and the GC performances can be compared. CeML
performances are satisfactory in comparison to the C compiler (in many cases the
C program generated by the CeML compiler is very similar to the equivalent hand-
written C program) and with the best ML implementations. There are however two
types of programs that do not verify these good performances : the very functional
programs (close to A-calculus as in the case of Church integers) and programs which
use too much exception handling. In the first case, the partial application and the



228

DS3100 CAML SML

Test V2-6.1{light{CeML|NJ 0.66|SML2C{jWhat is mainly tested?

1 Fibonacci 6.7|42.0f 2.5 4.7 14.5{|integers

2 Takeuchi 18.5{12.4) 0.7 4.6]  11.3[/function calls (3 args)

3 Integral 4] 6.7 1.4 1.4 3.8llfloats, loop

4 CountStr 12.5) 1.3| 1.9 6.6 10.3||strings

5 Reverse 14.6| 9.6] 2.2 2.6 6.41llist processing

6 Sieve 7.5{13.2| 2.4 4.0 10.7||list processing, functionals
7 ItList 4.6f 7.2 3.1 2.1 4.0j{list processing, functionals
8 Church int 5.4/ 10.4] 6.4 1.2 4.8)|functionals, polymorphism
9 TakExcept 24.2118.3] 15.4 7.2 14.5}jexceptions

10 SigmaVect 4.6)29.0; 1.3 5.1 9.9]|vectors

Fig.5. Experimental results

application of closures given as arguments forbid application optimization. In the
second case, the exception handling mechanism is above all dependent on the C
compiler implementation. On Unix system, the setjmp/longjmp library, which is
used in CeML runtime library, generates too much work (it saves the bitmasks for
signals,...) to implement the exceptions well. Since the partial application and the
intensive use of exceptions are in fact scarce, they do not put into question the CeML
implementation choices.

With its more informative typechecker (arity of functions, expressions decorated
with their types), the CeML compiler yields excellent optimizations for the total
application and the immediate value manipulation. But these optimizations are not
always possible. When the application depends on a functional argument, then its
arity is lost for the application optimization. The execution speed then varies ac-
cording to the ratio of non-optimized application / optimized application. Its GC,
with ambiguous roots, avoids the tagging of immediate values. The distinguishing
algorithm, between an immediate value and a pointer, slows the GC down, but
the benefits achieved through the uniform representation of data is, in most cases,
greater than the slowdown. It is particularly well suited to the implementation of
parametric polymorphism.

Conclusion

This GC, Mark&Sweep with ambiguous roots, satisfies the initial constraints, i.e.
permits the representation of basic ML types by basic C types and the use of the
direct C function call. It also allows us to push the parameter variables and local
variables, but not the pattern matching variables. This GC seems simple (less than
700 lines) but it is more efficient than the other implementation of a Stop&Copy
for CeML. Moreover it facilitates good optimizations for the application (as seen in
the previous examples) which is the other main feature for the functional language
compilers. Finally, the efficiency of a CeML program depends on the ratio between
optimized application and non-optimized application {as the profiling C tools show).
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It is completely independent of the C implementation, but it is appropriate for a
word size (32 bits, or in the future 64 bits). Finally, it is pleasant to profit from
the static typechecking for the GC and to show the good properties of ML for its
implementation.
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Abstract, Emulating coroutines with first-class continuations imposes an
unacceptable overhead in managing function frames when there is an in-
tensive exchange of control. This paper presents a high-performance imple-
mentation for a restricted class of continuations. These continuations are
exploited in a simple coroutine mechanism, reaching a rate of 430,000 con-
trol exchanges per second on a modern RISC processor. As an extra feature,
first-class continuations are recovered from the restricted class.

Keywords: coroutines, continuations, garbage collection, dynamic variables,

shallow binding

1 Introduction

A coroutine is a kind of concurrent process, getting and passing control explicitly.
The simplest way to implement them is to use multiple stacks, one for each coroutine.
The problem with this approach is that whenever memory resources are himited,
the deepest function recursion must be traded off against the maximal number of
simultaneous coroutines. Yet, predicting the deepest function recursion is generally
impossible.

On the other hand, Scheme [Rees & Clinger 86] has abstracted a wide variety of
control structures —including coroutines and escapes— into just one general control
operator named call-with-current—-continuation (or, in its abbreviated form,
call/cc). This operator reifies its continuation into a first-class function, which can
then be treated just as any other function in Scheme. The continuation of call/cc
is the rest of the computation from its application point. In Scheme, coroutines can
be obtained by reifying the continuation of a computation to emulate the exchange
of control [Haynes et al 86].

Scheme continuations can be implemented by allocating function frames in the
general heap, where they are managed by a normal garbage collector. In this way,
there is no trade off to be solved because all frames share the same heap and deep
function recursion is treated by normal heap exhaustion. With some optimizations
[Clinger et ¢l 88], this memory organization has a small overhead for normal proce-
dural applications.

However, we state in Sect. 2 that Scheme continuations could not be an effective
way to emulate coroutines, because once a continuation has been reified, the only
way to recycle the captured frames is by triggering an expensive general garbage
collection, in which all the objects are involved.

* Postal address : INRIA, Bat. 8, Domaine de Volucean-Rocquencourt, B.P. 105, 78153 LE
CHESNAY CEDEX, France, Email Address: mateu@margaux.inria.fr.
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The goal of this paper is to introduce a fast implementation technique for a re-
stricted class of continuations. These continuations are used in a simple coroutine
mechanism, solving effectively those problems having a natural solution with corou-
tines, i.e. the performances are competitive with alternative procedural solutions. If
concurrency were to be added among the features of Scheme, to have a fast corou-
tine mechanism (i.e. context switch facility) is also of paramount importance and is
solved by our model.

The basic idea is to allocate frames in a dedicated heap, managed by a genera-
tional Stop and Copy garbage collector. We add a new object class, the hooks, which
are used to store the continuation of suspended coroutines. Thus continuations can
be only held in hooks. When che frame memory is exhausted, an inexpensive garbage
collection recycles unreachable frames. This collection is cheap since it is only ap-
plied to the frame heap compared, as in the Scheme case, to the whole general heap.
This is possible, since the roots are found in the hooks, which are bounded by the
number of coroutines.

In Sect. 3 we present the set of coroutine primitives and we show that they
recover the Scheme notion of first class continuations. Also, we apply them to solve
the same-fringe problem in an elegant way. In sections 4 and 5 we implement them.

In Sect. 7 we compare the performances of our heap organization to several stack
organizations, showing that the main overhead comes from the locality loss in mem-
ory access. So in Sect. 8 we introduce an optimization for normal applications which
reduces most of this overhead. With this optimization and others, the execution time
overhead for normal applications is around 11%, compared to a stack based imple-
mentation providing no coroutine facility. In Sect. 9 we compare the performances of
a coroutine based solution of the same-fringe problem against the trivial procedural
solution. Some possible extensions are discussed in Sect. 10.

2 First-class continuations and the same-fringe problem

The same-fringe problem determines whether the sequence of leaves —the fringe— of
two trees are the same. This problem is easily solved with three coroutines as shown
in the next section. The first compares the leaf sequences returned sequentially
by the other two coroutines, each of them traversing one of the trees recursively.
When arriving at a leaf, a coroutine traversing a tree passes the control to the
comparing coroutine. Later, the coroutine is resumed at the same point where it
had been suspended, to continue traversing that tree. In this section we examine
the performances of a garbage collector when first-class continuations are used to
emulate suspension and resumption of the coroutines in the same-fringe problem.

As stated in the introduction, a trivial implementation of Scheme continuations is
achieved by allocating frames in the general heap. Unfortunately, memory allocated
for frames is much more important that memory allocated for normal objects so
garbage collection activity increases, thus degrading performance. This heavy frame
allocation is not visible in a stack organization, because frame lifetime is very short,
thus frames are popped as soon as they are pushed.

For applications not using the Scheme continuations intensively, several imple-
mentation strategies are discussed in [Clinger et a/ 88] and [Hieb et al 90]. These
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strategies reduce the associated overhead by using a stack cache to execute normal
call/return behavior, but transferring frames from the stack to the general heap
when a continuation is reified. In some strategies frames are also transferred from
the heap to the stack when a continuation is invoked.

Now, let us consider using first-class continuations to emulate the coroutines in
the same-fringe problem. The suspension of a tree traversal is achieved by reifying
its continuation, and the resumption by invoking it. To traverse a tree recursively,
a function is called at every internal node. This function allocates a frame in the
stack cache. However, sooner or later that fraine will be transferred to the heap
by a continuation capture at a leaf. Therefore any optimization introduced to treat
normal call/return behavior wili be useless, because all frames will be captured by
a continuation.

Considering that the size of each transferred frame is at least the size of a cons
cell, and there is an additional space overhead in creating a callable continuation,
we become aware that the garbage collection activity will be much more important
than in a trivial solution which flattens the trees into lists prior to comparison. Thus
performances will be unacceptably slow for the first-class continuation solution.

3 Coroutines as second class continuations

In fact, the aim of using coroutines to solve the same-fringe problem is firstly, to
decrease the additional memory requirements to allocate a new list in the tree flat-
tening solution, and secondly, to reduce the execution time overhead incurred in
managing that memory. When emulating coroutines with first-class continuations,
we can see that the former is successful, because the surviving frames at memory ex-
haustion are just those present in the branch of the current node in the tree traversal,
and not the whole. Yet, for the latter, 1t is just the opposite that has been obtained.

Therefore, beginning with this section, we will be concerned with reducing the
memory management overhead incurred to treat coroutines when frames are allo-
cated in a heap. To achieve this goal we will introduce a coroutine definition based
on continuations. Although these continuations are not first-class functions as in
Scheme, we will show that call/cc can still be obtained from our coroutines.

We start by defining the new type hook. A hook is a continuation holder encap-
sulating a limited set of legal operations. Hooks are first-class objects, i.e. they have
an unlimited extent and they can be passed as arguments to functions, returned
from functions, and stored in data structures. They are created and manipulated
with the following operations (an accurate semantics is presented in the appendix):

e (coroutine £) with £= (1ambda (hook) ...)
This primitive is used to create a coroutine. It allocates a new hook filled with
the continuation of the coroutine form. Then the £ function is applied on the
hook. When £ returns, the continuation currently held in the hook is invoked on
the returned value.

¢ {escape hook val)
This primitive allows a coroutine to exit, passing control to another coroutine. It
invokes the continuation held in hook on val. This means that val is returned
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as the value of the coroutine or suspend/resume! form that was the last to fill
the hook.

¢ (suspend/resume! hook val)
This primitive allows the suspension of the current coroutine, resuming another
previously suspended coroutine. Therefore this is a kind of explicit context switch
mechanism between coroutines. It exchanges the current continuation with the
continuation held in hook, and invokes this latter on val.

The primitives coroutine and suspend/resume! are used to capture contin-
uations just as call/cc in Scheme. However, continuations can’t be obtained as
first-class objects, because there is no legal operation reading the hook contents
directly. Yet, the original first class continuations are recovered by defining:

(define (call/cc fun)

(coroutine
(lambda (hook)

(fun
(lambda (value)

(escape hook value})))))

The inner lambda that is passed to fun emulates the Scheme continuations. It is
actually a first-class function because closures are first-class in Scheme. Note that the
continuation held in a hook is not lost when escape is used, so it can be reinvoked.
In this way, multiple returns from function applications are also recovered.

Nevertheless, just using this newly defined call/cc gives no performance ad-
vantages over the Scheme first-class continuations. We will see that an efficient
implementation can be conceived for applications creating a moderate number of
coroutines but heavily exchanging control, as in the following solution for the same-
fringe problem:

;3 ; a leaf reader ;13 The comparator
(define (make-walker tree) (define (same-fringe tree-a tree-b)
(coroutine ; 1 starts the two leaf readers
(lambda (hook) (define hook-a
; 3 @ recurstve traversal (make-walker tree-a))
(define (walk tree) (define hook-b
(cond (make-walker tree-b))
((not (pair? tree)) ; sloops on the leaves
(suspend/resume! (let loop O
hook tree)) (let ((leaf-a (suspend/resume!
(else hook-a ’void))
(walk (car tree)) (leaf-b (suspend/resume!
(valk (cdr tree))))) hook-b ’void)))
; s returns the hook (cond
;1 to the client ((not (eq? leaf~a leaf-b))
(suspend/resume! hook hook) #f)
; ; starts the traversal ((eq? leaf-a ’end)
(walk tree) #t)
; s signals the end (else
‘end ))) (1oop))))))
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4 Implementing second class continuations

Let us consider a Scheme implementation passing arguments in registers and al-
locating a fixed size frame at function entry. This frame is allocated in a special
heap controlled by the frame memory manager presented in next section. A frame
contains the following fields :

e tag: A frame identifier used by the frame memory manager. This tag can be a
pointer to a structure containing the frame layout.

e retaddr: The caller return address.

e oldfp: The caller frame address. The fields retaddr and oldfp represent the
implicit continuation passed to every function.

o Some optional static frame pointers: Present only when the function accesses
variables located in lexically enclosing functions.

e Some variables: The programmer defined variables, the function arguments and
some intermediate values, which are held in registers initially, but need to be
saved when a function call uses some of those registers and also at register
exhaustion.

Upon function entry, a frame is allocated and initialized with the caller infor-
mation. The frame address is placed in a dedicated register named current frame
pointer or simply £p. At return, £p is restored with the caller frame address and a
jump to the caller return address is done. Since a frame can still be useful even after
function return, it can’t be freed as easily as in a stack implementation. When there
is no more memory for allocating frames, the frame memory manager reorganizes
the heap by pruning frames that are no longer reachable from the current frame
pointer or a continuation held in a hook.

A hook is a structure allocated in the general heap. It contains a tag identifier
used by the memory manager and a field named ctp which is a pointer to a capture
frame structure. A capture frame is a special frame created at a continuation capture
for storing the information needed to invoke that continuation. Excepting a hook,
there is no other first-class object pointing to a capture frame. A capture frame is
allocated in the special frame heap and contains the following fields:

e tag: A capture frame identifier.

e retaddr: The return address to jump to when invoking the continuation.

e oldfp: The frame address of the function being suspended.

e hook: The address of the hook involved in the continuation capture and which
will be linked to this capture frame.

nextctp: This pointer is used by the frame memory manager.

Figure 1 shows the linking between a hook, a normal frame and a capture frame.
Using these hook and capture frame structures, the coroutine primitives are
implemented as follows:

o (coroutine f): A capture frame cfp is allocated with tag, retaddr and oldfp
filled as upon normal function entry. Next, hook is allocated to hold the contin-
uation of the coroutine form. Then the following code is executed :
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Fig. 1. Hook and frame linking.
cfp—hook= hook ;; The capture frame and the hook
hook—cfp= cfp ;; are made to point at each other.
cfp—nextcfp= listcfp ;; The capture frame is chained in a list,
listcfp= cfp ;; for reasons which we will explain later.
fp= cfp ;; The capture frame becomes the current
escape(hook, f(hook)) ;s frame and £ is invoked.

Note that upon normal return of £, this form does an escape through the current
hook contents.

e (escape hook val): A normal return is done as if the current frame was the
capture frame referenced by hook.

fp= hook—cip
return val
o (suspend/resume! hook val): A capture frame cfp is allocated with tag,

retaddr and oldfp filled as upon normal function entry. Then the following
code is executed :

fp= hook—cfp ;; The capture frame in hook

. ;; becomes the current frame.
hook—cfp= cfp ;; Then hook is linked to cfp.
cfp—nextcfp= listcfp ,; The caplure frame is chained
listetp= cfp ;; in a list, as in coroutine.
return val ;; A normal return is made from

;; the new current frame.

Figure 2 shows the frame and hook chaining for an example of function call tree.
Frames have been enumerated according to allocation order. While working with
frame 1, a coroutine is created, so the hook H and the capture frame 2 are allocated.
Then the frame 3 is allocated for the function starting that coroutine. Next, using
suspend/resume! through the hook H, that coroutine is suspended and the work
with frame 1 resumed, so the capture frame 4 is allocated. A function call allocates
frame 5 where a suspend/resume! through hook H creates the capture frame 6 and
resumes the work with frame 3. Another function call allocates the frame 7 from
where an escape through hook H is done, resuming the work with frame 5. Finally
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a normal return resumes the work with frame 1 from where a last function is called
allocating frame 8.

o
.,
L)

A capture frame

e
ou

s
et

A normal frame

A hook

A continuation

v O

A pointer to a first
class object

Fig. 2. An example of function call tree.

Initially, the hook H has been linked to frame 2, but the two successive
suspend/resume! operations link it to frame 4 and then frame 6. Note that frame
7 hasn’t been captured, so its memory is available for new allocation. In the same
way, the capture frames 2 and 4 aren’t reachable from any hook, so the memory
taken by frames 2 and 4 and then frame 3 is also available.

5 An efficient memory manager for frames

We split memory management into two almost independent garbage collectors. The
first is the general garbage collector managing first class objects such as cons cells,
symbols, vectors, etc. and especially hooks. The second is the frame only memory
manager —including capture frames— which is presented in this section. This frame
memory manager is a simplification of the generational Stop and Copy garbage
collector described in [Nakajima 88] and [Appel 89].

Frame allocation is implemented as follows. At the beginning of a cycle, there is
an empty buffer which we will name the primary buffer. Two registers hp_limit and
hp point at the start and the end of this buffer. A frame is allocated by subtracting
its size from hp and comparing the new hp against the hp.1imit register to test the
buffer overflow. It is important to note that there is no need to initialize frames,
instead the primary buffer is cleaned of dangling references by initializing it to zero
or nil after a general garbage collection.

When the primary buffer overfiows, it holds the frames for the complete function
call tree from the beginning of the cycle. As stated in the previous section, some
branches of this tree are unreachable, so the reachable ones are appended to another
buffer which we will name the secondary buffer. Then a new cycle begins with an
empty primary buffer.

The reachable frames are firstly, those captured by the current frame which sig-
naled the overflow, and secondly, frames that have been captured by a continuation
held in a hook. However, for the latter, it has been necessary to create a capture
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frame in the primary buffer from where they are reachable. Therefore coroutine
and suspend/resume! chain the capture frames that they create in a list which we
will name the primary capture frame list or simply 1istcfp. In addition, some of
these capture frames are no longer referenced by a hook, because their initial hook
has been used to capture another continuation, so they are considered unreachable
unless another continuation captures them.

We outline a simple copying collector to transfer frames to the secondary buffer.
We say that this collector prunes frame trees.

1. For each capture frame C in listcfp:

(a} If C points to a hook no longer linked to C, continue with the next capture
frame in 1istctp.

(b) Reverse the dynamic chain obtained from C by following the oldfp field
as far as a frame located in the secondary buffer or a frame that has been
marked as already transferred.

(¢) For each frame F in this new chain:

i. Make a copy of F in the secondary buffer. This copy will be named F".
The size of F is determined from the tag field.

ii. Link oldfp in F’ to the copy of the caller frame which is just the previ-
ously transferred frame.

ili. Set a mark in the tag field in F indicating that F has been transferred.

iv. Liuk oldfp in F to the address of F’.

v. If F has some static pointers, since the referenced frames are in the
dynamic chain, they have already been transferred, so relink any static
pointer to its new address. This address is found in the oldfp field of
the referenced frame.

(d) Let C’ be the copy of C. C’ points to a hook having the cfp field linked to C.
Link cfp to C’. Then chain C’ into a list which we will name the secondary
capture frame list.

2. Transfer in a similar way the dynamic chain obtained from the current frame
pointer.
3. Set listctp to the empty list.

Afterwards, the execution must be resumed with a primary buffer reduced to
the size of the remaining memory in the secondary buffer. Thus, when the primary
buffer overflows again, all new frames are guaranteed to find room in the secondary
buffer, even when all of them are reachable. When this frame pruning is triggered
after a primary buffer overflow, we call it a minor pruning.

If the primary buffer becomes too small —assume a quarter of its initial size—
make a major pruning. A major pruning exchanges the primary and secondary
buffers and the primary and secondary capture frame lists, and then does a nor-
mal pruning. Most old frames transferred to the secondary buffer aren’t reachable,
so they won’t be recopied and the secondary buffer will regain a reasonable size.

Figure 3 shows the primary and secondary buffers before pruning the tree of Fig.
2. Frame 1 is the only frame already located in the secondary buffer. Figure 4 shows
the buffers once the frames reachable through hook H have been transferred. Finally,
Fig. 5 shows the buffers once the pruning has finished.
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Fig. 3. Frame tree before pruning.
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Fig. 4. Buffer contents after transferring frames reachable through hook H.
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Fig.5. Final pruned frame tree.
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Having an unlimited extent, a hook might become garbage for the rest of the
execution. Its captured frames will therefore appear to be reachable forever to the
frame memory manager. These useless frames will fill the secondary buffer increas-
ing the pruning frequency and so degrading performance. Hence, if after a major
pruning the secondary buffer is filled up to a given percentage, a general garbage
collection must be triggered to discard the unreferenced hooks. However, this situa-
tion should occur rarely because it is the normal heap exhaustion which will trigger
the collection.

6 Synchronization between first-class object and frame
memory management

During a general garbage collection, a subtle synchronization with the frame memory
manager must be done to recover the frame space captured by garbage hooks. To
achieve this goal, while doing the general garbage collection, a special major pruning
is carried out simultaneously as follows:

Make a minor pruning to free the primary buffer.

. Exchange primary and secondary buffers.

. Set the secondary capture frame list to empty.

. Transfer the frames reachable from the current frame to the secondary buffer.
The pointers held in those frames are roots for the general garbage collector.

. Start the general garbage collector.

w0 N

[«

. For each hook proved reachable by the general garbage collector :

(a) Transfer the frames captured by the hook to the secondary buffer.
(b) Chain the copy of the associated capture frame in the secondary capture
frame list. '

(c) The pointers held in the transferred frames are roots for the general garbage
collector.

Note that the method used by the general garbage collector doesn’t matter. It
could be a Stop and Copy or a Mark and Sweep collector with or without generations,
etc.

Our frame memory manager and the general memory manager, as a whole, can be
seen as a generational garbage collector [Lieberman & Hewitt 83], with the first two
generations reserved for frames only. The complexity associated with generational
memory management comes from the need to trace pointers from older generations
to newer generations. These pointers are the result of object mutating operations
such as set-car!, vector-set!, etc. However, frame chaining can’t be altered in
the frame heap, so pointers from secondary buffer to primary buffer can’t exist and
therefore no tracing is needed. Yet, coroutine suspension can link a hook —in an old
generation— with a newer frame, hence the necessity to introduce capture frames
which just serve to trace hook mutations.
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7 Performance analysis for applications lacking coroutines

In this section we evaluate the overhead that the memory organization described
in previous sections carries to applications not using coroutines. To measure this
overhead we have implemented it in F1 [Seniak 91]. F1 is a compiler for a small
lisp, generating assembler code for Sparcs. It uses the 31 Sparc registers as much
as possible, but without calling on window registers. F1 doesn’t treat floating point
numbers, so no test is needed in integer arithmetic operations.

We show in table 1 the timings for the Gabriel benchmarks [Gabriel 85]. Timings
include our heap organization as well as various stack implementations which test
or don’t test overflow and chain or don’t chain frames. We include also the perfor-
mances of a mixed stack/heap strategy which we explain in the next section. The
measurements have been done on a SUN/670MP, having a 64 Kb cache.

To measure the overhead associated with tagging, we added the tags to the frame
chaining stack organization, then this overhead was the additional execution time.
To measure the overhead associated with frame pruning, we doubled the work by
transferring surviving frames to a third intermediate buffer while pruning, then an-
other pruning transferred the same frames to the secondary buffer. The pruning
overhead was the difference with respect to our heap organization. Having the over-
head of frame chaining, tagging and pruning, the remaining unexplained overhead
was due to the locality loss in memory access.

Therefore the proposed organization has an overhead of 18% when compared
with a stack implementation testing the overflow. However with the optimizations
described in the next section, we reduce that overhead to a 11%.

The surprisingly small overhead of frame pruning is explained because the mean
lifetime of frames is very short in conventional applications. The frames surviving
to a minor pruning are those that are reachable from the current frame, excepting
those that are already in the secondary buffer. Therefore, the number of transferred
frames is the depth of the call tree at primary buffer overflow, less the minimal
depth reached during the cycle. However, considering the locality of function call
depth from which Sparc register windows are inspired, this number is very small. In
fact, we have measured a 1 to 2% of frames surviving to a minor pruning, and a 2
to 5% surviving to a major pruning.

The locality loss is the main penalty for this heap organization. A normal stack
organization presents a high degree of locality, explained also by the locality of
function call depth. However, our organization allocates frames sequentially, flushing
cache lines at almost every function call. In fact the 5.2% was obtained solely when
the primary buffer was limited to a size by 16 or 32 Kb, to give an opportunity to
the 64 kb cache to hold it completely, otherwise the overhead was greater.

8 Optimizing performances of frame allocation

The following minor variation is inspired from the stack/heap strategy described in
[Clinger et al 88].

Upon normal function entry, after frame allocation, the fp and hp registers have
the same value. If this still holds at return, no capture frame could be allocated,
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so the frame memory can be reused safely. Therefore, at return, the £p and hp are
compared and when they are equal, the zllocated frame is freed by adding its size
to the hp register. Moreover, when there is no captured continuations, a function
calling another function will get the hp register with the same value that it had
before the call, so it will alsc free its frame at return. Thus, frames will be pushed
and popped in the primary buffer, just as in a stack, and the application will exhibit
the locality of a stack organization.

During a continuation capture, the hp register is adjusted to allocate a capture
frame. When that continuation is invoked, the hp register is not restored, so its fur-
ther comparison against £p will fail, and all frames allocated before the continuation
capture will not be freed. In this way, the frames captured by a continuation are
guaranteed not to be reused for new allocation. Frames allocated after the capture
frame will continue with the normal push and pop discipline.

Therefore, in normal applications, there is a gain in the locality of memory access,
but there is also a loss in performing the test at function return. Although this test
is useless when coroutines are exploited intensively, we have adopted it, because we
desired a minimal penalty for normal applications and the measurements had shown
that the gains were greater than the losses.

Another optimization adopted is the suppressing of frame tagging. In fact, the
tags can be placed at primary buffer overflow for the reachable frames only. The
tags can be deduced from the return address by using a binary tree, a hash table
or, in some architectures, just including it in the code around the return address.
The performance of an implementation with the stack/heap optimization and tag
suppression is shown in table 1.

Finally, other optimizations are possible, even though we didn’t adopt them.
First, the overflow test at function entry can be suppressed by placing the frame
heap in the stack space of a Unix process and organizing it as in Fig. 6. In this
way, the test is done at continuation captures only, while at deep recursion the
primary buffer grows automatically. Second, the return test can also be suppressed
in functions which are known not to capture continuations by inspecting the static
function call tree. In addition, those functions don’t need the frame chaining. Third
and last, established optimizations such as function integration and inlining can be
applied to further reduce the call/return overhead.

9 Performance analysis for the same-fringe problem

Tables 2, 3 and 4 show the performances obtained by three solutions for the same-
fringe problem. Each version compares 10 times two trees containing 100,000 cons
cells.

The first solution is based on coroutines, so it does no allocation in the general
heap, instead it captures a continuation at every leaf. Although the stack/heap
optimization is present, it is useless, and therefore there is a low locality in memory
access. Table 2 shows performances when varying the primary buffer size and the
total frame heap size.

The second solution uses call/cc to emulate the coroutine context switch. For
implementing call/cc we used a variation of the stack /heap strategy where a general
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Addresses automatically
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Fig. 6. A buffer organization allowing the suppression of the overflow test and simplifying
the first ancestor search when implementing shallow binding. At a mmajor pruning, frames
are transferred from the secondary buffer to the alternative secondary buffer or vice versa.

garbage collection is triggered immediately after a frame heap overflow. We are
constrained to do so because the first-class status of Scheme continuations exclude
any frame pruning without proving that the continuation which captured a frame is
not referenced by another first-class object.

The third solution flattens the trees, i.e. it chains the leaves of each tree into two
lists before comparing them, resulting in a high general garbage collection activity.
We used a Stop and Copy collector with no generations.

The measurements show that the version using call/cc is far the slowest. They
show also that there is a performance crosspoint between the coroutine and the
tree flattening solutions when objects survive in average one collection cycle in the
tree flattening version. Therefore the latter will win especially when coupled to a
generational garbage collector where objects rarely survive to one generation.

However, we think that coroutines must not be seen as a means to speed up
applications. Instead, they are a powerful abstraction tool which can greatly sim-
plify programming. The aim of presenting these measurements is to show that our
coroutines aren’t expensive even when used intensively as in same-fringe. In fact, in
the coroutine version, same-fringe reaches a rate of 430,000 suspend/resume! per
second. Yet, if same-fringe is considered as a subpart of a more complex system, the
coroutines solution could win when a generational approach is not desired, because
the programming paradigm involves too much object musations, such as in object
oriented systems.

10 Extensions

In this section we discuss some possible extensions to the memory organization
described previously. We start by introducing a hint to implement shallow binding
for dynamic variables; next, we discuss a way to treat dynamic escapes efficiently;
and finally, we consider allocating dynamic objects in the frame heap.
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Dynamic variables have been traditionally implemented in high-performance
Lisps by using shallow binding, because the time needed to create, access and delete
a dynamic variable is constant. However, combining shallow binding with coroutines
or first-class continuations introduces a subtle complication. When transferring con-
trol between coroutines, the dynamic environment must first be unwound from the
current frame up to a common ancestor with the target frame, and then, rewound
down to the target frame.

This overhead in restoring dynamic environments can discourage language de-
signers to add dynamic variables, because even when these variables are not used,
coroutine users must pay at least the cost of finding the common ancestor to discover
that there is no dynamic environment to restore. This seaich can be accelerated by
chaining the frames containing dynamic variables in a special list. Yet, adding a
single dynamic variable to the program, introduces an additional overhead in any
control exchange between coroutines.

Therefore we point out an interesting property for the buffer organization of Fig.
6 when using the frame pruning of Sect. 5. For every frame f; pointing to a frame
f2, the following holds:

address(f;) < address(f2)

Hence, finding the common ancestor between two frames is as easy as unwinding
the two