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PREFACE

This book, Basic Decompositions, is the first volume in a projected five-volume series
entitled Matrix Algorithms. The other four volumes will treat eigensystems, iterative
methods for linear systems, sparse direct methods, and special topics, including fast
algorithms for structured matrices.

My intended audience is the nonspecialist whose needs cannot be satisfied by black
boxes. It seems to me that these people will be chiefly interested in the methods them-
selves —how they are derived and how they can be adapted to particular problems.
Consequently, the focus of the series is on algorithms, with such topics as rounding-
error analysis and perturbation theory introduced impromptu as needed. My aim is to
bring the reader to the point where he or she can go to the research literature to augment
what is in the series.

The series is self-contained. The reader is assumed to have a knowledge of ele-
mentary analysis and linear algebra and a reasonable amount of programming expe-
rience — about what you would expect from a beginning graduate engineer or an un-
dergraduate in an honors program. Although strictly speaking the individual volumes
are not textbooks, they are intended to teach, and my guiding principle has been that
if something is worth explaining it is worth explaining fully. This has necessarily re-
stricted the scope of the series, but I hope the selection of topics will give the reader a
sound basis for further study.

The focus of this and part of the next volume will be the computation of matrix
decompositions— that is, the factorization of matrices into products of simpler ones.
This decompositional approach to matrix computations is relatively new: it achieved
its definitive form in the early 1960s, thanks to the pioneering work of Alston House-
holder and James Wilkinson. Before then, matrix algorithms were addressed to spe-
cific problems — the solution of linear systems, for example — and were presented at
the scalar level in computational tableaus. The decompositional approach has two ad-
vantages. First, by working at the matrix level it facilitates the derivation and analysis
of matrix algorithms. Second, by deemphasizing specific problems, the approach turns
the decomposition into a computational platform from which a variety of problems can
be solved. Thus the initial cost of computing a decomposition can pay for itself many
times over.

In this volume we will be chiefly concerned with the LU and the QR decomposi-
tions along with certain two-sided generalizations. The singular value decomposition

Xvii



Xviii PREFACE

also plays a large role, although its actual computation will be treated in the second
volume of this series. The first two chapters set the stage not only for the present vol-
ume but for the whole series. The first is devoted to the mathematical background —
matrices, vectors, and linear algebra and analysis. The second chapter discusses the
realities of matrix computations on computers.

The third chapter is devoted to the LU decomposition— the result of Gaussian
elimination. This extraordinarily flexible algorithm can be implemented in many dif-
ferent ways, and the resulting decomposition has innumerable applications. Unfortu-
nately, this flexibility has a price: Gaussian elimination often quivers on the edge of
instability. The perturbation theory and rounding-error analysis required to understand
why the algorithm works so well (and our understanding is still imperfect) is presented
in the last two sections of the chapter.

The fourth chapter treats the QR decomposition— the factorization of a matrix
into the product of an orthogonal matrix and an upper triangular matrix. Unlike the
LU decomposition, the QR decomposition can be computed two ways: by the Gram—
Schmidt algorithm, which is old, and by the method of orthogonal triangularization,
which is new. The principal application of the decomposition is the solution of least
squares problems, which is treated in the second section of the chapter. The last section
treats the updating problem — the problem of recomputing a decomposition when the
original matrix has been altered. The focus here is on the QR decomposition, although
other updating algorithms are briefly considered.

The last chapter is devoted to decompositions that can reveal the rank of a matrix
and produce approximations of lower rank. The issues stand out most clearly when the
decomposition in question is the singular value decomposition, which is treated in the
first section. The second treats the pivoted QR decomposition and a new extension,
the QLP decomposition. The third section treats the problem of estimating the norms
of matrices and their inverses — the so-called problem of condition estimation. The
estimators are used in the last section, which treats rank revealing URV and ULV de-
compositions. These decompositions in some sense lie between the pivoted QR de-
composition and the singular value decomposition and, unlike either, can be updated.

Many methods treated in this volume are summarized by displays of pseudocode
(see the list of algorithms following the table of contents). These summaries are for
purposes of illustration and should not be regarded as finished implementations. In
the first place, they often leave out error checks that would clutter the presentation.
Moreover, it is difficult to verify the correctness of algorithms written in pseudocode.
In most cases, I have checked the algorithms against MATLAB implementations. Un-
fortunately, that procedure is not proof against transcription errors.

A word on organization. The book is divided into numbered chapters, sections,
and subsections, followed by unnumbered subsubsections. Numbering is by section,
so that (3.5) refers to the fifth equations in section three of the current chapter. Ref-
erences to items outside the current chapter are made explicitly —e.g., Theorem 2.7,
Chapter 1.
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MATRICES, ALGEBRA, AND ANALYSIS

There are two approaches to linear algebra, each having its virtues. The first is abstract.
A vector space is defined axiomatically as a collection of objects, called vectors, with
a sum and a scalar-vector product. As the theory develops, matrices emerge, almost
incidentally, as scalar representations of linear transformations. The advantage of this
approach is generality. The disadvantage is that the hero of our story, the matrix, has
to wait in the wings.

The second approach is concrete. Vectors and matrices are defined as arrays of
scalars — here arrays of real or complex numbers. Operations between vectors and
matrices are defined in terms of the scalars that compose them. The advantage of this
approach for a treatise on matrix computations is obvious: it puts the objects we are
going to manipulate to the fore. Moreover, it is truer to the history of the subject. Most
decompositions we use today to solve matrix problems originated as simplifications of
quadratic and bilinear forms that were defined by arrays of numbers.

Although we are going to take the concrete approach, the concepts of abstract lin-
ear algebra will not go away. It is impossible to derive and analyze matrix algorithms
without a knowledge of such things as subspaces, bases, dimension, and linear trans-
formations. Consequently, after introducing vectors and matrices and describing how
they combine, we will turn to the concepts of linear algebra. This inversion of the tra-
ditional order of presentation allows us to use the power of matrix methods to establish
the basic results of linear algebra.

The results of linear algebra apply to vector spaces over an arbitrary field. How-
ever, we will be concerned entirely with vectors and matrices composed of real and
complex numbers. What distinguishes real and complex numbers from an arbitrary
field of scalars is that they posses a notion of limit. This notion of limit extends in a
straightforward way to finite-dimensional vector spaces over the real or complex num-
bers, which inherit this topology by way of a generalization of the absolute value called
the norm. Moreover, these spaces have a Euclidean geometry —e.g., we can speak of
the angle between two vectors. The last section of this chapter is devoted to exploring
these analytic topics.
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1. VECTORS

Since we are going to define matrices as two-dimensional arrays of numbers, called
scalars, we could regard a vector as a degenerate matrix with a single column, and a
scalar as a matrix with one element. In fact, we will make such identifications later.
However, the words “scalar” and “vector” carry their own bundles of associations, and
it is therefore desirable to introduce and discuss them independently.

1.1. SCALARS

Although vectors and matrices are represented on a computer by floating-point num-
bers — and we must ultimately account for the inaccuracies this introduces — it is con-
venient to regard matrices as consisting of real or complex numbers. We call these
numbers scalars.

Real and complex numbers

The set of real numbers will be denoted by R. As usual, |z| will denote the absolute
value of zeR.

The set of complex numbers will be denoted by C. Any complex number z can
be written in the form

=z +1y,

where z and y are real and < is the principal square root of —1. The number z is the real
part of z and is written Re z. The number y is the imaginary part of z and is written
Im 2. The absolute value, or modulus, of z is |z| = {/2? + y2. The conjugate = — iy
of z will be written z. The following relations are useful:

1. 2Rez =2+ 2,
2. 2Imz =2 — Z,
3. |2|? = zz.

If z # 0 and we write the quotient z/|z| = ¢ + is, then ¢? + s* = 1. Hence for a
unique angle # in [0, 27) we have ¢ = cos# and s = sin#. The angle 8 is called the
argument of z, written arg z. From Euler’s famous relation

e = cosé + isiné,
we have the polar representation of a nonzero complex number:

z = |z|et*®=,

The parts of a complex number are illustrated in Figure 1.1.
Scalars will be denoted by lower-case Greek or Latin letters.
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z=X+1iy
Izl
y =Im(z)
\ arg(z)
x =Re(z)

Figure 1.1: A complex number

o
Sets and Minkowski sums
Sets of objects will generally be denoted by script letters. For example,
C={z:|2] =1}

is the unit circle in the complex plane. We will use the standard notation YUY, A N),
and X"\ ) for the union, intersection, and difference of sets.

If a set of objects has operations these operations can be extended to subsets of
objects in the following manner. Let o denote a binary operation between objects, and
let X’ and ) be subsets. Then A" o Y is defined by

XoY={zoy: zeX,ye)}.

The extended operation is called the Minkowski operation. The idea of a Minkowski
operation generalizes naturally to operations with multiple operands lying in different
sets.

For example, if C is the unit circle defined above, and B = {—1, 1}, then the
Minkowski sum B + C consists of two circles of radius one, one centered at —1 and
the other centered at 1.

1.2. VECTORS

In three dimensions a directed line segment can be specified by three numbers z, y,
and z as shown in Figure 1.2. The following definition is a natural generalization of
this observation.

Definition 1.1. A VECTOR £ of DIMENSION n or n-VECTOR is an array of n scalars of
the form

I

T2
r =

Tn
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Figure 1.2: A vector in 3-Space

o
alpha a a kappa « % sigma ¢ ¢
beta B lambda A [,¢ tau Tt
gamma v ¢,¢ mu §p om upsilon v u
delta 6 d nu v o n,v phi o f
epsilon ¢ e xi £ chi X
zeta ¢ omicron o o psi P
eta n y,h pi T p omega w W
theta 6 tho p T
iota Lt sigma o0 s

Figure 1.3: The Greek alphabet and Latin equivalents
o

We also write
T
T=(21,T25..+,%n) -

The scalars z; are called the COMPONENTS of x. The set of n-vectors with real compo-
nents will be written R™. The set of n-vectors with real or complex components will
be written C". These sets are called REAL and COMPLEX n-SPACE.

In addition to allowing vectors with more than three components, we have allowed
the components to be complex. Naturally, areal vector of dimension greater than three
cannot be represented graphically in the manner of Figure 1.2, and a nontrivial com-
plex vector has no such representation. Nonetheless, most facts about vectors can be
illustrated by drawings in real 2-space or 3-space.

Vectors will be denoted by lower-case Latin letters. In representing the compo-
nents of a vector, we will generally use an associated lower-case Latin or Greek letter.
Thus the components of the vector b will be b; or possibly 5;. Since the Latin and
Greek alphabets are not in one-one correspondence, some of the associations are arti-
ficial. Figure 1.3 lists the ones we will use here. In particular, note the association of
¢ with z and 7 with y.

The zero vector is the vector whose components are all zero. It is written 0, what-
ever its dimension. The vector whose components are all one is written e. The vector
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whose ith component is one and whose other components are zero is written e; and is
called the ith unit vector.

In summary,
0 1 0
0= 01, e= 1], e;= 1|1
0 1 0

1.3. OPERATIONS WITH VECTORS AND SCALARS

Vectors can be added and multiplied by scalars. These operations are performed com-
ponentwise as specified in the following definition.

Definition 1.2. Let z and y be n-vectors and o be a scalar. The suM of z and y is the
vector

1+ %
T2 + y2

TH+y=
Tn+ Un
The SCALAR-VECTOR PRODUCT « IS the vector

(e 5]

ara
ar =

azr,

The following properties are easily established from the definitions of the vector
sum and scalar-vector product.

Theorem 1.3. Let z, y, and z be n-vectors and « and 3 be scalars. Then
1. z4+y=9y+=,
(c+y)+z=2+(y+2),
z+0=u=z,
4+ (-1)z =0, 1)
(@B)z = a(fz),
(a+ B)z = ax + pz,
o(z +y) = az + ay,
l-z=1z.

e A ol
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The properties listed above insure that a sum of products of the form
011 + 02T + - -+ ATy

is unambiguously defined and independent of the order of summation. Such a sum of
products is called a linear combination of the vectors zy, 32, ... , Tp.

The properties listed in Theorem 1.3 are sufficient to define a useful mathematical
object called a vector space or linear space. Specifically, a vector space consists of a
field F of objects called scalars and a set of objects A’ called vectors. The vectors can
be combined by a sum that satisfies properties (1.1.1) and (1.1.2). There is a distin-
guished element 0€ X’ satisfying (1.1.3), and for every z there is a vector —z such that
z + (—z) = 0. In addition there is a scalar-vector product satisfying (1.1.8).

Vector spaces can be far more general than the spaces R™ and C" of real and com-
plex n-vectors. Here are three examples of increasing generality.

Example 1.4. The following are vector spaces under the natural operations of sum-
mation and multiplication by a scalar.

1. The set P, of polynomials of degree not greater than n
2. The set Py, of polynomials of any degree
3. ThesetC|0, 1] of all real functions continuous on [0, 1]

o The first example is really our friend C™*! in disguise, since the polynomial ogz° +
012+ - 4 @, 2" can be identified with the (n 4 1)-vector (ag, a1, . . . , a,)T insuch
a way that sums and scalar-vector products in the two spaces correspond.

Any member of P, can be written as a linear combination of the monomials 2°,
zl,..., 2", and no fewer will do the job. We will call such a set of vectors a basis for
the space in question (see §3.1).

¢ The second example cannot be identified with C™ for any n. It is an example of an
infinite-dimensional vector space. However, any element of P, can be written as the
finite sum of monomials.

¢ The third example, beloved of approximation theorists, is also an infinite-dimen-
sional space. But there is no countably infinite set of elements such that any member
C[0, 1] can be written as a finite linear combination of elements of the set. The study
of such spaces belongs to the realm of functional analysis.

Given rich spaces like C[0, 1], little spaces like R may seem insignificant. How-
ever, many numerical algorithms for continuous problems begin by reducing the prob-
lem to a corresponding finite-dimensional problem. For example, approximating a
member of C[0, 1] by polynomials of bounded degree immediately places us in a finite-
dimensional setting. For this reason vectors and matrices are important in almost every
branch of numerical analysis.
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1.4. NOTES AND REFERENCES
Representing vectors and scalars

There are many conventions for representing vectors and matrices. A common one is
to represent vectors by bold lower-case letters and their components by the same let-
ter subscripted and in ordinary type. It has the advantage that bold Greek letters can
be used as vectors while their components can be represented by the corresponding
nonbold letters (so that probabilists can have their 7w and eat it too). It has the dis-
advantage that it does not combine well with handwriting— on a blackboard for ex-
ample. An alternative, popularized among numerical analysts by Householder [189],
is to use lower-case Latin letters for vectors and lower-case Greek letters exclusively
for scalars. The scheme used here is a hybrid, in which the status of lower-case Latin
letters is ambiguous but always resolvable from context.

The scalar product

The scalar-vector product should not be confused with the scalar product of two vec-
tors z and y (also known as the inner product or dot product). See (2.9).

Function spaces

The space C[0, 1] is a distinguished member of a class of infinite-dimensional spaces
called function spaces. The study of these spaces is called functional analysis. The
lack of a basis in the usual sense is resolved by introducing a norm in which the space
is closed. For example, the usual norm for C[0, 1] is defined by

[/l = max |f(z)].

z€[0,1]

Convergence in this norm corresponds to uniform convergence on [0, 1], which pre-
serves continuity. A basis for a function space is any linearly independent set such
that any element of the space can be approximated arbitrarily closely in the norm by
a finite linear combination of the basis elements. For example, since any continuous
function in [0, 1] can be uniformly approximated to any accuracy by a polynomial of
sufficiently high degree — this is the Weierstrass approximation theorem [89, §6.1] —
the polynomials form a basis for C[0, 1]. For introductions to functional analysis see
[72, 202].

2. MATRICES

When asked whether a programming language supports matrices, many people will
think of two-dimensional arrays and respond, “Yes.” Yet matrices are more than two-
dimensional arrays - they are arrays with operations. It is the operations that cause
matrices to feature so prominently in science and engineering.
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2.1. MATRICES

Matrices and the matrix-vector product arise naturally in the study of systems of equa-
tions. An mXn system of linear equations

a11%1 + @122 + -+ + a1nty = by
2121 + @22%2 + -+ + agnZn = by @.1)

am1Z1 + @m2T2 + - + ATy = by
can be written compactly in the form

n
Y ayzi=bi, i=1,2,...,m. (22)
i=1

However, matrices provide an even more compact representation. If we define arrays
A, z, and b by

a;1 a2 ‘- G 3} by

a1 Q22 - a2y T2 by
A= . . . y T = . ’ and b= . )

Aml Gm2 *** Omn Tn bm

and define the product Az by the left-hand side of (2.2), then (2.1) is equivalent to
Az = b,

Nothing could be simpler.
With the above example in mind, we make the following definition.

Definition 2.1. An mXxn MATRIX A is an array of scalars of the form

a1l aiz2 - Qin

a1 G2 -+ Q2p
A=

Gm1 Gm2 *°° Qmn

The scalars a;; are called the ELEMENTS of A. The set of mXn matrices with real
elements is written R™*™. The set of m X n matrices with real or complex components
is written C™*",

The indices ¢ and j of the elements a;; of a matrix are called respectively the row
index and the column index. Typically row and column indices start at one and work
their way up by increments of one. In some applications, however, matrices begin with
zero or even negative indices.
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Matrices will be denoted by upper-case Latin and Greek letters. We will observe
the usual correspondences between the letter denoting a matrix and the letter denoting
its elements (see Figure 1.3).

We will make no distinction between a 1x1 matrix a 1-vector and a scalar and
likewise for nx1 matrices and n-vectors. A 1xn matrix will be called an n-dimen-
sional row vector.

2.2. SOME SPECIAL MATRICES

This subsection is devoted to the taxonomy of matrices. In a rough sense the division
of matrices has two aspects. First, there are commonly occurring matrices that inter-
act with matrix operations in special ways. Second, there are matrices whose nonzero
elements have certain patterns. We will treat each in turn.

Familiar characters

¢ Void matrices. A void matrix is a matrix with no rows or no columns (or both).
Void matrices are convenient place holders in degenerate matrix partitions (see §2.4).

¢ Square matrices. An nxn matrix A is called a square matrix. We also say that A
is of order n.

¢ The zero matrix. A matrix whose elements are zero is called a zero matrix, written
0.

¢ Identity matrices. The matrix [, of order n defined by
s = 1 ifi=y,
YTl 0 ifi#g
is called the identity matrix. The ith column of the identity matrix is the :th unit vector
e;: symbolically,
In=(e; ez -+ ey). 2.3)

When context makes the order clear, we will drop the subscript and simply write I for
the identity matrix.

¢ Permutation matrices. Let Z = {iy, ¢3,...,i,} be a permutation of the integers
1,2,...,n. The matrix
Pr=(e e, - ei,)

is called a permutation matrix. Thus a permutation matrix is just an identity with its
columns permuted. Permutation matrices can be used to reposition rows and columns
of matrices (see §2.5).

The permutation obtained by exchanging columns ¢ and j of the identity matrix
is called the (3, j)-exchange matrix. Exchange matrices are used to interchange rows
and columns of other matrices.
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Patterned matrices

An important theme in matrix computations is the reduction of matrices to ones with
special properties, properties that make the problem at hand easy to solve. Often the
property in question concerns the distribution of zero and nonzero elements in the ma-
trix. Although there are many possible distributions, a few are ubiquitous, and we list
them here.

¢ Diagonal matrices. A square matrix D is diagonal if
i ;é j = 5,']' =0.

In other words, a matrix is diagonal if its off-diagonal elements are zero. To specify a
diagonal matrix with diagonal elements &, 62, ... , 6,, we write

D= diag(él,ég, ey 6n)

If a matrix is called D, A, or ¥ in this work there is a good chance it is diagonal.

The following convention, due to J. H. Wilkinson, is useful in describing patterns
of zeros in a matrix. The symbol 0 stands for a zero element. The symbol X stands for
an element that may or may not be zero (but probably is not). In this notation a 55
diagonal matrix can be represented as follows:

X 00O0O
0 X0 00O
0 00X 0G0
0 00 X O
0 0 00X

We will call such a representation a Wilkinson diagram.

An extension of this convention is useful when more than one matrix is in play.
Here 0 stands for a zero element, while any lower-case letter stands for a potential
nonzero. In this notation, a diagonal matrix might be written

d 00 00
0 4000
0 0d 00O
0 00 dO0
0 000 d

¢ Triangular matrices. A square matrix U is upper triangular if

1>] = u; =0. 2.4)
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In other words, an upper triangular matrix has the form

X X X X X
0 X X X X
0 0 X X X
0 00 XX
0 000X

Upper triangular matrices are often called U or R.
A square matrix L is lower triangular if

i<j = £;=0. 2.5)

A lower triangular matrix has the form

b4 D4 pd B4 M
MM MXMO
™M OO
M O oo
< O O OO0

Lower triangular matrices tend to be called L.

A matrix does not have to be square to satisfy (2.4) or (2.5). An mXn matrix with
m < n that satisfies (2.4) is upper trapezoidal. If m < n and it satisfies (2.5) it is
lower trapezoidal. Why these matrices are called trapezoidal can be seen from their
Wilkinson diagrams.

A triangular matrix is strictly triangular if its diagonal elements are zero. If its di-
agonal elements are one, it is unit triangular. The same terminology applies to trape-
zoidal matrices.

¢ Cross diagonal and triangular matrices. A matrix is cross diagonal, cross upper
triangular, or cross lower triangular if it is (respectively) of the form

00D O X X X X X X 0 00O0 X
000ZX0D X X X X o0 000X X
0o 0oXxo00}, |xxxo00f, oo |[ODOZXZXZX
0 X000 X X000 0 X X X X
X 00D0OD X 0000 X X X X X

These cross matrices are obtained from their more placid relatives by reversing the
orders of their rows and columns. We will call any matrix form obtained in this way
a cross form.

¢ Hessenberg matrices. A matrix A is upper Hessenberg if

1> j+1 = a;; =0.



12 CHAPTER 1. MATRICES, ALGEBRA, AND ANALYSIS

An upper Hessenberg matrix is zero below its first subdiagonal:

O O QO M M
O O >4 »d
O >4 >4 P4 M4
Pd o pd P P4 P4
>3 B4 P4 D4 B4

A lower Hessenberg matrix is zero above its first superdiagonal:

LT B
P4 b4 4O
[ e e - i =]
o< OO
M b D OO

¢ Band matrices. A matrix is tridiagonal if it is both lower and upper Hessenberg:

O O O < >
O O > b4 >4
O > »4 4 O
™ < O o
< < O o o

It acquires its name from the fact that it consists of three diagonals: a superdiagonal,
a main diagonal, and a subdiagonal.

A matrix is lower bidiagonal if it is lower triangular and tridiagonal; that is, if it
has the form

X 00DOGO O
XX 00O
0 X X 00
0 00X X0
0 0D X X

An upper bidiagonal matrix is both upper triangular and tridiagonal.
Diagonal, tridiagonal, and bidiagonal matrices are examples of band matrices. A
matrix B is a band matrix with lower band width p and upper band width q if

i>j+p = b;=0 and i<j-—q = b;;=0. (2.6)

The band width of B is p+q+1.

In terms of diagonals, a band matrix with lower band width p and upper band width
g has p subdiagonals below the principal diagonal and ¢ superdiagonals above the prin-
cipal diagonal. The band width is the total number of diagonals.
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2.3. OPERATIONS WITH MATRICES

In this subsection we will introduce the matrix operations and functions that turn ma-
trices from lifeless arrays into vivacious participants in an algebra of their own.

The scalar-matrix product and the matrix sum

The scalar-matrix product and the matrix sum are defined in the same way as their
vector analogues.

Definition 2.2. Let A be ascalarand A and B be m xXn matrices. The SCALAR-MATRIX
PRODUCT of A and A is the matrix

/\an /\a12 s /\aln
M = /\€le )\(1.22 <ro Aagn
A1 A2 -+ Amn

The suM of A and B is the matrix

a11+bn a2+biz - ain 4 big

a1 +ban  ax+by - a4 by
A+ B = .

Gm1 + bml am2 + bm2 et Gpp t bmn

The matrix sum is defined only for matrices having the same dimensions. Such
matrices are said to be conformable with respect to summation, or when the context is
clear simply conformable. Obviously the matrix sum is associative [i.e., (A + B) +
C = A+ (B + C)] and commutative [ie., A + B = B + A]. The identity for
summation is the conforming zero matrix.

These definitions make R™*" a real mn-dimensional vector space. Likewise the
space C™*" is a complex mn-dimensional vector space. Thus any general results
about real and complex vector spaces hold for R™*™ and C™*".

The matrix product

The matrix-matrix product is a natural generalization of the matrix-vector product de-
fined by (2.1). One motivation for its definition is the following. Suppose we have
two linear systems

Az =b and By=r=.

Then y and b are related by a linear system C'y = b, where the coefficients matrix
can be obtained by substituting the scalar formulas for the components of x = By into
the scalar form of the equation Az = b. It turns out that

C,'J' = Z a,'kbkj. (2-7)
k



14 CHAPTER 1. MATRICES, ALGEBRA, AND ANALYSIS

On the other hand, if we symbolically substitute By for z in the first equation we get
the equation

ABy =z.

Thus, the matrix product should satisfy AB = C, where the elements of C are given
by (2.7). These considerations lead to the following definition.

Definition 2.3. Let A be an {xm matrix and B be a mxn matrix. The product of A
and B is the £ xn matrix C whose elements are

m
cijzzaikbkj, i:l,...,f,j:l,...,n.
k=1

For the product A B to be defined the number of columns of A must be equal to the
number of rows of B. In this case we say that A and B are conformable with respect to
multiplication. The product has the same number of rows as A and the same number
of columns as B.

It is easily verified that if AcC™*" then

I,.A= Al = A.

Thus the identity matrix is an identity for matrix multiplication.

The matrix product is associative[i.e., (AB)C = A(BC)]}and distributes over the
matrix sum [i.e., A(B+ C) = AB + AC]. Butit is not commutative. Commutativity
can fail in three ways. First, if £ # = in the above definition, the product B A is not
defined. Second, if £ = n but m # n, then AB is nxn but BA is mxm, and the
two products are of different orders. Thus we can have commutativity only if A and
B are square and of the same order. But even here commutativity can fail, as almost
any randomly chosen pair of matrices will show. For example,

(0 8)G =0 &)#(5%)=63G )

The failure to respect the noncommutativity of matrix products accounts for the bulk
of mistakes made by people encountering matrices for the first time.

Since we have agreed to make no distinction between vectors and matrices with a
single column, the above definition also defines the matrix-vector product Az, which
of course reduces to (2.1).

The transpose and symmetry

The final operation switches the rows and column of a matrix.

Definition 2.4. Let A be an mxn matrix. The TRANSPOSE of A is the nXm matrix
api1 az1 *°+ QGmi

Q12 Q22 <+ Qmp2
AT = .

Gin G2n *°* Gmn
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The CONJUGATE TRANSPOSE of A is the matrix

app @21 e Gm

G132 Qg2 - Gy
AH =

al'n. ‘_1277. e amn

By our conventions, vectors inherit the above definition of transpose and conjugate
transpose. The transpose 2T of an n-vector z is an n-dimensional row vector.

The transpose and the conjugate transpose of a real matrix are the same. For a
complex matrix they are different, and the difference is significant. For example, the
number

etle = B1ay + Zoxo + o+ Tnp = |72 4 |22 4 -+ |20)?

is anonnegative number that is the natural generalization of the square of the Euclidean
length of a 3-vector. The number z Tz has no such interpretation for complex vectors,
since it can be negative, complex, or even zero for nonzero z. For this reason, the sim-
ple transpose is used with complex vectors and matrices only in special applications.
The transpose and conjugate transpose interact nicely with matrix addition and
multiplication. The proof of the following theorem is left as an exercise.

Theorem 2.5. Let A and B be matrices. If A + B is defined, then
(A+ B)T = AT + BT,

If AB is defined, then
(AB)T = BT AT,

The same holds for the conjugate transpose.

Matrices that are invariant under transposition occur very frequently in applica-
tions.

Definition 2.6. A matrix A of order n is SYMMETRIC if A = AT, It is HERMITIAN if
A = AU, The matrix A is SKEw SYMMETRIC if A = —AT and SKEwW HERMITIAN if
A=-AH

Symmetric matrices are so called because they are symmetric about their diago-
nals:

@i; = Qg
Hermitian matrices satisfy

aij = Qji,
from which it immediately follows that the diagonal elements of a Hermitian matrix
are real. The diagonals of a real skew symmetric matrix are zero, and the diagonals of

a skew Hermitian matrix are pure imaginary. Any real symmetric matrix is Hermitian,
but a complex symmetric matrix is not.
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The trace and the determinant

In addition to the four matrix operations defined above, we mention two important
functions of a square matrix. The first is little more than notational shorthand.

Definition 2.7. Let A be of order n. The TRACE of A is the number
trace(A) = @11 + ag2 + -+ + Gpa-

The second function requires a little preparation. Let Z = (41,42,...,i,) bea

permutation of the integers {1,2,...,n}. The function
n-1 n
o) =T] II Ge-i)
j=1 k=j+1

is clearly nonzero since it is the product of differences of distinct integers. Thus we
can define

. 1 ife(Z) >0,
sign(Z) = { -1 ;fi(z) <0.

With this notation, we can make the following definition.

Definition 2.8. The DETERMINANT of A is the number
det(A)= > sign[(i1,d2,. .. ,4n)]a1i,02i - * Gy,
(il )iQ!'“ 7£n)
where (41,42, ... ,i,) ranges over all permutations of the integers 1,2, ..., n.
The determinant has had a long and honorable history in the theory of matrices.
It also appears as a volume element in multidimensional integrals. However, it is not
much used in the derivation or analysis of matrix algorithms. For that reason, we will

not develop its theory here. Instead we will list some of the properties that will be used
later.

Theorem 2.9. The determinant has the following properties (here we introduce ter-
minology that will be defined later).

det(AH) = det_(A)

If A is of order n, then det(uA) = p™(A).

det(AB) = det(A) det(B).

det(A™1) = det(A)~L.

If A is block triangular with diagonal blocks Aq1, A2z, - .. , Akk, then

det(A) = det(Au) det(Agz) .o 'det(Akk).

A e

6. det(A) is the product of the eigenvalues of A.
7. |det(A)| is the product of the singular values of A. (See §4.3.)
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2.4. SUBMATRICES AND PARTITIONING

One of the most powerful tools in matrix algebra is the ability to break a matrix into
parts larger than scalars and express the basic matrix operations in terms of these parts.
The parts are called submatrices, and the act of breaking up a matrix into submatrices
is called partitioning.

Submatrices

A submatrix of a matrix A is a matrix formed from the intersection of sets of rows and
columns of A. For example, if A is a 4 x4 matrix, the matrices

(022 024) and (022 023)
a32 Q34 32 Q33
are submatrices of A. The second matrix is called a contiguous submatrix because
it is in the intersection of contiguous rows and columns; that is, its elements form a
connected cluster in the original matrix. A matrix can be partitioned in many ways
into contiguous submatrices. The power of such partitionings is that matrix operations
may be used in the interior of the matrix itself.

We begin by defining the notion of a submatrix.

Definition 2.10. Let AcC™*™ matrix. Let1 < i1 < i3 < --- < 4, < m and
1 < j1 < j2 <-++< jq < n. Then the matrix

vy  Qiggo " Qiyg,

B= a'iz:jl ai?jz te aiz.’jq

Qipi1  Qipjs " Qigjy
consisting of the elements in the intersectionofrows 1 < 4; < i3 < -+- < i, <M
and columns1 < j; < jp < --- < jg < n is a SUBMATRIX A. The COMPLE-

MENTARY SUBMATRIX is the submatrix corresponding to the complements of the sets
{i1,42, ... ,4p} and {j1, 72, ... ,Jq}. f we have iy = x+1(k=1,...,p—1) and
Je41 = Jxk+1(k =1,...,9-1), then B is a CONTIGUOUS SUBMATRIX. If p = q and
it = Jx(k=1,...,p), then B is aPRINCIPAL SUBMATRIX. Ifi, = p and j, = g, then
B is a LEADING SUBMATRIX. If, on the other hand, iy = m—p+1 and j; = n—q+1,
then B is a TRAILING SUBMATRIX.

Thus a principal submatrix is one formed from the same rows and columns. A
leading submatrix is a submatrix in the northwest corner of A. A trailing submatrix
lies in the southeast comer. For example, in the following Wilkinson diagram

£ L { z = x
£ L £ z z =z
L ¢ ¢t t t
r z z t t t
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the 3x 3 matrix whose elements are £ is a leading principal submatrix and the 2x3
submatrix whose element are £ is a trailing submatrix.

Partitions
We begin with a definition.

Definition 2.11. Let A€C™*™. A PARTITIONING of A is a representation of A in the
form

Ay A e Ay
3 An Ap -0 Ay
Apt Apz -+ Apg

where A;; €C™ X" are contiguous submatrices, mq +++++m, = m,andny +- -+
ng = n. The elements A;; of the partition are called BLOCKS.

By this definition The blocks in any one column must all have the same number
of columns. Similarly, the blocks in any one row must have the same number of rows.
A matrix can be partitioned in many ways. We will write

A=(a1 ag < -- an),

where a; is the jth column of A. In this case A is said to be partitioned by columns.
[We slipped in a partition by columns in (2.3).] A matrix can also be partitioned by
rows:

where a is the ith row of A. Again and again we will encounter the 2x 2 partition
An A12)
A=
<A21 Ag)’

particularly in the form where A, is a scalar:

_ {2 a};
A= ;
a1 Az
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Northwest indexing

The indexing conventions we have used here are natural enough when the concern is
with the partition itself. However, it can lead to conflicts of notation when it comes to
describing matrix algorithms. For example, if A is of order » and in the partition

A= (A%l 012)
a1 @22
the submatrix A;; is of order n—1, then the element we have designated by as; is
actually the (n,n)-element of A and must be written as such in any algorithm. An
alternate convention that avoids this problem is to index the blocks of a partition by

the position of the element in the northwest corner of the blocks. With this convention
the above matrix becomes

a
A — ( ’]1:.‘1 ln) .
4,y Onn
We will call this convention northwest indexing and say that the partition has been
indexed to the northwest.

Partitioning and matrix operations

The power of matrix partitioning lies in the fact that partitions interact nicely with ma-
trix operations. For example, if

Ay A12)
A=
(AZI Az
By 312)
B =
(321 Bay )’

_ ({AnBu + A12Bay A By + A1z By
AB = s

and

then

A2 Bi1+ A22Byy A1 Bia+ A By

provided that the dimensions of the partitions allow the indicated products and sums.
In other words, the partitioned product is formed by treating the submatrices as scalars
and performing an ordinary multiplication of 2x2 matrices. This idea generalizes.
The proof of the following theorem is left as an exercise.

Theorem 2.12. Let
A Ay - Ay

7 R

Apl Ap? qu
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and
By By -+ By
By By - By,
B = . . A
Brl Br2 e Brs
where A;;€C**% and B;;€C™*™. Then
Agl A%l A%l
AT = Ay Az - Ap
- » . . y
T 4T T
Alq A2q T qu

and the same equation holds with the transpose replaced by the conjugate transpose.
Ifp=r,q=ski=mand{; = n;, then

Aj1+ By A+ Big -+ A+ By
A+ B = Ag1+ By A+ By --- Ay + By,
Apl + Bpl Ap? + Bp2 e qu + qu
Ifg = r and £; = m;, then
i A1iBa YL, AuBi; -+ XL, AuBis
ap = | = AP Xl AaBa - Yl AniBis
Z?=1 ApiBil Z?:] APiBiz e E?:l APiBiS

The restrictions on the dimensions of the matrices in the above theorem insure con-
formity. The general principal is to treat the submatrices as scalars and perform the
operations. However, in transposition the individual submatrices must also be trans-
posed. And in multiplying partitioned matrices, keep in mind that the matrix product
is not commutative.

Block forms

The various forms of matrices — diagonal matrices, triangular matrices, etc. —have
block analogues. For example, a matrix A is block upper triangular if it can be parti-
tioned in the form

Ay A2 Az oo Ainm
0 Ay Ay - Ajp

A=] 0 0 Ay - A |, (2.8)
0 0 0 - A,

where the diagonal blocks A;; are square.
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2.5. SOME ELEMENTARY CONSTRUCTIONS

The following is a potpourri of elementary constructions that will appear throughout
this work. They are good illustrations of the ideas introduced above.

Inner products

Given two n-vectors z and y, the inner product of z and y is the scalar
v = g121 + P21 + - + na (2.9)

When z and y are real 3-vectors of length one, the inner product is the cosine of the
angle between z and y. This observation provides one way of extending the definition
of angle to more general settings [see (4.18) and Definition 4.35].

The inner product is also known as the scalar product or the dot product.

Outer products

Given an n-vector 2 and an m-vector y, the outer product of z and y is the mxn
matrix

1 Y2 o Tl

H T2 T2Y2 v Taln
Yy = . . .

Tt Tm¥P2 - TmUn

The outer product is a special case of a full-rank factorization to be treated later (see
Theorem 3.13).

Linear combinations

The linear combination

Y=oy + oy + -+ 0Tk

has a useful matrix representation. Let X = (27 z3 --- zj) and form a vector a =
T . . . . ,
(ay a3 +-+ ag)” from the coefficients of the linear transformation. Then it is easily
verified that
y=Xa.

In other words:

The product of a matrix and a vector is a linear combination of the columns of
the matrix. The coefficients of the linear combination are the components of the
vector.
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If A is a kx{ matrix partitioned by columns, then
XA=X(ay a2 -+ ap) = (Xay Xag --- Xay).
Thus:

The columns of X A are linear combinations of the columns of X. The coeffi-
cients of the linear combination for the jth column X a are the elements of the
Jjth column of A.

Column and row scaling
Let AcC™*", and let

D = diag(6y,82,...,68,).
If A is partitioned by columns,

AD = (6,41 6203 -+ bpay).
In other words:

The columns of the product AD are the original columns scaled by the corre-
sponding diagonal elements of D.

Likewise:

The rows of D A are the original rows scaled by the diagonal elements of D.

Permuting rows and columns
Let AcC™*". Then Ae; is easily seen to be the jth column of A. It follows that if

P=(ej e, - ej,)
is a permutation matrix, then
AP = (ajl Gjp ** ajn)'
In other words:

Postmultiplying a matrix by a permutation matrix permutes the columns of the
matrix into the order of the permutation.

Likewise:

Premultiplying a matrix by the transpose of a permutation matrix permutes the
rows of the matrix into the order of the permutation.
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Undoing a permutation
It is easy to see that:

If P is a permutation matrix, then PTp=ppPT -1

Consequently, having interchanged columns by computing B = AP, we can undo the
interchanges by computing A = BPT.

Crossing a matrix
Let F cR™*™ be defined by

F = (en €p-1 *** el). (210)

Then it is easily verified that if T is a triangular matrix then £7T and T'F are cross
triangular. More generally, ¥z is the vector obtained by reversing the order of the
components of z. We will call F the cross operator.

Extracting and inserting submatrices

Sometimes it is necessary to have an explicit formula for a submatrix of a given matrix
A.

Let AcC™* " andletl <43 <ig<--<ip<mandl < j1 <jp <+ <

Jq < n. Let
F= (e,'1 €, +-- e,'p) and F = (e]'1 €, +-° ejq).
Then ET AF is the submatrix in the intersection of rows {iy, ... ,i,} and col-

umns {j1, ..., jq} of A. Moreover, if BeCP*?, then forming A + EBFT re-
places the submatrix EYAF with EYAF + B.

2.6. LU DECOMPOSITIONS

A matrix decomposition is a factorization of a matrix into a product of simpler ma-
trices. Decompositions are useful in matrix computations because they can simplify
the solution of a problem. For example, if a matrix can be factored into the product
of lower and upper triangular matrices, the solution of a linear system involving that
matrix reduces to the solution of two triangular systems. The existence of such an
LU decomposition is the point of the following theorem.

Theorem 2.13 (Lagrange, Gauss, Jacobi). Let A # 0 be an mXn matrix. Then
there are permutation matrices P and §) and an integer k < min{m, n} such that

PTAQ = LU, (2.11)

where
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1. L is an mx k unit lower trapezoidal matrix,

2. U is akxn upper trapezoidal matrix with nonzero diagonal ele- 2.12)
ments.

This factorization is called a PIvOTED LU DECOMPOSITION.

Proof. The proof is by induction on m, i.e., the number of rows in A.

For m = 1, let ay; be a nonzero element of A. Let P = 1, and let @ be the
permutation obtained by interchanging columns one and j of the identity matrix. Then
the (1, 1)-element of PT AQ is nonzero. Hence if we take L = 1and U = PTAQ,
then L and U satisfy (2.11) and (2.12).

Now let m > 1. Let P and {) be permutations such that the (1, 1)-element of
PT AQ is nonzero. Partition

s A (o dT
PAQ_(C B),

and let

e=( ! ) and T = (a d7).

a~le

Then it is easily verified that

T\ 0
PrAQ — tu _<0 B—a‘lch)'

IfB—oaledt =0, thenwemaytake L = £, U = «T, P = P,and Q = Q.
Otherwise by the induction hypothesis, the matrix B — a~!cd™ has an LU decompo-
sition

PY(B-a'ed™)Q = LU. (2.13)

If we set

~ (1 0 ~ (1 0

1 0 a dTQ
L—<a‘1PTc Z) and U—<O (7)’

then P, @, L, and U satisfy (2.11) and (2.12). m

Three comments on this theorem.

and

e Up to the permutations P and @, the LU decomposition is unique. We will defer
the proof until Chapter 3 (Theorem 1.5, Chapter 3), which is devoted to the LU de-
composition and its variants.
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¢ The proof of Theorem 2.13 is constructive in that it presents an algorithm for com-
puting LU decompositions. Specifically, interchange rows and columns of A so that its
(1, 1)-element is nonzero. Then with A partitioned as in (2.13), form B — o~ cd” and
apply the procedure just sketched recursively. This process is called Gaussian elimi-
nation.

¢ The integer k is unique, but the proof does not establish this fact. For a proof see
Theorem 3.13.

2.7. HOMOGENEOUS EQUATIONS
A central problem in matrix computations is to solve the linear system

Az =b

or, when A has more rows than columns, at least compute an z such that Az is a good
approximation to b. In either case the solution will be unique if and only if the homo-
geneous equation or system

Av=0 2.14)

has only the solution v = 0. Forif Av = 0 withv # 0, then A(z + v) = Az, and
z + v solves the problem whenever x does. Conversely if Az = Ay forz # y, the
vector v = ¢ — y is a nontrivial solution of (2.14).

If A € C™*™ and m > n, the homogeneous equation (2.14) has a nontrivial so-
lution only in special circumstances {see (3.14.1)]. If m < n, the system (2.14) is said
to be underdetermined. Because its right-hand side is zero it always has a nontrivial
solution, as the proof of following theorem shows.

Theorem 2.14. An underdetermined homogeneous system has a nontrivial solution.

Proof. If A = 0, any nonzero vector v is a solution of (2.14). Otherwise let PTAQ =
LU be an LU decomposition of A. Suppose that Uw = 0, where w # 0. Then with
v = Jw, we have

Av=AQw = PLUw = 0.

Thus the problem becomes one of finding a nontrivial solution of the system Uw = 0.
Because U is upper trapezoidal, we can write it in the form

U _ v uT
—\0 U.J)°
Moreover, v # 0. By an obvious induction step (we leave the base case as an exercise),

the system U, w, = 0 has a nontrivial solution. Let wT = (—v~'uTw, w]). Then

v ul v‘luTw* —uTw* + uTw*
vo=(5 1) (" )= (R 0
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2.8. NOTES AND REFERENCES

For general references on matrices and their applications see the addenda to this chap-
ter.

Indexing conventions

The reason matrix indices begin at one in this work and in most books and articles
on matrix computations is that they all treat matrix algorithms independently of their
applications. Scientists and engineers, on the other hand, have no difficulty coming
up with unusual indexing schemes to match their applications. For example, queue-
ing theorists, whose queues can be empty, generally start their matrices with a (0, 0)-
element.

Hyphens and other considerations

Adjectives and adverbs tend to pile up to the left of the word “matrix”; e.g., upper tri-
angular matrix. Strict orthographic convention would have us write “upper-triangular
matrix,” something nobody does since there is no such thing as an upper matrix. In
principle, a block upper triangular matrix could be simply a partitioned upper trian-
gular matrix, but by convention a block upper triangular matrix has the form ¢2.8).
This convention breaks down when there is more than one structure to block. Anyone
writing about block Toeplitz Hessenberg matrices should picture it in a display.

Nomenclature for triangular matrices

The conventional notation for upper and lower triangular matrices comes from English
and German. The use of L and U to denote lower and upper triangular matrices is clear
enough. But a German tradition calls these matrices left and right triangular. Hence
“L” stands also for the German links meaning left. The use of “R” to mean an upper
triangular matrix comes from the German rechts meaning right.

Complex symmetric matrices

Real symmetric and Hermitian matrices have nice properties that make them a numer-
ical pleasure to work with. Complex symmetric matrices are not as easy to handle.
Unfortunately, they arise in real life applications — from the numerical treatment of
the Helmholtz equation, for example.

Determinants

Most linear algebra texts treat determinants in varying degrees. For ahistorical survey,
Muir’s Theory of Determinants in the Historical Order of Development [238] is unsur-
passed. His shorter Treatise on the Theory of Determinants [237] contains everything
you wanted to know about determinants — and then some.
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Partitioned matrices

Partitioning is a powerful tool for proving theorems and deriving algorithms. A typical
example is our derivation of the LU decomposition. An early example is Schur’s proof
that any matrix is unitarily similar to a triangular matrix [274, 190g]. However, the
technique came to be widely used only in the last half of this century. It is instructive
to compare the treatment of matrix algorithms in Dwyer’s Linear Computations[112,
1951], which looks backward to the days of hand computation, with the treatment in
Householder’s Principles of Numerical Analysis [187, 1953], which looks forward to
digital computers.

The northwest indexing convention is, I think, new. It has the additional advantage
that if the dimensions of a partitioned matrix are known, the dimensions of its blocks
can be determined by inspection.

The LU decomposition

The LU decomposition was originally derived as a decomposition of quadratic and
bilinear forms. Lagrange, in the very first paper in his collected works [205, 1759],
derives the algorithm we call Gaussian elimination, using it to find out if a quadratic
form is positive definite. His purpose was to determine whether a stationary point of a
function was actually a minimum. Lagrange’s work does not seem to have influenced
his successors.

The definitive treatment of decomposition is due to Gauss, who introduced it in
his treatment of the motion of heavenly bodies [130, 1809] as a device for determin-
ing the precision of least squares estimates and a year after [131, 1810] as a numerical
technique for solving the normal equations. He later [134, 1823] described the algo-
rithm as follows. Here (Q is a residual sum of squares which depends on the unknown
parameters z, ¥, 2, etc.

Specifically, the function §2 can be reduced to the form

uouo ul u/ uu uu umum

ottt + etc. + M,

CII Dlll

in which the divisors A%, B, C", D", etc. are constants and u°, u’, u”, u'", etc.
are linear functions of z, y, z, etc. However, the second function v’ is indepen-
dent of z; the third u” is independent of « and y; the fourth u’” is independent
of , y, and z, and so on. The last function w{"=1) depends only on the last of
the unknowns z, y, z, etc. Moreover, the coefficients A°, B', C", etc. multiply
z, v, 2, etc. inu®, ', u”, etc. respectively. Given this reduction, we may easily
find z, y, z, etc. in reverse order after settingu® = 0, v’ = 0, v” = 0, u™ = 0,
etc.

The relation to the LU decomposition is that the coefficients of Gauss’s z, v, z, etc. in
the functions u°, u’, u”, etc. are proportional to the rows of . For more details see
[306].
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Both Lagrange and Gauss worked with symmetric matrices. The extension to gen-
eral matrices is due to Jacobi [191, 1857, posthumous], who reduced a bilinear form
in the spirit of Lagrange and Gauss.

3. LINEAR ALGEBRA

The vector spaces R” and C™ have an algebraic structure and an analytic structure.
The latter is inherited from the analytic properties of real and complex numbers and
will be treated in §4, where norms and limits are introduced. The algebraic structure is
common to all finite-dimensional vector spaces, and its study is called linear algebra.
The purpose of this section is to develop the fundamentals of linear algebra. For defi-
niteness, we will confine ourselves to R", but, with the exception of (3.11), the results
hold for any finite-dimensional vector space.

3.1. SUBSPACES, LINEAR INDEPENDENCE, AND BASES

A subspace is anonempty set of vectors that is closed under addition and multiplication
by ascalar. InR™ a basic fact about subspaces is that they can be represented by a finite
set of vectors called a basis. In this subsection we will show how this is done.

Subspaces

Any linear combination of vectors in a vector space remains in that vector space; i.e.,
vector spaces are closed under linear combinations. Subsets of a vector space may or
may not have this property. For example, the usual (z, y)-plane in R3, defined by

{z = ae; + fer: a, BeR},
is closed under linear combinations. On the other hand, the octant
{1132 £ 20,i= 1,273}

is not closed under linear combinations, since the difference of two vectors with non-
negative components may have negative components. More subtly, R" regarded as
a subset of C" is not closed under linear combinations, since the product of a real
nonzero vector and a complex scalar has complex components.

Subsets closed under linear combinations have a name.

Definition 3.1. A nonempty subset ¥ C R" is a SUBSPACE if
T1,L2,... ,2k€X = 121 + azx9 + -+ -+ aprr€X
for any scalars ay, o3, . .. , 0.

The first thing to note about subspaces is that they are themselves vector spaces.
Thus the general results of linear algebra apply equally to subspaces and the spaces
that contain them.
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Subspaces have an algebra of their own. The proof of the following theorem is
left as an exercise.

Theorem 3.2. Let & and Y be subspaces of R™. Then the following are subspaces.

1. {0}
2. XnY={z: z€X and ze)}
3. X+Y={z+vy: zcX and yc)}

Since for any subspace X’ we have {0} + X = X', the subspace consisting of only
the zero vector acts as an additive identity. If we regard the operation of intersection
as a sort of multiplication, then {0} is an annihilator under multiplication, as it should
be.

If X and Y are subspaces of R® and X N Y = {0}, we say that the subspaces are
disjoint. Note that disjoint subspaces are not disjoint sets, since they both contain the
zero vector. The sum of disjoint subspaces A" and Y is written ' @ ) and is called the
direct sum of A’ and ).

The set of all linear combinations of a set of vectors A’ is easily seen to be a sub-
space. Hence the following definition.

Definition 3.3. Let X' C R™. The set of all linear combinations of members of X is
a subspace Y called the sPAN of X'. We write

Y = span(X).
The space spanned by the vectors z1, T2, . . . , Tk is also writtenspan(zy, 23, . .. , Tk).
In particular,
R™ = span(ej,ez,...,e,), (€R))

since for any z€R™
T =f1e; +&ex+ -+ Enep. (3.2)

Linear independence

We have just observed that the unit vectors span R™. Moreover, no proper subset of
the unit vectors spans R". For if one of the unit vectors is missing from (3.2), the
corresponding component of z is zero. A minimal spanning set such as the unit vectors
is called a basis. Before we begin our treatment of bases, we introduce a far reaching
definition.

Definition 3.4. The vectors 21, x3, ..., £} are LINEARLY INDEPENDENT if
ajz1t ozttt opzrr=0 = oy =ay=---=a; =0.

Otherwise they are LINEARLY DEPENDENT.
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Let us consider the implications of this definition.

¢ In plain words the definition says that a set of vectors is linearly independent if
and only if no nontrivial linear combination of members of the set is zero. In terms of
matrices, the columns of X = (zy z2 -+ z1) are linearly independent if and only if

Xa=0 = a=0.

This matrix formulation of linear independence will be widely used in what follows.

¢ Any set containing the zero vector is linearly dependent. In particular, a set con-
sisting of a single vector z is independent if and only if 2 # 0.

o If 2, 29, ..., 2 are linearly dependent, then one of them can be expressed as a
linear combination of the others. For there are constants o;, not all zero, such that

0171 + 022 + - -+ ok = 0. 3.3)
If, say, a; # 0, then we may solve (3.3) for z; in the form ¢; = o' ¥,; a;z;. In
particular, if z4, 5, . . . , zx— are independent, then j can be taken equal to k. For if
o = 0,1in (3.3), then z4, 2, ..., Ty are linearly dependent.

¢ If a vector can be expressed as a linear combination of a set of linearly independent
vectors &4, Z2, - . . , Tk, then that expression is unique. For if

o121 + aZy 4+ -+ agxg = 12y + Boza + - - + Bk,

then 3 (a1 — B;)z; = 0, and by the linear independence of the z; we have a; — §; = 0
(i=1,...,k).

¢ A particularly important example of a set of linearly independent vectors is the col-
umns of a lower trapezoidal matrix L whose diagonal elements are nonzero. For sup-
pose La = 0, with a # 0. Let a; be the first nonzero component of a. Then writing
out the ith equation from the relation La = 0, we get

0=a1ly +alyp+ -+ aily; = aift'i’

the last equality following from the fact that a1, a3, . . . , a;— are all zero. Since £;; #
0, we must have o; = 0, a contradiction. This result is also true of upper and lower
triangular matrices.

Bases
A basis for a subspace is a set of linearly independent vectors that span the subspace.

Definition 3.5. Let X’ be a subspace of R™. A set of vectors {b1, b2, ... ,bi} is aBA-
sis for X if

1. by, be, ..., by are linearly independent,
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2. span(bl,bg, “ee ,bk) =X.

From (3.1) we see that the unit vectors e;, which are clearly independent, form a
basis for R”. Here is a useful generalization.

Example 3.6. The space R™*" regarded as a vector space has the basis
{E;; :eie}: i=1,...,mj=1,...,n}

For the matrices E;; are clearly linearly independent and

A= Z Z a;jE;j.

=1 j=1

If B = {b1,b,...,b;}isabasisfor X and B = (b; by --- bg), then any mem-
ber z€X can be written uniquely in the form = Ba. This characterization is so
useful that it will pay to abuse nomenclature and call the matrix B along with the set
B a basis for .

We want to show that every subspace has a basis. An obvious way is to start pick-
ing vectors from the subspace, throwing away the dependent ones and keeping the ones
that are independent. The problem is to assure that this process will terminate. To do
so we have to proceed indirectly by first proving a theorem about bases before proving
that bases exist.

Theorem 3.7. Let X' be a subspace of R™. If {by,bs,...,bs} is a basis for X, then
any collection of k+1 or more vectors in X’ are linearly dependent.

Proof. Let B = (b by --- bx)and C = (¢; ¢2 -+ ¢¢), where £ > k. Then each
column of C' is a linear combination of the columns of B, say ¢; = Bv;, where v;€RF.
IfwesetV = (v; vo -+ wi), then C = BV. But V has more columns than rows.
Hence by Theorem 2.14 there is a nonzero vector w such that Vw = 0. It follows that

Cw=BVw=B-0=0
and the columns of (' are linearly dependent. m
An important corollary of this theorem is the following.

Corollary 3.8. IfB and B’ are bases for the subspace X, then they have the same num-
ber of elements.

For if they did not, the larger set would be linearly dependent. In particular, since the
n unit vectors form a basis for R”, any basis of R” has n elements.

We are now in a position to show that every subspace has a basis. In particular, we
can choose a basis from any spanning subset — and even specify some of the vectors.
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Theorem 3.9. Let X’ be a nontrivial subspace of R™ that is spanned by the set B. Sup-
pose by, bs, ... ,b,EB are linearly independent. Then there is a subset

{bl,bg,... ,b[,b(+1,... ,bk} CcB
that forms a basis for X'.

Proof. Let By = {b1,b2,...,b}. Note that £ may be zero, in which case By is the
empty set.

Suppose now that for ¢ > ¢ we have constructed a set B; C B of ¢ linearly inde-
pendent vectors. If there is some vector b;.1 €8 that is not a linear combination of the
members of B;, adjoin it to B; to get a new set of linearly independent vectors B; ;.
Since R™ cannot contain more than 7 linearly independent vectors, this process of ad-
joining vectors must stop with some By, where k < n.

We must now show that any vector €’ can be expressed as a linear combination
of the members of By. Since B spans X, the vector  may be expressed as a linear
combination of the members of B: say

x = aib;, + oqby, + -+ and;, = Ba.
But by construction, B = (b; by -+ bg)V for some kxm matrix V. Hence
T = (bl b2 v bk)(Va)

expresses z as a linear combination of the b;. B

The theorem shows that we can not only construct a basis for a subspace A" but
we can start from any linearly independent subset of A’ and extend it to a basis. In
particular, suppose we start with a basis {1, 23, ..., 2} for a subspace A" and ex-
tend it to a basis {z1,22,..., %k, Y1, Y2, .. , Yn—k} for R™ itself. The space Y =
span(y1, Y2, - - - » Yn—k) is disjoint from X, and

X+Y=R" (3.4)

Two spaces satisfying (3.4) are said to be complementary. We thus have the following
result.

Corollary 3.10. Any subspace of R™ has a complement.

Dimension

Since any nontrivial subspace of R" has a basis and all bases for it have the same num-
ber of elements, we may make the following definition.

Definition 3.11. Let X' C R” be a nontrivial subspace. Then the DIMENSION of X’ is
the number of elements in a basis for X. We write dim(X’) for the dimension of X.
By convention the dimension of the trivial subspace {0} is zero.
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Thus the dimension of R™ is n — a fact which seems obvious but, as we have seen,
takes some proving.
The dimension satisfies certain relations

Theorem 3.12. For any subspaces X’ and Y of R,
dim(X N Y) < dim(&X’), dim(Y)
and
dim(X 4+ )) = dim(X) + dim(Y) — dim(X N Y). (3.5)

Proof. We will prove the second equality, leaving the first inequality as an exercise.

Let dim(X NY) = j, dim(X) = k, and dim(}) = £. Let ACR™*J be a ba-
sis for X N ) and extend it to a basis (A4 B) for X. Note that BER™*(¥~9), Simi-
larly let CeR™*(¢=4) be such that (A C) is a basis for V. Then clearly the columns
of (A B C)span X + ). But the columns of (A B C) are linearly independent. To
see this note that if

Au+ Bv+Cw =0 3.6)

is a nontrivial linear combination then we must have Bv # 0. For if Bv = 0, then
v = 0 and Au + Cw = 0. By the independence of the columns of (A C') we would
then have © = 0 and w = 0, and the combination (3.6) would be trivial. Hence we
may assume that Bv # 0. But since

Bv = —Au - Cwe),

and since BveX, it follows that Bve X’ N Y, contradicting the definition of B.
Thus (A B C) is a basis for X' + ), and hence the number of columns of the
matrix (A B C) is the dimension of X + ). But (A B C) has

J+k-N+UE-5)=k+{-j=dim(X)+ dim(}Y) - dim(X N Y)
columns. |
In what follows we will most frequently use (3.5) in the two weaker forms
dim(X + ) < dim(X) + dim(Y) 3.7
and

dim(X @ Y) = dim(X) + dim(Y).

3.2. RANK AND NULLITY

Matrices have useful subspaces associated with them. For example, the column space
of a matrix is the space spanned by the columns of the matrix. In this subsection we
are going to establish the properties of two such subspaces, the columns space and the
null space. But first we begin with a useful matrix factorization.
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A full-rank factorization

If a matrix has linearly dependent columns, some of them are redundant, and it is nat-
ural to seek a more economical representation. For example, the m x» matrix

A= (Bra Baa -+ Bra),
whose columns are proportional to one another, can be written in the form
A=abT,

where bT = (8; B2 --- B.). The representation encodes the matrix economically
using m+-n scalars instead of the mn scalars required by the more conventional rep-
resentation.

The following theorem shows that any matrix has an analogous representation.

Theorem 3.13. Let ACR™*". Then A has 2 FULL-RANK FACTORIZATION of the form
A=XYT

where X ER™*¥ and Y €R"** have linearly independent columns. If A = XYTis
any other full-rank factorization, then X andY also have k columns.

Proof. Let PT AQ = LU be an LU decomposition of A (see Theorem 2.13). Since L
and UT are lower trapezoidal with nonzero diagonal elements, their columns are lin-
early independent. But then so are the columns of X = PL andY = QU. Moreover,
A= XYT, sothat XYT is a full-rank factorization of A.

If A = XY7 is a full-rank factorization of A, then the columns of X form a basis
for the space spanned by the columns of A. Thus the X -factors of all full-rank fac-
torizations have the same number of columns. By conformity, the Y -factors also have
the same number of columns.

Rank and nullity

A consequence of the existence of full-rank factorizations is that the spaces spanned
by the columns and rows of a matrix have the same dimension. We call that dimension
the rank of the matrix.

Definition 3.14. Let ACR™*™. The COLUMN SPACE of A is the subspace
R(A) = {Az: z€R"}.

The ROW SPACE of A is the space R(AT). The RANK of A is the integer
rank(4) & dim[R(A4)] = dim[R(AT)).

The rank satisfies two inequalities.
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Theorem 3.15. The rank of the sum of two matrices satisfies

rank(A + B) < rank(A) + rank(B). (3.8)
The rank of the product satisfies

rank(AB) < min{rank(A), rank(B)}. 3.9

Proof. Since R(A + B) is contained in R(A) + R(B), it follows from (3.7) that the
rank satisfies (3.8). Since the row space of AB is contained in the row space of A, we
have rank(AB) < rank(A). Likewise, since the column space of AB is contained in
the column space of A, we have rank(AB) < rank(B). Together these inequalities
imply (3.9). ®

We have observed that a solution of the linear system Az = b is unique if and
only if the homogeneous equation Az = 0 has no nontrivial solutions [see (2.14)].
It is easy to see that the set of all solutions of Az = 0 forms a subspace. Hence the
following definition.

Definition 3.16. Let AcR™*". The set
N(A) = {z: Az =0}

is called the NULL SPACE of A. The dimension of N'(A) is called the NULLITY of A
and is written

null(4) = dim{N(4)].

A nonzero vector in the null space of A — that is, a nonzero vector z satisfying Az =
0 — is called a NULL VECTOR of A.

The null space determines how the solutions of linear systems can vary. Specifi-
cally:

If the system Az = b has a solution, say x, then any solution lies in
the set (3.10)

zo+ N(A) = {zo + z: zeN(A)}.

Thus the nullity of A in some sense measures the amount of nonuniqueness in the so-
lutions of linear systems involving A.
The basic facts about the null space are summarized in the following theorem.

Theorem 3.17. Let ACR™*", Then
R™ = N(A) ® R(AT) (3.11)
and

rank(A) + null(A) = n. (3.12)
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Proof. Let rank(A) = k andlet A = XY7 be a full-rank factorization of A. Then
R(AT) = R(Y) and N(4) = N(YT).

LetV = (v; vg --- v¢)be abasis for N(A). Then the v; are independent of the
columns of Y. For suppose v; = Y a for some nonzero a. Since v; # 0 and v} Y = 0,
it follows that

0<viv;=v1Ya=0, (3.13)

a contradiction. Hence the columns of (Y V') span a (k+£)-dimensional space.
We will now show that £+£ = n. If not, the system

T
()
is underdetermined and has a nontrivial solution. Since YTv = 0, the solution v is
in M(A). Since VTv = 0, the vector v is independent of the columns of V, which
contradicts the fact that the columns of V' span V'(A4).

Thus R(AT) and N(A) are disjoint subspaces whose direct sum spans an n-di-
mensional subspace of R™. But the only n-dimensional subspace of R™ is R" itself.
This establishes (3.11).

Equation (3.12) is equivalent to the equation k+£ = n. ®

Two comments.

® As the inequality in (3.13) suggests, the proof depends in an essential way on the
fact that the components of vectors in R” are real. (The proof goes through in C"
if the transpose is replaced by the conjugate transpose.) In fact, (3.11) is not true of
finite-dimensional vector spaces over general fields, though (3.12) is.

¢ The theorem shows that R(AT) and A/(A) are complementary subspaces. In fact,
the theorem offers an alternative proof that every subspace has a complement. For if
the columns of X span a subspace X, then A'(X T) is a complementary subspace. In
fact, it is an orthogonal complement — see (4.25).

3.3. NONSINGULARITY AND INVERSES

‘We now turn to one of the main concerns of this volume — the solution of linear sys-
tems Az = b. We have already established that a solution is unique if and only if
null(A) = 0 [see (3.10)]. Here we will be concerned with the existence of solutions.

Linear systems and nonsingularity

We begin with a trivial but useful characterization of the existence of solutions of the
system Az = b. Specifically, for any z the vector Az€R(A). Conversely any vector
in R(A) can be written in the form Az. Hence:

A solution of the system Az = b exists if and only if be R (A).
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To proceed further it will help to make some definitions.

Definition 3.18. A matrix AcR™*" s of FULL RANK if
rank(A) = min{m, n}.

If m > n, A is of FULL COLUMN RANK. If m < n, A is of FULL ROW RANK. If m = n,
A is NONSINGULAR.

If A is not of full rank, A is RANK DEGENERATE or simply DEGENERATE. If A is
square and degenerate, then A is SINGULAR.

Most matrices want to be of full rank. Even when they start off degenerate, the
slightest perturbation will usually eliminate the degeneracy. This is an important con-
sideration in a discipline where matrices usually come equipped with errors in their
elements.

Example 3.19. The matrix

()

is singular. But a nonzero perturbation, however small, in any one element will make
it nonsingular.

If we are willing to accept that full-rank matrices are more likely to occur than
degenerate ones, we can make some statements — case by case.

1. Ifm > n,the matrix (A b) will generally have full column rank,
and hence b will not lie in R(A). Thus overdetermined systems
usually have no solutions. On the other hand, null( 4) will gen-
erally be zero; and in this case when a solution exists it is unique.
2. If m < n, the matrix A will generally be of full row rank, and (3.14)
hence of rank m. In this case R(A) = R™, and a solution exists.
However, null( A) > 0, so no solution is unique.
3. If m = n, the matrix A will generally be nonsingular. In this
case a solution exists and is unique.

A waming. The above statements, correct though they are, should not lull one
into thinking errors in a matrix can make the difficulties associated with degeneracies
go away. On the contrary, the numerical and scientific problems associated with near
degeneracies are subtle and not easy to deal with. These problems are treated more
fully in §1, Chapter 5.

Nonsingularity and inverses

Square systems are unusual because the same condition— nonsingularity — that in-
sures existence also insures uniqueness. It also implies the existence of an inverse
matrix.
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Theorem 3.20. Let A be nonsingular of order n. Then there is a unique matrix A},
called the INVERSE of A, such that

AT'A= AA =1, (3.15)
Proof. Since rank(A) = =, the equations
Az; = e, i=12,...,n,

each have unique solutions z;. If we set X = (2, z3 --+ z,), then AX = I. Simi-
larly, by considering the systems

ATy, = e, 1=1,2,...,m,
we may determine a unique matrix Y such that YT A = I. But
YT=YTr=vT4X)=(¥TAX =IX = X.
Hence the matrix A~! = YT = X satisfies (3.15). m

If A is nonsingular, then so is AT, and (AT)~! = (4~1)T. A convenient short-
hand for the inverse of a transpose is A~T. If A is complex, we write A~H for the
inverse conjugate transpose.

The existence of an inverse is just one characterization of nonsingularity. Here are
a few more. It is an instructive exercise to establish their equivalence. (The last three
characterizations presuppose more background than we have furnished to date.)

Theorem 3.21. Let A be of order n. Then A is nonsingular if and only if it satisfies
any one of the following conditions.

rank(A4) = n.

null(4) = 0.

For any vector b, the system Az = b has a solution.
If a solution of the system Az = b exists, it is unique.
Forallz, Az =0=z = 0.

The columns (rows) of A are linearly independent.
There is a matrix A=! such that A=1A = AA™' =1.
det(A) # 0.

The eigenvalues of A are nonzero.

—t

W e Nawm kW

10. The singular values of A are nonzero.

From item 5 in the above it easily follows that:

The product of square matrices A and B is nonsingular if and only if A and B
are nonsingular. In that case

(AB)™! = B A.
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Unfortunately there are no simple general conditions for the existence of the in-
verse of the sum A+ B of two square matrices. However, in special cases we can assert
the existence of such an inverse and even provide a formula; see (3.4), Chapter 4.

The inverse is in many respects the driving force behind matrix algebra. For ex-
ample, it allows one to express the solution of a linear system Az = b succinctly as
z = A~1b. For this reason, disciplines that make heavy use of matrices load their
books and papers with formulas containing inverses. Although these formulas are full
of meaning to the specialist, they seldom represent the best way to compute. For exam-
ple, to write z = A~ bis to suggest that one compute z by inverting A and multiplying
the inverse by b— which is why specialists in matrix computations get frequent re-
quests for programs to calculate inverses. But there are faster, more stable algorithms
for solving linear systems than this invert-and-multiply algorithm. (For more on this
point see §1.5, Chapter 3, and Example 4.11, Chapter 3.)

3.4. CHANGE OF BASES AND LINEAR TRANSFORMATIONS
The equation

-’E=§131+£262+"‘+§nen

represents a vector z€R™ as a sum of the unit vectors. This unit basis occupies a dis-
tinguished position because the coefficients of the representation are the components
of the vector. In some instances, however, we may need to work with another basis.
In this subsection, we shall show how to switch back and forth between bases.

Change of basis

First a definition.

Definition 3.22. Let X be a basis for a subspace X inR", and Iet 2 = X u. Then the
components of u are the COMPONENTS OF & WITH RESPECT TO THE BASIS X.

By the definition of basis every €.t can be represented in the form X « and hence
has components with respect to X. But what precisely are these components? The
following theorem supplies the wherewithal to answer this question.

Theorem 3.23. Let X eR™** have full column rank. Then there is a matrix X! such
that

xXlx=1

Proof. The proof mimics the proof of Theorem 3.20. Since rank(X ) = &, the columns
of XT span R¥. Hence the equations

XTyi=e, i=1,2,...,k, (3.16)
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have solutions. If we set X! = (3, 3 - -- yk)T, then equation (3.16) implies that
XX=ILn

The matrix X7 is called a left inverse of X. Itis not unique unless X is square. For
otherwise the systems (3.16) are underdetermined and do not have unique solutions.

The solution of the problem of computing the components of z with respect to X
is now simple. If z = Xu and X is a left inverse of X, then v = X1z contains the
components of ¢ with respect to X. It is worth noting that although X! is not unique,
the vector u = X1z is unique for any ze R(X).

Now suppose we change to another basis X. Then any vector z€X can be ex-
pressed in the form X 4. The relation of i to u is contained in the following theorem,
in which we repeat some earlier results.

Theorem 3.24. Let XY€R™ be a subspace, and let X and X be bases for X. Let X!
be a left inverse of X. Then

P=X1x (3.17)

is nonsingular and

-

X=XP.
Ifz = Xu isin X, then the components of
u= X% (3.18)

are the components of z with respect to X . Moreover, P~ X1 is a left inverse of X.
Hence ifx = X 1,

=P Xz = plu.

Proof. We have already established (3.18). Since X is a basis and the columns of X
lie in X', we must have X = X P for some P. On premultiplying this relation by X1,
we get (3.17). The matrix P is nonsingular, since otherwise there would be a nonzero
vector v such that Pv = 0. Then Xv = X Pv = 0, contradicting the fact that Xisa
basis. The rest of the proof is a matter of direct verification.

Linear transformations and matrices

Under a change of basis, the components of a vector change. We would expect the
elements of a matrix likewise to change. But before we can say how they change, we
must decide just what a matrix represents. Since it is easy to get bogged down in the
details, we will start with a special case.

Let AcR™*", With each vector t€R” we can associate a vector f4(z)ER™ de-
fined by

fA(z) = Az.
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The function is linear in the sense that

fa(az + By) = afa(z) + Bfa(y)

Conversely, given a linear function f: R® — R™, we can construct a correspond-
ing matrix as follows. Leta; = f(e;) (i =1,2,...,n),andlet A = (a; a3 -+ ay,).
If z€R™, then

f(z) = f(rer + -+ &nen)
=&if(er) +---+ & f(en)
=&1a1+ -+ &nan
= Ax.

Thus the matrix-vector product Az reproduces the action of the linear transformation
f, and it is natural to call A the matrix representation of f.

Now suppose we changebasestoY inR™and X inR". Letz = Xu and f(z) =
Y v. What is the relation between u and v?

Let X = (z1 z2 --- ) be partitioned by columns, and define

f(X) = (f(z1) f(z2) -+ f(za))-

Then by the linearity of f we have f(Xu) = f(X)u. Now Y is square and nonsin-
gular, so that v = Y ~! f(X)u. But f(X) = AX. Hence

v= (Y 1AX)u.

We call the matrix Y =1 AX the representation of the linear transformation f with
respect to the bases X andY . It transforms the vector of components of = with respect
to X into the components of f(z) with respectto Y.

Many matrix algorithms proceed by multiplying a matrix by nonsingular matrices
until they assume a simple form. The material developed here gives us another way
of looking at such transformations. Specifically, the replacement of A by Y "1 AX
amounts to changing from the natural basis of unit vectors to bases X and Y on the
domain and range of the associate function f4. The program of simplifying matrices
by pre- and postmultiplications amounts to finding coordinate systems in which the
underlying linear transformation has a simple structure.

Here is a particularly important example.

Example 3.25. Let A be of order n. If we choose a basis X for R", then the matrix
representing the transformation corresponding to A in the new basisis X "1 AX . Such
a transformation is called a SIMILARITY TRANSFORMATION and is important in the al-
gebraic eigenvalue problem.

The main result concerns linear transformations between subspaces. It is unneces-
sary to specify where the subspaces lie—they could be in the same space or in spaces
of different dimensions. What is important is that the subspaces have bases. The proof
of the following theorem follows the lines developed above and is left as an exercise.
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Theorem 3.26. Let X and Y be subspacesandlet f: X — ) be linear. Let X andY
be bases for X and Y, and let X1 and Y1 be left inverses for X andY . For any z€X
letw = X'z andv = Y f(z) be the components of z and f () with respect to X and
Y. Then

v = [Y ().

We call the matrix Y f( X ) the REPRESENTATION OF THE LINEAR TRANSFORMATION f
WITH RESPECT TO THE BASES X AND Y.

IfX=XPandY = X () are new bases for X and Y, then P and () are nonsin-
gular and the matrix representing f with respect to the new bases is Q 'Y f(X)P.

3.5. NOTES AND REFERENCES
Linear algebra

The material in this section is the stuff of elementary linear algebra textbooks, some-
what compressed for a knowledgeable audience. For references see the addenda to
this chapter.

Full-rank factorizations

Although the principal application of full-rank factorizations in this section is to char-
acterize the rank of a matrix, they are ubiquitous in matrix computations. One of the
reasons is that if the rank of a matrix is low a full-rank factorization provides an eco-
nomical representation. We derived a full-rank factorization from the pivoted LU de-
composition, but in fact they can be calculated from many of the decompositions to
be treated later—e.g., the pivoted QR decomposition or the singular value decompo-
sition. The tricky point is to decide what the rank is in the presence of error. See §1,
Chapter 5, for more.

4. ANALYSIS

We have already pointed out that vectors and matrices regarded simply as arrays are
not very interesting. The addition of algebraic operations gives them life and utility.
But abstract linear algebra does not take into account the fact that our matrices are de-
fined over real and complex numbers, numbers equipped with analytic notions such
as absolute value and limit. The purpose of this section is to transfer these notions to
vectors and matrices. We will consider three topics — norms, orthogonality and pro-
jections, and the singular value decomposition.

4.1. NORMS

Vector and matrix norms are natural generalizations of the absolute value of a num-
ber —they measure the magnitude of the objects they are applied to. As such they
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can be used to define limits of vectors and matrices, and this notion of limit, it turns
out, is independent of the particular norm used to define it. In this subsection we will
introduce matrix and vector norms and describe their properties. The subsection con-
cludes with an application to the perturbation of matrix inverses.

Componentwise inequalities and absolute values

The absolute value of a real or complex number satisfies the following three condi-
tions.

1. Definiteness: £ #0 = |£|> 0
2. Homogeneity: |af| = |a]|¢]
3. Triangle inequality: |£ + 5| < |€] + |7]

There are two ways of generalizing this notion to vectors and matrices. The first is
to define functions on, say, R"™ that satisfy the three above conditions (with £ and 7
regarded as vectors and o remaining a scalar). Such functions are called norms, and
they will be the chief concern of this subsection. However, we will first introduce a
useful componentwise definition of absolute value.

The basic ideas are collected in the following definition.

Definition 4.1. Let A, BER™*". Then A > B ifa;; > fij and A > B ifa;; > §i;.
Similar definitions hold for the relations “<” and “<”, If A > 0, then A is POSITIVE.
If A > 0, then A is NONNEGATIVE. The ABSOLUTE VALUE of A is the matrix | A| whose
elements are |a;|.

There are several comments to be made about this definition.

¢ Be warned that the notation A < B is sometimes used to mean that B — A is positive
definite (see §2.1, Chapter 3, for more on positive definite matrices).

¢ Although the above definitions have been cast in terms of matrices, they also apply
to vectors.

¢ Therelation A > B means that every element of A is greater than the corresponding
element of B. To say that A > B with strict inequality in at least one element one has
to say something like A > B and A # B.

e If A # 0, the most we can say about | A| is that | A| > 0. Thus the absolute value of a
matrix is not, strictly speaking, a generalization of the absolute value of a scalar, since
it is not definite. However, it is homogeneous and satisfies the triangle inequality.

¢ The absolute value of a matrix interacts nicely with the various matrix operations.
For example,

|AB| < |A||Bl,

a property called consistency. Again, if A is nonsingular, then | A|e is positive. In what
follows we will use such properties freely, leaving the reader to supply their proofs.
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Vector norms

As we mentioned in the introduction to this subsection, norms are generalizations of
the absolute value function.

Definition 4.2. A VECTOR NORM or simply aNORM ON C" is a function||-||: C* — R
satisfying the following conditions:

1. 2#0 = |z|| >0,
2. |laz|| = lell«],
3. lz +yll < ll=ll + llyll-

Thus a vector norm is a definite, homogeneous function on C" that satisfies the trian-
gle inequality ||z + y|| < ||z|| + ||yl|- Vector norms on R™ are defined analogously.
The triangle inequality for vector norms has a useful variant

llz =yl > |ll=l} - llwll]- @.1)

Another useful fact is that if z # 0 then

=1

T
lill
The process of dividing a nonzero vector by its norm to turn it into a vector of norm
one is called normalization.

There are infinitely many distinct vector norms. For matrix computations, three
are especially important.

Theorem 4.3. The following three function on C™ are norms:
def
Lzl = X e,
def
2. lzlle = v J2il? = VaHa,

def
3. ||2|lee = max; |z

The norms || - ||1 and || - || satisfy

=8y < l/l1ll¥lloos 4.2)

and for any z there is a y for which equality is attained— and vice versa. Moreover,

=™yl < llzlzllyllz 4.3)

with equality if and only if ¢ and y are linearly dependent.

Proof. The fact that || - ||; and || - ||oo are norms satisfying (4.2) is left as an exercise.
The only nontrivial part of proving that || - ||2 is a norm is to establish the trian-
gle inequality. We begin by establishing (4.3). If z or y is nonzero, then the result is
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trivial. Otherwise, by normalizing = and y we may assume without loss of generality
that ||z||2 = ||ly||2 = 1. Moreover, by dividing y by a scalar of absolute value one, we
may assume that 27y = |zHy|. Thus we must show that zHy < 1. But

0< iz =yl = (e -9z -y) 4.4)

H H H H )
=gz +y y— 22y =2 - 2z y.

Hence zHy < 1, and the inequality (4.3) follows.

To prove the statement about the dependence of z and y, note that equality can be
attained in (4.3) only if equality is attained in (4.4). In this case, ||z — y||2 = 0 and
z = y, so that z and y are dependent.

Conversely if z and y are dependent, ¢ = ay where |a] = 1. Then zfy =
azflz = o, which implies that « is real and positive and hence is equal to one. Thus
equality is attained in (4.3).

The proof of the triangular inequality for || - || is now elementary:

e+ 9l = (z+ )z +y)
= otz + yHy + oMy + 4He
< |lell3 + w3 + 2l=Hy|
< ll=l13 + llwll3 + 2llzll2llyll
= (lzllz + [lyll2)?. =

The norms defined in Theorem 4.3 are called the 1-, 2-, and co-norms. They are
special cases of the Holder norms defined for 0 < p < oo by

lzllp = (5 2:l7)?

(the case p = oo is treated as a limit). The 1-norm is sometimes called the Manhattan
norm because it is the distance you would have to traverse on a rectangular grid to get
from one point to another. The 2-norm is also called the Euclidean norm because in
real 2- or 3-space it is the Euclidean length of the vector . All three norms are easy
to compute.

Pairs of norms satisfying (4.2) with equality attainable are called dual norms. The
inequality (4.3), which is called the Cauchy inequality, says that the 2-norm is self-
dual. This fact is fundamental to the Euclidean geometry of C™, as we will see later.

Given a norm, it is easy to generate more. The proof of the following theorem is
left as an exercise.

Theorem 4.4. Let|| - || be a norm on C", and let A€C™*™ be nonsingular. Then the
function p 4(z) defined by

pa(z) = || Az||
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is a norm. If A is positive definite (Definition 2.1, Chapter 3), then function v4(z)
defined by

va(z) = VaT Az
is a norm.

Norms and convergence
There is a natural way to extend the notion of limit from C to C". Let

{on= (P €9 ... €Y )

be a sequence of vectors in C™ and let x€C™. Then we may write 2, — z provided
q y P

klggog,i") =& i=1,2,...,n.

Such convergence is called componentwise convergence.

There is another way to define convergence in C". For any sequence {£;}5° in
C we have lim & = £ if and only if limy |€x — €| = 0. It is therefore reasonable
to define convergence in C™ by choosing a norm || - || and saying that z, — =z if
limg ||zx — z|| = 0. This kind of convergence is called normwise convergence.

There is no compelling reason to expect the two notions of convergence to be
equivalent. In fact, for infinite-dimensional vectors spaces they are not, as the follow-
ing example shows.

Example 4.5. Let £, be the set of all infinite row vectors ¢ satisfying
|z(leo = sup [&] < oo.
1

It is easy to verify that|| - || is 2 norm on £,.
Now consider the infinite sequence whose first four terms are illustrated below:

IIJ1=(1 000 ),
z2=(0100...),
(IJ3=(0 010 ),
r4=(0001...)
Clearly this sequence converges to the zero vector componentwise, since each com-

ponent converges to zero. But ||z — 0||., = 1 for each k. Hence the sequence does
not converge to zero in the co-norm.

Not only can pointwise and normwise convergence disagree, but different norms
can generate different notions of convergence. Fortunately, we will only be dealing
with finite-dimensional spaces, in which all notions of convergence coincide. The
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problem with establishing this fact is not one of specific norms. It is easy to show,
for example, that the 1-, 2-, and co-norms all define the same notion of convergence
and that it is the same as componentwise convergence. The problem is that we have
infinitely many norms, and one of them might be a rogue. To eliminate this possibility
we are going to prove that all norms are equivalent in the sense that they can be used
to bound each other. For example, it is easy to see that

llell2 < llzlls < Valizlla. 4.5)
The following theorem generalizes this result.

Theorem 4.6. Let yu and v be norms on C". Then there are positive constants ¢ and
T such that

op(e) Sv(z) < Tp(z),  zeCn

Proof.

It is sufficient to prove the theorem for the case where v is the 2-norm. (Why?)
We will begin by establishing the upper bound on p.

Let & = max; u(e;). Since z = Y, §;e;,

pe) < Z [ilu(es) < kllzll < Kv/nllzl2,

the last inequality following from (4.5). Hence, witho = 1/(k+/n), wehave op(z) <
llll2.

An immediate consequence of the bound is that x(z) as a function of z is contin-
uous in the 2-norm. Specifically, from (4.1)

v(2) = v(®)l < v(z — y) < o7 |z = yll2-

Hence limyjy_g), o0 [¥(2) — v(y)| < 07 limyy_gj,—0 [}z — 9ll2 = 0, which is the
definition of continuity.

NowletS = {z: ||z||]2 = 1}. Since § is closed and bounded and p is continuous,
4 assumes a minimum at some point Zmyin on S. Let T = 1/u(&min). Then

1= |lell < Tu(z),  z€S. (4.6)
Hence by the homogeneity of || - || and u, (4.6) holds for all zeC™. m

The equivalence of norms assures us that in C”™ we can use any convenient norm
to establish a continuity result or a perturbation theorem, and an equivalent result will
hold for any other norm. As a practical matter, however, this may not be much comfort.

Example 4.7. OnR? let ||z||baa = /€% + 10-190¢2. Then convergence to, say, e is
the same in || - ||baq as in the 2-norm. But if one is interested in the accuracy of the
second component of a vector whose components are near one, then || - ||2 does the
job, whereas || - ||baa fails miserably. For example,
IG)- G- e ) -Gl

2 bad
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Matrix norms and consistency

The approach of defining a vector norm as a definite, homogeneous function satisfying
the triangle inequality can be extended to matrices.

Definition 4.8. A MATRIX NORM ON C™*" is a function || - || : C™*"™ — R satisfying
the following conditions:

1. A£0 = ||4] >0,
2. [lad|l = [af||All, (4.7)
3. 1A+ Bl <[4l + || BIl-

All the properties of vector norms are equally true of matrix norms. In particular,
all matrix norms are equivalent and define the same notion of limit, which is also the
same as elementwise convergence.

A difficulty with this approach to matrix norms is that it does not specify how ma-
trix norms interact with matrix multiplication. To compute upper bounds, we would
like a multiplicative analogue of the triangle inequality:

IABI| < [|AllllBIl- 4.8)

However, the conditions (4.7) do not imply (4.8). For example, if we attempt to gen-
eralize the infinity norm in a natural way by setting

1Al = max a1, 4.9
1 1\ /1 1
IG1)G ))-
but
11 11
IGONG D)=rr=2

The relation (4.8) is called consistency (with respect to multiplication). Although
that equation implies that A is square (since 4, B, and AB all must have the same
dimensions), consistency can be defined whenever the product A B is defined.

then

Definition 4.9. Let||||ix, || - |lim» and || | m» be norms on C'*", C**™ C™*"_ Then
these norms are CONSISTENT if

”AB“ln < ”A”lmHB”mn

for all AcC**™ and BeC™*",
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Since we have agreed to identify C™*! with C", the above definition also serves to
define consistency between matrix and vector norms.
An example of a consistent matrix norm is the widely used Frobenius norm.

Definition 4.10. The FROBENIUS NORM is the function || - ||r defined for any matrix

by
Allr = /Z |a:;]2.
ij

The Frobenius norm is defined in analogy with the vector 2-norm and reduces to
it when the matrix in question has only one column. Just as ||z||% can be written in the
form zHz, so can the square of the Frobenius norm be written as

|A||Z = trace(AH A) = trace(4AH). (4.10)

Since the diagonal elements of AT A are the squares of the 2-norms of the columns of
A, we have ’

IANE = > llasl3,
j

where a; is the jth column of A. There is a similar expression in terms of the rows of
A.
The Cauchy inequality can be written as a consistency relation in the Frobenius
norm:
H
llz"yllr < (l2[lFllylle-

The proof of the following theorem begins with this special case and elevates it to gen-
eral consistency of the Frobenius norm.

Theorem 4.11. Whenever the product AB is defined,
IAB||r < [|Alle|l Blle-

Proof. We will first establish the result for the matrix-vector product y = Az. Let
AP = (a1 az -+ ay) be apartitioning of A by rows, so that y; = allz. Then

IyllE = laf2? <> llaill3llel = 1213 ) llaill, = AR,

i i i
the inequality following from the Cauchy inequality. Now let B = (b, -+ b,) be
partitioned by columns. Then

IABIIE = > 114,13 < Y IAIR5;13 = AIEIBIE.
j j

It sometimes happens that we have a consistent matrix norm, say defined on C™**",
and require a consistent vector norm. The following theorem provides one.
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Theorem 4.12. Let|| - || be a consistent matrix norm on C™*". Then there is a vector
norm that is consistent with || - ||.

Proof. Let v be nonzero and define || - ||, by

llelly = llzo™.

Then it is easily verified that || - ||, is a vector norm. But

lAz]ly = |42o™|| < lAlllleo™]| = |l Allllz]lo. =

Operator norms

The obvious generalizations of the usual vector norms to matrices are not guaranteed
to yield consistent matrix norms, as the example of the co-norm shows [see (4.9)].
However, there is another way to turn vector norms into matrix norms, one that always
results in consistent norms. The idea is to regard the matrix in question as an operator
on vectors and ask how much it changes the size of a vector.

For definiteness, let v be anorm on C™, and let A be of order n. For any vector
withv(z) = 1let p, = v(Az), so that p,, measures how much A expands or contracts
z in the norm v. Although p, varies with 2, it has a well-defined maximum. This
maximum defines a norm, called the operator norm subordinate to the vector norm
[l -1

Before we make a formal definition, an observation is in order. Most of the norms
we work with are generic — that is, they are defined generally for spaces of all di-
mensions. Althoughnorms on different spaces are different mathematical objects, it is
convenient to refer to them by a common notation, as we have with the 1-, 2-, and co-
norms. We shall call such a collection a family of norms. In defining operator norms,
it is natural to work with families, since the result is a new family of matrix norms de-
fined for matrices of all dimensions. This is the procedure we adopt in the following
definition.

Definition 4.13. Let v be a family of vector norms. Then the OPERATOR NORM SUB-
ORDINATE TO v or GENERATED BY v is defined by

All, = max v(Az).
Il = max v(42)

Although we have defined operator norms for a family of vector norms there is
nothing to prevent us from restricting the definition to one or two spaces —e.g., to
Cc™.

The properties of operator norms are summarized in the following theorem.

Theorem 4.14. Let||- ||, be an operator norm subordinate to a family of vector norms
v. Then || - ||, is a consistent family of matrix norms satisfying

1], = 1. (4.11)
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The operator norm is consistent with the generating vector norm. Moreover, if v(§) =
€|, then ||all,, = v(a).

Proof. We must first verify that || - || is a norm. Definiteness and homogeneity are
easily verified. For the triangle inequality we have

4+ Bll, = max,oms #I(A + B)a]
= max,(g)=1 ¥(Az + Bz)
< max,(z)=1[v(Az) + v(Bz)]
< max,(g)=1 ¥(Az) + max, ;)= ¥(Bz)
= || Ally + 1 B]|..-

For consistency, first note that by the definition of an operator norm we have a
fortiori v(Az) < ||A||,»(z). Hence

|AB|| = max,(z)=1 ¥[(AB)z]

1l

max, (z)=1 V[A(BQ?)]

IA

max,(z)=1 || 4l #(Bz)

| All, max, (z)=1 v(Bz)
= || All. || Bl|.-

For (4.11) we have

i1l = max v(Iz) = max u(z)=1.

Finally, suppose that »(¢) = |£|. Then

lalls = max v(af) = maxv(af) = v(a),

so that the operator norm reproduces the generating vector norm. M

Turning now to the usual norms, we have the following characterization of the 1
and oo operator norms.

Theorem 4.15. The 1- and co-norms may be characterized as follows:

L Al = max; 37, |asj],
2. ||Alloo = max; Zj lasjl.

The proof is left as an exercise.

Since the vector 1- and co-norms satisfy ||£|| = ||, the operator norms and the
vector norms coincide for vectors, as can be verified directly from the characteriza-
tions. Hence there is no need to introduce new notation for the operator norm. The
matrix 1-norm is also called the row sum norm, since it is the maximum of the 1-norms
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of the rows of A. Similarly, the matrix co-norm is also called the column sum norm.
These norms are easy to compute, which accounts for their widespread use.
Although the Frobenius norm is consistent with the vector 2-norm, it is not the
same as the operator 2-norm — as can be seen from the fact that for n > 1 we have
lIz]lr = v/» # 1. The matrix 2-norm, which is also called the spectral norm, is
not easy to compute; however, it has many nice properties that make it valuable in
analytical investigations. Here is a list of some of the properties. The proofs are left
as exercises. (See §4.3 and §4.4 for singular values and eigenvalues.)

Theorem 4.16. The 2-norm has the following properties.

L || All2 = maX|z,=ly(l=1 |yt Az| = the largest singular value of A.
2. ||A|} = max)z),=1 2" (A" A)z = the largest eigenvalue of A A.

3. |Allz = | A%]|2-
4. ||Allz < ||Al|r, with equality if and only if rank(A) = 1.
5. 14113 < Al 1| Alloo-

Absolute norms

It stands to reason that if the elements of a vector = are less in absolute value than the
elements of a vector y then we should have ||z|| < ||y||. Unfortunately, there are easy
counterexamples to this appealing conjecture. For example, the function

1
llz|| = =} — z71%2t 3
is a norm, but

@)=+ = 1)

Since norms that are monotonic in the elements are useful in componentwise error
analysis (see §3, Chapter 3), we make the following definition.

= 0.96.

Definition 4.17. A norm || - || is ABSOLUTE if

lz] < lyl = llzll < [l 4.12)
or equivalently if
llell = [|l=]]]. (4.13)

Here are some comments on this definition.
¢ The equivalence of (4.12) and (4.13) is not trivial.

¢ The vector 1-, 2-, and oco-norms are clearly absolute.
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® We may also speak of absolute matrix norms. The matrix 1-, co-, and Frobenius
norms are absolute. Unfortunately, the matrix 2-norm is not absolute. However, it
does satisfy the relation

|Al < B = || Allz < [l|Alllz < || B|2-

Perturbations of the identity

The basic matrix operations — multiplication by a scalar, matrix addition, and matrix
multiplication— are continuous. The matrix inverse on the other hand is not obviously
continuous and needs further investigation. We will begin with perturbations of the
identity matrix. The basic result is contained in the following theorem.

Theorem 4.18. Let || - || be a consistent matrix norm on C™*". For any matrix P of
order n, if

1Pl < 1,

then I — P is nonsingular. Moreover,

- X1
I =Py XN < T (4.14)
1-|IP|
and
- (Rl
(I-P) -1 < : (4.15)
I =Py 1) < i
Proof. By Theorem 4.12 there is a vector norm, which we will also write || - ||, that is
consistent with the matrix norm || - ||. Now let z # 0. Then

(I - P)z|| = ||z — Pz|| 2 ||z]| - || Pz|
2 flzll = 1Pl = (1 = i 2IDllell > 0.

Hence by Theorem 3.21 A is nonsingular.

To establish (4.14), set G = (I — P)"'X. Then X = (I - P)G = G - PG.
Hence || X|| > ||G]| — || P}|I&]l. and (4.14) follows on solving for ||G||.

To establish (4.15), set H = (I — P)™! — I. Then on multiplyingby I — P, we
find that H — PH = P. Hence || P|| > || H || - || P|l|| # ||, and (4.15) follows on solving
for ||H||.m

Three comments.

¢ The results are basically a statement of continuity for the inverse of a perturbation
of the identity. If we take X = I in (4.14), then it says that ||(] — P)~!|| is near ||I||
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in proportion as P is small. The inequality (4.15) says that (I — P)~! is itself near
I1=1.

¢ The result can be extended to a perturbation A — E of a nonsingular matrix A.
Writt A— E = A(] - A™'E),sothat (A— E)~! = (- A"'E)A~1. Thus we have
the following corollary.

Corollary 4.19. If

A7 Bl <1,
then
-1
e Ay
Moreover, (A+ E)™! — A=l = [(I - A7 E) - I|A™1, so that
1A~ AE)

oA < .
A+ B)™ - AT < e

The above bounds remain valid when || A=} E|| is replaced by || EA™!||.

This corollary is closely related to results on the perturbation of solutions of linear
systems presented in §3.1, Chapter 3.

o If || || is a family of consistent norms, then (4.14) continues to hold for any matrix
X for which the product PX is defined. The most frequent application is when X is
a vector, in which case the bound assumes the form

I 7
0 - Py'el <

The Neumann series

In some instances it is desirable to have accurate approximations to (I — P)™1. We
can obtain such approximations by a generalization of the geometric series called the
Neumann series. To derive it, suppose I — P is nonsingular and consider the identity

(I-P)I+P+P*+4--- 4 P%)=1- Pk,

Multiplying this identity by (/ — P)~! and subtracting (I — P)~! from both sides, we
get

(I+P+P 4+...P"Y—(I-P)'=—(I- P)"1P:, (4.16)
Thus if I — P is nonsingular and the powers P* converge to zero, the Neumann series
I+P+P*+P+...

converges to (I — P)~1. In fact, even more is true.
g
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Theorem 4.20. Let P€C™ and suppose thatlimy_,, P* = 0. Then I — P is nonsin-
gular and

(I-P)!= iP’“.
k=0

A sufficient condition for P¥ — 0 is that|| P|| < 1 in some consistent norm, in which
case

1P|+

2 kY _ _ ~1
0+ P4 P ot P = (1= ) Sy

(4.17)

Proof. Suppose that P¥ — 0, but I — P is singular. Then there is a nonzero « such
that (I — P)z = 0 or Pz = z. Hence P*z = z, and I — P¥ is singular for all k. But
since P¥ — 0, for some k£ we must have || P||o, < 1, and by Theorem 4.18 I — P* is
nonsingular— a contradiction.

Since I — P is nonsingular, the convergence of the Neumann series follows on
taking limits in (4.16).

If || P|| < 1, where || - || is a consistent norm, then ||P¥|| < ||P||¥ — 0, and
the Neumann series converges. The error bound (4.17) follows on taking norms and
applying (4.14). m

The following corollary will be useful in deriving componentwise bounds for lin-
ear systems.

Corollary 4.21. If|P|* — 0, then (I — | P|)™! is nonnegative and
I(I-P) <~ P

Proof. Since |P*| < |P|*, P* approaches zero along with | P|*. The nonnegativity
of (I — | P|)~! and the inequality now follow on taking limits in the inequality

I+P+ Pl - .+ PF<T+|P|+|P?---|P* m

4.2. ORTHOGONALITY AND PROJECTIONS

In real 2- or 3-space any pair of vectors subtend a well defined angle, and hence we
can speak of vectors being at right angles to one another. Perpendicular vectors enjoy
advantages not shared by their oblique cousins. For example, if they are the sides of
a right triangle, then by the theorem of Pythagoras the sum of squares of their lengths
is the square of the length of the hypotenuse. In this subsection we will generalize the
notion of perpendicularity and explore its consequences.

Orthogonality

In classical vector analysis, it is customary to write the Cauchy inequality in the form
|zTy] = cos8)|z|lz||y||2. In real 2- or 3-space it is easy to see that § is the angle be-
tween z and y. This suggests that we use the Cauchy inequality to extend the notion
of an angle between two vectors to C™.
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Definition 4.22. Letz,ycC" be nonzero. Then the ANGLE 6(z, y) BETWEEN z AND y
is defined by

1 |1‘H?J,

_ 4.18
Telallulz (*18)

6(z,y) = cos™

If zty = 0 (whether or not z ory is nonzero), we say that z and y are ORTHOGONAL
and write

z Ly.

Thus for nonzero vectors orthogonality generalizes the usual notion of perpendic-
ularity. By our convention any vector is orthogonal to the zero vector.

The Pythagorean equality, mentioned above, generalizes directly to orthogonal
vectors. Specifically,

gLy = llz+yl3 =l + lyll3-
In fact,
e+ yll3 = (= + )"z +)
= zHz + yHy + 2Re(zMy)
=2z + 4ty
= [|=li3 + llyll3-

‘We will encounter orthogonal vectors most frequently as members of orthonormal
sets of vectors or matrices whose columns or rows are orthonormal.

Definition 4.23. Let uy, uz,...,ur€C™. Then the vectors u; are ORTHONORMAL if
u, _J 0 ifi#j,
“iuf“{ 1 ifi=j.
Equivalently if U = (uy uq -+ ug) then
VU = L. (4.19)

Any matrix U satisfying (4.19) will be said to be ORTHONORMAL. A square orthonor-
mal matrix is said to be ORTHOGONAL if it is real and UNITARY if it is complex.

Some comments on this definition.

¢ The term orthonormal applied to a matrix is not standard. But it is very useful. The
distinction between orthogonal and unitary matrices parallels the distinction between
symmetric and Hermitian matrices. A real unitary matrix is orthogonal.

® The product of an orthonormal matrix and a unitary matrix is orthonormal.
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e From (4.19) it follows that the columns of an orthonormal matrix are linearly in-
dependent. In particular, an orthonormal matrix must have at least as many rows as
columns.

¢ If U is unitary (or orthogonal), then its inverse is its conjugate transpose:

UHy =" = 1. (4.20)

¢ Forany nxp orthonormal matrix U wehave UTU = I,,. Hence from Theorem 4.16
and (4.10) we have

[Ulz=1 and {|U][r = v/p.

e If U is orthonormal and U A is defined, then
NWUAll, =1All,, p=2,F.
Similarly if AUH is defined, then
|AUR|l, = [|All,, p=2,F.

Because of these relations, the 2-norm and the Frobenius norm are said to be unitarily
invariant.

Orthogonal (and unitary) matrices play an important role in matrix computation.
There are two reasons. First, because of (4.20) orthogonal transformations are easy
to undo. Second, the unitary invariance of the 2- and Frobenius norms makes it easy
to reposition errors in a formula without magnifying them. For example, suppose an
algorithm transforms a matrix A by an orthogonal transformation ¢}, and in the course
of computing Q A we introduce a small error, so that what we actually compute is
B = QA+ E. Ifweset F = QTE, then we have the relation Q(A + F) = B;
i.e., the computed matrix B is the result of an exact application of ¢} to a perturbation
A + F of A. Now this casting of the error back onto the original data could be done
with any nonsingular Q — simply define F = Q~'B. But if Q is orthogonal, then
|F|lr = ||E||r, so that the error is not magnified by the process (For more on this
kind of backward error analysis, see §4.3, Chapter 2.)

The QR factorization and orthonormal bases

The nice properties of orthonormal matrices would not be of great value if orthonormal
matrices themselves were in short supply. We are going to show that an orthonormal
matrix can be obtained from any matrix having linearly independent columns. We ac-
tually prove a more general result.
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Theorem 4.24 (QR factorization). Let X ¢C™*? have rank p. Then X can be writ-
ten uniquely in the form

X = QR, (4.21)

where () is an n X p orthonormal matrix and R is upper triangular matrix with positive
diagonal elements.

Proof. The proof is by inductionon p. Forp = 1, take Q = X/|| X||zand R = || X||..
For general p we seek ) and R in the partitioned form
Ry r
(6 2= @ o) (31 717).
Pop
This is equivalent to the two equations:
1. X;=001Rn,
1= @1Ru (4.22)
2. 2p = Qi71p + GpPpp-

The first equation simply asserts the existence of the factorization for X, which exists
and is unique by the induction hypothesis.
Let

T1p = QHzp and ¢, = Tp — Ql"'lp' 4.23)
Since QYQ; = I,
QY'dy = Qi'z, — QT Qur1p = r1p — 11, = 0.

Hence §p, is orthogonal to the columns of (J;. Consequently, if §, # 0, we can deter-
mine p,,, and g, from (4.22.2) by setting

Pop = ldpllz  and gy = dp/ ppp- (4.24)

To show that §,, is nonzero, note that ;1 has positive diagonal elements and hence
is nonsingular (Theorem 2.1, Chapter 2). Thus from (4.22.1),¢; = X 1Ri'11. Hence

gp = Tp — Xl(Rl—llrlp)‘

The right-hand side of this relation is a nontrivial linear combination of the columns
of X, which cannot be zero because X has full column rank.

The uniqueness of the factorization follows from the uniqueness of the factoriza-
tion X; = @Ry, and the fact that formulas (4.23) and (4.24) uniquely determine
T1p» Tpp> and q,. W

¢ The factorization whose existence is established by the theorem is called the QR fac-
torization of X . This factorization is one of the most important tools in matrix com-
putations.



SEC. 4. ANALYSIS 59

¢ From the relation X = QR and the nonsingularity of R it follows that R(Q) =
R(X )—in other words, the columns of ¢} form an orthonormal basis for the column
space of X . Since any subspace has a basis that can be arranged in a matrix, it follows
that:

Every subspace has an orthonormal basis.

o Let Xy = (21 22 -+ zx)and Qr = (¢1 ¢2 --- k), and let Ry, be the leading
principal submatrix of R of order k. Then from the triangularity of R it follows that
Xr = QrRy. In other words, the first k£ columns of ¢) form an orthonormal basis for
the space spanned by the first & columns of X .

o If X is asubspace and if X is a basis for X, then we can extend that basis to a basis
(X Y)for C™. The Q R factorization of (X Y") gives an orthonormal basis ¢} for C"
whose first £ columns are an orthonormal basis for X . The last n—k columns of () are
a basis for a complementary subspace whose vectors are orthogonal to &X'. This space
is called the orthogonal complement of X'. Thus we have shown that:

Every subspace has an orthogonal complement. (4.25)

We will write X'} for the orthogonal complement of a subspace A'. It is worth noting
that the existence of orthogonal complements is also implied by (3.11).

¢ Looking at the above construction in a different way, suppose that X is an orthonor-
mal basis for X'. Then the first k¥ columns of () are the columns of X. Consequently:

If X is orthonormal, then there is an orthonormal matrix Y such that (X Y) is
unitary.

In particular, if X = z is a vector, it follows that:

If z is nonzero, then there is a unitary matrix whose first column is (4.26)

z/||z]l2.

This result is useful both in theory and practice. In fact, in §1, Chapter 4, we will show
how to use Householder transformations to efficiently construct the required matrix.

o The proof of the existence of the QR factorization is constructive. The resulting
algorithm is called the classical Gram—Schmidt algorithm. Be wamed that the al-
gorithm can be quite unstable; however, it has the theoretical advantage that it can be
used in arbitrary inner-product spaces. We will return to the Gram—Schmidt algorithm
in §1.4, Chapter 4.

Although there are infinitely many orthonormal bases for a nontrivial subspace of
C", they are all related by unitary transformations, as the following theorem shows.
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Theorem 4.25. Let X' C R" be asubspaceandlet X and X be two orthonormal bases
for X. Then XH X is unitary and

X = x(x"X).

Proof. Because X and X span the same space, there is a unique matrix U such that
X = XU. Now

I=X"x =yHx8xy = vhv.
Hence U is unitary. Moreover,
XX =xUxv=U. =

Orthogonal projections
Imagine an eagle flying over a desert, so high that it is a mere point to the eye. The
point on the desert that is nearest the eagle is the point immediately under the eagle.
Replace the eagle by a vector and the desert by a subspace, and the corresponding near-
est point is called the projection of the vector onto the subspace.

To see how projections are computed, let ¥ C C" be a subspace and let zeC".
Let ¢} be an orthonormal basis for A" and define

Py = QQM.
Then we can write Z in the form
2=Py+(I—-Px)z=zx + z1. 4.27)

Clearly 2y = Q(Q"2)€X, since it is a linear combination of columns of Q. More-
over,

QYz = QH(I - @Mz = (@™ - Q"QQM)z = (QH - @)z = 0.

Hence z, lies in the orthogonal complement X'; of &'.
The decomposition (4.27) is unique. For if z = 2y — Z; were another such de-
composition, we would have

0= (zx—2x)+ (2L — 21).

But (zy — 2x)€X while (z; — 2, )€X . Consequently, they are both zero.

The vector zy = Py z is called the orthogonal projection of z onto X . The vector
z) = (I — Py)z is called the orthogonal projection of z onto the orthogonal comple-
ment of X'. We write Pj, for the projection matrix onto the orthogonal complement of
X. When X is clear from context, we write simply P, .

The operation of projecting a vector is clearly linear. It therefore has a unique ma-
trix representation, which in fact is Py. We call Py the orthogonal projection matrix
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onto X — or when it is clear that an operator and not a vector is meant, simply the
orthogonal projection onto A. The projection matrix, being unique, does not depend
on the choice of an orthogonal basis ).

The projection matrix Py satisfies

P2 =Py and PY = Py;

i.e., it is idempotent and Hermitian. It is an interesting exercise to verify that all Her-
mitian, idempotent matrices are orthogonal projections.

We can obtain another very useful expression for Py. Let X be a basis for X', and
let X = @ R be its QR factorization [see (4.21)]. Then

XHX = R"QHQR =R¥R and Q= XR™.
It follows that
Py =QQ" = XR'RUX = X(RIR) X! = X(xHx)1xH,

As was suggested at the beginning of this subsection, the orthogonal projection of
a vector onto a subspace is the point in the subspace nearest the vector. The following
theorem gives a precise statement of this assertion.

Theorem 4.26. Let X' C C™ be a subspace and let z€C"™. Then the unique solution
of the problem

minimize ||z — z||2
subjectto zel

is the orthogonal projection of z onto x.

Proof. Let z€X. Since Py(z—2) L P, (z—z), we have by the Pythagorean equality

Iz = 2l = lI1Px(z = @)IIF + || Po(z - =)I3

(4.28)
= ||Pxz — z|}3 + || PL2(13.

The second term in the right-hand side of (4.28) is independent of z. The first term is
minimized precisely whenz = Pyz. &

4.3. THE SINGULAR VALUE DECOMPOSITION

Another way of looking at the QR factorization is as a reduction to triangular form by
unitary transformations. Specifically, let X = () x R be a QR factorization of X and

let @ = (Qx @) beunitary. Then

ox-(3)
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In other words there is a unitary matrix ¢ that reduces X to upper triangular form.
(This reduction is called the QR decomposition; see §1.1, Chapter 4.)

The singular value decomposition is a unitary reduction to diagonal form. The
degrees of freedom needed for the additional simplification come from operating on
the matrix on both the left and the right, i.e., transforming X to UT X'V, where U and
V are unitary. This subsection is concerned with the singular value decomposition—
its existence and properties.

Existence

The singular value decomposition can be established by a recursive argument, similar
in spirit to the proof of Theorem 2.13, which established the existence of the LU de-
composition.

Theorem 4.27. Let X ¢C"*P, where n > p. Then there are unitary matrices U and
V such that

2
H —_
U XV_(O),

where
¥ = diag(oy,09,...,0p)

with

Proof. The proof is by recursive reduction of X to diagonal form. The base case is
when X isa vectorz. If z = O take U = I and V' = 1. Otherwise take U to be any
unitary matrix whose first column is z /||z||, [see (4.26)] and let V' = (1). Then

11 _ [zl
U :cV_( 0 ),

which is in the required form.
For the general case, let # and v be vectors of 2-norm one such that

Xv=[|X|2u = ou.
Let (u U ) and (v V) be unitary [see (4.26)]. Then
)= cully WHXV _fc wfl
T \oUHu UHXV) ~\0 X )°

We claim that w = 0. For if not, we have

0 %) e

s

(u ﬁ)HX(v

o _Ltewl,

, V1t

= o + cllullz + O(e).

-1
1+ eflwlif)e
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If follows that if € is sufficiently small, then || X ||z > o, which contradicts the defini-
tion of o. .
Now by the induction hypothesis there are unitary matrices U and V' such that

oo (T
v = (3).

where ¥ is a diagonal matrix with nonincreasing, nonnegative diagonal elements. Set

U=(u 0U) and V= (v VV).

Then U and V are unitary and
o 0 c 0
H = - A v = 3
UXV_(O UHXV) g ? ’

a matrix which has the form required by the theorem. m
Here are some comments on this theorem.

¢ The proof of the theorem has much in common with the proof of the existence of
LU factorizations (Theorem 2.13). However, unlike that proof, the proof of the exis-
tence of the singular value decomposition is not constructive, since it presupposes one
has on hand a vector that generates the norm of X.

¢ The numbers o; are called the singular values of X. The columns of
U=(ug ug-+ up) and V =(vy v2 -+ vp)

are called left and right singular vectors of X . They satisfy

Xvi:a,-u,-, i=1,2,...,p,
and

XH'U,,'——‘O',"U,', i:1,2,...,p.
Moreover,

XHy; =0, 1=p+l,p+2,...,n.

¢ Tt often happens that » > p, in which case maintaining the nxXn matrix U can be
burdensome. As an alternative we can set

Up = (w1 ug -+ up) (4.29)
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in which case
X = U3V,

This form of the decomposition is sometimes called the singular value factorization.

¢ The singular value decomposition provides an elegant full-rank factorization of X .
Suppose o3 > 0 = Op41 = -+ = 0p. Set

Uk =(U1 Ug +-- Uk)’
Vi = (v1 v2 ++- ),
Y = diag(oy,09,...,0%).

Then it is easily verified that
X = U BV

is a full-rank factorization of X . Since the rank of the factorization is k, we have the
following important relation.

The rank of a matrix is the number of its nonzero singular values.

¢ By the proof of Theorem 4.27 we know that:
The 2-norm of a matrix is its largest singular value.

From the definition of the 2-norm (and also the proof of the existence of the singular
value decomposition) it follows that

o1 = ”ma.x X2l = || X]|2- (4.30)

v||2=1

Later it will be convenient to have a notation for the smallest singular value of X .
We will denote it by

inf(X) & 0,(X). 4.31)

¢ Since the Frobenius norm is unitarily invariant, it follows that
P
IXIIE = VX VIE = 1213 = > oF.
i=1
In other words:

The square of the Frobenius norm of a matrix is the sum of squares of its singular
values.



SEC. 4. ANALYSIS 65

The characterizations of the spectral and the Frobenius norms in terms of singular
values imply that

1X1l2 < 1 X|lr < VBl X]]2-

They also explain why, in practice, the Frobenius norm and the spectral norm often
tend to be of a size. The reason is that in the sum of squares 0§ + 0% + - - - + 02 if 02 is
just a little bit less than ¢, the squaring makes the influence of o and the subsequent
singular values negligible. For example, suppose p = 101, 0y = 1, and the remaining
singular values are 0.1. Then

IX||IZ = 1+ 100-0.01 = 2.
Thus || X[lr = V22 1 = || X]},.

Uniqueness

The singular value decomposition is one of the many matrix decompositions that are
“essentially unique.” Specifically, any unitary reduction to diagonal form must exhibit
the same singular values on the diagonal. Moreover, the singular vectors correspond-
ing to single distinct singular values are unique up to a factor of modulus one.

Repeated singular values are a source of nonuniqueness, as the following theorem
shows.

Theorem 4.28. Let X eC™*P (n > p) have the singular value decomposition

UixVv = (ﬁ) . (4.32)
Let
FHXT = (g) (4.33)

be another singular value decomposition. Then $ = %. Moreover, V = VQ where
Q = VUV js unitary and

o; #0; = ¢; =0. (4.34)

A similar statement is true of U provided we regard the singular vectors p41,. .. ,Un
as corresponding to zero singular values.

Proof. From (4.32) and (4.33) we have

VEXHXV =52 and VHXHXV = £2.
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It follows that with ¢ = vHEY
QHE2Q = 22. (4.35)

To establish that & = 3, let A be regarded as a variable. Taking determinants in
the equation QH(AI — £2)Q = Al — £2, we find that

det*(Q)(A - o) (A= 03)---(A=p) = (A= 6])(A = 63)---(A - &7).
(4.36)

Since @ is nonsingular, det(Q) # 0. Hence the left- and right-hand sides of (4.36) are
polynomials which are proportional to each other and therefore have the same zeros
counting multiplicities. But the zeros of these polynomials are respectively the num-
bers o2 and ¢2. Since these numbers are arranged in descending order, we must have
5=3.

To establish (4.34), write (4.35) in the form

»2Q = QX2
Then o?gi; = 02gij, or (0f — 0?)gi; = 0. Hence if ; # o, then g;; = 0. m

In consequence of (4.34), @ is block diagonal, each block corresponding to a re-
peated singular value. Write Q = diag(@1, @2, ... ,Qk), and partition

V=WV, Vi) and V=V V. Vi)
conformally. Then
‘?izv;'Qia i=1,2,...,k

Thus it is the subspace spanned by the right singular vectors that is unique. The singu-
lar vectors may be taken as any orthonormal basis— V;, V,-, what have you — for that
subspace. However, once the right singular vectors are chosen, the left singular vec-
tors corresponding to nonzero singular values are uniquely determined by the relation
XV = UZ. Analogous statements can be made about U.

The nonuniqueness in the singular value decomposition is therefore quite limited,
and in most applications it makes no difference. Hence we usually ignore it and speak
of the singular value decomposition of a matrix.

Unitary equivalence

Two matrices X and Y are said to be unitarily equivalent if there are unitary matrices
P and Q such that Y = PHXQ. If X has the singular value decomposition (4.32),
then

(P = (3)

is a singular value decomposition of Y. It follows that:
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Unitarily equivalent matrices have the same singular values. Their singular vec-
tors are related by the unitary transformations connecting the two matrices.

The proof of the following result, which is an immediate consequence of the proof
of Theorem 4.28, is left as an exercise.

The singular values of XX are the squares of the singular values of X. The
nonzero singular values of X X! are the squares of the nonzero singular values
of X.

Weyl’s theorem and the min-max characterization

In (4.30) we characterized the largest singular value of X as the maximum of || X v||,
over all vectors v of norm one. This characterization has a far reaching generaliza-
tion — the famous min-max characterization. We will derive it as a corollary of a the-
orem of Weyl, which is important in its own right.

In stating our results we will use the notation o;( X) to refer to the ith singular
value (in descending order) of the matrix X. As above we will write

U = (w1 ug -+ k)
Vi = (v w2 -+ k),
Yy = diag(o1,09, ... ,0k),

although this time without any assumption that o3 = 0. Note that
XVi=UiSy and XUUp = Vi34
In addition we will write
X = Up S V. (4.37)

Note for future reference that the only candidates for nonzero singular values of X —
Xk are ogq1,...,0p.

Theorem 4.29 (Weyl). Let X,Y €eC™*? withn > p, and letrank(Y') = k. Then

max || Xwllz > op1(X),

weN(Y)
[[wil2=1
and
Join || Xwllz < 0p-k(X).
flwll2=1
Hence

0'1(X - Y) > 0'k+1(X), (438)
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and
op(X +Y) < opi(X).
Moreover, if A = B 4 C, then
oi+j-1(4) < 0i(B) + 0;(C). (4.39)

Proof. We will establish only the inequalities involving maxima, the others being es-
tablished similarly.

Let RSH be a full-rank factorization of Y. Since the matrix SHV}.; has more
columns than rows, it has a nontrivial null space. Let a be a vector of 2-norm one
such that SHV; 14 = 0. Then w = Vi41a€N(Y). Moreover,

o} (X -Y) 2 (X - Y)uw|}
= (| Xwll2
= || X Vitaall3
= [|Uk+1Zk+10ll3

the last inequality following from the fact that 3, a? = 1.
To prove (4.39), we start with ¢ = 5 = 1. Then

a1(4) = [|Allz = |B + Cllz < | Bllz + ICl2 < 01(B) + 01(C)-

Now let B;_; and C;-; be formed in analogy with (4.37). Then o1(B — B;—1) =
o;(B)and 01(C — C;-1) = 7;(C). Moreover, rank(B;_1 + C;_1) < i+7—2. Hence
from (4.38)

0i(B) + 0;(C) = 01(B — Bi) + 01(C - C})
> 01(A = Bi-1 - Cj-1)
> 0irj-1(4). =

The min-max characterization of singular values follows immediately from this
theorem.

Corollary 4.30. The singular values of X have the following characterizations:

o(X) = dim(Wn)lg;;—k+l “I:r:??):(l [| X wll2, k=1,2,...,p, (4.40)

and

X)= in [ Xwllz, k=1,2...,p. 441
ak(X) s ([ X wll2 P (4.41)
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Proof. We will prove only (4.40), leaving (4.41) as an exercise.
Given a subspace W of dimension p—k+1, let Y be a matrix of rank k—1 whose
null space is YW. Then by Weyl’s theorem
max max || Xwl|z > ox(X).

wEW weN(Y)
llwllz=1 " jlwliz=1

The minimum is attained when W = span(vk, Vk41,...,0p). B

The perturbation of singular values

One of the reasons the singular value decomposition is useful is that the singular values
are insensitive to perturbations in the matrix. This fact is also a corollary of Weyl’s
theorem.

Corollary 4.31. Let X, E€cC"*?, Then
loi(X + E) — o;(X)| < || E|l2, i=1,2,...,p. (4.42)

Proof. In (4.39) make the substitutions A = X + F, B = X, and C = E. Then with
J=1

0i(X + E) < 0i(X) + 01(E) = 0i(X) + || E]}2-

With the substitutions A = X, B = X + E, and C = — F, we obtain the inequality
0i(X) < 0:i(X + E) + || E]|2.

The two inequalities imply (4.42). m

The inequality (4.42) states that no singular value of a matrix can be perturbed by
more than the 2-norm of the perturbation of the matrix. It is all the more remarkable,
because the bounds can be attained simultaneously for all 7. Simply set E = eUprH.
Then the singular values of X + F are 0; + € = g; + || E||2.

Low-rank approximations

We have already observed thatif o > ox41 = 0, then X has rank k. Since in practical
applications matrices are generally contaminated by errors, we will seldom encounter
a matrix that is exactly defective in rank. Instead we will find that some of the singular
values of the matrix in question are small.

One consequence of small singular values is that the matrix must be near one that
is defective in rank. To quantify this statement, suppose that the small singular values
are k41, 0k42,- - ,0p. If we define X by (4.37), then the nonzero singular values
of Xy — X are oxy1,0%42,... ,0p. Hence we have

IX - Xill = o1 and ||X = Xall = /02, + oFyp + <+ 02,

The following theorem shows that these low-rank approximations are optimal in the
2- and Frobenius norms.
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Theorem 4.32 (Schmidt-Mirsky). For any matrix X €¢C™*?, if Y €C™*? js of rank
k, then

X =Yll2 2 ox+1(X),
and

IX = YIIE 2 0r41(X)2 4 0rga(X)2 + - + op( X )2
Equality is attained for both norms whenY = X}, is defined by (4.37).

Proof. We have already established equality for Y = X. The first inequality is just
(4.38) written in terms of norms.

For the second inequality,set A = X, B = X —Y,and C =Y in Theorem 4.29.
Then for j = k+1,

0k4i(X) S 0i(X = Y) + opa(Y) = 0i( X - Y),

the last equality following from the fact that rank(Y') = k. Hence

p—k P
Y -X|32) od(X-Y)> ) oi(X). =
i=1 i=k+1

4.4. THE SPECTRAL DECOMPOSITION

It might be hoped that symmetry would force the left and right singular vectors of a
Hermitian matrix to be the same. However, they need not be, even when the matrix is
a scalar. For example, the singular value decomposition of the scalar (—1) is

(-D(=1(1) = (1),

so that the “left singular vector” (—1) and the “right singular vector” (1) have opposite
signs. However, if we relax the requirement that the singular values be positive, we
can obtain a symmetric decomposition.

Specifically, let v be a vector of 2-norm one such that

vH Av is maximized, (4.43)

and let (v V) be unitary. Consider the matrix
-~ H o A wh
(v V) A(v V) = <w /i)'
We claim that w = 0. For otherwise

H
11 AowH
<mem@1( ) Q,ﬂ)(1)>A+mmM+owx

€ew ew



SEC. 4. ANALYSIS 71

which contradicts the maximality of A. Thus
~ H . AO
(v V) Ao V)= (0 fi)

We can continue the reduction to diagonal form with /i, as we did with the singular
value decomposition. The result is the following theorem.

Theorem 4.33 (The spectral decomposition). If AcC™*™ is Hermitian, there is a
unitary matrix U such that

UHAU = diag(A1, Aa, - -, An), (4.44)
where
AL 2 Ay >0 2 A

The decomposition (4.44) is called the spectral decomposition of A. The numbers
A; are called eigenvalues of A and the columns u; of U are called eigenvectors. The
pair (A;, u;) is called an eigenpair. The members of an eigenpair satisfy the equation

Aui:)\,-ui, i:l,?,...,n.

Many properties of the singular value decomposition hold for the spectral decom-
position. The eigenvalues of a Hermitian matrix and their multiplicities are unique.
The eigenvectors corresponding to a multiple eigenvalue span a unique subspace, and
the eigenvectors can be chosen as any orthonormal basis for that subspace.

It is easily verified that the singular values of a Hermitian matrix are the absolute
values of its eigenvalues. Of particular importance is the following result, whose proof
is left as an exercise.

The eigenvalues of X" X are the squares of the singular values of
X . Their eigenvectors are the corresponding right singular vectors
of X.

(4.45)

The invariance of singular values under unitary equivalences has a counterpart for
eigenvalues of a Hermitian matrix. Specifically,

IFUR AU = A is the spectral decomposition of A and B = VHAV, where V
is unitary, then (VHU)E B(VHU) = A is the spectral decomposition of B.

The transformation A — VHAV is called a unitary similarity transformation. The
above result shows that unitary similarities preserve eigenvalues and transform the
eigenvectors by the transpose of the unitary matrix of the similarity transformation.

Theorem 4.29 and its consequences are also true of the eigenvalues of Hermitian
matrices. We collect these results in the following theorem. Here the :th eigenvalue
in descending order of a Hermitian matrix is written A;( A).
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Theorem 4.34. Let A, B, and C be Hermitian of order n. Then
1. (Weyl) Ifrank(B) = k, then
M(A = B) > Me+1(A)
and
An(A = B) < An—r(A).
2. (Weyl) The eigenvalues of the sum A = B + C satisfy
Aitj-1(4) £ Mi(B) + A;(C).

3. (Fischer) The eigenvalues of A have the min-max characterization

Ar(A) = min max wAw (4.46)
dim(W)=n—k+1 IszIEzvzl

and the max-min characterization

. H
= Aw. .
WA= e Bl A 447

4, If F is Hermitian, then
[Ai(A+ E) = M(A < ||Ell2, i=1,2,...,n.
5. (Cauchy interlacing theorem) IfV is annXx(n—1) orthonormal matrix, then

A(4) 2 M(VEAV) 2 Ay(A)
> M(VHAV) > -+ > Xan1(VHAV) > Ma(A).

Proof. The proofs of the first four items are mutatis mutandis the same as the corre-
sponding results for the singular values. The last is established as follows. For any
k < n—1let W C C* ! be a k-dimensional subspace for which

min wVHAVw = A (VHAV).

€
llwilz=1
Then VW C C" is a k-dimensional subspace. Hence by (4.47),

M(VEAV) = min «'VEAVw = min M4z < A (A).
weW zEVW

fwllz=1 llzll2=1

The fact that \,(VEAV) > Ag;1(A) follows similarly from (4.46). m
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4.5. CANONICAL ANGLES AND THE CS DECOMPOSITION

In some applications we need to say how near two subspaces are to one another. The
notion of a set of canonical angles between subspaces provides a convenient metric.
In this subsection we establish the properties of canonical angles and introduce the
closely related CS decomposition.

Canonical angles between subspaces

In (4.18) we saw how the angle between two vectors 2 and ¥ can be defined in terms
of their inner product. An analogous definition can be made for subspaces; however,
instead of a single angle, we obtain a collection of angles. For convenience we will
assume that the subspaces in question are of the same dimension; however, the results
can easily be extended to subspaces of different dimensions.

Let X', Y C C™ be subspaces of dimension p, and let X and Y be orthonormal
bases for X and V. Let

UH(XHY)V =T = diag(11,72, - - - »7p) (4.48)

be the singular value decomposition of XHY .

The numbers «; are characteristic of the subspaces A" and Y and do not depend on
the choice of orthonormal bases. For if X is another orthonormal basis, then by The-
orem 4.25 X1 X is unitary, and X = X(X"X). Hence X1y = (XHX)H(xHy),
Thus XHY and XHY are unitarily equivalent and have the same singular values 7;.

Since || XHY||2 < || X||2l|Y ||z = 1, the 4; are not greater than one in magnitude.
This along with their uniqueness justifies the following definition.

Definition 4.35. Let X', C C" be subspaces of dimension p, and let X andY be
orthonormal bases for X and Y. Let the singular values of XHY be v;,7,. .. Y-
Then the CANONICAL ANGLES §; BETWEEN X" AND ) are defined by

,-:cos_lfy.i, 1=1,2,...,p.
We write
O(Xx,Y) = diag(61,02,...,6,).

A pair of orthonormal bases Xy,; and Y3,; for A" and Y are said to be biorthogonal if
X ,’fini is diagonal. From (4.48) it follows that the matrices Xy; = XU and Y, = YV
are orthonormal bases for X’ and Y satisfying X}1Y; = cos ©(X,Y) and hence are
biorthogonal. From the uniqueness properties of the singular value decomposition it
follows that any such basis must be essentially unique and the diagonal elements of
X ng; must be the cosines of the canonical angles between A" and Y. We summarize
these results in the following theorem.

Theorem 4.36. Let X', C C" be subspaces of dimension p. Then there are (essen-
tially unique) CANONICAL ORTHONORMAL BASES X andY for X’ and ) such that

XPY = cos (X, ).
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Two subspaces are identical if and only if their canonical angles are zero. Thus a
principal application of canonical angles is to determine when subspaces are near one
another. Fortunately, we do not have to compute the canonical angles themselves to
test the nearness of subspaces. The following theorem shows how to compute matrices
whose singular values are the sines of the canonical angles. As the subspaces approach
one another, these matrices approach zero, and conversely.

Theorem 4.37. Let X', C C" be subspaces of dimension p, and let X andY be or-
thonormal bases for X andY. Let(X X, )and(Y Y, ) be unitary. Then the nonzero
singular values of X9UY, or X fY are the sines of the nonzero canonical angles be-
tween X’ andY. Alternatively, if Py and Py are the orthogonal projections onto X’ and
Y, then the sines of the nonzero canonical angles between X’ and Y are the nonzero
singular values of Py(I — Py) or (I — Py )Py.

Proof. Without loss of generality we may assume that X and Y are canonical bases
for X and ). Then the matrix

XH(yY v )=(T §) (4.49)
has orthonormal rows. Hence
I=T%4 58H

It follows that SSH = I — I'? is diagonal. Since the diagonal elements of I' are the
canonical cosines, the diagonal elements of 5'S H are the squares of the canonical sines.
Thus the nonzero singular values of S are the sines of the nonzero canonical angles.
The result for XY is established similarly.
To establish the result for Py (I — Py) note that

(X X)) Pe(I = Py)(Y Y1) = (X X1) (XXH)(I-Y.YE)Y v))

(X Hy, 0
= 0 .k
The nonzero singular values of this matrix are the nonzero singular values of X Hy, .

which establishes the result. The result for (I — Py )Py is established similarly. ®

Thus although we cannot compute, say, ||©(X,Y)||r directly, we can compute
|| sin©(X, Y)||r by computing, say, || XY, ||p. The latter is just as useful as the for-
mer for assessing the nearness of subspaces.

The CS decomposition

Suppose that we have a partitioned unitary matrix

_(Qu @12
Q= (Q21 sz) ’
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where )11 is of order m. If we identify this matrix with the matrix (Y Y, ) in (4.49)
and set XH = (I,, 0),then § = Q. It follows that if we regard the singular values
of (11 as cosines then the singular values of ()1, are sines. A similar argument shows
that the singular values of (}5; are the same sines. Moreover, passing to } 2 brings us
back to the cosines.

These relations are a consequence of a beautiful decomposition of a unitary ma-
trix called the CS decomposition. The proof of the following theorem is tedious but
straightforward, and we omit it.

Theorem 4.38 (The CS decomposition). Let the be an unitary matrix () of order n
be partitioned in the form

Q= (Qu Qu)
Qn Q)
where ()1, is of order m < n/2. Then there are unitary matrices Uy, V;€
U, VoeClnm)x(n=m) guch that

C™*™ and

r = 0
(Uf{ 0 ) (Qu Qm) (Vl 0) —_[(_% T 0
0 U8)\Qn Qn/\0 Vi 0 0 Iom ’
where I and ¥ are diagonal of order m and

rr+x?=1_.

In effect the theorem states that the blocks in a partitioned unitary matrix share
singular vectors. An important application of the decomposition is to simplify proofs
of geometric theorems. It is an instructive exercise to derive the results on canonical
angles and bases using the CS decomposition.

4.6. NOTES AND REFERENCES
Vector and matrix norms

There are two approaches to norms. The essentially axiomatic approach taken here
was used by Banach [14, 1922] and Wiener [340, 1922] in defining normed linear
spaces. Earlier Minkowski [228, 1911] defined norms geometrically in terms of com-
pact, convex sets containing the origin in their interior (the unit ball {z : ||z|| = 1} is
such a set). For more on this approach, see [189}].

The Cauchy inequality (in scalar form) is actually due to Cauchy [57, 1821, Note
IT, Théorem XVI]. It is also associated with the names Schwarz and Bunyakovski.

The spectral norm was introduced by Peano [258, 1888]. The introduction of the
Frobenius norm qua norm is due to Frobenius [124, 125, 1911].

For a proof of the equivalence of the characterizations (4.12) and (4.12) see [310,
Theorem L.1.2].

For a systematic treatment of vector and matrix norms and further references, see
[310].
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Inverses and the Neumann series

For references on the perturbation of inverses and linear systems, see §4.6, Chapter 3.
The Neumann series originated as a series of powers of operators [242, 1877].

The QR factorization

In some sense the QR factorization originated with Gram [158, 1883], who orthogo-
nalized sequences of functions, giving determinantal expressions for the resulting or-
thogonal sequences. Later, Schmidt [272, 1907] gave the algorithm implicitly used in
the proof of Theorem 4.24, still in terms of sequences of functions. The name of the de-
composition is due to Francis [123], who used it in his celebrated QR algorithm for the
nonsymmetric eigenvalue problem. Rumor has it that the “Q”in QR was originally an
“O” standing for orthogonal. It is a curiosity that the formulas for the Gram—Schmidt
algorithm can be found in a supplement to Laplace’s Théorie Analytique des Proba-
bilités 211, 1820]. However, there is no notion of orthogonalization associated with
the formulas.

Projections

Not all projections have to be orthogonal. Any idempotent matrix P is a projection
onto R(P) along R(PH).

The singular value decomposition

The singular value decomposition was introduced by Beltrami [25, 1873] and inde-
pendently by Jordan [193, 1874]. They both worked with quadratic forms; however,
their proofs transfer naturally to matrices. Beltrami derives the decomposition from
the spectral decomposition of X HX [see (4.45)]. Jordan showed that vectors % and v
of norm one that maximize the bilinear form u” X v will deflate the problem as in the
proof of Theorem 4.27. The construction used here due to Golub and Van Loan [153].
The chief disadvantage of this approach is that uniqueness has to be proven explicitly
(Theorem 4.28). For another approach to uniqueness see [319].

In another line of development, Schmidt [272, 1907] established a singular value
decomposition for integral operators and showed that it gave optimal low-rank approx-
imations (Theorem 4.32) in the Frobenius norm. The theorem was rediscovered in
terms of matrices by Eckart and Young [113, 1936], whose names are sometimes as-
sociated with it. Mirsky [229, 1960] established the optimality in all unitarily invariant
norms. The proofs given here are essentially due to Weyl [338, 1912], who established
the results for the spectral decomposition and then noted that they could be adapted to
the singular value decomposition.

The min-max characterization is due to Fischer [119, 1905], who proved it for pen-
cils of quadratic forms. The name Courant, who generalized it to differential operators
[76, 1920], is sometimes associated with the theorem.

For more on the history of the singular value decomposition see [303].
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The spectral decomposition

The spectral decomposition, written as a linear system of the form Au = Aw, is due
to Cauchy [58, 1829}, who established the orthogonality of the eigenvectors and his
remarkable interlacing theorem (see Theorem 4.34) for principal submatrices.

Canonical angles and the CS decomposition

The idea of canonical angles between subspaces is due to Jordan [194, 1875]. The
CS decomposition, which is a lineal descendent of Jordan’s work, is implicit in an im-
portant paper by Davis and Kahan [88, 1970] and in a paper by Bjorck and Golub [43,
1973]. The explicit form and the name is due to Stewart [290, 1977]. It was general-
ized to nonrectangular partitions by Paige and Saunders [249]. These decompositions
are closely related to the statistician Hotelling’s work on canonical correlations [185,
1936].

Paige and Wei [250] give a historical survey of canonical angles and the CS de-
composition. For computational algorithms see [295] and [327].

5. ADDENDA

5.1. HISTORICAL
On the word matrix

According to current thinking [221], about six thousand years ago the region between
the Dnieper and Ural rivers was occupied by people speaking a language known as
proto-Indo-European. Fifteen hundred years later, the language had fragmented, and
its speakers began to spread out across Europe and Asia in one of the most extensive
linguistic invasions ever recorded. From Alaska to India, from Patagonia to Siberia,
half the world’s population now speak Indo-European languages.

One piece of evidence for the common origin of the Indo-European languages is
the similarity of their everyday words. For example, the word for two is dva in San-
skrit, duo in Greek, duva in Old Church Slavonic, and dau in Old Irish. More to our
purpose, mother is mather in Sanskrit, mater in Greek, mati in Old Church Slavonic,
mathir in Old Irish — and mater in Latin.

Matrix is a derivative of the Latin mater. It originally meant a pregnant animal and
later the womb. By extension it came to mean something that surrounds, supports, or
sustains — for example, the material in which a fossil is embedded. In 1850 Sylvester
used it to refer to a rectangular array of numbers. It acquired its present mathemat-
ical meaning in 1855 when Cayley endowed Sylvester’s array with the usual matrix
operations.

History

A definitive history of vectors, matrices, and linear algebra has yet to be written. Two
broad traditions can be discerned. The first begins with quaternions and passes through
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vector analysis to tensor analysis and differential geometry. This essentially analytic
theory, whose early history has been surveyed in [80], touches only lightly on the sub-
ject of this work.

The second tradition concerns the theory of determinants and canonical forms.
Muir [238] gives an exhaustive history of the former in four volumes. Kline, who
surveys the latter in his Mathematical Thought from Ancient to Modern Times [199],
points out that most of the fundamental results on matrices — their canonical forms
and decompositions— had been obtained before matrices themselves came into wide-
spread use. Mathematicians had been working with linear systems and quadratic and
bilinear forms before Cayley introduced matrices and matrix algebra in the 1850s [59,
60], and they continued to do so.

The relation of matrices and bilinear forms is close. With every matrix A one can
associate a function

flm,y) =4z = ajuiz;,

6]

called a bilinear form, that is linear in each of its variables. Conversely, each bilinear
form Ei’ ; @i YiT; corresponds to the matrix of its coefficients a;;. Under a change of
variables, say 2 = P2 and y = 4, the matrix of the form changes to QHAP. Thus
the reduction of a matrix by transformations is equivalent to simplifying a quadratic
form by a change of variables.

The first simplification of this kind is due to Lagrange [205, 1759], who showed
how to reduce a quadratic form to a sum of squares, in which the k£th term contains only
the last n—k+1 variables. His purpose was to determine if the form was positive def-
inite. Gauss [130, 131, 1809, 1810] introduced essentially the same reduction —now
called Gaussian elimination —to solve systems and compute variances arising from
least squares problems. Throughout the rest of the century, various reductions and
canonical forms appeared in the literature: e.g., the LU decomposition by Jacobi [191,
1857], Jordan’s canonical form [192, 1870], reductions of matrix pencils by Weier-
strass [337, 1868] and Kronecker [204, 1890], and the singular value decomposition
discovered independently by Beltrami [25, 1873] and Jordan [193, 1874]. For more
on these decompositions see the notes and references to the appropriate sections and
chapters.

The notion of an abstract vector space seems to be more a creature of functional
analysis than of matrix theory (for a history of the former see [95]). Definitions of
normed linear spaces — usually called Banach spaces — were proposed independently
by Banach [14, 1922] and Wiener [340, 1922]. Less the norm, these spaces became
our abstract vector spaces.

5.2. GENERAL REFERENCES

This work is a survey of matrix algorithms, not of its literature. Consequently, the
notes and references subsections cite only the immediately relevant literature. How-
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ever, it is useful to list some of the more important books on the subject.

Linear algebra and matrix theory

There are any number of texts on abstract linear algebra. My favorite is Halmos’ text
Finite-Dimensional Vector Spaces [168]. Greub’s Linear Algebra [159] is more tech-
nical: Marcus and Minc’s Introduction to Linear Algebra [224] is more leisurely. In
addition, there are many elementary books stressing applications, e.g., [11, 56, 215,
217, 244, 312].

Gantmacher’s two-volume Theory of Matrices [129] is the definitive survey of ma-
trix theory up to 1959. Other introductions to matrix theory may be found in {208,
222, 223]. Berman and Plemmons [28] give a comprehensive treatment of the theory
of nonnegative matrices.

The earlier literature on matrices was algebraic in flavor with its emphasis on ca-
nonical forms and decompositions. Over the past half century the subject has expand-
ed to include the analytic properties of matrices. Bellman’s Introduction to Matrix
Analysis [24] is the classic. Hom and Johnson’s Marrix Analysis [182] and Topics in
Matrix Analysis [183] deserve special mention. The second book contains a wealth of
historical information.

For more specialized references on inequalities and perturbation theory, see the
books by Marcus and Minc [223], Bhatia [29], Kato [196], and Stewart and Sun [310].

Classics of matrix computations

The founders of modern numerical linear algebra liked to write books, and many of
them can be read with profit today. James H. Wilkinson’s Rounding Errors in Alge-
braic Processes [345] is the first general exposition of the modem theory of round-
ing error. His Algebraic Eigenvalue Problem [346] contains most of what was known
about dense matrix computations in 1965. Alston Householder’s Theory of Matrices
in Numerical Analysis [189] is notable for its concise unification of diverse material.
Faddeev and Faddeeva give the Russian view in their Computational Methods of Lin-
ear Algebra [115]. Richard Varga’s Matrix Iterative Analysis [330] is an elegant in-
troduction to the classical iterative methods.

Textbooks

The first textbook devoted exclusively to modern numerical linear algebra was Fox’s
Introduction to Numerical Linear Algebra [122]. My own text, Introduction to Ma-
trix Computations [288], published in 1973, is showing its age. Golub and Van Loan’s
Matrix Computations [153] is compendious and up to date — the standard reference.
Watkins’ Fundamentals of Matrix Computations [333), Datta’s Numerical Linear Al-
gebra and Applications[86], and Trefethen and Bau’s Numerical Linear Algebra[319]
are clearly written, well thought out introductions to the field. Coleman and Van Loan’s
Handbook for Matrix Computations [71] provides a useful introduction to the practi-
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calities of the subject.

Special topics

There are a number of books on special topics in matrix computations: eigenvalue
problems [82, 207, 253], generalized inverses [26, 240, 267], iterative methods [13,
17, 165, 166, 332, 353], least squares [41, 213], rounding-error analysis [177], and
sparse matrices [108, 143, 247].

Software

The progenitor of matrix software collections was the series of Handbook articles that
appeared in Numerische Mathematik and were later collected in a single volume by
Wilkinson and Reinsch [349]. The lineal descendants of this effort are EISPACK [284],
LINPACK [99], and LAPACK [9]. It is not an exaggeration to say that applied linear
algebra and matrix computations have been transformed by the availability of Cleve
Moler’s MATLAB system [232] and its clones. See [255] for a useful handbook.

EISPACK, LINPACK, and LAPACK are available over the web from the NETLIB
repository at

http://www.netlib.org/index.html

This repository contains many other useful, high-quality numerical routines. For a
general index of numerical routines, consult the Guide to Available Mathematical Soft-
ware (GAMS) at

http://math.nist.gov/gams/

Historical sources

Kline’s Mathematical Thought from Ancient to Modern Times [199] contains many
references to original articles. Older texts on matrix theory are often good sources
of references to original papers. Particular mention should be made of the books by
Mac Duffee [220], Turnbull and Aitken [322], and Wedderbum, [334]. For a view of
precomputer numerical linear algebra see Dwyer’s Linear Computations [112].


http://www.netlib.org/index.html
http://math.nist.gov/gams/

2

&
MATRICES AND MACHINES

Matrix algorithms— at least the ones in this series — are not museum pieces to be
viewed and admired for their beauty. They are meant to be programmed and run on to-
day’s computers. However, the road from a mathematical description of an algorithm
to a working implementation is often long. In this chapter we will traverse the road in
stages.

The first step is to decide on the vehicle that will carry us — the language we will
use to describe our algorithms. In this work we will use pseudocode, which is treated
in the first section of this chapter.

The second stage is the passage from a mathematical description to pseudocode.
It often happens that an algorithm can be derived and written in different ways. In the
second section of this chapter, we will use the problem of solving a triangular system
to illustrate the ins and outs of getting from mathematics to code. We will also show
how to estimate the number of arithmetic operations an algorithm performs. Although
such operation counts have limitations, they are often the best way of comparing the
efficiency of algorithms — short of measuring actual performance.

The third stage is to move from code to the computer. For matrix algorithms two
aspects of the computer are paramount: memory and arithmetic. In the third section,
we will show how hierarchical memories affect the performance of matrix algorithms
and conversely how matrix algorithms may be coded to interact well with the memory
system of a computer. In the fourth section, we introduce floating-point arithmetic
and rounding-error analysis — in particular, backward rounding-error analysis and its
companion, perturbation theory.

The further we proceed along the road from mathematical description to imple-
mentation the more important variants of an algorithm become. What appears to be a
single algorithm at the highest level splits into several algorithms, each having its ad-
vantages and disadvantages. For example, the interaction of a matrix algorithm with
memory depends on the way in which a matrix is stored — something not usually spec-
ified in a mathematical description. By the time we reach rounding error, truly minute
changes in an algorithm can lead to enormous differences in behavior. What is an al-
gorithm? The answer, it seems, depends on where you’re at.

81
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Here are instructions on how to get to my house. The party starts at 7:30.

Go to the last traffic light on Kingston Pike
Turn right

Drive 5.3 miles

Tum left at the convenience store

We are the ninth house on the right

kW

Algorithm 1.1: Party time
<

1. PSEUDOCODE

Most computer languages have all that is needed to implement algorithms for dense
matrices — two-dimensional arrays, conditional statements, and looping constructs.
Many also allow one to define new data structures — something that is useful in coding
sparse matrix algorithms. Yet matrix algorithms are not usually presented in a standard
programing language but in some form of pseudocode. The chief reason is that pseu-
docode allows one to abandon lexical rigor for ease of exposition. English sentences
and mathematical expressions can be interleaved with programming constructs. State-
ments can be neatly labeled for later reference. And pseudocode provides a veneer of
neutrality by appearing not to favor one language over another.

For all these reasons, we have chosen to present algorithms in pseudocode. This
section is devoted to setting down the basics. The reader is assumed to be familiar with
a high-level, structured programming language.

1.1. GENERALITIES

A program or code fragment is a sequence of statements, perhaps numbered sequen-
tially. The statements can be ordinary English sentences; e.g.,

1. Go to the last traffic light on Kingston Pike
2. Turnright

When it is necessary to be formal, we will call a sequence of pseudocode an al-
gorithm and give it a prologue explaining what it does. For example, Algorithm 1.1
describes how to get to a party.

We will use standard mathematical notation freely in our pseudocode. However,
in a statement like

1. z=A"1

the “=""is a replacement operator, not a mathematical assertion of equality. We might
have written
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AlZ,TJ] The matrix in the intersection of the rows indexed by Z and
the column indexed by 7.

Ali1:19,71:72] The submatrix in the intersection of rows ¢,... ,%; and
columns ji,...,J2.

Aliy:ig, 7] The vector (@i, ;,- - - ,@iyi ) -

Ali, j1:72] The row vector vector (a;j, , . .- , @;j, ).

Al gl The jth column of A.

Ali,:] The ith row of A.

Ali, 7] The (3, j)-element of A.

Figure 1.1: Notation for submatrices
o

1. b=A"%%
which is (almost) the same as
1. Overwrite b with the solutionof Az = b

Many of our algorithms will involve partitioned matrices. In ordinary text it is
easy enough to write statements like: Partition A in the form

A= (011 airz) )
an A2
But the same statement would be awkward in a program. Consequently we will use
the conventions in Figure 1.1 to extract submatrices from a matrix. Inconsistent di-

mensions like {n+1:n] represent a void vector or matrix, a convention that is useful at
the beginning and end of loops [see (2.5) for an example].

1.2. CONTROL STATEMENTS
Our pseudocode has the usual elementary control statements.

The if statement
The if statement has the following form:

1. if (first conditional expression)

2 first block of statements

3. elseif (second conditional statement)
4, second block of statements

5. elseif (third conditional statement)

6 third block of statements

7. else
8. last block of statements
9. endif
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Both the else and the else if s are optional. There may be no more than one else. The
conditional statements are evaluated in order until one evaluates to true, in which case
the corresponding block of statements is executed. If none of the conditional state-
ments are true, the block of statements following the else, if there is one, is executed.
In nested if statements, an else refers to the most recent if that has not been paired with
an endif or an else.

The token fi is an abbreviation for end if. It is useful for one-liners:

1. if(s=0)returnOfi

The for statement

The for statement has the following form.

1. fori=jtokbyd
2. Block of statements
3. endfor:

Here : is a variable, which may not be modified in the loop. The parameters j, k, and
d are expressions, which will be evaluated once before the loop is executed. If the by
part of the loop is omitted, d is assumed to be one.

For: < k and d > 0, the block of statements is executed for : = j, ¢ = j+d,
it = j+2d,..., j+nd, where n is the largest integer such that j+nd < k. Similarly,
for: > k and d < 0 the index ¢ steps downward by increments of d until it falls below
k. The identifier : is not required after the end for, but it is useful for keeping track of
long loops. In fact, any appropriate token will do —e.g., the statement number of the
for statement.

The for loop obeys the following useful convention.

Inconsistent loops are not executed.

For example, the following code subtracts the last n—1 components of an n-vector
from the first component, even when n = 1.

1. fori=2ton
2. 1 =21 — 24
3. end for

The while statement
The while statement has the following form.
1. while (conditional expression)

2. block of statements
3. end while

The while statement continues to execute the block of statements until the conditional
expression evaluates to false.
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Leaving and iterating control statements

The statement

1. leave <name>

causes the algorithm to leave the control statement indicated by <name>. The state-
ment may be a for, while, or if statement. The name may be anything that unambigu-
ously identifies the statement: the index of a loop, the line number of an if statement,
or the corresponding end if.

The statement

1. iterate <name>

forces an new iteration of the for or while loop indicated by <name>.

The goto statement

The goto statement is useful in situations where the leave statement is inadequate. It
has the form

1. goto <name>

Here name may be a statement number or a statement label. A statement label proceeds
the statement and is followed by a colon:

1. Error: Take care of the error

1.3. FUNCTIONS

Functions and subprograms with arguments will be indicated, as customary, by pre-
ceding the code by the name of the function with its argument list. The statement re-
turn exits from the subprogram. It can also return a value. For example, the following
function returns v/a? + b2, calculated in such a way as to avoid overflows and render
underflows innocuous (see §4.5).

1. Euclid(a, b)

2. s = |a] + |b]

3. if(s=0)

4. return 0 ! Zero is a special case.
5. else

6. return s+/(a/s)? + (b/s)?

7. end if

8. end Euclid

Note the comment, which is preceded by an exclamation mark.

Parameters are passed to functions by reference, as in FORTRAN, not by value,
as in C. For scalar arguments this means that any modification of an argument in a
function modifies the corresponding argument in the program that invokes it.
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1.4. NOTES AND REFERENCES
Programming languages
Pratt and Zelkowitz [265] give an excellent survey of programming languages. The
front-running language for numerical computations has been FORTRAN77 [10] with C
[197] a serious competitor. Each language has its advantages. FORTRAN handles ar-
rays more sensibly, making it the language of choice for matrix computations. C, with
its rich facilities for creating data structures, provides a more congenial environment
for the manipulation of sparse matrices and for large-scale scientific programming.
Both C and FORTRAN have been extended. C++ [114, 218] is an object-oriented
language that is compatible with C and will likely become the new standard. The
language FORTRAN90 [227] includes the ability to define data structures that the old
version lacked. If it catches on, it will reconfirm FORTRAN as the language of scien-
tific computing. It should be noted that both extensions include powerful features that
make it easy to write inefficient code.

Pseudocode

Another reason for the use of pseudocode in this book is, paradoxically, to make the
algorithms a little difficult to implement in a standard language. In many of the algo-
rithms to follow I have omitted the consistency and error tests that make their overall
structure difficult to see. If these algorithms could be lifted from the text and compiled,
they would no doubt find their way unpolished into the real world. In fact, implement-
ing the algorithms, which requires line-by-line attention, is a good way to become re-
ally familiar with them.

The pseudocode used in this work shows a decided tilt toward FORTRAN in its
looping construct and its passing of subprogram arguments by reference. This latter
feature of FORTRAN has been used extensively to pass subarrays by the BLAS (Basic
Linear Algebra Subprograms, see §3). In C one has to go to the additional trouble
of creating a pointer to the subarray. But it should be added that our conventions for
specifying submatrices (Figure 1.1) render the decisions to pass by reference largely
moot.

The use of the colon to specify an index range (Figure 1.1) is found in array dec-
larations FORTRAN77. It was extended to extract subarrays in MATLAB and later in
FORTRAN90. The use of brackets to specify array references is in the spirit of C. It
avoids loading yet another burden on the overworked parenthesis.

Twenty years ago one could be pilloried for including a goto statement in a lan-
guage. The reason was a 1968 letter in the Communications of the ACM by Dijkstra
titled “Go to statement considered harmful” [96]. Although others had deprecated the
use of goto’s earlier, Dijkstra’s communication was the match that lit the fire. The
argument ran that the goto’s in a program could be replaced by other structured con-
structs — to the great improvement of the program. This largely correct view was well
on the way to freezing into dogma, when Knuth in a wonderfully balanced article [200,
1974] (which contains a history of the topic and many references) showed that goto’s
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have rare but legitimate uses.

2. TRIANGULAR SYSTEMS

The implementation of matrix algorithms is partly art, partly science. There are gen-
eral principles but no universal prescriptions for their application. Consequently, any
discussion of code for matrix algorithms must be accompanied by examples to bridge
the gap between the general and the particular.

In this section we will use the problem of solving a lower triangular system as a
running example. There are three reasons for this choice. First, it is a real problem of
wide applicability. Second, it is simple enough so that the basic algorithm can be read-
ily comprehended. Third, it is complex enough to illustrate many of the principles of
sound implementation. We have chosen to work with lower triangular systems instead
of upper triangular systems because the order of computations runs forward through
the matrix in the former as opposed to backward in the latter. But everything we say
about lower triangular systems applies mutatis mutandis to upper triangular systems.

2.1. THE SOLUTION OF A LOWER TRIANGULAR SYSTEM
Existence of solutions

It is convenient to begin with a theorem.

Theorem 2.1. Let L be a lower triangular matrix of order n. Then L is nonsingular
if and only if its diagonal elements are nonzero.

Proof. We will use the fact that a matrix Z is nonsingular if and only if the system
Lz =15 2.1

has a solution for every b (see Theorem 3.21, Chapter 1). Let us write the system (2.1)
in scalar form:

by = {1
by = {nzy + {0z,
by = €3121 + £33 + L33x3 (2.2)

bn = €121 + Lpazo + Lnzzs + - -+ Lynn

First, suppose that the diagonal elements of L are nonzero. Then the first equation
in (2.2) has the solution z; = b;/¢11. Now suppose that we have computed z;, 2,
..., Zk~1. Then from the kth equation,

b = Lkazy + Lroxa + Lizzs + + - - + Lyp 2k,
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Let L be a nonsingular lower triangular matrix of order n. The following algorithm
solves the system Lz = b.

1. fork=1ton

2 Ty = by

3 for; =1tok-1
4. Tk = Tk — Lg;T;
5 end for j

6 T = T /Lik

7. endfor k

Algorithm 2.1: Forward substitution
o

we have

z b — Lr1z1 — oty ~ Lpa®z — « - — fk,k—lxkq
k= .

" (2.3)
Consequently, the fact that the i are all nonzero implies that equation (2.1) has a
solution for any right-hand side b.

On the other hand, suppose that some diagonals of L are zero, and suppose that £,
is the first such diagonal. If & = 1, then the equation fails to have a solution whenever
by # 0. If k£ > 1, the quantities @1, €2, ... , Tx—; are determined uniquely as in (2.3).
If by, is then chosen so that

by — fr1z1 + lroxo + razz 4+ -+ L1 p—1T—1 # 0,
there is no z, satisfying the kth equation. m

The forward substitution algorithm

The proof of Theorem 2.1 is not the shortest possible—it is easier to observe that
det(L) is the product of the diagonal elements of L —but it is constructive in that it
provides an algorithm for computing z, an algorithm that is sometimes called forward
substitution. Algorithm 2.1 is an implementation of this process.

This algorithm is a straightforward implementation of (2.3). The loop on j com-
putes the denominator, and the division in statement 6 completes the evaluation. By
the convention on inconsistent loops, the inner loop is not executed when k = 1, which
is just as it should be.

Overwriting the right-hand side

The solution of a triangular system is frequently just a step in the transformation of a
vector. In such cases it makes little sense to create an intermediate vector = that will
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itself be transformed. Instead one should overwrite the vector & with the solution of
the system Lz = b. It is easy to modify Algorithm 2.1 to do this.

1. fork=1ton

2 forj = 1to k-1
3. b = by — fkjbj
4, end for j

5 br = br/Lik

6. endfor k

2.2. RECURSIVE DERIVATION

In matrix computations it is unusual to have a solution to a problem in terms of scalar
formulas such as (2.3). The following derivation of Algorithm 2.1 is more represen-
tative of the way one finds new matrix algorithms.

Let the system Lz = b be partitioned (with northwest indexing) in the form

L 0 z b
(f%ll Ann) (51) - (ﬁl) ' (24)

This partition is equivalent to the two equations

1. Lyzy = by,
2. Egla:l + )‘nnEn = ,Bn

Since Ly, is a lower triangular matrix of order n—1 we can solve the first system re-
cursively for 2, and then solve the second equation for £,. This leads to the following
recursive code.

1. trisolve(L, z, b, n)

2 if (n = 0) return fi

3 trisolve( L[1:n—1, 1:n—1], z[1:n—1], b[1:n—1], n—1) (2.5)

4. z{n] = (b[n] = L[n, Lin—1]*xz[1:n—1])/L[n, n]

5. end trisolve

There are two things to say about this algorithm.

o We have made heavy use of the conventions in Figure 1.1 to extract submatrices
and subvectors. The result is that no loop is required to compute the inner product in
the formula for z[r]. This suggests that we can code shorter, more readable algorithms
by consigning operations such as inner products to subprograms. We will return to this
point when we discuss the BLAS in §3.

¢ Implicit in the program is the assumption that L[n, 1:n—1]*z[1:n—1] evaluates to
zero when n = 1. This is the equivalent of our convention about inconsistent for
loops. In fact, the natural loop to compute the inner product in (2.5), namely,
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1. sum=20

2. forj=1ton-1

3. sum = sum + L[n, j]*z[j]
4. end for

returns zero when n = 1. In what follows we will assume that degenerate statements
are handled in such a way as to make our algorithms work.

Many matrix algorithms are derived, as was (2.5), from a matrix partition in such
a way as to suggest a recursive algorithm. Another example is the recursive algorithm
for computing the LU decomposition implicit in the proof of Theorem 2.13, Chap-
ter 1. How then are we to recover a more conventional nonrecursive algorithm? A re-
cursive matrix algorithm will typically contain a statement or sequence of statements
performing a computation over a fixed range, usually from 1 or 2 to n—1 or n, where
n is the recursion parameter —e.g., statement (2.5.4). The nonrecursive code is ob-
tained by replacing the index n by another variable k¥ and surrounding the statements
by a loop in £ that ranges between 1 and n. Whether & goes forward or backward must
be determined by inspection. For example, the nonrecursive equivalent of (2.5) is

1. fork=1ton
2. z[k]) = (blk] — L[k, 1:k—1]*2[1:k—1])/ L[k, k] (2.6)
3. end for

Matrix algorithms are seldom written in recursive form. There are two plausible
reasons.

1. A recursive call is computationally more expensive than iterating a for loop.

2. When an error occurs, it is easy to jump out of a nest of loops to an appro-
priate error handler. Getting out of a recursion is more difficult.

On modern computers a matrix must be rather small for the recursion overhead to
count for much. Yet small matrices are often manipulated in the inner loops of ap-
plication programs, and the implementer of matrix algorithms is well advised to be
parsimonious whenever possible.

2.3. A “NEW” ALGORITHM

Matrices can be partitioned in many different ways, and different partitions lead to
different algorithms. For example, we can write the system Lz = b in the form

(i 2)(E)-()
€21 L2z \z2 b2/) "

As with (2.4), this system expands into two equations:

1. A& =5,
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2. &ifor + Lagzz = b
Thus we can solve for &; in the form

A

- A1

&

and then go on to solve the system

Lyszy = by — £14ay.

The following algorithm implements this scheme.

1. z=5b
2. fork=1ton
3. z[k] = z[k}/ L[k, k] 2.7
4, z[k+1:n] = z[k+1:n] — z[k]*L[k+1:n, k]
5. endfor k
We will call this algorithm the axpy algorithm after the BLAS used to implement it [see
3.9)1.

This algorithm certainly appears different from (2.6). However, in one sense the
two algorithms are fundamentally the same. To see this, let us focus on what happens
to the component z (k] of the solution. If we trace through both programs, we find that
the following sequence of operations is being performed.

1. z[k] = blk]

2. forj=1tok-1

3. (k] = (k] — L[k, j]*z[j] (2.8)
4. end for

5. z[k] = z[k]/ L[k, k]

Thus if we focus on only one component of the solution, we find that both algorithms
perform the same operations in the same order. The difference between the two algo-
rithms is the way operations for different components of the solution are interleaved.

In consequence, both algorithms share some properties. An obvious property is
that they both have the same complexity in the sense that they both perform the same
number of arithmetic operations. A rather striking property is that even in the presence
of rounding error the algorithms will compute the same answer down to the very last
bit, since they perform the same operations in the same order on the individual com-
ponents (provided, of course, that the compiler does not do funny things with registers
that work in higher precision).

An important difference in these algorithms is the order in which they access the
elements of the matrix. The back-substitution algorithm is row oriented in the sense
that the inner loop moves along the rows of the matrix. The algorithm (2.7) is column
oriented; the inner loop moves down columns. However, these two algorithms can
perform quite differently on machines with hierarchical memories (see §3.3).
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2.4, THE TRANSPOSED SYSTEM
It frequently happens that one has to solve the transposed system

LTz =b

(or equivalently the system z* L = b"). To derive an algorithm, note that the last
equation of this system has the form

LpnTn = by,
which can be solved for z,,. The kth equation of the system has the form
b = Lrrr + bop1 kThyr + -+ Lk p,

which can be solved for z; provided we know zx41, ..., Z,.
These considerations lead to the following algorithm.

1. fork=ntolby-1
2. z[k] = (b[k] — L{k+1:n, k]Txz[k+1:n])/ L[k, k]
3. endfor:

This algorithm is the analogue of the forward substitution algorithm (back substi-
tution it is called), but in changing from the original system to the transposed system
it has become column oriented. The analogue for transposed systems of the of the col-
umn-oriented algorithm (2.7) is row oriented.

2.5. BIDIAGONAL MATRICES

In §2.2, Chapter 1, we listed some classes of matrices that had special structures of
zero elements. One of these is the class of lower triangular matrices that has been our
concern in this section. It often happens that one class is contained in another class
with a richer supply of nonzero elements. For example, a bidiagonal matrix of the
form

X 000UD O
XX 000
0 X X 00
00X X O
0 00 X X

is clearly lower triangular. Hence the algorithms we have just derived will solve bidi-
agonal systems. But they will spend most of their time manipulating zero elements.
We can get a more efficient algorithm by restricting the computations to nonzero ele-
ments.

For example, in the relation

_be =Ty ~ lpy — L3tz — o = Ly g1 Tk
Liy

Tk
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Let L be a nonsingular lower bidiagonal matrix of order n. The following algorithm
solves the system Lz = b.

1. z[1]=0[1]/L[1,1]

2. fork=2ton

3. z[k) = (b[k] — L[k, k—1]xz[k—1])/ L[k, k]
4. end for

Algorithm 2.2: Lower bidiagonal system
o

defining z, only £ x_1 and £ x are nonzero. Hence we may rewrite it in the form

o = by — Lk p-1Tx-1
. Lik '

Thus we get Algorithm 2.2. This algorithm is clearly cheaper than Algorithm 2.1. But
how much cheaper? We will return to this question after we derive another algorithm.

2.6. INVERSION OF TRIANGULAR MATRICES

There is seldom any need to compute the inverse a matrix, since the productz = A™'b
can be computed more cheaply by solving the system Az = b. (We will return to
this point in §1.5, Chapter 3.) Occasionally, however, the elements of an inverse have
meaning for the problem at hand and it is desirable to print them out. For this reason,
algorithms for matrix inversion are not entirely useless.

A general strategy for computing the inverse X = (zy z3 --- z,) of amatrix A
is to solve the system

Az; = ej, i=12,...,n

(cf. the proof of Theorem 3.20, Chapter 1). However, when A = L is lower triangular
there are some special savings. As is often the case, the algorithm is a spin-off of a
useful result.

Theorem 2.2. The inverse of a lower (upper) triangular matrix is lower (upper) trian-
gular.

Proof. We will prove the result for lower triangular matrices. Partition the system
Lz; = e; in the form

1 0 (¥ ()
i 1) \b) =)
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Let L be a nonsingular lower triangular matrix of order n. The following algorithm
computes the inverse X of L.

1. fork=1ton

2 X[k, k= 1/L[k,k]

3. fori=k+1lton

4. X[i, k)= —L[i, k:i—1]«X [k:i—1,k]/ L[z, 7]
5 end for ¢

6. endfor k

Algorithm 2.3: Inverse of a lower triangular matrix
o

where Lﬁ) is (j—1)x(7—1). Then ngl)mgj) = 0, and hence a:gj) = 0. This shows that
the first j—1 components of the jth column of L~! are zero, and it follows that 1
is lower triangular. ®

The proof of Theorem 2.2 implies that to compute the inverse of L we need only
solve the (n—j+1)x(n—j+1) systems Lg’,‘,):cgj) =e forj=1,2,...,n If weuse
Algorithm 2.1 to solve these systems, we obtain Algorithm 2.3.

The algorithm can be modified to overwrite L with its inverse by replacing all ref-
erences to X with references to L. The reader should verify that the following algo-
rithm does the job.

1. fork=1ton

2. Lik,k| = 1/L[k, ]

3. fori=Fk+1lton

4. L[i k] = —L[i, ksi—1]# L[k:i—1, k] /L[, k] (2.9)
5 end for ¢

6. endfor k

The savings in storage can be considerable, since a lower triangular matrix of order n
has at most n(n+1)/2 nonzero elements.

2.7. OPERATION COUNTS

Most matrix problems can be solved in more than one way. Of the many considerations
that enter into the choice of an algorithm, three are paramount: speed, storage, and
stability. Which algorithm runs faster? Which uses the least storage? Are the answers
satisfactory? We will treat storage and stability in the next two sections. And in fact,
we will have to reconsider the issue of speed, since speed and storage are connected.
Nonetheless, we can learn useful things about the speed of an algorithm simply by
counting arithmetic operations.
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Bidiagonal systems

Let us look first at the number of operations required to solve a bidiagonal system. For
k = 1, the loop in Algorithm 2.2 performs a single division. For & > 1, it performs
one multiplication, one addition (actually a subtraction), and one division. Since the
loop runs from k£ = 1 to n, the entire algorithm requires

1. n-1 additions,
2. n—1 multiplications,
3. n divisions.

Full triangular systems

Let us now consider Algorithm 2.1 for the solution of a full triangular system. The
body of the inner loop (statement 4) performs one addition and one multiplication. It
is executed £—1 times as j varies from 1 to k—1, and % itself varies from one to n.
Consequently, the algorithm requires

i(k—l) _ n(nQ— 1)
k=1

additions and multiplications. Taking into account the number of divisions, we get the
following operation count:

1. in2 - %n additions,

2. %n2 — %n multiplications,

[V

3. n divisions.

General observations on operations counts

These examples illustrate some important points about operation counts.

¢ The dominant term. For large 7, the term 72 in the expression 1n%—2n domi-

nates the term %nz. For example, if n = 100 then the ratio of the terms is one hundred

to one. Consequently, it is customary to report only the dominant term — in this case

1n? —in operation counts.

2

¢ Order and order constants. The factor of the dominant term that actually grows —
in this case n? —is called the order of the algorithm. Thus the algorithm for solving
a full lower triangular system is of order n2, while the algorithm for solving a bidi-
agonal system is of order n. We write that they are O(n?) and O(n) respectively, a
convention that is called the big O notation.

The factor § in the count in? is called the order constant. It turns out that it is
often easy to guess the order just by looking at an algorithm, whereas getting the or-
der constant can be tedious. For this reason, the order constant is often omitted in re-
porting operation counts. As a general rule, this is not sound practice, since the order
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Abbreviation Description

fladd a floating-point addition

fimlt a floating-point multiplication
fidiv a floating-point division

flsqrt a floating-point square root
flam an addition and a multiplication
firot application of a plane rotation

¢ As is customary with physical units, the abbreviations do not take pe-
riods or a plural in “s” (e.g., 3n fimlt). An exception to the latter is in
unquantified usage (e.g., the count in flams).

¢ The abbreviations take the usual prefixes denoting powers of ten (e.g.,
Gflam).

¢ Rates in operations per second are expressed by appending “/s” (e.g.,
Gflam/s).

¢ The flam is a compound operation consisting of one addition and one
multiplication.

¢ The flrot represents the application of a plane rotation to a 2-vector. Its

value is 2 fladd + 4 fimit.

Figure 2.1: Abbreviations and conventions for reporting operation counts
o

constant is the only thing that distinguishes algorithms of the same order and it can
have important consequences for algorithms of different order.

¢ Nomenclature. The terminology for presenting operation counts is in a state of dis-
array. The widely used term “flop,” which was originally an acronym for floating
point operation, has undergone so many changes that the substance has been practi-
cally wrung out of it (for more, see the notes and references for this section). Instead
we will use the abbreviations in Figure 2.1.

Note that the flam has replaced the flop in its sense (now defunct) of a floating-
point addition combined with a floating-point multiplication. Since in many matrix
algorithms, additions and multiplications come roughly in pairs, we will report many
of our counts in flams.

¢ Complex arithmetic. We will also use this nomenclature for complex arithmetic.
However, it is important to keep in mind that complex arithmetic is more expensive
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than its real counterpart. For example, the calculation of
(a+bi)+ (c+di)=(a+c)+(b+d)

requires two real additions and hence is twice as expensive as a real addition. Again,
the calculation

(a + bi)x(c + di) = (axc — bxd) + (axd + bxc)s
requires four real multiplications and two real additions and is at least four times as

expensive as a real multiplication. These two examples also show that the ratio of
multiplication times to addition times can be different for real and complex arithmetic.

Inversion of a triangular matrix

As afinal example let us consider Algorithm 2.3 for the inversion of a lower triangular
system. The inner loop of the algorithm contains the statement

Xi k| = —L[i, k:i—1]« X [k:i—1,k]/ L[k, k]
which represents an inner product of length :— k-1 requiring about i —k flams. Since ¢
ranges from & to n and k ranges from 1 to n, the total number of flams for the algorithm
is

n n

YN ik

k=1 i=k
We could use standard summation formulas to evaluate this sum, but the process is

error prone. However, if we are only interested in the highest-order term in the sum,
we may replace the sum by an integral:

// i—kdidj:ln:”. (2.10)
o Jr 6

Note that the range of the outer integral has been adjusted to make it easy to evaluate.
We can do this because a shift of one or two in the limits of a range does not change
the high-order term.

More observations on operation counts

The following example gives a feel of the way execution times increase for the three
orders we have encountered.

Example 2.3. Consider three algorithms of order n, n?, and n3, all having an order
constant of one. Here is how long they take to run on a machine that can perform 10M
operations per second.

n O(n) 0(n?)  0(n®)

10 { 10~ %sec 107%*sec 10~3sec

100 | 107 %sec 10~2sec 1010sec
1000 | 10~ 3sec 101%sec 10*3sec = 17 min
10000 | 1072sec 10™'sec 1016sec = 12day
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The time required by an O(n®) process increases dramatically with n. Unfortunately,
most conventional matrix algorithms are O( n3), where n is the order of the matrix.

This example makes clear one reason for deprecating the invert-and-multiply al-
gorithm for solving linear systems — at least triangular systems. The direct algorithm
for solving triangular systems is O(n?), while the inversion of a triangular matrix is
an O(n®) process.

Since operation counts are widely used to compare algorithms, it is important to
have an idea of their merits and limitations.

¢ Lower bounds. Operation counts provide a rigorous lower bound on the time an
algorithm will take — just divide the various counts by their rates for the computer in
question and add. Such lower bounds can be useful. If, for example, a bound predicts
that a calculation will take at least a thousand years, then it is time to consider alter-
natives.

* Arithmetic is not everything. Algorithms have overheads other than arithmetic
operations, overheads we will treat in the next section. Hence running time cannot be
predicted from operation counts alone. In a large number of cases, however, the run-
ning time as a function of the size of the problem is proportional to the time predicted
by operation counts. Moreover, the constant of proportionality is often approximately
the same over many algorithms — provided they are implemented with due respect for
the machine in question.

¢ Comparing algorithms of equal order. In using operation counts to compare al-
gorithms of the same order, it is the order constant that decides. Other things being
equal, one should prefer the algorithm with the smaller order constant. But keep in
mind that other things are never exactly equal, and factors of, say, two in the order
constants may be insignificant. The larger the factor, the more likely there is to be a
corresponding difference in performance.

¢ Comparing algorithms of different order. In principle, order constants are not
needed to decide between algorithms of different order: the algorithm of lower order
ultimately wins. But ultimately may never come. For example, if an O(n®) algorithm
has an order constant equal to one while an O(n?) has an order constant of one thou-
sand, then the first will be better for matrices of size less than one thousand. The size
of problem for which a lower-order algorithm becomes superior to a higher-order al-
gorithm is called the break-even point. Many promising algorithms have been undone
by high break-even points.

Finally, keep in mind that there are other things than speed to consider in select-
ing an algorithm — numerical stability, for example. An algorithm that persistently
returns bad answers is useless, even if it runs at blinding speed.
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Lower Triangular Upper Triangular
xelib(X,L,B) X =L 'B |xeuib(X,U,B) X =U"'B
xelith(X,L,B) X = L™ "B | xeuith(X,U,B) X =U"TB
xebli( X,B,L) X = BL™' | xebui(X,B,U) X = BU™!
xeblitf( X,B,L) X = BL~" | xebuit( X,B,U) X = BU~T

¢ The names of these BLAS describe their functions. For example, xelib
means “X Equals L Inverse B.”

¢ The arguments appear in the calling sequence in the order in which
they appear in the names.

¢ | and u may be replaced by I/ and u1, indicating that the matri-
ces in question are unit triangular with their diagonals not stored —e.g.,
xellib(X,L,B).

¢ B may replace X in the calling sequence, in which case the result over-
writes B—e.g., xelib(B, L, B).

Figure 2.2: BLAS for triangular matrices
o

2.8. BLAS FOR TRIANGULAR SYSTEMS

Many of the algorithms in this work must at some point solve triangular systems of
one form or another. Given the expense of invert-and-multiply algorithms, it would be
misleading to write something like z = L~15 in the pseudocode. On the other hand,
to write out everything in full would focus attention on inessential details. The natural
compromise is to relegate the solution to a series of subprograms. Such subprograms
are called basic linear algebra subprograms, abbreviated BLAS.

Figure 2.2 describes the BLAS we will use for triangular systems. On the right
is the calling sequence, on the left the function the subprogram performs. Note that
the function has been coded into the names of these BLAS. For example, xeuitb can
be read, “X equals U inverse transpose times B.” The variable B represents a matrix
whose dimensions are consistent with those of the triangular matrix. The variable X,
which gets the result, must be of the same dimension as B. In fact, we can write B for
X in the calling sequence, in which case B is overwritten by the result.

The BLAS are more than just a notational device. Since they are defined by what
they do, their implementation can vary. In particular, special BLAS can be constructed
to take advantages of special features of the machine in question. We will see more of
this later.
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2.9. NOTES AND REFERENCES
Historical

The first explicit algorithm for solving a lower triangular system was given by Gauss
[131, 1810] as part of his elimination method for solving the normal equations of least
squares. In fact, in his earlier work on calculating orbits of heavenly bodies — the fa-
mous Theoria Motus— Gauss [130, 1809] alludes to the possibility of inverting an
entire triangular system. For more see §2.8, Chapter 1.

Recursion

Although there are sound reasons why recursion is not much used in matrix computa-
tions, at least part of the story is that at one time recursion could be quite expensive.
Improved compiler techniques (e.g., see [5, 317]) have made recursive calls compar-
atively inexpensive, so that the overhead is negligible except for very small matrices.

Operation counts

Operation counts belong to the field of algorithms and their complexity. Two classical
references are the book of Aho, Hopcroft, and Ullman [4], which treats the algorith-
mic aspect, and the book by Hopcroft and Ullman [181], which treats the theoretical
aspects. For an encyclopedic treatment with many reference see [73].

Pat Eberlein has told me that the word “flop” was in use by 1957 at the Prince-
ton Institute for Advanced Studies. Here is a table of the various meanings that have
attached themselves to the word.

1. Flop — a floating point operation.

2. Flop — a floating point addition and multiplication.
3. Flops—plural of 1 or 2.

4. Flops— flops (1 or 2) per second.

In its transmogrifications, the meaning of “flop™ has flipped from 1 to 2 and back to 1
again. Golub and Van Loan [152, p. 19] hint, ever so gently, that the chief beneficiaries
of the second flip were the purveyors of flops — supercomputer manufacturers whose
machines got a free boost in speed, at least in advertising copy.

The system adopted here consists of natural abbreviations. Since precision re-
quires that heterogeneous counts be spelled out, there is no canonical term for a float-
ing-point operation. However, the flam and the rot (short for “rotation” and pronounc-
ed “wrote”) cover the two most frequently occurring cases of compound operations.
The usage rules were lifted from The New York Public Library Writer s Guide to Style
and Usage [316] and The American Heritage College Dictionary [74].

The technique of approximating sums by integrals, as in (2.10), is a standard trick
of the trade. It provides the correct asymptotic forms, including the order constant,
provided the integrand does not grow too fast.

Computational theorists and matrix algorithmists measure complexity differently.
The former measure the size of their problems in terms of number of inputs, the latter
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Cholesky decomposition 2,780
QR decomposition (Householder triangularization) 11,875
Eigenvalues (symmetric matrix) 13,502
The product AxA 16,000
QR decomposition (explicit ) 28,975
Singular values 33,321
Eigenvalues and eigenvectors (symmetric matrix) 71,327
Eigenvalues (nonsymmetric matrix) 143,797
Singular values and vectors 146,205

Eigenvalues and eigenvectors (nonsymmetric matrix) 264,351

Figure 2.3: Operation counts for some matrix algorithms: n = 20
o

in terms of the order of the matrix. Since a matrix of order n has m = n? elements,
an O(n®) matrix algorithm is an O(m%) algorithm to a computational theorist. This
places matrix algorithms somewhere between the Fourier transform, which is O(mz),
and the fast Fourier transform, which is O(mlog m). And a good thing too! If our
algorithms were O(m?), we wouldn’t live long enough to run them.

Whether you call the order n2 or m3 , the order constants of matrix algorithms can
vary dramatically. The table in Figure 2.3, containing the number operations required
for some common O(n®) matrix algorithms applied to a 20 x 20 matrix, was compiled
using MATLAB. (Thanks to Jack Dongarra for the idea.) Thus the order constant for
finding the eigenvalues and eigenvectors of a nonsymmetric matrix is nearly one hun-
dred times larger than that for finding the Cholesky decomposition. Beresford Parlett,
complaining about the abuse of the big O notation, says that it plays the part of a fig
leaf on a statue: it covers up things people don’t want seen. The above table supports
this simile.

Basic linear algebra subprograms (BLAS)

For more on the BLAS see the notes and references to §3.

3. MATRICES IN MEMORY

There are many ways to execute the algorithms of the preceding section. The calcu-
lations could be done by hand, perhaps with the help of a slide rule or a table of log-
arithms. They could be done with an abacus or a mechanical calculator. Each mode
of computation requires special adaptations of the algorithm in question. The order
in which operations are performed, the numbers that are written down, the safeguards
against errors — all these differ from mode to mode.

This work is concerned with matrix computations on a digital computer. Just like
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any other mode of computation, digital computers place their own demands on matrix
algorithms. For example, recording a number on a piece of paper is an error-prone
process, whereas the probability of generating an undetected error in writing to the
memory of acomputer is vanishingly small. On the other hand, it is easy to mismanage
the memory of a computer in such a way that the speed of execution is affected.

The theme of this section is matrices in memory. We will begin by describing how
dense matrices are represented on computers, with emphasis on the overhead required
to retrieve the elements of a matrix. We will then move on to a discussion of hierar-
chical memories.

3.1. MEMORY, ARRAYS, AND MATRICES
Memory

It is useful to be a little imprecise about what a computer memory is. We shall regard it
as a linear array of objects called words. The notion of a word will vary with context.
It may be an integer, a single-precision or double-precision floating-point number, or
even a data structure.

The location of an object in memory is called its address. If z is the address of an
object in memory, we will write z[1] for the object itself and z[2] for the object imme-
diately following z[1] in memory. In general z[k+1] will be the kth object following
z[1] in memory. This convention meshes nicely with our convention for representing
the components of vectors. The symbol z can stand for both a vector and the address
of a vector. In each case, the components of = are represented by z|].

Storage of arrays

In high-level programming languages, matrices are generally placed in two-dimen-
sional arrays. A pXxgq array A is a set of p¢g memory locations in the computer. An el-
ement of an array is specified by two integers : and j which lie within certain ranges.
In this work we will assume 1 < ¢ < pand 1 € 7 < ¢. The syntax by which an ele-
ment of an array is represented will depend on the programming language. Here we
will use the convention we have already been using for matrices — the (¢, §)-element
of the array A is written A[%, j].

A difficulty with arrays is that they are two-dimensional objects that must be stored
in a one-dimensional memory. There are many ways in which this can be done, each
having its own advantages for specialized applications. For general matrix computa-
tions, however, there are just two conventions.

¢ Storage by rows. Beginning at a base address a, the array is stored a row at a time,
the components of each row appearing sequentially in the memory. For example, a
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5x3 array A would be stored in the form

A[1,1] — a[l]  A[1,2] < a[2] A[L,3] < a]3]
Al2,1] < a[4] A[2,2] < a[5] A[2,3] & a[6]
Al3,1] « a[7] A[3,2] — a[8] A[3,3] & a[9]
Aj4,1] & a[10] A[4,2] & a[11] A[4,3] & a[12]
Al[5,1] & a[13] A[5,2] & a[14] A[5,3] < a[15]

This order of storage is also called lexicographical order because the elements A[%, j]
are ordered with their first subscript varying least rapidly, just like letters in words al-
phabetized in a dictionary. This form of storage is also called row major order.

The general formula for the location of the (%, j)-element of a px ¢ array can be
deduced as follows. The first i—1 rows have (i—1)g elements. Consequently, the first
element of the sth row is a[(¢—1)g+1]. Since the elements of a row are stored in se-
quence, the jth element of the sth row must be a[(i—1)g+j]. Thus

Als, 7] = a[(i-1)g+7]- 3.0)

¢ Storage by columns. Here the array is stored a column at a time. The memory
locations containing a 5x 3 array are shown below.

A[1,1] = a[1] A[1,2] & a[6] A[1,3] < afl11]
Al2,1] & a[2] A[2,2) & a[7]  A[2,3] & a[12]
A[3,1] « a[3] A[3,2] « a[8] A[3,3] < a[13]
Al4,1] — a[4] A[4,2] = a[9] A[4,3] & a[14]
Al5,1] < a[5] A[5,2] < a[10] A[5,3] < a[15]

The general correspondence is
Ali, ] & a[(F-1)p+i]. (3.2)

This form of storage is also called column major order.

Strides

When a px q array is stored rowwise, the distance in memory between an element and
the next element in the same column is ¢. This number is called the stride of the array
because it is the stride you must take through memory to walk down a column. When
the array is stored by columns, the stride is p and refers to the stride required to traverse
a row.

The stride is confusing to people new to matrix computations. One reason is that it
depends on whether the array is stored rowwise or columnwise. Thus the stride is dif-
ferent in C, which stores arrays rowwise, and FORTRAN, which stores them column-
wise.

Another source of confusion is that matrices are frequently stored in arrays whose
dimensions are larger than those of the matrix. Many programs manipulate matrices
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whose dimensions are unknown at the time the program is invoked. One way of han-
dling this problem is to create a pX ¢ array whose dimensions are larger than any ma-
trix the program will encounter. Then any m X n matrix withm < pand n < g can be
stored in the array — usually in the northwest corner.

Now it is clear from (3.1) and (3.2) that you have to know the stride to locate el-
ements in an array. Consequently, if a matrix in an oversized array is passed to a sub-
program, the argument list must contain not only the dimensions of the matrix but also
the stride of the array. The source of confusion is that the stride is generally different
from the dimensions of the matrix.

Example 3.1. In FORTRAN arrays are stored columnwise. Consequently, a subrou-
tine to solve a lower triangular system might begin

SUBROUTINE LTSLV(N, L, LDL, B, X)
REAL L(LDL,*), B(*), X(*)

The parameter N is the order of the matrix L. The parameter LDL is the stride of the
array L containing the matrix L. The name is an abbreviation for “leading dimension
of L” because the first dimension in the declaration of an array in FORTRAN is the
stride of the array.

3.2. MATRICES IN MEMORY

Although many kinds of objects can be stored in arrays, in this work we are concerned
chiefly with matrices, whose algorithms make special demands on the memory. In this
and the following subsections we will treat the interaction of matrix algorithms and
memory.

Array references in matrix computations

Let us now see how Algorithm 2.1 for solving a triangular system looks from the point
of view of a computer. For ready reference we repeat the algorithm here.

1. fork=1ton

2. T = by,

3. forj=1to k-1

4. oy = Tk — i 2; (3.3)
5. end for j

6. Tk = Tk /lrk

7. endfork

We want to convert this program to one using pure memory references, so that
we can see the overhead involved in the array indexing. By our conventions, vectors
present no problems. The kth component of the vector z is z[k]. Matrices require
more work. If we assume that L is stored rowwise with stride p and £ is the address of
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£11, then we can use (3.1) to retrieve elements of L. The result of these alterations to
(3.3) is the following program.

1. fork=1ton

2. z[k] = blk]

3. forj=1to k-1

4. z[k] = alk] — €[(k—1)p+4)+eli] (3.4)
5. end for j

6. alk] = alk)/£](k~1)p+H]

7. end for k

This program shows why arithmetic operation counts alone cannot predict the run-
ning time of an algorithm. Each array reference involves a certain amount of additional
computational work. For example, the reference to {x; in the original program trans-
lates into £[(k—1)p+j], which requires two additions and a multiplication to compute.
But the program also shows why the running time is proportional to the arithmetic op-
eration count. Each floating-point addition and multiplication in the inner loop is ac-
companied by the same overhead for memory references.

Optimization and the BLAS

The efficiency of the program (3.4) can be improved. As j is incremented, the expres-
sion (k—1)p+J in the inner loop simply increases by one. Thus if we precompute the
value (k—1)p we can simply increment in the loop. Here is pseudocode embodying
this idea.
1=1
fork=1ton
z[k] = b[k]
forj =1to k-1
z[k] = z[k] - £[s]«z[j]
1 =141
end for ;
z[k] = [k]/£[s]
i = i+p—k
10. end for k
This implementation is more efficient than (3.4), since the multiplication and two
additions in the inner loop have been replaced by one addition to increment z. In fact,
we have succeeded in eliminating all multiplications in the index calculation. The key
is to observe that at the end of the loop on j the value of ¢ is exactly p—k less that the
value needed for the next iteration of the loop, so that its next value can be computed
by the simple addition in statement (3.5.9). However, for large matrices this trick has
only negligible effect, since the savings occur outside the inner loop.
The difference between the algorithms (3.4) and (3.5) is essentially the difference
between the codes produced by nonoptimizing and optimizing compilers. The nonop-
timizing compiler will generate the address computation in (3.4.4), not recognizing

(3.3

NN E WD =

e
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that it represents an increment of one with each iteration of the loop. The optimizing
compiler will simply generate code to increment the index.

Since time is important in computations with large matrices, it is natural to ask if
there is a way to circumvent the code generated by a nonoptimizing compiler. The an-
swer is yes. The idea s to isolate frequently occurring computations into subprograms
where they can be optimized — by hand if necessary. Let’s see how this works for the
forward substitution algorithm.

The place to start (as always in speeding up code) is the inner loop— in this case
the loop on j in (3.3). The effect of this loop is to compute the inner product

Lk, 1:k—1)*z[1:k-1]

and subtract it from z. Since the inner product represents the bulk of the work, that
is the computation we want to isolate in a subprogram. The following function does
the job.

1. dot(n, z, y)

2 s=0

3 fork=1ton

4. s = s + z[k]xylk]
5 end for &

6 return s

7. end dot

Now we can substitute the program dot for the inner loop on j:

1. fork=1ton
2. z[k] = (b[k] — dot(k—1, L[k, 1], z[1]))/Alk, k] (3.6)
3. endfor k

There are five comments to be made about dot and its usage.

o The subprogram uses the convention for inconsistent loops and returns zero when
n is zero.

¢ Comparing the calling sequence dot(k—1, L[k, 1], z[1]) with dot itself, we see that
itis the address of L[k, 1] and z[1] that is passed to the subprogram. This is sometimes
called call by reference, as contrasted with call by value in which the value of the ar-
gument is passed (see §1.3).

¢ Since we have replaced doubly subscripted array references to L with singly sub-
scripted array references to z in the subprogram dot, even a nonoptimizing compiler
will generate efficient code. But if not, we could compile dot on an optimizing com-
piler (or code it in assembly language) and put it in a library. Since the inner product
is one of the more frequently occurring matrix operations, the effort will pay for itself
many times over.
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¢ The subprogram dot can be written to take advantage of special features of the ma-
chine on which it will be run. For example, it can use special hardware — if it exists —
to compute the inner product.

¢ The subprogram dot is not as general as it should be. To see why, imagine that L is
stored by columns rather than by rows, say with stride p. Then to move across a row,
the index of z in dot must increase by p instead of one. A revised subprogram will
take care of this problem.

1. dot(n, z, xstr, y, ystr)

2 ix=1;, iy=1
3 s=0
4 fork=1ton
5. s = s+ z[ixj*y[iy|
6 ix = ix+xstr
7 iy = iy+ystr
8 end for &
9. return s
10. end dot

In this subprogram the index of both 2 and y are incremented by a stride provided by
the user. In particular, to convert (3.6) to handle a matrix stored by columns with stride
p, the statement (3.6.2) would be replaced by

z[k] = (b[k] — dot(k—1, L[k, 1], p, z[1], 1))/ A[k, k]

The function dot is representative of a class of subprograms that perform frequent-
ly occurring tasks in linear algebra. They are called the BLAS for “basic linear alge-
bra subprograms.” In particular, dot is called a level-one BLAS because it operates on
vectors. As we shall see, there are higher-level BLAS that perform matrix-vector and
matrix-matrix operations. We have already met another class of BLAS for the solution
of triangular systems (see Figure 2.2).

The utility of the BLAS is universally recognized, and any attempt to produce qual-
ity matrix software must come to grips with them. Nonetheless, BLAS will not be
much used to present algorithms in this work. There is no contradiction in this. The
fact that we use partitioning and matrix operations to present our algorithms means that
the appropriate BLAS are suggested by the pseudocode itself. For example, compare
the statement

z[k] = (b[k] - dot(k—1, L[k, 1], p, z(1], 1))/ Alk, k]
with

z[k] = (blk] — L[k, Lik—1)xz[1:k—1])/Alk, k]
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Economizing memory — Packed storage

In the early days of digital computing, memory was in short supply — so much so that
economy of storage was often more important than speed when it came to selecting an
algorithm. Now memory is plentiful. Yet it is not infinite, and matrices demand a lot
of it. Therefore, techniques for economizing memory are still useful.

Triangular matrices furnish an opportunity for economizing storage, since about
half of the elements are zero. Because the zero elements are not referenced in the
course of solving a triangular system, there is no point in storing them. However, most
programming languages do not have triangular arrays as a primitive data type. Con-
sequently, we must store the elements in a linear array.

For definiteness let us suppose that the elements of the n xn lower triangular ma-
trix L are stored columnwise in an array £, so that we have the correspondence

L[1,1] - {[1]
L[2,1] < £[2] L[2,2] & £[4]
L[3,1] < £[3] L[3,2] « £[5] L[3,3]« £[6]
This cramming of the nonzero elements of a matrix into a linear array is called a packed

representation.
We will implement the column-oriented algorithm (2.7), which for convenience

is reproduced here.

1. z=b

2. fork=1ton

3. afk] = alk)/Lk, ] 37)
4. z[k+1:n]) = z[k+1:n] — z[k]*L[k+1:n, k]

5. endfork

The implementation is in the spirit of the algorithm (3.5) in that we set up an index ?
that moves through the array £.
1. i=1
2. z=2b
3. fork=1ton
4 z[k] = z[k]/L[1]
5 t=1+1
6. forj=k+1ton (3-8)
7 2lj] = alj]-olk}xLli]
8 t=1+1
9 end for 7
10. endfork

It is worth noting that there is no need to do an extra computation to get the index of
the diagonal of L before the division. Because of the packed representation, all we
need do is increment ¢ by one.

The level-one BLAS interact nicely with packed representations. For example, the
basic operation the statement (3.7.4) performs is to overwrite a vector by its sum with
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a constant times another vector. Consequently, if we create a new BLAS called axpy
(for az plus y) that overwrites a vector y with az + y, we can use it to implement the
inner loop of (3.8).

Specifically, define axpy as follows.

1. axpy(n, a, z, xstr, y, ystr)
2 ix=1;, iy=1

3 fork=1ton

4 yliyl = yliy] + axa[ix]
5. ix = ix+xstr (39
6 iy = iy+ystr

7 end for k£

8. end axpy

3.

Then (3.8) can be written in the form

i=1

z=5b

fork=1ton
(k] = z[k]/{[3]
axpy(n—k, —.’L‘[k], [[t+1], 1, :L‘[k-{-].], 1)
t = t+n—k+1

end for &

Nk LN

Most matrices with regular patterns of zeros lend themselves to a packed represen-
tation. The packing need not be in a single array. People often pack the three diagonals
of a tridiagonal matrix in three linear arrays (see §2.3, Chapter 3). Nor is packing con-
fined to matrices with zero elements. Almost half the elements of a symmetric matrix
are redundant (since a;; = a;;) and do not need to be stored.

Packing is not the only way to economize storage. Overwriting is another. For
example, the algorithm (2.9) overwrites a lower triangular matrix with its inverse, thus
saving O(n?) words of memory. Later in this work we shall see how a matrix can be
overwritten by a decomposition of itself. However, we can overwrite a matrix only if
we know that we will not need it again.

3.3. HIERARCHICAL MEMORIES

People want their memories large so they can solve large problems. And they want
their memories fast so they can solve large problems in a reasonable time. Unfortu-
nately, speed and capacity work against each other. Large memories are slow and fast
memories are small.

To get around this difficulty computer architects have evolved a compromise call-
ed hierarchical memory. The idea is that a large slow memory backs up a fast small
one. The computer works through the fast memory, which, of course, cannot contain
all the words in the large memory. When the computer references a word that is not
in the fast memory a block containing the word is swapped from the large memory.



110 CHAPTER 2. MATRICES AND MACHINES

Most computers have more than one level of memory. Figure 3.1 exhibits a typical
(though idealized) hierarchical memory. At the bottom are the registers of the central
processing unit— the place where words from higher memories are manipulated. At
the top is a disk containing the entire memory allocated to the machine — the virtual
memory that cannot fit into the main memory below. Between the main memory and
the registers is a small, fast cache memory.

Volumes have been written on hierarchical memories, and it is impossible to de-
scend to architectural details in a work of this nature. But even a superficial descrip-
tion will be enough to suggest how matrix algorithms might be coded to avoid prob-
lems with memory hierarchies. We will begin this subsection by discussing virtual and
cache memory. We will then turn to strategies for writing matrix algorithms that use
hierarchical memories efficiently.

Virtual memory and locality of reference

Our model of a computer memory continues to be a linear array of words addressed
by integers. The size of the memory is called the address space. The address space of
many modern computers is enormous. Address spaces of 232 bytes are common, and
address spaces of 264 are now appearing.

An address space of 232 bytes represents about five hundred million double-pre-
cision floating-point words. Although such a memory could be built, it would be im-
practically expensive for most applications. The cure is to make do with a smaller
main memory and store the rest on a backing store, usually a disk. When this is done
in such a way that the process is invisible to the programmer, it called virtual memory.

Specifically, the address space is divided into blocks of contiguous words called
pages. Typically a page will contain several kilobytes. Some of the pages are con-
tained in main memory; the rest are kept on a backing store. When a program ref-
erences a memory location, the hardware determines where the page containing the
location lies. There are two possibilities.

1. The page is in the main memory. In this case the reference — whether a read
or a write— is performed with no delay.

2. The page is not in main memory, a condition known as a page fault. In this
case the system swaps the page in backing store with one of the pages in
main memory and then honors the reference.

The problem with this arrangement is that reads and writes to backing store are
more costly than references to main memory, e.g., a hundred thousand times more
costly. It is therefore important to code in such a way as to avoid page faults. In compu-
tations with large matrices, some page faults are inevitable because the matrices con-
sume so much memory. But it is easy to miscode matrix algorithms so that they cause
unnecessary page faults.

The key to avoiding page faults is locality of reference. Locality of reference has
two aspects, locality in space and locality in time.
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Virtual memory
(disk)

Tracks
Pages

Main memory

Pages
Blocks

Cache
Blocks
Words

CPU

Registers
(words)

Bits

This is a representation of a hierarchical memory. At the highest level is
a disk-based virtual memory. It is divided into pages of words that are
swapped in and out of the main memory below. The pages of main mem-
ory are divided into blocks that are swapped with the fast cache memory.
Finally words in the cache memory move between the registers of the cen-
tral processing unit.

Figure 3.1: A hierarchical memory
o
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Locality in space refers to referencing nearby locations. The rationale is that con-
tiguous memory locations are likely to lie in the same page, so that a cluster of refer-
ences to nearby locations is unlikely to generate page faults. On the other hand, loca-
tions far removed from one another will lie on different pages and referencing them
one after another may cause a sequence of page faults. Thus it is desirable to arrange
computations so that if a location is referenced subsequent references are to nearby
locations.

To understand the notion of locality in time consider two references to a single
memory location. If these references occur near each other in time — the extreme case
is when they occur one right after the other— the page containing the item is likely to
be still around. As the references become further separated in time, the probability of
a page fault increases. Thus it is desirable to arrange computations so that repeated
references to the same locations are made close together in time.

Cache memory

In recent years the speed of processors has increased faster than the speed of mem-
ory — at least memory that can be built in quantity at a reasonable cost. To circumvent
this roadblock, computer architects have incorporated small, fast memories — called
cache memories or simply caches — into computers.

Cache memory bears the same relation to main memory as main memory does
to virtual memory, though the details and terminology differ. The cache is divided
into blocks which contain segments from main memory. When a memory reference
is made, the hardware determines if it is in the cache. If it is, the request is honored
right away. If it is not—a cache miss this situation is called — an appropriate (and
generally time-consuming) action is taken before the reference is honored.

An important difference between cache and virtual memories is that writes a cache
are usually more expensive than reads. The reason is the necessity of preserving cache
coherency — the identity of the contents of the cache and the contents of the corre-
sponding block of memory. A coherent cache block, say one that has only been read
from, can be swapped out at any time simply by overwriting it. An incoherent cache
block, on the other hand, cannot be overwritten until its coherency is restored.

There are two common ways of maintaining cache coherency. The first, called
write through, is to replicate any write to cache with a write to the corresponding lo-
cation in main memory. This will cause writes— or at least a sequence of writes near
each other in time — to be slower than reads. The other technique, called write back,
is to wait for a miss and if necessary write the whole block back to memory, also a
time-consuming procedure. Actually, write-through and write-back represent two ex-
tremes. Most caches have buffering that mitigates the worst behavior of both. None-
theless, hammering on a cache with writes is a good way to slow down algorithms.
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A model algorithm

We are now going to consider techniques by which we can improve the interaction of
matrix algorithms with hierarchical memories. It must be stressed that this is more
an art than a science. Machines and their compilers have become so diverse and so
complicated that it is difficult to predict the effects of these techniques. All we can
say is that they have the potential for significant speedups.

In order to present the techniques in a uniform manner, we will consider a model
calculation. People acquainted with Gaussian elimination—to be treated in Chap-
ter 3— will recognize the following fragment as a stripped down version of that al-
gorithm. The matrix A in the fragment is of order n.

1. fork=1ton-1
2. Alk+1in, k+1:n] = Alk+1:in, k+1:n]
— Alk+1:n, k]* Ak, k+1:n]
3. endfor £
In matrix terms, if at the kth stage the array A is partitioned in the form (northwest
indexing)

(3.10)

An aik Al k1
T T
L5 Ckk Qe+ |
Ak+1,1 Ak41,k Ak+1,k+1

then the next matrix is obtained by the substitution
Apt1k4+1 & App1 g1 — ak+1,ka;f,k+1- (3.11)

Row and column orientation

Figure 3.2 exhibits two obvious ways of implementing our model algorithm. They
differ only in the order of the loops on ¢ and j. But the effects of the difference can be
great.

To see this, suppose the matrix A is stored columnwise in an nXn array with ad-
dress a. Then for & = 1, the first algorithm, which moves along the rows of the array,
makes the following sequence of memory references.

a[ll] — a[n+1] — ¢2n+1] - --- = aln(n-1)+1]
— af2] — an+2} - ¢2n+2] — .- a[n(n —1)+2]
- al8] - an+3] - ¢2n+43] - --- = an(n-1)+3]

!

= o] — a2n] = a3n]  — - — an?

If n is at all large, the references jump around memory —i.e., they do not preserve
locality in space.
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1. fork=1ton
2. fori=Fk+1ton
3, forj=k+1ton
5. end for j
6. end for ¢
7. end for k
Row-Oriented Algorithm
1. fork=1ton
2. forj =k+1lton
3. for:=k+1ton
’) Ali,§] = Ali, j]- Ali, Kl A[k, 5]
5. end for ¢
6. end for j
7. end for k

Column-Oriented Algorithm

Figure 3.2: Row- and column-oriented algorithms
o

On the other hand, the second algorithm, which traverses the columns of A, makes
the following sequence of memory references.

! 1 1
a[l] a[rn+1] ¢2n+1] --- a[n(n-1)+1]
! ! ! l
al2) a[n+2] a2n+2] --- a[n(n—-1)+2]
l ! l !
a[3] a[n+3] e2n+3] --- a[n(n-1)+3]
! ! ! !
! ! ! !
a[n]  a[2n] a[3n]  --- a[nn?]

Thus the algorithm proceeds from one memory location to the next—i.e., it preserves
locality in space about as well as any algorithm can.

As k increases the behavior of the algorithms becomes more complicated. But the
first algorithm never jumps in memory by less than » words, while the second algo-
rithm never jumps by more than n words and usually by only one word. If A is stored
by rows instead of columns, the two algorithms reverse themselves with the second
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making the large jumps.

We say that the first algorithm is row oriented and that the second is column ori-
ented. The above reasoning shows that column orientation preserves locality of ref-
erence when the matrix in question is stored by columns; row orientation preserves
locality of reference when the matrix is stored by rows. Thus our first technique for
coding algorithms is:

Make the orientation of the algorithm agree with the storage scheme.  (3.12)

Here are some comments on this technique.

¢ Although many of the simpler matrix algorithms have both row- and column-ori-
ented versions, in more complicated algorithms we may have to compromise. Thus the
assertion (3.12) should be taken, not as a strict requirement, but as an ideal to strive
for.

¢ In days gone by, when pages were small and caches were nonexistent, orientation
was used to avoid page faults. Today, they chiefly prevent cache misses. The reason is
that main memories have grown so large that they can contain extremely large matri-
ces. For example, a 64 Mbyte memory can contain an IEEE double-precision matrix of
order almost 3,000. Once a matrix has been brought in main memory, it can generally
be manipulated without page faults.

¢ Because FORTRAN, which stores arrays by column, has dominated the field of ma-
trix computations, most packages such as LINPACK and LAPACK are column oriented.
In a general way we will follow this convention, although we will not hesitate to pre-
sent mixed or row-oriented algorithms if circumstances dictate.

Level-two BLAS

It is not always necessary to decide on row or column orientation at the time an al-
gorithm is written. For example, we have seen that the basic operation of our model
algorithm is the subtraction of a rank-one matrix:

T
Akt1,k41 — Akf1,k41 = Ck+1,k0k ki1

[see (3.11)]. Suppose we write a function amrnkil(A, z, yT) that overwrites A with
A—zyT (the name means “A minus a rank-one matrix). Then we can write our model
algorithm in the form

1. fork=1ton-1
2. amrnkI( Alk+1:n, k+1:n], Alk+1:n, k], Ak, k+1:n]) (3.13)
3. endfork

The program amrnkl can then be loaded from a library of code written for the target
system and language.

The program amrnkl is called a level-two BLAS. The name comes from the fact
that it performs O(n?) matrix-vector operations. Other examples of level-two BLAS
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are the ones for triangular systems listed in Figure 2.2. Yet another example is the
formation of a matrix-vector product. It turns out that the catalogue of useful matrix-
vector operations is small enough that it is practical to code libraries of them for a
given machine or language. Row and column orientation, as required, can then be
incorporated in these libraries.

We will not make explicit use of level-two BLAS in presenting algorithms. The
reason is the same as for level-one BLAS — our notation is sufficient to express the
action of most level-two BLAS. Provided we present our algorithms at a high enough
level, the level-two BLAS required will be obvious on inspection.

Unfortunately, the level-two BLAS are not a panacea. Algorithms for the more
complicated matrix decompositions usually have row or column orientation built into
them in subtle ways — for example, in the decision whether to store a transformation
or its transpose. Until we agree on a common language or until all languages become
ambidextrous, orientation of matrix algorithms will continue to trouble us.

Keeping data in registers

With a pure write-through cache it is as expensive to write to cache as to main memory.
Now both of the programs in Figure 3.2 perform a great many writes — about %n:".
The number can be reduced by recasting the algorithm.

Let us put ourselves in the position of a typical element of A and ask what com-
putations the model algorithm performs on it. There are two cases. If the element is
a;r with 2 > k, the algorithm performs the following computations:

Qik < ik — 011k — Q2025 — -+ — G k_10k_1,k-

On the other hand, if the element is ax; with & > 7, the algorithm performs the fol-
lowing computations:

Qj «— Gk — Q1015 — Q2025 — = * — Qf k—10k-1,5-

These formulas presuppose that the a’s forming the products on the left have already
been processed. This will be true if, as & goes from one to n—1, we compute a;; (7 =
k+1,...,n)and ax; (j = k,...,n).

These considerations give us the following algorithm.



SEC. 3. MATRICES IN MEMORY 117

1. fork=1ton—1

2 fori=k+1iton

3 forj=1to k-1

4 A[Z, k] = A[Zv k] - A[z7]]*A[.7, k]
5. end for j

6 end for ¢

7 forj=Fkton (3.14)
8. fori=1t0 k-1

9. Alk, j) = Alk, j] — Alk, i} A[i, ]
10. end for ¢

11. end for ;7
12. end for &

Incidentally, this program is a stripped down version of the Crout form of Gaussian
elimination (see Algorithm 1.7, Chapter 3).

The advantage of this form of the algorithm is that the reference to A[z, k] in state-
ment 4 does not change in the inner loop on :. Consequently, we can put it in a register
and work with it there without having to write to cache. Similarly for the computation
in statement 9. Thus the reorganized algorithm is potentially faster than either of the
algorithms in Figure 3.2 when writes to cache are expensive.

Unfortunately, there are trade-offs. The program (3.14) is neither column- nor
row-oriented and cannot be made so. What we gain by keeping the data in registers we
may lose to the poor orientation. Moreover, there is no way to use BLAS to hide the
difference between (3.14) and the algorithms in Figure 3.2. With regard to memory
they are fundamentally different algorithms, and the choice between them must be at
the highest level.

Blocking and the level-three BLAS

In the program (3.13) we used the level-two BLAS amrnkl to subtract a rank-one ma-
trix (in exterior-product form) from a submatrix of A. Although we can implement this
routine in different ways—e.g., vary its orientation — a rank-one update is too simple
to give us much scope for variation. It turns out that by a process called blocking we
can elevate the rank-one update into an update of higher rank.

To see how to do this, choose a block size m and partition A in the form

An At )
A= ’ , 3.15
(Am+1,l Am+1,m+l ( )

where the indexing is to the northwest. If we process the elements in A3y, Ay 41, and
A 41,1 in the usual way, then the effect of the first m steps of the algorithm (3.13) on
Am+1,m+1 18 to overwrite A, 41 41 as follows

Apsim+l < Appimt1 — Amt1,141,m41-

This overwriting is a rank-m update. After the update, we can repeat the process on
the matrix Am+1,m+1 .
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1. fork=1tonbym
2. ku = min{k+m—1,n}
3. for ! =k to ku—1
4. forj=1I1+1ton
5. for : = {41 to min{j, ku}
6. Ali, j] = Ali, j]- A[ial]*A[l7j]
7. end for ¢
8. end for j
9. forj =1+1to ku
10. fori=j+1ton
11. Ali, j] = Ali, 51— Als, []x All, 5]
12, end for :
13. end for j
14. end for [
15. Alku+1:n, ku+1:n) = Alku+1:n, ku+1:n)
— Alku+1:n, k:kujx A{k:ku, ku+1:n]
16. end for &

Figure 3.3: A blocked algorithm
o

The code in Figure 3.3 implements this scheme. The code may be best understood
by referring to the following figure.

<— k

ku

II [11

The grey region contains the elements that have been completely processed. Regions
I (which contains the diagonal) and II are the blocks corresponding to Ayy, Ay pmt1,
and A, 41,1 in the partition (3.15). They are processed in the loop on {. The loop in
statement 4 processes region I. The loop in statement 9 processes region II. Region III
is processed in statement 15, which if the block size m is not large accounts for most
of the work in the algorithm.

If we now define a level-three BLAS amrnkm( A, X, Y') that overwrites A with A —
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XY, we may replace statement 15 with
amrnkm( Alku+1:n, ku+1:n|, Alku+1:n, k:ku), Alk:ku, ku+1:n))

The BLAS amrnkm can then be coded to take advantage of the features of a particu-
lar machine. The fact that amrnkm works with more data than amrnkl gives us more
opportunity to economize. For example, if m is not too large we may be able to use
inner products in the style of (3.14) without triggering a volley of cache misses.

The choice of the block size m is not easy. Two things limit its size. First, the
overhead for processing regions I and II increases until it swamps out any benefits.
Second, as we have suggested above, if m is too large we increase the probability of
cache misses and page faults. The routines provided by LAPACK choose a value of 1,
32, or 64, depending on the name of the BLAS and whether the arithmetic is real or
complex.

Blocking can be remarkably effective in speeding up matrix algorithms — espe-
cially the simpler ones. However, we shall not present blocked algorithms in this work.
There are three reasons. First, the blocking obscures the simplicity of the basic algo-
rithm. Second, once a matrix algorithm is well understood, it is usually an easy matter
to code a blocked form. Finally, the LAPACK codes are thoroughly blocked and well
commented, so that the reader can easily learn the art of blocking by studying them.
For these reasons, we will present our algorithms at the level of matrix-vector opera-
tions, i.e., algorithms that can be implemented with the level-two BLAS.

3.4. NOTES AND REFERENCES
The storage of arrays

We have stressed the storage of arrays by rows and columns because that is the way itis
done in high-level programming languages. But in some cases other representations
may be preferable. For example, one can partition a matrix A into submatrices and
store the submatrices as individual arrays, a scheme that can improve performance on
computers with hierarchical memories.

Strides and interleaved memory

In many computers, memory is divided into banks which can be accessed indepen-
dently (e.g., see [169, p. 305ff.]). Specifically, if the memory has m banks, then the
word with address z is assigned to bank z mod m. Because the banks are indepen-
dent, if z[i] is referenced a subsequent reference to z[i+1] can proceed immediately.
However, a reference to z[i+m] must wait for the access to z[z] to complete. This
means that one should avoid arrays with strides that are equal to the number of banks.
Since banks tend to come in powers of two, one should never create an array with a
stride that is a power of two. A product p of odd numbers is a good bet, since the
smallest integer k for which kp is a multiple of 2° is 2 itself.



120 CHAPTER 2. MATRICES AND MACHINES

The BLAS

The BLAS arose in stages, as suggested by their level numbers. The original BLAS
[214], formally proposed in 1979, specified only vector operations. When this level of
abstraction was found to be unsatisfactory for certain vector supercomputers, notably
the various CRAYs, the level-two BLAS [102, 103] for matrix-vector operations were
proposed in 1988. Finally, the level-three BLAS [101, 100] were proposed in 1990 to
deal with hierarchical memories.

The fact that the BLAS could enhance the performance of code generated by non-
optimizing compilers was first noted by the authors of LINPACK and was an important
factor in their decision to adopt the BLAS.

A problem with generalizing the original BLAS is that each level of ascent adds
disproportionately to the functions that could be called BLAS. For example, the solu-
tion of triangular systems is counted among the level-two BLAS. But then, why not in-
clude the solution of Hessenberg systems, which is also an O(n?) process. By the time
one reaches the level-three BLAS, everything in a good matrix package is a candidate.
The cure for this problem is, of course, a little common sense and a lot of selectivity.

Virtual memory

Virtual memory was proposed by Kilburn, Edwards, Lanigan, and Sumner in 1962
[198]. Virtual memories are treated in most books on computer architecture (e.g., [169,
317, 257, 78)). Moler [231] was the first to point out the implications of virtual mem-
ory for matrix computations.

A common misconception is that virtual memory in effect gives the user a mem-
ory the size of the address space — about 4 Gbytes for an address space of 232 bytes.
But on a multiuser system each user would then have to be allocated 4 Gbytes of disk,
which would strain even a large system. In practice, each user is given a considerably
smaller amount of virtual memory.

Cache memory

Cache memory was the creation of Maurice Wilkes [341], the leader of the project that
resulted in the first effective stored program computer. A comprehensive survey may
be found in [283]. Also see [78, 169, 173, 257].

Large memories and matrix problems

We have already observed in §2.9 that if m = n? is the amount of memory required
to store a general matrix then the complexity of O(n3) algorithms is O(m%), which
is a superlinear function of m. This implies that to keep up with an increase in mem-
ory, processor speed (including access to memory) must increase disproportionally.
Evidently, such a disproportionate increase has been the rule until quite recently. For
decades the rule of thumb for matrix computations was: If you can fit it in main mem-
ory, you can afford to solve it. Only recently has the balance tipped to the other side,
and now you begin to see papers in which the authors beg off running the largest pos-
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sible problem with the excuse that it would take too long.

Blocking

It is important to distinguish between a blocked algorithm like the one in Figure 3.3
and a block algorithm in which the blocks of a partitioned matrix are regarded as (non-
commuting) scalars. We will return to this point when we consider block Gaussian
elimination (Algorithm 1.2, Chapter 3).

4. ROUNDING ERROR

As I was going up the stair

I met a man who wasn'’t there!
He wasn'’t there again today!

I wish, I wish he’d stay away!

Hughs Mearns

Rounding error is like that man. For most people it isn’t there. It isn’t there as
they manipulate spreadsheets, balance checking accounts, or play computer games.
Yet rounding error hovers at the edge of awareness, and people wish it would go away.

But rounding error is inevitable. It is a consequence of the finite capacity of our
computers. For example, if we divide 1 by 3 in the decimal system, we obtain the
nonterminating fraction 0.33333 . ... Since we can store only a finite number of these
3’s, we must round or truncate the fraction to some fixed number of digits, say 0.3333.
The remaining 3’s are lost, and forever after we have no way of knowing whether we
are working with the fraction 1/3 or some other number like 0.33331415. . ..

Any survey of matrix algorithms— or any book on numerical computation, for
that matter — must come to grips with rounding error. Unfortunately, most rounding-
error analyses are tedious affairs, consisting of several pages of algebraic manipula-
tions followed by conclusions that are obvious only to the author. Since the purpose
of this work is to describe algorithms, not train rounding-error analysts, we will con-
fine ourselves to sketching how rounding error affects our algorithms. To understand
the sketches, however, the reader must be familiar with the basic ideas — absolute and
relative error, floating-point arithmetic, forward and backward error analysis, and per-
turbation theory. This section is devoted to laying out the basics.

4.1. ABSOLUTE AND RELATIVE ERROR

There are two common ways of measuring the degree to which a quantity b approx-
imates another quantity a — absolute and relative error. The difference between the
two is that absolute error is defined without reference to the size of the quantities in-
volved, whereas relative error incorporates the size as a scaling factor.
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Absolute error

We begin with a definition.

Definition 4.1. Let a and b be scalars. Then the ABSOLUTE ERROR in b as an approx-
imation to a is the number

e=|b—al.
There are three comments to be made about this definition.

¢ The absolute error measures the distance between an approximation to a quantity
and its true value. However, it does not allow one to retrieve the true value, since the
direction between it and its approximation are unknown. However, if we introduce the
number e = b — a, then by definition b = a + e. We may summarize this as follows.

If b is an approximation to ¢ with absolute error €, then there is a number e =

b — a such that
1. le]=c¢
2. b=a+e.

¢ The number e = b — a is usually called the error in b, and some people would con-
fine the use of the term “error” to this difference. Such a restriction, however, would
require us to qualify any other measure of deviation, such as absolute error, even when
it is clear what is meant. In this work the meaning of the word “error” will vary with
the context.

¢ In many applications only an approximate quantity is given, while the true value is
unknown. This means that we cannot know the error exactly. The problem is resolved
by computing upper bounds on the absolute error. We will see many examples in what
follows.

¢ The absolute error is difficult to interpret without additional information about the
true value.

Example 4.2. Supposeb approximates a with an absolute error of 0.01. Ifa = 22.43,
then a and b agree to roughly four decimal digits. On the other hand, ifa = 0.002243,
then the error overwhelms a. In fact, we could have b = 0.012243, which is almost
five times the size of a.

Relative error

Example 4.2 suggests that the problem with absolute error is that it does not convey a
sense of scale, i.e., of the relation of the error to the quantity being approximated. One
way of expressing this relation is to take the ratio of the error to the true value. In the
above example, if @ = 22.43, this ratio is about 0.0004, which is satisfactorily small.
If, on the other hand, a = 0.002243, the ratio is about four. These considerations lead
to the following definition.
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Definition 4.3. Leta # 0 and b be scalars. Then the RELATIVE ERROR in b as an ap-
proximation to a is the number

_|b—al
la]

Relative error is somewhat more complicated than absolute error.

¢ The requirement that the number a be nonzero is in keeping with our motivation of
the definition of relative error. Any error, however small, is infinitely large compared
with zero.

¢ Just as a small absolute error tells us that we must add a quantity near zero to the
true value to get the approximate value, so a small relative error tells us that we must
multiply by a number near one. Specifically:

If b is an approximation to ¢ with relative error p, then there is a number r =
(b~ a)/a such that

L |r|=p,

4.1
2. b=qa(l+r). @D

Conversely, if b satisfies (4.1.2), then b is an approximation to a with relative error |r|.

¢ If b is an approximation to ¢ with absolute error ¢, then a can be regarded as an
approximation to b with absolute error €. In general, no such reciprocal relation exists
for the relative error. As an extreme example, zero approximates everything except
zero with relative error one. But, as we have observed above, no approximation to
zero has a relative error. Nonetheless, if the relative error is small, then an approximate
reciprocity exists.

Theorem 4.4. Let b approximate a with relative error p < 1. Then b is nonzero, and

la-b4 . P
Bl ~1-p

Proof. From the definition of relative error, we have pla| = |b — a| > |a| — |b], from
which it follows that |b| > (1 — p)|a| > 0. Hence from the definition of relative error
and the last inequality, it follows that

I I
T-p (A-pld = T

Thus, in passing from the relative error in b as an approximation to a to the relative
erTor in a as an approximation to b, we must multiply by a factor of (1~ p)~1. Aspde-
creases, this factor quickly becomes insignificant. If, for example, p = 0.1, the factor
is about 1.1. Therefore, if the relative error is at all small, it makes no real difference
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which quantity is used as a normalizer. In this case one may speak of the relative error
in ¢ and b without bothering to specify which is the quantity being approximated.

¢ Therelative error is related to the number of significant digits to which two numbers
agree. Consider, for example, the following approximations to e = 2.71828... and
their relative errors.

Approx. R.E.

2 3.1071
2.7 7-1073
2.71 3.10"3
2718 1-107*
2.7182 3-107°
2.71828 6-1077

These numbers suggest the following rule of thumb.

If the relative error of a with respect to b is p, then a and b agree to roughly
— log p significant decimal digits.

The rule is only approximate and can vary by an order of magnitude either way.
For example, 9.99999 and 9.99899 agree to three digits and have a relative error of
about 1074, On the other hand, the numbers 1.00000 and 1.00999 also agree to three
digits but have a relative error of about 1072.

The rule applies to number systems other than decimal. For binary systems the
rule reads:

If a and b have relative error of approximately 27, then a and b agree to about
t bits.

4.2. FLOATING-POINT NUMBERS AND ARITHMETIC

Anyone who wishes to do serious rounding-error analysis must grapple with the details
of floating-point arithmetic. Fortunately, only the rudiments are required to understand
how such analyses are done and how to interpret them. The remaining subsections are
devoted to those rudiments.

Floating-point numbers

Floating-point numbers and their arithmetic are familiar to anyone who has used a
hand calculator in scientific mode. For example, when I calculate 1/7 on my calcula-
tor, I might see displayed

3.183098 —01

This display has two components. The first is the number 3.183098, which is called
the mantissa. The second is the number —01, called the exponent, which represents
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a power of ten by which the mantissa is to be multiplied. Thus the display represents
the number

3.183098 - 10~ = 0.3183098.

It is easy to miss an important aspect of the display. The numbers have only a finite
number of digits — seven for the mantissa and two for the exponent. This is character-
istic of virtually all floating-point systems. The mantissa and exponent are represented
by numbers with a fixed number of digits. As we shall see, the fixed number of digits
in the mantissa makes rounding error inevitable.

Although the above numbers are all represented in the decimal system, other bases
are possible. In fact most computers use binary floating-point numbers.

Let us summarize these observations in a working definition of floating-point num-
ber.

Definition 4.5. A t-digit, base-3 FLOATING-POINT NUMBER having EXPONENT RANGE
[€mins €max] is a pair (m, ), where

1. m is a t-digit number in the base (3 with its 3-point in a fixed location, and
2. e isan integer in the interval [€min, €max)-

The number m is called the MANTISSA of (m, e), and the number e is its EXPONENT.
The VALUE of the number (m, €) is

m-f°.
The number (m, €) is NORMALIZED if the leading digit in m is nonzero.

It is important not to take this definition too seriously; the details of floating-point
systems are too varied to capture in a few lines. Instead, the above definition should be
taken as a model that exhibits the important features of most floating-point systems.

On hand calculators the floating-point base is ten. On most digital computers it
is two, although base sixteen occurs on some IBM computers. The location of the 3-
point varies. On hand calculators it is immediately to the left of the most significant
digit, e.g., (3.142, 0). On digital computers the binary point is located either to the left
of the most significant digit, as in (1.10010, 1), or to the right, as in (.110010, 2).

The way in which the exponent is represented also varies. In the examples in the
last paragraph, we used decimal numbers to represent the exponent, even though the
second example concerned a binary floating-point number. In the IBM hexadecimal
format, the exponent is represented in binary.

A floating-point number on a digital computer typically occupies one or two 32-bit
words of memory. A number occupying one word is called a single-precision number,
one occupying two words is called a double-precision number. Some systems provide
quadruple-precision numbers occupying four words. The necessity of representing
floating-point numbers within the confines of a fixed number of words accounts for
the limits on the size of the mantissa and on the range of the exponent.
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The representation of 7 in 4-digit, decimal floating point as (0.314, 1) wastes a
digit representing the leading zero. The representation (3.142,0) is more accurate.
For this reason most floating-point systems automatically adjust the exponent so the
mantissa is normalized, i.e., so that its leading bit is nonzero.

The IEEE standard

Since the details of floating-point systems vary, it is useful to consider one in detail. We
have chosen the IEEE standard, which has been widely adopted — at least nominally.

Example 4.6 (IEEE floating-point standard). Single-precision IEEE standard float-
ing-point numbers have the form

01 89 31
\a[ exp r frac |

The small numbers above the box denote bit positions within the 32-bit word contain-
ing the number. The box labeled o contains the sign of the mantissa. The other two
boxes contain the exponent and the trailing part of the mantissa. The value of the num-
ber is

(—1)? 1.frac.28P~127, 1 < exp < 254.
The double-precision format is

01 1112 63
ol exp | frac |

The value of a double precision number is
(=1)7 Lfrac-2*P~1023 1 < exp < 2046.

The quantities frac and exp are not the same as the quantities m and e in Defini-
tion 4.5. Here is a summary of the differences.

® Since the leading bit in the mantissa of a normalized, binary, floating-point number
is always one, it is wasteful to devote a bit to its representation. To conserve precision,
the IEEE fraction stores only the part below the leading bit and recovers the mantissa
via the formula m = (~1)?-1.frac.

¢ The number exp is called a biased exponent, since the true value e of the exponent
is computed by subtracting a bias. The unbiased exponent range for single precision is
[—126, 127], which represents a range of numbers from roughly 1038 to 1038, Double
precision ranges from roughly 10737 to 1037, In both precisions the extreme expo-
nents (i.e., —127 and 128 in single precision) are reserved for special purposes.

® Zero is represented by exp = 0 (one of the reserved exponents) and f = 0. The
sign bit can be either 0 or 1, so that the system has both a +0 and a —0.
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Rounding error

Relative error is the natural mode in which to express the errors made in rounding to
a certain number of digits. For example, if we round 7 = 3.14159... to four digits,
we obtain the approximation 3.142, which has a relative error of about 10~%. The ex-
ponent —4, or something nearby, is to be expected from the relation between relative
error and the number of significant digits to which two numbers agree.

More generally, consider the problem of rounding a normalized binary fraction a
to t digits. We can represent this fraction as

-1

e
a=01lzx...zxy2z..., 4.2)

where the y and the 2’s represent the digits to be rounded. If y = 0 we truncate the
fraction, which gives the number
-1

e
a=01lzz...2z. 4.3)

The worst possible error (which is approached when the z’s are all one) is 2771, On
the other hand, if y is one, we round up to get the number

t—1

p—
a=0l1zz...2z+27%

Again the worst error (which is attained when the z’s are all zero) is 2~!~2. Since the
smallest possible value of ¢ is 1/2, we make a relative error

~ 2—t—1
B-al 27 _ o (4.4)
|a]

2

In a floating-point system rounding depends only on the mantissa and not on the
exponent. To see this result let @ be multiplied by 2°, where e is an integer. Then the
value of @ will also be multiplied by 2°, and the factor 2° will cancel out as we compute
the relative error (4.4).

Let us write fl(a) for the rounded value of a number a. Then from the character-
ization (4.1), it follows that if a number « is rounded to a ¢-digit binary ﬂoatiilg-point
number we have

fila) =a(l+p), |pl<27% 4.5)

There are other ways to shoehorn a number into a finite precision word. The round-
ing we have just described is sometimes called “round up” because the number

t-1
N
a=0.1zz...221000...
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is always rounded upward. It could equally well be rounded downward — or to the
nearest even number, a strategy which has a lot to recommend it. In chopping or trun-
cation the trailing digits are simply lopped off, so that the chopped representation of
(4.2) is (4.3), whatever the value of the digits yzz.... All these methods generate
bounds of the form (4.5), though possibly with a different bound on |p|.

The key players in (4.5) are an equality stating that rounding introduces a relative
error and an inequality bounding how large the error can be. Abstracting from this
equation, we will assume:

For any floating-point system, there is a smallest number €, such that
fila) =a(l+p),  |p| < e
The number ¢, is called the ROUNDING UNIT for the system in question.

Typically, the rounding unit for a t-digit, base-3 floating-point system will be ap-
proximately 5~*. The size can vary a little depending on the details. For example, the
rounding unit for chopping is generally twice the rounding unit for ordinary round-
ing. Although this increase is minor, we will see later that chopping has an important
drawback that does not reveal itself in the bounds.

Example 4.7 (IEEE standard). The single-precisionrounding unit for IEEE floating
point is about 10~7. The double precision rounding unit is about 1076,

Floating-point arithmetic

Floating-point numbers have an arithmetic that mimics the arithmetic of real num-
bers. The operations are usually addition, subtraction, multiplication, and division.
This arithmetic is necessarily inexact. For example, the product of two four-digit num-
bers is typically an eight-digit number, and in a four-digit floating-point system it must
be rounded back. The standard procedure is for each operation to return the correctly
rounded answer. This implies the following error bounds for floating-point arithmetic.

Let o denote one of the arithmetic operations +, —, X, +, and letfi(aob) denote
the result of performing the operation in a floating-point system with rounding
unit €y,. Then

Alaod) = (aob)(1+p),  |o] < e 46)

The bound (4.6) will be called the standard bound for floating-point arithmetic,
and a floating-point system that obeys the standard bound will be called a standard
system. The standard bound is the basis for most rounding-error analyses of matrix
algorithms. Only rarely do we need to know the details of the arithmetic itself. This
fact accounts for the remarkable robustness of many matrix algorithms.
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Example 4.8 (IEEE standard). In the IEEE standard the default rounding mode is
round to nearest even. However, the standard specifies other modes, such as round
toward zero, that are useful in specialized applications.

The practice of returning the correctly rounded answer has an important implica-
tion.

Example 4.9. If |a + b} < min{|a|, |b|}, we say that CANCELLATION has occurred in
the sum a + b. The reason for this terminology is that cancellation is usually accom-
panied by a loss of significant figures. For example, consider the difference

0.4675
— 0.4623
0.0052

Since cancellation implies that no more than the full complement of significant figures
is required to represent the result, it follows that:

When cancellation occurs in a standard floating-point system, the computed re-
sult is exact.

There is a paradox here. People frequently blame cancellation for the failure of an
algorithm; yet we have just seen that cancellation itself introduces no error. We will
return to this paradox in the next subsection.

One final point. Many algorithms involve elementary functions of floating-point
numbers, which are usually computed in software. For the purposes of rounding-error
analysis, however, it is customary to regard them as primitive operations that return
the correctly rounded result. For example, most rounding error-analyses assume that

A(va)=va(l+p),  lol <ex.

4.3. COMPUTING A SUM: STABILITY AND CONDITION

In this subsection we will use the standard bound to analyze the computation of the
sum

Sy =21+ 22+ -+ 2z,

Simple as this computation is, it already illustrates many of the features of a full-blown
rounding-error analysis.

The details of the analysis depend on the order in which the numbers are summed.
For definiteness we will analyze the following algorithm.

1. $1 =T

2. fori=2ton

3. 8 = 8i~1+ &
4. end:
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A backward error analysis

A natural approach is to write, say, §; for the computed values of the s; and attempt to
compute an upper bound on |3; — s;| from a bound on |3;_ — s;_1|. This technique is
called forward rounding-error analysis. Although such a procedure is useful in some
applications, a different, indirect method, called backward error analysis, works better
for many matrix algorithms. The idea is to let the s; stand for the computed quantities
and relate them to the original data. We will proceed in stages.

¢ Application of the standard bound. This is the tedious part of the analysis. From
the standard bound we have

so=fl(z1+z2) =(z1+22)(1+e)=21(1+ &) +22(1 + 1),

where |e1| < €y. Similarly,

s3 = fl(s2 +23) = (52 + 23)(1 + €2)
=n(l1+a)l+e)+
(14 e )(1+€)+
IE3(1 + 62).

Continuing in this way, we find that

Sn = ﬂ(sn—l + xn) = (sn—l + xn)(l + €n—-l)
=z(l+e)(l+e) - (1+e-1)+
za(ltea)l+e) - (1+e-1)+
z3(l+e) (1 +e-1)+ 4.7

xn—l(l + €7'1‘--2)(]- + €n—l) +
(14 €n-1),

where |¢;| < ey (1 =1,2,...,n—1).
The expression (4.7) is not very informative, and it will help to introduce some
simplifying notation. Let the quantities 7; be defined by

I4m =00+ea)l+e) --(1+e-1),
L4m =0+ea)l+e) --(1+e-1),
1+T]3 :(1+€2)"'(1+€n_1),

4.8)
14 1= (1 + én2)(1+ €n-1),
14+, =(14¢).
Then
sn=a(L+m)+aa(l+ ) +23(l+n3)+--- 49)

+ LL'n..](l + T}n—l) + xn(l + Tln)'
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¢ First-order bounds. The numbers 7); in (4.9) are called the (relative) backward er-
ror, and it is important to have a bound on their sizes. To see what kind of bound we
can expect, consider the product

1+ -1 = (1 + €n—2)(1 + €'n—-l) =1+ (en—Z + €n—-l) + €p—2€n-1. (410)
Now |en—2 + €n—1] < 26y and |€,—26,-1] < €. If, say, ¢4 = 10716, then 2¢y =
2 - 10716 while €4 = 10732, Thus the third term on the right-hand side of (4.10) is
insignificant compared to the second term and can be ignored. If we do ignore it, we
get

Nn—1 = €n—2 + €1
or

[M—1] S len—2| + len—1] < 2em.
In general, we should expect

Im| < (n—1)ew,

4.11
Il S (n—i+)ew,  i=12,3,...,n. @.11)

¢ Rigorous bounds. To get a completely rigorous bound, we use the following result,
whose proof is left as an exercise.

Theorem 4.10. Let

wo el (te)
I+ er)--(1+€)

where [¢;| < ey. If ney < 1, thenw = 1 + 7, where

ney
1—ney

Inl <
If further

ney < 0.1,
then

N < ney,
where

; def €m

= 55 < Ll2ey @.12)

is the ADJUSTED ROUNDING UNIT.
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If we assume that ney, < 0.1, then the bounds (4.11) can be written rigorously in
the form

Im| < (n—1)e,,

4.13
7] < (n—i+1)e,, t=2,3,...,n. @13)

The simplicity of the bounds (4.13) more than justifies the slight overestimate of
the error that results from using the adjusted rounding unit. For this reason we make
the following assumption.

In all rounding-error analyses it is tacitly assumed that the size of the problem is
such that approximate bounds of the form |n| < ney can be rigorously replaced
by |n| < nel,, where €, is the adjusted rounding unit defined by (4.12).

Backward stability

The expression

sp=x1(1+m)+ 22l +m)+2s(1+n3)+---
+ xn-—-l(l + nn—l) + mn(l + ﬂn)

has the following interpretation.

When the sum of n numbers is computed in floating-point arithmetic, the result
is as if we had computed the exact sum of the same n numbers perturbed by
small relative errors. The errors are bounded by n—1 times the adjusted round-
ing unit.

The key observation here is that the errors have been thrown back on the original data.
Algorithms for which this is true are said to be backward stable, or if the context is
matrix computations, simply stable.

Backward stability provides a different way of looking at the quality of computed
solutions. In practice, the data on which a computation is based is not exact but is
contaminated by errors. The errors may be measurement errors, in which case they
will be generally be large compared to the rounding unit. Or the data may be computed,
in which case it will be contaminated with rounding error.

Thus we must think of the input to an algorithm not as a set of numbers but as a
set of regions representing where the erroneous input can lie. If