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Introduction 

This is a textbook devoted to mathematical programming 
algorithms and the mathematics needed to understand such 
algorithms. It was mainly written for economists, but the 
mathematics itself obviously has relevance for other disciplines. 

It is a textbook as well a~ in parts, a contribution to new 
knowledge. There is, accordingly, a broad ordering of climbing 
sophistication, the earlier chapters being purely for the 
student, the later chapters being more specialist and containing 
some element of novelty on certain points. The book is edited 
in five parts. 

Part I deals with elementary matrix operations, matrix 
inversion, determinants, etc. 

Part II is mainly devoted to linear programming. 

As far as students' readability is concerned, these two parts 
are elementary undergraduate material. 

However, I would claim, in particular with respect to linear 
programming, that I do things more efficiently than the 
standard textbook approach has it. This refers mainly to the 
search for a feasible solution i.e. Chapter 9, and to upper 
and lower limits, i.e. Chapter 10. I have also argued that the 
standard textbook treatment of degeneracy misses a relevant 
problem, namely that of accuracy. 

In short, I would invite anyone who has the task of writing 
or designing an LP-code, to first acquaint himself with my 
ideas. 
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Parts III and IV are concerned with nonlinear programming. 
Part III gives the bulk of the theory in general terms including 
additional matrix algebra. It was obviously necessary to 
introduce definiteness at this point, but a full discussion of 
latent roots is refrained from. Proofs are therefore given as 
far as possible, without reference to eigenvalues. However, 
certain results will have to be taken on trust by those readers 
who have no prior knowledge on this point. 

The main contribution to the literature made in part III, 
probably is Chapter 15, i.e. to explain both the first-order 
conditions and the second order conditions for a constrained 
maximum, in terms where one may expect the student to actually 
understand this admittedly difficult problem. 

The unconventional concept of subspace convexity is not, and 
cannot be a true novelty; it is equivalent to the more usual 
way of formulating the second order condition for a constrained 
maximum in terms of determinants. 

Part IV is concerned with quadratic programming. It does not 
give a comprehensive survey of algorithms. It gives those 
algorithms which I considered the most efficient, and the 
easiest to explain and to be understood. 

With respect to novelty, Chapters 16 and 17 do not contain any 
original ideas or novel approaches, but some of the ideas 
developed in Chapters 9 and 10 for the LP case are carried over 
into quadratic programming. Chapter 19 does however, offer an 
algorithm developed by myself, concerning quadratic programming 
with quadratic side-conditions. 

Part V deals with integer programming. 

As in the QP case, the basic ingredients are taken from the 
existing literature, but the branching algorithm of section 20.2, 
although based on a well-established approach, was developed by 
myself. Also, the use of upper and lower limits on the lines 
of Chapter 10 proved particularly useful in the integer 
programming context. 

Nothing in this book is out of the reach of undergraduate 
students, but if it is to be read in its entirety by people 
without prior k~owledge beyond "0" level mathematics, the 
consecutive ordering of the material becomes essential and a 
two-year period of assimilation with a break between Part II 
and Part III would be preferable. However Parts IV and V 
will generally be considered to be too specialist on grounds 
of relevance and curriculum load, and accordingly be considered 
more suitable for postgraduate students specializing in O.R. 
or mathematical programming. 
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I have, however, myself used some sections of Chapter 
so much because undergraduates need to know quadratic 
programming for its own sake, but as reinforcement of 
optimality conditions. 

16, not 

teaching 

Concerning presentation, it may be observed that more than 
half of the number of pages is taken up by numerical examples, 
graphical illustrations and text-listings of programme-code. 

The numerical examples and graphical illustrations are obviously 
there for purely educational purposes as are the student 
exercises. 

The code-listings serve, however a dual purpose to back up 
the descriptions of algorithms, and to be available for 
computational use. Some tension between these two purposes 
is obviously unavoidable. I have made an effort to make the 
programme-texts readable, not only for the machine but also 
for the human reader, but if illustration for the benefit of 
the human reader were the only consideration I would have to 
cut down on the number of pages of code-listing much more than 
I have in fact done. 

It appears to be appropriate to comment here on the use of the 
computer-language i.e. Algol 60, rather than the more widely 
used Fortran. While it is true that I simply know Algol very 
much better than Fortran, the choice appears also to be 
justified on the following intrinsic grounds: 

The use of alphanumerical labels which are meaningful to the 
human reader, e.g. 

PHASE I:, MAKE THE STEP:, etc., and 
corresponding goto statements e.g. 

'COTO' PHASE I; helps to bridge the gap between programme 
description and programme-text in a way which is difficult 
to achieve by comment (or its Fortran equivalent) only. 

Many procedure and programme texts also contain alphanumerical 
labels which are there purely for the human reader, as there 
are no corresponding goto statements. 

While such labels are also possible in an "Algol-like" 
language as, for example Pascal, they. cannot be used in Fortran. 
Furthermore, Fortran is simply more primitive than Algol. 

ix 
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I have made extensive use of block-structure and dynamic arrays 
and as a result my programmes don:t require more core-space 
than is strictly necessary. Also, I gather that not all versions 
of Fortran permit recursive calls in the way I have used them 
in section 5.6 for the calculation of determinants and in 
section 20.4 for branching in integer programming. 

The value of the text-listings as a direct source of ready-made 
programme-text is further compromised by the presence of 
warning-messages, not only in the main programmes but also 
inside the procedures. 

The presence of these warning messages enhances the readability 
for the human reader but, as they are system-specific, they will 
in general require adaptation if the algorithms are to be applied 
in a different machine-environment. 
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CHAPTER I 

EQUATIONS-SYSTEMS AND TABLEAUX 

1.1 Equations-systems 

The following is an ordinary system of simultaneous linear 
equations: 

0.867 xl -0.066 x 2 240 

-0.150 xl +0.850 x 2 210 

-0.167 xl -0.100 x 2 + x3 0 

(11) 

(12) 

(13) 

This system can be solved by performing certain 
Divide (11) by 0.867 (multiply by 1/0.867), and 

operations: 
obtain: 

= 277 (21) 

Multiply (21) by 0.150 and 0.167, respectively, and obtain: 

0.150 xl -0.011 x 2 42 

0.167 xl -0.013 x 2 46 

Re-name (21) as (31), add (22) to (12) to become (32) , 
add (23) to (13) to become (33) , and obtain a new system: 

xl -0.076 x 2 277 

0.839 x 2 252 

-0.113 x 2 + x3 46 

Divide (32) by 0.839 (multiply by 1/0.839) to obtain: 

= 300 

Multiply (42) by 0.076 and 0.113, respectively, to obtain: 

0.076 x 2 

0.113 x 2 

23 

34 

Add (41) to (31), to become (51); re-name (42) as (52); 
add (43) to (33), to become (53), and obtain a new system: 

3 

(22) 

(23) 

(31) 

(32) 

(33) 

(42) 

(41) 

(43) 



4 CHAPTER I 

300 (51) 

300 (52) 

80 (53) 

1.2 The use of a tableau 

In section 1.1 three equations were written 5 times. Each time 
the variable-names xl' x2 ' and x3 were written again. In total 
we did this 15 times. 

We can economize on our writing effort, by writing the names of 
the variables only once. And if the procedure for obtaining a 
system of equations from its predecessor is a standardized one, 
we can di spense wi th exp 1aining it every time. tole could have 
done the job by writing 5 tableaux, as listed below: 

Xl 

0.867 
-0.150 
-0.167 

1.000 
0.150 
0.167 

1.000 

1,000 

x 2 

-0.066 
0.850 

-0.100 

-0.076 
-0.011 
-0.0l3 

-0.076 
0.839 

-0.113 

1.000 
0.076 
0.113 

1.000 

1,000 

240 
210 

277 
42 
46 

277 
252 

1,000 46 

300 
23 
34 

300 
300 

1.000 80 



CHAPTER II 

MATRIX NOTATION 

2.1 The purpose of matrix notation 

Matrix notation provides a very compact way of describing 
certain well-defined numerical operations. As such it saves 
writing and reading effort in written communication about 
numerical operations. This applies to communication between one 
human being and another. It also applies to machine-programming. 
For most computers, there is by now a certain body of established 
programmes, routines, carrying out specific matrix- and vector 
operations. Reference to such routines saves programming effort. 
The use of matrix notation has also facilitated the analysis of 
numerical problems. This refers in particular to the properties 
of linear equation-systems. Such facilitation is really a 
corollary of the reduction in effort. Problems, which were 
formerly too complicated to grasp, now become manageable. 

2.2 Some definitions and conventions 

A matrix is a rectangular grouping of numbers, its elements. 
The elements of a matrix are grouped into a number of rows; 
each row containing the same number of elements, reading from 
left to right. Alternatively, we can say that the elements of a 
matrix are grouped into a number of columns, each column 
containing the same number of elements, reading from top to 
bottom. 

Matrices often occur as tableaux, containing statistical 
information. For example: 

British consumer's expenditure, Central Statistical Office: 
"National Income and Expenditure" (1967), 

1964 1965 1966 

Coal and coke 273 269 257 
Electricity 381 ~17 435 
Gas 167 194 223 
Other 58 60 58 

Another application of tableaux (or matrices), was met in section 
1.2: the arrangement of computations. 

5 
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The order parameters of a matrix are two non-negative integer 
numbers. They are always listed in the same order. The first 
number indicates the number of rows of the matrix; the second 
order-parameter indicates the number of columns in the matrix. 
Normally, order-parameters will be positive numbers. But a more 
general validity of certain statements in matrix algebra may be 
obtained, if we admit the value of zero as a borderline case. 

The number of elements in each row is the number of columns in 
the matrix. And the number of elements in each column is the 
number of rows in the matrix. It follows that the number of 
elements in the matrix is the product of its order parameters. 
A matrix of which the two order-parameters are equal is called 
a square matrix. 

To indicate a matrix, we can use a letter. A capital letter is 
always used for that purpose. In printed text, a capital letter 
indicating a matrix, is generally given in heavy print. 

We might for instance have: 

c [

273 
381 
167 

58 

269 
417 
194 
60 

257] 435 
223 

58 

A corresponding lower case letter, with 2 indices will indicate 
an individual element of a matrix. 
For example, c 3 2 = 194. 
The indices are'always given in the same order: first the index 
indicating the row, then the index indicating the column. 

Not all numerical information is suitably presented in a 
rectangular array. Suppose for instance we were interested only 
~n total expenditure on fuel and light: 

1964 1965 1966 

Expenditure on fuel and light 879 940 973 

This is a vector. A vector is a matrix of which one of the order 
parameter is known to be unity. We distinguish between rows 
(matrices with only one row) and columns (matrices with only one 
column). The (total) fuel and light expenditure, was presented 
as a row. We could have presented it as a column as well. 

To indicate a vector, we can use a letter. For that purpose, one 
always uses a non-capital letter. Vectors are normally indicated 
with italic print or heavy print, or in typescript - including 
photographically reproduced typescript, as in this book, with 
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underlining, to avoid confusion with indices. One should of 
course not use capital letters, this would create confusion with 
matrices. 

7 

Vectors will normally be assumed to be columns. When we want to 
indicate a row, this will be done by adding a prime to the letter. 

The order of a vector is determined by listing the value of only 
one order-parameter. Elements of a vector are indicated with a 
small (non-capital) letter, without heavy print or underlining, 
with one index. 

For instance, we might write: let t be a colunm-vector of order 
3. We can also indicate the fact that a vector is a colunm (row) 
by stating its order as m by 1 (1 by n). 

We may then define a (colunm) vector of consumer's expenditure 
on fuel and light, of order 3 (by 1). 

t ~879~ 940 
973 

The corresponding row-vector will be of order 1 by 3: 

t' [879 940 

The statement t' is a row-vector of order 1 by 3 is legitimate, 
but gives more-information than is strictly needed. The 1966 
figure can be indicated either as t3 = 973, or as t'3 = 973. 
The prime is quite superfluous here; hence we normally write 
t = 973. Elements of a vector should always be indicated with 
t~eir index. The use of ordinary small letters without index or 
heavy print (underlining), is conventionally reserved for 
variables or coefficients of an integer nature, such as indices 
and order-parameters. 

Occasionally, one may also meet a single coefficient, which is 
not an element of a matrix or vector. Such a scalar is then 
indicated with a Greek letter. If required, a scalar can be 
interpreted as a matrix of order 1 by 1, as a column of order 1, 
or as a row of order 1. 

A matrix which satisfies the property aij = a .. (and therfore 
. 1 ). 11 d .. J 1 obv10us y m = n 1S ca e a symmetr1c mdtr1x, e.g. 

A 
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2.3 The transpose of a matrix 

In paragraph 2 of this chapter, we met the following tableau: 

British consumer's expenditure, at 1958 constant prices, on fuel 
and light: 

1964 1965 1966 

Coal and coke 273 269 257 
Electricity 381 417 435 
Gas 167 194 223 
Other 58 60 58 

Now consider the tableau: 

British consumer's expenditure, at 1958 constant prices, on fuel 
and light: 

1964 
1965 
1966 

Coal & Elect-
coke ricity 

1
273 269 
257 

381 
417 
435 

Gas 

167 
194 
223 

Other 

58 
60 
58 

It will be observed, that this tableau gives exactly the same 
numerical information, as the previous one. But the presentation 
is different. 

The corresponding matrices are said to be each other's transpose 

[273 
269 257J r73 

381 167 5~ C = 381 417 435 and C' 269 417 194 60 
167 194 223 257 435 223 58 

58 60 58 

The transpose of a matrix is another matrix, with the rows of 
the first matrix as columns, and the columns of the first matrix 
as rows. It is conventional to indicate a transposition by a 
prime. 

It follows that if a matrix A is of order m by n, then A' is of 
order n by m. The transpose of the transpose will have the rows 
of the transpose (= the columns of the matrix itself) as columns, 
and the columns of the transpose (= the rows of the matrix 
itself) as rows. The transpose of the transpose is the matrix 
itself, i.e. 

(A') , A 
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2.4 Addition and subtraction 

The sum of two matrices of the same order is a matrix of the 
same order again. The elements of the result are the sums of the 
corresponding elements of the operands. The relation 

A + B C 

pre-supposes, that A, B, and C are all of the same order. 
Furthermore, the statement is equivalent to: 

a. . + 
~,J 

for all admissable values of i and j. 

Since, 

a. . + b .. b. . + a .. 
~,J ~,J ~,J ~,J 

we also have: 

A + B B + A 

Similarly, the statement 

A B D 

pre-supposes, that A, Band D are all of the same order, while 

a .. 
~,J 

b .. 
~,J 

d .. 
~,J 

The same logic applies to vectors as well. 
The statement: 

a + b b + a 

pre-supposes that ~, ~, and c are all of the same order and eives 
the information: 

a. + b. c. 
~ ~ ~ 

And the subtraction of one vector from another: 

a b d 

means a. - b. = d., for all positive integer values of i, 
smaller~than~or eijual to the (identical) orders of ~, ~ and d. 

One does not always use a separate letter for the result of a 
matrix (or vector) operation. Instead one can use compound 
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expressions within brackets, like (A + B); (~+ ~), etc. 

Matrices and vectors can b~ added and subtracted like ordinary 
numbers; by performing these operations on their corresponding 
elements. 

This also applies to rows. It follows that if we have 

+ b 

we will also have 

a' + b' c' 

Note that expressions like 

~ + ~', or A + b 

(in general additions of operands of different order) are just 
plain nonsense. 

Operations must be carried out on corresponding elements. 

If the operands are not of the same order, there just are no 
corresponding elements. 

Example of the addition of two matrices: 

In section 1.2 several of such additions were performed, such as: 

[-0.150 0.850 :~~J [0.150 -0.011 4lJ + 46 -0.167 -0.100 1.000 0.167 -0.013 

[--- 0.839 25~J --- 0.113 1.000 46 

Exercise: Find some more matrix additions, in the same paragraph. 
(This may involve permutation of the rows of the tableaux). 

2.5 Matrix multiplication 

The product A . B is defined only if the number of columns of A 
is equal to the number of rows of B. The result is a matrix with 
the same number of rows as A, and the same number of columns as B. 

Let A be a matrix of order m by n, and B a matrix of order n by 
k. And let C be a matrix of order m by k. Then the numerical 
content of A, B, and C satisfies 

A.B C 



MATRIX NOTATION 

if we have, 

c. . 
~,J 

n 

L 
r 1 

a. 
~,r 

b . 
r, J 

(i = 1, 2, ... m, j = 1, 2, ... k) 

From this definition it follows that we will not ~n general 
have 

A • B B . A 

We cannot even say that the normal rule is A. B # B. A 

The fact that A . B is defined does not imply that B . A is 
defined. And something that ~s not defined cannot even be 
unequal to something else. 

Only if A, B, and C are all symmetric and of the same order we 
have the identity 

n n n 

L a. b L a b. L b. a . c .. 
~r rj r~ Jr Jr r~ ~J 

r=l r=l r=l 
c .. 
'J~ 

or, using matrix notation 

AB = A'B' = B'A' = C C' 

Examples: 

A B C D E 

[-i iJ [i 1 -~J [; 5 ;l [~ ~J [-~ -~J = 
2 1 

detail-example for c l ,2: 

c l ,2 al,l b l 2 + a l ,2 b 2 2 , , 
1 1 + 2 2 

1 + 4 5 

11 

Exercise: Analyse ~n a similar way, the computation of the other 
elements of C. 

2.6 The product of a matrix and a vector 

Since a vector is a matrix with one of the order parameters being 
unity, vector-operations have been defined implicitly in the 
previous paragraph. The product of a matrix and a vector, if it 
is defined (if the operands are of consistent orders), is a vector. 
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Let A be matrix of order m by n. And let b be a vector of order 
n by 1. Then the product cAb exists~ and is of order m by 
1. Its numberical value satisfies 

c. 
1 

n 

L 
j 1 

a .. 
1,J 

b. 
J 

(i = 1, 2 ... m) 

And for a row: Let A be of order m by n, and d' of order 1 by m. 
Then the product f' = d'A exists, and 1S of order 1 by n. 
Its numerical value satisfies 

TIl 

f. L d. a. 
J i=l 

1 1,j 

(j 1, 2 ... n) 

The expression A b is known as post-multiplication of A by the 
column b. The expression d'A is known as pre-multiplication of 
A by the row d'. Note that-post-multiplication of a matrix by a 
row is nonsense. The same applies to pre-multiplication of a 
matrix by a column. But the expression b' A' is legitimate. 
This is the pre-multiplication of the transpose of A, by the row 
b' . 

The statement cAb implies c' b' A'. The two expressions 
are in fact identical,-both giving the numerical information 

n 
c. L a. b. 

1 
j 1 1, j J 

1xample: 

The computation of a sum-total. 

s' C t' 

r" 
269 257] [1 1 1 lJ 381 417 435 

167 194 223 
58 60 58 

[879 940 973J 

Here a vector of 4 unity-elements serves as an operator, to add 
the rows of C. 
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2.7 Vector-vector multiplication 

Again, the definition of the product of two vectors is implicitly 
given in the definition of the product of two matrices. There 
are two cases: 

The outer product is always defined. A row is pre-multiplied by 
a column, or, what is the same thing, a column is postmultiplied 
by a row. The product is a matrix. Let k be a column of order 
m, and let VI be a row of order n, v being the 'corresponding 
column. The-product 

U = k . VI - , then is of order m by n; u. . 
1,J 

(i 1, 2 ... m, j = 1, 2 ... n) 

k. v. 
1 J 

The inner product of two vectors only exists, if the two vec'tors 
are of the same order. The result is of order 1 by 1, i.e. a 
scalar number. If v and k are (column) vectors of the same order 
n, the inner product 

n 
~ = VI k exists, and has the value I 

i 
Example of an outer product: 

1 
V. 

1 
k. 

1 

The substitution, or rather the numerical operation representing 
a substitution carried out in section 1.2: 

[0.150l [1.000 -0.076 ---- 276J 
0.167J 

Example of an inner product: 

The computation of a sum of squares. 

[ 0.150 -O.Oll 
0.167 -0.013 

Let VI be a row-vector, of order 4, e.g. VI 

The 'sum of squares of the elements of v (or 
[2 5 -1 

'!...I) will be 

VI v [2 5 -1 7J 

HJ 
2 x 2 + 5 x 5 + (-1 x -1) + 7 x 7 

4 + 25 + 1 + 49 
79. 

Exercise: 

4lJ 
46 

Find and evaluate 5 different legitimate product-expressions of 
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two different vectors, both operands being always two of the 
following vectors 

v = -1 
v' = [3 21 v' _ "J' ~ 

3 

2.8 Multiplication by a scalar 

[4, -1, 2, lJ. 

The multiplication of a matrix by a scalar, and the multiplication 
of a vector by a scalar, is defined as a multiplication of the 
individual elements of the matrix, or of the vector, by that 
scalar. The order in which the operands are written is arbitrary 
here. 

c aB means c. . 
~,J 

abo . 
~,J 

The expressions aB and Ba are equivalent ways of writing the 
product of a matrix and a scalar. For a column the two 
expressions ab and ba are again both correct and equivalent. The 
same applies for a row ab' b'a. But it will be prudent to 
write ba and ab', instead of ab-and b'a. The reason for this is 
the possibility to interpret a-scalar as a matrix of order 1 by 1. 

Example of the multiplication of a row by a scalar 

1.153 [0.867 -0.066 --- 240J = [1.000 -0.076 --- 277J 

(See para 1.1 and 1.2, division of the (11) row by 0.867). 

2.9 Matrix-matrix multiplication by columns or by rows 

The product A. B = C can be evaluated by its columns: 

A b. c. 
-J -J 

Here b. is the jth column of B, and c. is 
-J -J 

the J.th 1 f C co umn 0 • 

Example: 

A [i -;] 
and 

B 
= [-i 5 

~J -2 

We then have, for the first column of the result: 

[i 
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and for the second column 

[i -;] [-~J [:iJ 
and for the third column 

[i -lJ 
3 [ ~J [~iJ 

This gives for the wt.ole matrix: 

[i -;] [-i 5 ~J [-~ 12 -4J -2 -1 12 

The above procedure is not something different from the 
definition of matrix multiplication in section 2.5. It is only 
an ordered way of carrying out the computations of the elements 
of c. 

The product A . B C can also be evaluated, by its rows: 

a! B = c! 
_.1. -1 

Here a! is the ith row of A, and c! is the ith row of C. We can 
illust}ate this with the same matrices A, Band C. 

[2 

(for the first row) 

5 
-2 

and (for the second row) 

[1-' 

Obviously, the result 

5 
-2 

~J [-3 

C 

12 

-1 

12 
-1 

12J 

-4J 12 

should be the same, irrespective of the order in which the 
elements were computed. 

2.10 Substitution 

15 

When two symbolic expressions are identical, one is allowed to 
interchange, or substitute, the one for the other. This postulate 
is vital to all algebra. It applies to matrix algebra as well. 
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Example: 

Let A, B, ~, Z, and b be of orders m by n, n by k; n, k, and m. 
And let us have: 

Ax b (2.10.1) 
and 

(2.10.2) 

Now substitute BZ for ~ by (2.10.2) into (2.10.1), to obtain: 

A (BZ) b ............ (2.10.3) 

2.11 Forms 

Let a' be a row, of order 1 by m' , 
let B be a matrix, of order m by n; 
let c be a column, of order n by 1. 

-

Then 

(~' B).£ (2.11.1) 

holds. 

The relation (2.11.1) is an identity, as may be shown as follows: 

Evaluate each ith element of the column within the brackets on 
the left-hand side of (2.11.1) as 

n 
I b .. c. 

j =1 1.J J 

and each jth element of the row within the brackets on the right
hand side of (2.11.1) as 

m 
I a. boo 

i=l 1. 1.J 

The expressions on both sides of (2.11.1) are of order 1 by 1, 
a scalar, and we may independently evaluate both sides of 
(2.11.1) . 

We obtain 

m 
E a. 

i=l 1. 
( I b .. c) 

j =1 1.J ~ 

n 

I 
j=l 

( r a. b.) 
i=l 1. 1. j) 

c. 
J 

(2.11.2) 
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This is a true statement, an identity, and hence the same is 
true for (2.11.1). 

In both relations, the brackets are superfluous, and we may 
write 

m 
L a. 

i=l 1 

n n m 
Lb .. c·-L'c·La.b .. 

j=l 1J J j=l J i=l 1 1J 

m n 
- I I a. b .. c. 
i=l j =1 1 1J J 

and its matrix-equivalent 

a' a'Bc 

(2.11.3) 

(2.11. 4) 

17 

An expression of this type, 1.e. a matrix pre-multiplied by a row 
and post-multiplied by a column, to yield a single number as 
result, is known as a form (or bilinear form). 

Example: 

The form 

may be evaluated either as 

s 

or as 

[2 o 7J 
s 

2.12 Recursive products 

The identity a ' 

sl r-~l 
9J l iJ 

(~' B) C 

1 . f" h . th . 1S a so true 1 a 1S t e 1 row of the matr1x A. 

If A has h rows, we may then write 

(i 1, 2 ......••.. h) 

(2.11.1) 

(2.12.1) 
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The same information, may be presented more compactly, as: 

(A B) .£ (2.12.2) 

But also, .£ may be a column of a matrix C, which has k columns, 

A (B c.) 
-J 

(A B) c. 
-J 

(j = 1, 2 .•....... k) 

(2.12.3) 

The information given by (2.12.3) is written more compactly as 

A (B C) (A B) C (2.12.4) 

A direct corrollary of (2.12.4) is 

A (B C D) ::: (A B) (C D) (A B C) D (2.12.5) 

Clearly there is no point in writing brackets inside product 
expressions of this type, and (2.12.5) defines the notion of a 
recursive product ABCD. 

Exercise 

Find the numerical content of 

ABC = [1 2 3J [ 1 
-1 

2 
~J 

Check by independently calculating (AB)C and A(BC), finding the 
result the same. 

Note 

AB = BA is not generally true. This applies to recursive products 
just as well. Thus 

[1 
21 DJ = 5 , but nJ [1 2] = D ~J 

Even if the order is the same, the numerical content may not be 

2J = [11 
4 19 

l6J. 
28 

2.13 The addition of several matrices 

Since addition of matrices consists of addition of the elements 
the normal rules of addition and subtraction of numbers also 
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apply to matrices. The meaning of expressions like A + B - C. 
-A + B + aC, etc. will need no further elucidation. We obviously 
have 

A + (B + C) (A + B) + C, etc. 

In each case these expressions pre-suppose that all the operands 
are of the required (same) orders. 

2.14 Transposition of compound expressions 

The transpose of a sum-expression is the sum of the transposes 
of its terms. 

(A + B + C + D)' A' + B' + C' + D' 

The transpose of a product 1S somewhat more complicated: 

( ABC D)' D' C' B' A' 

In both cases, the transposition rule is a direct result from 
the definition of a sum, or a product, respectively. For a sum, 
the relation S = A + B and the relation S' = A' + B' both mean 

s. . 
1,J 

a .. 
1,] 

+ b .. 
1,] 

If the number of columns of A and the number of rows of Bare 
equal and indicated as r, 

p A • B 1S equivalent to p' B ' . A' 

Both expressions give the numerical information 

P .. 
1,] 

r 

L a. 
k 1 1,k k 

r 

L bk,j 
1 

2.15 Some special matrices and vectors 

A matrix with two equal order-parameters is named a square 
matrix. (The number of columns is the same as the number of rows.) 
The vector, consisting of the elements of the matrix with equal 
row- and column-indices, is then the (main) diagonal. 

Example 

[-~ 
-2 

5 
6 
8 

is a square matrix; 
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is the corresponding diagonal. 

A square matrix, with non-zero elements on the main diagonal 
only, is a diagonal matrix. 

A special kind of diagonal matrix is the unit matrix. This is a 
diagonal matrix, with all the elements on the diagonal being 
unity. Unit matrices are normally indicated with a capital 
letter I. When the order of the unit matrix is self-evident, it 
is not strictly necessary to indicate that order. But one may 
write an index beside the capital I, to indicate the order. A 
unit matrix of order n, can be indicated as I, or as I . 
Multiplication by a unit matrix amounts to copying, i.~. 

I v v w' I w' and 

I A A B I B. 

For this reason the unit matrix is also known as the "identity 
matrix". 

A unit vector is a vector of zero's, and one single unity
element. The unit-vector is usually indicated with the letter e. 
An index with the vector will indicate the place of the unity
element, not the order of the vector. If the order is not self
evident, it must be stated separately . 

If a. denotes the 
. th 

column of A, we will have 
-J J 

a. A e. 
-J -J 

If a! denote the .th row of A, we will have: ~ 
-~ 

a! e! A 
-~ -:~ 

Example 

[11 12 l~J [!] D~J 21 22 23 

[0 lJ [11 12 13J [21 22 23J 
21 22 23 

Unit vectors are often met as operator, to isolate vectors out of 
matrices. If we restrict ourselves .to matrix notation (there 
are other types of operators) an operator is a matrix, or a 
vector, not giving numerical information, but only serving a 
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purpose. 

Another specially structured (square) matrix is a triangular 
matrix. There are two kinds of triangular matrices, upper
triangular matrices and lower-triangular matrices. As the name 
suggests, the non-zero part of a triangular matrix is 
triangularly shaped. An upper-triangular matrix has the non
zero elements only on and above the diagonal; a lower-

21 

triangular matrix has the non-zero part on or below the diagonal, 

a. . 0 for j < i, or i < j for a lower-triangular matrix. 
~J 

The "non-zero" part may of course contain zeros as well. 

[~ 
2 
3 
o ~l is an upper triangular matrix. 

What matters is that there are ?nl~ zeros on the opposite side. 

2.16 Matrix partitioning 

A number of rows of a matrix may be grouped into a block-row. 
Again, a number of columns of a matrix may be grouped into a 
block-column. 

Example 

Let us have the matrix 

A 2 
4 
o 
o 

o 
o 
5 
7 

We may then group the first two columns of A into a block
column, to be denoted as AI: 

Regretfully, there is no standard notation for the partitioning 
of matrices. For block-rows, this may lead to ambiguity. The· 
symbol A~ could either be the transpose of AI; or it could be 
the firsE block-row. Also, a series of matrices is sometimes 
indicated with indices, while they are not block-columns. 
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The position is somewhat better with blocks. A block is the 
intersection of a block-column and a block-row. Blocks can be 
indicated with two indices. The first index will indicate the 
block-row, the second index, the block-column. In our above 
example. A may then be partitioned as: 

~] and ~J 
While A12 and A21 are zero blocks. 

The fact that two of the 4 blocks were zero is not quite 
accidental. Matrix partitioning is a useful device, particularly 
when some of the blocks are zero. 

Vectors may also be partitioned. Again, once the partitioning is 
defined, an index will be useful in indicating a sub-vector. 

Example 

r' [5 6 8 0 0 OJ 

r' 
-1 [5 6 8] 

r' 
-2 [0 0 OJ 

Another name for a partitioned matrix (vector) is a composite 
matrix (vector). 

2.17 Multiplication by partitioning 

Let the matrix A be partitioned into two block-rows 

A 

Let A be of order m by n, and Ai and A' of order m1 by nand m2 
by n. Similarly, let B be of order n b~ k, and be partitioned 
into two block-columns. 

B 

B1 and B2 being of order n by k1 and n by k 2 . 
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The product A B may then be evaluated as: 

(2.17.1) 

Proof 

Take any element of A B to be indicated as the (i,j) element 
(i th row, jth column). This is the inner product of the ith row 
of A and the jth column of B, by both the left-hand and the 
right-hand side of (2.17.1). This is so, irrespective of the 
additional information, given by the right hand side of (2.17.1), 
that a row of A is a row of the first/second block-row of A, and 
a column of B is a column of the first/second block-column of B. 
q.e.d. 

The statement is hardly a theorem at all, but merely a corrollary 
of the definition of matrix multiplication. 

Example 

[ 1.1 2.1 
-3.1 
-4.1 

The 2 by 1 

A B 
1.2 1.3 1. 4] fl -1] 2.2 2.3 2.4 II -1 

-3.2 -3.3 -3.4 -1 
-4.2 -4.3 -4.4 -1 

positive block of the product A B 

[5.01 
9.0J 

may also be obtained as AiBl 

P·l 1.2 1.3 
2.1 2.2 2.3 

1. ;] 
2.4 

m 
[5.01 
9.0J 

[ 5.0 -S'OJ 9.0 -9.0 
-13.0 13.0 
-17.0 17.0 

The case discussed above, could be compared with the outer 
product of two vectors. 

A corresponding analogy with the inner product of two vectors 
exists as well. 

Let A (of order m by n) be partitioned as 

A 
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where the two block-columns Al and A2 are of order m by n l and 
m by n 2 . Let B (of order n by k) be partitioned as 

B 

where the block-rows Bi and Bi will be of order n l by k and n 2 
by k. The product A B may now be evaluated as 

A B Al -Hi + A2 Bi (2.17.2) 

Again the statement hardly is a theorem at all. 

Example 

[; 2 -3 -~J P j] 6 -7 

-1 -1 

U ~J [~ ~J + [-3 -~J [-1 -~J -7 -8 -1 -1 

[ Ii 3J + [ 7 11 15 l~J = 
[10 
26 l~J 26 

The two types of partitioning may be combined, and A and B may 
be partitioned as follows: 

A and 

B 

The product A B may then be evaluated as 

A B = 

[
All Bll + A12 B2l : All B12 + A12 B

22J 
---------------------~--------------------
A2l Bll + A22 B2l ~ A2l B12 + A22 B22 

(2.17.3) 
The above relation assumes that all the expressions are legitimate, 
if they are, (2.17.3) is true, the two sides are equivalent. 
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It appears that we can treat blocks more or less like elements, 
and block-rows like rows and block-columns like columns. 

Generally, we may obtain the (i, j) block of the matrix A B as 
the product of the ith block-row of A and the jth block-column 
of B. 

[A BJ .. 
1,J A~B. 

1 J 
(2.17.4) 

h 

Above it is assumed that A is partitioned in a number of block
rows, and B into an equal number of corresponding block-columns. 
It is also assumed that A is partitioned into p block-columns 
and B into p corresponding block-rows. 

Exercise 

Evaluate the products A B and B A where 

A 
r l 2 1 

~] 
B 

lHtHl l~ 
4 

2 231 -
I 4 4 5 - I 

Do not forget to take advantage of the triviality of multipli-
cation by a unit-matrix (block)! 

[
6 L ¥'-yZ 61] ~ £ 91 Z1 
-----
O£ ZZ 6 L 
£1 11 ~ £ V H 

H V 

2.18 Differentiation of matrix expressions 

Rules for differentiating a number of not too complicated matrix 
expressions follow readily from the definition of the various 
matrix operations. 

We shall need to come back to this point after introducing more 
complicated matrix expressions, but differentiation of the sums 
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and products of matrices and vectors is discussed here as follows: 

The differentiation of a sum or difference expressions is 
obvious, and is given here only for the sake of completeness. 

If a matrix A is defined as being the sum of two matrices Band 
e 

e A + B (2.18.1) 

and the elements of A and B are not constants, but variables, 
we obviously have 

de dA + dB 

Product expressions become more complicated. 

From 

e A B 

we obtain, for finite differences 

e + t.e (A + M)(B + t.B) 
A B + A t.B + 

A(B + t.B) + 
t.A B + t.A t.B 

From which we obtain (for finite differences) 

t.e At.B + t.A B + t.A t.B 

(2.18.2) 

(2.18.3) 

M(B + t.B) 
(2.18.4) 

(2.18.5) 

As usual in differentiation, we assume infinitely small changes, 
and we are allowed to suppress products of infinitely small 
numbers. Therefore, from (2.18.5) we infer that (2.18.3) implies 

de A dB + dA B 

The usual differentiation of a 
implies dy = nxn- l dx applies 
and symmetric matrix, i.e. for 
of first difference of AP is 

p-l pA dA 

(2.18.6) 

n 
rational function, i.e. y = x 

to matrices, only for a square 
a symmetrjc matrix A, the matrix 

(2.18.7) 

where AP indicates the pth power of A 

'A A A ........ A 

We first illustrate this rule for n 2. 
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For n = 2, we obtain from (2.18.6) 

d(A A) A dA + dA A (2.18.8) 

Provided we also impose the requirement of symmetry on the 
matrix of differences, the two terms on the righthand side of 
(2.18.8) are identical, and the result is 

dA2 2A dA (2.18.9) 

The more general result (2.18.7) may now be shown by recursive 
induction, i.e. if we assume it to be valid for some p, we 
obtain for q = p + 1, from (2.18.8) 

p p-1 A dA + P A dA A 

AP dA + P AP- 1 A dA 

(p+1)AP d A q-1 
q A dA (2.18.10) 

27 

th The more complicated problem of differentiating the p power of 
a square but non-symmetric matrix is not dealt with here. 

Differentiation of compound matrix expressions is not in fact 
very widely practiced. Much more common is the differentiation 
of vectorial expressions in which matrices occur as known 
coefficients matrices. In particular, for a symmetric quadratic 
form 

y x' A x 

where A is a symmetric matrix of fixed coefficients, the 
differential expression is 

x' Adx + d x' Ax 2 x' Adx (2.18.11) 

Example 

A x 

d Y 2J dx = 10dx1 + 

Matrix notation may also be used to obtain compact notation 
of partial differentiation. 
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The significance of the operation is, of course, the same as in 
"ordinary" calculus i.e. the partial derivative is the ratio 
between the change in the value of a function and a small change 
in one of its arguments, the other arguments of the function 
maintaining a constant value. 

Matrix notation comes in because we may use matrix notation to 
indicate and to express as formulae, vectors partial derivatives, 
and sometimes matrices of partial derivatives. The quadratic 
form is again the most widely used example. 

From (2.18.11), we obtain, by assuming dx. 
d x. " 0, ~ 

J 

d y 2 x' a· d x. 
-J J 

° for i " j, but 

(2.18.12) 

Hence, by the definition of a partial derivative 

3y 
3x' J 

2 x' a. 
-J 

(all j) 

(2.18.13) 

The expression (2.18.13) is not very efficient use of matrix 
notation, it was formulated purely to illustrate the relationship 
with ordinary calculus. A more usual and more compact hence 
more efficient - notation is 

3x' Ax 
3x 

2 A dx (2.18.14) 

It is however, quite possible to do the same for the matrix. 
If a is a known coefficients vector, and X a matrix of variables, 

y + ~y = ~'(X+ ~X) a a' X a + a' ~X a (2.18.15) 

obviously implies 

d y = a' d X a (2.18.16) 

From which for d x ij " 0, d rk 

~ = ai aj 

° (at r " i, all k " j) 

(2.18.17) 
3x .. 

~J 

or using matrix notation (an outer product) 

a a' (2.18.18) 
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Note, that no symmetry needs to be assumed in this case, and 
moreover, 

a' X b 

ax a b' 

is also true for a non-square matrix. 

Exercise 

(2.18.19) 

Derive a formula for the matrix of second-order derivatives 
of a quadratic form. 

a2x' Ax 
? 
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2.19 Reading and printing of large matrices by electronic computers 

There is, in practice a considerable discrepancy between the 
software provided as standard facilities on most computers and 
what is practical for handling large matrices and tableaux. 

The two procedures listed in this section are offered as a 
possible way to fill this gap. (There are in fact other solutions 
to this problem.) 

The precise action of these procedures will be clear from their 
text, and from the extensive use of comment in the ALGOL text 
itself, and from the names of the labels used. But some remarks 
about the processing of large matrices in general seem appropriate 
at this point. 

Firstly, many large matrices and tableaux e.g. linear programming 
tableaux contain a very large percentage of zero elements. It is 
obviously a waste of time and cards, to punch all these zeros. 

Secondly, simple errors, numbers in the wrong column, decimal 
errors do occur during card-punching. It seem~ wise to write 
programmes, bearing that fact of life in mind. Hence the warning 
messages for repeat requests at inappropriate points, and the 
automatic back-print of a matrix which has just been read. 

Matrix-output is by itself a problem with most standard facilities, 
as these often make a ridiculously wasteful use of line-printer 
paper and of the users hands and eyes, forcing him to skim through 
a pile of paper in order to verify one element. Hence the print 
per block-column and the splitting of large block-columns into two 
square blocks per page. 

The two procedures are now listed. 
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TEXT-LISTING Of THE MATRIX PRINTING PPOCEDCPE: 

'PROCEDVRE' MATO(MATR.SCALE.H.N.SR.SC); 
'ARRAY' MATR; 'REAL' SCALE; 'INTEGER' M.N.SR.SC; 

'BEGIN' 'INTEGEF.' NP.DO.NRTD.NCOLDO.NCOLTD. 
PAGEC.RPRINP.CPRINP.I.J; 

'COMMENT' 
MATO STANDS fOR MATRIX OUT. 
IT ts A MATRIX PRINTING PROCEDURE. PRINTING THE MATRIX 
IN BLOCKS. 
FOR AN 180 CHARACTER LINEPRINTER. THE ORDER Of THE ELOCKS 
IS PUT AT 15 EY 15. 
SR STANDS FOR SKIP RO~S. 
SC STANDS FOR SKIF COLL'MNS. 
SCALE IS THE SCALE-FACTOR. I.E. THE MATRIX \.IILL BE PP.INTED. 
MULTIFLI ED EY SCALE. 
THE AUXILIARY VARIABLES NRDO.NPTD.NCOLDO.NCOLTD.PAGEC. 
PFRINP. AND CPRINP STAND FOR: 
NUMBER OF P.O\.lS DONE. 
NUMBEF OF RO ... S TO DO. 
NL'MEEP OF COLUMNS DONE. 
Nt:MBEF. OF COLL'MNS TO DO. 
PAGE CONTROL. 
ROW PRINT FARAMETER (DETERMINATING 
THE NUMBER OF RO\,'S IN A ELOCK) 
COLL'MN PP.INT PARAMETEP. 
(DETERMINING THE NL'MEER OF COLL'MNS IN A BLOCK); 

NRDO:=NCOLDO:=O; NRTD:=M; NCOLTDp'N; 

FRINT FOR COLUMN IF APFROFIUATE: 
'IF' M > IS 'AND' 1'1=1 'THEN' 'BEGIN' 

~.·RI TETEXT(' ('LINn;! SElFF.ES EtJTATI mao FlA%COLL'MN ') '); 
Nn:LINE(1); 'END'; 

START: 
NEI.'L INn 2); 
FlRRI NP: =CPRI NF': = I 5; 

ADJVST NL'MBER OF ~'LUMNS: 
'IF' NCOLTD < CFRINF 'THEN' CFRINP:=NCOLTD; 
NCOLTD:-NCDLTD-CPRINF; 

CHECK 1'01'. PAGE: 
'II" M>15 'ArID' 1'1>15 'THEN' PAGEC:-NRDO/30-ENTIEP.(NFDO/30) 
'ELSE' PAGEC:=1; 
'II" PAGEC=O 'THEN' 'EEGIN' 

'COMMENT' 
BLOCKS ALL TO START AT THE TOP OF A FAGE. 
THIS ALLOWS THE USER TO STICK THEM TOGETHER. 
WHILE KEEPING ROWS AND COLL'MNS IN LINE.; 
RtJNOUT; , END'; 

CHAPTER II 
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HEADINGI 
'IF' M>15 'AND' N>l 'THEN' 'BEGIN' 

'COMMENT' 
IN THE INTEREST OF BEING ABLE TO FIND INDIVIDUAL ENTRIES 
OF THE MATRIX, A LARGISH MATRIX IS EDITED. 
THIS IS DONE BY PRINTING THE INDICES OF THE LEADING 
ELEMENT AT THE HEAD OF EACH BLOCK'; 
NEWLINE(2)J 
WRITE(30,FORMAT('('SNDD')'),NRDO+l); 
WRI TE( 30, FORMAT( '( 'SNDDDDD') '), NCOLDO+ 1)1 'END' I 

ADJUST NUMBER OF ROWSI 
'IF' NRTD c RPR'INP 'THEN' RPRINPIO'NRTD; 
NRTDI-NRTD-RPRINP; 

PRINT THE LINESI 
'FOR' 11-1 'STEP' 1 'UNTIL' RFRINP 'DO' 'BEGIN' 

NEWLINE EXCEPT FOR COLUMN: 
'IF' M>15 'AND' N-l 'THEN' 'GOTO' NO NEWLINE NEEDED; 
NEWLINE( 1)J 
NO NE\.'LINE NEEDEDI 

'FOR' J:-l 'STEP' 1 'VNTIL' CPRINF 'DO' 'BEGIN' 
'IF' MATRCSR+NRDO+I.SC+NCOLDO+Jl=O 'THEN' 
WRI TE( 3 O. FORMAT ( '( 'SNDDDDSS') '>' 0) 
'ELSE' WRITE(30.FORMAT( '('S-NDD.DD')'). 
SCALE*MATRCSR+NRDO+I,SC+NCOLDO+Jl); 
'END'I 'END'; 

ADJUST INDICES AND RETURN t~LESS R~ADYI 
NRDOI-NRDO+RPRINP; 
'IF' NRDO-M 'THEN' 'BEGIN' 

NRTDI-MJ NRDOI-O; NCOLDO:-NCOLDO+CFRINP; 
'IF' NCOLDO-N 'THEN' 'GOTO' END OF MATO; 
'GOTO' START; 'END' 'ELSE' 'GOTO' CHECK FOR PAGE; 

END OF MATOI 'END'; 

TEXT-LISTING OF THE MATRIX READING PROCEDUREI 

'PROCEDURE' MATI(MATR.M.N.SR.SC); 
'ARRAY' MATR; 'INTEGER' M.N,SR.SC; 
'BEGIN' 'INTEGER' I.J; 'REAL' Nt'M; 
'PROCEDURE' MATO(MATR.SCALE.M.N.SR,SC); 
'ARRAY' MATRI 'REAL' SCALE; 'INTEGER' M.N.SR.SCI 

'COMMENT' MATRIX READING PROCEDURE. 
MATI STANDS FOR MATRIX IN. 
SR STANDS FOR SKIP ROWS. 

'ALGOL ,; 

I.E. A LEADING BLOCK-ROW OF SR ROWS IS NOT FILLED. 
SC STANDS FOR SKIP COLUMNS. 
I,E. A LEADING BLOCK-COLUMN OF SC COLUMNS IS NOT FILLED. 
M AND N ARE THE ORDER PARAMETERS OF THE BLOCK TO BE READ. 
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1011 THIN A E01J OF A MATEIX. MATI INTERFRESTS NL'MEERS 
IN EXCESS OF 1000000 AS REPEAT-REQUESTS. 
THE EXCESS OVER A MILL.ION IS THE Mt..'MBEP OF REPEATS. I.E. 
36.52 1000100 MEANS 36.52. FOLLO\'ED BY 100 EEFEATS OF 
THAT SAME Nt..'M8ER. 
HENCE IN TOTAL 101 TIMES 36.52 IS FL'T IN THE MATPIX'; 

NL'M:=O; 
'FOP.' ..1:=1 'STEP' 
, FO P. ' I: = I '5 TEE' 

P.EAD THE p.m.'s: 

, L"N TIL' N '00' 
'UNTIL' M 'DO' MATP.[SP+I.SC+JJI=O; 

, FO R' I: = I 'S T EF ' , UN TIL' M 'DO' 
'FOP' ..1:=1 'STEP' I 'UNTIL' N '00' 'BEGIN' 

'IF' Nt.:M < 1000000.5 'THEN' NUM:=P.EAD; 

'I F' (..1= I 'II.NO' NUM > 1000000.5) 
'OP.' (J=N 'AND' NUM > 1000001.5) 'THEN' 'BEGIN' 

'COMMENT' 
THERE SHOt..'LON T BE A REPEAT REQUEST AT THIS POINT; 
NE1JLINE( I); 
\'RITETEXT< '( 'UNEXPECTEO%REFEATREQt..'EST%OF') ')J 
1JPI TE< 3D. FOEMAT<' ( 'SNDDDDD. DS')') .NUM-I 000000); 
'IF' ..1=1 'THEN' 1JPITETEXT<'('AT%THE% 
EEGINNING%OF%ROW') '); 
'IF' J=N 'THEN' 1Jf'lTETEXT( '( 'PEMAIlJING% 
AT%THE%ENO%OF%RO\l') '); 
\IF'ITE<3Q.FORMAT< '( 'SNDDDD') ').1); 

Nt.:M:=O; 'END'; 

'IF' NUM < 1000000.5 'THEN' 'BEGIN' 
'IF' Nt..'M=O 'THEN' 'GOTO' CELL FILLEr; 
MATP( SR+I, SC+J J: =NUM 'END' 

'ELSE' 'BE'GIN' 
MATR( SR+I, SC+J J : =MATR( SR+I. SC+J - I J; NL'M: = Nt..'M- ); 
'END '; 

CELL FILLFD: 'ENC'; 

MATO(MATR. I. O.M.N. S~, SC); 
END OF MATI: 'END'; 

CHAPTER II 



CHAPTER III 

BLOCK-EQUATIONS AND MATRIX-INVERSION 

3.1 Notation of linear systems 

An "ordinary" system of linear equations can be formulated in 
matrix notation, as follows: 

A . x b (3.1.1) 

Here, A is a known matrix, b is a known vector, while x is an 
as yet unknown vector. If A is of order n by n, then X-must be 
of order n by 1, and b of order n by 1. The solution of such a 
system consists in evaluating x in such a way that the equations 
are satisfied. The evaluated v;ctor x is then indicated as the 
solution vector. 

3.2 Singularity 

Consider the systems: 

+ 

+ 
3 
6 

and + 
+ 

3 
15 

The first system is satisfied by xl 0, with x 2 = 3. And also 
by xl = 1, with x2 = 2; and also by xl = -500, with x2 = 503. 
Any vector ~, satisfying xl + x2 = 3, will also satisfy 
2xl + 2x2 = 6. 

On the other hand, the second system has no solution at all. 
The two systems have in common, a special condition of the matrix 

[~ ~J 
The second row of this matrix is proportional to the first. 
This condition is known as singularity. Singularity need not be 
so evident at a glance, as in this example. It may also be that 
a linear combination of rows is equal to another row. 

The matrix 5 
-3 

4 

~s singular as well. 

A square matrix A is said to be singular, if there exists a non
zero vector y', such that y' A = O. (There exists then also a 
vector x, such that Ax = O~ but no proof of that statement is 
offered-at this stage~) 
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In our above two examples, we have 

[2 -lJ D ~J [0 ol 

with D ~J [-i] [~l 
and [14 6 -l3J 

I~ 
5 

-Ii -3 [0 0 01 
4 

with 

[~ 
5 -I] HJ r:] -3 I.~ 4 

Some of the more obvious cases of singularity are: proportionality 
of two rows (see above); proportionality of two columns; a zero 
row; or a zero column. 

Example of singularity through a zero row: 

[0 

with n 
o 

3 
6 
o 

n ~ -~l 
[0 

-~] [-Ii] [~] 

o 0] 

It may sometimes happen, that a row of a matrix is almost 
proportional to some combination of the other rows. Such a 
system is known as ill-conditioned. 

If A is singular, the system Ax = b cannot have a unique 
solution for x, irrespective of the numerical content of b. With 
an ill-conditIoned system, we will have one of the rows being 
almost proportional to some combination of the other rows. In 
that case a unique solution of x does exist; but it is highly 
dependent on small variations in some elements of A and b. 

3.3 The elimination process 

A non-singular system can be solved, by means of a series of 
successive elimination steps. (See also sections 1.1 and 1.2) 

To this purpose, A and b are written in a tableau. The tableau 
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will be a composite matrix 

T ~J 
The elimination step considers each tableau as representing a 
new system. We can then indicate each previous tableau as T, and 
each next tableau as U. 

A -I 1 - th. _. . 1 d b h crUC1a ro e 1n the p e11m1nat10n step 1S p aye y t e 
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element t . At this stage, p-l columns of A will be unit vectors 
~ (j = 1~P2, .... , p-l). The element t is then the pivotal 

1 . h f· d - f PP. . e ement or p1vot. T e 1n 1ng 0 a non-zero P1vot may requ1re a 
permutation~ows. If A is non-singular, there should be at 
least one non-zero element trp (p < r). We will then, if 
necessary, interchange the rth and-the pth row. 

Denoting the new tableau as U, we will then have: 

u' 
-p 

-1 
t t' 
pp -p 

(divide the pivot-row through the pivot; or, what is the same: 
express the equation with a unity coefficient for xp .) 

And for the other rows of the tableau: 

t. u' 
1,p -p 

(i f p). 

(Subtract the pivotal row, from the remaining rows, with such 
coefficients, as to cause vanishment of the remainder elements 
in the pivotal column; or, what is the same, eliminate x from 
the remainder equations, with help of the pth equation.)P 

This procedure is repeated, until all columns of A ( = the first 
n columns of T), have been transformed into unit vectors. 

Example: 

equations system: 

.517 
-.077 
-.056 

T 

u' 
-1 
·077 -'!.} 
.056 ~l 

+ 
.055 x 2 
.686 x 2 
.022 x 2 

[ .517 -.077 
-.056 

[1. 000 
[ .077 
[ .056 

.293 x3 .804 

.010 x3 .450 
+ ~63 x3 .750 

-.055 -.293 .80:] .686 -.010 .450 
-.022 .863 .750 

-.106 -.567 1.555] (l/.5l7)..!:.i 
-.008 -.044 .120J 
-.006 -.032 .081J 
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u' -1 
~2 
u' 
-3 

equations system: 

T 

u' -2 
.106 ~ 
.028 ~i 

~l 
~2 
~3 

equations system: 

T 

u' -3 
.575 ~~ 
.080 ~3 

u' -1 
u' -? 
~3 

equations system: 

[1. 000 -.106 -.567 
[ .678 -.054 
[ -.028 .831 

CHAPTER III 

1. 555J (copied) 
.570J = ~2 + .077 ~i 
.837J = t' + .056 u' -3 -1 

.106 x2 

.678 x2 

.028 x 2 + 

.567 x3 

.054 x3 

.831 x3 

1.555 
.570 
.837 

[
1. 000 -.106 

.678 
-.028 

-.567 
-.054 

.831 

[ 
[ 
[ 

[ 1.000 
[ 
l 

t 
[ 

[1. 000 

1.000 -.080 
.106 -.008 
.028 -.002 

-.575 
1.000 -.080 

.829 

-.575 
1.000 -.080 

.829 

1.000 
.575 
.080 

[ 1.000 
[ 1.000 

:: 

::: 
2.241 

.924 
1.039 

1. 555J 
.570 
.837 

.841] 

.0891 

.0241 

1. 644} = ~i + • 106 ~i 
.841] (copied) 
.861] = ~3 + .028 ~i 

1.644 
.841 
.861 

1. 644J 
.841 
.861 

1. 039] 
.597] 
.083] 

2.2411 = ~l + .575 ~~ 
.924) = t, + .080 u 

1. 039] (c"Opied) -3 
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Verification: 

[ 
.517 

-.077 
-.056 

-.055 
.686 

-.022 
A 

-.293] 
-.010 

.863 

3.4 Computational arrangements 

[
2.241] 

.924 
1.039 

x 

[
. 804~ 
.450 
.750 

b 
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With an electronic computer, there is no need to store any other 
matrix, but T. With most computer codes, multiplication and 
subtraction can be done in one operation, and the new tableau is 
written over the old one, on the same place. For a human computor, 
such a procedure would quickly lead to errors. At the very least, 
a human computor will have to write out n successive tableaux 
T. More prudent (= less prone to errors), would be the writing 
of 2n -1 tableaux, each second tableau consisting of the 
intermediate vectors t. u ' , together with the corresponding 
vector u ' . This was doAePyg paragraph 3.3. In that example, the 
first ro~ of every second tableau was the new pivot-row, ~~. In 
that way, computation of the successive vectors runs from 
the top of the page, to the bottom. 

But this arrangement of the tableau is not the most orderly one. 
It would seem more logical, that u ' should also be the pth row 
of the intermediate tableau. -p 

The intermediate tableau is of course a matrix in its own 
right, to be denoted as S. 

s e 
-p 

(t - e t )t-lt ' -p -p pp pp-p 
(3.4.1) 

The two terms of (3.4.1) represent two separate expressions 
from the previous paragraph. The first term represents the new 
pivot-row, up = tp~ t p ' together with a unit column, serving as 
an operator, in oraer to complete the row, with a set of zero 
rows, to a matrix of the required order. The second term 
represents the set of vectors -ti,p ~p' Without the restriction 
i f p; this set of vectors would be -!p tpb !p (there would be 
n rows). Then!p - ~p tpp is the pivotal column, with the 
pivotal element itself replaced by a zero. 

Example: (previous paragraph, first elimination step) 

s 1. 934 [.517 -.055 -.293 .804J 
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([ .517] [~] .517) 1.934 [.517 -.055 -.293 .804J 
-.077 
-.056 

[~l 
[1. 000 -.106 -.567 1.555] 

[-. ~77] [1. 000 -.106 -.567 1. 555J 

-.056 

r:~~~O -.106 -.567 

~=~~51 L----

+ [-~O77 -.008 -.044 -~120] 
.056 -.006 -.032 .087 

[1.000 -.106 -.567 1. 555] 
.077 -.008 -.044 .120 
.056 -.006 - .032 .087 

It is of course not suggested, that this elaborate calculation, 
should be written out in full at every iteration. One writes 
~ as the pth row of S, and then writes out the remainder rows 
o S, in the reserved blank space. 

Mathematically, it is also possible to simplify (3.4.1), quite 
a bit in fact: 

S ~ (1 + t pp ) - .!.0 t~~ ~ 
Same examp 1 e : 

S ~rl. 517] - [.517] l --- -.077 
--- -.056 

1. 934 [.517 -.055 

The transformation of T and S, into the new tableau U 
then be: 

u (I - e e')T + S 
-p t> 

(3.4.2) 

-.293 .80~ 

T, will 

(3.4.3) 

The expression (I - e p e'), ~s again an operator; it is a unit 
matrix, from which the -gth diagonal unity element has been 
replaced by a zero. The whole operator serves to delete 
(replace by a zero row), the pth row of T, the old pivot row. 
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3.5 The sum-count column 

A special aspect of the arrangement of the tableau, for the 
purpose of manual computation, is the use of a sum-count of all 
the elements of a row. This will become an additional column of 
the tableau. The elements of the "check" column are the sum of 
all other elements in the same row. One can treat this column 
as any other column in the tableau. It is of course never 
transformed into a unit vector. All operations on the tableau 
involve: multiplication of a row with a certain number, and 
adding one row to another. These operations do not disturb the 
sum-count of the row. The "check" column remains the sum of 
the other columns. 

Then, each time one has just computed a new row, one will 
verify the row-count. Is the element in the "check" column 
still the sum of the other elements in the row? If the 
difference is within the tolerance of a rounding-off error, one 
will adjust the elements in the "check" column. If a larger 
difference is found, a mistake has been made. That mistake can 
be: 

a) in the sum-count itself- the row is correct after all. 
b) in the newly computed row (do not forget the element in the 

"check" column). 
c) in an earlier part of the computation; such a mistake 

remained undetected, either because the row-count was not 
verified at all, or because the answer was misread for the 
expected one. 

The equation-system of section 3.3, could then be written and 
solved as follows: 

Xl x2 x3 check 

[ .517 -.055 -.293 .804 .973J -.077 .686 -.010 .450 1.099 
-.056 -.022 .863 .750 1.535 

T 

[1.000 -.106 -.567 1.555 1. 882] 
.077 -.008 -.044 .120 .145 
.056 -.006 -.032 .087 .105 

s 

[1.000 -.106 -.':..67 1.555 1.882] 
.678 -.054 .570 1.194 

-.028 .831 .837 1.640 

U T 
(next iteration) 

[ .106 -.008 .089 . 187J 
1.000 -.080 .841 1. 761 

.028 -.002 .024 .050 

s 
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[1.000 -.575 1.644 2.069J 
1.000 -.080 .841 1. 761 

.829 .861 1. 690 

U T 
(next iteration) 

[ .575 .597 1. 172J .080 .083 .163 
1.000 1.039 2.039 

s 

[1.000 2.241 3.24J 1.000 .924 1. 924 
1.000 1.039 2.039 

U T 
(end result) 

3.6 The system A Z B x 

Consider the equations-system: 

.867 Yl - .066 Y2 

-.150 Yl + .850 Y2 

.244 xl + .150 x 2 + .722 x3 + .556 x 4 

.561 xl + .173 x 2 + .278 x3 + .222 x 4 

When both y and x are unknown, it will not be possible to 
"solve" the system, in the sense of finding a unique numerical 
value. But when A is square and non-singular, it will be 
possible to express y into x. (Expression of x into y will be 
possible, only if B is square and non-singular.) The expression 
of y into x can be obtained, with the help of the elimination 
procedure,-developed in paragraphs 3.3 -3.4. 

Only, the tableau T will not just consist of a matrix A, and a 
vector, but of the matrix A, and another matrix B. The tableau 
will be a composite matrix, consisting of two block-columns; 
the matrices A and B, and of course there could be a "check" 
column. 

For our numerical example, we will then have: 

Yl 

[ .867 
-.150 

[1.000 
.150 

[1. 000 

[ 

Y2 
-.066 

.850 

-.076 
-.011 

-.076 
.839 

.076 
1.000 

xl 

.244 

.561 

.281 

.042 

.281 

.603 

.055 

.719 

X2 
.150 
.173 

.173 

.026 

.173 

.199 

.018 

.237 

x3 

.722 

.278 

.833 

.125 

.833 

.403 

.036 

.480 

x4 

.556 

.222 

.641 

.096 

.641 

.318 

.029 

.379 

check 
2.473] 
1.934 

2.852] 
.428 

2.852J 
2.362 

.214] 
2.815 

T 

s 

U T 

s 
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[1.000 .336 .191 .869 .670 3.066] u T 
1.000 .719 .237 .480 .379 2.815 

The outcome, Z [.336 .191 .869 .670] x 
.719 .237 .480 .379 

is known as the reduced form of the system Ay = Bx. This assumes 
that A is square and non-singular. If the order of A is n by n, 
there will be n elements in y. The number of variables in x can 
be any number, say m. Then B-must be of order n by m. The order 
of the reduced form matrix will be the same. 

Exercise 

Check (by performing the calculation illustrated above), that 
the reduced form of the block-equation 

[ 2 -lJ Z 
-1 1 

3.7 The inverse 

Consider the following 

xl + 2x2 + 3x3 

xl + x 2 + 2x3 

xl + x 2 + x3 

Or, more generally, 

A x 

2J ~ , is 
4 Z 

correctly 

= [4 6J 
7 10 

equations-system: 

Yl 

Y2 

Y3 

calculated as 
x 

(3.7.1) 

where A is a square and non-singular matrix; x and Z unknown 
vectors of the same order as the matrix. 

Like the system Ay = Bx discussed in the previous paragraph, 
this system cannot be "solved", in the sense of evaluating x. 
Both x and yare unknown v~ctors. But it is possible, to infer 
from (3.7.1), a matrix expression for ~ in Z' of the type 

x BZ (3.7.2) 

This is done by performing the elimination process, described 
in the previous paragraphs: 
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[ : 
[-i 
-1 

[ 1 

[ 
[ 1 

[ 
[ 1 

2 
1 
1 

2 
-2 
-2 

2 
-1 
-1 

-2 
1 
1 

1 

1 

And we have found: 

1 
-2 

1 

3 
2 
1 

3 
-3 
-3 

3 
-1 
-2 

-2 
1 
1 

1 
1 

-1 

-1 
-1 

1 

1 

1 

1 
-1 
-1 

1 
-1 
-1 

-2 
1 
1 

-1 
1 

-1 
1 

1 

1 

2 
-1 
-1 

2 
-1 
-1 

-1 
-1 

1 

1 
-2 

1 

In this form, we have a new system 

By'" 

1 

1 

1 

1 
1 

-1 

1 
1 

-1 

check 

n 
-~ ] 
-7 

-i] 
-3 

-n 
-n 
-1 ] 
-1 

1 

n 

CHAPTER III 

T 

s 

u T 

s 

u T 

s 

u T 

(3.7.3) 

We may perform the same operation again, to obtain an 
expression of x in y. But we already know that expression, since 
A x = y was given in the first place, by (3.7.1). The relation
ship of A and B, by (3.7.1) and (3.7.3), is named an inverse 
one. The matrix B is the inverse of A. This relationship is 
written in symbolic matrix notation as B A-I, but we still 
need to give a formal definition. 
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The following questions need an answer: 

Can the operation as indicated earlier in this section (known 
as inversion by row operations) always be performed? And if not, 
what can be said about the class of matrices on which it can be 
applied? Are there any matrices for which inversion by row 
operations is not possible, but for which the relation indicated 
in this example may nevertheless exist? 

To answer these questions, we begin by stating a somewhat more 
formal framework. 

Definition 

Two square matrices A and B (of equal order n by n), are said to 
satisfy the inverse relations for x and Z, if they satisfy 

Ax z (3. 7. 1) and BZ x (3.7.3). 

The relations Ax y and By x may then themselves be 
indicated as the (vectoral) Inverse relations. 

This definition does not actually require that x and yare non
zero vectors, but we would normally think in terms of-the non
trivial case x I 0, Z I 0, as otherwise no requirement is stated. 

Definition 

The square matrix B is said to be the inverse of another square 
matrix A (of the same order), if 

Ax Y implies BZ ~, for all vectors x 
(the inverse-relations to hold for all x). 

Note that two matrices may satisfy the inverse relations for one 
vector x and corresponding Z but not for another vector x. 

Example 

[l 
2 

~] n 2 -;] [~] . m A 1 B -1 x Z 
1 2 

[l 
2 

~l [~l m· n 2 

-~ m [~J 1 -1 
1 2 

(the inverse relations) , 
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but for x 

m they do not apply 

[1 
2 

~] m m·n 
2 

-;] m f m 1 -1 
1 2 

Some properties of inverses and non-singular matrices~ 

Firstly, the definition of the inverse matrix says that the 
inverse relations are to hold for all vectors x. 

That includes unit vectors x = e. (j = 1, ... n). 
-J 

Hence, if B is the inverse of A 

A I A implies BA I 

A matrix premultiplied by itS' inverse, yields the unit matrix 
as product 

I (3.7.4) 

This property is an obvious practical test in checking whether 
a calculated inverse has been correctly calculated. 

Example 

[1 
2 

~l -1 n 1 ~ (calculated A 1 A -2 
1 1 -1 

n 1 

-1] [; 2 ~1 [~ ~ -2 1 1 
1 1 l~ 

But if by error, the minus sign is omitted from the top 
lefthand element of the "inverse" we have 

-; i] [i i ~l [: i ~J f= [: ~ =] 
1 -1 1 1 IJ - 1 - 1 

above) 

The following property is stated here without proof at this 
stage. 

Every non-singular matrix has an inverse, (a proof of this 
statement follows in section 5.5). 
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Furthermore, from (3.7.4) we obtain, upon premultiplication 
by a row-vector y', of appropriate order: 

z' (3.7.5) 

The lef!ihand side expression of (3.7.5) can be non-zero, only 
if y' A is non-zero, hence y' f 0 implies y' A-I f 0, i.e. 
all-inverses are non singular-

Therefore, if (as will be shown ~n section 5.5), all non
singular matrices have an inverse, all inverses have an inverse. 

-1 
Pre-multiplication of (3.7.4) by the inverse of A and 
re-application of (3.7.4) for the inverse results in: 

A 

The inverse of a matrix, is the matrix itself 

(A-I) -1 

(3.7.6) 

Since all inverses are non-singular we have the following 
corollary: 

A singular matrix does not have an ~nverse 

Furthermore, direct application of (3.7.4), for the inverse and 
substitution of A for (A-l)-l yields 

A A- l I (3.7.7) 

The product of a matrix and its inverse, is a unit matric 
irrespective of the use of pre- or postmultiplication. 

We have so far spoken of "the" inverse, without actually proving 
that such a matrix is unique. In fact inverses are unique 
functions of the inverted matrices, and we have~e following: 

Theorem 

If Band C are both square and of the same order as A, and both 
the inverse of A, they are equal to each other 

Proof 

If both Band C are inverses of A, this implies, according to 
(3.7.7), 

A B A C I - I [0] (3.7.8) 
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-1 Since A has an inverse we may require, for any z' , y' = z' A , 
regardless of whether that inverse is B, C or possibly a-third 
inverse of A. 

Therefore 

I.' [A B - A C] z' [B - C] (all ~') 

This condition can only be satisfied for all z', if B - C is a 
zero matrix, the left-hand side being zero by-(3.7.B). 
q.e.d. 

Theorem 

If, for some square matrices A, B and X of equal order, X being 
non-singular 

A B X X 0.7.9) 

is true 

Then 

Irrespective of what is initially assumed about the (non) 
singularity of A and B, A and B are each other's inverses 

Proof: 

-1 
Denote, for any ~, X ~ as z 

-1 
Postmultiply (3.7.9) by ~ = X c to obtain 

AB~ c 

Re-name cans x and Bc as I., and we see that 

B c B x I. ~mplies A B ~ AI. 

From which 

B x I. implies A I. x (all~) 

Showing that A is the inverse of B 
q.e.d. 

(3.7.10) 

c x 

In terms of recogn1z1ng inverses, the most widely used 
application of this theorem is that of the unit matrix product 
property. 

A B I 0.7.11) 
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not only follows from the inverse relationship - 1.e. (3.7.4) 
and (3.7.7) but also proves it. 

We now come back to the question of invertability by row 
operations. If the algorithm of inversion by row operations is 
understood as "pivoting" along the main diagonal, then there 
are non-singular matrices, which cannot be inverted in that way. 

Example 

A 

This is a non-singular matrix. Its inverse exists, it is in 
fact A itself as may be shown by verifying the unit-matrix 
product property 

[~ ~J [~ ~J [~ ~] 
But plainly this matrix cannot be inverted along the main 
diagonal. However in section 3.10 we will develop an adaptation 
of the algorithm of inversion by row-operations, and that 
adaptation is capable of inverting all non-singular matrices. 

Exercise 

Verify (by inversion by row operations, as well as by pre- and 
post-multiplication) that the inverse of 

A [~ 
1 
1 
2 

il ] is correctly [~ 
evaluated as 3 

1 
1 
2 

i]-l = [-~ _~ 
III 

NB This matrix may be inverted by row-operations, pivots being 
taken on the main diagonal. 

3.8 Inverse and reduced form 

Consider again the equation-system: 

AZ B x (3.8.1) 

It is assumed, that A is a square and non-singular matrix; no 
similar assumption need to be made about B. The first order 
parameter, the number of rows of B, must be equal to the order 
of A; otherwise the expression A y B x would not be 
legitimate. -
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Now pre-multiply (3.8.1) with A-I, the inverse of A: 

A-I -1 
A Z A • B~, or 

A-I B x ••...••••.•..•.••....... (3.8.2) 

The matrix A-I B, and the corresponding block-equation (3.8.2), 
is the reduced form of (3.8.1). Despite the apparent symmetry 
between left- and right-hand side of (3.8.1), it does not 
follow, that the expression B-1 A is meaningful. No assumption 
about non-singularity of B was made; the number of columns in B 
may even be different from the number of rows. 

Example 

(See also section 3.6) 

Yl 

[ .867 
-.150 

[1.000 
.150 

[ 

Y2 
-.066 

.850 

-.076 
-.010 

-.076 
.840 

.076 
1.000 

1.000 

[ 1.168 
.208 

[ .336 
.719 

1.153 
.173 

1.153 
.173 

.015 

.208 

1.168 
.208 

.091J 
1.192 

.190 

.237 

Compute the inverse of A. 

1.000 

1.000 

.091 
1.192 

.091 
1.192 

B 

.868 

.480 

check 
1. 80lJ 
1. 700 

2.077J 
.313 

2.0771 
2.013J 

.1821 
2.400J 

2.259J 
2.400 

[ .244 
.561 

.6701 

.379J 

T 

S 

u 

S 

.150 

.173 

T 

.722 

.278 
.556J 
.222 

the same result as obtained in paragraph 6 by direct operation 
on the rows of the full tableau. 

3.9 Multiplication instead of division: 
the all-integer elimination method 

This method is useful, in case the initial coefficients matrix, 
which defines a block-equation, consists of integer numbers 
only. 
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The "normal" elimination procedure. is related to algebraic 
substitution; it starts with expressing a particular equation 
and the corresponding pivotal row, in a particular variable, 
with a unity coefficient. 

Instead of dividing the pivotal row by the pivotal element, one 
may also multiply the rest of the tableau by that same element, 
avoiding the use of fractional numbers. 

The usual procedure of subtracting an outer product is then 
performed with the old pivot-row and the old pivot-column, the 
outer product of which subtracted from the rest of the new 
tableau. 

One may avoid the unnecessary generation of too large figures, 
by a later division of most of the tableau, by the pivotal 
element, after the next elimination step. 

Example 

Let us assume, we wish to invert the matrix 

[1; s 

~J A = -7 
-s 3 

or equivalent, solve the system 

2 Yl + S Y2 + Y3 zl 

11 Yl 7 Y2 + 8 Y3 z2 

-s Yl + 3 Y2 + Y3 z3 

with respect to l. 

We now proceed as follows: 

Initial tableau 

Yl Y2 Y3 zl z2 Z3 I Ratio 

2 5 I I 9 1 
11 -7 8 I 13 1 
--s 3 I 1 1 
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Multiply rows 2 and 3 both by t11 2, to obtain 

Yl Y2 Y3 zl z2 Z3 I Ratio 
2 5 1 1 9 2 (not divided) 

22 -14 16 2 26 2 ) 
-10 6 2 ·2 2 ) multiplied 

Subtract 11 times row 1 from row 2 and add 5 times row 1 to 
row 3: 

Yl Y2 Y3 zl z2 z3 L.. Ratio 
2 5 1 1 9 2 
- -69 5 -11 2 -73 2 
- 31 7 5 2 45 2 

Multiply rows 1 and 3 by -69: 

Yl Y2 Y3 zl z2 Z3 I Ratio 
-138 -345 -69 -69 -621 -138 

-69 5 -11 2 -73 -69 (diagonal cell) 
-2139 -483 -345 -138 -3105 -138 

Subtract 5 times row 2 from row 1 and 31 times row 2 from row 3: 

Y 1 Y 2 Y 3 zl Z 2 Z 
3 Ratio 

-138 -94 -14 -10 -256 -138 
-69 5 -11 2 -73 -69 

-638 -4 -62 -138 -842 -138 

At this point, we note that both rows 1 and 3 admit for division 
by 2, without losin3 their all-integer nature. This is systematic, 
and related to the "ratio" column. This column gives the ratios 
between the rows of the tableaux developed the all-integer method 
and the corresponding "fractional" tableaux as used so far. For 
reasons to be explained in section 5.8, it is always possible 
to "scale down" this column to the entry in the pivotal row. 

Accordingly, we now write a new tableau, we divide row 1 and 
row 3 by 2 

Yl Y2 Y3 zl z2 z3 y Ratio 
-69 -47 -7 -5 -128 -69 

-69 5 -11 2 -73 -69 
-319 -2 -31 -69 -421 -69 
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We now again start the third step with multiplication: we 
multiply rows 1 and 2 with -319 

Y2 
22011 

22011 
14993 
-1595 
-319 

2233 
3509 

-2 

1595 
-638 

-31 -69 

40832 
23287 
-421 

Ratio 
22011 
22011 
-319 

Add 47 times row 3 to row 1 and subtract 5 yimes row 3 from row 
2 to obtain 

22011 
22011 

-319 

2139 
3519 

-2 

138 
-483 

-31 

Divide rows 1 and 2 by -69 and obtain: 

y 
1 

y 2 
y 

3 
z 

1 z 2 

-319 -31 -2 
-319 -51 7 

-319 -2 -31 

The lnverse may now be obtained as: 

-1 1 r- 31 -2 471 
A = -319 -51 7 -5 

L -2 -31 -69J 

3.10 Row-permutation during inversion 

-3243 
345 
-69 

z 
3 

47 
-5 

-69 

rO. 097 
0.160 

LO.006 

21045 
25392 
-421 

. 

-305 
-368 
-421 

I 

I 
0.006 

-0.022 
0.097 

Ratio 

22011 
22011 
-319 

Ratio 

-319 
-319 
-319 

-0.14~l 
0.016 
0.216J 
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In section 3.3 we mentioned the possibility that a system of the 
specification Ax = ~ may need re~arrangement of the rows of A, 
in order to find a non-zero pivot. 

This is true for inversion by row-operations in general. We will 
illustrate this problem in connection with the calculation of an 
inverse 

Example 

A 
1 

-1 
1 

~l 
-2J 
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One way to find out that an inverse exists, is to 

We take the equations-system 

x 2 + 2x3 Yl 

xl x 2 Y2 

2xl + x 2 2x3 Y3 

We interchange the first two equations 

xl x 2 Y2 

x 2 + 2x3 Yl 

2xl + x 2 2x 3 Y3 

And proceed as before. 

Eliminate xl: 

xl x2 

x2 + 2x3 

3x2 2x3 + 

Eliminate x2 : 

xl + 2x3 + Y2 

x2 + 2x3 

8x3 

Eliminate x3: 

xl 1 4Y l + 1 
2Y2 + 1 

i;Y 3 

x2 
I i;Y l - 1 2Y2 + I 

i;Y 3 

x3 
3 + I - 1 iiY l i; Y2 iiY 3 

and we have established the inverse relationship 

1 
-1 

1 

~]-l 
-2 [! -ll 

CHAPTER III 

calculate it. 
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3.11 Block-Elimination 

Consider the following partitioned system 

+ 

+ (3.11.1) 

wher: All is a square and non-singular block of the full 
matr1x A. 

-1 
We pre-multiply the first block-equation in (3.11.1) by All ' 
to obtain 

A -1 B x.. 
11 1 

(3.11.2) 

Re-ordering of the terms in (3.11.2) yields a reduced form 
expression for ~l in terms of ~2 and y 

-1 -1 
(3.11. 3) ~l All Bl x.. All A12 ~2 

Substitution of this reduced form expression for ~l into the 
second block-equation of (3.11.1) yields: 

We now combine (3.11.4) with (3.11.2), to obtain: 

-1 -1 
~ 1 + All A12 ~2 All Bl x.. 

-1 
[A22 - A2l All A121 ~2 = [B2 - A2l 

If we now compare (3.11.1) with (3.11.5) we note a remarkable 
similarity between the elimination process which we found 
applicable to a system of equations in numbers and a system of 
block-equations in blocks and partitioned vectors. 

We might as well write the operation down in a tabular 
arrangement, as follows: 

~l ~2 ,. 

All A12 Bl 

A2l A22 B2 

S3 
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~1 ~2 

I -1 -1 I AU A12 AU B1 

I -1 -1 
A22-A21AU A12 B2-A21AU B1 

The rules for block-elimination are very similar to the ones 
which we found applicable for the solution of a system of 
ordinary equations by elementary row-operations. 

Recall the rules for ordinary elimination 

a) Find, in the pivot-column a non-zero element in a row 
corresponding to a not yet used equation 

b) If necessary, permute rows, so as to have this pivotal 
element on the diagonal 

c) Multiply the pivotal row by the reciprocal of the diagonal 
pivotal element 

d) Add a multiple of the updated pivotal row to the other rows, 
with the negative of the relevant element in the pivotal 
column as multiplier, thereby causing the element in the 
pivotal column to become zero 

The similar rules for block-inversion are: 

a) Find in the block-pivot column a square and non-singular 
block, in a block-row corresponding to a not yet used 
block-equation 

b) If necessary permute block-rows, so as to have this pivotal 
block on the diagonal 

c) Pre-multiply the pivotal block-row by the inverse of the 
pivotal diagonal block 

d) Add the updated pivotal block-row, pre-multiplied by minus 
the relevant block in the pivotal block-column, to the 
other rows, thus causing blocks in the pivotal columns to 
vanish. 

Block-elimination, or block-pivoting is useful, in particular if 
a partitioned matrix has zero or unit matrix blocks. 
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Example 

"Calculate" the inverse of: 

M 

where both A2 ,1 and Al ,2 are square and non-singular. 

The partitioned form of the block-equation 

M x (3.11.7) 

is tabulated and we perform the elimination as follows: 

~l ~2 

[ 
~l ~2 

I A12 

~2lAE> 

~l ~2 

I 

I 

It is now readily verified that 

Yl 

I 

Y...l 

I 

-A2l 

Yl 

Y...2 

I 
I 

Y...2 

I 

Y..2 

A2l-l 

-A -1 -1 
12 A2l 

ss 
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3.12 Inversion of recursive products and transposes 

The inversion of a recursive product of several matrices gives 
rise to a remarkable change in their ordering. 

If A and B are square and non-singular matrices of the same 
order, we have the following formula 

(A . B)-l -1 -1 
B • A (3.12.1) 

i.e. we write the inverses of the individual matrices, but in 
inverse order. 

To show that (3.12.1) is indeed the correct expression for the 
inverse of A B, we only need to mUltiply B-1 A-I by AB. 

This proof can be given either by pre-multiplication, or by 
post-multiplication. We give both: 

B 1 "1" " f B-1 A-I b AB y pre-mu t1P 1cat10n 0 y: 

-1 -1 
A • B • B • A I (3.12.2) 

The obtainment of the unit matrix as the product is (one of the) 
definitions of the inverse, therefore (3.12.2) shows that A . B 
and B-1 A-I are each others inverses. Similarly, post
multiplication of B-1 A-I by AB gives: 

B -1 -1 . A . A . B B-1 . B I (3.12.3) 

Example 

Calculate the inverse of 

A . B 

[~ 
0 

~ [~ 
2 

~l 1 1 
4 0 

; 1~1 10 2~J 
Manual calculation of the inverse of a 3 by 3 matrix which is 
full of non-zero elements would take some time. The triangular 
matrices are rather quicker to invert, especially because 
computation is simplified by the diagonal unity-elements 

o 
1 
4 

-1 

[-~ 
5. 

o 
1 

-4 ~] 
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[~ 
2 

~l 
-1 

[~ 
-2 

-~ 1 1 
0 0 

and we establish the inverse we were looking for as: 

[[~ 0 

~] [~ 
2 m~ =[~ -1 

-~ H 0 

~ 1 1 1 1 
4 0 0 -4 

[ 30 
-22 

-~ -2; 17 
-4 

The correctness of this result is shown by verification of the 
inverse relationship 

[l 2 

l~J [ 30 
-22 

-~ [~ 
0 

~ 5 -2; 17 1 
10 26 -4 0 

The example also suggests another relationship 

[AI] -1 [A-I] , (3.12.4) 

i.e. the inverse of the transpose of a matrix, is the transpose 
of its inverse. Once we establish 

[~ 
0 r' [-~ 

0 

~ 1 1 
4 -4 

the inverse relationship 

[~ 
2 

~ 
-1 

[~ 
-2 

-~ 1 1 
0 0 

can be written down without further calculation. 

That this is indeed so, is shown by writing the normal block
equation system 

Ax (3.7.1) 

in transpose form, i.e. 

x' A' z' (3.12.5) 
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Post-multiplication of (3.12.5) by the inverse of Al yields 

lil Al [Alr l = Xl Zl [AI] -1 (3.12.6) 

Transposition of (3.12.6) will give us: 

X [ ']-1 I (A ) (3.12.7) 

where ([AIJ-l)' is the transpose of the inverse of AI. 

However (3.7.1) inverted directly, gives us: 

X 
-1 

A Z (3.12.8) 

Since A is square and non singular, there is one and only one 
inverse of A. But (3.12.7) shows ( [AI]-l) I to be the inverse 
of A. Therefore we conclude 

-1 
A 

3.13 The differentiation of an inverse 

(3.12.9) 

From the inverse relationship A A-I = I, we obtain (see 
section 2.18 for the rules for differentiating the product of 
two matrices) 

+ [0] (3.13.1) 

where the symbol [0 ] indicates a null matrix. From which we 
obtain after re-ordering and pre-multiplication by A-I. 

(3.13.2) 

Just as in the case of differentiating the power of a matrix 
a more simple formula which is akin to a scalar expression, 
arises in the case of a symmetric matrix i.e. 

(3.13.3) 

may be written as 

(3.13.4) 

-1 -2 by analogy to dx = -x dx. 

The most obvious application of (3.13.2) arises in case of 
uncertainty concerning the precise magnitude of the elements of 
A. 
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For example; 

some of the elements of A may be obtained as a result of some 
kind of statistical estimation procedure, which also gives 
confidence intervals (uncertainty margins). Thus, A might be, 

A [ 1 0. 501 ± [- o~ 101 
0.41 1 0.10 J 

If A has the estimated content, we find 

[ 
1. 25 -0.63] 

1. 25 
, therefore, a first order 

-0.63 

-1 
approximation of ~A is 

[ 
1. 25 

-0.63 

-0.63] ~A 
1. 25 

[ 
1. 25 

-0.63 

-0.63J 

-1.25 

where ~A may be any.- matrix of which the diagonal elements are 
zero, and the off diagonal elements up to 0.10 in absolute 
value. 

Exercise 

Derive a differential expression for the reduced form matrix 
A-I B. 

3.14 Text of an Inversion Procedure 

The programmed procedure offered in this section computes a 
reduced form, as defined in Section 3.6. 

The process of computation is substantially the elimination 
process outlined in sections 3.3 and 3.4. 

The following points may now be elucidated here. Firstly, as 
indicated by the 'COMMENT' in the relevant loop, we may get the 
inverse as a reduced form if we put a unit-matrix as right-hand 
side. (See also Section 3.7). 

In Section 3.10 we discussed the issue of zero elements on the 
main diagonal. When performing manual computations, it is 
practical to restrict the permutation of rows to the condition 
that a zero is found on the main diagonal. 
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The programmed procedure always interchanges rows, even if this 
may turn out to be a trivial operation. The loop opening with 
'COMMENT' FIRST FIND A NON ZERO PIVOT; amounts to a search for 
the absolute largest element in the pivotal column, on or below 
the main diagonal. 

If that search comes up with something which doesn't 
significantly differ from zero, the matrix is assumed to be 
singular and the inversion is abandoned. Otherwide the absolute 
largest element is found in the row with index r, and the 
diagonal row has the index k, the index of the pivotal column. 

The operation just below the label PERMUTE: 

amounts to interchanging the kth and rth row. That operation is 
trivial, if the element which is largest in absolute value is 
found on the main diagonal. 

The actual elimination step is performed just below the label 
UPDATE: At this point there is a difference of substance with 
the procedure outlined in the earlier sections of this chapter. 
It so happens that no further computational use is made of the 
pivotal column, nor of any column with lower index, to the 
left of the pivotal column, once the elimination step has been 
made. 

Since the end-result is purely in terms of the right-hand side, 
the updating of the pivotal-column and the rest of the tableau 
further to the left, is suppressed. There is no point in 
calculating numbers which are not required as results. The 
interpretation of the calculation-tableau as a system of 
equations on the lines of sections 1.1 and 3.3 does not hold 
for such a partially updated tableau. Nor does the sum count 
property (see Section 3.5), hold for a partially updated 
tablea~. For these reasons, the use of this short-cut is not 
recommended for manual calculation. 

'PROCEDURE' INVECA.M.N)J 
'VALUE' NJ 'ARRAY' AJ 'INTEGER' M.NJ 
'BEGIN' 'INTEGER' I.J.R.K; 'REAL' P.NUM; 

'COMMENT' 
INVERSION BY ELEMENTARY ROV-OPERATIONS; 

'If' N=O 'THEN' 'BEGIN' 
'COMMENT' 

N EQUAL ZERO MEANS THAT CALCl'LATION OF THE INVERSE 
RATHER THAN THE REDUCED fOP.M I S ASKED. 
THEREfORE VE EQUATE N TO M AND THE RIGHTHANDSIDE MATRIX 
TO THE UNIT MATRIX; 
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N:t:::MJ 
'FOR' 11 .. 1 'STEP' 

'FOR' JI .. I 'STEP' 
'UNTIL' M '00' 'BEGIN' 
I 'UNTIL' M '00' ArI.M+Jll-O; 

ArI.M+Ill=U 'ENO'; 'END'; 

'FOR' R:"I 'STEP' I 'L'NTIL' 1'1 'DO' 'BEGIN' 
'COMMENT' FIRST FINO A NON-ZERO PI VOT; 
1':" 0; 
, FO it ' I:" R 'S T EP , , UN TiL' 1'1 'DO' 
'I F' ABS(AC I. Rl) > ABS(P) 
'THEN' 'BEGIN' KI=I; PI"'ACI.Rl 'ENO'; 
'IF' ABS(P) < 0.0001 'THEN' 'BEGIN' 

'COMMENT' 
IF THIS LOOP IS GONE THROUGH THE MATRIX HAS BEEN 
FOUNO SINGULAR; 'GOTO' SINGULAIH 'ENO'; 

n:RMUTE: 
'FOR' J:=R 'STEP' 'UNTIL' M+N 'DO' 'BEGIN' 

NUM:=ACR.JH ACR.Jl:=ACK.JH ACK.Jl:=NUM; 'END'; 

VPDATEI 
'FOR' J:=R+I 'STEP' 'UNTIL' M+N '00' ACR.Jl:=ACR.Jl/P; 
'FOR' 1:=1 'STEP' I 'L'NTIL' R-I.R+I 'STEF' I 'UNTIL' 1'1 '00' 
'IF' 'NOT' ACI.Rl = 0 'THEN' 
'FOR' J:=R+I 'STEF' I 'UNTIL' M+N '00' 
ACl.Jl:=ACI.Jl - ACR.Jl*ACI.RH 'END'; 

'GOTO' END OF INVE; 

SINGULAR: 
NE1.'LINE( I)J 
VRITETEXT('('SINGt'LAR%~ITH%ORDER')'); 
VRITE(30.FORMAT( '( 'SNDDDD') ').1'1); 
END OF INVEI 'END'; 
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SOME OPERATORS AND THEIR USE 

4.1 The summation vector 

We met the term operator already in Section 2.15 (and by way 
of casual use before definition already in Section 2.6). An 
operator is a matrix, or a vector, which is not defined for 
the sake of the numerical information given by its coefficients, 
but in order to perform some kind of transformation on another 
matrix or vector. For example, we may define a .summation vector 
~, of n unity element, 

s 
-n 

1 
1 

1 

If A is of the order m by n, A s is the column-vector of the 
row-totals of A, and s' A is thenrow-vector of the column-totals. -m 

>~ 
For example, we may have an input-output table matrix 

T 

where the first block-row and block-column refer to the 
producing sectors. The input-output convention that column 
total equals row-total is then expressed as 

s 
-n 

T' s 
1 -n 

where [Tl] , is the transpose of the first block column Tl 
and Ti is the first block-row, 

*See my book Forecasting Models for National Economic Planning 
[19], Chapter III. 
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e.g. 

T 40 20 50 20 130 50 -10 
45 45 115 23 50 20 2 
50 30 40 10 20 -10 
30 30 

100 120 80 
35 55 

and 

[40 20 50 20 130 50 -l~J 1 [30~J 45 45 115 23 50 20 1 300 
1 
1 
1 
1 
1 

as well as 

[40 45 50 30 100 35J 1 [300J 
20 45 30 30 120 55 1 300 

1 
1 
1 
1 

4.2 The aggregation matrix 

Let us have the following table of statistical data: 

Years Industries 

1 2 3 4 5 6 

1960 15 201 5 19 73 49 
61 16 200 9 18 74 50 
62 18 201 20 18 73 51 
63 17 199 25 16 81 53 

1964 19 200 29 16 83 52 

As it happens, the interest of a research worker may be only 
on the totals of industries 1, 2 and 3 together, 4 and 5 
together, and 6 alone. 
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The relevant transformation of the data is defined by the 
aggregation matrix 

and 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

we have 

(a) 
1 
1 
1 

(b) 

1 
1 

(c) 

1 

CHAPTER IV 

[15 
201 5 19 73 49] 1 

r' 
92 

4] 16 200 9 18 74 50 1 225 92 50 
18 201 20 18 73 51 1 239 91 51 
17 199 25 16 81 53 1 241 97 53 
19 200 29 16 83 52 1 248 99 52 

1 

The aggregation matrix has a quite typical structure. For each 
pth column vector of the original data, to be aggregated into 
the qth column vector in the aggregated matrix of data, there 
is a unit-vector as the pth row in the aggregation matrix, with 
the unity-element in the qth place. 

Obviously, one may also aggregate rows. In that case one has to 
pre-multiply the data-matrix with an aggregation matrix of 
corresponding structure. Such a row-aggregation matrix will 
have unit-vectors as columns, the aggregation of the pth row of 
the original data-matrix in the qth row of the transformed data 
matrix is then represented by the pth unity column of the 
aggregation matrix having the unity-element in the qth position. 

4.3 Vector-permutation 

The term "permutation" applies to the relation between two 
vectors or two matrices which contain the same numerical 
information, In a different arrangement, e.g. 

and 

With matrices, we may distinguish between a column-permutation, 
the interchanging of two columns, and row-permutation, the 



SOME OPERATORS AND THEIR USE 

interchanging of two rows, e.g. 

[l 
2 3 ,~] ~ 

2 4 3l 
6 7 versus 6 8 

liJ 10 11 10 12 

is a column-permutation, and 

[l 
2 3 j] ~ 

6 7 

,~] 6 7 versus 2 3 
10 11 10 11 

is a row-permutation. 

Because of its use in the next chapter on determinants we must 
also define the term single permutation. 

Two matrices of the same order and containing the same numerical 
information, differ by one (single) permutation, if the one may 
be transformed into the other, by interchanging two adjoining 
vectors (rows, e.g. columns of the matrix) .. 

This definition includes the permutation of two adjoining 
elements of a vector, which is a matrix, of which one of the 
order parameters is known to be unity. 

One may obtain more complicated re-arrangements of the elements 
of a matrix, by means of a succession of single permutations. 

The number of single permutations needed to transform a matrix 
A into another matrix B, is the same as needed to transform B 
into A; the same permutations may be performed in the reverse 
order. 

We may then speak of the number of permutations by which B 
differs from A, without having to specify the transformation of 
A into B or vice versa. 

Two matrices (of the same order and numerical content), are 
different by q permutations, if one needs q interchangings of 
adjoining vectors (e.g. q single permutations), in order to 
transform the one into the other. 
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Permutations may be defined as matrix-multiplication, by means 
of operators. 

. h h .th d th f . To ~nterc ange t e ~ an r row 0 a matr~x, we may pre-
multiply that matrix by a permutation-operator, which is a 
matrix of unit vectors, which differs from the unit matrix 
in that the ith and the rth row have been interchanged. 

Example 

I [~ I 

(The first and the fourth row have been interchanged). 

The reader will note, that the operator can also be obtained h 
by the interchangement of the first and the fourth (i th and rt ) 
column of a unit-matrix of appropriate order. 

Permutation operators never consist of anything else but unit 
vectors; one single unity-element and all zeros in the rest of 
the column (row). 

Column permutation may be defined in an analogeous way, as post
multiplication by a permutation operator. 

The use of operators will now enable us to state and proof some 
theorems on vector-permutation. 

Definition 

A permutation operator ~s a square matrix, of which each row as 
well as each column consists of n - I zeros and a single unity 
element, n being the order of the operator. 

Theorem 

All rearrangements of the rows of a matrix may be obtained by 
means of pre-multiplication of the matrix by a permutation
operator. 

Proof 

Consider the transformation of the matrix A into the matrix B, 
by re-arrangement of the rows. 
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We postulate the existence of a transformation-operator T, 
(of some description), satisfying 

B T • A (4.3. 1 ) 

By the nature of the row-rearrangement operator, A and B must be 
of the same order. Therefore T must be square, its order is the 
number of rows of both A and B. The assumption that such an 
operator-matrix T actually exists, is at this point arbitrary. 
But if we show that an operator T, of certain characteristics, 
actually satisfies (4.3.1) for all A and B, its existence is 
shown in the process. We therefore investigate the properties 
which T must satisfy, in order to comply with (4.3.1). 

For each a~, for each ith row of A, there must be a new 
row index-i, to become b ' , the rth row of B. 

-r 

This operation is defined by pre-multiplication of A, by an 
operator T, which has a unit vector as the rth row, with the 
unity-element in the ith position. 

If there are m rows in A, there will also be m rows in B, and 
we need m unit-vectors as rows of the operator, to define the 
m rows of B. 

Also, the ith row of A must be transformed into one and only one 
single row of B. To this purpose we need one and only one single 
unity-element in the i th column of the operator. This makes the 
operator into a permutation-operator as defined. 
q.e.d. 

Corollary 

Any rearrangement of the columns of a matrix may be obtained by 
post-multiplication of the matrix, with a permutation-operator. 

In that case the transformation of the jth column of a matrix A, 
into the kth column of a matrix B, is defined by the kth column 
of the operator, which has the unity-element in the jth row. 

Exercise 

Find the permutation-operator P, which transforms 

[
11 12 13 
21 22 23 
31 32 33 

l4J [11 
24 into P. 21 
34 31 

12 
22 
32 

13 
23 
33 

l4J [31 24 = 11 
34 21 

32 
12 
22 

33 
13 
23 

34J 14 
24 
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DETERMINANTS AND RANK 

5.1 Determinants and Minors 

The determinant is a scalar function of a square matrix. It is 
conventional to indicate the determinant by the symbol for the 
matrix, placed between two vertical lines e.g. if A is a square 
matrix, we write IAI for the determinant of A. The determinant 
is best defined recursively.* 

For a matrix of order 1 by 1, the determinant is the one single 
element, e.g. 

I [7] I 7 

For matrices of order 2 and upwards, we have the recursive 
relation 

n 

L 
j 

(-1) l+j a lj I Alj I 
1 

(5.1.1) 

where n is the order** of A, and AI' is a matrix of order n-l, 
namely A less its first row and itsJjth column. The determinant 
of such a matrix of smaller order is called a minor. 

Example 

* 

** 

A 

A 

1 
3 
o 

2 
-4 

6 

o 
5 
o 

As a result many proofs concerning determinants are 
obtained by means of induction or recursive application, 
e.g. the theorem is true, as a restatement of a definition 
for matrices of order 1 or 2, but can be shown to be true 
for matrices of order k+l, if it is assumed to be true and 
valid for all matrices of order k. The proof is then 
carried k = 1, 2, 3, ..... etc. 

All matrices in this chapter'will be square and of order n, 
unless otherwise stated. 
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We now develop the minors corresponding to the non-zero 
elements of the first row of A. 

Hence we find 

-4101 

3101 

1 " - 30 + 0 

- 30 

o 

- 30 

The concept of a minor may be generalized. 

If A is a square matrix of order n, the minor IAi' I is the 
determinant of a square matrix of order n-l, whic~ is A, less 
the ith row and the jth column. 

The minor IAijl may also be indicated as the minor of aij where 
a" is an element of A, on the intersection of the ith row and 1J 
the jth column. 

The corresponding expression IAij I (_l)i+j which often occurs in 
the development of determinants 1S known as the co-factor 
of the element ai,j' 

Hence for A 1 2 3 4 
5 6 7 8 
9 10 11 12 

13 14 15 16 

1 3 4 c 3 ,2 1 3 4 
5 7 8 5 7 8 

we have 

13 15 16 13 15 16 

The square matrix, from which the determinant is taken will be 
indicated by its two indices*, 1.e. 

. h . th h . th 1 A .. 1S A less t e 1 row Rnd t e J co umn. 
1J 

* There obviously is a potential possibility of confusion 
between minors and blocks (see Sections 2.16 and 2.17). It 
should, however be clear from the context, whether Aij is the 
intersection of the i th block-row and the jth block-column 
(a block) of A, with deletion of the ith row and the jth column 
(a minor matrix). In practice, block-notation and determinant
formulae do not occur together, at least not at this elementary 
leve 1. 
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The matrix Aij will be called a minor-matrix. If no confusion 
between the minor matrix and the minor, which is its 
determinant, is possible, we may also use the term "minor" 
for both the minor-matrix and its determinant. 

It will be useful, to have a symbol for a minor of a minor. 

I !Aij Irkl will be the minor of Aij' arising from deletion of 
the rth row and the kth column from the original A. 

e.g. A 11 12 13 14 
21 22 23 24 
31 32 33 34 
41 42 43 44 

11 12 14 
31 32 34 
41 42 44 

1
31 41 32

1 42 

If A is of order n, then IIAi j Ir k I is the determinant of a 
matrix of order n-2, which i~ A, 'less its i th and its rth row, 
and less the jth and kth column. Note that both sets of indices 
refer to the original matrix A. It follows that 

IIA. ·1 kl 1,J r, I IA kl· ·1 r, 1, J 
(5.1.2) 

Theorem 

For any square matrix A, of order n, 
n .. 
I a .. (_l)1+J IA··I 

. 1 1J 1J J = 

(5.1. 3) 

holds for i = 1,2, ....... n. 

i.e. we may develop the determinant of A, by any row, not 
just the first one. 

Proof 

For i = 1 the statement coincides with the definition of a 
determinant. 
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For n > i > 1 the proof ~s as follows: 

Suppose the theorem is true for matrices up to the order n q, 
e.g. n = 1, n = 2 ........ n = q. 

Then for n = q + 1, we may evaluate IAI, 
expression (5.1.1), but evaluate each of 
by means of (5.1.3). 

by its definitional 
the minors Alj 

e.g. ~ I : aik(-l)i+k-l/ I Aljl rk / + 

+ 
n 

L aik(-ni+k-21IAljlrkl 
k=j+l 

(5.1.4) 

The difference in the exponent of -1 arises because aik belongs 
to the (i-l)tb row of Alj, the first row of A not being part 
of Alj. 

For k > j a similar effect arises for the columns. The element 
ai k belongs to the kth column of A, but to the (k -l)th 
column of Alj. Hence the exponent of -1 in the second group 
of terms is ~ + k - 2. 

For IAI we then obtain, by (5.1.1) and (5.1.4) 

jAj jElalj(~~ 1 i +k-l/ I I I aik(-l) Alj ik 
1 

+ k.I+l aik <-1)i+k-ZljA1j I ikll) (5.1.5) 

(i = 2, 3, ...... n) 

Now note, that in (5.1.5) each term contains a cornmon factor 
alj aik· Therefore we change nothing if we place aik outside 
the brackets and alj inside. 

The summation is then over 
and 
and 

k 
j 
j 

1 to n 
1, 2 ........ k-l 
k+l ......... n. 

This is equivalent to the original, as this expresses ~n both 
cases the requirement j f k. 

( . 1 d h th . . 1 For J = k, we cannot exc u e t e k column of the or~g~na 
matrix from A .. since this column is not part of A .. ). 

~J ~J 
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We obtain 

(5.1.6) 

(i = 2, 3 ......... n) 

However, by (5.1.2) we have 

II A1j I ik I II Aik 11j I 

Hence we obtain 

n (k -1 i+ j -11 I 
k L 1 a ik j ~ 1 a1j (-1) IAikl1j 

alj(-'Ji+j-ZIIAikl,jl) + 
n 

L 
j=k+1 

(5.1. 7) 

The expression within brackets is nothing else but IA.kl, 
developed by the minors of its first row by the origiAa1 
definition of a determinant. 

Then, on the assumption that the theorem is true for n q, 
it is shown to be true for n q + 1 as well. 

However, for n q = 2 we have 

-a21 \2 + a 22 all 

-a211A211 + a 22 1A221 

which shows the theorem to be true for n 

Hence it is true for n = 3, n = 4, etc. 
q.e.d. 

q 2. 
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Example 

A 

Develop IAI 

IAI 

1 
4 
7 

by 

2 
5 
8 

the 

1 I ~ 

3 
6 
9 

minors 

~I 

of the 

- 2 I ~ 
first row. 

~I + 3 I~ 
1 (5 x 9 - 8 x 6) - 2 ( 4 x 9 - 7 

+ 3 

-4 (2 x 9 - 3 x 8) + 5 (1 :lC 9 - 3 x 
- 6( 

-4 12 31 + 5 11 3 - 6 1 

!8 
I 

17 91 9 7 

~I 
x 6) 
(4 IC 8 - 7 " 5) 

7) 
1 '18-2",7) 

2 

8 

which is IAI. developed by the minors of the second row 

Theorem 

n i+l L a·l(-l) IA·11 IAI (5.1.8) 
i 1 ~ ~ 

e.g. we can develop IAI by the minors of the first column, in 
the same way as we may do for the first row (any row). 

Proof 

Develop IAI by the minors of the first row 

j 

~ l+jl I L a l · (-1) Al · 
1 J J 

Suppose the theorem to be true for n = q. 

Then for n = q + 1 we may develop all the minors, except All 
by the first column 

We may now re-write IAI as 

j 
~ l+j I I L al·(-l) Al · 

2 J J 
+ 
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and hence 
n 

1j (-1) l+j 
n 

ail (_l)il IAi111jl IAI all I Alli + L a L 
j=2 i=2 

I a. (-1) i+1 
n 

a 1j (-l)j II Ail l1j I all I All I + L . 2 d 
~= j=2 

Now note that, by the original definition of a determinant, we 
find: 

developed by its first row. 

Hence 

+ 
n 
'\' 
L a' l i 2 ~ 

n i+1 1 I L a .. (-l) A' l j 1 ~J ~ 

Hence, on the assumption that the theorem is true for n q, 
we have shown that it is true for n = q + 1. 

However, for n = 2, we have 

which shows the theorem to be true for n 2. 

Hence it is true for 

n = 2 + 1 = 3, n = 3 + 1 = 4 .........•.. etc. 

q.e.d. 
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By analogy to our proof for the development of a determinant 
by the minors of an arbitrary row, we also have: 

n 

I 
i 1 

i+j I I a .. (-1) A .. 
~J ~J 

(5.1.9) 

Conclusion 

The determinant may be developed by means of any row or any 
column. 

Exercise 

Develop 1 2 3 
456 
789 

, by the first row, and also by the third 
column. The answers should obviously be 
the same (zero). 

5.2 Permutations of determinants 

Under this heading we discuss the determinant of any square 
matrix B, which may be obtained from another matrix A, by means 
of vector-permutation (see section (4.3)) as well as one case 
of elentswise reordering, the transpose. 

Theorem 

The interchanging of two adjoining rows causes a change in the 
sign of the determinant, but leaves the absolute value 
unchanged. 

Proof 

. . th d h Let B be related to A, by permutat~on of the ~ an t e 
(i+l)th rows. e.g. the i th row of B is the i+l th row of A and 
the (i+l)th row of B is the ith row of A, and for 

r = 1, 2, ..... i-I, i + 2, ....... n 

(all other rows) 

the 
th 

of B equals the 
th 

row of A. r row r 

Now develop I BI by its 
.th 
~ row 

IBI I b .. (-l)i+jIB .. 1 

j = 1 ~J ~J 
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However, by assumption, we have 

b .. 
1J 

a. . 
J + 1 ,J 

and lB. ·1 1J 

CHAPTER V 

I A. 1 ·1 1 + , J 

since B less the ith row and A less the i + lth row contains 
the same numbers. 

Therefore 
n 
L a· l .(_l)i+j IA. 1 ·1. 

j 1 1+, J 1+ , J 

since (_l)i+j (-1) i+l+j 

We have obtained: 
n 
\' i+l+j I 

j 
L a. 1 . (-1) I A. 1 . 

1 1+, J 1+ , J 

which is -I AI 
q.e.d. 

Corollary 

If two adjoining rows of a square matrix are equal to each other, 
the determinant 1S zero. 

Theorem 

Permutation of two rows of a matrix, whether adjoining or not, 
causes the sign of the determinant to change, its absolute value 
remaining unchanged. 

Proof 

If the ith and the (i + q)th rows are to be interchanged, this 
may be effected by 2. q - 1 simple permutations. There are q - 1 
rows between the i th and the (i + q)th row; 

we 
(i 
in 

need to interchange the ith row with the (i + l)th, the 
+ 2) th, ... and the (i+ q - 1) th in order to obtain a matrix 
which the (original) ith and the (i + q)th are adjoinging rows. 

These are q-l simple permutations. It then takes one simple 
permutation to interchange the (i + q)th row with~e (now 
adjoining) old i th row, and again q - 1 simple permutations to 
interchange the old (i + q)th row with the (old) (i + q -l)th 
row, the (old) (i + q -l)th row etc., in order to obtain a 
matrix with the (old) (i + q)th row in the ith position. 
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The total number of simple permutations is always odd. 

The determinant is then multiplied by 

<_1)[2 (q-l) + lJ - 1 

q.e.d. 

Corollary 

The determinant of a square matrix with two equal rows is zero. 

The corresponding theorem for columns is now stated without 
further proof: 

Permutation of two columns causes the sign of the determinant 
to change, the absolute value of the determinant remaining 
unchanged. 

Corollary 

A square matrix containing two equal columns has a zero 
determinant. 

Theorem 

Proof 

Suppose this theorem to be true for n = q, the theorem may 
then be applied for the minors of a matrix of order n = q + 1. 

Develop IA'I by the first row of A' which is the first column 
of A 

n 
IA'I I a. l (-l)l+iIA'lol 

111 1 

As just observed, we assume the theorem to be true for the 
minors, hence we may write IAil l for IA'li l 

i 

~ l+i I I 
L ail (-1) Ail 

1 
IA'I 

wh~ch is A, developed by the first column of A. 

Which shows that the theorem is true for n 
true for n = q = 1. 

q + 1, if it is 
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However, for n = q 1, we have 

IA'I 
Hence the theorem is true for n = 1; hence it is also true for 
n = 1 + 1 = 2, for n = 2 + 1 = 3, ....... etc. 
q.e.d. 

5.3 Proportionality of vectors 

Theorem 

If two matrices A and B differ only in one row, or one column 
n, the difference being that one row of B is the corresponding 
row of A multiplied by a scalar a, e.g. b~ = aa! the 
determinant of B is a times the determinafit of-A. 

Proof 

Develop both determinants by the ith row. 
n 

(_l)i+j IB .. I I BI I b .. 
j 1 ~J ~J 

n 
(-1) i+j lB .. I I aa .. 

j 1 ~J ~J 

n 
(-1) i+j I A .. 1 a I a .. 

j 1 ~J ~J 

q.e.d. 

Theorem 

If a square matrix C (of order n) has two proportional rows 

c .. = ac . 
~J r~ 

(5.3.1) 

(i " r, j = 1, 2 ..... n) 

then o 
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Proof 

Suppose two matrices A and B were the same except for two rows, 
for which 

b .. 
lJ 

b . 
rJ 

aa .. 
lJ 

-1 
a a .. 

lJ 

was true for j 1, 2 ..... n 

By our previous theorem, we would obtain 

-1 
a·a IAI (5.3.2) 

However, we may obtain B from A, by row-permutation; hence 

is true. (5.3.3) 

From (5.3.2) and (5.3.3) we infer A B = 0 

However, the described relation is the one between C and C 
itself. Hence 

is true. 
q.e.d 

o 

The two proceeding theorems have an obvious 

Corollary by analogy: 

(5.3.4) 

If a column of a matrix is multiplied by a scalar number, the 
determinant is multiplied by that same number. 

If two columns of a matrix are proportional the determinant 
is zero. 

Theorem 

If two square matrices A and B, of the same order, are 
different in one row only, and the difference consists in 
the addition of a proportionality of one row to another row, 
their determinants are equal. 

e.g. if b .. a .. for j = 1, 2, . ..... n 
lJ lJ 

and i 1, 2 ....... r - 1, r + 1, . ..... n 

and b 
ri 

a 
rj 

+ yahj 
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for j 1, 2 ..... n, and a specific r and a specific h, then 

Proof 

Assume the theory to be true for a particular q > 2 

Then for n = q + 1 

we may develop IBI by the m~nors of a row with row-index 

i';' r and i "I h. 

We may then apply the theorem to the minors which are of order 
q and write IAI .. for IBI ... Also for such a row we have 
b .. = a. . ~J ~J 
~J ~J 

Hence 
n 

I 
j 1 

a .. 
~J 

<_l)i+j IAI .. 
~J 

The theorem is therefore true for n = q + 1 if it is true for 
n = 1. For n = 2 the theorem holds, since 

Hence the theorem is true for n = 2 + 1 = 3, for n 3 + 1 
etc. 

q.e.d. 

Corollary by analogy 

Adding a proportionality of a column to another column does 
not influence the determinant. 

4, 
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With the help of this theorem, we can prove the following 
Theorem* 

A singular matrix has a zero determinant 

Proof 

Let A be a square matrix of order n, and let A be singular. 
Then, by the definition of singularity 

Z'A 0 is true for some Z' + o. 

Partition A into a single and a remaining block-row; and Z' 
into single element and a remaining vector. 

A a' 
-1 

A' -2 

+ = 0 (5.3.5) 

Since row permutation does not change the absolute value of 
the determinant, we may without loss of generality interchange 
the rows of A and ~orresponding elements of Z' . 

We will then require 

we further assume a' + o. -1 

(In the case a' 
-1 

o the theorem is trivial but true.) 

Hence by (5.3.5) we obtain 

y' A' -2 2 -y a' + 0 
1 -1 

(5.3.6) 

Accordingly, we may subtract each ith row ( i = 2, 3 .... n) 
weighted with the finite proportionality factor Y.Yl-l , 
from the first row, without changing the deterfuinant. 

The result is a matrix with a zero row, showing 

q.e.d 

* The reverse of this theorem (a matrix with a zero determinant 
is singular) is also true, but its proof has to be deferred 
(to Section 5.5). 
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The alternative singulari ty definition Ax = 0, 
x " 

0 (not so 
far used in this book) also implies IAI = 0, since IA'I = o. 

Example 

A -1 1 0 2 
2 3 0 1 
4 -6 2 5 0 
5 -2 2 8 

This can, of course, be shown in two ways, the hard way, by 
calculation of the determinant, or more easily, by finding the 
fourth (bottom) row to be the sum of the three others, or 

r -1 -1 -1 

Exercise 

Find a suitable combination 
singularity of A = [1 2 

4 5 
7 8 

1 
3 

-6 
-2 

of the 

!] 

o 
o 
2 
2 

i] . [0 o 

rows, to show the 

5.4 Decomposability of a determinant 

o oj 

How many different permutation operators of a given order can 
be written? At this point we recall the definition of a 
permutation operator. This is a square matrix, which may be 
obtained by re-ordering the rows of a unit matrix. Alternatively, 
a permutation operator may be defined as a permutation of the 
columns of the unit matrix; the result is the same. 

Then if the order is n, there are n rows in which to place the 
unity element in the first column, n - 1 rows in which one may 
place the unity element in the second column, e.g. all 
excluding the one in which the first element is unity. 

The total number of choices is n(n - 1), ..... 2 . 1 
i.e. n! 

By precisely the same logic there are also n! recursive products 
of n numbers in a determinant. 

Developing the determinant by the first column, we have n 
choices for the first factor in such a recursive product. 
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Then, developing each minor, we have n - I choices for the 
relevant element in the first column in the minor, etc. 

Example 

83 

3 choices in first column. For an we have the term alII AlII and 
the group of permutation operators 

1 I 
I and I 

I I 

For a2l we have the term - a 21 IAI 21 and the group of permutation 
operators 

I I 
1 and I 

I I 

etc. 

The full list of permutation operators or recursive products 
may be enumerated as 
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I 
I 

The reader will note, that the signs of these recursive products 
are the signs of the determinants of the corresponding 
permutation operators. 

The sign of such a recursive product is dependent only on the 
indices of the corresponding elements and these are the same 
as the indices of the non-zero elements of the permutation 
matrix. 

We now come to the following result: 

The determinant of a square matrix equals the sum of the 
determinants of all possible elementwise products of the 
matrix with a permutation operator, e.g. 

+ 

+ + 

I -

+ + 

5.5 Determinant and inversion by row-operations* 

Recall the process for calculating an inverse matrix, which we 
discussed in Chapter III. 

Each elimination step consists of: 

(a) If necessary a row permutation, to ensure a non-zero 
diagonal pivotal element. This part of the operation 
changes the sign of the determinant of both the left hand 
side and the right-hand side matrix. 

*For further reference on this topic see also Maurer [281 
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(b) Multiplication of the pivotal row by the reciprocal of the 
pivotal element. This part of the operation mUltiplies the 
determinants of both the left-hand side matrix and the 
right hand side matrix by the reciprocal of the pivotal 
element. 

(c) Addition of a multiple of the pivotal row to the other 
rows. This part of the operation leaves both determinants 
unchanged. 

We start the inversion of a matrix A with a system A x Z 
tabulated as 

x Z 
A I 

and end the operation (if the inverse exists), with 

Since ~he determinant of a unit matrix is always one, it 
follows that, except for the sign we obtain the determinant 
of A as the recursive product of the pivots. 

Example 

A 
[~ 

Z 

~J -4 (from Section 5.1) IAI -30 
6 

L R 
xl Xz x3 Yl yZ Y3 L 

CD z 0 I~ :1 IT] 3 -4 5 1 
0 6 0 

ILl = -30 IRI 1 

Xl Xz x3 Yl YZ Y3 L 

I ~ z 

~I I 
1 

~ IT] EJ]) 3 1 
6 0 

ILI= I-l~ ;1 IRj 1 

= -30, 
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unchanged because the first pivot was one. 

xl x 2 x3 Yl Y2 Y3 L 
1 il 2/5 1/5 2 3/5 

1 3/10 -1/10 7/10 
1 4/5 3/5 1 2 4/5 

L 3 R 12/5 1/5 I *1 -l/IO 
-30: -10 3/10 -1/10 1 : -10 

xl x 2 x3 Yl Y2 Y3 
L 

EIJ 1 0 -1/3 1 2/3 
- 1 - 0 0 1/6 1 1/6 
- - 1 -3/5 1/5 1/3 14/15 

ILl 1 IRI = 11 0 1/61 + (-1/3) I 0 1~51 1/5 1/3 -3/5 

=-1/30 

Exercise 

Find the determinants of 

A = 

I~ 
1 II and of A Ii 1 il 4 4 
7 7 

independently by two methods, i.e. by calculation according to 
its definition, and by inversion or attempt to invert. (Do not 
forget to swap sign when interchanging rows see section 3.10). 

An obvious corrollary of the result obtained in this section is 
the following: 

Any non-singular matrix may be inverted by row - operations, if 
necessary involving the interchanging of two rows of the matrix 
as indicated in section 3.10. 

If an attempt to invert by row operations has to be abandoned, 
because no non-zero pivot may be found at all in the next column, 
neither on or below the diagonal, this proves the singularity 
of the matrix, the determinant being zero. 
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Furthermore, since all non-singular matrices can be inverted, 
it follows that all matrics with zero determinants are singular. 

We have so far defined singularity as 

z' A = 0, Z' ~ o. 

Since IAI = lA' I, it is now clear that y' A = 0, y' ~ 0; 
A~ = 0, ~ ~ 0; and IAI = 0, are all equivalent definitions of 
singularity. 

Exercise 

Find the determinants of 

A 3 
-6 

1 
-4 

7 
, A 

independently by two methods 

3 
6 

1 
4 
7 

2 
5 
8 

A 
1 

-4 
7 

-2 
5 

-8 

3 
-6 

9 

a) By calculating the determinants according to the definition 
of a determinant 

b) By inverting or attempting to invert the matrices 

Do not forget to swap the sign if row-permutation is needed 
(see section 3.10), and verify the correctness of any 
successfully calculated inverses by premultiplication i.e. 
application of (3.7.4) and (3.7.7). 

5.6 The Calculation of Determinants 

Two programmed procedures for the calculation of determinants 
are offered in this section. To calculate a determinant 
directly according to its definition is not a practical 
proposition. The two major complications are the following: 

a) The rules for the search for and the signs of the various 
minors are somewhat complicated and would therefore lead 
to a somewhat complicated programme. 

b) The matrices from which minors would have to be extracted 
do not as such exist, the elements of the larger matrix 
would first have to be copied into a minor-matrix of the 
appropriate order without the gaps for a missing row and 
column. 

This would require additional space-reservation in the 
computer's memory. To calculate the determinant of a matrix 
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of let us say, 65 by 65, by that method one would need space
reservation for: 

the 65 by 65 matrix itself 
a 64 by 64 minor 
a 63 by 63 minor of a principal minor etc ... 

The second of these complications is side-stepped by following 
Section 5.4 i.e. the determinant is evaluated as the sum of a 
series of determinants of elementwise products of the matrix 
with a permutation-operator. The first-mentioned complication 
is, in a sense, also present in this approach. It is not all 
that simple to generate "all possible" permutation operators 
and (the signs of) their determinants. Yet that is exactly 
what the following procedure does: 

TEXT-LISTING OF THE FERMUTATION PROCEDURE: 

'PROCEDURE' FERM(PO.N.X.SIGN.NEWSIGN.OFERATION)J 
'VALUE' X.SIOtH 'ARRAY' FO; 'INTEGEP' N.K.SIGN.NE\,SIGN; 
, PROC EOt'R E' OP ERAT ION; 
'EEGIN' 'INTEGER' I.J; 

'COMMENT' 
PO IS THE PERMUTATION OPERATOR. 
AN!: I S ASSUME!: TO BE 0 F OPDER N BY N 

I F PERM I S CALLE!: 10/1 TH THE PARAMETER X BEING ONE. 
THE wHOLE OFERATOR 
MATRIX IS FIRST EQUATED TO ZERO. 
EACH CALL OF PEPM WILL PERMUTE ONE COLt~N OF PO. THAT IS. 
INVESTI GP.TE I F A l'NI T -ENTRY IN ANY I TH ROW OF A COLUMN 
OF FO IS CONSISTENT WITH THE ENTRIES IN THAT I TH RD\,. 
WHICH ARE ALREA!:Y PLACED TO THE LEFTHAND-SIDE OF THE COLUMN 
WHICH IS Cl'RRENTLY BEING FERMUTATED. 
AT THE EN!: OF EACH 'TREE' OF F'ERMUTATIONS. THERE IS A CALL 
TO THE FROCEDl'RE OPERATION. I.E. THE OPERATION 
TO BE PERFORME!: WITH THAT PARTICULAR PERMUTATION-OPERATOR. 
THE FULL SET OF PERMt'TATION-OPERATOP.S I S GENERATED. BY 
THE DEVICE OF PERM CALLING ITSELF. 
IF SIGN "'AS ASSIGNED THE INITIAL VALUE OF ONE. THEN. 
AT EACH EXI T-CP.LL TO OFERATION. SI GN WILL HAVE THE VALUE 
PLUS OR MINUS ONE. 
CEPENDING ON "'HETHER THE NUMBER OF FERMUTATIONS WAS 
EVEN OP. DOC; 

'IF' K > N 'THEN' 'BEGIN' 
OFERATION;' 'GOTO' END OF PERM; 'END'; 

'IF' K"I 'THEN' 
'FOR' II-I 'STEP' 
'FOR' J:"I 'STEF' 

'l'NTIL' N 'DO' 
, UN TIL' N 'DO' PO C I • J ] : " 0; 
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'rOR' 1:"1 'STEP' I 'UNTIL' N 'CO' 'SEGIN' 
'ro~' J:=I 'STEP' I 'UNTIL' X-I 'DO' 
'Ir' POtl.Jl I 0 'THEN' 'GOTO' ENtJLOOP; 
PO ( I • Xl: " I; 
NEIOSIGNI=SIGN; 
F'EP.M C rD. N. X+ I. tlEIiS I GN. NEilS 1 GN. OPERAT ION); 

CHANGE SIGN SECAUSE or PERMUTATION: SIGN:= -SIGNJ 
rOCl.Xl:=O; 
ENDLOOPI 'END'; 

END or PERM.: 'ENO'J 

As indicated by the 'COMMENT' this procedure caters for calling 
another procedure called operation, every time it has called 
back on itself with the index k - which indicates the column 
to be permuted - in excess of its order. It has then generated 
a particular permutation-operator, with its correct sign. 

This sign should be flicked from plus to minus or vice versa 
at a particular permutation in the kth column without 
interference to its value to be transmitted to other minors 
when permuting columns further to the left again. For this 
reason this variable is not transmitted directly as a variable 
but "per value". The eventual result is stored in the variable 
NEWSIGN. 

In the case at hand, this is the procedure TERM which is an 
internal procedure, subordinate to the procedure PERD which 
calculates the determinant by means of permutation-operators. 

'PROCEDURE' PERDCA.N.D)J 
'ARRAY' AJ 'INTEGER' NJ 'REAL' CJ 
'BEGIN' 

'INTEGER' I.J.SIGN.NEIISIGNJ 

'FROCEDURE' FERMCPO.N.X.SIGN.NEIISIGN.OPERATION)J 
'VALUE' SIGNJ 'ARRAY' POJ 'INTEGER' N.X.SIGN.NEWSIGNJ 
'FROCEDURE' OFERATIONJ 'ALGOL' J 

'PROCEDURE' TERMJ 
'EEGIN' 'INTEGEP.' I.JJ 'REAL' TEl 

'COMMENT' 
THE TERM TE. VHICH TERM ADDS TO A DETERMINANT IN THE PROCESS 
or CALCULATION. IS THE RECURSI VE PRODU.cT or THOSE ELEMENTS 
or THE MATRIX A. FOR \IHICH THE FEF1MUTARION-OFERATOR HAS A 
t'NITY-ELEMENT RATHER THAN A ZERO IN THE CORRESPONI)ING CELL. 
MULTIPLIED BY THE CNE\DSIGN INDICATED.; 
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TE: =NEWSI GN; 
'FOR' 1:=1 'STEP' 'l'NTIL' N 'DO' 
'FOR' J:=I 'STEF' 'UNTIL' N 'DO' 
'IF' POCI.JJ=I 'THEN' 'EEGIN' 

'IF' ACI.JJIO 'THEN' TE:=TE*ACI.JJ 
'ELSE' 'GOTO' END OF TEEM; 'END'; 

0: = D+TE; 
EN D 0 F TERM: 'EN D' ; 

'ARRAY' Porl:N.I:NJ; 

START OF THE CONTROLLING MAIN BODY OF PERD: 
!): = 0 ; SIGN: = Ii 
PERMCPO.N.I.SIGN.NEWSIGN.TERM); 

END OF PERD: 'END'; 

CHAPTER V 

This is a fairly complicated way of calculating a determinant. 

Calculation of the determinant as a by-product of inversion on 
the lines of Section 5.5 is much simpler to programme. The 
following procedure is an adaptation of the inversion procedure 
which was offered in Section 3.13. 

'PROCEDURE' INVDCA,M.N.DH 
'VALUE' N; 'ARRAY' A; 'INTEGER' M,N; 'REAL' D; 
'BEGIN' 'INTEGER' I,J,R,K; 'REAL' P,NUM; 

'COMMENT' DETERMINANT-CALCULATION WITH INVERSION; 
'IF' N=O 'THEN' 'BEGIN' 

NI=M; 
'FOR' 11=1 'STEP' 1 'UNTIL' M '~O' 'BEGIN' 

'FOR' JI=I 'STEP' 1 'UNTIL' M '~O' A(I.M+J1I=O; 
A(I.M+I1I=1i 'END'; 'END'; 

INITIATE 0: 01=1; 

'FOR' R:=I 'STEP' 1 'UNTIL' M '~O' 'BEGIN' 
'COMMENT' FIRST FIND A NON-ZERO PIVOT; 
PI=O; 
'FOR' 
'THEN' 

I:=R 'STEP' I 'UNTIL' M 'DO' 'IF' ABSCA(I.Rl) > ABSCP) 
'BEGIN' KI=Il PI"ACI.Rl 'END'; 

0:" O*P; 
'IF' ABSCP) < 0,000001 'THEN' 'BEGIN' 

SINGULAR: 'GOTO' END OF INVO; 'END'; 

'IF' 'NOT' R=K 'THEN' 'BEGIN' 
INTERCHANGE ROWS AND CHANGE SIGN OF DETERMINANT: 
01=-0; 
PERMUTE: 
'FOR' JI=R 'STEP' 1 'UNTIL' M+N ,~O' 'BEGIN' 

NUM:=ACR.J); ACR.Jl:=ACK.JH ACK,JlI=NUM; 'END'; 'END'; 

UPDATE: 
'FOR' J:=R+I 'STEP' 'UNTIL' M+N 'DO' ACR.Jl:=ACR.JJ/P; 
"FOR' 1:=1 'STEP' 1 'UNTIL' R-I,R+I 'STEP' 1 'UNTIL' M ,~O' 
'IF' 'NOT' ACI.Rl=O 
'THEN' 'FOR' J:=R+I 'STEP' 'UNTIL' M+N 'DO' 
ACI.Jl:=ACI.Jl - ACR.JhAtl.RH 'END'; 

END OF INVOI 'END' ; 
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The textual similarity between the INVD and INVE (See Section 
3.13) is enhanced by the fact that the one was actually 
obtained by reproducing and partially amending the other. 

The subs tantial differences, besides "COMMENT" and the labels 
are the following: 
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Firstly, there has to be a variable to indicate the determinant. 
Since the calculation of the determinant is one of the tasks 
of the procedure, this variable must be accessible outside the 
procedure. Therefore it has to be a procedure-parameter. Hence 
the additional parameter D. 

Secondly there is the actual calculation of the determinant. 
Only three instructions relate to this, i.e. the setting of an 
initial value, D:=l, the evaluation of the recursive product 
of the pivots, i.e. D:=D*P, and D:=-D, which relates to the 
change in sign, in case two rows are interchanged or, as the 
relevant label has it, permuted. 

The one other difference is that no alarm-message is printed 
when a matrix is found singular. This is because if someone 
uses INVD rather than INVE, one assumes he will verify the non
singularity himself, by investigating the value of the 
determinant. If he has no intention of doing that, he should 
use INVE rather than INVD. 

If one desires the calculation of the determinant as such 
rather than as a by-product of inversion one could gain a slight 
gain in computational efficiency by taking the N=O loop for 
putting a unit matrix as righthand side out of the procedure. 
In that case the calculation would be performed without any 
right-hand side reduced form calculation at all, if N=O was 
supplied. However, a common feature of INVE and INVD is that 
the original matrix is replaced by some intermediate result. 
One is not likely to want calculation ~f a determinant and then 
do nothing more with the matrix. 

The other procedure for calculating the determinant by 
permutation operators leaves the matrix itself unchanged. 

5.7 Rank and the determinants of some structured matrices 

The rank of a matrix is the order of the biggest square and 
non-singular block that can be found for any ordering of the 
rows and columns of the matrix. 
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Thus, 

A 

l~ 
I I 

~] 2 2 
3 3 
4 4 
5 5 

~s of order 5 by 4, but its rank is only 2. 

The blocks [~ ~ , [; ~J' [~ ZJ' [; ~' [~ ~ and [~ ~J 
are square and non-singular. But all square blocks of order 3 
or 4, e.g. 

contain proportional rows and identical columns. 

Obviously the rank of a matrix is at most equal to its smallest 
order parameter. A matrix (or a block) of which the rank is 
equal to the smallest order parameter is said to be of full 
rank. 

Thus, A = [ I 
-2 

-2 
I ~J 

~s of full rank, i.e. its rank is 2, and it cannot be more than 
2, because there are only two rows. 

Since we cannot have a negative number of non-zero elements, 
the lowest possible rank is zero, in which case the matrix (or 
the block) contains nothing but zeros. 

The concept of rank is useful, ~n particular with proofs 
concerning the non-singularity or singularity of partitioned 
square matrices. 

Theorem 

Let 

'A 

be a square matrix with the diagonal blocks All and A22 being 
square, and IAIII f O. 
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Then 

IAI 
Proof 

Let us, for the moment assume IAI I 0 

Consider the inversion of A by blocks, following the rules of 
section 3.11. The associated partitioned system is 

All ~l + AZI ~Z Zl 

AZI ~l + AZZ ~Z Zz 

We make the first block-inversion-step, as follows 

~l ~Z Zl Zz 

cg Al2 I 

AZI AZZ I 

~l ~Z Zl Zz 

I 
-1 

All AZI All 
-1 

-1 
AZZ-A2lAl! AlZ -AZlAll 

-1 
I 

Now recall section 5.5. 

Assuming that the inversion is along the diagonal (i.e. the 
matrix is ordered if needed, beforehand) we obtain the 
determinant of A, as the recursive product of its pivots. 

These are the determinants of All (i.e. the recursive product 

93 

of the pivots u.sed in inverting All), multiplied by the recursive 
product of the pivots met in the second block-inversion step, 
Le. IAzz - AZI All-l Al2I. q.e.d. for IAI 10. . 
Fu.rthermore, if IAzz - AZI All-l AI?I is singular, the inversion 
fails, showing IAI = o. q.e.d. for IAI = o. 
Which completes the proof. 
q.e.d. 

Similarly, the inversion fails if no non-singular block-pivot 
All can be found in the first place. 
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Therefore we have the following 

Corollary 

A square matrix of which any block-column is not of full-rank, 
is singular 

Since A = A' , we have the further corollary 

A square matrix of which any block-row is not of full rank, 
is singular. 

Example 

A 
2 
o 
o 
o 

the block-column 

3 
o 
o 
o ~l 

is of order 2 by 3, but its rank is only 1. 

Therefore the whole matrix is singular. 

For this small matrix, the fact is readily verified by 
developing JAJ by the minors of the first row 

0 0 0 2 0 0 
A 1 0 0 0 -2 3 0 0 +3 

0 0 0 4 0 0 

2 0 0 
-4 3 0 0 o. 

4 0 0 

The following applications are also worthwhi~e to note 

2 0 
3 0 
4 0 

0 
0 
0 

If A is a block-triangular matrix with square diagonal blocks, 
its determinant is the recursive product of the determinants 
of its diagonal blocks. 
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Example 

A 

[-~ 
-2 0 0 

~] 1 0 0 
3 1 -2 
5 -2 1 
7 8 9 

IAI = I 1 -il I-~ -il III (- ~ x (- 3) ~ 1 9. 
-2 

The following application to what we might call a (square) 
"bordered block diagonal matrix" 

e.g. 

A 

is typical for a class of applications of the "full rank" 
corollary. If the number of columns of (any of)the top left
hand block exceeds the number of rows in the same block plus the 
number of rows in the bottom block-row the whole matrix is 
singular. 

Thus if All has more columns than All and A4l together contain 
rows, the first block-column of the whole matrix is of less than 
full rank, showing the matrix to be singular. 

Example 

A 

U 
2 3 0 

J] 
0 0 6 
0 0 8 
0 0 10 

13 14 15 16 

All [1 2 3J contains 3 columns, but 

All [1 2 3J and A3l = [12 13 l4J 

together only contains 2 rows 
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Therefore 

although of order 5 by 3, is of rank 2 only, and the whole 
matrix is singular. 

Theorem 

Let an m by n matrix A be of less than full rank. 

Let A be partitionable as 

A 

(5.7.2) 

where the top lefthand block All is square of order ml by ml, and 
nono-singular, where ml is less than the rank of the full matrix A, 
and cannot be chosen any bigger. 

Then 
there exists a matrix B, order ml by n-ml' for which the 
following relation holds: 

[A' .' ] [AI.2 ] B (5.7.3) 

A2 ,1 A2 ,2 

Proof 

Consider the equations system 

AI,1 ~l + AI ,2 ~2 0 

A2 ,1 ~l + A2 2 ~2 0 (5.7.4) , 
Because A is not of rull rank, a solution to (5.7.4) with x -I 
must be assumed to exist. 

0 
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From (5.7.4) we obtain 

~l 0) 
) 

0) 
(5.7.5) 

-1 
We must assume [A2 2 - A2 1 Al 1 Al 2J is a zero matrix. , , , , 
The contra-assumption if a non-zero element in this block would 
imply that we could have allocated the corresponding equation 
to the top block row and the corresponding element of ~2 to ~l' 
identifying a further non-zero pivot by which a larger block 
Al,l could be inverted. 

Therefore 

-1 
A2 2 AZ I Al 1 Al 2 , , , , (5.7.6) 

We now readily identify 

B Al,l 
-1 

Al ,2 (5.7.7) 

and verify 

Al I Al,l 
-1 

Al 2 Al,l B Al ,2 ) , , ) 

-1 
) 

A2 1 Al 1 Al 2 A2 1 B A ) , , , , 2,2 ) 

(5.7.8) 

confirming (5.7.3) 

q.e.d. 

The following is simply a different formulation of the same 
theorem: 

If A is not of full rank and contains a block-column which is 
of full rank and also of the same rank as A, all other columns 
of A, not belonging to that block-column, can be expressed as 
linear combinations of the full-rank block-column. (The columns 
of B describe the combinations.) 

Corollary 

All rows of A, not themselves belonging to a largest full-rank 
block-row, can be expressed as combinations of the full-rank 
block-row. 
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Furthermore, if Allis just any square and non-singular block, 
rather than specifically the biggest possible square and non
singular block, we have the following generalization. 

A residual non-inverted block [A2,2 - AZ,l Al,l-l A~,ZJ is 
of rank r-ml where r is the rank of A. Note that thIS 
formulation of the theorem also applies to matrices which 
are of full rank, i.e. if A is of full rank, then 
[A2Z - AZI All-l A12J is also of full rank. 

Theorem 

Let a square and non-singular matrix A be partitioned as 
follows 

A [A1,l Al 2 

A,J 
, 

A2 1 AZ 2 (5.7.9) , , 

A3 ,1 A3 ,Z A3 ,3 

(i.e. A contains at least one zero element which has been put 
in the top righthand corner.) 

Then we may require the partitioning to be such that 

a) Al,l is square and non-singular, 

b) Ei ther 

AZ Z is of order zero by zero, the partitioning being , 
in fact A 

[2tJ 
or 

IS square and [A2 l' AZ 2J is of full rank. , , 
Proof 

The non-singularity of A implies that the top block-row is of 
full rank, hence a). 

Concerning b), we note that b l ) is automatically implied if the 
non-zero part of the top block-row is square. 
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(We may not assume that there are more rows than columns in 
the non-zero part of the top block-row). Otherwise, the 
invertability of A implies the existence of a non-singular 
block-pivot 

The existence of such a block-pivot also implies the 
invertability of 

hence the full rank of [A2 1 A2 2]· , , 
q.e.d. 

Corollary 

If a square matrix A is partitioned as 

A 

[~J 
non~ingularity of A, if present, implies that the rank of A2 1 
is at least equal to the excess of the number of columns of ' 
Al,l over the number of rows of Al,l 

Exercise 5.7a 

For A 

[l~ 
16 

2 
7 

12 
17 

3 
8 

13 
18 

(which is not of full rank). 

* Establish the rank 

4 
9 

14 
19 

l~~ 15 
20 

* Find a block-column of full rank. 
* Express the rest of the matrix by (5.7.3), having first 

calculated B. 
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Exercise 5.7b 

For B 

[~ 
2 3 

~J 6 (which is non-singular) 
8 9 

* Find suitable orderings to present the matrix in block
triangular form (several possible orderings) 

* Check the rank of the off-diagonal blocks against the last 
theorem in this section (for more than one ordering) 

* Calculate IBI, using square diagonal blocks. 

(The re-orderings may, or may not, lead to a change in 
the sign of the determinant.) 

Exercise 5.7c 

Which of the following matrices C is the singular one? 
Calculate the absolute value of the determinant of the non
singular one. (Explain which theorem you used to prove 
singulari ty.) 

C 1 
5 

10 
13 

2 

14 

3 

15 

4 
6 

12 
16 

C 

91 = 101 611. I~ ~I = (SI-01).(0£-BZ) = Z ~ ~ 

4 
6 
8 

01 
Z 

1 2 

9 10 

6 11 B 
1 £ 

L 9 

3 
5 
7 

11 

~ 1] = II::> II 
·OBOI - = IHI a~oJa~aq~ 'mo~~oq aq~ ~g ~o~ 

do~ aq~ ~a2 o~ s~o~ 2u1U10rpg 2U12ugq~~a~u1 sam1~ £ papaau ~I 

OBOI 9£ lC O£ 
£ 
6 

Z 
B 
9 

1 
L 
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5.8 The adjoint and its relation to the all-integer 
elimination method 

Let a square matrix be partitioned, as follows 

A 

r'" :'." J a' -n,l n,n 

We assume I All I '" 0, I AI 

'" 
0. 
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(5.8.1) 

The partial inversion of A was already performed in the previous 
section fol' the general case of 2 square diagonal blocks. 

The application of the result from section 5.7 for Az2 of order 
1, gives us a formula for the nth pivot 

-1 
Pn an,n - ~n,l All ~l,n (5.8.2) 

Again assuming IAlll '" ° and IAI '" 0, we readily develop a 
formula for the bottom righthand element of an inverse. If the 
inverse is indicated by the letter B, this formula is: 

b n,n (a 
n,n (5.8.3) 

(The element of the inverse is the reciprocal of the last 
pivot). 

Comparison of (5.7.1) and(5.8.3) allows us to express the 
element of the inverse in IAI and IAlll 

IAI 11 , 
b n,n (5.8.4) 

Provided IAI '" ° is true, formula (5.8.4) is in fact valid for 
IAlll = ° as well as may be shown by finding a solution to the 
following system: 

Al,l ~l + ~l,n x ~l [OJ ) n 
) 

a' ~l + a x b 1 ) (5.8.5) -n,l n,n n n 

For IAI '" 0, I AlII = 0, we must assume ~l ,n 

'" 
0, as 

otherwise the top block row of A would not be of full rank. 
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However, if A1 ,1 1S singular, we may require 

A1 1 ~1 = A1 1 ~1 A = 0, ~1 '" 0, A '" 0, ~1 '" ° (5.8.6) , , 
Furthermore a' 1 u ---n, -1 

° would imp 1y 

, showing the singularity of A. 

We may therefore assume a' u '" 0. - n, 1 -1 

We now assign the value ° to x , and obtain a consistent 
solution for A from the last e~uation in (5.8.5) 

~'n, 1 ~1 A = 1 

is resolved as 

A l/(~'n 1 , . 

We find that 

x [~ll A 

~1) (5.8.7) 

(5.8.8) 

is the solution vector corresponding to (5.8.5). However, 
this is the last column of the inverse, showing that 

° implies b 
n,n 

0. 

Hence (5.8.4) although initially developed on the assumption 
that A1 ,1 1S invertab1e, is generally valid. 

Note that in (5.8.4) IA1 11 is the determinant of [All]' a 
top left-hand block. It {s also the minor associated ~ith a 
While we developed (5.8.4) by reference to block inversion n,n 
as practiced in the previous section, it is now more practical 
to revert back to the notation which was used for minors in the 
rest of this chapter i.e. 

IAn nl , 
TAl 

b n,n (5.8.9) 

In fact, (5.8.9) is valid for all the diagonal elements of the 
inverse: Interchanging the nth~ast) element of x with the 
kth (any) element of x while performinz the same operation on 
the columns of A is compensated by a similar reordering of the 
rows of A, thereby bringing the kth element of both A and the 
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inverse back on the diagonal, now is the n,n cell. This 
operation does not affect the signs of either IAI or 
IA I· n,n 

For off-diagonal elements, we have the usual complication of 
the sign, and the generalization of (5.8.9) is 

b .. 
1,] 

(-1) i+j (5.8.10) 

Note also that the interchanging of the indices i and j in 
(5.8.10) implies transposition. This is because the function of 
rows and columns in terms of tableau-interpretation interchange 
as a result of the inversion operation. In the structural 
system Ax = y, the rows are associated with the elements of 
y (the equations), the columns with the elements of x. In the 
inverse form y = A-I x this is the other way round. 

Example 

A [l~ 
-5 

5 
-7 

3 
(from section 3.9) 
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We wish (for example) to obtain the b2 1 element of the inverse. 
To be able to apply (5.8.4) directly r~ther than (5.8.10), we 
put the second variable at the end and similarly the first 
equation. 

Initial System: 
2xl + 5x2 + x3 Yl 

llxl + -7x 2 + 8x3 Y2 

-5xl + +3x2 + x3 Y3 

The element of the inverse is 
systems, but we can now apply 

A [
11 
-5 

2 

8 
1 
1 

-i] 

Transformed System: 
11xl + 8x3 -7x 

2 Y2 

-5xl + x3 +3x2 Y3 

2x l + x3 +5x2 Yl 

obviously the same for both 
(5.8.4) to 
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Le. 

III 15 ~I 51 
b 2 1 1" 

8 -i I 0.160 , -5 1 319 
2 1 

11 8 
In the above expression the numerator is the same 

-5 1 
as the corresponding minor from the original matrix A: the 
v~ctors to be reordered are not included in the minor. 

The denominator, however, has changed sign because the inter
changing of columns 2 and 3 causes the sign to change once, and 
the reordering of the rows requires two single permutations. 
We could have left the second equation in place, and the sign 
of IAI would then remain the same. If that device were adopted, 
the numerator would change sign, the minor now becoming 

The result of this section as developed so far may now be 
summarized in one sentence: 

The inverse is the transpose of the matrix of co-factors, 
divided by the determinant 

The transposed matrix of co-factors is (i.e. the inverse 
multiplied by the determinant), is known as the adjoint. 

We are now in a position to explain some of the finer points 
behind the all-integer method of calculating the inverse of an 
all-integer matrix, which was discussed in section 3.9. 
Basically, this algorithm revolves around the calculation of 
the adjoint of a block-pivot. If we assume inversion along the 
main diagonal, the typical calculation tableau of this algorithm 
is as follows 

xl x2 = X-l X-2 

15 k I 15k 
-1 

All A12 15 k 
-1 

All 

15 k [A22 - A2l All 
-1 

Al2] -15k A2l AU 
-1 

15 k I 
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where ok is the determinant of the block-pivot All. At the 
beginning of each kth step, the non-pivotal rows are multiplied 
by IAk,kl. From the second step onwards, the ratio of the 
entries in the non-pivotal rows, to the entries in the 
corresponding fractional tableau, immediately after elimination, 
is IAk-l k-ll . IAk kl. Hence the subsequent division by the 
previous'multiplier: (N.B.: Here IAkkl is the determinant of a 
block-pivot of order k, not a minor.) 

Exercise 
-1 

For A 
-5 

which is a non-singular matrix), perform the following 
calculations 

1) 

2) 

3) 

Calculate all the co-factors 
section 5.1) 

Write the adjoint of All D 
Calculate the determinant and the 

(-1) i+j, 

=lJ ' and of A 

inverse, using 

see 

itself 

(5.8.10). 

4) Invert the matrix using the all-integer elimination method. 
Check the correctness of the inversion by verifying the 
unit-matrix product properly. 

5.9 Commented text of the adjoint all-integer elimination 
procedure 

The prosrammed procedure offered in this section is an adaption 
of the procedure INVD from section 5.6. The differences between 
the procedure IADJ and INVD may be summarised as follows 

a) The calculation tableau is specified as an integer array. 
(INVD expects a real array) 

b) The end result is the determinant, and either the adjoint 
(for N=O) or the righthand side pre-multiplied by the 
adjoint. These results are integer and to obtain the inverse 
or the reduced form, a division by the determinant is 
requi red. 

c) No search for the absolute largeslpivot in any column is 
performed, only for a non-zero entry. Calculations with 
integer numbers are exact and no problem of containing 
rounding errors arise. 
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On most machines this procedure would, compared to an inversion 
procedure in real numbers, save a factor two in storage space, 
and be somewhat quicker. And it is exact. Against these 
comparative advantages stands one obvious drawback: 

Integer numbers are in practice limited to a fixed number of 
digits, and overflow may arise, if the matrix is large. 

The text of the procedure is now listed, as follows: 

, FRO C EDVR E' I A lAJ ( A, M, N, l:') ; 
'VALVE' -N; 'INTEGER' 'ARHAY' A; 'INTEGER' M,N,D; 
'BEGIN' 'INTEGEH' I,J,E,K,NVM,CVERSC; 

'COMMENT' 
INVERSION BY ELEMEtlTARY Pol,;-OFERATIONS, 
101 TH CALCULATION Of THE CETEP.MINJI.NT AS BY-FPoDVCT. 
VSING THE ALL-INTEGER METHOD. 
N.B. THE END RESULT NEECS SCALING BY THE DETEFMINANT, AS 
IN FACT THE ADJOINT HATHEP. THAN THE INVEP.SE IS CALCVLP.TED.; 

'IF' 11=0 'THEN' 'BEGIN' 
• COMMENT' 
fOR N EQVAL ZERO THE INVEP.SE I S ASKED. 
THEP.EfoRE "E EOCATE !II TO M AND THE RI GHTHANDSI DE MATRIX 
TO THE UNIT MATRIX; 
N: =M; 
'FOE' 1:=1 'STEF' 1 'l'NTIL' M 'DO' 'BEGIN' 

'FOP' J:=I 'STEP' 1 'VNTIL' M 'CO' ACI,M+JJ:=O; 
ACI.M+I]:=I; 'ENC'; 'END'; 

INITIATE OVERSCALE AND D: 
OVEF.SC := D := I; 

'fOP' P:=I 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 
'COMMENT' fIRST fIND A NoN-ZEP.O PIVOT; 
, FO P , I: = R 'S T EF ' 1 'l'N TIL' M 'DO' 'I f' A C I , P. J I 0 
'THEN' 'BEGIrl' K:=Il 'GOTo' END Of PIVOTSEAP.CH; 'ENC'; 

'EEGIN' 
'COMMENT' If THI S LoOF I S GONE THFOVGH THE MATRIX 
HAS BEEN fO"VNl:' SINGl'LAR; 
'GOTo' END Of lAC';; 'END'; 

UJD Of PIVOTSEARCH: 
, IF' R I K ' TH EN' , B EG ~ N ' 

'COMMENT' 
I F THE FI VOT .. AS fOurlD BEL01rl RATHEP. THAN ON THE MAIN 
DIAGONAL INTEP.CHANGE Rol.'S AND CHANGE SI GN OF DETERMINANT; 
DI=-D; 
PEP.MVTE: 
'fOP.' J:=R 'STEP' 1 'UNTIL' M+N 'CO' 'BEGIN' 

NUM:=ACP',JJl ACP..JJ:=ACK.JJl ACK.JJ:"NUM; 'END'; 'END'; 
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t:'PDATE: 
'FOP' J:=P+I 'STEP' 't.'NTIL.' M+N 'DO' 
'FOP' 1:=1 'STEP' I 'UNTIL.' R-I.R+I 'STEP' 
ACI.JJ := ACI.JJ*ACR.RJ; 

'FOR' 11=1 'STEP' 't:'NTIL.' R-I.R+I 'STEP' 
'IF' ACI.RJIO 'THEN' 
'FOR' JI=P+I 'STEP' I 'l'NTIL.' M+N 'DO' 
ACI.JJ:=ACI.JJ - ACR.JJ*ACI.R]; 

'FOR' 1:=1 'STEP' 'l'NTIL.' P-I.R+I 'STEP' 
'FOP' J:=R+I 'STEP' I 'UNTIL.' M+N 'DO' 
ArI.JJ := ArI.JJ/OVERSe; 
OVERse := ACR.RJ; 

'END'; 

'l'NTIL.' M+N 'DO' 

, LIN TIL.' M 'DO' 

'UNTIL.' M 'DO' 

'UNTI L.' M 'DO' 

, 1 F' D < 0 'TH EN ' 
'FOR' J:=M+I 'STEP' 
'FOP' 1:=1 'STEP' I 't.'NTIL.' M 'DO' ACI.JJ := -ArI.JH 

END OF IAN: 'END'; 
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5.10 The determinant of the product of two square matrices 

Theorem 

If A and B are square matrices, of equal order, JABJ may be 
evaluated as 

JABJ 

Proof 

We first consider some special cases 

Case la 

JAJ = 0; therefore r'A = 0, for some r # ° 
r'AB = 0, proves JABJ = 0, q.e.d. for--case la 

Case lb 

JBJ 0; therefore Bk = 0, for some k # ° 
ABk ° proves JABJ ~ 0, q.e.d. for case lb 

Case 2a 

A is partitionable as 

A 

[+.] 

(5.10.1) 

In that case A is an operator serving to add the combination 
~i2B2 of the rows of B2, the block-row of B consisting of the 
non-leading rows of B, to the leading row, therefore we find 
(see section 5.3) 

1, JABJ JBJ, q.e.d. for case 2a. 

Case 2b 

B is partitionable as 

B 

.[~] 
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Now B is an operator, serving to add a combination of the non
leading columns of A to the leading column of A. The proof 
follows ana10geous to case 2a. q.e.d. for case 2b. 

Case 3a 

A is partitionab1e as 

A 

[~ 
In that case, A is an operator, serving to add multiples of the 
leading row of B, to the other rows 

~ ~bll E.21 

~;1 
B22 

IBI 
q.e.d. for case 3a. 

Case 3b 

B is partitionab1e 

B 

[~J 
will now be obvious. 

We now consider the non-trivial case that A and B are both non
singular and have no special structure. 

In that case we may, if necessary after re-ordering the rows 
of A (and C correspondingly) and/or the columns of B (and C 
correspondingly), assume without loss of generality that the 
leading elements of both A and B are non-zero. 

(If A had a zero column, or B a zero row no further proof was 
required). 
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[a~j [bll 1 ~i2] 
~2' I A22 !>21-1 B2~_ 

is then evaluated as IABI 

where 

and 

CHAPTER V 

AhB~2 

(5.10.2) 

(5.10.3) 

(5.10.4) 

In (5.10.2), the first second and third members are equal to 
each other (=IABI) on account of the application of special 
cases 3a and 3b to the second member. 

For IA~21 = 0, we find IAI 0, (see section 5.7) and special 
case la is applicable, therefore no further proof is required 
for IA~21 = 0. 

For IA~21 f 0, the fourth member of (5.10.2) is now evaluated 
(using special case 2a), as 

IABI r' - ;;i2At~'] [all bll + ..<::i2~2l -"i2B~21 
I Ah~2 AhB~2 A~2B~2 

tall bll 
AhBh] 

(5.10.5) 

Ah~2 
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The most righthand member of (5.10.5) 1S now evaluated by 
development by the top row as 

(5.10.6) 

Now assume that if A and B are of order n, the theorem is 
valid for matrices of orders up to n-l, (i.e. of orders 
1,2, ... n). 

If so, IA BI may be evaulated by the righthand-side of 
(5.10.6) as 

IAI· IBI (5.10.7) 

Since for square matrices of order 1, the theorem merely 
states the identity ab = a.b, its general proof now follows 
by recursive induction. 
q.e.d. 

Example 

A [~ zJ ' B [~ -z] 
IAI 4 - 6 = -2 IBI 4 + 6 = 10, IAI·IBI -20 
IABI I [1 ~ l~] I ' = 70 - 90 = -20. 

Exercise 

Verify that IA B cl IAI IBI Icl 
-363 

by two separate calculations, i.e. by evaluating IAI, IBI, 
and Icl, and by calculating ABC and extracting its 
determinant. IABCI 
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VECTORS AND COORDINATE-SPACES 

6.1 The coordinate-plane 

The coordinate-plane is a useful visual aid when for one 
reason or another, numbers are ordered in pairs, i.e. for every 
number x, there is a corresponding number y. Many properties of 
two-dimensional coordinate-mappings (two-dimensional vectors), 
can be generalized to vectors of any order. Pairs of numbers 
are represented as points in the coordinate plane. It is 
convention to indicate one variable by the "right" direction 
and one variable by the "upward" direction. Thus x=2, y=3 is 
presented as a point which is 2 units of distance to the right 
and 3 units upwards from the origin. 

1.0 Ty 
graph 6 I b 

0.5 

y 
graph 6.1 a 

3.0 •••••••••••••••••• 0 ;~~ 

3.5 

X 

-'- -L 2.5 

~I.C; I 0 -0 < °10 
2.0 .,,""""""" """"""""" 

-0. '5 

1.5 

••••••• -I. 0 

1.0 """"""""" """"""""" 

-I.S 

00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
X=-IO •..•• . -2.0 
Y = - 2 

In the above graphical mapping of x=2, y=3 the horizontal line 
is the x-axis, the vertical line is the y-axis as indicated 
by the arrows. All points on the x-axis have y=O in common, 
and all points on the y-axis have x=o in common. The point 
(0,0) (the intersection of the two axes) is called the origin. 
Since x is indicated by the right-hand direction, all points to 
the left of the y-axis have negative x-coordinates. Similarly, 
all points below the x-axis have negative y-coordinates, because 
y is indicated by the upward direction. Hence x=-l, y=-2 
is in the bottom left-hand part of the coordinate plane. A 
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common notation for a two-dimensional vector is to use brackets, 
e.g. (2,3) means x=2, y=2 and (-1,-2) means x=-l, y=-2. 

Exercise 
(and preparation for later sections) 

Make two series of mappings of pairs of points (x,y) in the x,y 
coordinate plane (best use proper graph paper). 

Series 1: 
(-3,6), (0,4), (3,2), (6,0). 

Series 2: 
(-6,14), (-5,7), (-4,2), (-3.42,0), (-3,-1), (-2,-2), (-1,-1), 
(-0.58,0), (0,2), (1,7), (2,14). 

6.2 Functions and relations 

A function is a relation, a "law" which tells us the value of 
one variable if we know the value of some other variable or 
variables. We would normally think in terms of an algebraically 
describable function e.g. y = 7x2 + 5, z = 2pq + 4 etc. This 
is not strictly implied by the definition: "the temperature in 
Trafalgar Square" is a proper function of time. If we know 
the time we can establish the temperature in Trafalgar Square, 
provided someone takes the trouble of looking at a thermometer. 

The one variable is the dependent variable or function value, 
the other variable(s) are the arguments of the function. Two 
or more variables may also be linked by a relation. A relation is 
a condition imposed on the values of two or more variables e.g. 
x + y + z = 20. 

It is often, but not always, possible to formulate a relation
ship between some variables as one variable being a function 
of the others, (also referred to as explanatory variables). 

x + y + z = 20 can be written as x 20 - Y - z, but x2 + y2 4 
yields 2 values for x if we know the value of y. 
x=±/4-y2 is not a proper function. 

We therefore say that x + y + z = 20 can be written as x being 
an explicit function of y and z. For x2 + y2 = 4 it is not 
possible to write x as an explicit function of y. 

Relationships between only two variables can be mapped in the 
two-dimensional coordinate plane. This is so, irrespective of 
whether or not they can be written explicitly. The combination 
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of the points which satisfy the relation will normally 
constitute a line, and the shape of that line is characteristic 
for the relation. 

6.3 How to draw the graph of a linear relation 

The relat ion 

a.x + b.y c 
(a;&O, b;&o) 

can be written explicitly, either as x being a function of y, 
or as y being function of x. 

The two explicit functions are: 

x = cia - b/a y (6.3.2) 
and 

y c/b - alb x (6.3.3) 

This establishes 2 points of the graph without further 
calculation. For x=O (6.3.3) gives y=c/b, and for y=O (6.3.2) 
gives x=c/a. 

Example 

2x + 3y = 12 
This can be written explicitly as follows: 

x = 6 - 1 h; y=O -+ x=6 
y 4 - 2/3x; x=O -+y=4 

:~ 
I 

9 rap h 6. 3 a 
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The graph makes use of the fact that (as the name suggests) a 
linear relationship is represented in the coordinate plane by 
a straight line. This point will be discussed in more detail 
~n the next section. 

If a relation is already given ~n the explicit form, i.e. 

y = a.x + b (6.3.4) 

the graphical mapping ~s even simpler. The point x=o with y=b 
is immediately obvious. The second point can be obtained by 
writing the relation in the form of x being a function of y, 
i. e. 

x = l/a y - b/a (6.3.5) 

But even simpler is the point x=l with y=a+b, or, if a small 
scale is used, (for example) 

x 2 with y 

Example 

y = 2x + 5 

2a +b 

y = 5 

x = 2 

Y = 9 

graph 6.3 b 

If a function is presented in the explicit form with the 
function-value on the vertical axis, the slope of the line is 
related to the coefficient for the explanatory variable. This 
coefficient is the tangent of the angle between the line and a 
horizontal line, e.g. the x-axis. Hence in the example, this 
angle is 600 , since tan 600 =2. 

6.4 Vectors, points and linear subspaces 

Those who are willing to take the equivalence between two
dimensional graphical illustration, - which will be frequently 
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used in the rest of this book, and the general n-dim~nRi0na] 
generalization of the illustrated propert1es for granted, may 
wish to skip the formal proofs in this section. 

In the previous section we made use of the fact that if two 
points on a straight line satisfy the same linear relation, 
then all the points on the line satisfy that same relation. 
The algebraic equivalent of this property is the following: 

Theorem 

Let two vectors of order n, 

* ** x = x and x x 

both satisfy the linear relation 

a'x = b (6.4.1) 
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where a' is a vector of known coefficients and b is a constant. 

Then, any combination of these two vectors, 

*** * ** x p ~ + (l-p)~ 

(p any real scalar) 

will also satisfy (6.4.1). 

Proof 

By assumption, (6.4.1) may be written for 

* x = x as 

(6.4.2) 

* a' x b (6.4.3) 

** and for x x as 

** a' x = b (6.4.4) 

From (6.4.3), we obtain 

* p~' ~ p b 

and from (6.4.4) 

(l-p) ** a' x (l-p)b 

(6.4.5) 

(6.4.6) 
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Together (6.4.5) and (6.4.6) yield, considering (6.4.2), 

*** * ** a' x = p a' x + (l-p) a' x = p.b. + (l-p).b = b 
(6.4.7) 

q.e.d. 

The main reason why the above proof (which is hardly more than 
a re-statement of the definition of a combination) cannot 
simply be applied to the line is that we do not normally define 
a line as the combination of points satisfying (6.4.1). Indeed, 
when applying geometry we rarely refer to any definition of a 
straight line. By Euclid's postulate, the shortest route between 
two points is the straight line. This defines a straight 
connecting line between two points. 

The concept of distance can be defined algebraically and 
measured geometrically. The distance between two vectors is the 
square root of the sum of the squares of the differences between 
their corresponding elements. 

* Hence we can write the distance between two vectors x ** and x 
as 

bt - ./1 

Example 

The distance between 
x=l, y=2, and 
x=2, y=4 

n 
* L (x. -

j=l J 
** 2 x. ) (6.4.8) 
J 

... 
'.1 

... 
1.1 

, .. 
'.1 

... 
'.1 

I.' 

. , 

Y 

graph 6.4 a 

illuacration of the 
distance between 
two points 

x .. I' 

The rectangular sides of the marked triangle are the differences 
between the coordinates of the two points, i.e. 2-1=1 in the 
horizontal x-coordinate direction and 4-2=2 in the vertical 
y-coordinate direction. Therefore, by Pythagoras' Theorem, the 
distance between the two points is 

'122 + 12 IS 
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Theorem 

* * ** ** *** *** Let (x , y ); (x ,y ) and (x ,y ) be three points in 
the two-dimensional x,y coordinate plane. And let (x***, y***) 
be related to the other two points: 

*** * ** x p x + (l-p) x ) 

*** * ** 
) (6.4.9) 

y p y + (l-p) y ) 

(0 < p < 1) 

Then 

I *** *** * * I I *** *** ** ** I (x ,y ) - (x , y) + (x ,y ) - (x y) = 

* * ** ** 
I(x, y) - (x ,y )1 (6.4.10) 

* * ** ** i.e. the shortest route from x ,y to x • y as indicated 
by the righthand side of (6.4.10) is via x***, y*** and one 
obtains the total distance by addition of the two separate 
distances. 

Proof 

Evaluate the first term in the left-hand side expression of 
(6.4.10) by the definition of a distance (6.4.8) 

I *** *** * * I / *** * 2 *** * 2 (x ,y )-(x ,y) = Vex -x) + (y -y) (6.4.11) 

*** Substitution of the right-hand sides of (6.4.9) for x and 
y*** into (6.4.11) gives us 

*** *** * * I (x ,y ) - (x ,y ) I = 

. / * ** 2 * ** * 2 
V(p,x + (l-p)x ) + (p.y + (l-p)y - y ) 

.J * ** 2 * ** 2 
±(l-p)V(x -x ) + (y -y ) 

* * ** ** 
(l-p) I (x ,y ) - (x ,y ) I (6.4.12) 

For (0 < p < 1), the positive sign is applicable, otherwise the 
distance wo~ld become negative. The same method of evaluation, 
applied to the distance between (x***, y***) yields 

*** *** ** ** * * ** ** I I (x ,y ) - (x ,y ) = p I (x , y ) - (x ,y ) 
(6.4.13) 
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Together (6.4.12) and (6.4.13) give the desired result, i.e. 

*** *** * * *** *** ** ** I(x ,y )-(x,y)I+I(x ,y )-(x ,y )1= 
* * ** ** * * ** ** (l-p) I(x , y)-(x ,y )I+pl (x , y)-(x ,y )1= 

* * . ** ** 
I(x,y)-(x ,y )1 (6.4.14) 

which is equivalent to (6.4.10.) 
q.e.d. 

This proof cannot be generalized directly to an n-dimensional 
coordinate space. This is because we took our definition of a 
straight line from Euclid's postulate. 

The algebraic equivalent of a linear relation in 3-dimensional 
space is a flat plane, Euclid's postulate is applicable to a 
line. It is more practical to turn the proposition round. 

In the n-dimensional x coordinate-space, the set of point
vectors x (of order nY, which satisfy 

a' x b (6.4.1) 

constitutes a Euclidean (or linear) subspace, of order n-l. 

The elements of the n-dimensional row-vector a' and the 
constant b determine the position of the subspace within the 
whole of the n-dimensional space. 

In the three-dimensional coordinate-space, a 2-dimensional 
linear subspace is more commonly referred to by its geometrical 
name: a flat plane. Similarly, in the two-dimensional coordinate 
space, a one-dimensional linear subspace is usually referred to 
by its geometrical name: a straight line. 

With these definitions, we don't any more need to prove that 
3 points in the two-dimensional coordinate plane, which satisfy 
a common linear relation are on a straight line. That's how 
we defined the straight line in the first place. Similarly, any 
set of three-dimensional vector-points satisfying the same 
linear equation, fit in the same flat plane. 

The following result although slightly less intuitively obvious, 
can now be picked up as well: 

All points which satisfy two independent equations in 3-
dimensional space, are on the same straight line. 
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That line is the intersection between the planes associated 
with the two equations. The line is a one-dimensional subspace 
in both of the two-dimensional subspaces defined by the two 
equations. 

Similarly, the solution of a system of 2 equations and 2 
unknowns, is the point of intersection of the two corresponding 
lines. 

Example 

x + 2y 5 
2x + y 4 

5.0 

'.5 Ty 
'.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1 0 

0.5 

graph 6.4 b 

graphical solution 
of two equations 

\\ 

_o.S 00 0.5 1.0 loS 2.0 2.5 3.0 3.5 10.0 10.15 S.O 5.S 

_0. s 

We find the intersection of the two lines at the point x 1, 
y = 2. This is the solution of the system. 

In 3-dimensional space, the solution of a system of 3 equations 
is found as the cornerpoint where the 3 planes intersect. If 
the system is singular, no unique intersection will exist. In 
the two-dimensional case, contradictory equations correspond to 
parallel lines, dependent equations to overlapping lines. By 
analogy to the linear subspace of order n-l, we may ~all the 
set of n-dimensional vectors, which satisfy k independent 
equations, an n-k dimensional Euclidean subspace. 'Clearly an 
n-dimensional vector which belongs to an n-k dimensional 
subspace i.e. is required to satisfy k independent linear 
equations, is fully determined, once we enumerate n-k elements 
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The remaining k elements may then be found by back-substitution. 

6.5 Restrictionsand convex sets 

A restriction is a statement or property concerning vectors, 
which is defined in some coordinate-space. We would normally 
assume a restriction to be stated in the form of some function 
of the vectors in that coordinate-space to attain certain 
prescribed values. 

Restrictions can be in the form of equations i.e. some function 
to attain a certain value and no other, or they can be in the 
form of inequalities, ~.e. some function to be for example, 
greater than or equal to a certain number. 

2 
Thus x + 2y + Z = 20 ~s a restriction of equation-type and 
x 2 + 2y + z ~ 20 is a restriction of inequality-type in the 
x,y,z coordinate space. 

We will normally assume a restriction to be non-trivial, that 
is, to define a characteristic of the vector not satisfied by 
all vectors in the relevant coordinate-space. 

2 
An example of a trivial restriction would be (x - y) ~ O. 
There are no pairs of numbers x and y, which don't satisfy this 
restriction. 

Triviality may also ar~se relative to some other restrictions, 
~.e. 

x . y > 0 

is not by itself trivial, but it is a trivial restriction if 
the restrictions x > 0, y > 0 are-already present when 
x . y > 0 is added to the list of restrictions. 

A set of vectors is the collection of the vectors which satisfy 
some particular characteristic or characteristics. Normally 
those characteristics will be stated restrictions, equations 
and/or inequalities. A vector may be a (non-negative) 
combination of two or more other vectors. 

if 
x is a non-negative combination of ~l' ~2 ... 

(6.5.1) 

~s true for some set of non-negative numbers 
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PI' Pz ... Pk ' satisfying 

PI + Pz + ...•. Pk = 1 (6.5.Z) 

We made use of the concept of a combination in the previous 
section, for the special case of a two-dimensional vector. 
If for some set of vectors it is true that every non-negative 
combination of some vectors in the set is also part of the 
set, then such a set of vectors is named a convex set. (For 
this reason non-negative combinations are sometimes also 
indicated as convex combinations.) 

An example of a non-convex set of vectors is the set of vectors 
whose elements are integer numbers. 

This is shown by finding 

x 

DJ 
as well as 

to belong to the set, 

but then combination x 1 
Z 

x 

[lJ + 1. [ZJ = [HJ Z Z 1 I! 

does not belong to the set of vectors with integer elements 

Theorem 

The set of vectors satisfying 

at x .s;.. b 

is a convex set 

Proof 

Take some set of k vectors satisfying (6.5.3) 1.e. 

at x < b 
-q 

for q = 1, Z .... k 

(6.5.3) 

(6.5.4) 

A non-negative combination of the ~q is defined by stating the 
values of the proportions of the combination to be derived from 
any ~q, i.e. PI, PZ ... Pk 
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From (6.5.4) we derive 

(6.5.5) 
which proves that the combination (the left-hand side of 
(6.5.5» satisfies (6.5.3) 
q.e.d. 

Theorem 

If x satisfies 

a'x < b (6.5.3) 

and for some other vector ~ the alternative relation 

~' ~ ~ b (6.5.6) 

is true, 
then, for some non-negative combination of x and ~, to be 
indicated as z 

a' z = b (6.5.7) 

is true. 

Proof 

State the actual values of 

a' x = 'Il (6.5.8) 

and 

(6.5.9) 

By assumption 'Il - b is a non-positive scalar, $ - b is a non
negative. Therefore a non-negative combination of them, a 
number in the interval 'Il-b,$-b, is zero 

o (6.5.10) 

or equivalently 

(6.5.11) 
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From (6.5.8) (6.5.9) and (6.5.11) we derive 

PI ~' ~ + P2 ~' X. a' (PI ~ + P2 x.) = b (6.5.12) 

Which identifies ~ as 

(6.5.13) 

showing the existence of such a vector q.e.d. 

Obviously, if the supposed relationships (6.5.3) and (6.5.6) are 
put in the stronger < and > form, and th'e word "non-negative" 
is replaced by "positive non-zero" throughout the corresponding 
stronger theorem is also true. 

The above theorems appear somewhat trivial, but they provide a 
strict proof for what is more or less intuitively obvious. 

If we draw a line representing an equation, then this line will 
separate the coordinate space in two parts. On the one side of 
the equation the inequality of the 2 type is satisfied, on the 
other the inequality of the < type is 

Example 

x + 2y > 

5.S 

5.0 ty 

4.5 

4.0 

3. S 

6 

graph 6.5 a 

ILLustratIon of 
an mequaLlty 
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We first draw the graph of x + 2y = 6 (see section 6.3), and 
we then have to indicate at which side of the equation 
x + 2y > 6 is true, and at which side x + 2y < 6 is true. 
For x =-0, y = 0, the origin we find ° + ° > 6 untrue. 

Therefore the admissable side is the top right-hand side. 
We will indicate the non-admissable side by shading the line 
as a "wall" which inhibits access from the admissable to the 
inadmissable side. 

Since there always is an "equal to" point between two points 
where the opposite signs i.e. > and < are true the relation 
x + 2y > 6 is untrue for all points below and to the left of 
the line. And, at least as important, we can generalise this 
property to the n-dimensional case. 

We will therefore call the set of n-dimensional vectors 
satisfying a particular linear inequality e.g. (6.5.3) a 
half-space. 

Any linear subspace of order n-l splits the n-dimensional 
coordinate space, in which it is defined, in two half-spaces. 

The set of vectors which satisfies a set of restrictions, either 
equations of inequalities, consist solely of vectors which 
satisfy each of them. Therefore any combination also satisfies 
each of them. This gives rise to the following 

Corollary 

The set of vectors which satisfy a particular combination of 
linear restrictions (equations and/or inequalities), is a 
convex set. 

If we combine "convex" and "non-convex" restrictions we cannot, 
in strict logic say very much about the convexity or the non
convexity of the set of vectorpoints which satisfies them all. 

Cherefore, it appears prudent to assume that a set of vectors 
which is defined by a requirement that a number of restrictions 
are to be satisfied, is a convex set, only if each separate 
restriction also defines a convex set. 

6.6 Graphical mapping of some non-linear functions and 
restrictions in two-dimensional space 

Firstly, we consider the polynomial function 

(6.6.1) 
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There will be intersections with the horizontal x-coordinate 
axis at up to p points, these points being the real roots of 
the polynomial equation: 

y = a + a 
o 1 

x + 
2 

x + .•. a 
p 

(6.6.2) 

If the equation has no real roots, the graph will not meet the 
horizontal axis. 

There will be up to p-l points where the graph is horizontal. 
These points of horizontal slope are the real roots of the 
polynomial equation: 

p-l 
dy = a l + 2a2 x + ... + pa x 
dx p 

o (6.6.3) 

Similarly, there will be up to p-2 points where the curvature 
of the graph changes direction. 

For a polynomial of second order the graph is a parabola, and 
the mapping is made somewhat easier by its symmetry property. 

The quadratic function is 

(6.6.4) 

First we note that for p=2 (6.6.3) gives us a linear equation 

dy 

dx 

i.e. for a 2 # 0 we find a horizontal point at 

- I / x - - '2 a l a 2 

(6.6.5) 

(6.6.6) 

The qualification "for a 2 # 0" is trivial, Since a 2 = 0 
implies a linear function. 

The corresponding value for y is found by evaluating (6.6.4) 
for x ~ al/a2 

y I 2/ I 2/ I 2/ a o - '2 a l a 2 + 4al a 2 = a o - 4al a 2 (6.6.7) 

The graph is symmetrical to a vertical axis going through the 
point of horizontal slope. This is shown by rewriting the. 
function. From (6.6.4) we may obtain 

y = a 2 (x + ~al/a2)2 + a o - !a~/a2 (6.6.8) 
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Example 

2 
y = 2 + 4x + x 

We find the point at which the graph is horizontal, by 
requiring, according to (6.6.3) and (6.6.5), 

dy 4 + 2x = 0 
dx 

i.e. x = -2 

For this va lue of x, we evaluate y as 

y = 2 - 4 x 2 + 4 -2 

CHAPTER VI 

We now have found the horizontal point x = -2, y = -2. The 
graph will then be symmetric relative to the vertical line 
x = -2. For x = 0, we find y = 2. The symmetry property around 
the vertical line x = -2 then tells us that x = -4, y = 2 
is also a point of the graph. 

We find two more points by assigning a predetermined value to 
y. In this case y 0 gives rise to real roots i.e. 

2 x + 4x + 2 0 

has the roots 

x = -2 ± ! 116-8 -2 ± 12 

should the zero value for y not supply real roots, a different 
pre-assigned value of y should be taken. 

It is in any case desirable to establish a third pair of 
points on the graph. For y = 14 we find 

14 2 x + 4x + 2 

16 x 2 + 4x + 4 = (x+2)2 

x + 2 ± 4 -+ x .. -2 ± 4 

It is now possible to draw the graph with reasonable accuracy 
and smoothness through these points. 
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- 6 

I " 

x = -
Y = 2 

-6 

horizonta 
x - 2 , y 

16 

Q) 

X 14 

(J) 

0 
12 

-n 

(J) 10 

I~ 
I~ B 

rt 

"} 

1'< 6 

1 4 

1 
X 

II 

poi n t 

= - 2 
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y 
)( I: 2 
Y I: I If 

graph 6 • 6 a 
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o f 

y = 2 + " x + X 2 
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2 4 6 



132 CHAPTER VI 

An immediate generalization of the quadratic function is the 
square root function. 

y = a + i"X"=l) (6.6.9) 

(x > b) 

The graph of this function is (the upper half of) a parabola 
with a horizontal axis of symmetry, y = a, and a vertical 
point at x = a, x = b. For a < 0, b > 0, this relationship is 
often useful to represent mildly curvelinear relations, which 
become flatter for higher values of the function-argument. 

The funct ion y = - ~ + ~ is mapped in graph 6. 6b 

2.5 ~Y 
2.0 

loS 

1.0 

0.'0 
". 

-1.~.1 -0.'0 00 

I 

graph 6.6 b 

Illustration 
y = - 0 • 5 + 

0.5 1.0 1.'0 2.0 

o f 
s q r t 

2.5 

y = 0.5 

1 + )( ) 

3.0 3.5 

~ - - -~.~ -----------------------

The "normal" presentation of the quadratic function may be 
obtained from (6.6.9) by bringing the constant term a over to 
the left-hand side, taking the square of both sides, and 
reordering thereafter 

222 
(y-a) = y - 2ay + a 

or equivalently, 

2 2 
x = Y - 2ay + a + b 

x-b, 

(6.6.10) 
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The one essential difference between (6.6.4) and (6.6.9) is 
that x, instead of y has become the variable which is a unique 
function of the other variable. 

A polynomial function of the third degree is something like 
S-shaped, except that, if the function-value is indicated by 
the vertical direction, the S is turned on its side. The graph 
below gives a mapping of y = 1/3x3 - x2 - 2x + 2. 

graph 6.6 c 

ILLustration of the 
cubic function 
y = 1/3 x 3 - x 2 - 2x + 2 

X 
I + sqrt (3) :---1 

--"+-+---'--2 --9---~ ~--~-~-.--

-I 

-2 

-3 

For sufficiently large values of x (large positive or very 
negative figures, the direction of the slope of the line is 
dominated by the term ~n x 3 . 

Thus, if the coefficient of x 3 is pos~t~ve, the graph goes from 
bottom left to top right. In the middle, there is generally a 
dent and this mayor may not go as far as a change in the 
direction of the slope. 

If the cubic polynomial function itself is 

y = a x 3 + b x 2 + c x + d, 

the condition for the temporary vanishment of the slope is 

dy 3 a x 2 + 2 b x + C = 0 
dx 
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In the example at hand, this equation is 

dy 
dx 
or 

x2 - 2 x -2 = 0 

x2 - 2 x + 1 = (x - 1)2 = 3 

This equation has two real roots, 

x = 1 - 13 = -0.41 and x = 1 + 13 = 2.41 

CHAPTER VI 

In the interval between the roots, the slope has the opposite 
direction from the one indicated by the sign of the cubic term. 
For certain values of the coefficients the "dent in the middle" 
may not be enough to cause a reversal of the slope. 

For example: 

1/3 x 3 2 + 2x + 1 y = - x 

would have a zero slope for 

dy 2 2x + 2 0 x - = 
dx 2 1)2 or x - 2x +1 = (x + - 1 

i.e. for no real value of x. 

In such a case, the direction of the slope will be monotonously 
upwards (or downwards if the coefficient of x3 is negative.) 

We now discuss the mapping of 

(x - a)2 + (y - b)2 = c (6.6.11) 

(c > 0) 

This is a circle with x a, y b, as origin, and a radius of 
c. 

Example 

(x - 3)2 + ( y - 4)2 4, 

or equivalently 

2 2 
x + y - 6x - 8y + 21 0 

That ~he graph of (x - a)2 + (y - b2) = c is indeed a circle 
is shown by applying Pythagoras' Theorem. 
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The horizontal and vertical sides of the triangle drawn in the 
graph are x - a and y - b. 

135 

Therefore the sloping side is V(X - a)2 + (y - b)2. As this is 
the same at each point of the graph, i.e. IC by (~.6.11), this 
distance is the same for all similar triangles. Constant length 
of the radius is the geometric definition of a circle. 

6 -

5 -

3 

2 

graph 6.6 d 

illustration of the 
constant radius of the circLe 
by pythagoras theorem. 

2 5 
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graph 6.6 e 

Illustration of a 
rectangular hyperbola 
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Finally we discuss the mapping of an implicit relationship 

(x - a)(y - b) = c 

The graph of this relationship is known as the rectangular 
hyperbola. It has two asymptotic axes, as may be shown by 
writing the ~elationship explicitly in terms of either 
variable. 

x = a + c/(y - b) 

For c ~ 0, x will not, for any finite value of y, attain the 
value x = a; but x will approach the value x = a asymptotically 
if y moves towards +00, or towards _00, showing that x = a is an 
asymptotic axis. The similar statement concerning y = b will 
be obvious. 

Typical for the hyperbola is that the graph comes in two 
branches. We will discuss this feature while assuming c > 0, 
(for c = 0, the graph reduces to the cross formed by the two 
asymptotic axes. The case c < ° exists and is meaningful, but 
readily deduced from the case c > ° by re-defining one of the 
two variables, reversing the sign of either x or y). 

For x > a, y > b we consider the positive branch ~n the top 
right-hand part of the coordinate space, for x < a, y < b the 
factors x - a and y - b are both negative and their product is 
positive. The general shape of the graph may be seen in 
graph 6.6e, which contains the graphical illustration of 
(x + l)(y - 2) = 9. 

A considerable wider group of functions and relationships 
become manageable in terms of graphical mapping without undue 
effort if we introduce a secbndary coordinate system. 

This is normally related to a linear transformation, i.e. we 
introduce secondary variables p and q, which are linearly 
related to our originally specified variables x and y by the 
linear equations. 

p a x + b y + C 
(6.6.12) 

q d x + e y + f 

The use of this device ~s considerably simplified if the 
secondary coordinates are also associated with a rectangular 
set of axes and equality of units in both directions i.e. we 
simply rotate the graph paper, - but we may still need to 
change the unit of measurement - . 
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Illustrat Ion 0 f a secon
dary coordinate system 

,~ , , 
',I( \) " 

" , " , 0 , " .. " 
" , " 

)C 

,// ',+ 
" , 

-\ " , 0 

" + " 
" 

" , , 

" 
" 

" " 

,,~ 
'\. , 

" 

, , 
, ,0 , 

x 
1 ~ 12 

Example 

(x-y) (lO-x-y) 16 

We put 

p x - y 
q -x - y + 10 

The secondary 
at x = 5, Y 
line, the q = 

coordinate system now has its origin p = 0, q 
5 and the p = 0 axis (q-direction) is the x = y 
o axis (p-direction) is the x + y = 10 line, 

We have no difficulty in drawing the rectangular hyperbola 
p.q = 16 in this new coordinate system, see graph 6.6f. 

o 
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Exercise 

Make graphical mappings of: 

x + y 2 
2 2 

x + Y = 16 

y x + 2 
2 

y = x + x + 1 

x + 2y = 6 (x-l)2 + (y_2)2 9 

x - y = 3 x • y = 16 

(x-y+2)(x+y-S) = 36 

Use proper graph paper, one sheet for each graph. Then read an 
arbitrary point from the graph - not already used in drawing 
it -, and check that it approximately fits the equation which 
the graph represents. 

6.7 Interior points, boundary points, outward points and 
extreme points 

An interior point may be defined loosely as a point inside the 
space occupied by a set of vectors. 

Take for example, the set of two-dimensional vectors 
satisfying 

(x - 3) 2 + 2 
(y- 4) < 4. 

This is the inside, i.e. the surface of the circle in the 
previous section. Interior points are points which are 
actually inside rather than on the ring of the circle itself. 

Definition 

The vector x is an interior point of some set of vectors, if 
for every vector z in the same coordinate space, whether inside 
or outside the set, a combination of x and z 

v = p z + (1 - p) x (6.7.1) -

for some p in the interval 

o < p < 1 (6.7.2) 

belongs to the same set as x. 
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interior pOints, boundary pOints, 
outward pOints and extreme pOints. 

boundary pOints. 
the shaded lines. 
interior pOints. 
the inside, 
excluding the boundary. 
outward pOints. 
the sloping top and 
the outward bulge. 
extreme pOints. 
the corners and 
the outward bulge. 

0.2 r 
I 

1h-l.1-+-------'------'~')L--~------- ~-" 
OJ() 1.5 2.() 2 .. 3.5 

The requirement that p should be non-zero is the crucial point 
in this definition. The vector z - x denotes an arbitrary 
direction i.e. towards "any" point in the coordinate space. 

Some non-zero part of the line-segment from x to z must still 
be in the set. A vector which belong to a set, but is not an 
interior point of the set is a boundary point. 

If a set of vectors is defined by a set of non-trivial 
restrictions, 

f.(x) > 0 
1 - -

(i = 1, 2 ... m), 

(6.7.3) 

points for which one or more of these restrictions are binding 
will normally be boundary points. There are, however, some 
rather strange restrictions which provide counter-examples. 
This is because a restriction can be ineffective at certain 
points, without being trivial throughout the coordinate space. 

For example, x(y - z)2 > 0 is not a trivial restriction of the 
kind which we already excluded. 

For x = -1, y = 1, z = 2, the restriction x(y-z)2 > 0 is not 
satisfied. But in the x > 0 half-space this restriction is to 
all practical purposes trivial. For x = 1, y = 1, z = 1, the 
inequality x(y - z)2 ~ 0 is exactly satisfied, yet this is an 
interior point. 



VECTORS AND COORDINATE SPACES 

To exclude complications of this kind, we must first define 
their salient characteristic. 

A particular restriction 

f. (x) > 0 
1. - -

1.S indifferent at the point x = x* 

if all partial derivatives vanish at that point 

H. 
1. 

ax. o 
J 

for j = 1, 2 .... n. 

(6.7.3) 

(6.7.4) 

For linear restrictions these partial derivatives are simply 
the coefficients a .. which occur in 

f. 
1. 

n 
L 

j=l 
a .. 

1.J 

1.J 

x. + b. > 0 
J 1. 

It therefore follows that for a linear restriction which is 
non-trivial the issue of indifference at a particular point 
does not ar1.se. 

Theorem 

Let 

f. (x) > 0 
1. - -

i 1, 2, .... m 

(6.7.3) 

141 

define a set of vectors (points) in some n-dimensional coordinate 
space. 

And let one restriction in (6.7.3), to be indicated as the h
restrict1.on be exactly fulfilled at some point x ~*, fh(x) 
not being indifferent at that point. 

dfh 
f 0 for x ax. 

J 

(6.7.5) 

x* (some j) .( 6.7.6) 
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Then 

x = x* is a boundary point of the set of vectors satisfying 
(6..i-:-3) 

Proof 

Consider a first-order linear approximation of 

fh(~) at the point ~ 

fh(~* + d~) = fh(~*) + 

x* 
n 
L 

j=l 

(lfh 
(lx. 

J 

dx. 
J 

(6.7.7) 

We may take minus the vector of first-order derivatives as the 
vector z in 6.7.1 and a very small increment indicated as dp 
as the proportionality factor p in (6.7.1). 

Denoting the vector of partial differentials as~, (6.7.7) is 
now evaluated for that particular direction as 

fh(~* + ~ dp) = fh(~*) - dp~' ~ (6.7.8) 

The first term on the left-hand side of (6.7.8) is by 
assumption i.e. (6.7.5) zero, the second is negative. this 
contradicts (6.7.3) for the h-restriction. 

Since an interior point is defined as staying inside the set 
when starting to move away from it. x = x* cannot be an 
interior point if a restriction is binding without indifference. 
q.e.d. 

The reverse is also true and even more obvious: 

If a set of vectors is defined by some inequalities, and at 
some point ~. ~* none of these inequalities is binding. then 
that point is an interior point. 

The terms "boundary point" and "one or more restrictions 
bindin~' are therefore in practice interchangeable. 

We will call x = x* an outward point of some set of vectors, 
if there is a non-zero direction-vector a' ~ O. for which 

a' x < a' x* (6.7.9) 

is true for all x in the set. 



VECTORS AND COORDINATE SPACES 

The requirement that a' must not be a zero vector serves 
merely to exclude triviality. For a' = 0 all vectors x would 
satisfy (6.7.9) for all sets of vectors and for all points x* 
in them. 
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Outward points are also boundary points. This is because the 
direction-vector z - x in (6.7.1) can be taken in any direction. 
Taking the column=prsentation of a' as the direction z - x in 
(6.7.1), we may re-write (6.7.1) as 

v = x* + p a (6.7.10) 

where the point towards which one is moving is found by 
comparing (6.7.10) and (6.7.1) 

z = x* + a (6.7.11) 

Evaluation of (6.7.9) for the direction indicated by (6.7.10) 
yields 

a' ~ = ~' ~* + p ~' ~ ~ ~' x* (6.7.12) 

thus contradicting (6.7.9) 

The definition of an interior point is that we can move away 
from it over some distance indicated by the parameter p, and 
that includes moving in a particular direction indicated by 
the vector a' itself. 

The reverse is however, not always true: boundary points are 
not always outward points (This is so, only in convex sets) 

Since outward points are boundary points they are, by previous 
theorem, also points at which at least one restriction is 
binding. 
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SOME BASIC LINEAR PROGRAMMING CONCEPTS 

7.1 The linear programming problem 

Linear programming consists of: 

(a) Finding a solution to a system of linear 
inequalities, and 

(b) Selecting from all solutions to such a system, a 
solution for which a certain linear function of 
the variables attains a maximum value. 

A solution, satisfying (a), but not necessarily (b), is 
indicated as a feasible solution. An arbitrary vector of the 
required order which fails to satisfy the inequalities is named, 
sOlnewhat euphemistically, a non-feasible solution. A solution, 
satisfying both (a) and (b), is named a feasible and optimal 
solution. The function to be maximised is the objective function 
or preference function. 

There is of course a mirror problem to the one formulated 
above. One could search for a solution minimizing a certain 
linear function of the variables. It would lead to a second 
algorithm, differing only in sign from the one I want to 
discuss. Any minimization problem can be formulated in terms 
of maximizing, by inverting the sign of the objective function. 
We will only deal with maximization problems. 

I will in fact impose one further restriction. * All 
inequalities should be in the form of a linear function of the 
variables being smaller than, or equal to a constant. Again 
inversion of the sign will turn the "larger than" type of 
inequality into the "smaller than" type. 

A more general convention is that variables shall be restricted 
to non-negative values only. Historically, linear programming 
dealt with physical activities, and this convention was self
evident. Adherence to this convention also helps to simplify 
certain features of the Simplex Algorithm. In a later stage 
we will also discuss unconstrained activities. A variable, 

* 
Where it concerns the signs of the coefficients, I follow the 
conventions adhered to by Charnes, Cooper and Henderson [5J 
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an activity is free, or unconstrained, or (as it will be 
referred to in code-listings in this book) of type absolute . . . , 
if it is exempted from the convention of non-negativity. 

7.2 The L.P - problem in matrix notation 

Let A be a m by n matrix of known coefficients. Let x be an n 
by 1 column vector of unknown variables. Let b be a rn by 1 
column vector of known constants. Let w' be a-I by n row vector 
of known coefficients. Let T be a scalar variabl~. The L.P.
problem can then be formulated in matrix notation, as follows: 

maximise T = w' ~, (7.2.1) 

subject to A x < b (7.2.2) 

x. > 0 (j 1, 2 n) 
J 

We now define an m by 1 column vector of slack-variables, 
named ~. The problem can then be formulated as an undetermined 
equations system: 

maximise T 

A x + s 
-

-w' x 

x. > 0 
J 

s. > 0 
1 

+ 

in: 

b 
T 0 

j = 1, ... n) 

(i = 1, ... m) 

The non-negativity restriction applies to the elements of the 
vectors, x and s,. It does not apply to the value of the 
objective-function. We will meet examples where the optimal 
value of T is negative. 

7.3 A numerical example 

Consider a factory with 2 different machines. The capacities 
of these machines are known as 200 and 100. There are 3 
production processes (products). The operation of 1 unit of 
these processes gives the manufacturer a value added of 2, 5 
and 1 unit of money respectively. There is a competitive 
market, in which any output that is produced can be sold at 
the current price. The prices cannot be significantly 
influenced by the firm's small share in the market. 

The objective function will then be: 
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where xl' x2 and x3 are the 3 production processes. The 
standard times for the different processes of both machines 
are known. They give rise to 2 inequalities plus the non
negativity requirements. 

+ + < 200 

+ < 100 

> 0) 

This little problem will serve us in doing some exercises. It 
also is an example of an important class of practical 
applications of linear programming. It has one important 
simplifying feature. A feasible solution is already known. 
Just doing nothing, xl = x2 = x3 =0, will satisfy the 
restrictions. It is of course not an optimal solution. 

7.4 Graphical solution of a problem with 2 variables 

When there are only 2 variables, an L.P.-problem can be 
solved by graphical methods. The practical relevance of this 
fact is not very great. Any realistic problem will involve 
more variables. And the Simplex Algorithm can be applied 
generally, with reasonable efficiency. But the exercise will 
serve us, by illustrating some basic concepts of linear 
programming. 

Consider the problem: 

minimise: 3 xl - x2 

subject to: xl + x2 < 7 

3 xl + x2 > 6 

- xl + x2 < 2 

(Xl' x2 > 0) 

This problem, in its present form, does not satisfy our 
conventions of uniform notation. Therefore we re-state the 
problem, in a form which satisfies the conventions: 

maximise: , = - 3 x 1 + x 2 ' 
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subject to: 

Alternatively, the problem can be formulated as an under
determined equations-system: 

maximize Tin: 

Xl + x 2 + sl 7 ) 
) 

-3x x 2 s2 -6 ) 
1 

) 

- xl + x 2 + s3 2 ) 
) 

3x l x 2 + T 0 ) 

(xl' x 2 ' sl' s2' s3 > 0) 
-

Because there are only two variables, we are able to map the 
restrictions in the two-dimensional xl' x 2 co-ordinate plane, 
and solve the problem by visual inspection of the mapping. 
(See graph 7.4a below.) 

graph 7.t.. a 

graphical so lut ion 
of an l.p. problem. 

8 
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The restrictions have been shaded on the non-admissible side, 
as far as they appeared to be relevant. A restriction which is 
satisfied by any solution satisfying the other restrictions in 
the system, is named a redundant restriction. In the present 
example, one of the tacit restrictions (xl ~ 0), is redundant. 
The 4 points (2,0), (7,0), (21,41) and (1,3) are the corners 
of a quadrangle. The area inside this quadrangle is the 
feasible area or feasible region. Note that the origin of the 
co-ordinate plane (the point xI=O, x2=0) is outside the 
feasible area. This could be seen from the tabular presentation 
of the inequalities. Once the restrictions are written in the 
standardized form, all the variables on the left-hand side of 
the < sign and a constant on the right-hand ~ide, the negative 
value of the constant in the second restriction shows that 
this inequality is not satisfied by xl = x2 = O. Apart from 
the restrictions, the graph shows 2 dashed lines for constant 
values of the objective function: 

T = - 3x + x =-6 1 2 

and 

T = - 3xI + x 2 0 

These two lines are parallel, as they should be. Any other 
line for another constant value of the objective function 
would run parallel to the ones in the graph. Clearly, no line 
for a positive non-zero value of T goes through the feasible 
area. This pins T = 0 as the maximum, and xl = 1, x2 = 3 as 
the optimal solution. 

In the optimum, 2 restrictions are exactly fulfilled. Apart 
from the tacit restrictions, there is one restriction 
(xl + x2 ~ 7) amply fulfilled. 

The corresponding slack should then be non-zero: 
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OUTLINE OF THE SIMPLEX ALGORITHM 

8.1 The concept of a basic solution 

The Simplex Method solves the Linear Programming problem by 
solving a series of linear equations systems. The initial 
system of inequalities is written as an equations-system, 
by adding slack variables. (See Section 7.2). The numerical 
example in 1.3 is then written as follows: 

+ + + 200 

+ 100 

+ T o 

One equation should always be read as expressing one variable, 
always with a unity coefficient. That one variable is then 
expressed as a constant, plus a linear combination of the 
other variables. In the example, just re-written above, the 
first equation expresses sl as being 200 minus Xl + x2 + x3. 
The understanding is, that in this initial solution Xl, x2 and 
x3 are in fact zero. That interpretation of a system of 
equations written in this particular form,* allows us to read 
a current solution-value from a tabulation of the system of 
equations, without further calculation. In the example, sl has 
the value 200. The coefficients of the other variable indicate 
how sl would change if any of the other variables would be 
given a non-zero value. This convention allows in each equation, 
a non-zero coefficient for only one non-zero variable. 
Conversely, a non-zero variable should have a unity coefficient 
in one equation, and zero coefficients in all other equations. 

Or, more strictly speaking, a variable that is solved for, 
by the equations-system in question, is represented ~ith a 
unity coefficient in one equation, and zero coefficients in 
the other equations. In the above example, sl, s2 and T 
are the variables that are solved for. We are of course not 
assuming that xl, x2 and x3 should necessarily be zero. Only 
our first current solution, considers non-zero values for 
sl' s2 and T only. 

* 
That form of presentation of a system of equations with a 
single unity-coefficient in each equation, ~s often called the 
canonical form. See W. Garvin [llJ • p.28. 
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The variables which are solved in the current solution are 
named the basic variables of that solution. 

One variable is always solved for, but not normally listed as 
a basic variable: the value of the objective function. 

The inference from this way of reading the equations-system is 
the following: The number of basic variables is always equal 
to the number of restrictions. During later iterations, other 
variables will be solved for, will become basic variables. But 
always when one variable enters the basis, another one is 
leaving the basis. Here the word "basis" is understood as 
meaning the list of names of the basic variables. This list of 
names determines the corresponding solution completely; it 
allows for solving their values by way of an ordinary linear 
equations-system. Obviously, a list of m non-zero variables, 
can be a list of basic variables, if and only if, the 
corresponding equations-system is non-singular. 

Basic solutions are only a restricted class among all possible 
solutions. In a two-dimensional example (Section 7.4), this 
can be seen at a glance. The basic solutions of the problem, 
as far as they are feasible, correspond to the corners of the 
feasible area. Yet the Simplex Algorithm analyses no other but 
basic solutions. When the algorithm has been surveyed, it will 
become apparent that this restriction is justified in the 
general n-dimensional case as well. 

Consider the system (7.Z.l). We now partition this system as 
follows: 

All ~l + AIZ ~Z ~l ~l) 
) 

AZI ~l + AZZ ~Z + ~Z ~Z) 
) (8.1.1) 

-WI 
-1 ~l 

- WI 
- Z ~Z + T 0 ) 

The equations and the variables are supposed to be re-arranged 
in such a way that the block-row Ai = [All' AlZ1 now corresponds 
to the exactly fulfilled restrictions. The block-column 
consisting of All and AZI then refers to those of the significant 
variables that are basic in the current solution. 

The composite vector consisting of ~l and ~Z is the (column) 
vector of the basic variables. 
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The values of the basic variables are found by solving the 
linear equations-system: 

All ~l 
(8.2.2) 

A2l ~l + ~2 

This system is determinate, if and only if the composite 
ma-rix 

is non-singular. This matrix is then often named the basis
matrix. If both groups 0f variables, elements of x, and 
remaining slack-variables are present, the basis-~atrix is a 

block-triangular matrix. One of its diagonal blocks is a unit 
matrix, and as such always square and non-singular. We saw in 
Section 5.7 that the determinant of a block-triangular matrix 
is the product of the determinants of its diagonal blocks. 
Then if the basis is to be non-singular, it is necessary and 
sufficient, that All is square and non-singular. 

* All is the pivot-matrix or block-pivot 

8.2 The Simplex Tableau 

A Simplex Tableau represents an equation system, written in 
the standard "canonical" form, discussed in the preceding 
paragraph. Only, we do not write the names of the variable 
every time again. 

The equations-system of Section 8.1 is represented by the 
following Simplex Tableau 

* 

TABL EAU 8.2 (EXAMFLE 7.2) 
A SIMF'LEX Ti>.BLEAU. (SET-UP TABLEAU, COMPLETE FORM) 

NAME! I 

5 I !! 
52! ! 

X I 

T !! -2 

X 2 

I 
3 

-5 

X 3 5 I 

- I 

S 2 T !! VALUE 

!! 200 
! ! 100 

! ! 

See also: A.R.G. Heesserman, Special Simplex Algorithm for 
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Multi-Sector Problems [20]~as well as Section 3.11 of this book. 
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On account of computer-checking of all Simplex tableaux in 
the manuscript the value of the objective function is referred 
to in tableaux as t, even where otherwise the use of a Greek 
letter would be more conventional. 

The figures in the tableau are identical to those in 
Section 8.1. The "T" column will remain a unit vector during 
all iterations. 

8.3 Choosing the pivot column 

If we write the objective function explicitly, it becomes 
again: T 0 + 3 xl + 5 x2 + X3. We are looking for a new 
variable, with a view to increasing the value of the objective 
function. We should then look for a positive coefficient in 
the explicitly written objective function. This corresponds to 
a negative figure in the implicitly written function 

o 

We will want to increase the value of the objective function 
as much as possible. Hence we normally take the most negative 
element in the objective function. 

This rule is known as the principle of steepest ascent. It may 
happen that two or more figures are equally qualified as the 
most negative, because they are equal. We will assume the name 
with the lowest index to be taken in such cases. This is a 
device to make the choice unambiguous. 

If we only want to reach the optimum, no matter after how many 
steps, the principle of steepest ascent can be dispensed with. 
Any negative element in the current preference function will 
do. The principle of steepest ascent is a guide to an efficient 
choice of a new basic variable. As such it is a somewhat 
arbitrary criterion, and there are other rules for selecting 
the incoming variable. 

Once we have chosen a new basic variable, we have chosen a 
pivot column. This is the column in the tableau, corresponding 
to the new basic variable. 

In our example, the rule of the steepest ascent gives us x2 
as the new basic variable. The pivot column will be marked in 
the tableau with an asterisk. 

Also, following the suggestion ~n Section 3.5 we carry the 
sum-count of all the entries in each row as a "check" column, 
and perform the same operations on them. 
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TABLEAU 8.3 (EXAMPLE 7.2) 
SIMPLEX TABLEAU. "'t TH MARKING OF THE PI VOTAI. COLUMN. 

NAI':E !! X 

S II! 
S 2 !! 

X 2 

1 
3 

* 
X 3 S 1 S 2 T !! VALUE 11 SUM CH 

11 200 
1 1 100 

I! 204 
! 1 105 

------------------------------------------------------ -----------~ 
'!' !!-2 -5 - 1 ! ! ! ! -7 

8.4 The choice of a pivot row 

The pivot column will tell us how the (old) basic variables 
will be reduced, by introducing a non-zero value for the new 
basic variable, at a level of 1 unit. For instance, the s2 -
row should be read as 100 = xl + 3 x2 + s2' We now write S2 
explicitly, and suppress the coefficients of the other non
basic variables, which will remain zero-valued. 

s2 = 100 - 3 x 2 

If s2 is to be the variable leaving the basis, it should be 
reduced to zero. That solves x 2 as 

x 2 = 100 : 3 33 1/3 

Considering sl as a candidate for leaving the basis, we would 
find x 2 : 

x 2 = 200 : 1 = 200. 

If we were to increase x2 to more than 33 1/3, s2 would become 
negative. In particular for x2 = 200 (or sl leaving the basis), 
we would have s2 = 100 - 3 x2 = 100 - 600 = - 500. This is no 
longer an admissable solution. We should not increase X2 to 
more than 33 1/3. 

This gives us the rule of the smallest quotient: The name of 
the variable to be eliminated out of the basis is found by 
dividing all (positive) values of the basic variables through 
their corresponding positive elements in the pivot column, and 
by selecting the smallest from these quotients. 

In its present form, this rule is valid only when the current 
basic solution is feasible already. The question of how to 
attain a feasible solution, if the trivial solution is not 
feasible, will be discussed ln Chapter IX. 

We will indicate our choice in the tableau. The tableau will 
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now become: 

TABLEAU 8.1I A (EXAMPLE 7.2) 
SIMFLEX TABLEAU. WITH RING-MARKING OF THE PIVOT. 

NAME !! X * X 2 X 3 S I S 2 T ! I VALUE I! SUM eM 
------------------------------------------------------------------
S I ! I 
S 2 !! 

I 
@ 

I! 200 
!! 100 

!! 204 
II 105 ------------------------------------------------------------------

T !!-2 -5 -I II II -7 

The row of the tableau corresponding to the variable that is to 
be eliminated from the basis is named the pivot-row. The circle 
marks the intersection between the pivot-row and the pivot
column. The encircled element is named the pivot. Actually, 
we could have dispensed with a separate indication of the 
pivot-column. The indication of the pivot (with a circle), 
designates both pivot-row and pivot-column. 

The question arises, if a search for the smallest quotient is 
always successful. Could one not meet cases where there are 
no positive entries in the pivotal column at all? 

We could. 

Example 

Maximise 

subject to 

We write the Simplex Tableau, and make one step. 
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TABLEAU 8.4 B (EXAMPLE 8.4) 

AN UNBOLTNDED PF,OBLEM DEVELOPS AFTER ONE STEP. 
(nm SIMFLEX TABLEAUX IN ONE REFERENCE TAELEAU) 

NAME! ! X I X 2 S I T !! VALUE 

5 \ ! ! - \ ! ! 

T !! -\ o o ! ! 

THE SECOND TAELEAU IS LTNBOLTNDED <IN X 2) 

NAME! ! 

X 1 ! ! 

T !! 

X \ * X 2 

-1 

-1 

5 I T !! VALUE 

! ! 

! ! 

The rule of the steepest ascent indicates x2 as the next 
pivot-column, but the x2 column does not provide a pivot row. 

The reason is that this is an unbounded problem and the x2 
column is the unbounded* column. 

Variable Xl' and as a consequence the objective function can 
attain any value above 1, and a matching value for x2 can be 
found. Xl = 1000000000000 with X2 = 1000000000001 is a feasible 
solution, and there is no finite maximum. The general case is 
that unbounded columns increase the value of the objective 
function and the value of all basic variables (as far as they 
change at all). Hence they~ not reduce any variable to zero 
and no finte upper limit for such variables exists. Since they 
increase the value of the objective function, no finite upper 
limit for the objective function exists either. 

* 
Sometimes one will meet the term "unbounded in the preference 
direction". In. the next chapter, we will consider LP problems 

where it is sometimes necessary to enter variables which will 
reduce the value of basic variables in order to find a feasible 
solution. However, a well-designed algorithm should ensure that 
such columns are entered, only if one can be sure that they will 
provide a pivot row. No such guarantee is possible with respect 
to columns which are unbounded in the preference direction 
because the LP problem itself may be unbounded. 
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In the case at hand, this is confirmed by a graphical mapping 
of the one restriction, in graph 8.4a below. 

5. 

4. 

4. 

3. 

3. 

I. 

I. 

o. 

, 

graph 8.4 a 
illustration of an 
unbounded lp problem. 

The one step from the or1g1n to the point xl = 1, x2 = 0 
(marked 0) has been made, but further increase in Xl can be 
obtained at infinitum, by moving along the binding restriction, 
in the direction of the arrow. Linear programming algorithms 
need a special "abnormal" exit-loop, to signal unbounded 
problems. 

The LP problem is held to have no feasible and optimal i.e. 
finite maximum solution if the search for a pivot row fails. 

8.5 The Simplex Step 

Once a new list of (names of) basic variables is known, we will 
want to rewrite the equations-system, in order to have it again 
in its standard "canonical" form, with respect to the new 
basis. This is achieved by a procedure which is very similar 
to the one discussed in Section 3.3 for a block-equation. 

First, the pivot-row is divided by the pivot. In our example, 
the s2-row should then be divided by 3. Instead of 

xl + 3 x 2 + s2 = 100 

we will now write: 

1/3 xl + x2 + 1/3 s2 33 1/3 
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In fact we only write the coefficients, the numbers 

1/3, 1, 1/3, and 33 1/3 

instead of 

1, 3, 1, and 100. 

The new row will now express x2 as a constant (33 1/3), plus 
a linear function of the non-basic variables xl and s2. 

x2 - 1/3 xl - 1/3 s2 + 33 1/3 

In all other equations, this last expression is now substituted 
for x2. Or, more generally, the equation that is obtained after 
dividing the pivot-row by the pivot, is used to eliminate the 
new basic variable from all other equations. Arithmetically, 
this is accomplished by subtracting the pivot row so many times 
from all the other rows, as to cause vanishment of the 
coefficients in the pivot column. 

The operation can also be expressed in terms of matrices and 
vectors. The "updating formula" is given here only for the 
"rest" of the tableau, i.e. excluding the pivot-row and the 
pivot-column itself. 

T = T - k n- l r' 
n+l n 

(8.5.1) 

157 

Here, T is the old tableau, T 1 is the new one. Both matrices 
excludenthe pivot-row. ~ is th~+pivot column (as found in the 
old tableau), r' is the pivot-row (as found in the old tableau), 
and n is the pivot. Obviously then n-lr' is the new row, is 
obtained by dividing the pivot row by the pivot. The outward 
product of the old pivot-column and the new pivot-row, is 
subtracted from the remainder of the tableau. The pivot row 
itself is treated separately, it is divided by the pivot. 

After the updating operation, our second Simplex Tableau wjll be: 

TAELEAU 8.5 (EXAMPLE 7.2) 
SIMPLEX TASLEAU. AFTER n RST COMPLETE STEP. 

NAME!! X I X 2 X 3 S 1 S 2 T ! I VALUE I I SUM CH 
-------------------------------------------------- .. --------------
S 1 !! 0.67 
X 2 !! 0.33 

T !! -0.33 -I 

-0.33 ! 
0.33 ! 

1.67 ! 

I! 166.67 I I 169 
!! 33.33 II 35 

!I 166.67 II 168 
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The sZ-row has been divided by 3. The new transformed sZ-row 
(now named xz-row), has been subtracted with a factor 1, from 
the sl-row, and with a factor -5 from the objective function. 
(Or, alternatively, the transformed sZ-row) has been added with 
a factor 5 to the ob;ective function. 

Note the close analogy between the' pivoting operation in linear 
programming and the elimination process in a block-equation, 
discussed in Chapters I and III. 

Following section 1.1, the updating operation for the Trow 
may be made explicit as follows: 

Multiply the new xz-equation by 5, to obtain: 

+ 1 Z/3 Sz 

The old T-equation, to be added to it, is: 

-z x 
1 

- 5 x 
2 

to obtain the new T-equation 
-1/3 xl -x3 + 1 Z/3 Sz 

8.6 The attainment of the optimum 

166 Z/3 

+ T o 

+ T 166 Z/3 

The "normal" end of the Simplex Algorithm occurs when a search 
for a new pivot column fails, because no negative elements 
occur in the current objective function. In our example, this 
will be thp. case after the second step. 

After our first step, we will find -1 for x3 to be the most 
negative element in the current preference function. In the 
x3-column, there is only one non-zero positive element. Again, 
we will indicate our pivot-choice in the tableau with a circle. 

NAME !! X I 

S I ! ! O. t:7 
X 2 ! ! 0.33 

T !! -0.33 

NAME !! X I 

x 3 !! 0 • 67 
X2!! 0.33 

T !! 0.33 

TAB!.. EAt' 8.6 ( EX AM Fl. E 7.2) 
SIMPLEX TABLEAU. AFTER FIRST COM
PLETE STEP. ,,"'I TH NEW PI VOT MARKED. 

X 2 x 3 S I S 2 T !! VALl'E !! Sl"M CH 

- I 

-0.33 ! 
0.33 ! 

1.67 ! 

CONTINUATION TAELEAt: 8.6 

!! I t:6. 67 !! 169 
I! 33.33!! 35 

!! 1 t: 6.67 !! 166 

THE NEXT TAB1.EAC IS THE OPTIMt:M. 

X 2 X 3 S 1 S 2 

-0.33 ! 
0.33 I 

1.33 ! 

T !! VALt:E !I SCM CH 

!! 166. t:7 !! 169 
!! 33.33!! 35 

!! 333.33!! 337 
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We now write the objective function. From the tableau we read: 

+ + 1 1/3 s2 + T 333 1/3 

The equivalent explicit form of the objective function is: 

T = 333 1/3 - 1/3 xl - sl - 1 1/3 s2 

In the tableau, there were only positive coefficients in the 
transformed objective function. As a result of this, all the 
coefficients of the variables in the explicit form of the 
objective function, are negative. All the non-basic variables 
would, if introduced into the basis, reduce the value of the 
objective function. 

We conclude that we have reached the optimum. 
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The figures 1/3 for x~ 1 for sl, and 1 1/3 for s2, occurring 
in the row "T" in the tableau, are known as the shadowprices of 
these variables. In this case, they are the optimal shadowprices. 
The row may also be named the transformed objective function. 
The shadowprices are the elements of the transformed objective 
function. The non-negativity of the transformed objective 
function (of all the shadowprices), certifies the fact that an 
optimum has been reached. If all the shadowprices are positive 
non-zero, that is also the unique optimum, if there are zeros, 
several vectors may be co-equally optimal. 

Exercise 8.6a 

Write the implicit and the explicit forms of the x3 and the x2 
equations, as corresponding to the optimum tableau 8.6. 

Exercise 8.6b 

The following LP problem is given 

Maximise T 2 xl - x 2 

Subject to 2 xl + x 2 < 15 

2 x 2 > xl - 3 

(xl' x 2 2.. 0) 

Make a graphical mapping of this problem and identify the 
optimal and feasible solution by means of graphical analysis. 
Then solve the problem by the Simplex Method, while also marking 
each intermediate solution-point in the graph. (Answer-sheet 
at the end of the chapter). 
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8.7 The Simplex Tableau in matrix notation 

Consider the system (8.1.1) in Section 1 of this chapter. All 
is assumed to be square and non-singular. We can then pre
multiply the first block-row of (8.1.1) by All-I. The result 
is: 

-1 
+ All 

-1 
All 

-1 
E.l ~l + All A12~2 ~l (8.7.1) 

Or, solving for ~l: 
-1 

- All 
-1 

+ All 
-1 

E.l ~l =-All A12~2 ~l (8.7.2) 

With the help of this last expression we can eliminate ~l out 
of the other block-rows of (8.1.1). Together with the 
transformed first block-row, we obtain 

) 
) 
) 
) 
) 
) 
) 

(8.7.3) 

The system (8.7.3) is the Simplex Tableau in matrix notation. 
This emerges when we write the names of the (vectors of) 
variables on top of the block-columns, instead of every time 
after the matrices. We did the same with the equations-system 
in figures. 

name ~l ~2 ~l ~2 T value 
r------ --- -------------- --------- ------ ---- ---------------1 -1 -1 
~l I AllA12 All A 11£1 

-1 -1 -1 
~2 A22-A2lAllA12 -A2lAll I £2 -A21 AllE.l 

----- ---r-------------- --------- ------ ---- --------------
, 'A-lA -1 -1 

T -~2+~1 11 12 ~iAll 1 ~iAll£l 
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The corresponding initial tableau can be expressed in matrix 
notation as well: 

name ~l ~2 ~l ~2 T value 
------------- --------- --------

~l All A12 I E.l 

~2 A2l A22 I E.2 

------------- --------- --------
T -w' 

-1 
-w' -2 

1 0 

This tableau gives the initial numerical information, and no 
other. Yet is refers to the current and in general non-trivial 
solution. This is so because rows and columns have been 
re-arranged to the partitioning by (8.1.1). 

The block-columns "x " and "s " can be put together. They form 
the basis-matrix. Welwill norilially indicate this matrix as B. 

B ,J (8.7.4) 

The basis-matrix consists of the columns corresponding to the 
basic variables, and of the rows corresponding to all the 
restrictions. It is not normal practice to consider the 
objective function as one of the restrictions. However, the 
arithmetics of the Simplex method are the same for the 
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objective function and for a non-binding restriction. The one 
difference is that the value of the objective function is always 
solved for. Even if it should become zero or nega~ive, the 
objective function row never becomes pivot row. Otherwise one 
can consider the preference function as part of the basis, as 
the m+l th restriction. The value of the objective function 
should then be treated as one of the basic variables, except 
for search operations. 
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It will be observed that the inverse of the basis is to be 
found in any current Simplex Tableau, since 

[~]-l 
8.8 The shortened Simplex Tableau 

To write a set of unit vectors for the basic variables at each 
step, in each Simplex Tableau, is a bit tiresome. One could 
dispense with that. This is done in the shortened Simplex 
Tableau. When a column becomes pivot-column, we do not write a 
unit vector in its place. The empty place in the tableau is 
taken by the column associated with the just-eliminated variable. 

The 3 tableaux of our numerical example can now be written as 
follows: 

TABLEAU 8.8 (EXAMl'LE 7.2) 

TA8L~ATION Of ALL THREE SHoR~ENED TA8LEAUX. 

SET-UP TABLEAU. ~ITH PIVOT MARKED. 
NAME I I X I X 2 X 3 I I VALUE I I SUM + 1 

S 1 ! ! I ! ! 200 ! ! 204 
S 2 ! ! ® II 100 ! I 105 
------------------------------------------------

T ! ! -2 -5 -I ! ! ! ! -7 

SECOND TABLEAU. Io.'ITH NEW PIVOT MARKED. 
NAME· I I X I 5 2 X 3 I I VII.LUE ! ! SUM + 1 

------------------------------------------------
S I I I 0.67 -0.33 <D ! ! 166.67 I I 169 
X 2 ! ! 0.33 0.33 ! ! 33.33 II 35 
------------------------------------------------

T ! ! 

NAME I! 

x 3 I I 
X 2 ! I 

'!' !! 

-0.33 1.67 

OPTIMAL TAELEAC. 
X I 5 2 

0.67 -0.33 
0.33 0.33 

0.33 1.33 

-I 

5 I 

! ! 166.67 I I 168 

! ! VALUE ! ! SUM 

I I 166.67 I I 169 
II 33.33 II 35 

I! 333.33 II 337 

+1 
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The figures in these shortened tableaux are the same as in 
the full tableaux on the same example in Sections 8.2-8.5. 
Only the unit vectors have been suppressed. The corresponding 
equations-systems are of course the ones according to the full 
tableau. 

The shortened tableau gives rise to a slightly different 
procedure for updating. There now is a special treatment of 
the pivot column. The new column can be obtained as the old 
pivot-column, divided by minus the pivot, and the pivotal 
element itself is replace~~its reciprocal. With the full 
tableau, the same result would have been obtained without this 
special rule; the unit vector would have served as an operator 
to obtain the result. 

Note that this new rule for updating the pivot column is almost 
identical to the rule for updating the pivot row. The inversion 
of the sign i.e. division by minus the pivot is the only 
difference. The interpretatio~a shortened tableau the same 
as for the corresponding explicit one, the tableau corresponds 
to the equations-system given by the corresponding "full" 
tableau. Note, that the "check" column now contains the 
sumcount of the corresponding row, increased by one. 
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The suppressed unit-vector has to be taken into account when one 
computes or verifies the "check" column. 

The sumcount-property, as discussed in Sections 3.5 and 8.3 holds 
because a multiple of the pivot-row is added to other rows. 
This is only so in the full tableau, not in the shortened 
tableau. 

8.9 The Rule of the highest step 

We now consider a rule for choosing the pivot column, which 1S 

an alternative to the rule of the steepest ascent. 

In section 8.3 it was assumed that we choose as a new basic 
variable, the one which gives the maximum increase in 
preference value, per unit of the new basic variable. 

In general, the value of the new basic variable will not be 
just one unit. We may anticipate the choice of the pivot row 
and tentatively calculate for each column, the increase in the 
value of the objective function to be obtained from entering 
that particular column as new basic variable. 

We may illustrate this new rule, for which I propose the name 
given in the title of this section, with the example from 
sections 8.1 and 8.2. 
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The shortened tableau for this problem is 

TABLEAU 8.9 (EXAMPLE 7.2) 

THE RULE OF THE HI GHEST STEP 
FAVOURS LONG AS WELL AS STEEP STEPS. 

NAME I I X 1 X 2 X 3 II VALUE 
-------------------------------------
S 1 l! 
S 2 l! 

1 

CD 
1 
3 

I I 200 
!! 100 -------------------------------------

T !I -2 -s -I ! ! 

CHAPTER VIII 

If xl is chosen as pivot column, then Sz will be the pivot-row, 
with an increase in the value of the objective function of 200. 

If x 2 is chosen as pivot column, then s2 will be the pivot row, 
with an increase in the value of the objective function of 
1662/3. 

If x3 is chosen as pivot column, then sl will be the pivot row, 
and the value of the objective function will increase by 200. 

The total increases for xl and x3 are co-equally 200. We assume 
that the variable with the lowest index is then chosen. Hence xl 
is chosen ~n preference to x2' on account of the greater length 
of the step, despite the steeper ascent for the x2-variable. 

In this small 2 by 3 example the number of steps required to 
reach the optimum, is the same as when the rule of the steepest 
ascent was used earlier on in this chapter. (Three in both 
cases). 

But it seems reasonable to assume that, in general, the rule of 
the highest step will solve any given problem in, on the average 
fewer steps, than the rule of the steepest ascent would require. 
The computat~onal effort per step is obviously greater for the 
rule of the highest step, on account of the more elaborate 
search operation. 

8.10 Degeneracy 

A Linear programming problem is degenerate (at a particular 
vertex), if several quotients between an element of the value 
column and a corresponding element in the pivotal column are 
non-negative, equal and co-equally the smallest. 



OUTLINE OF THE SIMPLEX ALGORITHM 

TABL EAt' 8010 A 

AN EXAMPLE OF 1 Nl Tl AL DEGENERACY. 

NAME" X 1 

S 1 " 
S 2 " 
S 3 'I 

T !! -I 

X 2 

1 
-I 

o 

X 3 "VALUE 

!! 10 
, , 0 

-2 , , 0 

o ! ! 

The s2-row (xl ~ x2) and the s3~row (xl ~ 2x3) both provide an 
eligible pivot. Both quotients 0 : 1 = 0 for S2 and 0 : 1 for 
s3 are equal. 

Degeneracy normally occurs with a largish number of zero 
entries in the trivial value column, but can also arise during 
later iterations. If several non-zero quotients are co-equally 
the smallest, the next tableau will contain at least one zero 
in the value column, as two variables are reduced to zero ana 
only one is eliminated. 

Example 

TABLEAU 8.10 B 

EQUAL ELEMENTS LEADING TO DEGENERACY. 

NAME ! ! X 1 X 2 X 3 I' VALUE 
-------------------------------------
S 1 ! ! 1 1 1 ! ! 10 
S 2 ! ! <D -1 -1 ! ! 1 
S 3 ! ! 1 -2 1 ! ! 1 

T !I -1 o o ! ! 

In this case it is assumed that the restriction with the lowest 
index is chosen and a zero will occur on the right-hand side in 
the next tableau 

TAEL EAt" 8010 C 
NON-INITIAL DEGENRACY. 

NAME '"' S 3 X 2 x 3 !! VALUE 

S 1 " -1 
XI!! 1 
S 3 !! -1 

T " 

2 
- 1 
- 1 

-I 

2 
-I 

2 

-1 

, , 10 
, I 

! ! 

I' 
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The form in which degeneracy usually occurs is the one of the 
first example. Multiple degeneracy of the trivial basis due to 
a large number of zeros in the value column is quite common. 

Contrary to what is stated by some authors* degeneracy is a 
problem which gives - in my experience - rise to computational 
problems. 

There are in fact two problems: convergency and accuracy. Of 
these only the first is usually covered in the literature. If 
there is no degeneracy the simplex Algorithm increases the value 
of the objective function by a positive amount at each step. 
Therefore a vertex which has once been a basic solution cannot 
be met again as this would imply a reduction in the value of 
the objective function. 

Since the number of vertices is finite the algorithm must 
sooner or later end. This proof of convergence does not hold 
in the case of degeneracy. Well, I have met cases where 
degenerate problems were not solved within a reasonable time 
limit, whereas small changes in the value column, i.e. putting 
0.0000001 instead of the exact zero did result in a solution 
within a normal jobtime limit. 

The other problem concerns accuracy. Consider the following 
problem 

* 

TABLEAL' 8.10 D 
A DEGENERATE PROBLEM. SEE ALSO 8.10 E. 

NAME !! X 1 X 2 X 3 F 1 F 2 F 3 !! VALt'E 

-------------------------------------------------------
5 1 ! ! -0.99 0.02 0.04 <D ! ! 0 
5 2 ! ! O. 00 -0.92 0.05 II 0 
5 3 ! ! 0.07 0.03 -0.97 ! ! 0 
5 4 ! ! 0.42 0.37 0.49 II 6.34 
-------------------------------------------------------

T ! I 0 o o -1 -1 -1 ! I -2 

Thus R.C. Geary and J.E. Spencer in their "Elements of Linear 
programming" [14] p. 55, refer to degeneracy as "a special case 
of trivial practical importance which usually receives a 
disproportionate attention in the textbooks." 
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The system represents an input-output allocation model* and it 
is desired to maximise total final output, of 3 national sectors 
of production subject to the appropriate interindustry relations, 
and a macro-economic factor ~upply limit. Typical of this class 
of systems is the square block in the top left-hand side 
dominated by a negative diagonal. Some of the off-diagonal 
elements in this block can be quite-sIDall. 

Let us see what happens if the rules and procedures discussed 
so far are applied to this system. The first pivot has been 
marked already, but we reproduce below tableau number 4, where 
things become interesting. 

TAELEAt: 8.10 E 
DEGENERACY. LEACING TO CHOICE OF A SMALL PIVOT. 

NAME !! X 1 X 2 X 3 S 1 S 2 S 3 !! VALt:E 
------------------------------------------------------
F I ! ! -0.99 0.02 0.04 ! ! 0 
F 2 ! ! <[;]» - 0 .92 0.05 I! 0 
F 3 ! ! 0.07 0.03 - 0.97 ! ! 0 
S /I ! ! 0.42 0.37 0.49 ! ! 6.34 
------------------------------------------------------

T !! -0.91 -0.86 -0.87 I I 0 

At this stage, Xl is the pivot column. The diagonal element 
of -0.986 is not eligible on account of its negative sign. 
Let us assume that the search for the smallest quotient is 
done (going down along the Xl-column), by looking at candidate
pivots, only if they give rise to a smaller quotient than the 
previous one. Then f2 is the next pivot-row variable, as the 
quotient for f3 is not smaller. But obviously f3 should have 
been taken, and in general the largest of equally eligible 
candidate-pivots should be selected. 

A further point arises in connection with the use of floating 
point zeros. Some machines substitute the absolute smallest 
number which can be represented as a floating point number, for 
the number zero. In that case zero plus zero is greater than 
zero, and a number which is in any meaningful sense zero could 
become the pivot, despite the fact that the programmer excluded 
zero pivots. 

I have seen the wrong "outcome" for a multi-degenerate input
output allocation model in two separate instances. The first 
case involved academic research supervision and a programme 

*See also my book "Allocation Models and their use in 
economic planning" [18] 
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written by myself. The second case involved consulting work, 
and the programme was written by an employee of the client 
organization. In that second case the distortion of the 
specified linear programming problem went as far as finding a 
problem with a feasible trivial basis empty, i.e. not to have 
any feasible solution at all. 

In both cases an amendment in the text of the programme, i.e. 
attending to degeneracy, produced the correct results. The 
most simple solution to this problem (used in both cases), is 
to replace a zero in the value column, by a very small positive 
number, e.g. 0.000000001. Thus, in our example, the search for 
the smallest quotient would consider 0.000000001 : 0.001 as the 
relevant quotient for the f2-row, and 0.000000001/0.74 as the 
relevant quotient for the f3-row. This means, in effect, that 
the largest of the available pivots (i.e. 0.074 in the above 
example), is chosen. (This type of change is known as 
perturbation of the originally degenerate problem). 

The "time expired" degenerate linear programming problems which 
I have met, may, or may not have been cases of true cycling 
in degeneracy. 

Loss of accuracy for the reasons indicated above, can also 
cause spurious steps. This is so, in particular if spuriously 
negative entries in the value column arise. The reason is that 
the methods for finding a feasible solution in the first 
place (to be discussed in the next chapter), are on the whole 
less efficient than the elementary optimizing algorithm. And 
spurious negative entries in the value column would cause a 
spurious activation of this so-called "Phase I" part of the 
programme. 

One further aspect of the problem of degeneracy is computing 
efficiency, i.e. avoiding unnecessary steps, irrespective of 
the issue of cycling. 

On balance, my recommendation is to modify the problem at the 
outset, and make it into a non-degenerate problem. Zeros in the 
value column are all replaced by small positive numbers. 
These small numbers are (for example) 

e. 
~ 

0.000 000 000 001 
j 

(1 + L 
if a .. <0 

~J 

(-a .. )) 
~J 

(8.10.1) 

i.e; one takes the number one, adds to it the absolute value 
of all the negative entries in the relevant row, and scales the 
whole lot down. 
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There are two main reasons for not simply taking the same 
number for each row: 

a) In some systems there are columns with the same entry in 
a whole series of rows. If such a column becomes pivot
column against a pivot-row with a pseudo-zero in the value 
column, when all pseudo-zeros are equal one is back at 
multiple degeneracy. 

b) The suggested variation tends to prefer pivot-rows with few 
or with only small negative entries to rows with many large 
negative entries. The effect of this is to avoid these 
negative entries to be added to the corresponding entries 
in the target row, thus reducing the chances of having to 
enter the corresponding columns as pivot columns at the next 
step. 

It is appropriate at this point, to comment on the discussion 
degeneracy in the literature, and the methods recommended for 
its resolution. First consider the "naive" rule of taking the 
top one of any zero quotients, i.e. the first zero in the 
value column for which a corresponding entry in the pivotal 
column is positive. This is not a recommended method, simple 
and practicable in the majority of cases as it may be. It has 
been shown to lead to cycling, independently, by at least two 
people, using examples constructed to that purpose. These two 
examples are: Tucker's as referred to by Zoutendijk*, and 
Beale's as referred to by Var. de Panne**. Both examples involve 
initial degeneracy with two zeros in the value column and both 
become readily solvable if the zeros are replaced by equal 
pseudo-zeros. The fact that pertubation with equal pseudo-zeros 
is effective in these examples obviously does not prove that 
such a method is always effective - nor is that method 
recommended here. 

*Zoutendijk, G., Mathematical Programming Methods [42]. 
section 3.5. No bibliographical reference to Tucker given, 
private correspondence assumed. 
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**Van de Panne, C., Methods of Linear and quadratic Programming, 
[j6] , section 3.5. No bibliographical reference to Beale given. 
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The following is the method recommended by Charnes (4), [5J 
Ch VI, and methods which are in essence the same are still the 
ones recommended by the dominant tradition. Replace each constant 
b. by 
~ 

* i b. = b. + E 
~ ~ 

(8.10.2) 

The dominant tradition has it that the actual figures in the 
tableau are left as they are, including exact zeros, and one 
then devises additional rules for selecting the pivot row 
assuming that the trivial basis has been perturbed according 
to (8.10.2). 

What this effectively me~ns may be illustrated by reference to 
tableau 8.l0e. The choice of the leaving variable is in first 
instance restricted to f2 and f3 only. (f l is not eligible 
because the quotient is classif~ed as -0 i.e. negative and s4 
is not eligible because the quotient is in any case not the 
smallest, being non-zero). 

To choose between f2 and f3 as leaving variable, we now refer 
to the sl column as substitute value column. The sl-column makes 
the biggest "pseudo-zero" contribution to the value column - if 
any non-zero entries in the sl column are available. In those 
rows in which the sl-column contains non-zero entries, pseudo
zero entries in the value column are dominated by the E entry 
in the original sl-restriction. 

* Those "bl dominated" entries could either be just the original 
E: entry in the sl-row - if the restriction were still in the 
non-binding form with the slack-variable in the list of basic 
variables - or the updated sl-column, multiplied by El. 
(Compare 8.7.2 and 8.7.3). 

In fact in the example at hand, no non-zero entries in the s2 
and s3-row are available in the sl-column and we are still left 
with an undecided choice between s2 and s3 as pivotal row. 
Therefore, not having resolved the choice of a pivotal row, we 
refer to the s2-column as substitute value column and find 
as relevant quotients: 

(0 * E2) / /0.07 
rather smaller. 

in the f 2-row 

in the f 3-row, the latter quotient being 
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Charnes has proved that this method cannot lead to cycling. 
However, it leaves the door wide open for what has been 
indicated above as the main danger of degeneracy in practice, 
loss of numerical accuracy. The method comes in practice very 
near to choosing the last rather than the first of any available 
zeros. It differs sufficiently from that rule to guarantee non
cycling but not to guarantee meaningfully non-zero pivots~ 
If the entries of 0.00 in the S2/xl cell and 0.07 in the s3/xl 
cell in tableau B.10d are interchanged, the method of exponential 
perturbation would opt for the 0.00 entry (which is not actually 
a zero) as pivot in tableau B.10e. 

The choice of the pivot depends in no way on the actual figure 
of the candidate-pivot, it is enough that it is a positive 
figure. It would appear that while the relatively simple device 
of actually perturbing the trivial basis according to (B.10.l) 
is at the cost of a small loss of accuracy in the outcome, the 
exponential perturbation, whether actually performed or 
hypothetically assumed, is in practice prone to much greater 
inaccuracies, and the more so if actual perturbation is replaced 
by a rule which assumes hypothetical perturbation with a number 
E approximating zero. (The actual ~erturbation would exclude 
pure rounding errors as pivots.) In principle, that gain in 
accuracy has to be balanced against the fact that the method 
recommended above is not supported by a proof that it will 
never lead to cycling. 

B.ll Simplex Tableaux and Vector Spaces 

Suppose we know for some LP problem the names of (some of) the 
binding optimal restrictions. We could in that case interpret 
the partitioning introduced earlier in this chapter (B.l.l) in 
a "non simplex" way. This partitioning was also used in 
section B.7. We now write an equivalent of (B.7.3) while 
suppressing reference to ~l which vector is assumed to be zero. 

-1 
A12 ~2 

-1 
) ~l + All All ~l 

[A22 - A2l 
-1 

A12] ~2 
-1 ) 

(B.l1.l) All + ~2 ~2 - A2l All ~l) 

+ ' -1 -1 ) 
L-w' ~l All A121~2 +T ~i All ~l ) -2 

Note that ~l is effectively the vector of slack-variables 
associated with the first block-row of (B.ll.l), if the system 
is written in equality form. In the terminology of Chapter VI, 
we might say that a simplex tableau from which a (binding) ~l 
block-column has been deleted, describes the remaining 
restrictions in the sl = 0 subspace. If the final block-row 
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is binding, the optimal solution is equivalent to the optimal 
solution of the following residual LP problem: 

Maximise 

r, -1 1 
A = l!'l:; - !'I:J: All A12 ~2 (8.11.2) 

Subject to 

-1 -1 
All A12 ~2 ~ All ~l (8.11. 3) 

-1 -1 
[A22-A21All Al2] ~2 2.~2 - A21 All ~l (8.11.4) 

Comparison of (8.11.2) to (8.11.4) with (8.7.3) shows that the 
new (reduced) problem is related to the old one as follows: 

Firstly, A is the old objective function less the current 
solution value in (8.7.3). 

-1 
A = T - !'I:i All ~l (8.11. 5) 

Comparison of (8.11.3) with the first block-row of (8.11.1) 
confirms that ~l is the vector of slack-variables in (8.11.3). 
If we prefer the more usual ordering with the slacks at the end, 
the first block-row of (8.11.3) could be written as 

-1 -1 
All A12 ~2 + ~l = All ~l (8.11.6) 

The vector of slack-variables in (8.11.4) is the old ~2 vector. 

The "non-simplex" interpretation arises because (8.11. 2) 
to (8.11.4) is treated as an LP problem in its own right and we 
do not necessarily assume that all elements of Xl and none of 
~ are in the collection of basic variables. We-don't know 
whether the partitioning between ~l and ~2 is the optimal one. 
We may have to assume that the partitioning of the tableau in 
two block-columns is done so as to find a square and non
singular block-pivot All. 

Restrictions (8.11.3) apd (8.11.4) list the restrictions of 
the LP problem in an n-ml dimensional co-ordinate space, the 
x2-space. The set of points satisfied by (8.11.3) and (8.11.4) 
is equivalent to the intersection of the ~l = 0 subspace with 
the set of points satisfying the originally stated restrictions 
in (8.1.1). 
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The choice of any particular sub-vector ~l as well as the 
non-negativity of the corresponding trivial solution, 
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~l = Ali~' is irrelevant provided the associated block-pivot 
All is non-singular. Alternatively, we can say that the original 
problem is stated in the m+n dimensional x, s coordinate space, 
and the reduced problem is stated in the m+n~ml dimensional 
~l' ~, ~2 co-ordinate space. We are now in a position to 
formulate and prove a theorem which we have - in a sense -
already used. The simplex Algorithm investigates basic 
solutions where the number of binding restrictions equals the 
number of solved variables. We will show that if there is an 
optimal and feasible solution there is an optimal and feasible 
solution among the collection of simplex (basic) solutions. 

Theorem 

Let x = x* be an optimal and feasible solution to the LP 
problem 

Maximise 

T = w' X (7.2.1) 

Subject to 

A x < 0 (7.2.2) 

x ~ 0, 

Then we may require the number of binding restrictions in that 
optimal solution or else in some co-equally optimal solution 
x = x**, to be not less than the number of non-zero valued 
variables. We may also require the existence of a non-singular 
block-pivot as defined in (8.1.1). 

Proof 

First we consider the case of a trivial objective function, 
i.e. we assume w' = O. In that case we are free to declare any 
vector x which satisfies the stated restrictions (7.2.2), as 
being an optimal solution. That includes the optimal solution 
to a secondary LP problem which we obtain by.substituting a 
non-trivial objective function for the trivial one. One could 
for example take (minus) the sum of all variables and maximand, 
i.e. replace the zero vector w' by a summati'on vector, which 
is not a zero vector. Therefore, if we obtain a proof of the 
theorem for LP problems with non-trivial objective functions, 
this includes the case of a trivial objective function. We 
may thus assume that the objective-function is not trivial. 
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For LP problems with non-trivial objective functions, the 
optimum solution satisfies the definition of an outward point 
as given in Section 6.7. 

It was shown in Section 6.7 that, irrespective of the linearity 
or non-linearity of the side-conditions at least one side
condition is binding at an outward point. (The proof in 
section 6.7 depended only on the linearity of the maximand). 
In Chapter VI trivial restrictions were excluded by assumption. 
We do not now make that restrictive assumption, at least not 
as a restrictive assumption. 

In the case of a linear restriction, triviality (defined in 
Chapter VI as not excluding any vector in the co-ordinate
space), is possible only if for that particular i-restriction. 

a! 
-1 

is true. 

o (B.n.7) 

For b. > 0 such a restriction is trivial. We assume that we 
never 1 consider such a restriction as binding and we will in 
fact still be able to prove the theorem. No difference in the 
set of feasible points arises if we discard it. For bi < 0 no 
meaningful problem has been stated. A restriction which states 
that zero is less than a negative constant cannot be satisfied 
at all. bi < 0 will not be true for ~i = o. We may therefore 
assume, without loss of generality that all restrictions are 
non-trivial. 

Therefore the proof which we carried in Section 6.7 for an 
outward point is applicable and at least one non-trivial 
restriction may be required to be binding in the optimum. In 
general, we cannot identify binding restrictions in isolation 
from the list of basic variables. But let us for the sake of 
argument assume that we could identify at least one binding 
restriction of the optimum solution of an L.P. problem. (We 
know there is at least one). We can make use of this result in 
two cases in two different ways. 

In the special case of only one variable, the proof is complete, 
as we have shown that at least one restriction is binding. In 
the more general case of n variables (n > 1), the one binding 
restriction defines a linear (Euclidean) subspace and the 
optimal solution is part of that subspace of n-l dimensions. 
(Or m+n-l dimensions if we could the slacks as co-ordinate
directions). 
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Since the one binding restriction is non-trivial we can always 
find a variable which provides a 1 by 1 non-singular block
pivot All' Finding a non-trivial binding restriction is 
enough to show that a partitioning by (8.1.1) exists. We 
therefore have a well-specified residual problem, if we delete 
reference to the slack of the one binding restriction from the 
originally specified problem. 

Example (of a residual problem, proof itself continued below) 

Take the numerical example in section 7.4 

Subject to 7 

-xl + x 2 < 2 

Once we know that the first restriction Xl + x 2 ~ 7 is binding 
in the optimal solution we may pivot (for example) x2 against 
the slack of the first restriction. 

T ABL EAU 8. I I A 
A SIMPLEX STEP MAY LEAD TO A ~E
SIDUAL PROBLEM. (TABLEAU 8.11 Bl 

NAME! ! X I X 2 !! VALUE 

s----~~---~------d)---~~---~--
S 2 !! -3 -I !!-6 
S 3 ! ! -I I ! ! 2 
------------------------------

T !! -3 ! ~ 

and the up-dated tableau is (see section 8.8 for the up-dating 
rules in a shortened tableau) 
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TABLEAU 8.11 B 

THE RESIDUAL FROBLEM. IN
DICATED IN TABLEAU 8.11 A. 

NAME ! ! X 1 S 1 ! ! VALl'E 
------------------------------
X 2 ! ! 1 1 ! ! 7 
S 2 ! ! -2 1 ! ! 1 
S 3 ! ! -2 -1 ! ! -s 

T !! -4 -1 ! ! -7 

DITTO. 
RE- INTERPRETED. 

NAME ! ! X 1 ! ! VAL. 
----------------------
S ! ! 1 ! ! 7 
S 2 ! ! -2 ! ! 1 
S 3 ! ! -2 ! ! -5 

T !! -4 !! -7 

The x2, sl pivot is not a very well-advised pivot. Without the 
hindsight that xl + x2 ~ 7 is binding in the optimal solution 
it is in fact a oarticularly ill-advised pivot because it 
replaces on violated restriction (the second) by another 
(the third). But it serves to state the residual problem. If 
xl + x2 ~ 7 is binding in the optimum then we find the optimal 
Xl from the residual problem. 

Maximise 

A 4 xl 

Subject to 

xl ~ 7 

-2x 
1 ~ 

1 

-2x 
1 

< 5 

(xl 2:.. 0) 

Continuation of the proof 

The extremum property that at least one restriction is binding 
is applicable to this residual problem as well as to the 
original problem. In the particular example, this completes 
the proof, as only one variable is left and we only need to 
find the most binding restriction. In the general case, finding 
another non-trivial restriction binding in the reduced problem 
allows us to find a pivot in that row and hence a non-singular 
block-pivot of which the order is one greater than at the 
previous partitioning. (The determinant of a matrix has the 
same absolute value as the recursive product of the pivots 
which may be used to invert it, see section 5.5). Therefore 
if there is an optimal solution there is another non-trivial 
binding restriction, as long as there is an unused co-ordinate
direction. 
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The number of explicit co-ordinate directions in each residual 
problem is one less than in the corresponding full problem. If 
we identify an explicit restriction, i.e. the non-negativity of 
some si becomes binding, we eliminate the explicit reference 
to a variable by means of an elimination step, some Xj becomes 
a slack in (8.11.3). Since the statement of an L.P. problem 
does not require a positive righthand-side, this is true, even 
if a negative pivot were used to eliminate the slack-variable 
si. If we identify a binding "tacit" restriction we merely 
drop further reference to the zero-valued variable. 

The end of this hypothetical process of identifying binding 
restrictions, is no variables to change being left. 

Therefore the number of ~estrictions identified in the course 
of the process, and the order of the block-pivot is the 
initially available number of variables. The actual number of 
exactly fulfilled restrictions cannot be less. 
q.e.d. 

The number of binding restrictions is not less than (rather 
than always equal to) the number of co-ordinate directions 
because of two footnotes to the proof. 

Firstly, we assumed that if we met a trivial restriction in 
some subspace, we would discard it. This may be an additional 
binding optimal restriction. It may even be an additional 
non-trivial restriction. It does not follow that a restriction 
which is trivial in some subspace is also trivial in the 
fully specified problem. 

Example 

Maximise 

subject to 

5 

(i.e. xl + x 2 > 5) 
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The optimal solution to this problem is given in the following 
tableau 

TABLEAU 8.11 C 

ILLt!STRA'!'lON OF 
St!BSPACE-TRIVIALITY. 

tJAME!! SI X2 !! VALt:E 

XI! ! 
S 2 !! 

T ! ! 

I! 
! ! 

1 I! 

5 

5 

The second restriction is trivial in the sl = 0 subspace. It 
makes no difference to the solution (the first restriction is 
binding on the optimal solution anyway) but the second 
restriction is not a trivial restriction. It excludes, for 
example, the origin from the set of feasible vectors xl, x2. 
Having discarded the s2-restriction as trivial in the sl=O 
subspace, we identify the non-negativity of x2 as the second 
binding restriction. Secondly there may be several equally 
binding restrictions on the last variable, e.g. 

x < 2, 2x < 4, 3x < 6, etc. 

Again the restrictions may be dependent in some subspace but 
they might nevertheless be independent restrictions in the 
fully specified problem. 

The assumed possibility of identifying successive binding 
restrictions proves that, (because there is at least one non
trivial binding restriction in any L.P. problem) the optimal 
solution is a vertex, a basic solution. As an algorithm this 
approach has one fatal flow: we cannot in fact identify an 
individual binding optimal restriction without first solving 
the problem as a whole. But the simplex method which 
investigates only basic solutions, will get us there. 

There are some further carefully formulated passages in the 
theorem, i.e. "we may require" and "or in one of equal value". 
There are indeed L.P. problems for which "non simplex" 
solutions (with fewer binding restrictions) are co-equally 
optimal with Simplex solutions. This possibility arises when 
the objective function is trivial in some sub-space. 
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Example 

Maximise 

T = xl + X2 
3.0 

Subject to 

2.~ 

xl < 2 -

x 2 < - 2 2.0 

Xl + x 2 < 3 
\.S 

1.0 

o.~ 

00 O.S 

graph 8.11 a 

Illustration of trIvIality 
In the optImal subspace, 
due to dual degeneracy. 

2 

\.0 \.S 

Two vertices (Simplex solutions) are co-equally optimal 
at T = 3. Any point on the facet between them is also co
equally optimal. This situation arose because in the 

(s3 = xl + x2 = 3) subspace, the objective function is trivial. 

The fact that xl = 1.1, x2 = 1.9 is optimal, yet only one 
restriction is binding does not invalidate the theorem. It is 
the case of a trivial objective function referred to in the 
proof. That objective function is trivial in the s3 = 0 
subspace, not elsewhere in the xl, x2 co-ordinate space. 

N.B. 

A summary of this proof may be found in section 14.8, where 
the same theorem is stated and proved for the more general 
non-linear (and non-convex) case. 
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ANSIIER-SHEET 8.6 EX 

THE SET-UP TABLEAUI 
NAME!! X I X 2 

S I 
S 2 

T 

!! 2 
! I <D 
II -2 

I 
-2 

S I 

graph B 6 ex 

graphlca mappIng 
of exercIse B.6 b 

S 2 T I! VALUE 

! I 15 
! I 3 

! I 

12 11, 

THE RL'l.E OF THE 
STEEFEST ASCENT 
INDICATES XI AS 
(ONLY ELI GEAELE) 
INCOMING VARIA
SLE. THE RATIOS 

BETIIEEN THE VALUE COLUMN AND THE XI COLUMN ARE 15/2 • 7.5 FOR SI 
AND 3/1 • 3.00 FOR S2. THE RULE OF THE SMALLEST QUOTI nJT THEP.EFORE 
INDICATES S2 AS THE LEAVING VARIAELE. 

THE VERTEX FOLLOIiING STEP II 
NAME I I X I X 2 I SIS 2 

S I II 
X I !! 

T 'I 

® 
-2 

-3 

-2 
I 

2 

T II VALUE 

II 9 
II 3 

! I 6 

THE RATIO 3/-2 • -1.50 FOR XI AS LEAVING VARIABLE IS 
liE THEREFOP.E CHOOSE SI AS LEAVING VARIABLE. 

THE VERTEX FOLLOIiING STEP 21 
NAME I I X I X 2 I SIS 2 T II VALUE 

X 2 II 0.20 -0.40 I II 1.80 
X I II 0.40 0.20 I I I 6.60 

T II 0.60 0.80 I II 11.40 

THE Rt'\. E or THE 
STEEPEST ASCENT 
NOW INDICATES X2 
AS THE (ONLY ELI
GEAEL E) INCOMI NG 
VARI AELE. 
NOT ELI GEAELE. 

NOli WE DON'T FIND 
A tlEGATI VE ENTRY 
IN TH E OBJEC TI VE 
FUNCTION ROW, 
VE HAVE rOL'ND 
THE OPTIMU1, 



CHAPTER IX 

THE SEARCH FOR A FEASIBLE SOLUTION 

9.1 The case of one unfulfilled restriction 

In Section 7.1 we defined the L.P.-problem as: 

(a) finding a feasible solution, 

(b) finding, among all feasible solutions, the optimum. 

This definition is slightly shorter than the one formally 
given in Section 7.1. This is so, because we now use some 
terms, which we had not yet defined in Section /.1. The substance 
is the same. 

It is standard practice to tackle - if needed - (a) first. The 
operation is known as "Phase I", leaving optimization as 
"Phase II". 

The Simplex Algorithm gave us as yet only a solution to (b), 
on the assumption that we had one to (a). The reason for this 
curious order is this: 

The search for a feasible solution is done with help of the 
maximizing algorithm. 

The method of solving the "Phase I" problem, offered in this 
book, is probably best described as the use of a substitute 
objective function. It should, however, be stressed that the 
method of artificial variables (summarized briefly in 
Section 9.5), is in fact more commonly used, or at least 
reported in the literature. In the case of just one violated 
restriction, the substitute objective function is, in effect 
the slack of that one violated restriction. 

Consider the partitioned system: 

C x + t .£ 

d' x + f.I 0 

-w' x + 0 0 

We have split off one row from A, partitioning A into a 
remainder matrix C, and the row-vector d'. The vectors sand b 
are correspondingly split into scalars ~ and 0, and the
remainder t and c. 

181 



182 CHAPTER IX 

We assume ci ~ 0 (i = 1, 2, ... m-l), but 0 < O. The trivial 
solution satisfies the first m-l restrictions, but not the 
last one. The problem of finding a feasible solution will then 
be solved by finding the maximum value of ~ = -d' x+o. We do 
not always really need the maximum value of ~. But-if a non
negative solution is at all possible, the maximum will be a 
non-negative solution. We therefore start with maximizing 
-d' x, subject to C ~ 2~. 

For example, consider the problem used in Section 7.4 to 
illustrate the possibility of graphical solution. 

The initial Simplex tableau for that problem (now suppressing 
the T and "check" columns) is: 

TABL EAU 9. 1 A 
SET-CP TABLEAU OF A LINEAR PROGRAMMING PROB
ELEM. WITH AN INFEASI8LE STARTING SOLUTION. 

NAME! ! X 1 X 2 'S 1 S 2 S 3 !! VALl'E 
----------------------------------------------------
S ! ! 1 
S 2 !! -3 
S 3 !! -1 

1 
- 1 

1 

! ! 7 
!! -6 
! ! 2 

----------------------------------------------------
! !! 3 - 1 ! ! 

We treat the s2-row as a substitute for the objection function. 
For the time being we try to increase s2 instead of T. The 
most negative element in the s2-row is provided by the xl
column. Hence xl will be the first pi~ot-column. For the moment 
we will assume, that the s2-row (now being the objective 
function), is excluded as pivot-row. The real objective function 
is of course not eligible as a pivot-row either. This leaves 
us with the choice of sl and s2 as candidates for becoming 
pivot-row. Here sl produces the only pair of positive numbers, 
and will be our pivot row. We will indicate this in the 
tableau, which now is: 
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TAE'L FAU 9. I E 
SE:T-l'P TAEL EAU 1rIi TH AN 1 NI'EASI EL E STAF.TI NG 
SOLUTION, AND PIVOT MAF~ED. 

NAME! ! X I X 2 S I S 2 S 3 I I VALUE 
----------------------------------------------------
S I !! CD 
S 2 !! -3 
S 3 I! -I 

T !! 

I 
-I 

I 

-I 

II 7 
! I -6 
! I 2 

I! 

We now carry out the indicated step. In graph 7.4a this step 
corresponds to a movement along.the Xl-axis, until the top 
left-hand corner of the quadrangle is reached. The new Simplex 
tableau will be: 

TAELEAU 9. I C 
UPDATED TAELEAl' OF AN LF PROELEM, 1rIITH INFEASIBLE 
STARTING SOLUTION, AND A NO'" AMFLY FULFILLED 
RESTRICTION. 

NAME! ! 

X !! 
S 2 !! 
S 3 !! 

"!' !! 

X I X 2 

I 
2 
2 

-4 

S I 

I 
3 
I 

! -3 

S 2 S 3 ! I VALUE 

! ! 7 
!! 15 
I,! 9 

!! -21 
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This tableau represents a feasible solution, witness the non
negativity of the "value" column. The further search for the 
optimum can then be carried out with the methods described in 
Chapter VIII. There are, however, two remarks to be made in this 
stage. 

Firstly, the choice of sl as the pivot-row is in fact not quite 
correct. It does lead to the desired result. But cases may arise, 
where the extension of the rule for choosing a pivot row, 
obtained in Chapter VIII to non-feasible problems, could lead to 
trouble. The problem will be discussed in the next paragraph. 

Secondly, one should realize, that the search for a feasible 
solution, does not always end with finding one. 
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If we have the system: 

maximise Xl' subject to: 

< 3) 
) 

< -4) 

CHAPTER IX 

We will start with maximizing x 2 . But clearly, the maximum of 
x2 will be obtained with x2 = 3. Yet no value of x2' smaller 
than 4, will satisfy the second restriction. The system has no 
feasible solution. 

An L.P.-problem, to which no feasible solution can be found, is 
known as an empty problem. Since the present problem again 
involves only two variables, we can illustrate it graphically. 
Again the shaded side of the restrictions indicates the non
admissable side (See graph 9.1a). 

5.0. .• c' 

........ 

u I X1 

graph 9.1 a 

iLLustration of 
an empty probLem. 
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There is no place in the graph, that is at the non-shaded 
side of all the restrictions. The restrictions contradict each 
other. This reveals the emptyness of the problem graphically. 

The fact that the problem is an empty one, can also be 
demonstrated by the Simplex Algorithm. This takes only one 
step; two Simplex tableaux. 

These Simplex tableaux will be: 

TABLEAUX 9.1 D AND 9.1 E 

RECOGNITION OF AN EMPTY PROBLEM 
BY TH E 51 MPL EX M ETHO D. 

NAME! ! 

5 1 I! 
5 2 !I 

T !! 

NAME! ! 

X 2 !! 
52!! 

T !! 

X 1 

-I 

x 

-I 

X 2 

CD 
-I 

o 

X 2 

The s2-row should now be read: 

-1 

5 

s 

52!! VALUE 

I! 
! I 

! ! 

3 
-4 

S 2 !! VALUE 

! ! 
I! 

! I 

3 
-I 

This is an entirely non-negative combination of the non
negative variables xl' sl and s2' Such a linear combination can 
never be equal to something negative. It is an "impossible" 
restriction. Whenever we find in any row, a negative element 
in the "value" column, and positive elements (or zeros) in all 
other columns, this certifies the problem to be 'empty. This 
situation should then be listed as an indication of the end of 
the algorithm. 

When we are searching for a negativ~ element in a row, with a 
view to finding a new pivot column, and do not find one, this 
will always certify the end of the algorithm. If the row is the 
objective function, the inference is that we have reached the 
optimum. If the row is not the target-row, it must be a row 
describing one of the basic variables or a combination of them 
in some versions of the Simplex algorithm. The value of the 
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corresponding variable must be negative. Then the problem has 
been found empty. The situation will never arise with a row 
describing a positive variable. We do not perform such search 
operations in rows describing positive variables. 

9.2 Again: The choice of the pivot row 

In Section 8.3, we discussed the choice of the pivot row. We 
then assumed the existence of a feasible solution. The rule 
then said that we should divide the (positive) values of the 
basic variables by the positive elements in the pivot column, 
and select the smallest among these quotients. In this form, 
the rule of the smallest quotient excludes the choices of 
negative pivots. This rule will no longer do. We must assume 
the normal result of the feasibilization-algorithm to be: 
unfulfilled restrictions becoming exactly fulfilled, by 
becoming pivot row. 

Consider the L.P.-problem, that was first discussed in 
Section 7.4, as an example of graphical solution. We solved a 
feasible solution to this problem, by extending the old rule 
of the smallest quotient, to this non-feasible problem. (See 
the preceding Section I of this chapter). But from graph 7.4a 
it will be clear that xl = 2 would have been sufficient, while 
we increased xl in fact until xl = 7. The choice of s2 itself 
would have been more efficient. The step we should have made, 
is given below in the corresponding Simplex tableaux. 
(Tableaux 9.2a and 9.2b). Tableaux 9.2b and 9.lc both indicate 
feasible solutions, but 9.2b indicates the higher solution 
value. 

TABLEAUX 9.2 A AND 9.2 B 
SELECT THE SMALLEST QUOTIENT. WITH A NEGATIVE PIVOT. 

NAME! ! X 1 

S 1 ! ! 1 
S 2 !! @ 
S 3 !! -1 

T !! 3 

NAME! ! x 

X 2 

1 
-1 

1 

-1 

X 2 

S 1 S 2 

S S 2 

S 3 !! VAL LIE 

! ! 7 
!! -6 
! ! 2 

! ! 

S 3 !! VALliE 

----------~-----------------------------------------S 1 ! ! 
XI! ! 
S 3 !! 

T !! 

0.67 
0.33 ! 
1.33 ! 

-2 

0.33 
-0.33 
-0.33 

! ! 
! ! 
! ! 

5 
2 
4 

!! -6 
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This is not just a problem of efficiency, of finding the optimum 
in the shortest possible number of steps. 

For consider the following L.P.-prob1em 

TAELEAU 9.2 C 

TO EltTER XI INTO THE BASIS AT ALL. 
WE NEED A NEGATIVE PIVOT. 

NAME! ! X I 

S I !! ~ 
S 2 !! -I 

'!' !! 

X 2 

-I 
I 

-I 

S I S 2 !! VALUE 

! ! -6 
! ! 2 

! ! 

This is basically the same problem as the preceding one. The 
first restriction, which was not binding on the optimum, has been 
omitted. As a consequence of this the second and third 
restrictions have been renamed first and second. Like the 
preceding one, this problem has a normal optimal solution, again 
xl = 1 and x2 = 3. However, once we take xl as our pivot column, 
we are forcea to take a negative pivot, as there are no positive 
numbers in the xl-column. 

We now formulate the new rule for choosing the pivot row, as 
follows: 

For each non-zero element of the pivot-column, establish whether 
the corresponding element in the "value" column has the same sign 
(zeros to be counted as positive). For all pairs of negative 
values of basic variables and negative elements of the pivot 
column, find the largest quotient of the variable divided by the 
candidate-pivot. For all pairs of positive numbers, and this one 
pair of negative numbers, find the smallest quotient of the value 
of the variable divided by the candidate-pivot. It will be 
observed, that all the quotients are positive. 

The following examples may illustrate this new rule. We first 
consider the example in Section 8.3. This is a feasible problem, 
hence no pairs of negative numbers are available. In that case 
the new rule is identical to the old one. Then there is the 
example of Section 7.4, discussed earlier in this section. There 
is one pair of positive numbers (sl), and one pair of negative 
numbers (s2). The s3-row is not eligible as a pivot-row, as this 
is a pair with unequal signs. If we took s3 as the new pivot-row, 
xl would be pivoted into the basis with the negative value of -2. 

The largest of the quotients of negative numbers is -6: -3 = 2 
for s2' and it is the only quotient in this group. The 
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smallest of the quotients of positive numbers is 7 : 1 = 7 
for sl' again in fact the only one. From these two quotients 
the smallest must be chosen, and this is -6: -3 = 2 for s2. 

Then there is the example of the empty problem, discussed in 
this chapter (Section 9.1): 

TAELEAU 9.2 D 

A SMALLER ~UOTIENT OF TWO POSITIVE 
tJt'MEEP.S HAS PRIORITY OVER A EIGGER 
QUOTIENT OF TWO NEGATIVE NUMEERS. 

NAME!! X 1 X 2 S 1 S 2 !! VALUE 

S 1 ! ! 
S 2 !! 

T !! -1 

CD 
-I 

o o o 

!! 3 
!! -I,) 

! ! 

We search for the most negative element in the s2-row, and 
find x2 as our pivot-column. We then consider the quotient 
3 : 1 = 3 for sl' which is the smallest (the only one) among 
quotients of positive numbers. And we consider -4 : -1 = 4 
for s2' being the largest (the only one) among quotients of 
negative numbers. From these two quotients, 3 for sl is the 
smaller one, and is chosen. 

And consider the example in this section (see tableau 9.2c) 

In this example, the "search" for the smallest/biggest quotient 
is again trivial on account of the presence of only one 
quotient of the appropriate sign. 
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We look for the most negative element in t~e 5 1-row, f~n~ Xl 
as the pivot column, and there are no quot1ents of posit1ve 
numbers available, while there is one quotient of negative 
numbers. This situation is typical for feasioilization-problems. 
We have a row with a negative element in the "value" column, and 
we look for the most negative element in that row. Therefore, if 
we have found a pivot column, there must be at least one pair of 
negative numbers, namely in the unfulfilled restriction that gave 
us the pivot column. In the example at hand, we find sl as our 
pivot row. 

The next example will help us to see the essential efficiency
advantage of the new rule. Consider the L.P.-problem as given 
in~ 

TAB1.EAUX 9.2 E AND 9.2 r 

CHOICE Or THE BIGGER Or TIJO Ql'OTIENTS Or 
NEGATI VE NL'MEEPS: rEA!:I E1.E IN ONE STEF. 

NAME II X 1 

S 1 I I 1 
5 2 11 -1 
S 3 II 

T II -1 

NA'1E I I x 

Sill 1 
S 2 II -1 
X 2 II 

T II -1 

X 2 

1 
-3 
8) 

X 2 

5 I S 2 

S S 2 

5 3 !I VALUE 

I! 6 
I! -3 
! I -2 

II 

5 3 I I VALUE 

I 
-3 
-1 

II 
II 
II 

1I 

3 
2 

II -2 

Suppose we start with maximising s2' We find -3 for x 2 as the 
most negative elements in the s2-row . 

There are now two pairs of negative numbers; -3: -3 = 1 for s2 
and -2 : -1 = 2 for s3' of which s3 provides the largest quotient 
of negative numbers. There is one quotient cf positive numbers, 
6 : 1 = 6 for sl' Of the two quotients, 6 for sl and 2 for s3' 
the latter one 1S the smaller. Therefore we choose s as our 
pivot row. The next solution will then be x2 = 2, wi~h 5 = 4 
and s2 = + 3. We have satisfied two violated restriction~.in 
one step. 

As this again is a problem of only two variables, it can be 
illustrated graphically, which has been done in graph 9.2a. 
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7 
graph 9.2 a 

two restrictions have 
broadLy the same sLope 
and one may fly through one. 

CHAPTER IX 

From the graph, we observe that the proposed step will in fact 
bypass the second restriction, turning it from a violated into 
an amply fulfilled restriction. 

In fact, if it were not because of this efficiency-aspect, we 
should have taken a more simple rule. 

The "conservative" rule of taking always the smallest of all 
available positive quotients (including quotients of negative 
numbers), would always solve the problem. And it would have the 
advantage of being simple. 
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Under this "conservative" rule, a feasible solution would be 
reached in two steps, instead of in one. The corresponding 
Simplex tableaux would then be: 

TAEL FAUX 9.2 G. H. AND I 

CHOI CE OF THE SMALLER OF T1.'O QUOTI ENTS or 
NEGATIVE NL'MEERS: FEASIBLE IN T1o.'Q STEPS. 

NAME I! X I 

S I ! ! I 
S 2 ! I -I 
S 3 !! 

T !! -I 

NAME !! x 

S I ! ! 0.67 
X ~ ! ! 0.33 
S 3 ! ! 0.33 

X 2 

I 
E]) 
-I 

X 2 

S I S 2 S 3 II VALVE 

! I 6 
II -3 
!I -2 

! I 

S S 2 S 3 II VALUE 

0.33 I! 5 
-0.33 ! ! I 

~ ! ! -I 

-----------------------------------------------------
T ! ! -1.33 

NA!'1E ! ! 

S I ! I 
X 2 !! 

X 

S 2 ! I -I 

T !! -I 

I X 2 S 

0.33 

S 2 S 

I 
-I 
-3 

3 

! I 

II 

!l 
I! 
I! 

-I 

VALL'E 

4 
2 
3 

II -2 

It will be observed that, apart from the interchanging of the 
position of the rows "X2" and "s2", this tableau is exactly 
the same, as the one that would have been obtained in one step, 
with the help of the more complicated rule. 

There is, apart from its simplicity, yet another argument ~n 

favour of the "conservative" rule. Like the ordinary rule of 
the smallest quotients, the "conservative" rule tends to avoid 
small pivots. The more complicated "efficient" rule on the 
other hand, will to a certain extent favour the choice of small 
pivots. For consider the following problem: 
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TAELEAUX 9.2 J AND 9.2 K 

CHOI CE Of THE BI GGER Of T\lO QUOTI nns Of NE
GATI VE NL'MBERSI A VERY SMALL PI"VOT RESULTS. 

NAME! ! X I X 2 5 I 5 2 ! I VALUE 

;-~--~~--~~:~j)-:~-------------------~~--:~--
5 2 I! -I I II -I 
----------------------------------------------

T II ! I 

NAME! ! X I X 2 5 I 5 2 ! I VALUE 

----------------------------------------------
X I !! 
S 2 I! 

100 
101 

1-100 
1-100 

! I 100 
II 99 

----------------------------------------------
T I I -99 I 100 !!-IOO 

CHAPTER IX 

If we start this problem with trying to get sl non-negative, no 
particular problem occurs. In that case x2 becomes the pivot
column. And then only sl can become the pivot-row. But if we 
start with trying to get S2 non-negative, some strange figures 
may occur. Then Xl becomes the pivot column. We will then have 
to choose between two pairs of negative numbers: 

-1.00 : -0.01 = 100 for sl and -1.00 : -1.00 = 1 

for s2' Choosing the larger of the two quotients then will give 
us the number 0.01 as pivot. Then any rounding errors in the 
sl-row are multiplied by 100. And it is not at all certain that 
such a pivoc was really needed. In fact, with the "conservative" 
rule, a feasible solution would be attained in two steps, 
without the occurring of such small pivots. The next two 
tableaux would then be: 

TABLEAUX 9.2 L AND 9.2 M 

CHOICE Of THE SMALLER Of T\lO QUOn ENTS OF 
NEGATIVE NL'MEERS: A BIGGER PIVOT RESULTS. 

NAME! I X I x e 

5 I !I -0.01 -I 
52 !IED I 

T !! 

NAME! I 

S I ! I 
X I !! 

T !! 

x X 2 

- 1.0 I 
-I 

2 

5 I 

5 

5 2 I! VALUE 

! I -I 
I I -I 

! I 

5 2 I! VALUE 

-0.01 ! I -0.99 
-I !! I 

!! -I 
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The problem can be overcome by modifying the "efficient" rule. 
It will now be: 
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For each non-zero positive element in the pivot-column, and a 
corresponding positive (or zero) value of the basic variable, 
find the smallest quotient of the value of the basic variable, 
divided by the corresponding element of the pivot column. Compute 
quotients of negative values of basic variables, divided by the 
corresponding elements of the pivot-column (candidate pivots) 
as far as the latter are negative and in absolute value greater 
than a specific small non-zero number. If one of these quotients 
should be larger than the smallest quotient of positive numbers, 
the row which originally gave the smallest quotient of positive 
numbers, is the pivot row. If all eligible quotients of negative 
numbers have been computed, while none of them is larger than the 
smallest quotient of positive numbers, the row in which the 
largest quotient of negative numbers was found, becomes the 
pivot row and the problem is feasible in one step. If no quotient 
at all has been found in this way, whether of negative numbers, or 
from positive numbers, find among the negative and non-zero 
elements of the pivot-column, corresponding to negative values of 
basic variables, the absolutely largest (= most negative) element 
in the pivot column; the corresponding row will be the pivot row. 
Note that we would not have entered such a column, unless a pair 
of negative numbers were available. 

This seems quite a mouthful, because it should once be formulated 
with some precision. It can also be said a lot shorter: 

Find the smallest quotient of positive numbers. Find out if any 
quotients of negative numbers are larger, but reject too small 
negative pivots. If a quotient of negative numbers is found to be 
larger, the quotient of positive numbers provides the pivot row. 
Otherwise choose the largest of the quotients of negative numbers. 
If no pivot at all is found in this way, we will be forced to 
accept a small negative pivot; take the largest (=most negative 
one) avai::'able. 

The L.P. code which is offered in Section 12.3 applies this rule 
with some modifications; its bias for small pivots being one of 
the main reasons for these modifications. 

When the current solution is not feasible, preference is given 
to columns which indicate an increase in the value of the 
specified objective function as well as in the value of a 
substitute objective function. In such "preferred" columns, 
negative pivots are not accepted at all. In other columns, 
representing variables which increase a substitute objective 
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function (the sum of the slacks of all violated restrictions), 
at the cost of a reduction in the value of the specified 
objective function, the criterion of the dual ratio is 
superimposed on that of row-selection. A discussion of that 
criterion is, however delayed to section 11.3. 

Exercise 

Starting with tableau 8.lla, solve the example-problem from 
section 7.4 several times, once for each pivot-selection rule 
discussed in this section. Use shortened tableaux with a 
sum+l check column throughout. Check the correctness of your 
calculations by 

a) Charting xl and x 2 in graph 7.4a, finding them to 
match vertices 

b) Comparing with the full tableaux, as far as available 
in print 

9.3 The choice between a number of violated restrictions 

Suppose ~n the initial solution a whole series of restrictions 
is not satisfied. For instance, let s3' s12' s13' s24' s26 and 
s32 have negative slacks. In the preceding paragraph, we 
assumed that we chose our pivot column by finding the most 
negative number in the row, corresponding to a violated 
restriction, or the objective function. In what row should we 
look, if there are many negative values? One obvious approach 
would of course be: start with s3' then take s12, etc. We 
tackle the different restrictions in the order of their index 
number. If we start with s3' we may find after one step, that 
we came to a solution satisfying s13' by incident, but still 
have a negative element in the s3-row. The collection is then 
s3' s12' s24' s26 and s32. We then again take the most negative 
element in the s3-row, to find a pivot-column. After the second 
step, we may have satisfied s3, but also incidentally S12 and 
s26. Since we never take a quotient, larger than the smallest 
quotient of positive numbers, there are never new names added 
to the list of violated restrictions. Our collection is then 
s24 and s32' we now take s24 as our next substitute for the 
target-row; etcetera. 

At each step, we look for the negative variable with the lowest 
index-number. In that row, we look for the most negative number. 
If we do not find such a negative number, we know that the 
problem has no feasible solution. Otherwise we will always end 
up with finding a feasible solution. 
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This procedure is not necessarily an efficient one. Consider 
the following example: 

TABLEAU 9.3 A 

THE EFFI CI ENT STEP DOES NOT CORRESPOND TO THE 
STEEPEST ASCENT IN ANY SEPERATE RESTRICTION. 

NAME ! I X I X 2 X 3 X 5 II VALUE 

S I ! I -2 - I ! I -2 
S 2 ! ! -2 -I ! ! -2 
S 3 ! ! -2 -I II -2 
S II ! I -2 - I II -2 
S 5 I! I c=::D I! -3 

T ! I I! 
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In this problem, x5 = 3, with s5 as the corresponding exactly 
fulfilled restriction, is a feasible solution. This can be seen 
from the corresponding shortened Simplex Tableau: 

TABLEAU 9.3 B 

OPTIMAL AND FEASI BLE IN ONE STEF. AFTER 
STARTING WITH FIVE VIOLATED RESTRICTIONS. 

NAME ! ! X X 2 X 3 X II S 5 ! ! VALUE 
----------------------------------------------
S I ! ! -3 - I - I - I - I ! ! 
S 2 ! ! -I -3 - I -I -I ! ! 
S 3 ! ! -I - I -3 - I - I ! ! 
S 4 ! ! -I - I -I -3 -\ ! ! \ 
X ~ ! ! -\ - \ - \ -I - \ ! ! 3 
----------------------------------------------

T ! ! 2 2 2 2 !! -3 

Now if the problem is started with maximizing s5' this feasible 
solution is reached in one step; it is the optimum as well. But 
if we start with sl' s2' etc., we will have to run through six 
tableaux, before we reach a feasible solution. To some extent, 
this is just the result of the fact that the Simplex method is 
an iterative method; the properties of the optimum are unknown, 
before the optimum is actually solved. But there is one 
systematic aspect. If we start with maximizing sl', we will take 
xl as pivot column. In doing so, we make s5 more negative. This 
is so, because in the xl-column, the element in the s5-row is 
positive. Apparently "good" columns are columns with negative, 
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or at least non-pos1t1ve elements in all rows representing 
violated restrictions. This cannot be made into a general rule 
for finding the pivot column. The normal case will be that all 
columns have both negative and positive signs. Could we perhaps 
make it the rule, that we should take the column with the 
largest number of negative elements in the rows that represent 
the violated restrictions? We could not. For consider the 
following example, where one step has been made according to 
this rule (shortened tableaux). 

TABLEAUX 9.3 C AND 9.3 D 

INCONSISTENT SVBSTITUTE OBJECTIVE FUNCTION. 
CHANGING AT EACH STEP: THE RESVLT IS CYCLING 

NAME ! I X 1 X 2 X 3 X 4 X 5 !! VALVE 

S 1 ! ! CD ! ! 1 
S 2 ! ! -I -I ! ! -2 
S 3 ! ! -I -I ! ! -2 
S 4 ! ! 1 -I ! ! -I 
S 5 I! 1 -I ! I -I 

T II ! I 

NAME !! S 1 X 2 X 3 X 4 X 5 II VALUE 

X 1 I! CD ! I 1 
S 2 ! ! 1 -I ! ! -I 
S 3 ! ! 1 -I ! 1 -I 
S 4 ! ! -I -I ! ! -2 
S 5 ! ! -I -I II -2 

T ! I II 

Again taking the column with the largest number of negative 
elements in rows 2-5, reproduces the initial solution, and 
leads to cycling. We really need the approach discussed in 
Section 1 of this chapter. As long as the list of the violated 
restrictions is the same, a substitute objective function 
should be increased at each step. And as long as the list of 
the violated restrictions is unchanged, this should be the same 
function at each following step. But there is a compromise. 

We can maximize the sum of all negative slacks. Our substitute 
objective function will then simply be the sum of all 
unfulfilled restrictions. On the average, this rule has a 
higher probability of choosing "good" columns, relative to 
attacking the violated restrictions in the order of their 
ir.dices. 
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Another reasonably efficient procedure is to apply the 
principle of steepest ascent to the selection of the 
restriction to be eliminated, but only intermittently. We 
choose a "badname", indicating the most negative valued slack
variable. Then we go on increasing ("maximizing") this negative 
slack-variable, until it is eliminated. This is more or less 
the procedure we first suggested in Section 9.1. The rule for 
selecting the pivot-row is then as follows: 

First, consider the "badname" row itself as pivot-row. In the 
"badname" row, there is always a positive and non-zero quotient, 
between the negative entry in the value column (indicating the 
violated "badname" restriction) and the negative entry in the 
pivot column (selected as the most negative entry in that 
row) . 

Refuse all other negative pivots. Apply the rule of the 
smallest quotient between the one quotient of negative numbers 
already selected, and such quotients of positive numbers as may 
be found. 

In our example (above) these rules would result in the same 
step as for the "efficient" rule. We would take s5 as our 
(first) "badname" and provisionally select the s5' x5 element 
as pivot. Since there are no positive entries in the x5 column 
at all, the question of selection of the smallest quotient does 
not arise. 

This rule is, on the whole likely to require more steps than 
the use of all violated restrictions as substitute objective 
function, but it has the advantage of being simpler. (It also 
provides a better safeguard against loss of accuracy due to 
the choice of a very small pivot. A negative entry in the 
"badname" row, selected as the most negative in that row, is 
not likely to be very small in absolute value. 

9.4 pivot-selection in Phase I: the general case 

By way of example, we will now tackle a "general" linear 
programming problem. With the word "general" we mean that all 
the problems discussed so far, are present in this example. 
The initial tableau is neither optimal, nor feasible. 

We will use shortened tableaux and apply the "efficient" rules 
for selecting pivots. The problem is given in tableau 9.4a 
on the next page. 
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TABLEAl' 9 • .11 A 

TABLEAU VITH SUBSTITUTE OBJECTIVE FUNCTIONI 
THE GENERAL CASE. 

NAME I! X I X 2 X 3 X.ll II VALUE 

5 I ! I I -2 @ -I ! I 3 
5 2 ! ! -2 3 ! ! 2 
5 3 ! ! -3 I -2 3 ! ! -I 
5 .II ! ! 3 -2 1 -3 II -I 
5 5 ! ! -2 1 -3 -2 ! 1 -6 

T II 3 -I -2 II 

51 ! I -2 -2 II -8 

The row S1 1S the substitute objective function row, si 
standing for sum of infeasibi1ities. This row is obtained by an 
addition of the violated restrictions, in this case s3, s4 and 
s5. The rule of the steepest ascent, applied on the substitute 
objective function, will indicate x3 as the pivot column; 
the number -q being the most negative element in the substitute 
function. The x3-co1umn is also the only "preferred" column, 
indicated by both the specified and the substitute objective 
function. 

Among the pairs of numbers between the value-column and the 
(x3) pivot column, three pairs have equal sign. The 
corresponding quotients are 3 : 3 = 1 for sl, -1 : -2 = ! for 
s3, and -6 : -3 = 2 for s5. The other pairs have unequal 
signs, hence the corresponding rows are not to be considered 
as pivot row in this stage. The largest quotient of negative 
numbers is found to be -6 : -3 = 2 for s5. The smallest 
quotient of positive numbers is 3 : 3 = 1 for sl. Of these 
two quotients, the one for sl is the smaller one. The sl-row 
will be the pivot-row. 

The tableau is updated in the usual way, except for the 
substitute objection function. This function is re-specified 
itself, every time when one or more violated restrictions cease 
to be violated. It is therefore more convenient to simply add 
the relevant rows. 
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Our second tableau will now be: 

TABLEAU 9.4 B 

WE HIT THE OTHER SIDE OF THE FEASIBLE 
SPACE AREA. NO MORE FLYING THROUGH. 

NAME I! X 1 X 2 S 1 X 4 " VALUE 
---------------------------------------------
X 3 II 0.33 -0.67 0.33 -0.33 " 1 
S 2 II -2 3 " 2 
S 3 " -2.33 -0.33 0.67 2.33 " 1 
S 4 II 2.67 -1.33 -0.33 -2.67 II -2 
S 5 II -1 -1 1 -3 II -3 
---------------------------------------------

T II 3.67 -2.33 0.67 0.33 " 2 

From the tableau, it will be observed, that s3 has dropped from 
the list of the violated restrictions. The slack-variable s3 is 
still in the basis, but now with a positive value. We could of 
course have followed the conservative rule, and have taken s3 
as the pivot-row, instead of sl as we did. The corresponding 
value for x3' the new basic variable, would have been !, if s3 
had been our pivot row. What have we gained by increasing x3 
still more, until x3 = I? This can be seen from the previous 
tableau. On inspection of the x3 column in that tableau we see 
that such further increase of x3' has increased ss with 
! x 3 units, and has reduced s4 with ! ~ 1 unit. Then the sum 
of the negative slacks s4 and ss has increased 1 units, by 
using the "efficient" rule for choosing the pivot row instead 
of the "conservative" one. This "extra" is of course a per 
chance possibility. But it is not quite incidentally. The 
pivot column x3 was chosen because -4 was the most negative 
element in the substitute objective function. This was the sum 
of such elements in the x3 column, as corresponded to the 
negative slacks. Because it was an in absolute value relatively 
large number, this sum did not change sign after one of the 
variables dropped from the list of negative slacks. The 
remainder list still provided a negative sum. The other "extra" 
possibility of the "efficient" rule is the dropping out of more 
than one name from the list of negative variables. But this 
did not materialize. 

9.S The method of artificial variables 

This is the method most commonly advocated in literature on 
the subject. For each restriction, not satisfied by the trivial 
solution, one defines an artificial activity. This artificial 
variable in fact is minus the slack of the violated restriction. 
This variable declares the restriction to be satisfied, but at 
the price of a huge penalty-element in the objective function. 
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Alternatively, one first solves the problem of minimizing the 
sum of the artificial* variables. 

This defines a related problem. The related problem is a 
problem, of ~hich we may for some reason assume that it will 
have a solution similar to the solution of the original problem. 
This assumption is in the present case based on the "penalty" 
elements in the objective function. Any solution to the related 
problem, with one of the artificial variables being one of the 
basic variables, will have a huge negative value for the 
objective function. 

When the original problem has no feasible solution (is empty), 
the artificial variables cannot be eliminated out of the basis 
of the related problem. Otherwise, the optimum of the related 
problem will be the optimum of the original problem. 

Let us now see, how an L.P.-problem is solved with the method 
of artificial variables. Consider again the example given in 
Section 2 of this chapter. The initial tableau for this problem 
in "ordinary" extended form is already given as tableau 9.2e. 

The related problem then is the one given below in tableau 9.5a 

TAELEAU 9.5 A 

TABLEAU WITH ARTIFICIAL VAPIABLESI TO 
BE EXCHANGED AGAINST NEGATIVE SLACKS. 

NAME! I X I X 2 A I A 2 S I S 2 S 3 ! I VALUE 
-----------------------------------------------------------
S I ! ! I 
S 2 I! -I 
S 3 !I 

I 
-3 
-I 

!I 
II 
II 

6 
-3 
-2 -----------------------------------------------------------

T II -I 100 100 II 

The artificial variables are now pivoted against the 
corresponding slacks. To all practical purposes, this amounts 
to changing the signs of the rows, representing the violated 
restrictions. The artificial variables are the negative 
counterparts of the slacks; they become basic variables, with 

*cf W. W. Garvin "An Introduction to Linear Programming" nIl 
pp.39-46 or G.B. Dantzig "Linear Programming and Extensions" 
[8J pp.94-103. 
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positive values, instead of the slacks with negative values. 
After two steps, this automatically results in a feasible 
solution to the related problem: 

TABLEAU 9.5 E 

ARTIFICIALLY FEASIELE STARTING SOLUTION. 

NAME!! X 1 X 2 A 1 A 2 S 1 S 2 S 3 !! VALUE 

-----------------------------------------------------------
S \ ! ! 
AI! ! 
A 2 !! 

1 
@ 

I 
-I 

-1 

I! 
I! 
! ! 

6 
3 

-----------------------------------------------------------
T !1-101 -399 100 100 !! - 50 0 

If the original problem has a feasible solution at all (if 
it is not empty), the optimum of the related problem will be 
such, that the artificial variables are not in the basis. Their 
elimination is achieved by the normal process of simplex 
operations. In the present example there will be two more 
tableaux, before a 2 and a 3 will have been eliminated. 

TABL EAUX 9. S C P.ND D 

n:o FURTHER TAELEAL'X OF THE SAME PROBLD'!. 

NAME I! X I A 1 A 2 S I S 2 S 3 II VALUE 

-----------------------------------------------------------
S \ ! ! 0.67 -0.33 0.33 II 5 

X 2 ! I 0.33 0.33 -0.33 I I I 

A 2 ! ! -0.33 -0.33 ~ -I ! I I 

-----------------------------------------------------------
T ! ! 32 133 -33 100 ! ! - I 0 \ 

NAME ! ! X X 2 A A 2 S S 2 S 3 ! ! VALUE 
-----------------------------------------------------------
S \ ! ! 
X 2 !! 
S 2 !!-\ 

T ! I - I 

- \ 

100 

- \ • 00 
I 
3 

99 

1.00 !! 
-I ! I 
-3 II 

! ! 

4 
2 
3 

-2 

Tableau 9.Sd corresponds to a feasible solution of the original 
problem. 

If we have tried to obtain a feasible solution to the original 
problem, by maximising the sum of all negative slacks, while 
using the "conservative" rule of pivot-row selection we would 
have obtained the same tableau except for the absence of the 
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artificial columns. Once the right-hand side is positive the 
columns which represent artificial variables can be suppressed 
anyway. If we had used the "efficient" rule for choosing the 
pivot row, the same tableau would have been obtained in one 
step. (x2 as pivot column, against s3 as pivot row). If we had 
followed the "conservative" rule of taking the smallest among 
all positive quotients, we would, to all practical purposes, 
also have made the same steps. The difference would be that we 
would not have described them as eliminating artificial variables, 
but as eliminating negative-valued slacks out of the basis. The 
pivoting operations would have been numerically the same, except 
that we would have met positive quotients of negative numbers. 
The artificial variables have in fact served as operators, for 
adding the violated restrictions, blown up by a factor 1000, to 
the objective function. However, it is not too difficult to find 
an example (e.g. the one in section 9.4), for which several 
versions of the substitute objective function method will take 
advantage of the possibility to "fly through" several violated 
restrictions in one step. With artificial variables this is not 
possible. 

9.6 Non-updating of the substitute objective function 

It is not in practice necessary to computationally treat a 
substitute objective function as a function at all. In particular 
if the substitute preference function is the sum of the 
infeasibilities, the substitute preference coefficients may 
be computed ad hoc by adding the coefficients of the violated 
restrictions. 

Example 

Minimise 3x l + 4x2 (= maximise - 3xl - 4x2 ) 

xl + x 2 > 10 (- xl - x 2 < -10) 

xl > 2x2 + 1 (- xl + 2x2 < -1) 

x 2 > 2 (- x 2 < -2) 

xl < 8 

(<Xl' x2 .:.. 0) 
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The set-up tableau with the first pivot and the second tableau 
are given here with a substitute objective function row. 

TI'.BLEAUX 9.6 A ANI) 9.6 B 

THE St!M-Of-H:fEA!;I BILl TI ES-T:01..' 1 S OBTAINED BY ADCltlG 
I'.LL THE RO\!S REFERRING TO VIOLATED RESTRICTIONS. 

IN 9.6 1'.: It! 9.6 E: AND 3. 

NI'.ME ! x X 2 VALUE NAME! X 2 VALUE 

S 1 -1 - 1 - 1 0 
!; 2 -1 2 -1 
S 3 -1 -2 
S lj CD B 
----------------------------

T 
51 

3 
-13 

S 1 -1 -2 
S 2 2 7 
S 3 -1 -2 
X 1 8 
----------------------------

T 
51 

-3 
I -£ 

In the initial tableau the substitute objective function is 
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si = 51 + 52 + 53' and we computationally obtain it by adding 
the corresponding rows of the tableau. If we now look at the 
second tableau we note that the substitute objective function 
now is si = 51 + 53' 51 and 53 being the negative-valued slacks, 
the 52-restriction being now satisfied. From the 51 and 53 rows 
of the tableau we read the expressions for 51 and 53' i.e. 

- x 2 + 53 

si 51 + 53 -54 + 2x2 4 
Putting this again in implicit form, we obtain (the substitute 
objective function row). 

5 -
4 

= -4 

It is obvious that this row is computationally most easily 
obtained as the sum of the 51 and the 53 rows as they are 
already in the tableau. Furthermore, if one were to update the 
old substitute objective function, the result would not be 
valid, insofar as 52 is concerned. The reason is 
that the collection of violated slacks has changed, si = 51 + 
52 + 53 is no longer the correct substitute objective function. 
We ~lave no reason to increase the value of 52' now that this 
slack has ceased to be negative. 
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Exercise 9.6a 

The following L.P. problem is given: 

Minimise 

subject to 

Xl + x2 

3xl + 2x2 > 2 

xl ~ x2 + 1 

x2 ~ 2 (xl' x2 > 0) 

The following should be done: 

CHAPTER IX 

1. Make a graphical mapping and find the optimal solution 
by means of graphical analysis. 

2. Solve the problem by means of a version of the Simplex 
Method, using 

(a) full explicit tableaux, including unit vectors. 
Also write the corresponding systems of equations, 
with explicitly written variables (carry a sum-count 
column); 

(b) condensed (shortened) tableaux. 

Check that algebraically calculated solution vectors match 
vertices in the drawn graph. 
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MIXED SYSTEMS, UPPER AND LOWER BOUNDS 

10.1 Variables without sign restriction 

So far, we have assumed that the so-called "tacit" restrictions 
xl ~ 0 (all j) apply. 

There is no good reason, other than convenience why this 
restriction should always apply. Problems in which ~ome 
variables are "free" variables, or variables "of type absolute", 
occur and can be solved. , 
Some textbooks* recommend to represent "free" variables by 
defining plus or minus the same variable as technically two 
variables. For example, a problem in two variables where xl ~s 
not restricted in sign might be written as: 

Maximise x -
lp 

x ln + x 2 

Subject to 2x - 2x2n + x 2 < 10 
lp 

x 2 < 20 

< 2 

< 1 

(xlp , xn ' x 2 ~ 0) 

We have "split" Xtinto two variables, xl p being the positive 
side of xl' and xln the negative side of xl. 

There is however, no need for this cumbersome approach. It is 
enough to require that xl is a basic variable irrespective of 
its sign. As xl does not have to be positive it can be pivoted 
into the current solution, if so desired with a negative pivot. 
And, once xl is represented in the Simplex tableau by a row, 
it is except from the search operations. 

*cf. W, W. Garvin [1~ p.4 
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The following tableaux may now be developed. 

TABL.EAU 10.1 A 

SET-UP TABL.EAU WITH A fREE 
VARIABL.E. NO SPECIAL. fEATURES. 

NAME I 

S 1 
S 2 
S 3 
S 4 

T 

X 1 

2 

-I 
CD 
-I 

X 2 II ITAL.UE 

-I 

II 
II 
II 
II 

II 

10 
20 

2 
1 

Both s3 and s4 are acceptable as pivot-rows. Since x2 = 1 
gives rise to a higher solution value than x2 = -2, we might 
take the s4-row. (The code offered on section 12.3 chooses 
the lowest absolute critical ratio). 

TABL.EAU 10.1 B 

THE fREE VARIABL.E X I HAS 
NOW BECOME A BASIC VARIABL.E. 

~AME 

S I 
S 2 
S 3 

,. X I 

T 

X 2 

<D 
I 

-I 

S 4 II VAL.UE 

-2 II 
II 
II 
II 

II 

8 
20 

3 
1 *NOT TO BECOME PIVOT ROW 
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We now enter x2 into the current solution, by the normal 
rules of steepest ascent and smallest quotient, and write the 
third tableau: 

TABLEAU 10. I C 

X2 IS ~OV ALSO IN THE BASIS. 

NAME 

X 2 
5 2 
5 3 

* X I 

T 

5 

I 
-I 

5 4 II VALUE 

-2 
2 

<D 
I 

-I 

'I 
I I 
II 
II 

II 

8 
12 

3 
I 

9 

*NOT TO BECOME PI VOT ROV. 

This time the rule of the steepest ascent gives us s4 as 
pivot-column. Excluding xl from the search-operation, we find 
s3 as the pivot-row and make the step 

TABLEAU 10.1 D 

54 HAS DRIVEN OUT 531 NOT XI. 

NAME I 

X 2 
S 2 
5 4 

* X 1 

T 

5 I 

1 
-I 

5 3 II VALUE 

2 
-2 

1 
-1 

II 
II 
II 
II 

II 

111 
6 
3 

-2 

12 

*ALLOVED TO BECOME NEGATIVE 

And we find Xz = 14, xl = -2 as the optimal solution. 

Note that it is in this context meaningful to have a negative 
lower limit on a free variable e.g. xl ~ -2, written as 
-xl ~ 2. There is, however, a more efficient way of handling 
restrictions of that type (see section 10.4). 

10.2 Equations 

The most practical way to integrate equations into the Simplex 
Algorithm is first to make sure that they become binding 
inequalities, and then to exclude their slack-variables/shadow 
prices from the list of eligible pivot columns. In terms of 
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interpretation such "slack variables" are then in fact 
artificial variables but the difference in computational 
procedure is not all that much. 

CHAPTER X 

One method of ensuring the elimination of the "slack-variables" 
of equations is to present them as violated restrictions, and 
then to apply the "conservative" rule in the search operation 
for a pivot row, i.e. to accept negative pivots in rows 
representing equations. 

Example 

Maximise T xl 

Subject to xl + ZxZ + x3 10 

Xz > x3 

Xz < I 
iX3 + 3 

The initial Simplex tableau is now written as follows: 

TABl.EAU 10.2 A 

PRESENT AN EQUATION IN THE 
FORM OF A VIOl.ATED INEQUAl.ITY. 

NAME! x X 2 X 3 

S 1 
S 2 
S 3 

T -I 

-2 
-1 

1 

o 

-I I. 
1 1 ~ I 

- O. SO ! ~ I 

o 

VALUE 

-12 
o 
3 

The = sign in the sl-row is so far an intention, not a met 
requirement: The trivial basis is Xl = Xz = x3 = 0 and this is 
not equal to -lZ. 

Quite apart from the equation-status of the sl-row, the efficient 
way to solve this problem is by activating the "preferred" 
Xl-column. 
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The next tableau therefore is (after re-ordering): 

TABLEAU 10.2 B 

OPTIMAL rABLEAU. YITH A NEGATIVE
VALUED 5HADOYPRICE OF AN EQUATION • 

NAME I 

X 1 
5 2 
S 3 

T 

X 2 

2 
·1 

1 

2 

• 
X. 3 5 1 II VALUE 

1 -I 
1 

-0.50 

-I 

• 

II 
II 
II 

II 

12 
o 
3 

12 

51 NOT TO BECOME INCOMING VARIABLE. 

This tableau is in optimal form, despite the fact that the 
updated form of the objective function still conta;n~ ~ 

negative element in the sl-column. 

The objective function row, represents the equation: 

or, written in explicit form: 

T = 

Thus, we could increase the value-of the objective function 
i.e. Xl by one unit for each unit of sl' But since Xl already 
has the value of 12, Xl + 2x2 + x3 would become greater 
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than 12 if we did so, contrary to the first equation-requirement. 
Shadow prices of equations are allowed to be negative-valued in 
the optimal solution. 

10.3 Upper bounds and the two value columns 

It is obviously possible to list an upper bound on a variable 
as a restriction. 

In the example in section 10.1 there was an upper bound of 20 on 
Xl' i.e. we listed the requirement Xl ~ 20 as a restriction. 

Restrictions of this type occur fairly often, and some problems 
could be substantially reduced in size, if all variables were 
considered to have an upper bound. One coul~hen carry two 
value columns, one giving the distance of the variables from 
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zero, i.e. their value, and the other from a specified upper 
bound. 

Example 

Maximise T 2x l + x 2 + x3 

xl < 2x2 + x3 

We Will indicate the slack-variables of the upper limit 
restrictions with the letter b, bj being the distance between 
Xj and its upper limit. We need to store explicitly only the Xj 
or the bj-column, not both at the same time. (While referring 
to upper limits we shall refrain from using matrix notation, 
as confusion with the elements of the vector b might otherwise 
arise.) 

A suitable place to write the upper limits in the tableau, 
is below the columns which relate to the variables in question, 
in the (m+2)nd row. The set-up tableau now becomes: 

TABL EAU 10.3 A 

SET-UP TABLEAU WITH UPPER LIMITS. 

NAME X I X 2 X 3 II VALUE OIST. 

S I 
S 2 

CD 
I 

T -2 
BOL'NO I 10 

-2 
I 

-I 
20 

-I 
-I 

-I 
30 

II 
II 

II 
II 

o 
20 

x 

1000 
1000 

x 
x 

The column entitled "Dist" gives the distances between the values 
of the basic variables and their upper limits - As no upper 
limits for slack-variables have been specified, this column so 
far consists solely of dummy-entries. In the interest of 
uniform tableau-manipulation, a "fancyhigh" number of 1000 
has been entered, but the algorithm does not include upper 
limits on slack-variables in the search operations. 

The rule for the choice of the pivot row is modified. Eligible 
quotients are ratios between the entries in the value column 
divided by the corresponding element in the pivot-column as 
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well as the entries in the distance column and minus any 
negative elements in the pivot column, (as far as they refer 
to elements of ~). If the selection of the incoming variable 
is by the steepest ascent, we first make an ordinary step, 
developing the following tableau: 

TABLEAU 10.3 B 

THE SAME PROBLEM AFTER ONE ORDINARY STEP. 

NAME 

X I 
S 2 

S I 

I 
-I 

T I 2 
BOL'ND I 1000 

X 2 

rn 
3 

-5 
20 

X 3 II VALUE DIST. 

-I 

-3 
30 

I I 0 
II 20 

II 
II 

o 
X 

10 
1000 

x 
x 
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The entry of 10 in the "distance" column for xl is the 
originally specified upper bound of 10, less the value at which 
xl is brought into the basis - zero in this case -. In the 
upper bounds row we copy in the new pivot column the sum of the 
entries in the value column and the distance column. 
(For the Sl slack-variable, this calculation is not really 
relevant, as we do not recognize an upper limit on a slack
variable. ) 

We now find x2 as incoming variable. 

The normal rule of the smallest quotient amended by the 
inclusion of the absolute value of negative quotients with the 
upper bounds column, indicates that the upper bound on xl is 
the pivot row. (The pivot has been marked with a square rather 
than a circle, to avoid confusion with "normal" pivots). 

We first write the bl-row in the tableau. The row which 
describes the upper bound on xl differs from the xl-row, in the 
sign, and in the entry in the value column. Anything which 
increases xl decreases the distance from the upper bound on xl' 
and vice versa. The signs in the xl-row have therefore been 
reversed, except for the "value" and "distance" entries, which 
have been interchanged. We thereby obtain tableau 10.3c: 
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TABL EAt: 10.3 C 

FINDING AN UPPER LIMIT BINDINGI WE 
VRITE THE CORRESPONDING ROV EXPLICITLY. 

NAME S 1 X 2 X 3 !I VAL~E DIST. 

------------------------------------------
T I 2 

BOl'ND ! 1000 
-5 
20 

-3 
30 

II 
II 

o 
X 

X 
X 

CHAPTER X 

The pivot can now be marked in the "normal" way and we make the 
step, to obtain Tableau 10.3d 

TAELEAU 10.3 0 

TAELEAU VITH A EINDING UPPER LIMIT 

NAME S B X 3 II VALUE DIST. 

X 2 -~ 0.50 0.50 II 5 15 
S 2 ~ -1.50 -1.50 II 5 1015 
---------------------------------------------

T I -0.50 2.50 -0.50 II 25 X 
BOI..'ND ! 1000 10 30 II X X 

The entries in the "distance'" column are, in terms of 
interpretation, the slacks of the upper limit restrictions on 
the corresponding variables .• -unply fulfilled upper limit 
restrictions are not stored, except when they were specified 
as "ordinary" restrictions. 

We need a somewhat different rule for updating the distances 
column. The sum of the value of a variable itself, plus the 
distance from the upper bound should not change. Therefore, 
when an entry in the value column is increased the corresponding 
distance from the upper bound is reduced, and vice versa. Hence 
we reduced, by normal updating rules the 52-entry from 20 to 5; 
we therefore increase the corresponding "distance" entry by 15. 
Thus their sum stays 1020 as it originally was. 

The value- and distance column entries in the pivotal row 
(bl/x2 in the example), are dealt slightly different. lhe 5 for 
x2 itself is the critical ratio (as usual). The 15 in the 
distance column is the difference between the original upper 
bound of 20, and this figure of 5. 
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Generally the upper limit on a new incoming variable is obtained 
by subtracting the value of the incoming variable from its upper 
limit, as stored in non-updated form. 

We may now develop. a number of successive tableaux, in which 
there is no direct reference to a variable which is at its upper 
limit. If we bring in sl as the next incoming variable the rule 
of the smallest quotient is applied between l5/! = 30 for the 
upper limit on x2 (where the denominator is ! instead of -! as 
the variable which might be driven out is not x2 but the slack 
of the upper limit on x2, and 

51! = 10 for s2. 

This gives S2 as the leaving variable, and the next tableau is 
tableau 10.3e. 

TAELEAU 10.3 E 

XZ MID ITS LIMIT-DISTANCE STILL ACD TO 20. 

NAME S 2 B 1 X 3 II VALt:E DIST. 
----------------------------------------------
X2 1 -1 EI II 10 10 
S 1 2 -3 -3 II 10 990 

----------------------------------------------
T I I 

8Cl'ND I 1020 
1 

10 
-2 
30 

II 
II 

30 
x 

x 
x 

The 1020 for s2 in the upper bounds row is the sum of the entries 
in the two value columns in the previous tableau 10.3d. For a 
slack-variable, this is not actually a relevant calculation, but 
it illustrates the method of calculating the upper limit on a 
leaving variable. 

Now x3 is the incoming variable. There is in fact only one 
quotient to which the rule of the smallest quotient may be 
applied, viz. lOll for the upper limit on x2. (990/3 for the 
"upper limit" of sl does not qualify, because we do not recognise 
upper limits on slack-variables.) 

At this point, we will dispense with further repetition of 
illustration of this particular type of step, and leave the 
completion of this example on the lines indicated, to the reader. 

However, one point which warrants further discussion concerns 
the updating by vector-operations only. If a variable drives out 
its own upper limit distance, the coefficients for the non-basic 
variables are unaffected. This is on account of the block-
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diagonal structure of the block-pivot 

(10.3.1) 

where A*ll is the old block-pivot, before the upper limit became 
binding, All being the new block-pivot; ~lj then is the column 
of the old A12 block which describes the relation between the 
incoming variable Xj and the old basic variables ~*j' 

A current tableau extract, relating to these variables is 

T* = x* 
1 

b. 
J. 

whereas the inverse of the new block-pivot is: 

(10.3.2) 

(10.3.3) 

(see also section 3.11 for the rules of block-inversion). 

Obviously, the reverse is true as well, if an upper limit 
distance bj becomes incoming variable, arid the leaving variable 
is the corresponding variable itself which moves from its upper 
limit to zero, the coefficients of the non-basic variables are 
not affected either. 

We illustrate this possibility by solving the same problem again, 
this time emplying the rule of the highest step as pivot 
selection rule. 

It so happens that this leads to a choice of pivots where all 
three variables move right to their upper limits. Reference to 
the similar problem with the explicitly written restrictions 
illustrates the fact that the upper limit itself is an eligible 
quotient. This is illustrated in tableau lO.3f. 
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TAEL £AU 10.3 F' 

THE SAME PROBLEM. \11TH 
EXPLICITLY \lRITTEN LIMITS. 

NAME I X 1 X 2 X 3 r VALUE 

----------------------------------
S I 
S 2 
S 3 
S 4 
S 5 

-2 
1 

-1 
-1 

o 
20 
10 
20 
30 

----------------------------------
T -2 -1 -1 

In the set-up tableau itself, there are four eligible pivots, 
viz: 
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sl/xi with ~T=O (actually selected when the rule of the steepest 
ascent is applied), in the xl-column, 

s2/x2 and s4/x2 with co-equal ratios of x2 
~T=20 in the x2 column, and 

20 for each, with 

ss/x3 with ~T=30 as the only elgible quotient in the x3 column. 

When working with a tableau with a separate upper limits row, 
we therefore have a further modification of the rule of the 
smallest quotient. 

If no quotient is found, or if the smallest quotient as found 
exceeds the value of the upper limit on the variable itself, the 
value of the incoming variable at the next vertex is the upper 
limit on the incoming variable itself. 

This is the case with the pivot which is actually selected: 
b3/x~. As the unity coeff-icient ,is not stored, we put the usual 
mark1ng on the value of the upper limit itself. We now summarize 
the solution of the problem in the tableau series 10.2g to 10.2j. 
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TABLEAUX 10.3 G. H AND 

SOLUTION OF THE SAME PROBLEM BY THE 
RULE OF THE HIGHEST 5TEPI 
VECTOR-UPDATING ONLY' 15 REQUIRED. 

NAME 

5 1 
5 2 

T 
BOUND 

NAME 

5 I 
5 2 

T 
BOUND 

NAME 

5 I 
5 2 

T 
BOL'ND 

NAME 

5 1 
5 2 

X 1 

-2 
1 0 

X 1 

-2 
@ 

B 1 

-1 
-1 

2 
10 

B 1 

-1 
-1 

T I 2 
BOL'ND I 10 

X 2 

-2 
1 

-1 
20 

X 2 

-2 
1 

-1 
20 

X 2 

-2 
1 

B 2 

2 
-1 

1 
20 

X 3 11 VALUE DIST. 

-I 
-I 

-1 
(ID 

I I 
II 

II 
I 1 

o 
20 

x 

1000 
1000 

x 
X 

B 3 II VALUE DIST. 

I 
30 

, I 
II 

II 
I I 

30 
50 

30 
X 

970 
970 

X 
X 

B 3 'I VAL UE 01 ST. 

1 
30 

I I 
II 

, I 
II 

20 
40 

50 
X 

980 
980 

x 
X 

B3 "VALUE DIST. 

I 
30 

II 
II 

I I 
II 

60 
20 

70 
X 

9110 
1000 

X 
X 

CHAPTER X 
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To derive from the set-up tableau (10.3g = 10.3a), the 
successor tableau 10.3h, we adjust the signs of all the entries 
in the x3 column (but n.ot of the value of the upper limit!), 
adjust the two value columns, and leave the rest of the tableau 
unchanged. 

The same applies for the xl/bl column at the next succession, 
and for the x2/b2 column at the transition to the optimal 
tableau. 

Exercise 10.3a 

Solve the example problem of this section three times, twice 
using the "normal" set-up tableau 10.3f and similar successor 
tableaux, and once using the rule of the steepest ascent, 
once using the rule of the highest step, the third time by 
completing the tableau-series started with tableau 10.3A to 
10.3e, selecting the incoming variable on the basis of the 
rule of the steepest ascent. 

10.4 Lower bounds: a question of problem formulation 

A lower bound on a variable x. is a minimum value which x. ~s 

required to attain J J 

x. > m. 
J J 

(10.4.1) 

Here mj is the minimum value of Xj which is an exogenous 
number. We assume that, if such a restriction is specified for 
mj < 0, it overrides the non-negativity requirement on Xj: 
there is no point in listing it otherwise. 

The most efficient way to handle restrictions of this type, ~s by 
re-formulating the problem. We denote the slack-variable of 
(10.4.1) as 

y. = x. - m. 
J J J 

(10.4.2) 

The re-formulation of the problem then consists in substituting 
Yj + mj for Xj at the outset, and Xj - mj for Yj after solving 
the re-formulated problem. The shadowprice of Yj obviously 
is that of the lower bound on Xj. We give two examples, one 
for mj > 0, one for mj < 0: 

Maximise 

Subject to 
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Hence Y2 = x2 - 2, and the LP algorithm is applied to the 
re-formulated problem 

Maximise 

Subject to 

T = xl + Y2 - 2 

xl + 2Y2 < 6 

CHAPTER X 

That problem is then solved (we f~nd xl = 6, Y2 = 0), and the 
solution of the original. problem 1S xl = 6, x2 = 2. 

Example for m. < 0 
J 

Maximise 

Subject to 2xl + x2 < 6 (xl> - 5, x2 > 0) 

- xl + 2x2 < 2 

Yl = xl + 5, the re-form~lated problem is 
(substituting Yl - 5 for xl): 

Maximise 

Subject to 

T = Yl + x 2 + 5 

2Y l + x2 < 16 

-Y l + 2x2 ..::. - 3 

The solution of this problem is Yl = 7, x2 
xl = 2, x2 = 2. 

2, therefore 

To implement the lowerbound facility computationally we need to 
impose some conventions with respect to storage. It is here 
assumed that the actual figures mj are initially stored as an 
additionally (m + 3)d row of the tableau, i.e. the last example 
is written as 

TABLEAU 10.4 A 
SPECIFIED PROBLEM WITH LIMITS 

NAME! X 1 X 2 I VALUE DIS 

S 1 
S 2 

2 
-I 

1 
2 

T 1-1 
UB 100 100 
LB! I -S 0 

6 
2 

x 
x 

x 
x 

x 
x 
X 

TABLEAU 10.4 B 
RE-INTERPRETED PROBLEM 

NAME I Y 1 X 2 ! VALUE DIS 

S 1 
S 2 

T 
UB 
LB 

2 
-1 

1 
2 

I -I 
IDS 100 
-5 0 

16 
-3 

5 
X 
X 

x 
x 

x 
x 
x 



MIXED SYSTEMS, UPPER AND LOWER BOUNDS 

where the number 100 simply represents a "very high" non
meaningful upperbound. 

The operation of re-formulating the problem is sufficiently 
simple to make it uneconomic to programme it as a separate 
procedure. 
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The following lines may be incorporated in any programme instead 

'FOR' J:= 1 'STEP' 1 'UNTIL N 'DO' 

'FOR' 1:= 1 'STEP' 1 'UNTIL M+l 'DO' 

:= T [1, N+l] - T [I,JJ * T [M+3, J1 ; 

'FOR' J := 1 'STEP' 1 'UNTIL' N 'DO' T[M+2, J] := T[M+2 J] 
- T[M+3,J]; 

A re-conversion at the end is not really needed, it is a 
question of interpreting the outcome. 

To obtain a result which relates to the originally specified 
problem we do not need to change the optimal tableau at all. 
It is sufficient to interpret the result in terms of the 
originally specified problem. (See also tableau 10.4c). 

TABl. £AU 10.4 C 

INTERFRETATION OF AN OPTIML~ WITH A l.OWER l.IMIT 

NAME I X 2 

Y 1 
S I 

T 
UB 
l.B 

-2 
5 

1 
100 
-5 

S 2 I! VALUE DIST 

-1 ! I 
2 I! 

I! 
X ! I 
o I I 

3 
10 

-3 
X 
X 

102 (MEANS X 1 
X 

X 
X 
X 

-2) 

The procedure REPO listed below (a result reporting procedure) 
does just that, and its text needs little discussion here. One 
point which is however, worth a mention at this point is the 
possibility to use large negative lower limits to create, in 
effect free variables. This is possible, but not advisable. 
Non-zero lower bounds, negative or positive should only be 
specified if they are meaningfully intended and do not involve 
non-meaningful outsize numbers. The transformed problem with 
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the y-variables starts with the trivial basis and if wide-out 
lower limits are supplied, this solution corresponds to wide
out negative values of the corresponding elements of x in the 
initially specified problem. The trivial solution of the 
transformed problem will then normally contain large positive 
as well as large negative entries in the value column i.e. 
setting these variables at their far-away negative values 
results in a solution which is not anywhere near the feasible 
space area. 

To start that far away from the feasible space area has two 
main disadvantages, viz: 

1) It requires the activation of the relatively inefficient 
Phase I part of the algorithm. 

2) Manipulation with large numbers may result in loss of 
numerical precision e.g. if only 6 significant digits are 
stored 1000 000 + 0.25 is not distinguishable from 1000 000. 

The text of the reporting procedure contains a number of 
references to the machine implementation of the L.P. algorithm. 
In particular the coding conventions i.e. the recognition of 
slack-variables and upper limit distances, as distinct from 
ordinary variables may be unclear to the reader until he has 
read chapter XII. 

The main reason for listing it here rather than in chapter XII 
is to further emphasize the fact that calculation of the actual 
values of Xj by means of (10.4.2) is actually part of what is 
basically a result-output procedure rather than a part of the 
algorithm. 

The text is now listed, as follows: 

'PROCEDURE' REPOCT,M,N,NEQ,NAV,ROWL,COLL); 
'ARRAY' r; 'INTEGER' M,N,NEQ,NAV; 
'INTEG ER' 'ARRAY' R01o.'L, COLL; 
'BEGIN' 'INTEGER' I ,J, R,K,NS; 

NEWL INEC 1)J 
WRITETEXTC 'C'SOLUTION REPORT')'); 
NE'Jl.INEC 3); 
WRI TETEXT C ' C 'REPORT%ON% TH E% EL EMENTS %0 F%X') , ); 
NE'Jl.I N EC 2); 
WRITETEXTC'C'FREE%VARIABLES') '); 
N E1o'L I N E Cl ) J 
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'TOR' .1 .. -1 'STEP' I 'UNTIL' NAV 'QO' 'BEGIN' 
NE101LINECI)I 1o.'RITETEXTC'C'X')')I 
PRINTCK. 6.0); 
SPACECIO)I 
'Ir' RO"'l.C.11=.1 'THEN' PRINTCTC.1.N+I1.5.2) 
'ELSE' IoIIUTETEXTC 'C 'NOTITOl'NO') ')J 'END'; 

'IT' NAV "' 0 'THEN' Io'RITETEXTC 'C 'IINONE') '); 

NE1o.'LINE(2); 
IoIRITETEXTC'C'BOUNOEOIVARIABLES')'); 
NEIo'LINEC I)J 

'TOR' KI=NAV+I 'STEP' 
NEIoILINE<1) j 
10TRI TETEXTC 'C 'X') '); 
PRINTCK.3.0); 

'UNTIL' N 'DO' 'BEGIN' 

'TOR' .1:"'1 'STEP' I 'UNTIL' N '~O' 'BEGIN' 
'Ir' COLLC.11=K 'THEN' 'GOTO' NON BA5ICI 
'IT' COLLrJ1aI0000+K 'THEN' 'GOTO' UPPER LIM; 'END'; 

'rOR' 1:=1 'STEP' I 'UNTIL' M '~O' 
'IT' RO"'LCI1'"'K 'THEN' 'GOTO' BASIC; 

1oTRITETEXTC'C'ABSENTlIo'ITHOUTIEXFLANATION')'); 
'GOTO' END or XK REPORT; 

NON BASICI 
Io'RITETEXTC'C'IIATIL01o.'ERILIMIT%OTI')'); 
PRINTCTCM+3.K1. 5. 2); 
'GOTO' END OT XK REPORT; 

UPPER LIM: 
1o.'RITETEXTC 'c 'IIATIUPPER%LIMITIOTI') '); 
PRINTC TC M+ 2 • .1 l+TCM+ 3. K 1.5.2); 
'GOTD' END OT XK REPORT; 

BASIC: 
SPACEC 20); PRINTC C TC I. N+ 11 +TCM+3.K1). 5.2); 

END OF' XK REPORT: 'ENC'; 

N EWL IN EC 3); 
10TRI TETEXTC 'C 'SLACKIVARI ABL ES') '); 
NE1oTLINE(1); NS pc 0; 
'TOR' R:=I 'STEP' I 'UNTIL' M 'DO' 
'TOR' 1:=1 'STEP' 1 'UNTIL' M 'DO' 
'IT' RO\'LCI1=1000+R 'THEN' 'BEGIN' 

NE\'LINECI); NS:=N$+J; 
1oTRITETEXT< 'C '5') '); PRIoNTCR.3.0); 
SPACEClO); PRINTCTCI.N+I1.5.2); 'ENC'; 

'IT' tiS .. 0 'THEN' Io'RITETEXTC'C'IINONE')'); 

221 
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NE101LINE(3)J 
101P.ITETEXT(·(·OUALISOLUTION·)·)J 
NE .... LINE( 2)1 
101RITETEXT('('SHADOWPRICESIOFIEXPLICITIRESTRICTIONS')')J 
NEWLINE(l); NS:cO; 

'FOR' R: .. I 'STEP' I 'UNTIL' M '00' 
'YOR' Jlcl 'STEP' I 'UNTIL' N '00' 
'IY' COLLCJ)-lOOO+R 'THEN' 'BEGIN' 

NEWLINE( I); NSI =NS+ lJ 
WRITETEXT( '( 'P')')1 PRINT<R.3.0); 
SPACE( 10); PRINT(TCM+ I.J). 5.2>J 'ENO'J 

'IY' NS = 0 'THEN' WRITETEXT('('IINONE")'H 

NE1.'L I N E( 3)1 NS I" OJ 
WRITETEXT(·(·SHAOO .... IPRICESIOFILOWEP.ILIMITS·)·)J 
'YOR' KI=NAV+I 'STEP' I 'UNTIL' N ,~O' 
'YOR' Jlcl 'STEP' 1 'l'NTIL' N '00' 
'IY' COLLCJ)=K 'THEN' 'BEGIN' 

NE'o'LINE(l); NSI=NS+lJ 
WRITETEXT('('OFIX')')J 
PRINT(K.3.0); .... RITETEXT(·(·IIATI')')J 
PRINT(TCM+3.K).5.2); 
SPACE( lO)J PRINT(T[M+ l.Jl. 5.2)1 'END'.; 

'IF' NS .. 0 'THEN' .... RITETEXT(·( 'IINONE') 'H 

NE1o.'LINE(3)J NS I"' OJ 
WRITETEXT('('5HAOOWSPRICESIOFIUPFEP.ILIMITS') '); 
'FOR' KI=NAV+l 'STEP' I 'UNTIL' N 'DO' 
'YOR' J: .. l 'STEP' I 'l!NTIL' N 'DO' 
'IF' COLLCJl"lOOOO+K 'THEN' 'BEGIN' 

NEWLINE( I); .tISI"NS+ I; 
101RITETEXT('('OFIX')'); 
PRINTCK.3.0)J WRITETEXT('('SIATI')')J 
PRINT(TCM+2.J)+TCM+3.K).5.2)J 
SPACE( lO)1 PRINT(TCM+ l.J). 5. 2); 'END'; 

'IY' NS .. 0 'THEN' .... RITETEXT( '( 'IINONE') I); 

END OF REFORT: 'END'; 

CHAPTER X 



CHAPTER XI 

Duality 

11.1 Block-pivoting with inequalities 

Consider a partitioned system of inequalities: 

All ~l + A12 ~2 ~ ~l 

A2l ~l + A22 ~2 ~ ~2 

where All is the block-pivot. 

(11.1.1) 

We know from Section 5.5 that the recursive product of a 
series of pivots equals, with possibly an adjustment of the 
sign, the determinant of a matrix. 

Therefore, we may assume that a Simplex solution of an L.P. 
problem can be expressed (after re-ordering if necessary), by 
the partitioned system (11.1.1), because non-zero pivots have 
been found, with All being square and non-singular. 

The first block of restrictions in (11.1.1) is exactly binding, 
~ is zero-valued, and ~l is of the same order as ~l. Also, 
~l is related to ~l by the inverse of All. 

-1 
~l = All ~l (11.1.2) 

We may write (11.1.1) as a system of equations by adding 
slack-variables, ~l and ~2 are the two sub-vectors of slack
variables. We also include the target-row, and we obtain 

All xl + A12 ~2 + ~l ~l ) 
) 

~2~ + A12 ~2 + ~2 ~l ) 
) (8.1.1) 

-w' ~l - w' ~2 + T 0 ) -1 -2 

We now apply the block-pivoting technique from section 3.11. 
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Tableau ll.la 

Symbolic set-up tableau In extensive form 

-1 
x -2 s -1 s -2 T I 

Value 

@ A12 I E.l 

A2l A22 I E.2 

-WI 
-1 

I 
-WI 
-2 1 

Pre-multiply the pivotal block-row by the inverse of the block
pivot. 

The pivotal block-row now becomes: 

~l ~l ~2 Value 

All 
-1 

I I 

-1 
All E.l 

Add the pivotal block-row, pre-multiplied by minus the rest 
of the pivotal block-column, to the remaining block-rows, and 
the transformed tableau is written as: 

Tableau 11.lb 

Sybolic updated tableau in extensive form 

~l T Value 
- - -

-1 -1 -1 I All A12 All All E.l 

-1 
A22-A2lAll A12 -A21A11 

-1 
I 

-1 
E.2-A2lAll E.l 

I IA -1 
-~2 +~l 11 A12 ~iA11 

-1 
1 

-1 
~iA11 E.l 
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We may re-order the tableau, according to the "shortened" 
version of the tableau, and suppress the unit matrices, writing 
the names of the (block-) rows at the side of the tableau 
instead. 

Therefore, the initial tableau is written as: 

Tableau ll.lc 

Symbolic set~up tableau in shortened form 

Name ~l x < Value 
-2 -

~l Q A12 E.l 

~2 A2l A22 E.2 

T -w' 
-1 

-w' 
-2 

0 

The updated tableau associated with the block-pivot All then 
becomes: 

fableau ll.ld 
Symbolic updated cableau ~n shortened form 

Name ~l ~2 < Value -

All 
-1 -1 -1 

~l All Al2 All E.l 

-A2lAll 
-1 -1 -1 

~2 An -A2lAll Al2 E.2-A2lAll E.l 

~iAll 
-1 

T 
I , -1 

-~l +~2All Al2 
-1 

~lAll E.l 

I 

Apparently, the updatingrules for a shortened tableau, can also 
be extended to block-pivoting. 

Recall the rules for updating a simplex tableau, when the 
shortened version of the tableau is used: 
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Replace the pivotal element by its reciprocal and interchange 
the names of the pivot-column and the pivot-row. 

Multiply the rest of the pivot-row by the reciprocal of the 
pivot. 

Add the updated pivot-row, multiplied by minus the corresponding 
element in the pivot-column, to the other rows. 

Multiply the remainder of the pivot-column by minus the 
reciprocal of the pivot. 

The corresponding rules for block-pivoting are: 

Replace the block-pivot by its inverse and interchange the names 
of the pivotal block-column and pivotal block-row. 

This part of the (block) pivoting operation, starting again with 
the original tableau: 

Name ~l I ~2 < Value 
-

~l All Al2 E.l 

~2 A2l A22 E.2 

-w' 
-1 -w' -2 o 

is completed for the block-pivot itself, by writing its inverse 
and replacing the names 

Name ~l 

~l 

The equivalent of this part of the block-pivoting operation 
in ordinary elementwise pivoting is the replacement of the 
pivot by its reciprocal. Pre-multiply the rest of the pivotal 
row by the pivot-inverse. The updated pivotal block-row 
becomes: 
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Name ~l ~2 I Value I 

-1 -1 -1 
~l An An A12 An E.l 

< 

The equivalent part-operation of this part of the block-
pivoting operation in ordinary simplex-operations is the division 
of all the other elements of the pivot-row by the pivot-element. 

Add to the non-pivotal blocks of the tableau, the updated 
pivotal block-row, ..E,!!:.-multiplied by minus the corresponding 
block in the pivotal block-column, i.e. -A2l and ~i 

Name I ~2 Value 

-1 -1 
~2 A22-A2lAn A12 E.2-A2lAn E.l 

'+ 'A -lA -1 
T -~2 ~l n 12 ~iAn E.l 

Post-multiply the remainder of the pivotal block-column by the 
pivot-inverse, i.e. post-multiply A2l by -All-I. We now write 
the updated tableau, which is now fully up-dated: 

Name I ~l ~2 Value 
<-

-I -1 -1 
~l An An Al2 An E.l 

-A2lAn 
-1 -1 -1 

~2 A22 -A2lAn A12 E.2-A21An E.l 

~iAn 
-1 , 'A -lA -1 

T -~2+~1 n 12 ~i An E.l 

That these rules do indeed give us the correct updated tableau 
is verified by recalling section 8.7 where the equivalent 
explicitly written tableau (with unit matrices) was obtained by 
means of substitution. 
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This includes the special rule for updating the pivot-column, 
which we first formulated in Section 8.8. This rule is 
generalized to block-pivoting as well, in the form of post
multiplication of the pivotal block-column, by the inverse of 
the block-pivot. The reason why this rule is applicable is the 
same as in the case of an individual pivot-column. The unit
matrix which links the ~l block-row to the ~l block-column in 
the explicitly written tableau serves as an operator. 

11.2 The Duality Theorem 

The analogy between the updating of (bloc~ pivot-rows and 
(block) pivot-columns in a simplex tableau (shortened version), 
suggests a close analogy between the structure of a simplex 
tableau and its transpose. There is indeed a "transpose" of a 
linear programming problem. That "transpose" problem is not 
1n terms of x and s. 

To give significance to the transpose of any current simplex 
tableau, we introduce a new set of variables. We write u for 
the vector of specified variables, and d for the vector of 
slacks, and ~ for the objective function. The transpose of a 
current simplex tableau may then be written and interpreted 
as: 

Transposed updated tableau 

Name ~l ~2 < Value -

~l [A' r l 
11 

[A' r l , - 11 A 21 [Ailrl~l 

i2 A' l2[A' 11J-l A' 22-A' 12 [A' 11rlA' 21 -~2+Ai2[AilJ-l~1 

-1 
b' -b' [A' 1- l A' , [A'rl ~\[A'11] 

~ - 2 - 1 11 21 ~ 1 11 ~l 
I 

The corresponding "original" tableau is retraced by applying the 
same block-pivoting rules to [A'lJ -1 as block-pivot. That 
corresponding "original tableau 1S found to be: 
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Backward traced transposed tableau 

Name ~l ~2 < --
Value 

~l A11 
, 

-A2l 
, 

~l 

~2 -A12 
, 

A22 
, 

-~2 

jJ -b 
, 

~2 
, 

0 
-1 

This is a cur~ous tableau, in particular because the partitioning 
changes with each step. 

More meaningful than the simple transpose of the current solution 
~s a very much similar problem, where the signs have been adapted. 
This adaptation of the signs ensures that the "original" problem 
is independent from the partitioning. A further requirement to 
be satisfied b) this sign-adaptation is preservation of the signs 
of the value column and objective function row. That way, both 
the original L.P. problem and the related "transposed" problem 
are optimal and feasible for the same vertex. These desiderata 
are met by the dual problem, which is written in a simplex 
tableau, as follows: 

Dual set-up tableau (shortened form) 

Name 

I 

~l ~2 < Value -

~l -A11 
, 

-A2l 
, 

-w 
-1 

~2 -A12 
, 

-A22 
, 

-w 
-2 

~l 
, 

~l 
, 

0 jJ 
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The corresponding updated tableau for this dual problem is: 

Updated dual tableau 1n symbolic form 

Name ~l 2:2 < Value -

2:1 -[A 'r l 
11 . fA 'r l , 11 A2l [All'rl~l 

~2 ,[ 'r l -A12 All -A22 '+A12 ' [All'flA2l -~2+A12' [All '1-l~ 

]J b '[A 'J- l 
-1 11 .!:2 'b l ' [All 'rlA2l' -.!:l' [All 'rl~l 

This is the transpose of the current updated tableau with all 
the signs in the tableau itself changed round, while the two 
vectors have the same sign. The sign of the solution value is 
again inverted. Accordingly the linear programming problems 

Maximise and Maximise 

T = w'x ]J = -b'u 

Subject to 

A x < b (~~ 0) -A'u < -w (2: ~ 0) 

are named the primal (or original) and the dual problem, and are 
optimal and feasible for the same vertex. 

This formulation of the Duality Theorern is somewhat 'different 
from whAt is conventional in the literature. See, for example 
Garvin [11J, p.248, or Baumol L2J , p.l04. The more conventional 
form of the Duality Theorem states the equivalence of the L.P. 
problems: 

1 
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Maximise and Minimise 

T = W'X A = b'u 

Subject to Subject to 

A x < b (~~ 0) A' u > w (~~ 0) 

This difference in formulation arises, because minimization 
problems and restrictions of the> type are not directly dealt 
with in this book. The two formul;tions are equivalent, except 
for the value of the objective function. In the conventional 
formulation of the Duality Theorem the original "primal" 
problem and the dual problem have the same solution value. In 
the form in which the Duality Theorem is presented here, primal 
and dual problems (both being maximization problems), have 
solution values of the same absolute value, but of opposite 
sign. 

Example 

Consider the following "primal" problem 

Maximise 

Subject to 

< 15 

(xl ~ 0, X z ~ 0) 

The Duality Theorem tells us that we may also find the optimal 
values of xl and xz as the shadow prices of the binding 
restrictions in the following (dual) problem: 

Minimise 5 u l + 15 U z - u3 

Subject to u l + U z - u3 > 3 

2 u l + u3 > -1 

(u l > 0, u2 ~ 0, u 3 > 0) -
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or, equivalently 

Maximis.e A = - 5 u l - 15 u2 + u3 

Subject to - u l - u2 + u3 < - 3 

- 2 u l - u3 < 1 

(u l ~ 0, u 2 > 0, u 3 ~ 0) 

Not only can we "dualize" the initial and the final optimal 
and feasible tableau, we can do that with each simplex tableau. 

The Simplex tableaux contained in summary tableau 11.2a, 
illustrate an example where the Simplex Algorithm, applied to 
the primal problem, leads to the optimum in one step. The 
summary gives the optima of both problems, ordered on the 
assumption that the corresponding step is also made in the 
dual problem. 

TABL EAU 11.2 A 

SUMMARY OF A PRIMAL AND A DUAL PROBLEM. 

PRIMAL SET-UP TABLEAU 
NAME I X I X 2 II VALUE 

S I 
S 2 
S 3 

T 

<D 2 
2 

-I 

-3 

PRIMAL OPTIMUM 

I I 
I I 
II 

II 

S 
IS 
-I 

NAME I S I X 2 II VALUE 

X I 
S 2 
S 3 

T 

I 
-2 

I 

3 

2 
-4 

3 

7 

! ! 
II 
II 

I I 

5 
5 
4 

15 

DUAL SET-UP TABLEAU 
NAME I U I U 2 ll' 3 I I VALUE 

DI Ie::!) -2 
D 2 I -2 

L 5 15 

DUAL OPTIMUM 

I 
-I 

-I 

II 
II 

II 

-3 
I 

NAME I DIU 2 U 3 II VALUE 

U I 
D 2 

L 

-I 
-2 

5 

2 
4 

5 

-I 
-3 

II 
II 

3 
7 

II -15 

The dual problem was solved in this case, by choosing a pivot 
indicated by the primal tableau. In this example that was also 
a "reasonable" pivot in the context of the dual problem when 
seen as an L.P. problem in its own right. 
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This is not always so, as may be seen when solving both problems 
by the steps which arise from applying the rule of the steepest 
ascent to the dual - That rule, applied to the dl-row of the 
dual problem activates the u2 column. The resulting steps are 
shown in the summary tableau 11.2b. 

SL'MMAPY 11.2 B 

THE SAME PFfOBLFM. THE OPTIMA NOW REACHEO BY APPLYING 
THt RULE OF THE STEEPEST ASCENT TO THE r:UAL, MAKING 
CDRRESPDrlDING STEPS IN THE PRIMAL PROBLEM. 

PRIMAL SET-UP TABLEAU 
NAME! X 1 X 2 !! VALl'E 

S 
S 2 
S 3 

1 

® 
-I 

T !-3 

2 !! 5 
!! 15 
!! - 1 

! ! 

PRIMAL EQtJI VALENT TABLEAU 
NAME! S 2 x 2 !! VALVE 

~-;--~~:~--;---~~-:;:~~ 
XI! .50 - !! 7.50 
S 3 0.50 1 !! 6.50 

T 1.50 !! 22.50 

?RIMAL OPTIMVM 
flAME! SiX 2 !! VALUE 

--------------------------
S 2 -2 4 ! ! 5 
X 1 1 2 ! I 5 
S 3 1 3 ! ! 4 

T 3 7 !! 15 

DUAL SET-UP TABLEAU 
NAM E U 1 L' 2 L' 3 !! VALVE 

o 1 !-1 
D 2 !-2 

L 5 IS 

1 
-I 

-I 

!! -3 
!! I 

! I 

DUAL INTERMEDIATE TABLEAU 
NAt1 E! U 1 0 I V 3 !! VAL liE 
---------------------------------
L' 2 ! ~-0.50 -0.50 !I 1.50 
o 2 ! -2 -I! ! I 

L ! -2.50 7.50 6.50! !-22.50 

DVAL OPTIMUM 
NAM E! U 2 0 I V 3 !! VAL VE 

V I 
D 2 

T 

2 
4 

5 

-I 
-2 

5 

-I 
-3 

4 

!! 3 
! 1 7 

! ! -I 5 

The second of these two steps is logical in terms of both the 
primal and the dual problem, but the first does not make much 
sense as a step in the primal problem at all. In particular, 
the rule of the smallest quotient is violated and the sl -
restriction in the first updated tableau in primal form. 

This corresponds to a loss of optimal form of the dual problem, 
i.e. the u l entry in the A-row was originally positive and 
became negative. 

11.3 Application oP the Duality Theorem 

Some authors (e.g. Kim [23], p.27l) mention the possibility 
to substitute a dual problem with more variables 
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than restrictions for a primal problem with more restrictions 
than variables as a cumputational advantage on account of the 
size of the tableau. The argument is that the use of an 
explicit simplex tableau requires a unit matrix, of which the 
order is given by the number of restrictions. However, if the 
shortened version of the tableau is used, this problem 
dnes not arise. In other words this claim arises, because 
an inefficient algorithm is used in the first place. The 
Duality Theorem has played an important role in development* 
of the theory of linear programming. However, many of the 
currently useful applications of the concept of duality are 
valid and indeed more useful in the wider realm of convex 
programming generally. 
This includes the important subject of the interpretation of 
dual variables as imputed prices. 

Computational efficiency is, however, relevant with respect 
to the number of steps. This is so, in particular when one 
deals with problems which are effectively minimization problems 
(See also Dantzig rBJ , Section 11.2). The term minimization 
problem here means that a non-negative combination of (non
negative) specified variables is to be minimized. Obviously 
that minimum can never be less than zero. That solution is 
attained already in the trivial solution, but this is not a 
feasible solution. In economic applications this problem 
usually arises as one of cost minimization, and costs will have 
to be incurred because certain requirements (restrictions) have 
to be satisfied. Solution of the problem by its dual maintains 
optimality, while application of the normal sequence of Phase I 
and Phase II to the original problem does not maintain the 
initial optimality. 

"Phase I" methods are also generally less efficient than the 
elementary optimizing algorithm. 

It is not even necessary to actually write dual tableaux. The 
dual Simplex method performs the dual search operations on 
tableaux written in their "normal" form. 

The following problem illustrates the point 

Minimise xl + x2 + x3 

Subject to 2xl + x2 < 3 ) 
) (xl' x2 ' x~ ~ 0) 

2x2 + x3 < 8 ) 

See for example Tucker [34) 
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Formulated as a primal maximization problem, this problem 
becomes: 

Maximise 

Subject to 

The dual problem 

MaximisE' A = 3 u l + 8 Uz 
Subject to Z u l < 1 ) 

) (u l ' Uz > 0) 
u l + Z Uz < 1 ) 

) 
Uz < 1 ) 

is optimal ~n one step (see tableau 11.3a ). 

TABLEAU 11.3 A 

A SMALL PRIMAL FEASIBLE PROBLEM, IT IS OPTIMAL IN ONE STEP. 

NAME I lC 1 

1> 1 
02 
D3 

2 
1 

T 1-3 

U 2 !! VALUE 

® 
1 

-8 

I! 
I! 
II 

I! 

NAME 

D 1 
U 2 
1) 3 

T 

U 1 D 2 II VALUE 

2 I! 
0.50 0.50 II 

-0.50 -0.50 II 

1 
0.50 
0.50 

4 II 4 

In this example, Xl = 0, x 2 = 4 and x3 = 0 is the optimal and 
feasible primal solution. But to atta~n this solution, by 
applying the rules of the steepest ascent and the smallest 
quotient to the initially infeasible primal problem requires 
two steps rather than one. The two steps are summarized in 
tab leau 11. 3b. 

235 



236 

TAELEAU 11.3 B 

ILLUSTRATION Of LOSS 
Of OPTIMAL fOP.M. 

NAME X I 

S I I-~ 
S 2 

T 

NAME 

X 2 
S 2 

T 

NAME 

X 2 I 

x 

2 
II 

-·1 

x 

S I 1-2 

T 

X 2 

8) 
-2 

S 

-I 
@) 

S 2 

X 3 II VALUE 

-I 
II 
II 

II 

-3 
-8 

X 3 II VALUE 

- I 
II 
II 

I I 

3 
-2 

-3 

X 3 II VALUE 

-0.50 0.50 II II 
I -0.50 0.50 II 

0.50 0.50 II -4 

CHAPTER XI 

The two systematic factors in the relatively inefficient 
performance of the Simplex Algorithm on an initially infeasible 
but optimal (dual feasible) problem are: 

a) Loss of optimal form. The shadowprices of xl was initially 
positive, but became negative during the simplex operations. 

b) The use of the rule of the smallest quotient in a context 
where it is not really appropriate. If the "efficient" rule 
for Lhe choice of the pivot-row had been taken, we would have 
"flown" through the sl restriction and reached the solution 
in one step. But, as discussed in section 9.2, the 
"efficient" rule for the choice of the pivot-row has certain 
definite drawbacks. The possibility to interchange the 
concepts of "optimal" and "dual feasible" has its 
computational advantages after all. 

The following suggested modification of the rule for choosing 
the pivot column avoids unnecessary reductions in the value of 
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the specified objective function. When there is no feasible 
solution, we may first of all give preference to columns which 
promise an increase in a substitute objection function, e.g. 
the sum of all slacks of violated restrictions, as well as 
in the value of the specified objective function. When no such 
columns are available the rule of the steepest ascent may be 
replaced by the criterion of the dual ratio. We will take the 
column which promises the greatest increase in the value of 
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the substitute objective function per unit of reduction in the 
value of the specified objection function. If the substitute 
objection function is the slack of just one violated restriction, 
this rule can amount to applying the rule of the smallest 
quotient to the dual. That quotient then is the reduction in 
the value of the specified objective function, per unit of 
increase of the substitute objective function. This full 
analogy with the rule of the smallest quotient applied to 
the dual problem arises whenever the restriction which provides 
the substitute obj£ctive function becomes binding in one step. 
This is the case in the illustration-example contained in 
tableau l1.3c. 

TABLEAU 11.3 C 

ILLUSTRATION OF THE DUAL RATIO. 

NAMEI X I X 2 X 3 I VALI:E NAME! U I U 2 IVALUE RATIO 

~_~_~_:~ ____ ~ ____ :~ ____ l:~~ __ 
T I B I 2 

RATIO -1.60 -O·.SO -0.67 

NAMEI X I S 2 X 3 I VALUE 

S I! I , 
X 2! 2.50 -0.50 1.50 I 5 

T! 5.50 0.50 0.50'-5 

o I I -I 
D. 2 I 
D 3 , 

T , 

NAME' U 

D I I -I 
U 2 I 
031 

T I 

5 
~ 

3 

-10 

, 8 
I I 
, 2 

, -
D 2 I VALUE 

-2.50 5.50 
0.50 I 0.50 

-1.50 I 0.50 

5 , 5 

11.4 The Dual Ratio and Phase I Column Selection in the 
presence of several violated restrictions 

1.60 
0.50 
0.67 

If there are no zeros in the updated form of the objective 
function row, and no pseudo-zeros either, the dual ratio is 
also a useful additional criterion for selecting columns during 
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Phase I of the primal problem. It is here assumed that this is 
in addition to the "efficient" rule of row-selection, and the 
rule of the highest step as column-selection criterion. This 
additional criterion is useful fot two reasons. Firstly the 
dual ratio is the ratio between the loss in specified objective 
function value and the corresponding gain in (a facet of) the 
substitute objective function i.e. the value of the slack 
variable in question. Secondly, simply because the denominator 
is the tentative pivot, a ratio criterion has a bias against 
small pivots; as is illustrated in tableau l1.4a 

TAELEAU 11.4 A 

AVO I DANCE OF SMALL PI VOTS 
BY THE USE OF THE DUAL RATIO. 

NAME! X 1 X 2 ! I VALUE 

S 1 I -0.01@ !! -1 
S 2 I 0.90 !! -I 

T ! ! 

We may think of this tableau as being an extract or, 
alternatively, it represents an empty problem, which should 
not be mishandled either. The rule of the highest step, applied 
to the sum of the infeasibilities as substitute objective 
function, indicates the sl/xl cell as pivot, with a figure of 
-0.01. 

Having tentatively indicated this as a possible pivot, we now 
investigate other columns, while imposing the following 
modifications on both the row and column-selection rules 

a. A violated restriction which is already tentatively 
indicated as pivotal row, is "badname" and flying through 
it is allowed only with an incoming variable which also 
increases the specified objective function. (If a "preferred" 
column is actually selected in this way there is no longer a 
"badname".) In potential incoming variables, columns which 
increase the substitute objective function at the cost of a 
reduction in the value of the specified objective function, 
eligible pivotal rows are: 

equations 
already non-negative-valued variables 
the "badname" negative slack-variable 
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other negative slack-variables if the restriction cannot 
be reached by that incoming variable - the "efficient" 
rule of row-selection being again applicable -. (In 
preferred columns which indicate an increase in the 
specified and the substitute objective function, negative 
pivots areonly eligible in rows representing equatiuns.) 

b. Once we establish the fact that a pivot in such a "badname" 
row is permissable, the dual ratio criterion has priority 
over the rule of the highest step. Hence the SI/x2 entry 
becomes pivot instead of the SI/xI cell irrespective of the 
fact that the rule of the highest step would favour the 
sl/xI cell. 

That situation may change if the "badname" status disappears 
for one of the following reasons: 

hl. A "preferred" column is activated. 

b2. The "efficient" rule of row-selection, applied to a 
column in which no negative entry for the "badname" 
restriction occurs, indicates a different violated 
restriction as the pivotal row and the rule of the 
highest step (applied to the substitute objective 
function) indicates that the new pivot is preferable 
to the old one. 

The following implication of rule a) is stated here separately, 
mainly in order to discuss its significance. 

c. Columns which have been identified as contradicting the 
dual ratio between the objective function and the badname
row become ineligible as incoming variable columns, 
notwithstanding the presence of other possible pivots in 
such columns. 

The rationale of this last point may be illustrated by the 
example given In tableau 11.4b below 

T A8L EAU I I .4 8 

X2 IS NOT A SUITABLE COLUMN. 

NAME I X 

S I I-I 
52! -2 

T 

X 2 II VALUE 

-0.20 I! -I 
-0.01 1\ -I 

II 
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We assume that the sl/xl cell has been tentatively selected as 
pivot, at the stage of scanning the xl column. 

The entry of -0.20 in the sl/xZ-cell contradicts the criterion 
of the dual ratio between the updated form of the objective 
function row and the sl-row. However, throwing only th~t one 
pivot in the x2-column out, does not put this problem right; 
the -0.01 entry in the s2/x2 cell is no better pivot. Yet if 
we use the sum of the two negative slack-variables as substitute 
objective function and then apply the rule of the highest step, 
we find that the s2/x2 cell comes out with sl+s2 = 99 + 0 and 
is the highest. The only reasonable practical way of avoiding 
the kind of step is to disqualify (as far as this vertex is 
concerned) x2 as incoming variable altogether. 

Exercise 

Complete the problem tackled in section 9.4. 

11.5 Dual Degeneracy 

The significance of the term dual degeneracy will be obvious: 
zeros in the objective function row. If there are a whole 
series of exact zeros in the objective function row, the 
criterion of the dual ratio ceases to be an effective criterion 
of choice between one column and another. Yet dual degeneracy 
occurs quite often, if anything it is more rather than less 
common than primal degeneracy. 

The criterion of the dual ratio may, however happen to hit a 
zero in the objective function row and indicate a small pivot. 

Example 

Tableau 11. Sa 

Dual degeneracy: it may lead to a pseudo-zero pivot 

Name xl x 2 Value 

sl -1 -0.00 -1 

s2 1 2 2 

1 0 

Assuming that the -0.00 entry is not actually a zero, the rules 

indicated in the previous section would lead to the selection 
of the sl/x2 entry as pivot. Obviously something should be done 
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to avoid that. 

As far as selection between several columns with zero entries 
in the objective function row is concerned, perturbation of 
the objective function row on similar lines as indicated in 
Section 8.10 for primal degeneracy is likely to be an effective 
remedy. 

The above example indicates that this needs to be supplemented 
by a direct restriction on the selection of a small pivot. 
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The way in which we introduced the criterion of the dual ratio 
only as a supplementary criterion which is considered when a 
pivot has already been tentatively selected makes this possible. 
We refuse to change from one negative Phase I pivot to another 
similar one in the same row, if the latter is an order of 
magnitude smaller. 

The code offered in section 12.3 puts this requirement as the 
ratio between the two pivots not being less than 0.1. 



CHAPTER XII 

LINEAR PROGRAMMING ON THE COMPUTER 

12.1 Name-codes and name1ists 

We need some means to relate rows and columns in Simplex 
tableaux to their significance in terms of equations, variables 
etc. 

There are two main reasons for this requirement. The user needs 
to know the significance of the end result, and the machine 
must be programmed to distinguish equations from inequalities, 
non-negative variables from variables without sign restriction, 
distances from upper bounds from "ordinary" variables etc. 

Reference to alphanumeric names like x2' s4' u etc is not very 
practical in a programmed computer procedure. ~he use of an 
integer number as a namecode is much more practical, at least 
for purposes of internal machine-use~output of results is a 
different matter. 

There clearly are two lists of names in any L.P. problem. They 
are the list of the basic variables which are associated with 
the rows of the tableau, and the list of non-negativity 
restrictions which are associated with the columns of the 
tableau. In an explicit tableau the columns include unit vectors 
for basic variables, in a shortened tableau the list of co1umn
names is the list of binding non-negativity restrictions. 
Tableau 12.1a below gives the usual presentation of the optimum 
of an example from Chapter 8, tableau 12.1b gives a completely 
numerical presentation of the same optimal tableau. 

TABLEAU 12.1 A 
THE USUAL ALPHANUI1EP.I CAL PRES EN
TATION OF A SHORTENED TABLEEAU. 

NAME I X I S I S 2 VALUE 

------------------------------------~ X 2 
X 3 

0.33 
0.67 

0.33! 33.33 
-0.33! 166.67 

-------------------------------------
T 0.33 1.33 333.33 

TABLEAU 12.1 B' 
A NUMERICALLY COOED TABLEAU. 

1001 1002 

---------------------------------~---
2 I 
3 I 

0.33 
0.67 

0.33 I 33.33 
-0.33 I 166.67 

-------------------------------------
1.33 

242 

333.33 
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Besides the obvious method of distinguishing individual 
elements of vectors by their indices, we need some other 
device to distinguish between classes of variables, i.e. the 
vectors to which they belong. The two most suitable devices 
appear to be the plus or minus sign, and the enlargement. In 
the above example an enlargement of 1000 has been used to 
indicate row-names i.e. slack-variables. Problems with more 
than 1000 variables will normally have a partitional structure 
and a special algorithm will be used in any case. Special 
algorithms for partitioned problems will obviously have their 
own system of name-codes where the name-codes refer to the 
partitioning. An alternative method of coding, might be the 
one used in tableau l2.lc, using positive and negative numbers. 

TABLEAU 12.1 C 

USE OF THE -SIGN AS QUALIFIER. 

2 ! 
3 I 

0.33 
0.67 

0.33 

-I -2 

0.33 I 33 • .33 
-0.33 I 166.67 

1.33 I 333.33 

Above, the namelists have been written as an extra row and 
column of the tableau. There are, however, some fairly 
convincing reasons for declaring namelists as separate arrays 
in their own right. (Or dimensions, the Fortran Programmer 
would say.) First of all, these separate arrays can be 
indicated with names which convey their significance to the 
human reader of the programme text. Thus, an instruction which 
is preceded by the condition. 

'IF' ROWLST [IJ >NAV 'THEN' 

clearly refers to elements of the list of rownames. 

There are also more strictly computational arguments. Name
codes are integer variables and some machines use only one 
address for an integer variable and two for a "real!' i. e. 
possibly fractional valued variable. Also, some computer 
languages e.g. Fortran cannot accommodate rows wtth a zero or 
negative row-index or columns with a zero or negative column
index. Several vectors, e.g. value column, upper bounds vector 
etc. also have to be fitted in with the tableau, and if they 
all have to be allocated an index in excess of the normal size 
of the tableau, it becomes somewhat confusing. No useful 
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purpose is served with reserving space for the namelists as 
well in the tableau itself. 

12.2 Ordering of the tableau 

The choice of pivots on the indication of the numerical content 
of the tableau usually results in a random ordering of the 
tableau. If the "original" simplex method is used only the 
rows lose ordering, the columns stay in place. If the 
shortened version of the tableau is used, the columns also get 
into a random non-ordering. 

Re-ordering can be done on the indication of the numerical 
values of namecodes, i.e. the inappropriately ordered tableau 
l2.2a (below) may be re-ordered on the indication of the name
codes, to become tableau l2.lb. 

TABLEAU 12.2 A 

A 'DIS-ORDERED' TABLEAU 

1002 

3 I -0.33 
2! 0.33 

1.33 

0.67 
0.33 

0.33 

100 I 

166.67 
33.33 

333.33 

In order to be able to (re) order in a meaningful way it is 
necessary to impose certain conventions for ordered tableaux 
and namelists. I suggest the following rules: 

(a) Positive names to be placed before negative names 

(b) Names with low absolute value to be placed before 
names with higher absolute value. 

This ensures ordering according to ·index, and places names with 
enlargements at the end of the list. In fact, no use of 
negative name-codes is made in this chapter, and although 
negative name-codes are used in Chapter 16, with quadratic 
programming, a different solution for the ordering problem 
is used there. The following programmed procedure which 
incorporates these rules is however offered here. 



LINEAR PROGRAMMING ON THE COMPUTER 

'PROCEDVP.E' ORDRCT.M.N.ER.RH.ROVLST.COLLST); 
'ARRAy'r; 'I.NTEGER' M.N.ER.P.H; 'INTEGER' 'ARRAY' R01Jl..ST.COLLST; 
'EEGIN' 'INTEGER' F"lRST.LAST.I.J.NAME; 'REAL' NUM1 
'BOOLEAN' FINI SHED; 

'COMMENT' 
ORDERING PROCEDURE FOR A TABLEAU AS USED FOR MOST SIMPLEX 
ALGORITHMS FOR MATHEMATICAL PROGRAMMING. 
THE ROVS ARE ORDERED ACCORDING TO THE NAMES IN THE RO~~IST. 
AND THE COLULMNS ACCORDING TO THE NAMES IN THE COLUMN-LIST. 
POSITIVE NAMES ARE PLACED BEFORE NEGATIVE NAMES. 
VITHIN EACH GROUP OF NAMES VITH HOMOGENEOUS SIGNS. 
ROWS. AS WELL AS COLt~NS WITH NAMES OF LOV ABSOLUTE VALUE 
ARE PLACED BEFORE THOSE WITH NAMES OF HIGHER ABSOLUTE VALUE. 

THE TABLEAU IS ASSt~ED TO CONTAIN M PROPER ROVS. I.E. RES
TRICTIONS. N PROPER COLUMNS. I.E. VARIABLES. AND EXTRA 
COLUMNS ON THE RIGHT OP LEFT-HANDSIDE. E.G. VALUE COLUMN. 
AND EXTRA ROVS ON THE TOP OF. BOTTOM. 1. E. TARGET-ROW. 
SUBSTITUTE oBJECTI VE FUNCTI ON. UPPER BOUNDS ROW. ETC. 
THE NUMBER OF EXTRA CoLt~NS IS INDICATED BY THE NlmBER RH. 
I F THE EXTRA COLUMNS ARE ON THE RI GHTHAND SI DE. RH IS 
POSITIVE. A NEGATIVE VALUE OF RH INDICATES EXTRA COLUMNS 
ON THE LEFTHAND-SI DE. 
THEIR Nt~EER IS THE ABSOLUTE VALUE OF THE PARAMETER RH. 
THE PARI'.METER ER INDICATES THE Nl~BER OF EXTRA RO~·S. 
IF ER IS FOSITIVE THEY ARE AT THE END. IF ER IS NEGATIVE. 
THEY ARE BEFORE THE TAELEAU ITSELF. I.E. AT THE TOP; 

START: F"lNISHED := 'TRUE'; 

FIRST:=); LAST:=N; 
'IF' RH > 0 'THEN' LAST:=LAST+F.H 'ELSE' FIRST:=F"lRST+P.H; 

'FOR' 1:=2 'STEP' ) 'UNTIL' M 'DO' 'BEGIN' 
'IF' RO~~ST[lJ < RO~'LSTCI-)J 'AND' RoVLSTrIJ > 0 
'THEN' 'GoTO' REARRANGE RO~'S; 
'IF' ROVLSTCIJ > RO~'l.STCI-)J 'AND' Rot.'l.STCI-)J < 0 

THEN' 'GO TO , REARRANGE ROVS; 
'GOTO' END OF ROW ORDERING LOOP; 
REARP.ANGE ROVS: F"lNI SHED := 'FALSE'; 
'FOR' J:=FlRST 'STEP' ) 'UNTIL' LAST 'DO' 'EEGIN' 

NUM:=TCI-J.JH TCI-J.JJ:=TCI.J]; T[I.JJ:=Nl~; 'END'l 
NAME: =Ro~'l.STC 1- J]; R01o:LST[ I -) J: = R01ol1. ST[ I H ROVLST[ I J: "NAME; 
END OF ROW ORDERING LOOP: 'END'; 

FIRST:"); LASTI=Ml 
'IF' ER > 0 'THEN' LAST:"'LAST+ER 'ELSE' FlP.STI=FlRST+ER; 
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'FOR' J:=2 'STEP' I 'UNTIL' N 'DO' 'BEGIN' 
'IF' COLLST[JJ < COLLST[J-IJ 'AND' COLLST[JJ > 0 
'THEN' 'GOTO' REARRANGE COLUMNS; 
'IF' COLLST[JJ > COLLST[J-IJ 'AND' COLLST[J-IJ < 0 
'THEN' 'GOTO' REARRANGE COLUMNS; 
'GOTO' END OF COLUMN ORDERING LOOPl 
REARRANGE COLUMNS: FINISHED:= 'FALSE'; 
'FOR' I:=FIRST 'STEP' I 'UNTIL' LAST 'DO' 'BEGIN' 

NUM:=T[l.J-IJJ T[1.J-J):=T[I.JJJ T[I.J)lcNUM; 'END'; 
NAM EI c COLLST[ J- J JJ COLLST[ J - J ) I = COLLST[ J)J COLLSTC J) I "'NAMEl 
END OF COLUMN ORDERING LOOP: 'END'; 

'IF' 'NOT' FINISHED 'THEN' 'GOTO' STARn 

END OF ORDR: 'END'; 

If the tableau is at all large, the ordering method which is 
used by the procedure ORDR is not very efficient. 

The procedure interchanges only adjoining names and their 
associated vectors. Whether the new positions are correctly 
ordered is then tested in the next ordering loop. The obvious 
implication of this approach is that large numbers of 
permutations may be made which do not so far brin8 any name 
in its correct eventual position. 

Considering the following 4-element list: 

1002, 1001, 4, 3. 

The eventual ordering of this list is 3, 4, 1001, 1002, in 
the following stages: 

1002, 1001, 4, 3 interchange 1002 and 1001 
1001, 1002, 4, 3 interchange 1002 and 4 
1001, 4, 1002, 3 interchange 1002* and 3 

1001, 4, 3, 1002 interchange 1001 and 4 
4, 1001, 3, 1002 interchange 1001* and 3 
4, 3, 1001, 1002 interchange 4* and 3* 

3, 4, 1001, 1002, final ordering 

Permutations which bring a name in its actually correct 
position have been marked with an asterisk after the namecode 
in question. 

The ordering of a large list may involve many permutations 
which don't bring any name in the position of its final 
orderin8' 
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For large lists this problem tends to be aggravated, the 
"ineffective" permutations becoming much more numerous, even 
relative to the "effective" ones. 

As far as the logic of the ordering problem is concerned, this 
is more or less unavoidable, because the final "correct" 
ordering is not initially known. 

What is, however, possible, is to delay re-ordering of the 
tableau-matrix until the ordering of the namelists is known. 
It is after all quite a bit cheaper to interchange 2 name-codes 
than to interchange 2 rows of a large tableau: 

ORDR can in fact be used to order only a namelist. One just 
lists one of the two-order parameters as b2ing zero, i.e. 

ORDR (M, 0, 0, 0, ROWLIST, COLLST) 

only accesses the first zero columns of the tableau-matrix, 
and the first zero elements of the list of column-names. This 
effectively means re-ordering the list of row-names. The 
tableau matrix itself, and the list of column names is not 
accessed. 

The following procedure makes use of this device to order the 
tableau in two stages: 

'PROCEDURE' ORDL(T,M,N,ER,P~,RO~~,COLL); 
'ARRAY' T; 'INTEGER' M,N,ER,RH; 'INTEGER' 'ARP.AY' ROVI..,COLL: 

'BEGIN' 'INTEGER' I,J,R,K; 'REAL' NUMJ 

'PEOCEDURE' ORDR(T,M.N,ER,RH,RO~~.COLL)J 
'ARRAY' T; 'INTEGEP.' M,N.ER.P~; 
'INTEGER' 'ARRAY' RO"'~' COLLI 'ALGOL ': 

'INTEGER' 'ARP.AY' DUP RO~'L[l:M], DUP COLL[l:Nl1 

'COMMENT' 
ORDERING PROCEDURE FUR A LARGE TABLEAU. 
THE TABLEAU IS ORDERED IN TWO STAGES. 
FIRST THE NAMELISTS ARE COPIED INTO THE DUPLICATE LISTS, 
\/HICH ARE THEN ORDERED BY CALLING ORDR, WITH ONE OF THE 
ORDEP.-PARAMETERS SET AT ZERO. 
THEP.EAFTER, THE TABLEAU ITSELF IS ORDERED, ON INDICATION 
OF THE DIFFERENCES BETWEEN THE ORIGINAL AND THE REORDERED 
NAMELISTS. 
FINALLY, THE REORDERED NAMELISTS ARE COPIED TO THE ORI
GINAL ONES. 
: 
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ORDER R01t.'Ll3Tr 
'FOR'· Rr-I 'STEF' I 'UNTIL' M '00' oUP ROI".'LtRll=R01r.'l..tRH 
ORoRCT,M,O.O,O,oUP R01r.'I..,COLL)1 

ORDER COLl~N LISTr 
'FOR' Kr-I 'STEP' I 'UNTIL' N 'DO' OUP COLLtKl:"COLLtKlJ 
ORoRCT,O,N,O,O,ROVL,oUP COLL)I 

ORDER ROVSr 
'FOR' R: .. I 'STEP' I 'l.'NTIL' M-I '00' 'BEGIN' 

'FOR' Ir=F.+1 'STEP' I 'UNTIL' M '00' 
'IF' OUF R01t.'LtRl=ROloJLtll 'AND' 'NOT' ROWLt!U"DUP R01o'LtRl 
'THEN' '8EGIN' 

ROVLtIlr=ROYLtRll R01r.'l..tRll-oUP R01r.'l..tR)1 
'FOR' J:-I 'STEP' I 'UNTIL' N+PJi ,~O' '8EGIN' 

NUMrcTtR,JlJ TtP.,J)I=TtI,JH TtI,Jl:=NUMl 'ENo'l 
'GOTO' NEXT RD1';; 'ENo'l 

NEXT R01r.'r 'END'; 

ORDER COLl~NSr 
'FOR' KI-I 'STEP' I 'UNTIL' N-I '00' 'BEGIN' 

'FOR' J:=K+I 'STEP' 1 'UNTIL' N '00' 
'IF' OUF COLLtKl"COLLtJl 'AND' 'NOT' COLLtKl"'oUP COLLtK] 
'THEN' '8EGIN' 

COLLtJl:cCOLLtKl; COLLtK)r"DUP COLLtKl; 
'FOR' 1:=1 'STEP' 1 'UNTIL' M+ER '~O' 'BEGIN' 
Nt..~:=TtI,KH TtI.Kl:=TtI,JlJ TtI,Jl:=Nl~1 'END'I 

'GOTO' NEXT COLUMNI 'ENo'l 
NEXT COLUMN I 'ENo'l 

END OF ORoL: 'END'; 

CHAPTER XII 
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12.3 Commented text of a linear programming procedure 

The programmed procedure offered in this section assumes a 
mixed system as discussed in Chapter X. It contains two calls 
to the ordering procedure discussed in the previous section. Of 
these, the call just below the label OUT is strictly for the 
purpose of orderly presentation of the end result. The first 
call to the ordering procedure, following the label ORDER, is 
part of the linear programming algorithm. The reason is that 
random ordering may already arise during the preliminary 
inversion phase. As may be seen from its listing below there 
are two fairly distinct phases in the algorithm. One phase 
consists in making the variables without sign-restrictions into 
basic variables irrespective of their sign, the other phase 
is the linear programming algorithm proper. 

The search operation for a pivot row following the label 
RETURN IN INVERSION is comparable with the similar search 
operation which occurs in ordinary matrix inversion. The phase 
of an LP algorithm which deals with the systematic search for 
a feasible solution is conventionally indicated as "Phase I". 
In this algorithm, "Phase I" is preceded by a phase which 
deals with entering "free" variables into the basis. That 
phase "enter variables without sign restriction" could 
therefore be called "Phase 0". 

The search operations which control this phase are sufficiently 
different from the ones in the proper LP algorithm to justify 
keeping them completely separate. The actual updating of the 
tableau, including the administration of the name lists is 
however common for all phases. The return to "Phase 0" in 
order to find a pivot row to match the next "free" variable 
is controlled by the logical variable INVERTED. 

Just as in ordinary matrix inversion (compare Sections 3.10 
and 3.14), the pivot may be found elsewhere than on the main 
diagonal. Or no non-zero pivot may be found at all, if the 
rank of the left-hand block column is lower than the number of 
free variables. In that case the "unbounded" loop of Phase 0 
will be activated. At t,e end of Phase 0, the tableau is 
re-ordered. The implication of this arrangement is obviously 
that free variables must be placed before bounded variables, 
i.e. they are recognisable as the ones with the lowest indices. 

The re-ordering will therefore put the rows which refer to 
variables without sign restriction at the top of the tableau. 
The search operations for a pivot row during the,LP algorithm 
proper then run from the row with index NAV+l onwards. 
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The two phases of the normal simplex operations, i.e. Phase I 
for finding a feasible solution and Phase II for finding the 
optimum are almost completely integrated. 

The distinct "Phase I" part of the programme consists of: 

* Finding whether a feasible solution exists, and setting 
the logical variable FEASIBLE accordingly. Technically, 
Phase I is re-entered at every step, but this becomes 
trivial, once a feasible solution exists. 

* Setting the objective function coefficient for each column. 
During Phase I, this is done as follows: In the first 
instance, the substitute objective function is the sum of 
all infeasibilities (negative stacks). If the current 
basis is not feasible, no column qualifies as incoming 
variable, unless it promises a positive ascent of this 
substitute objective function. 

Columns which pass this test are then loaded as "preferred" 
or "non-preferred" columns. Preferred columns are those which 
promise an incredse in both the specified and the substitute 
objective function, and the actually used preference 
coefficient is the sum of the two objective functions. 

Non-preferred columns are those which promise an increase in 
the substitute objective function, but only at the cost of a 
loss in specified objection function value. Preference for the 
preferred columns is made effective by scaling the preference 
coefficient of non-preferred columns down by a factor 1000. 

If the current basis is feasible, the objective function 
obviously is specified objective function. Control then passes 
to the search operations of the optimizing algorithm. 

In principle all columns - other than those referring to 
equations - are scanned for potential pivots, going through 
the tableau from left to right. The following rules apply: 

* The rule of the smallest quotient, applied to positive 
pivots and negative ones in connection with equations. 
This row-selection rule applies to columns which indicate 
a positive non-zero ascent in the specified preference 
direction (= a negative non-zero entry in the m+lth row 
of the tableau). 
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* The "efficient" rule of row-selection (see section 9.2). 
When this rule applies we are dealing with a non-preferred 
Phase I column. The acceptable minimum value of a negative 
pivot in an inequality-row is 1/3 of the average of all the 
negative entries in the column in question which are 
associated with violated restrictions (including equations). 
(There is also a minimum absolute value of 0.000001 for all 
pivots.) 
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* The rule of the highest step with, for violated restrictions, 
modifications as discussed in sections 11.4 and 11.5. When 
the current basis is feasible the rule of the highest step 
works as a column-selection rule, but in Phase I this is only 
true for the choice between different preferred columns. 

Once it becomes necessary to find the pivot in a non-preferred 
column, the rule of the highest step effectively becomes a row
selection rule. 

Note, however, that the dual ratio condition is enforced only 
partially, i.e. going from left to right. If ~ shift to a 
different violated restriction actually takes place, this may 
well be one for which the dual ratio is in fact violated in 
columns further to the left than the one which is currently 
being scanned. 

The other complicating feature which arises concerns the 
upper limits on specified variables and the fact that negative 
entries in the tableau "stand in" for positive potential pivots 
in relation to upper limits. The procedure follows section 10.3 
fairly precisely, but it does in practice complicate the search 
operations quite noticeably. 

The procedure-text is now listed, as follows: 

'PROCEDVRE' LINP(T.M.N.NEQ.NAV.RO~LST.COLLST.REENTRY); 
'ARRAY' TJ 'INTEGER' M.N.NEQ.NAV.REENTRY; 
'INTEGER' 'ARRAY' PD\lLST. COLLST; 

'BEGIN' 'INTEGER' I .J. R. TRYR.K. COLN. RO~N. TRYN.N OF NC; 
'REAL' ASC.HIG.QUO.TQUO.PIV.NL~.COF.VNEV.DUAL RATIO. 
rs ASC; 
'BOOL EAN' INVERTED. FEASI EL E. UPPEREOUND; 

'PROCEDURE' ORDL(T.M.N.ER.RH.RO~LST.COLLST); 
'ARRAY'T1 'INTEGER' M.N.ER.RH; 
'INTEGER' 'ARRAY' RO\ILST.CIJLLST; 'ALGOL'; 
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'COMMENT' LINEAR PROGRAMMING PROCEDURE. 
M RESTRICTIONS AND N VARIABLES. 

THE PROCEDURE ACCOMODATES A MIXED SYSTEM, 
WITH UPPER EOUNDS ON ALL NON-NEGATIVE VARIABLES. 

THE FIRST NEQ RO~S REFER TO EQUATIONS, 
iHE REST TO INEQUALITIES. 
EQUATIONS SHOL~D BE PRESENTED ~ITH A NON-POSITIVE CONSTANT, 
I F NECESSARY BY CHANGING THE SI GN OF ALL ENTRI ES IN A R01.:. 
IF THI SIS NOT DONE, I T ~ILL EE DONE BY THE PROGRAMME, 
WITHOUT FURTHER WARNING. 

THE FI RST NAV COLLUMNS REFER TO VARI AEL ES FOR lo.'HI eH 

CHAPTER XII 

THE NON-NEGATIVITY RESTRICTION DOES NOT APPLY, WHILE IT DOES 
APPLY TO THE REMAINING N-NAV COLUMNS. 

ONE SHOULD PREVIOUSLY DECLARE THE ARRAYS, T, THE TABLEAU, 
AS \iELL AS THE INTEGER ARRAYS RO\iLST, THE LI ST OF ROYNAMES, 
AND COLLST, THE LIST OF COLUMN-NAMES. 
ONE SHOULD SUPPLY THE TABLEAU, EUT NAMES ARE GENERATED 
BY LINP. 
THE TABLEAU SHOULD BE SUPPLIED IN LESS THAN OF. EQUAL TO FORM, 
~I TH THE VALUE COLUMN AS THE LAST COLUMN, INDEX N+ 1, 
AND THE TARGET-ROW AS THE LAST RO\', INDEX M+ 1. 

THE TABLEAU-DECLARATION SHOL~D RESERVE AN ADDITIONAL N+2 TH 
COLUMN FOR THE UPDATED FORM OF UPPER BOUNDS, AND AN M+2 TH 
RO\i FOR THE NON-UPDATED FORM OF THE UPPER BOUNDS-VECTOR. 
THE USER SHOL~D SUPPLY THE NUMERI CAL CONTENT OF THE UPPER 
BOUNDS RO"'-VECTOR, THE UPPER BOUNDS TO BE PUT ON THE 
SPECIFIED NON-NEGATIVE VAEIABL.ES. 
TO ACCOMODATE LARGE UPPER BOUNDS FOR VARIABLES "'HERE NO 
'1EANINGFUL UPPER BOUND I S INTENDED, P. ZERO MAY EE SUPPLI ED 
INSTEAD, AND THE FROGRAMME "'ILL SUBSTITUTE A MILLION FOR IT. 
VARIAELES 1r:ITHOUT SIGN F.ESTRICTION DO NOT HAVE 
UPPER EoUNDS, BUT DUMMY-NUMBERS HAVE TO BE Pl'T FOR IfIiEM. 

THERE ARE T"'o NAMELI STS, "'HI CH AF.E FILLED BY THE PROCEDURE. 
THE SPECIFIED ECONOMIC VARIABLES HAVE NAME-CODES EQUAL TO 
THEIR INDICES, I.E. 1 TO N, 
AND THE SLACKS OF THE INEQUALI TI ES HAVE NAME-CODES, EQUAL TO 
THEIR INDICES PLUS 1000, I.E. FROM 1001 TO 1000 + M. 

ON EXIT, THE LIST OF CoLL'MN NP.MES MAY ALSO CONTAIN ENTRIES 
1.:ITH ENLARGEMENTS OF 10000. 
A NAME-CODE OF 10000 + J INDICATES THE UPPER BOUND ON THE 
J TH VARIABLE'; 

'IF' REENTRY I 0 'THEN' 'BEGIN' 
'COMMENT' 
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FOR REENTRY"O THE NORMAL LP ALGORITHM IS FOLLOWED. 
INCLUDING THE FILLING OF THE NAMELISTS. 
oTHER ... ISE THE PROCEDURE EXPECTS AN ALREADY 
CPDATED TABLEAU. \.'1 TH NAMELI STS FILLED. "''HI CH NEEEDS 
RE-oPTIMIZING AND/OR FINDING A NEW FEASIBLE SOLUTION. 
THE REENTRY PARAMETER ALLO""S RE-ENTRY OF THE ALGORI THM 
AfTEP. CHANGING THE RI GHTHAND-SI DE OR THE VALUE COLUMN. 
IN WHICH CASE REENTP.Y=I SHOULD BE SUPPLIED. 

THE SAME PARAMETER ALSO SERVES AS ABNOPJ1AL EXI T PARAMETER. 

FOR NOP.MAL. I.E. OPTIMAL AND FEASIBLE EXIT. 
THE REENTRY PARAMETER IS ASSIGNED THE VALUE ZERO. EVEN IF 
ITS VALUE ON ENTRY ... AS 01 FfERENT. 
AN UNBOUNDED PROBLEM IS INDICATED·BY REENTRY = I. 
AN EMPTY PP.08LEM BY REENTRY = - 1; 

INVERTED := 'TRUE'; 
'GOTO' PHASE I; 'END'; 

FILL NAMELISTS: 
'FOR' J:=I 'STEP' 
'fOR' 1:=1 'STEP' 

'CNTIL' N 'DO' COLLSTrJJ := J; 
, UN TIL' M 'DO' RO",'L S T rI J : = I 00 0 + X; 

SET UPPER BOUNDS AND FILL DL'MMY ENTRI ES: 
'FOR' J:=NAV+I 'STEP' I 'CNTIL' N 'DO' 'If' TrM+2.JJ=O 
'THEN' TrM+2.JJ:=IOOOOOO; 
T(M+I.N+IJ:=TrM+2.N+I]:=TrM+I.N+2J:=TrM+2.N+2J:=O; 
, FO R' I: = I 'S T EP , I ' UN TIL' M + 2 ' DO' T r I • N + 2 J : = 0; 
'FOR' J:"I 'STEP' I 'UNTIL' NAV 'DO' TrM+2.Jl:=O; 

ATTEND EQUATIONS ""1 TH THE ",'RONG 01 RECTIoN: 
'FOR' 1:=1 'STEP' I 'UNTIL' NEQ 'DCl' 'BEGIN' 

, IF' T ( I • N + I 1 > 0 'TH EN ' 
'FOR' J:=I 'STEP' I 'UNTIL' N+I 'DO' 
, If' , NO T' T r I • J 1" 0 ' TH EN' T r I • J 1 : = - T r I • J ]; • EN D' ; 

ATTEND PRII'!P.L DEGENERACY: 
, Fo R' I: = I 'S T EP , I ' UN TIL' M ' DO' '1 f' T r I • N + I J = 0 
'THEN' 'BEGIN' 

TrI.N+IJ:=I; 
, Fo R' J: = I 'S T EP , , t:N TIL' N ' DO' 'I f' T r I. J J < 0 'TH EN ' 
T(I.N+IJ:=TrI.N+Il-TrI.JJ; 
T(I.N+IJ:=O.OOOOOOOOOOOOOOI*TrI.N+Il; 
'If' I < NEC+I 'THEN' TrI.N+Il:=-TrI.N+I]; 'END'; 

ATTEND DUAL DEGENERACY: 
'FOR' J:=I 'STEP' I 'UNTIL' N 'DO' 'If' TrM+I.JJ=O 
'THEN' 'BEGIN' 

TrM+I.JJ:=1; 
'FOR' 1:=1 'STEP' 'UNTIL'M 'DO' 'IF' TrI.JJ > 0 'THEN' 
TrM+I.JJ:=T(M+I.Jl+TrI.JJ; 
T(M+I.Jl:=O.OOOOOOOOOOOOI*TrM+I.Jl; 
'If' J < NAV+I 'THEN' TrM+I.Jl:=-TrM+I.J]; 'END'; 

253 



254 

PHASE 0: 
ENTER VARIABLES VITHOUT SIGN RESTRICTION: 
K: =0; INVERTED: =' FALSE'; 
RETURN IN INVERSION: 
K:=K+I; 
'IF' K > NAV 'THEN' 'BEGIN' 

INVERTED:='TRUE'; 'GOTO' ORDER; 'END'; 

COLN:=K; QUO:"IOOOOOOOOOOOOOOO; Ro\lN:=O; 
'FOR' 1:-1 'STEP' I 'UNTIL' M 'DO' 
'IF' ROWLSTCIl > NAV 'AND' TCI~Kl , 0 'THEN' 'BEGIN' 
TQUO:"TCI~N+11/TCI~Kl; 
'].1'" TQUO < 0 'THEN' TQUO:=-TQUO; 
'1,' TQUO < QUO 'THEN' 'BEGIN' 

QUO:'"TQUO; R:=l1 ROWN:=ROWLSTCIH 'END'; 'END'; 
'IF' ROWN=O 'THEN' 'GOTO' UNBOL'NDED; 
QUO:=VNBV:"TC R~N+ Il/TCR~KlJ 'GOTO' MAKE THE STEP; 

ORDER: 
ORDL(T~M~N~2~2~RO'JLST~COLLST); 

PHASE I~ FEASIBLE := 'TRUE'; 
FIND WETHER A FEASIBLE SOLUTION EXISTS: 
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'FOR' l:zNAV+1 'STEp· I 'UNTIL' M 'DO' 'IF' TCI.N+ll<O 'THEN' 
FEASIBLE P' 'FALSE'; 

MAXIMIZE: HIG:=O; COLN:=O; VNBV:=O; R:=K:=O; 
DUAL RAT 1 0 :.. I 0 0 0 0 0 0 0 0 0 0 0 0 ; 
'FOR' J:=I 'STEP' I 'UNTIL' N 'DO' 
'IF' COLLSTCJl < 1000 'OR' COLLSTCJ] > NEQ + 1000 
'THEN' 'BEGIN' 

INITIALIZE SUBSTITUTE PREFERENCE DIRECTION: 
N ASC :'" ASC:- 0; N OF NC p. 0; 

'IF' FEASIBLE 'THEN' ASCI=-TCM+I.J] 'ELSE' 
'FOR' I:-NAV+I 'STEP' I 'UNTIL' M '00' 
'IF' TCI~N+ll < 0 'THEN' 'BEGIN' 

ASC :- ASC-TCI.Jl; 
'IF' TCI~Jl<O 'THEN' 'BEGIN' 

N OFNC:- N OFNC +IJ 
N ASC :- N ASC - TCI.JlJ 'END'; 'END'; 

REFUSE L'NDERSIZE PHASE 1 PIVOTS: 
'IF' 'NOT' FEASIBLE 'AND' ASC < 0.0000001 
'THEN' 'GOTO' FINISHED WITH THIS COLUMN; 

'IF' 'NOT' ASC > 0 'THEN' 'GOTO' FINISHED WITH THIS COLL'MNJ 

PUT PREFERENCE FOR PREFERRED COLUMNS: 
'IF' 'NOT' FEASIBLE 'A.rD' 
TCM+ I~Jl > 0 'AND' ASC > 0 'THEN' 
ASC : .. 0.00 UASCJ 
'IF' 'NOT' FEASIBLE 'AND' TCM+I~Jl < 0 'THEN' 
ASC :- ASC-TCM+I~J]J 
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SEARCH FOR SMALLEST ~VO ~ITH JTH COLUMN: 
QUO:=IOOOOOOOOOOOOOOO; 
TRYN := TRYR := 0; 

'FOR' II=NAV+I 'STEP' 'UNTIL'M 'DO' 
'IF' ABS(TCI.JJ> > 0.00000001 'THEN' 'BEGIN' 

'IF' TCI.J] > 0 'AND' TCI.N+I] > 0 
'THEN' 'GOTO' CHECK QUOTIENT; 
'IF' TCI.J] < 0 'AND' TCM+I.J]<O 'THEN' 'BEGIN' 

'IF' R01.,'LSTCl]<IOOO 'THEN' 'GOTO' TRY UPPERBOllND; 
'IF'ROIJLSTCI]>IOOO+NEQ 
'THEN' 'GOTO' FINISHED ~ITH THIS PIVOT; 'END'; 

, IF' TC I. J J < 0 'AN D' TC I. N+ I J < 0 
'THEN' 'GOTO' CHECK ~l'OTIENr; 
, IF' T C I • J J < 0 'AN 0' R01 • .'L S T C I J < I 0 0 0 ' TH EN ' 
'GOTO' TRY UPPER EOl'ND; 
'IF' TCI.JJ <0 'OR' TCI.N+1J < 0 'THEN' 
'GOTO' FINISHED ~ITH THIS PIVOT; 

CHECK G:UOTI ENT: 
VPPERBOL'ND:= 'FALSE'; 
TQUO:=TCI.N+IJ/TCI.JJ; 

, IF' TC I. J] < 0 'AN 0' TC I. N+ I J < 0 'TH Erl' 'BEGI N ' 
, I " RO IJL S T C I J ,. I 0 0 0 ' AN D ' RO 1,.'L S T C I] < NEG: + I 00 I 
'THEN' 'GOTO' CHECK DUAL RATIO; 
'I,' I=R 'AND' 'NOT' K=O 'THErl' 'BEGIN' 

'IF' TCM+I.JJ > 0 'AND' TCM+l.KJ>O 
'THEN' 'GOTO' CHECK DUAL RATIO; 'END'; 'END'; 

'IF' TCI.JJ < 0 'AND' -TCI.JJ*N OF NC*3 < N ASC 
'THEN' 'GOTO' TRY l'PPERBOl'NO; 

'IF' (TCI.N+I]<O 'AND' TCI.J]<O) 'THEN' 'BEGIN' 
'1,' 'NOT' TRYR=O 'THEN' 'BEGIN' 

'IF' (RO .... LSTCTRYRJ=TP.YN 'AND' TCTRYP..JJ<O 
'AND' TCTRYP..N+I]<O) 
'THEN' 'BEGIN' 

'IF' TQl'O < TCTRYR.N+IJ/TCTRYR.J] 
'THEN' 'GOTO ~ TRY l'PPERBOllNO; 'END'; 'END' J 'END' J 

CHECK Dl'AL RATIO: 
'IF' (TCI.N+I]<O 'AND' TCI.J]<O 'AND' TCM+l.JJ>O) 
'AND' 'NOT' K=O 'THEN' 'BEGIN' 

'I,' (I"'R 'AND' -TCM+l.JJ/TCI.J] > DUAL RATIO) 
'AND'TCM+I.K]>O 
'THEN' 'GOTO' FniISHED \11TH THIS COLL'MNJ 'END'J 
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MEASURE: 
'IF' TeUO' Qt:O 'THEN' 'BEGIN' 

'IF' TCI.Jl , 0 'OR' UPPEREOlJND 
'THEN' 'GOTO' FINISHED WITH THIS PIvor; 
'IF' TRYR' 0 'THEN' 'BEGIN' 

'IF' TRYN < 10000 'AND' TCTRYR.Jl , 0 
'THEN' 'GOTO' FINISHED \11TH THIS PIvor; 
'IF' TRYN' 10000 'AND' TCTRYR.JJ < 0 
'THEN' 'GOTO' FINISHED WITH THIS PIvor; 'END'; 'END'L 

QUO:=TQUO; 
'IF' QUO*ASC < HIG 'AND' CTCI.Jl , 0 'OR' UPPERBOlJND> 
'THEN' 'GOTO' FINISHED WITH THIS COLUMN; 
TRYR:=I; TRYN:=ROWLSTCI1; 
'IF' UPPERBotJND 'THEN' TRYN:'"TRYN+IOOOO; 
'GOTO' FINISHED WITH THIS Pivor; 

TRY UPPER BOl'ND: 
'I F' TC I.Jl , 0 'THEN' 'GOTO' FINI SHED WI TH THI S PI vor; 
'IF' RO\lLSTCll,IOOO 'AND' ROWLSTCl]<IOOI+M 
'THEN' 'GOTO' FINI SHED \II TH THI S PI vor; 
UPPERBOUND:='TRUE'; TQt:O:=-TCI.N+21/TCI.Jl; 
'GOTO' MEASURE; 
FINISHED WITH THIS PIVOT: 'END'; 

'IF' QUO' 999000000000000 'AND' COLLSTCJl , 1000 
'AND' COLLSTCJJ < 10000 'THEN' 'GOTO' lJNBOUNDED; 
'I F' QUO ,. TCM+2.J.l 'THEN' 'BEGIN' 

'IF' COLLSTCJl , 1000 'AND' COLLSTCJl < 10000 
'THEN' 'GOTO' END OF DIRECT HIT LOOP; 
QUO: '"TC M+2.J]I 
'IF' COLLSTCJJ < 10000 'THEN' TRYN := COLLSTCJ1+IOOOO 
'ELSE' TRYN := COLLSTCJ1-IOOOO; 
END OF DIRECT HIT LOOP: 'END'; 

CHECK HEI GHT OF STEP: 
'IF' TRYR, 0 'AND' KIO 'THEN' 'BEGIN' 

'I F' C TRYR=R 'AND' ROWLSTC TRYRl =TRYN 
'AND' TCTRYR.Jl<O 'AND' TCTRYR.N+IJ<O 'AND' TCM+I.Jl>O 
'AND' TCM+I.Kl'O 'AND' -TCM+I.JJ/TCTRYR.Jl < DUAL RATIO) 
'THEN' HIG:=O; 'END'; 

'IF' QUO*ASC , HIG 'THEN' 'BEGIN' 
HIG:-CUO*ASC; VNBV:=QUO; 
'IF' 'NOT' ABSCTRYN-COLLSTCJ1) = 10000 'THEN' R:"TRYR 
'ELSE' R:-O; 
'IF' 'NOT' R-O 'THEN~ 'BEGIN' 

'IF' ROWLSTCRJ=TRYN 'AND' TCR.Jl<O 'AND' TCR.N+IJ<O 
'THEN' DUAL RATIO:z-TCM+I.J1/TCR.Jl; 
, END'; 

RO\lN:=TRYN; K:=J; COLN:=COLLSTCJlI 'END'; 
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FINISHED .... ITH THIS C01.UMN: 'END'; 

'IF' C01.N = 0 'THEN' 'BEGIN' 
'IF' FEASIB1.E 'THEN' 'GOTO' OUT 'ELSE' 'GOTO' EMP'rO 
, END'; 

MAKE THE STEP: 
C01.1.STCK): = R01t.'NJ QUO: =VNBV; 

ADJUST RI GHTHANO SI DE AND UPPER BOUNDS C01.L'M~l: 

'FOP.' 11"'1 'STEP' I 'L'NTI1.' R-I~ R+I 'STEP' I 'L'NTIL' M+l 
'~O' 'IF' T[l~Kl I 0 'THEN' 'BEGIN' 
TCI~N+I)I=TCI.N+Il-T[l~K)*QUO; 'IF' T[l~N+Il"'O 
'THEN' TCI.N+I):=O.OOOOOOOI; 
TCI~N+2l:=TCI~N+2)+TCI.Kl*~UO; 

'IF' TCI.tl+2)=0 'THEN' TCI~N+2l:=0.0000000U 

CONSIDER ONE COLUMN UPDATE: 
'IF' ABSCR01.!N-COLN)=IOOOO 'THEN' 'BEGIN' 

'COMMENT' 

'END'; 

01 RECT HI T OF THE CPPER BOUND ON THE COLL'MN-VARIABLE. 
NO FU1.1. UPOATl NG 0 F THE TAE1. EAU 1 S REI:UI RED; 
'FOR' 1:=1 'STEP' 1 'UNTI1.' M+I ,~O' 
'IF' TCI~KJIO 'THEN' TCI~Kll=-TCI.K); 

'GOTO' CHECK FOR STATUS; 'END'; 

ATTEND UPPERBOUNDS OF PIVOTAl. PAIR: 
COP:=TCM+2~KJ; NUM:=TCM+2.K):=TCR~N+ll+TCP..N+2); 
TCR.N+)) := QCO; TCR.N+2) := COP-~UO; 

'IF' TCR~N+2)"'0 'THEN' TCR.N+2l:-0.00000001; 
'IF' G:L'O=O 'THEN' TCR.N+I):=O.OOOOOOOU 

REFORMU1.ATE RO,.. \11 TH t'PPER BOUND NAME: 
, 1 F' R01t.'N > I 0000 'TH EN ' 
'FeR' J:=I 'STEP' I 'UNTI1.' 1'1 '~O' TCP'~J):=-TCR~JH 

UPDATE: 
PIV:=TCR~KH 
'FOR' J:=I 'STEP' 'UNTIL'N 'DO' 'IF' TCR • ..11IO 'THEN' 
TCR.J):=TCP. • ..1)/PIV; 

'FOR' ..1:=1 'STEP' 
'IF' 'NOT' TCR • ..1) 

'UNTI1.' K-I.K+I 'STEP' 1 'UNTI1.' 1'1 'DO' 
o 'THEN' 

'FOR' 1:=1 'STEP' 't:NTI1.' R-I.R+I 'STEP' I 'UNTIL' M+I '~O' 
'IF' 'NOT' TCI.K) =0 'THEN' TCI~J):=T[l.J)-TCR.JJ*TCI.K]J 
'FOR' 1:=1 'STEF' I 'UNTI1.' M+I 'DO' 'BEGIN' 

'IF' 1 < M+I 'AND' ABSCTCI.Kl) < 0.0000001 
'THEN' TC 1 ~ K): = 0; 
'IF' 'NOT' TCI~K)=O 'THEN' TCI~K):=-T[l.K)/PIV; 'END'; 

TCR.Kl:=I/PIV; 
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ROVLST[R):&COLN; 

I F NECESSARY REFORMULATE NEV ROV "'I TH UFF'ERBOUND NAMEI 
'IF' COLN > 10000 'THEN' 'EEGIN' RO"'l.STrR):=COLN-IOOOO; 

'FOR' J:=I 'STEP' I 'UNTIL' N 'DO' 'IF' T[R.J)IO 'THEN' 
TCR.J):&-T[R.JlJ 
COP:&T[R.N+I)+T[R.N+2)J T[R.N+I):=COP-QUO; T[P.N+2)I&QUO; 
• END'; 

CHECK FOR STATUS 1 
'IF' 'NOT' INVERTED 'THEN' 'GOTO' RETURN IN INVERSION; 
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'iF' FEASIBLE 'THEN' 'GOTO' MAXIMIZE 'ELSE' 'GOTO' PHASE lJ 

EMFTY: 
REENTRY 1& -I; 
NEIo.'LINE( I); 
VRITETEXT('C'EMPTY%PPOBLEM')'); 
NEVLINE( I); 
'GOTO' ORDER FOR EXI Tl 

UNBOUNDEDI 
REENTRY : '" IJ 
NEVLINE( I); 
~RITETEXT('('lWBOUNDED%COLUMN')'); 

VRI TE( 30. FOP.MAT( '( 'S-NDDDDDD') '). COLLST[J]); 
NE\.'LI NEC I); 
'GOTO' END OF LINP; 

OUT: 
'IF' FEASIBLE 'THEN' REENTRY :=0 'ELSE' REENTRY:" -IJ 
ORDER FOR EXI T: 
ORDLCT.M.N.2.2.RO\.'LST.COLLST); 

END OF LINP: , END'; 

12.4 Printing a Simplex Tableau 

The tableau printing procedure offered in this section is an 
adaptation of the matrix printing procedure mentioned in 
Section 2.18. The tableau is printed with its two namelists. 
The following different features are, however, noticeable. 

In connection with the printing of a rownameslist on the left
hand side of each block, the number of columns per block-column 
is reduced (from 15 to 13). The facility to "skip" leading rows 
and columns has been integrated with the printing of names. 
Name-codes are printed only for "proper" rows and columns, not 
for supplementary vectors, e.g. target-row and value column. 
If all proper rows are skipped, i.e. only one or more "extra" 
rows-are printed, no list of rownames is required and 15 rather 
than 13 columns per block-column are printed. 

The printing of the indices of the leading element of each 
block is replaced by the printing of the list of columnnames. 
This is done every thirty lines, and a blank line is inserted 
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half-way. The procedure can also be used for printing certain 
blocks of the tableau itself, in the same way as with the 
matrix printing procedure. The facility for scaling has not 
been maintained. The text of the procedure is as follows: 

TEXT-LISTING OF THE TABLFAl'-FRINTItJG FRoCEDl'F.E. 

'PRoC FDl'RE' TABo (HATP.. H. N. Sr.. SCI F.H. EP.. Ro1o.'L ST. CoLL STH 
'AF-P.AY' MATR; "INTEGEP' M.N.SP..SC.RH.EP.; 
'INTEGER' 'I'.F.F:AY' RoIJLST. CoLLST; 

'E EG IN' 'I NTEG ER' NRDO. NP. TD. NCoL DO. NCoL TD. 
PAGEC. P.PRI NP. CPRI tiF. I. J. NAME. IN DEX; 
'REAL' NUM; 

'COMMENT' 
TABo STI'.NDS FOR TI'.ELEAU oVT. 
I TIS A TAELEAl' FRINTING FRoCEDURE. PRINTING THE TABLEAU 
IN BLOCKS. 
THESE ELoCY.S ARE EoRDERED AT THE TOP ANt; THE LEFTHAI'JDSI DE. 
EY THE APFP.OFEIATE FAP.TS OF THE NAMELISTS. 

THE TABLEAl'-MI'.TRIX 1 S OF ORDER M+ER EY N+PJ.!. 
EP. ~TANDS FOR EXTRA Roll.'S. E. G. TARGET-POlo:. ETC. 
RH STI'.tJDS FOF rI GHT-HArJD 51 DE CoLL"MNS. E. G. VAl.UE CoLl'MN. 
DI STANCES CoLl"MN. ETC. 
SR ~TAND5 FOR SKIF P.01o:S. 
SC STANDS FOF: SKIF COLUMNS. 

THE l'.l'XILIARY VAP.II'.BLES NF:Do.NFTD.NCoLI:O.NCoLTD.FAGEC. 
EFF:INF. AND CFrINF HI'.VE THE SAME SI GNI n CANCE AS IN MATO. 

11 EDD: "NCoL DO: = 0; NET D: "11+ ER; ,NCoL TD: =N+RH; 
NEI-'LINE< 1>; 

STAr.T: 
NE\.'LINE( 3); 
!'.FRINP:=30; 
'IF' SC < N 'THEN' CFRltJF:=13 'ELSE' CFP.INF:=IS; 

ADJl'ST NUMEER OF COLVMNS: 
'IF' NCoLTD < CPP.INF 'THEN' CFRINF:=NCoLTD; 
NCOLTD:=NCoLTD-CPRINF; 

CHECK fOP. FAGE: 
, I 1'" NP.TD > lS 'J'.~JI:" N > 1 S 'TH EN ' 
FAGEC:=:,JEDO/30-ENTI ER(NEDo/30) 'ELSE' 
,AGEC:=l; 
'IF' PAGEC=O 'THEN' 'EEGIN' 

'COMMENT' 
BLOCKS I'LL TO STAF.T AT THE TDF OF A FAGE. 
THIS Al.LOll.'S THE usn: TO STICY. THEM TOGETHER. 
1o:HIL'E y'EEFING PO\:S ArH: CoLVt':NS II': LINE.; 
F.t:Not:T; , EN D'; 

ND'LI:IE( 2); 
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HEADING: 

ALFHANCMERI CAL COLUMrlNP.MES LIST: 
WRITETEXTC'C'N~~E%I%%%%%%I!%')'); 

'FOP.' J:-I 'STEP' I 'CNTIL' CFIHNF 'DO' 'BEGIN' 

'I F' SC+NCOLDO+J > N 'THEN' 'GOTO' FRINT FOP. VALUE COLt!MIU 

SPACEC 2); 
NAME :" COLLSTC SC+NCOLDO+J H 

X ISTAP. IN CL: 
'IF' 'NOT' crJ~'1E>N 'ANI:' NANE<2*N+1 'AND' N<300) 
'THEN' 'GOTO' X 2STAR IN CL; 
IoHUTETEXTC 'C '%X*') '); INDEX:=NAME-N; 
'GOTO' "'JUTE THE INDEX IN CL; 

X 2STAR IrJ CL: 
'IF' 'NOT' CtJA.'1E>2*N 'AND' tIAME<3*N+1 'AtH) , N<300) 
'THEN' 'GOiO '. X It: CL; 
"~F.I TETEXTC 'C 'X**')'); INDEX: =rIA!'1E-~*N; 
'GOTO' ~F.ITE THE INDEX IN CL; 

X IN CL: 
'IF' 'NOT' CNAME>O 'AND' NAME<IOOO) 
'THEN' 'GOTO' SLACK IN CL; 
Ir.'RI TETEXTC 'C ' %%X') '); INDEX: =NA!'1E; 
'GOTO' \lRITE THE INDEX IN CL; 

SLACK IN CL: 
'IF' 'rIOT' CNA.'1E>IOOO 'AND' NAME<2000) 
'THEN' 'GOTO' UFLIM IN CL; 

1r:RITETEXTC 'C '%:1:5') '); INDEX := NAME-IOOO; 
'GOTO' "'RITE THE INDEX IN CL; 

UPL I MIN CL: 
'IF' 'NOT' CCNAME>2000 'AND' NAME<3000) 
'OP.' NP.ME >10000) 'THEN' 'GOTO' ARTFV IN CL; 
WP.ITETEXTC' C '%%E')')J 
'IF' NAME < 10000 'THEN' INDEX:=NAME-2000 
'ELSE'INtEX:=NAME-IOOOO; 
'GOTC' "'EITE THE ltlDEX IN CL; 

ARTFV IN CLI 
'IF' 'NOT' CNAME>300C 'AND' NAME<1I000) 
'THEN' 'GO TO , DUAL V 1 N CL; 
VRITETEXTC' C' %%A')'); INDEX: =NAME-300C; 
'GOTO' ~P.ITE THE INDEX IN CL; 

DUALV HI CL: 
'IF' 'NOT' (NP.ME<-IOCO 'AND' NAME>-2COC) 
'THEN' 'GOTO' DCALSL IN CL; 
"'F.ITETEXT(' C ':%P')')J INDEX: =-tJAME-1 000; 
'GOTO' WRITE THE INDEX IN CL; 
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Dl'AL SL IN CL I 
'IF' 'NOT' (NA."'IE<O 'AND' NAME>-lOOO) 
'THEN' 'GOTO' DUAL UL IN CLI 

lo.' RI T I:T EX T ( , ( , % It D' ) , ) I INDEX: = -N AM EI 
'GaTe' ",'RI T E TH E ltIDEX IN CLI 

DUAL UL 1 N CL I 
'IF' 'NOT' (-NAME>3000 'AND' -NAME<4000) 
'THEN' 'GOTO' SHADO~P~ICE UPPER LIMIT IN CLJ 
\.iPoI TETEXT< '( '% %Z ') '); INDEX: =-NAME-300 0; 
'GOTO' 101P.ITE THE INDEX IN CL; 

SHADO\oiPRICF ~FPEP. LIMIT IN CLI 
'IF' 'NOT' (-NAME>2000 'AND' -NAME<3000) 
'THElJ' 'GOTO' VF.ITE THE INDEX IN CL; 
"'RI TETEXT(' (' 1%l")'); INDEX: =-NAME-2000; 

\:F.ITE THE INDEX IN CL: 
'IF' INDEX<99 'THEN' 
101fUTE(30.FOF.MAT( '( 'NDS') ').INDEX) 
'ELSE' 
\:RITE(30.FOF.MAT( '( 'NDD') ').INDEX); 'D~I:'; 

'GOTO' Pt:T UPFEF. EORI:EP.LINE OF TABLEAt: 1 TSELFI 

FRINT FO~ VALUE COLl~N: 
'IF' SC+NCOLDO+J=N+l 'THEN' lo.'!UTETEXT('('%!!~%%VALUE')')J 

PUT urFER EORDEP.LINE IUSI DE HEADI tJG: 
NE\:LINE( 1)J 
'FOR' J:=l 'STEP' 1 'l'NTIL' CFF.INF 'DO' 
~F.ITETEXT('('--------')'); 

'IF' SF<M 'THEN' \.'F.ITETEXT('('--------------,)'); 
, 1 F' SC+NCOLDO+CFRI NF = N+ 1 
'THEN' 101RI TETEXT( '( '----,) ')J 

CODING COLUMNLIST: 
NE",'LINF( 1)J 
'I F' SF.<M 'THEN' lo.'RITETEXT(' (' %%%%% 1 :CODEI! U')')J 

'FOR' J:cl 'STEF' 1 'UNTIL' CPRINF 'DO' 'SEGIN' 
'IF' SC+J+NCOLDO > N+l 'THEN' 'GOTO' ELP.NK; 
'I F' SC+J+NCOLDO = N+ 1 
'THEN' 'GOTO' SEPARP.TION HEJ'.DING; 
'IF' AES(COLLSTCSC+NCOLDO+J]) > 9999 'THEN' 
101RITE( 3 D. FOP.MP.T ( , ( '-NDDDDDD' ) '). COLLSTC SC+NCOLDO+J]) 
'ELSE' \.'RITE(30.FOP.MAT( '( '-NDI:DDDS')').COLLSTCSC+NCOLDO+J]); 
, GOTO' ELANY.; 
SEFAF.ATION HEADltJG: 
IOF:ITETEXT( '( '11 !%1%%%') ')J 

ELI'JJK: ' EtJ I:' ; 
Nn.'LlNE< 1)J 
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Pl'T UPPEF. BOP.DEFLINE Of TAELEAl' ITSELF: 
'fOR' J:-I 'STEP' I 'l'NTIL' Cf'r,lNF '00' 
"'RI TETEXT( '( ,--------') '); 
, I 1" SF. < M 'TH EN' 1.'1': I T ET EX T C ' ( '- - - - - - - - - - - - - - ') , )J 
'If' SC+NCOLDD+Cf'FINP - N+I 
'THEN' V~ITETEXTC'C'----')'); 

AruU,ST Nl1l':BEF. Of R01r.''s: 
'If' NRTD < RPflINF 'THEN' RF'fINF:"'NF:TP; 
NfiTD:=N~TD-~F'FINP; 

PFINT THE LINES: 
'fOP.' 1:=1 'STEP' I 'UNTIL' RH'ilNF '00' 'BEGIN' 

NH'LINEC I); 

'If' S1'+NF,rO+I=M+I 'THEN' 'BEGIN' 
Ft'T LO,.'ER SOT,[,E'RLHIEI 
'fOR' J:=I 'STEP' I 't'NTIL' CFFINF 'DO' 
"'T!I TETEXTC 'C ,--------,) ')J 

'If' SP<M 'THEN' ,.'f,ITETEXTC '( ,-------------- ') '); 
'I F' SC+NCOLDO+CffINF - N+ I 
'THEN' ,.TI TETEXTC' ('---- ') '); 
NE"'Llt:E( I)J 'El~P'; 

'11"1=16 'TH01' NEl.'LINECI)J 
'IF' SF. > 1'1-1 'TH01' 'GOTO' NO RO"'LIST NEEDED; 

'If' SR+I+NF.DO > 0 'AND' SR+I+NF.DO < 1'1+1 
'THEN' 'EE'GI N' 

ALPHANt'MERI CAL F.01.'NJ!.MES LISTI 
NAME : - F.01t.'LSTr SF.+tJF.DO+I JJ 

X I STAR IN RL: 
'If' 'NOT' CNAME>N 'AND' NAME<2*N+I 'AND' N<300) 
'THEN' 'GOTO' X 2STAF IN RL; 

1011'.1 TETEXTC' C 'XX*')')J INDEXp=NAME-N; 
'GOTO' "'f. I TE THE INDEX IN RL; 

X 2STAR IN P.l.: 
'IF' 'NOT' CNAME>2*tJ 'AND' NA!'1E<3*N+I 'A."JD' N<30:0) 
'THEN' 'GoTO' X IN P.l.; 
IJFITETEXTC'C'X**')'); INDEX:=NAME-2*N; 
'GOTo' ,.'F,ITE THE H'OEX IN PoL; 

X IN RL: 
'If' 'UOT' CNAME>O 'ANP' NAME<IOOO) 
'THEN' 'GOTO' SLACY. IN PJ..; 
"'1'.1 TETO:T( 'C 'X') ')J INDEX: -tJAMEJ 
'GOTO' "PI TE THE INDEX INRI.; 

SLACY. 1 tJ RL: 
'If' 'NOT' OIAME>IOOO 'AND' NAME<2000) 
'TH :!'I' ',GO TO , t'FL I MIN PJ..; 
1.iF.ITETEY.TC'C'S')')J INDEX :- NAME-IOOO; 
'GOTO' "'RITETHE INDEX IN PJ..; 

CHAPTER XII 



LINEAR PROGRAMMING ON THE COMPUTER 

UP1.IM IN Fl.: 
'IF' 'NOT' «NAME>2000 'A'JD' NAMEc3DDD) 
'01'\' NI-.ME >10000) 'THEN' 'GOTO' AP.TFV.IN R1..1 
\lP.ITETEXT( '( 'B') ')J 
'IF' NAME c 10000 'THEN' INDEX:=NAME-2DOO 
'ELSE' INDEX:=NAME-IOOCO; 
'GoTo' \lRITE THE INDEX IN R1..; 

ARTFV 1 tI Pl.: 
'IF' 'NOT' (NAME>3000 'P.ND' NAMEc4000) 
, TH EN' 'GO TO' DUAl. V 1 N Rl;J 

1011'.1 TETEXT( '( 'A') '); INDEX: =NAME-3000; 
'GoTo' 1o.'P.ITE THE INDEX IN Fl.; 

DUAl. V I N P.L: 
'IF' 'NOT' (NAMEc-IOCO 'AND' NAME>-2000) 
'THEN' 'GOTO' DUAl.S1. IN P.l.J 
1o.'FtITETEXT( '( 'P') '); INDEX:=-NAME-ICOO; 
'GOTo' VRITE THE INDEX IN P1.J 

DUAl. S1. 1 N P.L: 
'IF' 'NOT' (NAMEcC 'ANI:' NAME>-IOOO) 
','fH EN' , GO TO' DUAl. Ul. I tJ F.L; 
1o.'RITETEXT( '( '0') '); INDEX:=-NAME; 
'GoTO' ,.RI TE THE INI:EX IN P.L; 

DUAl. Ul. I N P.L : 
'IF' 'NOT' (-NAME>3000 'AND' -NAMEc4o.00) 
'THEN' 'GOTO' SHADo\lPRICE UPFER LIMIT IN R1..; 
1o.'RITETEXT( '( 'Z') ')J INDEX:=-NAME-3000J 
'GoTO' IrJF.ITE THE INDEX IN R1.; 

SHAI:OIrJPRICE UFFER LIMIT IN P.L: 
'IF' 'NOT' (-NAME>2000 'A'JD' -NAMEc3000) 
'THEN' 'GoTO' 1o.'P.ITE THE INDEX IN F.L; 

.... F.ITETEXT( '( 'U') '); INDEX:=-NAME-2000; 

.... P.ITE THE INDEX IN P.L: 
'IF' NAME> N 'AND' NAME c 2*N+I 'THD~' 
1o.'RITE(30.FORMAT('('NI:')').ItJDEX) 'ELSE' 'P-EGIN' 

'I F' INDEX < 100 
'THDJ' ,.·RITE(3D.FoP.MAT( 'C 'UDS') '>'INPEX) 
'ELSE' \.:RITEC3D.FORMATC '( 'NOD') ').INDEX); 'END'; 

'IF' AESCNP.ME)c 10CDD 'THEN' \..'RI 1 ETEXT( '( '%! ') ')J 

CODED P.01o.'NAMES LIST: 
'IF' I.ESOJAME»IOOOO 
'THEN' 1o.'F.I TEe 30. FOF.MATC' C 'S-NDDDDD') ') .NAME) 
'ELSE' VEl TEC 30. FoRMATC ' C '-NI:OD') ') .NAME) J 
'END' 

'ELSE' 'EEGIrJ' 
'IF' SF.+I+r:F.OO = M+I 'THDJ' 1o.'RITETEXTC'('%%T%%!%%%%%')') 
'ELSE' Io.'F.ITETEXTC'('%%%%%!%%%%%')'); 'END'; 
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NO ROl.'LI ST NEEDED: 

'FOR' .1:=1 'STEF' 1 'UNTIL' C.FRINF 'DO' 'EEGIN' 
'IF' SC+NCOLDO+J-I = (T 'THEN' 101F.ITETEXTC'C'%I!%')'); 
'IF' SC+lJCOLDO+.1-'1 = N 'THEN' "'F.ITETExTC'C'%I!')'); 
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'IF' NCOLDO+.1=1 'AND' SC>O 'THEN' I..'RITETEXTC'C'%lll')'); 
NUM : = MATRr SR+NRDO+ 1. SC+NCOL DO+J H. 
'IF' tJUM=O 'THEN' .1tJRITETEXTC 'C '%%ll-%%l') ') 
'ELSE' 'BEGIN' 

'IF' NL'l1=ENTlERCNtJM) 
'THEN' Io:P.ITEC 30. FOEMATC 'C 'S-NDDSSS') ').NUM) 
'ELSE' VP.ITEC30.FORMP.TC 'e 'S-NDD.DD') ').Nl'M); 'END'; 

'END'; 'OH"; 

AlJ.1UST INDI CES AND RETl'P.N UNLESS READY I 
NRDO:=NEDO+FFFItJF; 
'I F' NEDO=M+EF. 'THEN' 'BEGIN' 

NRTD:=M+EP.; NFDO:=O; NCOLDO:=NCOLDO+CFF.INF; 
'I F' NCOLDO=N+F.H 'THEN' 'GOTO' END OF TABO; 
'GOTO' STAP.T; 'END' 'ELSE' 'GOTO' CHECK FOP. FAGE; 

EN D 0 F T ABO: N H.'L 1 tJ EC 2); 'END'; 

When reading the text of the tableau-printing procedure listed 
above, one will have noticed, that it contains references to 
other name-codes than only the ones discussed in section 12.1. 

This is because the same procedure is also used for printing 
quadratic programming tableaux, in which negative name-codes 
and enlargements of 2000 occur, and integer programming tableaux, 
in which enlargements by nand 2n occur. The precise significance 
of these codes will be discussed later on in this book. 

12.5 Text of a complete L.P. programme 

In this section we offer a complete "main" programme, despite 
the fact that this contains unavoidably, relatively many 
system-specific features. The shortness of this programme is 
the main justification. The main programme controls the input 
of the data, i.e. the tableau-matrix, and the printing of the 
results. The Simplex Algorithm itself is performed by the LINP 
procedure presented in Section 12.3. 
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Even the input and output of data and results is largely 
delegated to subordinate procedures. These are the matrix
reading procedure MATI listed in Section 2.18 and the tableau 
printing procedure listed in the previous section 12.4 of this 
Chapter, and the results reporting procedure from section 10.4. 

The one e:ement of evaluation by the main programme is whether 
or not to print the full tableau. With a big system it is 
obviously undesirable to have a pile of paper full of numbers. 
But the particular limit of 13 columns and 40 rows and columns 
together arises from the economical use of line-printer 
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paper. If there are no more than 13 columns or less than 15 rows 
and only two block-columns to print the printing of the full 
tableau is the most pronomical way to present the output. For 
larger systems, output is restricted to a call to the result
reporting procedure only. 

Note that whereas the separate call to the reporting procedure 
provides re-interpretation of the solution vector, the tableau
printing procedure does not do that, i.e. the figure printed 
after the symbol "x4" is the distance between x4 and its lower 
limit, which may, or may not be zero. The programme text is now 
listed, as follows: 

'BEGIN' 'INTEGER' M,N,NAV,NEQ,REENTRY,I,J; 

'PROCEDURE' LINP(T,M,N,NEQ,NAV,ROWLST,COLLST,REENTRY); 
'ARRAY' T; 'INTEGER' M,N,NEQ,NAV,REENTRY; 
'INTEGER' 'ARRAY' ROWLST,COLLST; 
'ALGOL' ; 

'PROCEDURE' MATI(MATR,MB,NB,FR,FC); 
'ARRAY' MATR; 'INTEGER' MB,NB,FR,FC; 'ALGOL' ; 

'PROCEDURE' REPOCT,M,N,NEQ,NAV,ROWL,COLL); 
'ARRAY' T; 'INTEGER' M,N,NEQ,NAV; 
'INTEGER' 'ARRAY' ROWL,COLL; 'ALGOL'; 

'PROCEDURE' TABOCMATR,M,N,SR,SC,RH,ER,ROWLST,COLLST); 
'ARRAY' MATR; 'INTEGER' M,N,SR,SC,RH,ER; 
'INTEGER' 'ARRAY' ROWLST,COLLST; 'ALGOL'; 

'COMMENT' 
LINEAR PROGRAMMING BY THE SIMPLEX ALGORITHM. 
FOR DETAILS OF THE ALGORITHM, SEE THE TEXT OF THE LINP 
PROCEDURE. 
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PRESENTATION OF DATA: 
FIRST THE NUMBER OF RESTRICTIONS I.E. M. 
THEN THE NUMBER OF VARIABLES. I.E. N. 
FOLLOWED BY THE NUMBER OF EQUATIONS. NEQ. 
AND AS LAST INTEGER ORDER PARAMETER. NAV. 
THE NUMBER OF 'FREE' VARIABLES TO WHICH THE 
TACIT (NON-NEGATIVITY) RESTRICTION DOES NOT APPLY. 

THEREAFTER PUNCH EACH ROW OF THE COMPOSITE MATRIX 

A B 
W' 0 
U' 0 
L' 0 

TO REPRESENT A.X < OR s B. 
MAXIM -W'X 
AND X < OR = U 
AND X > OR = L 

THE PROGRAMME READS ALL 
BOUNDS VECTORS U AND L. 
THE MAIN LINP PROCEDURE 
BOUNDED VARIABLES 

THE ELEMENTS OF THE UPPER AND LOWER 
DESPITE THE FACT THAT 

USES THESE NUMBERS ONLY FOR 

M:=READ; N:=READ; NEQ:=READ; NAV:=READ; 
REENTRY:=O; 

'BEGIN' 
'ARRAY' TACI:M+3.I:N+2l; 
'INTEGER' 'ARRAY' ROWLC 1 :Ml. COLLC 1 :N]; 

READ MAIN TABLEAU MATRIX: 
MATI(TA.M+3.N+I.0.0); 

REINTERPRET: 
'FOR' J:=NAV+I 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

'FOR' 1:=1 'STEP' 1 'UNTIL' M 'DO' 
TACI.N+Il:=TACI.N+ll-TACI.Jl*TACM+3.Jl; 
'IF' TACM+2.Jl=0 'THEN' TA(M+2.Jl:=1000000; 
TA(M+2.Jl:=TA(M+2.Jl-TA(M+3.Jl; 
'IF' TA(M+2.Jl < 0 'THEN' 'BEGIN' 

NEWLINE<l ); 
WRITETEXT('('YOU%HAVEISPECIFIED%AILOWERILIMIT% 
%INIEXCESS%OF%THE%CORRESPONDING1UPPER%LIMITI 
%THEREBYICAUS ING%EMPTYNESS.')'); 'END'; 

, END'; 

LINP(TA.M.N.NEQ.NAV.ROWL.COLL.REENTRY); 

REPO(TA.M.N.NEQ.NAV.ROWL.COLL); 

'IF' N < 14 'OR' M+N < 40 'THEN' 
TABO(TA.M.N.O.O.l.I.ROWL.COLL); 

'END'; 'END' 
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12.6 Revised Simplex Algorithms 

The algorithms which we discuss under this heading have the 
following features in common: 

a) Packed storage of the set-up tableau 

The tableau matrix which defines the typical large L.P. 
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problem tends to a very predominant degree to consist of nothing 
but zeros, quite often in excess of 99% zeros. Obviously, 
substantial economies in storage-space are obtained if this 
matrix is stored in some other way than storing each element. 

For example, if the matrix-reading procedure from section 2.10 
were used to read the tableau-matrix, one would simply begin 
by storing the input-information as such, and at the same time 
compile a list of addresses of the heads ot the cl1"'cessive rows. 

(There are in fact other input-conventions and other ways of 
"packed" storage.) 

Even if,-as may be desirable in some versions of the revised 
simplex - the set-up tableau is stored twice, once per column, 
once per row, that still is a fraction of the storage 
requirement of the unpacked tableau-matrix. 

b) No updating of the tableau 

The current tableau is normally more or less full of non-zero 
elements, even if the set-up tableau consists largely of zeros. 

Storage and updating of the current tableau is therefore 
suppressed. Instead, some other representation of the current 
solution is used. The value column and the list of name-codes 
are kept currently updated all the time, and in some versions 
also the objective function row. Other rows and columns are 
generated as needed. 

c) They are utterly impracticable on paper, but specifically 
geared towards making an efficient use of computer-resources. 
We now review the separate algorithms. 

Explicit inverse with row-updating 

This is the oldest one of this group of algorithms and one will 
find it referred to in some older references as "the" reversed 
simplex method. 

In this method, one stores besides the packed form of the 
original tableau, the current value column, the current 
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objective function row and the inverse of the basis-matrix, the 
objective function being counted as a basic variable. 

The current updated tableau (explicit form) is then: 

(12.6.1) 

where T is the original tableau matrix in shortened form. 

B-1 itself is kept updated at each step in the usual way. 

B-1 is the inverse of the "extended basis-matrix" 

B 

I 

,1 
(12.6.2) 

If a slack-variable is indicated as incoming variable, the 
pivotal column does not need calculation as it is already 
present in the inverse itself. 

If an element of x indicated as incoming variable, the pivotal 
column is obtained by post-multiplication of the inverse by the 
corresponding column of the original tableau. 

Example (from Chapter VIII) 

xl x2 x3 Value 

T sl 1 1 1 200 

s2 1 3 100 

T -2 -5 -1 

sl s2 T 

B- 1 
sl 1 -1. 33 

x2 0.33 

T 1. 67 1 
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The xl column may now be calculated as follows: 

sl s2 T. xl xl 

sl 1 -0.33 sl 1 sl 0.67 

x2 0.33 s2 1 x 2 0.33 

T 1.66 1 T -2 T -0.33 

(The actual storage of the unit vector fOr the objective 
function is normally dispensed with.) The pivotal row is 
selected in the normal way and the missing part of the pivotal 
row is now calculated by means of a matrix-vector multiplication, 
i.e. the original tablpRll is premultiplied by the relevant row 
of the inverse. Ref~rp.nce to the objective function ~ay be 
suppressed at this stage. 

Example 

-0.33] 

The inverse, the value 
can then be updated in 

xl x2 x3 xl x 2 

[: 1 

~] sl [0.67 

3 

column and the obje~tive function row 
the usual way. 

x3 

lJ 

If the initial tableau-matrix T is entirely full of non-zero 
elements, this method requires the same amount of storage as a 
full explicit tableau, and more computational effort. 

Calculation of the remainder of the pivotal row, plus updating 
the inverse requires as much elementary computation as updating 
the full tableau, and calculating the pivotal column comes to 
it, unless the incoming variable is a slack-variable. Obviously, 
under those assumpt ions, the shortened tableau, updated at each 
step, is more efficient. The method comes into its own, only if 
T consist'S largely of zero elements. That cuts the memory-space 
requirement on account of the "packed" representation of T, and 
it cuts the calculation-time needed for the matrix-vector 
multiplications, on account of the suppression of multiplication 
by zero. 

Explicit inverse, without row-updatin8 

In this version of the explicit inverse method, the calculation 
of the remainder part of the pivotal row is suppressed, and it 
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becomes therefore impossible to update the objective function 
row in the usual way. One then first of all gives priority to 
slack-variables as incoming variables: their shadowprices are 
always available and no need to calculate a pivotal column 
arises from selecting a slack-variable as incoming variable. 
When a pivotal column is found in the inverse itself, the step 
is made, otherwise the objective function row is calculated by 
means of a matrix vector multiplication (the same could also be 
done with a substitute objective function). 

We have here a trade-off between the calculation effort per 
step, and the number of steps needed. One is forced to 
compromise the rule of the steepest ascent (the rule of the 
highest step is out anyhow for all versions of the revised 
simplex). 

The method is likely to be more efficient than the version with 
row-updating, if the number of restrictions is substantially 
less than the number of variables. 

If there are say 50 restrictions and 1000 variables, steps 
which are performed solely on the 50 x 50 inverse are 
comparatively very cheap indeed and the fact that some of them 
will not lead to much gain in the solution value does not 
terribly matter. 

The product form inverse 

In this algorithm only vectors are updated. The name refers 
to the fact that one obtains the explicit inverse, as the 
product of a series of matrices. Each of these matrices 
consists of a unit matrix of which one column has been replaced 
by the column which describes the variable which has just left 
the basis, i.e. the updated pivotal column, divided by minus 
the pivot, with the pivot itself replaced by the reciprocal. 

Example 

(The same, for the actual columns, see tableau 8.8, for the 
explicit inverse see tableau 8.6.) 

sl s2 T sl s2 T sl s2 T-

x3 

[: ] sl 

[~ 
-0.33 ] x3 

[ 
1 -0.33 

:J 
x2 1 x2 0.33 x2 0.33 

l' T 1. 67 1 1.33 T 

"s -matrix" "s -matrix" -1 
1 2 B 
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In application one obviously only stores columns (and pivots 
and their name-codes and the row-indices of successive pivotal 
rows), not matrices. 
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The product-form representation of the inverse is effective in 
updating columns as they are needed. In effect one simply 
reconstructs the updating of the relevant column of the tableau 
as it would have taken place in the standard form of the simplex 
method. 

Example 

Update the value column 

Value Value Value 

sl 1200 
-0.33 sl 1€66.6~ 1 x3 166.67 

S3 9 0.33 -+ x2 33.33 -+ x2 33.33 

']; 1. 67 T 166.67 1 T 333.33 

(x2 incoming) (x3 incoming) 

The ring here indicates the leaving variable, the actual pivot 
is the reciprocal of the corresponding entry in the already 
updated pivotal column. 

Unfortunately, if only columns are stored, there is no 
practicable way of updating rows, no consistent information 
for their updating is available, short of still belatedly 
updating the whole tableau. 

Two possible alternatives ar~ now open: 

a. Update the column for which the log indicates that it is the 
one which was the longest inactive, without even having been 
able to consult its shadowprice, and accept it as incoming 
variable if its shadowprice turns out to have the appropriate 
sign. 

b. Keep a set of pivotal rows as well. At first sight, neither 
procedure appears to be particularly efficient. Procedure 
(a) is clearly inefficient, and there are other indications, 
i.e. the machine requirements of the commercially available 
LP packages, that (b) is used (two channels of backing 
store tend to be asked for). At-first sight, that appears 
not very efficient either, the total memory storage 
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requirement of the two product-form presentations of the 
(primal and dual) inverses easily exceeds th~ size of the 
updated tableau-matrix in shortened form. 

There is, however, a machine-technical point which greatly 
enhances the relative advantage of the product-form inverse. 
Typically one has available a limited amount of high-speed 
memory ("core") and a virtually unlimited amount of slower 
back-up memory (disc or magnetic tape). If the problem is of 
small or medium size, i.e. if the size of the shortened 
tableau fits the capacity of the core alone, efficient choice 
of pivots and updating of the tableau at each step is not 
easily beaten. But once backing-store is involved we get a 
quite different story: 

The back-up memory has to be accessed linearly and asking for 
only one element at the end of the tableau takes as much time -
most of which is spent in waiting for t~e mer~aniral part of 
the back-up memory to move - as performing a routine calculation 
on each column, provided they are accessed in the order in 
which they are stored. The product-form inverse is ideally 
suited to that situation in that it is always accessed in the 
order in which it was generated. The one obvious disadvantage 
of the product-form algorithm is that the size of the product
form inverse increases with the number of steps and that 
number may be several times the number of variables. For this 
reason a product-form algorithm usually contains a provision 
for re-inversion. After a set number of steps the current 
vertex is re-created by a shorter route. Starting from the 
trivial basis the elements of x, as far as they are in the 
(new) current list of basic variables are brought back in, 
in exchange for the slacks of binding restrictions, without 
any regard to sign of either the pivot or of any entry in the 
value column or the objective function. 

This re-inversion-feature makes the gain in pure computational 
effort compared with the explicit inverse, or for that matter 
the ordinary simplex method (shortened tableau) largely 
illusory. The product-form wins because for problems with a 
large number of variables and a large number of restrictions, 
other methods are not nearly--as well suited to accommodate the 
specific features of a linearly accessible backing-store device. 

With a change in computer technology (e.g. silicon chips), we 
may well see a comeback of other versions of the simplex 
algorithm. . 
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PARAMETRIC VARIATT OF THE LP PROBLEM 

13.1 The parametric variation problem 

The term "parametric programming" is usually referred to as 
being due to Gass and Saati (12), [13J. The term "sensitivity 
analysis" appears to be originally due to G. B. Dantzig (8J, 
section 12.4, who discusses the use of the optimal tableau for 
purposes of analysis, within the range of validity of the 
optimal vertex. 

If there are minor changes in the originally specified problem, 
the optimal tableau tells us how this will affect the solution. 
Dantzig's treatment of the problem includes the analysis of 
changes in individual coefficients aij. This is a fairly 
co~plicated mathematical problem and it is not easily possible 
to tackle more than one coefficient at a time, except by 
computational means, i.e. solving the whole problem again. 
(See however, also section 2.18 for approximate solutions of 
this problem). 

In this book we follow Garvin Ill] and investigate changes in 
the right-I-land side vector b and the preference-vector w', and 
include the analysis of adjoining vertices. That definition of
sensitivity analysis turns it into parametric programming. 

As far as the mathematical and computational logic of the problem 
is concerned, sensitivity analysis is parametric programming. 
The term "sensitivity analysis" simply refers to an important 
field of application. It might also be called parametric 
postoptimality analysis. One has found an optimal and feasible 
solution to an LP program, and wishes to know how sensitive that 
solution is to variations in the coefficients. 

As far as this relates to changes in the right-hand side or in 
the (linear component of the) objective function, parametric 
methods are a particularly efficient way of investigating this 
problem, comparpi with independently solving a series of closely 
related programmlng problems, each differing from the original 
one by a variation in a few coefficients. 

The other main application is in solving mathematical programming 
problems for the first time. In that case, one first specifies 
a related problem for which an optimal and/or feasible solution 
is known or easy to obtain. One then solves this related problem, 
and then converts the solution of that problem by means of 
parametric adjustment, into the problem which one really wants 
to solve. 
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In the computational set-up of this book parametric variation 
is technically a re-entry of the Simplex Algorithm. 

In that context it is obviously necessary that one can solve, 
with reasonable efficiency, the general case of a problem 
which is initially neither feasible nor optimal. One can then 
re-enter the Simplex Algorithm for additional parametric 
exercises, i.e. post-optimality analysis. 

Parametric programming as a method of solving problems for the 
first time, has, however been recommended by Dantzig. (Linear 
programming and extensions [8] sections 11.3 and 11.4). 

13.2 Parametric variation of the right-hand side of an 
L.P. problem 

This parametric variation problem is defined as finding a range 
of solutions to the L.P. problem. 

Maximise T = w'x (7.2.1) 

Subject to Ax < b + AV (13.2.1) 

This problem differs from the "ordinary" linear programming 
problem as discussed in section 7.2, by the presence of the 
parametric variation vector. The vector v gives a particular 
direction of variation. Thus the constants of restrictions 3, 5, 
and 6 to be increased in the proportions 2, 1, and 5 would be 
indicated as v3 = 2, v5 = 1, v6 = 5, other elements of ~ being 
zero. The parameter A gives the extent of variation. For A = ° 
we have the originally 0pecified problem. The actual change 
relative to tnis original problem is then AV. Obviously, A is the 
parameter which gives the method its name. 

We will now investigate how gradually increasing values of A, 
starting with A = 0, affect the solution of a previously optimal 
and feasible solution. 

Recall sections (8.1) and (8.7) concerning the partitioned 
solution of a Simplex vertex, and again the summary of these 
results at the beginning of section 8.11. 

Once a particular partitioning (vertex) has been established, 
we find that the optimality of a particular vertex is independent 
of the right-hand side vector b. Reference to this vector does 
not occur in the updated form of the objective function, nor in 
the main body of the tableau, only in the value column. 
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Therefore, as long as the solution remains feasible, we find 
the solution-vector by substitution of b + AV, for v into the 
appropriate expressions from section 8.7. To-do this, we first 
express (13.2.1) in a partitioned form, the partitioning being 
understood to refer to All as block-pivot. 

This partitioned expression is: 

(13.2.2) 

Substitution of ~l + A~l for ~l 

and ~2 + A~2 for ~2 in the "value column" 
expressions in section 8.7 (or 11.1), yields the following 
results: 

x = 
-1 

(13.2.3) 

and 

(13.2.4) 

These expressions are equivalent to 

x = 
-1 (13.2.5) 

and 

-1 -1 
~2 = ~2 - A21All ~l + A(~2 - A2lAll ~l) (13.2.6) 

The last terms on the right-hand sides of (13.2.5) and (13.2.6) 
are similar to the expressions which we obtain for the updated 
form of a non-basic variable. 

We shall make use of this fact to obtain the parametric column 
l.e. 
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as an ordinary updated column, representing a non-basic variable. 

Example 

Consider the following* linear programming problem 

T = 3xI + 7x Z + 3x3 + 7x4 -ZOx 
S Maximise 

Subject to xl + Xz Xs < I 

xl + ZxZ - 3xS < 0 

x3 + x -
4 Xs < I 

x3 + Zx -
4 3xS < 0 

xl + 4xZ + x3 + 4x4 -IZxS < -Z 

We first give the initial and the optimum tableau, 
(tableaux 13.Za and 13.Zb, respectively). 

TAELEAU 13.2 A 

THE ORIGINAL PROBLEM OF A 
PARAMETRIC VARIATION EXAMPLE. 

NAME!! X I X 2 x 3 X 4 x 5 I! VALUE 

-----------------------------------------------
S I ! ! I -I II I 

S 2 ! t 2 -3 II 0 
S 3 ! ! I -I II I 
S 4 ! ! 2 -3 II 0 
S 5 ! ! 4 4 -12 II -2 
-----------------------------------------------

T ! I -3 -7 -3 -7 20 

TAELEAU 13.2 B 

THE INI TIAL OPTIMUM OF A 
PARAMETRI C VARI ATt ON EXAMPLE. 

I! 

NAME I! S I S 2 S 3 S 4 5 5 II VALUE 

----------------------------------------------
X I II 1.00 0.50 -1.00 1.50 -0.50 II " 00 
X 2 II I • 00 -2 2 -3 1.00 II 1.00 
X 3 II -1.00 I. SO I 0.50 -0.50 II 1.00 
X 4 II 2 -3.00 1.00 -2.00 I II I • 00 
X 5 II I • 00 -I. SO 1.00 -1.50 0.50 II 1.00 
----------------------------------------------

T II I • 00 I • 00 1.00 1.00 1.00 II 0 

*This problem was taken from: A.R.G. H~esterman, Special Simplex 
Algorithm for Multi-Sector Problems [201 
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We now wish to know, what solutions would arise, when the 
constant of the s4 - restriction was not the zero which was 
actually specified, but some non-zero (or more generally, a 
different) number instead. Clearly, for outward adjustment of 
the sl-restriction, the non-updated variation-vector in (13.2.1) 
is 

[!l 
and for inward adjustment we have to change the sign of the unit 
vector. And we already know the updated form of that vector, 
i.e. the s4 column of the tableau. 

We write the equation equivalent of (13.2.1) as follows: 

Ax + S = b + AV (13.2.7) 

For the particular example, with v being the unit-vector 
corresponding to s4' we write (13~2.7) as 

xl + x2 Xs + sl 1 

xl + 2x2 - 3xS + s2 0 

x3 + x -4 Xs + s3 1 

x3 + 2x -4 3xS + s4 o + 

xl + 4x2 + x3 + 4x4 -12xS + Ss -2 

The corresponding updated tableau is written explicitly, as 
follows: 

+ + Is - + 1 !s4 - I 1 + l! A xl sl 2 2 s3 2SS 

x2 + sl - 2s2 + 2s -
3 

3s4 + Ss 1 - 3 A 

x3 sl + 1!s2 + s3 + IS - I 1 + A 2 4 2SS 

x4 + 2s l - 3s 2 + s -
3 

28 4 + Ss 1 - 2 A 

Xs + sl - 1!s2 + s3 - 1!s4 + !sS 1 - I! A 

A 

(13.2.8) 
with a corresponding objective function equation, i.e. 

sl + s2 + s3 + s4 +sS +, = 0 + A 
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There appears to be an extension of the rule of the smallest 
quotient, which allows us to calculate a suitable value of A. 

We find the greatest positive value, for which all the basic 
variables remain positive, by taking the smallest quotient from 
the ratios of the positive entries in the value column, divided 
by minus the corresponding negative element in the variation 
vector presented in updated form. 

We compare 1 : 3 for x 2 ' 1 : Z for x 4 ' and 1 : I! for x 5 ' and 
find A = 1/3 for Xz to be the smallest quotient. 

Apparently, the vertex for which Xl, x 2 ' x3' x 4 and x5 are the 
basic variables is feasible for A < 1/3. 

At the upper end of this inverval, A = 1/3, the vertex ceases 
to be feasible, but generally there will be a different feasible 
vertex which may be obtained in one step from the parametrically 
amended current one. 

Thus, for A = 1/3, the system becomes 

Xl + sl + I 
2SZ s3 + 1!s4 I 

2s5 n 
Xz + sl - 2s Z + ZS3 - 3s 4 + s5 -0 

x3 sl + l!sZ + s3 + I 
2s4 

I 
2s5 1 1/6 

x 4 + ZSl - 3s Z + s3 ZS4 + s5 1/3 

+ 

with a corresponding updated objective function equation, l.e. 

1/3 

We consider the -0 for x3 to be a negative number. When 
implementing parametric variation of the right-hand side in a 
practical computational context, one will put the corresponding 
tableau-entry at a small non-zero negative value, e.g. -0.0000001, 
and the normal "Phase I" part of the L.P. algorithm will be 
activated. 

Typically, we need one normal Simplex step to eliminate such a 
small negative figure. At least, that is the case if an 
efficient version of the Simplex Algorithm is used. 
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Both the programmed procedure offered in section 12.3, LINP and 
the Simplex procedure offered later in this chapter, apply the 
dual ratio as criterion for selecting the pivotal column, when 
applied to a tableau in which there is only one violated 
restriction, while that one violated restriction can be made 
binding with help of several alternative pivot column-variables, 
all of them being "non-preferred", i. e. leading to loss of 
preference-value. 

We now make the steps. We first adjust the value column. This 
is the actual parametric step, or, by contrast to variation of 
the objective function, the primal parametric step. We now 
obtain tableau l3.2c. 

TABLEAU 13.2 C 

DISPLACED OPTIMUM OF THE SAME 
PARAMETRIC VARIATION EXAMPLE. 

NAME!! S I S 2 S 3 S " S 5 II VALUE 
----------------------------------------------
X I I! I • a a 0.50 -1.00 1.50 -0.50 II 1.50 
X 2 ! I 1.00 -2 2 ED I. a a II -0.00 
X 3 ! ! -I. a a 1.50 I 0.50 -0.50 II I. 17 
X 4 ! ! 2 -3.00 1.00 -2.00 I II 0.33 
X 5 ! I I .00 -1.50 1.00 -1.50 0.50 II 0.50 
----------------------------------------------

T ! I I .00 1.00 1.00 1.00 1.00 II 0.33 

CL=0.33) 

We then need an ordinary step, to obtain a new optimal and 
feasible vertex obtaining tableau l3.2d. 

TABLEAU 13.2 D 

THE SAME VERTEX AS IN TABLEAU 13.2 C# NOW 
PRESENTED AGAIN ttl OPTIMAL AND FEASI BLE rOF.M. 

NAME I S I S 2 S 3 X 2 S 5 II VALUE CL"0.33) 

X I 1.50 -0.50 0.50 0.00 II 1.50 
S " - 0.33 0.67 -0.67 -0.33 -0.33 II D. a a 
x 3 -0.83 1.17 1.33 0.17 -0.33 II 1.17 
X " 1.33 -1.67 -0.33 -0.67 0.33 II 0.33 
X 5 0.50 -0.50 0.00 -0.50 -0.00 II 0.50 

T 1.33 0.33 1.67 0.33 1.33 II 0.33 
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If the constant of the s4-restriction is increased beyond the 
value b4 = 1/3, this only leads to an increase in the value 
of the s4 slack-variable, and nothing else happens. In this 
case, the possibility to increase the parametric variable A 
ad infinitum without reducing any variable to zero, arose 
because the variation-direction was to increase the constant 
of a single restriction, and that restriction was no longer 
binding. It can also arise because change of the right-hand 
side is matched by a combination of basic variables. We may 
illustrate this case by using the same unit-vector as variation
vector, but in the opposite direction. 

The initial result of a reduction of b4 below zero is that at 
A = -2/3, xl ceases to be positive. 

The optimal tableau has then become: 

TABLEAU 13.2 E 

LEFT-DISPLACED OPTIMUM OF THE SAME 
PARAMETRIC VARIATION EXAMPLE. 

NAME II 5 1 5 2 5 3 S 4 S 5 II VALUE (L--0.67) 

----------------------------------------------
X 1 I! I 0.50@ 1.50 -0.50 II -0.00 
X 2 ! ! I -2 2 -3 1 II 3 
X 3 ! I -I 1.50 1 0.50 -0.50 I! 0.67 
X 4 ! I 2 -3 1 -2 I II 2.33 
X 5 ! ! 1 -I. SO 1 -1.50 0.50 II 2 

T ! I I! -0.67 

To eliminate xl without losing optimality, we need to bring 
s3 into the list of basic variables, and we obtain our next 
tableau: 

TABLEAU 13.2 F 

THE SAME VERTEX AS IN TABLEAU 13.2 E. NOW 
PRESENTED AGAIN IN OPTIMAL AND FEASIBLE FORM. 

NAME lSI S 2 X 1 S 4 S 5 II VALUE (L=-0.67) 

S 3 -I -0.50 -1 -1.50 0.50 II 0 
X 2 3 -1 2 0 II 3 
X 3 -0 2 1 2 -1 II 0.67 
X 4 3 -2.50 1 -0.511 0.50 II 2.33 
X 5 2 -1 1 0 0 II 2 

T 2 1.50 2.50 0.50 II -0.67 
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We will now wish to investigate the implications of even more 
negative values of A. To this end it is useful to re-define 
the A-variable. Or rather, we express the original variable 
as the sum of the already attained value and any further 
change 

\ + Al (13 • 2 • 9) 

for A 2/3 (13.2.8) is now rewritten as: 

+ sl + I 
s3 + lIs - I =-0 + H Al xl 2s2 2 4 2SS 

x2 + sl - 2s2 + 2s 3 - 3s 4 + Ss 3 - 3 Al 

x3 sl + HS 2 + s3 + !s4 - I 
2SS 2/3 + Al 

x4 + 2s l - 3s 2 + s - 2s 4 + Ss 2 1/3 -n 3 1 

Xs + sl - HS 2 + s -
3 HS 4 + I 

2SS 2 - H Al 

sl + s2 + s3 + s4 + Ss + T -2/3 .+ Al 
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The updating rules for Simplex tableaux were derived from the 
rules for solving systems of equations by elimination of the 
variable associated with the pivotal column from all other rows. 
They are therefore equally applicable to the parametric problem. 

Thus, we could write our tableaux for the last parametric step 
as in tableau l3.2g 
(To distinguish the parametric steps from ordinary steps, we mark 
the "parametric-pivots" by a square.) 

TAELFAU 13.2 G 

TAELEAt.:'-PRESTENTATION OF A PAPAMETRI C STEP 

-L= 0 
N~.ME 5 1 5 2 5 3 S 4 S 5 II VALUE -L 0 

;-~-----;-----~:~~-:;-----;:~~-:~:~~-~~--------i~:~~1 
x 2 1 -2 2 -3 1 II -3 
X 3 -1 1.50 1 0.50 -0.50 II 0.50 
X 4 2 -3 1 -2 1 II -2 
X 5 1 -1.50 1 -1.50 0.50 II -1.50 

T I I 0 
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This presentation allows application of the usual rule of the 
smallest quotient, to determine the leaving variable, which is 
in this case xl' 

Now re-adjust right-hand side and redefine parameter, to 
obtain tableau l3.2h. 

TAE'LEAU 13.2H 

DISPLACED OFTIMCM. WITH PAFAMETRIC COLl~N. 

-1.=0.67 
NAME! S I 5 2 5 3 5 4 5 5 II VALl'E -Li 
----------------------------------------------------
X I I 0.50G]) 1.50 -0.50 II -0.00 1.50 
X 2 I -2 2 -3 I II 3 -3 
X 3 -I I. SO I 0.50 -0.50 II 0.67 0.50 
X oil 2 -3 I -2 I II 2.33 -2 
X 5 I -I. SO I -1.50 0.50 II 2 - 1.50 

T II -0.67 

Make one ordinary step, introducing s3 as a basic variable to 
eliminate the now negative variable Xl' The next tableau ready 
for a newparametric step is as follows: 

TABLEAU 13.2 I 

ADJUSTED VERTEX. READY FOR THE NEXT PARAMET?l C STEP. 

-1.:0.67 
NAME! 5 I 5 2 X I S oil S 5 I I VAL UE -1. I 
----------------------------------------------------
S 3 -I -0.50 -I -1.50 O. SO II 0 -I SO 
X 2 3 -I 2 0 II 3 -
X 3 2 I 2 -I I! 0.67 [g] 
X 4 3 -2.50 I -0.50 0.50 II 2.33 -0.50 
X 5 2 -I 0 0 II 2 0 

T 2 1.50 2.50 0.50 II -0.67 2.50 

The lowest ratio at which the next basic variable is eliminated 
by further change in the parameter is now obtained for x3 
at -AI = 0.67/2 = 0.33. 

We now apply the same logic again. We set the attained value 
of the parameter at 

A = A + A = -0.67 - 0.33 -1 
o 1 
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and indicate any further change in the parameter as 

After this adjustment of the right-hand side, the tableau 
becomes 

TABLEAU 13.2 J 

DISPLACED OPTIML~,RELATIVE TO TABLEAU 13.2 

NAME I S I S 2 X I 

5 3 -I -0.50 -I 
X 2 3 -I 2 
X 3 2 I 
X 4 3 -2.50 I 
X 5 2 -I 

T 2 1.50 

S 4 

-I. SO 

2 
-0.50 

0 

-L= I 
5 5 I I VALUE 

0.50 II 0.50 
0 II 3 

8) II - 0.00 
0.50 II 2. SO 
0 II 2 

2.50 0.50!1 -1.50 

-L2 

-I. SO 

2 
-0.50 

0 

2.50 

We now make another "ordinary" step, introducing s5 as a basic 
variable against x 3 . The tableau now becomes: 

TABLEAU 13.2 K 

NEXT FOLLOWlNG VERTEX. READY FOR THE PARAMETRIC STEP. 

NAME I S I 

S 3 -I 
X 2 3 
S 5 0 
X 4 3 
X 5 2 

T 2 

S 2 X I S 4 

0.50 -0.50 -0.50 
-1 2 0 
-2 -1 -2 
-1.50 1.50 0.50 
-I 1 0 

-L= I 
X:3 !! VALUE 

0.50 II 0.50 
0 ! ! 3 

-I II 0 
0.50 ! ! 2.50 
0 11 2 

2.50 1.50 3.50 0.50 !! -1.50 

-L2 

-0.50 
0 

-2 

~ 
0 

3.50 

The length of the parametric step ~s rather greater this time, 
~ e - A = 21/1 = 5 L.. 2 2 2 • 

Thus, we subtract the A2 column from the value column with a 
factor 5. The next tableau with x 4 just negative, is: 
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TABLEAU 13.2 L 

THE LAST OF THE LEFT-ADJUSTED OPTIMA. 

-L"6 
NAME I S I S 2 X I S 4 X 3 II VALUE -L3 
----------------------------------------------------
S 3 -I 0.50 -0.50 -O.SO 0.50 II 3 -0.50 
X 2 3 -I 2 0 0 II 3 0 
S 5 0 -2 -I -2 -1 ! ! 10 -2 
X 4 3 ~ 1.50 0.50 0.50 ! ! -0.00 0.50 
X 5 2 -1 I 0 0 ! I 2 0 

T 2 2.S0 I.SO 3.50 0.50 11-19 3.50 

Introducing s2 as a basic variable to eliminate the negative 
x 4-variable, the next tableau, ready for further parametric 
adjustment (if possible), is: 

TABLEAU 13.2 M 

AN llNBOL'NDED PARAMETRIC TABLEAU. 

-L= 6 
NAME ! S I X 4 X I S 4 X 3 II VALUE -L3 
-- -- -- - - --- --- ----- - -- ----- ---_ .. _- - --- -- -- - - -- -----
S 3 0 0.33 0 -0.33 0.67 II 3 -o.n 
X 2 1 -0.67 I -0.33 -0.33 II 3 -D.n 
S 5 -4 -1.33 -3 -2.67 -1.67 II 10 -2.67 
S 2 -2 -0.67 -1 -0.33 -0.33 II 0 -0.33 
X 5 0 -0.67 0 -0.33 -0.33 II 2 -0.33 

T 7 1.67 4 4.33 1.33 11-19 

Except for the fancyhigh artificial upper limits (see section 
10.3), reference to which has been suppressed, the parametric 
variation problem is now unbounded. Further increase in the 
value of -A i.e. A falling below A = -6, leads only to 
indefinite increases in all basic variables, no basic variable 
being driven towards zero. 

Our researches into the effects of changes in b 4 on the optimal 
solution may be summarised in a graphical mapping. 

We plot the value of the objective function T as a function of 
the parametric variable A. Each vertex is represented by a 
segment of uniform slope, i.e. a straight line. The slope of 
this line is the amount of change in the value of the objective 
function per unit of change of the parametric variable. 
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It is characteristic of the class of convex problems that these 
segments form a continuous "curve" with a mountain-shape. The 
linear combination of any two points of the curve generally 
lies below the curve itself. 

For the LP problem, we may state (and prove) this property 
also in algebraic terms. To do this we first need to express 
the notion of a combination algebraically. Consider the range 
of optimal solution values for values of A within the interval 
A* ~ A :5..A**. We express the notion that A is a convex 
combination of A* and A** as 

A = pA* + (l-p)A** (0 ~ p ~ 1) 

For a particular value of p (and hence of A) the value of the 
optimal solution lS 

T (A) 

-1 -1 
p(~~ All (~l + A*~l» + (l-p)(~i All (~l + A**~l» 

(l3. 2.10) 

We assume that the LP problem is non-empty for all values of A 
in the range A* ~ A ~ A**. 

If the same vertex is applicable for all values of A within the 
interval we obviously have 

T (A) = pT (A*) + (1-p) T (A"'''') 

the expressions within brackets (~~A~i (~l +A*~l)) 

(13.2.11) 

and (w' A-I (b + 
-1 11 -1 

A'~"'~1)) being 
we are on a 
as a linear 

nothing else but T(A*) and T(A**). In that case 
straight section, i.e. (13.2.11) describes T(A) 
function of p and hence of A. 

The more general relationship is (the notion of the mountain
shape) 

T(A) ~ pT(A*) + (l-p)T(A**) (13.2.12) 

To prove this we invoke the Duality Theorem, i.e. we note that, 
irrespective of the value of A, 

u' 
-1 

) -~iAll -1 
) (13.12.13) 

u' 
-2 

0 ) 
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is a feasible solution of the dual problem minimise (~' + AV' ).u, 
subject to A'u > w, u > O. It follows that the optimal and - -
feasible soluti;n-of-b~h the primal and dual problems obey the 
restriction 

-1 
,(A) 2..~iAl1 (~l + A~l) (13.2.14) 

where the = equality sign will hold if All gives the appropriate 
partitioning and in general the < inequality sign will hold if, 
for the value of A which is currently chosen, All is not 
associated with a feasible solution. 

Combining (13.2.10) (applied for the initially chosen value of A 
(e.g. "in the middle") with (13.2.14) applied for A = A* and 
A = A**, we find confirmation of (13.3.12). 
q.e.d. 

We now illustrate the property by way of graphical mapping of 
the relationship between, and b 4 in the example used before. 

This has been done in graph 13. 2a. The points marked in this 
graph with circles correspond to the vertices where, at certain 
critical values of A, a change of basis took place. Note, that 
the scales of the axes have been adjusted by a factor two, to 
accommodate the point A = -6, ' = -19. 

The objective function mapped in relation to changes in b 4• 
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In the above example, the parametric varicotion problem became 
eventually unbounded in both directions. There are only a finite 
number of vertices in any LP problem, hence. the parametric search 
operation must sooner or later fail, as it did in this example, 
or else an abnormal exit of the LP algorithm must be activated 
on re-entry. For parametric variation of the right-hand side that 
abnormal exit of the LP algorithm itself arises when an empty 
problem has been generated. 
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Suppose, for example, that we had added an additional sixth 
restriction to the demonstration problem, i.e. 

x3 + 2x4 - 3x5 > -10 

(-x3 - 2x4 + 3x5 < 10) 

Then obviously, for A = -10, the now endless bottom left-hand 
segment of the graph would end. 

Thus, the segment with s2' s3' s5' x 2 and x5 as the basic 
variables, would run from A = -10 to A = -6, instead of from 
A = -00 to A = -6 as is the case, without this additional 
restriction. For A < 10, the restrictions 

and 

would come to contradict each other. 

If an infeasible solution is generated, there is no point in 
exploring even higher values of A. Finding a feasible solution 
after increasing A still further would in that case contradict 
the convexity property of the set of vectors x, A obeying 
(13.2.1). It follows that once we find the limit of the feasible 
space area all problems characterised by even higher values of A 
are empty problems. 

The case of generating an unbounded ordinary LP problem, after 
having found that the originally specified problem has a finite 
optimal and feasible solution - does not arise. It would imply 
an empty dual problem and finding a finite optimum for the 
originally specified problem proves the dual (of which only the 
objective function changes with A) to be non-empty. 

If parametric variation is implemented in conjunction with the 
linear programming procedure discussed in section 12.3, one would 
normally end up with an empty problem, rather than the parametric 
search operation itself failing. The reason is that all variables 
are assumed to have implicit upper limits and if they are also 
sign restricted the problem is bounded in all directions. 

One would need a special instruction to signal the fact that a 
fancy-high upperbound had become binding and that the problem 
was in an intrinsic sense unbounded. 
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Exercise 

Repeat the operations, performed as example in this section for 
changes in the constant of the fourth restriction, for the first 
restriction, i.e. replace the originally specified first 
restriction by xl + x 2 - Xs ~ 1 + A. 

13.3 Parametric variation of the objective function in an 
L.P. problem 

We will indicate the originality specified objective function as 
T(X) as before, the parametric component as T*(X), and the total 
value of the objective function as T**(X). We are then concerned 
with finding solutions, for various val~es of the parameter A, 
to the following problem: 

Maximise 

w'X + A~'~ (13.3.1) 

Subject to 

A x < b (~ ~ 0) (7.2.2) 

In (13.3.1) g' is the parametric variation vector for the 
objective function, e.g. gl=l and other elements of ~ at zero 
would mean that we investigate the sensitivity of the solution 
to changes in wI' Application of the Duality Theorem converts 
this problem into the following dual problem 

Maximise 

- b' u (13.3.2) 

Subject to 

(13.3.3) 

Apparently we can, with the appropriate adjustments of the signs, 
use the results of the previous section 13.2 to obtain solutions 
for various alternative objective functions. 

If the right-hand side is changed, there generally is a range of 
variation within which the same vertex stays valid and only the 
solution vector is adjusted. The end of this range of parametric 
variation is defined by that vertex ceasing to be feasible. 
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If the objective function is changed, there is a range of 
variation, within which the same vertex stays valid, without any 
change in anything else other than the updated form of the 
objective function row. 

The end of that range of parametric variation is in this case 
defined by the problem ceasing to be optimal at that vertex. 

After a (primal) parametric variation step of the right-hand side 
one obtains an adjacent vertex, if there is one, by re-entering 
the Phase I part of the L.P. algorithm. 

In the case of parametric variation of the objective function, 
one obtains the adjacent vertex (if there is one), by re
optimizing. 

One could, if one wished, solve the problem of finding the whole 
family of solutions for a particular dimension of change of the 
objective function, by actually punching the dual problem and 
solving the family of problems associated with the corresponding 
variation of what then becomes the right-hand side. But it is 
more convenient to perform search operations on a parametric 
row instead. 

Example 

We take the same demonstration example as in the previous 
section. We now carry an additional parametric row rather than 
an additional parametric column. And we assume that we wish to 
analyze ·the sensitivity of the solution for changes in wI. 

Accordingly, our initial equations-system is: 

xl + x2 Xs + sl 

xl + 2x2 3xS + s2 

x3 + x 4 Xs + s3 

x3 + 2x4 3xS + s4 

xl + 3x2 + x3 + 4x4 l2xS + Ss 
-3x -

1 7x2 3x3 7x4 + 20xS + T** 

-xl + T* 

This system is tabulated in the usual way, see tableau l3.3a. 

1 

0 

1 

0 

-2 

0 

0 
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TAELEAU 13.3 A 

SET-UP TABLEAU FOR PARAMETRIC VARIATION OF 
THE OBJECTIVE-FUNCTION COEFFICIENT FOR X 1. 
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NAME X 1 X 2 X 3 X 4 X ·5 VALUE 
---------------------------------------------
S 1 1 -1 1 
S 2 2 -3 0 
S 3 1 -1 1 
S 4 2 -3 0 
S 5 4 4 -12 -2 

-3 -7 -3 -7 20 
T* !-1 o 

The initial value of the parameter is again zero and the 
corresponding initial optimal tableau is tableau l3.3b. 

We mark the dual parametric step in a way which is broadly 
similar to the primal parametric steR discussed in the previous 
section 13.2. We put a square marker[] on the critical element 
of the T* row, the element which first causes the corresponding 
figure in the T** row to become negative. 

TABLEAU 13.3 B 

ILLUSTRATION OF THE DUPL PARAMETRIC STEP. 

NAME 1 S 1 S 2 S 3 S 4 S 5 VALUE 
---------------------------------------------
X 1 J 1 0.50 -I 1.50 -0.50 
X 2 I 1 -2 2 -3 I 
X 3 I -I 1.50 I 0.50 -0.50 
X 4 I 2 -3 I -2 I 
X 5 .1 1 -I. SO -1.50 0.50 
---------------------------------------------

I I 
O.sor::IJ 

I I I 
1.50 -0.50 I 

a 
1 

CL" 0) 

This tableau indicated that T* row can be added to the complete 
objective-function row, with a factor of not more than 1. for 
A = 1, the shadow price of s3 changes sign. 



292 CHAPTER XIII 

Accordingly we make a parametric step, and obtain the following 
no longer optimal tableau: 

TABLEAU 13.3 C 

ILLUSTRATION OF THE ORDINARY STEP WHICH 
FOLLOWS AFTER A DUAt. PARAMETRIC STEP. 

NAME lSI 

X 1 
X 2 
X 3 
X 4 
X 5 

I 
I 

-I 
2 
I 

S 2 

0.50 
-2 
I. SO 

-3 
-1.50 

S 3 

-I 

® 
I 
I 
I 

S 4 

I. SO 
-3 

O. SO 
-2 
-I. SO 

S 5 

-0.50 
I 

-0.50 
I 
0.50 

VALUE 

I -0.00 I I I 
0.50 -I 1.50 -0.50 I 

CL-I) 

At this point it is useful to mention that the computational 
implementation of param~tric programming offered in this book 
includes a call to the ordering procedure discussed in 
section 12.3. Until now, examples have often been un-ordered 
by file-editing or by suppressing the call to the ordering 
procedure. 

This will not be done anymore now, and the next tableau, 
re-ordered according to codes, is tableau l3.3d 

TABL EAU 13.3 D 

THE SECOND DUAt. PARAMETRIC ST t:P. 

NAME X 2 S S 2 S 4 S 5 VAt.UE 
---------------------------------------------
X I 0.50 1.50 -0.50 a I. SO 
X 3 -0.50 -1.50 2.50 2 -I 0.50 
X 4 -0. SO 1. SO -2 -0. SO 0.50 0.50 
X 5 -0..50 0.50 -0.50 -0 0.50 
5 3 0.50 0'.50 -I -1.50 0.50 0.50 

a 2 1.50 2.50 0.50 
O. so I. so 1- 0.501 - 0 

1 CL-I) 
1.50 

This tableau indicates that the full objective function has 
attained a maximum value of T** = 1, while the parametric 
component is not at its maximum value. 

The full objective function is (for A = 

T** = 4xl + 7x2 + 3x3 + 7x4 - 20xS ' and 
maximum value of 1 for Xl = I!, x 2 = 0, 

1), to maximise 
this function attains a 
x -x - x - I 3 - 4 - S - 2· 
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The parametric component, i.e. to maximise xl' is not at its 
maximum as may be seen from the negative entry in the T*/SZ cell. 

The next parametric step has been marked [] 
For A = 1 + Al = 1 + 3 = 4, the shadowprice of Sz will change 
sign and a new ordinary optimizing step will be needed to 
restore optimality. 

Just as in the case of parametric variation of the right-hand 
side, a series of parametric steps may end in two ways. 

If the parametric component of the objective function is at a 
maximum at the current vertex, i.e. there are no negative entries 
in the T* row, the search for a column to be marked [] as the 
next incoming variable will fail. 

13.4 Parametric adjustment of mixed systems 

In this section we survey the complications which arise if 
parametric change/sensitivity analysis is practised in conjunction 
with a system which contains equations as well as inequalities, 
variables with and without non-negativity restrictions. 

First of all we must clarify the definition of a parametric 
variation step. 

The parametric variation step finds the smallest (change in the) 
value of the parameter, which causes the current vertex to be 
no longer optimal and feasible. 

Therefore, a parametric change of the right-hand side vector b, 
which causes a variable to which no non-negativity restriction 
applies, to become negative, it not the end of a parametric 
step. 

Example 

Consider again the problem we first introduced in section l3.Z, 
but let us now assume that xl is an "absolute" or "free" variable, 
whereas x z , x 3 ' x 4 and Xs are restricted to non-negative values 
only. 

In that-case xl may not be eliminated from the list of basic 
variables, and the original vertex stays valid until another 
variable than xl is eliminated. We again consider the parametric 
reduction of the constant of the fourth restriction. The 
resulting parametric step has been marked in tableau l3.4a. 
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TAELEAU 13.4 A 

XI IS NOT ELIGEAELE AS (PARAMETRIC) PIVOTAL ROW. 

(L= 0) 

NAME! 5 I 5 2 5 3 5 4 5 5 !I VALUE -LO 

----------------------------------------------------
X I I 0.50 -I 1.50 -0.50 ! I I. SO 

X 2 I -2 2 -3 I II -3 
X 3 -I 1.50 I o. so -0.50 II ~ 
X 4 2 -3 I -2 I I! -2 
X 5 I - I • so I -I. so 0.50 II -I. so 
----------------------------------------------------

T I I 0 

Here Xl is allowed to become negative, and the length of the 
parametric step is instead determined by the non-negativity of 
x 3 . Implementation of this step leads to tableau 13.4h 

NAME 

TAELEAU 13.4 B 

DISPLACED OPTIMUM WITH A NEGATIVE 
NON-ZERO VALUE FOR A FP-EE VARIABLE. 

(-L=2) 
5 I S 2 5 3 5 4 5 5 I I VAL UE -L I 

----------------------------------------------------
X I I 0.50 -I 1.50 -0.50 II -2 1.50 
X 2 I I -2 2 -3 I II 7 -3 
X 3 !8) 1.50 I 0.50 -0.50 II -0.00 0.50 
X 4 I 2 -3 I -2 I fI 5 -2 
X 5 I I -1.50 I -1.50 0.50 II 4 -1.50 

T II -2 

As before, an ordinary step will be need to find a new optimal 
and feasible solution. The x3-variable is eliminated and Xl 
stays at its (negative) value of -2. 

TAELEAU 13.4 C 

NEW VERTEX Oil TH NEGA1"l VE-VALUED FREE VAPIAE·LE) 
THE PARAMETRI C PPOBL EM IS NOW UNSOt'NDED. (R E-ORCERED) 

(-L= 2) 
NAME X 3 5 2 5 3 5 4 S 5 II VALt'E -LI 
------------------------------------------------------
X I I 2 2 -I II -2 2 
X 2 I -0.50 3 -2.50 0.50 II 7 -2.50 
X 4 2 3 -I II 5 -I 
X 5 I 2 -I II 4 -I 
S I -I -1.50 -I - 0.50 0.50 I! 0 -0.50 

T 2. so 2 1.50 0.50 II -2 I. so 



PARAMETRIC VARIATION OF THE L.P. PROBLEM 

At that vertex, the parametric variation problem becomes 
unbounded, unless upper limits on the variables are considered. 

This vertex is valid for all values of A < - 2. 

The same logic applies to equations in the case of parametric 
variation of the objective function. 

The shadow-prices of equations are allowed to change sign. 
Therefore the same vertex stays optimal, until the shadow-price 
of a non-negativity restriction or an inequality changes sign. 

This restrictive definition of the parametric step may imply a 
loss of information, compared to what the user would like to 
get out of parametric sensitivity analysis. 

295 

One may have defined a variable as not restricted in sign, but 
would nevertheless wish to see a record of the values of other 
variables at the point where a particular variable changes sign. 

Similarly, one may have defined a restriction as an equation, but 
wish to record the shadow-prices of other restrictions associated 
with the value of the parameter, at the point where the shadow
price of an equation changes sign. One could obviously solve 
this problem by defining the parametric step in terms of a 
variable (or shadow-price) attaining a zero value. Definitions 
are to some extent a matter of convention and convenience not 
of a priori logic. 

The computational implementation of parametric sensitivity 
analysis (to be discussed in the next section), uses the more 
restrictive definition given above, and it is useful to mention 
that this problem may be circumvented. 

If one wants a record of a variable to become zero, one should 
declare it as a sign-restricted variable, and declare minus the 
same variable as another variable, on the lines of the opening 
paragraph of section 10.1. The same approach may be followed 
with respect to equations. 

Example 

Consider again the same problem, where it it now assumed that 
the third restriction is an equation, but that we wish to keep 
track of any change in the sign of its shadow-price during 
parametric sensitivity analysis. The direction of parametric 
adjustment is assumed to be the same, i.e. increased preference 
for xl' 
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We re-formulate the original problem, as summarized in 
tableau l3.4d. 

TAELEAU 13.4 0 

SET-UP TAELEAV FOR PARAMETRIC VARIATION OF THE 
OEJECTIVE-FUNCTION COEFFICIENT FOR X I. WITH 
~qUATION-DUPLICATION OF THE S3 RESTRICTION. 

NAME I X I X 2 X 3 

S I 1 
S 2 2 
S 3 I 
S 4 -I 
S 5 1 
S 6 4 I 

T -.3 -7 -3 
T* I - I 

Restrictions 3 and 4, i.e. 

X3 + x 4 - Xs < 1 and 

x3 + x 4 - Xs > 0.999 

X 4 

I 
-1 

2 
4 

-7 

amount for practical purposes to 

X3 + x 4 - Xs 1 

X 5 II VALUE 

-1 
-3. 
-1 

1 
-3 

-12 

20 

II 
II 
II 
II 
II 
II 

II 
II 

I 
0 
1 

-0.999 
0 

-2 

o 

CHAPTER XIII 

i.e. the old third restriction re-defined as an equation. The 
new restrictions Sand 6 are the old restrictions 4 and S. 

It is necessary to put a small, technically non-zero margin 
between the two restrictions. If rows 3 and 4 are exactly the 
same except in sign, a small calculation error may lead to an 
empty problem. 

Thus 

-X3 - x 4 - Xs < -1.000000000000001 

are contradicting restrictions. Errors of this order of magnitude 
would easily arise from rounding and the problem might be found 
empty. The figure of 0.001 for the margin as chosen in this 
example is st ill unduly high. It was taken in order to highlight 
the fact that it is there at all. In practice, a much smaller 
margin will be sufficient. 
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The corresponding central optimal and feasible solution-tableau 
is given below with the first parametric adjustment step, i.e. 
the shadow-price of the third restriction indicated in the 
usual way 0 

TABLEAU 13.4 E 

CENTRAL OFTIMUM, WITH DUAL PARAMETRIC STEP. 

NAME ! S 1 S 2 5 3 S 5 S 6 II VALUE 
----------------------------------------------
X 1 1 0.50 -1 1.50 -0.50 II 1 
X 2 1 -2 2 -3 1 II 1 

X 3 -1 1. SO 1 0.50 -0.50 II 1 

X 4 2 -3 1 -2 1 II I 

X 5 1 -1.50 1 -1.50 0.50 II I 

5 4 1 II 0.001 

----------------------------------------------
T 
T* 

1 1 
o. soD 

1 1 1 I 
1.50 -0.50 II 

a 
1 

The parametric adjustment step is now made and we obtain a 
tableau which requires re-optimization, tableau 13.4f. 

TABLEAU 13.4 F 

EQUATION-DUPLICATION SIGNALS THE POINT AT 
WHICH THE SHADOWPRICE CHANGES SIGN,THEN 
LEADS TO A ZERO LENGTH ORDINARY STEP. 

NAME lSI S 2 S 3 S 5 S 6 II VALUE 

X 1 1 0.50 -1 1.50 -0.50 II 1 
X 2 1 -2 2 -3 1 II 1 
X 3 -1 1.50 1 0.50 -0.50 II 1 
X 4 2 -3 1 -2 1 II 1 
X 5 1 -1.50 1 -1.50 0.50 II 1 
S 4 CD I I 0.001 
----------------------------------------------

2 
1 

1.50 -0.00 2.50 0.50 II 
0.50 -1 1.50 -0.50 II 

1 
1 

(L-l) 
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Note again that, whereas the figure of 0.001 has been used to 
emphasis that there is no actual degeneracy, one should think in 
terms of an E -difference, hence the heading of tableau 13. 4f, 
which speaks of a step of zero length. 
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The "ordinary" step which is now needed to regain optimality 
has not much intrinsic significance, but signals the fact that 
the shadow-price of the original third restriction has changed 
sign. Rounded to two decimals, the tableaux 13.4f and 13.4g 
below, are only distinguishable in the s3/s4 columns. 

TABLEAU 13.4 G 

NEV OPTIMAL AND FEASIBLE SOLUTIONI VITH ONLY AN 
INSIGNIFICANTLY SMALL CHANGE IN THE VALUE COLUMN. 

NAME I 5 I 

X 1 
X 2 
X 3 
X 4 
X 5 
5 3 

I 
1 

-1 
2 
1 

2 
1 

5 2 S 4 

0.50 1 
-2 -2 

1.50 -I 
-3 -1 
-1.50 -I 

o 

1.50 0 
0.50 I 

S 5 5 6 II VALUE 

1.50 
-3 

0.50 
-2 
-1. SO 

o 

-0.50 II 
1 ! I 

-0.50 II 
1 ! I 
O. SO I! 

-0 II 

2.50 0.50 II 
1.50 -0.50 !! 

1.001 
0.998 
0.999 
0.999 
0.999 
0.00 I 

1. 001 
1.001 

(L= 1) 

At this point s6 is the next variable for which the shadow-price 
is to change sign. Clearly that would have happened in the first 
place, if the s3 restriction had formally been treated as an 
equation. And this would be the case for A = 2 in either case. 

13.5 Treating the parameter as a variable 

To cope efficiently with upper bounds, we introduce a method of 
making parametric steps which is somewhat different from the one 
outlined in the two previous sections. 

There is no conceptual or definitional problem concerning upper 
limits. Upper limits on specified variables are restrictions, and 
they may become binding. Or parametric variation of the objective 
function may cause the shadow-prices u[ upper bounds to become 
negative, and the upper bounds may cease to be binding, and the 
corresponding variables may again be represented by normal 
entries in the list of basic variables. However, the practical 
computational implementation of parametric sensitivity analysis 
makes use of an adaptation of the linear programming procedure, 
and certain special complications arise from the desirability to 
use basically the same algorithm for parametric as well as for 
"ordinary" steps. 

Recall the double search operation for the pivot row, i.e. for 
the elimination of a variable or alternatively the slack of its 
upper bound restriction, which was discussed in section 10.3. 
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We could duplicarl:! this search operation in connection with 
parametric variation of the right-hand side. But that is not the 
end of the complications. The re-entry of the linear programming 
procedure can cope with a minus zero (e.g. -0.000001), in the 
value column, indicating a violated restriction, but not with 
negative entries in the updated upper bounds column. The point 
is simply that the "Phase I" part of this procedure addresses 
itself only to negative elements in the main value column. If 
someone initially supplied a negative upper limit this would in 
general lead to malfunctioning of the procedure as well. 

An adaptation of the LINP procedure (developed in the context 
of integer programming), in which Phase I also deals with 
negative upper limit distances, is in fact offered in this book 
as well. However, the solution opted for here, is to introduce 
the parameter into the basis as a variable, and to re-define 
its value afterwards, as being -0.0000001, causing its 
elimination by the normal "Phase I" block of the basic LP 
algorithm. 

To actually make the step in which the parameter is brought into 
the basis as a variable, is necessary, only if the leaving 
variable is an upper limit distance. The method is, however, 
generally valid, and is illustrated here, without reference to 
upper limits. 

To illustrate this version of the algorithm, we tabulate 
(13.2.7), with v' = (0,0,0,-1,0), - for the same example as 
illustrated in tableau l3.2g and following-, 
Note the change in the sign of the unit vector due to rn .ng 
the term AV to the left-hand side. 

TABLEAU 13.5 A 

SET-UP TABLEAU WITH A PARAMETRic ACTIVITY 

(L= 0) 
NAME! XI X2 X3 Xii X5 t LO ! I VALUE ! D15T 

------------------------------------------------------
51 I -I I - II I X 
52 2 -3 I - ! I 0 X 
53 I -I I - I! I X 
S4 2 -3 II 0 X 
55 4 4 -12 I - 1.1 -2 X 

------------------------------------------------------
T -3 -7 -3 -7 20 0 ! I X 

BOUND! 100 100 100 100 100 I X II X X 
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As mentioned in section 12.3 (in the procedure-text itself), the 
number 100 represents a "fancyhigh" number where no intrinsic 
upper limit is intended, and the computational implementation 
normally uses 1 000 000, a million. 

Compared with section 13.2, where A was on the right-hand side, 
this presentation implies an implicit change of the sign of the 
parametric column. 

In short, this example concerns the s4 restriction being pushed 
parametrically inwards. 

During the "normal" optimizing phase, the parametric column is 
exempt from search operations, but not from updating operations. 
The resulting initial optimum is eiven below in tableau l3.5b. 

TABLEAU 13.5 B 

INI TIAl OPTIMt..'M. WI TH UPCATED. BUT lJNACTl VATED PARAMETRIC 
ACTIVITY. 

(L= 0) 
NAME! S 1 S 2 S 3 S 4 S 5 LO 11- VALUE r,. ST 

-----------------------------------------------------------
X 1 1 
X 2 1 
X 3 -1 
X 4 2 
X 5 1 

T 1 
BOUtIDI X 

0.50 
-2 

1.50 
-3 
-1.50 

1 
X 

-1 
2 
1 
1 
1 

1 
X 

1.50 
-3 

0.50 
-2 
-1.50 

1 
X 

-0.50 
1 

-0.50 
1 
0.50 

1 
X 

[hl] 
-3 

0.50 
-2 
-1.50 

1 
X 

II 
II 
II 
II 
II 

II 
II 

o 
X 

99 
99 
99 
99 
99 

X 
X 

Note, that there is no general rule that the shadow-price of 
the parametric variable is positive. 

The parametric variable becomes incoming variable, irrespective 
of its shadow price. The parametric step is now maae as a normal 
step, leading to tableau l3.5c. 
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TABLEAU 13.5 C 

THE PARAMETRIC ACTIVITY HAS ENTERED THE BASIS. 

(L"0.67) 
NAME! SIS 2 S 3 S 4 S 5 X 1 I I VAL UE 01 ST 

~~------~:~;--~:;;-:~:~;-------:~:;;----~:~;-~;---~:~;----;---
X 2 3 -I 0 2 II 3 97 
X 3 -1.33 1.33 1.33 -0.33 -0.33 II 0.67 99.33 
X 4 3.33 -2.33 -0.33 0.33 1.33 II 2.33 97.67 
X 5 2 -I 0 0 1 I I 2 98 

T 0.33 0.67 1.67 0 
BOL'NDI X X X X 

1.33 -0.67!1 -0.67 
X 100 II X 

X 
X 

The actual variation of the problem arises when A ~s redefined 
to be minus zero, and we re-enter Phase I to make an ordinary 
step. 

TABLEAU 13.5 0 

TABLEAU VITH ARE-DEFINED FARAMETRIC VARIABLE. 

(L~0.67) 

NAME! SIS 2 S 3 S 4 S 5 X 1 I I VAL UE DI ST 

~~---~--~:~;--~:;;~--;----:~:;;----~:~;-~~--:~:~~----;---
X2 I 3 -1 - - a 2 II 3 97 
X 3 I -1.33 1.33 1.33 -0.33 -0.33 II 0.67 99.33 
X 4 I 3.33 -2.33 -0.33 0.33 1.33 II 2.33 97.67 
X 5 2 -1 0 0 1 I I 2 98 

T I 0.33 0.67 1.67 0 
BOtNDI X X X X 

1.33 -0.67 II -0.67 
X 100 It X 

x 
X 

The question arises, whether the procedure outlined in this 
section, is fully equivalent with the one outlined in section 
13.2. This is .indeed the case. Both versions of the parametric 
variation algorithm consist of pairs of steps, parametric 
variation steps and ordinary steps, and despite the different 
presentation of the parametric variation step, we develop 
after each pair of steps, substantially the same tableau 
by either method. 

301 



302 CHAPTER XIII 

When we actually make the step marked in tableau l3.5d, we 
develop substantially the same tableau as in section 13.2, 
i.e. tableau 13.2 i, the ordering and the classification of A 
as a variable being the only difference. The selection of the 
same incoming variable in the ordinary step (s3 in the example), 
by both versions of the algorithm, is systematic, as may be 
shown by expressing the dual ratio of a tableau as developed 
according to the rules of this section in the coefficients as 
they would arise ~n the version of the algorithm discussed in 
section 13.2. 

t"< 
m+l,j 

t* .. 
~,J 

= _ (tm."i - t 1 • t. . It. ) m+ ,n ~ ,J ~ ,n 
t. . It. 
~,J ~,n 

= - (tm.',i · 'i,n - tm."n) 
(j = 1, ... n-1) 

(13.5.1) 

In (13.5.1), t l' is the objective function row/incominR 
m+ ,J 

variable column cell figuring in the search operation for making 

the ordinary step, made according to the rules of section 13.2 
(j=3, m=5, t6 3=1 for the L/s 3 cell in tableaux l3.2g and l3.2h), 
ti,j is the corresponding pivotal row element (-1 for x Is 3 ) 
cell, i=l), the corresponding starred expressions are t~e updated 
cells, following the parametric step made according to the rules 
of this section (i.e. tg 3 = 1.67 and tt 3 = -0.67 in tableau 
13.5d). ' , 

The index n refers to the parametric variable, i.e. assumes the 
ordering used in this section. 

The second expression in (13.5.1) gives the division of the two 
updating expressions, the third expression is a simplification 
of the second one. 

Since t. is the pivot in the parametric step we have t. > O. 
It fol16~2 that the expressions ~,n 

t 1 . m+ ,J 
t. . 
~,J 

tm+l,j * ti,n 
and -

t .. 
~,J 

t* 
m+l,j 

t* .. 
~,J 

all give the same ranking, at least as far as they are positive. 



PARAMETRIC VARIATION OF THE L.P. PROBLEM 303 

Eligible pivots are in fact found, only in those columns for 
which all these expressions are positive in both tableau
presentations. There is no change of sign between ti J" and t* "' , ~ ,J 
but the transition from t 1" to t* 1 " needs further 
discussion. m+ ,J m+ ,J 

It is true that the parametric step, performed according to the 
rules of this section may lead to the emergence of negative 
entries in the objective function row, thereby causing the 
expression given by (13.5.1) to change sign. However, such a 

change in the sign of an element of the objective function row 
is of necessity associated with a positive element in the 
pivotal row, i.e. related to a variable which is not eligible 
as incoming variable (in a tableau which represents a non
feasible solution), in either version of the algorithm. 

The dual ratio is therefore the effective column-selection rule 
in both versions of the algorithm, and (13.5.1) indicates that 
both dual ratio search operations will come up with the same 
incoming variable. The steps are effectively the same as in 
section 13.2, and it follows that any negative entries in the 
objective function row which may be developed by the parametric 
step, when the rules of this section are followed, will again 
disappear when the ordinary step is made. The stated equivalence 
property includes the case j=n, to which (13.5.1) is not 
applicable e.g. xl in the example. The tt n element is the 
reciprocal of the parametric pivot hence positive and not 
eligible as pivot in a Phase I tableau. Since the same 
vertex is developed by both methods (e.g. tableau l3.2i) and 
the use of the dual ratio in section 13.2 guarantees finding a 
new optimum (unless the problem has become empty), this will 
also be so when the rules of this section are applied. 

Note that no amendment of the basic Phase I search operations as 
laid down in sections 11.4 and 12.3 is needed. These rules 
already ensure that the dual ratio is the effective column
selection criterion in the situation discussed in section 12.3 
and, for the reasons given above also if the parametric variable 
is re-defined after entering the basis. 

While the above observations merely prove the equivalence of the 
two methods, the rationale of the method outlined in this section 
is that parametric steps can be made as "ordinary" steps even if 
the leaving variable is an upper limit distance and that 
essenti,ally the same programme code can be used to perform the 
search operation. 

In the case of variation of the objective function, we have a 
parametric restriction, which is adjusted to requir~ that the 
parametric component of the objective function is slightly more 
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than it is in the current vertex. Phase I of the linear 
programming algorithm is then re-entered, with recognition of 
a small -0 entry as a violated restriction. This -0 entry is 
offered to the search-loop of Phase I, irrespective of the true 
value of the parametric component of the objective function, 
which is restored just before a step is actually made. 

Example 

Consider the same numerical example as discussed in section 12.3. 
We write the initial tableau as in tableau l3.5e below 

TABLEAU 13.5 E 

SET-UP TABLEAU WITH THE PARAMETRIC ROW 
SLOTTED AS THE LAST RESTRICTIONI INDEX M. 

NAME I X I X 2 X 3 X II x 5 II VALUE 

S I I -I II I 
S 2 2 -3 ! I 0 
S 3 I I -I ! ! I 
S II -I -I I II -I 
S 5 I 2 -3 ! I 0 
S 6 II I II -12 II -2 

I -I II o 

T !-3 -7 -3 -7 20 II 

The corresponding initial optimum tableau is now presented as in 
tableau l3.5f below 

TABLEAU 13.5 F 

INITIAL OPTIMUM TABLEAU .. ITH THE PARAMETRIC 
ROW SLOTTED AS THE LAST RESTRICTIONI INDEX M. 

NAME I S I S 2 S 3 S 5 S 6 II VAr.UE 
----------------------------.-----------------
x I I 0.50 -I 1.50 -0.50 II I 
X 2 I -2 2 -3 I II I 
X 3 -I I. SO I 0.50 -0.50 II I 
X II 2 -3 I -2 I II I 
X 5 I -1.50 1 -1.50 D.SO II 1 
S II I II 0.00 

0.50 -I 1.50 -0.50 II 

T 11 o 
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The parametric adjustment of the objective function is now 
made effective by requiring the T* restriction to be binding. 
We artificially activate Phase I, i.e, we declare the T* 
restriction to be violated for the purpose of search operations, 
but restore the correct entry before the resulting step is 
actually made. The resulting parametric step is marked 
in tableau l3.5g below. 

TAEJ...EAl! 13.5 G 

THE DUAL PARAMETRIC SEARCH. ACTIVATED BY 
A JUST-VIOLATED PARAMETRIC RESTRICTION. 

NAME I S I 5 2 S 3 S 5 S 6 II VALUE 
----------------------------------------------
X I I 0.50 -I 1.50 -0.50 ! I 

X 2 I -2 2 -3 I I! 
X 3 -I 1.50 I 0.50 -0.50 II 
X II 2 -3 I -2 I II I 

X 5 I - 1.50 I -1.50 0.50 II 1 

S II I II O. 00 

----------------------------------------------
1* 0.50D 1.50 -0.50!1 -0.00 

----------------------------------------------
T II Q 

The requirement that the parametric component of the objective 
function increases by an ~-amount (printed as 0.00 in the tableau) 
is either attainable in one step, and selection of the incoming 
variable according to the dual ratio may be left to a "normal" 
Phase I search operation or alternatively if the parametric 
component of the objective function is already at its maximum, 
an empty problem is indicated. 

At this point it may be observed that an upper limit is not an 
acceptable leaving variable in a dual parametric step. Either 
the parametric restriction's "slack variable" is signalled as 
the leaving variab~e, or no parametric step can be made at all, 
the parametric component of the objective function being already 
at its maximum. 

This consideration makes it possible to proceed, from this point 
onwards, very much in the same way as in section 13.3, i.e. 
update the T** row only, place a -~ entry in the i** row/ 
incoming variable column cell, and make the corresponding 
ordinary step. 

The only difference is that the T*-row is slotted in position 
m as an "ordinary" row of the tableau, permitting the use of the 
"normal" Phase I search operations in order to identify the 
incoming variable and the appropriate dual ratio. 
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The parametric step is, however, not made in the usual 
"normal" LP sense, we only update the T**-row, to obtain 
tab leau l3. Sh. 

TABLEAU 13.5 H 

ORDINARY STEP, FOLLOVING THE DUAL PARAMETRIC 
STEP. (EQUIVALENT TO TABLEAU 13.3 C) 

NAME ! S I S 2 S 3 S 5 S 6 , I VALUE 
----------------------------------------------
X , I 0.50 -I I. SO -0.50 , , 
X 2 I -2 2 -3 1 , , 
X 3 - 1 I • SO I O. SO -0.50 ! , 

X 4 2 -3 I -2 1 , , 
X 5 , -1. SO 1 -1. SO 0.50 , ! 
S 4 0 CD 0 -0 , ! 

----------------------------------------------
T* O. SO -1 1. SO -0.50 ! , 

1.50 -0.00 2.50 0.50 II 

CHAPTER XIII 

The method of carrying on from this point onwards will be obvious. 

13.6 Computational implementation of parametric LP 

Before addressing ourselves to the details of the computational 
implementation, it is useful to recapitulate the salient features 
of the parametric linear programming algorithm. 

Parametric steps corne in pairs, i.e. a parametric adjustment step 
and, after re-definition of the problem, an ordinary step, to 
regain an optimal and feasible solution. 

For variation of the right-hand side the parametric variation 
step may, or may not consist of entering a parametric activity 
as a basic v~riable irrespective of its shadow-price, in which 
case the adjustment redefines the value of that variable as minus 
zero, and the ordinary step eliminates the parametric variable. 

For variation of the objective function, the parametric variation 
step consists of finding an incoming variable which increases 
the parametric component of the objective function, at the lowest 
relative loss in terms of the value of the specified objective 
function. 

The search operations for variation of the right-hand side and 
the objective function are sufficiently similar to each other 
and to "normal" LP search operations, to justify their 
integration in an adaptation of the LINP procedure. 
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The parametric variation step is initiated by temporarily 
putting a small negative entry in the tableau, this minus zero 
(actually -0.0000001) is replaced, just before the step is 
actually made, by the "true" figure. 

To this end, the linear programming code from section 12.5 and 
the LINP procedure from section 12.3 were suitably amended. 
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These amendments cover the following points: firstly, two rather 
than one point of call to the linear programming procedure are 
required, one for calculating the initial optimal and feasible 
solution, one for the variation exercise. Also, the linear 
programming procedure was actually re-named i.e., LINP still 
is the version from section 12.3, and we now need SIMP for 
simplex procedure. 

The simplex procedure differs from the original linear 
programming procedure on the following points: there are two 
additional procedure-parameters of type integer, called PR and 
PC. 

These variables communicate the presence of a parametric 
A-variable or a parametric restriction from the calling main 
programme to the simplex procedure. Inside the simplex 
procedure, reference to these variables occurs in particular 
in the loops which control search operations. 

PR stands for parametric row, and this variable will be one 
when there is a parametric T* row and otherwise zero; PC stands 
for parametric column and this variable will be one when there 
is a parametric column and otherwise zero. 

On normal entry of the procedure (REENTRY = 0), the parametric 
row/column are not included in search operations. 

Thus for REENTRY = 0, PR = PC = 0, the action of the simplex 
procedure is substantially the same as for the LINP procedure. 

For REENTRY = 0, PR = 0, PC = 1, the last mth "normal" column 
of the tableau is updated in the usual way, but it is not 
considered as pivot-column. In other words, the A-column is 
updated, but does not enter the list of basic variables. This 
is meant for the initial calculation of an optimal and feasible 
solution, while parametric variation of the right-hand side is 
to be analyzed with help of the re-entry call. 

For REENTRY = 0, PR = 1, PC = 0, the last nth "normal" row is 
the parametric restriction and is not included in the search 
operations. 
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Besides these amendments to the search operations we also need 
some additional control loops to initiate parametric steps in 
the first place, to regulate the succession of a parametric 
variation step by a "normal" step, and to signal the various 
exits of the parametric adjustment algorithm, and to decide 
whether the parametric step is made by full tableau-updating, 
or by vector-adjustment only. 

Parametric steps are initiated by the calling main programme. 
In the case of parametric variation of the right-hand side, 
the indication of the parametric A-variable as a pivot-column 
is set by temporarily substituting a negative number for its 
shadow-price, and the exclusion of A as pivot-column variable 
is removed by entering the procedure with REENTRY = 2. 

In the case of variation of the objective function the similar 
adjustment is substituting a very small negative number for the 
slack of the parametric restriction. This ensures that the 
pivotal column is selected by the dual ratio criterion. 

The normal search-loops (which are largely the same as in the 
LINP procedure), now establish which is the correct parametric 
variation step. A further special control loop then restores 
the numerical content of the problem as it was before the 
parametric re-entry. This is done at the start of making the 
step, just below the label MAKE THE STEP. 

To make (or attempt to make) both a parametric adjustment step 
and the ordinary step, on the basis of a single re-entry call, 
there is a parametric loop in the "check for status", part of 
the procedure. In the case of a dual parametric step the similar 
control loop occurs earlier in the procedure, inhibiting tableau
updating in the parametric step itself. 

Both loops control the actual adjustment of the problem, and a 
"GOTO" instruction to Phase I, as well as, where appropriate 
an instruction tc exit. 

Only two steps are allowed on parametric reentry. 

The A-variable, once it has again been eliminated should not 
re-enter the list of basic variables before the parametric step 
has been reported to the main programme. Yet its shadow-price 
may be negative, i.e. it could be that the parametric variation 
of the right-hand side was in a direction which increases the 
objective function. During the normal entry call to the simplex 
procedure (REENTRY = 0), this variable was slotted in the last 
column, and could not become a basic variable because the end
index of the column-search loop is adjusted. This method of 
protecting the A-variable against undesired activation does not 
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work during the re-entry-call itself. To ensure exit to the main 
programme, it is therefore protected by allowing only two steps 
on parametric reentry. 

Some fairly obvious minor changes in the code relate to the 
upper limit on the A-variable: we do not recognize an upper 
limit on A. 

Unbounded parametric problems may then appear in two forms. 

One or more constants of amply fulfilled restrictions may be 
adjusted outwards, in which case no pivotal row may be found 
in the A-column. 

This will be signalled by the "unbounded" exit of the Simplex 
procedure itself. 

We may however, also have what might be called "lack of 
meaningful boundedness" i.e. a "fancyhigh" non-meaningful 
upper limit or one of the elements of x becomes binding. 
Formally this is not unboundedness at all, and it is possible 
to generate further reentry calls, until an empty problem is 
generated. 

We now first of all list the main programme, which is an 
adaptation of the main LP programme listed in section 12.5. 

TEXT-LISTING OF THE PARAMETRIC LP FROGRP~ME. 

'BEGIN' 'INTEGER' M,N,NAV,NEQ, FR, PC, I .J. REENTRY; 

'PROC ECUP. E' S I MP( T. ~l, N. N EQ. NAV. RO\>.'LST. COLLST. FR •. PC. REEN TRY); 
'ARRAY' T; 'IlnEGER' ~l,N.NE".fIAV.PR.PC.EEENTRY; , 
'INTEG ER' 'ARRAY' RO\..'LST. COLLST; 'ALGOL '; 

'PROCEDURE' ORDR(T,M.N.ER.RH.ROWLST.COLLST); 
'APRAY' Tj 'ItJTEGEIi' M.N,ER.RH; 'ItJTEGEP' 'ARRAY' ROWLST.COLLSTJ 
'ALGOL·'; 

'PROCEDURE' MATICMATR,MB.NB.FP..FC)j 
'ARRAY'MATR; 'INTEGER' MB,NE.FR,FC; 'ALGOL'; 

'PROC EDULE' TASO (MATR. M. N. sn. s C, RH, ER. RO WL ST, COLL ST); 
'ARRAY'MATR; 'INTEGER' M.N.SR.SC.RH,ER; 
'INTEGER' 'ARRAY' ROlr:LST.COLLST; 'ALGOL'; 
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• COMMENT· 
LINEAR PROGRAMMING BY THE SIMPLEX ALGORITHM. 
WITH POST-OPTIMAL PARAMETRIC VARIATION. 

CHAPTER XIII 

FOR DETAILS OF THE ALGORITHM SEE THE TEXT OF THE SIMP PROCEDURE. 

PRESENTATION OF DATAl 
FIRST THE NUMBER OF RESTRICTIONS AND DUMMY-RESTRICTIONS. I.E. M. 
INCLUDING THE PARAMETRIC ROW. IF ONE IS THERE. 
THEN THE NUMBER OF VARIABLES AND DUMMY-VARIABLES. I.E. N. 
INCLUDING THE PARAMETRIC COLUMN. IF ONE IS THERF.. 
FOLLOWED BY THE NUMBER OF EQUATIONS. NEQ. 
FOLLOWED BY. NAV. THE NUMBER OF VARIABLES 
TO WHICH THE TACIT (NON-NEGATIVITY) RESTRICTION DOES NOT 
APPLY. 
THEN PUNCH PRo 
WHICH IS ZERO IF NO PARAMETRIC VARIATION OF THE OBJECTIVE 
FUNCTION IS ASKED FOR. AND ONE IF IT IS ASKED FOR. 
FOLLOWED BY PC. 
WHICH IS ZERO IF NO PARAMETRIC VARIATION OF THE RIGHT-HAND 
SIDE IS ASKED FOR. AND ONE IF IT IS ASKED FOR. 

THEREAFTER PUNCH EACH ROW OF THE COMPOSITE MATRIX 

A B 
W 0 
U 0 

TO REPRESENT A.X < OR ~ B. 
MAXIM -W·. X 
AND X < OR = U 

THE NUMERICAL CONTENT OF THE PARAMETRIC ROW IN NON-UPDATED FORM. 
I F PRESENT. 
SHOULD BE SUPPLIED AS THE LAST ROW OF A. THE ASSOCIATED 
LAST ELEMENT OF B BEING ZERO. 
THE NUMERICAL CONTENT OF THE PARAMETRIC COLUMN. IF SUPPLIED. 
SHOULD BE PUT IN THE LAST COLUMN OF A. WITH INVERTED SIGN. 
THE CORRESPONDING ENTRIES IN THE TARGET-ROW AND UPPERBOUNDS 
VECTOR BEING ZERO. 

MI-READJ NI=READJ NEQI=READJ NAVI-READ. 
PRI"READ' PCI"READ' 
REENTRYI-O. 
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'EEGIN' 'ARRAY' TACI:M+2,I:N+2); 
'I tlTEG ER' 'ARRAY' RO"'l. C1: M], COLL [II N); 
MATICTA,M+2,N+I,0,0); 
SIMPCTA,M,N,NE~,NAV,R01t1L,COl.l.,PF.,PC,REENTRY)J 

PRINT RESUL.TSI 
'IF' N < 14 'DR' M+N < 40 'THEN' TABOCTA,M,N,0,0,2,2,RO~~,COl.l.) 

'El.. S E' 'EEGI N' 
TABOCTA,M,O,O,N,O,I,RO~~,COl.l.); 

TASOCTA, O,N,M, 0, I, O,RO~~,COl.l.)J 'END'; 

CHECK fOR INTRINSI C BOUNDEDNESS: 
',fOR' J:=I 'STEP' I 'UNTIL' N '00' 
'IF' CoLLCJl > 10000 'AND' TACM+2,J] > 999999 'THEN' 'BEGIN' 

SIGNAL INTRItJSIC UNEOUNDEDNESS: 
N£1,.~INE( I); 
\.'RI TET DCTC ' C ' fArJCYH I GH %UPPER%LI MI T%BI N[)l NG') , ); 
NEI."LINE( I); 
'GoTo' END OF FARALP; 'END'; 

'If' FR:O 'AND' FC:O 'THEN' 'GoTo' END Of PARALP; 
'If' REENTRY' 0 'THEN' 'GoTo' END Of PARPLP; 

SET REENTRY: 
RE£N TRY :: 2; 

'If' PC:! 'THEN' 'BEGIN' 
'COMMENT' 

NOV ACTIVATE THE RIGHTHAND SIDE VARIATION ACTIVITY; 
TACM+2,N] :: TACM+I,N); TACM+I,N]:: -0.0000001; 'END'; 

'If' PR=I 'THEN' 'BEGIN' 
'COMMENT' 
NO~ ACTIVAT~ TARGET R01t1 VARIATION 'VECToR; 
TACM,N+2]: =TACM,tH!); TACM,N+! l: "-0'.00000000 I; 'END'; 

REORDER PARAMETRIC VECTORS T01t1ARI:S END .of TABLEAUI 
'fOR' J:"I 'STEP' I 'UNTIL' N 'DO' 
'IF' COl.l.[Jl " N 'AND' PC:I 'THEN' 'COl.l.CJ] p. 20000; 

'IF' PC=I 'AND' 'NOT' COl.l.CN]=N 'THEN' 
ORDRCTA,M,N,2,2,Ro~"L,COl.L); 

'If' CoLLCN],,20000 'AND' PC" I 'THEN' COLLCN] :: N; 
'If' PR:I 'P.NO' 'NOT' RO\.~CM]=!OOO+M 'THEN' 
OROr.CTA,M,tJ, 2, 2, POO"'l., COLl.); 
'GOTO' PRINT RESULTS; 

END Of PARALP: 

'END'; 'END' 
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The above programme-text differs from the one listed in 
section 12.5, on some additional points besides the ones 
already mentioned. 

There is the obvious need to declare, and to read the values of 
the PR and PC variables. We also need some loops to signal and 
effectuate the end of the algorithm. 

The basic structure is to call the simplex procedure again in 
the re-entry mode, i.e. to ask for the next parametric step, 
unless an empty or an unbounded problem is met. 

That refers to the two abnormal exits of the linear programming 
(simplex) procedure, and also to intrinsically unbounded 
problems which are technically bounded. 

Whenever a "fancyhigh" upper limit on one of the specified 
variables is found binding, this is equivalent to an unbounded 
problem. We will refer to this situation of a technically 
optimal solution which has hit the ceiling as "substantially 
unbounded" • 

In terms of their significance, the following possibilities 
arise: 

a) the problem is found empty, unbounded or substantially 
unbounded on return from the first normal call to the 
simplex procedure. The significance of that result is 
obvious, i.e. the originally specified problem is empty 
or unbounded. 

b) the problem is found empty, on return from a re-entry call 
for parametric adjustment of the right-hand side. In that 
case the problem has become empty, for some result of 
parametric variation. (This would arise after making the 
parametric step itself). -----

c) An empty problem arises, when calling the simplex procedure 
in the re-entry mode, for parametric variation of the 
objective function. The empty problem is in that case not 
the main linear programming problem itself, but the 
redefined problem with the additional restriction, on T* 
the parametric component of the objective function. When 
we put a negative (-0.0000001) entry in the value column 
entry of the T* row, this means that an additional increase 
(of at least 0.0000001) in the value of T* is required. 
When T* is already at a maximum value, that requirement 
cannot be met. 
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d) An unbounded or substantially unbounded problem arises 
when calling the simplex procedure in the re-entry mode 
for parametric variation of the right-hand side. In that 
case the parametric variable A is unbounded. If there are 
variables without non-negativity restrictions in the problem, 
this may also be the apparent cause of unboundedness, i.e. 
no parametric step has been made but the unbounded loop of 
the procedure has been activated. This case is limited to 
the specified variables either not to change, or not to be 
restricted in the sign, in which case there is no upper 
limit either. (The A-variable itself has its upper limit 
removed in the procedure itself.) 

Normally unboundedness will be revealed as substantial 
unboundedness, by the calling main programme, i.e. some 
specified variable hits the ceiling. This condition is 
signalled, only after a parametric variation step and a 
further normal step have technically been completed. 

d) The problem may be found unbounded, after calling the 
simplex procedure in the re-entry mode, for parametric 
adjustment of the objective function. In that case the LP 
problem has become unbounded, i.e. for some finite value 
of A, the full objective function T** becomes unbounded. 

Again, unboundedness will normally be revealed by the 
main programme as substantial unboundedness, rather than 
the alarm exit of the simplex procedure being activated. 

A full listing of the simplex procedure is not given here, this 
would involve too much duplication of copied parts of the 
linear programming procedure. 

Instead, we list the file of editing instructions which converts 
LINP into SIMP. 

The editing instructions follow the text in the same order as 
reading, and have the following significance: 

TC/OLD/ 

Copy text until, somewhere in the text, the characterstring 
"OLD" as its first non-blank text is found. 

TS/OLD/ 

Copy entire lines, until a card-line starting with "OLD" as its 
first non-blank text is found. 
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R/OLD/NEW/ 

In the next card-line, replace the character-string "OLD", by 
the characterstring "NEW", 

I? NEW? 

Insert text, as quoted. 

PC/OLD/ 

Skip and delete text, until (somewhere ~n the text), the 
characterstring "OLD" is found. 

Tl - Copy one line 

PI - Skip and delete one line 

T.? OLD? 

In the next line, copy characters until the characterstring 
"OLD" is found. 

P.? OLD? 

In the next line, skip and delete characters, until the 
characterstring "OLD" is found. 

LISTING OF THE FILE OF EDITitiG INSTRL'CTlONS \.1IICH CONVERTS 
LINF INTO SIMP: 

TC/'PROCEDURE' LINF(/.R/LINF/SIHF/ 
T.?REENTRY>?I?FR.rC.? 
TC/'INTEGEE'M.N.NEG:./.T.?REENTRY1.I?FR.FC.1 
TS/'COMMENT' LINEAR/.R/././.TI 
11 Io.'ITH FOST-oPTIMAL PARAMETRIC VARIATIDrJ. 

M RESTRI,GTIONS AND N VARIABLES. 
ltJCLUDING ONE EXTRA VECTOR. THE FARAMETEI C ROIJ/COLUMN 
(I F SUFFLI ED) • 

FOR THE SIGNIFICANCE OF THE PARAHETERS.T.H.N.NEQ.NAV. 
ROlJLST II.ND CoLLST. SEE THE TEXT OF THE LINF PROCEDURE. 
THE PROVISIONS FOR UPPER LIMITS ON OFlDINARY VARIABLES 
ARE ALSO COMMON EEHIEEN SIMP ArJD LUIF. AND ARE DESCRI BED 
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IN THE CDMMENT AT THE HEAD DF LINP. 

THE ABBREVATIONS PR AND PC INDICATE 
'PARAMETRIC ROW' AND 'PARAMETRIC COLUMN'. 
IF THE PROCEDURE IS ENTERED WITH REENTRY-D. 
I.E. NORMAL OPTIMIZING. 
WITH PC=1 AND PR=O FOR ADJUSTMENT OF THE RIGHTHAND SIDE. 
DR WIHT PR=1 AND PC=O. 
FOR VARIATION OF THE OBJECTIVE FUNCTION. 
THE LAST 'NORMAL' COLUMN OR ROW DF THE TABLEAU 
(NDT COUNTING THE VALUE COLUMN. TARGET ROW ETC.). 
IS UPDATED IN THE USUAL WAY. 
BUT IS NDT INCLUDED IN SEARCH OPERATIONS. 
GENERALLY. FOR REENTRY < -PR+1 AND ALSO < -PC+1. 
PR ROWS AND PC COLUMNS ARE NOT INCLUDED IN SEARCH 
OPERA TI ON S • 

FOR REENTRY=2. THE CONTROL SWITCHE5 FOR PARAMETRIC 
ADJUSTMENT ARE ACTIVATED. AS FDLLoWS: 
FOR PARAMETRIC VARIATION OF THE RIGHT-HAND SIDE. 
THE PRDCEDURE SHOULD BE ENTERED WITH THE TRUE SHADOWPRICE 
DF THE PARAMETRIC COLUMN SAVED IN THE M+2 ND ENTRY 
IN THE (N TH) PARAMETRIC COLUMN. 
THE SHADoWPRICE ITSELF IS THEN SET AT A NEGATIVE VALUE. 
THE PARAMETRIC SEARCH WILL THEN BE MADE. BUT JUST BEFORE THE 
STEP IS ACTUALLY MADE. THE TRUE SHADOWPRICE IS RESTORED. 
AFTER EACH PRIMAL PARAMETRIC VARIATION STEP. THE STATUS
LOOP DIRECTS THE PROGRAMME TO ELEMINATE THE PARAMETRIC 
VARIABLE. 
FOR PARAMETRIC VARIATION OF THE OBJECTIVE FUNCTION. 
THE PROCEDURE SHOULD BE RE-ENTERED. WITH REENTRY-2. 
AND THE PARAMETRIC RESTRICTION ADJUSTED AS JUST VIOLATED. 
THE TRUE VALUE OF THE PARAMETRIC OBJECTIVE FUNCTION 
SHOULD TEMPORARILY BE STORED IN COLUMN N+2 OF THE PARA
METRIC ROW. 
IN THAT CASE. THE PARAMETRIC ADJUSTMENT STEP IS MADE 
AS A SEPERATE ROW-VECTOR OPERATION. ONLY THE SECOND 
(ORDINARY) STEP IS MADE BY THE MAIN STEP-MAKING 
LDOP DF THE PROCEDURE. 

THE INTEGER VARIABLES PR AND PC (PARAMETRIC ROW AND 
PARAMETRIC COLUMN) ARE NORMALLY SUPPLIED AS ZERO. 
EXCEPT WHEN THE PROCEDURE IS CALLED IN THE CONTEXT OF 
PARAMETRIC PROGRAMMING DR SENSITIVITY ANALYSIS. 
PR SHOULD BE SUPPLIED AS ONE IN THE CASE OF 
PARAMETRIC ADJUSTMENT OF THE OBJECTIVE FUNCTION. WHILE 
PC SHOULD BE SUPPLIED AS ONE IN THE CASE OF PARAMETRIC 
ADJUSTMENT OF THE RIGHT-HAND SIDE. ; 
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Pcn hPI 
TS/' COMMENT' I. T1 
I? FOR REENTRY=O THE NORMAL LP ALGORITHM IS FOLLOWED 

FROM THE START. 
INCLUDING THE FILLING OF THE NAMELISTS. 
OTHERWISE THE PROCEDURE EXPECTS AN ALREADY UPDATED TABLEAU. 

? 

THE FOLLOWING VALUES OF THE REENTRY-PARAMETER ARE 
ACCOMODATED IN THE RE-ENTRY MODE: 

REENTRY = I. 
IF THIS VALUE IS SUPPLIED. THE ALGORITHM IS ENTERED 
AGAIN. WITHOUT SPECIAL FEATURES. 

REENTRY = 2. WITH PC I. 
PARAMETRIC VARIATION OF THE RIGHT-HAND SIDE. 

REENTRY = 2. WITH PR = I. 
PARAMETRIC VARIATION OF THE OBJECTIVE FUNCTION. 

THE SIGNIFICANCE OF THE EXIT-VALUES OF THE REENTRY
PARAMETER IS THE SAME AS FOR LINP. 

pcn hPI 
TS/RETURN IN INVERSION:I.TS/'FOR' 1:=11 
R/'UNTIL' M/'UNTIL' M-PRI 
TS/ORDER:I.TI.TS/OR/. 
R/.M.I.M-PR.I.R/N./N-PC.I.R/2/2+PR/.H/2/2+PCI 
TS/PHASE I:I.TS/'FOR' II=I.R/'UNTIL' M/'UNTIL' M-PR.I 
I? 

M 'STEP' I 'UNTIL' M-3+PR+REENTRY1 
T.?'THEN'?P.E.TI.T.1FEASIBLE?I7'TH~~' 7 
TS/MAXIMIZEI/.TS/'FOR'I 
R/'UNTIL' N/'UNTIL' N-PC.I 
I? 

N 'STEP' I 'UNTIL' N-3+PC+REENTRY? 
TS/INITIALIZE SUBSTIT/.TS/'FOR' 11=1 
R/'UNTIL' M/'UNTIL' M-PR.I.P.E.TI 
I? M 'STEP' I 'UNTIL' M-3+PR+REENTRY 'DO' 
7 
TS/SEARCH FOR SMALLEST QUO WITH JTH COLUMN:I 
TS/'FOR' I:=NAV+II 
R/'UNTIL' M/'UNTIL' M-PR.I.I1 

M 'STEP' I 'UNTIL' M-3+PR+REENTRY 1 
TS/'IF' ROWLSTCIJ/.R/IOOO/N/.T2 
TC/ROWLSTCIJ < 1000/.R/IOOO/NI 
TS/TRY UPPER BOUND:I.TS/'IF' QUO> 9991 
11 'IF' QUO> 1000000000 'THEN' 'BEGI N' 

'IF' J=N 'AND' REENTRY=2 'AND' PC=I 
'THEN' 'BEGIN' 

? 

NEWLINE( I); 
WRITETEXT('('PARAMETRIC%REENTRY%PROBLEM%UNBOUNDED%%')'); 
'GOTO' UNBOUNDED; 'END'; 'END'; 

'IF' J=N 'AND' PC=I 'THEN' 'BEGIN' 
RI=TRYR; KI=COLNI=N; ROWN:=TRYN; VNBVI=QUO; 

I 'GOTO' MAKE THE STEP; 'END'; 
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TS/MAKE THE STEPI/.TI 
11 

1 

CONSULT PARAMETRIC REENTRY SWITCHES: 

'IF' REENTRY=2 'AND' COLN=N 'AND' PC=I 'THEN' 'BEGIN' 
TCM+I.KJ:=TCM+2.KJ; 
'IF' 'NOT' R=O 'THEN' 'BEGIN' 

'IF' ROWLSTCRJ=ROWN 'THEN' 'BEGIN' 
QUO: =VNBV; 
'GOTO' ADJUST RIGHTHAND SIDE AND UPPER BOUNDS COLUMN; 
'END'; 'END'; 'END'; 

'IF' REENTRY=2 'AND' ROWN=IOOO+M 'AND' PR=l 
, THEN' 'BEG IN' 

TCM.N+IJ:=T[M.N+2J; 
'FOW JI=I 'STEP' 1 'UNTIL' K-I. K+I 'STEP' 1 'UNTIL' N+I 
'DO' T[M+I.JJ:=T[M+I.JJ-T[M.JJ*TCM+l.KJ/T[M.KJ; 
REENTRY:=l; 
TCM+l.KJ := -0.0000001; 'GOTO' PHASE U 'END'; 

TS/CONSIDER ONE COLUMN UPDATE:/ 
11 CONSIDER RH ONLY UPDATE: 

1 

'IF' REENTRY=2 'AND' PC=l 'AND' 'NOT' R=O 'THEN' 'BEGIN' 
'IF' ROWN=ROWLST[RJ 'THEN' 'BEGIN' 

TIR.N+2J:=TIR.N+2J-T[R.N+lJ; 
TIR.N+lJ:=-O.OOOOOOI; 
REENTRY: = 1 ; 
'GOTO' PHASE H 'END'; 'END'; 

TS/CHECK FOR STATUS:/.Tl 
11 'IF' COLN=N 'AND' PC=I 'THEN' 'BEGIN' 

FEASIBLE := 'FALSE'; 
TIR,N+lJ:=-O.OOOOOl.O.OOOOOl; 'END'; 

'IF' PC=l 'AND' ROWN=N 'THEN' 'BEGIN' 
REENTRY:=O; 'GOTO' END OF SIMP; 'END'; 

1 
TC/END OF LINP;/.R/LINP/SIMP/ 
TS/ORDER FOR EXIT:/.TS/ORDL(/ 
11 'IF' PR=I 'OR' 'NOT' COLLSTINJ=N 'THEN' 
1 
R/l//.T1 
11 'ELSE' ORDL(T.M.N-PC.2.2+PC.ROWLST.COLLST); 
1 
TS/END OF LINP/.R/LINP/SIMP/ 
TE.E 
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CHAPTER XIV 

TOPOLOGY OF FEASIBLE SPACE AREAS AND ITS RELATION TO 
DEFINITENESS 

14.1 The mathematical programming problem 

The theory of mathematical programming is traditionally stated 
in terms of inequalities. In fact, mixed nonlinear systems with 
some of the restrictions being linear equations do not give rise 
to more (extra) complications than those that were discussed in 
Chapter X with respect to linear programming. However, to avoid 
unnecessary complications at the level of theory, I shall follow 
the tradition, and introduce mixed systems of equations and 
inequalities only at a later stage in an applied context. 

We state a general (possibly non-linear) mathematical 
programming problem as follows: 

Maximise 

T = T (x) 

Subject to 

f. 
1 

(x) > 0 

(i = 1,2 m) 

(14.1.1) 

(14.1.2) 

Although formulated in a particular way, with the inequality 
sign in the> direction and a zero on the right-hand side, 
(14.1.2) is In fact quite generally an inequality. Any inequality 
can be put in that form. 

For example 

can be re-written as 

and in that form the restriction conforms (14.1.2). 

The definition of a function (and hence of a mathematical 
programming problem) does not require continuity, but we will 
normally assume that both the objective function T and the 
restricting functions fi are continuous and differentiable. 
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Just as in linear programming, it ~s conventional to add the 
non-negativity restriction 

x > 0 (14.1.3) 

i.e. to assume that all specified variables are restricted to 
non-negative values. 

14.2 Convex and non-convex problems 

Some, but not all programming problems are specially complicated 
because they are non-convex. 

That term refers to, for example the shape of a lens used in a 
pair of spectacles. If the lens is thin at the edge and thick 
in the middle, it is a convex lens, if it is thick at the edge 
and thin in the middle it is a concave lens. (See graph l4.2a) 

graph 14.2 a 
8 convex area. 

The term convex restriction includes the ordinary linear 
inequality i.e. a flat surface. We already gave some formal 
definitions in section 6.5 which are therefore not repeated 
here. Note that we may speak of an anti-convex restriction 
(= curved away from the feasible space area), but of a non-convex 
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area, which may have any shape provided it is not convex. 

Non-convexity is a serious complication mainly because it may 
give rise to a number of local maxima rather than to a single 
optimum. 

Example 

Maximise 

Subject to 

T = 2x l + 3x2 

2xl ~ (x2 - 2)2 -1 

(xl' x 2 ~ 0) 

(See also graph l4.2b). 

2.'> 

\ 
\ 2.0 

\ 
\ 

\ 

1. 

-0.5 

-0.5 

TX, 
graph 14.2 b 
a non-convex problem 
with two loca~ solutions. 

\.5 2.0 2.5 
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In this problem, there are two local maxima, one at xl = 1.5, 
x2 = 0, and one at Xl = 0, x2 = 1. They are in this case of 
equal value, 2xl = 2 * 1.5 = 3 and 3x2 = 3 * 1 = 3. But this 
can only be established by identifying both of them in the first 
place. And that's precisely the problem. With a large number of 
restrictions there could be a large number of local solutions 
and one might be forced to calculate the values of the variables 
for each one of them. 

In a convex problem on the other hand, it is enough to establish 
the fact that every movement away from a particular point leads 
to a reduction of the value of the objective function. 

Not surprisingly, most (but not all) operationally effective 
mathematical programming algorithms, refer to convex systems. 
The same problem i.e. a motley collection of local maxima, may 
also arise as a result of the specification of the objective 
function. 

Example 

Maximise 

Subject to 

- Xl • x 2 

Xl + x 2 - 10 > ° 
(Xl' x 2 > 0) 

Here the shape of the feasible space is still just convex 
(the surface is linear), but there are nevertheless two local 
maxima Xl = 10, x2 = ° and Xl = 0, x2 = 10. 

We will indicate such an objective function also as non-convex. 
We will now survey the problem of convexity versus non-convexity, 
i.e. state some definitions, theorems etc., and generally analyze 
the implications of various properties of restricting functions 
and objective functions. 

A function f(~) may be indicated as properly convex, if and only if 

f(p . x* + (l-p). ~**) ~ p . f(~*) + (l-p). f(~**) (14.2.1) 

is true for all x* and ~**, and (their non-negative linear 
combinations i. e-:-) for 

° ~ p.::.1 (14.2.2) 

If the strict inequality 

f(p . x* + (l-p) ~**) > p. f(x*) + (l-p) f(~**) (14.2.3) 
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applies for 0 < p < 1, we might indicate the function as 
properly and strictly convex. 
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The obvious example of a properly convex function which is not 
strictly convex, is an ordinary linear function. However, a 
function which is a linear in some segments but curved or kinked 
at other points can also be convex, and not properly and strictly 
convex. 

If the inequality signs in (14.2.1) and (14.2.3) are in the 
reverse direction i.e. < and <, the function is properly 
anticonvex (for the < case), or properly and strictly 
anticonvex (for the < case). 

For restricting functions and objective functions the weaker 
properties of peripheral and directional convexity* are relevant, 
and are satisfied by a wider group of functions. 

These weaker properties were the reason for naming the stronger 
property of "proper" convexity as "proper'" in the first place. 
Unless otherwise stated the term "convex" will in the rest of 
this book be understood as meaning "properly" convex. 

We now give some definitions 

A restriction is peripherally convex 

if and only if 

f(x*) .:. 0 ) 
f (x**).:. 0 ) 

(14.2.4) 

(i.e. the points x* and x** 
implies that a no~-negatIve 
the same restriction 

both satisfying the restriction), 
linear combination also satisfies 

* The terms "peripheral" and "directional" convexity are used here, 
but they are not conventional terms. It was felt that these 
terms convey their meaning even without exact definition, and 
for that reason they will be used in this book. To the extent 
that there is a tradition, the term quasi-convex (which is the 
same as directionally convex) is the more conventional one. 
Note, that not all peripherally convex restrictions are 
associated with a directionally convex restricting function. 
Contra-examples with submerged islands cannot be excluded. 
For reference see Mangasarin [27] Ch.9, as well as 
Ponstein [30] • 
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If x* and x** satisfy (14.2.lt), then 

f(p ~* + (1 - p) ~**).::.. 0 ) 
) 

is also true for 
) 

) (14.2.5) 
) 

o < p 2. 1 

(the set of vectors satisfying f(~) ~ 0 is a convex set). 

For a peripherally convex restriction, the line which marks the 
restriction (the periphery of the set of points which satisfy 
it), is flat or curved towards the inside of the feasible space 
area, but the function does not satisfy the definition of a 
(properly) convex function. 

The terms peripheral and directional convexity often occur in 
association with a specified domain. 

The term domain means also satisfying other restrictions as 
specified. For example, xl • x2 ~ 6 is peripherally convex in 
the xl' x2 ~ 0 domain. The function y = xl • x2 - 6 is not 
properly convex, and neither is xl • x2 .::.. 6 convex for all 

values of xl and x2. That restriction is satisfied for 
xl = x2 = -4. and for xl = x2 = 4, but not for xl = x2 = o. 
That, even within the xl' x2 ~ 0 domain, the restricting 
function is not properly convex, is illustrated as follows: 

For xl = x2 = 1, we find 

f (x, , x2 ) = f(l, 1) = 1 x 1 - 6 - 5, ... 

and for xl = x2 = 3, we find 

f(x l , x2 ) = f (3, 3) = 3 x 3 - 6 = 3 

The function value of the average of the two vectors 

f(x l x2) = f(2, 2) = 2 x 2 - 6 = - 2 

is less than the average of the two function values which is - 1. 
The function is therefore shown to be not properly convex. Yet 
the shape of the hyperbola xl • x2 > 6 is neatly convex. And if 
we perform the same calculation on the half-way linear 
combination of 

f(l, 6) 1)(6-6 o 
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and 

f(x l , x2) = f(6, 1) = 6 - 1 - 6 = O. 

i.e. two points on the periphery, the result is a confirmation 
of the convexity property. 

This half-way combination is 

f(x l , x 2) = f(3.5,3.5) = 3.5 x 3.5 - 6 = 6.25 

which is well above the average of the two function values. 

The concept of peripheral convexity is relevant, mainly for 
functions which define restrictions. 

For objective functions the stronger property of directional 
convexity is more relevant. 

A function f(x) is directionally convex (some domain) 
if and only if 

f(~**) > A 
(14.2.6) 

implies (for all A, ~ being in the specified domain, if one is 
specified), that for 0 ~ p ~ 1, we find 

f(p . x* + (1 - p) . ~** ) > A (14.2.7) 

(The set of vectors satisfying f(~) > A is convex). 

To make the difference quite clear, we give an example of a 
function which is peripherally convex, but not directionally 
convex. 

We define f(x l , x2) as follows: 

f(x l , x2) - 1, if xl + x 2 > 5 

f(x l , x2) 1, if xl < 2 and x2 < 2 

and 

f(x l , x2) = 10, in all other cases. 
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Thus, the restriction f(Xl, x2) ~ 0 is convex, but f(xl' x2) ~ 5 
is not convex. The square in the bottom lefthand side of graph 
l4.2d makes a dent in the restriction f(x l , x2) ~ 5. This 
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1 ~ 
I 

graph 14.2 C 
illustration of 
peripheral convexity. 

graph 14.2 d 
illustration of peripheral 
convexity, not associated 
with directional convexity. 
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non-convex "island" does not invalidate the peripheral 
convexity of f(xl' X2) ~ 0 as peripheral convexity is defined 
in terms of f(xl, x2) ~ o. (See also graph l4.2d). 

Directional convexity is thus a stronger property than 
peripheral convexity, 

Theorem 

Let f(~) be a continuous and directionally convex function. 

Then (even if f(x) is not properly convex), there exists a 
properly convex function g(x), which gives a similar ordering 
of the valuation of all possible vectors~, as does f(~), i.e. 

g(~**) ~ g(~*) 

if and only if 

f(~**) ~ f(~*) 

and the same for the >, < and < signs. 

Substitute of a proof 

Consider a series of level curves f(~) = A for various values 
of A, say A = - 100 to A = 100, calibrated at suitable small 
intervals e.g. A = - 100, A = - 99,99 etc., with increments 
of initially 0.01 between two curves. 

Take some vectors x* and x** and a number p in the interval 
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o < p < 1. We will-indicate the higher (not lower) valued of the 
tw; ve~tors as ~**, the other as ~*, i.e. assume 

(14.2.8) 

For p = 0 and p = 1 the proper convexity property (14.2.1) is 
trivial but satisfied irrespective of the shape of the function. 
We can therefore limit our investigations to the interval 

o < p < 1 (14.2.9) 

For f(x**) f(x*) the property of proper convexity is implied 
by the-property-of directional convexity, hence we can limit our 
investigation to 

f(x**) > f(~*) (14.2.10) 
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A positive linear combination of x** and x* can logically 
satisfy one and only one of the following-relations: 

either 

a) f(p x* + (1 - p) • ~**) < 

or 

b) f(p . x* + (1 - p) . ~**) f(~*) 

or 

c) f(~*) < f(p . x* + (1 - p) . ~**) < f(~**) 

or else 

d) f(~**) ~ f(p . ~* + (1 - p) . ~**) 

Case a) contradicts the assumption of directional convexity, 
and must be assumed not to arise. 

We may illustrate this point by drawing some level curves for 
a non-convex function, e.g. (see graph l4.2e) 

f(x l , x 2) = - xl • x 2 

The point 

x** = 5, 0.2 1S on the - xl • x 2 = - 1 level curve, and 

~* = 1, 2 is on the - Xl x 2 = - 2 level curve. Both 

points are marked 0 in the graph. 

Linear combinations of these two points are on the "wrong" 
side of the - Xl • x2 = - 2 level curve i.e. at points where 
- xl' x2 is less than this proves that the set of points 
satisfying - x • x 2 ~ - 2, is not a convex set. 

Therefore, f(x l , x 2) = - Xl • x 2 1S not a directionally convex 
function. 

End of illustration. 

Exi t case a) 
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6 

graph 14.2 e 
a non-convex curve 
crosses a link with 
a more outward one. 

-2 

2 

329 

5 6 



330 CHAPTER XIV 

Case b) does not directly contradict the definition of convexity, 
although it contradicts the definition of strict convexity. It 
is however a property of convex sets (strictly convex or not) 
that a linear combination of some points in the set, including 
a non-zero contribution of an interior* point, is an interior 
point. 

By assumption the set of points satisfying f(x) > f(x*) is 
convex and x = x** is an interior point of that set.-Therefore 
case b) contradicts the assumed directional convexity. 

Exit case b) 

Case d) would indicate that, at that particular point, f(~) 
itself satisfies the property of convexity as defined in 
(14.2.1). It does not require further examination. 

Exit case d). 

We now concentrate on case c) where the straight line between 
x* and x** does not cross either of the two level-curves. 

We denote the indicator of the relative valuation of the two 
vectors as q. i.e. q is the number which fits 

f(p . x* + (1 - p) ~**) q . f(~*) + (1 - q) • f(x**) 
(14-:-2.11) 

Should 

q ~ p (14.2.12) 

be true, there is no problem as proper convexity is not 
contradicted, at this point for f(~) itself. 

For q < p we re-define the function, i.e. we now define a new 
function g(x). 

and 

* No 

g(~) = (1 -~) . f(p . ~* + (1 - p) ~**) 
p 

+ ~ • f (x) 
p 

if f(~) < f(p . x* + (1 - p) ~**) 

g(~) 
(1 _ 1-q) f(p x* + (1 - p) ~**) 

1-q 
= . . + -1- f (x) 1-p - -p 

if f(~) > f(p x* + (1 - p) ~**) (14.2.13) 

proof of this point is offered 
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We may assume that this transformation ~s in first instance 
performed with the vectors x* and x** and the number p and q, 
for which the lowest ratio q/p occ~rs. The transformation leaves 
the shape and the ordering of all the level curves intact. 

It is kinked at the level-curve through x = p . x* + (1 - p) x*. 
There the function values of g(x) and f(x) are the same, but the 
differences from this value are-scaled. -

The scale-factor is ~ for values below f(p 
p 

x* + (1 - p) . x**) 

l-q 
and -1-- for higher values of the function. 

-p 

The corresponding "backward" transformation is 

and 

f(x) = ( 1 - E) . g(p . x* 
q 

+ (1 - p) . x**) + E 
q 

if 
g (~) < g (p • x* + (1 - p) x'"* ) 

l-p 
f (x) = (1 - -) . g (p . 

l-q 

if 

l-p 
x* + (1 - p) • x**)+ 

l-q 

g(~) > g(p . x* + (1 - p) . x**) 
(14.2.14) 

Substitution of the equivalent value in g(x) for f(~), f(~*) and 
f (x*"'), according to the backward transformation is now used to 
express the linear combination in g(x). Application of (14.2.14) 
to all three terms of (14.2.11) yields: 

g (p x* + (1 - p) ~**) 

q (1 E) g (p x* 
q 

+ (1 - p) ~**) + p g(~*) 

+ (1 - q) ( 1 _ l-p) g(p x* + (1 - p) x**) + (1 - p) 
l-q -

g (~**) p g(~"') + (1 - p) . g(x*"') 
- (14.2.15) 

The transformation "blows up" differences in function value below 
the kink, and reduces differences above the kink. 
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Example 

Suppose it is desired to re-name a mid-point to being 60% from 
the lowest point and 40% from the highest point, we simply 
adjust the marker points. Starting with f(x*) = 0.0, f(x**) 1.0, 
f(0.6 x* + 0.4 x**) = 0.5, - -

f (x*) 
I 

0.0 0.1 0.2 0.3 

re-scale by 0.5/0.6 

~o.~ + 
r 
I 

0.4 0.5 

0.4~*~ 

0.6 0.7 0.8 0.9 

re-scale by 0.5/0.4 

f(x**) 
T 

1.0 

L. __ -4 ____ L-__ ~ __ ~ __ ~ __ _L ____ ~L_ ____ ~ ____ ~ ____ ~ 

new scale: 

g'(~*) 
I 

-0.1 0.0 o. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

g(~**) 
I 

0.9 

To comply with the mid-point as point of common reference (at 
the kink), i.e. 

f(0.6 x* + 0.4 ~**) = g(0.6 ~* + 0.4 ~**) = 0.5, 

it is necessary to change all other marker points. 

Thus f(~*) is 0.0, but g(~*) becomes -0.1. 

Relative differences for other points are affected in the same 
systematic way. For example, the evaluation of the point x z 
is assumed to be f(~) = 0.78. With P = 0.6, q = 0.5 and 
f(0.6 x* + 0.4 x**) = 0.5, g(z) becomes (apply (14.2.13), 
second-part) -

g(~) = ( 1 - g:~). 0.22 + g:~ . 0.78 0.73 

End of Example. 

Generally, the transformation does not create new violations of 
(14.2.1), but on the contrary makes-rhat condition easier to 
satisfy for other linear combinations than just the one to which 
it was written. Should any violations be left, the procedure can 
be repeated. 



TOPOLOGY OF FEASIBLE SPACE AREAS 

End of proof-substitute 

We now refer back to our illustration of peripheral convexity 
earlier in the chapter. Clearly we can replace a peripherally 
convex function by a directionally convex function with the 
same level curve f(x) = o. One simply erases any non-convex 
islands which may exist at other levels than the critical value 
of zero. 

Therefore our theorem has the following 

Corollary 

If f(x) > 0 is peripherally convex, then, even if f(x) is not 
properlY-convex (not even directionally convex), there exists 
an equivalent restriction g(x) > 0, where g(x) is properly 
convex. The generalisation of these theorems-to proper and 
strict convexity will be obvious. 

Ordinary algebraic restrictions don't normally satisfy the 
definition of peripheral convexity for all values of x, but 

333 

there are restrictions which are peripherally convex In a 
specified domain, and an often-specified domain is the x > 0 
domain. In practice, with continuous and differentiable
functions expressed in neat algebraic formulae, it is often 
possible, (but not so often advantageous) to perform the 
transformation needed to turn directional or peripheral convexity 
into proper convexity, by an algebraic reformulation. Thus 
f(x,y) = x y is directionally convex in the x, y > 0 domain, 
while log f = log x + log y is properly convex and gives the same 
ordering. A further consequence of the theorems in this section 
is the following: 

A mathematical programming problem in which the objective 
function is directionally convex and the restrictions 
peripherally convex, can be reformulated, and in the reformulated 
problem, which has the same solution, the objective function as 
well as the restricting functions will be properly convex. 
Whether a restricting function is properly convex, or only 
peripherally convex, is a matter of putting the restriction in 
a particular form. It makes no difference to the set of vectors 
satisfied by the restriction. Similarly, a directionally convex 
objective function gives the same ranking of all solution vectors, 
as a corresponding properly convex one. If a mathematical 
programming problem is characterized by a properly convex 
objective function and properly convex restricting functions, 
we call such a problem a properly convex problem. If the 
objective function is directionally convex and/or - one or more 
of the restricting functions peripherally convex (the rest 
being properly convex). we speak of a quasi-convex problem. 
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Exercise 14.2 (convexity) 

The following restrictions on xl and 

2 
+ X 2 > 16 

x 2 are listed: 

(xl + 1)(x2 + 1) > 10; (xl + 1)(x2 + 1) .::.-10 

.:: 10; (x + 1) (x2 - 1) < -10 
1 -

CHAPTER XIV 

(1; 2) 

(3; 4) 

(5; 6) 

(7; 9) 

Each of these restrictions is considered in isolation from the 
others, i.e. each defines its own set of pairs xl' x 2 which 
satisfy the restriction in question. 

Which of these sets is 

a) properly convex by its restricting function? 

b) quasi (peripherally) convex within the xl' x 2 > 0 domain, 
without being properly convex? 

Which of the corresponding restricting function is 

c) anti-convex 

Write each of the restrictions in the conventional form of 
(xl' x 2 ) 2:.. o. 

Hint: Make use of graphical analysis. 

* * ** ** (xl' x 2 ) = p(x l , x 2 ) + (1-p) (xl' x 2 ) is the line which joins 

* * ** ** 
(xl' x 2) and (xl' x 2 ). 

14.3 Tangential subspaces 

Consider a functional relationship 

(14.3.1) 

Assuming that f(~) is continuous and differentiable, we may 
determine for any x x* the vector of first-order differentials 

v if (x*) ax - (14.3.2) 

'~a4d~q~ JO pua 4~ 8-S ~oJ sqd~~~ 
~ pu~ £'2 s~u :(~ ~ssauA4dllia JO 4unO~~E uo A4~1~~A~~4 

Ul 9 OSl E '8 pu~ S s~u :(q ~~ pu~ £'1 s~u :(~ 2'~1 dlaq-~a~suv 
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For the same particular vector x 
the inner product 

c = v'x* 

We will indicate the relation 

v'x = c = v'x* 

x* we may also determine 

(14.3.3) 

(14.3.4) 

as a tangential approximation of f(x) = o. 

The linear approximation may be different for different points 
on the graph of f(x) = O. We therefore say that (14.3.4) 
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gives the tangential approximation f(x) = 0 at the point x x*. 

Example (See also graph l4.3a) 

2 
f(x l , x 2 ) = xl + !x2 - 5 = 0 

This functional relation is satisfied by 

At that point, the first-order derivatives are 

)( 2 1 

From (14.3.3) we evaluate the constant as 

c = 1 . xl + 1 . x 2 = 4 + 2 = 6 

and the linear approximation is found to be 

There are other tangential approximations of the same function. 

For example 

f(x l , x 2) = xl + !x2
2 - 5 = 0 

1S also satisfied by xl 1 • 4. 
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At that point, the same procedure results in a different 
tangential approximation, as follows 

af 1 = aXl 

af I = x 4 2 = 2x2 aX2 

Apply (14.3.4), to find the constant 

c = 1 . xl + 2 . x2 = 1 + 4 x 2 9 

and the tangential approximation at xII, x2 = 4 is found to 
be xl + 2 x 2 = 9. 

Before formulating theorems and proofs concerning linear 
approximations, we introduce a related concept. 

A linear inequality restriction 

v' x > c (14.3.5) 

is said to be the tangential approximation (at the point 
x = ~*), of 

f(~) > 0 (14.3.6) 

If x = x* satisfies the binding form of (14.3.5), i.e. the 
tangential approximation 

v' x c (14.3.7) 

as well as (14.3.6) the restriction itself. If the set of points 
which satisfies the tangential approximation of a restriction 
includes the set of points satisfied by the restriction itself 
we also refer to it as a tangential equivalent. 

In graph l4.3a., which illustrates the tangential approximation 
of xl + !X22 - 5 ~ 0, both sets are in the left-hand bottom 
side of the equation-lines, and the strictly convex set 
xl + !x22 - 5 ~ a just touches xl + X2 = 6. Thus xl + x2 ~ 6 
is the tangential equivalent of xl + iX22 - 5 ~ 0, at the 
point xl = 4, x2 = 2. Just as the tangential approximations, the 
corresponding tangential equivalents may be different for 
different points of the periphery of the restriction. 

At xl = 1, x2 = 4, the tangential equivalent is xl + 2x2 < 9. 
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graph 14.3 a 
a quadratic function 
with two tangentiaL 
approximations to it. 

o ~----~------~----~ o 2 3 6 7 
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Theorem 

Let 
the set of vectorpoints satisfying; 

(14.3.6) 

be a convex set, f (~) being continuous and differentiable. 

Then 
every finite boundary point of that set is also an outward 
point. 

Proof 

We may, without loss of generality assume that f(x) is properly 
convex. (See the previous section) 

Now consider the function 

(14.3.8) 

where v'is a finite vector and A a finite positive number. 

The necessary first-order conditions for a maximum of z(~) are 

~ = - v' + ax - Alf = 0 ax (14.3.9) 

For a convex function the necessary first-order conditions are 
also sufficient for a maximum. This is true, even if f(~) itself 
does not have a finite maximum. 

But clearly these conditions are satisfied by any linear 
approximation, with A = 1. (Just compare (14.3.2) with (14.3.9». 

This shows that, for 

v' af 
(_x*) ax 

z(x) = - ~' ~ + f(~) 

attains a maximum value at x 

i. e. 

x*. 

- v' x + f(x) < - v' x* + f(x*) 

is true for all ~. 

(14.3.10) 

(14.3.11) 

(14.3.12) 
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But f(x*) is zero, because that is the definition of a boundary 
point.-Therefore (14.3.12) reduces to 

- ~'~ + f(~) < - v'x* (14.3.13) 

From (13.3.13) we immediately infer that, because of the non
negativity of f(~), 

- v' x < - v' x* (14.3.14) 

is true for all x which satisfy 

(14.3.5) 

This is the definition of an outward point with - v' as the 
direction to be maximized ~.e. x x* is an outward point. 
q.e.d. 

Furthermore, comparing (14.3.14) with (14.3.6), it is clear 
that we have the following 

Corollary (also assuming differentiability) 

The tangential approximation of a convex restriction - based on 
a differentiable restricting function - gives the tangential 
equivalent, at the point of approximation. This is so at each 
point where the restriction is binding and a tangential 
approximation is taken. (A tangential approximation of a convex 
restriction is satisfied by each vector point which satisfies 
the original restriction, and is a tangential equivalent.) 

Furthermore, it may be observed that if T(X) is a convex 
function, -T(X) is an anti-convex function: this follows simply 
from changing-the signs in the definitions of (anti) convexity. 
From thls we have the further 

corollary 

A tangential approximation of an anti-convex restriction ~s 
violated by each vector-point that violates the original 
restriction. 

14.4 Extrema and convexity properties of quadratic fUIlctions 

A quadratic vector function of n variables may be specified as: 

¢(x) = ¢ + a' x + x' B x 
- 0 - -- - - (14.4.1) 

Here, ~ is an n-dimensional vector, the elements of which are 
the arguments of the function. 
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The n-dimensional row-vector a' indicates the linear 
component of the function. For ~ = 0 the function-value 
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becomes cp = cp , hence the constant cp indicates the function-
value at the ~oint of x = o. 0 

The matrix B is square (of order n by n), and is assumed to be 
known. An expression like x' B x is named a quadratic form. 
The quadratic form x' B x gives-the quadratic component of the 
function, the two other terms, CPo + a' x constitute the linear 
component. (See also section 2.11) 

Example 

leads 

2 
cp = (xl - 3) + 

36 - 6 x -
1 

to 

cp = 36 and a' = 
o 

(x2 - 5)2 (2 xl 
2 

+ - x ) 
2 

10 x 2 + 5 
2 2 

xl + 2x2 - 4 xl x 2 

[-6 -lOJ 

Unless a further condition is imposed, the matrix B is not 
fully determined by the function. 

We could write it as 

I 5 
B , or as B l-4 

or as any linear combination of these two matrices. 

This is because a quadratic form is its own transpose 

x' B x = x' B' x 

Unless the associated matrix contains other information which 
requires a non-symmetric presentation, a quadratic form is 
conventionally presented in symmetric form. 

We may, in effect take the average of the two presentations 
offered. 

This convention determines the quadratic form in the example as 

B = r 5 -2l 
1-2 2J 
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The existence of extrema and the convexity of quadratic 
functions is to a considerable extent determined by the 
properties of the matrix B. 

In this connection the term definiteness occurs. We distinguish 
positive definite, positive semidefinite, indefinite, negative 
semidefinite, and negative definite matrices. 

The definitions of these terms are 

positive definite: x'Bx > 0, for all x " 0. 

positive x'Bx > 0, for all x. semi -defini te: 

indefinite: x'Bx < 0, for some x, but also 
x'Bx> 0, for some 'Other x. 

negative 
x'Bx S- 0, for all x. semi-definite: 

negative definite: x'Bx < 0, for all 
x " 

0. 

The definiteness of a square matrix (which by convention is 
assumed to be a symmetric matrix) is in its turn determined 
by the determinantal equation (normally referred to as the 
characteristic equation) 

IB-lAl =0. (14.4.2) 

In view of the definition of singularity, the requirement 
(14.4.2) implies, for some non-zero vector v , the equivalent 
definition of singularity. 

Bv = Av. (14.4.3) 

Equation (14.4.2) is called the characteristic equation, the 
vector v, associated in (14.4.3) with any particular root, 
is the corresponding characteristic vector, the number A itself 
is also known as a latent root or eigenvalue of the matrix. 

For a symmetric matrix all the roots of the characteristic 
equation are equal. 

Readers who are not familia~with the arithmatic of complex 
numbers may wish to take this statement on trust, and only 
refer to the example below instead, but a proof is here 
provided for the benefit of those who are. 
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*For further referer,e (in climbing order of algebraic sophisti
cation) see: Theil [33], Chapter 1, Hohn (21], Chapter 10, and 
Parlett [29] 
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Proof 

Lennna 

If a + Si is a root, a - Si is also a root, and the corresponding 
characteristic vectors may be required to be v + u i where v 
and u are real vectors, i = I=i (i.e. to consist also of pairs 
of complex numbers). 

(e 
Pro'of (of the lennna) 

Suppose 

B (~ + u i) (v + u i)(a + Si) va - uS + (~S + ua) i. 
(14.4.4) 

We must then assume the real and the irrational parts in 
(14.4.4) to balance separately, i.e.: 

Bv ~a - ~S, as well as 

Bu i (vB + ~a) i (and obviously Bu = vS + ~a). 

Upon taking the difference rather than the sum of the real 
and the irrational parts of (14.4.4), we obtain 

B(v - ~i) (v - ~i)(a - Si) = va 

q.e.d. (for the lemma). 

uS - (~S + ua) i 
-(14.4.5) 

(This lennna applies to all square matrices, not just to 
synnnetric matrices). 

However, for a synnnetric matrix, transposition of (14.4.5) yields 

(~. -~' i) B = (a - S i) (~' - ~'i). (14.4.6) 

Therefore, pre-multiplication of (14.4.4) by ~' - ~'i yields: 

(~' - u' i) B(~ + ~i) v'Bv + u'Bu (~'~ + u'u)(a + ~i). 
-- (14.4.7) 

In (14.4.7) the expression in the middle, v'Bv + u'Bu, is real, 
therefore the righthand side expression (~T~ + ~'~)(a + Bi) 
must also be real. 
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We must also exclude v'v + u'u = 0; v = 0, u = 0 would imply 
that a + Bi was not req~ired to be a-root, (14.4.4) becoming 
trivial. Therefore, we must assume B = 0 for the righthand side 
to be real. 
q.e.d. (for the theorem itself). 

Note 

On casual reading of this proof, it may not be immediately 
obvious where the symmetry enters the proof. 

This is in fact the transposition from (14.4.5) to (14.4.6): 
the transposition symbol for B itself has been omitted, writing 
B instead of B'. 

Example (of the characteristic equation and the real roots 
theorem) 

B 

The characteristic equation therefore is: 

1

5-)" 

-2 
-21 = (5-)..) (1-)..) -4 

1-)" 

This equation solves as 

6 ± 136 - 4 

2 
3 ± 18, 

both roots being of necessity real. 

Once we solve the roots of the characteristic equation, we have 
no difficulty in identifying the definiteness of the matrix. 

The following rules apply: 

Positive definite matrices have only positive roots. 
(x'Bx > 0 for all x # 0 if and only if Bv = ~).., v # 0 implies 
)..-> o.) 

Positive semi-definite matrices have only non-negative roots. 
(x'Bx > 0 for all x if and only if Bv ~).., v # 0 implies 
)..-> 0.) 

O. 
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Indefinite matrices have both positive roots and negative roots. 
(~' Bx > ° for some ~, and ~'By < ° for some y, if and only if 

Bv AV, for A>O, v l' 0, and also 
Bu y~for y<O,u1'O.) 

Negative semi-definite matrices have only non-positive roots 
(~'B~~ ° for all x if and only if 

Bv implies A .::. 0). 

Negative definite matrices have only negative roots (~'B~'::' 0 
for all x l' 0 if and only if 

Bv A~, ~ l' 0 implies A < 0). 

(Proofs of these rules follow from evaluation of the appropriate 
expressions v'Bv = AV'V, and a systematic analysis of the 
confirmations and contradictions of the various definiteness 
properties which they imply). 

Examples 

I 5 -~ has the roots 3 + rs > ° and 3 - 18 > 0 l-2 IJ 
and ~s therefore positive definite both roots being positive 

(the quadratic form [xl x21 

may also be written as x 1
2 + (2x l - x 2)2, confirming its 

positive definiteness.) 

[ 3 -2J 
-2 1 

characteristic equation 

I 3-A 

-2 
-2 I 

I-A 

4 ± 116 + 4 
2 

(3-A) (I-A) -4 

2 ± /5 

2 
A -4A + 3 - 4 

2 A -4A -1 o. 
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2 + /5 > 0, 2 - Is < 0, the matrix is therefore indefinite, 
one root being positive, one root being negative. 
(N.B.: A different method of recognising definiteness will be 
discussed in the next section). 

Theorem 

A quadratic function ~(~) = ~ + a'x + x'Bx 
o 

is strictly convex if and only if B is negative definite. 

Proof 

The definition of strict convexity, expressed for a quadratic 
function by substitution of the right hand side of (14.4.1) 
into (14.2.3) is: 

~ + a' (px* + (l-p) ~**) 
o - -

+ (p~* + (l-p) ~**)'B(p~* + (l-p)~**) > 

p(~ + a'x* + x*'Bx*) + (1-p) (~ + a'x*'~ + _x**'B_x**) o 0 --

(14.4.8) 

to be true for all x* ~ ~**, p in the interval 0 < p < 1. 

(In (14.4.8) the linear terms cancel immediately, leaving the 
equivalent condition 

(p~* + (l-p) ~**'B (p~* + (l-p)~**) > 

p~*' B~ + (l-p) x**' Bx** (14.4.9) 

(for all x* ~ ~**, p in the interval 0 < p < 1) 

working out (14.4.9) we obtain 

p2~*'B~* + 2p(1-p) x*'Bx** + (1_p)2 x**'Bx** > 

p~*'B~* + (l-p) x**'Bx**. 

or equivalently 

p(p-l) ~*'B~* - 2p(p-I)~*'B~** + p(p-l) x**'Bx** > 0 

or equivalently 

p(l-p)(~* - ~**) 'B (~*-~**» 0 (14.4.10) 

(for all x* ~ ~**, p in the interval 0 < p < 1). 
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In view of the condition on p, the factor p(l-p) is positive, 
and we end up with the definition of strict convexity being 
equivalent to the negative definiteness of B. 
q.e.d. 

Theorem 

A quadratic function 

cP + a'x + x'Bx 
o 

attains a unique maximum if and only if B ~s negative definite. 

Proof 

Assume the existence of a maximum, therefore, for some 
vector x = x* (which mayor may not be the unique maximum) 
the necessary first order conditions 

l<t 
dX a + 2Bx o (14.4.11) 

are satisfied. 

Substitution of -2B~* for a in the function expression (14.4.1) 
permits us to express the quadratic function as 

cP (x) = CPo - 2x*'Bx + x'Bx 

cp - 2x*'Bx* - 2x"<' B (~ - ~*) + x'Bx 
0 

= cp - x*'Bx* + 
0 

(~ - ~*)'B(~ - ~*) (14.4.12) 

Once a first-order solution to (14.4.11) is shown to exist, 
(14.4.12) proves that, if the first-order solution corresponds 
to a unique maximum, B must be assumea co be negative definite 
(i.e. the quadratic form (x - x*) 'B (x - x*) to be negative 
for a 11 ~ - ~* of o. -

Conversely if B is negative definite, all its roots are negative, 
therefore none is zero and a unique solution to the first-order 
conditions (14.4.12) illay be found by inversion of B. 

Once the expression (14.4.12) exists, it also proves that 
negative definiteness of B implies the existence of a unique 
max~mum, with x x* being the point where it is obtained. 
q.e.d. 
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The two theorems together imply that all three of the following 
statements are equivalent: 

1) A unique maximum exists; 
2) The function is strictly convex; 

and 
3) B is negative definite. 

The similar set of statements concerning the existence of a 
unique minimum of a strictly anti-convex function, i.e. the 
equivalence between the statements: 

1) A unique minimum exists; 
2) The function is strictly anti-convex; 

and 
3) B is positive definite, 
will be obvious. 

Note, however, that a more complex situation arises in the 
case of semi-definiteness. 

Of the two main theorems discussed in this section, the one 
on convexity permits immediate generalization to the semi
definite case. 

A quadratic function, ~(x) = ~ + a'x + x'Bx is (properly) 
- 0 -- --

convex if and only if B is negative semi-definite. 

(The proof is analageous to the strictly convex/negative 
definite case, and the reader is invited to go through this 
proof again, and to change, where appropriate, > signs into 
> signs, < signs into < signs, the words "strictly convex" 
to "convex" and "definite" to "semidefinite".) 

The generalization of the other theorem on the existence of a 
maximum is, however, slightly different: 

A quadratic function, ~(x) = ~o + a'x + x'Bx attains a maximum 
only if B is negative semi-definite.-

Not only has the word "unique" disappeared and the word "semi" 
appeared, but the words "if and" have disappeared as well; 
there is no longer full equivalence between the conditions. 

There are functions which are characterized by a semi-definite 
matrix B, which have no finite maximum. 

The obvious example of such a function is a linear function: 
a zero matrix is negative semi-definite. (~'B~2.0 for all 
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x is satisfied for a zero matrix as x'Bx - 0). Other examples 
may also be given, e.g. 

(xl 
2 2 

+ 2xI x 2 -
2 

~ = xl + x 2 - - x ) xl + x 2 - xl x2 2 

Here B r: -:] has one negative root, 

-1+2 1 1 1 
, A -2, 

I -1+2 1 1 

and one zero root. 

The existence of a finite maximum depends in such cases also 
on the linear component of the function. 

has a maximum value of = 0.25, which is attained whenever 
xl and x 2 satisfy the condition xl - x 2 0.5. 

In terms of the formal algebra, we note that if B is singular 
(14.4.11) defines requirements which may be contradictory, or 
consistent, in which case they do not determine a unique max~mum. 

We must begin by assuming the existence of a first order solution, 
a point which follows in the strictly definite case from the 
invertability of B. 

A strictly convex quadratic function always has a finite maximum; 
for a convex but not strictly convex function, we can only say 
that a solution which satisfies the necessary first order 
conditions is a (non-unique) maximum. 

The indefinite and positive (semi) definite cases on the other 
hand, are clear, at least as far as (the absence of) maxima is 
concerned. 

If B is indefinite, then, even if there is a first order solution, 
this is a saddle-point. 

If B is indefinite, but none of its roots is zero, we can be sure 
of th'e existence of one unique first order solution, which may be 
found by inversion of B. The expression (14.4.12) will then 
exist' but disprove that the solution thus found is a maximum, as 
(~* - ~)'B(~* - ~) may be positive. 
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Example 

a' = [1 lJ ' 

Here B is indefinite, as may be illustrated by 

0] [1 
< 0, but also 

(The roots are -! + ! 15 > 0, and -1 _1 
2 2 15 < 0.) 

The first order conditions are 

= 1 - 2xl + 2x2 = o. 

These conditions permit a unique first order solution, 

Xl = 1, x 2 = -0.5. 

This solution indicates a function value of 

¢ = 1 - 0.5 -1 -1 -1.5, 

which is not, however, a maximum, as may be illustrated by 
¢(O,O) 0, and also by ~(1,1000) = 1 + 1000 -1 + 2000 = 3000. 
Nor is it a minimum, as may be illustrated by ~(1000, 0) 
= 1000 - 1000000 = - 999000. 

If B is indefinite, but one of the roots is zero, there is 
either no first order solution at all, or if there is one, it 
cbrresponds to a horizontal ridge, i.e. there is a range of 
vectors which all satisfy the first order conditions but do not 
indicate a maximum or a minimum. 

If B is positive semi-definite, there may, or may not be, a 
minimum, but there is no finite maximum. (And no saddle-point 
either). Any solution which satisfies the first order conditions 
permits the expression (14.4.12) to exist, and if B is positive 
semi-definite, this means that the solution in question is a 
minimum. 

>0 
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If B is also positive definite, such a minimum is also unique. 

14.5 Subspaces and the partitial inversion of definite matrices 

The association between a definite matrix and an extreme point of 
a quadratic function allows us to state and prove an algebraic 
theorem, the proof of which would be much more complicated, if it 
had to be provided by strict algebraic means 

Theorem 

Let 

(14.5.1) 

be a (positive) definite matrix Bll and B22 being square diagonal 
blocks 

Then 

(1) Bll and BZ2 are also positive definite 

and 

(2) 
-1 

B22 - B2l Bll B12 exists and is also positive definite. 

Proof 

First, we partition the quadratic form. 

By assumption (B being positive definite) 

x' B x 

is true for all x ~ o. 

For ~2 = 0, (~l ~ 0) (14.5.2) reduces to 

~i BU ~l > 0 

(14.5.2) 

(14.5.3) 

for all ~l ~ 0, showing Bll to be pos~t~ve definite. By the 
same argument, applied for xl = 0, (x2 ~ 0) B22 is positive 
definite, q.e.d. ad (1). - -

Concerning (2), we denote as x = x* the vector at which a 
quadratic function attains its (unconstrained) minimum. 
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We consider the minimum value of the quadratic function 

<P (x) = <P + a' x + x' B x 
- 0 

(14.4.1) 

where ~ is subject to the restriction 

(14.5.4) 

i.e. Bl ~ is re-named as Z and required to maintain the value 
this vector attains for x*, the point at which a quadratic 
function is maximal. The-partitioned equivalent of (14.4.1) is 

+ X ' -1 + X ' -1 

(14.5.5) 

Since Bll has been shown to be positive definite, this block 
is inverfable. From (14.5.4) we have the following expression 
for ~l. 

-1 -1 
~l = Bll Z - Bll B12 ~2 (14.5.6) 

Substitution of the righthand-side of (14.5.6) for ~l into 
(14.5.5) yields after transposition and re-grouping of some 
terms: 

<P (~) <Po + ~l 
, 

Bll 
-1 

+ Z' Bll 
-1 

Z Z 

[a ' 
, 

Bll 
-1 

B121~2 + - a 
-2 -1 

, 
[B22 - B2l Bll 

-1 
B12J~2 (14.5.7) + ~2 

This is a quadratic function in ~2. 

Within the Bl ~ = Z subspace, ~2 determines the value of the 
function completely. Because B as a whole is positive definite, 
the function has a unique minimum and this minimum is in the 
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Bl ~ = Z subspace. Then by the theorem shown in the previous 
section such a minimum implies that the matrix [B22- B2l Bll-1B12J, 
which arises in the quadratic forms is positive definite. 
q . e . d. ad ( 2) . 

Since a positive definite matrix B is associated with a 
negative definite matrix -B; we have the following: 

Corollary: 

If B LS negative definite, then Bll and B22 are also negative 
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-1 
definite, and BZZ-BZ1B11 BIZ exists and is negative definite. 

14.6 Definite matrices and diagonal pivoting 

Theorem 

Let D be a square, symmetric and positive-definite matrix. 

v' D v > 0 (14.6.1) 

true for all v ~ 0 

Let 0 be a positive non-zero number 

o > 0 (14.6.Z) 

Then, irrespective of the content of the vector z 

[ 
-1 

D + ~ 0 ~' 
M = 

Z I 0- 1 
(14.6.3) 

is a positive-definite matrix. 

Proof 

Suppose by contra assumption 

[~1 < 0 (14.6.4) 

to be true for some~, A, not ~ = 0, A = O. 

Upon working out the expression (14.6.4), we obtain 

v' D v + v' z 0- 1 z' v + Z v' z 0- 1 A + AZ 0- 1 < 0 
-(14.6.5) 

To present (14.6.5) more compactly, we may denote 

~' ~ = y 14.6.6) 

and (14.6.5) is written as 

-1 Z Z v' D v + 0 (y + Z YA + A ) < 0 (14.6.7) 
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or equivalently 

v' D v + O-l(y + \)2 :5... 0 (14.6.8) 

Since 0 is by assumption positive non-zero, we infer from 
(14.6.8) 

v D v < 0 (14.6.9) 

Unless we assume the v is a null vector, (14.6.9) amounts to a 
direct contradiction of (14.6.1), the positive-definiteness of 
D. 

This would show that the contra assumption (14.6.4) was untrue, 
except possibly for v = o. 

However, for ~ = 0, (14.6.5) reduces to 

\2 0-1< 0 (14.6.10) 

which can only be true for \ = 0 (0 being positive non-zero). 
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Since v = 0, 0 = 0 is not part of the contra-assumption (14.6.4), 
that contra-assumption is untrue in all cases and M must be 
assumed to be positive definite, 
q.e.d. 

The above theorem is relevant, largely because it shows a way 
in which a positive definite inverse may be built up. 

Let 

(14.6.11) 

be a partially inverted matrix. D being already a positive 
definite sub-inverse, 0 (0 > 0) being the next pivot. Then M 
is the inverse, and is shown to be positive definite. 

Example 

D 
[: J. 0 1, z I [1 1J 

= [: 

1 -1] [3 2 

lJ Q 2 -i ' M = i 3 
1 1 

Both D and M positive definite. 
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(The roots of a non-singular matrix and its inverse are each 
others reciprocals, as may be seen by inverting Au ~A, to 
obtain ~ = A-l~A, therefore A-l~ = ~A-l.) 

The following corollae are stated here without further proof. 

For 

Q 

M = [Dll + ZD22 -1 Z I 

ZID 1 
22 

is positive definite. 

, with Dll and D22 both positive 
definite, 

(14.6.12) 

If D in (14.6.11) is negative definite and 0 negative non-zero, 
M is also negative-definite. 

Example 

D r-: -:J Zl [1 lJ , 0 -1 

n 1 -1] [-i 1 -1] -3 -1 M -4 -1 
1 -1 -1 -1 -1 

Q 

Similarly, if in (14.6.12) Dll and D22 are both negative 
definite, M is also negative definite. 

These theorems allows us to test the (positive) definiteness 
of symmetric matrices with positive non-zero diagonal elements, 
as well as the positive semi-definiteness of matrices with non
negative diagonal elements. If a matrix can be inverted by 
positive pivots along the main diagonal, it is a positive 
definite matrix. As soon as a negative number appears on the 
main diagonal, it is found to be indefinite. If a zero appears 
on the main diagonal, the matrix may be positive semi-definite, 
or indefinite. These two cases may be distinguished as follows: 

If a zero appears on the diagonal while other non-zero diagonal 
pivots further to the bottom-right hand side are available, 
re-order the quadratic form, taking the next positive non-
zero diagonal pivot. 
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If a two by two block 

appears, with t .. 
~J 

this proves indefiniteness, since 

= 2 t.. x. x. 2 t .. x. x. < 0 
~J ~ J J ~ ~ J 

t .. '" 0 
J~ 
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is true whenever x. and ~j a:e bot~ non-zero and opposite in sign, 
whereas the same e~press~on ~s pos~tive non-zero whenever x. and 
x. are non-zero and of the same sign. ~ 

J 

Exercise 14.6a 

Test the definiteness of: 

A [ ~ ~ -~J 
-1 2 3 

Exercise 14.6b 

Test the existence of extrema of the following functions: 

¢l (x l ,x2 ) + 2x2 + 2xl 
2 

+ 2x l x 2 + 4x2 
2 

xl 

¢2(x l ,x2 ) + 2xl 
2 

2x l x 2 + 4x2 
2 

x - x 2 -
1 

¢3(x l ,x2 ) - 4xl 
2 

+ 4x l x 2 -
2 

xl x 2 

¢4(x l ,x2 ) - 2x -
2 

+ 4x l x 2 - 4x2 
2 

xl 2 xl 

(Formulate the function as a linear funcLLon plus a quadratic 
form associated with a symmetric matrix, and extract the roots 
from the matrix. Cross-check by inversion. Verify the first-order 
conditions only in the case of semi-definiteness.) 

(There are answers to these exercises at the end of the 
chapter) 
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14.7 The factorization of a semidefinite matrix 

Theorem 

Let D be a square, symmetric and positive semi-definite matrix 
of order n. 

(~' D ;!... ~ 0 for all ;!...) 

Then there exists a real matrix A of the same order as D, 
satisfying 

A' A = D (14.7.1) 

where A may be required to be lower-triangular, with each 
diagonal element a .. being non-negative. 1.1. 

Proof 

We first deal with two trivial cases, viz: 

a) n 1 

Then A 

q.e.d. for case a 

b) D is a zero matrix 

Then A is also a zero matrix. 
q.e.d. for case b. 

Furthermore d .. = 0 (i=1,2 •... n), d .. # 0 (some i # j) implies 
. d f" 1.1. . 14 6 1.J 1.n e 1.n1.teness, see sect1.on .. 

In the general non-trivial case, D may now be partitioned as 

D (14.7.2) 

where d22 > 0 applies. 

(Not finding a positive non-zero diagonal element would imply 
that one of the special cases discussed above is applicable.) 
We now assume the theorem to be true for matrices of order n-1. 
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We also note that positive semi-definiteness of D implies 
positive semi-definiteness of Dll - ~12 d 22 -1 ~i . (See again 
section 14.6). Therefore, by application of the theorem for a 
matrix of order n-l, there exists a lower-triangular matrix B, 
satisfying 

(14.7.3) 

with each diagonal element of B being non-negative. 

We also denote 

~2 c (14.7.4) 

We now express D as 

D t' I 

~12 c-l k+ J c 

r" 
- ~12 

-1 
~i2 + ~12 

-1 -1 

I ::1 
d 22 c c ~12 

~' 12 

[u i lJ (14.7.5) 

~i2 d 22 
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Therefore, for matrices of order n, the assumption that the 
theorem holds for matrices of order n-l, permits us to express A 
as 

A =[:~] 
and the proof follows by recursive induction. 
q.e.d. 

(14.7.6) 
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Example 

[4J - [2] 0.25 [2] [3] 
c = 2 

The following corollae will be obvious: 

If D is positive definite, IDr" 0, all the diagonal elements of A 
may be required to be non-zero, since they may already be 
required to be non-negative, we conclude to a .. > 0. 

1.1. 

If D is negative semidefinite D may be expressed as 

D = -A' A (14.7.7) 

with the same conditions on A. 

14.8 The constrained maximum of an anti-convex function, with 
linear side-conditions 

Recall section 8.11. A linear function constrained by linear 
side-conditions attains its maximum (within the specified 
feasible space area), at a vertex. This theorem is also applicable 
to anti-convex functions, (of which the linear function is the 
borderline case). 

Theorem 

Let x be an n-dimentional vector. 

Let T = T(~) be an anti-convex function. 

Let a feasible space area be defined by x. > 0, j=1,2, ... , n, 
and a! x. < b. i=l, 2, ... , m. 1. 

-1.-1. - 1. 

Then 

The maximum value of T(X) inside the feasible space' area (if 
finite) is attained at a point x = x*, which is a vertex i.e. 
the number of non-zero elements-of x* is not greater than the 
number of exactly met restrictions a!x* = b. and the non-zero 

* -1.- 1. 
s~b-vector ~l=~l may_be descri~ed by the inver~e of a block-
p1.vot ~s ~l = ~! = Ali~l' prov1.ded the system 1.S ordered 
accord1.ngly. 
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Proof 

If ,(x) is anti-convex, T(X) ~ t(x*) is an anti-convex 
restrIction. Therefore (see section 14.3) the tangential 
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equivalent :::!...' (~-~*) = [~~ (~*)J '(~-~*) ~ ,(x*) is violated for 

all points for which T(X) < T(X*) is true. Therefore, if t(x) 
attains (within the specified feasible space area) its maxImum 
at ~ = ~* the linear approximation of the objective function 

T*(~) =[~~(~*)J' (~-~*) + T(~*) also attains its maximum at ~ = x*. 

(All points at which T*(X) > T*(X*) is true also satisfy 
T(x» T(X*); since ,(x*) is the-maximum feasible value, such 
poInts must be infeasible points.) Therefore, x = x* is an 
optimal solution of the problem of maximizing T*(X), subject to 
the same side-conditions. Thus, the familiar L.P.-property of 
the optimum being of a vertex is applicable. 
q.e.d. 

The following notes recapitulate the proof as given in part II 
in the linear case, now extended to the general case: 

An anti-convex function does not attain an unconstrained maximum, 
neither in the feasible space area as a whole, nor in any linear 
sub-space. (See also section 6.7 where the equivalent lemma was 
stated and proved for the case of a linear objective function 
and side-restrictions of an unspecified type.) Only a strictly 
convex function attains an unconstrained maximum. We postulate 
the possibility to successively identify additional restrictions 
that are binding on the optimal and feasible solution. Within 
each linear subspace it is possible to pivot a non-basic 
variable against the identified restriction. This defines a 
residual problem, except when the last restriction has been 
identified and remaining non-basic variables are optimal at their 
non-negativity restrictions (if present). In each residual 
problem a new binding restOriction may be identified. Therefore 
the total number of identifiable and invertable binding 
restrictions equals the number of non-zero variables in the 
optimal solution q.e.d. 

N.B. 
A theorem which is very similar to the one discussed in this 
section, but more general in considering non-linear side
conditions, will be discussed in section 15.5. 

Answer l4.6a 

Nr 2 is positive semi-definite, the others are indefinite. 
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Answer l4.6b 

For <PI we find B zJ ; roots 3 + h > 0 and 3 - h > 0 

Therefore, this is a positive definite matrix and the function 
has a unique minimum. 

For <P 2 , we find B =[ 2 
-1 

-z] ; which has the same roots as for 

<PI and the same conclusion follows. 

; roots A = - 5 1 , o 

Therefore, this is a negative semi-definite matrix, and we need 
to verify the first-order conditions, which are 

Cl<P3 
Clx2 

Substitution of 2xl for x2 by the condition on x2 reduces the 
condition on xl to 1 = 0, therefore these conditions cannot be 
satisfied, and <P3 has no finite extremum value. 

For <P 4 we find B = [-~ -zJ 
This matrix has the same roots as found above for <P 3 ; we 
therefore need once more to verify the first-order conditions 
which are: 

o 

Substitution of 2x2 + 0.5 for xl into the condition on x2 now 
causes the latter condition to reduce to the trivial requirement 
o = 0, and we find that <P4 attains a maximum value, whenever xl 
and x2 satisfy the condition xl = 2x2 + 0.5. 
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CHAPTER XV 

OPTIMALITY CONDITIONS 

15.1 The additive properties of restrictions 

Consider a set of vector-points, e.g. xl' xz' x 3 ' which are 
required to satisfy a combination (i.e. all) of a series of 
restrictions. For example xl' xz' x3 may be required to satisfy 

+ 5 > 0 

- Xz + x3 - 10 > 0 

It follows that xl' xz' x3 must also satisfy 

Z 
Pl(x l + X z + x3 + 5) + PZ(x l - ZxZ) + P3(-xZ + x3 - 10) > 0 

where PI and p are non-negative numbers, and PZ' which is 
associated wit~ the equation xl=ZxZ' can be any real number. 

For example, we may require Pl=l, PZ=-l, P3=3, i.e. 

Z 
(xl + X z + x3 + 5) - (xl - ZxZ) + 3(-xZ + x3 - 10) 

Z 
x3 + 3x3 - Z5 ~ 0 

The reason is that each of the separate terms In this expression 
lS required to be non-negative, i.e. 

o 
and 

3(-xZ + x3 - 10) ~ o. 

We therefore have the following properties for various classes 
of restrictions: 

Class a): inequalities of type> 0 

If the vector x satisfies 

f. (x) > 0 
l - -

i=l,Z ... m 
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(15.1. 1.) 
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then 

x also satisfies 

m 

L 
i=l 

p •• f. (x) > 0 
1 1 - -

with p. > b for i=1,2 ... m 
1-

Class b): inequalities of type ~ 0 

If the vector x satisfies 

then 

f. (x) < 0 
1 - -

i=1,2, .•. m 

x also satisfies 

m 

L 
i=l 

p. . f. (x) < 0 
1 1 - -

with p. > 0 for i=1,2 .•. m 
1 -

Class c): equations 

If the vector x satisfies 

then 

f. (x) = 0 
1 -

~i=l, 2 •.• m) 

x also satisfies 

m 
L 

i=l 
p .• f. (x) 

1 1 -
o 
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(15.1. 2) 

(15.1.3) 

(15.1.4) 

(15.1.5) 

(15.1.6) 

where p. can be any numbers, positive, zero or negative. 
1 

These properties are hardly theorems. They follow simply from 
the summation of the terms in (15.1.2), (15.1.4) and (15.1.6). 
If (for certain values of the arguments-vector) each term is 
non-negative, the sum is also non-negative. However, the 
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non-negativity of a sum of terms, does not require that each 
term is non-negative. In the example at the beginning of this 
section, x3 ~ 5 satisfies the combined restriction 
x3 2 + 3x3 - 25 ~ 0, irrespective of the values of xl and x 2 • 
One can obviously state values of xl and x2 which contradict 
any of the individual restrictions. For xl ~ -50, x2 ~ 0, 
x3 ~ 5, none of the individual restrictions is met, but their 
combination is satisfied. 

15.2 Combined restrictions and their tangental equivalent 

Consider the following combination of restrictions on two 
variables xl and x2 

xl + !x22 - 5 < 0 

2 I 2 
xl - x 2 + 4x2 < 0 

Application of the combination-property discussed in the 
previous section tells us that xl and x2 should also satisfy 

PI (xl + !x22 - 5) + P2(xl - 2x2 + !x22) < 0 

for PI ~ 0, P2 ~ O. 

Taking (for example) Pl~3, P2~5 this combined restriction is 

2 8x l - 10x2 + 2x2 - 15 < 0 
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2 
Since both xl + !x2 - 5 ~ 0 and x - 2x2 + !x2 < 0 are convex, 
a combination of these two restrictions is also convex. 

Theorem 

Let 

Then 

f.(x) be a series of properly convex functions. 
1 

(i~l ,2 ... m) 

g(x) 

p. > 0 
1 

m 
L 

i~l 

p. f. (x) 
1 1-

(i~l, 2 ... m) 

) 
) 
) 
) 

is also properly convex. 

(15.2.1) 
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Proof 

Recall the definition of a properly convex function. To avoid 
a possible confusion with multipliers for functions we now use 
the letter w for the relative weight of a particular point. 
From Section 14.2 we copy and adapt (the definition of proper 
convexity). f.(x) is properly convex if and only if 

1 -

is true for all x* and x** and (their non-negative combinations, 
i.e.) 

(15.2.3) 

The corresponding generalization to a combined restriction now 
follows from application of the additive property discussed 
in the previous section to all inequalities which state the 
convexity of the m restrictions by (15.2.2) 

m m 
E p .. f.(w.x* + (1-w)~**).::. E (w.f.(x*) + (l-w).f.(x**» 

i=l 1 1 - i=l 1 - 1 -
(15.2.4) 

or equivalently, considering (14.2.1) the definition of the 
combined function: 

g(w.~* + (l-w).~**) > w.g(~*) + (l-w) g(~**) (15.2.5) 

which is the definition of proper convexity for g(~). 
q.e.d. 

Since all vectors which satisfy a convex restriction also 
satisfy any tangential equivalent of that restriction, we have 
the following~ 

Corollary 

If x satisfies a series of convex restrictions, that vector 
satisfies any tangential equivalent of any non-negative 
combination of them. 

(Refer back to the example at the beginning of this section: 

h . . .. I 2 5 ° Eac pa1r of numbers xl and x2 wh1ch sat1sf1es xl + 4x2 - ~ 

as well as xl - 2x2 + 4x22 ~ 0, also satisfies 8xl - 10x2 + 2x22 
- 15 < 0, because that is a positive combination of the two. 
Therefore each pair of numbers which satisfies the two original 
restrictions, also satisfies xl < 3.44, because that is the 
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7 

6 

5 

3 

2 

graph 15.2 a 
aLL soLutions which satisfy 
severaL restrictions, aLso 
satisfy a combination of them, 
and if they are convex, aLso 
a tangentiaL equivalent of 
the combinat ion. 

3 5 
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2 
tangential equivalent of 8xl ~ 10x2 + 2x2 - 15 ~ 0, at the point 
x l =3.44, x2=2.5.) 

15.3 The Lagrangean expression and the conditions on its 
derivatives 

A combination of the objective function with one or more of the 
restricting functions is indicated as a Lagrangean expression 
after the French mathematician La Grange or de la Grange. [251 

m 
T (~) + L p. . f. (x) 

i=l 1 1 -

(p. > 0, i=1,2 .•• m) 
1-

(15.3.1) 

The Pi are indicated under various names. In calculus, they are 
usually indicated as "undetermined multipliers". In the theory 
of mathematical programming they are indicated as dual variables. 
This is by analogy to their equivalents in linear programming. 
If the theory of optimality conditions (i.e. the Kuhn-Tucker 
theorem, see below) is applied to a linear problem, the p. turn 
out to be the variables in the dual problem. Because of tReir 
economic interpretation they are also sometimes indicated as 
"shadowprices". I shall, by and large, follow the general 
mathematical programming tradition and indicate these multipliers 
as dual variables. The use of the letter p is, however, a 
reference to their economic interpretation. 

The theorems by John (22] and by Kuhn and Tucker [24] concern 
the existence, the derivatives and the extremum properties of 
combinations of the objective function and restricting functions. 

John's theorem is the most general. Kuhn and Tucker's refers to 
convex problems only, and generally assumes stronger conditions 
leading to stronger results. 

We first form the more general (John's) expression 
m 

J(x) = p • T(X) + L p. f. (x) 
- 0 - i=l 1 1-

(p. ~ 0, i=0,1,2 ..• m) 
1 

(15.3.2) 

where Po may be zero - as distinct from the Lagrangean 
expression, where Po is equal to one. 

This is not particularly apparent in John's original publication, 
but Kuhn and Tucker [24] give an example where John's expression 
involves a zero multiplier for the objective function. Kuhn and 
Tucker's contra-example involves non-convexity and non-zero 
third-order derivatives, but contra-examples with only convex 
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functions and no third-order derivatives exist as well. The 
Kuhn-Tucker theorem is therefore associated with a constraint 
qualification condition. 
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The constraint qualification condition essentially requires the 
stronger result Po> 0 to hold. In practice, the contra-examples 
are rather special and one normally assumes the Lagrangean 
expression to exist. 

Kuhn and Tucker's main theorem is the following 

Let 

Subject to 

f. (x) > 0 
1 - -

(i=1,2 .•. m) 

x> 0 

be a convex programming problem satisfying the constraint 
qualification condition. 

And let 

x = x* 

be an optimal and feasible solution to that problem 

Then, there exists multipliers Pi ~ 0, such that 

a) aL < 0 
a~ - (15.3.3) 

is true,* together with the complementary slackness conditions. 
viz: 

b) p .• f. (x) = 0 
11-

(all i) (15.3.4) 

p. is positive non-zero, only if f.(x) 
11-f.(x) > 0 being binding 

1 -

0, the restriction 

* Some authors also mention a similar condition with respect to 
the multipliers, with the opposite sign, i.e. ~ > 0 

dpi-
(i=1,2 ... m), but this is simply a re-statement of the original 
restrictions, i.e. f.(x) > O. 

1-



370 

and 

c) x. 
J 

dL 
d x. 

J 

o 
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(all j) (15.3.5) 

i.e. the derivative is negative rather than zero, only if the 
variable is zero. The conditions (15.3.3) are known as the 
dual requirements or optimality conditions, (15.3.4) and (15.3.5), 
as the complementary slackness condition. The combination of the 
binding restrictions, weighed according to the corresponding 
dual variables, 

m 
l: p. f. (x) > 0 

i=l ~ ~-

may be indicated as the aggregate restriction. 

Example 

Maximise 

T = xl + x 2 

Subject to 

xl + x 2 
2 < 5 -

< 2 

3 

(x 1 > 0, x 2 > 0) 
-

We first put the restrictions in the .:':..0 form 

2 
5 0 -xl - x 2 + > 

+ 2 > 0 

+ 3 > 0 

The associated Lagrangean expression ~s 

+ 2) 

- x 2 + 3) 

(15.3.6) 

The theorem does not instruct us how to find an optimum solution. 
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Rather it tells us that, when an optimum has been found, certain 
conditions will be satisfied by the solution. For this example, 
we find a solution by graphical mapping and substitution. 

Graphical mapping of the restrictions (see graph l5.3a), and 
consideration of xl' x 2 (top-righthand) as the desirable 
direction identifies 

and 

x < 2 
1 -

as :he bindin~ restrictions. Hence x l =2. Substitution of 2 for 
xl ~n xl + x 2 = 5 then gives us X2 as x2 = 13 = 1.73. 

Note the way in which the aggregate restriction is a kind of 
"compromise" between the binding restriction. 

Accordingly, the Kuhn-Tucker theorem tells us that the Lagrangean 
expression is effectively reduced to 

,.5 

,. a TXl 
+ 

3 5 / 

X 

3.0 

XI 

.lr 

U' 

graph \5.3 a 
I L Lustrat ion 0 f op
timality conditions. 

X 
/'.J 

I{\ 

•. 5 
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The last term P3(-x + 3) drops out since the restriction is not 
binding in the optimum, and (15.3.4) tells us that in that case 
the associated multiplier is P3=0. 

We are now in a position to establish the numerical values for 
PI and P2· From (15.3.3) we obtain 

l-p -p =0 
1 2 

and 

For x = 13 = 1.73 the condition on aL gives us 1 - 2 x 1.73 PI 
~ 1 - 3.46 PI o. aX2 

Hence we are able to solve PI as PI = 1/3.46 = 0.29. The other 
multiplier then is P2 = 1 - PI = 0.71. Therefore, in this example, 
the Lagrangean is 

2 
L = xl + x2 + 0.29 (-xl - x2 + 5) 

+ 0.71 (~xl + 2) 

2 x 2 - 0.29 x2 + 2.87 

2 - 0.29 (x2 - 1.73) + 3.73 

The first-order derivative of this expression with respect to xl 
does not exist, i.e. is identically equal to zero. This is 
because the objective function and the restrictions are all 
linear in xl. The derivative with respect to x 2 vanishes for 
x2=l. 73. 

The Lagrangean L = -0.29 (x2-l.73)2 + 3.73 is a convex function. 
This is systematic, whenever the Lagrangean is a combination of 
convex functions. For a problem which is formulated in terms 
of properly convex functions, the Lagrangean always attains 
an unconstrained maximum at the optimal point. For numbers xl 
and x 2 which satisfy the stated restrictions we establish the 
inequality 

The restriction xl + x2 ~ 3.73 can also be obtained in a 
somewhat different way, as follows: 
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Take the combined restriction or aggregate restriction 

2 
PI (-xl - x 2 + 5) + P2(-x2 + 2) 

= 0.29 (-xl - x2
2 + 5) + 0.71 (-xl + 2) ~ 0 

2 
This combined restriction xl + 0.29 x2 ~ 2.87 has been drawn 
in the graph (without shading). The linear restriction 
xl + x 2 < 3.73 (again without shading) has been drawn in the 
same graph as well, and is its tangential equivalent. 

Some, but not all, of the above properties are true for the 
optimal solution of a non-convex problem. 
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John's theorem is more gener~l than the Kuhn-Tucker theorem, but 
relative to weaker conditions. Unlike the Lagrangean, John's 
expression may involve a zero multiplier for the objective 
function. 

P T (x) + a -

(p > 0, p. > 0 
a - ~ -

m 
L: 

i=l 
p. f. (x) 
~ ~-

i=1,2 ... m not all p.=zero) 
~ 

(15.3.2) 

If the multiplier of the objective function is zero, at least 
one of the multipliers of the restrictinB functions may be 
required to be non-zero. (A Lagrangean expression can be just 
the objective function, i.e. none of the restrictions is 
binding.) 

Otherwise the content of the theorem is the same, i.e. if there 
is an optimal and feasible solution the first-order derivatives 
of J(x) will vanish for the optimal x=x* and the appropriate 
values of the multipliers. But since-John does not require 
convexity, the first-order condition 

aJ dT 
m df. 

~ 

ax = Po -- + L: p. 
ax ax i=l ~ 

does not guarantee a max~mum. 

It does not follow that a first-order stationary solution of 
the Lagrangean is a maximum of the Lagrangean. Nor does it 
follow that (in a non-convex problem) a first-order solution 
indicates the optimum of the programming problem. 
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Example 

Max. T = 3x I + x 2 

Subj. to xl < 4 

Xl' x 2 < 4 

(xl' x 2 > 0) -

Form the 
Lagrangean 

L 3X 1 + X2 

+ PI (4-x l ) 

+ P2(4-x l o x 2 ) 

There is a lo-

S.O 

,.S 

'.0 

3. s 

3.0 

2. 'i 

2.0 

1.5 

1.0 

O.'i 

Tx, 
CHAPTER XV 

graph 15.3 b 

a loea l max imum 
without a global one. 

4 

cal maximum ~0~0--~0~.S~~I~.0~-71.7S--~2~.~0--~2~.S~~l~.O~-7l.~S---'~.~0~u4 . S 
at x l =4, x 2=1, 
and we fino multipliers in the usuCll way. 

(3L 
= 3 - PI - P2 . x 2 = 0 (xl > 0) dX l 

o (x2 > 0) 

For x l =4, x2=1 these equations reduce to 

1 - P2 4 = 0 --?- P2 0.25 

3 - PI - P2 . 1 = 3 

Therefore the Lagrangean expression is 

3 xl + x 2 + 2.75(4-x l ) + 0.25(4-xl ·x2 ) 

12 + 0.25 xl + x 2 - 0.25 xl . x 2 

2.75 

This is not a convex function, and it has no finite maximum, only 
a local saddle-point at x l =4, x2=1. And it does not represent a 
global optimum. The problem is in fact unbounded, because it 
admits infinite values of x 2 . However, if the top of the non
convex "spine" in the x 2-direction is cut off, the same 
optimality conditions may represent a local maximum whi dl is 
also the global maximu~ 
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For example, if the restriction x 2 2 4 is added to the problem. 
x l =4,.X2=1, with Pl=2.75, P2=O.25 (as above) is the optimal 
solut10n. 

The relation between convexity of the Lagrangean and convexity 
of the programming problem is further complicated by the 
possibility of directional and/or peripheral convexity (see 
Section 14.2). A programming problem may in substance "be convex", 
but if the objective function is formulated as directionally 
convex but not properly convex, and/or some of the restricting 
functions as only peripherally convex, the Lagrangean function 
may be non-convex. 

Example 

Maximise 

Subject to 

This is substantially a linear programming problem with the 
maximisation of x l +x2 as objective function. The optimal 
solution obviously is xl=l, x 2=1. The associated dual variables 
are 

PI = P2 = 4. 

The Lagrangean expression 

L 

1S not a convex function. 

It does not even have a local maximum at xl=l, x 2=1. Yet xl=l, 
x2=1 is the true and only optimal solution of the programming 
problem. 

Now suppose that a programming problem is properly convex, both 
in the objective function and in the restricting functions. 
In that case the Kuhn-Tucker conditions (15.3.3) to (15.3.5), 
are sufficient to identify a feasible solution as being the 

optimum. We saw in section 14,.4 that, for a properly convex 
function, the first-order conditio"s are sufficient to identify 
a (possibly non-unique) maximum. The Lagrangean is a linear 
combination of (by assumption) properly convex functions, i.e. the 
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objective function and properly convex restricting functions, 
therefore the Lagrangean is a properly convex function. 

It follows that the Kuhn-Tucker conditions identify a maximum 
of the Lagrangean. We indicate i.e. denote the maximum value 
of the Lagrangean as L(~*) 

m 
L(~) + L p .. f.(x) < L(~*) 

i=l 1. 1. -
(15.3.7) 

For vectors x which satisfy the specified side-conditions each 
term p. (x) is non-negative. (The restriction is defined as the 
non-ne~ativity of f. (x).) Hence we establish the inequa1ity* 

1. -
m 

L (x) + L p. 
i=l 1. 

f. (x) < L(~*) 
1. -

(15.3.8) 

The complementary slackness condition implies that in the optimum, 
the terms p .. f. (x) all vanish. Hence the optimal value of the 
objective fGncti~n-and the Lagrangean are the same. 

Exercise 

Solve the contrained maximisation problem: 

Maximise L = xl + X z 
Subject to xl .2.. 3, x z .2.. 4, xl .. x Z .2.. 4 (xl' x z .:.. 0) 

Find the optimal values of xl and Xz by graphical mapping. Form 
the Lagrangean expression, and derive the optimality conditions. 

Solve the corresponding values of the dual variables 
(answer at the head of a further exercise, at the end of the 
next section.) 

* Generally this inequality is also valid where, in a non-convex 
problem, a local maximum is found to be the global maximum. But 
since the optimality conditions do not themselves tell us 
whether or not, in a non-convex problem, a local maximum, is the 
global maximum, it is nevertheless necessary to verify by other 
means whether the global optimum has been attained. Furthermore, 
in a non-convex problem L(x*) either must be understood to be 
the maximum value of the Lagrangean attained by any feasible 
vector x, or simply as the value of the Lagrangean associated 
with the optimal solution of the programming problem. In a non
convex problem (but not in a convex problem) there will generally 
be (non-feasible) vectors ~, for which L(~) > L(~*) is true. 
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15.4 Dual variables and right-hand side variations 

The dual variables are indicators of the changes in the solution 
value, which arise as a result of changes in the constants of 
the restrictions. To show this relationship it is useful to 
separate exogenous increments in these constants from the 
initially specified functions. 

Hence we denote 

z.(x) = f. (x) + d. 
1 - 1 - 1 

(15.4.1) 

Above, fi(x) are the originally defined restricting functions, 
and the d.-are later changes in the constants of these functions, 
causing tfle z. (x) to become slightly different from the originally 
specified f.(~)~ 

1 -

Now consider the optimal solution of an altered programming 
problem. 

Maximise 

Subject to 

T(~) 

z. (x) > 0 
1 -

(15.4.2) 

(i=1,2 ..• m, ~ ~ 0) 

We formulate the Lagrangean 

m 
I: 

i=l 

m 
I: 

i=l 
p. (f. (x) + d.) 
11- 1 

(15.4.3) 

The inequality-relationship (15.3.8) may now be copied and 
adapted. For the "new" problem this inequality will be 

T(~*) + 

m 
I: 

i=l 

m 
I: 

i=l 

p. f. (x) + 
1 1-

m 
I: 

i=l 
p. d. 2 L(~*) 

1 1 

p. f. (x*) + 
1 1-

m 
I: 

i=l 
p. d. 

1 1 
(15.4.4) 

The inequality (15.4.4) does not by itself depend on the 
optimality conditions. 

It depends on two things, (a) that (for certain multipliers) a 
maximum of the Lagrangean relative to x has been established. 
That is, for those particular values of the Pi' no other vector ~ 
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yields a higher value of L(x), than the figure indicated by the 
right-hand side of (15.4.4)~ (b) That the solution is feasible, 
i.e. p. f. (x) > 0 is true for all i. 

~ ~-

Granted these two points, the inequalities 

T (x) < L(~) 

m 
T (~) + L 

i=l 
p. (f. (x) + d.) 
~ ~ - ~ 

i.e. the first part of (15.4.4) 

(15.4.5) 

will stay binding as long as the complementary slackness 
condition is maintained. 

Hence we assume that for the changed solution it will still be 
possible for the same multipliers and the same collection of 
binding restrictions-to maintain 

f. (x) = 0 
~ -

x > 0 

(p. > 0) 
~ -

(15.4.6) 

By assumption all Pi fi(~*) are zero, and the second set of 
inequalities from (15.4.4) reduces to 

m m 
T(~) + L p.(f.(x) + d.) < T{x*) + L p. d. (15.4.7) 

i=l ~ ~ - ~ - - i=l ~ ~ 

The non-active (=amply fulfilled) (non-negativity) restrictions 
will remain fulfilled even after some changes in the constant 
non-zero numbers d i . That, at least, is the case for sufficiently 
small numbers d .. If variations in the restrictions i.e. in their 
constants are c6nsidered, the Lagrangean is not only a function 
of the vector x, but also of the specified shifts in the constants. 
Thus, (15.4.7)-should be re-written as: 

m 
L 

i=l 
p.(f.(x) + d.).::. T(~*) + 
~ ~ - ~ 

m 
L 

i=l 
p. d. 
~ ~ 

(15.4.8) 

We now evaluate the Lagrangean expression, by first and second
order approximation. 

L(~*) + 
m 

6x + L elL d. + !6~' 
i=l (ld i ~ [:~:] 

(15.4.9) 
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The first term on the right-hand side of (15.5.9), L(x*) gives 
the value of L(~,~) for ~=~*. The second term ~; I fI~ gives the 

first-order effect of any changes in the vector x, fix standing 
for the increment of x. This term is in fact zero because 
aL m aL 

is a zero vector. The third term L d. gives 
ax . 1 ad. 1 

1= 1 

(the first-order effect of) the changes in the constants of the 
equations. From (15.5.9) we see that there is no o~her 
first order effect as a result of non-zero values of the d .. 

1 
m 

This term is in fact L p.d .. 
i=l 1 1 

The last term gives the second order effect and for a convex 
problem it will be negative (non-positive). Thus, (15.5.9) 
effectively reduces to 

L(~*) + 
m 
L 

i=l 
p.d. + !flx' 

1 1 - [:~~] .~ (15.4.10) 

The Lagrangean is (by first-order approximation) insensitive 
to any changes in the vector x, but it is dependent on changes 
in the constants of the equations. And for small changes in the 

m 
constant, the (linear) first-order term L p.d. will dominate 

i=l 1 1 

over the second-order effect or any other higher-order effects. 
If it is possible to find a corresponding adjustment in the 
variables-vector x which keeps the same collection of 
restrictions binding, thus maintaining the complementary 
slackness condition, the same conclusion holds for the objective 
function. 

Therefore the dual variables indicate the changes in the 
objective function which will arise in response to small changes 
in the constants of the restrictions. 

Example 

Recall our earlier example (at the beginning of Section 15.3), 
i.e. 

Maximise xl + x2 

Subject to 
2 

< 5 xl + x2 

xl < 2 

x2 < 3 
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Now suppose that the binding upper bound on xl is moved outwards 
to xl ~ 4. We found the dual variable associated with this 
restriction to have the value P2 = 0.711. The original optimum 
function valu.e was L = xl + x2 = 3.73. We would therefore expect 
the new function value to be close to L = 3.73 + 2xO.7l = 5.15. 
The value of L = xl + x2 = 5.15 is the optimal solution of the 
linear programming problem 

Maximise L Xl + x2 

Subject to xl + 3.464 x2 < 8 

< 4 

X2 < 3 

This is the original problem with the following modifications 

(a) xl < 3 has been substituted for xl ~ 2, and 

2 
(b) xl + 3.464 x2 ~ 8 has been substituted for xl + x2 ~ 5. 

The dual variable gives the cost in terms of the stated objective 
function, should a unit of some resource be lost or diverted to 
other purposes. This is typically the economist's notion of the 
(marginal) opportunity cost of a unit of the resource. For this 
reason dual variables are also indicated as imputed prices or 
shadow prices. 

The linear 
equivalp.nt 

2 xl + x 2 < 

restriction xl + 3.464 x2 ~ 8 is the tangential 
of the originally specified nonlinear restriction 
5, the tangential being taken at x l =2, x2=13=1.732. 

The optimal solution of this linear problem is xl=4, x2=1.lS. 
However, the solution follows the inwardly curved surface of 
the restriction xl + x22 ~ 5 and the new nonlinear optimum is 
xl=4, x 2=1, and the optimal function value is only 5.00 instead 
of 5.15. Thus the second-order effect is found to be (minus) 
0.15. 

At this point, it is appropriate to comment on the economic 
interpretation of dual variables. In economic allocation 
problems, the maximand is either a utility function, i.e. 
the problem is consumers' maximization of their personal 
satisfaction from a given set of availabilities, or a profit 
function, i.e. the problem is the firm's maximization of 
profit within the technical limits of its production installations, 
or a'social welfare function, i.e. the problem is society's 
maximization of the collective supply of goods and services, 
within a given set of natural and other resource limits. 
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In each case the dual variables indicate by how much the 
specified objection function would increase, if the supply 
of a particular resource were increased by one unit. 
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graph 15.4 b 
part-answer to an 
ear L i er exerc i se and 
onset to the one in 
this section. 

optimaL 
Xl = 1, 
with 

soLution: 
x2 =47 

pl = 0, p2=0.75 1 

p3=0.25. 

2.5 "3.0 3.5 4.0 4.5 

Exercise and answer to a previous exercise 

The optimal solution of the exercise at the end of seccion 15.3 
(but not the optimality conditions), is given in Graph l5.4b. 
Reperform that exercise, changing 

xl • x 2 ~ 4, to xl • x 2 ~ 8. 

In this particular case the second-order term ~n (15.4.10) is 
systematically zero. 
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Check that the change in solution value between the two 
versions of the exercise matches the product of the dual variable 
of the xl' x 2 ~ 4 restriction (0.25), and the shift in its 
constraint (there being no second-order effect). 

15.5 Constrained second order conditions: subspace convexity 

The necessary first-order conditions discussed in section 15.3 
may, or may not indicate a true optimum. Only in convex problems 
may this be assumed without further investigation, as may be 
illustrated by reference to the example below. 

Example l5.5a 

Maximise T 
2 2 

- xl - x 2 

Subject to (xl - 3)2 + (x2 - 4)2 > 25 , 

(xl' x 2 ) ~ ° 
In this problem there are four points for which the first-order 
conditions may be satisfied, viz. (xl.=.6, x2 = 0); (xl = 0, 
x2 = 8), (xl = 0, x 2 = 8), and the or~g~n, (xl = 0, x 2 = 0). If 
we add a restriction to exclude the origin, e.g. xl + x2 ~ 1 
(xl = 6, x 2 = 0) is the true optimum with T = -36. The objective 
function ~s in fact the minimization of (the square of) the 
distance from the origin, and the non-linear restriction is the 
non-convex outside of a circle with radius 5 and its centre in 
the point (3,4). 

The points (6,0) and (0,8) - and without the additional 
restriction also (0,0) - , are local maxima i.e. points where 
any change in the solution vector is either associated with 
losing objective function value or else with moving out of the 
feasible space area. A formal definition is as follows: 
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graph 15.5 a 

illustration 0 f 
loea l maxima and sadd lepoints 

2 

o 

A point x = x* is a (strict) local maximum, if it is true for 
all ~x~O~ and £ > 0, but approaching zero, that 
either, 

T(~ + £ ~~) < T (~) (15.5.1) 

~, for some i: 

f. (x + £ ~~) 
1 -

< ° (15.5.2) 

(x x* being a feasoble solution) 
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Thus, at (0,8) we may find ~x' 

satisfying 

- 36 > - 64, and 

6,-8 

fl (~ + ~~) = 0, but that point is nevertheless a local maximum 
because when moving from (0,8) to (6,0) we must go through the 
inadmissable inside of the circle or alternatively, when going 
around it, begin with moving away from the origin. (The global 
optimum is also a local maximum, but the use of the term is 
usually reserved for non-convex problems). The conditions to be 
discussed in this section do not necessarily distinguish 
between different local maxima in terms of identifying the true 
optimum, but they distinguish betweel local maxima and 
constrained saddle points, where we may start to "climb" at 
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once e.g. at (xl = 6, x 2 = 8). (The first order conditions 
generally are sufficient to exclude points where one may at once 
start to climb "steeply"). A constrained saddle point is thus 
a point where the first order conditions are satisfied, but 
which is not a local maximum. 

To distinguish local maxima from constrained saddle points, we 
first formulate a first and second order approximation of the 
Lagrangean. 

The following expression is therefore exact if all functions 
are quadratic, but an approximation - which is generally quite 
adequate in the vicinity of a first-order solution x = x* -
if there are non-zero third and higher order derivatives. 

L(x) L(x* + /',~) 

L(~*) + (3L (~*» , /',x + !/',~' 
[,2L (~.)] /',x 

3x a2x 

T (~*) + (~ (~*»' /',x + !/',~' [32"( (~*)J /',x 
3x (J2x 

m m 3f. 
f. (x*) 

1 
(~*» , + l: p. + l: P'(-a - /',x 

i=i 
1 1 -

t=l 
1 X 

m a2f. 

! l: /',x' 1 
(~*) /',x (15.5.3) + p. 

a2x i=i 
1 

For the sake of uniformity and simplicity of notation we will 
assume that the non-negativity restrictions have also been listed 
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as explicit restrictions. Otherwise it should be understood 
that x is the vector of non-zero variables only - or that non
negativity restrictions do not apply. 

Ifx = x* satisfies the first order conditions, the first 
two members-of (15.5.3) collapse to 

L(x) L(x* + /I,~) 

(Refer also to section 2.18, concerning the rules for 
differentiating matrix expressions). 

(15.5.4) 

If the quadratic form /I, x , (~*j /I,~ is non-positive 

for all /I, x , this confirms that x = x~, is the optimum. Note that 
this conclusion does not depend-on the convexity of any 
individual function, as may be illustrated by referring to the 
example below. 

Example l5.5b 

Maximise T - (x - 3)2 _ (x2 - 4)2 
1 

Subject 2 2 
100, O. to xl + x 2 > x l ,x2 > 

Here the objective function is the minimisation of (the square 
of) the distance from the point (xl = 3, x2 = 4), and the non
linear restriction is the non-convex outside of a circle with 
a radius 10 and the centre at the origin. 

Compared with example I5.5a, there has been a kind of inter
change between the objective function and the binding 
restriction and (xl = 6, x 2 = 8) is now the global optimum, as 
may be shown by developing the Lagrangean expression: 
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L = -

aL 
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graph 15.5 b 

a stricLy convex obJ ective function 
dominatE's the non-convexity 0 f 

the binding restriction. 

o 1--(-

12 

3)2 _ (x2 - 4)2 + (xl 
2 2 

100) P l + x 2 -

-2 (x -
1 

3) + 2 P 
1 xl 0 (xl 6 > 0) 

o 8 > 0) 

From which we solve for xl 0.5. 

387 
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This permits us to numerically evaluate the Lagrangean as: 

2 2 
= - ! (xl - 6) -! (x2 - 8) - 25. 

This is a strictly convex function which attains a unique 
maximum of -25 at (xl = 6, x 2 = 8). 

That no feasible solution vector can assign any higher value 
to T, then follows immediately from the definition of a 
Lagrangean function i.e. for feasible solutions the value of 
the objective function does not exceed that of the Lagrangean. 

Convexity of the Lagrangean throughout the coordinate space is 
not, however a necessary condition for a constrained maximum, 
certainly not if the term maximum includes local maxima. (see 
also the example in section 15.3). 

To derive necessary and sufficient conditions we must analyze 
the possibility that the quadratic form in (15.5.4) is 
restricted to non-negative values for those vectors ~x which 
respect the side-conditions. 

To this purpose we describe any vector ~x as 

~ x = A v + cS.s. (15.5.5) 

where v is required to satisfy (for all i) 

[ df. ]' __ 1 (x*) v 
dX - - o (15.5.6) 

and therefore, if x 
also, 

x* satisfies the first order conditions, 

o (15.5.7) 

The presence of the scalars A and cS permits us to normalize 
v and .s., requiring: 

v' v = 1 ) 
) 

and ) (15.5.8) 
) 

.s.' .s. 1 ) 
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It will be noted that, in the absence of any restriction on 0, 
or on the relative values of the elements of q (nor for that 
matter, so far on A), no requirement on ~x has so far been 
imposed. 

To test whether x = x* is optimal, we now require that q does 
not satisfy the equi~alent of (15.5.7), and that both A and ° 
approach zero, not both of them actually being zero. 
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These conditions make AV + oq equivalent to E ~ x # 0 as used 
in (15.5.1) and (15.5.2)~ (The-difference between-the condition 
E > 0 and A # 0 or ° # 0 is immaterial as no restriction on the 
signs of ~x or of v and q has been put. The condition that q is 
not merely-another-vector v is not actually necessary but -
restricts the substantial case ° = 0, to the formal case ° O. 

We now re-formulate the condition for a local maximum by 
substituting AV + oq for E ~ x in (15.5.1) and (15.5.2) and 
putting the quadratic-approximation used in (15.5.3). x x* 
is a strict local maximum, if 
either: 

~T (~: (~*))' (Av + oS) + 4 (A~ + oS)' [:~~(~*) 1 (A~ + e.g) < 0 

or 

M. 
1 

(15.5.9) 

<If. 
(ax 1 (~*)) , (A~ + os.) + 4 (A~ + 

(some i) 
(15.5.10) 

applies for all v and q satisfying (15.5.6) and (15.5.8), but q 
not satisfying the equivalent of (15.5.6) with both A and ° -
approaching zero (but at least one of them not actually being 
zero). 

By the first-order conditions (15.5.9) and (15.5.10) 
reduce to (15.5.11) and (15.5.12) 

x x* is a local maximum, if 

/1T (~: (~*))' os. + 4 (A~ + os.) , [-:~: (~*) J (A~ + os.) < 0 

(lS.5.U) 
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or 
af. 
(--~ (x~'»' o_q + ! (A_v + ax -

(some i) 

CHAPTER XV 

(15.5.12) 

applies for all ~ and ~ satisfying (15.5.6) and (15.5.8), q 
not satisfying the equivalent of (15.5.6), A and 0 both 
approaching zero, but at least one of them not actually being 
zero. 

These conditions may also be formulated equivalently, by their 
negation: 

and 

x x* is not a (strict) local maximum if 

M. 
~ 

af. 
~ (--(x*»'oq + !(A_V ax - -

(all i) 

+ oq) > 0 

(15.5.13) 

(15.5.14) 

applies for some v and ~ satisfying (15.5.6) and (15.5.8) A and 
o both approaching zero, not both of them actually being zero. 

Note that this definition does not accept non-unique local 
maxima where the solution value is the same when going for some 
length along a combination of binding restrictions, hence the 
word strict local maximum. 

We now first of all have the following 

Theorem (corner theorem) 

If all functions are anti-convex (the objective function as well 
as the restricting functions, the matrix 

ra~ (x*) 
[ax - J 

may be required to be square, of the same order as the number 
of elements of ~ (counting non-negativity restrictions as 
explicit restricting functions), and non-singular. 
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Proof 

For 0 = 0, A I 0 (15.5.11) and (15.5.12) cannot be satisfied if 
all the quadratic forms are positive semi-definite. Therefore 
the assumption that x = x* is the optimum implies that the set 
of non-zero vectors v satisfying (15.5.6) is empty. 

q.e.d. 
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(N.B. The words "may be required" relate to the possibility that 
more than n restrictions are binding on the optimum solution.) 

The reader will note that the familiar LP situation, where we 
only need to investigate the corners of the feasible space 
area, is covered by this theorem. 

On the other hand, if the solution is not ~n a corner we have 
the following 

Lemma 

If x = x j , satisfies the first order conditions then 

['-' (,*)1 ax - q > 0 

implies 

er dX (~*)J ' 3. < 0 

Proof 

By the first order condition [~.i (~*)], may be expressed as 

t;~ ("')] , --E' t:! (",)] , from which the result, given the 

non-negat i vi t y of both E' and [:! (",)] q. 

q.e.d. 

Therefore except ~n the excluded trivial case that q is in 
fact another vector v, the negative formulation of the 
definition of a local maximum (15.5.13) and (15.5.14) can only 
be met in the case of a non-zero contribution of a quadratic 
form. 
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However, if A approaches zero, we can only assume that (15.5.13) 
and (15.5.14) are met on account of a non-zero quadratic form 
(and violated if a quadratic form is deleted) if the ratio 
6/A also app~oaches (or becomes) zero. 

Therefore a necessary condition for non-optimality ~s that (for 
6 = 0) 

i'lL = ~ v' 

for some v satisfying (15.5.6). 

Conversely for 6 = 0 the positive formulation (15.5.11) and 
(15.5.12) shows that 

[
a 2L / 1 

i'lL = ~ v' --- (x*) - 2 -a x 
v < 0 

to hold for all v satisfying (15.5.6) is a necessary condition 
for optimality. The latter condition has therefore been shown 
to be both necessary and sufficient for optimality. 

It is stated here without further proof that one may normally 
assume that 

i'lL = ! v' ~a2L 2 _ 2 
a x 

for all v satisfying (15.5.6) is a necessary (and normally 
sufficient) condition for a local maximum without the word 
"strict" added to it. Complications with non-zero third higher 
order derivative may, however, arise. 

Example l5.5c 

(Of the constrained second order conditions) 

Maximise 

Subject to (xl - 10) (x2 - 10) > 4 

In this problem, the objective function is anti-convex, and the 
one non-linear restriction is peripherally convex in the 
xl ~ 10, x 2 ~ 10 domain. 
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Graphical analysis (the actual drawing is left to the reader; 
the non-linear restriction is a hyperpo1a with rectangular 
axes Xl = 10, and x 2 = 10, the objective function is the 
(square of) the distance from the origin) indicates that the 
optimum is Xl = x2 = 8. 

This is obviously a method which is not generally available in 
the n-dimentiona1 case, and we seek algebraic confirmation. 

We develop the Lagrangean 

2 2 
L = Xl + x2 + P1 «xl - 10)(x2 - 10) - 4) 

The zero valued multipliers associated with the amply fulfilled 
linear restrictions have been left out from this expression 
already. 

The first order conditions are 

<lL 
aX1 

aL 
aX2 = 2x2 + P1 (xl - 10) 

8 > 0) 

o (x2 = 8 > 0) 

and we solve the multiplier as P1 = 8. 

The Lagrangean may now be evaluated numerically as 

2 2 
L = Xl + x2 + 8 «xl - 10) (x2 - 10) - 4) 

and the associated matrix of second order derivatives as 

t:~;] 
This is an indefinite matrix. To verify whether or not it is 
associated with a constrained maximum, we need to define the 
set of admissable vectors v to figure in (15.5.6). 

The linear approximation of the side conditions at Xl 
is 

- 2 dx - 2 dx = 0 1 2 

i.e. can only be satisfied if the changes in Xl and x2 are of 
the same absolute value but opposite sign. 

8 
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We evaluate the quadratic form as 

[-2 

and conclude that xl = 8, x2 = 8 is indeed a constrained (local) 
maximum. Note however, that we cannot by this calculation alone 
deduce that it is' the global maximum: 

f the restrictions on xl and x2 separately are replaced by 
xl ~ 20, x2 ~ 20, the global optimum is xl = x2 = 20, but the 
local maximum at x = x 2 = 8 is not affected by such a 
re-definition of t~e problem, it still satisfies the conditions 
for a constrained local maximum. 

Before finalizing this section, it is useful to mention an 
equivalent second order condition for a constrained local 
maximum. There is actually an older tradition in analysis and 
mathematical economics (see for example P.A. Samuelson (32] 
pp 61-69), which tends to formulate the second order conditions 
in terms of determinants rather than quadratic forms. 

To that purpose we form the composite matrix 

32L 3f 
(- -=) I 

32x 3x 

M 
3f 

3x 

The second order condition then relates to the principal minors 
(= determinants of square diagonal blocks) of M, insofar as the 
corresponding minor-matrices include the zero bottom righthand 
block. The second order condition for a constrained maximum 
then amounts to the non-negativity of each of these principal 
minors including IMI itself. 

For a unique maximum we may also require IMI > 0. 
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Example 

Maximise T = Xl' x 2 

Subject to xl + x 2 ~ 10 (xl ,x2 ~ 0) 

This problem has an optimum of xl = x2 = 5, with PI = 5. 

The corresponding matrix M for that example is as follows: 

and the second order condition 1S verified as follows: 

IMI 2 > o. 

Apart from the trivial case of the 3,3 element (and in 
general the bottom righthand block itself) which obviously 
gives rise to a zero principal minor, M has 5 principal 
minors viz: the 1,1 diagonal element, the 2,2 diagonal element 
the determinant of top lefthand block [_ a~LI = [ 0 -11 

a ~ -1 0 

and the blocks which arise from deleting the first column and 
row, and similarly the second column and row. The first three 
of these do not count, as their minor matrices do not include 
the bottom righthand element. 

The remaining relevant minors are: 

HI 1 1-: :1 , 1 > 0, and 

1-: 
1 

M2 2 = , 
0 

1 > 0, 

Confirming that xl = x 2 = 5 is a local maX1mum. 

Note that we do not require IM331 1- :~~I > 0 as indeed, -

not the case. Such a condition would imply positive semi

definitene" of [- :::1 (. negative ,emi-definitene" of 

is 

395 



396 CHAPTER XV 

[:::] , the Lagrangean to be convex throughout the coordinate 

space, that would be a too strong condition. We also observe 
that the stated condition becomes trivial in the case of a 
corner solution. If [~~] is square and non-singular, I MI is 

2 

evaluated as IMI = I~! I, and all the relevant minors vanish 

on account of the block triangular structure of the minor 
matrix. 

A proof of the equivalence between the determinantal condition 
and the one on the constrained quadratic form may be obtained by 
means of analyzing the possible pivots which might be applied to 
invert M. (Readers who might wish to derive this proof may find 
it helpful to re-read sections 5.8, 14.4 and 14.6, and to read 
section 16.6 before pursuing this point.) 

Exercise l5.5.a 

The following problem is formulated: 

Maximise 

Subject to 

2 
T = xl + xl x2 + x2 

4xl + xl x2 2.. 18 

(xl' x2 ~ 0) 

It is suggested that xl = 3, x2 = 2 is the optimum solution of 
this problem, or at least a constrained local maximum. 

Verify the first and second order conditions, i.e. whether 
this is so. 

(Answer l5.5.a at the end of the chapter) 
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15.6 Non-linear duality 

In this section we discuss a t~eorem which is originally due to 
Dantzig, Eisenberg and Cottle (9J , and is reported here on the 
authority of A. Whinston. [40] 

To conform with presentation conventions in this book, the 
theorem has been re-formulated. These presentation conventions 
require, inter alia, 

a) that the original problem (i.e. the "primal") problem is a 
maximisation problem, and that 

b) the specified primal variables are indicated as ~, and the 
specified dual variables are indicated as ~. 

We put the usual mathematical programming problem, as follows: 

Maximise 

T = T (x) 

Subject to 

f. (x) > 0 
1 - -

(x ~ 0) 

(i 1, 2 ....... m) 

The associated Lagrangean expression therefore is: 

m 
T (x) + L: p. f. (x) 

i=l 1 1-

We now formulate this primal problem as 

Maximise 

Subject to 

dL > 0 
0E. -

(x > 0, ~ > 0) 

(14.1.1) 

(14.1.2) 

(15.6.1) 

(15.6.2) 

(15.6.3) 

397 



398 CHAPTER XV 

dL 
This is the same programming problem, because is the vector 
of function-values f.(x) dE 

1 -

f (15.6.4) 

Hence the term -p' dL in (15. .2) reduces the Lagrangean to 
- dE 

the objective function 

T (x) 

and (15.6.3) are simply the primal requirements 

f > 0 

which is (14.1.2) 1n vector notation. 

The dual problem then is 

Minimise 

jl = L(~, E) 

Subject to 

dL < 0 
dX -

- x' 

(~ 2. 0, E 2. 0) 

dL 
dX 

(15.6.5) 

(15.6.6) 

(15.6.7) 

(15.6.8) 

The theorem then states that the optima of these two problems 
are characterized by (the complementary slackness conditions) 

dL dL 
_p' - = ° and x' dE ax 0, with the same optimal solution vectors 

~, E figuring 1n both problems. 
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Answer 15.5a 

We first form the Lagrangean 

The first order conditions are 

3 > 0) 

o 2 > 0) 

Therefore, optimality of this solution requires (by the 
condition on x 2): PI = (xl+l)/xl = 4/3 = 1 1/3 
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The solution xl = 3, x 2 = 2, PI = 1 1/3 also satisfies the 
condition on xl' 

2xl + x2 - 4Pl - P l x2 = 6 + 2 - 16/3 - 8/3 = 0 

therefore the first order conditions are satisfied 

We now evaluate the Lagrangean numerically as 

and the matrix of second order derivatives as 

[ 2 -1/6J 

-1/6 -

and the side-conditon o as 

This condition is satisfied only by changes in xl and x2 
being in the proportions vector ~' = [1 -2J. 

d 2L 
The quadratic form~' ~(~*) ~ is now evaluated as: 

-2J 
[2 1/3 [ l 

-1/6J 11 
-2 

showing non-optimality of xl 3, x2 = 2. 

2 2/3 > 0 
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QUADRATIC PROGRAMMING WITH LINEAR RESTRICTIONS 

16.1 Statement of the Problem 

Let x be an n by 1 column vector of unknown variables. w' a 1 by 
n row-vector of known linear preference coefficients, D-a known 
matrix of quadratic preference coefficients. Let T be a scalar 
variable indicating the value of the preference-function, or 
objective function. 

A 8eneral quadratic objective function lS then specified as 

T = w' X + ~ ~' D~ (16.1.1) 

where the inner product w'x is the linear component, the 
quadratic form ~ x' Dx the-non-linear component. Following 
section 14.4, we assume that D is symmetric. If we had originally 
specified a non-symmetric preference matrix we may always replace 
this by a symmetric one, by takin8 the avera8e between the matrix 
itself and its transpose. For example x 1 2 + 2x l x 2 + x 2 2 may be 
written as 

D 

Generally, 

[: J [::1 

[: J [::1 

or as 

and we might as well write 

x' D x = ~' UD + ~D'J~ (16.1.2) 

lS true by the 
To ensure that 
we may (or may 

x' D x < 

for all x 

0 

definition of a quadratic form. (see section 14.4). 
a first-order solution actually is the optimum, 
not) require that D is negative semi-definite. 

(16.1.3) 
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This requirement of negative semi-definiteness implies that we 
are dealing with a convex preference function. Some implications 
of relaxing the requirement of negative semi-definiteness will 
be discussed at a later stage. 

The algorithm to be discussed in this chapter, deals with a 
quadratic objective function, but only with linear side
conditions. These linear side-conditions are the usual block of 
inequalities, similar to the restrictions in linear programming. 

A x < b (7.2.2) 

and the specified programming problem is 

Maximise 

T = WI X + Xl D x (16.1.1) 

Subject to 

A x < b (7.2.2) 

In (7.2.2), A will be an m by n matrix of known coefficients, b 
an m by 1 vector of known constants, and we normally assume 
x > O. 

16.2 The Optimality Conditions 

Following Dantzig [8] , section 2,4.4, Van de Panne and 
Whinston [36], and Cottle [6J , we first state the optimality 
conditions. An m by 1 vector of Lagrangean multipliers is 
denoted by E and the Lagrangean expression is: 

L = W I X + t~ I D~ + E" (~- A~) (16.2.1) 

The necessary first-order conditions are then, besides (7.2.2) 
and the complementary slackness condition 

or, 

ClL 
Clx 

WI + Xl D - EIA < 0 

presented column-wise as a block-inequality 

Dx - AlE 2.. - ~ 

(16.2.2) 

(16.2.3) 
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We will assume that x is restricted to non-negative values only. 

The quadratic programming problem can now be presented in 
tabular form. We seek a permissable solution to the combined 
system. 

Dx - A'E ~ - w ) (16.2.3) 
) x > 0, E ~ 0 

Ax < b) (7.2.2) 

The solution to this system is also required to satisfy the 
remainder of the Kuhn-Tucker conditions, i.e. the complementary 
slackness condition that an element of p, a dual variable, is 
only allowed to attain a non-zero value-if the corresponding 
primal restriction in (7.2.2) is exactly binding, and an element 
of x is only allowed to attain a non-zero value if the 
corresponding dual restriction in (16.2.3) is binding. 

At this point it is useful to again discuss the second-order 
conditions for a constrained maximum. 

The requirement that D is negative semi-definite combined with 
the necessary first-order conditions, is a sufficient condition 
to show that a particular vector x corresponds to a maximum. 
But this condition is not a necessary condition. 

Consider the following example 

Maximise T xl . x 2 

Subject to xl + x 2 < 10 

(xl , x 2 > 0) 
-

problem has a unique optimal and feasible solution, 

Yet D 

[1 

It is 

x 2 = 5. At this point xl • x2 = 25, whereas for example 
4, x 2 = 6 yields xl • x 2 = 24. 

[: ~l 
is not a ne8ative semi-definite matrix 

lJ [: ~l [:] = 2 > 0 

an indefinite quadratic form. 

since 
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However, the only variation in the xl' x2 vector which we should 
investigate is [-iJ i.e. xl increasing at the cost of x 2 or 

vice-versa; other directions violate the binding side-condition. 

Under that side-condition. the quadratic form [.x, hx2] [: ~] [::~ 
in indeed negative definite. 

[1 -lJ 
[: ~] [J -1 < 0 

or, if the sign is reversed (x2 increasing at the cost of xl)' 

[-1 lJ [: ~] [-J -1 < 0 

To avoid describing local minima or constrained saddle-points, 
we introduce the notion of subspace convexity. 

The existence of an optimal solution to the problem as a whole 
implies the existence of an optimal solution to the sub-problem. 

Maximise (16.2.4) 

Subject to ~l (16.2.5) 

where ~l is the vector of variables which the optimal solution 
describes as being non-zero, ~i the cor~esponding vector of 
linear preference coefficients, Dll toe corresponding block of 
quadratic preference coefficients, All the intersection of the 
block-row which describes the binding restrictions, with the 
block column which relates to ~l' while ~l are the corresponding 
elements of b. 

Now refer to section 15.5 and note that the second-order 
derivatives of the Lagrangean are (with linear side-conditions), 
simply those of the objective function. 

The second order conditions for a constrained maximum of this sub
problem therefore are 

(16.2.6) 
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for all ~l satisfying 

(16.2.7) 

We will express this condition by saying that the objective 
function is convex within the All ~l = ~l subspace. 

In anticipation of finding an optimal solution which satisfies 
this condition, we impose it also on each current solution, at 
least as far as this concerns solutions for which the 
complementary slackness conditions has been verified. Moreover, 
it will be shown in section 16.6, that once we require subspace 
convexity, the existence of an invertable block-pivot also 
imples the more stringent condition of strict subspace convexity. 

~i Dll ~l < 0, 

for all ~l # 0, satisfying 

(the objective function is strictly convex within the 
All ~l = ~l subspace). 

At this point it is useful to put the second-order condition 
for a constrained maximum, as developed in section 15.5, in 
the form in which this condition appears in the case of a 
quadratic objective function and linear side-conditions. This 
permits simpler proofs. 

Theorem 

Let 
w be an n-dimensional vector of known coefficients, D a square 
and symmetric matrix of known coefficients, D a square and 
symmetric matrix of known coefficients, A an m by n matrix of 
known coefficients, and b an m by 1 vector of known coefficients. 

Then, . 
regardless of the content of the vector b 

T(X) = w'x + !~'Dx 

attains a finite maximum in the Ax 
only if 

v'Dv < 0 

~s true for all v satisfying Av o. 

b subspace, 
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Proof 

If a finite constrained maximum exists, we may express any 
actual vector x as 

x x* + v = x* + tJ.x (16.2.8) 

where x* is a vector at which the constrained maximum ~s 
attained. 

Furthermore, if maximum exists, we may form the Lagrangean 
expression 

L = w'x + b'D~ + .£' (.t-A~) (16.2.9) 

407 

where on account of the equation-nature of the side-restriction, 
p need not be non-negative. We may then (in the absence of 
non-negativity restrictions) require, without regard to 
complementary slackness 

dL 
--(x*) = w + Dx* - A'_p = 0 
dX - -

16.2.10) 

We now substitute x* + v for x by (16.2.8) into (16.2.9), to 
obtain 

+ (~' + ~*'D - .£'A')~ + !~'D~ (16.2.11) 

However on account of the first-order-conditions (16.2.10), and 
the assumed equality between Ax* and b (16.2.11) reduces to 

L = T(X*) + !~'Dv (16.2.12) 

Since for any Av ~ 0 the side-conditions remain satisfied and 
the value of L remains equal to T, the result follows. 
q.e.d. 

N.B. : 
Recapitulation of the similar theorem ~n the case of non-linear 
side-conditions, as stated in section 15.5: 

A constrained maximum exists, only if 

~'[~~L(~*)J ~.2. 0 
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is true for all ~ satisfying 

[ai.(x*)l v = 0 
[ax - j-
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The theorem stated here, relating to linear side-conditions 
is included in that theorem as a special case 

[~~LJ = [~~T ] = D; -A. 

As in the case of convexity throughout the coordinate space the 
existence of a maximum implies (subspace-)convexity but 
(subspace-) convexity does not imply the existence of a maX1mum. 

Example 

Maximise 

Subject to 

The objective function is convex throughout the coordinate 
space, therefore also convex in the xl=xZ subspace, but there 
is no finite maximum. 

Just as in the case of convexity throughout the coordinate 
space (see sect ion 14.4) a stronger theorem in the if and only 
if form applies in the presence of strict convexity. 

There is, however, one obvious caveat, relating to non
emptiness. We must begin by assuming that the set of vectors 
satisfying Ax = b is not an empty set. This point is attended 
to by putting additional conditions on the order and rank of A. 

Theorem 

Let A be an m by n matrix of rank m (m < n), while b is an 
m-dimensional vector,D an n by n symmetric matrix, and w an 
n-dimensional vector. 

Then 

attains a unique maximum in the Ax 
if and only if 

v'Dv < 0 

is true for all v satisfying Av 

b subspace 

0, and v f o. 
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Proof 

We first state and prove the following lemma 

The assumed 

v'Dv < 0 

for all v ~ 0 satisfying Av = 0 
implies the non-singularity of 

M [: I -A'] 
Proof (of the lemma) 

Assume by contra-assumption that for some [~' ,~'J ,; 0, we have 

Dv - A'z 

Av 

o ) 
) 

o ) 
(16.2.13) 

For [y' ,~'J ,; 0, v 
block-row 

0, (16.2.13) implies, by its first 

A'z = 0 

and therefore for m < n 
a contradiction of the assumed full rank of A. 
We must therefore assume v I o. 

From (16.2.13) as a whole we then obtain 

= v'Dv + z'Av - v'Az = v'Dv = 0 

contradicting the assumed strict subspace-convexity, in 
combination with the second block-row of (16.2.13), 

Therefore we must assume (16.2.13) to be untrue for any 
[~' ,~'J ,; o. 
q.e.d. for the lemma. 
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The lemma proves that the composite system 

Dx* - A'E 

Ax* 

-w ) 
) 

b ) 
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(16.2.14) 

can be solved by inversion, yielding a solution to (16.2.8). 

Therefore even if we do not initially assume that x = x* 
is an optimum, this is proved by (16.2.12); and in-the-case of 
strict subspace-convexity, x x* is shown to be a unique 
constrained max~mum. 
q.e.d. 

16.3 Outline of the Simplex Algorithm for Quadratic Programming 

The algorithm discussed in this section is essentially 
Cottle's [6) ,hut features which are more akin to Van de Panne 
add Whinston [36J , (37] ,are introduced later in this 
chapter. i.e. section 16.9 (flying through dual restrictions), 
and section 16.11 (the introduction of a separate Phase I). 

A difference between the algorithm offered here and the ones 
suggested by these authors is that they include unit vectors ~n 

their tableaux, while the "shortened" tableau discussed in 
section 8.8 is used here, and indeed, even more condensed 
tableau-presentations will be introduced later in this chapter. 

The algorithm involves the use of a tableau which is rather 
similar to a linear programming tableau, but the rules for 
choosing pivots, especially the rule for choosing the pivotal 
column, are different from those which apply in the case of 
linear programming. 

In a quadratic programming tableau the objective function row 
is needed only for calculating the solution value, not for search 
operations. We "present" the quadratic programming tableau as a 
linear programming problem, as follows: 

Maximise 

]l = w' x + b' E (16.3.1) 
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Subj ect to 

Dx - A'E.~-w ) (16.Z.3) 
) x':::" 0, E. > 0 

Ax < b ) (7.Z.Z) 

It will be shown in section 16.5, that, for solutions which 
satisfy complementary slackness condition, the value of this 
pseudo objective function is twice that of the specified 
objective function, and we shall write ZT instead of ~. 
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We write the above system in tabular form, representing an 
initial tableau of the trivial basis. We use the "shortened" 
presentation of the simplex tableau as discussed for linear 
programming in section 8.8, and tabulate the system as follows: 

Name x E. < Value 
- -

d D -A' - w - -
.----

s A b - -

ZT - w' -b' 0 
-

Here d are the dual slack-variables, associated with (16.Z.3) 
and ~-are the primal slack-variables associated with (7.Z.Z). 

The trivial basis is d = -wand s = b. 

The requirement of complementary slackness is represented 
by the name-codes of the variables. The elements of x are 
numbered 1 to n, the complementary dual slacks, the elements 
of d from -1 to -no The elements of s are numbered from 1000 to 
1000 + m, the associated dual variables from -1000 to -1000 - m. 

Example 

Minimise 

i. e. Maximise -xl 

Subject to xl + ZxZ .:::.. 3 

(xl' Xz .:::.. 0) 

(i.e. -xl - ZxZ ~ -3) 

Formulate the Lagrangean expression 
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and obtain the dual requirements 

ClL 

Cl~2 
- 1 - 2X2 + 2p < 0 1-

CHAPTER X\{ 

or in the tabular presentation with all inequalities in the 
< form: 

NAME ! 

TABLEAU 16.3 A 

THE SET-UP TABLEAU OF A QUA
DRATIC PROGRAMMING PROBLEM. 

! I X I X 2 P I II VAl.UE 

! CODE !! 2 -1001 II 

D 1 
D 2 
S I 

2T 

-I !! 
-2 !! 

100 I !! 

I! 

-2 

-I 
-2 
-2 

I 
2 

3 

I I 1 
! I 1 
II -3 

II 

The complementary slackness condition is now given as not 
permitting two names of the same absolute value to be in the 
list of basic variables at the same time. 

If xl (name-code 1) enters the basis, then· d l (name-code-l), 
being the slack in the dual restriction which refers to xl' has 
to leave. Likewise PI (name-code -1001) is not allowed in the 
list of basic variables, unless sl' the slack variable 
associated with the corresponding primal restriction (name
code 1001) leaves the list of basic variables. 

The methods for actually finding a solution permits some tableaux 
to be "not in standard form", in which case one name is in the 
list of basic variables together with its complementary name. 
(The complementary slackness condition is then temporarily 
violated.) 

The algorithm begins with selecting a "badname" " a variable 
which we wish to eliminate from the list of basic variables. 
(Or to use Cottle's terminology, a distinguished variable.) 
We initially assume that badname-variable selection is according 
to _the rule of the steepest ascent, i.e. we select the name 
of the variable for which the most negative entry occurs on the 
right-hand side. In our example this would be badname = 1001, 
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i.e. we seek to eliminate the (negative valued) slack of the 
first primal restriction. The elimination of the badname
variable is anticipated, by introducing the complementary name 
in the list of basic variables. Hoping to eliminate sl' we 
introduce the dual variable Pl. The complementary var~able 
associated with the selected badname variable, is known as the 
driving variable. 

The choice of the pivotal row is more or less by the same 
method as in linear programming, i.e. by the rule of the 
smallest quotient. However, there are differences with that 
rule, as known from LP. We accept a negative pivot in the 
badname-variable row, but not in any other row. 

NAME 

D 1 
D 2 
5 I 

2T 

TABLEAU 16.3 B 

SET-UP TABLEAU OF A QUADRATIC PRO
GRAMMING ROBLEM. WITH PIVOT-MARKING. 

! ! X 1 X 2 

I CODE I! 2 

-I I I -2 
-2 I I -2 

1 001 I I -1 -2 

II 

PI! I VALUE 

-1001 II 

1 

® 

3 

! ! 1 
I ! 1 
I! -3 

! I 

In case of equal quotients, the badname-row has priority over 
another row in which an equal quotient might occur. Also, 
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quite apart from degeneracy, there are restrictions on the 
acceptability of dual variables as leaving variables; sometimes 
they are allowed to become negative instead. We shall need to 
come back to this question, but at this stage, we will illustrate 
the algorithm, on the assumption, that the rule of the smallest 
quo:ient is applied in the usual way. We find d 2 as leaving 
var~able, and develop' tableau l6.3c. 

TABLEAU 16.3 C 

QP TABLEAU. AFTER ONE STEP. NON
STANDARD FORM. WITH NEW PIVOT-MARKING. 

NAME ! ! I 

! CODE II 

D 1 -I I! 
P 1 !-1001" 
51 !IOOII! 

2T I! 

X 1 

-2 

- I 

X 2 

2 

CD 
-1 
-2 

4 

D 2 II VALUE 

-2 I! 

-0.50 II 0.50 
0.50 II 0.50 

! ! -3 

-1.50 II -1.50 
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Tableau l6.3c is not in standard form, i.e. fails to satisfy 
the complementary slackness requirements. Since d1 (name-code -1) 
is a basic variable, xl is excluded as new pivot column, or we 
would risk a second pair of alternative variables. 

Further violation of the complementary slackness requirement 
needs to be avoided, and we introduce the complementary name 
to the just eliminated d2 variable. (Re-introduction of d2 
as basic variable would merely reverse the previous step.) We 
would wish to get back to standard form. 

Since d2 (name-code -2) was just eliminated, x 2 (name-code 2) 
is the new variable to enter the list of basic variables. The 
new pivot-row is the d l row, (by the rule of the smallest 
quotient). (That pivot was already marked in tableau l6.3c. The 
new tableau is: 

NAME 

TABL.EAU 16.3 D 

THE SAME QP PROBL.EM. AFTER TWO 
STEPS. STIL.L. NOT BACK IN STAN
DARD FORM. WITH NEW PIVOT MARKED. 

II X 1 D 1 D 2 II VALUE 
----------------------------------------------

I CODE II -1 -2 II 
----------------------------------------------
X 2 
P 1 
S 1 

2 II -2 
!-1001 I! -2 
11001 !I @ 

1 
1 
2 

-O.SO II 
II 

-1 I! 

0.50 
1 

-2 

----------------------------------------------
2T II 9 0.50 II -3.50 

Note that we have two distinct rules for selecting the incoming 
variable. In standard form tableaux we select the driving 
variable, otherwise column-selection is by the complementarity 
rule which says that the incoming variable is the complementary 
variable associated with the just-eliminated variable. 

In tableau l6.3d the complementary variable to the just
eliminated dl variable is Xl. The Xl column i~dicates 3 ratios, 
of which both !/-2 in the x2 row, and 1/-2 in the PI row are of 
the wrong sign. Therefore, -2/-5 in the sl row indicates the 
pivot-row. Note the acceptance of a negative pivot, in the 
badname row. We refuse negative pivots in other rows, "flying 
through" violated restrictions instead. 

The sl'x element has been marked in tableau I6.3d. The step 
is made lnd the next tableau is tableau l6.3e. 

The tableau is now back in standard fbrm, and the right-hand 
side is non-negative. Therefore Xl = 2/3, x2 = 1 3/10 is the 
optimum. 
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TABLEAU 16.3 E 

THE SAME QP PROBLEM. AFTER THREE 
STEPS. NOW BACK IN STANDARD FORM. 
THIS ALSO BEING THE OPTIMUM. 

NAME ! ! lSI D 1 D 2 I! VALUE 

I CODE II 1 001 -1 -2 " ----------------------------------------------
X 2 2 I! -0.40 0.20 -0.10 II 1 .30 
P 1 ! - 1001 ! ! -0.40 0.20 0.40 I! 1.80 
X 1 I 1 II -0.20 -0.40 0.20 II 0.40 

2T !I 1.80 -0.40 -1.30" -7.10 

Exercise l6.3a 

Consider the quadratic programming problem 

Maximise 

Subject to 2xl + x 2 _~ 6 

(xl ,x2 ~ 0) 
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Solve the problem by applying the algorithm, as outlined so far. 

To verify the correctness of your results, also map the one 
restriction and draw the (x l -5)2 + (X2-5)2 = 16.2 circle, 
(~2 ~ 4.02), which is the optimal iso-objective function line. 

Exercise l6.3b 

If you had any difficulty in making the actual steps for this qp 
problem, (as distinct from sorting out which steps to mak~ it's 
time you refresh your competence at tableau-manipulation. 

You should: 
1) For each tableau developed in this section (which are all 

shortened tableaux), write the corresponding full explicit 
tableau, with the unit vectors. 

2) For tableaux 16.3a, l6.3c and l6.3d, write the corresponding 
systems of equations explicitly. 

16.4 The Symmetry Property of the Tableau 1n its Standard Form 

Some properties of the tableau are more clearly illustrated if 
we re-order the tableau according to the name-codes of the 
various columns and rows. 
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We put each column in the position indicated by a name of the 
same absolute value in the trivial basis, and re-order the rows 
on the same principle (see tableau l6.4a). 

NAME 

TAB1.EAU 16.4 A 

THE OPTIMUM TAB1.EAU OF THE 
QP PROB1.EM FROM SECTION 16.3. 
RE-ORDERED ACCORDING TO CODES. 

II 01 SIll VA1.UE --------------------------------------------
I CODE II -1 -2 1001 " --------------------------------------------

X 1 
X 2 
P 1 

1 " -0.40 
I 2" 0 .20 
!-1001" 0.20 

0.20 
-0.10 

0.40 

-0.20 II 
-0.40 " 
-0.40 " 

0.40 
1.30 
1.80 --------------------------------------------

2T "-0.40 -1.30 1.80 If -7.10 

Note the semi-symmetry property. If the signs were suppressed, 
the tableau would be a symmetric matrix. 

To describe the signs, it is useful to classify all the names in 
the tableau in two groups, primal names and dual names. Primal 
names are the positive names corresponding to the elements of x 
and s with positive name-codes, as well as the value-column. 

Dual names are the ones corresponding to elements of p and i, 
with negative name-codes, as well as the quasi objectIve 
function. 

It appears that a cell of the tableau, where the row and the 
column belong to the same class, has the same absolute value 
but the opposite sign as the symmetric entry across the 
diagonal. If the row- and column-names belong to different 
classes, there is full symmetry. 

The bottom left-hand block with dual row-names p and ~ and dual 
column-names dl and d2 is symmetric but opposite in sign to the 
top right-hand block with primal row-names xl and xz' the primal 
column-names, sl and the value column. 

The rest of the tableau (in this small example only the diagonal 
itself) is fully symmetric. The rule applies in that trivial case 
as well. Thus the rowname of the top left-hand cell is 1, the 
corresponding column-name is -1, and the cell is its own full 
symmetry. 
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This symmetry property is systematic as we first show for the 
(quasi) target-row and the value-column. 

Consider the dual of the linear problem formulated in Section 
16.3. This dual problem is: 

Maximise 

w' Z - b ' z (16.4.1) 

Subject to 

- DZ - A' z < - w (16.4.2) 

and 

(16.4.3) 

if ~, E is a solution to the primal problem, then 

x (16.4.4) 

and 

(16.4.5) 
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will be a solution of the dual problem, as may be seen from 
comparing (16.4.2) with (16.2.3) and (16.4.3) with (7.2.2). 
(That "dual" solution will not usually be a non-negative vector, 
but this does not concern us here). 

We may not generally require that the target-row indicates the 
same combination of binding restrictions for the dual, as does 
the value column for the primal. 

But the complementary slackness condition, ~.e. the requirement 
of standard form, implies that in the case at hand. Therefore 
we will find y as defined by (16.4.4) and z as defined by 
(16.4.5) in the target-row, when ever the tableau is in standard 
form. 

For elements of the pivot-inverse, we also have a more direct 
proof. 

Consider the symmetric matrix 

S (16.4.6) 
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which is the block-pivot with the sign of the second block
column changed round. 

The inverse of this matrix is obviously an entirely symmetric 
matrix, and we find the inverse of the block-pivot by changing 
the sign of the bottom block-row once more. 

Denote 

C 
-1 

S 

with associated 

~l 

£.1 

and the correct 

xl 

PI 

name-codes 

~l ~l 

[Cll 
CZl 

C12] 
C22 

inverse of the block-pivot is 

~l ~l 

[Cll 
-CZl 

C12J 
-C2Z 

The proof can in fact be generalized to the full tableau. The 
semi-symmetric matrix associated with the set-up tableau would 
in that case be an extended basis-matrix, the difference with 
the usual basis-matrix being the addition of two - I block-rows 
representing the non-negatively restrictions. When these 
restrictions are explicitly written as x >:0 and p>o, these 
vectors match the unit vectors which represent d~al and primal 
slack variables. 

The curious sign-inversion rules now follow and may be 
recapitulated as follows. 

If the row and column name which are associated with a tableau
cell belong to the same class e.g. Pi/dj in -CZl with an 
associated cellon the other side with Xj/si in ClZ we have 
sign-inversion. 
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Inside the diagonal blocks we have cells for which the row and 
column-names belong to different classes e.g. xj/d j ~n Cll and 
Pi/si in -C22 and we have full symmetry. 

Exercise 

The optimum tableau which you should have obtained when doing 
the exercise at the end of the previous section 16.3 is given 
here in part i.e. the top right-hand part only. 

NAME 

TABLEAU 16.4 EX 

THE OPTIMUM TABLEAU OF THE 
QP EXERCISE FROM SECTION 16.3. 
FOR YOU TO COMPLETE. 

II D 1 D 2 Sill VALUE 

! CODE !! -1 -2 1001 I! 

Xl" -0010 0.20 0.40" 1.40 
X 2 2 I! 17 -0.40 0.20 I! 3.20 
P 1 !-1001" ?? 17 -0.40!l 3.60 

2T II ?? ?? II 67.60 

Find the correct entries to be placed in the bottom lefthand 
cells marked as ?? 

Do not initially refer back to section 16.3, using the symmetry 
properties explained in this section instead. 

Then afterwards compare with section 16.3 and attend to any 
corrections which may be needed in your answers to either of 
the exercises. 

16.5 The Solution Value 

Recall, from section 16.3, the linear quasi-objective function 

]J = WI X + ~' £. (16.3.1) 

We will now show that, for a solution which ~s described by a 
standard form tableau, this function indeed ~s twice the value 
of the objective function. 

We introduce equation-type equivalents of (7.2.2) and (16.2.3). 

Following what we already did for individual variables, we 
indicate the vector of primal slack variables as ~, and the dual 
slack-variables as d. Then 

Ax + S b (16.5.1) 
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is equivalent to (7.2.2), and 

D~ - A'~ + ~ = - w (16.5.2) 

is equivalent to (16.2.3). Substitute Ax + S for b into 
(16.3.1), to obtain: 

Jl = ~' ~ + x' A'~ + ~' ~ (16.5.3) 

The complementary slackness condition requires the third term 
of (16.5.3) to vanish. Substitute Dx + d + W for A'p by 
(16.5.2) into (16.5.3), and suppress the last term of (16.5.3), 
to obtain 

Jl = ~' x + x'Dx + x'd + x'w (16.5.4) 

The complementary slackness condition requires the vanishment 
of yet another term, x'd. Therefore when the tableau is in 
standard form 

Jl = ~' ~ + x'Dx + x'w = 2 w' x + x'Dx (l6~5.5) 

Comparing (16.5.5) with (16.1.1), it is clear that (when the 
tableau is in standard form) Jl = 2T is indeed correct. 

Note, however that for a non-standard form tableau, 

Jl = 2T + x'd + ~'~ (16.5.6) 

is the true relation. 

16.6 The negative diagonal 

In preparation for the next section on non-standard form 
tableaux, we develop some theorems, concerning the pivot inverse 
and its main diagonal. 

These theorems and their proofs are rather detailed and a 
summary of the main results is given here first, together with 
some earlier results, but in advance of mor~ detailed discussion. 

Our interest in this section concentrates on the d1'/x1·, x./d., ·11 
s./p., and p./s. cells of the tableau. We assume that the 
t~bl~au is o~defed accordine to the (absolute values of the) 
name codes and these cells therefore all occur on the main 
diagonal of the tableau. 

We collectively refer to them as "the diagonal cells". Note, 
however, that no properties concerning the 2T/value cell is 
stated in this section, even where 'that cell too may be written 
on the main diagonal. 
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The following properties apply 

Property 1 

If the problem is properly convex (~'D~~O for all ~), 

all conceivable pivot inverses -1 

represent constrained maxima in the All ~l = ~l subspace and 
all diagonal cells are non-positive, and the fully symmetric 
part of the tableau forms a negative semi-definite matrix. 

Property 2 
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Regardless of the definiteness or indefiniteness of D, standard 
form tableaux developed by the algorithm, describe All ~l = ~1 
subspaces, in which the more restrictive condition of strict 
convexity (~l' Dll ~l < 0 for all ~l satisfying All ~l = 0 and 
~l I 0) is satisfied. 

(A subspace is the set of points satisfying some listed 
restrictions, see section 6.4). 

In such tableaux the diagonal cells in dual variables' columns 
(x./d. and s./p. cells) are negative non-zero, except in those 
du~l ~ariabl~s,1columns in which all primal variables' row
entries are zero. 

We may in fact interpret a pos1t1ve diagonal entry as a sympton 
of non-convexity, and we say that non-convexity, if present, 
becomes manifest only in primal variables' columns. 

An essential feature of the algorithm is therefore the 
restriction of solved solution-vectors to those where the problem 
may be described as being strictly convex in the All ~l = ~l 
subspace. This restriction is not nearly as severe as the 
word convexity might suggest. 

In particular, if the objective function is anti-convex, we 
know (see section 14.7), that the optimum (if one exists, will 
be in a corner of the feasible space area. 

In that case, the set of vectors ~l' which satisfy All ~l = 0 
for ~l I 0, is an empty set, All being square and non-s1ngular. 
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Thus, if the problem is anti-convex, (the matrix D is positive 
semidefinite), the algorithm only develops solutions for which 
All is square and non-singular. 

The other obvious case where we would expect this property 
to be revealed is with a directionally convex objective function. 

For example if we seek to maximise T = - xl + xl • x , subjectto 
xl + x2 ~ 2 (xl~ x2 ~ 0), we will exchange x2 and tte one dual 
varia~le.Pl aga1nst the one side-restriction and the dual 
restr1ct10n on x2 • 

We then operate in the xl + x2 = 1 subspace and substitution 
of 2-xl. for x2 now gives T = xl - x 12 , which is a properly 
and str1ctly convex function of xl. 

We now proceed with a more detailed discussion of the theorems. 

The pivot-matrix of a quadratic programming tableau in standard 
form will be 

p [~] (16.6.1) 

Above, Dll is the block of D which corresponds to the basic 
primal variables ~l and the associated dual slacks ~l. This 
block will be square (of order nl by n l ), and symmetric, it may, 
or may not be negative (semi) definite, like the full matrix D. 
All is the intersection between the block-row AI', the rows 
of which represent binding restrictions, and the block-column 
AI' the columns of which represent basic variables. 

The block All need not be square, it can contain more columns 
than rows. 

Theorem 

Let a vertex correspond to optimal and feasible solution to 
the sub-problem. 

Maximise 

~i ~l + (16.6.2) 

Subject to 

~l (16.6.3) 
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then, irrespective of the definiteness of Dll 

the first n l leading diagonal elements of the pivot inverse 
will be non-positive. 

Proof 

Consider any e.g. the jth column of the pivot-inverse. We will 
denote the pivot inverse as Z and the jth leading column of the 
inverse is indicated as ~j. By the definition of an inverse, 
post-multiplication of P by z. yield a unit vector. 

-J 

P z. = e. 
-J -J 

(16.6.4) 

Therefore the quadratic form ~l' P ~l is evaluated as 

z.' P z. 
-J -J 

z .. 
J,J 

(16.6.5) 

However, for j < nl' ~j yie~ds a zero product with the bottom 
block-row of the p~vot-matr~x. 

(16.6.6) 

correspondingly, for j < n l , (16.6.5) reduces to 

~l,j Dll ~l,j = Zj,j (16.6.7) 

where ~l,j indicates the leading sub-vector of z., containing 
the n l elements which refer to the elements of ~i rather than 

Er 
Therefore, Zjj > 0 would contradict the second-order conditions 
for a constra~ned maximum, as discussed in section 15.5 and 
recapitulated in section 16.2. 
q.e.d. 

The one point still to be noted here, is that for certain 
columns ~l j may be a zero vector, i.e. certain dual variables 
may not affect x at all. 

423 

Otherwise, for ~l,j f 0, a top left-hand diagonal element of the 
pivot inverse is expressed as a quadratic form by (16.6.5) and 
a unique maximum is shown to imply 

z .. < 0 (16.6.8) 
JJ 

We now consider the question how we may recognise standard 
form tableaux which correspond to solutions that are properly 
and strictly convex in the Al,l ~l = ~l sub-space. 
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We postulate the existence of a symmetric ordering and 
partitioning of the pivot matrix P, as follows: 

.., 
* D*l 2 -A*' 

1,1 , 1,1 
--
* D*2,2 -A*' 

2,1 1,2 

* A~ 2 1,1 , -

for which all the diagonal blocks are square, while 
P3 1 = At 1 is square and non-singular. , , 

(16.6.9) 

This partitioning is related to the previous given by 
(16.6.1), as: 

= Dl 1 • , 

In the trivial case where no primal restriction is binding 
and P is identical to Dl 1, the third-block-row and block
column of P do not exist'at all, but otherwise the existence 
of a square and non-singular block A~ 1 is a condition for the 
invertability of P. (see Section 5.7)! 

We are, incidentally, also in a position at this point to make 
an inference concerning the number of non-zero variables in a 
QP problem. 

We know from section 5.7, that (if P is invertable) the rank 
* of Dl 1 must be at least equal to the number of columns of Al 2' 

Or, t~ put the same statement the other way round, the number' 
of non-zero variables in excess of the number of binding 
restrictions is at most equal to the rank of Dl l' , 

The following tableau-extract from the partitioned set-up 
tableau relates some notation of vectors to the partitioning 
given by(16.6.9.) 

Name * * Value ~l ~2 ~l 

d* * * -A*' * 
Dl,l Dl 2 -w -1 , 1,1 -1 

d* * * -A*' * D2 1 D2 2 -w -2 , , 1,2 -2 

A~ 1 * E.l ~l Al ,2 , 
2T -w*' 

-1 
-w*' 
-2 -b' 

-2 
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A corresponding extract from the current tableau, named T, is 
summarized as follows: 

* * Name ~l ~2 ~l 

* ~l Tl 1 , Tl 2 , Tl ,3 

* T2 1 T2 2 T2 ,3 ~2 , , 

£1 T3 ,1 T3 2 , T3 ,3 

Theorem 

A necessary and sufficient condition for P to be ass~~iated 
\vith a solution where T is strictly convex in the A x = E.l 
subspace, is that (for some ordering of the variabl~~)-l 
T2 2 is negative definite, (or else to be of zero order). , 
Proof: 

Consider the product of the two top block-rows of T, post
multiplied by the first two block-columns of p, postmultiplied 
by a vector ~~~, ~~~ (a change in the vector ~). 

(16.6.10) 

(The two matrices on the left of the left-hand side expression 
are a block-row of p-l, postmultiplied by a block-column of P, 
yielding a unit-matrix as product.) 

Within the Al 1 ~l = E.l subspace, ~~l is 
Al 1 ~~l = 0 'and the following relation 
~ ~l' wfiich obey that side-restriction. 

restricted to 
applies, for vectors 

z* -1 

z* -2 

o 

(16.6.11) 

425 
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In (16.6.11), ~~ and ~~ may be considered as arbitrary vectors. 
The abstract form T inaicates that for ~sl=O (and ~P2=O), we 

* * * *- -may interpret ~l and ~2 as -~l and -~. We therefore 
reformulate the combination of (16.6.10) and (16.6.11) as: 

Tl ,31 [-~~!] =[~.:!.>] 
T2 ,3J -~~l ~.:!.2 

o 

(16.6012) 

Note that the condition ~sl = 0 in (16.6.12) implies that 
* * -~.:!.l and ~.:!.2 obey the requirement Al,l ~.:!.l = O. 

Note also that the block [Tl,l Tl ,2l 

T2l T22J , , 
is fully symmetric by the symmetry rules. 

Therefore, for vectors I~.:!.~' ~~I which satisfy the 
Al,l ~.:!.l = 0 condition, we find the following relation: 

[~d*' ~d*'J [T -1 -2 1,1 

T2 1 , 
[~.:!.~] 
~x* 
-2 

- ~d*' ~x* - ~d*' ~x* 
-1 -1 -2 -2 

(16.6.13) 

However, ~~t, ~~~, ~.:!.t, ~~ are also related by a tableau 
associated with a smaller block-pivot. This smaller block-pivot 
is 

p* 

r~" 
-A*' j 1,1 

(16.6.14) 

Al 1 , 

The tableau-extract corresponding to that block-pivot p* 
may be summarised as T* 

* .:!.l 

d* 
-2 T~,l 

[A*'lJ-l 
1, 

-T*' 
2,1 
* T2 2 , 

T* 
3,2 

~l 
*-1 

Al 1 , 
T*' 
3,2 

T* 

where -T*' * 
Tl 2 2,1 , 

and T*' 
3,2 T~,3 

conform the symmetry rules. 
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Note the zero top left-hand block, due to the block-triangular 
structure of p* 

Tableaux T and T* are related by, among other relations, 

(16.6.15) 

(T~ 2 is the third and last block-pivot used in inverting P to 
bec6me T, T* being the preceding calculation tableau.) 

We also note that both T~ 2 and T2 2 are non-singular (if P is 
non-singular). ' , 

The first block-row of T* shows that the vectors ~~*1' ~~*2' 
~x* and ~x* and ~x*2' as given in (16.6.12) are also - 1 - 1 
related by 

~x* - 1 T*' ~x* 
2,1 -2 

(again assuming ~~1 = 0) 

Similarly for the second block-row 

~d* -2 -T* ~d* - T* ~x* 2,1 -1 2,2-2 

(16.6.16) 

(16.6.17) 

Substitution of the right-hand sides of (16.6.16) and (16.6.17) 
for ~~*1 and ~~~ into the right-hand side of (16.6.13) now 
yields 

[~d*', ~d* 'J -1 -2 

- ~d*' T*' ~x* + (~d*' T*' + ~x*' T*' ) ~x* 
-1 2,1 -2 -1 2,1 -2 2,2 -2 

~d*' ~x*' -1 -1 
- T*'] [~d*l 2,1 -1 

T~ 2 ~~~ , 

= ~x*' T* ~x* 
-2 2,2 -2 (16.6.18) 

Combining (16.6.12), (16.6.13) and (16.6.18), we find for every 
~x ' = [~x*', ~x*'J, which satisfies the side-condition -1 -1 -2 
Al 1 ~~l = 0, , 
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[ l1x*' I1x*'J -1 ' -2 

[P 1.1 
P2 1 , 

[T,., 

T2 1 , 

P "'J 
P 2 2 , 

T1"j 
T2 2 , 
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[A~] 
I1x* -2 

r~1 I1x*' Tt2 I1x* 
I1d* 

-2 -2 
-1 

(16.6.19) 

which shows that the negative definiteness of T~ 2 is a 
necessary condition for the far left-hand side e~pression to 
be negative for all 11~~ # O. 

Furthermore, by (16.6.16) 11~ = 0 implies (for Al 1 I1x l 0) 
I1xt 0, therefore 11~*1 # 0 implies (for Al,l 11~1'= 0) 
I1x* # O. -2 

Since T~ 2 is non-singular we must also exclude the possibility 
that bot~ sides of (16.6.19) are zero on account of sem~
definiteness of T~ 2' , 
The right-hand side is negative non-zero for all 11~~ # 0 and 
there are no vectors 11~1 # 0 with 11~~ = 0 and Al,l ~~l = O. 
Therefore all the three equivalent expressions in (16.6.19) 
are negative non-zero for all 11~1 # 0 satisfying Al,l 11~1 = O. 

Since T~ 2 is the inverse of T2,2 its negative definiteness ~s 
equivalebt to the negative definiteness of T2 2 which is 
therefore also shown, proving the necessity of the stated 
condition. 

We also note, that for a vector 11~1 # 0 satisfying the side
condition All 11~1 = 0, the quadr~tic f~rm l1~i Dll 11~1 is 
evaluated by (16.6.19) as 11~~' T2 ,2 11~2 < 0, proving the 
sufficiency of the stated condition. 
q.e.d. 

Note that this theorem does not have the usual weaker sem~
definite equivalent. The invertability of T2 2 means that 
standard-form tableaux either correspond to solutions 
where T is strictly convex in the All ~l = ~l subspace, 
or else not convex at all! 

( A *' T* A * 0 11 A '. A *' Ll~2 2, 2 Ll~2 ~ , a Ll~2' D~2 

implies IT~ 21 = 0, and therefore , 

T~ 2 11~2 = 0, some 11~2 # 0 

Ipi = 0.) 
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It is, incidentally, quite possible to write standard form 
tableaux which correspond to solutions of both the primal and 
the dual restrictions, but which do not refer to convex 
subspaces, and which display manifest non-convexity in dual 
variables' columns, i.e. a positive diagonal cell. 

Example 

Maximise 

subject to xl + x2 < 10 

TABLEAU 16.6 A 

NAME 

01 
02 
S 1 

2T 

ILLUSTRATION OF NOT RESPECTING <SUBSPACE) CONVEXITY. 

SET-UP TABLEAU 

Xl X2 PI t VALUE 

-1 
-1 

-10 

1 
1 

10 

INCORRECT 'OPTIMUM' 

NAME t 01 

Xl 
X2 
Sl 

2T 

1 
-1 

-1 

02 PI 

-1 
-1 

-1 2 

-1 -8 

VALUE 

1 
1 
8 

-2 

(To solve this non-convex problem, one would have to add 
restrictions, e.g. xl ~ 2, x2 ~ 2. The objective function would 
then be directionally convex in the feasible space area.) 

The property that non-convexity is manifest only in primal 
variables' columns is true for standard form tableaux developed 
by the algorithm. These tableaux correspond to solutions which 
are convex, and therefore strictly convex in the Al 1 ~l = ~l 
subspace. ' 

429 

One further comment on the precise significance of the theorem 
which we might call the "negative definiteness theorem", concerns 
the partitioning. It is normal that several partitionings will 
permit a square and non-singular block AI l' Correspondingly, 
there will be several negative-definite biocks T2 2 = T~-~. , , 
We may not, however, require that the whole top left-hand block 
of the tableau is negative definite, only negative semi
definiteness applies for the full intersection between primal 
variables' rows and dual variables' columns. And there may be 
zeros. 
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Theorem 

If a standard form tableau refers to a solution which is convex 
in the All ~l = ~l subspace, all dual variables' columns display 
one of the following characteristics: 

Either: a) the diagonal cell associated with that column is 
negative non-zero 

or .b) all primal variables' row-entries in such a dual 
variables' column are zero. 

Proof: 

By the previous theorem, the assumed convexity in the 
All ~l = ~l subspace, implies, in combination with the non
singularity of p, strict convexity (in the same subspace). 

We now first consider dual slack variables dj. If there are 
columns for these variables in the tableau the diagonal cell 
which we refer to is an element of the pivot inverse. Conform 
the notation earlier in this section we indicate the vector of 
primal variables' entries of the dj column, as far as they 
refer to elements Xj rather than slack variables as ~l,j. 

The property of strict convexity, as proved above, now implies 

~i,j DI 1 ~l,j = Zj,j < 0, for all ~l,j ~ ° (16.6.20) 

No variation in ~l implies no change in s, the vector of slack
variables, therefore ~l j = ° implies zero entries for all 
primal variables' rows {n the column in question. 

Concerning columns for non-basic dual variables p., we note 
that these are equivalent to dual slack-variables 1 if primal 
slack-variables are listed as explicit variables, with explicit 
non-negativity restrictions. The same proof has then to be 
carried for an enlarged pivot matrix. 

-
DI I , Al I , 

E -I (16.6.21) 

Al I I , -
which completes the proof for dual variables p .• 
q.e.d. 1 
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The symmetry of the tableau now leads to the following: 

Corollary: 

If a standard form tableau refers to a solution which is convex 
in the All ~l = ~l subspace, all primal variables' rows display 
one of tfie following characteristics: 

Either: 

or 

Note: 

a) the diagonal cell associated with the row in 
question is negative non-zero 

b) all dual variables' column-entries in such a 
primal variables' row are zero. 

The "matrix analogy" of the above theorem: 

"A dual variables' block-column is either free of non-zero 
elements in primal variables' rows, or the diagonal block is 
negative definite", is not true, as may be illustrated by the 
following example: 

Maximise 

subject to 

The optimum tableau of this problem is given in tableau l6.6b 
below 

TAB1.EAU 16.6 B 

I1.1.USTRATION OF THE NEGATIVE DIAGONA1.. 

NAME! ! D 1 D 2 S 1 ! J VA1.UE 
-------------------------------------------
X 1 II -0012 0.12 0.50 J J 0.50 
X 2 J J 001~ -0.12 0.50 J J 0.50 
p 1 ! I -0.50 -0.50 J J 1 

2T I J -0.50 -0.50 J J 2 

There are two dual variables' columns in this tableau (dl and dZ). 
The first theorem of this section tells us that they contain 
non-positive entries on the main diagonal (the two entries of 
-1/8, printed as -O.lZ). 
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The second theorem tells us that, since the excess of the 
binding restrictions is 2-1 = 1, there should be a partitioning 
which yields a 1 by 1 negative-definite diagonal block ~*2/~*2. 
Either of the two diagonal cells of -1/8 will do. 

And the last theorem tells us that in a dual variable's column 
which contains non-zero entries in primal variables' rows (both 
of them), the diagonal cell is negative non-zero. They both are. 

The top left-hand block is nevertheless negative semi-definite 
rather than negative definite - as may be illustrated by 

lJ [
-1/8 

1/8 

1/8l 
-1/8J 

However, the weaker theorem: 

o 

"If a standard form tableau refers to a solution which is convex 
in the All ~l = ~l subspace, the square block formed by the 
intersection of primal variables' rows and dual variables' 
columns in negative semidefinite." 
is true. (n-dimentional generalization of (16.6.5» 

Furthermore, since, as far as subspaces associated with 
invert able block-pivots is concerned, subspace convexity implies 
strict subspace convexity (~~i Dll ~~l ~ 0 for all ~~l 
satisfying All ~~l = 0 

implies ~~i Dll ~~l < 0 for all ~~i I 0 satisfying All ~~l = 0) 

the negative semi-definiteness of the symmetric top left hand 
block of the pivot inverse is a sufficient condition to prove 
subspace convexity, and by implication strict convexity, and 
hence the existence of a negative definite block T2 2 of the 
appropriate order. ' 

Exercise 

The following QP problem is given 

Maximise 2 2 
T = xl - x2 - xl + xl x2 - 2x2 

Subject to xl + x2 > 10 

Solve this problem 
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For all standard form tableaux developed verify the symmetry 
properties, i.e. check that they conform, if necessary after 
re-ordering), to the properties stated in section 16.4. 

Also verify the convexity properties of the same tableaux. 
Extract the block, T2 2 as well as the larger semi-definite 

blOCk[Tl,l T2 ,2J ' 
T2 2 T2 2 , , 
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from each tableau and indicate which of the other non-positive 
diagonal cells are non-positive by any property stated in this 
section, or only because this is a problem in which the objective 
function is convex throughout the coordinate space. 

16.7 The non-standard form tableau and its standard form 
neighbours 

Most of the theorems to be discussed in this section concerns a 
(2 by ~ 4 cell block of the non-standard form tableau consisting 
of the intersection of the badname variable row and the driving 
variable row, with the last leaving variable column and the 
incoming variable column. 

We call this block the non-standard form block. In association 
with this block, we define 4 standard form tableaux, which 
mayor may not exist. 

The smaller subspace predecessor tableau is obtained by 
introducing the last leaving variable back into the basis, in 
exchange for the driving variable. The smaller subspace successor 
tableau is obtained by introducing the incoming variable into 
the basis in exchange for the driving variable. The larger 
subspace predecessor tableau is obtained by introducing the last 
leaving variable into the basis, in exchange for the badname 
variable. The larger subspace successor tableau is obtained by 
introducing the incoming variable into the basis in exchange 
for the badname variable. 

Together these four standard form tableaux (as far as they exist) 
are indicated as the neighbouring standard form tableaux, or 
standard form neighbours. The terms "smaller" subspace and 
"larger" subspace refer to the situation where with an initially 
feasible basis, the badname variable is a dual variable and the 
driving variable is a primal variable. They will, however be used 
in the general situation where the badname could be a primal 
variable, i.e. a negative valued slack-variable and the 
connotation of "more space" and "less space" may not be 
applicable, even though the terms are used. 
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Theorem (non standard form block non-singularity theorem). The 
non-standard form block is invertable, its determinant being 
either +1 or -1. 

Proof: 

Suppose the theorem to be true for some non-standard form 
tableau. 

We now consider the implication of the column-updating rule: the 
last leaving variable's column is obtained by division by minus 
the pivot (see section 8.8). If (as assumed) the theorem is true 
for the current non-standard form tableau, the last leaving 
variable column of the non-standard form block of a non-standard 
form successor tableau contains at least one non-zero element, 
and either the smaller subspace predecessor tableau of the 
successor tableau (= the smaller subspace successor tableau of 
the current tableau) exists, or else the larger subspace 
predecessor tableau of the non-standard form successor tableau 
(= the larger subspace successor tableau of the current non
standard form tableau exists.) 

If the smaller subspace predecessor exists, we may summarize 
its relation with the actual tableau, as follows: 

Non standard form tableau 

last leaving v incoming v 

badname v ? ? 

driving v i 0 ? 

Smaller subspace predecessor 

driving v incoming v 

badname v ? i 0 

last i 0 ? 
leaving v 

By the symmetry property of the standard form tableau, the badname 
variable row/incoming variable column cell of the standard form 
tableau is of the same absolute value as the last leaving variable 
row/driving variable column cell, which is the reciprocal of the 
pivot used to create the standard form tableau. 
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The other non-zero diagonal cell now provides the other pivot 
needed to calculate the inverse of the non-standard form block. 

If the smaller subspace predecessor does not exist, the larger 
subspace predecessor exists, and pivoting on the badname 
variable row/last leaving variable column cell allows us to 
invoke the same argument with respect to the symmetry property 
of the larger subspace predecessor tableau. 
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Hence the theorem assumed to be true for any current non-standard 
form tableau, implies the validity of the same theorem for its 
non-standard form successor tableau (if one exists). The smaller 
subspace predecessor of the first non-standard form successor 
tableau of a standard form tableau is that some standard form 
tableau itself. 

Therefore the theorem is true for the first of any series of 
non-standard form tableaux, and by implications for all its non
standard form successor tableaux. 
q.e.d. 

The following corrollae - inferences of the fact that a non
singular matrix contains at least one non-zero entry in each 
row/column -, may now be stated: If the smallers subspace 
predecessor tableau does not exist, then the smaller subspace 
successor and the larger subspace predecessor tableaux exist. 

The non-standard form block plays a crucial role in reco8nizing 
the transmission of convexity properties between its standard 
form neighbours. Before we proceed to stating the theorems and 
their proofs, it is useful to introduce one more term. The 
subspace described by standard form tableau Q is said to be 
contained in the subspace described by standard form tableau T, 
if T may be transformed into Q, by eliminating a primal variable 
from the basis of the solution described by T, brin8ing the 
corresponding dual variable into the basis instead. 

There are two cases. If the eliminated variable is a primal slack
variable, Dll remains the same but All loses a row. If the 
eliminated variable is an element of ~, the order of Dll is 
reduced by one, and All loses a column. 

, 
Since the definition of subspace convexity (~~l DIL ~l ~ 0 
for all L\~l ~atisfyin8 All~l = 0) inc1~des vect~rs. ~~l. for which 
one elemenE ~s zero the subspace convex~ty of q ~s ~mpl~ed by the 
by the subspace convexity of T, if T obeys that property. 
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We now state the theorems 

Theorem (smaller subspace immediate neighbour convexity 
transmission theorem) 

CHAPTER XVI 

If the smaller subspace predecessor tableau exists, and describes 
a-solution which is strictly convex in the All ~l = ~l subspace 
then a sufficient condition for the smaller subspace successor 
tableau 'to exist and obey the same convexity property is that 
the entry in the driving variable row/last leaving variable 
column cell is positive (non-zero), while the driving variable 
row/incoming variable column cell is negative non-zero. 

Proof 

Existence: 

Obvious: the negative non-zero number is the pivot needed to 
generate it 

Convexity: 

The condition implies the presence of a negative non-zero 
diagonal entry in the last leaving variable row/incoming variable 
column cell in the smaller subspace predecessor tableau, as may 
be illustrated by summarizing the transition from the non-standard 
form tableau to the smaller subspace predecessor tableau 

driving 
variable 

last 
leaving 
variable 

Non standard form tableau 

last leaving variable incoming variable 

+ 

Smaller subspace predecessor 

driving variable incoming variable 

+ 

This negative diagonal cell provides the pivot needed to transform 
the smaller subspace predecessor tableau into the smaller subspace 
successor tableau. If.the incoming variable is a primal variable 
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this cell provides a further negative pivot in T~,2 as defined 
in the previous section. If the incoming variable is a dual 
variable, no further proof of convexity is needed the subspace 
defined by the successor tableau is contained in the one 
defined by the predecessor tableau. 
q.e.d. 

We might formulate the theorem as stated above somewhat more 
compact, by introducing the convex transition. A condition is 
said to indicate the convex transition from the standard form 
tableau T to the standard form tableau Q, if the condition is 
sufficient to prove that Q describes a solution which is 
convex in the All~l = ~l subspace, provided T does so. We will 
however reserve fhe use of the term convex transition for the 
discussion of examples, or where the meaning of the term is 
self-evident without reference to the definition, and formulate 
the theorems themselves explicitly. 
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The same argument concerning the implied existence of a negative 
diagonal pivot gives rise to the following parallel theorems. 

If the smaller subspace predecessor tableau exists, and describes 
a-solution which is strictly convex in the AII~1 = ~l subspace 
then a sufficient condition for the smaller subspace successor 
tableau to exist and obey the same convexity property is that 
entry in the driving variable row/ last leaving variable column 
cell is negative (non-zero) while the driving variable row/ 
incoming variable column cell is positive non-zero. (Upon 
developing the smaller subspace predecessor, division by a 
negative pivot gives rise to a negative diagonal cell). 

If the larger subspace predecessor tableau exists, and describes 
a-solution which is strictly convex in the Al ~l = ~l subspace, 
then a sufficient condition for the larger suSspace successor 
tableau to exist and obey the same convexity property is that 
the entry in the badname row/last leaving variable column cell is 
positive (non-zero), while the badname row/incoming variable 
column cell is negative non-zero. 

Note however, that since column-updating is by division by minus 
the pivot, the similar theorem concerning the relation betw~ 
smaller and larger subspace successors requires equal signs. If 
the smaller subspace successor tableau exists and describes a 
solution which is strictly convex in the AII~l = ~l subspace, 
then a sufficient condition for the larger sUDspace successor 
tableau to exist and obey the same convexity property is that the 
entry in the driving variable row/incoming variable column cell 
is negative (non-zero) while the badname-variable row/incoming 
variable cell is also negative non-zero. 
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The following arrangement of the signs of the four elements of 
the non-standard form block allows all four neighbouring non
standard form tableaux to exist and they are either all convex, 
or none of them describe convex solutions: 

last leaving variable incoming variable 

badname variable + 

driving variable + 

with all four cells containing non-zero numbers of the signs as 
indicated. The complete reversal of all of these signs, i.e. 

last leaving variable incoming variable 

badname variable + 

driving variable + 

has the same implications. 

The presence of one of these two arrangements (in practice only 
the first one is used) is also a necessary condi~ion for the 
convexity of all four neighbouring standard form tableaux. 

Theorem 

If both entries in the driving variable's row of the non-standard 
fOrm block are non-zero and of the same sign, 
then both the smaller subspace predecessor tableau and the 
smaller subspace successor tableau exist , and at least one of 
the two descri,bes a solution which does not obey the property 
of convexity in the AII~1 = ~l subspace. 

Proof 

By the complementary rule, the last leaving' variable and the 
incoming variable are each other's complements. Therefore at 
least one of them is a dual variable. Upon 'pivoting on the primal 
variable's entry in the driving variable's row, we develop a 
standard form tableau, in which a positive non-zero figure, the 
ration between the two, figures in the diagonal cell of a dual 
variable's column, contradicting the convexity property of the 
tableau as thus developed. (The existence of the other tableau 
is obvious). 
q.e.d. 
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The parallel theorem concerning the badname-row and the larger 
subspaces will be obvious and is not formulated explicitly here. 

The parallel theorem concerning two successor tableaux (or two 
predecessor tableaux) is again slightly different: if two cells 
in the same column are poth non-zero, but of different signs 
at least one of the tw61 standard form tableaux describes a 
solution which is not convex in the AII~1 = ~l subspace. 

We may refer to the group of theorems concerning the convex 
transitions between the immediate neighbours of a non-standard 
form tableau as the immediate neighbour convexity transmission 
theorems. 

The non-standard form block non-singularity theorem does not 
require that all four elements of the non-standard form block 
are non-zero. On the contrary, if a primal badname is chosen 
in the set-up tableau (i.e. we wish to make a violated 
restriction binding), the first smaller subspace predecessor 
(the set-up tableau itself) contains a zero in the badname 
row/incoming variable cell, and one always develops a non
standard form block ~hich contains at least one zero element. 

Example 

Maximise 

Subj ect to 

T = 

Xl + 2x2 > 3 

(Xl' x 2 ~ 0), see tableau 16.7a below 

TABLEAU 16.7 A 

SET-UP TABLEAU FOR ILLUSTRATING 
THE NON-STANDARD FORM BLOCK. 

NAME! I 

Dl 
D2 
51 

! ! 
II 
! ! 

2T !! 

XI X2 

-2 
-2 

- 1 -2 

PI 

1 

® 

3 

II VALUE 

1 I 1 
II 1 
II -3 

II 
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The first badname obviously is sl' therefore PI is the driving 
variable and a non-standard form tableau is developed, which is 
tableau l6.7b. Note that this tableau has been re-ordered. 

TABLEAU 16.7 B 

NON-STANDARD FORM T4aLEAU. 
WITH NON-STANDAhD FURM BLOCK. 

NAME! , Xl D2 X2 I I VALUE 
----------------------------------------
Dl ! ! -2 -0.50 II . 0.50 

--------------
51 ! , -1 -2 I I -3 
Pl ! ! 0.50 -1 I I 0.50 

----------------------------------------
2T !, -1.50 4 II -1.50 

From tableau l6.7b we extract the non-standard form block as 
given below. 

d 2 x2 

last leaving v. incoming v. 

sl (badname variable) -2 

PI (driving variable) ! -1 

The driving variable row confirms the convex transition from 
the trivial basis to the x2 subspace - not surprising since 
this is a convex problem. The badname row does not provide any 
similar information at least not directly but the x 2 column 
tells us that the x 2 subspace is convex, therefore, so is the 
x 2 = I! subspace. 

The following theorems relating to zeros in the non-standard 
form block are now stated. 

~ the driving variable row/last leaving variable column cell 
contains a zero entry, 
then the smaller subspace predecessor of the current non
standard form tableau does not exist, but the smaller subspace 
predecessor of the immediately preceding non-standard form 
tableau does exist. 
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Proof 

We first note that the zero contradicts the development of the 
current non-standard form tableau from a standard form tableau 
(otherwise that cell would contain the reciprocal of the pivot). 
Hence the smaller subspace predecessor does not exist and the 
current tableau was developed from a non-standard form tableau. 

By the column updating rule that non-standard form predecessor 
tableau contains a zero in the driving variable row/incoming 
variable column. The non-standard form non-singularity theorem 
therefore requires the existence of a non-zero entry in the 
driving variable row/last leaving variable column cell of the 
non-standard form predecessor tableau, proving the existence 
of the previous tableau's smaller subspace predecessor. 
q.e.d. 

Concerning the similar theorem for the badname-variable and the 
larger subspace we note that the case where a non-standard 
form tableau displays a zero in the badname row/last leaving 
variable column cell, but has no non-standard form predecessor 
does exist - it was illustrate~above. 

Otherwise the theorem is listed above for the driving variable 
is the same: 

If the badname row/last leaving variable column cell contains 
a zero entry while a non-standard form predecessor tableau exists, 
then the larger subspace predecessor tableau of the non-standard 
form block the transition from a standard form predecessor 
tableau to the standard form successor tableau of the next non
standard form tableau may be proved by way of a pair o-f--
complementary steps. 

A pair of complementary steps consists of two steps which involve 
pivots of the same absolute value, opposite complementary name
codes, and a zero in one of two diagonal cells which link the 
row of the one to the column of the other and vice versa. 

The 2 by 2 block 
first incoming v. second incoming v. r--p ----

\ 

-p second leaving v 

first leaving v d 

1S called the pair block 
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Theorem (complementary pair theorem) 

If a standard form tableau (hereafter indicated as T), can be 
transformed into another standard form tableau (hereafter 
indicated a Q), by a complementary pair then: 

Proof: 

either T and Q both describe solutions which are convex 
~n th~ All~l ~l subspace, 
Or ne~ther of them does. 

An extract from T may be summarized as follows: 

x* -2 

d. 
J 

d~' 
-2 

T22 

v' 
-

u' 
-

x. 
J 

-v u - -

-p 

p d 

or d* d. ~ -2 J 

x* 
-2 T22 v -u 

x. v' -p 
J 

dk u' P d 

where the first incoming variable associated with v and -v is 
a primal variable, indicated as x. (it could also be s.),-the 
second one associated with u' andJ-u is then a dual vafiable. 
The block T2 2 is the negatIve-definite block T2 2 as pr~ved 
in section 16.6, provided T conforms to subspace2 convex~ty. 

The opposite signs of p and -p imply that of the two incoming 
variables one is a primal variable and the other a dual variable; 
if they were both of the same class there would be full symmetry 
between the two pivots. 

The alternating sign presentation of v and u follows from this. 
Alternatively, if the first incoming variable is the dual variable, 
we would write v and -u but the same result follows) 

Concerning the convex transition from T to Q: We assume that T 
describes a convex solution. If T2 2 is of zero order the 
theorem is trivial since both subspaces reduce to single points. 
Otherwise, the equivalent block of Q22 is expressed as: 

Q22 = T2 2 + 2 ~~' d/p2 + ~~' d/p2 (16.).1) , 
if tHe first incoming variable ~s a primal variable and 

I 

Q2 2 = T2 2 2 u v' dIp 2 
v' dIp 2 (16.7.2) - + v , , - - - -

if the first incoming variable is a dual variable. 
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For d = 0, convex transition follows in both orderings, because 
Q2 2 is equal to T2 2' hence negative definite if T2 ,2 is 
negative definite. 'If we assume d < 0, convex transition 
follows by inversion of the pairblock along the main diagonal 
as may be summarized as follows: 

l :J [~ P/dJ 
lId 

[ 

d/p2 

-lip 
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For d < 0 both pivots, d and p2/d are negative, and we therefore 
have proved convex transition from T to Q for d < O. For d > 0, 
convexity of T implies that the first incoming variable is the 
dual variable, the second one the primal one, as manifest non
convexity only occurs in primal variables' columns. But if so 
the first one must be a dual variable, and the zero on the 
diagonal implies v = 0, and convex transition follows for the 
same reason as proved for d = 0, Q2 2 being identical to T2 2. 
We therefore prove convex transition from T to Q, for d = 0: 
for d < 0, and for d > O. 

Concerning the convex transition from Q to T: The above 
calculation of the inverse of the pairblock shows that this 
transition is also by a complementary pair. 

Having proved convex transition in both directions it also 
follows that if T did not describe a convex solution in the 
All~l = ~l subspace, then neither does Q, otherwise the convex 
transition from Q to T would contradict the assumed non
convexity of T. The same argument applies to non-convexity of Q. 
q.e.d. 

We may now use this theorem to prove convex transition from a 
smaller subspace predecessor of one tableau to the smaller 
subspace successor of the next tableau, without actually 
developing either tableau. 

Example 

Maximise 
2 

l = 3xl + xl + xl • x 2 - x 2 

Subject to xl + x 2 < 10 

The set-up tableau of this problem is given in tableau l6.7c, 
which is given below, together with its non-standard-form 
successor tableau. 
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TABLEAUX 16.7 C AND 16.7 0 

SET-UP TABLEAU AND FIRST NON
STANDARD FORM TABLEAU. FOR IL
LUSTRATION OF CONVEX TRANSITION. 

NAME! ! XI X2 PI II VALUE 
---------------------------------------
01 
02 
51 

! ! 
! I 
! I 

2T !! 

NAME! I 

01 ! ! 
XI ! I 

51 ! ! 

2T !! 

2 

CD 
I 

-3 

02 X2 

. -2 . I 
--------------

-I CD 
3 

-I 
- I 

-10 

PI 

I 
-I 

-13 

II 
I! 
I! 

! I 

-3 
I 

10 

II VALUE 

I! -5 
! ! I 

! I 9 

! ! 3 
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In tableau l6.7c we choose d l as badname-variable, and we assume 
that d 2 is selected as leaving variable, this row indicating 
the smallest non-negative quotient. 

In the resulting non-standard form tableau l6.7d, the non
standard form block has been marked; it is also given in a 
separate extract below. 

d l badname v. 

xl driving v. 

d 2 
last leaving v. 

-2 

1 

X2 

incoming v. 

1 

We note that this tableau has no smaller subspace successor 
tableau that is, the driving tableau xl cannot be eliminated by 
the incoming variable x 2 . However, if we first develop a further 
non-standard form successor tableau - by eliminating sl' then 
we know that that tableau has a smaller subspace successor 
tableau. 
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This non-standard form successor tableau 1S tableau l6.7e below. 

TABLEAU 16.7 E 

A FURTHER NON-STANDARD FORM SUCCESSOR 
TABLEAU. WITH NON-STANDARD FORM BLOCK. 

NAME! I D2 51 PI ! ! VALUE 

DI ! ! - I . -1 . I ! -14 
XI ! I -I . ! ! 1 

--------------
X2 ! ! - 1 ! ! 9 

2T !! 4 -I -14 I! -6 

The smaller subspace predecessor of the first non-standard 
form tableau l6.7d is the set-up tableau l6.7c, the smaller 
subspace successor tableau of the second non-standard form 
tableau l6.7e may be obtained by eliminating the driving 
variable xl against PI as incoming variable. This step, (which 
we would not make in actual calculation) leads to tableau 16.7f 
below, (re-ordered as 16.7g.) 

TABLEAUX 16.7 F AND 16.7 G 

SMALLER SUBSPACE SUCCESSOR TABLEAU 
OF TABLEAU 16.7 E. AS DEVELOPED 
AND RE-ORDERED TO STANDARD FORM. 

NAME! 1 D2 51 Xl II VALUE 
----------------------------------------
01 
PI 
X2 

I! 
! ! 
I! 

- 1 
- I 

2T I I -10 

NAME II Xl 

-1 

-I 

D2 

-1 
1 

-14 

51 

! ! -14 
I I - I 
II 10 

II -20 

II VALUE 
----------------------------------------
01 
X2 
PI 

! 1 
! I 
! 1 

I 
-1 

2T ! I -14 

- 1 

-1 

-10 

-1 
1 

-1 

II -14 
I I 10 
I I -1 

II -20 
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Theorem (smaller subspace complementary pair transition theorem) 

If two successive non-standard form tableaux, of which the first 
one was transformed into the second one (by a positive pivot), do 
not have a common smaller subspace successor/predecessor while 
the smaller subspace predecessor of the first non-standard form 
tableau describes a solution which is strictly convex in the 
AIl~l = ~l subspace. 

then 

a sufficient condition for the smaller subspace successor 
tableau of the second non-standard form tableau to obey the 
similar convexity property is that the entry in the driving 
variable row/last leaving variable column cell in the first 
non-standard form tableau is positive non-zero, and the driving 
variable row/incoming variable column cell of the second tableau 
is negative non-zero. (the two other cells in the two driving 
variable rows being zero). 

Proof: 

The assumptions stated imply the following sign and figure 
arrangement in a 6 cell extract from the smaller subspace 
predecessor tableau of the first non-standard form tableau. 

badname v 

1st leaving v 

2nd leaving v 

smaller subspace predecessor tableau 
(s tandard form) 

driving v. 1st incoming v. 2nd incoI!ling 

? p or -p ? 

p 0 -q 

? q d 

where p is the reciprocal of the pivot used to transform the 
first non-standard form tableau into its smaller subspace 
predecessor - hence by assumption p > 0 -, q is the pivot used 
to transform the first non-standard form tableau into the second 
one - hence by assumption q > 0, and d is the leaving variable 
row/next incoming variable column cell of the first non-standard 
form tableau. This shows that the complementary pair theorem is 
applicable and the theorem follows. 
q.e.d. 

v. 
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The similar parallel theorem with respect to the badname
variable row and the larger subspace follows by analogy, and 
will be referred to as the larger subspace complementary pair 
transition theorem. 

Exercise: 

The following QP problem is given 

Maximise 
2 2 

T = xl - x 2 - xl + xl • x 2 - 2x2 

Subject to 

Solve this problem starting with sl as badname (If you did not 

already do this at the end of section 16.6 this being the same 
problem). For each non-standard form tableau developed 

a) Extract the non-standard form block 
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b) Develop the neighbouring standard form tableaux (as far as 
they exist). Indicate where possible, which one of them may 
be transformed into one of the others by 

bl) a diagonal pivot, or 
b2) by a complementary pair. 

16.8 Dual variable elimination and the parameter theorems 

Three criteria are relevant in deciding whether to drive a dual 
variable out by the usual pivoting elimination process or 
alternatively to possibly breach its non-negativity. We may 
outline these criteria as convergence, boundedness and optimality; 
this section is devoted to the first problem. 

The issue of convergence is linked with that of maintaining 
subspace convexity, as may be illustrated by the following 
example, which relates to a non-convex problem. 

Maximise 

Subject to 

We must obviously start with sl as badname but if we apply the 
rule of the smallest quotient as known from LP without modification 
and combine it with the complementarity rule, we get into an 
endless cycle, as may be illustrated by actually going through 
the cycle once. 

This has been illustrated ~n the tableau-series 16.8 below. 
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TABLEAU-SERIES 16.8 

ILLUSTRATION OF CYCLING IN A NON-CONVEX PROBLEM. 

16.8 A 
NA.! XI 

D1 ! 2 
D2! 1 
51 ! -2 

2T ! 

16.8 C 
NA.! PI 

XI I CD 
D2 ! 
51 I 2 

2T I 4 

(SET-UP) 
X2 PI' VAL. 

® 
I 

-I 

5 

I 
I 

-5 

(STANDARD FORM) 
X2 D1 I VAL. 

0.5 
-0.5 

0.5 I 0.5 
-0.5 I 0.5 

I -4 

0.5 -0.5 I -0.5 

16.8 E (= SET-UP) 
NA.! XI X2 PI I VAL. 

D1 I 2 
D2 I 1 
51 I -2 

2T ! 

-1 

2 
I 

5 

1 
1 

-5 

16.8 B (NON-STAND. F.) 
NA.! XI X:: D1! VAL. 

PI 1 CD 
D2 ! 
51 I -2 

2T ! -4 

16.8 D 
NA. ! XI 

P I I 
D2 I 
51 ! -2 

2T I -4 

O.S O.S! 0.5 
-0.5 -O.S! 0.5 
-1 -5 

-1.5 -2.S! -2.5 

(= 16.8 B) 
X2 DI I VAL. 

0.5 
-0.5 
-I 

~, 
-0.5 I 

0.5 
0.5 

-5 

-1.5 -2.5 I -2.5 

In the set up tableau l6.8a, the driving variable PI is the 
incoming variable, and the smallest quotient is found in the d l 
row. Tableau l6.8b is a non-standard form tableau, with xl as 
incoming variable, by the complementarity rule; the smallest 
non-negative quotient is found in the PI row. 

This elimination of the driving variable PI leads to a standard 
form tableau, except that tableau l6.8c has not been re-ordered 
to the standard form presentation. 

We again choose sl as badname, and PI as driving variable. The 
smallest non-negative quotient is now found in the xl row, and 
we make the previous step in opposite direction. Tableau l6.8d 
is identical to tableau l6.8b, but - coming from a different 
standard form tableau, the complementarity rule now indicates 
d l as incoming variable, and we also make the first step in the 
opposite direction. 
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The following exception to the rule of the smallest quotient, 
as far as dual leaving variables is concerned is sufficient to 
ensure convergence. 
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A dual variable may be refused as a leaving variable on account 
of failing to satisfy the driving variable increment qualifier. 
If advance calculation of the driving variable row/incoming 
variable column cell indicates that accepting a particular dual 
variable, would activate a complementary primal incoming 
variable, which displays a positive non-zero entry in the 
driving variable's row, then the dual variable in question is 
refused as leaving variable. It will be noted that this qualifier 
was breached in the example given above; d should have been 
eliminated despite the fact that this woul~ imply that dl would 
become negative. As a result, the non-convex variable xl was 
activated without guarantee of developing a subspace in which 
this variable would be contained, and the driving variable PI 
wa~ again eliminated. 

Theorem (driving variable parameter theorem) 

If the driving variable increment qualifier is obeyed - and 
otherwise the rule of the smallest quotient applied -, 
then all non-standard form tableaux which are developed from a 
standard form tableau describing a solution which is convex in 
the All ~l = ~l subspace, display the following properties: 

a) The entry in the driving variable row/incoming variable 
column cell is non-positive, and negative non-zero, if the 
similar entry in an immediately preceding non-standard 
form tableau was zero. 

b) The entry in the driving variable row/last leaving variable 
column cell is non-negative, and positive non-zero if the 
similar entry in an immediately preceding non-standard form 
tableau was zero. 

c) The smaller subspace predecessor and successor tableaux (as 
far as existing) describe solutions that are convex in the 
AII~1 = ~l subspace. 

Proof: 

Concerning the successor tableau of an actual standard-form 
tableau: 

ad a) For a primal leaving variable a positive entry in the 
diagonal cell would contradict the convexity property of the 
initial standard form tableau, hence a) 



450 CHAPTER XVI 

For a dual leaving variable a) is required by programme 
provision (driving variable increment qualifier), hence a) 

ad b) The cell in question is the reciprocal of the pivot; 
hence b) 

ad c) The smaller subspace predecessor is the actual standard 
form tableau, which is assumed to obey the convexity property 
referred to. 

If the smaller subspace successor exists, a) and b) ensure 
convex transition (see the previous section). Hence c). 

Concerning the successor tableau of a non-standard form 
tableau: assume the theorem to hold for the preceding non
standard form tableau. The same theorem, as applicable to the 
current non-standard form tableau, may then be shown as follows: 

ad b) The non-negativity applies, because by assumption a) 
applies to the previous non-standard form tableau and column
updating by division by minus a positive pivot changes a non
positive entry into a non-negative one. 

If the entry in the previous tableau's driving variable row/ 
incoming variable column cell was zero, then, by the non
standard form block non-singularity theorem, the previous 
tableau's entry in the driving variable row/last leaving 
variable column cell was non-zero, hence positive non-zero. 
Hence b). 

ad a) and c) If the smaller subspace predecessor exists, b) 
as proved above implies that the transformation between the 
current tableau and the smaller subspace predecessor is by way 
of a positive pivot. 

The proof supplied for the successor tableau of an actual 
standard form tableau is therefore applicable, proving that 
the driving variable row/incoming variable column cell is 
non-positive. Furthermore, the (positive) non-zero entry 
in the last leaving variable column implies a negative non-zero 
entry in the previous tableau's driving variable row/incoming 
variable column cell and no property of non-zeroness of the 
driving variable row/variable column cell of the current 
tableau is stated by the theorem. Hence a), if the smaller 
subspace predecessor tableau exists. 

Concerning c), we first note that if the smaller subspace 
predecessor tableau exists, its convexity property is already 
assumed, this tableau being identical to the smaller subspace 
successor tableau of the previous non-standard form tableau. 
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If the smaller subspace successor tableau does not exist, no 
further proof of c) is needed. If the smaller subspace successor 
tableau exists, a) and b) imply c), by the smaller subspace 
immediate neighbour convexity transmission theorem. Hence c), 
if the smaller subspace predecessor tableau exists. 

If the smaller subspace predecessor tableau does not exist, the 
driving variable row/last leaving variable column cell of the 
current tableau, and the driving variable row/incoming variable 
column cell of the previous tableau are both zero. Therefore 
the driving variable row/incoming variable column of the 
current tableau is non-zero (otherwise the non-standard form 
block would be singular), and the same is true for the driving 
variable row/last leaving variable column cell of the previous 
tableau. The latter cell therefore is positive non-zero by 
property b) assumed to be valid for the previous tableau. 

To show that the smaller subspace complementary pair theorem 
is applicable, we therefore still need to prove the non
positivity of the driving variable row/incoming variable 
column cell. 

If the incoming variable is a primal variable this condition 
applies by programme requirement - the driving variable 
increment qualifier. If the incoming variable is a dual 
variable this follows, because the opposite would contradict 
the symmetry property of the previous tableau's smaller subspace 
predecessor tableau (see also the proof of the smaller subspace 
complementary pair transition theorem). Hence a) and c). 

The proof now follows by recursive induction q.e.d. 

Note that no programme restriction applies to the driving 
variable itself, which may, in case of a dual badname (and 
therefore a primal driving variable), and a non-convex 
programming problem, display manifest non-convexity. 

The corresponding theorem for the larger subspace and the 
badname-variable is therefore weaker. 

Theorem (weak badname variable parameter theorem) 

If the driving variable increment qualifier is obeyed - and 
otherwise the rule of the smallest quotient applied - non
standard form tableaux which are developed from a standard 
tableau describing a solution that is convex in the All ~l 
subspace, and of which one (indicated as the current one), 
the following properties: 

form 
= b 

-1 
obeys 
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a) the entry in the badname variable row/incoming variable 
column cell is non-positive (and negative non-zero if the 
similar cell in any immediately preceding non-standard form 
tableau was zero) 

b) the entry in the badname variable row/last leaving column 
cell is non-negative (and positive non-zero if the similar 
entry in any immediately preceding non-standard form tableau 
was zero) 

Then 

All non-standard form successor tableaux of the current non
standard form tableau (if any) obey the same properties, and 
furthermore, the current and its successor tableaux also obey 

c) the larger subspace predecessor and successor tableaux (as 
far as existing), describe solutions that are conved in the 
All ~l = ~l subspace. 

Summary of the proof 

ad c) If all four standard form neighbours of the current 
tableau exist, convex transition from the smaller subspace 
tableaux to the corresponding larger subspace tableaux follows 
from the appropriate immediate neighbour convex transition 
theorem. If there are zeros in the non-standard form block, the 
applicability of the complementary pair theorem may be proved, 
showing convex transition from the smaller subspace predecessor 
to the larger subspace successor tableau, or from the smaller 
subspace successor to the larger subspace predecessor tableau, 
as the case may be. If there is a zero in the driving variable's 
row, and two non-zero elements in the badname row, convex 
transition to one of the two larger subspaces follows by the 
complementary pair theorem, to the other by one of the immediate 
neighbour convex transition theorems. 

Hence c) in all cases for the current tableau. From this point 
onwards, the proof is analogous to the one supplied for the 
driving variable parameter theorem. 

End of proof summary. 

The difference between the (strong) driving variable parameter 
theorem and the weak badname variable parameter theorem arises 
on account of two points: 

1) there is no programme requirement with respect to the 
badname-row/incoming variable cell, 
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and 

2) in the case of a dual badname in a non-convex programming 
problem there may initially be manifest non-convexity in 
the diagonal badname-row/driving variable column cell, 
i.e. this cell may contain a positive non-zero entry. 

However, in the case of a primal badname, i.e. the negative 
valued slack of a violated restriction, we have the following: 

Theorem (primal badname convexity theorem) 

If a series of non-standard form tableaux is developed by 
selecting a primal badname-variable in a standard form tableau 
which satisfies the property of subspace convexity (and in the 
case of a dual leaving variable the driving variable increment 
qualifier is obeyed), 
then 
the first non-standard form tableau satisfies properties 
a) and b) listed above for the badname-row. 

Proof 
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If the leaving variable is a dual variable the transition of the 
initial standard form tableau to the non-standard form block 
is summarized as follows: 

Standard form tableau 

driving v. next incoming v. 

badname v. -/0 

leaving v. o -/0 

Non-standard form block 

last leaving v. incoming v. 

badname v. +/0 

driving v. + -/0 

In the standard-form tableau the leaving variable row/driving 
variable column cell (marked II + "), is positive non-zero 
because it is the pivot, the badname-row next incoming variable 
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cell then is negative non-zero by the symmetry rules. The 
badname row/driving variable column cell (marked "-/0") is 
non-positive because non-convexity, if present, is not manifest 
in dual variables' columns. The driving variable row/next 
incoming variable column cell is required to be non-positive 
by programme provision, on account of the driving variable 
increment qualifier. 

The sign properties of the non-standard form block as marked, 
now follow from the logic of the pivoting operation. If the 
leaving variable is a primal variable the similar transition 
is summarized as follows: 

Standard form tableau 

drivinf'; v. next incoming v. 

badname v. d l p 

leaving v. p d 2 

Non-standard form block 

last leaving v. incoming v. 

badname v. 

driving v. 

The assumed convexity properties of the initial standard-form 
tableau imply that the block 

rdl p] ~s negative semi-definite lp d 2 

Also, since both columns are dual variables columns with a non
zero entry p in a primal variable's row, not only must 
d l ~ 0, d 2 ~ ° be assumed, but d l < 0, d 2 < ° as well. 

The requirement of negative semidefiniteness now implies. 
(after pivoting on d l ) 

2 
d 2 - P /d l < 0, 
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hence, after multiplication by d/p (dl/p < O),p - d l • d 2 /p < 0, 
proving the assumed sign propert1es in all cases. 
q.e.d. 

In the case of a dual badname-variable, we may not necessarily 
assume that conditions a) and b) are initially satisfied for 
the badname-variable row. However, the only accepted way of 
again developing an actual standard form tableau, is by 
eliminating the badname-variable. 

Since that is a negative-valued variable, it must be done by 
way of a negative pivot, it obviously follows that for the last 
non-standard form tableau, of which the new actual standard 
form tableau is the larger subspace successor tableau, property 
a) applies by way of a negative non-zero pivot in the badname
row/incoming variable cell. 

Convex transition to the new standard form tableau now follows 
in one of the following two ways: if the corresponding smaller 
subspace successor tableau also exists, convex transition from 
the smaller subspace successor to the larger successor tableau 
follows by the immediate neighbour theorem. 

If the corresponding smaller subspace successor tableau does 
not exist, convex transition from the smaller subspace 
predecessor to the larger subspace successor tableau follows 
by showing applicability of the complementary pair theorem. 

This proves the property of subspace convexity for the next 
standard form tableau in all cases, provided the previous one 
obeyed that property. 
q.e.d. 

Exercise 

The following QP problem is given 

Maximise 
2 

2x2 T = xl + xl • x2 - xl -

Subject to xl + x 2 > 5 

3x I + x 2 < 30 

(xl' x > 2 - 0) 

Solve that problem. 

(Answer-sheet at the end of the chapter) 
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16.9 Step-length and objective function value 

So far, the QP problem has been discussed in terms of finding 
a solution to both the primal requirements Ax < b and the 
optimality conditions Dx - A'X < -w, and it has been assumed 
that the rule of the smallest-q~ot{ent is used as a method to 
select the leaving variable, whenever that is practicable. 

If the badname variable is a primal variable, that is an 
efficient procedure although there are - in a non-convex problem
certain complications to be considered. 

If the badname variable is a dual variable, there is no 
convergence or boundedness problem, but the procedure is not 
very efficient. This assymetry arises, on account of the 
direction in which the objective function changes: it increases 
in response to a dual badname variable and a primal driving 
variable, but its value is reduced in the presence of a primal 
badname-variable and a dual driving variable. 

From (16.2.7), the Lagrangean expression 

L = W I X + ! ~ I D ~ + .E I (~ - A ~) 

we obtain the following differential expression 

lIL = w'll x + x I DlIx - .E I A I 1I~ + (~ - A ~) I 1I .E 

= -d I 1I x + s'll .E (16.9.1) 

The second-order term! 1I x' D 1I x has been omitted from the 
right-hand side of (16.9.1) and the symbol 1I should be read as 
indicating differentiation, not a vector of finite differences. 
(The use of the symbol d might give rise to confusion with the 
vector ~). 

The complementary slackness condition, upheld for all variables 
except the basic pair, causes (16.9.1) to collapse into only 
one term. 

If the badname-variable is a negative shadowprice d., we have: 
J 

lIL = - d. 1I x. 
J J 

(16.9.2) 

Since no other term of the Lagrangean expression is present in 
(16.9.2), we innnediate infer 

liT = - d. 1I x. 
J J 

(16.9.3) 
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if dj or Xj is the badname variable. The case of an element of x 
becoming the badname variable does not arise when applying the 
algorithm when starting at the trivial solution but could arise 
when re-entering a modified problem. 

In that case (16.9.2) and (16.9.3) are also applicable. 

The ith slack variable may be re-specified as an explicit 
variable, bringing a new additional slack-variable into the 
problem. Thus, for example, the problem 

Maximise 

Subject to 

may be re-specified as 

Maximise 

Subject to 

2 
T = xl + x 2 - xl + x3 

xl + x 2 + x3 < 10 

(xl' x 2 ' x3 ~ 0) 

Obviously the shadowprice d 3 is equal to PI' as may be seen 
by writing out the dual requirement on x 3 . 

Therefore, by generalization of (16.9.3), we also have 

(16.9.4) 

if p. or s. is the badname variable. 
~ ~ 

If the badname-variable is a dual variable (d. or p.), we 
obviously have d. < 0 or p. < 0 and the valueJof th~ objective 
function increasJs with ev~ry increase in the driving variable. 

If the badname variable is a primal variable, this is not the 
case, on the contrary, generally d· > 0 or p. > 0 and the value 
of the objective function drops with every ificrease (towards 
zero) of the badname-variable. 

A similar conclusion is also apparent directly from (16.10.1), 
which becomes in the case of a primal variable s. being 

~ 
badnarne-variable. 

lIL = s. II p. 
~ ~ 

(16.9.5) 
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For s. < 0, 6L is obviously non-positive, and negative non-zero 
for 61p. # O. The Lagrangean is in that case not identical with 
the obj~ctive function, but the two functions are equal to each 
other in a standard form tableau, and both are continuously 
falling (or not increasing) if the badname-variable is a primal 
variable. 

Therefore, having postulated boundedness of the primal feasible 
space area in all directions, we accept a dual variable (other 
than a dual badname-variable, as leaving variable, only if the 
badname-variable is a primal variable. 

The relative advantage of respecting dual restrictions when 
eliminating a primal badname variable is most apparent with a 
convex problem which is already in optimal form: the righthand
side stays non-negative in all dual variables. 

16.10 Boundedness and artificial feasibility 

Earlier in this chapter we postulated that each incoming variable 
always find a leaving variable. As far as the version of the 
algorithm which has been outlined so far is concerned, it does 
not in fact meet that obvious requirement of being always 
effective. 

Example 

Maximise 

Subject to 

The set-up tableau of this problem 1S given 1n tableau l6.l0a 

TABLEAU 16.10 A 

ILLUSTRATION OF SPURIOUS UNBOUNDEDNESS 

NAME II 

D 1 " 
S 1 I I 
S 2 II 

2T II 

X 1 

2 
1 

-1 

P 1 

- 1 

-2 

P 2 !! VALUE 

II 
II 
II 

II 

I 
2 

-1 
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The negative-valued slack variable s2 is the obvious badname 
variable, but the P2 column can only be brought into the basis 
if d l is accepted as leaving variable, in breach of the driving 
variable increment qualifier. (If this step is made in breach 
of the qualifier, subsequent application of the complementarity 
rule leads to cycling.) 

An incoming variable column is said to be unbounded if no 
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leaving variable may be found against which the corresponding 
variable can be exchanged. If, on the other hand, the rules 
permit the elimination of some variable (possibly among others), 
we say that the incoming variable is bounded by that variable as 
leaving variable (or blocked, according to Cottle's terminology). 

If an incoming variable is not bounded by any other variable as 
leaving variable, despite the existence of an optimal and 
feasible solution, we speak of a spuriously unbounded column. 

In the example given, xl. 2 is the optimal and feasible solution, 
therefore the P2-column 1S spuriously unbounded. There are twp 
obvious approacnes towards dealing with this problem, i.e. 
avoiding activation of spuriously unbounded columns, even where 
they exist, and the imposition of upper limits in all variables. 

In a convex problem, the first approach is normally effective 
if preference is given to badname-variables which are associated 
with negative non-zero elements on the main diagonal. 

Example 

Maximise 

Subject to 

The set-up tableau of this problem is given 1n tableau l6.l0b 
below. 

TABLEAU 16.10 B 

PI IS UNBOUNDED. Xl IS BOUNDED 

NAME !I 

D 1 ! ! 
5 2 II 

2T II 

X 1 

-2 
-1 

-1 

P 1 

2 

! I VALUE 

! ! 
1·1 

II 

-1 
-2 
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If sl is selected as badname-variable, we activate the 
unbounded Pl-column, but if d l is selected as the first badname
variable we activate the x2-column as incoming variable column 
and the problem is readily solved in two steps. 

In a non-convex problem, such avoidance of spuriously unbounded 
columns in this way is not always possible, and we even lack 
a proof in the convex case. 

However, if the current solution is primal feasible, we have 
the following 

Theorem 

If the current basis represents a feasible solution - vector, 
not finding a leaving variable, after activating the incoming 
variable column, implies that the QP problem which one attempts 
to solve, permits an infinite increase in the value of the 
objective function, in a feasible direction (i.e. is unbounded). 

Proof 

In a tableau which represents a feasible solution the badname
variable is a dual variable, and the driving variable is a 
primal variable. It was shown in the previous section that an 
increase of a primal driving variable is linked - by (16.9.3) 
or (16.9.4), depending on whether the badname-variable is a 
dual slack-variable dj or a specified dual variable Pi -, 
to a corresponding increase in the value of the objective 
function. Therefore, if the incoming variable is the driving 
variable, or if a non-zero (and therefore negative non-zero) 
entry occurs in the driving variable row/incoming variable 
column cell, no further proof is needed. 

Hence, if there is spurious unboundedness, this assumes that the 
incoming variable is some other variable than the driving variable 
while (in a non-standard form tableau), the driving variable 
row/incoming variable column cell contains a zero entry. 

The non-standard form block non-singularity theorem then tells 
us that there is a non-zero entry in the badname-row/incoming 
variable column cell. 

Now consider the transition of the non-standard form block, to 
the corresponding extract of the smaller subspace predecessor 
tableau, which is summarized below, assuming that the 
determinant of the non-standard form block is -1, as follows: 
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Non-standard form tableau 

last leaving v. incoming v. 

badname v. ? p 

driving v. (~) 0 

Smaller subspace predecessor 

driving v. incoming v. 

badname v. ? p 

last leaving v. p o 

If the entry in the badname-row/incoming variable column cell 
(marked "p") is in fact negative non-zero no further proof 
is needed either, as the incoming variable is bounded by the 
badname-variable (the marking assumes a positive non-zero 
entry) . 
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Since no dual variables are permitted as leaving variables in 
the presence of a dual badname-variable, the incoming variable 
(in a non-standard form tableau activated by the complementarity 
rule) is a primal variable. 

It is now readily verified that the two equal elements in the 
off-diagonal cells of the transformed non-standard-form block 
(marked "p") cannot, in fact, be equal to each other; they 
should be equal in absolute value but opposite in sign. 

In that case the summary of the non-standard form block 1S in 
fact the following: 

last leaving v. incoming v. 

badname v. ? -p 

driving v. lip o 
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On account of the driving variable parameter theorem we must 
then assume p > 0, and the incoming variable is found to be 
bounded by the badname variable as leaving variable. Therefore 
only the case of genuine unboundedness with a negative non-zero 
entry in the driving variable row/incoming variable column cell 
actually exists. 
q.e.d. 

To accommodate the situation where (most of the) elements of 
the initial vector d are non-negative and we wish to maintain 
this initial non-negativity of the dual solution in the presence 
of a starting solution which is not primal feasible, we 
postulate that each element of ~, and each element of p has an 
upper limit. -

This does not require any significant additional tableau-space 
as we may generalize the device of the double value column 
(introduced in section 10.3 for the L.P. problem), to quadratic 
programming. 

The interpretation of upper limits on the elements of x is 
straightforward, but the interpretation of upper limits on dual 
variables needs further discussion. 

It is in fact readily verified that they correspond to 
artificial primal variables. At the cost of a huge penalty it 
is permitted to breach the primal restrictions, and the penalty 
coefficients are the upper limits on the dual variables. 

For example if we suppress the non-active upper limit in xl' the 
last example may now be written as 

Maximise 
2 

100 xl xl a l 

Subject to -Xl - a l < -2 

(Xl' a l > 0) 

and the dual restriction on a l is ~n fact Pl ~ 100. 

In the interest of being able to elucidate the significance 
this problem is written here in the form of an ~xplicit set-up 
tableau (tableau l6.l0c). 

Here ~l ~s the slack-variable associated with the dual 
restr~ct~on on the artificial variable. 
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TABLEAU 16.10 C 

EXPLICIT FORMULATION OF 
AN ARTIFICIAL VARIABLE. 

NAME!! XI 

DI 
Z2 
SI 

!! -2 
! ! 
! ! -I 

2T !I -I 

A2 

-I 

100 

PI 

2 

!! VALUE 

! ! -I 
II 100 
!! -2 

! ! 

In the rest of this section the following conventions with 
respect to upper limit distances and their associated dual 
variables will be used. Artificial variables are indicated as 
a., the index i being also associated with the i th primal 

1 . . 
restrlctlon. 

The dual slack associated with the optimality condition on the 
artificial variable a. is then indicated as zi (z 1 in the 
example above). 1 
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Distances between x. (elements of x) and their upper limits are 
indicated as bj' coJform section 10.3, for the LP problem. 
Bound-distances bj should not be confused with the elements of b 
in A~~ ~, but this should be clear from the context. 

Dual variables, associated with binding upper limit restrictions 
are indicated as u.. (For the sake of completeness the associated 
numerical codes arJ also given here: 

j for x., 
J 

3000 + i for 

-j ford., 
J 

1000 + i for s., 
1 

-lOOO-i for p., 
1 

2000 + j for b., 
J 

-2000 -j for u., 
J 

-3000 - i for z.; these codes are the computational means to 
keep track of tEe complementary slackness condition and the 
complementarity rule.) 

Just as in the LP case, one may economize on tableau-space, by 
suppressing the storage of unit vectors. This, however, gives 
rise to additional complications in the manipulation of tableaux. 
An example of the application of the upper limit facility 
(together with the full tableaux) is given here. It concerns the 
example used in the beginning of this section. 
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TABLEAU 16.10 D (SERIES) 

ILLUSTRATION OF THE COMPACT FORM OF THE QP-TABLEAU. 

EXPLICIT TABLEAUX 
NA.' XI A2 PI P2 'VAL 

Dl 
D2 
51 
52 

2T I 

2 

1 
-1 -1 

100 

-1 

-2 

I 

CD 
1 

100 
2 

-1 

BRING IN THE DRIVING VARIABLE 
NA.' XI A2 PI D2 'VAL 

01 
P2 
51 
S2 

2T , 

2 -I 

1 
-1 8) 

100 -2 

-I 
I 

-99 
100 

2 
-I 

-I !-IOO 

NOW ELEMINATE 52 BY A2 
NA.' Xl S2 PI 02 'VAL 

DI 
P2 
51 
A2 

2 

-1 

.2T ! -99 100 

-I 

-2 

-1 I - 99 
1 100 

2 
1 

-1 !-200 

RE-ORDER TO STANDARD FORM 
NA.' Xl D2 PI S2 I VAL 

DI 2 -I -I -99 
A2 CD -I 1 
51 I 1 2 
P2 100 
------------------------------
2T ! -99 -I -2 100 1-200 

01 IS BADNAME. ELEM. A2 BY Xl 
NA.' A2 02 PI S2 I VAL 
------------------------------
DI -2 8) -I 2 '-101 
Xl 1 -I I 1 
51 -I 1 
P2 100 
------------------------------
2T , 99 -1 -2 ! -I 01 

CU~DENSED TABLEAUX 
NA.' XI PI P2 'VAL DIS 

Dl I 2 -1 
51 I 1 
52 I -1 

2T' 1 -2 1 I 
UB I 1 0 0 lOb @]) I 

NO EQUIVALENT. 
OF THESE 
TABLEAUX 
ON ACCOUNT 
OF THE 
STANDARD FORM 
DOUBLE STEP 

VECTOR-UPDATES ONLY 

1 
2 

-1 

x 

X 
X 
X 

X 
X 

NA. I Xl PI Z2 I VAL DI5 

Dl 2 -1 -1 I -99 X 
51 ! I 2 X 
A2 ! CD 1 X 
------------------------------
2T I -99 -2 -I '-200 X 
UB , 100 100 X X X 

DITTO 
NA. , A2 PI Z2 VAL DIS 
------------------------------
DI -2 -1 8) 1-101 X 
51 ! -I I 1 X 
XI , 1 99 
------------------------------
2T I 99 -2 -I '-10' X 
UB I X 100 X I X X 
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NOW ELEMINATE 01 BY 02 
NA. I A2 01 PI S2 I VAL 

02 
XI 
S I 
P2 

2 
I 

-I 
-2 

2T I 101 

-I 

-I 

-I 

-I 

-2 
-I 

I 
2 

-1 

101 
I 
I 

- I 

RE-ORDER AGAIN TO STANDARD F. 
NA.! D'I A2 PI S2 I VAL 

XI 
D2 
S I 
P2 

2T 

-I 2 
-I 
-2 

-I 101 

-I 

-1 

- I 
-2 
CD 
2 

-I 

1 
1 0 I 

I 
- I 

P2 IS BADNAME. ELEM. SI BY S2 
NA.I DI A2 PI SI I VAL 

XI 
D2 
S2 
P2 

-I 
-I 

I 
2 
I 

c:::D -2 

2T I -I 100 -I 

NOW ELEMINATE P2 BY PI 
NA.IOI A2 P2 SI 

Xl 
D2 
S2 
PI -I 

-I 

2T I -2 100 

-I 

-1 

1 
2 

3 

RE-ORDER TO STANDARD FORM 

2 
103 

I 
-3 

I VAL 

2 
100 

I 
3 

NA.I DI A2 SI P2 I VAL 

XI 
02 
PI 
S2 

-I 
-1 

2T I -2 100 

2 
1 

3 

WHICH IS THE OPTIMUM 

- I 

-I 

2 
100 

3 
I 

4 

01 BY Z2. HE-FORM P2 ANO S2 
NA.I S2 PI Dl I VAL DIS 

P2 I 2 -1 
SI I 1 
XI I -I 

2T I -I -I 
UB I X 100 

-1 
X 

-1 
1 
1 

X 

I 0 1 
X 

99 

X 
X 

RE-ORDER ALSO (NOT THE SAME) 
NA.I 01 PI S2 I VAL DIS 

Xl I 
SI I 
P2 I -I 

2T I -I -1 
UB I X 100 

-I 

CD 
2 

-1 
X 

1 99 
1 X 

-1 101 

X 
X 
X 

DITTO. ELEMINATE SI BY S2 
NA.I DI PI SI VAL DIS 

XI 
S2 I 
P2 I 

2T I -I -I 
UB I X 100 

I 
1 

-2 

I 
X 

2 98 
1 X 

-3 103 

I 
X 

X 
X 

DITTO. ELEMINATE P2 BY PI 
NA.I 01 P2 SI VAL DIS 

XI I 
S2 I 
PI I -1 -1 

2T -2 -I 
UB! X 100 

1 
1 
2 

3 
X 

2 
1 
3 

4 
X 

98 
X 

97 

X 
X 

RE-ORDER ALSO (NOT THE SAME) 
NA.I DI SI P2 I VAL DIS 

XI 1 2 98 
PI I -I 2 - 1 3 97 
S2 I 1 1 X 

------------------------------
2T -2 3 -I 4 X 
UB I X X 100 X X 
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To contain the size of the explicit tableau to some extent, 
only the active upper limit on P2 is included in the tableaux. 

The following notes arise in connection with the tabulation 
l6.l0d. 

First of all, not all explicit tableaux have obvious condensed 
equivalents. If a row and and column are "flicked over", this 
is computationally mos~asily handled in one operation, but 
in terms of solution-interpretation, there are separate steps. 
If two steps of this type form a complementary pair linking 
two standard form tableaux, we speak of a standard form double 
step. 

One further computational detail is useful to mention at this 
point. 

Upper limits and upper limit distances have been marked with a 
cross X indicating "not applicable" where they are ignored 
by the search operations. In fact figures are entered in these 
cells and they are used when rebuilding the corresponding 
"normal" variable. For example, z2 is the distance between P2 
and its upper limit. As z2 enters the basis under circumstances 
where the non-negativity of P2 is not protected at that stage 
of the algorithm, z2 has no upper limit, but the value of P2 
is in fact stored in the upper limit cell of the z2 vector. 
The upper limit facilities solve the problem of boundedness, so 
to say "by brute force". 

with such strong restrictions in the specification of the 
problem, we have little difficulty in proving that all incoming 
variable columns are bounded. This proof is as follows: 

If the incoming variable is a primal variable: obvious. Even 
if the incoming variable itself is a slack-variable which has 
no upper limit, a change in a primal slack-variable requires 
a change in at least one specified primal variable x., which 
is driven either towards its upper limit, or towardsJits lower 
limit of zero. 

If the badname-variable is a primal variable, there is a non
positive entry in the driving variable row/incoming variable 
column cell, as well as in the badname-variable row/incoming 
variable column cell, at least one of them being negative non
zero. Therefore, either the badname-variable is driven towards 
zero and can be eliminated at that point, or the driving 
variable is driven against its upper limit. 

Having proved boundedness of primal variables as well as of 
all variables in the case of a primal badname-variable, we still 
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need to prove boundedness of a dual incoming variable in the 
presence of a dual badname-variable. For this we refer to the 
proof supplied for the case of a feasible solution-vector, as 
the same argument (contradiction of the symmetry property is 
also applicable in the general case of a dual badname-variable 
and a dual incoming variable. 

End of proof summary 

Note that the above proof implies that the algorithm will 
always converge to the development of an end-of-algorithm 
standard-form tableau with a non-negative (primal and dual) 
solution vector. 

If the meaningful problem is empty, this will therefore become 
apparent because artificial variables are left in the end-of
algorithm basis. If the meaningful problem is unbounded, this 
will become apparent because artificial fancy-high upper limits 
on primal variables are binding on the optimal solution. 

That a binding artificial upper limit on a primal variable 
implies unboundedness of the meaningful problem is obvious. 
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The relation between an artificially feasible end-of-algorithm 
solution and emptiness of the meaningful problem needs, however, 
further investigation. 

We partition A in two block-rows. One block-row refers to the 
satisfied restrictions, the other to the ones in which artificial 
variables remained in the basis; the vectors band E are 
partitioned accordingly. 

If an artificially feasible solution is developed the optimality 
conditions as satisfied by the artificially feasible solution are 

d (16.10.1) 

the optimality-conditions on the meaningful variables (with only 
those elements of d which refer to non-basic variables being in 
fact non-zero), 

and. 

o = -p + f -2 -2 (16.10.2) 

the optimality conditions on the active artificial variables, 
!2 being the fancy-high upper limits on P2' 

If the meaningful problem was indeed empty, the primal solution 
would be equal to the primal solution of the following problem~ 
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Maximise 

Subject to A x < b 1 - --1 

CHAPTER XVI 

implying inter alia a solution in the corner of the feasible 
space area. 

The dual requirements of this problem are that for some E** ~ 0, 

-A' f - A' p** < 0 
2 -2 1 - (16.10.3) 

We would like to assume that (16.10.1) could be obtained as the 
summation of 

d* (16.10.4) 

and 

d** = A' p** + A' P - 1 -1 2 -2 (16.10.5) 

where g*, 2t is the dual solution associated with the (block 
triangular) block-pivot which emerges if the violated 
restrictions are removed from the problem (not normally an 
optimal solution, i.e. not ~* ~ 0, pt ~ 0) and d** are the 
slack-variables in (16.10.3), d** > O. 

If the dual variables are of a different (greater) order of 
magnitude than the primal variables, it is safe to assume that 
(16.10.1) is in practice equivalent to (16.10.5). 

To allow this condition of dominance of (16.10.1) by the dual 
variables' terms ~, Ai E, and Ai E to be met, we must ensure 
that incoming variables which are activated before all dual 
badnames have been dealt with are not only technically bounded, 
but also bounded even without the artificial upper limits on 
primal variables. Otherwise we may after all develop an 
artificially feasible "optimum" for a non-empty problem. 

Example 

Maximise 2 2 
xl + x2 - xl + x2 

xl > x2 + 2, xl' x2 > 0 

We put the artificial limits all at 100 

(xl' x2 .::. 100, PI < 100) . -

If this problem is solved by selecting badname-variables in 
the (inappropriate) order, d2 , d l , sl' we develop the series of 
tableaux as summarised in the tabulation l6.l0e. 
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TABLEAU 16.10 E 

IN A NON-CONVEX PROBLEM WITHOUT A FEASIBLE STARTING 
SOLUTION. INAPPROPRIATE BADNAME-SELECTION LEADS TO 
AN ARTIFICIALLY FEASIBLE SOLUTION WITH A HIGH PO
SITIVE SOLUTION VALUE. 

NAME II X I X 2 P I II VALUE DIST 
-------------------------------------------------
D 1 I ! -2 1 II -I X 
D 2 !I 2 -1 ! I - I X 
S I II -I I II -2 X 
-------------------------------------------------

2T ! ! -I -I 2 II X 
BOUND I ! 100 C!]]) I 00 ! ! X X 

NAME I! X B 2 P I ! I VALUE DIST 
-------------------.-----------------------------
D I ! ! @) ! ! - I X 
U 2 ! ! 2 ! , 201 X 
S I ! , -I -I II -102 X 
-------------------------.-----------------------

2T II -I 201 102 I! 20200 X 
BOUNDII 100 100 100 II X X 

NAME ! I D I B 2 P II VALUE DIST 
-------------------------------.-----------------
X I II -O.~O -0.50 II 0.50 99. SO 
U 2 ! ! 2 I II 201 X 
S I ! I -0.50 -I -0.50 II -101.50 X 
-------------------------------------------------

2T ! I -0.50 201 101.50 ! I 20200.50 X 
BOUNDII 100 100 ill]) I! X X 

NAME ! I D 1 B 2 Z; 1 II VALUE DIST 
-------.-----------------------.-----------------
X 1 ! I -0.50 0.50 ! ! 50.50 49.50 
U 2 I I 2 -1 II I 0 I X 
A I II 0.50 I -0.50 II 51.50 X 
-------------------.-----------------------------

2T I I 50.50 - 10 I 51.50 II 4900.50 X 
BOUND! I 100 100 100 II X X 
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N.B. 
Readers who might experience difficulty in following the 
tableau-manipulation in this example, may wish to work through 
the corresponding explicitly written problem, for which the 
set-up tableau is given here, with suppression of the never
active upper limit on xl' 

TABLEAU 16.10 F 

THE PROBLEM GIVEN IN TABLEAU 16.10 E. 
WITH AN ARTIFICIAL VARIABLE FOR RESTRICT
ION ONE. AND AN EXPLICIT UPPER LIMIT ON X2. 

NAME I XI X2 AI PI U2 I VALUE 
--------------------------------------------
DI -2 -1 
D2 2 -1 -1 -1 

ZI 1 100 
51 -I -I -2 
82 100 
--------------------------------------------

2T -I -I 100 2 -100 

(Note that the example contains two standard form doublt steps; 
one for x 2 reaching its upper limit, and one for Pl reaching 
its upper limit. When the tableaux are written in full, these 
double steps obviously become two separate steps. Furthermore, 
in the absence of the actual unity-pivots, step-markings for 
upper limits have been made on the upperbounds row.) 

The true optimal and feasible solution of this problem is, 
however, x] = 2, x 2 = 0, and if either d l or sl is selected as 
the first Dad name-variable, that solution is found as the 
end-of-algorithm solution. 

To ensure "meaningful boundedness", i.e. boundedness even in 
the absence of (artificial) upper limits of all incoming 
variables activated by a dual badname-variable, it is sufficient 
that the standard-form tableau in which the badname-variable 
is selected contains a negative non-zero cell in the diagonal 
badname-variable row/incoming variable column cell. 

Theorem (Convex primal boundedness theorem) 

If the badname-variable is a dual variable (and therefore the 
driving variable is a primal variable) and the driving variable 
displays (the strict convexity property of) a negative non-zero 
diagonal cell in the standard-form tableau (in which the 
badname-variable is selected) 
then all incoming variables are bounded by the badname-variable 
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as leaving variable. 

Proof 

The condition is equivalent to strict convexity in an 
All ~l = ~l subspace, which may be developed by direct exchange 
of the driving variable against the badname-variable. The 
tableau which is developed by that step, is either the next 
actual standard form tableau (in which case no further proof 
is needed), or it is the larger subspace predecessor tableau 
of the first non-standard-form tableau developed. 

The existence of, and the convexity properties of some other 
standard form neighbours of the current tableau is now shown 
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by the following summary of the relationship between the current 
tableau and its larger subspace predecessor. 

driving v. 

badname v. 

driving v. 

last 
leaving v. 

Non-standard form tableau 

last leaving v. incoming v. 

a 1/b + ac 

bc 

Larger subspace predecessor 

badname v. income v. 

-alb 1/b 

1/b c 

We begin with denoting the figures in the last leaving variables 
column of the current non-standard form tableau as a and b, as 
marked. 

By assumption, the larger subspace predecessor exists, and 
describes a solution which is (strictly) convex in the 
All ~l = ~l subspace. 



472 CHAPTER XVI 

For b=O the theorem follows immediately from the properties of 
the non-standard form block as discussed in sections 16.7 and 
16.8, we now assume b > O. 

Upon developing the larger subspace successor tableau we 
calculate the cells marked -alb and lib in the badname variable 
column. The badname-variab1e is a dual variable containing a 
non-zero entry in a primal variable's row (lib in the last 
leaving variable's row), therefore the diagonal cell is 
negative non-zero. 

- alb < 0, 

therefore, since b > 0, a > o. 

Similarly, the current incoming variable is a dual variable 
containing a non-zero entry in a primal variable's row (lib in 
the driving variable's row). Therefore (denoting the diagonal 
cell as c) 

c < o. 

The other cells in the current tableau are now calculated 
backwards. The results obtained so far, a > 0 and c < 0 imply 
bc < 0, showing that the initial assumptions (convexity in 
the Al1~1 = ~1 subspace, b > 0) imply: 

(1) the existence and convexity of the larger subspace 
successor tableau - thus permitting recursive 
application of the same argument - and 

(2) boundedness of the incoming variable's column by the 
badname-variab1e as leaving variable. 

q.e.d. 

Furthermore, since the similar property a > 0 is valid for the 
successor tableau, we must also assume 

lib + ac < 0 

i.e. 

all four standard form neighbours exist. 

In other words, a negative non-zero cellon the main diagonal 
in the initially selected badname-row/driving variable column 
cell ensures non-standard form blocks which contain four 
non-zero elements. 
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Exercise 16.10 

Solve the LP problem given in the example in section 9.5 
(artificial variables in LP), as a quadratic programming 
problem. Do this first with two explicitly written artificial 
variables, and subsequently with artificial upper limits on the 
dual variables, using the tableau-presentation discussed in 
this section. 

16.11 The treatment of infeasible starting solutions 

In this section, we outline, in effect, three alternative 
versions of the QP algorithm. We call them the convex mode of 
operation, the non-convex mode of operation, and the amended 
convex mode of operation. 

The convex mode of operation relies on the selection of badname 
variables, which can be either primal or dual variables and uses 
the complementarily rule to drive them out. The non-convex mode 
of operation is characterized by two separate stages of 
calculation, the initial Phase I being primarily devoted to 
finding a feasible solution, by means of complementary pairs of 
steps. The third version of the algorithm is to some extent a 
compromise between these two, and will therefore be discussed 
last. We first outline the convex and the non-convex modes of 
operation. 

In the convex mode of operation, we proceed as follows 

1) Select as badname-variable a basic variable which is 
associated with a negative entry in the value column and 
preferably also a negative entry in the diagonal cell 
(thereby avoiding the activation of artificial upper limits 
as far as possible). The criterion function suggested here 
is the product of the entry in the valule column (if 
negative) multiplied by the sum of the diagonal cell and a 
small negative number. The function chosen was in fact: 

T[I, N+lJ * (T[I,I] - 0.000001), 

For a violated primal restriction this function is of 
necessity positive, a manifestly non-convex driving variable 
is therefore always a primal variable (associated with a 
dual badname-variable), and such a choice is made only if 
the solution is primal feasible. 

2) Bring in the driving variable as incoming variable. 
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3) In standard form tableaux and non-standard form tableaux 
alike select the leaving variable as follows: 
If the badnarne-variable is a dual variable apply the rule 
of the smallest quotient over the badname variable row, 
and primal variable's rows. (Accept a negative pivot only 
in the badname variable row, fly through other violated 
restrictions.) 

If the badname variable is a primal variable then dual 
variables also qualify as leaving variables and are 
included in the search for the smallest quotient, subject 
to the driving variable increment protection qualifier. 

4) If no negative entries in the value column are left, the 
problem is solved, otherwise return to 1. 

This is a convergent procedure. For each selected primal 
badname-variable at least one violated primal restriction 
becomes satisfied in a finite number of steps, (either 
artificially or also meaningfully); once only dual badname 
variables are left the value of the objective function increases 
by a finite amount in every two steps made. Its main drawback 
is, however, that an artificially feasible end of alsorithm 
standard form tableau, lS not necessarily evidence of emptiness. 

In the non-convex mode of operation, there are two distinct 
phases, "Phase I" and "Phase II", where Phase I concerns 
finding a feasible solution, just as in LP, Phase II the search 
for the optimum, a feasible solution having been found already. 
An essential characteristic of Phase I is that, - just as in 
LP - only the corners of the feasible space area are investigated. 
This means that standard form tableaux maintain the characteristic 
block triangular structure with zero entries in all primal 
variable row/dual variable column cells throughout Phase I. 

We proceed as follows: 

Phase I 

1) Select as badname-variable a primal variable which is 
associated with a (the most) negative entry in the value 
column. If no negative-valued slack-variable is found, 
proceed to Phase II. 

2) Select an incoming variable column associated with a 
negative entry in badname row/income variable column cell 
(if none is found this proves the problem to be an empty 
one). 
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The recommended selection criterion within this category 
of incoming variables is as follows: 

First, preferred columns are those which are also associated 
with a negative valued dual slack-variable, and among those 
the one with the largest absolute value of the sum of the 
two negative coefficients, the one in the s. row/x. column 
cell and the one in the dj row/value column~cell. J In the 
absence of preferred incoming variable columns choose the 
incoming variable by the criterion of the dual ratio. In a 
QP tableau in standard form, the search operation for the 
smallest dual ratio may be performed as a search for the 
smallest critical ratio with the driving variable column as 
tentative incoming variable column. 

The primal variable associated with the dual variable 
tentatively indicated as leaving variable, is then the 
incoming variable. 
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Disregard the driving variable increment qualifier (illustration 
example to be given below). Do not however, bring in the 
driving variable as incoming variable at this stage, we need 
a primal incoming variable. 

3) Select a primal variable as leaving variable, by applying 
the rule of the smallest quotient. The eligible non
negative quotients relate to two categories of primal 
variables viz: 

a) Non negative valued primal variables, whose non
negativity needs to be protected. 

b) The (negative valued) badname variable, but only if 
one of the two following conditions is satisfied. If no 
pivot of satisfactory absolute value has been found in 
category a), or if a higher solution value is attained by 
selecting the badname variable instead. (See also the 
discussion on "flying through" violated restrictions in 
an LP problem in Chapter IX. 

Dual variables do not at this point qualify as leaving 
variables. Since the badname row/incoming variable column 
cell contains a negative non-zero cell, the issue of 
unboundedness does not arise here. 

4) Make the step 

5) In the resulting non-standard form tableau select 
(disregarding the value column), as incoming variable the 
complement of the incoming variable selected under 3, as 
leaving variable the complement of the leaving variable 
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selected under 3, thus completing the step made under 4 
as a complementary pair. 

6) Make the step selected under 5 
This step does not cause any change in any primal 
variable's entry in the value column all primal variable's 
row/incoming variable column cells containing zero entries. 

On account of the block triangular structure of the block
pivot, the leaving variable row/next incoming variable column 
cell of the standard form tableau in which the search operations 
under 2 and 3 were performed, contains a zero entry. The 
figures in the next incoming variable column are therefore 
unchanged between the standard form and the non-standard 
form tableau. 

7) If the leaving variable selected under 3 was the badname
variable, or if the badname-variable has ceased to be 
negative-valued (by flying through" its non-negativity), 
return to 1, otherwise to 2. 

Phase II: 

8) Proceed as in the convex mode. 

Note that in this version of the algorithm, dual variables are 
only accepted as leaving variables, if they are either: the 
complement of a previously introduced primal variable (in the 
second step of a pair made under 6 in Phase I), or: the badname
variable (in Phase II). 

It follows that the only way in which we may develop a solution
vector in which the number of basic variables xj exceeds the 
number of eliminated slack variables si is by direct exchange 
of a primal driving variable Xj or si against the badname 
variable dj or Pi, a situation which can only arise in Phase II. 

The convex mode of operation as outlined above is basically 
a formalization of an algorithm which has been discussed and 
illustrated extensively in the previous section, but we now 
give an illustration of the non-convex mode of operation. 

Example 

Maximise 

Subject to 
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The set-up tableau of this problem is given below as 
tableau l6.11a. 

TABLEAU 16.11 A 

ILLUSTRATION-PROBLEM CONCERNING 
THE NON-CONVEX MODE OF OPERATION. 

NAME ! I XI X2 PI P2 II VALUE 

DI II -2 I -I " - I 
D2 II 2 - I 2 " -I 
SI II -I I " -2 
S2 I' Q) -2 " ---------------------------------------

2T 'I -I -I 2 , , 

We now proceed as follows: 

Phase I 

1 Choose sl as badname-variable. (in the convex mode: d l ) 

2 Choose Xl as incoming variable (preferred) 

3 Choose s2 as leaving variable (the pivot is actually the 
same as in the convex mode with d l as badname-variable. 

4 Make the step, to develop tableau l6.llb 

(The tableau is at this point also re-ordered. This re-ordering 
is organized in such a way as to permit return to a correctly 
ordered standard form tableau, by the second step of the pair, 
without further re-ordering.) 

TABLEAU 16. II B 

NON-STANDARD FORM TABLEAU. FOLLOWING 
THE FIRST (PRIMAL) STEP OF A COMPLEMEN
TARY PAIR. 

NAME II P2 X2 PI S2 II VALUE 

XI II -2 II 
D2 II 2 2 -I II -I 
SI II -I I " -2 
DI ! I 8) -4 2 " -I 
---------------------------------------

2T I' -3 2 " 
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5 To get back to standard form, we echange P2 against d l 
as leaving variable (step still the same as in the convex 
mode). 

6 Develop the next standard form tableau, which 1S 

tableau l6.l1c. 

TABLEAU 16.11 C 

STANDARD FORM TABLEAU. 51 STILL IS THE 
BADNAME-VARIABLE. 

NAME II 01 

Xl 
D2 
51 
P2 

II 

" 2 ! ! 
! I -1 

2T II 

X2 

-2 
-6 

c::D 
4 

-3 

PI 

-1 

2 

52 II VALUE 

1 " 
4 " 
1 " 

-2 " 

" 

-3 
-2 

1 

7 sl is still badname variable and has not so far been 
eliminated therefore return to 2 (in the convex mode d 2 
would now become the badname-variable) 

2 Select x2 as incoming variable (preferred) (in the convex 
mode x2 would be the driving variable, hence also the 
incoming variable). 

3 Select sl' the badname variable, as leaving variable, this 
being the only primal variable which gives rise to a quotient 
of the appropriate sign. (in the convex mode d 2 would become 
the leaving variable). 

4 Develop the non-standard form tableau l6.lld 

TABLEAU 16.11 D 

NON-STANDARD FORM TABLEAU. FOLLOWING 
THE FIRST (PRIMAL) STEP OF THE SECOND 
COMPLEMENTARY PAIR. 

NAME I! 01 PI 5 1 52 II VALUE 
---------------------------------------
Xl ! I -2 -1 ! ! 4 
X2 ! ! -1 -1 ! ! 2 
02 ! I 2 CD -6 -2 I ! 9 
P2 ! ! -1 -1 4 2 I I -7 

2T !! 2 -3 -2 I! 6 
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5 Select as incoming variable PI and as leaving variable d2 

6 Develop the tableau l6.lle 

TABLEAU 16.11 E 

A FEASIBLE (AND OPTIMAL) TABLEAU 

NAME I I DI 02 S I S2 II VALUE 
---------------------------------------
XI 
X2 
PI 
P2 

! ! 
! ! 
I I 
I I 

2 
1 

-2 
-I 
-6 
-2 

-I 
-I 
-2 

I I 
I I 
I! 
I I 

4 
2 
9 
2 

---------------------------------------
2T ! I -4 -2 9 2 I! -12 

which is the optimum tableau. 

At this point it is useful to summarize the relative(dis)
advantages of the two methods, in relation to certain groups 
of problems. The various cases are first summarized as follows: 

479 

convex problem non-convex problem 

The trivial basis makes no difference the two 
lS primal feasible methods become identical In 
(not dual feasible) that case 

The trivial basis Use the convex mode; ? ?? ? ? ? 
is dual feasible optimal form lS The convex mode 
(not primal feasible) maintained through- may get there 

out quicker, but the 
non-convex mode 
is safer 

The trivial basis Ifmany dual restrict- Use the non-
lS neither primal lons are violated, use convex mode - no 
feasible nor dual the non-convex mode: problem of spur-
feasible it can seek out pre- ious emptiness 

ferred columns 

In a non-convex problem with a dual feasible trivial basis (a 
"minimization" problem), there may, or there may not be a trade 
off between computational efficiency in the well-behaved case, 
and proof supported effectiveness. 

-
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The problem of "running away" in the artificially feasible area 
may arise despite the initial optimal form, because satisfied 
dual restrictions may 'be flown through in the wrong direction 
first, on account of the driving variable increment qualifier 
and then activate directions in which the quadratic component 
of the objective function comes to dominate over the penalty 
coefficient which are supposed to drive the artificial variables 
out. 

In addition to this the non-convex mode can also be more 
effective as an optimizing algorithm than the convex mode. In 
the convex mode, the value of the objective function consistently 
drops when a violated primal restriction figures as badname. 
The non-convex mode, with its L.P. style Phase I on the other 
hand, can in fact gain solution value during Phase I. 

Even if a drop in the value of the objective function is 
unavoidable, the non-convex mode has greater freedom in 
selecting columns and the criterion of the dual ratio does to 
some extent contain the drop in the solution value. 

The amended convex mode is an attempt to improve on the convex 
mode as an ef,ficient procedure to solve problems in which the 
trivial basis violates primal as well as dual requirements. It 
does so, by preferably selecting as badname variables shadow
prices of variables which would qualify as "preferred" incoming 
variables in Phase I of the non-convex mode, in preference to 
other dual variables. 

Example 

Maximise 2 2 
T = xl - x2 + 2x3 - xl - 2x2 

Subject to -xl - x2 + x3 < -2 

xl - 2x3 < 1 

(xl' x2 ' x3 ~ 0) 

For this example we only give the set up tableau, and arguments 
for choosing a particular first pivot. 

If sl were selected as badname variable in the convex mode, we 
woula be forced to introduce x2 into the basis as the first 
primal incoming variable, despite the fact that X2 leads to a 
reduction in the value of the objective function. 

In fact sl is selected as badname variable only in the non-convex 
mode. In the convex mode shadow prices of the strictly convex 
variables xl and x3 both have preferences over sl. 
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TABLEAU 16.11 F 

PIVOT-SELECTION UNDER THE AMENDED CONVEX MODE. 

NAME II Xl X2 X3 PI P2 II VALUE 

~~---!!---~----~:-----------!----:~---::---:!--
03 !I -2 -1 2 II -2 
51 II -1 -1 1 II -2 
52 II 1 -2 II 1 
------------------------------------------------

2T !I -1 -2 2 -1 II 

In the convex mode as it was outlined above, d3 would be chosen. 
This is a pity because xl leads to an increase in the objective 
function and to a less negative value of sl at the same time. 
The non-convex mode will seek it out for that reason. The 
convex mode as amended does the same by selecting dl as badname 
variable, in preference to the more negative valued d3 variable. 
This is done by mUltiplying the criterion-function for selecting 
the badname variable with another load-factor, which is in fact 
0.01 plus the sum of the absolute values of all the negative 
entries in the intersections of violated restriction rows and 
the driving variable column i.e. in the example at hand 1.01 
for dl and 0.01 for d3 (and 0.01 for directly tackling sl 
as badname variable). 

The subject of this section, the treatment of infeasible 
starting solutions is a major point of distinction between the 
QP algorithms offered in this ~ook, and their closest relatives 
as previously developed by other authors. Having covered this 
point, it is therefore appropriate to briefly review these 
related QP algorithms, in particular Cottle's principal 
pivoting method and the a-symmetric version of the Van de Panne 
and Whinston method. 

The symmetric variant of Van de Panne's method will be discussed 
in the next chapter, whilst other QP algorithms, although 
existing*, differ so substantially from the algorithms offered 
here that a more extensive discussion would be needed, and we 
shall refrain from such a more extensive summary. 

*This refers in particular to Beale's [3] method. 
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Cottle's algorithm is most akin to what has been described 
here as the convex mode of operation. Its convergence rests 
on regularly reducing the number of violated restrictions 
whether they are primal or dual restrictions. For this reason 
it has been suggested (by Van de Panne, Linear and ~uadratic 
Programmin8 p 323) that this method should be more appropriately 
called the index-method, rather than the principal pivoting 
method, as Cottle names this method. It is designed for convex 
problems only, and it applies the rule of the smallest quotient 
in the more strict sense of protecting the non-negativity 
of both primal and dual variables at all stag"es of calculation. 
Basically it is the algorithm which we began to outline in 
section 16.3. 

The driving variable increment qualifier - and hence the 
possibility to apply the convex mode of operation to non-convex 
problems is, as far as I know, novel to this book. If the 
original version of Cottle's method is applied to a problem 
where the objective function is not properly convex, it may 
break down in cycling, the convex mode of operation can be 
shown to converge in all cases even where the end of algorithm 
tableau may represent (in the non-convex case) a local rather 
than the global maximum and even possibly a local maximum ~n 
an artificially feasible region giving rise to a spurious 
indication of emptiness. 

The two-phase method on the other hand is directly due to 
Van de Panne. Indeed the non-convex mode of operation comes near 
to being an implementation of the Van de Panne and Whinston 
method. 

The one difference is that, for similar reasons as advocated 
in Chapter IX for the L.P. case, there is no complete 
separation between the two phases i.e. optimality is considered 
already during Phase I, giving rise to the notion of "preferred" 
columns, to the possibility to "fly through" violated primal 
restrictions, and to the use of the dual ratio as a selection
criterion for choosing between non-preferred columns. Van de 
Panne (Linear and Quadratic Programming p 279) recommends the 
minimization of the sum of all artificial variables by an 
LP algorithm as Phase I for the QP problem, a procedure which 
has the same limitations as using artificial variables in the 
LP case. 

16.12 Ordering of the quadratic programming tableau 

Recall the symmetry properties of the quadratic programmin8 
tableau, especially when in standard form (see section 16.4). 
For a number of reasons, it is desirable to keep these symmetry 
properties apparent in the tableaux developed by the algorithm. 
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Firstly, a symmetrically ordered tableau is the most suitable 
way of presenting the end result. Writing a programme-code is 
also simplified, if it is known where the rows and columns of 
the tableau may be found. Unfortunately, simplex steps tend to 
bring the tableau in a random non-ordering, in quadratic as well 
as in linear programmine. 

This problem was solved, for linear programming (see sections 12.2 
and 12.3), by re-ordering the tableau afterwards. 

With quadratic programming it is more practical to maintain 
ordering as far as possible at the time of making the steps. 

This may be done, by the following two devices, to be applied at 
each step, except when the tableau is coming back to standard 
form. 

a) Interchange the pivot column with the "alternate" of the 
pivot row. This alternate ~s the next pivot column. 

b) Interchange the pivot row with the "badname" row. 

Application of these re-ordering rules may be illustrated by 
writing an example, as follows: 

Maximise 
2 2 

T = xl - 5x2 + xl - x2 

Subject to xl + x 2 > 2 

xl + x 2 < 10 

TABLEAU 16.12 A 

SET-UP TABLEAU OF THE EXAMPLE ON ORDERING. 

t-JAME I ! ! XI X2 PI P2 !! VALUE 

! CODE !! 2 -IDOl -1002 !! 

01 -I ! ! 2 I -I ! ! -I 
02 -2 ! ! -2 Q) -I ! ! 5 
SI 100 I ! ! - I -I I! -2 
S2 1002 ! ! I I I! 10 
--------------------------------------------------
2T ! ! -I 5 2 -10 ! ! 
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The set-up tableau of this problem is given in tableau l6.l2a 
and we now proceed as follows: 

Re-order, to maintain ordering in the next tableau 

a) Interchange the PI column (pivot column) with the x2 column, 
x2 being the complementary variable to the pivot-row 
variable d2 . 

b) Interchange the d2-row (pivot) with the sl (badname) row. 

The resulting tableau has been named l6.l2b. 

TABLEAU 16.12 B 

INITIAL TABLEAU. RE-ORDERERED FOR THE FIRST STEP. 

NAME I " Xl PI X 2 P2 I I VALUE 

Dl 
51 
D2 
52 

2T 

I CODE II 

I -1 I I 2 
I 1001 " -1 
I -2 I I 
! 1002 II 

" -1 

-1001 

-
CD 

2 

-1 
-2 

1 

5 

2 -1002 " 

-1 

-1 

-10 

" -1 
" -2 
I I 5 

" 10 

" 
This re-ordering ensures that the new basic variable (the pivot 
column) and the just eliminated pivot-row variable (which may 
stay a non-basic variable) are stored in their "natural" 
positions. 

NAME 

Dl 
51 
PI 
52 

2T 

TABLEAU 16.12 C 

NON-STANDARD FORM TABLEAU. WITH ONLY 
THE "WRONG" NAMES OUT OF ORDERING. 

" Xl D2 X2 P2 II VALUE 

I CODE II 

-1 I I 2 
I 1001" -1 
1-1001 I I 
! 1002 I I 

" -1 

-2 

-1 

-2 

2 -1002 " 

2 
8) 
-2 

1 

9 

-1 

-8 

" -6 
" -2 

" 5 
" 10 

! I -10 
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The d2 column in the new tableau comes on place 2, and only the 
x 2 column, which is to become pivot column immediately afterwar~s 
is in a "wrong" place. the PI row in the new tableau comes in 
place (minus) 1001, and only the badname-row (to be eliminated 
in due course) is in the "wrong" place. 

The next tableau, numbered l6.l2d, is ln standard-form and no 
re-ordering is needed. Here we select d l as the badname-variable. 

TABLEAU 16.12 D 

STANDARD FORM TABLEAU. ORDERED ACCORDING TO CODES. 

NAME I II XI 02 51 P2 II VALUE 
--------------------------------------------------

! CODE II -2 IDOl -1002 " 
--------------------------------------------------
01 -I II -1 2 II -10 
X2 2 II CD -I II 2 
PI ! -I 001 II 2 -2 -I II 9 

52 I 1002 II II 8 

--------------------------------------------------
2T II -10 -2 9 -8 II -28 

Before actually making the next step, we again re-order, to 
maintain ordering in the next tableau, which is once more in 
non-standard form. To develop tableau l6.2e, we proceed as 
follows: 

a) Interchanee the pivotal xl - column with the (next pivotal) 
d 2 - column. 

b) Interchange the pivotal x 2 - row with the d l badname - row. 

TABLEAU 16.12 E 

THE SAME TABLEAU. RE-ORDERED FOR THE- NEXT STEP 

NAME I II 02 XI 51 P2 II VALUE 

I CODE II -2 -2 1 001 -1002 II 
--------------------------------------------------
X2 2 I! CD -1 II 2 
01 -1 II -I 2 II -10 
PI ! -100 I II I 2 -2 -1 II 9 
52 ! 1002 II 1 II 8 

2T II -2 -10 9 -8 II -28 
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As a result of the ordering of tableau 16.12e, the successor 
tableau only has the badname-row i.e. d l and the complement 
of the current pivot row i.e. d2 out of ordering. After making 
the step, we develop tableau 16.12f. 

TABLEAU 16.12 F 

AGAIN. THE 'WRONG' NAMES ARE IN THE WRONG SLOTS. 

NAME I II D2 X2 SI P2 I I VALUE 

------------------------------------------------~-
I CODE II -2 2 1001 -1002 II 

--------------------------------------------------
XI 
DI 
PI 
S2 

I I! 
I -I II -I 
1-1001" I 
I 1002 " 

-2 

-I 
2 

-I 

II 2 
" -10 
II S 
II 8 

--------------------------------------------------
2T " -2 10 -I -8 II -8 

The next tableau will be in standard form, therefore no 
reordering before making the next step is needed. We develop 
tableau 16.12g. 

TABLEAU 16.12 G 

STANDARD FORM TABLEAU. ALREADY CORRECTLY ORDERED. 

NAME ! " DI X2 SI P2 II VALUE 

I CODE II -1 2 1001 -1002 " 

Xl 1 II -1 " 2 
D2 I -2 II -1 -2 " 10 
PI 1-1001 II 1 -'2 2 -1 " -s 
S2 I 1002 " 1 II 8 

---------~----------------------------------------
2T II -2 10 -s -8 II 12 

This particular problem of manipulating the, QP tableau may now 
be considered as having adequately illustrated and we will not 
pursue the example any further. 

16.13 Equations and variables without non-negativity-restriction 

There is a strong analogy between an equation and a variable 
without non-negativity requirement. The one is the dual problem 
of the other. A variable which is not subject to a non-negativity 
restriction, but is allowed to attain negative values, is brought 
into the list of basic variables with priority. It then stays a 
basic variable irrespective of its sign. Its associated dual 
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restriction therefore is an equation. Likewise the dual 
variable associated with an equation has to be brought into 
the list of basic variables, and then stays there. It does 
not become bad name and is exempt from the search operation 
for a pivot row and is allowed to become negative instead. 

In the simplex algorithm for quadratic programming which is 
the subject of this chapter, both problems are handled along 
the lines followed in section 10.2 for equations in linear 
programming. 
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The equation is presented with a negative constant, i.e. a 
violated restriction. The "conservative" r .. Jle for choosing the 
pivot-row is applied insofar as equation-slacks are concerned, 
i.e. they are not allowed to become positive. Once the equation 
is binding, the associated dual variable is or becomes a basic 
variable. The dual variable of an equation is initially brought 
into the vector of basic variables with a positive sign but is 
allowed to become negative later on. 

Example 

Maximise 

Subject to 

1.4 xl + 2 x 2 

xl + x 2 = 3 

(xl' x 2 > 0) 

We write the equation as - xl - x2 = - 3, rather than as 
xl + x 2 = 3, and, just as in the LP-case, we start with a 
set-up tableau which contains in fact a legative-valued slack
variable, i. e. sl = -3. 

This set-up tableau is given as tableau 16.13a below. 

TABLEAU 16.13 A 

SET-UP TABLEAU WITH AN EQUATION. PRESENTED 
AS A VIOLATED INEQUALITY. 

NAME I II X I X 2 P I VALUE 
-------------------------------------------------

I CODE II 2 -1001 
-------------------------------------------------
D I 
D 2 
S 1 

- 1 I I 
-2 II 

1001 I I -I 

~ -1.~0 

I ~ I -2 
-1 I = I -3 

-------------------------------------------------
2T II -1 .~O -2 3 
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To facilitate following the ordering 
tableau l6.l3a and its successor tableaux are presented with 
numerical name-codes as well as alphanumerical names. 

Note, that this is really an LP problem, which is solved by a 
QP algorithm. 

The solution of this problem, by the non-convex mode of 
operation, is given below. We first exchange the (preferred) 
x 2-variable against the undesired sl-slack, and develop 
tableau l6.l3b. 

TABLEAU 16.13 B 

THE EQUATION IS NOW SATISFIED. 

NAME I II X 1 P 1 S 1 VA1.UE 
-------------------------------------------------

I CODE !I -1001 1001 
-------------------------------------------------
D 1 
X 2 
D 2 

-1 I I 
2 II 

-2 II 
-1 

::: 
I ::: I 
I ::: I 

-1.40 
3 

-2 
-------------------------------------------------

2T , I 0.60 3 -2 6 

To get back to standard form, we complete the pair of steps, 
exchangingly Pl against d 2 . We develop tableau l6.l3c. 

TABLEAU 16.13 C 

THE DUA1. VARIABLE OF AN EQUATION MAY ATTAIN 
A NEGATIVE VA1.UE. 

NAME I II X 1 D 2 S 1 VA1.UE 

! CODE II -2 1001 

D 1 -1 II -1 ::: 0.60 
X2 I 211 -1 I ::: I 3 
~ 1 1-1001 II I = I -2 

2T I' 0.60 -3 -2 12 

The exchange of one dual variable against another, irrespective 
of the non-negativity of either the incoming variable, or of any 
other dual variable, is a normal feature of the non-convex 
mode of operation. 
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However, since PI is the only negative-valued variable, 
tableau l6.l3c represents the optimum. Dual variables of 
equations are not restricted in sign. 

Note that this fact affects the possibility to interpret the 
corresponding row of the tableau as an inequality. For example, 
the dl-row of tableau l6.l3c can be read as 

-d2 2.°.60 

The slack of this restriction is the dl-variable. The similar 
reading of the PI-row, 

d <-2 2 -
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does not apply, as the "slack-variable" of this restriction, PI' 
does not have to be non-negative, and no restriction on d 2 is 
given by the PI-row. 

The treatment of variables without 
same lines. "Free" variab les, are 
violated dual restriction, i.e. as 
a free variable is in the list of 
from search operations. 

Example 

Maximise 

Subject to 2Xl + x 2 < 10 

> -2 

< 1 

sign restriction is on the 
initially presented with a 
"desirable" variables. Once 
basic variables it is exempt 

(X2 ~ 0, but xl not restricted in sign) 

This too, is a linear programming problem, which we solve by 
the quadratic programming algorithm, in tableau l6.l3d to 
l6.l3h, as follows: 

As in the case of equation-requirements on primal variables, 
writing the "-" sign in the d l and d2 rows of tableau l6.l3d 
~ni:ially, an~ inde~d as long as d l an~ d2 are bas~c ~aria~les, 
~nd~cates an ~ntent~on, not a met requ~rement, as ~s ~n th~s 

e~ampl: the case with the sl' s2 and s3-rows where the "<" 
s~gn f~gures. 
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TABLEAU 16.13 D 

SET-UP TABLEAU WITH FREE VARIABLES. 
PRESENTED AS 'DESIRABLE' VARIABLES. 

NAME! XI X2 PI P2 P3 ! VALUE 
-------------------------------------------
D1 -2 -I = -I 
D2 -I = - I 
5-1 2 ~ I 0 
52 -I ~ 2 
53 CD ~ 1 

2T -1 -I -10 -2 -I 

In order to drive out the negative-valued dl-variable, d l is 
chosen as the first badname-variable and xl becomes the 
driving variable. The rule of the smallest quotient then 
indicates sl as leaving variable. 

The resulting non-standard form tableau is not reported explicitly 
here, instead we 8ive the next successor tableau, which is again 
a standard form tableau, tableau l6.l3e. 

TABLEAU 16.13 E 

XI IS NOW A BASIC VARIABLE. 
AND WILL STAY IN THE BASIS. 

NAME! DI X2 PI P2 53 

XI 
D2 -I 
51 CD -2 
52 I 
P3 -I 2 -I 

2T -I - I -8 -3 

:: 
= 
~ 
~ 
~ 

! VALUE 

I 
- 1 

8 
3 
I 

2 

In tableau l6.13e we repeat the same procedure, d 2 is chosen as 
badname, and x 2 is the next pivot column. The rule of "the smallest 
(only) quotient indicates sl as pivot row. 

The immediate successor tableau of tableau l6.l3e again is a 
non-standard form tableau, which is not printed. The comple
mentarity rule activates PI as incoming variable, and the 



QUADRATIC PROGRAMMING WITH LINEAR RESTRICTIONS 

badname-variable d2 can at that stage be eliminated. The then 
resulting standard form tableau is given as tableau l6.l3f 
below. 

NAME 

XI 
X2 
PI 
52 
P3 

2T 

TABLEAU 16.13 F 

X2 IS NOW ALSO A BASIC VARIABLE. 
AND WILL STAY IN THE BASIS AS WELL. 

DI D2 51 P2 53 ! VALUE 

I :: 
-2 ~ 8 

-I ~ I 
Q) ~ 3 

-I 2 -I :: - I 

- 1 -8 -3 - 1 18 

In tableau l6.l3f we select P3 as badname-variable, s3 becomes 
the driving variable. The rule of the smallest quotient is now 
applied to the s3-column, with exclusion of the quotient 
in the xl~row, al:hough that quotient is actually the smallest 
non-negaE~ve quot~ent. 

The result of the choice of s2 with a quotient of 3 and the 
rejection of xl as leaving variable is that xl now becomts 
negative in taBleau l6.l3g. 

TABLEAU 16.13 G 

XI HAS BEEN ALLOWED TO BECOME NEGATIVE. 

NAME I DI D2 51 52 P2 ! VALUE 

XI -1 ~ -2 
X2 2 ~ 14 
PI -1 ~ I 
P3 -I 2 c::D ~ - I 
53 ~ 3 

2T -1 -8 -3 21 

491 
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The negative entry for xl in the value column does not 
constitute a violation of any restriction, as the non
negativity requirement does not apply to xl. 

CHAPTER XVI 

We continue with the next step. The alternative of the just 
eliminated s2 - variable (P2) becomes a pivot column. There is 
only one p'ositive quotient and the badname - variable P3 
is eleminated. 

NAME 

TABLEAU 16.13 H 

AN OPTIMAL AND FEASSIBLE SOLUTION. 
DESPITE THE NEGATIVE VALUE OF XI. 

01 02 51 S2 P3 , VALUE 
- - - - - - - - - - - -.- - - - - - -'!' - - - - - - - - - - - - - - - - - - - - - - - -

XI -I ~ -2 
X2 2 ~ 14 
PI -I ~ I 
P2 -2 -I ~ I 
S3 ~ 3 

------------------------------------------_. 
2T 2 -14 -3 24 

The solution given by tableau l6.l3h is the optimal and feasible 
solution, i.e. no badname is found among those variables to 
which the non-negativity requirement applies. 

The one other problem to be noted in connection with mixed 
systems is that it may be necessary to "turn round" an equation 
(or to re-define the sign of a variable). This problem is 
illustrated here in relation to the elimination of an equation
slack in the convex mode it does not arise in the same way 
in the non-convex mode·~ 

Example: Maximise 
2 2 

4xl - xl + 4x2 - x2 

subject to xl + x2 = 1 

(see tableau l6.l3i) 
(xl' x2 .?: 0) 

We select the shadowprice of the strictly convex variable xl 
as badname-variable. Under the rules of the convex mode of 
operation, the positive quotient -1/-1 in the sl-row does not 
qualify as being included in the search for the smallest 
quotient. Column-updating by a negative pivot would generate 
a non~standard form tableau which does not obey the recognizeable 
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convexity properties discussed in Sections 16.6-16.8. (The 
dl/Pl cell is positive and does not permit the elimination of 
d1 by PI while assigning a non-negative value to Pl·). 
Tfiere are two possible ways of handling this problem. 

TABLEAU 16.13 I 

SET-UP TABLEAU WITH AN EQUATION 
PRESENTED AS A SINGLE INEQUALITY. 

NAME I! 

Dl 
D2 
51 

" " " 
2T II 

Xl 

-2 

-1 

-4 

X2 PI 

-2 
-1 

-4 

! I 

II 
II 
II 

II 

VALUE 

-4 
-4 
-1 

We may read the tableau as if the equation was written in both 
directions, e.g. although we actually write only one s -row, 
our tableau interpretation is as given in tableau l6.l3j below. 

NAME II 

Dl " D2 " 511 " 512 II 

TABLEAU 16.13 J 

SET-UP TABLEAU WITH AN EQUATION 
PRESENTED AS A DOUBLE INEQUALITY. 

Xl X2 Pll P12 II 

-2 -1 II 
-2 -1 " -1 -1 II 

<D 1 " 

VALUE 

-4 
-4 
-1 

1 
------------------------------------------------

2T II -4 -4 -1 " 

The quotient for both presentations of the equation is obviously 
the same, as we put the equation in the xl + X 2 S 1 form, once 
the smallest quotient is found for that equation. 

Upon selecting sJ as leaving variable, the tableau is written 
as tableau l6.l3R below. 
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TABLEAU 16.13 K 

RE-INTERPTETED TABLEAU WITH AN EQUATION 
PRESENTED AS A SATISFIED RESTRICTION. 

NAME! ! XI X2 PI2 II VALUE 

DI I! -2 -I I ! -4 
D2 II -2 -I I I -4 
SI2 II <D I I ! I 
----------------------------------------

2T ! I -4 -4 -I ! ! 

and from that point onwards the algorithm works in the usual way. 

The alternative possibility is to fly through an equation and 
turn it round afterwards. After exchanging x against d l , we 
initially develop tableau 16.131, in which tfie equation appears 
as an amply fulfilled restrictions, but before selecting a 
badname in the next standard-form tableau, (in this case 
immediately), we change the presentation of the tableau by 

TABLEAUX 16.13 L 

EQUATION-PRESENTATION 
AFTER FLYING THROUGH 

NA.I DI X2 PII !VAL 

----~-----------------------
XI ! -0.5 -0.5 I 2 
D2 I -2 I I -4 

S II I -0.5 -I -0.5 I I 
----------------------------
2T I -2 -4 -I 8 

AND 16.13 M 

EQUATION-PRESENTATION 
AFTER TURNING ROUND 

DI X2 F'I2 IVAL 
----------------------------
XI I -0.5 0.5 I 2 
D2 I -2 -I I -4 
S121 0.5 -0.5 I -I 
----------------------------
2T I -2 -4 8 

turning it round as in tableau l6.l3m. 

If the latter device is applied, sl will of necessity be 
selected at some stage as badname-variable. 

The same choice between "flicking round" at the stage of pivot 
selection or at a later stage is also present for variables 
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without non-negativity restriction, at least when the convex 
mode of operation is applied only to convex problems. When the 
convex mode of operation is used on a non-convex problem the 
qualifier may cause dual restrictions t.o be flown through. 
There is also the complication that with a dual badname
variable the normal procedure is to fly through dual 
restrictions anyhow. 

The code offered in Section 16.15 therefore treats the two 
problems in a different way, flicking round equations at the 
stage of pivot-selection and changing the presentation of 
variables without non-negativity restriction just before 
selecting a badname-variable. This is actually done for 
equations as well but that loop is activated only if an 
equation initially written in a form in which its constant 
is positive. 

16.14 Lower bounds in quadratic programming 

The device of preliminary adjustment of the set-up tableau, as 
discussed in Section 10.4 for the LP problem may also be 
applied to a quadratic programming problem. The one point where 
simply copying of the tableau-manipulation from Section 10.4 
produces a result which is actually incorrect relates to the 
value of the objective function, a point to be discussed 1n 
more detail later in this section. 

Example: Maximise 
2 

2x2 -
2 

xl - xl + x 2 

subject to xl + x 2 > 3 

5 < xl < 100, 2 ~ x 2 < 100 

495 

Tableau l6.l4a below gives the set-up tableaux for this problem, 
without the lower limits, and with the LP-style adjustment 

The adjusted tableau is already in optimal form, confirming 
the fact that xl = 5, x 2 = 2, is the optimal and feasible 
solution of the stated problem. We need, however, to analyse 
the interpretation of the dual restrictions and the solution 
value in more detail. 

We apply the same device as used 1n Section 10.3 and put 



496 CHAPTER XVI 

TABLEAU 16.14 A 

LP-TYPE LOWER-BOUNDS ADJUSTMENT IN QP 

SET-UP TABLEAU WITHOUT 
THE LIMITS 

ADJUSTED ACCORDING TO 
SECTION 10.4 

NAME I Xl PI I VALUE NAME I Yl Y2 PI I VALUE 

01 -2 -1 01 -2 9 
02 -2 -2 02 -2 2 
51 -1 -1 -3 51 -1 -I 4 

----------------------~------ -----------------------------
2T I -1 -2 3 2T -1 -2 3 9 
UB I 100 100 100 X UB 95 96 100 X 

LB 5 2 0 X 

Re-numbering the one initially specified explicit restriction 
as s3' the set-up tableau now becomes the following: 

TABLEAU 16.14 B 

QP PROBLEM WITH EXPLICIT LOWER LIMITS. 

NAME II XI X2 Yl Y2 PI P2 P3 II VALUE 
----------------------------------------------------------
01 ! ! -2 II -1 
02 ! I -2 II -2 
03 !I -1 II 

04 II -1 II 

51 ! I -I II -5 
52 II -1 II -2 
53 II -1 -1 II -3 
----------------------------------------------------------

2T ! I -1 -2 5 2 3 11 

Note that the d3 and d 4 restrictions simply say -PI + d 3 0 
and -P2 + d 4 = 0, i.e. d 3 (= the shadowprice of the non
negativity of YI) is the same variable as PI (= the dual 
variable associated with the equation xl = YI + 5). As a 
shadowprice of an equation PI is as such allowed to beeome 
negative but this will not occur on account of the non
negativity of d 3 ; the same argument applies to P2 and d 4 . 
Substitution of d3 .for PI and d 4 for P2 into the d l and d 2 
equations results 1n: 
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-Zx + d + p = -1 for d = P 
1 3 3 3 1 

and 

Furthermore, xl and Xz themselves may be treated as variables 
which are free of non-negativity restrictions for the same 
reasons as already mentioned in Section 10.3 for the LP case. 
This turns the dual requirements associated with xl and Xz 
into equations but we can, in practice, interpret d3 and 
d4 as slack-variables. 

Which gets us, as far as the restrictions is concerned, to a 
direct generalisation of Section 10.4 to the QP case. 

For the value of the objective function this simple procedure 
gives rise to an erroneous result. The calculated result so far 
is actually (once) the linear component of the ohjective 
function, ~'~, i.e. xl + ZxZ = 5 + Z x Z = 9. Reference to 
(16.5.5) shows that, to actually obtain ZT as the ZT entry for 
a tableau in standard form, this figure needs to be doubled 
and twice the value of the quadratic component of the objective 
function needs to be added, i.e. the cur~ent initial value for 
x = 5 and X = Z is: ZT = Z x 9 - Z x 5 - Z x ZZ = -40. 
D~noting theZlower bounds vector (at which the solution is 
initialised as ~*, we obtain by application of (16.5.5) 

ZT* = Zw'x* + x*'Dx* (16.14.1) 

The correct set-up tableau for the re-formulated problem is 
given below as tableaux l6.l4c. This tableau also contains 
adjustments to the rest of the ZT-row, conform the symmetry
rules. 

TABLEAU 16.14 C 

CORRECT LOWER-BOUNDS ADJUSTMENT IN QP. 

NAME I! 

Dl 
D2 
SI 

" ! ! 
! ! 

Yl 

-2 

-1 

Y2 PI 

-2 
-1 

II VALUE 

II 

" II 

9 
2 
II 

------------------------------------------
2T ! ! 9 2 -4 II -40 
UB ! ! 95 98 100 II X 

LB " 5 2 0 II X 
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16.15 Commented text of a quadratic programming code 

Two bits of code are offered in this section. They are: The 
procedure QUAD which contains the actual quadratic programming 
algorithm, a main programme which reads the data and converts 
the tableau on the lines explained in section 16.14. A solution 
reporting procedure which prints the solution of the specified 
problem, is not listed: The procedure REPQ is simply an 
adaptation of the LP reporting procedure REPO from section 
10.4, the adaptation consisting in considering the more 
complicated coding of a QP tableau. 

The effect of the adjustment device is to make bounded variables 
to be in effect restricted to the interval 

lb. < x. < ub. 
J J - J 

(16.15.1) 

As the QUAD procedure could malfunction if negative upper limit 
distances were generated, the main programme contains a check 
on the non-negativity of the interval spanned by (16.15.1). 

For the same reasons as given in section 10.4 for the L.P. 
case it is inadvisable to declare variables with a "-ex'" 
(e.g.-1000 000) lower limit. Variables without meaningful bounds 
should be declared as variables without non-negativity 
restriction. 

The algorithm as offered in the QUAD procedure is a combination 
of the amended convex mode of operation and the non-convex mode 
of operation, the "mix" of the combination being .controlled l:>y 
the parameter-variable NNEGD. 

This is the acceptable number of negative dual variables. 

If this number is supplied in the interval -2 < NNEGD < N+M, the 
choice between the two modes of separation is determined as 
follows: 

At the moment of calling the convex mode of operation is 
presumed but a switch to the non-convex mode of operation takes 
place if either of the following two conditions is encountered: 

a) the actual number of negative-valued dual variables (other 
than equations-shadow prices) is found to exceed the 
specified permitted number NNEGD, or 

b) any sign of non-convexity is observed. 

In the interest of being able to apply the non-convex mode of 
operation also on re-entry of the algorithm, the code also 
contains a provision for verifying the condition of its 
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applicability, i.e. the zero diagonal entry in the badname row. 

If NNEGD is supplied negative the obvious implication is that 
the non-convex mode is followed in any case. This would be 
done, for example if the problem were known to be non-convex 
despite the lack of manifest non-convexity. If NNEGD is supplied 
as NNEDG N+M, the convex mode is followed regardless any symptoms 
of the problem being in fact non-convex. If NNEGD<-2 is supplied, 
the compulsory use of the non-convex mode is assumed. 

Use of these 'non-choice' facilities carries a restriction 
which is not strictly necessary but which was found useful 
when using a modified of this algorithm in the context of a 
more general kind of quadratic programming in Chapter XVIII. 

If either mode is employed "perforce" in this way and a 
shadowprice of a binding inequality is found to display manifest 
non-convexity by way of a positive non-zero diagonal entry, 
the inequality stays binding as an equation. i.e. its 
shadowprice is not selected as badname-variable. 

Technically this means that the problem is not actually solved. 
Note, however, that supplying NNEGD as NNEGD = -1 also 
effectively makes the use of the non-convex mode obligatory: 
there are no tableaux in which -1 negative-valued dual 
variables occur, but the restriction on not permitting a non
convex direction does not apply in that event. 

The intertwining of the two modes of operation as well as the 
complications associated with the upper limit facilities do 
unavoidably give use to a somewhat complicated code and 
although some major elements of the 0P algorithm may still 
clearly be recongized in the code-listing it becomes in 
practice difficult to read and follow the code in its 
entirety. 

The alphanumerical labels and the comment may however go some 
way towards relieving this problem. 

The listings are now given, as follows: 

T~XT-LISTING OF THE QUADRATIC PORGRAMMING PORCEDURE. 

'PROCEDURE' QUAD<T,M,N,NEQ,NAV,NNEGD,ROWLST,COLLST,REENTRY); 
'ARRAY'T; 'INTEGER' M,N,NEQ,NAV,NNEGD.REENTRY; 
'INTEGER' 'ARRAY' ROWLST.COLLST; 
'BEGIN' 'INTEGER' NAME,BADN.COLN,ROWN.B,BB.D,I,II,J.K.KK.R, 
N OF ACT NEG D. N OF P BAS V,RR. NON SQUARE; 
'REAL' ASC.QUO.PIV.COP.NUM.FANCYHIGH,PENALTY,CRIT; 
'BOOLEAN' CONVEX, CONVEX MODE, FLICKED. LOOKED FOR PAIR; 
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'COMMENT' 
QUADRATIC PROGRAMMING ALGORITHM. 

THE SHORTENED TABLEAU WITHOUT UNIT VECTORS IS USED. 

A MIXED SYSTEM OF EQUATIONS AND INEQUALITIES IS EXPECTED. 

THE NON-NEGATIVITY RESTRICTION APPLIES TO SOME. BUT NOT TO 
ALL SPECIFIED VARIABLES. 

ALL SPECIFIED VARIABLES. PRIMAL AS WELL AS DUAL VARIABLES 
HAVE UPPER BOUNDS. 

CHAPTER XVI 

THE UPPER BOUNDS ON THE DUAL VARIABLES CORRESPOND TO UNPUNCHED 
UNIT VECTORS. REPRESENTING ARTIFICIAL FEASABILITY VARIABLES. 

THE DUAL UPPER LIMITS ARE. HOWEVER. ONLY ACTIVATED 
WHEN THEY RELATE TO A DUAL DRIVING VARIABLE. I.E. IF 
THE DUAL VARIABLE IN QUESTION IS THE SHADOWPRICE OF A 
VIOLATED PRIMAL RESTRICTION. 
OTHER DUAL UPPER LIMITS ARE CALCULATED. BUT IGNORED BY 
THE SEARCH OPERATIONS. 

THE VALUES OF THE DUAL UPPERBOUNDS. I.E. THE PENALTY
COEFFICIENTS FOR THE INTRODUCTION OF ARTIFICIAL VARIABLES 
IN THE VECTOR OF BASIC VARIABLES. ARE SET BY THE PROGRAMME. 
THE FIGURE AT WHICH THE DUAL UPPERBOUNDS ARE SET 
IS ASSIGNED TO A VARIABLE. CALLED PENALTY. 
PRIMAL UPPERBOUNDS FOR WHICH A ZERO IS SUPPLIED ARE 
REPLACED BY A SUITABLE HIGH NUMBER. CALLED FANCYHIGH. 

USER TO DECLARE PREVIOUSLY THE TABLEAU AND THE TWO NAMELISTS. 
THE EXTENDED TABLEAU-MATRIX IS OF ORDER M+N+3 BY M+N+2. 
AND THE NAMELISTS ARE BOTH OF ORDER M+N. 
UNLESS THE RE-ENTRY MODE IS USED. 
THE TABLEAU SHOULD BE PART-FILLED BEFORE ENTRY. AS FOLLOWS: 

THE SYMMETRIC MATRIX D. OF ORDER N BY N IN THE TOP-LEFTHAND 
CORNER. TO INDICATE THE QUADRATIC COMPONENT OF THE MAXIMAND 
W TRANSPOSE X + 1/2 X TRANSPOSE D X. 
THE BOTTOM PART OF THE LEFTHAND BLOCK-COLUMN SHOULD CONTAIN 
THE COEFFICIENTS MATRIX A. REPRESENTING THE LINEAR RESTRIC
TIONS A X LESS THAN OR EQUAL TO B. 
THE INTERSECTION OF THE TOP BLOCK-ROW WITH 
THE RIGHT-HAND N+M+I TH COLUMN SHOULD CONTAI~ MINUS THE 
VECTOR W. THE LINEAR COMPONENT OF THE PREFERENCE FUNCTION. 
THE BOTTOM BLOCK-ROW PART OF THAT SAME RIGHT-HAND COLUMN 
SHOULD CONTAIN THE VECTOR B. 

THE LEFT-HAND SIDE SUB-VECTOR OF THE BOTTOM M+N+2 NO ROW 
SHOULD CONTAIN THE SPECIFIED UPPER BOUNDS. 
THE SIMILAR RESERVATION FOR LOWER BOUNDS IN ROW M+N+3 
IS NOT ACTUALLY USED BY THE QUAD-PROCEDURE. BUT IT IS 
SUGGESTED THAT THIS ROW BE FILLED BEFORE ENTRY AS WELL. 

THE FIRST NEQ ROWS OF A ARE RESERVED FOR EQUATIONS. AND 
THE FIRST NAV COLUMNS ARE RESERVED FOR VARIABLES 
WITHOUT SIGN-RESTRICTION. 
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THE NAMELISTS ARE FILLED BY THE PROGRAMME. 
EXCEPT IF THE RE-ENTRY MODE IS USED. 

NAME-CODES ALLOCATED BY THE PROGRAMME ARE AS FOLLOWSI 
PRIMAL NAMES HAVE POSITIVE CODES. DUAL NAMES HAVE NEGATIVE 
CODES. 
THE SPECIFIED ACTIVITIES HAVE CODES EQUAL TO THEIR 
INDICES. I.E. FROM 1 TO N. 
THE SLACKS OF THE RESTRICTIONS. HAVE NAME-CODES EQUAL TO 
THEIR INDICES PLUS 1000. I.E. FROM 1001 TO 1000+M. 

I 

DUAL VARIABLES HAVf NEGATIVE NAME-CODES. EQUAL IN ABSOLUTE 
VALUE TO THE CODES, OF THE ASSOCIATED PRIMAL VARIABLES. 
HENCE THE SHADOWP~~'CES OF THE SPECIFIED ECONOMIC VARIABLES 
HAVE NAME-CODES FR M -1 TO -N. AND THE SHADOWPRICES OF THE 
RESTRICTIONS HAV~ AMECODES FROM -1001 TO -1000 - M. 

DURING CALCULATI dN:~,. THE PROGRAMME MAY GENERATE NAMECODES 
WITH ENLARGEMENT$.,~ .E. WITH AN INCREASED ABSOLUTE VALUE. 

UPPER BOUNDS HAVE NAME-CODES EQUAL TO THE NAMES OF THE 
CORRESPONDING VARIABLES. INCREASED BY AN ENLARGEMENT OF 2000. 
HENCE 2033 IS A PRIMAL VARIABLE. INDICATING THE DISTANCE 
OF VARIABLE 33 FROM ITS SPECIFIED UPPER BOUND. 
THE DUAL VARIABLE ASSOCIATED WITH THIS UPPER BOUND 
<WHEN BINDING). IS THEN CODED AS -2033. 

DUAL UPPERBOUNDS AND ARTIFICIAL FEASABILITY VARIABLES HAVE 
NAMECODES WHICH ARE 2000 HIGHER IN ABSOLUTE VALUE THEN THE 
CORRESPONDING ORDINARY VARIABLES. 
FOR EXAMPLE. 1002 IS THE SLACK OF THE 2ND RESTRICTION. -1002 
IS THE ASSOCIATED DUAL VARIABLE. 
THEN 3002 IS THE ARTIFICIAL VARIABLE WHICH MAKES THE SECOND 
RESTRICTION FULFILLED AT THE COST OF A PENALTY LOSS IN VALUE 
OF THE OBJECTION FUNCTION. AND -3002 IS THE CORRESPONDING 
UPPER BOUND ON THE DUAL VARIABE ASSOCIATED WITH THE 
SECOND RESTRICTION. 

ANOTHER TYPE OF ENLARGEMENT RELATES TO A MIXED SYSTEM. 
FOR EQUATIONS. ANDIOR VARIABLES WITHOUT NON-NEGATIVITY 
RESTRICTION THERE MAY BE ENLARGEMENTS OF 500. 
THESE ENLARGEMENTS OF 500 RECORD THE FACT THAT A PARTICULAR 
VARIABLE (OR EQUATION). IS PRESENTED WITH THE OPPOSITE SIGN 
COMPARED TO WHAT THE USER PRESENTED AS INPUT-INFORMATION. 

HENCE 50~ IS THE ~ TH VARIABLE. WHICH IS OF TYPE ABSOLUTE. 
WITH THE SIGN INVERTED. I.E. MINUS X(4). 
SIMILARLY. -1507 IS THE DUAL VARIABLE ASSOCIATED WITH THE 
SEVENTH RESTRICTION. WHICH IS AN EQUATION. AND IT HAS BEEN 
NECESSARY TO INVERT THE SIGN OF EVERY COEFFICIENT IN THAT 
EQUATION. MAKING THE DUAL VARIABLE INTO MINUS THE 
ORIGINALLY SPECIFIED ONE. 

ONCE A VARIABLE OF TYPE ABSOLYTE. OR A DUAL VARIABLE OF AN 
EQUATION IS A BASIC VARIABLE IN A STANDARD FORM TABLEAU. 
THE PROGRAMME RECONVERTS SUCH A VARIABLE (IF IT CARRIES THE 
ENLARGEMENT OF 500). TO THE PRESENTATION WHICH 
CORRESPONDS TO THE INPUT-DATA. 
ENLARGEMENTS OF AN ABSOLUTE VALUE OF 500 THEREFORE DO NOT 
OCCUR IN THE OPTIMAL TABLEAU. 

501 
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FANCYHIGHI=10000; PENALTYI=1000; 
CONVEX 1= 'TRUE'; CONVEX MODE 1= 'TRUE'; 
N OF ACT NEG 0 1= 0; 

, IF' REENTRY= 1 'THEN' 'BEGIN' 
'COMMENT' 
THE PARAMETER REENTRY SHOULD BE SUPPLIED AS ZERO FOR NORMAL 
QUADRATIC PROGRAMMING. AND AS ONE. IF RE-ENTRY AFTER 
ADJUSTMENT OF THE RIGHTHAND-SIDE IS ASKED FOR. 

ON EXIT. THE NORMAL VALUE OF THE REENTRY-PARAMETER IS ZERO. 
REENTRY=-l INDICADES THAT THE PROBLEM HAS BEEN FOUND 
EMPTY IN THE NON-CONVEX MODE OP OPERATION. 
(THE CONVEX MODE OF OPERATION REACTS TO EMPTYNESS BY 
GENERATING AN ARTIFICIALLY FEASIBLE SOLUTION.) 
OTHERWISE. WHEN A FEASIBLE SOLUTION HAS BEEN FOUND. 
REENTRY=100 INDICATES THAT THE PROBLEM IS NOT CONVEX, 
THIS MEANS IN GENERAL THAT THE REPORTED SOLUTION IS 
A LOCAL RATHER THAN THE GLOBAL MAXIMUM. 

'GOTO' START; 'END'; 

COMPLETE TABLEAUI 

TRANSPOSE A TO MINUS A TRANSPOSEI 
'FOR' 11=1 'STEP' 1 'UNTIL' M 'DO' 
'FOR' JI=l 'STEP' 1 'UNTIL' N 'DO' 
T(J.I+NJ 1= - HI+N.JH 

TRANSPOSE MINUS W TO MINUS W TRANSPOSEI 
'FOR' JI=l 'STEP' 1 'UNTIL' N 'DO' T(M+N+1.JJI=T(J.M+N+1); 

TRANSPOSE B TO MINUS B TRANSPOSE I 
'FOR' 1:=1 'STEP' 1 'UNTIL' M 'DO' 
T(M+N+1.N+Il 1= -T(N+I.M+N+11; 

FILL BOTTOM RIGHT ZERO BLOCKI 
'FOR' 11= N+1 'STEP' 1 'UNTIL' N+M 'DO' 
'FOR' J:= N+1 'STEP' 1 'UNTIL' N+M 'DO' T(I.JJI=O; 

SET FANCY UPPER BOUNDSI 
'FOR' JI"l 'STEP' 1 'UNTIL' N 'DO' 'IF' T(M+N+2.Jl=0 
'THEN' T(M+N+2.J11=FANCYHIGH; 
'FOR' 11=1 'STEP' 1 'UNTIL' N 'DO' T( I.N+M+2JI=PENALTY 
-T( I.N+M+1]; 
'FOR' JI=N+1 'STEP' 1 'UNTIL' M+N 'DO' 'IF' T(N+M+2.Jl=0 
'THEN' T(M+N+2.J11=PENALTY; 

FILL DUMMY UPPER BOUNDS WITH ZEROSI 
'FOR' II=N+1 'STEP' 1 'UNTIL' M+N+1 'DO' T(I.M+N+2Jp,0; 

ATTEND DEGENERACY: 
'FOR' 11=1 'STEP' 1 'UNTIL' M+N 'DO' 'IF' T(I.M+N+"=O 
'THEN' 'BEGIN' 

NUMI =1; 
'FOR' J:=l 'STEP' 1 'UNTIL' M+N 'DO' 'IF' T(I.Jl < 0 
'THEN' NUM:=NUM-T(I.Jl; 
'IF' I < NAV+1 'THEN' NUMlc-NUM; 
'IF' I>N 'AND' I<N+NEQ+1 'THEN' NUMI=-NUM; 
TU.M+N+1J := 0.0000000001 * NUM; 'END'; 
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FILL NAMELlaTSI 
'FOR' JI=l 'STEP' 'UNTIL' N 'DO' 'BEGIN' 

COLLST[JJI=J; ROWLST[JJI=-J; 'END'; 
'FOR' 11=1 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 

COLLST[N+IJI=-1000-I; ROWLST[N+IJI=1000+I; 

START: 
STANDARD FORM: 
BADNI =0; 

ATTEND MIXED SYSTEMI 

ATTEND ABS VI 
'FOR' 11=1 'STEP' 1 'UNTIL' NAV 'DO' 
'IF' CCROWL5T[IJ < 0 'AND' -ROWLST[IJ < NAV+1) 

'END' ; 

'OR' C-ROWLST[IJ > 500 'AND' -ROWLST[IJ < SOl+NAV» 
'AND' 'NOT' T[I.N+M+1l < 0 'THEN' 'BEGIN' 

'IF' T[I.N+M+1J = 0 'THEN' T[I.N+M+1J := 0.00000001; 

TURN ABS VAR ROUNDI 
'FOR' J:=l 'STEP' 1 'UNTIL' N+M+1 'DO' 'BEGIN' 

TCI.JJ := -TCI.J); TCJ.IJ:= -TCJ.IH 'END'; 
'IF' COLLST[IJ < 500 'THEN' COLLSTCIJI=COLLSTCIJ+SOO 
'ELSE' COLLSTCIJI=COLLSTCIJ-SOO; 
ROWLSTCIJ := -COLLST[IJ; 'END'; 

PUT ABS VAR RIGHT AGAINI 
'FOR' 11=1 'STEP' 1 'UNTIL' NAV 'DO' 
'IF' ROWLST[IJ=SOO+I 'THEN' 'BEGIN' 

ROWLSTCIl:=ROWLSTCIJ-SOO; 
COLLSTCIJI=-ROWLST[IJ; 
T[I.N+M+2J 1= FANCYHIGH+T[I.N+M+1J; 

'FOR' JI=l 'STEP' 1 'UNTIL' N+M+1 'DO' 'BEGIN' 
TCI.JlI=-T[I.JH T[J.Ill=-TCJ.IH 'END'; 'END'; 

ATTEND EQUATIONI 
'FOR' II=N+1 'STEP' 'UNTIL' N+NEQ 'DO' 
'IF' CCROWLSTCIJ > 1000 'AND' ROWLSTCJ) < 1001 + NEQ) 
'OR' CROWLSTUJ > 1500 'AND' ROWLST[J) < lS01+NEQ» 
'AND' 'NOT' T[I.N+M+1J < 0 'THEN' 'BEGIN' 

'IF' T[I.N+M+1J = 0 'THEN' T[I.N+M+1J 1= 0.00000001; 

TURN EQUATION ROUNDI 
'FOR' JI=l 'STEP' 1 'UNTIL' N+M+1 'DO' 'BEGIN' 

TC I • J J : = - T [ I • J); T [ J. I J I = - TC J. I); , END' ; 
'IF' ROWLST[ll < 1500 'THEN' ROWLST[Ill= ROWLST[IJ+SOO 
'ELSE' ROWLST[IJ := ROWLST[IJ-SOO; 
COLLSTCIJI=-ROWLSTCI); 'END'; 

PUT EQUATION RIGHT AGAINI 
'FOR' II=N+1 'STEP' 1 'UNTIL' N+NEQ 'DO' 
'IF' COLLST[IJ=lS00+I-N 'THEN' 'BEGIN' 

COLLST[IJ:=COLLST[IJ-SOO; 
ROWLST[IJ:=-COLLST[IJ; 
T[I.N+M+2J := PENALTY+T[I.N+M+1J; 
'FOR' J:=l 'STEP' 1 'UNTIL' N+M+1 'DO' 'BEGIN' 

T[I.JlI=-T[I.J); T[J.IJI=-T[J.IH 'END'; 'END'; 
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SELECT BADNAME: 
PREPARE INV OF MODEl 
LOOKED FOR PAIR 1= 'FALSE'; 
N OF ACT NEG 0 1= 0; N OF P BAS V := 0; 

INITIATE ASCENT LOWI 
ASC:=-IOOOOOOOOOOOOOOO; 
'FOR' 1:=1 'STEP' 1 'UNTIL' M+N 'DO' 'BEGIN' 

'IF' TCI.I] > 0 'THEN' 'BEGIN' 
'IF' TCI.I] < 0.0000001 'THEN' TCI.I] 1= 0; 
'IF' TCI.Il > 0 'THEN' CONVEX MODE := 'FALSE'; 
'IF' NNEGD> N+M 'THEN' CONVEX MODE 1= 'TRUE'; 'END'; 

COUNTI 
'IF' I > NAV 'AND' 'NOT' 
(I>N 'AND' I<N+NEQ+I) 'THEN' 'BEGIN' 

'IF' ROWLST[J) < 0 'AND' TCI.N+M+I] < 
'THEN' N OF ACT NEG D 1= N OF ACT NEG D + I; 'END'; 

'IF' ROWLSTCJ] > 0 
'THEN' N OF P BAS V := N OF P BAS V + I; 

ABS VAR STAYS: 
'IF' I < NAV+I 'AND' (ROWLSTCI] = I 'OR' ROWLSTCIl=500+I) 
'THEN' 'GOTO' END OF BADNAME SELECTION LOOP; 

DUAL VAR EQUATION STAYS: 
'IF' I > N 'AND' I < N+NEQ+I 
'AND' (-ROWLSTCIl = 1000+I-N 'OR' -ROWLSTCJ] 
'THEN' 'GOTO' END OF BADNAME SELECTION LOOP; 

CRIT := I; 
'IF' ROWLSTCI) < 0 'THEN' 'BEGIN' 

REFUSE NON CONVEX SLACKS WHEN MODE FORCED: 

1500+I-N) 

'IF' -ROWLSTCIl > 1000+NEQ 'AND' -ROWLSTCI)<IOOI+M 
'AND' (NNEGD>N+M 'OR' NNEGD<-l> 'THEN' 'BEGIN' 

'IF' TCI.I) > 0 
'THEN' 'GOTO' END OF BADNAME SELECTION LOOP; 'END'; 

'FOR' II:=NAV+l 'STEP' 'UNTIL' N+M 'DO' 
'IF' ROWLSTCII) > 0 'AND' TCII.N+M+I] < 0 
'AND' TCIl.I) < 0 'THEN' CRIT:=CRIT-TClI.IH 'END'; 

'IF' TCI.N+M+l] < 0 'AND' CRIT > ASC 'THEN' 'BEGIN' 
BADN:=RO.WLSTCJ]; Bp=r; ASC:=CRIT; 
'END' ; 

END OF BADNAME SELECTION LOOP: 'END'; 

'IF' TCB.B) > 0 'THEN' CONVEX:= 'FALSE'; 
'IF' NNEGD > N+M 'THEN' CONVEX MODE := 'TRUE'; 
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'IF' BADN=O 'THEN' 'GoTo' END OF QUAD; 

'IF' 'NOT' CONVEX 'DR' N OF ACT NEG D > NNEGD 
'THEN' CONVEX MODE := 'FALSE'; 
'IF' NNEGD > N+M 'THEN' CONVEX MODE := 'TRUE'; 

'IF' CONVEX MODE 'DR' LOOKED FOR PAIR 'THEN' 'GoTo' PHASE II; 
'IF' BADN>O 'AND' TCB.B)=O 'THEN' 'GoTo' PHASE Il 

'FOR' I:=NAV+I 'STEP' 1 'UNTIL' N. 
N+NEQ 'STEP' 1 'UNTIL' N+M 'DO' 
'IF' TCI.M+N+I) < 0 'AND' RoWLSTCIl > 0 'AND' TCI.I)=O 
'THEN' 'GoTo' PHASE I SEARCH; 
'GoTo' PHASE II; 

PHASE I SEARCH: 
B:=O; BADN 1= 0; ASC := 0; 
'FOR' I 1= NAV+I 'STEP' 1 'UNTIL' N. 

N+ 1 'STEP' 1 'UNTIL' N+M 'DO' 
'IF' RoWLSTCI) > 0 'AND' TCI.N+M+IJ < 0 'THEN' 'BEGIN' 

'IF' -TCI.N+M+I) > ASC 'THEN' 'BEGIN' 
B:=J; ASC := -TCI.N+M+I); BADN:=RoWLSTCI); 'END'; 'END'; 

PHASE I: 
CoLN :=0; K:=O; ASC:=O; 
'FOR' J:=I 'STEP' 1 'UNTIL' N+M 'DO' 
'IF' CoLLSTCJ) > 0 
'AND' CTCB.J) < 0 'DR' J < NAV+I) 'THEN' 'BEGIN' 

'IF' J<NAV+I 'THEN' 'BEGIN' 
'IF' 1000*ABSCHB.J) > ASC 'THEN' 'BEGIN' 

K:=J; CoLN := CoLLSTCK); ASCI=IOOO*ABSCTCB.K); 
'END'; 'END'; 

'IF' -TCB.J»O 'THEN' 'BEGIN' 

'IF' TCJ.N+M+I) < 0 'THEN' 'BEGIN' 
'IF' 10*C-TCB.J)-TCJ.N+M+I) > ASC 'THEN' 'BEGIN' 

ASC := -IO*CTCB.J)+TCJ.N+M+I); 
K:=J; CoLN:=CoLLSTCJH 'END'; 'END' 

'ELSE' 'BEGIN' 
'IF' TC J.N+M+I )<0 ,0000001 
'THEN' T[J.N+M+I):=O.OOOOOOI; 
'IF' -TCB.J)/T[J.N+M+I) > ASC 'THEN' 'BEGIN' 

K:=J; CoLN:=CoLLSTCK); 
ASC:=-TCB.J)/TCJ.N+M+I); 'END'; 

• END'; • END'; 
'END' ; 

'IF' CoLN = 0 'THEN' 'BEGIN' 
'COMMENT' 
SIGNALLING OF AN EMPTY PROBLEM IN THE NON-CONVEX MODE; 
REENTRY: = -I; 
NEWLINEC 1 ); 
WRITETEXTC'C'RoW%')'); 
WRITEC30.FoRMATC'C'S-NDDDD')').BADN); 
WRITETEXTC'('%%~oUND%IMPoSSIBLE%To%SATISFY')'); 

'GoTo' FINAL END OF QUAD; 'END'; 
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ATTEND FREE VAR IN NON CONVEX MODE: 
'IF' (CoLN>O 'AND' K<NAV+1 'AND' T(B.KJ>O) 
, THEN' , BEG 1 N ' 

'FOR' JI=l 'STEP' 1 'UNTIL' N+M 'DO' T(K.JJp'-T(K.JJl 
NUM 1= T(K.N+M+1J; T(K.N+M+1J:=T(K.N+M+2J; 
T(K.N+M+2J := NUM; 
'FOR' 11=1 'STEP' 1 'UNTIL' N+M+1 'DO'T(I.KJI=-T(I.KJ; 
'IF' COLN < 500 'THEN' COLN:=COLN+500 
'ELSE' COLNI=COLN-500; 
COLLST( KJ: =CoLN; ROWLST( KJ I =-COLN; 'END'; 

'GOTO' INITIATE SEARCH FOR PIVOT ROW; 

PHASE 11: 
D:=KI=B; COLNI=-BADN; 

NON STANDARD FORMI 
'IF' ABS(ROWN) < 2000 'THEN' FLICKED 1= 'FALSE'; 

INITIATE SEARCH FOR PIVOT ROWI 
QUO:=1000000000000; ROWNI=O; 

CHECK ON ROUNDING NON CONVEXITY: 
'IF' T(B.KJ > 0 'THEN' 'BEGIN' 

'IF' T(B.KJ < 0.00000001 'THEN' T(B.KJ 1= 0; 'END'; 

'IF' 'NOT' CONVEX 'OR' N OF ACT NEG D > NNEGD 
'THEN' CONVEX MODE := 'FALSE'; 
'IF' NNEGD> N+M 'THEN' CONVEX MODE := 'TRUE'; 
'IF' N OF P BAS V = M 'AND' 'NOT' CONVEX MODE 
'AND' BADN > 0 'THEN' 'GOTO' SEEK SMALLEST QUOTIENT; 

TRY THE BADNAME ROW: 
BUT NOT IN NON CONVEX MODE: 
'IF' T(B.KJ < -0.0000000001 'THEN' 'BEGIN' 

'COMMENT' 
THE BADNAME-ROW HAS PREFERENCE. ACCEPT A NEGATIVE PIVOT; 
R:=B; ROWNI=BADN; QUO:=TCB.M+N+1J/TCB.KJ; 'END'; 

SEEK SMALLEST QUOTIENT: 
'FOR' 1:=1 'STEP' 1 'UNTIL' M+N 'DO' 
'IF' ABS(T(I.KJ) > 0.000000001 'THEN' 'BEGIN' 

CONSIDER UPPERB ON DUAL VARI 
'IF' ROWLST(IJ < 0 'AND' ROWLST(IJ = -BADN 
'AND' T(I.XJ < 0 'THEN' 'GOTO' TRY UPPER SOUND; 

KEEP SHADOWPRICE EQUATION BASIC VARI 
'IF' (ROWLST(IJ < -1000 'AND' ROWLST(IJ > -1000-NEQ-1) 
'OR' (ROWLSTCIJ < -1500 'AND' ROWLSTCIJ > -1500-NEQ-l) 
'THEN' 'GOTo' DONE; 

CONSIDER EQUATION SLACK EVEN IF NEGI 
'IF' «ROWLST(IJ > 1000 'AND' ROWLST(IJ<1001+NEQ) 
'DR' (RoWLSTCIJ > 1500 'AND' ROWLST(IJ < 1501+NEQ» 
'AND' T(I.KJ<O 'AND' T(I.N+M+1J<0 
'THEN' 'GOTo' TRY VALUE COL; 

CHAPTER XVI 
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INVESTIGATE UPPERB PRIMAL VARI 
'IF' RoWLSTCIJ > 0 'AND' RoWLSTCI1 < N+I 
'AND' TCI.K1 < 0 'THEN' 'GOTO' TRY UPPER BOUND; 

KEEP ABS VARIABLE BASIC: 
'IF' (RoWLSTCI1 > 0 'AND' RoWLSTCIJ < NAV+I) 
'OR' (RoWLSTC I 1 > 500 'AND' ROWLSTC I 1 < NAV+501) 
'THEN' 'GOTO' DONE; 

ATTEND SPECIAL FEATURES OF NON CONVEX MODEl 
'IF' N OF P BAS V = M 'AND' 'NOT' CONVEX MODE 
'AND' BADN> 0 'THEN' 'BEGIN' 

'IF' ROWLSTC 11<0 'THEN' 'GOTD' DONE; 
'IF' ROWLSTCIJ=BADN 'AND' TCI.K1<0 
'AND' 'NOT' TCI.N+M+I1>0 'THEN' 'GOTO' TRY VALUE COL; 
'END'; 

REFUSE QUOTIENT WITH THE WRONG SIGN: 
'IF' TCI.K1 < 0 'OR' TCI.M+N+I1 < 0 'THEN' 'GOTO' DONE; 

TRY VALUE COLI 
'IF' TCI.M+N+l1/TCI.KJ < QUO 'THEN' 'BEGIN' 

'IF' ROWLSTCI1<0 'THEN' 'BEGIN' 

DO NEED TO ELEMINATE: 
'IF' BADN < 0 'THEN' 'GOTO' DONE; 

CHECK SUBSPACE CONVEXITY: 
WHEN INCOMING VAR IS DRIVING VAR: 
'IF' COLN=-BADN 'AND' TCI.I1 > 0 'THEN' 'GOTO' DONE; 

FOR DRIVING VAR IN NON STAND F: 
'IF' 'NOT' COLN=-BADN 
'AND' TCD.I1-TCD.K1*TCI.I1/TCI.K1>0 
'THEN' 'GOTO' DONE; 'END'; 

RI=I; ROWN:=ROWLSTCIJ; QUO:=T[I.M+N+l1/TCI.K1; 'END'; 
'GOTO' DONE; 

TRY UPPER BOUNDI 
'IF' ABS<-TCI.M+N+21/TCI.K1) < ABS(QUO) 'THEN' 'BEGIN' 

R:=I; QUOI=-TCI.M+N+21/TCI.K1; 
NAME:=ABS<ROWLSTCI1); 
'IF' NAME < 2000 'THEN' ROWNI=NAME+2000 
'ELSE' ROWN:=NAME-2000; 
'IF' ROWLSTCI1 < 0 'THEN' ROWN:=-ROWN; 'END'; 

DONE: , END'; 

'IF' T[B.B1=0 'AND' 'NOT' CONVEX MODE 
'AND' BADN > 0 'AND' COLLSTCBJ=-BADN 'THEN' 'BEGIN' 

'IF' TCB.K1 > -0.0000000001 'THEN' 'GOTO' FLY THROUGH; 
'IF' R=O 'THEN' 'GOTO' ACCEPT BV; 
'IF' 'NOT' TCB.N+M+I1/T[B.K1 < QUO 'THEN' 'BEGIN' 

'IF' N OF P BAS V = M 'THEN' 'GOTO' NOT SMALLER; 
'GOTO' ACCEPT BV; 'END'; 

'IF' ABS<TCR.K1) < 0.01 'THEN' 'GoTO' ACCEPT BV; 
'IF' -QUO*TCN+M+I.K1 > -<TCB.N+M+I)/TCB.K1)*TCN+M+I.B1 
'THEN' 'GOTO' FLY THROUGH; 
ACCEPT BV: 
ROWN:=BADN; R:=B; QUO:=TCB.N+M+I1/T[B.KJ; 
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NOT SMALLER: 
FLY THROUGH: 
, IF' N OF P BAS V > M ' THEN' 'BEG IN' 

'IF' 'NOT' ROWN=BADN 'THEN' 'BEGIN' 
LOOKED FOR PAIR :- 'TRUE'; 'GOTO' PHASE IU 'END'; 

NON SQUARE :- N OF P BAS V - MJ 
N OF P BAS V := MJ 'END'J 'END'J 

ATTEND UPPER BOUND COLUMN VAR: 

BIND SPECIFIED VAR: 
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'IF' COLN > 0 'AND' COLN < N+I 'THEN' 'GOTO' UPPERB ALLOWEDJ 

BIND UPPER LIMIT DISTANCE: 
'IF' COLN > 2000 'AND' COLN < 2001+N 
'THEN' 'GOTO' UPPERB ALLOWEDJ 

BIND DUAL DRIVING VARIABLE: 
'IF' CCOLN<O 'AND' COLN"-BADN) 'THEN' 'BEGIN' 

'IF' ABSCCOLN)<N+I 'THEN' TCN+M+2.Kl:=PENALTYJ 
'GOTO' UPPERB ALLOWEDJ 'END'J 

UPPERBOUND NOT ALLOWED: 
'GOTO' CHECK FOR BOUNDEDNESSJ 

UPPERB ALLOWED: 

'IF' ROWN=O 'OR' QUO> TCM+N+2.Kl 'THEN' 'BEGIN' 

START OF VECTORS ONLY UPDATING LOOP: 

MARK NO PIVOT ROW: 
R := 0; 

QUO := TCM+N+2.KlJ 

ASSEMBLE ROWN: 
'IF' COLN < 0 'THEN' NAME := -COLN 'ELSE' NAME := COLNJ 
'IF' NAME < 2000 'THEN' ROWN := NAME+2000 
'ELSE' ROWN:=NAME-2000; 
'IF' COLN < 0 'THEN' ROWN := -ROWNJ 

COLLSTCKl:=ROWN; 

UPDATE VECTORS: 
'FOR' 1:"1 'STEP' 1 'UNTIL' M+N+I 'DO' 'BEGIN' 

TCI.M+N+Il:=TCI.M+N+Il-TCI.Kl*QUOJ 
TCI.M+N+2ll=TCI.M+N+2l+TCI.Kl*QUO; 
TCI.Kl := -TCI.KlJ 'END'; 

'IF' CABSCNAME) = ABSCBADN» 
'OR' C'NOT' CONVEX MODE 'AND' N OF P BAS V M 
'AND' BADN>O 'AND' ROWN>O) 'THEN' 'GOTO' 
STANDARD FORM DOUBLE STEP; 
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ATTEND COMPLEMENTI 
'IF' ROWLSTCK1 .. -COLN 'THEN' 'BEGIN' 

ATTEND COMPLEMENTARY ROWI 
ROWLSTCK11=-ROWN; 
'FOR' J:=I 'STEP' I 'UNTIL' N+M 'DO' TCK.J11--TCK.JH 
COPI=TCK.M+N+Il; TCK.M+N+I11=TCK.M+N+21; 
TCK.M+N+211"COP; 'END' 'ELSE' 'BEGI N' 

ATTEND COMPLEMENTARY COLUMNI 
COLLSTCRR1:=-ROWN; 
'FOR' 11=1 'STEP' I 'UNTIL' M+N+I 'DO' 
TCI.RR11--TCI.RRJJ 

ATTEND 2T ROW OF THE DUAL OF THE UPPERBI 
'IF' COLN < 0 'THEN' TCM+N+I.RR11=TCM+N+I.RR1+TCM+N+2.Kl 
'ELSE' TCM+N+I.RR11=TCM+N+I.RR1-TCM+!II+2.KH 'END'; 

STANDARD FORM DOUBLE STEP: 
'IF' (ABS(NAME) = ABS(BADN» 
'OR' ('NOT' CONVEX MODE 'AND' N OF P BAS V .. M 
'AND' BADN>O 'AND' ROWN>O) 
'THEN' 'BEG IN' 

'FOR' J:o.I 'STEP' 'UNTIL' N+M+I 'DO' TCK.J11=-TCK.Jl; 

'IF' ROWN < 0 'THEN' 
TCM+N+I.M+N+IJI=TCM+N+I.M+N+Il+TCM+N+I.KJ.QUO 
'ELSE' TCM+N+I.M+N+IJI=TCM+N+I.M+N+Il
TCM+N+I.Kl*QUO; 

'FOR' 11=1 'STEP' 'UNTIL' M+N 'DO' 
'IF' ROWLSTCIl < 0 'THEN' TCM+N+I.I11=TCI.M+N+11 
'ELSE' TCM+N+I.I11=-TCI.M+N+11; 
ROWLSTCKl 1= -ROWN; 

'IF' 'NOT' ABS(ABS(BADN)-ABS(ROWN) )=2000 'THEN' 'BEGIN' 
'COMMENT' 
PAIR IN PHASE I IN NON-CONVEX MODE; 
CHECK ON FLYING THROUGHI 
'IF' 'NOT' TCK.N+M+Il < 0 'THEN' 'GOTO' STANDARD FORM; 
'GOTO' PHASE 1J 'END'; 

'GOTO' STANDARD FORM) 'END'; 

ADJ COLLST AND PERM UPPERBOUND COLUMNS I 
COLLST[Bl 1= ROWN; COLLST.CKl 1" -ROWN; 
'FOR' 11=1 'STEP' I 'UNTIL' M+N+2 'DO' 'BEGIN' 

COP:=TCI.BlJ TCI.B11=TCI.KlJ TCI.KlI=COP; 'END'; 

COLN:=-ROWNJ 
'GOTO' CHECK FOR STATUS; 
END OF VECTORS ONLY UPDATING LOOPI 'END'; 
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CHECK FOR BOUNDEDNESS: 
'IF' ROWN-O 'THEN' 'GOTO' UNBOUNDED; 

SAVE INDICES: 
KK := K; RR :- R; BB:= B; 
'IF' 'NOT' CONVEX MODE 'AND' N OF P BAS V M 
'AND' BADN>O 'THEN' B:=R; 

ATTEND NON-NEGATIVITY EQ SL: 
'IF' 'NOT' ROWN=BADN 'AND' 
CCROWN>IOOO 'AND' ROWN<IOOI+NEQ) 
'OR' CROWN> I 500 'AND' ROWN<ISOI+NEQ» 
'THEN' 'BEGI N' 

'IF' TCR.N+M+Il<O 'AND' TCR.Kl<O 'THEN' 'BEGIN' 

ADJUST CODE: 
'IF' ROWN<lS00 'THEN' ROWLSTCR1:=ROWN:~ROWN+SOO 
'ELSE' ROWLSTCR1:-ROWN:-ROWN-SOO; 
COLLSTCK1:=-ROWN; 

FLICK ROUND: 
'FOR' 11"1 'STEP' I 'UNTIL' N+M+I 'DO' 'BEGIN' 
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TCI.Rl: .. -TCI.RH TCR.Il: .. -TCR.IH 'END'; 'END'; 'END'; 

PERMUTE COLUMNS: 
'IF' C"NOT' CONVEX MODE 'AND' N OF P BAS V - M 
'AND' BADN > 0> 
'OR' CROWNIBADN 'AND' ABSCROWN>IABSCBADN)+2000) 
'THEN' 'BEGIN' 

'FOR' 11=1 'STEP' 1 'UNTIL' M+N+2 'DO' 'BEGIN' 
COP:=TC I.K]; TC I.KH-T[ I.RH TC I.RlI-COP; 'END'; 

COLLSTCK1:-COLLSTCRlJ K: .. R; 'END'; 
ADJUST COLLST: 
COLLSTCK1:-ROWN; 

ATTEND UPPERBOUNDS OF PIVOTAL PAIR: 
'IF' ROWNIROWLSTCRJ 
'THEN' 'GOTO' PRESENT NEWLY BINDING UPPERBOUND AS ROW; 
NUM:-TCR.M+N+IJ+TCR.M+N+21; 
'IF' ROWN>2000 'THEN' NUM:-TCR.N+M+21-TCR.N+M+l1; 
TCR.M+N+21:-TCM+N+2.Kl-QUO; 
TCM+N+2.Kl:=NUMJ 

PRESENT NEWLY BINDING UPPER BOUND AS ROW: 
'IF' ROWN I ROWLSTCRl 'THEN' 'BEGIN' 

FLICKED :- 'TRUE'; 
ROWLSTCR1:=ROWN; 
'FOR' J:-I 'STEP' I 'UNTIL' M+N 'DO' TCR.Jl:"'-TCR.Jll 
NUM:~TCR.M+N+l1; TCR.M+N+l1:-TtR.M+N+21J TCR.M+N+21:=NUM; 

GENERATE COMP UL COLUMN: 
'I F' ABSCROWN) IABSCBADN )+20 0 0 'THEN' 'BEGIN' 

'FOR' 11 .. 1 'STEP' 1 'UNTIL' M+N+I 'DO' Tt I.KK1: .. ~T[ I.KKH 
COLLSTC KK1:=-ROWN; 
'IF' ROWN<O 'THEN' TCN+M+I.KK1:-TtN+M+I.KK1+ 
TCR.N+M+Il+TCR.N+M+21 
'ELSE' TCN+M+I.KK1:~TCN+M+I.KK1-
TC R.N+M+ Il-TCR.N+M+2H 'END' J 
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STILL ATTEND UPPERBOUNDS OF PIVOTAL PAIR: 
NUM:=T(R.M+N+11+TCR.M+N+21; 
T(R.M+N+21:=TCM+N+2.KJ-QUO; 
T(M+N+2.KJ I=NUM; 
'END'; 

PERMUTE ROWS AND ADJUST ROWLST: 
'IF' 'NOT' CONVEX MODE 'AND' N OF P BAS V = M 
'AND' BADN>O 'AND' COLN>O 'THEN' B:=KK; 
'FOR' J:=I 'STEP' I 'UNTIL' M+N+2 'DO' 'BEGIN' 

COP:=TeR.JH TCR.JJ:=TCB.JH TCB.JJ:=COP; 'END'; 
ROWLSTCRJ:=ROWLSTCBJ; ROWLSTCBJ:=COLN; 

UPDATE: 
PI V: =TeB.KJ; 

CLEAN AND UPDATE PIVOT ROW: 
'FOR' J:=I 'STEP' I 'UNTIL' M+N+I 'DO' 'BEGIN' 

'IF' J < M+N+I 'AND' ABS(TCB.JJ) < 0.0000000001 
'THEN' T(B.JJ:=O; 
'IF' T(B.JJ I 0 'THEN' TCB.JJ:=TCB.JJ/PIV; 'END'; 

ADJUST COEFFICIENTS MATRIX: 
'FOR' JI=I 'STEP' I 'UNTIL' K-I. 
K+I 'STEP' I 'UNTIL' M+N+I 'DO' 
'IF' TCB.JJ I 0 'THEN' 
'FOR' 1:=1 'STEP' I 'UNTIL' B-1. 
B+I 'STEP' I 'UNTIL' M+N+I 'DO' 
'IF' TeI.KJ 10 'THEN' TCI.JJ:=TeI.J1-TCB.JJ*TCI.KlJ 

'FOR' 11=1 'STEP' I 'UNTIL' B-I.B+I 'STEP' I 'UNTIL' M+N+I 
'DO' 'BEGIN' 

TCI.M+N+2J:=T(I.M+N+2J+T(B.M+N+IJ*TCI.K1; 
T( I.KJI=-TC I.l<l/PIV; 'END'; 

TCB.K1:=I/PIV; 

REPRESENT NEW UPPERBO BASIC VAR NORMALLY: 
'IF' ABS<COLN) < 1000 
'THEN' 'GOTO' EXTRA STEP BACK TO STANDARD Fl 

'IF' COLN > 2000 'OR' COLN < -3000 
'OR' (COLN < -2000 'AND' 'NOT' FLICKED) 'THEN' 'BEGIN' 

'COMMENT' 
SPECIFIED VARIABLES. I.E. PRIMAL NAMECODES ENTERING AS 
2000 + J. AND DUAL UPPERBOUNDS ENTERING AS -3000 -I. 
AND UPPER LIMITS ON DUAL SLACKS ENTERING AS -2000-J. 
FOLLOWING THE ELEMINATION OF ARTIFICIAL NEGATIVES OF 
ORDINARY VARIABLES (PERMITTED ONLY IN THE REENTRY MODE). 
ARE TO BE RE-DEFINED. 
THEY THEN BECOME ORDINARY VARIABLES. CODED AS J FOR THE 
J TH PRIMAL VARIABLE AND -1000 -I FOR THE I TH DUAL 
VARIABLE. OR -J FOR THE J TH DUAL SLACK, 

'IF' COLN > 0 'THEN' NAMEI=COLN-2000 
'ELSE' NAME:=COLN+2000; 
ROWLSTC B1: =NAME; 
'FOR' 11=1 'STEP' I 'UNTIL' M+N 'DO' TCB.I1:=-TCB.I1J 
NUM:=TCB.M+N+IH T(B.M+N+I1:=TCB.M+N+21; TCB.M+N+21:=NUMJ 
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'IF' COLN - -COLLSTCBl 'THEN' 'BEGIN' 
'FOR' II-I 'STEP' 1 'UNTIL'M+N+l 'DO' TCI.Bll--T(I.Bl; 
COLLST[Bll--NAME; 
'IF' NAME> 0 'THEN' TCM+N+l.Bl I" TCM+N+l.Bl 
-T[B.M+N+Il-TtB.M+N+2l 'ELSE' 
Tt M+N+ I. Bl I-TtM+N+ 1. Bl+Tt B.M+N+ 1 l+Tt B.M+N+2lJ 'END'; 

END OF INCOMING VARIABLE LI~IT RENORMALISATIONI 'END'; 

EXTRA STEP BACK TO STANDARD FI 
UPPER LIMIT ELEMINATION TO ST FI 
'IF' ABSCROWN) - ABSCBADN)+2000 'THEN' 'BEGIN' 

'FOR' JI-I 'STEP' 1 'UNTIL' N+M+I 'DO' TCR.Jll .. -TtR.JlJ 
, IF' BADN > 0 ' THEN ' 
TtM+N+I.M+N+lll-TCM+N+l.M+N+ll-PENALTY.TtR.M+N+ll 
'ELSE' TCM+N+l.M+N+lll-TtM+N+l.M+N+ll + 
T[M+N+2.Kl.TtR.M+N+ll; 

'FOR' Jp'l 'STEP' 1 'UNTIL' M+N 'DO' 
'IF' ROWLST[Jl < 0 'THEN' TCM+N+l.JlI-TtJ.M+N+l l 'ELSE' 
TCM+N+l.Jll--TtJ.M+N+ll; 
'IF' BADN > 0 'THEN' ROWLSTtRl I- BADN+2000 
'ELSE' ROWLSTtRl I- BADN-2000; 
'GOTO' STANDARD FORM; 'END'; 

CHECK FOR STATUSI 

ATTEND PAIR IN NON CONVEX MODEl 
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'IF' 'NOT' CONVEX MODE 'AND' N OF P BAS V - M 'THEN' 'BEGIN' 
'IF' ElADN> 0 'AND' COLN<O 'THEN' 'BEGIN' 

'IF' COLN--BADN 'THEN' 'GOTO' STARTJ 
'IF' TtBB.N+M+ll > 0 'THEN' 'GOTO' STANDARD FORM; 
N OF P BAS V I- N OF P 8AS V + NON SQUARE; 
BI-88; 'GOTO' PHASE H 'END'; 

'IF' BADN > 0 'AND' COLN> 0 'THEN' 'BEGIN' 
'IF' R-O 'THEN' RRI-K; 
'IF' R-O 'THEN' KKI-K; 
81-RI-RR; KI-KK; 
NAMEI-ROWN; ROWN:--COLN; COLNI--NAME; 
'GOTO' ADJUST COLLST; 'END'; 'END'; 

'IF' 8ADN-ROWN 'THEN' 'GOTO' START; 

PREPARE NON STANDARD FORM STEPI 
'IF' R-O 'THEN' KKI-K; 
'IF' R-O 'THEN' R:=B; 
K:-KK; 81 a R; COLNI=-ROWN; 
'GOTO' NON STANDARD FORM; 

UN80UNDED: 
NEWLINEC 1)J 
WRITETEXTC'C'UNBOUNDED%COLUMN')'); 
WRITEC30.FORMATC'C'S-NDDDDDDDDD')').COLN); 
NEWLINEC 1 )J 

END OF QUADI 

'IF' 'NOT' CONVEX 'THEN' REENTRY: - 100; 

FINAL END OF QUAD: 'END'; 



QUADRATIC PROGRAMMING WITH LINEAR RESTRICTIONS 

TEXT-LISTING OF THE CONTROLLING MAIN PROGRAMME. 

'BEGIN' 'INTEGER' M.N.NAV.NEQ.REENTRY.I.J.NNEGD. 

'PROCEDURE' QUAD(T.M.N.NEQ.NAV.NNEGD.ROWL.COLL.REENTRY>. 
'ARRAY' T. 'INTEGER' M.N.NEQ.NAV.NNEGD.REENTRY. 
'INTEGER' 'ARRAY' ROWL.COLLl 'ALGOL'. 

'PROCEDURE' MATI(MATR.M.N.SR.SC)l 
'ARRAY' MATR. 'INTEGER' M.N.SR.SC' 'ALGOL'; 
'PROCEDURE' TABO(MATR.M.N.SR.SC.RH.ER.ROWL.COLL>l 
'ARRAY' MATR. 'INTEGER' M.N.SR.SC.RH.ER. 
'INTEGER' 'ARRAY' ROWL.COLL. 'ALGOL'; 
'PROCEDURE' REPQ(T.M.N.NEQ.NAV.ROWL.COLL); 
'ARRAY' TJ 'INTEGER' M.N.NEQ.NAV; 
'INTEGER' 'ARRAY' ROWL.COLL; 'ALGOL'; 

'COMMENT' 
SIMPLEX ALGORITHM FOR QUADRATIC PROGRAMMING. 
FOR DETAILS OF THE ALGORITHM SEE THE TEXT OF 
THE PROCEDURE QUAD. 

PRESENTATION OF DATAl 
FIRST THE NUMBER OF RESTRICTIONS I.E. M. 
THEN THE NUMBER OF VARIABLES. I.E. N. 
FOLLOWED BY THE NUMBER OF EQUATIONS. NEQ. 
THEREAFTER NAV. THE NUMBER OF ('FREE') VARIABLES 
TO WHICH THE NON-NEGATIVITY RESTRICTION DOES NOT APPLY. 
THEREAFTER NNEGD. 
THE NUMBER OF NEGATIVE-VALUED DUAL VARIABLES WHICH IS PER
MITTED UNDER THE CONVEX MODE OF OPERATION. 

THEREAFTER PUNCH EACH ROW OF THE COMPOSITE MATRIX 
D -W 
A B 
U' 0 OR 
L' 0 

TO REPRESENTI 
MAXIM W' X + 1/2 X' 0 X 
A.X < OR = B 
AND X < OR U 
AND X > OR = L 

READ ORDER PARAMETERS ETCI 
M: =READ; N I =READ' NEQ I =READ; NAV: =READ; NNEGD: =READ' 

NEWLINECI )J 

'IF' NEQ > M 'THEN' 
WRITETEXT('('YOUIHAVEIERRONEOUSLYISPECIFIEDIMOREI 
EQUATIONSITHANIRESTRICTIONS')'); 

NEWLINEC 1). 
'IF' NAV> N 'THEN' WRITETEXTC'('YOUIHAVEIERRONEOUSLYI 
SPECIFIEDIMOREIFREEIVARIABLESIr'HANIVARIABLES' >')J 

REENTRY: = 0 ; 
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'BEGIN' 
'ARRAY' TA[ 1 :M+N+3.1 :M+N+2H 
'INTEGER' 'ARRAY' ROIolL.COLL[l:M+N); 

READ MAIN TABLEAU MATRIX: 
MATICTA.N+M+2.N+I.O.O); 

REORDER TO APPROPRIATE BLOCKSI 
'FOR' JI=I 'STEP' 1 'UNTIL' N+I 'DO' 
'FOR' 11=2.1 'DO' 
TA[M+N+I+I.JJ:=TA[M+N+I.JJ; 
'FOR' 11=1 'STEP' 1 'UNTIL' M+N+I 'DO' 'BEGIN' 

TA[I.M+N+IJ:=TA[I.N+IH TA[I.N+IJ:=O; 'END'; 

RE INTERPRET: 

INITIAL VALUE: 

FOR LINEAR PART OF INITIAL VALUEI 
'FOR' JI=I 'STEP' 1 'UNTIL' N ,~O' 

TACN+M+I.N+M+IJ 1= 
TACN+M+I.N+M+IJ -2*TACJ.N+M+IJ*TACN+M+3.Jl; 

FOR QUADRATIC PART OF INITIAL VALUE: 
'FOR' JI=I 'STEP' 1 'UNTIL' N 'DO' 
'FOR' 11=1 'STEP' 1 'UNTIL' N 'DO' 
TACN+M+I.N+M+IJ:= 
TACN+M+I.N+M+Il + TACN+M+3.IJ*TACI.Jl*TACN+M+3.Jl; 

REST OF VALUE COLI 
'FOR' J:=I 'STEP' 1 'UNTIL' N 'DO' 
'FOR' 1:=1 'STEP' 1 'UNTIL' N+M 'DO' 
TACI.N+M+I JI=TACI.N+M+IJ-TACI.Jl*TACN+M+3.Jl; 

UPPER LIMITS: 
'FOR' J:=I 'STEP' 'UNTIL' N 'DO' 'BEGIN' 

'IF' TACN+M+2.JJ=O 'THEN' TA[N+M+2.JJ:=IOOOOO; 
TA[N+M+2.JJ := TA[N+M+2.Jl-TA[N+M+3.JJ; 
'IF' TA[N+M+2.JJ < 0 'THEN' 'BEGIN' 

NEIoiLINE( I); 
IoIRITETEXT('( 'YOU%HAVE%SUPPLIED%A%LOIolER%LIMIT%IN% 
EXCESS%OF%THE%CORRESPONDING%UPPER%LIMIT')'); 
NEIoiLINE( 1 ); 
WRITETEXTC'('THE%QP%PROBLEM%IS%THEREFORE%EMPTY.')'); 
'END'; 

'END'; 

NOIoi SOLVE: 
QUADCTA.M.N.NEQ.NAV.NNEGD.ROIolL.COLL.REENTRY); 

REPORT SOLUTION: 
REPQ(TA.M.N.NEQ.NAV.ROIolL.COLL); 
'IF' M+N < 13 
'THEN' TABOCTA,M+N,M+N,O,O,2,2,ROIolL,COLL) 
'ELSE' TABO(TA,M+N,O,O,M+N,I,O,ROIolL,COLL); 
NEIoiLINE( I); 
IoIRITETEXTC'C'SOLUTION%VALUE%IF%IN%STANDARD%FORM')'); 
WRITEC30,FORMATc'C'S-NDOOO.DDO')'),TA[M+N+I,M+N+Il/2); 
NEIoiLINEC I); 

• EN D • ; I EN D • 

CHAPTER XVI 
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NAME I 

D 1 
D 2 
S 1 
S 2 

2T 

NAME 

D 1 
S 1 
P 1 
S 2 

"'aT 

NAME 

D 1 
X 2 
P 1 
S 2 

2T 

NAME 

X 1 
X 2 
D 1 
5 2 

X 1 

2 
1 

-1 
3 

X 

1 
-1 

1 
3 

-4 

X 

1 

CD 
2 

-6 

S 

-1 
1 

CD 

X 2 

-1 
1 

2 

D 2 

-1 

-5 

D 2 

-1 

-5 

D 2 

1 
-1 
-1 
-2 

ANSWER-SHEET 16.8 EX 

P 1 

1 

CD 

5 

X 2 

1 

B 

2 

S 

1 
-1 

2 

P 

1 
-1 

-2 

P 2 

-3 
-1 

-30 

P 2 

-2 

-1 

-25 

P 2 

-2 

-1 

-25 

P 2 

-1 
1 

-2 
2 

VAl.UE 

1 
2 

-5 
30 

VAl.UE 

-1 
-5 

2 
30 

-10 

VAl.UE 

-6 
5 
2 

25 

-20 

VAl.UE 

2 
3 

-6 
21 

----------------------------------------
2T 

NAME I 

X 1 
X 2 
S 1 
D 1 

2 

P 2 

-1 
3 
2 

e> 

D 2 

1 
-3 
-2 

1 

6 

P 

1 
-3 
-2 

2 

-31 

S 2 

1 
1 

-1 

-8 

VAl.UE 

2 
24 
21 

-27 
----------------------.-----------------

2T -35 5 10 -2 -50 

NAME D D 2 P S 2 VAl.UE 
----------------------------------------
X 1 -0.25 0.75 0.50 0.25 8.75 
X 2 0.75 -2.25 -1.50 0.25 3.75 
S 1 0.50 -1.50 -1 0.50 7.50 
P 2 -0.25 -0.25 -0.50 0.25 6.75 

2T -8.75 -3.75 -7.50 6.75 I 186.25 
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SET-UP TABl.EAU. 
51 IS BADNAME. PI DRIVING VAR. 
REFUSE Dl AS l.EAVING VARIABl.E. 
ON ACCOUNT OF THE QUAl.IFIER. 
D2 BECOMES l.EAVING VARIABl.E. 

IN THE RESUl.TING NON
STANDARD FORM TABl.EAU. 
X2 BECOMES INCOMING VAR •• 
BY THE COMPl.EMENTARITY RUl.E. 
51 15 NOW l.EAVING VARIABl.E. 

WE NOW HAVE A STANDARD FORM 
TABl.EAU. 
Dl BEC[lI(ES BADNAME. 
Xl IS DRIVING VARIABl.E. 
PI IS SEl.ECTED AS 
l.EAVING VARIABl.E. 

IN THIS NON-STANDARD FORM 
SI IS INCOMING VARIABl.E 
BY THE COMPl.EMENTARITY RUl.E. 
52 15 l.EAVING VARIABl.E. BY 
THE RUl.E OF THE SMAl.LEST 
CONl.Y) QUOTIENT. 

ANOTHER NON-STANDARD FORM 
TABl.EAU. IN WHICH THE 
COMPl.EMENTARITY RUl.E 
ACTIVATES P2 AS INCOMING 
VARIABLE. Dl 15 THE 
l.EAVING VARIABl.E. 

WE HAVE NOW REACHED 
THE OPTIMUM. 



CHAPTER XVII 

PARAMETRIC METHODS IN QUADRATIC PROGRAMMING 

17.1 Postoptimal variation of the right-hand side of a 
quadratic programming problem 

We now discuss the following problem: 

Maximise 

, =, + w'x + ~ x'Dx 
o 

Subject to 

Ax < b + A v 

(~ ~ 0 unless otherwise stated) 

(17.1.1) 

(13.2.1) 

(17.1.2) 

The main block of linear side-restrictions (and the parametric 
variation of the righthand-side of these restrictions), 
(13.2.1), are the same as those arising in the case of a 
linear programming problem, and we will make use of the same 
notation as developed in Chapter XIII. 

The non-negativity restriction on the objective function, i.e. 
(17.1.2) is a novelty which will cause some complications. 

These complications are not particularly serious and the 
restriction of a quadratic objective function to non-negative 
values falls within the general notion of sensitivity analysis. 

The addition of a constant '0 to the objective function, i.e. 
(17.1.1), rather than (16.1.1) is related to this non
negativity requirement on the objective function. The non
negativity requirement on ,(x) can be made into a ~edundant 
restriction, by specifying a-large initial value for ,. Our 
approach to solving the parametric quadratic programming 
problem is via extending the algorithm which we developed for 
parametric variation of (the right-hand side of) a linear 
programming problem to the quadratic case. 

Recall section 16.3. 

The optimal and feasible vertex of a quadratic programming 
problem is also a feasible solution to the linear programming 
problem specified in section 16.3, and modified as follows: 
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Maximise 

~ = w'x + ~'E. (16.3.1) 

Subject to 

Dx - A'E. 2- -w (16.2.3) 

Ax < b + AV (13.2.1) 

If we followed the analogy of section 16.3 completely, the 
optimal and feasible vertex of the adjusted quadratic 
programming problem would have as objective function of the 
linear equivalent 

(17.1.3) 
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We shall, however, initially be content with the objective 
function indicated by (16.3.1), as a feasible vertex which also 
satisfies the complementary slackness condition (i.e. the 
requirement of standard form), will be sufficient, without 
regard to optimal form. 

As in the LP case, parametric steps may be made either by 
exogenous adjustment of the righthand-side - a QP generalization 
of the approach outlined in section 13.1, or the parameter 
may be treated as a variable and re-defined after having entered 
the basis - a QP generalization of the procedure outlined in 
section 13.5 for the LP-case -

To illustrate the procedure, we slightly modify an example of 
a quadratic programming problem, which we already presented in 
section 16.3. 

We put the initial value of the objective function at 10, and 
define the parametric activity as moving the one restriction 
outwards. 

The parametric problem therefore is: 

Maximise 

Subject to 
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As in the linear programming case, the computational 
implementation is facilitated, if the parametric activity is 
brought over to the lefthand side, and grouped with the other 
variables for purposes of updating. This is so, irrespective 
of the method of actually making the parametric step. The 
resulting set-up tableau 17.la is given below, with deletion 
of the fancyhigh upper limits on xl and x 2 . 

NAME ! 

! 

TABLEAU 17.1 A 

SET-UP TABLEAU FOR PRIMAL PARA
METRICVARIATION OF A QP-PROBLEM. 

II X 1 X 2 l. PI! I VALUE 

CODE II 2 3 -1001 I! 
----------------------------------------------------
D 1 -1 II -2 1 II 1 
D 2 -2 11 -2 2 I I 1 
D 3 -3 II 1 11 0 
5 1 1 001 ! I - 1 -2 -1 ! ! -3 

2T I! 3 I! 20 

The corresponding initial optimum is given below in tableau 
17.lb. 

TABLEAU 17.1 B 

INITIAL OPTIMUM OF THE PRIMAL PARAMETRIC 
VARIATION QP PROLEM GIVEN IN TABLEAU 17.1 A 

NAME ! ! ! D 1 D 2 l. 5 II VALUE 

! CODE ! ! -1 -2 3 1001 II 
----------------------------------------------------
X 1 1 ! ! -0.40 0.20 (0.20/ -0.20 II 0.40 
X 2 2 ! I 0.20 - 0.10 0.40 -0.40 I! 1 .30 
D 3 -3 I! -0.20 -0.40 -0.40 0.40 ! ! -1.80 
P 1 1-1001 ! I 0.20 0.40 0.40 -0.40 ! ! 1.80 

2T II -0.40 -1.30 -1.80 1.80 ! I 12.90 

The dual variable d3 is negative, indicating that the value of 
the objective function will actually increase, if the parametric 
variable is brought into the basis. 

However, in a non-linear problem, the value of the objective 
function ~s a non-linear function of the value of the parameter. 
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How non-linear this relationship is, is indicated by the 
diagonal d 3 /A entry of -2/5. 

The dual variable is the first-order derivative of the 
objective function with respect to A, and this first-order 
derivative is itself a function of A. 
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If we follow the convention that the parameter is always stored 
as the last specified variable we may indicate this dual 
variable as d , and the diagonal entry (-2/5 in the d 3/A cell 
in this case)nas t . 

n,n 

In the context of the kth parametric step, these two numbers 
are related to each other by the following equation 

d - t 
n n,n 

(17.1.4) 

In (17.1.4), d (Ak ) is the value of the nth dual slack-variable 
(shadowprice),nexpressed as a function of the kth increment of 
the parameter. The term d is the current value of this 
shadowprice, i.e. -1.80 iR the example; t is the nth diagonal 
cell of the tableau -0.40 in the example.n,n 

The shadowprice of the A-column remains minus the first-order 
derivative of the objective-function when A is increased 
exogenously. Assuming that we are not concerned with the value 
of the objective, function, the usual search operation indicates 
A=2 as the critical value at which xl will be eliminated. If 
the right-hand side is adjusted exogenously, the parametric 
step results in tableau l7.lc. 

TABLEAU 17. I C 

DISPLACED OPTIMUM OF THE PRIMAL PARAMETRIC 
VARIATION QP PROLEM GIVEN IN TABLEAU 17.1 A 

NAME ! ! ! D I D 2 LI 
(L=2> 

S I !! VALUE 
----------------------------------------------------

! CODE !! -I -2 3 1001 !! 
----------------------------------------------------
X I I I! -0.40 0.20 0.20 -0.20 I! -0.00 
X 2 2 II 0.20 -0.10 0.40 -0.40 ! ! 0.50 
D 3 -3 ! ! -0.20 -0.40 -0.40 0.40 ! ! -I 

P I ! -100 I ! ! 0.20 0.40 0.40 -0.40 ! ! I 
----------------------------------------------------

2T ! ! 0 -0.50 -I ! ! 711 
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The usual updating procedure is not applicable to the 2T-row, 
if we only changed the 2T/value cell, the old pseudo-objective 
function ~ (see 16.3.1) would stand. The entries in this row 
have been obtained by copying from the value column, with the 
sign-adjustments indicated in section 16.4. The 2T/value cell, 
marked ??? in tableau l7.lc is so far unknown. 

The fact that the d3 variable is the shadow-price of the 
redefined A-variable throughout the step, may be expressed 
algebraically by the following equation: 

(17.1.5) 

Substitution of the right-hand side of (17.1.4) for dn(Ak ) 
in (17.6.5) gives the following result: 

(17.1.6) 

The use of a partial derivative for ~~ in both (17.1.5) and 
(17.1.6) relates to the assumption that other non-basic 
variables stay at their pre-assigned values of zero, i.e. 
these relations apply for a particular vertex. Integration 
of (17.1.6) with respect t~ Ak , from zero to a specific value 
of Ak , to be indicated as Ak yields: 

\k 
,h 

\k Ak 

f TI (Ak) dAk -d J dAk + t J AkdAk n n,n 
0 0 0 

Evaluation of the integrals yields: 

T (\k) - T = -d \ + ! t (\ )2 
n k n,n k (17.1.7) 

Since Ak is normally used to indicate a specific parametric 
increment, we can now dispense with the distinction between Ak 
(any value) and the \k' the position at the next vertex and 
re-write (17.1.7) as 

= T - d 
n Ak + ! t . Ak 

2 n,n 
2 

(17.1.8) 

We may use (17.6.8), to impose (if so desired) a non-negativity 
requirement on T. 
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We find a zero value of T(Ak ) for 

d 
n ±Vct 2 -2T n 

t 
n,n 

t 
n,n (17.1.9) 

The parameter is increased from zero to a positive value, and 
the parametric step is only made if the initial value of the 
objective function is non-negative. 
(If no non-negativity requirement on T is intended, (17.1.9) 
may be made redundant, by specifying a large initial value 
of T.) 

For t 0, T is after all a linear function of A, otherwise n,n 
the larger of the two roots is positive and applicable, the 
smaller is negative. Thus Ak is restricted to the interval 
between zero and the value indicated by the positive root 
indicated by (17.6.9). 
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Since t ~s non positive (negative), the upper limit on Ak is, 
for t n,~ ° 

n,n 

d 
n 

_ y{2 _ 2T 
n 

t 
n,n 

t 
n,n (17.1.10) 

The quadratic term in (17.1.8) may in fact be zero, in which 
case (17.1.9) and (17.1.10) are replaced by simpler linear 
formulae. 

For tn n > 0, including the linear case t = 0, (17.1.10) is 
not appliZable. For tn,n ~ 0, dn ~ 0, the¥enis no upper limit 
at all, and the parametric search operation may (or may not) 
become unbounded. For the example at hand, we find: 

A < -1.80 - v'<1.80)2 + 12.90 x 0.40 = 11.75 
- -0.40 

We now adjust the initial tableau with resvect to two things. 
We mark the upper limit on A. Also, we implement the calculation 
of the first terms of (L7.l.8) with respect to 2T, i.e. two 
terms of: 

2T(Ak ) = 2T - 2 . d n . Ak + tn,n A~ (17.1.11) 

We double the 2T/A entry, from -1.80 to -3.60 and "normal" 
updating will amend the 2T entry to become 2T - 2.d . Ak . The 
upper limit is not binding, and the corrected table~u is at 
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this stage tableau l7.ld. 

TABLEAU 17.1 D 

INITIAL OPTIMUM OF THE PRIMAL PARAMETRIC 
VARIATION QP PROLEM GIVEN IN TABLEAU 17.1 A. 
WITH THE 2T/L CELL SPECIALLY ADJUSTED. 

NAME I II D 1 D 2 L S 1 I I VALUE 

I CODE I I -1 -2 3 1001 ! ! 

----------------------------------------------------
X 1 1 I I -0.40 0.20 ~ -0.20 ! ! 0.40 
X 2 2 II 0.20 -0.10 0.40 -0.40 I I 1.30 
D 3 -3 II -0.20 -0.40 -0.40 0.40 I I -1.80 
P 1 1-1001 I I 0.20 0.40 0.40 -0.40 II 1.80 
-----------------------------.----------------------

2T I II -0.40 -1.30 -3.60 1.80 I I 12.90 
BOUNDI II X X 11.75 X ! ! X 

CHAPTER XVII 

The quadratic term in (17.1.11) will have to be attended 
separately. If the parameter is treated as a variable, i.e. an 
explicit step is made, we now obtain tableau l7.le. 

TABLEAU 17.1 E 

NEW VERTEX TABLEAU. NOT IN STANDARD FORM. 

NAME I II 

L 
X 2 
D 3 
P 1 

I CODE II 

3 II 
2 II 

-3 II 
1-1001 II 

D 1 

-2 
1 

-1 
1 

-1 

2T II -7.60 

D 2 X 1 

-2 

1 5 
-0.50 -2 

2 
-2 

2.30 18 

S 1 I I VALUE 

1001 II 

-1 II 
II 
II 
! ! 

2 
0.50 

-1 
1 

-1.80 II 20.10 

Since the upper limit on A is no longer relevant at this stage, 
we have suppressed reference to it. Tableau l7.le contains 
incorrect entries in the 2T row. The 2T/value cell needs to be 
corrected, i.e. the third, quadratic term of (17.1.11) should 
be taken into account. For t = -2/5 and A=2, this term is 

n,n 
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evaluated as -1.60 and the 2T entry in the value column should 
be 20.10 -1.60 = 18.50. 

It is readily verified that for xl = 0, x2 = 0.50, 
T = 10 - 0.5 - 0.5 2 = 9.25, i.e. 2T = 18.50 is indeed the 
correct entry. 

The other cells in the 2T row will be attended to when the 
tableau is back in standard form. 

We now adjust the prearranged value of the parameter, i.e. 
integrate A = 2 with the value column and put the variable 
itself re-defined as Al at -0.00. 

Having eliminated xl' d l becomes the next pivot column by the 
complementarity rule. 

To maintain ordering we therefore interchange the 
columns. Since we wish to eliminate the parameter 
the next step, A becomes badname and stays in the 
slot. The resulting tableau l7.lf is given below. 

TABLEAU 17.1 F 

NEW VERTEX TABLEAU. ADJUSTED 
AND READY FOR THE ORDINARY STEP. 

xl an~ d l 
aga~n at 

"wrong" 

NAME , ! ! X I D 2 D I 
(1.=2) 

S I 'I VALUE 

, CODE , ! -2 -I IDOl ! ! 
----------------------------------------------------

LI 3 I I 5 I @) -I , ! -0.00 
X 2 2 ! ! -2 -0.50 I I I 0.50 
D 3 -3 ! ! 2 -I I! -I 
P I ! -I 001 I! -2 I ! I I 

2T ! , 18 2.30 -7.60 -1.80 II 18.50 

The normal quadratic programming step is now made, leading to 
tableau 17. 19. 
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TABLEAU 17.1 G 

NEW OPTIMAL AND FEASIBLE TABLEAU, 
WITH AN INCONSISTENT 2T-ROW. 

NAME I II X 1 D 2 L1 
(L .. 2> 

S 1 I I VALUE 

I CODE I I -2 3 1001 I! 
----------------------------------------------------
D 1 -1 II -2.50 -0.50 -0.50 0.50 I I 0 
X 2 2 I I 0.50 0.50 -0.50 II 0.50 
D 3 -3 II -0.50 -0.50 -0.50 0.50 II -1 
P 1 1-1001 " 0.50 0.50 0.50 -0.50 II 1 

-----------------~----------------------------------
2T I I -1 -1.50 -3.80 2 " 18.50 

This is a standard form tableau and it is now possible to correct 
the 2T row. We can use the symmetry property (see section 16.4), 
and copy from the value column, while inverting the sign of the 
x 2 entry. We also add an upper limit on Al, calculated afresh 
from (17.1.10). The resulting tableau l7.lh is given below. 

TABLEAU 17.1 H 

NEW OPTIMAL AND FEASIBLE TABLEAU, 
READY FOR THE NEXT PARAMETRIC STEP. 

NAME I ! I X 1 D 2 Ll 
.Cl.=2 > 

Sill VALUE 

------------------~--------------------------------I CODE II -2 3 1001 II 

D 1 -1 " -2.50 -0.50 -0.50 0.50 I I 0 
X 2 2 II 0.50 (0.50) -0.50 I I 0.50 
D 3 -3 II -0.50 -0.50 -0.50 0.50 ! ! -1 
P 1 1-1001 I I 0.50 0.50 0.50 -0.50 I I 1 
---------------------------------------------------

2T I I I 0 -0.50 -1 " 38.50 
BOUNDI I I 100 X 3.64 X II X 

The upper limit on A is now 

A < -1 - vii + 18.50 x 0.50 = 3.64 
1 -0.50 

It will be noted that, with an "ordinary" leaving variable. as 
distinct from an upper limit distance (e.g. xl)' the exogenous 
adjustment of the value column and the 2T-row (e.g. calculating 
tableau l7.lc and putting the 38.50 in the cell marked "???") 
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is the simpler method compared with introducing A into the 
basis (e.g. calculating tableau l7.le). 

Since Al is limited by the normal rule of the smallest quotient 
(on the x2 row), to be not more than 1, a further parametric 
step can De made, and A will become 2 + 1 = 3. 

Exercise 

Continue the example, until at A = 3, xl = x2 
metric adjustment problem becomes unbounded. 

0, the para-

17.2 Parametric variation of the linear component of the 
objective function of a quadratic programming problem 

We are now concerned with finding the family of solutions to 
the problem 

Maximise 

T (~, A) w'x + A ~'~ + ~ x'Dx (17.2.1) 

Subject to 

Ax < b (7.2.2) 

(~~ 0) 

Now recall section (15.6), concerning non-linear duality. We 
formulate the Lagrangean expression 

x'Dx + .£.' (E. - ~) (17.2.2) 

and the dual requirements are 

aL ax = ~ + A~ + D~ - A'.£. ~ 0 (17.2.3) 

h . ,aL f d • (15 6 7) T e expreSS10n L - x -- re erre to 1n .. - ax 
be 

turns out to 

L(x, .£.' A) 
aL - x' -- = ax 

-w'x - A~'X - x'Dx 

E.'.£. - ! x'Dx (17.2.4) 
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The dual of a quadratic programming problem therefore lS 

Maximise 

x'Dx (17.2.5) 

Subject to 

Dx - A'E ~ - w - Ag (17.2.6) 

In quadLatic programming there is an even closer analogy between 
the "primal" and the "dual" parametric variation problem, than 
is the case with linear programming. 

We proceed as follows: 

Firstly, a parametric restriction, specifying that a certain 
linear function of the variables is to be greater than or equal 
to zero, is entered as an (mth) dummy-restriction. 

(17.2.7) 

As in the linear programming case (compare Section 13.5), this 
"restriction" is initially exempt from search operations. Its 
associated row serves as an operator. The transposition and 
inversion of the sign of that row as part of the set-up tableau 
automatically leads to the generation of a tableau in which we 
may interpret the dual requirements as the equivalent of 
(17.2.6), i.e. 

(17.2.8) 

Example 

Maximise 

T** 2 
x -

1 

Subject to 

(This is substantially the same example as used in the previous 
sect ion) . 
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The initial set-up tableau is as follows: 

NAME ! 

TABLEAU 17.2 A 

SET-UP TABLEAU FOR DUAL PARA
METRIC VARIATION OF A QP-PROBLEM. 

! ! X I X 2 P I l. !! VALUE 
---------------------------------------------------

! CODE I I 2 -1001 -1002 I! 
---------------------------------------------------
0 I -I II -2 ! ! 
0 2 -2 II -2 2 ! ! I 
S 1 1001 ! ! -I -2 ! ! -3 

T* 1002 I ! - I I! 0 
---------------------------------------------------

2T , ! 3 ! ! 

The vector g is a unit vector ~l' i.e. the unity element in 
position 1.-

In the QP case it is in fact practical (though by no means the 
only possible method to never actually activate the parametric 
restriction in the sense~aking it binding. 
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The above dual problem shows that we may extend the approach 
which we followed in section 13.3 for linear programming, to the 
quadratic case. All that is needed is to properly account for 
the change in the right-hand side of the dual requirements. The 
interpretation which we mentioned in section 13.5, i.e. the 
parametric component of the objective function to attain a 
certain value is also applicable in both cases. 

Using only the convex mode of operation, the similarity between 
the parametric variation of the right-hand side of the primal, 
or the dual requirements, is enhanced even more, because in 
quadratic programming we actually start a quadratic programming 
step, by bringing a variable into the list of basic variables. 

That variable is in the case of parametric variation of (the 
linear component of) the objective function, the dual variable 
associated with the parametric restriction. The parametric 
restriction itself is in fact never activated. 

The example's initial optimal tableau, with the first 
parametric pivot marked c::J , is given below, in tableau l7.2b. 
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TABLEAU 17.2 B 

INITIAL OPTIMUM OF THE DUAL PARAMETRIC VA
RIATION QP-PROBLEM. GIVEN IN TABLEAU 17.2 A. 

NAME II D 1 D 2 S 1 L II VALUE 

X 1 
X 2 
P 1 

T* 

I CODE II 

1!1 
I 2 I! 
1-1001 ! I 
! 1'002 I I 

-1 

-0.40 
0.20 
0.20 

-0.40 

-2 

0.20 
-0.10 

0.40 
0.20 

1001 -1002 II 

-0.20 
- 0.40 
-0.40 
-0.20 

-0.40 II 
10.201 I I 
0.20 II 

-0.40 II 

0.40 
1.30 
1.80 
0.40 

2T II -0.40 -1.30 1.80 -0.40!1 -7.10 

We do not, in the case of variation of the objective function, 
implement a non-negativity restriction on the objective 
function, therefore there is no upper limit on P2' except the 
fancyhigh upper limit implied in the basic quadratic programming 
algorith. (There would be no problem in extending the analogy 
with variation of the right-hand side to cover this point as 
well.) We do, however, need a generalization of (17.1.8) to 
calculate the correct value of the objective function. 

T**(Ak ) = T** + T* . Ak - ! t m+n,m+n 

Here, T* is the current value of the parametric 
the objective function (2/5 in the example) and 
the m+n, m+n cell of the tableau. This assumes 

(17.2.9) 

component of 
t is m+n, m+n 

that the parametric restriction is stored - as in the case 
of linear programming - as the last restriction. Note the change 
in sign, compared with (17.1.8). This is because a generalization 
of (17.1.6), would refer to dT/dA being +T*, instead of -d , 
as in (17. 1. 6) • n 

The computational implementation of the parametric variation of 
the objective function is largely analogous to the procedure 
discussed in the previous section for the variation of the right
hand side. Thus, the A entry in the 2T row is doubled, becoming 
-0.80. Reference to the 2T/A cell of the tableau rather than to 
the value of T* automatically covers the difference in the sign 
of the linear terms of (17.1.8) and (17.2.9). The parametric 
step is now made, yielding incorrect results for the 2T-row. 
Note the difference with section 13.3, where, in the LP case 
dual parametric steps are made by updating the objective 
function row only. In a QP problem, a change in the objective 
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function generally leads to a change in the primal solution 
vector, and an upper limit distance could be eliminated. We 
develop tableau l7.2c. 

TABLEAU 17.2 C 

INTERMEDIATE TABLEAU OF THE DUAL PARAMETRIC 
VARIATION QP-PROBLEM. NOT IN STANDARD FORM. 

NAME I I I 

I CODE II 

X I I I II 
L 1-1002 II 

P I I-IDOl !! 
T* I 1002 !! 

2T ! ! 

D I D 2 S 

-I -2 100 I 

-I 
-0.50 -2 

0.50 
-I 

0.40 -1.70 0.20 

X 2 II VALUE 

2 
5 

-I 
2 

4 

2 II 

II 
I I 
II 
II 

3 
6.50 
0.50 
3 

II -1.90 

The correction for the quadratic component turns out to be 
(for 2T) 0.40 x 6.502 = 16.90. We now re-define the objective 
function, thereby eliminating P2 (=A) without affecting the 
Lagrangean. The tableau now becomes (after column-reordering): 

TABLEAU 17.2 D 

RE-DEFINED TABLEAU OF THE DUAL PARAMETRIC 
QP-PROBLEM. READY FOR THE ORDINARY STEP. 

NAME I I I D I X 2 S I 
(L=6.50> 

D 2 I I VALUE 

I CODE I I -I 2 100 I -2 II 

X 1 ! ! 2 -I ! ! 3 
LI ! -1002 I I 5 -2 (-0.50) I I - 0.00 

P 1 1- 1 001 ! ! -I 0.50 I I 0.50 
T* I 1002 I I 2 - I I I 3 

----------------------------------------------------
2T ! ! 0.40 4 0.20 -I .70 I I IS 
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After making the ordinary step, we develop tableau l7.2e. 

TABLEAU 17.2 E 

NEW STANDARD FORM TABLEAU OF THE 
DUAL PARAMETRIC VARIATION QP PROBLEM. 

NAME ! ! ! D I X 2 S I LI 
(L=6.50) 

! I VALUE 

! CODE !I -I 2 1001 -1002 " 

X I I ! ! 2 -I ! ! 3 
D 2 -2 ! ! -2 -10 4 -2 I! 0 
P I !-IOOI ! ! I 4 -2 I II 0.50 

T. ! 1002 ! ! 2 -1 ! I 3 

2T !! -3 -13 7 -3.40 !! 15 

Tableau l7.2e is a standard form tableau, except for the 
pseudo-objective function row. To obtain the correct 2T** row, 
one needs to re-form this row from the value-column, with the 
help of the symmetry rules. (The reference to this row as the 
"2T" row is in fact incorrect.) 

Exercise: 

Continue the example, until at A = 7.00, xl 
parameter-direction becomes unbounded. 

17.3 Strict convexity in the parameter subspace 

0, the 

The examples discussed so far have not involved the diagonal 
cell of the parametric variable itself as pivot. 

If we follow the normal QP rules (of the convex mode) as near 
as possible this would be an acceptable parametric pivot. 
Whether or not we accept it is basically a question of whether 
we want the information provided by such a step - the next 
solution-point is not affected. This point arises in connection 
with parametric variation of the (primal) righthand-side 
vector b. 

A parametric variation of the righthand side may be associated 
with an increase in the value of the objective function, and 
in the presence of strict convexity in the A-subspace, this 
increase (if present) ceases at some point, without change in 
the collection of binding restrictions. 
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Example 

Maximise 2 2 
15 4x2 + 500 T - xl x 2 + x -

1 

Subject to xl + x 2 > 10 + >..) 
) xl' x2 > 0 

xl < 9 + 3>..) 

The initial optimal solution of this problem.is xl = 9~ x 2 1, 
and the tableau, inclusive of the x3 = >.. varlable and ltS 
dual restriction is the following 

TABLEAU 17.3 A 

THE SHADOWPRICE OF THE PARAMETER BEING ELEMINATED. 

NAME !! D 1 D 2 L S 1 S 2 !! VALUE 
-------------------------------------------------
X 1 I ! -3 I I 9 
X 2 ! ! 2 -I -I ! ! 1 
D 3 ! I 3 -2 1-261 4 10 ! ! -3 
P 1 ! ! 1 4 -2 -2 ! ! 6 
P 2 ! ! -1 1 10 -2 -4 I ! 3 

2T ! I -9 -I -3 6 3 I! 1098 

By the normal rules of the QP algorithm the d 3 !>..-cell is the 
obvious pivot. If >.. is then re-defined as being minus zero, and 
declared to be the badname-variable, the same step is made ln 
opposite direction and the next solution is as given in 
tableau l7.3b. 

TABLEAU 17.3 B 

PARAMETRICALLY ADJUSTED SOLUTION, MADE ON 
INDICATION OF THE OBJECTIVE FUNCTION ONLY. 

(L=0.12) 
NAME! ! D 1 D 2 LI S 1 S 2 !! VALUE 

X ! ! -3 ! ! 9.35 
X 2 ! ! 2 -I -I ! ! 0 .77 
D 3 ! ! 3 -2 -26 4 10 ! ! 0 .00 
P 1 ! ! 4 -2 -2 ! ! 5.54 
P 2 ! ! -1 10 -2 -4 ! ! 1 .85 
-------------------- -------------------------------

2T !! -9.35 -0.77 5.54 1.85!! 1098.35 
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This tableau differs from the previous one, only in the 
righthand-side and the 2T-row. 

CHAPTER XVII 

If A is increased further, the d 3 row is no longer eligible 
as pivotal row, provided the entry for d3 (written as 0.00), 
is classified as positive. The dual variable P2 is then 
eliminated instead. Had the d3 row been excluded in the first 
place, the same result would nave arisen in only one parametric 
step. 

It is in fact a question of signalling the point at which the 
value of the objective function changes sign. 

In the case of parametric variationoL-the objective function, 
the similar issue arises wi_thre-spect to the value of the 
parametric componente>f-ihe objective function. In the QP 
case, the incoming variable in the parametric step is selected 
by the complementarity rule, and there is no need to put any 
other figure in the T* row/value column cell, than the actual 
value of T*. Elimination of this figure by applying the rule 
of the smallest quotient, then indicates the value of A, for 
which T* changes sign, from negative to positive. 

17.4 Elimination of dual variables during parametric variation 

The rules concerning the elimination of dual variables are 
slightly different when making parametric steps as compared 
to the normal rules on this point. 

This is because the argument raised in Section 16.9, - when 
increasing the value of a primal driving variable in the 
presence of a dual badname variable it is efficient to fly 
through dual restrictions -, is not applicable for a parametric 
step. 

The object of making parametric steps is to obtain information 
about the solution at suitable values of the parameter, not 
simply to ~ncrease the value of the parameter. Values of the 
parameter at which exclusion of certain variables from the list 
of basic variables ceases to be optimal would appear to come 
under the general heading "suitable" values of the parameter 
and dual variables will be accepted as leaving variables. 

In a convex problem, the strict interpretation of the rule of 
the smallest quotient, as outlined above, ensures that, if 
parametric variation is initiated at an optimal and feasible 
solution, all variables stay non-negative all the time, except 
for a "parametric zero" entry of -0.00 for one variable at each 
change of vertex. 
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However, in a non-convex problem, it may happen that the 
critical value of A, at which a particular dual variable ceases 
to be positive, does not mark a new solution which is convex 
in some All~l = ~l subspace, but a local minimum or a saddle
point. It mayor may not be possible then to exchange the dual 
variable in question against the corresponding primal variable, 
but if we wish to maintain the property of subspace convexity, 
we must either stop at such a point, or alternatively, breach 
the dual restriction in question. 
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This point is best discussed in the context of the "explicit" 
method of making parametric steps, this permits the generalization 
of the results of Chapter XVI to the parametric variation 
problem. 

The parameter is the first variable which is brought into the 
basis in a standard form tableau, i.e. we treat it as the 
driving variable. By implication, the variable which is 
complementary to the parameter i.e. the shadowprice of the 
parameter in the primal parametric variation problem, and the 
value of the parametric component of the objective function 
in the case of dual parametric variation, is the badname 
variable. If the problem were pursued on the lines discussed 
in section 13.5 for the LP case, the normal search operations 
of the basic QP algorithm would assign that status to the 
variables in question in any case. 

We may then invoke the driving variable increment qualifier, 
i.e. a dual variable is not acceptable as leaving variable, if 
subsequent application of the complementary rule were to lead 
to the selection of a primal incoming variable which would cause 
a reduction in the value of the parameter. Then, if this 
qualifier is accepted, we may be sure that the re-defined 
parameter can be increased (from -0.00 to exactly zero), if not 
in the immediately succeeding step, then in the next step, 
permitting return to standard form in at most two steps. 

The term driving variable' increment qualifier may not apply if 
the direct method of making parametric steps by changing the 
righthand side exogenously is employed, but the need to avoid 
the development of "improper vertices" where the objective 
function is not conved in the All ~l = b subspace, exists for 
both methods of making parametric steps. 

Example 

Maximise 2 
T = Xl - 20 Xl + 500 

Subject to Xl > 1 + A ) 

12 
) Xl > 0 

Xl < ) 
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Starting at A = 0, we note that this problem has two local 
optima~ xl =.l.and xl = 12. Between these t~o local optimal, 
there ~s a mlcn~mum, at xl = 10. Normal appl~cation of the basic 
QP algorithm leads to the global optimum, which is xl = 1. The 
initial optimum tableau is given below in tableau l7.4a. 

TABl.EAU 17.4 A 

INITIAL OPTUMUM OF A NON-CONVEX 
PARAMETRIC QP-PROBl.EM. 

NAME! I D 1 

XI!! 
D 2 ! I 
PI" 
5 2 !! 

2T " -1 

L 

-1 
2 
2 
1 

18 

5 1 

- 1 
2 
2 
1 

18 

P 2 

-1 
-1 

-11 

II VALUE 

! I 
II 
! I 
I! 

1 
18 
18 
1 1 

II 962 

Now let us assume that the degeneracy is broken in favour of 
eliminating PI' and that this variable is accepted as leaving 
variable without paying attention to convexity. 

If the parametric step is then made by exogenous adjustment of 
the righthand-side, we develop tableau l7.4b, if the step is 
made explicitly, we develop tableau l7.4c. 

If the usual feature of declaring the zero which is to be 
eliminated as being a very small negative number is applied here, 
neither presentation actually permits its elimination. If the 
entries of -0.00 are replaced by exact zeros which are then 
classified as positive numbers, and the qualifier is again 
disregarded, both methods permit return to standard form, 
developing a "quadratic programming" tableau which describes 
the local minimum at xl = 10. 

The ambiguous status of dual variables in a non~convex problem 
gives rise to the concepts of normal, proper, and improper 
(non-optimal) boundedness (or unboundedness). A" parametric 
variation column associated with a (locally or globally) 
optimal and feasible solution basis is normally bounded, if we 
may develop (without violating subspace convexity), for some 
positive value of the parameter, without further change in the 
actual value of any primal variable, another (locally or 
globally) optimal and feasible solution basis, for which the 
collection of primal basic variables differs from the one ~n 
the present tableau either by the exchange of two primal 
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TABLEAUX 11.4 BAND C 

DISPLACED OPTIMUM OF A NON-CONVEX QP PROBLEM. 
NOT RESPECTING THE DRIVING VARIABLE INCREMENT 
QUALIFIER. 

11.4 B EXOGENOUS ADJUSTMENT. 

NAME !! D 1 LI S 1 

X 1 ! ! -I -I 
D 2 ! ! 2 2 
P 1 ! ! 2 2 
S 2 ! ! 1 1 

2T !! -10 

11.4 C EXPLICIT STEP. 

NAME !! 

X 1 ! ! 
D 2 ! ! 
LA ! ! 
S 2 ! ! 

D 1 P 1 

0.50 0.50 
-I 

0.50 0.50 
-0.50 -0.50 

2T !! -10 -9 

S 1 

CL=9) 
P 2 !! VALUE 

-I 
-I 

-2 

P 2 

-0.50 

-0.50 
0.50 

-2 

! ! 10 
! ! 
! ! -0.00 
! I 2 

!I 800 

CL=9) 
!! VALUE 

! ! 10 
! ! 
! ! -0.00 
I! 2 

!! 800 

variables, or by one primal variable leaving or entering the 
basis. The new optimal and feasible solution, thus identified 
is then associated with a normal successor tableau. If the 
leaving variable identified by the parametric variable is a 
primal variable, and if that primal variable cannot be 
eliminated because the problem becomes empty at that value of 
the parameter, the parametric column is said to be bounded 
by the end of the feasible space area. 

(In the example this is the case for A = 11, s2 becomes 
negative, but cannot be eliminated, xl being already at its 
maximum value of xl = 12.) 

Boundedness at the end of the feasible space area gives rise 
to an empty end of algorithm tableau. In the example given 
above, the empty end of algorithm tableau would be either 
tableau l7.4d or tableau 17.4e, depending on the method of 
making the parametric step. 
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TABLEAUX 11.4 0 AND E 

EMPTY END OF ALGORITHM TABLEAUX. 

11.4 0 

NAME!! 0 1 

X 1 !! 
0 2 ! ! 
P 1 ! ! 
S 2 !! 

EXOGENOUS ADJUSTMENT 

Ll S 1 

-1 -1 
2 2 
2 2 
1 1 

CL= 11 ) 
P 2 !! VALUE 

! I 12 
-1 I! -4 
-1 ! ! -4 

! ! -0.00 
-------------------------------------------

2T !! -12 -4 -4 0 ! ! 808 

11.4 E EXPLICIT STEP METHOD 

(L- 1 1 ) 
NAME II 0 1 S 2 S 1 P 2 I! VALUE 
-------------------------------------------
XI!! 
o 2 !! 
PI!! 
Ll !! 

2T !I X 

1 
-2 
-2 

1 

X 

-1 
-1 

X X 

! I 12 
! I -4 
! I -4 
I! -0.00 

II X 
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The computational implementation offered here would normally 
supply the equivalent of tableau 17.4d, but if the leaving 
variable in the parametric search operation is an upper limit 
distance, the equivalent of tableau 17.4e would be supplied, 
the technical cause of the end of the algorithm being that the 
P2 column activated by the complementary rule, is unbounded. 
(The 2T row has been marked with X entries as this row would 
contain invalid entries on account of the coefficient doubling 
device). 

If an empty end algorithm tableau describes a solution vector 
where all dual requirements are satisfied, the corresponding 
parametric column is said to be properly bounded by the end 
of the feasible space area. 

If the empty end of algorithm tableau describes a solution which 
violated one of more dual restrictions (e.g. as is the case with 
the PI restriction in the example), the corresponding parametric 
column in the preceding tableau is said to be improperly (or 
non-optimally) bounded by the end of the feasible space area. 

The notion of proper and improper (non-optimal) boundedness 
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may obviously be extended to non-empty successor tableaux and 
indeed to unbounded columns. A parametric column is improperly 
bounded by a non-empty successor solution if it is not normally 
bounded but if some other primal feasible solution which is 
convex in some All ~l = ~l subspace exists, (which differs in 
only one variable from the current one, in the same way as 
defined above for normal boundedness), but which breaches one 
or more dual restrictions. 

In a convex problem, there is never any need to breach dual 
restrictions it therefore follows that, in a convex problem, 
boundedness implies proper boundedness. 

The similar distinction also applies to unbounded parametric 
columns. If all entries in primal and dual variabl'es' rows are 
non-positive (and, as explicitly written upper limit 
restrictions are obtained by turning the signs around), zeros 
in all rows associated with bounded variables), the parametric 
column is unbounded. If there are positive entries in one or 
more dual variables rows, but these dual variables cannot be 
eliminated on account of the qualifier, we have an improperly 
unbounded column. 

A solution vector at which a dual variable changes sign, but 
where it is not possible to introduce the corresponding primal 
variable at zero value without violating subspace convexity 
might be called an improper vertex. (An improper vertex is 
therefore a solution basis which describes a local minimum or 
a saddle-point). 

It is obviously possible to activate the basic QP algorithm 
just beyond an improper vertex (e.g. in tableau l7.4b one would 
re-enter with A = 9 and select PI as badname-variable). 

The typical parametric feature of exchanging the solution basis 
without actually changing the primal solution vector at the 
point where one changes basis, would not, however apply in 
that case. 

17.5 Parametric equivalence and the number of steps on 
parametric re-entry 

We have so far assumed that the normal way of making parametric 
steps is to change the solution vector during the parametric 
variation step, and then to make one ordinary step which 
merely effectuates a change in the solution basis without 
actually causing any change in the solution vector. 

In fact two ordinary steps may be needed besides the parametric 
variation step, and one of these ordinary steps may involve a 
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change in the dual solution vector even where neither of the 
two causes any further change in the primal solution vector. 

We now state four alternative methods of making parametric 
steps and their relationship to each other, somewhat more 
formally, as follows: 

Method 1 

Bring the parameter into the solution-basis, treating it as the 
driving variable. (Exit if the parameter is found unbounded). 
Select leaving variables by the rule of the smallest quotient, 
subject to the driving variable increment qualifier, and incoming 
variables by the complementarity rule. Re-define the value of 
the parameter to Ak = -0.00 immediately after its entry into 
the solution basis, and exit as soon as the parameter has again 
been eliminated. 

Method 2 

Change the right-hand side exogenously, until one variable, 
which is also acceptable as leaving variable under method 1, 
ceases to be non-negative, now being observed as being -0.00 
instead. Then eliminate the now negative-valued variable either 
by one step with a negative pivot on the main-diagonal, or by 
the application of a complementary pair. 

The first incoming variable of the pair is the complement of 
the parametrically eliminated variable, and the corresponding 
leaving variable is selected by the rule of the smallest 
quotient, but the driving variable increment qualifier lS 

replaced by a verification of the applicability of the 
complementary pair situation. 

Method 3 (not recommended) 

Change the righthand-side as in method 2, and find a new optimal 
and feasible solution by re-entering the basic QP algorithm 
in the convex mode of operation. Exit on return to standard form. 

Method 4 

As method 3, but use the non-convex mode of operation. 

All four methods have the search operation for the parametrically 
eliminated leaving variable in common, and if none is found all 
four versions of the algorithm terminate. 

In a convex problem, this alarm exit obviously corresponds to 
either an unbounded parametric variation problem (in the case 
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of primal parametric variation), in the same way as discussed 
in section 13.2 for the LP case or, (with an unbounded 
shadowprice of the parametric restriction), to having attained 
the maximum value of the parametric component of the objective 
function. No statement concerning the non-existence of solutions 
for higher values of A, is, however, applicable in the case of 
an improperly unbounded parametric column, although such a 
solution - if existing - would not be obtainable by any of the 
methods listed under 1, 2, 3 or 4. 

The following properties concerning the 4 stated methods apply 
therefore under the prerequisite that the parametric column is 
bounded (properly bounded or improperly bounded). We also 
exclude the complement of the parameter as leaving variable, 
although it should be remembered that this case, as discussed 
~n section 17.3, exists and presents no particular problems. 

In the interest of concise formulation the actual formulation 
of the relevant properties is preceded by a tableau summary 
which refers to the results of the parametric search operation: 
We first consider that search operation as such 

Name corn Value 

plv d v 

We shall use the abbreviation plv("Parametric leaving variable") 
to refer to the variable which is driven to zero by the parametric 
variation step, and corn ("complement") for its associated 
complementary variable; the current value of plv variable is 
indicated as v; p is the pivot found in the parametric search 
operation; d is the diagonal cellon the intersection of the 
plv-row and the corn-column. Note that these abbreviations will 
be used in relation to all four methods, even though they 
derive their significance "mainly from their role in method 1. 

We may distinguish two cases, d = 0, and d < 0. The case d > ° 
does not arise; if plv is a primal variable it does not exist 
at all, as it would contradict the subspace convexity properties 
of the current solution"basis, if plv is a dual variable its 
selection as leaving variable is prohibited by the driving 
variable increment qualifier. 

We shall refer to the case d < 0, as "the (negative) definite 
case" and the case d = 0, as "the semi-definite case". 

We now state some properties concerning the relations between 
the four algorithms that were described. 
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Equivalence property concerning the negative definite case 

In the negative case, d < 0, all four methods effectuate a 
return to a standard form successor solution-basis, in just 
one step, following the parametric variation-step. 

(The proof of this statement is obvious; the one pivot is 
dip in method 1, eliminating A, and d in method 2, 3 and 4 
eliminating plv). 

Before stating a similar property relating to the semi
definite case, it is useful to give some further tableau
summaries. 

Name com oiv 

plv 0 -a 
olv a c 

Name com oiv 

Ak 0 -alp 

olv a ? 

Name com oiv 

plv 0 -a 
olv a c 

A 

[i] 
? 

plv 

lip 

? 

A 

p 
? 

Value 

v 
? 

Value 

-0.00 

? 

Value 

-0.00 
? 

semi-definite tableau 
on entry to the 
parametric step 

semi-definite tableau 
in exit from the 
parametric variation 
step by method 1 

semi-definite tableau 
exit from the para
metric variation step, 
by method 2, 3 or 4 

Here olv ("ordinary leaving variable") is the variable selected 
as leaving variable by the application of the rule of the 
smallest quotient, in the first step after the parametric step, 
following method 1. oiv ("ordinary incoming variable") is the 
variable which is thereupon activated by the co~plementarity 
rule. 

Note that the fully symmetric arrangement 

Name com oiv A Value 

plv 0 a [EJ v 
olv a c ? ? 

i.e. assuming the parametric and the ordinary leaving variable 
to be of the same class, does not apply. It would contradict 
the driving variable parameter theorem-(Recapitulation of the 
proof on that point: the assumption that both plv and olv are 
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primal variables contradicts the semi-definite case; the 
assumption that both are dual variables is wrong because the 
qualifier inhibits that choice of pivots, i.e. olv would be 
refused) . 

The very writing of the applicable summaries for the semi
definite case assumes that a further step by method 1 can be 
made. 

This is not a trivial condition, because primal parametric 
variation may result in the formulation of an empty problem, 
emptiness becoming apparent when a primal plv variable - or 
the parameter - has the value -0.00, and cannot be increased 
to exactly zero. Method 1 will then exit with the com variable 
being found unbounded, the boundedness proof of section 16.10 
does not apply because the variable which is technically the 
badname-variable is not eligible as leaving variable. Methods 
2 and 4 will react to emptiness by not finding a primal 
incoming variable. 

However, the following statement is true: 

Equivalence property for the semi-definite case; 

If the parametric variation step has been made, and has not 
resulted in the formulation of an empty problem, while the 
semi-definite case is applicable, then irrespective of the 
convexity or non-convexity of objective function methods 1, 2 
and 4 each find a new solution basis in two ordinary steps 
(following the parametric variation step). Of these two steps 
only one involves a non-trivial search for a smallest ratio, 
the other is of zero length and involves either a trivial 
search (in method 1), or no search at all (the second step of 
a pair in methods 2 and 4). 

In the absence of degeneracy (other than the parametric pseudo 
zero), all three methods lead to the same successor solution. 
This statement appears to follow almost immediately from the 
summaries, but the significance point is the selection of 
the same olv. variable by all three methods. 

The search for the smallest dual ratio (methods 2 and 4) 
involves actually the same numbers as the search for the 
smallest quotient in method 1. This is because the parametric 
variation step leaves the com variable's column unaffected, 
insofar as its non-zero elements are concerned. 

For a non-convex problem, the new solution-basis may be non
optimal, if the driving variable increment qualifier became 
active in the parametric variation step, but the equivalence 
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applies to improper boundedness as well. (This point has been 
discussed already in the section 17.4). 

But even if optimal form is maintained, the equivalence property 
does not necessarily apply to method 3. This is because, under 
metho~ the driving variable increment qualifier is applicable 
with respect to the com variable as driving variable, and for 
c > 0, this may inhibit the activation of the complementary 
pair used in method 2. This will generally mean that a different 
local solution is reached, and it may take more than 2 steps 
to get there. 

Example 

Maximise 
2 2 

20 15 x 2 + 500 T xl + x 2 - xl -

Subject to xl + x 2 > 1 + A 

xl > x -- 2 1 + A 

o ~ xl < 100; 0 < x 2 ~ 2. (A ~ 100) 

A local initial optimum (xl = 0, x 2 = 1) is developed by 
normal application of the basic QP algorithm, this solution 
is summarized in tableau l7.5a below. 

TABLEAU 17.5 A 

ILLUSTRATION OF THE BREAKDOWN OF METHOD 3. 

NAME!! X 1 D 2 LA S 1 P 2 !! VALUE DIST 

-------------------------------------------------------
D 1 ! ! lj -1 -2 -2 2 ! ! 7 X 

X 2 ! ! 1 -1 -1 ! ! 1 

D 3 ! ! -2 2 2 -2 ! ! 13 X 

P 1 ! ! -2 2 2 - 1 ! ! 13 X 

S 2 ! ! -2 2 1 ! ! X 

-------------------------------------------------------
2T ! ! 7 -1 13 13 ! ! 972 X 

BOUND! ! 100 X 100 x X ! ! X X 

If the zero in the s2 row/value column cell is parametrically 
adjusted to -0.00 and the convex mode is activated (method 3), 
the P2 column is bounded only by its artificial upper limit, 
the dl restriction needs to be breached on account of the 
driving variable increment qualifier. 

In this small example, we then still get at the same solution in 
two steps, but we must obviously consider the possibility that 
the dual restriction associated with another non-basic variable 
is eliminated at this point, leading to a non-optimal successor 
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tableau, i.e. in effect selecting the wrong complementary pair. 

Methods 2 and 4 on the other hand, both implement the comple
mentary pair which exchanges xl against s2' and interchanges 
their associated dual variables at the next step. 

There is, in fact no meaningful distinction between methods 2 
and 4, at least no~if we assume that the previously existing 
solution basis was an optimum, method 4 will activate the 
complementary pair mentioned for method 2. 

In activating the non-convex mode in the reentry-mode it is 
obviously necessary that one verifies whether the complementary 
situation is applicable; the "ordinary" QP code of section 
16.15 contains that provision already. 

Note also that method 1 is equivalent to methods 2 and 4, 
despite the fact that it calls for verifying the driving 
variable increment qualifier at the stage of searching for a 
leaving variable in the first ordinary step. 

This is also apparent from the summaries given above: the 
qualifier merely serves to exclude the selection of a second 
dual variable as ordinary leaving variable (with the plv 
variable already being a dual variable) and is otherwise always 
satisfied. 

The computational implementation offered in this chapter uses 
method 1 if the parametrically eliminated variable is an upper 
limit distance, otherwise method 4. 

17.6 Parametric solution methods 

Parametric methods can be used to solve quadratic programming 
problems in the first place. 

543 

In the computational context offered here this is not a 
practical proposition, if only because parametric steps are made 
by way of making ordinary steps. The topic has, however, had 
a certain amount of attention in the literature in particular 
by van de Panne, and it provides certain useful interpretations. 

The two main issues are the representation of the driving 
variable as a parameter, and the artificially optimal and 
feasible starting solution. 

The first issue is obviously relate,d to the driving variable 
parameter theorem. 
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The driving variable 
(or ,- as van de Panne 
symmetric variant of 
programming), may be 

CHAPTER XVII 

parametric equivalence method 
-rJ5Ji Section 9.2), would say, the 

the s~mplex method for Quadratic 
summarized as follows: 

We may select a badname-variable and a driving variable - by 
any criterion -. Instead of bringing in the driving variable 
as a basic variable we specify a parametric activity the 
coefficients of which are the same as for the selected driving 
variable (except for a change in sign if the parameter is 
presented on the right-hand side). We then make parametric 
steps until the badname variable has been eliminated. We must 
obviously restrict the method to those cases where the driving 
variable can be shown to be bounded - and then exchange the 
driving variable itself for the parameter. 

Depending on the precise version of the convex mode of operation 
which is used, we may develop the same solutions as in the method 
outlined in Chapter 16. It is in fact a different presentation 
of the tableaux. 

This is illustrated below in the tabulation l7.6a. The parameter 
has been presented on the right-hand side of the equation sign, 
the entries in the parameter column therefore have the same 
absolute value, but are of the opposite sign as the corresponding 
entries in the driving variable's column in the same tableau. 

The one exception to that property is the 2T-row/A column entry, 
where proportionality with the incoming variable column cell 
in the direct tableaux has been maintained. 

Except in the second step of a parametric pair, the incoming 
variable in the direct presentation of the tableau is 
proportional to the parametric column. Both columns indicate 
the change in the solution vector, but the parametric column 
gives the change per unit of increase of the driving variable, 
the ordinary incoming variable per unit of the incoming 
variable. (The reason that this property is not automatically 
maintained in the 2T-row of the parametric tableaux, is that the 
2T-row is re-built at each step from the value column.) 

A computational disadvantage of the driving variable parametric 
equivalence method as a computationally applied method is that 
pivots are taken on the main diagonal whenever a negative 
non-zero entry occurs in the diagonal cell of the leaving 
variable's row, irrespective of the absolute value of this cell. 
That may not be a particularly obvious drawback in the 
example given, but the issue of near zero pivots arises. 
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TABLEAU 17.6 A 

ILLUSTRATION OF DRIVING VARIABLE PARAMTERIC EQUIVALENCE. 

DIRECT TABLEAUX 

NA! Xl X2 PI VAL 
--------------------------
Dl -2 1 1 
D2 ! -2 ~ 1 
SI ! -I -2 -3 

2T ! 3 

NA I XI D2 X2 VAL 
--------------------------
DI -2 -0.5 C0 0.5 
SI ! -I -2 I -3 
PI ! 0.5 -I 0.5 
--------------------------
2T ! -1.5 4 ! -I .5 

NA ! DI D2 XI !VAL 
--------------------------
51 2 -I G -2 
X2! I - 0 • 5 - 2 0 • 5 
PI! I -2 I 

21 ! -4 0.5 9 ! -3.5 

NA! D! D2 SI VAL 

XI -0.4 0.2 -0.2 0.4 
X2! 0.2 -0.1 -0.4! 1.3 
PI ! 0.2 0.4 -0.4! 1.8 

2T ! -0.4 -1.3 1.8! -7.1 

PARAMETRIC TABLEAUX 

NA! Xl X2 PI 
1..=0 
VAL I.. 

1..=0.5 
VAL 

--------------------------------------
Dl -2 @ 1 
D2 ! 2 
SI ! -I -2 

2T ! 3 

NA! XI D2 PI 

1 -1 
1 IT) 

-3 

-3 

1..=0.5 
VAL 1..1 

0.5 
-0.0 
-3 

-1.5 

1..=1 
V(~L 

--------------------------------------
DI ! @ 0.5 EiJ -0.0 
X2 ! -0.5 -I 0 1 0 .5 
SI I -I - 1 -2 -3 2 -2 
--------------------------------------
2T ! 0.5 0.0 3 ! -2 -4 -3.5 

1..=1 1..=1 .8 
NA ! DI D2 PI VAL 1..2 VAL 

XI -0.5 -0.5 0.0 0.5 0.4 
X2 ! - 0 .5 - I ! 0 • 5 1 1 .3 

::-~-=~::-::---~~:~-:-=~----!~::~--~:~ 
2T! 0.0 -0.5 2 

NA! DI D2 SI 

-3.5 -4.5 -7.1 

1..= 1.8 
VAL 1..3 

1..=0 
VAL 

--------------------------------------, 
XI -0.4 0.2 -0.2 0.4 0.4 
X2 ! 0.2 - 001 -0.4 ! I .3 1.3 
PI ! 0.2 0~4 -0.4 ! o .0 -1 I .8 

T I -0.4 -1.3 1.8! -7.1 -7 .1 
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In particular, if the solution is in a corner of the 
feasible space area, and a primal variable is eliminated by a 
primal driving variable, mistaking a rounding error for a non
zero number may totally destroy the accuracy of the tableau. 

Example 

Maximise T 2xl + 4x2 

Subject to 3xl + 2x2 ~ 11, 2xl + 3x2 < 4 

This is in reality an LP problem. 

Now suppose we first exchange xl against s2' - by whatever 
method, parametric or not -, and then parametrically introduce 
x 2 into the basis, in fact against xl as leaving variable. This 
is not an efficient path anyhow, the assumption merely serves 
to illustrate a potential risk of the parametric method. ~he 
resulting situation is summarized in tableau l7.6b. 

TABLEAU 17.6 B 

CHOICE OF AN UNDESIRABLE DIAGONAL PIVOT. 

NAME! I D I X 2 P I 
LA=O 

S 2 !! VALUE LA 
LA=I.33 

VALUE 
---------------------------------------------------------------
X I II ~ 1.50 0.50 II 2 1- 1• 50 1 -0.00 
D 2 ! ! -1.50 2.50 I I -I - I 
S I II -2.50 - 1.50 I! 5 2.50 1.67 
P 2 ! I -0.50 1.50 II 1 I 
---------------------------------------------------------------

2T ! I -2 -1 -5 I! 6 2 10.67 

A computational implementation of the driving variable 
parameter method would therefore need some special cross-check 
on the solution-structure, i.e., whenever a corner solution ~s 
developed (the number of elements of x which have entered 
the basis, being equal to the number of elements of s which 
have left the basis), one would replace all intersections of 
primal variable's rows with dual variable's columns by exact 
zeros. 

Van de Panne does not, however, put the emphasis on this method 
for computational reasons - he provides his proofs and theory 
in terms of the symmetric method, and then shows that the a
symmetric case is equivalent; we came the other way. 

Another parametric solution method, developed independently 
by van de Panne [35] , section 11.2, and by Goncalves [17] 
might be called the artificial righthand-side method. In this 
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method, one superimposes arbitrary positive numbers on the 
negative elements of the righthand side, and parametrically 
moves from the artificial solution (which is therefore optimal 
and feasible at the outset), to the specified right-hand side. 

The same drawback as mentioned above for the driving variable 
parameter method, also applies to this method. 

17.7 Computational implementation of parametric QP 

As in the LP case no full listing of the parametric vers~on 
of the quadratic programmin8 procedure is given; this would not 
be justified in view of the large overlap with the listing in 
section 16.15. 

We also observe that, although it was possible to generate some 
example tableaux in section 17.6, the procedure offered here 
does not cater for parametric solution methods as such. 

We now give a listing of the file of editing instructions which 
converts the procedure listed in section 16.15 into an 
equivalent procedure which caters for parametric re-entry, 
and a corresponding calling main programme. 

TEXT-LISTING OF THE QUAD/QUAP EDITOR-FILE. 

TC/'PROCEDURE' QUADC/,R/QUAD/QUAP/ 
T.?REENTRY?,I?PR,PC,???,T.?)?,I?,LAMBDA? 
TC/' INTEGER'/ 
I?'VALUE' NNEGD; 
? 
T.?REENTRY?,I?PR,PC,? 
T.E,I???'REAL' LAMBDA;? 
TC/'BEGIN'/,TC?;?,T.?;?,I?,NAC? 
TS/'REAL'/,T.?;?,I?,TWOT1 
TS/'BOOLEAN'/,T.?CONVEX?,I1PARAMETRIC STEP,? 

POST PARAM ST? 
TS/' COMMENT' / 
TI,PC/;/ 
I? QUADRATIC PROGRAMMING, WITH POSTOPTIMAL VARIATION. 

FOR AN OUTLINE AND DESCRIPTION OF THE MAIN ALGORITHM, 
SEE THE QUAD PROCEDURE. 

THE DIFFERENCES BETWEEN QUAP AND QUAD ARE AS FOLLOWS: 

547 
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PR AND PC STAND FOR PARAMETRIC ROW AND PARAMETRIC COLUMN. 
FOR PC=I AND PR=O AN EXTRA COLUMN, THE PARAMETRIC COLt~N 

IS INCLUDED. 

CHAPTER XVII 

FOR REENTRY=O, THE PARAMETRIC VARIABLE IS NOT INCLUDED IN 
THE SEARCH OPERATIONS, 
BUT A PARAMETRIC "STEP MAY BE MADE, BY SUBSEQUENTLY 
ENTERING THE PROCEDURE WITH REENTRY=2. 
FOR PREI AND PC=O, THE SAME APPLIES FOR THE PARAMETRIC 
RESTRICTION, WHICH REPRESENTS PARAMETRIC VARIATION IN 
THE LINEAR COMPONENT OF THE OBJECTI VE FUNTION. 

FOR PR=PC=REENTRY=O, THE ACTION OF QUAP IS THE SAME AS 
THE ACTION OF OF QUAD. 

THE VARIABLE NAC IS AN AUXILIARY VARIABLE, 
INDICATING THE NUMBER OF ACTIVE COLUMNS, WHICH ARE 
TO BE INCLUDED IN THE SEARCH OPERATIONS. 

1 
TS/FANCYHIGH:=/ 
11 PARAMETRIC STEP := 'FALSE'; CONVEX:= 'TRUE'; 

POST PARAM ST := 'FALSE'; NAC:=N-PC; 

? 
TS/'IF' REENTRY=I/,T.?REENTRY?,I?'NOT' ?,R/I/O/ 
TS/QUADRATIC/,T.1RE-ENTRy?,I1NORMAL ? 
TS/ADJUSTMENT/,R/./,/,TI,PC/;/,PI 
I? AND AS TWO IF PARAMETRIC REENTRY IS ASKED FOR. 

ENSURE CONVEX MODE IN DUAL PARAMATRIC LOOP: 
'IF' REENTRY=2 'AND' PR=I 'THEN' NNEGD:=M+N+IJ 
'IF' REENTRY=2 'THEN' PARAMETRIC STEP := 'TRUE'; 
'IF' REENTRY=I 'THEN' 'GOTO' START; 

'I F' PR= I 'THEN' 'BEGIN' 
MARK DUAL OF PARAMETRIC ROW: 
BADN := 1000+M; COLN := -IOOO-M; 
QUO : = I 0 0 0 0 0 0 0 0 0 0 0 0; RO WN : = 0 ; 
K: .. B:=N+M; 
ATTEND DUAL LA DERIVATIVE OF 2TI 
TCN+M+ I.K): = 2*TC N+M+ I. KJJ 
'GOTO' PREPARE INV OF MODE; 'END'; 

'I F' PC= I 'THEN' 'BEGIN' 
MARK PARAMETRIC COLUMN VARIABLE: 
BADN : = -N; COLN 1 = N; 
QUO := 1000000000000; ROWN 1= 0; 
D:=K:=B:=N; 

ATTEND PRIMAL LA DERIVATIVE OF 2TI 
TCM+N+I.K) := 2*TCN+M+I.KJJ 

ACCEPT PRESET UPPER LIMIT: 
'IF' TCN+M+2.K) > 0 
'THEN' 'GOTO' PREPARE INV OF MODE; 
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? 

SET UPPER LIMIT ON PARAMETERI 
'IF' TCN.Nl>O 'AND' TCN.N+M+Il>O 'THEN' 'BEGIN' 

TCN+M+2.Kl := I 000 000; 
'GOTO' PREPARE INV OF MODE; 'END'; 

'I F' TCN.Nl < 0 'THEN' 
~CN+M+2.Kl 1= TCN.N+M+Il/TCN.Nl -
SQRTCTCN.N+M+Il$TCN.N+M+ll-TCN.Nl.TCN+M+I.N+M+ll) 
ITCN.Nl 
'ELSE' 
~CN+M+2.K11=0.S*TCN+M+I.N+M+Il/TCN.N+M+11; 
'IF' TCN+M+2.Kl < 0 'THEN' TCN+M+2.K11=1000000; 
'GOTO' PREPARE INV OF MODE; 'END'; 

TS/COMPLETE TABLEAUI/ 
I? INITIATE LAMBDA: 

'IF' 'NOT' PARAMETRIC STEP 'THEN' LAMBDA := 0; 

? 
TS/SELECT BADN/ 
TI.I? 'IF' CPC=I 'AND' ROWLSTCN1=N) 'THEN' NAC:=N; 
? 
TS/'FOR' 11=/.1'1 
I? 'FOR' 1:=1 'STEP' 'UNTIL' NAC. 

N+ I 'STEP' I 'UNTIL' N+M-PR '00' 'BEGIN' 

1 
TS/ABS VAR ST/ 
11 'IF' PARAMETRIC STEP 

'THEN' 'GOTO' END OF BADNAME SELECTION LOOP; 

? 
TC/END OF QUAD/ 
11 'IF' PARAMETRIC STEP 

'THEN' 'GOTO' TRY THE BADNAME OR PAR ROW; 

1 
R/OF QUAD/OF QUAP/ 
TS/'FOR' II=NAV+I/ 
R/'UNTIL' N/'UNTIL' NAC/.TC/N+M/.R/N+M/N+M-PR/ 
TS/PHASE I SEARCHI/ 
TS/'FOR'I/.P2 
11 'FOR' I:=NAV+I 'STEP' 'UNTIL' NAC. 

N+I 'STEP' I 'UNTIL' N+M-PR 'DO' 
1 
TS/PHASE 1: / 
TS/'FOR' JI=/.PI 
11 'FOR' J:"I 'STEP' 'UNTIL' NAC. 

N+I 'STEP' I 'UNTIL' N+M-PR 'DO' 

? 
TC/END OF QUAD;/.R/OF QUAD/OF QUAP/ 
TS/PHASE III/.T2 
11 'IF' POST PARAM ST 'THEN' 'BEGIN' 

'IF' PC=I 'THEN' D:aN 'ELSE' D:=N+M; 'END'; 
1 
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TC/TRY THE BADNAME/.R/BADNAME/BADNAME OR PAR/ 
TC/-O.OOO/ 
T. l' THEN' 'BEGIN'? 
I?'AND' 'NOT' TCB.N+M+IJ>O??1 
I? 1 

TS/SEEK SMALLEST QUo/.TS/ ',oR' 1/ 
PI.I? ',oR' 1:=1 'STEP' I 'UNTIL' NAC. 

N+ I 'STEP' I 'UNTIL' N+M-PR 'DO' 
? 

TS/Do I NEED TO ELEMINATE: / 
TS/'I,' BADN < 0 'THEN' 'GoTo' DoNE/ 
T.?'THEN'1.I1'AND' REENTRY < 2? 
TS/UPDATE VECToRS:/ 
I? ATTEND 2T AND LAMBDA IN UB PARSTEP: 

1 

'I,' PARAMETRIC STEP 'THEN' 'BEGIN' 
'I,' PC=I 'THEN' 
TCN+M+I.N+M+IJ:=TCN+M+I.N+M+IJ+QUo*QUo*TCK.KJ 
'ELSE' 
TCN+M+I.N+M+IJ:=TCN+M+I.N+M+IJ-QUo*QUo*TCK.KJ; 
LAMBDAI=LAMBDA+QUo; 'END'; 

TS/STANDARD ,0RM DOUBLE STEP:/ 
TC/' ,0R'/ 
TS/'I,' RoVN < 0/.T.1'THEN'? 
I?'AND' 'NOT' (PR=I 'AND' Ro1JN=-3000-M)?P.E 
T I. T.? T? 
I 1 ' TH EN' ? T. E. I 1; ? • T I 
R/' ELSE' / / 
I?'I,' RoWN>O 'AND' 'NOT' (PC=I 'AND' ROVN=2000+N)? 
I? 

'THEN'? 
TS/'I,' 'NOT' ABS(/ 
11 'I,' PARAMETRIC STEP 'AND' PC=I 'AND' ROVN=2000+N 

1 

'THEN' 'GOTo' END 0, QUAP; 

'I,' PARAMETRIC STEP 'AND' PR=I 'AND' ROVN=-3000-M 
'THEN' 'GOTo' END 0, QUAP; 

TS/PERMUTE CoLUMNS:/ 
I? ATTEND PARAMETRIC REENTRY: 

'I,' PARAMETRIC STEP 'THEN' 'BEGIN' 
, I " PC= I 'TH EN ' 
TCN+M+I.N+M+IJ:=TCN+M+I.N+M+IJ+QUO*QUO*TCB.BJ 
'ELSE' 
TCN+M+I.N+M+IJ:=TCN+M+I.N+M+IJ-QUo*QUO*TCB.BJ; 
LAMBDAI=LAMBDA+QUO; 

PARSTEP BY VECTORS ONLY: 
'I,' (ABS(ROWN) < 2000 'AND' 'NOT' ROVN=BADN 
'AND' TCR.RJ < -0.000001 ) 
'OR' (RoVN>O 'AND' ROVN=R01JLSTCRJ) 
'THEN' 'BEGIN' 

',oR' 1:=1 'STEP' I 'UNTIL' N+M+I 'DO' 
'I,' 'NOT' TCI.KJ=O 'THEN' 'BEGIN' 

TCI.N+M+IJ:=TCI.N+M+IJ-TCI.KJ*QUo; 
TC 1. N+M+2J: =TC I .N+M+2 J +TC I. KJ* QUO; 'END'; 

TCR.N+M+IJ := -0.000000001; 
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PARAMETRIC METHODS IN QUADRATIC PROGRAMMING 

? 

'FOR' J:=I 'STEP' 'UNTIL' N+M 'DO' 
'IF' ROTJLSTCJl < 0 'THEN' TCN+M+I,Jl:=TCJ,N+M+Il 
'ELSE' TCN+M+I,Jl:=-TCJ,N+M+Il; 

PARAMETRIC STEP 1= 'FALSE'; REENTRY : = I; 
TCN+M+2,Kl := TCN+M+2,Kl - QUO; 
BADN:=ROWN; B:=R; 
'IF' BADN>O 'AND' TCB,Bl > -0.000001 'THEN' 'BEGIN' 

TCB,Bl:=O; 'GOTO' PHASE I; 'END'; 
'GOTO' PHASE II; 'END'; 

'END' ; 

TS/CHECK FOR STATUS:I 
TI 
I? 

? 

'IF' PARAMETRIC STEP 'AND' PC=I 'AND' ROWN=-N 
'THEN' 'BEGIN' 

TCN,N+M+Il:=-O.OOOOOOI; BADN:=N; COLN:=-N; K:=R:=B:=N; 
PARAMETRIC STEP := 'FALSE'; 
'GOTO' TRY THE BADNAME OR PAR ROW; 'END:; 

TERMINATE PARAMETRIC REENTRY: 
'IF' (PC=I 'AND' ROWN=N) 'OR' (PR=I 'AND' ROWN=-IOOO-M) 
'THEN' 'GOTO' END OF QUAP; 

TS/ATTEND PAIR IN NON CONVEX MODE:I 
TS/'IF' 'NOT' CONVEX MODE/,T.? 'THEN' 'BEGIN '? 
I? 

'AND' 'NOT' PARAMETRIC STEP? 
TS/PREPARE NON STANDARD FORM STEP:I,TI 
I? 

? 

'IF' PARAMETRIC STEP 'THEN' 'BEGIN' 
'FOR' J:=I 'STEP' I 'UNTIL' N+M+2 'DO' 'BEGIN' 

COP:=TCB,J); TCB,Jl:=TCR,JH TCR,Jl:=COP; 'END'; 
NAME: = ROWLSTC RlJ ROTJLSTC Rl: = ROWLSTC B); RO \JLSTC B 1 : =NAME; 
PARAMETRIC STEP := 'FALSE'; 
POST PARAM ST := 'TRUE'; 
TWOT 1= TCN+M+I,N+M+Il; 
REENTRY: = I; BADN: =COLN; B:=R; 
TCR,N+M+Ill=-O.OOOOOOI; 'END'; 

TC/END OF QUAD:I,R/END OF QUAD/END OF QUAP/,Tl 
TC/FINAL END OF QUADI 
I? 'FOR' 1:=1 'STEP' I 'UNTIL' N+M 'DO' 

? 

'IF' ROWLSTCI)<O 'THEN' T[N+M+I,Il:=T[I,N+M+ll 
'ELSE' TCN+M+I,Il:=-T[I,N+M+I); 
'IF' PR=I 'OR' PC=I 'THEN' 'BEGIN' 

'IF' POST PARAM ST 'THEN' T[M+N+I,N+M+Il:=TWOT; 
• END'; 

R/END OF QUAD/END OF QUAPI 
TE,E 
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TEXT-LISTING OF THE PARAMETRIC Qp MAIN PROGRAMME. 

'BEGIN' 'INTEGER' M.N. NAV.NEQ. REENTRY. I .J. PRINT. pR. PC. 
NNEGD; 'REAL' FANCYHIGH.INITIAL VALUE. LAMBDA; 
'BOOLEAN' TRULY FEASIBLE. TRULY BOUNDED; 

'PROCEDURE' QUAp(T.M.N.NEQ.NAV.NNEGD.ROWLST.COLLST.pR.PC. 
REENTRY. LAMBDA) J 
'ARRAY' T; 'INTEGER' M.N.NEQ.NAV.NNEGD.pR.pC.REENTRY; 
'REAL' LAMBDA; 
'INTEGER' 'ARRAY' ROWLST. COLLSTl 
'ALGOL' ; 

'PROCEDURE' MATI(MATR.MB.NB.FR.FC); 
'ARRAY' MATR; 'INTEGER' MB.NB.FR.FC; 'ALGOL' ; 

'PROCEDURE' TABO(MATR.M.N.SR.SC.ER.PR.ROWLST.COLLST); 
'ARRAY' MATR; 'INTEGER' M.N.SR.SC.ER.RH; 
'INTEGER' 'ARRAY' ROWLST.COLLST; 'ALGOL'; 

'PROCEDURE' REpQ(T.M.N.NEQ.NAV.ROWL.COLL); 
'ARRAY' Tl 'INTEGER' M.N.NEQ.NAV; 
'INTEGER' 'ARRAY' ROWL.COLLJ 'ALGOL'; 

'COMMENT' 
SIMPLEX ALGORITHM FOR QUADRATIC PROGRAMMING. 
WITH pOSTOpTIMAL PARAMETRIC VARIATION. 

FOR DETAILS OF THE ALGORITHM. 
SEE THE TEXT OF THE PROCEDURE QUAI'. 

PRESENTATION OF DATAl 
FIRST THE NUMBER OF RESTRICTIONS I.E. M. 
IF PARAMETRIC VARIATION OF THE OBJECTIVE FUNCTION 
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IS INTENDED. A PARAMETRIC ROW SHOULD BE INCLUDED AS A DUMMY
RESTRICTION. BOTH IN THE NUMBER OF RESTRICTIONS AND IN THE 
COEFFICIENTS MATRIX. AS THE LAST RESTRICTION. 
THE NEXT NUMBER TO BE OFFERED IS THE NUMBER OF VARIABLES. N. 
IF PARAMETRIC VARIATION OF THE RIGHTHAND-SIDE IS·INTENDED. 
A DUMMY-ACTIVITY SHOULD BE INCLUDED IN THE NUMBER OF VA
RIABLES 
AND -AS LAST COLUMN-. IN THE COEFFICIENTS MATRIX. 
THESE NUMBERS SHOULD BE FOLLOWED BY 
THE NUMBER OF EQUATIONS. NEQ. 
AND NAV. THE NUMBER OF VARIABLES TO WHICH 
THE TACIT (NON-NEGATIVITY) RESTRICTION DOES NOT APPLY. 
THE SERIES OF INFROMATION-PARAMETERS IS THEN CLOSED BY 
THE INTEGER NUMBERS pR AND PC. 
FOR PR"PC= D. 
THE PROGRAM OPERATES AS. A 'NORMAL' QUADRATIC PROGRAMMING 
ALGORITHM. 
FOR pR~1 WITH PC-D. PARAMETRIC VARIATION OF THE OBJECTIVE 
FUNCTION IS ASKED. 
AND FOR pR=O WITH pC"I. 
PARAMETRIC VARIATION OF THE RIGHT-HAND SIDE 
IS ASKED. 

BEFORE THE MAIN BODY OF NUMERICAL INFORMATION. 
ONE SHOUD SUPPLY A SINGLE REAL NUMBER. 
THE CONSTANT TO BE ADDED AS INITIAL VALUE TO 
THE OBJECTIVE FUNCTION. 
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THEREAFTER PUNCH THE TABLEAU ITSELF. 
THE REQUIRED PRESENTATION OF THE TABLEAU-MATRIX 
IS THE SAME AS FOR 'ORDINARY' QUADRATIC PROGRAMMINGI 
EXCEPT FOR THE INCLUSION OF AN ADDITIONAL VECTORI TO 
CONTAIN THE PARAMETRIC ACTIVITY/RESTRICTION. 

FANCYHI GH I'" 100; 
MI=READ; NI=READ; NEQI=READJ NAV:=READ; 
NNEGDI= READ; PRI=READJ PCI=READJ 
INITIAL VALUE 1= READ; 

REENTRY: = 0; 
'BEGIN' 'ARRAY' TAC I:M+N+311:M+N+2lJ 

'INTEGER' 'ARRAY' R01olLSTICOLLSTC\:M+NH 

MATI(TAIM+N+2IN+II0 1 0); 
PRINTI=TACM+N+IIN+Il; 

REORDER TO APPROPRIATE BLOCKS: 
'FOR' J:=I 'STEP' 1 'UNTIL' N 'DO' 
'FOR' 11=21\ 'DO' 
TACM+N+I+IIJllcTACM+N+IIJ]; 
'FOR' 11=1 'STEP' 1 'UNTIL' M+N+\ 'DO' 'BEGIN' 

TA[lIM+N+Ill=TACIIN+IH TAClIN+'ll:=O; 'END'; 
TACM+N+IIN+Ill=O; 

RE INTERPRET: 
'FOR' J:=I 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

'FOR' 1:=1 'STEP' 1 'UNTIL' N+M+\ 'DO' 
TACIIN+M+\l:=TACIIN+M+Il~TACIIJl*TACN+M+3IJl; 
'FOR' 11=1 'STEP' 1 'UNTIL' N 'DO' 
TACN+M+IIN+M+Il:= 
TACN+M+IIN+M+ll+TACIIJl*TACJIIl*TACN+M+3.Jl; 
TACN+M+IIN+M+Ill= 
TACN+M+IIN+M+Il-TACN+M+\IJl*TACN+M+3.Jl; 
'IF' TACN+M+2IJl=0 'THEN' TACN+M+2IJl:=FANCYHIGH; 
TACN+M+2IJl 1= TACN+M+2IJl-TACN+M+3.J]; 
'IF' TACN+M+2IJl < 0 'THEN' 'BEGIN' 

NEWL IN E( 1 )J 

VRITETEXT('C'YOU%HAVE%SUPPLIED%A%LOVER%LIMIT%IN% 
EXCESS%OF%THE%CORRESPONDING%UPPER%LIMIT') '); 
NEWLINECI )J 

VRITETEXT( '( 'THE%QP%PROBLEMUS%THEREFORE%EMPTY. ') '); 
• END'; 

• END'J 

NOW SOLVE: 
FIRST CALL: 
QUAP(TAIMININEQINAVINNEGDIROWLST.COLLSTI 
PR.PC.REENTRYILAMBDA); 

CORRECT 2T FOR INITIAL VALUE: 
TACM+N+IIM+N+Il := TACM+N+\IM+N+Il + 2*INITIAL VALUE; 

'IF' NNEGD > N 'THEN' NNEGD := N; 
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POINT OF OUTPUT: 
CHECK ON STANDARD FORM: 
'FOR' 1:=1 'STEP' I 'UNTIL' N+M '00' 
'IF' 'NOT' RoWLSTClJ=-CoLLSTCIJ 'THEN' 'BEGIN' 

TRULY FEASIBLE := 'FALSE'; 
'GoTo' SIGNAL UPPER LIMITS; 'END'; 

'IF' REENTRY=O 'THEN' 'BEGIN' 
CORRECT 2T ROW: 
'FOR' 1:=1 'STEP' I 'UNTIL' M+N 'DO' 'IF' RoWLSTCIJ>O 
'THEN' TACM+N+I.IJI=-TACI.M+N+IJ 
'ELSE' TACM+N+I.IJ:=TACI.M+N+IH 'END'; 

'IF' 'NOT' CPR=O 'AND' PC=O) 'THEN' 'BEGIN' 
NEWLINEC I); 
WRITETEXTC'('PARAMETER %VALUE') '); 
WRITEC30.FoRMATC 'c 'S-NDDDDD.DD') '>'LAMBDA); 'END'; 

CHECK FOR ARTIFICIAL FEASIBLITY: 
TRULY FEASIBLE := 'TRUE'; 
, I'tJ R' 1: = I ' STEP' I ' UN TIL' M + N ' DO' , 1 F' Ro WL S T C 1 J 
> 3000 'THEN' 'BEGIN' 

TRULY FEASIBLE 1= 'FALSE'; 
NEWLI NEC I); 
WRITETEXTC'C'RESTRICTIoN') '); 
WRI TEC 30. FoRMATC 'C 'SNDDDDS') '). Ro"!LSTC 1 J -30 0 0); 
WRI TETEXTC 'c 'oNLY%ARTI F! CI ALLY%SATI SF! ED') '); 'END'; 

DITTO FOR SPECIFIED VARIABLES: 
'FOR' 1:=1 'STEP' I 'UNTIL' N+M 'DO' 
'IF' RoWLSTCIJ>2000 'AND' RoWLSTClJ<3000 'THEN' 'BEGIN' 

TRULY FEASIBLE := 'FALSE'; 
NEWLINEC I)J 
WRITETEXTC'C 'VARIABLE') '); 
WRITEC 30. FORMAT<' C 'SNDDDDS')'). RoWLSTC I J-2000); 
WRI TETEXTC 'c 'oNLY%ARTI F! CI ALLY%POSI TI VE') , ); 'END'; 

SIGNAL UPPER LIMITS: 
TRULY BOUNDED := 'TRUE'; 
'FOR' J:=I 'STEP' I 'UNTIL' M+N 'DO' 'IF' COLLST[JJ 
> 2000 'AND' COLLSTCJJ < 3000 'THEN' 'BEGIN' 

'IF' TA[M+N+2.JJ = FANCYHIGH 
'THEN' TRULY BOUNDED := 'FPLSE'; 
'IF' CoLLST[JJ = 2000+N 'THEN' TRULY BOUNDED := 'FALSE'; 
'END' ; 

REP!: C TA. M. N. NEQ. NAV. RO!,,'!. ST. COLL ST); 
'IF' PRINT> 0 'OR' 
M+N < 14 'THEN' TAEoCTA.M+N.M+N.O.O. I. I.RoWLST.COLLST) 
'ELSE' TABoCTA.M+N.O.O.M+N.O.I.ROWLST.COLLST); 

NE!,,'LINEC I)J 
WRI TETEXT C ' C 'SOL UTI ON% VALUEU FU N%STAN DAPD% FORM') '); 
WRI TE( 30. FORMAT( , C 'S-NDDDD. DDD' ) • ). TA[ M+N+ I. M+N+ 1 ] 12); 
NEWLINEC I); 
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ENDLOOP FOR NORMAL QUADRATIC PROGRAMMING: 
'IF' PF=O 'AND' PC=O 'THEN' 'GOTo' END OF PAFQP; 

ENDLOOP FOR PARAMETRIC VARIATION: 
'IF' REENTRY=-I 'THEN' 'GOTO' END OF PARQP; 
'I F' 'NOT' TRULY FEASI BLE 'OR' 'NOT' TRULY BOUNDED 
'THEN' 'GOTO' END OF PAPQP; 

CHECK POSITIVE VALUE QUADRATIC FUNCTION: 
, IF' PC= 1 'AND' 
'NOT' TACM+N+I.M+N+Il > 0.0000000001 'THEN' 'BEGIN' 

NEWLINEC I)J 
WRITEiEXTC'C'QUADRATIC%FUNCION%ZERO%OR%NEGATIVE%') '); 
NE1,.'L I NEC I); 
'GOTO' END OF PARQP; 'END'; 

PARAMETRIC REENTRY CALL: 
REENTRY: =2; 
QUAPCTA,M.N.NEQ.NAV.NNEGD.ROWLST.COLLST. 
PR.PC.REENTRY.LAMBDA); 
'GOTO' POINT OF OUTPUT; 

END OF PARQP: 
'END'; 'END' 
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GENERAL QUADRATIC PROGRAMMING 

18.1 Statement and discussion of the general problem 

In this chapter we discuss a method of solving the following 
problem 

Maximise 

T 

Subj ect to 

w' x + x' D x 
<r-

(k = 1, 2, ... m) 

(18.1.1) 

(18.1.2) 

In practical numerical application it is extremely wasteful of 
both tableau-space and computational effort to treat linear 
restrictions as quadratic restrictions with a zero quadratic 
component. Thus, in practice (18.1.2) is split in 

and 

c' x < b 
- k- - k 

(k = 1, 2, .... , ml ) 

c' x - 1 x'D x < b 
- k- 2 - k - - k 

(k = ml+l, ... m) 

(18.1. 2a) 

(18.1. 2b) 

The objective function is similar to the one used in Chapter 16, 
but now the side-conditions are also quadratic. 

Example 

Maximise 

Subject to 

(xl - 2)2 + (x 2 - 3)2 ~ 4 

(0 ~ xl ~ 10, 0 ~ x 2 ~ 10) 
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We first of all make a graphical mapping of the stated problem, 
with deletion of the upper limits. The one restriction is a 
circle, with a radius of 2, and the point xl = 2, x 2 3 as 
centre. The objective function is indicated by a series of 
parabolae (in fact, three) for T = 0 and T = 1, and T = 3.1. 
The highest one of these, insofar as it still touches the 
feasible space area (the circle) is to be chosen. In this 
example, that is also visually the highest but more generally, 
we should choose the highest value of T. To conform to (18.1.1) 
and (18.1.2) it is necessary to reformulate the objective 
function as well as the restriction, i.e. work out the 
expressions within brackets. 

Maximise 

T = 

2 
xl + 2x2 - x 2 - 1 

Subject to 

i.e. 

2 2 
-4x - 6x + x + x <-9 1 2 1 2 -

Thus our initial set-up information is 

w' [1 2J, D 

[: J 0 

c' [-4 -6J Dl 
[-' OJ -1 

o -2 
b l -9 
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5.5 

5.0 

~.5 

4.0 

3.5 

3.0 

2.5 

2.0 

graph 18.1 

illustration of the general 
quadratic programming problem: 

find the highest fe~sibl~ 
iso-objective functIon lrne. 

4.5 S.O 5 5 
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While this example is neatly convex, it is important to note 
that the efficacy of the van de Panne and Whinston/Cottle 
algorithm (on which this chapter heavily depends) does not 
require a convex preference function as such. 

By and large, it is enough that each ordinary quadratic 
programming problem which will be generated possesses a proper 
optimum, and this requires convexity within the subspace defined 
by the binding linear restrictions, not convexity of the 
objective function as such. The algorithm to be developed in 
this chapter will therefore also be effective in many cases 
where some or all of the matrices D and Dk are indefinite, 
rather than negative (semi) definite. 

Furthermore, it will be seen below, that with only a slight 
adaptation of the subsidiary quadratic programming algorithm 
we can in practice solve problems in which some of the 
restrictions are peripherally convex, or indeed anti-convex. 
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lS.2 Pseudo-Lagrange an and Linear Approximation 

The general quadratic programming algorithm revolves around 
the maximisation of a function which we might indicate as the 
pseudo-Lagrangian. 

When the algorithm has converged the pseudo-Lagrangean is the 
Lagrangean function, less the terms which refer to the linear 
restrictions. 

We do not so far know the values of any dual variables, and 
cannot directly verify whether the first-order optimality 
conditions are satisfied. 

We therefore start with some provisional guesses at what the 
dual variables might be. 

The pseudo-Lagrangean is the objective function, plus a non
negative combination of the quadratic restricting functions. 
As in the case of a proper Lagrangean, positive multipliers 
are restricted to restrictions which have been identified 
as possibly binding. In practice this means either violated 
or binding. 

In the initial (trivial) solution we do not as yet identify 
any restriction as binding or violated and the pseudo
Lagrangean is the objective function. 

The algorithm consists of, inter alia, a number of optimising 
phases. In each optimising phase we solve an "ordinary" 
quadratic programming problem, which we will indicate as a 
subsidiary problem. In this subsidiary "ordinary" quadratic 
programming problem, the objective function is the pseudo
Lagr angean . 

The side conditions are 3 categories of linear restrictions, 
v~z: 

a) Any linear restrictions arising from (lS.1.2a) 

b) Linear approximations of quadratic side-conditions, and 

c) Sometimes a "safety restriction" the nature of which will 
be discussed later on. 

559 

The presence of these additional linear restrictions (classes b 
and c) distinguishes the algorithm which is offered here from the 
group of algorithms surveyed by Fiacco and 
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McCormick [lOJ. Their algorithms are called sequential 
unconstrained minization techniques. By contrast the present 
algorithm might be called a sequentially constrained maxi
mization method. We should, however, also mention a different 
method due to M.J.D. Powell [31].which is rather more similar 
to the one offered here. Although the programmed algorithm 
technically caters for "free" variables, this feature of the 
algorithm has not been tested, and indeed could give rise 
to boundedness problems. 

Our discussion of the algorithm will assume that restrictions
class a) includes non-negativities and upper limits on the 
specified variables. 

The "safety restriction" c) may not always be present (for a 
start it is not present in the initial problem) and the 
linear approximations may be totally inadequate initially. 

To prevent unboundedness in the case of a semi-definite (or 
linear) objective function, we need to ensure that the feasible 
space area is bounded even without the quadratic restrictions. 

We nm. discuss the linear approximations. Any linear approxi
mation refers to vectors in the vicinity of some previously 
solved vector x = x*. The initial linear approximation has to 
be supplied by-the-user, one would normally initiate at x* = O. 
The actual value of x is then the sum of x* and an increment, 
indicated as 6x. 

x = x* + 6x (18.2.1) 

Substitution of the right-hand side of (18.2.1) for x into 
(18.1.2) yields the following expression 

~k(~* + ~~) - !(~*' + ~~')Dk(~* + ~~) < bk 

Partial working out of (18.2.2) gives us: 

(18.2.2) 

~(~* + ~x) - ~*'Dk~~ - !~*'Dk~* - !~~'Dk~x ~ bk 

(18.2.3) 
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We add a further term -~~*'D~* to both sides of (18.2.3) causing 
the term -~~*'Dk~* on the left-hand side to become a full term 
-~*'Dk~*' and bring the term ~6~'Dk6~ to the other side. 

We again write x for x* + 6~, and obtain after re-ordering: 

(~ - ~*'Dk)~ ~ bk - ~~*'Dk~* + ~6~'Dk6~ (18.2.4) 

The approximation consists in neglecting the term ~6~'Dk6~, 
and the approximation is 

(18.2.5) 

Thus, in our example, our first approximation 1S 

and in general, for x* 0, the initial approximation is 

(18.2.6) 

For a properly convex quadratic restricting function Dk is 
negative semi-definite, hence the term ~ ~'Dk6~ is non
positive. But if the function is non-convex (or directionally 
convex), 6X'Dk6X may be positive. Thus for a convex restricting 
function the linear approximation is more liberal than the true 
quadratic restriction. The discrepancy between the true 
restriction and its approximation may go as far as finding 
the approximation not to be a meaningful restriction on the 
objective function at all, as may be illustrated in graph l8.2a 
below. 

If the restriction is not convex, or only peripherally convex 
in the ~ ~ 0 domain, the linear approximation may actually 
cut into the feasible space area. This may lead to complications. 
The problem may appear to be empty, despite the existence of a 
proper optimal and feasible solution in the true quadratic 
problem. 

Example 

Maximise 

2 2 
T = -(xl - 2) - (x2 -3) 

Subject to 
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5.0; 

5.0 
TX, 

graph 18.2 a 

inadequate initial approximation 

4.5 

4.0 

3.5 

3.0 

This problem has a proper solution, the unconstrained maximum 
of the objective function, xl = 2, x 2 = 3. However, the linear 
approximation of the hyperbola, taken at the point xl = x 2 = 0, 
is much more restrictive than the true non-linear 
restriction, it is 0 xl + 0 x 2 2 -4. 

18.3 Verification and primal adjustment of subsidiary optima 

When a subsidiary quadratic programming problem of maximising 
a pseudo-Lagrangean has been dealt with in the first instance, 
the linear approximations of non-convex restrictions may need 
adjustment. It should be borne in mind that when using the 
convex mode of operation the ordinary quadratic programming 
algorithm will corne up with a "solution" irrespective of 
whether the problem is intrinsically solvable or not. For 
example, the first subsidiary optimisation problem tor the 
quasi-convex example at the end of the previous section is 

Maximise 

2 
x -

1 
2 

x 2 (- l3) 
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subject to 

o < - 4 

and the "solution" is xl = 2, x2 = 3, with the dual variable 
PI at its fancy high upper limit, the slack-variable of the one 
restriction having been replaced by an artificial variable. The 
fancyhigh dual variable is not, however, particularly informative. 
In this somewhat odd and trivial example, the adjustment 
substantially amounts to the neutralisation of a nonsense
restriction. The "adjustment" will change the "restriction" 

o < -4 into 0 < o. 

We will move a linear approximation restriction outward, 
whenever we find one binding, (or artifitially satisfied), while 
the slack of the true quadratic restriction turns out to be 
positive. The operation need not be as apparently simple and 
trivial as in the example given above. 

Consider the following example, 

Maximise 

T = -(x - 1)2 - (x - 2)2 
1 2 

Subject to 

-xl - x 2 - 2xl . x2 ~ -4 

i.e. 2(x l + !)(x2 + !) ~ 4! 

The subsidiary optimization problem, i.e. 

Maximise 

2 2 
T = -(xl - 1) - (x2 - 2) 

Subject to 

is now first of all solved. 

The set-up tableau and the subsidiary optimum tableau are given 
below in the tableaux·18.3a and l8.3b. 
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graph 18.3 a 

overtight approximation of a 
per iphera L Ly convex restr i ct ion: 
the ?pti~um may be between the ap
proximation and the true restriction. 

1.5 2.0 S.O 

TABLEAUX 18.3 A AND 18.3 B 

A SUBSIDIARY PROBLEM WITH AN OVERTIGHT OPPROXIMATION. 

SET-UP TABLEAU 

NA.! XI 

DI I -2 
02 I 
S 1 I -I 

2T ! -2 

X2 

-2 
-I 

-4 

PI !VAL. 

-2 
! -4 
! -4 

4 ! -10 

SUBSIDIARY OPTIMUM 

NA.I DI D2 SI IVAL. 

XI -0.25 0.25 -0.5 I 1.5 
X2 I 0.25-0.25-0.512.5 
PI ! 0.5 0.5 -I I I 

2T I -1.5 -2.5 I-I 
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We are now in a position to give precise operational 
significance to the notion of pushing the linear approximation 
restriction outwards. It means parametrically increasing the 
constant of the sl-restriction, until the quadratic restriction 
becomes binding rather than amply fulfilled. 

The sl-column tells us that for every unit that the restriction 
is shifted outwards (back to the origin in this case), xl and 
x2 will each be reduced by!. 

In other words, if A is the length of a parametric step in 
the indicated direction, we can put: 

lIxl = -! it.. , lIx2 = -! A. 

Confirm the notation of section 17.2 (parametric variation), we 
indicate a variation vector as v , but in this case v is an 
updated vector, i.e. 

x x* + VA (18.3.1) 

and 

lIx v A (18.3.2) 

xl I! - !A 

x2 2! - !A 

in the particular example. 

We first implement the approximation-formula (18.2.5) at the 
current solution vector, and then proceed as follows: 

Substitution of the right-hand side of (18.3.1), i.e. x* + AV 
for x, and of AV, the right-hand side of (18.3.2) for lIx, 
into-a binding form of (18.2.4) gives the following result: 

2 
(~ - ~*'Dk)(~* + ~A) = bk - !~*'Dk~* + !~'Dk~A (18.3.3) 

which may be re-ordered as 

-c'x* + ~x*'D x* = 0 -=k- - k- (18.3.4) 

A numerical evaluation of (18.3.4) is by far the most easily 
handled, if the vector [~ - ~*'Dk]' and the quadratic forms 

565 



566 CHAPTER XVIII 

~'D v and ~*'D~* are calculated first, hence the implementation 
of ~8.2.5) prior to (18.3.4). 

To"represent the term 2xl x 2 as !~'D~, we need D 

and we calculate: 

(c' - x*'D ) 
-k - k [-1 -1] - [I! 2!J [: :] 

The quadratic form ~'D~~ is evaluated as 

H -I] [: :] [~:] " 1 

and similarly 

x*'D x* [I! 2!J ~ :] [::] = 15. 
- k-

Accordingly, (18.3.4) is evaluated as 

1;\2 - [-6 -4J C~] A - 4 - [-1 -lJ G!J + n 2 

or 

1A2 
2 - 5A - 4 + 4 + n 0 

or 

We now solve A as 

;\ 5 ± 125 - 15 = 5 ± /DO = 5 ± 3.162 

8.162, 

[-6 

0 

Both roots correspond to an exact solution of the binding form 
of the non-linear restriction. For the larger of the two roots, 
we find: 

Xl = 1. 50 - 4.08 -2.58 

and 

2.50 - 4.08 -1.58 
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This point neatly satisfies the specified restriction - but 
not in the x > 0 domain! When two positive roots are solved from 
(18.3.4) the smaller of the two is applicable. 

If a restriction is non-convex rather than peripherally convex 
in the x > 0 domain, a second positive root may also refer to a 
point in the x ~ 0 domain. We then obviously take the one with 
the lowest absolute value. 

The other case which may quite well arise in connection with a 
peripherally convex restriction is that we find a positive and 
a negative root. For example, if the restriction 

is added to the previous restriction, the example becomes 

Maximise 

2 2 
T = -(xl - 1) - (x2 - 2) 

Subject to 

- xl - x2 - 2x l x 2 ~ -4 

The first subsidiary problem is in that case the following: 

Maximise 

T = -(x - 1)2 - (x - 2)2 
1 2 

Subject to 

and its optimal solution is 

Parametric variation of the constant of the second restriction 
now means to slide laterally along the binding restriction 
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j Xl + x 2 = 2. This line actually cuts the quadratic 

restriction at two points, on account of the curvature of the 
quadratic restriction. Our underlying problem is that possibly 
the solution might be in the area which is satisfied by the true 
quadratic restriction, but not by the linear approximation. 
(This has been illustrated in graph l8.3a.) - Therefore, we want 
to relax the linear approximation, not to make it a more 
stringent restriction. This means algebraically that when one 
of the roots is negative and one positive, the positive root is 
the relevant one; see also graph l8.3b. 

The roots of (18.3.4) may also be complex and their real parts 
may be positive or negative. Complex roots with a negative 
real part though possible, are not very useful, and one can in 
such cases, only hope that after a fresh start, new, more 
satisfactory approximations will avoid the problem. The case of 
a pair of complex roots with a positive real part is, however, 
useful to persue. 

Example 

Maximise T = -(x - 3)2 _ (x - 2)2 
1 1 

Subject to 2xl x2 < 0 

2 
+ 2x2 < 2 xl - x2 

It will be noted that the quadratic restriction in this 
example is non-covex, and indeed, anticonvex. This problem, 
nevertheless, has a unique optimal and feasible solution. The 
quadratic restriction is not even binding on the optimum, and 
in any case, even if it was e.g. if the linear restriction 
2xl - x2 ~ 0 were left out, the strict convexity of the 
objective function would still ensure a unique optimum. The 
initial linear approximation of the quadratic restriction is 
xl + 2x 2 ~ 2 and the first subsidiary optimum is 

3 3 
xl = 8' x2 = 4 . The optimal quadratic programming tableau 

corresponding to the maximization of -(Xl -3)2_(X2-l)2 + 

10 = -xi + 6x l - x; + 2x2 , subject to 2xl - x2 ~ 0 and 

xl + 2x2 ~ 2 is given below, with the parametric column and the 
corresponding displaced solution. (Tableau l8.3c). Non
meaningful upper limits, as well as parametric variations in the 
objective function have been replaced by xx. 
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7 

6 

5 

4 

3 

2 

-

graph 18.3 b 

illustration 0 f outward 
adj ustment I 
a positIve and a negative root. 

0.5 1.0 1.5 '.0 4.5 5.0 5.5 
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TABLEAU IB.3 C 

A SUBSIDIARY OPTIMUM. WITH PARAMETRIC ADJUSTMENT. 
BASED ON A PAIR OF COMPLEX ROOTS OF THE LIMIT EQUATION. 

NAME! ! D 1 D 2 S 1 S 2 !! VALUE L VACL"'I.13> 
-------------------------------------------------------------
X 
X 
P 
P 

1 ! I 
2 ! ! 
1 ! ! 
2 II 

2T !! 
UB !! 

-0.40 0.20 
-0.20 -0.40 

-0.40 -0.80 
XX XX 

0.40 
-0.20 
-0.40 

1 .60 
XX 

0.20 
0.40 

-0.40 

2 
XX 

! I 0.40 0.20 
! ! 0.80 0.40 
! I 1.60 
! I 2 -0.40 

! I 9.60 XX 
! I XX 1.13 

0.63 
1.25 
1.60 
1.55 

xx 
xx 

Relaxation of the binding s2-restriction now means that for 
every unit that the s2-restriction is pushed outwards, xl 

increases by t and x 2 by i· This is due to movine along the 

binding linear restriction, 
graph l8.3c indicates that 
quadratic restriction. 

2xl - x 2 o. Inspection of 
h · 2.. h t ~s restr~ct~on never meets t e 

Application of (18.3.4) for: 

v 

[~l 
c' 
-k 2J 

x* 

[;] 
bk 2 

yields 

~ ;\2 9 ;\ + 16 
0 25 25 25 
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This equation yields a pair of complex roots 

- 0 S 

9 
8 ± 50 

8 

~ . s 

l . O 

\ S 

1.0 

OS · 

graph 18.3 c 

, slid i ng' 
the true res
trictIon may 
never be 
reached. 

1. 5 2 0 
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2. 5 ; . 0 
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3.5 

3.0 

I. 5 -

1.0 

-0.5 

graph 16.3 d 

adjusted old 
approximation, 
cutting true 
restriction 
at an angle. 

0.5 1.0 1.5 

CHAPTER XVIII 
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The algebraic equivalent of this situation is finding a pair 
of complex roots to (18.3.4). 
The problem is solvable nevertheless. 

When we meet a pair of complex roots in this way we take the 
real part only or what amounts to the same, we put the first
order differential of the left-hand side of (18.3.4) at zero 

(c - x*'D )v 
-k - k-

v'D v 
- k-

(18.3.5) 
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We then subsequently take a nrw lin~ar approximation and repeat 
the operation. Thus for A = 18 we f:tnd x = 0.63, x 2 = 1. 25. 
The new graphical mapping below gives both the adjusted linear 
approximation and the new one, taken at xl = 0.63 and x 2 = 1.25. 

The new linear approximation mayor may not come to be used at 
that point. The reason for this qualification is that the 
calculated value of A, whether obtained as a real root or as the 
real part of a pair of complex roots is a maximum value. It 
mayor may not happen that the ordinary quadratic programming 
vertex changes before the full adjustment is reached. There 
may be another restriction in between, or the adjusted solution 
may not be optimal. The parametric adjustment algorithm of 
Chapter 17 is applicable, and only one parametric step is made. 
In the example at hand, the adjusted vertex xl = 0.63 and 
x 2 = 1.25 is the new subsidiary optimum. Accordingly, the next 
subsidiary problem is 

Maximise 

Subject to 

2xl - x 2 ~ 0 

xl - 0.50x2 < 0.44 

The optimum solution of this problem is 

xl = 1.4 x 2 = 2.8 with PI = 1.6, P2 = 0 

The quadratic restriction, as well as its approximation are 
now amply fufillled and no dual variable has so far been 
introduced into the pseudo Lagrangean. Hence this particular 
subsidiary optimum is actually the true global optimal and 
feasible solution. The problem at hand has been solved. 
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One related issue which comes up under the heading of verifying 
the solution of a subsidiary problem is the recognition of 
emptiness. 

The obvious way of recognising an empty problem is by way of 
finqing a subsidiary problem empty. The following statements 
apply in that connection. 

If a restricting function is properly convex the set of vectors 
which satisfy the corresponding true restriction is entirely 
included in the set of vectors which satisfy an approximation 
(the approximation is more liberal than the true restriction). 

Therefore, in the convex case, the feasible space area of the 
true problem is entirely included in the feasible space area of 
any subsidiary problem and we may conclude to emptiness of the 
true problem, as soon as we find a subsidiary problem to be 
empty. 

Note however, that this indication does not always arise in 
the first subsidiary problem. 

Example 

2 
T = xl + (x2-1) Maximise 

Subject to xl > 5 

(x -
1 

2)2 + (x -
2 

3) 2 .2. 4 

(0 < x < 10, a < x 2 .2. 10) - 1-

This problem is a modification of the one put at the opening 
of this chapter, the modification consisting of the introduction 
of the linear restriction xl ~ 5, making the problem empty. 

Whilst the linear restriction contradicts the true quadratic 
restriction, it does not contradict the initial approximation 
of the quadratic restriction (4xl + 6x2 ~ 9), and the initial 
subsidiary problem attains an optimal and feasible solution at 
xl = 10, x 2 = 1. 

For the convex case, convergence of the sequentially constrained 
maximization method arises on account of progressive reduction 
of the attainable value of the objective function, a topic to 
be discussed in more detail later in this chapter. 

The algorithm has two permitted endings, finding the optimum, 
and finding the true problem empty, by way of finding a 
subsidiary problem empty. (The issue of unboundedness does not 



GENERAL QUADRATIC PROGRAMMING 575 

arise on account of the presence of (artificial) upper limits on 
all specified primal variables). Finding the optimum of the 
true problem is impossible for an empty problem, it therefore 
follo~s that emptiness will be signalled in the way indicated, 
if not for the initial subsidiary problem then for a later 
subsidiary problem. 

There are, however, complications for non-convex problems or 
indeed, as soon as not all functions are properly convex. It is 
in this connection necessary to differentiate between true linear 
restrictions and linear approximations. This was in fact, done 
by employing the convex mode of operation in solving subsidiary 
problems including and indeed in particular with non-convex 
problems. 

The method of dual upper limits and artificial variables then 
permits to put the penalty-coefficient for not meetins a true 
linear restriction an order of magnitude higher than the penalty 
coefficient for not meeting an approximation restriction. 

If we then find that a true linear restriction is met only 
artificially, we assume that the true linear restrictions 
contradict each other, and conclude to emptiness, irrespective 
of convexity (we strictly lack proof on this point, see 
section 16.10). 

For quadratic restrictions the adjustments discussed earlier 
in this section then comes before we investigate emptiness. 
This obviously leaves the possibility that emptiness of a non
convex problem leads to non-convergence. 

We adjust one restriction, formulate a new subsidiary problem, 
with the same pseudo-Lagrangean, and find that the modified 
problem again leads to a solution where (the same or another) 
true restriction is amply fulfilled by a solution vector 
associated with a binding or artificially met approximation. 
Adjustment is then again called for once more. 

Whether there are artificial variables left in association with 
restrictions where the approximation and the true restriction 
are violated, is then never investigated. 

However, emptiness will be recognized, even in a non-convex 
problem, if an artificially feasible "optimum" arises, for 
which all binding or artificially met approximations relate to 
binding or violated true restrictions. 
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lB.4 Reapproximations 

Let us now suppose that we have found the optimal and feasible 
solution of a subsidiary problem, and that we have verified the 
solution-structure (or if necessary re-defined the problem) 
to the extent that no approximation-restriction is binding on 
a solution for which the true quadratic restriction is amply 
fulfilled. 

In such a situation there are generally restrictions for which 
the true quadratic restriction is violated, while the 
approximation is binding or amply fulfilled. One possible 
approach towards getting nearer to the true solution is to 
impose new approximations as additional restrictions, or as we 
will call such restrictions reapproximations. There are two 
versions of this technique. If the current approximation of a 
quadratic restriction is not binding on the optimum of the 
subsidiary problem (while the true quadratic restriction is 
violated, the value of the restricting function being negative 
non-zero), we speak of a loose approximation. 

If the current approximation is binding, but we expect to be 
able to replace it by a new approximation, we speak of 
superimposing a new approximation. In general, reapproximation 
means that we do not (as yet) formulate a new subsidiary problem 
to be solved from the trivial basis onwards, but re-enter the 
ordinary QP algorithm in the re-entry mode, with a new violated 
approximation restriction. The loose approximation is the simplest 
of the two cases, and will be discussed first. 

We again take the same example i.e. 

Maximise 
2 

T = xl - (x2 - 1) , subject to 

2 2 
(xl - 2) + (x2 - 3) < 4 

(0 ~ xl ~ 10, 0 ~ x 2 < 10) 

The p = 0 subsidiary optimum, with the so-far unused 
"extra" restriction slot is given below as tableau lB.4a. 

As we saw already earlier in this chapter the initial 
approximation 4xl + 9x2 ~ 4 is not binding on the optimal 
solution, the positive value of sl = 37 confirms this. In the 
interest of containing the number of restrictions to be 
administered, and of keeping the option of imposing more in 
future we simply discard a loose approximation, and put a new 
one in its place. 
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TABl.EAU 18.4 A 

ILLUSTRATION OF LOOSE APPROXIMATION. 

NAME' , B1 D2 PI P2 II VAl.UE DIST 
-----------------------------------------------------
U1 ! ! 
X2 I' 
Sl , i 4 
S2 I' 

2T " 1 
US 'I 10 

-0.50 
-3 

-1 
X 

-4 
-3 

-18 

-37 
100 100 

"1 X 
II 1 9 
'I 31 X 
'lOX 

I' 22 
II X 

X 
X 

Application of (18.2.5), for ~*' = [10, lJ 

yields a new approximation, which is l6xl - 4x2 ~ 92 

(The reader is invited to verify this calculation referring to 
18.2.5) 

Formulae for calculating a currently updated part of the 
tableau from a known block-pivot, (the inverse of which may be 
extracted from the current tableau), and the non-updated form 
of the tableau, may be obtained by seneralisation of the 
similar problem as it arises in the LP case. 

From section 11.1 we derive the following formulae for 
calculating those elements of a "missing" row which refer to 
non-basic (primal and dual) slack variables. 

.£' 2 1 , 
-1 

P (18.4.1) 

Here t' is a row of the second block-row, first block-column 
block-ot'the current tableau. The composite vector [~'2,1' OJ 

arises because in the QP case, the rows which relate to primal 
restrictions need to be extended with zeros, insofar as dual 
variables are concerned. (The straightforward application of the 
matrix-formulae from section 11.1 to the vectorial case would be 

t' = - a' A -1 
- 2,1 - 2,1 1,1 

In applying (18.4.1) in the presence of a binding upper-limit 
restriction we must also consider the unwritten Xl-row, which 
is a unit-vector, with the unity element in the b l column. 
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The full pivot inverse therefore is 

d l d Z b l 

xl 1 

Xz -0.50 

u l -1 

Application of (18.4.1) therefore results in 

d l d Z b. 
xl Xz u l ~ 

-sl [16 -4 0] xl [ ] d l d Z b l 

Xz -0.50 sl [0 -z -16J 

u l 

However, since the d l column is not stored as a currently updated 
column, we do not need to calculate an additional element to it, 
which is anyhow systematically zero. Also multiplication by zero 
in relation with dual variables elements of the non-updated form 
of the row may be suppressed and the non-trivial part of this 
calculation is 

-4J 

The calculation of an additional column is in a QP tableau 
facilitated by the symmetry rules; having done the row already 
we just copy with, where appropriate, a change in sign. 

Only for one element do we need a further application of the 
matrix formulae from section 11.1, i.e. to calculate an element 
of a non-basic variable's column which does not figure as an 
eliminated slack-variable in the pivot inverse. 

In view of the symmetry between ~Z 1 as non updated row and the 
corresponding dual variable's column, the formulae for the 
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diagonal element is 

[~2,1' OJ (18.4.2) 

In practice, we obtain this result as the inner product between 
the already updated row i.e. -[~'2 1 I O]p-l, and the unupdated 
form of the dual variables' column.' 

In this example that calculation ~s 

[: ] 
Since the dual variables' column contains zero entries for all 
primal variables' rows, this calculation can be restricted to 
its non-trivial part only and becomes 

Similar calculations for the value column cell are possible, 
but not necessary. Reference to (18.2.4) makes clear, that, at 
x = x* itself the current slack of the true restriction and the 
approximation are the same. Since we needed to calculate the 
quadratic slack in the first place in order to es~ablish its 
sign, it is now known (to be - 64). 

The tableau now becomes as given in tableau l8.4b. 

TABLEAU 18.4 B 

REENTRY TABLEAU FOR IMPOSING THE REAPPROXIMATION 
OF A LOOSE APPROXIMATION RESTRICTION. 

NAME! I BI D2 PI P2 'I VALUE DIST 
-----------------------------------------------------
UI ! ! 16 ! I X 
X2 ! I -0.50 -2 , I 9 
SI ! ! -16 -2 -8 ! ! -64 X 
S2 ! ! ! ! 0 X 
-----------------------------------------------------

2T I I I 
UB !! 10 

-I 
X 

64 
100 

o 
100 

!! 22 
!! X 

X 
X 
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Normal re-entry of the ordinary QP algorithm now leads to a new 
optimal and feasible solution, for which the calculation tableau 
is given in tableau l8.4c 

TABLEAU 18.4 C 

A REOPTIMIZED SUBSIDIARY PROBLEM. AFTER IMPOSING THE 
REAPPROXIMATION OF A LOOSE APPROXIMATION RESTRICION. 

NAME II D1 

Xl 
X2 
PI 
S2 

" -0.03 
II -0.12 
" -0.06 
II 

2T II -6.03 
UB I! X 

D2 

-0.12 
-0.50 

-1.13 
X 

Sl P2 

0.06 

0.06 0 
X 100 

II VALUE 

II 6.03 
" 1.13 
II 0.06 

" 0 

II 14.03 

" X 

DIST 

3.97 
8.88 
X 
X 

x 
X 

The approximation of the quadratic restriction is now binding 
and we cannot simply discard it as not being useful. 

What we can, however still do, is to impose a new approximation 
as well. We therefore now occupy the (m+l)th (second) 
restriction slot. 

We apply (18.2.5) again, now for x*' 
8.06 xl - 3.75 x2 < 28.64. 

[6.03, 1.l3J and find 

The same procedure of updating an additional restriction now 
results in tableau l8.4d 

TABLEAU 18.4 D 

ILLUSTRATION OF THE SEARCH FOR SUPERIMPOSITION. 

NAME II D1 D2 Sl P2 II VALUE DIST 
-------------------------------------------------------
Xl II -0.03 
X2 !I -0.12 
PI " -0.06 
S2 " -0.22 

2T !I -6.03 
UB II X 

-0.12 
-0.50 

-0.87 

-1.13 
X 

0.06 -0.22 " 6.03 
-0.87 " 1.13 

0.50 " 0.06 
-0.50 -1.50 II -15.77 

0.06 15.77 II 14!03 
X 100 II X 

3.97 
8.88 
X 
X 

x 
X 
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At this point w~ investigate whether or not there is a 
reasonable prospect of actually replacing the old approximation 
by the new one. In the general m-variable case, we might wish to 
repeat the operation for several restrictions and this is 
possible, only if after re-entry of the ordinary QP algorithm, 
we again have one binding approximation for one restriction, 
in which case the now amply fulfilled old approximation can be 
discarded. 

To assess the likelihood of that to happen we investigate the 
implications of two tentative pivots, by comparing their 
associated ratios with the value column. 

These two pivots are: the n + m + l/n + m ~ 1 cell i.e. the 
elimination of (the s2 variable) the slack variable of the new 
approximation by its own dual variable, and the m + 2/n + m + 1 
cell, i.e. the elimination of the dual variable of the old 
approximation of the offending rth restriction by the dual 
variable of the new approximation of the same quadratic 
restriction, slotted in place n + m + 1. 

In the example, this leads to comparison of the ratios 
- 15.77/-1.50 = 10.5 in the s2 row and 0.06/0.50 = 0.12 in the 
PI - row. The one in the PI row is the smaller one. Therefore 
we can at least be sure that re-entry of the ordinary QP 
algorithm will not result in simply exchanging the slack of the 
new approximation against the dual variable of the new approxi
mation, by way of activating the diagonal pivot. This would 
a fortiori apply in the case of a zero diagonal cell, and the 
ratio is classified as infinite in that case. We do not 
investigate any other ratios and accept the new approximation 
as probably fully superimposable. 

In anticipation of subsequently discarding the old approximation, 
we reorder the tableau, now classifying the new approximation 
as 'the "proper" one, and the old one as the "additional" one. 
This re-ordering results in tableau l8.4e. 
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TABLEAU I B.4 E 

REE~TRY TABLEAU FOR SUPERIMPOSING 

NAME! ! DI D2 PI 52 !! VALUE DIST 
-------------------------------------------------------
XI ! ! - 0 .-03 
X2 ! ! -0. I 2 
51 ! ! -0.22 
P2 ! ! - 0 .06 

2T !! -6.03 
US !! X 

- 0.12 -0.22 
-0.50 -0.87 
-0.B7 - I .50 

o .50 

-1.\3 15.77 
X 100 

0.06 ! ! 
! ! 

-0.50 ! ! 
! ! 

o .06 !! 
X !! 

6.03 
I .13 

-15.77 
0.06 

14.03 
X 

3.97 
8.88 
X 
X 

x 
X 

The resulting new optimal and feasible solution (not summarised 
in detail) is indeed characterized by an amply fulfilled s2 
restriction this being the old approximation 16xI - 4x2 < 92. 

We then say that the new approximation (8.06x I - 3.75xI < 28.64), 
has been fully superimposed over the old one. If this were not 
the case, i.e. if both approximations were binding on the 
optimal solution we would speak of a blocked superimposition 
and the operation could not be repeated, for lack of a slot 
to put a new re-approximation in. 

Note however, that the old approximation may sometimes again be 
unblocked, by imposing a new approximation of a different 
restriction, where the previous approximation became loose in 
the process of superimposing. 

If we carryon superimposing new approximations we run the 
obvious risk of "slicing off" smaller and smaller areas of the 
feasible space area. The computational implementation offered 
here contains a search operation for the most violated 
restriction for which a probably fully superimposable approxi
mation may be identified, and a limit of at most 2 q (twice 
the number of quadratic restrictions) superimpositions for 
any pseudo-Lagrangean, superimposing new approxima~ions whenever 
the (m+l)th slot is free. 

In the example at hand is limit is 2, and it was operative, i.e. 
a second probable fully superimposabJe approximation of the salT'e 
rescrict~on is idencified and actually leads to superimposing 
the new approximation once more, but thereafter no more 
are made until a new pseudo-Lagrangrean has been formed. 
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One further refinement of the approximation-technique which 
is useful to discuss at this point, is the inwardly adjusted 
reapproximation, and more generally the adjusted reapproximation. 

In section 18.3 we assumed that the whole tableau and solution
vector was adjusted, using the parametric variation method from 
chapter 17. Although a drastic change in the slope of an 
approximation-restriction is generally undesirable it is not 
necessary that reapproximations refer to solution-vectors 
which satisfy the (approximations of) other restrictions. 
Furthermore, it is at least as important that they come in some 
sense near the restriction to which they refer and this may 
well be achieved by taking approximations of different 
restrictions at different points. For reasons to be explained 
later on in this chapter this is especially important in the 
case of peripheral convexity where it is desirable to obtain 
tangential approximations. The technique of inward adjustment 
is applicable on both properly convex and on peripherally 
convex restrictions. We now illustrate it in relation to 
proper convexity. 

Example (the one with which this chapter was opened) 

2 
xl - (xl - 1) T Maximise 

Subject to 2 2 - 2) + (x2 - 3) < 4 

(0 2-. xl 2-.10, ° 2-. x2 < 10) 

The first subsidiary problem has the optimal solution Xl 10, 
x2 = 1, which is nowhere near the true solution. We put a new 
linear approximation 

in place of the initially loose approximation. 

This restriction is binding on the subsidiary optimum reported 
tableau l8.4e (xl = 6.03, x2 = 1.13). We initially discussed 
superimposition with respect to a ne," approximation taken at that 
point. The further refinement of (inwardly) adjusted 
reapproximation consists of taking the new approximation to be 
superimposed, not at (xl = 6.03, x 2 = 1.13), but at 
(xl = 2.70, x2 = 1.13), the solution which is obtained by 
adjusting the existing approximation-restriction, 
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16 xl - 4 x2 ~ 92, inwardly to 16 xl - 4 Xz ~ 38.64, where 
the Erue quadratic restriction is exactly fulfilled. 

Note (see graph 18.4 a), that the adjusted old approximation 
e.g. 16 xl - 4 x2 ~ 38.64 generally cuts through the true 
quadratic restriction, the new approximation is tangential to 
it. As in the case of outward adjustment only the smaller of 
two positive roots of the quadratic adjustment equation 
(18.3.4) is applicable. The adjustment of the solution
vector from xl = 6.03, x2 = 1.12 is marked in the graph by 
the downwards pointing arrows, the adjustment ends in fact 
at the end of the line of bigger arrows, the continuation 
merely indicates the significance of the other root. 

Before we finalize this section, we may note that there are 
two versions of the (inwardly) adjusted reapproximation. 

The new approximation may be brought in by superimposing it 
over the old one, or we may formulate new approximations for 
all restrictions and solve the same problem again from the 
trivial basis. The latter version will apply if a return to 
start has already been indicated for some other reason. In 
that case new approximations will be taken with inward 
adjustment for violated true restrictions for which approxi
mations are binding, and with outward adjustment if any 
overtight approximations are encountered. 

Hence the general name adjusted reapproximation. 

18.5 The objective function limit 

Let us denote as x = x**, the optimal solution vector of a 
particular subsidiary-problem, in which 

P(~) = T(~) + E' f figures as the objective function. 

The corresponding vector of true slacks (the values of the 
restricting functions f. (x**) is indicated as f**. 

1 -

Let us further assume that the problem is property convex, 
in T(~) as well as in each f. (x). We also assume that the 
particular solution vector x1 =---x** satisfies the 
condition of optimal form pi f~* < 0, (p. > 0), all i (we 
cannot achieve the complementafy slackne§s-condition as such, 
p. = ° if f. > 0, f. = ° if p. > 0, until we have solved the 
pfoblem). W~ then h~ve, (for ~ convex problem when a subsidiary 
problem has been found to s.tisfy the condition of optimal 
form), the followine 
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Theorem 

In a convex problem all vectors x which satisfy the true 
restrictions f.(x) > 0, all i, also satisfy 

1 - -

[~ (x**)J' x < [~(x**)]' x** + £.' f** (18.5.1) ax - - - ax -- -

i.e. a linear approximation of 

(18.5.2) 

taken at x = x**. 

Proof 1 (assuming optimal form) 

Consider the mathematical programming problem (hereafter named 
the displaced and constrained problem). 

Maximise 

Subject to 

f. (x) > f. (x**) 
1 - - 1-

as well as the restrictions of the subsidiary problem. 
(If the latter group of restrictions is absent, we will speak 
of the displaced problem.) 

The Lagrangean expression, associated with the optimal solution 
of the displaced and constrained problem, differs from the 
Lagrangean expression which is associated with the optimal 
solution of the subsidiary problem only in its constant term. 

We simply re-group each term Pi f., as figuring in the 
objective function of the subsidi~ry problem with a term 
-p.f~*, to obtain the corresponding term of the Lagrangean 
as§oeiated with the optimal solution of the displaced and 
constrained problem. 

It follows that x = x** also is an optimal solution of the 
displaced and constrained problem, the feasible space area of 
which includes that of the true problem entirely. A 
tangential approximation of the aggregate restriction of the 
displaced and constrained problem is: 

[ aT (x**)], x < [aT (x**)], x** (18.5.3) ax - - - ax - -
- -

This restriction (18.5.3) is also obtainable as a non
negative combination of the restrictions of the old subsidiary 
problem (with the corresponding linear shadowprices as 
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multipliers), and tangential approximations of f. (x) > fi(~**)' 
(with the p. as multipliers). The similar combikatio~ of the 
restriction§ of the old subsidiary problem, and new approxi
mations of the true restricting functions f.(x) > 0, results 
in (18.5.1). 1--

q.e.d. 

Note that if T(X) is a convex function an upper limit on the 
objective functTon i.e. (18.5.2) is an anti-convex restriction 
and its tangential approximation (18.5.1) is more not less 
restrictive than an upper limit on T(X) as 8iven in (18.5.2) 
itself. All x satisfying (18.5.1) also satisfy (18.5.2), but 
some ~ may satisfy (18.5.2), without satisfying (18.5.1). 

It follows that if (18.5.1) is added as an additional 
restriction to the next subsidiary problem, such a device 
ensures, for p' f** < 0, an actual reduction in the value of 
the objective-fu~ction between one subsidiary problem and its 
successor. 

We will therefore, in the rest of this chapter, refer to 
(18.5.1) as "the objective function limit" as it implies 
(in the convex case), (18.5.2). 

Note 

The above proof becomes invalid if the assumption of optimal 
form is dropped. This is because the feasible space area of 
the displaced and constrained problem includes that of the 
true problem, only if optimal form is assumed. 

If some of the displaced restrictions (associated with Pi > 0) 
require f. (x) > f.(x**) > ° we have to consider the possibility 
that the 6ptim~1 §olution of the displaced and constrained 
problem is associated with a solution value which is below 
the value of the true optimum. 

In fact (18.5.1) is still valid provided the restrictions are 
convex. In this connection we supply 

Proof 2 (not assuming optimal form) 

Since P(x) is the constrained maximum of the pseudo-Lagrangean, 

(18.5.4) 

holds for all feasible solution vectors of the subsidiary 
problem and therefore by implication, for all feasible 
solution vectors of the true problem. 
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Since p' f is required to be non-negative (for a feasible 
solution)-the non-linear form of the objective function limit 
(18.5.2) follows. The equivalence between the two inter
pretations of (18.5.3) - a tangential approximation of an 
upper limit on the objective function, or of the aggregate 
restriction of the displaced and constrained problem - holds 
irrespective of optimal form. It follows that (18.5.1), 
understood as a non-negative combination of the restrictions 
of the subsidiary problem and of new approximations of the 
quadratic restrictions, taken at x x** also applies 
irrespective of optimal form. 
q.e.d. 

The validity of the objective function limit in the presence 
of peripheral convexity will be discussed in the next section. 

18.6 Consistency and optimality 

The optimal solution of a subsidiary problem is said to be 
consistent with the true problem if the solution vector x = x** 
results in f.(x) > 0, for all i, in other words if it satisfies 
the primal r~strictions of the true problem. 

The conditions of optimal form (p. f. < 0, Pi ~ 0), and 
consistency (f. > 0) together amoQnt~to the familiar comple
mentary slackn~ss conditions (p. = ° if f. > 0, f. = ° if 
p~ = 0, p. f. > 0). ~ ~ ~ 

L ~ ~-

Despite the fact that there may be binding linear restrictions 
in the optimum of the subsidiary problem, a consistent 
solution also is an optimal solution of the true problem, at 
least as far as the primal solution vector x is concerned. 

The following cases arise: 

Case a: 

No binding restrictions in the optimal solution of the subsidiary 
problem 

If the optimum solution of the subsidiary Rroblem is the 
unconstrained maximum of the pseudo-Lagrangean, the pseudo
Lagrangean is revealed to be the optimal Lagrangean of the 
true problem. 

Case b: 

Some approximation-restrictions are binding, the objective 
function limit is not binding 

Since loose approximations are always replaced by new 
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approximations, consistency implies that for all restrictions 
for which dual variables Pi have been stated, there are 
corresponding exactly met linear approximations. 

Comparison of (18.2.4) and (18.2.5) now shows that consistency 
implies 

6 x'D. 6 x = (x - x**) , D. (x - x**) 
1 - - -1 1 - -1 

For all i for which p. > applies. 
1 

o (18.6.1) 

(This quadratic form is the error term in the approximation 
formula, if the approximation fits exactly the error is by 
implication zero). 

Reference to (18.2.4) also shows that, if the error term 
vanishes conform (18.6.1), the true restricting function and 
its approximation have the same vector of differentials. 

There are only two possibilities for 6x'D.6x to vanish: 
Either 6 x = 0 (the approximation was takeb at x = x** itself), 
or 6 x is a characteristic vector associated with a-zero 
latent root of D .. (see also sections 14.4 and 14.7). 

1 

In either case, we find, denoting the restricting function 
associated with an approximation restriction as f.* (x.) 

1 -1 

af. * af. 
1 1 

ax ax 

The dual variables associated with the true optimal solution 
are then related to the ones assigned to the pseudo-Lagrangean 
by the following relationship. 

** p. 
1 

p. + p~ 
1 1 

(18.6.2) 

where p~* are the true dual variables, p. are the (estimates 
of the)1dua1 variables that were assigned to the pseudo 
Lagrangean, and pt are the shadowprices of the linear 
approximation restrictions as obtained from the dual solution 
of the optimum of the subsidiary problem. 

The left-hand side of (18.6.2) gives the dual variables as they 
figure in the Lagrangean of the true problem, the righthand 
side gives two separate terms as figuring in the Lagrangean 
associated with the subsidiary optimum, where a term p. f. 
is grouped with the objective function and p. f* with 1 1 
the rest of the Lagrangean. 1 1 
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Case c: 

The objective function limit is binding 

We only have a meaningful use of the objective function limit 
if certain properties of convexity are satisfied. 

We postulate that each approximation restriction which is 
subsumed in the objective function limit (which is a non
negative combination of approximation-restriction), permits 
an area which includes all of the area permitted by the 
corresponding true restriction. (For properly convex 
restricting functions, this assumption is always satisfied, 
but we shall need to discuss the situation which arises in the 
case of peripheral convexity in more detail). 

With that provisio, a binding objective function limit implies 
that all previous approximation-restrictions that are subsumed 
in the objective function limit, are exactly met. (The stated 
convexity property means that none of their slacks can be 
negative, the corresponding true restricting functions being 
non-negative on account of the assumed consistency, if their 
sum is zero each separate term must also be zero). 

The argument put forward under case b, may now be extended to 
case c. Note, however, that (18.6.2) will in case c, with a 
binding objective function limit, understate the true value of 
the dual variable pt*, as shadowprices of binding old 
approximation restrictions may be subsumed in the shadowprice 
of the binding objective function limit. 

We now come to discuss the issue of the applicability of the 
objective function limit in the presence of peripheral 
convexity, and its implications for the optimality theorem 
stated in this section. By keeping a track-record of the 
applications of (18.2.2) we may establish whether or not a 
particular restriction is a tangential approximation. If 
(18.2.2) were in fact binding at x = x* itself - as -would, ~n 
particular, be the case if the applic~tion of (18.2.2) was 
made either in the context of an inwardly adjusted 
reapproximation, or after outward adjustment, following the 
discovery of overtightness, we would be entitled to treat such 
a tangential approximation of a peripherally convex restriction 
on the same basis as an approximation of a convex restriction. 

Under those conditions, the linear form of the objective 
function limit is also a tangential approximation of a 
peripherally convex restriction, i.e. of (18.5.2) interpreted 
as the aggregate restriction of the displaced and constrained 
problem displaced once more by adding the term £' f**. 
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If a fully non-convex restriction - or a non-tangential 
approximation of a peripherally convex restriction has become 
active, the formulation of a new objective function limit is 
inhibited, and the issue of it being binding does not arise. 
We may therefore conclude that finding a solution-vector 
which satisifes both the requirement of optimal form, and is 
consistent with the true problem, is equivalent to having 
found the primal solution of the true problem. 

18.7 The upward adjustment of dual variables 
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There are two noticeably distinct ways of changing the estimates 
of the dual variables assigned to the pseudo-Lagrangean, which 
we will indicate as normal transition under optimality, and 
correction of optimal form. 

If the optimal solution of the last subsidiary problem satisfies 
the condition of optimal form, we assume that the collection 
of restrictions for which there are dual variables and/or 
binding approximation restrictions is the collection of 
restrictions which is binding on the optimum solution of the 
true problem. In that case we adjust the dual variables 
upwards, according to the rules to be laid down in this 
section. If optimal form has been lost we proceed in a 
quite different way, adjusting more downwards than upwards, 
a subject to be discussed in more detail in the next section. 

The formulation of a pseudo-Lagrange an in which in particular 
convexly-shaped restrictions are represented by pos1t1ve non
zero dual variables, is of particular importance if the 
solution-structure of the optimal solution of the true problem 
is characterised by an excess of the number of non-zero 
elements of x, over the number of binding restrictions, while 
the objective-function is linear or anti-convex. 

Example 

Maximise 

Subject to 2 2 
-4xl - 4x2 + xl + x2 < -7 

(0 .::. xl .::. 100, 0.::. x2 .::. 100) 

Any subsidiary problem which consists of maximising the 
objective function, subject to a linear approximation of the 
one restriction will put either xl or x2 at zero. Yet the 
true solution (xl = x2 = 1-12) assi.gns non-zero values to 
both variables. The non-linear component of the restriction 
is essential. 
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We now address ourselves to the question of formulating 
suitable rules for adjusting dual variables upwards under 
normal transition. It is intuitively obvious that the shadow
prices of binding approximation restrictions are relevant 
information here. We may also observe that once a consistent 
solution without a binding objective function limit has been 
found the problem is essentially solved. We only need to add 
the shadowprices of the approximation restrictions to the dual 
variables, i.e. we apply (18.6.2). 

It would therefore be desirable that any rules to be laid down 
would converge to (18.6.2) in the vicinity of the optimal 
solution of the true problem - or nearly so, for reasons which 
will become clearer in the next section. 

This desideratum is achieved by proceeding on the assumption 
that the current solution vector x = x** is the optimal solution 
of the displaced problem, i.e. the true problem modified by 
displacing the quadratic restrictions to f.(x) > f**. = f.(x**), 
and that the approximation-restrictions ar~ proporti5nal 1 -

to new approximations of f. (x) > f. (x**) , taken at x = x**. 
1 - - 1-

This assumption leads to a generalization of (18.6.2), namely 
df. 

1 
P**i = Pi + P*i/ db*. (18.7.1) 

1 

wheredf./db*i may be obtained by evaluating the change in the 
true re§tricting function f., per unit of increase in b*., 
as given by the f*. column 5f the optimal tableau of the 1 

subsidiary problem~ 

If that maintained assumption is actually true, the current 
solution vector is (at least in the convex case), the 
unconstrained maximum of the new pseudo-Lagrangean, but a 
further approximation to the true optimal and feasible 
solution is obtained by introducing new approximation
restrictions, which do not admit x x** as a feasible solution
vector. 

The relation (18.7.1) may be indicated as the correction 
equation, and the reciprocal of the differential df./db*. is 
the correction-factor - if (18.7.1) is applied in tRat f5rm. 

In fact, certain modifications of the correction equation 
may be desirable, in view of the fact that the maintained 
assumptions that the current solution is the optimum of the 
displaced problem and that the approximation-restrictions are 
proportional to (= geometrically coincide with) tangential 
approximations of the displaced quadratic restrictions, may 
not be true. 
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The following notes summarise modifications to (18.7.1) and 
the reasons, therefore, in order of obviousness and importance. 

Firstly, it is even possible for the differential df./db*. 
l. l. 

to be negative 

Example 

Minimise xl + 3x2 

Subject 2 (x - 3)2 2- 4 to (xl - 2) + 2 

(0 2- xl < 100, o < x2 2- 100) 

This problem has been graphically summarised in graph l8.7a. 
The initial approximation is 4xl + 6x2 ~ 9 and the initial 
subsidiary optimum is found at xl = 2.25, x2 = O. 

If the initial approximation is adjusted inwards in the sense 
of making it more stringent, by adjusting its constant we 
increase the distance from the true restriction. 

This problem of the adjustment going the wrong way is solved 
in the case of primal adjustment by simply not adjusting (see 
sections 18.3 and 18.4). That will not do for the dual; as the 
example also makes clear, we need some non-zero value for the 
dual variable of, in particular, a-convex restriction. When 
the calculated correction factor is found to be negative, we 
substitute an arbitrary positive number for it; the number 0.5 
was chosen. 

Secondly, unduly big calculated correction factor~ may arise. 
In the extreme, we could theoretically meet the borderline
case between a positive and negative correction-factor, which 
would in this case be infinite, with df./db*. being zero. 

1 1 

We obviously need to impose an upper limit. This limit was 
eventually set at 0.999, just below the figure which still 
permi ts (18.7.1), as modified, to converge 'to (18.6.2) for 
a consistent solution. 

18.8 Loss and correction of optimal form 

The rules for adjusting dual variables upwards, which were 
discussed in section 18.7, are, as far as practicable, designed 
to ensure that no estimate of a dual variable is formulated 
which is actually in excess of the true value. These are, 
however, not proof-supported features of the algorithm. 
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If, despite these attempts, an estimate of a dual variable is 
assigned to a quadratic restriction and entered into the pseudo 
Lagrangean, and such an estimate exceeds the true value of the 
dual variable in question as it relates to the optimal solution 
of the true problem, we say that the dual variable in question 
has been overstated. 
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We may distinguish two distinct varieties of overstating. If we 
have assigned a dual variable to a restriction which is not 
binding on the true optimal solution of the true problem, and 
there ought therefore not to be a non-zero dual variable for the 
restriction in question at all, we speak of overstatement by 
mis-identification. 

Over-statement of a dual variable of a restriction which is 
binding on the true optimum, is then indicated as simple 
overstatement. 

The calculation of correction factors as discussed in the 
previous section, may, or may not, lead to avoiding simple 
overstatement. There are, however problems for which over
statement by mis-identification cannot well be avoided. 

Example 

Maximise T 2 xl + x2 

Subject to 2 2 2 - 2 7 xl - xl + x2 x2 < 

2 
+ 2 

2 
+ 2 34 xl xl + x2 x2 < 

(0 ~ xl < 100, a ~ x2 ~ 100) 

This problem is graphically surveyed in graph l8.8a. The first 
restriction is equivalent to (xl - 1)2 + (x - 1)2 ~ 9 and 
is represented in the graph by a circle wit~ radius 3, and the 
centre at the point xl = I, x2 = 1. The second restriction is 
equivalent to (x2 + 1)2 + (x2 + 1)2 ~ 36 and is represented 
by a circle with radius 6, and the centre at the point -I, -1. 
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The graph makes it quite clear that the second restriction is 
in fact redundant. However, a finite maximum of the linear 
objective function requires 2 binding restrictions, and the 
direction of the objective function does not make it likely 
that the non-negativities of xl and x2 itself will become 
binding. Indeed, the initial subsidiary problem, modified by 
a series of reapproximations, finds its optimum solution at 
xl = 4.53, x2 = 1.72, the objective function at this point 
being contained by two approximation restrictions, one for each 
quadratic restriction. 

Both of the true restrictions are violated by the subsidiary 
optimum xl = 4.53, x2 = 1.72 and dual variables are stated for 
both restrictions (PI = 0.069, P2 = 0.097). 

We now have a strictly convex pseudo Lagrangean and one binding 
linear restriction is sufficient to contain the pseudo
Lagrangean. The second subsidiary problem finds its optimal 
solution, at xl = 3.82, x2 = 2.43, and this time only the 
approximation of the first restriction is binding, and we find 
fl = -0.999, f2 = +1. 

We now establish loss of opitmal form (P2 = 0.097, f2 = 1) . 

There are a number of modalities of loss of optimal form , we 
may meaningfully distinguish the following: 

Subdominant loss of optimal form: £.' f < 0, some p. £. > 0 
1 1 

dominant " " " " £.' f > 0, some p. £. > 0 
1 1 

total loss of optimal form all p. f. > 0, some Pi £. > 
1 1 - 1 

Subdominant loss of optimal form still permits the formulation 
of a new objective function limit. This may also apply for 
dominant loss of optimal form. 

For p' f > 0, a new objective function limit does not require 
a reduction of the value of the objective function limit below 
its value in the last subsidiary problem but that level itself 
may be well below the value required by the previous objective 
function limit. 

o. 

Nevertheless, when optimal form has been lost, and in particular 
when dominant or total loss of optimal form have arisen, we can 
no longer look for a continuous reduction in the objective 
function value as our guarantee of not repeating the same 
solutions again. Instead, we require a continuous reduction 
in the sum of all dual variables. 
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To analyse the problem of optimal form, we denote 

as x = x***, the primal solution vector of the true problem 
as x = x**, the primal solution vector of the subsidiary problem. 
as p***-the vector of true dual variables, and as p the vector 
of estimates assigned to the pseudo-Lagrangean. -

Absence of overstatement is then given as p < p***. In fact, 
there are complications with non-unique subsidiary optima, 
precisely for p = p***, and we will for the moment assume 
E 2 E***' p =f E:***-:-

Theorem 

In a convex problem p. < p***, if p*** > 0 ensures that 
optimal form is maint~ined: 1 

Proof 

We first state a much weaker theorem, which refers to total 
loss of optimal form. 

Lemma 

Total loss of optimal form implies that one of the two 
following conditions is present 

Either (a) E ~ E***' E ,; E*** 

at least one dual variable has been overstated. 

or 

(b) E = E*** 

Proof (of the lemma) 

If (a) applies, no further proof is needed. 
Now assume not (a) and in particular absence of overstatement 
by mis-identification. 

We then find 

P(~***) = T(~***) = L(~***) (18.8.1) 

We also find, since x = x*** maX1m1ses L(~), 

L(x**) T (x**) + E**1<' i (~**) < T (~***) L(x***) 
- (18.8.2) 
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We also find, since x*** is a feasible solution of the 
subsidiary problem, and x** the constrained maximum of P(~), 

(18.8.3) 

Consolation of (18.8.1), (18.8.2) and (18.8.3) yields: 

T (~**) + 1:***' i(~**) .::. T (~***) .::. T (~**) + 1:' i(~**) 

(18.8.4) 

From which 

1:***' i(~**) .::. 1:' i(x**) (18.8.5) 

Since total loss of optimal form is defined as fi(~**) > 0 
if p. < 0, we find that (18.8.4) can only be satisfied in the 
pres~nce of total loss of optimal form, if 

1:***' .::. 1:' 

applies, which is equivalent to (a) or (b) 
q.e.d. (for the lemma) 

The more general theorem now follows by induction. 

(18.8.6) 
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If loss of optimal form is not total there are some i for which 
p. < 0, f. < 0 and therefore binding approximation restrictions. 
Within th~ subspace of those binding approximation restrictions 
any loss of optimal form is total loss of optimal form. 
q.e.d. 

We now come to discuss the problem of the non-unique subsidiary 
optimum. In a problem which is convex, but not strictly convex, 
the true Lagrangean often has no strict maximum. The most 
extreme case arises with a linear problem. 

Example 

Maximise T = xl + x 2 

Subject to xl < 1; x2 .::. 1 

(0 < xl ~ 100, 0.::. x2 .::. 100) 

If the upper limit on the correction factor for calculating 
dual variables were set at 1 instead of at 0.999, our second 
subsidiary problem would be 
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Maximise P(xl x 2 ) = xl + x 2 + 1 (1 - xl) + 1(1 - x 2 ) - 2 

Subject to xl < - 1, x 2 < 1 (xl' x 2 ..:.. 0) 

xl + x 2 < 2 (objective function limit) 

The pseudo-Lagrangean reduces to a constant, and the origin 
is co-equally optimal with the optimum of the true problem. 

It is clearly undesirable to treat linear restrictions as 
quadratic in this way, but one assumes that this problem can 
also arise with semi-definiteness. Hence the downward bias in 
calculating estimates of dual variables. We normally do not 
calculate exactly the true vector p***, but continue to obey 
the condition Pi < p~**, if p~** >-0, and find the problem 
solved when both con§istency 5f the primal solution and zero 
residual shadowprices of approximation restrictions are 
satisfied with a set tolerance, we accept not exactly meeting 
these latter conditions. Note also that in a non-convex problem, 
there may be several local optima. 

Regardless of the fact that we lack a proof, the plausible 
weaker theorem that the pseudo-Lagrange an attains a local 
maximum which respects optimal form does not inform us to which 
local maximum is the "right" one. It certainly is not always 
the global maximum of the pseudo-Lagrangean. 

Example 

Maximise 

Subject to 

2 
T = 5x l + 4x2 - x 2 

2 2 
lOx 1 - 10x2 ~ x 2 - xl - 16 

(0 ~ xl ~ 4; 0 ~ x 2 ~ 100) 

Here the one restriction is peripherally convex in the xl ~ 4 
domain as may be seen by wr1t1ng it as (x2 - xl)(lO - xl - x 2 ) 
..:.. 16; the graph (not given) is a rectangular hyperbola with 
asymptotic axes xl x 2 and xl + x 2 = 10, the' upper part where 
x 2 - xl < O.a~d 10 - xl - x 2 ~ 0 may coincide is excluded by 
tfie upper l1m1t on xl' 

The second subsidiary problem, with PI = 0.50 is: 

2 2 
Maximise P(~) = 9x2 + 0.50 xl - 1.50 x 2 

Subject to 8.06 x -
1 

x2 < 3.31 

(0 ~ xl < 4; 0 < x 2 < 100) 
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The global optimum of this problem is xl 
fl = 55 > O. 

3 with 

There is however, a second constrained local maximum, x] = 2.9, 
x2 = 4.5, with fl = - 11.84 which is rather more helpful. 
(The true optimum is xl = 0.56, x 2 = 3.08, with PI = 0.56). 

We may thus classify loss of optimal form as being due to 
three possible causes, viz: Overstatement of dual variables by 
mis-identification, simple overstatement of dual variables, 
and (in a non-convex problem only) getting at the "wrong;" local 
solution of a subsidiary problem. Overstatement by mis~ 
identification cannot be avoided, we can only correct it 
afterwards. 

Simple overstatement is, we hope, normally prevented by the 
calculation of correction-factors, for normal transition 
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under optimality, but it can also be corrected, should it arise. 

There are a number of features of the SCM algorithm - and of 
the adaptation of the ordinary QP algorithm employed by it, 
which are aimed at developing local optima in which approximation
restrictions are bindin~, in preference to other restrictions. 
However, we lack a proof on that point, and at the same time 
correction of optimal form is, in effect adapted to ameliorate 
the first two causes of loss of optimal form only: we start 
to reduce dual variables, assuming that some are overstated. 

In short the SCM algorithm although clearly capable of solving 
some non-convex problems, is proof-supported, only in the 
convex case. We now discuss the correction of optimal form 
in more de tai 1. 

We proceed as follows: 

We first formulate a "correction restriction". This correction 
restriction is a linear approximation of a combination of 
restrictions £. < 0 

~ -

i.e. 

L: m. £. < 0 (18.8.7) 
1 ~ 

where 

m. Pi' if f. (x**) > 0 
~ ~ -

m. 0 , if f.(x**) < 0 
~ ~ -
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The calculation of this correction-restriction is performed at 
the start of a correcting dual adjustment round (before each 
separate correcting dual adjustment round). Each correcting 
dual adjustment round then consists of: 

(1) A semi-proportional downward adjustment of all dual 
variables p., for which f. (x1,*) > 0 applies. 

1 1 -

The first downward adjustment is associated with dual parametric 
variation of the subsidiary optimum, the linear approximation of 
(18.8.7) being the parametric restriction. (See also section 17.2). 

The parameter A, ( = dual variable of (18.8.7)) is limited 
by an upper limit, which is A < 2, if no other limit applies. 
In the absence of approximation~error A = 1 corresponds to 
complete removal of reference to the "offending" group of 
restrictions from the Pseudo-Lagrangean. We would therefore 
not normally expect this limit to be reached. 

The parameter A is also restricted by the parametric displacement 
leading to one of the amply fulfilled restrictions becoming 
exactly fulfilled A 2.. \., Ak = A (fk = 0). 

This gives rise to a search operation. For each i for which 
f. (x**) > 0, p. > 0 applies we evaluate the roots of (18.3.4), 
if any positiv~ root is found, or the smallest of two positive 
roots, or the real and positive part of a pair of complex root -
for a non-convex restriction, the calculated root is compared 
with the existing limit on A, if a lower limit is identified 
1n this way, we conclude k = i, and reduce the limit on A. 

If the actual parametric step results in A > 1, A = 1 is 
substituted for it. 

The parameter, now interpreted as a proportionality factor, 
is now adjusted upwards according to the following correction 
formula 

A(C) A sum t/sum p (18.8.8) 

where sum t is the total sum of all the (estimates of) the dual 
variables, sum p is the sum of all those dual variables p., for 
which f. > 0 applies. The first downward adjustment is no~ 
perform~d on those p. for which f. (x**) > 0 applies, as follows: 

1 1 -

for i = k (the restriction which eventually limited A, if any) 

(18.8.9) 
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substitute zero instead, if Pk(new) found negative, 
and for i '" k, 

Pi (new) = (1 - 0.5 A(c» Pi (old) 

substitute zero instead, if p. (new) found negative. 
~ 

(18.8.10) 

Note that this first downward correction never leads to the 
complete removal of all dual variables. 

If there was no total loss of optimal form some dual variables 
are left-undisturbed, if there was total loss of optimal form, 
we find sum t = sum p, hence A (c) = A < 1, and not more than 
25% is taken of Pk' and not more than 50% of any other p .. 
We then have a second (middle) upward correction. The du1l 
variables of which f. < 0 applies are adjusted upwards in the 
same way as would ap~ly in the case of normal transition under 
optimality. 
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Finally, the adjustment round is ended with a concluding 
proportional downward adjustment. The total of all dual variables 
as it was at the start of the round (or at the end of the previous 
round, see below), is compared with the total of all dual 
variables as it has become. 

If the new sum is 90% of the old sum or less, the round of 
adjustment is complete, otherwise all dual variables are adjusted 
proportionally downward, making the new sum equal to 90% of the 
old sum. The "old sum" is in this connection: 

either the sum calculated when optimal form was found to be 
violated for the first time 

or the figures assigned to the old sum at the end of the round, 
which is either the new sum at that stage or 90% of the old 
sum, as the case may be. Adjustments of dual variables by other 
loops of the programme (e.g. increasing the dual variable of a 
particular restriction when a second leg of its approximation 
is found to be binding) are then classified as being part of 
the middle correction. 

When a round of correcting optimal form is complete and no new 
objective function limit has been formulated at its start, we 
generally refer back to older approximations, rather than 
forming new ones. We start with the approximations that were ~n 

force when the last objective function limit was formulated 
(which are recorded at that moment). 

If any current approximations (current at the moment of 
establishing loss of optimal form) are found to describe a 
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permitted area which is entirely included in the one permitted 
by the older one, the old approximation is replaced by the 
current one. 

The same applies when optimal form is lost in first instance 
(as distinct from not as yet having restored it) for tangential 
approximations, and more generally for approximations taken 
nearer to the true restriction than the older one. 

The latter feature ensures in particular that a restriction 
which is instrumental in limiting the dual parametric adjustment, 
is represented by a tangential approximations at least if this 
happens in the first round. 

This procedure ensures that, if several rounds of parametric 
adjustment be needed the restrictions which were in force at 
the start of the first round continue to be obeyed. 

A proof of convergence to optimal form (and thereby in the 
convex case to being able to identify a new objective function 
limit), may now be stated, as follows: 

Suppose by contra-assumption, that an endless series of 
correcting dual adjustments rounds took place. The primal 
solution vector would then converge to the constrained maximum 
of the objective function (relative to the set of restrictions 
stated at the beginning of the first round or in a more limited 
feasible space area). 

Since new dual variables, not approaching zero would be stated 
in the middle upward correction round, the correction factor 
sum t/sum p in (18.8.4) would approach infinity. Therefore any 
remaining dual variable associated with an amply fulfilled 
restriction would be completely removed, and given the con
vergence of the primal solution to the constrained maximum of 
the objective function only, optimal form would then be 
restored. 

18.9 Overview of the SCM algorithm 

In this section we recapitulate the sequentially constrained 
maximization algorithm and its capabilities. We first offer an 
outline scheme. This outline primarily covers its application 
to convex problems. It also contains some loops which specifically 
relate to non-convexity, but only insofar as they are 
computationally integrated with the main body of the algorithm. 

There are also some adaptations of the "ordinary" QP algorithm, 
as described in Chapters 16 and 17; these are discussed later 
in this ~ection. 
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The outline scheme is as follows: 

Stage 0: Initiate 

Set all matrices and vectors which do not contain initial data 
at zero, and all logical variables in their "normal" 
preferred state. 

Set the namelists at zero, thus indicating that there are no 
binding restrictions. Set any relevant indices at zero. 

Stage 1: Approximate 

Apply (18.3.4) afresh for each quadratic restriction. Quadratic 
restrictions which are currently associ~ted with binding 
approximations are made with adjustment. For fi > 0, 
x = x*. is calculated with outward adjustment, for f. < 0, 
x = x>',: is calculated with inward adjustment. If th~re is - - ~ 
no binding approximation, x*. is taken to be the current 
solution vector x = x**, the~same applies for f. = 0, or if 
the approximation restriction is artificially s~tisfied. 

Stage 2: Start a new or modified subsidiary problem 
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Assemble the pseudo-Lagrangean. Enter the primal and the dual 
restrictions and the objective function limit, if any, in the 
ordinary QP tableau. Set the upper limits of the dual variables. 
Set the re-entry-parameter at REENTRY = 0; marking the normal 
entry-mode, starting from the trivial basis. 

Stage 3: Reapproximate and solve 

When coming here in the normal re-entry-mode (REENTRY = 1), 
reapproximate any quadratic restrictions which are not 
represented by binding approximations, and enter their updated 
form in the appropriate slots of the ordinary QP tableau. 
Enter the ordinary QP algorithm, record the primal solution 
vector obtained, and calculate the corresponding vector i(~). 

Stage 4: Verify the primal solution vector 

If the ordinary linear restrictions cannot be met, declare the 
problem empty and exit. If f. > ° applies in relation with some 
binding approximation-restri~tion, search for the "most 
overtight" one (= maximal value of f.(x) • (l + p.». Move 
the most overtight approximation par~metrically oGtwards, record 
the solution vector obtained, and if the corresponding true 
restriction is actually reached by the parametric adjustment 
step, adjust dual variables upwards as follows: If f. < ° 
applies both before and after the parametric step, iAcrease 
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the dual variable by 50% of what would apply with normal 
transition under optimality. For the adjusted restriction 
itself, use only 25% of the correction factor. If any overtight 
approximation restriction has been signalled go back to 
Stage 1. If, having established absence of overtightness there 
are nevertheless artificial variables in the basis, declare 
the true problem empty and exit. 

Stage 5: Check on looseness 

If, for some i, we find fi < ° in association with a non
binding approximation-restriction, set REENTRY = 1, and go 
back to Stage 3. 

th 
Stage 6: Check status (m+l) restriction slot 

f h ( 1) th ... b' d" ... h I t e m+ restr1ct10n 1S 1n 1ng, 1n assoc1at10n W1t 
IN-INDEX> ° (= a second leg of a blocked superimposition), 
increase the dual variable in question in the same way as 
applies for normal transition under optimal form (see 
section 18.7), and go back to Stage 2. If the (m+lr-restriction 
is not binding, in association with IN-INDEX> 0, set 
IN-INDEX = 0, put the updated form of the objective function 
limit in the (m+l)th slot, set REENTRY = 1, and go back to 
Stage 3. If the (m+l)th restriction is binding, in association 
with IN-INDEX = 0, (= the objective function limit), proceed 
directly to Stage 8. 

Stage 7: Superimpose 

If CUTN = 2 • Q (= the number of superimpositions made since 
last going through either Stage ° or Stage 8 already is twice 
the number of quadratic restrictions), proceed directly to 
Stage 8. 

If DUAL R I > 0, and for R = DUAL R I we find fr(x) < 0, 
(= optimal form has not yet been restored after loss of optimal 
form, and this restriction was critical in limiting the downward 
adjustment of the dual variables, by becoming exactly fulfilled 
in a parametric step) superimpose a new approximation of 
fr(~)' regardless of the probability of successful super
imposition. If DUAL R I = 0, search for the most violated 
true restriction for which successful superimposition appears 
probable. If no superimposition is indicated, proceed to 
Stage 8, otherwise put the old binding approximation in the 
(m+l)th slot, the new approximation in the "regular" slot for 
the restriction to be superimposed, set IN INDEX according to 
the restriction in question, set REENTRY = 1, and go back to 
Stage 3. 
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Stage 8: Verify optimal form 

Set CUTN = O. 

If optimal form is confirmed, set OPTIMAL = true 
DUAL R I = 0, DUAL REDUCED = false. Copy the-a;ailable set of 
current approximations in the matrix of back-copies, and 
proceed to stage 9. 
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If optimal form is not confirmed, set OPTIMAL = false (do not 
as yet disturb the logical variable DUAL REDUCED, this permits 
to distinguish between not yet having restored optimal form and 
having just lost optimal form). 

Stage 8a: Correction of optimal form 

If DUAL REDUCED = false (= optimal form was lost after last 
going through Stag~as distinct from not yet having 
restored it), set OLDSUM as being the sum of all dual variables. 
Adjust the dual variables that are associated with f. < 0 
upwards in the same way as would apply for normal tr~n;ition 
under optimal form (=·middle round, but for technical reasons, 
i.e. needing the undisturbed ordinary QP tableau, this is done 
first) . 

Form the correction restriction, put the updated form of its 
approximation in slot m+2, make the dual parametric step, and 
perform the first semi-proportional downward adjustment as 
outlined in Section 18.8. If a particular f. is critical 
in limiting the downward adjustment of the aual variables, 
assign its index to DUAL R I, and make a new (tangential) 
approximation. 

Set NEWSUM equal to the sum of all dual variables. If 
NEWSUM < 0.9 x OLDSUM, set OLDSUM equal to NEWSUM, otherwise 
mUltiply all dual variables by 0.9 x OLDSUM/NEWSUM and 
OLDSUM by 0.9. 

Assemble a combined set of approximations from the current set 
and the back-copy as follows: If DUAL REDUCED = false, choose 
for each ith restriction the approximation take~the lowest 
absolute value of f. (thus preferably selecting a tangential 
approximation). Oth~rwise start with the back-copy, and replace 
individual approximations by newer ones, only if a scan of their 
coefficients proves that they exclude all vectors x excluded 
by the old one. Put the selected set of approximations in the 
back-copy. Set DUAL REDUCED = true, and go back to Stage 2. 
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Stage 9: Test for final optimality 

If any f. is found to be f. < -EPS (= negative and differing 
from zer6 with a set toler1nce, e.g. EPS = 0.000001) proceed 
to Stage 10. 

If any residual shadowprice of a binding approximation-
restriction is found to be I P*i I > EPS, also proceed to 
Stage 10, the same applies to the shadowprice of the objective
function limit, if binding. If none of these conditions is 
present, declare the problem solved and exit. (N.B. p*. < 0 
is possible with a non-convex pseudo-Lagrangean.) ~ 

Stage 10: Attend to the objective function limit 

If the convexity requirements for formulating an objective 
function limit are met (= all restrictions convex or peripherally 
convex with a tangential approximation), copy the current set 
of approximations in the back-copy, and write a new objective 
function limit. If OPTIMAL = false, go back to Stage 8a. 

Stage 11: Normal transition under optimality 

Adjust the dual variables upwards, conform Section 18.7. Go 
back to Stage 1. 

END OF OUTLINE SUMMARY 

It will be noted from the above outline-summary that there is 
no exit on indication of unboundedness. The ordinary QP 
algorithm has such an exit but in fact its activation is limited 
to problems which contain variables of type absolute, "free" 
variables. The computational implementation of the SCM algorithm 
offered in the next section carries the facility to declare 
variables "free" over into the SCM algorithm, but its use is 
not part of the proof-supported application of the algorithm. 

Equations can be used readily as far as linear equations are 
concerned, but quadratic restrictions are inequalities only! 
Initial approximations can be wide-out and to declare them as 
equations gives rise to obvious problems of spurious emptiness. 

We now corne to discuss non-convexity and the adaptations in the 
ordinary QP algorithm made to the purpose of solving non
convex problems. The QURO procedure (= Quadratic Restrictions 
and Objective function), as listed in the next section, employs 
an adaptation of the QUAP procedure from Chapter 17. These 
adaptations relate not only to non-convexity but also to the 
dependence of the objective function limit on the approximation 
restrictions. 
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We now summarise these adaptations as follows: 

Firstly, when entering the adapted QUAP procedure in the normal 
mode with REENTRY = 0, PR = PC = 0 (= asking for essentially 
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the same action as QUAD, solving a QP problem, starting from 
the trivial hasis), the primal restrictions are divided into 
three distinct categories, viz., the proper linear restrictions, 
the approximations of the quadratic restrictions, and the 
objective function limit. The main QURO procedure calls in 
the compulsory "forced" convex mode, but the non-convex mode 
of operation is employed nevertheless, until all linear 
restrictions are satisfied. 

During this "non-convex mode Phase I", the two other classes 
of restrictions are totally disregarded by the search 
operations. They may at this stage be flown through in either 
direction, from satisfied to violated or vice versa. 

Once the proper linear restrictions are satisfied, the convex 
mode of operation is resumed. The result of this separate 
treatment of proper linear restrictions is that emptiness of 
a subsidiary problem comes in two modalities. If the proper 
linear restrictions cannot be met, exit from the adapted QUAP 
procedure is via the alarm exit for emptiness with REENTRY = -1. 
Emptiness of the true problem is then established immediately, 
irrespective of (non) convexity. If the approximation 
restrictions or the objective function limit cannot be met 
exit from the adapted QUAP procedure is technically successful, 
but artificial variables are left in the basis. It is then 
left to the main QURO procedure to analyse the implications 
of this situation. 

In a convex problem emptiness is also proven, but in a non
convex problem the issue of over-tightness arises, and we may 
try to have a go at getting better approximations. The 
differential treatment of the approximations on the one hand 
and the last restriction on the other hand is mainly motivated 
by reasons which are at least as pertinent to convex problems 
as to non-convex ones. 

In the vicinity of the optimum, the objective function limit 
converges to a linear combination of the other restrictions. 
This gives rise to two problems, viz. (in)accuracy and a 
danger of non-convergence. The accuracy problem might arise 
if the objective function limit.became binding as well as the 
restrictions on which it is (almost) dependent. At the optimal 
solution itself such a solution cannot be developed as zero 
pivots are not accepted, but, with incomplete convergence, an 
ill-conditioned basis might be developed, giving rise to 
accuracy problems. 
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The other problem which might arise is that a consistent 
solution might be developed, where on account of rounding 
error, the objective function limit was more stringent than 
the corresponding combination of the other restrictions. 

One could end up with the pseudo-Lagrangean being constrained 
by the objective function limit only, yet no final optimality 
as a positive shadowprice of the objective function limit 
indicates understatement of dual variables. (This problem can 
only arise with a consistent solution as otherwise some 
approximation would be classified as loose.) 

Of these two problems the first one did actually arise during 
testing with elements of the QP tableau-matrix indicating 
multipliers above 1000 and falling out of the format-range 
normally catered for by the tableau-printing procedure; the 
second did not. 

To counter both problems, the last restriction is (during 
normal entry) excluded as a pivotal row as well as badname
variable, until at the very end of the call to the ordinary 
QP algorithm, when it is, if violated, declared badname. 

However, if the absolute value of the slack is then found to 
be less than a set tolerance, it is declared to be a zero 
irrespective of its sign and return to the main algorithm 
follows, without actually making the last restriction binding. 

The third adaptation concerns the problem of getting the 
"right" local optimum of the pseudo-Lagrangean. This is 
understood as a local optimum in which approximation 
restrictions rather than non-negativities or proper linear 
restrictions are binding. 

In terms of the internal structure of the ordinary QP algorithm, 
there are two groups of textual adaptations which relate to 
this problem. One is the selection of the badname variable: 
shadow-pricesof approximation-restrictions are not selected 
as badname-variable until all negative valued slack-variables 
(other than the objective function limits), and negative
valued shadowprices of non-negativities or proper linear 
restrictions have been eliminated or made positive. The other 
group of textual adaptations relates to "flying through". The 
version of the ordinary QP algorithm discussed in Chapter 16, 
permits and indeed prefers, to turn negative valued variables 
directly into positive-valued variables. 

The adaptation then consists of applying the "conservative" 
version of the rule of the smallest quotient, insofar as 
approximation-restrictions are concerned, i.e. to eliminate 
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rather than turn positive, negative-valued slacks of 
approximation-restrictions. 

611 

Finally by calling the ordinary QP algorithm in the "forced" 
convex mode of operation, shadowprices of approximation
restrictions are permitted to stay negative, if the restriction 
in question displays manifest non-convexity in its slack
variable subspace, by way of a positive non-zero diagonal 
cell of the QP tableau. 

This ~s a feature of the QUAP procedure in the version listed 
in Chapter 17 as well, but it has been taken out as far as 
proper linear restrictions and the last restriction (which can 
be the second leg of an approximation in the re-entry mode) 
are concerned. 

For approximation-restrictions this device comes into its own; 
these negative shadowprices are used in exactly the same way 
as positive ones, leading, of course, to a reduction in the 
dual variable in question. 

In the convex case, convergence of the SCM algorithm is a 
fairly obvious result of the presence of the objective function 
limit and the ensured return to optimal form. We therefore end 
this section by reviewing the likely effectiveness of the SCM 
algorithm on non-convex problems where it lacks the support of 
a proof of its effectiveness. 

If we forget the constraint qualification problem, the necessary 
and sufficient conditions for a constrained local maximum are: 
complementary slackness (= consistence + optimal form), the 
first-order conditions (= zer·o residual shadowprices of 
approximation restrictions), and convexity within a subspace 
of tangential approximations, which is ensured by finding a 
locally constrained maximum of the subsidiary problem. 

In short, activation of the successful exit of the SCM algorithm 
proves that a local maximum of the true problem has been found. 
There is, however, the problem of actually getting there. To be 
precise, there are two problems on that score, viz. spurious 
emptiness and lack of convergence. 

The first problem arises because an approximation of a non
convex problem can actually face the "wrong" way, i.e. 
impose a requirement not to get anywhere near the true 
solution. 
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Example (from Section 15.5) 

Maximise 

Subject to 

Xl + Xz > 4 

(0 < xl < 100, o ~ X z ~ 100) 

If the restriction xl + Xz ~ 4 is removed from this problem 
(it was added in Section 15.5, solely to exclude the point 
xl = Xz = 0), the trivial basis of the first subsidiary 
problem is correctly identified as an optimum. But if the 
linear restriction is put, starting as one normally would at 
xl = Xz = 0, leads to finding the true problem empty. 

The first subsidiary problem then is 

Maximise 

Subject to 

z 
- Xz 

xl + X z ~ 4 

6x + 8xZ < 0 
1 -

(0 ~ xl ~ 100), 

Even though the ordinary QP procedure, as adapted will satisfy 
the linear restriction xl + Xz ~ 4, this results in 6xl + 8xZ ~ ° 
being left with an artificial variable a 2 = 24 (xl = 4). 
Since, at xl = 4, Xz = 0 the true restriction is amply 
fulfilled, no overtightness is diagnosed and the problem is 
declared empty. 

If, however, a starting solution is taken in the area 
xl > 3, Xz > 4, this problem does not arise and we obtain a 
solution. Which solution depends obviously on the particular 
starting solution chosen. 

To counter this possibility of spurious emptiness, the code 
has been amended at a late stage suppressing the initialization 
of x as x = 0, thus permitting the user to suggest a different 
starting-solution. 

Concerning the other problem of a possible lack of convergence 
we may observe that despite the absence of an objective function 
limit and therefore of a convergence proof in the non-convex 
case, all examples both in this chapter and in chapter 15 were 
duly solved. 
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Exercise 18.9 

The following general QP problem 
(from section 15.3) is given 

Maximise T = xl + x 2 

Subject to x < 1 - 2, x 2 .2. 3, xl 

(xl' x 2 > 0) -

Starting with x* = 2, x* = 2 
1 2 

2 
5 + x 2 < 

apply the algorithm discussed in this chapter to its solution, 
until neither the primal nor the dual solution can within the 
tolerance of rounding to two digits after the decimal point, 
be distinguished from the true solution xl = 2, x 2 = 1.73, 
PI = ?7~, P3 = 0.29, (P2 =0) with the correct set of binding 
restr~ct~ons. 

Answer with tableau-listings at the end of this chapter; note 
the implicit upper limits i.e. (0.2. xl .2. 2; 0 .2. x 2 .2. 3); 
instead of explicit linear restrictions, the index of the 
quadratic restriction therefore becomes 1. 

18.10 Code listing of the SCM algorithm 

Two stretches of programme-text are listed in this section. 
They are a calling main programme, and the QURO procedure. 
No text-listing of the modified version of the ordinary QP 
algorithm is provided, but the substance of the difference 
between the QUAP procedure as reported in section 17.7 and 
the version employed here was surveyed in section 18.9. 

The main programme listed below contains the lower limit 
reinterpretation facility, as discussed in section 10.4 for LP 
and in section 16.14 for ordinary QP. The generalizations of 
this device to quadratic side-restrictions is catered for by 
the code-text following the label REINTERPRET. The call to the 
QURO procedure as surveyed in the previous section then relates 
to the problem in the y variables with the lower limits at 
zero. 

The required presentation of the input-data ~s specified ~n 
the comment in the main programme. 

The output comes in two stages. First the dual variables of the 
quadratic restrictions are reported by the main programme. 
Thereafter the result reporting procedure discussed in 
section 16.15 is called in unamended form, i.e. the primal and 
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dual solutions of the last subsidiary problem are reported, 
with re-interpretation according to the true lower limits. The 
primal solution of this problem is identical to the solution
vector of the true problem. However, the dual solution is 
identical only insofar as this refers to the shadowprices of 
linear restrictions be it non-negativities of specified lower 
or upper limits, or binding linear side-restrictions. The 
reported dual variables associated with the linear approximations 
would normally be zero within the confines of rounding; the 
exception would be where the problem was assumed to be empty. 

The text listings indicated are now given, as follows: 

TEXT-LISTING Of THE MAIN GENERAL QP PROGRAMME. 

'BEGI N' 'I NTEGER' M. Q. N. NAV. NED. REENTRY. R. I.J. PC; 
'BOOLEAN' OPTIMAL.FEASIBLE.EMPTY; 

'PROCEDURE' QURO(M.Q.N.NEQ.NAV.PC.T.AB.D.X.U.P.ROWLST.COLLST, 
OPTI MAL. FEASI. BLE. EMPTY); 
'INTEGER' M.Q.N.NEQ.NAV.PC; 'ARRAY' T.AB.D.X.U.P; 
'INTEGER' 'ARRAY' ROWLST.COLLST; 
'BOOLEAN' OPTIMAL. FEASIBLE. EMPTY; 
'ALGOL'; 

'PROCEDURE' MATI(MATR.MB.NB.FR.FC); 
'ARRAY' MATR; 'INTEGER' MB.NB.FR.FC; 'ALGOL'; 

'PROCEDURE' TABO(MATR.M.N.SR.SC.RH.ER.ROWL.COLL); 
'ARRAY' MATR; 'INTEGER' M.N.SR.SC.RH.ER; 
'INTEGER' 'ARRAY' ROWL.COLL; 'ALGOL'; 

'PROCEDURE' REPQ(T.M.N.NEQ.NAV.ROWL.COLL); 
'ARRAY' T; 'INTEGER' M.N,NED.NAV; 
'INTEGER' 'ARRAY' ROWL. COLLI 'ALGOL'; 

'COMMENT' 
GENERAL QUADRATIC PROGRAMMING ALGORITHM. 
CONVEX QUADRATIC OBJECTIVE FUNCTION AND LINEAR AS WELL AS 
CONVEX QUADRATIC SIDE RESTRICTIONS. 
WHEN USED ON NON-CONVEX PROBLEMS. THE ALGORITH NOR
MALLY WORKS. BUT THERE IS NO PROOF-SUPPORT IN THE 
NON-CONVEX CASE. 

FOR DETAILS OF THE ALGORITHM SEE THE TEXT OF THE PROCEDURE QURO. 

PRESENTATION OF DATA: 

FIRST THE TOTAL NUMBER OF RESTRICTIONS I.E. M. 
THEN THE NUMBER OF QUADRATIC RESTRICTIONS, I.E. Q. 
THfN THE NUMBER OF VARIABLES. 1. E. N. 
FOLLOWED BY THE NUMBER OF EQUATIONS. NEQ. 
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THE NUMBER OF EQUATIONS SHOULD NOT EXCEED THE NUMBER OF 
LINEAR RESTRICTIONS. 
AS ONLY LINEAR EQUATIONS ARE ACCOMMODATED. 

THEREAFTER. PUNCH NAV. THE NUMBER OF VARIABLES TO "'HICH 
THE TACIT (NON-NEGATIVITY) RESTRICTION DOES NOT APPLY. 
(IF NAV>O IS SUPPLIED. THE USER SHoL~D ENSURE 
BOUNDEDNESS OF ALL SUBSIDIARY PROBLEMS. AS MALFUNCTIONING 
MIGHT OTHERSISE ARISE.) 

THEREAfTER PUNCH EACH ROW OF THE 
M+3 BY N+2 COMPOSITE MATRIX 

ABO 
C F O. -I. OR +1 

-W 0 0 
U 0 0 
L 0 0 

THE M-Q BY N+ 1 LEADING BLOCK A. B REPRESENTING 

A.X < OR = B 
THE LINEAR RESTRICTIONS. (THE ZERO BEING IRRELEVANT) 

AND THE Q BY N+I BLOCK C. F REPRESENTING 
C.X < OR = F. 

THE LINEAR COMPONENT OF THE QUADRATIC RESTRICTIONS. 
THE K TM QUADRATIC RESTRICTION BEING 

C(K)' • X 0.5 X'. D(K). X < OR = F<K). 

HERE THE (N+2)ND ELEMENT HAS SIGNIFICANCE. AS FOLLOWS: 
o CONVEXITY OF THIS RESTRICTION UNKNOWN. 

CONVEXITY ASSUMED UNTIL SHOWN TO BE NON-CONVEX. 
-I THIS RESTRICTION IS CONVEX. 

INVESTIGATION OF CONVEXITY INHIBITED. 
+1 THIS RESTRICTION IS NOT CONVEX. 

THE M+I TH ROW REPRESENTS THE LINEAR COMPONENT OF THE 
OBJECTIVE FUNCTION. 

MAX I M I Z E W· • X + O. 5 X' • D • X 

HERE THE (N+I)TH CELL CONTAINS THE INITIAL VALUE OF THE 
OBJECTIVE FUNCTION. THE (N+2)ND CELL IS IRRELEVANT. 

THE M+2 ND ROW OF THE LINEAR BLOCK IS RESERVED FOR THE 
VECTOR U. REPRESENTING UPPER LIMITS 

X < OR = U. (CELLS N+I AND N+2 IRRELEVANT) 

THE M+3 0 ROW IS RESERVED FOR THE VECTOR L. OF LOWER 
LIMITS. REPRESENTING 

x > OR = L. (CELLS N+ 1 AND N+2 IRRELEVANT) 
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THEREAFTER, NOT AS PART OF THE MAIN INPUT-MATRIX, 
PUNCH THE SUGGESTED STARTING SOLUTION FOR X. 

THEN PUNCH THE Q+ I SQUARE MATRI CES 
0, DCI), O(2), •••••••• OCQ), 

CHAPTER XVIII 

REPRESENTING THE QUADRATIC COMPONENTS OF THE OBJECTIVE FUNCTION, 
ANO THE Q QUADRATIC RESTRICTIONS. 

THESE MATRICES SHOl~D BE PUNCHED WITH THE SIGNS IN SUCH A 
WAY, THAT THEY ARE NEGATIVE-SEMIDEFINITE IN THE CONVEX 
CASE. 

M:=REAO; Q:-REAO; N:=REAO; NEQ:=REAO; NAV:=REAO; 

NEWLINEC I); 
WRITETEXTC 'C'NUMBERIOFILINEARIRESTRICTIONS') '); 
WRITEC30,FORMATC'C'S-NODOO')'),M-Q); 
NEWLINEC I); 
WRITETEXTC'C'OFIWHICHIEQUATIONS') '); 
WRITEC30,FORMATC'C'S-NOOOO')'),NEQ); 
SPACEC 5); 
'IF' NEQ > M 'THEN' WRITETEXTC'C 'TOOIMANYIEQUATIONS') '); 
NEWLINEC I); 
WRI TET'EXTC 'C 'NUMBERIOFIQUAORATI CIRESTRI CTI ONS') '); 
WRITEC30,FORMATC'C'S-NODOO')'),Q); 
SPACEC 5); 
'I F' Q > M 
'THEN' WRITETEXTC'C'TOOIMANYIQUAORATICIRESTRICTIONS')'); 
NEWLINEC 2); 
WRITETEXTC'C'NUMBERIOFIVARIABLES')'); 
WRITEC30,FORMATC'C'S-NOOOO')'),N); 
NEWLINEC I); 
WRITETEXTC 'C'OFIWHICHIOFITYPEIABSOLUTE') '); 
WRI TEC 3 0, FORMATe' ( 'S-NOOOO') 'bNAV); 
SPACEC 5); 
'IF' NAV > N 
'THEN' WRITETEXTC'C'TOOIMANYIOFITYPEIABSOLUTE')'); 
NEWLI N EC I); 
'IF' NAV > 0 'THEN' WRITETEXTC'C'CAUTIONI%VARIABLES WITHOUTI 
SIGNIRESTRICTIONlOOINOTIHAVEIUPPERILIMITS')'); 

'BEGIN' 'ARRAY' TAC 1:N+M+4, I:N+M+4], 
ABC 1 : M+3, I: N+2] ,X, U,LC I: N]' PC I: M], DC I: N, 1: N, 0: Q+ I ]I 

'INTEGER' 'ARRAY' ROWLST,COLLSTC 1:N+M+211 

READ LINEAR PART: 
MATICAB,M+3,N+2,0,0); 
'FOR' J:=I 'STEP' I 'UNTIL' N '00' X[J]:=REAO-ABCI1+3,JlI 

READ QUADRATIC PART: 
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'FOR' RI"O 'STEP' I 'UNTIL' Q ,~O' 'BEGIN' 
MATI(TAININIOIO); 
'FOR' 11 .. 1 'STEP' I 'UNTIL' N '00' 
'FOR' JI .. I 'STEP' I 'UNTIL' N ,~O' 

OCIIJIRll'"TACIIJH 'END'; 

PUT FANCYHIGH UPPERBOUNOS: 
'FOR' JI=I 'STEP' I 'UNTIL' N '00' 
'IF' ABCM+2IJ]=0 'THEN' ABCM+2 I JJ := 1000; 

PUT LOWER LIMItS IN PLACEI 
'FOR' J:=I 'STEP' I 'UNTIL' N '~O' LCJl := ABCM+3IJH 

RE INTERPRET: 

LINEAR PART OF INITIAL VALUE OF OBJ F: 
'FOR' JI-I 'STEP' I 'UNTIL' N 'DO' 
ABCM+IIN+I] 1= ABCM+IIN+ll - ABCM+I.JJ*LCJ]; 

QUADRATIC PART OF INI TIAL VALUE OF OBJ F: 
'FOR' JI=I 'STEP' I 'UNTIL' N '~O' 
'FOR' 1:=1 'STEP' I 'UNTIL' N 'DO' 
ABCM+IIN+I] := ABCM+I.N+I] + O.S*LCIJ*DCIIJIOl*LCJ]; 

DIFFERENTIAL PART OF OBJ F: 
'FOR' J:=I 'STEP' I 'UNTIL' N ,~O' 

'FOR' 11=1 'STEP' I 'UNTIL' N 'DO' 
ABCM+IIJl 1- ABCM+IIJ] - LCIJ*OCIIJIO); 

LINEAR PART OF RHS OF RESI 
'FOR' R:=I 'STEP' I 'UNTIL' M '00' 
'FOR' J:-I 'STEP' I 'UNTIL' N ,~O' 
ABCRIN+I) 1= ABCRIN+IJ - ABCRIJ]*LCJJ; 

QUADRATIC PART OF RHS OF RESTR: 
'FOR' RI=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 
'FOR' JI=I 'STEP' I 'UNTIL' N 'DO' 
'FOR' 11 .. 1 'STEP' I 'UNTIL' N ,~O' 
ABCRIN+I) 1= ABCRIN+I] + O.S*LCI)*DCIIJIR-M+Ql*LCJ); 

DIFFERENTIAL PART OF RESTRI 
'FOR' RI=M-Q+I 'STEP' I 'UNTIL' M '00' 
'FOR' JI .. I 'STEP' I 'UNTIL' N ,~O' 

'FOR' 11=1 'STEP' 1 'UNTIL.' N '00' 
ABCRIJ] : .. ABCRIJJ - L.CI)*OCIIJIR-M+Q); 

REINTERPRET UPPER LIMITSI 
'FOR' Jp=1 'STEP' 1 'UNTIL.' N '~O' 'BEGIN' 

ABCM+2IJ) 1= ABCM+2IJ)-ABrM+3IJJ; 
'IF' ABCM+2IJ] < 0 'THEN' 'BEGIN' 

NEWLINEC I); 
WRITETEXTC'C'YOU%HAVE%SUPPL.IEO%A%LOWER%L.IMIT%IN% 
EXCESS%OF%THE%CORRESPONOING%UPPER%L.IMIT')'); 
NE1rILINEC I); 
WRI TETEXTC 'C 'THE%GENERAL% 
QP%PROBL.EM%IS%THEREFORE%EMPTY.')'); 
'END'; 

'ENO'J 
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PUT UPPERBOUNDS IN PLACE: 
'FOR' J:=I 'STEP' I 'UNTIL' N '00' UCJJ:=ABCM+2,JH 

NOW SOLVE: 
QURO(M,Q,N,NEQ,NAV,PC,TA,AB,D,X,U,P,RoWLST, 
COLLST,oPTIMAL, FEASIBLE, EMPTY); 

POINT OF OUTPUT: 
INTERPRET BACK: 
'FOR' J:=I 'STEP' 'UNTIL' N 'DO' 
TACN+M+PC+4,JJ:=LCJJ; 

NEWLINE<1 )J 
'FOR' 1:=1 'STEP' I 'UNTIL' M '00' 'BEGIN' 

NEWLINE(I); WRITETEXT( '('DUAL%VARIABLE') '); 
WRITE( 30, FoRMAT(' (' SNDDDD') '), I)J 
WRITE( 30, FoRMAT(' (' S-NDDDD. DDD') '), PC I J); 'END'; 

'I F' 'NOT' FEASI BLE 'THEN' 
WRITETEXT('('No%FEASIBLE%SoLUTION') '); 

'IF' N+PC+M < 14 
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'THEN' TABO(TA,M+PC+N+I,M+PC+N+I,O,O,I,I,RoWLST,COLLST) 
'ELSE' TABO(TA,M+PC+N+I,O,O,M+PC+N+I,O,I,RoWLST,CoLLST); 

NEWLINE( I); 
WRITETEXT('('SOLUTIoN%VALUE%IF%IN%STANDARD%FoRM% 
AND%FEASIBLE')'); 
WRITE(30,FORMAT('('S-NDDDD.DDD') '),TACM+N+PC+2,M+N+PC+2J/2); 
NEWLINE( I); 

REPORT SOLUTION WITH REINTERPRETATION: 
REPQ(TA,M+I,N,NEQ,NAV,RoWLST,COLLST); 

'END'; 'END' 

TEXT-LISTING OF THE QURo PROCEDURE. 

'PROCEDURE' QURO(M,Q,N,NEQ,NAV,PC,T,AB,D,X,U,P,RoWLST,COLLST, 
OPTIMAL, FEASI BLE, EMPTY); 
'INTEGER' M, Q,N, NEQ,NAV, PC; 'ARRAY' T, AB, D,X, U, P; 
'INTEGER' 'ARRAY' ROWLST,COLLST; 
'BOOLEAN' OPTIMAL, FEASIBLE, EMPTY; 

'BEGIN' 'INTEGER' I ,J, R,K, REENTRY, PR,NAME, CNAME,LAST, RR, 
IN IND,II,JJ,DUAL R I, NNEGD, CUTN, DIRECTION; 
'BOOLEAN' ADJUST, DUAL REDUCED; 
'REAL' FANCYHIGH,LAMBDA,EPS,MOST NEGATIVE,LEAST POSITIVE, 
MOST POSITIVE,CHECKNUM,COP,NUM,DISC, 
OLDSUM,NEWSUM, NEXT NEGATI VE; 
'ARRAY' S,CVCM-Q+I:MJ,APPR,oLDAPPRCM-Q+I:M+2,I:N+3J, 
QUEQCO:2J,ROOTCI:2J; 
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'PROCEDURE' QUAG(T.M.N.NEQ.NAV.NNEGD.ROVLST.COLLST.PR.PC. 

NLINRES.REENTRY.LAMBDA); 
'VALUE' NNEGD; 
'ARRAY' T; 'INTEGER' M.N.NEQ.NAV.NNEGD.PR.PC. 
NLI NRES. REENTRY; 
'REAL' LAMBDA; 
'INTEGER' 'ARRAY' ROWLST.COLLSn 
'ALGOL' ; 

'PROCEDURE' APPROXIMATE(R.PUT.ADJUST); 
'VALUE' R; 'INTEGER' R.PUn 'BOOLEAN' ADJt'ST; 
'BEGIN' 'INTEGER' TAKE; 

'IF' R=O 'THEN' R:=M+II 
TAKE := R; 
'IF' R>O 'AND' R<M+I 'THEN' R:=R-M+Q; 
'IF' R=M+I 'THEN' R:=O; 
'IF' R=M+2 'THEN' 'BEGIN' 

R:=Q+I; 
'GOTO' NOW PUT THE APPROXIMATION; 'END'; 

'I F' R > 'AND' R < Q+I 'THEN' R:=R+M-Q; 

'IF' ADJUST 'THEN' 'BEGIN' 
'IF' SCRJ > 0 'THEN' DIRECTION := -I 
'ELSE' DIRECTION := 11 
'IF' PC=I 'OR' PR=I 'THEN' DIRECTION:=II 
TCN+M+FC+PR+3.N+PC+RJ := 1 000 000 OOO*DIPECTION; 
LIMIT(N+PC+R.R.DIRECTION); 
, FO R ' I: = 1 's T EP' 1 ' UN TIL' N 'DO' 
'IF' ROVLSTCIJ=I 'AND' TEI.N+PC+RJ>EPS 
'THEN' 'BEGIN' 

'IF' XCIJ/TCI.N+FC+RJ < TCN+FC+M+PP+3.N+PC+RJ 
'THEN' TCN+PC+M+PR+3.N+PC+RJ:=XCIJ/TCI.N+PC+RH 'END'; 

, FO R' I: = 1 'S T EP , 1 ' UN TIL' N ' DO ' 
'IF' ROVLSTCIJ=I 'THEN' XCIJ := XCIJ-TCI.N+PC+RJ* 
TCN+PC+M+PR+3.N+PC+RJ; 'END'; 

APPRCPt'T.N+3J := APPRCPUT.N+2J; 

, Fo R' J: = 1 'S T EP , 1 ' UN TIL' N + 1 ' DO ' 
APPRCPUT.JJ:=ABCTAKE.JJ; 

'IF' R> M-Q 'AND' R < M+I 'THEN' R:=R-M+Q; 

NOW PUT THE APPROXIMATION: 
'FOR' 1:=1 'STEP' 1 'UNTIL' N 'DO' 
'FOR' J:=I 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

APPRCPUT.JJ:=APPPCPUT.JJ - XCIJ*DCI.J.RJ; 
APPRCPUT.N+IJ:=APPRCPUT.N+IJ-0.5*XCIJ*DCI.J.RJ*XCJJ; 
, END'; 

'I F' R > 'AND' R < Q+I 'THEN' R:=R+M-Q; 

'I F' ADJUST 'THEN' 
'FOR' I: = 1 'STEP' 
'IF'ROWLSTCIJ=I 

'BEGIN' 
1 'UNTIL' N 'DO' 

'THEN' XCIJ := XCIJ+TCI.N+PC+RJ* 
TCN+PC+M+PR+3.N+PC+RJ; 'END'; 

619 



620 CHAPTER XVIII 

'IF' PUT < M+I 'THEN' 'BEGIN' 
APPRCPUT,N+2] := APPRCPUT,N+I]; 
'FOR' J:=I 'STEP' 1 'UNTIL' N '00' 
APPRCPUT,N+21 := APPRCPUT,N+2]-APPRCPUT,J]*XCJ]; 'END'; 

'IF' R>O 'AND' R<M+I 
'THEN' 'GoTo' END OF APPROXIMATION; 

'IF' 'NOT' PUT=M+I 'THEN' 'GoTo' END OF APPROXIMATION; 

'FOR' J:=I 'STEP' 1 'UNTIL' N 'DO' 
APPRCM+I,Jl := -APPRCM+I,JH 
APPRCM+I,N+Il := 0; 
'FOR' J:=I 'STEP' 1 'UNTIL' N '00' 
APPRCM+I,N+Il := APPRCM+I,N+Il+XCJ1*APPRCM+I,Jl; 
'FOR' R:=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 
APPRCM+I,N+Il:=APPRCM+I,N+I] + PCR1*SCR1; 
APPRCM+I,N+21 := APPRCM+I,N+Il; 

END OF APPROXIMATION: 'END'; 

'PROCEDURE' UPDATE(R.PUT); 
'INTEGER' R,PUT; 
'BEGIN' 

PUT AS COLUMN AND AS ROW: 
'FOR' 1:=1 'STEP' 1 'UNTIL' N 'DO' 
TCI,PUT]:=TCPUT.I]:=APPRCR,Il; 
'FoR'I:=N+I 'STEP' 1 'UNTIL' N+PC+M+PR+2 'DO' 
TCI.PUT]:=TCPUT,I]:=O; 

POSTMULTIPLY BY MINUS THE PIVOT INVERSE: 
'FOR' J .. ·I 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

'IF' CoLLSTCJl = -J 'THEN' TCPUT.Jl:=O; 
'IF' CoLLSTCJl = 2000+J 
'THEN' TCPUT.Jl := -TCPUT,Jl1 'END'; 

'FOR' J:=I 'STEP' 'UNTIL' N+M+PR+PC+I 'DO' 
'FOR' 1:=1 'STEP' 'UNTIL' N '00' 
'IF' RoWLSTCI] = I 'THEN' 
TCPUT,J) := TCPUT.J) - TCI.Jl*TCI.PUT); 

ATTEND DIAGONAL CELL: 
TC PUT, PUT] : = 0; 
'FOR' 1:=1 'STEP' 'UNTIL' N '00' 'IF' RoWLSTCI1=I 
'THEN' TCPUT,PUTl := TCPUT,PUTl - TCPUT,IJ*TCl.PUTH 

REVERSE SIGN FOR ARTIFICIAL VAR COLUMNS: 
'FOR' 1:=1 'STEP' 1 'UNTIL' M 'DO' 
'IF' Ro1JLSTCN+!] = 3000+1 'THEN' 

TCPUT.N+!) := -TCPUT.N+I]; 

PUT CORRESPONDING COLUMN: 
'FOR' 11=1 'STEP' 1 'UNTIL' N+PC+M+PR+I 'DO' 
'IF' RoWLSTCI] > 0 'THEN' TCI.PUT]:=TCPUT,I) 
'ELSE' TCI,PUT] 1= -TCPUT.I]; 
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PUT DUAL UL: 
TCN+PC+M+PR+3.PUTJ:=SQRTCFANCYHIGH); 

PUT UPDATED RHS : 

RHS OF NORMAL RESTR: 
'IF' R>M-Q 'AND' R<M+I 
'THEN' 'BEGIN' 

TCPUT.N+PC+M+PR+2]:=APPRCR.N+2J; 
TCN+PC+M+PR+2. PUT]: =_oAPPRC R. N+2]; 'END'; 

END OF UPDATE: 'END'; 

'PROCEDURE' PREPARE ADJUSTMENTCPUT.R); 
'INTEGER' PUT.R; 

'BEGIN' 
ATTEND COLUMN: 
'FOR' 1:=1 'STEP' 'UNTIL' M+N+3 'DO' 
'FOR' J:=PUT 'STEP' I 'UNTIL' N+M+3 'DO' 
TCI.N+M+4+PUT-JJ:=TCI.N+M+3+PUT-J]; 
, 1 F' PUT=N + I ' TH EN ' 
'FOR' 1:=1 'STEP' I 'UNTIL' N. N+2 'STEP' 'UNTIL'R-I. 
R+I 'STEP' I 'UNTIL' N+M+3 'DO' TCI.N+I]:=-TCl.N+I+R]; 

ATTEND ROW: 
'FOR' J:= I 'STEP' 'UNTIL' N+M+4 'DO' 
'FOR' I:=PUT 'STEP' I 'UNTIL' N+M+3 'DO' 
TCN+M+4+PUT-I.JJ:=TCN+M+3+PUT-I.J]; 
'IF' PUT=N+I 'THEN' 
'FOR' J:=I 'STEP' I 'UNTIL' N. N+2 'STEP' I 'UNTIL' R. 
R+2 'STEP' I 'UNTIL' N+M+4 'DO' TCN+I.JJ:=-TCN+I+R.J]; 

'IF' PUT=N+I 'THEN' TCN+I.N+IJ:=TCN+I+R.N+I+RH 

ADJUST NAMELI STS: 
'FOR' II=N+M+2 'STEP' -I 'UNTIL' PUT+I 'DO' 'BEGIN' 

ROWLSTC 1 J :=ROWLSTC I-I]; COLLSTC 1] I=COLLSTC 1-1 J; 'END'; 
'IF' PUT=N+I 'THEN' 'BEGIN' 

COLLSTCN+IJI=N+I; ROWLSTCN+IJ:=-N-I; 'END' 
'ELSE' 'BEGIN' 

COLLSTCPUTJ:=-IOOO-PUT+N; 
ROWLSTCPUTJ:=IOOO+PUT-N; 'END'; 

END OF ADJUSTMENT PREPARATION: 'END'; 

'PROCEDURE' LIMITCK.R.DIREC); 
'I NTEGER' K. RI 01 REC; 
'BEGIN' 

'FOR' JI=O.I 'DO' QUEQCJJ := 0; QUEQ[2J := APPRCR.N+IJ; 

, FO R' 1: = I ' 5 T EP , , UN TIL' N ' DO ' 
'IF' ROWLSTCI J=I 'THEN' 
'FOR' J:=I 'STEP' 'UNTIL' N 'DO' 
'1 F' ROWLSTCJ J=J 'THEN' 
QUEQC011=QUEQCOl + 0.5*TCI.KJ*DCI.J.R+Q-Ml*TCJ.Kl; 
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'FOR' J:= I 'STEP' I 'UNTIL' N '00' 
'IF' ROWLST[JJ=J 'THEN' 
QUEQ[IJ:=QUEQ[ll + APPR[R.Jl*T[J.KJ; 

'FOR' J:=I 'STEP' I 'UNTIL' N 'DO' 
QUEQ[2J := QUEQ[2J - APPR[R.JJ*X[JJ; 

'IF' ABS(QUEQ[OJ) < 0.000000001 'THEN' 'GOTO' LIN ADJ; 

CALCULATE 01 SC I 
DISC := QUEQ[IJ*QUEQ[ll - 4*QUEQ[Ol*QUEQ[2l; 

'I F' 01 SC < 0 'THEN' 'GOTO' NEAREST TO; 
ROOT[I] := 0.5*(-QUEQ[ll+SQRT(DISC»/QUEQ[Ol; 
ROOT[2l 1= 0.5*(-QUEQ[ll-SQRT(DISC»/QUEQ[OJ; 

'IF' ROOT[1l*DIREC < 0 'THEN' ROOT[ll := ROOT[2]; 
'IF' ROOT[2l*DIREC < 0 'THEN' ROOTC2] := ROOT[I]; 
'IF' ROOT[ll*DIREC < 0 'AND' PR=I 
'THEN' 'GOTO' END OF UPPER LIMIT CALCULATION; 
'IF' ROOT[2l*DIREC < ROOT[ll*DIREC 
'THEN' ROOT[1J:=ROOT[2lJ 
'IF' ROOT[ll*DIREC < T[N+PC+M+PR+3.Kl*DIREC 
'THEN' T[N+PC+M+PR+3.Kl :=ROOTr IlJ 
'GOTO' END OF UPPER LIMIT CALCULATION; 

LIN ADJI 
'IF' QUEQ[ll = 0 'THEN' 'BEGIN' 

'IF' 'NOT' PR=I 'THEN' T[N+PC+M+PR+3.Kl:=0; 
'GOTO' END OF UPPER LIMIT CALCULATION; 'END'; 

'IF' DIREC*QUEQ[2l/QUEQ[ll > 0 'THEN' 'BEGIN' 
'I F' 'NOT' PR= 1 'THEN' T[N+PC+M+PR+3.Kl : = 0; 
'GOTO' END OF UPPER LIMIT CALCULATION; 'END'; 

'IF' -DIREC*QUEQ[21/QUEQ[ll < T[N+PC+M+PR+3.Kl*DIREC 
'THEN' T[N+PC+M+PR+3.Kll= -QUEQ[2l/QUEQ[ll; 
'GoTo' END OF UPPER LIMIT CALCULATION; 

NEAREST TO: 
'IF' -DIREC*QUEQ[ll/QUEQ[Ol < 0 'THEN' 'BEGIN' 

'IF' 'NOT' PR=I 
'THEN' T[N+PC+M+PR+3.Kl := 0; 
'GoTo' END OF UPPER LIMIT CALCULATION; 'END'; 

'IF' -DIREC*0.5*QUEQ[IJ/QUEQ[01 < T[N+PC+M+PR+3.Kl*DIREC 
'THEN' T[N+PC+M+PR+3.Kl:=-0.5*QUEQ[ll/QUEQ[Ol; 

END OF UPPER LIMI T CALCULATION: 'END'; 

'REAL' 'PROCEDURE' CoRRECTION(R.I>; 
'INTEGER'R.I; 
'BEGIN' 'REAL' cn 

CF : = 0; 
'FOR' JI=I 'STEP' 'UNTIL' N 'DO' 
'IF' ROW'LST[Jl=J 'THEN' CF:=CF+AB[R.Jl*T[J.N+IlJ 

'FOR' 111=1 'STEP' 'UNTIL' N 'DO' 
'FOR' JJ:=I 'STEP' 'UNTIL' N 'DO' 
'IF' RoW'LST[JJ1=JJ 'THEN' 
CF := CF - X[IIl*D[II.JJ.R-M+Ql*T[JJ.N+Il; 
'IF' CF > 0.5 'THEN' CF 1= I/CF 'ELSE' 'BEGIN' 

'IF' CF < 0 'THEN' CF:=O.S 'ELSE' CF:=0.999; 'END'; 
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'IF' CF>O.999 'THEN' CF:=O.999; 

CORRECTl ON : = CFJ 
END OF THE CORRECTION CALCULATION: 'END'; 

'PROCEDURE' RECORD; 
'BEGIN' 

'FOR' J:=I 'STEP' 'UNTIL' N 'DO' 'BEGIN' 
'IF' R01JLST[JJ=J 'THEN' 
X[JJ:=T[J.N+PC+M+PR+2J; 
'IF' ROIJLST[JJ = -J 'THEN' X[JJ:=O; 
'IF' COLLST[JJ=2000+J 'THEN' X[JJ:=UCJH 'END'; 

CALCULATE QUADRATIC SLACKS: 
'FOR' R:=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 

S[RJ :=AB[R.N+ 1 J; 
'FOR' J:=I 'STEP' 1 'UNTIL' N 'DO' 
S[RJ:=S[RJ-X[JJ*AB[R.JJ; 
'FOR' 1:=1 'STEP' 1 'UNTIL' N 'DO' 
'FOR' JI'=I 'STEP' 1 'UNTIL' N 'DO' 
S[RJ := S[RJ + O.5*X[IJ*D[I.J.R+Q-MJ*X[JH 'END'; 

'FOR' I:=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 
'IF' SrIJ > EPS 'AND' 'NOT' ROIJLST[N+PC+IJ=IOOO+I 
'AND' AB[I.N+2J=O 'THEN' AB[I.N+2J := S[IH 

END OF PRIMAL SOLUTION RECORDING: 'END'; 

'PROCEDURE' COpy BEST; 
'BEGIN' 

'FOR' I := M-Q+I 'STEP' 'UNTIL'M 'DO' 'BEGIN' 

'I F' 'NOT' DUAL REDUC ED 'AND' 
ABS(APPR[I.N+2)<ABS(OLDAPPR[I.N+2J) 
'THEN' 'GOTO' COpy; 
'IF' NAV > 0 'THEN' 'GOTO' DO NOT COPY; 
'IF' 'NOT' APPR[I.N+IJ*OLDAPPFHI.N+IJ>O 
'THEN' 'GOTO' DO NOT COpy; 

'FOR' J:=I 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

'IF' APPR[I.JJ=O 'AND' 'NOT' OLDAPPR[I.JJ=O 
'THEN' 'GOTO' DO NOT COPY; 

'.IF' APPR[I.JJ=O 'THEN' 'GOTO' NEXT; 
'IF' APPR[I.N+IJ > 0 'AND' APPR[I.JJ > 0 'AND' 
AP?R[I.N+IJ/APPR[I.JJ>OLDAPPR[I.N+IJ/OLDAPPR[I.JJ 
'THEN' 'GOTO' DO NOT COPY; 

'IF' APPR[I.N+IJ < 0 'AND' APPRrI.JJ < 0 'AND' 
AP?R[I.N+IJ/APPR[I.JJ<OLDAPPR[I.N+IJ/OLDAPPR[I.JJ 
'THEN' 'GOTO' DO NOT COpy; 
'IF" APPR[I.N+IJ > 0 'AND' APPR[I.JJ < 0 'AND' 
APPR[I.N+IJ/APPR[I.JJ<OLDAPPR[I.N+IJ/OLDAPPR[I.JJ 
'THEN' 'GOTO' DO NOT COPY; 
'IF" APPRrI.N+l) < 0 'AND' APPR[I.JJ > 0 'AND' 
APPR[I.N+I]/APPR[I.JJ>OLDAPPR[I.N+IJ/OLDAPPR[I.JJ 
'THEN' 'GOTO' DO NOT COPY; 
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NEXT: 'END'; 

COPY: 
'roR' J:a·1 'STEP' I 'UNTIL' N+3 'DO' 
OLDAPPRCI.JJ:=APPRCI.Jl; 

DO NOT COPY: 'END'; 

'FOR' J: .. I 'STEP' I 'UNTIL' N+3 'DO' 
'FOR' I:=M-Q+I 'STEP' I 'UNTIL' M '00' 
APPRCI.JJ:=OLDAPPRCI.Jl; 

END OF COPY BEST: 'END'; 

'COMMENT' 
QUADRATIC PROGRAMMING ALGORITHM. 
THE ABBREVARION QURO STANDS FOR 
QU ADRATIC RESTRICTIONS AND 

N SPECIFIED VARIABLES. 

o BJ ECTI VE FUNCTI ON. 

M RESTRICTIONS. OF WHICH M-Q LINEAR RESTRICRIONS. 
AND Q QUADRATIC RESTRICTIONS. 

THE SIGNIFICANCE OF THE PARAMETERS M.N.NEQ.NAV.ROWLST AND 
COLLST WILL BE OBVIOUS. 
WHEN SEEN IN COMBINATION WITH THE QUAG PROCEDURE. 
AB.D. AND U ARE INPUT-ARRAYS. X AND P ARE OUTPUT-ARRAYS. 

AS FAR AS THE OPERATIVE USE BY THE QURO-PROCEDURE 
IS CONCERNED (AS DISTINCT I:ROM STORING LIMITS). 
AB IS ASSUMED TO BE OF ORDER M+I BY N+2. 

THE (N+2)ND COLUMN IS OPERATIVELY USED. ONLY FOR THE 
QUADRATIC RESTRICTIONS. TO STORE INFORMATION CONCERNING 
THEIR CONVEXITY. 
ABCR.N+2l < 0 MEANS CONVEX. NO VERIFICATION 
ABCR.N+2J .. 0 MEANS PROBABLY CONVEX. TO BE VERIFIED 
ABCR.N+2l > 0 MEANS NON-CONVEX. 

THE LEADING M-Q BY N+I BLOCK-ROW IS RESERVED FOR THE 
LINEAR RESTRICTIONS. 
THE NEXT Q BY N+ I BLOCK-ROW roR THE LINEAR PART OF THE 
QUADRATIC RESTRICTIONS. 

THE 'EXTRA' ROW (INDEX "M+l) IS RESERVED 
FOR THE LINEAR COMPONENT OF THE OBJECTIVE FUNCTION. 

D IS ASSUMED TO BE A THREE-DIMENTIONAL ARRAY. 
OF ORDER N BY N BY Q+2. 
EACH OF THE Q+l SQUARE 'N BY N MATRICES. INDICES ZERO iO Q. 
IS EXPECTED TO CONTAIN AN INPUT MATRIX D. 

THE FIRST OF THESE MATRICES (INDEX ZERO) REPRESENTS THE 
QUADRATI C COMPONENT OF THE OBJ ECTI VE FUNCTION. 
MAXIMISE W' X + O.S X' D X. 
THE OTHERS (INDICES I TO Q). REPRESENT THE QUADRATIC 
COMPONENTS OF THE QUADRATIC RESTRICIONS 
B + C' X + 0.5 X' D X > OR .. 0 
THE LAST OF THE MATRI CES D. INDEX Q+ I. I S RESERVED FOR 
INTERNAL USE BY THE QURO-PROCEDURE. 



GENERAL QUADRATIC PROGRAMMING 

THE N DIMENTIONAL ARRAY U IS ASSUMED TO CONTAIN THE VECTOR OF 
UPPERBOUNDS ON X. 
THE ARRAYS X AND P ARE SPACE-RESERVATIONS FOR THE VECTORS 
OF PRIMAL AND DUAL VARIABLES. 
OF THESE, X MUST BE PRE-FILLED BY THE USER, PIS INI
TIALIzED AT ZERO BY THE PROCEDURE. 

DUAL REDUCED := 'FALSE'; 
FANCYHIGH:=!OOOOJ EPS:=O.OOOOOIJ 
DUAL R I := 0; OLDSUM:=O; 

STAGE 0: 
INITIATE AT ZERO: 
'FOR' 1:=1 'STEP' 'UNTIL' N+M+2 'DO' R01olLSTCIJ:=0; 
'FOR' J:=I 'STEP' 'UNTIL' N+M+2 'DO' COLLSTCJJ:=O; 
'FOR' 1:=1 'STEP' 'UNTIL'M 'DO' PCIJ:=O; 
, FO R' I: = M - Q + I ' STEP' I ' UN TIL' M 'DO' SCI J : = 0; 
ADJUST := 'FALSE'; PR:=PC:=OJ 
'FOR' I:=M-Q+I 'STEP' I 'UNTIL' M+2 'DO' 
, FO R' J: = I 'S T EP , 1 ' UN TIL' N + 3 
'DO' OLDAPPRCI,JJI=APPRCI,JJ:=O; 

STAGE I: 
APPROXIMATE RESTRICTIONS: 
IN IND:=O; 
DUAL R I := CUTN := 0; 
'FOR' R:=M-Q+I 'STEP' I 'UNTIL' M 'DO' 'BEGIN' 

'IF' CoLLSTCN+PC+Rl = 1000+R 

'THEN' ADJUST := 'TRUE' 'ELS.E' ADJUST := 'FALSE'; 
'IF' ADJUST 'THEN' APPROXIMATECR,R, 'FALSE'); 
APPRoXIMATEC R, R, ADJUST); 'END'; 

STAGE 21 
SET THE PSEUDO LAGR: 
FEASIBLE 1= 'TRUE'; 
PC: =PR: =RR: = 0; 

CLEAN TABLEAU: 
'FOR' 11=1 'STEP' 
'FOR' JI=! 'STEP' 

'UNTIL' N+M+4 'DO' 
'UNTIL' M+N+4 'DO' TCI,JJ:=O; 

ASSEMBLE PSEUDO LAGRANGEAN: 

LINEAR PART OF PSEUDO L: 
'FOR' 1:=1 'STEP' 1 'UNTIL' N 'DO' TCI,M+N+2J:=ABCM+I,IlJ 
'FOR' RI=M-Q+I 'STEP' I 'UNTIL' M 'DO' 
'FOR' 1:=1 'STEP' I 'UNTIL' N 'DO' TCI,M+N+2J:= 
TCI,M+N+2J + PCRJ*ABCR,IJ; 

QUADRATIC PART OF PSEUDO L: 
, FO R ' I: =! ' STEP' I ' UN TIL' N 'DO' 
'FOR' J:=I 'STEP' I 'UNTIL' N 'DO' 'BEGIN' 

TCI,JJ := DCI,J,OJ; 
, FO R' K : = I 'S T EP , I ' UN TIL' Q 'DO' 
T(l,JJ := TCI,JJ + PCK-Q+MJ * D(l,J,KJJ 'END'; 
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ASSEMBLE REST OF TABLEAU: 

PUT LINEAR RESTRI 
'FOR' JI=I 'STEP' 'UNTIL' N '00' 
'FOR' 1:=1 'STEP' 'UNTIL' M-Q '00' TCN+I~JJ := ABCI~J]; 
'FOR' 1:=1 'STEP' 'UNTIL' M-Q 'DO' 
TCN+I~N+M+2J := ABCI~N+IJ; 

PUT QUADRATIC APPROXIMATIONS AND EXTRA RESTR: 
'FOR' JI=I 'STEP' I 'UNTIL' N '00' 
'FOR' II=M-Q+I 'STEP' I 'UNTIL' M+I 'DO' 
TCN+I~JJ 1= APPRCI~JJ; 

'FOR' I:=M-Q+I 'STEP' I 'UNTIL' M+I 'DO' 
TCN+I~N+M+2J 1= APPRCI~N+IJ; 

PUT INITIAL VALUEI 
TCN+M+2~N+PC+M+2J:=ABCM+I~N+IJ*2; 

PUT UPPER LIMITS: 
'FOR' JI=I 'STEP' I 'UNTIL' N '00' TCN+M+3~JJ:=UCJ]; 
'FOR' I:=N+I 'STEP' I 'UNTIL' N+M+I 'DO' 
'IF' I<N+M-Q+I 'THEN' T[N+M+3~IJ:=FANCYHIGH 

'ELSE' TCN+M+3~IJ:=SQRT(FANCYHIGH); 

REENTRY:=O; LAMBDA:=O; 

STAGE 3: 
SOLVE: 
NNEGD 1= N+M+IOO; 

'IF' OPTIMAL 'AND' REENTRY> 0 'THEN' 'BEGIN' 
'FOR' RI=M-Q+I 'STEP' I 'UNTIL' M 'DO' 
'IF' ROYLSTCN+PC+RJ=IOOO+R 
'AND' TCN+PC+R~N+PC+M+2]>0 'AND' SCR]<O 
'THEN' 'BEGIN' 

ADJUST := 'FALSE'; 

APPROXIMATE(R~R~ADJUST); 

UPDATE(R~N+PC+R)J 'END'; 'END'; 

OPTIMAL := 'TRUE'; 

RECALL QUAGI 
'IF' REENTRY=2 'THEN' NNEGD 1= 0; 
QUAG(T~M+PR+I~N+PC~NEQ~NAV~NNEGD~ROWLST~COLLST~O~PC~ 
M- Q~ REENTRY ~ LAMBDA); 

'IF' REENTRY=IOO 'THEN' 'BEGIN' 
'COMMENT' 
A NON-CONVEX SUBSIDIARY PROBLEM HAS BEEN ENCOUNTERED; 
NEYLINE( I)J 
YRITETEXT('('CARRY%ON%YITH%SOLUTION%OF%A% 
NON%CONVEX%PROBL EM') , )J 

'END'; 

'IF' ROWLSTCN+PC+M+I] = M+IOOI 
'AND' 'NOT' (PC=I 'AND' ROYLSTCN+ I ]=N+ 1> 
'AND' TCN+PC+M+I~N+PC+M+2] < 0 'THEN' 'BEGIN' 

REENTRY I = I; 
QUAG(T~M+PR+I~N+PC~NEQ~NAV~NNEGD~ROYLST~COLLST~O~PC~ 
M-Q~REENTRY.LAMBDA); 'END'; 
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COPY NEXT X: 
'FOR' I:=M-Q+I 'STEP' I 'UNTIL' M 'DO' CVCIl:=SCIH 
RECORD; 

'IF' PC=I 'THEN' 'BEGIN' 
'IF' ABS(SCK]) < 0.000001 'THEN' 'BEGIN' 

'FOR' R:=M-Q+I 'STEP' I 'UNTIL' K-I. 
K+I 'STEP' I 'UNTIL' M '~O' 
'IF' SCR]<O 'AND' CVCR]<O 
'AND' ROWLSTCN+I+R] = -IOOI-R 'THEN' 
PCR] := PCRl + 0.5*TCN+R+I.N+M+3]*CORRECTION(R.R+I); 
'IF' ROWLSTCN+I+K]=-IOOO-K 'THEN' 
PCK] := PCK] + 0.25*TCN+I+K.N+M+3]*CORRECTIONCK.K+I); 
'EN"O'; 'GOTO' STAGE); 'END'; 

STAGE 4: 
CHECK ON OVERTI GHTNESS AND EMPTINESS: 

CHECK EMPTINESS ON LINEAR RESTR: 
'IF' REENTRY = -I 'THEN' 'BEGIN' 

'COMMENT' 
EMPTINES ESTABLISHED BY ORDINARY QP ALGORITHM 
IN THE NON-CONVEX MODE. THIS RELATES SPECIFICALLY TO 
LINEAR RESTRICTIONS.; 
EMPTY 1= 'TRUE'; 
'GOTO' F'l NAL END OF QURO; 'END'; 

EMPTY := 'FALSE'; 
'FOR' 11=1 'STEP' I 'UNTIL' M-Q '~O' 
'IF' ROWLSTCN+I]=3000+1 'THEN' EMPTY:='TRUE'; 
'IF' EMPTY 'THEN' 'GOTO' END OF QURO; 

CHECK ON OVERTIGHTNESS OF BINDING APPR: 
MOST POSITIVE := -I; 
'FOR' I:=M-Q+I 'STEP' I 'UNTIL' M '00' 'BEGIN' 

'IF' ROWLSTCN+I] = 3000+1 'AND' SCI]>EPS 
'THEN" GOTO' STAGE ); 
'IF' ROWLSTCN+I] = -1000-1 
'AND' SCI]>EPS 'AND' SCI]*<1+PClJ»MOST POSITIVE 
'THEN' 'BEGIN' 

K:=I; MOST POSITIVE := SCK]*C I+PCK]); 'END'; 'END'; 

'IF' MOST POSITIVE> 0 'THEN' 'BEGIN' 
ABCK;N+2] : = ); 
PREPARE ADJUSTMENTCN+I.K); 
TCN+M+4.N+IJ := I 000 000 000; 
ADJUST I'" 'FALSE'; 
APPROXIMATE(K.K.AOJUST); 
PC:=); LIMIT(N+I.K.I); 
REENTRY : = 2; 
'GOTO' RECALL QUAG; 'END'; 

CHECK EMPTINESS ON QUADRATIC RESTR: 
EMPTY := 'FALSE'; 
'FOR' I:=M-Q+I 'STEP' I 'UNTIL' M '~O' 
'IF' ABCl.N+2] > 0 'AND' ROWLSTCN+M+I] 
'THEN' 'BEGIN' 

APPRCM+I.N+I] := I 000 000 000; 
'GOTO' STAGE); 'END'; 

3001+M 
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'FOR' I:=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 
'IF' R0lo1LST[N+I]=3000+I 'AND' S[I]>O 'THEN' 'GOTO' STAGE J; 

'FOR' I:=M-Q+I 'STEP' 1 'UNTIL' M+I 'DO' 
'IF' ROlo1LST[N+I] = 3000+1 'THEN' EMPTY := 'TRUE'; 
'IF' EMPTY 'THEN' 'GOTO' END OF QURO; 

STAGE 5: 
CHECK ON LOOSE APPR: 
'FOR' KI=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 
'IF' R0lo1LST[N+K]=1000+K 'AND' S[K] < -EPS 
'AND' T[N+K~N+M+2] > EPS 
'THEN' 'BEGIN' 

REENTRY: = J; 'GOTO' STAGE 3; 'END'; 

STAGE 6: 
CHECK ON M PLUS 1 RESTR: 

'IF' ROlo1LST[N+M+I] = -IOOI-M 'AND' IN IND > 0 
'THEN' 'BEGIN' 

PrIN IND] 1= PrIN IND] + 
T[N+M+I~N+M+2]*CORRECTION(IN IND~M+I); 

'GOTO' STAGE 2; 'END'; 

'IF' R0lo1LST[N+M+J] = -IOOI-M 'THEN' 'GOTO' STAGE 8; 

'IF' IN IND > 0 'THEN' 'BEGIN' 
UPDATE(M+I~N+M+I); 

IN IND := 0; 
'I F' T[N+M+ I.N+M+2] < 0 'THEN' 'BEGIN' 

REENTRY := J; 'GOTO' RECALL QUAG; 'END'; 'END'; 

STAGE 7: 
SUPERIMPOSE: 
NE>CT NEGATIVE := -I 000 000 000; 
START OF APPROXIMATION SEARCH: 
RI=O; MOST NEGATIVE p= -IO*EPS; 

'IF' CUTN < 2*Q 'THEN' 'BEGIN' 
'FOR' I:=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 

'IF' 'NOT' SrI] < MOST NEGATIVE 
'THEN' 'GOTO' DO NOT IMPROVE; 
'IF' 'NOT' SCI] > NE>CTNEGATIVE 
'THEN' 'GOTO' DO NOT IMPROVE; 
'IF' ABrI~N+2] > 0 'THEN' 'GOTO' DO NOT IMPROVEl 
R:=I; 
MOST NEGATIVE := S[RB 'END'; 

SAVE THE Ol.D ONE: 
'FOR' J:=I 'STEP' 1 'UNTIL' N+I 'DO' 
APPR[M+2~J]:=APPR[R~J]; 

ADJUST: = 'TRUE'; 
APPROXIMATE(R~ R~ 'FALSE'); 
APPROXIMATE(R~R~AI>JUST); UPDATE(R~N+M+I); 

'IF' ABS(T[N+M+I~N+M+I]) < EPS*EPS 'THEN' 'BEGIN' 
T[N+M+I~N+M+I] := 0; 
'GOTO' NOW PUT IMPROVEMENT; 'END'; 

'IF' T[N+R~N+M+I] < EPS 'THEN' 'GOTO' TRY NE>CT; 
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'IF' R .. DUAL R I 'THEN' 'GOTO' NOW PUT IMPROVEMENT; 
'IF' 'NOT' TCN+R.N+M+2J/TCN+R.N+M+Il < 
TCN+M+I.N+M+2J/TCN+M+I.N+M+IJ 
'THEN' 'GOTO' TRY NEXT; 

NOW PUT IMPROVEMENTI 
CUTN 1= CUTN+1I IN INDI=RJ 
ROWLSTCN+RJI=IOOO+RJ ROWLSTCN+M+IJI=-IOOI-MJ 
COLLSTCN+RJI=-IOOO-RJ COLLSTCN+M+I1:=1001+MJ 

'FOR' .11=1 'STEP' 1 'UNTIL' N+M+3 '00' 'BEGIN' 
NUMI.TCN+R.J1J TCN+R.J1:-TCN+M+I.J1J 
TCN+M+I.J1I-NUM; 'END'J 

'FOR' .11-1 'STEP' I 'UNTIL' N+M+3 'DO' 'BEGIN' 
NUMI=TCJ.N+R1J TCJ.N+RJ:=TCJ.N+M+I1J 
TCJ.N+M+ 11: "NUM; 'END' J 

REENTRYI-I; NNEGDI=N+M+1000J 
'GO TO , RECALL QUAG; 

00 NOT IMPROVEI 'END'; 

TRY NEXTI 
'IF' NEXT NEGATIVE> MOST NEGATIVE 'THEN' 'BEGIN' 

NEXT NEGATI VE : = MOST NEGATI VEJ 
RESTORE THE OLD ONEI 
'IF' R>O 'THEN' 'FOR' J:=I 'STEP' I 'UNTIL' N+I 'DO' 
APPRCR.J1 1= APPRCM+2.J1J 

'GOTO' START OF APPROXIMATION SEARCHJ 'END'J 

STAGE 81 
VERI FY COMPLEMENTARY SLACKNESS: 
OPTIMAL 1= 'TRUE'J 
'FOR' R:=M-Q+I 'STEP' I 'UNTIL' M 'DO' 
'IF' PCRl*SCR1 > EPS 'THEN' OPTIMAL:='FALSE'; 

'IF' OPTIMAL 'THEN' 'BEGIN' 
SAVE OLD APPRI 
'FOR' .11=1 'STEP' I 'UNTIL' N+3 '00' 
'FOR' I:=M-Q+I 'STEP' 1 'UNTIL' M 'DO' 
OLDAPPRCI.J1 1= APPRCI.JJJ 
DUAL REDUCED I" 'FALSE' J 
OLDSUM 1= OJ 'GOTO' STAGE 9J 'END'J 

REDUCE DUAL: 
NEWSUMI=OJ 
DUAL R I I" OJ 

INITIATE CORRECTION 
'FOR' JI=I 'STEP' 1 
'FOR' Ire I 'STEP' I 

RESTR AT ZERO: 
'UNTIL' N+I 'DO' 
'UNTIL' N '00 ' 

APPRCM+2.J 1: = OJ 

'FOR' .1:-1 'STEP' I 'UNTIL' N '00 ' DCl.J.Q+I1:=OJ 

ASSEMBLE CORRECTION RESTR: 
'FOR' RI=M-Q+I 'STEP' 1 'UNTIL' M '00' 'BEGIN' 

CVCRl := OJ 
'I F' 'NOT' DUAL REDUCED 'THEN' OLDSUMI=OLDSUM+PCRlJ 
'IF' SCR1 > 0 'AND' 5CR1*PCR1 > 0 'THEN' 'BEGIN' 
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'FOR' J:=I 'STEP' I 'UNTIl.' N+I 'DO' 
APPRCM+2~JJ:=APPRCM+2~JJ-ABCR~JJ*PCRJ; 
'FOR' 11=1 'STEP' I 'UNTIl.' N 'DO' 
'FOR' JI=I 'STEP' I 'UNTIl.' N 'DO' 
DC I ~J~Q+ I J I"DC I ~J~ Q+I J-DC I ~J~ Q-M+RJ*PCRJJ 'END ,; 

'IF' SCRJ<O 'AND' ROWl.STCN+RJ=-IOOO-R 'THEN' 
CVCR] I" TCN+R~N+M+2]*CORRECTIONCR~R)J 'END'; 

PREPARE ADJUSTMENTCN+M+2~0)J 

PR:-I; APPROXIMATECM+2~M+2~'FAl.SE'); 
UPDATECM+2~N+M+2); 

l.EAST POSITIVE 1= TCN+M+4~N+M+2] 1= 2; 

COMPl.ETE LAST ELEMENT OF UPDATE: 
TCN+M+2~N+M+3J 1= 0; 
'FOR' Rp'M-Q+1 'STEP' I 'UNTIL' M '00' 'BEGIN' 

'IF' SCR] > 0 'AND' SCRJ*PCRl > 0 'THEN' 
TCN+M+2~N+M+3l p. TCN+M+2~N+M+3] - PCRl*SCRlJ 'END'; 

'FOR' RI"M-Q+I 'STEP' I 'UNTIL' M 'DO' 
'IF' ROWLSTCN+Rl=IOOO+R 'AND' SCRl*PCRl>EPS 
'THEN' 'BEGIN' 

ADJUST := 'FAl.SE'; 
APPROXIMATECR~R~ADJUST); 
LIMITCN+M+2.R.I); 

'IF' TCN+M+4.N+M+2l < l.EAST POSITIVE 
'THEN' 'BEGIN' 

LEAST POSITIVE := TCN+M+4.N+M+2l; 
DUAL R I I = R; , EN D ' ; , EN D ' ; 

CALL QUAG FOR DUAl. ADJUSTMENT: 
NNEGD :e 1000; 
REENTRYI=2; PR:=I; LAMBDAI=O; 
QUAGCT.M+2~N+PC~NEQ~NAV~NNEGD~ROWl.ST~COl.l.ST~PR~PC~ 
M-Q~ REENTRY ~LAMBDA); 

'IF' LAMBDA> I 'THEN' l.AMBDA 1= I; 
LAMBDA I- LAMBDA*OLDSUM; 
'FOR' RI=M-Q+I 'STEP' I 'UNTIL' M '00' 'BEGIN' 

'IF' SCRl*PCRl>EPS 'THEN' 'BEGIN' 
'I F' 'NOT' R = DUAl. R I 
'THEN' PCR] := PCRl - l.AMBDA*PCR1/OLDSUM 
'ELSE' PCRl := PCR] - 0.5*l.AMBDA*PCRl/0l.DSUM; 'END'; 

'IF' CVCR] > 0 'THEN' PCRl:=PCR1+CVCRJJ 
'IF' PCR] < 0 'THEN' PCRl 1= 0; 'END'; 

SELECT BEST APPRI 
'IF' DUAL R I> 0 'THEN' 'BEGIN' 

RECORD; 
APPROXIMATECDUAl. R I~DUAl. R l~ 'FAl.SE'); 'END'; 

COPY BEST; 
CUTN 1= 0; DUAl. REDUCED 1= 'TRUE'; 
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'FOR' R:=M-Q+I 'STEP' I 'UNTIL' M '00' 
NEWSUM : = NEWSUM+PC RH 
'IF' NEWSUM < O.9*oLOSUM 'THEN' 'BEGIN' 

oLOSUM := NEWSUM; 'GoTo' STAGE 2; 'END'; 
'FOR' R:=M-Q+I 'STEP' I 'UNTIL' M '~O' 
PCRl := O.9*PCRl*oLOSUM/NEWSUM; 
oLOSUM := O.9*oLOSUM; 

'GO TO , STAGE 2; 

ST·AGE 9: 
INVESTIGATE FINAL OPTIMALITY: 
OPTIMAL: = FEASI BLE: =' TRUE'; EMPTY: = 'FALSE'; 
'FOR' R:=M-Q+I 'STEP' I 'UNTIL' M '~O' 'BEGIN' 

'IF' SCRl < -EPS 'THEN' FEASIBLE := 'FALSE'; 
'I F' RoWLSTCN+Rl< 0 'AND' 
ABS(TCN+R.N+M+2l) > EPS 'THEN' oPTIMAL:='FALSE'; 
• END'; 

'IF' RoWLSTCN+M+ll = -IOOI-M 
'AND' ABS(TCN+M+I.N+M+2l) > EPS 
'THEN' OPTIMAL := 'FALSE'; 

'IF' OPTIMAL 'AND' FEASIBLE 'THEN' 'GoTo' END OF QURo; 
OPTIMAL := 'TRUE'; 

STAGE 10: 
CHECK APPLICABILITY OF oBJ F LIM: 
'FOR' R:=M-Q+I 'STEP' I 'UNTIL' M '~O' 

'IF' RoWLSTtN+Rl = -IOOO-R 'AND' ABCR.N+2l > 0 
'THEN' 'GoTo' STAGE II; 
'FOR' R:=M-Q+I 'STEP' I 'UNTIL' M '~O' 
'IF' RoWLSTCN+Rl = -IOOO-R 'AND' ABCR.N+2l < 0 
'AND' ABS(APPRCR.N+2l) > EPS 
'THEN' 'GoTo' STAGE III 

CALCULATE NEW OBJECTIVE FUNCTION LIMIT: 
COPY 01.0 APPR IF LAST ONE oPTIM: 
'FOR' J:=I 'STEP' I 'UNTIL' N+3 '00' 
'FOR' I:=M-Q+I 'STEP' I 'UNTIL' M '~O' 

oLOAPPRCI.Jl:=APPRCI.Jl; 
ADJUST := 'FALSE'; 
APPRoXIMATE(O.M+I.ADJUST); 

STAGE II: 
ADJUST DUAL VARIABLES: 

'FOR' 1:=1 'STEP' I 'UNTIL' M '~O' 'BEGIN' 

'IF' 'NOT' I>M-Q 'THEN' 'BEGIN' 
STATE SHAOoWPRICE OF LINEAR RESTR: 
'IF' ROWLSTCN+Il = 1000+1 'THEN' PCI1:=0; 
'IF' RoWLSTCN+Il=-IOOO-I 'THEN' 
PCIl:=TCN+I.N+M+2l; 
'GoTo' END Of' PRICE ADJUSTMENT LOOP; 'END'; 
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ATTEND UPWARD ADJUSTMENT FOR A QUADRATI C PRI CEs 
"IF" SCIJ<EPS "AND" COL.L.STCN+IJ .. 1000+1 
"THEN" PCIls=PCIl+TCN+I.N+M+21*CORRECTIONCI.I); 
"IF" PCIl<O "THEN" PCIl:=O; 
END OF PRICE ADJUSTMENT L.OOPs "END"; 

"IF" ROWL.STCN+M+Il=-IOOI-M "AND" IN IND > 0 "THEN" "BEGIN" 
PCIN IND] s= PCIN IND] + 
CORRECTIONCIN IND.M+I)*TCN+M+I.N+M+2l; 
"IF" PCIN IND] < 0 "THEN" PUN INDJ Se 0; "END"; 

"GOTO" STAGE 1 J 

END OF QURO; 

"IF" EMPTY "THEN" "BEGIN" 
NEWLINEC 1 H 
WRITETEXTC "C "PROBL.EM%ASSUMED%TO%BE%EMPTY%ON%ACCOUNT% 
OF%OCCURRENCE%OF%ARTIFICIAL%VARIABL.ES") "); "END"; 

REAPPROXIMATE L.INEAR SL.ACKS: 
"FOR" RI-M-Q+I "STEP" 1 "UNTIL." M "DO" 
"IF" ROWLSTCN+RJ"IOOO+R "THEN" "BEGIN" 

ADJUST :- "FALSE"; 
APPROXIMATEC'R. R.ADJUSTH UPDATEC R.N+RH "END"; 

CORRECT SOL.UTION VALUE FOR CONSTANTS: 
"FOR" I ;"M-Q+I "STEP" 1 "UNTIL." M "DO" 
TCN+M+2.N+M+2J;=TCN+M+2.N+M+2J+ABCI.N+IJ*PCIJ*2; 

CORRECT SOL.UTION VALUE FOR INITIAL. VALUE: 
TCN+M+2.N+M+21 := TCN+M+2.N+M+21 + 2*ABCM+I.NJ; 

FINAL END OF QURO: "END" ; 

CHAPTER XVIII 

To help the reader of this book to read back the text
listing of the QURO procedure, it may be useful to point out 
some subordinate internal procedures, whose significance may 
be s~mmarized as follows: 

The procedures approximate and update: 

To calculate a linear approximation, and to calculate its 
current form in the updated QP-tableau. 

The procedure prepare adjustment: 

To re-order the tableau making room for another activity or 
restriction. 

The procedure limit: 

To calculate A, as defined by (18.3.4) and implement 
appropriate modifications of the parametric adjustment 
technique. 
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Answer to exercise lB.9 

Stages 0 - 3 

Our first subsidiary problem is: 

Maximise 

Subject to 

Stages 4 - 6 

xl + x2 

xl + 4 x 2 < 9 (the linear approximation) 

(0 < xl ~ 2, 0 ~ x2 < 3) 

The objective function limit is at this 
stage trivial (0 ~ 0). 

The optimum solution of the first subsidiary problem (See 
tableau lB exc 1) xl at this upper limit of 2; x 2 = 1.75. 

There are no overtightness, no loose approximation, and no 
binding extra-restriction. 

Stage 7 

The (one) most violated true restriction is re-approximated, 
with adjustment to xl = 2, x2 = 1.73, the true quadratic 
restriction being binding at that point. The new approximation 
is xl + 3.46 x2 ~ B. 

Tableau lB exc 2 gives the new approximation as violated 
restriction in the sl-slot, the binding old approximation in 
the P2-slot. The new approximation is probably superimposable, 
on account of the zero in the sllPl cell. Hence we return to 
stage 3. 

Stages 3 - 5 

After re-entering the ordinary QP algorithm, the optimum of 
the modified subsidiary problem is found at the consistent 
solution vector xl = 2, x2 = 1.73. (See tableau 18 exc. 3). 

There is no overtightness and no loose approximation. 

Stage 6 

We replace the old approximation xl + 4 x2 ~ 9 which is now 
amply fulfilled by the objective function limit. As the latter 
so far has the trivial form 0 ~ 0, no listing of this 
modification of the subsidiary problem is given. 
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Stage 7 

No superimposition is called for, the solution-vector being 
consistent. 

Stage 8 

We find the condition of optimal form satisfied. 

Stage 9 

We proceed to stage 10, on account of the linear shadowprice 
pi = 0.29. 

Stage 10 

We form the objective function limit xl + X 2 < 3.73. 

Stage 11 

The upper limit on the correction-factor is binding therefore 

PI 0+ 0.999 pi = 0 + 0.999 x 0.29 = 0.29 

(As the current primal solution is a consistent one, cf = 1 
would have let to hitting the true dual variable exactly, 
as it is, the figure cannot be distinguished within the two 
decimals accuracy of presentation). We return to stage 1. 

Stages 1 - 3 

The second subsidiary problem is 

Maximise xl + x 2 + 2 
0.29(5-xl -x2 ) = O.71xl + x 2 -0.58xl 

Subject to xl + 3.46 x 2 2. 8 (app roxima ti on) 

x 2 + x 2 < 3.73 (objective function limit) 

(0 < xl < 2; 

Stages 4 - 9 

2 

The optimum solution vector of the second subsidiary problem 
(See tableau 18 exc 4) is found to be 

Xl at its upper limit of 2; x 2 = 1.73 

pi = 0.00 

+ 1. 45 
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No further action is called for until stage 9, when we 
conclude to final optimality. 

(The programmed code, operating with a finer tolerance still 
finds p* = 0.00029 at this point, and makes one round more, 
but wit~in the two decimals fixed point presentation, the optimal 
tableau cannot be distinguished from tableau 18 exc.4). 

ADDENDUM TO THE ANSWER OF EXCERCISE 16.9 

SOME TABLEAUX DEVELOPED IN SOLVING EXCERCISE 16.9 
(NON-MEANINGFUL UPPER BOUNDS REPLEACED BY XX) 

16 EXC I 
FIRST SUBSIDIARY OPTIMUM. 

NA.! BI 

UI I -
X2 !-0.25 
PI ! -
S2 ! -

D2 51 

0.25 
0.25 

-0.25 

P2 VAL. 

0.75 
1.75 
0.25 
0.00 

2T 0.75 -1.75 0.25 -O.OO! 3.50 
UB ! 2 XX XX XX! XX 

16 EXC 3 
OPTIMUM OF MODI F1 ED PROBL EM. 

NA.! BI D2 51 P2 I VAL. 
---------------------------------
UI ! - 0.29 - O. 15 ! 0.71 
X2 !-0.29 0.29 1.73 
PI ! - -0.29 I. 151 0.29 
52 ! 0.15 - I • 15 0.07 
---------------------------------
2T 0 • 7 I - I • 73 0.29 -0.07! 3.46 
UB ! 2 XX XX XX! XX 

18 EXC 2 
NR I, WITH NEW APPR ADDED. 

NA.! BI D2 P2 S2 VAL. 

Ul ! - 0.25 0.13 ! 0.75 
X2 
S I 

!-0.25 
! - 0.13 

0.25! 1.75 
-0.87!-0.06 

P2 ! - -0.25 0.87 I 0.25 

2T 0.75 -1.75 0.06 0.25! 3.50 
UB ! 2 XX XX XX! XX 

18 EXC 4 
THE FINAL OPTIMUM. 

NA.! BI D2 SI P2 ! VAL. 
---------------------------------
UI !-0.05 0.29 O. 05 0.71 ! 0.71 
X2 ! - 0.29 0.29 1.73 
PI ! 0.05 -0.29 -0.05 0.29 ! 0.00 
S2 1-0.71 - 0.29 0.00 

---------------------------------
2T 0.71 -1.73 0.00 -O.OO! 7.46 
UB I 2 XX XX XX! XX 
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CHAPTER XIX 

INTEGER PROGRAMMING AND SOME OF ITS APPLICATIONS 

19.1 Some integer programming terms 

The term integer programming is normally applied in the context 
of linear programming. An integer programming problem differs 
from the corresponding "normal" linear programming problem, by 
the additional condition that some (or all) variables must have 
integer values in any admissable solution. 

For example, we may have the following problem 

Maximise 

T = xl + 1.5x2 + 0.5x3 

Subj ect to 

xl + 0.5x2 < 5 

0.5x2 < 5 

(Xl' x 2 ' x3 ~ 0, xl integer-valued) 

This is a mixed integer programming problem 

If the requirement that variables should attain integer values 
applies to all variables, we speak of an all integer 
programming problem. 

In the mixed integer programming problem the integer 
requirement applies to some, but not necessarily to all 
variables, (i.e. to xl but not to x 2 and x3 in the example). 

Obviously the mixed integer problem is the general case. Any 
algorithm which is effective with respect to the mixed integer 
problem would cope with "ordinary" linear programming 
problems, and also with all-integer problems as special cases 
of mixed integer problems. 

In a mixed integer problem the variables may be separated into 
two groups, the integer-restricted and the continuous variables. 
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A special type of integer-restricted variable is the zero-one 
variable. As the name indicates, a zero-one variable is a 
variable for which only two values are admitted, zero and one. 

A linear programming problem, which differs from a (mixed) 
integer programming problem, only by the variables not being 
required to attain integer values, is called the corresponding 
continuous problem. The optimal and feasible solution of such 
a corresponding continuous problem (if there is an optimal 
solution) is then called the (corresponding) continuous 
optimum. 

It should obviously be understood that, in a corresponding 
continuous problem, zero-one variables are restricted to the 
interval from zero to one. The restrictions ~hich are written 
explicitly with coefficients, e.g. xl + x 2 + x3 ~ 20, 
xl + 0.Sx2 ~ 5 etc., are indicated as the specified restrictions, 
to distinguish them from the integer requirements, i.e. the 
requirements that integer-restricted variables attain integer 
values and of course, also from the tacit non-negativity 
requirements. 

A solution-vector which satisfies the specified restrictions 
(and any non-negativity requirements) is then a feasible 
solution of the continuous problem or for short a solution of 
the continuous problem. 

A genuinely feasible solution which satisfies not only the 
specified restrictions but also the integer requirements is then 
called an integer solution. 

We will use the term "integer solution" irrespective of the 
fact that in a mixed integer programming problem, some variables 
are not restricted to integer values and may attain (in an 
"integer solution" fractional values. 

The true optimum may then also be indicated as the integer 
optimum, to distinguish it from the continuous optimum. 

19.2 Fixed costs and decision variables 

Mixed integer problems in which the integer-restricted 
variables are zero-one variables, are the most frequently 
applied kind of integer programming problem. 

They arise mainly from two types of problems which the non
specialist will not immediately recognise as integer 
programming problems. 



INTEGER PROGRAMMING 

The case of fixed costs ("overheads") is relatively 
straightforward. 

In the fixed-cost problem, the integer variable is a decision 
variable which indicates whether or not a particular activity, 
e.g. to build a factory, to operate a machine, etc., is at all 
engaged. Once the factory is built, the machine bought, etc., 
certain fixed costs are incurred. These fixed costs are 
independent of the activity level. (See also Westphal [39]) 

For example, a firm may be required to transport lS,OOO tonnes 
of coal per month. 

This will involve costs of transport and the method of trans
portation will have to be decided. Obviously, one will wish to 
minimize the cost of transport. If the coal is sent by road, 
the firm can use the services of road hauliers and no fixed 
costs for the firm arise. For bulk-transport the use of a 
railway or a ship may be cheaper, but would require that a 
rail-connection to the factory, or a loading berth be built 
first. Once these investment decisions were made, regularly 
recurring costs of interest and amortization would arise, 
irrespective of the amount of coal actually transported. Total 
transport costs are then the sum of the cost of road-transport 
(per tonne only), the fixed cost of building the railway (if 
built), the fixed cost of building the loading berth for mari
time transport (if the firm chooses to use this mode of 
transport at all), and the variable costs of both rail and 
maritime transport. The problem of minimizing transport cost 
might now, for example be 

Minimise 

Subject to 

70,000x4 > Xs 

xl + x3 + Xs ~ lS,OOO 

(xl' x 2 ' x 3 ' x 4 ' Xs > 0, x 2 and x 4 zero or one) 

The interpretation would be (for example) as follows: xl' x3 
and Xs are the quantities transported by road (xl)' by 
rail (x 3), and by sea (xS). These involve variable costs of 
2.S, 1.S and 0.4 units of money per tonne. The decision 
variable x 2 is then the decision to build the railhead. If 
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x2 is zero the 600 units of fixed costs are not involved, but 
then no rail transport is possible. If the railhead is built 
(x2 = 1), the 600 units of fixed costs are incurred, enabling 
transport by rail up to the railhead's maximum capacity of 
9000 tonnes. The same principle applies to maritime transport. 
If the loading berth is not built (x4 = 0) the restriction that 
x5 be not greater than 70,000 x prevents a non-zero value of 
x5. The above illustrated use 01 decision variables represented 
as zero-one variables can obviously be combined with restrictions 
of a different nature, e.g. market limits, relations with other 
production processes, etc. 

The one additional point which is also useful to mention here ~s 

the treatment of general increasing returns to scale. Suppose 
the relationship between production capacity and cost of 
investment is verified for certain realistically considered 
sizes of a particular installation 

Size No.1 
Size No.2 
Size No.3 

Cost of Investment 

500 
700 
900 

Capacity 

1000 
2100 
3500 

This example differs from the slightly simpler case of "set-up 
costs" which are independent from the scale of operations. 

If the fixed costs were set up cost, plus a linear function of 
the scale, the tabulation could, for example be as given in the 
"proportional capacity" version of the tabulation below 

Initial Proportional Total Cost Propor- Actual 
Set-up Additional of tional Capacity 
Cost Cost Investment Capacity 

Size No.1 340 160 500 1000 1000 
Size No.2 340 360 700 2250 2100 
Size No.3 340 560 900 3500 3500 

i.e. the cost of investment ~s 340 units plus 16 per 100 units 
of capacity. 

As the example was actually put, there are increasing returns to 
scale at all investigated scales, and size No.2 only has 2100 
units of capacity for 700 units of cost. With generally increasing 
returns to scale, we need a decision variable for every 
considered size. One simply writes the appropriate relations 
three times, as if it were seriously considered to build all 
three installations of sizes No.1, 2 and 3. The three decision 
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variables will be indicated as, for example xl' x 2 ' x 3 . If it 
is simply uneconomic to build two or three similar installations 
that is all, only one will figure in the optimum solution. If 
it is physically impossible to build two similar installations 
on the same site, one may add that restriction to the model, 
i.e., xl + x 2 + x3 ~ 1. 

19.3 Non-convex restrictions and dummy variables 

One may also use dummy variables to represent a general non
convex restriction. 

Example 

Maximise 

'[ 2y - x 

Subject to 

y 1 + 4x - 4x2 + x 3 

x < 3 (x > 0, y ~ 0) 

The true shape of the restriction y < 4x - 4x2 + x 3 + 1 has 
the typical S-shape of a cubic restrIction and is clearly 
non-convex. 

Provided the true non-linear restriction does not have any 
near-vertical segments, we may approximate it to any degree of 
required precision by means of linear segments of predetermined 
length. The more precise approximation we require, the more 
segments will be needed. For example, with intervals of 0.5 
for the value of x, we have the following tabulation (see also 
the associated graph). 

x = 0.00 y 1.00 

Yl ~ 1 + 2.25 xl (0 < xl < 0.50) 

x = 0.50 y = 2.13 

Y2 ~ 2.25 - 0.25 x 2 (0.50 < x 2 < 1. 00) 

x = 1.00 y = 2.00 

Y3 ~ 3.25 - 1. 25 Xz (1.00 < x3 < 1. 50) 
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J.O y 

2.5 

2.0 

1.5 

1.0 

0.5 

graph 19.3 a 

approximat ion 
of the cubic funct ion 
y ~ 1 + ~x - 4x 2 + x 3 

in six linear ~e9ments. 
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x = 1. 50 y = 1. 37 

Y 4 .2. 2.50 - 0.75 x 4 (1. 50 .2. x4 < 2.00) 

x = 2.00 Y = 1.00 

y -5 1. 50 + 1. 25 x5 (2.00 .2. x5 < 2.50) 

x = 2.50 y = 1.63 

y 6 .2. -10.25 + 4.75 x6 (2.50.2. x6 < 3.00) 

x = 3.00 y = 4.00 

There remains the problem of actually linking the "true" 
values of x and y to these segments. We will discuss this issue 
at first, only for x. We introduce a series of zero-one 
restricted variables, d l , d2 ..... d6 , and a series of 
requirements 

x -
1 

x -
2 

x < 

x < etc. 

To identify x with just one segment we add the equation 

~.e. five of the dummy variables are equal to one, and one of 
them is zero. 

The restriction is formally written in terms of the dummy
representations of x ~.e. 

y < 2.25 xl + 1 

y .2. -0.25 x 2 + 2.25 

y < -1.25 x3 + 3.25 

y < -0.75 x4 + 2.50 

y < 1. 25 x -
S 

1. 50 

y < 4.75 x6 - 10.25 

643 

The dummy representations of x are defined by the intervals, e.g. 

0.2. Xl .2. 0.5,0.5 .2.~.2. 1.0, 1.0.2.~.2. 1.5 etc. 
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The variable x has to be equal to one of them, i.e. if the 
corresponding zero-one variable d 2 is zero the pair of 
restrictions 

-99 d 2 - x2 + x < 0 

-99 d 2 + x 2 - x < 0 

) 
) 
) 

requires that x is equal to x2, when d2 is zero but when d 2 
is one, this pair of restrictions requires vi~tually nothing. 

The number 99 has been taken to represent a "very high number" 
and could very well be taken higher, except that for typo
graphical reasons, the 99 was more convenient. 

For a convex restriction we would not need the integer 
programming technique at all. This only arises because the 
linear segments corresponding to the non-convex (upwardly 
curved) parts of the curve actually cut into the admitted 
area. 

Accordingly, some condensation of the problem is possible, if 
several consecutive segments together form a convex segment. 
In the example at hand, this is the case for the first three 
segments. Algebraically this is recognised, by means of 
comparing the slope-coefficients. 

The first segment (0 < x < 0.5) has a slope-coefficient of 
2.25 the slope coefficient of the next segment (0.5 < x < 1.0) 
is only -0.25, the slope of the third segment (1.0 <-x <-1.5) 
is even less - going down even steeper - i.e. -1.25~ 

After that the slope increases again, i.e. becomes less 
negative 0.75. Therefore, the convex segment 0 ~ x ~ 1.5 
requires only one dummy. Thus, the three segments now become 

y < 2.25 xl + 1 

y < -0.25 xl + 2.25 

y < -0.75 xl + 3.25 

and xl now covers the interval 0 < xl < 1.50. 

The problem is now tabulated. 

The programmed procedure listed at the end of this section 
actually produces an end result which includes the prob1em
reinterpretation discussed in section 10.4, but the tabulation 
given in tableau 19.3a contains the original consrants of the 
various restrictions, with all variables set at zero. 
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Methods of integer programming as such, i.e. finding solutions 
to already stated integer programming problems are the subject 
of the next two chapters. At this point it is, however useful 
to comment on the possibility to automate the assembly of the 
tableau, and to eliminate redundant restrictions and variables. 

The procedure offered below writes the restrictions which arise 
from the segmentation of one polynomial restriction of the type. 

pm 

y ~ I 
p = 0 

c 
p 

(19.3.1) 

It is obviously possible to have several restrictions of the 
similar type in one problem, and have them written in the same 
tableau calling the procedure several times. The call to the 
procedure to be listed below should therefore supply for a 
polynomial restriction: 

the full size of the tableau 
the index of the column which refers to y 
the index of the column which refers to x 
the numbers characterising 
the polynomial function, i.e. the 
power) and mp + 1 coefficients c p 
associated with x O (the constant) 
the number of segments 

index mp (maximum 
giving the coefficients 
until xmp. 

the index of the column where space lS reserved for the 
first zero one variable 
the index of the column where space is reserved for the 
first column representing x in a particular interval 
the upper and lower limits on x 

We offer the text of a procedure which assembles the 
appropriate part of the tableau on the indication of that 
information. 

The listed procedure does more than was indicated in the text 
so far. The two additional points are the following: Firstly, 
there is the issue of near-equivalence of two or more adjoining 
segments. If the number of segments is put fairly large 
initially, it may easily happen that the approximation would 
not become noticeably worse, if some segments were merged, i.e. 
were replaced by only one linear segment. 

In the example, segments 3 and 4 (1.0 < x < 1.5 and 1.5 < x < 2) 
came most near to that possibility. Th; criterion which the 
procedure applies is that the difference between the slope
coefficients of two adjoining sections, multiplied with their 
total length, is less than a given tolerance, which is set at 
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0.01. Thus segments 3 and 4 have slope coefficients of -1.25 
and -0.75 respectively, i.e. their difference is 0.50. The 
total length of the two segments is 0.50 + 0.50 = 1 full unit 
of x. Hence the tolerance would have to be set at just above 
0.50 before these two segments are to be merged. 

If the tolerance were set at 0.51 rather than at 0.01, the two 
segmented restrictions would be replaced by a single one 

y .::.. 3.00 - 1.00x (1.00 .::.. x .::.. 2.00) 

linking the points x = 1.00, y = 2.00 and x = 2.00, y = 1.00 
directly. The main reason why this particuiar loop of the 
programmed procedure (situated in the programme-text below 
the label MERGE ALTOGETHER:), did not become operative in the 
example is that only 6 segments is a rather crude approximation 
in the first place. 

The other point which has not been discussed so far is the 
redundancy of the integer (zero-one) requirement on the "last" 
one of any series of dummy variables. 

In the example (as it became after condensation) d l , d 2 and d 3 
are only allowed to attain the values zero or one. There also 
is a requirement d~ + d 2 + d 3 + d 4 = 3. It is therefore 
sufficient to requ1re that d 4 is 1n the interval between zero 
and one, and it is not necessary to verify that d 4 is in fact at 
one of the two ends of this interval. In this connection, the 
tableau is re-ordered once more, and the "extra" zero-one 
variable is put at the end of the tableau rather than with the 
integer-restricted variables. 

TEXT-LISTING OF THE MAIN PROGRAMME USED TO ASSEMBLE AND 
SOLVE THE CUBIC INTEGER PROGRAMMING PROMLEM. 

'BEGIN' 'INTEGER' N.NAV.I.J.MM.NN.RN.RBN.NLINRES.NEQ.NPOLYRES.P. 
ROWINDEX.COLINDEX.RESTRN.IFZOV.IFDX.IFDXDF.MEQ.NZOV. 
EXITTYPE.IX.IY.EQN.MMM.NNN. OUT M. OUT N; 
'REAL' ALPHA; 

'PROCEDURE' POLY<T.COEFVEC.ALPHA.M.N.MAXPOW.NSE.LOVX.HIVX. 
MINUMX.MAXUMX.EQN.RESTRN.IFZOV.IX.ly.IFDX.IFDXDF.RN); 
'INTEGER'M.N.MAXPOW.NSE.EQN.RESTRN.IFZOV. 
IX.ly.IFDX.IFDXDF.RN; 
'REAL' ALPHA.LOVX.HIVX.MINUMX.MAXUMX; 
'ARRAY' T.COEFVEC; 
'ALGOL'; 
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"PROCEDURE" ZoLPCINTA.oUTA.OUTM.OUTN.T.M.N.NEQ.NAV.NZOV. 
oUTROWLST.RoWLST.CoLLST.EXITTYPE.NSL)J 
"INTEGER" oUTM.OUTN.M.N.NEQ.NAV.NZoV.EXITTYPE.NSLJ 
"ARRAY" INTA.oUTA.TJ 
"INTEGER" "ARRAY" oUTROWLST.ROWLST.CoLLSTJ 
"ALGoL"J 

"PROCEDURE" MATICMATR.MB.N8.FR.FC)J 
"ARRAY" MATR) "INTEGER" M8.N8.FR.FCJ "ALGOL"; 

"PROCEDURE" TABOCMATR.M.N.SR.SC.RH.ER.ROWLST.CoLLST)J 
"ARRAY" MATR) "INTEGER" M.N.SR.SC.RH.ERJ 
"INTEGER" "ARRAY" ROWLST.COLLSTJ "ALGOL"J 

"COMMENT" 
PROGRAMME TO MAXIMIZE A LINEAR 08JECTIVE FUNCTION. 
SUBJECT TO NLINRES LINEAR RESTRICTIONS. AND NPOLYRES 
POLYNOMIAL RESTRICTIONS. 
EACH POLYNOMIAL RESTRICTION LINKS ONE OF THE VARIA8LES 
TO A POLYNOMIAL FUNCTION OF ONE OF THE OTHER VARIA8LES" 

OF THE RESTRICTIONS. NEQ ARE ALLOWED TO BE EQUATIONS. 
ALL THE EQUATIONS MUST BE BE LINEAR EQUATI~~S. 

CHAPTER XIX 

OF THE N VARIABLES. NAV ARE ALLOWED TO 8E OF ABSOLUTE TYPE. 
I.E. NOT TO BE ASSOCIATED WITH NON NEGATIVITY RESTRICTIONS. 

THE PROGRAMME DOES THIS 8Y ASSEMBLING AN MM BY NN INTEGER 
LINEAR PROGRAMMING TABLEAU. IN WHICH EACH POLYNOMIAL 
RESTRICTION IS REPRESENTEP BY LINEAR SEGMENTS. 
FOR DETAILS OF THIS LINEAR PRESENTATION. SEE THE TEXT OF 
THE PROCEDURE POLY. 

READ MAIN PROBLEM PARAMETERS a 
NLINRESa-READJ NEQa-READ; NPOLYRESa-READJ NasREAD; NAVa=READJ 

"8EGIN" 
"ARRAY" LoVX.HIVX.MINUMX.MAXUMXClaNPOLYRESlJ 
"INTEGER" "ARRAY" MAXPOW.NSEClaNPOLYRESlJ 

READ MAIN PARAMETERS OF SEPERATE POLYNOMIALSa 

"FOR" RNa-l "STEP" 1 "UNTIL" NPOLYRES "DO" "BEGIN" 

READ THE INDEX FOR THE HIGHEST POWERa 
MAXPOWCRN la-READJ 

HOW MANY SEGMENTS FOR THIS RESTRICTIoNa 
NSEC RN la-READJ 

WHICH INTERVAL a 
LOVXCRNla=READJ HIVX(RNla=READJ 
".\ 
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WHICH TOTAL INTERVALI 
MINUMXCRNJI=READ; MAXUMXCRNJI=READ; 

'END'; 

CALCULATE ORDER PARAMETERS OF MAIN TABLEAU I 
MMI=NLINRES; NNI=N; 
'FOR' RNI"1 'STEP' 1 'UNTIL' NPOLYRES 'DO' 'BEGIN'; 

MM I =MM+ 1 +3*NSEC RN J; NN: =NN+2*NSE( RN]; 'END'; 

'IF' NEQ > NLINRES 'THEN' 'BEGIN' 
NEWLINECl H 
WRITETEXTC'C'TOO%MANY%EQUATIONS')'); 
NEWLINEC 1 H 
WRITETEXTC'C'THE%NUMBER%OF%EQUATIONS%EXCEEOS%THE% 
NUMBER%OF%LINEAR%RESTRICTI ONS' ) 'H 'END' 

'ELSE' MEQI=NEQ; 

'BEGIN' 'ARRAY' T( IIMM+3.IINN+2H 

INITIATE TABLEAU AS ZERO MATRIXI 
'FOR' 11=1 'STEP' 1 'UNTIL' MM+3 ,~O' 
'FOR' .J1=1 'STEP' 1 'UNTIL' NN+2 '~O' T(I • .JJI=O; 

PUT LINEAR INPUT DATA TEMPORARY IN TOP BLOCK ROWI 
MATICT.NLINRES+3.N+l.0.0); 

TRANSPORT TO APPROPRIATE BLOCKSI 
'FOR' I1al+MEQ 'STEP' 1 'UNTIL' NLINRES+3 '~O' 
'FOR' .JI-l 'STEP' 1 'UNTIL' N+l ,~O' 'BEGIN' 

HMM-NLINRES+I • .JJI=Tr I • .J]; T( I • .JJI=O; 'END'; 

'FOR' II-I 'STEP' 1 'UNTIL' MEQ. 
MM+MEQ-NLINRES+l 'STEP' 1 'UNTIL' MM+3 'DO' 
'FOR' .J1-NAV+l 'STEP' 1 'UNTIL' N+l ,~O' 'BEGIN' 

H I.NN-N+.JJI=T[ I • .JJ; T[ I • .JJI=O; 'END'; 

ATTEND THE POLYNOMIAL RESTRICTIONSI 

INITIATE INDICES FIRST BLOCKI 
ROWINOEXI=MEQ+NPOLYRES; COLINOEXI-NAV; NZOVI=O; 
EQNI=MEQ; IFZOVI=NAV; 

'FOR' RNI:l 'STEP' 1 'UNTIL' NPOLYRES '~O' 'BEGIN' 
EQNI&EQN+l; MEQI-MEQ+l; 
RESTRNr-ROWINOEX; ROWINDEXr-ROWINDEX+NSECRNJ; 
IFDXDFr-ROWINDEX; ROWINDEX:=ROWINDEX+NSE[RNJ; 
COLINDEXr-COLINDEX+NSECRNJ; NZOVr-NZOV+NSECRNJ; 
IFDXr-COLINDEX; COLINDEXr-COLINDEX+NSECRNJ; 

'BEGIN' 'ARRAY' COEFVECCOIMAXPOWCRNJJ; 
READ AND ASS INFORM PARTICULAR RESTRr 

ALPHAlaREAD; 
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IXa-REAOJ 
'IF' IX>NAV 'THEN' 
'FOR' RBNa-1 'STEP' 1 'UNTIl.' NPOI.YRES ,~O' 

IXa-IX+2*NSECRBN1; 

IYa-REAOJ 
'IF' IY>NAV 'THEN' 
'FOR' RBNa-1 'STEP' 1 'UNTIl.' NPOI.YRES 'DO' 
IYa-IY+2*NSECRBN1J 

'FOR' Pa-O 'STEP' 'UNTIl.' MAXPOWCRN1 'DO' 
COEFVECCP1a-REAO; 

NOW ASSEMBI.E THE RN RESTRa 
MMMa-MM; NNNa-NNJ 
POI.Y<T,COEFVEC,AI.PHA,MM,NN.MAXPOWCRN1,NSECRN1, 
1.0VXCRN1,HIVXCRN1,MINUMXCRN1,MAXUMXCRN1.EQN,RESTRN, 
IFZOV,IX,IY,IFOX.IFOXOF,RN); 

RESET INOI CES a 
ROWINOEXa-ROWINOEX+MMM-MM; COI.INOEXa=COI.INOEX+NNN-NN; 
NZOVa-NZOV-ENTIER<O,5*<NNN-NN+1»-1; 
'END'; 'END'; 

'BEGIN' 'ARRAY' TAC 1aMM+3, 1aNN+21, 
OUTAC1aMM+NN+NZOV,la11J 
'INTEGER' 'ARRAY' ROWI.STC 1aMM1,COI.I.STC 1aNN1, 
OUTROWI.STC 1 a NZOV+MM+NN1; 

PUT ZEROS TO PREVENT OVERFI.OWa 
'FOR' II-I 'STEP' 1 'UNTIl.' MM+NN+NZOV ,~O' 
OUTACI,11a=OJ 
'FOR' II-I 'STEP' 'UNTIl.' MM ,~O' ROWI.STC I lI=O; 
'FOR' I a -I 'STEP' 'UNTIl.' NN '~O' COI.I.STC I 1a =0; 
'FOR' 1,,'1 'STEP' 'UNTIl. ' NZOV+MM+NN '~O' 
OUTROWI.STCI1a-OJ 
'FOR' la-I 'STEP' 'UNTIl.' MM+2 '~O' 

'FOR' Ja-1 'STEP' 'UNTIl.' NN+1 '~O' TACI,J1a=0; 

ZOI.P<T,OUTA,OUTM,OUTN,TA,MM,NN,MEQ.NAV,NZOV, 
OUTROWI.ST, ROWI.ST. COI.I.ST, EXITTYPE, 100); 

'IF' EXITTYPE-O 'THEN' TABO<OUTA,OUT M,O,O.O,l,O, 
OUTROWI.ST,COI.I.ST) 
'EI.SE' TABO<TA,OUT M,OUT N,O,O,I,l,ROWI.ST,COI.I.ST); 
'END'; 'END'; 'END'; 'END' 

CHAPTER XIX 
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TEXT-LISTING OF THE PROCEDURE WHICH SEGMENTS ONE SEPERATE 
POLYNOMIAL RESTRICTION. 

'PROCEDURE' PoLY(T.COEFVEC.ALPHA.M.N.MAXPoW.NSE.LOVX.HIVX. 
MINUMX.MAXUMX.EQN.RESTRN.IFZOV.IX.IY.IFDX.IFDXDF.RN)J 
'INTEGER' M.N.MAXPoW.NSE.EQN.RESTRN.IFZoV. 
IX.IY.IFDX.IFDXDF.RNJ 
'REAL' ALPHA.LDVX.HIVX.MlNUMX.MAXUMX; 
'ARRAY' T.CoEFVECJ 

'eEGIN' • INTEGER' I.J.II.JJ.NSEC.SE.P; 
'REAL' LDWV.HIGV.X.Y.XDIF.XP.DYDX.FANCYHIGH.COP.SLDIF.MAXUMYJ 

'COMMENT' 
PROCEDURE TO ASSEM.LE A SEGMENTED APPROXIMATION OF THE POLY
NOMIAL RESTRICTION 

ALPHA • Y < DR • PoLINOMIAL FUNCTION OF X. 

THE FUNCTION IS EXPECTED TO eE NON-CONVEX. 
IN EACH SEGMENT. X IS REPRESENTED ey ASSOCIATED DUMMY VARIABLES. 
THESE DUMMY VARIABLES ARE RESTRICTED TO A PARTICULAR 
INTERVAL. 
ALSO ASSOCIATED ARE ANOTHER SERIES OF DUMMY VARIABLES. 
THOSE DUMMY VARIABLES ARE ZERO-ONE VARIABLES. ONE OF THEM 
WILL BE ZERO AND IDENTIFY AND MAKE EFFECTIVE A PARTICULAR LINEAR 
SEGMENT OF THE FUNCTION. WHILE THE OTHERS ARE AT THE VALUE ONE. 

THE SIGNIFICANCE OF THE PARAMETERS IS AS FOLLOWS, 

T IS AN M ey N LINEAR PROGRAMMING TYPE TABLEAU. OR M+2 BY 
N+2. IF THE MARGINS ARE INCLUDED. 

CoEFVEC IS THE COEFFICIENTS VECTOR WHICH CHARACTERIZES THE 
POLYNOMIAL FUNCTION. 
THE TERMS BY WHICH X POWER ZERO (THE CONSTANT). X POWER ONE. 
X POWER TWO. UNTIL X POWER MAXPOW. 
ARE TO BE MULTIPLIED. ARE STORED IN THIS VECTOR. 
THEIR PLACES IN THE COEFFICIENTS VECTOR ARE THE EXPONENTS. I.E. 
THE CONSTANT IN CELL ZERO. AND THE COEFFICIENT WHICH IS ASSO
CIATED WITH THE HIGHEST (MAXIMUM) POWER. IS STORED IN THE CELL 
WITH INDEX MAXPOW. 

NSE IS THE NUMeER OF (LINEAR) SEGMENTS. 

LOVX IS THE LOWER VALUE OF X. I.E. THE LOWER LIMIT OF SEGMENT L 
PRESENTATION OF X. 
HIVX IS THE HIGHER VALUE OF x. I.E. THE HIGHER LIMIT OF 
SEGMENTAL PRESENTATION OF X. 

THE FIRST AND THE LAST SEGMENT ARE. HOWEVER. 
EXTENDED ON THE INDICATION OF THE VARIABLES MINUMX AND MAXUMX. 

THE FIRST SEGMENT OF X STRETCHES FROM MINUMX (THE MINIMUM 
VALUE OF X). TO LOVX +l/NSE • CHIVX-LOVX). 
SIMILARLY. THE LAST SEGMENT OF X STRETCHES FROM 
HIVX - l/NSE • (HIVX-LOVX). TO MAXUMX. 
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OTHERWISE THE JTH SEGMENT OF APPROXIMATION COVERS THE INTERVAL 
OF X BETWEEN LOVX + (J-l)/NSE * (HIVX-LOVX). 
AND LOVX + JINSE * (HIVX-LOVX). 

EQN IS THE INDEX OF THE ROW OF T. WHERE THE EQUATION-RESTRICTION 
ON THE TOTAL VALUE OF THE ZERO-ONE VARIABLES IS TO BE STORED. 

RESTRN IS THE INDEX OF THE ROW OF T. WHERE THE REPRESENTATION 
OF THE RESTRICTION ITSELF IS TO BE STORED. I.E. 
RESTRN+I IS THE ROW-INDEX OF THE I TH SEGMENT. 

IFZOV+J IS THE INDEX OF THE COLUMN OF T WHICH IS TO 
REPRESENT THE JTH ZERO-ONE VARIABLE. 

IX IS THE INDEX OF THE COLUMN OF T. WHICH IS TO REPRESENT X. 
IY IS THE INDEX OF THE COLUMN OF T. WHICH IS TO REPRESENT Y. 

IFDX+J IS THE INDEX OF THE JTH DUMMY-VARIABLE. REPRESENTING X. 

IFDXDF+I IS THE INDEX OF THE ROW OF T. 
WHERE THE ITH DEFINITIONAL RESTRICTION. 
LINKING X TO ITS DUMMY REPRESENTATIVE 
IN THE ITH (OR I-NSE)TH SEGMENT. IS TO BE STORED. 
J 

PUT FANCYHIGH FANCYHIGH. 
FANCYHIGH.-99J 

INITIATE MAXIMUM Y LOW. 
MAXUMy.--l000000J 

WRITE EQUATION RESTRICTION ON THE INT VAR. 
'FOR' J.=1 'STEP' 1 'UNTIL' NSE 'DO' TCEQN.IFZOV+J11=-IJ 
TCEQN.N+l1.a-NSE+1J 

PUT LIMITS ON X. 
'IF' TCM+2.IX1-O 'OR' MAXUMX<TCM+2.IXl 
'THEN' TCM+2.IX1.aMAXUMXJ 
'IF' MINUMX > TCM+3.IXl 'THEN' TCM+3.IX11=MINUMXJ 

RELATE X TO SEGMENTED X AND DUMMIESI 
'FOR' II-I 'STEP' 1 'UNTIL' NSE 'DO' 'BEGIN' 

TCIFDXDF+I.IFZOV+Il 1= -FANCYHIGHJ 
TCIFDXDF+I.IXl I- lJ 
TCIFDXDF+I.IFDX+Il 1= -1; 
TCIFDXDF+NSE+I.IFZOV+l1 1= -FANCYHIGHJ 
TCIFDXDF+NSE+I.IXl 1= -IJ 
TCIFDXDF+NSE+I.IFDX+Il I- lJ 'END'; 

PUT LIMITS ON X DUMMIESI 
XDIF 1 8 (HIVX-LOVX)/NSEJ 
'FOR' II-I 'STEP' 1 'UNTIL' NSE 'DO' 'BEGIN' 

TCM+2.IFDX+Il I- LOVX+I*XDIF; 
TCM+3.IFDX+Il 1= LOVX+<I-l)*XDIFJ 'END'J 
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TtIFDXDF+NSE+NSE+l.N+ll s= -MINUMXi 
TtM+2.IFDX+NSEls= MAXUMXi 

RELATE Y TO X PER SEGMENTs 

XS=LOVXi 

'FOR' 11=1 'STEP' 1 'UNTIL' NSE 'DO' 'BEGIN' 

'IF' 1>1 'THEN' LOWVs=HIGV 'ELSE' 'BEGIN' 
LOWVs=Oi XPs=li 
'FOR' Ps-O 'STEP' 1 'UNTIL' MAXPOW 'DO' 'BEGIN' 

LoWVs=LOWV+COEFVECtPl*XPi 
XPs=XP*Xi 'END'i 'END'i 

Xs=X+XDIFi 

HIGVs=Oi XPs=li 
'FOR' Ps=O 'STEP' 1 'UNTIL' MAXPOW 'DO' 'BEGIN' 

HIGVs=HIGV+COEFVECtPl*XPi 
XPS=XP*Xi 'END'i 

DYDX := CHIGV-LOWV)/XDIFi 

TtRESTRN+I.IFDX+Il:=-DYDXi 
TtRESTRN+I.IYls=ALPHAi 
TtRESTRN+I.IFZoV+Il:=-FANCYHIGHi 
TtRESTRN+I.N+ll:=HIGV-X*DYDXi 

PUT LIMIT ON Y: 
'IF' LOWV>MAXUMY 'THEN' MAXUMYs=LOWVi 
'IF' HIGV>MAXUMY 'THEN' MAXUMY:=HIGVi 'END'i 

SET UPPER LIMIT ON Y AS FOUND: 
'IF' TtM+2.IY1-0 'OR' MAXUMY<TtM+2.IYl 
'THEN' TCM+2.IYl:=MAXUMYi 

PUT LIMITS ON ZERO ONE VAR: 
'FOR' J:=l 'STEP' 1 'UNTIL' NSE 'DO' 'BEGIN' 

TtM+2.IFZOV+Jls=I.0000000Ii TCM+3.IFZQV+Jls=Oi 'END'i 

REDUCE SIZE IF CONVEX OR NEAR EQUIVALENT: 
II:-li JJs=2i NSECs=NSEi 

'FOR' SEs=2 'STEP' 1 'UNTIL' NSE 'DO' 'BEGIN' 
Ils"II+li 

HIGV:-TCM+2.IFDX+JJli LoWVs=-TtIFDXDF+2*NSEC+JJ-l.N+l1i 
XDIF:-HIGV-LOWVi 
SLDIF:-CTCRESTRN+lI-l.IFDX+JJ-ll-TtRESTRN+II.IFDX+JJ1)*XDIFi 

'IF' SLDIF < 0.001 'THEN' 'BEGIN' 

'IF' SLDIF < -0.001 'THEN' 'GOTO' MERGE DUMMIESi 

MERGE SEGMENT: 
DYDX:-C-TCRESTRN+II.IFDX+JJ1*HIGV+TtRESTRN+II.N+ll + 
TtRESTRN+II-l.IFDX+JJ-ll*LOWV-TCRESTRN+II-l.N+ll)/XDIFi 
TCRESTRN+II-l.IFDX+JJ-ll:=-DYDXi 
TCRESTRN+II-l.N+ll:= 
-TCRESTRN+II.IFD~+JJl*HIGV+TCRESTRN+II.N+Il-DYDX*HIGVi 
'FOR' I:=RESTRN+II 'STEP' 1 'UNTIL' M+2 'DO' 
'FOR' Js=l 'STEP' 1 'UNTIL' N+l 'DO' TtI-l.JlI=Ttl.JH 
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SEI=SE-1; NSEI=NSE-1J MI=M-1; IFOXOFI=IFOXOF-1; 
III-II-lJ 

MERGE DUMMIESI 
ADJUST NUM8ER OF NON ZERO DUMMIESI 
TCEQN.N+1ll=TCEQN.N+1l+1; 

MERGE COLUMNSI 
'FOR' II-RESTRN+II. IFDXOF+JJ. IFDXDF+NSEC+JJ. 
IFDXDF+2*NSEC+JJ. M+2 'DO' 'BEGIN' 

TCI.IFZOV+JJ-1ll=TCI.IFZOV+JJlJ 
TCI.IFDX+JJ-1ll=TCI.IFDX+JJH 'END'; 

SHIFT COLUMNSI 
'FOR' 11-1 'STEP' 1 'UNTIL' M+3 '~O' 'BEGIN' 

SHIFT FOR MERGED DI 
'FOR' J"'I FZOV+JJ+ 1 'STEP' 1 'UNTIL' N+1 
'DO' TCI.J-1ll-TCI.JlJ 

SHIFT FOR MERGED XI 
'FOR' JI-IFDX+JJ 'STEP' 1 'UNTIL' N 
'DO' TCI.J-1ll=TCI.JlJ 
'END' J 

ADJUST COLUMN INDICESI 
NI-N-2J I FDXI", I FDX-1 J 
'IF' IX > IFZOV 'THEN' IXI=IX-lJ 
'IF' IY > IFZOV 'THEN' IYI=IY-!J 
'IF' IX> IFDX 'THEN' IXI=IX-1J 
'IF' IY > IFDX 'THEN' IYI=IY-1J 

SHIFT ROWSI 
'FOR' JI"1 'STEP' 1 'UNTIL' N+1 'DO' 'BEGIN' 

SHIFT UPW FOR MERGED UPPER XDFI 
'FOR' II-IFDXDF+JJ 'STEP' 1 'UNTIL' M+3 
'DO' TCI-1.Jll-TCI.JlJ 

SHIFT UPW FOR MERGED LOWER XDFI 
'FOR' I"'IFDXDF+NSEC-1+JJ 'STEP' 1 'UNTIL' M+3 
'DO' TCI-1.Jll=TCI.JlJ 'END'; 

ADJUST ROW INDICESI 
MI-M-2J NSEC"'NSEC-lJ 'END' 

'ELSE' JJI-JJ+lJ 'END'; 

MOVE EXTRA ZERO ONE VARI 
'FOR' 11-1 'STEP' 1 'UNTIL' M+3 'DO' 'BEGIN' 

COPI-TCI.IFZOV+NSEClJ 
'FOR' JI-IFZOV+NSEC 'STEP' 1 'UNTIL' N-RN 'DO' 
TCI.Jll-TCI.J+1l; 
TC I.N-RN+1ll-COPJ 'END'; 
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END OF POLYI 

REINTERPRET TO LOWER LIMIT DISTANCESI 
'FOR' JI-1 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

TCM+2.Jl I- TCH+2.Jl-TCH+3.Jl) 
'FOR' 11-1 'STEP' 1 'UNTIL' H+1 'DO' 
TC I.N+1] I- TC I.N+1 ]-TCH+3.J]*TC I.JlJ 'END') 

FINAL END OF POLYI 'END') 
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BRANCHING METHODS 

20.1 Branching in the order of increasing indices 

The algorithm offered in this section is mor,e primitive than 
the ones normally recommended in the literature. 

It is specifically concerned with zero-one variables. It serves 
the purpose of introducing the idea of branching and it has the 
further attraction of a relatively simple programme-code. 

It solves the (zero one variables) mixed integer programming 
problem by means of a series of ordinary linear programming 
problems. In this particular method, these linear programming 
problems refer to tableaux from which columns which relate to 
zero-one variables are progressively removed. 

A branch is a consecutively solved series of "ordinary" L.P. 
problems which arise from the introduction of additional 
requirements, requiring successive variables to attain 
specified integer values. If the variable is zero we remove the 
column altogether, if the variable is one, we subtract it from 
the value column. It seems natural to assume that a branch is 
developed in the order of the indices of the variables. Thus 
we would begin with specifying a value for the integer variable 
with the lowest index. In the example from section 19.3 we could 
begin with requiring that d l should be zero. In that example, 
there is an equation requirement d l + d 2 + d 3 + d 4 = 3. The 
requirement that d l should be zero, comoined with upper limits 
on d 2 , d 3 and d 4 , Eherefore automatically implies d 2 = d 3 = d 4 = 1 
This is not necessarily so in the general mixed integer 
programming problem, and one may have to impose further 
restrictions on other integer-restricted variables (e.g. d , 
d 3 , etc), until an admissable solution to the specified integer 
programming problem is reached, or until a particular branch 
is terminated (abandoned) for other reasons. We will obviously 
need some sort of system to ensure that all appropriate 
combinations are investigated. We do not start with requiring 
that all integer-restricted variables actually attain an 
integer value. 

The two main reasons for this practice are a) It is systematic 
rather than accidental that additional integer requirements are 
sometimes met without imposing a requirement to that effect on 
all variables in question. b) Non-integer solutions may reveal 
the fact that there is no prospect of finding the optimum 
in a particular branch. 
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We will come back to this problem, when we have discussed the 
coding system. There is no inherent reason why problems should 
be coded in a particular way and no other, provided some basic 
desiderata are met. Code-numbers (declared as integer variables) 
should enable us to identify integer restrictions in a parti
cular problem. They should also enable us to relate the code
number to the order in which the various problems are tackled. 
The formula 

Code 
niv 

\ (1 ) 3niv- k L + rVk 
k=l 

(20.1. 1) 

meets these desiderata, and will be used here. 

In (20.1.1) rv is the restriction value, i.e. rVk = 0 indicates 
a restriction which says that the kth zero-one variable is 
required to be zero, and rvk=l indicates that the kth zero-one 
variable is required to be one. It is assumed that variables 
to which no integer restriction is actually applied are not 
included in the summation, i.e. the effective value of rVk is 
-1 in that case, l+rvk attaining the value zero. 

That this coding formula meets the two basic requirements of a 
coding system is illustrated below by tabulating its effective 
significance for the case of three. zero-one variables. 

The various LP problems are in fact tackled in the order of 
increasing numerical value of the code-number (see tabulation 20.1). 

In the case of three zero-one variables we may (at most) have to 
investigate 15 LP problems. There is however, a possibility that 
certain branches may not need to be investigated, at least not 
beyond the problem at the head of a particular branch. 

In fact, the problem "at the head" defines the branch, by a 
particular series of requirements. 

dk = 0,1 (k 1, 2, ... index, index < ni v) (20.1.2) 

In (20.1.2), niv is the number of integer restricted variables, 
i.e. 3 in the tabulated example. 

Note that we do not investigate problems where the integer 
restrictions on variables with higher indices are implemented, 
while the similar restrictions on variables with lower indices 
are not implemented. (Problems 1-8 , 10, 11, 19 and 20). 

A branch, or the search for a solution of the problem as a whole 
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Tabulation 20.1 

Coding summary for 3 zero-one variables 

Inv. ~'R. R. R. Code Code Code Value 
order on on on rV1 as rV2 as rV3 as of 

d 1 d2 d3 Code 

1 ? ? ? 0 
Never ? ? 0 1x30=1 1 
Never ? ? 1 2X30=2 2 
Never ? 0 ? 1x3=3 3 
Never ? 0 0 1x3=3 1x30=1 4 
Never ? 0 1 1x3=3 2x30=1 5 
Never ? 1 ? 2x3=6 6 
Never ? 1 0 2x3=6 1x30=1 7 
Never ? 1 1 2x3=6 2x3O=2 8 
2 0 ? ? 1x32=9 9 
Never 0 ? 0 1x32=9 1x30=1 10 
Never 0 ? 1 1x32=9 2x30=2 11 
3 0 0 ? 1x32=9 Ix3=3 12 } 
4 0 0 0 1x32=9 1x3=3 1x30=1 13 d 1=d2=0 

5 0 0 1 1x32=9 1x3=3 2x30=2 14 Branch 
6 0 1 ? 1x32=9 2x 3,;,,6 15} d1=0 
7 0 1 0 1x32=9 2x3=6 1x30=1 16 d 2=1 
8 0 1 1 1x32=9 2x3=\6 2x3O=2 17 Branch 
9 1 ? ? 2x32=18 18 
Never 1 ? 0 2x3 2=18 1x30=1 19 
Never 1 ? 1 2x32=18 2x30=2 20 
10 1 0 ? 2x32=18 1x3=3 21}d 1=1 
11 1 0 0 2x32=18 1x3=3 1x30=1 22 d2=0 
12 1 0 1 2x32=18 1x3=3 2x3O=2 23 Branch 
13 1 1 ? 2x32=18 2x3=6 24} d1=d2 
14 1 1 0 2x32=18 2x3=6 1x30=1 25 =1 
15 1 1 1 2x32=18 2x3=6 2x3O=2 26 Branch 
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ends, when one of the following four conditions ~s met: 

a) Full Exhaustion 

All relevant problems have been solved, i.e. integer restrictions 
and all possible combinations of zeros and ones) have been 
imposed on all variables. 

b) Optimality without Exhaustion 

A (sub)problem in which integer restrictions,have not so far 
been imposed on all variables (only on those below a certain 
index) happens to have an optimal solution which satisfies all 
the remaining integer restrictions as well. Thus, in the 
example from section 19.3, there are dummy-variables which are 
subject to an integer restriction of zero-one type. The 
requirement dl = 0, combined with d l + d 2 + d 3 + d 4 = 3 and 
the upper limits of d 2 ~ 1, etc., implies d 2 = d 1 = d 4 = 1. 
Obviously it is then unnecessary to investigate the combination 
d l = 0, d 2 = o. Finding an all-integer solution as optimum of the 
problem at the head of a branch terminates the branch. 

c) An empty problem is met 

If the problem at the head of a branch is empty, the whole 
branch is abandoned. 

d) An Unbounded problem is met 

This is in fact only possible with the initial continuous 
problem. When the continuous problem has been solved, i.e. is 
found to have a finite optimal solution, subsequent branching 
may still lead to empty problems, but not to unbounded problems. 

e) Sub-optimality 

The optimal solution of the problem at the head of the branch 
(irrespective of further integer requirements), indicates a 
lower solution value than a previously found integer solution. 

Conditions b), c), d) and e) all cause a reduction in the number 
of problems to be solved, they are premature terminations. 

The most extreme form of premature termination is obviously 
to find the continuous problem empty, unbounded or all-integer 
in its optimum. 

Similarly a branch ~s terminated, as soon as the problem at the 
head of the branch is either found to be wanting in some 
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respect, i.e. empty or sub-optimal, or to have an all-integer 
optimum. Recall the tabulation of the three integer restricted 
variables case: 

If problem 18 (d l 1, d 2 and d 3 so far not integer restricted) 
is empty, problems 21 to 26, whose solutions would be feasible 
solutions of problem 18, need no investigation. 

Likewise, if we already found a feasible integer solution, 
there is a possibility that one or more remaining branches may 
be found sub-optimal by way of investigating the problems at 
their heads. Suppose for example that we already recorded an 
optimal and feasible solution of the d l = ° branch (for 
example) a solution value of 53 for problem 14. (dl = d 2 = 0, 
d 3 1). 

We will need to investigate the rest of the d l = 1 branch, 
(problem 21 to 26), only if problem 18 is found to have an 
optimal and feasible solution, with a solution value of more 
than 53. But even then we may find the sub-branch d 1 = 1, 
d 2 = ° sub-optimal. If problem 21 (dl = 1, d2 = 0, a3 not so 
far integer restricted), has a solution value of 49, we ~now 
that the optimum is not in the d 1 = 1, d 2 = ° branch. All 
feasible solutions of problems 22 and 23, including the optima, 
are also feasible solutions of problem 21, hence their optimum 
solution values cannot exceed the optimum of problem 21. The 
other way in which the number of actually investigated problems 
may be reduced, arises in connection with non-required part
integer solutions. 

For reasons which tend to be somewhat more complicated* than 
in the all-integer case - but not basically different -, this 
possibility is to some extent systematic rather thar. incidental. 
We do not need to record all partly integer solutions. Thus, 
the optimum of problem 0, may turn out to satisfy the 
requi:ements of problem 5. (d l and d 2 are not integer
restr1cted, d 1 =1), for example d l = 0.22, d 2 = 0.73, d 3 = 1. 
Because we ao not intend to investigate problem 5 in any case, 
we may as well classify the solution of problem zero as being 
non-integer as soon as d l is found to have a ~on-integer value. 
But if the optimum of problem zero turns out to be d l = 1, 
d2 = 0, d3 = 0.43, we may record the fact that problems 18 and 
21 have already been solved. It is in fact sufficient to record 
the attainment of an optimum solution to problem 21. 

* See Weingartner (38] 
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A prematurely obtained solution of problem 21 implies that 
it also is the optimum of problem 18. We do not tackle any 
sub-problems of the dl = 1 branch before we enter it at the 
head. Thus we will record the code 21 and a corresponding 
solution value in a solutions list. 

When we come to tackle problem 18, we can identify 21 as being 
a sub-problem of the d l = 1 branch. 

The relevant numerical condition of the code is 

d 3niv-index o < recorded code - co e < (20.1. 3) 

Above, recorded code (obviously) is the code of the previously 
recorded solution, and code is the code of the problem which 
is currently being tackled. 

If the previously recorded code is less than the code of the 
currently tackled problem, the previously recorded code refers 
to a problem which belongs to an already exhausted branch. 
(Problem 17 does not belong to the dl = 1 branch). The problem 
at the head of the branch has the lowest code of all the 
problems in the branch. Since codes of lower values than the 
code of the currently tackled one, are codes of problems 
already dealt with the programme developed in association with 
this section, will wipe out such codes, whenever they are met, 
just to save list-space. On the other hand, problems with a 
code which is at least 3niv-index greater than the problem 
which is being tackled, belong to the next branch, or possible 
to one which is still further ahead. 
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For example, we may find the optimal solution of the d l = 1 
branch (whether obtained by fresh calculation or from earlier 
recording) to be an improvement relative to anything found in 
the d l = 0 branch. We therefore enter the dJ = 1 branch further, 
and tackle problem 21. The index up to whicfi the variables are 
integer-restricted is then 2, niv-index is 3-2=1, and (20.1.3) 
reveals that problems whose codes are at least 31=3 higher than 
21 (i.e. 24, 25, 26), do not belong to the dl = 1, d2 = 0 
branch. 

The computational implementation of the branching algorithm 
depends to some extent on whether one is interested in the 
shadow prices of the integer restrictions. In this section it 
is assumed that the user is not interested in those shadow 
prices. Each sub-problem which is tackled, is started by 
partly copying the initial tableau of the continuous problem. 
Columns which refer to variables on which integer restrictions 
are actually imposed are not copied. If the integer value is 
zero, the corresponding column is simply suppressed, if the 
integer value is one, the corresponding column is subtracted 
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from the value column, i.e. the variable lS brought over to the 
right-hand side. 

The integer programming procedure is now listed as follows: 

TEXT-LISTING OF THE ZERO-ONE VARIABLES INTEGER PROGRAMMING 
PROCEDURE. 

'PROCEDURE' ZOLPCINTA.OUTA.OUTM.OUTN.T.M.N.NEQ.NAV.NZOV. 
OUTROWLST.ROWLST.COLLST.EXITTYPE.NSL)} 
'INTEGER' OUTM.OUTN.M.N.NEQ.NAV.NZOV.EXITTYPE.NSLJ 
'ARRAY' INTA.OUTA.TJ 
'INTEGER' 'ARRAY' OUTROWLST.ROWLST.COLLSTJ 

'BEGIN' 'INTEGER' I.J.P.NEWCODE.NAME.II.JJ.R.K.ROWN.COLNJ 
'REAL' SOLUTION VALUE.NUM.QUO.ZERODIS.ONEDISJ 
, BOOLEAN' INTGJ 
'ARRAY' SOLUTION VALUES LISTCIINSLlJ 
'INTEGER' 'ARRAY' CODELISTCIINSLl.DCNAV+IINAV+NZOVlJ 

'PROCEDURE' LINPCT.M.N.NEQ.NAV.ROWLST.COLLST.REENTRY)J 
'ARRAY' T; 'INTEGER' M.N.NEQ.NAV.REENTRYJ 
'INTEGER' 'ARRAY' ROWLST.COLLST; 
'ALGOL'J 

'PROCEDURE' INTPCT.M.N.NEQ.NAV.ROWLST.COLLST. 
IROWLST.R.K.ROWN.COLN.REENTRY)J 
'ARRAY' TJ 'INTEGER' M.N.NEQ.NAV.R.K.ROWN.COLN.REENTRYJ 
'INTEGER' 'ARRAY' ROWLST.COLLST.IROWLSTJ 
'ALGOL'J 

'PROCEDURE' BRANCHCCODE.RE VALUE. INDEX. 
TO BE SOLVED FROM NEW)J 
'VALUE' CODE.RE VALUE.INDEX.TO BE SOLVED FROM NEWJ 
'INTEGER' CODE.RE VALUE.INDEXJ 
'BOOLEAN' TO BE SOLVED FROM NEWJ 
'BEGIN' 

CHECK IF INVESTIGATED BEFORE: 
'FOR' PI=I 'STEP' 1 'UNTIL' NSL 'DO' 'BEGIN' 

'IF' CODELISTCPl < CODE 'THEN' CODELIST(Pl:=-lOJ 
'IF' CODELIST(Pl-CODE < 3 t CNZOV-INDEX) -0.5 
'AND' 'NOT' SOLUTION VALUES LIST(Pl > SOLUTION VALUE 
'THEN' 'BEGIN' CODELISTCPl:=OJ 

'GOTO' END OF BRANCHJ 'END'J 'END'J 

'IF' 'NOT' TO BE SOLVED FROM NEW 
'THEN' 'GOTO' RESTRICT ADDITIONALLYJ 

PREPARE AN LP PROBLEM: 

PUT INITIAL RHS: 
'FOR' 1:=1 'STEP' 1 'UNTIL' M+I 'DO' 
T(I.N+I-iNDEXl:=INTA(I.N+IlJ 

PUT HIGH UPPERLIMITDISTANCES FOR SLACKS: 
'FOR' 1:=1 'STEP' 1 'UNTIL' M 'DO' 
T(I.N-INDEX+2l 1= fOOOOOOOOOOOOJ 
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ATTEND TO REST OF TABLEAU I 
JJI"O; 
'FOR' J:"I 'STEP' I 'UNTIL' N '~O' 'BEGIN' 

'IF' J > NAV 'AND' 'NOT' J > NAV+INOEX 'THEN' 'BEGIN' 
'IF' OCJJ-I 'THEN' 'GOTO' BRING TO RHS 
'ELSE' 'GOTO' NEXT COLUMN; 'END'; 

COpy JTH COLUMNI 
JJI-JJ+U 
'FOR' II-I 'STEP' 'UNTIL' M+2 'DO' 
TCI.JJJI=INTACI.JJ; 
'GOTO' NEXT COLUMN; 

BRING TO RHSI 
'FOR' 11=1 'STEP' I 'UNTIL' M+I 'DO' 
TCI.N+I-INOEXJI=TCI.N+I-INOEX1-TCI.Jl; 

NEXT COLlI'lN I 
'END'; 

EXITTYPEr=O; 
LINP<T.M,N-INDEX.NEQ.NAV.ROWLST,COLLST.EXITTYPE); 
TO BE SOLVED FROM NEW 1= 'FALSE'; 

'GOTO' CHECK FOR NO SOLUTION OF PARTICULAR PROBLEM; 

RESTRICT ADDITIONALLY: 
'FOR' II "NAV+I 'STEP' I 'UNTIL' M 'DO' 
'IF' ROWLSTC I l=NAV+I 'THEN' 'GOTO' PUT THE CUT; 

CHECK AND ATTEND NON BASIC VARI 
'FOR' KI"I 'STEP' I 'UNTIL' N-INOEX+I 'DO' 
'IF' COLLSTCK1-NAV-INOEX 'THEN' 'BEGIN' 

'IF' OCNAV+INDEX1"0 'THEN' 'GOTO' REDUCE 
'ELSE' 'GOTO' PREPARE AN LP PROBLEM; 'END'; 

CHECK AND ATTEND BINDING UPPER LIMIT: 
'FOR' KI"I 'STEP' 1 'UNTIL' N-INDEX+I 'DO' 
'IF' COLLSTCKJ=IOOOO+NAV+INDEX 'THEN' 'BEGIN' 

'IF' OCNAV+INOEX1=1 'THEN' 'GOTO' REDUCE 
'ELSE' 'GOTO' PREPARE AN LP PROBLEM; 'END'; 

PUT THE CUT: 
'IF' OCNAV+INOEXJ"O 'THEN' 
TCI.N-INOEX+31 := 0.0000001-TCI.N-iNOEX+21 
'ELSE' TCI.N-INOEX+21 1= TCI.N-INOEX+21-0.999999; 

PUT FANCYHIGH UPPER LIMITS ON SLACKSI 
'FOR' 11=1 'STEP' I 'UNTIL' M 'DO' 
'IF' ROWLSTCIl > 1000 'THEN' TCI.N+2J 1= 1000000000000; 
'FOR' J:"I 'STEP' I 'UNTIL' N-INOEX+l 'DO' 
'IF' COLLSTCJl > 1000 'AND' COLLSTCJJ < 1001 + M 
'THEN' TCM+2.Jl 1= 1000000000000; 
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CALL INTPI 
EXITTYPElcl; RlcKI=ROWNI=COLNI=O; 
INTP(T.M.N-INDEX+I.NEQ.NAV.ROWLST.COLLST.ROWLST. 
R.K.ROWN.COLN.EXITTYPE); 
'IF' EXITTYPE = -10 'THEN' 'GOTO' CALL INTP; 
'IF' 'NOT' EXITTYPE-O 'THEN' 'GOTO' END OF BRANCH; 

'FOR' JI-I 'STEP' I 'UNTIL' N-INDEX+I 'DO 
'IF' (COLLSTCJJ<IOOO 'OR' COLLSTCJJ>NEQ+IOOO) 
'AND' TCM+I.JJ<O 'THEN' 'GOTO' CALL INTP; 

'FOR' KI=I 'STEP' I 'UNTIL' N-INDEX+I 'DO' 
'IF' COLLSTCKJ~NAV+INDEX 'OR' COLLSTCKJ-IOOOO+NAV+INDEX 
'THEN' 'GOTO' REDUCE; 

REDUCEI 

REMOVE KTH COLUMNI 
'FOR' 11=1 'STEP' I 'UNTIL' M+2 'DO' 
'FOR' J:-K+I 'STEP' I 'UNTIL' N-INDEX+3 'DO' 
TC I.J-I JI-TC I.JlJ 

REMOVE KTH NAME FROM LIST OF COLUMNAMESI 
'FOR' JI-I 'STEP' I 'UNTIL' N-INDEX+I 'DO' 
'IF' COLLSTCJJ > NAV 'AND' 'NOT' 
(COLLSTCJJ > 1000 'AND' COLLSTCJJ < 1001 + M) 
'THEN' COLLSTCJJ 1= COLLSTCJJ - II 
'FOR' II-NAV+I 'STEP' I 'UNTIL' M 'DO' 
'IF' ROWLSTCIJ < N 'THEN' ROWLSTCIJI-ROWLSTCIJ-I; 
'FOR' JI-K+I 'STEP' I 'UNTIL' N-INDEX+I 'DO' 
COLLSTCJ-IJI=COLLSTCJJI 

CHECK FOR NO SOLUTION OF PARTICULAR PROBLEMI 
'IF' EXITTYPE'O 'THEN' 
'GOTO' END OF BRANCH; 

CHECK WHETHER WORTHWHILE TO PERSUEI 
'IF' 'NOT' TCM+I.N+I-INDEXJ > SOLUTION VALUE 
'THEN' 'GOTO' END OF BRANCH; 

CHECK IF ADDITIONAL INTEGER RESTRICTIONS ARE METI 
INTGI -'TRUE' I 

'FOR' PI-INDEX+I 'STEP' I 'UNTIL' NZOV 'DO' 'BEGIN' 
NUMI-OI 
'FOR' 11"1 'STEP' I 'UNTIL' M 'DO' 
'IF' ROWLSTCIJ=NAV+P-INDEX 'THEN' NUM:=TCI.N+I-INDEXJ; 
'FOR' J"'I 'STEP' I 'UNTIL' N-NZOV-INDEX 'DO' 
'IF' COLLSTCJJ-NAV+P-INDEX+IOOOO 'THEN' 
NUMI~lJ 

'IF' NUM < 0.000001 'THEN' NUMI=O; 
'IF' NUM > 0.99999 'THEN' NUMI=I; 
'IF' 'NOT' (NUM=O 'OR' NUM=I) 'THEN' INTGI='FALSE'; 
DCNAV+PJI"NUM; 
'END' ; 
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'IF' 'NOT' INTG 'THEN' 'GOTO' MARK NON INTEGER 501.; 

MARK NEW IMPROVED INTEGER S01.UTIONI 
S01.UTION VA1.UEI-TCM+I,N+I-INDEXlJ 

PUT eRANCHED ZO VARI 
'FOR' It-I 'STEP' I 'UNTI1.' INDEX 'DO' 'BEGIN' 

OUTROW1.STCIll-NAV+IJ 
OUTAC 1,1 ll-DCNAV+IlJ 'END'J 

INITIATE EXIT TAB1.EAU PARAMETERSI 
OUT N I- N-INDEXJ III-INDEXJ 

PUT OTHER ZO VARI 
'FOR' NAMEI-NAV+INDEX+1 'STEP' 1 'UNTI1.' NAV+NZOV 'DO' 
'BEGIN' 

IlI-ll+lJ 
OUTROW1.STCIIll~NAMEJ 

'FOR' II-NAV+I 'STEP' I 'UNTI1.' M 'DO' 
'IF' ROW1.STCIl-NAME-iNDEX 
'THEN' DUTACII,lll-TCI,N-iNDEX+ll; 
'FOR' JI-I 'STEP' I 'UNTI1.' N-INDEX 'DO' 
'I F' C01.LSTC Jl-NAME 'THEN' 'OUTAC I I, I 1 1-0; 
'FOR' JI-I 'STEP' 1 'UNTI1.' N-INOEX 'DO' 
'IF' C01.LSTCJl-IOOOO+NAME -INDEX 
'THEN' OUTACII,lll-iNTACM+2,NAMElJ 
'END' J 

PUT VAR OF TYPE A8S1 
'FOR' NAMEI-I 'STEP' I 'UNTIL' NAV 'DO' 'BEGIN' 

OUTROWLSTCNZOV+NAMEl I- NAMEJ 
OUTACNZOV+NAME, I 1 I-TCNAME,N+1-INDEX]; 'END'; 

III-NZOV+NAVJ 

PUT ORDINARY VARIABLES WITH COLUMN NAMESI 
'FOR' NAMEI-NZOV+NAV+I 'STEP' I 'UNTI1.' N 'DO' 'BEGIN' 

'FOR' 1I-NAV+1 'STEP' I 'UNTIL' M 'DO' 
'IF' ROWLSTCIl-NAME-iNDEX 'THEN' 'BEGIN' 

III-II+I; 
OUTROW1.STCIIll-NAMEJ 
OUTAC 11,1 1 I-TC I, N+ I-iNDEXl+ INTACM+3, NAME]; 'END'; 

'FOR' Jlal 'STEP' I 'UNTI1.' N-INDEX 'DO' 
'IF' C01.1.STCJl-NAME+IOOOO-iNDEX 'THEN' 'BEGIN' 

IlI-ll+lJ 
OUTROWLSTCII ll-NAMEJ 
OUTACII,lll-iNTACM+2,NAMEl+INTACM+3,NAME1J 'ENO'J 

'END' J 

PUT S1.ACKSI 
'FOR' NAMEI-IOOO+I 'STEP' 1 'UNTI1.' 1000+M 'DO' 'BEGIN' 

'FOR' 1I-NAV+1 'STEP' I 'UNTI1.' M ,~O' 
'IF' ROWLSTCIl-NAME 'THEN' 'BEGIN' 

111-U+lJ 
OUTROW1.STCII llaNAME; 
OUTAC 1 I, Ill-TC I,N+I-INOEXH 'END'; 'END'; 
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OUT M a- II) 

'GOTO' END OF BRANCH; 

MARK NON INTEGER SOLa 
NEWCODEa =CODEJ 
'FOR' Pa-INDEX+I 'STEP' I 'UNTIL' NZOV 'DO' 
NEWCODEa-NEWCODE+CI+DtNAV+Pl)*3 f CINDEX-P)J 
'FOR' Ja-I 'STEP' I 'UNTIL' NSL 'DO' 'BEGIN' 

'IF' CODELISTtJl-O 'THEN' CODELISTtPla=NEWCODEJ 
'GOTO' 8RANCH AGAINJ 'END'J 

WARNING FOR EXHAUSTING SOLUTIONLISTa 
'IF' P> NSL 'THEN' 'BEGIN' 

NEWL I NEC I )J 

WRITETEXTC'C 'SOLUTIONSILISTIEXHAUSTED') '); 'END'J 

BRANCH AGAINa 

'IF' INDEX-NZOV 'THEN' 'GOTO' END OF BRANCH; 

'BEGIN' 'REAL' SAVED ONEJ 

CALCULATE MAXIMUM ONEBRANCHI 
ONEDISI-I-TtNAV+I.N-INDEX+I1J 
QUOI-IOOOOOOOOOJ 
'FOR' Ja-I 'STEP' I 'UNTlL"N-lNDEX 'DO' 
'IF' 'NOT' CCOLLSTtJ]>IOOO 'AND' COLLSTtJl < IOOO+NEQ+I) 
'AND' TtNAV+I.Jl < 0 'THEN' 'BEGIN' 

'IF' -TtM+I.Jl/TtNAV+I.Jl < QUO 'THEN' 
QUOa"-TtM+I.Jl/TtNAV+I.JlJ 'END') 

SAVED ONE I- TtM+I.N-INDEX+Il - QUO*ONEDISJ 

CALCULATE MAXIMUM ZEROBRANCHI 
ZERODISI-TtNAV+I.N+I1J 
QUOI-IOOOOOOOOOJ 
'FOR' JI-I 'STEP' I 'UNTIL' N-INDEX 'DO' 
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'IF' 'NOT' CCOLLSf[Jl > 1000 'AND' COLLSf[Jl < IOOO+NEQ+I) 
'AND' TtNAV+I.Jl > 0 'THEN' '8EGlN' 

'IF' TtM+I.Jl/TtNAV+I,Jl < QUO 'THEN' 
QUol-TtM+I.Jl/TtNAV+I.JlJ 'END'J 

ZERo8RANCHI 
RE VALUE I- OJ 
'IF' 'NOT' TtM+I.N-INDEX+Il - QUO*ZERoDIS > 
SOLUTION VALUE 'THEN' 'GOTO' ONEBRANCHJ 

FORKa 
DtNAV+INDEX+I11-RE VALUEJ 
NEWCODEI-CoDEJ 
NEWCoDE.-NEWCODE+CI+RE VALUE)*3fCNZOV-lNDEX); 
BRANCH(NEWCoDE.RE VALUE.INDEX+I.TO BE SOLVED FROM NEW); 
TO BE SOLVED FROM NEW a= 'TRUE') 



BRANCHING METHODS 

ONEBRANCHI 
'IF' RE VALUE"O 'THEN' 'BEGIN' 

'IF' 'NOT' SAVED ONE> SOLUTION VALUE 
'THEN' 'GOTO' END OF BRANCH; 
RE VALUE 1= 11 'GOTO' FORKJ 'END'; 'END'; 

END OF BRANCHI 'END'J 

PARTLY FILL EXIT NAMELISTI 
'FOR' 11=1 'STEP' 1 'UNTIL' NZOV 'DO' OUTROWLSTCI JI"NAV+r; 
'FOR' 11=1 'STEP' 1 'UNTIL' NAV 'DO' OUTROWLSTCNZOV+IJI=r; 

FILL CODELIST AND SOL LIST WITH DUMMIESI 
'FOR' PI=l 'STEP' 1 'UNTIL' NSL 'DO' 'BEGIN' 

SOLUTION VALUES LI STC P J 1= 0; CODELI STC P J 1--1 0; 'END'; 

INITIATE SOLUTION VALUE LOWI 
SOLUTION VALUE 1= -1000000000J 

INITIATE TABLEAU ORDERI 
OUT M 1= MJ OUT N I" N-NZOV; 

BRANCHeo.o.o.'TRUE')J 

REGISTER WHETHER SOLVED: 
'IF' SOLUTION VALUE> -99999999 'THEN' EXITTYPEI=O 
'ELSE' EXITTYPEI=-lJ 

END OF ZOLPI 'END'J 
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20.2 Branching in the general mixed integer problem 

The general mixed integer problem is here defined as follows 

Maximise T = WI X 

Subject to Ax < b 

1. < x. < h. 
J J J 

(j 

and 

x. 
J 

1. + 1, 1. + 2 
J J 

(j n l + 1, n l + 2 

n l , n l + 1, ... , n) 

..... , 
) 
) 

n l + nirv) ) 

h. 
J 

(7.2.2) 

(20.2.1) 

(20.2.2) 

Here n is the total number of elements of ~, n l is the number 
of "free" variables which are not subject to any lower or upper 
bound, an nirv is the number of integer-restricted variables. 

It is more or less conventional to restrict integer-restricted 
variables to non-negative valued integers (Xj = 0, 1, 2 .... ), 
but this convention has no meaning in connection with the 
algorithm offered here, because the upper and lower limit 
facilities of sections 10.3 and 10.4 will be employed in any 
case. Note, however, that while upper limits may be put at 
some fancyhigh figure if no meaningful upper limit is intended, 
one should try to supply a realistic lower limit, for the 
reasons explained in section 10.4. 

The notion of the zero-branch and the one-branch, as discussed 
in section 20.1 may now be replaced by that of the lower branch 
and the higher branch. 

Branching consists of adding additional restrictions to the 
problem, the branching restrictions, or to be more precise in 
redefining upper and lower limits. We may branch by inequalities 
or by equations. If we branch by means of inequalities, we 
branch (split) the problem for some variable x. into two rump-
problems. J 

In the x. lower branch problem, x. 1S restricted to 
J J 

x. < int (x~) (20.2.3) 
I J J 

where xi is the current (fractional) value of x., int(x~) is 
the next lower integer number. J J 
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The x. higher branch problem, then contains the branching 
J 

restriction 

X. > int (x~) + 1 
J J 

(20.2.4) 

As we may find 
integer values 
by (20.2.3) or 

need to subsequently investigate different 
of x., we also refer to the problems restricted 
(20.2.4), as x. higher main branch and the 

J 

x. lower main branch problems. 
J 

There is no general rule which says that either (20.2.3) or 
(20.2.4) is binding on the integer optimum. 

Example 

Maximise T 

Subject to 

9 x -
1 

3 x2 > 7 xl' 10 xl + 11 x3 ~ 25, 0 < xl < 100, 

o < x2 ~ 100, 0 < x3 ~ 100, 

Xl and x2 integer-restricted, x3 continuous. 

The continuous optimum of this problem is xl = 2!, x2 = 5 5/6, 
x3 = 0, with a solution value of T = 5. 

The restriction 3 x2 ~ 7xl is binding in the continuous 
optimum, and it effectively reduces the amount of solution 
value to be obtained from a unit of xl' from 9 to 2. 

The integer requirements on xl and x2 imply however, more than 
3 units of x2 per 7 units of x2 ' except for exact multiples of 
xl = 3, x2 = 7. The resu~t is that the continuous variable 
x3 becomes a more econom~cal way of utilizing the 25 units of 
b2 , and the integer optimum is xl = x2 = 0, x3 = 2 1/11, with 
T = 4 2/11. 

A point in the algorithm where a previously existing LP problem 
is split into one or more sub-problems which differ only in 
the branching restriction on one variable, is called a node. 

There is no uniform convention with respect to equations or 
inequalities. Land and Doig {26J are generally credited with 
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having pioneered the branching method, and they use equations. 
Hence in our example, branching on x 2 would give rise to the 
x = 0, x 2 = 1, and x 2 = 2 branches - thereafter, for x 2 > 2!, 
tte problem becomes infeasible. Dakin (7J on the other 
hand uses inequalities. 

Partly for this reason the term "branch and bound method" which 
is otherwise usual is not used here. There is an element of 
ambiguity in this term because the word bound could refer either 
to a bound on the objective function or to a bound on a variable; 
we will simply speak of a branching method. 

A major problem in all branching algorithms is how to keep 
record of the de1eniation between those parts of the continuous 
feasible space area that have already been explored, and the 
areas that still need investigating and which may conceivably 
contain the optimum. 

Dakin solves this record-keeping problem by keeping a list 
of so-far unexplored problems. Every time a higher branch 
problem is chosen, the corresponding lower branch problem is 
added to the list of unexplored problems and vice versa. Land 
and Doig on the other hand, solve sub-problems strictly in order 
of declining solution value; as a result of this procedure their 
algorithm tends to involve a substantial number of sub-problems, 
which are in the process of further branching at the same time. 

The algorithm which is offered here, solves the record-keeping 
problem by postulating a re-ordering of the variables, using 
just two sub-problems per variable at the same time. It is 
agreed by all those who have tried their hands on integer 
programming that it is computationally efficient to branch 
on a variable for which the integer restriction is in some 
sense more binding than for other variables. 

The criterion opted for here is to branch on the variable 
which is furthest away from any integer value, that criterion 
also appears to be the one used in most other algorithms. The 
ordering system is as follows: 

The number of variables, which are already subject, or being 
subjected to branching restrictions, is called the node-index, 
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or the node level. The variables to which branching restrictions 
apply, are then called the variables at or below the node index. 
The variables at or below the node index are considered as 
ordered according to the time of branching. The variables at or 
below the node index may further be distinguished as follows: 

The variable on which branching took place in the continuous 
problem before there were any branching restrictions on other 
variables is indicated as the leading variable, the variable on 
which branching is now taking place or has just taken place is 
indicated as the variable at the node index. 

The variables on which branching took place previously and on 
which branching restrictions are still in force in the current 
problem are together indicated as the variables below the node
index. There is no ordering of the variables to which no 
branching restrictions apply, and these (unordered) integer
restricted variables on which no branching restrictions apply 
in the current problem are called the variables above the node
index. 

The ordering of the variables below tne node-index permits us 
to develop additional sub-problems with branching restrictions 
which differ only in the constant, in a systematic way. 

Suppose, for example, that we are dealing with a problem in 
which there are 4 integer restricted variables. We will indicate 
them as xl' x 2 ' x3 and x 4 ' but it should be borne in mind that 
the first integer restricted variable may be preceeded by any 
number of free variables and that the last integer restricted 
variable may be followed by any number of bounded continuous 
variables. (We impose the convention that free variables come 
before integer-restricted variables, and that bounded continuous 
variables come after integer restricted variables.) 

Variable lower branch higher branch current branch 

x3 3 7 higher 

x 2 5 exhausted lower 

x 4 unexplored 4 higher 

xl unexplored unexplored ? 

node-index 3. 
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This record sheet gives us the following information: 

The variable on which branching took place for the first time, 
was x~, i.e. x3 is the leading variable. Sub-problems which 
conta1ned the integer requirements x3 = 4, x3 = 5, and x1 = 6, 
have already been fully explored; if there was an indication 
that the integer optimum could be characterized by x3 = 4, 
x3 = 5, or x3 = 6, a best so far attained integer solution with 
4 ~ x1 ~ 6 is already noted separately, to be available for 
output if it still is the best solution at the end of the 
algorithm. The x3 = 3 sub-problem has been found feasible 
(otherwise the x lower branch would be indicated as being 
exhausted), but ihis sub problem has not so far been explored 
further, because the solution value of the x3 = 7 sub problem 
was found to be higher. The problem which is currently being 
investigated, contains the branching restrictions x3 = 7, 
x2 = 5, x4 = 4, while no branching restriction applies as yet 
to xl' 

The x~ = 7, x2 = 5, x4 = 4 sub problem has been developed, by 
treat1ng the x3 = 7 sub-problem as an integer programming 
problem in its own right, with x 2 ' x4 and xl being the inter
restricted variables. We distinguish branching in a sub 
problem and thereby developing branching restrictions on more 
variables, from branching on the leading variable by using 
the term further branching. All branching takes place on the 
variable which is furthest away from any integer value. If 
therefore follows that x2 was the variable furthest away from 
any integer value in the continuous optimum of the x3 = 7 sub 
problem, and x4 was found as the variable furthest away 
from any integer value in the continuous optimum of the x3 = 7 
x2 = 5 sub problem. 

The value of x4 in the optimum solution of the x3 = 7, x2 = 5, 
sub-problem must have been in the interval 3 < x4 < 4, otherwise 
the x3 = 7, x2 = 5, x4 = 4 sub problem would not be the first 
problem to be developed when branching on x 4 . The variables 
x3 ' x2 and x4 (ordered in that way) are the variables at or 
below the node-index, xl is the one variable above the node
index; x3 and x 2 are the variables below the node-index, x4 
is the variable at the node-index. 

To state the algorithm somewhat more formali"y, it may be useful 
to introduce some additional notation and terminology. 

xj(k) is the jth element of ~, on which branching took place 
at node level k. 
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The sub-problem which contains the branching restriction 

Xj(k) = int (x!(k) + f + 1) (20.2.5) 

(and no branching restrictions above node level k) is called 
the fth further out sub-branch problem on the Xj (k) higher 
branch. 

The similar problem for f = 0, is called the opening problem 
of the Xj(k) higher main branch. Similarly, for the lower 
branch, the opening problem contains the equation-equivalent 
of (20.2.3), and the fth further out problem on the lower 
branch contains the restriction 

Xj (k) = int(x!(k) - f) (20.2.6) 

A sub branch problem which differs from a previously developed 
one on the same main branch, only by the fact that f has been 
increased by one, is called the next further out problem on 
the main branch ~n question. 

The exploration of both main branch problems and of sub branch 
problems takes place under the side condition that the value 
of the objective function must exceed a previously set figure. 
That figure is initially - 00 (in computational implementation: 
- 1024 ) but as feasible integer solutions are found the 
required minimum is increased each time an improved solution 
is identified. 

A sub branch problem which, though possessing an optimal and 
feasible solution, does not attain the required solution value 
is called a sub-optimal sub-branch problem. 

A sub branch problem is said to be fully explored if we have 
found the integer optimum of the sub branch problem, but also 
if it is found to be empty, empty of integer solutions, sub
optimal or empty of non sub-optimal integer solutions. Since 
sub-branch problems are solved by treating them as integer 
programming problems in their own right, we refer to them ~n 
that capacity as head problems, i.e. a head problem is a 
problem which is split into sub-problems by branching. 

A main branch is said to end if we establish that the integer 
optimum (if it exists) does-not obey the restrictions of any 
of its remaining unexplored further-our problems. 

This may occur on the following indications: 

a) A sub branch problem is found to be empty 

We may interpret the br~nching restriction on the variable at 
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the node index as an inequality even where it is transformed 
from a binding inequality into an equation, when the sub 
branch problem is redefined as a head problem in order to 
branch further on the remaining variables above node-index. 

Further out problems may then be said to be developed from 
each other by parametrically displacing the constants in 
(20.2.3) and (20.2.4). Once such a displacement results in 
the generation of an empty problem, this automatically 
implies the emptiness of all remaining further out problems. 
(See also Chapter XIII). 

b) A sub-branch problem is found to be sub-optimal 

The same logic as explained under a) for an empty problem 
applies here. If the required value of the objective function 
is added as a restriction, cases a) and b) become formally 
undistinguishable. 

c) The (unbranched) solution of the sub-branch problem lS 

found to be integer 

This condition is verified only if the solution is not sub
optimal; therefore a newly identified integer solution is by 
implication an improved integer solution, and identifies a 
new lower limit of all acceptable solution values. 

Sub-optimality of the remaining further-out problems is then 
implied. 

Note that all three of these end of main branch indications 
relate to the unbranched solution of a sub branch problem of 
the main branch itself, not to sub-problems of these sub
branch problems. For example an integer programming problem may 
contain an equation restriction let us say 3 x2 = 7 x 5 ' and 
we may branch on x2 at x 2 = 4.5. As x 2 = 5 implies x5 = 2 1/7, 
the x = 5 sub problem is empty of integer solutions, this 
fact aoes not contradict the possibility that further out 
problems, e.g. the x 2 = 7 sub-problem may yet yield an 
integer solution! 

One computational point is useful to mention here, before we 
outline the algorithm in more detail. This relates to re-entry 
of the LP algorithm with an infeasible solution. We can specify 
both upper and lower limits simply by putting negative entries 
in the appropriate tableau-cells, and in the case of a lower 
limit also altering the non-updated limit. 
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The following tableau - which is in fact simply a set of figures 
rather than the solution of a specific problem may illustrate 
the point. 

TABLEAU 20.2 A 

RECAPITULATION OF LIMITS. 

NAME ! ! S 1 S 2 ! ! VALUE DIST. 
--------------------------------------
X 1 ! !. -1-10 0.70 ! ! 2.15 97.85 
X 2 ! ! -0.10 0.50 ! ! 7.65 92.35 
--------------------------------------

T ! ! 3.50 1 .1 7 ! ! 5.40 X 
UB ! ! X X ! ! X X 
LB ! ! 0 0 ! ! X X 

It will be recalled (see section 10.3 and 10.4) that lower 
limits are not part of the LP algorithm as such, and that they 
are - in the computational implementation offered in this book 
conventionally stored in the m + 3d row of the tableau, and stay 
in their original place. Hence the two zeros of the lower bound 
row indicate that xl and x 2 as reported in the tableau itself 
are the true values of the variables their lower limits being 
zero. 

The upper limits on the other hand go with the variables and are 
re-formed when a variable is eliminated as the sum of its old 
value and the distance from its upper limit. The computational 
implementation of the branching method offered here uses an 
integer programming adaptation of the basic LP algorithm, 
called INTP which is discussed in more detail later on in 
Section 21.4. (The same procedure INTP is also employed by the 
cutting algorithm.) 

Itis assumed that the upper limits on Xl and x 2 are so far both 
at 100. If we branch on x 2 ' the x 2 ~ 8 restricEion is put by 
the simple device of replacing the entry of 7.65 in the x 2-row/ 
value column by 7.65 - 8 = -0.35 while at the same time 
setting the un-updated lower limit at 8. 
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The tableau now becomes: 

TABLEAU 20.2 B 

LOWER LIMIT REENTRY TABLEAU. 

NAME I! 5 1 5 2 II VALUE DIST. 
--------------------------------------
X 1 ! ! -1 .1 0 0.70 I! 2.15 97.85 
Y 2 ! I -o.} 0 0.50 II -0.35 !l2.35 
--------------------------------------

T I! 3.50 1 .17 " 5.40 )( 

UB ! ! :x X II :x )( 

LB ! ! 0 8 I! X )( 

where y? ~s (see section 10.4) ·the.d~st~nce between Xz and i7s 
lower 11m1t. As far as Lhe lower 11m1t 1S concerned, the bas1c 
LP algorithm as discussed in Part I and written down as the 
LINP procedure would suffice. (The phase I substitute 
objective function does not distinguish between slack-variables 
and elements of x, it just picks negative valued variables). 
The one further bit of programming done to serve this aspect 
of the lower limit is an adaptation of the reporting procedure 
of section 10.4 which distinguished between branched limits in 
an exit-tableau, and initial limits in the separately stored 
set-up tableau. 

The upper limit is dealt with in an ana1ogeous way, the 
restriction x2 ~ 7 is put in the tableau, simply by reporting 
its upper limit distance to be 7 - 7.65 = - 0.65, and the 
opening problem of the x 2 lower branch is written as follows: 

TABLEAU 20.2 C 

UPPER LIMIT REENTRY TABLEAU. 

NAME " 5 1 5 2 II VALUE DIST. 
--------------------------------------
X 1 II -1 .10 0.70 II 2.15 97.85 
X 2 " -0.10 0.50 " 7.65 -0.65 
--------------------------------------

T " 3.50 1 • 17 II 5.40 X 
UB " X X II X X 
LB II 0 0 II X X 
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i.e. x2 is in excess ~f its upper limit, the excess being 0.65. 
The integer programming adaptation of the LP algorithm INTP as 
distinct from LINP) will react to this tableau by generating 
the appropriate substitute objective function, flicking the 
x 2-row round as a b 2 row and make the required step. 

TABl.EAUX 20.2 D AND E 

El.EMINA Tl ON OF AN UPPER l.IMIT. 

NAME II S 1 S 2 II VAl.UE D1ST. 
--------------------------------------
X 1 " -1 .1 0 0.70 II 2.15 97.85 
B 2 II 0.10 (-0.50) II -0.65 7.65 
--------------------------------------

T II 3.50 1 .17 II 5.40 X 
UB II X X II X X 

l.B II 0 0 II X X 

NAME II S 1 B 2 " VAl.UE DIST. 
--------------------------------------
X 1 II -0.96 1 .40 II 1.24 98.76 
S 2 II -0.20 -2 II 1 .30 X 

--------------------------------------
T " 3.73 2.34 " 3.88 X 

UB II X 7 II X X 
l.B " 0 0 I! X X 

The same facility also makes it possible to generate the next 
further out problem, by subtracting the branching-restriction 
column from the value column and adding it to the upper limit 
distance column (and changing the separately stored constant 
of the upper limit restriction). 
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Hence a re-entry tableau of the x2 
as follows: 

6 sub-problem ~s written 

TABLEAU 20.2 F 

A FURTHER-OUT REENTRY TABLEAU. 

NAME! ! S 1 B 2 I! VALUE DlST. 
--------------------------------------
X 1 ! ! -0.96 1.40 ! ! -0.16 100.16 
5 2 ! I - 0.20 -2 I! 3.30 X 

--------------------------------------
T ! ! 3.73 2.34 II 0.54 X 

UB ! ! X 6 II X X 
LB ! ! 0 0 II X X 

and the same method would always produce a tableau which can 
be handled by the Phase I of INTP, even if the result would 
include negative distances from upper limits. 

We are now in a position to summarise the algorithm in some 
detail. The branching procedure may be called at any node-level. 
It performs the following operations 

it reserves memory space for an upperbranch tableau and a 
lower branch tableau, which are released when returning to the 
point of call 

it branches on one variable, and for the appropriate values 
of that variable generates a call to itself, one node-level 
higher 

it writes any integer solutions of which the solution value 
exceeds the previously attained one, to an output-buffer 
tableau. 

it makes appropriate adjustments to the branching record. 

Since each call generates further calls until the problem is 
exhausted, the effect of a single call is to ask for solution 
of the integer programming problem in which the variables 
below and at the node-index are set at specific integer values, 
whereas the variables above the node-index are specrfied as 
integer restricted variables, but will generally be fractionally 
valued in the solution offered at the moment of calling. 

We now proceed as follows: 

Preliminary 

Apply the Simplex Algorithm to the continuous problem (If an 
empty or unbounded problem is met at this stage, terminate the 
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algorithm). 

Set the minimum required solution value at _1024 . 

Call the branching procedure at node-level 1, offering the 
continuous problem as head problem. 

Once inside the branching procedure, our operations-summary 
is as follows: 

Stage 1 

Search for a variable to branch on 

679 

Search for the integer restricted variable x'(k)' which is 
furthest away from any integer value. If nonJ is found, all 
integer-restricted variables being integer valued, declare the 
current head problem the integer optimum and exit to the point 
of call. (This can only happen at this stage if the head problem 
is the continuous problem). 

Stage 2 high 

Open the higher branch 

Mark the higher branch as being opened, and the lower branch 
as unexplored. Copy the current head problem into the higher 
branch tableau and make the adjustments needed to convert it 
into a re-entry tableau of the opening problem of the higher 
main branch. 

Stage 2a high 

Re-enter the Simplex Method (higher branch) 

If the current higher branch sub-problem is found empty or its 
solution sub-optimal, mark the higher branch as exhausted, and 
go to stage 3, (otherwise proceed to stage 2b high).------

Stage 2b high 

Check for integer solution (higher branch) 

If the current solution is integer in all integer-restricted 
variables, write the current tableau to the output-buffer, set 
the required solution value at its new higher figure and mark 
the higher branch as exhausted. (This is of necessity the case 
at maximum node-level, hence the branching process does not 
carryon indefinitely). Go to Stage 3. 
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Stage 2 low 

Open the lower branch 

Mark the lower branch as being opened. 

Copy the current head problem into the lower branch tableau 
and make the adjustment needed to convert it into a re-entry 
tableau of the opening problem of the lower main branch. 

Stage 2a low 

Re-enter the Simplex Method (lower branch) 

If the current lower branch sub-problem is empty, or its 
solution sub-optimal, mark the lower branch as exhausted, 
and go to stage 3, otherwise proceed to stage 2b low. 

Stage 2b low 

Check for integer solution (lower branch) 

If the current subproblem is integer in all integer-restricted 
variables, write the current tableau to the output-buffer, set 
the required solution value at its now higher figure and mark 
the lower branch as exhausted. 

Stage 3 

Choose what to do next 

If both branches are exhausted, exit to the point of call, i.e. 
to the end of the algorithm in the main programme if the node
level is one, and otherwise to the end of one of the two sides 
of stage 4, one node-level lower. 

If the lower branch is unexplored, go to stage 2 low to open 
the lower branch. 

If the higher branch is exhausted go to stage 4 low; if the 
lower branch is exhausted, go to stage 4 high. 

If the solution value of the current lower branch sub-problem 
exceeds that of the current higher branch sub-problem, go to 
stage 4 low, otherwise proceed to stage 4 high. 

Stage 4 high 

Branch further (high) 

Offer the current higher branch problem as head-problem, with 
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all branching restrictions (at or below the node-index, there 
are no other), coded as equations, as head-problem to the 
branching procedure itself, one node-level higher, thereby 
again entering the branching procedure at stage 1. 

Stage 4a high 

(When getting at this point the last-formulated higher branch 
problem has been fully explored) 

Push upwards 

Adapt the value-column, the upper limit distances column and 
the lower limit on Xh(k) , to form a re-entry tableau for the 
next further-out problem on the higher branch. 

Go to stage 2a high, to solve the new further-out problem. 

Stage 4 low 

Branch further (low) 
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Often the current lower branch problem as head-problem, with all 
branching restrictions coded as equations, as head problem to 
the branching procedure itself, one node-level higher than the 
current one. 

Stage 4a low 

Push downwards 

Adapt the value column, the upper limit distances column and 
the upper limit on Xj(k)' to form a re-entry tableau for the 
next further-out problem on the lower branch. 

Go to stage 2a low, to solve the new further-out problem. 

End of branching procedure. 

We now illustrate the algorithm, by reference to the small 3-
variable problem which was stated earlier in this section but 
which is repeated here. 

Maximise T = 9x - 3x2 + 2x3 1 

Subject to 7xl - 3x3 < 0 

10x l + llx3 < 25 

(0 < x < 100, o .::. x2 < 100, 
- 1 

o < x < - 3- 100 , x l ,x2 integer) 
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The following operations are involved 

Preliminary 

Solve the continuous problem, finding an optimal and feasible 
solution, xl = 2.50, x 2 = 5.83, x3 = 0, T = 5. 

Enter the branching procedure with node-index 1 

Stage 1 

Find xl as xj(k)' to be branched on. 

Stage 2 high 

Form the re-entry tableau as follows 

TABLEAU 20.2 G 

OPENING TABLEAU OF THE XI HIGHER BRANCH (EMPTY) 

NAME! ! 

Y I !! 
X 2 !! 

T ! I 
UB !! 
LB ! I 

S I 

-0.33 

X 
3 

S 2 

0.10 
0.23 

X 3 ,! VALUE DIST. 

lol0!! -0.50 97.50 
2.57 ! I 5.83 94.17 

0.20 0.20!! 5 
X 
X 

X 
X 
X 

X 100 I! 
I! 

(Conform section 10.4 lower bounds are stored in the cells 
which correspond to the variable's original position, the 
difference between the zero in the set up tableau and the 3 
in the node 1 tableau, permits us to distinguish y, as a 
branched variable from the original xl variable even where 
their numerical codes are identical). 

Stage 2a high 

On re-entering the Simplex Algorithm the problem is found to 
be empty. (in the small example this is obvious without 
reference to a tableau, xl > 3 contradicts lOx + llx3 < 25, - 1-
x3 :=.. 0). 

We mark the xl higher branch as exhausted. 
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Stage 3 

Since the lower branch 1S unexplored, we go to stage Z low. 

Stage Z low 

We form the re-entry tableau 

TABLEAU 20.2 H 

OPENING TABLEAU OF THE XI LOWER ~RANCH 

NAME! ! S I S 2 X 3 ! I VALUE DIST. 

X I ! I 0.\ 0 1 • 1 0 ! ! 2.50 -0.50 
X 2 ! I -0.33 0.23 2.57 ! ! 5.B3 94.17 
------------------------------------------------

T ! ! 1 0.20 o .20 I! 5 X 
UB ! I X X 100 ! ! X X 
LB ! I ! ! X X 

Stage Za low 

On re-entering the Simplex Method, we find a new optimal 
tableau, which is 

TABLEAU 20.2 I 

CONTINUOUS OPTIMUM OF Xl LOWER BRANCH HEADPROBLEM 

NAME! ! 

X 3 !! 
X 2 !! 

T !! 
UB !! 
LB !! 

S 1 

-0.33 

X 

S 2 

0.09 

0.\8 
X 

B 1 !! VALUE DIST. 

-0.91 II 
2.33 !! 

0018 !! 
2 !! 

! ! 

0.45 99.55 
4.67 95.33 

4.91 
X 
X 

X 
X 
X 

This solution is not suboptimal, we proceed to stage Zb low. 

Stage Zb low 

We find that the solution 1S not integer 1n x Z ' therefore we 
go to stage 3. 
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Stage 3 

Since the xl higher branch is empty, (has been exhausted) 
further branching now takes place on the last developed problem 
on the xl lower branch. 

Stage 4 low 

Offer the xl = 2 sub-branch problem as head problem, for 
further branching at node-level 2. 

Stage 1 

We find x2 as the next variable to branch on. 

Stage 2 high 

We form the re-entry tableau 

TABLEAU 20.2 J 

REENTRY TABLEAU OF THE XI = 2. X2 ~ 5 PROBLEM 

NAME II S I S 2 B 1* II VALUE DIST. 

X 3 I! 0.09 -0.91 II 0.45 99.55 
Y 2 ! ! (-0.33) 2.33 II - 0 .33 93.33 
------------------------------------------------

T ! ! 1 O. 18 0.18 ! ! 4.91 X 
UB II X X 2 II X X 
LB I! 5 II X X 

* B1 NOT TO ENTER THE BASIS 

N.B. In actual computational implementation xl would be 
temporarily recoded as sl~and sl and s2 as s2 and s3, 
to conform with the coding of equations discussed in. 
section 10.2. 

Stage 2a high 

We find a new optimum tableau as follows: 
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TABLEAU 20.2 K 

OPTIMUM OF THE XI 2. X2 ~ 5 PROBLEM 

NAME II 

X 3 " 
S 2 II 

T I I 
UB II 
LB I I 

Y 2 

-3 

3 
95 

S 2 

0.09 
o 

0.18 
X 
5 

B 1* II VALUE DIST. 

-0.91 " 
-7 II 

7.18 It 
2 I I 

I I 

0.45 99.55 
1 X 

3.91 
X 
X 

X 
X 

* Bl NOT TO ENTER THE BASIS 

This solution is not sub-optimal, hence we proceed to stage 2b 
high. 

Stage 2b high 

We find the solution integer, therefore xl = 2, x2 = 5, 
T = 3.91 is listed as the best so far obtained integer solution. 
We mark the x higher branch (of the xl = 2 subproblem) as 
exhausted, ana require all future solutions to satisfy the 
condition T > 3.91. 

Stage 3 

Since the x 2 lower branch is so far unexplored, we go to 
stage 2 low. 

Stage 2 low 

We form the re-entry tableau as follows 

TA8LEAU 20.2 1. 

REENTRY TABLEAU OF THE Xl = 2. X2 ~ 4 PROBLEM 

NAME II S 1 S 2 D 1*!! VALUE DIST. 
------------------------------------------------
X 3 ! I 
X 2 ! I -0.33 

0.09 -0.91 !I 
2.33 II 

0.45 99.55 
4.67 -0.67 

------------------------------------------------
T II 

U8 I I 
1.8 I I 

x 
0.18 
X 

0.18 II 
2 !! 

II 

4.91 
X 
X 

x 
X 
X 
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This is an empty problem, the substitute objective function 
is in this case: 
sum of infeasibilities = b2 = -0.33 sl + 2.33 bt and since bl 
is an equation slack,no permitted incoming variable is found. 
We mark the x2 lower branch (of the xl = 2 subproblem) as 
exhausted. 

Stage 3 

Since both main branches at node-level 2 are exhausted we 
return to the point of call which is the end of stage 4 low, 
having found the integer optimum of the xl = 2 sub-problem. 

Stage 4a low (node-level 1) 

We develop the lower branch re-entry tableau as follows 

TABLEAU 20.2 M 

REENTRY TABLEAU OF THE XI =1 FURTHER OUT PROBLEM 

NAME! ! 

X 3 !! 
X 2 !! 

T I! 
UB II 
LB ! I 

S I 

-0.33 

X 

S 2 

0.09 

0.18 
X 

B I*!! VALUE DIST. 

-0.91 II 
2.33 !! 

0.18 !! 
I !! 

I! 

I .36 98.64 
2.33 97.67 

4.73 
X 
X 

X 
X 
X 

~ BI NOT TO ENTER THE BASIS 

Stage 2a low 

We find the re-entry tableau already optimal and feasible 
without any steps, and the solution is not sub-optimal 
T = 4.73 > 3.91. 

Stage 3 

Since the xl higher branch is exhausted, we go to stage 4 low. 

Stage 4 low 

We offer the xl = I sub problem as head-problem, entering 
the branching procedure at node-level 2. 

Stage 1 

We find x2 as the next variable to branch on. 



BRANCHING METHODS 

Stage 2 high 

The higher branch re-entry problem re-entry tableau is as 
follows: 

TABLEAU 20.2 N 

REENTRY TABLEAU OF THE Xl =1. X2 ~ 3 PROBLEM. 

NAME !! 

X 3 !! 
Y 2 !! 

T ! ! 
UB ! ! 
LB ! ! 

• BI NOT 

S 1 

-0.33 

X 

TO ENTER 

Stage 2a high 

S 2 

0.09 

0.18 
X 
3 

B 1. I! VALUE DIST. 

-0.91 !! 1.36 98.64 
2.33 I! -0.67 97.67 

0-18 ! ! 4.73 X 
! ! X X 
! ! X X 

THE BASIS 

Xl = 1, x 2 = 3, (Y2 = 0), T = 2.73 

is found as optimal and feasible solution of the specified 
sub-problem. The solution of this problem is, however, sub
optimal, in view of the earlier found solution xl = 2, 
x 2 = 5, T = 3. 91 • 

We mark the x 2 higher branch as exhausted, and go to stage 3. 

Stage 3 

Since the x 2 lower branch (of the xl = 1 sub-branch problem) 
is still unexplored, we go to stage 2 low. 

Stage 2 low 

The re-entry tableau for the xl = 1, x 2 < 2 sub problem is 
developed, but in the interest of avoiai~g tedious repetition 
it is not copied here. 

Stage 2a low 

The xl = 1, x 2 ~ 2 subproblem is found empty (contradicts the 
restriction 3x2 ~ 7). 
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We mark the Xz lower branch of the xl 
as exhausted, and go to stage 3. 

1 subbranch problem 

Stage 3 

Having exhausted both the higher and the lower x 2 main branch 
problems, we return to the point of call i.e. tne end of 
stage 4 low of node-level 1. 

Stage 4a low 

The next further-out problem on the xl lower branch is the 
xl = 0 subbranch problem, the re-entry tableau of this 
problem is as follows 

The 
the 
the 

TABl.EAU 20.2 0 

REENTRY TABl.EAU OF THE Xl a 0 SUB-PROBl.EM. 

NAME II S 1 S 2 B .. II VAl.UE DIST. 
-------------------------------------------------
X 3 II 
X 2 II -0.33 

0.09 -0.91 II 
2.33 II 

2.27 97.73 
100 

-------------------------------------------------
T II 

UB II 
1.B II 

X 
0.18 
X 

• Bl NOT TO ENTER THE BASIS 

0.18 II 
II 
! I 

4.55 
X 
X 

x 
X 
X 

zerq values of x 2 arises in this case because, with Xl at 
value xl=O, the Einding restriction 7xl 23x2 determines 
corresponding value of xZ. 

In fact the tableau print was given as -0.00 and a further 
step was needed. 

Stage 2a low 

We find Xl = 0, Xz = 0 as solution, this solution is not 
sub-optimal. It was not actually the same vertex, the value 
of x 2 was exchanged against the slack of the restriction 
7xl - 3~2 2 0, the latter restriction now being classified as 
not bind1ng with the slack-variable entering the basis of the 
value sl = O. 

This solution is not sub-optimal, we therefore proceed to 
stage 2b low. 
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Stage 2b low 

The current sub-problem is found integer. We record the new 
solution xl = 0, x2 = ° as the best so far found one and set 
the required solution value as T > 4.55, and mark the xl lower 
branch as exhausted. 

Stage 3 

Having exhausted both the xl higher branch and the xl lower 
branch we exit from the branching procedure. 
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For the leading variable xl that is also the exit from the 
algorithm, xl = 0, x2 = ° with x3 2.27 is the integer optimum. 

20.3 Branching methods developed by other authors 

We now briefly discuss the two main published branching 
algorithms (Dakin's [7] and Land and Doig's (261 . 

We take Dakin's first. 

As already indicated, Dakin uses inequalities. Accordingly, 
in the example-problem discussed above, the first sub-problem 
is the xl ~ 3 sub problem. This is empty, and further branching 
takes place on the basis of the solution of the xl ~ 2 sub 
problem, for the same reasons as listed above for selecting 
the xl = 2 subproblem for further branching on other variables 
i.e. x 2 . The notion of developing further-out problems i.e. 
exploring other integer values of variables which have already 
been branched upon is dropped, in favour of that of the 
alternative problem. 

This feature of Dakin's algorithm is activated when the 
xl ~ 2, x 2 ~ 5 subproblem has been solved. 

This problem has a solution and it is in fact an integer 
solution, i.e. xl = 2, x 2 = 5. Despite the fact that this is 
an integer optimum of a sub-problem, the alternative problem 
xl ~ 2,:X" ~ 4 is tackled - as was done above with xl = 2, 
x2 = 4 sutproblem, the difference as yet still being solely 
the use of inequalities. 

The equivalent subproblem when using equations is empty but 
when inequalities are used, the solution xl = 1 5/7, 
x 2 = 4, x3 = 5/8, with T = 4 6/7, is found, a solution which 
satisfies the x-I ~ 2 restriction, but not the xl = 2 
restriction. Again branching on xl in the xl ~ 2, x 2 ~ 4 
sub-problem makes the development of further out problems with 
different values of xl superfluous. The xl ~ 1, x 2 ~ 4 
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subproblems is in due course developed as a sub-problem of 
the xl 2 2, xl ~ 4 subproblem, rather than as a further out 
problem of the xl lower branch. 

The obvious drawback of this is that it involves 
store information about the optima of a largish 
unpredictable number of alternative problems. 

the need to 
and generally 

This is in fact the very point on which Dakin criticised the 
Land and Doig procedure where the same problem arises in a 
different way. 

Land and Doig develop, in effect further out problems in much 
the same way as is done by the algorithm offered in this 
book. 

They do not, however, exhaust a subproblem before they develop 
the next subproblem at the same mode-level. 

This makes it necessary to preserve information about solutions. 
If all other subproblems are subsequently found to be either 
empty of integer solutions or alternatively to possess lower 
solution values it may be necessary to use the solution of a 
particular subproblem to the purpose of splitting it into 
new ones by further branching. 

Exhaustion of a particular subproblem as practiced by the 
algorithm offered in this book avoid this problem: either the 
sub-problem is empty of non-suboptimal integer solutions or 
we record a new best-so-far attained inter solution. 

20.4 Text-listing of a recursive branching procedure 

We now give the usual text-listing of a procedure-code .. 

It follows the outline given earlier in section 20.2 fairly 
closely, a feature which was enhanced by editing the text 
accordingly and inserting the labels stage 1, etc., even when 
they are not actually used by the code. 
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'PROCEDURE' BRANCH<T.M.N.NEQ.NAV.NIRV.MINV.ROWL.COLL. 
EXT.IROWL.EXROWL.EXCOLL.NODE.EXNODE.RECORD)J 
'ARRAY' T.EXTJ 
'INTEGER' H.N.NEQ.NAV.NIRV.NODE.EXNODEJ 
'INTEGER' 'ARRAY' ROWL.COLL.IROWL.EXROWL.EXCOLL.RECORDJ 
'REAL' HINVJ 

'BEGIN' 
'INTEGER' I.J.R.K.NEXTJ.ROWN.COLN.II.REENTRY. 
'REAL' DIST.NUMJ 

'PROCEDURE' INTP<T.H.N.NEQ.NAV.ROWLST.COLLST. 
IROWLST.R.K.ROWN.COLN.REENTRY)J 
'ARRAY' TJ 'INTEGER' H.N.NEQ.NAV.R.K.ROWN.COLN.REENTRYJ 
'INTEGER' 'ARRAY' ROWLST.COLLST.IROWLSTJ 
'ALGOL'; 

'BEGIN' 

'ARRAY' LT.HT[1IM+3.1IN+2lJ 
'INTEGER' 'ARRAY' LROWL.HROWL[1IHl.LCOLL.HCOLL[1INlJ 

'COMMENT' CODING CONVENTIONI 
THE BRANCHING RECORD IS KEPT IN THE ARRAY RECORD. 

ROW 0 OF THIS ARRAY IS RESERVED FOR THE NAME-CODES OF 
THE VARIABLES THAT HAVE BEEN BRANCHED ON. 

ROWS 1 AND 2 OF THE ARRAY RECORD CONTAIN THE RECORD OF 
THE STATUS OF THE VARIOtiS BRANCHES. AS FOLLOWS I 

o UNEXPLORED. 
1 PRELIMINARY EXPLORED. I.E. BEING OPENED. 
2 • BEING EXPLORED FURTHER OUTWARDS. I.E. FULLY OPEN. 
3 EXHAUSTED. 

ROW 3 IS RESERVED FOR THE EQUATION NAME-CODES OF THE 
BRANCHED VARIABLES ASSOCIATED WITH ANY BEST-SO-FAR-FOUND 
INTEGER SOLUTION. IN ASSOCIATION WITH THE OUTPUT-BUFFER 
TABLEAU. WHERE THESE UPPER AND LOWER LIMITS ARE CODED AS 
EQUATIONS. 

THIS REFERS TO THE MOMENT OF BRANCHING. OR OF WRITING TO 
THE EXIT-TABLEAU. 

THE ACTUAL VALUES OF THE LIMITS AT WHICH THE BRANCHING 
RESTRICTIONS ARE SET. ARE STORED AS NORMAL UPPER AND 
LOWER LIMITS ON THE VARIABLES IN QUESTION. 

INITIATE AS UNEXPLORED I 
'FOR' 11'·0.1.2 'DO' RECORD[I.NODEll=O; 

STAGE 11 
FIND A VARIABLE TO BRANCH ONI 
NEXTJI-OJ DISTI-O; 
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'FOR' I.-NAV+l 'STEP' 1 'UNTIL'M 'DO' 
'IF' ROWLC Il < NAV+NIRV+l 'THEN' 'BEGIN' 

'COMMENT' 
INTEGER RESTRICTED VARIABLES MUST BE PLACED DIRECTLY 
AFTER THE FREE VARIABLES. THEREFORE WE RECOGNIZE THEM 
BY THIS CONDITION ON THEIR NAME-CODES. J 

NUM .- TCI.N+ll-ENTIER(TCI.N+ll)J 
'IF' NUM>0.999 'THEN' TCI.N+ll.-ENTIER(TCI.N+ll+0.002)J 
'IF' NUM<O.OOl 'THEN' TC I.N+ll.-ENTIER(TC I.N+ll'; 
NUM .- TCI.N+ll-ENTIER(TCI.N+ll)J 
'IF' NUM > 0.5 'THEN' NUM.=l-NUMJ 
'IF' ABS(NUU > 0.00001 'AND' NUM > DIST 'THEN' 'BEGIN' 

III=U NEXTJ,"ROWLCIH DIST.'"NUMJ 'END'; 'END'J 

'IF' NEXTJ-O 'THEN' 'BEGIN' 
'FOR' J.-l 'STEP' 1 'UNTIL' N+2 'DO' 
'FOR' 11"1 'STEP' 1 'UNTIL' M+3 'DO' EXTC I.Jl.-TC I.Jl 
'FOR' II-I 'STEP' 1 'UNTIL'M 'DO' EXROWLCIl,"ROWLCIl 
'FOR' J.-l 'STEP' 1 'UNTIL' N 'DO' EXCOLLCJll-COLLCJl 
EXNODE I- OJ MINV I- TCM+l.N+llJ 
'GOTO' END OF BRANCHINGJ 'END'J 

RECORDCO.NODEJ I- NEXTJJ 

STAGE 2 HIGHI 
Copy HEAD PR TO HIGHER BRI 
'FOR' JI-l 'STEP' 1 'UNTIL' N+2 'DO' 
'FOR' II-I 'STEP' 1 'UNTIL'M+3 'DO' HTCI.Jll-TCI.JlJ 
'FOR' II-I 'STEP' 1 'UNTIL' M 'DO' HROWLEIlI-ROWLCIH 
'FOR' JI-l 'STEP' 1 'UNTIL' N 'DO' HCOLLEJlI=COLLEJJJ 

OPEN HIGHER BRANCHI 
RECORDC1.NODEJ I" IJ RECORDC2.NODEl I- 0; 
HTCM+3.NEXTJll-HTCM+3.NEXTJJ+IJ 
HTCII.N+lll-HTCII.N+ll-ENTIER(HTCII.N+ll)-lJ 

STAGE 2A HIGHI 
REENTER HIGHER BR. 
'FOR' II-NAV+l 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 

NUM,"HTCI.N+IJ+HTCI.N+2lJ 
'IF' ABS(NUM) < 0.0000001 
'THEN' HTCI.N+2ll-o.o0oooo1-HTCI.N+ll; 'END'; 

'FOR' JI-l 'STEP' 1 'UNTIL' N 'DO' 
'IF' (HCOLLCJJ>NAV 'AND' HCOLLCJl<NIRV+l) 
'OR' (HCOLLCJl>1000o+NAV 'AND' HCOLLCJl<10001+NIRV) 
'THEN' 'BEGIN' 

NUM 1= HTCM+2.Jl-ENTIER(HTCM+2.Jl); 
'IF' NUM>O.999 
'THEN' HTCM+2.Jll-ENTIER(HTCM+2.Jl+O.002)J 
'IF' NUM<O.Ool 
'THEN' HTCM+2.JlI=ENTIER(HTCM+2.Jl)J 'END'; 

REENTRYI"l; RI-KI=O; ROWNI"COLN:=O; 
INTP(HT.M.N.NEQ+NODE-l.NAV.HROWL.HCOLL.IROWL.R.K.ROWN. 
COLN.REENTRY'; 
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CHECK ON EMPTYNESS OF HBa 
'IF' REENTRY· -I 'THEN' 'BEGIN' 

'COMMENT' 
EMPTY PROBLEM ON HIGHER BRANCH; 

'IF' MINV < -993 000 000 'AND' NODE> £KNODE 
'THEN' 'BEGIN' 

'COMMENT' 
NO INTEGER SOLUTION HAS BEEN FOUND SO FAR. 
THIS IS SO FAR THE HIGHEST BRANCHED SOLUTION. 
JUST IN CASE NOTHING BETTER IS FOUND. 
RECORD THIS SOLUTION FOR DIAGNOSTIC PURPOSES; 
'FOR' Ja"l 'STEP' I 'UNTIL' N+2 '~O' 
'FOR' II-I 'STEP' I 'UNTIL' M+3 ,~O' EXTC I.JlI=HTC I.JJ 
'FOR' 11=1 'STEP' I 'UNTIL' M 'DO' EXROWLCIJ"'HROWLCIJ 
'FOR' Ja-I 'STEP' I 'UNTIL' N ,~O' EXCOLLCJJ"'HCOLLCJJ 
'FOR' Ja-I 'STEP' I 'UNTIL' NODE 'DO' 
RECORO[3.JJ a- RECORO[O.JJJ 
EXNOOE a- NODE; MINV a- -995 000 000; 'END'; 

RECOROCI.NOOEJa=3; 
'GOTO' CHOOSE; 'ENO'J 

HB MAY NEED ANOTHER S.TEPa 
'IF' 'NOT' K-O 'THEN' 'GOTO' REENTER HIGHER BR; 

HIGHER BR NON EMPTYa 
'IF' 'NOT' HTCM+I.N+Il > MINV 'THEN' 'BEGIN' 

'COMMENT' 
SUBOPTIMAL SOLUTION. TREAT AS EMPTY; 
REENTRY a- -IJ 
'GOTO' CHECK ON EMPTYNESS OF HBJ 'END'; 

'IF' RECOROCI.NOOEJ - 2 
'THEN' 'GOTO' FIND WHETHER HB INTEGER; 

PUT EQUATION CODE IN HBa 
Ka-O; 
'FOR' Ja-I 'STEP' 1 'UNTIL' N 'DO' 
'IF' HCOLLCJJ-NEXTJ 'THEN' 'BEGIN' 

Ka-J; HCOLLCJlI-I000+NOOEJ 'END'; 
'IF' K-O 'THEN' 'BEGIN' 

NEWLINE( I H 
WRITETEXT('('EQUATION%FOR%NEW%HIGHER%BRANCH% 
ON%X')'); PRINT(NEXTJ.5.0); 
WRI TETEXT( '( '%%NOT%FOUNO' ) , ); 'END'; 

'FOR' Ja-l 'STEP' 1 'UNTIL' K-l. 
K+l 'STEP' 1 'UNTIL' N '~O' 
'IF' HCOLLCJJ>999+NOOE 'AND' HCOLLCJJ<1001+NOOE+M 
'THEN' HCOLLCJJa-HCOLLCJJ+l; 
'FOR' 1,,'1 'STEP' 1 'UNTIL' M '~O' 
'IF' HROWLCIl>999+NOOE 'THEN' HROWLCIJa=HROWLCIJ+l; 

STAGE 2B HIGHa 
FIND WHETHER HB INTEGERa 
'FOR' U-NAV+l 'STEP' 1 'UNTIL'M '~O' 
'IF' HROWL[Il < NAV+NIRV+l 'THEN' 'BEGIN' 

NUM a- HTCI.N+IJ-ENTIER(HrCI.N+IJ); 
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'IF' NUM>O .999 
'THEN' HTCI.N+IJa-ENTIERCHTCI.N+IJ+0.002)J 
'IF' NUMcO.OOI 'THEN' HTCI.N+IJI=ENTIERCHTCI.N+Il)J 
HUM a- HTCI.N+IJ-ENTIERCHTCI,N+Il)J 
'IF' ABSCNUM) > 0.00001 
'THEN' 'GO TO , CHOOSEJ 'END' ; 

RECORD HB OUTCOMEa 
MINV 1= HTCM+I,N+Il; EXNOOE a- NODE; 
'FOR' Ja-I 'STEP' I 'UNTIL' N+2 ,~O' 
'FOR' II-I 'STEP' I 'UNTIL' M+3 ,~O' EXTCI,Jla=HTCI,Jl 
'FOR' 11"1 'STEP' I 'UNTIL' M ,~O' EXROWLCIlp'HROWLCIJ 
'FOR' Ja-I 'STEP' I 'UNTIL' N 'DO' EXCOLLC J11-HCOLLC JJ 
'FOR' J ... I 'STEP' I 'UNTIL' NODE 'DO' 
RECOROC3,Jl .= RECOROCO,Jl; 

RECOROCI,NOOEJI-3J 

'GOTO' CHOOSE; 

STAGE 2 LOW. 
COpy HEAD PR TO LOWER BRa 
'FOR' J.=I 'STEP' I 'UNTIL' N+2 ,~O' 

'FOR' 11"1 'STEP' I 'UNTIL' M+3 ,~O' LTCI,JlI .. TCI,Jl 
'FOR' la-I 'STEP' I 'UNTIL' M 'DO' LROWLCIlI=ROWLCIl 
'FOR' JI-l 'STEP' I 'UNTIL' N ,~O' LCOLLCJlI=COLLCJl 

OPEN LOWER BRANCHI 
RECOROC2,NOOEJ.=lJ 
LTCII,N+211=LTCII.N+21-ENTIERCLTCII,N+21)-1; 

STAGE 2A LOWa 
REENTER LOWER BRI 
'FOR' Ip'NAV+I 'STEP' I 'UNTIL' M ,~O' 'BEGIN' 

NUMa=LTCI,N+l1+LTCI,N+21J 
'IF' ABS(NUM) c 0.0000001 
'THEN' LTCI.N+211-0.0000001-LTCI,N+Il; 'END'; 

'FOR' J.-l 'STEP' 1 'UNTIL' N ,~O' 
'IF' CLCOLLCJJ>NAV 'AND' LCOLLCJlcNIRV+l) 
'OR' (LCOLLtJJ>10000+NAV 'AND' LCOLLCJlcl000l+NIRV) 
'THEN' 'BEGIN' 

NUM I- LTtM+2,Jl-ENTIERCLTCM+2,Jl)J 
'IF' NUM>0.999 
'THEN' LTCM+2,Jl.-ENTIERCLTCM+2,JJ+0.002); 
'IF' NUMcO.OOl 
'THEN' LTCM+2,JlI-ENTIER(LTCM+2,Jl>J 'END'; 

REENTRy.-1J RI-KI-O; ROWN.=COLNI-O; 
INTPCLT,M,N,NEQ+NOOE-I,NAV,LROWL,LCOLL,IROWL,R,K,ROWN, 
COLN,REENTRYH 

CHECK ON EMPTYNESS OF Lal 
'IF' REENTRY· -1 'THEN' 'BEGIN' 

'COMMENT' 
EMPTY PROBLEM ON LOWER BRANCH; 
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'IF' MINV < -993 000 000 'AND' NODE> EXNODE 
'THEN' 'BEGIN' 

'COMMENT' 
NO IfiTEGER SOLUTION HAS BEEN FOUND SO FAR~ 
THIS IS SO FAR THE HIGHEST BRANCHED SOLUTION. 
JUST IN CASE NOTHING BETTER IS FOUND~ 
RECORD THIS SOLUTION FOR DIAGNOSTIC PURPOSES; 
'FOR' Jlsl 'STEP' 1 'UNTIL' N+2 'DO' 
'FOR' 11-1 'STEP' 1 'UNTIL' M+3 'DO' EXTCI~Jl"'LTCI~JH 
'FOR' U-l 'STEP' 1 'UNTIL'M 'DO' EXROWLCIll .. LROWLCIlJ 
'FOR' JI-l 'STEP' 1 'UNTIL' N 'DO' EXCOLLCJl.~LCOLLtJl; 

'FOR' JI-l 'STEP' 1 'UNTIL' NODE 'DO' 
RECORDt3~Jl I- RECORDtO~JlJ 

EXNODE I- NODEJ MINV I- -995 000 OOOJ' 'END'J 

RECORDt2~NODEll-3J 

'GOTO' CHOOSEJ 'END'; 

LB MAY NEED ANOTHER STEPI 
'IF' 'NOT' K-O 'THEN' 'GOTO' REENTER LOWER BR; 

LOWER BR NON EMPTYI 
'IF' 'NOT' LTtM+l~N+ll > MINV 'THEN' 'BEGIN' 

'COMMENT' 
SUBOPTIMAL SOLUTION~ TREAT AS EMPTYJ 
REENTRY I- -IJ 
'GOTO' CHECK ON EMPTYNESS OF LB; 'END'; 

'IF' RECORDt2.NODEl • 2 
'THEN' 'GOTO' FIND WHETHER LB INTEGER; 

PUT EQUATION CODE IN LBI 
KI-OJ 
'FOR' Jl a l 'STEP' 1 'UNTIL' N 'DO' 
, IF' LC01.Lt Jl-NEXTJ+ 10000 'THEN' 'BEGIN' 

K.-JJ l.COLLtJlao'1000+NODEJ 'END'J 

'IF' K-O 'THEN' 'BEGIN' 
NEWLlNEC 1 H 
WRITETEXTC'('EQUATIONIFORINEWILOWERIBRANCHI 
ONIX')')J PRINT(NEXTJ~5~0)J 
WRITETEXTC' ('IIINOTIFOUND')')J 'END'J 

'FOR' JI=1 'STEP' 1 'UNTIL' K-l~ 
K+l 'STEP' 1 'UNTIL' N 'DO' 
'IF' LC01.LtJl>999+NODE 'AND' LCOLLtJl<1001+NODE+M 
'THEN' LCOLLtJll-LCOLLtJl+IJ 
'FOR' 11-1 'STEP' 1 'UNTIL' M 'DO' 
'IF' LROWLtIl>999+NODE 'THEN' LROWLtlllcLROWLtIl+l; 

STAGE 2B LOW. 
FIND WHETHER LB INTEGER. 
'FOR' U-NAV+l 'STEP' 1 'UNTIL' M 'DO' 
'IF' LROWLtIl < NAV+NIRV+l 'THEN' 'BEGIN' 

NUM ,- LTtI~N+ll-ENTIER(LTCI~N+ll)J 
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'IF' NUM:>O.999 
'THEN' LTCI.N+1ll=ENTIER(LTCI.N+1l+0.002); 
'IF' NUM<O,OOl 'THEN' LTCI.N+1ll=ENTIER(LTCI.N+ll)i 
NUM I- LTCI.N+1l-ENTIER(LTCI.N+ll); 
'IF' NUM :> 0.00001 
'THEN' 'GOTD' CHOOSE; 'END'; 

RECORD LB OUTCOMEI 
MINV I- LTCM+1.N+1l; EXNODE I- NODE; 
'FOR' JI=l 'STEP' 'UNTIL' N+2 'DO' 
'FOR' 11-1 'STEP' 'UNTIL' M+3 'DO' EXTCI.Jll=LTtI.Jl 
'FOR' 11=1 'STEP' 'UNTIL' M 'DO' EXROWLCIlI=LROWLtIl 
'FOR' JI-1 'STEP' 'UNTIL' N 'DO' EXCOLLtJll=LCOLLtJJ 
'FOR' J.Dl 'STEP' 'UNTIL' NODE 'DO' 
RECORDC3.Jl I- RECORDCO.JJ; 

RECORDC2.NODEll=3J 

STAGE 3: 
CHOOSEI 

'IF' (RECORDCl.NODEJ=3 'AND' RECORDt2.NODEJ=3) 
'THEN' 'BEGIN' 

'COMMENT' HEAD PROBLEM EXHAUSTED; 
'GOTO' END DF BRANCHING; 'END'; 

'IF' RECORDC2.NODEl = 0 
'THEN' 'GOTO' COpy HEAD PR TO LOWER BR; 

'IF' RECORDtl.NODEJ=3 'THEN' 'BEGIN' 
'COMMENT' 
CHOOSE THE LOWER BRANCH BY DEFAULT; 
'GOTO' BRANCH FURTHER IN LB; 'END'; 

'IF' HTtM+l.N+lJ ,. LTCM+l.N+ll 'OR' RECORDt2.NODEl=3 
, THEN' , BEG IN' 

'COMMENT' 
CHOOSE THE HIGHER BRANCH; 
'GOTO' BRANCH FURTHER IN HB; 'END'; 

'GOTO' BRANCH FURTHER IN LB; 

STAGE II HIGHI 
BRANCH FURTHER IN HB: 
RECORDC1.NODE11-2; 
'IF' NODE" NIRV 'THEN' 'GOTO' RECORD HB OUTCOME; 
BRANCH(HT.M.N.NEQ.NAV.NIRV.MINV.HROWL.HCOLL. 
EXT.IROWL.EXROWL.EXCOLL.NODE+l.EXNODE.RECORD); 

STAGE 4A HIGH: 
PUSH UPWARDS: 
RECORDC 1 • NODE 1 :.. 2; 
K: =OJ 
'FOR' J:Dl 'STEP' 1 'UNTIL' N 'DO' 
'IF' HCOLL(Jl=1000+NODE 'THEN' KI=JJ 
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'IF' K-O 'THEN' 'BEGIN' 
NEW1.INEC 1 )J 
WRITETEXTC'C'%INTEGER%REQUIREMENT%ON%X')'); 
PRINTCNEXTJ.5.0); 
WRITETEXTC'C'%%%IN%THE%HIGHER%BRANCHIII 
NOTIFOUND' ) '); 'END'; 

'FOR' II-I 'STEP' 1 'UNTI1.' M+1 'DO' 'BEGIN' 
HTCI.N+1J:~HTCI.N+1J-HTCI.KJ; 

HTCI.N+2J:-HTCI.N+2J+HTCI.KJ; 'END'; 

HTCM+3.NEXTJJ:-HTCM+3.NEXTJJ+1; 
NUM := HTCM+3.NEXTJJ-ENTIERCHTCM+3.NEXTJJ); 
'IF' NUM>O.999 
'THEN' HTCM+3.NEXTJJ:-ENTIERCHTCM+3.NEXTJJ+0.002)J 
'IF' NUM<O .001 'THEN' HTCM+3.NEXTJJ :"ENTIERCHTCM+3.NEXTJJ)J 
'GOTO' REENTER HIGHER BR; 

STAGE II 1.0W: 
BRANCH FURTHER IN 1.B: 
RECORDC2.NODEJ:~2; 

'IF' NODE - NIRV 'THEN' 'GOTO' RECORD 1.B OUTCOME; 
BRANCHC 1. T. M. N. NEQ. NAV. N.I RV. M I NV • 1.ROW1.. 1.C01.1.. 
EXT.IROW1..EXROW1..EXC01.1..NODE+1.EXNODE.RECORD); 

STAGE IIA 1.0W: 
PUSH DOWNWARDS: 
RECORDC2.NODEJ:-2J 
K:-OJ 
'FOR' J:=l 'STEP' 1 'UNTI1.' N 'DO' 
'IF' 1.C01.1.CJJ~1000+NODE 'THEN' K:-J; 

, IF' K- 0 ' THEN' , BEG IN' 
NEW1.INEC 1 ); 
WRITETEXTC'C'IINTEGERIREQUIREMENTION%X')')} 
PRINTCNEXTJ.5.0)J 
WRITETEXTC'C'%IIINITHE%1.0WERIBRANCHI%% 
NOTIFOUND')'); 'END'; 

'FOR' II-I 'STEP' 1 'UNTI1.' M+1 'DO' 'BEGIN' 
1.TCI.N+1J:-1.TCI.N+1J-1.TCI.KJ; 
1.TC I.N+2J:-1.TC I.N+2J+1.TC I.KJJ 'END'; 

1.TCM+2.KJ:-1.TCM+2.KJ-1; 
'GOTO' REENTER 1.0WER BRJ 

END OF BRANCHING: 
END OF BRANCHING PROCEDURE: 

'END'; 'END'; 
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TEXT-LISTING OF THE MAIN PROGRAMME. WHICH SOLVES THE CONTINUOUS 
HEADPROBLEM. AND SETS THE CALL TO THE BRANCHING PROCEDURE. 

'BEGIN' 'INTEGER' M.N.NAV.NEQ.REENTRY. 
NIRV.EXNODE.I.J.JJ.R.K.ROWN.COLNl 
'REAL' MINVI 

'PROCEDURE' BRANCHCT.M.N.NEQ.NAV.NIRV.MINV.ROWL.COLL. 
EXT. IROWL. EXROWL. EXCOLL.NODE.EXNODE. RECORD)} 
'ARRAY' T. EXTJ 
'VALUE' NODEI 
'INTEGER' M.N.NEQ.NAV.NIRV.NODE.EXNODEJ 
'INTEGER' 'ARRAY' ROWL.COLL. 
IROWL.EXROWL.EXCOLL.RECORD; 
'REAL' MINV; 
'ALGOL'; 

'PROCEDURE' INTPCT.M.N.NEQ.NAV.ROWLST.COLLST. 
IROWLST.R.K.ROWN.COLN.REENTRY); 
'ARRAY' TJ 'INTEGER' M.N.NEQ.NAV.R.K.ROWN.COLN.REENTRY; 
'INTEGER' 'ARRAY' ROWLST.COLLST.IROWLST; 
'ALGOL'} 

'PROCEDURE' REPOCT.M.N.NEQ.NAV.ROWL.COLL); 
'ARRAY' T; 'INTEGER' M.N.NEQ.NAV; 
'INTEGER' 'ARRAY' ROWL.COLL; 
'ALGOL'; 

'PROCEDURE' IREPCTRIVT.T.M.N.NEQ.NAV.ROWL.COLL); 
'ARRAY' TRIVT.T; 'INTEGER' M.N.NEQ.NAV; 
'INTEGER' 'ARRAY' ROWL.COLL; 
'ALGOL' ; 

'PROCEDURE' MATICMATR.MB.NB.FR.FC); 
'ARRAY' MATR; 'INTEGER' MB.NB.FR.FC; 'ALGOL' ; 

'PROCEDURE' TABOCMATR.M.N.SR.SC.RH.ER.ROWLST.COLLST); 
'ARRAY' MATR; 'INTEGER' M.N.SR.SC.RH.ER; 
'INTEGER' 'ARRAY' ROWLST. COLLS!> 'ALGOL'; 

'COMMENT' 
MIXED INTEGER PROGRAMMING. ADMITTING ANY INTEGER VALUES. 
J3Y BRANCHING. 

PRESENTATION OF DATA: 
FIRST THE NUMBER OF RESTRICTIONS I.E. M. 
THEN THE NUMBER OF VARIABLES. I.E. N. 
FOLLOWED BY THE NUMBER OF EQUATIONS. NEQ. 
FOLLOWED BY NAV. THE NUMBER OF VARIABLES 
TO WHICH THE TACIT CNON-NEGATIVITY) RESTRICTION DOES 
APPLY. 
THEN AS LAST INTEGER PARAMETER. NIRV. THE NUMBER OF 
INTEGER RESTRICTED VARIABLES, 
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THEREAFTER PUNCH EACH ROW OF THE COMPOSITE MATRIX 

A B 
'01 0 
U 0 
L 0 

TO REPRESENT A.X < OR .. B. 
MAXIM -W.X 

X < OR .. U 
AND X ,. OR - L 

THE PROGRAMME READS ALL THE ELEMENTS OF THE UPPER BOUNDS VECTOR 
U. AND iHE LOWER BOUNDS VECTOR L. 
DESPITE THE FACT THAT FOR VARIABLES WITHOUT NON-NEGATIVITY 
RESTRICTION. THE MAIN PROCEDURE USES THESE NUMBERS ONLY FOR 
BOUNDED VARIABLES. 

MINV I- -1 000 000 000) 
H:-READ; N:=READ; NEQ:-READ; NAVI-READJ NIRV:=READJ 
'BEGIN' 

'ARRAY' TAC1IM+4.1:N+2J.EXTC1:M+3.1IN+2JJ 
'INTEGER' 'ARRAY' ROWL.EXROWL.IROWl.C 1IHJ.COl.L.EXCOl.LC 1INJ. 
RECORDCOI3.1INIRVJ; 

PREFIl.l. T WITH tEROS: 
'FOR' JI'"l 'STEP' 1 'UNTIL' N+2 'DO' 
'FOR' 11-1 'STEP' 1 'UNTIL' M+3 'DO' TACI.JJI=OJ 

MATICTA.M+3.N+1.0.0») 
'FOR' JI=l 'STEP' 1 'UNTIl.' N 'DO' 
'FOR' 1:'"1 'STEP' 1 'UNTIL' H+1 'DO' 
TACI.N+1J 1= TACI.N+1J-TACM+3.JJ; 
'FOR' J:=l 'STEP' 1 'UNTIl.' N 'DO' 
TACH+2.JJ 1= TACM+2.Jl-TACM+3.Jl; 
'FOR' J:=l 'STEP' 1 'UNTIL' N 'DO' 
TACM+4.Jl 1= TACM+2.Jl; 

, FOR' I 1 = 1 'S TEP' 'UNTIl.' M+3 'DO' TACI.N+2ll=1000000; 

, FOR' 11 = 1 ' STEP' 'UNTIL' M 'DO' IROWLC Ill=}; 

REENTRYI-O; 

REENTER: 

RI-O; KlsO; ROWN:=O; COLN:=O; 
INTPCTA.M.N.NEQ.NAV.ROWL.COl.l..IROWl..R.K.ROWN. 
COl.N.REENTRY); 
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CHECK ON EMPTYNESS: 
'IF' REENTRY" -I 'THEN' 'BEGIN' 

'COMMENT' 
EMPTY PROBLEM; 
NEWLINEC 1 ); 
WRITETEXTC' C'MAINIPROBLEMIEMPTY.IEVENIWITHOUTI 
INTEGERIRESTRICTIONS')'); 
'GOTO' REPORT ON SOLUTION; 'END'J 

'IF' REENTRY" 1 'THEN' 'BEGIN' 
'COMMENT' 
UNBOUNDED PROBLEM; 
NEWLINEC 1 ); 
WRITETEXTC'C'UNBOUNDEDIPROBLEM')')J 
'GOTO' REPORT ON SOLUTIONJ 'END'; 

MAY NEED ANOTHER STEP: 
'IF' 'NOT' K=O 'THEN' 'BEGIN' 

REENTRY I" I; 'GOTO' REENTERJ 'END'; 

NON EMPTY: 
BRANCH NOWI 
REENTRY I- 0; 
BRANCHCTA.M.N.NEQ.NAV.NIRV.MINV.ROWL.COLL. 
EXT.IROWL.EXROWL.EXCOLL.I.EXNODE.RECORD); 

OUT: 

REENTRYI-I; 
'IF' MINV > -999 000 000 'THEN' REENTRY :- 0; 
'IF' REENTRY=O 'THEN' 'GOTO' CONVERT OPTIMUM; 
NEWLINEC 1 )J 

WRITETEXTC'C'PROBLEMIEMPTYIOFIINTEGERISOLUTIONS')'); 
NEWLINEC 1 )J 

'IF' MINV > -990 000 000 'THEN' 'GOTO' CONVERT OPTIMUM; 

'IF' N < 14 'OR' M+N < 40 
'THEN' TABOCTA.M.N.O.O.I.I.ROWL.COLL) 
'ELSE' 'BEG IN' 

TABOcTA.M.O.O.N.O.I.ROWL.COLL); 
TABOCTA.O. N.M.O.I.O.ROWL.COLLH 'END'; 

'GOTO' REPORT ON SOLUTION; 

CONVERT OPTIMUM 1 

'FOR' JI-I 'STEP' 1 'UNTIL' N 'DO' 
'IF' EXCOLLeJJ>IOOO 'AND' EXCOLLeJJ<IOOI+EXNODE 
'THEN' 'BEGIN' 

JJ I" RECORDe3.EXCOLL(JJ-IOOO); 
EXCOLL(JJ 1= JJJ 
'IF' EXT(M+3.JJJ=TA(M+3.JJJ 
'THEN' EXCOLLC JJ 1 =EXCOLL( JJ+ 10000; 'END'; 
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'FOR' Js-1 'STEP' 1 'UNTIL' N ,~O' 

'IF' EXCOLLCJl>1000+EXNOOE 'AND' EXCOLLCJl<10000 
'THEN' EXCOLLCJls-EXCOLLCJl-1; 

'FOR' 11-1 'STEP' 1 'UNTIL' M 'DO' 
'IF' EXROWLCIl > 1000 'THEN' EXROWLClll-EXROWLCIl-EXNOOEJ 

REPORT ON SOLUTIONs 
'IF' ABSCREENTRY)-l 'THEN' REPOCTA.M.N.NEQ.NAV.ROWL.COLL) 
'ELSE' IREPcTA.EXT.M.N.NEQ.NAV.EXROWL.EXCOLL); 

END OF PROGRAMMEI 

'END'; 'END' 
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CHAPTER XXI 

THE USE OF CUTS* 

21.1 Elementary cuts, augmented cuts and combined cuts 

The solution of integer programming problems by means of cuts 
has been pioneered by R. Gomory [.15], (16] , and has been 
surveyed more recently at textbook level by Zionts [411 . The 
treatment of the material in this and the following sections 
differs from the work of these authors on the following points: 
Firstly, the interpretation of a combined cut as a cut on a 
combination of variables is believed to make the logic of 
"deeper" cuts more easy to appreciate than the algebraic 
approach followed in these source-texts. Some other points are 
of a more substantial nature. They concern the anticipation of 
fractional value of integer-restricted non basic variables, the 
permanent incorporation of upper limits into the problem itself, 
and formulation of cuts before the continuous problem has been 
solved. 

A cut is an additional restriction, obtained on the basis of 
information contained in an updated tableau, which excludes an 
area in which no integer solution exists, from the feasible 
space area. 

We will discuss the procedure of cutting, at this stage on the 
assumption that the continuous problem is solved first. If a 
solution is fractional, one "cuts" successive slices off from 
the feasible space area, until the integer optimum is found 
in a corner of the re-defined feasible space area. To understand 
why we can make cuts it is useful to interpret a vertex, e.g. 
the continuous optimum as a linear programming problem in its 
own right. 

The relevant coordinate directions are the variables, which are 
associated with the columns of an updated tableau e.g. the 
continuous optimum. (See also section 8.11). Slacks of equations 
are not considered as variables in this context. They might as 
well be removed from the tableau, as they do not figure in 
the integer programming problem at all. 

*A number of example-tableaux in this chapter are typed rather 
than computer-file listed. It was felt that exact fractions 
e.g. 1/11 instead of 0.09 are more useful in illustrating cuts 
than the two-digit rounded figures produced by the tableau
printing procedure. 
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We may distinguish several types of cuts. 

An elementary cut is a restriction which excludes from the 
feasible space area a sub-area, the corners of which are the 
origin, and in each coordinate direction a point where a 
particular variable attains the next nearest integer value. 

Example: 

Consider the following integer programming problem: 

Maximise T = 3 xl + x2 

Subject to 8 xl + 6 x2 < 15 

2 4 
< -1 xl x2 

(0 < xl :5.- 100, a :5.- x2 < 100, xl' x2 integer restricted) 

This small example will be used in this and in some of the 
succeeding sections to illustrate the various types of cuts. 

The "fancyhigh" upper limits have been set at a figure of 100 
rather than the million used so far. This is because of the 
need to contain rounding errors not only relative to the 
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rounded numbers, but also the absolute magnitude of the rounding 
errors themselves. 

The effectiveness of an integer programming algorithm which uses 
cuts and does calculations in floating point numbers, is 
critically dependent on the precision of its calculations. If 
the correct value of some integer-restricted variable at a 
certain point of calculation is Xk = 1600, but because of 
rounding it is reported as 1599.983 we should either set our 
tolerance for accepting a number as integer at a difference in 
excess of 0.01 or we would risk to miss the correct solution 
altogether, as the next cut might well require xk :5.- 1599. 
To set the tolerance at a fairly narrow margin, and then not 
dealing with excessively high values of variables at all, is 
simpler in terms of programming, than to have a special loop 
to calculate the tolerance. 

The continuous optimum of the demonstration problem is 

xl = 1 5/22 and x2 19/22. 

We can map the non-negativity of xl and x2 ' as well as some 
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6 

-2 

TABLEAU 21.1 A 

CONTINUOUS OPTIMUM OF THE EXAMPLE 

NAME !! S I S 2 VALUE 
-------------------------------------
X I ! ! 
X 2 !! 

0.09 
o .05 

o .I 4 ! :: ! 
- 0.16 l :: ! 

I .23 
0.86 

-------------------------------------
T ! I 0.32 o .23 ! Ij .5<; 

DITTO, NON-DECIMAL PRESENTATION. 

NAME! ! S I S 2 VALUE 
--------------------------------------
X I ! ! 
X 2 !! 

III I 
1122 

3/22 ! :: ! I 5/22 
-aliI! ::! 19/22 

--------------------------------------
T !! 7/22 5/22 ! 

graph 21.1 a 

illustration 0 f 
Integer-va lue cuts. 

! 4 6/11 
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other lines e.g. Xl = 1 and x2 = 2 in the sl' s2 coordinate 
plane. This has been done in graph 2l.la. Tne fancyhigh 
limits which are not operative in this example, have been left 
out of the illustrations. 
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The equations of these lines in the sl' s2 coordinate place are 

0: 

1: 

0: 

1: 

2 : 

1/11 sl + 3/22 s2 

1/11 sl + 3/22 s2 

1/22 

1/22 

1/22 

s -
1 

s -
1 

s -
1 

1 5/22 

5/22 

19/22 

-3/22 

-1 3/22 

(See also tableau 2l.a, as well as graph 2l.a). 

hie normally cut on a variable i.e. a cut is designed to 
exclude a sub-area in which a particular variable attains only 
fractional values. If the row of the associated Simplex tableau, 
which describes a variable, contains only positive entries or 
zeros the making of a cut is easy. 

Thus the Xl-row reads 1/11 sl + 3/22 s2 + Xl = 1 5/22 giving 
rise to the restriction 1/11 sl + 3/22 s2 ~ 1 5/22, the non
negativity of Xl. The slack of this restriction i.e. Xl cannot 
exceed the number 1 5/22, hence Xl = 2 (or Xl = 3, 4 eEc.) is 
outside the feasible area. 

The next integer value to be investigated is therefore xII, 
and a cut on Xl will require Xl ~ 1. 

A somewhat similar situation arises when a row contains only 
negative elements, except in the value column. For example Xl 
is implicitly assumed to have an upper limit which we 
conventionally put, in the absence of a specified upper limit 
at 100 . If that upper limit restriction is written explicitly, 
it reads: -1/11 sl - 3/22 s2 + b l = 98 17/22 and quite clearly 
b l is an integer restricted variable which can be restricted to 
b l > 99. 

Conversely, if we had found a restriction which reads (for 
example) -2.3 sl - 1.5 s2 + Xl = 5 1/3 we would have known 
that XI would have to satisfy x'l ~ 6 (and the associated upper 
limit Dl ~ 94.) 
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It is not always possible to write a cut-restriction which 
admits for such a simple interpretation. In the example, x 
can be either greater than, or smaller than its current vatue 
of 19/22. 

We may therefore distinguish at this stage two classes of cuts 
e.g. limit cuts which impose a specific limit (to be not 
greater than or not smaller than a certain integer number) on 
some variable, and elementary cuts. 

Elementary cuts are cuts which we may write, even if we cannot 
associate a specific limit on a variable with the cut. 

We can always calculate the coefficients of a cut-restriction 
by a method which follows the definition of a cut as given 
above. In the demonstration-example we can write an elementary 
cut on x2 • Inspection of the optimum tableau shows that 
introduction of sl in the basis reduces x2 by 1/22 per unit of 
sl. Therefore in the sl-direction, x2 will attain an integer 
value (zero), for sl = 19/22: 1/22 = 19. 

In the s2-direction, x2 will attain an integer value for 
s2 = 3/22: 2/11 = 3/4 . In both cases, we need the absolute 
value of the coefficient, but for a negative coefficient the 
numerator is the difference with the next integer value of the 
variable which is being cut on. 

The figure 19 and 3/4 indicate the values which sl and s2 may 
attain before any solutions with integer values for x2 come 
in the excluded area. We will therefore indicate them as the 
limiting value. More precisely, 19 is the limiting value of 
sl with respect to x2 becoming zero, and 3/4 is the limiting 
value of s2 with respect to x2 becoming unity. 

The limiting value of a non-basic variable is the value which 
that non-basic variable may attain without a particular basic 
variable (which we cut on) to exceed an adjoining integer value. 
When the tableau-cell which describes the effect of a non
basic variable on a variable to be cut on, is positive, 
(e.g. 1/22), the limiting value is the quotient of the 
fractional part of the current value of the basic variable 
cut on, divided by the particular tableau-cell. 

L = (x. - entier (x.» /t .. 
J 1 1 1J 

(21. 1. 1a) 

If the column for a non-basic variable contains a negative 
entry in the appropriate row (e.g. -2/11), the limiting value 
is the absolute value of the difference between the current 
value of the basic variable being cut on and the next higher 
integer, divided by the absolute value of the negative 
coefficient. 
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t. = (entier (X. + 1) - x.)/(-t .. ) 
J 1 1 1J 

(2l.l.lb) 

The area to be excluded, is the area spanned by the origin 
(e.g. sl = s2 = 0) and the points on the coordinate axes 
indicated by the limiting values (e.g. s2 = 0, sl = 19, in the 
sl-direction, and sl = 0, s2 = 3/4 in the s2-direction.) 
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Any solution vector which is a convex combination of the current 
solution and the points on its coordinate axes where the 
limiting values occur, will be characterized by values of the 
variable cut on, which either are between two integer values 
(e.g. x2 between 1 and zero in the example), or, if only one 
integer number is involved, between that oqe integer and the 
current value. 

The exclusion of this convex combination is made effective 
by requiring 

n 
E 

j=l 
- 1ft. v. 

J J 
< - 1 (21.1.2) 

where tj is the limiting value of the jth variable, and t. the 
jth var1able itself. In the example, the cut on x2 theref6re 
becomes 

- 1/19 sl - 1 1/3 s2 ~ - 1 

As was already indicated above, a cut according to (21.1.2) with 
limiting values according to the definition given above, may 
be indicated as an elementary cut. If an elementary cut can be 
interpreted as requiring the variable which is cut on to attain 
the next lower integer value (e.g. xl < 1) we may speak of an 
upper limit cut. 

The meaning of the analogous term lowerlimit cut will be obvious. 
It should also be borne in mind that we intend to employ a 
version of the basic Simplex LP algorithm, in which every 
variable has an upper and a lower limit. Limits on integer 
restricted variables will obviously be set at an integer value. 
Thus upper limit cuts are lower limit cuts on upper limit 
distances. If no information to the contrary is stated at the 
same time, it will be ~ssumed that limit cuts are on specified 
variables. 

Rows which refer to specified variables and only contain 
positive (negative) entries and zeros, give rise to limit cuts 
on these variables. We may, if we so wish, calculate and 
present a limit cut in precisely the same way as for an 
elementary cut which is not a limit cut. 
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For example the upper limit cut on xl could be calculated as 
follows (see also tableau 2l.la): 

The limiting value of sl' relative to xl becoming unity 
is 5/22: 1/11 = 21 

2 

The limiting value of s2' relative to xl becoming unity 
is 5/22: 3/22 = 1 2/3 

The reciprocals of 2! and 1 2/3 are 2/5 and 3/5. Therefore the 
elementary cut on xl is 

- 2/5 sl - 3/5 s2 < -1. 

If this restriction is multiplied by 5/22, we obtain 

- 1/11 s -
1 3/22 s2 2.. - 5/22 

Addition of this restriction to the xl-restriction itself 

1/11 sl + 3/22 s2 + xl = 1 5/22 

yields: 

There is, however, one essential point of difference between 
the two presentations of a limit cut. The slack-variable of 

-3/22 s2 < - 5/22 

is the difference between the value of xl which we now aim for, 
and any possible later value, and this slack is an inte~er
restricted variable. The slack-variable of 

- 2/5 sl - 3/5 s2 2.. - 1 is not integer-restricted. We 
shall come back to th1s point at a later stage. 

We shall now pay some attention to the effectiveness of 
different types of cuts. A cut is more effective than another 
c~t if it if it excludes all the fractional solutions which 
the other cut excludes, and some more as well. This definition 
of effectiveness if relative i.e. we cannot really say how 
effective a cut is. We cannot even always say that one cut is 
more effective than another. We will however also use the term 
in a wider, vaguer sense i.e. we may indicate that we expect 
a cut to lead quickly to the solution. Elementary cuts which 
are not also limit cuts are not a particular effective device 
for solving integer programming problems. They will be used only 
if other more effective types of cuts cannot be made. This is 
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apparent from the graph where the elementary cut on x 2 does 
not touch the integer optimum. 

There are several things which can be done to increase the 
effectiveness of cuts as a means to quickly obtaining an 
integer solution. 

The two devices which are the subject of this section are the 
augmentation of the limiting value of an integer-restricted 
non-basic variable (to unity), and the combined limit cut. The 
issue of augmentation is best discussed with reference to the 
limiting value of s2 relative to x2 becoming unity. In the 
original LP-tableau, the s2-restriction contains only integer 
coefficients, all of which refer to integer-restricted 
variables, s2 is itself an integer-restricted variable. 

All points in the area excluded by the elementary cut on x 2 
conform to the restriction 0 2 s2 2 3/4. 

If we push the limiting value of s2 outwards to become s2 = 1 
this may bring some points with inEeger values for x in the 
excluded area. But that will all be points with fractional 
values of s2' hence those points will not include the integer 
optimum, where s2 will be integer. 

Whenever a limiting value of an integer restricted non-basic 
variable is found to be less than unity, we will substitute 
unity for it. 
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Instead of the elementary cut on x2 we should have written - if 
nothing more effective appeared to be possible -

A cut of this type, which is based on the augumentation of 
limiting values of integer restricted variables to unity, will 
be indicated as an augmented cu~. Augmentation alone will not 
remedy the basic weakness of an elementary cut which is not 
also a limit cut, neither in general, nor in the particular 
example. (The true solution is sl = s2 = 1 and this is still 
inside the amply fulfilled cut -1/19 sl - s2 2 - 1). If we 
cannot make a limit cut on a specified variable, the next 
best possibility is a limit cut on an integer combination of 
integer restricted variables. In an all integer problem, which 
the example is, this is always possible, but in the general 
mixed integer case this may, or may not be possible. 
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To relate the appropriate combination to a specified variable 
we will use an asterisk. Thus, x*2 is the auxiliary variable 
developed in combination with x2' There are several possible 
combinations in the example, which would enable us to make a 
limit cut on a combination of integer restricted variables. For 
example, we might define an auxiliary variable 

x*2 = x 2 + 2 xl 

and the x*2 - row of the tableau would be found by adding twice 
the x]-row to the x2-row. The significance of the auxiliary 
variaole row would in that case be 

5/22 sl + 1/11 s2 + x*2 = 3 7/22 

From the definition of x*2 as x2 + 2 xl i.e. an integer 
combination of integer restricted variables it follows that x*2 
is also an integer restricted variable. And we can write an 
upper limit cut, the effective significance of which is 

x*2 .2. 3. 

For program-technical reasons we shall restrict the use of this 
device to combination of a specified variable (or its upper 
limit distance) with non-basic variables (or their upper limit 
distances). 

To make an effective use of the combination-device in connection 
with basic variables we would have to perform a systematic 
search for the appropriate combination. For non-basic variables 
the equivalent of the updated row is a (negative) unit vector 
i.e. the non-negativity of sl would be written explicitly as 
- s .2. O. This effectively means that we can, for the purpose 
of ~eveloping a cut, add or subtract integer numbers to or 
from the coefficients which refer to integer-restricted non
basic variables. This includes integer-restricted slacks. 
(See also section 21.4 for the treatment of upper limits on 
slack-variables. Thus, from the x2-row 

1/22 sl - 2/11 s2 + x2 = 19/22 

we infer 

-21/22 sl - 2/11 s2 + x*2 = 19/22 (x* 2 

and we may make a lower limit cut on x*2 (x*2 > 1). 

We may also develop auxiliary variables which are integer
restricted without being sign-restricted. Consider, for example, 
the difference between x2 and s2' We subtract the unwritten 
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s2-row from the x 2-row, i.e. we add unity to the s2- coefficient 
(the s2-row reads - s2 ~ 0). 

The auxiliary variable equation then is 

1/22 sl + 9/11 s2 + x*2 = 19/22 (x*2 = x 2 - s2) 

and we can write an upper limit cut on x*2 ~ o. We will see 
later in this chapter that a systematic use of upper limits 
allows us to interpret even such rows as being associated with 
sign-restricted variables. Cuts of this type, i.e. cuts on a 
specified basic variable and an integer combination of integer 
restricted nort~basic variables will be indicated as combined 
cuts. 

In some cases a combined cut may be useful for a different 
reason than solely for being able to make a limit cut, or even 
in a situation where it would not be needed for that reason. 

For example, a restriction (the~l~row) might read: 

1 1/10 sl + 1/5 s2 + x3 = 1 2js. 

We can in that case immediat~ly formulate an upper limit cut 
on x 3 . Assuming that the slack of the sl-restriction is integer
restricted, the combined restriction 

gives rise to a more effective cut, as may be seen by comparing 
the two cut-restrictions. 

\~ 
We perform this comparison, for the mfrment with both cuts in 
the elementary form 

or 

-2 3/4 sl - -1 
2 s2 < - 1 

- 3/4 sl - 1 s < - 1 
2 2 

The point is simple that any set of figures which will satisfy 
the cut on x3 itself, also satisifes the cut on x*3 = Xl + sl' 
but not the other way round. The systematic fact is that 
the limiting value of sl with respect to x*3 is greater than 
the similar figure wi~h respect to x 3 . Reduction of the 
coefficient for sl in the original restriction from 1 1/10 
increases the limiting value b'y the inverse ratio from 4/11 to 
4. Although the limiting value can be augmented to 1.00 the 
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augmented cut 

is still less effective than the combined cut. 

The choice of the most appropriate combination is to some 
extent influenced by the form in which cut-restrictions are 
presented. Cuts should if possible (which, in an all-integer 
prob~emmeans always) be written in a form in which the slack
variable of a cut-restriction is itself integer-restricted. 
Thus, in the example above, we would develop an x*3-cut 

- 1/10 sl - 1/5 s2 ~ - 2/5 (x* - cut) 2 

The restriction is equivalent with 

(x** - cut) 2 

except for the integer form. i.e. the integer requirement 
on the slack-variable. 

Throughout the rest of this chapter, cuts with integer
restricted slacks will be indicated with single asterisks, cuts 
with continuous slacks by letters with double asterisks. 

There is in general a variety of combinations .to be considered. 
In practice we can sort out the most effective combination 
implicitly by means of the following rule concerning the 
limiting values of integer restricted non-basic variables. 

The limiting value of the x. non-basic variable, relative to 
the x. basic variable or anJassociated combination integer, 
is th~ highest of the following numbers: 

a) The fractional 
fractional part of 
is positive, (xi = 
= 2/3: 3/4 = 8/9), 
x., divided by the 
aBd the next lower 
(x. = 2 2/3, c .. 
2/3: 3/4 = 8/9~J 

part of the basic variable xi divided by the 
the tableau element (coefficient) c .. if c .. 
2 2/3, c .. = 3 3/4 limiting value1J 1J 
or the ff!ctional part of the basic variable 
absolute value of the difference between c .. 
integer number, if c .. is negative 1J 
- 21 limiting valu~J= 2/3: (3 - 21) = 

The implied combination contains in these two examples for 
a) the terms 3 x. and - 3 x. respectively, leaving in both cases 
a fractional ter~ 3/4 x. inJthe auxiliary expression. 

J 

b) The absolute value of the difference between the value 
of the basic variable and the next higher integer, divided by 
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the absolute value of the difference between the coefficient 
and the next higher integer, if Cij is positive 
(xi = 2 2/3, Cij = 3 3/4 limiting value = (3 - 2/3): 
(4 - 3 3/4) = 173: ! = 1 1/3), or the absolute value of the 
difference between the value of the basic variable and the next 
higher integer, divided by the fractional part of the absolute 
value of the coefficient, if the coefficient is negative. 

(x. = 2 2/3, 
~ 

c .. = - 2! 
~J 

= 1/3: ! = 1 1/3). 

limiting value = (3 - 2 2/3): 

The combination of variables in the implied auxiliary variable 
contains for the two examples under b) the terms 4 x. and 
- 2 Xj' leaving in both examples a fractional term _J! x. in 
the auxiliary expression. J 

c) The number 1.00 = unity, if no higher value has been found 
under a) or b). 

The generalization of the above stated rules to non-basic 
slack variables with integer requirement (including slacks 
of limit-cuts) will be obvious. The operative significance 
of these rules is here illustrated with the following: 

Example: 

Maximise T 3 xl + x2 x3 

8 xl + 6 x2 + 3x3 < 15 

2 x -
1 

4 x2 + x3 < - 1 

(0 < x < 100 , 0 < x2 < 100 , 0 < x3 < 100 ) x 2 ' x3 integer 
restri~ted). -

This is a modification of our earlier demonstration example. 
We have dropped the integer requirement on xl' and by 
implication also on sl and s2' and added the third variable x 3 · 

The corresponding continuous optimum is given below 

Name sl s2 x3 Value 

xl 1/11 3/22 9/22 < 1 ~/22 

x2 1/22 -2/11 -1/22 < 19/22 

T 7/22 5/22 2 2/11 4 6/11 

713 
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Becaus: Xl is now a continuous variable, sl and s2 also loose 
their lnteger restricted nature. 

There are now two cuts in association with x 2 . 

One is the elementary cut on x 2 itself: 

- 1/19 sl - 1 1/3 s2 - 1/3 x3 < - 1 

The other cut is on a combination 

1/22 sl - 2/11 s2 + 21/22 x3 + x*2 19/22 

and gives in first instance rise to 

-1/19 sl - 1 1/3 s2 - 1 2/19 x3 < - 1 

(x* 
2 

This combination does not look very effective at first sight 
since 1/22, the coefficient in the x 2 restriction itself is a 
rather small number, but we cannot be sure on this point without 
further investigation. However the coefficient for x3 is based 
on a limiting value of 19/22: 21/22 = 19/21, which snould be 
augmented, and the second cut becomes 

- 1/19 sl - 1.1/3 s2 - x3 ~ - 1 

The cut on x 2 it~elf is, however found to be the most effective, 
hence the cut 

- 1/19 sl - 1.1/3 s2 - 1/3 x3 < - 1 

is eventually put in the tableau. 

We are however, not only interested in the effectiveness of 
individual cuts, but also in formulating cuts with integer, 
restricted slacks. rhis implies that we wish to form com
binations on which a limit cut can be written, and certain 
restrictions on the choice of combinations arise from that 
desideratum. 

21.2 Classes of cuts 

Because there are different types of cuts to be made, we must 
state some priority rules as to which cuts to make in a 
particular tableau. It would be a waste of tableau-space and 
of calculations if all possible cuts were made. 

At this point in our discussion, we state three main priority
classes of cuts or rather of auxiliary variables. 
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* Specified variables which permit a limit cut to be written 
on the specified variable itself. 

71S 

As was explained in the previous section, limit cuts are more 
likely to be effective cuts than other types of cuts. We 
recognize a variable which permits a limit cut by the fact that 
the non-zero entries in its row (other than in columns which 
refer to equations slacks), are either all positive (upper limit 
cut) or all negative except the entry in the value column (lower 
limit cut). Therefore we will cut on or in association with a 
variable on which a limit cut can be made, in preference to a 
variable on which we cannot make a limit cut. Note that this 
does not always imply that we will write the limit cut. 
Even for a variable which permits a limit cut, a combination 
may lead to a more effective cut. For example, suppose (for 
the sake of argument) that the xl-row reads: 

< Value 

1/11 1 1/22 

Like the row which is actually there, these figures allow an 
uppe r limi t cut. 

Upper limit cuts on specified variables can in fact be made, 
simply by entering the appropriate negative entry in the upper 
limit distances column, i.e. 

sl s2 < Value Distance -

xl 1/11 ! 1 1/22 - 1/22 

If s2 is integer-restricted, we cannot only augment its 
limiting value from 1/11 to 1, we can also write a combined 
cut on x*l = xl + s2' 

The associated auxiliary variable restriction is 

1/11 sl - ! s2 + x*l = 1 1/22 

and the limiting value relative to x*l becoming 2 is 
21/22 : ! = 1 10/11. 

In this case we will not use the combination, because it would 
lead to loss of integer form (and require an explicit restriction, 



716 CHAPTER XXI 

rather than simply changing the upper limit). ,But even if we 
were to use the combination, the x*l cut belongs to the top 
priority class. This does, incidentally imply that it would be 
written as a negative upper limit distance rather than as an 
explicit restriction. 

*Specified variables which permit a limit cut to be written 
on an auxiliary variable associated with them. 

When no limit cut on a specified variable itself can be written, 
a limit cut on an auxiliary variable has priority over a cut 
which is not a limit cut at all. 

We recognize a variable of this "priority two" class by the 
lack of sign homogeneity between the coefficients in its row, 
in so far as these coefficients refer to integer restricted 
non basic variables, while there is sign-homogeneity between 
the coefficients which refer to continuous variable. 

*Specified variables which do not permit a limit cut of any 
type to be written on or in association with them. 

We recognize a variable of this type by the fact that its 
associated row contains, among the coefficients which refer 
to continuous non-basic variables, positive non-zero as well 
as negative non-zero numbers. 

A cut on a variable of this class is made only when no cut 
or in combination with a variable of one of the two higher 
priority classes can be made. 

There is a fourth, non-priority class of variables. It is not 
recommended to write cuts on slack variables, even where some 
slack variables are integer-restricted. This is because 
integer values for all integer-restricted slack-variable is a 
necessary rather than a sufficient condition for all integer 
solution, whereas integer values for all specified variables 
is sufficient. 

In the continuous optimum of the demonstration example, the 
two slack-variables are in fact integer valued (zero), but 
xl and x 2 'are both fractiona1. If one were to cut on a slack 
variable one might find that an integer value of the slack
variable is duly attained, while none of the specified variables 
attain an integer value. 

Within each class of variables, we still have to decide which 
variable to cut on. The algorithm which we shall actually 
implement, uses for various priority-classes, three methods 
of resolving this choice, viz: 
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a) To cut on the variable with the lowest index. 
b) To cut, space-reservation in the tableau permitting, on all 

variables which come in a particular priority-class, and 
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c) To sort out - for a particular incoming variable - the basic 
variable for which a cut is likely to lead to the highest 
limiting value. 

21.3 The subsidiary cut 

A major problem in integer programming is that a cut on one 
integer-restricted variable may lead to another integer
restricted variable, which so far had an integer value to 
become fractionally valued. 

This is most obvious in the case of an integer-restricted non
basic variable. Zero is an integer number, and if an integer
restricted variable enters the basis at the fractional value 
an integer-restricted variable becomes fractionally valued. A 
related problem is that a single cut generally leads to one 
integer-restricted variable becoming integer-valued, we really 
want all integer-restricted variables to become integer-valued. 

Our general approach to these problems is to anticipate these 
undesired possibilities, in particular when low-priority cuts 
have been used. When we have been forced to use a non-limit 
cut, we scan adjoining vertices, without fully making the 
corresponding steps. We perform the search operation for a 
pivot, and update the value and upper limit columns, but don't 
so far update the full tableau. The updating of the solution
vector is done outside the main tableau - which is therefore 
preserved - and we speak of a hypothetical step. A preliminary 
cut which is made on the basis of information obtained by way 
~a hypothetical step. That hypothetical step is the one 
indicated by a search operation in an attempt to find a 
solution which satisfies a cut or some cuts already made 
before. 

A cut which is made in the main tableau itself, by reference 
to the solution-vector which that main tableau describes, is 
then indicated as a main cut. Limit cuts, when found will be 
made and the corresponding steps will also be actually made. 
No subsidiary cuts will therefore arise from limit cuts, and 
we will indicate limit cuts also as preliminary cuts. However, 
in this example we will treat them as main cuts as otherwise 
no subsidiary cuts could be illustrated in a small example. 

In ou~ demonstration example, the cut on xl indicates s2 as 
pivot column variable, and the slack of the cut x*l as pivot 
row. We assume, for the sake of argument, that the x*l - cut 
is treated as a main cut, rather than as an initial cut 
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i.e. we will now consider the next vertex as hypothetical 
rather than making a step forthwith. 

The search operation for a "hypothetical" pivot could initially 
be the same as normal re-entry of Phase I of the L.P. algorithm, 
but the following special features of the L.P.-search operation 
in an integer programming context become relevant once the 
first "hypothetical" step has been indicated: 

a) The "efficient" rule of selecting the pivotal row to match 
a particular pivotal column is applied (see section 9.2). 
For the standard L.P. problem we compromised this rule, 
because it results in a bias for small pivots. 

b) Once we have established that a particular column contains 
a negative entry against a violated restriction, and the 
column could give rise to additional subsidiary cuts, we 
will re-enter the "Phase I" search operation, on the basis 
of that particular column as pivotal column. 

The significance of these rules is illustrated below, as 
follows: 

Hypothetical step Partial update 
(column extract) 

Name sl s2 < Value x* < Value 
1 

xl 1/11 3/22 1 5/22 xl 1 1 

x 2 1/22 -2/11 19/22 x 2 -1 1/3 1 1/6 

x* 
-1/11 t-3/2?) -5/22 1/3 2/3 1 s2 -7 1 

T 7/22 5/22 4 6/11 T 1 2/3 4 1/6 

The updated column-extract may now serve to indicate a variable 
which is fractionally valued in the hypothetical vertex e.g. x 2 . 
A subsidiary cut is now developed with the help of a partial 
row-update. Just as in the case of main cuts we need only to 
cut on specified variables, i.e. only on x 2 . 
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Partial update (row-extract) with cut on x 2 

Name sl x* 1 < Value 

x 2 1/6 -1 1/3 1 1/6 

s2 2/3 (-7 l/;D 1 2/3 

x* 
2 

-1/6 -2/3 -1/6 

T 1/6 1 2/3 4 1/6 

The x*2 - cut in this example ~s a limit-cut on the combination 
x*2 = x 2 - 2 x*l' 

To make the cut comparable with the main vertex we now make the 
backward step, i.e. we re-introduce x*l as a basic variable, 
and eliminate the s2-slack. This backward step can be performed 
on the row-extract. The operation reverses the initial hypo
thetical step (implemented on the extracts). Since the extract 
was initially updaLed we call this operation unupdating. 

Unupdated row-extract with subsidiary cut 

Name sl s2 < Value 

x 2 1/22 -2/11 19/22 

x* 1 
-1/11 -3/22 -5/22 

x* 2 
-5/22 -1/11 -7/22 

T 7/22 5/22 4.6/11 

The unupdated X*2 cut-restriction is now amalgamated with the 
main tableau, which becomes: 

Name sl s2 < Value 

xl 1/11 3/22 1 5/22 

x 2 1/22 -2/11 19/22 

x* 
1 

-1/11 -3/22 -5/22 

x* 
2 

-5/22 El/l~ -7/22 

T 7/22 5/22 4 6/11 
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When after making a subsidiary cut, we come to scan the 
hypothetical incoming variable column, once more in search for 
a Phase I pivot, we speak of a secondary reentry column. 

At this point it is essential that the search for pivots uses 
the "efficient" rule of the largest quotient when selecting 
between a number or rows representing violated restrictions, 
and not the "conservative" rule of the smallest quotient. Thus 
when s2 is again chosen as pivot column, the newly made x*2-cut 
becomes pivot row, rather than x*l - row, which would lead to 
the ~ subsidiary cut as before. 

This requires some adaptation of the standard L.P. algorithm 
where the "efficient" rule of row-selection is not always 
used. 

As in the "Phase I" of the normal L.P. algorithm, a column is 
not chosen or even considered as pivot column, unless it 
contains negative elements which correspond with negative 
entries in the value column. 

We therefore know that secondary re-entry columns are always 
bounded. Of the eligible minus-minus pairs, we will select 
the one which gives the biggest value of the incoming variable. 

The re-entry of the pivotal column mayor may not decide Which 
subsidiary cut is going to match a particular column-variable. 
This will be the case if one of the following circumstances 
arises 

a) The pivot row is a normal basic variable rather than a 
violated cut 

b) The next hypothetical vertex is integer-valued 

In the first case there is little point in making a further 
subsidiary cut in association with that particular column, in 
the second case the job has been done, as far as that column 
is concerned. 

In order to verify that entry of a particular variable into 
the list of basic variables avoids (as far as possible) 
fractional values of previously integer valued variables we 
will re-enter the same column after making a subsidary cut 
and if necessary, add a new subsidiary· cut which gives rise to 
a higher limiting value. The one exception to this rule arises 
in the case of a zero in the extract. 

If a column-extract contains a zero in the pivotal column, no 
subsidiary cut on the variable associated with the corresponding 
row is developed, even it if is a fractionally valued integer
restricted variable. 
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Theorem 

When we re-enter a column to search for a Phase I pivot after 
writing a subsidiary cut in association with a hypothetical 
step (the column being indicated by the previous entry of the 
same column), the pivotal row is either not a cut, or the last
written subsidiary cut is the restriction which gives rise to 
the largest value of the variable associated with the column, 
and hence is indicated as pivotal row. 

Example in lieu of a proof: 

The sign-arrangement + 

~s systematic for the "unupdating" step. e.g. 

x* 
1 

Value 

s2 -7 1/3 1 2/3 

x* 2 
-2/3 -1/6 

The number -7 1/3 in the s2' x*l cell is negative because it 
is reciprocal of a negative pivot (the -3/22). The number 
1 2/3 is positive because it is the value of s2 and the 
entries of - 2/3 and - 1/6 are negative because all entries 
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in a cut-restriction row are negative. In the tableau containing 
the "main" cut, the slack of the new subsidiary cut is 
necessarily more negative than in the tableau-extract which 
was used to formulate it. 

Column updating in the backward step, i.e. division by minus the 
pivot also maintains the negative element in the cut-restriction/ 
pivot column cell, and the sign arrangement 

+ always results in 

The -1/11 in the x*?' s2 cell means that there is a critical 
ratio for which the-restriction becomes binding. 

By definition (the definition of a cut as excluding the current 
solution), a cut restriction is not satisfied at the 
(hypothetical) vertex for which the cut was formulated. By 
assumption, i.e. the "efficient" rule of row selection, all 
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other cuts (e.g. the main cut and any other subsidiary cuts) 
are satisfied at a hypothetical vertex. The one exception to 
this rule other than elimination of a normal variable i.e. not 
reaching a cut, relates to zero coefficients. In either case, 
we will refrain from formulating a subsidiary cut. 

Therefore the last formulated subsidiary cut is the most 
binding restriction. (Thus, in the example, the x*2 - cut with 
a critical ratio of 7 is more binding on s2' than the previously 
formulated x*l - cut, and this is because the x'*2 - cut was 
formulated at a vertex where the x*l - cut was satisfied. In 
the interest of restricting the total number of cuts we will 
therefore discard a subsidiary cut, whenever the immediately 
following re-entry of the same column gives rise to a new 
subsidiary cut. 

We now re-enter the "Phase I" search operation for a hypothetical 
pivot, but restrict ourselves in first instance to the s2 -
column. 

The purpose of such a "restricted re-entry" is to see whether 
we can perhaps replace the last-formulated subsidiary cut by 
one which is associated with a higher limiting value for the 
s - variable. In order to limit the number of re-entries of 
tte same column, we will resort to an unrestricted search for 
a hypothetical pivot, whenever the value of the incoming 
variable in the previous hypothetical vertex is at least equal 
to 10. 

This qualification of the column-restriction is not present and 
we proceed as before. 

Column-extract 

Name 

x* 1 

x* 2 

T 

3/22 

-2/11 

-3/22 

5/22 

< Value 

1.5/22 

19/22 

-5/22 

-7/22 

4 6/11 

Updated column-extract giving 
hypothetical vertex 

Name 

x* 1 

x* 2 

-2 

-H 

-11 

21 
2 

< Value 

3/4 

3 3/4 
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We have indeed reached the feasible space in one step. If this 
were not the case we would develop no further subsidiary cuts 
in association with this column. As it is the hypothetical 
vertex indicates a cut on xl' and again we use a row-extract 
to implement that cut. 

Row-extract with pivotal row 
and xl-row (to be cut on) 

Name sl s2 < Value Name sl x* 2 
< Value 

xl 1/11 3/22 1 5/22 xl 
_1 q 3/4 4 

x* 2 -5/22 (-l/ly 1 7/22 8 2 2~ -11 3! 

x* -3/4 _1 -3/4 
T 7/22 5/22 4 6/11 1 2 

T _1 2~ 3 3/4 4 

Updated row-extract with cut 

Name sl s2 < Value 

Xl 1/11 3/22 1. 5/22 

x* 2 -5/22 -1/11 -7/22 

x* 1 -7/11 -1/22 -10/11 

T 7/22 5/22 4 6/11 

When, as in this case, we have found a higher limiting value 
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for a particular variable by cutting after "restricted" re-entry, 
we overwrite the previous subsidiary cut. The previously developed 
subsidiary cut in association with a hypothetical pivot in the 
s2-column was (see tableaux on previous page) the x~ cut, we 
tfierefore are left with two xt cuts, the main cut and a 
subsidiary cut. 

The successor tableaux are: 
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Main tableau with hypothetical Corresponding updated co1umn-
pivot extract 

Name 

xII/II (3/22) 

x 2 1/22 -2/11 

x* -1/11 -3/22 
1 

x* -7/11 -1/22 
1 

T 7/22 5/22 

< Value 

1 5/22 

19/22 

-5/22 

-10/11 

4 6/11 

Name 

x* 
1 

x* 1 

T 

7 1/3 

1 1/3 

1 

1/3 

-1 2/3 

< Value 

9 

21 
2 

1 

-1 
2 

The new hypothetical vertex is not feasible, and there is no 
point in the development of a further subsidiary cut in 
association with the s2 - column. 

On leaving the choice of the column free, sl is indicated as 
pivotal column, against the first x*l - cut as pivotal row. 

Main tableau with hypothetical Corresponding updated co1umn-
pivot extract 

Name 

1/11 3/22 

1/22 -2/11 

x*l (1/11) -3/22 

x* -7/11 -1/22 
1 

T 7/22 5/22 

< Value 

1 5/22 

19/22 

-5/22 

-10/11 

4 6/11 

Name 

x* 
1 

T 

x* 
1 

1 

-11 

-7 

< Value 

1 

3/4 

21 
2 

15/22 

3 3/3 

We will now develop a subsidiary cut on (a combination in 
association with) x 2 ' which will not be illustrated further 
here. 

21.4 An integer programming adaption of the linear programming 
procedure 

The procedure INTP offered In this section is a modification 
of the LINP procedure from section 12.3. The modification 
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concerns the already mentioned "efficient" rule of row 
selection, the "search only", "column-restricted" and "isolated 
step're-entries an extension of the upper limit facilities, and 
the fact that outside Phase 0, only one step per call is made. 

The first of these points largely relates to the internal 
working of the procedure. Thus, the instructions 

REENTRY:= 0; 
LINP CT, M, N, NEQ, NAV, ROWLST, COLLST, REENTRY); 
or alternatively 
REENTRY . = 0; 
IN: 'IF' REENTRY = - 10 'THEN' REENTRY: = 1; 
R .= K := ROWN := COLN .= 0; 
INTP CT, M, N, NEQ, ROWLST, COLLST, R, K, ROWN, COLN, REENTRY); 
'IF' REENTRY = - 10 'THEN' 'GOTO' IN; 

both amount to asking for the solution of an ordinary LP 
problem. If LINP is employed, a compromise-rule of row 
selection is applied in doing so, if INTP is applied, the 
"efficient" rule of row-selection is employed in doing so, and 
only one step at a time is made. The exit value of - 10 for the 
re-entry parameter indicates the fact that a step has actually 
been made. The second point, the "search only" re-entry relates 
to hypothetical steps. 

On exit, R will indicate the index of the last selected 
pivotal row, K the index of the last-selected pivotal column 
and ROWN and COLN the names of the pivot row and pivot column 
variable. On "normal" exit after normal entry, this is not a 
particularly useful information. 

However, if the procedure is entered with the re-entry-parameter 
set a 2, no step will actually be made. 

The instructions 

REENTRY : = 2; R: = K : = .ROWN : = COLN: = 0; 
INTP CT, M, N, NEQ, NAV, ROWLST, COLLST, R, K, ROWN, COLN, REENTRY); 

amount to a call for a "hypothetical" step. The rules for pivot
selection are Cfor K = 0), the rules which this version of the 
procedure employs normally. If K is initiated at a non-zero 
number, we ask only for a pivot in that particular column. In 
short, this is the call for a secondary re-entry. Thirdly, 
there is the facility of making an isolated prescribed step. 
If the re-entry-parameter is on re-entry set at 1, and 
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R, K, COLN AND ROWN are set at non-zero values, the step as 
indicated by the values of R, K, COLN, and ROWN will be made. 
This is for upadating tableau-extracts according to a 
previously indicated step, and for implementing earlier choices. 

If the re-entry-parameter is 1, and the other parameters are 
zero, a single step, as indicated by the usual rules is made. 
The fourth point, the extension of upper limit facilities 
relates in particular to upper limit cuts. This version of the 
procedure handles upper limits on slack-variables and notes 
negative entries in the upper-limit distances column as 
violated upper limit restrictions. It accordingly activates 
Phase 1. 

Note that this is a basic re-specification of the LP problem. 
The linear programming problem is now specified as 

Maximise 

Subject to 

w' x 

d<Ax<b) 

R, < x < u 
) 
) 

(21.4.1) 

The relation between (21.4.1) and the upper limits on the 
slack-variables is in fact 

s = -A x + b < b - d (21.4.2) 

Just as in the case of upper limits on the specified variables 
(elements of x), we would put a fancyhigh number as upperbound, 
where no meaningful upper limit on a slack-variable is 
intended. 

These facilities make it possible to formulate an upper limit 
cut, by the simple process of putting the difference between 
the current fractional value of a variable and the next lower 
integer value, in the distances column. Thus, following the 
similar procedure as discussed in section 20.2 for branching 
restrictions the example in section 21. 3 is written 
as follows: 

Name sl s2 < Value Distance -

xl 1/11 3/22 1 5/22 -5/22 

x2 1/22 -2/11 19/22 99 3/22 

T 7/22 5/22 4 6/11 
Upper b 99 99 

Lower b 0 0 
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The upper limits on x 2 ' sand s2 are "fancyhigh" limits, but 
the violated upper limit ~istance represents a limit cut. 

The search operations would then signal the upper limit on xl' 
coded as 10001 as pivotal row against sl as pivotal column. 
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A secondary advantage of this way of recording limit cuts is that 
irrespective of whether they are generated as main cuts or as 
subsidiary cuts, we can keep any reduced upper limits. (Explicit 
cuts may have to be discarded when they turn out to be amply 
ful£i lIed.) 

Because of the relative ease with which one can make a limit 
cut, we will actually make limit cuts on all integer-restricted 
variables at each vertex, actual or hypothetical whenever that 
is possible. 

The textual listing of the procedure INTP is now given as 
follows: 

'PROCEDURE' INTP(T.M.N.NEQ,NAV,ROWLST.COLLST, 
IROWLST,R,K,ROWN.COLN.REENTRY)J 
'ARRAY' TJ 'INTEGER' M,N,NEQ.NAV,R.K,ROWN.COLN,REENTRY; 
'INTEGER' 'ARRAY' ROWLST.COLLST.IROWLSTJ 

'BEGIN' 'INTEGER' I.J,TRYR.TRYN,FIRST.LAST,PRESCRIBED ROW, 
UNIFORM,ZJ 
'ARRAY' WORKSPACEClI2.1a2lJ 
'REAL' ASC.HIG,QUO.PREV POS.TQUO,PIV,COP.NUM,PIWEIGHT, 
SAVED ASCJ 
'800LEAN' INVERTED.FEASIBLE,UPPERBOUND,POSITIVE,MEASURED, 
SEARCH ONLY, PRESCRIBED COLUMNJ 

'REAL' 'PROCEDURE' INPROD(I,A,B,X,Y); 
'VALUE' A.BJ 'INTEGER' I.A,BJ 'REAL' X.YJ 'ALGOL'; 

'PROCEDURE' PRODUCT(A,B.CH 'REAL' A.B,C; 
'BEGIN' 

WORKSPACECl,lllaAJ 
WORKSPACECl,2ll-BJ WORKSPACEC2.2ll c C; 
Aa-INPROD(Z,l,2.WORKSPACECl.Zl.WORKSPACEC2.Zl)J 
END OF PRODUCT a 'END'; 

'PROCEDURE' ORDL(T,M,N.ER.RH,ROWLST.COLLST); 
'ARRAY' TJ 'INTEGER' M,N,ER.RH; 
'INTEGER' 'ARRAY' ROWLST,COLLSTJ 'ALGOL'; 
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'COMMENT' LINEAR PROGRAMMING PROCEDURE. 
ADAPTED FOR USE IN THE CONTEXT OF INTEGER PROGRAMMING. 

INPUT SUPPLY AND SIGNIFICANCE OF THE OPERANDS AS IN 
LINP. EXCEPT FOR THE FOLLOWING DIFFERENCES. 

INTP HAS A THIRD LIST OF NAME-CODES AS PROCEDURE PARAMETER. 
THIS IS THE LIST OF INTEGER RESTRICTED ROWNAMES. 
THIS LIST IS NOT GENERATED BY THE PROCEDURE ITSELF. 
THE FUNCTION OF IROWLST IN THE INTP PROCEDURE IS TO INHIBIT 
UNDESIRABLE SETTING OF FANCYHIGH UPPER LIMITS. 
IF THE I-TH ELEMENT IF IROWLST IS NOT A ZERO. 
THE UPPER LIMIT DISTANCE OF THE I-TH SLACK-VARIBLE MAY 
LEGITIMABLY BE ZERO. AND NO F~~CYHIGH NUMBER IS PUT 
INSTEAD. 
THIS INFORMATION IS SUPPLIED ACCORDING TO THE FOLLOWING 
CONVENT I ON. 
o NOT INTEGER RESTICTED. 10 INTEGER RESTRICTED. 

INTP RECOGNIZES UPPER LIMITS ON SLACK-VARIABLES. AND 
THE NUMERICAL CONTENT OF THE N+2ND COLUMN. 
THE UPPERBOUND DISTANCES COLUMN FOR BASIC VARIABLES 
SHOULD ALSO BE SUPPLIED. 

TO ACCOMODATE UPPER BOUNDS FOR SLACKS WHERE NO MEANINGFUL 
UPPER BOUND IS INTENDED. A ZERO MAY BE SUPPLIED INSTEAD. 
AND THE PROGRAMME WILL SUBSTITUTE A MILLION FOR IT. 

THE CODING OF UPPER LIMITS ON SLACK-VARIABLES IS SIMILAR 
TO THOSE ON ORDINARY VARIABLES. I.E. BY WAY OF AN 
ENLARGEMENT OF 10000. 
THE UPPER LIMIT ON THE I-TH SLACK-VARIABLE IS THEREFORE 
CODED AS 11000+1. 

, IF' K eO' THEN' , BEG IN' 
NEWLINE( 1 H 
WRITETEXT('('YOU SERRONEOUSLYSPRESCRIBEDSA 
NEGATIVESCOLUMN')')J 
NEWLINE( 1 H 
WRITETEXT('('KSS=SSS')'); 
PRINT(K.S.O)J 'END'J 

'IF' K > N 'THEN' 'BEGIN' 
NEWLINE( 1 )J 

WRITETEXT('('YOUSERRONEOUSLYSPRESCRIBESASCOLUMN-INDEXS 
INSEXCESSSOFSTHESTABLEAU-SIZE.') ')J 

NEWLINE<1 H 
WRITETEXT('('KSS-SSS')')J 
PRINT(K.S.OH 'END'; 

'IF' K > 0 'AND' (ReI 'OR' R>M) 
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'AND' 'NOT' (R- 0 'AND' ABS (ROWN-COLN) -10000) • THEN' • BEGIN' 
NEWLINE( 1 )J 

WRITETEXT('('YOUSERRONEOUSLYSPRESCRIBESASROW-INDEXS 
OUTSIDESTHESTABLEAU.')'); 
NEWLINE( 1 )J 

WRITETEXT('('RSS=SSS')'); 
PRINT(R.S.O); 'END'; 
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PRESCRI8ED ROW .- RJ SEARCH ONLY .= 'FALSE'J 
'IF' PRESCRIBED ROW-O 'AND' ROWNIO 
'THEN' PRESCRIBED ROW.-ROWNJ 
INVERTED .- 'TRUE'} FIRST.-l; LAST.=N; 
PRESCRIBED COLUMN .- 'FALSE'; 

'IF' 'NOT' REENTRY - 0 'THEN' 'BEGIN' 
'COMMENT' 
FOR REENTRY-O. THE NORMAL LP ALGORITHM IS FOLLOWED FROM THE 
START. INCLUDING THE FILLING OF THE NAMELISTS. 
PHASE 0 IS GONE THROUGH. AND 0 N E NORMAL STEP IS MADE. 
OTHERWISE. FOR NON-ZERO VALUES OF REENTRY. THE PROCEDURE 
EXPECTS AN ALREADY UPDATED TABLEAU. WITH NAMELISTS FILLED. 
WHICH NEEDS RE-OPTIMIZING AND/OR THE FINDING OF A NEW 
FEASIBLE SOLUTION. 

RECOGNIZED RE-ENTRY MODES (OTHER THAN THE NORMAL 
ENTRY MODE) 
ARE REENTRY=l AND REENTRY=2. 

FOR REENTRY-l JUST 0 N E STEP IS MADE. 
DEPENDING ON THE INITIAL VALUES OF THE ROW AND COLUMN
INDICES RAND K. THIS STEP MAY BE EITHER FREELY CHOSEN 
ACCORDING TO THE NORMAL SEARCH CRITERIA. OR RESTRICTED. 
OR EVEN PRESCRIBED. 

FOR R-O. K-O. THE STEP IS FREELY CHOSEN. 

FOR R=D. KIO. THE STEP HAS TO BE FOUND IN THE INDICATED 
COLUMN. OR NONE AT ALL IS MADE. 
THE PROBLEM MAY AT THAT POINT BE FOUND TO BE EMPTY OF 
A FEASIBLE SOLUTION IN THAT PARTICULAR COLUMN. 

FOR RIO. ROWNIO • KIO. NO SEARCH IS PERFORMED. ONLY A 
PREDETERMINED STEP IS MADE. 
THE NAMECODES ROWN AND COLN SHOULD IN THAT CASE ALSO HAVE 
BEEN INITIALIZED AT'THEIR APPROPRIATE VALUES. 

FOR REENTRY=2 NO ACTUAL STEP IS MADE AT ALL. BUT THE VALUES 
OF THE ROW-AND COLUMN INDICES AND THE NAMECODES ARE 
TRANSMITTED TO THE MAIN PROGRAMME. 

THE REENTRY PARAMETER ALSO SERVES AS EXIT PARAMETER. 
ALARM MESSAGES FOR EMPTY AND UNBOUNDED PROBLEMS ARE NOT 
PRINTED BY THE INTP PROCEDURE ITSELF. INFORMATION TO THE 
MAIN PROGRAMME IS RECORDED VIA THE REENTRY PARAMETER. 
FOR NORMAL. I.E. OPTIMAL AND FEASIBLE EXIT. 
OR EVEN IF EMPTINESS OR UNBOUNDEDNESS. THOUGH PRESENT. 
IS NOT SO FAR REVEALED. 
THE REENTRY PARAMETER BECOMES EITHER ZERO OR MINUS 10. 
EVEN IF ITS VALUE ON ENTRY WAS DIFFERENT. 

AN UNBOUNDED PROBLEM IS INDICATED BY REENTRY 1. 
AN EMPTY PROBLEM BY REENTRY = -1. 
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REENTRY • 0 INDICATES AN ALREADY FEASI8LE PROBLEM. 
REENTRY· -10 INDICATES A PROBLEM WHICH IS NOT SO FAR 
FEASIBLE. AND REQUIRES MORE STEPS TO BE MADE. QUITE 
APART FROM OPTIMALITY. 

THIS VERSION OF THE PROCEDURE. WHICH IS ADAPTED TO INTEGER 
PROGRAMMING HAS THE FOLLOWING SPECIAL FEATURESI 

NOT ONLY SPECIFIED VARIABLES. BUT ALSO SLACK-VARIABLES. 
HAVE UPPER LIMITS. 
ON FIRST ENTRY. THE UPPERBOUNDS DISTANCES COLUMN SHOULD 
THEREFORE BE PRE-FILLED. 

THE NUMBERS SUPPLIED AS UPPERLIMIT 0 1ST A N C E S 
FOR THE SLACK-VARIABLES. INDICATE THE INTERVAL OVER WHICH 
THE SPECIFIED COMBINATION OF VARIABLES IS ALLOWED TO VARY. 

THUS THE RESTRICTION IS 
SIGMA A I.J LT OR EQ B I. AND 
SIGMA A I.J GT OR EQ B I L I. 
WHERE L I IS THE LIMIT DISTANCE SPECIFIED FOR THE IrH 
SLACK-VARIABLE. 
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GENERALLY. A SINGLE CALL TO THE INTEGER PROGRAMMING ADAPTATION 
OF THE LINEAR PROGRAMMING PROCEDURE. CAUSES THE MAKING OR 
ON CERTAIN TYPES OF CALL-S ONLY THE SEARCH AND INDICATION. 
OF 0 N ESTEP. 
THE EXCEPTION IS WHEN THE PROCEDURE IS CALLED WITH REENTRY 
SET AT ZERO. I.E. IN THE NON-REENTRY MODE. AND THERE ARE 
VARIABLES OF TYPE A8SoLUTE. WITHOUT NON-NEGATIVIY RESTRICTION. 
PHASE 0 IS ALWAYS COMPLETED. EXCEPT IN THE CASE OF A SYSTEM 
OF INADEQUATE RANK. ONE MORE STEP AFTER PHASE ZERO IS M DE IN 
THAT CASE. 

'IF' REENTRY=2 'THEN' SEARCH ONLY 1= 'TRUE'; 

'IF' 'NOT' K=O 'THEN' '8EGIN' 
PRESCRI8ED CoLUMNI='TRUE'; FIRSTI=LAST:=Kl 'END'; 

'GOTO' PHASE IJ 'END'; 

FILL NAMELISTSI 
'FOR' JI-l 'STEP' 
'FOR' 11=1 'STEP' 

'UNTIL' N 'DO' COLLSTCJJ 1= J; 
'UNTIL' M 'DO' ROWLSTCIJ 1= 1000+1; 

SET UPPER BOUNDS AND FILL DUMMY ENTRIESI 
'FOR' JI .. NAV+I 'STEP' 1 'UNTIL' N 'DO' 'IF' TCM+2.JJ=0 
'THEN' TCM+2.JJI=1000000; 
TCM+I.N+IJI=TCM+2.N+IJI=TCM+I.N+21:=TCM+2.N+2J:=O; 
'FOR' 11=1 'STEP' 1 'UNTIL' M 'DO' 
'IF' TCI.N+2J=O 'AND' IRoWLSTCIJ=O 
'THEN' TCI.N+2J:=1000000000; 
'FOR' JI=I 'STEP' 1 'UNTIL' NAV 'DO' TCM+2.JJI=0; 

ATTEND PRIMAL DEGENERACY I 
'FOR' 11=1 'STEP' 1 'UNTIL' M 'DO' 'IF' TCI.N+IJ=O 
'AND' tROWLSTCIl=O 'THEN' 'BEGIN' 

TC I. N+ 1 J I = 1 ; 
'FOR', Jizi 'STEP' 1 'UNTIL' N 'DO' 'IF' TCI.JJ < 0 'THEN' 
TCI.N+IJI=TCI.N+IJ-TCI.JJ; 
TCI.N+IJ:=O.OOOOOOOOOOOOOOI*TCI.N+IJ; 
'IF' 1< NEQ+I 'THEN' TCI.N+IJI=-TCI.N+IJ; 'END'; 
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ATTEND DUAL DEGENERACY. 
'FOR' JI-l 'STEP' 1 'UNTIL' N 'DO' 
'IF' TCM+l.Jl=O 'THEN' '!lEGIN' 

TCM+l.JH=I; 
'FOR' 1 .. -1 'STEP' 1 'UNTIL' M 'DO' 'IF' TCI.Jl > 0 'THEN' 
TCM+l.JJ.=TCM+l.JJ+TCI.JJ; 
TCM+l.JJI=O.OOOOOOOOOOOOI.TCM+l.Jl; 
'IF' J < NAV+l 'THEN' TCM+l.JJI--TCM+l.JlJ 'END'; 

'IF' 'NOT' K=O 'THEN' 'GOTO' PHASE Jj 

PHASE 01 
ENTER VARIA!lLES WITHOUT SIGN RESTRICTION: 
INVERTEO:='FALSE'; 

RETURN IN INVERSION: 
K.=K+lJ 
'IF' K > NAV 'THEN' 

INVERTED.='TRUE'; 
'BEGIN' 
'GOTO' ORDER; 'END'; 

COLN:=KJ QUO.=1000000000000000; ROWN:=O; 
'FOR' 1:=1 'STEP' 1 'UNTIL' M' 'DO' 

, 
'IF' ROWLSTC I J > NAV 'AND' 'NOT' TC I.Kl 

TQUOI=TCI.N+IJ/TCI.KJ; 
'IF' TQUO < 0 'THEN' TQUO.=-TQUO; 
'IF' TQUO < QUO 'THEN' 'BEGIN' 

o 'THEN' 'BEGIN' 

QUOI-TQUOJ RlaJj ROWNI-ROWLSTC IlJ 'END'; 
'I F' ROWN=O 'THEN' 'GOTO' UNBOUNDED; 
QUO :. TCR.N+l J/TCR.KH 'GOTO' MAKE THE STEP; 

ORDERI 
ORDL(T.M.N.2.2.ROWLST.COLLST); 

PHASE I: FEASIBLE 1= 'TRUE'; 
R 1= PRESCRIBED ROW; 
'IF' KIO 'AND' (PRESCRIBED ROW I 0 'OR' ABS(COLN-ROWN)=10000) 
'THEN' 'GOTO' RESTORE CORRECT VALUE OF QUO; 

CHECK ON EMPTYNESS BY CONTRADICTION: 
'FOR' II-NAV+l 'STEP' 1 'UNTIL' M 'DO' 
'IF' TCI.N+IJ + TCI.N+2J < 0 'THEN' 'BEGIN' 

'IF' TC I .N+l J+TC I.N+2l >-0. 000 1 'THEN' 'BEGIN' 
'FOR' J:=1.2 'DO' 
'IF' TCI.N+JJ<O 'AND' TCI.N+JJ>-O.OOOI 
'THEN' TCI.N+Jl:=O; 
TCI.N+2l:=-TCI.N+ll+0.000001; 'END' 

'ELSE' 'GOTO' EMPTY; 'END'; 

FIND WHETHER A FEASIBLE SOLUTION EXISTS: 
'FOR' I :=NAV+l 'STEP' 1 'UNTIL' M ,~O' 'IF' T[ I.N+1l < 0 
'OR' TCI.N+2l < 0 'THEN' FEASIBLE:='FALSE'; 

MAXIMIZE: HIGI=O; COLNI=O; 
'FOR' J:= FIRST 'STEP' 1 'UNTIL' LAST 'DO' 
'IF' COLLSTCJJ < 1000 'OR' COLLSTCJl > NEQ + 1000 'THEN' 'BEGIN' 
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INITIALIZE SUBSTITUTE PREFERENCE FUNCTIONI 
ASCI-OJ UNIFORM 1=0; 

'IF' FEASIBLE 'THEN' ASCI~-TCM+I.JJ 'ELSE' 
'FOR' tr-NAV+I 'STEP' I 'UNTIL' M 'DO' 'BEGIN' 

SAVED ASC ,- ASC; 
'IF' TCI.N+IJ < 0 'THEN' ASCI-ASC-TCI.JH 
'IF' TCI.N+2J < 0 'THEN' ASCI-ASC+TCI.JJ; 

'IF' UNIFORM c 0 'AND' 'NOT' ASC - SAVED ASC 
'THEN' UNIFORM I=IJ 
'IF' UNIFORM" I 'THEN' 'BEGIN' 

'IF' TCI.N+IJ < 0 'AND' TCI.JJ > 0.000001 
'THEN' UNIFORM 1= -I; 
'IF' TCI.N+2J < 0 'AND' TCI.JJ < -0,000001 
'THEN' UNIFORM := -I; 'END'; 'END'; 

REFUSE UNDERSIZE PHASE I PIVOTSI 
'IF' 'NOT' FEASIBLE 'AND' ASC < 0.0000001 
'THEN' 'GOTO' FINISHED WITH THIS COLUMN; 

SELECT BETWEEN NON PREFERRED COL BY DUAL RATIO: 
'IF' ('NOT' FEASIBLE 'AND'TCM+I.JJ > 0 'AND' ASC" 0) 
'THEN' ASC 1= O.OOI*ASC*ASC/TCM+I.JJ; 

'IF' 'NOT' ASC > 0 'THEN' 'GOTO' FINISHED WITH THIS COLUMN; 

PUT PRFERENCE FOR UNIFORM COLUMNSI 
'IF' UNIFORM - 1 'THEN' ASC 1= 10000000*ASC; 

PUT PREFERENCE FOR PREFERRED COLUMNSI 
'IF' 'NOT' FEASIBLE 'AND' TCM+I.JJ < 0 'THEN' 
ASCI-ASC-IOOOOOOOOOOOO*TCM+I.JJ; 

SEARCH FOR QUO IN JTH COLUMN: 
QUOt-PREV POSI=TCM+2.JJi TRYRI=O; 
'IF' COLLSTCJJ<IOOOO 'THEN' TRYNI=COLLSTCJJ+IOOOO 
'ELSE' TRYNI=COLLSTCJJ-IOOOO; 

'IF' UNIFORM -I 'THEN' ASC 1= ASC*IOOO; 

'FOR' II"NAV+I 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 

MEASURED I- 'FALSE'; POSITIVE I" 'FALSE'; 

VIOLATED RESTR ON VALUE COLI 

EQNI 
'IF' ROwLSTCIJ>IOOO 'AND' ROWLSTCIJ<IOOI+NEQ 
'AND' TC I.JJ<O 'AND' TC I.N+I J<O 
'THEN' 'BEG IN' 

'IF' TCI.N+IJ>-O.OOOOOOI 'THEN' TCI.N+IJ:=-O.OOOOOOI; 
POSITIVE 1= 'TRUE'; 
'GOTO' CHECK QUOTIENT; 'END'; 

'IF' TCI.JJ<O 'AND' TCI.N+IJ<O 
'THEN' 'GOTO' CHECK QUOTIENT; 
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VIOLATED UPPERBOUND DISTANCEI 
'IF' T[ I#Jl>O 'AND' T[ I#N+21<0 
'THEN' 'GOTO' TRY' UPPER BOUND; 

POSITIVE RATIO WITH UPPER LIMIT DISTANCEI 
'IF' T[I#Jl < 0 'AND' 'NOT' TCI#N+21 < 0 
'THEN' 'GOTO' TRY UPPER BOUND; 
POSITIVE RATIO WITH VALUE COLUMNI 
'IF' TCI#Jl>O 'AND' 'NOT' TCI#N+11<0 
'THEN' 'GOTO' CHECK QUOTIENT; 
'GOTO' FINISHED WITH THIS PIVOT; 

REMEASUREI 
'IF' POSITIVE 'THEN' 'GOTO' FINISHED WITH THIS PIVOT; 
MEASURED 1= 'TRUE'; 
VALUE COLUMN AFTER UPPER LIMITI 
'IF' TCI#Jl > 0 'AND' 'NOT' TCI#N+11<0 
'THEN' 'GOTO' CHECK QUOTIENT; 
UPPER LIMIT AFTER VALUE COLI 
'IF' TCI#Jl < 0 'AND' 'NOT' TCI#N+21<0 
'THEN' 'GOTO' TRY UPPERBOUND; 
'GOTO' FINISHED WITH THIS PIVOT; 

CHECK QUOTI ENT I 
UPPERBOUNDI='FALSE'; TQUOI=TCI#N+11/TCI.Jlj 
'IF' TQUO-O 'THEN' TQUOa c O.0000000000001/TCI#Jl; 
'IF' 'NOT' TCI#N+11 < 0 'THEN' POSITIVEI·'TRUE' 
'ELSE' POSITIVE I- 'FALSE'; 

MEASURE I 

'IF' ('NOT' UPPERBOUND 'AND' TCI#Jl<O 'AND' TCI#N+11<0) 
'OR' (UPPERBOUND 'AND' TCI#Jl>O 'AND' TCI#N+21<0) 
'THEN' POSITIVEI.'FALSE'; 

'IF' ROWLSTCI1>1000 'AND' ROWLSTCI1<1001+NEQ 
'THEN' 'BEGIN' 

POSITIVEI.'TRUE'; UPPERBOUND:='FALSE'; 
'GOTO' RECORD; 'END'; 

IN PREFERRED COLUMNS ACCEPT ONLY POSITIVEI 
'IF' TCM+1#Jl < -0.000001 'AND' 'NOT' POSITIVE 
'THEN' 'BEGIN' 

'IF' MEASURED 'THEN' 'GOTO' FINISHED WITH THIS PIVOT 
'ELSE' 'GOTO' REMEASURE; 'END'; 

ACCEPT POSITIVE AND ONE NEGATIVEI 
'IF' POSITIVE 'AND' TQUO<QUO 'THEN' 'GOTO' RECORD; 
'IF' 'NOT' POSITIVE 'AND' TQUO<PREV pas 
'AND' QUO· PREV pas 'THEN' 'GOTO' RECORD; 

DO NOT ACC£PT IF EXCEEDING EARLIER POSITIVEI 
'IF' TQUO > PREV pas 'THEN' 'BEGIN' 

'IF' MEASURED 'THEN' 'GOTO' FINISHED WITH THIS PIVOT 
'ELSE' 'GOTO' REMEASURE; 'END'; 
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DO NOT INCREASE IN NDN PREFERRED DIRECTloNI 
'IY' POSITIVE 'AND' TQUD> QUO 'AND' TCM+I#Jl>O 
'THEN' 'BEGIN' 

'IY' MEASURED 'THEN' 'GOTO' YINISHED WITH THIS PIVOT 
'ELSE' 'GOTO' REMEASUREJ 'END" 

NORMALLY YLY THROUGH NON LIMIT CUTSI 
'IY' REENTRY-I 'AND' TRYN>2*N 'AND' TRYN<3*N+I 
'THEN' 'BEGIN' 

'IF' LAST>FIRST 'AND' 'NOT' POSITIVE 'THEN' 'BEGIN' 
'IY' 'NOT' MEASURED 'THEN' 'GoTo' REMEASURE 'ELSE' 
'GOTo' FINISHED WITH THIS PIVOT' 'END" 'END" 

DO NOT ACCEPT ALL NEGATIVEI 
'IY' 'NOT' POSITIVE 'AND' 'NOT' QUO - PRE V POS 
'THEN' 'BEGIN' 

'IY' 'NOT' MEASURED 'THEN' 'GOTO'REMEASURE 
'ELSE' 'GOTO' FINISHED WITH THIS PIVOT' 'END" 

'IY' ('NOT' UPPERBoUND 'AND' TCI#Jl<O 'AND' TCI#N+Il<O) 
'DR' (UPPERBoUND 'AND' TCI.Jl>O 'AND' TCI#N+21<0) 
'THEN' POSITIVEI-'YALSE' 'ELSE' POSITIVEI-'TRUE" 

RECoRDI 
'IY' POSITIVE 'AND' 
TQUo*ASC<HIG 'THEN' 'GoTo' FINISHED WITH THIS COLUMN. 

'IY' 'NOT' TQUO < PREV POS 
'DR' ('NOT' POSITIVE 'AND' ABS(TCI#Jl»TCM+2#Jl) 
'DR' ('NOT' POSITIVE 'AND' I/ABS(TCI#Jl»TCM+2.Jl) 
'DR' ('NOT' POSITIVE 'AND' TCM+I#Jl<O) 
'THEN' 'BEGIN' 

'IY' MEASURED 'THEN' 'GoTo' YINISHED WITH THIS PIVOT 
'ELSE' 'GoTo' REMEASURE' 'END" 

TRY TO AVOID oUTSI~E PIVoTSI 
'IY' (ABS(TCI#Jl) '- 0.1 'DR' ABS(TCI#Jl) > 10) 
'AND' 'NOT' (RoWLSTCI1>IOOO 'AND' ROWLSTCI1<IOOI+NEQ) 
'THEN' 'BEGIN' 

'IY' 'NOT' POSITIVE 
'THEN' 'BEG IN' 

'IY' MEASURED 'THEN' 'GoTo' YINISHED WITH THIS PIVOT 
'ELSE' 'GOTo' REMEASURE' 'END" 'END" 

QUol-TQUo, TRYRI-I' TRYNI-RoWLSTCI1, 
'IF' UPPERBoUND 'THEN' TRYNI-TRYN+IOOOO' 

'IY' POSITIVE 'THEN' PREV PoSI-QUo, 

'IY' 'NOT' MEASURED 'THEN' 'GOTo' REMEASURE 
'ELSE' 'GOTO' FINISHED WITH THIS PIVOT. 
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TRY UPPER BOUND I 
UPPERBOUND I- 'TRUE', TQUO 1= -TCI.N+2l/TCI.Jl; 
'IF' TQUO=O 'THEN' TQUO .. '-O .000000000000 1/TC I.JlJ 
'IF' 'NOT' TCI.N+2l e 0 
'THEN' POSITIVE 1= 'TRUE' 
'ELSE' POSITIVE 1= 'FALSE'; 
'GOTO' MEASUREJ 

FINISHED WITH THIS PIVOTI 'END'J 

PIWEIGHTI=10; 

'IF' 'NOT' TRYR=O 'THEN' 'BEGIN' 
PIWEIGHT I- ABS(TCTRYR.Jl)J 
'IF' PIWEI GHT> 1 'THEN' PI WEI GHT I" 1 IPI WEI GHTi 
'IF' PIWEIGHTeO.1 'THEN' PIWEIGHT:=PIWEIGHT*PIWEIGHT 
*PIWEIGHTJ 'END'; 

'IF' QUo*ASC*PIWEIGHT > HIG 'THEN' 'BEGIN' 
HIGI=QUO*ASC*PIWEIGHT; 
RlaTRYR; 
ROWN:=TRYN; KI=J; COLNI=COLLSTCJlJ 'END'; 

FINISHED WITH THIS COLUMNI 'END'; 

'IF' COLN = 0 'THEN' 'BEGIN' 
'IF' FEASIBLE 'THEN' 'GOTO' OUT 'ELSE' 'GOTO' EMPTY; 'END'; 

RESTORE CORRECT VALUE OF QUO: 
'IF' ABS(ROWN-COLN)-10000 
'THEN' RI=OJ 
'IF' R=O "THEN' QIJOI"TCM+2.Kl 'ELSE' 'BEGIN' 

'IF' ROWLSTCRl=ROWN 'THEN' QUOI=TCR.N+1l/TCR.Kl 
'ELSE' QUO 1= -TCR.N+2l/TCR.Kl; 'END'; 

MAKE THE STEPI 
'IF' REENTRY=2 'THEN' 'GOTO' our; 
COLLSTCKll =ROIIIN; 
'FOR' 11=1 'STEP' 1 'UNTIL' R-l. R+l 'STEP' 1 'UNTIL' M+1 'DO' 
'IF' 'NOT' T[ I.Kl=O 
'THEN' 'BEGIN' 

PRoDUCT(TCI.N+1l.TCI.Kl.-QUo); 
PRODUCT(TC I.N+2l.TC I.KJ.QUo); 'END'; 

'IF' ABS(RoIIIN-COLN)=10000 'THEN' 'BEGIN' 
'COMMENT' 
DIRECT HIT OF THE UPPER BOUND ON THE COLUMN-VARIABLE. 
NO FULL UPDATING OF THE TABLEAU IS REQUIRED; 
'FOR' 1:=1 'STEP' 1 "UNTIL' M+1 'DO' 
'IF' TCI.KlIO 'THEN' TCI.Kll=-TCl.KlJ 
'GOTO' CHECK FOR STATUS; 'END'; 

ATTEND UPPERBOUNDS OF PIVOTAL PAIR: 
COPI=TCM+2.Kl; NUMI=TCM+2.Kll=TCR.N+1]+T[R.N+2]; 
TCR,N+1l 1= QUO; T[R.N+2] 1= COP-QUO; 
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REFORMULATE ROW WITH UPPER BOUND NAME. 
, IF' ROWN > 1 0000 'THEN' 
'FOR' J.-l 'STEP' 1 'UNTIL' N 'DO' TCRIJJ.=-TCRIJH 

UPDATE. 
PIV.=TCRIKH 

UPDATE THE PIVOTAL ROW. 

CHAPTER XXI 

'FOR' J.-l 'STEP' 1 'UNTIL' N 'DO' 'IF' 'NOT' TCRHJJ-O 'THEN' 
TCRIJll-TCRIJJ/PIV; 

UPDATE THE OTHER ROWS. 
'FOR' J.-l 'STEP' 1 'UNTIL' K-lIK+l 'STEP' 
'IF' 'NOT' TCRIJl - 0 'THEN' 
'FOR' 11-1 'STEP' 1 'UNTIL' R-lIR+l 'STEP' 
'IF' 'NOT' TCIIKJ -0 'THEN' 
PRODUCTCTCIIJJI-TCRIJJ,TCI,KJ); 

CLEAN AND UPDATE PIVOTAL COLUMN. 
'FOR' 11-1 'STEP' 1 'UNTIL'M+l 'DO' 'BEGIN' 

'UNTIL' N 'DO' 

'UNTIL' M+l 'DO' 

'IF' I < M+l 'AND' ABSCTCIIKJ) < 0.0000001 'THEN' TCI,KJI=OJ 
'IF' 'NOT' TCI,KJ=O 'THEN' TCIIKJI--TCI,KJ/PIVJ 'END'; 

TCR,KJ.-l/PIVl 

ROWLSTC R J • -COLNJ 

IF NECESSARY REFORMULATE NEW ROW WITH UPPER BOUND NAME. 
'IF' COLN > 10000 'THEN' 'BEGIN' 

ROWLSTCRJ.=COLN-l0000; 
'FOR' J •• l 'STEP' 1 'UNTIL' N 'DO' 'IF' 'NOT' TCR,JJ=O 
'THEN' TCRIJJI=-TCR.JJJ 
COP.-TCR,N+1JJ TCRIN+1J.-TCR.N+2JJ TCRIN+2J.=COPJ 'END'J 

CHECK FOR STATUS. 
'IF' 'NOT' INVERTED 'THEN' 'GOTO' RETURN IN INVERSION; 
'GOTO' OUT; 

EMPTY. 
REENTRY • - - 1 ; 
'GOTO' END OF INTP; 

UNBOUNDED I 
REENTRY .- 1; 
NEWLINEC 1 )J 

WRITETEXT('C 'UNBOUNDEDICOLUMN') ')J 
PRINT(COLLSTCJJI7.0)J 
NEWLINE( 1 H 
'GOTO' END OF INTPJ 

OUT. 
REENTRY.· 0; 
'IF' FEASIBLE 'THEN' 'GOTO' END OF INTP; 
'FOR' I.-NAV+l 'STEP' 1 'UNTIL' M 'DO' 
'IF' (TCI,N+l1 < 0 'OR' TCI,N+21 < 0) 
'THEN' REENTRY I- -10; 

END OF INTPI 'END'J 
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The following comments and elucidations seem appropriate in 
connection with the textual listing of INTP as given above. 

INTP is an adaptation of the LINP procedure from section 12.3, 
and the textual differences are mainly the following. 

a) The name itself, i.e. 

LINP and END OF LINP: at the end 

has been replaced by 

INTP and END OF INTP: 

b) Some additional parameters 
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The reasons for turning R, K, ROWN and COLN which are internally 
declared variables in LINP (and hence not accessible outside 
the procedure body), into parameters of the procedure were 
already discussed above. 

There also is the integer array IROWLST, the list of integer 
restricted rownames. While the normal list of rownames is filled 

-(by INTP as well as by LINP) on the first "normal" entry, 
IROWLST should be pre-filled before the first entry. 

The last point relates to only one instruction in the programme, 
the settling of a "fancy-high" upper limit where a zero is 
supplied on first entry. This is because upper limits on integer 
restricted slack-variables have to be integer numbers, and we 
cannot exclude the possibility that the main mixed integer 
programming procedure would come up with the integer number zero. 
This would in effect turn the restriction into an equation, and 
such a zero should obviously be respected. 

The technical side of the coding of integer-restricted slacks 
will be discussed in more detail in the next section. 

c) Full inclusion of the upperbounds distances column in the 
"fancy-high" initial value loop, the anti-degeneracy-Ioop and 
the "Phase I" search operations. This latter point, combined 
with the "efficient" rule of row-selection, made it necessary 
to re-write the row-selection loop more or less entirely, and 
accounts easily for the longest stretch of amended text. 

d) Removal of the "wrong sign" equation loop. Turning round the 
sign of a row representing an equation complicates the inter
pretation of the correspo~ding entry in the upper limits distances 
column. It was considered' more simple to leave this point to the 
user. Thus, if an equation is offered with a positive constant 
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it may in effect stay an amply fulfilled restriction. 

e) During testing, some further modifications were introduced 
in connection with the problem of numerical accuracy. 

In particular, when as a result of cuts, an integer vertex 
is reached, one has to be sure that the solution vector is 
also found integer, within the specified tolerance, even 
where it is, due to rounding error, not exactly integer. 
The following points are to be mentioned in this connection. 

(el) Calculation in double length precision. Storage of 
numbers is in single length precision floating point, 
but the usual combination of multiplication and 
subtraction in the context of tableau-updating is done 
in double length precision. The significance of the 
internal procedure PRODUCT is simply to set the call to 
a library procedure which does the double length 
calculation. 

(e2) The rule of the highest step is modified. Pivots of 
which the absolute value is close to unity are 
preferred over pivots which are either smaller or 
bigger in absolute value. This is not an absolute 
preference, rather the choice of pivots is loaded in 
that way. This is the significance of the real 
variable PIWEIGHT. 

f) Preference for "uniform" columns 

This point relates to Phase I, i.e. to tableaux in which 
negative elements occur either in the value column or in 
the upper limit distances column. 

Uniform columns are those columns for which not only some, 
but all negative slacks become less negative or at least 
not more negative on entering the corresponding variable 
in the list of basic variables. 

The reason why INTP prefers uniform columns to non-uniform 
columns is that additional violated restrictions (cuts) may 
be introduced between steps. 

Strictly speaking we lack a convergence proof; since the 
LP problem is changed between steps. 

But obviously, as long as all slack-variables are made less 
negative at each step, this-problem does not arise - if it 
is a problem at all. 
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21.5 The coding of integer requirements and cuts 

The following information needs to be coded 

whether an initially specified variable is continuous 
or integer restricted 

whether a subsequently developed cut has a continuous 
or an integer-restricted slack. 

The first problem, to have a record of the type of variable 
initially arises as soon as the problem is specified at the 
outset. 

We need to keep a record, not only of which variables are 
specified as continuous but also which slack-variables are 
integer-restricted by implication. It is here assumed that 
the initial information is given in the tableau with other 
"ordinary" linear programming information. A variable will hold 
to be integer restricted if that variable is 
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a) sign-restricted, i.e. restricted to be not below a lower limit 
b) all coefficients in its associated column, including the 

preference coefficient and the upper limit are supplied 
integer-valued. 

During later iterations these integer properties of the initial 
tableau will be lost, and we need to code them for later 
reference. 

To this end we can duplicate the name-lists which are associated 
with the set-up tableau and replace the names in the duplicate 
list which refer to continuous variables by zeros. 

Example 

Name xl x 2 < Value Distance -

code 1 2 

i code 1 2 

sl 1001 1001 8 6 15 100 

s2 1002 1002 2 -4 -1 100 

-3 -1 a 
Upper b 101 100 x 

Lower b a a x 



740 CHAPTER XXI 

for our demonstration example with both variables integer 
restricted. On the other hand, the initial tableau-matrix 

8 6 0 15 

2 -4 1 -1 

-3 -1 10 0 

1000 1000 1000.1 X 

would imply that the third variable was continuous. As a result 
the second slack would be continuous, but in the first 
:estriction t~ere is a zero coefficient for x 3 , and s2 is still 
1nteger restr1cted. 

The initial coding would therefore be 

Name xl x2 x3 < - Value Upper b 

Code 1 2 3 

i Code 1 2 0 

sl 1001 1001 8 6 0 15 1000 

s2 1002 0 2 -4 1 -1 1000 . 
T -3 -1 10 0 X 

Upper b 1000 1001 1000.1 X X 

Lower b 0 0 0 X X 

The second problem, the recognition of previous cuts relates to 
augmentation and combination. We need to know whether these 
operations are appropriate i.e. whether the slack of a particular 
cut-restriction is integer restricted. 

Cuts which are written as explicit restrictions, are therefore 
coded with an enlargement. For limit cuts this enlargement is 
equal to n, the number of specified variables, irrespective of 
whether the cut is on the variable itself or on a combination. 
The associated textual name is x*k. Hence, if x5 is an integer 
restricted variable (k = 5) and there are 10 specified variables 
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(n= 10), x*S is the integer-restricted slack of a cut on or in 
association with x 5 ' and this slack is coded as 15. 

For cuts which do not have integer-restricted slacks, the 
corresponding enlargement is 2 n, e.g. 25 for x**S if n is 10. 

21.6 Summary of the Cutting Algorithm 
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We are now in a position to solve a problem by an algorithm 
which is substantially the one which we will actually implement, 
and summarise the algorithm in the process. The commented text 
in the next section contains some further refinements, but the 
summary in this section provides the main structure. 

The problem which we take is similar to one which we used before, 
except for the sign of the x3 preference coefficient. 

Maximise 

T = 3 xl + x 2 + x3 

Subject to 

x < -1 3-

(0 < xl 2 100, a 2 x2 2 100, a 2 x3 2 100) 

Xl' x2 integer-restricted x3 continuous. 

Stage 1 

Put the initial tableau and fill the integer-lists 

Name xl x2 x3 < Value -

code to be filled by 
INTP 

i code 1 2 a 

sl - 0 8 6 3 15 

s2 - a 2 -4 1 -1 

X X -3 -1 -1 -
Upper b X X 100 100 99.99 X 

Lower b 0 a a X 

100 

100 

-
X 

X 
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Stage 2 

Make an initial step. 

Attempt, and if indicated, make one step. The LP algorithm is. 
entered with the re-entry parameters as zero, hence before 
the one step is made we fill the ordinary name-lists and enter 
any variables of "absolute" type. "Phase 0" of INTP is in this 
respect comparable with LINP. The one step is the following: 

Name xl x 2 x3 < Value Distance -

Code 1 2 3 

i code 1 2 0 

sl 1001 0 8 CD 3 15 100 

s2 1002 0 2 -4 1 -1 100 

T -3 -1 -1 - -
upper b 100 100 100 x x 

lower b 0 0 0 x x 

Name xl sl x3 < Value Distance 
-

code 1 1001 3 

i code 1 0 0 

x2 2 2 1 1/3 1/6 1/2 21 
2 92! 

s2 1002 0 7 1/3 2/3 3 9 90 

T -1 2/3 1/6 -1 2! 2 

upper b 100 ll5 99.99 x x 

lower b 0 0 0 x x 

Stage 3 

Check and limit 
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Check 

Establish whether the current solution is: 

a) in optimal form 
b) feasible in relation to the already present restrictions 
c) integer-valued, and 
d) whether any new cuts are being made at this stage; these are 

of course unsatisfied, i.e. violated restrictions 

Limit 

Make preliminary(limit) cuts. 

At this stage we make cuts of the following types, in that order 
of priority 

1) Upper and lower limit cuts on specified variables. (See 
sections 10.3, 10.4 and 20.3 concerning the computational 
implementation of such restrictions, by putting a negative 
entry in one of the two value columns.) 

2) Upper and lower limit cuts on integer-restricted slack
variables. This is also done by adjustment of one of the two 
value-columns, and no record is kept of the true values of 
slack-variables which may therefore be under-stated. 

Since cuts of priority classes 1) and 2) do not require 
additional tableau-space, all possible cuts of this type are 
made. 

3) Limit cuts on combinations 

We reserve space for at most n+l explicit cut-restrictions. This 
1S one more than the m~ximally possible number of binding cuts, 
but we may come back at this stage for a number of successive 
steps, developing several cuts on the same variable. It is 
therefore possible that we shall have to refrain from further 
cutting simply because the space reservation has been exhausted. 

We find that the solution is 

a) not optimal 
b) feasible in relation to the existing restrictions 
c) not integer, and 
d) not satisfying all cuts (we are making a new cut on x 2 ). 

The x 2-variable is recorded as being ~ unit over its new upper 
limit of 2. 
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The tableau becomes: 

Name xl sl x3 < Value Distance -

code 1 1001 3 

i code 1 0 0 

x2 2 2 1 1/3 1/6 ! 21 -1 
2 2 

s2 1002 0 7 1/3 2/3 3 9 90 

T -1 2/3 1/6 -1 21 
2 2 

Upper b 100 US 99.99 

Lower b 0 0 0 

Stage 4 

Attempt, and if indicated, make one step (The problem may be 
found empty at this stage, this obviously would terminate the 
algorithm). In view of the particular features of the amended 
LP algorithm coming into play at this point we will describe 
the rules for making this one step in detail. The substitute 
objective function is in the first instance obtained by (the 
summation of all violated restrictions), the violated b2-row. 

-1 1/3 1/6 1/2 

-1 1/3 -1/6 -1/2 

The taking of the squares of these numbers is.in this case 
irrelevant. The xl and x3 columns are "preferred" columns 
because they indicate an increase in both the substitute 
objective function and the specified objective function. 

In a "preferred" column, violated restrictions are disregarded 
and we exchange xl against s2' on the indication of the rule of 
the highest step , applied to the specified preference function. 
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The tableau becomes 

Name s2 sl x3 < Value Distance -

code 1002 1001 3 

icode 0 0 0 

x 2 2 2 -2/11 1/22 -1/22 19/22 1 3/22 

xl 1 1 3/22 1/11 9/22 1 5/22 98 17/22 

T 5/22 7/22 2/11 4 6/11 

Upper b 99 115 99.99 

Lower b 0 0 0 

Stage 5 

Consult the logical findings from stage 3. If the problem was 
found to be: not optimal, or not feasible, or not satisfying a 
cut, return to stage 3. 

We are referred back to Stage 3 on two separate indications 

a) the problem was not optimal at that stage, and 
d) a new cut was made (the upper limit cut on x 2 )· 

Application of the check and limit procedure now indicates that 
the problem now is 

a) in optimal form 
b) feasib Ie 
c) not integer (both xl and x 2 are fractional) 
d) not satisfying all cuts, because a new cut (a reduced upper 

limit on xl) is introduced. The tableau becomes 
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Name s2 sl x3 < Value Distance -

code 1002 1002 3 

icode 0 0 0 

x2 2 2 2/11 1/22 -1/22 14/22 1 3/22 

xl 1 1 3/22 1/11 9/22 1 5/22 -6/22 

T 5/22 7/22 2/22 4 6/11 

Upper b 99 115 99.99 x x 

Lower b 0 0 0 x x 

Stage 4 does indicate a step; x3 becomes a basic variable and 
the upper limit on xl becomes binding. 

This involves an activation of an upper limit facility of the 
LP algorithm which is slightly unusual and we will illustrate 
it. 

First the xl-row is replaced by the bl-row, the tableau now 
becomes: 

Name s2 sl x3 < Value Distance -

code 1002 1001 3 

icode 0 0 0 

x2 2 2 -2/11 1/22 -1/22 19/22 1 3/22 

b l 10001 1 -3/22 -1/11 E9/ip -5/22 1 5/22 

T 5/22 7/22 2/22 4 6/11 

Upper b 99 115 99.99 

I 

x x 

Lower b 0 0 
0, 

x x 



THE USE OF CUTS 747 

The step is now made in the normal way and the tableau becomes: 

Name s2 sl b l < Value Distance 
-

code 1002 1001 10001 

i code 0 0 0 

x 2 2 2 -1/6 1/18 -1/9 8/9 1 1/9 

x3 3 0 1/3 2/9 -2 4/9 5/9 99 4/9 

T 
13/66 59/198 2/9 4 49/99 

Upper b 99 115 1 

Stage 5 once more indicates a referral to Stage 3, but this time 
solely on the indication that d) there was an unsatisfied cut 
when stage 3 was left the last time. 

In stage 3 we now find that the solution ~s 

a) optimal 
b) feasible 
c) not integer, and 
d) satisfying all cuts 

(x3 is continuous and no limit cut on x 2 can be made). The 
re-entry of the LP algorithm in Stage 4 now is trivial - no 
step is indicated - In Stage 5, we are now no longer referred 
back to Stage 3. 

Stage 6 

Remove any amply fulfilled explicit cuts from the tableau. (None). 

Stage 7 

Check for normal end of the algorithm. 

We only get at this stage, if the problem, as currently 
formulated, is optimal and feasible. Therefore, if the solution 
is integer, the normal exit is activated. For the present example, 
this is not yet the case, hence we proceed to the next stage. 

Stage 8 

Write a main cut on a still frac~ionally valued variable. As 
the priority classes of cuts have been exhausted, this is not 
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a limit cut. However, it is not necessarily as elementary cut. 
The tableau becomes the following: 

Name s2 sl b l Value Distance 

code 1002 1001 1001 

icode 0 0 

x2 2 2 -1/6 1/18 -1/9 8/9 1 1/9 

x3 3 0 1/3 2/9 -2 4/9 5/9 99 4/9 

x**2 8 X @ -1/16 -1 -1 100 

T 13/66 59/198 2/9 4 49/99 

Upper b 99 115 1 x x 

Lower b 0 0 0 x x 

Stage 9 

Search for a pivot. We may enter this stage with or without a 
column-restriction. Initially we always enter without a column 
restriction, but at a later stage the choice of pivots may be 
restricted to a particular column. Try to find a hypothetical 
pivot in the main tableau. (The problem may be found empty - of 
integer solutions - ) in which case the algorithm is terminated 
prematurely. We may also on re-entering this stage, find the 
problem empty, as far as pivots in a particular column is 
concerned. We re-enter this stage with column-restriction 
after making a subsidiary cut. If no pivot in that column may 
be found the column-restriction is to be removed. In fact a 
hypothetical pivot is indicated. The s2-variable is to be 
introduced into the basis, making the x**2-cut binding. 

Stage 10 

Make a column-extract, according to the indicated column. 
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Name s2 < Value Distance -

code 1002 

icode 0 

x2 2 2 -1/6 8/9 1 1/9 

x3 3 0 1/3 5/9 99.44 

x** 2 8 X @ -1 100 

T 13/66 4.49/49 

Upper b 99 x x 

Lower b 0 x x 

Stage 11 

Make a step in the column extract (This is always possible when 
this stage is entered). The updated column-extract becomes 

Name x** < Value Distance 2 -

code 8 

icode X 

x2 2 2 -1/9 1 1 

x3 3 0 2/9 1/3 99.67 

s2 1002 0 -2/3 2/3 98 1/3 

T 13/99 4 36/49 

Upper b 99 

Lower b 
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Stage 12 

Go to a stage, as indicated by the updated column-extract and 
the index of the solution column. If the (hypothetical) 
solution is integer, or not feasible even after updating (while 
the column was chosen freely) go to Stage 3. If the hypothetical 
solution is integer, or not feasible even after updating, but 
the column was prescribed, remove the column-restriction, and 
go to stage 9. An integer-valued hypothetical vertex means that 
the cuts have been successful, as far as activating the parti
cular column is concerned. If the solution cannot be made 
feasible by that column only, there is no purpose in developing 
a (further) subsidiary cut at least not in connection with this 
particular variable becoming a basic variable. 

We are referred to stage 3, on the indication of an integer 
solution-vector (x3 is continuous, i.e. is allowed to remain 
fractional). 

In stage 3, we find that the main solution-vector is 

a) in optimal form 
b) not feasible 
c) not integer 
d) not satisfying a cut (the x**2-cut) 

No priority cut is indicated 
In stage 4, we make a step, which is the same as already 
indicated as hypothetical step in Stage 9. The tableau 
becomes: 

Name x**2 sl b l < Value Distance -

code 8 1001 1001 

icode 0 0 1 

x2 2 2 -1/9 1/16 1 1 

x3 3 0 2/5 5/24 -2 1/3 113 99 2/3 

s2 1002 0 -2/3 1/24 2/3 2/3 98 1/3 

T 13/99 51/176 1/11 4 36/49 

Upper b 99 115 1 x x 

Lower b 0 0 0 x x 
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In stage 5 we are once more referred back to stage 3, as on the 
previous exit of stage 3 the solution was not feasible and there 
was an unsatisfied cut. Back in stage 3, we find that the 
solution is 

a) in optimal form 
b) feasible 
c) integer and 
d) satisfying all cuts. 

No new cuts are called for. 

In stage 4 the entry of the LP algorithm is riow trivial. 

In stage 5, we are not referred back to stage 3. 

In stage 6, we do not need to remove any cuts. 

In stage 7, we conclude that the problem has been solved. 

In this particular example, no stage beyond stage 12 was 
activated. We need at least two integer-restricted basic 
variables for that, not counting variables which are already 
at upper limits. 

However, in the general case, there are more stages, i.e. 

Stage 13 

We only enter stage 13 with a fractional hypothetical vertex. 
Accordingly, find the name of the first integer-restricted, but 
fractionally valued variable in the hypothetical vertex, as 
updated in the column-extract. This is the variable on which a 
subsidiary cut is to be developed. We do not cut on the variable 
which has already been cut on in the same column-extract. The 
development of such a cut in a row-extract would require several 
steps; and it becomes more practical to refer back to the full 
tableau. 

Stage 14 

Make a row-extract. Depending on the name of the last subsidiary 
cut, this row-extract initially may contain one, or two ordinary 
rows from the main tableau. The row which was selected in stage 9 
as pivotal row is always in the extract. If the selected cut 
relates to the variable selected in stage 9 (i.e. the one 
column in the unupdated form of the column extract), the row 
extract contains only one ordinary row. Otherwise find the row 
to which the subsidiary cut last selected in stage 13 refers. 
This is one of the rows of the main tableau in that case, and 
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it should be copied into the extract. 

Stage 15 

Implement the hypothetical step suggested in stage 9, in the 
row-extract. 

Stage 16 

Cut on the variable indicated as to be cut o~. 

Stage 17 

Make the backward step in the row extract 

Stage 18 

Assemble the new subsidiary cut with the main tableau. If the 
subsidiary cut arose from entering the same column in the 
main tableau as was already used to form a previous subsidiary 
cut immediately before, overwrite the previous one; otherwise 
extend the tableau. 

Go to stage 9. 

As the various exits of the algorithm are already indicated in 
earlier stages this is the last stage. 

21.7 Commented text of a mixed integer programming procedure 

The programmed procedure offered in this section broadly follows 
the outline scheme discussed in Section 21.6. 

The following points, which cropped up at the stage of programme
testing are useful to eludicate on. 

First of all, recall Sections 19.2 and 19.3. It was there assume~ 
that when the significance of a zero-one variable really is to 
indicate whether or not a certain relationship is at all 
applicable, a "fancyhigh" coefficient is written. 

These "fancyhigh" numbers can, however, become a major problem 
when the method of cuts is employed to solve the problem, for 
the reasons indicated at the end of Section 21.4. 

The first part of the interlude between stages 1 and 2 reduces 
such numbers to a figure which is (in absolute value) just one 
unit higher than what is needed to "set free" a particular 
relation. 
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The second part of the interlude will be more or less obvious. 

Secondly, there are more indications for the generation of cuts 
than discussed in the previous section. 

Most of them are controlled by the incoming variable intercept, 
and are largely designed to avoid certain steps altogether. 

The following two points are mentioned here: 

Cuts on incoming variables, creating degeneracy 

If an integer-restricted incoming variable is provisionally 
indicated as a candidate for entering the basis (with a 
fractional value) we develop the hypothetical vertex and cut 
with the help of a row-extract, even if no main cut is so far 
present. It may then well happen that the unupdated form of such 
a cut is satisfied in degeneracy by the integer value zero. 
Therefore, subsequent searches for pivotal columns will give 
preference to other columns, if any are available. The rule 
of the highest step or the version of that rule which is 
implemented in INTP will try to avoid steps of zero length. 

Pivot-size cuts 

This refers to what is essentially a diversionary device. If a 
candidate-pivot of undesirable absolute value is thrown up, a 
further cut is made, simply to perturb the problem and to allow 
INTP to have a fresh go at perhaps finding a pivot of a more 
desirable order of magnitude. 

'PROCEDURE' MIXI<T.M.N.NEQ.NAV.ROWLST.COLLST.NCUTS); 
'VALUE' MJ 'INTEGER' M.N.NEQ.NAV.NCUTS; 
'ARRAY' T; 'INTEGER' 'ARRAY' ROWLST.COLLST; 

'BEGIN' 
'INTEGER' I.J.R.K.RBWN.COLN.CUTN.NAME.REENTRy.II.JJ.MM. 
MMM.DNAV.KK.KKK.F.P.CW.RR.DNCUTS.LOOPLENGTH.NIRV.CUTR. 
SAVED R T.SAVED R E. CHECKI; 
'REAL' QUO.LV.NLV,NUM.COP.FANCYHIGHJ 
'BOOLEAN' OPTIMAL.FEASIBLE.INTEGER.SATISFIED.POS.NEG.MAIN. 
RETURNED.RECALLING TO STAGES 3 AND 4. INTERCEPT. DEGENERATE. 
OVERWRITING FOR COMBINATION.PIVOT SIZE CUT, 
STEP ALREADY KNOWNJ 
'INTEGER' 'ARRAY' IROWLSTC1IMJ.ICL.ICOLLSTC1INJ.DLSTClI3J. 
FDLSTC1IM+N+N+3JJ 
'ARRAY' ROWEXTRClI6.1IN+2J.COLEXTRC1IM+N+N+4.113J; 

'PROCEDURE' INTP<T.M.N.NEQ.NAV.ROWLST.COLLST. 
IROWLST.R.K.ROWN,COLN,REENTRY)J 
'ARRAY' T1 'INTEGER" M,N.NEQ·,NAV,R,K,ROWN,COLN.REENTRY; 
'INTEGER' 'ARRAY' ROWLST.COLLST,IROWLST; 
'ALGOL; 
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'PROCEDURE' ORDLCT.M.N.ER.RH.ROWLST.COLLST)J 
'ARRAY' TJ 'INTEGER' M.N.ER.RHJ 
'INTEGER' 'ARRAY' ROWLST.COLLSTJ 
'ALGOL'J 

'COMMENT' 
MIXED INTEGER PROGRAMMING BY CUTS. 

CHAPTER XXI 

THE TABLEAU SHOULD BE SUPPLIED IN THE USUAL LP-PRESENTATION. 
WITH ONE MODIFICATION, 
UPPER LIMITS ON EACH SUMMATION-EXPRESSION PER I-TH ROW 
THE MAXIMUM VALUE OF SIGMA -ACI.Jl • XCJl. 
SHOULD BE ENTERED IN THE UPPERBOUNDS DISTANCES COLUMN. 

SIGN-RESTRICTED VARIABLES C J > NAV ) • 
FOR WHICH EACH ELEMENT OF THE CORRESPONDING CULUMN OF THE 
TABLEAU. INCLUDING PREFERENCE COEFFICIENT AND UPPER LIMIT. 
IS SUPPLIED INTEGER. ARE INTERPRETED AS INTEGER-RESTRICTED. 
OTHER SPECIFIED VARIABLES ARE ASSUMED TO BE CONTINUOUS. 
ON EXIT. NCUTS ROWS WILL HAVE BEEN ADDED TO THE TABLEAU. 

THE TABLEAU SHOULD BE DECLARED AS BEING OF ORDER M+N+NIRV+4 
BY N+2. 
HERE NIRV IS THE NUMBER OF INTEGER RESTRICTED VARIABLE. 
THIS VARIABLE IS NOT DEqLARED EXPLICITLY. BUT IS IMPLIED BY 
THE NUMBER OF ALL-INTEGER COLUMNS. WHICH MAY GIVE RISE TO 
THE DEVELOPMENT OF CUTS. 

THE LIST OF ROWNAMES SHOULD BE DECLARED AS BEING OF 
ORDER M+N+NIRV+2, 

THE LIST OF COLUMN-NAMES SHOULD BE DECLARED AS BEING OF 
ORDER N. 

STEP ALREADY KNOWNI-RETURNEDI='FALSE'; 

SAVE COPIES OF PARAMETERS: 
MMM:-MJ DNAVI-NAVJ 

INITIATE DLST AND ROW EXTRACT WITH COPYABLE NONSENSE: 
'FOR' 11-1.2.3 'DO' DLSTCIl:--12345J 
'FOR' 11-1.2.3.4.5 'DO' 
'FOR' JI-l 'STEP' 1 'UNTIL' N+2 'DO' ROWEXTRC I.Jll-123.45; 

STAGE 11 
ATTEND UPPER LIMITS AND CODE INTEGER REQUIREMENTSI 
'BEGIN' 'COMMENT' 

NOTE THAT THE TABLEAU SHOULD BE PRE-FILLED BEFORE ENTRY. 

FANCYHIGH:=100; 

'FOR' J.= NAV+l 'STEP' 1 'UNTIL' N 'DO' 
'IF' TCM+2.Jl = 0 'THEN' TCM+2.Jl IS FANCYHIGH; 



nIE USE OF CUTS 

'FOR' 1,-1 'STEP' 1 'UNTIL' M 'DO' 'IF' TCI.N+2J .. O 'THEN' 
'FOR' J,-l 'STEP' I" 'UNTIL' N 'DO' 'BEGIN' 

'IF' TCI.JJ-O 'OR' (J>NAV 'AND' TCI.JJ>O) 
'THEN' 'GOTO' END OF UPPERBOUND ADJUSTMENT LOOP; 
'IF' J>NAV 'THEN' LV,-TCM+2.Jl 'ELSE' LVI- FANCYHIGH; 
TCI.N+2J,-TCI.N+2J+ABS(TCI.Jl*LV); 
END OF UPPERBOUND ADJUSTMENT LOOP, 'END'; 

CODE INTEGER REQUIREMENTS, 
'FOR' J,-l 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

ICOLLST[JJ'-J; 
'IF' J< NAV+l 'THEN' 'BEGIN' 

'COMMENT' 
FREE VARIABLES ARE NEVER INTEGER RESTRICTEDI 
ICOLLSTCJJI-O; 'END' 

'ELSE' 'FOR' II-I 'STEP' 1 'UNTIL' M+2 'DO' 
'IF' 'NOT' TCI.Jl"ENTIER(TCI.JJ) 'THEN' ICOLLSTCJJ,-O; 
'END'J 

'FOR' II-I 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 
IROWLSTCIl'"'1000+IJ 
'IF' 1 < NEQ+l 'THEN' 'BEGIN' 

'COMMENT' 
EQUATION-SLACKS ARE INTEGER RESTRICTED TO THE 
INTEGER VALUE OF ZERO; 'END' 

'ELSE' 'FOR' JI-l 'STEP' 1 'UNTIL' N 'DO' 
'IF' 'NOT' TCI.Jl=O 'AND' ICOLLSTCJ1"O 
'THEN' IROWLSTCIllcOJ 
'END'} 

NIRVI-QJ 
'FOR' J,-l 'STEP' 1 'UNTIL' N 'DO' 
'IF' ICOLLSTCJ1=J 'THEN' NIRV:-NIRV+1J 
NCUTS,-OJ 
END OF STAGE 11 'END'I 

INTERLUDE, 

REDUCE FANCYHIGH COEFFICIENTS, 

'FOR' RI-l 'STEP' 1 'UNTIL' M 'DO' 
'FOR' Klal 'STEP' 1 'UNTIL' N 'DO' 
'IF' ICOLLSTCK1=K 'AND' TCR.Kl < -2 'AND' TCM+2.Kl=1 
'AND' TCM+l.Kl-O 
'THEN' 'BEGIN' 

'FOR' JI-l 'STEP' 1 'UNTIL' NAV 'DO' 
'IF' TCR.J1IO 'THEN' 'GOTO' END OF COEFFICIENT REDUCTION; 

TCM+3.N+l1,-TCR.N+l1J 

'FOR' JI-l 'STEP' 1 'UNTIL' K-l.K+l 'STEP' 1 'UNTIL' N 'DO' 
'IF' TCR.Jl>O 
'THEN' TCM+3.N+~~I=TCM+3.N+ll-TCR.Jl*TCM+2.J1J 

'IF' TCR.Kl<TCM+3.N+l1-1 
'THEN' 'BEGIN' 

TCR.KJ,-TCM+3.N+l1-1J 
'IF' TCR.Kl>O 'THEN' TCR.K11-OJ 
'GOTO' REDUCE FANCYHIGH COEFFICIENTS; 'END'J 
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END OF COEFFICIENT REDUCTIONI 'END'; 

TAKE OUT COMMON INTEGER FACTORSI 
'FOR' FI-2 'STEP' 1 'UNTIL' 1000 'DO' 'BEGIN' 
FIND A PRIME FACTOR FI 

'FOR' PI-2 'STEP' 1 'UNTIL' F-l '00' 
'IF' 'NOT' F/P - ENTIERCF/P) 'THEN' 'GOTO' NEXT F; 

'FOR' II- NEQ+1 'STEP' 1 'UNTIL' M 'DO' 'BEGIN' 
'FOR' JI-NAV+1 'STEP' 1 'UfliTIL' N 'DO' 
'IF' 'NOT' TtI.JJ-O 'AND' 'NOT' ICOLLSTtJJ"O 
'THEN' 'GOTO' START OF DIVISIONLOOP; 
'GOTO' END OF DIVISIOfliLOOPJ 

START OF DIVISIONLOOPI 
'FOR' JI- NAV+1 'STEP' 1 'UNTIL' N 'DO' 
'IF' 'NOT' TtI.JJ/F-ENTIERCTtI.JJ/F) 
'AND' 'NOT' ICOLLSTtJJ=O 
'THEN' 'GOTO' END OF DIVISIONLOOP; 

NOW TAKE F OUTI 
'FOR' JI-1 'STEP' 1 'UNTIL' N+2 'DO' Tt I.JJI=Tt I.J]/F; 
'IF' 'NOT' IROWLSTtlJ .. 0 'THEN' 'FOR' JI-N+1.N+2 '~O' 
TtI.JJI-ENTIERCTtI.JJ); 
'GOTO' START OF DIVISIONLOOP; 
END OF DIVISIONLOOPI 'END'; 

NEXT FI 'END' J 

STAGE 21 
MAKE AN INITIAL STEPI 
'BEGIN' 'COMMENT' 

THE INITIAL CALL TO THE LP ALGORITHM FILLS THE ORDINARY 
NAMELISTS. ATTENDS DEGENERACY -BOTH PRIMAL AND DUAL-. 
PIVOTS THE 'ABSOLUTE' VARIABLES INTO THE BASIS. 
AND MAKES. IF POSSIBLE. ONE NORMAL STEP. 

RI-KI-ROWNI-COLNI-REENTRYI-OJ 
INTPCT.M.N.NEQ.NAV.ROWLST.COLLST.IROWLST. 
R.K.ROWN.COLN.REENTRY)J 
'IF' REENTRY - -1 'THEN' 'GOTO' EMPTY; 
'IF' REENTRY - 1 'THEN' 'GOTO' UNBOUNDED; 
END OF STAGE 21 'END'; 

STAGE 31 
MAIN I- 'TRUE'; CUTN I- OJ 
CHECK AND LIMITI 
'8EGIN' 'COMMENT' 

CHAPTER XXI 

THIS BLOCK OF PROGRAMME CHECKS WHETHER THE CURRENT SOLUTION 
lSI 

A IN OPTIMAL FORM 
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B FEASIBLE WITH RESPECT TO THE SO FAR SPECIFIED 
RES TR I C TI ON S 

C INTEGER TO A TOLERANCE OF 0.001 

D SATISFIED. 

THE SOLUTION IS HELD TO BE NOT SATISFIED WITH RESPECT TO 
CUTTING REQUIREMENTSI 
IF NEW CUTS ARE BEING FORMULATED BY THIS BLOCK. 

THE FOLLOWING PRIORITY CLASSES OF CUTS ARE FORMULATED BY THE 
CHECK AND LIMIT BLOCK 

1 UPPER AND LOWER LIMIT CUTS ON INTEGER RESTRICTED 
SPECIFIED VARIABLESI 
BY WAY OF ADJUSTING THE UPPERBOUNbs DISTANCES COLUMN 
OR THE VALUE COLUMN AND THE NON-UPDATED LOWER LIMIT. 

2 UPPER OR LOWER LIMIT CUTS ON OTHER INTEGER RESTRICTED 
VARIABLESI E.G. INTEGER-RESTRICTED SLACK-VARIBALES 
OR CUTS ON COMBINATIONS OF VARIABLES. 
ALSO BY WAY OF ADJUSTING THE UPPERBOUNDS DISTANCES COLUMN. 

3 LIMIT COTS ON COMBINATIONSI 
ASSOCIATED WITH SPECIFIED VARIABLES. 

THE LAST CLASS OF CUTS HAS THE LOWEST PRIORITY AND 
IS MADE ONLY WHEN NO CUT OF A HIGHER PRIORITY CLASS HAS BEEN 
MADE IN THE PARTICULAR RUN THROUGH THE BLOCK SO FAR. 
AN AMPLY FULFILLED EXPLICIT CUT MAY BE OVERWRITTEN BY A LATER 
CUT ON THE SAME VARIABLE -OR ON ITS CUT-. 

CLEAN OUT ROUNDING ERRORS: 
'FOR' 11=1 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'FOR' JI=1 'STEP' 1 'UNTIL' N 'DO' 
'IF' ABS(TCIIJl) < 0.0000001 'THEN' TCIIJl:=O; 

CHECK FOR OPTIMALITY: 
OPTIMAL := 'TRUE'; 
'FOR' Jl c l 'STEP' 1 'UNTIL' N 'DO' 
'IF' 'NOT' (COLLSTCJl > 1000 'AND' COLLSTCJl < 1001+NEQ) 
'AND' TCM+NCUTS+IIJl < 0 'THEN' OPTIMAL P' 'FALSE'; 

CHECK FOR BEING FEASIBLE: 
FEASIBLE :- 'TRUE'; 
'FOR' II"NAV+l 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' TC IIN+ll < 0 'OR' TC IIN+2l < 0 
'THEN' FEASIBLE :- 'FALSE'; . 
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CHECK FOR BEING INTEGER AND LIMITI 
INTEGER I- SATISFIED la 'TRUE'; 
LOOPLENGTH ID M+NCUTSJ 

'FOR' II- M+NCUTS+2. NAV+I 'STEP' 
'DO' 'BEGIN' 

'UNTIL' LOOPLENGTH 

'IF' I-M+NCUTS+2 'THEN' 'GOTO' BEGIN OF COMPARING; 

DO NOT CUT WITH EQUATIONSI 
'IF' ROWLSTCIl>IOOO 'AND' ROWLSTCll<IOOO+NEQ 
'THEN' 'GOTO' END OF LIMITLOOPJ 

'IF' ROWLSTCIl > N 'THEN' 'GOTO' SLACK OR CUT; 
'IF' ICOLLSTCROWLSTClll • 0 
'THEN' 'GOTO' END OF LIMITLOOP; 

ONE MAIN LIMIT CUT ON ONE VARIABLE IS ENOUGH. 
'IF' MAIN 'AND' ROWLSTCll<N+I 'THEN' 'BEGIN' 

'FOR' 111"1 'STEP' I 'UNTIL' M+NCUTS 'DO' 
'IF' ROWLSTClll-ROWLSTCll+N 
'AND' CTCII.N+Il < 0 'OR' TCII,N+2l < 0) 
'THEN' 'GOTO' END OF LIMITLOOP; 'END'; 

SLACK OR CUT. 

DO NOT CUT ON NON LIM,IT CUTSI 
'IF' ROWLSTCll > 2*N 'AND' ROWLSTCll < 1001 
'THEN' 'GOTO' END OF LIMITLOOP; 

DO NOT CUT ON AN UNSATISFIED LIMIT CUTI 
'IF' ROWLSTCIl>N 'AND' ROWLSTCIl<2*N+I 
'AND' CTCI.N+Il<O 'OR' TCI.N+2l<0) 
'THEN' 'GOTO' END OF LIMITLOOP; 

'IF' ROWLSTCIl < 1001 
'THEN' 'GOTO' START INTEGERCHECK CUM LIMIT; 
'IF' IROWLSTCROWLSTCIl-IOOOl D 0 
'THEN' 'GOTO' END OF LIMITLOOPJ 

START INTEGERCHECK CUM LIMIT: 
'IF' ABSCENTIERCTCI.N+Il+O.OOI) - TCI.N+Il) < 0.002 
'AND' MAIN 'THEN' 'BEGIN' 

'FOR' JI-I.2 'DO' TCI.N+Jl,aENTIERCTCI.N+Jl+0.003); 
'FOR' J.al.2 'DO' 'IF' TCI.N+Jl"'O 
'THEN' TCI.N+Jll-O.OOOOOOOOOIJ 
'GOTO' END OF LIMITLOOPJ 'END'J 

'IF' ROWLSTCIl < N+I 'THEN' INTEGER 1= 'FALSE'; 
'IF' TCI.N+Il < 0 'OR' TCI.N+2l < 0 
'THEN' 'GOTO' END OF LIMITLOOP; 

ONE CANNOT ADJUST ON A NON BASIC VARIABLEI 
'IF' 'NOT' MAIN 'AND' I-I 'THEN' 'GOTO' END OF LL; 

CHECK WHETHER UPPER LIMIT IS POSSIBLE. 
'FOR' J.-I 'STEP' I 'UNTIL' N 'DO' 
'IF' 'NOT'. CCOLLSTCJl > 1000 'AND' COLLSTCJl < 1001+NEQ) 
'AND' TCI.Jl < 0 'THEN' 'GOTO' END OF ULJ 

CHAPTER XXI 
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UPPER LIMITI 
'IF' TeI.N+2l > TeI.N+Il 
'THEN' TeI.N+2l 1= ENTIERCTeI.N+Il) + 0.0000001 - TeI.N+Il 
'ELSE' TeI.N+2l 1= TeI.N+2l - ENTIERCTeI.N+2l) -0.9999999; 
SATISFIED 1= 'FALSE'; 
'GOTO' END OF LIMITLOOP; 

END OF ULI 

CHECK WHETHER LOWER LIMIT IS POSSIBLEI 
'FOR' JI-I 'STEP' I 'UNTIL' N 'DO' 
'IF' 'NOT' CCOLLSTCJJ > 1000 'AND' COLLSTeJJ < 1001+NEQ) 
'AND' TCI.JJ > 0 'THEN' 'GOTO' END OF LL; 

LOWER LIMITI 
'IF' ROWLSTC I J < N+I 'THEN' 'BEGIN' 

ADJUST NON UPDATED FORM OF LOWER LIMITI 
TeM+NCUTS+3.ROWLSTCIJJ I-
TCM+NCUTS+3.ROWLSTe IJ J + ENTIERCTCI.N+I J+I); 'END'; 

'IF' TeI.N+IJ < TCI.N+2J 
'THEN' TeI.N+IJ I- TeI.N+IJ - ENTIERCTCI.N+IJ) -0.9999999 
'ELSE' TeI.N+2J I- ENTIERCTeI.N+2l) + 0.0000001 - TeI.N+IJ; 
SATISFIED I- 'FALSE'; 
'GOTO' END OF LIMITLOOP; 

END OF LLI 

'IF' ROWLSTeIJ > 2*N 'THEN' 'GOTO' END OF LIMITLOOP; 

BEGIN OF LOWER LIMIT LOOPI 
'I F' ROWLSTC 1 J < N+ I 'THEN' 'BEGIN' 

'FOR' JI-I 'STEP' I 'UNTIL' N 'DO' 
'IF' 'NOT' CCOLLSTCJJ > 1000 'AND' COLLSTCJJ < 1001+NEQ) 
'AND' TCI.Jl > 0 'THEN' 'GOTO' BEGIN OF COMBLOOPJ 
'GOTO' PREPARE LLJ 'END'J 

DO NOT ADJUST ON LOWER LIMIT NON BASIC VARa 
'IF' 'NOT' MAIN 'AND' I-I 'THEN' 'GOTO' END OF LIMITLOOP; 

INVESTIGATE LOWER LIMIT ON CUTSLACKI 
'FOR' JI-I 'STEP' I 'UNTIL' N 'DO' 
'IF' 'NOT' CCOLLSTeJJ > 1000 'AND' COLLSTCJJ < 1001+NEQ) 
'AND' T[ I.JJ > 0 'THEN' 'GOTO' BEGIN OF COMBLOOP; 

WRITE LL ON CUT BY ADJUSTING VALUE COLI 
'IF' TCI.N+IJ > TCI.N+2J 
'THEN' T[I.N+IJI-TeI.N+IJ - ENTIERCT[I.N+Il) - 0.9999999 
'ELSE' TeI.N+IJ I- ENTIERCTeI.N+2J) + 0.0000001 - T[I.N+2l; 
SATISFIED I- 'FALSE'J 
'GOTO' END OF LIMITLOOPJ 

PREPARE LLI 
'IF' ROWLST[Il > N 'THEN' 'BEGIN' 

RI-IJ 'GOTO' REWRITE L CUTJ 'END'; 
NAME I- ROWLST[Il; 
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'IF' 'NOT' MAIN 'THEN' 'GoTo' NO SKIPPING; 

OVERWRITE OUTSTANDING NON LIMIT CUTI 
OVERWRITE SATISFIED LIMIT CUTI 
'FOR' III-NAV+I 'STEP' I 'UNTIL' M+NCUTS 'DO' 
'IF' RoWLSTCIIl-NAME+2.N 
'DR' (RoWLSTCIIl-NAME+N 'AND' 
TCII.N+ll> 0 'AND' TCII.N+2l > 0) 'THEN' 'BEGIN' 

RI-IIJ 'GoTO' WRITE LL cun 'END'; 

NO SKIPPINGI 
'IF' NCUTS>N+NIRV 'THEN' 'GoTo' END OF LIMITLooPJ 
'FOR' III- 3.2 'DO' 'FOR' JJI-I 'STEP' 1 'UNTIL' N+2 'DO' 
TCM+NCUT5+II.JJll-TCM+NCUTS+rI-I.JJl; 
NCUTSI-NCUTS+IJ RI-M+NCUTSJ 

REWR ITE LCUT I 
WRITE LL CUTI 
'IF' RoWLSTCI)<N+1 'THEN' RoWLSTtRl I- RoWLSTCll+NJ 
TCR.N+2ll-TCI.N+2lJ 
'IF' TCR.N+2l > Ttl.N+ll 
'THEN' TCR.N+lll-TCI.N+ll - 0.9999999 - ENTIERCTtl.N+ll) 
'ELSE' TtR.N+ll I- ENTIERCTCI.N+2l) +0.0000001 - TCI.N+2l; 
'FOR' JI-I 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

'IF' TC I.Jl-O 
'DR' CCDLLSTCJl > 1000 'AND' CDLLSTCJl < 1001+NEQ) 
'THEN' 'BEGIN' 

TtR.Jll=OJ 'GoTo' LCUT CoEFF WRITTEN; 'END'J 
TCR.Jll-TC I.JH 
'IF' TCI.Jl - ENTIERCTCI.Jl) < 0.0000001 
'THEN' TCR.Jll-ENTIERCTCI.Jl)J 
'IF' TCI.Jl - ENTIER~TCI.Jl) > 0.9999999 
'THEN' TCR.Jl I- 1 + ENTIERCTtI.Jl)J 
'IF' ABS(TCR.J)-TCI.Jl) < 0.0000001 
'THEN' TCI.Jll-TCR.Jl; 

'IF' ICLCJ)-O 'DR' ABSCTCI.Jl) < 1 'THEN' TCR.Jll=TCI.Jl 
'ELSE' 'BEGIN' TCR.Jll-TCI.J)-ENTIERCTCI.Jl)J 

'IF' TCR.J) < 0 'THEN' TCR.Jll- 1 + TCR.JlJ 
TCR.N+2) I- TCR.N+2l+ABSCTCR.Jl-TCI.Jl).TCM+NCUTS+2.JJJ 
'END' J 

LCUT CoEFF WRITTENI 'END'J 
SATISFIED I- 'FALSE'J 
'GoTo' END OF LIMITLooPJ 

BEGIN OF CoMBLooPI 
'IF' ROWLSTCll > N 'THEN' 'BEGIN' 

RI-IJ 'GoTo' BEGIN OF COMPARINGJ 'END'; 
'IF' NCUTS-N+I 'THEN' 'GoTo' END OF LIMITLoOPJ 
'IF' 'NOT' SATISFIED 'THEN' 'BEGIN' 

'FOR' III=NAV+l 'STEP' I 'UNTIL' M+NCUTS 'DO' 
'IF' RoWLSTCIll-RoWLSTCll+N 
'THEN' 'GoTo' END OF LIMITLooP; 'END'J 

BEGIN OF CoMPARINGI 
PoSI-NEGI- 'TRUE') 
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'FOR' JI .. 1 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

NAME I" 0; 
'IF' C01.1.STCJl < N+l 'THEN' NAME 1=' C01.1.STCJH 
'IF' C01.1.STCJl > 10000 'AND' C01.1.STCJl < 10001 +N 
'THEN' NAME I" C01.1.STCJl - 10000; 

'IF' 'NOT' NAME-O 'THEN' 'BEGIN' 
'IF' 'NOT' IC01.1.STCNAMEl-O 'THEN' 'GOTO' RESTRICT 
'ELSE' 'GOTO' CHECK SIGN; 'END'; 

'IF' C01.1.STCJl > 1000 'AND' C01.1.STCJl < 1001+M 
'THEN' NAMEI-C01.1.STCJl - 1000; 
'IF' C01.1.STCJl > 11000 'AND' C01.1.STCJl < 11001 + M 
'THEN' NAME I- C01.1.STCJl - 11000; 

'IF' 'NOT' NAME"O 'THEN' 'BEGIN' 
'IF' 'NOT' IROW1.STCNAMEl"O 'THEN' 'GOTO' RESTRICT 
, ELSE' , GOTO' CHECK SIGN; 'END'; 

'IF' C01.1.STCJl < 2*N+l 
'OR' CC01.1.STCJl>10000+N 'AND' COl.1.STCJl<10001+2*N) 
'THEN' 'GOTO' RESTRICTJ 

CHECK SIGNI ICl.CJll-O; 
'IF' TCIIJJ < 0 'THEN' POSI"'FA1.SE' 
'IF' TCIIJJ > 0 'THEN' NEG:='FA1.SE' 
'IF' 'NOT' CPOS 'OR' NEG) 'THEN' 'GOTO' END OF 1.IMIT1.0OP; 
'GOTO' END OF SIGN CHECK; 
RESTRICTI IC1.CJJI-C01.1.STCJJJ 
IF NOT INTEGER CLEAN OFF ROUNDING ERRORI 
TCM+NCUTS+2IJJI"ENTIERCTCM+NCUTS+2IJJ+O,5); 
END OF SIGN CHECKI 'END'; 

'IF' I-M+NCUTS+2 'THEN' 'GOTO' END OF 1.IMIT1.00P; 

'IF' CPOS 'OR' NEG) 'THEN' 'BEGIN' 

IF APPROPRIATE OVERWRITE FOR COMBINED CUTI 

OVERWITE SATISFIED 1.IMITCUT BY ITS OWN CUT: 
'IF' ROW1.STCIl>N 'THEN' 'BEGIN' 

RI-IJ 'GOTO' WRITE A COMBINED CUT; 'END'; 

LOOK FOR AN OLD CUT TO OVERWRITEI 
OVERWRITING FOR COMBINATION 1= 'FALSE'; 
'FOR' IlI"NAV+l 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' ROW1.STCIIl-NAME+2*N 
'OR' CROW1.STCIIl-NAME+N 'AND' 
TCIIIN+ll > 0 'AND' TCIIIN+2J > 0) 'THEN' 'BEGIN' 

OVERWRITING FOR COMBINATION I" 'TRUE'; 
RI-IU 'GOTO' WRITE A COMBINED cur; 'END'; 

CHECK SPACE FOR COMBINED CUTI 
'IF' MAIN 'AND' NCUTS>N+NIRV 
'THEN' 'GOTO' END OF 1.IMIT1.00P; 
OVERWRITING FOR COMBINATION I- 'FALSE'; 
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WRITE A COMBINED CUTa 
'IF' NEG 'THEN' POSa='FALSE'; 

'IF' ROWLSTCIl > N 
'OR' OVERWHITING FOR COMBINATION 'THEN' 'GOTO' WRITE; 

ENLARGE a 
'FOR' lIas 3.2 'DO' 
'FOR' Ja-1 'STEP' 1 'UNTIL' N+2 'DO' 
TCM+~CUTS+II.Jla.TCM+NCUTS+II-1.Jl; 
NCUTSa-NCUTS+1; Ra=M+NCUTS; 

WRITEI 
'IF' ROWLSTCI1<N+1 'THEN' ROWLSTCRla=ROWLSTCIl+N; 
'FOR' J 1= N+1.N+2 'DO' TCR.Jl a= TCI.Jl; 
'IF' POS 'THEN' JJa"'N+1 'ELSE' JJa=N+2; 
'FOR' JI=l 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' 

TCR.Jla"NUMa"TCI.JH 'IF' NUM < 0 'THEN' NUMa=-NUM; 
CWI-ENTlER(NUMH 
'IF' 'NOT' NUM=O 'AND' 'NOT' ICLCJl=O 'THEN' 'BEGIN' 

'IF' NUM - CW > 0.9999999 'THEN' CW := l+CW; 
'IF' ABS(NUM-CW) < 0.0000001 'THEN' NUMa=CW; 
'I F' TC 1. Jl > 0 'THEN' TC I. JJ a = NUM 
'ELSE' TCI.Jl a= -NUM; 
'IF' CPOS 'AND' TC I.JJ < 0) 
'OR' (NEG 'AND' TCI.JJ > 0) 
'THEN' CW: =CW+ 1; 
'IF' TCI.JJ < 0 'THEN' NUM := -NUM; 
'IF' TCI.JJ < 0 'THEN' CW a= -CW; 
TCR.JJJ:=TCR.JJJ+TCM+NCUTS+2.JJ*ABSCCW); 
NUM:=NUM-CW; TCR.JJa=NUM; 'END'; 'END'; 

'IF' POS 'THEN' JJ:=N+2 'ELSE' JJI=N+1; 
TCR.JJ1 1= TCR.JJl - ENTIERCTCR.JJ1) -0.999999; 
SATISFIED 1= 'FALSE'; 
END OF COMBINED CUT WRITING: 'END'; 

END OF LIMITLOOPI 'END'; 

END OF INTEGERCHECK CUM LIMITI 

'IF' 'NOT' MAIN 'THEN' 'GOTO' STAGE 16; 

RECALLING TO STAGES 3 AND 4 a= 'FALSE'; 

END OF STAGE 3a 'END'; 

INCOMING VARIABLE INTERCEPTI 

CORRECT DEGENERATE INFEASIBILITYa 
'FOR' Ira1 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' 'NOT' (ROWLSTC 11>1 000 'AND' ROWLSTC 1 J<l 001+NEQ) 'THEN' 
, FOR' J a = 1 • 2 'DO' . 
'IF' TCI.N+J1 > -0.0001 'AND' TCI.N+J1 < 0.0000000001 
'THEN' TCI.N+J11=0.0000000001; 
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'IF' NeUTS > N+NIRV-l 'THEN' 'GOTO' STAGE 4; 

RI=KI·ROWNI=COLNI=O; 
REENTRYI-2; 
INTPCT.M+NCUTS.N.NEQ.NAV.ROWLST.COLLST.IROWLST. 
R.K.ROWN.COLN.REENTRY); 

INCOMING VARIABLE INTERCEPT REENTRY 1 
PIVOT SIZE CUT 1= 'FALSE'; 

'IF' COLN=O 'OR' R=O 'THEN' 'GOTO' STAGE 4; 

'IF' COLN<3*N+l 'OR' CCOLN>lOOOO 'AND' COLN<lDOOl+2*N) 
'OR' ABSCTCR.KJ»lO 'OR' ABSCTCR.KJ)<O.l 
'THEN' 'BEGI N' 

'IF' 
CICLCKJ=COLLSTCKJ 'AND' TCM+NCUTS+2.Kl<1.001) 
'OR' CCOLN>N 'AND' COLN <3*N+l) 
'OR' ABSCTCR.KJ»lO 'OR' ABSCTCR.KJ)<O.l 
'THEN' 'BEGIN' 

'IF' CABSCTCR.KJ)<O.l 'OR' ABSCTCR.KJ»IO) 
'AND' 'NOT' NCUTS > N+NIRV 
, THEN' , BEG IN' 

RECALLING TO STAGES 3 AND 4 1= 'TRUE'; 
PIVOT SIZE CUT 1= INTERCEPT := 'TRUE'; 
'GOTO' STAGE B; 'END' ; 

'IF' ROWN=ROWLSTCRJ 'THEN' QUO:=TCR.N+IJ/TCR.KJ 
'ELSE' QUOI=-TCR.N+2J/TCR.KJ; 
'IF' QUO<O.OOI 'OR' QUO>TCM+2.KJ-O.00I 

'THEN' 'GOTO' STAGE 4; 

SET FOR AUXILIARY CUT: 
KKI=K; RECALLING TO STAGES 3 AND 4 1= 'TRUE'; 
INTERCEPT 1= 'TRUE'; 
'GOTO' STAGE 10; 'END'; 'END'; 

STAGE 41 

ATTEND DEGENERACY 1 
DEGENERATE 1= 'FALSE'; 
'FOR' 11=1 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
, FOR' J I" 1. 2 'DO ' 
'IF' ABSCTCI.N+JJ)<O.OOOOOOOOOI 'THEN' 'BEGIN' 

DEGENERATE 1= 'TRUE'; TCI.N+JJI=O.OOOOOOOOOlJ 
'IF' ROWLSTCIJ>1000 'AND' ROWLSTCIJ<1001+NEQ 
'THEN' TCI.N+JJ:=-TCI.N+JJJ 'END'; 

'IF' DEGENERATE 'THEN' 'GOTO' INCOMING VARIABLE INTERCEPT; 

TRY A STEP: 
'IF' STEP ALREADY KNOWN 'THEN' 'GOTO' 
KNOWN STEP REENTRY OF STAGE 4; 
R:=K:=ROWN:=COLNI=O; 
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KNOWN STEP REENTRY OF STAGE 41 
STEP ALREADY KNoWNI-'FALSE'J 
REENTRY.-U 
INTPCT.M+NCUTS.N.NEQ.NAV.ROWLST.CDLLST. 
IROWLST.R.K.RoWN.COLN.REENTRY); 
'IF' REENTRY· -1 'THEN' 'GoTo' EMPTYJ 

'IF' 'NOT' MAIN 'AND' REENTRY· -10 
'THEN' 'GOTO' IMPLEMENTATION REENTRY OF STAGE 9J 

CUTSHARPER. 
'IF' ROWN>N 'AND' RoWN<3*N+1 'THEN' 'BEGIN' 

'IF' ROWN>2*N 'THEN' NAMEI-ROWN-2*N 
'ELSE' NAMEI-ROWN-N} 
'FOR' 1.-1 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' ROWLSTCIl-NAME 'AND' 
ABSCENTIERCTCI.N+1l+0.001)-TCI.N+1l)<0.002 'THEN' 'BEGIN' 

TCI.N+1l.-ENTIERCTCI.N+1l+0.002)J 
TCI.N+2l.·ENTIERCTCI.N+2l+0.S)J 
'IF' TCI.N+1l-0 'THEN' TCI.N+1l.-0.0000000001J 
'IF' TCI.N+2l-0 'THEN' TCI.N+2ll-0.000000000lJ 'END'} 

'END'; 

'IF' RETURNED 'THEN' 'BEGIN' 
RETURNED .- 'FALSE'; 'GOTO' STAGE 3J 'END'; 

STAGE S. 

MAKE LIMITCUTS BINDING WITH PRIORITY: 
'FOR' 1.-1 'STEP' 1 'UNTIL' M+NCUTS ,~O' 
'IF' ROWLSTCIl>N 'AND' ROWLSTCIl<2*N+1 
'AND' CTCI.N+11<0 'DR' TCI.N+2l<O) 
'THEN' 'GOTO' STAGE 3; 

LOOK FOR SUPPLEMENTARY CUTS ON NON LIMIT CUTS: 
'IF' NCUTS<NIRV 'THEN' 'BEGIN' 

'FOR' 11-1 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' ROWLSTCIl>2*N 'AND' ROWLSTCll<3*N+1 
'AND' (TCI.N+1l<O 'DR' TCI.N+2l<0) 
'THEN' 'GOTO' STAGE 9; 'ENO'J 

REACT ON CHECK AND LIMIT. 
'IF' 'NOT' FEASIBLE 'DR' 'NOT' SATISFIED 
'DR' 'NOT' OPTIMAL 
'THEN' 'GOTO' STAGE 3; 

'IF' OPTIMAL 'AND' FEASIBLE 'AND' INTEGER 
'THEN' 'GOTo' END OF MIXI; 

STAGE 61 
REMOVE AMPLY FULFILLED CUTS: 

'FOR' III-NAV+1 'STEP' 1 'UNTIL' M+N+NIRV+1+1 'DO' 'BEGIN' 

'IF' I I :> M+NCUTS 
'THEN' 'GOTo' TRY IF MORE SPACE WILL DO IT; 
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'IF' ROW1.STCII] < N+1 'OR' ROWLSTCII] > 3*N 
'THEN' 'GOTO' END OF ROW REMOVING LOOP; 

REMOVE ONLY IF SPACE IS PRESSING: 
'IF' NCUTS < N+NIRV 'THEN' 'GOTO' END OF ROW REMOVING LOOP; 
'IF' ROWl.STCIIl > S*N 'THEN' 'GOTO' REMOVE NOW; 

REMOVE ONLY ONE LIMIT CUT IN FIRST INSTANCE: 
'FOR' 11"11+1 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' (ROWl.STCIl>N 'AND' ROWl.STCIl<S*N+1) 
'THEN' 'GOTO' END OF ROW REMOVING LOOP) 

REMOVE NOWI 
NCUTS.-NCUTS-1; 
'FOR' II-II 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
ROWl.STCIla-ROWl.STCI+1l1 
'FOR' II-II 'STEP' 1 'UNTIL' M+NCUTS+S ,~O' 

'FOR' Ja-1 'STEP' 1 'UNTIL' N+S ,~O' TCI.Jl:=T[I+1.JlJ 
HAVE ROMOVEO ONE CUTa 

END OF ROW REMOVING LOOP: 'END'; 

TRY IF MORE SPACE WILL DO ITa 
'IF' NCUTS<NIRV+N-1 'AND' 'NOT' OPTIMAL 'THEN' 'GOTO' STAGE 3; 

'IF' 'NOT' OPTIMAL 'THEN' 'GOTO' STAGE 3; 

STAGE 7a 
CHECK FOR NORMAL END OF ALGORITHM: 
'IF' INTEGER 'THEN' 'GOTO' END OF MIXX; 

STAGE 61 
RRa=NAV+1; 
CUTa 
CUTNa=O; NUMa-O.0011 
'IF' MAIN 'AND' 'NOT' OPTIMAL 'THEN' NUM:=O.OOS; 

'FOR' IaeRR 'STEP' 1 'UNTIL' M+NCUTS '~O' 
'IF' ROWLSTC I] < N+1 'THEN' 'BEGIN' 

'I F' 'NOT' I COl.l.STC ROWLSTC Ill" 0 'THEN' 'BEGIN' 
'IF' 'NOT' ABS(ENTIER(TCI.N+1l+0.S*NUM)-TCI.N+1]) < NUM 
'THEN' 'BEGIN' 

R:=IJ 
CUTNa=ROWl.STCR]+S*N; 
NUM 1= ABS(ENTIER(TCI.N+1l+0.S*NUM)-TCI.N+ll); 
'END'; 'END'; 'END'; 

'IF' MAIN 'AND' CUTN-O 'THEN' 'BEGIN' 
'IF' PIVOT SIZE CUT 'THEN' 'GOTO' STAGE 9 
'ELSE' 'GOTO' STAGE 4; 'END'; 
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'IF' NCUTS < N+NIRV 'THEN' 'GOTO' ENLARGE FOR NON LCUT; 
'FOR' II-RR 'STEP' I 'UNTIL' M+NCUTS 'DO' 
'IF' ROWLSTCI1-CUTN "AND' TCI,N+Il>O 'AND' TCI,N+21>0 
'THEN' 'BEGIN' CUTRI~IJ 'GOTO' WRITE THE CUT; 'END'; 

ENLARGE· FOR NON LCUTI 
NCUTS,-NCUTS+1J CUTR,-M+NCUTSJ 
'FOR' 1'- 2,1 ,~O' 'FOR' JI-l 'STEP' I 'UNTIL' N+2 'DO' 
TCM+NCUTS+I,Jl,-TCM+NCUTS+I-I,Jl; 

WRITE THE CUT·, 
SATISFIED ,- 'FALSE'; 
ROWLSTCCUTR11=ROWLSTCR1+2*N; 
TCCUTR,N+Il I- -0.99999999J TCCUTR,N+21,-FANCYHIGH; 
RR.-RJ 

'FOR' • .11-1 'STEP' 'UNTIL' N 'DO' 'BEGIN' 
TCCUTR,J11-OJ 
'IF' TCR,Jl-O 
'OR' CCOLLSTCJl > 1000 'AND' COLLSTCJl < 1001+NEQ) 
'THEN' 'GOTO' COEFFICIENT WRITTENJ 
NUMI-ABSCTCR.Jl)J 

TRY COMBINATION. 
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'IF' 'NOT' NUM < 0.999999 'AND' 'NOT' ICLCJ1-0 'THEN' 'BEGIN' 
NUM,-NUM-IJ 'GOTO' TRY COMBINATIONJ 'END'J 

'IF' ABSCNUM) < 0.000002 'THEN' 'GOTO' COEFFICIENT WRITTEN; 
QUOI-TCR,N+ll-ENTIERCTCR,N+ll)J 
'IF' TCR,Jl < 0 'THEN' QUOI-l-QUO; 
QUO I- QUO/NUMi 
'IF' 'NOT' ICLCJ1-0 'AND' QUO < I 'THEN' QUO.-U 
TCCUTR,Jl,--I/QUO; 
COEFFICIENT WRITTEN. 'END'; 

'IF' PIVOT SIZE CUT 'AND' CUTN-O 
'THEN' 'GOTO' STAGE 9J 
'IF' PIVOT SIZE CUT 
'THEN' 'GOTO' INCOMING VARIABLE INTERCEPT; 

'IF' 'NOT' MAIN 'THEN' 'GOTO' STAGE 17; 

'IF' RECALLING TO STAGES 3 AND 4 'THEN' 'GOTO' STAGE 4J 
'IF' NCUTS-N+NIRV+1 'THEN' 'GOTO' STAGE 31 
'IF' NCUTS-N+NIRV 'THEN' 'GOTO' STAGE 9; 

IMPLEMENTATION REENTRY OF STAGE 91 

STAGE 91 
KKI-KKKI-OJ 

TRY A HYPOTHETICAL STEP. 
KI-KKJ 
R,-ROWN.-COLN.=OJ REENTRY,-2J 
INTPCT,M+NCUTS.N,NEQ,NAV.ROWLST,COLLST, 
IROWLST,R,K,ROWN.COLN,REENTRY)J 

SAVED R T ,oo RJ 
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'IF' REENTRY - -1 'AND' KK-O 'THEN' 
'GOTO' EMPTY OF INTEGER SOLUTIONS; 

'IF' R-O 'THEN' 'BEGIN' 
'COMMENT' 
HITTING THE UPPER LIMIT OF THE INCOMING VARIABLE MEANS 
THIS IS A CHEAP STEP; 
FEASIBLE 1= SATISFIED I- 'FALSE'; 
MAIN I- RETURNED 1= 'TRUE'; 
'GOTO' KNOWN STEP REENTRY OF STAGE 4; 'END'; 

'IF' PIVOT SIZE CUT 'THEN' 'BEGIN' 
PIVOT SIZE CUT 1= 'FALSE'; 
RRI-RI KKI=K; 
RECALLING TO STAGES 3 AND 4 1= 'TRUE'; 
'GOTO' STAGE 10; 'END'; 

'IF' CREENTRY = -1 'OR' TCRIN+1l > 10) 
'AND' KKIO 'THEN' 'BEGIN' 

KKI-OJ 'GOTO' Tny A HYPOTHETICAL STEP; 'END'; 

'IF' 'NOT' CROWN>2*N 'AND' ROWN<3*N+ 1) 'THEN' 'BEGIN' 
'COMMENT' 
EXISTING CUTS AT THE MAIN VERTEX ARE NOT BEING REACHED 
BY A SINGLE STEP. 
UNDER THOSE CIRCUMSTANCESI THERE IS NO POINT IN MAKING 
HYPOTHETICAL CUTS 

FEASIBLE I- SATISFIED I- 'FALSE'; 
MAIN I- RETURNED I- 'TRUE'; 
STEP ALREADY KNOWN 1= 'TRUE'; 
'GOTO' INCOMING VARIABLE INTERCEPT REENTRY; 

STAGE 101 
DNCUTSI"NCUTS; 
MAKE COLUMN EXTRACT I 
'FOR' 11"1 'STEP' 1 'UNTIL' M+NCUTS-NAV 'DO' 
FDLSTCIJI=ROWLSTCI+NAVl; 

'END'; 

'FOR' 11,,1 'STEP' 1 'UNTIL' M+NCUTS-NAV+2 'DO' 'BEGIN' 
COLEXTRC I I III =TCNAV+ I IKH 
'FOR' JI-112 'DO' COLEXTRC Ill+JlI=TCNAV+IIN+JH 'END'; 

DLSTClll=COLLSTCKJ; 

STAGE 111 
UPDATE COLEXTRI 
SAVED R T 1= R; 

RI=ROWNI=O; Kl a l; REENTRYI=I; 
INTPCCOLEXTRIM+NCUTS-NAVIIINEQIOIFDLSTIDLSTI 
IROWLST1RIKIROWNICOLNIREENTRY); 

STAGES 12 AND 131 
CUTNI=O; LVI=O; 
'FOR' II-I 'STEP' 1 'UNTIL' M+NCUTS-NAV 'DO' 
'IF' COLEXTRCII2l :'~ 0 'OR' COLEXTRCII3l < 0 
'THEN' 'GOTO' NO SOLUTION IN THIS COLUMN; 
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'GOTO' CONTINUE WITH COLUMN AS INDICATED; 

NO SOLUTION IN THIS COLUMN: 
'IF' RECALLING TO STAGES 3 AND 4 'AND' INTERCEPT 
'THEN' 'GOTO' CONTINUE WITH COLUMN AS INDICATED; 

'IF' KK=KKK 'OR' KKK"O 'THEN' 'BEGIN' 
RI-SAVED R T; KI=KK; MAIN:='TRUE'; 
STEP ALREADY KNOWNI='TRUE'; 
'GOTO' INCOMING VARIABLE INTERCEPT REENTRY; 'END'; 

KKKI-KK; KKI=O; 'GOTO' STAGE 9; 

CONTINUE WITH COLUMN AS INDICATEDI 

CHECK INTEGER NATURE HYP VERTEX: 
INITIATE LIMITING VALUE: 
LV I- 0; 

'FOR' 11=1 'STEP' 'UNTIL' M+NCUTS-NAV 'DO' 
'IF' FDLSTC I J < N+l 'THEN' 'BEGIN' 

AVOID ZERO: 
'IF' COLEXTRCI.l J=O 'THEN' 'GOTO' NEXT ROW; 

CHECK WHETHER FRACIONALI 
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'IF' ABSCENTIERCCOLEXTRCI.2J+0.001) - COLEXTRCI.2J) < 0.002 
'THEN' 'GOTO' NEXT ROW; 

CHECK WHETHER INTEGER RESTRICTED: 
'IF' ICOLLSTCFDLSTCIJJ" 0 'THEN' 'GOTO' NEXT ROW; 

PREFERENCE ON INCOMING VARIABLEI 
'IF' FDLSTCIJ .. COLLSTCKKJ 'OR' FDLSTCIJ=COLLSTCKKJ-I0000 
'THEN' 'BEGIN' 

'COMMENT' 
A CUT ON THE HYPOTHETICAL INCOMING VARIABLE IS INDICATED. 
A ROW EXTRACT OF INITIALLY ONLY ONE ROW IS NEEDED; 
CUTRI-NAV+!J 
CUTN,-FDLSTC 1 H 
'GOTO' STAGE 14; 'END'; 

DO NOT CUT OVER AGAINI 
'FOR' CHECK 1 '" NAV+l 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' ROWLSTCCHECKIJ=FDLSTCIJ+N 'OR' ROWLSTCCHECKIJ 
=FDLSTCIJ+2*N 'THEN' 'BEGIN' 

'IF' TCCHECKI.N+IJ<O 'OR' TCCHECKI.N+2J<0 'THEN' 
'GOTO' NEXT ROW; 'END'; 

'IF' COLEXTRCI.IJ > 0 
'THEN' NLV 1= CCOLEXTRCI.2J-ENTIERCCOLEXTRCI.2J» 
/COLEXTRCI.IJ 
'ELSE' NLV 1= CCOLEXTRCI.3J-ENTIERCl+COLEXTRCI.3J» 
/COLEXTRC I. 1 J; 
'IF' NLV>LV 'THEN' 'BEGIN' 

CUTN:"'FDLSTCIH CUTRp'!J LVI=NLV; 'END'; 
NEXT ROW: 'END'; 
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'IF' 'NOT' CUTN=O 'THEN' 'GOTO' STAGE 14; 

'IF' RECALLING TO STAGES 3 AND 4 'AND' INTERCEPT 
, THEN' , BEG IN' 

RECALLING TO STAGES 3 AND 4 •• INTERCEPT 1= 'FALSE'; 
'GOTO' STAGE 4; 'END'; 

'IF' KK=KKK 'THEN' 'GOTO' INCOMING VARIABLE INTERCEPT; 

KKK.·KK; KK.=O; 'GOTO' TRY A HYPOTHETICAL STEP; 

STAGE 14. 
MAKE A ROWEXTRACTI 
'FOR' J'''1 'STEP' 1 'UNTIL' N '00' 
FDLSTCJJ.=COLLSTCJl; 
'FOR' J'-1 'STEP' 1 'UNTIL' N+2 'DO' 
ROWEXTRC1.JJ.=TCCUTR.JJ; 

'IF' CUTNICOLLSTCKKJ 'AND' CUTNICOLLSTCKKJ-IOOOO 
'AND' 'NOT' R=O 
, THEN' 'BEG IN' 

'COMMENT' 
TWO SEPERATE ROWS WILL BE NEEDED; 
R"'NAV+R; 'GOTO' COpy; 'END'; 

MM:=I; 
RENAME ROWINDEX TO BE FIRST ROW OF EXTRACT I 
RI=\; 
'GOTO' COpy ROWNAME; 

COPYI MMI"2; 
DLSTC2ll-ROWLSTCRll 
'FOR' JI-l 'STEP' I 'UNTIL' N+2 'DO' ROWEXTRC2.JlI=TCR.JH 
RENAME ROWINDEX TO BE SECOND ROW OF EXTRACT. 
R.=2; 

COpy ROWNAME' 
DLSTC1 JI-ROWLSTCCUTRJ; 

COpy LOWER BORDERI 
'FOR' 11"1.2.3 'DO' 'FOR' JI"1 'STEP' 1 'UNTIL' N+2 'DO' 
ROWEXTRCMM+I.Jll=TCM+DNCUTS+I.JJ; 

STAGE lSI 
UPDATE ROWEXTR. 
KI.KK; COLN.=COLLSTCKKl; REENTRYI=I; 
SAVED REI- R; 
INTP(ROWEXTR.MM.N.NEQ.O.DLST.FDLST.IROWLST. 
R.K.ROWN.COLN.REENTRY); 

PUT ROWEXTRACT IN T AND SAVE LEADING ROWS OF TI 
'FOR' II-I 'STEP' 1 'UNTIl.' MM+4 'DO' 
'FOR' JI-l 'STEP' 1 'UNTIL' N+2 'DO' 'BEGIN' 

COPI-TCI.Jl; TCI.JJ.-ROWEXTRCI.Jl; 
ROWEXTRC I. J lI"COP; 'END'; 
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'FOR' II-I 'STEP' 1 'UNTIL' MM+l 'DO' 'BEGIN' 
NAMEI-ROWLSTCIl; ROWLSTCIJI-DLSTCIl; 
DLSTC I ll-NAME; 'END'; 

FDLSTCKll=COLLSTCKJ; COLLSTCKll-ROWN; 
MI-MM; NAVI-NCUTS:=O; 
MAIN:-'FALSE'; 
'GOTO' CHECK AND LIMIT; 

STAGE 16: 'IF' SATISFIED 'THEN' 'GOTO' STAGE 8; 

STAGE 171 

PUT TABLEAUSHUFFLE BACKI 
'FOR' 11'"1 'STEP' 1 'UNTIL' MM+3 'DO' 
'FOR' JI=1 'STEP' 1 'UNTIL' N+2 'DO' 'BEGIN' 
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COP:=TCI.Jl; TCI.Jl:=ROWEXTRCI.Jl; ROWEXTRCI.Jl:=COP; 'END'; 

'FOR' 11=1 'STEP' 1 'UNTIL' MM+l 'DO' 'BEGIN' 
NAMEI-ROWLSTC I JJ ROWLSTC I ll-DLSTC I lJ DLSTC 1]1 =NAME; 'END'; 

COLLSTCKll=FDLSTCKl; FDLSTCKll=ROWN; 

RESTORE PARAMETERS: 
M:=MMM; NAVI-DNAV; 
PUT NEW AND CORRECT ORDER PARAMETERS I 
MM:=MM+NCUTS; NCUTS:=DNCUTS+NCUTS; 

BACKWARD STEP IN ROWEXTR: 
R:-SAVED R E; REENTRY:=I; 
INTP<ROWEXTR.MM.N.NEQ.O.DLST.FDLST.IROWLST. 
R. K. COLN. ROWN·. REENTRY); 

MAKE CUT ON INCOMING VARIABLE MORE EXACT: 
'IF' ~=1 'AND' MM=2 'THEN' 'BEGIN' 

'IF' DLSTC2l=FDLSTCKl+N 
'OR' DLSTC2l=FDLSTCKJ+2*N 
'OR' DLSTC2l=FDLSTCKl-I0000+N 
'OR' DLSTC2l=FDLSTCKl-I0000+2*N 
'THEN' ROWEXTRC2.N+ll:=O.OOOOOOOOOlJ 'END'; 

STAGE 18: 
ASSEMBLE WITH MAIN TABLEAU: 

'IF' NCUTS=O 'THEN' 'GOTO' ATTEND LIMITCUTS BY COLUMNADJUSTM; 

ROWLSTCM+NCUTSll=DLSTCMM); 

EXTEND TABLEAU FOR SUBSIDIARY CUT: 
'FOR' II=M+NCUTS+3. M+NCUTS+2. M+NCUTS+l 'DO' 
'FOR' JI=1 'STEP' 1 'UNTIL' N+2 'DO' TCI.Jl:=TCI-l.Jl; 

COpy THE SUBSIDIARY CUTI 
'FOR' JI=1 'STEP' 1 'UNTIL' N+2 'DO' 
TCM+NCUTS.JJ:=ROWEXTRCMM.JJ; 

ATTEND LIMITCUTS BY ~OLUMNADJUSTMI 
'FOR' 11=1 'STEP' 1 'UNTIL' M+NCUTS 'DO' 
'IF' ROWLSTCIJ<N+l 'AND' ROWLSTCIJ" DLSTCIJ 'THEN' 'BEGIN' 
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DO NOT ADJUST IF DIFFERENCE COULD BE ROUNDING. 
'IF' ABSCTCI.N+ll-ROWEXTRC1.N+ll) 
+ABSCTCI.N+2l-ROWEXTRC1.N+2l) < 0.001 
'THEN' 'GOTO' ATTEND UPPER LIMITS; 

TCI.N+ll.-ROWEXTRC1.N+ll; TCI.N+2J.-ROWEXTRCl.N+2l; 
'GOTO' ATTEND UPPER LIMITSJ 'END" 

ATTEND UPPER LIMITS. 
'FOR' 1.- 1.2 'DO' 'FOR' J.-l 'STEP' 1 'UNTIL' N+2 'DO' 
TCM+NCUTS+I.Jl.-ROWEXTRCMM+I.JlJ 

'IF' RECALLING TO STAGES 3 AND 4 'THEN' 'BEGIN' 
MAIN .- 'TRUE'J INTERCEPT.·'FALSE'J 
R. -SAVED R TJ 

'GOTO' INCOMING VARIABLE INTERCEPT; 'END" 

'GOTO' STAGE 9; 

UNBOUNDED. 
NEWLINEC 2)J 
WRITETEXTC'C'UNBOUNDEOISOLUTIONIOFITHEICONTINUOUSIPROBLEM')'); 
NEWL INEC 2 )J 
WRITETEXTC'C'COLUMN')'); PRINTCCOLN.7.0); 
WRITETEXTC 'C'UNBOUNDEO') ')J 
NEWLINEC2" 
'GOTO' END OF MIXII 

EMPTY. 
NEWLINEC 2)J 
WRITETEXTC'C'EHPTYIPROBLEM')'); 
NEWLINE(2)J 
'IF' 'NOT' SATISFIED 'THEN' 'GOTO' NO INTEGER SOLUTION; 
'GOTO' END OF MIXIJ 

EMPTY OF INTEGER SOLUTIONS. 
NEWLINEC2U 
NO INTEGER SOLUTION. 
WRITETEXTC'C'PROBLEH EMPTYIOFIINTEGERISOLUTIONS')'); 

END OF MIXI. 

'IF' 'NOT' FEASIBLE 'OR' 'NOT' INTEGER 
'THEN' 'GOTO' FINAL END OF MIXII 

ORDER FOR FINAL EXIT. 
ORDLCT.M+NCUTS.N.2.2.ROWLST.COLLST)J 

REMOVE EVENTUALLY SUPERFLUOUS CUTS. 
'FOR' 11.-1 'STEP' 1 'UNTIL' M+3*N 'DO' 'BEGIN' 

'IF' II>M+NCUTS 'THEN' 'GOTO' FINAL END OF MIXI} 
'IF' ROWLSTCIIl > 3*N 'THEN' 'GOTO' FINAL END OF MIXI; 
'IF' ROWLSTCIIl < N+l 'THEN' 'GOTO' 
END OF SURPLUS ROW REMOVING LOOP; 
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NCUTSI=NCUTS-1J 
'FOR' 11=11 'STEP' 1 "JNTIL' M+NCUTS 'DO' 
ROWLSTCI11=RDWLSTCI+11J 
'FOR' JI=l 'STEP' 1 'UNTIL' N+2 'DO' 
'FOR' II-II 'STEP' 1 'UNTIL' M+NCUTS+2 'DO' 
TCI~J11·TCI+1~J1J 
111=11-1; 
END OF SURPLUS ROW REMOVING LOOPI 'END'; 

FINAL END OF MIXII 'END'; 

CHAPTER XXI 
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