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Preface 

This monograph is derived from an advanced course in computer science 
at Stanford University on the analysis of algorithms. The course presents 
examples of the major paradigms used in the precise analysis of algorithms, 
emphasizing some of the more difficult techniques. Much of the material 
is drawn from the starred sections of The Art of Computer Programming, 
Volume 3 [Knuth III]. 

Analysis of algorithms, as a discipline, relies heavily on both computer 
science and mathematics. This report is a mathematical look at the syn- 
thesis--emphasizing the mathematical perspective, but using motivation 
and examples from computer science. It covers binomial identities, recur- 
rence relations, operator methods and asymptotic analysis, hopefully in a 
format that is terse enough for easy reference and yet detailed enough to be 
of use to those who have not attended the lectures. However, it is assumed 
that the reader is familiar with the fundamentals of complex variable theory 
and combinatorial analysis. 

Winter 1980 was the fourth offering of Analysis of Algorithms, and credit 
is due to the previous teachers and staff--Leo Guibas, Scott Drysdale, Sam 
Bent, Andy Yao, and Phyllis Winkler--for their detailed contributions to 
the documentation of the course. Portions of earlier handouts are incor- 
porated in this monograph. Harry Mairson, Andrei Broder, Ken Clark- 
son, and Jeff Vitter contributed helpful comments and corrections, and the 
preparation of these notes was also aided by the facilities of Xerox corpo- 
ration and the support of NSF and Hertz graduate fellowships. 

In this third edition we have made a few improvements to the exposi- 
tion and fixed a variety of minor errors. We have also added several new 
appendices containing exam problems from 1982 and 1988. 

--D.H.G. and D.E.K. 
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Chapter 1 

Binomial Identities 

1.1 S u m m a r y  o f  U s e f u l  I d e n t i t i e s  

So that the identities themselves do not become buried on an obscure 
page, we summarize them immediately: 

k 

integer n (1.1) 
or n real and Ix/yl < 1 

( k )  = ( r k  1 ) +  ( ~ -  11), real r 
integer k (t.z) 

( k )  ( n ) integer n > O  
= n - k ' integer k (1.3) 

(~) r (~- 11) realr 
= k ' integer k r 0 (1.4) 

) ( ) r + k  r + n + l  ~ = , 
k=O k n 

real r 
integer n > 0 (1.5) 

(m+ 11) E = 
k=O + ' 

integer m, n > 0 (1.6) 

k 
real r 

integer k (1.7) 
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n - k  n 
k 

real r 
integer m, k 

real r, s 
integer n 

(~.8) 

(~.9) 

(;)(,) (:+:) 
n + k  + ' 

k 

integer n, real s 
integer r >_ 0 

(~.~o) 

k n n - r  

integer n, real s 
integer r > 0 

(~.~) 

k=o m n + n +  1 ] '  

integer m, n, r, s > 0 
n > s  

(~.~) 

Parameters  called real here may also be complex. 

One particularly confusing aspect of binomial coefficients is the ease with 
which a familiar formula can be rendered unrecognizable by a few trans- 
formations. Because of this chameleon character  there is no subst i tute  for 
practice of manipulations with binomial coefficients. The reader is referred 
to Sections 5.1 and 5.2 of [GKP] for an explanat ion of the formulas above 
and for examples of typical t ransformat ion strategy. 
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1.2 Der iv ing  the  Ident i t ies  

Here is an easy way to understand many of the identities that do not 
include an alternating -1 .  The number of monotonic paths through a 
rectangular lattice with sides m and n is (m+,~ By cutting the lattice Wt / ~  

along different axes, and counting the paths according to where they cross 
the cut, the identities are derived. The pictures below show different ways 
of partitioning the paths and the parameter k used in the sum. 

t" i i v 

! _- _ 

O t 
A sum based on when the 
path hits the top edge 
derives identity (1.5) 

Counting paths according 
to when they cross a vertical 
line derives identity (1.12) 

Similarly, a sum based on 
a slanted line derives 
identity (1.9) 

More complicated identities can be derived by successive applications 
of the identities given on pages I and 2. One example appears in "A 
trivial algorithm whose analysis isn't," by A. Jonassen and D. E. Knuth 
[Jonassen 78], where the sum 

1 k 

is evaluated by a lengthy series of elementary transformations. Instead of 
repeating that derivation, let us consider instead a derivation suggested by 
I. Gessel. He attributes this elegant technique, the "method of coefficients," 
to G. P. Egorychev. 
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First replace k by m -  k, giving 

Using the notation [x 'L] f(x) for the coefficient of x '~ in f(x), we can express 
port ions of the sum with generating functions: 

-~ = [x k] (1 - 2x) m (1.15) 

The whole sum is 

( 1) 
S =  -~  Z [ x  k] (1 - 2x)m[y m-k] (1 + y)2m-2k (~.~7) 

We can remove lyre-k] from the sum by noting that  [ym-k] = [ym] yk: 

S=  ( - 2 )  [ym] (l + y,2m E [ x  k ] ( l _ 2 x ) m  Y 
~: (1 + y)2 

(~.~8) 

Finally, this seemingly aimless wandering comes to a glorious finish. The 
sum in the last formula is a simple subst i tut ion for x, since 

)--~[~k]/(x)g(v)k =/(g(v)) (~.~9) 
k 

when f is analytic. The solution follows immediately: 

,S' = ( - 2 ) - m [ y  "~] (1 + y)2m (1 - 
2y 

(1 + y)2 = (-2)-m[y m] (1 + y2)m; 
(~.~o) 

2--m (m/2)  ~2 even; 
S ---- ' ( 1 . 2 1 )  

0, m odd. 

A simpler approach to this problem has been pointed out by C. C. 
Rousseau, who observes that  (~k) is the coefficient of x ~ in (x + x-l)  2k, 
hence S is the coefficient of x ~ in (1 - (x + x-1)~/2) m. 
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From a theoretical standpoint,  it would be nice to unify such identities 
in one coherent scheme, much as the physicist seeks a unified field theory. 
No single scheme covers everything, but there are several "meta" concepts 
that  explain the existence of large classes of binomial identities. We will 
briefly describe three of these: inverse relations, operator calculus, and 
hypergeometric series. 

1.3 Inverse  R e l a t i o n s  

One of the simplest set of inverse relations is the pair 

an-- Z ( - - 1 )  k (nk)bk, bn-- ~ ( - 1 )  k (nk)ak, (1.22) 
k k 

which follows from the orthogonal relation 

In- -  k] -- Z ( - 1 )  j+k . (1.23) 
j=0 

(A logical relation in brackets evaluates to 1 if true, 0 if false. We assume 
that  n is a nonnegative integer.) This formula is just a specialization of 
equation (1.11) with s equal to zero. In general an inverse relation will pair 
two series so tha t  individual terms of one can be computed from the terms 
of the other. There will always be an associated orthogonal relation. 

In his book Combinatorial Identities, John Riordan devotes several chap- 
ters to inverse relations. Since inverse relations are even more likely to 
change appearance than the binomial identities we have seen already, care 
must be taken to recognize relations that  are basically the same. For this 
purpose Riordan describes several transformations and then groups equiv- 
alent inverse pairs into broad categories. His transformations and classifi- 
cations are summarized below. 

Since we are working with a pair of equations, we can move terms from 
one equation to another by replacements like b~ = (--1)kbk, obtaining a 
new pair 

o .  
k k 

An inverse relation corresponds to a pair of lower triangular matrices whose 
product is the identity. By reflecting across the diagonal we can derive yet 
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another pair 

k > n  k > n  

Finally, note that we can multiply both sides of the orthogonal relation 
(x.23) by almost any function that  is unity when n = k, without affecting 
the orthogonal character of the equation. 

The last equation, (1.25), has an extremely useful combinatorial sig- 
nificance. Suppose we have a large collection of random events. Let bn be 
the probability that exactly n events occur, and let an be the sum of the 
probability of n simultaneous events taken over all selections of n events. 
Roughly speaking an can be viewed as a sloppy way of computing the 
probability that exactly n events occur since it makes no allowance for the 
possibility of more than n events. The left side of (1.25) shows how an is 
inflated. However, an is often easier to compute and the right hand side 
of equation (x.25), the "principle of inclusion and exclusion," provides a 
practical way of obtaining bn. 

Equations (1.22), (x.24) and (x.25) belong to the simplest class of inverse 
relations. [Riordan 68] lists several other classes like the Chebyshev type: 

(:) an -- bn-2k, bn - Z ( -1 )k  n _ k  k an-zk. (1.26) 
k=O k=O 

Not surprisingly, these inverse relations are often associated with their 
namesakes among the orthogonal polynomials used in interpolation. 

The Gould class of inverse relations, 

fn Z (  l ' k ( n k ) ( a + b k )  = - g k ,  ( ~ . 2 7 )  
n 

k 

gn = ( - 1  h (1.2S) 
n k a + b n - k  n - k  ' 

has a very curious property. A Chinese mathematician L. Hsu recently 
discovered that  the binomial coefficients containing a and b are inessential 
to the functioning of the inversion. In fact if we choose {ai } and {bi } to be 
any two sequences of numbers such that  

n 

r n) = H ( a i  + bix) :/= O, integer X, n >__ 0 ,  (1.29) 
i=1  
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we obtain a general inversion: 

k 

gn -- ~ ( - 1 ) k  (~) (ak+l 
k 

+ k bk+l)r k § 1)- l fk .  

Another well known pair of inverse relations uses Stirling numbers: 

an 

bn 

= ~-'~(-1) n-k bk, [~] = Stirling numbers of the first kind; (1.32) 
k = 0  

= ak, {k} ------ Stirling numbers of the second kind. 
k---O 

Here an is usually x n- and bn is x n, so that these formulas convert between 
factorial powers and ordinary powers of x. 

We cannot explore all the inverse relations here, but it is worth noting 
that many generating functions can be converted to inverse relations. A 
pair of power series z(x) and z*(x) such that z(x) z*(x) = 1 provides a pair 
of relations: 

a(x) = z(x) b(x), and b(x) = z*(x) a(x). (1.34) 

For example, we can let z(x) = ( 1 -  x) -p and z*(x) - ( 1 -  x)P; clearly 
z(x) z*(x) = 1, so we can proceed to compute formulas for the coefficients 
in a(x) and b(x): 

a,, = ~ ( - 1 ) k  ( ~ )  bn-k, bn=~_~(-1)~(Pk)an-k. (1.35) 
k k 

This pair is a member of the Gould class of inverse relations. 

Inverse relations are partially responsible for the proliferation of bino- 
mial identities. If one member of an inverse pair can be embedded in a 
binomial identity, then the other member of the pair will often provide a 
new identity. Inverse relations can also enter directly into the analysis of 
an algorithm. The study of radix exchange sort, for example, uses the sim- 
ple set of relations (1.22) introduced at the beginning of this section. For 
details see [Knuth III; exercises 5.2.2-36 and 5.2.2-38]. 
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1.4 O p e r a t o r  C a l c u l u s  

There is a striking similarity between the integral 

fa b x n d x  = 
xn+l b 
n~- ' ]  

and the sum 
xn_tT.. ! } b 

Z x n =  ' (1-37) 
a<z<b n + 1 a 

where the underlined superscript, x~ = x ( x -  1 ) ( x -  2 ) . . .  ( x -  n + 1), 
denotes a falling factorial. The latter sum is merely a variation of equation 
(x.6) in a form that is easy to remember. It is certainly easier to remember 
than the formula for sums of powers found on page 47. 

The similarity of equations (x.36) and (1.37) is a consequence of the facts 
that  D x  n = nx n-1 and Ax n = n x n :  "1, where D and A are the operators of 
differentiation and difference that are inverse to f and ~"]~: D p ( x )  = p ' ( x )  
and A p ( x )  = p ( x  + 1) - p ( x ) .  We can extend such analogies much further; 
Rota, for example, gives the following generalization of Taylor's theorem: 

Def in i t i ons .  Let E a be the shift operator, E a p ( x )  = p ( x + a ) .  An operator 
Q is a delta operator if it is shift invariant (Q  E a = E a Q)  and if Q x is a 
nonzero constant. Such an operator has a sequence of basic polynomials 
defined as follows: 

i) p o ( x )  = 1 

ii) pn(O) = O, n > 0 

iii) Q p n ( x )  = n p , , _ l ( x ) .  

The third property means that  whenever Q is applied to its basic polyno- 
mials the result is similar to D applied to 1, x, x 2, . . . .  For example, A is a 
delta operator with basic polynomials x n-- = x ( x  - 1 ) . . .  (x - n + 1). 

Taylor's Theorem. 

= ( 1 . 3 8 )  T 
k 

where 

T is any shift invariant operator; 

Q is any delta operator with basic polynomials p~(x); 

- Tpk(x)l = o. 
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When T = E a and Q = D, this reduces to the well known Taylor formula. 
By changing Q to A, the difference operator, we obtain Newton's  expansion 
of T = E a, 

ak__ 
p ( x  4" a ) -  Z -k(.. Akp(x)"  (1"39) 

k 
Newton's expansion is a useful tool for proving binomial identities. Equa- 
tion (1.9), for example, is an expansion of p(s + r) = (s + r) m-. 

A full exposition of operator  calculus and its relation to binomial iden- 
tities can be found in [Rota 75]. The reader will also notice the close 
relationship between discrete and continuous analysis in Chapter  2, where 
difference equations resemble differential equations, and in Section 4.2 on 
Stieltjes integration, where floor and ceiling functions are "integrated" to 
produce sums. 

1 .5  H y p e r g e o m e t r i c  S e r i e s  

The geometric series 1 + z + z 2 + . . .  = 1/(1 - z) can be generalized to 
a hypergeometric series 

ab z a(a + 1)b(b + 1) z 2 a~b ~ z n 
F(a ,  b; c; z) = 1 + - -  + c ~ c ( c + l )  2! ~ c ~ n! }-'" ' (1.4o) 

where the overlined superscript  a n = a(a + 1)(a + 2 ) . . .  (a + n - 1) sig- 
nifies a rising factorial power. The semicolons in the parameter  list of F 
indicate tha t  there are two numerator parameters (a, b) and one denom- 
inator parameter  (c). The hypergeometric series in this example can be 
further generalized to an arbi trary number of numerator  and denominator  
parameters.  

The s tandardizat ion afforded by hypergeometric series has shed much 
light on the theory of binomial identities. For example, identities (1.5), 
(1.1o) and (1.11) are all consequences of Vandermonde's theorem: 

C - -  a )  ff 
F(a ,  - n ;  c; 1) = c~ integer n > 0. (1.41) 

The negative integer a rgument  - n  terminates the otherwise infinite series, 
allowing us to express (1.1o) as a variation of this formula: 

s n- s n- (s + 1) r 
~ . F ( - r , - s  + n; n + 1; 1) = n-T (n + 1) ~ (:+:) + �9 (1.42) 

More information on hypergeometric series can be found in [Bailey 35], 
[Henrici I], and [GKP]. 
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1.6 Iden t i t i e s  w i th  the  H a r m o n i c  N u m b e r s  

Harmonic numbers occur frequently in the analysis of algorithms and 
there are some curious identities that involve both binomial coefficients 
and harmonic numbers. The commonly used identities are summarized 
here. 

n 1 (1.43) no = Z ,  
k----1 

n 

E Hk = (n + 1)Hn - n (1.44) 
k--1 

n ( k )  ( :  11) ( 1 ) 
Z Ilk = + Hn+I (1.45) k=x + m + l  

"(:) Z xk'Hk 
k = l  

( ( 1 ) )  = ( x + l )  n H n - l n  1 + -  +e, 
x 

x > 0  
1 O < e <  x(n+l) 
(1.46) 

1 
( l - z )  m+x 

( 1 ) ( ) In 1 - Z  = Z ( H n + m - H m )  n + m  zn 
n > O  n 

1 
( l - z )  m+lln 1 -  

2 

n > 0  (n + 
k'~a n~'flrL n 

m) zn (1.48) 

The last two identities, along with a generalization to higher powers, 
appear in [Zave 76]. We can regard them as identities valid for complex 
values of m, with Hn+m -- Hm = 1 1 1 + ~ + " "  + ~'4-~; see the solution 
of problem 2(g), midterm exam II, on pages 105-106 below. 



Chapter 2 

Recurrence Relations 

2.1 L inear  R e c u r r e n c e  R e l a t i o n s  

Recurrence relations are traditionally divided into two classes: A recur- 
rence with "finite history" depends on a fixed number of earlier values, 

x ,  = f ( x , - 1 ,  x , - 2 , . . . ,  x , _ ~ ) ,  n > m.  (2.1) 

An equation that depends on all preceding values has a "full history." 

The simplest recurrences have a finite history, and f is a linear func- 
tion with constant coefficients. Here the terminology parallels differential 
equation theory; we distinguish between the "homogeneous" and the "non- 
homogeneous" situations depending on the presence of an extra term g(n): 

c o x n  + c l x , , - 1  + " "  + c , ~ x , _ , ~  = g ( n ) .  (~.~) 

There are two classic treatises on the calculus of finite differences, one 
by Jordan [Jordan 60] and the other by Milne-Whomson [Mil-Whom 33]. 
Although the emphasis of these early works was on approximation and 
solution of differential equations--problems in the mainstream of numerical 
analysis rather than analysis of algorithms--much can be learned from this 
theory. We recommend a recent summary by Spiegel [Spiegel 71] and An 
I n t r o d u c t i o n  to  C o m p u t a t i o n a l  C o m b i n a t o r i c s  by Page and Wilson [Page 
79]. 

Within this section references are given to additional examples of the 
solution of recurrence relations from [Knuth I] and [Knuth III]. The last 
part of the section, on the repertoire approach to full history equations, 
was introduced in a paper by D. Knuth and A. Schhnhage [Knuth 78]. 
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2.1 .1  F i n i t e  H i s t o r y  

2 .1 .1 .1  C o n s t a n t  Coef f i c i en t s  

The constant coefficient problem is a beautiful example of the use of 
generating functions to solve recurrence relations. Rather  than a t t empt ing  
to find xn directly, we construct a function G(z) with coefficients xn in its 
power series expansion: 

= z 

k 

The recurrence relation is converted to an equation in G(z) and solved by 
whatever means are applicable. This is best explained with an example, 

X n + 2  - -  3Xn+l + 2Xn - n, Xo = xl  = 1. 

First  we multiply by z n+2 and sum over all n, obtaining 

(2.4) 

z " + 1  z "  �9 ( 2 . 5 )  ~ _ X n + 2 Z n + 2 - 3 Z E X n + l  + 2z2 E X n  = E n z n + 2  
n > 0  n > 0  n > 0  n > 0  

The first sum is G(z) missing its first two terms. The next two sums are 
similarly close to G(z), and the right side of the equation can be expressed 
in closed form as z 3 / ( 1 -  z) 2. (This follows from the binomial theorem, 
equat ion (1.1), when (x + y)n = (1 - z) -2. A list of s tandard closed forms 
for generating functions appears in [GKP; Chapter  7].) 

Pu t t i ng  everything together in one formula for G(z) gives 

G(z) - z -  1 - 3z (G(z) - 1) + 2z2G(z) = 
Z 3 

(1 - z) 2" 
(2.6) 

And this is easy to solve for G(z)" 

z 3 - 2 z  + 1 
G(z) = (1 - z)2(1 - 3z + 2z 2) + (1 - 3z + 2z2)" (2.7) 

We would like to recover the coefficient of z ~ in G(z). If the denominators  
of the fractions in G(z) were linear, the recovery problem would be simple: 
each term would be a geometric series. This is not the case in the example 
we have, but  by expressing our solution for G(z) in partial fractions we 
obtain a manageable form: 

1 1 1 
G(z) = 1 -  2z t (1 - z) 2 - (1 - z )  3" ( 2 . 8 )  
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Note that  the only nonlinear denominators are higher powers of a linear 
factor. These terms can be expanded with the binomial theorem, and Xn 
is easily computed: 

n 2 + n  
X n = 2  n - ~  (2.9) 

2 " 

Partial fractions are powerful enough to deal with all linear recurrences 
with constant coefficients. For simplicity, however, we will discuss a differ- 
ent approach found in [Spiegel 71] and many of the older references. The 
approach is based on trial solutions and is similar to the solution of differ- 
ential equations. In certain instances this second approach will provide fast 
answers, but the rules often seem like black magic, and the puzzled reader 
will have to return to the underlying partial fraction theory to understand 
why these "rules of thumb" work. 

A) Homogeneous Equations. 

COX n "}- C l X n _  1 -}- �9 �9 �9 "~" CmXn--  m --  O, • ~ m .  ( 2 . 1 0 )  

We try Xn - r n ,  and obtain an m t h  degree polynomial in r. Let r x, . . .  , r m  

be the roots of this polynomial. The "general solution" is 

n 
Xn -- k l r '~  + k2r~  + . . .  + k m r  m,  (2.11) 

where the ki are constants determined by the initial values. 

Multiple roots are accommodated by prefacing the terms of the general 
solution with powers of n. Suppose that  rl  - r2 = r3; then the adjusted 
solution would be 

Xn --  k l r ~  + k 2 n  r~ + kan2 r~ .  ( 2 , 1 2 )  

B) Nonhomogeneous Equations. 

CoXn -}- C lXn- -1  - } - ' ' " - b  C m X n - m  - -  g ( n ) .  ( 2 . 1 3 )  

First remove g ( n )  and obtain the general solution to the homogeneous equa- 
tion. Add to this homogeneous solution any "particular" solution to the 
nonhomogeneous equation. 

A particular solution can be found by the method of "undetermined coef- 
ficients." The idea is to use a trial solution with unspecified coefficients and 
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then solve for these coefficients. The nature of the trial solution depends 
on the form of g(n): 

Form of g(n)" 

~ n  

p(n) 

Trial Solution: 

k an (multiply by n if a is a root) 

polynomial of the same degree 

2.1.1.2 Variable Coefficients 

There is no guaranteed solution to the variable coefficient problem, but  
there are several methods worth trying: 

A) Summation Factors. 

If the equation is "first order," 

a(n)xn = b(n) xn-1  + c(n), n > 1, (2.~4) 

then it can be reduced to a summation.  First multiply both sides by the 
summation factor 

n--1 l-I~=~ a(i) 
F(n)  = �9 (2.15) 

I'Ijn__l b(j) 

Then the recurrence becomes 

Yn = Yn-1 + F(n)  c(n), (~.16) 

where Yn = b(n + 1 ) F ( n  + 1)Xn. The last recurrence allows us to express 
Xn as a sum: 

xo + )-'~in=l F ( i )c ( i )  
xn = b(n + 1 ) F ( , ~  + 1) " (2.17) 

See [Knuth III; page 121] and [Lueker 80] for illustrations of this technique. 

B) Generating Functions. 

Variable coefficients are amenable to a generating function attack. If 
the coefficients are polynomials, the generating function is differentiated to 
obtain the desired variability. Let us look at a relatively simple problem to 
get a feeling for what is involved: 

(n + 1)Xn+ l - (n + r)xn = O. (2 .1s)  
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Multiplying by z n and summing over all n will bring us closer to a formula 
in G(z): 

Z n Z n E ( n  + 1)x,,+, - E ( n  + r)x,~ = O. (2.19) 
n n 

Using the derivative of G(z) and multiplication by z for shifting, we obtain 
a differential equation, 

(1 - z )  G ' ( z )  - r G ( z )  = O. 2.20) 

In general any recurrence with coefficients that are polynomial in n can be 
converted to a differential equation like (2.20). In this case, the coefficients 
of the solution, G(z) = ( l - z )  - r ,  can be recovered by the binomial theorem: 

x n _ _ ( _ l ) n ( ? )  ( r -  l + n )  
n 

(~.~) 

More difficult problems will present the analyst with a wide variety of 
equations in G(z). While these are not always differential equations, the 
reader is referred to [Boyce 69] for those differential equations that do occur. 

C) R e d u c t i o n  of  O r d e r .  

If we are fortunate enough to factor the difference equation, then we 
can at tempt to solve each factor separately. For example, the difference 
equation 

.~k+2 - (k + 2)Yk+~ + k Yk = k (2 .22)  

can be written in operator notation: 

(E 2 - (k + 2)E + k)yk = k. (2.23) 

And the operator can be factored so that 

( E -  1 ) ( E -  k)yk -- k. (2.24) 

If we first solve the equation 

( E -  1)Zk = k, (2.25) 

which has the simple answer zk = (~), then we have reduced the order, 
leaving a first order equation: 

(E - k) yk = ( ~ ) .  (2.26) 
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Using F ( n )  - 1 /n!  as a summing factor, the last equation can be solved: 

Y,~ ( n -  1 ) ! ~  1 
= 2 k=~ ~ "  (2.27) 

For simplicity we will omit the discussion of initial conditions; see [Spiegel 
71; page 176] for a solution of this example with initial conditions yl = 0 
and y2 = 1. 

All three approaches to the variable coefficient problem have serious 
shortcomings. The summation factor may yield an inscrutable sum, and 
the generating function can produce an equally intractable differential equa- 
tion. And alas, there is no certain way to factor an operator equation to 
apply the reduction of order technique. The variable coefficient equation is 
a formidable problem; we will have to return to it later in the exploration 
of asymptotic approximations. 
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2.1.2 Full His to ry  

2.1.2.1 Differencing 

The differencing strategy eliminates full history by subtracting suitable 
combinations of adjacent formulas. For example, [Knuth III; page 120] 
solves the equation 

2n -x  
�9 . = S. + - ~ ~ (~.~8) 

n k=O 

by subtracting 

from 

n-1 

k--O 

n 

(n  + 1)Xn+l -- (n + 1 ) fn+ l  + 2 Z Xk, (2.30) 
k=O 

yielding a first order variable coefficient problem. Note bo,': the two for- 
mulas have been carefully rearranged to eliminate the sum. In complex 
situations, several differences may be necessary to remove the history. See, 
for example, [Knuth III; exercise 6.2.2-7]. 

2.1.2.2 By  Reper to i r e  

In the next approach we take advantage of the linearity of the recurrence 
and construct the desired solution from a repertoire of simple solutions. 
Several recurrences in the analysis of algorithms have the form 

xn = an + Z Pnk(Xk + Xn-k),  Z P n k  = 1. (2.31) 
O<k<n k 

If we also know that 

u. = b. + ~ p.~(u~ + u._~), (~.3~) 
0<k<n 

then by linearity an equation with additive term a an + j3 bn will have the 
solution a xn + 13 Yn. 

The crucial idea is this: We choose xn first so as to make the sum 
tractable, then we see what additive term an results from the xn. This 
is exactly backwards from the original problem, where an is given and xn 
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is sought. However, once we have built up a repertoire of enough additive 
terms, the original an can be constructed by linear combination. 

For example, consider the recurrence associated with median-of-three 
quicksort: 

( k l l )  
xn = n + 1 + Z (xk-1  + Xn-k) .  (2.33) 

The ordinary quicksort algorithm is modified so that  three elements are 
chosen and the median of these three is used for the partit ioning phase of 
the algorithm. In ordinary quicksort each part i t ion size is equally likely. 
This modification makes it slightly more likely that  the partition will split 
into similar sized parts, because Pnk = ( k l l ) ( n l k ) / ( ' ~ )  is largest when k is 
near n/2 .  

At first we observe that  the sum is symmetric and we replace the additive 
term, n + 1, by an in preparation for the repertoire approach: 

2 
xn = an + 7"~ Z ( k -  1 ) ( n -  k ) x k - 1 .  (2.34) 

l < k < n  

Choosing x,~ equal to the falling factorial ( n -  1)s- makes the sum in equation 
(2.34) easy to compute: 

12 
( n -  1) s- = an + "~_ Z (n - k) (k  - 1)s+x 

l < k < n  

12(s + 1), Z ( n -  k )  ( ~ -  1) 
= an + n3__ 1 + 1 

l < k < n  

= a,~ + na - s + 3 ; (2.35) 

12 
an = ( n -  1) s-- - ( n -  3) s-. (2.36) 

(s + 2)(s + 3) 

Now we have a family of solutions parameterized by s. 

s = O  

s = l  

s = 2  

Xn an 

1 - 1  

( n -  1) 2 

( n -  1 ) ( n -  2) 
2n 2 + 6n -- 26 
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However, the family is inadequate; it lacks a member with linear an. The 
possibilities for an jump from constant to O(n 2) and unfortunately the an 
that we wish to reconstruct is O(n). On reflection, this is not surprising. 
We expect the solution of this divide and conquer style of iteration to be 
O(n log n) and yet we have limited the possibilities for xn to polynomials 
in n. So to expand our family of solutions we introduce the harmonic 
numbers, Hn, which are also easy to sum and will contribute O(logn) 
factors to the solutions. The new family is computed using xn = ( n -  1)tHn 
in equation (2.34) and solving for an. 

12 
( n -  1)t-Hn = an + ~ ~ ( n -  k ) ( k -  1)t+Xnk_x 

l < k < n  

= an + "~ E n ( k -  1)t+lHk_l 
l < k < n  

- ~_, kt+2Hk4- y~  ( k - l )  t+x) 
l < k < n  l < k < n  

12 ( n s  ( 1 ) 
= a n + ~ _ _  t + 2  H . - I  t + 2  

n t + 3 (  1 ) ( n - - 1 ,  `+----~) 
t + 3  Hn t + 3  + t + 2  " (2"37) 

Here we have used identity (x.45) to evaluate the sums containing Hn. The 
result can be simplified to 

) 12(2t + 5) 12 ( n - 3 )  t + ( n - 3 )  t. 
an = Hn ( n -  1 ) t -  (t + 2)(t + 3) (t + 2iSit '+ ~)2 (2.38) 

This time, when we examine the small members of the family of solutions 
we discover a fortunate alignment" 

t = 0  

t = l  

Xn an 

5 H. - H . + ~  

( n -  1)Hn 2Hn + - ~ ( n -  3) 

The smallest two solutions for an both have leading term Hn. By an 
appropriate linear combination we can eliminate Hn and obtain an an that 
grows as order n: 

7n+ 19 
xn --~ (n -l- 1)Hn ~ an -- 1"----7" (2"39) 
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The s -- 0 solution from the first family is used to adjust  the constant term, 
enabling us to reconstruct the an given in the original problem: 

xn = ~ ( ( n  + 1)Hn + 1) ~'~ an = n + 1. (2.40) 

This solution for xn may not agree with the initial values xx and x2. To 
accommodate  arbi trary initial values we need to discover two extra degrees 
of freedom in the solution. One degree of freedom can be observed in the 
first family of solutions. Combining s - 0 with s - 1 yields 

Xn = n + 1 ~ an = 0. (2.41) 

So any multiple of n + 1 can be added to the solution in equation (2.4o). 

The second degree of freedom is not quite so obvious. Since an - 0  we 
have a simplified recurrence for xn, 

na-xn =12  Z ( n -  k ) ( k - 1 ) x k _ x .  
l < k < n  

Using a generating function, G(z), for the sequence Xn, the convolution on 
the right of (2.42) is represented by the product  of 1 / ( 1 - z )  2 corresponding 
to ( n - k )  and G~(z) corresponding to (k - -1 )xk-x .  We obtain the differential 
equation 

12 
G't'(z) = (1 - z) 2 (z). (2.43) 

The nature  of the equation suggests a solution of the form G(z) = (1 - z) ~, 
and testing this solution yields a = - 2  or 5. The case a = - 2  corresponds 
to our previous observation that  multiples of n + 1 do not affect the solution. 
But for a = 5 we obtain an unusual solution tha t  is zero after its first five 
values: 

xl = - 5 ,  x 2 = 1 0 ,  x 3 = - 1 0 ,  x4 = 5 ,  x s = - l .  (2.44) 

This provides a second degree of freedom and gives the final solution 

Xn 
12 ( 5 )  

"- -T ( (n  + 1)Hn + 1) + cx(n + 1 ) +  c2( -1 )  n , (2.45) 

where cl and c2 are determined by the initial conditions. 
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2.2 N o n l i n e a r  R e c u r r e n c e  R e l a t i o n s  

Nonlinear recurrence relations are understandably more difficult than 
their linear counterparts,  and the techniques used to solve them are often 
less systematic, requiring conjectures and insight rather than routine tools. 
This section explores two types of nonlinear recurrence relations, those with 
maximum and minimum functions, and those with hidden or approximate 
linear recurrences. 

2.2 .1  R e l a t i o n s  w i t h  M a x i m u m  or M i n i m u m  F u n c t i o n s  

To solve a recurrence relation with max or min it is essential to know 
where the max or min occurs. This is not always obvious, since the max 
(or min) function may depend on earlier members of the sequence whose 
character is initially unknown. A typical solution strategy involves com- 
puting small values with the recurrence relation until it is possible to make 
a conjecture about the location of the max (or min) at each iteration. The 
conjecture is used to solve the recurrence and then the solution is used to 
prove inductively that  the conjecture is correct. 

This strategy is illustrated with the following example from the analysis 
of an  in situ permutat ion algorithm [Knuth 71]. Briefly described, the 
problem arises in a variation of the algorithm that searches both directions 
simultaneously to verify cycle leaders. To check a particular j ,  the algorithm 
first looks at p(j)  and p - l ( j ) ,  then at p2(j) and p-2(j) ,  etc., until either 
encountering an element smaller than j ,  in which case j is not a cycle 
leader, or until encountering j itself, in which case j is a cycle leader since 
the whole cycle has been scanned. 

We wish to compute the worst case cost, f (n) ,  of ruling out all the 
non-leaders in a cycle of size n. A recurrence arises from the observation 
that  the second smallest element in the cycle partitions the problem. For 
convenience we place the cycle leader (the smallest element) at the origin 
and assume that  the second smallest element is in the kth location. 

(leader) cl c2 c3 . . .  ck-1 (second smallest) Ck+l Ck+2... Cn-1. (2.46) 

Any searching among e l . . .  Ck--1 will not exceed the leader or the second 
smallest element, so the worst case for this segment is identical to the worst 
case for a cycle of size k. Similarly the worst for Ck+l. . .  cn-1 is f ( n  - k) 
and the cost of rejecting the second smallest is min(k, n - k). This gives: 

f ( n )  : rn~x(f(k)  + f ( n -  k ) +  min(k, n - k)). (2.47) 



22 R E C U R R E N C E  RELATIONS 

According to the strategy outlined above, our first step is to build up a 
table tha t  shows the values of f(n)  for small  n, together with a list of the 
values of k where the max imum is achieved: 

n J'(n) 

1 0 

2 1 

3 2 

4 4 

5 5 

6 7 

7 9 

8 12 

location of the max  (k) 

1,2 

1 ,2 ,3 ,4  

2 ,3 ,4  

3,4 

In some iterations the location of the max  has many  possibilities, but  it 
seems tha t  [n/2J is always among the candidates.  Wi th  the conjecture 
tha t  there is a max imum at [n/2J the recurrence reduces to: 

f ( 2 m )  = 2 f ( m )  + m 

f(2m + 1) - f (m)  + f ( m  + 1) + m. 
(2.48) 

The odd and even formulas are close enough to suggest differencing, 

A f ( 2 n )  = f(2n + 1) -- f (2n )  = f (n  + 1) -- f(n)  = Af (n)  
Af (2n  + 1) = f(2n + 2 ) -  f(2n + 1) 

= .f(n + 1 ) -  .f(n) + 1 = A.f(n) + 1. 
(2.49) 

In the differenced form the nature of A f ( n )  and .f(n) become clear: Af(n)  
simply counts the number of ones in the binary representat ion of n. If we 
let v(n) be the number of such 1-bits then 

f(n) = E v(k) = l n l o g n  + O(n). (2.50) 
0 < k < n  

(Digital sums like this play an impor tan t  role in recurrence relations tha t  
nearly split their sequences. The asympto t ic  s tudy of f(n) has a confused 
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history of independent discoveries [Stolarsky 77]. See [DeLange 75] for 
detailed asymptotics, and see [Knuth III; exercise 5.2.2-15] for a similar 
problem that  depends on the binary representation of its argument.) 

To complete the solution of equation (2.47) we must prove our conjecture 
about the location of the max, or equivalently we must show that  the two- 
parameter function 

g(m, n) = f (m .-t- n) - m - f (m) - f ( n ) ,  n > m (2.51) 

is always greater than or equal to zero. Breaking this into odd and even 
cases and using equation (2.48) yields 

g( 2m, 2n) = 2g( m ,  n ) 

g(2m + 1, 2n) = g (m, . )  + g(m + 1, n) (~.5~) 
g(2m, 2n 4- 1) = g (m,n)  + g (m,n  + 1) 

g(2 , .  + 1, 2n + 1) = 1 + g ( ~  + 1 , . )  + g(m, n + 1). 

Now we can use boundary conditions that are derived from the definition 
of f ,  

g(~, ~ ) = 0  

g(n - 1, n) = 0, (2.53) 

to prove inductively that  g(m, n) >_ O. 

In the example above, the conjecture about the location of the maximum 
is straightforward and intuitive: the worst case arises when the second 
element is furthest from the leader so that it nearly bisects the cycle. In 
other examples the conjecture is more complicated. Consider the recurrence 

( ) f ( n ) = 1 4 - m i n  k - ! f ( k _ l ) + ~ f ( n _ k )  f ( 1 ) = O  (2.54) 
k n n ~ 

which arises from a guessing game where one player tries to determine an 
integer between 1 and n. After each guess the player is told whether the 
guess is high, low, or right on. The recurrence for f ( n )  represents the 
expected number of guesses necessary by the best possible strateg3~. 

Once again intuition tells us that it is best to choose k in the middle 
of the interval, but strangely enough this is not always true. The proper 
conjecture for locating the minimum favors dividing the interval into odd 
subproblems. At n - 5, for example, we should guess 4 rather than 3. 

There are several general results that  can help to locate the minimum. 
Included below are the first few theorems from a paper by M. Fredman 



24 R E C U R R E N C E  R E L A T I O N S  

and D. Knu th  on recurrence relations with minimizat ion [Fredman 74] tha t  
apply to recurrences like 

f (n  + 1) ---- g(n + 1) + n~n(c~f(k) + ~ f ( n  - k)) 

with a and ~ positive. Equat ion (2.54) above, when multiplied by n, is a 
member  of this broad class. 

D e f i n i t i o n .  A real valued function g(n) is convex if A2g(n) > 0 for all n. 
This means that 

g(n + 2) - g(n + 1) >_ g(n + 1) - g(n),  n > 0. (2.56) 

L e m m a .  Let a(n) and b(n) be convex functions. Then the "minvolution" 
defined by 

c(n) -- min (a(k) + b ( n -  k)) (2.57) 
0 < k < n  

is also convex. Moreover if c(n) = a(k) + b ( n -  k) then 

c(n + 1) = min(a(k)  + b(n + 1 - k), a(k + 1) + b ( n -  k)). 

(In other  words, the location of the min imum does not shift drastically as 
n increases. The expression "minvolution," coined by M. F. Plass, conveys 
the similarity of formula (2.57) to the convolution of two sequences.) 

This  s trong lemma has a very simple proof. The process of construct ing 
c(n) can be viewed as a merging of the two sequences 

Aa(0) ,  A a ( 1 ) ,  A a ( 2 ) ,  . . .  

and 
Ab(0),  Ab(1) ,  Ab(2) ,  . . . .  (2.59) 

By hypothesis these two sequences are nondecreasing, so the merged se- 
quence 

Ac(0) ,  Ac(1) ,  Ac(2) ,  . . .  (2.60) 

is also nondecreasing, making c(n) convex. 

For any given n, the value of c(n) is the sum of the n smallest i tems in the 
two sequences. The next value, c(n + 1), will require one more i tem from 
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either the Aa  sequence or the Ab sequence, the smaller item determining  
whether or not the location of the minimum shifts from k to k + 1. 

T h e o r e m .  The function in equation (2.55) is convex provided that  g(n) 
is convex and the first iteration of the recurrence is convex: 

1 ( 2 ) -  1(1) _> 1(1) - f(0).  (2.61) 

This theorem follows inductively; we assume that ] ( 1 ) . . . . f ( n )  are con- 
vex, and apply the lemma to show that  f ( n  + 1) will continue the convexity. 

2.2.2  C o n t i n u e d  Frac t ions  and H i d d e n  Linear R e c u r r e n c e s  

When the recurrence resembles a continued fraction, then a simple trans- 
formation will reduce the problem to a linear recurrence relation. 

We consider, as an example, the problem of counting the number  of trees 
with n nodes and height less than or equal to h, denoted by Anh. For a 
given height h we can use the generating function 

Ah(z)  = E Anhz" (2.62) 

to establish a recurrence. A tree of height less than or equal to h + 1 has a 
root and any number  of trees of height h or less. 

Ah+l(z)  = z(1 + Ah(z) + Ah(z)  2 + Ah(z) 3 + " "  ) 

= Z/(1 -- Ah(z)).  
(2.63) 

The continued fraction flavor of this recurrence, 

z 
Ah+l = , ( 2 . 6 4 )  

z 
m 

1 - - A h - l ( z )  

suggests the t ransformat ion 

Ah(z) = 

z P h ( z )  
(2.65) 

which yields a linear recurrence relation: 

Ph+ (z) = z Po(z) = O, 1'1 (z) = 1. (2.66) 
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By standard techniques for quadratic linear relations we obtain 

1 ( ( 1 + ~ / 1  4 z )  h ( 1 - ~ / 1 - 4 z )  h )  
P h ( z )  = ~/i - -4z 2 -- 2 �9 (2.67) 

The remainder of the analysis of ordered trees, in which the coefficients of 
P h ( z )  are investigated further, does not bear directly on nonlinear recur- 
rences, so we refer the reader to [deBruijn 72] for complete details. 

It is worth noting that  in seeking a transformation we were lead to a 
ratio of polynomials, equation (2.65) ' by the continued fraction nature of 
the recurrence. In the example above, the regularity of recurrence allowed 
us to use only one family of polynomials, Ph (z ) .  The underlying continued 
fraction theory that suggests this solution and accommodates less regular 
continued fractions uses two families. In general, the "nth convergent," 

bl 
f n  = ao + , (2.68) 

b2 
a l +  

�9 bn  a2+' .  
a n  

is equal to 

f n  -- P n / q n  (2.69) 

where Pn and qn have linear recurrence relations: 

Pn = a n P n - 1  "t'- b n P n - 2  
qn = an qn-- 1 + bn q n -  2 

po --- ao p l  - a l a o  + bl (2.70) 
qo -- 1 q l - a l .  

This theory, found for example in Chapter  10 of Hardy and Wright [Hardy 
79], assures us that we could reduce a less regular recurrence like 

z 
I h ( z )  = 

2:2 
D 

1 - f h - l ( z )  

to a problem with two linear recurrence relations�9 

Besides continued fractions, there are many other types of nonlinear re- 
currence relations that  are only thinly disguised linear recurrences. A few 
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examples are summarized here: 

Original recurrence 

fn : fn - - l - -  fnfn--1 

fn = f3--1/fn--2 

f n - - f n - - l f n - - Z f n  - ' -Z--Zfn--1 

fn  -- 7 fn /2  T n  2 

Linear variation 

1 1 

In fn = 3 In fn -1  - In f n - 2  

1 - - f n - 1  

f2k 
gk = 7k~ 

The last flavor of recurrence occurs frequently in the analysis of divide and 
conquer algorithms. 

2.2.3 Doubly Exponent ia l  Sequences 

In the preceding section we explored nonlinear recurrences that  contained 
hidden linear relations. We turn  now to a slightly different situation, where 
the nonlinear recurrence contains a very close approximation to a linear 
recurrence relation. 

A surprisingly large number  of nonlinear recurrences fit the pat tern  

2 
Xn+l : Xn + gn, (2.72) 

where 9n is a slowly growing function of n, possibly depending on the 
earlier members of the sequence. As we follow the solution to (2.72) found 
in an article by Aho and Sloane [Aho 73], the exact requirements on gn will 
become clear. 

We begin by taking the logarithm of (2.72) and discovering a nearly linear 
formula, 

Yn+l = 2yn + O~n, (2.73) 

where x ,  and gn are replaced by 

Yn = In xn; (2.74) 

( g--~" ) (2.75) a n = I n  1 + x 2  " . 
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By using logarithms we have made our first assumption,  namely tha t  the 
xn are greater  than  zero. 

If we unroll the recurrence for Yn we obtain  

( ~o c~, a n - , )  
Y n = 2  n Y 0 + - ~ - + ~ - ~ + " ' +  2 ~ -  �9 (2.76) 

It is now convenient to extend the series in c~k to infinity: 

O 0  

Y. = 2"y0 + 
k = O  

O 0  

k - - n ,  

This extension is helpful only when the series converges rapidly, so we make 
a second assumption: The gn are such tha t  

I~.1 >_ I~.+~1 for n >_ n0. (2.79) 

Wi th  this second assumption Yn is well defined and the error ]rn I is bounded 
by the first term ]an I; we can exponentiate  and recover the original solution: 

X n  - -  e Y n - r "  - -  K 2 "  " e - r "  

where 

K = x0exp 2-k-lc~k . (2.81) 

Since the ak usually depend on the xk, equat ion (2.80) is not a legitimate 
closed form solution. Nevertheless, the solution does show that  there exists 
a constant  K, perhaps hard to compute,  tha t  characterizes the sequence 
xn. In some cases it is possible to determine the exact value of K.  

A curious aspect of equation (2.80) is the closeness of K 2" to the true 
solution; as we will see shortly, e - " -  usually makes a negligible contribution. 
To demonst ra te  this, we will introduce a third assumption: 

ignl< �88 a n d x n _ > l  f o r n > n 0 .  (2.82) 

We wish to explore the closeness of X,~ - K 2" to the exact solution xn. 
Since [rn[ <_ lanl, we have 

x~e -I~"l <_ X ,  <_ x~e I~"l. (2.83) 
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Expanding the right side of this equation (by taking care of the case where 
an < 0 with the identity (1 - u) -1 _ 1 + 2u for 0 ~ u < 1/2, using the 
third assumption) yields a new bound: 

21g.I  
X n  <_ xn  4- - - - - - .  (2.84) 

T, n 

Similarly, 

Ignl~ Ignl (2.85) X n  >_ x n e  - l a " l  >_ xn  1 -  x"~ ]" = xn - " - - - "  
X n  

Finally, the assumption Ign] < �88 permits us to claim tha t  

I~ .  - x . I  < ~ .  (~.86)  

So in cases where we know tha t  xn is an integer the solution is 

xn = nearest integer to K 2" , for n > no. (~.87) 

Here are several recurrence relations that  fit the general pa t te rn  given by 
equation (2.72): 

1) Golomb's Nonlinear Recurrences. 

Yn+x - Y o Y l  . . .  Yn + r, Yo = 1. 

This definition is equivalent to the finite-history recurrence 

(~.88)  

Y,+x  = ( Y ,  - r ) y ,  + r, y 0 - 1 ,  y z = r + l .  (2.89) 

And when the square is completed with the following subst i tut ion 

r 

~" = Y" - 5 (~ .9o)  

r r 2 
2 . . . .  (:~.9~) x,+x = x ,  4 2 4 

the recurrence becomes an obvious member of the family just  solved. Since 
the gn term is constant,  it is easy to verify that  all the assumptions are 
satisfied. 

In the special cases r -- 2 and r = 4, the constant k is known to be equal 
to vf2 and the golden ratio respectively. In other cases the constant can 
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be estimated by iterating the recurrence and solving for k. The doubly 
exponential growth of the sequence makes such estimates converge rapidly; 
but it also makes the estimates inexact for further terms in the sequence. 

2) Balanced Trees. 

The following recurrence, given in [Knuth III; Section 6.2.3], counts the 
number of balanced binary trees of height n. 

Yn+l  - Y2n + 2ynYn--X.  (2.92) 

When we make the transformation x n  - Yn + Yn-1 the recurrence appears 
in a more complex yet more tractable form, 

2 
Xn+l  = Xn -k- 2 y n - l Y n - 2 .  (2.93) 

Here the gn term is not constant, but grows slowly enough ( 2 Y n - i Y n - 2  << 
Yn < x n )  to meet the requirements on gn.  We can assert that there exists 
a k such that  

x,, = Lk2"J (2.94) 

and 
u , ,  = Lk:~"J - Lk2"-~J + . . .  • LkJ =e 1. (~.95) 

(The use of the floor function in place of the nearest integer is a consequence 
of gn being positive, making k 2" always slightly larger than the correct 
value.) 

We conclude with two recurrences mentioned in Aho and Sloane: 

Yn+a = y3 _ 3yn (2.96) 

Yn-t-1 - - Y n Y n - - 1  "~- 1. (~.97) 

Strictly speaking, these relations do not fit the pattern solved at the begin- 
ning of this section. However, the techniques developed earlier are equally 
applicable. After taking logarithms both recurrences become nearly linear. 
Equation (2.97), for example, has a Fibonacci-like solution: 

u. = [k0~"-'k~"J, (~.9s) 

where F n  = Fn - 1  -I- Fn  - 2 . 



Chapter 3 

Operator Methods 

The following analysis of hashing, based on unpublished notes by Michael 
Paterson, relies on two concepts: eigenoperators and what he calls "induc- 
tion from the other end." The cookie monster example below illustrates 
the value of finding an eigenoperator. "Induction at the other end" will 
appear  later when we apply the techniques to various hashing schemes. 

3.1 T h e  C o o k i e  M o n s t e r  

Consider a monster whose ability to catch cookies is proportional to its 
current size. When we throw a cookie and the monster has k cookies in its 
belly, with probability p k  the monster grows to size k + 1. (We assume that  
p k <  1.) 

Let gnk be the probability tha t  the monster is size k after n cookies have 
been thrown. We construct a generating function, 

= 

k 

that  represents the distribution after n cookies. Initially the monster has 
somehow eaten one cookie, tha t  is, go(x )  - x .  

Given g n ( x ) ,  an "operator" will provide a means of obtaining gn+l  (x ) .  
First  let's look at the impact of a cookie on an individual term. 

Before: 

X k 

After: 

p k  x k + 1 + (1 - pk )  z k 

or x k + p ( x - 1 ) k x  k 
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This change is captured by the operator  (I) - 1 + p (x - 1)xD, where D is 
the derivative. Applying (I) repeatedly gives gn (x )  = ~ngo(X) .  

Before proceeding further it is helpful to review some facts about  oper- 
ators. We will be using the following: 

D derivative 
U evaluate at x - 1 
Z evaluate at x - 0 

UD obtain the mean f ' ( 1 )  
U,~ shor thand  for UD n 
x n multiply by x n 

It will be important  to unders tand how operators  commute  with one 
another.  For example, 

D x n f ( x )  = n x n - l f ( x )  + x n D f ( x ) ,  

so we can move D past x n by the formula: 

D x  n = x n D  + n x n - 1 .  (3.3) 

This generalizes to arbi t rary  polynomials  r (x)"  

D r ( x )  = r ( x ) D  + r ' ( x ) .  (3.4) 

Another  useful fact about  operators  is the relation 

U n x  - Un -+- n U n - 1  (3.5) 

o r  

U n ( x -  1) - n U n - 1 .  (3.6) 
This can be shown by commut ing  x with each of the D operators  in Unx.  

Return ing  to the cookie monster,  we would like to obtain the mean size 
of the monster  after n cookies: 

ux g.(x) = Ux r go(x). (3.7) 

Here is where commuting is impor tant ,  since it would be nice to be able to 
move U1 past  (I). Applying U1 to (I) gives 

UD ,b - UD(1 + p ( x  - 1 ) x D )  

= U ( D  + p ( x  - 1)xD 2 + p ( 2 x  - 1)D) 

- ( 1  + p ) U D .  (3.8) 
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So UD is an eigenoperator  of (I), and by this self-replication we can compute  
the mean: 

V l C n g o ( x )  - (1 -}-p)'*Ulgo(x) - (1 ~-p)n. (3.9) 

The variance is obtained with/]2 ,  since Var(g) = g"(1) + g'(1) - (g'(1)) s 
and U2g,~(x) - g~(1). Unfortunately, Us does not have the nice eigen- 
operator  p roper ty  tha t  U1 possesses; we have 

U s e  : U ( D  2 + p ( x -  1)xD a + 2 p ( 2 x -  1)D 2 § 2pD) 

= UD 2 + 2pUD s + 2pUD 

- (1 + 2p)U2 + 2pU1. (3.1o) 

However, by a suitable linear combination with U1, we do obtain an eigen- 
operator: 

(Us + 2U1)(I) = (1 + 2p)(Us + 2U1). (3.11) 

In fact there is a whole family of eigenoperators given by the scheme 

VI(I) - (1 + p ) V~ V1 -- U~ 
Vs(I) - (1 + 2p)Vs Vs - Us + 2U1 
U3(I) = (1 + 3p)V3 V3 = U3 + 6Us + 6U1 
Vn(I) = (1 + np)Vn Vn = Unx '~-1. 

This can be shown with equations (3.6) and (3-3)" 

V nr  = Unx '~-1 (1 + p (x  - 1)x D) 

= V,~ + V n p ( x -  1 ) x n D  

= y .  + pnU,,_~ (Dx"  - nx "-~) 

= Y,, + p n ( V , , x -  nV, ,_~)x  "-~ 

= Vn + pnVn. (3.12) 

In principle we can therefore recover all the higher moments  of the distri- 
but ion using the Vi. The variance, for example, is computed with V2" 

y 2 r  = (1 + 2p)"y2x = 2(1 + 2p) ~ 

V 2 r  -- (Y2 - 2Yl)r  

= 2(I + 2p) n - 2(I + p)n 

Var(gn) - g~(1) + g~(1) - (g~(1)) 2 

= 2(1 + 2 p ) " - ( 1  + p ) ' * - ( i  + p)2n. (3.13) 
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3.2 C o a l e s c e d  H a s h i n g  

A moment ' s  reflection indicates tha t  the behavior  of the cookie monster  
is very closely related to certain kinds of hashing. When  keys collide, a long 
chain develops, and the likelihood of hi t t ing the chain increases. Suppose 
we resolve collisions by finding the first free spot at the left end of the table 
and by linking this spot on the end of the chain. As the algori thm proceeds 
we will have a distr ibution of monsters of various sizes. Let 

g n ( x )  = Z ( e x p e c t e d  number of chains of length k ) x  k.  (3.14) 
k 

Once again we would like to find an operator  tha t  describes the addition of 
a cookie, but  this t ime we think of keys instead of cookies. 

Because we are dealing with expected values, the general te rm will behave 
like a single cookie monster,  even though there may be several monsters 
involved. Here p - -  I / m ,  where m is the number  of slots in the hash 
table. So the probability of a chain of length k growing to k 4- 1 is p k ,  the 
probabil i ty of hitt ing the chain. However, the computa t ion  of the constant  
term in the generating function presents new difficulties. The expected 
number  of empty chains is just m - n, so the opera tor  must  be: 

= (I) 4- (fudge the constant  te rm to m - n). (3.15) 

Wi thout  fudging, (I) applied to the constant  t e rm of g n ( x )  is ( I ) ( m -  n) -- 
m - n. The  correct change should be: 

Before: 

m - n  

After: 

(m - n - 1) + (1 - n p )  x 

We can patch (I) using the evaluate-at-zero operator ,  Z: 

= (~ + p ( x  - 1)Z - p U 1 .  

Note tha t  Z applied to g n ( x )  gives m -  n and U1 gives n, so �9 performs 
properly on the constant  term: 

�9 ( m  - n )  - -  m - n + p ( x  - 1)(m - n )  - p n  

= m - n -  r a p +  (1 - n p ) x .  
(3.,7) 

(Recall tha t  m p  - 1.) Using Z and U1 for this fudge might seem at first 
like a difficult way of accomplishing a simple fix, but  it is impor tant  tha t  
the change be done entirely with linear operators.  
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Now gn (x) is given by 

g , (x )  = go(x) = m. (3.18) 

As before, we seek an eigenoperator of r the application of U1 to �9 gives 

U1 �9 = (1 + p)U1 + pZ.  (3.19) 

There is no systematic way to find eigenoperators, but the presence of Z 
suggests trying 

Z g, = (1 - p) Z - pU1. (3.20) 

We see now that  the following linear combination is an eigenoperator: 

(u ,  + z ) r  = (u,  + z ) .  (3 .21)  

The "mean" in this problem is not particularly interesting, since U1 ap- 
plied to gn (x) is just n, and the eigenoperator confirms this fact- 

(UI + Z)g,~(x) -- l'~m; (3.22) 

Zgn(x)  = m -  n. (3.23) 

The power of the eigenoperator lies instead in the computation of the ex- 
pected number of collisions on the (n + 1)st insertion. Let 

hn(x)  = Z ( p r o b a b i l i t y  of k collisions on the (n + 1)st insertion)x k. 
k 

The x k term in g,~(x) will contribute (x k + x  ~-1 + . - . + x ) p  to h,~(x), because 
each item in a k-chain is equally likely to be hit, yet they are at different 
distances from the end of the chain. 

We want to compute [/1 hn(x) based on gn(x).  Applying Ur+l to a poly- 
nomial, and taking liberties with the constant term, gives 

Ur+l(X k+l) -~ U r + l ( ~  ~+I -- 1) 

- -  U r + l ( Z -  1)(1 + z + . . .  + x ~) 

---- (r + 1)Ur(l+ x +-..-t- x ~) 

= (r + 1)Ur(x + x 2 + ' "  + xk). (3.25) 

(These liberties are justified because we are applying U to the polynomial 
argument xk+l; we are not commuting U with the operator x k+l as in 
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equation (3.3).) Using r - 1 relates g and h, 

Ulhn(x) = PU2xgn(x) (3.26) 

Since U2x = U2 + 2U1, and since U1 is easy to compute,  we now seek 
an eigenoperator of ~ that  contains U2. Here is an appropriate  family of 
eigenoperators: 

C2 �9 = (1 + 2p)C2 C2 = V2 - �89 (U1 - Z) 

C3~ = (1 + 3p)C3 C3 = V3 - w - 2Z) 

Cn~ = (1 + np)Cn Cn : V n  - ( n - l ) ,  ( V  1 _ ( T / , -  1)Z). II 

This enables us to find all the higher moments  of the distr ibution of 
collisions necessary to insert the (n + 1)st element. For instance, the mean 
number  of collisions is obtained with the C2 operator:  

Ulhn(x) = p (U2 + 2U])gn(x)  

=,. 2 2 

- 2 , /  l + - -  m 2 

g,,(=) 

m ) 
2 ~" n . ( 3 . 2 7 )  

The reader  might have noticed tha t  the last analysis takes no account 
of the t ime necessary to find the first free cell on the left end of the array. 
Suppose tha t  the hashing algorithm uses a pointer  to keep track of the 
previous free cell. After each collision the pointer  is moved rightward until 
a new free cell is discovered. The a lgor i thm is modeled by the following 
game. We start  with an empty array and a pointer  at zero. The game 
requires n "R-steps," after which we compute  the distance from the pointer  
to the next  free cell. When there are j unoccupied cells, an "R-step" 
occupies an empty cell with probabili ty pj or occupies the leftmost free cell 
with probabil i ty (1 - p j ) .  The second case corresponds to a collision, and 
the pointer  is set to the recently occupied cell. The  final score of the game, 
the distance between the pointer and the next  free cell, gives the cost of 
finding an empty cell for a future collision. 

Once again we use a generating function. Let G,nn (z) be 

~--~ (probabili ty that  the score is k in an m array  after n R-s teps)z  k. 
(3.28) 
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We seek an operator to construct G,nn from smaller problems, this time 
with a different style of induction. Suppose we have a sequence of R-steps: 

3 1 4 C 7 

The numbers indicate cells occupied, and C represents a collision where the 
leftmost free cell is occupied and the pointer adjusted. Every such sequence 
of steps has a certain probability of occurring, and leads to a certain score, 
as defined above. 

Rather than add a new element to the end of the sequence we place 
it at the beginning, hence the expression "induction at the other end." 
Specifically, we will add a new key and a new cell to the array. The key can 
fit anywhere in the old array, so we can describe it as the addition of k E 
(1 a 2m+1 C} at the beginning of the sequence, and a renumbering ~ ' " ,  2 , 
to make the sequence integer again. 

For example, consider the R-steps given above, and assume that  the array 
size is m - 7. When the C arrives cell 1 is occupied, so it lands in cell 2. 
At the end of the game the next free cell is 5, so the score is 3. Here are the 
possible changes, depending which new R-step we place at the beginning 
of the sequence: 

Probability: New First Element: Remaining Sequence: Score: 

p 1 4 2 5 C 8  3 
p 2 4 1 5 C 8  3 
p 3 4 1 5 C 8  4 
p 4 3 1 5 C 8  4 
p 5 3 1 4 C 8  4 
p 6 3 1 4 C 8  3 
p 7 3 1 4 C 8  3 
p 8 3 1 4 C 7  3 

1 - 8 p  C 4 2 5 C 8  3 

How will this affect the final score? The score is the length of the region 
between the pointer and the next free cell. If the new key lands in this region 
the score is increased by one, otherwise the score remains unchanged. Since 
the probability of hit t ing this region is proportional to the region size, the 
cookie monster rears his ugly head and with the familiar (I) operator he 
devours the rest of this analysis: 

G,~n(x) = ( I )G .~ - l , . - x (x )=  (I)"x. (3.29) 

([Knuth III; exercise 6.4-41] has a less elegant solution to this problem, and 
says, "Such a simple formula deserves a simpler proof!") 
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3.3 Open Addressing: Uniform Hashing 

Let us consider a slight variation on the previous game. Instead of an 
R-step we use a T-step that  fills an empty cell at random and leaves the 
pointer at the left end of the array. The final score is the distance from the 
left end of the array to the first free cell. 

Motivation for this new game comes from the slightly unrealistic assump- 
tion that  each key has a random permutat ion for a probe sequence. The 
key pursues its probe sequence until it finds an empty cell. This assump- 
tion, usually called uniform hashing, will be refined later when we discuss 
secondary clustering. 

We would like to determine the expected number of entries that  the 
(n + 1)st element must examine in its probe sequence. We are free to 
assume that  this element has 1, 2, 3 , . . .  for a probe sequence by rearranging 
the array if necessary so that  this is true. Then the (n + 1)st insertion 
requires finding the leftmost free cell, and-this is equal to the score of the 
T-step game described above. 

Using induction at the other end, we run into the cookie monster once 
again. This time he has occupied the cells at the beginning of the array. 
However, we must be careful about the probability p. The probability of 
landing in a given cell is 1/m, so the operator is 

1 
(bin = 1 + - - ( x -  1)xD. (3-30) 

m 

Remember that induction at the other end adds both a new key and a new 
array slot, so that the probability changes and we must parameterize the 
operator �9 with m. 

With  this parameterized operator, the generating function for monster 
size is given by 

Gmn (x )  -" Cm ~ m -  1 . . .  e r a - n +  1 x.  (3-3x) 

V1 and V2 are still eigenoperators; they give products that  telescope nicely. 
For example, the average number of probes used to insert the (n + 1)st 
element is 

( 1 ) (  1 ) ( 1 ) 
V1Gmn(x)= 1 +  1 - t - ~  . . .  1 +  

m - 1  m - n + 1  

m + l  
m - n + l  (3.32) 
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And since all the V~ telescope there is a systematic way of computing the 
mean and variance of the probes necessary to insert the (n + 1)st element. 

3.4 Open Addressing: Secondary Clustering 

In the secondary clustering model each key is mapped to a single hash 
value, then the hash value provides a random permutation for the probe 
sequence. Rather  than each key having its own random probe sequence, 
the keys share probe sequences with those keys mapping to the same hash 
value. The hash values and the probe sequences are still random, but the 
additional sharing makes collisions more likely. 

This time the game we play has an S-rule: If the leftmost cell is unoc- 
cupied use rule SO otherwise use S1. Rule SO occupies an empty cell at 
random. Rule S1 has a choice: With probability p it occupies the leftmost 
empty cell, and with probability q = 1 - p  it occupies any empty cell at 
random. 

The S-rule captures the somewhat subtle behavior of secondary cluster- 
ing. We assume without loss of generality that  each key hashing to the 
leftmost cell has probe sequence 1, 2, 3, . . . .  Then in rule S1 with proba- 
bility p we hash to the leftmost cell, reuse the same hash sequence 1, 2, 3, 
. . . ,  and occupy the leftmost empty cell. 

The score is the distance to the first free cell, and we have two score- 
generating functions for the two rules: Hmn(x) for SO and Gmn(x) for S1. 
Let 's look first at Gmn(x): 

Gmn(X) -- (px + q(~m) Gm-l,n-l(x). (3.33) 

The operator for G is derived as before by using "induction from the other 
end." With probability p the key lands at location one and increases the 
monster by one. With  probability q we play the old cookie monster game 
by adding a key at random. 

There is a fine distinction among probabilities in this operator: The 
probability p is fixed at 1/m before the induction step and remains fixed 
as m decreases. The operator (I)m, however, is parameterized with m, so 
the probability in this operator increases with smaller m. The distinction 
is precisely what we want, since the probability of a new key sharing the 
same probe sequence with a particular old key is fixed at 1/m throughout  
the process. 
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The quantity ~m = px + q~m in (3.33) does not have an eigenoperator, 
but it does have a "sliding" operator: 

(Ul - ( m  + 1) Uo) ~ m  - (1 + q ) ( U l  - mUo). 
m 

(3.34) 

The sliding operator Am - U1-  m Uo changes its parameter by one when it 
commutes with ~m, and this behavior is just as valuable as an eigenoperator 
when we want to compute UI" 

Am+lGmn(X)= ( 1 +  q)m (1 + q) 
m - - 1  

. . . ( 1 +  

U1Gmn(X)= (1+ q) ( ~ q ) 

. . . ( 1 +  

q ) Am-n+lX m - n + l  
(3.35) 

\ q 
) ( . -  m) + (m + 1) 

m - n + l  / 

(3.36) 

Now we can turn our attention to Hmn(x) and rule SO. Until the first 
cell is occupied this also behaves like a cookie monster. Once the first cell 
is hit, we switch to Gm,(x). Using induction at the other end, this gives 
the recurrence: 

x H x Hmn(x) = ( ~ m g m - l , n - l ( X ) -  - -  m- - l ,n - - l (X)  "~ - - G m - l , n - l ( X ) .  (3"37) 
m m 

The middle term corresponds to a mistaken use of H by the (I)m operator 
in the case of an occupied first cell. 

Since the game begins in SO, Hm,  is the desired generating function for 
the whole game, and we would like to find its mean, U1Hmn(x)" 

( 1) 
U1Hmn(X) = 1 + U1Hm- l , n -1 -  Hm-l,n-1 + - - G m - - l , n - - 1  

m m 

= UxHm-t,n-1 + UXGm-l,n-1. (3.38) 
m 

A similar recurrence for Gmn can be deduced from equation (3.34)" 

u, (1 + i) Ula , ,_ , , , _ ,  + p. 
m 

(3.39) 
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The situation calls for a new operator trick. Note that a linear combination 
of H and G replicates itself: 

( ) ( 1 ) p 
Ux Hmn - 1Gmn = U1 n m - l , n - 1  - - G m - l , n - 1  (3 .40 )  q q --q" 

p 
Furthermore,  the term ~ is independent of m, so we have 

( ) (  1 ) r i p  
U1 Hmn - -1 Gin,,, = U1 Hm-n,o . . . .  Gm-n,O �9 (3-4") q q q 

Given the boundary conditions Hm,o - Gm,o - x and the previously com- 
puted U1Gmn, we can determine U1Hmn: 

1Gm-n,O + 1Gmn) np UxHm,,, = U~ Hm-,,,,o- a q q 

1( - ( 
= 1 + -  m - n p + ( n - m )  H 1+-~ q k=m-n+l 

. (3-42)  

(It is interesting to compare the solution above with the brute-force ap- 
proach to hashing found in [Knuth III; exercise 6.4-44].) 

The last operator trick bears a strong resemblance to the earlier use 
of eigenoperators and sliding operators. In all of these cases we moved 
through the recurrence by a self-replicating process. The power of operator 
methods lies in their ability to hide unimportant  details so that  this kind 
of self-replication becomes apparent; therefore quantities like means and 
variances become relatively easy to compute. 



Chapter 4 

Asymptotic Analysis 

4.1 Bas i c  C o n c e p t s  

There is no guarantee that  the study of algorithms will produce sums 
and recurrences with straightforward closed form solutions. In fact much 
of the adventure of analysis of algorithms lies in the variety of mathematics 
to which researchers are drawn (at times kicking and screaming) in their 
a t tempts  to understand algorithms. Frequently the researchers will turn to 
asymptotic analysis. 

Asymptotic analysis a t tempts  to find a solution that  closely approximates 
the exact solution. Often the relative error of this approximation becomes 
small for large values of the parameters  involved. We will a t t empt  to dis- 
cover as thorough an asymptotic approximation as possible. For example, 
instead of knowing that  an algorithm runs in O(n 2) t ime it will be far more 
satisfying to know that  the running time is 3n 2 + 7n + O(1). 

Giving attention to asymptotic detail has several rewards. Frequently 
the approximate solution converges so rapidly that  the researcher can test 
a few small cases and have immediate confirmation of the correctness of a 
solution. It is important in practice to know more than the leading term, 
since 1 .8Inn + 20 will be smaller than 2 I n n  + 10 only when n > e 5~ 
Moreover, the pursuit of additional asymptotic terms usually leads to more 
general and powerful mathematical  techniques. 

The purpose of this chapter is to introduce the basic tools of asymp- 
totics: O-notation, bootstrapping, and dissecting. The first few sections 
will describe these ideas briefly, and the last section includes the derivation 
of an asymptotic result that  is difficult as a whole, but basic at each step. 
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4.1.1 N o t a t i o n  

Definition of O or -<. 

We say that  f ( n )  = O(g(n))  (or f ( n )  ~ g(n)) as n --, c~ if there exist 
integers g and g such that I f (n) l  < g Ig(n)l for all n _> g .  

Definition of f~ or ~-. 

In a similar vein, .f(n) = f l(g(n))  (or f ( n )  ~- g(n)) as n ~ c~ if there 
exist integers N and g such that I f ( n ) [ -  g Ig(n)l for all n _> N. 

When both of these definitions apply, the situation is denoted by f ( n )  = 
O(g(n)) or f ( n )  • g(n) [Knuth 765]. 

There are similar definitions for little o notation. For example, f ( n )  = 
o(g(n)) or f ( n )  -< g(n) whenever limn-~cr f ( n ) / g ( n )  = 0. There is also a 
notation for equivalence, f ( n )  ,~ g(n) if limn--,oo f ( n ) / g ( n )  = 1. However, 
in general we will avoid these notations because they do not capture infor- 
mation about the rate of convergence of the limits involved. We prefer to 
use a strong assertion like O(n -1/2) instead of a weak one like o(1). 

4.1.2 B o o t s t r a p p i n g  

Bootstrapping is helpful in situations where there is an  implicit equation 
for a given function of interest. By repeatedly feeding asymptotic informa- 
tion about the function back into the equation the approximation is steadily 
improved. Here is an example from [deBruijn 70]: 

f ( t ) e  f(t) -- t, t --, cx). (4.x) 

The formula can be rewritten as 

f ( t )  = In t - In f ( t ) .  (4.2) 

We "prime the pump" by observing that for t > e we have f ( t )  > 1. Using 
this in equation (4.2) gives 

f (t) = O(lnt).  (4-3) 

Inserting the approximation again into (4.2) yields a better result: 

f ( t )  = In t + O(ln In t). (4-4) 
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Once again we feed this result back into equation (4.2) to improve the result 
further, 

( ( l n l n t )  
f ( t ) = l n t - l n l n t - l n  1 + 0  lnt  

( l n l n t )  
= In t - In In t + 0 in t �9 (4.5) 

In this manner the approximation can be bootstrapped to any degree of 
accuracy. 

4.1 .3  D i s s e c t i n g  

Dissecting is applied chiefly to sums and integrals. In a typical situation a 
sum is given over a large range, and the summand has several components. 
No single component of the summand is small throughout the range, but 
if the range is dissected into pieces then each piece becomes small (for a 
variety of different reasons) and in this fashion the whole sum is shown to 
be small. 

The dissection technique can be illustrated by the sum 

1 
f(n) --- Z d (n/d) d" (4.6) 

3<d<n/2 

We break the sum into three intervals. When 3 < d < 8 the sum is less 
than 

1 
Z 3(n/813 = OCn-31" (4.7) 

3 < d < 8  

Note that the d's in the original formula are replaced by 3 or 8 in equa- 
tion (4.7), depending on their worst possible effect on the sum. Then the 
constant number of terms in the sum allows us to claim a O(n -3) bound. 

On the second interval, 8 < d < v ~ ,  we do a similar replacement of d by 
its extreme values so that the sum is less than 

1 
Z 8 ( n / v ~ ) 8  = O(n-4vf~) .  (4.8) 

8<d<v~ 

Here the O(n-4v/ 'n) bound is caused by O(v/n)  terms of size at most 
O(n-4) .  
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The sum over the remaining interval, Vrn < d < n/2,  is extremely small, 
since it is less than 

1 
Z vf~ 2 ~f~ ~ �9 (4-9) 

v/'~<d<n/2 

Combining the three intervals, we conclude that the whole sum is O(n-3) .  

It is clear from the example above that the difficulty of dissecting lies in 
the choice of intervals. The division points 8 and ~ are not sacred: 10 and 
~fn, for example, work equally well. Nevertheless the choice of 8 and 
is somewhat of an art requiring insight into the behavior of the summand 
throughout the entire interval. 

4 .1 .4  L i m i t s  o f  L i m i t s  

Occasionally an asymptotic argument will involve two or more limiting 
processes. The ordering of the limits is often critical, and it is useful to 
know when the exchange of limits is permissible. In simple situations like 

o o  Oo 

n - - O  m - - O  

the absolute convergence of the am,., allows the series to be rearranged at 
will. We could, for example, sum on n before m. 

Later in this chapter we need to change limits in more delicate circum- 
stances. In particular, we want to invert the following theorem: 

A b e l i a n  T h e o r e m .  If  

then 

n 

lim Z a k = A 
n-- - tOO 

k=O 

n 

lim lim Z akzk -- A. 
Z--*  1 - -  n---* ( ~  

k--0 

(In this limit and hereafter we assume that z approaches unity from below.) 

The converse statement is not always true" 
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False Conjecture. If 

then  

n 

lim lim Z ak z k --'- A 
Z " ' *  1 - -  n---~ C~:) 

k = 0  

n 

lim Z a k = A. 
n-- -#OO 

k- -0  

N. G. de Bruijn gives the following counterexample.  Let 

1 - z = 1 - 2z + 2z 2 - 2z 3 + . - .  (4.11) 
f ( z )  -= 1 4" z 

and let ak be the coefficients of the power series expansion for f ( z ) .  The 
series converges absolutely within a circle of radius one around the origin, 
and its l imit  at one is zero: 

lim f ( z )  -- O. 
z---,1- 

But  the partial sums  of ak  will never converge to zero: 

ao 4-- al  4--- .  + an = (--1) n. 

( 4 . 1 2 )  

(4-13) 

Tauber  supplied an additional requirement  to invert Abel's theorem. He 
s t ipulated tha t  ak must be o(k  -1 ) .  Hardy  and Litt lewood subsequently 
weakened this condition to ak > - C  k -1  for some C > 0, a l though the 
theorem is still labeled Tauberian because of the general flavor of the result. 
Tauber ian  theorems supply the conditions necessary to invert Abelian theo- 
rems. 

Tauberian Theorem. If  
n 

lim lim Z a k z  k= .4  
z--* 1-- n---,oo 

k = 0  

and if ak > - C k  - x  /'or s o m e  C > 0, t h e n  

n 

lira Z ak = A. 
k = 0  

For a collection of deeper Tauberian theorems see [Hardy 49; page 154]. 
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4 . 1 . 5  S u m m a r y  o f  U s e f u l  A s y m p t o t i c  E x p a n s i o n s  

In the formulas below, n tends to infinity and e tends to zero. 

1 1 
H.n = In n + ? -~ t- O(n -4) (4.14) 

2n 12n 2 

( n ) n (  1 1 ) 

t[1'1% e2 e3 e4 )m-1 (4.1 
In(1 + e) = e - ~ -t 3 4 I-. . .  + ( - 1  --m + O(e'n+x) 6) 

n 
B,~+l (n)  - B,n+l 

Z k m - -  m + l  
k = l  

integer m, n > 0 

rim+ 1 nm m n  m -  1 
m + 1 ~- ~ + 12 + o(nm-2) ,  m > 1 

(4.17) 

(B i (x )  and Bi are the Bernoulli polynomials and numbers, see page 59.) 

" 1 - O(1), 
E k lnk  l n l n k  (ln (') k) i+~ 

k - - n o  " " " 

> 0 

The last equation represents the turning point for sums. When e = 0 the 
sums will diverge. For example, the sums 

1 1 and ~ 1 
~ k '  ~ k l n k '  k l n k l n l n k  

are all unbounded. 

There are several ways to obtain crude estimates. One involves the re- 
placement of sums by their integral counterparts. In Section 4.2.2 on Euler's 
summation formula we will see when this substitution is valid, and how to 
refine the results of the approximation. Another estimate applies to ran- 
dom variables with mean ~u and variance a 2. Chebyshev's inequality tells 
us that a2 

Prob ( I X -  #! >- t) < ~T" (4.19) 

In Section 4.3.3 we will develop detailed formulas for the case where X is 
a sum of independent random variables. 
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4.1.6 An Example  from Factorizat ion Theory 

We turn now to the problem of computing the probability that  a polyno- 
mial of degree n has irreducible factors of distinct degrees modulo a large 
prime p, a situation that is advantageous for certain factoring algorithms 
[Knuth II; pages 429-431]. The probability that  an n th  degree polynomial 
is itself irreducible mod p is 

1 -+O(p-"/2). (4.20) 
n 

(This result is proved, for example, in [Knuth II; exercise 4.6.2-4].) The 
modulus, p, is unimportant,  so we let p go to infinity and use probability 
1 I n  as a foundation for the more difficult problem of factoring into distinct- 
degree polynomials. 

The solution relies on a partition-style generating function. The coeffi- 
cient of z n in 

h ( z ) -  H 1 q- (4.21) 
k>l 

is the desired solution, that is, the probability of a distinct-degree factor- 
ization. To see this, note that if h,~ is the coefficient of z n, hn will be a sum 
of terms like 

zkl zk2 zkm 
kl k2 km (4"22) 

where each of the k's is distinct. Each term like (4.22) corresponds to a par- 
tition of n into distinct integers kl ,  k2, .  �9  kin. Suppose we are to construct 
a polynomial of size n by multiplying polynomials of sizes kl ,  k 2 , . . . ,  kin. 
(We assume that these small polynomials and the large polynomial are all 
monic. Other leading coefficients do not affect the results that  follow.) 
There are pk~ polynomials of degree kl. Of these pk~/k 1 are irreducible, by 
our assumption. Treating each polynomial this way gives a total of 

pkl pk2 pkm pn 
-- (4.23) 

kl k2 km kl  k2 . . . km 

polynomials whose irreducible factors have the appropriate sizes. Since 
there are a total of pn monic polynomial of size n, this means that  the 
coefficient 

1 
kl  k2 . . . km (4"24) 

in equation (4.22) is the probability of obtaining a factorization into irre- 
ducible parts  of distinct sizes kl, k 2 , . . . ,  kin. 
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The whole of h,, consists of all possible partitions, each contr ibut ing a 
term of the form (4.22), and since all of the events are disjoint these proba- 
bilities are summed.  Thus  the generating function properly determines h,,,, 
the limiting probabil i ty tha t  a polynomial of degree n factors into irre- 
ducible par ts  of dist inct  sizes modulo a large prime. 

Equat ion (4.21) does not give us a closed form for hn, and there does 
not seem to be one, so instead we seek an asymptotic formula as n ---} co. 
Taking logarithms and expanding each logarithm yields 

)) h(z)  = exp k 2k 2 + 3k 3 . . . .  " (4"25) 

For z < 1, the series converges absolutely, permit t ing us to rearrange it 
as necessary. Our  s t ra tegy  will be to split the larger terms off from the 
beginning of the series, and sum them separately. First  we have 

where 

(k~> ~k ( ~k ~ )) h(z)  -- e x p  --~ + ~ - - ~ - ~  + 3k 3 . . . .  

1 
1 -  z g(z) '  

)) g(z) = exp - ~-k-~ + 3k a . . . .  . 

In this form, h ,  is the par t ia l  sum of the 9j coefficients in g(z)" 

h , =  ~ g/. 
O<j<_n 

We will see later tha t  the Tauber ian  limit theorem applies, hence 

lim h n =  lim g(z) 
n - - ~ O O  Z---* 1 - -  

(4.26) 

(4.~7) 

(4.~8) 

, 1 
= exp -~ -~  + 3k 3 .... )) 

- ox. (E  (,n (1+ ~) - ~)) 

= exp ( l i m  ( ln(n + 1 ) -  H . ) )  

__ e--'Y. (4.29) 
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Euler's constant, "7, appears mysteriously from the asymptotics for Hn, the 
harmonic numbers: 

1 
Hn = Inn + ~ + ~n + O(n-2)" (4.30) 

Unfortunately part of the mystery lies in how fast hn converges to this 
strange constant e -7. For error bounds, the Tauberian limit theorem is 
not particularly helpful. We must split another term off of the series in 
equation (4.25), and continue with a more detailed analysis: 

g(z) = p(z 2) q(z) (4.31) 

where 

q(z) = exp 3k 3 
z4k ))  (4.32 ) 

First we attack p(z) by deriving a recurrence relation for its coefficients: 

( 1 k~>l zk-1 ) p'(z) = p ( z )  --~ "k (4-33) 

Pk (4.34) - 2 . p . =  
O_<k<n 

With this implicit formula we can use bootstrapping to derive a good es- 
t imate for Pn. To "prime the pump," it is easy to verify inductively that  
pn = O(1). Using this crude estimate in equation (4-34), 

0(1) (4.35) --2npn = ~Z...,, 
n _ k  ~ 

O<k<n 

and replacing the right side with the asymptotics for the harmonic numbers, 
O(log n), gives an improved estimate of Pn: 

pn = O ( l~ n �9 (4.36) 

A further iteration of bootstrapping yields 

Pn = O log n . ( 4 . 3 7 )  
n 
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At this point our estimate of Pn is good enough to begin dissecting the 
sum in equation (4.34)- We wish to introduce more than a O-term in the 
asymptotics for Pn, so we remove the dominant part of the series in a form 
that is easy to sum: 

--2npn = ( 1  1 )  
E E , , ,  - - o < k < n  n n k n O(_k<n 

1 1 1 / k ~ 
n ~:>_o n n ~ ) n - k  k)_n O~_k<n 

1 1 k>~nO ( l o g k )  
- -  p(X) -  n k 

1 (,log ,2) +-,~ ~ o ;~:~-) 
O < k < n  

1 -~-2/12 ( ( l~  n) 3 ) 
= - e  + 0 (4.38) 

n n 2 " 

In the last step we computed p(1) by summing the infinite series 

1. 71.2 

Z k'~ ---- r -- T "  (4.30) 
k > l  

We estimated the sum ~ a > n  O( ~ ~ 2  k J by considering its integral counter- 
part ( )2 ( ) 

L 
oo log x (log n)2 

x dx = 0 . (4.40) 
n 

And we estimated the remaining sum by computing with partial fractions: 

O ( (log k) 2 1 

1 -o((l~ - k ) )  

Returning to equation (4.38), we now have a refined estimate of Pn, 

-,,-'/12 ( ) - e  log n 
2n 2 + 0 n (4.42) 
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This expression can be bootstrapped through another iteration to obtain 
the slightly better approximation 

( - e  /x2 logn~  
Pn= 2n2 + 0  ~ ) .  (4.43/ 

Now that  p(z) is well understood, we turn our attention to the q(z) 
portion remaining in equation (4.311. This time we split away the terms 
with k - 1, so that 

q(z) = s (z) r (z)  (4.44) 

where 
z z 4 z 5 ) 

s ( z ) = e x p  3 4 b - g - . . .  

r ( z ) = e x p  3k 3 4k 4 t - . . .  . 

The expression for s(z) can be reworked, 

(4.45) 

( z2) 
s(z) = exp l n ( l + z ) - z + - ~ -  

= (1 + z)e -z+z2/2. (4.46) 

From this we conclude that  the coefficients, Sn, are exponentially small. 

In r(z), we collect terms with similar powers: 

(k~> 3 4-1 ) r(z) = exp zk ~ d (k/d) d " 
_ 3 < d < k / 2  

d divides k 

(4-47) 

The inside sum is O(k-3).  (This follows from the example used in Section 
4.1.3 to illustrate dissecting sums.) Differentiating the formula for r(z) and 
equating coefficients gives a recurrence relation for rn" 

r'(z) = r(z) y ~  k z k - l o ( k  -3) (4.48) 
k>3 

o<k<n n -  k " (4.49) 

This recurrence can be boots trapped repeatedly to give the successive 
bounds rn = 0(1),  rn = O(n-1) ,  rn = O(n-2) ,  and rn = O(n-3) .  
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We have shat tered our original problem into numerous fragments, but  
we have been able to deal effectively with each piece. Now we can begin to 
assemble the final result. 

The pieces r(z) and s(z) combine to form q(z) with coefficients 

qn -- Z r k S n - k .  (4.50) 
O < k < n  

This is a convolution of two series that  are O(n-3) ,  so the result is also 
O(n-3) .  (To see this, divide the range into two parts, 0 ~_ k <_ n/2 and 0 _~ 
n -  k <_ n/2. W h a t  requirements on f(n) suffice to make the convolution 
of two series tha t  are O(f(n)) also O(f(n))?) 

Next q(z) and p(z) combine to form g(z)" 

g(z) -" p(z 2) q(z) (4.51) 

g n -  ~ Pkql. (4.52) 

Then g,~ is summed to obtain hn" 
2k+l=n 

h n = Z g J - -  Z Pkq,. (4-53) 
j~_n 2k§ 

We already know that  the series on the right side of equation (4.53), when 
extended to infinity, converges to e -v,  so we focus our at tention on the tail: 

hn - e -'~ - ~ Pkqi 
2kWl>n 

_ n-l<2k~_n 

Using our earlier result for Pk, we can estimate the two internal sums. First  

_ _  (lo  o) 
. ( 4 . 5 5 /  

Here we have used p(1) instead of e -~2/12. This will prove useful when 
p(1) and q(1) combine to give e -~. In the last step we applied Euler 's  
summat ion formula to both  sums. 
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The other sum in equation (4-54) can be bounded by splitting it into two 
ranges, 

Z ql Z Pk - Z ql Z Pk + Z ql Z 
I>_0 n-1<2k~_n 0 ~ l ( n / 2  n-1(2k~_n l~_n/2 n-1~_2k~_n 

- -0(  ~ ql'l'[Pn/al+ Z ql ' lP(1) l )  
0<z<n/2 t>n/2 

Pk 

- O(n-2) �9 (4.56) 

Now that we have bounded all parts of equation (4.54), we can finally 
compute hn" 

hn =e-'Y+P(1)q(1)n + O (  l~ 2 

= e - ~ + ~ n  + O  n2 . (4.57) 

Similar but simpler methods show that gn = O(n-1), so that our earlier 
use of the Tauberian theorem was indeed justified. 
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4.2 Stieltjes Integration and Asymptotics 

Integrals are useful tools in asymptotics since they can be used to ap- 
proximate discrete sums, and it is helpful to unders tand how an integral 
interacts with O-notat ion.  For this reason we shall s tudy the Stieltjes inte- 
gral. The following definition and its immediate consequences are developed 
in [Apostol 57]" 

Definition. 

1) Let f a n d  g be real-valued functions on In; b]. 

2) Let P be a par t i t ion of [a, b] into a = x0 < xl < . . .  < xn = b. 

3) Define a sum, 

S(P) - E f(tk) (g(xk+l) - g(xk)), tk ~. [xk,xk+l] (4.58) 
O(_k<n 

4) Then A is the value of the Stieltjes integral f :  f(t)dg(t) if and only 
if for all e > 0 there exists a P~ such that  all refinements P of P~ lead to 
sums near A, tha t  is, IS (P) -  A I < e. 
Consequences. 

1) The Stieltjes integral has at most one value. 

2) The Stieltjes integral is linear in f and g. 

3) Adjacent intervals can be combined, f :  + fb -- fa c" 

4) ( integrat ion by parts .)  If f :  f(t)dg(t) exists then f :  g(t)dr(t) exists 
and the sum of these two integrals is I(t)g(t)lb~. 

5) (Change of variables by a continuous nondecreasing function h.) 
~a b _ [ . (b )  

f(h(t)) dg(h(t)) Jh(a) f(t)dg(t). (4-59) 

6) If f :  f(t)rig(t) exists and g'(t) is continuous on [a, b], then 

I(t) dg(t) = I(t)g'(t) dr. (4.6o) 

7) If a and b are integers and f is continuous from the right at integer 
points then 

f bf(t ) dg([ t ] )  = ~ f(k) ~g(k) ,  Ag(k) g(k + 1) - g(k). (4.6~) 
a<k<b 
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7') If a and b are integers and f is continuous from the left at integer 
points, then 

b 

f f(t)dg([tJ) = ~ f(k) Vg(k), 
a<k<_b 

Vg(k) = g(k)-  g(k-  1). (4.62) 

8) If a and b are integers and g is continuous from the left at integer 
points, then 

fa b / ( [ t ] )  dg(t) = ~ f(k) Ag(k). (4.63) 
a<_k<b 

9) (Derivative of the integral.) 

/b /, /b f (t) d g(u) dh(u) = f (t) g(t) dh(t). (4.64) 

10) If f :  f(t)dg(t) exists then f ](t)dg(t) exists for all subintervals of 
[a,b]. 

11) f :  f(t) dg(t) exists if f is continuous and g is of bounded variation. 

By bounded variation we mean that  fb ]dg(t)] exists. Intuitively this im- 
plies that  the variation, ~ ]g(xk+x) - g(xk)l, gets small as the parti t ion P 
gets small. Continuity is not enough, since f ( t )  = g(t) = vficos(1/t)  has 
no Stieltjes integral in intervals that  include 0. 

12) (Summation by parts.) Combining consequences 4, 7, and 7', we 
obtain a very useful formula when a and b are integers: 

Z f(k) Ag(k)-  f(k)g(k)]ba- Z g(k) Vf(k). (4.65) 
a<k<b a<k<b 

m m 
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4.2.1 O-notat ion and Integrals 

The basic properties of Stieltjes integration allow us to derive two theo- 
rems stipulating when O can be removed from an integral. 

Theorem 1. 

O(f( t ) )  dg(t) = 0 f(t) dg(t) (4.66) 

ff g is monotone increasing, f is positive, and both integrals exist. 

Proof .  Recall that  a(t) = O (f(t))  means that there is a constant M such 
that [a(t)[ < Mr(t) .  Since f(t)  and dg(t) are nonnegative by hypothesis, 

we can bound the integral by f :  Mr(t)dg(t) and move M outside to derive 
the theorem. 

T h e o r e m  2. 

f(t) dO(g(t)) = O(f(alg(a)) +O(f(blg(b)) +0  f(t)  dg(t) (4.67) 

when f and g are monotone increasing positive functions and the integrals 
exist. 

Proof .  Let b(t) be the function that is O(g(t)). We can integrate by parts 
and obtain 

f( t)  db(t) = f(t)b(t)[ba -- b(t) df(t) .  

Theorem 1 applies to the last integral, hence we have 

~ f(t)dO(g(t))  = O(f(a)g(a))+O(f(b)g(b))+O g(t) dr(t) . (4.68) 

Integration by parts is used again to exchange f and g, completing the 
proof of Theorem 2. 



58 ASYMPTOTIC ANALYSIS 

4.2 .2  Eule r ' s  S u m m a t i o n  Fo rmu la  

Stieltjes integration provides a theoretical framework for the approxima- 
tion of sums by integrals. Suppose we wish to approximate the sum of f(k). 
We can begin with consequence number 7, 

j~a b 
Z f ( k ) -  f(t)d[t]. (4.69) 

a<_k<b 

Using the linearity property, the r ight-hand side can be expanded to 

/b /b /b f(t) dt - f(t) d (t - It] + �89 + f(t) d (+�89 (4.70) 

The first integral is a rough approximation to the sum; the second integral 
will allow us to refine the approximation; and the third integral is zero. 
A new term of Euler's summation formula appears when we integrate the 
second term by parts: 

Z f (k )=  f(t) d t -  f(t) t -  It] + ~ + t -  It] + dr(t) 
a {z 

fab l l b ~ b  ( 1 )  = f ( t ) d t -  7f(t  ) + t -  It] + 7 df(t). (4.7x) 
{l 

On the interval In, n + 1] the last integral can be rewritten to read 

jfnn+l ( 1 )  L n+1 ( ( t - n ) 2 - ( t - n ) + l / 6 )  
t - n - -~ dr(t) = f ' ( t )  d 5 " 

And we can iterate this process, integrating by parts, and exchanging the 
rSles of f and g in the new integral f g dr. 

There are several requirements necessary for such an iteration to work 
properly, and if we explore these requirements the mystery of the constants 
1/2 and 1/6 will be revealed. First of all, we assume that f~(t) exists. In 
fact each iteration will require a higher derivative of f(t). The second re- 
quirement enters when we "integrate" the factor ( t -  n -  1/2) and obtain 
( ( t -  n) 2 - ( t - n )  + 1/6)/2.  This change is made on each interval [n, n + 1], 
and from these segments the whole range is assembled. It is fortunate that  
((t - n) 2 - (t - n) + 1 / 6 ) / 2  has the same value at n and n + 1, so that  the 

assembled integral f :  f(t)dg(t) has a continuous function in the position 
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of g(t). Any discontinuities in g would make significant and unwanted con- 
tributions to the Stieltjes integral. The constant '1/2' in ( t -  n -  1/2) is 
responsible for the continuity, and the constant '1/6' will guarantee a simi- 
lar continuity when we integrate the polynomial again in the next iteration. 
We have a family of polynomials, Bn ( t -  [tJ ), with the continuity condition 
Bn(O) = Bn(1) holding at the endpoints for n > 1, satisfying the deriva- 
tive relation B~(x)  = n B n - l ( x ) .  These two requirements are sufficient to 
determine the Bernoulli polynomials: 

BI(X) - x -  1/2 

B2(x) = x 2 - x + 1/6 

B a ( x )  = x 3 -- (3/2)x 2 + (1/2)x 

k 

(4-73) 

The constants Bk in the sum are the Bernoulli numbers: 

B 0 = l ,  B 1 = - 1 / 2 ,  B 2 = 1 / 6 ,  / 33=0 ,  / 3 4 = - 1 / 3 0  (4-74) 

And these coefficients appear in the final summation formula: 

I I b /b ib B~, b B2. f~ .  1, E f (k )  = f ( t )  d t +  B l f ( t )  + - ~ . f  (t) + . . .  + .i2m) ! (t) 
a < k < b  a a a 

~ b B2m+x (t - [tJ) f(2.~+,)(t ) at. 
+ (2m + 1)! (4.75) 

(Strictly speaking, the sum implicitly represented by dots here has alter- 
nating signs, 

I b 2-i-. (t) - 5 i - .  (t) + ~  (t) 
Q 

b 
b B 2 m  f (2~n_  1) ( t )  ; 

. . . .  + (2m)' 
r " {2 

but these signs are immaterial because the odd-numbered coefficients B3, 
Bs, BT, . . .  are all zero. See [GKP; Section 6.5] for further discussion of 
Bernoulli numbers.) 
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4.2 .3  A n  E x a m p l e  f rom N u m b e r  T h e o r y  

Suppose we have an integer n chosen at random from the interval [1,x]. 
The average number of distinct prime factors of n is given by the formula 

1 Z Z 1 - - l p < ~ ~ L P J  (4.76) 
x x n<x p\n 

(Hereafter p will denote a prime. The notation p \n  means "p divides n.") 
Ignoring the slight aberration caused by the floor function, the quantity of 
interest in the formula above is the sum of the reciprocals of primes < x. 
We turn now to this restricted problem, where we will make several uses of 
Stieltjes integration. Initially, we can express the sum as an integral: 

1 ]lXi Z p = .5 -t dTr(t), I t ( t ) -  Z 1. (4.77) 
p<x p<t 

Here 7r(t) is a step function that changes only at the primes. The function 
L(x) given by 

L ( x ) -  jr1 x dt 
.5 In t (4.78) 

is known to give a close approximation to lr(x)- 

~r(x) = L(x) + 0 (x e - ~ ~ )  . (4.79) 

(This strong form of the prime number theorem is due to de la Vallde 
Poussin in the 19th century; cf. [Knuth 76a].) By using L(x) for ~r(x) and 
applying Theorem 2 to remove O from the integral, we obtain an asymptotic 
estimate: 

p<x P = .5 t i n t  ~- .5 -~ dO t e -  

= ln lnx  + O(1). (4.80) 

Although we have no analog of Euler's summation formula for sums over 
primes, there is a roundabout way of improving this estimate. Using rea- 
soning similar to that used above we can compute further sums: 

Cm(x) = Z (lnp)m = (lnx)m + O(1), m > 1. (4.81) 
p m 

p_<z 
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Then by Consequence 9, our original sum can be expressed as 

C 0 ( x ) =  1 (lnu)mdTr(u) z den(t) 
.5 t = .5 ( l n t )  m d  = ~ .  .5 u .5 ( In  t )  '~ 

(4.8~) 
And the last integral submits  to integration by parts, 

C,n(t) l~ ~x Cm(t) dt 
= + m t(ln t) m+l Co(x) ( in t )  m 1.5 .5 

1 -m) ~:~ dt ~~ O(1)dt 
= - -  + 0 (( lnx)  + ~ + m t( lnt) ,~+l m .5 t In t .5 

= l n l n x  + M + 0 ( ( l o g x ) - m ) ,  for some constant M.  (4.83) 

This analysis applies to all m > 0, so we have proved a rather strong 
result about  the asymptot ics  of the sum of reciprocal primes. However, the 
strength of the result makes the exact value of M a tantalizing question. 

We can evaluate M by making use of the Riemann zeta function and 
MSbius inversion. The zeta function is related to prime numbers by 

1 ( 1 )  
( : ( s ) = Z ~ - ~ = H  1 - p - S  = ( l + p - S + p - 2 S + . . . ) ,  

n ~ l  p p 

s > l .  
(4.84) 

Following Euler, we will find it useful to work with the logarithm of this 
equation, 

( 1 1  ) 1 
lnr = ~ + 2 - ~  +"" = ~(~) + ~(2~1+ 5~(3~1+ . . . ,  (4.85/ 

p 

where ]E(s) = ~ p p - S .  We are interested in the partial sums of the divergent 
series ]E(1), and we can get information about them by considering the 
convergent series ]E(s) for s > 1. 

The MSbius function, defined by 

1, 
~,(n) = o, 

(-1) k, 

if n =  1; 
if n has a squared factor; 
if n has k distinct prime factors; 

(4.86) 

will invert formulas such as (4.85) above. The common form of MSbius 
inversion is 

n g(n) = Z f(d) ~ f(n) = Z / ~ ( d ) g ( ~ ) .  (4.87) 
d\n d\n 
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But for our purposes we need another  formulation, 

oo 

= f(m ) 
m = l  

oo 

f (x)  = E #(n)g(nx). (4.88) 
n ' - - I  

This allows us to express E(s) in terms of r 

E(s)  = E # ( n ) I n  r (4.89) 
n 

1% 

Since ~(s) = 1 + O ( 2 - ' )  this last sum converges quickly to E(s);  we have a 
rapid way to evaluate E(s)  that  will prove useful later  when we express M 
in terms of ]E(s). (These properties of the zeta and M6bius functions can 
be found, for example, in [Hardy 79; pp. 233-259].) 

Let us pause a moment  to plot strategy. We are interested in E(1), but  
the formula above is valid only for s > 1. We could look at E(1 + e) and 
let e ~ 0, 

1 1 
E(1 + e) = ln~(1 + e) - ~]E(2 + 2e) - 5 ~ ( 3  + 3e) + . . . .  (4.90) 

Standard  references like [Hardy 79] give e 
(1 + e) near 1, so this simplifies to 

- x + O(1) for the asymptot ics  of 

oo 

E(1 + e) In e Z ]E(n + ne) = - - + O(~). (4.91) 
n 

n - 2  

Unfortunately this formula blows up in a different sense than  our original 
expression, 

1 
Co(x) = E p = l n l n x  + M + O ( ( l o g x ) - m ) ,  

p_<x 
(4.92) 

does. So we cannot simply cancel the leading terms of the two formulas to 
obtain information about  M. Instead we must  rework the Co formula to 
depend on e. 

To rework Co, we introduce e so tha t  x can be sent to infinity, 

z /, /x 1 = oo d~r(t) = lim ~ t "  ; (4.93) 
p l + ~  .5 t l + e  z--*oo .5 

P 
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here again we have used Consequence 9 to replace dlr(t) with t dCo(t) .  
Integrating by parts  gives 

/," ) - - - - - -  - Co(t)d (t -e) . (4.94) 
.5 

Now the old asymptotics for Co will replace Co in the integral. By these 
same asymptotics Co (x ) /x  e vanishes. This leaves 

Y,(1 + e) = e ( l n ln t  + M + O ( ( l og t ) - l ) )  ~ . 
.5 

(4.95) 

Next we subst i tute  e u/~ for t, obtaining 

( E(1 + e) = e -u  In u - In e + M + 0 du. (4.96) 
In 1.5 

Most terms of this integral are easy to deal with, except e -u  In u which can 
be expressed in terms of the exponential integral: 

~a ~176 ~a ~176 e - u  
e -u  In u du = e -a  In a + u du. (4-97) 

For small a the exponential integral has well understood asymptotics, 

~a ~176 e - u  
E l ( a )  = u du - - In a - ~/ + O(a) .  (4.98) 

Applying our knowledge of E1 (a) to equation (4.96) gives 

]E(1 + e) -- (1.5)-e(ln ~ + In In 1.5) + El(e  In 1.5) 

- ( 1 . 5 )  -~ ln~ + (1.5)-~M + O (eEl(~ In 1.5)) 

= - l n e - ~ / + M + O ( e l n  1 )  
E (4-99) 

Now we can compare this reworked formula with our previous expression 
(4.91) for E(1 + e), to derive the desired formula for M: 

1 1 
M - ' y -  = E ( 2 ) -  ~E(3) . . . .  . 

z 
(4.1oo) 

Since E(s) = O ( 2 - ' )  this series converges rapidly; the precise value of M 
is 0.26149 72128 47643 ([Mertens 1874], [Knuth 76a]). 
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Returning to the question raised at the beginning of the section, we find 
that the average number of distinct prime factors of n can be computed 
from the results above" 

1 t~ j 1~(~ ) x ~ = x + 0(1) 

1 ( 1 )  
= Z p  + 0  logx 

p_<x 

= l n l n x + M + O  _ g  . (4.1Ol) 
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4.3 Asymptotics  from Generating Functions 

Frequently a combinatorial argument will produce a generating function, 
G(z), with interesting coefficients that have no simple closed form. This 
section will address two popular techniques for obtaining the asymptotics 
of these gn for large n, given G(z) = ~, gnz n. The choice of technique 
depends on the nature of G(z): If G(z) has singularities, then a Darboux 
approach can use these singularities to obtain the asymptotics of g,~. On 
the other hand, if G(z) converges everywhere we employ the saddle point 
method to find and evaluate a contour integral. 

4.3.1 D a r b o u x ' s  Method  

When G(z) converges in a circle of radius R, the sum Y]~ Ig,,rnl converges 
absolutely for r < R and this is possible only if gn = 0 ( r -n ) .  This basic 
fact about series suggests the following (somewhat idealized) approach to 
the asymptotics of gn. When G(z) has a singularity at radius R we find a 
function H(z)  with well known coefficients that has the same singularity. 
Then G(z) - H(z)  will often have a greater radius of convergence, S, and 
gn will be well approximated by hn: 

s < S. (4.1o2) 

The process is repeated until S is extended far enough to provide a small 
error bound. 

The method depends critically on finding a comparison function H(z)  
with well known coefficients. If we are attempting to cancel an ordinary 
pole at z = a in G(z), then H(z)  is easy to construct since G(z) will have 
the Laurent form 

C _  m C _ l  
G ( z )  = ( z  - + " "  + ( z  - + Co + C (z - + . . . .  (4. o3) 

For H(z) we use the terms with negative powers of ( z - a )  in the expansion: 

C-m C-,~+1 C-x 
g ( z )  - (z - a) m + (z - a) m-1 "t- " " " - ~  ( Z  - -  a ) "  (4.1o4) 

The coefficients of H(z)  can be obtained with the binomial expansion of 
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(See [Knuth III; pp. 41-42] for an i l lustrat ion of Darboux 's  technique ap- 
plied to a function where the singularities are poles.) 

Algebraic singularities are considerably harder  to remove; in fact we will 
only be able to "improve" the singulari ty in a vague sense tha t  will become 
clear shortly. By algebraic we mean tha t  G(z) can be expressed as a finite 
sum of te rms  of the form 

( z -  a)-t~ w complex, g(z) analytic at a." (4.1o6) 

For example,  

z (41o ) 
n 

has an algebraic singularity at z - 1, a l though in this case the function 
also has a binomial expansion so tha t  Darboux ' s  method is unnecessary. 
Darboux ' s  technique will be i l lustrated with the function 

G ( z ) -  V / ( 1 -  z ) ( 1 -  c~z), c~ < 1. (4.1o8) 

(See [Knuth I; exercise 2.2.1-12].) We need a comparison function tha t  will 
a t t ack  the singularity at z = 1, so we first expand 

~/1 az = v/i  a + C1(1 - z) + C2(1 - z) 2 + ' " .  (4.1o9) 

The first t e rm of the expansion suggests choosing the comparison function 

H(z)  = ~ 1  - Z d"l ol; (4. 1o) 

further t e rms  of the expansion can be used to improve the estimate.  Let 
us see how well H(z)  performs by itself: 

G ( z ) -  H(z)  = ~/ i '  Z (~/1 a z -  ~/1 a )  

= _ z)3/  ( 1 ) 
~1  az  + v r l = ' a  

= A(z)  B(z )  (4.111) 

where 
A(z)  - ~(1 - z )  3 /2  

B(z)  = 1/(~/1 - a z  + ~ 1  - a ). 

Note tha t  we have not removed the s ingulari ty at z - 1, but  instead we 
have "improved" the singularity from (1 - z) 1/2 to (1 - z) 3/2. This im- 
provement  is strong enough to make H ( z )  a good approximat ion to G(z). 
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The error is the coefficient of z n in A(z)B(z) .  The power series B(z)  has a 
radius of convergence greater than 1, and so b, = O(r -'~) for some r > 1. 
Furthermore A(z) can be expanded, 

A(z)--~ ~ (3n/2)(-z)n--~ ~ (n 7 / 2 ) z n  (4.113) 
n>0 n>0 

and this gives an = a(n-5/2)  = 0 (•--5/2). TO derive the error bound we 
proceed as in Section 4.1 to split the convolution of A(z) and B(z)  into two 
sums: 

Z 
o<k<n/2 

Z: 
n/2<k<n 

Thus we may assert that  

akbn-k -- O (r -n/2) 

akbn-k -~ 0 (n-5/2) . 

g n = J 1  a ( 1 ) n ( 1 / 2 )  ( ) - -  + 0 n - 5 1 2  . 

n 

(4.114) 

(4.115) 

In retrospect, our derivation of gn is simply an expansion of G(z) about 
z = 1. The error term is tricky, but depends on increasing the exponent 
of (1 - z) from 1/2 to 3/2. In fact a similar exponent dependency appears 
in the statement of Darboux's  theorem below. The notion of weight is 
introduced and we "improve" the singularities by decreasing their weight: 

Theorem.  Suppose G(z) = ~-~n>og,~z n is analytic near 0 and has only 
algebraic singularities on its circle 3f convergence. The singularities, resem- 
bling 

(1 - -  z/a)-Wh(z) ,  (4.116) 

are given weights equal to the real parts of their w's. Let W be the maxi- 
mum of all weights at these singularities. Denote by a~, w~, and h~(z) the 
values of a, w, and h(z) for those terms of the form (4.1x6) of weight W. 
Then 

1 ~ h~.(a~)n wk + o(s_nnW_X) ' (4.117) g "  = 

where s = [ak], the radius of  convergence of G(z), and F(z) is the Gamma 
function. 

This version of Darboux's  theorem, found in [Bender 74], gives the first 
term of the asymptotics by diminishing all the heavy weight singularities. 
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The process can be repeated, result ing in the slightly more complicated 
s ta tement  of the theorem found in [Comtet 74]. An ordinary pole corre-  
sponds to integer w in the theorem, in which case repeated applicat ion 
will eventually reduce w to 0, el iminating the singularity completely, since 
the values w = 0 , - 1 , - 2 , . . .  are not singularities. The elementary method  
we have illustrated in our analysis of (4.1o8) is powerful enough to prove 
Darboux ' s  general theorem [Knuth 89]. 

4 .3 .2  R e s i d u e  C a l c u l u s  

The  residue theorem states tha t  the integral around a closed curve in the 
complex plane can be computed from the residues at the enclosed poles: 

2~----~ f ( z )  dz = ~ (residues at enclosed poles). (4.118) 

Here the residue of f (z )  at a is defined to be the coefficient C-1  in the 
Laurent  expansion of f (.z)" 

f ( z )  -- 
C-rn C-1 

-~-.-.-~- -~- C0 -~- C1 (z - a) + . . . .  (4.119) a)-, 

Residues are relatively easy to compute .  
order and the residue is given by 

If m -- 1 then the pole is first 

C - 1  - -  lim (z - a ) f ( z ) .  
z - - - ~ a  

(4-120) 

The limit usually succumbs to repea ted  application of l 'Hospital 's  rule: 

lim g(z)  = l im  a g ' (z)  
z - - - , a  h(z) h'(z)" (4.121) 

A pole is considered to be of order m if lim=__.a(z - a ) m f ( z )  is a nonzero 
constant ,  but  this limit does not tell us anything about  the residue when 
m > 1. Differentiation can be used to isolate the correct coefficient: 

1 d m-1 
C-1 = ( m -  1)! li~ma dz m-i  ((z - a ) m f ( z ) ) .  (4.122) 

In practice, however, it is often faster to deduce the behavior of f ( z )  near 
z - a by substi tut ing z = a + w and expanding in powers of w, then to 
obtain  the coefficient of w -1 by inspection. 
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Traditionally the residue theorem is given as an easy way to compute 
the integral on a closed curve. In asymptotics we often use the formula 
backwards, placing the combinatorial quantity of interest in the residue 
and then evaluating the integral. 

For example, suppose we have a double generating function, 

FCw, z) = E amnWmZn' (4"X23) 

and we wish to compute a generating function for the diagonal elements, 

Z n . G(z) = E ann (4.124) 
n 

Terms with n - m are moved to the coefficient of t -1, where they become 
the residue: 

1 /  dt l /(m~n n) d t t 
2,, : ~  

1 E i  - tm_nzndt 
2~--i "~"  -? 

= E annzn = G(z). 

This interchange of summation and integration is legitimate if the series 
converges uniformly, so the path of integration must be chosen to make 
both Itl and Iz/tl sufficiently small. 

A classic illustration of the diagonalization of power series begins with 

F(w,z)= E (rn+n) 1-w-zl . (4.126) 
m,n>_O 

We seek an expression for the generating function 

n 

Using the formula derived above, 

1 d, 
C(z) = ~ -  (1 - t - , l t i t  (4"x28) 
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If C is chosen to be a small curve around the origin, it encloses the first 
order pole at 

1 - ~ / 1 -  ~lz 
t = 2 " 

Here the residue is (1 - 4z) -1/2 so the value of the integral is 

1 
= . (4. 3o) 

~/1 - 4z 

For a second illustration of diagonalization consider the problem of ob- 
taining the termwise product of two power series, 

A(z) = Z anZn' and B(z) = Z bnzn" (4.131) 

Using the result derived in (4.125) , we obtain the Hadamard product: 

xj 
G(z) = Z anb"zn = 27ri A(t)B (~-) - - .  (4.132) 

4 . 3 . 3  T h e  S a d d l e  P o i n t  M e t h o d  

Our next example makes use of several standard techniques that  deserve 
attention before we begin the actual problem. Initially, we will use the 
residue theorem backwards: 

1 ] G(z)dz 
gn = ~ zn+"'-"'y-. (4-133) 

A generating function G(z) is given, and we assume that  it is free of singu- 
larities (otherwise a Darboux attack would provide the asymptotics) so that 
the only constraint on the path of integration is that it encloses the origin. 
A wise choice for this path allows the integral to be easily estimated, and 
a good heuristic for choosing paths is the saddle point method. The idea is 
to run the path of integration through a saddle point, which is defined to 
be a place where the derivative of the integrand is zero. Like a lazy hiker, 
the path then crosses the ridge at a low point; but unlike the hiker, the best 
path takes the steepest ascent to the ridge. In fact, for our purposes, this 
property is far more important than crossing the ridge at the lowest point. 

Once we have chosen a path of integration another technique, Laplace's 
method for integrals, is frequently helpful. The integral will be concentrated 
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in a small interval, but  will include negligible tails extending over the whole 
region. Laplace's method removes these tails and replaces them by a dif- 
ferent small function that  is convenient for the evaluation of the integral. 
Both the old tails and the new tails must be shown to be insignificant to 
the result of the evaluation. 

As an example problem, we will derive a strong version of the central 
limit theorem, which states that  the mean of a large number of drawings 
from an arbi t rary  distr ibution is normally distributed: 

I oto" 
Prob # -  ~ < 

x , +  x2 + . . -  + x .  < / ~ +  = 
n 

1 / /  z 2 ~ / ~  a e- /2dz (1 + O ( n - ' ) )  . (4.134) 

Here the X~ are arbi t rary  but  identically distributed random variables with 
mean /~ and s tandard  deviation a. With  several minor restrictions we 
can prove an even stronger result, clarifying exactly how fast an arbi t rary  
integer-valued random variable converges to the normal distribution. 

Assumption 1. The Xi are drawn from an integer-valued distr ibution 
with generating function g(z): 

g(z) -- Z pkz ~:, Pk -- Prob(Xi - k). (4-135) 
k>O 

We assume tha t  g(z) is analytic for ]z[ < 1 + ~i, and since g(1) -- 1 for a 
probabil i ty distribution, we may conclude that  In g(e t) is analytic at t = 0. 
This allows us to  characterize g(z) by its Thiele expansion, 

~r2t 2 ~;3 t3 ~;4 t4 ) 
g(e t) = exp / ~ t + ~ + ~ + ~ + . - . .  (4.136) 

where ~j is the j th  semi-invariant of g(z). 

Assumption 2. g(0) must be nonzero, that  is P0 ~ 0. This is not a re- 
striction, since we can translate the generating function to z-'rig(z), where 
pm is the first nonzero coefficient. 

Assumption 3. The greatest common divisor of all k with pa ~ 0 must 
be 1. This is also not a restriction since we may analyze g(zl/ 'n),  where m 
is the greatest  common divisor of the k such that  pk ~ O. 
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The  sum of n drawings from g(z) has d is t r ibut ion  g(z) n. We wish to 
unders tand  the behavior  of this sum near its mean,  #n ,  so we define 

An,r = coefficient of z ~n+r in g(z)", (4. t37) 

where r is chosen to make #n  + r an integer. By the residue theorem, 

1 f g(z)ndz An,~ = ~ z~n+~+ 1 . (4.x38) 

The  saddle point is near z = 1, so we choose a pa th  of integrat ion with 
radius 1 enclosing the origin, and subs t i tu te  z = e it" 

1 / ~_ g(eit) ndt 
An,r = ~ n eit(t~n+r)" (4"139) 

Assumpt ion  3 implies tha t  the terms of g(e it) will all be in phase only when 
t = 0, so [g(eit)] < 1, except when t = 0, in which case g(1) = 1. Raising 
g(e it) to the n th  power makes the tails of the integral exponent ia l ly  small, 
and leaves the pr imary  cont r ibut ion  at t = 0. In par t icular ,  whenever 
we choose a ~ > 0 there exists an c~ E [0, 1) such tha t  Ig(eit)] < c~ for 

< It[ < 7r, and this means  tha t  

1 /~  g(eit)"dt 
A.,,. = ~ 6 eit(""+") + O(c~n). (4. t4o) 

Laplace's  technique suggests tha t  we chop off the tails and  replace them 
with  more agreeable functions. We will make three passes at the present 
tails, refining the interval each time, before adding new tails. First  we set 
61 small enough so tha t  the Thiele expansion for g(e t) is valid, and then 
expand  

g(eit)n ( a2t2n itc3t3n t~4t4n ) 
eit(#n+r ) = exp --irt 2! 3! + 4! + ' ' "  " (4.14t) 

Next  we set ~i2 smaller than  61 so tha t  the first two te rms  in the expansion 
domina te  the remaining terms: 

it~3t3n ~4t4n ~ ~ + . . .  
3~ 4! 

I. 
< 6 ' for Itl < ~2. (4.142) 
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These first two refinements permit a third refinement from [-52, ~i2] to 
[-n -1/2+~, n-1/2+~]. (The role of the mysterious epsilon will become ap- 
parent shortly.) The error introduced by this refinement is the sum of two 
terms like 

a2t2n~ 
exp ( - i r t  ~. ] �9 exp ( 

i~3t3n ~4t4n 
3! ~ ..... 4! + " "  

dr. 

(4.143) 

The - i r t  in the first term contributes an irrelevant phase, and the second 
term is bounded by equation (4.142), so the error is exponentially small: 

exp b dt < o2~ (4.t44) 
- , 1 ~ + ,  2 : - 6 - -  - " 

The reason for choosing rt - t /2+e should now be clear. In the last step 
we bounded the integral by its largest value, substi tut ing n -1/2+~ for t in 
the integrand. The rt -1/2 exactly cancels the n associated with t 2 in the 
integrand, so e becomes the "straw that  breaks the camel's back" and drives 
the integral to zero. 

We can summarize the progress so far by claiming that  there exists an 
a E (0, 1) such that ,  for all e > 0, 

-L,, -~/2+" ),~ 1 g(e it dt (ofll=,) (4.145) 
An,r = ~ n-~/2+~ e it(n"+r) + 0 

Within  such a small interval, the first two terms of the Thiele expansion 
are of principal importance: 

= exp - i r t  a~t2n 
A~,~ ~ ~-'I~+" 2 

At this point we are ready to add new tails to the integral, using the first 
two terms of the Thiele expansion as a convenient function. The new tails 
are exponentially small, 

L 
O O  

- 1 / 2 + r  

oxp ( i., 
2 

< exp dt =O(exp( )) 
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It is then an easy matter to evaluate the integral on [-co,  co] by completing 
the square in the exponent: 

' f ?  ( f f 2 t 2 " )  (.3e--1/2) 
A n , r = ' ~  ooeXp - i r t  2 ( 1 + 0  ) d t + O ( a  n2") 

- exp 2 2n + o ) .  (4.147) 

Note that the constant implied by this O depends on g(t) and e but not on 
n o r r .  

We can improve this result by using more of the Thiele expansion in 
equation (4.146). This will require integrating terms like 

~ eiat-bt2tkdt. (4.X48) 
oo 

Completing the square in the exponent and expanding t k with the binomial 
theorem will lead to still more terms of the form 

F __~2 
e uJdu. (4.149) (x) 

For odd j the integral vanishes, and for even j it can be transformed to the 
Gamma function by the substitution v = u 2. With this machinery we can 
extend our estimate, obtaining for example 

-- Jr h- 0 ( n : 3 / 2 ) . ,  
a 2y~-~'neXp 2a2n 1 -  ~a 4 n ~a6 -~  (4.15o) 

The coefficient of the general term in the expansion, rR/n  N, is given by 

( - 1 ) S ( R + 2 S ) 2 S  + ~  1 (~;3~p3 1 ( n 4 )  p' 
a2(R+S)2 s S ! ~ . . .  ; 

S>_O " P3+P4"t-P5 . . . .  R-N-t-S P3! ~ ' )  P4! "~" (4.151) 
3p3 -t'4p4 q-5ps-b"" =R+2S 

such terms are present for 0 _< R <_ 3 N. 

This is a very strong result; the central limit theorem follows immediately 
by summing on r, and if necessary, we have a detailed understanding of the 
asymptotic behavior of individual terms of the distribution. Unfortunately 
the formula above suffers from a weakness that  is common to central limit 
theorems: Its range is limited. Note that since the error term is polynomial 
in n, the estimate of An,r is useful only when r = O (v/'n). This is not 
surprising, since we were sloppy in our choice of the path of integration; it 
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goes through the lowest port ion of the saddle point only when r = 0, and 
becomes progressively worse for larger r. The obvious remedy would be to 
change the pa th  of integration when r exceeds v/'n. However, we will see in 
a moment tha t  the distr ibution itself can be shifted. This often proves to 
be easier than  repeat ing the derivation with a different pa th  of integration, 
although bo th  techniques are essentially the same. 

The coefficient of z m in g(z) n can be obtained with the formula 

[~]  (g(~)") g ( ~ ) "  ( g ( ~ ) ) "  = a m [zm] ~, g(a)  " (4.152) 

The right side of the equation seems like an unnecessary complication of 
the left side, since bo th  require extracting the coefficient of zm; but in fact 
the right side has an extra  degree of freedom represented by a,  which allows 
us to shift the mean of the distribution to a value close to m / n .  We do this 
by choosing a so tha t  

~g'(~) m 
-- - - .  (4.153) g(~) 

Take, for a simple example, the problem of finding the coefficient of z "/3 
in the binomial dis tr ibut ion with parameter 1/2, 

[~./3] (1 + z)" 
2 " (4-154) 

o(~) 

The coefficient of interest is at a distance >> vfn from the mean, n/2,  so 
equation (4.15o) is useless until we shift the mean to n / 3  by appropriate 
choice of a: 

ag'  (a) ot 1 
1 + a 3 '  (4.155) 

The new distr ibution,  

1 
a = - .  (4.156) 

2 

(-23 + �89 (4.157) 

has mean # = 1/3, s tandard  deviation a = vf2]3, ~3 = 2/27, and ~4 = 
- 2 / 2 7 .  We apply (4.15o) and (4.151) with r = O, obtaining 

(2 + k z)" = A . , o  

(12+.) - 2 4 ~  + 0(n-5/2). (4.158) 
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Multiplying by the g(o~)n/o~ m factor found in equation (4.152) gives a so- 
lution to the original problem of estimating the probability of exactly n /3  
heads appearing in n tosses of a fair coin: 

1 - - - + O ( n  -2) . (4.159) 
24n 

Lest the reader be left with the impression that  shifting the mean is a 
panacea for all range problems, several difficulties should be mentioned. In 
equation (4.155) we were fortunate to find a constant. In general c~ will 
have some dependency on n, which in turn will make the mean, standard 
deviation, and other semi-invariants dependent on n. Our derivation of 
a strong version of the central limit theorem made no allowance for this 
dependency, and must be reworked to accommodate the specific problem. 
In particular, the application of Laplace's method (shaving the tails of the 
integral and adding new tails) is likely to be affected by the new variations. 
Nevertheless, shifting the mean is still useful as a clear guide for the asymp- 
totic derivation, and the reader will find it interesting to derive asymptotic 
formulas for Stirling numbers in this way. 
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Appendices 

Appendix A: Schedule of Lectures, 1980 

l & 2  Analysis of an in situ permutation algorithm. 

Rd: [Knuth 71] 

Permutations with k inversions. 
Generating skewed distributions. 
(D. Greene, lecturer) 

Re/': /Knuth III; 5.1.1-14 and 5.1.1-18] 

4 & 5  Analysis of insertion sort and Shell's sort. 

Ref: [Knuth III; 5.2.1] 

The principle of postponed information (late binding). 
Dijkstra's algorithm for shortest paths. 
Quicksort. 

R~f.. [K, uth z~l, [K, uth m; 5.2.21 

7 & 8  Quicksort. 

Ref: [Knuth III; 5.2.21, [Sedgewick 751 

9 & 1 0  Paterson's technique for hashing analysis. 

Ref." Chapter 3 Operator Methods 

11 Ordered hash tables. 

Ref: [Amble 74] 
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12 

APPENDICES 

Recurrence relations with minimization. 

Ref: Section 2.2.1 Relations with Max or Min Functions 

13 Introduction to asymptotics. 

Ref: Section 4.1 Basic Concepts 

14 The use of Stieltjes integration in asymptotics. 

Ref." Section 4.2 Stieltjes Integration 

15 Mellin transforms and the Gamma function technique. 
(L. Ramshaw, lecturer) 

Res [Knuth III, 129-134] and 
work in progress by L. Guibas, L. Ramshaw, and R. Sedgewick 

16 Stieltjes integration applied to a sum of reciprocal primes. 

Ref: Section 4.2.3 An Example from Number Theory 

17 Introduction to residue calculus. 
Darboux's approach to generating functions with singularities. 

Ref." Section 4.3 Asymptotics from Generating Functions 

18 Saddle points and Laplace's method for obtaining asymptotics. 
(D. Greene, lecturer) 

Re/'." Section 4.3.3 The Saddle Point Method 

19 & 20 The Hungarian method. 

Ref: [Erd6s 59], [Erdb's 60], [Knuth 76c1 
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Appendix B: Homework Assignments 

The homework problems and their solutions appear in [Knuth III]. 

1 5.1.1-8 [M 24] 
5.1.1-15 [M 23] 
5.1.1-16 [M 251 

Show that "permutations obtainable with a stack" (namely al a 2 . . .  an of 
{1 ,2 , . . . ,n}  where i < j < k =~ -~ (aj < ak < ai), see exercise 2.2.1-5) 
can be characterized in terms of inversion tables. Find and prove a simple 
property of the inversion table C1 (72... Cn that holds if and only if the 
permutation is obtainable with a stack. (Note: This was intended to be 
exercise 5.1.1-21, and in fact [Knuth III] contains the answer but not the 
exercise!) 

5.2.1-5 [M 27] 
5.2.1-14 [M 24] 
5.2.1-37 [M 25] 

5.2.2-7 [M 281 
5.2.2-14 [M 21] 
5.2.2-20 [M 20] 
5.2.2-22 [M 251 

6.2.1-25 [M 25] 
6.2.2-6 [M 261 
6.2.2-7 [M 30] 

6.4-27 [M 27] 
6.4-34 [M 221 
6.4-49 [HM 241 

5.1.4-31 [HM 301 
5.2.2-57 [HM 24] 

5.1.3-10 [HM 30] 
5.2.2-54 [HM 24] 

6.3-34 [HM 40] 
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A p p e n d i x  C: M i d t e r m  E x a m  I and So lu t ions  

M i d t e r m  E x a m  I 

P rob l em  1. (a) [10 points] How many permutations on {1, 2 , . . . , n }  are 
sorted by at most two "bubble sort" passes? Example: 

given 3 1 2 9 6 4 5 8 7 
first pass 1 2 3 6 4 5 8 7 9 

second pass 1 2 3 4 5 6 7 8 9 

(A bubble-sort pass interchanges Kj ~ Ki+l iff K i > Ki+l for j running 
from 1 up to n -  1.) 

(b) [40 points] How many permutations on {1, 2 , . . . ,  n} are sorted by one 
double-pass of the "cocktail-shaker sort"? Example: 

given 2 7 3 1 4 6 9 8 5 
left-to-right pass 2 3 1 4 6 7 8 5 9 
right-to-left-pass 1 2 3 4 5 6 7 8 9 

(The cocktail shaker sort alternates between bubble-sort passes and similar 
passes in which j goes down from n -  1 to 1.) 

P r o b l e m  2. Dave Ferguson's scheme for representing binary trees [exercise 
2.3.1-37] would store the binary search tree 
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L0C INF0 LINK 

1 b 2 
2 a A 
3 c 4 
4 
5 d A 

The standard tree search and insertion procedure [Algorithm 6.2.2T] can 
obviously be adapted to use this representation. 

Let pnk be the probability that a binary search tree, constructed by 
starting with the empty tree and inserting n randomly ordered keys, will 
occupy 2n + 1 - 2k locations under Ferguson's scheme; and let Pn(z) - 
~_,k>opnkz k be the corresponding generating function. For example, we 
have Pl(z) - -P2(z )  - z and P a ( z ) =  ]z  + �89 2. 

(a) [10 points] Find a differential operator (I)n such that  Pn+l(z) - CnPn(z) 
for all n > 1. 

m 

(b) [15 points] Let D be the operator d/dz, and let U be the operator that  
sets z = 1, so that  UDPn(z) = P~(1) is the mean value of k. Show that  
this mean value can be expressed as a simple function of n. 

(c) [25 points] Extending the result of (b), find the variance of k as a 
function of n. 

P r o b l e m  3. [100 points] 
Consider an electric typewriter that has exactly 40 keys and an infinite 

carriage. The keys are: 

a b c . . .  0 1 2 . . .  9 (period) (space) (backspace) (carriage-return) 

A monkey types at random, starting at the beginning of a line, until hitting 
(carriage-return) for the first time; this scares him, so he runs off to eat a 
banana. 

(a) Determine the generating function G(z) = ~-~'~n>0 gn zn, where gn is the 
number of keystroke sequences of length n that  leav-e the word "ape" at the 
beginning of the line (and no other nonblank symbols). 



86 A P P E N D I C E S  

For example, here is one such sequence of length 12 ((bs) stands for 
backspace): 

(space) p (bs) (bs) (bs) a (space) e (bs) (bs) p (carriage-return) 

(Note tha t  (backspace) at the beginning of a line has no effect, and char- 
acters may be overstruck.) 
=# You need not display G ( z )  explicitly; it suffices to specify equations that  
determine this function uniquely. 

(b) Wha t  is the probability that  the monkey types "ape" i n  this way? (If 
possible, give your answer as an explicit real number,  and explain how you 
got it.) 

[In case you dislike working on this problem, you might contemplate the 
probabili ty that  the monkey types certain FOUR-le t te r  words.] 

S o l u t i o n s  t o  M i d t e r m  E x a m  I 

S o l u t i o n  t o  P r o b l e m  1. 

(a) According to [Knuth III; page 108], we want to count how many 
inversion tables b l . . .  bn have all bj _ 2; this is clearly 3n-2-2, for n _> 2. 

(b) Call the inversion table b l . . .  bn easy if a cocktail-style double-pass 
will sort the corresponding permutat ion.  It turns out  tha t  there is a fairly 
nice way to characterize such inversion tables: b l . . .  bn is easy if and only 
if it is a valid inversion table such that  either 

bl - 0 and b2 . . .  bn is easy, 

or bl -- 1 and b2 . . .  bn is easy, 

or bl - 2 and b2 _< 1 and b3. . .  bn is easy, 
or bl - 3 and b2 _< 1 and b3 _ 1 and b4 . . .  bn is easy, 
o r . . .  

or bl - n -  1 and b2 _< 1 and . . .  and bn-1 _< 1 and bn is easy. 

[Outl ine o f  proof." Suppose bl = k > 0. After one left-to-right pass, there 
are k -  1 inversions of element 1, and at this stage the permutat ion must 
begin with 2 . . .  k 1 if it is to be sorted in one right-to-left pass.] 

We now find that  the number of easy permuta t ions  for n >_ 2 satisfies 

Xn -- Xn-1  + Xn-1 -{- 2Xn-2  -{- 4Xn-3  "{- "'" 

where we set Xl -- l a n d x j  = O f o r j  <_ 0. It follows that  � 8 9  = 
Xn -- Xn--X, i.e., Xn+l = 4Xn -- 2Xn-1.  The solution to this linear recurrence 

1 is x,, = ~((2 + V~) "-1 + ( 2 -  v ~ ) " - l ) .  
Another solution appears in [Knuth III; exercises 5.4.8-8, 9]. 
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Solu t ion  to P r o b l e m  2. 

If there are k childless nodes in the tree, Ferguson's scheme requires 
2n + 1 -  2k locations: one for the root and 2 ( n -  k) for the children of 
nodes. Going from Pn to Pn+l ,  the value of k is unchanged if the new 
node replaces one of the 2k children of the k childless nodes, otherwise it 
increases by 1; hence 

) P n + l ( Z ) = Z V n k  n + i  + (1 z k+l . 
k n + l  

2 z ( 1 -  z )D;  we have The corresponding differential operator is (I)n - z + 

P (z) = r where Po (z) = 1. 

To get the mean xn, we note tha t  

2 D ~ n  = 1 + z D  + W4-i ((1 - 2 z ) D  + z(1 - z )D2) ,  

n - x  UD. 2 ( - U D )  = U + W4-f U D ~ , ,  = U + UD + W4-f 

n - 1 U D ) P n ( z )  = 1 + w - ~ x n ,  and this Hence xn+l  = U D P n + I ( z )  = (U + W4-f n -1  

recurrence has the solution xn  = (n + 1)/3 for n >_ 2. 

Similarly, to get the variance we find 

n - - 1  n - - 3  . UD 2 (b . = 2 -ff-~ D + W-g-f UD 2 

Let Yn = P," (1), so tha t  

Y n + l  - -  2 n - l  x n - 3  n - 3  n+x n + ~ - f Y n  = ] ( n -  1 ) +  ~'4-fYn" 

Applying a summat ion  factor as on page 14, we get zn+ 1 "-- (72  -~- 1)!Yn+l = 
2-(n + 1)4-(n - 1) + n4-yn = ~ ( n  + 1)5-+ ~(n + 1)4+ zn and z3 = 0. Therefore 
3 

zn = ~ ( n + l ) 6 - +  4 (n +1)5- and Yn = 2 ( n + l ) ( n - 4 ) + & ( n + l ) f o r n  > 4. 
1 2 (n + 1 ) ( ~ ( n -  44) + ~ + �89 - 6(n + 1)) The variance is Y n  + X n -  X n = = 

& ( n  + 1) for n > 4. 45 - -  

[Note: A completely different approach could also be used to get the mean 
and variance, using what  might  be called ' induction at  the other end. '  By 
considering the various choices of root nodes, we have the recurrence 

= + l ( z ) P 0 ( z ) )  
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for n _~ 2. Let P ( w )  - ~ n > o  w n P n ( z ) ;  this recurrence leads to the differ- 
ential equation P '  = p2  + Pl(Z) - Po(z) 2 = p 2  + z -  1, and the solution 
is 

P ( w )  -- ~ / z -  1 tan ( w v / ~ -  1 + arc tan 
1 ) 1 + ( z -  1 ) T ( w )  

v/z 1 - 1 - T ( w )  

where T ( w )  = (tan w ~ - T ) / v / z -  1. By rewriting the solution so as to 
avoid the square roots, we obtain 

P ( w )  = 
1 + ~-']~k>0 t 2 k + l ( Z -  1)k+lw2k+l 

1 -- ~-~k>0 t2k+l (z -- 1)kw 2k+1 

where tan x = ~-~k>o t2k+lx2k+l. 

1 This can be expanded in powers of z - 1, using the values tl -- 1, t3 = ~, 
t 5 =  2 ,  to get 

P ( w )  - 
1 ( 1 1) 

+ + (z - 1) 
1 - w 3(1 - w) 2 3 

( 1 1 1 (1 - w ) 3 ) ( z _  1)2 + . . . .  
+ 9 ( 1 - w )  3 -  5 ( l - w )  2 ~ 9 45 

1 --2 So ~ P n ( 1 ) w  n = l / ( 1 - w ) ,  ~ P ~ ( 1 ) w  n -  - i ( 1 - w )  + � 8 9  ~�89  n 
is the coefficient of ( z -  1) 2, and we find the variance in a few more steps. 
But  this method of solution does not follow the operator  approach tha t  was 
specified in the problem statement.] 

S o l u t i o n  t o  P r o b l e m  3. 

It is convenient to consider the related function G ( x l ,  x2, x3) tha t  allows 
exactly xj  characters other than (backspace) and (carriage return) to be 
typed in column j.  Then by inclusion and exclusion, 

G - G(2, 2, 2) - G(2, 2, 1) - G(2, 1,2) - G(1, 2, 2) 

+ G(2, 1, 1) + G(1, 2, 1) + G(1, 1,2) - G(1, 1, 1) 

enumerates  sequences that  include all three of the letters a, p, e. 
In order to avoid infinitely many equations,  we consider first the set of 

all sequences of spaces and backspaces tha t  begin in some column j > 3 
and end in column j - 1 without going left of column j until the very last 
step. The context-free grammar 

L *-- (backspace) I (space) L L 
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unambiguously describes such sequences, hence 

L(z)  = z + zL(z )  2 

is the generating function { zlal [ a in L }, and we have 

L ( z ) =  ( 1 - V I 1  4z 2 ) / 2 z = z + z  3 + 2 z  5 + 5 z  7 + - - . .  

Similarly let Q(z)  enumerate sequences of spaces and backspaces that  begin 
in some column j > 3 and never go left of column j; the unambiguous 
grammar 

Q ,-- ( emp ty ) I  (space)Q I (space)LQ 

proves that 

Q(z)  -- 1 + zQ(z )  + z L ( z ) Q ( z ) ,  

Q(z)  = 1/(1 - z -  z L ( z ) )  = 1 + z + 2z 2 -{-3Z 3 "4-6Z 4 + ' ' ' .  

[Incidentally, simple algebraic manipulations yield the identity 

QCz) - (1 - L ( z ) ) / ( 1  - 2z), 

a formula equivalent to Q(z)  + L(z)  = 1 + 2zQ(z).  A direct proof of the 
latter equation follows from the observation that every Q or L is either 
empty or has the form Q(space) or Q (backspace) .] 

Now let Gj(z )  be the generating function we seek when the typewriter 
starts j positions from the left, so that G(z) = Go(z). We have 

Go(z)  = z + zGo(z)  + x l z G l ( z ) ,  

G~ (z) = z + zGo(z)  + x~zG2(z), 

G 2 ( z )  = z + z G I ( z )  + x3zG3(z ) ,  

by considering sequences that  begin with (carriage return), (backspace), or 
something else, respectively. Furthermore 

G3(z) -" L(z)G2(z)  + Q(z)z,  

since each sequence starting in column 4 either returns to column 3 or 
doesn't. The solution to this tridiagonal system of linear equations is the 
desired generating function G ( x l  , x2, x3 ). 

The probability of any given sequence of keystrokes of length n is 1/40", 
if we stop the sequence at the first (carriage return), and such sequences 
are mutually exclusive. So the probability of typing ape is G(1/40). 
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We have now derived all tha t  was needed to satisfy the s ta ted  prob lem re- 
quirements ,  but it is interesting to go fur ther  and coax M A C S Y M A  to  obta in  
reasonably  simple formulas for the answer. See the a t tached  t ranscr ipt ;  it 
tu rns  out  tha t  

G ( z )  = 
X l X 2 X 3 z 4 Q , ( z )  - ( X l Z  --b 1 ) x 3 z 2 L ( z )  --b (Xl - 1)x2z 3 -}- Xl  z2 ..b z 

( x l z  3 + z ~ - z ) x 3 L ( z )  + x 2 z  3 - ( x l  + x2)z 2 - z + 1 

And after inclusion and exclusion have removed the xi,  the generat ing func- 
t ion for ape  sequences begins as follows: 

z 4 + 3z 5 + 15z 6 + 44z ~ + 163z s + 472z 9 + 1550z 1~ + . . . .  

The  exact  probabili ty turns  out  to be 

29996098590613938726728512 75099904646499040221 
- 59877588713530290411629940237569556287667865416 

93355082549464520980187663115368403895040545354710 ' 

which is approximately  .0000004238793706620676. 

Jorge Stolfi pointed out tha t  we could allow "o" to be typed  in the  second 
column on many typewriters ,  since the  ink in "o" might  be a subset  of the 
ink in "p". In this case the answer would be 

G =  G(2,3,  2 ) -  G(2,3 ,  1) - G(2 ,2 ,  2) - G(1, 3,2) 

+ G(2, 2, 1) + G(1,  3, 1) + G(1, 2, 2) - G(1, 2, 1) 

= z 4 + 3z 5 + 17z 6 + 52z 7 + 215z s + 664z 9 + 2406z l~ + . . .  

and  the ape probabili ty would rise to abou t  .0000004244. 
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:macsyma 

Th i s  i s  NACSYNA 292 

FIX292 14 DSK MACSYM be ing  loaded  
Loading done 

(Cl )  s o l v e ( L = z + z * L * * 2 , L )  ; 

SOLVE FASL DSK MACSYN b e i n g  loaded  
Loading done 
S o l u t i o n :  

(El) 

2 
SQRT (Z  - 4 Z ) - I 

2 Z  

(E2) 

(D2) 

2 

SQRT(1  - 4 Z ) + 1 
C I . . . . . . . . . . . . . . . .  q - -  

2 Z  

[El, E2] 

(C3) solve(Q=l+z*Q+z*L*Q,Q) ; 
So lu t i on :  

(E3) Q = 

(D3) 

1 

( L + I )  Z - I  

[E3] 

(C4) a l g e b r a i c :  t r u e ;  
(D4) T R U E  

(C5) gO=z+z*gO+xl*z*gl  ; 
(DS) GO = GI Xl Z + GO Z + Z 

(C6) g l=z+z*gO+x2*z*g2 ; 
(D6) GI = G2 X2 Z + GO Z + Z 

(C7) g 2 = z + z * g l + x 3 * z * g 3 ;  
(D7) G2 = G3 X3 Z + G1 Z + Z 

(C8) g3-L*g2+z*Q ; 
(D8) G3 = Q Z + G2 L 

(C9) s o l v e ( [ d S , d 6 , d 7 , d 8 ] ,  [ g O , g l , g 2 , g 3 ] )  ; 
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Solu t  ion: 

4 3 2 

Q x2  z + ( ( -  Q - L)  X l  - Q X 2 )  Z - Q Z + (Q + L)  Z 

(E9) G3 . . . . . . . . . . . .  

3 2 

(L X1 X3 + X2) Z + (L X3 - X2 - X l )  Z + ( -  L X3 - 1) Z + 1 

(EIO) G1 = -  

4 3 2 

Q X2 X3 Z + X2 (1 - Q X3) Z + (L X3 - X2) Z - Z 

3 2 

(L Xl X3 + X2) Z + (L X3 - X2 - Xl) Z + (- L X3 - 1) Z + 1 

( E l l )  G2 = 

4 3 2 

Q Xl X3 Z + (Q X3 + Xl) Z - Q X3 Z - Z 

3 2 

(L Xl X3 + X2) Z + (L X3 - X2 - X1) Z + (- L X3 - 1) Z + 1 

(E12) GO = 

4 3 2 

Q X1 X2 X3 Z + (Xl (X2 - L X3)  - X2)  Z + (X1 - L X3)  Z + Z 

(D12) 

3 2 

(L Xl  X3 + X2) Z + (L X3 - X2 - X1) Z + ( -  L X3 - 1) Z + 1 

[[E9, El0,  Ell ,  E12]]  

(C13) g ( x l , x 2 , x 3 )  : = ( [ t ]  , t  : r a t s i m p ( e v ( g O , e 1 2 , e 3 , e v a l )  ) , r a t s i m p ( e v ( t , e l )  ) ) ; 

(D13) G(X1,  X2, X3) := ( [ T ] ,  T : RATSIMP(EV(GO, E12, E3, EVAL) ) ,  

( C 1 4 )  g ( 1 , 1 , 1 ) ;  

R A T S I M P ( E V ( T ,  E l ) ) )  

( D 1 4 )  

2 Z -  1 

(C15) answer  : g ( 2 , 2 , 2 ) - g ( 2 , 2 , 1 ) - g ( 2 , 1 , 2 ) - g ( 1 , 2 , 2 )  

+ g ( 2 , 1 , 1 ) + g ( 1 , 2 , 1 ) + g ( 1 , 1 , 2 ) - g ( 1 , 1 , 1 )  ; 

(Dr5) 

7 2 6 4 6 5 4 3 2 

8 Z + SQRT(1 - 4 Z ) ( 8  Z - 4 Z ) - 12 Z - 4 Z - 4 Z + 6 Z + Z - Z 

7 6 5 4 3 2 

40 Z - 4 Z - 32  Z - 12 Z + 26  Z - 3 Z - 4 Z + 1 
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7 2 6 5 4 6 5 4 3 

+ ( 1 8  Z + SQRT(1 - 4 Z ) (2  Z + 2 Z - 2 Z ) + 5 Z - 19 Z - 6 Z + 8 Z 

2 7 6 5 4 3 2 

+ Z - Z ) / ( 3 4  Z + 11 Z - 4 4  Z - 9 Z + 26  Z - 3 Z - 4 Z + 1) 

7 2 6 4 6 5 4 3 2 

8 Z + S Q R T ( 1  - 4 Z ) (4  Z - 2 Z ) - 8 Z + 4 Z - 9 Z + 4 Z + 2 Z - Z 
, - - . , ,  . .  

7 6 5 4 3 2 

16 Z - 8 Z - 2 Z - 19 Z + 20 Z - Z - 4 Z + 1 

7 2 6 5 4 6 5 4 3 2 

- (6  Z + SQRT(1 - 4 Z ) (Z + Z - Z ) + 5 Z - 4  Z - 10 Z + 5 Z + 2 Z 

7 6 5 4 3 2 

- Z ) / ( 1 0  Z + 7 Z - 1 4  Z - 16  Z + 2 0  Z - Z - 4 Z + 1 )  

5 2 4 3 4 3 2 

4 Z + SQRT(1 - 4 Z ) (Z - Z ) - 8 Z + 3 Z + 2 Z - Z 

5 4 3 2 

10 Z - 21 Z + 14 Z § Z - 4 Z + 1  

3 2 4 3 2 

2 Z SQRT(1 - 4 Z ) + 4 Z - 4 Z - Z §  

5 4 3 2 
16 Z - 2 4  Z + 14 Z + Z - 4 Z + I 

2 2 3 

Z S Q R T ( 1  - 4 Z ) - 4 Z + Z 

3 2 

10 Z - 5 Z - 2 Z + 1 

Z 
4- 

2 Z - 1  

(C16)  t a y l o r ( a n s w e r , z , O , l O )  ; 

HAYAT FASL DSK NACSYM b e i n g  l o a d e d  

L o a d i n g  d o n e  

4 5 6 7 

( D 1 6 ) / T /  Z § 3 Z § 15 Z + 4 4  Z 

8 9 10 

+ 163 Z + 4 7 2  Z + 1550  Z + . . . 

(C17)  r a t s i m p ( e v ( a n s w e r , z = l / 4 0 ) )  ; 

(D17)  ( 2 9 9 9 6 0 9 8 5 9 0 6 1 3 9 3 8 7 2 6 7 2 8 5 1 2 7 5 0 9 9 9 0 4 6 4 6 4 9 9 0 4 0 2 2 1  SQBT ( 3 9 9 )  

- 5 9 8 7 7 5 8 8 7 1 3 5 3 0 2 9 0 4 1 1 6 2 9 9 4 0 2 3 7 5 6 9 5 5 6 2 8 7 6 6 7 8 6 5 4 1 6 )  

/ 9 3 3 5 5 0 8 2 5 4 9 4 6 4 5 2 0 9 8 0 1 8 7 6 6 3 1 1 5 3 6 8 4 0 3 8 9 5 0 4 0 5 4 5 3 5 4 7 1 0  

(C18)  f a c t o r ( d e n o m ( ~ ) )  ; 
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(D18) 2 3 5 11 17 19 23 29 53 59 79 167 211 457 6673 7019 9199 20773 28559 

1291357141 

(C19) bfloat(d17) ; 

FLOAT FASL DSK MACSYM bein E loaded 
Loadin E done 
(D 19) 4.238793706620676B- 7 

(C20) tlme(d14,d15,d17) ; 

TIME or  [TOTALTIHE, GCTIHE] in  msecs. : 
(D20) [[1813,  914],  [13204, 5191] ,  [1595, 537]]  

Acknowledgment: The M A C S Y M A  system, developed by the Mathlab group 
at M.I.T., had the support of U.S. Energy Research and Development con- 
tract number E(11-1)-3070 and National Aeronautics and Space Adminis- 
tration grant number N S G  1323. 
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Append ix  D: Final  E x a m  I and Solutions 

Final E x a m  I 

P r o b l e m  1. [50 points] Find the asymptotic value of l:I0<k<,, (~) to within 
a relative error of O(1/n)  as n ---, c~. [In other words, your-answer should 
have the form f(n)(1 § O(1/n))  for some "explicit" function f.] 

P r o b l e m  2. [100 points] Let us say that the positive integer n is unusual if 
its largest prime factor is at least v/n. Thus, a prime number is unusual, as 
is the product of two primes. (The number 1 is also highly unusual, since 
it is a positive integer for which the definition makes no sense.) 

Determine the asymptotic number of unusual integers n in the range 
1 < n < N, as N --, oo, with an absolute error of O(N/(log N)~). 

Hint: Count separately the unusual integers in the stated range whose 
largest prime factor is < ~ [this part of the problem is worth 35 points] 
and those having a prime factor > v/N [this part is worth 65 points]. 

Additional credit will be given for answers that are correct to within 
O(N/(log N)3). But you are advised to do problem 3 first before trying to 
get extra credit on problem 2. 

P r o b l e m  3. [150 points] The following algorithm for traversing a binary 
tree in preorder is analogous to Algorithm 2.3.1T of [Knuth I] for inorder 
traversal, except that  fewer items are put onto the stack: 

P1. 

P2. 

P3. 

P4. 

P5. 

[Initialize.] Set stack A empty, and set the link variable P ~ T. 

[P=A?] I f P = A ,  g o t o s t e p P 5 .  

[Visit P.] (Now P points to a nonempty binary tree that is to be tra- 
versed.) "Visit" NODE(P). 

[Stack ~= RLINK(P).] If RLINK(P) ~ A, set A r RLINK(P), i.e., push 
the value of RLINK(P) onto stack A. Then set P +-- LLINK(P) and return 
to step P2. 

[P ~= Stack.] If stack A is empty, the algorithm terminates; otherwise 
set P ~= A and return to step P3. |. 

Your problem is to solve the analog of exercise 2.3.1-11 for this algorithm: 
W h a t  is the average value of the largest stack size occurring during the 
execution of Algorithm P, as a function of n, when all n-node binary trees 
are equally probable? Give your answer correct to within O(n -I/2 log n). 
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S o l u t i o n s  t o  F i n a l  E x a m  I 

S o l u t i o n  t o  P r o b l e m  1. 

Well, we have In I'Io<k<n (~) = Y~'~0<k<n ( I n n ! -  ln k ! -  l n ( n -  k)!) = 
2 Y]~l<k<n k lnk - (n + 1) Y]~l<k<n Ink. By Euler's summation formula (cf. 
[Knuth I; exercise 1.2.11.2-7 and Eq. 1.2.11.2-18]) this is 

( ( 1 ) )  1 l n n + ~ l n n - � 8 8  -~ 2 �89 2 Inn + ~n 

( 1 ( 1 ) )  
- ( n + l )  nlnn + �89 - n + ln v/2~ + ~-~-nn + O -~ 

- - i n 2  (1 l n v C ~ ) n  ~ + 2 1 n A - l n v / ~ + O ( n  -a) -- ~ - � 8 9  - - � 8 9  

where A is Glaisher's constant. Since lnA = ~ ( ' y -  r162 ln27r), 
a formula that can be found either in [deBruijn 70; w or by using the 
"Abel-Plana" formula as described in [Olver 74; w the answer is 

1 exP(�89 2 - �89 + (1 - �89 ln21r)n-  �89 Inn 12 

+ - - In 2~r)(1 + O(1/n)). 

S o l u t i o n  t o  P r o b l e m  2. 

(a) The unusual numbers n < N whose largest prime factor is a given 
prime p _< ~ are the p numbers p, 2p, . . . ,  p2. So there are Y]~p<CW P 
unusual numbers of type (a). This is 

4-0 vT f ,d.(,)_-[ 
Jv~ Jv~ Jv~ 

where L(t)  = f~ du/ ln  u. The second integral is 

.N1 /3  

O(Vt-N. v/-N/(log v/-N) x~176176 + O( /v  ~ (t/(log t) 1~176176 dr)+ 

N1/2 

O(/N./3 (t/(logt) x~176176 dr) 

it is O(N/(log N)X~176176 The first integral is SO 

I "  N f 
I t d t / l n t = ]  du/ lnu= L(N) Jv~ ,12 



S O L U T I O N S  T O  F I N A L  E X A M  I 97 

[so, curiously, ~p<_v~ P ~ ~p<_N 1], which integrates by parts into the 
well known asymptotic form 

N/In N + N/(ln N) 2 + 2! IV/(In N) 3 + 

�9 -. + 998! N/(lnN) 999 + O(N/(log N)l~176176 

(b) The unusual numbers n < N whose largest prime factor is a given 
prime p > v/N are the [N/pJ numbers p, 2p,.. . ,  IN/pip. So there are 
~p>v~LN/pJ unusual numbers of type (b). This equals f~N[N/tJ &r(t) = 
f~N [N/tJ dL(t) + f~N [N/tJ dO(t/(log t)t~176176 and the second integral is 

( L  "' ) 0 ( I V / ( l o g  v/-N) 1000) -[- O N t(log t) m~176 

so it is O(N/(log N)999). The first integral is 

~n-t-- Y -  Y ln"~ 

[N~ [ v ~  .{u} du 
= N In In t - N u ~ ltlVl )'n'""u" 

J 1  

where {x} - x - [xJ and u -- Nit. Since In In N - In In ~ - In 2, we get 

N l n 2  - ------ 
N fJ -N{u}du ( lnu ( l n u )  2) 

l n N a l  u2 l + ~ n ~  + O  I n N  " 

Now fl ~176 (k~)2du  exists, so the O term can be dropped. We have 

f J - #  {u} du 
u 2 

J l  

k+l (u -k )du  ( 1 )  
= 

l<k<v'-~ 

- Z  ( 1 ) ( N )  = l n ( k + l ) - l n k  k + l  + 0  
l<k<v'N 

= In ~ -  H v ~  + 1 + O(1 /W~)  

- -  1 - "1 + 0 ( N - 1 / 2 )  �9 
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Similarly (here comes the 'extra credit '  part that nobody got) 

f l  v ~  {u} In u d u  u 2 

ln(k + 1) + O  / ' l o g N ~  l l n 2  v / - N + l n v / N - g v ~  + 1 -  ~"A.., ~ : ~  ~, ~ ] 
2 

l<k<v~  

Let 
1 ")'2 e2 73 e3 

r + e) = - + 70 - 71e-} 
e 2! 3! 

0 1 1 1 1  �9 

According to the formula in the answer to [Knuth III; exercise 6.1-8], 

1 T/~--e -- l - -e) .  
E kl+e = ~(1 + e) + + O ( m  

l < k < m  --C 

Expanding both sides in powers of e and equating like coefficients yields 

E (lnk)r = ( lnm)r+l  
k r + l  

l < k < m  

+ T r +  0 ( ( l n m ) ~ )  " m  

Thus, f l v ~ { u }  In u d u / u  2 = 1 - "/1 - "/o + O ( N  -1 /2  log N), and there are 
N l n 2  + (7 - 1 ) N / l n N  + (7 + "h - 1 ) N / ( l n g )  2 + O ( N / ( l o g N )  3) unusual 
integers of type (b); they aren't so unusual after all. 

Solut ion  to Problem 3. 

Let the maximum stack size required by Algorithm P to traverse a binary 
tree be called its "hite," and let the analogous quantity for Algorithm T be 
the "height." Let 5,~k be the number of binary trees with n nodes whose 
hite is at most k. If~k(z) = ~ - ,nank  zn ,  we find ~0(z) = 1 / ( l - z )  and 
~k(z )  = 1 + z ~ k - l ( Z ) ~ k ( z )  + z ~ : ( z )  -- z ~ k - l ( Z ) .  (The first term is for an 
empty binary tree, the next for a binary tree with left subtree hite < k 
and right subtree hite < k, and the last two are for a binary tree with left 
subtree hite = k and an empty right subtree.) Thus 

= 
1 -- Z g k - 1  (Z)  1 

1 -  z~?k-l(Z) -- z 1 - z 
1 - z [ ? k - l ( Z )  

and it follows immediately that ~?k(z) = g2k+l(Z) .  From this surprising 
relation we conclude that the number of binary trees of hite k is the same 
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as the number of binary trees of height 2k or 2k + 1. lit is interesting to find 
a one-to-one correspondence between these two sets; see the note on the last 
page. We don' t  want to spoil things for you by giving the correspondence 
before you've had a chance to find it for yourself, since this makes a very 
nice little problem, l A binary tree of height h corresponds to a binary tree 
of hite �89 or l h -  1, so we expect the average hite to be approximately 
half of the average height, minus �88 This in fact is what happens, but  the 
point of the problem is to prove it rigorously with analytic techniques. 

Following [Knuth I; exercise 2.3.1-11] and [deBruijn 72], rink = an(2k+l) 
is the coefficient of u n in 

(1 - u)(1 + u) 2'~ 1 - u 2k+2 
1 --  U 2k+3 

and bnk = finn - rink is the coefficient of U n '{ ' l  in 

(1 - u )  2 (1 + u)  2n 
t/2k+ 3 

1 - u 2 k + 3 "  

Thus ~,~ = ~k_>l k(f,,k - 5,~(k-1)) = ~k_>o b,,~ is the coefficient of U n + l  in 

u 2 k + 3  

(1 - ~/,)2(I + u) 2n Z 1 - u 2k+3" 
k > O  

Let us a d d  b n ( - 1 )  = an ,  for convenience; sn + ann is the coefficient of u n+l 
in 

u k 

(l -- u)2(l + u) 2" Z 1 -  u k' 
k odd 

which is the sum in Eq. (23) of the cited paper but with d(k) replaced by 
d(k), the number of odd divisors of k. We have 

d(k) /k  z = r Z l/kZ) = ~(z)(((z) - 2-Z~(z)),  
k~> 1 k odd 

so sn + an,, is obtained by the method in the paper except that  we have an 
additional factor ( 1 -  2 b-2z) in the integral (29). The residue at the double 
pole now becomes 

1 1 n (b+1)/2 U(-~(b + 1))(~ In 1 1 1 1 
n + g r  + 1)) + ~ / +  i In2) 

and at z = - k  it is 1 -  22k+b times the value in (31). The answer we 
seek comes to - 1  + (n + 1 ) ( ( - 2 / n ) ~ o ( n ) +  (4/n2)O2(n)+ O(n -3/2 log n)) = 

1 + log . ) .  
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The promised correspondence is given by the following recursive proce- 
dure: 

re f (node)  p r o c e d u r e  t r a n s f o r m ( r e f ( n o d e )  va lue  p); 
b e g i n  ref (node)  q, r; 
if p = nul! t h e n  r e t u r n ( n u l l ) ;  
r ~-- left(p); l e f t (p ) ( - -  t ransform(r ight (p) ) ;  r i g h t ( p ) ~  null; 
if  r = null t h e n  r e t u r n ( p ) ;  
q ~ r; while  t r u e  do  

beg in  left (q) ~ t ransform (left (q)); 
if  r i g h t ( q ) =  null t h e n  d o n e ;  
q ~ right(q); 
end ;  

r ight(q) ~- p; r e t u r n ( r ) ;  
end .  

It can be shown that the transformed tree has the following strong property: 
Let s be the height of the stack when Algorithm T puts a pointer to a given 
node of B onto its stack, and let s' be the height of the stack after step P4 
just following the time Algorithm P visits this same node in the transformed 
tree B ~. Then s ~ = Ls/2J. Thus the stack size during the traversal of B'  in 
preorder is almost exactly half the stack size during the inorder traversal 
of B, and we have a relation between the average as well as the maximum 
stack sizes. 
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A p p e n d i x  E: M i d t e r m  E x a m  II and Solutions 

M i d t e r m  E x a m  II 

P r o b l e m  1. [50 points] 
Continuing the analysis of secondary clustering in w find a "sliding 

operator" for tim that  allows U2G,nn(x) to be computed. Also find an 
analog of (3.40) that  allows U2Hmn(x) to be computed. Express G~n(1 ) 
and H~n (1) as "simple" functions of m, n, Px, and P2, where 

( ( ) Pk = 1 +  1 +  ....... . . .  1 +  . 
m - - 1  m - - n + 1  

P r o b l e m  2. [150 points total, distributed non-uniformly as shown below] 
A student named J. H. Quick woke up one morning with an idea for a new 

kind of binary search tree. He had learned about the advantages of "late 
binding" in his studies of computer science, and he thought: "Why should 
I use the first key to decide how the rest of the tree will be partitioned? 
I could do better by postponing that decision and letting further keys in- 
fluence what happens." Running to his interactive workstation, he hastily 
prepared a file containing a description of his new data structure, which he 
chose to call Late Binding Trees (LBTs); and then he ate breakfast. 

Unfortunately there is not room here to describe the subsequent events 
in Quick's life. The story about his fateful encounters with the Chuvstvenni 
sisters in Gstaad, who vowed to stop at nothing until they had learned his 
secret, will probably never be told. Let us rather turn our at tention to 
the specifics of LBTs, suppressing the details of how this information was 
learned. 

There are two types of nodes: branch nodes and leaves. A branch node 
contains two keys a and b, where a < b, and it also contains two links l 
and r that  point to subtrees. All keys in the l subtree are _ a, and all 
keys in the r subtree are _> b. Such a node can be represented by the 
notation ' ( a . .  b)', having its subtrees drawn below. A leaf node contains a 
full record, including a key a; such a node can be represented by '[a]'. 

LBTs are never empty; they start out with a single (leaf) node. One 
of the nodes in the left subtree of a branch node (a . .  b) is the leaf node 
[a]; similarly, the right subtree of (a . .  b) always contains [b]. If we want to 
insert a new record with key x into a given LBT, we proceed as follows, 
assuming that  x is different from all keys already in the tree" 

(1) If the LBT is [a], and if a < x, change the LBT to ( a . . x ) ,  with left 
subtree [a] and right subtree [x]. A similar construction with a and x 
interchanged is used if x < a. 
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(2) If the LBT has root ( a . .  b) and if x < a, insert the new record into the 
left subtree, using the same method recursively. 

(3) If the LBT has root ( a . .  b) and if x > b, insert the new record into the 
right subtree, using the same method recursively. 

(4) If the LBT has root ( a . .  b) and if a < x < b, flip a truly random coin. If 
it comes up heads, change the root to (x . .  b) and insert the new record 
in the left subtree; otherwise change the root to ( a . .  x) and insert the 
new record in the right subtree. 

The idea is therefore to keep track of a range of possible splitting keys in 
the root of the tree, instead of deciding prematurely on a particular one. 

The purpose of this problem is to learn something about the analysis of 
algorithms by analyzing the average total external path length of LBTs, 
assuming that LBTs are created by inserting records in random order. The 
total external path length is the sum, over all leaves, of the distance from 
the root to the leaf. Let n be the number of leaves. Then if n = 1, the 
total external path length is always 0; if n = 2, it is always 2; if n - 3, it 
is always 5; and if n - 4, it is either 8 or 9. 

(a) [15 points] Suppose that  the root of an LBT is (k . .  k + 1), after inserting 
n keys x l . . .  xn that form a random permutation of ( 1 , . . . ,  n}. (In other 
words, the LBT starts out containing only [Xl], then x2 is inserted, and 
so on; there are n leaves after xn has been inserted.) The left subtree 
of the root is the LBT formed by the permutation Yl . . .  Yk of {1 , . . . ,  k} 
consisting of the x~ that are ~_ k; the right subtree is the LBT formed by 
the permutation Z l . . .  z•-k of {k + 1 , . . . ,  n} consisting of the remaining xi. 

Prove that the permutations Yl . . .  yk are not uniformly distributed; if 
y l . . .  y~ has t left-to-right maxima, it occurs with probability 2 k-t  times 
the probability that the identity permutation 1 . . .  k occurs. Similarly, the 
permutations Zl . . .  Zn-k  are not uniformly random; their distribution de- 
pends on left-to-right minima. 

(b) [15 points] Let Pnk be the probability that the root of an LBT will be 
(k . .  k + 1), after inserting n keys that are in uniformly random order. Find 
a formula for Pnk. 

(c) [20 points] Let us say that  permutations on {1 , . . . ,  n} are U-distributed 
if all permutations are equally likely; they are L-distributed if they occur 
with probability proportional to 2 - t ,  where t is the number of left-to-right 
maxima; they are R-distributed if they occur with probability proportional 
to 2 -8, where s is the number of left-to-right minima; and they are X- 
distributed if they occur with probability proportional to 2 -8 - t .  

Part  (a) showed that the left and right subtrees of LBTs constructed from 
U-distributed permutations are respectively L- and R-distributed. Prove 



S O L U T I O N S  T O  M I D T E R M  E X A M  II 103 

that if we start with L-, R-, or X-distributed permutations, the subtrees 
are constructed from (L, X), (X, R), or (X, X)-distributed permutations, 
respectively. 

(d) [5 points] Let Un, Ln,  Rn,  and Xn be the average total external path 
length of the LBTs formed by distributions U, L, R, X. Prove that, for all 
n >_ 2, we have 

Un - n + ~X<k<nPnk(Lk  + R n - k ) ,  

Ln = n + ~, l<k<n qnk(Lk + Xn-k), 

X .  = n + ~ x < k < .  r.k(Xk + X.-k),  

where qnk and rnk are the respective probabilities that L- and X-distributed 
LBTs have (k . .  k + 1) at the root. 

[k-1/2~ [n--1/2 (e) [20 points] Prove that qnk - - ,  k-1 , / ,  n-2  ) and rnk = 1 / ( n -  1), for 
l < k < n .  

D 

(f) [5 points] Prove that Xn - 2nHn - 2n. 

(g) [20 points] Prove that 

q , , k X n - k  = 4(n + �89 H5/2). 
l<k<n 

[Hint: Show that Eq. (1.47) can be used for non-integer m.] 

(h) [25 points] Solve the recurrence for Ln that appears in part (d), us- 
ing the repertoire method to study recurrences of the form Xn = an + 

El~_k<n qnkXk. 
5 (i) [25 points] Prove that Un = (2n + �89 - ~ n  12" 

S o l u t i o n s  t o  M i d t e r m  E x a m  II 

S o l u t i o n  to  P r o b l e m  1. 

We have U l x  - []1 + Uo and U2x = U2 + 2U1 by (3.5), hence Uoflm "- Uo, 

Uxf~m = (1 + ~ )U1 -t" pUo, U2flm = (1 + ~)U2 + 2(p + ~)U1. Let Bm 
be the operator U2 - 2mUx + (m + 1)mU0; it turns out that B m + l ~ m  -" 

( l + ~ ) S m .  Therefore Bm+xGmn(X) = P2Bm-n+ lX  = ( m - n + l ) ( m - n ) P 2 .  

Furthermore B,n+lG,nn(x)  = U2Gmn(X) - 2(m + 1)(m + 1 - (m - n)P1) + 
(m + 2)(m + 1), by (3.36), and it follows that 

U2GmnCz) - (m - n + 1)(m - n)P2 - 2(m + 1)(m - n)P1 + m(m + 1). 
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How about  H?  Well, 

U2Hmn - (I + l)U2Hm_l,n_ I + ( I  2 -~U2 + m U 1 ) G m - l , n - 1 ,  

and it tu rns  out t ha t  

1 U 2  ( Hmn + =~_. ) 1  _ -~q U1Hmn m + l  , .  G , , , , ,  _ 

1 = 1 U 2 ( H m - l , n - I  + ~ - z - ~ G m - l , n - 1 ) -  2p m p--q U I H n -  1,,',- 1 

1 Thus  the quant i ty  -~4-TU2(H, nn + ~ _ l q G , n n ) -  p2-~_qU1Hmn turns  out to be 

~_q ~ = __2_.~ and equal  to 1 U2(Hm- , , 0  + Gm-n,o)  - U t H m - n , o  m - - n + l  p--q~ 
we can plug into our formula for U2Gmn to ob ta in  

q p--q q m+l  " 

Note t ha t  when p -- q - �89 the la t te r  t e r m  becomes  0/0,  so we need a 
separa te  formula for this case. By differentiat ing P2 wi th  respect  to q we 
find tha t  ~ - ' n - n + l P 2  - (1 - 2q)(Hm+l - H m - n + l  + 2) + O(1 - 2q) 2 as q m + l  

1 q --, �89 hence the value of U2H, nn involves ha rmonic  numbers  when q = ~. 

S o l u t i o n  t o  P r o b l e m  2. 

Let us use the shorter  te rms "leftmax" and "lef tmin" for "left to right 
m a x i m u m "  and "left to right min imum,"  respectively.  

(a) In order to obta in  Y l . . .  Yk and z l . . .  Zn-k,  we need x tx2  = YlZl or 
ZlYl, and the remaining x 's  must  conta in  Y2. . .  Yk and  Z l . . . Z n - k  merged 
together  in some way. W h e n  xi is being inserted,  if it is a yj we put  it 
in the left subtree  wi th  probabi l i ty  �89 if t ha t  yj is a lef tmax,  and if it is 

a zj we put  it in the right subtree wi th  probabi l i ty  �89 if zj is a leftmin. 
Otherwise the probabi l i ty  is 1; and if the coin flip goes the wrong way, we 
don ' t  get ( k . .  k + 1) at  the root. Thus  the probabi l i ty  of obta ining Yl . . .  Yk 
is propor t ional  to 2 - t .  

(b) For each pair  of pe rmuta t ions  y l . . .  Yk and  Z l . . .  Zn-k having re- 
spectively t leftmaxes and s leftmins, and  for each of the 2(~ -2)  ways to 

merge these together  as X l . . .  xn, the probabi l i ty  of sending Y l . . .  Yk to the 
left and Zl �9 .. Zn-k to the right is 2 2 - t -8 .  Therefore Pnk is 2(k_i)'~-2 t imes 

2 2-t(y)-8(z) divided by n!. E y , Z  
Now the generat ing function for lef tmaxes is 

~ y  z ~r = z(1 + z ) . . .  ( k -  1 + z), 
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by considering the inversion tables, hence ~ 21-t(y) = ( k -  1)k--1. It 
follows that  

P n k  ---- 2 n- -2  1 k--1 _ l ~ n - k - 1  ) - - - ( "  - . . . .  = , . - k - , ,  / ( ; ) .  

Ken Clarkson also found the curious formula 

P,~k = 8(~'-1/2) (k- l )  ( - ' n - 2  1)n-k. 

(c) The leftmins in X l . . . X n  all occur in Yl . . .  Yk, and the leftmaxes all 
occur in Z l . . .  zn-k,  except perhaps for the very first ones. Thus, the prob- 

n--2 ability of obtaining a particular permutation y is equal to 2(k_1 ) times 

~:~z 22-t(Y)-s(Z)P(X), where p (x )  is the probability that X l . . .  xn is input. If 
we assume (as we may) that  Xl < x2, then p(x )  is proportional to 2 -t(z), 
2 -s(y), 2 -t(z)-s(~) in distributions L, R, X. The result is proportional to 
2-t(Y), 2 -8(y)-t(~), 2 -s(~)-t(~), so the left subtrees have distributions L, 
X, X. The right subtrees are similar. 

(d) The total path length is n plus the total path length of the left subtree 
plus the total path  length of the right subtree. So, with probability pnk, we 
obtain a contribution of n +  Lk + R,_~ to the average total path length. The 
duality between left and right shows that qk(,~-k) is the probability that  an 
R-distributed LBT has (k . .  k + 1) at the root. It follows that Ln - R ,  
(which was obvious). 

(e) By part (c), the probability qnk is proportional to the double sum 
(k-1),  where the constants of proportionality for fixed ~ , ~  2_~(y)-~(~)_t(~) , - 2  

n are independent of k. The generating function ~ z s(y)+t(~) is equal to 

(z2)(2z)(1 + 2 z ) . . .  (k - 2 + 2z), hence ~"]~ 2 -8(y)-t(~) - � 8 8  1)!. Thus 

q,~k is proportional to (~-_1/12) and r,,~ is independent of k; it only remains 
to find the constants of proportionality so that  ~ qnk - ~ rnk - 1. See 
equation (1) below. 

(f) We have X ,  = Cn-1 in standard quicksort [GKP; ( 2 . 1 2 ) ,  ( 2 . 1 4 )  ]. 

(g) We have ( 1 -  z)  - 1 - m  = ~]~,>o ,("+m~z", , , for all complex m, by the bi- 
nomial theorem. Differentiating with respect to m (this idea was suggested 
by John Hobby), we obtain (1.47): 

(1 - z )  - 1 - m  In(1 - z )  - 1  

n > 0  

Let us now tabulate a bunch of formulas that follow immediately from 
this identity, since the formulas will prove useful in the sequel. All sums are 
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over the range 1 <_ k < n. We use the facts tha t  t(k-l/2)k-1 1( k -- 1)--- a (k~-1/22), 

that  (k~-1/12) is the coefficient of Z k - 1  in (1 - z) -312, etc. 

~ , k - l  ] ~ 
( k - 1 / 2 ~  
I~ k-1 ](k - 1) -- 

E (k ;1 /12) (Hk-1 /2 -  H 1 / 2 ) =  

(k;_1/12) ( n -  k ) ( U n - k  - -  U l )  --" 

(kk-l(2) (k - 1)(Hk-1/2 -/-/3/2) -- 

(k~-:i2) ( u - k - 1 / 2 ~ ( k  - -  1) = 
~, n -k -1  / 

(kkl l2)  (",,-k._k~/12)(Hk_1/2 - H1/2) = 

xrk-ll2~k-i ~l"-~-I12~( J -- I ) ( H ~ _ I I 2  - 1-1312) = 

(n-1/2~ 
n--2 l (1) 

~(n-1/2~ 
, . - 3 ,  

(,~-1/2~ 
. - 2  j ( H . - I / 2  - H3/2) (3) 

(n:1/22) ( g . + l / 2  - H5/2) (4) 

3(nn-1-./32)(Un-1/2-Hs/2) (5) 

-~ (nn_3) (6) 
(nn___2)(Hn - -  H2) (7) 

3 ( n n _ . _ 3 ) ( H n  - H3) (S) 

Each of these identities is obtained by looking at the coefficients of the 
product of two generating functions. 

The answer to part  (g) comes from (4), after multiplying by 2/(n-1/2~ kn- -2]"  
(h) We need to solve L ,  = n + 4(n + 1)(H,,+1/2 - 1"15/2)+ ~_, q,~kL~:, 

f o r n  > 2. T ry ingxn  = n - 1  inx,,, = a n + ~ q n k x k ,  gives an = 2 n +  ] 

for n > 2, by (2), since n -  1 = an + 3(,~-1/2~ _ , = <, .  + 3 ( , ,  2 ) .  

Similarly, trying xn = H n - l l 2 -  Hi l l  gives an -- 2, by (3); and xn - 
( n -  1 ) ( H , - l / 2  - Ha/2) gives an = 2(n + 1)(H,,,_lli - H512)+ 2 ( n -  1) 
by (5)- Taking an appropriate linear combination of all this yields the 
solution Ln = (2n + �88 - H i / i )  - ~ ( n -  1). 

(i) We have U,~ = n + 2 ~'~P,~kLk. Write Lk = 2(k - 1)(Hk-1/ i  - Ha~2) + 
9-(Hk4 - 1/2 -- Hi/2) + � 8 9  1) and use (8), (7), (6), to get 

U,  = n + 2 ( n -  2 ) (H,  - ~ )  + 9(Hn - 3) + � 8 9  2). 

We may conclude that  LBTs do not deserve to be implemented; they 
offer us instructive insights into discrete mathemat ics  and the analysis of 
algorithms, but they will never become known as Quicksearch. It is some- 
what surprising that  Un _< Ln <_ Xn, since a reluctance to insert "extreme" 
elements might be thought to make the inequalities go the other way. 
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A p p e n d i x  F- Final  E x a m  II and Solut ions 

Final  E x a m  II 

P rob l em  1. [75 points] 
Find the asymptotic value of Sn 

of O ( n - a / 2 ) .  
- ~'~0<k<n H k / ( 2 n - k ) ,  correct to terms 

P r o b l e m  2. [100 points total] 
Let an be the number of paths from (0, 0) to (n, n) on a grid, where 

we are allowed to go at each step from ( i , j )  to ( i , j  + 1) or (i + 1,j)  or 
(i + 1,j  + 1). Thus, (ao, a l , a 2 ,  a 3 , . . .  ) - (1,3, 13,63, . . .  ). 

(a) [50 points] Let A ( z )  = ~"]~n an zn" Use the method of (4.125) to prove 
that A ( z )  - 1 / ~ / 1 -  6z + z 2. 

(b) [50 points] Find the asymptotic value of an as n ~ co, giving explicit 
values of constants c, p, and 0 such that an = cnPO n + O(nP-aO n). 

Prob l em 3. [125 points total] 
A certain professor gives final exams that contain an infinite number of 

problems. In order to solve each problem, the student must have solved 
all of the preceding problems perfectly, since the professor stops grading 
an exam as soon as he finds a mistake. Each student has probability p of 
getting any particular problem right, independently of the other students, 
and independently of the problem number. For example, if p - �89 there 
is probability 2 -n -x  that  a particular exam will have exactly n problems 
right. 

The professor gives an A + to the student who solves the most problems, 
provided that only one student had the maximum score. Otherwise nobody 
in the class gets A +. 

(a) [25 points] Write down an expression for the probability that an A + is 
given when n students take the exam. (Your expression can be left in the 
form of a summation, since there appears to be no "closed form" for the 
probability in question.) 

(b) [100 points] Find the asymptotic behavior of the probability that an 
A + is given after n students take the exam, for fixed p as n ~ co. Assume 
that 0 < p < 1. 

Impor tan t  note:  You must solve problem 3a correctly if you want to get 
any credit for problem 3b. Make sure that your formula gives the value 
2p(1 + p ) - I  w h e n n  = 2 and the value 3p(1 + p2)(1 -b p ) - l ( 1  + p + p2)-1 
when n = 3, before you tackle the asymptotics. 
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S o l u t i o n s  t o  F i n a l  E x a m  I I  

S o l u t i o n  to  P r o b l e m  1. 

Summing by parts yields 

2 s . =  
O<k<2n 

n k / ( 2 n -  k) - 

which equals H2n - H~2n ) - H 2 by (1.48). Now 

1 --2) 2 H2n - H 2 -- (Inn + In2 + "y + Tff + O ( n  ) 1 2 
- (In n + "7 + yg + O ( n - 2 ) )  

and f4(2) 1 --2n = ~r2 _ Y~ + O(n-2) by [Knuth III; exercise 6.1-8]. Multiplying 
out and collecting terms yields 

1 1 
(In 2)(In n) + "y In 2 + : ( ln  2) 2 - -=-r 2 

2" 12 

1 -1 1 
- - n  Inn + 7 n - l ( l n 2  + 1 -~ , )  + O ( n - 2 1 o g n )  

4 a 

[This problem was too easy. It would have been better to ask for the 
asymptotics of, say, ~ X<k<n-v~ Ilk / (2n -- k). Then the asymptotics could 
be worked out most easily by using the identity Y~l<k<m H k / ( n -  k) = 

~ l < k < m  H n - k / k  - -  HmHn-m-1.]  

So lu t i on  to  P r o b l e m  2. 

Set F ( w , z )  = ~ a m n w m z  n, where amn is the number of paths from 
(0,0) to (m,n).  Then F - -  l + w F + z F + w z F ,  so we have F ( w , z )  = 
(1 - w - z - w z ) - l .  The diagonal terms are 

I f dt 1 /  dt 
A(z)  = ~ F(t ,  z/t)--[- = 2 r i  t -  t 2 - z - zt" 

The denominator can be written in factored form, - ( t -  r ( z ) ) ( t -  s (z ) ) ,  

1 1 - ~ / i  - 6 z  + z 2 w h e r e r ( z ) -  ~ ( 1 - z + ~ / 1 - 6 z  + z 2) and s ( z ) -  ~ ( 1 - z  ). 

Let Izl be small, so that r(z)  is near 1 and s(z)  is near 0. Integrate 
around a contour with small Itl that encloses the point s(z); then make Izl 
and Is(z)l even smaller so that Iz/ t  I is small enough to guarantee absolute 
convergence of ~ amntm(z / t )  n. (It is clear that  amn <_ 3 re+n, so such a 
contour exists.) The result is A(z)  = residue at s(z)  - 1 / ( r ( z ) -  s(z) ) .  
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Now A(z) = l / v / ( 1 -  0z)(1 - C z ) ,  where 0 = 3 + v ~  and r = 3 -  v/-8. 

Let w = Oz and a = r  so that  A(z) = B(w) = l / V / ( 1 -  w ) ( 1 -  aw)  = 
~']~(an/On)W n. We therefore want to find the asymptotics of the coefficients 

of the inverse of (4.1o8). We have 1/~f l  c~w = l / v / 1  " a -  a ( w -  1) = 
(1 -c~)  -1/2 + (w - 1)R(w) where R is analytic for [w I < a -x,  so the coef- 
ficients rn of R are 0 ( ~  -n) for some ~ > 1. Thus B(w) = (1 - a ) - 1 / 2 ( 1  - 
w)-X/2 + (1 -w)X/2R(w) ,  where the latter term is ~ (1/2) (--w)k ~ rmwm; 
it follows as in (4.114) tha t  its n th  coefficient is 0(n-3/2) .  The n th  coef- 
ficient of the first t e rm is (1 - c ~ ) - l / 2 ( - x / z ) ( - 1 ) "  = ( 1 -  c~)-1/2( n - l /2 ]  

k n l ~  

which is of order n - ' /2 ,  so an = 0"(1 - 0t)--1/2(n-1/2) -[- O(a,, l").  
n 

We have ( - t / 2 ) ( - 1 ) n  = 2--2n(2nn ) and Stirling's approximat ion tells us 
n 

tha t  this is 1 / ~  + 0(n-3/2) .  Thus the desired answer is 

a n = 

1 + V/2 
2 /4v/ (3 + + 0((3 + 

Incidentally, the numbers amn arise in surprisingly many contexts. We 
(re+n-k)! 2 k have, for example, amn = ~ (r~), m ,(n+k) = ~, (m-k)!(n-k)!k, = ~ ("k) (r~) = 

(k)  (nk)2-X-k. Also, amn is the number of different n-tuples of integers 
( x l , . . .  , x , )  such tha t  Ixll + . . .  + ]xn] <_ m; this is the volume of a sphere 
of radius m in the n-dimensional  "Lee metric." 

S o l u t i o n  t o  P r o b l e m  3. 

The probability tha t  a part icular student gets A + with exactly m prob- 
lems correct is the probabil i ty of scoring m (namely pro(1 - p)) times the 
probability tha t  each other s tudent  missed at least one of the first m prob- 
lems (namely (1 - p r o ) n - i ) .  Multiplying by n, since each student  has the 
chance for an A +, we obtain A + = n ( 1 - p )  ~_.m>opm(1 _pro)n--1. (Similar 

formulas arise in the analysis of radix exchange sorting in [Knuth III, 5.2.2], 
1 and in the more general t reatment of exercise 6.3-19.) when p = ~, 

Let Qn + ( n + l ) - l ( l _ p )  x = nAn+x - = ~-']~m>o SPin(I--Pro) n" Let x = npm; 

the summand is x(1 - x / n )  n, which is xe-X(1 + O(x2/n)) when x < n ' .  

Let Tn = ~ m > o  nP '~e-nf ' "  We have Q~ - Tn = X~ + Y~ where 

x .  = " p r o ( (  I - f ' ) "  - 

= ~,~>o,,~p-,>n, npmO( e-np'' ) = O(n log n e - ' r  ) 
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is exponentially small, since 1 - p m  < e-p  "~ and there are O(log n) terms. 
Also 

Yn = )"~m>o,np" <n' nPm(( 1 -- pm)n _ e - . f " )  

= E , . _ > o , . . ~ < . ,  .p"o(~-"." ("p")~In), 
which is O(n  3'-x) since it reduces to a geometric series after we use the 
obvious upper bound e -np'' _< 1. Applying the G a m m a  function method,  
we have 1 /1/2+ic~ 

npmr(z) (npm)-Zdz  
Tn = Z ~ Ja/2-ioo 

m>0 

n /1/2+~ r(z)n-~ 
- - 2 ~ i  ~ 1 / ~ - , ~  i : ~ - r : ~  az, 

(cf. Eq. 5.2.2-45), which can be evaluated as the negative of the sum of the 
integrand's  residues at its poles in the right half plane. Thus 

T n  "-" 
lnp  

2 ~ ~(r(1 + 27rik/lnp)exp(-27rik lnn / lnp) )  + O(n - M )  
lnp k>l 

for a rb i t ra ry  M. The quantity in the sum is bounded since it is periodic 
in n (note that  it has the same value at n and pn). So we can say tha t  

1 A + - ( 1 - p ) / l n ( ~ ) + f ( n ) + O ( n ) ,  where f ( n ) i s  a certain periodic function. 

The absolute value of f (n)  is extremely small unless p is extremely small, 
since F(1 + ti) = O(tX/2e-~t/2); and each te rm of f (n )  has average value 
zero, so f ( n )  is zero on the average. But  f ( n )  is present and it is not o(1). 
One might suspect that A + would approach 0 or 1 when n ~ cx~, so the 
result is a bit surprising. 

Exercise 5.2.2-54 gives another approach to the answer, by which we 
obtain the convergent series 

( ) _ 2 ~ , ~ ) )  A+ _ 1 p l + 2n Z !lC(B(n, l + 
In( l /p)  

k ) l  

The Beta function in this sum has the asymptot ic  value 

- l ( i b k  .~ b2k2)n 1 0 ( . - 2 ) )  n 1-ibkF(1 + i b k ) ( 1 -  ~ - + , 

where b = 27r/lnp; so we obtain the periodic function mentioned above, as 
well as the coefficient of n -x. (It appears  that  exercise 5.2.2-54 should be 
mentioned much more prominently in the next edition of [Knuth III].) 
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Appendix  G: Midte rm Exam III and Solutions 

Midterm Exam III 

Problem 1. Let Cn be the n th  Catalan number, 

Cn= ( 2 2 )  1 
n + l '  

and let Qn = Cn (H2,~ - Hn+ 1). 
small n: 

n =  0 1 2 3 

C n -  1 1 2 5 
1 11 Qn = - 1  0 ~ -~ 

Prove the amazing identity 

Thus we have the following values for 

4 5 
14 42 
73 120___2 
12 60 

n ( 2 n ;  1) 1 
E Ct:Qn-~ = Qn+I - n + 1 
k=0 

Hint: Consider the derivative of 

B ( z ) * =  E ( 2 n ;  x )  ~ x  zn, B(z) = 1 - V / 1 - 4 Z 2 z  

n>0 

with respect to x. 
Problem 2. Given 0 <__ m < Fn+2, the Fibonacci representation of m is 
defined to be (tin . . .dzdl)F ifrn = d,,F,+l + . . .  +d2F3 +dlF2, where each 
d~ is 0 or I and d~d~+l = 0 for 1 < k < n. The Fibonacci permutation 
of order n is the permutation of {0, 1 , . . . ,  F , + 2 -  1} that  is obtained by 
reflecting the representations of 0, 1 , . . . ,  F=+2 - 1 from right to left. For 
example, here are the representations and their reflections when n = 4: 

m representation reflection permuted value inversions 

0 (0000)F (0000)F 0 0 
1 (0001)F (1000)F 5 0 
2 (0010)F (0100)F 3 1 
3 ( 0 1 0 0 ) F  ( 0 0 1 0 ) F  2 2 

4 (0101)F (1010)F 7 0 
5 (1000)F (0001)F 1 4 
6 (1001)F (1001)F 6 1 
7 (1010)F (0101)F 4 3 
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Let X n  be the total number of inversions in the Fibonacci permutation 
of order n. (When 1 < n _ 5 we have X n  = O, 1,3, 11,32, respectively.) 
Find a closed form for X,~ in terms of Fibonacci numbers. (Do not use the 
number (1 + v ~ ) / 2  explicitly in your answer.) 

P r o b l e m  3. The Eikooc Monster is a dual to Paterson's Cookie Monster: 
The probability that it doesn' t  grow is proportional to its size. More pre- 
cisely, if E has eaten k cookies before a new cookie is thrown, it eats the 
new cookie with probability 1 -  pk. (Monster C absorbs cookies that fall 
on it, while E eats those that it can see in the rest of the yard.) The 
differential operator O corresponding to E is 

x + p(1 - x ) x D .  

Find a family of eigenoperators for O corresponding to the book's family 
Vx, V2, . . . .  Use your operators to deduce the mean and variance of the 
number of distinct coupons collected after n purchases of random coupons 
drawn uniformly and independently from the set {1, 2 , . . . ,  m}. 

Derive asymptotic formulas for the mean and variance of this number 
when n = cm, for fixed c, correct to O(1) as m and n --~ cx). 

P r o b l e m  4. Find the mean and variance of the number of comparisons 
when the following sorting algorithm is applied to n distinct inputs a[1. .  hi: 

p r o c e d u r e  pokeysort  (n: integer); 
b e g i n  i f  n > 1 t h e n  

r e p e a t  Set k to random element of {1, 2 , . . . ,  n}; 
Exchange a[k] ~-, a[n]; 
pokeysort  (n - 1); 
u n t i l  a[n- 1] _ a[n]; 

end .  

S o l u t i o n s  t o  M i d t e r m  E x a m  I I I  

S o l u t i o n  t o  P r o b l e m  1. 

[The class presented a variety of interesting approaches; here is yet an- 
other, which includes several formulas that  may be handy in other in- 
vestigations.] If we write C-1 - - 1 ,  we have B ( z )  - ~"~n>0 Cn zn and 

m 

B(z) -1 = -~-']~n>0 Cn - lzn"  The derivative of the hinted formula is 
m 

B ( z )  ~ l n B ( z )  = ~ ( 2 n : x )  z" 
2n § Z (1 + x ( H 2 n + . - x  - H n + . ) )  . 
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1 Z n The special case x = 0 gives ln B(z) = ~n_>l (~n)Y~ ; t h e  special case 
x = 1 gives B(z ) lnB(z )  = ~ n > l ( C n  + Qn)z n. Multiplying by B(z) ~ and 

m 

equating coefficients of z n gives 

E 2 x 1 ( I + x ( H , ~ + . _ I - H ~ + f f i ) ) \  n - k  / 2 n - 2 k + y  
k---0 

= 2n+x+u 

Set x 1 and y 1, getting n 1 = = - E ~ : o ( C k  + Q k ) ( - C . - ~ _ ~ )  = (~.") ~ .  
But when n > 0 we have n x-.,n+l ~k=o  CkCn-l-k  = 0, hence l .~=0 Q~C,~_~ = 

c~"+~ ~ =_(~-+~) 1 

S o l u t i o n  t o  P r o b l e m  2. 

[This was in part an exercise in mastering complexity without getting 
mired in details.] Everybody solved this problem by deriving a recurrence, 
usually with the idea that  Xn = Xn-1 + Xn-2 + Cn where Cn is the 
number of "cross inversions" between the first block of Fn+l values and the 
last block of Fn values. The value of Cn can be written in several ways, 
notably Cn = Yn + Zn-1 + Yn-2 + Zn-3 + " "  = Cn + Yn + Zn-1 + C n - 2 ,  

where Yn = (~"), Zn = Y n + F n ,  and Co = C1 = 0. It turns out that  
Cn = ~ Fn-1 ( F n + 2 -  1). J im Hwang made the interesting observation that  
the inversion table entries BoBIB2. . .  begin the same for each n; therefore 
it would be of interest to study the partial sums B0 + B1 + . . .  + B,n-1 as 
a function of m. 

But there's another interesting approach to the solution, based directly 
on the binary representations: Each inversion corresponds to strings a , /~,  
i f ,  7 of 0s and ls such that  

(a o ~ 17)F < (a 1/~' o 7)v, (a 0/ff 17)F n > (a 1 f f 0 7 ) ~ .  

(If i < j and ai > aj, the Fibonacci forms of i and j must differ first 
in 0 versus 1, last in 1 versus 0.) The number of such pairs with la[ = k, 
[/~[ = n -  k -  l, and 17[ = 1, is Fk+lF~_k_z_lFl+l; hence Xn is the sum of 
this quantity over 0 _< k, l < n. 

Let F ( z ) =  ~Fk+lZ  k = 1 / ( 1 -  z -  z 2) and 

G ( z ) = E F ~ + t z ~  1 / 3 - 2 z  2 ) 
~>0 = g 1 - 3 z + z  2 + l + z  " 
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Then Xn is [z n-2] F ( z ) 2 G ( z ) .  The part ial  fraction expansion of this gen- 

erating function involves the denominators  (1 - Cz) 2, (1 - Cz), (1 - q~z) 2, 

( 1 - r  ( 1 - r  ( 1 - r  and 1+ z. Hence there must  be seven constants 
such that  

X n -- ( Oz n -[- ~ ) F n -[- ( ~ n -[- ~)Fn+ 1 --{- ~ F2 n -[- ~'F2n+l -{- 17(-1) n . 

MACSYMA quickly determines these constants  when given the values of Xn 
for 1 _< n _< 7, using ' so lve ' .  [Incidentally, ' s o l v e '  is much quicker than 
' p a r t f r a c '  followed by additional manipulation.] The answer is 

7F2n+i + 4F2n - (4n + 15)Fn+1 + (2n + 7)Fn + 8 ( - I )  n 
X .  = 20 " 

Incidentally, a random permuta t ion  of this size would have exactly In = 

14 Fn+2(Fn+2 - 1) = ~ (7F2n+i + 4F2n - 2 ( - 1 ) "  - 5Fn+i  - 5 F n )  inversions 
on the average. The Fibonacci permuta t ion  is "pret ty random" by the 
inversion-count criterion, since X,~ - In  is of order V~n log In .  

S o l u t i o n  t o  P r o b l e m  3. 

We have Unx  - n U n - 1  + Un, hence Un(1  - x )  -- - n U t , - 1 .  Let 's  search 
for an eigenoperator of the form U n x n - a :  We have 

U n x n - a O  = U,~x n - a  (x  + p(  l - x ) x D )  

- U,,,x n + l - a  + p U , , ( l  -- x ) x n + t - a D  

= Unx  n + x - a  - I m U , ~ - 1  (Dx '*+1-" - (n + 1 - a ) x  n- '~)  

- (I - p n ) U n x  n + l - a  + p n ( n  + 1 - a ) U n _ x x  n - a  

-- (I - m ) ( U n x  n - a  -{- n V n _ l  x n - a )  "b m ( n  + 1 - a ) V n _ i x  n - a  

= (1 - p n ) U n x  n - "  + ( n  + p n  - p n a ) U n _ l X  n - "  . 

Therefore we get an eigenoperator with eigenvalue 1 - p n  when a - 1 + p - x .  

The formula U n f ( x )  - ~-,k (~) f(k)(1)U~_k tells us tha t  the eigenoperator 
U,.,x n - a  can be writ ten Y]~k ( ~ ) ( n -  1 -  p - X ) ~ U , , _ k .  It is convenient to 
normalize it so that  the coefficient of Uo is +1; then V,. ,G(z) = 1 when 
G ( z )  = 1. With this normalization (suggested by Arif Merchant),  we have 

(:) y .  = 

k 
and therefore 

(p 1). (;),  
k 
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If G,* (z) = On( l ) ,  the mean and variance are now easily found to be respec- 
tively p - l ( 1 - ( 1 - p ) , * )  and p - : 2 ( 1 - p ) ( 1 - 2 p ) , * + p - l ( 1 - p ) n - p - 2 ( 1 - p )  2,*, in 
agreement wi th  the answer to [Knuth III; exercise 5.2.5-5] when p = 1/rn. 

When n = am, the mean is ( 1 -  e -C)m + O(1); the variance reduces to 
(e e -  1 -  c)e-2 ' :m + O(1), fairly small. 

S o l u t i o n  t o  P r o b l e m  4. 

The probabil i ty generating function G,* (z) is defined by the recurrence 
G l ( z )  - 1, G n ( z )  = z G , * - l ( z ) ( ' ~  + ~ G,*(z)) for n > 1. Hence 

G,*(z)=F,*(zG,*_l(z)), f . ( ~ )  = 
n -  ( n -  1)z 

Now [Knuth I; exercise 1.2.10-17] tells us tha t  

M e a n ( a n )  = Mean(F,*)(1 + Mean(C,*_x)) = n(1 + Mean(G,*_1)) 

Var(a.) = Var(Fn)(1 + Mean(C.-~)) 2 + Mean(F,,)Var(C,,_~) 

n - 1  
n 

Mean(G,*) 2 + n Var(G,*_l).  

Dividing these recurrences by n! leads to sums such as 

M e a n ( G , * ) =  E n! k-'~. = Sn - n ! -  1 
l <k<,* 

where Sn has a convenient closed form: 

S ,  = ~ n!k_.f. = n! e - eT(n + 1,1) = In! eJ . 
0 < k < n  

The variance can also be expressed in terms of S,*: 

Var(G,*) = (S,* - n! - n - 1) 2 + 3S,* - n ! -  n 2 - 2 n -  3. 

Incidentally, we can "solve" the recurrence for G,*(z) and write 

V,,(~)=~"/H,,(a), ( H . ( z ) = n !  z +  
k = 2  

1)z ) 
( k -  1)! ; 

then Var(G,*) = -Var (H ,* ) ,  and the latter can be calculated directly. 



116 APPENDICES 

A p p e n d i x  H :  F i n a l  E x a m  I I I  a n d  S o l u t i o n s  

F i n a l  E x a m  I I I  

P r o b l e m  1. A certain gambler s tar ts  with $1 at t ime 0. If he has Sk at 
time t, he makes k independent fair bets of $1 each, double or nothing; 
this determines his capital at time t + 1. (Thus, at t ime 1, he is equally 
likely to be broke or to have $2. At time 2, he has ($0, $2, $4) with 

5 2 1 probabili ty (~,  ~, ~).) (a) Find the mean and variance of his capital at 
time t. (b) Find the asymptot ic  probabil i ty Pt tha t  he is broke at time t, 
with absolute error O( t -2 ) .  Hint: Consider the quant i ty  1/(1 - p t + l ) -  
1 / ( 1  - Pt)  - 1 /2 .  

P r o b l e m  2. Each of n parallel processors is executing a random process 
such that ,  if the processor is running at t ime t, it is s topped at time t + 1 
with probabili ty p ( independent of all other circumstances).  Once stopped, 
a processor remains stopped. Find the asymptot ic  value of the expected 
waiting t ime until all processors have stopped,  assuming tha t  they are all 
running at time 0. Your answer should be correct to O(n-1). 

P r o b l e m  3. Find the asymptot ic  value of S,, - -  Z l < _ k ( n / 2  e-k2/nk-2, with 

absolute error O ( n - l ~  (This is the quant i ty  r_2(n/2) in [Knuth III; Eq. 
5.2.2-35].) 

P r o b l e m  4. Last year 's  AA qual included a problem in which it was shown 
that  the number of ways to arrange n coins into a so-called "fountain" has 
the generating function 

1 P(z) 
l ~ z  ~ = _ 

. > o  z Q ( z )  
- 1 - 

Z 2 

z 3 
1 

~ ~ ~ 

where 
(--1)kzk(k+l) 

P(z) = Z (1 - z ) i l ' - z 2 i  ~ (1 - z k) ' 
k>0 

( - 1 ) k z  k2 

Q(z) = Z (1 - z)(1 - z 2 ) . . .  (1 - z k) " 
k>0 

Prove that  Q(z) has exactly one root p in the disk Izl _< .6, and tha t  f ,  = 
cp-" + 0( .6  -n)  for some nonzero constant  c. Use MACSYMA to evaluate 
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p-1 and c to several  decimal  places. Hints: First  express the quant i ty  
(1 - z)(1 - z2)(1 - z3)Q(z) in the form A(z) + R(z), where A(z) is a 
polynomial  of degree 9 and  IR(z)l is small when Izl < 1. F ind the roots of 
A(z) using the a l l r o o t s  command.  Then  find a radius r such tha t  A(z) 
has exact ly one root  for Izl < r and such tha t  IR(z)l < IA(z)l for Izl = r. 
Then  apply Rouch~'s  theorem.  

S o l u t i o n s  t o  F i n a l  E x a m  I I I  

S o l u t i o n  t o  P r o b l e m  1. 

1 1 Z 2 Since f has (a) Go(z) = z; Gt+ l (Z)  = f(Gt(z)),  where f ( z ) =  ~ + ~ . 
mean and var iance 1, [Knuth  I; exercise 1.2.10-17] implies t ha t  Mean(Gt)  = 
1 and Var(Gt)  = t. 

(b) Let et = (1 - p t ) / 2 .  We have Pt = Gt(0) ,  so pt+l = �89 + �89 Hence 

et+l = et (1 - et), and  we have 

1 1 1 1 
= - - + i +  --1 ' G 0 - -  - -  �9 

C t + l  {~t s -- 1 2 

A boo t s t r app ing  a r g u m e n t  now shows tha t  e~ -1 > t + 2, hence 

hence 

t - - 1  

et 1 _ < t + 2 +  k + l  
k = 0  

= t + 2 + H t ;  

t - - 1  

et x > _ t + 2 +  k + l + H k  
k = 0  

= t + 2 +  k + i  
k = 0  

We have proved t h a t  e t  1 = t+lnt+O(1); hence p, = 1-2/ ( t+ln t+O(1))  = 
1 - 2 t  -1 + 2 t -2  l n t  + O ( t - 2 ) .  [Let C = l imt__.oo(et l- t-Ht) .  Is it possible 

to go fur ther  and  e s t ima te  the quant i ty  d~t = e t  I - t -  Ht  - C ,  as t --* c~?] 

S o l u t i o n  t o  P r o b l e m  2. 

Let q - 1 - p  and  Q = 1/q. The probabil i ty tha t  the processors are not all 
s topped at  t ime t is Rt  = 1 - ( 1 - q t )  n, so the expected wait ing t ime is W - 

E , > 0  R,  = - E k > l  'k = 1 - Ek>  - 1). 
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We proceed as in [Knuth III; exercise 5.2.2-54] to represent the sum as 

( - 1 )  n n! ~( dz 
2~i f z(z - 1) . . .  ( z -  n)(Qz _ 1) 

where the contour encircles { 1 , . . . ,  n} and no other  poles. If we increase 
the contour to a large rectangle whose upper  and lower segments have 
imaginary par t  +2~r(N+ �89 Q where N is an integer, the contour integral 
approaches zero, so the sum of the residues inside approaches zero. The  
residue at 0 is the coefficient of z in 

l z )  . . .  ( 1 _  1 1 (1 -- z ) ( 1  -- ~ ~ z ) (1  + ~ z l n Q  + - - . ) l n Q  

namely (Hn-~ l  In Q ) / I n  Q. The sum of residues at  1, .. ., n is 1 - W. And 
the sum of residues at In Q + ibm and In Q - ibm, where b = 2 ~ / I n  Q and 
m > 1, is 1 / In  Q times twice the real par t  of 

n! 
(ibm)(ibm + 1) . . .  (ibm + n) 

-- B(n  + 1, ibm) = F(ibm) n ibm 

= r(ibm) n'bm(1 + O ( • - 1 ) )  . 

(The last est imate comes by expanding n i b m  in terms of generalized Stirling 
numbers; for example, we have 

.o([oj [o]o i [ o ]  , ,) 
- -  - -  "+" n -  + O _ n  - a _  . 

a - 1  ~ - 2  

See [GKP; exercise 9.44].) Now Ir(ibm)n'bml = O ( e - ~ / ~ ) ,  so we have 

W __ 
H~ 

In Q 
1 2 

- - +  5 + ~ ~ ~(r(ibm)n~bm) + O(n-~)" 
r n > l  

The sum is a bounded function f (n)  tha t  is periodic in t h e s e n s e  tha t  
f (n)  = f (Qn) .  Tombs Feder used Euler 's  summat ion  formula to deduce 
the remarkable representation 

f (n) -- ~o ~176 ( (  log u /n  ) )  log Q e -~ du 

where ((x)) is the sawtooth function [Knuth II; w 
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Solution to Problem 3. 

Let g ( x ) -  (e -z2 - 1)/x 2 and f ( z ) =  9 ( z / v ~ ) .  Then 

n S .  - 1 - nH(n~x 

= y]~ /(k) + o ( ~ - " / ' )  
0<k<n 

i n  18 Bj  fO_I)  ]n 
= f ( z )  dx  + Z 7 .  (z)  + O(n -9) 

3=1 0 

Consider first 

W e  also have 

is B3 (3_1)/2g0_1) ] ?  
g(~/) dy -~- Z ~ "-  (~/) "+" 0("--9)" 

j=l 

v'a 1 - e -~2 
g ( y ) d y  = 

Y 
- 2 / e -~2 dgt 

.to 0 

1 ~0 ~176 It2 = ---~ - 2 e -  dy + O ( e - n )  . 

g(j-1)(V/-~ ) = ( _ l ) J 2 J - l n - O + D / 2  _ O(e -n)  

and g0-1)(0) is nonzero only when j is odd, so we can square it for j > 1. 
Thus 

nSn 1 .,r4(2) 1 V/'~'~ 1 ( 1 ) ~ B2j - - = . . . .  + 1 + + O(n  -9)  
j=l 

Also 

~1 B2j 10) Hn(2) 1 = 71-2 1 1 9 
6 n 2n 2 . n-~-4~ + O ( n -  

J =  

by Euler's summation formula. Finally, therefore, 
71-2 ~ I 

s~ = 6 + ~n + O(n- l~  

The error is, in fact, O(n-l~176176176176176 (Check: S10 = 1.134434895; the ap- 
proximation yields 1.134434945.) 

There are (at least) two other ways to solve this problem: We can use 
the Gamma-function approach, as pointed out in [Knuth III; exercise 5.2.2- 
51]; or we can use the Poisson summation formula (found, for example, in 
[Henrici II]). 
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S o l u t i o n  t o  P r o b l e m  4 .  

(The  h in t s  are due  to A. Odlyzko. )  We have  

A ( z )  = 1 - 2 z -  z 2 + z a + 3 z  4 + z 5 - 2 z  6 - z ~ - z 9 

and  Z16 / Z9 Z9 zll --'''/ 
R ( z )  = 1 - z 4 1 1 - z 5 t 1 - z 5 i - z 6 

If  I zl = r < 1 we  have 

**~ 
[R(z)l _< 1 - 1-4 1 1 - r  5 t- 1 - r  5 + " "  = 

r 16 1 - r 5 

1 - r 4 1 - r 5 - r 9 " 

T h e  roo t s  of  A ( z )  = 0 are, in increas ing  o rde r  of  magn i tude :  

r l  ~ .58 
r2, r3 ~ �9 75 -4- .08i 
r4, r5 ~ - . 4 7  4- .82i 
r6, r7 --~ - 1 . 0 6  + .37i 
rs ,  r9 ~ .49 4- 1.58i 

It21 = Ir3l ~ .75 
Ir4l = IrsI ~ .94 
Jr6[ = Irrl ~ 1.12 
IrsI = Irgl ~ 1 .66 .  

To a p p l y  Rouch~ 's  theorem,  we wan t  to  f ind a value of r such t h a t  ]A(z)l is 
re la t ive ly  large when  ]z I = r bu t  IR(z)l  is re la t ive ly  small .  T h e  h a r d  p a r t  
is to  show t h a t  IA(z)l = I z -  r l ] . . .  I z -  z9] is re la t ive ly  large. 

One  idea  is to observe t h a t  

( r - l a l )  2 + b  2, i f a ( r  2 + a 2 + b 2) > 2 r ( a  2 + b 2 ) ;  

I ~ - ~ + b ~ l  I ~ - ~ - b ~ l  > m i n ( ( ~  - I~l) ~ + b ~, ]b(~ ~ - ~ - b~ ) ] / l~  + ibl) ,  
otherwise .  

(The  p r o o f  is by se t t ing  z = r e  i~ and  t a k i n g  the  der iva t ive  wi th  respec t  to  0. 
E x t r e m a  occur  when  s in0  = 0 or w h e n  we have  cos/? = a ( r  2 + a 2 + b 2 ) /  

( 2 r ( a  2 + b2)).) U n f o r t u n a t e l y  this  idea  i sn ' t  e n o u g h  by itself; the  p r o d u c t  
of  all these  b o u n d s  tu rns  out  to be less t h a n  r 16. 

B e t t e r  b o u n d s  are possible if we use the  inequa l i ty  I z -  rk] _> I lrk - r  I - 

I z - rl]. T h e n  if Irk - r i > .5 we can  conc lude  t h a t  I z - rkl  ~_ Irk - r l -  .5,  

w h e n e v e r  ] z -  r] < .5; s imilar ly  if Irk - r I < .5 we can  conclude  t h a t  
[z - rk[ >_ .5 - I r k  -- r[, whenever  [z - r[ >_ .5. 

P u t t i n g  these ideas toge ther  yields a r igorous  p roo f  t h a t  [A(z)[ > JR(z)[ 
for all z on  the circle [z I = r,  for any  choice of  r be tween  .59 and  .68. 
(See the  a t t a c h e d  M A C S Y M A  t r ansc r ip t .  T h e  c o m p u t e d  values rx, . . . ,  r9 
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are only approx imat ions  to the t rue roots of A(z); bu t  the  fact t ha t  the 
difference (z - r l ) . . .  (z - r9) - A(z) has very small coefficients implies tha t  
our calculat ions are p len ty  accura te  when Izl < 1.) 

Consequent ly  Rouchd 's  t heo rem applies, and Q(z) has exact ly  one root  
po inside Izl = r.  This  root  is real, and Newton 's  me thod  converges quickly 
to 

Po = 0.57614876914275660229786 . . . .  

The  contour  integral  
1 f P(z) dz 

is O( r - ' * ) ,  and the sum of residues inside is 

P(Po) 
f n  + Q' (po)  " 

Hence we have f ,  = COPo" + O(r -" ) ,  where co = P(po)/(poQ'(po)); nu- 
merical ly 

1 
- -  -- 1.7356628245303472565826.. .  ; 
po 

co = 0.312363324596741453066279 . . . .  

I t  turns  out  t ha t  the  next  largest  root of Q(z) is also real; it is 

pl -- .81559980; 

Cl = P ( P l  ) /  ( p l Q ' ( p l  )) = .03795269. 

The  graph of Q(z) looks like this for .5 _ z _< .9: 

+0.1 

o 

- 0 . 1  
\ 

.5 .6 .7 .8 .9 

There  is another  root  be tween  .88 and .89. 
To check, Odlyzko c o m p u t e d  f120 = 17002133686539084706594617194, 

and  found t h a t  f12o - co/p 12~ ~ 1.6 • 109. If we sub t rac t  cl/p~ 2~ the  error 
goes down to 1.3 x 105. (Odlyzko's  work was published in [Odlyzko 88] 
after  this exam was given.) 
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T h i s  i s  M A C S Y M A  304 
(C1) t ( k , z )  : = z t ( k t 2 ) / p r o d ( 1 - z ? j  , j  ,1 ,k )  ; 

(C2) q ( n , z )  : = s u m ( ( - 1 ) f k * t ( k , z )  , k ,O ,n )  ; 

(C3) a : n u m ( f a c t o r ( q ( 3 , z ) ) )  ; 

9 7 6 5 4 3 2 
(D3) Z + Z + 2 Z - Z - 3 Z - Z + Z + 2 Z - 1 

(C4) a l l r o o t s ( a )  ; 

(C5) f o r  n t h r u  9 do p r i n t ( n , r [ n ] : r h s ( p a r t ( d 4 , n ) ) , a b s ( r [ n ] ) ) ;  
1 0 . 5 7 5 7 7 4 0 6 6  0 .575774066  
2 0 .81792161  ~I - 0 .469966464  0 . 9 4 3 3 2 6 1 5  
3 - 0 .81792161  ~I  - 0 .469966464  0 . 9 4 3 3 2 6 1 5  
4 0 . 0 7 5 2 2 5 6 4  ~I + 0 .74832744  0 . 7 5 2 0 9 8 9 6  
5 0 . 7 4 8 3 2 7 4 4  - 0 .07522564  ~I  0 . 7 5 2 0 9 8 9 6  
6 0 . 3 6 7 1 6 9 8 3  ~I - 1 .05926119 1 .1210923  
7 - 0.36716983 ~I - 1.05926119 1.1210923 
8 1.58184962 ~I + 0.493013173 1.65689777 
9 0 . 4 9 3 0 1 3 1 7 3  - 1.58184962 ~I  1.65689777 

(C6) r m a x ( r ) : = r f l 6 / ( 1 - r f 4 ) / ( 1 - r t 9 / ( 1 - r t 5 ) )  ; 

(C7) bound l  ( a , b , r )  : = b l o c k (  I t , s ]  , s : a t 2 + b ? 2 , t  : ( r - a b s  ( a ) ) f 2 + b $ 2 ,  
i f  a * ( r f 2 + s ) > 2 * r * s  t h e n  t e l s e  m i n ( t , a b s ( b , ( r t 2 - s ) ) / s q r t ( s ) ) ) ;  

(C8) b o u n d 2 ( a , b , r ) : = b l o c k (  [ t , s ]  , s : a b s ( a + b * ~ i - r )  , t  : bound l  ( a , b , r ) ,  
i f  s < . 5  t h e n  t e l s e  m a x ( t , ( . 5 - s ) $ 2 ) ) ;  

(C9) b o u n d 3 ( a , b , r )  : = b l o c k (  [ t , s ]  , s  : a b s  ( a + b * ~ i - r )  , t  : bound t  ( a , b , r ) ,  
i f  s > . 5  t h e n  t e l s e  m a x ( t ,  ( s - . 5 ) $ 2 ) )  ; 

(CIO) aminl  ( r )  : = ( r - r  [1] )*prodCbound2 ( r e a l p a r t  ( r  [2*k]  ) ,  imagpart  ( r  [2*k]  ) , r ) ,  
k , l , 4 )  + O*"a l o w e r  bound f o r  a l l  z such  t h a t  I z - r l > = . 5 " ;  

( e l l )  amin2 ( r )  : = ( r - r  [1] ) * p r o d ( b o u n d 3  ( r e a l p a r t  ( r  [2*k] ) ,  i m a g p a r t  ( r  [2=k] ) , r ) ,  
k , 1 , 4 )  + O*"a l o w e r  bound f o r  a l l  z such  t h a t  [ z - r [ < = . 5 " ;  

(C12) a m i n ( r )  :=minCaminl ( r )  , amin2Cr ) )  ; 

(C13) f o r  n :58  t h r u  70 do p r i n t ( n , r m a x ( n * . O 1 ) , a m i n ( n , . 0 1 ) ) ;  
58 1 .86410865E-4  1 .40064462E-4  
59 2.4762821E-4 4.7992996E-4 
60 3.2769739E-4 8.2895893E-4 
61 4.320998E-4 1.18362144E-3 
62 5.6784198E-4 1.54014562E-3 
63 7.438718E-4 1.89452055E-3 
64 9.7160927E-4 2.24249464E-3 
65 1.26562865E-3 2.57957187E-3 
66 1.6445353E-3 2.90100428E-3 
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67 2.13209912E-3 3.19357002E-3 
68 2.75873208E-3 3.17922997E-3 
69 3.56342027E-3 3.1048643E-3 
70 4.596277E-3 2.92984536E-3 

(C14) qpr ime(n ,z )  : = s u m ( ( - 1 ) t k e t ( k , z ) e l o g t p r i m e ( k , z )  ,k ,O,n)  ; 

(C15) log tpr ime (k , z )  : =k t2 / z+sum( j*z t  ( j -  1) / ( 1 - z t j ) ,  j ,  1 ,k) ; 

(C16) l o o p ( z ) : = b l o c k ( [ z o , z n ]  , z o : O , z n : z ,  
whi le  abs ( zo -zn )> lO t - lO  d o ( z o : z n , p r i n t  ( z n : i t e r a t e ( z o ) ) )  ,zo) ; 

(C17) t ( 8 , . 59 )+O*"an  upper bound on the a l t e r n a t i n g  sum Q ( . 5 9 ) - Q ( 8 , . 5 9 ) " ;  
(D17) 1.3545675E-14 

(C18) i t e r a t e ( z )  : = b f l o a t  ( z - q ( 8 , z ) / q p r i m e ( 8 , z ) )  ; 

(C19) loop(5 .SB-1) ;  
5.761132798756077B-1 
5.761487662923891B-1 
5.761487691427566B-1 
5.761487691427566B-1 
(D19) 5 .761487691427566B-1  

(C20) p ( n , z )  : = s u m ( ( - 1 ) t k * t ( k , z ) * z t k , k , O , n )  ; 

(C21) c ( rho)  := -p (8 , rho )  / ( rho*qpr ime(8 , rho) )  ; 

(C22) c(d19) ; 
(D18) 3 .123633245967415B-1  

(C23) expand (prod ( z - r  [k] , k , l , g ) - d 3 )  ; 
8 8 7 

(D23) - 1 . 49011612E-8  7,I Z - 7 .4505806E-9  Z - 1 .49011612E-8  7,I Z 

6 6 5 

+ 1 .49011612E-8  7,I Z + 8 . 9 4 0 6 9 6 7 E - 8  Z + 2 .98023224E-8  7,I Z 

5 4 4 

+ 1 .63912773E-7  Z + 1 .1920929E-7  7,1 Z - 1 .78813934E-7 Z 

3 3 2 

- 4 . 4 7 0 3 4 8 3 6 E - 8  ~I Z - 2 .98023224E-7  Z - 1 .04308128E-7  ~I Z 

2 

- 2 . 0 1 1 6 5 6 7 6 E - 7  Z - 5 . 2 1 5 4 0 6 4 E - 8  7,1 Z + 1 .49011612E-7 Z + 7 . 4 5 0 5 8 0 6 E - 9  7,I 

(C24) "The sum of the  abso lu t e  va lues  of those coe f f i c i en t s  is 

an  upper  bound  on the  d i f f e r ence  be tween  the true A(z) and  

the  p o l y n o m i a l  tha t  is bounded  by amin"; 
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A p p e n d i x  I: A Q u a l i f y i n g  E x a m  P r o b l e m  a n d  S o l u t i o n  

Qual  P r o b l e m  

The result of a recent midterm problem was to analyze LBTs and to 
show tha t  their average path  length is about  the same as that  of ordinary 
binary search trees. 

But  shortly after the midterm was graded, our sources discovered that  
Quick was undaunted by that  analysis. According to reliable reports,  he 
has recently decided to try salvaging his idea by including new information 
in each node. 

The nodes in Quick's new data  structures,  which he calls ILBTs (Im- 
proved Late Binding Trees), contain a size field that  tells how many leaves 
are in the subtree rooted at that  node. Step (4) on page 102 is now replaced 
by a new step: When a branch node is being split, the insertion continues 
in whichever subtree is currently smaller. (If the subtree sizes are equal, a 
r andom decision is made as before.) 

The  purpose of this problem is to carry out a "top level" analysis of 
Quick's new algorithm. Let Pnk be the probabili ty that  the root is ( k . .  k + l )  
after inserting a random permuta t ion  of { 1 , . . . ,  n}. (We assume tha t  all 
permuta t ions  of the x's are equally likely; first x l is made into an ILBT by 
itself, then x2 through xn are inserted one by one.) Let Pnk -- n! Pnk. Then 
it can be verified that  we have the following values of Pnk for 1 < k < n 
a n d l  _<n_<6: 

n = 2 :  2 
n = 3 :  3 3 
n = 4 :  6 12 
n - 5: 18 42 
n - 6: 72 162 

6 
42 

252 
18 

162 72 

(a) F ind  a recurrence relation that  defines the numbers Pnk. 

(b) Let Qnk = 2Pnk max(k, n - k ) / ( k ! ( n - k ) ! ) ,  so that  we have the following 
triangle: 

n = 2 :  4 
n = 3 :  6 6 
n = 4: 6 12 

n = 5: 6 21 

n = 6 :  6 27 

6 
21 

42 
6 

27 6 

Show that  for most values of n and k the numbers Qnk satisfy the same 
recurrence as Pascal's triangle, i.e., Qnk = Q(n-1)k + Q(n-1)(k-1)" Find all 
the exceptions, and state the recurrence obeyed at the exceptional points. 



QUAL P R O B L E M  125 

(c) Let as = Q(2k)k. Prove that  for k > 1, 

a t : =  Z 2 j + l  
J l<j<k 

--------hiCk_j, 

where cn is the number of binary trees with n external nodes. 

(d) Let B ( z )  - �89 + x / 1 - 4 z )  and C(z)  - � 8 9  4 z ) ,  so that  

B ( z )  + C(z)  - 1, B ( z ) -  C(z )  = v /1 - - : l z ,  B ( z ) C ( z )  - z, and C(z) 2 = 
C(z )  - z; recall that C(z)  is the generating function clz  + c2z 2 + caz 3 + . . .  
for binary trees. Let fk = ak /k ,  and set up the generating function F ( z )  = 
f l Z  + f~z 2 + . . . .  Convert the recurrence in part (c) to a differential equation 
for F,  and solve this equation to obtain a "closed form" for ak .  [Possible 
hint: Show that  the derivative of B ( z ) F ( z )  has a simple form.] 

(e) Apply the recurrence of part (b) to the generating function Q(w, z) = 
~ k , n  Qnk w k z n - k ,  and use the values of ak found in part (d) to obtain a 
formula for Q(w, z) as an explicit function of w and z. 

(f) Find a "simple" expression for the coefficient of wnz n+r in the power 
series for ~/i 4 W z / ( 1 - w - z ) ,  when r > O. [Hint: Consider the problem for 
fixed r and variable n. You may wish to use the identity C(z)S/~/1  - 4z = 
Y'~n (2~+s) zn+8 and the facts about B(z)  and C(z) that are stated in (d).] 

(g) Show that,  therefore, 

l ( k + l  k ) 1 2k 
Pnk = -2 n -  k n -  k + l - ~ n + n ( n - 1 )  

1 for 1_< k < ~n. 

Note: Do NOT simply take this formula or an equivalent one and prove it 
by induction. You should present a scenario that explains how you could 
have discovered this solution by yourself in a systematic manner without 
lucky guesses. 
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Q u a l  S o l u t i o n  

(a) If Xl . . . X n  is a pe rmuta t ion  of { 1 , . . . , n } ,  let 5:1 . . . x n - 1  be the per- 
muta t ion  of { 1 , . . . ,  n - 1} tha t  arises when the elements of xl  . . .  xn-1  that  
exceed xn are reduced by 1. The  pe rmuta t ion  x t . . . x n  leads to the root 
( k . .  k + 1) if and only if one of the following happens:  (1) xu < k and 
2 1 . . . x n - 1  teads to the root ( k -  1 . .  k). (2) xn = k and x l . . . x n - 1  leads 
t o t h e r o o t  ( k - 1 . . k )  and either k - 1  < n - k  or ( k - l - n - k a n d a  
r andom coin flip comes up heads).  (3) xn = k + 1 and :Cl. . .  :cn-1 leads to 
the root  ( k . .  k + 1) and either k > n -  1 - k or (k - n -  1 - k and  a r andom 
coin flip comes up tails). (4) xn > k + 1 and X l . . . x n - 1  leads to the root 
( k . .  k + 1). Therefore we find, for 1 _< k < n and n > 2, 

l [n  + 1 = 2k]) Pnk -- P(n-1)(k-1)(k - 1 + [n + 1 > 2k] + 

+ P(n-1)k (n -- k - 1 + I n -  1 < 2k] + � 8 9  1 = 2k]). 

(b) It is easy to see tha t  Pnk = Pn(n-k), SO Qnk ---- Qn(n-k). Thus  it 
suffices to consider k <_ n -  k. If k < n -  k - 1, the above recurrence reads 

Q n k k ! ( n -  k)! 
2 ( n -  k) 

Q(n-1 ) (k -1 ) (k -  1 ) ! ( n -  k)! ( k -  1 + 1) 
2 ( n -  k) 

Q ( n - 1 ) k k ! ( n -  1 - k)! + 
2 ( n -  k -  1) 

( n - k - l ) ,  

i.e., Qnk = Q(n-1)(k-1) + Q(n-1)k. If k = n - k, it reads 

Qnkk! k! Q(n-1)(k-1)(k -- 1)! k! 
2k 2k 

( k - l + l )  

+ Q ( n - 1 ) k k ! ( k -  1)! 
2k 

( k -  1 + 1 ) ,  

so Pascal 's  relation holds again. But  if k = n -  k - 1, we have 

Qnak!(k + 1)! 
2(k + 1) 

Q(n-1) (k-1) (k-  1)!(k + 1)! Q(n-i)kk! k! 1) 
2 ( k + l )  ( k - l + l ) +  2k ( k + 2  , 

1 hence Qnk -- Q(n-1)(k-1) + Q(n-1)a + ~ - l Q ( n - 1 ) k .  By symmetry ,  if k - 

n -  k + 1 we have Qnk = Q(n-1)(k-1) + Q(n-1)a + ~_lQ(n-1) (k -1) .  Pascal 's  
relat ion therefore holds except when (n ,k)  = (2, 1) or when i n -  2k I - 1. 



QUAL SOLUTION 127 

(c) It is convenient to tip the triangle sideways and to associate Qn~ with 
the point (k, n -  k) in a grid. We can interpret Qnk as 4 times the sum, 
over all paths from (1, 1) to (k, n - k), of the products of the weights of the 
edges, where edges run from ( i , j )  to (i + 1, j )  and to ( i , j  + 1); the weight of 
such an edge is 1, except when i = j it is 1 + 1/(2j). Now ak is 4 times the 
sum over paths  from (1, 1) to (k ,k ) ,  so we can break the sum into various 
sub-sums depending on the greatest diagonal point (j, j )  on the path, for 
j < k. The j t h  sub-sum is aj times 1 + 1/(2j)  times the number of subpaths 
from (j, j )  to (k, k) that  do not touch the diagonal, since all edge weights 
but  the first are 1 on such subpaths. There are 2ck_j such subpaths. 

(d) Since k f k  = ~ j ( 2 j  + 1) f j ck_ j  + 4[k = 1], we have z F ' ( z )  = 4z + 

C ( z ) ( 2 z F ' ( z )  + F ( z ) ) ,  and this simplifies to 

zv/1  - 4z F ' ( z )  = 4z + C ( z ) F ( z ) .  

Following the hint, which follows from the general method of finding an 
integrating factor for first-order differential equations, we find 

( B ( z ) F ( z ) ) '  --- B ( z ) F ' ( z )  - F ( z ) / v / 1  - 4z 

_ B ( z )  (z~/i 4zF ' (z )  - C ( z ) F ( z ) )  
- z ~ / 1 - 4 z  

= 4 B ( z ) / v ~ l  - 4z = 2/re1 - az + 2. 

Thus B ( z ) F ( z )  -" 2C(z) + 2z, and in a few more steps we find the solution 

= = ~ ( . )  (2~'-1 + r ~ ) ,  fo~ ~ > :. an 2n(cn + Cn+l) 2n 2 

(e) (1 - w - z ) Q ( z )  = E Wk'Zn-k(Qnk -- O(n-X)k - Q(n-x)(k-x)) = 4wz + 
! ( w  + z ) ( f l w z  + A w 2 z  2 + fawaz  3 + . . .  ) hence we have 2 

Q ( ~ , ~ )  = 
4wz  + � 8 9  - ( w - I + w + z - I + z ) v I i - 4 w z  ) 

1 - - I - - Z  

(f) The coefficient of w n z  n+r in g ( w z ) h ( w ,  z) is the coefficient of x '~ in 
g ( x ) h r ( x ) ,  if h,.(x) - ~ am(m+,.)x m and h(w, z) = ~ a m n w m z  n, since mul- 
tiplication by g(wz)  affects only the coefficients having the same exponent 
offset. Hence the coefficient of wnz  n+r in ~ / 1 -  4 w z / ( 1  - w -  z) is the 
coefficient of x n in ~ / i -  4x)-~ (2n+r)xn - ( C ( x ) / x )  r - C ( x ) r ( B ( x ) -  

x n ] 

c ( x ) ) x - ~ l r  ' 4x = (c (x ) lx )~-Xlv /1  - 4 ~  - x(c(~) lx)~+~/v/1  - 4z = 

E C ( ~ - + : - , ) _  ( ~ T : ? , ) ) ~ - .  
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(g) For r > 0, the coefficient of wnz n+r in Q(w, z) can now be computed 
by considering the various terms in part  (e). Let br = (2,,+r). Then 

= �89 + 
b r -b r -1  +br-2+br-2br-1 + b r - 2 - b r + b r + l - b r - b r - 2 W b r - l - b r - 2 )  - br+l + 

l ( n + r -  1) !n! / (2n+r) !  to get P(2n+r)n A dif- 3br-1 - 4br-2. Multiply by ~ 
ferent formula applies when r -- 0, because of the w-1 and z -1 terms. 

Final comment: A note to J. H. Quick. "When x = k / n  < �89 we have 
Pnk ~ �89 - -x)  -2 -- 1) + 2x, hence ILSW's do a reasonably good job of 
partitioning. The distribution of permutations in the left and right subtrees 
is not random, and we could perhaps pursue the analysis to find the average 
path length of ILBT's. But really, Mr. Quick, your algorithm still does not 
deserve to be implemented. The average path length will be somewhere 
between 2 n l n n  and ( 1 / l n2 )n lnn ;  the extra time your method takes at 
each node slows the program down so much that the slightly smaller path 
length is pointless. It was clear from the start  that  ILBT's  would lose out 
to other methods in all respects (space, time, ease of implementation, and 
so on). The only saving feature was that  your algorithms lead to instructive 
mathematics that we might someday be able to apply to the analysis of a 
really useful method. You undoubtedly knew that  too, so thanks for the 
ideas." 



Index 

Abel-Plana formula, 96. 
Abelian theorem, 45. 
Aho, Alfred Vaino, 27, 30, 77. 
algebraic singularities, 66-67. 
Amble, Ole, 77, 81. 
ape, 85-86. 
Apostol, Tom Mike, 55, 77. 
asymptotic analysis, 42-76, 

95-100, 107-110. 

Bailey, Wilfred Norman, 9, 77. 
balanced trees, 30. 
banana, 85. 
basic polynomials, 8-9. 
Bell polynomials, 74. 
Bender, Edward Anton, 67, 77. 
Bent, Samuel Watkins, v. 
Bernoulli numbers, 59. 
Bernoulli polynomials, 58-59. 
Beta function, 110, 118. 
binary trees, 30, 87, 95, 98-100; 

see a/so late binding trees. 
binomial identities, 1-10. 
bootstrapping, 43, 50, 52, 117. 
bounded variation, 56. 
Boyce, William Edward, 15, 77. 
Broder, Andrei, v. 
de Bruijn, Nicolaas Govert, 26, 

43, 46, 77, 78, 96, 99. 

Catalan numbers, 111-113. 

central limit theorem, 71-74. 
Chebyshev's inequality, 47. 
Chebyshev's inverse relation, 6. 
Clarkson, Kenneth Lee, v, 105. 
Computer Science 255 aka 360, v, 

81-83. 
Comtet, Louis, 68, 77. 
context-free grammar, 

unambiguous, 88-89. 
continued fractions, 25-27. 
contour integrals, 65, 68-70, 72. 
convergent to a continued 

fraction, 26. 
cookie monster, 31-34, 37-40, 112. 
coupon collecting, 112, 115. 
cycle leaders, 21. 

Darboux's method, 65-68, 70. 
de Bruijn, Nicolaas Govert, 26, 

43, 46, 77, 78, 96, 99. 
Delange, Hubert, 23, 78. 
diagonalization of series, 69-70, 

108. 
differencing recurrence relations, 

17. 
differential equations, 15, 20, 88, 

127. 
digital sums, 22. 
DiPrima, Richard Clyde, 77. 
disguised linear recurrences, 

25-27, 115. 
dissecting a sum, 44, 51-54. 



130 INDEX 

divide and conquer, 27. 
Doubilet, Peter, 80. 
Doubly exponential sequences, 

27-30. 
Drysdale, Robert Lewis (Scot), 

III, v. 

Egorychev, Georgii Petrovich, 3; 
method of coefficients, 3-4. 

eigenoperators, 31-41, 114. 
eikooc monster, 112. 
ErdSs, P~l, 78, 82. 
Euler's constant ?, 47, 50, 97, 98. 
Euler's summation formula, 47, 

53, 58-59, 96, 118, 119. 
exponential integral, 63. 

factorial powers, 7-9. 
factoring algorithms, 48. 
factorization, distinct degree, 48. 
Feder, Tom~s, 118. 
Ferguson, David Elton, 84-85. 
Fibonacci numbers, 30, 113-114. 
Fibonacci permutations, 111-114. 
finite history reccurence relations, 

11, 12-16. 
fountain, 116. 
Fredman, Michael Lawrence, 

23-25, 78. 
full history reccurence relations, 

11, 17-20, 86. 

Gamma function, 74, 110, 118. 
Gamma-function method, 110, 

119. 
generating functions, 4, 7, 12, 

14-15, 16, 20, 25, 31-41, 
65-76, 85-94, 98-99, 104-106, 
117, 125. 

Gessel, Ira Martin, 3. 
Glaisher's constant, 96. 

golden ratio, 30. 
Golomb, Solomon Wolf, 29. 
Gould, Henry Wadsworth, 6, 7. 
grading problem 107-110. 
Graham, Ronald Lewis, 2, 9, 12, 

59, 78, 105, 118. 
grammar, context free, 

unambiguous, 88-89. 
greatest common divisor, 71. 
Greene, Curtis, 80. 
Greene, Daniel Hill, iv, v, 81, 82. 
grid paths, 3, 107, 108, 127. 
Guibas, Leonidas Ioannis, v, 82. 

Hadamard product, 70. 
Hardy, Godfrey Harold, 26, 46, 

62, 78. 
harmonic numbers, identities, 10; 

examples, 19-20, 50, 103, 
104, 106, 108; asymptotics, 
47, 50. 

hashing, coalesced, 34-37; 
uniform, 38; secondary 
clustering, 39-41, 101, 
103-104. 

Henrici, Peter, 9, 78, 119. 
Hertz Foundation, v. 
hidden linear recurrences, 25-27, 

115. 
Hobby, John Douglas, 105. 
l'Hospital's rule, 68. 
Hsu, Lee-Tsch Ching-Siur, 6, 78. 
Hwang, Lucius James, 113. 
hypergeometric series, 9. 

IBM, 118. 
implicit equations, 43. 
in situ permutation, 21, 81. 
inclusion and exclusion, 6. 
induction from the other end, 31, 

37-40, 87. 



inverse relations, 5-7, 61-62. 
inversion table, 86, 105. 
inversions, 111, 113. 
irreducible polynomials, 48. 
IRT, 72-74. 

Jonassen, Arne Tormod, 3, 78. 
Jordan, Camille, 11, 79. 

Kahaner, David Kenneth, 80. 
Knuth, Donald Ervin, iv, v, 2, 3, 

7, 9, 11, 12, 14, 17, 21, 23, 24, 
30, 37, 41, 43, 48, 59, 60, 
63, 66, 68, 77-79, 81-83, 86, 
95, 96, 98-99, 105, 108-110, 
115-119. 

Laplace's method, 70-73, 76. 
late binding trees, 101-106, 

124-128. 
lattice paths, 3, 107, 108, 127. 
Laurent expansion, 65, 68. 
lectures, 81-82. 
Lee metric, 109. 
left-to-right extrema, 102-105. 
linear recurrences, 11-20, 25-27. 
Lueker, George Schick, 14, 79. 

MACSYMA, 90-94, 114, 122-123. 
Mairson, Harry George, v. 
median-of-three quicksort, 18-20. 
Mellin transform, 82, 110. 
Merchant, Arif Abdulhussein, 114. 
merging sequences, 24. 
Mertens, Franz Carl Josef, 63, 79. 
Milne-Thomson, Louis Melville, 

11, 80. 
minvolution, 24. 
MSbius inversion, 61-62. 

National Science Foundation, v. 

INDEX 131 

Newton's expansion, 9. 
Newton's method, 121, 123. 
nonuniform distribution, 102-105. 

O-notation, 43. 
Odlyzko, Andrew Michael, 80, 

120-121. 
Office of Naval Research, v. 
Olver, Frank William John, 96. 
open addressing, see hashing. 
operator methods, 8-9, 31-41, 

85, 87. 
orthogonal relation, 5. 

Page, Ewan Stafford, 11, 80. 
parallel processing, 116. 
partial fractions, 12-13, 51. 
partitions, 48. 
Pascal's triangle, 124, 126. 
Patashnik, Oren, 2, 9, 12, 59, 78, 

105, 118. 
Paterson, Michael Stewart, 31-41, 

112. 
permutations, bubble sort, 84, 

86; cocktail shaker, 84, 86; 
Fibonacci, 111-113; input 
model, 102, 104-106, 113; 
obtainable with a stack, 83. 

Plass, Michael Frederick, 24. 
Poisson summation formula, 119. 
pokeysort, 112, 115. 
polynomials, basic, 8-9; 

irreducible, 48. 
prime factors, distinct, 60-64; 

unusual, 95-98. 
prime numbers, asymptotically, 

60, 97. 

Quick, Jonathan Horatio, 101, 
124, 128. 



132 INDEX 

radix exchange sort, 7, 109. 
Ramshaw, Lyle Harold, 82. 
Read, Ronald Cedric, 77. 
recurrence relations, linear, 11-20; 

nonlinear, 21-30. 
R6nyi, Alfr6d, 78. 
repertoire approach, 17-20, 103. 
residue theorem, 68, 72, 99, 

108-110, 118, 121. 
Rice, Stephan Oswald, 78. 
Riemann zeta function, 51, 61-62. 
Riordan, John, 5-7, 80. 
roots of polynomial, 120-123. 
Rota, Gian-Carlo, 8, 9, 80. 
Rouch6's theorem, 120-121. 
Rousseau, Cecil Clyde, 4. 

saddle point method, 65, 70-76. 
SchSnhage, Arnold, 11, 79. 
secondary clustering, 39-41, 101. 
Sedgewick, Robert, 80, 81, 82. 
semi-invariants, 71, 76. 
shifting the mean, 74-76. 
sliding operators, 39-41, 101, 

103-104. 
Sloane, Neal James Alexander, 27, 

30, 77. 
Spiegel, Murray R., 11, 13, 16, 80. 
Stanley, Richard Peter, 80. 
Stieltjes constants ~/r, 98. 
Stieltjes integral, 55-64. 
Stirling numbers, 7, 76, 118. 
Stirling's approximation, 47, 109. 
Stolarsky, Kenneth Barry, 23, 80. 
Stolfi, Jorge, 90. 
summation by parts 56, 108. 
summation factors, 14, 16, 87. 

tangent, 88. 
Tauberian theorem, 46, 49-50, 54. 

Taylor's expansion, general, 8. 
Thiele expansion, 71-74. 
Trabb Pardo, Luis Isidoro, 79. 
Trading tails, 71. 
trees, balanced binary, 30; binary 

search, 101-103, 104-106, 
124-128; external path 
length, 102-103; late binding, 
101-106, 124-128; ordered 
oriented, 25; representing 
binary, 84-85, 87; total path 
length, 105; traversing binary, 
95, 98-100. 

undetermined coefficients, 13. 

de la Vall6e Poussin, Charles 
Louis Xavier Joseph, 60. 

Vandermonde's theorem, 9. 
variance, 33, 47, 87, 115, 117. 
Vitter, Jeffrey Scott, v. 

Watson, George Neville, 80. 
Whittaker, Sir Edmund Taylor, 

80. 
Wilson, Leslie Blackett, 11, 79. 
Winkler, Phyllis Astrid Benson, v. 
Wright, Edward Maitland, 26, 78. 

Xerox Corporation, iv, v. 

Yao, Andrew Chi-Chih, v. 

Zave, Derek Alan, 10, 80. 
Zeta function, 51, 61-62. 


