




Mathematical Methods and Algorithms 
for 

Signal Processing 





Mathematical Methods and Algorithms 
for 

Signal Processing 

Todd I(. Moon 
Utah State University 

Wynn C. Stirling 
Brigham Young University 

PRENTICE HALL 
Upper Saddle River, NJ  07458 



Library of Congress Calaloging-in-Publication Data 

Moon. Todd K 
Mathematical methods and algorithms for signal processing 1 

Todd K Moon, Wynn C Stirllng 
P cm 

Includes bibliographical references and index 
ISBN 0-201 -361 86-8 
I Srgnal procerslng-Mathematics 2 Algonthm'i I Stirl~ng 

Wynn C I1 Title 
TK5102 9 M63 1999 
621 382'2'0151-dc21 

99-3 1038 
CIP 

Publisher Marsha Horron 
Editorial D~rector Tom Robbz~zs 
Production editor Brirrney Cori /gun-Mc Elroy 
Managrng editor VInce O 'Brren 
Assistant managing ed~tor Eileen Clurk 
Art director Kevin Bern] 
Cover deslgn Karl Mljajlmu 
Manufacturing manager Trudy Pt rclottl 
Asslrtant vice presrdent of production and manufactunng David W Riccardr 

@ 2000 by Prentlce Hall 
Prentice-Hall, Inc. 
Upper Saddle River. New Jersey 07458 

All rightc reserked No part of this book may be reproduced rn any form or by any means, wlthout 
permlssron In wnting from the publisher 

The author and publi\her of thls book have used their best efforts In preparing thls book These ef- 
forts include the development, research, and testing of the theorres and programs to determine their 
effect~veness The author and pubhsher make no warranty of any k~nd. expressed or implled, wrth 
regard to thece programs or the documentation contaned In this book The author and publisher shall 
not be liable in any event for incidental or consequential damages in connection. or arlslng out of, the 
furn~shing. performance. or use of these programs 

Pnnted in the Unlted States of America 

1 0 9 8 7 6 5 4  

ISBN 0-201-361 86-8 

PRENTICE-H~LL IIUTER~\~A'IIO~AL (UK) LIMITED Londorl 
PREYTICC-HALL OF 4L1STRAL14 PTY LIMITED, Sydnei 
PRE\TICE-HALL CANADA INC . Toronto 
PREYTICE-HALL HISPA%OAMERICA'UA, S A . Mexico 
PREYTICE-HALL 01- INDIA PRIVATE LIMITFD, N ~ M .  D ~ l h i  
PREYTICI -HALL OF JAPAN. I ~ c  T o k ~  
PRFNTICF-HA1 1 (SIN(~APORI- j PTE 1-TD Srrzyuporr 
EDITOR4 PKFZTICF-HALI I 1 0  BRA\II LIL)A Rlo de J<~rioro 



Contents 

I Introduction and Foundations 

1 Introduction and Foundations 
1 . 1  What is signal processing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  1.2 Mathematical topics embraced by signal processing 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 Mathematical models 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4 Models for linear systems and signals 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4.1 Linear discrete-time models 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4.2 Stochastic MA and AR models 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4.3 Continuous-time notation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4.4 Issues and applications 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4.5 Identification of the modes 

1.4.6 Control of the modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.5 Adaptive filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.1 System identification 
1 5.2 Inverse system identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . 5.3 Adaptive predictors 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . 5.4 Interference cancellation 

. . . . . . . . . . . . . . . . . . .  1.6 Gaussian random variables and random processes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.6.1 Conditional Gaussian densities 

1.7 Markov and Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.7.1 Markov models 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.7.2 Hidden Markov models 
1.8 Some aspects of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  1.8.1 Proof by computation: direct proof 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 3 . 2  Proof by contradiction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.8.3 Proof by induction 
. . . . . . . . . . . . . . . . . . . . .  1.9 An application: LFSRs and Massey's algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  1.9.1 Issues and applications of LFSRs 
1.9.2 Massey's algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . .  1.9.3 Characterization of LFSR length in Massey's algorithm 
1.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I1 Vector Spaces and Linear Algebra 

2 Signal Spaces 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Metric spaces 

2.1.1 Some topological terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.1.2 Sequences, Cauchy sequences. and completeness . . . . . . . . . . . . .  



vi Contents 

. . . . . . . . .  2.1.3 Technicalities associated with the L ,  and L ,  spaces 
Vectorspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.1 Linear combinations of vectors 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.2 Linear independence 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.3 Basis and dimension 

. . . . . . . .  2.2.4 Finite-dimensional vector spaces and matrix notation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Norms and normed vector spaces 

. . . . . . . . . . . . . . . . . . .  2.3.1 Finite-dimensional normed linear spaces 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Inner products and inner-product spaces 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.4.1 Weak convergence 
Inducednorrns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The Cauchy-Schwarz inequality 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Direction of vectors: Orthogonality 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Weighted inner products 
. . . . . . . . . . . . . . . . . . . . . . . . . .  2.8.1 Expectation as an inner product 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Hilbert and Banach spaces 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Orthogonal subspaces 

. . . . . . . . . . . . . . . . . . . . . . .  Linear transformations: Range and nullspace 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Inner-sum and direct-sum spaces 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Projections and orthogonal projections 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.13.1 Projection matrices 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The projection theorem 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Orthogonalization of vectors 

. . . . . . . . . . . . .  Some final technicalities for infinite dimensional spaces 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Exercises 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 Representation and Approximation in Vector Spaces 
. . . . . . . . . . . . . . . . . . . . . . .  3.1 The approxirnation problem in Hilbert space 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1. I The Gram~nian matrix 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 The orthogonality principle 

. . . . . . . . . . . . . .  3.2.1 Representations in infinite-dimensional space 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Error mininlization via gradients 

. . . . . . . . . . . . . . . . . . .  3.4 Matrix representations of least-squares problems 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.1 Weighted least-squares 

. . . . . . . . . .  3.4.2 Statistical properties of the least-squares estimate 
. . . . . . . . . . . . . . . . . . .  3.5 Minimum error in Hilbert-space approximations 

Applications of the orthogonality theorem 
. . . . . . . . . . . . . . . . . . . . . . . .  3.6 Approximation by continuous polynomials 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.7 Approxiination by discrete polynomials 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.8 Linear regression 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.9 Least-squares filtering 
3.9.1 Least-squares prediction and AR spectrum 

. . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  estimation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.10 Miniruun~ mean-square estimation 
. . . . . . . . . . . . . . . . . . .  3.1 1 Minimum mean-squared error (MMSE) filtering 

. . . . . . . . . . . .  3.12 Comparison of least squares and rniniii~urn mean squares 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.13 Frequency-domain optimal filtering 

3.13.1 Brief review of stochastic processes and 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I ~ p l a c e  transforms 



Contents vii 

3.13.2 Two-sided Laplace transforms and their 
. . 

decompos~tlons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.13.3 The Wiener-Hopf equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.13.4 Solution to the Wiener-Hopf equation . . . . . . . . . . . . . . . . . . . .  
3.13.5 Examples of Wiener filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.13.6 Mean-square error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.13.7 Discrete-time Wiener filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3.14 A dual approximation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.15 Minimum-norm solution of underdetermined equations . . . . . . . . . . . . .  
3.16 Iterative Reweighted LS (IRLS) for L, optimization . . . . . . . . . . . . . . . .  
3.17 Signal transformation and generalized Fourier series . . . . . . . . . . . . . . . .  
3.18 Sets of complete orthogonal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3.18.1 Trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 8.2 Orthogonal polynomials 

3.18.3 Sinc functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.18.4 Orthogonal wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3.19 Signals as points: Digital communications . . . . . . . . . . . . . . . . . . . . . . . . .  
3.19.1 The detection problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.19.2 Examples of basis functions used in digital 

communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.19.3 Detection in nonwhite noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3.20 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 Linear Operators and Matrix Inverses 
4.1 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.1.1 Linear functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.2 Operator norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.2.1 Bounded operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2.2 The Neumann expansion 

4.2.3 Matrix norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.3 Adjoint operators and transposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3.1 A dual optimization problem 
4.4 Geometry of linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.5 Four fundamental subspaces of a linear operator . . . . . . . . . . . . . . . . . . . .  

4.5.1 The four fundamental subspaces with 
non-closed range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.6 Some properties of matrix inverses 
4.6.1 Tests for invertibility of matrices . . . . . . . . . . . . . . . . . . . . . . . . .  

4.7 Some results on matrix rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.7.1 Numeric rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.8 Another look at least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.9 Pseudoinverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.10 Matrix condition number 
4.1 1 Inverse of a small-rank adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.1 1.1 An application: the RLS filter . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1 1.2 Two RLS applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.12 Inverse of a block (partitioned) matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.12.1 Application: Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



viii Contents 

5 Some Imporbnt Matrix Factorizations 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 The LU factorization 

5.1.1 Computing the determinant using the LU factorization . . . . .  
5.1.2 Computing the LU factorization . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 The Cholesky factorization 
5.2.1 Algorithms for computing the Cholesky factorjzation . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Unitary matrices and the QR factorization 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3.1 Unitary matrices 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3.2 The QR factorization 
. . . . . . . . . . . . . . . . . .  5.3.3 QR factorization and least-squares filters 

5.3.4 Computing the QR factorization . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.3.5 Householder transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  5.3.6 Algorithms for Householder transformations 
5.3.7 QR factorization using Givens rotations . . . . . . . . . . . . . . . . . . .  
5.3.8 Algorithms for QR factorization using Givens rotations . . . . .  
5.3.9 Solving least-squares problems using Givens rotations . . . . . .  

. . . . . . . . . . . . . . . . . . .  5.3.10 Givens rotations via CORDIC rotations 
5.3.1 1 Recursive updates to the QR factorization . . . . . . . . . . . . . . . . .  

5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 Eigenvalues and Eigenvectors 
6.1 Eigenvalues and linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 Linear dependence of eigenvectors 
6.3 Diagonalization of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.3.1 The Jordan form 
. . . . . . . . . . . . . . . . . . .  6.3.2 Diagonalization of self-adjoint matrices 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.4 Geometry of invariant subspaces 
. . . . . . . . . . . .  6.5 Geometry of quadratic forms and the minimax principle 

. . . . . . . . . . . . . . .  6.6 Extremai quadratic forms subject to linear constraints 
6.7 The Gershgorin circle theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Application of Eigendecomposition methods 
6.8 Karhunen-Lokve low-rank approximations and principal methods . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.8.1 Principal component methods 
6.9 Eigenfilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  6.9.1 Eigenfilters for random signals 
6.9.2 Eigenfilter for designed spectral response . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.9.3 Constrained eigenfilters 
6.10 Signal subspace techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.10.1 The signal model 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.10.2 The noise model 

6.10.3 Pisarenko harmonic decomposition . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.i0.4 MUSIC 

6.1 1 Generalized eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.1 1.1  An application: ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6.12 Characteristic and minimal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.1 2.1 Matrix polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.12.2 Minimal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6.13 Moving the eigenvalues around: Introduction to linear control . . . . . . .  

6.14 Noiseless constrained channel capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Contents ix 

. . . . . . . . . . . . . . . . . . . . . .  6.15 Computation of eigenvalues and eigenvectors 
. . . . . . . . . . .  6.15.1 Computing the largest and smallest eigenvalues 

6.15.2 Computing the eigenvalues of a symmetric matrix . . . . . . . . .  
6.15.3 The QR iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.16 Exercises 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.17 References 

7 The Singular Value Decomposition 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 Theory of the SVD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2 Matrix structure from the SVD 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3 Pseudoinverses and the SVD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.4 Numerically sensitive problems 
. . . . . . . . . . . . . . . . . . . . .  7.5 Rank-reducing approximations: Effective rank 

Applications of the SVD 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.6 System identification using the SVD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.7 Total least-squares problems 
. . . . . . . . . . . . . . .  7.7.1 Geometric interpretation of the TLS solution 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.8 Partial total least squares 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.9 Rotation of subspaces 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.10 Computation of the SVD 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 1 Exercises 

7.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8 Some Special Matrices and Their Applications 
. . . . . . . . . . . . . . . . . . . . . . . . . .  8.1 Modal matrices and parameter estimation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.2 Permutation matrices 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  8.3 Toeplitz matrices and some applications 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.3.1 Durbin's algorithm 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.3.2 Predictors and lattice filters 

. . . . . . . . . . . . . . . . . .  8.3.3 Optimal predictors and Toeplitz inverses 
. . . . . . . . . . .  8.3.4 Toeplitz equations with a general right-hand side 

8.4 Vandermonde matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.5 Circulant matrices 

8.5.1 Relations among Vandermonde, circulant, and 
companion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8.5.2 Asymptotic equivalence of the eigenvalues of Toeplitz and 
circulant matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.6 Triangular matrices 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.7 Properties preserved in matrix products 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.8 Exercises 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.9 References 

9 Kronecker Products and the Vec Operator 
9.1 The Kronecker product and Kronecker sum . . . . . . . . . . . . . . . . . . . . . . . .  
9.2 Some applications of Kronecker products . . . . . . . . . . . . . . . . . . . . . . . . . .  

9.2.1 Fast Hadamard transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9.2.2 DFT computation using Kronecker products . . . . . . . . . . . . . . .  

9.3 The vec operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.5 References 



x Contents 

111 Detection. Estimation. and Optimal Filtering 

10 Introduction to Detection and Estimation. and Mathematical Notation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.1 Detection and estimation theory 

. . . . . . . . . . . . . . . . . . . . . . . . .  10.1.1 Game theory and decision theory 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.1.2 Randomization 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.1.3 Special cases 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.2 Some notational conventions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.2.1 Populations and statistics 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.3 Conditional expectation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.4 Transformations of random variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.5 Sufficient statistics 

. . . . . . . . . . . . . . . . . . . . . . . . . .  10.5.1 Examples of sufficient statistics 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.5.2 Co~nplete sufficient statistics 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.6 Exponential families 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.7 Exercises 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.8 References 

11 Detection Theory 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.1 Introduction to hypothesis testing 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.2 Neyman-Pearson theory 
. . . . . . . . . . . . . . . . . . . . . . . . .  11.2.1 Simple binary hypothesis testing 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.2.2 The Neyman-Pearson lemma 
. . . . . . . . . . . . . . .  1 1.2.3 Application of the Neyman-Pearson lemma 

1 1.2.4 The likelihood ratio and the receiver operating 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  characteristic (ROC) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.2.5 A Poisson example 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.2.6 Some Gaussian examples 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.2.7 Properties of the ROC 
. . . . . . . . .  1 1.3 Neyman-Pearson testing with composite binary hypotheses 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.4 Bayes decision theory 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.4.1 The Bayes principle 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.4.2 The risk function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.4.3 Bayes risk 

. . . . . . . . . . . . . . . . . . .  11.4.4 Bayes tests of simple binary hypotheses 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 1.4.5 Posterior distributions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.4.6 Detection and sufficiency 
. . . . . . . . . . . . . . . . . . . .  1 1.4.7 Summary of binary decision problems 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.5 Some M-ary problems 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.6 Maximum-likelihood detection 

11.7 Approximations to detection performance: The union bound . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.8 Invariant Tests 

. . . . . . . . . . . . .  1 1.8.1 Detection with random (nuisance) parameters 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.9 Detection in continuous time 

. . . . . . . . . . . . . . . . . . . . . .  1 1.9.1 Some extensions and precautions 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.10 Minimax Bayes decisions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.10.1 Bayes envelope function 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.10.2 Minimax rules 

1 1.10.3 Minimax Bayes in multiple-decision problems . . . . . . . . . .  



Contents x i  

1 1.10.4 Determining the least favorable prior . . . . . . . . . . . . . . . . . . .  
11.10.5 A minimax example and the minimax theorem . . . . . . . . . .  

1 1 .I 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 1.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Estimation Theory 
12.1 The maximum-likelihood principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.2 ML estimates and sufficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.3 Estimation quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

12.3.1 The score function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.3.2 The Cramiir-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . . . .  
12.3.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.3.4 Asymptotic properties of maximum-likelihood 

estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.3.5 The multivariate normal case . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.3.6 Minimum-variance unbiased estimators . . . . . . . . . . . . . . . . .  
1 2.3.7 The linear statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

12.4 Applications of ML estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.4.1 ARMA parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.4.2 Signal subspace identification . . . . . . . . . . . . . . . . . . . . . . . . .  
12.4.3 Phase estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

12.5 Bayes estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.6 Bayes risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

12.6.1 MAP estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.6.3 Conjugate prior distributions . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.6.4 Connections with minimum mean-squared 

estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.6.5 Bayes estimation with the Gaussian distribution . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12.7 Recursive estimation 
12.7.1 An example of non-Gaussian recursive Bayes . . . . . . . . . . .  

12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

13 The Kalman Filter 
13.1 The state-space signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13.2 Kalman filter I: The Bayes approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13.3 Kalman filter 11: The innovations approach . . . . . . . . . . . . . . . . . . . . . . .  

13.3.1 Innovations for processes with linear observation models . 
13.3.2 Estimation using the innovations process . . . . . . . . . . . . . . .  
13.3.3 Innovations for processes with state-space models . . . . . . .  
13.3.4 A recursion for Ptjr- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13.3.5 The discrete-time Kalman filter . . . . . . . . . . . . . . . . . . . . . . . .  
13.3.6 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13.3.7 Comparison with the RLS adaptive filter algorithm . . . . . .  

13.4 Numerical considerations: Square-root filters . . . . . . . . . . . . . . . . . . . . . .  
13.5 Application in continuous-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . .  

13.5.1 Conversion from continuous time to discrete time . . . . . . . . . .  
13.5.2 A simple kinematic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

13.6 Extensions of Kalman filtering to nonlinear systems . . . . . . . . . . . . . . . .  



uii Contents 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.7 Smoothing 
. . . . . . . . .  13.7.1 The Rauch-Tung-Streibel fixed-interval smoother 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.8 Another approach: ti, smoothing 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.9 Exercises 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.10 References 

IV Iterative and Recursive Methods in Signal Processing 

14 Basic Concepts and Methods of Iterative Algorithms 
14.1 Definitions and qualitative properties of iterated 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  functions 
. . . . . . . . . . . . . . . . . . . . . .  14.1.1 Basic theorems of iterated functions 

. . . . . . . . . . . . . . . . . . . . . . . . .  14.1.2 Illustration of the basic theorems 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.2 Contraction mappings 

. . . . . . . . . . . . . . . . . . . . . . .  14.3 Rates of convergence for iterative algorithms 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.4 Newton's method 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.5 Steepest descent 
14.5.1 Comparison and discussion: Other techniques . . . . . . . . . . . . .  

Some Applications of Basic Iterative Methods 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.6 LMS adaptive Filtering 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.6.1 An example LMS application 
. . . . . . . . . . . . . . . . . . . . . . .  14.6.2 Convergence of the LMS algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.7 Neural networks 
. . . . . . . . . . . . . . . . . . .  14.7.1 The backpropagation training algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.7.2 The nonlinearity function 
. . . . . . . . . . . . . . . . .  14.7.3 The forward-backward training algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.7.4 Adding a momenturn term 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.7.5 Neural network code 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.7.6 How many neurons? 

. . . . . . . . . . . . . . . . . . . . . . . . . .  14.7.7 Pattern recognition: ML or NN? 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.8 Blind source separation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.8.1 A bit of infonnation theory 
. . . . . . . . . . . . . . . . . . . . . . . .  14.8.2 Applications to source separation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.8.3 Implementation aspects 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.9 Exercises 

14.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

15 Iteration by Composition of Mappings 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.1 Introduction 

. . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.2 Alternating projectrons 

15.2.1 An applications: handlimited reconstruction . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.3 Composite mappings 

15.4 Closed mappings and the global convergence theorem . . . . . . . . . . . . . .  
15.5 The cotnposite mapping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  15.5.1 Bandlinlited reconstruction . revisited 
15.5.2 An example: Positive sequence determination . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.5.3 Matrix property mappings 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.6 Projection on convex sets 

15.7 Exercises . . . . . . . . . . . . . . . . .  .. . . . .  .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15.8 Rckrencei 



Contents xiii 

16 Other Iterative Algorithms 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.1 Clustering 

. . . . . . . . . . . . . .  16.1.1 An example application: Vector quantization 
. . . . . . . . . . . . . . .  16.1.2 An example application: Pattern recognition 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.1.3 k -means Clustering 
. . . . . . . . . . . . . . . . . . . . . . . . . .  16.1.4 Clustering using fuzzy k -means 

. . . . . . . . . . . . . . . .  16.2 Iterative methods for computing inverses of matrices 
16.2.1 The Jacobi method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.2.2 Gauss-Seidel iteration 
. . . . . . . . . . . . . . . . . . . . . . . .  16.2.3 Successive over-relaxation (SOR) 
. . . . . . . . . . . . . . . . . . . . . . . .  16.3 Algebraic reconstruction techniques (ART) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.4 Conjugate-direction methods 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.5 Conjugate-gradient method 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.6 Nonquadratic problems 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.7 Exercises 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.8 References 

17 The EM Algorithm in Signal Processing 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.1 An introductory example 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.2 General statement of the EM algorithm 
17.3 Convergence of the EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  17.3.1 Convergence rate: Some generalizations 
Example applications of the EM algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.4 Introductory example, revisited 
17.5 Emission computed tomography (ECT) image reconstruction . . . . . . . .  
17.6 Active noise cancellation (ANC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
177 HiddenMarkovmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

17.7.1 TheE-andM-steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
.................. 17.7.2 The forward and backward probabilities 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.7.3 Discrete output densities 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.7.4 Gaussian output densities 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.7.5 Normalization 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.7.6 Algorithms for HMMs 

. . . . . . . . . . . . . . . . . . . . . . . .  17.8 Spread-spectrum, multiuser communication 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.9 Summary 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.10 Exercises 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17.1 1 References 

V Methods of Optimization 

18 Theory of Constrained Optimization 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18.1 Basic definitions 

18.2 Generalization of the chain rule to composite functions . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  18.3 Definitions for constrained optimization 

. . . . . . . . . . . . . . . . . . . . . . . . .  18.4 Equality constraints: Lagrange multipliers 
. . . . . . . . . . . .  18.4.1 Examples of equality-constrained optimization 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18.5 Second-order conditions 
. . . . . . . . . . . . . . . . . . . . . . . . . .  18.6 Interpretation of the Lagrange multipliers 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18.7 Complex constraints 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18.8 Duality in optimization 



xiv Conten& 

. . . . . . . . . . . . . . . . . . . .  18.9 Inequality constraints: Kuhn-Tucker conditions 
. . . . . . . . .  18.9.1 Second-order conditions for inequality constraints 

. . . . . . . . . . . . . . . . . . . . . .  18.9.2 An extension: Fritz John conditions 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 8.10 Exercises 

18.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

19 Shortest-Path Algorithms and Dynamic Programming 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.1 Definitions for graphs 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.2 Dynamic programming 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.3 The Viterbi algorithm 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.4 Code for the Viterbi algorithm 

. . . . . . . . . . . . . .  19.4.1 Related algorithms: Dijkstra's and Warshall's 
. . . . . . . . . . .  19.4.2 Complexity comparisons of Viterbi and Dijkstra 

Applications of path search algorithms 
. . . . . . . . . . . . . . . . . . . . . . . . .  19.5 Maximum-likelihood sequence estimation 

. . . . . . . . . . . . . . . .  19.5.1 The intersymbol interference (ISI) channel 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.5.2 Code-division multiple access 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.5.3 Convolutional decoding 
. . . . . . . . . . . . . . . . . . . . . .  19.6 HMM likelihood analysis and HMM training 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.6.1 Dynamic warping 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  19.7 Alternatives to shortest-path algorithms 

19.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19.9 References 

20 Linear Programming 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.1 Introduction to linear programming 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.2 Putting a problem into standard form 

. . . . . . . . . . . . . . . . .  20.2.1 Inequality constraints and slack variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.2.2 Free variables 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.2.3 Variable-bound constraints 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  20.2.4 Absolute value in the objective 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  20.3 Simple examples of linear programming 

. . . . . . . . . . . . . . . . . . .  20.4 Computation of the linear programming solution 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.4.1 Basic variables 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.4.2 Pivoting 
. . . . . . . . . . . . . . . . . . . . .  20.4.3 Selecting variables on which to pivot 

. . . . . . . . . .  20.4.4 The effect of pivoting on the value of the problem 
. . . . . . . . . . . . . . . . . . . . . . .  20.4.5 Summary of the simplex algorithm 

. . . . . . . . . . . . . . . . . .  20.4.6 Finding the initial basic feasible solution 
. . . . . . . . . . . . . . . . . . .  20.4.7 MATLAB@ code for linear programming 

. . . . . . . . . . . . . . . . .  20.4.8 Matrix notation for the silnplex algorithm 
20.5 Dual problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.6 Karmarker's algorithm for LP 
. . . . . . . . . . . . . . . . . . .  20.6.1 Conversion to Karmarker standard form 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.6.2 Convergence of the algorithm 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.6.3 Su~nrnary and extensions 

Examples and applications of linear programming 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.7 Linear-phase FIR filter design . . 

. . . . . . . . . . . . . . . . . . . . . . .  20.7.1 Least-absolute-error approximation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.8 Linear optimal control 



Contents xv 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.9 Exercises 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.10 References 

A Basic Concepts and Definitions 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.! Set theory and notation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.2 Mappings and functions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.3 Convex functions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.4 0 and o Notation 
. . A.5 Continulty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.6 Differentiation 
. . . . . . . . . . . . . . . . . .  A.6.1 Differentiation with a single real variable 

. . . . . . . . . . . . . . . . . . . .  A.6.2 Partial derivatives and gradients on Rm 
. . . . . . . . . . . . . . . . . . .  A.6.3 Linear approximation using the gradient 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.6.4 Taylor series 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.7 Basic constrained optimization 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  A.8 The Holder and Minkowski inequalities 
A.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A . I0 References 

B Completing the Square 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B . 1 The scalar case 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B.2 The matrix case 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B.3 Exercises 

C Basic Matrix Concepts 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C . 1 Notational conventions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.2 Matrix Identity and Inverse 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.3 Transpose and trace 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.4 Block (partitioned) matrices 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.5 Determinants 

. . . . . . . . . . . . . . . . . . . . . . . . . .  C.5.1 Basic properties of determinants 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.5.2 Formulas for the determinant 

. . . . . . . . . . . . . . . . . . . . . . . . .  C.5.3 Determinants and matrix inverses 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.6 Exercises 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.7 References 

D Random Processes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  D.l Definitions of means and correlations 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  D.2 Stationarity 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  D.3 Power spectral-density functions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  D.4 Linear systems with stochastic inputs 
. . . . . . . . . . . . . . . . . . . . .  D.4.1 Continuous-time signals and systems 

. . . . . . . . . . . . . . . . . . . . . . . .  D.4.2 Discrete-time signals and systems 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  D.5 References 

E Derivatives and Gradients 
. . . . . . . .  E . 1 Derivatives of vectors and scalars with respect to a real vector 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E . 1.1 Some important gradients 
. . . . . . . . . . . . . . . . .  E.2 Derivatives of real-valued functions of real matrices 

. . . . . . . . .  E.3 Derivatives of matrices with respect to scalars, and vice versa 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.4 The transformation principle 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.5 Derivatives of products of matrices 



xvi ContenLs 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.6 Derivatives of powers of a matrix 904 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.7 Derivatives involving the trace 906 

. . . . . . . .  E.8 Modifications for derivatives of complex vectors and matrices 908 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.9 Exercises 910 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  E.10 References 912 

F Conditional Expectations of Multinomial and Poisson r.v.s 913 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  F.l Multinomial distributions 913 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  F.2 Poisson random variables 914 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  F.3 Exercises 914 

Bibliography 915 



List of Figures 

. . . . . . . . . . . . . . . . . . . . . . .  Input loutput relation for a transfer function 
. . . . . . . . . . . . . . . . . . .  Realization of the AR part of a transfer function 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Realization of a transfer function 
Realization of a transfer function with state-variable labels . . . . . . . . . .  . . 
Prediction error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Linear predictor as an inverse system . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PSD input and output 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Representation of an adaptive filter 

Identification of an unknown plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . .  Adapting to the inverse of an unknown plant 

An adaptive predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Configuration for interference cancellation . . . . . . . . . . . . . . . . . . . . . . . .  
The Gaussian density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Demonstration of the central limit theorem . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  Plot of two-dimensional Gaussian distribution 
A simple Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
An HMM with four states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Binary symmetric channel model 
LFSR realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Alternative LFSR realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A binary LFSR and its output 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Simple feedback configuration 

Illustration of the triangle inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Quantization of the vector x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Comparison of d. and dz metrics 
xo is interior. xz is exterior. and xl is neither interior nor exterior . . . .  
Illustration of open and closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The function f. ( t )  
Illustration of Gibbs phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A subspace of IR3 
A triangle inequality interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Unit spheres in IR2 under various l p  norm . . . . . . . . . . . . . . . . . . . . . . . . .  
Chebyshev polynomials To(t)  through Ts( t )  for t E [- 1. 1 ] . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  A space and its orthogonal complement 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Disjoint lines in R* 

. . . . . . . . . . . . . . . . . . . . .  Decomposition of x into disjoint components 
Orthogonal projection finds the closest point in V to x . . . . . . . . . . . .  
Orthogonal projection onto the space spanned by several vectors . . .  



xviii List of Figures 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The projection theorem 
. . . . . . . . . . . . . . . . . . . . .  The first steps of the Gram-Schmidt process 

. . . . . . . . . . . . . . . . . . . . . . . . .  Third step of the Gram-Schmidt process 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The parallelogram law 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Functions to orthogonalize 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The approximation problem 
. . . . . . . . . . . . . . . . . . . . . . . .  Approximation with one and two vectors 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  An error surface for two variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Projection solution 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Statistician's Pythagorean theorem 
Comparison of LS. WLS. and Taylor series approximations to e' . . .  

. . . . . . . . . . . . .  A discrete function and the error in its approximation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Data for regression 

Illustration of least-squares and weighted least-squares lines . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Least-squares equalizer example 

An equalizer problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Contour plot of an error surface 

Pole-zero plot of rational S ,  (s) ( x  = poles. o = zeros) . . . . . . . . . . . .  
y, as the output of a linear system driven by white noise . . . . . . . . . . .  
v, as the output of a linear system driven by y, . . . . . . . . . . . . . . . . . . . .  
The optimal filter as the cascade of a whitening filter and a Wiener 
filter with white-noise inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Minimum norm to a linear variety 
. . . . . . . . . . . . . . .  Magnitude response for filters designed using IRLS 

Legendre polynomials po( t )  through p s ( t )  for t E [- 1. I ]  . . . . . . . . .  
A function f ( t )  and its projection onto VO and V-l . . . . . . . . . . . . . . .  
The simplest scaling and wavelet functions . . . . . . . . . . . . . . . . . . . . . . .  
Illustration of scaling and wavelet functions . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Illustration of a wavelet transform 
Multirate interpretation of wavelet transform . . . . . . . . . . . . . . . . . . . . .  
Illustration of the inverse wavelet transform . . . . . . . . . . . . . . . . . . . . . .  
Filtering interpretation of an inverse wavelet transform . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Perfect reconstruction filter bank 
Two basis functions. and some functions represented by using them 
Implementations of digital receiver processing . . . . . . . . . . . . . . . . . . .  
Digital receiver processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
In~plementation of a matched filter rece~ver . . . . . . . . . . . . . . . . . . . . . .  
PSK signal constellation and detection example . . . . . . . . . . . . . . . . . .  
Illustration of concepts of various signal constellations . . . . . . . . . . . .  
Block diagram for detection processing . . . . . . . . . . . . . . . . . . . . . . . . . .  

Geometry of the operator norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Intersections of lines form solutions of systems of linear equations . 
Intersecting planes: (a) no solution (b) infinite number of solutions . 
The four fundamental subspaces of a matrix operator . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Operation of the pseudoinverse 
Demonstration of an ill-conditioned linear system . . . . . . . . . . . . . . . .  
Condition of the Hilbert matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Condition number for a bad idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  RLS adaptive eq ualiztr 



Lis t  of Figures xix 

. . . . . . . . . . . . . . . . . . . . . .  Illustration of RLS equalizer performance 
System identification using the RLS adaptive filter . . . . . . . . . . . . . . .  
Illustration of system identification using the RLS filter . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  The Householder transformation of a vector 
Zeroing elements of a vector by a Householder transformation . . . .  
Two-dimensional rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The direction of eigenvectors is not modified by A . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The geometry of quadratic forms 

Level curves for a Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . .  
The maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Illustration of Gershgorin disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  Scatter data for principal component analysis 
Noisy signal to be filtered using an eigenfilter h . . . . . . . . . . . . . . . . .  
Magnitude response specifications for a lowpass filter . . . . . . . . . . . .  
Eigenfilter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Response of a constrained eigenfilter . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . .  The MUSIC spectrum for example 6.10.2. 
Plant with reference input and feedback control . . . . . . . . . . . . . . . . .  
State diagram for a constrained channel . . . . . . . . . . . . . . . . . . . . . . . .  
Direct and indirect transmission through a noisy channel . . . . . . . . .  
Expansion and interpolation using multirate processing . . . . . . . . . .  
Transformation from a general matrix to first companion form . . . .  

Illustration of the sensitive direction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Comparison of least-squares and total least-squares fit . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  PTLS linear parameter identification 
. . . . . . . . . . . . . . . . . . . .  A data set rotated relative to another data set 

. . . . . . . . . . . . . . . . . .  The first two stages of a lattice prediction filter 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The kth stage of a lattice filter 

Comparison of S(o) and the eigenvalues of R, for n = 30 
and n = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4-point fast Hadamard transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . .  6-point DFT using Kronecker decomposition 

. . . . . . . . . . . . . . . .  Loss function (or matrix) for "odd or even" game 
. . . . . . . . . . . . . . . . . . . . . . .  Elements of the statistical decision game 
. . . . . . . . . . . . . . . . . . . . . . .  A simple binary communications channel 

A typical payoff matrix for the Prisoner's Dilemma game . . . . . . . . .  

. . . . . . . . . . . . . . . .  Illustration of threshold for Neyman-Pearson test 
. . . . . . . . . . . . . . . . . . . . . . . . . .  Scalar Gaussian detection of the mean 

Error probabilities for Gaussian variables with different 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  means and equal variances 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ROC for Gaussian detection 

Test for vector Gaussian random variables with different means . . .  
. . . . . . . . . . . . . . . . . . . . . . . . .  Probability of error for BPSK signaling 



XX List of Figures 

. . . . . . . . . .  An orthogonal and antipodal binary signal constellation 
ROC: normal variables with equal means and unequal variances . . 

. . . . . . . . . . . . . .  Demonstration of the concave property of the ROC 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  Illustration of even-odd observations 

. . . . . . . . . . . . . . . . . . .  Risk function for statistical odd or even game 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A binary channel 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Risk function for binary channel 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Loss function 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Bayes risk for a decision 
Geometry of the decision space for multivariate Gaussian detection 
Decision boundaries for a quaternary decision problem . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  Venn diagram for the union of two sets 
. . . . . . . . . . . . .  Bound on the probability of error for PSK signaling 

A test biased by y c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Channel gain and rotation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Incoherent binary detector 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Probability of error for BPSK 
A projection approach to signal detection . . . . . . . . . . . . . . . . . . . . . . .  
Bayes envelope function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bayes envelope function: normal variables with unequal 
means and equal variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bayes envelope function for example 1 1.4.5 . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Bayes envelope for binary channel 
. . . . . . . . . . . . . . . . . . . . . . . .  Geometrical interpretation of the risk set 

Geometrical interpretation of the minimax rule . . . . . . . . . . . . . . . . . .  
The risk set and its relation to the Neyman-Pearson test . . . . . . . . . .  
Risk function for statistical odd or even game . . . . . . . . . . . . . . . . . . .  
Risk set for odd or even game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Risk set for the binary channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Regions for bounding the Q function 
Channel with Laplacian noise and decision region . . . . . . . . . . . . . . .  
Some signal constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Signal constellation with three points 

Empiric distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Explicitly computing the estimate of the phase . . . . . . . . . . . . . . . . . .  
A phase-locked loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Illustration of the update and propagate steps in 

. . 
sequential estrmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Acoustic level framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Equivalent representations for the Gaussian estimation problem . . .  

Illustration of Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Illustration of an orbit of a function with an attractive fixed point . . 
Illustration of an orbit of a function with a repelling fixed point . . .  
Examples of dynamical behavior on the quadratic logistic map . . . .  

. . . . . . . . . . . . . . . . . . .  Illustration of g(x) = f ( f  (x)) when ii = 3.2 
Iterations of an affine transformation . acting on a square . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Illustration of Newton'., method 



List of Figures xxi 

Contour plots of Rosenbrock's function and Newton's method . . . .  
A function with local and global minima . . . . . . . . . . . . . . . . . . . . . . . .  
Convergence of steepest descent on a quadratic function . . . . . . . . . .  
Error components in principal coordinates for steepest descent . . . .  
Error in the LMS algorithm for p = 0.075 and p = 0.0075, 
compared with the RLS algorithm, for an adaptive equalizer 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  problem 
Optimal equalizer coefficients and adaptive equalizer coefficients . 
Representation of the layers of an artificial neural network . . . . . . . .  
An artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Notation for a multilayer neural network . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The sigmoidal nonlinearity 
Pattern-recognition problem for a neural network . . . . . . . . . . . . . . . .  
Desired output (solid line) and neural network output (dashed line) 
Effect of convergence rate on p and a . . . . . . . . . . . . . . . . . . . . . . . . . .  
The blind source-separation problem . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The binary entropy function H (p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Illustration of a projection on a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Projection on convex sets in two dimensions . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  Results of the bandlimited reconstruction algorithm 
. . . . . . . . . . . . . . . . . . . . . .  Property sets in X and their intersection P 

Illustration of the composition of point-to-set mappings . . . . . . . . . .  
Projection onto a non-convex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Producing a positive sequence from the Hamming window . . . . . . .  
Results from the application of a composite mapping 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  algorithm to sinusoidal data 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Geometric properties of convex sets 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Projection onto two convex sets 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Demonstration of clustering 
. . . . . . . . . . . . . . . . . . . . . .  Clusters for a pattern recognition problem 
. . . . . . . . . . . . . . . . . . . . .  Illustration of iterative inverse computation 

Residual error in the ART algorithm as a function of iteration . . . . .  
Convergence of conjugate gradient on a quadratic function . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  An overview of the EM algorithm 
. . . . . . . . . . . . . .  Illustration of a many-to-one mapping from X to y 

. . . . . . . . . . . . . . . . . . . . . . . . .  Representation of emission tomography 
Detector arrangement for tomographic reconstruction example . . . .  

. . . . . . . . . . . . . . . . . . .  Example emission tomography reconstruction 
Single-microphone ANC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  Processor block diagram of the ANC system 
log P ( ~ T  I B [ ~ ] )  for an HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  Representation of signals in an SSMA system 
. . . . . . . . . . . . . . . . . . . .  Multiple-access receiver matched-filter bank 

Examples of minimizing points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Contours of f ( x , .  x2). showing minimum and 
constrained minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



xxii List of Figures 

. . . . . . . . . .  Relationships between variables in composite functions 
. . . . . . . . . . . . . . . . . . . . . . . . .  Illustration of functional dependencies 
. . . . . . . . . . . . . . . . . . . . . . . . . .  Surface and contour plots of f (x l .  x2) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Tangent plane to a surface 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Curves on a surface 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Minimizing the distance to an ellipse 
. . . . . . . . . . . . . . . . . . . . . . . . .  The projection of Ly into P to form Lp 

Duality: the nearest point to K is the maximum distance to 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  a separating hyperplane 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The dual function g (A) 
. . . . . . . . . . . . . . . . . . . . . . .  Saddle surface for minimax optimization 

Illustration of the Kuhn-Tucker condition in a single dimension . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  Illustration of "waterfilling" solution 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Graph examples 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A multistage graph 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A trellis diagram 
. . . . . . . . . . . . . . . . . . . . . . . .  State machine corresponding to a trellis 

State-machine output observed after passing through a 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  noisy channel 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Steps in the Viterbi algorithm 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A trellis with irregular branches 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A trellis with multiple outputs 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  MLSE detection in IS1 

. . . . . . . . . . .  Trellis diagram and detector structure for IS1 detection 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CDMA signal model 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  CDMA detection 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Convolutional coding 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Comparing HMM training algorithms 
. . . . . . . . . . . . . . . . . . . .  Illustration of the warping alignment process 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Probability of failure of network links 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.1 A linear programming problem 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  20.2 Illustration of Karmarker's algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.3 Filter design constraints 
20.4 Frequency and impulse response of a filter designed using 

. . . . . . . . . . . . . . . . . . . . . . .  linear programming (n  = 45 coefficients) 

. . . . . . . . . . . . . . . . . . . . . . .  . A 1 Illustration of convex and nonconvex sets 
. . . . . . . . . . . . . . . . . . . . . . . .  A.2 Indicator functions for some simple sets 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.3 Illustration of a convex function 
. . . . . . . . . . . . . . . . . . . . . . .  A.4 Illustration of the definition of continuity 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  A.5 A constrained optimization problem 
A.6 The indicator function for a fuzzy number "near 10" . . . . . . . . . . . . .  
A.7 The set sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



List of Algorithms 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Massey 's algorithm ( pseudocode) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Massey's algorithm 

. . . . . . . . . . . . . . . . . . . .  Gram-Schmidt algorithm (QR factorization) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Least-squares filter computation 

. . . . . . . . . . . . . . . . . . . .  Forward-backward linear predictor estimate 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Two-tap channel equalizer 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Iterative reweighted least-squares 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Filter design using IRLS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Some wavelet coefficients 

. . . . . . . . . . . . . . . . . . . . . . .  Demonstration of wavelet decomposition 
Demonstration of wavelet decomposition (alternative indexing) . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Nonperiodic wavelet transform 
. . . . . . . . . . . . . . . . . . . . . . . . .  Nonperiodic inverse wavelet transform 

Periodic wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Inverse periodic wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The RLS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  The RLS algorithm (MATLAB@ implementation) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  LU factorization 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Cholesky factorization 
. . . . . . . . . . . . . . . . . . . . . . . . . .  Householder transformation functions 

. . . . . . . . . . . . . . .  QR factorization via Householder transformations 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Computation of Q b 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Computation of Q from V 
. . . . . . . . . . . . . . . . . . . .  Finding cos 0 and sin 0 for a Givens rotation 

. . . . . . . . . . . . . . . . . . . . . . . .  QR factorization using Givens rotations 
Computation of QHb for the Givens rotation factorization . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Computation of Q from 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Eigenfilter design 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Constrained eigenfilter design 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Pisarenko harmonic decomposition 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Computation of the MUSIC spectrum 
Computation of the frequency spectrum of a signal using ESPRIT . 
Computation of the largest eigenvalue using the power method . . . .  
Computation of the smallest eigenvalue using the power method . . 
Tridiagonalization of a real symmetric matrix . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Implicit QR shift 
. . . . . . . . . . . . . . . . . . . . . .  Complete eigenvalue/eigenvector function 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  System identification using SVD 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Total least squares 



xxiv List of Algorithms 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Partial total least squares. part 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . Partial total least squares part 2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Computing the SVD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Durbin's algorithm 
. . . . . . . . . . . . . . . . . . . . . . . .  Conversion of lattice FIR to direct-form 
. . . . . . . . . . . . . . . . . . . . . . . .  Conversion of direct-form FIR to lattice 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Levinson's algorithm 
. . . . . . . . . . . . . . . . . . . . . . . . . .  Example Bayes minimax calculations 

. . . . . . . . . . . . . . . . . . . . . . . .  Maximum-likelihood ARMA estimation 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Kalman filter I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Kalman filter example 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Logistic function orbit 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  LMS adaptive filter 

. . . . . . . . . . . . . . . . . .  Neural network forward-propagation algorithm 
. . . . . . . . . . . . . .  Neural network backpropagation training algorithm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Neural network test example 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Blind source separation test 

. . . . . . . . .  Bandlimited reconstruction using alternating projections 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Mapping to a positive sequence 

. . . . . . . . . . . . . . . . . . . . . . . .  Mapping to the nearest stochastic matrix 
. . . . . . . . . . . . . . . . . . . . . .  Mapping to a Hankel matrix of given rank 

. . . . . . . . .  Mapping to a Toeplitz/Hankel matrix stack of given rank 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  k-means clustering (LGB algorithm) 

Jacobi iteration . . . . . . .  ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Gauss-Se~del iteration 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Successive over-relaxation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Algebraic reconstruction technique 
Conjugate-gradient solution of a symmetric 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  linear equation 
Conjugate-gradient solution for 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  unconstrained minimization 
EM algorithm example co~nputations . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Simulation and reconstruction of emission tomography . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  Overview of HMM data structures and functions 
. . . . . . . . . . . . . . . . . . . . . . . .  HMM likelihood conlputation functions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  HMM model update functions 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  HMM generation functions 

. . . . . . . . . . . . . . . . .  A constrained optimization of a racing problem 
Forward dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Initializing the Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Flushing the shortest pat11 in the VA . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Dijkstra's shortest-path algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Warshall's transitive closure algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  
Norm and initialization for Viterbi WMM computations . . . . . . . . . .  
Best-path likelihood for the HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  HMM training using Viterbi methods 
. . . . . . . . . . . . . . . . . . . . . . . .  Use of the Vitcrbi methods with HMMs 

Warping code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



1. ist  of . ilgorithm5 YXV 

. . . . . . . . . . . . . . . . . .  20.1 The simplex algorithn~ for linear programming 834 
. . . . . . . . . . . . . . . . . . . . . .  20.2 Tableau pivoting for the simplex algorithm 834 

20.3 Elimination and backsubsritution of free variables 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  for linear programming 834 

. . . . . . . . . . . . . . . . . .  20.4 Karmarker's algorithm for linear programming 842 
. . . . . . . . .  20.5 Conversion of standard form to Karmuker standard form 844 

. . . . . . . . . . . . . . . . . .  20.6 Optimal filter design using linear programming 847 





List of Boxes 

Box 1.1 
Box 1.2 
Box 1.3 
Box 1.4 
Box 1.5 
Box 2 . I  
Box 2.2 
Box 2.3 
Box 2.4 
Box 3.1 
Box 4.1 
Box 5.1 
Box 6.1 
Box 7.1 
Box 11.1 
Box 1 1.2 
Box 1 1.3 
Box 1 1.4 
Box 12.1 
Box 12.2 
Box 14.1 

Notation for complex quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
Notation for vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
Notation for random variables and vectors . . . . . . . . . . . . . . . . . . . .  31 
Groups. rings. and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
GF(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Sup and inf 74 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The measure of a set 82 

David Hilbert ( 1  862-1943) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Isomorphism 112 

Positive-definite matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 
. . . . . . . . . . . . . . . . . . . . . . . . . .  James H . Wilkinson (1 9 19- 1986) 254 
. . . . . . . . . . . . . . . . . . . . . . . . . .  Carl Friedrich Gauss (1 777-1 855) 278 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Arg max and arg min 326 
Commutative diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  375 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The Q function 472 
The I7 function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  478 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The t distribution 507 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The function Zo(x) 510 

The B distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  575 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  The r distribution 576 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Isaac Newton (1 642-1727) 633 





Preface 

Rationale 

The purpose of this book is to bndge the gap between introductory signal processing 
classes and the mathematics prevalent in contemporary signal processing research 
and practice, by providing a unified ripplied treatment of fundamental mathematics, 
seasoned with demonstrations using MATLAB@. This book is intended not only for 
current students of signal processing, but also for practicing engineers who must be 
able to access the signal processing research literature, and for researchers looking 
for a particular result to apply. It is thus intended both as a textbook and as a 
reference. 

Both the theory and the practice of signal processing contribute to and draw 
from a variety of disciplines: controls, communications, system identification, in- 
formation theory, artificial intelligence, spectroscopy, pattern recognition, tomog- 
raphy, image analysis, and data acquisition, among others. To fulfill its role in these 
diverse areas, signal processing employs a variety of mathematical tools, includ- 
ing transform theory, probability, optimization, detection theory, estimation theory, 
numerical analysis, linear algebra, functional analysis, and many others. The prac- 
titioner of signal processing-the "signal processorH-may use several of these 
tools in the solution of a problem; for example, setting up a signal reconstruction 
algorithm, and then optimizing the parameters of the algorithm for optimum per- 
formance. Practicing signal processors must have knowledge of both the theory and 
the implementation of the mathematics: how and why it works, and how to make the 
computer do it. The breadth of mathematics employed in signal processing, coupled 
with the opportunity to apply that math to problems of engineering interest, makes 
the field both interesting and rewarding. 

The mathematical aspects of signal processing also introduce some of its major 
challenges: how is a student or engineering practitioner to become versed in such 
a variety of mathematical techniques while still keeping an eye toward applica- 
tions? Introductory texts on signal processing tend to focus heavily on transform 
techniques and filter-based applications. While this is an essential part of the train- 
ing of a signal processor, it is only the tip of the iceberg of material required by 
a practicing engineer. On the other hand, more advanced texts typically develop 
mathematical tools that are specific to a narrow aspect of signal processing, while 
perhaps missing connections between these ideas and related areas of research. 
Neither of these approaches provides sufficient background to read and understand 
broadly in the signal processing research literature, nor do they equip the student 
with many signal processing tools. 

The signal processing literature has moved steadily toward increasing sophisti- 
cation: applications of the singular value decomposition (SVD) and wavelet trans- 
forms abound; everyone knows something about these by now, or should! Part of this 
move toward sophistication is fueled by computer capabilities, since computations 
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that formerly required considerable effort and understanding are now embodied in 
convenient mathematical packages. A naive view might held that this automation 
threatens the expertise of the engineer: Why hire a specialist to do what anyone can 
do in ten minutes with a MATLAB toolbox? Viewed more positively, the power of 
the computer provides a variety of new opportunities, as engineers are freed from 
computational drudgery to pursue new applications. Computer software provides 
platforms upon which innovative ideas may be developed with ever greater ease. 
Taking advantage of this new freedom to develop useful concepts will require a 
solid understanding of mathematics, both to appreciate what is in the toolboxes and 
to extend beyond their limits. This book is intended to provide a foundation in the 
requisite mathematics. 

We assume that students using this text have had a course in traditional 
transform-based digital signal processing at the senior or first-year graduate level, 
and a traditional course in stochastic processes. Though basic concepts in these 
areas are reviewed, this book does not supplant the more focused coverage that 
these courses provide. 

Features 

* Vector-space geometry, which puts least-squares and minimum mean-squares 
in the same framework, and the concept of signals as vectors in an appropri- 
ate vector space, are both emphasized. This vector-space approach provides 
a natural framework for topics such as wavelet transforms and digital com- 
munications, as well as the traditional topics of optlmum prediction, filtering, 
and estimation. In this context, the more general notion of metric spaces is 
introduced, with a discussion of signal norms. 

* The linear algebra used in signal processing is thoroughly described, both in 
concept and in numerical implementation. While software libraries are com- 
monly available to perform linear algebra computations, we feel that the nu- 
merical techniques presented in this book exercise student intuition regarding 
the geometry of vector spaces, and build understanding of the issues that must 
be addressed in practical problems. 

The presentation includes a thorough discussion of eigen-based methods 
of computation, ~ncluding eigenfilters, MUSIC, and ESPRIT; there is also 
a chapter devoted to the properties and applications of the SVD. Toeplitz 
matrices, which appear throughout the signal processing literature, are treated 
both from a numerical point of view-as an example of recursive algorithms- 
and in conjunction with the lattice-filtering interpretation. 

The matrices in linear algebra are viewed as operators; thus, the important 
concept of an operator is introduced. Associated notions, such as the range. 
nullspace, and norm of an operator are also presented. While a full coverage 
of operator theory is not provided, there is a strong foundation that can serve 
to build might into other operators. 

* In addition to linear algebraic concepts, there is a discussion of tnt?zputatlorz. 
Algorithms are presented for computing the common factor~zations, eigen- 
values, eigenvectors, SVDs, and many other problems, with \ome numerical 
consideration for implementation. Not all of this material 1s neceswily in- 
tended for classroom use in a conventional signal processing cour\e-there 
will not be sufficient time In mo\t case\. Nonethere\\, it prov~dcs an important 
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perspective to prospective practitioners, and start~ng polnt for rmplementa- 
tions on other platform5 Instructors may choose to empha\~ze certaln numerlc 
concepts because they highlight particular top~cs, such as the geometry of 
vector spaces. 
The Cauchy-Schwartz mequality is used in a variety of places as an optimizing 
principle. 

* Recursive least square and least mean square adaptive filters are presented 
as natural outgrowths of more fundamental concepts: matrix inverse updates 
and steepest descent. Neural networks and blind source separation are also 
presented as applications of steepest descent. 
Several chapters are devoted to iterative and recursive methods. Though it- 
erative methods are of great theoretical and practical significance, no other 
signal processing textbook provides a similar breadth of coverage. Methods 
presented include projection on convex sets, composite mapping, the EM al- 
gorithm, conjugate gradient, and methods of matrix inverse computation using 
iterative methods. 

* Detection and estimation are presented with several applications, including 
spectrum estimation, phase estimation, and multidimensional digital commu- 
nications. 
Optimization is a key concept in signal processing, and examples of optimiza- 
tion, both unconstrained and constrained, appear throughout the text. Both a 
theoretical justification for Lagrange multiplier methods and a physical inter- 
pretation are explicitly spelled out in a chapter on optimization. A separate 
chapter discusses linear programming and its applications. Optimizations on 
graphs (shortest-path problems) are also examined, with a variety of applica- 
tions in communications and signal processing. 
The EM algorithm as presented here is the only treatment in a signal processing 
textbook that we are aware of. This powerful algorithm is used for many 
otherwise intractable estimation and learning problems. 

In general, the presentation is at a more formal level than in many recent digital 
signal processing texts, following a "theorem/proof" format throughout. At the 
same time, it is less formal than many math texts covering the same material. In this, 
we have attempted to help the student become comfortable with rigorous thinking, 
without overwhelming them with technicalities. (A brief review of methods of 
proofs is also provided to help students develop a sense of how to approach the 
proofs.) Ultimately, the aim of this book is to teach its reader how to think about 
problems. To this end, some material is covered more than once, from different 
perspectives (e.g., with more than one proof for certain results), to demonstrate that 
there is usually more than one way to approach a problem. 

Throughout the text, the intent has been to explain the "what" and the "why" 
of the mathematics, but not become overwrought with some of the more technical 
mathematical preoccupations. In this regard, the book does not always thoroughly 
treat questions of "how well." (For example. in our coverage of linear numerical 
analysis, the perturbation analysis that characterizes much of the research literature 
has been largely ignored. Nor do issues of computational complexity form a major 
consideration.) To visualize this approach, consider an automotive analogy: Our 
intent is to "get under the hood" to a sufficient degree that it is clear why the engine 
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runs and what it can do, but not to provide a molecular-level description of the 
metallurgical structure of the piston rings. Such fine-grained investigations might 
be a necessary part of research into fine-tuning the performance of the engine--or 
the algorithm-but are not appropriate for a student learning the basic mechanics. 

Throughout the chapters and in the appendices, there is a great deal of material 
that will be of reference value to practicing engineers. For example, there are facts 
regarding matrix rank, the invertibility of matrices, properties of Hermitian matrices, 
properties of structured matrices preserved under multiplication, and an extensive 
table of gradients. Not all of this material is necessarily intended for classroom use, 
but is provided to enhance the value of the book as a reference. Nevertheless, where 
such reference material is provided, it is usually accompanied by an explanation of 
its derivation, so that related facts may often be derived by the reader. 

Though this book does not provide the final word in any research area, for 
many research paths it will at least provide a good first step. The contents of the 
book have been selected according to a variety of criteria. The primary criterion 
was whether material has been of use or interest to us in our research; questions 
from students and the need to find clear explanations, exceptional writings found 
in other textbooks and papers, have also been determining factors. Some of the 
material has been included for its practicality, and some for its outstanding beauty. 

In the ongoing debate regarding the teaching of mathematics to engineers, 
recent proposals suggest using "just in time" mathematics: provide the mathematical 
concept only when the need for it arises in the solution of an engineering problem. 
This approach has arisen as a response to the charge that mathematical pedagogy 
has been motivated by a "just in case" approach: we'll teach you all this stuff just 
in case you ever happen to need it. In reality, these approaches are neither fully 
desirable nor achievable, potentially lacking rigor and depth on the one hand. and 
motivation and insight on the other. As an alternative, we hope that the presentation 
in this book is "justified," so that the level of mathematics is suited to its application, 
and the applications are seen in conjunction with the concepts. 

Programs 

The algorithms found throughout the text, written in MATLAB, allow the reader 
to see how the concepts developed in the text might be implemented, allow easy 
exploration of the concepts (and, sometimes, of the limitations of the theory), 
and provide a useful library of core functionality for a variety of signal processing 
research applications. With thorough theoretical and applied discussion surrounding 
each algorithm, this is not simply a book of recipes; raw ingredients are provided 
to stir up some interesting stews! 

In most cases, the algorithms themselves have not been presented in the text. 
Instead, an icon (as shown below) 

is used to ind~cate that the text an algor~thm is to be found on the ~ncluded CD-ROM 
( ~ n  \ome inctances the algorithm consi4ts of several related file\) 
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In the interest of brevity, type-checking of arguments has not been incorporated 
into the functions. Otherwise, we believe that all of the code provided works, at least 
to produce the examples described in the book. Of course, information regarding 
program bugs, fixes, and improvements is always welcome. Nevertheless, we are 
required to make the standard disclaimer of warranty which can be found on the 
last page of the book. 

Readers are free to use the programs or any derivatives of them for any 
icientific purpose, with appropriate citation of this book. Updated versions 
of the programs, and other information, can be found at the following website: 
www.prenhall.com/moon 

Exercises 

The exercises found at the end of each chapter are loosely divided into sections, but 
~t may be necessary to draw from material in other sections (or even other chapters) 
in order to solve some of the problems. 

There are relatively few merely numerical exercises. With the computer per- 
forming automated computations in many cases, simply running numbers doesn't 
provide an informative exercise. Readers are encouraged, of course, to play around 
with the algorithms to get a sense of how they work. Insight frequently can be 
gained on some difficult problems by trying several related numerical approaches. 

The intent of the exercises is to engage the reader in the development of the 
theory in the book. Many of the exercises require derivations of results presented in 
the chapters, or proofs of some of the lemmas and theorems; other exercises require 
programming an extension or modification of a MATLAB algorithm presented in the 
chapter; and still others lead the student through a step-by-step process leading to 
some significant result (for example, a derivation of Gaussian quadrature or linear 
prediction theory, extension of inverses of Toeplitz matrices, or another derivation 
of the Kalman filter). As students work through these exercises, they should develop 
skill in organizing their thinking (which can help them to approach other problems) 
as well as acquire background in a variety of important topics. 

Most of the exercises require a fair degree of insight and effort to solve- 
students should plan on being challenged. Wherever possible, students are en- 
couraged to interact with the computer for computational assistance, insight, and 
feedback. 

A solutions manual is available to instructors who have adopted the book for 
classroom use. Not only are solutions provided but, in many cases, MATLAB and 
MATHEMATICA~ code is also provided, indicating how a problem might be ap- 
proached using the computer. Solutions to selected exercises can also be found on 
the CD-ROM. 

Courses of study 

There is clearly more information in this book than can be covered in a single 
semester, or even a full year. Several different courses of study could be devised 
based on this material, giving instructors the opportunity to choose the material 
suitable for the needs and development of their students. For example, depending 
on the focus of the class, instructors might choose to skip completely the numerical 
aspects of algorithms or, conversely, make them a focus of the course. 
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Several possible course options are described in the following list. 

1. In a straightfonvard overview, the material in the first two parts is regarded as 
the foundation upon which the major concepts of signal processing are built. 
The first part provides a review of signal models and representations (e.g., 
difference equations, transfer functions, state-space form), and introduces 
several important signal processing problems, such as spectrum estimation 
and system identification. The second part provides a thorough foundation 
in linear algebra, working from an undergraduate level up through several 
applications. Selections from these first two parts, with possible additions 
from the first appendix on mathematical fundamentals, would make a solid 
single-semester course in "mathematical methods for signals and systems." 
A possible course sequence might be as follows: 

Move fairly quickly through Chapter 1 (with sections 1.8 and 1.10 op- 
tional, depending on interest (1-2 weeks)). 
In Chapter 2, move quickly to the vector-space concepts, then focus on 
the concept of orthogonality. It may be useful to skip the more technical 
sections associated with infinite-dimensional vector spaces (for example, 
sections 2.1.2,2.1.3, and 2.16). (2 weeks) 
Spend time in Chapter 3 on least-squares and minimum mean-square 
filtering and estimation concepts, and the dual approximation problem 
(sections 3.1-3.14). (2-3 weeks) Depending on interest, examine either 
wavelet transforms or digital communications from this geometric view- 
point. (1 week) 

* In Chapter 4, focus on sections 4.1-4.5 to get the geometry of the opera- 
tors, 4.9 for a return to the least-squares idea, and 4.10 for practical com- 
putation issues. Introduce the recursive least square filter in section 4.1 1, 
and visit partitioned matrix inverses in section 4.12. (2-3 weeks) 
In Chapter 5, focus on sections 5.2 and 5.3. The QR factorization, in 
particular, is a foundation for many signal processing algorithms. If a 
numeric implementation viewpoint is not of interest, then material after 
section 5.3.5 may be omitted. (2-3 weeks) 
Sections 6.1-6.5 constitute the principal theory of chapter 6. After these 
sections have been covered, applications may be drawn from sections 6.7- 
6.12, with those in 6.8 and 6.9 probably of the most interest. If a numeric 
focus is desired, section 6.14 may be covered. (2-3 weeks) 
The theory of the SVD in sections 7.1-7.5 should be covered. followed 
by a subset of applications from sections 7.6-7.9. (2-3 weeks) 
Topics related to special matrices (with special emphasis on Toeplitz ma- 
trices) can fill any remaining time. 

2. Chapters 10-14 would fit well into a first course on detection and estimation, 
especially when supplemented by some of the material on linear algebra (such 
as eigendecompositions and the SVD). 

3. This book can be the basis for a one-semester tools course that selects topics 
from parts I, 11, and 111. Assuming prior familiarity with continuous-time and 
discrete-time systems, topics in such a course could include the following. 

(a) The multivariate Gaussian density (section 1.7). (< 1 week) 



(b) E\\ential vector-space notions (\ection\ 2 1-2.6,2 10,2.13,2.14-2.15) 
(2 week\) 

(c) Applications of vector-space concepts: for example, least-squares and 
minimum mean-squares filtering (sections 3.1, 3.2. 3.3, 3.8-3.12). 
(3 weeks) 

(d) Matrix factorizations (sections 5.2 and 5.3, no numeric discussion). 
( = = I  week) 

(e) Singular value decompositions (sections 7.1-7.3, 7 . 3 ,  with some ap- 
plications (such as section 7.6). (2 weeks) 

(0 Introduction to detection and estimation (sections 10.1-10.3, 10.5- 
10.6). ( 1  week) 

(g) Detection theory (sections 1 1.1-1 1.6). (3 weeks) 
(h) Estimation theory (sections 12.1-1 2.2, 12.4-1 2.6). (2 weeks) 
(i) Kalman filtering (sections 13.1, 13.2, or 13.3). (1 week) 

4. A course in -'iterative methods for signal processing" could focus on chapters 
in part IV. The course material could well be accompanied by a student 
research project. 

5. A course in "methods of optimization for signal processing" could focus on 
chapters in part V. 

6. Yet another alternative is a wrap-up course for students in the signals and 
systems area, who are familiar with their topic areas but wish to sharpen 
their analytical skills. This course could be similar to the first one outlined, 
with less time spent in Chapter I and more time spent examining numer- 
ical implementations. Topics from the last parts of the book could also be 
selected. 
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Part I 

Introduction and Foundations 

In this first part, we set the stage for what follows by presenting some commonly-used 
signal processing models for applicat~ons developed throughout the book. We also provide 
some background on proofs. 





Chapter 1 

Introduction and Foundations 

There rs full-time enlployment for all srmply tn explorrng the world wlthout destroy~ng 
it. and by the time we begrn to under\tand \ornethlng of rts marvelous nchness and 
complexrty, we'll a130 begrn to iee that rt does have uses we never su.ipected 

-Hugh Ncblev 
At thrs polnt I dm reminded of a paper described rn Llttlewood's Mathematlcrani 
Mlrcrllmz) The paper begdn "The alm of thts paper la to prove " and ~t transp~red 
only much ldter that t h ~ s  aim was not achleved (the author hadn't claimed that rt was) 
What I have outlrned above 1s the content of a book the realizat~on ot whose plan and 
the rncorporatron of whose detarls would perhaps be ~mposrrble, what I have written 1s 
a cecond or thlrd draft of a prelrmrnary verslon of thrs book 

- Mlc hael Splvak 
A Comprehensrve Introductron to D~fferent~al Geometry 

1.1 What is signal processing? 

The scope of signal processing far exceeds the capability of any single book to contain 11. 

Though the subject has grown so broad as to obviate a perfect and precise definition of 
what is entailed in it, certain concepts must be considered indispensable for rudimentary 
understanding. Certainly, signal processing includes the material taught in traditional, DSP 
courses (see, e.g., 1262, 244]), such as transforms of many varieties (Z, Laplace, Fourier, 
etc.) and the concepts of frequency response, impulse response, and convolution, for both 
deterministic and random signals. It also includes the basic concepts of filtering and filter 
design. These concepts are assumed as a background to this text and are used, as necessary, 
throughout the text. Traditional areas in signal processing include (as taken from the IEEE 
Transactions on Signal Processing classifications): filter design, fast filtering algorithms, 
time-frequency analysis, multi-rate filters, signal reconstruction, adaptive filters, nonlinear 
signals and systems, spectral analysis, and extensions of these concepts to multidimensional 
systems. These topics are employed in a variety of application areas. Implementation, in 
hardware or software, is also an important facet of signal processing. Providing a thorough 
coverage of these topics alone requires multiple volumes. 

But, in the view of this book, signal processing has an even greater reach, because of 
its influence on related disciplines. Signal processing overlaps with the study traditionally 
known as controls, since control ultimately involves producing a signal based upon mea- 
sured output of a plant by means of some processing upon that signal. Before a system 
can be controlled, the particular parameters of that system usually must be determined, 
so system ident$cution is an aspect of signal processing. This in turn relates to spectrum 
estimation and all of ~ t s  applications. Signal processing has strong ties to communicat~ons 
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theory and, recently, espec~ally to digital communlcation, since the capabil~t~es of mod- 
em communication systems are the result of the slgnal processlng performed w~thln them 
Related to d~gital cominun~cation are questions of detecrlon and est~matron theory how 
to get the best information out of signals n~eacured in the presence of random nolse De- 
tection and est~mation theory In turn relate to pufferr? recognztlon Dlgltal communlcation 
also sp~lls  over Into the areas of informatron theon and coding theory System identifica- 
tion and estimation theory treat questions of solving overdetermined systems of equatlons 
that. in turn, have application In tomography These, In turn, have some beanng on ques- 
ttons of approx~mat~on and smoothing of signals If a treatment of fundamental s~gnal 
processing topics requires several volumes, then inclusion of these latter toplcs requlres a 
library 

Signal processlng covers a large territory However, there is a common thread ainong 
all the areas mentloned they all snvolve a fair degree of mathenlatical sophlsticatlon, and 
in both theory and practlce assume an analyt~cal and a computational component Most 
of these areas share a large overlap in conceptual content We propose the following as a 
tentative definition of signal processlng, at least for the purposes of this book 

Definition 1.1 Signal processing is that area of applied mathematics that deals with op- 
erations on or analysis of signals, in either discrete or continuous time. to perform useful 
operations on those signals. i? 

With its focus on "applied mathematics," this book neglects several important aspects 
of signal processing, including hardware des~gn and ~mplementat~on on signal processlng 
chips "Useful operailon" is deliberately left ambrguous Depending upon the application, 
a useful operation could be control, data compression, data transmlsslon, denoising, pre- 
d~ction, filtenng, smoothing, deblurnng, tomograph~c reconstruct~on, ~dentification, classi- 
fication, or a variety of other operations 

The pnmary Intent of this book 1s to present a treatment of relevant mathematics 
such that students and practitioners of signal processing and related fields are able to 
read, apply, and ultimately contribute to the literature in a variety of areas of signal 
processing research and practice. The Intent is not to explore pure mathematics. however, 
but rather to prov~de a mathematical modlcum sufficient to explain and explore the more 
Important mathematical paradigms used In s~gnal processlng algor~thms A student w ~ t h  
a background from this book should be able to move exped~t~ously to a part~cular area of 
Interest and begin maklng effectlve progress sn the speclahzed literature of that area We 
have endeavored to maintam a precarious balance purists in mathematics will find some 
of the analytical methods deficient, whlle pragmatists will argue that there are far too many 
equatlons To use a garage analogy. we have provided enough lnformat~on to get under the 
hood of the car, taking apart for examination many of the englne components, but wlthout 
getting Into detail at the level of metallurg~cal phenomena. Such minute investigations are 
best conducted after the student understands how the car operates 

In addition to the primary goal of this booh, there are two others First, to develop within 
the student a degree of "mathematical matur~ty" The student w~th  t h ~ s  maturity w11l ( ~ t  1s 
hoped) be able to organlze effective approaches of hlslher own to a varlety of problems Thls 
maturity will be developed by working problem\, follow~ng and doing proofs, and wnting 
dnd runnlng programs Second, the book 15 Intended as a u5eful reference, with reference 
material gathered on several areas In signal proce\\lng, wch as derlvattves. linear dlgebra, 
optimization, ~nequal~tles, etc 

T h ~ s  statement of Intent should mdke clear what this booh I ?  not There are ceveral 
very good book\ avatlable on appllcat~on area\ In \~gnal proce\\ing, \uch a5 \pectrunI 
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estimation, adaptive filtering, away processing, and so on. This book does not choose any 
of those particular areas as its focus. Thus, while rnany different techniques of spectrum 
estimation will be presented as applications of the techniques discovered, issues central to 
the study of spectrum estimation (such as comparisons of the different techniques in terms 
of spectral resolution, bias, etc.) are not presented here. Similarly, the major paradigms 
of adaptive filtering are presented as applications of other important concepts (e.g., least- 
squares and minimum mean-squares. and recursive computation of matrix inverses), but 
a thorough treatment of the convergence of the filters is avoided. Rather than focusing on 
one particular area of research interest. this book presents the tools that are used in these 
research areas, enabling the interested student to move into a variety of different areas. 

1.2 Mathematical topics embraced by signal processing 

So what does a signal processor-that is, an individual who wants to design signal pro- 
cessing algorithms, not the specialized microprocessor that might be used to implement the 
algorithms-need to know, to be effective? Depending on the problem, several mathematical 
tools can be employed. 

Linear signals and systems, and transform theory These topics, core to many under- 
graduate and introductory graduate courses, are assumed as background to this book. 
Familiarity with both continuous- and discrete-time systems is assumed (although a 
review of some topics is provided in section 1.4). 

Probability and stochastic processes This is a critically important area that is also assumed 
as background. Students should be acquainted with probability, and have had a course 
in stochastic processes as a prerequisite to this book. Probability is an important tool, 
and students are advised to continue sharpening their skills with it. A brief review of 
important topics in stochastic processes is provided in appendix D. 

Programming A signal processor must know how to program in at least one high-level 
language. In most cases, signal processing ultimately boils down to a software or 
hardware implementation on some kind of computing platform. This requires deploy- 
ment of the concept, simulation, and testing, all usually software-related activities. 
An understanding of basic programming concepts such as variables, program flow, 
recursion, data structures, and program complexity, is assumed. 

Calculus and analysis These foundation concepts occur repeatedly in the signal processing 
literature. A broad and shallow coverage of analysis appears in appendix A. 

Vector spaces and linear algebra While every undergraduate engineer has some exposure 
to linear algebra, these topics are so important to signal processing that additional 
exposure is critical. Many of the basic concepts are reviewed in this book, with an 
eye toward applications in signal processing. Because of its importance, chapters 2 
through 9 are devoted largely to linear algebra and its applications. 

Numerical methods With the increasing penetration of computers into engineering culture 
there is, paradoxically, a decrease in many students' exposure to numerical methods. 
And yet, a significant portion of signal processing consists of nothing more than 
numerical methods applied to a particular set of problems involving signals. Many 
of the techniques described in this book are borrowed from the numerical methods 
literature. 

Functional analysis In signal processing, a signal is a function. The tools from functional 
analysis provide a framework from which to view the signal, leading the way to pow- 
erful signal transforms and signal spaces in digital communications. In this book we 
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present concepts from functional analysis in the context of vector spaces, particularly 
in chapters 2 and 3. 

Optimization A common theme runnlng through many slgnal processing appllcatlons IS 

optlmlzation whatever 1s belng computed, we wlsh to do it In the best posslble way 
Or, ~f we cannot get to the optlmal operation point in one step, we w11l progress toward 
~t as we contlnue to process data (that IS, we wlll adapt) Because of its ublquity in 
appllcat~on, in Part IV we present fundamental concepts in opbmization, including 
constra~ned optlmlzation, linear programming, and path search algonthms. 

Statistical decision theory Statistical decision theory can be described as the science 
of making decisions in the face of random uncertainty. Such decision-making also 
describes what is done in many signal processing applications. The application of 
statistics to signal processing can be divided into two major overlapping areas. de- 
tection theory and estimation theory. Detection theory is a framework for making 
decisions in the presence of noise. Estimation theory provides a means of determining 
the value of a quantity In the presence of noise. Detection and estimation are covered 
in chapters 10 through 13. 

Iterative methods Many signal processing methods converge to their solution after several 
iterations-for example, adaptive filters and neural networks. We present some basic 
concepts and examples of iterative methods in chapters 14 through 17. 

These topics cover a very large territory. In each of these topic areas, numerous volumes 
have been written. Our intent is to not to provide an exhaustive treatment in each area, but 
to present enough information to provide a useful set of tools with broad application. 
Our approach is different from many other books on signal processing, in that we do not 
exhaustively examine a particular discipline of signal processing-for example, spectrum 
estimation-bringlng in mathematical tools as necessary to treat isrues that arise. Instead, 
we present the mathematleal perspective first, introducing new signal processlng problems 
and enhancing understanding of already-introduced problems as the matenal permits. By 
this means, parallels may be drawn between areas that share mathematical tools, but that 
are not cornmonly presented together. 

1.3 Mathematical models 

Throughout most of the remainder of this chapter, we present examples of several different 
models that are commonly used in signal processing. The models are roughly categorized 
as follows: 

1 .  Linear slgnal models for discrete and continuous time, including transfer function and 
state space representations. Also, applications of these models to signal processing 
problems such as prediction, spectrum estimation, and so on. 

2 Adaptlve filtering models, and applications to predlctlon, system ~denttficatlon. and 
so forth 

3 The Gausrlan random vanable, including the important Idea of conditioning upon dn 
observation 

4 Hldden Markov models 

These examples illustrate some of the notatlon ured throughout t h ~ i  book, and prov~de 
a startlng point for several of the 4ignal processlng applrcation\ that are examined The 
materlal here 15 pre\ented p'iltly by way of revlew, and partly as a parttal itrrvey dnd 
motivator of concepts to be developed throughout thl\ booh 
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After this introductory material, we present a discussion of proofs. The chapter ends 
with the development of a fast algorithm-finally, an algorithm!-for fast solution of a sys- 
tem of Toeplitz equations. This algorithm-more commonly discussed in the error control 
literature than the signal processing literature-ties together several themes of the chapter: 
linear systems notation, autoregressive models, algorithms, and proofs. 

1.4 Models for linear systems and signals 

Most of the systems treated in signal processing are assumed to be linear, a concept that 
should be familiar from introductory signal processing courses. We will focus principally 
on systems that are also time invariant; such systems are said to be linear time-invariant 
(LTI). Systems are divided according to whether they operate in continuous time or discrete 
time. In discrete time, the data associated with time t  are indicated by either square brackets, 
such as x [ f ] ,  or by subscripts, such as x,, where t is an integer. We will also employ other 
variables as a discrete-time index, such as n or k. For continuous-time signals, the notation 
~ ( t )  or x, is commonly employed, where t  is a real number. The material in this section is 
intended primarily as a review. 

1.4.1 Linear discrete-time models 

Difference equations 

Let f  l t l  denote the (scalar) input to a discrete-time linear system, and let y [ t ]  denote 
the (scalar) output. It is common to assume an inputloutput relation of the form of the 
difference equation 

- 
y[ t l  = - Z i y [ t  - I]  - - Z z y [ t  -21 - . . , - a , y [ t  - p ] + F o f [ t ]  

+ I f ; , f [ t -  l ] + . . . + b , f [ t - q ]  . (1.1) 

The equation is shown under general assumption of complex signals, and the bar over the 
coefficients denotes complex conjugation. (See box 1 .1  .) By redefining each coefficient El 
and Fl in terms of its conjugate, (1.1) could also be written without the conjugates as 

With consistent and careful use of the notation, the question of whether the coefficients are 
conjugated in the definition of the linear model is of no ultimate significance-the answers 
obtained are invariably the same. However, the bulk of signal processing literature seems 
to favor the conjugated representation in ( I . l ) ,  and we follow that convention. Of course, 

Box 1.1: Notation for complex quantities 

We use the engineer's notation j = a, rather than the mathematician's i .  
However, in some places j will be used as an index of summation; context 
should make clear what is intended. 

A bar over a quantity denotes complex conjugation. Other authors com- 
monly indicate complex conjugation using a superscript asterisk, as a*. How- 
ever, the Z i  notation is used in this book to indicate conjugation, since a* is 
also commonly used to denote a particular value of a ,  such as a minimizing 
value, or to indicate the adjoint of a linear operator. 
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when the signals and coefficients are strictly real, the conjugation is superfluous and the 
system can also be written in the form 

~ [ t ]  = -aly[t - 11 - aay[t - 21 - . . . - a,y[t - p] + bo f [t] 

+b1f [ t -  l l + . . . + b q f [ t - q ]  

without the conjugates on the coefficients. 
In the case of a system that is not time invariant, the coefficients may be a function of 

the time index r. We will assume, for the most part, constant coefficients. The relation (1.1) 
can be wriiten as P 4 

x 4 y l t  -kl  = x F k f [ t  k ] ,  

with ~o = 1. 
In (1.2), when p = 0, 

the signal y[t] is called in the statistical literature a moving average (MA) signal, since it is 
formed by simply adding up (scaled versions of) the input signal over a window of q + 1 
values. The number q is the order of the MA signal. The signal is denoted either as MA or 
MA(q). We can also write (1.3) using a convenient vector notation. Let 

Then 

The vector notation used in this example is summarized in box 1.2. In equation 1.2, when 
q = 0, so that 

P 

~ [ t l  = %f - x a k Y [ t  - k], 
k = l  

the signal y is said to be an autoregressive (AR) signal of order p. Auto because it expresses 
the signal in terms of itself; regressive in the sense that a functional relationship exists 
between two or more variables. An autoregressive model is denoted as AR orAR(p). Writing 

we can write the AR signal as 

The general form in (1.2), combining both the autoregressive and the moving average 
components, is called an autoregressive moving average, or ARMA, orARMA(p, q). Where 
all the signals are deterministic, the term DARMA (deterministic ARMA) is sometimes 
employed. 
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1 Box 1.2: Notation for vectors 

1 Vector\ in  ;I hnrte-d1nlen\ion;t1 vector ipace ;Ire denoted In bold font, 
such ,ii b 

2 All vectors in t h ~ \  book &re a\iumed to be column vectori In some 
c a m  '1 vector wlll be typeiet In hor~~ontdl  formdt, wrth ' (tranipore) to 
indicate that i t  should be trancpoced Thui we could h u e  equivalently 
written 

3 In general, the ~ t h  component of a vector b will be des~gnated as b, 
Whether the tndex r itarts with 0 or I (or some other value) depends on 
the needs of the partrcular problem 

4 The notat~on b" denote\ the Herrriltlan tran\po\e, in which b ts trans- 
poied and tts elements are conjugdted 

- 

bH = [go, gi, , bql 

These rules notwithstanding, for notational conventence we will sometimes 
denote the vector with Y Z  elements as an n-tuple, so that 

I x = [ x [  x? . . .  .rn] and x = ( x , , x ~  , . . . ,  n,) 

are occasionally used synonymously. This n-tuple notation is used particularly 
when x is regarded as a point in Rn. Furthermore, since we will generalize the 
concept of vectors to include functions, the math italic notation x  will be used 
in the most general case to represent vectors, either in Rn or as functions. 

Matrices are represented with capital letters, as in A or X. The matrix I 
is an identity matrix. The notation 0 is used to indicate a vector or matrix of 
zeros, with the size determined by context. Similarly, the notation 1 is used 
to indicate a vector or matrix of ones, with the size determined by context. 

System function and impulse response 

In the interest of getting a system function that does not depend upon initial conditions, we 
assume that the initial conditions are zero, and take the Z-transform to obtain 

which we write as 

Y(z)A(;) = F ( r ) B ( z )  

We will occasionally write the transform relationship as 

where the particular transform intended is determined by context. We will also denote 
2-transforms by 
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The system function is 

This is also called (usually interchangeably) the trar~sfer funcfion of the system. We write 

Y ( z )  = H ( z )  F(z),  (1.5) 

and represent this as shown in figure 1.1. If the system is AR, then 

Figure 1.1 : Input /output relation for a transfer function 

and H (z) is said to be an all-pole system. If the system is MA, then 

which is called an all-zero system. The corresponding difference equation (1.3) has only a 
finite number of nonzero outputs when the input is a delta function f [ t ]  = S[ t ] ,  where 

We will also write the delta function as 8,. Occasionally the function S [ r  - t] will be wntten 
as &,,. 

A system that has only a finite number of nonzero outputs in response to a delta function 
is referred to as a finite impulse response (FIR) system. A system which is not FIR is infinite 
impulse response (IIR). 

We can view signal Y(z) as the output of a system with system function H(z) driven 
by an input F(z).  Taking the inverse Z-transform of ( 1 . 3 ,  and recalling the convolution 
property (multiplication in the transform domain corresponds to convolution in the time 
domain) we obtain 

?;[I] = f [ k ] h [ r  - k ] .  

where h[r] ,  the impulse response, is the inverse transform of H(z).  
To compute the inverse transform of H(z). we first factor H(z) into monomial factors 

using the roots of the numerator and denominator polynomials. 

where the z, are the nonzero roots of B(z) (called the :el-05 of the system function) and the 
p, are the nonzero roots of A(?)  (called the poles of the system function) In this form, we 
observe that  fa pole IS equal to a rtero, the factors can be canceled out of both the numerator 
and denominator to obtain an equivalent transfer functlon A word of caution even though 
terms may cancel from the numerator and denominator as seen from the trantfcr tunct~on, the 
physical components that the5e term5 model Indy 51111 exist and could introduce difficulty 



1 ,J Models for Linear Systems and Signals 11 

A system with the smallest degree numerator and denominator is said to be a minimal 
system. 

Example 1.4.1 The system function 

can be factored as 

Thus the H ( z )  is not a minimal realization. 

Partial Fraction Expansion (PFE) 

Assuming for the moment that the poles are unique (no repeated poles) and that q < p,  then, 
by partial fraction expansion (PFE), the system function can be expressed as 

where 

Taking the causal inverse Z-transform of (1.6), we obtain 

The functions pi are the natural modes of the system N (z). Clearly, for the causal modes to 
be bounded in time, we must have Ipk 5 1. In general, the output of a linear time-invariant 
system is the sum of the natural modes of the system plus the input modes of the system. 

Example 1.4.2 Let 

Then, a partial fraction expansion is 

The impulse response is 

hit1 = [(-2)(.5)' + 3(.6)']u[t],  

where u [ t ]  is the unit-step function, 

To compute the PFE when q 2 p,  the ratio of polynomials is first divided out. When 
there are repeated poles, somewhat more care is required. For example, a root repeated r 
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times, as in 

gives rise to the partial fraction expansion 

where' 

The inverse Z-transform corresponding to (1.7) is of the form 

where the coefficients {c,) are linearly related to the PFE coefficients {k,) .  
Using computer software, such as the residue or res iduez command in MATLAB, 

is recommended to compute partial fraction expansions. 

Example 1.4.3 Let 

We desire to find the impulse response h[ t] .  Since the degree of the numerator is the same as the 
degree of the denominator. we divide, then find the partial fraction expansion. 

then, 

1.4.2 Stochastic MA and AR models 

In stochastic MA and AR models, the input f [ t ]  is assumed to be a white discrete-time 
random process that is usually zero mean. (The reader is encouraged to review the concepts 
of random processes summarized in appendix D.) The Input coefficient bo is set to 1, with 
the input power determined by the variance of the signal. Thus, 

and 

 he slmbol 1 here does not represent In lnitances where contuvon I \  unl~kelq we mdy uie 1 AS dn 

Index value 
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~utocorrelalion function 

Signal processing often involves comparing two signals; one means of comparison is by 
means of correlation. When a signal is compared with itself, the correlation is called autocor- 
relation. For stochastic signals, we define the autocorrelation of a zero-mean (wide-sense) 
stationary signal y  [ t ]  as 

or, equivalently, ryy[k]  = E [ y [ t ] y [ t  - k ] ] .  The autocorrelation function has the property 
that 

For real random processes, ryy [ k ]  = ryy [ - k ] ;  a function that has this property is said to be 
even. 

For the MA process 

rt is straightforward to show that the autocorrelation function is 

For the AR model 

y [ t l + a l y [ t -  1 1 4 -  . . .+Zpy  [ t - p ]  =. f [ t ] ,  

multiply both sides by y[t  - I ]  and take expectations, to obtain 

L k=0 _I 

We recognize that E [ y  [t - k]y[ t  - 111 = ryy [l - k ] ,  and that the RHS 

for 1 > 0, since f [t] is a white-noise process. Then, using rhe fact that ao = 1, we can 
write 

This difference equation for the autocorrelation is similar to the equation for the original 
difference equation in (1.12). Stacking (1.14) for I = 1 ,  2, . . . , p, we obtain 

Conjugating both sides using (1.10), we obtain 

These equations are known as the Yule-Walker equations. We commonly write (1.16) as 
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where 

w = [-aI -a2 . . . -a,lT r = [ I ]  2 . . .  Ty,[p]]. 

The matrix R is said to be the autocorrelation matrix of 31. We will have considerable 
to say about the properties of R and algorithms that operate on it. For now, we make the 
following observations. 

1. R is Hennitian symmetric, which means that 

We will see that this means that the eigenvalues of R are real and the eigenvectors 
corresponding to distinct eigenvalues are orthogonal. If R is real, then R is symmetric: 
RT = R. 

2. R is a Toeplitz matrix, which means that R is constant along the diagonals. If r,, 
denotes the i ,  jth element of R ,  then 

which is to say, the element of R depends only on the difference between the index 
values. We shall see that the Toeplitz structure of R leads to efficient algorithms for 
solving equations similar to the Yule-Walker equations. 

Realizations 

A block diagram, or realization, of (1.2) can be easily derived. The realization presented 
here is known in the control literature as the controller canolzical fornz. Write the system 
function as 

where the signal W ( z )  has been artificially introduced. From the transfer function H ~ ( z )  
we get the relationship 

corresponding to the difference equation 

or, 

A block diagram of a realization of (1.18) is shown in figure I .2. From HI ( z )  tn (1.17), 
we have 

with the corresponding difference equation 

y [ t ]  = I;oui[t] + I ; ,  w [ t  - I ]  + . . . + I ; y u ' [ f  - q ] .  
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Figure 1.2: Realization of the AR part of a transfer function 

w 

Figure 1.3: Realization of a transfer function 

This realization (drawn assuming that p = q) is shown in figure 1.3. We explore other 
possible realizations in the exercises. 

State-space form 

Consider the block diagram in figure 1.4, in which the outputs of the delay blocks are 
labeled X I ,  x l ,  . . . , x,, from right to left. From this block diagram, we obtain the following 
equations: 
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Figure 1.4: Realization of a transfer function with state-variable labels 

Observe that the direct connection from input f to output y is via bo. The variables 
X I ,  x2. . . . , x,, are the state variables. Let x[t] be the state vector 

We also introduce the vectors 

- 
p elements 

and the matrix 

If bo = 0, then c is 
- - - 

cT = [bp .  bp-1. . . . ,  bj] .  

and d = & c = 

wh~ch explicttly displays the numerator coeffic~ents of H(L) The equations tn (1 19) can 
be written using the\e definittons as 

- T ,  -boa, - 
- - 
b,,-, - boa,-] 

- 
h ,  - &a, - 

x [ r  + 1 1  = A x i t ]  + b f [ r ]  
? . / f l  = c r x [ l ]  + d f [ t ]  
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An equation of the form (1.2 1 ) is in state-space form. The system is denoted as (A, b, cT,  d )  
or, when cl = 0, as (A, b, cT). The particular form of the state-space system in (1.21) is 
called the controller form. The form of the matrix A, with ones above the diagonal and 
coefficients on the last row, is called a first companion matrix. 

System transformations; similar matrices 

The state-variable representation is not unique. In fact, an infinite number of possible 
realizations exist which are mathematically equivalent, although not necessarily identical 
in physical operation. We can create a new state-variable representation by letting x = Tz  
for any invertible p x p matrix T. Then (1.2 1) becomes 

which can be written as 

z[t + 11 = Az[tl + Gf[t] 

y[ t l  = cTz[t] + ;If [tl, 

where 
- - 
A = T- 'AT b = T-lb c = T T ~  2 = d 

(The bar does not indicate conjugation in this instance.) Matrices A and that are related as - 
A = T-' A T are said to be similar. It is straightforward to show that the system (x, 6, cT, 2) 
has the same input loutput relationships (dynamics and transfer function) as does the system 
(A, b, c', dl-which means, as we shall see, that A and have the same eigenvalues. 

Time-varying state-space model 

When the system is time-varying, the state-space representation is 

in which the explicit dependence of (Art], b[t], cT[t], d[t]) on the time index t is shown. 

Transformed state-space model 

The time-invariant state-space form can be represented using a system function. We can 
take the Z-transform of (1.21). The Z-transform of a vector is simply the transform of each 
component. We obtain the equations 

From (1.24), we obtain 

(z I - A)X(z) = b F (2). 

The matrix I is the identity matrix. Then 

where (z I -A)-' is the matrix inverse of z I - A. (Matrix inverses are discussed in chapter 4.) 
Substituting X(z) into (1.25), we obtain 

Y(z) = (cT(zI - ~ ) - l b  +d)F(z ) .  
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Since Y ( z )  and F ( z )  are scalar signals, we can form their ratio to obtain the system 
function 

Y ( z )  - ( c T ( z l  - ~ ) - ' b  + d) .  H ( z )  = F(r) - (1.26) 

Example 1.4.4 We will go from a system function to state-space form, and back. Let 

In some literature, it is common to eliminate negative powers of z  in the system functions. This can 
be done by multiplying by z 2 / z 2 :  

Placing the system in controller form, we have 

To return to a transfer function, we first compute 

and 

The inverse of a 2 x 2 matrix is 

Then, using (1.26), we obtain 

as expected. 
To emphasize that the state-space representatton IS not untque, let 

This rystem is not In controller fonn We may verlfy that 



1.4 ,Models for Linear Systems and Signals 19 

Solution of the state-space difference equation 

It is also possible to determine an explicit expression for the state of a system in state-variable 
form. It can be shown (see exercise 1.4-19j that, starting from an initial state x[O], 

1-1 

x [ t ]  = Atx[O] + Akb f [t - 1 - k ] .  ( 1.27) 
k =O 

The sum is simply the convolution of Atb with f [t - I]. The output is 

f - l  

The quantities cT Akb are called the Markov parameters of the system; they correspond to 
the impulse response of the system (A, b, cT). 

Multiple inputs and outputs 

State-space representation can be used to represent signals with multiple inputs and outputs. 
For example, a system might be described by 

This system has three state variables, two inputs, and two outputs. In general, a multi-input, 
multioutput system is of the form 

If there are p state variables and 1 inputs and m outputs, then 

A i s p x p  
B i s p x l  
C i s m  x p 
D i s m  x 1 .  

State-space systems in noise 

A signal model that arises frequently in practice is 

The signals w[t]  and v [ t ]  represent noise present in the system. The vector w[ t ]  is an input 
to the system that represents unknown random components. For example, in modeling 
airplane dynamics, w[t ]  might represent random gusts of wind. The vector v [ t ]  represents 
measurement noise. Measurement noise is a fact of life in most practical circumstances. 
Getting useful results out of noisy measurements is an important aspect of signal processing. 
It has been said that noise is the signal processor's bread and butter: without the noise, many 
problems would be too trivial to be of significant interest. 
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This book will touch on some aspects of systems in state-space form, but a thorough 
study of linear systems, including state-space concepts, is beyond the scope of this book. 
(For supplementary treatments, see the reference section at the end of this chapter.) 

1.4.3 Continuous-time notation 

For continuous-tlme slgnals and systems, the concepts for Input loutput relations, transfer 
functions, and state-space representatlons translate directly, with z-' (unit delay) replaced by 
I / s  (~ntegratlon) The reader is encouraged to revlew the discrete-tlme notations presented 
above and reformulate the expressions glven, in terms of contmuous-time signals The 
principal d~fference between discrete time and continuous tlme anses In the expliclt solut~on 
of the differential equatlon 

For the time-invariant system (when ( A ,  B. C, D )  is constant), the solution is 

~ ( t )  = eArx(0) + e A f f - A ) ~ f ( h )  d h ,  1' (1.31) 

where eAr  is the matrix exponerztial, defined in terms of its Taylor series, 

where I IS the idel7tiry matrix. (See section A.6.5 for a review of Taylor series, and section 6.2 
for more on the matrix exponentral.) The matrlx exponential can also be expressed In terms 
of Laplace transforms, 

where sI - A 1s known as the clzaracten'stic matrix of A and C[.] denotes the Laplace 
transform operator, 

C,f(t)] = lffi f(t)eKT' d t  

An interesting and fruitful connection I S  the following Recall the geometric expansion 

which converges for lx / < 1 .  This also applies to general operators (including matrices) to 

( I -  F)-I = 1 + F + F 2 + F 3 + . . . ;  ( I  .34) 

when /IF 11 < 1 The notatlon /IF 11 slgnlfies the operator norm, ~t is discussed In section 4 2 
The expansion (1 3 4 )  is known as the Neumann expansion (see section 4 2 2) Uslng ( I  34),  
the exprevsion ( r l  - A)- '  is 

from which the Taylor series formula (1 32) follows immed~ately, from the Inverse Laplace 
transform 

For the time-invariant cingle-input, cingle-output system 
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the transfer function is 

C'5ing ( 1.341, we write 

where h ,  = cTA'- '  b are the Markov parameters of the continuous-time system. 
The first term of (1.3 1 )  is the solution of the homogeneous differential equation 

while the second term of (1.3 1) is the particular solution of 

It is straightforward to show (see exercise 1.4-22) that, starting from a state x(r) ,  the 
ztate at time t can be determined as 

Since eA("-" provides the mechanism for moving from state x ( t )  to state x(t), it is called 
the state-transition rnatrix. 

For the time-varying system (1.30), the solution can be written as 
r t 

where @( t ,  t )  is the state-transition matrix-not determined by the matrix exponential in 
the time-varying case. The function @ ( t ,  r )  has the following properties: 

3. @(t,  r )  = [@( t ,  t )]- '  (the matrix inverse). 

1.4.4 Issues and applicati~ns 

The notation introduced in the previous sections allows us now to discuss a variety of issues 
of both practical and theoretical importance. Here are a few examples: 

* Given a desired frequency response specification-either 

H (elw) 
for discrete-time systems, or 

for continuous-time systems-determine the coefficients ( a , }  and {b,} to meet, or 
closely approximate, the response specification. This is the j l ter  design problem. 

Given a sequence of output data from a system, how can the parameters of the system 
be determined if the input signal is known? If the input signal is not known? 

* Determine a "minimal" representation of a system. 

* Given a signal output from a system, determine a predictor for the signal. 
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* Determine a means of efficiently coding (representing) a signal modeled as the output 
of an LTI system. 

* Determine the spectrum of the output of an LTI system. 

Determine the modes of the same system. 

For algorithms of the sort just prescribed, develop computationally efficient 
algorithms. 

Suppose the modes of a signal are not what we want them to be; develop a means of 
using feedback to bend them to suit our purposes. 

Examination of many of these issues is taken up at appropriate places throughout this 
book, with varying degrees of completeness. 

Estimation of parameters; linear prediction 

It may occur that a signal can be modeled as the output of a discrete-time system with system 
function H(z), for which the parameters { p ,  q ,  bo, . . . , b,, a, ,  . . . , a,} are not known. 
Given a sequence of observations y[O], y[l], . . . , we want to determine, if possible, the 
parameters of the system. This basic problem has two major variations: 

The input f [ t ]  is deterministic and known. 

The input f [t ] is random. 

Other complications may also be modeled in practice. For example, it may be that the output 
y [t] is corrupted by noise, so that the data available is 

where w[t] is a noise (or error) signal. This is a "signal plus noise" model that we will 
employ frequently. 

In the case where the input is known and there is negligible or no measurement noise, it 
is straightforward to set up a system of linear equations to determine the system parameters. 
For the ARMA(p ,  q)  system of (1.2), if the order ( p ,  q)  is known, a system of equations to 
find the unknown parameters can be set up as 

in which 

x = l  

- - 
-a1 
- 

-a2 

- 
- 
bo - 
b l 

and b = 

- Y [ P J  
- 

Y [ P  + 11 

_ A N 1  - 
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where N is large enough that there are as many equations as unknowns. When there is 
measurement noise in the system, N can be increased so that there are more equations 
than unknowns, and a least-squares solution can be computed, as discussed in chapters 3 
and 5. 

An important special case in this parameter estimation problem in which the input is 
;kbsumed to be noise, is when H ( z )  is known to be, or assumed to be, an A R ( p )  system, 
~ ~ t h  p known: 

Such a model is commonly assumed in speech processing, where a speech signal is modeled 
as the output of an all-pole system driven by either a zero-mean uncorrelated signal in the 
ease of unvoiced speech (such as the letter "s"), or by a periodic pulse sequence in the case 
of voiced speech (such as the letter "a"). We assume that the signal is generated according 
to 

y [ t J  = - a T y [ t  - 11 + f [tl 

(Further assuming here the model uses real data). Our estimated model has output jj[t], 
where 

and 

The mark " ^ "  over a quantity indicates an estimated or approximate value. We can interpret 
the estimated AR system as a linearpredictor: the value j [ t ]  is the prediction of y [ t ]  given 
the past data y [ t  - 11, y [ t  - 21, . . . , y [ t  - p] .  The prediction problem can be stated as 
follows: determine the parameters a,, . . . , Lip to get the "best" prediction. There is an error 
between what is actually produced by the system and the predicted value: 

e f t1  = y [ t l  - E[tl.  

This is illustrated in figure 1.5. A "good predictor will make the error as "small" in some 
sense as possible. The solution to the prediction problem is discussed in chapter 3. 

One application of linear prediction is in data compression. We desire to represent a 
sequence of data using the smallest number of bits possible. If the sequence were completely 
deterministic, so that y [ t ]  is a deterministic function of prior outputs, we would not need 
to send any bits to determine y [ t ]  if the prior outputs were known: we could simply use 
a perfect predictor to reproduce the sequence. If y  [ t ]  is not deterministic, we predict y  [ t ] ,  

Predictor 
r----'l 

I error 

Figure 1.5: Prediction error 
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then code (quantize) only the predict~on error. If the prediction error is small, then only 
a few bits are required to accurately represent it. Coding in this way is called differential 
pulse code modulation. When particular focus is given to the process of determining the 
parameters I, it may be called linear predictive coding (LPC). To be successful, it must be 
possible to determine the coefficients inside the predictor. 

Linear prediction also has applications to pattern recognition. Suppose there are several 
classes of signals to be distinguished (for example, several speech sounds to be recognized). 
Each signal will have its own set of prediction coefficients: signal 1 has a , ,  signal 2 has 
a2, and so forth. An unknown input signal can be reduced (by estimating the prediction 
coefficients that represent it) to a vector a. Then a can be compared with a , ,  a?_, and so 
forth, using some comparison function, to determine which signal the unknown input is 
most similar to. 

We can examine the linear prediction problem from another perspective. If 

then 

That is, 

If we regard y [ f ]  as the input, then f [ t ]  is the output of an inverse system. If we have an 
estimated system 

then the output 

should be close (in some sense) to f [ r ]  A block d~agram ic, shown in figure 1 6 In thls 
case, we would want to choose the parameters d to minimlze (in some sense) the error 
f [ t ]  - f [ t ]  That is. we want to determine a good Inverse filter for H(;) 

Interestingly, using either the polnt of vlew of finding a good predlctor or of finding 
a good inverse filter produces the same estimate It is also interesting that computationally 
efficient algorithms exist for solvlng the equations that anse in the llnear prediction problem, 
these are discussed in chapter 8 

Assumed 
systein 
rnodel 

Inverse 
system 
inodel 

Inverse system 
error 

F~gure 1 6 Linear predlctor a\  an znverle \yctern 
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Estimation of parameters: spectrum analysis 

It 1s common in signal analysis to consider that a general signal is composed of sinuso~dal 
signals added together. Determining these frequency components based upon measured 
signals is called spectrum estimation or spectral analysis. There are two general approaches 
to spectral analysis. The first approach is by means of Fourier transforms, in particular, the 
dlscrete Fourier transform. This approach is called nonparametric spectrum estimat~on. 
The second approach is a parametric approach, in which a model for the signal is proposed 
(such as the one in (1.2)), and then the parameters are estimated from the measured data. 
Once these are known, the spectrum of the signal can be determined. Provided that the 
modeling assumptions are accurate, it is possible to obtain better spectral resolution with 
fewer parameters using parametric methods. 

Discussion of spectrum analysis requires some familiarity with the concepts of energy 
and power spectral densities. For a discrete-time deterministic signal y [ t ] ,  the discrete-time 
Fourier transform (DTFT) is 

where j = f l. The energy spectral density (ESD) is a measure of how much energy 
there is at each frequency. An energy signal y[ t]  has finite energy, 

For a deterministic energy signal, the ESD is defined by 

where the subscript in G,, indicates the signal whose ESD is represented. The autocorre- 
lationfinction of a deterministic sequence is 

Then (see exercise 1.4-27), 

that is, the energy spectral density is the DTFT of the autocorrelation function. 
The power spectral density (PSD) is employed for spectral analysis of stochastic signals. 

It provides an indication of how much (average) power there is in the signal, as a function 
of frequency. We assume that the signal is zero mean, E [ y [ t ] ]  = 0. For the signal y[t]  with 
autocorrelation function ry,[k], we also assume that 

I 
lim - 1 Ikl lryy[k]l = 0. 

N-+m N 
k=-N 

The PSD is defined as 

That is, the PSD is the DTFT of the autocorrelation sequence. One of the important properties 
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of the PSD is that 

S,,(W) 2 0 for all w .  

This corresponds to the physical fact that real power cannot be negative. 
A signal f [ t ]  with PSD Sf(@), input to a system with system function H(;.), produces 

the signal y  [ t ] ,  as shown in figure 1.7. Let us define 

Figure 1.7: PSD input and output 

The first equality is "by definition," and is actually an abuse of notation. However, it affords 
some notational simplicity and is very common. Then (see appendix D), the PSD of the 
output is 

The spectrum estimation problem is as follows: given a set of observattons from a 
random signal, y [ 0 ] ,  y[ l ] ,  . . . , y [ N ] ,  deierinine (estimate) the PSD. In the parametric ap- 
proach to spectrum estimation, we regard .y[t] as the output of a system H(z). It IS common 
to assume that the input signal is a zero-mean ~ h i t e  signal, so that 

Sff(@) = constant = a;. 

The parameters of H ( z  j and the input power provide the information necessary to estimate 
the output spectrum S,, (w). 

1.4.5 Identification of the modes 

Related to spectrum estimatton ts the identtficatlon of the modes In a system We present 
the fundamental concept uslng a second-order system wlthout the compl~catlon of noise in 
the signal Assume that a s~gnal y [ t ]  IS the output of a second-order homogeneous system 

subject to certain initial conditions. The characteristic equation of this system is 

z 2  + a,;. + a;! = 0. (1.41) 

The modes of the system are determined by the roots of the characteristic equation. Writing 

- 2 + 02 = ( Z  - PI)(: - p 7 )  

and assuming that p i  # pz.  then 

where the mode rtrengths (amplitudes) c and c 2  are determtned by the lnttlal condition\ 
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Ba\ed upon the (noise-free) equatton ( 1.40), we can write a set of equations to determine 
the \yitem parameters ( u ,  , a 2 ) ,  

Provided that the matrix in this equation has full rank, the parameters a ,  and a2 can be 
found by solving this set of equations, from which the modes can be identified by finding 
the roots of (1.41). Using this method, two modes can be identified using as few as four 
measurements. Two real sinusoids (with two complex exponential modes in each) can be 
identified with as few as eight measurements, and they can (in principle, and in the absence 
of noise) be distinguished no matter how close in frequency they are. 

Example 1.4.5 Suppose that y [ t ]  is known to conslst of two real stnuso~dal s~gnals, 

Each cosine function contributes two modes, 

e ' w l r  + e - ' W l ~  

cos(wl r )  = 
2 

so we will assume that y  [ t ]  1s governed by the fourth-order difference equation 

Then, assuming that clean, noise-free measurements are avalable, we can solve for the coefficients 
of the difference equatlon by 

If the measured output data set is 

substitution in (1.42) yields 

which has roots at 

,+/os and e*'O 2 

So, the frequencies of the modes are wl = 0.5 and w~ = 0.2. Once the frequencies are known, the 
amplitudes and phases can also be determined. C] 

Generalization of these concepts to a system of any order is discussed in section 8.1. 
Treatment of the measurement noise is discussed in sections 6.9. and 6.10.1. 
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1.4.6 Control of the modes 

Suppose we have a system described by the dynamics 

Because the A matrix is a diagonal matrix, the state variable equations are said to be 
uncoupled: 

does not depend on x2, and 

does not depend upon XI. (The question of how to put a general system into diagonal form is 
addressed in section 6.2.) The homogeneous responses (zero-input) of the modes separately 
are 

The state variable XI [t] decays to zero as n -+ cc, while the state variable xz[ t ]  blows up. If 
this represented the state of a mechanical system, such exponential growth would probably 
be undesirable. A natural question arises: Is i t  possible to determine an input sequence 
f [ t ]  (in conjunction with feedback) that controls the system so that both state variables 
remain stable? The means of accomplishing this falls very naturally into place using some 
techniques from linear algebra; see section 6.12. 

1.5 Adaptive filtering 

An adaptive filter is a filter, usually with an FIR impulse response, in which the coefficients 
are obtained by attempting to force the output of the filter y [ t ]  to match some desired input 
signal d[r ] .  (Several examples of desired input signals are given below.) Schematically, the 
filter is shown in figure 1.8. The error signal 

is used in specialized algorithms (the adaptation rule) to adjust the coefficients of the 
adaptive filter. A variety of adaptation rules are employed; in particular, we will study the 
recursive least-squares (RLS) algorithm presented in section 4.1 1.1 and the least mean 
squares (LMS) algorithm presented in section 14.6. Adaptive filters are employed in a 
variety of configurations, some of which are highlighted in this section. 

f i f ]  Adaptive 

1 filter 

Figure 1.8: Representation of an adaptive filter 
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1.5.1 System identification 

An adaptive filter can estimate the the transfer function of an unknown plant, using the 
configuration shown in figure 1.9. The adaptive filter and the plant are both driven by the 
same input signal, and the desired signal d [ t ]  is the plant output. The adaptive filter will 
converge to a "best" representation of the unknown system. If the system is an IIR system 
and the adaptive filter is an FIR system, or if the order of the adaptive filter is less than 
the order of the system, then the adaptive filter can be at best an approximation of the true 
system response. 

Figure 1.9: Identification of an unknown plant 

1.5.2 Inverse system identification 

When the adaptive filter is configured as shown in figure 1.10, then it will converge when 
the output of the adaptive filter matches the delayed input of the inverse system as closely 
as possible. Ideally, the adaptive filter will converge to the inverse of the plant, so that the 
cascade of the plant and the adaptive filter is simply a delay. This configuration is employed 
in some modems to reduce the effect of the channel on the transmitted signal. The signal 
representing a sequence of input bits (f [ t ] )  passes through a channel with an unknown 
transfer function l i ( z ) .  At the receiver, the signal is processed by an adapted inverse system 
before detecting the bits. 

Figure 1.10: Adapting to the inverse of an unknown plant 

1.5.3 Adaptive predictors 

In the configuration shown in figure 1.1 1,  the input to the adaptive filter is a delayed version 
of the desired signal. In this case, the adaptive filter converges in such a way as to provide 
a predictor of the input signal (if prediction is possible). In this mode it can be used for 
all the applications mentioned previously for linear predictors, including data compression, 
pattern recognition, or spectrum estimation. 
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Figure 1.1  1 : An adaptive predictor 

1.5.4 Interference cancellation 

In the context of interference cancellation, the signal d [ t ]  is commonly referred to as the 
"primary signal," while the filter input is referred to as the "secondary signal." The primary 
d [ t ]  is modeled as the sum of a signal of interest, x [ t ] ,  plus noise: 

The secondary input consists of a noise signal, 

(see figure 1.12). As an example, suppose that a background acoustic noise source (say 
the hum of a fan), w [ t ]  is superimposed on a desired audio signal, x [ t ] ,  which is recorded 
using a microphone to form the primary input. A second microphone placed far from the 
desired signal records the noise, n [ t ] ,  but not the desired signal. There is a different acoustic 
transfer function for each of the two microphones, hence n [ t ]  is not the same as w [ t ] .  The 
adaptive filter is driven to minimize the error, which adapts to accommodate this difference 
in transfer function from the noise source. Thus, the resulting difference signal, e [ t ] ,  will 
have (insofar as possible) the noise from the reference signal subtracted from the noise from 
the primary signal. 

The Interference cancellation configuration has been used 111 several appl~cations, such 
as noise cancellation, echo cancellation, and adaptive beamforming in array processing. 

signal = x [ r ]  

Figure 1.12: Configuration for interference cancellation 
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/ Box 1.3: Notation for random variables and vectors I 
Scalar random variables are represented using capital letters, while a partic- 
ular outcome value for a random variable is indicated in lower case, usually 
the same letter. Thus X is a random variable, and x may be an outcome of 
the random variable. Random vectors are usually presented as bold capital 
letters. Where the notation of the literature commonly employs lower case, 
we follow suit. 

A probability density function (pdf) or probability mass function (pmf) 
for a random variable X is written as fx(x). However, it will be common 
throughout the text to suppress the subscript notation, letting the argument 
of the function provide the indication of the random variable. Thus we will 
frequently write f (x) to mean fx(x). 

1.6 Gaussian random variables and random processes 

We begin by reviewing the basic properties of single Gaussian random variables. (See 
box 1.3 for typographical notation.) Let W  be a Gaussian random variable with mean p 
and variance a2. Notationally, we write 

The scalar Gaussian probability density function (pdf) should be familiar. 

where p  is the mean and a2 is the variance of the distribution. That is, 

and 
2 a = E [ ( W  - p)*]  = E [ w 2 ]  - p2 = - W ~ e - ~ w - ~ ~ Z ~ 2 0 2  dw - I-L 2  

Figure 1.13 illustrates a Gaussian pdf with p  = 0 and a2 = I .  

W 

Figure 1.13: The Gaussian density 
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Associated with the Gaussian pdf are the following useful integrals, true for all values 
of I. and o # 0: 

Measured signals are commonly corrupted by noise. If Y [ t ]  represents a vector system 
output. the measured value is often modeled as 

where W[I] is a vector of noise samples, 

rwl It11 

Lwkltl] 

This is the "signal plus noise" model. 
In the absence of specific reasons to the contrary. it is common to assume that addltive 

noise signals are distributed with a Gaussian (or normal) distribution. (Quantization noise 
is an exception to this assumption; it is usually modeled as a uniform random variable.) 
There are reasons for assuming that random variables and random processes are Gausstan. 
First, Gaussian noise occurs physically. For example, the thermal noise at the front end of 
a radio receiver is often Gaussian. Second, Gaussian noise slgnals have a variety of useful 
properties which simplify several theoretical developments. Some of these properties are 
described in the following list. 

1. By the central limit theorem. the distribution of the sums of several random vari- 
ables tends toward a Gaussian distribution. That is, if XI, X2, . . . , XN are indepen- 
dent random variables, with means 1.1, ~ 2 . .  . . . I.,V and variances a:, C T ~ ~ ,  . . . , CT;, 

respectively, then 

1s distributed almost like a Gauwan wlth mean 0 and variance 1 ,  if N I S  large enough 
In the Ilmlt, as N -+ os then Y -- N(0, 1)  The central l~tnlt theorem accounts, In 
large measure. for the occurrence of Gaussian noise In practice, the measured nolse 
IS  actually the sum of many small Independent effects 

Example 1.6.1 An apprecidtton of the central limlt theorem cdn be pained by looking at the 
sum of only three barldbies Let X I .  X2,  and Xi be independent rdndom variables unlformlj 
di \rr~buted from - 1 / 2  to 112 Nota(iond1ly. we write X, - [ A ( -  112 112) The pdf for tht\ 
untform random vatlable is shown in figure 1 14(a) Let Z = X I  i. X2 (Keep In mind thdt the 
pdf of the sum of independent rdndom vdriable\ I \  the concolut~on of the pdfs ) The pdf of Z 
15 thu\ the "hrft' ihaped functlon i h o u n  in figure 1 14(b) the ~onvolution of t u o  flat pul\e\ 
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(c) fy ( Y )  

Figure 1.14: Demonstration of the central limit theorem 

Let Y = Z + X 3  = X i  + X 2  + X3 The pdf of Y ,  obtained again by convolution, is shown in 
figure 1.14(c). This is a piecewise quadratic function, but observe how it is already beginning 
to look like the Gaussian density in figure 1.13. 

2. A Gaussian random variable W is entirely determined by its mean and its variance. 
A Gaussian random process w( t )  is determined by its mean 

mw(t) = E[w(r)l 
and autocorrelation 

r, ( t  , s )  = E[w ( t )G( s ) ] .  

A Gaussian random process with constant mean and r,(t, s) = r,(s - t )  (that is, 
with the autocorrelation dependent upon the time difference in sample points) is 
stationary. 

3. Linear operations on Gaussian random variables produce Gaussian random variables. 
That is, if X and Y are jointly Gaussian, then 

is also Gaussian for any constants a and b. In particular, the sum of Gaussians is 
Gaussian. (This follows since the convolution of Gaussians is Gaussian.) 

Furthermore, if a Gaussian random process is input to a linear system, then the 
output is also a Gaussian random process. All that must be determined is the mean 
and autocorrelation of the output signal, and it is fully characterized. 

4. Maximum likelihood detection or estimation involving Gaussian random variables 
corresponds to a Euclidean distance metric. This is generally geometrically palatable 
and analytically tractable. 

5. Wide-sense stationary (WSS) Gaussian random processes are also strict-sense sta- 
tionary (SSS). (See appendix D.) 
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6. Uncorrelated Gaussian random variables are also independent 

7. A Gaussian conditioned upon a Gaussian is Gaussian. 

Justifications for some of these properties are provided later. 
For a Gaussian random vector W of dimension k with mean p and covariance matrix 

R,  we write W - N(p, R) .  The pdf is 

where p is the mean, 

L E [ w ~ I ]  
and R is the k x k covariance matrix, 

The notation I RI in ( I  .46) indicates the absolute value of the determinant of the matrix R 
(see section C.5). (In other contexts, the notation 1 RI will indicate the determinant, but the 
absolute value is needed in this case since a density function is always nonnegative.) 

Many of the significant concepts associated with Gaussian random vectors can be 
obtained by examination of two-dimensional vectors. When W = [wl, w2JT, 

where 

and 

The correlation coeflcient is defined as 

Using the Cauchy-Schwarz inequality introduced in section 2.6, it can be shown that 

The correlation coefficient provides information about how w l varies with w;?. If p = 1 ,  then 
wl = w2, and wl tells everything there is to know about w2 (and vice versa). If p = - 1 ,  
then w ,  = - w p  If p = 0, then the variables are said to be uncorrelated: U J ,  does not 
provide any information about w2. More generally, for a k-dimensional random vector w, 
if the correlation matrix R is diagonal, the components of vv are uncorrelated. 

We can write the inverse of the covariance matrix (1.48) in terms of the correlation 
coefficient and variances, as 



1.6 Gaussian Ranctoni Variables and Random Processes 35 

The joint pdf of 1 r l 1  and w' can now be wntten as 

7 7 X surface-curve plot of this funct~on IS shown In figure 1 15 for p,  = p,  = 0, o; = a; = 1,  
for two values of p.  

In (1.5 I), ~f p = 0, then 

substantiating the claim made previously that unconelated Gaussian random variables are 
independent. 

(a) p = 0.9 

(b) p = 0 

Figure 1.15: Plot of two-dimensional Gaussian distribution 
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1.6.1 Conditional Gaussian densities 

Conditional probabiltties constitute the core of many detectton and estlmatron algorithms 
In this sectlon. we present a s~mple  example of condltroning as forerunner to the more 
complete development of {tatrst~cal dectslon mab~ng In part 11 

Suppo\e that X and Y are jotntly Gausslan random variables, X - n/(y,. a:). Y - 
J ~ ( / L , ,  a;), wlth correlatlon coefficient p We want to eJtlinate a value for X, whtch we 
wlll denote as 2 111 the absence of any measurements. a reasonable value for f IS r~mply 
the mean of X, so 

1 = P I  

Such an estimate--obtainable wrthout the benefit of any measurements-1s a przor or 
u pnorl estimate, and the density f x  (x) 15 known as the a prrorr denslty for X When 
a measurement of Y 1s a\ailable, say Y = y,  then thts can be used to modlfy our prior 
estimate of X, stnce X and Y are correlated One approach to t h ~ s  1s to form the conditlonal 
pdf f X j y  (XI)), the denstty of X given that Y = IS known, and determine our esttmate f 
by the mean of thrc new den51ty The conditional denstty tc defined as 

From (1.51). wtth x = wl and I = w ~ .  we obtain 

- 1 1 

- J%cqqcr, X P  [- 20,2(1 - p') ( x -  r + p y - p , ) ) ) 2 ]  ffl 

The algebra here requtres completing the square, a5 described In appendix B From the form 
of the pdf we recognize that f (XI ) )  1s Gausian,  wrth mean 

ax 
E [ X l i l  = PI + -PO - P , )  

and vartance 0) 

var(X/v) = n"1 - ,02). 

If x and I are correlated (that is, p 1 O ) ,  then knowlng 1 should tell uc sotneth~ng about x 
Based on the rnformatton avatldble about 1. a rearonable e\ttmate of X 1s the colld~ttonal 
mean. 

0, : = Px + -PO - w , )  ( 1  55) 

The vdrlance of til l \  estimate is the condrttonal vanance of (1 54) We can nuke a meantngful 
t~iterpretat~on of the ectimate ( 1  5.5) If there 1s no correlatlon, the condttronal mean I \  the 
came d i  the prior me'tn If p t i  \tndll, we make only a srndll mod~ficat~on to the prlor mean 
If a, I \  Iatge. then the correctton to the prlor mean rc 5niall. 'i\ t t  \hould be tf we have large 
uncertarnty about the outcome We also ob\erve that tncorpordtlng ~nform'rtlon about L 

reduce5 the varidnce in I 

r-- 

";\/I - p2 " 3  
vnce / / I /  5 I 

Thl\ condtt~onal den\lrj u ith only two \,~r~,iblei I \  extended in  wctron 3 12 to C;atis\t'in 
vectors cortd~t~oned on Gdu\\~an \ector\ 
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This example introduces an important part of estimation theory. An observed (or mea- 
sured) variable such as y in the foregoing can be used to modify our understanding of 
"ariables that we have not nleasured (or cannot measure). A powerful extension of this 
simple example is the Kalman filter, in which the state of a system in random noise, such as 
in (1.29), is estimated based upon obse.rvations that are also in noise. In the Kalman filter, 
the density of the state variable, f (x[tJ), is modified by the observation yffJ, taking into 
:kccount the dynamics of the system and the mechanism for observation. The Kalman filter 
is discussed in chapter 13. 

Several other extensions and issues now arise, among them: 

Given a sequence of data from some source, which is assumed to be drawn accord- 
ing to a Gaussian distribution, how can the parameters of the Gaussian distribution 
be estimated? How can the quality of the estimates be assessed? These questions 
are answered in part by estimation theory. (An early answer is explored in exer- 
cise 1.6-37.) 

If a signal is chosen at random from among a discrete set of signals, and then observed 
in additive noise, how can the chosen signal be discriminated'? This is the detection 
problem which lies at the heart of digital communication. 

* Given correlated random vectors x and y, how can the conditional density f (xly) be 
computed? How may this be applied? 

How can Gaussian random variables of given parameters be generated, and used in 
simulation, for testing of signal processing algorithms? (An answer for scalar Gaussian 
r.v.s is found in exercise 1.6-36.) 

1.7 Markov and hidden Markov models 

A hidden Markov model (HMM) is a stochastic model that is used to model time-varying 
random phenomena. It is based upon a Markov model, and can be understood in terms 
of the state-space models already derived. We now present the basic concepts, providing 
resolution to the issues raised here in chapters 17 and 19. Placement here serves several 
purposes: it provides a demonstration of the utility of the state-space formulation to yet 
another system; i t  smoothes the development of HMM algorithms in later chapters; and it 
provides introduction and motivation for two important algorithms, the EM algorithm and 
the Viterbi algorithm. 

1.7.1 Markov models 

The Markov model is used to model the evolution of random phenomena that can be in 
discrete states as a function of time, where the transition from one state to the next is 
random. Suppose that a system can be in one of S distinct states, and that at each step of 
discrete time it can move to another state at random, with the probability of the transition 
at time t dependent only upon the state of the system at time t .  It is convenient to represent 
this concept using a probabilistic state diagram. as shown in figure 1.16. In this figure, the 
Markov model has three states. From state 1,  transitions to each of the states are possible; 
from state 1 to state 1 with probability 0.5, and so forth. Let S [ t ]  denote the state at time t ,  
where S [ t ]  takes on one of the values 1 ,  2, . . . , S.  The initial state is selected according to 
a probability n, , 
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I 

Figure 1.16: A simple Markov model 

By the foregoing description, the probability of transition depends only upon the current 
state: 

P(S[r  + 11 = j l S [ t ]  = i ,  S [ t  - 1 1  = k ,  S [ t  - 21 = 1 , .  . .) = P(S[ t  + I ]  = j lS[ t]  = i). 

This structure on the probabilities is called the Markov property, and the random sequence 
of state values S [ 0 ] ,  S [1] ,  S [2] ,  . . . , is called a Markov sequence or a Markov chain. This 
sequence is the output of the Markov model. 

We can determine the probability of arriving in the next state by adding up ail the 
probabilities of the ways of arriving there. 

P ( S [ t  + 11 = j )  = P ( S [ t  + I ]  = j / S [ t ]  = l ) P ( S [ t ]  = 1) 

+ P(S[ t  + I ]  = j l S [ t ]  = 2 ) P ( S [ t ]  = 2)  + .  . . 
+ P ( S [ t  + 11 = j lS[r] = S ) P ( S [ t ]  = S ) .  (1.56) 

The computation in (1.56) can be made conveniently in matrix notation. Let 

be the vector of probabilities for each state, and let the matrix A contain the transition 
probabilities 

where P ( i  1 j )  is an abbreviation for P ( S [ t  + 11 = i jS[t] = j ) ,  or a,, = P(S[r  + 11 = 
i l S [ t ]  = j ) .  For example, for the Markov model of figure 1.16 

A steady-stateprobabzlrtv assignment IS  one that does not change from one tlme step to the 
next, so the probabil~ty must satisfy the equation Ap = p Thls is a particular eigenequation, 
with an eigenvalue of 1 (More wlll be said about etgenvalue problems In chapter 6 ) 

By the law of total probab~l~ty, edch column of A must \urn to 1 
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~efinition 1.2 An m x rn matrlx P, ~ c h  that x;"=, p,, = 1 (each row sums to I )  and each 
clement of P i \  nonnegative, I \  called a stochastic matrix. If the rowv and columns each 
\urn to 1 ,  then P is doubly stochastic C1 

The matrix A of (1 57) IS the transpose of a stochastic matnx The vector .ir contains 
the ~nlttal probabil~tres Thus, we can wrlte the probabillstlc update equation as 

Or, to put it another way, 

with pit] = O for t  5 0. The similarity of (1.59) to the first equatlon of (1.21) should be 
apparent. In comparing these two, it should be noted that the "state" represented by ( 1  39) 
ts actually the vector of probabil~ties p [ t ] ,  not the state of the Markov sequence S [ r ] .  

1.7.2 Hidden Markov models 

The idea behind the HMM can be illustrated using the urn problems of elementary proba- 
bility, as shown in figure 1.17. Suppose we have S  different urns, each of which contains 
its own set of colored balls. At each instant of time, an urn is selected at random according 
to the state it was in at the previous instant of time. (That is, according to a Markov model.) 
Then, a ball is drawn at random from the urn selected at time t .  The ball is what we observe 
as the output, and the actual state is hidden. 

The distinction between Markov models and hidden Markov models can be further 
clarified by continuing the analogy with the state-space equations in (1.21). Equation (1  39)  
provides for the state update of the Markov system. In most linear systems, however, the 
state vector is not directly observable; instead, it is observed only through the observation 
matrix C (assuming for the moment that D is zero), 

so the state is hidden from direct observation. Similarly, in the HMM we do not observe the 
state directly. Instead, each state has a probability distribution associated with it. When the 
HMM moves into state s [ t ]  at time t ,  the observed output y[t] is an outcome of a random 
variable Y [ t ]  that is selected according to distribution f (y [ t ] l S [ t ]  = s), which we will 

2 black 

Figure 1.17: The concept of a hidden Markov model 
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represent using the notation 

f (yISlt1 = $1 = f s ( y ) .  

(This idea is illustrated in figure 1.18.) In the urn example of the preceeding paragraph, 
the output probabilities depend on the contents of the urns. A sequence of outputs from an 
HMM is y[O], y [ l ] ,  y [2 ] ,  . . . . The underlying state information is not seen directly; it is 
hidden. The probability distribution in each state can be of any type and, in general, each 
state could have its own type of distribution. Most often in practice, however, each state has 
the same type of distribution, but with different parameters. 

Figure 1.18: An HMM with four states 

Let M denote the number of possible outcomes from all of the states, and let Y  [ t ]  be 
the random variable output at time t ,  with outcome y [ t ] .  We can detennine the probability 
of each possible output by adding up all the probabilities, 

p ( Y [ t l  = j )  = P(Ylr1 = j l S [ t ]  = l ) P ( S [ t ]  = I )  

+ p ( Y [ t l  = j l S [ t ]  = 2 ) P ( S [ t ]  = 2 ) )  + . 
+ P ( Y [ r l  = j l S [ t ]  = S ) P ( S [ r ]  = S ) .  

Let 
P ( Y [ t ]  = I )  
P ( Y  [ r ]  = 2) 

q[ t l  = 

and 

so, c, , = P ( Y [ t ]  = r IS[ t ]  = J ) .  For the urns shown In figure 1 17, wlth the ball colors 
black, green, and red corresponding to values 1 ,  2, and 3, respectlvely. 

112 113 113 
C =  113 7/15 113 

[ /  115 
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Each of the columns must sum to one. Therefore, the output probab~l~ties can be computed by 

sltl = Cp[tI. 

The similarity w ~ t h  (1 2 1 )  should be clear. Based on this discussion, the HMM parameters 
are described by the triple (A, 71-. C), much like our state-space models. 

The HMM can be applied to pattern recognition, where the patterns occur as events 
occurring sequentially in time. The most successful applicatlon is to speech processing. 
Each word or sound (phoneme) to be recognized is represented by an HMM, where the 
output 1s some feature vector that is derived from the speech data. The random variability in 
the feature vector and the amount of time each feature is produced is modeled by the HMM. 
The variability in the duration of the word is modeled by the Markov model. The variability 
in the outputs is modeled by the random selection from within each state. For example, 
in a small vocabulary system with N words, there are N HMMs, ( A , ,  T,,  C,) ,  each being 

. trained (or adapted) to represent the parameters for that word. This is the training phase of 
the pattern recognition problem. 

To perform recognition of an unknown word, its sequence of feature vectors is com- 
puted, and the likelihood (probability) that this sequence of feature vectors was produced 
by the HMM (A,, T,, C,) is computed for each i .  That HMM which produces the highest 
probability selects the recognized word. 

The HMM has also been applied to handwriting recognition, speaker identification, 
and other areas. 

Based on this simple discussion, there are several questions that can be posed in con- 
junction with HMMs. 

1. How can the parameters (A, T ,  C) be estimated based upon observations of the 
data? (Or, more generally, how can the parameters of other output distributions be 
computed?) In other words, how can we train the parameters of the models in the 
pattern recognition problem? 

2. Suppose we have an HMM and we observe a sequence of data. How can we determine 
how well the data fits the model? In other words, can we (efficiently) determine the 
likelihood of the data? 

3. Related somewhat to the previous, suppose we have an HMM and we observe some 
data supposedly generated from it. Wow can we determine the sequence of states of 
the underlying Markov model? (That is, we want to uncover the hidden states.) 

These issues are explored in chapters 17 and 19, where the EM algorithm and the Viterbi 
algorithm are introduced and applied to this problem. 

1.8 Some aspects of proofs 

Mathematics is simply sustained logical thinking. 
- H.PP Ferguson 

There is no royal road to geometry. 
- Plato 

Some people belleve that a theorem IS proved when a logically correct proof IS glven, 
but some people believe it IS proved only when the student sees why ~t IS Inevitably true 

- Rzchard W Hammzng 
Coding and Information Theory, p 164 

In engineering classes that require proofs, it almost inevitably arises that a student will 
complain that he or she does "not know how to do proofs." The way it is usually stated, of 
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"dolng proofs," seems to suggest that the student perhaps believes there 1s some univerially 
applicable method of d o ~ n g  proofs that wtll prove all problems On the one hand, there IS no 
one that knows how to "do proofs" of everyth~ng A proof requires ~ n s ~ g h t ,  understanding, 
background. and creativity, and some plaus~ble conjectures have thus far eluded proof (and 
will contlnue to do so. that Itself is a theorem) Some proof\ have the subtlety and beauty of a 
well-crafted sonnet On the other hand, most proofs consist of clanficat~ons of patterns that 
have been previously observed, or are precise statements of some fact Every eng~neering 
student should be able to "do proofs" to some extent. 

Signal processing, employ~ng mathematical concepts to accomplish englneenng pur- 
poses, often presents a difficult challenge to engineering students who want to know how to 
use the matenal, but resist the mathemat~cal formallt~es-in particular, theorems and proofs 
Nevertheless, throughout t h ~ s  book. many of the concepts are presented In a theorem-proof 
format as a means of organlzatlon, and opportunities for provlng some concepts are pro- 
vided in the exercises The following just~ficat~ons are pro~lded for requlrrng proofs of 
engineering students 

1 Because an englneer puts things together, wlth an eye to design and util~ty, the abrllty 
to move from a requirement specificat~on to a finished deslgn IS an Important sklll In 
~ t s  restricted domaln, provlng a theorem IS nothlng more than des~gn, taking specifi- 
cations and uslng available components to produce a result The spectfications are the 
hypotheses of the theorem, and the available components are whatever knowledge 
can be brought to bear on the problem L ~ k e  most derign problems, there may be 
many correct solutions, and many incorrect approaches (It is perhaps the flexib~llty 
of cholce exerclsed against Inflexible lope that makei proofs cl~allenging ) Llke de- 
sign, a proof may requlre trylng many different avenues before a frultful approach 1s 
encountered 

2. A proof provides an opportunity to review and deepen understanding of concepts and 
definitions that have been presented. Tools that don't get used or are not understood 
correctly will never become useful tools. 

3 As new algorithms are developed, they must be evaluated Often thls 1s done enlplr- 
lcally, bq means of computer s~rnulatlon or by testlng of prototypes However, ~t IS 

better to have a sense of the correctness of a deslgn before too many resource\ are 
expended In ~ t s  prototyplng The sk~l l \  developed In learnlng to do proofs of theorems 
may asslst In evaluat~ng and improving signal processing algor~thms 

4 There 1s no ercaping the fact that the srgnal processing l~terature IS very mathemat~cal 
A broad mathematical vocabulary and the abtltty to read mathematics are necessary 
to draw meaningful lnformat~on from the llterature Should the occasion arise when 
student\ wlsh to publ~ih thelr own recults In \ignal processing Ilterature, they will 
need to speak the language 

5 Dotng a proof Ir a good chance to stretch some lntellectudl muscles 
The Intent of this sectlon I \  to prov~de 5ome cuggcct~ons on methods of proof that appear 
In the llterature T h ~ s  ic by no meme an exhiluctl\e I~r t .  new and Important concepts can 
arlse as new ways of answering queitlonc are cleated A\ an example. conslder Shannon's 
channel-codlng theorem, whtch states (ha\~caIly) that there is a code whlch ciln be used to 
transmlt data over a channel wlth drbltrar~ly low probabll~ty of error, prov~ded thdt the rate 
of traninl1scion is less than the capacity of the channel I n  provlng the theorem. Shannon 
took an unprecedented itep Inctedd of looh~ng tor '1 particular code to anewer the quection. 
he in\tead aver'iged o\er all poscible codes This partiiul'ir trick made the an,tlyst\ fall rlpht 
into place Such "tr~cks." or creatlve 1n51ghtc, Lannot he taught There are however. come 
log~cal app~odchec which can be taught anci exerilced 
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A theorem may be stated something like: if P, then Q .  In this, P is called the h-vpothesis 
;lnd Q  is called the conclusion. We say that P  implies Q, and may write P =+ Q .  The 
statement "if P ,  then Q" is not logically equivalent to saying that, because Q occurs, P  
must also occur. For example, consider the following syllogism: 

If a book falls on Frank's head, his head will hurt. 
Frank's head hurts. 

We cannot conclude that a book ha5 fallen on Frank's head, he may s~mply have a headache 
In the implication P  =+ Q, we say that P is sufficient for Q knowledge that P occurs is 
sufficient to establish the presence of Q  However, P is not necessary for Q  Q could 
(perhaps) have happened another way 

Note that ~f P  =+ Q and if Q  is not true, then P cannot be true Based on the syllogism 
above, if Frank's head does not hurt, we can conclude that a book did not fall on his head 

Equivalent ways of expresstng t h ~ \  implication are 

P  implies Q 
if P ,  then Q 
P = + Q  
Q ,  if P 
P only if Q 
P is a sufficient (but not necessary) condition for Q  
not Q implies not P  (this is the contrapositive) 
Q is a necessary condition for P 

For the statement P  =+ Q ,  the statement obtained by reversing the roles of P  and Q 

is called the converse. That fact that P =+ Q and its converse Q =+ P are both true can be 
stated in a variety of equivalent ways: 

P implies Q and Q implies P 
P implies Q, and conversely 
P  if and only if Q 
P is a necessary and sufficient condition for Q 
P * Q  

The statement " P  if and only if Q" is often abbreviated P iff Q. 
We now present some comments about proofs in a general framework. These sugges- 

tions do not provide an exhaustive bag of tricks, but are merely intended to suggest some 
approaches that might work. 

1.8.1 Proof "by computation": direct proof 

Proofs of some statements may be mostly computational, may involve such techniques as 
integration (often using change of variables), properties of integration, linear algebra, Taylor 
series, etc. As a simple example. to prove that convolution commutes, that is, that 

it suffices to make a change of variablex = t - r in the first integral. If you were approaching 
the problem without knowing the "trick," the best thing to do would be to simply try several 
approaches. If what you are trying to prove is true, sooner or later you may stumble across 
the correct approach. While this may lack polish, it mirrors the way things are discovered 
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in the real world: rarely does a useful concept or product spring forth full-blown, as if from 
the head of Zeus. Discovery requires exploration, thought, and trial-and-error. Of course, 
experience in an area can shorten the time between concept and execution. To experienced 
mathematicians, some things become transparently obvious because they have solved so 
many related problems. A student starting out in an area may not have the benefit of that 
insight. What is often required is the determination to try things out, possibly without being 
able to foresee at the outset what will result. Experience will lengthen the number of steps 
you can see ahead. 

Example 1.8.1 Here is an example of a direct proof. 
Let X = X I ,  x2, . . . , X, be a set of discrete points in W .  The sets defined by 

V, = (x E Rn : x is closer to x, than to any other x,, i # j ] ,  

that is, 

V, = ( X E W  :d(x ,x , )  < d ( x , x , ) , i  # j ] ,  

are called the Voronoi regions of X .  The vector x, in V, is called the cell representative. Voronoi 
regions arise in vector quantization and data compression (see section 16.1). We will prove that 
Voronoi regions are convex sets. Pick a Voronoi cell; without loss of generality we will call the cell 
VI, with its cell representative X I .  

Let p and q be arbitrary points in VI, and let us designate p as the point which is further from 
xl  . If every point on the line between p and q is in Vl . then the set is convex. Let x be a point on the 
line between p and q, 

Then. 

where the first inequality follows from the tnangle inequality Thus x is closer to xl  than 1s p. which 
is in the Voronor celi By the defin~r~on of the Voronor cell, ~f p 1s in the Voronor cell, then x must 
also be 

Of course, the trial-and-error aspect of finding the correct computation in this example is 
not shown, only the finished product. 

Some standard "tricks" that are employed in proofs are worth mentioning: 

1. Counting and lists. Make an exhaustive list of all the elements, and consider what 
you are trying to do applied to all of them. 

2. To show that A and B are the same, it may work to show that A c B and B c A. 
Similarly, to show that x = y ,  show that .x 2 y and y 2 x. (See, for example, the 
proof to theorem 2.2.) 

3. In analytical work, the Taylor series and the mean value theorem are excellent tools. 

4. Exhaustive checking. For example, to verify that a set satisfies certain properties, 
simply validate that the properties hold individually. 
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1.8.2 Proof by contradiction 

Contradictions do not exist. Whenever you think that you are facing a contradiction, 
check your premises. You will find that one of them is wrong. 

- Ayn Runti 
Atlas Shrugged 

,-\ powerful proof technique is proof by contradiction. In order to show that P + Q, we 
take as true the hypothesis P and assume that Q is not true. The proof follows by showing 
that this assumption leads to a logical contsadiction. 

Example 1.8.2 We w ~ l l  prove a mlllennla-old theorem known to the Pythagoreans of Greece Recall 
that a rat~onal number 1s a number that can be expresed as a ratlo of Integers Thus 3/7 1s a ratlonal 
number G 

Theorem: f i  is irrational. 

Pr~or  to establlshlng t h ~ s  theorem, the Pythagoreans held the viewpoint that the har- 
montes of the cosmos could be expressed as ratios of Integers T h ~ s  theorem lead to con- 
ciderable r e l~g~ous  upheaval in its day. 

Proof We will assume a result contrary to the statement of the theorem, and show that this 
leads to a contradiction. We assume that f i  is rational, that is, that 

for some integers m and n .  Now we show that this leads to a contradiction. Squaring (1.60), 
we obtain 

From this we see that m 2  must be an even number, and hence that m must be even (show 
this!). Let us write m = 2k for some integer k.  Substituting this into (1.611, we obtain 

4k2 
2 = - - ,  

n * 
or, 

This is equivalent to 
n -JZ= -. 
k 

Now we have returned an expression having the same form as (1.601, but with k < n. 
Being now in a position to repeat the operation, we have reached the precipice leading 
to a contradiction, because the numbers in the ratio will be reduced by iteration of these 
same steps, down to absurdly small values. By this contradiction, we must conclude that 
the original assumption (1.60) is false. 

One of the issues over which mathematicians sometimes fret is the uniqueness of a 
solution to a given problem. Proving uniqueness is very commonly done using contradiction. 
Two distinct solutions to the problem are proposed, and it is shown that these solutions are 
equal, a contradiction which points out that only one solution is possible. This method is 
exemplified in the proof of theorem 2.1. 
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1.8.3 Proof by induction 

The essent~al charactensttc of reason~ng by recurrence is that tt contains, condensed so 
to speak, in a slngle fonnula, an rnfintte number of syllogtsms 

- Henrt Pozncari. 
Science and Hypothesis 

Proof by induction allows one to establish general conclusions from a limited set of test 
cases. Suppose you have some statement that depends upon an integer n. We will denote 
rhis statement by S(n)-statement S is a function of n. You begin by showing that S(n) is 
true for n = I (sometimes another small value of n is the starting point). Then you show 
that assuming S(n) is true leads to an implication that S(n + 1 )  is also true. What is amazing 
and powerful is that you get to assume the truth of S(n), and use this to show the truth of 
S(n + 1). The assumed hypothesis S(n) is called the inductive hypothesis. 

Example 1.8.3 The first example should be familiar. We want to show that the sum of the first n 
integers is 

Clearly rhis IS true for n = 0, and also clearly it is true for n = 1. Let us assume its truth for n .  That 
is, we now assunze that 

and show, that this implies the truth for n + I .  That is, we need to show that 

We have 

where the second equaltty comes by assumption of the inducttve hypothesis C: 

We do another inductive proof of mathematical flavor to illustrate another point. 

Example 1.8.4 We wlll show that. 

if n , 5 .  then 2" > n' 

What makes thls example fundamentally different from the prevlous 1 5  that the \tarting point i \  not 
n = 0, but n = 5 
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The statement is clearly true when n = 5 .  Let us assume that it holds for n ;  that is, our inductive 
hypothesis is 

2" > tz2 

and show that ~t must be true for n  + I .  that 1s. 

2"+' > ( n  + 1)' 

2"+' = 2 2" 

> 2n2 (by the Inductive hypothesis) 

= n2 + n 2  > n' + 5n (because n  2 5) 

= n 2 + 2 n + 3 n  z n 2 + 2 n +  1 

> ( n  + 112 

We now offer an example with a little more of an engineering flavor. 

Example 1.8.5 Suppose there 1s a communicdtion l ~ n k  In wh~ch  errors can be made wlth probability 
p ( T h ~ s  lrnk is d~agrammed In figure I 19(a) ) When a 0 I S  sent, i t  1s recelved as a 0 wzth probablllty 
1 - p, and as a 1 wlth probablllty p  This commun~cat~on-llnk model 17 called a binary symmetnc 
~hdnnei  (BSC) Now, suppose that n  BSCs are placed end to end, as In figure 1 19(b) Denote the 
probab11:ty of error after n  channels by P,(e) We wlsh to show that the end-to-end probability of 
error is 

When n  = 1, we compute P, (e) = p ,  as expected. Let us now assume that P,,(e) as given in (1.62) 
I ?  true for n ,  and show that thls provides a true formula for P,,, (e). 

In n  + 1 stages, we can make an error ~f there are no errors In the first n  stages and an error 
Qccurs In the last stage, or if an error has occurred over the first n  stages and no error occurs in the 
last stage. Thus, 

1 
= ( 1  -p)-[I - ( 1  - 2 p ) " I i - p  

2  
(by the inductive hypothesis) 

(a) A single channel (b) n channels end-to-end 

Figure 1.19: Binary symmetric channel model 
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Proof by ~nductlon I S  very powerful ctnd workr In a remarkable number of cases It 
requtres that you be able to state the theorem you must stait with the inductive hypothesis, 
whlch ir urually the d~fficult part In  practice. \taternent of the theoiem murt come by some 
initial gr~nd, rolne lnstght, and a lot of wotk Then lnductlon 1s ured to prove that the result 
I \  correct Some iimple oppollunltler for rtcttrng an Inductive hypothesis and then proving 
1t are provtded in the exerclres 

1.9 An application: LFSRs and Massey's algorithm 

In thts iectlon we introduce the l~near feedback shtft register (LFSR), which 1s nothing 
more than a determlnt5tic autoregl-esslve system The concepts presented here will tllustrate 
some of the linear systems theory presented In t h ~ s  chapte~. provide a demonstratton of 
some methods of proof, and introduce our first algorithm 

An LFSR I \  simply an autoregresilve filter over a field F (see box I 4) that has no Input 
stpnal An LFSR is shown In figure 1 20 An alternative real~~atioti. preferred in h~gh-speed 
implementatlonr because the addltion operations are not cascaded. I \  shown in figure 1 21 
If the contents are blnary, tt 1s helpful to vtew the $torage elements as D flip-flops, so that 
the memory of the LFSR i i  slrnply a rliift reglrtel and the LFSR 1s a dig~tal \tale machine 
For a blnary LFSR. the connections are e~ther 1 or 0  (connection or no connect~on), and 
all operations are carned out In GF(2) ,  that 1s. modulo 2 (see box 1 5) Massey's algorithm 
appl~es over any field, but most commonly ~t 1s used in connectton wlth the blnary field 

The output of the LFSR is 

The number of feedback coetfic~ents p I \  called the lrrlgih of the LFSR. 
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/ Box 1.4: Groups, rings, and fields 1 
At various places throughout the text, we will have occasion to refer to 
algebraic syctems different from the familiar real or complex numbers. In 
these different sy$tems, the operations are organized into particular sets of 
anthmetic rules. We define here three important sets of operations. 

1 Groups. A set S equipped with a binary operation * is a group if it satisfies 
the following: 

1. There is an identity element e E S, such that for any a E S ,  

That is, the identity element leaves every element unchanged under the 
operation *. 

2. For every element a E S there is an element b E S called its inverse, 

I such that 

/ 3. The binary operation is associative. For every a ,  b, c E S, I 

We denote the group by ( S ,  *). 
If it is true that a * b = b * a for every a. b E S ,  then the group is said to 

be a commutative or Abelian group. 

I Rings. A set R equipped with two operations, which we will denote as + 
and *, is a ring if it satisfies the following: 

1. (R,  +) is an Abelian group. 

2. The operation u is associative. 

3. Left and right distributive laws hold. For all a ,  b, c E R,  

The operator * is not necessarily associative; nor is an identity or inverse 
required for the operation *. We denote the ring by ( R ,  +, *). 

Fields. incorporate the algebraic operations we are familiar with from work- 
ing with real and complex numbers. A set F equipped with two operations 
+ and * is a field if it satisfies the following: 

1. (F, +) is an Abelian group. 

2. The set F excluding 0 (the additive identity) is a commutative group 
under *. 

3. The ooerations + and * distribute. 

Example 1.9.1 The LFSR over GF(2) shown In figure 1.22(a) sat~sfies 

With initial register contents y-, = 1 ,  yW2 = 0 y - ,  =: 0, the LFSR output sequence is shown in 
figure 1.22(b), where the notation D .= z-' is employed. The alternative realization is shown in 
figure 1.22(c). 
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/ Box 1.5: G  F(2)  

An important class of fields are those that have a finite number of elements. 
These are known as Galois fields. All Galois fields have a number of elements 
equal to pm, where p is prime and m is an integer. Of these, arguably the 
most important is G F ( 2 ) ,  the field of binary arithmetic done without carry. 
The addition and multiplication tables for G F ( 2 )  are shown here: 

The addition operation is the exclusive - o r  operation familiar from digital 
logic, and the multiplication operation is the and operation. The reader can 
verify that these operations satisfy the requirements of a field. 

After j = 6 the sequence repeats, so that seven distinct states occur in this digital state ma- 
chine. Note that for this LFSR, the register contents assume all possible nonzero sequences of three 
digits. 

Taking the Z-transform of (1.63), we obtain 

It will be convenient to represent the LFSR, using the polynomial in (1.64), in the form 

where D  = z-' is a delay operator. We note that the output sequence produced by the LFSR 
depends upon both the feedback coefficients and the initial contents of the storage registers. 

1.9.1 Issues and applications of LFSRs 

With a correctly designed feedback polynomial C ( D ) ,  the output sequence of a binary LFSR 
is a "maximal-length" sequence, producing 2P - 1 outputs before the sequence repeats. This 
sequence, although not truly random, exhibits many of the characteristics of noise, such 
as producing runs of zeros and ones of different lengths, having a correlation function 
that approximates a delta function, and so forth. The sequence produced is sometimes 
called a pseudonoise sequence. Pseudonoise sequences are applied in spread-spectrum 
communications, error detection, ranging, and so on. The global position system based on 
an array of satellites in geosynchronous orbit, employs pseudonoise sequences to carry 
timing information used for navigational purposes. 

In some of these applications, the following problem arises: given a sequence 
(yo ,  y , ,  . . . , yp.r-1) deemed to be the output of an LFSR, determine the feedback connection 
polynomial C ( D )  and the initial register contents of the shortest LFSR that could produce 
the sequence. Solving this problem is the focus of the remainder of this section. The al- 
gorithm we develop 1s known as Massey's algorithm. Not only does it solve the partlcular 
problem stated here but, as we shall see, i t  provldes an efficient algorithm for solv~ng a 
particular set of Toeplitz equations. 

An LFSR that produces the sequence 
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(a) Block diagram 

(b) Output sequence 

(c) Alternate block diagram 

(d) Output sequence for alternative real~zation 

Figure 1.22: A binary LFSR and its output 

j I Y ; - I Y ; - 2 . ~ ; - 3  I Y j  (output) ' 

could clearly be obtained from an LFSR of Length N, each storage element containing one 
of the values. However, this may not be the shortest possible LFSR. Another approach to 
the system synthesis is to set up a system of equations of the following form (assuming that 
the length of the LFSR is p = 3): 

0 I 00 1 

These equations are in the same form as the Yule-Walker equations in (1.16); in particular, 
the matrix on the left is a Toeplitz matrix. Whereas the Yule-Walker equations were orig- 
inally developed in this book in the context of a stochastic signal model, we observe that 
there is a direct parallel with deterministic autoregressive signal models. 

Knowing the value of p, the Yule-Walker equations could be solved by any means 
available to solve p equations in p unknowns. However, directly solving this set of equations 
is inefficient in at least two ways: 

1 
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1. A general solution of a p x p set of equations requires O ( p 3 )  operations. We are 
interested in developing an algorithm that requires fewer operations. The algorithm 
we develop requires 0 ( p 2 )  operations. 

2. The order p is not known in advance. The value of p could be determined by starting 
with a small value of p,  and increasing the size of the matrix until an LFSR is obtained 
that produces the entire sequence. This could be done without taking into account 
the result for smaller values of p. More desirable would be an algorithm that builds 
recursively on previously-obtained solutions to obtain a new solution. This is, in fact, 
how we proceed. 

Since we buildup the LFSR using information from prior computations, we need a notation 
to represent the polynomial used at different stages of the algorithm. Let 

denote the feedback connection polynomial for the LFSR capable of producing the output 
sequence { y o ,  yl , . . . , y,-I},  where L ,  is the degree of the feedback connection polynomial. 

The algorithm we obtain provides an efficient way of solving the Yule-Walker equations 
when p is not known. In chapter 8 we encounter an algorithm for solving Toeplitz matrix 
equations with fixed p,  the Levinson-Durbin algorithm. A third general approach, based on 
the Euclidean algorithm, is also known (see, e.g., [36]). Each of these algorithms has o ( ~ * )  
complexity, but they have tended to be used in different application areas, the Levinson- 
Durbin algorithm being used most commonly with linear prediction and speech processing, 
and the Massey or Sugiyama algorithm being used in finite-field applications, such as 
error-correction coding. 

1.9.2 Massey's algorithm 

We build the LFSR that produces the entire sequence by successively modifying an existing 
LFSR, if necessary, to produce increasingly longer sequences. We start with an LFSR that 
could produce yo. We determine if that LFSR could also produce the sequence { y o .  y , } ;  if 
it can, then no modifications are necessary. If the sequence cannot be produced using the 
current LFSR configuration, we determine a new LFSR that can produce the entire sequence. 
We proceed this way inductively, eventually constructing an LFSR configuration that can 
produce the entire sequence {yo ,  y1, . . . , y ~ - ~ } .  By this process, we obtain a sequence of 
polynomials and their degrees, 

where the last LFSR produces { y o ,  . . . , Y N - I } .  
At some intermediate step, suppose we have an LFSR Cinl(D) that produces 

( y o ,  y l ,  . . . , yn- l )  for some n < N.  We check if this LFSR will also compute y, by com- 
puting the output 

If F,, is equal to j,,, then there is no need to update the LFSR, and ~ ~ " " ' ~ ( 5 )  = Cln1(D). 
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Otherwise, there is some nonzero dl.scrvnnc,y, 

1=I I =o 

In  this case, we will update our LFSR using the formula 

where A is some element in the field, 1 is an integer, and Ctrnl(D) is one of the prior LFSRs 
produced by our process that also had a nonzero discrepancy dm. Using thls new LFSR, we 
compute the new discrepancy, denoted by d i ,  as 

Now, let 1 = n - m. Then the second summation gives 

L m  

A cj""y,,,-, = Ad,,,. 

Thus. if we choose A = -d;'ct,, then the sunlmation in (1.66) gives 

So the new LFSR produces the sequence {yo ,  yi , . . . , y,) 

1.9.3 Characterization of LFSR length in Massey's algorithm 

The update in (1.65) is, in fact, the heart of Massey's algorithm. From an operational point 
of view, no further analysis is necessary. However, the problem was to find the shortest 
LFSR producing a given sequence. We have produced a means of finding an LFSR, but 
have no indication yet that it is the shortest. Establishing this will require some additional 
effort in the form of two theorems. The proofs are challenging, but it is worth the effort to 
think them through. 

(In general, considerable signal processing research follows this general pattern. An 
algorithm may be established that can be shown to work empirically for some problem, but 
characterizing its performance limits often requires significant additional effort.) 

Theorem 1.1 Suppose thatan LFSRof length L, produces thesequence {yo,  yl , . . . , y,-I), 
but not the sequence {yo,  y 1, . . . , y,}. Then any LFSR thatproduces the latter sequence must 
have a length L,+l satisfjling 

L,+I 2 n + 1 - L,. 

Proof The theorem is only of practical interest if L, < n (otherwise it is trivial to produce 
the sequence). Let us take, then, L, < n.  Let 

c["'(D) = 1 + c P I D  + .  . .  +cF1DLn 

represent the connections for the LFSR which produces {yo,  yl , . . . , y,-I }, and let 
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denote the connections for the LFSR whlch produces {yo. y ~ .  . . . , y,,]. Now we d o  a proof 
by contradiction: 

Assume (contrary to the theorem) that 

Frorn the definltlons of the connection polynomials, we  observe that 

and 

From (1.69). we have 
L, - 1  

, = I  

The lndlces In t h ~ r  summation range from 12 - 1 t o n  - L,,I whlch, because of the (contrary) 
assulnptlon made In ( 1  67),  1s a wbset of the range L,. L,, + 1 .  . n - 1 T l~us ,  the equallty 
in ( I  68)  applles, and we can wrlte 

Interchanging the order of summailon we have 

h=1 

In this surumatlon the ~ndtces  range from 11 - 1 to n - L,, wh~ch.  because of ( I  67),  1s a 
subset of the range L,,-[ + 1 . rz  of (I  69) Thus. we can wrlte 

L,,  L,,*l 

\,, # 

Cornpanng ( 1 7 0 )  wlth ( 1 7  1 ). we o b w v e  a contradlctron Hence, tile aicumptlon on the 
length of the LFSRs mu\t have been Incorrect By thti  contradlctlon. we muit have 

S ~ n c e  [he iliorteit LFSR that produce\ the iequence { l o .  I 1 . I , , )  mu\i al\o produce the 
hrst part of that \equence, we mu\t l>,~\e L,,,l > L,, C o n ~ b l n ~ n g  thii  w ~ t h  the result of the 
theorem. b e  oht'iin 

L,,-1 L m a x ( L , , . i ~ +  I - L,,)  (1.72) 

In other word\. the {Ii~ft regl\ter c'tnnot become \hortcr '15 more output\ dre prctduced 
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We have seen how to update the LFSR to produce a longer sequence uslng (1.65), and 
,ilso have teen that there 1s a lower bound on the length of the LFSR. We now show that t h ~ s  
lower bound can be achieved wtrh equality, thus provid~ng the shortert LFSR that produces 
the deslred sequence 

lheorem 1.2 Let {(L, . clil( D)).  i = 0, 2,  . i t }  be a req~tence qfmrnlm~lm-length LFSRs 
p h c ~ r  produce dze requente (40, v l ,  , v,- 1 } I f  C [ n + ' l ( ~ )  f C["l(d), then n new LFSR can 
[I?  jo~incr' thut ~ u t i  $es 

L,,I = max(L,, n + 1 - L,). 

Proof We will do a proof by induction, taking as the inductive hypothesis that 

tor k = 0, 1 ,  . . . , n. This clearly holds when k = 0. since Lo = 0. 
Let m < n ,  denote the lust connection polynomial before c["'(D) that can 

produce the sequence {yo, y 1. . . . , y,-' } but not the sequence {yo, yl  , . . . , y,}, such that 

Then 

L, < L,. 

Lrn+~ = L n ;  

hence, in light of (1.73), 

L,+[ = L, = i n +  1 - L,. ( 1.74) 

If C~""I(D) is updated from C["~(D) according to (1.65), with 1 = n - m,  we have 
already observed that it is capable of producing the sequence {yo, yl , . . . , y, ). By the update 
formula (1.651, we note that 

L,+I = max(L,, n - m + L,) 

Using (1.74) we find that 

L,+I = max(L,, n + 1 - L,). 

In the update step, we observe that if 

then, using (1.73), cinf ' I  has length L,,! = L,, that is, the polynomial is updated, but there 
1s no change in length. 

The shift-register synthesis algorithm, known as Massey's algorithm, is presented first 
in pseudocode as Algorithm 1 '1, where we use the notations 
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Algorithm 1.1 Massey's algorithm (pseudocode) 

Input: YO, Y I ,  . . . , Y N - I  

Initialize: 
L = O  
c(D) = 1 (the current connection polynomial) 
p(D) = I (the connection polynomial before last length change) 
s = 1 (S is n - m, the amount of shift in update) 
dm = 1 (previous discrepancy) 
f o r n = O t o N - 1  

d = Y n  + C,L=, C,Yn-, 
if (d = 0) 

s = s + l  
else 

if (2L z n) then (no length change in update) 
c(D) = c(D) - dd;' Dip(D) 
s = s + l  

else (update c with length change) 
r ( D )  = c(D) (temporary store) 
C(D) = C(D) - dd;' D " ~ ( D )  
L = n + l - L  
P(D) = r(D) 
dm = d 
s = l  

end 
end 

A MATLAB implementation of Massey's algorithm with computations over GF(2) 
is shown in Algorithm 1.2. The vectorized structure of MATLAB allows the pseudocode 
implementation to be expressed almost directly in executable code. The statement c = 
mod([c zeros(1,Lm + s - Lnjl + [zeros(l,sJpl,2); simplyalignsthe 
polynomials represented in c and p by appending and prepending the appropriate number 
of zeros, after which they can be added directly (addition is mod 2 since operations are in 
GF(2)). 

Algorithm 1.2 Massey's algorithm 

functlon [el = massey(y) 
% functlon [cj = masseyiy) 
% Thls functlon runs Massey's algorithm (In GF(2) 1 ,  returning 

% the shortest-length LFSE 

% 
% y = lnpot sequence 
% c = LFSR connectlocs, c = 1 + c(2jD + c ( 3 ) D A 2  + . . .  c ( L + l ) D A S  
, (Note: opposlte from usdal Matlab order) 

N = length(y); 
% Initialize the variables 
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..- - 
d.A - 9; % current Length of LFSR 
~m = 0; 8 length before last change 
c = I; 8 feedback connectiocs 
p = 1; 8 c before last change 
s = I; % amount of shift 

j : % M = current matching output sequence length 
2 = mod(ciy(n:-l:n-ln)',2); % compute the discrepancy (binary arith.1 
if id == 0) % no discrepancy 
s = s+l; 

else 
ifi2*Ln > n-1) % no length change in update 
c = mod(c + [zeros(l,s) p zeros(1,Ln-!Lm+s)i],2); 
s = s+l; 

else % update with new length 
t = c; 
c = rnod([c zeros(1,Lrnis-Ln)] + [zeros(l,s) p!,21; 
Lm = in; Ln = n - Ln; p = t; s = 1; 

end 
end 

end 

Because the MATLAB code so closely follows the pseudocode, only a few of the algorithms 
throughout the book will be shown using pseudocode, with preference given to MATLAB 
code to illustrate and define the algorithms. 

To conserve page space, subsequent algonthrns are not explicitly displayed. Instead, 
the icon 

is used to indicate that the algorithm is to be found on the CD-ROM. 

Example 1.9.2 For the sequence of example 1 9 I ,  

~ = ~ 1 , 1 , 1 , 0 . 1 , 0 . 0 ~ ,  

the feedback connection polynorn~al obtained by a call to massey 1s 

c = ( 1 ,  1,o. 1 1 ,  

wh~ch corresponds to the polynom~al 

Thus, 

or 

as expected. 
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1 .I 0 Exercises 

I 4-1 (Complex anthmet~c) This exercise glves a brlef refresher on complex multiplication, as well 
as matrrx multlplication Let z l  = a + jb and z2 = c + j d  be two complex numbers Let 
z ? = z 1 ~ 2 = e + j f  

(a) Show that the product can be wrrtten as 

In this form, four real multiplies and two real adds are required. 

(b) Show that the complex product can also be written as 

e = (a - b)d + a(c - d) f = (a - b)d + b(c + d) .  

In this form, only three real multiplies and five real adds are required (If addrt~on is 
significantly easier than multlplication in hardware, then this saves computations ) 

(c) Show that thls modlfied scheme can be expressed In matrix notatlon as 

1.4-2 Show that (1.8) for the partial fraction expansion of a 2-transform with repeated roots is 
correct. 

1.4-3 Determine the partial fraction expansion of the following. 

Check your results using residue2 in MATLAB. 

1.4-4 (Inverses of higher-order modes) 

(a) Prove the following property for Z transforms: If 

then 

(b) Uslng the fact that plu[t] t, 1/(1 - pz-I), show that 

(c) Detennlne the Z-transform of tZp'u[r]. 

(d) By extrapolat~on, determine the order of the pole of a mode of the form rhp'u[r]. 

1.4-5 Show that the autocorrelatlon function defined in (1.9) has the property that 

r , \ [k l  = F, , [ -kI  

1 4-6 Show that (1 11) is correct 

1.4-7 For the MA process 
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where f [t] I \  a zero-mean white random process with a,: = I .  determine the 3 x 3 autocor- 
reldtion rnatnx K 

1 4-8 For the frrst-order real 4R process 

~ [ f  + I 1  + a ~ y [ t l  = f [ t  + 11, 

with lai I < 1 and E [  f [ t ] ]  = 0, show that 

1 4-9 For an AR process ( 1.12) dnven by a white-noise sequence f [ t ]  with variance a;, show that 

I =a 
1.4- 10 (Second-order AR processes) Consider the second-order real AR process 

where f [tl 1s a zero-mean whlte-noise sequence. The difference equation in (1.14) has a 
characteristic equation with roots 

(a) Using the Yule-Walker equations, show that if the autocorrelation values 

r,.,[l - k ]  = E[y[ t  - k ] y [ t  - 111 

are known, then the model parameters may be determined from 

(b) On the other hand, if at = r,,[O] and a ,  and a* are known, show that the autocorrelation 
values can be expressed as 

(c) Using (1.76) and the results of this problem, show that 

(d) Using r,,[O] = a,' and r,,[l] = -alu, ' /( i  + a z )  as initial conditions, find an explicit 
solution to the Yule-Walker difference equation 

r,,[kl + alr,,[k - 1) + a2r,,[k - 21 = 0 

in terms of pl , p2 , and (52 
1.4- 1 1 For the second-order difference equation 

where f [ t ]  is a zero-mean white sequence with a; = .I, determine a; = r,,[O], r,,[l] and 
r,,Z21. 
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1.4-12 A random process y [ t ] ,  hav~ng zero-mean and m x m autocorrelat~on matrlx R ,  IS applied 
to an FIR filter w ~ t h  impulse response vector h = [ho, h i ,  h2 ,  , l ~ , - ~ ] ~ .  Determine the 
average power of the filter output x [ t ] .  

1 4- 13 Place the follow~ng into state vanable form (controller canonical form), and draw a reahzation 

1 - 32-' 1 - 52-I - 62-' 
(a) H(z) = 

1 - 1.52-I + .562-2 (b) H(Z) = 1 - 1.5z-' + . 5 6 ~ - ~  

1.4- 14 In addition to the block diagram shown in figure 1.3, there are many other forms. This problem 
introduces one of them, the observer canonical form. 

(a) Show that the Z-transform relatlon rmplled by (1.2) can be wntten as 

(b) Draw a block diagram representing (1 31). containing p delay elements 

(c) Label the outputs of the delay elements from r~ght to left as xi, x2. . x, Show that the 
system can be put into state space form with 

A matnx A of this form is satd to be In second companion form. 

(d) Draw the block diagram in observer canonical form for 

and determine the system matrices (A. b, cT. d). 

1 4- 15 Another block d~agram representation IS based upon the parttal fract~on expans~on Assume 
lntt~ally that there are no repeated roots, so that 

(a) Draw a block diagram represerlting the parttal fractron expansion, by using the fact that 

has the block diagram 

(b) Let A , ,  r = 1 2 p denote the outputs of the delay elements Show that the system 
can be put into state-space form. with 

0 O 

A = 1; '" b = [I c = r!] d = bo 

0 0 

A matrrx A in thr\ form I \  idrd to be cilugo~~cil niatrrx 
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(c) Determine the partial fraction expansion of 

and d r a ~  the block dtagram based upon ~ t .  Determ~ne (A. b. c. d )  

(d) When there are repeated roots, things are slightly more complicated Consider. for sim- 
plic~ty, a root appeanng only twice Determine the part~al fract~on expansion of 

Be careful about the repeated root! 

(e) Draw the block dlagram correspond~ng to H(z) in partial fract~on form using only three 
delay elements. 

( f )  Show that the state variables can be chosen so that 

A matrix in this form (blocks along the diagonal, each block being either diagonal or 
diagonal with ones in it as shown) is in Jordan form. 

1 4-16 Show that the system in (1 22) ha:, the same transfer functton and solution as does the system 
in (1 21) 

1.4-17 For a system in state-space representation, 

(a) Show by induction that (1.27) is correct. 

(b) For a time-varying system, as in (1.23), determine a representation similar to (1.27) 

1 4-1 8 (Interconnect~on of systems)[l64] Let (A,. b , ,  c:) and (Az, b2, c:) be two systems Deter- 
mtne the system (A. b, cT) obtalned by connecting the two systems 

(a) In senes 

(b) In parallel. 

(c) In a feedback configuration with (A,, b i ,  cT) in the forward loop and (A2. b2. c:) in the 
feedback loop 

1.4- 19 Show that 

and 

and (A, b, cT) all have the same transfer function, for all values of A{, A*, and q that lead to 
valid matrix operations. Conclude that realizations can have different numbers of states. 

1.4-20 Consider the system function 

(a) Draw the controller canonical block diagram. 

(b) Draw the block diagram in Jordan form (diagonal form). 

(c) How many modes are really present in the system? The problem here is that a minimal 
realization of A is not obtained directly from the H(z) as given. 
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1.4-21 [I641 If (A, b. c T ,  d) with d # 0 describes a system H(s) In state-space form, show that 

describes a system with system function l /H(s) .  

1.4-22 (State-space solutions) 

(a) Show that (1.35) is a solution to the differential equation in (1.30), for constant ( A ,  B. 
C. D) .  

(b) Show that (1.36) IS a solut~on to the differential equation In (1 30), for non-constant 
(A, B,  C, D ) ,  provlded that (B satisfies the properties given 

1.4-23 Find a solution to the differential equation described by the stzte-space equations 

y(t) = [1 Olx(t), 

with x(0) = q. These equations describe simple harmonic motion. 

1.4-24 Consider the system described by 

y(t) = [O 2lx(t) 

(a) Determine the transfer functlon H(s) 

(b) Find the partral fraction expanslon of H(s) 

(c) Venfy that the modes of H (s) are the same a? the eigenvalues of A 

1.4-25 Verify (1.33) by long division. 

1.4-26 (System identification) In this exercise you will develop a technique for Identification of 
the parameters of a continuous-time second-order system, based upon frequency response 
measurements (Bode plots). Assume that the system to be Identified has an open-loop transfer 
function 

b 
H,(s) = - 

S(S + a ) '  
(a) Show that with the system in a feedback configuration as shown in figure 1.23, the transfer 

funct~on can be wntten as 

Y(s) 1 H' (s) = - = 
F(s)  1 + (a/b)s + (1  /b)s2 ' 

Figure 1.23: Simple feedback configuration 

(b) Show that 

where 
1 U (1) 

A ( JB) = - h J ( h  - w2)?  + ( u w ) ~  and tan q $ ( j c ~ )  = - 
h - w? 
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The quantltles A (  J w) and $(jw) correspond to the rec~procal amplitude and the phase 
dtfference between input and output. 

i c )  Show that tf ampl~tudelphase measurements are made at n d~fferent frequenc~es 
w, ,  0):. , w,, then the unknown parameters a and b can be est~mated by solvlng the 
overdeterm~ned set of equat~ons 

P- o - 

wf tan + ( jw , )  

0 

w: tan # ( j wz 

0 

tan 4 (jwn ) 

1 1-27 Verify ( 1.38). 

1.3-28 Show that 

Hint: Recall the inverse Fourier transform 

1.4-29 Show that under the condition that (1.391 is true. the PSD satisfies 

- 
Hint: Show and use the fact that 

N ,V N-I 

n=1 m=l I=-Nf 1 

1 4-30 (Modal analysis) The following data is measured from a third-order system: 
y = (0.3200,0.2500,0.1000, -0.0222,0.0006, -0.0012,0.0005, -0.0001). 

Assume that the first time index is 0, so that y[O] = 0.32. 

(a) Determine the modes in the system, and plot them in the complex piane. 

(b) The data can be written as 

Determine the constants c ,  , c2, and c?. 

(c) TO explore the effect of noise on the system, add random Gaussian noise to each data 
point with variance a2 = 0.01, then find the modes of the noisy data. Repeat several 
times (with different noise), and comment on how the modal estimates move. 

1.4-3 1 (Modal analysis) If y[t] has two real sinusoids. 

and the frequencies are known, determine a means of computing the amplitudes and phases 
from measurements at time instants t i ,  t2, . . . , t+ 

1.6-32 Show that R-' from (1.50) is correct. 

1.6-33 Show that (1.51) follows from (1.47) and (1.50). 
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1.6-34 Suppose that X - N(p, ,  0;) and N - N(0,  a:) are independently distributed Gaussian 
r.v.s. Let 

Y = X + N .  

(a) Determine the parameters of the distribution of Y. 

(b) If Y = y is measured, we can estimate X by computing the condrtional dens~ty f (XIj) 
Determine the mean and variance of this conditional dens~ty. Interpret these results In 
terms of getting information about X if (i) 0; >> a:, and (ii) a: << a:. 

1.6-35 Suppose that X -- N(p, ,  4) and Y - N ( p y  (52) are jointly distributed Gaussian r.v.s with 
correlation p. Determine the parameters of the distribution of Z = a x  + b y .  

1.6-36 If X - N ( 0 ,  I ), show that 
Y = a X + p  

is distributed as Y - N ( p ,  a'). 

1 6-37 Let x , ,  x2, , x, be n Independent observat~ons of a Gaussian random vanable X with 
unknown mean and vanance We desire to est~mate the mean and vanance of X The jolnt 
dens~ty of n independent Gaussian r v s, condlhoned on knowlng the mean p and the vanance 
u2,  is 

(a) Determine a marimurn likelihood estimate of p by maximizing this joint density with 
respect to p (i.e., take the derivative with respect to p) .  Call the estlmate of the mean thus 
obtained P.  

(b) Since ji is a function of random variables, it is itself a random variable. Determine the 
mean (expected value) of f i .  An estimate whose expected value is equal to the value it is 
estimated is said to be unbiased. 

(c) Determine the variance of ji. 

(d) Determine an estimate for u 2  

It IS natural to ask if there is a better estlmator for the mean than the "obvious" one just 
obtalned However, as will be shown In sectlon 12 3.2, t h s  estlmator is dependably the best, 
in that it has the lowest poss~ble vanance for any unbiased estimate 

1.7-38 A Markov random process X(t) has the property that 

P(X(t3) = xzlX(t2) = X2, X(tl) = X I )  = P(X(r3) = xglX(12) = 22) 

when t3 z 12 > ti; that IS, the probabilrty depends only upon the most recent conditlonlng 
event We will abbreviate this using the notation 

f (~31x2. ~ 1 )  = f ( ~ 3 / ~ 2 )  
(a) For a Markov process, show that 

f ( ~ 3 ,  Xi 1x2) = f ( ~ 3 l ~ ~ ) f  (~21x1). 
This is the property of conditional independence (x3 is independent of x i ,  provided that 
they are each conditioned on an intermediate observation xz). 

(b) No* suppose X (t) is a Gaussian random process, and assume (for convenience only) that 
11 IS zero-mean. Let 

r,(t, s )  = EIX(tjX(s)l. 
If X(r) 1s also Markov, show that 

rx)li, 12)r,(t2. t i )  
rx(t3. ? I )  = 

rx (12 > 12 ) 
Hint Use the fact that E[E[X (t3)X(tl)lX(t2)]] = EIX(ti)X(rl)].  and use the formula 
for condltlonal expectat~on derived in (1 52) 
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1.7-39 For the state-transition probability matrix A given in (1.58), find a probability vector p such 
that 

Ap = p. 

Such a probability vector is called the steady-stare probability of the Markov model. 

I 8-40 Show that 1s lrratlonal 

1.8-41 Show that there are an infinite number of primes. Hint: Use a proof by contradiction, assuming 
that there are only a finite number of primes. Then build a number 2 .  3 . 5  . . . . . p + 1, where 
p is the assumed last prime, and show that this is not divisible by any of the listed primes. 

1.8-42 Show that ~f m2 is even, then m must be even 

1.8-43 By t r~al  and error. determine a plausible formula for 

Then prove by induction that your formula is correct 

1 8-44 Determine (by expenment) a plaus~ble formula for the sum of the first n odd integers 

Then prove by induction that your formula is correct. 

1 .X-45 Determine (by experiment) a plausible formula for 

Then prove by induction that your formula is correct. 

1.8-46 Show by induction, for every positive integer n,  that n3 - n is divisible by 3. 

1.8-47 The quantity 

is the number of ways of chooslng k objects out of n objects, where n 2 k. The quantity (;) 
is also known as the binomial coeSficient. We read the notation (:) as "n choose k." 
Show by induction that, for I 5 k 5 n,  

1.8-48 Show by induction that, for n 2 0, 

1.8-49 Show by induction that 

This important formula is known as the binomial theorem. 
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1.8-50 Prove the following by induction: 

1.8-5 1 Prove the following by induction: 

1.8-52 Prove by induction that 

1 1 3  2 n - 3  2 n - 1  - < - . -  . . . . .  -. - 1 
<------- 

-./KT3 2 4 2 n - 2  2n JW' 
for integers n 2 1. 

1 8-53 Prove by ~nduction that, for x .  y G Z and any nonnegatlve Integer n. (x - 7 )  divides x n  - y" 
This is written as 

1 9-54 Prepare a table show~ng the storage contents and outputs for the LFSR shown in the accom- 
panying illustrat~on, with ~ n l t ~ a l  cond~tlons shown In the delay elements Also, determine the 
connection polynomial C ( D )  

1.9-55 Consider the LFSR described by the polynomial 

C ( D )  = I + D  + D2 + o3 
(a) Draw the LFSR block dlagram using both the realrzation shown In figure 1 20 and the 

realrzatton shown In 1 21 

(b) For the inttial condit~on (0.0,  1 ) trace the operation of both realtzations of the LFSR and 
venfy that the output sequence of each IS the same How many dtstrrct states are there? 

1.9-56 Consrder the LFSR described by the the polynomial 

(a) Draw the LFSR block diagram ustng both the realizat~on \hewn In figure 1 20 and the 
realrzatton shown in 1 21 

(b) For the initial cond~tron (0 .0 .  1 )  trace the operation of both realtzat~ons of the LFSR and 
vertfy that the output Fequence of each is the same How many distrrct states are there? 

1 9-57 Given the sequence (0,O.O. 1.0, 1 ,  0 ) ,  

(a) Determ~ne the shortest-length LFSR that could produce this sequence, perform~ng the 
computations by hand 

(b) Check your work uslng Algorrthrn 1 2 rn M ~ T L . Z R  

1 9-58 Show thai for = 0, I n ,  the output of the LFSR u ~ t h  connection poI>nom~al c ' " - ' ~ ( D )  
ar in ( 1  65) wlth A = -d;'d, and I = rf - nl satrshes d, = 0 (no discrepancy) 
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1.9-59 Wnte the output sequence as a polynomial 

Y(D) = vo + Y I  D + v2D2 + 
(a) Using ( 1  63), show that the jth coeffic~ent In Y(D)C(D) vani\hes for J = p p + 1 

where deg(C(D)) = p Hence, we can wnte 

where 

Thus, knowing Z(D), we can find the output by polynomial long division: 

(b) Show that the coefficients of Z(Dj can be related to the initial conditions of the LFSR by 

1.9-60 Let C(D) = 1 + D2 + D3, with initial contents {yo ,  y l ,  y z ]  = (1,0,0). Determine the first six 
outputs using polynomial long division (1 24). Compare the results to those obtained directly 
from the LFSR. 

1.9-61 Determine the sequence (y,} of length seven generated by C ( D )  = 1 + D + D3, and call its 
length N. Then compute the cyclic autocorrelation function 

where y(<,-kj) means that the subscript is computed modulo N. Plot this autocorrelation 
function. 

1.1 1 References 

The linear systems theory presented here in broad strokes is painted in considerably finer 
detail in [284] and [164]. Our brief introduction to linear prediction is more extensiveIy 
presented in [68,132], while considerably more on spectrum analysis appears in [174,220]. 
The applications of adaptive filtering highlighted here are discussed in depth in [I 321 and 
[368]. The hidden Markov model is presented in 1266, 681 and 12651. For an enjoyable 
and readable introduction to proofs, with a variety of suggestions and examples and some 
good mathematical background, [352] is recommended. A thought-provoking book on 
mathematical thinking is [256]. 

Massey's algorithm is presented in [221]. An excellent presentation of the algorithm 
is in [32]. The book [I091 provides an introduction to LFSRs, and the paper [288] an 
interesting discussion of decimated maximal-length sequences. Appiications of LFSRs to 
spread-spectrum communications are discussed in [387]. 





Part 11 

Vector Spaces and 
Linear Algebra 

The first important theme of this part is that signals are  vectors, allowing us to apply the 
powerful tools of vector analysis and linear algebra to signal analysis. This identification 
leads to a variety of applications, including optimal filtering, approximation, interpolation, 
data compression, and transforms. 

The second important theme is the existence and nature of the solution of linear equa- 
tions that arise in signal processing. Results are discussed for matrix linear operators and 
other linear operators. 

The third important theme is how solutions to linear problems are computed in a 
reliable and efficient manner. Examination of this issue leads to useful matrix factorizations, 
including LU, Cholesky, QR, and SVD, and specialized techniques for matrices which arise 
in signal processing. 

The concept of invariance under linear transformation-the eigenspace of an operator- 
forms a fourth theme. A variety of applications of eigenvalue and eigenvector concepts are 
presented, including modal estimation, controls, and filter design. 

Before embarking on the material in this part, the reader is encouraged to review basic 
matrix notation and concepts in appendix C. 





Chapter 2 

Signal Spaces 

Language makes a mlghty loose net w ~ t h  whlch to go fi\hlng for srmple facts, when 
facts are infinlte 

- Edward Abbey 
Desert Sohtaire 

Begrnner5 are not prepared for real mathemat~cal ngor. they would see In ~t noth~ng but 
empty, ted~ous cubtleties It would be a waste of ttme to try to make them more exacting, 

they have to pass rap~dly and without stopptng over the road whlch was trodden slowly 
by the tounders of the sclence 

- Henn Polncar.2 
Science and Hypothesis 

This chapter is mostly about two kinds of mathematical objects: metric spaces and linear 
vector spaces. The idea behind a metric space is simply that we provide a way of measuring 
the distance between mathematical objects, such as sets, points, functions, or sequences. 
With this notion of distance we will be able to generalize some of the familiar concepts of 
calculus, such as continuity or convergence, beyond operations on a single dimension to 
operations in higher dimensions. 

The concept of a vector space is also simple: it is a set of objects that can be combined 
together using linear combinations. But the theory of vector spaces has far-reaching ram- 
ifications, covering a significant portion of the theory of signal processing. A key insight 
in vector space theory is that, in a geometriczlly useful sense, functions (i.e., signals) can 
be regarded as vectors. This geometric understanding provides a powerful tool for signal 
analysis. In this chapter, the basic theory and notation of vector spaces is developed. In 
chapter 3 we put this notion to work in a variety of applications, including optimal filtering 
(both least squares and minimum mean squares), transforms, data compression, sampling, 
and interpolation. 

In our study of metric spaces and vector spaces, the intent is to provide a framework for 
the general discussion of signals. Before embarking on this chapter, the reader is encour- 
aged to review the basic definitions of functions and sets appearing in appendix A. In this 
study, matrix notation is heavily employed sections so review of the basic matrix notations 
presented in appendix C is also recommended. 

In the development of this chapter, we build successively from metric spaces, to 
vector spaces, to normed vector spaces, to normed inner-product spaces. This will lead 
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us to the important idea of projections and orthogonal projections. Orthogonal projection 
will be a tool of tremendous importance to us in the next chapter, where it will be used 
as the geometrical basis for both least-squares and minimum mean-squares filtering and 
prediction. 

2.1 Metric spaces 

We may consider that the signals (functions) of interest to us in a particular problem are 
members of some set X. In studying and applying these signals, we may be interested 
in understanding how a signal compares with other signals in this set. One way to do 
this is to measure a "distance" between the signals using a measure of distance that is both 
mathematically practically and physically meaningful. The mathematical aspects of a useful 
measuring function are expressed in the folIowing definition. 

Definition 2.1 A metric d :  X x X --+ IW is a function that is used to measure distance 
between elements in a set X. In order to be a metric, it must satisfy the following properties. 
for all x ,  y  E X :  

MI d ( x ,  y )  = d ( j ,  x ) .  

M 2  d ( x ,  y )  2 0. 

M 3  d ( x ,  y )  = 0 if and only if x  = y .  

M 4  For all points x ,  y,  z E X ,  

d ( x .  ,-) 5 d ( x ,  y )  + d ( y .  z ) .  

Exampfe 2.1.1 For x ,  y E R we can define a metric using the absolute value function by 

The required properties of a metric are all satisfied The last property follows from the triangle 
inequality. so called because of the re la t~onsh~p ~t Imposes on the sldes of a planar trlangle Let x, y. 
and z denote the corners of a triangle, as shown In figure 2 1 Then d(x, z) 1s the length of one s ~ d e ,  

Figure 2.1 : Illustration of the triangle inequality 

d(v. 2 )  rs the length of the cecond slde, and d ( x .  :) 1 5  the length of the third s ~ d e  The length of the 
third side cannot be longer than the lengths of the first two sides 

There are a varlety of metric\ wed. the following exarnple demonstrate5 a few of them. 
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Exampie 2.1.2 Let X be the set of numbers In Rn. Let x E R" and y E W" 

1. The metric d l  : IW" x W" -+ R defined by 

15 called the 1, metnc, also known as the Manhattan metnc, since distance measured in a city 
laid out on a Cartes~an gnd must follow straight along the streets Satisfaction of property (2 1 ) 
for this metnc follows from the tnangle inequality applied to each term 

is called the l2 metric. It represents the Euclidean distance between the points. The fact that 
this metric satisfies property (2.1) is proved in section 2.6. 

3. Generalizing the first two metrics, we have 

This is the 1, metric. The fact that this metric satisfies (2.1) follows from the Minkowski 
inequality, which is proved in appendix A. 

4. As p -+ CG, the I, metric becomes the I ,  metric, 

Example 2.1.3 Consider a vector x E Rn which is to be approximated (quantized) by a vector as 
2 illustrated in figure 2.2. To have a good representation of the data, we desire that t "look like" x, 
according to some criterion, and the quantizer should be designed with this in mind. While many 
different metrics have been examined, frequently the metrics employed in quantizer design turn out 
to be one of these mentioned above, such as d l  (x, I) or d2(x, 2). 

Quantizer 

Figure 2.2: Quantization of the vector x 

Example 2.1.4 Let x be a binary sequence, x = (no, x i ,  . . . , x,-~) ,  where x,  is either 0 or 1. This 
sequence is transmitted through a channel where it may be corrupted by some noise. The received 
sequence is y = {yo, y ,  , . . . . ). In receiving such sequences, the goal for good reception is that the 
bits in y should match the bits in x. An appropriate metric for this criterion is the Hamming distance 
between the sequences, which is the number of places that x, and y, are different, 

n-l 

where 

When x and y are binary sequences, then the Hamming distance between them can be written as 

in which denotes addition modulo 2. 
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Definition 2.2 A metric space (X, d )  is a set X together with a metric d .  0 

There are many possible metric spaces. We begin with metric spaces defined for sequences. 

Example 2.1.5 

1. The set IW" equipped with the metric dz(x, y) is a metric space. 

2. Let I ,  = Ip(O, co) be the set consisting of all infinite sequences of real or complex numbers 
{xo, X I ,  x2, . . . ) such that EEo /x, / P  < co. We will take 1 5 p i co. The function 

defines a rnetnc on l,, whlch we will call the I, metnc We refer to this metnc space as 
the I,(O, co) space, or simply the I, space Thts is an infintte-dimens~onal space known as a 
sequence space 

The set of two-sided sequences ( , X-I.  xo, xi.  ) with rnetnc d, gtves the rnetnc 
space I,(-co, co) 

In discrete-time s~gnal-processing applications, we deal mort frequently with ll  space or 
with l2 space, the former because absolute values are easy to compute. and the latter because 
the quadratic metnc function IS ea91ly differentiable 

3. The space 1,(0, m) consists of all sequences of numbers {xo, x l ,  xz, . . . ) such that Ix,/ 5 M 
for some finite bound M ,  equipped with the metric 

d,(x, Y) = sup Ix, - y,I. (2.2) 
n 

See box 2.1. The corresponding space of two-sided sequences is denoted as I,(-cc, co) 
0 

There are also many useful metric spaces defined over functions. These infinite- 
dimensional spaces are called function spaces. 

The metric space (C[a, b & d,). Let X = C [ a ,  b] be the set of real-valued (or complex- 
valued) continuous functions defined on the interval [a ,  b],  with b > a.  We can define a 

/ Box 2.1: Sup and inf 

For a set S c R, the least upper bound (LUB) is the smallest number z such 
that z > x for every x E S .  The LUB of a set S is called the sup (supremum) 
of the set. If there is no number that is greater than all the elements of S ,  
then sup(S) = w. Similarly, the greatest lower bound (GLB) of a set is the 
largest number w such that w 5 x for every x E S. The GLB is called the 
inf (infimum) of S. If there is no number less than all the elements of S, then 
inf(S) = -oo. 

The  tnf and sup are generalizations of min and max. respectively. Gener- 
ally the ~ n f  and sup are used vl hen there is a continuum of values over which 
to find the max or min, o r  where the extrema may be infin~te. 

Example 2.1.6 Let S = (2.5) c R. (Thts i \  an open set, and does not contaln the 
endpotnts.) Then, 

I sup(S) = 5 and tnf(S) = 2. I 
I Let T = [4,7)  Then ~ n f ( T )  = 4 and \up(T) = 7 Let U = (1  m) Then ~ n f ( U )  = 1 / 
and \up(U) = m 

C I 
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on functions x and y in X by 

b 1 1, 

d,(x. Y) = [l x ( r )  - y ( t j ~ ~ d t ]  , ( 2  3) 

where I 5 p < oc T h ~ s  gives the metnc space ( C [ a ,  b ] ,  d,) The metric d ,  between func- 
tlortc is referred to as the L ,  metnc It must be established that (2 3) is, in fact, a metnc 
f or p = 2 this is established using the Cauchy-Schwarz inequality (see sectron 2 6) For 
(,[her ~ a l u e r  of p, the Mlnkowrk~ ~nequality proved in appendix A 1s used 

The metric space (C[a, b I, dm). Letting p -+ oo in the definition of the last metric, we 
obtain (see box 2. 1), 

In other words, the distance between the functions is obtained at the point where the functions 
are farthest apart. This metric space is denoted as ( C [ a ,  b ] ,  d,) or, more simply, as C [ a ,  b]  
(the metric being understood by convention). 

The difference between the metric spaces ( C [ a ,  b ] ,  d,) and ( C [ a ,  b ] ,  d,) can be ap- 
preciated by considering the functions illustrated in figure 2.3. Let X = C[O, T I ,  and let xo 
be a point in X (a function). Figure 2.3(a) shows the region within which all functions x  
that satisfy 

(a) dm approximation 

(b) d2 approximation 

Figure 2.3: Comparison of d ,  and d2 metrics 
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must fall. For example, the function xl ( t ) ,  as shown, falls in the region. While there may 
be some wiggling around within the region, the function is never allowed to escape. 

By contrast, figure 2 .3 (b )  illustrates some functions that satisfy 

That is, these are functions for which 

At any given point to, there may be significant deviation from x o ( t ) ,  as long as the region 
over which the deviation occurs is not too long. The narrower the region of deviation, the 
bigger the deviation might be. If x ( t )  is an approximation to x o ( t ) ,  using the dm metric in 
expressing the approximation criterion provides an upper bound to the approximation error 
x ( t )  - x o ( t )  that cannot be obtained when using the d, metric for 1 5 p < co. 

The metric space L,[a, b ] .  Let L,[a, b] denote the set of real- or complex-valued func- 
tions x ( t )  defined on the interval r E [a,  b] such that 

[ x ( t ) I p  d t  < m. 

where 1 5 p < oo. This set, equipped with the metric d, of ( 2 . 3 ) ,  forms the metric space 
(L,[a, b ] ,  d,) or, more simply, L,[a, b]. When the interval is understood, this is often 
written simply as L,. The metric (2 .3 )  is often referred to as the L ,  metnc. 

Several technicalities associated with the L ,  space are discussed in section 2.1.3  For 
many problems of engineering interest, these technicalities do not present a difficulty, but 
they do bear some consideration. 

The metric space L,[a, b 1. Let L,[a, b] denote the set of real- or complex-valued func- 
tions x ( t )  defined on the interval [a,  b] such that 

sup jx(t)l < 00. 
te[a,bl 

This set, equipped with the metric d, of (2 .4 ) ,  is a metric space. 

2.1.1 Some topologicaf terms 

With the notion of a metric established, we can introduce some elementary concepts from 
point-set topology. 

In a metric space X, the ball or sphere centered at xo of radius 6  is the set of points 

xo which are within a distance 6  of xo: 

% B(xo ,  6 )  = { x  E X : d ( x o ,  x )  < 6 ) .  (2.5) 

Such a ball is also said to be a neighborhood of xo it 1s the set of polnts that live close to 

xo 

Definition 2.3 A point xo E X 1s interior to a set S C X if all points sufficiently near to 
xo are in S That is. there is some 6  > 0 such that B ( x o , 6 )  C S 

The interior of a set S 1s the set of all polnts in x  that are interior to the set A polnt 
xo $ S is exterior if there is neighborhood of xo that is outside (does not ~ntersect) S El 

F~gure 2  4 illustrates an interlor point, an exterior point, and a point which Ir neither 
~nterlor nor exterlor 
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Figure 2.4: xo is interior, xz is exterior, and xl  is neither interior nor exterior 

Definition 2.4 A set S is open if every point in S is interior. 

Example 2.1.7 The set S = (0. I )  C R IS an open set We will show that every point is intenor. Let 
ro E S Then the ne~ghborhood B(xo, S), where 

I 
S = -mln(xo 1 - xo), 

2 

1s a subset of S for any xo E S 
The set Y = [0, I ]  c W (includ~ng the endpoints) 1s not open The point 0 has no ne~ghborhood 

surrounding it that l ~ e s  entirely in Y 0 

It is straightforward to show that finite unions and intersections of open sets are open. 

Definition 2.5 A set S c X is said to be closed if the complement of S is an open set. 

Example 2.1.8 Let X = (0,4), and let S = [ I  , 2 ]  c X. Then 3 = (0,  I )  U (2,4). This is the union 
of two open sets, and hence is open. Thus S must be closed. 

For many purposes in this book, we will use open sets because they cannot contain 
only a single point. For example, in some results on optimization, we might state something 
like: " f ( t )  is continuous in an open neighborhood around to.'' What this means is that we 
can look at the points around to--in at least some neighborhood-and use continuity there. 

Definition 2.6 A boundary point of a set S is a point xo such that every neighborhood of 
xo contains eiements both in S and not in S. A boundary point is not necessarily an element 
of S. 

The boundary of a set S is the collection of all the boundary points of S. The boundary 
of a set S is sometimes denoted as bdy(S). 

Example 2.1.9 For the set S = [0, 1) c W, the point 0 is a boundary point, since every neighborhood 
of O has points in S and points not in S. The point I is also a boundary point (which is not an element 
of S). The boundary of S is bdy(S) = (0, 1). 

This set is neither open nor closed in R. 0 

Definition 2.7 The closure of a set S is the union of the set S with its boundary. The closure 
of S is denoted as closure(S). (Other texts use 7 to indicate closure.) 

closure(S) = S U bdy (S) 

The closure of a set is always closed. CI 

Example 2.1.10 For the set S = [0, l ) ,  the closure is 
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Figure 2.5 illustrates open and closed sets. 

(a) Open set (b) Closed set 

Figure 2.5: Illustration of open and closed sets 

Example 2.1.11 Some examples of open and closed sets: 

1 The set of (x, y)  such that x 2  - 2yx = O is closed in R2 (Every point 1s a boundary potnt ) 

2 The set of (x, y )  such that x 2 j  > 3(x - j )  is open In R2 

3 The set i2, is closed in R (Every point IS isolated from every other point, every point is a 
boundary point ) Ci 

In addition to the simple sets of points in Rn, it is interesting to examine open and closed 
sets over more complicated metric spaces. 

Example 2.1.12 Let X = C[O, T I .  The set of functions x E X such that 

which is portrayed in figure 2.3(a), is an open set. This is the open neighborhood of functions around 
~ ~ ( 2 ) .  n 

Definition 2.8 A point x E X is said to be a duster point in X if every neighborhood 
around x contains infinitely many points of X.  G 

Definition 2.9 The support of a function f :  A -+ B is the closure of the set of elements 
a E A where f (a )  # 0. D 

In concluding this section of definitions, we summarize some of the basic topologlca! 
properties of sets, as follows. 

1 The union of any number (even an infinite number) of open sets IS open The inter- 
sect~on of any number (even an lnfin~te number) of closed sets Is closed 

2 The tntersectlon of an Infinite number of open sets need not be open To see thls. 
let Al, = (0. 1 + I l k )  Then, Ai > A2 > A? > The intersection of all these 
intervals, B = flE, Ai, IS the Interval (0. I ] ,  which is not an open set 

3 The unlon of an infin~te number of cloqed sets need not be closed 

2.1.2 Sequences, Cauchy sequences, and completeness 

Sequences of numbers or funct~ons arise frequently in slgnal processing theory and practice 
As dn example. an iterattve algortthm such as an adapttve frlter prod~tces a sequence of 
vectorr (filter we~ghts) 
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Many \equences are generated as follows Start~ng from some inlt~al point xo In a metrlc 
space X ,  a sequence I S  obtalned by updating the last polnt, pofsibly incorporating some 
new data The update for an iterative algonthm can be written abstractly a\ 

where f is an update function and u, is the input data at the nth iteration. Repeated iteration 
gives the sequence xo, X I ,  . . . . 

If x, ultimately gets close to some value for large enough n ,  we can say that the sequence 
{x,} converges. This is stated more precisely in the following definition. 

Definition 2.10 If for every 6 > 0, there is an no such that d(x,, x*) < 6 for every n > no 
for some fixed value x*, then the sequence {x,} is said to converge to x* .  In this case we 
write 

X, -+ xC. 

We say in this case that x* is the limit of x,. 

Another way of stating this is as follows: The sequence {x, } converges to x* if and only if 
every neighborhood around x* contains all the tenns x, for n > no. For every neighborhood 
N around x*, there is an no such that x, E N when n 2 no. 

Example 2.1.13 Convergence can be appreciated by considering sequences that do not converge. 
The sequences 

7 
a, = n- ,  

b, = 1 + (-1)". 

do not converge: the first sequence is not bounded, and the second sequence oscillates between 0 
and 2, 0 

The following facts about convergent sequences are important: 

1. Let (X, d) be a metric space. The closure of a set A c X is the set of all limits of 
converging sequences of points from A. 

2. A set A c X is closed if and only if it contains the limit of every converging sequence 
{x,} whose points lie in A. 

Example 2.1.14 Consider the following sequence of numbers: 

Each number in this sequence is a rational number, an element of Q. This sequence is converging to 
a, which is an irrational number. Since the limit of the sequence is not in the set Q, we conclude 
that 0 is not closed. However, the set of real numbers W is closed: every convergent sequence in R 
has its limit in R. 

Similar to a limit is a limit point: if the sequence x, returns infinitely often to a 
neighborhood of a point x*, then x* is a limit point. In the sequence 

the points 0 and 2 are both limit points (but not limits) of the sequence. If there are limit 
points of a sequence, however, we can take a subsequence which converges to a limit. 

The largest limit point of a sequence (x,] is called the limit superior, or limsup. It is 
often written as 

lim sup x, . 
n - + w  



80 Signal Spaces 

The s~nallest limit point of a sequence is called the limit inferior, or lirninf. It is often written 

lirn inf x, . 
n-+DO 

Obviously, if lim supx,, = lim inf x, then the sequence is convergent. 

Example 2.1.15 Consider the sequence 

There are two Iimrt po~nts 2 and 0 The subsequence {co, cz. c4. } has the l~nut  2, and the subse- 
quence { c , .  c3, c5,  , } has the ltnut 0 For the sequence {c,], 

lim sup c, = 2. 
n-n: 

lim inf c, = 0 
n-n :  

Definition 2.11 A sequence {x,] in R is monotonic if 

For sequences over the real numbers, the following fact is clear: every bounded mono- 
tonic sequence is convergent. Since the sequence is bounded, the monotonic sequence "runs 
out of room," and hence must have a limit point, which (because the sequence is monotonic) 
must be unique. 

Definition 2.12 A sequence {x,] in a metric space (X, d )  is said to be a Cauchy sequence 
if, for any r > 0, there is an N > 0 (which may depend upon 6 )  such that d(x,, x,) < r 
forevery m , n  > N. 0 

It can be shown (see the exercises) that if a sequence converges, it is a Cauchy sequence. 
On the other hand, it is possible for a sequence to be a Cauchy sequence and not be convergent 
in X. 

Example 2.1.16 Let C [ a ,  b] be the set of continuous funct~ons defined on the rnterval [a, b] Let 
X = C [ -  1 ,  I], and consrder the sequence of functions f, ( t )  defined by 

A typical function is shown in figure 2.6. In the metric space (X. dz), where d2 is the metric defined 

by 
ri 

Figure 2.6: The function f,, ( r )  
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,$e hnd that 

1 
d2( f,,, f m )  = -(m - n)' m > n, 

6rn3rr 

which 4 O for m and n large Thus, the sequence 1s a Cauchy sequence, but the limtt funct~on 

1 ,  il discont~nuous funct~on and hence is not in X. Therefore, we cannot say that f, ( r )  is a convergent 
,equence In X. 0 

The failure of a Cauchy sequence to converge is a deficiency-a '%ole"-in the under- 
lying metric space. 

Definition 2.13 A metric space (X, d) is complete  if every Cauchy sequence in X is 
convergent in X. D 

By this definition, the metric space ( C [ a ,  61, d Z )  of example 2.1.16 is not complete: There 
exist Cauchy sequences in it where the limit is not in the metric space. 

Example 2.1.17 Whether a metric space is complete or not depends on the metric employed. Consider 
the metric space (C[ -  1, 11, d,), and d, is the metric 

I t  can be shown that the sequence f, ( t )  1s not a Cauchy sequence in thls metnc space, so we cannot use 
this sequence to test the completeness of (C[a ,  b j ,  dm) But we can still argue for the completeness 
ot the space Let x,(t) be a Cauchy sequence In (C[a ,  b ] ,  dm),  then for any t 0, 

form and n sufficiently large, so that lxm ( t )  - x,(t)l < t for every t  E [- 1 ,  11. Hence, for every fixed 
to E [- 1, 1 1 ,  x,(ro) 1s convergent to some number x(to). Collectively, these define a function x ( t ) .  To 
show completeness, we must show that x ( t )  E C[a,  b ] ;  in other words, that it is continuous. Let n be 
sufficiently large that lx,(t) - x(t)j < €13. Let 6 be determined so that /x , ( t )  - x,(to)j < t / 3  when 
It - to/ < 6 .  (Since x,(r) is continuous, such a 6 exists.) Then 

where the first inequality follows from the triangle inequality. Thus we see that for It - to/ < 6 we 
have jx ( t )  - x (to) 1 < E ,  SO x ( t )  must be continuous. 

In examining the convergence of sequences (such as the result of an iterative algorithm), 
i t  is usually easier to show that a sequence is a Cauchy sequence than to show that it is a 
convergent sequence. To determine if a sequence is Cauchy requires only that we examine the 
sequence, and establish that points become sufficiently close. On the other hand, establishing 
convergence requires information apart from the sequence; namely, the limiting value of the 
sequence. However, if the underlying space is complete, then establishing that a sequence is 
a Cauchy sequence is sufficient to establish convergence. For this reason, we shall usually 
assume that the work on function spaces is carried out in a complete metric space. 

Example 2.1.18 An example of an ~ncomplete space ts the metnc space (Q, d l ) ,  the set of rational 
numbers In thls space, the sequence (1, 1 4, 1 41, 1 414, 1 4142, }, the sequence approaching a, 
IS a Cauchy sequence, but tt lr not convergent In Q, slnce a is not rational 
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Box 2.2: The memure of a set I 
Given a real interval S = [a, b). the measure of S is simply the length of the interval, 
k(S) = b - a For a set that 1s the unlon of dlsjoint ~ntervals, S = S, U S? U , 
where S, n S, = 0, the measure is the sum of the lndiv~dual measures, 

A set of real numbers is sald to have measure zero ~ f ,  for every t > 0, the set can be 
covered by a collection of open intervals whose total length 1s i t A single polnt has 
measure 0, so does a fin~te collect~on of ~solated polnts Any countable set of polnts 
has measure zero, slnce around the nth point an open interval of length 6 12" can be 
placed The total length of the countable set is thus less than or equal to 

/ The measure of sets in R" is defined by finding areas, volumes. and so forth, of sets / 

Generalizing the results of example 2.1.16 it can be shown that. (C ia ,  b], d,,) is not a 
complete metric space for p < oo. However, the space (L,[a,  b]. d,) is a complete metric 
space. 

2.1.3 Technicalities associated with the L, and h, spaces* 

There are several technicalities associated with the L, space that bear at least brief consid- 
eration. 

1 .  Consider the functions defined by 

sin(r) 0 5 t 5 4 ,  t + 2. 
t = 2,  

otherwise; 
otherwise. 

These functions are clearly not equal at every point. However, for any p in the range 
1 5 p < oo, d , ( f l ,  fZ) = 0. Thus we have functions which are not equal but for 
which the metric is zero, in violation of requirement M3 for metrics, as stated in 
definition 2.1. The functions f i ( t )  and f 2 ( t )  are said to differ on a set of iizeasure 
zero, or to be equal almost everywhere. abbreviated as a.e. (See box 2.2.) 

For our purposes, functions f and g for which d,(f .  g )  = 0 are said to be equal, 
even though they may not be equal at every point. Thus, when we talk of a function, 
we are actually referring to a whole class of functions which differ on a set of measure 
zero. So "equality" does not necessarily mean equality at every point! 

Examplie 2.1.19 It is understood from elementary s~gnals theory that a penodic functton can 
be represented uslng a Fourier senes The periodic square-wave funct~on defined by 

"Note: This section can be skipped on a first reading 
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Figure 2.7: Illustration of Gibbs phenomenon 

has the Fourier series 

Then, by the convergence of the Fourier series we have 

112 

d2(f  (11, g ( t ) )  = [ f  - 8 ( t ) I 2 d t ]  = 0 

However, tt is also known that for discontinuous functtons, the Gtbbs phenomenon occurs at 
a point of d~sconttnutty there IS an overshoot or an undershoot, no matter how many terms are 
taken In the summatton F~gure 2 7 tlfustrates the nature of the convergence by showtng the 
sum tn (2 7) truncated to N terms, for N = 1,3, and 10 terms in the summation, wlth the plots 
on the left showtng the function and ~ t s  N-term Founer representation g N ( t ) ,  and the plots 
on the nght showing the error f ( I )  - g w ( t )  The point-by-point error 1s convegtng to zero 
everywhere except at the polnts of dlsconttnutty, where ~t never converges to zero However, 
slnce the width of the error locatton becomes narrower and narrower, the integral of the square 
of the error approaches 0 as N -+ oo Cl 

2. The space (L ,[a ,  b] ,  d,) is larger than the space ( C [ a ,  b], d,), in the sense that the 
former contains the latter. This is true because there are functions in L ,  that are not 
continuous, whereas all functions in C [ a ,  b] are also functions in L ,  (why?). L p  is a 
"completion" of C [ a ,  b]: sequences in C [ a ,  b] that do not have a limit in C [ a ,  b] do 
have a limit in L,. 

3. In fact, L,  is a large enough space of functions that the concept of integration that 
we learn in basic calculus, the Riemann integral, does not consistently apply to every 
function in L,. Recall that the Riemann integral is defined as the limit of a sum 
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f (x,)Ax,, where the x, are chosen as polnts rnside Ax, There are functions In 
L, that cannot be integrated by this lim~ting process 

Example 2.1.20 The usual pathological example of such a non-integrable function is the 
function defined on the interval [O. I ]  by 

1 if t is rational. 

In the Riemann integral, ~f the points x, are chosen to be rational. then Soi f ( t )  d t  = I If the 

points x, are chosen to be irrational. then L; f ( I )  dr = 0 By careful relect-ton of the points x,, 
the integral can take an-, value between 0 and 1 ii 

The integral appropriate for use in L, spaces is the Lebe~gue rtztegral For our pur- 
poses, we will not need to worry (beyond t h ~ s  bnef mention) about the distinctions 
Lett~ng S, denote Rtemann integration and fL denote Lebesgue integration, the fol- 
lowing rules apply 

(a) If S, f (t)  dr ex~rts. then JL f (t)  d t  exlsts, and SR f (r) d t  = SL f (t)  d t  

(b) The Lebesgue ~ntegral is linear For a scalar a. 

(c) If JL 1 f (r)12 dt  and JL lK(f)12 dl  cxisl (are finite), then so are JL f ( t )g( t )  d t  and 
JL(f + 8)' d f .  

(d) If f and g are equal excepi orz a set oflneasztre :em, then 

This last rule suffices to cover many of the patholog~cal funct~ons for wh~ch the 
Rieinann ~ntegral has no value For exan-tple, the function f (r) defined In (2 8) 
1s equal to the functlon g( t )  = 0. except on a set of measure zero (since the 
rat~onal numbers form a countable set) Thus, uslng the Lebesgue Integral there 

I 
is no ainbiguity and \, f (r) dr = O 

4 When deal~ng with the L, norm. yet anothel ~ s s u e  arises Consider the funct~on 

For this functlon supx( t )  = I However, x( t )  d~ffers from the all-zero function only 
on a set of measure zero As for the case of the L, norms, it 1s convenient to define 
the L, norm so that functions that are equal almost everywhere have the same norm 
We accordingly define the L, norm by finding the function y ( r )  that is equal to x ( i )  

almo$t everywhere and wh~ch ha\ the smallest supremum, 

For the function w( t )  In ( 2  9). we find that \, ( t )  = O \ati\fies t111i: hence. 

The quintlty ~ n f  ,,,,= ,,,, \up11 ( r ) /  l i  c,tllcd the etr~rzr~cll ~ ~ ~ / J w I ? z ~ ~ I T ~  of ~ ( t  ) 
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2.2 Vector spaces 

,A finite-dimensional vector x may be written as 

1 he elements of the vector are x,. I = 1 ,2 ,  , n Each of the elements of the vector lies 
In some set, such as the set of real numbers x, E R, or the set of Integers x, E Z Thls set 
of numbers IS called the set of scalars of the vector space 

The finite-dimensional vector representation 15 wtdely used, espec~ally for discrete- 
time signals, in which the discrete-time signal components form elements in a vector 
However, for representing and analyzing continuous-time signals, a more encompa5sing 
understanding of vector concepts is useful It is possible to regard the function x(r) as a 
\ rctor and to apply many of the same tools to the analyw of x(t) that mlght be appl~ed to the 
,,ndlys~s of a more conventional vector x We will therefore use the symbol x (or x(t)) also 
to represent vectors as well as the symbol x, preferring the symbol x for the case of finite- 
d~mensional vectors Also, in introducing new vector space concepts, vectors are indicated 
in bold font to dirt~nguish the vectors from the 5calars Note In handwritten notation (such 
as on a blackboard), the bold font is usually denoted In the signal processing community 
by an underqcore, as in x, or, for brevity, by no addltlonal notation Denoting handwr~tten 
vectors with d superscripted arrow i is more common tn the phys~cs community 

Definition 2.14 A linear vector space S over a set of scalars R is a collection of ob- 
jects known as vectors, together with an additive operation + and a scalar multiplication 
operation ., that satisfy the following properties: 

VS I S forms a group under addition. That is, the following properties are satisfied. 

(a) For any x and y E S ,  x + y E S. (The addition operation is closed.)l 

(b) There is an identity element in S ,  which we will denote as 0, such that for 
any x E S, 

(c) For every element x E S there is another element y E S such that 

The element y is the additive inverse of x, and is usually denoted as -x. 

(d) The addition operation is associative; for any x. y, and z E S ,  

VS2 For any a ,  b E R and any x and y in S ,  

(a + b)x = a x  + bx, 
a(x + y) = a x  + uy. 

' A  closed operation is a distinct concept from a closed set. 
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VS3 There is a multiplicative identity element 1 E R such that lx = x. There is an element 
O E R such that Ox = 0. 

The set R is the set of scalars of the vector space. 0 

The set of scalars is most frequently taken to be the set of real numbers or complex 
numbers. However, in some applications, other sets of scalars are used, such as polynomials 
or numbers modulo 256. The only requirement on the set of scalars is that the operations 
of addition and multiplication can be used as usual (although no multiplicative inverse is 
needed), and that there is a number 1 that is a multiplicative identity. In this chapter, when 
we talk about issues such as closed subspaces, complete subspaces, and so on, it is assumed 
that the set of scalars is either the real numbers R or the complex numbers @, since these 
are complete. 

We will refer interchangeably to linear vector space or vector space. 

Example 2.2.1 The most familiar vector space is R", the set of n-tuples. For example, if x i ,  x:! G R4, 
and 

then 

Several other finite-dimensional vector spaces exist, of which we mention a few 

Example 2.2.2 

1. The set of m x 11 matrices with real elements. 

2. The set of polynomials of degree up to n with real coefficients. 

3 The set of polynomials with real coefficients, w~th the usual addition and mult~plication modulo 
the polynomial p( r )  = I + i s ,  forms a linear vector space We denote thls vector space as 
R[rl/{tx + 1). 

In addition to these examples (which will be shown subsequently to have finite dimension- 
ality), there are many important vector spaces that are infinite-dimensional (in a manner to 
be made precise in the following). 

Example 2.2.3 

1 Sequence spaces The set of all tnfinttely-long sequences (x,} forms an infinite-dtmensional 
vector space 

2 Continuous functions The set of continuous functions defined over the tnterval [ a ,  b] forms a 
vector space We denote this vector space as C [ a  h] 

3 L,,[a. h] The functions in L,  form the elements of an ~nfin~te-d~menstonal vector space D 

Definition 2.15 Let S be a vector space If V C S 15 a subset such that V 1c itself a vector 
cpace, then V 1, said to be a subspace of S C 
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Example 2.2.4 

I .  Let S be the set of ail polynomials, and let V he the set of polynomials of degree less than 6. 
Then V is a subspace of S. 

2. Let S consist of the set of 5-tuples 

s = ((0.0.0.  0. O), (0. 1 ,o .  0. 1). (1.0,O. 0. 1). ( 1 ,  1 , 0 ,0 ,0 ) )  

and let V be the set 

v = ( ( 0 , 0 , 0 , 0 , 0 ) ,  10. 1 .0 ,0 ,  I)}. 

where the add~tinn ts done modulo 2 Then S IS ii vector space (check this') and V is a 
subspace '3 

Throughout thir chapter and the remarnder of the book, we will use tnterchangeably 
the words "vector" and "signal." For a discrete-time s~gnal, we may think of the vector 
composed of the samples of the function as a vector in Wn or C n .  For a contrnuous-time 
\tgnal s ( t ) ,  the vector 1s the 5ignal ~tself, an element of a space such as L p [ a ,  b] Thus 

the study of vector spaces is the study of signals. 

2.2.1 Linear combinations of vectors 

Let S be a vector space over R ,  and let p, , p2, . . . , pm be vectors in S. Then for c, E R, the 
linear combination 

is in S. The set of vectors {p,} can be regarded as building blocks or ingredients for other 
signals, and the linear combination synthesizes x from these components. If the set of 
Ingredients is sufficiently rich, than a wide variety of signals (vectors) can be constructed. 
If the ingredient vectors are known, then the vector x is entirely characterized by the 
representation (cL, c2, . . . , c,), since knowing these tells how to synthesize x. 

Definition 2.16 Let S be a vector space over R,  and let T c S (perhaps with infinitely 
many elements). A point x E S is said to be a linear combination of points in T if there is 
afinite set of points pi, p2, . . . , p, in T and a finite set of scalars el,  C*, . . . , c, in R such 
that 

x =clpi  +C2P2 + . . . +  C, p,. 0 

It is significant that the linear combination entails only a finite sum. 

Example 2.2.5 Let S = G(B), the set of continuous functions defined on the real numbers. Let 
pl ( t )  = 1, p2(t) = t, and p3(t) = t 2 .  Then a linear combination of these functions is 

These functions can he used as butld~ng blocks to create any second-degree polynom~al (As wrll be 
seen In the following, there are other funct~ons better suited to the task of bulldlng polynomials ) 

If the function p4(t) = t2 - 1 1s added to the set of tunctions then, a function of the form 

can be constructed, whlch is still just a quadratic polynom~al That IS, the new funct~on does not 
expand the set of funct~ons that can be constructed, so p4(t) IS, In some sense, redundant This means 
that there is more than one way to represent a poiynomlal For example, the polynomial 
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can be represented as 

x ( t )  = 8 p 1 ( f )  + 5 p 2 ( t )  - p ? ( t )  + 2 p 4 ( r )  

or as 
x ( t )  = 9 p 1 ( t )  + 5p2(r )  - 2 p ? ( t )  + 3p4(t) 

E x a m p l e  2.2.6 Let p i .  pz E R1, ulth pi = [ I ,  0, 1 J 7 .  pz = [ I ,  1. OIT Then 

Cl + c2 
x = c , p 1 + c 2 p 4 =  [ Ij ] 

The set of vectors that can be constructed WI& (pi , pZ) does not cover the set of all vectors In R7 For 
example, the vector 

x  = [ b ]  
cannot be formed as a linear combination of pl and p, 0 

Several questions related to linear combinations are addressed in this and succeeding 
sections, among them: 

Is the representation of a vector as a linear combination of other vectors unique? 

* What is the smallest set of vectors that can be used to synthesize any vector in S? 

Given the set of vectors pl ,  p2. . . . , p,, how are the coefficients c , ,  c2, . . . , C, found 
to represent the vector x (if in fact it can be represented)? 

What are the requirements on the vectors p, in order to be able to synthesize any vector 
x E S? 

* Suppose that x cannot be represented exactly using the set of vectors {p, ). What is the 
best approximation that can be made with a given set of vectors? 

In this chapter we examine the first two questions, leaving the rest of the questions to the 
applications of the next chapter. 

2.2.2 Linear independence 

We will first examine the question of the uniqueness of the representation as a linear 
combination. 

Definition 2-17 Let S be a vector space. and let T be a subset of S. The set T is linearly 
independent if for each finite nonelnpty subset of T (say {pl , p ~ .  . . . . p,]) the only set of 
scalars satisfying the equation 

IS the trlv~al solut~on cl = C? = = C, = 0 
The set of vectors pl. p l  . p, 1s said to be linearly dependent if there exlsts a set 

of scalar coefficients c l .  C?. . c,, which are not all zero, such thdt 

E x a m p l e  2.2.7 

1 The functions pl ( f ) .  p z ( t )  p i ( [  j .  p 3 ( t )  E S of example 2  2  5 are 11nedrly dependent, because 

~ 4 ( l j  + pi ( 1 )  - p i ( [ )  = 0. 

that 15, there is d nonzelo llnear co~nbination of the functions which 1s equal to Lero 
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2 The vectors pi = 12. -3. 4IT,  p = [- 1 ,6 ,  -21, and p.i = [ I ,  6.21' are linearlyiependent 
slnce 

3 The funct~ons p i  ( r )  = t and pz(r) = 1 + t are linearly independent 0 

Definition 2.18 Let T be a set of vectors in a vector space S over a set of scalars R (the 
riurnber of vectors in T could be infinite). The set of vectors V that can be reached by 
a11 possible (finite) linear combinations of vectors in T is the span of the vectors. This is 
denoted by 

That is, for any x E V ,  there is some set of coefficients {c , )  in R such that 

where each p, E T 

It {nay be observed that V is a subspace of S. We also observe that V = span(T) is the 
smallest subspace of S containing T, in the sense that, for every subspace M c S such that 
T c M ,  then V c M. 

The span of a set of vectors can be thought of as a line (if it occupies one dimension), 
or as a plane (if it occupies two dimensions), or as a hyperplane (if it occupies more than 
two dimensions). In this book we will speak of the plane spanned by a set, regardless of its 
dimensionality. 

Example 2.2.8 

1. Let pi = [ I .  1 ,  OIT and p~ = (0, 1 ,  OjT be in B3. Linear combinations of these vectors are 

for .I, E R. The space V = span{pl, p2) is a subset of the space R3: it is the plane in which 
the vectors [ l  . 1,  OIT and [0, 1 ,  OIT lie, which is the xy plane in the usual coordinate system, 
as shown in figure 2.8. 

2 Let pi ( t )  = 1 + t and p Z ( t )  = t Then V = span(p,, p2] is the set of all polynom~als up 
to degree 1 The set V could be envisioned abstractly as a "plane" lying in the space of all 
polynom~als 

Figure 2.8: A subspace of R3 
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Definition 2.19 Let T be a set of vectors In a vector space S and let V C S be a subspace. 
If every vector x E V can be written as a linear coiubtnat~on of vectors In T ,  then T 1s a 
spanning set of V Ci 

Example 2.2.9 

1 The vectors pi = [ I .  6 ,  51'. pz = [ -2 ,4 ,  2 J r ,  p; = I I ,  1.0IT. p4 = [7 ,  5.21' fonna spannlng 
set of Ri 

2 The functions pi ( f )  = 1 + f. p 2 ( t )  = I + t 2 ,  p ? ( t )  = f', and p4(r) = 2 form a spanning set 
of the set of polynom~als up to degree 2 D 

Linear independence provides us wrth what we need for a unlque representation as a 
linear comblnatton, as the follow~ng theorem showc 

Theorern 2.1 Let S be 0 vector space, arzd let T be u rzonempt\, subset of S Tlze set T 
1s lznearl~ lrzdependenr f u n d  0111) f f o r  each noivero x E span(T), flzere I S  exactlv one 
fiizzte ~uhser o f  T ,  whtch we wrll denote ar { p i .  p2. . p,,), ar~d a urzrque set of scalars 
{ c I . c z ,  ,c,) ruchthat 

Proof We will show that "T  linearly independent" implies a untque representation. Suppose 
that there are two sets of vectors in T ,  

and corresponding nonzero coefficients such that 

x = c i p l  + C  ~ P ~ + . . . + c , , P , ,  and x = d ~ q ~  + d z q 2 + . . . + d , , q ,  

We need to show that rz = nz and p, = q, for I = 1 .  2. . . . . n ~ .  and that c, = dl 
We note that 

Since ( 1  + 0. by the definition of lineal tndependence the vector pi must be an element 
of the set { q l .  q2, . q,,) and the corresponding coefficients must be equal. say, pi = q ,  
and cl = d l  S~mllarly. slnce ~2 # 0 me can ray that p2 = qz and ( 2  = d2 Proceeding 
slmllarly, we must have p, = q, for I = 1 .  2 , n7. and c, = d, 

Conve~sely, suppose that for each x E span(T) the representation x = L pi + C,,~P,,, 

is untque Assume to the contrary that T 1s linearly dependent. co that there are vectors 
p i .  p:!. , p,, such that 

P I  = -a:!~:! - 0 1 ~ 3  - - arnPnl (2 10) 

But t h ~ s  gives two representations of the vector pi Itself, and the linear combination (2 10) 
Slnce this contradtctc the unique representation, T murt be Iinearlq Independent C1 

2.2.3 Basis and dimension 

Up to thts point we hale uced the term "dimenr~on" freely and without formal definition 
We have not claltfied uhat I \  meant by "fnlte-dimensiona1" and "lnfinlte-dlinensional" 
vector \paces In thii 4ectton we amend this omirston by debntng the Iiamel bar]\ of 3. 

vector i p x e  

1)efinition 2.20 Let 5 be vector space. and let T be a iet of vector', flom S \uch thdt 
ipan(T) = S I f  r I \  Iine,irly independent. then r I \  s<lld to be ,I Hamel h i s  for S L 
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1.  The set of vectors in the last example is not linearly independent, since 

However, the set T = ( p i .  p ,  pi)  IS llnearly independent and spans the space R3 Hence T IS 

a (Hamel) basis for R3 

2. The vectors 

= [ e2 = [I] . = [!] 
form another (Hamel) basis for R3. This basis is often called the natural basis. 

3. The vectors pi([)  = 1,  p2(t )  = t ,  p3(t) = t2 form a (Hamel) basis for the set 

S = (all polynomials of degree _( 2). 

Another (Hamel) basis for S is the set of polynomials (qi  (t) = 2, q ~ ( t )  = t + t2, q3(t) = t } .  
0 

As this example shows, there is not necessarily a unique (Hamel) basis for a vector space. 
However, the foIlowing theorem shows that every basis for a vector space have a common 
attribute: the cardinality, or number of elements in the basis. 

Theorem 2.2 ff TI and T2 are Hamel bases for a vector space S,  then TI and T2 have the 
same cardinality. 

The proof of this theorem is split into two pieces: the finite-dimensional case, and the 
infinite-dimensional case. The latter may be omitted on a first reading. 

Proof (Finite-dimensional case) Suppose 

are two Hamel bases of S. Express the point ql E T2 as 

least one of the coefficients c, must be nonzero; let us take this as cl. We can then write 

By this means we can eliminate pl as a basis vector in TI and use instead the set {ql  , p2, . . . , 
p,) as a basis. Similarly, we write 

and as before eliminate p2, so that {ql , q2, p3, . . . , pm } forms a basis. Continuing in this way, 
we can eliminate each p,, showing that {q, ,  . . . , q,) spans the same space as {pi,  . . . , p,). 
We can conclude that m > n.  Suppose, to the contrary, that n > m. Then a vector such as 
q,+, , which does not fall in the basis set {q, ,  . . . , q,}, would have to be linearly dependent 
with that set, which violates the fact that T2 is itself a basis. 

Reversing the argument, we find that n 2 m. In combination, then, we conclude that 
m = n .  

(Infinite-dimensional case) Let TI and T2 be bases. For an x E TI, let T~(x)  denote the 
unique finite set of points in T2 needed to express x. 
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Claim: If y E T2, then y E T2(x)  for some x E T I .  Proof: Since a point y is in S, then y 
must be a finite linear combination of vectors in Ti ; say, 

y = C l X j  + C 2 X 2  + .  . . +C,X, 

for some set of vectors x, E T I .  Then, for example, 

so that, by the uniqueness of the representation, y E T2 ( x ) .  
Since for every y E T2 there is some x E TI such that y E T2(x),  it follows that 

Noting that there are IT, I sets in this union2, each of which contributes at least one element 
to T2, we conclude that 1 T2 1 Z 1 Tg I. 

Now turning the argument around, we conclude that 1 TI  I I T2 I .  By these two inequal- 
ities we conclude that (TI  1 = IT2/. 

On the strength of this theorem, we can state a consistent definition for the dimension 
of a vector space. 

Definition 2.21 Let T be a Hamel basis for a vector space S. The cardinality of T is the 
dimension of S. This is denoted as dim(S). It is the number of linearly independent vectors 
required to span the space. C1 

Since the dimension of a vector space is unique, we can conclude that a basis T for a 
subspace S is a smallest set of vectors whose linear combinations can form every vector in 
a vector space S ,  in the sense that a basis of 1 TI vectors is contained in every other spanning 
set for S. 

The last remaining fact, which we will not prove, shows the importance of the Hamel 
basis: Every vector space has a Hamel basis. So, for many purposes, whatever we want to 
do with a vector space can be done to the Hamel basis. 

Example 2.2.11 Let S be the set of all polynom~als Then a polynomal x ( t )  E S can be wntten as a 
l~near comb~nat~on of the functions (1, t ,  t 2 .  ) It can be shown (see exerclse 2 2-32) that thls set 
of functions is Itnearly ~ndependent Hence the dimens~on of S IS ~nfin~te U 

Example 2.2.12 [Bernard Fnedman, Prrncrples and Techniques of Applzed Mathematrcs, Dover. 
1990 ] To ~llurtrate that infinite dimenstonal vector spaces can be difficult to work with, and part~cular 
care is requtred, we demonstrate that for an ~nfin~te-dimens~onal vector space S, an ~nfinite set of 
llnearly Independent vectors whlch span S need not form a basis for S 

Let X be the ~nfin~te-sequence space, with elements of the form ( X I ,  x*. x3, ), where each 
x,  E R The set of vectors 

p , = ( l , O O .  ,O,l,O, 1, j = 2 . 3 ,  

where the second 1 Ir In the jth posltlons forms a set of Itnearly Independent vectors 
We first show the set (p,, J = 2,  3 ,  ) spans X Let x = ( x r ,  ~ 2 ,  x3 ) be an arbitrary 

element of X Let 
= X I  - - A ?  - -I,,, 

and let r, be an Integer larger than n/a,, 1'. Now conslder the sequence of vectors 

' ~ e c a l l  that the notation IS/ indicates the cardinality of the set S;  see section A.l  
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where p = n + r,. For example, 

iri the limit ac n -+ m, the residual term become5 

and y, -+ x. So there is a representation for x using this infinite set of basis functions. 
However-this is the subtle but important point-the representation exists as a result of a limiting 

process. There is no finite set of fixed scalars c 2 ,  c3, . . . . c~ such that the sequence x = (1, 0,  0 ,  . . . ) 
can he written in terms of the basis functions as 

x = ( 1 , O .  0,  . . . ) = c 2 p 7  + cjp3 + . . . + C , y p . ~ .  

When we Introduced the concept of linear combinat~ons in definit~on 2 15, only jnlte sums were 
,illowed S ~ n c e  represent~ng x would require an infinite sum, the set of functions p 2 ,  p3 does not 
torm a bas~s  

It may be objected that it would be stra~ghtforward to simply express an tnfintte sum Cz2 ~ 2 ~ 2 ,  

and have done with the matter But dealing with infintte renes always requires more care than does 
fin~te senes, EO we consider this as a different case 0 

2.2.4 Finite-dimensional vector spaces and matrix notation 

The major focus of our interest in vector spaces will be on finite-dimensional vector spaces. 
Even when dealing with infinite-dimensional vector spaces, we shall frequently be interested 
in finite-dimensional representations. In the case of finite-dimensional vector spaces, we 
shall refer to the Hamel basis simply as the basis. 

One particularly useful aspect of finite-dimensional vector spaces is that matrix notation 
can be used for convenient representation of linearcombinations. Let the matrix A be formed 
by stacking the vectors pl, p?, . . . , pm side by side, 

For a vector 

the product x  = Ae computes the linear combination 

x = c l p l  +c2p2+ . . .+c ,pm.  

The question of the linear dependence of the vectors (p, ) can be examined by looking at 
the rank of the matrix A, as discussed in section 4.7. 

2.3 Norms and normed vector spaces 

When dealing with vector spaces it is common to talk about the length and direction of the 
vector, and there is an intuitive geometric concept as to what the length and direction are. 
There are a variety of ways of defining the length of a vector. The mathematical concept 
associated with the length of a vector is the norm, which is discussed in this section. In 
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section 2.4 we introduce the concept of an inner product, which is used to provide an 
interpretation of angle between vectors, and hence d~rection. 

Definition 2.22 Let S be a vector space with elements x. A real-valued function llxll is said 
to be a norm if iixll satisfies the following properties. 

N1 llxll >- 0 for any x E S. 

N2 jjxlj = 0 if and only if x = 0. 

N3 licrxli = lcrl ljxll, where cr is an arbitrary scalar. 

N4 llx + y l l  5 llxll + l l  y 1 1  (triangle inequality). 

The real number l!xll is said to be the norm of x, or the length of x. 0 

The triangle inequality N4 can be interpreted geometricaIly using figure 2.9, where 
x, y, and z are the sides of a triangle. 

Figure 2.9: A triangle inequality interpretation 

A norm "feels" a lot like a metric, but actually requires more structure than a metric. 
For example, the definition of a norm requires that addltion x + y and scalar multiplication 
crx are defined, which was not the case for a metric. 

Nevertheless, because of their similar properties, norms and lnetrics can be defined in 
terms of each other. For example, if llxli is a norm, then 

is a metric. The triangle inequality for metrics is established by noting that 

(This trick of adding and subtracting the quantity to make the answer come out right 
is often used in analysis.) Alternatively, given a metrlc d defined on a vector space, a norm 
can be written as 

llxll = d ( x ,  01, 

the distance that x is from the origin of the vector space. 

Example 2.3.1 Based upon the rnetrlcs we have already seen, we can readily define some useful 
norms for n-dimens~onal vectors 

1 .  The 1, norm: lix/il = x:=, ir, 1. 

2. The l2  norm: /ixl/, = (x:=, ].xi l p )  I". 

3. The 1, norm: //x// ,  = Inax,,l,z, ,,, /.x, I 

Each of these nonns introduce5 iti own geometry Cons~der. for example. the unit '"sphere" defined 

by 

S, = (x  E R' / / x / / , ~  5 I )  

Figure 2 10 1llu5tratei the \hape of ~ c h  \phere\ for various \due\  of (7 - 
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Figure 2.10: Unit spheres in W2 under various 1, norms 

Example 2.3.2 We can also define norms of functions defined over the interval [a ,  b] 
b 

1 .  The L I  norm: Ilx(t)lli =So lx(t)ldt. 
1 IP 

2 The L ,  norm: l/x(t)l/,, = (J"~ 1x(t)lpdt) for 1 5 I )  < 3~ 

3. The L, norm: llx(t)jj, = suptci, hl Ix(t)l. 

The 1, and L ,  norms are referred to as the uniform norms. 

Definition 2.23 A normed linear space is a pair (S, / /  . I / ) ,  where S is a vector space and 
I /  . / I  is a norm defined on S. A normed linear space is often denoted simply by S .  

When discussing the metrical properties of a normed linear space, the metric is defined 
in terms of the norm, d (x, y) = / /x  - y / I .  

Definition 2.24 A vector x is said to be normalized if /[xll = 1. It is possible to normalize 
any vector except the zero vector: y = x//lxll has ilyll = 1. A normalized vector is also 
referred to as a unit vector. 0 

With a variety of norms to choose from, it is natural to address the issue of which norm 
should be used in a particular case. Often the 12 or L2 norm is used, for reasons which 
become clear subsequently. However, occasions may arise in which other norms or norm- 
like functions are used. For example, in a high-speed signal-processing algorithm, it may 
be necessary to use the 1, norm, since it may be easier in the available hardware to compute 
an absolute value than to compute a square. Or, in a problem of data representation of audio 
information (quantization), it may be appropriate to use a norm for which a representation is 
chosen that is best as perceived by human listeners. Ideally, a norm that measured exactly the 
distortion perceived by the human ear would be desired in such an application. (This is only 
approximately achievable, since it depends upon so many psychoacoustic effects, of which 
only a few are understood.) Similar comments could be made regarding norms for video 
coding. In short, the norm should be chosen that is best suited to the particular application. 

The exact norm values computed for a vector x change depending on the particular 
norm used, but a vector that is small with respect to one norm is also small with respect to 
another norm. Norms are thus equivalent in the sense described in the following theorem. 
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Theorem 2.3 (Nor171 equ~valence fheorer71) If / /  . 11 and I /  . 1 1 '  are two rzorms or? .TRY (or en), 
then 

/Ixn//-+O a s k i i x ;  ifandorzlyif llxr1l1+O a s k i i x ; .  

The proof of this theorem makes use of the Cauchy-Schwarz inequal~ty, wh~ch is introduced 
In sectlon 2.6. You may want to come back to thls proof after readlng that sect~on. 

Proof It suffices to show that there are constants cl. c-, > 0 such that 

To prove (2.1 l ) ,  it suffices to assume that / /  . / I '  is the l2 norm. To see this, observe that if 

d i  lixll F llxll:! F d:!llxll and d; 11x11' 5 llxllz 5 d;llxll' 

then 

and 

so (2.1 1) holds with cI = d l  /dl and c-, = d2/d;. Let x be expressed as a linear coinbination 
of basis vectors 

n 

Then. by the properties of the norm, 

The sum on the right is simply the inner product of the vector composed of the magnitudes 
of the xi's with the vector coinposed of the magnitudes of the basis vectors. Being an inner 
product, the Cauchy-Schwarz inequality applies. and 

Let 

Then the left inequality of (2.1 I )  applies with cl = 1/B. 
For points x on the unit sphere S = {x: Ilxl12 = 11,  the norm / /  . / I  must be greater than 

0 (by the properties of norms) and, hence, ljx!i 2 a for some a > 0 for x E S. Then 

so the right-hand inequality holds with c~ = l / a .  

For example, 
llxll2 5 l l ~ l ! l  5 fillxll2. 

Ilxllx 5 !lxll7 5 f i I lx ! lx .  

llxll% 5 llxIl1 5 nllxllx. 
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~efinition 2.25 For a sequence (x,}, if there exists a number M < cx such that 

then the sequence is said to be bounded. 0 

2.3.1 Finite-dimensional normed linear spaces 

7 he notlon of a closed set and d complete set were introduced In sectlon 2 1 2 As po~nted 
havlng complete sets is advantageous because all Cauchy sequences converge, so that 

convergence of a sequence can be established s~mply by determining whether a sequence 
is Cauchy 

Fln~te-dimensional normed Ilnear spaces have several very useful properties 

1. Every finite-dimensional subspace of a vector space is closed. 

2. Every finite-dimensional subspace of a vector space is complete. 

3. If L: X -+ Y is a linear operator and X is a finite dimensional normed vector space, 
then L is continuous. (This is true even if Y is not finite dimensional.) As we shall 
see in chapter 4, this means that the operator is also bounded. 

4. As observed above, different norms are equivalent on Rn or en. In fact, in any finite 
dimensional space, any two norms are equivalent. 

A lot of the issues over which a mathematician would fret entirely disappear in finite- 
dimensional spaces. This is particularly useful, since many of the problems of interest in 
signal processing are finite dimensional. 

We will not prove these useful facts here. Interested readers should consult, for example, 
1238, section 5.101. 

2.4 lnner products and inner-product spaces 

An inner product is an operation on two vectors that returns a scalar value. Inner products 
can be used to provide the geometric interpretation of the "direction" of a vector in an 
arbitrary vector space. They can also be used to define a norm known as the induced norm. 

We will define the inner product in the general case, in which the vector space S has 
elements that are complex. 

Definition 2.26 Let S be a vector space defined over a scalar field R. An inner product is 
a function (., .): S x S -+ R with the following properties: 

- 
IF1 (x, y} = (y. x) ,  where the overbar indicates complex conjugation. For real vectors this 

simplifies to (x, y) = (y, x) .  

IF2 (ax, y) = a(x,  yj for all a in the scalar field R. 

IF3 (x + y, z) = (x, z) + (y, z). 

IF4 (x, x} > 0 if x # 0, and (x, x) = 0 if and only if x = 0. 

Definition 2.27 A vector space equipped with an inner product is called an inner-product 
space. 

Inner-product spaces are sometimes called pre-Hilbert spaces. We encounter in 
section 2.9 what a Hilbert space is. 

There are a variety of ways that an inner product can be defined. Notational advantage 
and algorithmic expediency can be obtained by suitable selection of an inner product. We 
begin with the most straightforward examples of inner products. 
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Example 2.4.1 For finite-dimensional vectors x. y E R", the conventional inner product between the 
vectors 

This Inner product is the Euclidean inner product This is also the dot product used in vector 
calculus, and 1s sometimes wntten 

If the vectors are in @" (with complex elements), then the Euclidean inner product is 

Example 2.4.2 Extending the "sum of products" idea to functions, the following is an inner product 
for the space of functions defined on [0, I]:  

For functions defined over R, an inner product is 

Example 2.4.3 Conslder a causal slgnal x(r) which is passed through a causal filter with impulse 
response h ( t )  The output at a tlme T  is 

y ( T )  = x(r) * h(t)j,=). = 

Let g ( r )  = h ( T  - r )  Then 

where the inner product is 

So the operation of filtering (and taking the output at a fixed time) 1s equ~valent to computing an inner 
product 0 

An inner product can also be defined on matrices. Let S be the vector space of m x n 
matrices. Then we can define an inner product on this vector space by 
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2.4.1 Weak convergence* 

When we have a iequence of vector5 (x,]. we iaw in section 2.1 2, we can talk dbout 
convergence of the \equence to iome value, \a! x, -+ x. which meani th'tt 

f o t  some norm I /  / /  It 1s intere5tlng to examine the yueition of convergence In the context 
i ) ~  Inner producti 

Lemma 2.1 The inner prociuct is continuous. Thnr is, (f x, + x in sorne inner product 
spl~ce, S then (x,. y) -+ (x, y) for crny y E S .  

Proof Since x,, is convergent, it must be bounded, so that //x, / I  5 M < oo. Then 

Since !/x, - x// + 0, the convergence of (x,, y) is established 

From this we note that convergence x,, + x (called strong convergence) implies (x,, , y) + 

(x, y) (which is called weak convergence). On the other hand, it does not follow necessarily 
that if a sequence converges weakly. so that 

that it also converges strongly. 

Example 2.4.4 Let x, = (0,0, 0, , 1 ,  0, 0, ) be the sequence that 15 all 0 except for a 1 at 
posltlon n ,  and let y = (1. 112, 114. 118 ) Then 

( x n .  Y )  + 0. 

but the 5equence {x,} has no ltmlt The sequence thus converges weakly but not strongly 

2.5 Induced norms 

We have seen that the Euclidean norm of a vector x E Rn is defined as 

2 7 7  llxl12 = x i  + x i  + , . . + x i .  

We observe that the inner product of x with itself is 

Hence, we can use the inner product to produce a special norm, called the induced norm. 
More generally, given an inner product (., .)  in a vector space S ,  we have the induced norm 
defined by 

Wl 
for every x  E S. It should be pointed out that not every norm is an induced norm. For 
example, the 1, and L, norms are only induced norms when p = 2. 

*The concepts in this section are used briefly in section 2.iO and mostly in chapter 15; it is recommended 
that this section be skipped on a first reading. 
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Example 2.5.1 Another example of an Induced norm 1s for funct~ons In Lz[a .  O]. 

For an induced norm, we have the following useful fact (for an inner product over a complex 
vector space): 

For a vector over a real vector space, this simplifies 10 

2.6 The Cauchy-Schwarz inequality 

In the definition of a norm, one of the key requirements of the function / I  . / /  is that 

Up to this point, we have assumed that the metncs ment~oned do satisfy this property We 
are now ready to prove thls result for the important specla1 case of the l 2  or L2 norm, or 
more generally for a norm Induced from any Inner product In the interest of generality we 
shall express thls result in terms of inner products first 

The key ~nequality In our proof is the Cauclzl-Schwur,: znequalzt) Thts inequality 
will prove to be one of the cornerstones of signal processing analysis It w ~ l l  provlde the 
bas13 for the important projection theorem, and be the key step In the derivation of the 
matched filter It can be used to prove the important geometr~cal fact that the gradlent 
of a functlon polnts in the direction of steepest increase. which IS the key fact used in 
the development of gradient descent optimlzatlon techn~ques Not only is it specifically 
useful, but the analysis and optim~zation performed using the Cauchy-Schwarz inequality 
prov~des a powerful archetype for many other optlmlzatlon problems optlrn~z~ng values can 
often be obtained by establishing an ~nequality, then satisfying the conditions for whlch the 
inequal~ty achieves equality If the Cauchy-Schwarz inequal~ty does not serve the purpose, 
other inequalit~es often will, such as the Cauchy-Schwarz's big brothers, the Holder and 
Minkowsk~ lnequal~t~es which are presented in Appendix A 

Theorem 2.4 (Cauclzj~-Sclzwur: znequalit)) In un 1111zer prodlrcr space S wrfh lnduced 
norm i l . l l ,  

for any x. y E S, wlr1.r equal13 $ and only $ y = a x  fir sonle scalar a 

Proof By expressing our proof tn terms of inner products, we cover both the case of finite- 
and infin~te-dimensionaI vectors For generality. we assume complex vectors 

First. note that if x = 0 or y = 0, the theoren1 is tr~vlal. so we exclude these cases 
Form the quantity 

/ / x  - a y / / '  = / /x / / '  - 2Re (x. my) + /os / ' / /y / l '  (2 14) 

This 1s alwd>\ positiLe We want to choose a to make t h i \  a i  small as possible For real 
vector<. t h ~ s  can be done ~ i n p l y  by taking the der~vative uith re\pect to a .  and equat~ng 
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1 0 1  

the derivative to zero. We demonstrate another technique by completing the square (see 
;tppendix B). We can write 

Then the minimum value of / / x  - ayl/' is obtained when 

in which case the completion of the square leaves 

from which the desired inequal~ty follows 
Now examlne the condit~on for equality If y = ax ,  then equality In (2 13) 1s immed~ate 

On the other hand, suppose that the equality in ( 2  13) is sattsfied Then working backward 
through ( 2  14) Indicates that Ilx - a,yll = 0 But by the properties of a norm, this means 
thdt x = a y  for some a, 0 

This theorem applies to any normed linear vector space with an induced norm. For the 
vector space Rn with the Euclidean inner product, the Cauchy-Schwarz inequality is 

For the vector space Cn with the Euclidean inner product, the Cauchy-Schwarz inequality 
is (xHy)' 5 (xHx)(yHy). For the vector space of real functions defined over [a, b], the 
Cauchy-Schwarz inequality is 

Using the Cauchy-Schwarz inequality, we can now show that the induced norm sat- 
isfies the required triangle inequality property. For vectors x and y (which we assume for 
convenience to be real), we have 

/ (x  + y/12 = (x + y,  x + y) = (x, x) + 2(x, Y )  + (Y* Y) 

< (x. x) + 211x11 llyll + iy, Y )  = (llxll + l l~11)~.  - 

2.7 Direction of vectors; orthogonality 

The inner product can be used to define a direction of angular separation between vectors, 
and hence a concept of direction. 

For vectors x and y in R3 or R', it is well known that the cosine of the angle between 
the vectors is 

cos B = (x7 Y) 
llxllzll~ 112 

Note that the 2-norm-which is the induced norm-is used in defining the length. Using 
the Cauchy-Schwarz inequality, it can be shown that 
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so the angle 8 is real. This same expression, with the appropriate inner product, defines 
direction in any inner product space. 

Example 2.7.1 Consider the vectors 

x = [ l  2 3 41T y = [ 4  2 4 517 

Then the angle H between the vectors IS  determtned by 

("') = 0.935 cos 8 = - 
lixll I l ~ l i  

Example 2.7.2 For functions defined on 10, I]. find the angle between the functtons 

x, ( r )  = 1 + r 2  and x2( t )  = r 2  - 2i 
First coInpute 

and 

Then 

S,' .XI ( f )x?(f)  d f  
- 

29 
cos H = - -- 

11x1 11 11x2 I1 8 4 7 2  

Definition 2.28 If x and y are nonzero vectors and x = ay for some scalar a.  then x and y 
are said to be colinear. In an inner-product space, this means that the angle between x and 
y satisfies cos Q = i 1. ii 

A geometric concept which will be of considerable importance to us is the idea of 
orthogonal vectors. 

Definition 2.29 Vectors x and 1 In an ~nner  product space are gald to be orthogonal ~f 

( A .  ,) = 0 

Notat~onally. this is denoted a\ x i v The words "perpend~cular" and "normal" are syn- 
onymous wlth "orthogonal " CI 

The zero vector is orthogonal to every other vector. 

Definition 2.30 A set of vectors { p i .  p? . . . pt7,} is s a ~ d  to be orthonormal if they are 
mutually (pairwise) orthogonal and each have untt length. 

( p i .  PI)  = 6,  ,. 
where 8, , is the Krotlecker delta function, defined by 

For orthogonal vectori. regardless of the inner product. the farnlllar Pythagorean 
theorem holds. 

Lemma 2.2 (Tlzr P\~thrrgorc.aii rlleore1?7) i j x 1 ?. uncl I /  / /  I \  un z17duted nor-??I, ilzerz 

Ilk T YI I '  = IIYII '  + llyl12 ( 2  16) 

The pro01 i i  itra~ghtforward 
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Exarnple 2.7.3 Consider the set of polynomrals 

1 hen t t  may be venfied by direct computation, when the Inner product 1s defined as 

(f. S )  = f ( f ) g ( t )  d l .  

these polynomials are orthogonal, 
J_ : 

These polynomials are the first few Legendre polynom~als, all of which are orthogonal over 
[ - I .  I 1  Ci 

2.8 Weighted inner products 

For a finite-dimensional vector space, a weighted inner product can be obtained by insert- 
tng a Hemitian weighting matrix W between the elements: 

(x, y), = yHwx. 

The concept of orthogonality is defined with respect to the particular inner product used: 
changing the inner product may change the orthogonality relationship between vectors. 

Example 2.8.1 Consider the vectors 

It is easily verified that these vectors are not orthogonal with respect to the usual inner product xTx2. 
However, for the weighted inner product 

the vectors xl and x2 are orthogonal. 

In order for the weighted inner product to be used to define a norm, as in 

it is necessary that xu Wx > 0 for all x # 0. A matrix W with this property is said to be 
positive definite. 

Example 2.8.2 The weighted inner product of the previous example cannot be used as a norm because, 
for any vector of the form 

the product xT Wx = 0, which violates the conditions for a norm. 

Weighting can also be applied to integral inner products. If there is some function 
w(t) 2 0 over [a ,  61, then an inner product can be defined as 
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The weighting can be used to place more emphasis on certain parts of the function. (More 
precisely, we must have w(r )  _> 0, with w ( t )  = 0 only on a set of measure zero.) 

Example 2.8.3 Let us define a set of polynomials by 

T, ( r )  = cos(n cos-I (r)) 

for t E [- 1. I ]  The first few of these (obta~ned by appllcatlon of tngonometnc identities) are 

To(t) = 1 Tl(r) = t TZ(tj = 2r2 - 1 T3(t) = 4t3 - 31 

A plot of the first few of these is shown tn figure 2 1 1 These polynom~als are the Chebyshevpolynoml- 
als They have the ~nteresting property that over the interval [ - I ,  I] ,  all the extrema of the functions 
have the values - I  or 1 This property makes them very useful for approxlmatron of functions 
Furthermore, the Chebyshev polynomtals are orthogonal w ~ t h  weight function 

over the interval [- 1. 11 The orthogonality relationship between the Chebyshev polynomials is 

We can define a weighted inner product on the vector space of m x n matrices by 

( A ,  B )  = t r ( ~ ~  W A ) ,  

where W is a (Hermitian) symmetric positive-definite m x m matrix. 
Using a norm induced from a weighted inner product, we can define a weighted distance 

between two vectors: 

d w ( x , Y ) 2  = I / ~ - ~ 1 1 ; .  = ( X  - Y ) H ~ ( ~ - y ) .  (2.17) 

Figure 2.1 I : Chebyshev polynomials To( t )  through TS(r)  for t E [- 1.  I ]  

Example 2.8.4 A we~ghted distance anses naturally in many s~gnal  detection, estlmatlon, and pattern 
recognition problems In non-whlte Gaussian noise In thls example, a detection problem IS considered 
Detect~on problems are d~scussed more fully in chapter 11 

Let S E X" be a s~gnal wh~ch  takes on one of two d~fferent kalues, e~ther  S = Q or S = s l  One 
of these s~gnals 1s chosen dt random v ~ ~ t h  equal probabil~ty-either by a binary data transmitter or by 
nature The s~gnal S is observed in the presence of additive Gausian nolse N whlch has mean 0 and 
covariance mdtrlx R The observdtion Y can be modeled ds 
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From the obiervatlon of Y = y we deilre to determine wh~ch  value of S d~tually occurred Thl\ 15 

(he detection problem 
Cond~t~oned upon '1 value of S = s, the ob\ervat~on 15 Gdu\sldn w ~ t h  mean s and the \&me 

,ot anance 

,i,here e~ the r  s = or s = $ 1  F ron~  the ob5ervdtton y. we can compute the l~kelllzood that the s~gnal  
v t ~ i  produced by s for each of the posslbie values of s, then select the one w ~ t h  the h~ghesi l~kelrhood 
rhdt IS, we compdre 

f (ylS = so) with f (ylS = s ,  j ,  (2.18) 

and determine our decision about S on the basis of which likelihood function is largest. (This is the 
maximum likelihood decision rule.) Canceling common factors in the comparison, this is equivalent 
to comparing 

(y - S O ) ~ R - ' ( ~  - so) with (y - sI)'R-'(y - sg) (2.19) 

.tnd choosing e~ther  so or s t ,  depending upon which quantlty 1s smaller These quantlt~es can be 
ob\erved to be weighted distances of the form (2 17) Let W = R- ' ,  and define the wetghted Inner 
product In R" by 

(x. y), = xT WY. 

This induces a weighted norm 

l~xll;~ = xT w x  

The comparison in (2.19) corresponds to computing 

utth the maxlmum I~kehhood chotce betng that whlch has the mlnlmum we~ght  d~stance This welghed 
d~itance measure anbes commonly in pattern recognition problems and 1s known as the Mahulonobzs 
dl rtcmt e 

Further s~mplificattons are often possible In t h ~ s  compan5on 

and slmllarly for /jy - s ,  / /  If so and s l  have the same Inner product norm so s l  Wso = s: Wsl , then, 
when comparing /jy - s0/I , wtth /jy - s l  11 ,, these terms cancel, as well as the yT Wy term. The cho~ce  
1s made depend~ng on whether 

yT W% or y T w s 1  

is larger, that is, depending on which weighted inner product is largest. The inner product is thus seen 
to be a similarity measure: the signal s is chosen that is most similar to the received signal vector, 
where the similarity is determined by the weighted inner product. 

2.8.1 Expectation as an inner product 

The examples of weighted inner products up until now have been of deterministic functions. 
An important generalization develops when a joint density is used as a weighting function 
in the inner product. Let X  and Y  be random variables with joint density f x , r ( ~ ,  y ) .  We 
define an inner product between them as 

x y f x , y ( x , y ) d x d y .  

This inner product is, of course, an expectation, and introduction of this inner product allows 
the conceptual power of vector spaces to be applied to mean-square estimation theory. Thus 

( X ,  Y j  = E [ X Y ]  
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(E IS the expectatlon operator). Orthogonality 1s defined for random variables as ~t 1s for 
determlnlstlc quantlfies; the random variables X  and Y are orthogonal if E [ X Y ]  = 0 The 
Inner product Induces a norm, 

(X, X) = E X ' .  

If X  is a zero-mean r.v., then ( X .  X) = var(X) is an induced norm.3 
We can also define an inner product between random vectors. Let X = [XI ,  X Z .  . . . , 

x , l T  and Y = [Y , ,  Y2 ,  . . . , Y,lT be 12-dimensional random vectors. Then we can define an 
inner product between these vectors as 

( X ,  Y )  = E  x,?! 

Note that we can write this inner product as 

( Y ,  Y )  = E [ y H y ] .  

Another notation that is sometimes convenient is to write 

( Y ,  Y )  = t r ( E [ y y H ] ) ,  

where the t r ( X )  IS the trace operator, the sum of the elements on the dtagonal of the square 
matrlx X  (See section C 3 ) 

When the vector-space vlewpolnt 1s appl~ed to problems of mlnlmlzation, as d~scussed 
subsequently, there are two major approaches to the problem In the first caie, an lnner 
product IS used that 1s not based on an expectatlon, min~mtzatlon of this sort 1s referred to a\ 
least-squares (LS) In the s~gnal processing l~terature When an inner product 1s used that 1s 
defined as an expectation, then the approxlmatlon obtained 1s referred to as ai~zzi~rinun~ 17zeail- 
Aquares (MMS) approxlmatlon In fact. both approxlmatlon techniques rely on precisely 
the same theory, but slmply employ Inner products cu~ted to the needs of the particular 
problem 

2.9 Hilbert and Banach spaces 

With the definitions of metric spaces and inner-product spaces behind us, we are now ready 
to introduce the spaces in which most of the work in signal processing is performed. 

Definition 2.31 A complete normed vector space is called a Banach space. A cornplete 
normed vector space with an inner product (in which the norm is the induced norm) is called 
a Hilbert space. 

See box 2.3 for an introduction to the man Hilbert. 
Some exa~nples of Banach and Hilbert spaces: 

1 The space of contlnuous functions (C ia .  b]. d,) forms a Banach space (Recall that 
in example 2.1 17 (C[- 1 ,  I], d,) was shown to be complete ) 

2 However, the space of functions C[a .  h ]  ~ l t h  the L ,  norm. p < oo, does not form 
a Banach space, slnce it 1s not complete (We saw In example 2 1 16 a sequence of 
contlnuous functions that does not have a h m ~ t  In C[-I .  I ]  ) 

3~ wilh other function spaces. there are some technical problem\ a\sociated with vector \pace\ over 
probability space\. Gnce there ma! be random iari;~hles X anif 1' \uch that llX - Yli = 0 hut X f )' alw;i>\ 
However, i t  can bc \hewn that if 1 1  X - Yli = 0. then X = )' a , \ .  (;ilmu\t wrely. [hat I \ .  except on a \et ofprohab~lit)  
rneawrr 0. J 
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/ Box 2.3: David Hilbert (1862-1943) 
t 

David Hilbert has been called the "greatest mathematician of recent times." 
Born and educated at Konigsberg, he received a professorship in Gottingen 
in 1895. 

Throughout his life he worked in a variety of areas, including algebraic in- 
variants, algebraic numbers, calculus of variations, spectral theory and Hilbert 
space, and axiomatics. He is well known for proposing, in 1900, 23 signif- 
icant mathematical problems. Work on these problems since that time has 
tremendously enriched mathematics. 

He spent considerable effort working on the foundations of mathematics, 
attempting to prove that mathematics provides an internally consistent system, 
so that i t  is not possible, for example, to prove that "F and not-F' is true. 
His efforts were doomed, however; Kurt Godel demonstrated, in 193 1, that 
it is impossible for any sufficiently rich formal deductive system to prove 
consistency of the system by the system itself. There are, Gi5del showed, 
formally undecidable propositions, which cannot be proven to be either true 
or false, and the consistency of the system is one of these propositions. 

3. The sequence space 1,(0, m) is a Banach space. When p = 2, it is a Hilbert space. 

4. The space L,[a, b]  is a Banach space. When p = 2 it is a Hilbert space. The Hilbert 
space of functions with domain over the whole real line is denoted L,(W). 

Because of the utility of having the norm induced from an inner product, the emphasis in 
this and succeeding chapters is on Hilbert spaces. 

It can be shown that if a normed vector space is finite-dimensional, then it is complete 
[238, p. 2671. Hence, every normed finite-dimensional space is a Banach space; if the 
norm is induced from an inner product then it is also a Hilbert space. Furthermore, every 
finite-dimensional subspace of a space is complete. 

2.1 0 Orthogonal subspaces 

Definition 2.32 Lei S be a vector space, and let V and W be subspaces of S. V and W are 
orthogonal if every vector v E V is orthogonal to every vector w E W: (v, w) = 0. El 

Definition 2.33 For a subset V of an inner product space S, the space of all vectors ortho- 
gonal to V is called the orthogonal complement of V .  This is denoted as v'. CI 

Example 2.10.1 Let V be the plane shown in figure 2.12. Then the orthogonal space W = V' IS 

spanned by the vector w. CI 

The orthogonal complement of a subspace is itself a subspace (see exercise 2.10-52). 
The orthogonal complement has the following properties: 

Theorem 2.5 Let V arzd W be subsets of an inner product space S (not necessarily com- 
plete). Then: 

1. V L  is a closed subspace of S. 
2. V C V'J-. 

3. I f V  C W ,  then WL c v'. 
4. v"J- = v'. 
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Figure 2.12: A space and its orthogonal complement 

5. I f x  E V  n v i ,  then x  = 0. 

6. (OIL = S  and S' = (0). 

Prosf We will prove part I .  The rest of the properties are to be proved as an exercise (see 
exercise 2.10-53). To show closure of v L ,  let {x,) be a convergent sequence in v', so that 
x, -+ x. Then by the continuity of the inner product shown in lemma 2.1, we have, for any 
v E V ,  

0 = (x,, v) -+ (x, v). 
so that x E V L .  C; 

What is perhaps a little surprising at first about this theorem is the fact that it may not 
be the case that V" = V .  What is lacking is the completeness: v"' may have Cauchy 
sequences in it that V does not. 

2.1 1 Linear transformations: range and nullspace 

We pause in our development of vector spaces to reintroduce a concept that should be 
familiar. 

Definition 2.34 A transformation L: X -7. Y from a vector space X to a vector space Y 
(where X and Y have the same scalar field R )  is a linear transformation ~f for all vectors 
x , x , ,  X 2  E X: 

1. L ( a x )  = crL(x) for all x E X and all scalars cr E R,  and 

2. L ( x ,  + x2) = L ( x , )  + L(x2). 

We will think of linear transformations as operators. 

Example 2.11.1 We will begin with several examples from vector spacer of functrons 

1 Let X be the set of conttnuou., real-valued functions. and define L X i X by 

for all ~ ( t )  E X Then L 1s a linear transformatton whrch convol~es  the signal x with the 
signal h 

2 Let X be the set of contrnuous real-valued function5 defined on (0. 11 Then 1, X -+ R defined 

by 

L x ( r ) =  h i r ) u ( r ) d r  1' 
1% a linear trdn~tortnatton ('in inner product) 
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3 Let X be the \et of continuoils real-valued function\, and let Tr,, X -t X be defined by 

where is a parameter of the transformation. Then TI., is a linear transformation. This trans- 
formation truncates a signal in time. 

4 Let X be the set of all Fourier transformable functions, and let Y be the set of Fourier transforms 
of elements in X. Define F: X -+ Y by 

The operator F is a linear operator. 

5 .  Let B: X -+ X be defined by 

B B , x ( ~ )  = 3-I Ts( ,X(w),  

where X(o) is the Fourier transform of x ( t ) ,  3-' is the inverse Fourier transform operator, 
and TB,X(w) truncates the Fourier transform. Thus BB0x( t )  is a bandlimited signal. C 

Example 2.11.2 Perhaps more commonly, we see ltnedr transformations between vector space\ of 
hn~te dimension In general a linear transformatton L from the vector space R" to Rm can be expressed 
using the notation of an m x n matnx L That is, the matrix becomes the linear transformation 

1. Let L:  R3 -i R2 be defined by 

This linear transformation can be placed in matrix notation. By writing an element in R3 in 
vector form as [ x l ,  x2, x3 lT E R3, we can write 

L = [; ; y] 
Then, 

2. Let L: R3 -+ R3 be defined by the matrix 

Then L is the linear transformation that reverses the coordinates of a vector x E R3. 

Considerably more is said about linear transformations between finite-dimensional vectors 
spaces in chapter 4. 

Associated with any operator (linear or otherwise) are two important spaces. These 
spaces are the range and the nullspace. (Two more spaces associated with linear operators 
are presented in section 4.5.) 

Definition 2.35 Let L: X -+ Y be an operator (linear or otherwise). The range space 
R ( L )  is 

R ( L )  = {y = L x : x  E X ) ;  

that is, it is the set of values in Y that are reached from X by application of L. The nullspace 
N ( L )  is 

N(L) = (x E X : Lx = 0 ) ;  

that is, it is the set of values in x  that are transformed to 0 in Y by L.  The nullspace of an 
operator is also called the kernel of the operator. 
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Let A be an n x m matrix, 

A = [ P I ,  P 2 . .  . . > PI?!]. 

which we regard as a linear operator. Then a point x E Rm is transformed as 

A x  = X l p i  + X 2 P 2  S. . . .  S . X m P m ,  

which is a linear combination of the columns of A. Thus, the range may be expressed as 

R ( A )  = span({p~,  ~ 2 ,  . . . , p m ) ) .  

The range of a matrix is also referred to as the column space of A. The nullspace is that set 
of vectors such that A x  = 0. 

Example 2.1 1.3 Let 

Then the range of A is 

The nullspace of A is 

N(A)  = span([O. 1. OIT) 
Example 2.1 1.4 

1 Let Lx(t) = Ji x ( r  )h( t  - T )  d r  Then the nullspace of L is the set of all funct~ons x ( t )  that 
result in zero when convolved wtth h(f) From systems theory, we reallze that we can transfom~ 
the convolution operation and multiply in the frequency domatn From this perspective, we 
percelve that the nullspace of L is the set of functtons whose Fourter transforms do not share 
any support wlth the support of the Fourier transform of h 

2 Let Lx(t) = Jd x( r )h( r )  d r ,  where X 1s the set of continuous functtons Then R ( L )  1s the set 
of real numbers, unless h(r) = 0 

3. The range of the operator 

is the set of all vectors of the form [c, 01'. The nullspace of thls operator is span((0. 11) C 

2.1 2 Inner-sum and direct-sum spaces 

Definition 2.36 If V and W are linear subspaces, the space V + W is the (inner) sum 
space, consisting of all points x = v + w, where v E V and w E W. 0 

Example 2.12.1 Conslder S = (GF(2)I1, that 1s. the set of all .?-tuples of elements of GF(2) (set 
box 1 5 )  Then, for example, 

x =  (1.0, 1 )  E S and y = (0,0.  1 )  r S. 

a n d x i y  = (1.0.0) 
Let W = \pan[(O. 1. 0)j and V = ipan[(l, 0.O)j be two subspaces tn S Then 

w = ((0.0. 0). (0. 1 .0 ) )  

and 

v = ((0, 0.0). (1. 0. 0 ) )  

The\e two \nb\paces are orthogonal 
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The orthogonal complement to V I \  

Thus, W C V'. 
The inner sum space of V and W is 

Definition 2.37 Two linear subspaces V and W of the same dimensionality are disjoint 
I F  V ri W = ( 0 )  That IS, the only vector they have in common is the zero vector (Thrs 
Jehnition IS slightly different from disjoint sets, since they must have the zero vector In 
common ) 0 

Example 2.12.2 In figure 2.13, the plane S is a vector space in two dimensions, and V and W are two 
.me-dimensional subspaces, indicated by the lines in the figure. The only point they have in common 
is the origin, so they are disjoint. (Note that they are not necessarily orthogonal.) 0 

Figure 2.13: Disjoint lines in W2 

When S = V + W and V and W are disjoint, W is said to be the algebraic complement 
of V .  The last example illustrates an algebraic complement: the inner sum of the two lines 
gives the entire vector space S. On the other hand, the sets V and W in example 2.12.1 are 
not algebraic complements, since V + W is not the same as S. An algebraic complement 
to the set V of that example would be the set 

It is straightforward to show that in any vector space S every linear subspace has an 
algebraic complement. Let B be a (Hamel) basis for S, and let Bl C B be a (Hamel) basis 
for V.  Then let B2 = B - B1 (the set difference), so that B1 n B2 = 0. Then 

1s a (Hamel) basis for the algebraic complement of V.  
The direct sum of disjoint spaces can be used to provide a unique representation of a 

vector. 

Lemma 2.3 ([238]/ Let V and W be subspaces of a vector space S. Then for each x E 

V + W ,  there is a unique v E V and a unique w E W such that x = v + w ifand only i f  V 
and W are disjoint. 

Another way of combining vector spaces is by the direct sum. 
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Box 2.4: Isomorphism 

What's in a name? that which we call a rose, 
By any other name would smell as sweet. 

- William Slzakespeare 

Isomorphism denotes the fact that two objects may have the same operational 
behavior, even if they have different names. 

As an example, consider the following two operations for two groups 
called (GI ,  +) and (G2,  *). 

a b c d  
a b c d  
b a d c 
c d a b  
d c b a  

Careful comparison of these addition tables reveals that the same operation 
occurs in both tables, but the names of the elements and the operator have 
been changed. 

More generally, we describe an isomorphism as follows. Let G ,  and G2  
be two algebraic objects (e.g., groups. fields, vector spaces, etc.). Let * be a 
binary operation on G I  and let o be the corresponding operation on G1. Let 
4: G I  -+ G Z  be a one-to-one and onto function. For any x ,  y E Gl. let 

s = @ ( x )  and t = @ ( ) ) ,  I 1 where r E G2 and r E G2. Then 4 is an isomorphism if I 
Note that the operation on the left takes place in G I  while the operation on 
the right takes place in G2. 

Definition 2.38 The direct sum of linear spaces V and W, denoted V @ W, is defined on 
the Cartesian product V x W, so a po~nt  in V @ W is an ordered pair ( v ,  w) with v E 11 and 
w E W Addltlon IS defined component-w~se (v l  , wl ) + (vZ, ui2) = ( L  + v2. uli + 119) 
Scalar multiplication is defined as cu(u, w) = (cuu, cuw) C 

The sum V + W and the direct sum V @ W are different linear spaces. However, if V 
and W are disjoinl, then V + W and V @ W have exactly the same structure mathematically. 
they are s~mply different representations of the same thing. When different mathernat~cai 
objects behave the same, only varying in the name, the objects are said to be i~orncrrplirc 
(see box 2.4). 

Example 2.12.3 Us~ng  the vector space of example 2 I2 1, we find 

Under the mapping @[(v.  w)]  = v + u, we find 

@ ( V @  W )  = ( ( 0 . 0 . 0 ) . ( 1 . 0 . 0 ) . i 0 .  1 .0 ) . (1 .  I 0 ) )  

which 15 the \;tilie as found in V + W In the previou5 example Vector \pace oper~tions ('idd~tioi: 
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~tlultlpllcatton by a \calar, etc ) on V @ W have exactly analogous results on # ( V  Ci3 W),  so V @ W 
.~nd V + W are r\ornorphic 0 

The direct sum V $ W is commonly employed between orthogonal vector spaces in the 
-isomorphicn form, that is, as the sum of the elements. This is justified because orthogonal 
5pLices are disjoint (see exercise 2.12-60). 

The following theorem indicates when V + W and V @ W are isomorphic: 

.Theorem 2.6 [235, page 1991 Let V and W be linear subspaces of a linear space S.  Then 
V + W and V @ W are isomorphic ifand cvzly if V and W are disjoint. 

Because of this theorem, it is common to write V + W in place of V @ W, and vice 
versa. Care should be taken, however, to understand what space is actually intended. 

2.13 Projections and orthogonal projections 

As pointed out in lemma 2.3, if V and W are disjoint subspaces of a linear space S and 
S = V + W, then any vector x E S can be uniquely written as 

where v E V and w E W. This representation is illustrated in figure 2.14. 
Let us introduce projection operator P: S -+ V with the following operation: for any 

x E S with the decomposition 

That is, the projection operator returns that component of x which lies in V. If x E V to 
begin with, then operation by P does not change the value of x. Thus since Px E V, we 
\ee that P(Px) = Px. This motivates the following definition. 

Figure 2.14: Decomposition of x into disjoint components 

Definition 2.39 A linear transformation P of a linear space into itself is a projection if 
P' = P. 

An operator P such that P* = P is said to be idenzpotent. 
If V is a linear subspace and P is an operator that projects onto V ,  the projection of a 

vector x onto V is sometimes denoted as xp,,, v. 
The range and nullspace of a projection operator provide a disjoint decomposition of 

a vector space, as theorem 2.7 will show. 
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Example 2.13.1 Let x ( t )  be a slgnal with Fourler transform X(w) .  Then the transformation P,,, 
wo 2 0 defined by 

for -wo 5 w 5 wo, 
P,,LX(w)l = otherwise, 

whlch corresponds to filtering the slgnal with a "brick-wall" lowpass filter, is a projection 
operation. 0 

Example 2.13.2 Let PT. T 0 he the iransforrnatlon on the functlon x ( / )  defined by 

~ ( t )  for -T 5 t 5 T ,  

This is a time-truncation operation and 1s a projection. 0 

Example 2.13.3 A matnx A 1s said to be a rmoothzng matnx if there 1s a space of "smooth" vector5 
V such that, for a vector x E V ,  

Ax = x. 

that IS, a smooth vector unaffected by a smoothing operatton Also, the limit 

AM = lim AP 
P+ m 

exlsts As an arbitrary vector that is not already smooth is repeatedly smoothed. it becomes lncreasrngly 
smooth By the requirement that Ax = x for x E V,  it IS clear that the set of 3mooth vectors Ir In fact 
R ( A ) ,  and A I \  a projection matrix (Smoothing matrlces are discussed further In [120, 121 J ) C 

Theorem 2.7 Let P be a projection operator defined on a linear space S. Then the range 
and nullspace of P are disjoint linear subspaces of S ,  urzd S = R(P) + N(P). That is, 
R(P) and hi(P) are algebraic complements. 

Let P be a projection onto a closed subspace V of S. Then I - P is also a projection 
(see exercise 2.13-72). Then we can write 

This decomposes x into the two parts. 

and 

(I - P)x E W. 

As figure 2.14 suggests, the subspaces V and W involved in the projection are not 
necessarily orthogonal. However, in most applications, orthogonal subspaces are needed. 
This leads to the following definition. 

Definition 2.40 Let P be a projection operator on an inner product space S. P is said to be 
an orrhogo~~ul projection if its range and nullspace are orthogonal, R( P) i ,"\i(P). '3 

The need for an orthogonal projectton matrlx is provided by the following problem 
Given a point x in a vector space S and a subspace V C S,  what IS the nearest point In V 
to x7 Consider the varlous representations of x shown In figure 2 15 As suggested by the 
figure, decomposit~on of x as 

provide5 the polnt YO E V that 15 clo\est to x The Lector is orthogonal to V ,  with respec' 
to the lnner product appropriate to the problem Of the kariouc w vectors that might b. 



2.13 Pro,jections and Orthogonal Pro,jections 115 

Figure 2.15: Orthogonal projection finds the closest point in V to x 

Figure 2.16: Orthogonal projection onto the space spanned by several vectors 

used in the representation (the vectors wo, w , ,  or w2 in the figure), the vector wo is the 
bector of the shortest length, as determined by the norm induced by the inner product. Proof 
of this geometrically appealing and intuitive notion is presented in the next section as the 
projection theorem. It is difficult to overstate the importance of the notion of projection. 
Projection is the key concept of most stochastic filtering and prediction theory in signal 
processing. Chapter 3 is entirely concerned with applications of this important concept. 

Another viewpoint of the projection theorem is represented in figure 2.16. Suppose that 
V 1s the span of the basis vectors ( p l ,  p2}, as shown. Then the nearest point to x in V is 
the point vo, and the vector wo is the difference. If wo is orthogonal to vo, then it must be 
orthogonal to pi and p2. 

If we regard vo as an approximation to x that must lie in the span of p,  and p2, then 

is the approximation error. Consider the vectors pl and p2 as the data from which the 
approximation is to be formed. Then the length of the approximation error vector wo is 
minimized when the error is orthogonal to the data. 

2.13.1 Projection matrices 

Let us restrict our attention for the moment to finite-dimensional vector spaces. Let A be 
an m x n matrix written as 

and let the subspace V be the column space of A, 
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Assume that we are using the usual inner product, (x, y} = y Hx. Then, as we see in the next 
chapter, the projection matrix PA that projects orthogonally onto the column space of A is 

We can characterize projection matrices as follows. 

Theorem 2.8 Any (Hermitian) symmetric nzatrix wiflz P* = P is an orthogoizal projection 
matrix. 

Proof The operation Px is a linear combination of the columns of P. To show that P is 
an orthogonal projection we must show that x - Px is orthogonal to the column space of 
P. For any vector PC in the column space of P, 

so x - Px is orthogonal to the column space of P. D 

It will occasionally be useful to do the projection using a weighted inner product. Let 
the inner product be 

(x, yj, = yH WX, (2.21) 

where W is a positive definite Hermitian symmetric matrix. The induced nonn is 

H //x/l& = (x. x ) ~  = x Wx. 

Let A be an m x n matrix. as before. Then the projection matrix which projects orthogonally 
onto the column space of A, where the orthogonality is established using the inner product 
(2.21), is the matrix 

2.1 4 The projection theorem 

Important attributes of many fully evolved major theorems: 

1 It 1s trivial 

2 It 15 tnvlal because the terms appeanng In it have been properly defined 

3 I t  has significant consequences 

- Michael Spivak 
Calculus on Manifolds 

The main purpo\e of this section is to prove the geometrically intuitive notion introduced In 
the previous section the point vo E V that is clocest to a point x is the orthogonal projection 
of x onto V 

Theorem 2.9 (The projectzon theorel~l) ([209]) Ler S be a Hllbert space and let V be a 
cloted rubspu~e of S For ant vector x E S ,  there exlcts u unlque vector vo E V closest to 
x, that r r ,  //x - vo/i 5 iix - 7. / / f / ) r  011 v E V Furthermore, the pornt vo rr  the mznzinzzer o f  
/ / x  - vo I /  r f  and 01711 fx - vg 1 s  orthogor~al to V 

The idea behxnd the theorem IS shown in figure 2 17 
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Figure 2.17: The projection theorem 

Proof There are several aspects of this theorem. 

1 The first (and most techmeal) aspect IS the excsrence of the mlrnmszing point vo 
Asume  x @ V ,  and let 6 = mfv,vjlx - v/l We need to show that there ss a vo E V 
with ilx - voll = 6 Let {v,} be a sequence of vectors in V such that / / x  - v, I /  -t 6 
We will show that {v, } is a Cauchy sequence, hence has a llmlt in S By (2 27), 

The latter can be rearranged as 

/ I v ,  - II* = 2 1 1 ~ J  - + 211~ - V, 1 1 2  - 411~ - (v[ f ~j)/211*. 

Since S is a vector space, (v, + v1)/2 E S .  Also, by the definition of 6, 

so that 

Then, since {v,} is defined so that /lvJ - x112 -+ 6*, we conclude that 

I I v t  - 112 -f 0 7  

so {v,) is a Cauchy sequence. Since V is a Hilbert space (a subspace of S), the limit 
exists, and vo E V.  

2. Let us now show that if vo minimizes Ilx - vo/j, then (x - vo) 1 V. Let vo be the 
nearest vector to x in V. Let v be a unit-norm vector in V such that (contrary to the 
statement of the theorem) 

Let z = vo + 6v E V for some number 6. Then 

This is a contradiction, hence 6 = 0. 

3. Conversely, suppose that (x - va) i V.  Then for any v E V with v f vo, 

where orthogonality is used to obtain (2.23). 
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4. Uniqueness of the nearest point in V to x may be shown as follows. Suppose that 
x = vl + w l  = v2+ w2, where wl = x - v l  i V andwz = x - v 2  i V for some 
v1,vz E V.Then0 = vl -v2 + w l  - w2,or 

But, since v2 - v1 E V ,  it follows that wl - w2 E V .  so wl = w2, hence vl = v2. 

Based on the projection theorem, every vector in a Hilbert space S can be expressed 
uniquely as that part which lies in a subspace V ,  and that part which is orthogonal to V .  

Theorem 2.10 ([209]) Let V be a closed linear subspace of a I-filbert space S.  Then 

and 

s = v g 3 v L  

v = v". 

(The isomorphic interpretation of the direct sum is implied in this notation.) 

Proof Let x E S.  Then by the projection theorem, there is a unique vo E V such that 
llx - voll 5 llx - vll for all v E V ,  and wo = x - vo E v'. We can thus decompose any 
vector in S into 

x = vo $- wo with vo E V ,  wo E v'. 

To show that V = v ' ~ ,  we need to show only that V" c V ,  since we already know by 
theorem 2.10 that V C v". Let x E VLi. We will show that it is also true that x E V .  By 
the first part we can write x = v + w, where v E V and w E V L .  But, since V c v"' we 
have v E v", so that 

il w = x - V E V  . 

Since w E V' and w E v", we must have w i w, or w = 0. Thus x = v E V .  

This theorem applies to Hilbert spaces, where both completeness and an inner product 
(defining orthogonality) are available. 

2.1 5 Orthogonalization of vectors 

In many applications, computations involving basis vectors are easier if the vectors are 
orthogonal. Since vector space computations are more conveniently done with orthonormal 
vectors, it is useful to be able to take a set of vectors T and produce an orthogonal set 
of vectors T' with the same span as T. This is what the Gram-Schmidt orthogonalization 
procedure does. Gram-Schmidt can also be used to determine the dimension of the space 
spanned by a set of vectors, since a vector linearly dependent on other vectors examined 
prlor in the procedure yields a zero vector. 

Given a set of vectors T = {pl , p ~ ,  . , , pn 1. we want to find a set of vectors T' = 

(9 , .  q 2 .  . qn ) with n' 5 n SO that 

and 

Assume that none of the p, vectors are zero vectors. 
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The process will be developed stepwise. The norm / / . / I  in this section is the induced 

I .  Normalize the first vector: 

2.  Compute the difference between the projection of p2 onto ql and p z  By the orthog- 
onality theorem, this is orthogonal to p l :  

If e2 = 0,  then qz E span(ql) and can be discarded; we will assume that such discards 
are done as necessary in what follows. If ez # 0, then normalize 

These steps are shown in figure 2.18. 

Figure 2.18: The first steps of the Gram-Schmidt process 

3. At the next stage, a vector orthogonal to q l  and qz obtained from the error between 
p3 and its projection onto span(q1, q*): 

@3 = P3 - ( ~ 3 ,  qllql  - ( ~ 3 .  q2)q2. 

This is normalized to produce q3: 

See figure 2.19 

Figure 2.19: Third step of the Gram-Schmidt process 

4. Now proceed inductively: To form the next orthogonal vector using pk, determine the 
component orthogonal to all previously found vectors. 

k- 1 

ek = pi - J P ~ ,  qz)qi  (2.25) 
1 = 1  

and normalize 
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Example 2.15.1 The set of functtons { I .  r .  t 2 .  , r m }  defined over [-I .  11 fomls a llnearly ~nde- 
pendent set Let the inner product be 

( f ,  g )  = f ( t ) g ( ~ )  dr J_ : 
By the Gram-Schm~dt procedure, we find the nonnormallred functlons 

yo(r) = 1 

The functlons so obtatned are known as the Legendre polynomlals 
If we change the inner product to Include a we~ghtlng function. 

then the orthogonal polynomlals obtarned by applylng the Gram-Schmtdt process to the polynomials 
1 f , t " )  are the Chebyshev polynomials, de~crtbed ~n example 2 8 3 Cl 

A matrix-based implementation 

For finite-dimensional vectors, the Gram-Schmidt process can be represented in a matrix 
form. Let A = [pl, p2, . . . , p n ]  The orthogonal vectors obtained by the Gram-Schmidt 
process are stacked in a matrix Q = [ q l ,  q ~ .  . . . . q, ,] ,  to be detennined. We let the upper 
triangular matrix R hold the inner products and norms from (2.25) and (2.26): 

The inner products in the sumrnation ( p x ,  q ,)q,  are represented by R(1:k - 1 ,  k) = 
Q(:, 1:k - I ) ~ A ( : ,  k), and the sum is then Q(:. 1:k - I)R(l:k - 1 .  k). Algorithm 2.1 
illustrates a MATLAB implementation of this Gram-Schmidt process. 

Algorithm 2.1 Gram-Schmldt algortthm (QR factortzatlon) 
File: gramschml2t 1 .m 

With the observation from (2 25) that 
1-1 

PX = qkrkk + C r,iq,.  
1=1 

we note that we can wrlte A In a factored form as A = QR, and that Q satisfies QH Q = I 
The matr~x Q provides an orthogonal ba$~s  to the column space of A 

For finite-dlmens~onal vectors, the computations of the Gram-Schmidt process may be 
numerrcally unstable for poorly condltloned matr~ce\ Exerclse 2 15-80 discur\es a modtfied 
Gram-Schmidt, while other more nurnerlcdlly stable tnethodc of orthogonalrzatlon arc 
explored In chapter 5 
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2.1 6 Some final technicalities for infinite-dimensiond spaces 

The concept of basis that was introduced in section 2.2.3 was based upon the stipulation 
that h e a r  combinations arejnire sums. With the additional concepts of orthogonality and 
normality, we can introduce a slightly modified notion of a basis. A set T = { p i ,  p2, . . . } 
i s  said to be orthonormal if (x , ,  x,) = 6,-,. For an orthonormal set T, it can be shown that 
[he infinite sum 

ix' 

converges if and only if the series C:=, /el l 2  converges. 
An orthonormal set of basis functions {p l ,  p2, . . . } is said to be a complete set for a 

Hilbert space S if every x E S can be represented as 

for some set of coefficients c,. Several sets of complete basis functions are presented in 
chapter 3, after a means has been presented for finding the coefficients {c,}. A complete 
set of functions will be called a basis (more strictly, an orthonormal basis). The basis and 
the Hamel basis are not identical for infinite-dimensional spaces. In practice, it is the basis, 
not the Hamel basis, which is of most use. It can be shown that any orthonormal basis is a 
subset of a Hamel basis. 

In finite dimensions, none of these issues have any bearing. An orthonormal Hamel 
basis is an orthononnal basis. Only the notion of "basis" needs to be retained for finite- 
dimensional spaces. In the future, we will drop the adjective "Hamel" and refer only to a 
"basis" for a finite-dimensional vector space. 

2.1 7 Exercises 

2.1-1 We will examine the 1, metric to get a sense as to why it selects the maximum value. Given 
the vector x = [ I ,  2, 3 , 4 ,  5, 6IT,  compute the I, metric d,(x, 0) for p = 1 , 2 , 3 ,  10, 100, m. 
Comment on why d,(x, 0) -+ max(x,) as p -+ m. 

2.1-2 Let X be an arbitrary set. Show that the function defined by 

is a metric. 

2.1-3 Verify that the Hamming distance dH(x, y), introduced in example 2.1.4, is a metric. 

2.1-4 Proof of the triangle inequality: 

(a) For x ,  y E R, prove the triangle inequality in the form 

What 1s the condition for equaltty7 

(b) For x, y E Rn, prove the tnangle tnequal~ty 

where jl . I /  is the usual Euclidean norm. Hint: Use the fact that C:=, x, y, 5 llxl/ 11 y 11. (i.e., 
the Cauchy-Schwarz inequality). 
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2.1-5 Let ( X .  d )  be a metric space. Show that 

IS a metric on X What significant feature does this metrrc pos\ess? 

2.1-6 Let ( X .  d )  be a metnc space. Show that 

d,(x,  y) = mfn(1, d ( x ,  4')) 

IS  a metric on X What signrficant feature does this metric possess' 

2 1-7 In definrng the metric of the sequence space 1,(0. os) in ( 2  21, "sup" was used instead of 
"max " To see the necessrty of thrs definrtion, define the sequences x  and y by 

1 I? 
X,, =: -- 4'n = 

n + l  n i l  

Show that d,(x,  y )  > lx, - y,, / for all n 2 1 

2 1-8 For the inetr~c space (W" d , ) ,  show that d,(x, y) rs decreas~ng with p That 15, d, , (x ,  y )  2 
d,(x,  y) rf p ( q Hint Take the denvatrve wrth respect to p and show that it 1s ( 0  Use 
the log sum lnequal~ty [56], which states that for non-negative sequences a , ,  a?,  a,, and 
bi. b2, , brf, 

Use b, = 1 and a, = /x ,  - y, / P  Also uSe the fact that for nonnegatrve sequence (a,  } such that x:=, a, = I ,  the nlaxrmurn vallle of 

2 1-9 If requirement M3 in the definition of a metric is relaxed to the requrrement 

d ( x .  y )  = 0, if x  = ).  

allowrng the possibility that d ( r ,  j ) = 0  even when x  # , , then apseudomerrlc is obtarned 
Let f X -+ R be an arbitrary function defined on a set X Show that d ( x .  j )  = I f  ( x )  - f (J ) I  
IS a pseudometnc 

2 1 - 10 Show that rf A and B are open sets 

(a) A U B rs open 

(b) A n B IS open 

2 1-1 1 Devrse an example to show that the unron of an inf i~~i te  number of closed sets need not be 
closed 

2 1-12 Let 
B = {all points p E CCQ' w ~ t h  0  i jpl 5 2) U {the pornt (0  4) )  

(a) Draw the set B 

(b) Determine the boundary of B 

(c)  Deterln~ne the interior of B 

2 1 - 1  3 Expldiri why the set of real numbers 15 both open and closed 

2 1-14 Dcterni~ne ~ n f  and \up for the following \et\ of redl number\ 
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2 1-  15 Show that the boundary of ;t set S I \  a closed ret 

2 1-16 Show that the boundary of a set S IS the Intersection of the closure ot S and the closure of the 
complement of S 

2 1-17 Show that S C R" 15 clo\ed if and only ~f every cluster point of S belongs to S 

1 1 - 18 Find Iim sup,,, a, and 11m inf ,,,, a, tor 

(a) u, = cos ( F n )  

(b) a, = cos(JZn) 

(c) a, = 2 + (-1)" (3 - 2/n) 

(d) LZ, = n2( -  1)" 

2 1-19 If Iimsup,,, a, = A and Itm cup,,, b, = B, then is it necessanly true that 

lim sup(a, + h,) = A + B? 
"'32 

1 i-20 Show that if (x, J 1s a sequence such that 

d(xnAi,  x,) < Crn 

for 0 ( r < I ,  then (x,) is a Cauchy sequence. 

2 1-21 Let p, = (x,, y,, 2,) G R3 Show that ~f (p, J IS a Cauchy sequence uslng the metnc 

d(p,,pk) = J ( x ,  -xk)*i- (y, -yk)*+ (z ,  -zk)', 

then so are the sequences {x,), (y,] and (z,} using the memc d(x,, xa) = ix, - xki 

2.1-22 Show that if a sequence (x, ) is convergent, then it is a Cauchy sequence. 

2.1-23 Show that the sequence x, = Sin dt is convergent using the metric d(x,  y) = ix - y 1. Hint: 
show that x, is a Cauchy sequence. Use the fact that 

cos t / 
/ & d t 5 / $ d f .  

(Note this is an example of knowlng that a sequence converges, without know~ng what ~t 
converges to ) 

2.1-24 The fact that a sequence is Cauchy depends upon the metric employed. Let f,, (t) be the sequence 
of functions defined in (2.6) in the metric space ( C [ a ,  b] ,  dm), where 

dm(f, g)  = sup I f  (t) - g(t)l. 
f 

Show that 
1 n 

dm(fn, f m ) = - - -  m > n .  
2 2m 

Hence, conclude that in this metric space, f, is not a Cauchy sequence. 

2 1-25 In t h ~ s  problem we will show that the set of continuous functions is complete with respect to the 
un~forrn (sup) norm Let { f,(t)} be a Cauchy sequence of conhnuous functions Let f (t) be the 
polntwlse limit of ( f,(t) J For any E > 0 let N be chosen so that max (f,(r) - f,(t)l < €13 
Since fk  (t) is Continuou'S, there 1s a D > 0 such that 1 fk (t + 8) - fk(t)l i €13 whenever 
8 ( D From th~s, conclude that 

and hence that f (t) is continuous. 

2.1-26 Find the essential supremum of the function x(t) defined by 
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2 2-27 An equlvalent definition for hnear independence follows A set T 1s linearly independent ~ f ,  for 
each vector x E T, x is not a linear comb~nahon of the points In the set T - {x), that IS, the .iet 
T wlth the vector x removed Show that this defin~tion 1s equlvalent to that of defin~tlon 2 17 

2 2-28 Let S be a fintte-dlmenslonal vector space wtth dim(S) = m Show that every set contalnlng 
m + 1 points is linearly dependent Hlnt use induction 

2 2-29 Show that ~f T is a subset of a vector space S with span(T) = S. then T contams a Hamel bast\ 
of S 

2.2-30 Let S denote the set of all solutions of the following differential equation defined on C3[0. ix) 
(see definition A.8.); 

d3x d2x dx 
-+b-+c -+dx=O.  
dt3 dt* d t  

Show that S is a linear subspace of C3[0,  ix). 

2 2-31 Let S be L2[0, 2x1. and let T be the set of all functions x , ( r )  = el"' for n = 0 I Show 
that T 1s linearly independent Conclude that LIFO, 2x1 1s an infinite-d~mensional space Hint 
assume that cl eJn" + c2eJnz' + + c,eJnmr = 0 for nl # n, when I # J Differentlate (m - 1) 
times, and use the properties of Vandermonde matrlces (section 8 4) 

2.2-32 Show that the set 1, r ,  r" ,. . . , tm is a linearly independent set. (Hint: the fundamental theorem 
of algebra states that a polynomial f (x) of degree m has exactly rn roots, counting multiplicity.) 

2.3-33 Show that in a normed linear space, 

2.3-34 Show that a norm is a convex function. (See section A.3.) 

2.3-35 Show that every Cauchy sequence {x,] in a normed linear space is bounded 

2 3-36 Let X be the vector space of jinrtely nonzero sequences x = {xi, x2, XI .  . x,. 0,O. ] 
Define the norm on X as ilxll = max lx, 1 Let x, be a point In X (a sequence) defined by 

(a) Show that the sequence x,, is a Cauchy sequence. 

(b) Show that X is not complete. 

2.3-37 Let p be in the range 0 < p < I, and constder the space L,[O. I ]  of all functions w~th 

1 IP 

X I ,  = [i' lX,,lPdtj < 

Show that lix 1 1  1s not a norm on L,[O, 11. Hint: for a real number cu such that 0 5 a: 5 1, note 
that cu 5 ap 5 1. 

2.3-38 Let S be a normed linear space. Show that the norm function 1 1  . / I :  S -t R is continuous. Hint: 
See exercise 2.3-33. 

2 3-39 For each of the inequal~ty relationships between norms in (2 121, deterinme a nonLero vector 
x E W" for which each tnequalrty 1s achieved (separately) with equality 

2 4-40 Compute the Inner products ( f ,  g )  for the following, uslng the definition 
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(a) f ( t )  = t' + 2t. g ( r )  = t + 1 

(b) f ( f )  = r - ' ,  g(t)  = t + 1 

(c) f ( f )  = cos(2;rt), g ( t )  = stn(2nr) 

2 4-1 1 Compute the ~nner products xTy of the follow~ng, using the Euclidean lnner product 

(a) x = [ I ,  2, -3. 4IT, y = [2, 3.4, 1IT 

(b) x = [ 2 , 3 J , y  = [ I , - 2 j r  

2 1-42 Which of the following detenn~nes an Inner product over the space of real continuous funct~ons 
with continuous first denvatlves? 

2 5-43 Show that for an induced norm / /  I /  over a real vector space. 

(a) The parallelogrum law IS true: 

In two-d~mens~onal geometry, as shown In figure 2 20, the result says that the sum of 
\quares of the lengths of the diagonals rs equal to twlce the .ium of the squares of the 
adjdcent slder, a sort of two-fold Pythagorean theorem 

Figure 2.20: The parallelogram law 

(b) Show that 

This is known as the polarization identity. 

7.6-44 For the inner produce ( f ,  g)  = J)' f (t)g(t) d t ,  verify the Cauchy-Schwarz inequality if: 

(a) f ( t )  = e-', g(t)  = t f 1. 

(b) f (t) = e-', g(r) = -5e-'. 

2.6-45 Show that the inequality (2.15) is true. 

2.7-46 Prove lemma 2.2. 

2 7-47 Let xi (t) = 3t2 - I, xz(t) = 5t3 = 3t and x3(t) = 2t2 - t ,  and define the inner product as 
(f. g )  = Sll f (t)g(t) d t .  Compute the angles of each pa~rwise combination of these funct~ons, 
and identify functions that are orthogonal. 

2.7-48 Let 
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and compute the angles between these vectors, using the Euclidean inner product, and identify 
which vectors are orthogonal. 

2 7-49 Show that a set of nonzero vectors { p l ,  p ~ ,  , p,) that are mutually orthogonal, so that 

( P I . P , ) = O  if1 #.I, 

is linearly sndependent (Orthogonality lmplies linear ~ndependence ) 

2.8-50 Perform the simplifications to go from the comparison in (2.18) to the comparison in (2.19). 

2.8-51 Show by integration that 

Hint: use t = cosx in the integral. 

2.10-52 Show that the orthogonal complement of a subspace is a subspace 

2.10-53 Prove items 2 through 6 of theorem 2.5. Hint: for item 5, use theorem 2.10 

2.1 1-54 Determine the range and nullspace of the following linear operators (matrices): 

2 11-55 Let X and Y be vector spaces over the same set of scalars Let LT[X. Y]  denote the set of 
all linear transformations from X to Y Let L and M be operators from LT[X, Y ]  Define an 
addltion operator between L and M as 

( L  + Mjix)  = L(x) + M(x) 
for all x E X Also define scalar multiplicat~on by 

(aL)(x) = u(L(x)) 
Show that LT[X, Y]is a llnear vector space 

2.12-56 Prove lemma 2.3 

2 12-57 Show that ~f V and W are subspaces of a vector space S then the~r intersection V n M' 1s a 
subspace 

2.12-58 Show that sf V and W are subspaces of a vector space S then their sum V + W ss a subspace 

2 12-59 [238, p 2001 Let X = L2[-JT, X I ,  and let 

SI = span(1, cost, cos 21 ) S2 = ipan(sin r sin 2r ) 

(a) Show that Si 61 S2 and Sl + Sz are isomorph~c 

(b) Show that d~m(S,  @ S2) = dim(SI) t dlm(Sz) 

2 12-60 Show that 

(a) If V and Mi are orthogonal subrpaces. then they are dlsjolnt 

(b) If V and W are dirjoint. they are not nece\sanly orthogonal 

2.12-61 Let S be a linear space and assume that S = SI + S2 + . . . + St,. where the S, are mutually 
disjoint linear subspaces of S. Let B, be a Hainel basis of S, . Show that 13 = Bl U B? U . . . U B,? 
is a Hamel basis for S.  

2 12-62 Proce theorern 2 6 
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2 17-63 Let V and W be lrnear subspace of a finrte-dtmen\~onal linear space S Show that 

dim(V + W) = d ~ m ( V )  + drm(W) - d ~ m ( V  i ' l  W) 

Then conclude that d m ( V  @ W) = dlrn(V) + dlrn(W) 

3 11-64 If v 1s a vector, show that the matr~x w h t ~ h  projects onto span(v) IS 

vvH 
P,, = - 

vHv 
2 13-65 Show that the matnx PA rn (2 20) IS a projection matnx 

7.13-66 For the projection matrix PA in (2.22): 

(a) Show that P i  = PA 
ib) Show that P i ,  = I - PA 1s orthogonal to PA w ,  using the werghted rnner product (that 

is. P,Hw W P;W = 0) 

2 13-67 Let 

and 

Determine the nearest vector In span[pl, p ~ ,  p 3 ]  Also determine the orthogonal complement 
of x in spantp~,  ~ 2 ,  ~ 3 1 .  

2 13-68 Let A be a matrix which can be factored as 

A = U C V ~ ,  (2.28) 
such that 

uHu = I  v H v  = I 
and t: is a diagonal matrix with real values. The factorization in (2.28) 1s the singular value 
decomposition (see chapter 7). Show that PA = PU. 

2 13-69 Two orthogonal projectron operators P4 and Pn are sard to be orthogonal rf PA Pn = 0 This 
IS denoted as PA i Pn Show that 

(a) PA and Pn are orthogonal if and only if their ranges are orthogonal. 

(b) (PA + Pn) is a projection operator if and only if PA and Pn are orthogonal. 

2.13-70 Prove theorem 2.7. 

2.13-71 Let P i ,  P2, . . . , Pm be a set of orthogonal projections with P, P, = 0 for i # j. Show that 
Q = PI + P2 + . . . + P, is an orthogonal projection. 

2.13-72 If P is a projection operator, show that I - P is a projection operator. Determine the range and 
nullspace of 1 - P.  

2 13-73 Let S be a vector space, and let V,, V2. . . . , Vn be linear subspaces such that V, is orthogonal 
to El+, V, , for each i, and where 

Let P, be the projection on S for which R(P,)  = V, and N(P , )  = El+, Vk. Define an 
operator 

P = h l P I  f A 2 P 2 + . . . + A n P n  . 
(a) Show that if x E V,, then P x  = A,x. 

(b) Show that P is a projection if and only if X I  is either 0 or I. 
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2.13-74 Let A and B be matrices such that A H  B = 0. Then V = R(A) and W = R(B)  are orthogonal. 
Show that PA = I - P8. 

2 15-75 Ustng a symbolic manlpulatlon package, wnte a funct~on which perfonnr the Gram-Schm~dt 
orthogonal~zatlon of a set of functions 

2.15-76 Determine the first four polynomials orthogonal over [0, I]. A symbolic manipulation package 
is recommended. 

2.15-77 For the functions shown in figure 2.21, determine a set of orthogonal functions spanning the 
same space. using the functions In the order shown. 

Figure 2.21 : Functions to orthogonalize 

2 15-78 Mod~fy algonthm 2.1 so that tt only retams columns of Q that are nonzero, mak~ng correspond- 
Ing adjustments to R. Comment on the product Q R  In thls case 

2 15-79 Mod~fy algonthm 2 1 to compute a set of orthogonal vectors w~th  respect to the wetghted lnner 
product (x, y )  = xT W y  far a posltlve definite sylnmetrlc matnx W 

2 15-80 (Modified Gram-Schmldt) The cornputatlons of the Gram-Schmidt algor~thm can be reorga- 
n~zed to be more stable numencally In these mod~fied computations. a column of Q and a rovt 
of R are produced at each tteration (The regular Gram-Schmidt process produces a column 
of Q and a column of R at each lteratlon ) Let the kth column of Q be denoted as q,, and let 
the kth row of R be denoted as r: 

(a) Show that for an m x n matrlx A .  

where Alkl is m x (n - k + 1) 

(b) Let A'" = [z, B ] ,  where B is m x n - k. and explain why the kth column of Q and the 
kth row of R are given by 

(c) Then show that the next iteration can be started by computing 

,=I 

where A["+ = B - qA(ri n-1.  . rk ,,I 
(d) Code the mod~hed Gram-Schmmdt algorlthrn 111 MATLAR 
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2.1 8 References 

Mc~ch of the material on metric spaces, Hilbert spaces, and Banach spaces presented here 
is significantly compressed from [238]. In their expanded treatment they provide proofs 
of several points that we have merely mentioned. An excellent historical source on vector 
spaces and their applications to signal processing and engineering is [209]. Function spaces 
with an emphasis on series representations are discussed in 11771. A similar treatment of 
metric and vector spaces is found in [92]. 

Extensive properties of the orthogonal polynomials introduced here are discussed and 
tabulated in 121; see also [358]. 

An extension of the concept of a basis is that of a frame, which provides an overdeter- 
mined set of representational functions. A tutorial introduction to frames, with applications 
in signal processing, appears in [253]. 



Chapter 3 

Representation and Approximation 
in Vector Spaces 

Any good mathematical cornmod~ty IS worth generalizing 
- Mtchael Splvak 

Calculus on Manifolds 

3.1 The approximation problem in t3ilbert space 

Let (S, I / .  I / )  be a normed linear vector space for some norm 1 1 .  / I .  Let T = {pI ,  p?, . . . . pm) c 
S be a set of linearly independent vectors in a vector space S and let V = span(T). The 
analysis problem is this: given a vector x E S ,  find the coefficients cl, ~ 2 .  . . . , C, SO that 

2 = Clpl + c2p2 + . . . + c,,p, (3.1) 

approximates x as closely as possible. TheA(caret) indicates that this is (or may be) an 
approximation. That is, we wish to write 

x = % + e  

= C I ~ I  +c2p2 + . . .  +c,,p, +e ,  

where e is the approximation enor, so that 

llx - % I 1  = lleli 

is as small as possible. The problem is diagrammed in figure 3.1 for m = 2. Of course, 

Figure 3. I : The approximation problem 

if x E V then ~t 1s pocslble to find coefficients so that llx - i l l  = 0 The particular norrrt 
chosen in perforriilng the mtnimlzatlon affectr the analytic approach to the problem and thc 
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hnal answer. If the 11 (or L i )  norm is chosen, then the analysis involves absolute values, 
which makes an analytical solution involving derivatives difficult. If the 1, (or L,) norm 
is chosen, the analysis may involve derivatives of the max function, which is also difficult. 
If the 12 (or LZ) norm is chosen, many of the analytical difficulties disappear. The norm is 
the induced norm, and the properties of the projection theorem can be used to formulate the 
solution. Alternatively, the solution can be obtained using calculus techniques. (Actually, 
for problems posed using the I ,  norms, a generalization of the projection theorem can be 
~lsed, optimizing in Banach space rather than Hilbert space, but this lies beyond the scope of 
this book.) Choosing the 12 norm allows familiar EucIidean geometry to be used to develop 
insight. The approximation problem when the induced norm is used (for example, either an 
l3 or L 2  norm) is known as the Hilbert space approximation problem. 

To develop geometric insight into the approximation problem, the analysis formulas 
are presented by starting with the approximation problem with one element in T, aided by 
a key observation: the error is orthogonal to the data. The analysis is then extended to two 
dimensions, then to arbitrary dimensions. We will begin first with geometric plausibility 
and calculus, then prove the result using the Cauchy-Schwarz inequality. 

To begin, let T E W 2  consist of only one vector, T = {p ,} .  For a vector x G W 2 ,  we 
wish to represent x as a linear combination of T, 

in such a way as to minimize the norm of the approximation error llell. In this simplest case, 
there is only the parameter cl to identify. The situation is illustrated in figure 3.2(a). If the 
l2 or L2 norm is used, it may be observed geometrically that the error is minimized when 
the error is orthogonal to V ;  that is, when the error is orthogonal to the data that forms 
our estimate. Written mathematically, the norm of the error llell is minimized when 

Using the properties of inner products, 

(x7 P I )  
C [  = - 

llplll: 
Geometrically, the quantity 

(a) One vector in T (b) Two vectors in T 

Figure 3.2: Approximation with one and two vectors 
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is the projection of the vector x in the direction of pl ; it is the length of the shadow that x 
casts onto pl (expressed as a proportion of the length of pi). 

The same approximation formula may also be obtained by calculus. We find el to 
minimize 

by taking the derivative with respect to cl and equating the result to zero. This gives the 
same answer as (3.2). 

Continuing our development, when T contains two vectors we can write the approxi- 
mation as 

Figure 3.2(b) illustrates the concept for vectors in R3. It is clear from this figure that ~f 
Euclidean distance is used, the error 1s orthogonal to the data pi and p2. Thls glves the 
follow~ng orthogonality conditions: 

Expanding these using the properties of inner products gives 

which can be written more concisely in matrix form as 

Soiution of this matrix equation provides the desired coefficients 

Example 3.1.1 Suppose x = [ l .  2. 31T, pi = 11. 1, O]', and pz = [2. 1.01' It IS clear that 

cannot be an exact representation of x since there I \  no way to match the thrrd element U.;lng (3 3). 
we obtain 

This can be solved to glve 

Then the approxrnlatron vector 1s 

Note that the approxrrnat~on k 15 the same a? x rn the first t h o  coefflclent5 The vector ha\ been 
projected onto the plane formed by the ve~ to r \  pi and pz The error In thr\ cd\e ha5 length 3 O 

Jumping now to higher nul-nbers of vectors. \n hat we can do for two vectors in T, we 
can do for rn ~ngredtent vectors We approximate x a5 

111 
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10 inlnlmize lie// = lix - 211 I t  the norm used IS the 12 or L2 norm, t h ~ s  is the h e a r  
ieait-squmer problem Whenever the norm mea5unng the approxirnatlon error /]ell IS in- 
&ced from an Inner product, we can express the m~n~miza t~on  In terms of an orthogonal~ty 
Londit~on the mimmurn-norm error must be orthogonal to each vector p, 

T111\ glves us m equations In the m unknowns, which may be written as 

as the cross-correlation vector, and 

rr the vector of coefficients. Then (3.4) can be written as 

where R is the matrix of inner products in (3.4). Equations of this form are known as the 
normal equations. Since the solution minimizes the square of the error, it is known as a 
least-square or minimum mean-square solution, depending on the particular inner product 
used. 

3.1.1 The Grammian matrix 

The m x m matrix 

in the left hand side of (3.4) is said to be the Grammian of the set T. Since the (i ,  j)th 
element of the matrix is 

R,, = (P, 3 P,) 3 

~t foIIows that the Gramrnian is a Hermitian symmetric matrix; that is, 
H R = R  

(where indicates conjugate-transpose). Some implications of the Hermitian structure 
are examined in section 6.2. Solution of (3.4) requires that R be invertible. The following 
theorem determines conditions under which R  is invertible. Recall that a matrix R for which 

x H ~ x  > 0 
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1 Box 3.1: Positive-definite matrices 

We will encounter several times in the course of this book the notion of 
positive-definite matrices. We collect together here several important facts 
related to positive definite matrices. 

Definition 3.1 A matrix A is said to be positive definite (PD) if X ~ A X  > 0 
for all x 0. This is sometimes denoted as A > 0. (Caution: the notation 
A > 0 is also sometimes used to indicate that all the elements of A are greater 
than zero, which is not the same as being PD.) If X ~ A X  > 0 for all x, then 
A is positive semidefinite (PSD). If > is replaced by <, the matrix is said to 
be negative definite (ND), and if > is replaced by 5,  the matrix is negative 
semidefinite (NSD ). 

Here are some properties of positive-definite (or semidefinite) matrices. 

I .  All diagonal elements of a PD (PSD) matrix are positlve (nonnegative). 
(Caution: this does not mean that positive d~agonal elements imply that 
a matrix is PD). 

2. A Hermitian matrix A is PD (PSD) if and only if all of the eigen- 
values are positive (nonnegative). Hence, a PD matrix has a positive 
determinant. Hence, a PD matrix is invertible. 

3. A Hermitian matrix P is PD if and only rf all principal minors are 
positive. 

4. If A is PD, then the pivots obtained in the LU factorization are positive. 

5.  If A > 0 and B > 0, then A + B > 0. If A is PD and B is PSD, then 
A + B is PD. 

6. A Hermitian PD matrix A can be factored as A = BH B (using the 
Cholesky factorization. for instance), where B is full rank. This is a 
matrix square root. 

for any nonzero vector x is said to be positive-definite (see box 3.1). An important aspect 
of positive-definite matrices is that they are always invertible. If R is such that 

xHRx ? 0 

for any nonzero vector x, then R IS said to be positive-semidejnite 

Theorem 3.1 A Grarnrn~an nzatrrx R 1s always pont~ve-sernrdejntte (that lr, xH R X  > 0 
for an\, x E em) I f  zr posztzve-dejnrte I f  and oizly Ifrlze vectorr pi. pz. , p ,  are 1znearl.i 
~ndependeizt 

Proof Let y = [ y ,  , ~ 2 .  . . . , .vmlT be an arbitrary vector. Then 

Hence R is positive-cernidefinite 
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If R is not positive-definite. then there is a nonzero vector y such that 

so that (by (3.8)) 

thus, the (p, } are linearly dependent. 
Conversely, if R is positive-definite, then 

for all nonzero y and by (3.8) 

This means that the (p, ) are linearly independent 

As a corollary to this theorem, we get another proof of the Cauchy-Schwm inequality. The 
2 x 2 Grammian 

is positive-semidefinite, which means that its determinant is nonnegative: 

which is equivalent to (2.13). 
The concept of using orthogonality for the EucIidean inner product to find the minimum 

norm solution generalizes to any induced norm and its associated inner product. 
If the set of vectors ( p , ,  p2, . . . , pm} are orthogonal, then the Grammian in (3.7) is 

diagonal, significantly reducing the amount of computation required to find the coefficients 
of the vector representation. In this case, the coefficients are obtained simply by 

Each coefficient uses the same projection formula that was used in (3.3) for a single dimen- 
\ion. The coefficients can also be readily interpreted: for orthogonal vectors, the coefficient 
of each vector indicates the strength of the vector component in the signal representation. 

3.2 The orthogonality principle 

The orthogonality principle for least-squares (LS) optimization introduced in section 3.1 
is now formalized. 

Theorem 3.2 (The orthogonality principle) Let p , ,  p2, . . . , p, be data vectors in a vector 
space S. Let x be any vector in S. In the representation 

the induced norm of the errar vector 1 1  ell is minimized when the error e = x - i is orthogonal 
to each ($the data vectors, 
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Proof One proof relles on the projection theorem, theorem 2 8, with the observat~on that 
V = span(&, p2, , pm) 1s a qubspace of S We present a more dlrect proof using tfte 
Cauchy-Schwarz lnequallty 

In the caw that x E span(pl, pz, , p,,), the error is zelo and hence is orthogonal to 
the data vectors This case IS therefore trivial and is excluded from what follows 

If x g' span(p,. p ~ .  . p,,?), let y be a fixed vector that is orthogonal to all of the datd 
vectors, 

such that 

for some set of coefficients { a l .  a*, . . . . am}. Let e be a vector satisfying 

for some set of coefficients {cl ,  ~ 2 .  . . . , c,}. Then by the Cauchy-Schwarz inequality, 

I I ~ I I ~ I I Y I I ~  > I @ ,  y)12 (Cauchy-Schwarz) 
2 

(orthogonality of y). (3.1 1 ) 

The lower bound 1s independent of the coefficients {c,}. and hence no set of coefficients can 
make the bound smaller. By the equality condition for the Cauchy-Schwarz inequality, the 
lower bound is achieved-implying the minimum Ijell-when 

e = cry 

for some scaiar a .  Since e must satisfy (3. lo), it must be the case that e = y, hence the error - 
is orthogonal to the data. L 

When c is obtained via the principle of orthogonality, the optimal estimate 

is also orthogonal to the error e = x - 2, since it is a linear combination of the data vectors 
{p, I .  Thus, 

3.2.1 Representations in infinite-dimensional space 

If there are an infinlte number of vectors In T = { p l .  p ~ ,  . 1, then the repre\entation 

I \  suq~ect. becauie a linear comblnat~on I \  defined. technically. only in  terini of a finrte 
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\urn The convergence of this infinite sum must therefore be examined carefully However, 
~f T 1s an orthonormal set, then the representation can he shown to converge 

3.3 Error minimization via gradients 

While the orthogonality theorem is used principally throughout this chapter as the ge- 
,,rnetr~cal basis for finding a minimum error approximation under an induced norm, it  1s 
pedagogically worthwhile to consider another approach based on gradients, which reaffirms 
what we already know but demonstrates the use of some new tools. 

M~nlmlzing llellz for the induced norm in 

requires minimizing 

Using the vector notations defined in (3 .3 ,  (3.6), and (3.7), we can write (3.13) as 

Gradient formulas appropriate for this optimization are presented in section E. 1.1 of ap- 
pendix E. In particular, the following gradient formulas are derived: 

Taking the gradient of (3.14) using the last two of these, we obtain 

Equating this result to zero we obtain 

giving us again the normal equations. 
To determine whether the extremum we have obtained by the gradient is in fact a 

minimum, we compute the gradient a second time. We have the Hessian matrix 

wh~ch is a positive-semidefinite matrix, so the extremum must be a minimum. 
Restricting attention for the moment to real variables, consider the plot of the norm of 

the error J(c )  as a function of the variables cl, cz, . . . , c,. Such a plot is called an error 
surface. Because J(c)  is quadratic in c  and R is positive semidefinite, the error surface is 
a parabolic bowl. Figure 3.3 illustrates such an error surface for two variables cl and cz. 
Because of its parabolic shape, any extremum must be a minimum, and is in fact a global 
minimum. 
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Figure 3.3: An error surface for two variables 

3.4 Matrix representations of least-squares problems 

While vector space methods apply to both infinite- and finite-dimensional vectors (signals), 
the notational power of matrices can be applied when the basis vectors are finite dimensional. 
The linear combination of the finite set of vectors {pl . p z  . . . , pm} can be written as 

This is the linear combination of the columns of the matrix A defined by 

A = [PI P2 . . .  P ~ I .  
which we compute by 

i = Ac.  

The approximation problem can be stated as follows: 

1 Determine c to minimize //el/: in the problem x = A c  + e = i + e .  / (3.16) 

The mlnlmum llell: = Ilx - ~ ~ 1 1 ~  occurs when e 1s orthogonal to each of the vectors 

( x -  Ac,p , )  = O ,  J = 1 .2 ,  . m  

Stack~ng these orthogonality condltlon\, we obtaln 

Recogn~z~ng that the stack of vector5 I \  \imply A ~ .  we obta~n 

A)' AC = AI'X 
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The mdtrix A"A i i  the Cramrntan R, and the vector AHx 15 the crosi-correiatlon p We can 
write (3 17) ai  

H R c = A  x - p  (3 18) 

These equations are the normal equations. Then the optimal (least-squares) coefficients are 

/ c = ( A ~ A ) - ' A ~ x  = R - ' ~  1 (3.19) 

By theorem 3.1, AHA is positive definite if the pl ,  . . . , p, are linearly independent. The 
matrix (AHA)- 'AH is called a pseudoinverse of A, and is often denoted At. More is said 
about pseudoinverses in section 4.9. While (3.19) provides an analytical prescription for the 
optimal coefficients, it should rarely be computed explicitly as shown, since many problems 
are numerically unstable (subject to amplification of roundoff errors). Numerical stability 
is discussed in section 4.10. Stable methods for computing pseudoinverses are discussed in 
sections 5.3 and 7.3. In MATLAB, the pseudoinverse may be computed using the command 
pin-J. 

Using (3.19), the approximation is 

The matnx P = A (AH A)-"AH is a projection matrix, which we encountered in section 
2.13. The matrix P projects onto the range of A. Consider geometrically what is taking 
place: we wish to solve the equation Ac = x, but there is no exact solution, since x is not 
in the range of A. So we project x orthogonally down onto the range of A, and find the best 
solution in that range space. The idea is shown in figure 3.4 

Figure 3.4: Projection solution 

A useful representation of the Grammian R = A H  A can be obtained by considering A 
as a stack of rows, 

so that = [qi, q 2 ,  . . . , q,] and 
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3.4.1 Weighted least-squares 

A weight can also be applied to the data points, reflecting the confidence in the data, as 
illustrated by the next example. This is naturally incorporated into the inner product. Define 
a weighted inner product as 

( x ,  y ) ,  = y H w x .  

Then minimizing l/e11L = 11 Ac - x11L leads to the weighted normal equations 

A ~ W A C  = A*WX,  (3.23)  

so the coefficients which minimize the weighted squared error are 

c = (A* W A ) - ' A ~  W X .  (3.24)  

Another approach to (3 .24)  is to presume that we have a factorization of the weight 
W = sH S (see section 5 .2) .  Then we weight the equation 

SAC = S y .  

Multiplying through by ( S A ) ~  and solving for c ,  we obtain 

c = ( ( S A ) * S A ) - ~ ( S A ) ~ S ~ ,  

which is equivalent to (3 .24) .  

3.4.2 Statistical properties of the least-squares estimate 

The matrix-least squares solution (3 .20)  has some useful statistical properties. Suppose that 
the signal x has the true model according to the eqaation 

x = A c o + e ,  (3.25) 

for some "true" model parameter vector co; and that we assume a statistical model for the 
model error e:  assume that each component of e is a zero-mean, i.i.d. random variable with 
variance a:. The estimated parameter vector is 

c = ( A ~ A ) - ' A * X .  (3 .26)  

This least-squares estimate, being a function of the random vector x, is itself a random 
vector. We will determine the mean and covariance matrix for this random vector. 

Mean of c Substituting the "true" model of (3 .25)  into (3.261, we obtaln 

c = ( A H A ) - ' A H A m  + ( A H A ) - ' A H e  

= co + ( A H A ) - ] A H e .  

If we now take the expected value of our estimated parameter vector, we obtain 

E [ c ]  = E[co + ( A * A ) - ' A H e ]  = co,  

slnce each component of e has zero mean. Thus. the expected value of the estimate is equal 
to the true value. Such an est~mate IS  said to be unbiased. 

Covariance of c The covariance can be written as 

Cov[c] = E [ ( c  - co) (c  - C O ) ~ ]  

= ( A * A ) - ~ A *  E [ ~ ~ ~ ] A ( A " A ) - ' .  

S ~ n c e  the components of e are 1 1.d.. i t  follows that E [ e e H ]  = o:l, so that 

COV[C~ = CT??(A A ) - ]  = 0: R 
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Snlallest covariance. Another intere\ting tact of all posc~ble unblased linear e\timates, 
the e\tlInator (3 19) ha, the '*imalle\t" covdridnce Suppo~e  we have another unb~ased linear 
est~rnator (7. given by 

z. = Lx ,  

where ELS.1 = co. Using our ctatistical model (3.251, we obtain 

(7. = LAco + Le. 

In order for the estimate T: to be unbiased, we must have E[?] = co, so 

We therefore obtain (7. = co + Le. The covariance of ?: is 

We will show that LL" > R - ' ,  in the sense that the matrix L L H  - R-' is positive 
semidefinite. Let 

Then for any z, 

0 5 jlzHzl12 = ( z H z ,  z H z j  = z H z z H z .  

Rut 

z zH  = L L ~  - R-I, 

where we have used the fact that L A  = I. Thus, for any z, 

zH ( L  L~ - R- ' ) z  2 0 ,  

so L L  - R-' is positive semidefinite, or R-' is a smaller covariance matrix. The estimator 
c is said to be a best linear unbiased estimator (BLUE). 

3.5 Minimum error in vector-space approximations 

In this section we examine how much error is left when an optimal (minimal-nonn) solution 
is obtained. Under the model that 

when the coefficients are found so that the estimation error is orthogonal to the data, we 
have 

where e,,,, denotes the minimum achievable error. Taking the squared norm of both sides, 
we obtain 



142 Representation and Approximation in Vector Spaces 

This result, sometimes called the statistician's Pythagorean theorem, follows because S is 
orthogonal to the minimum-norm error, 

(2, emin) = 0. 

The statistician's Pythagorean theorem is illustrated in figure 3.5. (See also lemma 2.2.) 

Figure 3.5: Statistician's Pythagorean theorem 

The squared norm of the minimum error is 

//em,n/12 = llx/12 - l / ~ / l 2 .  

When we use the matrix formulation, we can obtain a more explicit representation for 
the minimum error. Then S = Ac, so 

//8112 = C ~ A ~ A C  = C ~ R C  = cHp, (3.28) 

where p from (3.1 8) has been employed. This gives 
2 H  H 

IIernln I/ = X X - C p. 

Another form for /if 112 is obtained from (3.20), 

~ / f / / ~  = ( A C ) ~ ( A C )  = X ~ A ( A ~ A ) - [ A ~ X .  

Then 

j/em,n/12 = xHx - X ~ A ( A ~ A ) - ] A ~ X  

= xH(z - A ( A ~ A ) - ~ A ~ ) X .  

It can be shown (see exercise 3.5-2) that 

(I - A ( A ~ A ) - ' A ~ )  

is a positive-semidefinite matrix, from which we can conclude that is smaller than 
llx112. 

Applications of the orthogonality theorem 

Because a number of vector spaces and inner products can be formulated, the orthogonality 
prlnclple is used In a varlety of applications The orthogonai~ty theorem provtdes the foun- 
datlon for a good part of signal procerslng theory, slnce i t  provides a preicrlptlon for an 
optimum estimator in the optimum (least-squares) estimator, the error is orthogonal 
to the data. The theorem is applied by defin~ng an Inner product. and hence the induced 
norm, to match the needs of the problem Under various inner-product definition\, much 
of approxlmatlon theory, estimation theory. and pred~ct~on theory can be accommodated 
Example\ are glven in the next several sectioni 
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3.6 Approximation by continuous polynomials 

Suppose we want to find the best polynomial approximation of a real continuous function 
f ( t )  over an interval t E [ a ,  b ] ,  in the sense that 

i i  rnlnlmtzed for d polynomtal p ( t )  of degree m - 1 .  The vector space underly~ng the problem 
is S = C [ n ,  b] We will (naively) take as basis vectors the funct~ons { 1, t ,  t 2 ,  , r m - '  }. so 
that 

The optimal coefficients can be determined (for example) directly by calculus, but the 
orthogonality theorem applies, using the inner product 

Then, using (3.4) we obtain 

I r:: :I ( I ,  t )  . . . (1,  tm-I) 
,t, t )  . . ' ( t ,  r n l - I )  1 

If we take the specific case that the function is to be approximated over the interval 
[O, I ] ,  then the Grammian matrix in (3.3 1) can be computed explicitly as 

so that 

A matrix of this particular form is known as a Hilbert matrix. The Hilbert matrix is famous 
as a classic example of a matrix that is ill conditioned: as m increases, the matrix becomes ill 
conditioned exponentially fast, which means (as discussed in section 4.10) that it will suffer 
from severe numerical problems if m is even moderately large, no matter how it is inverted. 
Because of this, the particular set of basis functions chosen is not recommended. The use of 
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the Legendre polynomials described In example 2.15.1, or other orthogonal polynomials, 
is preferred for polynomial approximation. 

Example 3.6.1 Let f ( t )  = e' and m = 3 (For only three parameters, the Hllbert nxatnx (3 32) is 
st111 well condlt~oned ) The vector on the rtght hand of (3.31) IS 

and the coefficients in (3.3 1 )  are con~puted as 

The approximatlng polynomial 1s 

1 oO 

Weighed least-squares 
L 

1 o - ~  
2 
L 
a, 

2 - 
5: 
Q 
(d 

1 o - ~  

1 o - ~  
0 0.2 0.4 0.6 0.8 1 

t 

Figure 3.6: Comparison of LS, WLS. and Taylor series approximations to e' 

Figure 3 6 show5 the absolute error le' - p ( t ) i  for this polynomial for r E [O ,  1 ] For cornpanson, the 
error we would get by approx~mating e' by the first three tern15 of the Taylor ienes expansion, 

1s also shown, as IS the weighed least-squares (WLS) approx~matron discussed subcequently The 
error In the Taylor series slarts small. but ~ncreases to a larger value than does the least-squares 
approximatton (How would the Taylor sene\ have compared tf the \ertes had been expanded about 
the ni~dpo~nt of the reglon. at to = 47) 1 

The basis function\ of the previouc, example give rlse to the Hilbert Inatrlx ac, the Gramm~an 
However, a cet of orthogori~ll p ~ l y n o m ~ a l s  can be used that has a d~agonal  (and hence well- 
conditioned) Gramrnian 

Now suppose that for some reason it 1s more important to get the approximation more 
correct on the extremec of the Interval of approx~mation We will denote the approximatlng 
polynonxal In t h ~ s  ca\e by p ,  ( t )  To attempt to make the dpprox~mation more exact on the 
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extremes of the interval of approximation, we use a weighted norm 

which is induced from the inner product 

Example 3.6.2 Conttnuing the example above with f ( t )  = e' over [O. I ] ,  take the we~ght~ng functron 
J\ 

w ( r )  = lO(t - 0 512 

Then the Grammian matrix is 

and the right hand vector (computed numerically) is 

b = 11.38603 0.860513 0.6907241~. 

The approximating polynomial is now 

p,(t) = 1.0109 + 353% + .8415t2 

Figure 3.6 shows the error e' - p,(t) and e' - p(t). As expected, the error IS smaller (though only 
\lightly) for p,(t) near the endpoints, but larger in between. 

As various weightings are imposed, the error at some values o f t  is reduced, while error 
for other values of t may increase. This raises the following interesting (and important) 
question: Is there some way to design the approximation so that the maximum error is 
minimized? This is what L ,  approximation is all about: 

min I l f  ( t l  - p(t>llm. 
The approximation is chosen so that the maximum error is minimized. 

3.7 Approximation by discrete polynomials 

We can approximate discrete (sampled) data using polynomials in a manner similar to the 
continuous polynomial approximations of section 3.6 using a set of discrete-time basis 
functions { I ,  k ,  . . . , km-'1. We desire to fit an (m - 1)st order polynomial through the data 
points x l ,  x2, . . . , x,, SO that 

x k ~ p ( k ) ,  k = 1 , 2  , . . . ,  n ,  
where 

p(k) = co +elk + c2k2 + . . .  + cm-lkm-I. 

The polynomial p(k) can be written as 
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If m = n and thexk are distinct, then there exists a polynomial, the interpolatingpolynomial, 
passing exactly through all n points. If nz < n, then there is probably not a polynomial that 
will pass through all n points, in which case we desire to find the polynomial to minimize 
the squared error, 

This can be expressed as a vector norm 

which is induced from the Euclidean inner product (x, yj = x H y ,  where 

We can write p in terms of the coefficients of the polynomial as 

~ ( 1 )  -':1(. 
_P(n) 

x =  

which is a problem in the same form as (3.2), from which observe that thee which minimizes 
//ell2 is 

c = (pT P)-' PTx. 

X 1 

x 2 ]  and p = , 

-Xn 

The approximated vector p is thus 

Example 3.7.1 We desire to approximate the function 

The vectors p,, I = 1,  2 .  . . , m represent the data in this approximation problem. If P is 
square, it is called a Vandermonde matrix, about which more is presented in section 8.4. As 
with the continuous-time polynomial approximation, there may be better basis functions 
for this problem from a numerical point of view. 

Using this notation. the approximation problem becomes 

- F 

Co 

C  I 

C2 

-cm - i 

P = 

us~ng a quadratic polynomial ( m  = 3) to obtain the best match for k = 1 7 The P matrix is 

= Pa. 

- -. 
co 
C 1  

C2 

- cm- ld  

- 
1 I 1 . . .  1 - 
1 2 4 . . .  2"-1 

1 3 9 . . .  3"-" 

1 n n2 . . .  A - 

= [pi p2 p3 , . . pm] 
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k k 

(a) r l k l  (b) xlkl - ~ [ k l  

Figure 3.7: A discrete function and the error in its approximation 

and the coefficients are computed as cT = [-0 0012,O 5885, -0 08331 Flgure 3 7(3)  shows x [ k J  
and figure 3 7(b) shows the error p [ k ]  - x [ k ]  

3.8 Linear regression 

From the data in figure 3.8(a), where there are n points x , ,  i = 1, 2, . . . , n with each 
x, = [x,, y,lT, it would appear that we can approximately fit a line of the form 

for suitably chosen slope u and intercept 6.  As stated, this is a linear regression problem; 
that is, a problem of determining a functional relation between the measured variables x, 
and y,. Nonlinear regressions are also used, such as the quadratic regression, 

Or we may have data vectors x, E 'it3, with X ,  = [x , ,  y, , z,lT, and we may regress among 
the points as 

z1 ax, + by, + c. (3.35) 

X X 

(a) Onglnal data (b) Interpolated line and errors 

Figure 3.8: Data for regression 
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In all such regression problems, we desire to choose the regression parameters so that 
the Right Hand Side of the regression equations provides a good representation of the Left 
Hand Side. 

We will consider in detail the linear regression problem (3.33). We can stack the 
equations to obtain 

for some error tenns e l .  Let 

Y = [YI ,  Y2$ . . . ,  .ynI e = [ e l . e z  . . . . ,  e,] 

and 

Then (3.36) is of the form 

which again is in the form (3.16), so the best (in the least-squares sense) estimate of c is 

The line found by (3 38) mln~mlzes the sums of the squares of the ~ertlcal distances between 
the data abscissas and the I~ne,  as shown tn figure 3 8(b) To minlmlze rlzorresr d~stances of 
the data to the lnterpolatlng llne, the method of total leart Jquarer discussed in sectlon 7 7 
must be used 

Slnce A H  A in (3 38) is a 2 x 2 matnx, expllcit closed-form exprevsions for a and b In 
e can be found The slope and ~ntercept (for real data) are 

Example 3.8.1 (Wetghted ledit-iquares) Ft\e meaiuremenri ( I ,  I ,  j 1 = 1 2 5 are made In d 

\ystem. of whtch the first three are bel~eved to he fdlrly 'iuurdte and two dre known ro he iomewI1'1r 
corr~~pted by medqurernent nolie The meawrements are 
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I 

- weighted least-squares 
least-squares 

2 
1 2 3 4 5 6 

X 

Figure 3.9: Illustration of least-squares and weighted least-squares 

From these five nreasurement.i, the data are to be fitted to a line accord~ng to the model j = ax+b 
The measurements stack up in the model equation as 

In  finding the best (minimum squared-error) solutlon to this problem, it is appropriate to weight most 
heavily those equations which are believed to be the most accurate. Let 

I len using (3 24), we can determine the optimal (under the weighted inner product) set of coefficient, 
Figure 3 9 illustrates the data and the least-squares lines fitted to them The accurate data are plotted 
with x, and the inaccurate data are plotted with o The weighted least-squares l ~ n e  fit? more closely (on 
average) to the more accurate data, whrle the unweighted least-squares line is pulled off significantly 
by the inaccurate data at x = 5 

3.9 Least-squares filtering 

In the least-squares filter problem, we desire to filter a sequence of input data (f [ t ] } ,  using 
a filter with impulse response h [ t ]  of length rn to produce an output that matches a desired 
sequence ( d [ t ] }  as closely as possible. (Examples in which such a circumstance arises are 
given in section 1.5, in the context of adaptive filtering.) If we call the output of the filter 
y l t ] ,  we have the filter expression 

m-l  
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We can write d [ t ]  = y [ t ]  + e l f ] ,  where e [ t ]  is the error between the filter output and the 
desired filter output, 

m- 1 

We want to choose the filter coefficients ( h [ i ] )  in such a way that the error between the filter 
output and the desired signal should be as small as possible; that is, we want to make 

elf1 = d l f l  - ~ l t l  
small for each t  . 

When doing least-squaresfiltering, the criterion of minimal error is that the sum of the 
squared errors is as smail as possible: 

1 ,  

min 1 1e[i]i2, 

where r l  is the starting index and i 2  the ending index over which we de~ i re  to minimize 
The squared norm in (3.40) is induced from the inner product defined by 

Letting 

Y =  

lz [rn - 1 ] 

the inner product (3.4 1 ) can be written as 
H (x. g) = y x, 

and the filtered outputs can be written as 

y = A h ,  

where A is a matrix of the input data, f i t ] .  The matrix A takes varlous forms, depending 
on the assu~nptions made on the data, as described in the follow~ng. Let 

d = 

1 d[i:l 1 
be a vector of desired outputs. Then we want 

We can represent our approximation problem as 

where e is the difference between the output y and the des~red output d We deslre to find the 
filter coefficrents h to minlmtze j/el/ By comparison with (3 161, obrerve that the solut~on 
1 \ 

We no% examlne the form of the A matrix under var~ous a\iumptloni about the tnputi 
A~iurne  that we have avn~l~ible to u\. for the purpow ot findlng the coeffictents. the dat'i 
f [ I ] .  f 121. , f [ N]. w1t11 a total of N data polntj 
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The "covariance" method. In this method, we uce only data that 1s expl~c~t ly  ava~lable, 
no t  rnak~ng any assumption? about data outs~de thi\ segment of observed data The data 
rndtrlx A In thi\ ca\e 1s the (N - m  + I )  x m  matrlv 

Let q [ i l  be the rn x 1 data vector corresponding to a (conjugated) row of A,  as in (3.21); 
then 

The Grammian can be written as 

with the notation that f [i] = 0 where i is outside the range 1 to N ,  and we can represent 
the data matrix as 

The Grammian R is a Hermitian matrix. 

A =  

The "autocomelation" method. In this case, we assume that data prior to f [1] and after 
f [ N ]  are all zero, and fill up the data matrix A with these assumed values. The output is 
taken from il = 1 up through i2 = N + m  - 1 .  The data matrix is the (N + m - 1 )  x m  
matrix 

- s [ m l H  - 

q [ m  + l IH 

- s [ N I H  - 

The terms "covariance method" and "autocorrelation method do not produce, respectively, 
a covariance matrix and an autocorrelation matrix in the usual sense. Rather, these are the 
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terms for these methods commonly employed in the speech processing literature (see, e.g., 
[215]). Using the notation of (3.43), we can write the data matrix as 

In a manner similar to (3.44), we can write 

Nfm-I  

R = A ~ A  = q [ i l q H [ i ] .  
1 = 1  

This is a Toeplitz matrix. 

Pre-windowing method. In this method we assume that f [ t ]  = 0 for t < 1, and use data 
up to f [ N ] ,  so that i l  = 1 and i2 = N .  Then the data matrix is the N x q matrix 

and 
N 

A = 

and 

- f 111 
- 

0 0 . . . 0 
f l21 f Ell 0 . . . 0 
f ~ 3 1  f PI f l 1 1  . . .  0 

f Ell . flml f l m - 1 1  f [n?-21  . . .  
f l m + 1 1  . f [ml  f [ m - 2 1  . . .  f l21 

Post-windowing method. We begin with i l  = m, and assume that data after N are equal 
to zero. Then A is the N x in matrix 

Exarnple 3.9.1 Suppose we observe the data sequence 

- - , (3.45) 

and want to frlter these data with a filter of length m = 3 The data matrlces corresponding to each 
interpretation. labeled respecttvely A,,,,. A,. A,,. and A,,,,,. with their correspond~ng Grarnmlan\ 

, 

f [ m - I ]  f [ in -21  . . .  f [ l l  7 

f l21 

A=: f [ N 1  f [ N - 1 1  f [ N - 2 1  . . .  f [ N - m + 1 ]  
0 f [ N I  FLN-11 . . .  f [ N - m + 2 ]  

0 0 0 . . .  f [N l  - - 
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are shown here: 

Observe that while all of the data matrices are Toeplitz (constant along the diagonals), the 
only Grammian which is Toeplitz is the one which arises from the autocovariance form of 
the data matrix. 

MATLAB code to compute the least-squares filter coefficients is given in algorithm 3.1. 

Algorithm 3.1 Least-squares filter computation 
File: lsf ilt .m 

Example 3.9.2 For the input data of the previous example, the following desired data are known: 

1% want to find a filter of length m = 3 that produces this data. Us~ng the four different data sets 
in the example, with selections of d corresponding to the data used, we obtain from the MATLAB 
commands 

hcv = lsfilt(f,d(3:5) ,3,1) 
hac = lsfilt(f,d,3,2) 
hpre = Isfilt(f,d(l:5),3,3) 
hpost = lsfilt(f,d(3:7),3,4) 

'he filter coefficients 

kO, = [1.5 -2 2 . 5 1 ~  h,,,, = [2 - 1  31T 

h,, = [2 -1 31T h,,,=[2 - 1  31'. 

Example 3.9.3 An application of least-squares filtering is illustrated in figure 3.10 in a channel 
equalizer application. A sequence of bits (b[r]) is passed through a discrete-time channel with unknown 
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I 
delay 

Figure 3.10: Least-squares equalizer example 

impulse response, the output of which is corrupted by noise To counteract the effect of the channel, 
the signal is passed through an equalizer, which in this case is an FIR filter whose coefficients have 
been determined uslng a least-squares criterion In order to determine what the coefficients are, some 
set of known data-a tramlng requence-is used at the beginning of the transmission This sequence 
is delayed and used as the desired signal d [ t ]  Using this training sequence, the filter coefficients lz[h ] 
are computed by using (3 42). after which the coefficients are loaded into the equal~zer filter 

This example is more a demonstration of a concept than a practical reality While equal~zers are 
common on modem modem technolog), they are more commonly implemented using adaptive filter5 
Adaptive equalizers are examined in section 4 11 2 (RLS adaptive equalizer) and section 14 6 (LMS 
adaptive equalizer) 

3.9.1 Least-squares prediction and AR spectrum estimation 

Consider now the estimation problem in which we desire to predict x[rJ using a linear 
predictor based upon x[r - 1 1 .  x[t - 21, . . . , x [ t  - m ] .  We then have 

,n 

uslng a,  = -h, as the coefficients,  here f [ t ]  1s now used to denote the (forward) predictor 
error. The predrctor of (3  46) 1s called a forward predzctor T h ~ s  1s essentially the problem 
solved In the last section, in which the deslred slgilal 1s the sample d [ l ]  = x[tJ, and the data 
used are the prevlolas data samples We can model the slgnal x[t] as being the output of a 
slgnal wlth input f [ t ] ,  where the system function 1s 

If f [ t ]  is a random signal with power spectral density (PSD) Sf(z), then the PSD of x[rJ is 

If f [ r ]  is assumed to be a white-no~se sequence with variance (T;, then the random proces5 
x [ t  J has the PSD 

Evaiuatlng thls on the unit circle 7 = el", we obtaln 

Thus, by finding the coeffrclents of the llnear predictor, we can determine an e\timate of 
the \pearum. under the a\sunlption that the \~gnal I \  produced by the AR inodel (3 46) 

We can obtaln more data to put in our data matrix (and usually declea\e the v,inancc 
of the estimate) by u\lng a DutX~t utd predlctov 111 addltion to d forward pred~ctor In the 
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backward predictor, the rn data polnts s [ t ] ,  x [ t  - 11, . . . , x[ t  - m + I ]  are used to estimate 
u [ t  - m l ,  by 

where h[ t ]  is the backward prediction error. As before, ~f we view x[ t  - m ]  as the output 
11 J iystem dnven by an Input b [ t ] ,  we obtaln a system function 

If b [ t ]  is a white-noise sequence with variance a; = a;, then the PSD of the signal x[ t  - m ]  
IS 

[he same as in (3.47). Since both the forward predictor and the backward predictor use 
[he same predictor coefficients (just conjugated and in a different order), we can use the 
backward predictor information to improve our estimate of the coefficients. If we have 
measured data x [ l ] ,  x [ 2 ] ,  . . . , x [ N ] ,  we write our prediction equations as follows (using 
the covariance method employing only measured data): 

Let us write this as 

- f [ m + l l  - 
f + 21 

- f [N l  
b [ N - m f l ]  - 
b[N - m  + 21 
- 
b[N - rn]  - 

where x and e now are 2(N - m )  x 1 and A is 2(N - m )  x n .  In the data matrix, the first 
.Y - rn rows correspond to the forward predictor and the second N  - m rows correspond 
to the backward predictor. Our optimization criterion is to minimize 

As before, a least-squares solution is straightforward. This technique of spectrum estimation 
ic  known as the forward-backward linear prediction (FBLP) technique, or the modified 
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covariance technique. An estimate of the variance is 

A MATLAB function that computes the AR parameters using the modified covariance tech- 
nique is shown in algorithm 3.2. 

Algorithm 3.2 Forward-backward linear predictor estimate 
File: f b l p  .m 

3.10 Minimum mean-square estimation 

In the least-squares estimation of the preceding sections, we have not employed, nor assumed 
the existence of, any probabilistic model. The optimization criterion has been to minimize 
the sum of squared error. In this section, we change our viewpoint somewhat by introducing 
a probabilistic model for the data. 

Let P I ,  P2, . . . . P,,, be zero mean random variables. We desire to find coefficients {c,) 
to estimate the random variable X, using 

in such a way that the nonn of the squared error is minimized. Using the inner product 

( X ,  Y )  = E [ x Y ] ,  (3.50) 

the minimum mean-square estimate of c is given by 

The minimum mean-squared error in this case is given using (3.29) as 

where 

Example 3.10.1 Suppose that 

E [ P ~ P ~ ]  E [ p 2 P , ]  . . .  E[P,P~]  ELXFiI -  
E[PP ' z I  . .  . EfPmP21]  and = IElXP21 

E [ P I ~ , I  ELP~P,,I  . . . E[P,~- ' , ,~IJ E i xFm I -  

is a real Gaursian random vector wlth mean rero and covariance 

K -  = co\(Z) = E [ZZ" ] = 2 2 [: I !I 
Given mea\urements of X i  and X2. we ursh to e\timate Xi usins a linear e\timator 

. (3.51) 
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The necessary correlation values in (3.5 1 )  can be obtained from the covanance R;:, 

from whlch the optimal coefficients are 

The minimum mean-squared error is 

3.1 1 Minimum mean-squared error (MIVISE) filtering 

A minimum mean-square (MMS) filter is called a Wienerfilter. It is mathematically similar 
to a least-squares filter, except that the expectation operator is used as the inner product. 
Given a sequence of data { f [ t ] ) ,  we desire to design a filter in such a way that we get as 
close as possible to some desired sequence d [ t ] .  In the interest of generality, we assume the 
possibility of an 11R filter, 

In adopting a statistical model, we assume that the signals involved are wide-sense stationary 
50 that, for example, 

E [ x [ r ] ]  = E[x[ t  - 111 for all 1 

and 

depends only upon the time difference 1 and not upon the sample instant t .  
Using 

e[tl = d[t l  - Y Etl (3.54) 

as the estimator error, by the orthogonality principle, the squared norm of error, which in 
this case is termed the mean-squared error, 

is minimized when the error is orthogonal to the data. That is, the optimal estimator satisfies 

f o r i = O , 1 , 2  , . . .  ; o r ,  
CO 

(d[ t l .  f [t - i l )  = h [ i l ( f  [t - 0. f [t - i l ) .  
I =o 

Using the inner product (3.50), we obtain 



158 Represenlation and Approximation in Vector S ~ a c e s  

Equation (3 56) is an infinite set of normal equatlons For t h ~ s  case in which the inner product 
IS defined uslng the expectation, the normal equatlons are referred to as the Weizer-Hopf 
equations We can place the normal equatlons Into a more standard form by expresstng the 
Grammian In the form of an autocorrelation matrix Define 

r(i  - 1) = E [  f [f - l]T[t - i]] = (f [ r  - I]. f [t - i])  

and 

p( i )  = ~ [ 7 [ t  - i l d [ t ] ]  = (dlt]. f [ r  - i]) ,  

and observe that r(-k) = F(k). Then (3.56) can be written as 

Solution of this problem for an IIR filter is reexamined in section 3 13. 
For now, we focus on the solution when { h )  is an FIR filter with m coeffic~ents. Then 

the filter output can be written as 

where 

f [ t ] = [ f [ t ]  ? [ t - I ]  . . .  7 [ f - m + 1 ] l 7  

(note the conjugates in this definition) and 

Under the assumption of an FIR filter. (3.57) can be written as 

m - i  

[ ( i  - 1) = p i )  i = 0, 1 , .  . . , 
I =o 

which we can express in matrix form with R,/ = r ( i  - 1) as 

= ~ [ f  [t]fN [t]] (3.61 ) 

where 

and 

R =  

- 
r (0) F(l) 

- 
F(2) . . . r (rn - 1 )I 

r ( l )  r (0) 
- 

F(1) . .  . r(m - 2) 
r ( l )  

- 
r(2) r(0) . . .  r ( m - 3 )  

r(nz- 1) r ( m - 2 )  r ( m - 3 )  . . .  r (0) - I 
p =  

- P(0) - 
/ ? ( I )  
~ ( 2 )  
. . 

-p("7 - 1)- 

= Elf [tld[tll 

The opt~mal we~ght\ from (3  60) are h = R - ' ~  
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The matrlx R tr the Crammian matrlx and has the specla1 form o t  a Toeplrtz matrlx 
the dlagondls are equal to each other Because of t h ~ s  specla1 form, fast algonthms exlst 
for  tnvertlng the matrlx and solving for the optlmurn filter coefficients Toepl~tz  matrlces 
are d~rcusced further In sectlon 8 3 (We have already seen one example of the solutlon of 
Toeplltz equations with a specla1 nght-hand s ~ d e ,  In Massey's algonthm In sectlon 1 9 ) 

The minimum mean-squared error can be determined uslng (3 52) to be 

Uslng the notation llel12 = a: and lld/12 = a;, and noting that 

we obtain 

Example 3.11.1 In th~s  example we explore a simple equalizer Suppose we have a channel wlth 
.rLin\fer function 

Pasing into the channel is a desired signal d [ t ] .  The output of the channel is u [ t ] ,  so that we have 

However, we observe only a noise-corrupted version of the channel output, 

s ~ h e ~ e  n [ t ]  is a zero-mean whlte-no~se sequence w ~ t h  vanance a,' = 0 16, whlch is uncorrelated w~th  
v [ t ]  Suppose, furthermore, that we have a statlst~cal model for the desired s~gnal, In which we know 
that d [ t ]  1s a first-order AR signal generated by 

where v [ t ]  1s a zero-mean whlte-nolse slgnal with variance a: = 0 1 Based on this informat~on, we 
dewe to find an optlmal W~ener filter to estimate d [ t ] ,  uslng the observed sequence f [ t ]  The d~agram 
I\ \hewn in figure 3 11 The cascade of the AR process and the channel gives the combined transfer 

Equivalent Model 

1 n[tl 

Figure 3.1 1 : An equalizer problem 

function from v [ t ]  to u [ t ]  as 
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so that 

In this example, since the channel output is an AR(2) process, the equalizer used is a two-tap FIR 
filter. 

We need the matnx R,  conta~nlng autocorreIations of the signal f [t], and the cross-correlatron 
vector p Stnce f [r] = u[t] + n[r], and since v[t] and n[t] are uncorrelated, we have 

R = R, = R,, + R",, 

where R,, is the autocorrelation matrix for the signal u[t] and R,, is the autocorrelation matrix for 
the signal n[t] Stnce n[t] is a white-noise sequence, R,, = a:I, where I is the 2 x 2 ident~ty matnx 
To find 

we use the results from section 1.4.2. Specifically, from (1.79) and (1.80) we find 

Thus, 

,1122 ,0160 ,2722 .0160 ['b6 :6] + [.0160 11221 = [.0160 27221 

For the cross-correlation vector, 
- 
f [tld[tl 

P = E [ -  ] = E [  (c[fl  + Ttl)d[ l l  
f [t - lld[tl (E[t - 11 + n[t - I])d[t] 

= [ ""I"" ] 1 
E[r - l]d[f] ' 

since d[rl is uncorrelated wlth n[t - 1 2 1 .  Mult~plylng (3 64) through by E[t -k] and talung expectation\. 
we obta~n 

p(k) = E p [ t  - k]d[t]] = ru(k) - 0.6rU(k - I), 

from which we can determine 

The optimal filter coefficients are 

To compute the minimum mean-squared error from (3 63) we need 4 T h ~ s  I \  found us~ng ( I  75) a\ 

Then 

The error wrface 15 obtained by piottrng (see ( 3  14)) 
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Figure 3.12: Contour plot of an error surface 

3s a function of {h[O], h [ l ] } .  Figure 3.12 shows a contour plot of the error surface. Algorithm 3.3 is 
MATLAB code demonstrating these computations. 

Algorithm 3.3 Two-tap channel equalizer 
File: wftest.m 

Another example of MMSE filter design is given in conjunction with the RLS filter in 4.1 1.2. 

3.1 2 Comparison of least-squares and minimum 
mean-squares 

I t  is ~nteresting to contrast the method of least-squares and the method of minimum mean 
quares, both of which are widely used in signai processing. For the method of least-squares, 
we make the following observations: 

1. Only the sequence of data observed at the time of the estimate is used in forming the 
estimate. 

2. Depending upon assumptions made about the data before and after the observation 
interval, the Grammian matrix may not be Toeplitz. 

3. No statistical model is necessarily assumed. 

For the method of minimum mean-squares, we make the following observations: 

1 .  A statistical model for the correlations and cross-correlations is necessary. This must 
be obtained either from explicit knowledge of the channel and signal (as was seen in 
example 3.11 . I ) ,  or on the basis of the multivariable distribution of the data (as was 
seen in example 3.10.1). In the absence of such knowledge, it is common to estimate 
the necessary autocorrelation and cross-correlation values. An example of an estimate 
of the autocorreiation r(n) = E[x(k)x(k - n)] using the data {x( l ) ,  x(2), . . . , x(N)} 
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This is actually a biased estimate of r(n) (see exercise 3.12-211, but it has been found 
(see, e.g., [38]) to produce a lower variance when the lag i z  is close to N. 

In order for (3.65) to be a reasonable estimate of r(~z),  the random process x ( k )  
must be ergodic, so that the time average asymptotically approaches the ensemble 
average. This assumption of ergodicity is usually made tacitly, but it is vital. 

When the data sequence used to compute the estimate of the correlations' param- 
eters is the same as the data sequence for which the filter coefficients are computed, the 
minimum mean-squared error technique is essentially the same as the least-squares 
technique. 

2. Commonly, the coefficients of the MMS technique are computed using a separate set 
of data whose statistics are assumed to be the same as those of the real data set of 
interest. This set of data is used as a training set to find the autocorrelation functions 
and the filter coefficients. Provided that the training data does have the same (or very 
similar) statistics as the data set of interest, this works well. However, if the training 
data is significantly different from the data set of Interest, finding the optimum filter 
coefficients can actually lead to poor performance, because one has found the best 
solution to the wrong problem. 

3. We also note that the (true) Grammian matrix R used in prediction and optimal FIR 
filtering problems is always a Toeplitz matrix, and hence fast algorithms apply to 
finding the coefficients. 

In section 4.1 1.1 we examine how the coefficients of the LS filter can be updated adaptively, 
so that the coefficients are modified as new data arrives. In section 14.6, we develop an algo- 
rithm so that the coefficients of the MMS filter can be updated adaptively by approximating 
the expectation. These two concepts form the heart of adaptive filtering theory. 

3.13 Frequency-domain optimal filtering 

We have seen several examples of FIR rnln~mum mean-squared filters, In which the equatlonr 
obtalned involve a finite number of unknowns In this sectlon, we take a d~fferent v~ewpoiilt, 
and develop opt~mal filtering techn~ques for scalar signals In the frequency domaln This 
allows uc to extend the mlnimum mean-squared error filters of section 3 11 to IIR filterr 
Follow~ng a br~ef  revlew of stochast~c processes and the~r  processing by linear systems, uc 
pre5ent the notlon of two-sided Laplace transforms, and some decompos~tions of these thal 
are crltlcal to the solut~on of- the Wiener filter equatlonr This 1s followed by the development 
of the continuous-tlme W~ener filter F~nally. we present analogous recults for discrete-t~me 
W~cnei filters 

3.13.1 Brief review of stochastic processes and Laplace transforms 

To exped~te our development of frequency-domain filtenng. it WIH be helpful to revietv 
br~efly rome fundamental rewlts from stochartic procerrer arrociated w ~ t h  hnear rysteni~ 
(ree also appendtx D) 
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Power spectral density functions and filtering stochastic processes 

Let {x , ,  -S < t < W )  and {y , ,  -oo < t < cm) be two wtde-sense stationary, zero-mean, 
,calar stochastic processes. Throughout this development, we will assume that a11 processes 
are real. The auto- and cross-correlatron funct~ons are 

R, ( t )  = Ex,+,x, R ,  ( t )  = Ey,+,y, 

The bilateral Laplace transforms of these functions are denoted by 

where s = a + jw is a complex variable. These bilateral Laplace transforms exist whenever 
5 15 in the region of convergence. For all of our applications, the region of convergence will 
Include the imaginary axis, and we may obtain the Fourier transform of these functions by 
restricting s to the imaginary axis, that is, setting s = jw. The resulting function, S x ( j w ) ,  
etc., is the usual power spectral density function. By an abuse of notation, we will usually 
drop the explicit inclusion of the imaginary unit in the argument, and simply refer to the 
power spectral density as S,(w),  and so on. 

We observe that, since the autocovariance is real and even, its bilateral Laplace trans- 
form is even; that is, 

sx ( s )  = sx ( - s ) .  

Furthermore, when s = jw,  the power spectral density has the property 

sx (-w) = s; (w) .  

Filtering of stochastic processes 

Let h, be the impulse response function of a time-invariant linear system Laplace transform 
H ( s ) .  We will be concerned (as usual) mainly with causal systems, in which h ( t )  = 0 for 
t < 0. 

Lei y, be the output of a system with impulse response driven by the wide-sense 
statlonary stochastic process {x , ,  -so < t < so}. The output of this system, denoted 
( y , ,  -so < t < m}, is also a wide-sense stationary stochastic processes. The correlation 
functions R,,(r), R,,(r) and R, ( r )  are given by 

The equivalent relationships in the spectral domain are 

Lumped systems and processes 

A linear system is said to be lumped if it has a rational transfer function; that is, its transfer 
function is a ratio of polynomials in s.  Thus, if G(s)  is a rational transfer function, then it 
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is of the form 

where z ,  and p, are the roots of the numerator (the zeros) and the denominator (the pole\) 
respectively We require that n > m 

A stochastic process is said to be lumped if ~ t s  power spectral dens~ty is a rat~onal 
functlon Let { y , }  be a lumped stochastic process. Its spectral denslty function, S,(w), is 
even and nonnegahve. We will sometimes refer to S,(s) as the power spectral denslty. 
although the nonnegatlveness only holds for s = j w  The evenness and nonnegatlveness 
of S ,  (w), however, means that the poles and zeros of S, (s) have a particular quadrantal 
symmetry 

* The poles and zeros are symmetric about the real axis of the complex plane. because 
S ,  (w) is real. 

* The poles and zeros are syinmetric about the imaginary axis of the complex plane. 
because S, (w) is even. 

* The imaginary axis of the complex plane has zeros of even multiplicity, because S, (w) 
is nonnegative. 

* There are no poles on the imaginary axis. because the inverse Fourier transform cannot 
be a covariance function. 

Figure 3.13 illustrates the pole-zero structure of a rational power spectral density functlon 
The reg~on of convergence for a stable inverse of S, (s) 1s a strip In the complex plane 

conta~ning the jw  axls The lnverre Laplace transform of S, (s) is of the form 

wh~ch 1s a sum of damped exponentlals for posit~ve as well as for negative t .  If any coefficient 
d,  is complex, then ~ t s  complex conjugate, d:, must also be one of the coeffic~ents. Purel! 
i~naglnary d, are excluded since R, must be a correlation function. The coeffictents c, muct 
be real 

Flgure 3 13 Pole-zero plot of ratron,~l S,  (0 ( x  = pole\. = /era<) 
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3.13.2 Two-sided Laplace transforms and their decompositions 

The one-s~ded Ldplace transform should be familiar to students of s~gnal processing Le\s 
fdrniliar, but appl~cable to our current study, 1s the two-slded, or bilateral, Laplace transform, 
defined as 

X 

F ( s )  = C ~ W O  \rded(f (t)) = 

Of course, for a causal function f (t),  the bilateral transform is equivalent to the one-sided 
transform. 

Like the two-sided 2-transform (which should be somewhat more familiar), different 
inverses of a given function F(s)  can be obtained depending upon the region of convergence 
that is selected. We make the following summarizing observations, where f (t) and F(s)  
are Laplace transform pairs. 

1 If the region of convergence includes the jw  axis, then the inverse transform f (t) is 
stable. 

2. If the region of convergence is to the right of all poles of F(s) ,  then the inverse f (t) 
1s causal. That is, the region of convergence is a region of the form Re(s) > Re(p), 
for all poles p of F(s) .  Conversely, i f f  ( t )  is a causal, stable function, then there are 
no poles in the RHP. 

3. If the region of convergence is to the left of all poles of F(s) ,  then the inverse f ( t )  
is anticausal. Conversely, if f (t) is an anticausal, stable, function, then there are no 
poles in the RHP. 

4. If the region of convergence is neither to the right nor to the left of all of the poles, 
the inverse transform is two-sided. 

Some simple examples will demonstrate these concepts. 

Example 3.13.1 1 The transform F(s)  = l /(s + a ) ,  a > 0, has tts poles In the LHP, and the 
region of convergence to the nght of the poles contains the jo axls, lndlcat~ng that f (t) IS 

stable In fact, the Inverse (one-sided) Laplace transform 1s f (t) = e-"'u(t), a stable, causal 
functlon 

2 Let f (t) = -em'u(-t) Then the two-slded transform of F(s)  IS 

1 
F(s)  = -, 

s - a  

with region of convergence Re(s) i Re(cr). If Re(a) > 0, then f (t) is stable, and F(s)  has no 
poles in the LHP. 

3. Let 

2a 1 1 
F(s) = - = - - - 

a * - s Z  s + a  s - a '  

The reglon of convergence of F(s)  containing the jo axls has poles both to the nght and to 
the left, hence the Inverse using thls reglon of convergence is stable, but not causal In fact, it 
can be venfied that the Inverse corresponding to thls regson of convergence IS f ( r )  = e-""' 

4 Suppose 

1 
F(s)  = - eF*, a > O , h > O .  

a + s  

This is not the transfer function of a lumped system. Let the region of convergence be 
Re(s) > -a, which includes the j w  axis and hence is stable. The stable inverse transform 
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whlch is not causal. The causal portion of this function is 

f ( r ) u ( f )  = e-"^emlu(t)  

This causal function has Laplace transform 

Canonical factorizations 

Let { z l ,  . . . , z , ~ )  be the LHP zeros of a lumped system F ( s ) .  and let { p l ,  . . . , P , ~ )  be the 
LHP poles of F ( s )  for some Laplace transform function F ( s ) .  We may then express F(s ) 
as 

where 

Then, since the jw  axis is to the right of all the poles of F+(s) ,  the stable inverse Laplace 
transform of F+(.s) is causal. 

For a power spectral density S ,  (s) with LHP zeros and poles { z l ,  . . . , z,,) and 
{ p i ,  . . . , p m ) ,  respectively, the zeros and poles occur in minor images, so that S, (s )  has 
the canonical factorization 

where 

S:(s) Ir often called the ca~zorzzcal spectral facror of S,  ( s )  Since S:(s) has all of it\ 
poles and zeros In the LHP, its reciprocal, W ( s )  = A, also has its poles and zeros tn 
the LHP Functions that have both poles and zeros in the left-half plane are s a ~ d  to be of 
rnilzlmurn phase. and such funct~ons may be viewed as transfer functions of causal systems 
that possess the property that their Inverse 1s also causal Thus, we may view ( j , )  as the 
output of a h e a r  system w ~ t h  transfer functron S:(s), dnven by a white nose. ( v , ) ,  as 
~llustrated in figure 3 14 We take the spectral denstty of the whlte noise process { v , )  to be 
un~ty (S , (s )  = l ) ,  so the spectral dens~ty of { y , ]  is 

whlch agrees with the canonical factorrzation (3 66). 
Since S,"(r) 1s causally ~nvert~ble, we may also view {u , )  as the output of a causal and 

cauiaiiy invertible llnear system wrth transfer function &, driven by ( y , ) .  as illustrated 
In figure 3 1 5 

The relationship between {v,) and { v , )  is very ~mportant Since the transfer funct~on 
ST( \ )  is caucal. we can obtain v, from {L,, a < t } ,  and since the tran\fer function & I \  

causal, we can obtain v, from (u,. a < I }  Thus, { 1,. a cr r )  and (v,, a < t )  contain ex'ictlb 
the \ame informatton-nothtng i i  lost or destroyed as a reiult of the filtertng operation5 
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Figure 3.14: y, as the output of a linear system driven by white noise 

Figure 3.15: v, as the output of a linear system driven by y, 

We will say that two signals that enjoy this relationship are informationally equivalent.' 
The main difference between the two processes is that, while y, may be dependent on 
{y,. a < t ) ,  v, is not dependent on {v,, a < t ) ,  v,. In other words, ( y ,  ] is a correlated 
process, and {v,] is an unconelated process. The action of filtering by & is to decorrelate 
(y,) by, essentially, removing all redundant information (that is, the part y, that can be 
obtained as a function of y, for a c t) from y, at each time t .  The process (v,} is called the 
innovations process, and contains only new infomation about y, that cannot be predicted 
from past values. Since v(t) is a white-noise signal, we say that the filter W(s) = -$- is a 

S, (sf 
whitening filter. The process {v,} is a very special white-noise process, since it represents 
exactly the same information as is contained in the original signal. 

Additive decompositions 

Let f (t) be any function whose bilateral Laplace transform, L{ f (t)], exists in a region 
containing the jw axis. The auto- and cross-correlation functions associated with lumped 
processes and transfer functions of lumped systems all satisfy this constraint. We may 
decompose f (t) into its left- and right-hand components 

where 

is the unit step function. The bilateral Laplace transform of f ( t ) ,  denoted 
W 

F(s)  = L{ f ( t ) )  = 

may be decomposed into 

where 

" h s  notion of information 1s not the same 4s elther Shannon lnformat~on or Flbher ~nfonnatlon 
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is the Laplace transform of the causal part o f f  ( t ) ,  and 

is the Laplace transform of the anticausal part o f f  (t). Here 0- signifies taking a left-hand 
limit (this is necessary to account for impulsive autocorrelation functions). 

Since f (t)u(t) is a right-sided function, the region of convergence for its Laplace trans- 
form includes the RHP; that is, the transform {F(s) )+ has no poles in the RHP. Similarly, 
since f ( t  )u (-t ) is an anticausal (left-sided) function, the region of convergence for its 
Laplace transform includes the LHP. Thus, for rational F(s). 

{F(s)]+ = Cjimpulsive functions) + x {partial fraction expansion of F(s)},  
LHP poles 

{F(s)}.. = x {partial fraction expansion of F(s)] .  
RHP pole5 

Despite the confusing notation, the canonical factorization and the additive decompo- 
sition should not be confused: the canonical factorization is a multiplicative decomposition. 
For a function F(s) ,  we have the canonical factorization 

and the additive decomposition 

and it is not the case that F+(s)  = {F(s)]+.  What is true is that they both have poles only 
in the RHP, and causal inverse transforms. (Note that the canonical factorization places 
the + and - in the exponent, while the additive decomposition placed the + and - in the 
subscript.) 

Example 3.13.2 Let 

where a  > 0. Then 

2a 
- 

1 1 
F ( s )  = - - - - - 

a * - s *  s + a  5 - f f  

T h ~ s  has the canonical factorizat~on 

The causal part o f f  ( 1 )  is f ( t ) u ( r ) ,  which has Laplace transform 

1 
{F(F))- = - . Re(s) z -a. 

s + a  

leading to the additive decomposition 

Example 3.13.3 Let S ; ( s )  he the canon~cal factor with its pole\ and ~ e r o s  In the RHP, of the toim 
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We desire to find ( S ; ( s ) } - ,  the transform due to the causal part of the Inverse Laplace transform of 
S ; ( S ) .  We first find 

so that the "causal" part is simply S ( r ) .  Taking the transform of the causal part, we thus have 

As this last example shows, ( S ; ( s ) } +  may have a nonzero part. In fact, if SF($)  is rational, 

for polynomials B(s)  and a ( s )  of equal degree, then with a little thought, we realize that 

3.1 3.3 The Wiener-Hopf equation 

Let x, and y, be zero-mean, stationary stochastic processes, and let y, = {y,, ar ( 1 )  be 
observed. Suppose we wish to estimate xr+~, given y,. If h > 0, we wish to predict future 
values of x, given past and present values of y,. This is called the prediction problem. If 
h = 0, we wish to estimate x, in real time; this is called thefiltering problem. If h < 0, we 
wish to estimate the signal h time units in the past; this is called the smoothing problem. The 
prediction and filtering problems are causal, and can be implemented in real time, while 
the smoothing problem is noncausal, and cannot be implemented in real time. 

We first formulate the integral 

%+A = h(t .  s ) y ,  ds .  (3.68) 

where h ( t ,  s )  is to be chosen such that 

is minimized and h ( t ,  s )  is causal (that is, h ( t ,  s )  = O for t < s). The integral in (3.68) 
is to be taken in the mean-square sense. We address this problem by appealing to the 
orthogonality principle, as we have done so many times, whereby we require 

that is, the estimation error rnust be perpendicular to all data used to generate the estimate. 
This condition implies that 

We can render this expression more simply by making some changes of variable. First, let 
a = t - r ;  then 

r w  

Next, let t = t - a ,  to obtain 

h ( t + a , t + a - a ) R y ( t - a ) d a ,  V t  L O .  
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Since the left-hand slde of this expression is Independent of a,  the right-hand slde must also 
be Independent of a ,  wh~ch  ~n turn implles that h is not a funct~on of a The only way this 
can happen 1s if h IS a function of the d~fference of it\ first and second arguments, that is, ~f 
h 1s a function of CY only So, we ~ntroduce the (abuse of) notation h ( z  1 ,  z 2 )  = 11 (21 - 221 
and, reverting back to t as the Independent vanable, we obtaln 

P CX: 

the celebrated Wiener-Hopf equation 
Equation (3.71), describing the solution of an optimal filter in continuous time, should 

be contrasted with (3.56) of chapter 3. In chapter 3, a set of matrix equations is obtained, 
whereas in the present case an integral equation is obtained. However, the structure in both 
cases is equivalent: the optimal filter coefficients are operated on by the autocorrelation of 
the input function to obtain the cross-correlation between the input and output. 

once  the Wiener-Hopf equation is solved for h, then 

represents the minimum mean-square estimate of x,,,. Solving (3.7 I), however, involves 
more than simply taking Fourier or even bilateral Laplace transforms. To see why this is 
so, take the Laplace transform of both sides of (3.71): 

l: R,, (t + +)e-"df = 1: 1; h ( r ) ~ ,  (i - r)e-'"-" e " d r d t  

where we make the change of variable a = t - r for the last integral. We observe that the 
right-hand side of (3.73) is not equal to the product of the Laplace transforms of h and R,,  
since the limits of the inner integral depend on r .  This condition arises from the requirement 
that t > 0 in (3.71). If we did not worry about physical realizability (that is, causality), we 
could relax the condition that h(r) = 0 for t < 0. In this case only, we may obtain. via 
Fourier analysis. the result that the optimal filter transfer function is given by 

the result~ng impulye response function is noncausal unless x, and Y, are white For applj- 
catlons where causal~ty IS not a conrtrdint, this result is perfectly valid For example, let x ,  
be an Image (here, t represent5 spatial coordinates). and suppose we observe 

where {v,. -oo < t < nc] is a whlte-noise process with R, ( t)  = a 2 6 ( t )  It is eaiy to see 
that R, ( r )  = R, ( r )  + a 2 S ( r )  and R,, (t) = R, ( r ) ,  so 

H(w) = 
s r  (w) 

S., (wj + o2 ' 

This reiult admlts a very Intuitwe interpretatton Over frequenctes where the signal energy 
is hlgh compared to the nolse, the filter act5 ar an Identity filter and passes the signal without 
change Over frequenctei where the noise power dominates. the signal filter attenuates the 
ob5ervatlon 
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In some contexts, (3.74) is called a Wiener filter, but that is not quite accurate. More 
precisely, the Wiener filter is the solution to (3.7 l), and more sophistication is needed to 
obtain that solution. The solution comes via the celebrated Wiener-Hopf technique. 

As we examine (3.71), we observe that we could solve this equation with transform 
techniques if R, (a)  = 0 for a < 0. Unfortunately, since R, is a correlation function, this 
situation generally will not occur. One notable and important situation in which this does 
occur, however, is when { y , }  is a white-noise process, for then R,(t) = 6(t). In this case, 
the solution to (3.71) is trivial: 

3.13.4 Solution to the Wiener-Wopf equation 

We will present two approaches to the solution of the Wiener-Hopf equation. The first is 
based upon careful consideration of the locations of poles. The second is based upon the 
innovations representation of a process. The second is easier, pointing out again the utility 
of placing signals in the proper coordinate frame (i.e., a set of orthogonal functions). 

Theorem 3.3 The solution to the Wiener-Hopf equation, 

where 

Proof We first observe that since h(t) is to be stable and causal, its bilateral Laplace 
transform will have no poles in the RHP. The transform of R V y  (t) is 

Consequently, 

where we have made the change of variable t = t - h in the last integral. 
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Let 
r= 

From (3.77), the right-hand side of this equation is zero for t 2 0, so 

t LO,  
g(t) = unknown f < 0. 

We will establish our result by examining the bilateral Laplace transform of g(t). Since g ( f )  
is an anticausal (left-sided) function, its region of convergence is the LHP; consequently 
G(s) has no poles in the LHP. Taking the bilateral Laplace transform of g(t)  and using 
(3.79), 

G(s) = S,,(s)eSA - H(s)S, (s). 

Now, observing that S, (s) = S,f(s)S; (s) (canonical factorization) and dividing both sides 
of this equation by S;(s), we obtain 

Since G(s) has no LHP poles and S;(r) has no LHP zeros. has no LHP poles. 

Furthermore, H(s) has no RHP poles, and neither does S:(s), so the product H(s)S:(s) 
S (s)eSA has no RHP poles. The quantity =, however, may have poles in both the RHP and the 

S,, (T)C"' LHP. The only way equallty can obtain is for the LHP poles of to be equal to the 

, that is, poles of H ($)ST (s). Let Q ( f )  be the inverse Laplace transform of %. 

$ ( t )  will, in general. be a two-sided function. The LHP poles of the bilateral Laplace 
transform of Q (t), however, may be obtained by taking the Laplace transform of Q ( r ) u  ( r )  
In other words, applying the {.)+ operation to both sides of (3.80) yields 

and, consequently, 

It may be useful to compare the causal Wiener filter. 

with the noncausal "Wiener filter," 

We note that. except for the { )+ operation, they are the same. so the structure i \  not ii 
toreign a4 ~t might seein upon fir\t exposure 
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Let v, be a white-noise process, and let us use this process to form the estimate A, + A. 
The second derivation of the Wiener filter is based upon two observations: 

The Wiener-Hopf equation is trivial to solve if the observed process is a white noise, 
since (repeating (3.75) and (3.76), 

* A stationary lumped process may be transformed into a white noise without loss of 
information by means of a causal and causally invertible transform (see figure 3.15). 

These two observations permit us to adopt a two-step procedure: (a) first, we "pre- 
whiten" the observed signal, {y , } ,  to create an innovations process, ( v , } ;  (b) we then apply 
the tnvial Wiener filter to the pre-whitened signal. In other words, the Wiener filter can 
hi: obtained by cascading the pre-whitening filter and the Wiener filter for white-noise 
observations, as illustrated in figure 3.16. 

Figure 3.16: The optimal filter as the cascade of a pre-whitening filter and a Wiener filter 
with white-noise inputs 

From our earlier development. the pre-whitening filter is simply W ( s )  = -&, the 
canonical spectral factor of S,  ( s ) ,  and the optimal filter based on white-noise observations 
is {S, ,(s)esh}+, SO 

since S;(s)  = 1. 
The only thing left to compute is {S,,(s)eS'J+. But 

00 

R x u ( f )  = Exu+rua = E [xu+, J__ w(P)Ya-@ dP] 

X 

- ~ ( P ) E [ x ~ + , h - ~ l d P  = w ( B ) R r V ( t  + B)dP  = Rx,(t) * w(-t), 
- LW J_", 

where w ( t )  is the inverse transform of W ( s ) .  Consequently, 
1 I 

Sx,(s) = S r y ( s )  W ( - s )  = Sxy(s)-  = SX) (3)- 
S , f ( -s )  S;(s)  ' 

which is the same formula we obtained with our original derivation. 
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3.13.5 Examples of Wiener filtering 

Example 3.13.4 Suppose x,  = y, and h > 0 In (3 68) Thls IS a problem of pure predict~on we wish 
to obtaln an expression for x,,, . glven 0,. a 5 f ]  Since S,  ( s )  = S,(s)  = S , ,  (F), (3 78) becomes 

Now let y, be an Ornsre~n-Ulzlenbecrl procers, which 1s a process (y,, -oo .c r < a]  with zero-mem 
and with correlation funct~on 

R,(r) = e - a ' i i ,  

w ~ t h  cu > 0 Then 

Our task 1s to compute { % e w ] +  Slnce thls transform 1s not a ratlonal functlon of s ,  we cannot u,e 
partla1 fract~ons directly. and must appeal to the def in~t~on by findrng the lnverse Laplace transform, 
then taklng the causal part 

and speclfy~ng the reglon of convergence as Re s > -a Taking the (stable) Inverse Laplace transform, 
we find 

which is not causal. We find that the causal part of f ( t )  is 

and so, taking transforms, 

Therefore, 

so the impulse response function of the optimal filter is 

and the opt~mal pred~ctor is 

T h u ~  the predrcted value of 1, decays from its last obrerved value exponentially at a rate governed 
by the correlatton time-constant Ci 

Example 3.13.5 Filtering in White Noise Let 
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where h(c2) and a(?)  dre polynomial\ in sZ with the degree of h(s2)  \tnctly lower than the degree 
ut  (10') Furthermore. arrume R,, ( t )  EE 0 Direct calculat~on yields 

Now, observe that 

Since the degree of b(s2)  is lower than the degree of a ( s 2 ) ,  the degrees of the numerator and denomi- 
nator of S, ( s )  are the same, say of degree 2n The canonical factors of S ,  ( s )  will therefore be rational 
tunct~ons with numerators and denominators of degree n Thus, S;(s )  is of the form 

gince the leading coefficients of both B(s)  and a ( s )  are the same. Since the rational function has 
all of its poles in the RHP, we immediately obtain (see (3.67)) 

Thus, 

Example 3.13.6 As an application of the results of the previous problem, consider the case when 

SO that 
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and, thus, 

The Inver\e Laplace transform of 1 /S; (s) 1s ant~causal, except for the constant term 1 ,  so that. as In 
(3 81). the port~on due to the causal part 1s 

Then 

3.1 3.6 Mean-square error 

The error associated with the Wiener filtering problem is given by 

with 

where 

which I S  the Inverse Laplace transforln of the optimal transfer function given by (3 78) The 
covariance of the estlmatlon error is 

2 EI~+,=E[x,+, -x ,+ , ]  = E  l 2  (3 831 

Slnce P,+, 1s a function of {y,, a 5 t ) .  the orthogonahty cond~t~on (3 70) requrres that the 
estlmatlon error be orthogonal to the esttmate, that IS, 

so (3.83) becomes 

where the last equality holds by making the change of variable a = t - s 

3.13.7 Discrete-time Wiener filters 

The Wiener filter theory dlio appl~ei  in drgcrete tlme We hdve alreddq seen. the Wrener filter 
rewits for FIR frlters We now apply the notton of spectrdl fCictonzdtioii to the Wiener-Hop1 
equation\ wrth cauial IIR hlteri We iummarrze the reiulti for thri development 
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Canonical factorization 

Let S, ( z )  be the power yectral den\lty of a d~screte-time random proces Then S,  (:) has 
poles 1n51de and outride the unlt c~rcle The canontcal factorizat~on 1s 

where S,(z) has all of its poles and zeros inside the unit circle. 

Additive decomposition 

Let f [ t ] ,  t = . . . , - 1, 0, 1, . . . , be a discrete-time function. Then 

where u [ t ]  is the discrete-time unit-step function. The 2-transform o f f  [ t ]  is 

Wiener-Hopf equation 

Let x, and y, be zero-mean, jointly stationary discrete-time stochastic processes. We wish 
to estimate x ~ . - ~ ,  given {y, ,  j 5 t ) ,  with an estimator of the form 

1 

f ,+A = x h[ t  - i ly , ,  A. an integer 2 0, 
!=-a; 

where h ( i )  is the solution (from orthogonality) to 

x 

R,,[t + p]  = x h [ i ] ~ , [ t  - i ] ,  t 2 0. 
1 =o 

To solve this equation for h  we follow the Wiener-Hopf technique of defining the function 

x. 

g[tl  = R,,[t + XI = 1 h [ i ]  ~ , [ r  - i ] ,  all t ,  
1 =o 

t L 0, 
unknown t < 0. 

Since g [ t ]  is an anticausal function, its region of convergence is the interior of the unit 
circle-it has no poles within the unit circle. 
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Taking the bilateral Z-transform of g [ t ] ,  

M 

~ ( z )  = 1 R,, [n + 11z-" + H ( z ! S ,  ( 2 )  

The canonical spectral factorization of S, ( z )  is of the form 

where S, ( z )  has poles and zeros outside the unit  circle and S , y ( z )  has poles and zeros 
inside the unit circle. Dividing both sides of (3.84) by S, ( 2 )  and applying the {.IT operatior1 
to both sides yields 

the discrete-time Wiener filter. 

Example 3.13.7 Let { y , ,  -ca < t < oc] be a discrete-tlme, zero-mean. vilde-sense statlonary 
process wlth correlat~on function 

Lel x, = \j,, and predict x,,, for h 2 0 
We seek a predictor of the form 

We have R, [ r ]  = R,, [ r ]  = R,  [r], and 

Next. we calculate 

By long d ~ v ~ \ ~ o n ,  we obta~n 
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-&'2 may obtain the rnver\e Z-transtorm as the coefficients of ,--" The operation { } +  is effected by 
dlicard~ng all \ample\ before n = 0 and returning to the tran\form domain 

3.1 4 A dual approximation problem 

The approximation problems we have seen up till now have selected a point from a finite- 
dimensional subspace of the Hilbert space of the problem. In each case, because the solution 
was in a finite-dimensional subspace, solving an m x rn system of equations was suffic~ent. 
In some approximation problems, the subspace m which the solution lies is not finite 
dimensional, so a simple finite set of equations cannot be solved to obtain the solution. 
There are some problems, however, in which a finite set of constralnts provides us with 
sufficient information to solve the problem from a finite set of equations. 

We begin with a definition. 

Definition 3.2 Let M be a subspace of a linear space S ,  and let xo E S .  The set V = xo + M 
1s said to be a translation of M by xo. This translation is called a linear variety. 

A linear variety is not in general a subspace. 

Example 3.14.1 Let M = ((0,0,0), (0, 1,O)) in the vector space (GF(2 ) )3  introduced in exarn- 
p l e 2 . 1 2 . 1 , a n d l e t ~  = (1,  I ,  1) E S.Then 

x + M  = ((1, 1, I ) ,  (1,0, 111 

'i a h e a r  variety. 

A version of the orthogonality theorem appropriate for linear varieties is illustrated in 
figure 3.17. Let V = Q + M be a closed linear variety in a Hilbert space H .  Then there 
is a unique vector vo E V of minimum norm. The minimizing vector vo is orthogonal to 
M. This result is an immediate consequence of the projection theorem for Hilbert spaces 
(simply translate the variety and the origin by - x o ) .  

Figure 3.17: Minimum norm to a linear variety 
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Let S be a Hilbert space. Given a set of linearly independent vectors y I ,  y2, . . . , ym E S ,  
let M = span(y,, y2, . . . , y m )  The set of x E S such that 

(x, ~ 1 )  = 0 
(x. y2) = 0 

is a subspace, which (because of these inner-product constraints) must be M-'. Suppose 
now we have a problem in which there are inner-product constraints of the form 

If we can find any point x = xo that satisfies the constraints in (3.85), then for any v E MA, 
xo + v also satisfies the constraints. Hence the space of solutions of (3.85) is the linear 
variety V = xo + M'. A linear variety V satisfying the m constraints in (3.85) is said to 
have codimension nz, since the orthogonal complement of the subspace M' producing i t  
has dimension m. 

Example 3.14.2 In R3, let y ,  = (1. 0 , O )  and y2 = (0, 1,0). and let M = span(y,, y2). The set of 
points such that 

Now, for the constraints 

observe that ifx = (3.4, s) for any r E W then theconstraints are satisfied Theset V = (3,4.0) + M1 
is a linear variety of cod~mens~on 2 C 

We are now in a position to state the minimization problem. 

Theorem 3.4 (Dual approximation) Lei {y , .  y?, . . . , y m )  be linearly independent 111 a 
Hilbert space S ,  and let M = span(yl. . . . , y,,). The elernenr x E S surisfjling 

(x. y2) = a2 
(3.86) 
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~vhere the coeficlents in this linear combincrtion satisfy 

Proof By the discussion above, the solution lies in the linear variety V = xo + M L  for 
w m e  xo. Furthermore, the optimal solution x is orthogonal to M I ,  so that x E ML' = M. 
Thus, xo is of the form 

Taking inner products of this equation with y l .  yz, . . . , y,, and recognizing that, for the 

solution, (xo, y , )  = a,,  we obtain the set of equations in (3.87). 

Example 3.14.3 For the linear vanety of the prevlous problem, let us find the solution of mini- 
mum norm. Using ( 3  87), we find x  = ( 3 , 4 , 0 )  to be the mnimum norm solution satisfymg the 
constraints 

Example 3.14.4 We examine here a problem in which the solution space is infinite dimensional. 
Suppose we have an LTI system with causal impulse response h ( t )  = e-" + 3e-", in which the 
initial conditions are y(0)  = 0  and y(0f  = 0. We desire to determine an input signal x ( t )  so that the 
output y ( t )  = x ( t )  * h ( t )  satisfies the constraints 

in such a way that the input energy s,' lx(t)12 dt is minimized. Writing the convolution integral for 
the first output, the first constraint can be written 

!Ivng the inner product 

the first constraint can be written as 

where 

The second constraint can be written using the integral of the impulse response (see exercise 3.14-27), 

Then the second constraint is 
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where 

The solut~on xo ( t )  must lie In  the space spanned by yl and y2, 

Then the equation (3.87) becomes 

which has solution 

[ci c21T = 10.5562 -0.46421 

3.15 Minimum-norm solution of underdetermined equations 

The solution to the dual approximation problem provides a method of finding a least-squares 
solution to an underdeterinined set of equations. 

Example 3.15.1 Suppose that we are to solve the set of equations 

One solution is 

= ['I 
However, observe that the vector v = [ I ,  I ,  l jT is In the nullspace of A ,  so that Av = 0: any vector 
of the form 

for r E R is also a solution to (3.88). 

When solving m equations with n unknowns with m < 11, unless the equations are incon- 
sistent, as in the example 

there will be an infinlte number of solutions 
Let x be a rolution of Ax = b, where A IS an m x n matrix with m < n ,  and let 

N = N ( A )  Then, if xo 1s a solut~on to A x  = b, so 1s any vector of the form xo + n. 
where n E N If the nullspace is not t r~v~a l ,  a varlety of solut~ons are posslble In order to 
have a well-determined algorithm for unlquely solvlng the problem. some cnterlon must be 
establ~vhed regard~ng whlch solutlon ir desired A reasonable cr~ter~on is to find the solut~on 
x of smallert norm That is. we want to 

minimize / /x/j  
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The minimum norm solution is appealing from a numeric standpoint, because represen- 
tations of small numbers are usually easier than representations of large numbers. It also 
leads to a unique solution that can be computed using the formulation of the dual problem 
of the previous section. 

Let us write A in terms of its rows as 

Then we observe that the equation Ax = b is equivalent to 

Our constraint equation therefore corresponds to m inner-product constraints of the sort 
shown in (3.85). By theorem 3.4, the minimum-norm solution must be of the form 

where the c, are the solution to (3 37). We can write (3.89) as 

where 

Furthermore, in matrix notation we can write (3.87) in the form 

Provided that the rows are linearly independent, the matrix A A  is invertible and we can 
solve for c as 

Substituting this into (3.90), we obtain the minimum-norm soIution 

x = A ~ ( A A ~ ) - ~ ~ .  

Example 3.15.2 The minimum norm solution to (3.88) found using (3.91) is 

The matrix A H  (AAH)-I is a pseudoinverse of the matrix A .  

3.16 Iterative reweighted LS (IRLS) for Lp optimization 

This chapter has focused largely on L2 optimization, because the power of the orthogonality 
theorem allows analytical expressions to be determined in this case. In this section, we 



184 Representation and Approximation in Vector Spaces 

examrne an algonthm for determining solut~ons to L ,  optimlzatlon problems for p # 2 
The method relies upon weighted least-squares techniques. but using a different we~ghting 
for each iteration 

We begin by examining a weighted least-squares problem Suppose, as In sechon 3 1 
we wtsh to determine a coefficient vector c E I%" to rn~nlmlze the weighted norm of the 
error e in 

Let W = ST S be a weighting matrix. Then, to find 

mineTWe = mineTsTse .  
C C 

we use (3.24) to obtain 

Now consider the L,  optimization problem 

min / x  - AcliF = min /xi - (Ac), 1'. (3.93) 
c C 

r = l  

Let c* be the solution to this optimization problem. The problem (3.93) can be written using 
a weighting as 

where w, = Ix, - (Ac:)lp-*, producing a weighted least-square5 problem whlch has 
tractable solution However, the solutton cannot be found in one step. because c* 1s needed 
to compute the appropriate wetght In tterat~ve reweighted leact-squares. the current solution 
1s used to compute a weight which 1s used for the next iteration 

To thls end, let sli? be the weight matrix for the kth iteration, and let cixl be the 
corresponding welghted least-squarer solution obtained vta (3 92) The error at the kth 
~teration 1s 

Then a new weight matrix s ~ ~ + ' ]  is created according to 

Using this weight, the weighted error measure at the (k f ])st iteration is 

, = I  

If this algonthm converges, then the welghted Ica5t-squares iolutlon prov~des a solution to 
the L,  app~oxtrnation problem. 

However, 11 is known that the dlgortthin a i  described has slow convergence [45j A [note 
stable approach ha\ been found, let 

and 
c l n ~ ~ ~  = h e ~ n l i !  + ( I  - ;.)cIhJ. 

for iome I .  E (0. 11 It hai been found 189. 1621 that choo5ing 
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leads to convergence propertie\ of the algor~thm s ~ m ~ l d r  to Newton's method (\ee \ec- 
tion 14 4) 

One final enhancement has been suggested [43] A tlme-varying value of p 1s chosen, 
such that near the beglnnlng of the Iterative process, p I \  chosen to be small, then gradually 
increased until the des~red p ir  obtalned Thus 

IS used for some small y r 1 (a typical value is y = 1.5). Algorithm 3.4 incorporates these 
ideas. 

Algorithm 3.4 Iterat~ve reweighted least-squarer 
File: r i rw? s . m 

Example 3.16.1 L ,  optimization methods have been used for filter design 1431 In this example we 
consider an odd tap-length filter 

w~th N even. The filter frequency response can he written (see section 6.8.2) as 

where 

Let / Hd(w)I be the magnitude response of the desired filter. We desire to minimize 

This can be closely approximated by sampling the frequency range at L f  frequencies 
oo, w , .  . . . . W L / - ~ ,  and minimizing 

This is now expressed as a finite-dimensional L, optimization problem, and the methods of this 
section apply. Sample code that sets up the matrices, finds the solution, then plots the solution is 
shown in algorithm 3.5. Results of this for p = 4 and p = 10 are shown in figures 3.18(a) and (b), 
respectively. The p = 10 result shown closely approximates L ,  (equiripple) design. El 

Algorithm 3.5 Filter design using IRLS 
File: testirw1s.m 
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Figure 3.18: Magnitude response for filters designed using IRLS 

3.17 Signal transformation and generalized Fourier series 

Much of the transform theory einployed in aignal processing is encompassed by representa- 
tions in an appropnate linear vector space The set of basis functions for the transformation 
is chosen so that the coefficients convey desired information about the s~gnal By determin- 
ing the basis functions appropriately, dtfferent information can be extracted from a signdl 
by finding a representatlon of the signal in the basis 

In this sectlon, we are large1 y (but not entirely) interested in approximating continuous- 
time functions The metnc space is L2 ,  and we deal with an infinite number of basis 
functions, so somewhat more care is needed than in the previous sections of this chapter 

Finding the best representation ( ~ n  an L2 norm sense) of a functlon x(r) as 
m 

where p , ( t )  is a set of bass  functions, is the approximation problem we have seen al- 
ready many times If the basis functions are orthonormal, the coefficients which ininim~ze 
llx - x;=,c, 1-7, 112 can be found as c, = (a, p , )  The set of coefficients (c, i = 1,  2,  , m )  
provides the best representatlon (in the least-squares sense) of x The mlnlmum 
squared error of the serles representation is 

Since the error is never negative. i t  follows that 

This inequality 1s known as Becrei's irzeyr*alzn 
The functlon x:=, c ,  p , ,  obtalned as a best L? approxlrnatlon of x (1) I \  card to he the 

prqectrolz of x(l) onto the space spanned by ( p , ,  pl .  . p,,) This may be written as 

Xpro i ( /~ i  pz P,. )(f) 

Assume that x and { p ,  ) are In soine Hilbert space N If the set of bas15 functton\ { p ,  1 
i c  infinite. we can take the limit in (3 94) d\ rn -+ x The repreientdtlon of thls 11n11t I \  t h ~  



: 17 Signal Transforniation and Generalized Fourier Series 187 

,ntinite series 
X 

Since 

i, ;t Cauchy sequence and the Hilbert space is complete, we conclude that y ( t )  is in the 
Hilbert space. For any orthonormal set ( p ,  ), the best approximation of x (in the L2 sense) is 
the function y. We now want to address the question of when x = y for an arbitrary x E H. 
We must first point out that by the "equality" x = y ,  what we mean is that 

where the norm is the L2 norm (since we are dealing with a Hilbert space). Functions that 
d~ffer on a set of measure zero are "equal" in the sense of the L2 norm. Thus "equal" does 
not necessarily mean "point-for-point equal," as discussed in section 2.1.3. 

We now define a condition under which it is possible to represent every x using the 
basis set ( p, ). 

Definition 3.3 An orthonormal set { p , ,  i = 1 ,  2, . . . , a} in a Hilbert space S is complete2 
if 

X . = C c*. P.,P.  
,=I 

for every x E S. 

Example 3.17.1 it is straightforward to show (by means of a simple counterexample) that sim- 
ply hav~ng an infinite set of orthonormal functions is not sufficient to establish completeness In 
Lz[O, 2n], consider the function x( t )  = cost An infinite set of orthogonal functions 1s T = (p, (t) = 
r~n(nt),  n = 1, 2, . ) In the generalized Founer senes reprerentation 

we find that the coefficients are proportional to 

(cos t ,  sinnt) = cos(t) sin(nt) d t  = 0. 6" 
Hence I ( t )  = 0, which is not a good representation. We conclude that the set is not complete. 

Some results regarding completeness are expressed in the following theorem, which we 
state without proof. 

Theorem 3.5 [ I  771 A set of orthonormal functions {p ,  , i = l , 2 ,  . . .) is complete in an 
inner product space S with induced norm if any of the following equivalent statements 
holds: 

I .  For any x E S, 

'This concerns completeness of the set of functtons, whrch refers to the representattonal a b ~ l ~ t y  of the 
funct~ons, not the completeness of the space, whtch 1s used to descnbe the fact that all Cauchy sequences converge 
Some duthors use "total" In place of complete here 
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2. For any E > 0. there is an N < x such that for all n 2 N ,  

(111 orlzer words, we can upproxrmate arbitrarily closely.) 

3. Parseval's e q u a l i ~  holds: / / x  / j 2  = CzI ( x ,  for all x  E S.  

4. If (x .  p , )  = 0 for all 1 ,  then x = 0. (Tlzis was shown to fail zn the last example.) 

5. There is no nonzerofunction f E S for which the set { p , ,  i = 1,2, . . .) U f forms an 
orthogonal set. 

For a finite-dimensional space S of dimension m ,  to have m linearly Independent functions 
pk, k = 1 ,  2 ,  . . . , m ,  is sufficient for completeness. 

When { p , ]  is a complete basis set, then the sequence { c l ,  c2, . . . , j completely de- 
scribes X; there is a one-to-one relationship between x  and ( c l ,  c2, . . .]. (Except that x is 
only unique "up to" a set of measure zero.) We sometimes say that the sequence {c l  . c2, . . . . ) 
1s the transform or the generalized Fourier series of x. Writing 

we can represent the transform relationship as 

We can define diflerent transformations depending upon the set of orthonorrnal basis func- 
tions we choose. Since each coefficient In the transform is a projection of x  onto the basis 
function, the transform coefficient c, determines how much of p, is in x .  If we want to look 
for particular features of a signal. one way is to design a set of orthogonal basis functions 
that have those features and compute a transform using those signals. 

If {p, , i = 1,  2, . . .]  is a complete set, there is no error in the representation, so Bessel's 
inequality (3 94) becomes an equality, 

This relationship is known as Parseval's e q u a l i ~ ;  it should be familiar in various special 
cases to signal processors. We can write this as 

where the norm on the left is the LZ norm (if x is a function) and the norm on the right is 
the l2 norm. 

For transformations using orthonormal basis sets, the angles are also preserved: 

Lemma 3.1 If x  and have a generalized Fourier series representation using some or - 
rhorzormal basis set { p ,  . i = 1 .  2. . . .) 112 a Hrlbert space S ,  with 

x t t c  and y o b  

Proof We can write 

. ~ = E C , ~ ,  and . v = ~ b , p , .  
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Then 

&here the cross products in the inner product in (3.97) are zero because of ortho- 
gonality. 

Example 3.17.2 (Fourier series ) The set of functions which are period~c on [0, 2n) can be repre- 
,ented us~ng the serles 

The bass functions p, ( t )  = e 1 " ' / 6  are orthonormal, since 

Then from (3.9), 

By Parseval's relationship, we have 

More commonly, we use the nonnormalized basis functions y,(t) = elnf, so the series is 

f (t) = t3 b,eJnf, 

absorbing the normalizing constant into the coefficient as 

in this case, Parseval's relationship must be normalized as 

More generally, for a function periodic with period To, we have the familiar formulas 

where = 21r/ To, and 
70 

b, = / f(t)e-J"w' dt 
To 0 

Example 3.17.3 (Discrete Founer transform (DFT)) A discrete-time sequence x[t], r = 0,  1. . . . , 
N - 1, is to be represented as a linear combination of the functions pk[t] = (1 / J ; iT)e~~" '~~"  7 by 

. N-I 
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The inner product in this case is 
N-I 

It can be shown (see exercise 3.17-32) that the set of basis functions { p i  [ r ] )  are orthogonal. with 

1 k mod 1 (mod N) ,  

The coefficients are therefore computed by 

1 N-I 

More commonly we use the norznomalrzed basis functions elZWklN,  and shift all of the normal- 
izatlon Into the reconstruction fom~ula Then we have 

and 
N- l  

1 - 

which 1s the usual Founer transform palr Parseval's relationship (under thrs normalization) is 

3.1 8 Sets of complete orthogonal functions 

There are several sets of complete orthogonal functions that are used in common appli- 
cations. We will examine a few of the more commonly-used sets, mostly stating results 
without proofs. 

3.1 8.1 nigonometric functions 

As seen in example 3.17.2, the falniliar trigonometric functions eniployed in Fourier series 
are orthogonal. They form a complete set of orthogonal functions. 

3.1 8.2 Orthogonal polynomials 

As we have seen, one way to obtaln orthogonal funct~ons 1s by means of polynoinials 
Different sets of orthogonal polynomials are obtalned by using different welghtlng func- 
tions, and the Inner product 1s taken over some grven interval Some klnds of orthogonal 
polynomials arice commonly enough that they have been given names 

Let f ( t )  and g ( t )  be polynomials, and let I be a domaln of Interest, I = [a. b] The 
polynom~als f ( t )  and g(r) are orthogonal with respect to the welgnting funct~on w ( t )  if 

where 

U w g  the Gram-Schmldt procedure i t  I S  posrlble to orthogonal~~e any \et of polynornial~ 
wlth re5pect to any inner product, In part~cular. the set of polynornii~l\ 1. i .  r'.  . r" cnn 
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be orthogonalized with respect to the weighted inner product We will denote a \et of 
orthogonal polynomials by po(r) ,  pl ( t) ,  p ~ ( t ) ,  and so forth. where the subrcnpt denotes 
the degree of the polynomial 

It can be shown that the orthogondl polynomials (properly normallzed) form a complete 
orthonormal bas~s  for Lz[a,  b] The proof of t h ~ s  (wh~ch we do not present here) relies on 
the Welerstrass theorem, whlch states that any continuous function on an interval [a ,  b] 
idn be approximated arbitrarily closely by a polynom~al By thls theorem we can establish 

basis for C [ a ,  b]  Extending t h ~ s  to L2[a,  b]  (which contains non-continuous functions) 
makes use of the fact that every discontinuous functron over the Interval [ a ,  b] is arbitrarily 
close to a conilnuous functlon 

An Interesting fact about orthogonal polynom~als is the following 

Lemma 3.2 Orthogonal polynomials s a t i . ~ -  the recursion 

Proof Choose a,  so that tp ,  (t) - a,  p,,l (t) is of degree n ,  

Then g,(t) can be written as a linear combination of po, p i ,  . . . , p,: 
n 

where the coefficients are obtained by 

dl = kn( t ) ,  ~1 ( t ) )  

But for i .c n - 1, the coefficients are zero, since 

and that pn is orthogonal to all polynomials of lesser degree, including tp , .  When i = n - 1 
and i = n ,  the coefficients are not zero, 

Families of orthogonal polynomiats 

A variety of types of orthogonal polynomials have been explored over the years. One of 
the general motivations for this is that orthogonal polynomials can be used to provide 
solutions to particular differential equations. Since these orthogonal polynomials form a 
complete orthogonal basis, they can be used to form series solutions for any boundary 
conditions and input function. Details of this kind of analysis are not discussed here, but 
may be found in applied mathematics or partial differential equations books, such as [259, 
1771. However, the differential equations and several common orthogonal polynomials are 
presented in the exercises. Another important use of orthogonal polynomials is for Gaussian 
quadrature, which is an efficient method of numerical integration. This is also derived in the 
exercises; more details can be found in [265]. In this section we examine only two families 
of orthogonal polynomials, the Legendre and the Chebyshev polynomials. 

Legendre polynomials 

The Legendre polynomials are not the most commonly used orthogonal polynomials in 
signal processing, but occasional uses do arise. The Legendre polynomials use a weighting 
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Figure 3.19: Legendre polynomials pa( t )  through ps ( t )  for r E [-I. I] 

function w ( t )  = 1 over the interval [a, b] = [- 1, I]. The first three are 

Additional values can be obtained using the recurrence (3.98). which specializes for 
Legendre polynomials to 

Figure 3.19 shows po, P I ,  112, p3. p4, and p s  Observe that not all polynomials have the 
same amount of "ripple." This is to be contrasted with the Chebyshev polynomials, discussed 
next. 

Chebyshev polynomials 

Chebyshev polynomials are orthogonal with respect to the weighting function w ( t )  = G. 
over the ~nterval I = [ - I ,  I ] .  In part~cular, if T,(t)  and T,(r) are Chebyshev  polynomial^. 
then 

(See exercise 2.8-51) The recurrence relation for Chebyshev polynomials is 

The Chebyshev polynom~als can be expressed as 

T,,(t) = cos(n cos-' t )  ( 3  101) 

Using elther ( 3  100) or ( 3  101), the next few Chebyshev polynomials can be found 

T2( t )  = 2t2 - I T q ( f )  = 4t3 - 3t T4 ( t )  = 8t4 - 8t2  + I 
The leading coeffictent of the Chebychev pol) nonxal T,, ( 1 )  14 2"- ' .  so that AT,, ( r )  1s il 

monlc polynom~al From (3 10I), is clear that the zeros of T,,(r) dre at 
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Over I- I .  I I there are n + 1 extrema (counting the end points) of magnitude I at 

Figure 2.1 1 illustrates the first six Chebyshev polynomials fort  E [-I, 11. What is remark- 
able about these polynomials is that over this interval, each of the local extrema (maximum 
or minimum) takes on the value k 1. This is an important feature in the Chebyshev polyno- 
rnials, and accounts for most of their applications. This is called the minimum maximum 
smplitude property: the maximum amplitude (deviation from zero) is minimized. 

Theorem 3.6 Of izll monicpolynominls of degree n, only the polynomial Q, (t) = & T, (t) 
(the scaled Chebyshev polynomial) oscillates with the minimum maximum amplitude on the 
interval [ - I ,  11. 

Proof The proof is by contradiction. Suppose there exists a monic polynomial q,(t) of 
degree n with smaller minimum maximum amplitude on [- 1, I]. Let 

Since both q, and Q, are monic, p,- 1 must have degree not exceeding n - 1. The polynomial 
Q,, has n + 1 extrema, each of magnitude 1/2"-I. By assumption, q,(t) has a smaller 
magnitude at each of these extrema, so that p,-1 (t) has the same sign as Q,(t) at each of 
these extrema. Note that the n $. 1 extrema of T,(t), and hence Q,(t), alternate in sign. 
Thus p,-i (t) alternates in sign from one extremum of Q,(t) to the next. Since there are 
n f 1 extrema, there must be n zeros of pa-, ( t )  in [- 1 ,  11. But p,-1 ( t )  is a polynomial of 
degree n - 1, which has only n - 1 zeros, which is a contradiction. 

Now suppose that q, (t) is another polynomial having the same minimum maximum 
~rnphtude as Q,(t). If lq, (t) 1 < 1 Q, (t) 1 at an extremum, then we again arrive, as before, at 
a contradiction. On the other hand, if q, (to) = Q, ( to)  at an extremum to, then p,- 1 (to) = 0 
and pi- l  (to) = 0. Then p,-1 ( t )  has (at least) a double zero at to. Counting the zeros of 
p,-1 (t) again leads to a contradiction. 

One application of Chebyshev polynomials is as basis functions in a series expansion, 
such as 

This series converges uniformly whenever f ( t )  is continuous and of bounded variation 
rn [-1, 11. Because of the minimum maximum property of Chebyshev polynomials, the 
approximate representation up to mth degree polynomials, 

m 

usually has less error than a corresponding representation using either the basis 1, t ,  . . . , tm 
or the Legendre polynomials. 

3.18.3 Sinc functions 

The function commonly known as a sinc function, 

can be used to form a set of orthogonal functions 
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It can be shown (see exercise 3.18-39) for the inner product 

that (pk (t), p,(t)) = &&J. I f f  (f) is a bandlimited function such that its Fourier transform 
satisfies 

F ( o )  = 0 form 5;: (-2nB, 2nB).  

then, in the series representation 

f i f )  = t : s p , ( t ) ,  
k 

the coefficients are found to be (see exercise 3.1 8-39) 

This gives rise to the familiar sampling theorem representation of a bandlimited function, 

3.1 8.4 Orthogonal wavelets 

Recently, a set of functions known as wavelets has sparked considerable Intere3t Like the 
Fourier transform, the wavelet transform can prov~de informatlon about the spectral content 
of a signal However, unlike a slnusoidal signal w ~ t h  infinlte support, wavelets are pulses 
whlch are well local~zed in the tune doma~n so that they can provide d~fferent spectral 
informatlon at different time locations of a slgnal In doing this, they sacrifice some of 
the~r spectral resolution by the uncertainty pnnclple, we cannot localize perfectly well in 
both the tlme domain and the frequency domain Wavelets have another property that make 
them practically useful When used to analyze lower-frequency components, a w ~ d e  wavelet 
s~gnal 1s used, to analyze h~gher-frequency components, a narrow wavelet s~gnal IS used 
Thus wavelets can (in pnnclple) ~ d e n t ~ f y  short bursts of hlgh-frequency slgnals Imposed on 
top of ongoing low-frequency slgnals One of the major pnnc~ples of wavelet analysis I \  

that tt takes place on several scales, uslng bass  functions of different widths 
There are. In fact, several famllres of wavelets. each w ~ t h  ~ t s  own properties and ar- 

soc~ated transforms. Not all famllies of wavelets form orthogonal waveforms A particular 
fam~ly of wavelets that has perhaps attracted the most attention is known as the Daubech~es 
wavelets These wavelets, wh~ch form a complete set. have some very nice orthogonal~ty 
properties that lead to fa$t computational algonthins The Daubech~es wavelets can be un- 
derstood best in the context of a H~lbert space, uslng what Is known as a mult~resolut~on 
analysis T h ~ s  ~nvolves projecting a functron onto a whole serles of spaces w ~ t h  different 
resolutions We now present a brlef lntroductton to the construction of these wavelets Con- 
s~derably more lnformat~on 1s provided In the l~terature cited In the references, ~ncludlnp 
generallzat~on in a variety of useful ways of the concepts outllned here 

Characterization of wavelets 

Throughout thi\ \ection we wtll duwme real functions for convenience Most of thew 
concept\ can be general~red to function\ of complex numbers Suppose we have a \et of 
clo\ed subspace\ of the Hilbert space L?(R) ,  denoted by . V - , .  Vo V , .  . wtth the 



1.18 Sets of Complete Orthogonal Functions 195 

following properties: 

1. Nesting: 

2. Closure: 

that is, the closure of the set of spaces covers all of L 2 ( R ) ,  so that every function in 
L2 has a representation using elements in one of these nested spaces. 

3. Shrinking: 

n v, = {OI. 
j € Z  

4. The "multiresolution" property is obtained by the requirement that i f f  ( t )  E V,, then 
f (2 ' t )  E Vo. 

5. I f f  ( t )  E Vo, then f ( t  - n )  E Vo for all n E Z. 
6. Finally, there is some $ E Vo such that the integer shifts of 4 form an orthonormal 

basis for Vo: 

Vo = span($ (t  - n ) ,  n E Z]. 

The function 4 ( t )  is said to be a scaling function. The property that @ ( t )  i $(t  - n )  for 
n E Z is called the shifr orthogonality property. 

We will use the notation P, f ( t )  to denote the projection of the function f ( t )  onto V,. 

Example 3.18.1 Let 

(a unit pulse), and form 

Vo = span(+(t - n), n E Z). 

The set of functlons {+(t -n) ,  n E Z) forms an orthonormal set Then functions In Vo are functlons that 
are precewlse constant on the Integers F~gure 3 20 show5 a function f ( t ) ,  the projection Po f (t)-the 
nearest funct~on to f ( t )  that is piecewise constant In the ~ntegers-and P-[ f (t)-which IS piecewlse 
constant on the half-mtegers 0 

As j decreases, the projection PI f ( t )  represents f ( t )  with increasing fidelity. 
Let us define the scaled and shifted version of the function $ by 

The index j controls the scale and the index k controls the location of the function k .  If $ ( t )  
IS normalized so that l l $  (t) 11 = 1, then so is 4, ( t )  for any j and k. Since + ( t )  E Vo C V-1 
and $ - l , k ( t )  form an orthonormal basis for V - l ,  it must be possible to express +(t) as a 
linear combination of $-I k(t): 

B ( t )  = C ~ , $ - I , I ( ~ )  = f i x h k $ ( 2 f  - k ) .  (3.105) 
k k 

The set of coefficients in (3.105) determines the particular properties of the scaling function 
and the entire wavelet decomposition. Let N denote the total number of coefficients hk in 
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Figure 3.20: A function f ( t )  and its projection onto Vo and V-I 

(3 105) In general, N could be ~nfin~te,  but in practice i t  15 always a fin~te number We alw 
generally assume that the coefficients hn are indexed \o that = O for X .= 0 Let us define 
ck = a h k  Then we can wrlte 

@ i t )  = ck@(21 - k ) :  (3.106) 

or, given our assumptions, we can write this more precisely as 
N - 1  

4(0 = x c k @ ( 2 t  - k ) .  (3.1071 
k =O 

An equation of the form (3.107) is known as a t-ct,o-scale equatiorz. 

Example 3.18.2 In (3 107) let us have two coefficients, co = 1 and ( = 1 Then the two-scale 
equatron becomes 

It  I \  straightforward to verify that the pulse In ( 3  104) sdtt\fle\ t h ~ s  equation a 

Lemma 3.3 If @ ( r )  rarl$e~ a two-stale equafron (3  106) ur~d # ( f )  i q5(t - n )  for (111 
11 E Z ~'rfl7 11 # 0, the17 

i 
Proof Using (3.106), we have 
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In order for this to be zero (because of the orthogonality), the bracketed term must be zero 
when j = 0 and 2n # 0. Then xk C ~ C L - Z ~  = 2So,,. 0 

In going from a projection PI- ,  f (t) to a lower-resolution projection P, f ( t ) ,  there is 
some detail information that is lost in the orthogonal complement of V,. We can represent 
this detail by saying that 

v,-, = v, @ w,, (3 109) 

where W, = V: In Vj-1 (The direct sum 1s interpreted In the isomorphic \ense ) Thus, W, 
contains the detail lost In going from V,-1 to Vj Also (as we shall see), the W, spaces are 
orthogonal, 50 W, 1 W, if J f J' 

Now we introduce the set of functions $, k(t) = 2-1l2$(2-jt - k) as an orthonormal 
basis set for W,, with $ ( t )  E Wo The function $(t) is known as a wavelet function, or 
sometimes as the mother wavelet, since the functions $, k(t) are derived from it Since 
V-,  = Vo @ Wo and $ ( t )  E V-1, we have 

We desire to choose the g, coefficients to enforce the orthogonality of the spaces. It will be 
convenient to write 

Theorem 3.7 If {$ (t - n ) ,  n G Z) forms an orthogonal set and 
k 

dk = (-1) C2Mfi-k 

f i r  any M E Z, then {$r,,k(t)J forms an orthogonal set for all j ,  k E Z. Furthermore, 
+,.k(t) 1 $i.m(tjfir 1 L j .  

Proof We begin by showing that {$lrj,k(t)) forms an orthogonal set for fixed j .  

(where u = 2-Jt) 

(where x = 2u - I) 

(by orthogonality, with j = 2 M  + 1 - I )  

= SOk . (using (3.108)) 

Now we show that +J,k(t) i $, rn(t) for all k, m E 23, for fixed j .  We have 

J @, k(t)$J,m (r) d t  = 2 - I  +(2--'t - k)$(2-Jt - m) d t  S 
= $(u - k)$(u - m) dr (where u = 2-it) 
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(where x = 2u - 1 - 2 k )  

(by orthogonality) 

In the summation in (3.1 1 I),  let p = rn - k ,  so the summation is 

Now, letting j = 2.44 + 1 - 1 + 2 p ,  we can write 

Since S = -S ,  we must have 

establlshlng the desired orthogonality 
F~nally, we show that $, i $in,  for all j ,  k ,  I ,  m E ;Z if J # 1 and k  # nz We have 

already ertabllshed this for j = 1 By the multlscale relationship, $, n ( t )  E W, Let J '  < J .  

so that W, C V, But V, i W, , \o that $, ~ ( t ) .  which 1s In W, , must be orthogonal to 
lCI] !. ( t )  D 

Example 3.18.3 We have seen that a scal~ng function @ ( t )  can be formed when co = r l  = 1 The 
wavelet $ ( t )  corresponding to this scaltng functlon ir 

$ ( t )  = @ ( 2 t )  - @(2r - I ) .  

A plot of @ ( t )  and $ ( t )  is shown In figure 3 21 The function + ( r )  is also known ai the Haar bas15 
function C 

F~gure  3 21 The slmplest scaling and wavelet functions 

There are several fam~ltes of orthonormal compactly supported wavelets Algorithm 3 6 
pro~ides coefficients for several Daubechles wavelet5 (there exist wavelets In this famil) 
wlth coefficients of every posltlve even length) The transforni for these coefficients 15 

cdlled the D,,,, where there are N coefficients Plot\ of {ome of the corresponding icaling 
dnd wavelet function\ dre \hewn In figure 7 22 We observe that the functton, becomz 
smoo~her 6 4  the number ot coefficients lncrea\e\ 
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Figure 3.22: Illustration of scaling and wavelet functions 

Algorithm 3.6 Some wavelet coefficients [63, page 1951 
File: wavecoef f . n 

Wavelet transforms 

In the wavelet transform, a function f ( t j  is expressed as a linear combination of scaling 
and wavelet functions. Both the scaling functions and the wavelet functions are complete 
iets. However, it is common to employ both wavelet and scaling functions in the transform 
representation. 

Suppose that we have a projection of f ( t )  onto some space V, of sufficient resolution 
that it provides an adequate representation of the data. Then we have 
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Commonly we assume that the data has been scaled so that the initial scale is j = 0,  so that 
our starting point is Po f  ( t ) .  Let us call this starting function fo(t) ,  so that 

hiif) = x ( f  ( t ) ,  &o,n(t)i$oIi(~). 
n 

For the purposes of the transform, we regard the coeficrenfs of this representation as the 
representation o f f  ( t ) .  In practice, the set of initial coefficients are simply samples of f ( 1 )  

obta~ned by sampling every T  seconds. That is, we assume that ( f  ( t ) ,  (po  n ( t ) )  * f ( n T )  
for some sampling interval T .  Under this approximation, the wavelet transform deals w ~ t h  
discrete-time sequences. (Further discussion of this point is provided in [63, page 1661.) 
For convenience of notation, let us denote the sequence ( (  fo,  Go n ( t ) ) }  as {c:], and let us 
denote the vector of these values as co: 

0 T c = 1.; cy c': . . .I . 

In the wavelet transform, we express fo( t )  in terms of wavelets on longer scales. For 
example. using (3.109) we have Vo = V1 63 W I ,  so that f o ( t )  E VO can be represented as 

Let c: = ( f o ( t ) ,  ( I ) )  and di = ( fo( t ) .  $ ~ . ~ ( r ) ) ,  and let us denote 

and 

I1 

where f l  E V1 and SI  E WI . Then 

Since f ,  E V I  and Vl  = V;! + W2, we can split f i  into its projection onto V2 and W;! as 

where f 2 ( t )  E V2. and Sz( t )  E W2. and r,? = ( f l  ( t ) .  ,, j and d,: = ( f l  ( t ) .  $2 ,,) Substl- 
tutlng (3.1 14) Into (3.1 13). we have 

We wlll use the notation cJ and d J  to represent the coefficients c;i and dj. rerpect~velq 
We can repeat t h ~ s  decompos~t~on for up to J scale\, wrlttng f J ( r )  E V, on each scale 
j = 1 , 2 ,  . J a s  

The set of coeffictent\ { d ' .  d2. d J ,  c J )  collect~vely are the wakelet transform of rhi 
functlon f , , ( r )  
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~ . . . .  cox;;x+ ....,+ 7; 
'% 

Figure 3.23: Illustration of a wavelet transform 

The computat~ons just descnbed are outlined in figure 3 23 Startlng from the inltial set 
ot coefficients cO, the algonthm success~vely produces cptl and dlf untll the J th  level is 
reached The set of coefficients {dl. d< , ,dJ,  cJ}  1s the wavelet transform of the onglnal 
data The coeffic~ents at scale dl represent the signal on longer scales (lower-frequency 
band) than the coefficients at scale dl- '  The coeffic~ents cJ represents an average of the 
onginal data 

Whlle it 1s conceivable to compute the transform by directly evaluating the Indicated 
Inner products, a significantly faster algorithm exists. We note that by (3 107) 

When we compute the wavelet transform coefficient (fo(t), + l , k ( t ) ) .  we get 

To understand this sum better, let us write 

and form the vector x = [xo, x l ,  . . . , X N - ~ ] .  Let y = x * co (convolution); then 

From this we observe that the summation in (3.1 17) is the convolution of the sequence 
{g-,) with the sequence (cC;'), in which we retain only the even-numbered outputs. 

At a general scale j ,  we compute the wavelet coefficients as 

which is a convolution of the sequence {g-,} with the sequence { (  fo, 4, - i , , ) } ,  retaining even 
samples. To compute the coefficients in (3.1 18), we need to know (fo, dl- I , n ) .  However, 
these can also be obtained efficiently, since 

SO that 

which is again a convolution followed by decimation by 2. 
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Putting all the pieces together. the wavelet transform is outlined as follows: 

1 Let L: = ( fo. 4o n )  be the glven initial data (Normally a sequence of sa~nples of 

f ( t i . )  
2 Compute the set of wavelet coefficlents on scale I ,  d,' = ( f ~ ,  $ 1  n) ,  uslng 

Also compute the scaling coefficients on this scale, ci = (fo, Ql,n), using 

3. Now, proceed up through level J similarly, 

The wavelet transform computations can be represented In matrix notatlon. The op- 
eration (3.123) can be represented as a matnx L. where L,, = h,-?, for I and J in some 
suitable range. The operation (3.122) can be represented as a matrix H ,  where H,, = g,. 2 ,  

(The truncation ev~dent In the fir5t and la\t rows of the matrix correqaonds to an assumption that data 
outside the samples are equal to zero As discussed belou, there I <  another aisuniptton that can be 
made ) 

Floin (3 1 20). 

141 

Example 3.18.4 We will demonstrate thls matrlx notatlon for a wavelet w ~ t h  four coefficlents 
ho, h i .  h Z .  h? We choose M so that {go.  x i  gz, gi) = (if1. - h 2  h i .  ho]  Also, for the sake of a 
specific representation, we a5sume thdt { c ! )  has slx elements in ~t From (3 1211, 

r! I Itz 123 _ [ : I  = lJo Il l  ;; ;; ;j 
c; It 0 

- 
( :> 

c:' 

c: 

c; 
c! - - 

=kO 
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Figure 3.24: Multirate interpretation of wavelet transform 

The transform data at the next resolut~on d2, and the data c2, can be obta~ned (us~ng  the same rndextng 
con\ention as before) as 

It 1s perhaps worthwh~le to point out that the indexing convention on c'  could he changed (with 
,, corresponding change in (3 123)), so that we tnterpret c' as the vector 

Making this change, the matrix for the second stage transformation would be written as 

with similar changes ford' and its associated transformation matrix. Provided that the same indexing 
convention is used for the forward transfonnation as the inverse transformation, the transform is still 
fully reversible. 

The notation L and H for the matrix operators is deliberately suggestive. The L matrix 
is a lowpass operator, and the data sequence c' is a lowpass sequence. It corresponds to a 
"blurring" of the original data cO. The H matrix is a highpass operator, and the data d' is 
highpass (or bandpass) data. 

The filtering/subsampling operation represented by these matrices can continue through 
\everal stages. The transform coefficients at the end of the process are the collection of data 
d ' ,  d', . . . , dJ and eJ, where cJ is a final course approximation of the origina! starting data 
c0 The wavelet transform computations can also be represented as a filteringldecimation 
operation, as shown in figure 3.24. The signai c0 passes through a lowpass and highpass 
filter, whose outputs are decimated, as indicated by , taking every other sample. 

Inverse wavelet transform 

The inverse wavelet transform can be obtained by working backwards. Given d J  and c J ,  we 
wish to find cJ- ' .  We note from (3.1 15) that 

Then, using the fact that cd-I = ( f  J - I ,  #,-, .) and taking inner-products of both sides of 
(3.124), we have 



204 Representation and Approximation in Vector Spaces 

e J - 2  7;:k ; 
Figure 3.25: Illustrat~on of the lnverse wavelet transform 

Taking inner products on both sides of (3.1 19) with +,-l,m we observe that 

by the orthogonality of the + function. Similarly, from (3.1 16), 

Substituting these into (3.125), we find that 

This tells us how to go upstream from eJ and d J  to CJ-' . The process is outlined in figure 3.25. 
As before. the reconstruction can be expressed in matrix form, 

where L* is the adjoint (conjugate transpose) of L and H* is the adjoint of H (see sec- 
tion 4.3). 

Example 3.18.5 Let us ccnslder a spec~fic numerlc example Using the wavelet w ~ t h  four coeffictents, 
the code in algorithm 3 7 finds the two-scale wavelet transform data d ' .  d', c' for the data set c = 
[ I .  2. 3.4,5.61T Also. the inver.ie transform 1s found The pertinent variables of the execution are 

Observe that there are SIX points In the o r ~ g ~ n a l  data, and thlrteen points in t h ~ s  tran~form The 
reconstructed s~gnal c0ne.w I S  equal to the original s~gnal co 

Algorithm 3.7 Dernonstrat~on of wavelet decompos~tlon 
File: wavet es t  . m 

For comparison. algonthm3 8 \how\ a decomposit~on and reconstruction w ~ t h  a d~fferent Index- 
lng convention In t h ~ s  caw. the trdn\form ddta 1s 

The re~on5tructed ugnal cG-,ei7 is equal to the orlgtnal \ignal Thi\ trm\lorni has ten potnt\ in i t  
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Algorithm 3.8 Demonstration of wavelet decomposlt~on (alternative index~ng) 
File: wavetest0.m 

The L  and H  matrices have some interesting properties. In the following theorem, the 
L and H  matrices are assumed to be infinite, so that partial sequences of coefficients do not 
appear on any rows. 

Theorem 3.8 The L  and H  operators defined by the operations 

Ilii~re the following properties: 

I .  H L ~  = O, 

2. LLH = I and HHH = I ,  and 

3. L L  and H H are mutually orthogonal projections. 

I'roof Let hn-2k denote the kth column of L H ,  and let gn-21 denote the lth row of H .  The 
Inner product of these can be written 

n n 

which is zero by (3.1 12). Since this is true for any 1 and k it follows that H L H  = 0. 
The fact that L L = I and H  H  = I is shown by multiplication, using (3.108). 
Then we note that ( L H L L H L )  = L H ( L L H L ) L  = L H L ,  so L H L  is a projection, 

and similarly for H H ~ .  By the fact that H L H  = O it follows that L H L  and H H  H  are 
orthogonal. Now note that 

Thus L H L  + H H H  acts as an identity on the ranges of both H  and L ,  so it is an 
identity. 

The filtering interpretation for the reconstruction is shown in figure 3.26: the samples 
are expanded by inserting a zero between every sampie. then filtering. When the forward 
operation and the backward operation are placed together, as shown in figure 3.27, an 

Figure 3.26: Filtering interpretation of an inverse wavelet transform 
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Figure 3.27: Perfect reconstruction filter bank 

identity operation from end to end results. One family of such filtering configurations 1s 
known as a quadrature mirror filter; it is an example of a perfect reconstruction filter. This 
multirate configuration is used in data compression, in which the lowpass and highpass 
signals are quantized using quantizers specialized for the frequency range of the signals. 

Periodic wavelet transform 

The wavelet transform produces more output coefficients than Input coefficients. due to 
the convolution. If there are n input po~nts and the filters are rn points long, then the 
convolution/decimat~on operation produces j(n + rn)/21 points (or one less, depending on 
how the indexing is interpreted), so each stage of the transfonn produces more than half the 
number of points from the prevlous stage. Hav~ng more transform data than original data 
is troubling in many circumstances, such as data compression. It is common to assume that 
the data is periodic and to perform a periodized transform. Suppose that there are L points 
in co, 

0 0 0 0 T c = Ice, C I ,  . . . , CL-I I . 

Then periodized data So is formed (conceptually) by stacking co, 
O T  O T  O T  T s0 = [. . . . ( c  ) , (C ) , (C ) . . . .] . 

Then an L-po~nt wavelet transfonn IS computed on the pertod~zed data The effect is that 
the wavelet transform coefficients appear cycl~cally shifted around the L and H matrices 
For example, w ~ t h  four coefficients and eight data points, the L and H matnces would look 
like the following 

rlzo h ,  h2 h3 1 

go gl g2 g? 
So gl g2 K i  

go R I  S2 g7 
R2 Si 60 S I  

The same equations used to represent the nonperiodized transforms (3 122) and (3 121) 
and the inverse transform (3 126), also apply for the period~zed transform and ~ t s  tnverse. 
prov~ded that the indices are taken modulo the appropr~ate data size 

Wavelet transform implementations 

Algortthrn 3 9 performs a nonperiod~c wavelet tran~form The fir\t function. iniavet rans. 
iets up some data that is used by the recursively-called tunct~on daYje I~nplernentdtion of 
wd7j.e tr stra~ghtforward. w ~ t h  iome caut~on needed to get the ~ndex~ng  started correctl! 
S~nce  d~fferent ieveli have d~fferent lengths of coefilctcnt\. an array 15 al\a returned ~ndex~ng  
the trdnsform coeffic~entr for each ievel 
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Algorithnl3.9 Non-periodic wavelet transform 
File: wavetrans . m 

An inverse nonperiodic wavelet transform is shown in algorithm 3.10. 

Algorithm 3.10 Nonpenodic Inverse ~ a v e l e t  transform 
File: In-r+raTget rans .in 

Example 3.18.6 The two-level nonperiodic wavelet transform c = [ I ,  2, 3 ,4 ,  51' using the D4 
coefficients is computed using [C, ap] = wavetrans (c, d4coef i, 2 ) , which gives 

from which we interpret 

The inverse transform computed by lnvdave (C , ap , d4coe f f ) returns the onglnal data 
vector C1 

Code for the periodized wavelet transform appears in algorithm 3.11, and the periodized 
inverse wavelet transform is in algorithm 3.12. 

Algorithm 3.11 Periodic wavelet transform 
File: wavetransper. m 

Algorithm 3.12 Inverse periodic wavelet transform 
File: inwavetransper. m 

Applications of wavelets 

Wavelets have been used in a variety of applications, of which we mention only a few. 

Data compression. One of the most common applications of wavelets is to data com- 
pression. A set of data f is transformed using a wavelet transform. The wavelet transform 
coefficients smaller than some prescribed threshold are set to zero, and the remaining coef- 
ficients are quantized using some uniform quantizer. It is a matter of empirical fact that in 
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most data sets, a large proportion of the coefficlents dre zeroed out The truncated/quantlzed 
coefficlents are then passed through d run-length encode1 (and perhaps other losslecs en- 
codtng techn~ques). wh~ch repreienti runs of zeros by a c~ngle d ~ g ~ t  lndicat~ng how many 
zeros are In the run 

A more sophict~cated verslon of t h ~ i  algorithm 1s employed for linage compresilon, 
In wh~ch  a two-d~men\~onal wdvelet transform 1s employed In this case, the h~erarchrcal 
structure of the wavelet transform is explo~ted. so that if coefficlents on one stage are small, 
there 1s a hlgh probab~ltty that coefficients underneath are also small Detalls of an algor~thm 
of this sort are glven In [305] 

TimeQrequency analysis. Wavelets are naturally employed in the analysis of signals 
which have a time-varying frequency content, such as speech or geophysical signals. 

3.1 9 Signals as points; digital communications 

The vector space viewpoint allow? us to view s~gnals. e~ther  In d~screte or cont~nuous tlme, 
as polnts in a vector space This clgnals-as-po~nts Interpretation 1s especially useful tn digital 
communications In dlgital communlcatlons. a small set of basls functlons 1s chosen-not 
a complete set-to have certdln deslred spectrdl propestles S~gnals that are trdnsmltted are 
represented as 11near coinb~nations of thece points 

As a particular example. let 41 ( t )  and @2(t) be two orthonormal funct~ons as illustrated 
In figure 3 28(a) (Note the u<e of the notatlon 4 ( f )  ds a baas funct~on In t h ~ s  sectlon I \  

dlst~nct from the notat~on for &(r) ds d scaling functlon In iectton 3 18 4 ) Then a varlet\ 
of funct~ons, such as thoie \ h o ~ n  In figute 3 28(b). cdn be formed as h e a r  combindttoni 
of 41 ( t )  and (PZ(f1 

F~gure 3 28(c) showc the polnt5 In R2 coi-sesponding to the coord~nates of the functlons 
A funct~on reprecented by a generalized Four~er cenes of m orf17onor1~7al functtonc 

may be equivalently represented by the set of coordinatei 

and be conceptualized as a point In R"' Ac chown In (3 96). the inner-product relat~on\hip 
between the funct~ons i i  the same a\ the inner product between the vectors ~f f1 ( 1 )  has th: 
coordinate representation e l  and f2( t )  ha\ the coordinate reprecentation c 2 ,  then 

( fl. 11) = ( C I .  ~ 2 )  

where the Inner product o n  the left 1s dehned for funct~oni and the Inner product on the 
right I \  defined for vectori Th15 mean\ that 

and 
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Figure 3.28: Two basis functions, and some functions represented by using them 

So the distance can be computed for either the function or the vector. Note that if the bass  
funct~ons are not normalized, then /lcl 11 in (3.127) must be normalized according to the 
norm of the basis functions. 

Suppose we have rn orthogonal basis functions $, ( t ) ,  i = 1,2,  . . . , rn, and assume 
t h ~ t  they have support over 10, T ) .  (It is not strictly necessary to deal with orthogonal basis 
tuncttons, but it makes several of the computations easier. Of course, by the Gram-Schmidt 
orthogonalization procedure, we can always determine an orthonormal set spanning the 
same space as a set of nonorthogonal functions, so assuming orthonormality does not 
represent any loss of generality.) 

In the m-dimensional space S spanned by these functions, a set of A4 = 2k signal 
points, known as the signal constellation, is selected. Let sl,  s l ,  . . . , S W  denote the signal 
ccin\tellation points, where the points are 

These points in the signal constellation represent the signals that can be sent, s l ( t ) ,  i = 
1 ,  2 ,  . . . , M ,  where 
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The vector sl is sometimes referred to as the svmbol, wh~le  the correspond~ng ri (t) 1s referred 
to as the szgnal Normally (though not always), the basls functions @, (t) are designed to 
last T seconds, and such that 4, (1) has support over 10, T) The time T is called the rynzho/ 
tune 

Every T seconds, X bits are accepted into the transmitter These k bits are used to se1x.t 
one of M = 2hslgnal points, wlth Its corresponding signal The transmitted signal s ( t )  1s 
obtalned by concatenating these signals together In time, whlch we can write as 

where slv ( t  -nT) is the signal that starts at time n T  and has support overt E [nT. (n + l )T) ,  
and 1, is the index of the signal selected at the nth symbol time. We will denote the signal 
that is transmitted at the nth symbol time as sn(t) ,  

s" (t) = sin ( t  - n T) 

In a practical system, it is customary to produce the slgnal s ( t )  at baseband, then mlx 
it up to some appropnate carrier frequency In thls presentat~on, we will focus only on 
the baseband signal s(r)  For addlt~onal simpllclty, we will assume that all s~gnals are 
real. 

3.1 9.1 The detection problem 

In a channel model that 1s commonly assumed, the s~gnal s ( t )  is delayed by some delay r 
as it passes through the channel, and corrupted by additive noise v(r) The received s ~ g n ~ i  
is modeled as 

Most of the intuitive dircusslon that follows In t h ~ s  sectlon is accurate only in the case thdt 
the noise is Gaussian. We assume that the delay t is known 

The signal r ( t )  for I E [n T + t, (rz + 1 )T + T )  does not, in general, lie in S because of 
the addltlve noise The problem of reliable reception (the detect~on problem) I S  to determine 
the best estimate of the transmitted signal Pn(t), given r ( t )  A more formal exploration of 
this problem is conducted in chapter 1 I However, for the purposes of this sectlon we can 
employ our intuition about how the detect~on problem should work 

The first step In detection 1s to project the received signal over one symbol tlme onto 
S The component of the nth recelved slgnal in the lth d~rectlon (assum~ng that t 1s known) 
1 s 

p r i ( r i + l ) T  

The proceswg accompl~shed by (3 128) is termed a correlator, illustrated in figure 3 291~1 
It is al\o poss~ble to implement the conelator by uslng a filter with ~mpulse rerponk: 
I?, ( f )  = @, (T - 1 )  In thlr case, the filter is termed a rrzat~hedfilrer The output of the filtcl 
1 S 

Sampling the output at the Instant t = r + (11 + l ) T  produces the output value ri (see 
exerclre 3 18-47) The coordtnates r" = [ r i .  r l .  . r,,]' reprecent the projection of the 
recelved s~gnal onto S for the n t h  symbol Interval The detector determines which of the 
clgnal polnt5 s i .  S?. . S M  ic clocect to r The clo\est point col-~e\poncids to C M ( r ) .  f ~ o  1 

which i t  can be deterlnlned wh~ch bslts were cent 
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(a) Correlator (b) Matched filter 

Figure 3.29: Irnplernentations of digital receiver processing 

The projection onto the signal space 1s illustrated geometncally in figure 3 30 for 
rn = 2 The s~gnal r ( t )  is projected onto the signal-space point r The nearest p a n t  in S to 
r ir then determined as the estimate of the transm~tted signal The overall processing (us~ng 
a mdtched filter implementation) is shown In figure 3 3 1 

Received signal I ,  

Figure 3.30: Digital receiver processing 

closest to 

Figure 3.3 1: Implementation of a matched filter receiver 

Example 3.19.1 Let 4, ( t )  = m c o s ( 2 n r )  and &(t)  = J2'7-Tsln(2nt) fort E 10, T )  There are 
~~ithonormal signals Let the signal constellatzon be as in figure 3 32 This type of constellation. in 
wh~ch every slgnal has the same amplitude but d~fferent components of phase (due to the comb~nations 
of the bass functions), is known as phase-shlfi keyzng ( P S K )  

In thls signal constellat~on, suppose that the symbol so ic sent, and the projected received signal 
r is as shown The vector r falls in the decrsron regron of so, shown shaded in the figure Thus r is 
detected as the stgnal so El 

Of course, it is possible that the noise is severe enough that a received signal is in- 
correctly detected, and so there is still a nonzero probability of error. Nevertheless, the 
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Figure 3.32: PSK signal constellation and detection example 

operatton of projection and findlng nearest ne~ghbor IS (for white Gausstan notse) the opti- 
mal dectsion rule. Some examination of the computation of probabiltty of error takes place 
In chapter 1 1 

Another way of look~ng at the detection problem 1s to find the stgnal potnt s, (t - r -nT) 
that is closest to r (t) fort E [ n  T + s ,  (n + 1) T + s )  That is, we wish to finds, ( 1 )  to mtnimtze 

r i ( n + l ) T  

l + n T  
(r(t)  - s, ( t  - s - n T))' d t  

Expandtng th~s ,  we want to minitntze 
i+(n+I)T 

! 
i+(n+l)T ! r 2 ( t ) d t  - 2 r ( t ) ~ { ( t  - r - n T ) d t  + s,?(t) d t  

r+nT T +!I T 

The first term does not depend upon s,. and the last term represents signal energy /Is, 11'. 
which can be precomputed. The decisioiz statistic that we use is 

The processing in (3.129) can be done either by a conelator or a matched filter wtth impulse 
response h , ( t )  = s , (T - f), sampling the output of the filter at t = r + (n  + 1)T. The 
decision rule, in terms of this nearest signal interpretation, becomes: select the point s, such 
that 

1s mtntmrzed 
One of the particularly interesttng aspects about the vector space viewpotnt for dtgtt'll 

communicattons 1s that it allows different aspects of the problem to be addressed separately 
The probability of error for a signal constellat~on depends ultimately on the geometry of 
the points in the stgnal constellat~on. and the average energy requtred to send the stgnals in 
cotnpanson to the strength of the nolse signal The probabiltty of enor 1s thus completely 
unaffected by the particular waveforms underly~ng the ctgnal constellation, provrded only 
that orthonormal waveforms are selected In contrast, the power spectral density of the 
transmitted stgnal depends very ctrongly on the waveform shapes of the signals transmitted 
Thls separat~on of probab~lity of error performance from spectral performance leads to better 
des~gns 

3.19.2 Examples of basis functions used in digital communications 

A variety of waveforms can be used in dlgital communlcattons We met in example 3 19 1 
the basri functions used for pha\e-\hift keylng Here 15 a brief survey of some other stlnple 
ctgnaltng waveforms 
On-offkeying, or OOK When a 51ngle bails functlon d,, ( r )  is used (regardless of tts wave- 
ihape), w ~ t h  one potnt in the stgnal conitellatton at the ortgin 'ind the other sotnewheic 
dlong the d , , ( r )  axti, a signaling techn~yue known as on-off keylng I \  produced (Sc 
figure 3  3 3 ( ~ )  ) 
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l 
I PI  +L --f 

I 
1'1) OOK (ti) BPSK ( c )  PPW bas~s tunctions 

Flgure 3 33 Illu\tration of concepts of various signal con%tellattons 

Binary phase-shift keying, or BPSK When a single basis function is used w ~ t h  two 
polnts In the s~gnal constellation r l  = -so, the resulting signaling is known as BPSK (See 
figure 3 33(b) ) 

Pulse-position modulation, or PPM is obtained by using a set of N short orthogonal 
, ~ ~ l l i e \ ,  as shown in figure 3.33(c), which shows a four-dimensional set of basls functions. 
L'sually. a single amplitude is employed along each orthogonal axis. 

Frequency-shift keying, or FSK is obtained by using M sinusoidal signals of different 
frequencies which are spaced so chat they are orthogonal over the interval [O. T). 

Quadrature-amplitude modulation, or QAM is obtained by using two orthogonal basis 
functions, as for PSK, but by employing both amplitude and phase modulation. 

3.19.3 Detection in nonwhite noise 

In the last section, the channel noise was assumed to be white and the optimal detector 
was obtained by simply projecting the received signal r ( t )  onto the signal space S with an 
orthogonal projection. When the noise is not white, however, the noise may tend to pull 
the received signal predilectably toward different spectral components. In this case, a more 
sophisticated filter must be used to obtain a projection onto the signal space to compensate 
for any bias introduced by the noise. The design of the filter provides yet another application 
of the Cauchy-Schwarz inequality. 

We desire to find a filter with impulse response h (t), so that when r ( t )  is passed through 
the filter, the ratio of the signal power to the noise power is maximized at some particular 
sample time to, as shown in figure 3.34. When 

then the output of the filter is 

Figure 3.34: Block diagram for detection processing 
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Signal power 

Assuming a causal signal s ( t ) ,  the portion of the output due to the input signal is 

At the time instant to. we have 

s,(to) = s ( t ) h ( t o  - s) d t .  i"i 
If we assume in addition that s ( t )  is supported only over [0, to)  (so that we are using the 
entire signal s to make our decision), then we can write 

s,,(to) = s(r)lz(r0 - r )  d r .  S_: 
Let w ( t )  = %(to - r ) .  Then 

where S( f )  and W (  f )  are the Fourier transforms, respectively, of so(t) and w ( t ) ,  and where 
the equality follows by Parseval's theorem. Using the defi nition of w ,  we have 

The signal power S at some time Instant to 1s ls,,(t,)l? or 

Noise power 

Let the PSD of v ( t )  be S , , ( j ) .  Then the PSD of the noise component at the output of the 
filter is 

and the total noise power is 

The ratio of the signal to noise (SNR) power is. from (3.130) and (3.1 31), 

The problem can now be stated a\ determtne a filter w ~ t h  transfer functton H (  f )  that 
maximizer S I N  i n  (3 132) There tr a tradeoff here the w~der  the bandwtdth of H (  f ). 
the more signal get\ through, hilt the more nolre also gets through T h ~ s  I \  a maxi~nlzatioll 
problem that look\ dtfticult, since the approach to 1nax1m17atron urually ~nvolve\ taking '1 

denvattve. and at t h ~ \  \tage of d e ~ e l o p m e ~ ~ t  ~t I \  d~fficult to \ee what tt would rnean to take 
a der~vative w ~ t h  respect to a tran5fet function A\ we \hail ree, we w ~ l l  not have to t d h ~  

der tvat~ve at all 
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Maximizing SIN 

The key to rnaxrrnlzrng ( 3  132) IS to use the Cauchy-Schwarz inequality in its integral form, 

Lire can write 

hhtre (3 .134)  comes from the Cauchy-Schwarz ~nequality, using (by companson w ~ t h  
1 3  133)) 

S(f ) 
x ( f )  = J s , c f ) H ( f )  and ) ; ( f )  = -------e"2"fr0. m 

By this ~nequality, an upper bound on the SNR has been obtained which is independent of 
any filter and which, therefore, must be the largest possible regardless of the filter employed. 
The filter that can be used to achieve this upper bound with equality is found by employing 
the conditions under whlch the Cauchy-Schwarz ~nequality is satisfied with equality; m 
this case, that means that we must have x(  f )  = C y (  f) for some nonzero complex constant 
C. or 

for any nonzero complex constant C. 
If v ( t )  is white, so that S,( f) = ;lVo, then we have 

Isiume for ease of notation that C = 2 / N o .  Then, taking the inverse transform. we have 

h ( t )  = ?(to - t ) .  

The output of the filter with this impulse response when to = T is 
r T  

3.20 Exercises 

3 1 - 1  There 15 a connection between Gramm~ans and h e a r  independence, as demonstrated in 
theorem 3 1 We explore this connection further in t h ~ r  problem 

Let { p i ,  pz. . p,] be a set of vectors. and let us suppose that the first k - 1 vectors 
of this set have passed a test for linear independence We form 

and want to know if ek is equal to zero for any set of coefficients 
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If so, then pk is linearly dependent. Let 

Ak = [PI .  P2. . . pkl 

be a data matnx, and let Rk = be the corresponding Crammian. 

(a) Show that the squared error can be wrltten as 

for some hk and rki Identify hk and r~k 

(b) Determ~ne the mlnlmum value of n; by inlnlmlzing (3 135) with respect to ck. subject 
to the constraint that the last element of ck IF  equal to I Hint take the gradient of 

where A IS a Lagrange multiplier and d = 10, 0. , 0. 11' Show that we can wnte the 
corresponding equations as 

(c) Show that (3.136) can be manipulated to become 

The quantity 02 is called the Schur complement of Rk If a: = 0, then pi is linearly 
dependent. 

3.5-2 Referring to (3.30), show that 

is posttlve semidefinite, and hence that the minimum error e,,,, has smaller norm than the 
ortginal vector x Hint consider 0 5 I / R ~ [ / ' .  where B = I - A ( A " A ) - ' A ~  

3 8-3 Consider the set of data 

(a) Make a plot of the data. 

(b) Determine the best least-squares llne that fits this data and plot the line 

(c) Assumlng that the first and last points are believed to be the most accurate, formulate a 

we~ghting matrlx and compute a we~ghted Iea5t-iquares line that fits the data Plot t h ~ \  
line 

3 8-4 Formulate the regression problem (3  34) in a linear form a\ in (3  37) 

3 8-5 Formulate the regreiston problem (3  35) In a llnear form a< in (3  37) 

3 8-6 Formulate the regression \ x ceo3as a linear regre\slon problem. with regre\sion parameters 
c and u 

3 8-7 Formulate the regre\slon j x a x "  a\ a linear regre5sion problem 

3 8-8 Perform the coinputat~ons to ver~ly the dope and Intercept of the linear regre5slon rn ( 3  3') 
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3 8-9 As a measure of fit tn a correlation problem, the correlation coefficrent, analogow to ( 1  49), 
can be obtained as 

The correlat~on coefficient p = + I  tf x and v are exactly functionally related. and p = 0 
if they are independent For the linear regression in (3 38). determine an explicit expression 
for p 

? 8- 10 Define an inner product between matnces X  and Y as 

where tr( 1 is the sum of the diagonal elements (see section C 3) We want to approximate 
the matnx Y by the scalar linear combination of matrlces X i ,  X 2 ,  , X m ,  a? 

Using the orthogonality princ~ple, determ~ne a set of normal equations that can be ured to 
find cl,  c l ,  , c, that mnlmize the induced norm of E 

3 8-1 1 For the ARMA ~nput/output relationship of (1 2), determ~ne a set ot llnear equations for 
determining the ARMA model parameters { a l ,  u2, , a,, bo, b , ,  . h,}, a.;.;uming that 
the model or (p, q )  15 known, and that the input is known 

39-12 Forthedatasequence (1 ,  1 , 2 , 3 . 5 , 8 ,  13) 

(a) Wnte down the data matnx A and the Grammian A H A  using (I) the covariance, dnd 
(11) the autocorrelation methods Assume rn = 2 

(b) We desire to use this sequence to tram a slmple llnear predictor The "des~red s~gnal" 
dl11 is the value of x [ t ] ,  and the data used are the two pnor samples That IS, 

where e[ t ]  is the prediction error. Determine the least-squares coefficients for the pre- 
dictor using the covariance and autocorrelation methods 

(c) Determine the minimum least-squares error for both methods. 

3 10- 13 Consider a data sequence ( x [ t ] j ,  the correlation matrix R is 

L J 

and the cross-correlation vector p with a desired signal is 

Determine the optimal weight vector. 

3 10- 14 Consider a zero-mean random vector x = [x i ,  .r:, x 3 ]  with covariance 

(a) Determine the optimal coefficients of the predictor of n, in terms of xz and x3, 
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(b) Determine the minimum mean-squared error 

(c) How 1s this estimator modlfied lf the mean of x is Ex = [ l ,  2, 31'' 

3 10-15 [ I  321 A dtscrete-tnne radar s~gnal is transmitted as 

The sampled noisy received signals are represented as 

where wl 1s the recelved signal frequency, in general different from wo because of Doppler 
sh~f t ,  and u[t]  1s a whlte-noise s~gnal  wlth vanance a: Let 

be a vector of recelved signal samples 

(a) Show that 

R = ~ [ x [ f ] x " [ t ] ]  = 021 + a l s (wl ) sH(wl ) .  

where 

S (WI)  = [ I ,  e - l " l ,  e-'2"i T . . . ,  e- 'm-') /mi T ] and o : = E [ ~ A , I ' ]  

(b) The tlme senes x[r]  is applled to an FIR Wiener filter w ~ t h  m coefficients. in which the 
cross-correlation between x[r]  and the deslred slgnal d [ t ]  15 pleset to 

Determine an expression for the tap-welght vector of the Wlener filter 

3 1 1- 16 A channel with ~ a n s f e r  functlon 

and output ~ [ r ]  is drlven by an A R ( 1 )  slgnal d [ t ]  generated by 

wheie u( t )  1s a zero-mean white-nolse s~gnal with a" 2 The channel output IS corrupteti 
by nolse n [ t ]  with vanance D,: = I 5 .  to produce the slgnal 

Deslgn a second-order Wiener equalizer to mlnimlze the average squared error between f [ t ]  
and d [ t ]  What 1s the MSE? 

3 11-17 Linear prediction A common appllcatlon of Wlener filtering is 111 the context of linear 
predlctton Let d [ r ]  = x[r ]  be the deslred value, and let 

be the predicted value of x [ t ]  using an nzth order predictor haced upon the mea\urements 
x t  - 1 [ t  - 2 . xli - n l ] ) ,  and let 

be the font or-d pre~lrc r1o17 error Then 
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where n f o  = I and o f ,  = - u ~ , , , ,  i = 1. 2 . .  . . . M .  
Assume that x [ t ]  is a zero-mean random sequence. We desire to determine the optimal 

set of coefficients { w ,  , , i = I .  2. . . . , M )  to minimize E[\ ,f ,w[t]\2].  

(a) Uiing the orthogonality principle, write down the normal equations correspond~ng to 
thls minimizat~on problem U\e the notatlon r [ j  - I ]  = E[w[t - l]Y[t - J ] ]  to obtain 
the W~ener-Hopt equation 

where R = E[x[t - I]xH[t - 111, r = E[x[t - I]u[tl]. andx[t - I] = [Y[t - 11 T[r -21 
- 
u[t - m]lT 

(b) Determine an expre\sgon for the mlnimum mean-squared error, P, = mln E [ I  f [i]  l'] 
(c) Show that the equations for the optimal weights and the minimum mean-squared error 

can be combined into u~tgmented W~ener-Hopf equattons, as 

(d) Suppo~e  that u[t] happens to be dn A R(m) process dr~ven by white noise u [ f ] ,  such that 
~t 1s the output of a system with transfer function 

Show that the prediction coefficients are w f k  = -ak, and hence the coefficients of the 
prediction error filter fin [t] are 

a!,, = a , .  

(Hint: see section 1.4.2; write down the Yule-Walker equations.) Hence, conclude that 
in this case the forward prediction error f,,, [t] is a white-noise sequence. The prediction- 
error filter can thus be viewed as a whiteningjilter for the signal x[t]. 

(e) Now let 

be the backw~lrdpredictorofx[t -m] using thedatax[t -m + I], x[t -m+2],  . . . , x[t]. 
and let 

be the backward pred~ction error A backward predictor seems strange-after all, why 
predict what we should have already seen-but the concept will have useful dpplications 
In fast algonthnls for inverting the autocorrelation matnx Show that the Wiener-Hopf 
equations for the optlmal backward predictor can be wntten as 

where rB is the backward ordering of r defined above 

(f ) From (3 1371, show that 
- 

R'W; = r .  

where W ;  is the backward ordering of wb. Hence, conclude that 

that is, the opt~mal backward prediction coeffic~ents are the reversed conjugated optimal 
forward prediction coefficients 
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3.1 1-18 Let 

where v[r j  IS a wh~te-noise zero-inean. unit-variance n o ~ s e  process We want to detennlne 
an opttmal predictor 

(a) If the order of the predictor 15 2. determine the opttmal pred~ctor P[r] 

(b) If the order of the predictor is 1, deter~nine the optimal predtctor i [ r ]  

3 11-19 Random vectors The mean-squared methods to this point have been for random scalars 
Suppo5e we have the random vector approxtmatton problem 

in which we desire to find an approxtmation y in such a way that the norm of e is mlnlrn~reit 
Let us define an inner product between random vectors as 

(a) Based upon t h ~ s  tnner product and ~ t s  ~nduced norm, determine a set of normal equat1on.c 
for findtng c ,  . c 2 ,  c,, 

(b) As an exerctse In computtng gradlent,, use the formula for the gradlent of the trace (see 
append~x E) to arrive at the \ame set of normal equat~ons 

3 11-20 Multiple gain-scaled vector quantization Let X and Y be vector spaces of the same tir- 
menstonahty Suppo\e that there are t ~ o  sets of vectors X I .  X2 C X Let 3; be the set <,f 

vectors poolcd fiom X I  and X2 by the i n ~ e r t ~ b l e  matrlces TI and T2, respectively That 15. 

~f x E X, ,  then JT = T,x 1s a vector In Y lndlcate that a vector y E y came from a vector 
In X, by a superscript r . so y' E y mean< that there is a kector x E X, such that y' = T, x 
Distance? relative to a vector y' E Y are based upon the l2 norm of the vectors obtatned by 
mapplng back to X,, so thal 

where W, = T , - ~  ?'-I This I \  a welghted norm w ~ t h  the wetght~ng dependent upon t l v  

vector In 3; (Note In this problem / /  j /  and I /  112 refer to the wetghted norm for each d d t ~  
set. not the 1 ,  and l2  norms. respect~vely ) 

We destre to find a ~ 1 1 7 ~ 1 ~  vector yo E Y that 15 the best representat~on of the datd 
pooled from both data set\. in the sense that 

1s mtn~intred Show that 

where 

L =Z W !  +I W? and r =  1 w!yr + w:y2 

Hint: thih is probablq easier ~i \ ing gradients than trying to identify the appropriate innci 
product. 



3.20 Exercises 22 1 

i 12-2 1 Aswme the estimated auto~orrel~rtton 

(a) Tdke the expectcitron E [ i [ n ] ]  and \how that 11 15 not equal to r [ n ] ,  the true value of the 
a~~tocorrelat~on 

(h)  Determine a scaling factor to make the i [ n ]  an unbiased estimate. 

(c) Write a MATLAB function that computes i ( n )  from (3.65). 

3 11-22 Let x, ,  Y , ,  and u, be cont~nuous-tlme random processes, with v, = u, + u,, and S ,  (s)  = I 
Determrne an optlmal caucal frlter h ( t )  to determine x ( t )  when 

(a) The PSD of r ( t )  is 

(b) The PSD of x ( t )  is 

7 17-21 (Spectral factorization; the Fejkr-Riesz theorem) Because of the rmportance of the 
canonical factorizat~on rn s~gnal  processing, ~t IS of Interest to determrne when a "square root" 
of a functlvn exists In th15 problem you will prove the following If W(:) = C:=:=_m w[n]z-" 
is real and W ( e J W )  2 0 for all o, then there is a function 

such that W ( e J " )  = 1 Y (ej")I2 

(a) Show that w-, = E, 

(b) show that 'i;t;(z) = W ( 117) 

(c) Show that if z, 1s a root of W(z), then I/,, 1s a root of W(:) .  

(d) Argue that if :, = elff1 IS a root on the unit circle, then ~t must have even rnultlpl~clty 

(e) Let 2 = {z, W(z,) = 0; 12, / ( 1, (only half the roots on Izl = 1)) be the set of roots 
tnslde, and half those on, the unlt circle. Then Z has rn elements and 

From this form, find Y(z). 

3 13-24 Filtering in White Noise Let x , ,  y, and v, be discrete-time random processes with 

and 

where b(:) and a ( z )  are polynomials In z with the degree of b(z) strictly lower than the 
degree of a(?).  Furthermore, assume R,,(r) = 0. Show that (3.82) holds in the discrete-time 
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case; that is, show that 

3.13-25 Let 

.Yr = Xf + U f  

where 

wrth Exf  = Evf  = Exrvr  = 0 Show that 
( 1 -  t ic ' - ' ,  

(a) S, (z) = r , - ; i t r-  i- and thus ohtarn SF(:) and S:(z) 

and, thus, that the Wtener filter is 

I 

H(z)  = A 1 - i  
3: 

3.13-26 Let x,, y, ,  and v, be drscrete-trme random processes with y, = x, + v,. S, (z) = I .  and 

Determine the filter hjz] to optimally predict x,+2 

3 14-27 Let h ( t )  be the impulse response of a system, and let ~ ( 1 )  = x( i )  * h( t )  Show that 

where k(t) IS the Integral of the 1mpul.ie response. 

3 14-28 A systern 1s known to have lmpulse response h(i)  = 3e-2' + 4e-". and is rnit~ally relaxed 
(rnitial condrttons are zero) Determine an ~npu t  x ( t )  so that the output sattsfies the condit~ons 

y(2) = 2 and 

in such a way that the input energy llx(r)/I2 is inlnrmized Plot x ( t )  

3 14-29 Let h[t] = (0 2)' + 3(0 4)' for I 2 0 be the impulse re\ponse of a discrete-trme \ystem urti 
7ero inrt~al cond~trons It is de\rred to determine a causal Input sequence x [ t  j such that tile 
output , [i] = hrt]  * f [i] satisfies the constraints 

$ [ l o ]  = 5 

10 
and such that the input energy XI=,, lx [ r ] i2  is minimized. Formulate this as a dual approsl 
ination problerii and find the minimizing sequence x[r]. 
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3 15-30 [209] Uvng the projection theorem, solve the finite dimensional problem 

mlnimi7e xH (2x 

subject to Ax = b, 

where x E C", Q is a positive-definite symmetric matrix, and A is an m x n matrix with 
m < n .  

i I 5-31 12091 Let x be a vector in a Hilbert space S and let ( x l ,  xz, , x,) and ( y l ,  ~ 2 ,  , yn) be 
sets of linearly independent vectors in S We desire to mlnimize / / x  - f 11, while satisfying 

and (2 ,  y,) = c,, i = 1, 2 ,  . . . , n. Find equations for the solution which are similar to the 
normal equations. 

3.17-32 Show that the functions defined by 

are orthonormal with respect to the inner product 

3.17-33 Let g(r)  = e-'I' for 0 5 t 5 T ,  and let f (t)  be the n-periodic extension of ~ ( t ) .  

f ( t )  = g(r - k n ) .  
k 

(a) Find the Fourier series coefficients of f (t) 

(b) Find the sum of the series 

( Z A )  
Hint: Use Parseval's theorem. 

3.18-34 Show that thedefinition of Chebyshev polynomials (3.101) satisfies the recurrence in (3.100) 
for It 1 .c 1. Show for It/ > 1 that T, (r) = cosh(n cosh-' t )  satisfies the recursion (3.100). 

3 18-35 The ChristoFfel-Darboux formula 

(a) Using (3 98), show that the polynomtals pk( t ) ,  orthonormal wlth respect to the inner 
product (f ,  g ) ,  = J~~ f (t)g(t)w(t)  d t ,  satisfy 

Also show that 

(b) Consider the partial sum 

Show that the sum can be written as 
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where 

and where a, comer, from (3 98) T h ~ s  formula for K ,  (x, ) 1s known as the Ckrrstofel- 
Da~.boux formula. and 1s analogou\ to the D~r~chlet kernel of Founer senes Hint form 
(x - y) K,  (I, 1 ) and use the results from part (a) 

3 18-36 Show that each of the polynom~als produced by orthogonal~zing { I ,  r ,  r2 ,  ) using the 
Gram-Schmidt procedure over the interval [a. b] has zeros wh~ch are real, simple, and 
located In (a, b) 

3 18-37 In this exerclse we introduce the ~ d e a  of Gausslan quadrature, a fast and Important method 
of numencal lntegratlon The Idea IS to approxilnate the integral as a summation. 

Unl~ke many conventional numer~cal Integration formulas. In Causstan quddrature the ab- 
scissas are not evenly spaced The problem IS to find the ( 1 , )  (abscissas) and {a,) (weights) 
so that the Integral 1s as accurate as poss~ble In the Gausslan quadrature method of nurnerlc 
integration, for polynom~als up to degree 2rn - 1 the result of the integration 1s exact For 
sufficiently smooth nonpolynom~al functions the method is often verj accurate The solut~on 
makes significant use of orthogonal polynom~als For the purposes of t h ~ s  exerclse, we uill 
assume the Inner product (f, g )  = Sl, f (r)g(r) d l  

(a) As this first part shows. without loss of general~ty, we may restrlct attention to the Interv'ii 
a = - 1 ,  b = I Show that for the integral 

the substitution 

=. --- I ( 2 x - a - b )  
b - a  

leads to an integral of the form 

(Hence the limits of a and b can be converted to Ir~nrt\ of - 1 to 1 ) 

(b) If {p,(t). n = 0,  1. . m )  1s a set of polynom~als orthogonal over [ - I .  I ] ,  where p,, ( t j  

is a polynom~al of degree n ,  show that 

for all polynom~als p(r) of degree 5 m - I 

(c) Let f ( f )  be a polynom~al of degree 2tn - 1 Show that f (t) can be wr~tten ac 

where q ( t )  and r ( t )  are of degree 5 rrz - 1 Hint: dwde  

(d) Show that there are \cries exp;ln\lons 

q ( r )  = x a , n i t )  and r ( r )  = Z P L ~ L ~ ~ )  
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(el Show that 

(f) Let r , ,  12% . t, be the root5 of pm(r) Show that 

(g) Show that if the weights u,  are chosen so that 

then (3.139) can be written as 

(h) Wr~te a mdtrtx equatton for the weight\ {a,}, chosen rn part (g) 

( I )  Hence, equattng (3 138) and (3 1401, wnte down the formula for Gaussian quadrdture 

0) General~ze thi.; to findtng f , w(r) f ( t )  d t ,  where the polynom~als pk(t)  are orthogonal 

with respect to the inner product ( f ,  g )  = 11, f (t)g(t)w(t) dt 

3 18-38 Prove Parseval's theorem for Founer transforms: If y ,  (t) o Yl (w) and v2(t) ct Yz(w), then 

3 18-39 Samplrng theorem representat~ons. 

(a) Show for pk(t)  defined as In (3.102) that (p,. pi) = &sli ,. Along the way, show that 

sin t sin(t - 2) n: sin 
d t  = -. 

2 

Hint: use Parseval's theorem and Fourier transforms. 

(b) Show that (3.103) is correct for a bandlimited functton f ( t )  

(c) Show that i f f  (t) is bandlimited to B Hz, 

f = 2 f - Z) dt.  

Thus, for bandlim~ted functions, po(t) behaves like a 6 function. 

3.18-40 Show that if 4 (t) is normalized then 2-1l"(2-1 t )  is normalized. 

3 18-41 In (3.106), show that the coefficients c, must satisfy 

3.18-42 Show that there is no orthogonal scaling function defined by a two-scale equation (3.106) 
with exactly three nonzero coefficients co, c , ,  and c ~ .  

3.18-43 For the muitiresolution analysis: 

(a) Show that W, i W,l. 
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(b) Show that for j i J,  

3.18-44 Show that ~f + ( r )  obey\ the two-scale relat~onshrp in (3  IOS), and if &(w)  represents ttie 
Fourler transform of + ( I ) ,  then 

where 

1s the scaled discrete-t~me Fourter transform of the coefficient sequence 

3 18-43 Decimation Because of the connection of wavelet transforms to mult~rate stgnallng, it 1% 

worthwh~le to examlne the transform of decimated signals You will show that ~f +[n j  ts a 
decimation of x [ n ] ,  

then 

(a) Let p[iz] be the perrodic sampling sequence 

1 n = O . & D , & 2 D  . . . . .  
PI.] = 

O otherwise. 

Show that 

(b) Let : [ n ]  = x [ i ~ ] p [ n j  Then vjnj = : [ n D ]  Show that 

(c) Finally. show that (3 142) 1s true 

3.18-46 Show that the orthogonaltty condltlon (3 108) 1s equrvalent to 

H ~ n t  recognlre that (7 108) 1s a dectmated convolution, and use the fact that IF the Four~er 
transform of a sequence z,, 15 %((I)) .  then the Fourter traniform of ;?, IS 

3 19-47 Let 4 ( 1 )  be a one-dlmen51ondl b'r\~\ functloll for d~gital trdncmrs\lon. of the fornl 

# ( I )  = t t ( f )  - u ( [  - I )  
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(a unit pulie) Assume that r ( I )  = @(I)  lc transmitted Let r ( t )  = s ( t )  (norse-free reception) 
Show the output of the comelator 

dnd the output of the matched filter w ~ t h  rmpulse response Iz(t) = #(T - t ) ,  

Show that at the sample Instant t = T, yl( t )  = y2(t) 

3.19-48 Let 

cos[(2rrf, + 2rrmAf)tl O 5 t 5 T, 
@rn(t) = 

otherwise 

for m = 0. 1 ,  . M - 1 be a set of bas~s functions Detetmlne the mtnlmum frequency 
separatton A f quch that 

1' 4. (t)@k (t) d t  = 0 

fork # m .  Assume that f,T = n for some integer n. (Digital transmission with such signals 
is called frequency-shift keying.) 

3 19-49 (Spread-spectrum multiple access) In this exerclse, we examlne matched filters for a 
more compl~cated scenario. spread spectrum multiple access. In t h ~ s  model, K users are 
transmitting simultaneously, wlth the kth user transmtttlng a s~gnal 

where qhk(t) 1s the kth user's unique waveform, a signal with support over [0, TI. The received 
signal consists of the sum of each user's delayed signal, appearing in additlve noise: 

The users' basis functions are not orthogonal. Assume that the users are ordered so that 
ti 5 r? 5 . . 5 rK < T. A matched-filter (or correlator) output is obtained for each user 
over the nth bit interval, as 

yk(n) = r(t)&(t - nT - rk). i: 
Let y(n) = [ y i  (n), y2(n), . . . , y,(n)lT be the vector of matched filter outputs for all users at 
interval n. 

(a) Show that 

where H(m) is a correlation matrix with elements 

B isadiagonalmatrixofbits, B(n) = diag(b, (n), bz(n), . . . , bk(n)),  w = [w,, w?, . . . , wklT, 
andz(n) = [z,(n),  z?(n), . . . , zK(bn)lT, where 
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(b) If z ( t )  is white w ~ t h  E [ z ( f ) z ( t  - s)] = o,%(t - s ) ,  show that ~ ( 1 1 )  satisfies 

( ~ , ' H ( O )  n = n r ,  

( 0  otherwise. 

3.21 References 

The Hilbert approximation theory presented here IS summarized from (2091 and [177] 
Some of the discussion about the Grammlan matnx was drawn from 12911 

The various wlndowlng methods are descr~bed in 1132, chapter 111 A discussion of 
least-squares and minimum mean-squares filtering is in [I 32, 263, 2911 Our discussion 
of Wiener filtering is drawn from I1651 and [316] A thorough d ~ s c u s s l o ~ ~  of the spectidl 
factorizat~on problem appears in 12481 

The Gram-Schmidt 1s discussed in most books on linear algebra Spec~fic results on 
numeric accuracy of the method can be found in [114] 

Several varlants on least-squares and constra~ned least-squares, including pseudocode 
for several useful algor~thrns, are in [I971 

Orthogonal functions are w~dely d~scussed in [2], includ~ng an extensive table of poly- 
nomlals orthogonal with respect to many weighting functions, and their properties In ad- 
d ~ t ~ o n  to orthogonal polynomials in continuouc time, there are also orthogonal polynomials 
In d~screte variables These are summarlzed In [2] and examlned more thoroughly in [79i 
and [337] A recent book describing a variety of orthogondl funct~ons and their smoothi~eii 
properties IS 13.581 

The use of the functlon sln(x)/x (the clnc function) as an orthogonal basis 1s Introduced 
In 11771 An extenslve discuss~on occurs In 13231 and [322]. 

There has been an explosion of l~terature on wavelets and wavelet transforms The 
definitive reference IS probably [62]. see also 1631 Another book w ~ t h  a broad base of 
coverage Is 1.531 Among the generalizations discussed In these books are biorthogonal 
wavelets (in whlch different filters are used to reconstruct the signal than to analyze 
it), wavelet packets (choosing d~fferent trees of coefficients), and several other fanilllc\ 
of wavelets A recent tutorla1 IS [44] A thorough dlscuss~on of implementation of wavelet 
transforms (and a variety of other useful transforms as well) I S  provided in 13621 A defini- 
tlve reference on mult~rate signal processing 1s 13421, for a solid introduction to thls ared 
see [34 1 ] 

IRLS IS dlscusced In 1431 and references thereln. where the nuinber of iterattons required 
to design a filter IS closely examined An alternative blewpolnt on ectiinatlon, uslng the 
L i  norm for spectral est~mation, 1s lnvest~gated In 1294. 295. 73. 3591 A more thorough 
treatment 1s presented In 1371 

The vector space viewpoint, signal constellations, and mdtched filter5 are presented in  

every text on d~gttal commun~cations See, for example, [373], [261] or 1351 A hl5torlc'ii 
treatment of orthogonal funct~onr wed in signaling IS glven In [I 271. whlch also present5 
some ureful orthogonal functlonc other than those presented here 

There is a tremendous literature on orthogonal polynomi~ls A recent survey I \  (3581 
A classlc reference 1s 13371 Additlondl lnformat~on 1s found In 121 



Chapter 4 

Linear Operators and 
Matrix Inverses 

Everything that goes on in spacetime has its geometric description . . . 
- Misner; Thome, and Wheeler 

Gravitation 

In this chapter we begin a study of linear operators. The most familiar linear operator is a 
matrix, appearing in a linear equation of the form 

Ax = b, (4.1) 

of which several instances have already arisen in this text. However, in the interest of getting 
the most "bang for the buck," we introduce more general linear operators than matrices. We 
examine the questions of the existence and uniqueness of the solution of a linear equation 
of the form (4.1). These results are general, and apply to any linear operator. Finding a 
solution to (4. I )  becomes more complicated, and more interesting, if A is not an invertible 
operator. In this case there may be no solution, or multiple solutions. We will examine some 
important theoretical results related to these solutions, and present the important Fredholm 
alternative theorem. 

We then narrow our focus to matrix linear operators, and consider matrix characteristics 
related to the existence and uniqueness of matrix equations, such as the rank and determinant 
of a matrix. Even in the apparently simple situation in which A is invertible, there are 
important issues to address regarding the quality of the result. If the matrix A is "nearly not 
invertible," then the answers obtained by a numerical algorithm are likely to be unreliable. 
Some qualitative results regarding how close a matrix is to being noninvertible are obtained 
by introducing the condition number of a matrix. 

We conclude this chapter with a discussion of properties of matrix inverses, including 
inverses of block matrices and small-rank updates to a matrix. These will lead us directly 
to the RLS and Kalman filters. The trend of this chapter is thus from the more theoretical 
towards the more applied. We stop short of presenting a numerical algorithm for solving 
Itnear matrix equations. This topic is taken up in the next chapter, in association with other 
matrix factorizations. 

The basic goals of this chapter are as follows: to understand when solutions of linear 
equations exist and are unique, and to develop insight into factors that can affect the quality 
of the solution. 

Another problem that arises frequently in linear systems theory is an equation of the 
form 

Ax = Ax. 
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The vector x which solves this equation is called an eigenvector of A ,  and the associated 
value h is called an eigenvalue. Examples and applications of eigenvectors and eigenvalues 
are presented in chapter 6. 

4.1 Linear operators 

In (4.1), we can regard A as a linear transformation (or operator), which maps a vector x 
into the column space (range) of A.  There are a variety of other linear transformations that 
arise in practice, producing equations of the form 

with x E X and b E Y where X and Y are vector spaces, and A is a linear transformation 
(operator) from X to Y .  For example, the equation 

may be written in operator notation as Ax(t) = b(t). where A is the operator 

Given an input signal b ( t ) ,  the problen~ 1s to find the solut~on x( t )  Solvlng this h e a r  
operator equation amounts to finding the solution to the differential equation. Another 
example of a linear equatlon is 

b(t) = k(t, S)X (s) d~ Ib (4 2 )  

The problem again 1s to find x(f) Again, thls may be wrrtten as Ax@) = b(t), where A is 
now the integral operator 

Ax(t) = k(f, t ) x ( r )  d r  l 
An tntegral equation of the form (4 2) 1s called a Fredholm rntegral equarzon of thefirtf 
kznd Another example 1s an equation of the form 

x(r )  = k(l ,  T)X(T)  d r  + b(t) l 
This is an tntegral equation known as a Fredlzolm ~ntegml equafror? of tlze second krrzd 

Obviou\ly, these different klnds of equations will have different methods of solution 
The algorithmic focus of thls and succeeding chapters is on linear operators that can be 
expressed In matnx form. so we will not present detalls of the solut~on of these more 
general linear operator equations. Nevertheless, the pnnc~ples regard~ng the existence of 
the solutions apply to most of thece operators. Furthermore, by examining these more 
general forms of operators, we can gain further understanding of matr~ces 

Havlng seen several examples of 11near transformations, it 1s appropnate now to rntro- 
duce a formal definltlon 

Definition 4.1 A transformat~on A.  X -+ Y. where X and Y are vector \pace\ over a ring 
R ,  15 said to be linear if for every xl . X ?  E X and all scalars a , .  a2 E R,  

The most important example of a linear transforination. In fact the algorlthm~c focus 
01 t h ~ \  part of the book 15 the trdn\forinatton A 3" -+ !En' In  thrs ca\e. A I \  the m Y 1 ,  

lndtrlx w~th  element\ from R 
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Exarnple 4.1.1 Let 
r l  2 1 

Several d~fferent notation, can be wed to represent a rnatrlx A with elements from R We 
.Jn wrlte A Rn -, R"' We can cay A is an m x n matrlx (where lmphcltly the elernents 
.11e usually either real or complex) Or we can cay that A E Rnrx" = Rntn If we want to 
emphasire the underly~ng nng of scalar\ R ,  we w ~ l l  also wnte A E M ,  .(R) to indlcate that 
A is an rn x n matnx w ~ t h  elements from R We will alco use the shorthand A E M,(R) ~f 
rn = n ,  or A E M, ,, ~f the nng Ic impllc~tly underctood 

Example 4.1.2 (Another example of a ltnear operator) Let X = C[O, I] (the contlnuou., functtons 
defined on 10, 1 I),  and let Y = Rn Define the operator A X -+ Y by 

shere 0 ( t I  < t? i . . . < t, 5 1 are fixed. This is a sampling operator. and is linear. 0 

4.1.1 Linear functionals 

Definition 4.2 A functional f :  X -+ R is a mapping from a vector space X to a real scalar 
value. (More generally, the range of the mapping could be any set of scalars.) 

If f  has the property that f ( a x  + B y )  = a f  ( x )  + /3 f  (y) for all real a and /3 and all 
x, y E X ,  then f  is said to be a linear functional. 

E:x;trnple 4.1.3 (Examples of functtonals) Let x ( t )  be a functton Then the follow~ng are example, 
ci t  tunctlonals on r ( t )  

All of these examples of functionals are expressible as integrals. CI 

Example 4.1.4 (More examples of functionals) 

1 Let X = B" Then for x G Rn and a fixed set of vcalars ( a l ,  uz. , a,), the functional 
, 

,=I 
is a linear functional. 

2. Let X = C[O, I j. Then the functional f :  C[O. I] -t R defined by 

is a linear functional 
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3. Let X = L2(R),  and let v E L2(R)  Then the functional defined by 

is a linear functlonal. 
- 
c- 

As these examples show, functionals can be used to represent measurements made of func- 
tions. 

If @ E X, then we can define a functional f4  by 

In other words, Inner products are functionals. Conversely (and surprisingly), if X is a 
H~lbert space (complete), then any contlnuous llnear functlonal can be expressed as an 
inner product. Thls 1s known as the Riesz representatlon theorem. 

If //@/I is bounded, so that ii@ll < K < oo (uslng the Induced norm), then f4(x) li 
contlnuous, since by the Cauchy-Schwarz inequal~ty 

As shown in theorem 4.1, this means that f must also be bounded. 

4.2 Operator norms 

An operator norm, l ~ k e  any norm, must satlsfy the properties descr~bed In sectlon 2.3. T h e ~ e  
are several different ways of defining the norm of a transformatlon (operator) One way 1s 

to define the norm so that it prov~des an ~ndlcat~on of the maxtlnal amount of change of 
length of a vector that ~t operates on Let X and Y be I ,  or L,, and let A  be a ltnear operator 
A X -t Y.  The p operator norm, or p norm, or 1, norm, of A  is 

where / /  /I,, IS the p norin defined in rectlon 2 3 (Note Ax E Y ,  so the norm llAx / I ,  I \  

the norm on Y We could In general use different norms for lix 1 1  and / / A x  1 1 ,  but usuali> 
thi\ 1s not done ) The norm on A so obtalned I \  sald to be subordinare to the norm on X 
For a subordinate norin ~t is straightforward to venfy that 1 1  Ill = 1. where I 17 the ~dentitq 
operator Geometncally, the llAll subord~nate norm Ineavures the maximum extent that A 
transforms the unIt clrcle The concept IS shown In figure 4 1 The y norm.; have the property 
that 

Length of  thls vcctoi 

1% llpxll 

Figure 4 1 Ceonletrq of the operator nol-nl 
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Thus / /A l l  "bounds the amplify~ng power" of the matrrx A Also, the norms 5atisfy the 
submultiplicative property, 

This IS straightforward to show, since by the definition of the p norm, for a11 .w E X, 

4.2.1 Bounded operators 

This section is somewhat technical, and many readers may need only the first definition. 

Definition 4.3 If the nonn of a transformation is finite, the transformation is said to be 
bounded. il 

The following theorem presents a rather remarkable fact about bounded linear operators. 

Theorem 4.1 A linecrr operator A: X -+ Y is bounded i f  and only i f  it is continuous. 

Since a linear functional is a linear operator, the same theorem applies to functionals. 

Proof Suppose that A is bounded, with M such that IIAx I j  1_< Ml l x  11 for all x E X. For all 
convergent sequences (x,} in X,  it follows that IIAx, /I 5 M llx, 11 -+ 0. By the properties 
of continuity (continuous functions preserve convergence), it follows that A is continuous. 

Conversely, assume A is continuous. Then there is a 6 > 0 such that 11 Axil < 1 for 
llx 11 < 6 Then, since the norm of Sxlj lx /I is equal to 6, 

'The value M = 116 serves as a bound for A. C1 

The following theorem is of great utility: by showing that linear operators from finite- 
dimensional spaces are continuous, we can conclude from the previous theorem that they are 
also bounded. Since many of the results of this chapter rely on bounded linear operators, this 
theorem reassures us that matrices-operators on finite-dimensional spaces-will work. 

Theorem 4.2 Let A: X -+ Y be a linear operator; where X and Y are normed linear 
$paces. If X is$nite dimensional, then A is continuous. 

Note that this theorem does not assume that Y is finite dimensional. 
Proof of theorem 4.2 makes use of the following lemma, which is the most technical 

part of this section. 

Lemma 4.1 [238, page 26.51 Let X be a finite-dimensional normed linear space, and let 
{x l ,  XZ, . . . , x,) be a (Hamel) basis for X .  Then for x E X ,  each coeflcient a, in the 
expansion 

I S  a continuous linear function of x. Being continuous, it is bounded, so there is a constant 
M such that la, I 5 Mllxll. 

Proof Showing linearity is straightforward, and is omitted 
It will suffice to show that there is an m > 0 such that 
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since it follows that / a , /  _<rn-'lIxll. We will demonstrate (4.3) first for coefficients 
{al ,  . . . . a,) satisfying the condition /al / + . . . + /a, / = 1 .  Let 

A = { ( a l  . . . . ,  a,,) : / a l / + . . . + l a , I = l ]  . 

This set is closed and bounded (compact). Now define a function f :  A -t W by 

f(a1 , . . . ,  a,) = Ila1x1 + . . . + a ,  XnII. 

It can be shown that f is continuous, and it is clear that f > 0. Let 

m =  min f ( a I  . . . . .  a,). 
( @ I ,  , ~ , ) E A  

Since f is continuous on a closed bounded set, this minimum does exist for some point 
(a;, . . . , a,*) E A. Hence we have found a point m that satisfies (4.3). If rn = 0, then 
a;x, + . . . + a,*x, = 0. contradicting the fact that (x,)  is a basis (linearly ~ndependent) 
Hence m > 0. 

For general sets of coefficients {a ,} ,  set ,6 = /al 1 + . . + Ia,,I. If ,6 = 0, the result I \  

trivial. If ,6 > 0 then we write 

Proof Now we proceed with the proof of theorem 4.2. Let {xl ,  x2, . . . , x , ~ )  be a (Hamel) 
basis for X. Let x E X be expressed in tenns of this basis as 

Let D = maxi,,,,, I/ Ax,  I / .  Then 

By the lemma above, there is an M such that /al / + . . . + /a, / _< Mllxll, so that 

Before considering the important special case of matrix transformations, we will con- 
sider some more generalized transformations. 

Example 4.2.1 Let X = C[O. I ] .  and define A: X -+ X by 

Ax(t) = k ( r ,  t )x(r )  dr. i ' 
where r E [0, I ] ,  and K 1s continuous We w ~ l l  compute the L ,  norm of thls operator 

i k ( r ,  r)l d r  max lx(t)l 
I E / O  i !  

I t  can be ihown that equality can he achieved. so that 
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Since k ( t .  r )  I \  contlntiou~ then A 15 bounded. ci 

~xarnple 4.2.2 Let A C '  [O, I ]  + C[O. I ]  be the operator 

Tile fiinctton u ( t )  = rincoot E CC'[O, I] has untfonn norm 1 for any value of uo, but 

/\Ax / /  = max wo/ cos wotl 
i€[O I 1  

m'ty have nonn arbitrarily large by choos~ng wo to be arb~tranly large. Thus the dtfferentlal operator 
15 not bounded (and hence not cont~nuous) 0 

4.2.2 The Neumann expansion 

Thc: Xeutnann expansion prov~des a useful expansion for the inverse of the linear operator 
i - A ) - ' .  For a scalar x such that lx / < I ,  it is straightforward to show using the geometric 

scrres that 

There is a direct extension to linear operators, as follows. 

'Theorem 4.3 Suppose 1 1 .  / /  is u norin satisfiing the .submultiplicativepropertf and A: x -+ x 
l r  ~ r t z  operator with / I  A  / /  < 1. Then ( I  - A)-'  exists, and 

CO 

( I  - A ) '  = 'tl: A' .  

Proof Let I /  A  11 < 1. If I - A is singular, then there is a vector x  such that (I - A ) x  = 0. 
But this means that / /x i /  = / / A x / /  ( / / X I /  / I  A  /I, or IIA/l 2 1. This is a contradiction. 

By multiplication, it is clear that 

( I  - A)([ + A + A2 + . . . + Ak-') = I  - A k .  

With j l  All < 1, limk+m Ak = 0, since 

1 1 ~ ~ 1 1  5 1 1 ~ 1 1 ~  -+ 0 as k -+ ca. 
Thus. 

I =o 
mu\t be the inverse of I - A .  

4.2.3 Matrix norms 

In specializing the foregoing results to matrix operators, we consider the cases p = 1,  p = 2, 
and p = m, which are of particular interest. 
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that is, it is the largest row sum; 

that Ir, it is the largest column sum 
To deal with the 12 matrix norm requires an understanding of eigenvalues and con- 

strained opt~mlzation We want to maximize IIAxlIz, subject to the constra~nt that Ilxl12 = 1 
This can be written as 

maxlmize llAxl/$ = xH AH A X  

subject to xHx = 1 

The constraint can be incorporated using a Lagrange multiplier to create the functional 

Taking the gradient with respect to x and equating the result to zero. we obtain the equation 

The corresponding x must be an eigenvector of A A. Multiplying (4.7) by xH,  and recalling 
the constraint that xHx = 1, we obtain 

Slnce we are maximizing the quantity on the left, A must be the largest e~genvalue of AHh 
For an 12 x n matnx A w ~ t h  elgenvalues A ] .  h:!, . . A,,, the spectral radius p(A)  1s defined 
as 

P(A) = max / A ,  I 

The spectral radius is the smallest radius of a circle centered at the origin that contains all 
the eigenvalues of A .  Then the 12 norm is defined by 

Because the l? norm requires computation of eigenvalues, it is much more difficult to 
compute than the l I  or I, norms However, it is of rlgnlficant theoretical value When A rc 
Hermitian, 

The 12 norm 1s also called the spectral norm. 
For the subordinate norms, we can also say something about the norm of the inverce 

A - I ,  when it exists. For the equatlon Ax = b. assume that A - '  exist?, i o  x = A-lb Then 

llA-'bll 1 1  A - '  I = y-2; - llxll = max - 
libil exli#o llAxll 

From this we conclude that 

For example. ' / I 2 ) -  ' = &. where i.,,,,, I \  the rrt~ullecr elgen~alue of A "  A 
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A matrix norm which 1 %  not a p norm I \  the Frobenius norm, 

[ills norm 1s also called the Euclidean norm It ihould not be confused w ~ t h  the l2 norm 
[he Frobenlus notm IS often used In matnx analysis, since it 1s relattvely easy to compute 
[ t  15 a natural norm, for example, to use when companng how close two matncer A and B 
,Ire, ustng IIA - BllF For the Frobenlus norm, 11 I / /  = fi The Frobenius norm can also 
be wrltten uslng 

The following relationshtps exist between the norms for an rn x n matrix A: 

iiAi/z 5 I lAll~ F ~ ~ I I A I I ~ ,  (4.10) 

max la,,/ 5 //All2 F f i m a x  la,, I ,  (4.1 1) 
1 J ' J 

4.3 Adjoint operators and transposes 

Let A: X -+ Y be a h e a r  operator (not necessarily merely a matrix), and let (., .): Y x Y -t 
C be an inner product. Since Ax E Y,  the Inner product ( A x ,  y)  is defined, and it may be 
viewed as a scalar linear operation (a functional) on x E X. The elements in Y are an example 
of a dual space. For our purposes, we can think of a dual space as the range space of an 
operator. (For linear operations on Hilbert spaces, this definition is sufficiently precise; for 
other Banach spaces there are some technical details that are hidden by this tnterpretation. 
There is a remarkable body of theory that can be developed related to dual spaces, providing 
for opt~mization techniques similar to those developed in chapter 3 for inner-product spaces, 
for whlch the norm is not an induced norm, but is another L p  norm. However, an extensive 
treatment of dual spaces, while powerful, is beyond the scope of this text. Interested readers 
qhould consult [209].) 

Definition 4.4 Let A: X -+ Y be a bounded linear operator from the Hilbert space X to 
the Hilbert space Y.  The adjoint of the operator A ,  denoted A*, is the operator A*: Y -+ X 
such that 

( A x ,  y )  = (x, A*y) 

for all x E X and y E Y .  An operator A is self-adjoint if A* = A. 

Example 4.3.1 Let A @" -+ Cm Then A can be represented as an rn x n matnx The I th component 
of Ax 1s 
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To find the adjolnt of A ,  we form the ~nner product uslng the usual Euclidean lnner product. 

Thus, the adjo~rzt of a rnnrrtx 1s the coryugute fmrrspose of the matnx. 
- 

A* = ( A T )  = 

For a real matrix, the adjoint is simply the transpose, 

A real matrix which 1s self-adjolnt is said to be syilznzetnc A complex matrix whlch I C  

self-adjoint I$ said to be Herrnltlan Self-adjoint matrices are necessarily square 
A matrix (or operator) A whlch sat15fie.; A*A = AA* 1s said to be norr~zul Obviouilq 

a (Herm~tian) symmetric matrix is normal 

Example 4.3.2 The matrices 

are self-adjoint (symmetric and Hermitian, respectively) 

Example 4.3.3 Let X = Y = LZIO. 11, and define 

Using the usual integral inner product. we have 

( A x .  y) = 1' y(r )  1' k(r. r ) . x ( r ) d r d t  

Since t and T are dummy var~ables, we can slmply reverse the~r roles and wrtte 

( A X ,  J )  = 1' x(r)i' k ( r ,  i l \ ( r ) d ~ d r  = (2. A * ) )  

where 

is the adjoint operator. 

In a Hilbert space. we always have the property that A"" = A 4djolnti have the following 
propertlei. wh~ch ale strdrghtforward to show from the definition Let A 1 and A2 be bounded 
llnear operators Then 

1 ( A ,  + A2)* = A; + A;, 

2 ( a n ) "  = F A * .  

3 (A?A I ) *  = A;Ay (note the reverse order), 

4 If A ha\ an Invel\e then (A ' )' = (Ax) - '  
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For the last property assoc~ated wlth matrices, we commonly wrlte 

(AT)-I  = Or ( ~ " ) - l  = A-H. 

the order of transpoutlon and Inversion does not matter 
The concept of an adjolnt provides for the formal extension of least-squares methods to 

~yuations for general linear operators. The equation Ax = b has the least-squares solution 
i = ( A * A ) - ' A * b  for any bounded linear operator The adjornt depends upon the Inner 
a r c i d ~ ~ ~ t ,  with d weighted inner product leading to a different adjoint 

Example 4.3.4 For the weighted inner product 

with an invertible Henn~tlan wezght matr~x W, the adjoint satlsfies 

A* = w- 'AHw 

3 iic adjoint notation makes it natural to express the weighted least-squares formulas of 
>ection 3.4. The least-squares solution of Ax = b, with respect to any inner product is (by 
comparison with (3.19)) 

When the inner product is the weighted inner product, the least-squares solution is (using 
(4. 15)) 

4.3.1 A dual optimization problem 

The adjoint allows us to express the solution to the problem of finding the minimum-norm 
solution to the linear operator equation Ax = y when there is more than one solution. This 
is exactly analogous to the problem addressed in section 3.14. 

Theorem 4.4 (209, p. 1611 Let A: X -+ Y be a bounded linear operator from the Hilbert 
\pizce X to the Hilbert space Y .  The vector x  of minimum norm satisbing Ax = y is given 
by 

where z is any solution of (AA*)z  = y. 

Proof Let n E N ( A ) .  If xo is a solution of Ax = y, then so is x  + n. Since N ( A )  is closed 
(because X is a Hilbert space), there must be a unique vector x  of minimum norm satisfying 

= y.  This solution must be orthogonal to N ( A ) .  Thus 

Hence x  = A*z for some z E Y .  Since Ax = y, we must have AArz  = y .  C 

4.4 Geometry of linear equations 

We turn now to the solution of the matrix equation Ax = b, and consider it from two dif- 
ferent perspectives to gain insight into the solution of linear equations. 
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Figure 4.2: Intersections of lines form solutions of systems of linear equations 

The "intersecting lines" point of view 

Consider the matrix equation 

which represents the pair of equations 

Each equation representr a Itne on the x v  plane. and the solutlon occurs where the Ilne\ 
Intersect, at the point (2.1), as shown In figure 4 2 This i t  the fam~liar lnterpretat~on of 
mult~pie equatlons in multiple unknowns 

An equatlon in three unknowns, such as 

describes a plane in three dimensions Two such equatlons descr~be two planes, whose 
intersectlon ( ~ f  they intersect) is a llne A third equatlon describes a third plane, and the 
intersection point (if there is one) of the three planes defines the s~multaneous solution 
to the three equatlons It IS posslble that there is no solution, even if the planes intersect 
clnce the lines of interrectlon mlght be parallel In general, an equation in n unknown\ 
descr~bes a hyperplane in 11-dimensional space, and 11 such planes must Intersect at the 
po~nt  of simultaneous soiut~on 

From this interpretation of Intersecting lines or planes. three different cases can be 
considered. both In two d~rnens~ons and in more dtmens~ons 

A single solution. The two l~nes  are not parallel; they intersect at one point which gives 
the solution. In rz dimensions, 12 hyperplanes meet at a slngle point. 

No solution. The two lines are parallel and have no intersection. There is no solution to 
the set of equatlons. An exarnple of this is the set of equations 

Of cour\e, the dependence is larely easily observed ac In t h ~ s  \imple exarnple In more 
dimension\. the liyperpl~ne\ have no common potnt of intersectlon Even though two hy- 
perplanes may intei\ect. other hyperplanes inay Intersect at another location Flgure 4 3('1) 
\how5 three plane\, each of u h ~ c h  Intersects with two other planes but \uch that there 15 I?( 

common pan t  of Inter\ection for all three planes 
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(a) (b) 

Figure 4.3: Intersecting planes: (a) no solution (b) infinite number of solutions 

,In irtfinite number ofsolutions. The two lines are parallel and right on top of each other. 
Then there are an infinite number of solutions: any point lying on the first line is also lying 
. jo the second line. These equations exhibit the problem: 

x f  2 y =  1, 

2x + 4y = 2. 

In more dimensions, the planes intersect to fonn a line, as shown in figure 4.3(b). 

The "vector space" point of view 

Another way of looking at a set of linear equations is to consider the multiplication as a 
!,near combination of the columns: 

The result of the matrix product is a linear combination of the columns of the matrix. In 
general, the product of a matrix times a vector is a linear combination of the columns of the 
rnatrix. 

Definition 4.5 The space spanned by the columns of a matrix is called the column space 
of the matrix. It is also called the range of the matrix, and is denoted by %!(A). If A is 
written in terms of its columns, A = [al  a2 . . . a,], then 

R(A) = span(ai, a?, . . . , a,). 

For A E M,,, (R), the range is a subspace of Rm. 
More generally, we can define the range of any linear operator A: X -+ Y as 

R(A) = ( y  E Y :  Ax = y forx  E XI. 

If b E R(A)  for a matnx A, then there must be some linear combination of the columns 
of A that is equal to b: 

If b @ R(A),  then no there is no solution to the equation. If b E R(A)  but the coiumns of 
A are linearly dependent, then there are an infinite number of solutions. 
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Example 4.4.1 Suppose A = [: :] If b = [:I, then there 1s no llnear comblnat~on of the columns 
of A that can be equal to b, slnce any h e a r  comblnat~on of the colun~ns of A mu\t be of the form 
[;,I for some a On the other hand, ~f b = I:]. then 

is a solution, as is 

4.5 Four fundamental subspaces of a linear operator 

The first two subspaces we have already met. The first is the range, and the second is the 
nullspace. which we reintroduce here. 

Definition 4.6 The nullspace of a linear operator A: X -+ Y consists of all vectors x E X 
such that Ax = 0. It is denoted as h f ( A ) ,  and is a subspace of X. The dimension of N(A) 
is called the nullity of A.  Ci 

If the nullspace of A is nontrivial (that is. it consists of more than just the zero vector). 
then the equatlon Ax = b has an ~nfinlte number of solutions, since if X* is a solution to 
A x  = h, and xo IS any vector in N ( A ) ,  then x = xh + cxo 1s also a solution: 

The next fundamental subspace of A is the range of the adjoint A*,  denoted R ( A * ) .  
If A 1s a matrix. then the adjoint is simply the conjugate transpose, and R ( A * )  is simply 
the lznear combinations of the conjugates oftlze rows of A. For this reason, we may refer 
to R ( A * )  as the row space of A,  but the concept applies to more general linear operators. 
The row space of A E M,, . (R) is a subspace of Rn. 

The fourth fundamental subspace of A 1s the nullspace of A*,  denoted ,b'(A*). For ari 

m x n matnx A, this space is the set of vectors y such that ~~y = 0, which can also be 
wntten as 

Because of the multiplication on the left, we will refer to this as the le~7 nullspace. 
The various subspaces of the operator A: X -+ Y are su~nmarized as follows: 

The fundamental subcpacec of a lrnear operator have the following orthogonality propertlec 

Theorern 4.5 Let A: X -+ Y be u bounried l~near  operartrr b e m w n  ma Hrlberi spcrces X 
and Y ,  urzd ler R ( A )  utzd R ( A * )  be tlored Then 

1 The range t r  t1w orihogonal ~omplemeni  of t l ~p  lefi nullrpace. 
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2 The orthogotla1 (omplernent ofthe row rpace i r  the null\pc~e 

R ( A * ) ~  = N ( A )  ( 4  21) 

Contplernentrng thew two we have 

R ( A )  = [;Z/(A*)lL 

R ( A " )  = [&*(A)]' 

Proof We show first that ,\'(A*) c [ R ( A ) J L .  Let rz E ,Z/(A*), and let y E R ( A ) ,  so that 
v = Ax for some x E X.  Then 

( y ,  n )  = ( A x ,  n )  = ( x ,  A*n) = (.u, 0)  = 0. 

Thus rz l. y ,  so .q(A*)  C [ R ( A ) I L .  Now let v E [ R ( A ) I L .  Then for every x  E X, 

{ A x ,  y )  = 0,  

.~nd \o by the defin~tton of the adjolnt ( x ,  A* v )  = 0 Since thi4 is true for every x  E X, we 
ilu\t have A*v = 0, so j E JV(A*) We thus have [ R ( A ) I L  c ,V'(A*) Combining these 
~ l t o  inclus~on\, we conclude that [R(A)]' = N ( A " )  

To prove part (4  211, replace A  by A", uslng the fact that A*" = A  
To prove (4  22) and ( 4  231, take the orthogonal complement of both sides of (4  20) and 

(4  2 1 )  

By theorem 2.10 and (4.19), if A: X + Y ,  and X and Y are Hilbert spaces with R ( A )  and 
R ( A * )  closed, then 

X = R ( A * )  $ N ( A ) ,  (4.24) 
Y = R ( A )  @ N ( A * ) .  

Theorem 4 5 provide a means of determining whether an equatlon of the form Ax = b 
has a solutlon, and whether that solut~on 1s un~que As mentioned previously, in order to 
hme an exact solutlon b must lie in the column space (range) of A. But if b 1s in the column 
space of A,  by theorem 4  5 it must be orthogonal to the left nullspace of A. This fact 
regarding the ex~stence of the solut~on to the l~near equation is fundamental and important 
I t  I \  known as the Fredholm alternative theorem We state ~t first for general linear operators, 
then spec~alize i t  to matrix notatlon 

'Theorem 4.6 (Fredholm alternative theorem) Let A  be a bounded linear operator: The 
rcjuation Ax = b has a s(7lution ifand only i f ( b ,  v )  = 0 for every vector v E N ( A "  j .  More 
wccinctly, 

b E R ( A )  + b I N ( A * ) .  

In matrix notation, Ax = b has a solution i f  and only i f  vHb = 0 for every vector v 
such that AH v = 0. 

Proof Assume that Ax = b, and let v  E N ( A * ) .  Then 

(b ,  L!) = (Ax,  v )  = ( x ,  A*u) = ( x ,  0 )  = 0. 

ri) prove the converse, suppose to the contrary that (b. v )  = 0 when v  E N ( A * ) ,  but 
,4.r = b has no solution. Since b 6 R ( A ) ,  let b = b, + bo, where 6, E R ( A )  and bo is the 
component of b orthogonal to R ( A ) .  Then ( A x ,  bo) =: 0 for all x ,  from which we conclude 
that A*bo = 0; that is, bo E N ( A * ) .  By the hypothesis of the theorem, it must be the case, 
therefore, that (b ,  bo) = 0 ,  or 

0  = (6 ,  + bo, bo) 
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Since b, and bo are orthogonal, it must be the case that bo = 0, so b lies in the range 
of A. 3 

The uniqueness of solutions is determined by the following theorem. 

Theorem 4.7 (Uniqueness of .soluriorzs) Tlie solution to Ax = b (if it exists) is unlquc I j  
and only if the on!,. solution of Ax = 0 is x = 0, tlzut is, f h f ( A )  = (0). 

The proof is given as an exercise. 

Example 4.5.1 We demonstrate the concept of the four fundamental subspaces a\ applied to matnx 
operators Consider the matrtx 

'The coluinn space 1s R(A) = span([:i]) . which geometr~cally IS the line In two d ~ m e n \ ~ o n s  through 
the point (1.0) The null space 1s 

The left nullspace contains the vector I;]. and so 

The row space 15 R ( A T )  = span([0 0 ] I T ) ,  whtch 1s the line in three dtrnenslons through 

(0,O. 1) 0 

In this example, the dimension of the column space is the dimension of the row space. 
This is not an isolated example: in all inutricps, tlze dimension of tlze colunzn space is the 
dimension of the row space. 

Definition 4.7 The dimens~on of the column space (or the row space) of the matrix A - - 
the rank of the matrix. A 

The rank of a matrix A is the number of linearly independent columns or rows of A 
For an 177 x n matrix of rank r ,  the following size relationships hold: 

1 .  Column space: dirn(R(A)) = r.  
2. Row space: d l m ( R ( ~  1) = r . 
3. Nullspace: d i ~ n ( N ( A ) )  = n - r .  
4 .  Left nullspace: dim(N(AH)) = nz - r .  

Example 4.5.2 Another example may help to illustrate the relatton\hip\ among the sub5paces Ler 

Then ni = 17 = 2 ,  and r = 1 

* The column \pace I \  
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8 The null \pace is 

The row space 1s 

The left nullspace is 

Example 4.5.3 The matr~x 

ilCi\ ii nullspace $panned by the vector 

so solutions, if they exist, are not unique. The nullspace of A T  is spanned by v = [ :,I. A vector b is 
in the column space of A if it is orthogonal to v, so b must be of the form 

c ! r ~  I~ght of the form of the matnx, this is obvious.) The equation 

has solutions 

for any j5 E R. 

F,u;rmple 4.5.4 The matrix in the equation 

has a left nullspace spanned by 

" = [i] 
r\: iy  rtght hand side b must be orthogonal to V, 

which means that the sum of the components of b must be zero. 

Figure 4.4 summarizes the relationships between the four fundamental subspaces of a matrix 
A:  an it W m ,  (It is straightforward to generalize this to a linear operator A: X -+ Y . )  On the 
left is the space R", which can be decomposed into the row space R ( A ~ )  and the nullspace 
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Figure 4.4: The four fundamental subspaces of a matrix operator 

h f ( A ) ,  which are orthogonal. A vector x E R" can be decomposed into its rowspace 
component and its nullspace component, 

x = X ,  + x,,, 

as shown. The action of the matrix A on x is Ax = Ax,  + Ax, ,  as follows. 

* The nullspace component goes to zero: A x ,  = 0. 

* The row space component goes to the column space: Ax,  = Ax E R ( A ) .  

On the right of figure 4.4 is the space Rm. whlch is decomposed into the orthogonal spaces 
of column space and the left nullspace. In light of this figure, we observe that a matrix A 
maps its row space fo its columiz space. The mapping from the row space to the column 
space is invertible: 

Theorem 4.8 Every vector b E R ( A )  comesfronz one and on11 one vector x, zn rlze ro~i 
space of A.  

The proof is given as an exercise. 
The four fundamental spaces of a matrix may be determined numerically by use of the 

s~ngular value decomposition (SVD), as discussed in section 7.2. 

4.5.1 The four fundamental subspaces with non-closed range* 

Theorem 4.5 concludes that 

[ R ( A ) l A  = ( A * ) .  

Comple~nent~ng both sides, we obtain 

[%?,(A)]"" = [ ( A " ) ] " .  

If R ( A )  1s closed. then [R(A)]" = R ( A )  However ~f ? ? ( A )  1s rzof clo\ed. then 

[%?,(A)]" = nc];iT, 

"This \ection contaliis some technical detail\ rhar correspond to infinite-dinlensional vector \pacer. and mzi! 

be \k~pped on a fir51 reading. 
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[he ~~~~~~e o f R ( A ) .  If %?,(A*) 1s not closed, we sim~larly conclude that 

R(A")  = [ ,hr(~)] '  

~varnple 4.5.5 As an example of an operator with a range that is not closed, let X and Y be the space 
1 ,  ,~nd defrne the operator A X -+ Y by 

e r e  I 2 ,  r ) E X and ( x i  t 2 / 2  r1/7 ) E Y Then R ( A )  contatns all fin~tely nonzero - 
q u e n t e s ,  so R ( A )  = Y = 11 However, there are \equences in Y that are not In the range of A The 
,equence 

would be the image of 

r = (1, 112. 113, ), 

htii this r 1s not an element of I , ,  slnce Cr, (111) does not converge 

Fortunately, for the problems of interest in this book, our operators are mostly finite 
d~mensional, hence have closed range. 

4.6 Some properties of matrix inverses 

With the basic theorems regarding the existence and uniqueness of solutions to linear equa- 
tions in place, we focus now on matrix operators. 

Definition 4.8 A matrix A is said to have a left inverse if there is a matrix B such that 
B A  = I ,  and a right inverse if there is a matrix C such that AC = I.  

If A has a left inverse B then the equation Ax = b  has the solution x = Bb,  for some 
matrix B. If A has a right inverse then the equation has the solution x = C b ,  for some 
matrix C. We make the following observations: 

1. (Existence) Let A E M,,,(F) for some field F. In order for the equation 

to have at least one solution for any b, the columns of A must span the space Fm. 
This means that the rank of the matrix r = m. In this case there is an n x m right 
inverse C and a solution x = Cb.  This right inverse can exist only when m I_( n .  
However, there could exist more than one solution. 

2. (Uniqueness) The system Ax = b  has at most one solution for any b if and only if 
the columns are linearly independent. This means that the rank is r = n.  In this case 
there is an n x m left inverse B. This is possible only if m ? n. 

Example 4.6.1 The matrix 

has rank r = 2 = rn; thus, by the theorem, it  has a right inverse, 
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The last row of C 1s arb~trary, and there are an infinlte number of nght Inverses, and hence an lnfintte 
number of solutions x = Cb 0 

Example 4.6.2 Consider the matnx transposed from the prevtouc example. 

Then 

The last column of B 1s arbitrary In thls case 
The uniqueness result does not go so far as to say that there 1s a solution Conrlder the probiem 

If b j  9 0, there is no solution. However, in the case that b j  = 0 and there is a solution, slnce I.  = 2 = n,  
that solution must be unique. D 

One possible fonnula for the left and right inverses, if they exist, is 

B = ( A ~ A ) - ' A ~  (left inverse), 

c = A ~ ( A A ~ ) - '  (right inverse). 

The left inverse corresponds to the solution 

x = ~b = ( A ~ A ) - ~ A ~ ~ .  

which is the least-squares solution. The guarantee of at least one solution is obtained by 
projection of b into the column space of A. Both of these inverses correspond to setting the 
free variables equal to zero. 

4.6.1 Tests for invertibility of matrices 

In order for batlz existence and uniqueness of a solution, we must have r = m 2 n arid 
r = n 2 nz; that, is m = n :  the matrix must be square. If A has both a left inverse and a 
right inverse they are the same. In this case A is said to be invertible. 

Definition 4.9 A matrix A E M,,,,(F) (where F is a field) is said to be nonsingular if the 
only x  E F" such that Ax = 0 is the zero vector x  = 0. 0 

If A is a nonsingular it x n matrix, then its nullspace has dimension zero and rank(A) = 
1 1 .  It is therefore invertible. Based on this discussion, as well as some results from later 
sections, we present a collection of tests for invertibility of an n x n matrix A: 

1 Ax = 0 implies x = 0. 

2 rank(A) = iz 

3 The rows of A are linearly Independent. the columns of A  are linearly independent 

4 The determinant of A  is not zero 

5 There are no zero elpenvalue5 of A 

6 A I \  positive definite, that 15.  

X ~ A ~ A X  > o 
for any nonzero x E R" . 
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4.7 Some results on matrix rank 

Definition 4.10 An m x n matrlx 1s wrd to be full rank if the rank 15 as large poii~ble 

rank(A) = mln(m, n )  

\n in x rz mdtrlx i i  raid to be rank deficient r t  it 1.i not full rank 3 

The following theorem provides a character~zat~on of the four fundamental spaces of 
the product of matrlces A  B.  

Theorem 4.9 For matrlcer A  ctnd B  such that A B  ex~sts 

I .21r(B) c ,V(A B ) ,  

2 R ( A B )  c R ( A ) ,  

3 .VIA*) C ,MF((A B ) * ) ,  

4 R ( ( A B ) * )  c R ( B )  

IJroof 

1 If Bx = 0 then A B x  = 0 every x  E ,V'(B) i \  also In JV'(AB) Thus 

d1m,VF(A B )  > dim N ( B )  

2 If x E R ( A B ) ,  then there IS some y  so that x = ( A B ) y  = A ( B y ) ,  so x  E R ( A J  

3 If y"A = 0 then y*AB = 0 

1 If x E R ( ( A  B)* ) ,  then there 1s some y  so that x  = ( A  B)*y = BT ( A * y ) ,  so x  E R ( B * )  

cl 

Combining the second and fourth Items, we obtaln the foliowlng fact. 

Example 4.7.1 An obvious but important example of the fact expressed in (4 25) 1s that the matnx 
B = xyH, where u and y are nonzero vecton, must have rank 5 I ,  s ~ n c e  each vector has rank 1 A 
computation of the form 

A +xyH 
\did to be a rank-one update to the matnx A S~milarly, ~f X  1s a m x 2 matnx and Y H  IS a 2 x n 

matrtx. the update 
A + x y H  

is satd to be a rank-two update 
A question explored In sectton 4 11  is how to compute the InverTe of a low-rank update of A ,  if 

we dlready know the inverse of A 0 

Example 4.7.2 Let A be a 3 x 4 matrix of zeros, and let B be a 4 x 3 matrtx of zeros Then the nullity 
of B 1s 3, wh~le  the nulltty of A B is 4 0 

These results provide a "cancellation" theorem: 

Theorem 4.10 [Campbell and Meyer (see page 274/] Suppose A  is m x n and B and C 
aren x p. Then A"AB = A H A C  Efandonly i f A B  = AC. 

Proof The result can be stated equivalently as: A * A ( B  - C )  = 0 if only if A ( B  - C )  = 0. 
This becomes a question of comparing the nullspace of A*A and A. We need to show 
that JV(A*A) = ,V(A) .  Since &*(A*) = [ R ( A ) I L ,  if A*Ax = 0, then Ax = 0 (and 
conversely). C 



250 Linear Operators and Matrix Inverses 

Definition 4.11 A submatrix of a matrix A is obtained by removing zero or more columns 
of A and zero or more rows of A. C; 

Notationally, when the retarned rows and columns of a matrtx are adjacent. the " " notation 
can be employed, as drscussed tn sectlon C 1 Srnce the subtnatr~x cannot be larger than the 
matrix, we have the followtl~g results. 

/ For an rn x n matrlx A of rank r ,  every submatrix C is of rank 5 r .  1 
For an rn x n matrix A of rank r ,  there is at least one r x r submatrix of A of 
rank exactly r .  

Based upon the latter result, we can give an equivalent definttion of the rank: 

The rank of a matnx is the srze of the largest nons~ngular square cubmatrix 
There IS a k x k wbmatrix with nonzero determtnant. but all (k + 1) x (k + 1 )  

1 submatrtces of A have determinant 0. 

The following facts are also true about rank 11421: 

* If A E M,, x and B E M k .  then 

* If A, B E M ,  ,,. then 
rank(A + B) 5 rank(A) + rank(B) 

* (Result generally attr~buted to Frobenius) If A E MI,, L ,  B E Mk and C E M,, ,,. 
then 

rank(A B) + rank(BC) 5 rank(B) t rank(A BC). 

* Rank is unchanged upon either left or rlght multiplication by a nonsingular matrix. If  
A E MI,  and C E MI,  are both nonsingular and B E M ,  ,,, then 

rank(B) = rank(AB) = rank(BC) = rank(ABC). 

* If A. B E MI,, ,,, then rank(A) = ranl,(B) ~f and only ~f there extst izons~nguliir 
X E M,, and Y E MI,  such that B = XAY 

* If A E MI,, ,, has rank(A) = k ,  then there 1s a nons~ngular B E Mi.  X E M,, x ,  and 
Y E M x  ,. such that 

A = XBY 

* A matrlx A E MI,, . ( F )  of rank I can be written as 

for x E FJn and y E F" 

4.7.1 Numeric rank 

Even though the rank of a matrix 15 well defined mathematically. nulnerlcal drfficult~e\ may 
arise when actually trytng to conipute the rank of a matrlx wlth real-valued elements. due 
to roundoff 

Exanxple 4.7.3 The mrttrlx 
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,, f u l l  rmk  for any c + 0 I-lowever. tt I \  clocc, (u\~rrg some matrrx norm) to A rndtrix that I \  rank 
j z n ~ i e n t  0 

There Are C .  vdrlety of wni~\yi of numerically cornputlng the rank of J. rnatnx, including the 
QR decomposition wlth column plvoting (see, e g , [114]) However, one of the best ways is 
(0 u\e the SVD, whlch can provide ~nforrnation not only on what the rank 15 (nunler~cally), 
hrtt 'ilw whether the matrix 1s close to mother matrix that 1s rank deticlent 

4.8 Another look at least squares 

Let A X -+ Y be a bounded linear operator. If the equation Ax = b has no solut~on (I e , 
b @ R(A)) ,  then, a\ we saw in section 3 4, we can find a solution 1 that mtnImize% 

I 1  A l  - bll: 

The following theorem tie\ the ~ d e a  of the projection theorem to the Fredholm altematrve 
~ircolem, and provldes another view of the lea\t-squares pseudoinverse operator 

'f'heorern 4.1 1 The vecror A E X minimizes 11 b - Ax / I 2  ifand only if 

Proof Minimizing l(b - Ax/ /2  is equivalent to minimizing lib - 6/lz, where 6 E R(A).  By 
the projection theorem, we must have 

b - 6 E [R(A)]'. 

R u t ,  by theorem 4.5, this is equivalent to 

b - 6 E ,V(A*); 
that I \ ,  

A*(b 4) = 0, 
or 

A*6 = A'b. 
Conversely, if A"AI = A*b. then 

A*(AR - b) = 0, 

50 that A l  - b E N ( A * )  and, hence, the error is orthogonal to the subspace R ( A )  and has 
minrmal length by the projection theorem. 0 

If A is a matrix operator such that A*A is invertible, by theorem 4.11 the least-squares 
solution is 

x = (A*A)- 'A%, (4.26) 

which is equivalent to what we obtained in (3.19) 

4.9 Pseudoinverses 

Thi: matrix ( A ~ A ) - I A ~  of (4.26) is an example of a pseudoinverse, sometimes called 
a Moore-Penrose pseudoinverse. We formally define the pseudoinverse in a manner that 
captures the smallest error and smallest norm of the solution, as follows. 

Definition 4.12 Let A: X -+ Y be a bounded linear operator, where X and Y are Hilbert 
Spaces, and let R(A) be closed. For some b E Y,  let R be the vector of minimum norm llR112 

that minimizes 11 Ax - bll. The pseudoinverse At is the operator mapping b to 2 for each 
b~ Y .  0 
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Figure 4.5: Operation of the pseudoinverse 

The operatlon of the pseudoinverse operator IS  shown In figure 4 5 The pseudoincerse 
operator takes a point from Y back to a point in P E R(A*),  in such a way that 2 has 
mlnimum norm The operatlon of the pseudoinverse operation on a polnt b 5;? R(A)  IS 

to first project b onto R(A)  uslng the projection P ,  then to map back to R(A*) to a 
vector P of minimum length, by this projection onto R ( A )  the error b - AP is mlnr- 
m~zed 

By the definltlon of the pseudo~nverse, wlth the aid of figure 4 5, the following propertlei 
of pseudoinverses can be verified 

1 .  AT is linear. 

2. AT is bounded. 

3 .  (At)i = A. 

4. ( A + ) A A T  = A'. 

5. AA'A = A. 

6. (AtA)* = ATA. 

7. A +  = (A*AJ+A*.  

8.  A +  = A*(AAf)i. 

The last two properties, a\ applied to matrices, give an "explicit" formula for computing the 
pseudoinverse of a matrix A The formula AT = (A* A)' A* is approprlate for overdeterm~ned 
sets of equations (more equatrons than unknown\), the formula AT = AW(AA*)' is most 
approprlate for underdetermined sets of equat~ons However. as caut~oned before, expl~citl) 
computing the product A ~ A  or AA' is poor pract~ce numerically In fact. it may happer 
(if the columns of A are not lineally independent) that AHA I \  not full rank, dnd cannor 
be inverted For these reasons, the p\eudolnver\e should be computed using a factorizat~on 
approach such as the QR factorizatron oi the SVD 

There are \ome technical deta~ls requiring clarification regarding definit~on 4 12 (Thic 
paragraph may be sklpped on a first read~ng ) For a consistent definition, i t  must be estab- 
lished that there 1 5  a unlque xo that mininii7es / /  Ax - b / /  Since R ( A )  I \  clo\ed. the minimum 
llAx - b/i is actually achie~ed. slnce i I \  approximdted by wnie lector in C E R(A)  Let 
xo be any vector sdt~~fylng Ax = i Then an) polnt x on the linear varrety V = xo +,$'(A ) 

also \dtl\fie\ A 4 = C Slnce .2'(A) is clo\ed, there I \  a po~nt 4 * in  V of minlmum norm 
Thu\ A I \  well-defined 
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4.1 0 Matrix condition number 

We now focus our attention on matrix linear equations, and consider some numerical aspects. 
We have seen conditions related to the existence of solution to the equation Ax = b. 
However, in sorne cases the conditions may be true in a mathematical sense, but not usefully 
true in a numerical sense: it may not be possible to compute a reliable solution using finite- 
pi-rcision arithmetic on a useful physical computation device. In the equation A x  = b, the 
,elution can be thought of as the point which is at the intersection of the lines (or planes) 
determined by each equation. In some equations it may happen that the lines (or planes) 
are nearly parallel. If this is the case, then a slight change in the coefficients could lead to a 
substantial change in the location of the solution. This problem is of practical significance 
because numerical representations in computers are rarely, if ever, exact. The problem may 
be so severe that the results of solving Ax = b are completely useless. 

Example 4.10.1 Consider the equation 

For \mall 6 the llnes represented by these two equations are almost parallel, as shown in figure 4 6 
tor hi  = 1 and bZ = 3 Small changes In b wlll result In s~gnificant shlfts in the locatlon of the 
~nter\ection of the two ltnes For exdmple, suppose the true value of b = [ I ,  3IT The solution is 
u = [ 5 51' However, ~f the nght hand \lde 1s slightly corrupted (perhaps by d small amount of 
rneaiurement notre) to h = [ I  1 3IT then x = [2 005, - 995IT a m~ntscule change In the Input has 
been ampllhed to a drasttc change In the output For practical problems, the answer obtalned would 
probably be completely untrustworthy 0 

Figure 4.6: Demonstration of an ill-conditioned linear system 

Matrices In which small errors in the coefficients are substantially amplified to produce 
large deviation in the solution are referred to as ill-conditioned matrices. Ill-conditioned 
matrices are those which are "close" to being rank deficient. Associated with each square 
matrix is a number, the condition number, which indicates the degree to which the matrix 
19 111 conditioned. (The condition of a matrix was first explored by J. H. Wilkinson; see 
box 4.1 .) We will get an analytical handle on ill-conditioned matrices by some perturbation 
analysis. Suppose that A is the matrix for which we wish to solve Ax = b. Instead of the 
trlie matnx A ,  the representation we must deal with (because of numerical representation 
problems) is a matrix A + E E, where E E is "small." The solution that is actually computed, 
then, is based upon the perturbed equation 

We will examine bounds on how the solution can change for small perturbations E E. 
Let xo denote the true (unperturbed) solution 
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Box 4.1: James H. Wilkinson (191 9-1986) 

James H Wtlklnson was a ptoneer of numerical analysls and explored the 
foundat~ons of numer~cal representation Durtng the 1940s he worked wlth 
Alan Turtng on the des~gn of a computtng machtne, the ACE (Automat~c 
Computing Engine) To test the arithmetic of the ACE, Wtlklnson wrote 
a program to find roots of polynorn~als To test the program, he used rt to 
compute the roots of a polynomial whose roots he knew 

The computed roots were not even close to the true roots After elin~~natlng 
the posstbrlity of a bug In his software, he determined that the cornputed roots 
of thepolynomral are zncredlbly sensrtzve to the values of the coeficienrs The 
roots he obtatned were in fact the roots of another polynomial that is clo\e to 
the original one 

Wrlktnson later worked on the solutlon of the equatlon Ax = b What he 
found is that the result x computed using the avatlable algorithms (whtch are 
st111 used today) provtdes an exact answer for a nearby problem the A matrtx 
1s perturbed Thls means that even though the error residual b - Ax m~ght  
be small (a good solution to a nearby problem), the difference between the x 
actually obtatned and the "true" x to the ongtnal problem could posslbly be 
large, ~f A IS such that a "nearby" matnx has a very dtfferent solutton We 
say that such a matrsx A 14 111 condtttoned 

If A tr nonsrngular and ljcE/t 1s small enough that A + c E 15 nonslngular (see exercrse 
4 2-1 1). then the solutton computed from (4 27) is 

The vector x~ shows how far the perturbed solutlon devtates from the unperturbed (true) 
solutton as c E change\ Using the Neumann forinula from section 4 2 2, 

The relative error between the true \elution and the computed \olut~on IS thus 

Now define the condition number K(A) of the matrix A as 

K(A) = l l ~ l l l l ~ - ~  11 .  

When A IS singular, the convention IS to take K(A) = X. AI\o, let 

denote the relatlve error In the perturbatton of A Then the relattve error rn the \elution can 
be bounded as 

4 mdtrix wrth a l a~ge  cond~t~on nt~mber I <  \ a d  to be 111 condrtioned For dn ill-condittonecl 
mdtrix. tllc rel'it~ve error i n  the \olut~on can be large, eten u her1 the [ ~ ~ I I L I ~ ~ J ~ I O I I  c E 15 \111;t11 
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For very \mall changec in the matrix. there may be very large changec In the answer It ihould 
be polnted out that a ldrge condltlon number does not quarantee a large relatlve error- 
(1 29) 15  'in upper bound-but a poorly condltloned matnx very often leads to unacceptable 
results 

Another Interpretation of the cond~tion number ~c obtalned as followr Let 

'lltli 

Recdl (see (4.8)) that 

l l  Axll M = max - 
~ 7 0  I1 x I 1  

I1 Axil 
m = min - 

s+o Ilxll 

Then the condition number can be written as 

I !.iui, for example, using the l 2  norm we can write 

VGL- 
K(A) = - 

V'XL 
where A,,, and k,,, are the largest and smallest e~genvalues, respect~vely, of AH A If A is 
self-adjolnt, then 

A,,, 
K(A) = -, 

where the e~genvalues now are of A. In the slgnal processing literature, reference is made 
to '1 matnx wlth a large eigenvalue cpread Thts is another way of saylng that the matrlx has 
'1 Idrge condition number 

If we now perturb Ax = b on the nght hand slde, replaclng b by b + A b  for some 
\mdl Ab, then the solution x is perturbed so we obtaln the equatlon 

A(x + Ax) = (b + Ab),  

where A(Ax) = Ab. Then we have 

which shows again how the relative error of the solution is related to the relative perturbation 
and the condition number: a large condition number has the potential of a large relative error, 
even for small changes in the right-hand side. 

Example 4.10.2 The machine eprllon tmZh is the smallest number on a computer that can be added 
to 1 O and obta~n a number larger than 1 0 It 1s a representation of the relative accuracy of computer 
'inthrnetic 

Suppose that b has a slngle element that 1s non-accurate, and all other elements are Integers 
Then ~ l A b ~ ~ / l ~ b ~ l  may be as large as E,,,,, Suppose that for some machine ern,, = 2TZ2, and that 
k ( A )  = 10' The solution could have a relat~ve error of 

n u s  simply storing the coefficients of the problem on this computer could lead to an error in the 
second significant digit in the solution, even if all other computations are canied out without any 
error! 
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If both the nght hand side and the left hand side of the equatlon are perturbed (as usually 
happens when real numbers are represented in a computer), the solution is computed for 
the equation 

(A +t-E)x = b + e e  

for perturbations t- E and ce. It can be shown (see exercise 4.10-42) that the relative error I ,  

bounded by 

where p = t-))E)j/)jA ) I  I \  the relative change In A and pt; = eJjejj/j)bjj is the relatibe change 
In b 

As a rough rule of thumb for determining the effect of the cond~tion number on the so- 
lution to an equation, the following applies Let p = loglo K(A) If the solution 1s computed 
to n  decimal places, then only about rz - p places can be considered to be accurate 

Example 4.10.3 Suppose double-prec:\ton artthmet~c i \  used to compute the solution to a linenl 
equation If n = 18 places are used In the computation. and the matnx has a condition number of 
k ( A )  = loh, then the computed solut~on IS  accurate only to about 12 places If K ( A )  = 10'~). then 
any solution obtatned 1s probably useless C1 

In practice, when solving Ax = b, it 1s always advisable to determine the condltlon 
number of A Of course, actually coinputlng the inverse to determ~ne the norm / /A- '  11 is 
impractical there 1s no guarantee that the Inverse obtalned 1s mean~ngful However, it 1s 
poss~ble to obtain rehable estimates of the condition number of an i? x n  matrlx uslng an 
algorithm that iequires O ( n 2 )  operation5 Thls algorithm is de.rcrlbed in [I611 and In [ I  141 
The condlhon number using the l2 norm can also be sellably computed using the SVD, t h ~ s  is 
Implemented in the con6 command of MATLAB An estimate of the reciprocal of the condl- 
tlon 1s available u\lng the MATLAB command rconc? ~f rcond(A) IS near 1 then A IS well 
conditioned 

Example 4.10.4 The Hilbert matrix that arises in polynomial approximation (as presented in sec- 
tion 3.6),  

1 ; i . . .  L' 
- 3 m+l 

i - ' i . . .  L 
2 1 4  m+? 

- - - . . . - 
r +  I r n l ?  ni+3 Z , n  i - 

15 notor~ously 111 condttioned F~gure 3 7 shows the condition number of the Htlbert matrix a? d 

functton of rn the condttton number goes up exponenttally with m. and for m = 12 any solution 

m 

F I ~ U I "  7 Cortti~tion of the Hllbert ni,rtrix 
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,)t the eqiidtioni becomes ersentially ucele5s In f'lct. the condition i i  approximately K(H,,)  = e''" 
Rec'luse of the rapld growth in condition number otherwi\e. orthogonal polynomialj such ai, Legendre 
p~iynoini&ls ihould be used tor polynomial apprcrximation C! 

The tiiverse of the H~lbert mdtrtx ir d~icussed In Mdn-Duen Choi, "Tncki or Treats w ~ t h  
tile H~lbert Mdtr~x," SIAM Remew, 9 5 2  301-312, 1983 

~.\arnple 1.10.5 An Intrepid but ill-informed engineer ha5 devised a rcheme by w h t ~ h  he plans to 
.~iid virtually unlimtted amounts of intormdtton over the telephone channel Every T ieconds he sends 
the \urn of n clorely spaced \musoids each wtth a different amplttude By encoding tntormation in 
the mplitudei,  he can send many bit\ per stgnal For example, lf 8 dmplitudes (repre\entlng 3 bits) 
.tre alloued wing n s~nu\oidal c~gnals, then 3n btts per symbol can be sent A11 that the receiver mu\t 
do is to ectlmate the orig~nal amplitudes, then map them back to h ~ t s  By Increasing n,  the engrneer 
dreams of send~ng millions of bits per second 

Alai,, the scheme Is i l l  ddvtied In the first place, channel noise plaiei a strict upper bound on 
[he  mount of information that can be transferred The channel Lapacity theorem for a channel wtth 
r'~ndwidth CV Hz and s~gnal to noise ratlo of S I N  bays that relidble transmlsston can only be achieved 
i ;  I ~ L  d'ita rate is less than the ~hanne l  cdpaclty, 

C = CV log,(l + S I N )  

However, even In a perfectly norreless channel (with S I N  = m) there IS l~tt le hope of recovering the 
intormatlon in any pract~cal way Let the 3ignal sent over one rymbol interval be 

By sampling this signal n times at t i ,  t?. . . . , in within one symbol time, a set of n equations in n 
~!nhnowns can he obtained: 

Figure 4.8: Condition number for a bad idea 

hl'i\ d i  n  become even moderately large, the matrix In thrs equation becomes 111 conditioned beyotld 
use tor most parameters of the problem Ac d particular example, let f,, = 2000 Hz and Af = 
50 Hz. and sample penodlcally at a rate so that a full period of the highest-frequency s~gndl IS 

Sampled F~gure 4 8 shows log (~(A, ) ) ,  where A, 1s the matrix of (4 31) For N = 10, the condition 
fi ~pproximately 3 x l o i 3 ,  which is too high for most practical uses 

As we have mentioned, direct computation of the least-squares solution 
( A ~ A ) - ' A ~  
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is discouraged Let us examine now why this 1s the case Assume that A  is a square matrix, 
which we  assume to be  ~nvex-tlble so that the condition number IS finite The  condition of 
number A  usmg the l2 norm is 

K ( A )  = &/&. 
while the condition of A ~ A  is 

where the eigenvalues are  of the matrix A H  A .  Thus, the condition of A H  A is the square of 
the condition of A. 

Example 4.10.6 Suppose that K ( A )  = 1000 (a generally acceptable value), and cmach = Then, 
In direction computation of a least-squares solut~on, the error In machine representation could be 
multlplled to become an error as large as (1000)'10-' = I The solution m~gh t  have no accurate 
dig~ts '  LI 

We mention two other facts about condition number. It has been shown 11601 that 
relative to the p norm, 

1 -- - IlEIlp min -. 
K ~ ( A )  A+E rlnguiar [ /A  l i p  

In other words, the condi t~on  number p a measure of how far the matrix A 1s away from 
an ill-condltloned matrix A  + E, relative to the slze of E Also, although the actual value 
of the condition number depends upon the particular norm used, a matrix whlch ir poorlq 
condltloned under one norm will also be poorly cond~tloned under another norm 

4.1 1 Inverse of a small-rank adjustment 

It may happen that for a matrix A  the inverse A - I  is known. and then A  is changed by the 
addltion of some rank 1 matrix to produce a matrix 

In this clrcumstance. it may be convenient to use what i i  known about A - I ,  rather than 
computing the inverse of B  from scratch This call be accompli\hed uslng the fol low~ng 
formula 

This is known as the matrix inversion lemma. the Sherman-Morrison formula. or some- 
times a5 Woodi7ur~ 's ~de~ztin 

More generally, if A .  B E M,,. and 

B = A + X R Y  

(where X i \  n x r .  Y 1s I x r z .  and R  I \  t x r ) , then the Inverse (if ~t exist\) can be computed 

by 

B - I  = (A + XRY)-I  = A - '  - A - ' X ( R  ' + Y A - ' X ) - ~ Y A  (4 33)  

If r 1s small enough compared with 17. then computation of the Inverses In this formula ma) 
be  much easler than d ~ r e c t  computation of the inverse of B We shall have occa\lon to use 
(4 33) many tzrnes In the deri\'ttton of the Kalman filter and for e\ttmation and detection 
problem\ In Gau\\tan noise A u\eful ~ d e n t ~ t y  thdt can be derived from thi\ I \  
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4.1 1 .1 An application: the RLS filter 

The matrix lnverslon lemma can be ured to provide dn update to the inverce ot the Gmmm~dn 
mdtrlx in d least-squares problem, to produce a simple beri~on of what is known as the 
recuriive least-iquares (RLS) adaptlve filter 

Consider the ledit-square\ hlter~ng problem po$ed in section 3  9. tn whlch signdl f [ i ]  

I ,  p d w d  through a hlter h [ t ]  to produce an output t [ t ] ,  

where the filter coeffictents are to be found to mlnlmize the leaut-uquares error between y[r] 
and ildes~red uignal d [ t ]  It was found there that thecoetficlents mtnirn~zing the least-squares 
error (or e [ t ]  = d [ t ]  - ~ [ t ] )  uatl\fy the normal equation 

Rh = A H d ,  (4 35) 

~vhzre A IS a data matrix, and 
N 

R = A ~ A  = TT: q[ i lqH[ i l .  
r=l 

with 

L.e t 

Computation of the coefficients is obtained from 

This least-squares solution assumes the availability of some set of data q [ l ] .  q [ 2 ] ,  . . . , 
q [ N ]  (where the prewindowing method is used), and the computations are done on the 
entire block of data. 

This least-squares technique is turned into an adaptive algorithm by computing a new 
update to h as new data become available. Assume that a sequence of data q [ l ] ,  q [ 2 ] ,  . . . , 
q[ t ]  up to time t is available. We define the Grammian matrix R [ t ]  as 

The least-squares filter coefficients that are computed using the data up to time t  are indicated 
by h [ t ] .  The term AHd from ( 4 . 3 3 ,  using the data up to time t ,  we will denote p[ t ] ,  where 

i 

p[tl = A H d  = x q [ i ] d [ i ]  = p[t - 11 + q [ t ] d [ t ] .  
r = l  

Then by (4.35) we have 

At each time step t ,  a new filter update is computed. The algorithm is now adaptive 
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As the algorithm now stands, it requires a large number of computatlons at each time 
step, since R-'[t] must be computed each tlme The complexity may be considerably 
reduced by uslng the Sherman-Momson formula to obtain an adaptwe recursrve algor~thm 
We can break R[r]  up as 

Thus R [ t ]  is obta~ned from R[r - I j by a rank-one update. By the Sherman-Momson 
formula, 

For notational convenience, let 

and 

Then (4.36) becomes 

The vector k[r] IS referred to as the Kulnzun gulrz vector, or sometimes as sirnpiy the gain 
vector. 

The coefficients for the filter can be computed as 

The term P [ t ] p [ t  - I ]  in this can be written using (4.38) as 

Substituting this into (4.39), and using the fact that 

(see exercise 4.1 I -50), we obtain 

The quantity 

represents the filter error when the output of the filter uslng data ctt tline I 1s used with 
the trlter coefficients from t~rne t - I Becmce the filter ha\ not been upddted uilng the 
dat'i dl  tllne r ,  t h ~ \  enor I \  \ornetline\ termed the ( I  l?rimr-i ccirniatioil r r t o ~ .  ~ h r l e  the errol 
rl[r] - q"[r]h[r] I \  termed thc ciporftJiiori c\frrirutror~ eirr,, 
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Getting the RLS algorithm started 

In order to get the dlgortthm ctarted, the Inverse R[o]-'  is needed To do t h ~ i  prectsely 
, o ~ ~ l d  requlre the Inkersion of d matrix Rather than expend these computations, we make 
&,,I ~pproxlrnatlon Let ui 41ghtly perturb the correldtton matr~x R [ t ]  by wrltlng 

Rltj = 2 q[l]qu[ i I  + 61 
i = 1  

i,,r borne small 6 Then 
R[O] = 81, 

,(I that the lnrtial ~nverse is 
P[O] = s - ' I .  

AS the algorithm progresies, the error made in approximating P[0]  becomes leqs and less 
\~gnlflcant It 15 al\o common to assume that the in~tial coefficients of the filter are all zero, 
h[Ol = 0  

On the basis of these assumptions, the RLS algonthm 1s iummanzed In dlgorithm 4 1 

Algorithm 4.1 The RLS algorithm 

Initialization: 
Choose a small positive 6. 
S e t P [ O ] = S - ' 1  h [O]=O 

For r = 1 ,  2, 3, . . . , compute 

P [ t ]  = P [ t  - 11 - k [ t ] q H [ t ] p [ t  - 1 1  

MATLAB code to initialize and run the RLS algorithm is shown in algorithm 4.2 

Algorithm 4.2 The RLS algorlthnl (MATLAB implementation) 
File: r l s  .in 

rlsinit .m 

A discussion of the convergence of the RLS algorithm is provided in 11321. 

4.1 1.2 Two RLS applications 

We provide two brief examples of the RLS. The first is in an equalizer (inverse system 
ldentification) application, the second in a system identification application. 

RLS Equalizer 

Consider the system shown in figure 4.9. A sequence of random bits b[ t]  is passed through 
a channel with unknown response, and white noise v [ t ]  is added to the signal at the output 
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Figure 4.9: RLS adaptive equalizer 

to produce the recelved signal r [ t ] ,  where v [ r ]  is a zero-mean slgnal with variance a;? At 
the receiver, the signal 1s passed through an equalizer that attempts to match the inverse of 
the channel response It is des~red that the output of the equal~zer, )If], match some delayed 
version of the input data, d [ r ]  = b [ i  - M ]  

For the sake of comparing the opttmum hlter with the results of the RLS algorithm. 
we will first compute the optimum coefficlents of the filter under the assumption that the 
channel is a known FIR fllter with p  coefficients So, fi, . f P - ,  If a tnlnlrnum mean- 
squares FIR filter (Wener filter) with n7 coefficlents IS used as the equdlizer, the optlmal 
equalizer coefficlents are obtained (see cectton 3 11) from 

where R = [r , , ]  is the m x rn correlation of x [ t ]  with x [ t ] .  where 

x[f] = [ r [ t ] ,  r [ r  - I ] .  . . . . r [ f  - n* + l ] j T ,  

and p is the cross-correlation between x[t] and the des~red signal d[tJ  Assuming that the 
input data 1s an independent sequence of real btnary bits (li-rl) with zero mean, then 

where f i k - ( i - , ) i  is taken to be zero for indices outside tlie range 10. p  - I]. The cross- 
correlation vector p is 

where f B  i \  the time-reversed version of the channel filter coefficlents. and the zeros corre- 
spond to the length of the delay A4 

As a particular example, consider the channel in which f = { 2. 1.  - 2) (where the first 
tap 1s taken at k = 1) with an equalizer of n~ = 1 1  taps The optlmum filter with n = 1 I 
coefficlents is shown in figure 4 lO(a), where a delay of M = 6 has been selected and the 
noi\e variance is a," = 0 001 The minimum mean-squared error is, from (3 63), 

The results of running the RLS adaptive filter with 1 1 unknown coefficients are fhown 
in figure 4 10(b), \howrng the medn-squared error for the RLS filter ds tt ddapts, along w~th  
the mlnimum mean-squared error for the optimal blter Shown in the figure 1s an ensemble 
a\erage of the square of the a prrorr error t[r] ,  averaged over 200 runs of the algorithm 
with the initla1 cond~tioni reset edch time The initial covartance wa\ \et using S = 0 01 
The plot begtrls ~ t t  ttme t = 6. corre\ponding to when the fir\t nonzero \ample was pa\\ed 
to the ddapttve ftlter dlgortthm Ob\erve that the 'ilgorithm ha\ converged w~thin about 2m 
iteratiom Figure 4 IO(c) \how$ the KLS ey~ldiizer coefficient\ dfter 100 lterdtioni 



k 

(a) Opt~mal filter coetfic~enti 

number of iterations 

(b)  Average square error 

(c) RLS filter coefficients 

Figure 4.10: Illustration of RLS equalizer performance 
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Figure 4.1 I: System identification using the RLS adaptive filte~ 

Plant identification 

The second ~llustratlon of the RLS 1s In a forward system ldentificatlon appl~cation. ai 
shown in figure 4 1 1  The same Input is provlded to both the ullknown system and the RLS 
filte~, and the RLS filter adapts unt~l its output matches the unknown system Figure 4 12(a) 
tllustrates an example Impulse response. wlth the ensemble-averaged square error shown 
In figure 4.12(b) and the RLS estlmate of the filter response with an 1 1-tap filter in fig- 
ure 4 12(c) Observe that the last few coefficients adapt to zero, slnce they are not needed 

4.1 2 Inverse of a block (partitioned) matrix 

A discussion of simple operattons of block matrlces appears in iectlon C 4 In thls section 
we discuss Inverses of block matnces 

If A 1s partit~oned as 

then 

where S = - A ~ ~ A ~ ~ A ~ ~  S IS known ar the Sclqur comnpl~mem?t of A (see also exer- 
cises 3 3-1 and 4 12-57) Equation (4 42) can be val~dated by multipl~cation When AZ2 i$ 

~nverttble, the (1. 1) block of A-'  can also be written as (A I 1 - A I ~ ~ g  A2' )-I. uslng the 
matrix inversion lemma 

In the particular case in which the block is Lero. 

Another useful form for the inverse of a partltloned matnx 1s glven by the follow~ng. 

Lemma 4.2 For a murrlx A parrrtlorzc~d us rn (4  411, the inverse I S  

Proof Mult~plrcatton and aiidit~on a i  \hewn In (4 44) leadi to (4 42). CJ 



(a) Optimal filter coefficients 

number of iterations 

(b) Average square error 

(c) RLS filter coefficients 

Figure 4.12: Illustration of system identification using the RLS filter 
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The formulas for inverses of block matrlces wlll be extenrively used in the derivation 
of the Kalman filter We will beg~n wme of that work here Let X and Y be random vector\ 
with covariance matrlces K , ,  and R, ,  , respect~vely, and let Z = [ X T ,  Y r ]  be a random 
vector Then 

R;: = cov(Z) = El (Z - ,uCL;)(Z - ,u,)T] 

Then by (4.42) 

where S = R, - R,,R;," R,, 1s the Schur complement. Another representation from 
lemma 4.2 is 

We can further use the matrix inversion lemma (4.33) to rewrite some of the components 
of (4.46). The inverse of the Schur complement can be written 

The inverse in the upper left corner element of R_;' can be written as 

Example 4.12.1 In section 1 6 1 we found d formula fol f ( x I Y  = i) &hen X and Y are lo~ntly 
d~ctributed scalar Gau5sian random vanables We can u<e the block ~nverse formula to general~ze t h ~ s  
result to Gausran random vectors Let X and V be real Gatisitan random vectors of d ~ m e n s ~ o n  rn and 
n respect~vely Then 

L i 

is a Gaussian random vector with 

E[Z] = p, = 

and 

K - .  = coc(z) = E [ ( Z  - p)(Z - p ) T ]  

'The density of Z (see section 1.6) is 

I 
f ( z )  = f i x .  y) = - - (2 - p,: j T  K l '  (z - p,.) 

(2;l),'/'/ R:: l'i"xP 

 here / I  = 117 + 11 If V = 4 1 \  obserked. and u e  u l \h  to obtd~n .in updated dl\trrhut~on on X then 
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Let us examine the exponent E of this conditional density. Using (4.45), we obtain 

= ( X  - p , j 7  (H,' + I?;: R,,s-'R,,R;')(x - p, )  - ?(x - p , ) T ~ ; i i ~ , , ~ - ' ( y  - p,j +stuff 

( X  - ~ , ) ' A ( x  - p , )  A- ( X  - p , ) b  + stuff. (4.47) 

,tl,crt. . " \ t ~ ~ f f '  doe5 not depend upon u By completing the q u a r e  (ds descr~bed rn appendix B), we 
i ~ i l i l  that 

where. using (4 I?) ,  

z = 4 - ' b =  (R, ,  + R,,R; 'R, . )(R, 'R, ,s-I)(Y -1,) 

= -R,,R:'(Y - P,) 

I? ,\cd on the form of the iolution, we conclude that f (xjy) 1s G a u \ w n  d~st r~buted wlth mean 

E ~ X I Y I  = pr + R , , R , ' ( Y  - p , )  ( 4  48) 

~nct covariance 

It  is interesting to compare the results in (4.48) and (4.49) with the analogous results for 
conditional scalar random variables presented in equations (1.53) and ( I  .54) in section 1.6.1. 

4.12.1 Application: Linear models 

Let X be a real Gaussian random vector with E[X] = p, and cov(X) = R,, and let u be a 
real zero-mean Gaussian random vector with COV(Y) = R,. Let 

for  some known matrix H .  Then (see exercise 4.12-58), 

R,  = cov(y) = H R , H ~  + R, and p, = E[y] = H p ,  (4.5 1 ) 

Gwen a measurement of Y = y, the random vector XIY = y is Gaussian with mean 
(by (4.48) 

E[XIY = yl = px + R x H T ( H ~ , H T  + R,)-'(y - H p , )  (4.53) 

and covariance 

We can use E[XlY -- y] as an estimate of X, based upon the measurement y. Thus we 
denote 

This estimate is known as the Bayes estimate. The error E = X - 2 between the true value 
of X and the estimate 2 satisfies 

E [ ~ a ~ ]  = o (4.55) 
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Thus, the esttmate 2 (after removlng the mean) sat~sfies the orthogonality theorem, with the 
error belng orthogonal to the estlmate 

From thts potnt, arriving at the Kalman filter is essenttally just one more step However, 
the final development 1s deferred to chapter 13, where it can be placed in ~ t s  most useful 
context 

4.1 3 Exercises 

4.1 - 1 Write the differential equation 

x ( t )  - 2 x ( t )  - x( i )  = b ( t )  
In operator form. 

4 1-2 Show that the solut~on to the differential equatlon 

Thus, the inverse of the differential operator A = - a 1s an tntegral operator 

4 1-3 12091 Define the functtonal f on L2[0 1]  to be 

,,XI = a , r , l  b , s ,x , s ,d7dt ,  

where a .  h E L2[0.  1 1  Show that f is a bounded h e a r  functtonal on L2[0 ,  I],  and find an 
element y E L2[0 ,  I ]  such that 

f ( x )  = (x, )') 

4 2-4 Determine the l , ,  12 ,  Frobenlus. and I ,  norm5 of the following matnces 

4 2-5 Show that (4  5 )  1s true, that IS, that the I, niatrlx nonn 1s the largest row sum 

4.2-6 Show that (4.6) is true; that is. that the 1 ,  matrix norm is the largest column sum. 

4 2-7 Show that the functton f defined In ( 4  4) 1s a conttnuous functton of a ,  Hlnt Show that 
/f(at? , a , , ) - f ( B ~ .  / I - I  C l ~ , , - B , , l ) f o r s o m e M  

4.2-8 12381 Using lemma 4.1, show that: 

(a) If X IS a finlte-dimensiondl normed ltnear space, 11 1s complete (I  e . tt 1s a Banach space) 
Hint Let { z L )  be a Cauchy \equence In X Write ZL a i  a llnear comb~nat~on of the basts 
vectors {x , )  uslng the coefficients (mi,). and apply the lemma to show that {ai,]  1s d 

Cduchy sequence of real numbers, and hence 1s convergent 

(b) If X 15 a normed ltnear zpace.  how that every finite-dtmen,~onal subspace M of X 1s 
closed 

4 2-9 Show that not all norms kattsfy the submulttplrcattve plopert) (Htnt Stmply proLlde a slngle 
counterexdmple ) 

4 2-1 0 Show that tor a q u a r e  mdtrix I' wttjfytng / /  F I /  c. 1 for a nornt satl\fylng the rnultipl~cat~ve 
property, 

Hint: Use tltz Neuinann exp;~ns~on. 



4.2- I I Show that if  / /  . / /  i s  a norm satisfying the submultiplicative property and F  is a matrix with 
/I F /I i I .  then I - F is nonsingular. Hint: If I - F is singular, there is a vector x such that 
( I  - F ) x  = 0. 

4 3- 12 Show for 'I \quare matrtx F wtth 11 F  11 .: 1 .  where the norm iattsfies the ~ubmult~pltcatrve 
property. that 

Hlnt: Show that I - ( I  - F ) - '  = - F ( I  - F ) - I .  

1 2- 13 Let A be nonslngular and let E be such that 1IA-I Eij i 1 

(a) Show that A + E IS nonsingular Hlnt Use exerctse 4 2-1 1 

(b) Let F  = - A - I  E Show that F satisfies 

(c) Shon that (A + E)-I - A -  = - A - ' E ( A  + E - I )  

(d) Flnallv. shon that 

1 2 - 1 1  Provtde examples demonstrat~ng that the separate ~nequalltles tn (4 lo),  ( 4  1 I ) ,  (4 12), and 
(4  13) can be achteved w ~ t h  equal~ty 

42-15 Show that \/All; = tr(AHA) 

4 2- 16 [I  141 For an rn x m nlatrlx A and a nonLero rrz x 1 vector x, show that 

4 1- 17 Let B be a submatnx of A. Show that 11 B 1 1 ,  5 11 A 11,  

4 2- 18 Let P be a projection operator (see sectton 2 13) Show that 11 P 11 = 1 for a norm satrifylng 
the subrnultrplicat~ve property 

4.2-19 Show that for an m x m matrix D. 

Hint: Use Cauchy-Schwarz. 

4 2-20 11181 Show that for m x m matnces A and B, 

4.2-21 Weighted norms We have seen that we can define a weighted norm by llxliw = 11 Wxll. 
Show that using the we~ghted norm I/ 11 w ,  the corresponding subordinate matrlx norm IF  

IIAIIw = l I W A W - ' / /  

4.2-22 A matrix A such that //Ax11 = Ilxll is called norm-preserving or isomerric. Show that a square 
matrix A is isometric in the spectral norm if and only if it is orthogonal (or unitary if A is 
complex). 
Note: an orthogonal matrix A satisfies A' A = I. A unitary matrix A satisfies AH A = I .  

12-23  (11 141) Show that if A E RmXn has rank n then I I A ( A ~ A ) - ' A " I I z  = I 

4 3-24 (Fintte d~mensional adjoints) 

(a) Show that the adjotnt In (4 15) 1s correct 

(b) Show that (4 17) follows from (4 16) 
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4.3-25 Show that (A")-' = (A-I)* (when the inverse exists). 

4.3-26 Let X = Y = Lz[O. I].  and define the ltnear operator A: X -+ Y by 

Ax = g k ( [ .  T)X(T)  d r .  

Show that the adjotnt operator uslng the usual integral tnner product IS 

4 3-27 [209] Least squares Suppose a ltneardynamtc system is governed by the differenttai equation 
x(t) = Ax(r) + b  f ( f )  Assume the tntttal state IS x(0) = 0 It IS deslred to provide an Input 
stgnal f ( t )  to move the state at ttme T to x(T) = x~ The expliclt solutton of the state IS 

x(T)  =r pA"-"b 

We define the operator L: LZIO. T ]  -+ R" by 

We desire to find a mlntmum-energy Input that moves to the target posttton The problem 
can be expressed a\ find f such that L f = XT, subject to 11 f 11 betng mintmum 

(a) Show that the adjotnt operator L* IS L* = bTeAT'7-r' Hint The appropriate tnner 
product 1s over Rn , m c e  L f E B" 

(b) Show that LL* = J: e ~ ' ~ - " b b ~ e ' ' ~ ' ~ - "  df 

(c) Of the po.;stbie control stgnals, we seek that whtch mlnrmtzes the slgnal energy 

Daermtne an expresston for the mintmum-energy f ( 1 )  Htnt By theorem 4 4 f = L*z 
for some z 

4 3-28 Let A H -+ H be a bounded ltnear operator on a Hilbert space H Show that 

(a) The adjotnt operator A* IS ]]near 

(b) The adjotnt operator A "  15 bounded (uctng the rnduced norm) 

(c) IlAIi = liA*ll 

4.5-29 For the matrix 

detem~tne the four fundamental wbspacez 

4 5-30 Show that the nullspace of an operator A is a vector \pace 

4.5-3 1 Prove theorem 4.7 

4.5-32 Prove theorem 4.8 

4.6-34 S h < ~ w  that if the linear operator :I: X -+ Y has an inverse. then the inverw i \  linear. 
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46-35 Show that if A  has both a left inverse and a nght inverse, they must be the wme 

4 6-36 If AR = 0 for nltttrice\ A  and B ,  \how that the R ( B )  c . v ( A )  

- 
4.9-37 (13331) On pseudoinverses: 

(a) Show that, if A  has independent columns, its left inverse ( A ' i l )  - '  A7 is its pseucioinverse. 

lb) Show that, if A  has independent rows, its right inverse A T ( A A r ) - '  is its pseudoinverse. 

4 9-38 (13331) Explain why AA and A A are projection matnce\ What fundamental iub\p'ices do 
they project onto' 

4 10-39 Show that K ( A B )  ( K ( A ) K ( B ) ,  and that K ( ~ A )  = K ( A )  where a  is \erne nonLero scalar 
(Hence, that icallng the whole matnx cannot irnprove the condttron nuntber ) 

4 10-40 Demonstrate that the determinant of a rnatrlx cannot be used to detennlne 111 condit~oning 
(other than detennintng rf a matnx is singular) by considering two ca\es 

(a) Find the determinant and K,(B,) for the matrix 

(The notatlon K, denotec the condlt~on number computed ustng the L" norm ) 

(b) Find the determinant and condition number of the matnx 

4 10-41 If U 1s unitary and the spectral norm is used, show that 

4.10-42 Show that (4.30) is true. 

4.10-43 This exercise deals with the relative error in solving sets of linear equations subject to 
perturbations. 

(a) Show that if ljcA-'Ell < 1, then A-' - ( A  + c E ) - '  = C z l ( - i ) k + i ( ~ ~ - i  E ) ~ .  

(b) Show that 

(c) Hence, show that if ( A  + c  E)x  = b, then 

where q = A- 'b .  

4 10-34 Suppose that an approxrmate solution S is found to the system of equations Ax = b, so that 
A% doe., not equal b exactly There 1% a restdual vector r = b - AS Based on the restdual 
(which can be readily computed), how close 1s the approximate solution % to the true solutlon 
x3 Show that the relatlve error is bounded by 
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If A is well conditioned, the relative error of the solution 1s not much different than the 
relative size of the residual However, ~f A is 111 conditioned, even a solution yield~ng a small 
residual could be far from the true solution 

4 10-45 S h o ~  that a unitary matrlx U is perfectly condit~oned for the spectral norm ( K ( U )  = I), with 
respect to the \pectral norm For the condition wtth reypect to the Frobenius norm, show that 
K ( U )  = n for an n x ?7 unttary matnx 

4.1 1-46 Show that 

B-1 =: A - 1  - B - ~ ( B  - A ) A - ~  

4.1 1-47 Show that (4.32) is true. 

4.1 1-48 Show that (4.33) is true 

4.1 1-49 Show that (4.34) is true 

4.1 1-50 Show that the RLS gain of (4.37) can be written as 

4 11 -5 1 In many RLS applications, ~t IS desirable to weight the error, so that more recent error terms 
count for nlore The total squared error is computed a4 

where h is a constant less than 1-a "forgetting factor" This weighting leads to a Grammlan 
matrix and correlat~on vector 

Show that under this weighting, the RLS algonthm can be expressed as 

4 1 1-52 (Computer exercise) Modtfy the r i  s . m function \o that :t can incorporate a weighting factor 
h as In exercise 4 1 1-5 1 

4 1 1-53 Constcier two sequences of vector? 

Sl .1 .  Sj .2 ,  . . . . S l  h' 

and 
S? , . S 2 . 1 .  . . . , S 2 . h .  

(a) Determine a transformation 7' \o  that the overall iquared dt\tance 

is minirni~eci. (I-lint: Use the fact that for 3 scalar J .  J -- t r [ J ] .  Use the gradient formula\ 
iir :~ppendixFE.) 
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(b )  Now t'ike )our solution and make ~t recur\lve and coniputat~onally ethcrent Determine 
initial conciition\ for the recurwe algorithm 

(i-) Code 'ind test the algorithm rn MATLAB 

1 1 1-54 (Computerexerclse) Based upon the block d~agram shown in figure 4 9, wnte a MATLAB pro- 
gram to identify the Inverse response of a system wlth impulse response { 2. 3. 4. - 3,  - 2)  
(itartrng from coefficrent I ) Use binary i l  values of input Compare the recults, of the pro- 
grain with the optrmum filter coeffic~ents Determine the eftect of d~fferent energy In the 
addrtive norse 

1 1 1-55 (Computer exerc~se) Based upon the block diagram In figure 4 1 1, wnte a MATLAB program 
to rdentify the system w ~ t h  lmpuise re\ponse (1.2.  3.4.51 Examlne the effect of having the 
RLS filter length shorter than the length of the des~red impulse response 

1 11-56 Show that (4 42) is true 

J 11-57 Let an n x n covarrance ntatrlx be partitioned as 

for a scalar r,,. Show that R;' can be obtained recurs~vely from R;!, by 

where s, 1s the Schur complement 

yn = r,, - r: R:, r, 

4 12-58 Let X be a real Gaussian random vector with E[X] = p,  and cov(X) = R,, and let v be a 
real zero-mean Gaussian random vector with COV(Y) = R, Let 

for some known matrix H 

(a) Show that 

R, = cov(Y) = H R , H ~  + R, and pLL* = E[Y] = Hp,, 

and 

4.12-59 Show that (4.55) is true. 

4 12-60 Another approach to estlmatrng x  given an observation from the linear model (4 50) 1s to 
find a value of x to minimize the quadratic form 

which ir a comblned measure of how close x is to its mean and how close y is to ~ t s  
mean 

(a) Using the gradient techniques of section E. 1 ,  determine ri that minimizes J ( x ) .  Compare 
with the solution in (4.53). 

(b) Determine the mlnimlzlng value of J ( x )  by completing the square Compare wlth the 
prevlous solution and with (4 53) 
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4.1 4 References 

The Riesz representation theorem alluded to in section 4.1.1 is proven, for example, in 12091. 
The concepts of the four fundamental subspaces of a linear operator are clearly described 
in [333] and 12091. A good discussion of matrix operator norms is found in 11141 and 12453. 
Theorem 4.2 and its proof are taken from 12381. Our discussion of matrix condition number 
is drawn mostly from [ I  141. An early (but still important) discussion of matrix computations 
is [369]. 

Pseudoinverses are exhaustively covered in S. L. Campbell and C. D. Meyer, Jr., Gen- 
eralized Inverses of Linear Trunsforn~ations (New York: Dover, 1979). In the case of least 
squares when A does not have full column rank or m < n. see [I 141. Our discussion of rank 
is drawn from [333] and 11421. Inverses of partitioned matrices are discussed, for example, 
in [291]. The RLS algorithm is well developed in 11321. The linear model discussed in 
section 4.12.1 appears also in 1411. 



Chapter 5 

Some Important 
Matrix Factorizations 

Ccrtain matrix factorizations arise commonly enough in matrix analysis in general, and 
signal processing in particular, that they warrant specific attention. In this chapter, factoriza- 
tions that form the heart of many signal processing routines are discussed. The factorizations 
presented in this chapter are as follows: 

LU. A square matrix A can be factored as A = L U ,  where L is a lower-triangular matrix 
with ones on the main diagonal and U is upper triangular. Its main application is in the 
numerical solution of the problem Ax = b. 

Cholesky. A Hermitian (symmetric) positive-definite matrix A can be factored as 

A = L L H ,  

where L is lower triangular. The Cholesky factors of a matrix A may be regarded as the 
"square root" of the matrix. Closely related is the factorization A = L D L ~ ,  where D  is 
diagonal, or A = u DU H ,  where U  is upper triangular. The Cholesky factorization is used 
in simulation (to compute a vector noise of desired covariance) and in some estimation and 
Kalman filtering routines. 

QR. A general matrix A can be factored as 

where Q is a unitary matrix, Q Q = I, and R is upper triangular. The QR factorization is 
used in the solution of least-squares problems. 

A factorization important enough to warrant its own chapter is the singular value 
decomposition (SVD), in which A is factored as 

here U  and V are unitary and C is diagonal. The SVD and its applications are presented 
in chapter 7. 

5.1 The LU factorization 

We have seen, and will see, several instances where linear equations of the form 
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arlse In slgnal processing In many circumstances, the rnatrlx A  has special structure for 
wh~ch specral algorithms can be employed to find the solution x. such as belng a Toeplltz, 
Vandennonde, or Hankel matrix When A lacks such specla1 structure-or IS not known to 
have a specral structure-then a general algorithm must be employed The LU factorlzat~on 
1s the preferred numerical method used to solve a general matnx llnear equatlon For dn 
m x m rnatrtx A,  5olving the h e a r  equatlon requrrer 0(1n3)  operations (Matrrccs w ~ t h  
particular structure, such as a Toepl~tz or Hankel matnx, may requlre only 0 (nz2) operat~onc 
for solutron If A is Herm~tlan and known to be posltlve definite, then the Cholesky factor- 
lzatlon is preferred over the LU factor~zat~on approach ) The solut~on of (5 1) 1s obtalned 
wrtlzour expl~cltly findlng A - ' .  slnce findlng A-' then multiply~ng ~ - ' b  actually requlres 
more computat~ons than solutlon vla the LU factorization 

The LU factonzatlon of an nz x nz rnatrlx A 1s 

P A  = L U ,  (5.21 

where L is lower triangular with ones on the main diagonal and U is upper triangular, 

and P  1s a permutatron matnx whlch represents thepzvotlng that take5 place In the factonza- 
tron As dtscusred below, the purpose of pivoting 1s to stab~llze the numerical computations 
Slnce permutauon matrlces are orthogonal (see 8 2), t h ~ s  can also be wrltten as 

A  = P ~ L U  

Using the LU decomposition, (5.1) can be solved as follows. First. write (5.1) using (5.2) 
as LUX = Pb, and let U x  = y. This leads to the system 

This is a triangular system of equations, 

wh~ch can be easlly solved. From the first row, 
CI !' = - =c1 
11 I 

srnce L has ones on the main diagonal Knowlng I 1 .  the second equatlon 

can be easily solved: 
c: - /?ly, 

\'2 = = C? - 12,y, 
122 

The ~ t h  eqiiatlon can be d v e d  as 
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rhii procedure l i  called fonvcrrd rub,trtutrorl, and it can be computed in approx~mately 
,,,"/:! Moatlng operation5 

Once 15 2) 15 5olved for y, then the ttnal colutton can be obtained by solv~ng 

This is an upper triangular system of equations, and can be readily solved using buck 
sl~hctit~tric~n: 

I 
x,, = - Y177 r 

U r n m  

Thr5 computation requires approximately m2/2  floattng operations. Clearly, solution of 
( 5  3) require\ that there be no zeros on the diagonals of U The d~agonal elements of U are 
i'tlled the pzvots 

I f  there are equations involving d~n'erent nght-hand s~des,  such as 

then the solutions can be found using the same LU decomposition for A. Thus xl can 
be obtalned In 0(un2)  operations by forward and backward substitution, as can x2, after 
the L,U factonzation is obtained. This operation count is essentially the same as would be 
nece\sary to compute A - I  bI ~f A-' were explicitly known. Not only that, but the solution via 
the LU factorization has better numerical properties than explicitly computing the inverse 
anti multiplying. For this reason, the following has been suggested as a rule of thumb for a 
good numerical analyst: 

Never explicitly invert a matrix numerically. 

5.1.1 Computing the determinant using the LU factorization 

The determinant of the matrix A can also be computed using the factorization 
m 

det(A) = d e t ( f T  LC') = det(P) det(Lj det(U) = dz n u , ,  . 
t=I  

where the sign is determined by the number of row transpositions in P. For matrices with 
very large or very small elements, the log of the absolute value of the determinant can be 
computed as 

,n . . . 

log / det(A)l = log 1uii/ 
i =  l 
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5.1.2 Computing the LU factorization 

The LU factor~zation is descrrbed in virtually every book on linear algebra and numerical 
analysis A particularly complete description, including roundoff analysis, is provided In 
11 141 This sectlon is included to provide insight Into how the algorithm works, and d\ 

an aid for those who may be developing numerical l~braries for new processors The LL 
factoriz,ttion of an rn x rn matrix can be computed in approximately ?nz3 floating operatron\ 

The LU decompositron IS understood best by means of Gaussian eltmination In Gau+ 
slan eliminat~on, a matrix is modified using row operat~ons to produce a matrix that is upper 
triangular. this produces the U rnatnx (The man Gauss is brlefly introduced in box 5 1 ) By 
keep~ng track of the row operations, the L matrlx can be revealed A row operation consists 
of replacrng a row of a matrix wltlz a lrnear comhlnatlorz ofotlzer rows For a matrix A 
wntten in terms of tts rows ds 

a row operation is of the forin 

where cr is some scalar. A row operation (being a linear combination of rows) leaves the 
row space unchanged 

1 Box 5.1: Carl Friedrich Gauss (1777-1855) 

Carl Friednch Gauss may have been the greatest niathematrclan of all ttme 
Gaussran eltminatron, which bears his name. IS but a minor point among his 
many contributrons. 

A prodigy, at a young age he sumined the numbers 1 + 2 + . + 100 
(a task given by a teacher as busy-work) in a matter of moments uslng the 
formula n ( i z 4  1)/2. wh~ch he derlved for h~mself on the spot He independently 
developed the method of least squares (which was later used to plot the path of 
the asteroid Ceres), and developed a technique for constructing the 17-sided 
regular polygon uslng compass and straightedge, before he was nineteen years 
old The latter problem had been unsolved for more than 2000 years 

His doctoral drssertation proved the fundamental theorem of algebra. 
that every polynornral of degree n with real coefficients has n solutrons over 
the complex numbers He produced a work on number theory, Dzryur~rtrnnef 
nrrthmet~cae, in which he int~oduced the concept of congruences, and pre- 
qented results on qiradratic reciprocity and the fundamental theorem of dnth- 
metrc He studied the d~stribution of prrmes, elllpttc funct~on\. and made 
astrono~nrcal calculation\ 

Caw5 published much let\ than he actually created HI\ seal bore the 
inotto puuca red n7urmru-"few. but npe" So insightful and creative (and 
unpublr\hed) wai, he that for tile fir\t half of the n~neteenth century when a 
neu development wa\ dnnounied. t t  wa\ frequently d~qcovered that Gail\\ 
had fount] r t  ear lie^ but left i t  unp~~hlished 
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In the LU fdcton~at~on, row operation\ \ucce\\rvely pidoe zero4 down the column\ rn 
~ c h  a WAY a i  to leave an upper-tnanguldr matrix U Keep~ng track of the row operatlons 
ernplioyed lead\ to the matrix L The LU deiompo\~t~on i \  ~lluitrated uilng d 3 x 3 matrix 
Suppo\e 

A =  6 
4 -8 -3 r : I 

To t r~ni torm this to an upper-trranguldr mdtnx, we must zero the elements that currently 
hdve the value\ 6 and 4 In the hrst column, and -8 In the second column 

1 The fir\t \tep rr to mod~fy / row 2 1 by 

/ row 2 j c / row 2 / - (3) /  row 1 / 
The number 3. wh~ch 15 / a l  I ,  1s called a rnrlltlpller (The ca\e when the multlpl~er 
cannot be computed becauce of div~slon by zero IS d ~ s c u ~ s e d  below ) The first step 
producej 

which, when inserted back in the matrix, gives 

2. Proceeding down the first column, the next step is to modify / row 3 / by 

c-- I*owl- ( 2 ) [ r o w J  
This produces the matrix 

3. The final step is to modify the second column and j] by 

The result is that A has been transformed into the upper triangular matrix 

.rite diagonal elements of U are known as the pivots. 
The U matrix is revealed explicitly by this process. To determine L, the steps of 

elimination are represented in terms of matrix multiplication. This is for expository purposes 
only. as a means of presenting the LU factorization. The first modified matrix can be 
represented as 
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The matnx E l  t i  called an elementary matrix, whlch 1s a matnx that 1s an ~den t~ ty  except for 
a single off-dlagonal element Elementary matrlces applled to the left of a matrlx represent 
row operations on that matrlx 

The next step can be written as 

[d 1 ;;] = [ A  :' :] [; :4 = E 2 E l A .  
0 -16 7 -2 0 1 4 -8 -3 

The final step is 

Solving this for A, we obtain 

It is straightforward to verify that the inverses of the elementary matme\ are obtalned by 
slmply changlng the slgn of the off-d~agonal element, 

and that 

Observe that L 1s lower triangular, and that the elements of L In the lower trlangle are 
exactly the multlplier values I , ,  = a,,/a,, computed In the Gauss~an ellm~natlon Thus 

Pivoting 

it 1s possible, even when the matnx 1s well conditioned. for the procedure just deccrlbed to 
be numerically poor Severe roundoff problems can result ~f the LU factorlzat~on is used as 
just described on some matrlcei (see exerclse 5 1-4) The problem 1s that In the computation 

of the multlpller I , ,  = a,, la,,  , ] f a  pivot (the denommator of the multlplier) 1s very srnall In 
comparrson wrth the numerator of the mult~pl~er,  a large multrpl~er reiults Thls could lead to 
roundoff problems The solutlon to thls problem of havlng a poorly conditioned algonthm. 
and the solutlon to dlvlslon by zero In the multlpl~ers. 1s found by ~ E ~ I T ~ U ~ I I Z ~  rhr roE c of rlz~ 
rlzutrrx ro tlzat 11ze I?lvor I r  t l z ~  lurgecr (117 ~hcolurc~ \~nllrc) elerilent in  rlw unredut ed par, of 
the kth colunziz If the large\t element In the Xth column IS zero to mach~ne accuracy. then 
the matrtx I \  4ingular 

To repeat the example wlth pivoting, we begln by ~nterchangtng the firit two row\ of 
A to put 6 (the largest element ~n the first column) on the first rou The ~litercliange I \  done 
bb mean\ of the permutation matrlx PI: (\ee cect~on 8 2). M here 
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t;limindtion in the hrst column IS dccompl~shed by the two steps 

w hich In matrix nvtatlon ic 

E 2 E I  P12A = 

Pi~oting should now be done to interchange rows 2 and 3, to put the largest (in absolute 
value) column element in the pivot position. The permutation matrix is 

'riid the permuted matrix 1s 

The second column can be finished by an operation on 1 row 3 1: 
'-1 +F]+ #G-q 

In matrix form, this is 

Solving for A, the equations can be written as 

= V U .  

Note that the matrix V  which is produced is not lower triangular. However, the matrix 

r l  0 0-1 

is lower triangular. The LU factorization thus amounts to 
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where 

corresponds to the permutation 1 + 2. 2 + 3, and 3 i I. 
A general m x m matrix A can be factored as 

If we let M, represent the product of the elementary transformations In the I th column. then 
we can write the factorization as 

Now let 

- 
and, in general. Mi = P ,7,- . . . PL,l MA PL,] . . Pn+l. Then 

where P = P,,-] Pm-z P I ,  rince each permutation matrlx is an exchange whtch satisfies 
Pt2 = I Then, lett~ng 

we can write 

P A  = LU. 

With a little care, ~t 1s possible to code the LU factorizat~on so that the elements of 
L and U overwrite the elements of A The permutation 1s stored In a scalar ~ndex array 
The MATLAB code In algorithm 5 1 demonstrates the algor~thln (Thls 1s for demonstratton 
purposes only. slnce MATLAB has a butlt-in lu command )The U matnx 1s shown expl~c~tlq 
The lower triangle L matrtx IS fitted into the lower half of LU 

Algorithm 5.1 LU factonzatlon 
File: n e w h  . m 

In this algorithm, the multtpllers are itored In the lower tr~angle of A.  and the pennu- 
tatlons ~mplied by coinputing h, are obtatned by the exchange 

durn = l i ( 'K, i : r i ) ;  h(k,l:n) = A i r n , l : n j ;  J ~ ( r n , I : n )  = d m ;  

Example 5.1.1 Fox example. calling - ~ r + g ~  uith the A from the preceding example l i e l d ~  

and r di = 12 '3 I ]  &here the boxed eleinent\ dre the m i ~ l t ~ p l ~ e r ~  from 1- and the unboxed elcnieriti 
form U The - 1 ~ )  id r i  be rnterpreted in l r ~ h t  of the permui,rt~on rnatr~x ( 5  51 1- 
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Pivoting may be ~ v o l d e d  ~t A is dldgonally dominant A rnatrlx A is said to be diagonally 
dominant it 

i l l  > , for r = I 2 rn 

I $ 1  

5.2 The Cholesky factorization 

?-he Cholesky factor~zation li used to compute a "square root" of a positive-defin~te m x rn 

Herrnltian matrlx as 

where L IS lower triangular Occas~onally, the L m a t r ~ x  15 normal i~ed  to produce a matrlx 
L thdt has ones along the main diagonal, and the scaling factor 1s Incorporated In a d~agonal  
r~i,ltrix factor ds 

Then we can write 

B = U " D U ,  

where D = diag(lf , ,  I & ,  . . . , I:,). 

Example 5.2.1 For the B shown, we have 

If the Choiesky factorization does not exist (say. as determined by algorithm 5.2) then, 
to the precision available, the matrix B is not positive definite. 

Example 5.2.2 In a rimulation of a signal processing algonthm, it is necessary to generate Gauss~an 
random vectors wtth covanance R System l~branes often prov~de generators wh~ch simulate inde- 
pendent N(0, 1) random vartables Theae can be used to generate N(0, R )  random vectors as follows 
F~rst, factor R as 

.here L la lower triangular For each random vector desired, create a vector x of ~v(0, 1) ~ndependent 
r'indom var~ables urrng the Gau.ss~an random number generator, and let 

z = L x  

Then, since E [ x x T ]  = I, 

so z has the desired covariance. 
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Example 5.2.3 The Cholesky factorrzation can he used to solve systems of equations For the equation 

A x  = b. 

where A 15 Herin~t~an and po5ittve definite, unte  

A = LL" 

Solut~on then requrres solvrng the two Fets of triangular syitems 

Ly = b,  
LHx = y ,  

much as was done for the LU decomposition. 0 

Example 5.2.4 (Applicatton of Cholesky factorization to normal equat~ons) The least-squares solu- 
tlon (3 20), 

can be solved using the Cholecky factonzatlon, where A ~ A  = LL" Let AHb = p First solve (b! 
sub~titut~on) 

L y  = p. 

then solve (by back-substrtut~on) 

LHx = y 

Solving the normal equattons u w g  the Cholesky factorrzatron is sometimes called the "normal 
equation" approach Ci 

We will see In sect~on 5 3 2 that the QR decompos~t~on can be used to solve lea\t-squares 
problem\ Why, then, would we conslder uvng the Cholesky fdctor~zation? In favo~ of 
using the QR 1s the fact that computing A ~ A  (required for the Cholesky factonzatlon) 
requlres a good dynam~c range capabll~ty, essentially double the word size for a fixed-point 
representation, In order not to be hurt by an Increase In condition number On the other 
hand. for an n1 x n matnx A. tf m >> n, then A H A  and its factonzattons wlll requlre less 
storage and approxllnately half the computation of the QR representation In t h ~ s  case. ~f 
~t can be determined that the sy5tem of equations I ?  suffictently well conditioned, solution 
using Cholesky factor~zat~on may be justified 

The Cholesky factorizat~on IS also used ~n "square root" Kalman filtering application\ 
whlch are numerically stable methods of computlng Kalman filter updates (see. e g , 13563) 

5.2.1 Algorithms for cornputing the Cholesky factorization 

There are several algorithms that can be used to compute the Choleqky factonzatlon. whlch 
are menttoned. for example, in [I141 The algorlthm presented here requlres m 3 / 3  floatlng 
operations, and requlres no additional storage The algorlthm 1s developed recursively Wrlte 

and note that it can be factored as 

If we could find the Cholesky factorizat~on of Bi  - v v H / a  a\ GIG;. we would have 

b e  therefore proceed recur\rvely. decompovng B Into successively sn~dller block\ The 
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b l ~ T L 4 8  code I \  dernon\trated rn algorithm 5 2 (for purpocec of ~llustratron, {lnce MATLAU 
h;rj A bulk-~n Chole\ky t~ctor~zation vla the function cnol) 

Algorithm 5.2 Cholevky factor~ratton 
File: cho1esky.m 

5.3 Unitary matrices and the QR factorization 

We begin with a description of the "Q" in the QR factorization. 

5.3.1 Unitary matrices 

1)efnition 5.1 An vn x rn matrix Q wlth complex elements I \  caid to be unitary if 

Q ~ Q  = I  

It Q has real elements and QT Q = I ,  then Q IS said to be an orthogonal matnx Ci 

For a unitary (or orthogonal) matrix, we also have Q Q H  = I  

Lemma 5.1 Ify = Q x  for an m x m matri.~ Q, then: /lyll = llxlj for all x E Rm fund only 
if Q is unitary, where the norm is the usual Euclidean norm. 

A transformation which does not change the length of a vector is said to be isometric, or 
.'length preserving." The proof of the lemma is straightforward and is given as an exercise. 
This lemma allows us to make transformations on variables without changing their length. 
The lemma provides the basis for Parseval's theorem for finite-dimensional vectors. 

Lemma 5.2 I f  Y = Q X  for an m x m unitary matrix Q, then 

IIYIIF = IIXIIF 

where 1 1  . 11 ,L is the Frobenius nonn. 

There is a useful analogy that can now be introduced. 

ffirmitian matrices satisfying A H  = A are analogous to real numbers, numbers whose 
complex conjugates are equal to themselves. 

Unitary matrices satisfying uH U = I are analogous to complex numbers z on the unit 
circle satisfying /z j2 = 1.  

Orthogonal matrices satisfying QT Q = I  are analogous to the real numbers z = 1, such 
that z2  = 1. 

The bilinear transformation 

takes real numbers r into the unit circle / z /  = 1 ,  mapping the number r = co to z = - 1. 
Anaiogously, by Cczyley 's formula, 

U = ( I +  j R ) ( I  - J R ) - ' ,  (5.8) 

a Hermitian matrix R  is mapped to a unitary matrix (which does not have an eigenvalue 
of -1). 
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5.3.2 The QR factorization 

In the QR factorization, an MI x 17 matrix A  is written as 

A  = QR. 

where Q  is an m x nz unltary matrix and R Is upper triangular n7 x n As discussed In the 
follow~ng, there are several ways In whlch the QR factorlzatlon can be computed In tht{ 
sect~on we focus on some of the uses of the factorization 

The most Important applicat~on of QR I \  to full-rank least-square5 problems Consider 

where m > n and the columns of A  are linearly Independent In t h ~ s  case. the problem I $  

sald to be a full-rank least-squares problem. The solutlon 2 that mlnimlzes / / A 2  - b/ /?  Is 

However, the condltlon number of AHA is the square of the condition number of A ,  s o  
direct computation is not advlsed Thls poor condltlonlng can be mit~g~tted uslng the QR 
decomposit~on When rn > n, the QR decomposltlon can be written as 

where Rl is 17 x n ,  and the 0 denotes an (171 - 1 1 )  x n block of zeros. Also let 

where c is n x 1 and d is ( m  - n )  x 1 .  Then 

= I I R ~ X  - CI!; + II~II;, 

where (5 10) foilowi since b  = QQHb,  and ( 5  1 1 )  follows from lemma 5 1 (Such pulling 
of orthogonal rnatrlces "out of thln alr" to sutt an analyt~cal purpo\e 1s qulte common ) The 
value 2 that nilnlmizes (5 I 1 )  satisfies 

R i g  = c. 

whlch can be readily computed 5ince R I  1s a trtangular inatrix If  A  doe\ not have full column 
rank. or ~f nl < 1 2 .  computing the QR decompos~tion and solving leait-\quare$ problerni 
thereby is more d~fficult There are algor~thms to compute the QR decompo$~tion In thl< 
case, which lnvolve column pivoting However. in thls cireumctance ~t 1s recommended to 
use the SVD, and hence those technique\ ale not di\cu\ied here 

5.3.3 QR factorization and least-squares filters 

A\  an example of the uie of the QR factorization, con\idci the lea\t-square., problem 
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(See section 3.9.) The least squares solution can be obtained by finding the QR factorization 
of AIkI, 

Then 

Thus, we can find h by back-substitution, 

5.3.4 Computing the QR factorization 

At least four major ways of computing the QR factorization are widely reported. These are: 

1 .  The Gram-Schmidt algorithm. 

2. The modified Gram-Schmidt algorithm. The Gram-Schmidt algorithms are discussed 
in section 2.15. 

3. Householder transformations. 

4. Givens rotations. 

The Gram-Schmidt methods provide an orthonormal basis spanning the column space of 
A. The QR factorizations using the Householder transformation and the Givens rotations 
rely on ~imple  invertible (and orthogonal) geometric transformations. The Householder 
transformation is simply a reflection operation that is used to zero most of a column of 
n matrix, while the Givens rotation is a simple two-dimensional rotation that is used to 
tero a particular single element of a matrix. These operations may be applied in succession 
to obtain an upper triangular matrix in the QR factorization. They may also be used in 
other circumstances where zeroing particular elements of a matrix (while preserving the 
elgenvalues of the matrix) is necessary. Of these four types, the Gram-Schmidt methods 
are the least complex computationally, but are also the most poorly conditioned. 

5.3.5 Householder transformations 

Recall from section 2.13.1 that the matrix that projects orthogonally onto span(v) (see 
12 20)) is 

and the orthogonal projection matrix is 

These are similar to the Householder transformation with respect to a nonzero vector V, 
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- Pvx 

Figure 5.1: The Householder transformation of a vector 

which is a transformation of the form 

It is straightforward to show that N, 1s unitary and Hf = H, (see exercise 5 3-14) The 
vector v i s  called a Householder vector Observe that H,v = -v,  and that if z i v (with 
respect to the Euclidean inner product) then H, z = z Write x as 

then 

wh~ch corresponds to a rejectlarz of the vector x acres the space perpendicular to v. as 
shown in figure 5 1 Reflecting twtce returns the original polnt H:X = x AS an operator. 
we can write 

H, = P; - P,. 

The Householder transforination can be used to zero out all the elelnents of a vector 
except for one component That IS, for a vector x = [xi xz x,lT. there is a vector v in 
the Householder transformation H,, such that 

for come scalar a! Slnce H, ic unitary. //x/12 = IJH, XI/?. hence CY = &//x/Iz One way ot 
viewing the Householder tran\format~on 15 a\ a unitary transformation wh~ch compre\ses 
all of the energy in a vectol lnto single component. zeroing out the other component\ of 
the vector To find the vector v in the trdnsfornlatton H,,. wrtte 



. i Unitary Matrice5 and the OK Factorization 289 

so that 

T h ~ s  means that v rs a scalar nlultiple of x -cuel. Since we know that cu = f / I X / / ~ ,  and since 
\callng v by a nonzero scalar does not change the Householder transformation, we will take 

\Ithough elther slgn may be taken, numerical constderatrons suggest a preferred value. For 
, Z J I  vectors, ~f x is close to a multiple of e l ,  then v = x - s ~ g n ( x ~ ) l l x j l ~ e ~  has a small 
norm, which could lead to a large relat~ve error in the computatton of the factor 2/vTv T h ~ s  
d~fhculty can be avoided by choos~ng the slgn by 

By this selection /lvll > /lxll. For complex vectors, choosing according to the sign of the 
real part is appropriate. 

The operation of HU on x can be understood geometrically using figure 5.2, where the 
\i yn is taken so that v = x + I l ~ l / ~ e ~ .  Since v is the sum of two equal-length vectors, it is the 
iiiagonal of an equilateral parallelogram. The other diagonal (orthogonal to the first-see 
exercise 5.3-28) runs from the vector x to the vector Ilxl12el. From the figure, it is clear that 
P y x  = v/2 and P;X =r x - v/2. 

Figure 5.2: Zeroing elements of a vector by a Householder transformation 

In the QR factorization, we want to convert A to an upper-triangular form using a 
ieyuence of orthogonal transformations. To use the Householder transformation to compute 
the QR factorization of a matrix, first choose a Householder transformation H I  to zero out all 
but the first element of the first column of '4, using the vector vl . For the sake of illustration, 
let A be 4 x 3. Then 
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where x indicates elements of the matrix which are not zero (in general) Let Q ,  = H I  
To continue the process, for the 3 x 2 matrix on the lower r~ght,  choose a Householder 
transformat~on matrlx H2 to zero out the last 2 elements. uslng the vector v2 Cotnb~nation 
uith the first transformat~on 1s done by 

where 

For the sake of implementation (described subsequently), note that Q2 can be formed as , 
Householder matrix as 

where 

The last two elements in the thlrd column can be reduced wlth a thlrd Householder trans- 
formation Hi In conjunction with the other elenlents of the matnx, this can be wntten ac 

where 

and 

Since H2 and H? are orthogonal. so are Q2 and Qi (see exercise 5.3-16). and so is 
QH = Q1 Q 2  Q 1 .  Thus A has been reduced to the product of an orthogonal matrix times an 
upper-triangular matrix. 

For a general rn x n matrlx, computation of the QR algorithm involves formlng n 
orthogonal matrlcec Q,. 1 = 1.  2. . n Then 

(2 = Q I Q ~  Q r i .  

where 
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5.3.6 Algorithms for Householder transformations 

11-i t h ~ i  \ectIon, sample M ~ \ T L ~ B  code IS developed to compute the QR decompoiition using 
Householder tr'lnsformations (The code is tor demonstration purposes only, iince MATLAB 
hd4 the bulk-rn function qr ) 

In the Intereit of efficiency, the Hou\eholder transformation matnx Q is not explicrtly 
formed Rather than expl~crtly forming H, dnd then multiplying H,A, we note that 

\\here p = -2 /vHv ,lnd w = ~ " v  It is often the case that only the R matrix 1s expilc~tly 
,:sded, i o  the Q IS repreiented tmpltc~tly by the sequence of v, vectors, from wh~ch Q can 

hc ~omputed as desired Algorithm 5 3 illustrates a function which applies a Householder 
trmstormat~on H,, represented only by the Householder vector v, on the left of A as H , A  
,tnd also shows the function makehouse  which computes the Householder vector v Also 
shoctn is the function houser rght, whlch applies the Householder traniformation on the 
r~ght to zero out rows of A 

Algorithm 5.3 Householder transformat~on functions Compute ( I )  v, (2) H,,A glven v and 
( 3 )  A H ,  given v 

Flle makenouse .  m 

Example 5.3.1 Let 

Then the MATLAB function calls ~1 = n a k e h o u s e ( A (  : ,  1) I and vr = makehouse 
1 % 1, : : ) return the vectors 

Then H,A can be computed using h o u s e l e f  t ( A ,  v l  ) and AH, can be computed from house -  
r r g h t  ( A, v r  ) . The results are 

-7.2801 1 -8.79108 -10.302 
h o u s e l e f t  ( l i ; ~ l i  = -0.21301 1 -0.426022 [ :: -0,89517 -1.63903 

-3.74166 0 
h o u s e r i g h t  i A., vr) = -8.55236 -0.294503 

- 1 1.7595 -0,490838 -3.23626 El 

Algorithm 5 4 computes the QR factorization uslng the simplifications noted here The 
return values are the matnx R and the vector of v vectors The complex~ty of the algorithm 
1s approximately 2n2(rn - n / 3 )  float~ng operations 
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Algorithm 5.4 Q R  factorization vla Hou5eholder transformation~ 
File: qrhouse . rn 

In order to solve the least-squares equation as previously described, we must be able 
to compute QH b. Since Q = Q Q2 . . . Q,, and each Q is Hcrmitian symmetric, 

which may be accomphshed (conceptually) uslng the following algorithm. which overwrite$ 
b with QHb. 

f o r j = l : n  
b  = Q,b 

end 

The multiplication can be accomplished without exphcttly forming the Q, matrlces by 
us~ng the ~ d e a  shown in (5.15). Computation of Q H b  is thus accomplished as shown In 
algorithm 5.5 

Algorithm 5.5 Computation of QHb 
File: qrqtb. rn 

Example 5.3.2 Suppose i t  1s dewed to find the leart-iquares solut~on to 

Using i'J, R I = c,rhcjuse (A j . we obtain 

Using cr qtk (5, '1). we obtain 

The led\t-\qu,ire\ \elution ionle\ from \ol\ ing the '? x 1 upper-tridngu1,ir \>stern of equ,~tlon\ u\inLi 
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Where the Q matrix is explicitly desired from V ,  it can be computed by backward 
accumulation. To compute Q = Q l  Q2 . . , Q,, we iterate as follows: 

QIOI = I 

Q [ ' ]  = Qr Q[ol 

Qi2' =: Qr- ,  QI" 

This is implemented in algorithm 5.6. 

Algorithm 5.6 Computation of Q from V 
File: qrmakeq . m 

5.3.7 QR factorization using Givens rotations 

Unlike the Householder transformation which zeros out entire columns at a stroke, the 
Givens technique more selectively zeros one element at a tirne, using a rotation. 

A two-dimensional rotation by an angle 8 is illustrated in figure 5.3(a). The figure 
demonstrates that the point (1, 0)  is rotated into the point (cos 8, sin 8), and the point (0, 1) 
is rotated into the point (- sin 8, cos 0). By these points we identity that a matrix Ce that 
rotates [x, y ] T  is 

(a) A general rotation (b) Rotation of the 
second coordinate 
to zero 

Figure 5.3: Two-dimensional rotation 
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The rotatlon matrlx is orthogonal G;G@ = I It should be clear that any po~nt  (x. ) )  ~n 
two dimensions can be rotated by some rotation matrix G so that its second coordinate ii, 

zero Thls is ~Ilustrated In figure 5 3(b) For a vector x = [x vlT, its second coordinate can 
be zeroed by mult~pl~cation by the orthogonal matrix Go,  where 

In the G~vens rotation approach to the QR factorization, a matrix A is zeroed out 
one element at a time, starting at the bottom of the first column and working up the 
columns To zero a , ~ ,  we use x = a , ~  and J = a , ~ ,  applylng the 2 x 2 rotatlon ma- 
trlx across the jth and tth rows of A Such a rotation matnx 1s called a Givens rotarrorz 
We wlll denote by G 8 ( l  k ,  j) the rotat~on matrix that zeros a,k For brevrty we wlll also 
wnte G(t, k ,  j )  In the QR factorization, a sequence of these rotat~on matrices are used 
A sequence of matrtcec produced by success~ve operation of Givens rotations lnight have 
the following form, where the convention of taking j = r - 1 Is used The rotation 1s 
shown above the arrow, and the rows affected by the preceding transformation are shown in  

boldface 

X X X  I. i :I X X X  I: il 
X X X  I! T T j  

X X X  X X X  X X X  

The two-dimensional rotation (5.16) can be lnodified to form Ge(i ,  k .  J ) .  by defining 

where L = COSH and A = sln H As 15 apparent from the folm of G8(r. k. J ) .  the operation 
G o ( / .  X .  ) ) A  sets the ( I .  X)th element to zero and mod~fies the ith dnd jth robs of A. 
leaving the other rob, of A unmod~fied The ~ a l u e  of hi in G6(r X J )  1% deterinlned from 
(x, r )  = (A(/ .  k) ( A ( I  k ) )  In ( 5  17) Ai, is apparent by studylng (5 181, tdklng J  = r - 1 
lets the dlagonali~ation already acco~npl~shed in prlor columns be unaffected by Givens 
rotat~onc 011 late1 column\ Since thii, i \  the most common case. we will henceforth use the 
abbrev~ated notation G(1, k )  or Gr ( r  X ) for G ,  ( I  X j) 

For the 4 x 3 example. the fdctc)ri~dtio~~ 15 acconiplished by 
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The Q matrix l i  thui obtained a\ 

Example 5.3.3 Lct 

A = i] 
-\ rotatlon matnv that mod~fies the last two rows of A to zero the (3, 1) element ir 

5.3.8 Algorithms for QR factorization using Givens rotations 

Algorithm 5.7 Finding cos B and sin B for a Givens rotation 
File: qrtheta .m 

In computing the multiplication G(i ,  k ) A ,  it is clearly much more efficient to modify 
only rows i and k of the product. An explicit Q matrix is never constructed. Instead, the 
cos 8 and sin 0 information is saved. It would also be possible to represent both numbers 
using a single quantity, and store the Q matrix information in the lower triangle. However, 
in the interest of speed, this is not done. Algorithm 5.8 computes the QR factorization, 
and algorithm 5.9 computes Qwb, for use in solving least-squares problems. Finally, for 
those instances in which it is needed, algorithm 5.10 computes Q from the B information 
by computing 

with the multiplication done from left to right. 

Algorithm 5.8 QR factonzation using Givens rotations 
File: qr5ivens.m 

Several aspects of the mathematics outlined for Givens rotations may be streamlined for a 
nunrerical implementation. Explicit computation of B is not necessary; what are needed are 
co\ 6, and sin 6, which may be determined from (x, y )  without any trigonometric functions, 

x 
cos 6 = cos tan-' - Y (-:I = JW~ = Jm. 

See algorithm 5.7 for a numerically stable method of computing these quantities. 
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Algorithm 5.9 Computation of Q H b  for the Givens rotation factorization 
File: qrqtbg1v.m 

Algorithm 5.10 Computation of Q from B 
File: qrmakeqgiv. m 

5.3.9 Solving least-squares problems using Givens rotations 

Glvens rotations can be used to solve least-squares problems In a way that 1s well sulted for 
plpellned lmplementatton in VLSl 12631 Rewrlte the equation 

Let this be written as 

where B = [Alb] and h T  = [xT. - I ]  Then the least-squares \olut~on 1s the one that 
min~m~zes  l i ~ h l l ;  = h H B "  ~ h .  Since multiplicat~on by an orthogonal matrlx does not 
change the norm. 1 1  QBhll;  = i l  ~ h l l z  for an orthogonal matrix Q The matrlx Q can be 
selected as a Givens rotatlon that selectively zeros out elements of the mairlx B By tht\ 
means, we can transform the problem successively as 

With an appropriately chosen sequence of Q ,  matrices. the result I S  that (Q, ,  Q 2 Q l ) B  
is mostly upper triangular, co that we obta~n a set of equations of the foliowtng form 
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Pr~cttcally speaking, triult~plicat~on by the orthogonal matr~cei can \top nhen the top n 

rows are nroitly trr,~ngular~i.ed, a i  sho\.cn While ~t would be po\\~ble to complete the QR 
tactorizatlon to 7ero the lower portlon ot the mdtrlx (the part ind~c~ited wlth x\). this 1s not 
nece\\ary, \Ince the \tructure allow\ the iolutlon to be obtained From this, the least-square 
solution is 

h,, 
X,, = 7. 

Li,, .! l  

5.3.10 Givens rotations via CORDIC rotations 

For high-speed real-time applications, i t  may be necessary to go with pipelined and parallel 
algorithms for QR decomposition. The method known as CORDIC rotations provides for 
pipelined implementations of the Givens rotations without the need to compute trigono- 
metric functions or square roots. CORDIC is an acronym for Coordinate Rotation DIgital 
Computation. CORDIC methods have also been applied to a variety of other signal pro- 
cessing problems, including DFTs, FITS, digital filtering, and array processing. A survey 
article with a variety of references is [146]. A detailed application of CORDIC techniques 
to array processing using a VLSI hardware implementation, including some very clever 
designs for solution of linear equations, appears in 12671. 

The fundamental step in Givens rotations is the two dimensional rotation 

cost? - sin8 [;'I = [sin 8 cos 8 ] [:I - 
u here 8 is chosen so that y '  = 0. This transformation is applied successively to appropriate 
pairs of rows to obtain the QR factorization. Since it is used repeatedly, it is important to 
[?lake the computation as efficient as possible. The rotation in (5.20) can be rewritten as 

wh~ch still requires four muitiplicat~ons. However, if the angle 8 is such that tan 8 is a power 
of 2, then the multiplication can be accomplished using only bit-shift operations. A general 
angle can be constructed as a series of angles whose tangents are powers of 2, 

X 

where p, = i: I and HI is constrained so that tan 8, = 2-I. In practice, the sum is truncated 
after a few terms, usually about five or six: 
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Table 5.1: Power-of-2 angles for CORDIC computations 

I tan 8, H, (degrees) K ,  

The power-of-2 angles for CORDIC rotations are shown in table 5 1 up to N6 Hlgher 
accuracy in the representation can be obtalned by taklng more terms, although for most 
pract~cal purposes up to five terms 1s often adequate 

Example 5.3.4 An angle such a\ 37 can be repre\ented uslng the angles in table 5 I as 

3 7 = 0 0 - H 1  + 0 2 + 0 3 - 0 4 + 0 5 - 0 h = 3 6 9 1 8 3 2  

An efficient representation 1s simply the Eequence of stgns 37 - (1, - 1. 1. 1 ,  - I 1. - 1 ) C2 

The rotatlon by 0 In (5 20) 1s accompl~shed stagewise, by a series of nzicrororar~ons What 
makes this more efficlent is the fact that the factors coi  8, from each m~crorotat~on can be 
comb~ned into a precomputed constant, 

Table 5 1 shows the values of K for the f i r~ t  few vdlues of r,,,, The mlcrorotation., result 
In a serlez of intermediate results In a CORDIC implemented in r , , , ,  stages, the following 
results are obtalned by successive application of (5 21) 

The effect of rnult~pl~cat~on by K I \  to nolmdllze the vectol i o  thdt the f ~ n d l  Lector [ x  \ 1' 
ha\ the 4ame length a5 [ I .  11' I n  clrcurn\tdnce5 uhere the n g l e  of the vector I \  ~mport'int 
but i t$  length 1s not. the f l ~ \ t  itep may be el~mindted 
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When doing rotation for the QR algorithm, the angle 0 through which to rotate is 
determined by the first element of each of the two rows being rotated. These elements are 
referred to as the lecrders of the pair of rows. The rest of the elements on the row are rotated 
at an angle determined by the leader. For the regular Givens rotation, it is necessary to 
compute the angle, which at a minimum requires computation of a square root. However, 
for the CORDIC implementation, it is possible to determine the angle to rotate through 
implicitly, using the microrotations, simply by examining the signs of the components of 
the leader. The goal is to rotate a vector xT = [ x ,  y ]  to a vector [x ' ,  01. If x is in quadrant I 
or quadrant 111, then the rotation is negative. If x is in quadrant I1 or quadrant IV, then the 
rotation is positive. The sign of the microrotation is determined by 

In a pipelined implementation of the CORDIC architecture, a sequence of 2-vectors from 
a pair of rows of the matrix A are passed through a sequential computational structure. As 
the first vector from each row-the leader-is passed, the microrotation angle is computed 
tccording to (5.22). This information is latched and used for each succeeding vector in the 
row Because buffering is used between each stage, the computations may be done in a 
plpelined manner. As a vector passes through a stage, another vector may immediately be 
passed into the stage; there is no need to wait for a single vector to pass all the way through. 
It IS the pipelined nature of the architecture that leads to its efficiency. 

When using CORDIC for the QR algorithm, several rows must be modified in succes- 
son.  This may be accomplished by cascading several pipelined CORDIC structures in such 
a way that a modified row from one stage is passed on to the next stage. This allows for 
Inore parallelism in the computation. Additional details are provided in [263] and [267]. 

5.3.1 1 Recursive updates to the QR factorization 

Consider again the least-squares filtering problem of (5.12), only now consider the problem 
of updating the estimate. That is, suppose that data q[l], q[2], . . . , q [ k ]  are used to form an 
estimate h [ k ]  by the QR method, 

A new data point becomes available, and we desire to compute h [ k  + I], using as much of 
the previous work as possible. 

In this case, it is most convenient to reorder the data from last to first, so we will let 

and d [ k l  similarly. As before, let 

When the new data comes, the A matrix is updated as 
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Observe that 

The matrix N has the property that h,, = 0 for i > j + 1. Such a matrix is known as 
an upper Hessenburg matrix. By forcing a zero down the subdiagonal elements of H ,  ~t 
can be converted to an upper-triangular matrix. This can be accomplished using a series of 
Givens rotations, one for each subdiagonal element. Let the Givens rotations be indicated 
as .I1 .Iz, . . . . J,. We thus obtain 

from which Q [ k  + 11 can also be identified 

5.4 Exercises 

5.1 - 1 For the matrix 

determine the LU factorizatton both with and w~thout pivottng 

5.1-2 Write a MATLAB routine to solve the system of equations A x  = b, assuming that the LU 
factorization is obtained using newlu. 

5 1-3 Venfy the followxng facts about tnangular ~na t r~ce?  

(a) The Inverse of an upper-lnangular matnx IS upper triangular The inverse of a lower- 
tnangular matrrx is lower utangular 

(b) The product of two upper-triangular matrlces 1s upper tnangular 

5 1-4 This exercise illustrates the potenttal difficulty of LU factorizat~on without ptvotinp Suppose 
~t Is desired to solve the system of equations 

The true solution to t h ~ s  system of equations Is x = [ I  2 31'. and the matrix A i \  verq &ell 
conditioned Compute the solution to this problem using the LU decomposit~on u~ thou t  
pivottng, uslng artthmettc rounded to three ~lgntficant place.; Then compute u m g  plvoting 
and compare the answers w ~ t h  the exact result 

5 2-5 Compute the Chole5Ly facton~atron of 

a\ A = LL' Then write this as A = &'DL ' ,  where ll r \  dn upper-tr~angular matnx ~ r t h  
ones along the dldgondl 

5 2-6 Show that ( 5  6) I \  true 
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5 2-7 Gwen a zero-mean discrete-time rnput iignal f [t],  which we form into a vector 
- 

q[tl = [ f  it1 f [r - 11 . - f [ t  - mj] , 

we desire to form a set of outputs 

by blrl = Hq[t] that are uncorrelated; that is, so that 

E [b, [t]F, [t]] = 0 if i # j. 

Let R = ~[q[ t ]q" [ t ] ]  be the correlation matnx of the Input data. Detemne the matrix H 
that decorrelates the rnput data 

5.2-8 Let X = [x l .  x2, . . . , x,] be a set of real-valued zero-mean data, with correlation matrix 

1 
R,, = - x x r .  

n 

Determine a transformation on X that produces a data set Y ,  

Y = HX, 

such that 

is equal to an identity. 

5.2-9 Write MATLAB routines f orsub (L, b) and backsub (U, b) to solve Lx = b for a 
lower-triangular matrix L and Ux = b for an upper-triangular matrix U. 

5.2-10 Develop a means of computing the solution to the weighted least-squares problem 
x = (AH W A ) - ' A ~  Wb using the Cholesky factorization. 

5.3-1 1 Show that for a unitary matrix Q, 

5.3-12 (Column-space projectors) Let X be a rank-r matrix. Show that the matrix that projects 
orthogonally onto the column space of X is 

where X = Q R  is the QR factorization of X, and Q(:, 1:r) is the M A ~ A B  notation for the 
first r columns of Q. 

5.3- 13 Regarding the Cayley formula: 

(a) Show that z in (5.7) has lzI2 = I .  

(b) Show that U in (5.8) satisfies UU = I .  

(c) Solve (5.8) for R,  thus finding a mapping from unitary matrices to Hermitian 
matrices. 

(d) A matnx S 1s skew symmehic if sT = -S. Show that if S is skew symmetric then 
Q = ( I  + S)(I - S)-' is orthogonal. 

5.3-14 For the Householder transformation (reflection) matrix H = I - 2vvH/(vHv), verify the 
following properties, and provide a geometric interpretation: 

(a) Hv = -v. 

(b) If z i v then Hz = z. 

(c) H H = H .  

(d) H ~ H  = H H ~  = I .  
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(e) For vectors x and y. 

Thus 

( x .  y )  = ( H x .  H y )  

llxll2 = lIHxll2. 

5.3-15 Determ~ne a rotat~on 0 In c = cosQ and s = s1n0 such that 

5.3-16 Show that if Q is an orthogonal matrix, then 

[A i] 
is also orthogonal. 

5.3-17 [ I  14, page 741 Show that if Q = Q I  + j Q2 1s unitary, where Q, F R m x m ,  then the 2m x 2m 
matrix 

is orthogonal 

5 3-18 The Householder matrlx defined In (5  13) uses a reflection w ~ t h  respect to an orthogonal 
projection In this problem we wlll explore the Householder matrix using a weighted pro- 
jectton and its assoc~ated Inner product Let W be a H e m t i a n  matrix, and define (see 

(2 22)) 

(a) Show that HYw W H, w = W and that / /  H, X I / , +  = / / x / /  w. where / / x / / &  = xH W X  

(b) Show that H, w w  = --\I 

(c) Show that H,  H, w = I ,  so H ,  is a reflect~on 

(d) Determine a means of choosing v1 so that 

for some cr 

5.3-19 Consider the problem yT = x T A  

(a) Determine x such that the first component of y is maxlmi~ed, subject to the constraint 

that / / x / / ~  = 1 What 1s the maxlmum value of v(1) in thls case? 

(b) Let H be a Householder matatnx operat~ng on the first column of A Comment on the 
nonzero value of the first column HA, compared with \ (1)  obtained In the prevtous 

pa* 

5 3-20 Let x and j be nonLero vectors In R' Determine a IIouseholder inatnx P ~ u c h  that P x  is a 
mult~ple of y  Glve a geometric interpretat~on of your answer 

5 3-21 The conip~ltatton In (5 15) appltes the Householder matrix to the l e j  of a matrix, as H, A 
Develop an effic~ent means (such as in (5 15)) for computing 4 H, . wlth the Hou\eholder 
matrix on the right 

5 7-22 In  this problem. you fill1 detnonctrate that d~rect computation of the p5eudoinverie I \  n u  
mei~callq ~nferlor to computation uunp a matrix f;1~toriration cuch a\ the Q R  or Cholesh? 
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factoritation. Suppose it is desired find the least-squares solution to 

The exact solution is x = [ I ,  I j r  

(a) Determine the condition numbers of A  and A T A  (if possible) 

(b) Compute the least-squares solution usmg the formula rZ =  AT^)-'Arb expl~citly 

(c) Compute the solution using the QR decomposition, where the QR decomposition is 
computed using Householder transformations. 

(d) Compute the solution using the Cholesky factorization. 

(e) Compare the answers, and comment 

5 3-23 (Rotat~on matnces) Venfy the stated properties about rotatlon matnces of the following 
form, and provide a geometnc tnterpretatlon 

cosQ - sin6 

(a) COG-@ = 1. 

(b) C,C, = C,,,. 

Note that {GO,  Q E R] forms a group 

5.3-24 [267] The Grammian matrix for a least-squares problem is 

R~ = A"A.  
where 

A = 

Let Z  = AH,so wecan write Rk = Z Z H .  

(a) Show that if Z ,  = Z  Q , where Q ,  is a unitary matrix, then we can write Rk = Z,  ZfY. 

(b) Describe how to convert Z to a lower-triangular matrix L by a series of orthogonal 
transformations. Thus, we can write 

Rk = L L ~ .  

(c) Describe how to solve the equation R k x  = y for y based upon this representation of Rk. 

Note that since we never have to compute R explicitly, the numerical problems of computing 
AH A never arise. For fixed-point arithmetic, the wordlength requirements are approximately 
half that of computing the Grammian and then factoring it [268]. 

5.3-25 Determine a representation of 8 = 23" using the angles in the CORDIC representation. 

5.3-26 We have seen that in the LU factorization, it is possible to overwrite the original matrix A 
with information about the L and U factors (with possibly some permutation information 
stored separately). In this exercise we determine that the same overwriting representation 
of A also works for Householder and Givens approaches to the QR factorization. 

(a) Determine a means by which the Q and R factors computed using Householder trans- 
formations can be overwritten in the original A matrix. Hint: let v(1) = 1. 

(b) Determine how the Q and R factors computed using Glvens transformations can be 
overwntten in the original A  matnx 
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5 3-27 (Fast Givens transformat~ons) Let D be a dtagonal matnx, let M be a matnx such that 
MT M  = D ,  and let Q = ~ L 7 - l ~ ~  

(a) Shah that Q 15 orthogonal 

(b) For a 2 x 2 matnx MI of the form 

show how to choose a and /3 so that for a 2-vector x, 

(that is. M sets the second component of x to zero), and 

M ,  DM," = D l  

is diagonal Thus Mix acts like a Glvens rotation, but w~thout the need to compute a 
$quare root 

(c) Descnbe how to apply the 2 x 2 matrlx to perform a "fast Q R  decompos~t~on of a 
matnx A 

Further informatton on fast Glvens, including some important Issues of stablllzing the 
numencal computatlons. are gtven in 11 141 

5 3-28 In relatlon to figure 5 2. ~t was stated that the dtagonals of an equilateral parallelogram are 
orthogonal Prove that this is true 

5 3-29 (Matnx spaces from the QR factor~zatlon ) If A E M, .. where m > n and A has full 
column rank. the QR factonzarton can be wntten as 

 here Q l  E M, ., Q2 E M,, ,-,,, and Rl  E M, ,, Show that 

(a) A = Ql  Rl  (Thls IS  known as the "sklnny" QR factonzat~on ) Observe that the columns 
of Q I  are orthogonal 

(b) R(A)  = R ( Q I )  

(c) = R(Qz) 

5.5 References 

Computation of matnx factonzatlons 1s wldely discussed in a variety of numencal analysis 
texts The connection of the LU wtth Gaussian elimination is described well in [333] 
Most of the matenal on the QR factorization has been drawn from [114] In addltion 
to factorizations, thls source also provides perturbatron analyses of the algorithms, and 
cornpansons of variants of the algorithms A "fast" Glvens rotation algorrthm that does 
not requlre square roots is also presented there, and vanants on the Cholesky algonthm 
presented here are presented tn [114] as well Update algorithms for the QR factonzat~on, 
In addstion to the one for update by adding a row, and lncludlng updates for a rank-one 
modification, and column modificatrons, are also presented in [I141 

The Householder transformat~on appeared in (1441 Application of Houceholder trans- 
formations with weighted projections i c  discussed in [268] Application of QR factorizations 
to least-squares filtering is extencrvely d~scussed in I2631 and [ I  321 12631 also demonstrate., 
application of Gram-Schmidt and lnodrfied Grarn-Schmldt to least squares and recursrve 
updates of least squares A dlrcu\\ron of applicatlonc of Houceholder transforms to \ignal 
proce\sing dppear\ in 132 1 ] 



Chapter 6 

Eigenvalues and Eigenvectors 

. . . neither Heisenberg nor Born knew what to make of the appearance of matrices in 
the context of the atom. (David Hilbert is reported to have told them to go look for a 
differential equation with the same eigenvalues, if that would make them happier. -They 
did not follow Hilbert's well-meant advice and thereby may have missed discovering 
the Schrodinger wave equation.) 

- Manfred Schroeder 
Number Theory in Science and Communication 

6.1 Eigenvalues and linear systems 

The word "eigen" is a German word that can be translated as "characteristic." The eigenval- 
ues of a linear operator are those values which characterize the modes of the operator. Being 
characteristic, the eigenvalues and associated eigenvectors of a system indicate something 
that is intrinsic and invariant in the system. 

Example 6.1.1 To motivate this description somewhat, consider the following coupled difference 
equations: 

y l [ t  + 1 1  = -y,SrI - 1.5y~1t1, (6.1) 

Y Z S ~  + 11 = 0.5yll t1 + yz[r1, (6.2) 

which can be written in matrix form as 

where y[ t ]  = [ y  [ r ] ,  y2[ t ] lT .  It is desired to find a solution to these equations. The form of the equations 
suggests that a good candidate solution is 

y , [ t ]  = h l x l  yZ[ t ]  = hrx? 

for some A, x , ,  and x2 to be determined. Substitution of these candidate solutions into the equation 
gives 

+,'I+! X i  = -h rx l  - 1.5h1x2, (6.3) 

i r + ' x 2  = 0.5A1x1 + h r x 2 ,  (6.4) 

which can be written more conveniently as 



306 Eigenvalues and Eieenvectoss 

Equatlon (6 5) IS the equatlon of Interest In eigenvalue problems The difference equatlon 
has been reduced to an algebra~c equatlon, where we wish to solve for A. and x  The scalar 
quantity A 1s called the eigenvalue of the equatlon. and the vector x  1s called the eigenvector 
of the equatlon 

Equatson (6.5) may be regarded as an operator equation The eigenvectors of A  are 
those vectors that are not changed In dlrectlon by the operation of A they are slmply scaled 
by the amount h This 1s illustrated In figure 6 1 A vector 1s an ergenvector ~f ~t is not 
modlfied In dtrectlon, only In magnitude. when operated on by A The vectors thus form an 
znvarzant of the operator A  This 1s fully analogous with the concept from the theory of llnear 
tlme-invanant systems, elther In continuous tlme or dlscrete tlme The steady-state output 
of an LTI system to a slnusoidal ~npu t  is a slnusoidal clgnal at the same frequency, but with 
posslbly different amplitude and phase The system preserves the frequency of the srgnal 
(analogous to preserving the direction of a vector) while modtfylng its ampl~tude Slnusoldal 
signals are therefore sometimes referred to as the e~genfunctlons of an LTI system In the 
study of linear operators, search~ng for their elgenfunctlons 1s an Important first step to 
understanding what the operators do 

Figure 6.1: The direction of eigenvectors is not modified by A  

Definition 6.1 A nonzero vector x  1s called a right eigenvector for the elgenvalue h if 
Ax = Ax, and a left eigenvector rf x H ~  = i x H  Unless otherwtse stated. "elgenvector" 
means "nght eigenvector " Ci 

Equation (6.5) can be written in the form 

One solut~on of (6 6) IS the solutlon x = 0 This I S  known as the tnvlal solutlon and 
is not of much interest The othel way that a solutlon may be obtained is to make sure 
that x  IS In the nullspace of A  - i i l ,  whlch means that we must make sure that A  - hI 
actually has a nontr~vlal nullspace The particular values of h that cause A  - h l  to have 
a nontrt-vial nullspace are the eigenvalues of A ,  and the correcponding vectors In the null 
space are the elgenvectors In order to have a nontrivial null \pace, the matnx A - h l  must 
be s~ngular The values of i, that cause A - hI to be singular are precisely the elgenvalues of 
A As dlscusced In cectlon 4 6 1,  we can determine ~f a matrix is singular by examining ~ t s  
determ~nant 

Definition 6.2 The polynomial i(,+(h) = det(A1 - A )  IS called the characteristic poly- 
nomial of A The equatlon det(i1 - A )  =O IS  called the characrertst~c equatlon of A 
The eigenvalues of A are the roots of the charactertsllc equatlon The set of roots of the 
character~ct~c polynomral 15 called the spectrum of A. and I \  denoted ; . ( A )  0 
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Example 6.1.2 For the matrix A  of example 6.1.1, the eigenvalues can be found from 

det(A - AI) = det [-b,; A = (-1 - h) ( l  - A) + (O.S)(I 5) = 0. 

Expanding the determinant we obtain 

which has roots A = 0.5 or A = -0.5. 

In the study of LTI systems, the characteristic polynomial appears in the denominators of 
transfer functions. The dynamics of the system are therefore governed by the roots of the 
characteristic polynomial-the eigenvalues. This is one reason why the eigenvalues are of 
interest in signal processing. 

Example 6.1.3 The LTI system described by the difference equation 

has the Z-tsansform (see section 1.4) 

The matrix inverse can be written as 

1 
H[z] = Cadj(z1 - A ) B  

det(zI - A) 

The notation adj(z1 - A )  indicates the adjugate of the matrix z I  - A  (not to be confused with the 
adjoint). The adjugate is introduced in section C.5.3. The denominator is the characteristic equation 
of A, and the poles of the system are the eigenvaiues of the matrix A. 

Often, eigenvalues are found using an iterative numerical procedure. Once the eigen- 
values are found, the eigenvectors are determined by finding vectors in the nullspace of 
A - h l .  

Example 6.1.4 For the system of example 6.1.1, we have found the eigenvalues to be 1 = It0.5. 
To find the eigenvectors, substitute the eigenvalues individually into (6.6) and find the vectors in the 
nullspace. When A = 0.5, we get 

It IS clear that x, = [ I ,  - 1IT will satisfy this equation, as will any multiple of this. The eigenvectors 
are only determ~ned up to a nonzero scalar constant. The eigenvectors can be scaled to different 
magnitudes. Often it is convenient to scale the vectors so they have unit norm. This would lead to the 
vector x, = [ ~ l f i ,  1 / f i l T .  

For the other eigenvector, substitute A = -0.5 into (6.6), 

A solution is X? = 1-3, 11'. Scaling to have unit norm provides the solution x2 = [ - 3 / m ,  
1 / m l T .  
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We have determined the e~genvalues and elgenvectors of the system defined In (6.2) and have 
actually come up with two solutions. one for each e~genvalue When A = 0 5 a solution 1s 

and when h = -0.5 a solution is 

What do we do wlth this wealth of solutlons7 Since the system 1s Ilnear, the response due to the sum 
of several Inputs 1s the sum of the responses, so we can take linear comb~nat~ons of these solut~ons 
for a total solutlon 

The constants c ,  and c2 can be found to match auxiliary condit~ons on the system, such as tnit~al 
cond~tions Note that In this solut~on, the behavior of the system 1s governed by the eigenvalues there 
1s one "mode" that goes as (0 5)' and another mode that goes as (-0 5)' C] 

6.2 Linear dependence of eigenvectors 

The eigenvectors of a matnx are often used as a set of baas  vectors for some space In 
order to be able to say something about the dimensionahty of the space spanned by the 
eigenvectors, it 1s important to tell when the elgenvectors are linearly Independent The first 
lemma provides part of the story 

Lemma 6.1 Ifthe eigenvalues o fan  n7 x m matrix A are all distznc~, rherz the eigenvectors 
of A are linearly ~ndeperzdent. 

Proof Start with m = 2 and assume, to the contrary, that the eigenvectors are linearly 
dependent. Then there exist constants cl and c? such that 

Multiply by A to obtain 

Now take h2 times equation (6.9). and subtract it from the last equation to obtain 

Since A l  # h2 and xi  # 0, thls means that cl = 0 Similarly it can be shown that c;? = 0 
The two vectors must be linearly independent 

Generalization to the case for m > 2 proceeds similarly C] 

If the eigenvalues are not d~stlnct. then the eigenvectors may or may not be linearly inde- 
pendent The matnx A = I has n1 repeated eigenvalues 2. = I .  and n llnearly Independent 
elgenvectors can be cho\en On the other hand. the matrix 

has repeated eigenvalues of 4, 4 and both eigenvectors proportlo~~al to x = [ l .  OIT they 
are linearly dependent 
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6.3 Diagonalization of a matrix 

In this section we introduce a factorization of a matrix A as 

A = S A S - I ,  

where A IS a diagonal or mostly diagonal matnx We w111 begin by assumlng that the 
nz x in matnx A has m linearly Independent e~genvectors Let the elgenvectors of A be 
ut ,x2 ,  ,x,,sothat 

These equations can be stacked side-by-side to obtain 

The stacked matrix on the left can be written as 

and the stacked matrix on the right can be written as 

Let S be the side-by-side stacked matrix of eigenvectors, and let A be the diagonal matrix 
formed from the eigenvalues: 

S = [ x t  X? . . .  x,] A=diag(Al ,A2 , . . . ,  A,) 

Then (6.10) can be written as 

/I 
This equation is true whether or not the eigenvectors are linearly independent. However, 
if the eigenvectors are linearly independent, then S is full rank and invertible, and we can 
write 

This is said to be a diagonalization of A,  and a matrix which has a diagonalization is said 
to be diagonalizable. 

The particular form of the transformation from A to A arises in a variety of contexts. 
More generally, if there are matrices A and B with an invertible matrix T such that 

then A and B are said to be similar. It can be shown that 

/ If A and B are similar, then they have the same eigenvalues. I 
The diagonalization (6.1 1) shows that A and A are similar and, hence, have the same 
eigenvalues. (This is clear in this case, since the eigenvaiues of A appear on the diagonal of 
A.)  Other transformations can be used to find matrices similar to A,  but the similar matrices 
will not be diagonal unless they are formed from the eigenvectors of A. 



310 Eigenvalues and Eigenvectors 

There are a variety of uses for the factorization A = SAS-I. One simple example is 
that powers of A are easy to compute. For example, 

and, more generally, 

This allows a means for defining functions operating on matrices. For a function f ( x )  with 
the power series representation 

the function operating on a diagonalizable matrix can be defined as 

Since A is diagonal, A' is obtained simply by computing the elements on the diagonal. An 
important example of this is 

where 

Example 6.3.1 Let 

Then A has the eigendecompos~tion 

Then 

The MATLAB funct~on expm cornputei the matrix exponential T h ~ s  computation ar~ses frequently 
enough In pract~ce that cons~derable effort ha5 been dedicated to effective numerical solutions 
A treatment of these can be found In 12301. of which the method presented here is but one 
example 0 

The homogeneous vector differentla1 equatton x(r) = Ax(t) has the solutlon x(r) = eA'xo. 
and the homogeneous vector difference equation x[r + 11 = Axif] has the colut~on x[r] = 
Arxo In llght of the d~agonallzation dlccussed, the differential equatlon is stable ~f the 
eigenvalues of A are In the left-half plane, dnd the drfference equatlon 1s stable ~f the 
etgen~alue4 of A dre instde the unlt c~rcle 
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6.3.1 The Jordan form 

If A has repeated eigenvalues then it is not always possible to diagonalize A. If the eigen- 
vectors are linearly independent, however, then even with repeated eigenvalues, A can be 
diagonalized. If some of the eigenvectors are linearly dependent, then A cannot be exactly 
diagonalized. Instead, a matrix which is nearly diagonal is found to which A is similar. This 
matrix is known as the Jordan form of A. 

Theorem 6.1 (Jordan form) An m x m mutrix A with k 5 m linearly independent eigen- 
vectors can be written us 

where J is u block-diagonal matrix, 

The blocks J, are known as Jordan blocks. Each Jordan block is of the form 

I ' J ,  is 1 x I ,  then the eigenvalue h, is repeated 1 times along the diagonal, and 1 appears 
1 - 1 times above the diagonal. Two matrices are similar if they have the same Jordan 
form. 

An inductive proof of this theorem appears in [333, appendix B]. Rather than reproduce the 
proof here, we consider some examples and applications. 

Example 6.3.2 

I .  The matrix 

has a single eigenvalue i, = 4, and all three eigenvectors are the same, xl = x;l = x3 = [ I ,  0, OIr. 
There is thus a single Jordan block, and A is similar to 

2. The matrix 

has a single eigenvalue h = 3 and two eigenvectors, 

X I  = [I ,  O , O I T  and x2 = 10, 1. OIT 
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The Jordan form has two Jordan blocks. 

Ji = [i :] and J 2 = 3 .  

If A has the Jordan form representation 

then 
A" = s J" S-' 

and 
eAr  =r s e J 1 s - ' .  

but computing J" is somewhat more complicated sf J  is not strictly diagonal. As an example. 
for a 3 x 3 Jordan block, 

The presence of terms which grow as a polynomial function of n can be understood by 
comparison with repeated roots in a differentla1 or difference equation: the repeated roots 
give rise to solutions of the form ten' for the differential equation, and th' for the difference 
equation. 

Example 6.3.3 A signal has transfer function 

with time function 

Placlng the system into state-variable form (as tn (1.20)), we find 

whtch has repeated elgenvalues A = 3, and only a stngle elgenvector The presence of the l~nearly 
growing term 4t( 3)' 1s equivalent to the fact that the Jordan form for A 1s not strictly diagonal U 

6.3.2 Diagonalitation of self-adjoint matrices 

Herm~tlan symmetnc matr~ces a r m  In a variety of contexts as a mathematrcal representation 
of symmetnc rnteractlons if u affectr b as much ns b affects u.  then n matrsx descrlblng thetr 
interactions w ~ l l  be symmetric Throughout thls sectton we employ inner-product notdtlon 
Interspersed wlth more tradltlonal matrrx notation, to re~nforce its use and to avoid, as 
much ac poss~ble. h a l ~ n g  lo say "symmetnc or Herlntt~an" A<, dlscucsed In 5ection 4 3, 
self-adjo~nt matr~ces a re  matrlces for which 

( A x .  x) = (x. A x )  
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Self-adjoint matrices are symmetric if the elements are real: = A ;  and are Hermitian if 
the elements are complex: = A. The first useful result concerning self-adjoint matrices 
is that their eigenvalues are real. 

Lemma 6.2 

The eigenvalues of a self-adjoint matrix are real. 

Proof Let A and x be an eigenvalue and eigenvector of a self-adjoint matrix A. Then 

(Ax, x) = A(x, x) (6.16) 
and 

(x, Ax) = 1(x,  X )  . (6.17) 

Since (Ax, x) = (x, Ax), we must have A = 1, so A is real. 0 

Lemma 6.3 

For a self-adjoint matrix, the eigenvectors corresponding to distinct eigenvalues 
are orthogonal. 

Proof Let A 1  and h2 be distinct eigenvalues of a self-adjoint matrix A, with corresponding 
eigenvectors xi and XZ.  Then 

(AxI,  ~ 2 )  = (xi. Ax2) = ( X I ,  A 2 ~ 2 )  = ~ Z ( X I ,  ~ 2 )  

We also have 

( A ~ I ,  x2) =I A1 ( X I  ~ 2 ) ,  

so that 

(At - A2)(~1, ~ 2 )  '=: 0. 

Since A I  # h.2, we must have xl  i x*. 

We have already observed for Hermitian matrices with distinct eigenvalues that diag- 
onalization is possible, and the unitary diagonalizing matrix U is simply formed from 
the eigenvectors of A. However, this theorem is true even for matrices with repeated eigen- 
values. This theorem is known as the spectral theorem, and the set of eigenvalues of a 
Hermitian matrix is known as its spectrum. 

Theorem 6.2 Every Hermitian m x m matrix A can be diagonalized by a unitary matrix: 

U ~ A U  = A, (6.18) 

where U is unitary and A is diagonal. 

It follows that every real symmetric matrix A can be diagonalized by an orthogonal matrix: 

When A has distinct eigenvalues, theorem 6.2 is immediate, in light of the discussion in 
the previous section. However, the result is true even when A has repeated eigenvalues. We 
can write (6.18) as 
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The proof of theorem 6.2 is left as an exercise (6.3-24). The proof follows in two simple 
steps from the following key lemma, which is interesting in its own right. It should be 
observed that this lemma applies not only to Hermitian matrices, but to any square matrix. 

Lemma 6.4 (Schur's lemma) For any square matrix A, there is a u n i t a ~  matri,~ U such 
that 

U ~ A U  = T ,  

~xhere T is upper triangulau: Eveiy matrix is similar to an upper-triangular matrix. 

Observe that since the eigenvalues of a diagonal matrix appear on the diagonal, this lemma 
provides one method of computing the eigenvalues of any matrix. 

Proof The proof 15 constructive For typographical convenience the lemma will be demon- 
strated using a 3 x 3 matrix. extension to an arbitrary square matrix is straightforward Let 
A be a 3 x 3 matrix It must have at least one elgenvalue h l  (which may be repeated, but this 
does not matter) and a corresponding elgenvector ul , whlch we assume to be normallzed to 
a unit vector By the Gram-Schmidt process it is po~sible to find two unit vectors X I  2 .  xl 3 

that are orthogonal to u l  and form a unltary matrix U1 wlth ul in the first column Then 

where x denotes an element which takes on an arbitrary value. Now cons~der the 2 x 2 
matrlx AZ in the lower right of the matrix on the r~ght.  It also has at least one eigenvalue L2 
and a corresponding eigenvector u2 2 Again uslng Gram-Schmidt. a 2 x 2 unltary inatnx 
M 2  can be constructed. 

M? = [u2 2 ,  ~2 31. 

so that 

Then a 3 x 3 unitary matrix can be constructed by 

Then 

which is upper triangular. The matrix U = Ul U2 is unitary, so the theorem is proved (for 
the 3 x 3 case). 0 

Lemma 6.5 Let A be arz in x m matrix of rank r < m. Then at leasr m - r of the eigen- 
values of A are equal to zero. 

The proof 1s required In exercise 6.3-25 

Example 6.3.4 Let 
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which has e~genvalues hi = X2 = 1 and hi  = - 1 Following the 5teps In the proof of lemma 6 4, we 
first find an eigenvector of A correspond~ng to = 1, 

Two vectors that are orthogonal to this are = ez and x i , ,  = e3, giving Ul = I. Then the 2 x 2 
matrix A2 in the lower-right comer of AUI is 

which has an eigenvaliie of J.2 = 1 with a corresponding eigenvector ~ 2 . 2  = h[1, l I r .  Then 

Thus, A has the representation 

since A ,  = hZ 

We see subsequently that the matnces PI and P2 that appear in (6.21) are in fact projection 
rnatnces and that PI and P2 are orthogonal: P: P2 = 0. PI projects onto the space spanned by the 
vectors ([ l ,  0, O I T ,  [0, 1, 1IT), theeigenvectors corresponding to the eigenvalue I = 1; and P2 projects 
onto the space spanned by [0, 1, -I], the eigenvector corresponding to the eigenvalue h = - 1. 13 

The diagonalization A = U A U ~  illustrates an important principle, that of finding an 
appropriate coordinate system in which to solve a problem. Many problems in mathematics 
can be simplified by expressing them in an appropriate orthogonal coordinate system, where 
the global problem can be addressed as a series of scalar problems. This is one reason why 
efforts are made to find sets of orthogonal basis functions, as described in chapter 3. The 
convolution theorem, which states that the transform of a convolution is the product of the 
transforms, is another example of the application of this concept. Rather than convolving 
two signals, which involves more-or-less global interaction of the signals, the signals are 
represented in a transform domain (a new coordinate system) where the convolution can be 
represented as multiplication. The importance of this in real signal processing is profound, 
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1s the projection matrix which projects onto R,.  By means of the projectors onto invariant 
subspaces, we can decompose an operator A into simple pieces, so that the operation of 
A can be expressed as the sum of simple projection operations. This is what the following 
theorem does for us. 

Theorem 6.4 Let A be an rn x m self-adjoint matrix with k _< rn distinct eigenvalues. 
Then 

1. Spectral decc~mpa~itiun: 

2. Resolution of identity: 

I = C P*. 

The proof of this theorem is left as an exercise. 
By theorem 6.4, the action of A on the vector x can be written as 

This can be interpreted as follows: 

1. Find the components of x in each of the invariant subspaces R t ,  R2, . . . , Rk, by 
projecting x into each of these spaces, 

where P,x E R,. 

2. Stretch these components by h l ,  h2,  . . . . hk, respectively. 

3. Add all the pieces together. 

Theorem 6.4 also provides a means of constructing a self-adjoint matrix with a given 
eigenstructure. 

Example 6.4.1 We want to construct a 2 x 2 self-adjoint matrix with eigenvalues h i  = 5 and h2 = 10, 
with eigenvectors pointing in the directions 

Note that the eigenvectors point in orthogonal directions, as they must. Since the vectors are not 
normalized, we must normalize them. Then 

Then 

has the desired eigenvalues and eigenvectors 
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6.5 Geometry of quadratic forms and the minimax principle 

Definition 6.5 A quadratic form of a self-adjoint matrix A is a scalar of the form ( A  y,  y) = 
y H ~ y .  This will also be written as 

Quadratic forms arise In a variety of signal processing applications where squared- 
error terms or Gaussian densities are employed. An understanding of the geometry induced 
by quadratic forms can also aid in understanding some iterative optimization and filtenng 
operations. 

Example 6.5.1 Cons~der the least-squares funct~onal from (3.14). where we assume for convenience 
that all variables are real, 

We can wnte this as a quadratic form w ~ t h  a scalar offset by complet~ng the square From append~x B. 
we see that we can wnte 

where co = R-'p and d = l\x\ \  - pr R-'p We now make a tranilatlon of the coord~nate syrtem by 
y = c - co. and write ( w ~ t h  some abuse of notat~on) 

This is an offset quadratic form 

Example 6.5.2 We desire to make a plot of the contours of constant probabil~ty for the tho- 

d~menslonal Gauss~an vector X - R )  That IS, we want to plot 

for d~fferent values of the conrtant C After some algebratc reduction, this reduces to 

where C '  = -2log C((2rr)"l2~Rj1I2). Letting y = x - p, we obta~n 

yT R - ' ~  = C'. (6.25) 

This is an equation of the form Q R - I  (y) = C'. 

By dlagonalizing the matrlx A in the quadratrc form Q A ( y ) ,  we transform to a new 
coordinate system In which the geometrq becomes more apparent. For convenience, we wlll 
asfume that real vectors are used Using the decomposition A = Q A  Q'. where 

we can observe that 

where 
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0 1 2 3 4 
x1 

(a) 

Figure 6.2: The geometry of quadratic forms 
(b) The rotated coordinates 

0 1 2 3 4 
Xl 

(b) 

(a) The original and translated coordinates. 

The new variable z is in a coordinate system in which the interaction between the components 
of the vector are eliminated. 

The variable z can be interpreted geometricaliy in two dimensions by observing that 
I when z = [,I then y = ql ,  the first eigenvector of A, and when z = [:I then y = q2. 

The orthogonal eigenvectors of A thus provide the orthogonal bases of a new coordinate 
system. Figure 6.2 illustrates this concept. In figure 6.2(a), level curves of the quadratic 
form (x - X O ) ~ A ( X  - XQ) are shown, where 

has the eigendecomposition 

and xo = [2, l lT. Also shown in figure 6.2(a) are the new coordinates yt and y2 obtained 
by the translation, y = x - xo. These coordinates have their origin at the bottom of the 
quadratic "bowl." In figure 6.2(b) we use the new coordinates zl and z z ,  which point in 
the eigenvector directions of A. The level curves in the z coordinates correspond to the 
equation 

2: z; 
- + - = C', 
1 9  
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whlch 1s the equatlon for an ell~pse The steepest direction out of the bowl, along the z ,  
axis, corresponds to the largest elgenvalue 

In the general two-d~mensional case, the level curves of the quadratic forrn Q A  (x) = C 
are of the form 

z:hl + z2hl = C (6.28) 

If hl  h2 > 0,  thlc equation describes an ell~pse. with major and mlnor axes in the direct~oni 
of the elgenvectors of A For iLlj12 < 0, (6 28) defines a hyperbola If the elgenvalue., differ 
greatly ~n magnitude, such as hl >> h2. then the matrix A 1s s a ~ d  to have a large ergeavalue 
drsparrty (This corresponds to the matrix belng poorly cond~tloned ) 

Example 6.5.3 Returning to example 6 5 2, we want to make plots of the contours of constant 
probability, where 

y T ~ - ' y  = C' 

Let us write the covariance matrix R as 

R = U A U ~  

Then R-' has the decomposttion 

R - I  = uh-IuH, 
and (6 25) can be written as 

stnce the etgenvalues of R-' are the reciprocals of the eigenvalue\ of R (see exerctse 6 2-10) In two 
dtmensions thi5 IS 

When C' = 1 t h ~ s  defines an ellipse with major and minor axes &and Ftgure 6 3 illustrates 
the case for 

Flgure 6 3 Level curves for a Crauss~dn d~\tributlon 
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(the iame as in (6 17)) The level curver are ot  the form 

In thir ca\e z, points in the d~rection of slowest increase, as ~t is scaled by the inverse of the eigenvalue 
Large ergenvalues correspond to large variances, and hence the broad spread in the d~stnbution 

In higher dimensions the same geometric principle applies. 

Quadratic forms of a matrix A give rise to classical conic sections in two 
dimensions--ellipses, hyperbolas, and intersecting lines-and multidimen- 
sional generalizations of the conic sections for higher dimensions, with ortho- 
gonal axis directions determined by the eigenvectors of A. 

The quadratic forms of an m x m matrix with all positive eigenvalues form an ellipsoid in 
rn dimensions. In three dimensions, it helps to envision an American football, an ellipsoid. 
Figure 6.4(a) shows the locus of points produced by Q A  (x) for /Ixj/ = 1, the unit ball, where 
A is a positive definite matrix (all eigenvalues > 0). The 12 norm of the matrix corresponds 
to the amount of stretch in the direction that the unit ball is stretched the farthest-the 
direction of the eigenvector associated with the largest eigenvalue; call it X I .  If we slice the 
ellipsoid through the largest cross section perpendicular to X I ,  as shown in figure 6.4(b), 
the locus is an ellipse. The largest direction of the ellipse on this plane corresponds to the 
next largest eigenvalue, and so forth. 

The eigenvalues of a self-adjoint matrix can be ordered so that 

A l  2 hz 2 h3 ? . . . ? A  ,. 

With this ordering, let the associated eigenvectors be x i ,  x2, . . . , x,. It is also convenient 
to assume that the eigenvectors have been normalized so that llxl = 1, i = 1 ,2 ,  . . . , m.  
With this ordering the geometrical reasoning about the ellipsoid can be summarized and 
generalized to m dimensions by the following theorem. 

Theorem 6.5 (Maximum principle) For a positive-sernidejinite self-adjoint matrix A with 
Q A (x) = (AX, X )  = xN AX, the maximum 

is hi, the largest eigenvalue of A, and the maximizing x is x = X I ,  the eigenvector corre- 
sponding to h I .  

Furthermore, $we maximize Q A  (x) subject to the constraints that 

then hk is the maximized value subject to the constraints and xk is the corresponding value 
of x. 

The constraint (x, x,) = 0 serves to project the search to the space orthogonal to the 
previously determined eigendirections (e.g., the slice through the ellipsoid). 

Proof The proof is carried out by constrained optimization using Lagrange multipliers (see 
section A.7). We have already seen the first part of the proof in the context of the spectral 
norm. Form the function 

J(x) = xHAx - hxHx, 



Figure 6.4: The maximum principle. (a) An ellipsoid in three dimensions. (b) The plane 
orthogonal to the principal eigenvector 

where h is a Lagrange multiplier. Taking the gradient with respect to x (see section A.6.4) 
and equating to zero, we obtain 

we see that the maximizing solution1 x* must satisfy 

Thus x* must be an eigenvector of A and A must be an eigenvalue. For this x*, we have 
Q(x*) = ( x * l H ~ x *  = A ( x * ) ~ x *  Max~m~za t~on  of this, subject to the constraint //x* / I  = 1, 
requlres that we choose ik to be the largest eigenvalue, and x* = xl to be the eigenvector 
assoc~ated w ~ t h  the largest eigenvalue 

To prove the second part, observe that since the elgenvectors of a self-adjoint matnx 
are orthogonal, the m a x ~ r n ~ z ~ n g  solut~on x*, subject to the constraints 

must lie in Sk,m = span{xl. xk+l, . . . , xm]. Let 

be a normalized candidate solution. Then 

Since hn 2 iiTl 2 2 A ,  2 0,  Q A  (x) ismax~mized whenakLl = = = a,, = 0 
(see exerc~se 6 5-35) Thus. Q(x) has the maximum value A x ,  and x* = xk 3 

The quotient 

'The cyrnbol ' In thi5 ca\e indrcate\ an rxtremlzlnf value. not an adjo~nt.  There should he litrle notational 
ambiguity. since x is a vector. not ;In operator.. 
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I5 known as a Rayleigh quotient. From theorem 6.5, we can conclude that 

max R ( x )  = A ! .  
iIxll+O 

and that the maximizing value is x* = x l ;  and that 

min R ( x )  = A,. 
i i x l l # ~  

where the m~nimiz~ng value 1s x* = x,. Some least-squares problems can be couched in 
terms of Rayletgh quotients, as IS 5hown in section 6 9. 

Application of theorem 6 5 requtres knowing the first k - 1 etgenvectorc, in order 
to find the kth eigenvalue and elgenvector. The following theorem provides a means of 
charactenzing the eigenvalues without knowtng the first k - 1 elgenvectors It is often 
useful in determining approximate values for the eigenvalues 

Theorem 6.6 (Courant minimax principle) For any self-adjoint m x m matrix A, 

AL = min max ( A x ,  x )  ;Cm-k+~ = max min ( A x ,  x ) ,  
C llxll?=l C lix112=l 

Cx=O Cx=O 

where C is any (k - 1) x m matrix. 

Geometrically, the requirement that C x  = O  means that x lies on some ( m  - k + 1)- 
dimensional hyperplane in Wm. We find Ak by maximizing Q A ( x )  for x lying on the hy- 
perplane, subject to the constraint Ilxll;? = 1,  then move the hyperplane around until the 
maximum value Q A ( x )  is as small as possible. (For example, to find Az, think of moving 
the plane in figure 6.4(b) around.) 

Proof We prove only the first form of the theorem, as the other is similar. For A = U A U H ,  
we have 

m 

( A x ,  x )  = ( A y .  y) = x A. I Y ,  1 2 .  
1=1 

where y = Q H x .  Note that C x  = O if and only if CQy = 0. Let B = C Q .  Let 
m 

p = min max ( A x .  x )  = rnin rnax x A. ly. 1' 
C llxll2=l B ll~Il2=1 

cx=o By=O 

The proof is given by showing that p r: hk and 2 Ak, so that the only possibility is 
i* = hk.  

It is possible to choose a full-rank B so that By  = 0 implies that yl = y2 = . . . = 
yk-I = 0. For such a B, 

p r: max = kk 
l i~ l i l= l  r=k 

(where the inequality comes because the minimum over B is not taken). 
To get the other inequality, assume that Ykil = Yk+2 = . . . = ym = 0. With these 

m - k constraints, the equation By  = 0 is a system of k - 1 equations in the k unknowns 
yl ,  y2, . . . , yk. This always has nontrivial solutions. Then 

p 2 min max x hi$ 2 min rnax hi x y' = ii. 
B llyIlz=l 8 I I Y I I ~ = ~  n+ ,=...= ym=o i=l yk+,= ... =y,=~ i=l 

By=O By=O 

where the first inequality comes by virtue of the extra constraints on the rnax, and the second 
inequality follows since hk is the smallest of the eigenvalues in the sum. 
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6.6 Extremal quadratic forms subject to linear constraints 

In the optlmlzatron problems of the previous sectlon, we found extrema of quadratic forms, 
subject to the constraint that the solut~on be ortl~ogonal to previous solutions In thls sectron. 
we modtfy the constralnt somewhat, and cons~der general h e a r  constralnts Imagine an 
ellipsotd In three d~mensions, as tn figure 6 4(a). The axes of the ellipse correspond to the 
elgenvectors of a matnx, with the length determined by the e~genvalues Now lmaglne the 
ellipsotd sllced by a plane through the ongln. as In 6 4(b), but wtth the plane free to cross 
at any angle The Intersection of the elltpsoid and the plane forms an el11pse What are 
the major and mtnor axes of thts Intersecting ellipse? Pornts on the plane can be described 
as xTc  = 0, where c  IS the vector orthogonal to the plane The problem 1s to d e t e m ~ n e  
the statlonary polnts (eigenvectors and e~genvdlues) of x H ~ x  (the ellipsold) subject to the 
constrarnts x H x  = 1 and x H c  = 0 The problem as stated tn three d~menstons can obviously 
be generalized to htgher dtmens~ons Without loss of generality, assume that c  is scaled so 
that / / c / / ~  = 1 A solution may be found using Lagrange multlpl~ers Let 

where i and y are Lagrange multipliers. Taking the gradient and equating to zero leads to 

Multiplying by cH and using l!cl!z = 1 leads to = - c H ~ x .  Substituting this into (6.30) 
leads to 

Let P  = I -ccH It is apparent that P  1s a projection matrix, so P* P  = P  Then P A X  = Ax 
I \  an etgenvalue problem. but P A  may not be Hermrtian symrnetrrc (even though both 
P  and A  are Hermitian symmetric) S~nce  ~t 1s easier to compute ergenvalues for syrnmetnc 
matrices. it 1s worthwh~le find~ng a way to symmetrlclze the problem Us~ng the fact that 
the e~genvalues of P A  are the same as the e~genvalues of A  P  we write 

Let K = P A P .  Then for an eigenvector z  in 

the vector x  = Pz  IS an eigenvector of P A .  
More generally. the eigenproblem may have several constralnts. 

If P  = I - C ( C H c ) - ' C H ,  then the statlonary values of X 'AX  subject to (6.32) are found 
from the eigenvalues of K = P A P  (see exercise 6.6-38). 

6.7 The Gershgorin circle theorem 

The Gershgor~n circle theorem can be used to place bounds on the regions In @ In wh~ch 
the eigenvalue$ of a matrrx A  resrde Whrle the reglons tend to be large enough that the 
theorem 1s generally not u5eful for computtng etgenvalues, i t  can be uced, for example, to 
determine when a rnatrlx is posrtive defin~te 
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Figure 6.5: Illustration of Gershgorin disks 

Let R, ( A )  denote the disk in the complex plane defined by 

These disks are referred to as Gershgorin disks, and the boundaries are called Gershgorin 
u~rcles. 

Example 6.7.1 Let 

Then the Gershgorin disks are 

Figure 6.5 illustrates these regions. The true eigenvalues are 

which fall in the disks. 

Let 

Theorem 6.7 The eigenvalues of an m x m matrix A all lie in the union of the Cershgorin 
disks of A: 

Furthermore, ifany Cershgorin disk R, ( A )  is disjoint from the other Gershgorin disks of A, 
then it contains exactly one eigenvalue of A. By extension, the union of any k of these disks 
that do not intersect the remaining rn - k circles must contain precisely k of the eigenvalues, 
counting multiplicities. 

Proof The first part of the proof is a straightforward application of the triangle inequal- 
ity. Let x = [xi, x2, . . . , x,lT be an eigenvector of A  with eigenvalue A, and let k = 
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arg max, ( jx, 1 ) .  (See box 6.1 .) Then the kth component of Ax = hx is 

so that 
m 

This leads to 

By the selection of k. lxL / , jx, / and 

; #k ; #k  

Thus h E Rk. 
For the second part of the proof, we use a continuity argument. Write 

where D = diag(al 1 ,  a22, . . . . a,,) and B has zeros on the diagonal. Also let A, = D $- E B. 
The eigenvalues of A. = D are the diagonal elements of A. As t- varies from O to 1, the 
eigenvalues of A, move from A ( D )  to h(A). Now we need the following two facts (which 
we do not prove here-see [142]): 

1. The roots of a polynomial depend continuously on the coefficients of the polynomial. 

2. As a result of the preceding, the eigenvalues of a matrix are a continuous function of 
the elements of the matrix. 

Thus the locus of eigenvalue locations of A, traces a continuous curve as t- varies. Let 
r, (A,) be the radius of the ith Gershgorin disk of A, .  Then 

so R, (A,) c R, (A) for all E E [0, 11. 
Let R1 (A) be a Gershgorin disk which is disjoint from all other Gershgorin disks of A 

(in other words, none of the other Gershgorin disks Rk(A,) ever intersect R1 (A)). R1 (A) 

/ Box 6.1: arg max and arg min 

The operator arg max(.) means "return the argument of the value that maxi- 
mizes the operand." For example, 

arg max(x, ) 
i 

mean "return the value of I such that x, I \  the large\tm The function arg min 
is s~inllarly defined 



has itt lea\t one eigenvalue In it, ~t cannot have more thdn 1 e~genvalue, however, because 
the rem~llning rn - 1 etgenvdlue4 of A, start outslde RI ( A )  dnd remiun out41de '1s E vanes 
over 10, 11 This argument can be extended to reglons contalntng k e~genvalues L! 

Definition 6.6 A matrix A IS said to be diagonally dominant ~f 
n 

j = l  

i f  1 

for all I = 1 ,  2,  , n The matnx 1s strictly dtagonally dom~ndnt if 

n 

fora l l i  = l ,2 ,  . . . ,  n 

I t  is clear from the geometry of the Gershgorin circles that a strictly diagonally dominant 
rnntrix A cannot have an eigenvalue that is zero, and hence must be invertible. Note that 
strict diagonal dominance is required, since otherwise a zero eigenvalue could appear, as in 
the case of 

Applica fion of Eigendecomposition methods 

6.8 Karhunen-Lokve, low-ran k approximations, 
and principal component methods 

Let X be a zero-mean m x 1 random vector, and let R = E[xx"]. Let R have the factor- 
ization R = UAU", where the columns of U are the normalized eigenvectors of R. Let 
Y = UHX. Then Y is a zero-mean random vector with uncorrelated components: 

We can thus view the matrix U" as a "whitening filter." Turning the expression around, we 
can write 

m 

X = UY = ~ u l Y L .  (6.33) 
r=l 

This synthesis expression says that we can construct the random variable x as a linear com- 
bination of orthogonal vectors, where the coefficients are uncorrelated random variables. 
The representation in (6.33) is called the Karhunen-hkve expansion of x. In this expansion, 
the eigenvectors of the correlation matrix R are used as the basis vectors of the expansion. 

The Karhunen-Lokve expansion could be used to transmit the vector X. If (by some 
means) the autocorrelation matrix and its eigendecomposition were known at both the 
transmitter and receiver, then sending the components Y, would provide, by (6.33), a rep- 
resentation of X. In this representation, m different numbers are needed. 

Suppose now that we wanted to provide an approximate representation of X using 
fewer components. What is the best representation possible, given the constraint that fewer 
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than m components can be used? Let x E Cm be the approximation of X obtained by 

2 = Kx, 

where K is an m x m matrix of rank r < m. Such a representation is sometimes called a 
rank-r representation; only r pieces of information are used to approximate X. We desire 
to determine K so that x is the best approximation of X in a mlnlmum mean-squared error 
sense. Such an approximatton is sometimes referred toas a low-rarzkapproximatzorz. Let R = 
I?[XXH] have eigenvalues A l  , h2,  . . . , Am with corresponding elgenvectors X I ,  x*, . . . , X, . 
The mean-squared error, as a function of K ,  is 

Since e 2 ( ~ )  = e 2 ( K H ) ,  we may assume that K is Hennitian. We can write K with an 
orthogonal decomposition, 

where 

and U is a unitary matrix. Substituting (6.35) into (6.34) we find (see exercise 6.18-43) 

To minimize this, clearly we can set p, = 1. i = 1,2.  . . . . r .  Then we mast mintrnlze 

subject to the constraints that u;u, = S,,. But from the discucrlon of sect~on 6 5, u , .  1 = 
r + I ,  r + 2, . . . , m must be the elgenvectors of R corresponding to the (m - r )  smallest 
eigenvalues of R. The eigenvectors u, ,  r = 1,2, . , r whlch are orthogonal to these form 
the columns of U, so 

r 

where I ,  has r ones on the dtagonal with the remainder being zeros The matnx K 1s a 
rank-r projection matrix 

The lnterpretatlon of thts result is as follows To obtain the be\t approximation to X 
using only r pteces of ~nformation, send the values of Y, correspond~ng to the r large~t 
eigenvalue~ of R 
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Low-rank approximations and Karhunen-Loeve expansions have theoretical applica- 
tion in transform-coding for data compression. A vector X is represented by its coefficients 
in the Karhunen-Lokve transform, with the coefficients listed in order of decreasing eigen- 
value strength. The first r of these coefficients are quantized and the remaining coefficients 
are set to zero. The r coefficients provide the representation for the original signal. The cor- 
responding significant eigenvectors of the correlation matrix are assumed somehow to be 
known. Since the Karhunen-Lokve transform provides the optimum low-rank approxima- 
tion, the reconstructed data should be a good representation of the original data. (However, 
the Karhunen-Lokve transform is rarely used in practice. First, there is the problem of deter- 
mining R and its eigenvectors for a given signal; second, for each signal set, the eigenvectors 
selected must somehow be communicated to the decoding side.) 

6.8.1 Principal component methods 

Related to low-rank approximations are principal component methods. Let X be an 
m-dimensional zero-mean random vector (assumed to be real for convenience), and let 
x l ,  xz, . . . , x, be n observations of x.  We form the sample covariance matrix S by 

The principal components of the data are selected so that the ith principal component is 
the linear combination of the observed data that accounts for the ith largest portion of the 
vanance In the observations 2236, page 2681. Let y I ,  J J ~ ,  . . . , yr be the principal components 
of the data. The first principal component is formed as a linear combination Yl = aTX, where 
al is chosen so that the sample variance of y ,  is maximized, subject to the constraint that 
/ /a l  / /  = 1. The principal component values obtained from the observations are yl , = af x,, 
and the sample variance is 

Maximizing a[ Sal subject to /lal 11 = 1 is aproblem we have met before: a, is the normalized 
eigenvector corresponding to the largest eigenvalue of S, h 1 .  In this case, 

2  T oyl = aTsal = h,a,  a, = hl .  

The second principal component is chosen so that y 2  is uncorrelated with yl, which leads 
to the constraint a l a l  = 0. Given the discussion in section 6.5, a2 is the eigenvector cor- 
responding to the second-largest eigenvalue of S, and so forth. The eigenvectors used to 
compute the principal components are called the principal component directions. If most 
of the variance of the signal is contained in the principal components, these principal com- 
ponents can be used instead of the data for many statistical purposes. 

Example 6.8.1 Figure 6.6 shows 200 sample points from some measured two-dimensional zero-mean 
data X I ,  x2, . . . , ~ 2 0 0  For this data, the covariance matrix is estimated as 

Let sl and sz denote the normalized eigenvectors of S.  Then the eigendecomposition of this data 
is 
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Figure 6.6: Scatter data for principal component analysis 

Figure 6 6 also shows a plot of these eigenvectors, the pr~ncrpal component directions of the 
data, scaled by the square root of the corresponding elgenvalue The scalar variable 

accounts for (100)29 1343/(29 1343 + 1 4355) = 95% of the total vanance of the random vector 
X = ( X I ,  X2), and hence is a good approximation to X for many statistical purposes C; 

6.9 Eigenfilters 

Eigenfilters are FIR filters whose coefficients are determined by minimizing or maximiz- 
~ n g  a quadratic form, subject to some constraint In thls section, two different types of 
eigenfilter designs are presented The first is for a random signal in random noise, and 
the filter is designed tn such a way as to maxlmlze the s~gnal-to-noise ratlo at the out- 
put of the filter The second is for design of FIR filters wlth a specified frequency re- 
sponse As such, they provide an alternative to the standard Parks-McClellan filter deslgn 
approach 

6.9.1 Eigenfilters for random signals 

In the system shown in figure 6.7, let f [ t ]  denote the input signal, which is assumed to be a 
stationary. zero-mean random process. The input is corrupted by addit~ve white noise v[r] 
with variance a*. The signal then passes through an FIR filter of length m,  represented by 
the vector h, to produce the output y ( t ] .  It is desired to design the filter h to maximize the 
signal-to-noise ratlo. Let 
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Figure 6.7: Noisy signal to be filtered using an eigenfilter h  

Then the filter output can be written as 

The power output due to the input signal is 

Then the output of the filter due only to the noise is 

hH v [ t ]  

where R = ~f [ t j f  [ t ]  is the autocorrelation matrix of f .  Let 

and the average noise power output is 

No = ~ [ h ~ v [ t ] v [ t ] ~ h ]  = a 2 h H h .  

v[ t ]  = 

The signal-to-noise ratio (SNR) is 

- 
vltl 

- 
v[ t  - I ]  

,v[t - m + 11- 

The problem now is to choose the coefficients of the filter h  in such a way as to maximize 
the SNR. However, this is simply a Rayleigh quotient, which is maximized by taking 

where xi is the eigenvector of R corresponding to the largest eigenvalue, hl  . The maximum 
SNR is 

h 1 
SNR,, = - 

52. 

It is interesting to contrast this eigenfilter, which maximizes the SNR for a random input 
signal, with the matched filter discussed in section 3.19. The operation of the matched filter 
and the eigenfilter are identical: they both perform an inner-product computation. However, 
in the case of the matched filter, the filter coefficients are exactly the (conjugate of the) 
known signal. In the random signal case, the signal can only be known by its statistics. 
The optimal filter in this case selects that component of the autocorrelation that is most 
significant. 

For this eigenfilter, the important information needed is the eigenvector corresponding 
to the largest eigenvalue of a Hermitian matrix. Information about the performance of the 
filter (such as the SNR) may be obtained from the largest eigenvalue. Whereas computing 
a complete eigendecomposition of a general matrix may be difficult, it is not too difficult 
to compute the largest eigenvalue and its associated eigenvector. A means of doing this is 
presented in section 6.15.1. 
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6.9.2 Eigenfilter for designed spectral response 

A variety of filter deslgn techniques exist, the most popular of which is probably the Parks- 
McClellan algorithm, in which the maxlmum error between a desired signal spectrum 
Hd(eJW)  and the filter spectrum H ( e J w )  IS minimized. In this section we present an alter- 
native filter design technique, whrch minimizes a quadratic function related to the error 
lHd(eJW)  - H ( ~ J " ) / ~ .  While it does not guarantee to minimize the maximum error, the 
method does produce good designs, and is of reasonable computational complexity. Fur- 
thermore, it IS straightforward to Impose some constraints on the filter design. The design 
is exemplified for linear-phase lowpass filters, although it can be extended beyond these 
restrictions. 

It is deslred to design a lowpass, linear-phase FIR filter with m = N + 1 coefficients 
that approximates a desired spectral response Hd(eJW)  where N is even. The desired spectral 
response has a iowpass charactenstic, 

with o, < w ,  (see figure 6.8). The filter is scaled so that the magnitude response at w = 0 
is 1. 

The transfer function of the actual (in contrast to the desired) filter is 

where the constraint izjn] = lz[N - n ]  is imposed to achieve linear phase. Let M = N/2. 
The frequency response can be written as 

where 
M 

Hn ( w )  = b, cos (wn)  = b T c ( o )  
n=O 

and 

b = 

cos M w  

The squared magnitude response of the filter is 

1 H (e'")l2 = H ; ( o )  = bTc(w)cT  (w)b .  

Figure 6 8 Mdgnitude response spec~ficatsons for a lowpas\ filter 



Stopband energy 

The energy that paiiei in the stopband, which we want to minimize, is 

Let 

where the ( j ,  k)th element of P is 

This can be readily computed in closed form 

Passband deviation 

The desired DC response H ~ ( ~ J ( ) )  = I corresponds to the condition 

T b 1x1 ,  

where 1 is the vector of all 1s. Throughout the passband, we desire the magnitude response 
to be I ;  the deviation from the desired response is 

1 - bTc(w) = b T l  - brc(w) = b T [ l  - ~ ( w ) ] .  

The square of this deviation can be integrated over the frequencies in the passband as a 
measure of the quality of the passband error of the filter. Let 

with 

This matrix also can be readily computed in closed form. 

Overall response functional 

Let 

be an objective function that trades off the importance of the stopband error with the pass- 
band error using the parameter a, where 0 < a! < 1. Combining the errors, we obtain 

where R = a P + (1 - a)Q.  Obviously, J ( a )  can be minimized by setting b = 0. (This 
corresponds to zero in the passband as well, which matches the deviation requirement, but 
fails to be physically useful.) To eliminate the trivial filter, we impose the constraint that 
b has unit norm. The final filter coefficients can be scaled from b if desired. The design 
problem thus reduces to: 

minimize bT ~b 

subject to b r b  = 1 
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Figure 6.9: Eigenfilter response 

This is equivalent to 

bT ~b 
min - 
llbllfo bTb ' 

a Rayleigh quotient, which is solved by taking b to be the eigenvector corresponding to the 
smallest eigenvalue of the symmetric matrix R.  

Figure 6.9 illustrates the magnitude response of a filter design with 45 coefficients, 
where up = 0.2?t, w, = 0 . 2 5 ~ .  The solid line shows theeigenfilter response when u = 0.2, 
placing more emphasis in the passband. The dotted line shows the eigenfilter response when 
ol = 0.8, placing more emphasis in the stopband. For comparative purposes, the response of 
a 45-coefficient filter designed using the Parks-McClellan algorithm is also shown, with a 
dash-dot line. The eigenfilter with a = 0.8 has better attenuation properties in the stopband. 
but does not have the equlrjpple property. MATLAB code that des~gns the frequency response 
is shown in algonthm 6.1. 

Algorithm 6.1 E~genfilter deslgn 
File: e1gfil.m 

e1gmakePQ.m 

6.9.3 Constrained eigenfiiters 

One potentlal advantage of the e~genfilter method over the Parks-McClellan algor~thm 
IS that it 1s falrly straightforward to Incorporate a var~ety of constraints Into the design 
References on some approaches are given at the end of the chapter We conslder here the 
problem of addtng constratnts to fix the response at certaln frequencies Suppose that we 
desire to specify the magnitude response at r different frequenc~es, so that 

H R ( w , )  = dj 

for z = 1. 2. . r T h ~ s  can be wntten as 

brc(u,) = d, 

for L = I 2. r Stacking the constralntr, we have 

c T b  = d 
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Figure 6.10: Response of a constrained eigenfilter 

where 

The problem can now be stated as 

minimize bT Rb 

subject to c T b  = d. 

A cost functional that includes the r constraints can be written as 

J (b)  = bT Rb + XTcTb,  (6.42) 

where X = [ A l ,  A2,  . . . , &lT. This leads to the solution (see exercise 6.9-48) 

b = R - ' c ( c ~  R-'c)-Id. (6.43) 

Algorithm 6.2 shows the code that computes the coefficients. Figure 6.10(a) shows the 
magnitude response of a 45-coefficient eigenfilter with w, = 0.27~ and ws = 0.25n, with 
constraints so that 

H ~ ( ~ J ( ' ) )  = 1 HR(ei (  4n))  = 1 HR(eJ  = 0 HR(eJ  8n)  = 0. 

Because of the zero outputs, the response is not shown on a dB scale. Figure 6.10(b) shows 
the dB scale. For comparison, the response of an eigenfilter with the same w, and w,, but 
without the extra constraints, is shown with a dotted line. 

Algorithm 6.2 Constrained eigenfilter design 
File: eigf i1con.m 
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6.1 0 Signal subspaee techniques 

In sectlon 1 4 6. we exam~ned methods of determlnlng which sinusoidal signals are present 
in a signal based upon finding a characteristic equation, then finding its roots As pointed 
out in that section, these methods can provide good spectral resolution, but break down 
quickly in the presence of noise In this sectlon we continue In that splrit, but account 
explicitly for the possibil~ty of noise, by breaklng the qignal out In terms of a rrgnal subspuce 
component and a nozse subspace component 

6.10.1 The signal model 

Suppose that a signal x [ t ]  consists of the sum of p complex exponentiais in noise, 

P 

, = I  

where f, E [O, 5) 1s the frequency (we assume here that all frequencies are d~stinct). a, is 
the amplitude, and 4, is the phase of the i th signal The phases are assumed to be station- 

ary, stat~stlcally independent, and uniformly distnbuted over [0 ,  21s j The autocorrelation 
function for x  [ t ]  (see exercise 6 10-5 1 ) is 

P 

r,, [ k ]  = E [ x [ t ] x [ r  - k ] ]  = ej2"fik,  (6.44) 
r=l 

where p, = a,?. Let 

and let R,, be the M x M autocorreiation matrix for x [ t ] .  

rr ,  [Ol - I  . . .  rs,[-(M - 111 
rxx[Ol . . . rs,[-(M - 211 

R,, = E [ x [ r ] x H  [ t ] ]  = 

r,, LO1 

The autocorrelation matnx can be wrltten as 
P 

where 

Equation (6.45) can also be wr~tten as 

K,,  = SPS' 
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where 

S = [ S I  sz . . .  s,] and P = d i a g ( p r , p 2  , . . . ,  p,). (6.46) 

The matrix S is a Vandermonde matrix. 
The vector space 

S = span{sl, s2, . . . , sp]  (6.47) 

i s  said to be the signal subspace of the signal x [ t ] .  This name is appropriate, since every 
x[t] can be expressed as a linear combination of the columns of S ,  hence x[r] E S. 

It can be shown for A4 > p that R,, has rank p .  Let h(R,,) denote the eigenvalues 
of R,,c, ordered so that 2 A2 2 . . . 2 A M ,  and let ul , uz, . . . , UM be the corresponding 
eigenvectors that are normalized so that u;uj = Si-,. Then 

Rxx ui = Xi ui .  (6.48) 

Recall from lemma 6.5 that if R, ,  has rank p ,  then = Api2 = . . . = A M  = 0, SO we 
can write 

D 

R.,., = Ai u. u" 

The eigenvectors ul , U Z ,  . . . , up are called the principal eigenvectors of R,, . 

Lemma 6.6 The principal eigenvectors of R,, span the signal subspace S,  

Proof Substitute (6.45) into (6.48), 

Thus, 

where 

Since every u, can be expressed as a linear combination of {s,, i = 1, 2, . . . , p) ,  and since 
they are both p-dimensional vector spaces, the spans of both sets are the same. 

Given a sequence of observations of x[t], we can determine (estimate) R,, and find its 
eigenvectors u,. Knowing the first p eigenvectors we can determine the space in which the 
signals reside, even though (at this point) we don't know what the signal frequencies are. 

6.10.2 The noise model 

Assume that x[t] is observed in noise, 

where w[t] is a stationary, zero-mean, white-noise signal, independent of x[t] with 
E [ w [ t ] E [ t ] ]  = 0;. Then 

r,,Ckl = rx, [kl + 0;6[kl 
n 
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Then R,, = E [ y [ t ] y H  [ t ] ]  can be written as 

Let 

R,, = Rxx + ail. (6.50) 

Y ltl  
Y[t  + 11 

= 1 and X I ]  = 

y[t + M - I ]  

The autocorrelation matrix R,, is full rank because a: I is full rank. Let R,,u, = p,u, be 
the eigenequation for R,, with the eigenvalues sorted as p1 2 ~2 2 . . . 2 M .  The first p 
eigenvalues of R,, are related to the first p eigenvalues of Rxx by 

- 

_wit t M - I ]  

and the corresponding eigenvectors are equal (see exercise 6.2-8). Furthermore, eigenvalues 
pP+l, ,up+2, . . . , ,UM are all equal to a:. Thus, we can write 

The space 

is called the noise subspace. Any vector from the signal subspace is orthogonal to N.  

6.1 0.3 Pisarenko harmonic decomposition 

Based on the observation that the signal subspace is orthogonal to the noise subspace, there 
are various means that can be employed to estimate the signal components in the presence 
of noise. In the Pisarenko harmonic decomposition (PHD), the orthogonality is exploited 
directly. Suppose that the number of modes p is known. Then, setting M = p + I ,  the noise 
subspace is spanned by the single vector u ~ ,  which must be orthogonal to all of the signal 
subspace vectors: 

Letting u~ = [aM,-,, U M . ~ ,  . . . , u ~ . ~ - ~ ] ~ ,  (6.51) can be written as 

This is a polynomial in e-J2"h. The M - 1 = p roots of this polynomial, which lie on the 
unlt circle, correspond to the frequencies of the sinusoidal signal. Once the frequencies 
are obtained from the roots of the polynomial, the squared amplitudes can be obtained by 
setting up a system of equations from (6.49) for m = I ,  2,  . . . , p: 

The noise strength I \  obtatned from the Mth etgenvalue of R,,  Of course, tn practlce the 
correlation matrtx R, ,  must be estzmated based on rece~ved stgnals. 



Example 6.10.1 A source v [ t  1 I \  knoun to produce p = 3 srnusoid\ The correldtron rn'ttrrx R , ,  is 
estimated to be 

Algorithm 6 3 can be used to determine the trequencres of the \ottrce The result of this Lomputatlon 
I S  r r 2  = 0 4 and J" = [O 2 , 0  3 O 417 The a~nplrtudes are p = [ I ,  2  7 j T  CI 

Algorithm 6.3 Pisarenko harmon~c decompositton 
File: p l  sarenko . m 

6.10.4 MUSIC 

MUSIC stands for Multiple Slgnal Classification. Like the PHD, it relies on the fact that 
the signal subspace is orthogonal to the noise subspace. Let 

f )  = [I  e ~ 2 " f  e ~ 2 r 2 /  . . . e J 2 r ( " - 1 ) f ] ,  (6.53) 

When f = f, (one of the input frequencies), then for any vector x in the noise subspace, 

since they are orthogonal. Let 
M  

M ( f ) =  C l s H ( f ) ~ k 1 2  

k=p+l  

Then, theoretically, when f = f, then M (  f )  = 0, and 1/M(  f )  is infinite. Thus, a plot of 
I / M (  f )  should have a tall peak at f = f, for each of the input frequencies. The function 

is sometimes referred to as the MUSIC spectrum of f .  By locating the peaks, the fre- 
quencies can be identified. Knowing the frequencies, the signal strengths can be computed 
using (6.52),  as for the Pisarenko method. The MUSIC spectrum can be computed using 
Algorithm 6.4. 

Example 6.10.2 U s ~ n g  the data from the prevrous example, compute the spectrum usrng the MUSIC 
method 

Rrst, we use the follow~ng code to compute the value at a pornt of the MUSIC spectrum, glven 
the eigenvectors of the autocorrelatton matnx 

Algorithm 6.1 Computation of the MUSIC spectrum 
File: musicfun.m 

Then the MUSIC spectrum can be plotted wlth the following MATLAB code (assum~ng that R,, 
15 dlready entered into MATLAB) 
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0 0.1 0.2 0.3 0.4 0.5 
normalized frequency 

Figure 6.1 1 : The MUSIC spectrum for example 6.10.2 

The plot of the MUSIC spectrum is shown In figure 6 11  The peaks are clearly at 0 2 .0  3. and 0 4 
Computat~on of the signal strengths 1s as in example 6 10 1 U 

6.1 1 Generalized eigenvalues 

In addition to the many applications of eigenvalues to signal processing. there has arisen 
recently an interest in generalized eigenvalue problems of the form 

A u  = ABu. 

where A and B are rn x m matrices. The set of matrices A - AB is said to form a matrix 
pencil. The eigenvalues of the matrix pencil, denoted X ( A ,  B), are those values of h for 
which 

For an eigenvalue of the pencil h 6 A(A.  B). a vector u f 0 such that 

is sald to be an eigenvector of A - AB 
Note that if B is nons~ngular then there are n eigenvalues and k ( A .  R )  = ( B - ' A )  

This provldes one means of finding the e~genvalues of the matrix pencil However, ~t is 
not particularly well conditioned An extenswe discussion of numer~cdlly \table means 
of computing generalized eigenvalue~ can be found in [ I  141 MATLAB can compute the 
generalized eigenvalues uslng the e ~ g  commdnd w ~ t h  two argument\, a.; elg ( A ,  E) 
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The following algonthm implements ESPRIT 

Algorithm 6.5 Computation of the frequency spectrum of a signal using ESPRIT 
File: esprit.m 

The results of the computat~on are f = [0.2,0.3.0.4]. as before. 0 

6.12 Characteristic and minimal polynomials 

The charactenst~c polynom~al was defined In definlt~on 6 2 In thts sectlon, we examtne a 
feu of ~ t s  important properties. as well as the properttes of the mtnzmal polynomial of a 
matrix 

6.1 2.1 Matrix polynomials 

We begin with an elementary observation about scalar polynomials. 

Lemma 6.7 When tlze polynomial f (x) is divided by x - a to form tlze quotient and 
remaindel; 

f i x )  = (x - a )q ix )  + r (x ) .  

where deg(r(x)) < deg(x - a )  = I ,  then the remainder term is f (a)  

The proof follows simply by evaluating f (x) at x = 0 and observing that r (x)  must be a 
constant. 

We define a matrix polynom~al of degree m by 

where each F, 1s an m x m matnx, and F,,, # O If det(F,,,) # 0, the matrlx polynomtal 
1s s a d  to be regular The operations of addttlon, mult~pl~catton, and d~v i s~on  of matnx 
polynomlals are as for scalar polynomlals, keeplng In mlnd the noncommutat~v~ty of ma- 
tnx mul t~pl~cat~on operations If we dlvlde F ( r )  by some matrlx polynolnlal A ( x )  such 
that 

then Q ( x )  and R ( x )  are s a d  to be the nght quotient and right remainder. respectively. If 
we divide F i x )  such that 

then Q ( x )  and R(x) are the left quotient and left remainder, respectively. 

Example 6.12.1 Let F ( x )  = x 2 F 2  + x F, + FU, where 

and let A ( x )  = A , x  + Ao. where 
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Then the right division and left division yield 

and 

respectively. D 

When F(x)  is evaluated at a square matrix value x = A, two possible values, generally 
unequal, result: 

Fr(A) = F,,Am + F,-~A"-' + , . . + F o  

and 

Fl(A) = Am Fm + Am-' F,-, + . . . + FO. 

The polynomial F,. (A) is the right value of F ,  and FI (A) is the left value of F. Based on 
this notation, we extend lemma 6.7 as follows. 

Lemma 4.8 (Generalized Btzout theorem) When F(x)  is divided by x I - A on the right, 
the remainder is Fr (A). When F (x) is divided by x I - A on the lefi, the remainder is Fl (A). 

Let j ( ~ ( h )  = det(A.1 - A) denote the characteristic polynomial of A. Also, let BA(A) 
denote the adjugate of A I  - A. Recall that the adjugate of a matrix X satisfies the property 

X - I  = adj(X)/ det(X). 

Thus, 

X adj(X) = det(X) = adj(X)X. (6.57) 

Example 6.12.2 For the matrix A 1  - A = , the adjugate is 

and 

det(A.1 - A) 
(A1 -A)adj(AI - A) = I = adj(Al - A)(AI - A). 

det(hI - A) 

- A ) B A ( ~ )  = X A ( ~ ) I ,  

BA (A) (A I - A) = xA ( A )  I 

The matrix polynomial xA(A)l is divisible on both sides without remainder by A - h I .  
Hence we conclude, by lemma 6.8, that xA(A) = 0. We have thus proven the following. 

Theorem 4.8 (Cayley-Hamilton theorem) 

Let X A  (A) be the characteristic polynomial of the square matrix A. Then 

XA(A) = 0. 

In words, a matrix satisjies its own churacteristic equation. 
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Writing 
. m-1 

X A ( A ) = ~ ~ + ~ , - I A  + . . . +  a l A + a o ,  

we have, by the Cayley-Hamilton theorem, 

Example 6.12.3 Let A  = [: :I. Then X A  (A)  = h2 - 7h + 6 ,  and 

6.12.2 Minimal polynomials 

Definition 6.7 A polynomial f ( x )  is said to be an annihilating polynomial of a square 
matrix A if f (A) = 0. 0 

By the Cayley-Hamilton theorem, the characteristic polynomial X A  (A) is an annihilat- 
ing polynomial. However. for some matrices, there is an annihilating polynomial of lesser 
degree than the degree of X A  (A). 

Definition 6.8 The unique monic annihilating polynomial of A of minimal positive degree 
is called the minimal polynomial of A .  

The concept of minimal polynomials is exhaustively studied elsewhere (see, e.g., 198, 
chapter 61). We will introduce the concept principally by example. 

Example 6.12.4 Let 

Matnx Al con5ists of three first-order Jordan blocks Matnx A* conslsts of a second-order Jordan 
block and a first-order Jordan block Matnx A3 consists of a single Jordan block 

The polynorn~al f i  ( x )  = x - 4 satisfies f i ( A i )  = 0 So the mlnirnal polynomial of A I  is a 
degree-one polynomial, even though the charactenstic polynomial has degree three 

The polynomial f i ( x )  = (X  - 5)' satisfies f 2 ( A Z )  = 0 Sim~larly, the polynomial fi(x) = 
( X  - 6)' satisfies f 7 ( A 3 )  = 0 U 

Without presenting all the details, the minimal polynomial of a matrix is obtained as follows: 
A Jordan block of order 1 has a minimal polynomial of degree I .  The minimal polynomial 
of a matrix A is the least common multiple of the minimal polynomials of its Jordan blocks. 
Thus a matrix having rn distinct eigenvalues has a minimal polynomial of degree m. 

6.1 3 Moving the eigenvalues around: 
introduction to linear control 

We have seen that the solution of the time-invariant homogeneous differential equation 
x(t) = Ax(t) is ~ ( t )  = eA'xO. where xu is the initial condition. Based on the discussion in 
sect~on 6.3. I, the solutlon can be wntten as 

~ ( t )  = seJts-I. 
where J is the Jordan form of A If the eigenvalues of A are in the left-hand plane. Re(&) < 
0, then x ( t )  i O as t  -+ .x; Similarly, the solut~on to the t~me-tnvar~ant homogeneou\ 
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d~fference equatlon xlt + I I = Ax[r]  1 5  u [ t ]  = A'u,,, ~ h i c h  can be wrltten 

If the eigenvalues of A are inside the unit circle, lh, I < 1 ,  then x[t] -+ O as t -+ cxi. 

It may happen that for some systems the eigenvalues are not in the left-half plane or 
inside the unit circle, as necessary for asymptotically stable performance of continuous- 
or discrete-time systems. Even for stable systems, the eigenvalues may not be suitable 
locations for some purposes, so that the response is too slow or the overshoot is too high. 
A principle of control of linear time-invariant systems is that, given the value of the state 
of the system x(t) (or x[t]), the eigenvalues of a closed-loop system can be moved to any 
desired location, provided it has the property that it is controllable, which will be defined 
below. We will introduce the notion that eigenvalues may be moved, deferring thorough 
explanations and applications to the controls literature (see, e.g., [93, 164, 2871). We will 
develop the concepts in continuous time, with the translation to discrete-time systems being 
straightforward. 

control 
law 

Figure 6.12: Plant with reference input and feedback control 

We will consider a system having a state reference input as shown in figure 6.12. A 
reference state r ( t )  is input to the system, and it is desired to have the state of the plant 
converge to the reference signal. That is, we desire e(t) = x(t) - r ( t )  to decay such that 
e(t) -+ 0 as t -+ oa. Assume that the plant is governed by the equation 

with a scalar input u(t), where the state variable x(t) E Rn'. We make two key assumptions: 

1. r(t) = 0. That is, the system is designed to move to a fixed reference position, and 
not track a moving reference. 

2. r is in the nullspace of A, so Ar  = 0. This is less obvious, but is satisfied for many 
control problems. 

(Both of these assumptions are loosened in more sophisticated approaches to design. We 
present here merely the preliminary concepts.) Based on these assumptions, 

e(t) = Ae(t) + bu(t). (6.58) 

We desire to formulate a plant input u(t) so that e(t) -+ 0. 
In a linear controller, the control input u ( t )  is formed as a linear function of the state. 

We thus assume 

for some gain vector g. By this choice, (6.58) becomes the homogeneous differential 
equation 
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The control problem is now to choose the galn g  such that A, = A - bgT has eigenvalues 
in the desired locations. 

Let the characteristic polynomial of A, be ~ A , ( S )  = sm + am-lsm-'  + als  + ao. Let 
the desired characteristic polynomial be denoted by 

We desire to choose g so that XA,  is)  = d ( s ) .  

Control when A is in first companion form 

We begin by assuming that A is in first companion form (see (1.20) and (1.21)), so 

The characteristic polynomial of a matrix in first companion form can be determined simply 
by looking at the row of coefficients, 

(see exercise 6.13-60). The closed-loop matrix A, is 

and . = [ I .  (6.61) A =  

where 

' 0  I 0 . . .  0 - 
0 0 1 . . .  0 

i 
0 0 0 . . .  1 

--a0 -a1 a . . . -arn-1> 

Then A, has the characteristic polynomial 

det(s1 - A,) = sm + (arn-1 + g,-l)sm-' + - . . + ( a ,  + gi )s + (ao + go). (6.62) 

Equating the desired characteristic polynomial (6.60) to that obtained by the linear feedback 
(6.62), we see that we must have 

The closed-loop matrlx A, will then have as its eigenvalues the roots of d(s) .  Writing 

we have g = d - a 
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Control for general A 

In the more general case, the matrix A is not in first companion form. In this case, the system 
i s  transformed by a similarity transformation to a first companion form, the gains are found, 
and then transformed back. In (6.58) ,  let z = T e  for a matrix T to be found. Then 

where A = T A T - '  and b = T b .  If T can be found such that A is in first companion form, 
then a gain vector g can be found to place the eigenvalues of A, and hence of A, in the 
desired location using the previous technique, since A and A have the same characteristic 
polynomial. The input control law is then 

from which we find g = T T g .  
The problem now is to determine the matrix T that transforms a general matrix to a first 

companion form. This is explored in exercise 6.13-61. It is found that the transformation 
may be done in two steps: 

where U transforms A to a second companion form, and V transforms this to a first com- 
panion form. The matrix U is defined by 

U-'  =. [ b  A b  . . . 
The matrix 

Q = [ b  A b  . . .  

is the controllability test matrix. If it is not invertible, then there may be sets of eigenvalues 
that cannot be obtained by the control law (6.59); such a system is said to be not controllable. 
In the event the system is controllable, the gains are found by 

where d is the vector of desired characteristic equation coefficients, and a is the vector of 
open-loop characteristic equation coefficients. Equation (6.64) is known as the Bass-Gura 
formula for pole placement. Pole placement can be accomplished in MATLAB using the 
p 1 ace command. 

6.1 4 Noiseless constrained channel capacity 

In some communications settings there are constraints on the number of runs of symbols. 
For example, a constraint might be imposed that there can be no runs of more than two 
repetitions of the same symbol. Thus the sequence 111 would not be allowed, but the 
sequence 01010 is allowed. A channel in which constraints of this sort are imposed is 
called a discrete noiseless channel. Constraints of this sort arise, for example, in a mag- 
netic recording channel such as a floppy diskette. Data are recorded on a disk by writing 
no pulse to represent a zero, and writing a pulse to represent a one. The bit string 010001 
would correspond to no pulse (blank), followed by a single pulse, followed by three blanks, 
followed by another pulse. In such a recording channel, there are two constraints that are 
commonly enforced. First, there is a constraint on the length of a run of zeros. The syn- 
chronization of the readlwrite system requires that pulses must appear sufficiently often to 
keep the pulse-detection circuitry from drifting too far from the spinning magnetic medium. 
The second constraint is that ones should be separated by some small number of zeros. If 
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two ones appear next to each other, the magnetic pulses representing them could overlap 
and lead to degraded performance. To enforce the constraints, a raw (unconstrained) bit 
stream is passed through a coder which produces a coded sequences that does satisfy the 
constraints. As the data is read from the disk, the blts are converted back into a raw bit 
stream. 

Example 6.14.1 Conslder a channel In whlch the follow~ng constralnts must be satrsfied 

I .  Not more than two zeros in succession. 

2. Not more than two ones in succession. 

Then the following sequences of length 4 are allowed: 

Since there are 16 posslble unconstrained sequences of length 4, and only 10 posslble constrained 
sequences of length 4, there 1s necessarily a llmlt on the amount of ~nformation that can be put into 
the coder and have the coder keep up 

Let M(k) be the number of sequences of length k that satlsfy the constraints. In this ex- 
ample, M(4) = 10. The average number of bits that the k output symbols can represent is 

log, M(k). In the constrained code of the example, 

1 
- log, M(4) = 0.8305 bits/symbol. 
4 

As this example demonstrates, a fundamental issue 1s whether the encoded sequence can 
convey sufficient informat~on that the coder can keep up with the ~ncoming data stream. 

We define the capaciq of a discrete noiseless channel using the asymptotic value 

log, M(k) 
C = lim . 

in unlts of bits per symbol The capaclty C represents the average number of bits it would 
take to represent a (long) sequence For example. if there are no constraints at all, then 
there are 2k sequences of length k, and the capacity 1s one bit per symbol An analysis 
problem associated wlth the discrete noiseless channel is. given the constraints on a chan- 
nel, determine the capacity of the channel We shall address this question here, showing 
that the answer depends upon the largest elgenvalue of a particular matrix. (The more 
interesting question of how to deslgn coders that approach the capacity is not covered 
here ) 

Our approach will be to find a bound on the number of sequences of length k The 
first step is to represent the constralnts of the channel using a state dlagram, such as that 
shown in figure 6 13. For example, arriving at state So after a run of ones, a zero must be 
transmitted The state diagram can be represented using a state-transrtlon lnatrrx For the 

Figure 6 13 State diagram for a comtra~ned channel 
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state diagram of figure 6.13, the state-transition matrix is 

10 I o OJ 

A one in position T,, (indexing starting at 0) corresponds to a single path of length 1 from 
state S, to state S,. We can count the number of path segments in this state-transition 
diagram by summing over the elements in C,,] T,, = 6. This is an upper bound on the 
number of paths of length 1, since paths emerging from different states may represent the 
same sequence. 

Paths of length 2 in the state-transition diagram can be obtained by computing T,, and 
paths of length m can be found from T m .  For example, 

meaning, for example, that there are two paths of length 3 from state S2 to state S2. The 
total number of paths of length 3 is the sum of the elements in T 3 .  

If all the sequences have length m,  then the number of sequences of length m can be 
given a upper bound by 

where there is an upper bound, because not all states are necessarily allowable as starting 
states for symbol sequences and some sequences may be repeated. The upper bound is 
sufficient for our purposes. 

To find the capacity discrete noiseless channel, we will use the upper bound 

Let T have the ordered eigenvalues h > h2 > . . . > hm. Factoring T  = S C  S- ' , we note 
that 

C ( T k ) , ,  = C ( S A ~ S - ' ) , , )  
11 1 1  

where aijr does not depend upon k. Then 

Taking the upper bound as the desired value, we find that the capacity is log, ;il bits/symbol. 

Example 6.14.2 For the matrix T of (6.65), the capacity is log,(1.618) = 0.6942 bits/symbol. An 
interpretation of this is that 100 bits of this constrained output represent only 69 bits of unconstrained 
data. 
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6.1 5 Computation of eigenvalues and eigenvectors 

The area of numerical analysis dealing with the computation of elgenvalues and eigenvectors 
is both broad and deep, and we can provide only an introduction here Because of its 
importance in eigenfilter and principal component analysis, we discuss means of computing 
the largest and smallest eigenvalues using the power method Attention is then directed to 
the case of symmetric matrlces because of their importance in signal processing 

6.15.1 Computing the largest and smallest eigenvafues 

A s~mple  iterative algorithm known as the power method can be used to find the largest 
eigenvalue and ~ t s  assoc~ated eigenvector Algorithms requiring only the largest elgenvalue 
can benefit by avoiding the overhead of computing eigenvalues that are not needed The 
power method works for both self-adjoint and non-self-adjoint matrices 

Let A be an m x m diagonalizable matnx w ~ t h  possibly complex eigenvalues ordered 
as lji 1 2 lh2 1 > > \A, 1, with corresponding eigenvectors x i ,  XZ,  . X, Let xi0] be a 
normalized vector that is assumed to be not orthogonal to xl The vector xi0] can be written 
in tenns of the eigenvectors as 

for some set of coefficients (a , ) ,  where a1 # 0. We define the power method recursion by 
x [ n + l l  = ~ ~ i k I  (6.66) 

Then 

Because of the ordering of the eigenvalues, as k -+ x, 

xih] -+ al x i ,  

whlch is the e~genvector of A corresponding to the largest elgenvalue The etgenvalue Itself 
is found by a Rayleigh quotient. 

( X [ ~ ] ) * A X ! ~ ~ / I I X ~ ~ ~ ~ /  -+ jLI 

The method i \  illustrated In algorlthrn 6 6 

Algorithm 6.6 Computat~on of the largest e~genvalue uylng the power rnethod 
File: maxeig . rn 

An approach wggested In 12361 for finding the second largest eigenvalue and  ti eigen- 
vector. after knowing the largest elgenvalue. 1s to form the matrix 

H Al = A - i L I x i x ,  . 
where xi i \  the normallzed e~genvector Algebraically, the Idrge\t root of 

det(AI - iLl)  = 0 
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is the second largest eigenvalue of A. Computation of the eigenvalue can be obtained by 
the power method applied to A 1 .  The result depends on correct computation of h l ,  so there 
is potential for numerical difficulty. Extending this technique, the ith principal component 
can be found after the first i - 1 are determined by forming 

1 - 1  

Ai-[ = A - C l i x , x "  
j=l 

and using the power method on A,-, . If many eigenvalues and eigenvectors are needed, it 
may be more efficient computationally and numerically to compute a complete eigende- 
composition. 

Finding the smallest eigenvalue can be accomplished in at least two ways. If A l  is an 
eigenvalue of A, then l/A, is an eigenvalue of A-I, and the eigenvectors in each case are 
the same. The largest eigenvalue A of A-' is thus the reciprocal of the smallest eigenvalue 
of A. This method would require inverting A .  

Alternatively, we can form B = A t  I - A, which has largest eigenvalue A1 - X,. The 
power method can be applied to B to find A1 - A,, from which A, can be obtained. See 
algorithm 6.7. 

Algorithm 6.7 Computation of the smallest eigenvalue using the power method 
File: mineig . m 

6.15.2 Computing the eigenvalues of a symmetric matrix 

Finding the full set of eigenvalues and eigenvectors of a matrix has been a matter of consid- 
erable study. Thorough discussions are provided in [370] and [I 141, while some numerical 
implementations are discussed in [260]. 

A real symmetric matrix A is orthogonally similar to a diagonal matrix A ,  

A = Q A Q ~ .  

The eigenvalues of A are then found explicitly on the diagonal of A, and the eigenvectors 
are found in Q. One strategy for finding the eigenvalues and eigenvectors is to move A 
toward being a diagonal matrix by a series of orthogonal transformations such as House- 
holder transformations or Givens rotations, which were discussed in conjunction with the 
QR factorization in section 5.3. One approach to this strategy is to first reduce A to a tridi- 
ugonal matrix by a series of Householder transformations, then apply a series of Givens 
rotations that efficiently diagonalize the tridiagonal matrix. This technique has been shown 
to provide a good mix of computational speed (by means of the tridiagonalization) with nu- 
merical accuracy (using the rotations). Throughout the following discussion, MATLAB code 
is provided to make the presentation concrete. (MATLAB, of course, provides eigenvalues 
and eigenvectors via the function eig.) 

Tridiagonalization of A 

Let A be an m x m symmetric matrix. Let 

be an orthogonal matrix, where Hi  is a Householder transformation. The transforma- 
tion is chosen so that Q l  A has zeros down the first column in positions 3:m. Since A is 
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symmetric, 

where x indicates an element which is not zero, and B1 is an (m  - 1) x (m  - 1 )  matrix. 
We continue iteratively, applying Householder transformations to set the subdiagonals and 
superdiagonals to zero. Then 

IS tndlagonal Algonthm 6 8 illustrated tnd~agonalizatlon uslng Householder transfonna- 
tlons The computation cost can be reduced, by exploiting the symmetry of A (see exerclse 
6 15-68), to 4m3/3 floatlng operations if the matrix Q 1s not returned, keeping track of Q 
requires another 4m3/3 floatlng operations 

Algorithm 6.8 Trldlagonallzat~on of a real symmetric matrlx 
File: trld1ag.m 

Example 6.15.1 For the matrix 

the tridiagonal forms, 7' and Q are 

6.15.3 The QR iteration 

Having found the tr~d~agonal form, we reduce the matrix further toward a d~agonal form 
us~ng QR Iteration We form the QR factonzat~on of T as 

Then we obrerve that 
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Let T [ ' ]  = RoQo. We then proceed iteratively, alternating a QR factorization step with a 
reversal of the product: 

The key result is provided by the following theorem. 

Theorem 6.9 Ifthe eigenvalues of A (and hence of T )  are ofdiferent absolute value Ih, /, 
then TCkl approaches a diagonal matrix as k -+ oo. In this matrix, the eigenvalues are 
ordered down the diagonal so that 

\TI[:'\ > I T . ] \  > . . .  > \T:!/. 

The proof of the theorem is too long to fit within the scope of this book (see, e.g. [326, 
chapter 6; 114, chapter 71). Since TCk] approaches a diagonal matrix, we can read the 
eigenvalues of A directly off the diagonal of T f k ] ,  fork  sufficiently large. Since T [ O I  = T 
is tridiagonal, T [ O ]  can be converted to upper-triangular form using only m - 1 Givens 
rotations. This is an important reason for tridiagonalizing first, since given proper attention 
the number of computations can be greatly reduced. 

In the proof of theorem 6.9, it is shown that a superdiagonal element of converges 
to zero as 

Since A, < h,, this does converge. However, if Ih, I is near to lh, /, convergence is slow. The 
convergence can be accelerated by means of shifting, which relies on the observation that 
if h is an eigenvalue of T ,  then h - r is an eigenvalue of T - r I .  Based on this, we factor 

then write 

This is known as an explicit shift QR iteration. With the shift, the convergence can be shown 
to be determined by the ratio 

A, - rk 
A, - Zk 

Then the shift rk is selected at each k to maximize the rate of convergence. A good choice 
could be to select rk close to the smallest eigenvalue, A,; however, this is not generally 
known in advance. An effective alternative strategy is to compute the eigenvalues of the 
2 x 2 submatrix in the lower right of T ,  and use that eigenvalue which is closest to ~12. 
This is known as the Wilkinson shift. 

While the explicit shift usually works well, subtracting a large rk from the diagonal 
elements can lead to a loss of accuracy for the small eigenvalues. What is preferred is the 
implicit QR shifi aigorithm. BrieAy, how this works is that a Givens rotation matrix is found 
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so that 

(That is, the rotation zeros out an element below the diagonal of the shzfred matrix.) However, 
the shift is never explicitly computed, only the appropriate Givens matrix. Application of 
the rotation for the shift introduces new elements in the off diagonals. For example, the 
5 x  5 matnx 

- - 
x x o o o  
x x x o o  

T = O x x x O ,  
o o x x x  
o o o x x  - ..+ 

where x  indicates nonzero elements, when operated on by the Givens rotation G I  designed 
to zero out the ( I ,  2) element of the shifted matrix, becomes 

where + indicates nonzero elements that are introduced. A series of Givens rotations that 
do not operate on the shifted matrix is then applied to chase these nonzero elements down 
the diagonal: 

G ] T G : = +  

x x + o o  
x x x o o  

x x x o .  
o o x x x  
0  0  0  x  x  I 

The steps of introducing the shifted Givens rotation, followed by the Givens rotations 
which restore the tridiagonal form, are collectively called an implicit QR shifr. Code which 
implements this implicit QR shift is shown in algorithm 6.9. 

x x i o o  x x o o o  x x o o o  
x x x o o  x x x + o  X X X O O  

+ x x x o  -4 o x x x o  o x x x +  I : :  : : 
Algorithm 6.9 Implicit QR shift 

File: eigqrshiftstep.m 

x x o o o  
X X X O O  

". o x x x o  I o o x x x  o o o x x  : 
Combining the tnd~agonal~zatton and the impl~clt QR shlft IS shown In algorithm 6 10 

Follow~ng the ~nitial tndlagonal~zatlon, the matnx T  IS drlven toward a d~agonal form, with 
the lower right corner (probably) converging first The matrlx T  1s spl~t  into three pleces, 

where T? 1s dtagonal (as determined by a comparlcon w ~ t h  a threshold 6 ) .  and T, 1s also The 
lmpllc~t QR shlft Is applled only to T? The algortthm Iterate\ unttl T 1s fully dtagonaltzed 
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Algorithm 6.10 Complete eigenvalue/eigenvector function 
File: neweig . m 

Example 6.15.2 For the matrix 

the statement [T, XI = neweig ( A )  returns the eigenvalues in T and the eigenvectors in X as 

6.1 6 Exercises 

6.2- 1 (Eigenfunctions and eigenvectors.) 

(a) Let G be the operator that computes the negative of the second derivative, Cu = - $u, 
defined for functions on (0, 1). Show that 

is an eigenfunction of L, with eigenvalue A, = (nn)' 

(b) In many numerical problems, a differentiation operator is discretized. Show that we can 
approximate the second derivative operator by 

where h is some small number. 

(c) Discretize the interval [0, 11 into 0, t l ,  t2, . . . , tN, where t ,  = i / N .  Let u = 
[u(tl), . . . , ~ ( t ~ - ~ ) ] ~ ,  and show that the operator Gu can be approximated by the oper- 
ator N'Lu, where 

(d) Show that the eigenvectors of L are 

x, = [sin(nn/N) sin(2nnlN) . . . sin((N - l ) n n / ~ ) ] ~  n = 1, 2, . . . , N, 

where A, = 4 s i n 2 ( n n / ( 2 ~ ) ) .  Note that x, is simply a sampled version of x,(t). 
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6 2-2 Find the eigenvalues of the following matnces 

(a) A diagonal matrix 

(b) A triangular matrix (either upper or lower, upper in this exerclse) 

(c) From these exercises conclude the follow~ng 

The dlagonal elements form the etgenvalues of A ~f A is triangular 

6.2-3 For matrix T in block-triangular form 

show that i . (T) = i ( T i i )  U jb(Tz2) 

6 2-4 Show that the determlnattt of an rz x i? matnx is the product of the etgenvalues. that IS, 

6 2-5 Show that the trace of a matrix IS the sum of the eigenvalues, 

6 2-6 We will use the prevlous two results to prove a useful inequalrty (Wadamard's inequality) 
Let A be a symmetric positive-defintte m x rn matrix Then 

wlth equality ~f and only if A 15 dragonal 

(a) Show that we can write A = DHD. where U dldgonal and B ha< only one5 on the 
diagonal (Deternirne D ) 

(b) Explain the follow~ng equ;iiitie\ and inequalitie\ (Hlnr use the ar~thnletic-geometric 
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inequality. See exercise A.8-27. What is A, here'!) 

6.2-7 Suppose A 1s a rank-1 matnx formed by A = abT. Find the eigenvalues and e~genvectors of 
A. Also show that if A is rank 1, then 

6.2-8 Show that if h" is an eigenvalue of A,  then A" + r is an e~genvalue of A + r I ,  and that A and 
A + r l have the same eigenvectors. 

6.2-9 Show that 

If I is an eigenvalue of A then Xn is an eigenvalue of A n ,  and An has the same 
eigenvectors as A. 

6.2-10 Show that if A - I  exists 

1 If I is a nonzero eigenvalue of A then l / i  is an eigenvalue of A-I .  I 
The eigenvectors of A corresponding to nonzero eigenvalues are eigenvectors 
of A - 1 .  

6.2- 1 1 Generalizing the previous two problems, show that if h l  , X2, . . . , h, are the eigenvalues of A, 
and if g(x) is a scalar polynomial, then the eigenvalues of g(A) are g(hl) ,  g(hZ), . . . , g(h,). 

6.2-12 Show that the eigenvalues of a projection matrix P are either 1 or 0. 

6.2-13 In this problem you will establish some results on eigenvalues of products of matrices. 

(a) If A and B are both square, show that the eigenvalues of AB are the same as the 
eigenvalues of B A. 

(b) Show that if the n x n matrices A and B have a common set of n linearly independent 
eigenvectors, then A B = B A .  

A thorough study of when A B = BA,  as introduced in this problem, is treated in [245] 

6.2-14 Show that a stochastic matrix has A = 1 as an eigenvalue, and that x = [ I ,  1, . . . , I I T  is the 
corresponding eigenvector. (It can be shown that h = 1 is the largest eigenvalue [245].) 

6.2-15 (Linear fixed-point problems). Some problems are of the form 

If A has an eigenvalue equal to 1, then this problem has a solution. (Conditions guaranteeing 

that A has an eigenvalue of 1 are described in 22271.) Example problems of this sort are the 
steady-state probabilities for a Markov chain, and the determination of values for a compactly 
supported wavelet at integer values of the argument. 
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(a) Let 

be the state-transition probabihty matnx for a Markov model Determine the steady-statc 
probability p such that A p  = p 

(b) The two-scale equatlon for a scaling functlon (3 107) is G(r) = EL=;' ck(b(2i - X )  
Given that we know that #( i )  is zero for r 5 0 and for r N - 1, wnte an equatlon of 
the form 

where A  is a matnx of wavelet coefficients I L  Given the set of coefficients { c k ) ,  specify 
A  and descnbe how to solve thls equatlon Descnbe how to find + ( t )  at all dyad~c 
rational numbers (numbers of the form k/2' for Integers k and 1 )  

6.3-16 Show that the inertla of a Hermitian matnx A  1s uniquely determined if the signature and 
rank of A  are known. 

6 3-17 (Sylvester's law of inertla) Show that if A  and B  same inertla, then there la a matrix S  
such that A  = S B S H  Hlnt D~agonaltze A  = U A  A ~ U ~  = U ,  D ,  6, D , U f ,  where C A  15 

diagonal with (1 1 , O )  elements Sim~lariy for B  

6 3-18 Show that tf A and B  are slm~lar, so that B  = T - ' A T ,  

(a) A  and B  have the have the same elgenvalues and the same charactenstic equation 

(b) If x  1s an elgenvector of A  then z = T - ' x  1s an elgenvector of B 

(c) If, in add~tion, C  and D  are similar with D = T - ' C T ,  then A  + C  is slmllar to B  -t D  

6.3-19 Determine the Jordan forms of 

and 

6 3-20 Show that (6.15) 1s true for the 3 x 3 matnx shown. Then generalize (by ~nduction) to an 
m x m Jordan block. 

6.3-21 Show that 

A self-adjoint matrix 15 poslt~ve semtdefin~te if and only ~f all of ~ t s  elgenvalues 
are , 0 

Also show that if all the e~genvalues are poutrve. then the nlatrlx 1s posltive defin~te 

6 3-22 Show that ~f a Herm~tian rnatnx A is pos~tlve definite, then so is A' for k E Z (posttive as 
well a\ negative powers) 

6.3-23 Show that if A  is nonsinpular. then A A "  is positive definite 
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6 3-24 Prove theorern 6 2 by establishing the following two steps 

(a) Show that if A is %elf-adjoint and U IS unitary, then T = UH AU 1s also self-adjo~nt 

(b) Show that if a self-adjoint matrix is triangular, then it must be diagonal. 

6.3-25 Prove lemma 6.5. 

6.3-26 A matrix N is normal if it commutes with N ~ :  NH N = NN". 

(a) Show that unitary, symmetric, Hermitian, and skew-symmetric and skew-Hermitian 
matrices arc normal. (A matrix A IS skew symmetric if A~ = -A. It is skew Hermitian 
if AH = -A , )  

(b) Show that for a normal matrix, the triangular matrix determined by the Schur lemma is 
diagonal. 

6.3-27 Show that for a Hermitian matrix A, if A' = A then rank(A) = &(A) 

6.3-28 Let 

The (i, j)th element of this is f;, = e-12X'11N. For a vector x = [xo, . . . , x , , -~ ]~ ,  the product 
X = F x  is the DFT of x. 

(a) Prove that the matrix F/z/; i i  is unitary. Hint: show the following. 

(b) A matrix 

is said to be a circulant matrix. Show that C is diagonalized by F, C F  = F A ,  where 
A is diagonal. Comment on the eigenvalues and eigenvectors of a circulant matrix. 

(The FFT'-based approach to cyclic convolution works essentially by transforming 
a circulant matrix to a diagonal matrix, where multiplication point-by-point can occur, 
followed by transformation back to the original space.) 

6 4-29 Prove theorem 6.4. Hint: Start with A = UAU" 

6.4-30 Construct 3 x 3 matrices according to the following sets of specifications. 

(a) hi = hZ. = 1, h3 = 2, with invariant subspaces 

In this case, determine the eigenvalues and eigenvectors of the matrix you construct, and 
comment on the results. 
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(b) A ,  = 1, jlZ = 4, iil = 9, with corresponding eigenvectors 

6 4-31 Let A be m x m HermitIan wrth k drst~nct e~genvalues and spectral representatton A = 
~ f = ,  A, P,, where P, 1s the projector onto the rth Invanant subspace Show that 

( s l  - A)- '  = P, 

,=I 

6 4-32 [164, page 6631 The d~agonallzation of self-adjornt matnces can be extended to more general 
matnces Let A be an m x m matnx wrth m hnearly independent elgenvectors X I ,  xz. , x,, 
and let S = [ x , .  x2 ,  . x,,] Let T = S-' Then we have A = S A T ,  where A 1s the dragonal 
matnx of eigenvalues 

(a) Let t l  be a row of T Show that t j x ,  = S,, 

(b) Show that A = Ey=, h , x , t j  

(c) Let P, = X, t l  Show that P, P, = P,S,, 

(d) Show that I = Cfl, P, (resolutron of ~dentrty) 

(e) Show that 

6.5-33 Let 

(a) Determine the ergenvalues and eigenvectors of R 

(b) Draw level curves of the quadratlc form Q R ( x )  Identify the elgenvector drrectlons on 
the plot, and assocrate these wrth the elgenvalues 

(c) Draw the level curves of the quadratlc form Q R - t  (x), ~dentlfyrng elgenvector d~rect~ons 
and the elgenvalues 

6 5-34 Show that lf A 1s a Hermitran m x m matnx, and tf X ~ A X  ) 0 for all vectors x In a 
k-dlmenstonal space (w~th k 5 m), then A has at least k nonnegative elgenvalues Also show 
that rf x H A x  > 0 for all nonzero x In a k-drmensronal space, then A has at least k posltrve 
e~genvalues Hint Let Sk be the k-d~menslonal space, and let u l ,  , span S; Let 
CH = [u, ,  , and use the Courant mrnrmax pnncrple by consrdenng 

xH AX 
min -- 
x#O x H x  

C k=o 

6 5-35 In the proof of theorem 6 5. 

(a) Show that (6 29) 1s true 

(b) Show that Q ( x )  of (6 29) 15 maxtmrzed when ( Y A + ,  = uji2 = = a,, = 0 

6 5-16 Wr~te and test a MATLAB function p l o z e l  _lpse i ?  , x O ,  c) that cornpure\ po~nts on the 
ell~pse dexnbed by ( x  - xi,)r A(x - xi,) = ( 4uttdble ror plotting 
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6.6-37 Determine stationary values (eigenvalues and eigenvectors) of xT Rx, subject to xTc = 0, 
where 

6.6-38 Show that the stationary values of xH RX subject to (6.32) are found from the eigenvalues of 
PRP, where P = I - C(CHc)- 'CH.  

6.7-39 Determine regions in the complex plane where the eigenvalues of A are for 

6.7-40 Show that all the eigenvalues of A lie in G(A) f l  G(AT). 

6.7-41 For a real m x m matrix A with disjoint Gershgorin circles, show that all the eigenvalues of 
A are real. 

6.7-42 [142] In this exercise you will prove a simple version of the Hoffman-Wielandt theorem, a 
theorem frequently used for perturbation studies. Let A and E be m x rn Hermitian matrices, 
and let A and A + E have eigenvalues hi and i,, i = 1, 2, . . . , m, respectively, arranged in 
increasing order, 

Let A -= QA Q H ,  and let A + E = W A  WH, where Q and W are unitary matrices. 

(a) Starting from IIEl(: = II(A + E) - A I I $  = l(wAwH - QAQHII$, show that 

where Z = QH W 

(b) Thus, show that 

IIEII: 2 x ( IA  I' f 111.1') - 2 u max unlrary Retr(uAuH?i).  
t=I 

(It can be shown that the maximum of maxu,,,, Re tr(llAbrH?i) occurs when U is a 
permutation matrix.) 

6.8-43 Show using (6.35) that e 2 ( ~ )  can be written as in (6.36). Hint: Recall how to commute inside 
a trace. 

6.8-44 For a data compression application, it is desired to rotate a set of n-dimensional zero- 
mean data Y = {yl ,  y', . . . , yN} SO that it "matches" another set of n-dimensional data 
Z = {zl ,Z', , . . , z ~ ) .  Describe how to perform the rotation if the match is desired in the 
dominant q components of the data. 

6.8-45 (Computer exercise) This exercise will demonstrate some concepts of principal components. 

(a) Construct a symmetric matrix R E M2 that has unnonnalized eigenvectors 

with corresponding eigenvalues hl = 10, A2 = 2. 
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(b) Generate and plot 200 points of ~ero-mean Gaussian data that have the covariance R 

(c) Form an estimate of the covariance of the generated data, and compute the principal 
conlponents of the data 

id) Plot the principal component informat~on over the data. and venfy that the prirlcipal 
component vectors lie ac antlcrpated 

6 8-46 (12901) Low-rank approximation can sometimes be used to obtain a better representation of 
a noisy signal Suppose that an m-d~mens~onal ~ero-mean signal X  with R, = E [ X X H ]  is 
transmitted through a noisy channel. so that the received s~gnal is 

as shown in figure 6.14(a). Let E [ v u H ]  = R,  = o:1. The mean-square (MS) error in this 
signal is 

ei,,,, = E [ ( R  - X )  ( R  - X ) ]  = mo: 

Alternatively, we can send the signal X i  = u H X ,  where U i \  the matnx of elgenvectors of 
R,, as in (6 37) The received signal in this case is 

from which an approximation to X ,  is obtained by 

where I, = diag(1, 1 ,  . . . . 1.0. 0 ,  . . . , 0 )  (with r ones). Show that 

Hence, conclude that for some values of r. the reduced rank method may have lower MS 
error than the direct error. 

I 

(a) D~rect (b) Indrrect 

Figure 6.14: Direct and indirect transmission through a nosy channel 

6 9-47 Consider an input slgnal with correlation tnatrix 

(a) Design an etgenfilter with three taps that maximizer the SNR at the output of the filter 

(b) Plot the frequency respotlie of this filter 

6 9-48 Show that minimizing (6 42) subject to C7 b = d leads to (6  43) 

6 9-49 Devise a m e m i  of indtchtng d desired re\pon\e by rn1niini7rng b7 Rb wbject to the lollowlng 
Lon\trdint\ 

b ' b  = 1 

~ ' b  = O  
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where C is as in (6.41). That is, the filter coefficients are constrained in energy, but there are 
frequencies at which the response should be exactly 0. (Hint: See section 6.6.) 

6 9-50 Consider the ~nterpolation scheme shown In figure 6 15 The output can be wntten as Y (z) = 
X(zL) H(zI 

(a) Show that if 

c t = O .  
h[Lt] = 

0 otherwise, 

then y[[t] = cx[t] T h ~ s  means that the input samples are conveyed wlthout drstortron 
(but possibly with a scale fdctor) to the output Such filters are called Nyqurst or Lth 
bund filters 13421 

(b) Explan how to use the eigenfilter design technique to design an opt~rnal mean-square 
Lth band filter 

. . . -3 -2 -1 0 1 2 3 . . . 

Figure 6.15: Expansion and interpolation using multirate processing 

6.10-51 Show that (6.44) is m e .  Show that (6.45) is true. 

6.10-52 Show for A4 > p that R,, defined in (6.45) has rank p. Hint: See properties of rank on page 
250. 
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6.10-53 Show that every x [ t ]  E S, where S 1s defined in (6.47). 

6 11-54 Numencally compute (using, e g . MATLAB) the generalized eigenvalues and eigenvectorc, 
for 

Au = hBu.  

where 
3 2 4  5 2 1  

= [ I  6 -2 7 91 1 B i b  3 4 2 1 7  
6.1 1-55 Show that (6.55) is true. 

6.12-56 Show that the minimal polynomial is unique. Hint: subtract f (n) - g ( x )  

6.1 2-57 Show that the min~mal polynomial d~vldes every annihilating polynom~al without remainder 

6 12-58 [98] Determine the m~nimal polynomial of 

3 -3 2 
A = [:; ; ;2] 

6 12-59 1164. page 6571 (Rerolvent identrties) Let A be an m x m matnx with charactenstic poly- 
nomlal 

xa(s) = det(s1 - A )  = sm + a,-is"-i + + a i s  + a o  

The tllatnx ( s l  - A)- '  is known as the resolvent of A  

(a) Show that 

a d j ( ~ /  - A )  =  IS"-^ + ((A + a,-, I ) s " - ~  + + 

Hint Multiply both sides by r l  - A, and use the Cayley-Hamlton theorem 

(b) Show that 

adj(s1 - A )  = [A" - '  + (s + a, - l )~" - '  + + 

(c) Let S, be the coefficient of sm-' In (6 68) Show that the S, can be recurstvely computed 
as 

S l = l .  S 2 = S l A + a , - i I ,  S3=S2A+a,_21,  

(d) Show that both the coeffictents of the charactenstic polynomial a, and the coefficients 
S, of the adjotnt of the resolvent can be recursively computed as follows 



6.16 Exercises 365 

These recurswe formulas are known as the Leverner-Sounau-Faddeeva-Frame formu- 
las 198, p 881 

Hint Use the Newton ~dentlties [G Chrystal, Algebra An Elemelztary Textbook 
(London A C Black, 1926)J For the polynomials p(x) = x m  + am-lxm-i  + + ao, 
let s, denote the ium of the I th power of the roots of p(x) Thus s l  is the sum of the 
roots, sz IS the sum of the squares of the roots, and so on Then 

Also use the fact that powers h(Ak) = hk(A), so that 

Show that 

then take the trace of each side. 

6.13-60 Expanding by cofactors, show that the characteristic equation of the matrix in first companion 
form (6.61) is sm + am-!sm-' + . . . + a ~ s  + ao. 

6.13-61 Let A be an rn x m matrix. Refer to figure 6.16. 

(general form) (2nd companion form) (1 st companion form) 

Figure 6.16: Transformation from a general matrix to first companion form 

(a) 1f d = UAU-I, where 

u - ' = Q = [ b  Ab . . .  Am-%], 

then show that d has the second companion fonn 

Hint: Show that U-ld = AU-'. Use the Cayley-Hamilton theorem. 

(b) Show that 6 = Ub = [ I ,  0 , .  . . , 0IT. 
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(c) Show that IS A = V ~ V - I ,  where a is in second companion form (6 70) and V-' IS the 
Hankel matrrx 

then A has the first companion form shown in (6.61) 

6.13-62 For the system with 

determine the gain matrrx g so that the eigenvalues of A, = A - bg7 are at -3. -2 It j 3 &  

6 13-63 (Llnear observers) In order to do pole placement as described In t h ~ s  section, the state x must 
be known More commonly, only an output L 1s available, where y = c7x In t h ~ s  case, an 
obsenier must be constructed to estimate the rtate 

Aswme that the system satisfies x = Ax+ bu Then the obqerver is of the form (in 
continuous time) 

Let e = x - t denote the difference between the true state x and the estimated state f 

(a) Wnte the differentla1 equation for e. and show that In order for the error e to be mde- 
pendent of the rtate x and the Input u. the following must be the case 

A = A - kc7 and &' = B 

(b) Based on thi\ result, determine a means to place the eigenvalues of the observer matnx 
a at any desired locatron Hint Conslder the dual~ty between A, = A - bg7 and 
a = A - kcT You should find that the solution involves a matrix of the form 

called the ~b~en~ubz l l t ?  test nturrzx 

6.13-64 Let 

be the controllab~i~ty and obser\ability test rnatrlce5, reipect~vely, of a \ystem ( A .  b .  c )  
Determ~ne the product 

Q = [ b  Ab ~ ? b  . . .  ~ ' " - ' b ]  and &' = 

Note that the element\ of H are the Markov parameter\ ~ntroduced in cectron 1 4 If 
ranli(H) = 1 7 7 ,  what can you ~oncludc about rani\(Nj and idrli\(Qjl 

- c7 - 
cT A 

. 

C7A"-'  
- - 
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6.13-65 1164, page 6601 (Some properties of companion matrices) Let 

be an m x m companion matrix, sometimes called a top companion matrix. 

(a) Show that rank(& I - A )  ( rn - 1, where X, is an eigenvalue of A. 

(b) (Shifting) Show that eJA = e:, for 2 ( i ( m,  where e, is the unit vector with 1 in 
the ith position. Also e r A  = [-a,-l -a,-2 . . . -ao]. 

(c) Show that if A  is nonsingular, then A-' is a bottom companion matrix with last row 
-[llao7 -a,-llao, . . . , allaol. 

(d) (Inverse is companion) Show that A  is nonsingular if and only if a0 + 0. 

6.14-66 Consider a channel constrained to have at least one zero between every one, and runs of zero 
no longer than 3. 

(a) Draw the state-transition diagram. 

(b) Determine the state-transition matrix. 

(c) Determine the capacity. 

6.15-67 The computational routines described in this section apply to real matrices. In this problem 
we examine how to extend real computational routines to Hermitian (complex) matrices. Let 
A  be a Hemitian matrix, and let A  = A, + j  J A , ,  where A, is the real part and A, is the 
imaginary part. Let x  = x, + jx ,  be an eigenvector of A, with its corresponding real and 
imaginary parts. 

(a) Show that the condition Ax = Xx can be rewritten as 

[". :ti] [t] = [t] 
(b) Let A = [:: 2'1. Show that A is symmetric. 

(c) Show that if [xT, xTIT is an eigenvector of A corresponding to h, then so is [x: , -x : lT .  
(d) Conclude that each eigenvalue of A has multiplicity 2, and that the eigenvalues of A  

can be obtained by selecting one eigenvector corresponding to each pair of repeated 
eigenvalues. 

6.15-68 ([I 141) In the Householder tridiagonalization illustrated in (6.67), the matrix B, is operated 
on by the Householder matrix H,, to produce H" Bl H", for a Householder vector v. Show 
that H, Bl H, can be computed by 

where 

6.15-69 (Willunson shift) If T = b ; ; l ] ,  show that the eigenvalues are obtained by 

where d = (a,-1 - a,)/2 



368 Eigenvalues and Eigenveetors 

6.1 7 References 

The defin~tive histoncal work on elgenvalue computations ic  [370] A more recent, excellent 
source on the theory of eigenvalues and eigenvectors 1s [I421 The Courant rnlnimax theorem 
is discussed in [55] and [370] The proof of theorem 6 6 is drawn from [ I  771 The dtscussion 
of the constrained elgenvalue problem of section 6 6 is drawn from [ I  131. where efficient 
numencal implementation issues are also dlscussed Further related d~scussions are in [3 17, 
97, 911 Our presentation of the Gershgorln circle theorem 1s drawn from [142], in which 
extenslve discuss~on of perturbatton of elgenvalue problems is also presented 

The discussion of low-rank approximations is drawn from [I321 and 129 I] An excellent 
coverage of principal component methods 1s found in [236], which also ~ncludes a discusslon 
of the asyrnptotxc statistical distribution of the e~genvalues and elgenvectors of correlation 
matrices, and in [I561 

The eigenfilter method for random slgnals is presented In [ I  321 The elgenfilter method 
for the deslgn of FIR filters with spectral requirements is presented in 13431 Additional 
work on eigenfilters is descnbed In [252, 336, 240, 2411 It 1s also posslble to include 
other constraints, such as rnln~m~zing the effect of a known interfering signal, mahng the 
response maximally flat, or malung the response almost equiripple 

The MUSIC method is due to Schmidt [293] (see 11791) The Pisarenko harmonic 
decompos~tion appears In [255] Considerable work has been done on MUSIC methods 
since ~ t s  inception We clte 1331, 328, 3291 as representatives, see also 1330, 174, 2201 
ESPRIT appears In 1280, 2821 MUSIC, ESPRIT, and other spectral estlmatlon methodc 
appear In [263] 

The noiseless channel coding theorem is discussed in [34], and wac onginally proposed 
by Shannon [304] [202] provides a thorough study of the design of codes for constrained 
channels, including an explanation of the magnetic recording channel problem The works 
of Immink [148, 1491 provide an engineenng treatment of runlength-limited codes 

Our discusslon of charactenstlc polynomials follows 1981 Thls source provides an 
exhaustive treatment of Jordan forms and m~nimal polynom~als Another excellent source 
of information about Jordan forms and mlnimal polynomials is [245], see also the appendix 
of [ 1641 

E~genvalue placement for controls 1s by now classical, see, for example, 11641 Our 
diccussion of h e a r  controllers, as well as the exerclse on llnear observers, is drawn from 
1931 

Our discusslon of the computation of eigenvalues and eigenvectors was drawn closely 
from 1114, chapter 81 The elgenvalue problem is also dlscussed in [260,326] Computation 
of eigenvectors is reviewed in [ 1501 



Chapter 7 

The Singular Value Decomposition 

My First IS singular at best: 
More Plural ts my Second: 

My Third is far the pluralest - 
So plural-plural, I protest 

It scarcely can be reckoned! 
- Lewis Carroll 

The singular value decomposition (SVD) is one of the most important tools of numerical 
signal processing. It provides robust solution of both overdetermined and underdetermined 
least-squares problems, matrix approximation, and conditioning of ill-conditioned systems. 
It is employed in a variety of signal processing applications, such as spectrum analysis, filter 
design, system identification, model order reduction, and estimation. 

7.1 Theory of the SVD 

As we have seen in section 6.3.2, a Hermitian matrix A can be factored as A = U A U ~ ,  
where U  is unitary and A  is diagonal. The SVD provides a similar factorization for all 
matrices, even matrices that are not square or have repeated eigenvalues. The matrix A 
can be factored into a product of unitary matrices and a diagonal matrix, as the following 
theorem explains. 

Theorem 7.1 Every matrix A E Cm '" can be factored as 

where U  E Cmxm is unitary, V E C n X n  is unitary, and C E Rmxn has the form 

C = diag(al,a2, . . . , a,), 

where p = min(m, n) .  ' 
The diagonal elements of C are called the singular values of A and are usually ordered so 
that 

 h he Greek letter C (%igrna) employed here is used as a rnatnx vanable, and should not be contused with a 
Furnrnatlon sign 
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If A E Rmx" then all matrices In the SVD are real and U and V are orthogonal matrlces 
Notat~onally the matrix C is wr~tten as a dlagonal matnx, even though it is not square 
tf m f n The elements a,. 0 2 ,  . , a, are wrttten along the main diagonal, and rows or 
columns of zeros are appended as necessary to obtaln the proper dlmenslon for C if it 1s 
not square. For example, if m = 2 and ?z = 3, 

Also. if m = 3 and n = 2, then 

Before proceeding with a proof of theorem 7.1, i t  1s interesting to observe some prop- 
erties of the SVD. We note that 

( A ~ A )  = V C ~ U ~ U C V ~  = v z T z v H ,  

since U is unitary. Let A E R"'" be defined by 
2 A = C T z  =diag(a:,a2 , . . . ,  a,'). 

Then 

The diagonal elements of A are the eigenvalues of AHA.  That is, a;', r = 1 ,2 .  . . . , i z  are 
the elgenvalues of AHA.  Since AH A is symmetric. the eigenvalues must be real and V is 
formed from the eigenvectors of AH A (see section 6.3.2). Similarly, computing for A AH ,  
~t follows that 

and a;', 1 = 1 ,2 ,  . . . , rn are the e~genvalues of AAH.  The intersecting set a,, 1 = 1,2. . . . , 
min(nz, n)  forms the set of singular values of A, and the other singular values must be zero. 
The SVD s~multaneously diagonalizes the ~nner-product matrix A and the outer-product 
matrix AAH.  

Proof (1 1773) Let 

be the spectral decomposition of AHA,  where the columns of V are eigenvectors, 

and A,. h 2 , .  , hr > 0 and A,+, = A,,? = A,, = 0, where r 5 p (The existence of the 
factortzat~on (7 2) is establ~shed In theorem 6 2 ) For 1 5 1 _( r ,  let 

and observe that 

The set {u, . i = 1 .  2 . r J can be extended using the Gram-Schmidt procedure to form 
Ltn orthonor~nal bast? for @"' Let 
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Then the u, are elgenvewrs for A A ~  Thls I $  clear for the nonLero elgenvdluei of AAH 
For the zero e~genvalues, the elgenvectors muct come from the null\pace of A A  Since 
the elgenvectori with zero e~genvalues are, by construction, orthogonal to the eigenvectors 
with nonzero elgenvectorc that are in the range of AA", these vectors must, by theorem 4 5, 
be in the nuilspace of AAH 

Now examme the elements of u A v When c 5 r ,  the ( I ,  j ) th element of U " A V 1s 

For I > r, AAHu, = 0 Thus AHu, IS In the nullspace of A, and 1s also, obv~ously, In the 
rangeofAH By theorem45, AHu, = 0 SoufIAv, = v ~ A H u i  = 0 Thus U H A v  = A 

1s d~agonal, where the nonzero elements are Jh-;, J = 1, 2, , r 

It is often convenient to break the matrices in the SVD into two parts, corresponding 
to the nonzero singular values and the zero singular values. Let 

where 
C, = diag(ol,a2, . . . ,  or) E Rrxr  

and 

C2 = diag(ar+l, ar+z, . . . , a,) = diag(0,0, . . . , 0) E R'"-~'~("-'). 

Then the SVD can be written as 

where U I  is m x r ,  U2 is m x (m - r) ,  Vl is n x r ,  and V2 is n x (n - r). The SVD can 
also be written as 

The SVD can also be used to compute two matrix norms: 
P 

I I A  11% = o;? (Frobenius no*, 
, = I  

llAll2 = a1 (12 norm). 

Example 7.1.1 in this example, we find the SVD (numerically) of several matnces uslng the MATLAB 
con~mand [ u , S , V ]  = svd(~). 

A is square symmetric. Let 

Then 

where 
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and 

In th~s case the SVD 1s the same as the regular elgendecon~pos~tlon In (6 18) 

A is diagonal 

In this case, the U and V matrices just shuffle the columns around and change the signs to make the 
singuiar values positive. 

A is a column vector 

0.3714 -0.5571 -0.7428 5.3852 
0 . 7  0.7737 - 0 . 3 0 7  [ :I ] [ I ] .  
0.7428 -0.3017 0.5977 

A is a row vector 

7.2 Matrix structure from the SVD 

The rank of a matrix is the number of nonzero singular values. From the notation above. 

The SVD turns out to be a numerically stable way of computing the rank of a matnx. As 
pointed out subsequently, it also provides a useful way of determining what the rank of a 
matrix "almost is," that is. the rank of a matrix of lower rank that is close to A .  

The range (column space) of a matrix is 

Substituting in the SVD, 

R ( A )  = {b: b = UZV"X)  

= {b: b = U Cy) 

= {b: b = Uly}  = span(Ul). 

The range of a matrix is spanned by the orthogonal set of vectors in U1, the first r 
columns of U .  The other fundamental spaces of the matrix A can also be determined from 
the SVD (see exercise 7.2-3): 

The SVD thuq prov~de\ an expllcit orthogonal basis and a colnputable drrnens~onal~ty for 
each of the fundamental spaces of a matrlx 
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Stated another way, In the SVD of the rn x n matrix A, the orthogonal matnx U 
provides d decompositron of Cm into Cm = R(A) $ N ( A H )  = span(Ul) @ span(U2), and 
the orthogonal matrix V provides a decompos~tion of Cn into Cn = R(AH) + N(A)  = 
span( V I )  $ span(V2) The SVD also reveals explicitly the geometry of the transformation 
Ax = U C v H x  The first tranqformation v H x  projects x onto R(AH) and itr(A) The 
next transformation C(vHx)  then scales the projection of x In R(AH) and zeros out the 
projection in n/(A) The final step in the transformation U(C vHx) rotates this result Into 
the column space of A 

7.3 Pseudoinverses and the SVD 

Consider the solution of the equation Ax = b. If b does not lie in the column space of A 
then there is no exact solution. As we have seen, the solution which introduces the minimum 
amount of error (as measured by the 12 norm) projects b onto the range of A by the normal 
equations AH AIZ = AH b. If AH A is invertible, this produces the least-squares solution 

f = ( A ~ A ) - ' A ~ ~ .  (7.8) 

As discussed in section 3.1 . l ,  the matnx A H  A is invertible only if the columns of A are 
linearly independent. It may occur that the columns of A are not linearly independent, in 
whlch case the solution (7.8) cannot be computed, even if b lies in the column space. 

Let p denote the projection of b onto the range of A. Then the least-squares equation 
we are solving is 

AIZ = p. (7.9) 

If A has dependent columns, then the nullspace of A is not trivial and there is no unique 
solution. The problem then becomes one of selecting one solution out of the infinite number 
of possible solutions. As presented in section 3.14, a commonly accepted approach is to 
select the solution with the smallest length: Solve Af = p so that llrill is minimum. This 
problem can be solved using the SVD. 

To illustrate the concept, consider the solution of the following diagonal problem: 

Since the last component of each column vector is zero, it is clear that there is no solution 
unless bj = 0. The vector p = [ b l ,  b2, 01' is a projection of b onto the column space of A; 
the error [0,0, b31T is orthogonal to each column of A. Our projected equation is now 

The nullspace of A is spanned by the vectors [0, 0, I ,  01' and [O, 0.0,  1lT. The general 
solution of (7.10) can be written as 

Since x, i x,, the norm of this solution is (by the Pythagorean theorem) 

1 1 f 1 1 2  = 11% 112 + 11% 112. 
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The minimum norm solution is obtained by taking x, = 0. This can be written as 

The matrix in this equation is the pseudoinverse of A, which is denoted A + .  
More generally, if A  is any m x n diagonal matrix with r nonzero entries 

then the pseudoinverse that provides the minimum length soliltion is the n x m diagonal 
matrix 

Now consider the least-squares solution of a general equation Ax = b. We want to minimize 
the norm of the error, //Ax - b / / .  Using the SVD we can write 

min //Ax - b//  = min / l U Z v H x  - bll = min ~ ~ C V ~ X  - UHbll, 

where the latter equality follows from the fact that U is unitary, and multiplication by a 
unitary matrix does not change the length of a vector. Let v  = VHx and b = u H b .  Then 
the least-squares problem can be written as min / /  Cv - b / / .  This has reduced the problem 
to the diagonal form above: the minimum length solution to this problem is 

The solution for 2 comes by working backwards: 

vHfi = ZtlJHb, 

2 = v Z t U H b .  

The matrix v C ~ U  is the pseudoinverse of A. 

/ A +  = vC'UH ) (7.1 1) 

The pseudoinverse is illustrated in the following commutative diagram (see box 7.1): 
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I Box 7.1: Commutative diagrams 

A commutative diagram is used to demonstrate equality in different oper- 
ations. Two (or sometimes more) paths from a starting point to an ending 
point indicate various ways that an operation can be accon~plished. The 
implication is that whichever path is taken following the arrows, the result 
is the same. Usually it is used in constructing algebraic identities, but it can 
also be used to demonstrate the steps to follow to perform some task. 

An example of a commutative diagram illustrates their operation. From 
linear systems theory, it is well known that the "transform of convolution is 
multiplication." That is, the convolution f i  ( t )  * f2(t) can be accomplished by 
finding the Fourier transform of each function, multiplying the transforms, 
then computing the inverse transform. This can be represented on a commu- 
tative diagram as 

I convolve 
f l y  f2  - f,  * f2 

It is enlightening to think about this pseudoinverse in terms of the subspace geometry of 
the matrix A.  In light of the discussion in section 7.2, the multiplication u H b  decomposes 
b  into projections into R ( A )  and J V ( A ~ ) :  

The multiplication by zt  scales the projection on R ( A ) ,  and zeros out the portion in N ( A  H ) :  

The multiplication by V transforms the result into an element of R ( A ~ ) :  

Returning to the previous decomposition, if 2 = 8, + 2, is a least-squares solution where 
8, is in ,%"(A), then the minimum-length solution is 2 = 2,, which is in the row space of 
A.  If the nullspace of A  is trivial (the columns of A  are linearly independent), then there is 
a unique pseudoinverse. 

7.4 Numerically sensitive problems 

As discussed in section 4.10, systems of equations that are poorly conditioned are sensitive 
to small changes in the values. Since, practically speaking, there are always inaccuracies in 
measured data, the solution to these equations may be almost meaningless. The SVD can 
help with the solution of ill-conditioned equations by identifying the direction of sensitivity 
and discarding that portion of the problem. 
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Example 7.4.1 Recall the example from section 4.10, in which the equation 

was to be solved. It was shown that when t- is small, minor changes in b lead to drastic changes In the 
solution. We will reexamine this problem now in light of the SVD. 

The SVD of A is 

from which the exact inverse of A is 

When r is small then A-'  has large entnes because of the 1 /(2c&) that appears In the dlagonal 
matrix, which makes x = A - ' b  unstable small changes In b result In large changes In x Observe 
from (7 12) that the entry 1 / ( 2 ~ 8 )  multlplles the column [ l ,  -1IT Thls 1s the sensltive dtrect~on 
The Idea of the sensrtive directlon is shown In figure 7 1 As b changes slightly, the solut~on changes 
in a direct~on mostly along the senslt~ve direction 

Figure 7.1 : Illustration of the sensitive direction 

If E is small. then In (7 12) c2 = 2 t f i  may be set to zero to approximate A,  

The pseudoinverse is 

In this case. the multiplier of the gensrtlve drrect~on vector [I - 11 1s zero---no motlon in the senslt~ve 
directlon occurs Any least-squares solut~on to the equatlon Ax = b IS of the form 

\O that 2 = ~ [ l ,  I I T  for some constant c AF a vector. 2 polnts In the directton nearly perpend~cular 
to the sensitive dlrect~on of the problem 0 

As thts example ~llustratec. the SVD ~dentlfies the stable and unstable directlonr of the 
problem and, by zeroing the srr~all stngular vdlue\, ellmlnate\ the unstable d~recttun\ 
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The SVD can be used to both illustrate poor condlt~oning and provide a cure for the 
ailment For the equation Ax = b with \olutlon x = A - I ~ ,  wnte the solut~on u w g  the 
SVD 

If a singular value CT, 1s small, then a small change in b or a small change in e~ther  U or 
V (result~ng in a small change In A) may be amplified into a large change in the solution 
x ( T h ~ s  ampl~fication does not happen, for example, if b i u, I-fowever, it is generally 
dewable to provide a means of solving the problem that will be robust w ~ t h  all nght-hand 
sides ) A small singular value corresponds to a matnx wh~ch is nearly singular, and thus 
more difficult to invert accurately 

The solution that the SVD proposes to the problem of poorly conditioned equations 1s 
to zero out the small s~ngular values, then compute a pseudoinverse of the resulting matnx 

1. Compute the SVD of A: A = UCV". 

2. Examine the singular values of A and zero out any that are "small" to obtain a new 
(approximate) C matrix. 

3. Compute the solution by ri = V C ~ U  Hb. 

Determining which singular values are "small" is problem-dependent and requires some 
judgment. It often happens that there is a clear break in the singular values, with some of 
them being notably smaller than the largest few singular values. 

Computing solutions using the SVD is obviously much more complicated than simply 
solving a set of equations: it is not the method to be used for every linear problem. There 
would need to be strong motivation to attempt it for high-speed real-time applications. But 
for ill-conditioned matrices or noisy data (such as for curve-fitting problems), the SVD is 
highly recommended. 

7.5 Rank-reducing approximations: effective rank 

The SVD of a matrix can be used to determine how near (in the 12-norm) the matrix is to a 
matrix of lower rank. It can also be used to find the nearest matrix of a given lower rank. 

Theorem 7.2 Let A be an  m x n matrix with rank(A) = r, and let A = U C v H. Let k < r 
and let 

k 

where 

Ck = d i a g ( o l , ~ ,  . . . , ak) .  

Then IIA - Ak1I2 = (Tk+[, and Ak is the nearest matrix of rank k to A (in the 12-norm): 

min IIA - B1lZ = / /A - Ak112. rank(B)=k 

Proof Since A - Ak = Udiag(O,O, . . . , 0 ,  a k + l ,  . . . ,or ,  0,  . . . , O)vH,  it follows that 
- Akll =: 5 k + 1 .  

The second part of the proof is a "proof by inequality." By the definition of the matrix 
norm, for any unit vector z, 

lIA - Blli L II(A - ~)zll:.  
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Let B be a rank-k matrix of size m x n. Then there exist vectors {xl , X Z .  . . . , x,-k) that span 
i\/(B), where x, E W, Now coi~slder the vectors from V of the SVD, { v l ,  vz, . . , vk-, j, 
where v, E W The intersection 

cannot be only the zero vector, since there are a total of n + I vectors involved. Let z be a 
vector from this intersection, normalized so that //z/I2 = 1. Then 

Since z E span(vl, v2, . . . , vk+ ), 

Now 

where the final inequality is examined in the exercises. The lower bound can be achieved 
k by letting B = El=, a , u , v y ,  with z = v k + ~ ,  establishing the theorem. i? 

A matnx having slngular values an+, , , a, that are much smaller than the stngular 
values a , .  m. , a k  IS, by this theorem, close to a matrix having only k nollzero stngular 
values For some numeric problems, even though the rank of the matrlx m~ght be greater 
than k, stnce the rnatrlx IS close to a matnx of rank k, its efect~ve rank is only k 

Applications of the SVD 

7.6 System identification using the SVD 

As discussed in section 1.4, a multl-input, multioutput, LTI discrete-time system in state- 
space form can be written as 

With zero ln~tial conditions, x[t] = 0 fort  < 0, the response to a untt ~mpulse u[t] = 6[t]I 
1 s 

h[ t ]  = CA'B 

The output sequence M ,  = CA'B ts known as the Markov parameters of the system 
The tmpulse response of the analogous conttnuous-trme system IS h ( t )  = CeA'B. and the 
Markov parameter5 of the analogous continuous-time system are computed from 

whtch y~elds M, = CA'B. t = 0. 1, 
The order of the system IS the number of element\ In the state vector x In many 

system ident~hcation problems, the order I \  not known I n  t h ~ s  \ect~on we con\ider the 
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reu1l:atlon problem glven a set ot Markov parameters, determine (realize) a system model 
(A, B, C), including the system order Because of the ~mportance of t h ~ s  problem, a vanety 
of algor~thms have been developed, and we consider only one such approach 

We consider here what is known as the partzal realzzatzon problem glven k observations 
of the impulse response of the system, determine a system model that matches the observed 
impulse response The first step of this method is to form the partial Hankel matnx, which 
consists of the sequence of k - 1 impulse responses arranged in shifted rows. 

Lemma 7.1 Let Ern,, be the Hankel matrix with m block rows and n block columns of 
~Markov parameters. Then, provided that m and n are suficiently large that rank('Hrn,,) = 
rank('H,n+l,,+l), the order of the system ( A ,  B ,  C )  is p = rank('Hrn,,). 

Proof The proof provides a constructive way of finding the system model (A, B, C ) .  
Let 3-1 = 3-1, .. Using the SVD, write 

where C I  is p x p. Then 

where I, is the p x p identity matrix. Let A,,,, B,,,, and C,,, be the indicated submatrices 
of the products: 

Be,, = u H3-1 ( P  x 0, 
C,,, = 3 - 1 ~ ~ ~  im x p) ,  (7.16) 

A , , , = ~ ~ s h i f t ( ' H , l ) ~ C ~  ( p x p ) .  

where shift('H, n)  represents shifting off the n left columns of 3-1, 

Then it is straightforward to verify that the Markov parameters 

c,,, A$,, Be,, 

are equivalent to the Markov parameters c A k  B. 
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Algorithm 7.1 provides a partial system identification based upon this method. 

Algorithm 7.1 System identification using SVD 
File: sysidsvd . m 

makehanke1.m 

In any problem of system identification, it is possible to be misled by the data. For 
example, suppose that the system has the impulse response 

Examination of the first few Markov parameters Mo = 1. MI = - 1. M2 = 1, M3 = 
- 1. . . . , would lead to the wrong conclusion regarding the order of the system. The full 
order of the system is not revealed until the 10th sample. Such is the risk of the partial 
realization problem. 

Example 7.6.1 A single-input, two-output system has the following impulse response sequence: 

which has rank 2. Using the method outlined above, a realization of this system, using the following 
section of code: 

% the input data: 
hO = [ll 91'; hl = [5 61'; h2 = [2.75 2.251'; h3 = i1.25 1.51'; 
h4 = 1.6875 .5625]'; h5 = [.3125 .375]'; h6 = [.I719 ,14061'; 
h7 = [ .  0781 .0938] ' ;  
y = {hO,hl,h2,h3,h4,h5,h6,h71; 
[Aest ,Best , C e s t ]  = sysidsvd(y) ; 

is given as 

By companson, the original data was produced by the system 

Even though the form of the estimated system is not ldent~cal to the ong~nal form, the modes of the 
system are correctly ldentlfied the e~genvalues of A,,, are f 0 5,  the same as the e~genvalues of the 
onglnal system, so the ~dentlfied rystem is slm~lar to the onginal system 0 

Data measured from systems is: usually observed in the presence of noise If a Hankel 
matnx is formed from a sequence of outputs measured in noise, the Hankel matrlx 1s 
unlikely to be rank deficient. so the true system order cannot be determ~ned as the rank 
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of the Hankel matrix. However, if the noise power is small enough, the singular values 
of the Hankel matrix can be examined to determine an effective rank of the system. By 
setting the smallest singular values to zero, a matrix that is near to the original matrix can be 
constructed. Unfortunately, the new matrix will not necessarily have the Hankel structure, 
so the factorization just proposed for system realization does not apply. What is desired is 
a reduced-rank Wankel matrix that is near to the original matrix. Some approaches to this 
problem are referenced in section 7.12; another approach is described in section 15.5.3. 

Example 7.6.2 Suppose the impul\e response data from the prev~ous example are observed In add~tive 
w hlte Gaus.ilan noise wlth cr2 = 0 01, and the tollow~ng data are observed 

The 4 x 3 Wankel matnx constructed from thls has stngular values 18 83, 1 73, and 0 065, ~t IS near 
to a rank-2 matnx and so the system can be assumed to be a second-order iystem 0 

7.7 Total least-squares problems 

In the least-squares problems considered up to this point, the solution minimizing IIAx - b/l 
has been sought, with the tacit assumption that the matrix A is correct, and any errors in 
the problem are in b. The vector b is projected onto the range of A to find the solution. 
By the assumption, any changes needed to find a solution must come by modifying only 
b. However, in many problems, the matrix A is determined from measured data, and hence 
may have errors also. Thus, it may be of use to find a solution to the problem Ax = b which 
allows for the fact that both A and b may be in error. Problems of this sort are known as 
total least-squares problems (TLS). 

The LS problem finds a vector 2 such that 

lIA2 - bl12 = min, 

which is accomplished by finding some perturbation r of the right-hand side of minimum 
norm, accomplished and finding the solution of the perturbed equation 

In the TLS problem, both the right-hand side b and the data matrix A are assumed to be in 
error, and solution of the perturbed equation 

is sought, so that (b + r )  E R ( A  + E) and the norm of the perturbations is minimized. 
The right-hand side is "bent" toward the left-hand side while the left-hand side is "bent" 
toward the right-hand side. In usual applications of TLS, the number of equations exceeds 
the number of unknowns. However, it may also be applied when the number of unknowns 
exceeds the number of equations. In this case, an infinite number of solutions may exist, 
and the TLS solution method selects the one with minimum norm. 

Some motivation for this problem comes from considering least-squares problems with 
a single variable. Data are acquired fitting a model 

For a least-squares fit, a line is found that minimizes the total vertical distance from the 
measured points (x, ,  y,) to the line, as shown in figure 7.2(a). The data x, are not modified 
in fitting to the line. For total least squares, a line is found that minimizes the total distance 
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(a) LS Mrn~mlze vertical (b) TLS Minimize total 
d~stance to line d~stance to lxne 

Figure 7.2: Comparison of least-squares and total least-squares fit 

from the points to the line, as shown in figure 7.2(b). In this case. modifications are made 
to both the x, and the y, data. 

Example 7.7.1 An obsewed signal conslsts of M complex slnusolds in AWGN, 

k = l  

As discussed in section 1.4.5 and section 8.1, if there were no noise the signal could be modeled as a 
zero-input autoregressive signal 

M 

C , X M + ~ - ,  = X M + ~ ,  n = 0,1,  , N - M - I ,  (7 19) 
, = I  

for some set of coeffic~ents (c ,  ) to be found If a solut~on for the c, can be obtained, then the frequencies 
can be obtarned by findrng the zeros of the charzctenst~c polyno~mal 

%uation (7.19) can be written as 

XI . . .  
X 2  " .  " C'f] = Fj . (7.20) 

X N - M - I  XN-M . "  IN-I CI X N - i  

If there is noise in the observation model (7.19), then (7.20) should be regarded as an approximate 
equation. Since the observations x ,  are on both the left-hand side and right-hand side of the equation. 
both sides can be considered to be approximate. This equation is thus an ideal candidate for TLS 
solution. 

Example 7.7.2 Suppose a system can be modeled by the equation 

Let 6 = [a,,  a*, bi  , b2,  bjJT  denote the vector of parameters In this system and let h[t]  = [ - y [ t  - I ] ,  
-y[t - 21. f [t - 11, f [ t  - 21. f [t - 31' denote prevlous outputs and inputs Then the system equation 
can be wntten as 

j [ k ]  = h[tlT6 

Let y = [y[O], ).[I), . . . . y [ N ] ] ' ,  and let 
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Then an eyuatlon for the u n k n o ~ n  parameters is 

It 1s destred to estlmate 6 from notsy observat~ons of the input and output A least-squares solution 
to the problem could be found, but that would ignore the fact that there are errors also in the matrix 
H The TLS finds a solution wh~ch takes into account errors on both sides of the equation 

Let A be an rn x n matrix. To find a solution to the TLS problem, write (7.17) in the 
homogeneous form 

where x l y  indicates that x  and y  are stacked side-by-side. Let C = [Alb] E @mx(nci)  and 
let A = [Elr] be the perturbation of the data. In order for (7.21) to have a solution, the 
augmented vector [xT, - l l T  must lie in the nullspace of C + A ,  and in order for the solution 
not to be trivial, the perturbation A must be such that C + A 1s rank deficient. The TLS 
solution finds the A wlth smallest norm that makes C + A rank deficient. 

The SVD can be used to find the TLS solution. Write the SVD of C as 
n+ 1 

C = Udiag(al, ~ r ? ,  . . . . crn+1)vH = z 0 - k u k v F  
k=i 

with 

U = [ u I , u 2  , . . . .  u,] and V = [ v l , v 2  , . . . ,  v,+I]. 

Initially we will assume that the singular values are ordered with a unique smallest singular 
value: 

From theorem 7.2, the reduced-rank matrix closest to C is the matrix 

The perturbation is therefore of the form 

Since span(C + A) does not contain the vector vn+l, the solution (7.21) must be a multiple 
of vn+l : 

If the last component of v n + ~  is not equal to zero, then the desired solution can be found as 

If the last component of vn+l is zero, there is no solution. 
The next level of generality of the TLS solution comes by assuming that the smallest 

singular value is repeated, 
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- 
Let V = [ v k + ] ,  Vk+2,  . . . , v , , , ~ ] ,  and let 

- 
S, = R ( V )  =  span(^^+^, V k + 2 . .  . , v , .+~) .  (7.23) 

Then the solution [ _ X I  ] E S,. We desire to find the solution such that llxl12 is minimized. One 
approach is explored in exercise 7.7-13. Another approach (based upon exercise 5.3-19) is 
to find a Householder matrix Q such that 

By the properties of the Househoider matrix, the vector z = [i] is the vector in R(P) 
such that the last component of v q  is maximized, subject to the constraint Ilqli2 = 1. Thus 
x = - y / a  is the minimum-norm TLS solution. Algorithm 7.2 computes a TLS solution 
based upon this concept. 

Algorithm 7.2 Total least squares 
File: t 1 s . m 

Example 7.7.3 In thls example, the TLS method 1s applled to the ldentificat~on of a system from 
measurements of ~ t s  Inputs and state vanables Suppose we know that a system 1s a second order 
system, 

If we are able to measure the Input and the state vanables. a system of equat~ons can be set up as 

~ 1 1 1 1  = U ~ I X I [ ~ ]  +aizx~[O]  + biu[O] + wl[O], 

xz[l1 = ~ 2 1 x 1  l0l + az,x,[0] + b 2 ~ [ 0 ]  + w2[0], 

x1[21 = a i ~ x ~ l l J  +alzx2[1] + b l u [ l ]  + wl[ l ] .  

~2121 = a 2 , ~ 1 [ 1 ]  + a22x~[1] + b2u[ l ]  + wz[l]. 

These equations can be wntten In matnx form a'i 

It 1s expected that nolse would exist In both the ctate measurements and the Input measurements Slnce 
components on both sldez of the equatton may be corrupted by nolse. a TLS approach IS appropnate 
for the ~olutlon 

Suppose we measure the following sequences of state vanables 

and inputs 

[u (~  = 0 0151 0 5010 0 1561 0 7533 0 8993 0 2287) 
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The corresponding set of equations is 

Then the best estimate of the solution is 

7.7.1 Geometric interpretation of the TLS solution 

It is interesting to examine what the TLS represents geometrically. From the definition of 
the 2-norm of a matrix, 

Equality holds here if and only if v E S,, where S, is defined by (7.23). The TLS problem 
amounts to finding a vector x such that 

or, squaring everywhere, 

where a: = (a,,, a,2, . . . , a,,) is the ith row of A. The quantity 

larx - b, l 2  
XHX + 1 

is the square of the distance from the point [t: ] E Cm+' to the nearest point on the hyperplane 
P defined by 

So the TLS problem amounts to finding the closest hyperplane to the set of points 

This is the geometry that was suggested by figure 7.2(b). 
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7.8 Partial total least squares 

In the total least-squares method, all of the elements on both sides of the equation Ax = b 
are assumed to be noisy. In the oxymoronically named partial total least-squares (PTLS) 
method, those columns of A or b that are known to be accurate are not modified. Thls 
generalization is useful, for example, in system identification studies in which the input 
variables may be known precisely, while the output variables are available only through 
noisy measurements. It is also useful in regression problems, as the following example 
illustrates. 

Example 7.8.1 Consider agaln the problem of fitting a line to a set of measured polnts (x,, y,), r = 
1,2, , N, according to the model y, = ax, + b, where a and b are to be detemned The equations 
can be set up according to 

The least-squares method assumes that only the nght-hand side 1s noisy The total least-squares method 
assumes that both the nght-hand and the left-hand s~des are noisy However, the constant column of 
1 on the left-hand 1s not in error, so the total least-squares solubon is not appropnate here. 

As an extension of the total least-squares concept, suppose that $omehow some of the data are 
measured prec~sely Suppose, for example, that one measurement (x,, y , )  1s made precisely, wh~le 
the next two are corrupted by noise, 

The first row should be solved exactly, while the other rows should be solved in a least-squares 
sense. C1 

We will begin with the case in which all the rows are treated equally, but some columns 
are exact. As with the total least-squares problem, we form an m x (n+ 1 )  matrix C = [ A  b] 
consisting of both sides of the equation, then determine a way to reduce the rank of C so 
that we have the homogeneous equation 

We reduce the rank only by modifying certain columns of C .  Let C be partitioned as 
C = [C1 C2]. (It is assumed that the columns are permuted so that only C2 is modified.) 
We wish to find a matrix ez such that = [CI e z ]  has rank n and is closest to C. 

Theorem 7.3 [ I  101 Let C be partitioned as C = [C, C2], where C1 has I columns and 
k =: rank(C1). vl 5 r,  rhen e2 can be determined so that [C1 c 2 ]  has rank r by forming 

where Q I ,  R12, and R22 come from the Q R factorization of C, 
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and R2i r-[  i~ the nearest mnk ( r  - I )  appmxirnutiorz fo RL7_ In (7.25), R I  I and R2:: are 
upper triangular, and R l  1 has k columns. 

Proof Assume that k = 1, if t h ~ s  1s not the ca,e, then CI can be replaced w ~ t h  a matrix 
hav~ng 1 ~ndependent columns, which can be restored after the appropnate approximation 
to CZ is found 

We need to determine a modlficat~on to the second half of the R matrix, 

so that R has rank r in such a way that R is close to R. We can take f i 1 2  = R12,  then find 
( ~ ~ 2 ,  f i 3 2 )  in such a way that they have rank r - 1 .  The nearest matrix to ( ~ 2 2 %  R 3 2 )  of rank 
r - 1 can be determined using the SVD. Denote the solution as ~ ~ ~ , , - 1 .  Then from (7.26), 
we have 

To apply this theorem to the PTLS problem, we want C to be rank deficient, so we let r = n 
(since C has n + 1 columns). Code implementing the PTLS solution to Ax = b is shown 
in algorithm 7.3. 

Algorithm 7.3 Partial total least squares, part 1 
File: ptls1.m 

The next level of sophistication in the PTLS is achieved by partitioning the data so that 
the first k l  rows and the first kz columns are assumed to be accurate. The equation Ax = b 
can be written in homogeneous form as 

where W is a k t  x kZ  matrix, corresponding to those rows and columns in the original 
problem that are to left unmodified. Let 

Then (as explored in the exercises), T can be written as 
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where U and V are unitary, and W1 1 ,  Xz1, and YIZ are either square and nonsingular, or 
null. By row and column operations, ? can be converted into 

- 
if W1 1 is not null. If W1 is null, then Zz2 appears in the lower right comer of F.  The rank 
of ? can be observed to be 

Using the SVD, a matrix A can be found so that 

Transforming back by 

is rank deficient. Let 2 2 2  = Z22 + AZ22, and let 

we obtain the equations 

? = 0  

where xl E R';. From the first row we find 

- .. 
1 0 0 x11 x12 

0 0 0 X21 0 
0 0 0  0 .  

Y11 Y12 0 Zll 2 1 2  

- Y2, 0 0 2 2 1  2 2 2 -  

which, when substituted in the second row, yields the equation 

Since the matrix is constrained to be rank deficient. there is a nontrivial nullspace. From 
this nullspace, an element xz of minimum norm is selected having the last component equal 
to 1. Based on this value for x2, the solution xl can be found. 

The procedure as described here appears in algorithm 7.4. 

Algorithm 7.4 Partial total least squares, part 2 
File: p t l s 2 . m  

Example 7.8.2 For the problem of ~denttfylng the parameters In the 11near model i, = a r ,  6, wlth 
unknowns a and b, assulne that the first data point 1s accurately measured Figure 7 3 illustrates ten 
data po~nts and l ~ n e s  f i t  to the data uslng the PTLS method and the LS method Observe thdt the l ~ n c  
passes exact]} through one potnt because of the constraint 13 
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X 

Figure 7.3: PTLS linear parameter identification (solid line is PTLS solution) 

7.9 Rotation of subspaces 

Example 7.9.1 Figure 7.4 illustrates point data from two data sets. (For example, the data might be 
salient feature locations from an image). The points in the first data set are indicated with x;  in the 
second, with o. Each point in the second data set is rotated relative to each point in the first data set 
by some angle 0 = Oo + O,,,  where Oo is the average angle, and 0, is some small random number. The 
plot illustrates rays to the tirst data point of each data set. The problem is to estimate the angle of 
rotation from the first data set to the second data set. 0 

Figure 7.4: A data set rotated relative to another data set 

This example motivates the problem known as the orthogonal Procrustes problem. Given 
A E Cmxn  and B E C m X " ,  find the minimizing rotation of B into A: 

minimize 11 A - B Q 11 subject to eH Q = I ,  
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where the constraint ensures that the transformation Q is unitary. If Q is unitary, this can 
be written as 

minimize / /A - B Q / / %  = minimize (tr(AHA) i- tr(BHB) - 2 tr(QH B ~ A )  

(See (4.9.)) Since the first two terms do not depend upon Q, this is equivalent to the problem 

maximize t r ( eHBHA) ,  Q unitary subject to Q H Q  = I. (7.27) 

The maximizing Q can be found by means of the SVD of B 

Theorem 7.4 IS 

then the maximizing matrix Q for the orthogonal Procrustes problem (7.27) is 

Proof Let Z be the unitary matrix Z = V H  Q H u ,  for Q to be determined. Then 

= tr(ZC) (operations commute in the trace) 
P 

= z,, o, (definition of the trace) 
1=1 
P 

5 C o t  (see exercise 7.9-16). 
I=]  

The upper bound is obtained in the case when the z, ,  = I ,  which occurs when Q = U v : in 
this case Z = I. This is another example of an optimization problem where the conditions 
satisfying an inequality give rise to the desired optimizer. D 

7.10 Computation of the SVD 

Whxle the proof of theorem 7 1 IS a constructive proof, providing an expl~clt recipe for finding 
the SVD using the elgendecomposltion of A and AA', thts method of comput~ng 1s not 
recommended Smce these computations involve squanng components of the matnx, small 
elements of the matnx get smaller, and large elements become even larger If the condition 
number of the matnx A is K(A), then the condition of A ~ A  1s K(A)* the resulting matnx 
wlll have worse condltlon 

In preference to comput~ng eipendecompos~tlons of AH A and A to find the SVD, we 
proceed in a manner slmilar to the computation of the eigenvalues of a symrnetnc matnx. as 
discussed In sect~on 6 15 S ~ n c e  A is not, in general, a symmetnc matrlx, some modifications 
are necessary In what follows we assume that A is real. for the SVD of complex matnces 
see exerclse 7 10- 17 The outline of the coinputational approach IS as follows 

1 By a serles of Householder transformations, determine a matrlx B that is orthogonally 
equivalent to A and that 1s upper bldlagonal. That IS, we find orthogonal n-tatrices UH 
and VB such that 
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where B has the upper-bidiagonal form 

2. B is now diagonalized using what is known as the Golub-Kahan step. The Golub- 
Kahan step implicitly creates the tridiagonal matrix T  = BT B. Since T is symmetric 
and tridiagonal, its eigenvalues can be stably computed using the same implicit QR 
shift as was used in the elgenvalue computation of algorithm 6.10. Specifically, we 
form the Wilk~nson shift by finding the eigenvalue h of the lower-right 2 x 2 submatr~x 
of T  = B~ B that is closer to T ( n ,  n ) .  Then a Givens rotatlon G I IS found that would 
place a zero in the second position of the shifted T - Ih,  

B = 

However, this Givens rotation is applied to B (on the right), and not to the shifted T. 
This places a nonzero entry in B. Illustrating for n = 4, we have 

-dl f l  0 0 . . -  
- 

0 
0 d2 f 2  0 . . .  0 

fn- l 

0 0 O . . .  0 dn - - 

where + indicates a newly nonzero entry. The new nonzero entry is chased down the 
diagonal using a series of Givens rotations, U ,  applied on the left, and V, applied on 
the right: 

and so forth. Then an updated B is obtained by 

The process is then repeated until the off-diagonal elements converge essentially to 
zero. 

The Golub-Kahan step operates on a matrix which is nonzero on both its diagonal 
and its superdiagonal. 
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The other consideration for the computation of the SVD is that, as the algorithm progresses, 
the matrix B can in general be partitioned into three pieces, 

where Bjj is diagonal and B22 is nonzero on its above-diagonal. An additional partitioning 
can be obtained if B22 has a zero (or zeros) on its diagonal. If (B22)k,k = 0, then the kth row 
of B22 is zeroed out by a succession of Givens rotations, and the Golub-Kahan step is not 
performed. Combining these ideas, we have algorithm 7.5. This algorithm can compute the 
singular values alone (saving computations), or the entire SVD, depending on the return 
arguments. 

Algorithm 7.5 Computing the SVD 
File: newsvd . m 

bidiag . m 
go1ubkahanstep.m 
zerorow. m 

The number of computations to compute the SVD of an m x n matrix is approximately 
4mn2 - 4n3/3 if only the singular values are needed, and 4mn2 + 8mn2 + Sm3 if it is 
also necessary to accumulate U and V. A variation on the SVD algorithm (known as the 
R-bidiagonalization) first triangularizes A = QR, then bidiagonalizes the upper-triangular 
matrix R, before proceeding to the Golub-Kahan step. It has been suggested that the 
R-bidiagonalization is more efficient if m 2 5n/3. In particular, when there are many 
more rows than columns, the R-bidiagonalization requires fewer computations. 

7.1 1 Exercises 

7.1-1 From the proof of theorem 7.1, show that (7.3) is true. 

7.1-2 Using the definition of the matrix 2-norm and the Frobenius norm, verify that (7.5) and (7.6) 
are true. 

7.2-3 Show that the components of the SVD can be used to determ~ne the fundamental subspaces 
of a matrix as shown in (7.7). 

7.3-4 Let 

One solut~on to Ax = b 1s x = [ l .  2. 3,4IT Compute the least-squares solution using the 
SVD, and compare Why was the solution chosen? 

7 3-5 Show that the m~nimum squared error when computing the LS 11 Ax - b/j: solution is 

Interpret th~s  result in l~ght of the four fundamental subspaces 
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7.4-6 Let 

(a) If b = [ I ,  I]', determrne the solutton to A x  = b 

(b) Now let b = [I 1 ,  1 IT  and solve A x  = b Comment on how the iolutron changed 

(c) Determine the SVD of A  and the pieudo~nverse of A  obtalned by settlng the smallest 
rtngular value to zero Comment on the form of A i  Frnd the solution to A x  = b for the 
two values of b from the prev~ous part 

7 5-7 Show that the tnequalrties rn ( 7  13) are correct. Show that the stated condrttons for achieving 
the lower bound are correct. 

7.5-8 ([I 14, page 741) Prove that the largest singular value of a real m x n matnx A  satisfies 

y T A x  
a,,, ( A )  = max ---- 

y a m  ~ € 2 "  l l ~ l l 2 1 1 ~ 1 l 2  

7.5-9 For the 2 x 2 matrix 

derive expressions for a,,,,, (A)  and am,, ( A )  In terms of w ,  x,  y ,  and z 

7.5-10 Using theorem 7.2, prove that the set of full-rank matrices is open 

7.6-1 1 Show that the matrices from (7.16) produce the Markov parameters in C,s,A~s,B,,, 

7.7- 12 Let P be the plane orthogonal to the normal vector n E R"" , 

and let n have the particular form 

Let p = [ i ]  be a point in En+' .  Show that the shortest squared distance from p to the plane 
P is 

. n the TLS problem, we sought an element 7.7-13 Let P = [vk, v k f l ,  . . . , v,+'] E E(mfi )x(n-k~2)  I 
y  E R(P) such that x = T y  is of minimum norm, where 

picks out the first rn elements of y, and also such that ymcl = -1. Formulate the problem 
of finding the minimum-norm x as a constrained optimization problem, and determine the 
solution. 

7.7-14 (Partial total least squares) Let T = [ F  21 
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(a) [71] Show that T can be written as 

where U and V are unitary, and W I  1 ,  X 2 i ,  and Y12 are either square and nonsingular, or 
null. Hint: 

Then stack. 

(b) Show that p can be converted into 

W , ,  0 0 0 0 

- r 0 0 0 X21 0 
f = o  0 0 0  0 

0 Yi2 0 0 0 
0 0 0 0 2 2 2  - Y2, w;IxIz 1 

by row and column operations. 

7.9-15 The data 

are believed to be a rotation of the data 

Determine the amount of rotation between the data sets 

7.9-16 Let Z be a unitary matrix and let a, ? 0. i = 1 , 2 ,  . . . , p. Show that 

where the maximum is achieved when Z = 1 Hlnt Consider the norm of s = [0,'12. 

ad/'] 

7 10-17 Let A = B 4- J C ,  where B and C are real Determine a means of finding the SVD of A In 
terms of the SVD of 

1: -;I 
See also exercise 6 15-67 
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7 10- 18 Show that the SVD decompo,~t~on of an n x m matrtx A ,  with n > rn, can be found by first 
computlng the QR factonzatton 

L J  

then computing the SVD of the m x rn upper triangular matnx R 

7.1 2 References 

Excellent discussion of the SVD for solution of linear equations is provided in 13331. Our 
proof of theorem 7.1 comes from [177]. 

L~near system theory, including Markov parameters and Hankel matrices, is discussed 
in [164]. A more recent treatment with an excellent discussion of realization theory is 
[284]. The realization technique described in section 7.6 is based on Ho's algorithm [139]; 
application of the SVD to Ho's algorithm is suggested in 23851. An interesting recursive 
approach to the partial realization problem 1s provided in [274, 2771. Finding a lower-rank 
approx~mation with the appropriate Hankel matrix structure is examined in [191, 194, 1931. 
Add~tional approaches to system identification using the SVD are presented in [233]. 

Several other applications of the SVD have been found in numerical analysis that 
have potential for the solution of problems arising in signal processing. (Among these 
problems are: the intersection of nullspaces of two matrices, computation of the angle 
between subspaces, and the intersection of subspaces.) An excellent treatment is found in 
[1 141. The SVD is also useful in quadratic optimization problems with quadratic constraints, 
as discussed In [9 1, 3 17, 971. 

The TLS technique is discussed in [112] and references therein. A derivation of the 
TLS with more geometric insight is presented in [390], along with some applications to 
array processing. In [344], the TLS technique is applied to system identification problems; 
and in [269], TLS is used for frequency estimation. Efficient algorithms for computing 
only that portion of the SVD necessary for the TLS solution are described in [347]. Further 
discussion of the TLS problems is given in [346]. Our discussion of the PTLS technique 
is drawn from [ I  101 and [71] (see also 1348, 3451). A summary of TLS, directed toward 
slgnal-processing applications, appears in [29 11. An examination of TLS methods applied 
to ESPRIT modal analysis appears in [280]. 

Our discussion of the computation of the SVD follows that of [ I  141. The Golub-Kahan 
step was originally proposed in [ I  1 I]. Increasing interest in the SVD as a computational tool 
has led to additional approaches to the algorithm. The R-bidiagonalization is presented in 
[5 1 1. More recently, variations on the Golub-Kahan step have been developed that are more 
accurate and often faster when computing smaller singular values; see [70,223,69]. Recent 
work has produced efficient SVD computation routines using the Cholesky factorization 
[86], while other work has led to fast computation of the singular vectors [123]. 

A brief sampling of some of the many other applications of the SVD to signal processing 
would include: 

I .  Spectral analysis 11871 and modal analysis [188, 189, 3401. 

2. System identification [234, 1831. 

3. Image reconstruction [3 101. 

4. Noise reduction [290]. 

5. Signal estimation [751. 



Chapter 8 

Some Special Matrices 
and Their Applications 

Some particular matrlx forms anse fairly often In slgnal processing, In the descnpt~on and 
analysis of algorithms (such as In h e a r  predlct~on, filtenng, etc ) This chapter provides an 
overview of some of the more common special matnx types, along w ~ t h  some appl~cations 
to signal processing 

8.1 Modal matrices and parameter estimation 

The exponential signal model, in which a s~gnal IS modeled as a sum of (possibly) damped 
exponent~als, or modes, is frequently encountered The model arises In a var~ety of set- 
tings, such as frequency estlmatlon. spectrum est~mation, system identlficatlon, or dlrect~on 
finding If the modes are real and s~mple (that is, no repeated roots in the charactenstic 
equation), we can model the s~gnal In discrete (sampled) tlme as 

4 

~ S f l  = X 2 , p l  cos(2xf,[fl + $,I. (8 1 )  
/=I 

where ii, 1s the amplitude. p, is the damping factor, f, is (discrete) frequency, and 4, is the 
phase. In the event that f ,  = 0. it 1s customary to let the phase be zero. The real signal (8.1) 
can be written in terms of complex exponenttals as 

ii e l m  
In golng from (8.1) to (8.2), we have z ,  = p,e"2"fz and a, = +. w ~ t h  the pair (a , .  z ,)  
matched by ~ t s  conjugate pair (a:, z:),  unless f, = 0, in whlch case 

If we let yo be the number of frequenc~es for which f, = 0. then the number of modes In the 
complex model 1s p = 2(9 - go) + qo The signal (8 2) is the solution of a homogeneous 
17th-order d~fference equatlon w ~ t h  cllaracteristlc polynomial 

where cro = I .  subject to lnit~al condition\ that determine the ampl~tude and phase of the 
mode\ The polynomial A (,-) hai a\ { t i  root\ the mode\ :, . i o  that A ( : ,  1 = 0, r = 1. 2. p 
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Furthermore, 

Z;A(Z,) = 0 (8.4) 

for any 1. 
More generally, the difference equation with characteristic polynomial having repeated 

roots 

where mr + m2 + . . . + m, = p, is a pth-order system having a solution that is an expo- 
nential signal, 

Equation (8.5) is a general form of a pth-order exponential signal. Most often we can 
neglect the problem of repeated roots and we can use (8.2). In many applications, the 
problem is to estimate the parameters of the exponential model {a , ,  z ,  , m, , r J given a set of 
samples (xo, x l ,  x;?, . . . , X N - 1 1 .  We will not explore all of the aspects of this problem, but 
we introduce a fruitful matrix formulation and demonstrate how several important matrix 
forms arise from this. 

Let 

be a vector of data. For the simple exponential signal (8.2)-no repeated modes-we can 
write 

x = V a ,  (8.6) 

where 

v = CY = 

P 

The matrix V is said to be a Vandemonde matrix; several important aspects about 
Vandermonde matrices are presented in section 8.4. From the coefficients of A(z)  in (8.3), 
we may form the (N - p) x N matrix AT by 

which is a Toeplitz matrix. By (8.4), it is straightforward to show that 

The N - p rows of AT are linearly independent (why?), and the p columns of V are linearly 
independent, since z ,  # z, for i # j .  (If there were some z ,  = z, for i # j ,  this would 
be a repeated mode, and the signal from (8.5) would have to be used.) So V and A  span 
orthogonal subspaces; the space R ( V )  is said to be the signal subspace and the space R ( A )  
is said to be the orthogonal subspace. The orthogonal projectors onto these subspaces are 
PV = v ( v ~ v ) - ' v ~  and PA = A ( A ~ A ) - ' A ,  and Pv + PA = I .  
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Since v = 0 and x = Vor , we have A'X = 0, or 

which also can be written as 

This corresponds to the covariance data matrix of section 3.9 for a linear predictor (AR 
model) of order p (where now we write X instead of A). A matrix X constant on the reverse 
diagonals is said to be a Ha~zkel matrix. 

By (8.7), rank(X) < p + 1. The following lemma shows that if the modes are distinct 
and the matrix X is sufficiently large, then rank(X) = p. 

xo X ]  " '  
- 

xp 

X I  X:, . . .  Xp+l  

XN-I-, x)J-2-p . . ' Xh1- 1 - 

Lemma 8.1 Let N samples of x, be generated according to a pth-order model a s  rn (8.5/, 
and form rhe (N - m) x ( m  + 1 ) Hankel matrix X by 

Then rank(X) = min(p, m .  N - m). 

ap-] 
: 

a1 
1 - 

Proof Clearly, if m < p or N - m  < p then the rank is determined by min(m, N - n?). We 
will assume that N - nz > p and m > p and show that the rank is p, which establishes the 
result. If there were a set of q < p coefficients such that a linear combination of q columns 
of X were equal to zero, then there would be a polynomial B ( z )  of degree q that would be 
a characteristic polynomial for the difference equation for xlt]. This would have to have 
roots z ,  , z = 1 . . . , p. However, a polynom~al of degree q < p cannot have p roots. C 

= o  

The coefficient vector a in (8.7) can be found by moving the last column to the right-hand 
side: 

If N > 2 p  + 1 then (8 8) can be solved--directlq, or In a least-squares sense, or in a 
total least-squares sense The direct iolut~on ( N  = 2 p  + 1 )  1s known as Prony's method 
Wh~le  very \traightforward to compute. Prony'c method is sensltlve to nolse, and wperior 
modal methodc are aka~lable However. the effect of not\e can be nlrt~gated soniewhdt uimg 
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methods described in section 15.3. Also, least-squares or total-least squares solutions can 
be employed. 

Once the coefficient vector a is found, the roots of A ( z )  can be found to obtain 
z l ,  zz, . . . , z,. The amplitudes a can then be found from (8.6). 

Somewhat more can be said if the signal is known to consist of real undamped sinusoids. 
Then z, = ~ ' ~ ~ 5 ,  and every z, is accompanied by its conjugate Ti. If A ( z )  is the characteristic 
polynomial, then A(z , )  = 0 and A(?,) = 0. Furthermore, let A ( z )  = zpA(z- '1 .  A ( z )  is 
known as the reciprocal polynomial. if zi is a root of A(z ) ,  then l l z i  is a root of A ( z )  (see 
exercise 8.1-3). Furthermore, if the roots lie on the unit circle, as they do for undamped 
sinusoids, and they occur in complex conjugate pairs, then the roots of A ( z )  are exactly the 
same as the roots of A ( z ) .  Since the coefficients of A ( z )  are simply those of A ( z )  written 
in reverse order, (8.7) is also true with the coefficients in reverse order, 

which in turn can be written as 

The matrix in (8.9) is now a Toeplitz matrix. Stacking (8.9) and (8.7) provides twice as 
many equations for N measurements, which when solved using least-squares methods will 
have lower variance. 

8.2 Permutation matrices 

Permutation matrices are simple matrices that are used to interchange rows and columns of 
a matrix. 

Definition 8.1 A permutation matrix P is an m x rn matrix with all elements either 0 or 1, 
with exactly one 1 in each row and column. D 

The matrix 

is a permutation matrix. Let A  be a matrix. Then PA is a row-permuted version of A ,  and 
A P is a column-permuted version of A.  Permutation matrices are orthogonal: if P is a 
permutation, then P-' = P T .  The product of permutation matrices is another permutation 
matrix. The determinant of a permutation is f 1. 

Example 8.2.1 Let 
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Then 

Permutat~on operations are best implemented. avoidtng an expenslve multlpllcatlon, using 
an index vector For example the permutatlon P of the prevlous example could be represented 
In column order~ng as the ~ndex I, = [2,3,  11 Then PA = A(I,, ) In row ordering, P can 
be represented as I, = [3, 1.21. SOAP = A( , I , )  

It can be shown (11421, Birkhoff's theorem) that every doubly stochast~c matrix can be 
expressed as a convex sum of permutatlon matnces 

8.3 Toeplitz matrices and some applications 

Example 8.3.1 Conslder filtering a causal srgnal x l r ]  wlth a filter h = (1. 2. 3 -2 - 1 ), uslng linear 
(as opposed to circular) convolution The filtering relatlonsh~p can be expressed as 

Observe that the elements on the d1agonal5 of the matrlx are all the same, the elements of h sh~fted 
down and across Flnding x[t]  given ) [ I ]  would require solving a set of linear equations involv~~lg 
this rnatrlx 0 

Definition 8.2 An n7 x m matrix R is said to be a Toeplitz matrix if the entries are constant 
along each diagonal. That is, R is Toeplitz if there are scalars s-,+I, . . . . so. . . . , s,- such 
that t,, = s,-, for all i and J .  The matrix 

is Toeplitz. 

Toeplltz matrices arlse In both mlntmum mean-squared error estlmatlon and least-squares 
estimation, as the Cramm~an matrix For example. In the llnear prediction problem, a stgnal 
x [ t ]  1s predicted based upon tts m prlor values Letting i [ t ]  denote the pred~cted value, we 
have 

n7 

i=1 

where { -a f ,  ] are the forward prediction coefficients (see exercise 3.1 1 - 17) The forward 
prediction error I S  f,,[t] = x [ t ]  - i [ t ] .  The equations for the predict~on coefficlents are 
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where U J ~ ,  = - a f , .  Equation (8. i 1 )  can be written as 

where R = E[x[ t  - 1 ] x H [ t  - I ] ]  and r = E [ x [ t ] x [ t  - I]], with 

(note the conjugates) and r [ j ]  = E [ x [ t ] Z [ t  - j ] ] .  Equation (8.1 1 )  is known as the Yule- 
Walker equation. 

Before proceeding with the study of Toeplitz matrices, it is useful to introduce a related 
class of matrices 

Definition 8.3 An m x m matrix B is said to be persymmetric if it is symmetric about 
its northeast-southwest diagonal. That is, b,, = bm-,+l,m-,+l. This is equivalent to B = 
J BT J, where J is the permutation matrix 

The matrix J (also denoted J,, if the dimension is important) is sometimes referred to 
as the counteridentity. 

Example 8.3.2 The matrix 

Persymmetric matrices have the property that the inverse of a persymmetric matrix is 
persymmetric: 

Toeplitz matrices are persymmetric. 
We first approach the study of the solution of Toeplitz systems of equations in the con- 

text of the linear prediction problem (8.12), which will lead us to the solution of Hermitian 
Toeplitz equations using an algorithm known as Durbin's algorithm. Following the formu- 
lation of Durbin's algorithm, we will examine some of the implications of this solution with 
respect to the linear prediction problem. We will detour slightly to introduce the notation 
of lattice forms of filters, followed by connections between lattice filters and the solution 
of the optimal linear predictor equation. After this detour, we will return to the study of 
Toeplitz equations, this time with a general right-hand side. 
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To abbreviate the notation somewhat. let R, denote the m x m matnx 

and let 

Observe that 

where Jm is the m x rn counteridentity. 

8.3.1 Durbin's algorithm 

We are solving the equatlon R,w,, = r,,, where R,,, is the Toepl~tz matr~x formed by ele- 
ments of r as In (8 14). and w, 1s now the vectot of unknowns We proceed induct~vely 
Assume we have a solution for Rkwk = rk, 1 ( k  5 m - 1 We want to use thls solutlon to 
find RiLl Given that we hdve solved the kth-order Yule-Walker system RkwL = rk, where 
rk = [ r l ,  r2, . rkIT. we wnte the (X + 1 ) s  Yule-Walker equation as 

where Jk is the k x k counteridentity. The desired solution is 

Multiplying out the first set of equations in (8.15), we see that 

by the inductive hypothesis. Since R,' is persymmetric, 

hence 

We observe that the first li elements of w ~ , ]  are obtalned as a correction by crk JLFi of the 
or~ginal elements wk From the second set of equations in (8.15), we have 

whlch, by subct~tutrng for z,: from (8.16), elves 
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Proof (By induction) For the zeroth-order predictor, the error is 

2 a f o  = E [ x [ t ] x [ t ] ]  = ro = Po 

For the first-order predictor, 

(see exercise 8.3-15). Assuming the theorem to be true for the (k - 1)st order predictor. we 
write 

a:,-, = Ei(Plr1 - x[tl)'l = ~ [ ( w ; ~ - ~ x [ r  - I 1  - x i r ~ ) ~ ]  
T = ro - rh-iwf k-1.  

Now writing wfk in terms of its solution in the Durbin algorithm, we obtain 

where (8.24) follows from (8.18), and (8.25) follows from (8.19) and (8.21). 

Since, as shown in the foI1owlng lak 1 5 I ,  as the order m grows, there will be less error in the 
predictor as the number of stages increases, until the predictor is able to predict everything 
about the slgnal that is predictable. The prediction error at that point will be white noise. 

To motivate the concept of the lattice filters, consider now the problem of "growing" a 
predictor from kth order to (k + 1)st order, up to a final predictor of order I I Z ,  starting from 
a first-order predictor. The first-order predictor is 

The second-order predictor is 

Accordtng to the recursion (8 16), all of the coefficients in the second-order pred~ctor 
{a2 I ,  a? 2 )  are in general different from the coefficients in the first-order predictor { a l  } In 
the general case, if we desire to extend a kth-order filter to an (k + 1)st-order filter, all of 
the coefficients will have to change We will develop a filter itructure, known as a lutrlre 
filter. to which new filter stages may be added without havmg to recompute the coeffic~entc; 
for the old filter 

We begin by reviewing come h a w  notation for predictors Let 

denote the f i l i - ~  urd pred ic t~~n  error of a Xth-order predictor The optimal (MMSE) forward 
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predictor coefficients satisfy -Rak  = r, where 

In exercise 3.11-17, the concept of a backward predictor, in which x [ t  - k ]  is "predicted" 
using x[t], x [ t  - I ] ,  . . . , x [ t  - k + 11, was presented. The backward predictor is 

f b [ t  - k]  = - ~ b p . i ~ [ t  - i ] .  
i =O 

Let 

denote the backward prediction error. As shown in exercise 3.1 1-17, the optimal (MMSE) 
backward prediction coefficients satisfy 

where Jk is the k x k counteridentity, hence the optimal forward predictor coefficients are 
related to the optimal backward predictor coefficients by 

That is, the backward prediction coefficients are the forward prediction coefficients conju- 
gated and in reverse order. 

We will now develop the lattice filter by building up a sequence of steps. The first-order 
forward and backward prediction errors are 

In light of (8.28), the second equation can be written as 

Now consider the filter structure shown in figure 8.l(a). This structure is known as a lattice 
Jilter. The outputs of that filter structure can be written as 

hence, by equating ~1 = al , l ,  we find that this first-order lattice filter computes both the 
forward and the backward prediction error for first-order predictors. 

(a) First stage (b) Second stage 

Figure 8.1 : The first two stages of a lattice prediction filter 
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Second-order forward and backward predictors satisfy 

For the lattice structure in figure 8.1 (b), the output can be written as 

and, similarly, 
g z [ f ]  = ~ [ t  - 21 + (klZ2 + E l ) x [ t  - I ]  + E 2 x [ f ] .  (8.33) 

By equating (8.31) and (8.321, we obtain a2.1 = K I  + K I  k2 and az.2 = ~ 2 ;  again, we have 
the lattice filter conlputing both the forward and backward prediction error. 

We now generalize to predictors of order k .  The forwasd and backward pred~ctors of 
(8.26) and (8.27) can be wrltten using the Z-transform as 

k where A k ( z )  = an J - ' .  Because of the relationship (8.28), we can write 

B k ( i )  = z-~&(?- ' ) ;  

that is, the polynomial with the coefficients conjugated and in reverse order. The kth-order 
lattlce filter stage shown In figure 8 2 satrsf es the equations 

F ~ ( z )  = F n - ~ ( i )  + K ~ Z - ' G ~ - ~  ( z )  k = 1 , 2 .  ,nz, 
(8  35: 

G n ( z ) = K k F k - l ( z ) + c - i G k - l ( ~ )  k = l , 2 ,  , m  

Dividing both sides of (8.35) by X ( z ) ,  we obtain 

Equation (8.36) can be written in terrns of its coefficients as 

When Iterated from k = 0, 1 .  , m ,  (8  38)  converts from lattice filter coefficients K , ,  

~ 2 ,  , K,, to the direct-form filter predictor coefficients a,, 1 ,  a,, 2, . am MATLAB 
code implementing this conversion 1s shown in algorithm 8 2 

F ~ g i ~ r e  8 2 The kth 5tage 01.3 lattice filter 
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Algorithm 8.2 Convers~on of latt~ce FIR to d~rect-form 
File: ref Itodlr .m 

To convert from a direct-form implementation to the lattice implementation, we write 
(8.36) and (8.37) as 

Recalling that ~ k  = ak k  and writing (8.39) in terms of the coefficients, we obtain the 
following down-stepping recursion for finding the reflection coefficients from the direct- 
form filter coefficients. For k = rn, rn - 1,  . . . , 1, 

This recursion works, provided that I K ~  1 If 1 

Algorithm 8.3 Conversion of direct-form FIR to lattice 
File: dirtoref 1 .m 

Example 8.3.3 Suppose we know thath, = 213, KZ = 415,  and^, = 1 /5 Then lnvoklng ref 1 todlr 
w ~ t h  the argument k = (213,415, 1/51, we obtain a = [I  1 36 1 04 0 2IT,  corresponding to the 
filter 

A 3 ( z )  = 1 + 1 3 6 ~ - I  + 1 0 4 ~ - 2  + 2zV3 

Supply~ng a as an argument to dlrtoref 1, we obtaln 

k = [0 666667 0 8 0 21, 

~s expected 

8.3.3 Optimal predictors and Toeplitz inverses 

The lattice representation of an FIR filter applies to any FIR filter that is normalized so that 
the leading filter coefficient is 1. However, for the case of optimal linear predictors, there is 
a useful relationship between the conversions from the direct-form realization to the lattice 
realization, and vice versa. Recall that for the solution of the Yule-Walker equation, the 
update step to go from the kth-order predictor to the (k + 1)st-order predictor (see (8.16)) 
I \  

where wk is the solution to the (k - l)st Yule-Walker equation. Contrast this with the update 
equation for converting from lattice to direct form from (8.36) and (8.38), 
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The comparison between (8.40) and (8.41) may be made more direct by writing (8.40) in 
terms of its components, recalling that wk(1:k - 1 )  = 2k-i. Then (8.40) becomes 

Comparison of (8.41) and (8.42) reveals that 

Thus, the MMSE predictor error x  [ t ]  - S,,, [ t ]  is precisely computed by the lattice filter with 
coefficients -6, k = 1,  2. . . . , MI. Furthermore, at each stage the forward prediction error 
f k [ t ]  = x [ t ]  - Sk[r]  and the backward prediction error b k [ t ]  = x[ t  - m ]  - i m , k [ t ]  are 
produced by the lattice filter. 

Consider now the problem of choosing the lattice coefficient ai to minimize the MSE 
at the output of the kth stage of the lattice filter (instead of in the dlrect-form filter), as m 

fk[tl = f k - l [ f ]  $. akgk-l[tl. 

Minimizing ( f n [ f ] ,  f k [ f ] )  = E[I with respect to ak yields 

By the Cauchy-Schwartz inequalrty, - 1 ( ax 5 1 In light of theorem 8 I ,  increasing the 
order of the predictor cannot increase the prediction error power 

By the properties of optimal h e a r  predictors-"the error ir orthogonal to the data," 
where the data is x [ t  - I ] ,  I = 1 ,  2, . m for the forward predrctor and x [ t  - I ]  z = 
0,  I ,  , m - 1 for the backward predrctor-we can obta~n immedrately the folloviing 
orthogonality relationships, where ( x ,  y )  = E [ x i ]  

( f m [ f ] , x f t  - I ] )  = 0, I = 1.2. . . . ,  in, 

(g ,[ t] ,x[ t  - i ] )  = 0, i = 0 ,  1 . . . . .  m - 1. 
2 

( S , n [ f I ,  x [ t I )  = ~ f , , ,  
2 

( f i f f l .  f ] [ r l )  = a~.ma,x(z j ) ?  

Thus, the backward prediction error is a white sequence having the same span as the input 

data. 

8.3.4 Toeplitz equations with a general right-hand side 

We now generalrze the solution of Toeplrtz systems of equations to equations havlng a 
rlght-hand s ~ d e  that IS not formed from components of the left-hand srde matrrx This glve5 
the Levlnson algarzthm. In the equatlon 

R,y = b, (8 44) 

R,, 1s a Toeplttz matrix and b  1s an arbitrary vector As before, the solution IS found 
tnduct~vely, but in this case, the update step requlres keeplng track of both the \elution to 
the Yule-Walker equation 

(us~ng the same approach as for the Durb~n dlgor~thm). and al\o the eyuatlon 

R i ~ a  = bi. 
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which is the one we really want to solve. Assuming that the wk and yk are known for step 
k ,  the solution to the (k + 1)st step requires solving 

where 

Using the solutions from time k, 

Then, proceeding as before, 

bk+i - r: J k ~ k  
Pk = 

ro - r:Pk ' 

The algorithm that solves for the general right-hand side is attributed to Levinson 11991 

Algorithm 8.4 Levinson's algorithm 
File: levinson. m 

8.4 Vandermonde matrices 

Definition 8.4 An m x m Vandemonde matrix V has the form 

This may be written as 

Example 8.4.1 Vandermonde matrices arise, for example, in polynomial interpolation. Suppose that 
the m points (xl,  yl), (x2, y2), . . . , (x,, ym) are to be fitted exactly to a polynomial of degree m - 1, 
so that 

m - l  

p ( x , ) = C a k x : = y , ,  i = 1 , 2  , . ,  n. 
k=O 

This provides the system of equations 

or 

where V is of the form (8.45). 
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The determinant of a Vandermonde matrix (8.45) is 

From this it is clear that if z ,  # z ,  for i f j then the determinant is nonzero and the matrix 
is invertible. 

Efficient algorithms for solution of Vandermonde systems of equations 

and 

have been developed. 

8.5 Circulanl matrices 

Definition 8.5 A circulant matrix C is of the form 

where each row is obtained by cyclically shifting to the right the prevlous row. This is also 
denoted as 

Example 8.5.1 Let h = { I .  2 ,3 ,4}  = {ho. h z ,  h i ]  denote the impulse response that IS to be 
cycl~cally convolved with a sequence x = {xo. X I .  x l ,  x i )  The output sequence 

may be computed tn rnatrlx form as 

Every cycl~c convolutton corresponds to n~ult~pltcation by a ctrculant matr~x E 

I t  can be shown that a matrix A ir circulant ~f and only ~f A n  = n A ,  where Il = 
circulant(0. 1.  0, , 0) 1s a permutation matrix It 1s also the case that if C is a circulant 
matrix, then cH a circulant matrlx A matrlx c~rculant(c I ( 2 .  c,,) = ctrculant(c) can 
be represented as 

L e t p , ( : ) = ~ ~ + ~ ~ : $  + c  .,L -n l - i  The power ierlei p,(z I )  15 the :-transform of the 
iequence of circulant element\ From (8 47), the matrlx cdn be written as 
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Lemma 8.2 

1. (f C I  and C? are circulant matrices of the same size, then C I  C2 = C2CI (crrculant 
matrices commute). 

2. Circulants are normal matrices. (A  normal matrix is a matrix C such that C C H  = 
C H C . )  

Proof Write C ,  = p,, ( n )  and Cz = p, (n). Then 

ClC2 = PC! ( n ) p C , ( n ) ,  

which is just a polynomial in the matrix I7. But polynomials in the same matrix commute, 

P C , ( ~ ) P C , ( ~ )  = P C , ( ~ ) P C ! ( ~ ) ,  

SO 

C1Cz = c 2 c 1 .  

Since C and C H  are both circulants, it follows from part 1 that c C H  = c H C ,  or C is 
normal. Cl 

where w = e-j2"lm. Note that F is a Vandernonde matrix and that 

F F ~  = m I .  

Diagonalization of circulant matrices is straightforward using the Fourier transform 
matrix. Let 

Theorem 8.2 I fC  is an n x n circulant, with C = p C ( n j ,  then it is diagonalized by F: 

F =  

where 

-1 1 1 . . .  1 
1 w @2 . . .  
1 @2 . . . (,,2(m-1) 

- - I 1 @m-l @2(m-1) . . . w(m- l ) (m- I )  

A = diag(p,(l), P C ( @ ) ,  . . . , p,(wn-'11. 

Conversely, if A = diag(hl, 12, . . . , A,) then 

c = F A F ~  

is circulant. 

Proof See exercise 8.5-20. 

Based upon this theorem, we make the following observations: 

1. The eigenvalues of circulant(co, e l ,  . . . , em-1) are 

m-1 

A, = ck e ~ ~ ( - j ? ? r i k / r n ) .  
k=O 

That is, the eigenvalues are obtained from the DFT of the sequence (co,  cl , . . . , cm- }. 
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2. The normalized eigenvectors x, are 

The eigenvectors of every m x m ctrculant matnx are the same Thts fact makes ctrculant 
matnces particularly easy to deal wtth. inverses, products, sums, and factors of circulant 
matrices are also circulant 

The dlagonalizatton of C has a natural tnterpretation in terms of fast convolution Wnte 
the cyclical convolution 

y = Cx 

Then Fx IS the dlscrete Founer transform of F The filtenng operation is accomplished by 
multtplication of the dragonal matrtx (element-by-element scaling), then F H  computes 
the lnverse Fourier transform If the DFT IS computed uslng a fast algorithm (an FFT), then 
(8 49) represents the fam~liar fast convolution algortthm 

The dtagonalizatton of C has tmpl~cattons tn the solution of equattons with ctrculant 
matrices To solve Cx = b, we can write 

which also can be written as 

where y = F N x  is the DFT of x. and d is the scaled DFT of b. Then the solution is 

If there are frequency btns at which A, becomes small. then there may be ampltficatlon of 
any noise present In the stgnal 

8.5.1 Relations among Vandermonde, circulant, and companion matrices 

Companion matrices were introduced in sectlon 6.13. The following theorem relates 
Vandermonde, circulant, and companton matrices. 

br rhe r ompa,zrori r l z u z r u  zo the po11 ~ I O ~ Z I U ~  

111-2 
[ , ( i ) = ~ ~ ~ ' - ~ ~ , ,  , lfil i - ( n , - 2 1  - - L 1 X  - L o .  

Theorem 8.3 Let 

C =  

'0 1 0 . . .  0 - 
0 0 1 . . .  0 

0 0 0 . . .  1 
LC() Cl C2 " ' Cr,, I - 
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and let X I  , X Z ,  . . . , x, he the roots of p (x ) .  Let V  = V ( x l  , x 2 ,  . . . . x,) = V (x) be a 
Varzdermonde matrix, and let D  = diag(x) he a diagonal matrix. Then 

Proof The first rn - 1 rows can be verified by direct computation. The (m, j)th element of 
VD is x,". The ( m ,  j)th element of C V  is 

8.5.2 Asymptotic equivalence of the eigenvalues 
of Toeplitz and circuiant matrices 

There is interest in examining the eigenvalue structure of Toeplitz matrices formed from 
autocorrelation values, because this provides information about the power spectrum of 
a stochastic process. Obtaining exact analytical expressions for eigenvalues of a general 
Toeplitz matrix is difficult. However, because of the similarity between circulant andToeplitz 
matrices, and the simple eigenstructure of circulant matrices, there is some hope of obtaining 
approximate or asymptotic eigenvalue information about a Toeplitz matrix from a circulant 
matrix that is close to the Toeplitz matrix. 

Consider the autocorrelation sequence r = (r-,, r-,+l, . . . , r-1, ro, r l ,  . . . , r,}, 
where rk = 0 for k < -m or k > m .  The spectrum of the sequence r, 

1s the power spectrum of some random process. The autocorrelation values can be recovered 
by the inverse Fourier transform, 

I 12" .S(w)eJk" dw.  rk = - 
2n 

Let R, be the banded n x n Toeplitz matrix of autocorrelation values 

We say that R, is an mth-order Toeplitz matrix. Except for the upper-right and lower-left 
comers, R, has the structure of a circulant matrix. The key to our result is that, as n gets 
large, the contributions of the elements in the comers become relatively negligible, and 
the eigenvalues can be approximated using the eigenvalues of the related circulant matrix, 
which can be found from the DFT of the autocorrelation sequence. 
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We define an n x n circulant matrix C,, with the same elements, but with the proper 
circulant structure, 

We now want to determine the relationship between the eigenvalues of R,, and the eigen- 
values of C,, as n -+ m. To do this, we need to introduce the concept of asymptotic equlv- 
alence, and show the relationship between the eigenvalues of asynlptotically equivalent 
matrices. 

Definition 8.6 Two sequence of matrices A ,  and B, are said to by asymptotically 
equivalent if the following properties hold. 

1. The matrices in each sequence are bounded: 

for some finite bound M. 

2 .  A / ~ A , -  B n / l F - +  Oasn-+ m 

Note that the boundedness is stated using the spectral norm, while the convergence is 
stated in the Frobenius norm. We shall employ the different properties of these two norms 
below. 

Theorem 8.4 (/118]) Let A ,  and B, be asynzprotrcally equrvaler2t rnatrrces wltlz ergerzval- 
ues A, k and p, k ,  respecrrvely IJ: for every posltlve Integer I ,  

1 , - I  I 
lim - x()L,T,r)l < DC) and Iim - x(w, k ) l  < cc 

r t i x  n n i ~  12 
k=O k=O 

(flzat is, if the so-culled eigenvalue nzoments exist), flzen 

1 1 
Iim - x ( k , . k  j 1  = lim - x ( ~ , ~ k ) '  

t t - s o c  n it k=O k=O 

Tlzat is, the eigenvalue monzents of A, and B, are asymptorically equal. 

Proof Let A, = B, + D , .  Since the eigenvalues of A: are (h, k ) ' ,  we can write 

1 1  liin - tr A, 
n i x  n 

Let A, = A; - B: . Then (8 .52)  can be written as 

I 
lim - tr A ,  = 0 

17-x n 

The matr~x A,, can be written as a finite number of terms. each of wh~ch I $  d produc~ of D,, 
and B,,, each term contalnlng at least one D,,. For a term wch as D ~ R ! ,  a r 0. B 2 0. 
using the inequal~ty (4 57). we obta~n 
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where 1 1  B, 112 5 M But since A, and R, are asymptotically equivalent, / /  D, / I  ,F -+ 0,  estab- 
lishing the result. 

With this definition and theorem, we are now ready to state the main result of this 
section. 

Theorem 8.5 (1181 The Toeplitz matrix R, of (8.50) and the circulanr matrix C,  of (8.51) 
are asymptotically equivalent. 

Proof We first establish the boundedness of R, and C,. By the definition of the 2-norm, 

The norm /IC, 1 1  depends upon the largest eigenvalue of C,; it is straightforward to show 
that C, is bounded. 

Now, to compute / I  R, - C, / IF,  simply count how many times elements appear in C, 
that do not appear in R,. Then 

As n i CXJ (with m bounded), $ 1 1  R, - C,ll,= -+ 0. C1 

By theorems 8.5 and 8.4, the eigenvalues of R, and the eigenvalues pn,k of C, have 
the same asymptotic moments: 

n - l  . n-l 

for integer 1 2 0. This leads us to the following asymptotic relationship between the eigen- 
values of R, and the power spectrum S(w). 

Theorem 8.6 Let R, be an mth-order Toeplitz matrix, and let S(w) denote the Fourier 
transform of the coefficients of R,. Let C,  and R, be asymptotically equivalent. If the 
eigenvalues of R, are Lnrk, and the eigenvalues of C,  are pn,k, then 
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for every posrtrve znteger 1. Furthermore, if R, 15 Nermltran, then for atq funcrlon g con- 
tznuous on the appropriate znrerval, 

- Proof By the preceding discussion, the eigenvalues of C, are p, , = Cy=-m rie-~2x 'k ln  - 
S(2nr ln ) .  By the asymptotic equivalence of the moments of the eigenvalues, 

1 1 1 
iim - C (kn,*)' = lirn - C = lim - C ~ ( 2 n / n ) '  

n i m  n n - + m  12 n i c x  n 
k=O k=O k=O 

Now let Aw = 2 n l n  and u k  = 2 n k l n .  Then 

I n- i  
n-1 

lim - x(~,,~)' = lim x ~ ( w ~ ) ' ~ w / 2 n  = (8.55) 
n-oo n n i c x  

k=O k=O 

For any polynomial p, by (8.55) we also have 

If R, I S  Hemitian. its eigenvalues are real By the We~erstrass theorem, any continuous 
funct~on g operattng on the real lnterval can be uniformly approx~mated by a polynomial p 
Since the eigenvalues of R, are real, we can apply the Weierstrass theorem and conclude 
that 

This theorem 1s sometimes referred to as Szego's theorem 
What the theorem says, roughly, I S  that the eigenvalues of R,, have the same distribution 

as does the spectrum S ( w )  The theorem is somewhat difficult to Interpret whereas there 
is a definite order to the spectrum S ( w ) ,  the e~genvalues of R, have no intrinsic order, tiley 
are often computed to appear In sorted order Nevertheles~. i t  can be observed that ~f R, has 
a large eigenvaiue dispanty (high condition number) then the spectrum S ( u )  will have a 
large spectral spread some frequencle4 will have large S(w), while other frequencies have 
small spectral spread 

Example 8.5.2 Let r, = e-2'' ' .  I = -8. -7, , 8 be the autocorrelat~on function for some sequence 
Figure 8.3 shows the rpectrum S(w) ,  and the eigenvalues of R,, for n = 30 and n = 100 To make the 
plot, the eigenvalues were computed (in sorted order), then the best match of the e~genvalues to S(w) 
was determined The improvement in match is apparent as n increases. although even for n = 30 
there is close agreement between the qpectrum and the e~genvalues of R, 0 

8.6 Triangular matrices 

An upper-tnarzgular mafrlx 1s a matrix of the form 

T =  

- 
f i i  7 1 2  t i ?  
0 122 t?? 

0 f-i? 
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Figure 8.3: Comparison of S(w) and the eigenvalues of R, for n = 30 and n = 100 

A lower-triangular matrix is a matrix such that its transpose is triangular. Triangular matrices 
arise in conjunction with the LU factorization (see section 5.1) and the QR factorization 
(see section 5.3). Triangular matrices have the following properties: 

1. The product of two upper-triangular matrices is upper triangular; the product of two 
lower-triangular matrices is lower triangular. 

2. The inverse of an upper-triangular matrix is upper triangular; the inverse of a lower- 
triangular matrix is lower triangular. 

Triangular matrices are frequently seen in solving systems of equations using the LU fac- 
torization. There are also system realizations that are built on triangular matrices. 

8.7 Properties preserved in matrix products 

With regard to the varieties of matrices with special structures that we have encountered 
throughout this book, it is valuable to know when their properties are preserved under matrix 
multiplication. That is, if A and B are matrices possessing some special structure, when 
does C = A B also posses this structure? 'What follows is a simple list. 

Matrix properties preserved under matrix multiplication 

1. Unitary 

2. Circulant 
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3. Nonsingular 

4. Lower  (or upper) triangular 

Matrix properties not preserved under matrix multiplication 

1. Hermitian 

2. Positive definite 

3. Toeplitz 

4. Vandermonde 

5. Normal 

6. Stable (e.g.. eigenvalues inside unit circle) 

8.8 Exercises 

8 1-1 Consider a third-order exponentlal slgnal with repeated modes, r = 2, ml = 2, in* = I 

(a) Wnte an expllctt expression for A [ t ]  using (8 5 )  

(b) Determine the form of V In equation (8 6) for t h ~ s  slgnal with repeated modes Is ~t st111 
a Vandermonde matnx? 

8 1-2 Let A(z) = 1 + 22 + 3z2  Flnd the reciprocal polynomlal A(:) What is the relation of the 
coefficients of A(z) to tho\e of A(<)? 

8 1-3 Show that ~f y  .f 0 is a root of a polynomial A(z). then I / y  1.i a root of the reciprocal 
polynomial A ( 2 )  

8 1-4 Show, by finding a counterexample. that the symmetry of coefficients 1s necessary but not 
suffic~ent for the roots of a polynomlal to he on the unit circle 

8 1-5 (Computer experiment) Using MATLAB, generate a signal with two real modes, havlng roots 
of the characteristic equation at 0 95e*'xJ5 and 0 92eJini3. and explore Prony's method Let 
the signal amplrtudes be 2,  = 1, Z12 = 0 5 

(a) Generate sufficient data to u.;e Prony's method, solve for the coefficients, and plot the 
pole locations in the Z-plane 

(b) Now add nolse to the s~gnal and determine how the Prony's method deterlorates as a 
functlon of SNR. Try SNR = 10 dB, 5 dB, 0 dB. -3 dB Measure the SNR relatibe to 
the stronger signal. 

(c) Repeat the prevloui two steps using least-squares and total lea5t-squares Prony's methods, 
vary~ng the number of equations employed 

8 1-6 A useful way of Interpreting the exponentla1 model 1s as the lmpulse response of an 
ARMA(p. p - 1) model w ~ t h  trancfer funct~on 

In the case of simple modes. this can be wrltten using partial fractlon expansion as 

froin whlch the relat~nnship 
1, 
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Ir obvtous By wrtting out the ditference equatton lrnplied by (8 56).  develop a \et of equatrons 

where i s  a Toepi1t7 matnx with coefficients from A ( t ) ,  1 has time sample5, and b has 
coeffic~ent., from B(z) From this equation, the coefficients of B(z) can be found wtthout 
finding the roots of A(? )  

8.2-7 Show that the determinant of a permutation matrix is & I  

8 2-8 The "btt-reverse shuffle" of the FFT algorithm is a permutatlon Table 8 1 tilustrates a b ~ t -  
reverse shutfle for an 8-po~nt D m  Determine a permutation matnx w h ~ c h  permutes an in- 
coming column vector according to the bit-reverse shuffle 

Table 8.1: Bit-reverse shuffle 

n (binary) (bit reverse) bit-reversed n 

8.2-9 The m x m permutation matrices form a group. Determine the number of members in the 
group of m x m permutation matrices. Determine a power k such that all 3 x 3 permutation 
matrices P satisfy pk = I. 

8.3-10 Show that if R is persymmetric, then B-' J = J(B-I)T, where J is the counteridentity. 

8.3-1 1 The rn x m matrices 

r0 1 o . . .  01 

i 
0 0 0 .  
1 0 0 .  

and F = O I 0 .  

0 0 0 
0 0 0 .  

are called backward-shift and forward-shift matrices, respectively. 

(a) Let a = [ I ,  2, 3, 41T. Compute Ba and Fa for 4 x 4 backward- and forward-sh~ft 
matrices. Compute B2a and FZa. Comment on the name of the matrices. 

(b) Show that an m x rn matrix of the form in (8.10) can be written as 



420 Some Special Matrices a n d  Their Applications 

8.3-12 Let ro, r*],  r*., . . , r*, denote the autocorrelat~on sequence of a statlonary stochastic pro- 
cess, and let 

n 

be ~ t s  power spectral dens~ty Show that ~f S(w) 2 0 then the Toepl~tz matnx R wlth elements 
R,, = r,-, 1s posltlve sem~definite 

8 3-13 The algonthms durCln and levinson are deslgned for a symmetric Toeplltz matrix 
Develop s~milar algonthms sultable for nonsymmetnc matrlces Hlnt Propagate two 
solut~ons 

8.3-14 Show that for a Hermitian Toeplitz matrix Rk+1, 

Hence conclude that if Rk+! IS positive definite, then ro - r:wk in (8.1 8) is not zero. 

8 3-15 Show that the vanance of the first-order forward predtct~on error filter (8 23) 1s correct Hlnt 
Show that (YO = rl / ro  

8 4-16 Show that the formula (8 46) for the determrnant of the Vandermonde matrlx 1s correct Hint 
Use row operations, lnductton, and the cofactor expans~on 

8 4-1 7 Determtne a polynomial ~nterpolating the points 

8 5-18 Show that circulant(1. 1, I ,  -1 )  1s a Hadamard matnx, that IS. that ~f H = circulant(1, 1 
1, - 1) then H HT = 41 (see section 9 2) It 1s beheved that this 1s the only c~rculant Hadamard 
matnx 2641 

8 5-19 Show that the matnx F defined m (8 48) sat~sfies F F H  = rn I 

8.5-20 Prove theorem 8.2. 

8.5-21 (Some properties of circulant matrices.) 

(a) Show that if A  and B  are c~rculant matrlces of the same slze, then A B  1s clrculant 

(b) Show that ~f A  1s a clrculant matrix, then for any fixed r > 0, 

is circulant. where the ak are scalars 

(c) Show that the Inverse of an m x in clrculant matrix A  1s 

(d) Show that the determrnant of an nr x m clrculant matrlx IS A  = c~rculant(c) rs 
n 
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(e) Show that thc pieudo~nverse oi a circuiant matr~x C 1s 

Cl = mFf'i\'[.' 

8 5-22 Ju\tity (8 53) and (8 54) 

8 5-23 Using theorem 8 6, \how that 

Iim [ d e t ( ~ ,  )]'ln = 
n-70 

exp (k ./Oi in S(@) do) 

H ~ n t  g(  ) = In 

8 5-24 Show that a clrculant matnx I S  Toeplltz, but a Toepirtz matnx is not necessarily c~rculant 

8 7-25 For each of the properties llsted In sectlon 8 7 that fall to be preserved under rnatrlx mul t~p l~ -  
catlon, find an example to demonstrate this failure 
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pseudoinverses, among other things. The summary of matrix properties preserved under 
multiplication comes from [342]. 



Chapter 9 

Kronecker Products 
and the vec Operator 

The Kronecker product has recently been used in the expression and development of 
some fast signal-processing algorithms. In this chapter, we present first the basic theory of 
Kronecker products, then demonstrate some application areas. In addition, we present the 
vec operator, which is useful in restructuring matrix equations by turning matrices into 
vectors. In many problems, this restructuring provides notational leverage by allowing the 
use, for example, of the formulas for derivatives with respect to vectors. 

9.1 The Kronecker product and Kroneeker sum 

Definition 9.1 Let A be an n x p matrix and B be an m x q matrix. The mn x pq 
matrix 

is called the Kronecker product of A and B. It is also called the direct product or the tensor 
product. 13 

Example 9.1.1 Let 

then 
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The Kronecker product hdr the tollow~ng haw properties (the Indicated operations are 
drsumed to be defined) 

I .  A €3 B # B €3 A,  in general. 

2. For a scalar x ,  

( x A )  @ B = A @  ( x B )  = x ( A  @ B ) .  (9.1) 

3. Distributive properties: 

( A  + B )  8 C = ( A  @ C )  + ( B  @ C ) .  (9.2) 

A 63 ( B  + C )  = ( A  @ B )  + ( A  €3 C ) .  (9.3) 

4. Associative property: 

5. Transposes: 

6. Trace (for square A  and B):  

7. If A is diagonal and B is diagonal, then A  @ B is diagonal. 

8 .  Determinant, where A  i sm x m and B is n x n:  

9. The Kronecker product theorem: 

provided that the matrices are shaped such that the indicated products are allowed. 

10. Inverses: If A  and B are nonsingular, then A @ B is nonsingular, and 

1 1. There is a permutation matrix P such that 

In proving properties involving Kronecker products, it is often heIpful to consider the 
( 1 ,  ~ ) t h  block of the result. For example, to prove (9.2), we note that the ( i ,  j)th block of 
( A  + B )  @ C is (a,, + b,,)C, and that the ( i ,  j)th block of A 8 C + B 8 C is a,,C + b,,C = 
(a,, + b,, )C.  

Theorem 9.1 Let A  be an m x m matrix with eigenvalues h ,, h2 ,  . . . , Am and corre- 
sponding eigenvectors xi,  x f ,  . . . , x,, and let B be an n x n matrix with eigenvalues 
I*. 1 ,  p2, . . . , p, and corresponding eigenvectors y I ,  yz, . . . , y,. Then the mn eigenvalues of 
A Q B are A, p,  for i = 1 ,  2,  . . . , m ,  j = 1 ,  2, . . . , n, and the corresponding eigenvectors 
are x, 8 y,. 
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Proof [117, page 271 Let Axi = Aixi and By, = pjy , .  B y  (9.9), 

Example 9.1.2 For the matrices 

The eigenvalues of A are 6, -1 and the eigenvalues of B are 10,4. The elgenvalues of A @ B are 
60, 24,4, -10. 3 

Definition 9.2 The Kronecker sum of an m x m matrix A  and an n x n matrix B  is 

A  eJ B = ( I ,  @ A )  + ( I ,  @ B ) ,  (9.12) 

where I, denotes the m x m identity matrix. 0 

Example 9.1.3 For A and B of example 9.1.1. 

As for the Kronecker product, the eigenvalues of the Kronecker sum are determined by the 
eigenvalues of the constituent parts, as stated in the following theorem. 

Theorem 9.2 Let A  be m x in wrtlz ezgenvalues h l ,  12, , Jim and corresponding ezgen- 
vectors X I ,  xz, . x,, and let B  be n x n wrfh ezgenvaluer /L 1 ,  EL?.  , b, and correspond- 
mg ergenvectors yi. y ; ~  . , y n  Then the mn ergeizvalues of the Kmiiecker sum ( 9  12)  are 
A, + p,, and the ezgelzvectors are y, @ x, 

Proof [117, page 301 Let Ax, = k , x ,  and B y ,  = k , y j  Then 

( A  eJ H ) ( x ,  @ s,) = ( A  C9 I ) ( x ,  C9 y,) + ( I  @ B ) ( x ,  @ y,) 

= ( A X ,  B Y , )  + ( x ,  QS B y , )  

= A1 (xi 63 Y ,  ) + l l ,  ( x !  QS y, 

= (j.1 + P , ) ( x ,  c3 y , )  
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9.2 Some applications of Kronecker products 

9.2.1 Fast Hadamard transforms 

Definition 9.3 An n x n Hadamard matrix is a matrix Hn whose elements are f 1 such 
that 

The 2 x 2 I-Iadamard matrix is 

One way of constructing Hadamard matrices, the so-called Sylvester construction, is to 
form 

Based upon this construction, 

The Hadamard transform matrix (after normalization) is a unitary matrix, and hence is 
of Interest in some transform coding problems. The Hadamard transform is also used in 
conjunction wlth error-correction algorithms for Reed-Muller codes. Because of the rela- 
tionship (9.13), fast algorithms can be developed for computing the Hadamard transform. 

Example 9.2.1 Let x = [xi, x;?, x3, x31T, and let z = H ~ x  be the 4-point Hadamard transform of x. 
Then 

In the general case of an n-point transform, n(n - 1) additions/subtractions are required. However, 
the computations can be ordered differently. If we compute 

which can be computed using another pair of 2-point Hadamard transforms. The processing is outlined 
in figure 9.1. The number of additions/subrractions in this case is 8. In general, an n-point fast 
Hadamard transform can be computed in n log n additions/subtractions. 0 
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Figure 9. I : 4-point fast Hadamard transform 

An n = 2m-point Hadamard transform can be computed using the following decomposition. 

Lemma 9.1 [214] If H, is a Sylvester-type Hadamard matrlx, where n = 2", flzen 

H,? = M;])M(~)  . . . ~ ( m '  

where M:) = 12r-1 @ N2 €3 Ip- i .  

Proof (By induction) When rn = 1 ,  the result is obvious. Assume that the result is true 
form. Then for 1 5 i 5 rn, 

( I  M,,,, = 12,-1 @ H2 @ 12mr!-, = 1 2 8 - '  @ HI €3 12m-r @ I 2  

= Mii! €3 12 ,  

and Mi::') = Izm @ H2. Then 

For example, 

It 1s straightforward to venfy that M:" M:' = H4. In use, the fast Hadamard transform first 
Computes in succession 

y~ = MAm'x, 
y2 = ~p-1' 

5'1. 

Since each row of MA') has only two nonzero elements, each stage can be computed In n 
additlons/subtractions 

9.2.2 DFT computation using Kronecker products 

The Kronecker product can be uied tn  the definit~on of fast algorithms (e g . reduced num- 
bers of multiplications) for FFTs and convolutton, by bullding large DFT algorithms from 
\mall one\ The coinpi~tat~onal adtantage of theie algorithms stems froin the fact that a\ 
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the matrices in the decomposition become smaller, the number of computations decreases. 
Fast large-n DFTs can be built up by carefully implementing a set of small-n DFTs, then 
putting the pieces together using the Kronecker product. 

Suppose an n-point DFT is to be computed. If n is a power of 2, the familiar Cooley- 
Tukey algorithm can be used. However, in this section we assume that n is not a power of 2, 
but can be factored as n = n ~ n l -  . . . n where the factors are relatively prime, (ni , n,) = 1 
for i # j .  We will demonstrate the principal of stitching together small DFTs to make larger 
ones, using a 6-point DFT. 

Let - 

be the 6-point DFT of the vector x, where w , ~  = e-j2di". We wish to formulate an 
N = 6-point DFT in terms of the 2-point and 3-point DFTs represented by 

We find that 

Unfortunately, F is not the same as F6 defined in (9.14). However, careful comparison of F 
and F6 reveals that the DFT can be computed by reordering the input and output sequence. 
The DFT can be computed as 

The index ordering of the input is [ 0 , 2 , 4 , 3 , 5 ,  11 and the index ordering of the output is 
10, 4, 2, 3, I ,  51. The details behind this particular index scheme will not be treated here, as 
they require some background in number theory; the sources cited in the references section 
provide details. 

Figure 9.2 illustrates the butterfly signal flow diagram used to compute this &point D R .  
Interestingly, the "twiddle factors" familiar from traditional Cooley-Tukey FFT algorithms 
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Figure 9.2: 6-point DFT using Kronecker decomposition 

are absent between the blocks of the diagram. More generally, we can compute the n-point 
DFT, where n = n l n 2 . .  . n ~ ,  using the Kronecker product of 

where each F, is an n, x n, matrix. By correct reordering of the input and output, a DFT 
equivalent to that obtained by F, may be obtained. 

9.3 The vee operator 

Definition 9.4 For an m x n matrix A = [al ,  a;?, . . . , a,,], the vec operator converts the 
matrix to a column vector by stacking the columns of A, 

vec(A) = 

to obtain a vector of mn elements. 0 

The vec operation can be computed in MATLAB by indexing with a single colon; for vec(A) 
type A ( : 1 .  A vector can be reshaped using the reshape function. 

Example 9.3.1 Let 

Then 
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The vec representation can be used to rewrlte a variety of operations. For example, 

(see exercise 9.3- 12). 

Theorem 9.3 

vec(A Y B )  = (B' €3 A )  vec Y 

Proof Let B be rn x n .  Observe that the kth column of (AYB) can be written (see 
section C.1 for notation) as 

r y l i  

This in turn can be written as 

Stacking the columns together, we obtain the desired result: 

Example 9.3.2 The vec operator can be used to convert matrix equations to vector equations. The 
equation 

can be vectorized by writing 

so that 

vec(AX1) = vec(C), 

or. by (9.19), 

(I @ A) vec(X) = vec(C). 

This is equivalent to 

Example 9.3.3 Suppose we desire to solve the equation 

AXB = C 

for the matnx X If A and B are ~nvert~ble, one method of solution is simply 
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Another approach is to rewrite (9.20) as 

where Y = BT @ A,  x = vec(X), and c = vec(C). 
Generalizing the problem, suppose we desire to solve 

for X in thls case, s~mple matnx inverston as In  (9 21) wlil not suffice However, 1t can be vectortzed 
as we have seen, where 

Definition 9.5 A linear operator A is said to be separable if A = A 1 8 A 2  for some A 1 

and A2.  CI 

Operations involving separable linear operators can be reduced in complexity by the use of 
(9.19). For example, suppose that A is rn2 x rn2. Computation of the product 

will require 0(hr4) operations. If A = A ,  8 A2,  where each A, is m x m,  then (9.22) can 
be written as 

where B and X are rn x m.  The two matrix multiplications in (9.23) require a total of 
2 0 (N 3, operations. 

Example 9.3.4 The matrix 

is separable, 

Another vectonzlng problem that occurs In some minimization problems is as follows. 
glven an rn x n matnx X, determine vec(XT) in terms of vec(X) The transpose shuffles 
the columns around, so ~t may be anticipated that 

where P is a permutation matrix 

Example 9.3.5 Let 

Then 

and \ ec (xT)  = 

22 r- 
La 
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The permutation matrlx can be determined u\ing element matrice\ Ob\erve that X can be 
wrltten i n  term\ of uritt element matrlces (see section C 1)  as 

m n 

r=l $ = I  

where the unit element matrix Er,  is rn x n .  Then XT can be written as 

where in this case Eir is n x rn. It is straightforward to show (see exercise 9.3- 15) that the 
right-hand side can be written as 

r= l  r = l  

with Err  of size n x m. Then, using (9.19), 
rn n 

vec(xT)  = vec C C E,, x E,, 

so that 

with the unit element matrices suitably sized 

9.4 Exercises 

9 1-1 Prove each of the eleven hsted properties of the Kronecker product, wlth the exception of 
the dssociat~ve property Hlnts To prove the determinant property, use theorem 9 1 To prove 
9 11, use theorem 9 3 w ~ t h  X  = A Y B T  and XT = B Y A "  

9.1-2 If A  = UASAV;  and B  = U B S B v ;  are the SVDs of A  and B ,  show that A  @ B  = 
( U A  @ Un)(Sa @ S ~ , ( V A  @ V B ) ~ .  

where 

9.1-3 Let 

B  = 

- - 
A  + 21 -1 

-I A  + 21 
-I A + 2 1  

- I  
- I  A + 2 1 _  - 
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(a) Show that B  = ( A  €3 I )  + (1 @ A )  

(b) Flnd the elgenvalues and etgenvectors of B  

Hlnts See exerclse 6.2-1 and use Kronecker addltlon 

9 1-4 The equation 

where A ,  B, and C are n x n and known and X  IS n x n and IS to be determtned, 1s sometimes 

called Sylvester's equation 

(a) Show that A X  - X B  -I C can be wntten as a set of n 2  equations, using the Kronecker 
sum, as 

where 

and where x, is the ~ t h  column of X and c, 1s the zth column of C 

(b) Show that Sylvester's equatlon has a unique solutton ~f and only lf A  and B  have no 
common elgenvalues 

9 1-5 Show that if A  and B  are both 

(a) Normal (I e ,  A ~ A  = A A ~ ) ,  

(b) H e n t l a n ,  

(c) Posltrve defimte, 

(d) Positlve sen~ldefinite, 

(e) Unltary, 

then A  @ B has the correspond~ng property 

9 1-6 Show that, 

(a) ( I  @ A)' = (1  @ A k ) .  

(S) If A  is an rn x m matnx. 

e ' @ L  1 @ e A  

and 

eA@' = e A  @I I .  

9 2-7 Show that if a Hadamard matrlx of order n exlsts. then n = I .  or n = 2, or n = 0 inod 4 
(1 e., 17 is a lnult~ple of 4) 

9 2-8 Show that if A and B  are Hadamard matrtces of order n1 and n ,  respect~vely. then A @ B is a 
Ilridamard matrix 

9.2-9 Show that 

HZ!,+ i = (Np 8 l1 ) ( I2* ,  @ H Z )  

9 2-10 Show that the DFT wherne \houri in figure 9 2 iomputei the 6-point DFT 
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9 2- 1 I For the 10-pant DFT 

(a) Write down F i t ,  

( b )  Wnte down F?, F,, dnd F = F2 @ F5, in terms of wlo 

(c) Determrne the shutflrng of the Input and output so that F computes a 10-pornt DFT 

(d) Draw a block diagrdm rndtcattng how to compute the 10-point DFT us~ng  F 

9.3-12 Show that 

9.3-13 Show that for n x n matnces A and B 

vec(AB) = (I @ A )  vec B ,  

vec(AB) = (BT @ A )  vec I 

9 3-14 Find the solution X  to the equatron 

A I X B l  4- AlXBz  = C, 

where 

9.3-15 Show that for an m x n matrix X 

Hint: Show that E,, X Eki = x , ~  Eli 

9.3- 16 Let A  be a separable matrix: 

(a) Determine A i  and A* so that A = A ,  @ A? 

( b )  Let x  = [ l .  2,3,41T. Compute the product Ax  both directly and using (9.19). 

9.5 References 

For a wealth of information about Kronecker products, the vec operator, and gradients, 
see [ 1 171. The Kronecker product is also discussed in [245]. 

Hadarnard transforms are discussed in [ I  281 and 11521. Applications to error-correction 
coding appear in [36 11 and [2 141. 

There are many FFT algorithms based upon Kronecker products; our presentation 
barely scratches the surface. A classic reference on the topic is [2421. Excellent coverage is 
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also provided in [33] and [78]. Other sources include [296, 1331. The use of the Kronecker 
product in image processing is presented in [152]. 

Sylvester's equation as explored in exercise 9.1 -4(b) anses in some controls problems; 
see, for example, [93]. The problem is examined from a numerical standpoint in [ I  141 
Additional treatments are in [14, 196, 245 (chapter 6), 114 (chapter 7)] .  

The description of the vec operator is taken from [ I  171, and the exercises are drawn 
from examples and exerclses found there. 



Part 111 

Detection, Estimation, and 
Optimal Filtering 

In this part, we undertake a study of the problem of signal processing in the presence of 
random noise. The first focus of study is the making of decisions in noise, known as detection 
theory. This forms a foundation discipline for a variety of application areas, including 
pattern recognition, radar processing, and digital communications. 

Next, we consider the discipline that studies the estimation of parameters in the presence 
of noise, estimution theory. We have already seen some aspects of this theory in the context of 
vector spaces. Estimation theory encompasses a variety of applications, including tracking, 
spectral estimation, and synchronization. 

Optimal filtering addresses the design and implementation of linear filters for estimating 
and predicting stochastic processes in the presence of noise. We examine in particular the 
Kalman and its application filter. 





Chapter 10 

ntroduction to 
Detection and Estimation, 
and Mathematics Notation 

The mind's deepest desire, even in its most elaborate operations, parallels man's uncon- 
scious feeling in the face of his universe: it is an insistence upon familiarity, an appetite 
for clarity. Understanding the world for a man is reducing it to the human, stamping it 
with his seal. 

-Albert Carnus 
The Myth of Sisyphus 

In this chapter, we introduce statistical decision making as an instance of a game (in the 
mathematical sense), then formalize the elements of the problem. We then present baslc 
notation and concepts related to random samples, followed by some basic theory that will 
be of use in our study: 

I .  Conditional expectations, 

2. Transformations of random variables, 

3. Sufficient statistics, 

4. Exponential families. 

10.1 Detection and estimation theory 

Observations of signals in physical systems are frequently made in the presence of noise, 
and effective processing of these signals often relies upon techniques drawn from the sta- 
tistical literature. These statistical techniques are generally applied to two different kinds 
of problems, ~llustrated in the following examples. 

Example 10.1.1 Detection. Let 

x ( t )  = A cos(2irf;t). t E 10. T ) .  

where A takes on one of two values, A E ( I .  - 1). The signal x ( t )  is observed in noise, 

y(r)  = x ( t )  + n ( t ) ,  

where n ( t )  is a random process. An example of a detecrion problenz is the choice between the two 
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values of A (the signal amplitude), glven the observarlon )if)  r E [0, T)  This problem anses In the 
transmls\lon of blnary data over a noisy channel 

Estlmat~on The signal v ( t )  = x ( r )  cos(2n f,t + 8 )  + n ( t )  1s measured at a receiver, where 0 1s an 
unknown phase An example of an eJtlmafron problem is the determinatton of the phase, based upon 
observation of the signal over some ~nterval of time C 

Detection theory involves making a choice over some countable (usually fin~te) set of 
options, while estimation involves making a choice over a continuum of options. 

10.1 .I Game theory and decision theory 

Taking a broader perspecttve, the component of statistical theory that we are concerned wlth 
fits In an even larger mathematical construct, that of game theory Therefore, to establlsh 
these connecttons, to introduce some notation, and to provrde a useful context for future 
development, we wlll begtn our dtscusston of this topic w ~ t h  a bnef detour into the general 
area of mathemat~cal games 

In a two-person game, each "person" (e~ther of whom may be Nature) has optlons open 
to them, and each attempts to make a cholce that appears to help them ach~eve thetr goal 
(e g., of "wtnn~ng"). In a zero-sum game, one person's loss is another person's gatn More 
formally. we have the following. 

Definition 10.1 A two-person. zero-sum mathematical game, which we will refer to from 
now on simply as a game, consists of three basic components: 

1 A nonempty set, el,  of possible actions available to Player 1 

2. A nonempty set, a2, of possible actions available to Player 2. 

3. A loss function, L: O ,  x e2 H R. representing the loss incurred by Player ! (whtch, 
under the zero-sum condition, corresponds to the gain obtained by Player 2). 

Any such triple ( 0 1 ,  Q 2 .  L) defines a game. 
The losses are expressed w ~ t h  respect to player 1 ;  a negative loss is interpreted as a 

rain for player 2. 
L- 

C 

Here is a stmple example [85.  page 21 

Example 10.1.2 (Odd or even) Two contestants s~multaneously put up e~ther one or two fingers 
Player I wlns ~f the sum of the dtplts showlng is odd, and Player 2 wlns if the sum of the d~glts 
showtng 1s even The wlnner In all cases recetves In dollars the sum of the d~glts showlng, thls be~ng 
pald to h ~ m  by the loser 

F~gure 10 I Lo<\ funct~on (or mntrlx) for "odd or even" game 
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To create a triple ((9. (-)? L )  for this game, we define (-), = (-I2 = ( 1 ,  2 )  and detine a loss 
function by 

It is customary to m a n g e  the loss function into a lors nzutrlx as depicted in f1gurel0 1 0 

An important class of games are those in which one player is able to obtain information 
relating to the choice made by their opponent, before committing to their own choice. 
To illustrate: suppose, with the "odd or even" game, that Player 2 is able to observe data 
regarding the action to be taken by Player 1, but that these data are subject to error. This 
modification is a significant complication of the original game, which must now be expanded 
to account for this additional structure. One way to incorporate this additional information 
is for Player 2 to model the observation in terms of probability theory. 

The characterization of uncertain information in terms of probability theory provides 
a powerful addition to the basic game-theoretic structure provided by definition 10.1. This 
addition is of great value in the context in which we concentrate our attention-that of 
decision and estimation theory. We view decision and estimation theory as a two-person 
game between Nature, in the role of Player 1, and a decision-making or computational 
agent, in the role of Player 2. The "choices" available to nature are represented as elements 
of a set 0. The decisions that the agent makes are represented as a element of set A. In 
addition, the agent has at its disposal samples of a random variable, or vector, X. As with 
the original two-person game, there is a loss function L. 

A statistical game is a game represented by the triple ( O  , A ,  L), coupled with a random 
observable, X,  defined over a sample space, or observation space, X, whose distribution 
depends on the state H E 0 chosen by nature. Assosiated with this random variable is a 
decision function, 4, that maps the observed valuse of X into the decision space. 

I. O c Rk is a nonempty set of possible states of nature, or parameter. O is sometimes 
referred to as the parameter space. An element of O is denoted 0 (for a scalar 
parameter) or 8 (for a vector parameter). 

2. A is a nonempty set of possible decisions available to the agent, sometimes called 
the decision space. An element of A is represented as 6. 

3. L: O x A I-, W is a loss function or cost function. 

4. X: X H Rn,  n L I ,  is a random variable or vector whose cumulative distribution 
function is Fx: X x O I-, [O, 11. We represent this cumulative distribution function 
as Fx (x  / 0). That is, the distribution of X is governed by the parameters 0 E 0. 

5 .  4: X t-+ A is a decision rule, alternatively termed a strategy, decision function, or 
test, that provides the coupling between the observations (and therefore the state of 
nature through Fx (. 1 Q ) ) ,  and the decisions. 

In the detection or estimation statistical game, nature chooses a point 0 E 0, and an 
observation X = x E X is generated at random according to the distribution Fx(x 18). 
The agent, using the observation x but without other explicit knowledge of nature's choice, 
chooses an action 4 (x) = 6 E A. As a consequence of these choices, the agent experiences 
a loss L(O, 6). The elements of this structure are represented in figure 10.2. 
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Figure 10.2: Elements of the statistical decision game 

Figure 10.3: A simple binary communications channel 

Example 10.1.3 In this example we modlfy the concepts from the game In example 10 1 2 to apply 
to a communication channel Conslder the brnary channel shown In figure 10 3 The btts zero or one 
can be chosen (where the transmitter takes the role of Player 1, or Nature) The parameter space is 
thus O = (0,  1) As the transmxtted blis pass through the channel, they are corrupted The recelver 
1s to dec~de whether a 0 or a 1 was sent. thus the decls~on space IS A = (0, 1) In a communication 

problem, a common cost structure 1s to Impose a cost of 1 on Incorrect decls~ons, and a cost of 0 on 
correct declslons Thus 

Some of the issues that arise in our exploration are described in the following list. 

1 Determination of the d e c ~ s ~ o n  rule, 4, by which the agent makes a declslon a common 
approach IS to choose 4 such that the average loss is as small as possible T h ~ s  decislon 
rule 1s fundamental to the detectlon or estrmation problem, as ~t ~ndicates, given an 
observation, whlch actlon (est~mate, dec~slon) should be made We shall denote the 
space of all possible decision rules as D Thus, the des~gn problem 1s to select some 
4 E D such that the goals of the agent are met. 

2 Evaluat~on of the quallty of the declslon rule for a detectlon problem. the quallty m~ght  
be measured, for example, In terms of probabrlity of error, probabll~ty of conditional 
error, or cost of false alarm For an estlmatlon problem, the quallty of the decision rule. 
and its resulting est~mate, 1s examined In terms of the bias and variance of the estlmate 

3 In some problems, the questlon of invar~ance how may the detector or estimator be 
developed in cuch a v\ ay that ~t 1s ~nsensttlve (invanant) to transformat~ons on the data 

10.1.2 Randomization 

We Introduced the dect\lon rule, or strategy, 4. as a single functlon mapping obtervatlons 
into the declslon rpace Such a functton is termed a pure strategy, or nonrandomized 
tiecision rule We may generaltze the notion of a declston rule, however, by \pecifylng 
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a prohahtl~tt d~~trlbutlon, y, over the space of  all po4sible nonrandornized rules Such a 
deci4ion rule is called a mixed strategy, or randomired decision rule Let D denote the 
space ot all nonrandomized decision rules, and let D* denote the space of all randomized 
decision rules Then y D -+ [0, I ]  is a probab~lity distribution that specifies the probability 
of selecting the elements of D 

If D contains countably many elements, (41, 4 2 ,  1, let y = ( T I ,  n2 ), n, 2 0, 
1 = 1 ,  2, , x, n, = 1 ,  with the understand~ng that we Invoke decision rule 4, with 
probabll~ty ir, For example, suppose there are two dlstinct pure strategies, so D = (@,. 
Define 

with n = P ( @ [ )  = 1 - P(&),  where P(4 , )  is the probability that rule 1 = 1 ,  2 ,  is 
invoked Clearly D" = {p,, n E [0, I ] )  Applylng the randomized rule p, means that the 
nonrandomized rule q5i will be selected with probabil~ty IT, and will be selected with 
probability 1 - n A nonrandomized rule may be vlewed ar '1 degenerate random~zed rule, 
such that all of the probability mass of the random~zed rule is applled to a m g l e  pure 
strategy For example, letting n = 1 means that @ i  will be selected w ~ t h  probability one 

Randomized declsion niles constitute an important mathemat~cal concept, necessary for 
certaln fundamental results, such as the Neyman-Pearson lemma (see sectlon 1 1 2) and the 
minimax theorem (see section 1 1 10 5) Although the mathematlcal treatment of randomized 
rules is above reproach, the actual dppllcation of randomized rules rs a topic worthy of 
considerable debate For an Interesting discussion of this concept see, for example, 1208) 

10.1.3 Special cases 

The preceding framework provldes a formalism for much of the statistical analysis we do 
In t h ~ s  text However, only a part of statistics 1s represented by t h ~ s  formalism We do not 
discuss such topics as the cho~ce of expenmentr, the design of experiments, or sequential 
analysis In each case, however, additional structure could be added to the basic framework 
to include these toplcs, and the problem could be reduced again to a simple game Most 
of the body of statistical decision making involves three specla1 cases of the general game 
formulation presented above 

1. A consists of hwopoints, A = {JO, 6i }. Corresponding to each decision is a hypothesis. 
By choosing decision 6o the agent accepts hypothesis Ho (thereby rejecting hypothesis 
Hi), and by choosing decision J1 the agents accepts hypothesis HI  (thereby rejecting 
hypothesis Ho). In this case with only two decisions, the problem is called a binury 
hypothesis testing problem. 

As a specific example of a hypothesis testing problem, suppose that a radar signal 
is examined at a receiver to determine whether a target is present. Further suppose 
that the observed return is of the form 

where 0 represents the reflected energy of a radar signal, and N is receiver noise. If 
0 is sufficiently small, then we conclude that there is no reflected signal (and hence 
no target). Although O may take on a continuum of values, these represent only two 
states of nature, which are summarized in the following two hypotheses: 

Ho: no target present, 8 5 00, 

HI  : target present, 0 > Qo. 

In statistical parlance, &J is termed the null hypothesis, and H I  the alternative hy- 
pothesis. The agent makes, on the basis of observing X,  a decision (and its associated 
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action) about what the state of nature is. With this simple problem, four outcomes are 
possible. 

f& true, choose So: Target not present, decide target not present: correct decision. 

HI  true, choose S1 : Target present, decide target present: correct decision. 

H i  true, choose So: Target present, decide target not present: missed detection. Thts 
type of error is also known as a Q p e  I error. 

Ho true, choose 6 ,  : Target not present, decide target present: false alarm. This type 
of error is also known as a Type II error. 

With this structure in place, the problem is to determine the decision function I$ ( x ) ,  
which makes a selection out of 4 based on the observed value of X.  In chapter 1 I ,  
we present two ways of developing the decision function: 

* The Neyman-Pearson test, in which the test IS designed for maximum probabilrty 
of detect~on for a fixed probability of false alarm 

* The Bayes test. in whlch an average cost is minimized By appropriate selection 
of costs, thls is equivalent to min~mizing the probabil~ty of error, but other more 
general costs and decrs~on structures can be developed 

In each case, the test can be expressed in terms of a likelihood ratio function. 

2. d consists of M points, A = {S1, 82, . . . , M 2 3. These problems are called 
multiple decision problems, or multiple hypothesis testing problems. 

Multiple hypothesis testing problems arise in digital communications in which 
the signal constellations have more than 2 points: and in pattern recognition problems, 
in which one of M classes of data is to be distinguished. 

3.  4 consists of the real line, A = R. Such decision problems are referred to as point 
estimation of a real parameter. Point estimation problems appear in a variety of con- 
texts: target bearing estimation, frequency estimation, model parameter estimation. 
state estimation, phase estimation, and symbol timing, to name but a few. 

Consider the case where O = R and the loss function is given by 

L(0 .6 )  = c ( 0  - 6 ) * ,  

where c is some positive constant. A decision function. d, is in this case a real- 
valued function defined on the sample space, and is often called an estimate of the 
true unknown state of nature, 8. It is the agent's desire to choose the function d to 
minimize average loss. 

10.2 Some notatbnal conventions 

Having bnefly introduced the focus of part 111, we must now pause tn our development to 
ensure that we have the necessary tools to understand and apply these concepts 

We use notatton of the form Fx(x  / 8) to indtcate a probabtl~ty dtstribution for the 
random variable X We also commonly refer to the probabtllty denslty functton (pdf) 
f x  (X / 8) or the probability mass functton (pmf) f x  (x / H) (The same notation is employed 
for both pmf and pdf, with the context of the problem determtning what ts tntended ) 

The symbol 0 may be regarded as a parameter, or i t  may be regarded as a randon? 
variable In the former care, the notatton fx(x 18) simply reprerents 8 as a parameter, even 
though tt appears as if i t  were a condittontng variable In the case where H ir regarded 
ds d rdndom vartable-for Baye\ detection or estlmation-a perhaps more appropr~dte 
notdtton 1s f X I H ( t  / fl), where the cond~ttoning is demon\lrated explicitly by ~ncluding (1 
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(here denoting a random variable) in the subscript, with 0 denoting the value assumed by 
6'. While we have attempted to be consistent in our usage, the notational awkwardness of 
f , y l j l ( ~  / 9 )  discourages its use in many sources. 

We now introduce some other notation that is commonly employed in the literature. 
When referring to a distribution, pdf, or pmf, it is common to suppress the subscript 
indicating the random variable. For example, Fx(x / 0)  may be represented simply us- 
ing F (x  / 0).  The argument x may even be replaced by another variable, so that only the 
problem context provides an indication of the random variable intended. 

Another commonly used notation is to denote the distribution function Fx (x / 0)  by the 
abbreviated form Fg (x). (This can be downright confusing because, by common convention, 
the subscript is used to indicate the random variable.) For discrete random variables, the 
pmf denoted by fx(x  0) or fB(x) and, similarly, for continuous random variables, the pdf 
is also denoted by fx(x 1 6 )  or fe(x). 

We are also required to take the mathematical expectation of various random variables. 
As usual, we let E ( . )  denote the expectation operator (with or without parentheses, depend- 
ing upon the chances of confusion). When we write E X  it is understood that this expectation 
is performed using the distribution function of X ,  but when the distribution function for X 
is parameterized by 8 ,  we must augment this notation by writing E e X :  

We also employ the notation Pe [s] to denote the probability of the events under the condition 
that 0 is the true parameter. 

We (mostly) use a bold capital font to represent random vectors. For example, 

The pmf or pdf fx,,x,, ,x, (xl ,  XZ, . . . , x,) is represented interchangeably with fx(x). The 
same holds true for conditional pmfs or pdfs. 

10.2.1 Populations and statistics 

'4s we have described, the problem of estimation is, essentially, to obtain a set of data, 
or observations, and use this information to fashion a guess for the value of an unknown 
parameter (the parameter may be a vector). One of the ways to achieve this goal is through 
the method of random sampling. 

Let X be a random variable known as the population random variable. The distri- 
bution of the population is the distribution of X. The population is discrete or continuous 
accordingly as X is discrete or continuous. 

By "sampling" we mean that we repeat a given experiment a number of times; the i th 
repetition involves the creation, mathematically, of a replica, or copy, of the population on 
which a random variable XI is defined. The distribution of the random variable XI is the 
same as the distribution of X, the population random variable. (It is possible that sampling 
will change the distribution of the population.) The random variables Xi, XZ, . . . , are called 
sample random variables or, sometimes, the sample values of X. 

The act of sampling can take many forms. Perhaps the simplest sampling procedure is 
that of sampling with replacement, where the distribution of the population is unchanged 
by the sampling. 
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In decision making, we frequently take a collection of observations, and compute some 
function of it. 

Definition 10.2 A funct~on of the sample values of a random variable X is called a statistic 
- 

of X. L 

Example 10.2.1 Let X be a random varrable w ~ t h  unknown mean value. Suppose we have a collectron 
of rndependent samples of X,  which we will denote by X i ,  , X ,  The sample mean. wntten as the 
random vanable X, is given by n 

, = I  

This is a function of the random vanables, and is thus an example of a statlstrc 

Before continuing with this discussion, it is important to make a distinction between random 
vanables and the values they may take. Once the observations have been taken, the sampit 
values become evaluated at the points X, = x,, and the array (xl , . . . , x,,) 1s a collection 
of real numbers, not random variables. After the observat~ons, therefore. the sample mean 
may be evaluated as 

The real number F 1s not a random vanable, nor are the quantities X I ,  x, When we talk 
about quantltles such as the mean or variance, they are assoc~ated w ~ t h  random vanables. 
and not the values these assume We can certainly talk about the average of the numberi 
XI .  , x,, but this average 1s not the mathemat~cal expectation of the random variable X 
The only way we can think of F as a random var~able 1s In a degenerate sense. where all 
of the inass is located at the number F Outs~de thls context, ~i 1s meaningless to speak of 
the mean or varlance of T, but ~t I r  highly relevant to speak of the mean and varlance of the 
random varlable X 

10.3 Conditional expectation 

As we shall see, condltlonal expectatlon forms one of the key mathe~natical concepts ~ r i  
estimation theory, allowlng us to form esttmates based upon some glven, corzdrt~onzng 
lnformat~on It 1s therefore ~mportant to have firm understand~ng of conditional expectatlon 
and to prov~de a notation for ~t In t h ~ s  sectlon we point out the maln properties of condttional 
expectatlon (Note a thorough explanation of condltlonal expectation requires measure 
theory, whlch 1s beyond the scope of thls text Interested readers are referred to [30] ) 

For our purposes. we will use the following defin~t~on ofcond~t~onal expectatlon, whlch 
assumes the ex~stence of f x i y  (X j ) 

Definition 10.3 (Continuous distributions) Let X and Y be random vanables wlth condt- 
t~onal pdf f X I Y  (X / y ) .  Then the conditional expectation of X glven Y 1s 

E(X / Y )  = xf,y,y(x 1 \ ) d x  S (10 1) 

(Discrete dlstr~butlons) Let X and Y be random variablec w ~ t h  condtt~onal pmf fxi, ( X  / Y) 
Then the conditional expectatlon of X glven Y 1s 

The properttes of condltlonal expectatlon that will be of use to us are g~ven In the 
following theorern 
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Theorem 10.1 (Properties of conditional expectations) 

1. E ( X  / Y )  = E X  if X and Y are independent. 

2. E ( X  / Y )  is a function of Y: E ( X  I Y )  = h ( Y ) .  

3. EX = E [ E ( X  1 Y ) ] .  

4. E [ g ( Y ) X  I Y ]  = g ( Y ) E ( X  / Y ) ,  where g( . )  is a function. 

5. E ( c  I Y )  = c for any constant c. 

6. E I x ( Y )  I YI = g ( Y ) .  

7. E [ ( c X + d Z ) /  Y ]  = c E ( X I  Y )  + d E ( Z /  Y )  foranycons tantscnndd.  

Proof The proof is given for continuous distributions; similar methods apply for discrete 
distributions. 

I .  If X and Y are independent, then f x i y ( x  I y )  = f x  ( x ) ,  so 

2. By the definition, 

which is a function of y. 

3. E ( X  / Y )  is a function of Y ,  so in E [ E ( X  / Y ) ] ,  the outer expectation IS wlth respect 
to Y: 

= E ( X ) .  

4. E [ g ( y ) X  I Y = yl = J g ( y )  f x i y ( x  / Y = y )  d x  = g ( y ) E [ X  ( Y = y] ,  since g(y) is 
a constant in the integral. 

The last three properties follow similarly. 

10.4 Transformations of random variables 

We review here transformations of random variables, which subsequently will be useful 
to US. 

Theorem 10.2 Let X and Y be continuous random variables with Y = g ( X ) .  Suppose g is 
one-to-one, and both g and its inverse function, g - l ,  are continuously difjcerentiable. Then 

Proof Since g is one-to-one, it is either increasing or decreasing; suppose it is increasing. 
Let a and b be real numbers such that a < b;  we have 

P [ Y  G ( a ,  b) l  = P [ g ( X )  G ( a ,  b)l  = P [ X  E ( g - ' ( a ) ,  g - ' ( b ) ) l .  
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But o 

PIY E ( 0 ,  b)l = f ~ ( u ) d i  

Thus, for all intervals ( a ,  6 ) .  we have 

Suppose that (10 2) 1s not true, so that there exists some y* such that equal~ty does not 
hold, but then. by the cont~nulty of the denssty functions fx and f y ,  (10 3) must be nonzero 
for some open interval contalnlng y* Thls yields a contradlctlon, so (10 2) is true ~f g is 
lncreassng To show that tt holds for decreasing g ,  we slmply note that the change of vartable 
will also reverse the llmlts as well as the slgn of the slope Thus, the absolute value wlll be 
required D 

ExampIe 10.4.1 Suppose that a random vanable X has the dens~ty 

(X is a x i  random variable). Let 
R = & ;  

that IS, K = g(X) ,  where g (X)  = a. so g-"(R = x2. Then 

&?-'(TI 
f ~ ( r )  = fx(g- ' ( r ) )  --- a r 

- - -  e-r2/2a2 
a 

The random vanable R 1s sald to be a Ra~leiglz random vanable 

Theorem 10.3 k t  X and Y be contrnuous n-drmensronal random vectors with Y = g(X) 
Suppose g Wn -+ Rn r r  one-to-one, and both g and its znverseftrnctzon, g-I, are contzrzu- 
ouslq d&ferentzuble Then 

f u ( ~ )  = f x ( g - ' ( ~ ) )  (104)  

where / I is rke absolute value of the Jucohran derernzmant 

The proof of this theorem 1s simtlar to the proof for the unlvarrate case. and we do not repeat 
i t  here 

10.5 Sufficient statistics 

The questton of suffic~ency addrescec an Important Issue In d e c ~ s ~ o n  theory much informa- 
tion rnuut be retalned frorn sample data In order to make val~d decliion\ (e g , in detection or 
e\trmatlon problems) The not~on of eufhclency artie\ frequently in the work that followi 
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Suppose that we have acollectlon of samples ( X I .  X2, , X ,  }, to be used for parameter 
estlmatlon or other decision-makrng purpore.; (For example, the statrstlc 

. n 

1s one of mdny poss~ble statlstrcs (or function?) to be obtained from the samples X I .  . X, ) 
Suppose our object~ve In collect~ng the observat~ons I.; to estimate the mean vdlue of the 
random varrable X Let us ask ourselves, "What 1s the best estlmate of the mean value 
of X that we can make on the baas  of the sample values alone?" T h ~ s  question 1s not 
yet mathematlcally mean~ngful, slnce the notion of "best" has not been defined Yet, wlth 
the preceding example, there 1s a strong compulsion to suppose that the random vandble, - 
X, captures everythrng that there is to learn about the expectation of X from the random 
variables X i ,  , X, As we show, the random varlable X contalns some speclal properties 

that qualify ~t as a suficlent stati~tic for the mean of the random vanable X 

Definition 10.4 Let X be a random variable whose distribution depends on a parameter 6. 
A real-valued function T of X is said to be suMicient for 6 if the conditional distribution 
of X, given T = t ,  is independent of 6. That is, T is sufficient for 6 if 

This definition remains unchanged if X, 0, and T are vector-valued, rather than scalar- 
valued. 

Example 10.5.1 A coin with unknown probability of heads p, 0 5 p 5 1, is tossed independently 
n times. Let X, be zero if the outcome of the ith toss is tails and one if the outcome is heads. 
The random variables X I .  . . . , X, are independent and identically distributed (i.i.d.), with common 
probability mass function 

The random variable X known as a Bernoulli random variable. We will indicate this as X - U(p).  
If we are looking at the outcome of this sequence of tosses in order to make a guess of the value 

of p, it is clear that the important thing to consider is the total number of heads and tails. It is hard to 
see how the information concerning the order of heads and tails can help us once we know the total 
number of heads. In fact, if we let T denote the total number of heads, T = x:=, X,, then intuitively 
the conditional distribution of X I ,  . . . , X,, given T = j ,  is uniform over the (:) n-tuples that have j 
ones and n - j zeros; that is, given that T = j ,  the distribution of X I ,  . . . , X, may be obtained by 
choosing completely at random the j places in which ones go and putting zeros in the other locations. 
This may be done without knowing p. Thus, once we know the total number of heads, being given 
the rest of the information about X I ,  . . . , X, is like being told the value of a random variable whose 
distribution does not depend on p at all. In other words, the total number of heads carries all the 
information the sample has to give about the unknown parameter p. We claim that the total number 
of heads is a sufficient statistic for p. 

To prove this fact, we need to show that the conditional distribution of { X I ,  . . . , X,), given 
T = t ,  is independent of p. This conditional distribution is 

The denominator of this expression is the binomial probability 

w e  now examine the numerator. Since r represents the sum of the values X, takes, we must set the 
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probability that X ,  + + X,, # t to zero, otherwise we will have an inconsistent probab~lity Thus, 
the numerator 1s zero except when xi -t + x,, = t ,  and each x, = 0 or 1, and then 

P(XI = x i . .  . . , X,, = x,. T = r / p )  = P(Xi = XI . .  . . . X, = x,, / p )  

= ),XI (1 - p ) ' - . t ~  . . . P2" ( I  - p )  1-1,. 

= - p)~-Cxl 

But t = E x,. thus, substitut~ng (10 7) and (10 8) Into (10 6). we obtain 

where t = E x ,  and each x ,  = 0 or 1 This distnbution ts independent of p for all t = 0. 1, n. 
wh~ch  proves the sufficiency of T Ci 

The results of thls example are likely not surprising, it makes intuitive sense without 
requiring a rigorous mathematlcai proof We do learn from this example, however, that the 
notion of sufficlency is central to the study of statistic4 But it would be tedious to establish 
sufficiency by essentially proving a new theorem for every application Fortunately, we 
won't have to do so The factorization theorem gives us a convenient mechanism for testing 
the sufficlency of a statistic We state and prove this theorem for the drscrete variables, and 
cketch a proof for continuous random variables as well 

Theorem 10.4 (Factorizat~on theorem) Let X = [Xi. X 2 ,  . x,IT be a discrete random 
vectorwhoseprobablllr, ma~rfunctron f x ( x  119) dej7endsonapavameterH E O Tkestatlstrc 
r = t ( x )  1s \uj$cient for@ ~ f ;  and or111 if; tlzel~mbabrlrty mass furzcr~on f a c t m  Lnro aprodi~ct 
of afitnctlon of t ( x )  and 8 and u furzcrrorz of x alone, that rs, 

Proof (Discrete variables) Suppose T = t ( X ) ,  and note that by consistency we must have 

f x  T ( X .  t ( x )  / $1 = otherwise. 

Assume that T is sufficient for H Then the conditional distribut~on of X glven T is ~nde-  
pendent of 8. and we may wrlte 

provided the conditional probability is well defined. Hence, we define a ( x )  and b( t (x ) .  8 )  

by 

(there ale other posslble as\igninent\) and the factor~ratlon is established 
Converiely. suppose fx ( x  / 0)  = b ( t ( x ) .  H)a(x) Let 10 be cho\en such that fT( tO / 0)  > 

0 for iorne 8 E (-1 Then 

'The rrumerdtor 1s Lelo for a11 H wheneker t ( x )  $ t(,, and nhen t ( x )  = @,. the numerator 
I \  i ~ r n p l y  f X ( x  i ( i j .  b? oui pre\ I O U \  dlguincnt The denom~nator miiy be written uvng the 
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factorization as 

Substituting (10.9) and (10.1 1) into (10. lo), we obtain 

Thus, ~ X , T ( X  / to) is independent of 0 ,  for all to and 0 for which it is defined. 

The proof of the factorization with continuous random variables relies upon transfor- 
mations of random variables. 

Proof (Continuous random variables) Let X be an n-dimensional random vector. Denote 
the dimensionality of T = t (x)  by r .  In general, r < n, so there is no invertible mapping 
from T to X. We therefore adjoin to t(X) the auxiliary statistic u(X) ,  so that w(X) = 
[ t (X) ,  u(X)]  is continuous, one-to-one, of dimension n,  and the inverse mapping w-' is 
continuous. (The existence of this mapping depends upon the inverse function theorem.*) 
Let Y = w(X)  = [T ,  U]. Then by theorem 10.3, 

If we can write fx(x 1 0 )  = b( t (x) ,  0)a(x) ,  then 

so that fy  also factors. The density for T is obtained by integrating the density for Y = [T, U] 
over U: 

f r ( t  10) = 1 fu(t.  u. 10) du = b(t .  0 )  ( / a ( w - ' ( t ,  u ) )  /Ti) du. (10.12) 

The conditional density ~ X , T ( X  1 t, 0 )  is therefore obtained by 

~ X ~ T ( X  1 t, 0 )  = 
~ x , T ( x ,  f 10) - ~ X ( X  10) -- 

fT(t I @ )  fT(t Is) 

which is independent of 0 .  
Conversely, we observe that 

*The inverse function theorem says that if G ( X ) :  Rn + Rn is continuous at xo and the Jacobian of C is 
invertible at xg,  then there is a neighborhood U and xo in which an inverse G-' exists. 
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From (10.1 1 )  and (10.12), we observe that the distribution of fT(t / 8)  is proportional 
to h(t(x), Q ) ,  where the constant of proportionality depends upon a(x)-that is. upon x and 
t-but not on 8 .  

10.5.1 Examples of sufficient statistics 

Example 10.5.2 (Bernoulli random variables) Let X = [ X I ,  X:. . X,IT be a random vector. where 
the X, are independent Bernoulli random variables Then from (10 51, with probability parameter 
8 = p ,  

n 

fx(x 1 8) = px' (1 - p)'-" = pl(l - p)"-f. 

i=l 

where r = z:=, x,. Identifying a(x) = 1 and 

we note that r is sufficient for p 
The random variable T = x:=, X, has pmf 

where c IS chosen to make fT(t) sum to 1 
The distribut~on of the sufficient statistic is found using (10 1 l ) ,  as 

Example 10.5.3 Let X = [ X i .  . x , ] ~ .  where each X, 1s from h r ( p ,  a') The joint denslty of X 1s 

(10 13) 

There are three different subsets of parameters than can be taken as unknown 

1 If a2 is known and p is unknown, then 8 = /* From the factor~zation theorem, it 1s straight- 
forward to show that 

is sufficient for p and is Gaussian distributed: 

2 If p is known but a' 1s unknown, then 0 = a' Then 11 can be shown that 

is sufficient for a* 

3 If both p and a' are unhnown. then 0 = ( / L . ( T ' )  

Let Y = ! En x, and s 2  = x:=,(x, - 7)' (the no rn~d l~~a t ion  by 1/17 is only for conve- 
,=I 

ntence) The density (10 13) may be written 

The palr (X S' )  15 a sufh~lent \taristlc lor (11 a') (We ddopt the notation that X dnd 5' are 
the random vari,ible\ correymnd~ng to the reali~ations i dnd c' ) 0 
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Example 10.5.4 Consider a sample X I .  . . . , X, from the uniform distribution over the interval [a,  /?I. 
The joint density of X I ,  Xz. . . . , X, is 

where I? is the indicator function: 

This joint density may be rewritten as 

since we must have all of the (x,) 1 a (Hence, the smallest of them must be 1 a ,  and we must also 
have all of the ( x ,  ) 5 B ,  hence the largest of them must be 5 /? ) 

We examine three cases Flrst, [ f a  1s known, then max X, is a sufficient Ftatlst~c for #3, second, 
if B IS known, then mln X, is a sufficient statistrc for a ,  and ~f both a and /? are unknown, then 
(mln X, ,  max X,)  is a sufficient statistic for (a, /?) 0 

10.5.2 Complete suMicient statistics 

As we have seen, the concept of a sufficient statistic leads to economy in the design of 
algorithms to compute estimates, and may simplify the requirements for data acquisition 
and storage, since only the sufficient statistic needs to be retained for purposes of estimation. 
Clearly, not all sufficient statistics are created equal. As an extreme case, the mapping 
T I  = t l  (XI ,  . . . , X,) = (XI ,  . . , Xn), which retains all of the data, is always a sufficient 
statistic for the mean, but no reduction in information is obtained. At the other extreme, if 
the random variables X, are i.i.d., then, as we have seen, a sufficient statistic for the mean is 

= t2(XI,  . . . , X,) = x, and it is hard to see how the data could be reduced further. What 
about the vector-valued statistic T3 = t3(XI ,  . . . , X,) = (c::: XI, Xn)? This statistic is 
also sufficient for the mean. Obviously, T2 would require the least bandwidth to transmit, 
the least memory to store, and would be simplest to use, but all three are sufficient for the 
mean. In fact, it easy to see that T3 can be expressed as a function of T I  but not vice versa, 
and that T2 can be expressed as a function of T3  (and, consequently, of TI ) .  This leads to a 
useful definition. 

Definition 10.5 A sufficient statistic for a parameter 8 E O that is a function of all other 
sufficient statistics for B is said to be a minimal sufficient statistic, or necessary and suffi- 
cient statistic, for 8.  Such a sufficient statistic represents the smallest amount of information 
that is still sufficient for the parameter. 0 

There are a number of questions one might ask about minimal sufficient statistics: 
(a) Does one always exist: (b) If so, is it unique? (c) If it exists, how do I find it? Rather 
than try to answer these questions directly, we defer instead to a related concept, that of 
completeness, and use this to approach the question of minimality. 

Definition 10.6 Let T be a sufficient statistic for a parameter B E 0, and let w(T) be any 
real-valued function of T .  T is said to be complete if 

for all B E O implies that 
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That is, w (T) = 0 with probability 1 (i.e., except on a set of measure zero) for every possible 
value of 8. 0 

Example 10.5.5 Let X I ,  X, be a sample from the uniform dtstnbution over the interval [O 81, 
B > 0 Then T = max, X, is suffic~ent for 0 We may compute the denslty of T as follows For an) 
real number t ,  the event [max, X, ..: r ]  occurs if and only ~f [X, 5 t ] ,  VI  = 1. n Thus, using the 
independence of the X,, we have 

0 i f t i 0 ,  

P,[T i r ]  = Pe(xi i t , x 2  i r. .  . . .x, 5 t ]  = P6[X, ( r ]  = fi i f O c i 8 ,  
i=l 1 i f 0 c t .  

Taking derivatives, we find that the density is 

Now let u! be a function of T .  Then 
r8 

If t h ~ s  is ident~cally zero for all 0 > 0 ,  we must have that J;: w(r)tn-'dt = 0 for all 0 > 0 T h ~ s  
impl~es that U J ( ~ )  = 0 for all r > 0 ,  except for a set of measure zero At all polnts of continuity, the 
fundamental theorem of calculus shows that w( t )  is: zero Hence, Po[ul(T) = 01 = 1 for all 0 > 0, 
ro that T is a complete sufficient stattstic iI] 

We present two of the most important properties of complete sufficient statistics We 
precede these properties by an important definition 

Definition 10.7 Let X be a random variable whose sample values are used to estimate a 
parameter 8 of the distribution of X. We will use the notation 8(X) to indicate that 8 is a 
function of X which returns an estimate of 8 .  An estimate &(x) of a 0 is said to be unbiased 
if, when 8 is the true value of the parameter, the mean of the distribution of J(X) is 8; 
that is, 

E@&(x) = e VB. ci 

Theorem 10.5 (Lehmann-Scheffk) Let T be a complete suficzent stutzstzc for apurameter 
B E O, and let w be a functzoiz of T rhat produces an unbcased estimate of 8; rhen w zs 
unzque wzth probabrl~? 1. 

Proof Let ~ u ,  and w2 be two functions of T that produce unbiased estimates of 8 .  Thus, 

But then 

Es[wl (T)  - uj2(T)] = 0 V8 E O 

We note. however, that wl ( T )  - u9(T)  is a function of T,  so by the completeness of T, we 
must have w l  (T)  - w2(T) = 0 with probability I for all 8 E 0. 0 

Now the notton of completeness will allow us to make a determination about minimallty 

Theorem 10.6 A corrzplete ruficrent statrstlcfir a parameter 8 E O l r  nzrizrn~ul 

Proof The proof re l~ei  on the properties of conditional expectations from section 10 3 Let 
7' be a complete \uffrcient it'itistic and let S be another {uffictent ~tdti{tic. dnd iuppo\e 
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that S  is minimal. By property 3 of theorem 10.1, we know that ET = E [ E ( T I S ) ] .  By 
property 2, we know that the conditional expectation E  ( T  IS) is a function of S. But, because 
S is minimal, we also know that S  is a function of T .  Thus, the random variable T - E  ( T  I S )  
is a function of T ,  and this function has zero expectation for all 0 E O. Therefore, since T  
is complete, it follows that T = E ( T I S )  with probability 1. This makes T  a function of S ,  
and since S is minimal, T  is therefore a function of all other sufficient statistics, and T  is 
itself minimal. 0 

10.6 Exponential families 

Complete sufficient statistics, with their desirable qualities, do not always exist. We have 
seen that for the family of normal distributions, the two-dimensional statistic (E X ,  , x,") 
(or, equivalently, the sample mean and the sample variance) is sufficient for (p, 03, and 
it is at least intuitively obvious that this statistic is also minimal. This motivates us to look 
for properties of the distribution that would be conducive to completeness and, hence, to 
minimality. 

The exponential family is a family of distributions with surprisingly broad coverage, 
for which it is straightforward to determine complete sufficient statistics. This family covers 
many of the familiar distributions, including Gaussian, Poisson, and binomial. In addition, 
it is straightforward to determine the distribution of the sufficient statistics for distributions 
in the exponential family. 

Definition 10.8 A family of distributions with probability mass function or density 
f x ( x  10) is said to be a k-parameter exponential family if f x ( x  18) has the form 

In this definition, 0 may be either a scalar or vector of parameters. 

Because f ( x  / 0 )  is a probability mass function or density function of a distribution, 
the function c (Q)  is determined by the functions a ( x ) ,  n, ( Q ) ,  and t, ( x ) ,  by means of the 
formulas 

in the discrete case and 

in the continuous case. 
If f ( x  / 8 )  is in the exponential family, and Xi, XZ, . . . , X n  are independent samples 

of X, then the joint distribution X = (XI, X 2 ,  . . . , X,) is also in the exponential family: 
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where 
n  n  

It is straightforward to identity sufficient statistics for the exponential family. Now let 
X I ,  . . . , X, be a sample of size n from an exponential family of distributions with either 
mass or density function given by ( I  0.15). Then the joint probability mass or density is 

Clearly, this can be factored as 

so that by the factorization theorem it is clear that 

is a sufficient statistic. We will denote 

The distribution function for the sufficient statlstzc is determined by the following 
theorem 

Theorem 10.7 Let XI. . X n  be a sanzple from the exponenfual famuly (10 IS) ,  eutlzer 
contuzuous or discrete. (We assu~?ie, ln flze continuous case, that a density exists ) Then the 
dlstrlhuruon cfthe sufic~enf rtutlrtrc T = [ T I .  . T,]' has the forin 

f ~ ( t  161 = c!Q!ao!l) exp (10 18) 

where t = [ t i ,  . . . , t i ]  7 

Proof (Continuous case) From the proof of the factorization theorem (see ( 1  0.12)). we may 
write the marginal distr~bution of T as 

J aw-I (t. U )  
fr(t  Q )  = fy(t.  u .  iH)du = h(H, t) ( \ a ( w - ' ( l ,  u ) )  /) d u ,  sit, U )  

Also. by the factorization theorem. we know that 

and. when f x  1 5  exponential. we may wrtte 
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so, substituting this into the marginal for T, we obtain 

aw-'(t .  u )  1 
/r( t  I N )  = c(B) [ I  (i[w-'(t, u)l 

which is of the desired form if we set 

We are now in a position to state a key result, which in large measure justifies our 
attention to exponential families of distributions. 

Theorem 10.8 For a k-parameter exponential family, the suficient statistic 

is complete, and therefore a minimal suficient statistic. 

Proof To establish completeness, we need to show that, for any function w of T, the 
condition E0w(T) = 0, V6 E O implies Pe[w(T) = 01 = 1. But the expectation is 

and we observe that this is the k-dimensional Laplace transform of w(t)c(O)a(t) .  By the 
uniqueness of the Laplace transform, we must have w ( t )  = 0 for almost all t (that is, all t 
except possibly on a set of measure zero). 

Example 10.6.1 The pmf for the binomial distribution of the number of successes in rn independent 
trials, when 0 is the probability of success at each trial, is 

for x = 0, 1, . . . , rn-so this family of distributions is a one-parameter exponential family with 

Hence, for sample size n ,  x;=l X, is sufficient for 6. 

Example 10.6.2 The pmf for the Poisson distribution of the number of events that occur in a unit-time 
~nterval, when the events are occurring in a Poisson process at rate 6 > 0 per unit time, is 

for x = 0, I .  . . . . This is a one-parameter exponential family with 
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Hence. the number of events that occur dunng the specified tlme Interval is a sufficient statistic 
for 0 0 

Example 10.6.3 The normal pdf is 

This is a two-parameter exponential family with 

a(x)  = 1. 

2 1 
n1(pU.,u ) = -- 

202 ' 
7 P 

n z ( ~ , u - )  = -, 
u 

t,(x) = x2 ,  

t2(x) = X.  

Hence, for sample size i? ,  (x:=, X,,  x:=, Xf) are suffictent for ( p ,  a 2 )  

Example 10.6.4 An rmportant famtly of distributions that is rzof exponentral is the family of uniform 
dtsalbut~ons (We already have ident~fied a complete suffic~ent statistic for that distnbutlon ) O 

10.7' Exercises 

10 1-1 Gonslder the well-known game of Pnsoner's Dilemma Two agents, denoted Xi and X2, 
are accused of a cnme They are rnterrogated separately, but the sentences that are passed 
are based upon the jo~nt outcome If they both confess. they are both sentenced to a jall 
term of three years If neither confesses, they are both sentenced to a jail term of one year 
If one confesses and the other refuses to confess, then the one who confesses is set free and 
the one who refuses to confess is sentenced to a jail term of five years Thrs payoff matnx 1s 
illustrated In figure 10 4 The first entry in each quadrant of the payoff matrix corresponds 
to Xi's payoff, and the second entry corresponds to X2'5 payoff This particular game 
represents slight extens~on to our ongrnal defin~tion, since it is not a zero-cum game 

When playrng such a game, a reasonable strategy is for each agent to make a cholce 
such that, once chosen, neither player would have an incentive to depart un~laterally from 
the outcome Such a decision pax is called a Naslz equlllbrlum point In other words, at 
the Nash equilibnum polnt, both players can only hurt themrelves by departing from thelr 
decis~on What is the Nash equilibnum point for the Pnsoner's Dilemma game' Explain 
why this problem IS consrdered a "dilemma" 

1 \12nt 1 si;e;t ; confesses 1 
5 0 

I --- 
I confesses I 0.5 1 3.3 I 

Figure 10 4 A typical payoff matrlx for the Priconer.4 D~lelnma game 
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I0 5-2 Let X = (XI X2. , X,) denote a random sample of an m-d~men\~onal Gauswn random 
vector X , ,  where X, -,.\i(p, R )  Show that the rtatistlcs 

and 

are sufficient for (p ,  R) .  The matrix S ~ S  called the scatter matrix of the data. Hint: 

10.5-3 A Poisson random variable has pmf 

where 0 > 0 is the parameter of the distribution. We write 

The Poisson distribution models the distribution of the number of events that occur in the 
unit interval (0, 1) when the events are occurring at an average rate of 0 events per unit 
time. 

Let X = [XI ,  Xz, . . . , x,]' be a random sample, where each X, is Poisson distributed. 

(a) Show that if X - P(0)  then EX = 0 and var(X) = 0 

(b) Show that 

is sufficient for 0 

(c) Determine the distribution of K 

10.5-4 Let X be a random vector with density fx(x / 0). and let 

be an invertible transformation. Suppose that s(Y) is a sufficient statistic for Q in fY(y I 0). 
Show that 

is a sufficient statistic for 0 in fx(x 18) 

10.5-5 The binomial distribution has pmf 

where n is a positive integer. The notation X 7 B(n, p) means that X has a binomial 
distribution with parameters n and p. The binomial B(n, p) represents the distribution of 
the total number of successes inn independent Bernoulli B(p) trials, where the probability 
of success in each trial is p. 

(a) Show that the mean of B(n, p) is np and the variance is np(1 - p). 

(b) Let X, ,XI,. . ., X, be n independent Bernoulli random variables with P(X; = 1) = p. 
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Show that 
X = X 1 + X 2 +  + X n  

1s B(n, p )  

(c) If X I .  XZ, Xn are B(n, , 8)  r = 1 2 n. show that 

i C:=, X, is sufficient for Q 

11 (x :=,  X,) - B(E:=l n i ,  0). that is, the distnbution of the sufficient statistic is 
itself binomially distributed 

10 5-6 It is tntererting to contemplate the use of suffic~ent statirtrcs for data compresston Let 
X,, r = 1. 2, . n be Bernoulli random variables Compare the number of bits required 
to represent the sufficient statlstlc 

n 

t = E x ,  
,=I 

with the number of btts requ~red to code the sequence (XI,  xz, , xn)  

10 5-7 Let X -N(NB.  R) ,  where H is m x p and 0 IS p x 1 Show that ~f N and R are known. 
then N 'R-~X is wfficient for 0 Determine the distribution of the random vanable 
WR-IX 

10 5-8 [29] Let X I ,  X2. , Xn be a sample from a population with dens~ty 

- e x p [ - ( x - ~ ) / a l  x L C L ,  

otherwise. 

The parameters are 0 = ( p .  o ) .  where E R and a > 0. 

(a) Show that mln(Xl. X2, , X,) is sufficient for p when o is known 

(b) Find a one-dimenstonal suffic~ent statistic for a when 11 1s known. 

(c) Find a two-dimensional sufficient statistic for 0 

10.5-9 Let T be a sufficient statistic that is distributed as T - B(2. 8 ) .  Show that T is a complete 
sufficient statistic. 

10 5-10 Show that each of the following statist~cs IS not complete, by finding a nonLero function 
w such that E[w(T)] = 0 

(a) T -U(-0,0) (T  is uniformly drstributed from -ti to 8 )  

(b) T -N(O. 0) .  

10 5-1 1 Let X, have pmf fx(x 10) = Q"(1 - @)I-", x = 0. 1, for z = 1.2. , n Show that 
T = C" , = I  X, 1s a complete sufficient statistic for 0 Also, find a function of T that 1s an 
unblased eftimator of 0 

10 6-12 Express the following pdfs or pmfs as members of the exponential family and determrne 
the sufficient statistics 

(a) Exponential (pdf) fx(x / 0 )  = Qe-" x 2 0  

(b) Raylelgh (pdf) fx(x 18) = 2 t i ~ e - ' " ~  x 2 0  
@dl A' 

(c) Gainma (pdf) fx(x 1 O 1 .  02) = *x6e-"'". x 2 0  

(d) Poisson (pmf) &(x ( 0 )  = ( Q * / ~ f ) e - ~ .  x = 0. 1 .2  

(el Mult1nom1al (pmf) fx(x l01.  $2, . Bd) = (n:'_, 0," ) m f /  ny=, x, I ,  x, = 0 1 2 
. and c:=, x, = in and x:=, B, = 1 with ti, 0 

(f) Geometric (pmf fx(x I ti) = ( 1  - 8 J r @  
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10.6-13 Let X, - B ( p ) .  i = 1 ,  2, . . . , n ,  and let T = x : = ,  X,. Show that 7' is acompiete minimal 
statistic. 

10 6-14 Let X I ,  X, be a sample 'rrorn the exponentlal fam~ly (10 15), e~ther  contlnuou\ or 
dlscrete Show that the drstrtbutron of the sufficrent statlrtlc T = [TI . Tklr  ha\ the 
form 

f ~ ( t  I @ )  = i i O ) u ~ ( t )  exp (10 19) 

where t = Itl,. . . . r k l T .  

10 6- 15 ([29 11) Let (Xo, X I  , X w- ) denote a random sample of N-d~mens~onal  random vectors 
X,,, edch of whlch ha\ mean value rn and covariance matnx R Show that the sample mean 

and the sample covariance 

may be written recursively as 

and 

where 

10.8 References 

The consideration of decision making in terms of games, and the special cases presented 
here, are promoted in 1851. A solid analytical coverage of measure theory and conditional 
expectation. For those interested in general game theory, 12081 is a reasonable introduction. 
Another work on games, with connections to linear programming, is [171]. 

Both [29] and 11411 provide a good background to the introductory material on transfor- 
mations of variables, conditional expectations, exponential families, and sufficient statistics; 
material and insight has also been drawn from [291]. 



Chapter 11 

Detection Theory 

1 often say that when you can measure what you are speaking about and express ~t 
In numbers you know something about ~ t .  but when you cannot measure ~ t ,  when you 
cannot express ~t in numbers, your knowledge of ~t IS  of ii meagre and un\at~sfactory 
kind 

- Wzllzam Tlzompron, Lord Kelvzn 

I1 .I introduction to hypothesis testing 

In the detectton problem, an ob\ervatlon of a random var~able (or s~gnal)  x 1s used to make 
decls~ons about a fin~te number of outcomes More spectfically, In an M-ary hypothests 
testing problem, it 1s assumed that the parameter space '3 = e0 U (3) Li U @,+-I .  
where the 0, are mutually disjoint Corresponding to each of these sets are cho~ces--or 
hypothese\-denoted as 

The parameter B determrnes the dlstrtbution of a random variable x that takes values in a 
space X accordtng to the distribution funct~on F x ( x  / 8) Based on the observat~on x = x ,  
a decis~on 1s made by a decis~on-making agent In the simplest case, the decrs~on space is 
A = {So, S2. , 6 M - l ) ,  wlth one cholce correspond~ng to each hypothes~s, such that 6, 
represents the decis~on to "accept hypothes~s H y  (the~eby rejecting the others) These are 
two majol approaches to detect~on 

Bayesian approach. In the Bayemn approach, the empham IS on nzrnzmzzing loss With 
the Bayes~an approach. we assume that the parameters are actually random variables, gov- 
erned by a prior probabtl~ty A loss tunctlon 1s establ~shed for each poss~ble outcome and 
each pos51ble decis~on. and dec~s~ons  are made to lntntmtze the average lo\s The Bayesian 
approach can be dpplled well to the M-ary detection problem, for M 2 2 

Neyman-Pearson approach. The Neyman-Pearson approach is used pr~marliy for the 
b~nary detect~on problem 111 t h ~ s  app~oach, the probab~llty of false alarm 1s fixed at some 
value, and the declston f~lnction 15 found ul i~ch maximize< the probabil~ty of detection 
I n  each case, the te\t\ ale reduced to compdrl\on\ of ratlo\ of probab111ty denvty or proha- 
b111ty ma,\, fornitng whdt I $  cdiled d irLrlihoocr' i ~ l l r o  te i f  
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The theory presented here has had great utility for detection using radar signals, and 
some of the terminology used in that context has permeated the general field. (Notions such 
as false alarm, missed detection, receiver operating characteristic, and so forth, owe their 
origins to radar.) Statistics has coined its own vocabulary for these concepts. however, and we 
will find it desirable to become familiar with both the engineering and statistics terminology. 
The fact that more than one discipiine has embraced these concepts is a testimony to their 
great utility. 

We will begin our investigation of hypothesis testing with the binary detection problem. 
Despite its apparent simplicity, there is a considerable body of theory associated with the 
problem. In the classical binary decision problem, as we have seen, Ho is called the null 
hypothesis and H i  is the alternative hypothesis. Only one of these disjoint hypotheses is 
true, and the job of the decision maker is to detect (guess) which hypothesis is true. The 
decision space is A = {So (accept No) ,  S 1  (reject Ho)}.  

Example 11.1.1 (Digital communications) One of two possible signals is sent. We can take the 
parameter space as O = ( 1, - 1 ). The receiver decides between Ho: 8 = 1 and Hi : 8 = - 1, based 
upon the observation of a random variable. 

In a common signal model (additive Gaussian noise channel), the received signal is modeled as 

where S is the transmitted signal and N is a random variable. If N - N(0, u 2 )  and S = @a, for some 
amplitude a ,  then the distribution for R,  conditioned upon knowing the transmitted signal 0, is 

Example 11.1.2 (Optical commun~cations) Another signal model more appropriate for an optical 
channel is to assume that 

R = X. 

where X is a Poisson random variable whose rate depends upon 0: 

This models, for example, the rate of received photons, where different photon intensities are used to 
represent the two possible values of 8 .  U 

Example 11.1.3 (Radar detection) Assume that a received signal is represented as 

where N is a random variable representing the noise, and 8 is a random variable indicating the presence 
or absence of some target. The two hypotheses can now be described as 

No: target is absent: 8 5 19~.  

Hi : target is present: 8 > Oo.  

Based upon the observation x, we must make a decision regarding which hypothesis 
to accept. We divide the space X into two disjoint regions, R and A, with X = R U A. We 
formulate our decision function 4 (x) as 
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We interpret this decision rule as follows: If x E R (reject) we take action 61 (accepting 
H I ,  rejecting No);  and if x E A (accept) we take action So  (accepting No, rejecting H I  1. 
The decision regions that are chosen depend upon the particular structure present in the 
problem. 

1 1.2 Neyman-Pearson theory 

In the Neyman-Pearson approach to detection, the focus is on the conditional probabilities. 
In particular, it is desired to maximize the probability of choosing H I  when, in fact, HI is 
true, while not exceeding a fixed probability of choosing H I  when it is not true. That is, 
we want to maximize the probability of detection, while not exceeding a standard for the 
probability of false alarm. 

11.2.1 Simple binary hypothesis testing 

We first look at the case where Ho and H I  are simple 

Definition 11.1 A test for 8 E O, ,  i = 0, 1 ,  . . . , k - 1 is said to be simple if each 0, consists 
of exactly one element. If any 0, has more than one point, a test is said to be composite. O 

Exampie 11.2.1 Let O = (0, 1 ) .  The test 

Ho: 0  = 0 

H I : @  = 1 

JS a slmple test. 
Now let O = R". The test 

is a composite test. 

For a blnary hypothes~s test, the declsion space conslsts of two polnts, A = { S o .  S 1  ), corre- 
spondtng to accepting Ho and H I  Then. if 8 = 80 is the true value of the parameter, we 
prefer to take actton So. whereas ~f 81 is the true value we prefer S l  

Definition 11.2 The probability of rejecting the null hypothesis Ho when it is true is called 
the size of the rule 4, and is denoted a.  This is called a type I error, or false alarnz. E 

For the slmple blnary hypothesis test, 

a = Pidecide H I  j Ho IS true] = P [ 4  (X) = I I Qo] 

= E@"4(X) 

= PFA. 

The notatton PFA is standard for the probability of a false alarm Thls latter termtnology 
stems from radar appllcatlons. where a pulsed electromagnetic slgnal IS transmitted If a 
return stgnal IS reflected from the target, we say a target 1s detected But due to recelver 
nolse, atmospheric disturbances. spurious reflect~ons from the ground and other objects. 
and other signal dtstortlons, 11 1s not posslble to determine wlth absolute certatnty whether 
a target is present 

Definition 11.3 The power, or detection probability. of a dec~slon rule 4 1 5  the probab~litj 
of correctly acceptltig the alternative hypothe\l\, H I ,  when i t  1s true, and 15 denoted by 
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The probability of accepting & when HI is true is 1 - B ,  resulting in a type I1 error, or 
missed detection. 

We thus have 

The notation PD is standard for the probability of a detection, and 

is the probability of a missed detection. 

Definition 11.4 A test (b is said to be best of size a for testing & against Hi if Ee,Q, (X) = a 
and if, for every test (b' for which Ee,(bl(X) 5 a ,  we have 

that is, a test 4 is best of size a if, out of all tests with PFA not greater than a ,  Q, has the 
largest probability of detection. 

1 1.2.2 The Neyman-Pearson lemma 

We now give a general method for finding the best tests of a simple hypothesis against a 
simple alternative. The test will take the following forrn: 

0 condition 1 

I condition 3. 

where the three conditions are mutually exclusive. If condition I is satisfied, then the test 
chooses decision 0 (selects Ho). If condition 3 is satisfied, then the test chooses decision 
1 (selects HI). However, if condition 2 is satisfied and y is chosen, what this means is 
that a random selection takes place. Decision 1 is chosen with probability y, and decision 
0 is chosen with probability 1 - y .  The instantiation of condition 3 is an example of a 
randomized decision rule. 

The best test of size a is provided by the following important lemma. 

Lemma 11.1 (Neyman-Pearson lemma) Suppose that O = {Go, 8, ) and that the distribu- 
tions of X have densities (or mass functions) f x ( x  18). Let v > 0 be a threshold. 

1. Any test #(X) of the form 

for some 0 y 5 I ,  is best of its size for testing Ho: 8 = O0 against HI: 8 = 01. 
Corresponding to v = oo, the test 

is best of size 0 for testing Ho against Hi. 
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2 (Existence) For eveq a ,  0 5 a 5 1, there exlsts a test of the form above with y a 
consfant, for whzch Eeo$(X) = a 

3 (Uniqueness) If@' I S  a best test of szie a for testzng Ho agaznst HI, then ~t has the 
form grven O-JJ ( I 1  2j, except perhaps for a set mfx M rth probabzlz~ 0 under Ho and 

Hi 

Proof The proof that follows is for the continuous case; the discrete case 1s left to the 
reader, and may be proven by replacing integrals everywhere with summations. 

1. Choose any @ ( x )  of the form (1  1.2) and let @'(x) ,  0 5 @' (x )  5 1, be any test whose 
size is not greater than the size of $ ( x ) ,  that is, for which 

Ee,@'(x) 5 Er?,@(x). 

We must show that Eel (pt(x) 5 Eel $ ( x ) ;  that is, that the power of @'(x)  is not greater 
than the power of $ ( x ) .  Note that 

where 

Slnce @'(x)  5 1. the first lntegral 1s nonnegative A l ~ o ,  the second ~ntegral I S  non- 
negative by inspection, and the thlrd integral is ldenticdliy zero Thus. 

/ [ @ ( X I  - $ ' ( x ) l [ f x ( x  101) - v f x ( x  I00)ldx z 0. ( 1  1.4) 

This implies that 

where the last inequality is aconsequenceof the hypothesis that EH( ,$ ' (X )  2 E h 4 ( X )  
This proves that @(X) is more powerful than @ ' ( X ) ,  that is. 

For the case v = oo. any test 4' of size a, = O must satisfy 

hence @ ' ( x )  mu\t he 7ero almo<t everywhere o n  the iet (x  f x ( x .  / go )  > 0) Thui, 
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using this result and ( I  l .3) ,  

( 1  - $ ' ( x ) ) f x ( x  I @ i ) d x  2 0 ,  

since 4 ( x )  = 1 whenever the density f x ( x  1 00) = 0 by ( 1  1 3), and $ ' ( x )  5 1 Thi? 
completes the proof of the first part. 

2. Since a best test of size a! = 0 1s glven by (1  1.3), we may restnct attent~on to 0 < a 5 1. 
The size of the test (1 1.2), is 

E h $ ( X )  =: P ~ o [ f x ( X  181) > v f x ( X  1 Qo)1+ y P g , [ f x ( X  181) = v f x ( X  I0o)l 

For fixed a ,  0 < a! 5 1, we are to find v  and y  so that Ee04 ( X )  = a;  or, equivalently, 
using the representation ( 1  1.6), 

1 - ~ , , [ f x ( X  / @ I )  5 v f x ( X  I8o)l + yPgr,[fx(X / @ I )  = v f x ( X  I Boll = a 

or 

Pii,[fx(X 101) 5 v f x ( X  l@o) l  - yPeo[ f x (X  101) = v f x ( X I @ o ) l  = 1 - a .  (11.7) 

If there exists a vo for which Pe,[ f x ( X  1 81) 5 v f x ( X  / 00)]  = 1 - a ,  we take y  = 0 
and v = vo. If not, then there is a discontinuity in Pno[fx(X 16,) 5 v f x ( X  / QO)] ,  
when viewed as a function of v ,  that brackets the particular value 1 - a!; that is, there 
exists a vo such that 

Figure 1 1.1 illustrates this situation. Using ( 1  1.7) for 1 - a! in ( 1 1 .a), and solving the 

Figure 1 1.1 : Illustration of threshold for Neyman-Pearson test 
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equation 

1 - f f  F f '~,,Lfx(X 101) 5 v o f x ( X  /@o) l  
for y ,  yields 

P & [ f x ( X  101) F vo fx (X  / @ o ) ]  - (1 - a )  
Y E  (1 1.9) 

P ~ ! , I f x ( x  101) = v o f x ( X  I &>I 
Since this satisfies (1 1.7) and 0 _( y 5 I ,  letting v  = vo, the second part is proved. 

3 If a  = 0, the argument In part 1 shows that @ ( x )  = 0 almost everywhere on the set 
( x .  je ,(x)  > 0) If 4' has a ~nrnlmurn probablllty of the second klnd of error, then 
I - @'(x )  = 0 almost everywhere on the set { x  foi ( x )  > 0)  - {x. fs , (x)  > 0) 
Thus, 4' dlffers from the @ of (I 1.3) by a set of probability 0 under e~ther hypothesis 

If a  > 0, let 4 be the best test of size a: of the form (1 1.2). Then, because 
Ee, @ (X) = Ee, @ ' ( X ) ,  I = 0, 1 ,  the lntegral(11 4) must be equal to zero But because 
t h ~ s  ~ntegrai is nonnegattve ~t must be zero almost everywhere; that is to say, on the set 
for wh~ch f x ( x  10,) # ~ X ( X  / Bo), we have @ ( x )  = @ ( x )  almost everywhere. Thus, 
except for a set of probabillty 0, @'(x )  has the same form as (1 1 2) wlth the same 
value for v as @(a), thus the function @ ( x )  satisfies the uniqueness requirement. 

11.2.3 Application of the Neyman-Pearson lemma 

The Neyman-Pearson lemma provides a general decision rule for a simple hypothesis versus 
a simple alternative. We would apply ~t as follows: 

1 For a g~ven b~nary declslon problem. determine which IS to be the null hypothesl\ 
and which 1s to be the alternat~ve This cholce 1s at the d~scretlon of the analyst As a 
pract~cal Issue. ~t would be wlse to choose as the null hypothesls the one that has the 
most serious consequences ~f rejected. because the analyst 1s able to choose the slze 
of the test, which enables control of the probability of rejecting the null hypothesis 
when ~t is true 

2  Select the slze of the test It seems to be the tradltlon for many apphcat~ons to set 
a  = 0 05 or a  = 0 01, whlch correspond to common "s~gnlficance levels" used In 
statistics The maln Issue, however, is to choose the slze relevant to the problem at 
hand For example, In a radar target detection problem, IF the null hypothesls is "no 
target present," setting a  = 0 05 means that we are willlng to accept a 5% chance 
that a target will not be there when our test tells us that a target 1s present The smaller 
the slze, In general, the smaller also is the power, as w ~ l l  be made more evldent In the 
discussion of the receiver operating characteristic 

3 Calculate the threshold, v  The way to do thls is not obvious from the theorem Clearly, 
v must be a funct~on of the slze. a ,  but untll specific dlstnbutions are used, there 1s no 
obvlous formula for determlnlng v That 1s one of the tasks examlned In the examples 
to follow 

The structure of the test when y + Odeservec some dlscusslon If thls equal~ty condition 
obtalns, then there Is a nonzero probah~llty that f x  ( x  1 ) = v fX  ( X  / 8") The parameter. 
y .  defined In the proof of the Neyman-Pear\on lemma has a natural ~nterpretatlon as the 
probablllty of settlng @ ( A )  = 1 when the equality cond~tlon obtdln., Accord~ngly, we may 
define the randomued declslon rule, cp, = ( y .  1 - y ) ,  when y = P(@)) = 1 - P(&)  (the 
probabillty of choostng rule and 
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and 

11.2.4 The likelihood ratio and the receiver operating characteristic (ROC) 

The key quantities in the Neyman-Pearson theory are the dens~ty functions fx (x  / 0,)  and 
fx(x 1 00) These quanttties are sometimes viewed as the cond~tional pdfs (or pmfs) of X 
given 0 The concept of condttion~ng, however, requlres that the quantity 0 be a random 
vanable But nothing in the Neyman-Pearson theory requires 0 to be so viewed, in fact, the 
Neyman-Pearson approach is often constdered to be an alternattve to the Bdyes~an approach, 
In which 0 cs vtewed as a random vanable Since the punsts insist that the Neyman-Pearson 
not be confused wlth the Bayes~dn approach, they hdve coined the term ltkelzhoodfunctzon 
for fx (x 10,) and fx (x I 0") To maintain tradltlon, we respect this convention and call these 
Irkellhood functtons, or likelihoods, when required 

The inequaltty 

has emerged as a natural expression in the statement and proof of the Neyman-Pearson 
lemma. Using the ratio 

known as the likelihood ratio, the Neyman-Pearson test can be expressed as one of the 
three comparisons in 

The test (1 1.2) may be rewritten as a likelihood ratio test (LRT): 

(11.13) 

For many distributions, it is convenient to use the logarithm of the likelihood function. 
Accordingly, we define (where appropriate) 

The function A(x) (or some multiple of it, as convenient) is known as the log-likelihood 
ratio. Since the log function is monotonically increasing, we can rewrite the test (1 1.2) as 

1 if A (x) > log v, 

y i fA(x)  = l o g v ,  (11.15) 

0 if A(x) < log v. 

Since log-likelihood functions are common, we will find it convenient to introduce a new 
threshold variable for our test. 

= log v. 

You may have noticed in the proof of the lemma expressions such as fx(X 1 O t ) ,  where 
we have used the random variable X as an argument of the density function. When we do 



468 Detection Theory 

this, the function fx (X / 01) IS, of course, a random varlable since it becomes a function of a 
random vanable The likelihood ratio [(X) is also a random vanable, as 1s the log-likelihood 
ratio A (X) 

A false alarm (accepting HI  when Ho is true) occurs if t ( x )  > v when 0 = 8" and 
X = x Let fp(l IQO) denote the density o f t  given B = 0". then 

Thus, if we could compute the density of l! given 0 = Qo. we would have a method of 
computing the value of the threshold, v.  Or, in terms of the log-likelihood, we can write 

where fA ( I ,  / 0") is the density of the random variable A (X). 
The probability of detection can similarly be found: 

In practice, we are often interested In comparing how PFA vanes with Po For a 
Neyman-Pearson test, the slze and power, as spec~fied by PFA and PD,  completely specify 
the test performance We can gatn some valuable insight by crossplotting these parameten 
for a given test, the resulting plot 1s called the Recerver operatzng characferzst~c, or ROC 
curve, borrow~ng from radar terminology ROC curves are perhaps the most useful clngle 
method for evaluating the performance of a binary detection system We present some 
examples of ROCs in what follows 

11.2.5 A Poisson exampie 

We wish to design a Neyman-Pearson detector for the Poisson random variable introduced 
in Example 1 I .  1.2. The two hypotheses are 

The likelihood ratio for the problem is 

and (1  1.2) becomes, after simplification, 

l o g v + i ,  - io 
if x = 

log j . ,  - log ko ' 
log I! + ;. , - i(, 

( 0  j f x  < l<,g;.\ - l<)g*<; 

For a fixed slLe. a ,  we mu$t compute the threshold, v The probabllrty of a tai,e alarn? 
(decidrng the H = when 8 = i \  true) i i  equal to the probabil~ty. under the null 
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hypothesis, that [ ( X )  > V ;  that is. 

logv  t*, - r o  

Let y ( " )  = I O ~ A ,  - be such that it always takes Integer values (by appropr~ate selection 
of V )  Then 

PFA = PH,(X > q ( v ) )  + Y Pg,(X = q ( u ) )  

If a is such that there exists an integer q' that satisfies 

then we may take y = 0 and 

In general, however, there will not be an q' that solved (1 1. 17) with y = 0, and we 
must set q' in ( I  I .  18) equal to 

and apply (1 1.9) to yield 

As a simple numerical example, let ho = 1, hl = e, and cr = 0.1. Straightforward 
calculation yields q' = 2, v = 1.325, and y = 0.1071. Thus, if the observed value, X = x 
1s greater than 2, decide that 0 = e; if the value is less than 2, decide that 0 = 1; and if the 
observed value equals 2, make a random selection with the probability of choosing 0 = 1 
being equal to 0.1071. This decision rule assures that the probability of detection will be 
maximized while holding the probability of a false alarm to exactly 0. 1. 

11.2.6 Some Gaussian examples 

In this section we present several examples and implications of Neyman-Pearson detection 
where the observations are governed by random variables. Not only do these examples 
illustrate several important aspects of the theory, but they arise frequently in practice. We 
present a sequence of problems, more-or-less in order of increasing difficulty. 

I .  Scalar Gaussian detection, with different means and common variances: 

No: X -- N(P0 ,  0 2 ) ,  

Hi: X -- N ( P ~ ,  5 2 ) .  

We compute PFA and PD by introducing the Q function. 
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2. Vector Gaussian detection, with different means and common covariances: 

Ho: X - N(rn0, R ) ,  

H I :  X -- N(rn , ,  R) .  

We demonstrate detector architectures and performance. 

3. Vector Gaussian detection, with common means and different cavariances. Without 
loss of generality, we assume the means to be zero: 

Analysis of perfomance in this case will require introduction of the x 2  distribution. 

Scalar Gaussian detection; different means, common variance 

As a physical motivation for this problem, let us assume that, under hypothesis HI, a source 
output is a constant voltage pi ,  and that under & the source output is a constant voltage 
PO. Before observation, the voltage is corrupted by an additive noise; the sample random 
variables are 

X = 0 + Z ,  (11.19) 

where 0 E {00,01) with 60 = p ~  and 0 )  = p ~ .  The random variables Z are zero-mean 
Gaussian random variables with known variance a2, and are also independent of the source 
output, 6. We desire to formulate a test to discriminate between the two hypotheses. We 
have 

with 

The probability densities of X under each hypothesis are 

The problem can also be stated as 

The likelihood ratio is 

After canceling common terms and taking the logarithm, we have 
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The log-likelihood ratio test then becomes 

where r j  = log v .  Since A(x)  = q with probability 0 (because the pdf is continuous), the 
middle choice in the test can be removed with no effect on the probability of error. Also, 
letting 

we see that the test can be written as 

Figure 11.2 illustrates a block diagram of this test. The test simply becomes a matter of 
testing against a threshold. 

In order to quantify the performance of this test, we need to determine the distribution 
of the log-likelihood function. We observe that A ( X )  is a linear function of the random 
variable X, so that A ( X )  is itself a Gaussian random variable, with mean and covariance, 
under hypotheses Ho and H I ,  of 

Thus, the log-likelihood function has the distributions 

Then 

Figure 1 1.2: Scalar Gaussian detection of the mean 
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Figure 1 1.3 illustrates the normal curves for the two hypotheses under consideration, show- 
ing PpA as the area under the curve fx (x / 00) to the right of the threshold r ,  and PD as the 
area under fx (x I 0 , )  to the right of the threshold. 

Based on the definition of the Q function (see box 11. I ) ,  (1 1.25) can be written 

9 +  &(PO -P,I2 
= Q ( ~ Q / ( P I  - PO) + I P O  - PI 1/(2~7)). 

;(PI - PO) 

If we let d = (PO - 11.1 1 be the distance between the means, we have 

/ Box 11.1: The Q function 

The Q function is frequently used to determine the probability of error 
analysis in communications problems. If Z - N ( 0 ,  I)  (that is, Z is a unit 
Gaussian random variable), then A 

/ If W - N ( p ,  0 2 ) ,  it is straightforward to show by a change of variables that 1 

1 It is also straightforward to show that Q(x) = 1 - Q(-x). The plot below 1 
1 illustrates the Q-function for .x 2 0. I 

/ See also the bounds in exercise 1 1.2-18. 
The Q function is related to the complementary error function com- 

mon in statistics. It may be computed in MATLAB using the following code. 

% compute the Q function: 
% p = l/sqrt(2pijint-xninfty exp(-tA2/2jdt 
p = C. 5*erfc (x/sqrt (2) 1 ; 

1 

-- I 
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(h) PI) 

Figure 1 1.3: Error probabilities for Gaussian variables with different means and equal 
variances 

PD 

0 0.5 1 
PF A 

Figure 1 1.4: ROC for Gaussian detection 

We can also write this as 
= ecz,, 

where 
z = a q / d  + d l ( 2 a ) .  

Similarly, the probability of detection is obtained from 

A plot of the ROC is shown in figure 1 1.4. The plot shows the performance for various 
values of the SNR, which is defined here as 

d  I P O - w r l  SiVR = - = (1  1.30) 
(T is 

As the SNR increases, it is possible to obtain greater power for a given size. 
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Vector Gaussian detection; different means, common variance 

Let m ,  ( 8 ) ,  i = 1 ,  2 ,  . . . , n be samples of a signal, parameterized by some parameter 8.  
Suppose that the signal is observed in noise, producing a measurement 

where the Z, are hf(0, a 2 )  and are independent. Then, because the Z, are independent, the 
joint pdf of X = ( X I ,  X2. . . . , X,) is simply the product of the individual pdfs: 

where m ( 8 )  = [ m  ( 8 ) .  m 2 ( 8 ) ,  . . . , rn, (@)IT .  Using this model, we can consider detection 
problems such as the determination of which signal was sent. 

Example 11.2.2 (on-off s~gnallng) Suppose that there are two poss~ble s~gnals, O = (0. I ) ,  corre- 
spondlng to the hypotheses 

Ho: m = 0 (0 = 01, 
HI :  rn = rn, (0 = 1) .  

That is. the signal is either absent, or it is present and the observed vector X has mean mi .  E 

We can generalize the detection problem to samples that are not independent. Consider the 
stmple b~nary Gaussian detect~on problem 

Ho: X -- h'(mo, R ) ,  

H I :  X -- hf(rn,, R ) .  

Then 

As we did for the scalar Gaussian detection case, we determine the likelihood ratio 

and log-likelihood ratio, 

A(x) = (mi - m o ) T ~ - ' ( x  - xo),  

where 

Letting w = R - ' ( m i  - mo),  we can write 

A ( x )  = w7 ( x  - xo) .  

The ret of points where A (x) = O forms a plane orthogonal to w, pa5vng through xc, 
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Figure 1 1.5: Test for vector Gaussian random variables with different means 

The decision based upon the log-likelihood ratio is 

Figure 1 1.5 illustrates the block diagram for this test. 
The performance for this vector Gaussian case is straightforward to determine. We 

observe that A (X) is a scalar Gaussian random variable, with 
1 7- 1 

woo = EHoA(X) = --(mi - mo) R- ' (mi  - rno) = - - w T ~ w ,  (1  1.31) 
2 2 

T varo,A(X) = (mi - m o ) T ~ - ' ( r n i  - mo) = w Rw, (1  1.32) 

and similarly 

1 ,  T PO, = -w Rw. varo, = w Rw. 
2 

Let 

Then, under Ho, 

A(X) - N ( - s 2 / 2 ,  s2) 

and under H I ,  

A(X) - N ( s 2 / 2 ,  s 2 ) .  

The performance of the detector is 

and 

where z = q / s  - s / 2 .  By comparison with (1  1.26), the quantity s  is directly analogous to 
d / a ,  which we defined as the signal-to-noise ratio. Thus, the ROC for the vector Gaussian 
case is identical to that of the scalar Gaussian case, when plotted as a function of SNR = s.  

Simplifications when R = I 

It is interesting to examine certain detector structures under the frequently encountered 
circumstance that R = I, that is, that the samples of the signal are independent. Then 

A (X) = (rn, - mo)T (x - x0). 

The quantity s2 defined in ( 1  1.33) is simply 
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where d = llml - moll. (Note: the l2 (Euclidean) norm is used here, and throughout the 
discussion of Gaussian detection. It is a natural norm to use for problems associated with 
Gaussian problems.) 

An additional simplification occurs when llml 11 = Ilmoll. Then the log-likelihood ratio 
is  

where c is a constant that does not depend upon x. Absorbing the constant and the factor 
a* into the threshold, the detector computes (ml - mo)Tx and compares this inner product 
to  the (modified) threshold). In this case, the detector determines, on the basis of the angle 
between the signals, which signal the received vector is most similar. 

Example 11.2.3 The detectron problem applles dtrectly to d~gltal communications, where s~gnais 
and m, are sent, and we deslre to distinguish between them at the receiver. Suppose that mo or 

m, are sent with equal probabllity Most commonly we choose the threshold so that there is the same 
probabillty of error given that a zero IS sent as there IS glven that a one 1s sent That is, we set 

which corresponds to the case that rj = 0. Let P(& I m,) be the probability of error given that m, was 
sent. Then the probability of error, denoted P(&) ,  is 

This can be written as 

where d = lim, - moll In a digital communtcatlons setting, the probabllity of error for blnary 
commun~cattons ultimately depends upon the distance between slgnals d relative to the nozse energ) 
Thls IS why the SNR is such an Important measure In communications Flgure 11 6 tllustrates the 
probabillty of error for BPSK slgnallng as a function of SNR, In dB The SNR IS given (for reasons 
wh~ch become clear subsequently) as SNR = Eb/No 

Figure 11.6: Probabil~ty of error for BPSK signaling 
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(dl Orthogonal ~on\telldt~on (b) Antipodal con\tellatron 

F~gure 11 7 An orthogonal and antipodal binary slgnal constellat~on 

Consider now the two binary ~ ~ g n a l  constellations shown in figure 11 7 In each constellation, 
the ugndls have equal energy, 

In the orthogonal signal consfellation, in which mim,  = 0, the distance between the signals is 

In the anttpodal ~ ~ g n a l  conctelkztlon, the distdnce between the \~gnals  is 

d = 2 E  

In cotnparrng the two dlrtances, the antipodal s ~ g n a l ~ n g  has a 3 dB advantage in SNR over orthogonal 
slgnallng 

Vector Gaussian; same means, different covariance 

Let us now consider a different kind of detection problem, in which the means are the same 
but the covariances are different. We assume for convenience that the means are equal to 
zero. We wish to examine the detection problem 

in which X is an n-dimensional random vector. The log-likelihood is 

g o  1 1 
A(X) = log - CI + xTx (- - . 

2% 2ai 

Since the first term does not depend on the data, we will discard it and write 

Let us denote y 2  = (& - &), so that A(x) = y2xTx. The Neyman-Pearson test becomes 

for some threshold q. 
In the evaluation of the performance of this test, it must be recognized that A(X), 

being a quadratic function of a Gaussian vector, is no longer Gaussian distributed. We must 
examine a new distribution to determine the power and size of this test. 
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Box 11.2: The I' function 

1 The r function is defined by the integral I 

/ Using integration by parts, it is straightforward to show that for x > 0, 1 

so that for an integer k,  (k) = (k - 1) !. 
Two useful special values of the r function are 

X2 random variables 

To analyze the performance of the detector in (1 1.34), we need to introduce a new distribu- 
tion. Suppose that 

n 

where the random variables Y, , i = I ,  . . . , n,  are independent and N(O, 1) .  The random 
variable Z is said to be (central) chi-squared with n degrees of freedom, denoted as Z -- X;. 
Theorem 11.1 If Z - X:, then 

The gamma function T(.) is described in box 1 1.2. 

Proof Let Y 1  -- Af (0,  1 ), and let Z l  = Y:. Then 

By taking the derivative with respect to z ,  we obtain 

The characteristic function of Z1 is 

Now let 
n 

1 = 1  

where each Y, -- N ( 0 .  1 )  independently. Then @Z(w)  is the n-fold product of IpZ, (w), 
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The inverse Fourier transform of this function is 

A result that we will need shortly relates to quadratic forms of Gaussian random 
variables, a generalization of X: random variables. 

Theorem 11.2 (2911 Let X -- N ( 0 ,  R )  be n-dirnen.riona1, and let 

Q = XT P X ,  

where P is symmetric. If PR = RP, then the characteristic function of Q is 

Hence If RP is LI projection matrix with r nonzero eigenvalues, then Q is a xz random 
variable. 

Proof 

Now, suppose RP is a rank-r projection matrix. Since the eigenvalues of RP are either 
O or 1,  the diagonalization of RP using the orthogonal eigenvector matrix U  is 

U ~ R P U  = diag(l, 1 , .  . . , 1 ,0 ,0 , .  . . , 0), 

where there are r ones on the diagonal. In this case, 

which is the characteristic function for a x: random variable. 

Performance of detectors when covariances differ 

We return now to analyzing the performance of the detector (1 1.35). Under Ha, 

and under til. 
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Then 

Similarly, 

In the case of general n, ( 1  1.40) and (1 1.41) must be computed numerically. However. ar 
the next example illustrates, the ROC is readily obtained when n = 2. 

Example 11.2.4 The computations In (1 1 40) and (1 141) are readlly accomplished when n = 2. 
since the density of a xi random vanable Y 1s 

Letting 6 = r l / y 2 ,  we have 

PFA = ~ - ~ l ~ i  and PD = e-'/"f 

Given a size a ,  the threshold for the test that uses 

xTx 
as the statistic can be determined from 

Furthermore, the ROC can be obta~ned readily slnce 

.;/.; 
PD = PFA 

Figure 11  8 illustrates thrs ROC for 

As expected, there is tmproved performance as the ratlo between the variances Increases U 

We consider briefly the problem 

H,j: X -- N(0, Ro), 

H 1 :  X - N(0, Rl ) .  

Developing the likelihood ratlo test 1s straightforward (see exerclse 1 1  2-17) However, 
quant~fylng the performance I S  more difficult, becaure the pdf of A(X) can only be obtatned 
by numerical integration 

11.2.7 Properties of the ROC 

Property 1. All llkelll700d ratlo test\ have ROC curvet that ure contuve 

Proof Suppose the ROC has a segment that 1s convex To be spec~fic, \uppose ( P Y A .  Pj;) 
and ( P : ~ ,  P:) are polnts on the ROC curve. but the curve 1s conbex between these two 
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Figure 11.8: ROC: normal variables with equal means and unequal variances 

ROC 

Figure 11.9: Demonstration of the concave property of the ROC 

points, as illustrated in figure 1 1.9. Let & ( x )  and 4b(x) be the decision rules obtained for 
the corresponding sizes and powers, as given by the Neyman-Pearson lemma. Now form a 
new rule by choosing 4, with probability q and cPb with probability 1 -9, for any 0 < q .= 1 ; 
that is, 

4, ( x )  with probability q ,  
+ * ( X I  = 

&(x)  with probability 1 - q .  

This is a randomized rule, under which the decision maker would take action corresponding 
to 4, with probability q ,  and otherwise would take action corresponding to rule &,. The 
probability of detection, PI;, for this randomized rule is 

a convex combination of P$ and P i .  The set of all such convex combinations must lie 
on the line connecting P$ and P;, hence the rule 4 * ( x )  of size P$A, has greater power 
than the rule provided by the Neyman-Pearson test, thus contradicting the optimality of the 
Neyman-Pearson test. Thus, the ROC curve cannot be concave. 0 
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Property 2. All continuous likelihood ratio tests have ROC curves that are above the 
PD = PFA line. 

This property is just a special case of property 1, because the points (0,O) and (1 ,  I j 
are contained on all ROC curves. 

Property 3. The slope of the ROC curve at any differentiable point is equal to the value 
of the threshold v required to achieve the PD and PFA of that point, using the original 
likelihood ratio (not the log-likelihood ratio). 

Proof Let C be the likelihood ratio, and suppose that v is a given threshold. Then 

Let 6 be a small perturbation in the threshold; then 

represent the changes in PD and PFA, respectively, as a result of the change in threshold. 
Then the slope of the ROC curve is given by 

A PD 
lim - = lim 

Gft(v 101) - fe(v - 
~ - + ~ A P F A  6+O~ft(vI@o) . f t(vl@o)'  

To establish that this ratio equals v, we observe that, in general, 

But the condition Es, 11" = EeoCn" requires that 

must hold for all n ,  which implies that 



11.3 Neyman-Pearson Testing with Composite Binary Efy potheses 483 

must hold for all values of I .  Thus. applying ( 1  1.43) to ( 1  1.42), we obtain the desired result: 

11.3 Neyman-Pearson testing with composite 
binary hypotheses 

Thus far, we have dealt with the simplest form of binary hypothesis testing: a simple hypoth- 
esis versus a simple alternative. We now generalize our thinking to composite hypotheses. 
As mentioned in definition 1 1 .  I, a hypothesis Ho: 0 E Oo is said to be composite if 00 con- 
sists of at least two elements. We are interested in testing acomposite hypothesis No: 0 E 0 0  

against a composite alternative HI  : 0 E 0 , .  Before pursuing the development of a theory 
for composite hypotheses, we need to generalize the notions of size and power for this 
situation. 

Definition 11.5 A test 4 of Ho: 0 E O0 against H i :  0 E O l  is said to have size a if 

sup E e @ ( X )  = a. 
@E@O 

Definition 11.6 A test 40 is said to be uniformly most powerful (UMP) of size cr. for 
testing Ho: 0 E O0 against H I :  0 E Oi if is of size a and if, for any other test 4 of size 
at most a ,  

For a test to be UMP, it must maximize the power E s 4 ( X )  for each 0 E 0,. This 
is a very stringent condition, and the existence of a uniformly most powerful test is not 
guaranteed in all cases. For example, although the Neyman-Pearson lemma tells us that 
there exists a most powerful test of size a for fixed 81 E 01, there is no reason why this 
same test should also be most powerful of size a for e2 f B I ,  with O2 E 01. Our goal in 
this section is to arrive at conditions for which the existence of a UMP test can indeed be 
guaranteed. That is, we want to establish conditions under which there exists a test such 
that the probability of false alarm is less than a given cr for all 8 E 00, but at the same time 
has maximum probability of detection for all 8 E 0 1 .  

We approach this development through an example; this result motivates the charac- 
terization of the conditions for the existence of a UMP test. 

Example 11.3.1 Let X - JV'(B, 1). Let e0 = (-co, Qo], and let 01 = (80, m). We wish to test 
Ho: 0 E Oo against Hi :  0 E O 1 .  We desire the test to be uniformly most powerful out of the class of 
all tests q5 for which 

To solve this pioblem we first solve a related problem, and seek the best test &, of size a for 
testing the s~mple hypothes~s Hi 0 = O0 against the slmple alternative Hi 0 = B1, where 0, > 0" 
By the Neyman-Pearson lemma, this test is of the form 

1 ~f & exp[+x - 01)'/2] > -& exp[-(x - 0")~/2], 

Y if & expl -4~  - 01)*/21 = e x p l - 4 ~  - @0)*/21, 

0 if & exp[+x - 0,)'/2] < -& e x p l i x  - 80)2/2] 
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After taking logarithms and rearranging, this test assumes an equivalent form 

1 if x > v ' ,  
= 0 otherwise, 

where 

(We may set y = 0 since the probability that X = v' is zero.) With this test, we see that 

implies that 

V' = eo + Q-'(a)  

It 1s important to note that v' depends only on Ou and a ,  but not otherwrse on 0' In fact, exactly the 
same test as given by (1 1 4 3 ,  with v' determined by (1 1 46). 1s best, according to the Neyman-Pearson 
lemma, for all OI  E (Bo, oo) Thus, 4* glven by (1 1 45) is UMP out of the class of all tests for which 

We have thus established that cpo is UMP for Ho 0 = Bo (simple) and HI 0 > Qo (composite) To 
complete the development, we need to extend the discussion to perm~t Ho 0 5 00 (composite) We 
may do this by establishing that 4o sat~sfies the cond~tion given by (1 1 44) Fix v' by (1 1 46) for the 
given cr Now exam~ne 

and note that thls quantity 1s an increasing functlon of 0 (v'  being fixed) Hence, 

and. consequently, 

Hence, @a 1s uniformly best out of all tests sat~sfy~ng (1 1.44); In other words. it is UMP Ci 

Summarizing, we have established that there does indeed exist a uniformly most pow- 
erful test of the hypotheses Ho: @ 5 Q0 against the alternatives H I  : @ > 80, for any @" where 
Bo is the mean of a normal random variable X with known variance. Such a test is said to 
be one-sided, and has a very simple form: reject Ho if X > v' and accept H0 if X 5 v', 
where v' is chosen to make the size of the test equal to cr. 

We now turn attention to the issue of determining what conditions on the distribution 
are sufficient to guarantee the existence of a UMP. 

Definition 11.7 A real parameter famlly of dlstr~butlons I S  sald to hdve monotone likeli- 
hood ratio tf den\itie\ (or probab~lity ma\s functions) f (x / 0 )  ex~st  iuch that, whenevel 
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is d nondecreaslng function of w in the set of ~ t s  existence (that IS, for x In the set of po~nts for 
which at least one o f f  ( x  1 Q I )  and f ( x  I 82) IS posltlve) I f f  (X / 61 j = 0 and f ( x  / H z )  > 0,  
the l~kel~hood ratlo 1s defined as +a 

Thus, if the distribution has monotone likelihood ratio. the larger that x is, the more 
likely that the alternative, H I ,  is true. 

Theorem 11.3 (Karlin and Rubin) If the distribution of X has monotone likelihood ratlo, 
then any test of the form 

( 1 1.47) 

has nondecreasing power Any test of the form (1 1.47) is UMP of its size for testing Ho: 8 5 
Bo against HI :  8 > Bo for any O0 E O, provided its size is not zero. For every 0 < cr 5 1 
and every 6'" E O, there exist numbers -m < xo < a and 0 5 y 5 I such that the test 
( 1  1.47) is UMP of size a for testing Ho: 0 5 Bo against HI:  0 > Bo. 

Proof Let 81 and $2 be any points of O with 81 < 02. By the Neyman-Pearson lemma, any 
test of the form 

1 if f x ( x  102) > v f x b  I @I,, 

Y i f f x ( , ~ 1 0 2 ) = v f x ( x I Q 1 ) ,  (1 1.48) 

0 i f f ~ ( x l @ ~ j < v f ~ ( x I @ ~ ) ,  

for 0 _< v < co, is best of its size for testing 0 = O1 against 0 = 82. Because the distribution 
has monotone likelihood ratio, any test of the form ( 1  1.47) is also of the form (1 1.48). TO 
see this, note that if x' i xo, then [ (x ' )  5 C(xo). For any v in the range of t there exists 
an xo such that if [ ( x )  = v ,  then x = xo. Thus, ( 1  1.47) is best of size cr > 0 for testing 
0 = 8, against 0 = 02. The remainder of the proof is essentially the same as the proof for 
the normal distribution, and will be omitted. 

Example 11.3.2 The one-parameter exponential family of distributions with density (or probability 
mass function) 

has a monotone likelihood ratio provided that both n and r are nondecreasing. To see this, simply 
write, with Of < 02, 

11.4 Bayes decision theory 

Thus far, in our treatment of decision theory, we have considered the parameter as an 
unknown quantity, but not a random variable, and formulated a decision rule on the basis 
of maximizing the probability of correct detection (the power) while attempting to keep the 
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probability of false alarm (the s ~ z e )  to an acceptably low level The result was the l~kel~hood 
ratio test and ROC 

Decislon theory is nothing more than the art of guesslng and, as w ~ t h  any art, there 1s 
no absolute, or objective, measure of quality In fact. we are free to invent any pnnclple 
we l ~ k e  wrth whrch to govern our cholce of decislon rule In our study of Neyman-Pearson 
theory, we have seen one attempt at the invention of a principle by whlch to order decls~on 
rules, namely. the notions of power and s u e  The Bayesian approach constitutes another 
approach 

11.4.1 The Bayes principle 

The Bayes theory requires that the parameter 6 be viewed as a random variable (or random 
vector). rather than just an unknown quantrty Thls assumption 1s a major leap, and should 
not be glossed over l~ghtly It requlres us to accept the premlse that nature has specified 
a partrcular probability distnbution, called the pnor,  or a prrorz, dtstr~butlon of 0 Fur- 
thermore, strictly speaking, Bayes~an~sm requlres that we know what this distributlon is 
These are large pills for some people to swallow, particularly for those of the ro-called 
"objectivlst" school that tncludes those of the Neyman-Pearson persuasion Bayesian~sm 
has been subjected to much criticism from this quarter over the years But the more modem 
school of subjective probab~l~ty has gone a long way towards the development of a rationale 
for Bayesianlsm 

Bnefly, subjectlvlsts argue that it is not necessary to belleve that nature actually chooses 
a state according to a pnor dtstnbutlon, rather, the prlor dlstrlbution is vrewed merely as r 
reflection of the bellef of the declsron-maklng agent about where the true state of nature lles 
and the acquis~t~on of new lnformatlon, usually In the form of observations, acts to modify 
the agent's belief about the state of nature In fact, ~t can be shown that, In general, every 
really good decls~on rule 1s essentrally a Bayes rule with respect to some pnor d~stnbution 

In the Interest of dlst~nguishing the random vanable from the values rt assumes. we 
adopt the notational convention that 0 denotes the state of nature vlewed as a random 
vanable, and I9 denotes the values assumed by 0 (that IS, 29 E O ,  where O is the parameter 
space) Thus we wnte [0 = 291 to mean the event that the random var~able 6 takes on the 
pasameter value 19, s ~ m ~ l a r  to the way we wnte [ X  = X ]  to mean the event that the random 
vanable X takes on the value x 

To characterize 6 as a random vanable, we must be able to define the jornt distributlon 
of X and 0 Let thls drstnbution be represented by 

We assume, for our treatment, that such a joint distribution exists. and recall that 

Note a slight notatronal change here Wlth the Neyman-Pearson approach, we did not 
explicitly lnclude the 8 in the wbscnpt of the distrlbut~on function, we merely carrled i t  

along as a parameter in the argument list of the function While that notation war suggestwe 
of condlt~onrng, zt was not requrred that we Interpret it In that light Within the Bayeslan 
context, however, we wish to emphasize that the parameter is v~ewed as a random vailable 
and F X j b  i \  a condittonal dl\tr~bution, ro we are careful to carry i t  i n  subscript of the 
distribut~on function as well as in its 'irgument 11st 

Definition 11.8 The distribution of the random vanable 0 1s called the prior, or a priori 
distnbution The set of all possible prior distributionc, 1s denoted by the ret (-1" We make 
two arrumptions about thi\ ,et of prior dlstrlbutions (a) ~t contains all hnite distributioni. 
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that is, all distributions that give all their inass to a finite number of points of 0;  and (b) it 
is convex, that is, if s f  E 0* and t 2  E O*, then a s ,  + ( 1  - a ) t 2  E O', for all 0 5 a  5 1 
(this is the set of so-called convex combinations). 

11 -4.2 The risk function 

As we have seen, a strategy (nonrandomized), or decision rule, or decision function, 4: X -t 
A is a rule for deciding 6 = 4 ( x )  after having observed X = x .  In the Neyman-Pearson 
approach, the decision function was chosen in light of the conditional probabilities a and 
0. In the Bayes approach, a cost is associated with each decision for each state of nature, 
and an attempt is made to choose a decision function that minimizes the cost. 

Recall that in section 10.1. I we introduced the concept of statistical games. As part 
of the game, we introduced the cost function L: O x A -t R, so that L(I?,6) is the cost 
of making decision 6 when 8 is the true state of nature. If the agent uses decision function 
6 = (P ix ) ,  then the loss becomes L ( 8 ,  $ ( X ) )  which, for fixed I? E O ,  is a random variable 
(i.e., it is a function of the random variable X).  

Definition 11.9 The expectation of the loss L(I?, $ ( X ) ) ,  where the expectation is with 
respect to X, is called the risk function R: O x D -+ R, denoted R(8 ,  $): 

To ensure that risk is well defined, we must restrict the set of nonrandomized decision 
rules, D, to only those funtions 4:  X 4 R for which R(B, 4 )  exists and is finite for all 
19 E O. 

If a pdf fx j t , (x  / I?) exists, then the risk function may be written as 

~ ( 0 %  4 )  = /"I L($. 4 ( x ) ) f x a ( x  I f i )dx .  

If the probability is purely discrete with pmf f x j e ( x k  / I?), then the risk function may be 
expressed as 

The risk represents the average loss to the agent when the true state of nature is I? and the 
agent uses the decision rule 4 .  Application of the Bayes principle, however, pennits us to 
view R(8,  4 )  as a random variable, since it is a function of the random variable 8 .  

Example 11.4.1 (Odd or even) The game of "odd or even," mentioned in example 10.1.2, may 
be extended to a statistical decision problem. Suppose that before the game is played, the agent is 
allowed to ask nature how many fingers it intends to put up and that nature must ailswer truthfully 
with probability 314 (hence untruthfully with probability 114). (This models, for example, a noisy 
observation.) The agent observes a random variable X (the answer nature gives), taking the values of 
1 or 2. If 0 = I is the true state of nature, the probability that X = 1 is 314; that is, P(X = 1 I @ = 
1)  = 314. Similarly, P(X = 1 / 0 = 2)) = 114. The observation space in this case is X = (1,2].  
The choice of nature, and the observation produced, can be represented as shown in figure 11.10. The 
decision space is A = { I .  2). Recall that the loss function is 
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Figure 1 1.10: Illustration of even-odd observations 

We first examine the possible decision functions. For small decision problems such as this, it is 
possible to exhaustively enumerate all decision functions. There are exactly four possible functions 
from X into A, so D = ( (PI ,  42. ( P 3 , 4 4 ) ,  where 

Rules (PI and & ignore the value of X.  Rule (P2 reflects the agent's belief that nature is telling the 
truth, and rule 43. that nature is not telling the truth. 

Let us now examine the risk function R(6 .4)  for this game. For example, 

When 0 = 1 we have 

The risk matrix, given in figure I 1.1 1, characterizes this statistical game. 

Figure 1 1.1 1 : Risk function for statistical odd or even game 

Example 11.4.2 (Binary channel) Consider now the problem of transmission in a binary channel 
with crossover probabilities A. and hi, as shown in figure 11.12. As for the odd or even game, four 
possible decision functions exist: 

where the first and la5t dec15ton funct~ons Ignore the meawred value, and the thlrd dec15ton functton 
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Figure 1 1.12: A binary channel 

Figure 1 1.13: Risk function for binary channel 

reflects a belief that the observed value is incorrect. If we assume the cost structure 

(that is, the cost of making bit errors), then the risk function for this "game" is shown in figure 11.13. 

With the introduction of the risk function, R ,  and the class of decision functions, D, 
we may replace the original game (0. A ,  L) by a new game which we will denote by the 
triple ((3, D, R ) ,  in which the space D and the function R  have an underlying structure, 
depending on A and L and the distribution of X, whose exploitation is the main objective 
of decision theory. Sometimes the triple ((3. D, R )  is called a statistical game. 

11.4.3 Bayes risk 

We might suppose that a reasonable decision criterion would be to choose the decision 
rule g) such that the risk is minimized, but generally this is not possible, since the value t) 
assumes is uaktzown-we cannot unilaterally minimize the risk as long as the loss function 
depends on 0 (and that takes in just about all interesting cases). A natural way to deal with 
this situation in the Bayesian context is to compute the average risk and then find a decision 
rule that minimizes this average risk. Under the assumption that 6  is a random variable, we 
can now introduce the concept of Bayes risk. 

Definition 11.10 The Bayes risk function with respect to a prior distribution, Fo, denoted 
r  (Fo ,  41, is given by r (Fe ,  4 )  = E R  ( 6 ,  g)), where the expectation is taken over the space 
O of values that t) may assume: 

~ ( F o ,  4) = If) R ( 8 ,  Q ) f s ( O )  d o  

when Fo has a pdf f e ( 8 ) ,  and 

when Fg has a pmf fs ( 8 )  
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We note that the risk R is defined as the average of the loss function, obtained by 
averaging over all values X = x for a fixed 8; the Bayes risk r ,  however, is the average 
value of the loss function obtained by averaging over all values X = x and 0  = 9 .  For 
example, when both X and 0 are continuous, 

If X is continuous and Q is discrete, then 

The remaining constructions when X is discrete are also easily obtained. 
We may extend the definition of Bayes risk to randomized decision rules by taking the 

expectation of Bayes risk with respect to the rule. Let cp E D* be a randomized rule over 
the set D of nonrandornized rules. Then the Bayes risk with respect to the prior 0 and the 
randomized decision rule cp is 

For example, if D = {+,, . . . , &}, and cp = ( n l ,  . . . , nk), then 

11.4.4 Bayes tests of simple binary hypotheses 

Let O = {h, el ), corresponding to the hypotheses Ho and H I ,  respectively, and let A = 
(8,. 6 ] ) ,  correspond respectively. We desire to fashion a decision rule, or 4: X -+ R such 
that, when X = x is observed, 

1 if x E R (reject Ho), 
+(XI = 

0 if x E A (accept Ho). 

where R and A are disjoint subsets of X, and X = R U A. We interpret this decision rule 
as follows: If x E R we take action 81 (that is, choose H I ) ,  and if x E A we take action So 
(choose Ho).  In order to establish 4, we must determine the sets R and A. The risk function 
for rule (1  1.55) is 

= L(0. S o ) P ( A l 0 )  + L ( 0 ,  S ] ) P ( R / @ )  

= [ I  - P(R / @ ) ] L ( 0 .  80) + P I R  I Q ) L ( B ,  81)  

= L ( 8 .  So) + P ( R  I H)[L(H,  8 1 )  - L(H. Soil, 
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where by P ( R  / 0)  we mean the conditional probability that X will take values In R, glven 
H For our particular cholce of decis~on rule, we observe that the conditional expectation of 
4 (X) glven 8 1s 

E [ & ( X ) / t ) ] =  1 . P ( R j t ) ) + O . [ l  - P ( R / B ) ]  

= P ( R  It)), 

so we may write 

For the case of binary alternatives and simple binary hypotheses, there are four types 
of cost that we might incur: 

1 .  The cost of deciding Ho, given that Ho is correct, denoted Loo. 

2. The cost of deciding H i ,  given that N1 is correct, denoted L 1 I .  

3. The cost of deciding No, given that HI  is correct, denoted L lo .  

4. The cost of deciding H I ,  given that Ho is correct, denoted Lol. 

More generally, L,, indicates the cost of choosing H,, given that H, is correct. 
The risk function becomes 

We also introduce the probability notation 

P ( A  I Bo) = probability of correct acceptance = 1 - cr = Poo, 

P ( R  1 00) = probability of false alarm = cr = Pol, 

P ( A  / 01) = probability of missed detection = 1 - B = Plo, 

P ( R  / 4 )  = probability of detection = = PI I .  

On this basis, we can write 

(Lot - Loo)Po1 + Loo 0 = 19-07 (1 1.57) 
(Ll0 - Lll)Pl0 + Lit 0 = 01. 

From (1 1.57), we observe that, no matter what decision we make, there is a constant cost 
Loo associated with the case 0 = zYO, and similarly a constant cost L I I  associated with 
0 = 6,. It is customary to assume that Loo = LI1  = 0, making adjustments to Lol and LIO 
as necessary. We then have 

We now introduce the number p as the prior probability, 

Although the preceding development involves only nonrandomized rules, we may easily 
extend to randomized rules by replacing q5 with p in all cases (recall that nonrandomized 
rules may be viewed as degenerate randomized rules, where all of the probability mass is 
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placed on one nonrandomized rule). As p represents the distribution Fo, we will write the 
Bayes risk r(Fg,  (a) as r ( p ,  (a) (see (1 1.53)). The Bayes risk is 

Any (randomized) decision function that. for fixed p ,  minimizes the Bayes risk is said to 
be Bayes with respect t o p ,  and will be denoted (a,, which satisfies 

The usual intuitive meaning associated with (1 1.60) is the following. Suppose that you 
know (or believe) that the unknown parameter 8 is in fact a random variable with specified 
prior probabilities of p and 1 - p of taking values 191 and 190, respectively. Then for any 
decision function (a, the "global" expected loss will be given by (1 1.60), and hence it will 
be reasonable to use the decision function (a, that minimizes r (p ,  (a). 

We now proceed to find the decision function (a, which minimizes the Bayes risk. Wi: 
assume that the two conditional distributions of X, for 8 = Bo and 8 = $1, are given in 
terms of density functions fxIe(x / go) and fx i f i (x  1 O1). Then, from (1 1.58) and (1 1.60), we 
have 

This last expression is minimized by minimizing the integrand for each x ;  that is. by defining 
@(x) to be 

For this binary problem, the Bayes risk is unaffected by the equality condition (1 - p )  
Lo] fxie(x I 00) = p L i O  fXIB(x 1 291) and, therefore, without loss of generality, we may 
place all of the probability mass of the randomized decision rule on the nonrandomized rule 

1 if (1 - p)Lo~fxie(x I @o) < pL~ofxiti(x I @ I ) .  
#,(XI = (1  1.63) 

0 otherwise. 

We may define the sets R and A as 

then ( I  1.62) becomes 
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Since we decide 0 = if x E R and 0 = 00 if x E A, we observe that by setting 
Lol = Llo = 1 ,  the Bayes risk ( 1  1.64) becomes the total probability of error: 

Observe that $,(x) of ( 1  1.63) may be written as a likelihood ratio test: 

\ 0 otherwise. 

It is important to note that for binary decision problems under simple hypotheses, this test is 
identical in form to the solution to the Neyman-Pearson test; only the threshold is changed. 
Whereas the threshold for the Neyman-Pearson test was determined by the size of the test, 
the Bayesian formulation provides the threshold as a function of the prior distribution on 
0, and the costs associated with the decisions. 

Example 11.4.3 (Binary channel) Consider again the binary channel of example 11.4.2. We want to 
devise a Bayes test for this channel. 

We can write a likelihood ratio 

If costs are appropriate for communications, Lor = L l o  = 1 ,  then the decision rule is 

1 [(Y) > y, 
'piy) = 

O otherwise. 

For example, when p = 112, the decision rule is 

{ 
1 I1 1 1 - A o ,  

'(O) = o otherwise. 

Example 11.4.4 Let O = (00,01} = (m, m i ) .  Let us assume that, under hypothesis H i ,  X - 
N ( m i ,  R ) ,  and under hypothesis Ho that X - N(mo, R) ,  where X is an n-dimensional random 
vector. Denoting the mean of the distribution by m, we assume that we have the following prior 
information: . 

The likelihood ratio is 
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After canceling common terms and taklng the logarithm, we have the log-hkellhood ratlo 

where xo = f (m, + mo) 
Suppose the problem now is to detect the mean of X, and the only crltenon IS correctness of 

the decision Then, for a cost function we can take Lo, = Llo  = 1 Based on the decision rule from 
( 1  l 66). we have 

( 0  otherwise. 

As before, we could compute the probabilities of error PFA = P(+p = I / NO), and the probability 
of m~ssed detection PMD = P(+, = 0 I H I )  In thls case, 

where 

s' = wT RW and w = R - ' ( m ,  - Q) 

and 

Also. 

Gwen our model of the prior distnbut~on, we can also compute the total probability of error 

11.4.5 Posterior distributions 

If the dlstrlbution of the parameter 19 before observations are made 1s called the prlor 
dlstr~bution, then it is natural to conslder defining a posterior dlstnbution as the distribution 
of the parameter after observations are taken and processed 

We first consider the case for X and 0 both continuous Assum~ng we can reverse the 
order of integration in (1 1 5 1 ), we obta~n 

where we have wed the fact that 
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In other words. a choice of H by the marginal distribution JN(lP), followed by a choice of 
X from the conditional distribution fyi9 ( r  1 liS), determines a joint distribution of 8 and X,  
which in turn can be determined by first choosing X according to its marginal distribution 

(riven f x ( . r )  and then choosing 0 according to the conditional distribution of 0 ,  f u l x ( O  / .r), ,' 
X =: n .  

With this change in the order of integration, some very useful insight may be obtained. 
We see that we may minimize the Bayes risk given in (1  1.70) by finding a decision function 
@ ( x )  that minimizes the inside integml sepurutelyfor euch x ;  that is, we may find for each 
s  a rule that minimizes 

Definition 11.11 The conditional distribution of 0 ,  given X, denoted f o j x ( f i  / .r), is called 
the posterior, or a posteriori, distribution of 8.  It is frequently written using Bayes theory 
as 

The expression ( 1  1.7 1 )  is the expected loss given that X = x ,  and we may, therefore, 
interpret a Bayes decision rule as one that minimizes the posterior conditionul expected 
loss, given the observation. 

The above results need be modified only in notation for the case where X and 0 are 
discrete. For example, if 0 is discrete, say O = {el ,  . . . , f i k ] ,  we reverse the order of 
summation and integration in (1  1.52) to obtain 

Suppose that there are only two hypotheses, O = (fro, r9-1 1, and decisions corresponding 
to each of these. Then 

Determination of 4 ( x )  on the basis of minimum risk can be stated as follows: set $ ( x )  = I 
if 

which leads to the likelihood ratio test 
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It is interesting to contrast this rule wlth that der~ved In (1 1 66), which IS reproduced here 

( 0  otherwise. 

In (1  1.73). the threshold is determined only by the Bayes costs, and the ratio is a ratio of 
posterior densities (strictly speaking, not a likelihood ratio). 

Example 11.4.5 Let us consrder the s~mple  hypothests versus simple alternative problem formulatton, 
and let O = {00, and A = (0, 1) Assume that we ob.iewe a random vanable X talung values rn 
{xo, x i ) ,  wtth the following condittonal dtstnbutions. 

We will take the loss funct~on for thts problem as glven by the matrlx In figure 11 14 (This example 
could be thought of as a generalization of the binary channel, wtth crossover probabll~tles 3/4 and 
213, and wrth different costs associated wtth the d~fferent kinds of error ) 

Figure 1 1.14: Loss function 

Let P[$ = O , ]  = p and P[B = Oo] = 1 - p be the prlor dtstribut~on for 0,  for 0 p 5 1 We 
w ~ l l  address this problem by \olving for the a po3renor.l pmf The posterlor pmf I S  glven, vla B a y \  
theorem, a\ 

Note that 

fe jx(8o 1 r )  = 1 - fii x ( 2 9 1  / Y )  

After the value X = x has been observed. a choice must be made between the two actlonq 6 = (1 
and 8 = I The Baje\  deii51on rule I \  
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for 4 E (0. 1 ) .  Consider the case when .r = x i :  the risk function is either 

depending upon whether q5 = 0 or q5 = 1 A plot of these two risk functions is shown on the left hand 
\lde of figure 1 1  15 Equdtlng the two nsk functions in ( 1  1 7 7 )  to find the point of intersection. we 
hnd that 

The nght-hdnd side of figure 1 1 15 similarly shows the rtsk function when x = xo Again, the threshold 
can be found, and the decision rule in this case is 

P P 

Figure 11.15: Bayes risk for a decision 

We may compute the Bayes risk function as follows. If 0  5 p  c 6, then it follows that r$,(x) = 0  
will be the Bayes rule, whatever the value of x .  The corresponding Bayes risk is 0. (1 - p )  + 1 0 p  = 
l o p .  If 6 5 p 5 A,  then #,(xo)  = 1 and # , ( x l )  = 0  is the Bayes decision function, and the 
corresponding risk is 

If 6 < p 4 I, then $ , ( x )  5 1 is the Bayes rule, and the Bayes risk is 5(1 - p ) .  
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11.4.6 Detection and sufficiency 

We have seen that for binary tests in both the Neyman-Pearson and Bayes detectors, the 
decision function can be expressed in terms of the likelihood ratio. 

If t(x) is sufficient for 8, so that fx(x / 0,) = b(t(x), @,)a(x), the likelihood ratio becomes 

The ratio in (1 1.78) is equivalent to the ratio of density functions, 

which is naturally denoted as l(t). On this basis. the decision function for a binary test 
becomes a function only of the sufficient statistic, not of the entire set of observed data: 

for some suitably chosen threshold v. In the Neyman-Pearson test, the threshold is selected 
to produce the desired size a for the test. In the Bayes test, it is selected for m~nimum risk. 

Example 11.4.6 Suppose Xi - P(A) (that is, X, is Poisson distributed), for i = 1.2. . . . . n .  We 
desire to test HO h = ho versus HI A = A,. where hi =. iLo The randorn vanable 

1s sufficient for h T rs Po15son distributed. 

For a glven threshold LJ, the probab~lity of false alarm I? 

11.4.7 Summary of binary decision problems 

The following observations summarize the results we have obtained for the binary declston 
problem. 

1 Uilng erther a Neyman-Pearson 01 Bayes entenon. we zee that the optlrnum test i i  

a likelihood ratlo test (If the drstributlon 1s not continuous. a random~zed test may be 
necezsary for the Neyman-Pearson declslon ) Thus. regardless of the dimen\ionallty 
of the observation space. the teit cons~stz of comparrng d scalar variable [(x) urth d 
threshold 

2 In many cases, conqtruction of the lrkelihood ratlo te\t can be iimpllf~ed by uilng '3 

iufficlent itatiittc 

3 A complete deicr~ption of the likelihood ratio re\t l-ierfo~rnance can be ohtdined b i  
plotting the conditiondl prohdb~l~tiei PI,  velius Pfi4 ds the threihold I \  barred ~'IIL, 
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resulting ROC curve can be used to calculate either the power for a given size (and 
vice versa) or the Bayes rlsk (the probabllrty of error). 

4. A Bayes rule minimizes the expected loss under the posterior distribution 

11.5 Some M-ary problems 

Up to this point in the chapter, all of the tests have been binary. We now generalize to M-ary 
tests. Suppose there are M > 2 possible outcomes, each of which corresponds to one of the 
M hypotheses. We observe the output and are required to decide which source was used to 
generate it. In terms of the radar detection problem previously discussed, suppose there are 
M different target possibilities, and we not only have to detect the presence of a target, but to 
classify it as well. For example, we may be required to choose between three alternatives: 
&: no target present, H i :  target is present and hostile, H2: target is present and friendly. 
Another common example is digital communication, in which there are more than two 
points in the signal constellation. 

Formally, the parameter space O is of the form O = (Oo, 0 1 ,  . . . , O , M - ~ } .  Let Ho: 0 = 
go, H I :  0 = $1, . . . , H M - l :  0 = Z P M - 1  denote the M hypotheses to test. We will employ 
the Bayes criterion to address this problem, and assume that p = [PO, . . . , pm-llT is the 
corresponding a priori probability vector, where 

(In other words, p represents Fs.) We will denote the cost of each course of action as L,, , 
where the subscript i signifies that the ith hypothesis is chosen, and the subscript j signifies 
that the jth hypothesis is true. L,, is the cost of choosing HL when HI is true. 

We observe a random variable X taking values in X c Rk.  We wish to generalize the 
notion of a threshold test, which was so useful for the binary case. Our approach will be to 
compute the posterior conditional expected loss for X = x. 

The natural generalization of the binary case is to partition the observation space into 
M disjoint regions So, . . . , Sw- , ,  that is, X = So U . . . U S M - ] ,  and to invoke a decision 
rule of the form 

The loss function then assumes the form 

where Is, (x) is the indicator function, equal to 1 if x G S,.  From (1 1.72), the Bayes risk is 

and we may minimize this quantity by minimizing the quantity in braces for each x. It 
suffices to minimize the posterior conditional expected loss, 
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The problem reduces to determining the sets S,, I = 0 ,  . . . , M - 1, that result in the 
minimization of r'. 

From Bayes rule, we have 

We will denote the prior probabilities f 6 ( f l J )  as 

Then (1 1.8 I )  becomes 

which, when substituted into (1 1 .80), yields 

M-l M-l 

r'(p, 4 )  = 1 L j t  Is, (XI fxie (x 1 0,) P,  

J=O l=O 

We now make an important observation: Given X = x. we can minimize the posterior 
conditional expected loss by minimizing 

M-l  M-I 

23 L j i I s , ( x ) f ~ l ~ ( ~  I f l J ) ~ j :  

j=O i=O 

that is, , f x ( x )  is simply a scale factor for this minimization problem, since x  is assumed to 
be fixed. Since 

M-I M-1 M-1 M-1 

we may now ascertain the structure of the sets S, that result in the Bayes decision rule $ ( x )  
given by (1 1.79). 

The decision determined by the sets in ( 1  1.82) can be written another way. We set our 
estimate 8 equal to the value iYk that minimizes 

That is, 8 = 6,: if 

The general 5tructure of these dects~on regions is rather messy to vicudll~e dnd length) 
to compute. but we can learn dlmost all there ir to know about thls problem by \impltfying it 

brt In the important care of digltal comnlunlcatlon. ~t 1s appropriate to conslder a decision 
cost that depends iipon ~ncoi-rect decirlons only Thuc we set 
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Then 

This is equivalent to 

Stated In terms of d e c ~ s ~ o n s ,  the best dec~s lon  I >  8 = ~ ? k ,  where 

k = arg max fxli, (x j f i k ) p k .  
k 

( 1 1.84) 

Stated in words, the best (Bayes) decision is that which maximizes the posterior probability 
fXIH(x / f i k ) p k .  Such a test is sometimes called the maximum a posteriori test, or  the MAP 
test. 

Example 11.5.1 (Detection In Gat~sian noise) Gwen 

HO. X - N(mo,  a l l ) .  

H, X --.V(mI,cr2l), 

Hz X - N(m2, a"), 

wlth prior probabllttles po, pi ,  pz, we conslder the boundanes between decrsion regions Let us 
consider the boundary between the decis~on reglon for Ho and HI Forming the likelihood ratio, we 
have 

After some simplification, we find the test 

PO 
(ml  - m d T ( x  - XO) : log -, 

Ho PI 

where xo = ;(mi + m). The boundary between the decision regions occurs where 

Po (ml - m l T ( x  - xo) = log -. (1 1.85) 
PI  

Equation (1 1.85) is the equation of a plane orthogonal to m l  - mo. In the comparison between Ho 
and HI ,  if x falls on the side of the plane nearest q, then Ho is selected, and if x falls on the side of 
the plane nearest m l ,  then Hi  is selected. We can get a better understanding of the separating plane 
by letting 

\o that (ml - m ) T d  = log p o / p l .  Then the equation for the separating plane of ( I  1.85) can be wntten 

(mi - molT(x - i) = 0, (1 1.86) 

where IZ = Q + d. Equation (1 1.86) represents a plane orthogonal to the vector m i  - mo between 
the means, that passes through the point 3 (see figure 11.16). The situation is even more clear when 
po = p i .  Then i = G, the point midway between the means, so the separating plane lies midway 
between m l  and mo. 

Similar separating planes can be found between each pair of means; they divide space up into 
decision regions. 
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Points x lying 
on this side of the plane 

Figure 1 1.16: Geometry of the decision space for multivariate Gausslan detection 

Example 11.5.2 Nou consider the quaternary detection problem w ~ t h  the means 

Figure 1 1 17 illustrates the decls~on reglom for this problem The dashed lines are the lines between the 
means, the heavy solld lines indlcate the boundar~es of the decislon regions. and the lrght solid lines are 
portlons of the decis~on lines that do not contribute to the decis~on boundar~es In figure 1 1 17(a), each 
selectton 1s equally probable, and In figure 11 17(b), mo occurs wrth probability 0 99, the remarning 
probability split equally between the others The effect of this change in probability is to make the 
decision region for Ho larger 

(a) Equal prohdhilitiei ( h )  Unequal probdbil~tie\ 

Figure 1 1 17 D e c ~ \ t o n  bounddrte5 for d quaterndry dec~s~on problem 
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The Bayes risk, or probability of error, for the M-ary classifier can be stated in terms 
of the probability of making a correct decision, 

where 
m 

and 

In the general case i t  can be difficult to compute these probabilities exactly. In some special 
cases-such as decision regions having rectangular boundaries with Gaussian observa- 
tions-the computation is straightforward. A recent result [313] provides extension of 
probability computations to more complicated polygonal regions. 

1 1.6 Maximum-li kelihood detection 

The decision criterion specified in (1 1.84) requires knowledge of the functions fxle(x I Ok) 
and the prior probabilities. In many circumstances, the prior probabilities are all equal, 

(or, lacking information to the contrary, they are assumed to be equal). A decision made on 
this basis can be stated as: Set 8 = gk if 

k = arg max fxje (x / 6k) 
k 

A decision made on the basis of this criterion is said to be a maximum-likelihood estimate, 
and the conditional probability fxje (x 1 6 )  is said to be the likelihoodfunction, being viewed 
(usually) as a function of 6. 

11.7 Approximations to detection performance: 
the union bound 

As has been observed, obtaining exact expressions for the probability of error for M-ary 
detection in Gaussian noise can be difficult. However, it is straightforward to obtain an 
upper bound on the probability of error, using what is known as the union bound. 

Consider the problem of computing the probability of error for the union of two events 
A and B. This probability can be expressed as 

where the subtracted term prevents the event in the intersection from being counted twice 
(see figure 1 1.18). Since every probability 2 0, we must have 

By this bound, the probability of a complicated event (A U B) is bounded by the probabilities 
of more elementary events (A and B). 

Now consider the problem of finding the probability of error for a PSK signal con- 
stellation, such as that shown in figure 11.19. (Assume that all signals are sent with equal 
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Figure 11.18: Venn diagram for the union of two sets 

Figure 1 1.19: Bound on the probability of error for PSK signaling 

probability ) Suppose that mo 1s sent, the rece~ved slgnal will be correctly detected only ~f ~t 
falls In the whlte wedge Looked at from another potnt of tlew, the signal wlll be detected 
~f elther event A occurs, whlch 1s the event that the recelved slgnal lies above the ilne li, or 
event B  occurs, whrch IS  the event that the rece~ved slgrral lies beiow the line l2 It IS also 
posslble for both events to occur (the darkly shaded wedge) Us~ng  the unlon bound, we 
have 

But P ( A )  is the binary probability of error between the signals mo and ml, and P ( B )  I S  

the binary probability of error between the signals rno and m7, so that 

where d is the distance between adjacent signals in the PSK constellation. Thus 

As the SNR increases, the probability of falling in the darkly shaded wedge becomes smaller, 
and the bound (1  1.87) becomes increasingly tight. 

11.8 Invariant tests 

The goal of an Invariant test is to provide a funct~on that ellminates unavoidable and unknown 
transformat~ons on data, leaving the data lnvarlant w ~ t h  respect to such a transformat~on 
Rather than formally develop the theory of invariant tests. we present a few example5 of 
lnvarlant tran5formations that illustrate the theory 

Example 11.8.1 Conslder the detectton problenl 
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where I = 1 ,  2 ,  . n ,  and c 1s an unknown constant We can formulate a new var~able Y that 15 

mvariant w ~ t h  respect to any value of c, 

Y , = X i - X n  Y ? = X 2 - X n  . . .  Y,-I = X I  - X, , ,  

and develop a test based on Y Cl 

Example 11.8.2 iMore generally. we desire to distinguish 

Ho: X - N(mo +- y c ,  C S ' I ) .  

H i .  x - ,V(m, + y c ,  a?). 

where c  is a fixed vector and y  E R. Figure 11.20 illustrates the concept. We desire to make a test 
that is invariant with respect to any value of y .  A little thought will reveal that if we project X  in the 
direction orthogonal to c  we will obtain a variable that is invariant to yc .  Accordingly, we define 

Y = P'LX. 

where PC- is the projection matrix 

Then we have the detection problem 

Ho: Y - N ( P , ~ I Q ,  a2 P , L ) ,  

H I :  Y - N ( P , I ~ ~ ,  0 2 e l ) .  

Clearly, tf IQ and ml 11e In span(c), then there are no useful tests for t h ~ s  new detect~on 
problem. 

Figure 1 1.20: A test biased by y c 

Example 11.8.3 [291] Suppase that X - N ( p m ,  0 2 1 )  is an n-dimensional random vector and we 
desire to test 

Ho: CL 5 0,  

H I :  p > 0. 

However, rather than observing X, suppose that we are only able to observe a corrupted version, Y 
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where y 1s an unknown posltrve gain. and Q,L 1s a rotatlon by an unknown amount In the space 
orthogonal t om,  as shown In figure 1 1 21 Our first challenge IS to express such a rotatlon algebra~cally 

Figure 1 1.2 1 : Channel gain and rotation 

Let S = span(m) and let T = S-, the orthogonal complement of S in R" The rotatton Q,- comblnes 
a rotatlon In T with a projection onto S Let PT be a project~on matrtx onto T Also let Ps be a projectton 
onto S Then 

where Q is a rotation matrix Q Q T  = I Writing a vector x In terms of ~ t s  components In the two 
spaces, 

11 1s stra~ghtfonvard to show that Q,- leaves the component of x In S unchanged. wh~le  rotatlng the 
component in T 

With Y = y Q,,iX, our problem becomes 

since Q,L Q;_ = I 
A test tnvarlant wlth respect to scallng by y and rotat~on by Q,,_ must combat both of these 

transformations The following stattst~c. 

works-as may be verified by substrtutlng y = y Q, , - x  0 

Example 11.8.4 ( r  statistic) Let us examine another invariant test, this one involving an unknown 
varlance Suppose that X - Ar(ym.  a'l), where y = 0 under HO and y > 0 under H I ,  and a' 1s not 
known We can wrlte X = o Y .  where I' - N(p/a. I )  We desire a test that 15 ~nvar~ant  to changes 
In a A useful tert itatlsttc 15 
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where the mdtrix Pm project5 onto \pan(m) Note th'tt a cancel5 ottt of both nunier'ttor and denotni- 
ndtor, so the statl5tli. can be tornied *rthout explicit knowledge of a 

The numerator ot ( I  1 89) ~xn +C'(p/o, I) random variable The rdndorn ~arldble 

in the denominator 15 ,V(O i l  - Pm})  which independent ot  the variable P,u in the numerator 
Based on theorern I 1 2 the denoniinator 

is a Xz-, random variable, which is independent of the Gaussian in the numerator. 
Thus (see box 1 1.3). under H,), the statistic T in ( 1  1.89) is a t distributed random variable. The 

random variable T is invariant to a'. On this basis, we can formulate a decision as 

for some threshold ro which may be chosen (for example) to set the probability of false alarm: 

11.8.1 Detection with random (nuisance) parameters 

Example 11.8.5 Let X = ( X I ,  X 2 )  E Rz, and consider the testing problem 

where Ni - .v(O, a') and N2 - J \ I (O ,  a') are Independent and 8 15 the (unknown) uniformly 
dtstrlbuted random "phase" 

6, - U[O, 2n), 

d e p e n d e n t  of Ni and N2 We desire to determine when the component (A cos 6 ,  A sin 8) is present 
In this problem, there IF a nuirance parameter 8 which, although we do not need to know it expl~c~tly,  
stands in the way of performing the des~red detect~on 0 

/ Box 11.3: The t distribution 1 
The ratio T = Z/JY'- j; ,  where Z - N(0, 1 )  and Y -- x,?, is said to have a 
(central) t distribution. This is also known as the Student's t distribution. The 
pdf for the t distributed random variable (see exercise 1 1.8-24) is 

If, in T = Z/JY'- j; ,  the numerator is distributed as Z - N ( p ,  l) ,  then T is said 
to be a noncentral t distribution. The pdf in this case is 
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The situation illustrated in the preceding example can described in more general terms, as 
follows. First, we suppose that the set of parameters is split into two subsets, 

0, is the set of parameters that we desire to detect. For example, for a binary detection 
problem, 

The set 0 2  is a set of parameters that enter into the problem, but do not distinguish between 
the cases to be detected. Then the hypothesis testing problem (for the binary case) can be 
expressed as 

Ho: (B,, 82) = {00, 0 )  for some 0 E El2, 

HI:  = {19~ ,0 )  forsome8 E O?. 

We assume that 8 is a random var~able governed by some dlstr~but!on function fe (8) That 
IS, we wish to dist~ngulsh between the two cases 01 = 19" and 0, = The pararneter 
O2 = H is common to both problems, and thus does not assl?t In the detection Indeed. the 
presence of 82 may prevent the formulation of a useful test. Because of th~s ,  82 is sometimes 
regarded as a nuzsance pararnerer We w ~ s h  somehow to make a test that is Invanant w ~ t h  
respect to 82 

Example 11.8.6 The detection problem of the prev~ous example can be expressed In this notatron as 

where 

8 1 = ( 0 . A ]  and e2=[0,27r) .  

We wish to determrne tf the signal is present-that is. to determine whtch 19, E has occurred-but 
we do not know 0 We need to find a test that IS lnvanant wlth respect to 0 (Our intultlon suggests 
that we take the magnttude of the stgnal, thts 1s precisely what we do ) D 

When there is an unknown parameter. a commonly used approach can be stated as 
follows. 

To make the distribution invariant with respect to the unknown random 
parameter, we average over the unknown parameter. 

Then 

f X i e ( x / 0 i )  = E ~ , I E , ( ~ / Q I , @ ~ )  

This distribution can be used in a likelihood ratio test. 

Example 11.8.7 Return~ng to example 1 1 8.5. under Ho we have no need to worry about the nulsance 
parameter 0, . 

Under Hi. 
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Averaging out the nui\ance parameter & according to ( 1  1 93), we obtatn 

Now we tritroduce the change of variables 

Then In the exponent in the integral, we have 

x l  cor Q2 + c? sin BZ = r (COS (P co\ Q2 + sin (P 'rin Q 2 )  = r c o ~ ( 6 ' ~  - (P) 

By the definttron of the zeroth-order modtfied Be\sel function (see box 11 4), 

- I 1 
- 4n2a2 - exp [- - 20 2 (x/ + xi + A')] lo ($ d m )  

The likelihood ratio can now be expressed as 

leading to the decision rule 

1 e x p [ - ~ 2 / 2 0 - 2 ] ~ 0 ( ~ / a 2 ( ~ ~ ) )  > v ,  
+ ( X I .  x2) = 

0 otherwise 

for some threshold v .  In light of the monotonic nature of Io,  this can be rewritten in such a way that 
it not necessary to compute either the square root or the Bessel function: 

1 x :+x;>I f ,  
(P(xi,x2) = 

0 otherwise, 

where 

Thus the optimum decision depends upon the quantity rZ = x: + xi-the squared magnitude of the 
received signal components. The detector variable r2 is proportional to a X22 random variable under 

Ho , 17 

Example 11.8.8 In this example, we extend the results of example 11.8.7. Two signals, SO(@) and 
st (B), are transmitted in the presence of noise, 

Ho: X = so($) -t N, 

H I : X = ~ l ( B ) + N ,  

where N - N(0, o2 I ) ,  and where 0 is a nuisance parameter, uniformly distributed on [0,27r). The 
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Box 11.4: The function Io(x) 

/ The modified Bessel function of zeroth-order I o ( x )  is defined as an integral, / 

The plot below illustrates l ~ ( x ) .  I 

Some useful properties of l o ( x ) :  

1 .  l o ( 0 )  = 1 .  

2 .  l o ( x )  is monotonically increasing. 

3. A series for l o ( x )  is 

signals are 

where 
J ~ ,  (0) = u, S I ~ ( I  wh T, + 8 )  

w ~ t h  a(, 01, a known dlnpl~tude sequence In other word\, we de.iire to d~r t lngu~sh between 
two s~nu\o~dai ly  modulated s~gnals,  wlth each 91gnal hav~ng ~ t s  own frequency, where the phase of 
the 5lnusold I \  unknown Such a detection problem. with unknown phase, is referred to as rrzcclherent 
detection We can w r ~ t e  the parameter 5et as 

(3 = {(-I, (-I2] 
where 

( - ) , = ( 1 9 ~ = 0 1 9 ~ = 1 )  iind ( - I z = [ 0 2 7 ~ )  
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The condrt~onal den51ty of X given 0, = lie IS 

- - 1 I 
(x'x - 2xTso($)  + s ( : ( ~ ) ~ ( f i ) )  

(2n)"f2an 

We can wnte the cross term in the exponent of ( 1  1.94) as 

n - i  n- I  

where the ldent~ty sln(a + b) = sin(a) cos(b) + s~n(b)  cos(a) has been used, and where 

We can write the term s i ( 6 ) ~ ( 6 )  from the exponent of (1 1.94), 

n- l n - l  

n-I  n- 1 

= (Z a- - \' a,? cos(2iw~'. + 2" 
2 

I =o i =O 

If the signal amplitude (ao, a l ,  . . . , a,-l) is slowly varying (or better, constant) in comparison 
with mT,, then the double-frequency term on the right-hand side of (1 1.95) is approximately zero. 
We assume that this IS, in fact, the case and write 

n-l . n-l 

Based on these notations, we can write 

and by integrating, 
r 2 ~  

- - 1 1 
exp --(xTx + E,) 10(r0/2u~j, [ 202 I (1 1.98) 

(2n)"12an 

where ro = d m .  Proceeding similarly for the case O1 = 8 1 ,  we have 

1 
~ X ~ . Y ~ ~ B ( X I ~ X ?  /el = $1) = (2n)n/2u" 
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where rl = d m ,  and 

The decision rule is based on the likelihood ratio test, 

( 0  otherwise. 

for some threshold v If us = 1, which occurs when Bayes costs are based on probab~lity of error and 
the hypotheses are equally ltkely, then based on the monotonic nature of io, the test can be written 

1 rf/ro2 > 7 ,  
4(x) = 

0 otherwise, 

for a threshold rj 
A block d~agram of the test (assum~ng these latter strnpllficat~ons) is shown in figure I 1  22 

Characterization of the performance PFA and PD for incoherent detectors 1s discussed In [262, sec- 
t~on 5-4-41 and 123, append~x A] C 

cision 

Figure 1 1.22: Incoherent binary detector 

11.9 Detection in continuous time 

Our pre\entatlon of detect~on theory up to t h ~ s  point has assumed that decls~ons are made 
ba$ed upon observations of a random variable X or a random vector X In many practical 
appllcdtions, decisions are based upon the observation of a continuous-tlme random process 
X ( t ) ,  r E [O T)  for 5ome T T h ~ s  15 the continuou\-time detect~on problem 

Gwen our exper~ence filth vector rpaces, in which function\ are repre\ented ac point\ 
there~n i t  should come ac no \urpri\e that rn many in\tance\, we can repre\ent X ( r )  a\ a 
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generalized Fourier ienei  
X 

X ( r )  = x L $ f 1 ( t ) .  ( 1  1.99) 
/=I 

for some appropriate set of basis functions q = {I,(/ ((t j ,  i = 1 .  2 ,  . . . , ). If an adequate rep- 
resentation ( 1  1.99) exists, then we can use the discrete random variables (X,  . i = 1 ,  2,  . . .) 
in place of the function X ( t )  as the basis for decisions, for either Neyman-Pearson or Bayes 
detectors. Given that X ( t )  is a random process, the existence of the set 9 is a proposition 
that should be examined carefully. Our approach, however, is more cavalier, so that we arrive 
more quickly at some applications. We present some special cases that work without diffi- 
culty, and serve in a variety of practical applications, then point the direction to some of the 
technical difficulties without actually discussing the solution. (A more technical treatment 
of these ideas appears in [257].) 

We treat the detection problem in which 

where so(t)  is a nonstochastic signal, selected from a finite set of signals 

corresponding to a set O = (Bo = 1 ,  PI = 2, . . . , LP,w-l = M I .  The signal N ( t )  is a 
stationary Gaussian white-noise random process. 

Definition 11.12 A random process N ( t )  is said to be a stationary Gaussian white-noise 
process if:  

1. N ( t )  is wide-sense stationary. 

2. All random vectors formed from samples of N ( t )  are jointly Gaussian distributed; 
that is, the vector N = [ N ( t l ) ,  N ( t 2 ) ,  . . . , N(t,,)lT is Gaussian distributed for all 
sample times t i ,  r2,  . . . , t,. 

3. The autocorrelation function is 
No 

R N ( t  - S )  = E [ N ( t ) N ( s ) ]  = -6(t - s ) ,  ( 1  1.101) 
2 

where 6 ( t )  is the Dirac 6 function, and No < a. 0 

The PSD of a random process N with autocorrelation given by (1  1.101) is 

constant for all frequencies. (This implies that the power in the process is infinite, and hence 
is nonphysical. However, it is an extremely valuable model. A discussion of this is provided 
in [257].) We assume, for convenience, that the N ( t )  is zero mean: 

Let us assume that an orthonormal sequence of functions {$, ( t ) }  exists such that 

{ = I  

By the orthonormality of the basis functions, 
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(We are assuming for convenience that all signals are real.) Using (1 1 .loo), we have 

Let us characterize the random variables N,.  Because they were obtained by a linear op- 
eration on a Gaussian random process, the N, are Gaussian. The mean and covariance 
are 

T  

EN.  = E L  N(r )$ , ( i )  di = E N ( f ) $ , ( t ) d t  = 0. IT 

N0/2  i = j ,  
= i 0 i f j .  

Let us assume that we have a finite number N of samples. Because the variables X, 
are independent, the density of X = ( X I .  XZ, . . . , XN),  conditioned upon knowing which 
signal is sent. is 

The likelihood ratio for comparing f x I H ( ~ ~ ,  . . . . X N  / 9,) to .fx I H ( X ~ ,  . . . , XN / O k )  is 

In the limit as N -+ oo, the exponent of the numerator (see exercise 1 1.9-27) approaches 

and the exponent of the denominator approaches 

so that the likelihood ratio for x = .XI, x l ,  . . . , is 

T 
exp[ -k I;, (X(r) - 5 , ( f ) ) ' d f ]  , ) =  T 
exp/ -$ lo ( X ( f i  - % n ( r ) ) 2 d f ]  
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We call the function 

the l ~ k e l ~ h o o c l f u n c r ~ o  for X given H ,  and view ~t rnort commonly d4 a function of H 

Example 11.9.1 A signal X ( t )  = s, ( r )  + N ( t )  is observed over [(I. T ) ,  where N ( t )  is white Ga~lssian 
noise, and we desire to detect which signal is sent. The decision function, based on the likelihood 
ratio in ( 1 I .  IO?,) ,  is 

( 0  otherwtse, 

for some threrhold v Suppo5e that ~ , , ( t )  dnd ( r )  h a ~ e  energtes 

Eo = 1' ~ i ( t )  dr and El = lr .$it) d t  

Then the d e c ~ s ~ o n  functlon stmpl~fies to 

where r j  = No log v .  Note that this detector is simply a matched filter, as discussed in section 3.19. 
T 

Let rl = for x ( t ) s l  ( t )  d t  - E l  12 and ro = fo x( t )s l l ( t )  d t  - E0/2 We w11l quant~fy the behav~or 
of the detector under the s~mpllfylng assumptron that r j  = 1 The probabll~ty of false alarm 15 

Also, in this case, 

PD = 1 - P,QD = 1 - PFA 

Since r ,  - ro IS Gaussian, it is straightfonvard to show (see exercise 11.9-26) that 

where d2 = f i ( s o ( t )  - s,  (t))' d t  is the squared distance between the stgnals, and 

When so( t )  = -st ( t ) ,  the signaling scheme IS sald to be btnury phase-shlft keyrng (BPSK) In 
this case, d' = 4Eb, and the probabil~ty of false alarm becomes 

The quantity Eb is sometimes referred to as the bit energy-the energy required to send one signal 
conveying one bit of information-and the ratio E,,/Nt, is referred to as the signal-to-noise ratio. A 
plot of the probability of error Q( Jm) is shown in figure 1 1.23, as a function of 
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Figure 1 1.23: Probability of error for BPSK 

11 9.1 Some extensions and precautions 

The preceding treatment of the detect~on of a determ~nist~c signal In nolse covers many cases 
of pract~cal ~nterest It can be readlly extended, for example, to cover slgnals with random 
phace, analogous to those of example 1 I 8 8, and all the familiar slgnal constellat~ons that we 
have seen, such as PSK, QAM, orthogonal, and so on However, there are several technlcai 
issues to address that did not anse In the examples of the prev~ous sectlon We go just 
far enough to show some of the problems that might anse, without actually presenting the 
solutions 

The first Issue 1s that of the existence of the set of orthonormal basis functlons Q = 
{ ( t )  1 = I ,  2 1, wh~ch can be used to characterize the random process N ( t )  Actually, 
before becom~ng too engrossed in the solutlon of this problem, ~t 1s worth pointing out that 
for detection of determlnutic functlons In wh~te  Gaussian nolse, rt 1s not necessary to full) 
characterize the nose  

Suppose that the determlnlstic signal sc,(r) can be represented In terms of the m basis 
functions 4, ( t ) ,  I = 1. 2, . m ,  as 

where (for convenience) we assume that the (4,) are orthonormal, so that 

Suppose also that there is a set of basis functrons ($, ( t ) } ,  i = 1.2, . whlch can be uced 
to represent the norse In general, (4, ( t ) ,  i = 1 ,  2. , m.  $, ( t ) ,  z = 1 .  2 ] wlll not form 
an orthogonal set Using the Gram-Schm~dt process, we form an orthogonal set thal we 
denote as (4, ( r ) ,  1 = 1 .  2, tn ( t )  z = tn + 1 ) We let 

Then the likelihood functron for sample5 x i .  xz .  . x~ of X ( t )  (aswmlng N > m ) ,  glven 
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so that 

is suficierzt for detecting se , . We can write 

where 2 ( t )  is the projection of X(t) onto the space spanned by 4, (t). i = 1 ,2 ,  . . . , rn: 

with XI = (X(t) ,  4, (t)) .  
Thus, for all practical purposes, when detecting deterministic signals in noise, the noise 

that is orthogonal to the signal space is irrelevunt. (We have just proven what is sometimes 
called the theorem of irrelevance.) We can call the function 

(X(t) - ~ o ( t ) ) ~  d t  I 
the projected likelihood function. We will denote A(X(t)) = Iogt(X(t)). Expanding 
A(X(t)), we have 

The first term does not depend upon 8, and the third term can be written in terms of the 
energy Eg = J: si(r). The decision can thus be based upon 

The first term of (1 1.103) can be written as 

where X, = (X(t) ,  @, (t)). For a known signal so(t), the coefficients so , can be precom- 
puted. The received signal is correlated with the basis functions 4, (t), and these statistics are 
used to make decisions, as shown in figure 1 1.24. Geornetncally, this amounts to projecting 
X (t)  onto span{@, (t)), then finding the signal point closest to the projection. 
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Figure 1 1.24: A projection approach to signal detection 

We now return to the question of finding the functions {@, (t)) that span the space of 
noise signals. We do not assume (now) that the signal is necessarily white. One approach to 
obtaining these functions is by means of the Karhunen-Lokve representation, first presented 
in section 6.7 for discrete-time random variables. Let Z(t), r G [0, T)  be a zero-mean 
random process with E Z ~ ( ~ )  < co for all t E [O, T), and Iet 

Cz(t, u )  = cov(Z(f), Z(U)) (11.104) 

be the autocovariance function for Z. In the equation 
r T  

the quantity h is an eigenvalue and +(t)  is an eigenfunction, analogous to eigenvalues and 
eigenvectors of a symmetric matrix. 

Theorem 11.4 Let Z(t) be a zero-mean random process, with E z2(t)  < ocj for all t and 
covariance Cz(t, u )  as in (11.104), having eigenvalues {A,, h2 ,  . . . ,} and eigenfunctions 
{@I  (11, @2(t), . . . $1. Then: 

1. The eigenvalues are real. 

2. The eigenfunctio~zs are orthogonal. 

3. (Mercer's iheorem) The covariance function can he written as 

where the convergence of the sum is unijbrm 

4. (Karhunen-Lokve representation) The random process Z(t) can be represented as 
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Proof ( 1 )  and (2) are just d~ for eigenvalues and elgenvectorc, '1s d~icussed in chapter 6, 
iince C L ( I .  7) = CZ(s, t j  

Property ( 1  1 106) is directly analogous to (6 33),  but more difficult to prove because 
there may be dn ~nfinite number of dimens~ons A thorough proof ot Mercer's theorem 1s 
presented In [207] We simply present substantiating observat~on. Let 

Then, by the definition of the eigenfunctions, for any eigenfunction @, (u) ,  

Thus the eigenfunctions of CZ(t ,  U )  are all orthogonal to the difference. What remains to 
be shown is that all functions (in some appropriate space) are orthogonal to this difference, 
so the difference must be zero. 

Proof of (4) follows from Mercer's theorem. Let 

and let 

denote the mean-squared error. We will show that e,(t) -+ 0 as n -+ m. 

where the second inequality is established in exercise 1 1.9-27. Applying Mercer's theorem 
to the last equality, e,(t) -+ 0 as n -+ oo. 

Theorem 1 1.4 addresses the existence of the desired series representation. Application of 
the theorem also allows the detection of known signals in noise that is not white. However, 
there are still other potential technical problems. One of these is singular detection. A 
singular detection problem is one that, theoretically, has a detector that could operate with 
no error. Consider, for example, the problem of detecting a Ftep function u(t) in bandiimited 
noise N(r). Given X(t )  = u(t) + N(t), there should be no possibility of detection error, 
slnce any discontinuity in X(t )  must arise due to the discontinuity in u(t), and not due 
to a discontinuity in N(t )  (since N(t)  is bandlimited, it can have no discontinuities). A 
iet of basis functions ($, (t)}, derived via the Karhunen-Lobe representation for N(t ) ,  
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will be inadequate for representation of X(t) ,  since it will not represent the discontinuities. 
Functions represented by directions that are not represented by the set {$, (f)} are necessary 
to accomplish the desired detection. (Continuity considerations do not arise in discrete-time 
systems, so singular detection problems have not been previously apparent.) 

Singular detection can also be a problem when we desire to detect random signai~ 
in noise. Again, there is a potential representation problem: that the random signal to be 
detected, S ( t ) ,  may not lie in the space spanned by ( + t  ( r ) ) ,  and that those directions that are 
not present are precisely those in which the distinguishing information about S ( t )  must lie. 

A thorough treatment of detection in continuous time requires some background in 
measure theory. The discussion, while important, would take us too far afield. The interested 
student is referred to [257], which provides an engineering-oriented discussion of these 
issues. Another excellent applied discussion of detection in nonwhite noise appears in [3 131 

I t  .I O Minimax Bayes decisions 

Thus far, we have taken two approaches to prior probabilities: assuming nothing (focusing 
OD conditional probabilities of error, as in the Neyman-Pearson test), or making certain 
assumptions (focusing on minimal risk, as in Bayes theory). In this section, we return to 
Bayes decision theory, but address the problem of finding decision functions when the prior 
probabilities are unknown. This will lead us to the minimax Bayes decision procedure. 
We gain some understanding of the minimax problem by means of the Bayes envelope 
function; we then introduce the minimax principle in the context of multiple hypothesis 
testing. 

11.1 0.1 Bays envelope function 

For binary hypothesis testing, we can introduce the Bayes envelope function. Suppose that, 
rather than invoking a rule to assign a specific action 6 for a glven observation x, we In- 
stead invoke a randomized rule. Let # € D and #' E D be two nonrandomized rules, and 
let (o, E D* be the randomized decision rule corresponding to using rule 4 with probabll- 
ity x, where x E 10, I ] ,  and using rule #' with probabilty 1 - x. To compute the risk 
function corresponding to this randomized rule we must take the expectation with respect 
to the rule itself, in addition to taking the expectation with respect to X. This yields (see 
(1 1.54)) 

Definition 11.13 The function p(.)  defined by 

p ( p )  = rip, (o,) = mi? r ( p ,  cp) (1 1.108) 
OED 

is called the Bayes envelope function. It represents the minimal global expected loss 
attainable by any decision function, when 0 is a random variable with a priori distribution 
P[B = 01] = p and PI0 = go] = 1 - p.  13 

We observe that, for p = 0 ,  p ( p )  = 0, and also for p = 1, p ( p )  = 0. Furthermore, 
~t easy to see that p ( p )  must be concave downward; ~f ~t were not, we could construct a 
randomized rule that would improve performance, In a manner analogous to the way that 
we analyzed the construction of a randomized rule In the ROC curve context. Figure 1 1.25 
1s an example of a Bayes envelope function (which is the parabolically shaped curve in  the 
figure) 
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Figure 1 1.25: Bayes envelope function 

Theorem 11.5 (Concavity of Bayes envelope function) For any distributior~s of@ pi and 
pz, nrtd for any number q such that 0 5 q < 1, 

Proof Since the Bayes risk defined in (1 1.60) is linear in p, it follows that for any decision 
rule 4, 

To obtain the Bayes envelope, we must minimize this expression over all decision rules 4. 
But the minimum of the sum of two quantities can never be smaller than the sum of their 
individual minima, hence 

Now consider the function defined by 

As a function of p ,  y, (p)  is a straight line from y(0) = R(Bo,  (o,) to y(1) = R ( B 1 ,  (o,). 
We see that, for each fixed n, the curve p(p)  lies entirely below the straight line y,(p) = 
r ( p ,  (o,). The quantity y,(p) may be regarded as the expected loss incurred by assuming 
that P[H = e l ]  = n and hence using the decision rule (o,, when in fact P[6 = = p;  
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the excess of y, (p)  over p(p)  is the cost of the error in incorrectly estimating the true value 
of the a priori probability p = PIO = el] (see figure 11.25). 

The minimax estimator addresses the question, What if the prior probability p is un- 
known? What is best detector rule dP, that we can use to minimize the maximum cost of 
the decision? 

Example 11.10.1 Consider again the problem of detecting 

Ho: x - N ( m ,  a21) ,  Hi: x - N(rn , ,  oZ1) 

As we have seen. the probability of error is 

P ( E )  = (1 - p)Q(a ld  log((l - p ) l p )  + dl(2a))  + p Q ( d l ( 2 ~ )  - a ld log( ( l  - P)/P)) 

Settlng Lo, = LIo  = 1, the Bayes nsk 1s the total probabtlity of error Figure 11  26 illustrates the - 
corresponding Bayes envelope functions for vartous values of d = ljm - m l  I/ L 

P 
Figure 1 1.26: Bayes envelope function: normal variables with unequal means and equal 
variances 

Example 11.10.2 Constder agatn the detection problem of example 1 1 4 5 ,  where the rlsk function 
correspond~ng to the optimal dectsron rule was found to be 

A plot of the Bayes envelope functton is provlded tn figure 11 27 

Example 11.10.3 Constder the binagv channel of example 11.10.3, and assume that ho = 1 /4 and 
i.1 = 113. The Bayes risk functtons for each decis~on function are 

Figure I 1 28 shows the Bayes rtsk functlon r ( p  4 , )  for each of the por\rble dectston functtoni Also 
shown (in the ddtker line) i i  the rnlnt~nurn Bayei rt\k functton-the Bdyer envelope 5 
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Figure 1 1.27: Bayes envelope function for example 11.4.5 

- 
0 0.2 0.4 0.6 0.8 1 

P 

Figure 1 1.28: Bayes envelope for binary channel 

11.10.2 Minimax rules 

An interesting approach to decision making is to consider ordering decision rules according 
to the worst that could happen. Consider the value p = i r ~  on the Bayes envelope plot 
given in figure 11.25. At this value, we have that 

Thus, for p = E M ,  the maximum possible expected loss due to ignorance of the true state 
of nature is minimized by using p,,. This observation motivates the introduction of the 
so-called minimax decision rules. 

Definition 11.14 We say that a decision rule p1 is preferred to rule pz if 

max R ( 0 ,  pf )  < max R(B, pz). 
i re@ B€@ 
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This notion of preference leads to a linear ordering of the rules in D*. A rule that is most 
preferred in this ordering is called a minimax decision rule. That is, a rule cpo is said to be 
minimax if 

max R(B. cpo) = min max R(z9, cp) 
t 9 ~ 0   ED- BE@ 

The value on the right-hand side of (1 1.109) is called the minimax value, or upper value of 
the game. 

In words, (1 1.109) means, essentially, that if we first find, for each rule cp E D*, 
the value of 19 that maximizes the risk, and then find the rule cpo E D* that minimizes 
the resulting set of risks, we have the minimax decision rule. This rule corresponds to an 
attitude of "cutting our losses." We first determine what state nature would take if we were 
to use rule (a  and it were perverse, then we take the action that minimizes the amount of 
damage that nature can do to us. 

A paranoid agent would be inclined toward a minimax rule. But, as they say, ''Just 
because I'm paranoid doesn't mean they're not out to get me," and indeed nature may have 
it in for a decision-making agent. In such a situation, nature would search through the family 
of possible prior distributions, and would choose one that does the agent the most damage, 
even if the agent adopts a minimax stance. 

Definition 11.15 A distribution po E O* is said to be a least favorable prior (Ifp) if 

min r (po,  c p )  = max min r ( p ,  cp). 
q e D *  p e e *  p e D *  

The value on the right-hand side of (1 1.1 10) is called the maximin value, or lower value of 
the Bayes risk. 0 

The terminology, "least favorable," derives from the fact that, if I were told which prior 
nature was using, I would like least for it to be a distribution po satisfying (1 1.1 lo), because 
that would mean that nature had taken a stance that would allow me to cut my losses by the 
least amount. 

11.10.3 Minimax Bayes in multiple-decision problems 

In developing the solution to the minimax decision problem, we will generalize beyond the 
binary hypothesis test to the M-ary decision problem. Suppose that O consists of M > 2 
points, O = ( e l ,  . . . , Ow}. The general decision problem is to determine a test to select 
among these M options. 

Suppose that the prior distribution on O is 

We can represent the vector of priors as 

As in the binary case, we can talk about the risk and the Bayes risk, where risk is denoted 
as R(0 , .  cp), and Bayes risk as 

Using the notation y ( c p )  = [ R ( O , ,  c p ) .  . . . , R ( B M ,  c p ) l T ,  we have 
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Definition 11.16 The risk set S c R" is the set of the form 

where cp ranges through D*, the set of all random~zed decis~on rules In other words, S 1s 
the set of all M-tuple5 ( k t ,  . j M),  such that v, = R($, . cp). 1 = 1 ,  . M, for some 
cp E D* Ci 

The risk set will be funddrnental to our understanding of minimax tests 

Theorem 11.6 The risk set S 1s a convex subset of a". 
r Proof Let y = [ y i ,  . . . , yaw J and y' = [ y ; ,  . . . , yh]T be arbitrary points in S.  According 

to the definition of S ,  there exist decision rules cp and (a' in D* for which yi = R(@;. p) and 
y: = R(&,  cp'), for i = 1, . . . , M. Let n be arbitrary such that 0 2 n 5 1, and consider the 
decision rule cp, that chooses rule cp with probability n and rule cp' with probability 1 - n .  
Clearly, cp, E D", and 

for i = I. . . . , M. If z denotes the point whose ith coordinate is R(B,, cp,), then z = 
rry + (1  - n)yf ,  thus z E S. CI 

A prior distribution for nature is an M-tuple of nonnegatrve numbers ( p l ,  , p ~ )  
M such that E l = ,  p, = 1, with the understanding that p, represents the probability that nature 

chooses 8, Let p = [ p i ,  , pMIT For any pointy E S determined by some rule p, the 
Baye? n . ~ k  is then the inner product 

We make the foliowing observations: 

1. There may be multiple points with the same Bayes risk (for example, suppose one or 
more entries in p is zero). Consider the set of all vectors y that satisfy, for a given p, 
the relationship 

for any real number b. All of these points (and the corresponding decision rules) are 
equivalent. 

2. The set of points y that satisfy (1 1 .I 11) lie in a hyperplane; this plane is perpen- 
dicular to the vector from the origin to the point ( p i ,  . . . , pM). To see this, consider 
figure 1 1.29, where, for M = 2, the risk set and sets of equivalent points are displayed 
(the concepts carry over to the general case for A4 > 2). If y is such that p ry  = b, 
then for a vector x i p, 

3. The quantity b can be visualized by noting that the point of intersection of the diagonal 
line yl = . . . = y , ~  with the plane pry = E, p, y, = b must occur at [b, . . . , blT. 

4. To find the Bayes rules, we find the minimum of those values of h, call it bo, for which 
the plane pry  = bo intersects the set S. Decision rules corresponding to points in this 
intersection are Bayes with respect to the prior p. 
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Bayes point 

R ( ~ M  > (o) 

Equivalent points 

Figure 1 1.29: Geometrical interpretation of the risk set 

The minimax problem can thus be visualized using the risk set: as p varies, how does the 
point bo of minimum risk vary? The point of minimum risk is the minlmax risk, as we now 
explore. 

The maximum risk for a fixed rule cp is given by 

All points y E S that yield this same value of max, y, are equivalent with respect to the 
minimax principle. Thus, all points on the boundary of the set 

Qc = { ( y l , .  . . , y ~ ) :  y, 5 c for i = I ,  . . . , M) 

for any real number c are equivalent. To find the minimax rules, we find the nlininiurn 
of those values of c, call it co, such that the set Q,, intersects S. Then we observe the 
following: 

Any decision rule cp whose associated risk point [ R ( B l ,  9 ) .  . . R ( f i M ,  cp)lT is an 
element of Q,, n S is a minimax decision rule. 

Figure 11.30 depicts a minimax rule for M = 2. 
Thus, for a minimax rule, we must have risk equalization. For the minimax rule p. 

Due to the equal risk, at the point of minimax risk, 

so that the Baves r r ~ k  I S  lndeperzde~zt of the prior any attempt\ by nature to find a le\\ 
favorable prior are neutralized 
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Equivalent points 

\Minimax point 

Figure 1 1.30: Geometrical interpretation of the minimax rule 

Figure 11.30 also depicts the least favorable pnor, which is visualized as follows. As 
we have seen, a strategy for nature 1s a prior distribution p = [ p l  , . . . , p ~ ] T  that represents 
the family of planes perpendicular to p. In using a Bayes rule to minimlze the risk, we must 
find the plane from this family that 1s tangent to and below S .  Because the minimum Bayes 
risk is bo, where (bo, . . . , bolT is the intersection of the line yl = , . . = y~ and the plane, 
tangent to and below S and perpendicular to p, a least favorable prior distribution is the 
choice of p that makes the intersection as far up the line as possible. Thus the least favorable 
prior (lfp) is a Bayes rule whose risk is bo = co. 

Example 11.10.4 We can be more explicit about the risk set S in M = 2 dimensions. From (1 1.64). 

Let Q, be a Neyman-Pearson test associated wtth the b~nary hypothesis problem The ROC, associated 
w ~ t h  the Neyman-Pearron test, 1s a plot of f i  versus cu for the test 4 Let 4 = 1 - 4 denote the test that 
IS conjugate to 4 Let PFA and PFrl denote the probabihty of chooslng decision 1, given that 0 = Bo, 
for Q, and 4, respectively, and let PD and P D  be defined stmilarly Then, from table 11 1, we note that 
4 has pizi, = I - a  and P o  = 1 - B A plot of the ROC for Q, and 4 IS shown In figure 11 3 I(a) There 
are no tests outstde the shape shown, smce such potnts would vroldte the Neyman-Pearson lemma 
Figure 1 1 3 l(b) shows the boundanes of the nsk set, found by plott~ng Lo1 P.PA and L to( l - P D )  for 
each of the two sets (Lot = 0 4 and L lo = 1 5 In t h ~ s  figure) El 

Table 11.1: Probabilities for Neyman-Pearson and 
conjugate Neyman-Pearson tests 

e = e,, e = B ,  
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(a) ROC for cp and 1 - (b) Risk set 

Figure 1 1.31 : The risk set and its relation to the Neyman-Pearson test 

11.10.4 Determining the least favorable prior 

Given that a minimax solution IS found, it may be of Interest to determine the least-favorable 
prior. As discussed, the probab~lity vector p = [po, p l ,  . . . , pMIT is orthogonal to the 
boundary of the risk set at the point where R(@o, 4) = R(Bl, 4) = . . . = R(OM, 4). 
Determining the least favorable prior requires finding a vector tangent to the boundary of 
the risk set, then finding a vector normal to that surface, normalized to be a probability 
vector. 

Let the boundary B of S that Intersects Q,  be a surface parameterized by some parameter 
q E RM-' , and assume that B is a differentiable function of the components of q for some q 
in an open neighborhood of qo. That is, the point [Rq(eO. (9). R(OI, $), . . . , Rq(ZPM-]. (9) 1 
is a point on B, and we take the point q = qo as that value of parameter which is the 
minimax rlsk. Then the vectors 

evaluated at q = qo, are tangent to B at the mlnimax risk point A vector which is orthogonal 
to all of these vectors, normalized to be a probab~llty vector, 1s thus a least favorable prlor 
probability 

In two dimensions, the leaft favorable prior ( p o ,  P I )  can be determined with let\ 
roph~stication At the polnt of equal r~sk ,  the minlmax te\t 15 a Baye\ test w ~ t h  llkelthoct~ 
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ratio teit threihold 

PO Lo1 u = -  (11.115) 
P I L I ~  

If the thre\hold v can be de tenn~ned ,  then ( 1 1.1 15) can be solved for po. 

11.10.5 A minimax example and the minimax theorem 

Example 11.10.5 We now can develop solutions to the "odd or even" game introduced earlier in the 
chapter. As you recall, nature and yourself simultaneously put up either one or two fingers. Nature 
wins if the sum of the digits showing is odd, and you win if the sum of the digits showing is even. 
The winner in all cases receives in dollars the sum of the digits showing, this being paid by the loser. 
Before the game is played, you are allowed to ask nature how many fingers it intends to put up and 
nature must answer truthfully with probability 314 (hence untruthfully with probability 114). You 
therefore observe a random variable X (the answer nature gives) taking the values of 1 or 2. If B = 1 
is the true state of nature, the probability that X = 1 is 314; that is, Po=, (1) = 314. Similarly, 
Pti=! (2) = 114. The risk matrix, given in figure 1 1.32, characterizes this statistical game. 

Figure 11.32: Risk function for statistical odd or even game 

The risk set for thts example IS glven In figure 11 33, whtch must contaln all of the llnes between 
any two of the polnts (-2, 3), (-314, -9141, (7/4,5/4), (3, -4) Accord~ng to our earlter analys~s, 
the rn~nlmax point conesponds to the potnt tndrcated in the figure, which 1s on the line L connecting 
(R(1, $1 ) .  R(2, $,)) wtth (R(1, $?), R(2, (62)) The pmmetnc equatlon for t h ~ s  l ~ n e  IS 

4 2 0 2 4 

Figure 1 1.33: Risk set for odd or  even game 
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as q ranges over the interval 10, I ] .  which can be written as 

This line intersects the line y ,  = y, at iq  - 2 = -?q + 3, that is, when q = .i?j The minimax 
risk is 

5 3  3 27 --- - 
4 I3 4 26' 

The 
1 - 

randomized decision rule is: Use rule d l  with probability q  = &, and use d2 with probability 
q = 1 0  

13 ' 
We may compute the least favorable prior as follows. Let nature take action 6 = 1 with probability 

p and B = 2 with probability 1 - p. The vector p = [p,  1 - is perpendicular to the surface of 
S, which in this case is the line L previously parameterized. The tangent to this line has slope 

By the orthogonality of the least favorable prior vector, we require 

I - p  5 - 
P 21 

o r p  = 2' 
26 ' 

Thus, if nature chooses to hold up one finger with probability 21/26, it will maintain your 
expected loss to at least -%, and if you select declsion rule d l  wlth probab~lity A, YOU will restrict 
your average loss to no more than - It seems reasonable to call - $ the value of the game. If a 
referee were to arbitrate this game, it would seem fair to requrre nature to pay you $ dollars In lieu 
of playing the game. 

We should point out what is achieved in the least favorable prior. The selection is only the 
probability p of choosing some part~cular outcome. What is nof changed is the conditional probability 
upon which measurements are made, fxis(x / 6). 0 

The preceding example demonstrates a situation in which the best you can do in re- 
sponse to the worst nature can do yields the same expected loss as if nature did its worst in 
response to the best you can do. This result is summarized in the following theorem (which 
we do not prove). 

Theorem 11.7 (Minimax theorem). I f ,  for a given decision problem ((3, D.  R )  withjinite 
O = {el ,  . . . . l P k ] ,  the risk se2 S is bounded below, then 

min 
r p ~  n' 

max 
PEW 

max 
p e w  

min 
p e n '  

and there exists a least favorable distribution po. 

This condition is called the suddlepoint condition. More on saddlepoint optimality is pre- 
sented in section 18.8. 

Example 11.10.6 Consider again the b~nary channel of example 1 I 10 3, and take ho = 114 and 
h i  = 1 / 3  Rgure 1 1 34 illustrates the n\k set for this case The l ~ n e  of the minlmax solutlon lies on 
the nsk for (bZ and &. i t  is parameterized by 

so that the minimax rolutlon. when = v ~ ,  occurs when y = 12/13 That ti, (bZ should be 
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Figure 1 1.34: Risk set for the binary channel 

employed with probability 121 13. The corresponding minimum Bayes risk is 4113-this is the min- 
imax probability of error. The least favorable prior is found by finding the slope of the risk function 

d4 
The LFP has perpendicular slope: 

9 P  - - - - 
4 1 - p '  

so that p  = 9/ 13 is least favorable. 
It is interesting to compare these results with the Bayes envelope of figure 11.28. The LFP and 

minimax Bayes risk are both apparent in this figure. 

Example 11.10.7 Given O = {19,,, e l )  corresponding, respect~vely, to the hypotheses Ho and H I  
defined by 

f i :  X - iZ/(mo, a21) ,  

Hi: x - N ( m , ,  a'[), 

The log-likelihood function 1s Gaussian distributed: under Ho, A(X) - hr(- f '12, f '), and under 
Hi, A(Xj - N ( f 2 / 2 ,  f2 ) ,  where 

2 1  f = --;/lm, - moll. 
a- 

The decis~on IS 

1 A ( x ) > l o g v = q .  
#(x) = 

0 A(x) t 7. 

The size and power are 
a = eel*,, 

B = Q(P - f ) ,  

where 

E* = rllf + f / 2 .  
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Now suppose that we impose the costs Loo = L l l  = 0 and Lol = cLlo That IS, the cost of a 
false alarm IS k ttmes more than the cozt of a mlssed detect~on We desire to determine the threshold 

wh~ch mlnrmizes the risk agalnst all possible priors The r~sks are 

By (1 1 . I  IZ),  the minimax rule must satisfy 

Determrnatlon of ,u and (from (1 I 117)) the log-hkehhood thre~hold 7, can be accomplished by 
nurnencal solutron of (1 1 118), wh~ch can be done by iterating 

starting from some initial ,utal. 
Once ,u is found, the least favorable prior is found. We can describe the boundary of S using the 

ROC curve as a function of the threshold, 

Then the tangent vector has slope 

where g ( x )  = -&e-x2'2, and the orthogonal vector [p. 1 - p]  must satisfy 

MATLAB code that computes p, E ,  the mlnlmax value. and the least favorable prlor 1s shown in 
algonthm I I 1. 0 

Algorithm 11.1 Example Bayes minlmax calculat~ons 
File: bayes3.m 

11.1 1 Exercises 

I 1 2- 1 Conslder the test 
Hfj Y - U(0. 1) .  Hi Y - U(0, 2) 

(a) Set up the ltkelthood ratlo test and determ~ne the decrslon regtons ai a funct~on of the 
threshold 

(b) Find PF dnd PI, 
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1 1  2-2 / I  I ]  Consider the te\t 
H,, Y = N 

where S - U(- I ,  1 )  and N - U(-2, 2), and S and N are statistically independent 

(a) Set up the l~kelthood ratio test and determtne the declsion region\ when (I) v = 113, 
(11) b = 2, (111) u = I 

(h) Flnd Pk 1 and Pn tor edch of the\e values of v 

(c) Sketch the ROC 

11 2-3 Show that the means and variances in (I 1 23) and ( 1  1 24) are correct. 

I 1 2-4 Show that the mean and vanance in (1 l 3 1) and (I 1 32) are correct 

11.2-5 Show that the inverse Fourier transform of the characteristic function in ( I  1.38) is (1 1.39). 
Hint: use the fact that f , 3 C ~ ~ - ~ e - ~ ' d . r  = l " ( v ) / p V .  

1 
H I :  f ~ ( r  I H I )  = - exp(-lrli. 

2 

(a) Plot the density functions. 

[b) Find the likelihood ratio and the log-likelihood ratio. Plot the log-likelihood ratio as a 
function of r for v = m. 

(c) Compute the decision regions as a function of v .  

(d) Determine expressions for a and ,B. 

11.2-7 The random variable X is normal, zero-mean, and has unit variance. It is passed through 
one of two nonlinear transformations: 

No: Y = xz, 
HI :  Y = x 3 .  

Find the LRT. 

11.2-8 Poisson characteristic function. Let X - P ( i ) ,  that is, X is Poisson-distnbuted wtth 
parameter A. Then 

Ah 
P(X = k) = -e-", k 1 0 .  

k !  

Show that the characteristic function of X is 

11.2-9 Detection of Poisson random variables Let X, , i = 1, 2 .  . . . , n, he independent Poisson 
random variables with rate h. We will say that X, - P(A). 

(a) Show that X = x:=i X ,  is P(nA). 

(b) Find the likelihood ratio of a test for A ,  > ho 

(c) Determine how to find the threshold for a test of size a = 0.01 in a Neyman-Pearson 
test of Ho: h = 2 versus H I  : A = 4. (The intermediate test y will be required.) 

1 1  2-10 12911 In the optlcai communtcatlon channel using onloff signalling, suppose that a leaky 
detector is used. When a pulse is sent, photons amve at the detector at a rate A ,  , and when no 
pulse is sent, only background photons arrive, at a rate io < A, In the leaky detector, photons 
amve at the recelver according the probability law P(X ( t )  = k) = e-"' ( h t l k /  kf - P ( A t ) ,  
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but each photon 1s detected wlth probablltty p Let the output of the detector be Y ( t )  

(a) Show that P ( Y ( t )  = k / X ( t )  = n)  is B(n, p )  (See exerclse 10 5-5 ) 

(b) Show that P(Y(r) = k) is P(p),r) 

(c) Ftnd the Neyman-Pearson version of thls detector 

(d) Compute and plot the ROC when ;L1 = 2, A() = 1. and p = 0 99 

11.2-1 1 (Coherent FSK) A signal vector 

1s obtained by s,, = cos 2xf, j l n ,  J = 0. 1, . . n - 1 for an integer frequency f ,  , r = 0, I 
The recelved slgnal is Y = s + N, where N - N(O, g2 I )  

(a) Determine an optimal Neyman-Pearson detector 

(b) Draw a block diagram of the detector structure. 

11.2-1 2 By integration by parts, show that the I- function. introduced in box 11.2 as 

satisfies T"(x + 1) = r T ( x )  for x > 0. 

11.2-13 For the detection problem 

No: X -- N(0, R"), 

H,:  X - N(0, R,) ,  

develop a likelihood ratio test. Express the test in terms of the "signal-to-noise ratio" 
S = R, ' /~R ,  ~ 3 " ~ .  Simplify as much as possible. 

11.2-14 Bounds and approximations to the Q function 

(a) Show that 

Hint: integrate by parts 

(b) Show that 

(c) Conclude from (b) that 

L e - ' 2 / 2  1 (1 - 1/x2) < Q(.r) < ------e-'"" x > O  
f i x  f i x  

(d) Plot these lower and upper bounds on a plot with Q(x)  (use a log scale) 

(e) Another useful bound 1s Q(x) 5 f e-x2/2 De rlve t h ~ s  bound Hlnt Identify [Q(a ) I2  
as the probabll~ty that the zero-mean unjt-Gaussian random var~ables Ile In the shaded 
region shown on the left In figure 1 1 35. (the reg~on [a x)  x [a E)) Thli probability 
1s exceeded by the probablltty that (x \ j lles in the 4haded reglon shown on the r~gh t  
(extended to 05) Evaludte thli probdb~l~ty 
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Figure 1 1.35: Regions for bounding the Q function 

11.4-15 [ l  I] For the hypothesis testing problem 

(L )  Set up the Llkelthood ratlo test and determine the declston region\ as a functlon of the 
threshold 

(b) Find the mrntmum probabll~ty of error when (I) po = 1/2, (11) po = 213, (111) po = 1 /3 

1 1  4-16 [373] One of two s~gnals so = -1 or s ,  = 1 1s transmitted over the channel shown rn 
figure 1 1 36(a), where the norse\ N ,  and N2 are independent Laplactan nose w ~ t h  pdf 

1 
fN(cr)  = -e-Iui 

2  
(a) Show that the opttmum declsron regions for equally likely messages are a5 shown In 

figure 11 36(b) 

(b) Determtne the probablltty of error for this detector. 

Choose s I 
I 

(a) Channel model (b) Decision regions 

Figure 1 1.36: Channel with Laplacian noise and decision region 

11.4-17 (Computer exercise: signal space simulation.) In this exercise you will simulate several 
different digital communications signal constellations and their detection. Suppose that 
an M-ary transmission scheme is to be simulated, where M = 2 k .  The following is the 
general algorithm to estimate the probability of error: 

Generate k random bits 
Map the bits into the M-ary constellation to produce the signal S. (This is one symbol.) 
Generate a Gaussian random number (noise) with variance o2 = N 0 / 2  

in each signal component direction. 
Add the noise to the signal constellation point: R = S + N. 
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Perform a detection on the rece~ved signal R. 
Map the detected polnt fi hack to bits. 
Compare the detected bits with the transmitted bits, and count btts In e m r  

Repeat this until many (preferably at least 100) bits in error have been counted. The estl- 
mated bit ermr probability 1s 

number of bits in error 
Pb X 

total number of bits generated ' 

The estimated symbol error probability is 

number of symbols in error 
PE 25 

total number of symbols generated ' 

In general, Pb f. PE. slnce a symbol In error may actually have several blts in error 
The process above should be repeated for values of SNR (Eb/No) In the range from 

0-10 dB 

(a) Plot the theoretical probab~ltty of error for BPSK detect~on w~th  equal probabllltles 
as a funct~on of SNR (in dB) versus Pb (on a log scale) Your plot should look like 
figure 11 23 

(b) By simulat~on. estimate the probabll~ty of error for BPSK transmission, using the 
method just outlined Plot the results on the same axes as the theoretical plot (They 
should be very s~milar ) 

(c) Plot the theoret~cal probab~l~ty of svrnbol error for QPSK Slmulate usrng QPSK, and 
plot the estin-ated symbol error probability 

(d) Plot the upper bound for the probab~l~ty of 8-PSK S~mulate uslng 8-PSK, and plot the 
est~mated error probabrllty 

(e) Repeat parts (a) and (b) uslng unequal pnor probabll~t~es, 

(0 Compare the theoretical and experimental plots, and comment. 

1 1  5-18 For some d~str~but~ons of means, the probab~l~ty of class~ficat~on error IS stra~ghtforward 
to compute. For the set of polnts representing means shown In figure 11 37, compute the 
probability of error. assumlng that each hypothes~s occurs wlth equal probability, and that 
the noise is N ( 0 ,  u21)  (These sets of means could represent s~gnal constellat~ons in a 
d ~ g ~ t a l  commumcatlons settlng ) In each constellat~on, the dlstance between nearest s~gnal 
polnts 1s d 
Also. compute average energy E ,  of the slgnal constellat~on as a funct~on of d If the means 
are at m,, then the average energy 1s 

For example, for the 4-PSK constellation, 

For each con\tell~tlon. expres\ the probab~l~ty of error a\ a funct~on of E, 
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(a)  4-PSK (b) 8-QAM 

Figure 1 1.37: S o m e  signal constellations 

1 1  5-19 Lei M = 2'. where k is an even number Determine the probab~lrty of error lor a s~gnal  
cor~rtellation w ~ t h  M polnts arranged In a square centered at the ongtn, wtth minimum 
distance between points equal to d and noise varlance a2 Assume the noise 15 Gaussian 
Express this as a function of E,, the average slgnal energy for the constellation 

11.7-20 In an M-dimensional orthogonal detectron problem, there are M hypotheses, II;: X - 
Jli'(m,, 0 2 1 ) ,  where 

m , I , m ,  i f j .  

Assume that E, = jlm, //' for 1 = 1,2,  , M Let M z 2k,  dnd assume that these M 
orthogonal s~gnals are used to send k bits of information 

(a) Show that the rnlnimum distance betueen slgnais 1s d = a Also show that Eb, 

the energy per b ~ t ,  is Eb = E, /k  

(b) By the unlon bound, show that the probabtl~ty of symbol error is bounded by P ( & )  5 
(M - l )Q(d/20)  

(c) Using the upper bound on the Q function Q ( x )  5 ;e-'*/', show that the error ap- 
proaches zero as k -. co, prov~ded that E b / a 2  > 4 In 2 

1 1  7-21 For polnts In the signal consteliatlon shown In figure 11 38 (where the bass  funct~ons are 
orthonormal), determine an upper bound on the probab~lity of error uslng the unlon bound 
Assume that the nose  is AWGN with vanance o' = 0 1 Express your answer In terms of 
the Q function 

1 1.8-22 [291] Suppose that a signal is of the form 

s =  H S ,  

where H is a known rn x p matrix, but 6 is not known. That is, the signal is known to 
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Figure 1 1.38: Signal constellation with three points 

Ite in R ( H ) ,  but the part~cular polnt In that space is not known Let X = p H 8  + N 
where N - N ( 0 ,  a 2 1 )  It 1s des~red to d~stingulsh between No p = 0 (signal absent) and 
H I  p > 0 (s~gnal present) However, ~t is not posslble to observe X dlrectly Instead, we 
observe the output Y of a channel that introduces some blas v i R ( H ) ,  and also rotates X 
in R ( H )  Let Q indicate the rotatlon in R ( H )  

(a) Show that Q = UH Q U ~  + PHI, where pH, is a projection onto [ R ( H ) J L .  and 
PH = UHUL is a projection onto R ( H ) ,  and Q 1s an orthogonal matnx 

(b) Show that the rotatton of p H 8  IS p H @ '  for some 8' 

(c) Show that the statistic 
z = TdTp,Td 

is invanent wtth respect to the offset v and any rotatton Q 

(d) Show that under Ho, z/a2 is distributed as Xi 
11.8-23 [291] Let X - .AJ'(~H@,U~I), where H 1s a known rn x p matnx, but a 2  1s unknown 

Assume that the slgnal 1s biased by a vector v i R ( H )  and rotated in R ( H )  to produce 
the measurement Y 

(a) Show that the statistic 

F =  yT p ~ ~ / ( a 2 ~ )  
y T ( 1  - P ~ ) y l ( a ~ ( r n  - p)) 

is invariant with respect to v and Q and independent of a2. 

(b) Explain why F is the ratlo of independent X 2  random variables 

(c) The d~stnbution of F 1s called the F-distnbutlon It 1s known to have a monotone 
Ilkellhood ratio Based on thls fact, wrlte down a uniformly most powerful teqt 

11.8-24 (t  distribution) Let T = Z I ~ ,  where Z - N ( 0 ,  1)  and Y - Let ( r ,  u )  = W(z. g )  
be an invertible transformat~on, where 

(a) Show that the Jacobian of the transformation is 

J = det 

(b) Hence, show that the jolnt density f T L  ( I .  u )  IS 

(c) Finally. integrate out u to derive the den\ity ( I  1 90) IJse I,,% x '  - I e  i"dx = T ( I  ,/EL" 
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I 1  9-25 Shou that \ 

Irm Em, - F, ,)' = ( ~ ( t )  - r , ( t ) i 2 d t  
n, +% 

< = I  I T r  
1  1 9-26 For the b~nary detector in Gausstan nolse of example 1 1  9 1, venfy that 

1 1.9-27 In the proof of theorem 11.4, we used the fact that 
~i n n 

Show that this is true 

1 1.9-28 Show that (1 1.107) is true. 

1 1  9-29 Draw the block diagram for an incoherent detector for the problem 

where 

and where 0 is untformly distrtbuted as U(O.2n) and N ( t )  is Gaussian white noise. 

I  1.10-30 Consider the binary channel represented by the accompanying diagram. 

B X  

(a) Determine the likelihood ratio test. 

(b) Determine the threshold v required to obtain a test of size a when A. = h l  = E, as a 
function of A. 

(c) If E-o = A! = h, determine and plot the ROC for a Neyman-Pearson test on the channel 
fork = 1/8,A = 1/4,A = 3/8, andh = 1/2. 

(d) Determine the Bayes declslon rule when the prior probabilities po = P(B = 0) and 
pl = P(B = 1) are equal and the costs are uniform. 

(e) Plot the Bayes envelope function when Xo = 0.1 and 11 = 0.2. 

24 Constder two boxes A and B, each of which contains both red and green balls It is known 
that, in one of the boxes, $ of the balls are red and f are green; and that, In the other box, $ 
of the balls are red and are green Let the box In which f of the balls are red be denoted 
box W, and suppose P(W = A )  = e and P(W = B) = 1 - 6 Suppose you may ?elect 
one ball at random from etther box and that, after observrng ~ t s  color, you must decide 
whether W = A or W = B Prove that, if f < e < 5, to maxlmze the probab~l~ty 
of making a correct decisron, you should select the ball from box B Prove also that if 

5 6 5 1, then ~t does not matter from wh~ch box the ball 1s selected 

24 A wildcat oilman must decide how to finance the drilling of a well. It costs $100,000 to 
drill the well. The oilman has three options available: 

Ho: finance the drilling himself and retain all the profits, 

HI : accept $70,000 from investors in return for paying them 50% of the profits, 

Hz: accept $120,000 from investors in return for paying them 90% of the profits 
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The profits will be $38, where 6' IS the number of barrels of oil In the well 
From past data, it is belleved that 6 = 0 with probability 0 9, and the density for 0 > 0 is 

A seismic test is performed to d e t e n n e  the likelihood of oil In the glven area The test tell\ 
which type of geological structure, xi, 12, or xj, IS present It IS known that the probabllit~es 
of the x, glven 6 are 

fxis(xl / 8 )  = 0 8e-"i'm000, 

fxje(xzI8) = 0 2, 

fxls(x3it9) = 0 8(l - e-"lmOOU 1 

(a) For monetary loss, what IS the Bayes declston rule ~f X = x l  is observed? 

(b) For monetary loss, what 1s the Bayes decis~on rule if X = xz 1s observed? 

(c) For monetary loss, what IS the Bayes dects~on rule if X = x j  is observed' 

11.10-31 [?I Suppose that a device has been created that can classlfy blood as type A, B, AB. or 0 
The device measures a quantity X,  which has density 

If 0 < 0 < I ,  the blood is of type AB, ~f 1 < 6' < 2, the blood IS of type A, if 2 < 8 < 3, 
the blood IS of type B; and ~f 6 > 3 the blood 1s of type 0 In the population as a whole, 0 
1s distributed according to the denslty 

The loss in mlsclassifying the blood is given by the following table 

Classification 
/ A B / A / B I O 1  

A B I  0 1 1 1 2 i  
I I 1 

True A 1  1 0 2 1 2 1  

if X = 4 IS observed, what IS the Bayes decision rule3 

1 1.10-32 For a binary channel, take A(, = 113 and hi = 114. Determine: 

(a) The risk set. 

(b) The minimax Bayes risk. 

(c) The optimum decision rule. 

(d) The least favorable prior. 

1 1  10-33 In these last two exercise?, we Introduce br~efly some other toplcs In detection theory 
Thls problem deals with detection of change Suppose that a slgnal changes ~ t s  mean dt 

some unknown time no, and the problem is to detect the change We set up the following 
hypothesis test 

where means m i  r7zo are aswmed ro be known. as ii o2 Aswrne thdt no is hnown 
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(d) Based upon a llkelrhood rdtto test, chow that a te\t for the change is Decide Hi  i f  

T (x) = c l , r , - m ~ ~ ) > v  
a - n o + 1  

i r n r ,  

for some threshold q. 

(b) Determine the distribution of T (x )  under the two hypotheses, and determine an expres- 
sion for P,P,~ as a function of the threshold r l .  

I I 10-34 For the detectron of change problem of the previous exercise, assume now that we don't 
know no Forming the ItkeIihood ratlo 

we choose the maxlmum ltkelihood estimate of no to be that value wh~ch  maximizes 
! (no,  x) Show that t h ~ r  reduces to 

1 1 .I 2 References 

For the results on Neyman-Pearson detection, we have drawn heavily on [29I (chapter 4), 
85 (chapter 5), 3491. Also, [257] is useful reading. Discussion of the philosophy of Bayesian 
decision making is found in 21451. For this development we rely on [291, 85, 671. 

The application of decision theory to the detection of signals is a mainstay of digital 
communications, in which several different signal sets are characterized by their detector 
structures and their probability of error performance. Many excellent books on communi- 
cations exist, of which we cite [26 1, 23, 1981. 

The game theory touched on in the examples is but the tip of a very large body of 
research, first formalized in [357]. The connections between games and linear programming 
are explored in [171]. An interesting discussion of the Prisoner's dilemma game appears 
in [I401 and [7]. The concept of a minimax point-minimizing the maximum loss-has 
seen application in a variety of areas besides game theory, among them the minimax filter 
approximation approach [249,250]. 

A discussion of detection in continuous time is provided in 13491 and [257]. An excellent 
discussion of detection in nonwhite Gaussian noise also appears in [3 131. See also the survey 
article [ 1661. 

The detection of change problems introduced in exercises 1 1.10-35 and 1 1.10-36 are 
thoroughly discussed in 119, 171. See also [I75 (chapter 12), 18, 138, 10,37 I]. 

In section 1 1.3, we introduced the notion of a uniformly most powerful test for compos- 
ite hypotheses. A significantly more thorough coverage of tests for composite hypotheses 
appears in [I75 (chapter 6)]. 



Chapter 12 

Estimation Theory 

HYLAS You still take things In a str~ct l~teral sense that is not fair, Philonous 
PHILONOUS I am not for Imposing any sense on your words you are at llberty to ex- 
plain them as you please Only, 1 beseech you. make me understand something by them 

- George Berkeley 
The First Dlalogue Between Hylas and Philonous 

Estimation is the process of making decisions over a continuum of parameters. We have 
seen that there are two major philosophies to detection: the Neyman-Pearson approach, 
In which no prior probabilities are assumed on the parameters: and the Bayes approach, in 
which a prior probability is assumed. The same dichotomy exists with estimation, since we 
may view the unknown parameter as either an unknown (but deterministic) quantity. or as a 
random variable. Consequently, there are multiple schools of thought regarding estimation. 
On the one hand, when no prior distribution is assumed, the estimation is commonly based 
upon the principle of nzaxitnum likelihood. When a prior distribution for the parameter is 
assumed, a Bayes estimate is formed. 

12.1 The maximum-likelihood principle 

The essential feature of the principle of maximum likelihood (ML), as it appl~es to estimation 
theory, 1s that is requires one to choose, as an estimate of a parameter, that value for which 
the probabillty of obtaining an actually observed sample is as large as posslble. That IS, 
having obtained observations, one "looks b a c k  and computes the probab~lity, from the 
point of view of one about to perform the expenment. that the given sample values will be 
observed. This probabillty will in general depend on the parameter, whlch 1s then given that 
value for whlch this probablhty is maximized This is remlnlscent of the story of the crafty 
politictan who. once he observes which way the crowd I S  going, hurrles to the front of the 
group as if to Iead the parade 

Suppose that the random variable X has a probability distribution that depends on a 
pardmeter H The parameter H must 11e In a space of posslble parameters O Let fx(x / H )  
denote either a pmf or pdf of X We \uppose that the form of fx is known, but not the value 
of the parameter H The joint pmf of 177 sample random vanable\ evaluated at the sample 
points X I  . xIll is 
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This function is also known as the likelihood function of the sample; we are particularly 
interested in it as a function of N when the sample values x i ,  . . . . x,, are fixed. The principle 
of maximum likelihood requires us to choose as an estimate of the unknown parameter that 
value of 8 for which the likelihood function assumes its largest value. 

If the parameter6 is a vector, say 8 = [ O i ,  . . . , eklT, then the likelihood function will be 
a function of all of the components of B. Thus, we are free to regard B as a vector in (12.1). 
and the maximum-likelihood estimate of N is then the vector of numbers that render the 
likelihood function a maximum. 

Example 12.1.1 (A mwclmum-llkelrhood detector) Suppose you Are given a cotn and told that it is 
btased, with one iide four ttmes as llkely to turn up as the other, you are allowed three tousec, and 
must then guess whether ~t is biased in favor of head or In favor of tails 

Let 6 be the probability of heads (denoted H, with T corresponding to tails) on a single toss 
Define the random vanable, X ( H ,  T )  -t (0, 11, X ( H )  = l and X ( T )  = 0 The pmf for X is given 

by 
f v ( 0 i 4 / 5 )  = 115 fy ( i  1415) = 415. 

fxCOl1 /5 )=4 /5  f x ( l / 1 / 5 ) = 1 / 5  

Suppose you throw the coin three times, resulting in the samples H T H .  The sample values are xi = I ,  
xz = 0, x3 = 1. The likelihood function is 

e(0.  , T I ,  .y2, x3) =: ~ x , x ~ x ~ ( x , ,  X?, x3 I 0 )  

= fx,x2x3(17 0, 1 10) 

= fx,  (1 I@)fx,(O lQifx,(l I @ ) ,  

Clearly, B = 415 yields the larger value of the likelihood function, so by the likelihood principle we 
are compelled to decide that the coin is biased in favor of heads. 

Although, as this example demonstrates, the principle of maximum likelihood may 
be applied to discrete decision problems, it has found greater utility for problems where 
the distribution is continuous and differentiable in 8 .  The reason for this is that we will 
usually be taking derivatives in order to find maxima. But it is important to remember that 
general decision problems can, in principle, be addressed via the principle of maximum 
likelihood. Notice, for this example, that neither cost functions nor a priori knowledge of 
the distribution of the parameters is needed to fashion a maximum-likelihood estimate. 

Example 12.1.2 (Emp~rzc d~strrbutrons) Let X be a random vanable of unknown distribution, and 
X I ,  , X,, be sample random variables from the population of X Suppose we are required to 
estimate the distribution function of X There are many ways to approach this problem One would be 
to assume some general structure, ~ u c h  as an exponential fam~ly, and try to estimate the parameters 
of this family But then one has the s~multaneous problems of (a) estrmating the parameters and 
(b) justifying the structure Although there are many ways of solving both of these problems, this 
approach is not easy The maximum-ltkel~hood method gives us a fairly slmple approach that, tf for 
no other reason, would be valuable as a baseline for evaluating other, more sophisticated approaches 

To apply the pnncipie of maximum likelihood to thls problem, we must first define the parameters 
We do this by settlng 

The event 
[XI =xi. . . . ,  X, =x,I 
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IS  observed and, according to the maxtmum-l~kelihood principle, we wish to choose the values of 0, 
that max~mlze the probability that this event will occur Stnce the events [X, = x,], I = 1, , m ,  are 
Independent, we have 

We wish to maxlmize subject to the constraint z:Ll 0, = 1, which we shall do via Lagrange multt- 
pliers. Let 

and set the gradient of J with respect to 6,, i = 1, . . . , m, and with respect to h, to zero: 

But the only way that all of the products n,+, 6, can be equal I$ ~f O1 = = @,, and the constraint 
therefore requlres that 6, = 1 / m ,  1 = 1, . m 

We define the maxlmum-likelihood estlmate for the d~stnbutlon as follows Let 2 be a random 
vanable, called the einplrlc random vanable, whoqe d~stnbutron functlon 1s 

Flgure 12 1 ~llustrates the structure of the emplric dtstribution functlon For large samples, lt is 
convenient to quantlze the observations and construct the emptric denslty functlon by butlding a 
histogram 

Figure  12.1 : Empiric distribution function 

Thus, the emplrlc distribution IS  prec~sely that distnbution for which the Influence of the sample 
values actually observed 1s maximized at the expense of other posslble values of X Of course, the 
actual utllity of t h ~ s  distrlbutlon IS limited, since the number of parameters may be very large But t t  

1s a maximum-l~kelihood estimate of the distrrbution function 0 

It muct b e  stressed that the l i ke l~hood  function t ( 8 ,  x )  15 to be  v ~ e w e d  a functlon of 
ti, with x betng a fixed quantity, rdther than a variable Thts is In contradlstinct~on to the 
wdj  w e  vlew the d e n w y  f u n c t ~ o n  f x  ( x  I ti). where H is a frxed quantity and x 1s b ~ e w e d  a\ 
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,i variable S o  remember, even though we may wnte [ ( B ,  x j  = J x ( r  / B j, we view the roler 
of r  and B In the two exprecrtonr entirely differently 

It 1s actually more conventent. for many appl~ca t~ons ,  to conslder the logarithm of the 
lihelihood function, whlch we denote 

and call the log-likelihood function. Since the logarithm is a monotonic function, the maxi- 
mization of the likelihood and log-likelihood functions is equivalent, that is, OML maximizes 
the likelihood function if and only if it also maximizes the log-likelihood function. Thus, 
in this development we  will deal mainly with the log-likelihood function. 

The major issue before us is to find a way to maximize the likelihood function. If the 
maximum is interior to the range of 8 ,  and A(@, x) has a continuous first derivative, then a 
necessary condition for d M L  to be the maximum-likelihood estimate for 8 is that 

In the case of vector parameters 8, we write this as 

Equation (12.2) or (12.3) is called the likelihood equation. We now give some examples to 
illustrate the maximization process. 

Example 12.1.3 This example shows that, while the likelihood equation is frequently useful, more 
general principles of optimization can be used to obtain maximum-likelihood estimates even when 
the maximum may not occur in the interior of the set of possible values. 

Let X I ,  . . . . X, denote a random sample of size m from a uniform distribution over [0, 81. We 
wish to find the maximum-likelihood estimate of 8 .  Let I A ( x )  = {(: ::: be the indicator function 
for the set A. The likelihood function is 

m 

Since the maximum of this quantity does not occur on the interior of the range of 0 ,  we can't take 
denvatives and set to zero. But we don't need to do that for this example, since 0-" is monotonically 
decreasing In 0 .  Consequently, the likelihood function is maximized at 

Intuitively, we should expect the range of a uniformly distributed sample to be determined by the 
largest value that IS observed. C] 
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Example 12.1.4 Let X i ,  , X, denote a random sample of slze m from the normal distr~butron 
N ( p .  n2) We wish to find the maxrmum-hkellhood estimates for p and a2 The density func- 
tlon 1s 

and the log-likelihood function is then 

Taking the gradient and equating to zero yields 

and 

When the mean is not known, we can write 

It IS satlsfylng that these estimates colncide w ~ t h  what our lntultion would suggest 
If we vlew the estimators as random variables. 

we can examine their means: 

We note that kMt 1s an unblased estimator, and &hL is a blased estimator So a maximum-llkelrhood 
estlmate 1s not necessarily an unblased estimate (However, as m -t no the estimate becomes 
unblased ) 

We can also examlne the variance of the e\tlmators For example, ~t can be shown that 

0 
var ~ M L  = -, (12.6) 

m 

so that the varlance decrea5ei the larger the number of sample\ used to determrne the ewmate 

Before w e  get too euphoric over the simplicity and ieemtngly  rnagical powers of the 
niaxitnum-lihelrhood approach. coni tder  the f o l l o w ~ n g  example 



12.2 PIL Estimates and SuMiciencv 547 

Example 12.1.5 Let X I  - N(0.  I ) and X 2  - ,%'(-0, I ), and define 

then 

Now let Y = J '  be a g~ven sample value Accordrng to our procedure, we would evaluate the I~kelihood 
functlon at j ' ,  yleldlng 

and chooqe, as the maximum-likelihood ertlmate of 8, that value that maximizes l ( 0 ,  y')  But t h ~ s  
functlon does not have a unlque maximum, so there 1s no unlque est~mate Both d m  = y' and ~ M L  = 
- v' qualify as max~mum-llkellhood estimates for 0  

12.2 ML estimates and sufficiency 

If t ( x )  is a sufficient statistic for 0  in f x ( x / 8 ) ,  then 

fx(x I 8 )  = b( t (x ) ,  Q)a(x) 
and 

so that fx(x / 8 )  is proportional to fT(t  / 8 )  and the constant of proportionality depends 
upon x but not on 8 .  Thus the log-likelihood can be written as 

where C ( x )  does not depend upon 8. For purposes of maximizing the log likelihood function, 
we can ignore the constant C ( x )  and write 

Example 12.2.1 Let X I ,  X 2 ,  . . . , X n  be independent Bernoulli random variables B ( p ) ,  where p  is 
the unknown parameter. Then 

A sufficient statistic for this distribution is 

which is binomial B(n,  p )  distributed: 

In finding a maximum-likelihood estimate for p,  we may maximize the distribution of the sufficient 
statistic in (12.7) .  The log likelihood based on this distribution is 

A ( p ,  k )  = log fK (k  I p )  = log + k log p  + (n  - k )  log(1 - p ) .  (12 .8)  
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The constant log (;) does not depend upon p and can be ~gnored. Taklng the derivative of (12.8) w ~ t h  
respect to p and equating to zero, we obtazn 

12.3 Estimation quality 

Estimation theonsts are sometimes consumed, not only wlth devlsing and understanding 
vanous algonthms for estimation, but with evaluations of how reltable they are We usually 
ask the questlon in the superlative "What is the best est~matey' 

We might be tempted to answer that the best estimate is the one closest to the true value 
of the parameter to be estimated. But every estimate is a function of the sample values, and 
thus 1s the observed value of some random vanable There 1s no means of predicting just 
what the lndlvidual values are to be for any given experiment, so the accuracy of an est~mate 
cannot be judged reliably from ~ndividual values As we repeatedly sample the population. 
however, we may form statistics, such as the sample mean and variance, whose d~stributlons 
we may calculate If we are able to form est~mators from these statistics, then the best we 
can hope for is that the bulk of the mass in the distribution is concentrated in some small 
neighborhood of the true value In such circumstances, there is a h ~ g h  probability that the 
estimate will only differ from the true value by a small amount From this polnt of vlew, 
we may order the quality of estimators as a function of how the sample distribut~on IS 

concentrated about the true value 
This lntultlve notlon IS embodled by the Chebyshev inequality, whlch states that for 

a random varlable Y with mean w ,  and varlance the probab~lity that an observation 
Y = j dlffers from the mean by t is 

The smaller a2 is, the less the probability that an observation is far from the mean. In the 
context of estimation, we want the estimate of a parameter to be close to the mean-the 
true value-so we want the variance of the estimate to be as small as possible. 

Extending this simple concept LO vector parameters, for vector parameters 0 with a 
vector estimate 8, a good estimator is one for which the covariance 

is as small as possible "Small" here means the following Let A and B be HermitIan 
matrices Then we say that A < B if B - A IS posit~ve definite xT ( B  - A ) x  > 0 for all non- 
zero vectors x 

While there are other measures of the quallty of an estimate. most estimation techniques 
exclusively use the varlance (01 covariance for multidimensional parameters) as a means of 
evaluattng the quality of the ertimate This choice is motivated strongly by the important 
case when the sampl~ng d~stributions of the estiindtes are at least approximately normal, 
since the second-order moment 15 then the unique meazure of dispersion 

12.3.1 The score function 

The maximum-Ilkellhood method of estimation does not provide, as a byproduct of calcu- 
ldt~ng the ectlnxate. any meawre of the concentration (thdt I \ ,  the var~ance) of the estimation 
error Although the variance can be calculated for many Important exdmple5, it is difficult 
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for others Rather than approach the problem of calculating the varlance for an estlmate di- 
rectly, therefore, we w ~ l l  hrct calculate a lower bound for the varlance of the estitnatlon error 
for cznv unblared ectlmator. then we will iee how the variance of the maximum-l~kelihood 
estimation error compares with this lower bound Before stating the main reiult of t h ~ s  sec- 
tlon, we need to establirh some new notation and term~nology, and prove some prel~minary 
results 

Definition 12.1 Let X = [ X I ,  . , . , X,lT denote an n-dimens~onal random vector, and 8 = 
[el, . . , H,lT denote a p-dimens~onal parameter vector. The score function s(8, X) IS the 
gradient of the log-likelihood function: 

We see that at an ML estimate QeWL (on the interior of the range of 8) ,  

the ML estimate is a zero of the score function. We also say that good scores are those with 
values near zero. It is important to notice that since the score is related to the gradient, the 
results of this method apply to estimates 0 lying on the interior of O 

Before continuing, we prove some useful facts about the score function. We begin with 
the following theorem. 

Theorem 12.1 Ifs(8, X )  is the score of a likelihood function l ( 8 ,  X)  and if t is any vector- 
valued function of X and 8, then 

a a 
Es(8, x ) t T ( 8 ,  X )  = - EtT(8 ,  X) - ~ - t ' ( 8 ,  X). (12.10) 

a8 a8 

Before embarking on the proof, we note that if t ( 8 )  = [ti ( 8 ) ,  t2(8), . . . , tk(8)lT, then 

atl at2 

ae, ae, 

Proof We have 

Upon differentiating both sides with respect to 8 ,  and taking the differentiation under the 
integral sign in the right-hand side (assuming differentiability conditions as appropriate), 
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we obtain 

a a a 
- ~ t ' ( 6 ,  X )  = / t (@.  x)-  l o g l ( 6 . ~ ) t ~ ( 0 .  x ) d x +  J Y ( B ,  x)-t(6.  x ) d x  
at? ae ae 

a 
= Es(8 ,  x ) t T ( 6 ,  X )  + E- tT(6 ,  x ) .  a 6 

(12.11) 

The result follows from simplifying and rearranging this expression. 0 

We may quickly obtain two useful corollaries of this theorem. 

Corollary 12.1 I f s (6 ,  X )  is the score corresponding to a (diflerenriable) likelihoodfunction 
t ( 6 ,  X ) ,  then 

Es (0 ,  X )  = 0. (1 2.12) 

Proof Choose t as any constant vector. Then, since t is not a function of 0 ,  its derivative 
vanishes; so by (12. l o ) ,  

Es (6 ,  x ) t T  = E[s (@,  X)] tT  = 0, 

which can happen for arbitrary t only if E[s (6 ,  X)] = 0. 

We note that (1 2.12) can be written as 

a 
Es(6 ,  X )  = E- log t ( 6 ,  X )  

a6 

(This is also a manifestation of the trivial observation that 6 J f x (x  I8)dx  = $1 = 0 ,  
since fx ( / 6 )  is a density function.) 

Corollary 12.2 I f s (6 ,  X )  is the score corresponding to a djfSerentiable likelihood furzction 
L(6, X )  and t ( X )  is any unbiased estimator of 19, then 

Proof Since the estimate is unbiased, we have E t ( X )  = 6 ,  and since t is not a function of 
6 ,  we have 6 tT = 0 ,  thus by (12. l o ) ,  

12.3.2 The Cramer-Rao lower bound 

Definition 12.2 The covariance matrix of the score function is the Fisher information 
matrix, denoted J ( 8 ) .  Since by (1 2.12) the score function is zero-mean, we have 

J ( 6 )  = E S @ ,  x)sT ( 8 .  X )  = E 

D 

Lemma 12.1 The Filher ~r format~on J ( 0 )  r,f(12.15) can be written a ,  
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Proof Letting I = s i n  theorem 12.1, we obtain 

a 
= -E-sT(B, X),  

a6 

since ~ s ' ( 0 ,  X) = 0, by corollary 12.12. 

Theorem 12.2 (CramCr-Rao). Ift(X) is any unbiased estimator of 6' bused on a differen- 
tiable likelihood function, then 

where J ( 8 )  is the Fisher information matrix. 

That is, J(6')  provides a lower bound on the covariance of any unbiased estimator of 8. 
The proof of this theorem is yet another application of the Cauchy-Schwartz inequality. 

Before proving the CramCr-Rao lower bound, we introduce an auxiliary result that is needed 
in the proof. 

Lemma 12.2 Let J be a positive-dejeinite matrix, and let a be aJixed vector: The maximum 
of arc, subject to the constraint 

c T J c  = 1 ,  (12.20) 

is attained at 

The proof of this lemma is explored in the exercises 

Proof (CramCr-Rao theorem) Let a and c be two p-dimensional vectors and let s (0 ,  X )  be 
the score function. Form the two random variables a = a T t ( X )  and ,8 = cTs(6', X ) .  Since 
the correlation coefficient, 

EaB 

is bounded in magnitude by 1, we have 

But since the score function is zero mean, it is immediate that 

Also, 

Furthermore, by (12.14), we have 

E C Y ~  = aT E [ ~ ( x ) s ~  (e ,  X ) ] C  

= aT1c 
T = a c .  
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Substituting these expressions into (12.21) and squaring, 

In the interest of finding the largest value of this expression (and with the assistance of 
considerable hindsight), let us substitute the result of lemma 12.2 into (12.22): 

- - a T  J-' (@)a 
5 1 

a T  cov(t)a 

We observe that this inequality must hold for all a ,  so 

for all a ,  which is equivalent to (12.19). 

The inverse of the Fisher information matrix is a lower bound on the variance that 
may be attained by any unbiased estimator of the parameter 0 ,  given the observations X. It 
is interesting to determine conditions under which, the Cramtr-Rao lower bound may be 
achieved. From (12.21), we see that equality is possible if 

But from the Cauchy-Schwartz inequality, equality is possible if and only if cr and B are 
linearly related, that is, if 

t(Xj = k(Qjs(8, X) 

for some function k(8). 

12.3.3 Efficiency 

Definition 12.3 An estimator is said to be efficient if it is unbiased and the covariance 
of the estimation error achieves the Cramtr-Rao lower bound. That is, if 6 = t(X) is an 
estimator for 6 ,  then 6 is efficient if 

Theorem 12.3 (Efficiency) An unbiased esti~nator 6 is efjcient ifand only ij 

Furthermore, any unblased efjcient estimator is a ~naximunz-likelihood estinzator: 

Proof Suppose d ( ~ j ( 6  - 8 )  = s(6 ,  X). Then, from the definition, 

But this result implie\ E[Q - 6 ] [ 6  - 6 ] T ~ ( 0 )  = I, which yrelds effic~ency 
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Conversely, suppose 8 is efficient. From (12.12) and (12.14). it follows that 

so by the Cauchy-Schwartz inequality, 

I = (Es(6 ,  - Q)'}' 5 E[s(8, x ) sT(8 ,  x ) ] E [ ( ~  - 8 ) ( 8  - @)'I 

= J ( $ ) E ( ~  - 6 ) ( 8  - 8)' = I (by efficiency assumption) 

Equality can hold with the Cauchy-Schwartz inequality if and only if 

for some constant K(6). Multiplying both sides of this expression by (0 - @)* and taking 
expectations yields K (8) = J (8). 

To show that any unbiased efficient estimator is a maximum-likelihood estimator, let 
0 be efficient and unbiased, and let 8 be a maximum-likelihood estimate of 8 .  Evaluating 
(12.24) at 6 = 8 yields 

but the score function is zero when evaluated at the maximum-likelihood estimate, conse- 
quently, 

A - 
8 = 8 .  

12.3.4 Asymptotic properties of maximum likelihood estimators 

Unfortunately, it is the exception rather than the rule that an unbiased efficient estimator 
can be found for problems of practical importance. This fact motivates us to analyze just 
how close we can get to the ideal of an efficient estimate. Our approach will be to examine 
the large-sample properties of maximum-likelihood estimates. 

In our preceding development we have considered the size of the sample as a fixed 
integer m > 1. Let us now suppose that an unbiased estimate can be defined for all m,  and 
consider the asymptotic behavior of d M L  as rn tends to infinity. In this section we present 
(without proof) three key results (which are subject to sufficient regularity of the distribu- 
tions): 

1. Maximum-likelihood estimates are consistent. 

2. Maximum-likelihood estimates are asymptotically normally distributed. 

3. Maximum-likelihood estimates are asymptotically efficient. 

In the interest of clarity, we treat only the case for scalar 8. We assume, in the statement of 
the following three theorems, that all of the appropriate regularity conditions are satisfied. 
The outlines of proofs presented here are quite technical, and students may wish to skip 
them on a first reading. More thorough proofs of these results can be found in [115]. 

Definition 12.4 Let 8, be an estimator based on m samples of a random variable. The se- 
quence { d m ,  m = I ,  . . . , w) is said to be a consistent (also known as a strongly consistent) 
sequence of estimators of 8 if lim,,, 8 ,  = 0 almost surely (that is, with probability I), 
written 

em -=+ 8. 
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Theorem 12.4 (Consistency) Let 8,, designate the maxzmum-likelihood estimate of 8 
based 011 m i.i.d. random variubles X i ,  . . . , X,,. Then, i f  so is the true value of the pa- 
rameter; d ,  converges allnost surely to QO. 

Proof Although this theorem is true in a very general setting, its rigorous proof is beyond the 
scope of our preparation. Consequently. we content ourselves with a heuristic demonstration. 
We proceed through all of the major steps of the proof, but assume sufficient regularity and 
other nice properties, when necessary, to make life bearable. We also assume that 0 is a 
scalar parameter. 

To s~mplify things, let x = ( X I ,  . . . . x,), and introduce the following notation: 

We can get away with this since the quantities X I ,  . . . , x, do not change throughout the 
proof (rather, the parameter that changes is 0). 

From theorem 12.1 and its corollaries. 

where X = { X I ,  . . . , X,). 
d l o & f m ( x ~ H )  . 

Suppose the true value of the parameter 8 is Bo. Now let us expand as in a 
Taylor series about go, to obtain 

where 0* is chosen to force equality. Let f j ,  be the maximum-likelihood estimate based on 
X I ,  . . . , X,, which consequently satisfies 

Hence, evaluating (12.26) at 8' = 8,,,, we obtain 

Since X I ,  . . . , X, are i.i.d., we have, with f x ( x  1 0 )  the common density function, 

By a similar argument, 

a' l ~ ~ p  /,AX I H) = C a' I O ~  f Y ( ~ )  I H) -- 

OH' 
, = I  

00' 
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From thc strong law of large numbers5t follows that 

where the equality holds from (12.25). Similarly, 

We now make the assumption that 

E [a' log f X ( x  I 011 
a02 H=8. 

# 0. 

This assumption is ersentially equ~valent to the condit~on that the likelihood function is a 
concave function for a11 values of 0 We mlght suspect that most of the common d~stribut~ons 
we use would satisfy this condrtion-but we will not expend the effort to prove it Gwen 
the above arsumptlon and substituting (12 28) and (12 29) into (12 27), we obtain that 

The preceding theorem shows that, as m -+ m, the maximum-likelihood estimate 8 ,  
tends to Oo with probability 1 ,  the true value of the parameter. The next theorem shows us 
that, for large m,  the values of 8, from different trials are clustered around 8" with a normal 
distribution. 

Theorem 12.5 (Asymptotic normality) Let 8 ,  designate the maximum-likelihood estimate 
of 0 based on m i.i.d. random variables XI. . . . , X,. Let 8, be in the interior of 0, and 
assume that f ,  (x I 0 )  is atleast twice diflerentiable and J (0 )  is nonsingular: Then i f& is the 
true value of the parameter; 8, converges in law (also called convergence in distribution) 
to a normal random variable; that is, 

where 

and J ( 0 )  is the Fisher information. 

Proof Due to the complexity of the proof of this result, we again content ourselves with a 
heuristic demonstration. 

First, we form a Taylor expansion about the true parameter value, 00: 

'The strong la* of large numbers says that for ( X , ] .  a sequence of I 1 d random vanable7 with common 
a ,  

expectation I*. C:=, x ,  -+ p 
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Since 8, % BO, we assume sufficient regularity to neglect the higher order terms. Also, 
since 8, is the maximum-likelihood estimate, the left-hand side of (12.31) is zero, and 
therefore 

But from the strong law of large numbers, 

and from Lemma 12.1, we obtain 

We have thus established that the random variable 

a 1% f x ( X ,  10 )  I 

is a zero-mean random variable with variance J (60 ) .  Thus, by the central limit theorem2, 
the left-hand side of (12.32) converges to a normal random variable; that is, 

where W - N[O, J ( B a ) ] .  Consequently, the right-hand side of (12.32) also converges to W ;  
that is, 

Finally, it is evident, therefore, that 

Theorem 12.6 (Asymptotic efficiency) Witlzin the class of consistent uniformly asymptot- 
~cally norl?zai esttmatnrs, 8,  is asymptotically e#cierzr zn the sense thar asyn7ptotically it 
utrains the Cranzkr-Rao 1o~)er  bound as m -+ w. 

Proof This result is an immediate consequence of the previous theorem and the Cramer- 
Rao lower bound. 0 

This theorem is of great practical significance, since it shows that the maximum- 
likelihood estimator makes efficient use of all the available data for large samples. 

12.3.5 The multivariate normal case 

Because of its general importance in engineering, we develop the maximum-likelihood 
estimate for the mean and covariance of the multivariate normal distribution. 

'The versron of the central limit theorern we need is as follow\: Let (X,,) be a sequence of i.i.d. randoni 
variables with common expectation j~ and common variance n 2 .  Let Z, = '""-""The . n 2, -+ Z where 

Z is distributed jL'(0. I ) .  Stated another way. let W,, = Then W,, --t W. where W i ~ h ( ( ~ .  n' ) .  
4 11 
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Suppose X I ,  . . . , X,,, is a random n-dimensional sample from N ( m .  R), where m is 
an n-vector and K is an n x n covariance matrix. The likelihood function for this sample is 

and, taking logarithms, 

mn m 1 
A(m, R , X I .  . X , )  = --log(2n)--1oglRI - - x ( x ,  - m ) ' ~ - ' ( x ,  - m ) .  

2 2 2 ,=I 
(12.37) 

Equatlon (12.37) can be s~mplified as follows. First, let 

We then write 

Summing over the index i = 1, . . . , m ,  the final term on the right-hand side vanishes, and 
we are left with 

m m 
T - 1  C ( x .  - m )  R (x, - m )  = E ( x ,  -%)'R-'(x, -9  +m(%-m)'R-I(%-m). 

1 = '  i = I  

(12.38) 

Since each term of (x, - %)'R-'(X~ - X) is a scalar, it equals the trace of itself. Hence, 
since the trace of the product of matrices is invariant under any cyclic permutation of the 
matrices, 

Summing (12.39) over the index i and substituting into (12.38) yields 

Now define 

using (12.40) in (12.37) gives 

mn m m 
A (m, R, X I ,  . . . , Xm) = - - log(2n) - - log I RI - - tr R - I S  

2 2 2 
rn + -(Z - rn)'R-'(X - m). 
2 
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Calculation of the score function 

To facilitate the calculation of the score function, it is convenient to parameterize the log- 
likelihood equation in tenns of V = R-' , yielding 

m n m m 
A(m. V , X , ,  . . . ,  X,,) = --log(2n) + - l o g / V /  - - trVS 

2 2 2 

To calculate the score function, we must evaluate & A  and & A .  Refening to the gradient 
formulas of appendix E, we have 

= mV(E - m). (1 2.43) 

To calculate &A,  we need to compute gradients of the form & log / V / and &tr(Vs). 
Using the results from appendix E, we have 

a 
-log / V /  = 2R - diag R ,  av  (1 2.44) 

a 
- trVS = 2S -diag(S), a v  (12.45) 

and 

Combining (12.44), (12.451, and (1  2.46), we obtain 

aA m 
- = -(2M - diag M), av  2 

(12.47) 

where 

M = R - S - (Si- m)(X- mlT.  (12.48) 

To find the maximum-likelihood estimate of m and R,  we must solve 

From ( I  2.43) we see that the maximum-likelihood estimate of m is 

To obtain the maximum-likelihood estimate of R we require, from (1 2.47), that M = 0, 
which yields 

- but since the solutions for m and S must satisfy (12.49), we must have m = hML = x. 
hence we obtain 
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Computation of the Cramer-Rao bound 

In the case when R 1s known, the Cramkr-Rao bound 1s earlly computed From ( I  2 43), the 
score functton IS s(m, X) = rn V(jJ - m) Using the expresrlon from lemma 12 1 ,  

a 
J ( m )  = -E-s(m, x) = EmV = mV = mR-' 

dm 

It 1s straightforward to show that 

cov(rh,,) = R/m = J- ' (m).  

Thus the estimate rhML is an unbiased estimate of the mean that achieves the Cramtr-Rao 
lower bound-it is efficient. 

12.3.6 Minimum-variance unbiased estimators 

We have identified several desirable properties of estimators. In chapter 10, we introduced 
the concept of sufficiency to encapsulate the notion that it may be possible to reduce the 
complexity of an estimate by combining the observations in various ways; we introduced 
the ideas of completeness and minimality in recognition of the fact that there are ways to 
formulate sufficient statistics that reduce the complexity of the statistics to a minimum; and 
we introduced unbiasedness to express the concept of the average value of the estimator 
being equal to the parameter being sought. To these concepts we have now added efficiency, 
a notion involving the covariance of the estimate. Intuitively, the smaller the covariance, 
the higher the probability that an (unbiased) estimate will lie near its mean value. Thus, 
the covariance of the estimate provides a convenient means of evaluating the quality of the 
estimator. It is therefore desirable to choose an estimator with a covariance that it as small 
as possible. 

Definition 12.5 An estimator 6 is said to be a minimum-variance unbiased estimate of 
0 if 

(a) E&(x) = 8 ,  

(b) a? B = min- e E 6 { ~ o  ( 6 ( ~ )  - o ) ~ } ,  where 6 is the set of all possible unbiased estimates, 
given X, of 0.  Ci 

The notion of minimum variance is a conceptually powerful one. From our familiarity 
with Hilbert space, we know that variance has a valid interpretation as squared distance; a 
minimum variance estimate possesses the property, therefore, that this measure of distance 
between the estimate and the true parameter is minimized. This appears to be desirable. To 
explore this in more detail, we begin by eatablishing the Rao-Blackwell theorem. 

Theorem 12.7 (Rao-Blackwell) Let Y be a random variable such that Ee Y = 0 VO E O 
and a; = Ee (Y - Q ) ~ .  Let Z be a random variable that is suficient for 0, and let g ( Z )  be 
the conditional expectation of Y given Z,  

Then 

(a) Eg(Z) = 0 ,  and 

(b) E(g(Z) - 0l2  I 0;. 
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Proof The proof of (a) is immediate from property 2 of conditional expectation: 

E g ( Z )  = E [ E ( Y  j Z ) ]  = EY = 8 .  

To established (b), we write 

= Ee[Y - g(z )12  + ESg(Z)  - 812+2E~[Y  - g ( Z ) ] [ g ( Z )  - 01. -- 
y 2 2 0  

We next examine the term Ee[Y - g ( Z ) ] [ g ( Z )  - 81, and note that, by properties 2 and 4 
of conditional expectation, 

since E  [Y - g  ( Z )  / Z ]  = g  ( Z )  = 0. Thus, 
2 2 

a, = Y +a;(Z)- 

which establishes (b). 

The relevance of this theorem is as follows Let X  = { X I ,  , X,,} be sample values 
of a random variable X whose distnbut~on is parameterized by 8  E 0, and let Z  = t ( X )  be 
a sufficient statistic for 8  Let Y  = 8 be any unbiased estimator of 8 The Rao-Blackwell 
theorem states that the estlmate E [ B  I r ( X ) ]  IS unbiased and ha? variance at least as small 
as that of the estimate, 8 

Let's review what we have accomplished with all of our analysis We started with 
the assumption of minimum-vanance unblasedness as our criterion for optam~llty The 
Rao-Blackwell theorem showed us that the minimum-variance estimate was based upon 
a sufficient statistic We recognized, completely justifiably, that if we are going base our 
estimate on a sufficient statistrc, then we should use a complete sufficient statistic But the 
Lehmann-Scheffk theorem tells us that there IS at most one unb~ased estlmate based on 
a completely sufficient statistrc So we have established that the set of optrmal estimates. 
accordrng to our criterion, contains at most one member Thus, if we find an unbiased 
estimate based on a complete suffclent statlstrc, not only is it  the best one, rn terms of being 
of minimum variance, it IS the only one 

Example 12.3.1 ( [ 8 5 ] )  T h ~ s  example illustrates the dublous opt~mality of minimum-vanance un- 
biasedness Suppose a telephone operator who, after worklng 10 minutes, wonders if he would be 
m~ssed if he took 20-minute break He assumes that calls are comrng in to h ~ s  switchboard as a Polsson 
proces  at the unknown rate of A calls per 10 minutes Let X denote the number of calls received wlthrn 
the first 10 minutes As we have seen, X IS a sufficient statistic for >. On the basis of obserblng X, the 
operator wishes to estlmate the probabilrty that no calls will be rece~ved withln the next 20 mlnutes 
Srnce the probabillty of no calls In any 10-mlnute interval 1s f x ( 0 )  = $e- ' ,  the probability of no 
calls in a 20-minute lnterval is 8 = P - ~ '  If operator 1s enamored w ~ t h  unb~ased estlmate5, he will 
look for an estimate d ( ~ )  for whlch 

After multiplying both side\ by e' and expandrng e-' In a power serles. he would obtaln 
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Two convergent power w n e i  can be equal only ~t corresponding coefhc~ent dre equal The only 
unbtaced eitirndte of 0 = e-'* 15 d(x) = ( -  1 ) '  Thus he would estlmate the probdbllity of recelvlng 
no call? In the next 20 minute\ d\ + I  i f  he received an even number ot cdlli In the I,lat I0 rn~nutei, and 
d\ - 1 if he rece~ved an odd number ot calls In the last I0 m~nuteg Thig nd~culou\  estimate nonethele\i 
15 d m~nirnum-vartance unb~a\ed ewrnate 

12.3.7 The linear statistical model 

Suppose now that we have ob5ervation5 X, - iC'(H0, R), where X, is an n-dimen~ional 
vector, H 1% a known vector, and 6  is an unknown parameter vector Then the likelthood 
function based on rn ~ndependent observations is 

from which the score function for 0 (see exercise 12.3-4) can be obtained as 

Based on this, the maximum-likelihood estimate of 0 is 

where 

The form of the solution In (1  2.53) is revealing: it is precisely the form of solution obtained 
for the welghted least-squares solution. Thus, least-squares solutions (and weighted least- 
squares solutions) correspond to maximum-likelihood estimates of the mean, when the 
observations are made in Gaussian noise. The score function is 

We observe that we can write the score function as 

~ ( 6 ,  X) = ~ ( 8  - e), 
so that, by theorem 12.3, the estimate 8 must be efficient. Furthermore, 

so that the estimate is unbiased. 

12.4 Applications of ML estimation 

Maximum-likelihood estimation is employed in a variety of signal processing applications, 
for which we can only provide a taste here. Selection of these few applications was on the 
basis of relevance, and on the way that they demonstrate some of the concepts developed 
for vector-space problems. 

12.4.1 ARMA parameter estimation 

We have encountered several times the problem of estimating the parameters of an AR 
process; this was a major theme of chapter 3. In this section we resume this examination, 
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obtaining the same results as before, and also add some additional details to address the 
case of ARMA parameter estimation. 

Let 

and let the sequence {xo, X I ,  . . . , x,-l) be n samples of the impulse response of the system. 
Then we have 

which may be written in matrix form as 

Let this be written in terms of vectors and matrices as 

where we decompose K-'  as 

with the ( n  - p) x n  banded matrix 

Solving for y, we obtain 

Now let H  = K (:, 1 : p )  (the first p columns of K) ,  and explicitly indicate the dependence 
of H  upon the AR coefficients as H = H ( a ) .  Then we can write 

If the impulse re\pon\e observations are made in the presence of noise, then, we have 
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where n ir the nore  vector (For convenience. and follow~ng a notatron that rs fairly \tan- 
dard, we indtcate the random vectors using louer-case letter5 ) Substituting trom (12 54). 
we have 

If we dswme an appropriate noise model tor n ,  then we can attempt maxtmum-likei~hood 
esttmatlon of the model parameters 

If %e assume that n - h'(0, a'[), then the log-ltkellhood function for the parameters 
a and b (after ellm~natlng con5tants that do not depend upon the parameters) 1s 

The maximum-likelihood estimate of the parameters satisties 

(a, b) = arg min(y - I+(a)blT(y - H(a)b) .  
ia.h) 

This is a nonlinear optlm~zation problem, due to the product of H(a)b  (It is for thls reason 
that we have not treated the ARMA case prevtously In this text, restrlctlng ourselves to the 
easier AR problem for which linear optimlzatlon problems can be formulated ) 

It we know the value of H(a) ,  then the ML estimate of b IS 

the least-squares solution. Assuming that this value is available, we substitute it into the 
log-likelihood function to obtain 

where P(a)  = ~ ( a ) ( H ( a ) ~ ~ ( a ) ) - '  HT(a )  is a projection matrix that projects onto the 
column space of H ,  and thus 

1s a projector on the space orthogonal to the column space of H(a). The likelihood function 
of (12.57), obtained by substituting an estimate of one parameter back into the likelihood 
function, is known as a compressed likelihood function. (A similar technique can also be 
used in combining maximum-likelihood detection and estimation, in which an ML estimate 
is substituted back into a likelihood function, which then is used for detection. This is called 
a generalized likelihood ratio test.) 

From (12.57), we see that the ML estimate of a is obtained from 

P = arg minyT(l  - P(a))y.  (12.58) 
a 

We now address the problem of finding values for P from (I 2.58). Interestingly enough, 
an estimate for a can be found that does not depend upon knowledge the value of b. Writing 
the equation K-' K [i] as 
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(where x indicates columns of no significance), we observe that 

and 

From (1 2.59), we note that the subspace span(A) is orthogonal to the subspace span(H (a)). 
The projector onto the orthogonal space I - P(a)  is therefore the projector onto the column 
space of A: 

= A ( A ~ A ) - ~ A ~ .  

Thus (12.58) can be written as 

fi = arg min y rPAy = arg min y T A ( A T ~ ) - ' A T y .  

The factor A ' y that arises from (1 2.60) can be written as 

This can be rewritten as 

where Y is a Hankel matrix of the impulse response. Using this representation, (12.60) can 
be written as 

6 = arg minaTY(ATA)-'YTa. (12.61) 
a 

The advantage of the representation (12.61) IS that it is directly in terms of the measured 
parameters Y and the desired parameters A, and does not require forming H(a). which 
would involve a matrix Inverse. 

An iterative solution to (1  2.61) can be obtained as follows. Start from an initla1 solution 
6[O1. Let A(S\lkl) denote the matrix A formed from the coefficients in aihl .  Then iterate the 
following: Minimize $ ~ " + ' ~ Y ( A ~ ( ~ [ ~ ] ) A ( B [ ~ ~ ) ) - '  ~ ~ l ~ ~ ~ ' ]  with respect to a["+' subject to 
the constraint that 

where e, 1s the vector that is in the (p + I )st element and zero elsewhere (iee exercise 12 3- 
16) Repeat untll convergence 

Once a I S  obtained. then b may be obtained from 11 2 56) Code that implements t h ~ \  
iolutlon 1, 5hown in algorithm 12 I 
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Algorithm 12.1 Martmuni-lrkelthood AKMA estlmdtfon 
File k l s s a r rna  . m 

12.4.2 Signal subspace identification 

Suppose that we have the h e a r  \ignal model x, = HB, where H 1s an rr x p nlatnx that 
Ir unknown All of the s~gndls 11e In span(H). which is a p-drmencional subspace of Rn 
Assuming p < n ,  we develop an ML method for ~dent~fylng span(H)-the subspace in 
wh~ch the slgnala Iie-based upon a sequence of measurements ( y l ,  y2, , ym] that are 
medsurements of the l~near model made in the presence ot noise, 

Let A = [a, a2 . . . a ,,-, ] be a matrix orthogonal to W: A T  N = 0, so that 

Assuming that the noise vectors are distributed as n, - ,V'(O, 021) ,  the log-likelihood 
function (neglecting inessential constants) is 

We want to maximize the log-likelihood function subject to the constraint (12.62). A cost 
functional incorporating the constraints by means of Lagrange multipliers is 

where A, E Rn-? Taking the gradient with respect to x, and equating to zero, we obtain 

-2yt + 2xr + Ah, = 0, 

from which 
1 

X, = y, - -AX,. 
2 

To find A, and enforce the constraint (12.621, we multiply by A T :  

from which A, = ~ ( A ~ A ) - ' A ~ ~ , .  Substituting this into (12.63), we obtain 

X, = (I - A ( A ~ A ) - ' A ~ ) ~ , .  (12.64) 

We recognize that PA = A ( A T A ) - ' A T  is the orthogonal projector onto the column space 
of A, and I - PA is the projector onto the orthogonal space. This provides a reasonable 
solution. 

However, A is unknown, so the solution is not complete. We substitute the solution 
(12.64) into the likelihood function to obtain the compressed likelihood 
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It can be shown (see exercise 12.3-1 3) that L can be written as 

where 

is the sample correlation matrix. 
Let us factor S and PA as 

where A is the diagonal matrix of eigenvalues of S A l  , A?, . . . , An and In- ,  is the portion 
of an identity matrix with n - p ones along the diagonal. Then 

where the sum over n - p denotes summing over some set of n - p values. To maximize L 
in (12.65), we must minimize the sum in (12.66), which can be accomplished by summing 
over the n - p smallest eigenvalues of S (since all the eigenvalues of S are nonnegative). 
If we order the eigenvalues A, and their corresponding eigenvectors u, as 

then the minimum of tr(PA S) is obtained when 

Thus the subspace span(H) is the space orthogonal to PA 

12.4.3 Phase estimation 

In this section we introduce the important problem of estimation of phase. We also introduce 
the ML problem for a continuous-time random process. Suppose that a signal is s ( t ;  0) = 
A cos(w,r + 0), where w, is known and 6 is an unknown phase to be determined. The signal 
s ( t ;  0) is observed over an interval t E [0, T) in stationary white Gaussian noise to produce 
the signal 

where n(f) has the autocorrelation function 

As discussed in section 1 1.9, a log-likelihood function can be written in this case (neglecting 
inessential constants) as 

Expanding this, we obtain 
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The fir\t term ~ ' ( t )  I \  independent of H The thtrd term c2( t ,  f i )  integrate\ to the ilgndl 
energy over T \econds, which i i  independent of O for the given iignal model We can 
therefore iimplify the log-Ilkellhood function to that tenn wh~ch dependi upon 8, as 

We des~re  to maxlmize (12.68) wlth respect to H E [O. 2n) Tak~ng the derivattve with 
re5pect to H and equating to zero, we obtain the equatton 

We examine two different approaches to the solutlon of the problem. The first is an ex- 
plicit solution, and the second is a device for tracking the phase-the phase-locked loop 
(PLL). 

The expliclt solution is obtained by expanding ( I  2.69) using the trigonometric identity 
sin(u + h) = sin(n) cos(h) + sin(h) cos(a), and solving for ~ ; w L ,  which gives 

1; ~ ( t )  sin(w,tj d t  
tan HML = - ' 

.I: Y (t) cos(w,t) d t  ' 

A block diagram illustrating the solution is shown in figure 12.2. 
The phase-locked loop is obtained by building a feedback device that enforces the 

maximum-likelihood equation (12.69). Rather than integrating simply over [0, TI ,  we as- 
sume that we are "integrating" over a period of time using a lowpass filter. The block diagram 
of figure 12.3 illustrates the basic concept. A voltage-controlled oscillator (VCO) is used 
to generate a reference signal sin(w,r + 8 j ,  which is correlated with the incoming signal 
y(t). When 6 = 0 ,  by (12.67) the correlation value is zero and the maximum-likelihood 
equation (12.69) is satisfied. Otherwise, some output voltage is produced that drives the 
VCO to either advance or delay the phase. 

Figure 12.2: Explicitly computing the estimate of the phase 

Figure 12.3: A phase-locked loop 
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12.5 Bayes estimation theory 

Suppose you observe a random variable X, whose distribution depends on a parameter 8 
The maximum-likelihood approach to estimation says that you should take as your estimate 
of an unknown parameter that value that is the most likely. out of all possible values of the 
parameter, to have given rise to the observed data. Before observations are taken, therefore, 
the maximum-likelihood method is silent-it makes no predictions about either the value 
of the parameter or the values future observations will take. Instead, the attitude of a rabid 
"max-like" enthusiast is: "Wait until all of the data are collected, give them to me, be patient, 
and soon I will give you an estimate of what the values of the parameters were that generated 
the data."If you were to ask him for his best guess, before you collected the data, as to what 
values would be assumed by either the data or the parameters, his response would simply 
be: "Don't be ridiculous." 

On the other hand, a Bayesian would be all too happy to give you estimates, both before 
and after the data have been obtained. Before the observation, she would give you, perhaps, 
the mean value of the apriori distribution of the parameter, and after the data were collected 
she would give you the mean value of the a posteriori distribution of the parameter. She 
would offer, as predicted values of the observations, the mean value of the conditional 
distribution of X given the expected value of B (based on the a priori distribution). 

Some insight into how the prior distribution affects the problem of estimation may be 
gained through the following example. 

Example 12.5.1 Let X i ,  . . , X, denote a random sample of slze m from the normal distribution 
N ( 0 ,  a2) Suppose a IS known, and we wlsh to estrmate 0 We are gtven the pnor density 8 - 
N(29o. a;), that IS, 

Before getting involved in deep Bayesian principles, let's just think about ways we could use this 
prior information. 

1 We could conslder computing the maximum-ltkelthood estlmate of 8 (which we s a ~  earlrer 1% 

just the sample average) and then slmply averaging thls result wtth the mean value of the prror 
distnbut~on, ylelding 

fio + B M L  8 -- 
0 - 2 

Thlr nave approach, whlle ~t factors In the pnor ~nformation, grves equal we~ght to the prior 

information as compared to all of the dtrect obsewattons Such a result might be hard to justify. 
especially ~f the data qualjty IS high 

2 We could treat Bo as one extra "data" point and average tt in wrth all of the other x,  's, ytelding 

T h ~ s  approach has a very nlce intuttrve appeal, we slmply treat the a prlorl ~nformatlon in 
exactly the same way as we do the real data 8,, 1s therefore perhaps more reasonable than 8,. 
but rt \ t i l l  suffers a drawback it 1s treated as being exactly equal In informational content to 
each of the x, 's, whether or not a: equals o' 

3 We could take a wetghted average of the aprrorl mean and the maximum-Ilkellhood estlniate. 
each weighted inversely proportional to the variance. y~eldlng 
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where ahL I \  the vdrldnce ot 4 ~ 1 ,  and t i  given by 

To calculate the ahole expectation, me teniporarrly take otf our Bdyeitdn hat and put on our 
ML hat, vrew 8 a i  sirnply an unknown parameter. and take the expectatton w ~ t h  respect to the 
random vanabiec X, only In io  d o ~ n s .  it tollows after iome rnaniptiiations that atfL = a 2 / m  

Consequently, 

The estlrnate 8, seemi to Incorporate ail of the information, both a p r ~ o r ~  and apostenorl, that 
we have about B We see that, as m becomes large, the u prlorl ~nformatton is forgotten, dnd 
the maximum-likel~hood portlon of the evtlmator dominates We a l w  see that a: << a2, then 
the u prior1 information tends to dominate 

The estimate prov~ded by 8, appear? to be, of the three we have presented, the one most 
worthy of our attent~on We shall eventually see that tt IS tndeed a Bayestan estimate E 

12.6 Bayes risk 

The starting point for Bayesian estimation, as for Bayesian detection, is the specification 
of a loss function and the calculation of the Bayes risk. Recall that the cost function is a 
function of the state of nature and the decision function; that is, it is of the general form 
L [ 0 ,  $(X)]. For our development in Bayes estimation theory, we restrict the structure of 
the loss function to be the function of the difference, that is, to be of the form L[B - q5(X)]. 
Although this restricts us to only a small subset of all possible loss functions, we see that 
it still leads us to some very interesting and useful results. We examine three different cost 
functionals: 

1. Squared error, 

2. Absolute error, and 

3. Uniform cost. 

Of these, the squared-error criterion will emerge as being the most important and deserving 
of study. 

Recall from section 11.4 that the risk function R: O x A -+ A is the average loss, 
where the average is with respect to X, 

The Bayes risk is the expectation of the risk with respect to an assumed prior distribution 
on 8, 

We saw earlier that, under appropriate regularity conditions, we may reverse the order of 
integration in the calculation of the Bayes risk function to obtain 
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and noted that we could minimize the Bayes risk by minimizing the inner integral for each 
x separately: that is, we may find, for each x ,  the action. call it $(x). that minimizes 

In other words, the Bayes decision rule minimizes the posterior conditional expected 
loss, given the observations. 

Let us now examine the structure of the Bayes rule under the three cost functionals we 
have defined. 

Squared-error loss 

Let us first consider squared-error loss, and introduce the concept via the following example. 

Example 12.6.1 Consider the estimation problem In which O = A = (0, oo) and 

Our problem is to estimate the value of 8 That IS, the "decision" S E A 1s our estlmate of 0 ,  so we 
can wrlte 8 = S 

Suppose we observe the value of a random varlable X havlng a uniform dlstnbutlon on the 
interval (0 ,0 )  with denssty 

i 1/19 i f O i x ~ I 9 ,  
~ X I H ( X  129) = 

0 otherwise. 

Note that we may write 

We are to find a Bayes rule wlth respect to the pnor dlstnbutlon Assume, for some reason, that 
we know (or suspect) that the parameter 0 is dlstrlbuted according to an exponentlal denslty 

fa(@) = 
otherwise 

(Thls 1s a significant point of departure from max~mum-l~kelthood estimatlon, at thls point we have 
no physlcal or mathematical ~ustificatlon for this assumption For now, thls density slmply appears In 
the development ) Thejolnt denslty of X and B 1s. therefore, 

and the marginal distribution of X has the density 

i e-" ~f x > 0,  
fxcx ,=  1: h6cx. o l d a  = 

0 otherwise 

Hence, the posterlor distr~but~on of 8 ,  gtven X = x ,  has the density 

wherex > 0 (Again. we see a s~pn~hcan t  difference between Bayesldn e5tlmatlon and MLestlmdtion. 
In ML estimatlon there was no concept of a postenor, because there was no concept of a prlor ) The 
posrenor expected lois. &wen X = x .  I S  
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To hnd the h that nilnlmtze\ th14 expected lo\\, we mdy set the der~vattve w ~ t h  reipect to 6 to 7ero 

This implies 

This, therefore, is a Bayes decision rule with respect to Fy:  if X = x is observed, then the estimate of 
H is.w + 1. cl 

The problem of point estimation of a real parameter, using quadratic loss, occurs so 
trequently in engineering applicat~ons that it 1s worthwhile to make the following obser- 
vation The posterior expected loss, given X = x, for a quadratic loss function at 6 IS the 
second moment about 6 of the posterior dlstributlon of 0 given x That is, 

E L ( 0 ,  S / X = x )  = ( I 9  - S)"gix(19 I X )  dI9 1: 
Theorem 12.8 The posterior expected loss given X = x, 

OC 

E [ L ( 8 , 6 )  / X = x]  = ( I 9  - 612 feix(19 / ~ ) d I 9 ,  1, 
I S  minimized by taking 6 as the mean ofthe distribution, that is, 

Proof Taking the derivative of (12.71) with respect to 6 and simplifying, we obtain 

On the left-hand side, we recognize E(& / X = x, and on the right-hand side we have 
simply 6. cl 

(Note: strictly speaking, 6 is a function, and so a first variation, not a derivative, should be 
employed here. However, the derivation works because for every X = x ,  6 is a constant 
independent of the variable of integration.) The estimate of 0 given by this theorem is the 
minimum mean-square estimate of 8, and is denoted dIws  

Absolute-error loss 

Another important loss function is absolute value of the difference, 

L ( e ,  61 = je - 61 .  

The Bayes risk is minimized by minimizing 
CU 

E L ( 8 ,  6 / X = x) = I @  - Sl folx(19 I x)dI9. i_, (12.72) 

The minimization here is more awkward than for the squared-error loss, since the absolute 
value function is not differentiable everywhere. Our approach is to consider two cases, and 
take derivatives of each piece. 

1. When I9 > 6,  then 
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2. When 8 < 6, then 

Combining these two by means of the limits of integration, and setting the derivative with 
respect to 6 equal to zero, we obtain 

That is, the integral under the density to the left of 6 is the same as that to the right of 6. We 
have thus proven the following theorem. 

Theorem 12.9 EL(@, 6 1 X = x )  = J-: 18 - 61 f e i x ( 8  I x ) d 8  is minimized by taking 

4 ( x )  = 6 = median f e l x (8  I x ) .  

That is, a Bayes rule corresponding to the absolute error criterion is to take 6 as the median 
of the posterior distribution of 0 ,  given X = x. 

Uniform cost 

The loss function associated with uniform cost is defined as 

In other words, an error less than -512 is as good as no error, and if the error is greater than 
~ / 2 ,  we assign a uniform cost. The Bayes risk is minimized by minimizing 

Consequently, the Bayes risk is minimized when the integral 

is maximized. When c is sufficiently smail and f e  jx  ( 8  lx) is continuous in 8 ,  

In this case. it is evident that the integral is maximized when ?? assumes the value at which 
the posterior density f H I X  (29 / X )  is maximized. 

Definition 12.6 The mode of a distribution is that value that maximizes the probability 
density function. C 

We have proven the following 
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Theorem 12.10 Tile B L L ~ C S  risk ~vitll ~inifi)rirz cost i s  minimized when the intqrcrl 

!.r rncn~mzzed A7 c + 0, the mlntrnltnz val~te r c  obtcrrneti by choovlng 6 to be the mode-the 

12.6.1 MAP estimates 

Definition 12.7 The value of 19 that inaximizes the a postenon density (that is, the [node 
of the poctenor density) is called the maximum a posteriori probability estimate 
o f 9  0 

If the posterior density of 8 given X is unimodal and symmetric, then it is easy to see 
that the MAP estimate and the mean squared estimate coincide, for then the posterior density 
attains its maximum value at its expectation. Furthermore, under these circumstances, the 
median also coincides with the mode and the expectation. Thus, if we are lucky enough to 
be dealing with such distributions, the various estimates all tend toward the same value. 

Although in the development of maximum-likelihood estimation theory we eschewed 
the characterization of 0 as random, we may gain some valuable understanding of the 
maximum-likelihood estimate by considering 8 to be a random variable whose prior distri- 
bution is so dispersed (that is, has such a large variance) that the information provided by the 
prior is vanishingly small. If the theory is consistent, we would have a right to expect that 
the maximum-likelihood estimate would be the limiting case of such a Bayesian estimate. 

Let 0 be considered as a random variable distributed according to the a priori density 
fH (9). The a posteriori distribution for 8 ,  then, is given by 

If the logarithm of the a posteriori density is differentiable with respect to 8, then the 
MAP estimate is given by the solution to 

= 0. 
alp 

$=$MAP 

This equation is called the MAP equation. 
Taking the logarithm of (12.73) yields 

log f ~ ~ x ( f i  I x )  =: log fxle(x I IP) + log f~(19) - log fx(x), 

and since fx(x) is not a function of 8, the MAP equation becomes 

a l o g f ~ ~ ( 1 9  1x1  - a1ogfxlecx 1 9 )  + alogfH(fi)  - (12.75) 
alp alp a9 

Comparing (12.75) to the standard maximum-likelihood equation 

, n = d , ,  = 0, 

3 log f ~ ( 8 )  
we see that the two expressions differ by T. If fe(lp) is sufficiently "flat," (that is, if 
the variance is very large) its logarithm will also be flat, so the gradient of the logarithm 
will be nearly zero, and the a posteriori density will be maximized, in the limiting case, at 
the maximum-likelihood estimate. 

Example 12.6.2 Let X I ,  , X, denote a random sample of slze rn from the normal drstrtbution 
N ( B ,  a') Suppose a 1s known, and we wlsh to find the MAP estimate for the mean, B The joint 
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density function for XI, . . . . X, 1s 

Suppose B is distributed N(0. a,'), that is, 

Straightforward manipulation yields 

a l o g f o l x ( ~ ~ i x )  1 6 
a 8 = - z ( x ,  - 8) - 7. 

u * 
r = i  cTs 

Equating this express~on to zero and solving for 8 yields 

Now, ~t IS clear that as a; -t oo, the limltlng expression IS the max~mum-I~kelrhood estlmate dML It 
is also true that, as m -+ 03, the MAP estlmate asymptotically approaches the ML estlmate Thus, 
as the knowledge about 0 from the pnor dlstnbutlon tends to zero, or as the amount of data becomes 
overwhelm~ng, the MAP est~mate converges to the maxtmum-ltkel~hood estlmate [? 

12.6.2 Summary 

From the preceding results, we have seen that the Bayes estimate of 8 based upon the 
measurement of a random variable X depends upon the posterior density f e i x ( 8  / x).  The 
conversion of the prior information about 6 represented by f~ (B) to the posterior density 
is accomplished via the expression 

The posterior density fsjx (29 / x )  represents our state of knowledge after the measurement 
of X. It is on the posterior density that we base our estimate and, for Bayesian purposes, ~t 
contains all the information necessary for estimation. On the basis of the posterior, estimates 
can be obtained in several ways: 

1. For a minimum variance (quadratic loss function), 

2. To minimize JB - 81, set 8 to the median of fHIX(B / x ) .  

3. To maximize the probability that 8 = 8 ,  set 8 to the mode (maximum value) of 

fsjx(B I XI. 

12.6.3 Conjugate prior distributions 

In general, the marglnal denslty fx(x) and the posterlor denslty f H I X ( $  / X)  are not eaclly 
calculated We are interested In establishing conditions on the structure of the d~stribution\ 
involved that ensure tractabihty in the calculation of the poscenor dl\tribution We introduce 
in the following the ~ d e a  of sequential ectimatlon. in which a Bayecian estlnlate 1s updated 
after each observation in a sequence In order to have tractable cequential observations, we 
must be able to propagate one posterlor density to the next by mean\ of an update step Th15 
1s most tractable ~f the distributions lnvolved belong to a conjugate famtlq 
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Definition 12.8 Let 3 denote ;I cia\\ o t  ~ o n d ~ t i o n d l  den\ity tunctlonl fx iH ,  ~ndexed  by 19 

as 8 ranges over all the values in A class P of drrtributioni 15 \aid to be a conjugate 
family tor 3 ~t the postenor j~ x E 7' for all f v l N  E S, and all prlori f~ E P In other 
words, a famtly o t  dis tnbut~on\  1s a conjugate farntly ~f it contain\ both the prior fe and the 
posterlor fG,x for all povslble conditloncll den i~ t ies  A conjugate fdmily is ~d to be c l o ~ e d  
under snrnpllng • 

We give some examples of conjugate famrlie5 For more examples and clnalysic, the 
~nterested reader is referred to 1671 

Example 12.6.3 Suppose that X I  X, 15 a rdndom \dmple tronx a Bernoulli d~stributton wlth 
p'uarneter 0 H _i I that has density 

{;'(! - 8 ) '  x E [ O  ! I .  
~ U H ( X  18) = 

otherwise 

Suppoce also that the prior distr~butron of H i i  a /3 dirtribution with paranxeterc LY > 0 and /3 > 0, 
w~th density (see box 12.1) 

(0 otherwise. 

Then the joint distribution of 8 and X = [ X i ,  Xz, . . . , X,IT is 

where y = ELl x,.  The posterior distribution of H given X is 

It can be shown (see exercise 12.6-22) that 

where Z = cu + y and = + rn - y.  Thus, both fii and f H i X  have a p distribution. 0 

Example 12.6.4 Suppose that X i ,  , X ,  1s a random sample from a Poirson di\tnbution with 
parameter B > 0 that has pmf 

( 0  otherwise 

Suppose also that the prior distribution of B is a r distribution with parameters a > 0 and /3 r 0 (see 

1 Box 12.1: The ,@ distribution / 
1 The ,L? pdf is given by 

for 0 5 x 5 I ,  where a and ,L? are parameters. This is denoted by saying 
X - ,@(a, , L ? )  The mean and variance are p = 3 and a' = a fi 

(a~fi) '(u+P+I) ' 
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[BOX 12.2: The r distribution 1 
/ The I- pdf is parameterized by two parameters a and 8. having pdf 1 
for x > 0. This is denoted by X - r(a. B). The mean and variance are 
p = a8 and a2 = ( ~ 8 ~ .  

box 12.2), with density 
1 ga-l,-a/p 

io- 
?9 > 0,  

fe (8 )  = Bffr(or) 
otherwise. 

Then (see exerclse 12 6-23) the postenor d~stnbutlon of 0 when X, = x, ,  z  = 1 ,  , m, 1s a T(cr + 1 ,  

l / ( I /B + m)) distnbutlon, where y = zy=, x, C 

Example 12.6.5 Suppose that X I ,  . . . . X, is a random sample from an exponential distribution wlth 
parameter 0 > 0 that has density 

Be-'" x > 0. 
SXIO (x  I 29 = 

otherwise. 

Suppose also that the pnor distnbution of 0 is a I- distnbutton wlth parameters or > 0 and f i  :, 0, that 
have dens~ty 

?9 > 0, 

otherwise. 

Then (see exercise 12.6-24) the posterior distribution of 0 when X, = x,, i = 1, . . . . m ,  is a r (or + m ,  

l / ( l /B  + y ) )  distribution, where y = Xr=, x,.  

Example 12.6.6 Suppose that X I ,  , X, IS a random sample from a Gauss~an dlstnbutlon b i th  
unknown mean 0 and known vanance u2 Suppose also that the prlor dlstnbution of 0 1s a Gausslan 
dlstnbut~on with mean g o  and variance ui Then the postenor dlstnburlon of 0 when X, = x, 
z = l  , , m ,  is a Gauss~an d~stnbution w~th  mean 

and variance 

19" x 
- + - y  .. a; a; 

0, = - -+-L 
a," a: 

where 
1 

X-= -cx, and a: = a 2 / m  
m 

t = l  

Due to ~ t s  Importance, we provlde a demonstration of the above clarm For -sc < 0 < s. the 
cond~tlonal denslty of X I ,  . X, satisfies 
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The pnor denirty ot t) sattitie\ 

and the po\terlor denilty tunctlon oft)  wrll be proportrondl to the product of (12 80) and (12 81) 
Lett~ng the iymbol cx denote proport~onaltty, we have 

S~mpl~fytng the exponent. we obta~n 

where 8, is grven by ( 12.78). Thus, 

Consequently, we see that the postenor density of B glven XI,  , X,, su~tahly normal~zed, 1s normal 
w ~ t h  mean grven by (12.78) and vanance grven by (12 79) 

Upon rearranging (1 2 78), we see that 

which IS exactiy the Fame as the estimate grven by (12 70) Thus. the we~ghted average, proposed as 
d reasondble way to incorporate pnor rnformation Into the estlmate, turns out to be exactly a Bayes 
estimate for the parameter glven that the pnor 1s a member of the normal conjugate family 

As this example shows, the conjugate prior for a Gaussian distribution is a Gaussian 
distribution-yet another reason for engineering interest in these distributions. 

We will see subsequently that conjugate classes of distributions are useful in sequential 
estimation, in which a posterior density at one stage of computation is used as a prior for 
the next stage. 

12.6.4 Connections with minimum mean-squared estimation 

In chapter 3, considerable effort was devoted to explaining and exploring minimum mean- 
squared estimation. In that context, an estimate 2  of a signal x, where .? is a linear combi- 
nation of some set of data 

was detennined so that the average of the squared error, where 

is minimized. That is, E [ e 2 ]  = E [ ( x  - 2 ) 2 ]  is minimized. 
Now, recall from theorem 12.8 that for a Bayes estimator using a quadratic loss function, 

the best estimate of a random parameter 8 given a measurement X is the conditional 
expectation 

and that the Bayes cost E [ L ( $ ,  6 )  / XI was termed the mean-squared error of 8. Thus the 
conditional mean is the estimator that minimizes the mean-squared error. 
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Obviously there must be some connection between the two techniques, since both of 
them rely on a minimum mean-squared error criterion. We make some observations in this 
regard. Our comparison is aided by using a notation that is similar for each case. For the 
first case, we will write our estimate as 

that is, we are estimating the parameter 0 as a linear combination of the m random variables 
X i ,  XZT . . . , Xm. We will refer to this as a linear estimator. In the second case, we might 
actually have several observations, so our estimator will be of the form 

B = E(O IX1,  X 2 ,  . . . ,  Xm). (12.83) 

We will refer to this as a conditional mean estimator. 
By the formulation of the linear estimator (12.82), we have restricted our attention 

to only that class of estimators that are linear functions of the observations. The condi- 
tional mean estimator (12.83) has no such restrictions: the conditional mean may not be 
a linear function of the observations. The conditional mean estimator may, in fact, be a 
nonlinear function of the observations. The conditional mean estimate thus guarantees min- 
imum mean-squared error across all possible estimates. However, for some distributions 
the resulting nonlinearity may make the computation intractable. 

Fortunately, in the case of estimating the mean of a Gaussian distribution, the condl- 
tionai mean estimate zs lznear, as we see in the next section, so that the linear estimator 
and the condit~onal mean estimator coincide. This is yet another reason why the Gaussian 
distribution is of practical Interest. 

12.6.5 Bayes estimation with the Gaussian distribution 

We have encountered throughout this text the Gaussian distribution in a variety of settings. 
We consider again the problem of jointly distributed Gaussian random variables, such as 
(X, Y),  or random vectors, such as (X. Y). Since the distribution of Gaussian random 
variables is unimodal and symmetric, and since the conditional distribution f X i y  is also 
Gaussian. this conditional distribution provides what is needed for estimating the random 
variable X for a variety of cost functions: 

1. For a squared-error loss function, the best estimate is the conditional mean. 

2. For an absolute-error loss function, the best estimate is the median, which for a 
Gaussian is the same as the mean. 

3. For a uniform cost function. the best estimate is the mode, which for a Gaussian IS 

the same as the mean. 

Thus, determining the conditional distribution and rdenttfying the mean provides the nec- 
essary esttmates for the most common Bayes loss funct~ons (It should be noted that in t h ~ s  
sectlon we denote the object of our interest in estrmation as the random var~able X, rather 
than the random variable 0 Thls provides a notattonal transltlon toward considering X as 
a state variable to be estimated. as is done In following sectrons ) 

Recall that in 5ectlon 4 12 we computed the distribution of the condrtional randon1 
variable X / Y ,  using the formulas for the Inverse of a partltroned matrix These results W I I I  
now be put to work 
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In example 4.12 1, the d~itr ibut~on of the random banable Z = (X,  Y),  where X E !Rm 
and Y E R", X - .V(p , .  R,,) and Y - ,Vr(p, ,  R,,) ,  15 found to be 

where p = m + n ,  and 

We now coniider the estimation problem Given a measurement of Y, we want to 
estimate X This requires finding fulY(x 1 y) However, we have already dealt with t h ~ s  
problem In example 4 12 1 fXly(x  / y) was shown to be Gaus~lan with mean 

and covariance 

The quantity S = p.;ly is the Bayes estimate of x, given the nieasurement Y, in the sense 
of being the mean, mode, and median of the distribution. It can be interpreted as follows: 
Prior to any measurements, the best estimate of X is obtained via the prior density fx(x) to 
be p,,, the mean of X. By means of the measurement, the prior distribution fx(x) "evolves" 
into the posterior distribution by 

On the basis of the postenor density, the prior est~mate is modified by an amount proportional 
to how far the measurement y 1s from its expected value. The proportionality depends upon 
the how strongly X and Y are correlated (by means of R,,) and inversely on the variance of 
R;': measurements w ~ t h  high variance are not accorded as much weight as measurements 
w ~ t h  low variance. 

Let us examine the estimator f = p,~, further. 

1. The estimator is unbiased: 

2. The estimator error e = x - B is uncorrelated with ri - p, :  

Ee(f  - pxlT = 0. 

3. The error is uncorrelated with the y - py: 

Ee(y - p y l T  = 0. 

("The error is orthogonal to the data.") 

4. The covariance of B is 

T cov(ri) = E[ee ] = R,, - R l ; , R ~ R V X .  

Thus this has "smaller" covariance than the a priori covariance R,, . 

In the case of the linear model 
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where v is a zero-mean random variable wlth COV(Y) = R, then 

R,, = R,, N~ and R , , = R  and p , = N p x .  

Then (12.84) can be written as 
T - I  

PXI? = P ~ + R , , H  R ( Y - P ~ ) .  (12.901 

It will be convenient to write K = R,, H~ R - I ,  where K is called the Kalman gain. Then 

12.7 Recursive estimation 

We now examine the problem of estimating the state of a system using observations of 
the system, where the state evolves in the presence of nolse and the observations are made 
sequentially in the presence of noise. We will use the notation x, to indicate the parameter 
to be estimated (instead of 0), and use y, to indicate the observation data. Our problem 1s to 
estimate the state x,, t = 0. 1, . . . , based on a sequence of observations y,, t = 0, 1. . . . . In 
this development, we assume that the state sequence x, is a Markov random process, that 
is, for any random variable z that is a function of x,, s 2 t ,  

f ( z  I x t , x , - ~ , .  . . ,KO)  = f ( ~  Ixr). (12.91) 

In particular, we have 

Also, we will assume that the observation y,+l depends upon xi+] and possibly on random 
noise that is independent from sample to sample. but is conditionally independent of prior 
observations, given x,+,; that is, 

Notation: The vector x, is a random vector, as is y,. 111 making the change to lower case 
(rather than upper case, as previously in this part), we are following a notational convention 
now decades old. In statistics, the standard notatlon for a random variable is to use a capital 
symbol, and we have retained that usage up to this point, mainly to reinforce the concept 
that we are dealing with random variables and not their actual values. But we will nou 
depart from the traditional notation of statistics. 

We are headed in this development In the direction of the Kalman filter, an important 
recursive estimator. This is presented in detail In chapter 13, buildlng upon the concepts 
presented here. 

We employ the follow~ng notation. The set of measurements {yo, y l ,  . . . , y,) 1s de- 
noted as y , .  The notation rill, is used to denote the Bayes estimate of x,, given the data 
yo, y 1 ,  . . . . yr = Y T .  For example, the estimate t indicates the estimate of x,, using the 
data y,-l. We denote the covariance of the estlmate of G r i r  as P I IT ,  

For notational convenience we also elim~nate the subscript notatlon on the dens~ty functions 
for now. using the arguments to lnd~cate the random var~ables, as 

f (&+I I Yii-1) = f X , + , 1 3 1 ~ ~ ,  (xi&] I YiTl 1 
Startlng from apnordenclty f (xu), the first observatlon yo 1s wed to compute aposterlor 

d~\tribut~on uvng Bayes theorem ( I 2  76). as 

f (yo I X o )  
f(x0Iyo) = f ( ~ 0 )  I (yo) 
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Bdied on / (xu  / yo). dn eitirnate koj0 1s obt'lrned Thii t i  the "update" step Thts density 15 

now "propagated" dhedd in time (by iome mean\ using the state update equation tor x,) to 
obta~n f(x1 / y o ) ,  from which the esttmate i.ii~) is obtdined 

We now want to generalize this firit step, to the updatlng of an eitimate condittoned on 
y, to one condttioned on ytAi From the polnt ot view of Bayeiian eit~rnatlon. the problem 
now I \  to deterrnlne the postertor deni~ty  f ( x , + ~  / y,+l) recuritvely from the poitenor 
density f (x, / 3/ , )  That is, we w ~ i h  to find a functlon 3 such that 

f (xr-I I Y,+l) = Jlf ( X I  I Yr). Yr,lI  

Ident~ficatron of the functlon 3 wtll prov~de the deslred posterior dens~ty, from which the 
estirndte may be obtamed Let us begin by wnttng the deslred recult using Bdyes theory 

We now observe that 

f ( y r + ~  I X r r t . Y i )  = f(yr+t IXILI ) .  

To be explicit about why this is true, note that we can write 

f ( Y ~ + I  I x r t i ,  Yr) = f ( Y ~ + I  I X ~ + I .  . . . , XO, Y i ,  . . . 7 YO) 

= f ( y r + ~ I x r + i , . . . , x o )  (by(12.91)) 

= f ( Y ~ + I  I XI-I  (by (12.93)) 

Substituting (12.96) into (1 2.95) yields 

pos~utor 'prtor" 

Equation (12.97) is directly analogous to (12.76), with the following identification. The 
prior probability fH ( 0 )  is identified as f (x,+l I y,) ,  and f ( 0  I x) is identified as the posterior 
f (x,+, / y,+l) .  We may call (12.97) the "update" step. 

Computation of the update step requires finding 

f I Yl). 

The density f (x,+i / y , )  is the -'propagationn step. This step can be written as 

(12.98) 

where the equality in (12.98) follows by the Markov property of x, and the fact that y, 
depends upon x, . 

The two steps represented by (12.97) (update) and (12.98) (propagate) are illustrated 
in figure 12.4. The prior distribution f (xo) is updated by means of (12.97) to produce the 
posterior f (x(i I yo), from which the estimate foio is obtained. The density is propagated by 
( 1  2.98) to f (XI / yo), which is then used as the prior for the next stage and from which is 
obtained. Iterating these two equations provides for an update of the Bayes estimate as new 
data arrive. In going from one stage to the next, the conditional f (x,,~ / Y,) becomes the 
prior for the next stage. In order to preserve the computational structure from one stage to the 
next, it is expedient to have the conditional density be of the same type as the prior density; 
this means that they should be members of a conjugate class. (In practice, however, it is 
only Gaussian random variables that admit finite-dimensional filtering implementations.) 
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Figure 12.4: Illustration of the update and propagate steps in sequential estimation 

12.7.1 An example of non-Gaussian sequential Bayes 

We will demonstrate the concept of sequential estimation with a simple probability structure. 
The key equations are the Bayes update equation ( 1  2.97) and the propagate equation (12.98), 
which are used to provide the evolution of the distributions as new information is obtained. 
For convenience, an example with a discrete distribution has been selected, so that all 
integrals are replaced by summations. 

In this example [41, page 3851. the state of the scalar signal X, E (0. 1 ) is governed by 
a Bernoulli distribution with pmf 

where 

This distribution holds for all t .  Let N, be a scalar Markov Bernoulli sequence with 

Suppose also that P ( N , )  evolves according to 

This conditional update tends to favor the reoccurrence of a 1 : if Nr = 1, then N,, is more 
likely to be so. 

The measurement equation is 

where v lndlcates the maxlmum value of ~ t s  arguments Based on a sequence of observations 
yo, ) I ,  , we deslre to estlmate xo. X I .  . and no, nl , These equations represent a 
slmple (but Imperfect) model of a detectlon system, In whlch the state x, tndlcates the 
presence of a target---occurnng in Isolated samples-and the noise n,  represents blocklng 
of the slgnal by some large body that give\ a false tndlcat~on of the target (if the blocklng was 
present at the last measurement, ~t will be more l~kely to appear In the next measurement) 
For example, the system m~ght apply to an Infrared detectlon system In which clouds might 
block the vreu and gibe a fdl\e s~gnal 
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From the prior probabilities In (12 99) dnd (12 loo), updated pmfs based upon the 
observdtlon can be computed from 

P(Yo = yo I NO = no) 
P(iVo = no / YO = yo) = P(No = no), (12.101) 

P(YO = yo) 

where P(Yo = yo) is obtained from explicit enumeration: 

Then from (13.101) we have 

and, similarly, 

9.06 (yo - I) 
P(X0 = 1 I Yo = yo) = qojo = 

a0 + qo - aoqo 

The updated densities then can be written as 

P(No = no I Yo = yo) = (1 - aoio)6(no) + aoloS(l - no), 

which are of the same form as the original pmfs in (12.100) and (12.99), except that the 
probabilities have changed. 

The update step is straightforward, using (12.98): 

where 

Also, P (XI  = X I  I Yo = yo) = P(X1 = xi) .  
Letting Y, = {yo,. .. , yt ) ,  we have 

where 

and 

where 
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Similarly. we have 

P ( X ,  = X ,  I Y,)  = (1 - qi17)S(x,) + qtjd(1 - -GI (12.106) 

where 
qJ(1  - Y , )  

X t / f  = 
(1 - at1,-1)(1 - q P ( y , )  + (atli-1 + q - at l , -~qj&(l  - yt)  

and 

Suppose a = 1 /4 and q = 116. If the sequence Y3 = {O, 0,O, I )  is observed, then 

If the sequence Y3 = (0, 1, I ,  1 } is observed, then 

As an interpretation, consider P(x3 = I / Y3)  as the probability that a target is present 
(as opposed to the blocking). Comparing the first case ( P  = .4444) with the second case 
( P  = .2230), there is more probability that the target is present in the first case-the 
sequence of ones is suggestive of the blocking. 

Because the distributions in this example were chosen to be discrete, this estimation 
problem can be interpreted as a detection problem. 

12.8 Exercises 

12.1-1 Show that the means in (1 2.4) and (I 2.5) are correct. 

12.1-2 Show that (12.6) is correct. 

12.1-3 [291] Let X I ,  X2, . . . , X, be a random sample, where X, - U(0 ,8 )  (un~form) 

(a) Show that BML = max X, . 

(b) Show that the dens~ty of dML is fe(x) = Exrn- ' .  

(c) Find the expected value of JML. 
(d) Find the vanance of BML. 

12 3-4 Just~fy ( I 2  I I)  and show how ~t leads to (12 10) 

12 3-5 Show that ( l  2 52) IS correct 

12 3-6 (L~near statlst~cal model) Consider an m-d~men~lonal  Gaussian random vector Y w ~ t h  mean 
value c8 (where c 1s a constant m-d~mens~onal vector) and covariance matrix R (an m x m 
known matrix) 

(a) Show that the maxlmum likel~hood estlmate of 8 is 

8 I= (cT R - ' c ) - ' c ~  R - ' Y  

(b) Flnd the mean and vartance of 6 
(c) Flnd the Flsher information matnx. and show that e 1s effic~ent 

12 3-7 Consider the system presented in exercise 12 3-6, but w ~ t h  R having the qpecial form R = 
a ' l ,  where a* 15 to be estimated Show that the maxlmum Irkehhood est~mators for B and 
a2  are 

8 = (cTc)- 'cTY 

r i 2  = ( I / rn)(Y - c ~ ) ' ( Y  - cd) 
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12 3-8 (Linear statlst~cal model) Consider N d e p e n d e n t  ob\ervatlonj ot an rra-d~mensional random 
vector /Y t  k E ( 1  2 iV ) }  such that each Yk has a Gaulstan di i t r~but~on wrth mean ckH 
and common Lovarlance R 

( a )  Show that a necessary conditron for 8 ,~nd R to be maxtrnum-lrkcl~hood e5tlmators ot  H 
and R,  re\pectrveiy. I F  that they i~multaneously satlrfy 

k= I 

(To establish thls result, you may need some of the matrtx differentiation ldent~ties from 
appendix E ) 

(b) Eyuat~ons (12 107) and ( I 2  108) do not have simple closed-form solut~ons However, 
they can be solved by relavatzon algorithm as follows 

I P ~ c k  any value of R (say I) 

ii. Solve 112.107) for 8 using 8. 
iii. Solve (12.108) for 8 using 8. 
iv. Stop if converged, otherwise go to (b). 

Unfortunately, no proof of global convergence of the above relaxatton afgonthm ts known 
Computational studres. however, ~ndtcate that it works well in practlce What can be shown 
1s that regardless of the value of R ,  the estlmate 6 glven by (12 107) 1s an unbiased estlmate 
of 0 Prove thrs fact 

12.3-9 (Another proof of the CramCr-Rao lower bound) let t(X) be an unbiased estimator of 0. 
Form the 2 p  x 1 vector 

which, since t(X) is unbiased and by (12.12), is zero-mean 

(a) Show that 

(b) Argue that cov(v) is positive semidefinite. 

(c) Show that there is a matrix B such that 

Hence we must have that cov(t(X) - J-'(@) is positive semidefinite: 

12.3-10 Prove lemma 12.2. 

12.3- 11 If ~ M L  = fi in the Gaussian case, show that 

12.3-12 For the Gauss~an random sample X, let s (m,  X) = m R-'( f i  - m), where % = ;j; Z''', x,. 
Compute the Fisher ~nfonnat~on matnx J ( m ) ,  both by Es(m,  X)sT(m, X) and by 
- E &s(m, X), and show that they are the same 
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12.3-13 Let X I ,  X 2 ,  . . , X m  be a random sample, where each X, has an exponential density with 
parameter 0, 

1 
fx (x )  = -e-"/'. x > 0 

0 

(a) Determine the ML estimate of Q 

(b) Determine E B ~ ~  Is the esttmate unbiased? 

(c) Find the Fisher ~nformation matrrx Is the estlmate m~nrmum variance? efficient? 

12.4-14 Show that (12.65) is correct 

12 4-15 Show that for a E RP". the m~nimum of a' Qa, subject to the constraint that a,,, = I. is 
obtained when 

I 
a = Q - ' ~ , , & I ,  

.,'+I Q- lep+~ 

where e P + ~  is the unit vector with 1 in element p + 1. 

12.4-1 6 [291] Let R be a real circulant matrix (see section 8.5) 

Recall that DFI' vectors diagonalize R: 

R u ~  = h k ~ ~  

where 
fiUh = [ ]  e-,2xk/ri e - j 2 ~ 2 h / l "  e - , 2 ~ ( n - l ) k / n  

and 

Also, let X = ( X I ,  XZ. , Xm)  be a random sample of N(0, R)  random variables %here 
R 1s a real. symmetric. nonnegative definite. rz x n circulant matrlx Note that since R t i  

symmetnc, hk = An-k 

(a) Find ML estimates of hk 

(b) Are the ML estimates unbiased? 

(c) Flnd CR bounds on unbiased estimates of iil 

(d) Are the ML estimates of hi miniinurn var~ance? effic~ent? 

(e) Find ML estimates of (r , ) .  

(f) Are the ML estimates of r, unbtased? minimum variance? efficient" 

12 4- 17 For the discrete-tlme signal 

with known frequency and unknown phace 8. determine a maxtmum-likelihood estimate of 
0, assuming that s, is observed in Gaussian notse, 

\, = \, + 11:. 

where n ,  - ,kr(O, a') 

12 4-18 (Acou\ttc level) A vertical post hai two speakel5 5epdrated by d known d15tance d ,  wlrh 
ipeaker I emittrng s l  ( 1 )  = cosfw, r )  and \peaher 3 emitting \ ? ( I  J = co\(2w, r J These \ignal\ 
travel through the a r  until the) dre p~cked up b) a microphone (iec f~gure 12 5 )  Develop 
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a maximum-likelihood framework for detecting the difference in phase between the two re- 
ceived signals, and from that describe how to use this as a level. (Assume that the background 
noise is white and Gaussian.) 

noise micro 
phone 

Figure 12.5: Acoustic level framework 

12.6-19 Suppose that X - P ( h , )  (Poisson) and iV - P ( A 2 ) ,  independently. Let Y = X + N (signal 
plus noise). (This might model an optical communications problem, where the received 
photon counts Y are modeled as the signal photon counts X plus some background photon 
counts N.) 

(a) Find the distribution of Y. 

(b) Find the conditional pmf for X given Y .  

(c) Find the minimum mean-squared error estimator of X. 

(d) Compute the mean and mean-squared error for your MMSE estimator. Is the estimate 
unbiased? 

12.6-20 12911 (Imperfect Geiger counter) A radioactive source emits n radioactive particles. We 
assume that the particle generation is governed by a Poisson distribution with parameter A: 

The n particles emitted are detected by an imperfect Geiger counter, which detects with 
probability p.  Of the n particles emitted, the imperfect Geiger counter detects k 5 n of 
them. The problem we examine is estimating n from the measurement k, using Bayesian 
methods. 

(a) Show that k (the number of detected particles) is conditionally distributed as 

(binomial distribution). 

(b) Show that the joint distribution is 

(c) Show that k is distributed as 

(Poisson with parameter Ap) .  

(d) Compute the posterior distribution P [ n  / k ] .  
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(e) Show that the cond~tlonal mean (the minlmum mean-square est~mate) is 

Also show that the conditional var~ance (the variance of the estimate) is 

E [ ( n  - ~ [ n / k ] ) ~ l k ]  = i.(l - p ) .  

12.6-21 [291] Let X i .  XI, . . . , X ,  each be i.i.d. P ( h )  (Poisson distributed) with parameter B = A, 

Suppose that we have a known prior on A that is exponential, 

(a) Show that t = x:=, x,  is sufficient for A 

(b) Show that the marginal density for X is 

(c) Show that the conditional (posterior) density for A. given x ,  is 

This is a T density with parameters r + 1 and l / (n  + a) 
(d) Show that the conditional mean (Bayes estimate) of i, is 

(e) Show that the conditional vanance of 1 is ( t  + l ) / (n  + a )2  

12.6-22 Show that (12.77) is true. 

12.6-23 Show that the posterior density ffiix(t9 1 X) of example 12.6.4 1s a T(cu + y ,  l / ( l / B  + m)) 
density. 

12 6-24 Show that the postenor densrty f H i X ( 8  1 x) of example 12 6.5 IS a T(cr + m ,  1/(I  /B + \ 
densrty 

12.6-2.5 Show that if X i  - r ( p ,  A) and Xz - T(q,  A) independently, then 

(a) Y = X I  + X2 is d~stributed as r ( p  + q ,  A) (sums of gammas are gammas) 

(b) Z = X I  / (XI  + X2) is distributed as B(p,  q). 

12 6-26 12911 There are other ways to conslder the jotnt distnbutlon model that are useful in devel- 
oping intultlon about the problem In thrs exercise we explore some of these In each case, X 
and Y are jolntly dlstnbuted Gaussian random varrable< with mean and covariance p,, R,  
and p, ,  R, ,  respect~veiy They can be regarded as berng generated by the diagram shown iii 
figure 12 6(a) 

(a) Show that condil~oned upon measuring X. for the random variable V. 

where 

This interpretation is a\ chown In figure 12 6(b) for rero mean variables 
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(a) Jo~ntly d~stnbuted X and Y 

(b) Marginally distributed X and conditionally distributed Y 

(c) Channel model: linearly transformed X 
plus nose n 

(d) Signal-plus-noise model 

Figure 12.6: Equivalent representations for the Gaussian estimation problem 

(b) Show that an equivalent way of generating X and Y with equivalent joint distribution is 
to modei this as a signal-plus-noise modei, 

where H = R,, R;', X - (p,, R,), and N - N ( p ,  - H p , ,  (3). This model is 
illustrated in figure 12.6(c). 

(c) Show that an equivalent representation for the joint distribution is as shown in fig- 
ure 12.6(d) for zero means, where H = R,, R;:. That is, 

has the same distribution as Y. 

12.6-27 Show that (12.87) and (12.88) are correct. 
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12.7-28 Show that (12.103) is correct. 

12 7-29 Wrtte MATLAB code to compute the probabiltties P ( X ,  = x, / y,) and P ( N ,  = n, / y,) of 
(1 2 105) and (1 2 106). glven a sequence of observattons and the inlttal probab~ltttes a and q 

12 7-30 In the example of sectton 12 7 I ,  suppose that the observatton equatton ts 

where g? repre\ent\ addtt~on modulo 2, with everything else as before Dertve the update and 
propagation equations In t h ~ s  cace 

12.9 References 

Maximum-likelihood estimation is discussed in 1291, 349, 58, 401. The discussion of the 
CramCr-Rao bound is drawn from [219]. You may contrast this development with the more 
conventional proofs given in 1291,3491. The proof of consistency is drawn from [115]. 

Our discussion of the ARMA parameter identification closely follows [291, 1861, in 
which the observation is made that this ARMA identification is equivalent to the Steiglitz- 
McBride algorithm 13191. A derivation of the Fisher information matrix for this estimation 
problern is also provided in (2911. 

The problem of phase estimation is treated in a variety of sources, for example, 1261 1. 
This source also provides an excellent discussion of joint estimation and detection, such a 
estimating phase and discrete amplitude for digital communication. It also provides a good 
introduction to phase-locked loops, including a linear model of the response of the PLL. 

Bayes estimation is also discussed in 1291, 349, 58,401. 



Chapter 13 

One would always Ithe to iettle onecelf, get braced, say, "Now I am golng to begin"-and 
then begin But as the necessary quiet seems about to descend, a hand is felt at one's 
back, ihovrng And that IS the way wlth the nver when a current 1.; runnlng once the 
connection wtth the shore 1s broken, the journey has begun 

- Wendell Berry 
Recollected Essays 1965-1980 

The Kalman filter is a recursive estimator used to estimate the state of a linear time-varying 
state equation, tn which the states are driven by noise and observations are made in the 
presence of noise. Like most significant ideas in mathematics, there is more than one way 
to denve the Kalman filter, each with its own criterion of optimality. In this chapter we 
deta~l two derivations. The first is based upon a recursive Bayes approach-an application 
of the recursive Bayes estimation of the previous chapter-and the second upon the in- 
novations approach-building upon the principle of orthogonality explored in chapter 3. 
These two derivations will highlight the connection pointed out in section 12.6.4: the linear 
estimator we derive is identical to the Bayesian estimator derived for the Gaussian noise 
case. However, it is commonly used in a variety of applications in which the noise is not 
necessarily Gaussian, as being simply the optimum linear minimum mean-squared error 
estimator. As a homework problem, the Kalman filter is also derived using calculus-based 
techniques. These derivations illustrate the interplay between orthogonality, minimality, and 
optimality. 

Following the basic development using both techniques, other practical aspects of 
Kalman filtering are considered, such as filtering continuous-time signals and linearizing 
non-linear systems. We end the chapter with an introduction to smoothing-making esti- 
mates of the state using both future and past data. 

13.1 The state-space signal model 

The Kalman filter is an application of the general results of sequential estimation from 
the previous chapter to a discrete-time state-variable systemi driven by noise, with noisy 
observations 

' A  continuous-time Kalman filter also exists, but we do not examine it here 
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As indicated, the state-variable system may be time-varying. 
The following assumptions are made about this system: 

I For convenience. all procesies are assume to be real 

2 The state noise proce\s w, IS zero-mean, with covanance 

EUJ,W; = Q,8, 

The noise is uncorrelated among samples. For the Bayesian approach to the Kalman 
filter, we assume that w, is Gaussian. 

3. The observation noise v, is zero-mean, with covariance 

The noise is uncorrelated among samples. For the Bayesian approach, we assume 
that v ,  is Gaussian. 

4. We assume that the state noise and the observation noise have correlation 

T Ewiur  = M,8,,, V t .  r .  

For the first derivation we assume that the state and observation noise are uncorre- 
lated: M ,  O for all t .  We subsequently lift this restriction. 

5. There is some i~zitzal coizd~tioiz, or u pr~ori density, on the random variable 
with mean px[O] and covariance ITo. Again. for the Bayesian case we assume xo 1s 
Gaussian. The derivations are simplified notationally if it is assumed that px [0] = O 

The Kalman filtering problein can be stated as follows: given a sequence of measure- 
ments yo, y l ,  . . . , determine a sequence of estimates of the state of the system x, in a 
computationally feasible, recursive manner. 

13.2 Kalman filter I: The Bayes approach 

We first derive the Kalman filter from the Bayesian polnt of vlew This 1s a natural outgrowth 
of the results in sectton 12 7 For the Bayeslan approach, we assume that the nose  processes 
are Gaussian dlstrrbuted Then the Bayes estimate of x, amounts to findlng the conditional 
mean of x,, glven the observations 

The key equations in the Bayes derlvat~on are the propagate step (see (12 98)), 

from which the estlmate I S  propagated uiing the state update equation into the future; and 

whlch 1s the measurement update step from (1 2.97). 
We wiIl beg~n by finding e x p l ~ c ~ t  formulas for the propagate step In (13.3) 

1 The den\ity f ( x ,  / y r )  coire\ponds to the estlmate of x,, given mearurements up f @  

ttrne t tinder the d\\uinption of Gau\\~an nolce and u\ing the notat~on juit introduced. 
the random var~dble x, condrtioned upon y, i i  Gdu\\~an, 

X I  1 Y, - ,'Jr(?,~,. P, , I  (13 51 
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2. The dens~ty f (xr+i / x,)  I S  obtained by notlng from ( 13.1 ) that, conditioned upon x,, 
x , , ~  i s  distributed as 

xt+1 I - N ( A t x , ,  Qr).  (13.6) 

Inserting (13.5) and (13.6) into (13.3) and performing the integration (which involves 
expanding and completing the square), we find that x t + ~  1 Yr is Gaussian, with mean 

%+~/r = Argtlr (13.7) 

and covariance 

P,+lit = 4 p t j z ~ f  $. Q I .  ( 1  3.8) 

Equation (13.7) provides a means to propagate the estimate ahead in time, in the absence 
of measurements, and (13.8) shows that, without measurements, the estimate covariance 
grows in time. 

Let us now examine the update step in (13.4). This is a Bayes update of a Gaussian 
random variable. The mean of x , + ~  / Y,+l is obtained analogous to (12.84), in which the 
mean of the prior is updated: 

%+ilt+i = E[xr+~ I Yrl = %+lit + R ; , ~ , ( Y ~ + ~  - EZyr+i I Y l ) .  (13.9) 

We now examine the pertinent components of this mean value. 

1. The notation R,,,y, is used to denote the correlation, conditioned upon Y,: 

Rxy.p,  = E[(x,+I - E[xt+il)(yt+~ - ~[yt, i l) '  l Ytl. 
Then we have 

Rry y, = E[(xr+l - -%+tir)(Cr+l(~r+i - %+ilt) + ut+t)' I YtI 
= pt+1,tcT (13.10) 

by the definition of Pr+llt+l in (12.94). 

2. The notation Ry,,y, denotes the covariance of y,, conditioned upon Y,: 

R,Y y, = E [ ( ~ t + l  - E [ Y ~ + L ~ ) ( Y I + I  - E [ Y ~ + ~ I ) ~  / Ytl (13.1 1 )  

= E[(Ct+:(xt+l - gr+ilt) + ~ t + i ) ( C t , - i ( x t + ~  - %+llr) + ~t+11' I Yrl 
' 

=I: C,+I ~ t + l l t c ; ~  + &+I (13.12) 

3. The mean E[y,+: I Yr]  is equal to Ct+~Bt+ii,. 

Putting these pieces together, we have the following update step: 

It will be convenient to let 

K ~ + I  = pr+l/tc;+~ (cr+l P ~ + I I ~ C ; ~  + R ~ + I ) - '  (13.14) 

so that the mean update can be written as 

%+ilt+i = %+lit + Kr+i(yt+l - Ct+l%+llt). (13.15) 

The quantity Kt is called the Kalman gaia. 
Let us now consider the covariance of x,+i / yt+l, which is the variance of the estimator 

error %r+llt+i  = kr+i - 3r+llt+i.  This covariance can be found by identification from the 
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conditional Gaussian model examined in example 4.12.1. In that example, we found that 
the conditional density X I Y had covariance 

To apply this result, we identity the random variable X in (13.1 6 )  with the estimate P,+] ,;, . 
the observation Y with the observation y,+l. The covariance R,, of ( 1  3.16) is thus analogous 
to P,+ljr. The matrix R,, is analogous to R,, y. and R,, is analogous to R,, y,. Substituting 
from (13.10) and (13.12), we have 

This completes the derivation of the Kalman filter. In summary we have the follow- 
ing: Starting from an initial estimate f&+.l, with an initial covariance of P- l i - l ,  for each 
observation y,, t = 0.  I ,  . . . , the estimate of the state is updated using the follow~ng 
steps: 

1 .  State estimate extrapolation: ,, = A,Pfi,.  

2. Error covariance extrapolation: P,+i = A,  P,~,A; + Q,. 

3. Kalman gain: Kr+i = P : + I ~ , C I . ~  (C,+I P r + i ~ t c I . ~  + ~ r + i ) - ' .  
4. State estimate update: P ~ + l l l + i  = % r + l / l  + K,+i (yi+,  - Cr+iPr+l i l )  

5. Error covariance update: Pr+llr+l = (I -- CI+I ) 

In the interest of reducing computations, the Kalman gain and error covariance update 
are sometimes written (see exercise 13.2-4) as 

Algorithm 13.1 illustrates an implementation of the steps we have listed. 

Algorithm 13.1 Kalman filter I 
File: kalman 1 . m 

Example 13.2.1 In our first example of Kalman filtering, we w ~ l l  take a simple setup, explaining 
subsequently (In section 13 5) our rationale for the structure of the example We consider simple 
kinematic motlon in two coordinates, (xi r , ~ 2  ,), w ~ t h  a motion update according to 

where x ,  , I \  the veloclty In [he rth direction and A represents some sampltng time We also assume 
that the velocity 1s subject to random fluctuations, 

Stacking up the state vector as x, = [ x  , . x I , . xz , . x2 , I T ,  we have the state equation 
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Figure 13.1 : Illustration of Kalman filter 

where w, is zero-mean and Gaussian. For this example, the covariance is chosen to be 

We assume, simply, that we observe the position variables in noise, 

where v, is zero-mean, Gaussian, and with covariance (for this example) 

The code in algorithm 13.2 illustrates the simulation of this dynamical system and the estimate of its 
state using a Kalman filter based upon the observation y,. Figure 13.1 illustrates the tracking ability 
of the filter, where the position variables of the true state and the estimated state are shown. El 

Algofithm 13.2 Kalman filter example 
File: kalex1.m 

13.3 Kalman filter il: The innovations approach 

In this section we obtained the Kalman filter based upon the minimum mean-squared error 
principle obtained in chapter 3, as embodied by the orthogonality principle. As we have 
observed, the best estimator of the state x, would be the conditional expectation E [ x ,  I Y,]. 
However, unless the noise is Gaussian, this conditional expectation may not be a linear 
function of the observations, and hence may be intractable. We therefore restrict our attention 
to linear minimum mean-squared error filters, imposing the structure that the estimate must 
be a linear function of the observations. Our problem then becomes one of determining the 
coefficients. 
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As before, our intent 1s to develop a recurswe formulation of the estimate To do th~s ,  
we will ~ntroduce the notlon of innovations, wh~ch are a sequence of orthogonal data denved 
from the obcervations, whlch span the same space as the observations The orthogonality 
of the lnnovatlons makes the recursive update straightforward 

13.3.1 Innovations for processes with linear observation models 

We introduce the innovations concept by assuming that there is a random variable x that 
we wish to estimate using a linear combination of the vectors in the sequence of vectors 
Yl = {yo, y . . . , yl 1. For now, x is a fixed vector-we will include the state update concept 
further on. We assume that y, is an observation of the form in ( I  3.1), that is, 

where Y, is an uncorrelated noise sequence. 
We denote the estimate of x using y, as xi,, and restrict our attention to linear estimators. 

so that 
I 

for some set of coefficients {a,  1. Clearly, the estimate f must lie in span(y,). If we select the 
coefficients on the basis of minimizing the average squared length of the error vector-the 
minimurn mean-squared error criterion-then the error f = x - flit must be orthogonal to 
the data, where the orthogonality in this case is naturally defined using the expectation: 

On the basis of these equations, we could set up a system of equations to find the coefficients. 
However, as we observed in chapter 3, determining coefficients in linear representations 
1s easier if the vectors comprising the space are orthogonal. Thus we seek a sequence of 
orthogonal vectors {eo, € 1 ,  . . . , El} that collectively span the same space as Yr: 

The vectors E ,  which have this property are said to be innovations of y,,  and the random 
process {E,)  is said to be an innovat~ons process (or innovations sequence). 

The innovations sequence can be determined by means of the Gram-Schm~dt process 
(section 2.15). In the current notation we can wrlte this as follows: 

I .  Set €0 = yo. 

2. Subtract from yl its projection onto the space spanned by €0: 

3. Iterate, subtracting from y, its projection onto the space spanned by y l - l :  

Let us denote the projection of y, onto the space spanned by 3;,- as Ql,- 1 .  Then we have 

We have slmllarly that S,,-I and i.,,-, are the projection of x, and v,. rcipectlvely, onto 
3'1-  I 
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If we d i w n e  dn ob5ervation model of the form ( 1  3 20), specifically 

then, by projecting onto yl- ,  , we hake 

But iince filt_ 1 is a linear comb~nation of the elements In yr- 1, and the nose v, is uncor- 
related with (orthogonal to) previous samples, f i ~ , - ~  = 0 Thus we have 

Let 

Then by construction, span(If) = span(Yf). Also, 

clnce the vector5 are orthogonal. 
For the purposes of linear estimation, the innovations process contains exactly the 

same information as the initial process {y,}. It may seem counterintuitive that a white- 
noise process could contain information, but because of our construction-relying upon the 
Gram-Schmidt orthogonalization procedure-the computation of the innovations process 
from the original process is both causal and causally invertible: it is an invertible mapping, 
with no extra ("future") data required, and must convey the same information when inverted. 

13.3.2 Estimation using the innovations process 

The minimum linear mean-squared error estimate of x using y, = E,, which we denote as 
xlt, is 

for some set of coefficients {a,}. Since y, and E, span the same space, there is a set of 
coefficients {b, } such that 

where, by the orthogonality of the basis functions, 

where R X , ,  = EX€:. 
By means of the innovations structure, recursive updates to the estimate xi, are straight- 

forward. If an additional data sample y , + ~  becomes available, then 

t t l  

= 21, + estimate of x given €,+I 

where 



598 The Kalman Filter 

13.3.3 Innovations for processes with state-space models 

Now let us return to the problem of estimating x,, where x, has the state-update equa- 
tion (13.1). Our first step is to project x , + ~  onto span(£,). We thus obtain 

The projection w , ~ ,  is obtained from 

J =o 
But 

EW,ET = Ewr(CJxj + v j  - C J ~ , I , - l ) T  = M , s ~ ,  

by the definition of the innovations, and because 

hence, 

ai.,,, = MIRe;f,EI. 

so that 

%I+ll, = A , $ ~ ,  + M,R,~ ,E~ .  (13.22) 

This is the "propagate step " (Equation 13 22 should be compared wtth (1 3.7), the difference 
1s due to the fact that here we have assumed that there is some correlatton between the state 
and observatton noise, whereas previously the correlatton was assumed to be zero.) 

Let us now tncorporate a new measurement y,,] into the estrmate ustng the ~nnovations 
update formula (13 21), where the random variable x is Interpreted as x , + ~ ,  glving 

Equations ( I 3  22) and (13 23) constitute the heart of the Kalman filter It is interesting to 
note the (relative) ease wtth which we reached thls potnt For the Bayesian approach. the 
optimal estimator wtth the squared-err01 cost funct~on led to cond~ttonal esttmat~on, whlch 
can be very trtcky In the present development, the need for conditional expectation has 
been elimtnated In escence, by projecttng all of the computations onto the space of Si, (or, 
equivalently, E l ) ,  all of the "condltloning" takes place autolnattcally This is a potent idea 
When estimattng with Gau\szan rdndom var~ables, to~zdrt~onul expectarlon I r  projectrofl 
onfo the .\puce ofthe varrahler rh~rr do rlre t oizdlt~onrrzg 

What remains in our development of the Kalinan filter tc to determtne expl~clt, recurslie 
representattons for the expectattons appearing in these formulas, 

R,, ,,,. and E [xle1 j 

To find there expectation\, i t  w~ l l  be ~t\eful to intloduce some new notatlon Let 

be the predrcirti 1tatc~-~\ri17lmtior1 crryor The covariance of this random \equence. denoted 
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I \  called the predicted state-estlmatlon error covanance, or more bnefly the estlrnatlon error 
covarlunc e matrlx 

The lnnovatlon E, can be written as 

Then we can express 

Ii = E E , E ~  = C, E Z , , , - I ~ , ~ ; , - ~  C: + c,Ec,,-~v: + EU,~;,-,C;T + E Y , U ~  - - 
.",, I R, 

But 
E ~ z , ~ , - ~ u , T  = 0, 

since Y, is orthogonal to both x, and Btit-l. Consequently, 

Also, 
EX,.,' = Ex, (~E.$-,c,T + v,') 

= Exr3s,-,C: + EX,U; 
v 

0 

= E[%lr-l + gt;t-tlfiG,-,~: 

Thus. 

The remaining step in the derivation is to find a recursive expression for P,;,-1, on which 
both (13.25) (13.26) depend. 

13.3.4 A recursion for qjt-, 
To find Prl,- 1 ,  the estimation error covariance matrix, it will be convenient to introduce two 
more covariance matrices. Let IT, denote the covariance of x,: 

IT, = Extx> 

Let C,l,-l denote the covariance of : 

Now observe that, since B,l,-l and f,l,-l are orthogonal, we have an orthogonal de- 
composition of x,: 

Consequently, taking the variance of both sides of this expression (assuming all random 
variables are zero-mean), we obtain 
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Taking the initial condition Col-] = 0, we have Pol-l = no. Equation (13.27) can be 
rearranged as 

or, replacing i -+ i + 1, 

We now find update formulas for n,+l and Ci+llt 

Because, by the modeling assumptions, we have EX,W; = 0, 

C,+ll, (using (13.22)): 

C,+III  = ~ % + t j i g T + l ~ ~  = E(Aifri, + ~ i ~ i E , ~ t ) ( A i f t r ~ r  + M,R;;,E,)~ 

=A,EB,~~~,~~,AT+A,EB,~,E~R;~,M,+M,R;;,EE,~~,:,+M,R;;,M, 
In this expression. E [ s , ~ , ~ $ ~ ]  must be found. Using (13.23). we find 

Substitution of (13.29) into (13.3.4) and rearrangement gives 

From (13.3.4), and applying (13.28) and (13.30), we have 

where we define 

Substituting (1  3.32), (1  3.25), and (1 3.26) into (1 3.3 I), we obtain 

with 

Equation ( 1  3 33) I \  known a\ a lnatr~x R~ccati dtfference equation, after the mathemat~ci;ln 
who first analyzed nonltnear dtfferential equatton\ of \~milar Eorni Thic d~ffere~ice equatloii 
I \  nonlinear, but cdn be \olved eailly by recurwe meail\ 
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13.3.5 The discrete-time Kalman filter 

With the development of the matrix Riccati equation (1 3.33), we have completed the steps 
needed for the celebrated Kalman filter. We present one  neth hod-the time-update measure- 
ment form-leaving the presentation of another form for the exercises. 

Since both the state estimate and the associated error covariance need to be updated, 
we derive time- and measurement-update equations for both of these quantities. First, we 
consider the time-update equation for the state. Substitution of (13.25) into (13.22) yields 
the time-update equation: 

% + i l r  = Ara r~ t  + fur [cr P~,~-Ic '  + & I  [y, - Ct~rlt-il . (13.35) - 
Ei 

Also, substitution of (13.25) and (13.26) into (13.23) yields the measurement-update equa- 
tion: 

The covariance matrix, P,ll-l, is obtained via (13.33) and (13.34). 
These equations for the Kalman filter should be compared with those of (13.7) and 

(13.13). There are two principle differences: the time update (13.35) depends upon the 
innovation E, ,  and the measurement update (1 3.36) must have the covariance matrix P,+~l, 
computed as the solution to the matrix Ricatti equation (13.33). Both of these differences 
are due to an assumption that was made in the innovations approach that was not made in 
the previous Bayes approach. It was a assumed that the measurement noise and the state- 
update noise are correlated. Removing this assumption by setting M, = O will simplify our 
expressions. Let us see the result in this case. 

We already have introduced the estimation error covariance matrix, P I  = 
~ f , ~ , _ ~ f f ; , - ,  . What we also need to develop is an expression for the filtered state-estimation 
error covariance, Ptl, = Eftl,f :, , where f = x, - 

Define the Kalman gain matrix 

From the measurement-update equation (13.23), we have 

Now let us formulate thefiltered state-estimation error covariance matrix 

Substituting (13.38) into (13.39), we obtain 

Ptil-1 

But using the fact that E, = y, - C,.IZrjr-l = C,(X, - + v,, we have 
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Inserting (13 41) and (13.25) Into (13 40), expanding, and slmpllfylng, we obtaln 

Prlr = Prjr-i - P ~ I ~ - ~ c J K J  - KrCrPr~r-1 + Ki [cr~rlr-~~: + ~ r ]  KJ 
- 1 

= P,li-l -PIII-ICJ [cr~r~r-i~:+~r] CrPr11-I (1 3.421 

= [I - KrCrIP~lr-i (13 431 

We will complete the tlme-updatelmeasurement-update structure for the Riccat~ equa- 
tlon by obta~ning an expression for Pt+jlr in terms of Pli , .  Rearranging (1 3.33) with MI = 0, 

P1+11, = At [ ~ ~ p - i  - PII+I C: [CIPIII-IC: + R I ] '  C ~ P ~ I , - I ]  A: + Q,. (13.441 
\ , 

-4 

f',, 

Summarizing from (13.35), (13.44), (13.37), (13.38), and (13.43), we have the follow- 
ing formulation of the Kalman filter: 

Time update 

Kalman gain 

Measurement update 

These are identical to the Kalman filter equations derived using Bayesian methods in sec- 
tion 13.2. 

13.3.6 Perspective 

We see that the Kalman filter is a solutlon to the general problem of estimating the state 
of a h e a r  system Such restrictions as statlonarlty or time-~nvariance are not important to 
the derlvatton What 1s important, however, is the assumption that the notse processes arc 
uncorrelated Also, we do not need to know the complete dlstrlbutlon of the no~se-onlj 
its firs: and second moments This 1s a major simplification to the problem. and one of the 
nlce thlngs about llnear estimation theory, and 1s not true of general nonlinear systems 

There are many ways to denve the Kalman filter, of which two have been presented the 
Bayesian approach and the innovations approach Each of them has conceptual value The 
Innovations approach 1s closest In splnt to the important concept Introduced in chapter 2- 
namely, orthogonal projections This is essentially the way that Kalman first derlved the 
filter By way of comparison, we note the following 

* The orthogonal project~ons approach does not rely on anythlng more than knowledge 
of the first and second moments of the dlstributlons of all the random proces\es 
lnvolved If we do in fact have complete knowledge of all dlstrlbutlons involved. 
we should perhaps wonder if there mlght be a way to do better than we can partla1 
knowledge This 1s a lealistrc questlon to addre\\, and the an\wer, for llnear Gaurclu~t 
\ystems, IS that we do not gain anythlng' The reaion succinctly, i \  that the f~rst and 
second moments completely speclty the G a u s s ~ ~ ~ n  dlitribution The Bayesian approach 
relies upon transformations of density functtons S~nce  a Gauisi'tn denstty 1s enttrelj 
ch'iracterizcd by its mean and cov'irlance, the Kalman filter I <  op[inial 
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* A minimum-vdr~ance approach might also be considered (cee, i n  fact, exercise 13 3- 
15) It might be hoped that wch an approach might yleld a different-perhaps even 
better-e5timator However, the Kalman filter admits interpretatlons as both a 
minlmum-var~ance and maximum-likelihood esttmator. 

The fact is that. under fairly wide and applicable conditions, the least-squares, conditional 
expectations, maximum-likelihood, minimum-variance, and other interpretations of the 
Kalman filter are all equivalent. This is quite remarkable-even mystifying-with the reason 
for equivalence, perhaps, lying in the basic structure of linear systems combined with the 
basic mathematical concept of orthogonality. 

13.3.7 Comparison with the RLS adaptive filter algorithm 

Let us return to the least-squares filtenng problem introduced in section 3 9 and the RLS 
filter introduced in section 4.1 1.1. We desired to find a set of FIR filter coefficients h so 
that when the sequence { f [ t ] }  is passed through the filter, the output matches as closely as 
possible some desired sequence d [ t ]  

The output of the filter 1s 

Assuming real inputs and filter coefficients for simplicity, we can write 

thus. we have 

In the adaptive filter application, the filter coefficients are chosen adaptively to minimize 
the sum of the squares of e [ t ]  = d [ t ]  - y [ t ] .  

In our Kalman filter interpretation, we regard the filter coefficient vector h as the "state" 
of some system, and assume that the state is fixed. The adaptive filter adapts by trying to 
find the fixed state, so that estimating the adaptive filter coefficients becomes the problem 
of estimating the state of the system. We can regard 

as the state-space observation equation. Since the state is fixed, the state-update matrix A, 
is the identity matrix, and there is no state noise. For the observation equation (13.48), we 
will denote the estimate of the state as h(t)-the adaptive filter coefficients at time t .  Thus, 
from the point of view of a Kalman filter, the problem of finding the best (least-squares 
error) filter coefficients has become the problem of estimating the state of the system. 

While the original least-squares problem does not have a probability model for the 
observation error e [ t ] ,  it is still useful to apply a Kalman filter to this problem. We note 
that since the state update has A, = I, we must have P,+li, = P,,,. We make the following 
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identifications: 

Srate-update matrix 
State-noise varrdnce 
Observation matrtx 
Obrervatlon-noise vartance 
Observation 
Estimation-error covartance 
State estimate 

state space RLS 

Denoting the filter weight estimate at time t as h(t), based upon (13.46) and (13.47) we 
find that an updated filter weight is obtained by 

h(r + 1) = h(t)  + k,+l(dlf i- 11 - qT1t + I I M f ) ) ,  

P,+ll,+l = ( I  - k,+l)P,lt. 

Comparison with the RLS algorithm of section 4.1 1.1 reveals that the algorithms are es- 
sentially identical. The only difference is that in section 4.1 1.1, the Kalman gain was given 
(equivalently) by 

so that the term a: does not appear in the denominator of the Kalman gatn However, thls 
can be canceled out if it IS assumed that the ln~tial error covariance is Pol-] = 46-' I ,  
for some small pos~tive 6 S ~ n c e  6 was assumed to be arb~trary, this does not represent a 
slgnlficant modlficatron 

We conclude that for the estimat~on of a constant state, the RLS filter (tnvoiving d 

least-squares criterion) is equ~valent to a Kalman filter ( ~ n  which the est~mation error is 
modeled as observation noise) 

13.4 Numerical considerations: Square-root filters 

In the early days of ~ t s  deployment, the Kalman filter was often Implemented using fixed- 
potnt ar~thmetic It was found that the Kalman filter equations requlre a wlde dynamic range 
of numerlcal coeffictents, and that the equations tend to be somewhat poorly conditioned 
numer~cally, especially for fixed-polnt ~mpleinentat~ons To address these problems, algo- 
rlfhms were developed that have better numerlcal condlttontng Even today, with floating- 
point numerlc procewng readlly available, the condittontng of the problem may suggeit 
that numer~cally stable algorithms be elnployed for the Kalman filter Uslng these algo- 
rithms is analogou~ to using the QR algorithm for \elution of the least-squares problem, in 
which the Grammian is never explicitly computed and hence 1s never explicitly inverted 
We preTent one of these numer~cally stable algorithms for the Kalman filter The references 
at the end of the chapter provlde cugge.rtions for others 

The algorithm we develop I \  known a\ the tqucrr-e-mot Kalman filter It relies upon 
computing and propagating the Chole4ky factortzation of P,+li,, as 

P,+l,l = sr+,s;+, 
where St+,  i i  the "iquaie root" of PI,  , The Choleihy fdctorlzation r i  done in 5uch a w't! 
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that Sf+, ir a lower-tr~angular matrrx In formulating the algonthm, ~t 1s helpful to place the 
Kalman filter In its one-\tep predictor form We can wnte 

Wr = Rr + CrPrIt-I c:, (13 49) 

fr+iir = Aririt-I + A r p r j r - ~ ~ : ~ ~ ' ( y r  - Cr%jt-i), (13 50) 

pr+f~r = A { ( [  - ~ r j r - l ~ : ~ / ; - ~ ~ r ) ~ t i r - l ~ T  + Q, (13 51) 

The computation involved in the square-root Kalman filter is summarlzed a? follow\ 

1 .  Form the matrix 

where, for example, Q:/? is a matrix such that Q:/'(Qf/*),' = Q, (acholesky factor). 

2. Triangularize X, using an orthogonal matrix Ur. That is, find an orthogonal matrix 
U, such that Y, = X, Ut is lower triangular, and identify the following components: 

The orthogonal matrix U, can be found using Householder transformations (see sec- 
tion 5.3.4). 

3. Update the estimate as 

%+iit = Ar%lt-~ + G t ~ r - " ~ ( y r  - Cr%t\r-i). (13.53) 

The operation of this algorithm is revealed by computing 

and by computing, from the right-hand side of (13.52), 

Equating (13.54) and (13.55), we must have 
T G~w:" = At  Pri,-jC, 

so that G, w;"~ = A, Prlr- C; w;' , giving the desired update gain matrix as required from 
(13.50). Also, from equating (13.54) and (13.55), we have 

G,GT + s ~ + ~ s ~ ~  = A ~ P ~ ~ ~ - ~ A ~  + Q ~ ,  (13.57) 

from which 

SI+IS,T,~ = ArprIt-IAT + Qr - G ~ G T .  
In light of (13.56), this can be written as 

~ r + l s f + ~  = A, pr i r -~AT + Qr - ~ r ~ r ~ t - l ~ f  ~ ; ' ~ t p r , r - ~ ~ f ,  

so that S,+I is, in fact, a factor of Pr+ilt as shown in (13.51). 



606 The Kalman Filter 

13.5 Application in continuous-time systems 

In this section, we describe how a continuous-time kinematic model in state space is con- 
verted to a discrete-time state-space form, suitable for state estimation using a Kalman 
filter. We will demonstrate the discretization process for a four-state linear system with a 
two-dimensional observations vector, corresponding to two-dimensional equations of the 
motion of a vehicle. The observations consist of noisy samples of the vehicle position. 

13.5.1 Conversion from continuous time to discrete time 

Suppose that we are given the following time-invariant. continuous-time system, 

where u( t )  is a zero-mean, continuous-time, white-noise random process with 

~ u ( t ) u ~  ( s )  = Q S ( f  - s ) .  

From this continuous-time system, samples are taken every A seconds. We wish to write 
the dynamics of the corresponding discrete-time system, 

where wk is a random process with covariance Q. (We use k as the time index here, to avoid 
confusion between the continuous-time process and the discrete-time process). Conversion 
from continuous time to discrete time requires finding A and Q. The key to the conversion 

is the solution of the continuous-time differential equatton, presented in section 1.4.3 
Applying (1.33, we have 

By identifying the discrete-time process with the continuous time process as xn - x(tr), 
where t k  = k i l t ,  we see that 

A = e  3 A  

and 

w,& = if'" e3(k+l - " ) ~ ~ ( h )  dh, 

The covariance of wk can be found from 

13.5.2 A simple kinematic example 

Assume the following continuous-time system, in which the acceleration is applied via the 
random noise 
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where the system matrices 3 and G are defined in (1 3.60), and u, is a continuous-time white 
noise with covariance 

The matrix exponential is 

Q ( t )  = exp(3 t )  = exp (13.61) 

so that from (13.58) we have 

To compute Q, we substitute the values for Q ( t )  and G from (13.61) and (13.60) into 
(13.59), to obtain 

In computing the discrete-time Q matrix, the process noise induced on the position com- 
ponents is due to the acceleration error accumulation over the integration interval. Even 
though the continuous-time system had no noise components on the position components, 
there are noise components on the position components in the discrete-time model. 

13.6 Extensions of Kalman filtering to nonlinear systems 

Consider a general nonlinear discrete-time system of the form 

for t = 0, 1, . . . , with (wt, t = 0, 1,  . . .} and (v,, t = 0, 1, . . .} representing uncorrelated, 
zero-mean state-noise and observation-noise sequences, respectively. The general nonlinear 
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estimation problem 1s extremely d~fficult, and no general solution to the general nonlinear 
filter~ng problem is available One reason the h e a r  problem is easy to solve is that when 
the process noise, observation noise, and lnrtlal conditions, xo, are Gaussian distributed, the 
state x, is Gaussian, and so is the conditional expectation fill, But if A ir nonlinear, then the 
state IS no longer guaranteed to be Gaussian dirtnbuted, and ~f either A or C is nonl~near, 
then the conditional expectation Pli, is not guaranteed to be Gaussian distributed Thus, we 
cannot, In general, obtam the estimate as a function of only the first two moments of the 
cond~tional distribution. The general solution would requlre the propagation of the entlre 
condltlonal distribution Thus, we cannot eas~ly get an exact solut~on, and we resort to the 
time-honored method of obtaining an approx~mate solution by means of l~neanzation 

In what follows, we present the general method for l~neanzlng dynamlcal systems, 
whtch requires the use of a nominal trajectory Subsequently, we use the Kal~nan estlrnate 
of the state as the nominal trajectory, producing what 1s known as the extended Kalman filter 

Linearization of dynamical systems 

Nonlinear dynamical systems can be linearized using a Taylor series about some operating 
point. We introduce the linearization for discrete-time systems; the method is similar for 
continuous-time systems. To linearize the nonlinear dynamics and observation equation of 
the form 

xlt + 11 = f(xlt1, u[tI, f ) ,  

y[rl = h(xlt1, ulrl, t ) ,  

where f RP x RR' x Z -+ RP and h RP x R' x Z -+ Rtn, we assume the ex~stence of a 
nomznal input uo[t], a nomlnal state trajectory xo[t], and a nominal output trajectory yo[t] 
We assume that the input u[t] and state x[t] are close to the nominal input and state, and 
create the linearization by truncating the Taylor series expansion for f. Let 

where u8[t] is a vector with components us ~ [ t ] .  ug,*[t], and so forth. Then the nonlinear 
dynamics equation can be written as 

xolt + 11 + xsCf + 11 = f (xolrl+ x8rt1, uo[rJ + us[i], t ) .  

Now, assumlng that f E C ' ,  we expand f in a Taylor series about xo[f] and uo[t] Since 
xs[f] and us[t] are assumed small, we retain only the first-order term of the series The 1 th 
component o f f  can be expanded as 

Let 

3f,l dJ,  I-- - af,, 
tlxl tixi 1 dx,] 
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The p x p matrlx is called the Jacoblcrrl o f f  w ~ t h  respect to x  Similarly, let denote 
the p x 1 Jacobian o f f  wlth reipect to u Then the Taylor series tor the lineanzatron can be 
wrltten a i  

The nominal solut~on iattsfiec the ong~nal  dynamics equatlon 

xolt + 11 = f(xolt1, uoCtl, t j .  

Subtractlng this equation from ( 13 64), we obtain the time-varying h e a r  dynam~cs equation 

It is convenient to let 

a f a f 
A ( t )  = -(xo[tl, uolt] ,  t j  and B ( t )  = - - ( x ~ [ t ] ,  uo[ t ] ,  t ) .  ax a u 

Then we obtain 

The observation equation can be similarly linearized by expanding h [ t ]  in a Taylor series. 
We obtain thereby 

where C ( t )  and D(tj  are respectively the m x p and m x 1 matrices defined by 

Example 13.6.1 Determine a linearization of the system 

about the nominal trajectory 

where uo[ t ]  = 0. The Jacobian of f  with respect to x is 

Evaluated along the nominal trajectory we have 

so the linearized system is 
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One of the more difficult aspects of determining a linearization is finding an appro- 
priate nominal trajectory. Very con~monly, the nominal trajectory is taken about a point of 
equilibrium, which is a point such that 

At such points, 

The equilibrium points arefied points of the dynamical system. The linearization of the 
system about those points thus provides an indication of how the system behaves in a 
neighborhood of equilibrium. For continuous-time systems, the equilibrium points are those 
at which 

Linearization about a nominal trajectory 

In the preceding pages, to linearize a nonlinear state-space system, we postulated a nominal, 
or reference, trajectory about which a Taylor series was expanded. For our purposes here, 
we denote the nominal trajectory at time t by E,, and the deviation Sx, as 

Then, based upon the techniques of section 13.6, the nonlinear dynamics equation (1 3.62 J 

can be approximated by 

Jx, A,Jx, + w,. 

where A is the matrix of partials 

We assume that the approximation is close enough that we can write 

Sx,+, = ASx, + w,. (13.67) 

Similarly, the observation equation (1 3.63) can be wrltten as the approximation equatlon 
(replacing approximat~on, x, w ~ t h  equality, =, from here on) 

where 

and 

Once the linearized dynamics and observation% equations given by (13 67) and ( 1  3 68) 
are obtained. we may apply the Kalman filter to thi\ s> itern in Sx, in the standard way The 
algorithm consists of the following %tep\ 

1 .  Obtain a reference ti-ajectory {El, t = 0. I .  . . . , T J  

2 Evaluate the partials of A dnd C dt Y,. identify thc\e quantltrei as A,  and C,. respec- 
tlvely 

3 Compute the reference ob\er~atton\. y,, and calculate by,  
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4. Apply the Kalman hlter to the finearlred mociel 

Sy, = C,fix, f ui. 

to obtLlin the deviat~on e5tirnates 6Q, ,  

5 Add the devldtion estimates to the nominal trajectory, to obtain the trajectory ecti- 
matei 

The approach thus outlined is called globcrl lineczrizntion, and it presents several potential 
problems. First and foremost, it assumes that a reliable nominal trajectory is available, so 
that the A, and C, matrices are valid. Furthermore, as the system is time-varying, these A, 
and C, matrices must be stored for every time step. But many important estimation problems 
do not enjoy the luxury of having foreknowledge sufficient to generate a reference trajectory. 
Also, even if the A, and C, matrices are not grossly in error, the approach is predicated on 
the assumption that higher-order terms in the Taylor expansion may be safely ignored. It 
would be highly fortuitous if the nominal trajectory were of such high quality that neither 
of these concerns were manifest. 

In the general case, the development of a nominal trajectory is problematic. In some 
special cases it may be possible to generate such a trajectory via computer simulations; 
in other cases, experience and intuition may guide in development. Often, however, one 
may sin~ply have to rely on guesses and hope for the best. The estimates may diverge, but 
even if they do not, the results may be suspect because of the sensitivity of the results to the 
operating point. Of course, one could perturb the operating point and evaluate the sensitivity 
of the estimates to this perturbation, but that would be a tedious procedure, certainly not 
feasible in real-time applications. 

The extended Kalman filter 

Global linearization about a predetermined reference trajectory is not the only way to ap- 
proach the linearization problem. Another approach is to calculate a local nominal trajectory 
"on the fly,'' and update it as information becomes available. 

We wish to construct a recursive estimator; and regardless of its lineanty properties, 
we are under obligation to provide the estimator with initla1 conditions in the form of 20,-I 
and Pol-, , the a przorr state estimate and covariance. The state xoi- l represents the best 
~nfomation we have concerning the value xo, so it makes sense to use this value as the first 
point in the nominal trajectory; that is, to define 

- 
Xo = 201-1. 

and use this value to compute the Co matrix as 

Co = - 

and the deviation observation equation as 

Using these values, we may process Syo using a standard Kalman filter applied to (13.67) 
and (13.68). The resulting measurement update is 
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where K O  = c $ [ c ~ P ~ ~ - ~  C; + ~ 0 1 - l .  But note that fol-l fulfills two roles: (a) it 1s 
the initial value of the state estimate, and (b) it 1s the nominal trajectory about which we 
linearize, namely fio. Consequently. 

Furthermore, 

SfOlO = fOiO - Eo = foiOiO - fO,-1,  

so (13.70) becomes 

Consequently, (13.72) and (13.71) constitute the measurement-update equations at time 
r = 0. 

The next order of business is to predict to the tlme of the next observation, and then 
update. We need to compute the predicted state. f 10, and the predicted covariance, PI 10. To 
predict the state, we simply apply the nonlinear dynamics equation: 

To predict the covariance, we need to obtain a linear model, which will enable us to predict 
the covariance as 

The question is, what should we use as a nominal trajectory at which to evaluate (13.66)1 
According to our philosophy, we should use the best information me currently have about xo, 
and this is our filtered estimate. Thus, we take, for the calculation of Ao. the value xo = foio 
Using this value, the prediction step at time t = 0 is given by (13.73) and (1 3.74). 

The next step. of course, is to perform the time update at time t = 1, yielding 

which requires us to employ a reference trajectory E l .  Following our philosophy, we simply 
use the best information we have at time t = 1, namely, the predicted estimate, so we set 
- 
xi = f l i o .  Consequently, S f l l o  = 511io - El  = 0, and S f l j i  = gill - f l j o ,  which yields 

where 

with 

The pattern should now be qulte clear. The resulting algor~thrn IS called the exrerrded 
Kalman Jilter, summanzed as follows. 

Measurement update 

where 

K i  = P ~ - I ~ , c T + ~  [c1+1 P ~ - I I ~ c ~ ~  + R ~ + ] ]  - '  . (13 771 
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with 

Time update 

where 

The extended Kalman filter is initialized in exactly the same way as the standard Kalman 
filter; namely, by supplying the a priori estimate and covariance, xoi-1 and respec- 
tively. 

13.7 Smoothing 

The Kalman filter provides a state estimate conditioned on the past and present observations, 
and so is a causal estimator. Such an estimator is appropriate for real-time operation, but 
in applications, it often is possible to delay the calculation of the estimate until future data 
are obtained. In such a postprocessing environment, we ought to consider constructing a 
smoothed, or noncausal, estimator that uses the future, as well as the past, data. 

In our discussions of filtering, we have employed adouble-subscript notation of the form 
to denote the estimate of the state x, given data up to time k, where we have assumed 

that the data set is of the form ( y o ,  y , ,  . . . , yk}. For the ensuing discussions, however, i t  is 
convenient, though a bit cumbersome, to modify this notation as follows: Let the estimate 
2,1i:k,  i ( k ,  denote the estimate of xi given data { y ; ,  y i+l ,  . . . , yk}.  In this notation, the 
filtered estimate f j i k  becomes 2,10:k The estimation error covariance for these estimates 
will be denoted by P,ii:k = E [ x j  - f ; i i : k ] [ ~ ;  - 2 ,1 i :k lT .  

We assume that, in general, the entire set of data available are the samples YT = 
{ y o ,  y t ,  . . . , y ~ } .  There are three general smoothing situations. 

Fixed-lag smoothing. In fixed-lag smoothing, an estimate of x, is obtained using N points 
of future observation, producing the estimate denoted f,jo ,+N . 

Fixed-point smoothing. In fixed-point smoothing, the state is estimated at one fixed time 
only, using all of the data available. For fixed to, the fixed-point smoother is denoted T ,  

where 0 I to F T .  

Fixed-internal smoothing. Given the set of data y7., the fixed-interval smoother provides 
estimates Skio T for all k in the range 0 5 k 5 T. 

Fixed-lag and fixed-point smoothing are specialized applications that are found in 
various texts and are not developed here. Fixed-point smoothing may actually be viewed as 
a special case of fixed-interval smoothing. 

13.7.1 The Rauch-Tung-Streibel fixed-interval smoother 

There are at least three approaches to the development of the fixed-interval smoother: 
(a) the forward-backward smoother, (b) the two-point boundary-value approach, and 
(c) the Rauch-Tung-Streibel smoother. We present only the Rauch-Tung-Streibel approach. 

Assume that for each time t the filtered estimate and covariance, f t i o ,  and Ptjo r ,  and 
predicted estimate and covariance, ?,+I , o r  and Pr+1 ,, have been computed, using a Kalman 
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filter. We want to use these quantities to obtain a recursion for the fixed-interval smoothed 
estimate and covariance, 2, T and PrIo T. 

We assume that xi and xi+! are jointly normal, given {yo,. . . . yT]. We consider the 
conditional joint density function 

and seek the values of x, and x,+l that maximize this joint conditional density, resulting 
In the maximum-likelihood estimates for xt and x,+j, given all of the data available over 
the full extent of the problem. (We eventually show that the maximum-likelihood estimate 
is indeed the orthogonal projection of the state onto the space spanned by all of the data, 
although we do not attack the derivation initially from that point of view.) For the remainder 
of this derivation, we suspend the subscripts, and let the reader infer the structure of the 
densities involved from the argument list. 

We write 

- - f (XI, XI+I, Yo. . . . . YI, Yl+r, . . . , YT) 
f (YO, . . . , YT) 

- - f (x,, x,+I, y,+~, . . . , Y T ~ Y O ,  . . . , Y I ) ~  (YO, . . . YO 
f (YO,. . . , YT) 

= f ( y t + ~ , . . . , y ~ I ~ i , x r + ~ , Y ~ , . . . , y r )  

But, conditioned on xi+l, the distribution of {yo, . . . , y ~ )  is independent of all previous 
values of the state and the observations, so 

Furthermore, 

where the last equality obtains since x,+l conditioned on x, is independent of all previous 
observations. Substituting (13.83) and (1 3.84) into (13.82) yields 

independent of X, 

Our approach to the smoothing problem will be to assume that kt+rjo T is avail- 
able, and maximize (1 3.85) given this assumption. (This assumption provides a boundary 
condition, as we shall see.) Assuming normal distributions, the densities f (x,+] / x,) and 
f (x, I YO. . . . , yi) are 

The problem of maximizing the conditional probability density function. 
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w ~ t h  reipect to u, nrr~.rrrzrrzq x, 1 %  qlvm rr\ the tniootl~~dectlw~crte rrt tlmr t + 1 15 equivalent 
to the problern of rnrnlnli~ing 

evaluated at x,+, = lo r B y  taking the gradlent of J (x,) wtth respect to x,, and equating 
it to zero, the solutlon can be shown to be 

Using the matrix-inversion identity (4.33) and its corollary (4.34), it can be shown that 

where 

Equation ( 13 87) 15 the Rauch-Tung-Streibel smoother The smoother operates In backward 
time with ~j-10 T ,  the final filtered ectimate, as the lnrtial condition for the imoother For 
example, the order of computattons is as follow\ 

1. Initialize: Given the data yT, compute .%TIT using the Kalman filter. Set t  = T - 1. 

2. Compute arlO I uslng the Kalman filter, then g t I o  T using (13.87). 

3. Let t = t - 1 and repeat from step 2 as necessary. 

We next seek an expression for the covariance of the smoothing error, Zt10  T = X, - jitiO t :  

p t i o : r  = E ~ , I O : T B & : ~  

Frorn (13.87), 

so that 

Multiplying both sides by the transpose and taking expectations yields 

Examining the cross terms of these expressions yields, for example, 
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By a similar argument (or from previous orthogonality results), 

E%,,o ig;,, = 0, 

and SO all cross terms in (13.89) vanish, leaving the expression 

Prior + S I E & + I ~ ~ T ~ ~ + ~ ~ ~ ~ S ~  = PtIoi + s ~ A ~ E ~ ~ ~ o ~ % : ~ , A T s , T .  (13.90) 

An important byproduct of the above derivations is the result 

E%lo T%IO T = 0. (13.91) 

This result establishes the fact that the smoothed estimation error is orthogonal to the 
smoothed estimate, which is equivalent to the claim that the smoothed estimate is the 
projection of the state onto the space spanned by the entire set of observations. Thus 
smoothing preserves orthogonality. 

Next, we compute the term from (1 3.90) 

EQ,+llo ~ a , T , l ~ o  ,. 

To solve for this term, we use the just-established fact that 

is an orthogonal decomposition, so 

Ext+1x;+, = E%+i lo~~a ,?+l~oT  + E % + I I o T E w , T , , ~ ~ T  

= ~ ~ , + ~ , ~ ~ ~ f i , ? + ~ ~ ~ ~  + P I + ~ , O T .  

Similarly, 

EX,X;  = E2rlo 1 ~ 2 : ~ ~  + Ptlo 1 .  

We have previously found that 

EX,+,X,?+, = A,EX,X:A: + Q ,  

Substituting these results into (1 3.90) yields 

which simplifies to 

13.8 Another approach: H, smoothing 

Recently, other approaches to Kalman filter~ng have been developed based upon other 
cntena. The H, approach can be modeled as a two-person game, In whlch the filter (the 
first player) attempts to prepare the best performance (mlnlmum estimation error) aga~nct 
the worst strategy that the other play (nature) can produce That is, the filter 1s designed for 
uniformly small error for any meaurement nolse that nature produces, whether Gauwan or 
not. Rather than d~scuss thls method in deta~l, we refer the tntere5ted reader to the reference5 
at the end of the chapter 



13.9 Exercises 

13.1-1 Ciiven the assunlptionh o n  our model. verify each of the following relationships: 

13 2-2 Shou by wing the defin~tron 

Pirilrli = E [ ~ i + i ~ r + i ~ / + i ~ , + ~ ]  5 

where%,,I = x,,, - x, ,~~, , ,  that ( I 3  17) ~scorrect  

13 2-3 Show thdt ( 1  3 18) and ( I  3 19) are correct (Use the rnatrrv Inver\ton lemma ) 

13 2-4 Show that the opt~mal  eitrmate and tts error are orthogonal 

E . [ Q , + I ~ ~ + ~ ( Y :  - %+ijitijr] = 0 

13.3-5 Suppose that j-, is a scalar zero-mean discrete-time stationary random process modeled by 

(an A R(1) process), where n, is a zero-mean, uncorrelated random process with ~ [ n ; ]  = 
1 - ,02. Suppose also that y, is normalized so that Eyo = 0 and E y i  = 1 .  Show that this 
model has a correlation function of the form Ey, y, = pi'-'I. 

13.3-6 Let y, be a scalar zero-mean discrete-time stationary random process with 

Ev, y ,  = 

Show that t-, = y, - pyf..i is an innovations process, and that Ee: = 1 - p? (This is the 
whitening filter for the process in the previous exercise.) 

13 3-7 Let v, be a scalar random process, and let t, be it5 Innovatton process Then there 1s a h e a r  
relatronshtp 

for an invertible matrix W ,  where E = [eo, t , .  . . . . tnlT and y = [w y i . .  . . , ynlT .  Let f be 
the linear MMSE estimate based upon y: 

a = R~,R,'Y 

In addition, let L be a Chole\ky factor of R,,, as 

R,, = LLI 

(a) Show that R,, = W-'R,, W-' 

(b) Let W = L-I Show that 
- 
W = K,"'w, 

where R;'~' IS a matrlx such that IR; ' /~)~H; ' / '  = R,' Also \how that R,' = W'W 
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(c) Uslng these results, show that 

fi = R,, RE'€, 

so that the estlmate fi IS a ltnear funct~on of the Innovations 

13.3-8 The Kalman filter as we have derlved tt has been for state equations of the following form 
(for conven~ence we suppress the time dependence): 

where 

Frequently, the model is specified as 

x,,i = AX, + Bw,. 

y, = Cx, + Dv. 
Explain how the Kalman filter derived for (13.95) can be employed to provide an estimate 
for the state in (13.96). 

13.3-9 Show that the Kalman filter can be put Into the one-step pwdlcror form 

f i ~ + ~ , ,  = Atg,~-i  + A:PII;-~C: [c,P,,,.Ic: + R , ] '  [g, - C,~ , l , - I ]  

with given by (13.33) and (13.34) 

13 3-10 A random process ( y o ,  y~ , ) IS  defined bq the follow~ng recursive procedure Let yo be 
a random vanable untforrnly dlstnbuted over (0, I), and define y, as the fractional part of 
2vr-i. t = l , 2 ,  

(a) Show that Ey, = 0 5, cov ( y , ,  3,) = 

(b) Show that ~,,,-, = $ v,-, , is the lrnear least-squares predtctor of y, glven 
P , - ~ J  Demonstrate that E(y, - 5,1,-1)2 = 

Note If yo = 0 aiazai observe that the (a i )  are Independent random variables tahlng 
values {O l ) ,  each wlth probability i ,  and that we have 

13.3-1 1 Consider a process {y,) with a state-space model 

x,,~ = Ax, + Bw, r 2 0. 

y, = Cx, + Y,. 

with 

where S,, 1 5  the Kronecker delta function Define r ' l k  = Exix: Show that we can wrlte 
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where 

13.3- 11 A process ( y k  } is called wide-sense Markov if the linear least-squares estimate of yk+,, 
j > 0, given ( y , .  i 5 k ] ,  depends only upon the value of yk. Show that a process is wide- 
sense Markov if and only if 

f ( i ,  k )  = f (i, j )  f ( j .  k ) ,  i 5 j 5 k ,  

where 

13 3-13 In thls problem, yet another derivat~on of the Kalman filter is presented, which relies upon 
a l~near  min~mum-variance cntenon Let us impox  the Itnear measurement-update model 

where Dr+1 and Kr+ i  are to be found. Let us also use the following notation for the estimation 
error: 

(a) Show that if r i ,+ i j r+ l  is to be unbiased, then 

(You may assume, as a recurslve step. that E[$,li,] = 0 ) 

(b) On the basis of (13.97), show that 

(c) Show that 

may be wntten as 

Pr+i1iTi = ( I  - Kr+icr+l)pr+~lr(I  - Kr+icr+~)' + K r + i ~ r + I ~ ; l  

(d) A reasonable performance criterion is to minimize 

Using the gradlent formulas in appendix E, show that the minimum can be achieved by 
taking the gradient with respect to Kr+I .  to obtain 

and that the corresponding error covariance is 

(e) Compare these formulas with those for the Kalman filter derived via Bayesian and 
innovations methods. 
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13.6-14 For the following homogeneous (zero-input) systems, find the equilibrium points and a 
lineanzed system about the equilibrium points. 

(c) x, = 2x2c0sx,, 
x 2  = 2sinxi .  

13.7-15 Show that (13.87) and (1 3.88) are correct. 

13 7-16 Wnte a MATLAB function xsmooth = smooth (X, t , A, C, Q ,  R ,  PO ) that provides an 
estimate of x, using the data In X (stored in columns) 

13.1 0 References 

The Kalman filter was introduced in [I691 and [170], initially for continuous time. Since 
the time of its introduction, a variety of presentations have been made, including [41, 154, 
4, 102.29 1 1. The innovations approach has been thoroughly examined in a series of papers 
starting in 11631 and extending through [I041 (and references therein). The minirnum- 
variance approach is promoted in [102]. 

The companson of the Kalman filter and the RLS filter is made in [289]. The smoothing 
algorithm of section 13.7 is described in [271]. Square-root algorithms are summarized in 
[356], which also provides a comparison of their numeric conditioning and computational 
complexity. 

The problem of initializing the Kalman filter with uncertain initial values has been 
addressed using set-valued Kalman filters, described in [235], with an application to mul- 
titarget tracking in 12321. 

H, filter design is discussed in 18, 122, 302, 237, 125, 129, 306, 377, 15, 3071. A 
thorough discussion of the HE viewpoint is provided in [386]. 



Part IV 

Iterative and Recursive Methods 
in Signal Processing 

Iterative algorithms are those for which a new solution is obtained as a refinement of a 
previous solution. Recursive systems provide an update of a solution as new data become 
available. We begin this part with an introduction to the kinds of behaviors that can occur 
in iterative systems, then present some basic results relating to convergence. This is fol- 
lowed by an introduction to several iterative algorithms: Newton's method, steepest descent, 
composite mapping, clustering, iterative solution of linear systems, and iterative maximum 
likelihood (the EM algorithm). By this array of choices, we demonstrate a broad (but not 
exhaustive) cross-section of iterative techniques. Applications of iterative algorithms are 
legion, of which we illustrate a few: LMS adaptive filtering, multilayer perceptrons (neural 
networks), bandlimited signal reconstruction, vector quantization, training hidden Markov 
models, and others. 





Chapter 14 

Basic Concepts and Methods 
of Iterative Algorithms 

" et prockdant ainv ~nfiniment, I'on approche lnfrn~ment plus prks du requir" 

[ and proceed~ng In this way unendingly, one approacher inhnitely closer to the 
required value ] 

- S Stevln 
La pratlque d'arithrnet~que 

In digital computation in general, there are very few algorithms that are not at least partly 
iterative in nature. LU decomposition and Cholesky factorization of matrices are examples 
of algorithms that iterate through several steps, row by row, until completion. However, 
iteration of this sort is not what is intended as the current focus of study. Iterative methods, 
as described in this part, may be loosely categorized as those for which at each stage a 
solution exists that is approximately correct, and for which successive iterations of the 
algorithm may improve the quality of the solution, either by incorporating more data into 
the solution or by simply improving the solution already found. By this loose definition, 
we are thus encompassing algorithms that are truly iterative, and also algorithms that are 
recursive in nature. A recursive algorithm is one for which a new solution is computed as 
new data become available, where the new value is specifically obtained by updating the old 
value, as opposed to computing the new result from scratch (starting at the beginning of the 
data set). An example of an interative algorithm is minimization by steepest descent: at each 
pass through the algorithm, the solution approaches closer to a final minimizing solution. 
Another example that we have already encountered-which is, strictly speaking, data- 
recursive-is the RLS algorithm, in which a least-squares filtering problem is iteratively 
solved, with more data used at each step of the algorithm. 

Iterative algorithms are employed in signal processing for a variety of reasons. One of 
the most important is that closed-form solutions of some equations may not be obtainable, 
but it may be possible to approach an acceptable solution by degrees. This is often the case 
for nonlinear equations. It is often possible to introduce into iterative algorithms constraints 
that would be difficult to incorporate into a closed-form solution. 

Another reason for iterative methods is adaptivity: instead of fixing a permanent so- 
lution, the system evolves as new data comes in. (Again, more precisely, such algorithms 
should be termed recursive.) This is particularly important for real-time systems. Adap- 
tive filters are examples of algorithms of this sort. Another advantage is computational 
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expediency it may require substant~ally fewer computations to get a close solution than 
one that is "exact" In many apphcations the need for speed exceeds the need for precision 

When a solution is approached by stages, one of the issues that must be addressed is 
convergence if the algonthm were to run sufficiently long, would it converge to a final 
 solution^ The speed of convergence is also an issue It is desirable to approach the final 
answer as qulckly as possible, where the speed may be measured either in the amount of 
data it takes to obtain the solut~on, or the number of computational cycles An important part 
of the study of iterative algorithms is the determination of convergence properties In the 
methods presented in this section, issues of convergence are discussed at a varlety of levels 
For some algonthms, convergence is easy to establish For other algonthms, convergence 
can only be determined empirically, on the basis of computenzed tests W i l e  the latter 
may not be as rigorously satisfy~ng as a theoretical proof, lt is by no means uncommon or 
unacceptable In thls case, enough tests must be run for some degree of confidence In the 
convergence to be established, for a vanety of conditions 

There are a vanety of iterative algorithms that have been developed in response to 
diverse needs The methods presented In this part may be regarded as important represen- 
tatives of iteratlve methods, but by no means an exhaustive survey The field 1s so broad 
that for each type of algonthm, entire books, or even careers, have been dedicated to their 
understanding. 

In this chapter, we examine the basic definitions and theorems associated with itera- 
tive methods We examine the qualitat~ve behavior that may be seen at fixed points of an 
iterated system The important contraction mapping theorem is introduced Following this. 
some simple but important iterative methods are introduced Newton's method and steepect 
descent, together wlth variations and applications 

14.1 Definitions and qualitative properties 
of iterated functions 

In this section we introduce some important definitions for iterated functions While not all 
iteratlve methods rely on iterated functions, the concepts presented here are important to 
keep In mind when deal~ng with iterative methods and their convergence 

In iterative methods, we often evaluate a function on the result of a previous compu- 
tation Suppose we have a function f that maps a space S into itself. f S -+ S Starting 
from a point x E S, we can compute f (x) Since this also l ~ e s  in S, we can apply f (x) agaln 
to obtain f (f (x)), and so on We can designate the result of the nth operation as XI"], wrth 
x[O1 = X. the starting point Thus 

and so forth. The set of points xi"]. 12 = 0, 1. 2. . . . , is called the orbit of the point x under the 
transformation f .  (Strictly speaking, it is the forward orbit.) To denote the repeated appli- 
cation of the function f ,  we use the notation f -"(x). whrch mean f is applied successively 
n times. so that 

A point x such that x = f (x), that is, one In which application of f does not change the 
value, is called a fixed point of the inapping If there is a polnt x such that x = f ""x) for 
\ome n E 27'. then x I \  \aid to be a periodic point with period X A f~xed point 1s periodrc 
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with period 1. The result of finding xf"+' l  by application of a transformation f ( x in ] )  is 
sometimes referred to as successive approximation. 

The result of repeated applications of functions over the real numbers may be visualized 
as shown in figure 14.1. Starting frorn a point ~ ' " 1 ,  the function is evaluated to produce 
,f ( x i ( ) ' ) .  This y value must become the .u value for the next iteration. Moving from f (x) 
horizontally to the line x  = y ,  we find graphically the location of the next x value, xi'] = 
f (x iOl) .  Repeating this, we obtain a succession of values. In figure 14.1, the result of 
repeated application is that a fixed point is eventually reached. This point is called an 
attractor, or clttrcrctivefiredpoinr, because x values that are not initially on the fixed point 
are eventually drawn to it by repeated application of f .  The sequence (xiol, .r['l, x'", . . .) 
(the orbit of xio]) converges to the fixed point. Note that the fixed point is the point where 
the line y = .u crosses f ( x ) .  A little thought reveals that this must be the case. Figure 14.2 
illustrates another possibility. The iteration begins at a value near the fixed point, which is 
near x = 3.8. However, rather than moving toward the fixed point, successive iterations 

Figure 14.1: Illustration of an orbit of a function with an attractive fixed point 

0 2 4 

Figure 14.2: Illustration of an orbit of a function with a repelling fixed point 
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move away from the fixed point. If the iteration had started exactly at the fixed point, 
then successive iterations would have stayed there. However, for points not at that point 
of intersection, the orbit diverges. Such a fixed point is a nonattractive, or repelling, or 
unstable fixed point. 

14.1.1 Basic theorems of iterated functions 

The following theorems provide results concerning the existence and nature of fixed points 
in an iterated function system for scalar variables. Generalizations to vector variables exist 
in most cases. 

Theorem 14.1 ((74, page 131) Let I  = [a, b] c R be an interval and let f: I -+ I be 
continuous. Then f has a t  leasf onefied point in I. 

Proof Let h(x) = f (x) - x.  Suppose that f (a) > a and f (b) < b. (Otherwise, either a or 
b is fixed and the theorem is established.) Then h (a) > 0 and h(b) < 0. By the intermediate 
value theorem (see section AS),  there is some value c, a < c < b, such that h (c) = 0. This 
means that f (c) = c. 

Definition 14.1 An attractive fixed point x*  of a mapping f is a point such that f (x*) = x" 
with an open neighborhood U surrounding it, such that points in U tend toward x*  under 
iteration o f f .  C1 

Theorem 14.2 Let I = [u, b] be an interval and let f: I -+ I be continuous. I f  I f  '(x) < 1 
for all x E I ,  then there exists a uniquefixedpoint for f in I .  Also, I f  (x) - f (y) 1 < jx - y i. 

The condition that l f (x) - f  (y) j < /x - y / is defined in the proof as a "contraction mapping." 
Contraction mappings are discussed in more detail in section 14.2. 

Proof For x ,  y E I .  with x f y. there is, by the mean value theorem (see section A.6.1), a 
c E [x, y] so that 

Thus, f is established as a contraction mapping. 
By theorem 14.1, f has at least one fixed point. It remains to establish uniqueness. 

Assume that there are two fixed points x and y. By the mean value theorem, there is a 
c E [x, y] so that 

f '(c) = 
f ( y )  - f ( x )  

y - x  

But if x and y are fixed points, we have 

f ( y ) - f ( x )  - ? I -x  
- I .  

y - x  y - x  

which is a violation of / f  ' (c)/ < 1 .  

Theorem 14.3 I f f  (x) is a C1frcnction with$xedpoinr x*, such that 1 f '(x*)l < 1, then x* 
is an attractivejixed point. 

Proof Since f  i s C 1 , t h e r e i s a n c  >Osuchthat forx  ~ [ x * - t , x * + t ] , l f t ( x ) j  < 1.B)  
application of the mean value theorem, we obtain 
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tor( E [ r ,  r * J  But bec'iuse. rherefore, L E [ r '  - 6 r" + tl .  tt followi, t h ~ t  j j ' ( c ) J  < 1 and 

! j ( r )  - x * I  < 1 7 -  r*1 

By the came argument, j f " ( r )  - r*j 5 / f ' ( c ) j n j r  - r*j, so f " ( r )  -+ r* as n -+ cc El 

14.1.2 Illustration of the basic theorems 

In the interest of understanding the types of behavior that may result from iterated function 
systems, we explore some of the behavior of iterations of a simple quadratic function known 
as the logistic function. This simple function demonstrates a variety of behaviors, including 
attractive fixed points, repelling fixed points, periodic cycles and, perhaps most interestingly, 
chaos. These differing behaviors are obtained by the variation of a single parameter of the 
system. The logistic map is defined by the function 

f ( x )  = hx(1 - x ) .  

where x is in the range 0 5 x 5 1 and h is a parameter of the mapping. Figure 14.3(a) 

(a)  i. = 2.5 (b) A. = 1.5 

( c ) h  = 3.2 (d) = 3.9.5 

Figure 14.3: Examples of dynamical behavior on the quadratic logistic map 
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shows the trajectory orbit with x0 = 0.15 and A = 2.5, and was produced with the code in 
algorithm 14.1. 

Algorithm 14.1 Logistic function orbit 
File: ifs3a.m 

1ogistic.m 

Observe that for this value of A there is a fixed point at x* = 0.6. The location of the 
fixed point f (x) = x is 

The derivative at the fixed point is f ' (0.6) = -0.5. In the plot, the fixed point is located 
where the graph of y = f ( x )  intersects the graph of y = x .  The fixed polnt x* 1s an 
attractive fixed point because values of x nearby are drawn toward x* through successive 
iterations, as predicted by theorem 14.2. Observe that the derivative condition j f ' ( x ) l  < I 
is a sufficient but not necessary, condition to ensure convergence, since there are values of 
x such that this condition is not satisfied bur that still approach the fixed point. 

The logistic function maps [0, I ]  --+ [O ,  11 as long as I < A < 4. 
Figure 14.3(b) shows the trajectory with h = 1.5 and x0 = 0.8. Again there is a slngle 

fixed point, x = .3333, where the derivative satisfies f ' ( x * )  = 0.5. In both of these figures 
there is also a fixed point at x = 0,  but it 1s a repelling fixed point slnce f ' (0)  = h > 1. 

Figure 14.3(c) shows a different behavior when h = 3.2. (The starting value for the 
figure is at x0 = 0.21 .) The trajectory is converging to oscillate between two values, one at 
x = .5 130 and the other at x = 0.7994. These points are periodic with period 2. The reason 
for the presence of two fixed points may be understood from figure 14.4, which shows 

along with the line y = x .  There are four intersections of the graph of y = g(x )  with y = s. 

Figure 14.4: Illustration of g(x) = f ( f  ( 2 ) )  when 1, = 3.2 
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At the periodic point\, 

5 0  these points Are ,lttr,tctlve in q ( x )  Since q (  r )  1s / ( /  lz )), the pointi ,Ire perrod~c wlth 
perlod 2 There I \  a~tu,~IIy another hved polnt of g (  x )  ,tt r = 0 6875, but q'( 6875) = 1 44. 
so this I \  a repelling hued potnt While only penod-two attrxtrce pant \  are shown, by 
changlng the value of A, penodic po~ntr  w ~ t h  different per~odi can be tound (Cm you find, 
tor example, d value of r, leddtng to penod-4 behavior)) 

Finally. figure 14 3(d) >how\ lterdtlons of the log~sttc map when A = 3 9. In whrch 
mnething tundsment,lly appears To Accentuate the phenomenon. 100 iteration5 of the 
tunct~on are ihown In thls ca\e, there I \  no t~xed or penod~c potnt The trajectory bounces 
dl1 over the place What rr evrdenced by this is chaos there 1s no simple per~odlc attractor 
Chaotic behdvlor such as this I \  actu~lly fairly common in nonlinear dynamical systems 
Chdotic dynamlcal qy.item\ have been iired (with varylng success) ,ts nolse generator., 

In summary, several types of behavior x e  po\s~ble w ~ t h  iterated functions 

1 .  There may be a simple attractive fixed point. From the point of view of the convergence 
of an iterated algorithm, this is what is usually desired. 

2. There may be a fixed point that is not an attractor. From the point of view of most 
iterative algorithms, this is not useful, because the only way to converge to that fixed 
point is to stcirt on it: any other point in a neighborhood of the fixed point will iterate 
away from it. This leads (usually) to divergence. 

3. There {nay be periodic attractors. Frorn the point of view of the convergence of an 
iterative algorithm, this type of behavior is probably not desired, as it leads to what 
is sometimes called "limit cycle" behavior. 

4. There may be no attractors whatsoever. As iterations are computed, the result may 
not diverge (in the sense of answers that become numerically larger and larger), but 
neither does it converge, in the sense of successive iterations that become closer to a 
final answer. 

14.2 Contraction mappings 

The contraction mapping theorem is a powerful tool that is often used to prove convergence 
of iterative algorithms. We begin with a definition and demonstration of what a contraction 
mapping is. 

Definition 14.2 Let S be a subspace of a normed space X, and let T :  S --+ S be a transfor- 
mation from S into S. Then T is a contraction mapping if there is an a with 0 5 a < 1 
such that / /  T ( x )  - T(x)ll 5 a llx - y / I  for aII x, y E S .  C? 

The effect of a contraction mapping is to bring points in S closer together. What happens 
when the function is iterated several times? 

Example 14.2.1 Let S = R2, and let 

T ( x )  = 
0 8800 -0 0800 
0 1800 0 8800 ] + [:1] 

A mapplng of the form T ( x )  = Ax + b IS called an amne transformation To see the eftect of thts 
transformatlon, let X = [O I ]  x [O I ]  c ;W be the unlt square shown In figure 14 5 ,  cons~dered as 
a set of polnts Let T( ,Y )  denote the appl~cat~on ot T(x)  to every polnt In '7 Then the orbit of the 
polnts rn X 1s a set ot rncreaslngly 5rnaller square regxons From the figure. ~t 1s clear that the squares 
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Figure 14.5: Iterations of an affine transformation, acting on a square 

are converging to a single point. In fact, for this mapplng, any point in R2 will converge to the same 
limit point. 0 

This example demonstrates the following important theorem. 

Theorem 14.4 (Contraction nzappirzg tkeorem} I f T  is a contraction mapping on a convex 
set S of a Baizach space, there 1s a unique vector x* E S such that x* = T (x*). 

The contraction mapping theorem states that every contraction mapping on a closed space 
has a unique fixed point. In addition, that it is possible to reach the fixed point by repeated 
iteration of the transformation T .  

Proof Let xo E S, and let x, = T On (xo) Then 

Inductively, we see that 
I/X,+~ - x, / I  i @I7 I I X I  - XOIL 

We will show that the sequence (x,} converges, by showing that it is a Cauchy sequence 
(see section 2.1.2); then, since S 1s In a Banach space, the limit poi~lt must exist. To see that 
{x,] forms a Cauchy sequence, note that for any p > 0, 

5 Il~n+-p - Xn-p-i /I + IIxntp-I - XI, (I. 
Repeating this process, we find that 

Thus, for n rufficlently large, //x,,, - x,, /I 1s arbitrarily small for any p and, s~nce  S I \  

closed. there must be a limit element x* cuch that x,, -i- x* 
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To $how that the l~mlt  \at~ctiej u* = T(x"), ob4erve that 

S ~ n c e  x, -+ x*, both term? -+ 0 as n + Thus a* = T(xi) 
Uniqueness of the l tm~t may be shown by assumtng that there are two drstinct limits, 

u" dnd y* Then 

llx" - y*lI = l/T(x*) - T(y*)ll 5 allx* - y'il 

But s ~ n c e  a! < 1 ,  thls means that x* = y". cj 

By theorem 14.2, if IT'(x)j < 1 for all x E S ,  then T is a contraction mapping. 

Example 14.2.2 Jacobi iteration prov~de\ an lteratlve means of solving the I~near equatlon Ax = b, 
without explicitly inverttng A The solut~on to Ax = b is the solution to 

Let T(x) = (I  - A)x + b This IS seen to be an affine transformation The hxed polnt ( ~ t  there l i  one) 
is the solution x = A - ' b  Convergence of the method may be establ~shed by ~howing that T(x) lr a 
contraction mapping Since 

T(x) 1s 3 contractloll mapping provided that 

for some matrix norm 11 . 1 1 .  Further details of Jacobi iterations are found in section 16.2. El 

Example 14.2.3 (1209, page 2751) The integral equation 

J n 

with bounded kernel 

[ Lb K ~ ( ~ , I )  d i  ds = p2 < m. 

defines a bounded linear operator on L z [ a ,  b ]  with nonn 5 B.  Define the mapping 

h 

T = f + k K ( f ,  i )x(s)  d l .  

Then T(x) is a contraction mapping, provided that 1E.l < 1/p. For E. in this range, a unique solution 
x(t) can be determined by iteration of T(x). Ci 

14.3 Rates of convergence for iterative algorithms 

For iterative algorithms approaching a final fixed point xlnl -t x*, it is of interest to quali- 
tatively determine how fast the limit is approached. 

Definition 14.3 Let the sequence {x["1] converge to x*. The order of convergence of {x["l] 
is defined as the supremum of the nonnegative integers p that satisfy 

l l X [ " + l 1  - 
0 5 lim sup 

X* I /  
< 00. 

n - t m  /Ixln' - X* 11'' 
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This definition applies as n --+ m: in the rate of convergence, how the sequence starts 
out may have little impact on the final rate of convergence. The order of convergence, then, 
is a measure of how fast the tail of a sequence decreases-that part of the sequence that is 
arbitrarily far out. 

If p is the order of convergence of a sequence, then the higher p is, the faster the 
convergence, since the distance from xi"] to the limit is reduced by a factor of p in a single 
step. In other words, if there is a finite, nonzero ,B such that 

llx["+'] - x* 1 1  
/3 = lim 

n-tw llxlnl - x*(IP ' 

then, asymptotically, 

Example 14.3.1 We consider two simple examples. 

I .  Suppose xi"' = an, for 0 < a i 1. Then xi"] -+ C The ratio of successive terms is 

so that the order of convergence is I 

2. Suppose xi"] = a2" for 0 < a < 1 .  Then the ratio of successive terms is 

so that xln+il/(xlni)2 = 1. Hence, the sequence converges to zero with order 2. 0 

Definition 14.4 If the sequence {x["l) converges to x* in such a way that 

IIX["+'] - x*II 
lim = p. 

n-m I/X["] - x *  I I  

for some B < 1. then the sequence is said to converge linearly, with ratio j?. If = 0 in 
(14.1), then the convergence is said to be superlinear. 0 

The tail of a linearly convergent sequence decays at a rate cpn for some constant c: 
linear convergence thus decays (oddly enough) at a geometric rate. 

Example 14.3.2 Let xlnl = 1 In. Then the convergence is of order I ,  but it is nor linear, since 

XIn+ll 
lim - - - 1, 

n - r  xin] 

so that B is not less than 1. 

14.4 Nevvton's method 

Newton's method is an iterative method for finding a solution of an equation of the form 

f ( x i  = 0. 

We introduce this first for scalar variables. then generalize to vector variables.* 

'For a hr~ef biography of rh15 phenomenal rnnovdtor. please \ee b o x  14 1 



14.4 Newton's Method 633 

-- / Box 14.1: Isaac Newton (1642-1727) -7 
The "method" that bears his name is only the smallest of the many contribu- 
tions made by Newton during his lifetime. He is still regarded by many as 
the greatest mathematician of all time. 

Newton was born the son of a farmer, but his mechanical cleverness led 
to continuation of schooling, and he entered Trinity College at Cambridge 
University at age eighteen. It was at this time that he directed his attention to 
mathematics. When he was twentythree, the schools were closed for two years 
due to the bubonic plague. These years were spent in productive effort; during 
that time Newton developed the binomial theorem, differential calculus, and 
his theory of gravitation; and explored the nature of color. It is retrospectively 
remarkable that he was as successful as he was with calculus without the 
benefit of a consistent concept of limits. He also made (at first, by trial and 
error) discoveries about infinite series. 

Major works published during his life include Principia (1687), Opticks 
( 1704), Arlthmetica l~niversalis ( 1707), and Analysis per Series, Fluxiones, 
etc. ( 1  7 1 I ) .  In 1669, he was offered the Lucasian professorship at Cambridge 
(the seat most recently held by Steven Hawking), where he remained for 
eighteen years. In 1696 he was made Warden of the Mint (which appears to 
be have been a sinecure), and in 1703 he was elected President of the Royal 
Society, a position he retained until his death. 

TO derive Newton's method, we write a Taylor series for f ( x )  about a starting point 
,xlnl, 

f ( x )  = f (x i" ' )  + ( x  - XI"]) f t ( x ' " ' )  + h.0.t. 

(where h.0.t. denotes "higher-order terms"). The linear approximation is obtained by throw- 
ing away the higher-order terms. We obtain an approximate solution to f ( x )  = 0 by setting 
this linear approximation to zero and solving, 

f ( x )  f (x '" ')  + ( x  - xln') f ' (x in ' )  = 0 ,  

which Ieads to 

We assume, of course, that f l ( x [" l )  f: 0. The solution point x can now be used as the 
starting point for the next iteration. The algorithm can be stated as 

Xln+ll =I x[nl 

f ' (xi" ')  

Example 14.4.1 Newton's method can be used to find roots of numbers. To illustrate, we compute 
the cube root of a number Solution of the equation f (,r) = x3 - cz = 0 w ~ l l  compute the cube root 
of a. By Newton's method, 

As d speclfic example, let a = 8 Starting from xlOl = 1 5, the followrng sequence of solutions 
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is obtained: 

The initial point xr0] can determine which root o f f  (x) is found, or whether the method 
converges at all. 

Example 14.4.2 Let f (x) = x sln(x) - cos(x), as shown In figure 14 6 Running Newton's method 
wrth xlOl = 1, the final value 1s x* = 0 8603, so a root near to the ln~tral value IS located Runn~ng 
Newton's method wtth xlOl = 2, the final value is x* = - 8603, whlch 1s not the nearest root to xlol 
Because the denvatwe at x = 2 1s small enough, xi ')  = - 2658, wh~ch causes the next root below 
zero to be found When xi@ = 2 3, wh~ch is on a falllng edge of the plot, the solut~on found 15 at 
x* = 59 707, far away from the rnlt~al value 0 

Figure 14.6: Illustration of Newton's method 

The point of this example is that a good estimate of the root location can be acruclal condition 
for ending up where you expect (or desire). Newton's method in general IS not guararzteed 
to converge. However, if the initial point is sufficiently close to a root, convergence often 
occurs. In order to get suficiently close to a root, other methods are often used. wlth 
Newton's method used to refine the solution. 

One result on the convergence of Newton's method can be obtained using the contrac- 
tion mapping principle. Newton's method can be expressed as a transformat~on 

Then, iterating Newton's method can be viewed as successive approximation, and the so- 
lution as a fixed point of T(x).  The derivative of the transformation is 



14.4 Newton's Method 635 

If the functions are bounded as 

and have h = BKB, we have / /  7 ' ( x )  / /  < h If h < 1 for every point In the region of interest, 
we would expect convergence In fact. it can be shown [209, page 2791 that if h < at 
r = rI0l, then h < $ for all pointi In the iteration and, thus, by the contraction map;lng 
theorem, converges 

When Newton's method converges, the rate of convergence can be determined ds 
follows Wnte the Taylor series expansLon about XI"] as 

1 
f  ( x )  = f  (x '" ' )  = f ' (x '" ' ) (x  - x'"') + - f l l ( l l ) ( x  - ~ ' " 1 ) ~  

2 
where r/ E [x, x i n i ] .  At the solution x* ,  f  ( x * )  = 0 and 

1 
0 = f  ( x * )  = f  (x i" ] )  + ft(x""'(.r* - x'"') + - f " ( l l ) ( ~ *  - ~ 1 ~ 1 ) ~ .  

2 

When this is divided by f  ' ( x [ ~ ] ) ,  it can be rearranged as 

The left-hand side is simply x* - xLn+'l ,  so we obtain 

where C n  = &. From this we observe that the error x* - xi"+'l decays quadratically 
with n ,  provided that f  ' ( x [ " l )  # 0. This rapid convergence makes Newton's method attrac- 
tive computationally. However, the quadratic convergence is typically observed only when 
the solution is quite close. 

Newton's method is often used to minimize functions. Let f ( x )  be a C2 (twice differ- 
entiable) function, and let 

Then there is an extremum o f f  ( x )  at a point x* where F ( x * )  = 0. If F t ( x ' )  = f  " ( x * )  > 0 
at the point of extremum, then x* is a minimizer o f f  ( x ) .  The update for Newton's method 
is 

As before, Newton's method for minimization exhibits quadratic convergence. 
Newton's method can be used to find zeros of transformations in higher dimensions, 

or to minimize scalar functions of multiple variables. Let f ( x ) :  W" -+ R", and let 

A step in Newton's method in the multidimensional case is 

,in+ll = - [ f l (xI"l) l - l f (x l"l)  
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Newton's method can also be employed to minimize functions of multiple variables. Let 
g(x): R" -+ R. Then an extremum of g(x) exlsts where 2 = 0. That is, we let f(x) = $. 
and find the zero o f f .  To derive Newton's method for this minimization problem. write a 
Taylor expansion for g(x) about a paint g(x["]): 

where 

and 

The matrix v2g is the Hessian of g. If the Hessian is positive definite, the extremum is a 
(local) minimum. We obtain a quadratic approximation to g(x) by throwing out the higher- 
order terms in (14.3). then obtain the Newton step by minimizing the resulting quadrat~c. 
Taking the gradient of the quadratic 

with respect to (x - x["I), and equating to zero, leads to the Newton equation 

Solving x as a minimizing value, we obtain 

x ~ n + l ~  = Xini - (v~~(x~*'))-' V g  (xi"'). 

Example 14.4.3 The funct~on g(x) = 100(x2 -1';)' + (1 - w , ) '  I \  known as Rosenbrock's functton 
and IS a favorite among numerical analyct~ for testtnp minlmlzdtion algorithms I t  ha\ a mtn~mun? 'it 

(1 1) .  approached by J. falrlq flat "valley" The gradtent and Hewan  are 

- 4 0 0 ~ ~  ( 1 2  - x;) + 2(xl - I )  1 200wf - 400x2 + 2 -4001 1 
Vg(x) = o?$?(x) = 

200(w2 - x f )  ] [ -4111~~ 200 

Ftgure 14 7 show\ the recult\ of Newton'\ algortthrn ctdrttnp wttli xiO' = 1-2 51' Obser~e  from 
example that r t  I \  po\\tble for potnt\ on the Iteration t o  be i l lgl~c~r than the \tdrtlng point Yewtot1 ' 
method doe\ not ne~e\\arl l l  Away\ take a "downhill" directton L 
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Figure 14.7: Contour plots of Rosenbrock's function and Newton's method 

The results on convergence via contraction mapping, and quadratic convergence in the 
univariable Newton's method, extend to the multivariable Newton's method as well. 

The quadratic convergence of Newton's method, when it converges, makes it a valuable 
tool. However, because there is rarely any guarantee of convergence, it must be used with 
care. 

14.5 Steepest descent 

I wish I had a nickel for every time I heard about gradient descent. 
- J. Clarke Stevens 

One method for optimizing a function-in this case, to minimize it-is to iterate in such a 
way that f (x["+ll) < f (x["]), unless f (x["+']) = f (x["l), in which case a minimum point 
(or other extremum) is reached. One general framework for accomplishing this is to update 
the point xLn1 by 

where a, is a scalar, which denotes a step size, and p, is a direction of motion, selected 
so that the successive steps decrease f .  Depending on the vector p, selected, we can get 
steepest descent, conjugate-gradient descent, or other successive-approximation algorithms. 

It is worth pointing out that iterating (14.4) will not necessarily reach the global min- 
imum of a function. For example, if the function is as shown in figure 14.8, starting from 
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7 

Figure 14.8: A function with local and global minima 

xlO], then the best that can be hoped for is to reach the local minimum at x*. From the glven 
starting point, the global minimum will never be reached by a strict descent method. 

A widely used method for minimizrng a functional f is steepest descent, which is 
applicable to differentiable functionals defined on a Hilbert space. It is based on the following 
fact: 

Theorem 14.5 Let f :  R" -+ R be a drflerentiable function in some open set D. The 
gradient 5 points in tlze direction of the nzaxinzun~ increase o f f  at the point x. 

Proof We can write a linear approximation to f (see theorem A.3) where Ax = h p  . wlth 
,f3 a unit-length direction vector, as 

where R = 0 ( h 2 ) .  Then 

The term RIA I S  neglig~ble as h i 0 The maximum change f (x + iLP ) - f (x) therefore 
occurs when (V f (x)ITP IS maxlm~zed Uslng the Cauchy-Schwarz ~nequal~ty, ~t 1s clear 
that this occurs when /3 is proport~onal to V f (x) So the maximum-change dlrection ir the 
direction in whlch the gradlent vector polnts 0 

Since the gradient points in the direction of maximum increase, the negative of the gradient 
points In the direction of max~mum decrease. We thus obtain the method of steepest descent: 

The parameter a,, determtnes how far we move at step 17 Frequently, steepest descenl 
algorithms use a, = a ,  for some constant c-u 

For funct~oni defined on two variables, such ar J (A 1 ,  x 2 ) ,  the Idea of steepest descent 
1s itralghtforward The contour ]me\ of the plot tndlcate the locus of constant functton 
balue The gradient of the function at a polnt is ortlzogonul to the contour line, polntlnf 
In the direction of steepest increa\e, so the negative of the gradlent polnts In the dlrect~on 
of steepest decrease (Think of walhlng acres a steep slope so that your altitude rernalnr 
constant This is the d~rectlon of the contour line To one s~de.  the slope increa5es $teeply 
that is the direct~on in whlch the gradient pornt, To the other i ~ d e  the dope decea4ec steepl) 
thclt 15 the dlrectlon of the nekatnc of the gradient 
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Because the update dlrect~on t s  determ~ned by the gradlent, \teepest-descent algor~thm\ 
are dlso known CLS qrrrti~enr-d~\cerzt dlgor~thms 

Example 14.5.1 Figure Id Y show\ contctt~r\ of the funct~on 

f (x)  = u' K X  - 2bw, 

iz  here 

and X ( R )  = (10. 200) The eigenvectors of R  point in the directions of 

( w ~ t h  eigenvalue i, = 200) and [!,I ( w ~ t h  cigenvaiue i = 10) 

The mlnimum ot f (x) 1s at w* = R - ' b  = [ I  1 l T  In figure 14 9(a), 50 Iterations ot iteepest descent 
are shown for u = 0 004 The \teepect-descent d~rection does not point toward the mlnirnum of the 
funct~on, so there IS some oscillat~on as the algonthm converges F~gure  I4 9(b) demonstrates that 
convergence is not guaranteed In this case, w ~ t h  u = 0 0051, the algor~thm rocks h~gher  and higher, 
diverging away from the rnlnlrnum value but passing over ~t (in the limit) with each iteration O 

(a) cu = ,004. (b) cu = .005 I 

Figure 14.9: Convergence of steepest descent on a quadratic function 

Some valuable information about the convergence of steepest descent can be obtained 
by studying its application to the problem of the last example, 

f (x) = xT RX - 2bTx, (14.7) 

where R is symmetric positive definite and x E Rm. Even though an analytic solution to 
this minimization problem is available, insight that will benefit more complicated problems 
may be gained by studying this simple problem, since near a minimizing value a function 
can be well approximated by truncating its Taylor series at the quadratic term. Equation 
(14.7) can thus be viewed as an approximation to a general function expanded about its 
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optimizing value. Recall from section 6.4 that in two dimensions the contour lines of f (x) 
form ellipses in the plane, and in higher dimensions the level surfaces are hyperellipsoids, 
with the axes of the ellipse determined by the eigenvectors of R. Let 

denote the residual. Note that V f (x) = 2Rx - 2b = -2r. Steepest descent applied to j 
with a fixed step size a yields 

xlll+ll = X 1 ~ 7 1  + 2arn, 

with initial value xIo]. Let x* denote the solution to Rx = b. Shifting coordinates centered 
around x*, and letting p = 2a for notational convenience, we obtain 

x! lz+l l  - x* = .En] - x* + p(b  - R ~ I ' ~ ] ) ,  

Substituting yi"] = x["] - x*, we obtain 

y[n'rl I= (1 - , u ~ ) y [ ~ ~ .  

from which it follows inductively that 

ylnl = (I - 

Convergence of this equation from any initial point y[O1 = x[O1 + x* requires that 

111 - ~ R l l  1 

in some norm. Geometrically the L2 norm is convenient. Let 

A = Q R Q ~ .  

where Q is the orthogonal matrix composed of eigenvectors of R, and A is the diagonal 
matrix of eigenvalues. Let z = Qy. This change of variables has the effect of rorating the 
coordinate system so that the elements of z are aligned with the axes of the ellipsoid. Under 
this change of variables, (14.8) becomes 

Zin+ll = ( Q Q ~  - F Q R Q ~ ) Z ~ " ~ .  

which leads to the solution 

zinl f= ( I  - p ~ ) " z ' ~ J .  (14.10) 

Since the matrix I - p A  is diagonal, (14.10) can be expressed as the set of decoupled 
equations 

, f f t l  = (1 - pi,)nzjOl. 
- 1  

4 7 1  = (1 - pAm)nz;l 
* r n  

It 1s clear from these that convergence can occur from any startlng potnt zlol only if 

- 1  i = 1 . 2 ,  . m ,  

that ~ s ,  if 
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Since a separate p i \  not prov~ded for each direction, we must take the /L satisfying ail of 
the constraints We murt therefore take 

Example 14.5.2 Returning to the steepest-descent results of example 14 5 I ,  convergence was ob- 
iemed when p = 0 004 < &, where 200 is the largest e~genvalue of R W~th p = 0 0051 > &, 
the steepest descent d~verged 0 

There are rates of convergence in each z-coordinate direction that depend on the eigenvalue 
associated with that coordinate. The z-coordinate directions in which / 1 - ph, I is smallest 
converge the fastest. In figure 14.10(a), the direction along the eigenvector [ i ]  converges 
fastest, while convergence along the eigenvector [ J l ]  direction is much slower. The error 
In each z-coordinate direction is shown in figure 14.10, where part (a) shows the error 
when a = 0.004, and part (b) shows the error when cr = 0.0051. The solid line is the 
error component zl and the dashed line is the error component 2 2 .  Since the value of /L 
must be chosen according to (14.1 I), there is no way to significantly speed convergence 
in each eigenvector direction if one or more eigenvalues are large in comparison to other 
eigenvalues. The difference in convergence rates due to the difference in magnitude of the 
eigenvalues 1s referred to as being due to eigenvalue disparity, or the eigenvalue spread. 
The eigenvalue spread is sometimes expressed as a ratio, 

In section 4.10, we learned that a matrix is poorly conditioned if the eigenvalue discrepancy 
is large. Here we see that a poorly conditioned matrix also has slow convergence properties 
when it is used in a steepest-descent algorithm. 

iteration number iteration number 

(a) p = 0 004. ( b ) p  =O0051 

Figure 14.10: Error components in principal coordinates for steepest descent 
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14.5.1 Comparison and discussion; other techniques 

It IS Interesting to compare Newton's method to gradient descent Newton's method 1s used 
to find roots of an equatlon f(x) = 0, while gradient descent 1s used to minimlze a scaldr 
function f (x) But Newton's method can be applied to the mlnimlzatlon problem by finding 
a zero of V f (x). Also, gradient descent can be used to find a zero of a functlon by finding 
the mlnxmum value of g(x) = (f ( x ) ) ~  Thus either method can be applled to a varlety of 
problems 

One of the characterlstlcs to compare is convergence rate. When Newton's method 
converges, 11 converges quadratically, whlch means that the number of places of preclslon 
doubles at every step (at least, near the convergent point) When gradient descent converges, 
the convergence 1s geometnc, but the overall convergence rate 1s l~mited by the eigenvalue 
dlspanty of the Hessian matnx of the function. 

Convergence of both methods requires that the lnitlal polnt be somewhat near the 
final solutlon Usually, other methods are used to amve at a good ~ n ~ t ~ a l  guess Among 
these methods, the bisection method and the secant method are commonly employed, 
particularly for one-dimensional problems The b~section method IS used to find roots of 
funct~ons It begins w ~ t h  two points x l  and x2 such that f (xl)  f (x2) < 0, that is, the two 
points bracket a zero. Then a m~dpolnt between xl and x;! is selected, and a new pax of 
po~nts is selected so that one of the lnltlal points and the new midpoint again bracket the 
solution. Convergence of the bisect~on method 1s Ilnear, wtth the relatlve error decreas~ng 
by a factor of 0 5 every lteratron 

In the secant method, two polnts are agaln used whtch bracket the root These two 
points are used to construct a linear approximation of the funct~on f (x), and the polnt ot 
lntersectlon of t h ~ s  llne is the new estlmate of the solut~on Convergence 1s superllnear with 
a rate r = ( I  + &) (the Golden ratro) Proof of the convergence rate 1s found In 12461 

Both of these methods can be general~zed to multrple dimens~ons For the bisect~on 
method, we start w ~ t h  two polnts xi and x;i such that f ( X I )  f (XZ) < 0 Then a midpoint on 
the line 

1s selected by taklng a: = 0 5 (that 1s. the new polnt 1s (xl + x2)/2). and the algortthrri 
proceeds as before The secant method 15 general~zed s~m~la r ly  In the mult~dimens~onal 
setting, finding a zero by searching along a s~ngle dlmenslon is sometimes referred to as a 
lzne search 

Both Newton's method and gradlent dercent requlre the use of derlvattve informat~on 
For minlmlzatlon, Newton's method requlres a second der~vatlve (the Hesslan for multlvart- 
ate problems) For some problems. obtalnlng the Hessian can be difficult or ~mposslble, so a 
variety of methods have been developed for estlmatlng the Hesqlan Another problem 1s that 
the Hesslan may not be positlve defin~te. some of the e~genvalues may be zero The Iterates 
cannot converge along the e~gendirections w ~ t h  zero eigenvalues For these circumstances 

~t has been proposed to replace the HersIan w ~ t h  a nearby matrlx that 1s posltlve definite 
For a d~scussion of such algorithms, see 12601 

Stnce these methods both requlre the use of denvatlves. they are not applicable for 
functions that are not dtfferentiable A commonly employed approach to mlnlmlzation that 
does not requlre derivatives is the Nelder-Mead simplex algortthm A simplex is a convex 
shape u ~ t h  m + I verttces In m-d~mens~onal space 111 two-space, the simplex Is trtangular, 
In three-space i t  1s the tetrahedron In the Nelder-Mead algortthm, a s~mplex 1s formed In  

rn d~menslons whose vertlces lies on the surface of the funct~on to be mlnim17ed. and the 
vertex xk for which f (xL) 13 mlnlmum 1s taken ds an estlrnate of the dlrectlon of descent 
The polnts of the 51mplex are moved In the drrect~on of the rnrnimum by the ,ilgorithn?. and 
the iiniplex more-or-lers rolls or crab I \  down the rurface tobe 1nlntm17ed. then colldpses to 
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the convergent point at the bottom. Descriptions of the Nelder-Mead method are provided 
in 1260, 2391. 

Gradient descent can descend only to the bottom of the bowl that the initial point lies 
within and. hence, may fail to find a global minimum. Newton's method also fails to find a 
global minimum, and if it is close enough to a solution it can find only that solution. The 
problem of locating the global minimum for any function is still unsolved. Some progress 
has been made with stochastic optimization methods; at least two of these methods have 
become widely used. The first is .simulated annealing. Simulated annealing may be viewed 
as randomly "shaking" the error surface while a descent algorithm slides toward a minimum. 
Because of the random shaking, from time to time the solution may be dislodged from its 
current basin of attraction to another one. By starting the algorithm with vigorous shaking 
(i.e., with a lot of "thermal motion" and a "hot" system) a lot of basins are explored. As 
the algorithm progresses and the candidate solution is deeper in its basin, it becomes more 
and more difficult to dislodge the solution from the basin. The "temperature" is lowered 
so that there is less randomness, and the solution eventually converges to a minimum. 
On the computer, of course, the shaking is produced by random number generators, and 
the decrease of randomness simply corresponds to lowering the variance as the algorithm 
progresses. Even for simulated annealing, however, there is no guarantee of convergence to 
a global minimum. Simulated annealing is described, for example, in 1260, 11. 

Another stochastic optimization method of recent interest is genetic algorithms. These 
algorithms attempt to exploit the principles of evolutionary adaptation observed in nature. 
Multiple solutions are coded as bit strings that are regarded as a "gene pool." Each solution 
is evaluated as to its fitness according to some function to be optimized, then a succeeding 
generation is selected randomly according to the fitness of the solutions. Bit elements from 
selected strings are crossed over in an operation that simulates meiosis, and occasional 
transcription errors are also introduced, simulating mutation. A readable introduction to 
genetic algorithms is 11081. Many applications have been developed, including adaptive 
filters (see, e.g., [338]). 

Some applications of basic iterative methods 

14.6 An application of steepest descent: 
LMS adaptive filtering 

Let us consider again the problem of minimum mean-squared error filtering, introduced in 
chapter 3. (For convenience, we consider real signals). The signal y [ t ]  is the output of a 
filter with finite impulse response h [ t ]  and input f [ l ] ,  so that 

where 

Let d [ t ]  be a desired signal. Then we can fonnulate a cost function as 
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where 

To minimize this with respect to the filter coefficients h, using gradient descent, we propose 
to update it by 

Using the partial derivative formulas in appendix E, we find 

Thus, a steepest-descent rule is 

This provides an iterative update to the weights that satisfies the minimum mean-squared 
error criterion. Since the original problem (14.12) is quadratic, iteration of (14.13) will 
converge to the optimum solution in rn steps. 

While (14.13) provides an iterative update, it is not yet in an adaptive--or practical- 
form. In fact, if we know R and p, as we must to compute the gradient, then we know 
enough to find the solution for the optimal filter, since hopt = R-'p minimizes J (h )  in 
(1 4.12). To make the LMS adaptive filter more practical, our next step is to eliminate-by 
an approximation-the need to know R and p. 

We can form a (very) rough approximation of R = Ef[t]fT[t] and p = Ef[t]d[t] 
simply by il?rowing away the expectation. Thus we use one of the sample values as an 
estimate of the expected value. That is. we take 

and 
~ [ t ]  = f [t]fT [t] 

$[t] = f[ t]d[t] .  

While this appears to rest on shaky grounds theoretically, we observe that after making 
several steps, the algorithm will employ several samples in the computation of h[t], whose 
effect will tend to average together. Furthermore, since the algorithm is always updat~ng 
the filter welghts, any imprecision introduced by the approximation hopefully will be (on 
average) corrected sooner or later by some other data. 

Substituting (14 14) and (14 15) ~ n t o  (14.13), we obtaln the LMS adaptive filter welght 
update 

The quantity e [ r ]  = d[r] - fT[t]h[t] is the error between the filter output and the desired 
output. The LMS update is often written as 

If the desired output matches the filter output exactly at some step. so that e[r] = 0,  then no 
update is made to the filter welghts at that step The update step (14 16) is sometimes referred 
to as stothurfzi gradlent descent, since the gradient 1s only approximately known The LMS 
adaptwe filter is of very low computat~onal cornplexlty Once the filter output is obta~ned 
( ~ n  ri? multiplyiadds). then the filter weights are updated in another m multtplyladds. 

The update 5tep s u e  / L  must be chmen carefully If  tt is too small, the convergence ic 

too \low On the other hand, if  i t  1 5  too large, then the LMS algorithm does not converge 
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A \  we show the LMS algorithm converges i n  mean ~f 

2 
o < y < - ,  

Amdx 

where A,,, 15 the largest elgenvalue of R Since this is often unknoan (as there is now no 
need. with the adaptation dlgortthm, to expl~cttly compute R). the trace of R I >  sometimes 
taken as d conservative estimate, so that p 15 bounded by 

But tr(R) = mr(O), since R is Toeplitz, and r(0) is the power of the input signal f [ t ] .  Thus, 
p bounded by -, 

L 
o < p < -  

mr(O) 
leads to an LMS algorithm that converges in mean 

An implementat~on of the LMS adaptive filter 1s shown in algorithm 14 2 

Algorithm 14.2 LMS adaptive filter 
File: lms .m 

14.6.1 An example LMS application 

In thls sectlon, we again work through the application presented for the RLS filter, that of 
channel equalization. A set of binary f 1 data are passed through an unknown channel, as 
shown in figure 4.9. The problem is to find an adaptive filter to equalize the channel response. 
The desired signal is the channel input (somehow provided at the adaptive filter for training 
purposes). The LMS adaptive filter algorithm was employed at the equalizer. Shown in 
figure 14.1 1 is the squared filter error, averaged over 200 iterations, for y = 0.075 and 

Figure 14.1 1 : Error in 
the RLS algorithm, for 

0 200 400 600 800 1000 
number of iterations 

the LMS algorithm for y = 0.075 and y = 0.0075, 
an adaptive equalizer problem 

compared with 
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Figure 14.12: Optimal equalizer coefficients and adaptive equalizer coefficients 

p = 0.0075. Clearly, the algorithm converges faster for the larger value of p. Also shown, for 
con~parison. is the error for the RLS algorithm. The RLS algorithm converges much faster, 
but requires more computations. Figure 14.12 shows the optimal Wiener filter equalizer 
coefficients, compared with the filter coefficients obtained using the LMS algorithm with 
p = 0.075. 

14.6.2 Convergence of the LMS algorithm 

Let ~ [ t ]  = h[t] - fao, where ho is the optimal-weight vector for the minimum mean-squared 
error filter, ho = R - ' ~ .  That is, ~ [ t ]  is the weight-error vector. Also let eo[t] = d[t] - hof[t] 
denote the estimation error produced in the optimum minimum mean-squared solution. We 
will examine convergence of the LMS algorithm in the nzean-square sense. That is, we will 
examine 

Despite the simplicity of the LMS algorithm, proof of its convergence is, in all generality, 
quite difficult. In order to make the proof tractable, several approximations and assumptions 
are made. While these weaken the proof, the results that are obtained may be validated, and 
lead to useful insight in practice. 

lndependence assumptions 

In order to make the analysls more tractable, we Invoke several lndependence assunzptron~ 
While strictly speaking these assumptions are not true, they are commonly used In adaptlve 
filter analysxs for at least two reasons F~rst. as mentioned, they do slmpl~fy the analys~i 
Second, slmulat~ons of the convergence rates of adaptlve filter algorithms show that the 
theoretical results obtarned on the basis of these assumptions track falrly well (but not 
perfectly) with experimental resultr The assumptions are as follows 

1 The Inputs f 101 f [ I ] .  . are statistically independent (This is obviou~ly not true 
unce the coiilponenti of f [ l  1 are mostly composed of components o f f  [O] ) 

2 The Input f [r]  is statistlc'illy independent of d [ t  - I]. d [ t  - 21. . dl01 
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3 The desired reTponse d [ t ]  1s dependent upon f[t] (otherw~se there 1s no qenie In 
trylng to find filter relatlonsh~p between them), but d[ t ]  1s statist~cally ~ndependent 
off [ t  - I ] , f [ t  -21, ,f[O] 

On the basis of these assumptions, we conclude that h[t + I ]  is independent of f[t + 11 and 
dl t  + 11. 

Error weight update 

It is straightforward to show that 

e[t + 11 = (I - pf[tlfT[t])e[ll + pfltleo[tl. (14.17) 

In the interest of simplifying this equation with respect to variations in the input data, we 
invoke the direct-averaging method assumption: for small values of p ,  

pf[t]fT[t]  * p R .  

On the basis of this assumption, 

and we subsequently regard the approximate equality as an equality. We define the correla- 
tion matrix 

Then, freely invoking the independence assumptions, we find (using (14.18)) that 

where K = p2~eo[t]f[ t]fT[t]eo[t] .  
Let us now consider the estimation error e[t] = d[t] - y[t]. This can be written as 

Then, with J ( t )  denoting the mean-squared error at time t ,  we have 

where J,,, is the minimum mean-squared error. Evaluating the expectation in (14.20), we 
employ the observation that the quantity is a scalar, and that the trace of a scalar is equal to 
that scalar, then use the fact that quantities commute within a trace: 

EeT[t]f[t]fT [ t ] ~ [ t ]  = t r ( ~ ~ ' [ t ] f  [ t]fT[t]~[t])  

= tr(E[f [t]fT [t]e[t]eT [t]]). 

Again employing the independence assumption, we have 

~ [ f [ t ] f ~ [ t l ~ [ t ] e ~ [ t ] ]  = ~ [ f [ t ] f ~ [ t ] ] E [ e [ t ] ~ ~ [ t j l  = R P[t]. 

Thus 

J ( t )  = Jm,, + tr(RPCt1). 

The quantity tr(RP[t]) is known as the excess mean-squared error; it is the amount by 
which the mean-squared error in the LMS algorithm exceeds the minimum mean-squared 
error of a Wiener filter. We will denote this excess error as J,,(f): 

J,,(t) = J ( t )  - Jmln = tr(RP[t]). 
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More can be said about the convergence by diagonalizing the R matrix in Je,(r) using 
the by-now familiar transformation 

Q ~ R Q  = A.  

where Q is an orihogonal matrix and A is the diagonal matrix of the eigenvalues of R. Also. 
we define the new quantity X[t] by 

QTp[ t ]Q = X[t]. 

Employing this factorization with (14.19), we obtain the recursion 

The excess mean-squared error can be expressed as 
m 

Jex = tr(RP[t]) = t r (QnQT Q X [ I ] Q ~ )  = tr(AX[t]) = r[: i ~ , x , ~ [ t ] .  
1=I 

The excess mean-squared error thus depends upon the diagonal elements of X[t] only, 
which we denote as x,, [t]. We can rewrite (14.21) In terms of these diagonal elements as 

The solution of the difference equation (14.22) grows exponentially unless 11 - ph, / < 1. If 
this inequality is satisfied, then x,, [t + I ]  approaches a constant value. Stability is obtained 
if 2 

o < p < _  - A, 

for i = 1. 2,  . . . , m. Thus the same stability condition required for the steepest-descent 
algorithm holds for the LMS algorithm. 

14.7 An application of steepest descent: Neural netvvorks 

A neural network is (loosely defined) a collection of interconnected simple processing 
elements that are "trained to perform some particular computational task, such as pattern 
recognition, signal discnmlnat~on, nonlinear filtering, and so on. There are a variety of 
neural network designs described in the current literature; depending on the particular 
network architecture, the trainlng may be done In a variety of ways. One of the most popular 
and powerful neural network designs is known as a multilayer perceptron. A mult~layer 
perceptron consists of a set of simple con~putational devices-neurons-interconnected by 
weighted connections. Figure 14.13 illustrates this concept. There is an output layer at which 

lnput H~dden H~dden Output 
Layer Layer l Layer 2 Layer 

Figure 14 13 Reprewntdtton of the /dyer\ of an artlflclill neural network 
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Layer I, Neuron j 
..................................................................... 

Figure 14.14: An artificial neuron 

the outputs are obtained, one or more hidden layers that perform the computations, and an 
input layer, which has no neurons and serves simply to distribute the input patterns to the 
first hidden layer. An example neuron is shown in figure 14.14. It has weighted coefficients 
that are adjusted to train the algorithm, which are linearly combined, then passed through 
a nonlinearity 4. The nonlinearity is important. Without it, the neural network could only 
compute linear functions of its inputs. By means of the nonlinearity, a variety of functions 
can be at least approximately represented. While a multilayer perceptron is an engineering 
artifice, there are some similarities between artificial neural networks and the way that 
natural neurons are believed to work. A neuron by itself is a simple cell unit, consisting 
of a cell body with several long appendages known as axons. An axon divides into several 
dendrites. (Think of your arms as axons and your fingers as dendrites.) Connection between 
one neuron and the next is via a synapse--a gap between dendrites of the two neurons. 
Because a neuron has a large number of dendrites that can interconnect with other neurons, 
a natural neural network consists of an enormous number of interconnected neurons. The 
strength of the connection between neurons across the synapse is believed to be modified 
by a learning process. In a similar manner, the operation of the artificial neural network is 
modified by means of the weighting coefficients in the artificial neurons. 

In training the multilayer perceptron, a supervised training algorithm is used, in which 
a set of known inputloutput data combinations are presented to the network. Using a back- 
propagation algorithm, which is simply steepest descent, the network is trained so that the 
network output matches as closely as possible the desired output, for each input data point. 

There are N pieces of training data, consisting of a set of inputs and the corresponding 
desired outputs. Let the input data be denoted as x(n), n = 1 ,2 ,  . . . .  N, and let the corre- 
sponding desired output data be d(n), n = 1 ,2 ,  . . . .  N. Let the output layer of the neural 
network corresponding to the input x(n) be denoted by y(n). Then the squared error at the 
output, based upon the data (x(n), d(n)), is 

The error averaged across all the training data is 

The neural network is trained by adjusting the interconnecting weights to minimize I,,. 
After the training process, the neural network can be used for its designed purpose. 

For example, if the training data are samples of pattern-recognition data, then the neural 
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network can be used to recognize patterns by providing a feature vector at the input and 
using the outputs to classify it. 

14.7.1 The backpropagation training algorithm 

The backpropagatlon tralning algorithm is slmply steepest descent appl~ed to the neuron 
To present the algorithm we make use of the following notation (Reference to figure 14 15 
w~l l  clanfy the use of thls notation.) 

Input First 
Layer Hidden 

Layer 

Second 
Hidden 
Layer 

Third 
Hidden 
Layer 

Output 
Layer 

Figure 14.15: Notation for a multilayer neural network 

The index n refers to the inputloutput training data point number. The training input 
and desired output data associated with index n are x(n) and d(n), respectively. 

* The index k (as a superscript) indicates the iteration of training. 

* The index 1 denotes a layer number. The input layer is layer 1 = 0, the output layer is 
layer I = L. 

i will be used to index inputs. j will be used to index neuron number. 

mi is the number of neurons on layer I .  m~ is the number of neurons in the output 
layer, and mo is the number of inputs (the number of nodes in the input layer). 

* U J ~  , , is the we~ght on the jth neuron of the lth layer, coming from the ~ t h  neuron on 
the ( I  - 1)st (previous) layer During train~ng, the weights are updated In response to 
the nth Input, and we denote the change In the weight as Awl,, (n) The weight at 
~ tera t~on k 1s 

The we~ghts assoc~ated with layer I can be viewed a\ a matrlx of size rnl x ( I  +mi - ,  ) 
The reason that the number of column\ is 1 + m,_, is that a default constant ~nput  "1" 
to ebery neuron is assumed 

\ I  , (11) 15 the output of the jth neuron on the lth layer in lesponce to ~nput x(n) If1 i \  not 
cpecified, then the output layer is dssumed We use vl 0 = 1 to lndicate a con\tant ~nput 
ava11,tble at every neuron In the hidden Idyen This ccln be u\ed to prov~de a conitdnt 
offcet '~t  the next layer (if that i \  found to be nececm-y by the tra~nlng algortthm) h e  
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also stack outpiits as vectors. For example, 

denotes the set of neuron outputs on the output layer, and 

denotes the set of outputs of the neurons on layer 1 

The actlvltv of the neuron 1s the linear comblnatlon of the input? and the connection 
we~ghts The actlvlty of neuron J on layer 1 due to input number n 1s 

n11-1 

u, , (n) = wr l ~ ! - l  l ( n )  (14 25) 
=o 

The output of the neural network is a nonlinear function of the activity, so that the 
neuron output 1s 

for some function (.). In all generality, different functions could be used in each 
neuron, and we retain thls notation throughout the denvation. In practice, however, it 
is most common to employ the same function at each neuron, so &., (.) = #(.). 

For the output layer, the desired response can be obtained directly from the training 
data, and d L  ( n )  is denoted as dl (n) or, in vector form, d(n).  For hidden layers, the 
desired data must be inferred by backpropagation from the output layer, as discussed 
in the following. 

The error between the neuron output and the desired output for the neuron at layer 1 is 

For the output layer, this is abbreviated e,(n). The error and average error of (14.23) 
and (14.24) may be written as 

and 

The goal of the training algorithm 1s to minimize the average squared error (14.24). The 
error EL, is a function of all of the weights in the neural network, and we will employ 
a steepest-descent algorithm for their minimization. Based upon input n, an update for a 
weight In the neural network, due to the nth input, using the steepest descent, is 
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where p. is a learn~ng-rate parameter This update step is computed for each input set 
rz = 1 ,  2, , N, possibly multiple times, untll the welghts have converged 

Determining the value of p. to use 1s somewhat problematic From our studles on 
steepest descent, we know that its maxlmum value is detenn~ned by the largest elgenvalue 
of the Hesclan matrlx However, the Heswan is unknown, and would be very difficult to 
compute What rs frequently done 1s s~mply to set /1. to a small value, and determtne (bated 
on the total squared error) whether it 1s small enough for the neural network to converge 

The key to the training algorithm. based upon the steepest-descent approach to we~ght 
adjustment, is findlng the partla1 denvatlves 

There 1s a difference in how the denvatives are computed at the output layer and the hldden 
layers, since the desired output d, (n) is explicitly available at the output layer, but not foi 
the hidden layers. Accord~ngly, we treat each of those cases separately, startlng with the 
output layer (It may be helpful for the reader to revlew the general~zat~on of the chain rule 
to composite functions, as found In sectlon 18.2.) 

Derivative at the output layer 

Using the chain rule when 1 = L. we have 

We now examine each partial derivative in turn: 

From (14.23) and the definition of (14.28), 

* From (1 4.27). we find 

8eL , ( I ? )  
=r -1 

~ Y L  J 

* From (14.26), we have 

where the "prime" symbol, ', indicates differentiation with respect to the argument 
Thls 1s left In this form unt~l a particular function 4, , ( ) is chosen 

From ( 14 25). we have 

ctnce the activlty L L  , ( n )  at t h ~ \  instant depend? on the present value of wi , , , which 
in1 

1s U I L  , I  

Combining these partial derivatives. we have 
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In what follows, it will be helpful to use the following definition. Let us write the chain 
rule of (14.30) as 

where 6[, is called the local gradient, and is defined by 

Then, in terms of the local gradient, the derivative (14.3 1)  can be written as 

The local gradient at the output layer is 

Derivative at a hidden layer 

We will write the derivative, using the local gradient, as 

The local gradient in (14.35) can be computed as 

Since 
mc 

~ l+ l , p (n )  = w1+l.,,,&,,,(~,,,(n))~ 
r=O 

the partial derivative in (14.36) can be written as 

Substitution of this result into (14.36) gives 

14.7.2 The nonlinearie function 

The function 45/,, (.) provides the nonlinearity necessary for the neural network. In general, 
any monotonically increasing function can be used. One commonly used function is the 
sigmoidal nonlinearity, defined by 

1 
4 ( v )  = - 

1 $- e-u 
and plotted in figure 14.16. This function has the property that the derivative is easy to 
compute. If y = $(v ) ,  then 
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Figure 14.16: The sigmoidal nonlinearity 

The sigmoid function has a range from 0 to 1 .  The desired outputs of the neural network 
must be scaled so that they are in the same range. It has been found that scaling the outputs 
so that they are in the range 0 + t to 1 - t for some small r speeds the convergence of the 
training algorithm, since the weights are moved to drive the outputs to their limiting values. 

f 4.7.3 The forward-backward training algorithm 

In the training of the neural network, an Input x ( n )  is presented. and the outputs y, ] ( n )  
are computed for each neuron in the network Thls 1s the forward step Then, startlng di 

the output layer, the we~ghtc are updated and the local gradients are computed Slnce the 
local gradients at layer 1 depend upon those at layer 1 + 1 (see (14 37)), and slnce the local 
grad~ents at the output layer can be computed explicitly (see (14 34)), the update rule can 
be propagated backward through the network 

In ~mplementat~on, ~t is common to select the tralning data ( x ( n ) ,  d ( n ) )  at random 
from the pool of trainlng data This tends to make the search more stochast~c, avoid~ng limit 
cycles In the learnlng process 

Learnlng continues until some stopplng crlterlon IS reached Ideally, the learnlng would 
stop when the gradient of E,, w ~ t h  respect to each of the weights was zero, but thls would 
require extra computation Thls cnterion 1s approx~mated by stopplng when the change in 

the total squared error Ed, 1s sufficiently small 

14.7.4 Adding a momentum term 

The steepest-descent weight update equation 

with 

may be modified to produce an update of the forin 

The modification crAuil , , ( n  - 1 ) I \  called a rnonreritltm term. and a i \  called the morncrztlrf?1 
contiunt When cr f 0. the update (14 18) lr I\nown d <  the gcr?em/r:cd delru rule Whei-i 
cr = 0. the jteepe\t-de\cent a lgo~~thm ir obtdlned When cy f 0, the momentum term h'lx 
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been shown to rncreaie the learning rate of the neural network tn iome caces When the 
derivat~ve term ha5 the same ilgn as &!Q then the presence of the momentum term 

i * , , ,  d "  j"' ' 
'~ccelerates descent tn these dlrecttons On thehther hand, when the consecuttve der~vatlves 
have oppoitte i~gns ,  the momentum term provtde., drag and tendc, to mtnlmize oscillat~ons, 
thereby providing itabtltrtng influence 

14.7.5 Neural network code 

Algonthm 14 3 tmplements the forward computations of a neural network. It require5 
as tts arguments the input to the network and the we~ghts (as MATLAB cells) The code 
automat~cally determ~nes from the weights the number of layers and the number of neurons 
on each layer 

Example 14.7.1 We demonstrate the weights for a neural network w~th one input layer, two hrdden 
lajet-\, and one output layer, uslng the notation w(1) to lndlcate the werghts tor layer I The Input layer 
ha5 two nodes The hrst h~dden ldyer has 3 neurons, and the second h~dden layer has 2 neuron5 The 
output layer has 1 neuron The weight\ chosen are arbitrary, but the shnpes of the matrlLes nre not 

first hidden layer, 

w(3) = [I8 19 201 output layer 

The first set of we~ghts w{l) 1s 3 x 3. whlch 1s equlvalent to (number of we~ghts In layer I )  x (number 
of inputs + I )  The ~econd set of we~ghts 1s 2 x 4, whlch 1s equlvalent to (number of we~ghts In layer 
2) x (number of we~ghtr in layer 1 + I) ,  and so forth 

Algorithm 14.3 Neural network forward-propagation algor~thm 
File nnl . rn 

The training process is shown in algorithm 14.4. The input is provided in the matrices 
x and d, where the input/output data vectors are stored in columns. 

Algofithm 14.4 Neural network backpropagation training algorithm 
File: nntrainl .m 

nnrandw . m 

Now consider training the neural network for an example pattern-recognition problem. 
A neural network is to be trained to recognize the difference between the x and o data 
shown in figure 14.17(a). The dashed line indicates the boundary between the data classes- 
essentially the line that the neural network needs to learn. We employ a neural network with 
two outputs (one output would suffice, but two are used for demonstration purposes), with 
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o 1  J 
0 1000 2000 3000 4000 

iteration number 

( c i  (d)  

Figure 14.17: Pattern-recognition problem for a neural network 

one hidden layer and one output layer. There are two inputs and five neurons on the htdden 
layer. Code illustrating how the data are obtained is shown in algorithm 14.5 

Algorithm 14.5 Neural network test example 
File: testnnl0 .m 

In the tra~ntng process, 100 potnts of x data are generated at random over the replon 
of interert, and the correspondtng des~red outputs are chosen These are chosen so that 
dl  ( n )  = 8 for those data In class x ,  and d l  ( M )  = 0 2 for those data In class o, with rlz(n)  = 
1 - d1(n) 

F~gure 14 17(b) ~llustrate., the learnlng curve for dn expertnient with = 1 ,  shon- 
ing Ed, as funct~on of the ~terat~on number. where each Iteration con51sts of presenttng 
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a11 N = 100 data points to the training algorithm in randorn order. Even though steepest 
descent is employed as the training algorithm. the decrease in EiLV is not monotonic. This 
is because the weight update (14.29) is based upon the error Ein), not the average error 
E3,. A change in weights that decreases E(n) may not, in general, be a change that de- 
creases E,, (see exercise 14.7- 16). Nevertheless, on the ensemble the error does decrease. 
The implementation of the algorithm retains the weights corresponding to the minimum 
attained value of EaV and returns that value. (A  variation on the training is to reject those 
weight updates that increase E,,. This is done simply by removing the comment on the line 
else s~ = wnin; end;  in algorithm 14.4. However, this leaves the network overly 
trained for some particular order of presentation, and generally leads to inferior pattern 
recognition ability.) 

Figure 14.17(c) shows the results of classifying the training data using the neural net- 
work. The results show (almost) no misclassifications. Figure 14.17(d) shows the results 
of classifying some new random data using the trained neural network. Again, the neural 
network performs very well, classifying almost all points correctly. Figure 14.18 illustrates 
the desired output dl (n) (either 0.8 or 0.2) as a function of the data set number n. Super- 
imposed on this is the corresponding output for the neural network, which we call dl (n) 
(dashed line). While the neural network output does not correspond exactly to the desired 
output, because some kind of thresholding takes place in the pattern recognition problem, 
the error has little impact on the recognition capability of this neural network. 

I 
0 20 40 60 80 100 

n (data number) 

Figure 14.18: Desired output (solid line) and neural network output (dashed line) 

Figure 14.19 illustrates the effect of varying the parameters. Part (a) shows the effect 
of varying the momentum constant a when p = 0.1: larger a tends to lead to quicker 
convergence. Part (b) shows the same comparison with p = 0.5. The improvement in con- 
vergence due to a larger a is slight, because the convergence is already faster due to the 
larger p. Parts (c) and (d) present the same data in a different format, comparing the rates 
of convergence for fixed a and varying p. As p increases, the rate of convergence improves 
(for this problem). 

It cannot be concluded from figure 14.19 that larger values of p or LY are necessarily 
always desirable. Obviously, if p is made too large, then the steepest-descent algorithm will 
not converge at all. And if the momentum term is too large, the training might overshoot the 
minimum. Also, larger p might lead to a larger misadjustment after training. In practice, it 



658 Basic Concepts and Methods of Iterative Algorithms 

0 I 

0 200 400 600 800 1000 
iteration number 

0 '  I 

0 200 400 600 800 1000 
iteration number 

01 J 
0 200 400 600 800 1000 

iteration number iteration number 

( c )  (d) 

Figure 14.19: Effect of convergence rate on p and a 

is common to experiment with several values of ,LL and a to explore convergence rates for 
a given problern. 

14.7.6 How many neurons? 

One of the open-ended practical questions for thi\ techn~que concerns the number of neurons 
that need to be e~nployed In each layer, and the number of layers that are necessary There 
are no hard and fast answers. but some guidelines are ava~lable fiom the literature 

The neural network can be v~ewed as a function approx~matron devlce a mapping from 
the Input5 to the ourput\ Thu\, the que\tion of how many layer$ and neuron\ a neural netuork 



need\ i,tn be po\ed In tcrrni ot how inany Iayeii and neuron\ are needed to approximate 
(with 'trbitrary reliah~lity) ,in arb~tr~lry tunitlor1 t l  theoret~c,il reiult in t h ~ \  reg'lrd [60] i i  

t hd  ~i r l r~gle  hlclden l'tyer i i  iutficient to unltorrnly dpproximdte L I P I \ /  continuoti\ function 
with support over 10, 1 1  on eaih Input, and irmil,ir range on each o u t p ~ ~ t  However, a s~ngle 
Idyer may not be optimum, and a tunct~on may require an ~ n l i n ~ t e  number ot neurons tor 
represent'ition 

From a more pr'ictical pan t  ot kiew. it ha\ been found th'it h a ~ ~ n g  two hidden layer\ 15 

otten very effective The t~rbt hidden layer act? ds a feature extraction I'iyer, and the second 
examlnes the global ~nteractloni of the\e teatiires 

Another Issue In the s e l e ~ t ~ o n  ot the number of neuron\ concerns what I, known as 
overtrczlnlng Thinh of the tralnlng procesi as curve-fitt~ng the process; of- training prov~der 
the curve fit, and when the neural network t i  used, function values not ipecrfically tralned 
In are obta~ned by interpolation If the network i i  overtrained, Input value\ very s~milar to 
those used tor tralning provide desired outputs, while input values dltferent from those used 
for trainlng may glve answer\ completely cGrong a poor ~nterpol~ttron between training data 
1s obtained The network 1s; said to have poor generali7dtton capability Overtraining can 
be d result of many factori too many neurons, too much tratnlng time, or training wrth a 
iophtiticated algorithm on ;In insuffic~ently r~ch  trarning uet 

It 1s dltficult to be preclie about how many neurons are required for '1 general appllcat~on 
It 1s common pract~ce to train a network, then evaluate it\ performance If the performance 
is inadequate, then the number of neurons 15 rncreased 

14.9.7 Pattern recognition: NIL or NN? 

In chapter 1 1 ,  we demonstrated pattern recognition using a maximum-likelihood or Bayes 
criterion. When the data are Gaussian distributed, the surfaces dividing classes are always 
planar. Frequently (whether fully justified or not), the distributions are clssumed to be Gaus- 
sian, and the parameters (mean and covariance) are estimated from the data. often using a 
clustering algorithm (see section 16.1). To the extent that the data are not truly Gaussian 
distributed. or the parameters are imprecisely identified, there will be some degradation of 
the perfornlance of the pattern-recognition algorithm. 

In contrast, the neural network offers several advantages. First, the separating surfaces 
need not be planar. As the example in the previous section shows, the dividing surfaces 
can. in principle, take any shape, provided that there are sufficient data to effectively 
train the neural network. Second, there is no explicit assumption on the type of density 
(at least, as we have presented neural networks). This avoids the problem of having to 
estimate the parameters of a distribution whose form was (usually) assumed in the first 
place. 

Offsetting these advantages of the neural network is the requirement to train, which 
requires a significant amount of data and processing power. Also, while the example shows 
that good recognition may be obtained, there is no claim to optimality-the training algo- 
rithm does not indicate whether there might be a better classifier. Also, computationally, 
neural networks tend to be more involved than Gaussian classifiers. 

In summary, there are no hard and fast answers about when a formal detection approach 
should be employed in comparison to a neural network approach for any given problem. If, 
as happens in many communications problems, there are known distribution functions on 
the noise. employing detection theory is encouraged. For many other pattern-recognition 
problems. neural networks are frequently used. Both techniques are useful and should be 
available in the signal processor's toolbox. 
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14.8 Blind source separation 

Consider the scenario pictured in figure 14.20, in which the vector signal s [ t ]  = [sl  [ r ] ,  
s z [ t ] ,  . . . , s , [ f ] l T ,  is passed through a system represented by the matrix A,  and the vector 
output x[ t ]  = [ x l [ t ] ,  x 2 [ t ] ,  . . . , x, ,[t]],  is observed, where 

The source-separation problem is to identify the input sources sl [ t ] ,  s 2 [ f ] ,  . . . , s,[t] from 
the outputs. This is also called the "cocktail party problem"-the problem of selecting and 
understanding individual speakers in a room full of people speaking at the same time. The 
blind source-separation problem is the problem of determining s, i t ]  when neither A nor 
the input signals are known. This is an example of a general class of problems in signal 
processing, in which unknown information must be extracted from the signal before the 
signal of interest can be determined. Other examples include blind equalization (training an 
adaptive equalizer without a training sequence) and blind image enhancement (processing 
an image to remove artifacts such as blurring without an explicit model for the artifacts). 

In this section, we consider the blind source-separation problem. Ideally, we would 
determine a matrix W such that 

where A is a dlagonal matrix of amplitudes, and P is a permutation matrix That IS, W 
unmixes the sources, returning the origlnal signal components, up to a permutation and 
scaling of ampl~tude Rather than find such a inatrlx W directly, we formulate the problem 
as a neural network problem, and tram the neural network to separate the s~gnals Clearly. 
in order to accomplish thls, additional data or assumptions of some sort are necessary One 
assumption that has led to some success is that the sources are stochastic processes that are 
statistically rndependent Then the neural network is determined so that the coinponent~ 
of y[t]  are also statistically independent Because of this criterion, bllnd source separation 
is frequently associated with Independent component analysis [49, 541 Another approach 
[21] makes use of the information-theoretic concept of mutual rnformatlon [56] The neural 
network is selected to maxlmlze the mutual information between y[t]  and x[ t ]  As we show 
in the following, these two critena are strongly related 

14.8.1 A bit of information theory 

In order to pursue separation according to a criterion of maximum mutual information, we 
need to introduce a little infonnation theory. Let X be a discrete random vector (or variable), 
that has outcomes x  in a set X that occur with probability fx(x). The entropy of X depends 

Figure 13 20 The bl~nd iource-iepdratlon problem 
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on the probabilitiei (not the outcomes); ~t L \  wntten as 

H ( X )  = - f Y ( X )  log j ~ i x i  = -E[log j i ( ~ ) l  (14 39)  
X €  1 

(Eken though i t  15 written as if  i t  were J function of X, the entropy is not a random variable- 
~t i i  a funct~on of the pmf ot X ) The entropy of X represents the amount of uncertainty 
about X that i i  re\olved when X 1 i  observed If the loganthm in (14 39) is baie 2 ,  then the 
units of entropy dre bits. if the logarithm 1s baie e, then the units are nats (naturdl units) 

Example 14.8.1 Let X be a Bemoullt random vartable wrth probabtl~ty p Then 

and 

The entropy rn t h ~ s  care is often denoted (more accurately) as H ( p ) ,  and is called the binary entropy 
tunctron A plot ot  H ( p )  I \  shown In figure 1 1  21 When p = 0 or p = 1 ,  there 15 no uncertainty 
'ibout X to be resolbed (the outcome is sure one way or the other), and the entropy IS  0 When p = 0 5 ,  
a full b ~ t  of uncertainty 1 5  resolved when X IS observed 0 

Figure 14.2 1 : The binary entropy function H (p) 

Let X and Y be jointly distributed random discrete variables taking values in the sets 
,Y and y. respectively, with joint pmf f X y ( x ,  y). The joint entropy is defined by 

H ( X ,  Y) = - t: f x r  ( x ,  y) log f x ~ ( x .  Y). 
x € X . y € y  

This is simply a modification of the definition in (14.39) .  
The next infortnation-theoretic quantity we introduce is the conditional entropy, 

This represents how much uncertainty remains in Y when X is known. 

Example 14.8.2 Let X be a random variable that passes through a deterministic system to produce 
an output Y. Then H(Y 1 X) = 0, since when X is known, there is no uncertainty about Y.  

It  is straightforward to show that 
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This has the intuitively appealing interpretation that the combined uncertainty in X and Y 
is the sum of the uncertainty about X alone and the uncertainty remaining about Y when X 
is known. 

The last information-theoretic quantity we present is the mutual information between 
X and Y. This is defined by 

Intuitively, I (X, Y) indicates the reduction in uncertainty of I' due to knowledge of X (or 
vice versa). It can be shown that 

H(X, Y) = H(X) + H(Y) - I (X,  Y). (14.43) 

Also, mutual information has the property that 

with equality if and only if X and Y are statistically independent random vectors (or vari- 
ables). 

14.8.2 Applications to source separation 

Returning now to the source-separation problem, for the moment let us inode1 the input 
signal as a random vector S, and the measured signal as X = AS. Consider a single-stage, 
multiple-input, multiple-output neural network in which the processing that takes place is 

Y = g(U) where U = WX + wo. 

where g(U) indicates that a function g is applied separately to each component of U. 

We take g as the logistic function commonly used in neural network processing, 

Our optimization criterion now can be stated as: determine the neural network parameters 
(W, wo) so that the mutual information between Y and X is maximized. Since 

I (Y,  X) = H(Y) - H(Y I X), 

and since H(Y / X) = 0  (knowing X reduces all uncertainty about Y because there is a 
deterministic system from X to Y), our criterion becomes equivalently: determine the neural 
network parameters ( W ,  w0) to maximize H (Y). 

This maximum-entropy criterion has another interpretation. If Y consists, for example. 
of two components Y1 and YZ, then (see (14.43)) 

Maximizing the joint entropy H(Y!, Y2) is accomplished by maximizing the individual 
entropies while minimlzlng the mutual tnformatzon I (YI , Y2) When 1 ( Y !  , Y2) ic zero then. 
as observed previou\ly, Yi and Y2 are statict~cally dependent  Thus, the maximum mutual 
~nformation optimlzatlon criterion I S  often effectively the same as a mmimum statist~c'il 
dependence (Independent component) criterion (see [2 1 ,  page 1 14 1 I )  
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H tY )  = - C /y(yi log jyiy) = E l l o g  j r (y ) l  ( 14 45) 
v 

we u\e an Iterdtlve approach, upcldtlng the neural network we~ghts at time k dccordlng to 

where y IS a learnlng rate parameter We employ a steepest ascent approach, in which the 
change tn we~ghts I \  the gradient of the cr~ter~on function, 

1 
f ~ ( y ) = f . ~ ( x ) -  when y = g ( W x + w o ) ,  (14.48) 

l J l  

if 
~ w j y '  = - H(Y) 

where 1 J / is the absolute value of the Jacobian, 

(14 47) 

J  = det 

a wo Y=~(u""x+w;') 

We turn our attention now to evaluating the gradients. Assuming that the neural nonlinearity 
g is monotonically rncreasing, the density of Y can be written as 

Substituting (14.48) into (14.451, we have 

Since H ( X )  is unaffected by the parameters (W, wo), we need only examine 

a 
="[log I J l l  

and 

ik I where y = g(Wlux + wo ). 
We now make a stochasric gradient approximation, as we did for the LMS filter. That is, 

we approximate the expected value by a single point in the ensemble. We thus approximate 
the expectation by 

Ellog I JII log I J l ,  

on the basis that across an ensemble of training data the set of x data approximates the 



664 Basic Concepts and Methods of Iterative Algorithms 

density fx(x). Assuming this approximation as accurate, we set 
a 

A wckl = - log / J I where y = g ( ~ [ ~ ] x  + wF1), aw 
a 

A w r l  = - log 1 J 1 where y = g ( ~ i u x  + w r l ) .  awe 
These derivatives are given by the following lemma. 

Lemma 14.1 The change in weights safisjes 

where 1 is a vector of all ones, and the log is assumed to be natural. The vector y = 

g(Wx + ~ 0 ) .  

Proof Let u = Wx + wo. Then 

It follows that 

Then, from example E.2.2, we have 

J = det 

a 
- log Idet(W)l = w - ~ .  aw 

Also, since g is increasing, we can remove the absolute value condition from /y:j. We also 
use the fact that J; = y f ( l  - yi). Then, the components of the partial derivative are found 
from 

- a ? l  a u l  ayl sun- - - . . . - - 
a u I  ax] au, axn 

; 
ay, au, a ~ ,  sun - - . . . - - 

- au,  axl  au, ax, 

Putting the components together, we find that 

AW = w - ~  + (1 - 2y)xT. 

The approach is similar (but substantially easier) to find Awe. 

n 

= det(W) n y;. 
I= I 

- ay l  ~ Y I  -, - . . .  - 
3x1 ax, 

; : 
ayn ayrr - . . .  - 

- 8x1 ax,, _ 

14.8.3 Implementation aspects 

= det 

In the case of b l~nd source separation, the observed vectors x[t] are modeled as a sequence 
of instances of random vectors X In the training algorithm that we now present, the data 
X[I] are randomly permuted. wlth a different permutation uced for each pacs through the 
data The matrix update A w[" I \  computationally intensive, stnce i t  involve{ the inver\e 
of a matrix To reduce the cornputailon, b updates are batched together to produce a 5inglc 
update Code to test the blind 5ource scparatlon 15 shown i n  dlgortthin 14 6 



t\lgoritiin~ 14.6 Blind source \eparatton test 
File: b -. . 7 &Ji 5 1 . m 

pern~reddt; --.TI 

Example 14.8.3 The code tn algortthm 11 6 r i  tested by reiordrng ,~pproxtrn'ktely I O beconds of three 
iources, usrng 't nircrophone and a sound card in an otttce envrronment and 8-brt quantizatron at 8000 
samplei/\econd The three source\ 'tre a ternale spe'lker ~g a male speaker tkrr. and vocal ensemble 
music ,n These source4 are mixed usrng the A tnatrtx shown In algorithm 14 6,  and the mtxed signal\ 
are proceiieci using the dlgorrthni with IL = O 0 1 by rterattng 15 times through the data, where the data 
vector for proceiiing ri chosen at random (wrthout replacement) to get a ~tatrsttcal representatron of 
the dt~trrhuttort The tnrtial condrtions are wI "~  = I and wj;'' = 0 The reiultu \how good separatron, 
with the mo\t dramatti. Improvement evident tor the speaker\ The matrrx WA is 

wtth the underlrned component5 being qurte strong, con~pared to the other element4 (The datd files 
can be found on the included media in dav fonnat. wrth u s s r r i .  waTJ  berng the Input hlef, and 
= s s o i i z r .  *la J berng the output (separated) tiles ) 0 

14.9 Exercises 

11. I -  I What is the orbit of the logistic map if .ri, < O? If .r,, I? 

14 1-2 Explore the behavror of the Iogiitrc map for vanouc values of h Determine the fixed pornts 
(tt any), and whether they are attractrve or repelling Try the followrng values ot A. 0 5 . 3  44, 
3 5 , 3 6 3 1 , 3 7 ,  3 8 3 1 , 3 9 9  

14 2-3 (Desrgning affine transfonn~tionu) In example 14 2 1, an affine transtormatron Ax + b was 
gtven that mapped a square to a square In thr\ exercise, you will devtse a method for findrng 
such a trdnsformatton 

Suppose that a polygonal set tn B%I~ dehned by tts vertlces, (xj:', xy', , x r ' ) ,  xjo' E 

R? We desrre to find an affine transformatron thdt maps this regron to the polygonal set wtth 
vertlces {xj;], xj", x i r i}  by the transformatton x j ' '  = AX:"' + h 

(a) Determine the number of vertices k necessary to untquely define the affine transforma- 
tion. 

(b) What happens if fewer than k vertices are avarlable? What happen\ tf more thank vertices 
are available') 

(c) Determine a means of finding A and b for the case of a unique transformat~on 

(d) Find an affine transformation that wrll map the vertrces 

{ [I] . [i] [i] } 
to the vertices 

respecttwly Draw the polygonal regron before and after 
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(e) Write MATLAB code that iterates your affine transformation to produce a diagram such 
as figure 14.5. 

14 2-4 For the Jacobt tteratton, show that for a matrix A wtth a,, = 1. then llA - I / I  < 1 if A i \  

diagonally domtnant, where the norm is the max norm 

14.2-5 The affine mapplng xl" ' =  AX"^ + b wtth 

has been proposed as a means of generating pants  for a speclal~zed codebook for a data 
compression apphcat~on. 

(a) Show that the kth polnt of the o rb~ t  is 

t-i 

xlkl = 1 Ajb + +A"x[()], 
1 =0 

which can be expressed as 

(b) If /[A / I 2  = 1, the orbit lies on an ellipse. Determine the center potnt of the ellipse, xo. 

(c) For 1 1  A / I 2  = 1, the ellipse can be expressed as 

for any x in the orbit, where the matrix L' is related to A and b If A and b are known. 
spectfy a means of tindtng the rnatrtx U 

(d) Using MATLAB. examine the orbjt of the transformation for vanous values of e A 
and 0 

14 3-6 Show that xi"] = (I In)" 1s of order 1 and has superlinear convergence 

14 4-7 Determtne a Newton's method for computing the square root of a number Code i t  in 4 

h~gh-level language, and determtne how many iterations are requtred for convergence to srx 
dec~mal places for a variety of starting points 

14 4-8 Show that tf Newton's method IS used to minlmize f (x) when f (x)  IS a quadratic function. 
then tt requtres only one 5tep 

14 4-9 Sketch an example of a functton wtth an initla1 condit~on for whtch Newton's method will 
not converge 

14 5-10 A steepest-descent problem on f (x) = xT Rx - b7x with var~able step-stze a, can be 
written as 

X l n A l l  = Xlnl + a,, r,, , 

where r, = 2Rxlnl - b Show that 

r i  r,, 
a, = -- 

r: Rr, 

minimizes f(xinii1) at each step. 

14 5-1 1 Write MATLAB dlgorithrns that find the root of a function j 2" -+ X using (a )  the b~sectior~ 
method and ( b )  the \ecant inethod As parameter\ to [he funcr~on. pas\ in  f, rl dnd ri [ h i  
function name. and the points u ,  and X? thdt br~cket  the solution 
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14 6- I2 Shou thd ( 14 19) is true 

14 6-13 The i o n s t ~ n t  K ~ p p e a r ~ n g  in (14 19) is ecju'11 to K = p' E e o [ t ] f [ t j f r [ t ] e o [ t ]  Using the 
independence asiumpt~on, and also a55i1m1ng that the tnput vector f [ t ]  and the dewed 
respon5e rl[ij are mutually C'lussian drstnbuted. show that 

where J,,,,, 15 the mtnrrnum mean-squared error, 

and R = E f [ t ] f r [ t ]  Note Use the Gau~slarl moment factoring theorem if u, , xz, xj, and 
r4 are complex Gaussian, then 

14 6-14 An adaptive hlter related to the LlMS algonthm tr the norrnnllted LMS algonthm This 1s 
obtained as the solution to a constrained optlmlzation problem, whtch can be expressed as 
follow? Given an Input vector f [ t ]  and a desired response d [ t ] ,  determine the tap welght 
vector h[ t  + I] to mlnrmlze jjAh[t + I ] / / ,  where 

subject to the constraint f 7 ' [ t ]h[ t  + I] = d [ t ] .  Show that the adaptive filter that satisfies these 
constraints has the update equation 

where e [ t ]  = d [ r ]  - f T [ r ] h [ t ] .  
in order to prov~de more flexlblltty In the normalized LMS algorithm, the update is often 
wntten as 

where p is a constant in the range O i p c: 2, and u is some small positlve constant meant 
to ensure numerical stability when f [ t ]  becomes small. 

14 6-15 (Computer expenment) A white-noise signal f [ t ]  is passed through a system with impulse 
response { 5,  - 1, -2. 1, 5)  Program a MATLAB slmulatlon to ~dentify the system using 
an LMS algonthm Try your expenment where the variance of f [ t]  is a,? = O 1, and the 
following vanations 

(a) The LMS filter has five coefficients 

(b) The LMS filter has ten coefficients 

(c) The LMS filter has three coefficients. 

Determine expenmentally the range of y for which the adaptive filter converges 

14.7- 16 The steepest-descent neural network tra~ning algorithm has the following modification to 
batch mode processing. 

(a) Show that a steepest-descent we~ght  update based upon E,, can be wntten as 

(b) Modify the code in algorithm 14.4 to implement this training rule, and test your results. 
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14.7-17 Show that the generalized delta rule in (14.38) can be written as 

Argue that for stability, a! must be within the range 0 ( [a1 < 1. 

14.7-18 Another nonlinearity employedin the multilayer perceptron is 

for some constant a and b, where in applications a 1.7 and b = 213 are used. Describe the 
modifications to the backpropagation algorithm when this nonlinear function is employed. 

14.8-19 Show that (14.41) is true. 

14.8-20 Show that (14.43) is true. 

14.8-21 Show that (14.44) is true. (Hint: Use the "information inequality" Inx ( x - 1.) 

14.8-22 Show that I ( X ,  Y )  ( rnin(H(X), H(Y)). 

14.8-23 Consider a scalar system with time delay, where the output is processed from the measured 
signal x(t) by 

y(t) = g(wx(r - d l ) .  

Determine a rule (for steepest ascent) for learning the delay d .  Interpret the result. 

14 8-24 Other funct~ons g(s) are possible For the followmg functions, show that the slopes j: = 
i3y,/au, and the gradlent term & In /j:I are corrected as ~nd~cated: 

a 
(a) y, = tanh(u, 1 Y,' = I - y ?  -1n[y11=-2~~2, .  

aw,, 

14.1 0 References 

The discussion of the properties of iterated functions in section 14.1 is really an introduction 
to nonlinear dynamical systems. An excellent introduction to nonlinear dynamical systems, 
leading to a good discussion of chaos, is found in 1743. Iterated function systems are 
described in relationship to fractals in 1121. Another starting point in this area is [332], 
in which the orbits of the logistic function are presented. 

The contraction mapping theorem is presented well in 12091, and is common in books 
on analysis as well, such as 12831. A description (with insightful figures) of contraction 
mappings is in [12]. 

Our discussion in section 14.3 of the rate of convergence closely follows that of 12101. 
which in turn draws from 12461. 

Newton's method is described in all books on numerical analysis; see. for example, 
11811. Some of the results on the convergence of Newton's method were drawn from 12091. 

The LMS adaptive filter introduced in section 14.6 has been the object of an enormous 
amount of research, both in applications and in the theory of convergence. An early but still 
insightful examination of the LMS algorithm is 13641 (see also [365,367,99]). An excellent 
summary in both areas is provided in 1132, chapter 91. Among the applications covered i n  
that text are: adaptive equalization (also introduced here), system identification, adaptive 
line enhancement, beam nulling. and noise cancellation. Convergence of the LMS a l g o r i t h ~ ~  



continue\ to be studied, ,i\ doc\, ,td,lptive hlterinp ba\ed on hlotkr of ddt'r-prov~dtng that 
impro~eti eitirn'ite5 ot K and p are ple\ented. 'I\ in dlgorlthm5 that ad'ipt :n the trequency 
dorna~n [2 121 dnd 11- 131 provide an excellent btartlng point for ilnaly\e\ that weaken the 
independence a\\umption An e,lrly ,~nd important work on the convergence of stochaitlc 
gradlent algonthms I \  [278] In  \ome LMS algonthmi, a varlable \tep \:Le I \  employed to 
speed convergence and reduce exceb5 error The normallzed LMS ,tlgorlthm presented in 
exerclse 14 6-13 15 one such algorithm Other examples of varlable step-me dlgonthms are 
In 12221 

The ltterature on neural networks is also very broad, and the rntroduct~on presented 
In this chapter only scratches the surtace A h~stor~cally Important work, previous and 
preparatory to the exploiton of research. IS 12281, which examlnes s~ngle-layer perceptrons 
wlth step functions as their nonl~neanties A groundbreaking text, covenng the multllayer 
perceptron and a myriad of other top~cs, 15 12851 A recent text, whlch provrdes an excellent 
coverage and Includes fairly recent research, IS [131], another text, whlch takes a rather 
more generalized vlew ot what con\tltutes a neural network, is [I921 11841 presents neural 
network5 In the context of dynamlcal sy\tems, and provldes an Interesting hlstory A tutorla1 
introduct~on to several neural network varieties 1s [204] 

A very useful dtscusr~on of iterative optrmtratlon methods appears in 12601, where lt 
is made clear that iteepest descent, though conceptually easy, 1s often very bad In practice 
Several powerful alternatives are presented there See also the d~scussion on conjugate- 
gradlent methods In rectlon 16 5 

An ~ntroductron to the general problem of bllnd s~gnal-processing problems appears 
tn 147. 190, 130. 1321 Some blind equahzation problems are also Introduced In 191 The 
prlnclples of blind source separation are summanzed In [49] and treated In more depth 
in [ j O ]  The matenal In thlr chapter was largely drawn from 1211, see also [54] for more 
information on Independent component analys~s 



Chapter 15 

Iteration by Composition 
of Mappings 

Tell me, what will it be. and 0. where will it end? 
Say, if you have permission to tell; 
Is there any fixed point into which prospects tend? 
Does a focus belong to pell-mell? 

- EIiza R. Snow, 
20 August 1842, The Wasp, Nauvoo, I11 

15.1 Introduction 

Many signals or the data structures associated with them have known properties. These 
properties might include, for example, signal attributes such as being real, even, positive, 
bandlimited, or possessing some kind of symmetry. Data matrices formed from signals 
might have properties such as being symmetric; having Toeplitz, Vandermonde or Hankel 
structure; having a known rank; and so on. However, in acquiring a signal for processing, 
desired theoretical properties may not be evident if the data are corrupted by the measure- 
ment process. The measured signal might be modified, for example, by to the need to obtain 
a finite-length sample of the data, or by measurement noise. As a result, the measured data 
may not satisfy the theoretical properties that the original data is known (or believed) to. 

The iterative methods described in this chapter provide a means of enhancing mea- 
sured signal data by finding the nearest signal that satisfies desired properties. The general 
technique is known as iteration by composition of mappings. 

The topic may be introduced by means of an example. Suppose a function f (r) with 
Fourier transform F (w )  is known to be bandlimited. that is, 

F ( w )  = 0 for lw l  > b. 

Let g( t )  be the measurement of f (r) obtained over a time interval -T < t < T .  

f c t )  it1 < r ,  
~ ( t )  = 

0 otherwise. 

S~nce  the length tn tlme of g ( r )  IS  fin~te, ~ t c  Four~er transform cannot be bandl~rntted 
G~ven g ( t ) ,  we deslre to recon5truct an approxtmatlon [ ( r )  to f ( r )  thdt aat~siie\ tuo 
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I For ltl < f. the reconstructed slgn'll f^ should be consistent w ~ t h  the meawred 
51gnd1, jot = q ( i )  for jt j < T 

2 f ( t )  should be bandlimitetf ? (w )  = 0 for lwl > 17 

This problem is sometimes called the bandlimited reconstruction problem. As we show 
in this chapter, an approach to the bandlimited reconstruction problem is to successively 
produce a function satisfying the first, then the second property, then the first again, and so 
forth. Each of these operations is a mapping, and the reconstructed signal is obtained by 
repeated composition of these mappings. 

More generally, a signal may possess several properties, each of which has its own 
associated mapping. Satisfaction of these separate properties may be accomplished by 
iterating the associated mappings. In this chapter, we explore this basic technique, as well 
as some observations about convergence of the iterations. 

Historically, the bandlimited reconstruction problem was addressed without the broader 
context, and the first proof of convergence did not rely on the theorems presented here 
[247]. A technique based on satisfying two constraints by composition of mappings was 
later examined, and the bandlimited reconstruction method was shown to be an application 
[380]. This was subsequently generalized to methods involving multiple constraints, in 
which the constraint sets are convex [379]. This gives rise to the method of projection on 
conve,r sets (POCS). A later generalization eliminated the need for the constraint sets to be 
sonvex. We refer to this version as the composite mupping (CM) method. 

15.2 Alternating projections 

We begin the formal tour of composite mapping methods by finding a means of satisfying 
two properties, as in the bandlimited reconstruction problem in the previous section. Let 
3-t be a Hilbert space with inner product ( x ,  y ) .  All of the signals are members of 'H. 
In the context of these iterative methods, signals with particular properties are identified 
as members of subsets of 7-f. Requiring membership in a set is equivalent to requiring 
satisfaction of a certain constraint. For example, the set of bandlimited signals form a 
set, and requiring a signal to lie in this set enforces the constraint that a signal is to be 
bandlimited. In the alternating projection algorithm, we require that the constraint sets be 
closed linear manifolds (CLMs) in the Hilbert space 3-t. 

Definition 15.1 A set of points JU in R" is a manifold if each point f E M has an open 
neighborhood that has a one-to-one map onto an open set of R". 

A linear manifold M in a Hilbert (or Banach) space 'H is a subspace of 'H. That is, 
the linear combination of elements in JU is again in ;W. If M is closed (that is, it is itself 
a Hilbert or Banach space), then ,M is said to be s closed linear manifold. 0 

The key idea of a manifold is that locally it "looks" like R". An example manifold is 
the surface of a sphere: each sufficiently small neighborhood looks like a piece of &I2, even 
though globally a sphere cannot be mapped exactly to R'. 

Let P be a closed linear manifold of the Hilbert space, and let Pi be its orthogonal 
complement. We will say that a set such as P is synonymous with the property that defines 
the set: every signal f E P has that particular property that determines inclusion in the set, 
and every signal that possesses the property is in P. 
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Let P be the orthogonal projection operator onto P. We can define P operationally as 
follows: Let f E 31. Then the projection of f onto P is the unique point P f = g E P that 
is nearest to f in some appropriate norm (not necessarily an induced nonn). Thus 

inf I l f  - gll = I l f  - P f  It. (15.1) 
REP 

(Recall that for finite-dimensional subspaces with known spanning vectors, the projection 
operator can be explicitly written. The definition here extends the concept to more general 
manifolds.) The projection of a signal f onto P by P f means that we find the signal in P 
that is nearest to f ;  that is, the nearest signal that satisfies the constraints represented by 
the set P. The uniqueness of the projection P f is guaranteed since a CLM is convex (see 
exercise 15.2-1 j. The idea of a projection onto a convex set is shown in figure 15.l(a). Note 
for future reference that when a set is not convex, as in 15.l(b), there may be more than one 
point in the set nearest to f .  We restrict our attention for the moment to sets that are CLMs 
and appreciate their convexity, then remove this restriction in section 15.3. 

Let Q be the orthogonal projection operator onto Pi, Q = I - P where I is the 
identity operator. By the projection theorem (see theorem 2.8), every element f E 3-1 has 
the unique decomposition 

where x E P and y E Pi. The orthogonal decomposition (15.2) gives rise to the decom- 
position 

The components o f f  In (15 2) can be obtained a? x = Pf and y = Q f = ( I  - P )  f 
Now suppose that there are two CLMs, 73, C 31 and 7>b c 31, representing different 

properties The problem addressed by the method of alternating projections I S  this An 
element f E 31 1s known to belong to the CLM Pb (representing known properties) but, 
due to difficulties tn measurement, the available data g are in 7>,, which is the projectton 
of f onto P, We desire to find a way to compute f (the s~gnal with des~red properties) 
from g (the ava~lable slgnal) Let P,. Q,, Ph. and Qh denote the projection operators onto 
Pc2, e, Pb. and P t ,  respectively Then the measured data (assumed to be available free of 
notse) 1s 

g = Paf  

Since f = P6 f (because Pb is a projection and f E Pb), we obtain 

(a)  (bi 

Figure 15 1 Illu\tratlon of a projection on a \et (a) When the set i s  convex, the projection 
1s untque (b) When the \et i j  not convex. there may be more than one nearest potnt 
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where 

and I i i  the Identity operdtor The operator A has the nullspace 

iince every r E P,, C P<; satisfiec A r = 0, and conversely (by the orthogonal decomposi- 
tion), every element in the nullspace of A must be In P/, n P: 

If there 1s dn inverse operator T = A - ' ,  then we can find 

Not only IS the existence of the imerse important, but also its "condition"-that is, whether 
it is stable-because usually we don't know g exactly, but rather a nolse-perturbed version 
g + n When the available meawrement is g = P, f + n ,  the reconstructed signal is 

and the difference between the true f and f̂  is therefore 

We hope that 1 1  A f 1 1  is small when llnjl is small. More precisely, we desire to impose the 
condition that 

IITn I < m> 
sup - 
ne?i llnll 

which 1s to say 11 TI/ < a. 
Rather than attempt to find the inverse operator T explicitly, we formulate an operator 

whose iterates converge to T .  From the equation f = g + Q, Pb f obtained from (15.3), 
we propose the recursive algorithm 

fwli = g + ~ ~ ~ h f ~ ~ ~  ( 15.4) 

with initial condition f = g. Equation (15.4) is the method of alternating projections. 
Figure 15.2 provides some geometric insight into the algorithm in a two-dimensional 

space. The vector f E Pb is desired. We know g = Pa f. In figure 15.2(a), one iteration 
of the algorithm is illustrated. We first project onto Pb. Since the projection of this vector 

(a) (b) 

Figure 15.2: Projection on convex sets in two dimensions 
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back onto P, does not match the starting vector g, we therefore compute a correction by 
projecting Pbg onto P$ to form 

Finally, we obtain an update to our estimate as 

Figure 15.2(b) shows additional iterates f l2] and f [31. These are clearly approaching the 
desired final value f .  

The condition that establishes the convergence of (15.4) is based on the angle between 
the subspaces P, and Pb. For points f E Pa and g E T$,, we define 

We define the angle between subspaces P, and Pb as 

$(z',,P(,) = inf @(f ,g) .  
f EP, 
 REP^ 

or, equivalently, 

Geometrically, if IP, and Pb are orthogonal, then from the projection g = Ph f, the infor- 
mation necessary to recover f is lost. This is formalized in the following theorem. 

Theorem 15.1 [380] Let P, and Pb be any two closed linear manifolds in a Hilberr space 
3-1, with Pa, Pb, Q,, and Qb the projectors onto these respective spaces and their comple- 
ments. Let f E R. 

1. f is uniquely determined by its projection P, f onzo P, i f  and only i f  

~ , n ~ $ = o .  
2. The inverse operator T = ( I  - Q,  pb)-' has a bounded inverse i f  and only i f  

$ ( ~ b .  P$) > 0. 

This angle constraint is satisjed ifand only i f  

~ ~ Q ~ p b ~ ~  < 1 .  

Due to its length, the proof of this theorem is not presented here (but may be found in [379]). 
However, after the uniqueness and existence of the inverse are established, the key point of 
the proof is that the iterates in (15.4) can be written as 

It can be chown that /I Q, P,, 11 = cos +(P[,, 7':) (tht\ 15 the hard part of the proof), so that 
under the hypothesei of the theorem 
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Herrce, In  the I~mlt, 

where hr, G 'P,, 731, P;. But by the conditions of the theorern, ho = 0. \o that f i k ' ' I  -+ f 

15.2.1 An application: bandlimited reconstruction 

Let 'l-t be the Hilbert space L 2 ,  and let PT c 3-1 denote the set of time-limited functions 
that vanish for i t /  > T. It is clear that PT is a CLM, since the linear combination of any 
two functions time limited to T is clearly time limited, and any sequence of time-limited 
functions is time limited. Also, let 'Ph c 'H denote the set of functions bandlimited to b; 
that is, for f ( t )  E % with f ( t )  tt F(w),  F(w)  = 0 for JwJ  h. This space is also a CLM. 
The projection operator P,,: 'H -i PT is defined by 

otherwise 

For convenience, we define the function p r  ( t )  by 

Then PT f = yT f .  The projection operator Ph: 'l-t -+ P b  is defined by 

that is, by truncating the Fourier transform. We can write explicitly 

We can write the iteration (15.4) as 

A section of code to implement bandlimited reconstruction, using discrete Fourier trans- 
forms for projection onto Pb, is shown in algorithm 15.1 

Algorithm 15.1 BandI~rnited reconstruction using alternattng projecrlons 
File: b1lterl.m 

As a specific example, let f ( t )  = sin(nt)/(nt) .  This is a signal bandlimited to 
n radians/sec. Let g( t )  be the signal obtained over -0.5 .c: t .c 0.5. The results of the 
reconstruction when the data are obtained by sampling every 0.02 seconds are shown in 
figure 15.3, where (a) shows the true signal f (t) and its reconstruction, and (b) shows the 
spectrum of the reconstructed signal. In this example, N = 1024 points were used in the 
FFT. 
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Figure 15.3: Results of the bandlimited reconstruction algorithm. (a) solid line = f ( t ) ;  
dashed line = f"( t ) .  (b) Spectntm of f" ( r )  

15.3 Composite mappings 

We now generalize the idea of alternating pro~ections to more than two projections. We also 
allow for the constraint sets to be nonconvex. Also, we remove the need for a Hilbert space; 
closure of the space is retained, but for the convergence results stated here no inner product 
is necessary. Instead, we consider simply a metric space (X, d ) .  

Suppose that there are rn properties that we desire to enforce. Corresponding to these 
properties are sets P I ,  P2. . . . , Pm, each Pk c X, 

% = {x E X: x possesses property k}. 

These sets are not necessarily convex, although in many applications they turn out to be 
convex. The set of elements in X that possess all of the properties is the intersection of the 
property sets 

P =F, n p , n . . . n  P,. 
The set P is assumed to be nonempty, or else there is no solution to the problem. The 
concept is illustrated in figure 15.4. Let the original measured signal be g. The problem of 
finding a signal f nearest to g that satisfies all of the constraints may be expressed as 

f = arg inf d(g,  f ) .  (15.61 
f @  

As ~llurtrated in figure 15.1, there may, In general. be multlple solutlonr to (15 6) if P 15 

not convex, so we refer to a solut~on set. rather than a un~que solution 
Direct rnlnimizatlon In (15 6) is often difficult, due to the need to sat~sfy multiple 

constraints and minlmizatlon over possibly nonconvex functions Inrtead of solvlng the 
optlmtzat~on problem subject to all the constraints s~multiineourly, the approach taken by 
the composite mapplng algorithm is look for a solutlon to the optimization problems taking 
each constraint separately. by solv~ng 

in f  d ( g ,  f )  
/ F P I  



Figure 15.4: Property sets in X and their intersection P 

We denote by Pk g the solution set to (15 7) It will be usetul to think of PLg a5 a mapplng 
that acts on g For each property there I<  a mapping. and we obta~n the set of mappings 
P I  7 & ? P,n 

We now form a composite mapplng by sequentla1 appl~c'ition of the individual property 
mappings specified by 

P =r P,, . . . Pz P ,  

P g  = P,,, ( . . .  (Pz (P , ( s ) ) )  . . .  ). 

The compo5ite mapplng P k i l l  In general be a point-to-\et mapptng The order~ng of 
mappings doe4 make a difference, since the property rnapplngs do not in general commute 

In order to iay someth~ng about the convergence of the method, we take a slight but 
important detour to present a general convergence theorem for clo\ed potnt-to-set mappings 

15.4 Closed mappings and the global convergence theorem 

The utility of point-to-set mappings, as opposed to simple point-to-point mappings, is that 
they allow for some ambiguity in representation. For example, provided that convergence 
can be proven for a point-to-set mapping, numeric details from one computer to another 
may have little bearing on the convergence of any particular implementation, as long as the 
results obtained on any computer can all be said to fall within some set in which convergence 
is observed. 

Example 15.4.1 For x E W, define the point-to-set mapplng 

If we start from ,ro = 10, any of the following sequences could be in sets that are produced by the 
mapping P: 

(10, -4.5,2, -.75, .25, - . I ,  .05, -.01, ,005.. . . } ,  

(10, 5.2.5. 1.25,0.625, ,313, ,156,. . . } ,  

(10, -1,0.5, .25. ,125, ,0625, ,0313,. . .). 

In each sequence the numbers are different. but each wquence 15 converging to 0 C1 

In this example, the numbers d~mlnich with every ~teration It will be useful to introduce a 
function to measure how "small" the element? in the metnc space are, and to introduce the 
idea of d 501ution set, trorn which no ddd~tlonal decrease In srze 1s poss~ble 
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Definition 15.2 Let X be a metric space, let Z X -+ R be a functlon, and let r c X be a 
set associated with Z  and a mapping P ,  which may be set valued (map to \ets) The functlon 
Z is sald to be a descent function for r and P  if ~t sat~sfies the follow~ng properties 

1 If x  4' r and y E Px then Z(J) < Z ( x ) .  That is, an iteration of x  under P leads to 
set whose elements y  decrease Z, as long as x  is not already In the solution set. 

2. If x  E r and y E P ( x )  then Z ( y )  ( Z ( x ) .  That is, if x  E T, then an Iteration of x 
under P may not lead to a further decrease in Z. D 

Let xr -+ x  indicate that the sequence of elements xk is converging to x  in (X. d ) :  that 
is, 

Definition 15.3 [210, 3841 Let P  be a point-to-set mapping of the set X into itself. P  is 
said to be closed at x  E X if 

xk -+ x  with xk E X. 

imply y E P ( x ) .  The point-to-set mapping P is closed on a set A c X if it is closed on 
each x  E A. C; 

Example 15.4.2 Conslder agaln the mapping in example 15 4 1 Let 

I 
x i = 2 - -  

k '  

and note that xk -+ 2 = X. Let 

and note that yk E P(xk) and yk -+ 1 E P(x). Thus P(x) IS a closed mapping 
To contrast, define the mapping 

Using the same sequences xi and vi. note that g -+ 1, but 1 @ G ( x )  Thus G(x )  IS not a cloced 

maPP'ng C; 

A mapping P ( x )  can be seen to be closed from the graph of the map, whlch is the set 
{ ( x ,  y ) :  x  E X ,  y E P ( x ) ) .  If X is closed then P  is closed throughout X if and only if the 
graph is a closed set. 

Compositions of closed mappings are defined as follows. 

Definition 15.4 Let A: X -+ Y and B: Y -+ Z be point-to-set mappings. The composlte 
mapping C = B A  is defined as the point-to-set mapping C :  X -+ Z  with 

C ( X )  = n B ( y ) .  
i € A ( r )  C 

The rnapplngs In thls definition are illustrated in figure 15 5 The irsue of closure of 
the composlte mapplng C ir determined by the followtng theorern 

Theorem 15.2 1210, page I861 Let A X -+ Y und B Y -+ Z he point-to- set mapping\ 
I f  the fillowitzg propertier are true. 
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Figure 15.5: Illustr~ltion of the composition of point-to-set mappings 

2. + x and yk E A  ( x k ) ,  and 

3. there is a y such thcit for a subsequence { y k ,  ] yk, -+ y ,  

then the composite mapping C  = B  A  is closed at .r 

Proof Let xk -+ x and :k -+ : with zk  E C ( , r k ) .  Closure is established if it can be shown 
that z E C ( x ) .  Let yi E A ( x k )  be such that zk  E B ( y k )  and, according to the hypothes~s 
of the theorem, let y  and { yk ,  } be such that yk, -+ y .  Since A  is closed at x, it follows that 
y E A ( x ) .  

L~kewise, let zk, E B ( y k , ) .  Since yk, -+ y and B  is closed at y ,  it follows that z E 

B ( y )  C B A ( x )  = C ( x ) .  

Corollary 15.1 If A: X -+ Y and B: Y -+ Z are point-to-set inuppings with A  closed at 
x ,  B  closed on A ( x ) ,  and Y compact, then the composite mapping C  = B A  is closed at x .  

This follows from the theorem since for compact Y,  every convergent subsequence yk, 
converges in Y .  As a second corollary, we have the following. 

Corollary 15.2 Let A: X -+ Y be a point-to-point mapping and B: Y -+ Z be a point-to- 
set mapping. If A  is continuous at x and B  is closed at A  ( x ) ,  then the composite mapping 
C  = B A  is closed at x. 

Since A  is point-to-point, the continuity of A  at x  guarantees the closure of the mapping A .  
With this nomenclature, we can now state and prove the global convergence theorem, 

which is a powerful result used to establish convergence for iterations of mappings. It can 
be used to prove convergence of the composite mapping algorithm. 

Theorem 15.3 (Global convergence theorem) [210, page 1871 Let P be a mapping onto 
X ,  and suppose that for an initial point f ''1 the sequence (f l k l ]  is generated according to 
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Assume that there is some continuous objective fu)zction Z: X i R that is a descent 
function with respect to F and a solution set r. Also assume that the mapping F is closed 
at points outside r. Then the limit of any convergent subseque~zce of (x r  } is a solution. 

Although the proof is somewhat technical, it is presented to reinforce some of the analytical 
concepts first presented in chapter 2. 

Proof Let the convergent subsequence { f k ] ,  k E K converge to the limit f ,  where K is 
some index set (such as Z). Since Z is continuous, it follows that fork E K. Z (  f k )  -+ Z (  f ), 
so that Z is convergent with respect to the subsequence K. We show that it is convergent 
with respect to the entire sequence. By the monotonicity of Z  on the sequence ( xk ) ,  we 
have Z (  f k )  - Z (  f K )  5 0 for k > K .  By the convergence of Z  on the subsequence, for 
every r > 0 there is a K E K such that Z(fk) - Z (  f )  < E for k > K with k E K. For any 
k > K ,  consider the following: 

By monotonicity, (Z(  f k )  - Z( f K ) )  < 0, and by convergence of the subsequence, (Z( fn) - 
Z(f)) < t. Thus, 

and we conclude that Z (  f n )  -+ Z (  f ). 
It remains to show that the convergent value f is in the solution set r. Suppose, to the 

contrary, that f 4' r. Consider the subsequence { f k i l ]  for k E K .  Since all members of 
the sequence { f k }  are in a compact set. there is a subsequence c K such that for 
k E converges to some limit f. We thus have 

fk -+ f for k E E, 
f k + l - + f  f o r k ~ x .  

Since F is closed at f ,  it is also true that f E A( f ). But by the results above, Z( f )  = Z(f ) ,  
regardless of the subsequence chosen, which contradicts the fact that Z is a descent function 
outside of the solution set I?. C 

The requirement that the mapping F be closed is perhaps the most important condition, 
and failure to satisfy that condition may prevent an algorithm from converging. 

15.5 The composite mapping algorithm 

Let (X, d )  be a metric space. To apply the global convergence theorem to the composite 
mapping algorithm, we let f ,  E X be a reference signal satisfying all of the properties. 
f, E P, and let the objective function Z be the metric distance between the signal f E X 
and the reference signal, 

Convergence of the composite mapping 

follows from the global convergence theorem if the mapptng P 1s closed and distance- 
reducing relative to Z Because P may be a point-to-5et mapplng. the \equence gel\- 
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F~gure 15 6 Projection onto a non-convex iet may actually increase the distance to the 
desired polnt 

erated by it may not be unique, but we are assured by the theorem that the sequence 
generated converges to a signal in  'P. 

Since nonconvex sets may arise in some applications, the restriction that the mapping 
P be distance-reducing relative to Z may not be trivial. While any projection P, mapping 
to 7;: will reduce (more precisely, not increase) the distance to 73,, this mapping could, if 
the sets are not convex, actually increase the distance to the intersection set, d(P,  f ,  f ,) ,  so 
that the composition P could be non-distance-reducing. An illustration of this increase in 
distance in shown in figure 15.6. However, for all the properties described in the remainder 
of this section, convergence is obtained. It is further shown (in section 15.6) that when the 
property sets are convex, the composition of operators is distance-reducing relative to 2. 
In addition, it is shown in section 15.6 that over-relaxed operators can also be used, which 
can potentially speed the rate of convergence. We now examine several different properties 
and examine mappings onto their constraint sets. In these examples. we point out constraint 
sets that are convex. 

15.5.1 Bandlimited reconstruction, revisited 

The bandlimited reconstruction problem examined in section 15.2 can be expressed in terms 
of composite mappings. Let 47>h be the set of functions bandiimited to b. Let TT denote the 
set of functions that are time lim~ted to T, that is, that vanish for ltl r T. Let 7; denote 
its orthogonal complement. Also, let ?? denote the set of functions whose projections onto 
?;- is equal to g ( t ) .  Then 

which is a linear variety. Combining projections onto Pb and?,, we obtain the reconstruction 
algorithm (15.5). 

15.5.2 An example: Positive sequence determination 

Given a sequence of data, we desire to find a sequence near to tt w ~ t h  the property that ~t 
has a real, nonnegative Founer transform. This problem has application In filter synthesis, 
data windowing, and spectral analysis More precisely stated, the problem 1s this Gtven a 
sequence of data { x x ] ,  determine the nearest sequence that has a posttlve (and hence real) 
Fourier transform In order for the transform to be real, it is necessary that xk = X - k ,  that 
IS, that x has conjugate even symmetry A sequence having the property that its Four~er 
transform IS real is said (in this context) to be a positive sequence 

We employ the compostte mapptng property to find a sequence of length 2q + 1 with 
positive Founer transform For computat~onal purposes, we use the DFT To enforce the 
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conjugate even symmetry, let 

be a conjugate symmetric vector of length N 2q + 1. There are N - 29 - 1 zeros in the 
middle. Let 

be the N-point DFT of x. There are two properties to enforce: 

1 .  r r l :  the sequence x E is of length 2q + I .  That is, there must be N - 29 - I zeros 
in the middle of the final sequence. The set of vectors in RN with N - 2q - 1 
zeros in the middle is convex. 

2. 712: the Fourier transform of the sequence is positive. The set 7>2 of vectors with 
positive Fourier transform is convex. 

The mapping PI to the set of vectors satisfying property 1 r 1  is found as follows. The conjugate 
symmetric vector y with 2q + 1 nonzero elements that is closest to an arbitrasy conjugate 
symmetric vector x of length N is found by the projection mapping 

In other words, the N - 29 - 1 elements in the middle are simply set to zero. The mapping 
P2 to the set of vectors satisfying property 752 is found as follows. Let [x]' denote the 
operator 

Then 

P2x = F ; I [ F N X ] +  

That is, we compute the Fourier transform, clip any negative values at zero, then compute 
the inverse Fourier transform. Then the composite mapping iteration step is defined by 

Example 15.5.1 The Hamming window 

1s not a posltlve sequence The code In algor~thm 15 2 executes the composite mapplng algorithm on 
the data to produce a nearby posltlve \equence ?[XI 

Algorithm 15.2 Mapping to a positwe sequence 
File: compmap2 . rn 

F~gure  15 7(a) show\ the Fourter tran5form o fx [k ]  ~ n d  of i l k ]  F~pure 15 7(b) \how\ hoth rIX I 
'ind i [ k  J I- - 
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Normalized frequency k 

(:tj Fourier transforms (b) Window functions 

Figure 15.7: Producing a positive sequence from the Hamming window. Solid line: 
Hamming window; dashed line: positive sequence 

15.5.3 Matrix property mappings 

A variety of problems In signal processing give rtse to matrices that have a particular 
theoretical structure-such as Toeplitz, Hankel, stochastic, and so forth,--or a specification 
on the rank. While the theoretical structure of a matrix might be known, a matrix obtained 
from noisy data might fail to have the anticipated properties. Using composite mappings, 
tt may be possible to find a nearest matrix that approximates the noisy matrix and has the 
deslred property. We discuss a variety of properties and mappings to obtain them. Other 
properties and mappings can often be similarly defined. 

Nearestmatrix with nonnegative elements. Let A be a matrix. A mapping that determines 
the nearest matrix to A that has all nonnegative elements is to be determined. The Frobenius 
is an appropriate norm, because it works on an element-by-element basis. The appropriate 
mapping is 

that is, the operator defined in (15.8), applied element by element to A. The operator is 
closed. Note, however, that an operator that mapped to strictly positive elements would not 
be closed. 

The set of matrices with nonnegative elements is convex. 

Nearest matrix of given rank. As discussed in section 7.5, the matrix nearest to A (using 
the Frobenius norm) that has rank r ( rank(A) is 

where ak, uk and v k  come from the SVD of A. An operator which maps A to the nearest 
matrix of rank r is therefore 

r 
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The set of matrices with a given rank is not convex, as may be seen by counterexample. Let 

12 14 9 
and B = [ :  :] 

Then 

rank(A) = 2 rank(B) = 2 but rank(A + B )  = 3. 

Nearest symmetric matrix. The mapping to the symmetric matrix nearest to A is given 

by 

The set of symmetric matrices is convex. 

Nearestposih've-semidef;nite mahix. Let X be a Hermitian n x rz matrix, represented as 
n 

k =  1 

Arrange the eigenvalues as h l  L h2 > . . . 2 A,, with the first p being positive. A positive- 
semidefinite matrix has eigenvalues > 0. The mapping 

P 

!,=I 
produces a matrix that is positive semidefinite and that is closest in Frobenius norm to X 
Verification of this fact comes by recognition that the representation (15.9) is equivalent to 
the SVD X = U C  UH for a symmetric matrix X. The distance from a positive-sem~definite 
matrix X+ to X is /IX - X+IIF = IlC - z + l l ~ ,  where 2 = U'X+U. The pos~tive- 
semidefinite matrix Ir? closest to C is that matrix that is diagonal, with elements matching 
the positive values of C and zeros elsewhere. This corresponds to the mapping ( 1  5.10). The 
set of positive-semidefinite matrices is convex. 

Matrix with rows summing to I .  (stochastic matrix) The matrix B, nearest in Frobenius 
norm to an rn x n matrix A, satisfying 

B 1 =  1,  

that is, whose rows sum to 1, can be written as 

In (1 5.1 I ) ,  A is represented in terms of its rows, 

and 1 i i  an rz  x 1 vector of all ones (see exercise 15 5-4) The iet of matrices w ~ t h  rou\ 
summing to 1 is convex 
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Nearest linear-structured matrix. To ~ntroduce linear-utructured matnces, cons~der the 
Toepl~tz matrix 

This matrlx has only four ~ndependent element5 The vectorized version of .4 (4ee sec- 
tion 9 3) ts 

This can be written in terms of a minimal vector of parameters 

by means of the linear-structured mutrix S :  

More generally, a linear-structured m x n matrix A is one whose vectorization a can be 
written as 

vec(A) = a = Sv, 

where the length of v is less than the length of a. The original matrix A thus has a linear 
dependence between its elements that may be exploited in the vectorized notation. Toeplitz, 
Hankel, and symmetric matrices are examples of Iinear-structured matrices. 

Given a matrix X, we can find the matrix A that is closest to it and that has a desired 
linear structure, in three steps. 

1. Vectorize X to form x. 

2. Find the vector a = Sv that is closest to x. Using the Euclidean norm, the minimization 
is 

min [lx - S V / / ~  
v 

The least-squares solution is 

v = s ( s T s ) - ' s T x .  

3. Unvectorize a to form A with the desired linear structure property. 

The three steps can be combined into a single operator as 

computation of the operator s (STs) - '  ST  = SS+ should rarely be done directly. The linear- 
structured matrix S may be very large, and directly computing its pseudoinverse would be 
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slow. Instead, it is worthwhile to examine what the operator is actually doing. Let X be a 
3 x 2 matrix 

XI1  X I 2  " = [;;; ;;J 
and consider finding the nearest Toeplitz matrix 

The elements of A are obtained by simple averages of those elements of X that correspond. 
The set of matrices with a given linear structure is convex. 

A few examples of the use of combinations of these properties should demonstrate 
their utility. 

Using S from (1 5.12), we find that the vectorized solution is 

Example 15.5.2 We deslre to devise an algorithm to find the nearest stochastic matrix to a matrix A 
A stochastrc matrix has all of ~ t s  element? nonnegative and all of tts rows sum to 1 To satlsfy t h ~ s  
two mapping are necesfary, Pl-wh1ch finds the nearest posltive matnx-and P5-which finds the 
nearest matnx who$e rows sum to 1 The composzte map 1s Pi Ps A MATLAR routlne to perform t h ~ s  
funct~on 1s shown In algorithm 15 3 

v = s ( sTs ) - 'SX = 

Afgorithm 15.3 Mapp~ng to the nearest stochastic matrlx 
File: tostoch .n 

When 

The component equations can be written as 

- - 
.5 0 0 0 .5 0 
0 .5 0 0 0 .5 
0 0 1 0 0  0 
0 0 0 1  0 0 
.5 0 0 0 0.5 0 
0 .5 0 0 0 .5 - 

is Input, the resulung output i i  

0 0797 0 5401 0 3802 
A = [ 0 0 5 5  04481 . 

0 6466 0 3512 0 0023 1 

X. 

whlch can he seen to idtrify the propertie\ 
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Example 15.5.3 Suppo\e X is an tn x n m'ttrlx, and we desire to flnd the ne'trest m x n Hankel 
rndtrlx A of rml\ .= mln(tn r z )  In  t h ~ s  ia ie .  the mdpplng\ are fi w ~ t h  & 11nedr \truiture map 
of the form Ph An ~n x rl Hankel rndtrix h'ts tn - 12 - 1 pardmeter5 An evdmplc 3 x 2 Hankel 
matnx 4 ,  

can be expre\sed in vector~zed torm u\lng a I~near-muctured nlatrix S as 

The MXTLAR code th,~t enforces these two properties rs shown In algonthm 15 4 

Algorithm 15.4 Mapping to a Hankel matrix of given rank 
File: t ohankel . m 

When 

1s used as an argument to A = tohanke 1 ( X , 1 ) , the answer is 

which is Hankel and has rank 1 

Example 15.5.4 Let x [ t l  be modeled as the sum of p / 2  real sinusoids in noise, 

Let N samples of data be taken. If there were no noise on the data, then, as d~scusred In rection 8.1. 
form > p the ( N  - m) x (m + I )  Toeplitz data matrix 
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would satisfy 

X , a  = 0 

for some vector a Furtherriiore, the (N - rn) x ( m  + I )  Hankel matrlx 

would, In the ab\ence of noiie on the x data. also .iattsfy 

where a In (15 14) I \  the same a \  in (15 13) The stack of X, and Xi, thus sat~sfies 

In the absence of nolse, the rank of X Is p The matrix X formed from the data \hould therefore have 
both the ToeplitzIHankel block propelty and the rank-p property Since X Ir formed from real, noisy 
data, it will not necessarily have these propertie'; U\lng compos~te mappings, we form a matrlx 2 
that 1s nearest to X and that has both properties The method IS  \~mllar to that of the prevlous exaniple 
w ~ t h  two I~near-structuied matnceb employed to accommodate both structured rnatlix types Tlte 
linear-structured Inatnces S7 and St{ ale large. each belng ( ( N  - m)(irz + 1 ) )  x N,  so that 

Algorithm 15.5 Mapping to a Toepltt~IHankel matrix rtack of glven rank 
Flle tohanictoep .m 

A numer~cal experiment is performed t o  enhance a slgnal w ~ t h  two slnuso~ds in noise The signal 
generated 15 

w h e ~ e  e[r ]  15 '1 Gau\itin uli i te-no~w sec~uence utth varlance a' = 1 I2 5. 50 that the SNR relattve to 
the largest signal I \  O dB A total of N = 128 point\ were taken Ftgure 15 8(a) shows the spectrum 
of tlie clean ddtd (no noiw) The two \pectral Iinei are clearly observed F~gure  15 8(b) \how\ the 
spectrum ofthe \~gnal with the noi\e ~ n c l ~ ~ d e d  The ~ i o i ~ y  drtta I \  formed Into aToepl1t71Hanhel block 
matrlx X Then the neale\t matrix 2 satlify~ng the two propertles (linear itructure and rink 4) 15 

found from which ~ e w l t i ~ i g  tlint' \erles R I \  extracted F~gure  15 8(c) shous l l ~ l ' + ' ~  - xi"i// a\ an 
indlcat~on of tlie convergence late of tlie a l g o ~ ~ t h m  Afrcr approxlmitely hbe Iteldroni the ilgor~thln 
ha\ rnostl? ~onbcrged Figure I5 X(d) show\  the clearied data. wh~ch \how\ a close ipprox~matron l o  

tlie orrg~nal cledn ti,tt,l 
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0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 
normalized frequency normalized frequency 

0 10 20 30 40 
iteration 

0 0.1 0.2 0.3 0.4 0.5 
normalized frequency 

( c )  (dl 

Figure 15.8: Results from the application of a composite mapping algorithm to sinusoidal 
data. (a) Spectrum of original data, (b) spectrum of noisy data, (c) rate of convergence, 
(d) spectrum of cleaned data 

15.6 Projection on convex sets 

Projection on convex sets (POCS) is a special case of the composite mapping algorithm that 
has been widely used in a variety of settings such as tomography and image restoration. 
Because the constraint sets are convex, it 1s easier to guarantee convergence. The basic 
method can be extended to the use of an over-relaxed operator that might speed convergence; 
discussion of this extension justifies our presentation. 

As with the composite mapping algorithm, we assume that there are several sets 
P I ,  P2, . . . , Pm, determined by specific properties. We assume that these sets are c0nve.x. 
This is the major restriction that POCS has in comparison to composite mapping. The 
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algorithm is examined in the Hilbert space K. We assume that the desired signal f lies in 
the intersection of the convex sets (similar to our assumption for composite mapping), 

We let P, denote the projection operator onto the set P, . 
The following two lemmas lay the groundwork for the convergence of this iterative 

method, by leading to the concept of a nonexpansive operator. 

Lemma 15.1 Let P be a closed convex subset of a Hilbert space 31. A necessary and 
suJJicient condition that a point po E P be the projection of x onto P is that 

for every p E P. 

Proof Let po = P x ,  the projection of x onto P. Suppose that there is a pi E P such that 

Since P is convex, every point of the form p, = ( I  - a ) p o  + a p ,  for 0 5 a i 1 is in P. 
Then 

Taking the derivative of flx - p, j /  with respect to a and evaluating at a = 0, we obtain 

Since the derivative is negative at a = 0 and the function is continuous in a ,  lt must follow 
for some small positive a that llx - p, I /  < llx - poll, which contradicts the fact that po 1s 

the projection of x onto P, the nearest point. 
Conversely, suppose the po E P is such that Re ( x  - po, p - po) ( 0 for all p E P 

Then for p f po, 

2 
l lx-  pi1 = llx -po+po-p112 

2 
=: lix - poll + 2Re ( x  - PO,  po - k )  + llx - pf12 > 11.x - ~ - 7 ~ 1 1  

Thus po is the minimizing vector. 0 

In a real Hilbert space, the inequality (15.15) can be written as 

( x  - P x ,  y - P x )  5 0. 

so that the angle between the two vectors x - Px and - Px is greater than 90". A diagram 
illustrating this lemma is shown in figure 15.9. 

Lemma 15.2 k t  P be a closed convex set in a Hilberr space 7-1 and let P be a projectzon 
operator onto P. Then fbr x .  y E 7-1, 

Proof Application of ( I  5.15) to both Px  and Py yields 

Re ( x  - Px. P J  - P x )  5 0 
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Figure 15.9: Geometric properties of convex sets 

and 

Re ( y  - P y ,  P x  - P y )  1 0 .  

Adding these and separating the terms yields 

R e [ ( P x ,  P x )  + ( P y ,  P y )  - ( P x ,  P y )  - ( P y ,  P x ) l  

1 Rel(x, P x )  + ( Y ,  P y )  - ( x ,  P y )  - ( Y ,  P x ) l ,  

which is equivalent to (1  5.16). 

The projection operator P  and the projection operator onto the complement Q = I - P  
can be used to decompose a signal x  as 

x  = P x  + Qx. (15.17) 

Definition 15.5 An operator P  such that 1 1  P x  - Py  1 1  .<: ljx - y  / I  is said to be nonexpansive. 

A nonexpansive operator is similar to a contraction operator, as defined in defini- 
tion 14.2, except that the distance between two points can be preserved (left equal), rather 
than being strictly decreased as in a contraction map. 

Lemma 15.3 

with equality i f  and only i f x  E P and y  E P. 

Proof Using the decomposition (15.17), we can write 

l l  P x  - PY I I  = Ilx - Q x  - Y + QY l l  
5 I l x - y I I+I lQx-  Qyll. 

If x  E P and y  E P then Q x  = O and Q y  = 0, in which case 

IIPx - Pyll = llx - YII. 

Otherwise, we have 

By this lemma, for points x ,  y  q! P, P  is a contraction operator, and the results of the 
contraction mapping apply. Looked at from another point of view, let y  E C; then d ( x ,  y )  = 
Ilx - y  11 is a descent function for P and P ,  and the theory of global convergence can be 
applied. 
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As we did for the composite mapping algorithm. we now assume that there are nz convex 
sets P I ,  P2, . . . , 'P,,,, representing certain signal properties (e.g., constraints on positivity, 
matrix structure, symmetry, etc.). We desire to take a point x E 3-1 representing measured 
data and find a point f that is near x and that is in the intersection of the convex sets: it  
satisfies all the properties. Let 

1=1 
Then the desired point f E 3-1 satisfies 

Associated with each convex set P, we determine a projection operator P, such that 

inf Ilx - f ll = llx - P,x ll, 
f ep ,  

and we introduce the composition operator 

While P may not be the projection operator onto P for every x E 3-1, every point in P is 
a fixed point of every P, and hence of P .  Also, every fixed point of P is an element of P. 
We introduce the recursive update on x as 

xlL+ll = p,lkl 

Figure 15.10 illustrates the concept geometrically. We first project onto the set PI, then 
from there onto 73)2, then back to P I ,  and so forth. Since the set P = PI n P2 1s not an 
empty set, repeated application of the algorithm leads to the point at the intersection. 

In figure 15.10, the first few iterations have the most dramatic effect on the nearness 
to the final solut~on. As the algorithm proceeds the rate of convergence slows due to the 
near-tangency of the boundaries of the convex sets. One procedure that may improve the 
convergence rate is to define an "over-relaxed" operator that extends the projection beyond 
the boundaries of the sets by 

T , = l + i . , , ( P , - 1 )  1 = 1 . 2  , . . . ,  m ,  (15.19) 

and then define the composition operator 

T = T,,T,-] . . .  TI.  

Figure 15.10: Projection onto two convex \etc 
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Under fairly generdl cond~t~oni .  succe\iive dpproximation uslng T converge\ If i t  can he 
ihown that T I <  a cloied mapplng and ir diit'ince-reducing relative to P. then the glob'il 
convergence theorem can be Invoked to prove convergence The key ~ssue  15 to e\tabli\h 
that the over-relaxed operator ,tnd i t5  compos~ttons are nonexpansive. then, for polnti r not 
In 7, the operator wlll be distance-reducing 

Lemma 15.4 The operator T = T,,, T,-I . . . TI is none.upnnsive. 

Proof To chow that T, as defined In (15 19) ic nonexpansive, we consider first the c'we 
0 < k, < 1 In t h ~ r  case, nonexpanrlveneis 1s straightforward When A, > I then 1 -A, < 0, 
dnd we have for any x ,  y E 7-1, 

Composition of nonexpansive operators is nonexpansive. We show this for m = 2; extension 
to larger m is similar. Let TI and T2 be nonexpansive and let T = T2 TI.  Then 

where xi = TIx and y ,  = TI y .  But since TI IS nonexpansive, ljxl - yi 11 5 llx - y 1 1 ,  and 
thus /ITx - Tyll llx - yll. il 

15.7 Exercises 

15.2-1 Show that a closed h e a r  manifold is convex 

15.2-2 Show for two CLMs 'Pc2 and Pb that if $I(?,, Fb) > 0 then the intersection Pa P, 'Pb contains 
only the zero vector. 

15.2-3 Let Pa and Pb be the projection operators onto Pa and Pb, respectively. Show that 

15.2-4 Prove part (1) of theorem 15.1 

15.5-5 Let A be a matnx, and let B be a matrix whose rows sum to 1. Show that the B nearest to A 
in the Frobenius norm is glven in (15.1 1). 

15.5-6 Show the linear-structured matrix for a 3 x 3 symmetric matrix. 

15.5-7 Show the linear-structured matrix for a 3 x 3 Hermitian matrix 

15.5-8 Let A be a linear-structured matrix, and a = vec(A). Suppose a real linear-stmctured matrix 
for a has the form 

where v is the set of parameters in A.  For a vector x, show that the nearest vector y to x with 
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the linear structure of a is 

15 5-9 The M x M matrix K , ,  6 50 used In the MUSIC algonthm ts a theoretical Hermltian- 
Toeplitz matnx, and the smallest M - p etgenvalues correspond to notse power, where p I \  

the number of complex s~nusoids in the recelved stgnai It may be possible to enhance the 
MUSIC algonthm by finding a nearby matnx wlth the proper \tructure, but which has rank 
p Write and test a MATLAB function that enforces the l~near  structure and rank-p properties 

of a matrix R 

15 5-10 A Vanderlnonde n ~ a t r ~ x  doe\ not have a ltnear structure Nevertheless, ~t tr st111 posrrbie to 
define a mapping from a general n x 11 matrix X to a nearest Vandermonde matnx 

(a) Given a sequence { x i .  xz, , x,,}, determtne a mapping to the nearest sequence 
( L U .  C U ' .  . cul ' )  under \ome appropriate norin 

(b) Find a mapplng from a matrix X to the nearest Vandermonde matrix 

(c) Code and test your algorithm 

15.5-1 1 Gwen an IYZ x 1 vector a and a vector b assumed to be a permutation of a. 

b = Pa .  

determine an algorlthln to frnd the best (In the mii~tmum least-squares sense) permutation 
matrrx P Code your algoitthm in MATLAB (At first bluqh, this seems like adlfficult problem. 
posslbly involvtng a search over all 1n1 permutations Thls example demonstrates the powei 
of compovte inapptng methods ) 

15.6- 12 Show that the projection onto a convex set as defined by ( 1  5 1) 15 unlque 

15.6-13 Show that for 0 < i, < 1. the operator 

ts nonexpansne tf P is nonexpanslve 

15.8 References 

The method of dlternatlng on convex sets IS desciibed In [380], dnd our descript~on in 
qection 15 6 follows closely the develop~nent there Geneializat~ons and regularization are 
also discu\sed In t h ~ s  excellent paper The method of project~on on convex sets can be found 
in [379], w ~ t h  an example given In 13011 Excellent materlal on projections is also found In 
l209l 

The compoclte mapping algor~thm Ir d~scussed in [48], where an appllcat~on to bearing 
estimation uslng MUSIC 1s a150 pre\ented The concepts relating to closed mappings come 
from [210] and 13841 The problem of findlng a near Hankel matrix of specified rank 
was explored by alternative method5 In [194]. for the purpose of syc;tem identification The 
reconctruction of bandlimlted funct~on\ mas propoged by Papoul~s [247], where convergence 
17 proved by expan\lon uung prolate ipheroldal function.; The proof 1s \peciallzed but 
~ieverthelesi Intere\ting and vdluable 

Project~on on convex \et\ I \  introduced with example\ for image re\toratlon In [379] 
A valuable d~ \cu \ s~on  of convergence 15 also prov~ded there A inore recent example of 
,tppl~cdt~on\ of this natule I \  in 13891 

The loc'il drid global propertle5 of mdnifold\. a\ referred to In definition 15 1 ,  are 
d~\cu\\ed t t  length 111 [3971 



Chapter 16 

Other Iterative Algorithms 

In this chapter, we present two classes of iterative algorithms that have been of particular 
interest to the signal processing community. The first class of iterative algorithms concerns 
clustering: finding structure in data. This technique is commonly used in pattern-recognition 
problems, as well as data compression. Algorithms in the other class are iterative methods for 
solving systems of linear equations. These algorithms move toward a solution by improving 
on a previous solution, and have application for both sparse systems and adaptive processing. 

16.1 Clustering 

Clustering algorithms prov~de a means of representing a set of N data points by a set of 
M data points, where M < N, by finding a set of M points that is somehow representative 
of the entire set. Most clustering algorithms are iterative, in which an initial set of cluster 
representatives is refined by processes such as splitting, agglomeration, or averaging, to 
produce a set of cluster representatives that is better in some measure than before. 

In this section we present two examples of the use of clustering: vector quantization 
for data compression, and pattern recognition. 

16.1.1 An example application: Vector quantization 

In this section we present briefly the concept of vector quantization (VQ) as an application 
of clustering. Vector quantization is often used in lossy data compression. Because the 
reconstructed signal is not an exact representation of the original signal, significantb 4igher 
compression is obtainable than for lossless data compression. The design issue is to obtain 
the maximum amount of compression with the minimum amount of distortion between the 
input and output. In practice, VQ provides only part of the solution of an effective data 
compression technique. 

The process of (scalar) quantization takes a scalar variable x (which may, for example, 
be a continuous voltage) and assigns it a quantization index i = Q(x) (which may, for 
example, be an eight-bit number). Let R denote the number of bits required to uniquely 
identify the quantization index. This is the mte. The number of quantization values is thus 
M = 2R.  As a general rule, quantization results in a loss of information. Usually it is not 
possible to reconstruct the variable x given Q(x), but only to reconstruct an approximation 
1 = P(Q(x)).  

In the design of quantizers, the goal is to deslgn Q and P in such a way that the 
difference between x and 1 is small according to some norm. In the analysis of quantization 
systems it is customary to regard x as a random variable with some distribution, and to 
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measure the quality of the quantization system by an average D = E llx - A 1 1 ,  where E is 
the expectation operator. The quantity D is called the dzstortion. Clearly, the more values 
that Q(x) takes on, the better the quantizer can perform and the lower the distortion can be 
for a well-designed quantizer. 

Suppose that we have a sequence of variables xo, x i ,  x2, . . . to be quantized. In such 
a case, Shannon's rate-distortion theory applies, (see, for example [56]), which states that 
there is a theoretical lower bound on the distortion D as a function of R.  Rate-distortion 
theory indicates that in order to achieve the lowest possible distortion, variables should be 
quantized as vectors. That is, we form n-dimensional vectors by stacking elements, such as 

We then pass the vector x, through a quantizer function that returns an index i = Q(x). 
The quantizer has M = 2R different representable values. An approximation of the original 
variable is reconstructed using a function P ,  

The most common coding technique is to have a set of representative vectors yo, y 1 ,  . . . , 
Y M - I .  These vectors constitute the codebook. The quantization function Q encodes x by 
selecting the codebook vector y ,  that is nearest to x in some distortion measure d(x, y , )  = 
Ilx - y ,  1 1 .  The index of the codebook vector is the quantization index, 

i = Q(x) = arg min d(x, y;). 
i=O.i ...., M - i  

The value of i is used to represent the data. It is assumed that both the source of the data and 
the sink (the place where the data gets used) are stored in a fixed location in the codebook, 
so that the codebook does not need to be sent. The reconstructed vector 2 is simply 

Example 16.1.1 Suppose that the scalar data x IS represented wlth 8-blt numbers, and that n = 16 
dimensional vectors are used if the codebook has 1024 elements, then R = 10 = log2(1024) bits are 
used to represent each vector Thus for each (8)(16) = 128 bits Input into the quantizer, 10 b~tz are 
output. and the compression ratlo is 

Hlgher compression is achievable by larger d~mens~onality or smaller codebooks 3 

A design issue In VQ 1s the selection of the codebook vectors yo, , y M - ~  so thdt 
these vectors provide a good representation of the data x, The method commonly used is a 
set of trainlng data that IS s ~ m ~ l a r  to the types of data that are expected to be used in practlce 
Based on the tratn~ng data, a set of M vectors are chosen that represent the tralning data by 
having a low overall d~~ to r t lon  The vectors are cho~en  according to a clustering procedure 

Example 16.1.2 Figure 16 I(a) shows 500 data points that have been \elected according to the 
dritrlbut~on Ar(O R ) ,  where 
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(a) Training data (b) Cluster centroids 

Figure 16.1 : Demonstration of clustering. 

This data is passed into the cluctenng algonthm lgb, described In sectlon 16 1 3, and 16 represen- 
tatlve vectors are found, wh~ch are shown In figure 16 l(b) Ob\erve that the clusters do give a f a r  
representatton of the onglnal data 0 

16.1.2 An example application: Panern recognition 

In chapter 1 I ,  the problem of pattern recognition was addressed from the point of view of 
decision theory. Suppose that there are C classes to distinguish among, each characterized by 
a likelihood function f (x li) and prior probability p, , i = 1,2, . . . , C. Given an observation 
vector x ,  the optimum (minimum probability of error) decision is to choose that class with 
the highest posterior probability, 

i :=arg  [ e (1 ,2  max ,..., CI f(xli)pi  

In the case that the prior probabilities are not known, then a maximum-likelihood decision 
can be made under the assumption that each class is equally probable: 

E = a r g  max f(x1i). 
l ~ ( l . 2  ...., C) 

For practical application of the theory, there must be some means of determining what 
the probability densities are. Exploring this question has generated a tremendous amount 
of research (a good starting source is [76]). In this section, we present one method based 
on clustering. 

Often, it can be assumed that the data in each class are Gaussian distributed. Under this 
assumption, it is only necessary to determine the mean and the variance of the data in class 
i to obtain the density f (xli). One way of doing this is by clustering. 

Example 16.1.3 In a particular speech-pattern recognltton problem, two-dlmens~onal feature vectors 
represent~ng (say) the ratlo of high-frequency energy to low-frequency energy, and the scaled formant 
frequency, are to he used to d~stingulsh among five different classes Figure 16 2(a) shows 300 data 
vectors The problem is to ~dent~fy  the densltles represented by this data Figure 16 2(b) shows 
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X1 1 

(a) Orig~nal data (b) Cluster centro~ds 

Figure 16.2: Clusters for a pattern recognition problem. 

the results of running a clustering algorithm on the data The cluster centrotds are shown as x 
and the covariance d~rec t~ons  from each cluster are lndlcated using ellipses of constant probabll~ty 
contours The five centro~d\ were reasonably p l a~ed ,  and the centroid directions are more-or-less ac 
expected 0 

16.1.3 k-means Clustering 

The k-means algorithm for clustering in n di~nensions produces k mean vectors that represent 
k classes of data. It has a long history; a relevant reference within the context of signal 
processing is [203]. The algorithm presented there (and here) is often referred to as the 
LGB algorithm, using the initials of the authors of that paper. 

The algonthm relies on a distortion measure d(x. y) between points in Rn. A variety 
of norms can be used, such as L 1 ,  L2. L,, or others specific to the problem. 

Let the set of training data be X = {xl , xz. . . . . XN}. Given a cluster pointy, (a centroid), 
the set of points in X that IS closer under the distortion measure d to y, than to any other 
centrold IS called the Voronoi region of y,. We will denote the Voronoi region for y, 
as V, : 

The number of vectors in a Voronoi region is denoted as IV, 1 .  The centroid of vectors In a 
Voronoi region is given by 

The centro~d of the Voronol reglon 15 used as the representatrve of all the data In  the reglor] 
Let y(x) denote the centrold y, that is closest to x The average dlstortlon across the entlre 
set of data X 1s 
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The number of elements In the I th cell (its Voronoi reglon) 1s 

16.1.4 Clustering using fuzzy k-means 

The baslc k-means algorlthm has been extended in a variety of ways over the years In thi5 
sectlon we generalize ~t by expand~ng the concept of cluster membership In the k-means 
algorlthm just described, a vector x elther belongs to the cluster described by the centroid 
y,, or it does not. There is no provlslon for data to belong partly to one cluster and partly to 
another However. in many pattern-class~fication problems, thls "cr~spness'\s unwarranted 
by the data We can generalize thls concept by utilizing a membershlp function that lndlcates 
the degree to wh~ch a vector belong5 to a cluster It is the fact that the degree of membership 
to a set Is explic~tly represented that leads to the word fuzz) In describ~ng thls kind of 
clustering 

We generalize the concept of the lndlcator u,, (as ~ntroduced in the last section) to 
allow for 

u,, E [O, 11 

Under this speclficatlon, u,, Indicates the degree to whlch x, is in cluster I and 1s sald to be a 
set rnenzbersh~p function. To determine a clustering algorlthm based on thts generalization, 
we Introduce the weighted-crtterion function 

where U = [u,,] IS the matrix of membershlp functions, Y = [ y l ,  y ~ .  , y L ]  1s the set of 
centrolds, and nz is a weighting exponent, 1 5 nz < oo The distance measure 1s taken, for 
analytical purposes, to be 

The functional J (U. V )  measures the penalty for representing k fuzzy clusters ~ndicated by 
U wlth centrolds represented by Y The goal I \  to m1nimi7e ( 1  6 I ) ,  subject to the constraints 

When nz = 1 In (16 1 j. the algorithm turn\ out to be simply the A-means algorithm When 
ni > 1,  it  1s straightforward to set up a constrarned optimization ploblem (\ee exerclse 
16 I - 1 ) to determine that 

uij = 1 
i = l . 2  , . . . .  k j ~ 1 . 2  , . . . .  N ,  

(d (x, , y, ))'1("'-- I J c:=, , , l , j z ~ ( t g :  - 1 1  
1 '. (16.5) 

Ob\erve thd (16 6 )  I \  ,I centiord ior-uputdtion. 2nd thdt. in  the limit. a< nz 4 I .  u,, take\ 
on only the ~iilues rn { O  I } Clu\tenng by f u n y  A-mean4 I \  ~ccornpli\hed by choosing dn 
inrtrdl \et of rne,in<, then iter~ttlng ( 16 5) and ( 1  6 6 )  untrl convergence 
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16.2 Iterative methods for computing inverses of matrices 

The most costly part of many signal-processing problems is the solution of a set of linear 
equations of the form Ax = b. Where the structure of the matrix A can be exploited to 
reduce the number of computations required, as compared with a general problem solver, 
it is often expedient to do so. Also, if the system is changing over time, so that we have 
Ax(n)  = b ( n )  at time n.  we want to use as much information about the solution at time n 
as possible to reduce the computations at time n + I .  One approach to solving this problem 
is by means of iterative methods for computing inverses of matrices. These methods are 
commonly employed for solving sparse systems of matrices, for which a solution method 
such as the LU factorization would be inefficient, since it would turn a single sparse matrix 
into two dense matrices. In the context of signal processing, iterative methods can also be 
used to develop adaptive algorithms that provide updated solutions as the data changes. 

In iterative methods for the solution of Ax = b, we form an approximate solution xik] ,  
then update the solution to refine it. The update for many iterative methods can be expressed 
as 

for a matrix B and vector c  that depend upon the type of iterative method employed. The 
Jacobi and Gauss-Seidel can be expressed in this way, while a third method-successive 
over-relaxation--can be expressed as a generalization of this form. Conditions for conver- 
gence of these methods are given by the following theorem. 

Theorem 16.1 [181, page 2291 Far the iteration 

to produce a sequence converging to ( I  - B ) - ' c  for any starting vector x[O1, it is necessaty 
and suficient that the spectral radius of B satisfy p ( B )  < 1 .  

Proof Take p ( B )  < 1 .  Then, by theorem 4.4, there is a matrix norm such that 11 B 11 < I .  
The kth term of the iteration can be written as 

k - I  

xir] = ~ ' x [ ~ l  + x B J e .  (16.8) 
J =o 

The norm of the first term goes to zero as k + oo: 

as k -+ CQ. For the summation in (16.8), we use the Neumann identity (see section 4.2.2) 

Thus, as k -+ cx, in (16.8), we obtain 

lim xikl = (I - B) - ' c .  
k-CX 

To prove the converse, assume that p ( B )  2 1 ,  and let B u  = hu, where h is an 
eigenvalue, with Ihl 2 I .  Let c = u and xlO1. Then, by (16.8), 

k -  l 

.Ik' = x v u,  
j =O 

which, for h > 1, diverges as k -+ oo. 
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It is straightforward to show that if A is row diagonally dominant or column diagonally 
dominant then the conditions of the theorem are satisfied and an iterative method of the 
form (16.7) will converge. 

16.2.1 The Jacobi method 

The Jacobi method can be introduced by an example. Consider the 2 x 2 system of equations 

where a,, # 0. The two equations can be solved for xi and xz, respectively, as 

We form an iterative solution by using elements of xlkl on the right-hand side to obtain 
updates on the left-hand side: 

1 
x l h + i l  = - (b ,  - 0 ] . x ~ ' ) ,  

1 
a11 

More generally, for an rz x n system. we obtain updates as 

Equation (16.9) is the Jacobi method. This element-by-element update can be expressed in 
matrix form as follows. Decompose the matrix A as 

where L is lower triangular, D is diagonal, and U is upper triangular. Then the Jacob] 
method can be expressed as 

For the 2 x 2 example. the decomposition is 

A M ~ T L A R  code for a Jacob1 lteratton Ir shown In algorlrhm 16 2 
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Algorithm 16.2 Jacobt iteration 
File: j acobi . rn 

16.2.2 Gauss-Seidel iteration 

In the Jacob1 method, all of the values of x ik1  are held fixed while xlk'll IS computed Cams- 
Seldel iteration 1s slm~lar, except that as soon as a new update to a component In xik+" IS 

computed, it  1s used for later components of xik"'I. To illustrate for the 2 x 2 case, the first 
update equatlon 1s 

Now we use the updated xy"' to obtain the updated x r ' " :  

For the general n  x n matrix, we can write 

I ne computation proceeds sequentially through the elements: it 1s not possible to compute 
xf"' until xlk+ll has been computed. This is in contrast to the Jacobi method, for which 
there is no mixture between updated prior components. This means that updates on compo- 
nents for the Jacobi method can be assigned to separate processors in a parallel computing 
environment, but not for the Gauss-Seidel method. On the other hand, since the information 
is used as soon as it becomes available, the Gauss-Seidel method tends to converge more 
quickly. The ordering of elements within the vector can affect the rate of convergence; a 
good ordering improves the rate of convergence. 

In matrix form, the Gauss-Seidel update can be written as 

X l k r l l  = -(D + L ) - ' ( u x [ ~ ~  - b), 

where A = L + D  + U ,  as before. Observe that the matrix ( D  + L)-' is the inverse of 
a lower-triangular system, which can be solved by backsubstitution. A routine for Gauss- 
Seidel iteration is shown in algorithm 16.3. 

Algorithm 16.3 Gauss-Seidel iteration 
File: gaussseid.m 

For nonsparse n  x n  matrices, both the Jacobi and Gauss-Seidel methods require O ( n 2 )  
flops per iteration. Provided that an LU factorization of a matrix A is obtained, an iteration 
is thus comparable to a backsubstitution step. Of course. there would usually be an extra 
overhead for the LU factorizations. However, for sparse matrices (say, with roughly r  << n  
nonzero elements per row of A), O ( r n )  flops are required. Thls could be a significant 
savlngs, particularly if n  is large. Also, the Jacobi iteration may be numerically unstable 
unless a relaxation parameter is used. 
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Another application in wh~ch  these iterative methods might be useful is tracking, in 
which A and possibly also b change with each iteration, and an approximate solution that 
attempts to track the true solution is acceptable. 

Example 16.2.1 For the system of trme-varying equations 

let 
0 W f 0 W 0 0 

['] [OS W ?] 

b[t] = 4 + coswzt 
COSWlt C O S ~ t  COSW3t COS Wlf  

Flgure 16 3(a) shows the true solut~on x [ t ]  = Act]-'b[r] Flgure 16 3(b) shows the approxrmate 
solut~on 2, [ t ]  obtained by using one Iterate of the Jacobi update for each trme step The approximate 

1.5 ' I 

0 50 100 150 200 
iteration 

1.5 I 

0 50 100 150 200 
iteration 

(a) True solution (b) Jacob) solution 

Gauss-Seidel Jacob1 
lteratlon lteratlon 

( L )  Cllui\-Se~del \olutton (d )  krror 

F~gure 16 3 Illu\t~ation of iterative inverie computation 
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iolutlon tr'icki the true iolution closely Fig~lre 16 ?(c) \how\ the approxlmatron solution B i , i [ t ]  ob- 
tained by one Iterate of the Gaus5-Se~del solutlon per time step, dgarn with close tracking 
F~gure  16 3(d) show\ the error lix - B, 11' and //w - 8G5 /I' The Gauss-Seidel dpproxi~nation generdlly 
h d ~  lower error, due to the tact that i t  uses more ~nformation for each update step L 

16.2.3 Successive over-relaxation (SOR) 

Conslder now the more generalized update 

Q X ' ~ " '  = ( Q  - A)xiki + b, 

where Q  is an tnvertlble matnx known as a splitting matrix The iterative methods previ- 
ously introduced can be chown to be of this form (see exerclse 16 2-6) The Iterative method 
converges, provlded that 

The successive over-relaxation method can be used to solve the equation Ax = b, 
where A 1s d Hermitian. positive defin~te matnx In the SOR method, the splitting matrlx i5 

chosen to be of the form 

where a > f, D is a positive definite Hermitian matrix, and C is any matrix that satisfies 

Then, for a positive-defin~te Herrnitlan matrlx A, the SOR ~teration converges for any Ftartlng 
vector xioi To see thls, we will show that 

has p ( B )  < 1. To see this, let A. be an eigenvalue of B, with corresponding eigenvector x. 
Then let y be defined by 

y - x - ~ x = x - h x =  Q - I A X  (16.13) 

and 

Q - A = ( a D - C ) - ( D - - C - C ) = ( ~ - I ) D + C .  (16.14) 

From (16.13), we have 

Combining (16.13) and (16.14), we obtain 

( (a  - 1)D + C)y = A(x - y) = ABx. (16.16) 

Let us now take inner products with y, using (1 6.15) and (1 6.16) to obtain 

~ ( D Y ,  Y) - (CY, Y )  = (Ax, Y) ,  (16.17) 

(a  - I)(y, Dy) + (y. Cy)  = (y, AGx). (16.18) 

Adding (1 6.17) and (16.18), and uslng the fact that (y, Dy) = (Dy, y) (since D is Hermitian) 
we obtain 

(2a - l ) (Dy ,  yl = (Ax, Y)  + (Y,  ABx). (16.19) 

Now we use the fact that y = (1 - A.)x in (16.19) to write 
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If lhl # 1, then the left-hand slde of (16 20) is positlve slnce D 1s positive definite, hence, 
the right-hand slde must be positive, so that lhl < 1 If, on the other hand, h = 1, then 
y = 0,  so that, from (16 15), A x  = 0 But this contradicts the fact that A is posltive definlte 

The choice of a determines the convergence rate Frequently a appears In the hterature 
as a = I / w ,  w h e ~ e  0 < o < 2 Selection of a value for w is difficult, in general, with some 
discussion appearing in [38 1. 3.501 

There is great flexlb~hty In the SOR method In the choice of D and C ,  the only 
constralnts belng (16 1 1) and ( 1  6 12) Frequently, D 1s chosen as the diagonal of A, and C 
1s chosen as the negat~ve lower-t~ iangular part of A 

Havlng shown that the SOR method converges, we summanze ~t as follows, uslng the 
aforementioned convention Let A be divided as 

where D is diagonal and C L  = c:: is strictly lower triangular. Let C = -CL. For some w 

in the range 0 < w < 2: 

Solving (16 22) for xlkt l l  is easlly accomplished, slnce the nlatrix on the left-hand slde 1s 
lower tr~angular and backsubst~tutlon can be employed For a given matrlx A ,  the matrlx 
factors should be precomputed Algorithm 16 4 illustrates the SOR update technique uslng 
a backsubst~tut~on step 

Algorithm 16.4 Successive over-relaxation 
File: sor  .m 

16.3 Algebraic re~onstru~t ion techniques (ART) 

Some llnear problems involve very lalee matrices that are sparse For example. In A x  = b, 
the m x 12 matrix A rnlght have only approximately r nonzero elements per row. where 
r << 11 Such large sparse problems arrse. fol example. in projective tomography recon- 
structlon problem\. where the elements of x correspond to tissue denslty, the elements of b 
correspond to detector measurements, and the elements of A model the projection of ti\\ue 
denslty onto the detector5 in the tomographlc proce% 

Iterattve technlque5 have been developed for such large llnear problems. whtch requlre 
only a small numbel of computatronr per lnverse In the tomographlc literature they are 
known a5 algehrarc re~orzrtrrrcirorz fecl?nzquet It has been ihown that these methods con- 
verge when constralnts are added to the solutlon (such as enforcing the requirement that 
each element of x be po51tive. or be In the range 0 < r, < 1 )  Such constralnts are helpful 
In the tomographlc regime. where ti\\ue density must be poc~t~ve.  and where Imposttion of 
the con5tratntc help5 the problem to be le5\ poo~ly conditioned 

We pre5ent an rteratlve \olut~on to the (possibly o\erdetermrned) linedr eyudtlon 
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We Interpret a: as the transpox of the E th row Also, let b = [ho. 1'71, . hi,,- I l 7  , m 2 n 
Then a partla1 update to the iolut~on I +  ohtdtned by 

Let xioi  be an initial solution. Also. let A he written in terrns of its rows as 

We note that iik-'I satisfies the (k -L 1)ct rou (mod t n )  of AX = b 

A =  

Then, %l"li IS mapped into xlk"'l uclng Vdnou\ cond~t~on \  of constrant 

- ax  - 

a: 
. 

7 
-a,,, - I - 

Unconstrained. Set xlki'i = j 7 l k ~ ' l  It ha\ been shown thdt if the set Xi = {xlAx = b) 
1s nonempty, then the lteratlve dlgor~thm converges to the element of Xi nearest to xior 
(Hence, d good lnltlal qolut~on I $  very desirable ) 

Partially constrained. Set 

0 $k-1 i xih-il - , < o .  
- {%:kJ-l l  otherwise. 

Fully constrained. Set 

0 gjk+'l < 0, 

gp+ll 0 < gIk+ll < 1 ,  

1 ~ j k " '  > 1. 

Algonthm 16.5 iiiustrates an impiementat~on of thls technique (without constraints) that 
processes each row of x once. 

Algorithm 16.5 Algebraic reconstruction technique 
File: art1.m 

The ART algorithm tends to converge somewhat slowly, as the following example 
illustrates. 

Example 16.3.1 Let 
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The true solutlon is x = [ I ,  2, 31' Iterattvely calltng a r t i  (starting from the inittal value of xiol = 
[ I ,  1, 11') yields, after 10 iterations. the approximate colution 

(As prevtously observed, the last row updated has an exact .iolutton ) The solution 1s close to b, but 
there 1s still a resldual Figure 16 4 ~llustrates the error [lb -  AX[^] 1 1  as a function of iteration Note 
the slow convergence after the tntttal improvement 0 

0 ' 
0 2 4 6 8 10 

iteration number 

Figure 16.4: Residual error in the ART algorithm as a function of iteration 

1 6.4 Conjugate-direction methods 

Conjugate-direction methods can be used to solve the system of equations 

Qx = b 

when Q 1s a symmetnc positlve definlte n x n matrix Conjugate-dlrectlon methods can 
also be used ar an iterative minimization technique that 1s generally faster than Newton'c 
method, but wlthout the need to compute a Hesslan matrlx Unlike In the steepest-descent 
method, the minimum of a quadratlc form In n dtmenstons can be obtalned in n steps using 

exact anthmetlc wlth conjugate-direction methods 
Let Q be a posltlve-definlte matr~x. and conslder mlnlmtzlng the quadratlc problem 

By taklng the gradlent wlth respect to x, 11 is clear that t h ~ s  1s equivalent to solvlng the 
equation 

Qx = b 

Conver.iely, suppose the equdtlon Qx = b 1s to be solved Clearly, d solution exr\ti at tlj' 

polnt where f (x)  has a mlnfrnum There 1s thui a duallt) between iolvlng the iymrnerrli 
linear eqttatlon and \ol\lng the mintmlzatlon problem 



In iection 3 8, the inner product wlth reipect to a nlatrix Q was defined a5 

(We a w m e  for convenience that 311 rnatrtces and vectors are real.) Vectors x and y are 
orthogonal wlth rei,pect to thli inner product if xT Qy = 0 In the context of the conjugate- 
direction literature, thii orthogonal~ty I \  glven another name 

Definition 16.1 For a iymmetrlc matrlx Q,  vectors x dnd y 'ire ca~d  to be Q-orthogonal or 
conjugate with respect to Q or Q-conjugate if xT Qy = 0 

A iet ot vectors do, d l  dk 1s  did to be a Q-orthogonal set ~f dTQd, = 0 for 

~ f l  0 

An important tdct about Q-orthogonal sets is given In the following lemma, whose 
proof IS gnen a i  an exerclse 

Lemma 16.1 lftlze vectors do, d l ,  , dk are ~rll nonzero andfomz rr Q-orthogonal set for 
a poJrttve defin~re Q, then the vectors -sire llnearlj ~ndepencient. 

Let do7 d l ,  . . . , dn-l be a given Q-orthogonal set. Then. since these n vectors must 
span n-space, the solution to the equation Qx = b can be written as a linear combination 
of the vectors in the Q-orthogonal set: 

The coefficients a, can be found by premultiplying both sides by dTQ. Using the 
Q-orthogonality property and solving for a, ,  we obtain 

By using the Q-orthogonairty, there is no need to compute an expression for Qx, which is 
fortunate because we don't yet know x. Instead, we can express the coefficients in terms 
of b. We can write the expansion for x as 

This construction of the solution for x can be viewed as an iterative algorithm in which the 
soiution can be built up from any starting point. The following theorem clarifies this point. 

Theorem 16.2 (Conjugate-direction theorem) Let (4, d l ,  . . . , dn-1 } he a set of nonzero 
Q-orthogonal vectors. For any xlol E Rn,  the sequence {xLk1} generated by 

with 

and 

gk :k Qxlkl - b 

converges to the inniq~ie solution x* of Qx = b after n steps. 

It is interesting and pertinent to note that 

L= Qx[" - b 

is the gradient o f f  (x) evaluated at x = x['l. 
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Proof By applying the iterative process (16.24) from xio] to xiX], 

X l k l  - XiO1 = aodo+a ld l  + . . . + a k - l d k - ]  

By the Q-orthogonality of the d l ,  it follows that 

d: Q (~( '1  - xi0]) = 0 

Since the d, are linearly independent, we can write 

x*-x[O1 = c Y ~ ~ ~ + ( Y ~ ~ ~  + . . . + ( ~ ~ - ~ d , - ~  

for some a , .  As before. we can find the coefficient CY, by premultiplying by df Q, to obtain 

d: Q(x* - X[O]) df  Q(x* - x[kl + xlkl - xlOl j 
CY, = - - 

df Qdr df Qdl 

- - d: Q (xi" - XI") + df Q (x* - xl") 
df Qdr df Qd, 

Now we substitute (16.25) into the first term of (16.26) to obtain 

CY, = 
dfQ(x* - ~ k )  - - gf dc -- 

df Qd, df Qdr ' 

We thus obtain a series in dl  for x*, and the theorem is proved. 

Of course, to make the conjugate-direction method useful for solving Qx = b, i t  I \  

necessary to have a Q-orthogonal set {d,}. This could be found (for example) by using the 
Gram-Schmidt process on a sequence with respect to the inner product (16.23). However. 
this is numerically and computationally suspicious. In addition, minimizing a quadratic 
function f is too easy to justify all this effort. However, we now extend the method so that 
it can apply to functions that are not exactly quadratic, and so that the Q-orthogonal set is 
computed as the algorithm proceeds. 

16.5 Conjugate-gradient method 

In the conjugate gradient method, the conjugate direction vectors {d, } are not computed 
beforehand, but are computed as the method progresses. The algorithm proceeds as follows: 
Let xlol E W" be an arbitrary starting vector, and let do = -go = b - Qxo The conjugate 
gradient algorithm proceeds by iterating 

Xlk+ll =, X l k l  + a ~ d k ,  (16.27) 

Ob\erve that the first step startr movlng in the d ~ r e c t l o ~ ~  of the negative gradlent, hence 
the method ctarta llke steepest descent However, unlihe the traditional steepest descent 
the step-me parameter (here denoted as a i )  change\ at each step Each successive moic 
tr a we~ghted comb~nat~on of the current gradient gk and the previou\ d~rection of motioii 



Algorrthrri 16 6 ~ l lu i t r a t e i  the conjug,lte gradlent iolutrctn of Qx = b tor  a iymrnetrlc 
matnx Q 

Algorithm 16.6 Con~ug~~te-gradient \olutron of 't sqmmetr~c linear equatron 
Frle cor, j g r ~ t d l  .I- 

Example 16.5.1 Figure 16 5 iho'iv, the contoun ot 11 Ku - b / /  and the results of the conjugdte-gradrent 
algorithm for 

itarting from xiOl = [I -91' 0b.ierve that, unltke the steepest-descent example tor t h e x  same 
parameter? (iee exarnple 14 5 I ) ,  the conjugate-gradtent method converge5 in exactly two iteps for a 
purely yuadr,ltrc problem The values of cu are 

Note that a ,  IS exactly the largest value that a iteepest dewent-step can be and st111 \atisfy (14 1 1 )  
tt steps just far enough tn the iteepect drrectton to reach the end of the valley The next step heads 
stra~ght into the solution CI 

Figure 16.5: Convergence of  conjugate gradient on  a quadratic function. 

Example 16.5.2 Using the conjugate-gradient algorithm, solve 

Proceeding as In the steps outlined above yield5 the solutron 
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Starting from the initial point xloi = [ I  0 0IT, the conjugate-direction vectors are 

It ts straightforward to verlfy that these vectors are Q-orthogonal C 

In order to validate that the algorithm is, in fact, a conjugate-direction algorithm, it must be 
determined that the vectors idk)  are Q-orthogonal. This condition, and more. is established 
by the following theorem. 

Theorem 163 If the conjugate gradierzt algorithm (16.27)- (16.31) does not ternzinare a1 
xk, then: 

(a )  spanIgo, g ~ ,  . . . . g ~ l  = span{go, Qgo- . . . , Qkgol. 

(bi span{do, d l ,  . . . , dk 1 = spanlgo, Qgo. . . . . Q b l .  

(c) d: Qd, = 0 for i 4 k. 

Proof The proof is by induction simuitaneously on parts (a), (b). and (c). For k = 0 the 
result is clear. We assume that (a), (b). and (c) are true fork and show that they are true for 
k + 1. The gradient update can be written as 

ghi-l = gk + cri; Qdk 

By the induction hypothesis and part (a), 

and by part (b). 

Hence,g~+l E span{go. Qgo,. . . , Q ~ O .  Q h + + " g o ] . ~ u t & + ~  cannotbeinspan{go. Qgo. . . 
Qhgo] = span{do. d l ,  . . . , d k j  because, for a conjugate-direct~on method, g r i ,  i d, .  i = 
0, 1, . . . , k (see exercise 16.5-1 I ) ,  and this would make gk+l = 0 We concl~~de that 

span{go, g ~ ,  . . . . ~ L + I  1 = span{go, Qgo. . . . , Q"'go1, 

establishing part (a). To prove part (b), we note that 

from which (b) follows from (a) 
To prove (c). we write 

When i = k ,  the right-hand stde Ir zero. by the definit~on of ,BL When I < k ,  the second 
term van~rhes, by the ~nductron hypothes~r (c) The first term van~she\ \]rice the expandtnp 
wbspace theorem (see exerclce 16 5- 10) guarantee\ that gk-1 i rpan{dU d l  d i A l  }. 
and since 

By (c). the d,  are Q-orthogonal. which establishes that this I, a conjugate-d~rectlol~ 
method 



It shot~ld be noted th,~t eten thotigh the 'dgorithin 5hould converge in tz step\ for the 
quddrdtl~ functiondl / (u), because ot numetlcdl rounciotf. there m d j  not be exact conver- 
gence Thr\ tctilure to stop tn I I  s t e p  led to di\~ntere\t tn the ~onjug~~te-gradtent algorrthrn 
More recently, however, Intere\t tn the algor~thm has been reju~enated as an Ltcr(ltlve al- 
gorithm iu~ted tor sonle sparse ni,itrices, in which the number ot iterates to convergence I \  

hoped to be < iz 

16.6 Nonquadratic problems 

An unconstrained problem 

min f ( x )  
%€ref 

can be approached using conjugate-gradient methods. In the conjugate-gradient algorithm, 
we identify gk as V f ( x k ) ,  and Q as the Hessian 

a2 f (x )  

3 xi i3.r, 

However, since the problem is not exactly a quadratic problern, convergence in n steps is not 
expected. What is conlmonly done is to proceed through n steps of the conjugate-gradient 
algorithm, then restart with a pure gradient step. MATLAB code for computing this is shown 
in algorithm 16.7. 

Algorithm 16.7 conjugate-gradlent \olut~on for uncon5tralned mrnlmrr_atlon 
File: con] g-rad2 . m 

One problem with this conjugate-gradient solution is the need to compute the Hessian, 
which is often a very expensive calculation. This can be alleviated by taking two extra steps. 
First, it is possible (see exercise 16.5-1 1) to write 

which elrminates the Hessian from B k .  For the step (16.271, instead of computing an ( ~ k ,  the 
line xCk1  + p d k  is searched to find the minimizer of f (xLki + p d k )  This line search is often 
less expensive than computation of the Hessian. 

16.7 Exercises 

16.1-1 For the fuzzy k-means algorithm, we need to rninrmize (16.1) subject to (16.3). Set up a cost 
functional incorporating Lagrange multipliers and derive (16.5). Using the distance measure 
(16.2), derrve (16.6). 

16.1-2 Write a MATLAB functlon that doe, fuxy clustering on a set of data. 

16 2-3 Show that the update rn the Jacob1 iteratton can be obtalned by 

(no divisions), by suitable normalization of A and b prior to beginning the Jacobi iteration. 
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16.2-4 Show that ~f A is diagonally dominant, so 

la,, l > max 1 la,, I. 
i i r  

then the Jacobi method converges. 

16.2-5 Show that: 

(a) If an iterative update is of the form 

QXlkiii = (Q  - ~ j x ' "  + b, 

where Q 1s an ~nverttble matrrx, then the lteratlve method converges if / / I  - Q-' A Ij < 1, 
for some matnx norm 

(b) Show that the Jacobt method can be wrrtten in the form of (16 32) 

(c) Show that the Gauss-Setdel method can be wntten in the form of (1 6 32) 

(d) (Richardson's method) Show that rf Q = I ,  then the iteration (16 32) has a fixed polnr 
equal to A- 'brf  ljl - A [ /  i 1 

16.2-6 Show that if A is diagonally dominant, then 

and the Gauss-Setdel method converges 

16 2-7 (Acceleration) Conq:der an tteratlve update of the form 

x l b l l  = ~ ~ 1 "  + 

We define a new update formula by 

x ' ~ + ' ]  = y (Bxihitl  + C) + ( I  - y)xiil = ByxIki + C. 

where B, = y B $. (I - y ) l  In thrs problem, you will examme how to find an opttmal value 
of y to speed convergence tn some cases 

(a) Shou that if the etgenvalues of G are known to 11e in the interval [a ,  b], then even 
e~genvalue A of G ,  must be In the range 

Ulnt: See exercise 6.2- 1 I .  

(b) Now. assumtng that b c I ,  let d  = 1 - b. Show when y = 2/(2 - a - b) that 

- 1  + yd  5 iL 5 1 - yd .  

(c) Conclude that, In thls case. the p(G,) 5 1 - y d  

(d) Argue, that y = 2/(2 - a - b) IS the opt~mum value of y 

(e) Repeat steps (b)-(d). aswmlng that a > I .  uslng d  = a - 1 

16 2-8 Show that the Gau\s-Setdel tteratton :r a specral case of SOR 

16.5-9 Prove lemma 16.1 

16 5- 10 (The expanding wb5pace theorem) Let Bn be the subcpace spanned by (do d l  di-l 1. 
and let f (x) = i x T Q x  - bTx 

(a) Show that xi" = xx'"-'I 4- cuL-,di 1 l ~ e s  In the linear carlety xo + Bk 

(b) Show that slnce f 1s a convex function. the point x E. xO + Bi that minjnuze\ j rs lht' 
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point at which 

orthogonal to Rk Note that g(u) rs the graclient o f f  

(L )  Show tor the recur\ion given tn theorern I6 2. th'it gn I Bi. 'tnd hence f (x) is rn~ntmired 
In xo f Lii (Hint U\e induction and the (L-orthogonality of the d, ) 

(d) Hence argue that x, must be the overail minimum of f 

16 5- 1 1 Show that tor the conjugate-gradient aigorrthm, 

16 5-12 Given a sequence pi,, pi , pn- , .  a Q-orthogonal set do. dl . d,-1 can be produced 
uslng the Gram-Schmrdt process uvng the Q-wetghted Inner product In the particular case 
when the pi are generated by pi = Qkpo, show that dk+, can be generated by a three-term 
recursion involv~ng Qdn, dl and dL_[ 

16 5-13 Let f (x) = i x 7  Qx - b' u for x E Z and positrve-dehn~te Q Let x, be a minxrnlzer 
of f over J sub\pace of Bn contarning the vector d, and let u2 be a mtnimirer over another 
subspace containing d Suppox  that j ( x i )  < j (x2) Show that x i  - xz is Q-conjugate to d 

16 5-14 Let Q be a iymmetrlc matrlx Show that any two vectors ok Q correspond~ng to distrnct 
e~genvalues are Q-conjugate 

16 5- 15 Let do, d l ,  , d,-, be Q-conjugate for symmetrtc Q Descnbe how to find a matnx E such 
that E' Q E IS dragonal 

16.5- 16 Modify algorithm 14.4 to use conjugate-gradient methods to train a neural network, imple- 
menting the line search instead of (16.27). 

16.8 References 

There is a very large literature on clustering in association with multidimensional statistics, 
pattern recognition, and data classification. An excellent survey of some classical techniques 
is provided in [76, Chapter 61. 

The fuzzy k-means was introduced in 1261. It was later generalized to fuzzy k-varieties, 
which generalized the shape of clusters that can be found. To a large extent, the clusters pro- 
duced by the generic k-means algorithm are essentially circular in the geometry determined 
by the distance function. Data with linear or planar clusters might therefore be misclassified, 
as the ends of a set of data lying on a line might fall into different clusters. This problem is 
addressed by clustering into linear varieties; clustering into fuzzy k-varieties are discussed 
in 127,281, and generalized further to a piecewise regression problem in 11241. More recent 
related work is in [185, 1011. 

The question of cluster validity is still largely open. A statistically based discussion 
appears in 11531. Research addressing the question for fuzzy clustering is presented in 13761. 

The methods discussed for iterative solution of linear systems are widely reported (see, 
for example, [I  14, 1811). Sparse systems of equations are described in [381, 3.501. The 
method of successive over-relaxation, which provides a weighted average of prior values 
with a Gauss-Seidel update, is also discussed in 1131, along with a variety of nonstationary 
methods including conjugate-gradient, generalized minimal residual, biconjugate-gradient, 
conjugate-gradient squared, and Chebyshev methods. Our discussion of SOR comes from 
1181, chapter 41. 
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The algebraic reconstruction technique discussed here was proposed in [159], with 
additional discussions being found in [ I  16, 1051. See also the discussion in 11521. 

The conjugate-gradient method was introduced in 11361, and is discussed in a variety 
of sources including [209, 1811. The presentation here, and some of the exercises: looseiy 
follow [210]. This source also provides an interesting discussion of the treatment of furic- 
tions with penalty terms, in which the eigenvalues may be divided into two groups. By a 
partial conjugate-gradient method, the eigenvalue disparity can be neatly avoided. Iterative 
approaches that are similar in spirit to conjugate gradient but applicable to general (nonsym- 
metric) matrices are reviewed in [13]. As an example of the way that conjugate-gradient 
methods are applied in signal processing, [I571 discusses image restoration. Conjugate- 
gradient techniques are also considered for training neural networks; see. for example, 
11921. Preconditioning of the conjugate gradient to improve the numerical stability is cov- 
ered well in [181]. 



Chapter 17 

The EM Algorithm in 
Signal Processing 

It is no paradox to say that in our  most theoretical moods we may be nearest to our niost 
practical applications. 

- A.iV. Wllilrhecid 

In this chapter, we introduce a means of maximum-likelihood estimation of parameters that 
is applicable in many cases when direct access to the data necessary to make the estimates 
is impossible, or when some of the data are missing. Such inaccessible data are present, for 
example, when an outcome is a result of an accumulation of simpler outcomes, or when 
outcomes are clumped together (e.g., in a binning or histogram operation). There may also 
be data dropouts or clustering such that the number of underlying data points is unknown 
(censoring and/or truncation). The EM (expectation-maximization) algorithm is ideally 
suited to problems of this sort, in that it produces maximum-likelihood (ML) estimates of 
parameters when there is a many-to-one mapping from an underlying distribution to the 
distribution governing the observation. The EM algorithm consists of two primary steps: 
an expectation step, followed by a maximization step. The expectation is obtained with 
respect to the unknown underlying variables, using the current estimate of the parameters 
and conditioned upon the observations. The maximization step then provides a new estimate 
of the parameters. These two steps are iterated until convergence. The concept is illustrated 
in figure 17.1. 

The EM algorithm was discovered and employed independently by several different 
researchers; Dempster [72] brought their ideas together, proved convergence, and coined 
the term "EM algorithm." Since this seminal work, hundreds of papers employing the EM 
algorithm in many areas have been published. A typical application area of the EM algo- 
rithm is genetics, where the observed data (the phenotype) is a function of the underlying, 
unobserved gene pattern (the genotype); see, for example, 11551. Another area is estimating 
parameters of mixture distributions, as in 12731. The EM algorithm has also been widely 
used in econometric, clinical, and sociological studies that have unknown factors affecting 
the outcomes (12921). Some applications to the theory of statistical methods are found in 
12051. 

In the area of signal processing applications, the largest area of interest in the EM 
algorithm is maximum-likelihood tomographic image reconstruction (see, for example, 
1309, 3 151). Another commonly cited application is the training of hidden Markov models 
(see section 1.7), especially for speech recognition, as in 12661. 
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Choose an rnrllal 

Ertr mate unobserved 

M-step: 
Compute maximum Irkellhood 

estimate of parameter B['+~] 
urlng estimated data 

f 
Flgure 17 1 An overvlew of the EM algorlthm After ~nrtlallzatlon, the E-step and the 
M-step are alternated untll the parameter estlmate has conberged (no more change In the 
estimate) 

Other slgnal processlng and engineering appl~catlons began appearing :n the m ~ d -  
1980s These Include parameter estlmatlon (1299, 3821). ARMA modellng ([I 5 1, 3881). 
image modeling, reconstruction, and processlng (1195, 173]), s~multaneous detectlon and 
estimation (15, 83, 1681), pattern recognltlon and neural network tralnlng (146. 158, 33511. 
d~rectlon finding ([2261), nolse suppression (13511). slgnal enhancement (13601). rpec- 
troscopy, slgnal and sequence detection ([103]), tlme-delay estlmatlon ([6]). and speclahzeu 
developments of the EM algorlthm Itself ((3001) The EM algor~thm ir also related to algo- 
rithms used In ~nformatton theory to compute channel capaclty and rate-d~stortlon functions 
([31, 59]), slnce the expectation step in the algorithm produces a reiult s~mllar to entropy 
The EM algorlthm is phllosophlcally s:milar to ML detectton In the presence of unknobn 
phase (~ncoherent detectlon) or other unknown parameters the Ilkellhood functlon is av- 
eraged wlth respect to the unknown quantlty (~.e., the expected value of the llkellhood 
functlon 1s computed) before detectlon, wh~ch is a maximization step (see. for example. 
126 1, chapter 51) 

The algonthm IS presented first by means of an extended example. then formally In 

sectlon 17 2 The convergence properties of the algorlthm are dlscusied In section 17 3 
Several slgnal processlng algorlthmi are then discussed Some concluding remarkr appear 
In sectlon 17 9 

17.1 An introductory example 

The following problem. although somewhat contl~ved, ~llurtrates ~-liost of the prlnciplei of 
the EM algorithm In many aspecti ~t is slmllar to a problem that i i  of practical ~ntereit-ti12 
ernlruon tomography problem dtrcusred In iectlon 17 5 



17.1 An Introductorj Eu:rmplc 719 

Suppow that in ,in image-pattern reiognrt~ctn problcrn. there are two ger~er~il cl,is\e\ to 
be d~itrngu~\heti a ~ l a i \  of d,11 k objeit\ ,~nd 'I cl,~is ot I~g'nt object\ The il,lri of d x k  objeLt\ 
may be further \ubdrvlded Into two ihape\ round 'ind \quare We de \~ re  to tfeterriltne the 
probab~l~ty of a dark object For the \,the of the ex,tmple, 'i\iume that we Anow the objects 
to be tr~nomlally d~\tr~buted Let the r'lndorn var~~ible Xi  repreient the number of round 
dark objects. X1 repre\ertt the number ot q u x e  d'irk object\, and Y 3 repreient the nurnber 
of light object\. and let [ r i  rz. u31T = x be the vector ot value\ the randorn v'~r~able\ take 
for some image The general tr inon~~al d~itr ibut~on 15 

where n = x I + rz + t ?  and [if + p? + p; = I The parameter5 of thlr d~stnbutlon are p l  . p2, 

and pl However, In thls problem we a,\ume that enough 1s known about the probabil~tre\ 
of the d~fferent clasiec so thdt the prob~bt l~ty  may be wr~tten as 

where p is now the single unknown parameter of the distribution. Recall that (in general) 
we use the symbol f to indicate either a pdf or a pmf. 

Suppose that for some reason it is not possible to distinguish each of the classes 
of objects separately. For the sake of the example, we assume that a feature extractor 
is employed that can distinguish which objects are light and which are dark, but cannot 
distinguish shape. Let [ y i ,  j21T = y be the n~lmber of dark objects and nurnber of light 
objects detected, respectively, so that yl  = .xi + xz and 1.2 = .xi, and let the corresponding 
random variables be YI and YZ There is a many-to-one mapping between 1x1 . .xz] and y i .  
For example, if yl = 3, there is no way to tell from the measurements whether XI = 1 and 
xz = 2, or xi = 2 and x2 = 1. The EM algorithni is sgecifically designed for problems 
with such many-to-one mappings. Based on observations y i  and yz, we desire to determine 
a maximum likelihood estimate of p. the parameter of the distribution. 

The random variable YI = XI  + Xa is binomially distributed (see appendix F), 

(The symbol g is used to indicate the probability function for the observed data.) 
In this case, it would be possible to compute an ML estimate of p by solving 

In more interesting problems, however. such straightforward estimation is not always pos- 
sible. In the interest of introducing the ELM algorithm, we do not take the direct approach 
to the ML estimate. The key idea behind the EM algorithm is that, even when we do not 
know X I  and x?, knowledge of the form of the underlying distribution fx (x l .  x ~ ,  x j  / p) 
can be used to determine an estimate for p.  This is done by first estimating the underlying 
data-in this case, xl and xz-then using these data to update our estimate of the parameter. 
This is repeated until convergence. Let p i k ]  indicate the estimate of p after the kth iteration, 
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k = 1 .  2. . . . . An initial parameter value p['l is assumed. The algorithm consists of two 
primary steps: 

Expectation step (E-step). Compute the expected value of the x data using the current 
estimate of the parameter and the observed data. 

The expected value of x l  , given the measurement y 1 and based upon the current estimate 
of the parameter, may be computed as 

x;'+l1 = E[xl / y l ,  pikl]. 
Using the results of appendix F, 

Similarly, 

In the current example. x3 is known explicitly and does not need to be estimated. 

Mmimization step (M-step). Use the data from the expectatton Ftep as tf it were actu- 
ally measured data, to determine an ML estlmate of the parameter Thls estimated data is 
sornet~mes called "~mputed" data 

In thts example, wlth xik+" and x?"' imputed and x3 available, the ML estlmate of the 
parameter 1s obtalned by taktng the derlvatlve of log fx(xlh+]], xf"', x3 / p )  w ~ t h  respe~'  
to p ,  equating ~t to zero, and solvlng for p ,  

The estlmate x/"+I1 IS not ured I n  (17 4) and so, for thls example, need not be computed 
The EM algonthm conststs of Iterating (17 3) and (17 4) untll convergence Intermediate 
computation and storage may be eliminated by subst~tuting (17 3) Into (17 4) to obtaln a 
one-step update 

As a numerical example. suppose that the true parameter 1s p = 0 5. and 17 = 100 sam- 
ples are drawn, with vi = 63 (The true values of X I  and x;. are 25 and 38, respectively. 
but the algor~thm does not know this.) The code segment in algor~thm 17 1 illustrates the 
computations. 

Algorithm 17.1 EM algorithm example computations 

File: e m 1  . K[ 

The reiulti of these computattoni are \hewn in table 17 I .  start~ng from p l " l  = 0 The 
final estlmate p* = 0 52 1s tn fact the ML e\tlmate of 17 that would hdve been obtained b\ 
maxtnnzlng (17 1)  w ~ t h  re\pect to p. had the 1 data been available 
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'I'ahle 17.1: Kejulti of the EM '~lgonthm for Jn 
example iz,lng t r ~ n o r n ~ d  d a t ~  

k r ~ i ~  r f i  I 

17.2 General statement of the EM algorithm 

Let y denote the sample space of the observations, and let y E Rm denote an observation 
from y. Let X denote the underlying space and let x E R" be an outcome from X, with 
rn < n .  The data x is referred to as the complete data. The complete data x are not observed 
directly, but only by means of y, where y = y(x), and y(x) is a many-to-one mapping. An 
observation y determines a subset of X, which is denoted as X(y). Figure 17.2 illustrates 
the mapping. 

The pdf of the complete data is fx(x 1 8) = ,f (x 1 8),  where 8 E 8 c Rr is the set of 
parameters of the density. The pdf (or pmf) f is assumed to be a continuous function of 8 
and appropriately differentiable. The ML estimate of 8 is assumed to lie within the region 
8. The pdf of the incomplete data is 

Let 

denote the likelihood function, and let 

L ,  (8)  = log g(y I 8 )  

denote the log-likelihood function. 

Figure 17.2: Illustration of a many-to-one mapping from X to y. The point y is the image 
of x, and the set X ( y )  is the inverse map of y. 
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The basic idea behlnd the EM algorithm 1s that we would like to find 8 to maxlmlze 
log f (x / 8) ,  but we do not have the data x to compute the log-likelihood So, ~nstead, we 
maximize the expectation of log f (x 16) g~ven the data y and our current estlmate of $ 

This can be accompllshed in two steps Let Q [ k l  be our estlmate of the parameters at the Xth 
iteration 

E-step. Compute 

It is important to distinguish between the first and second arguments of the Q functions. 
The second argument is a conditioning argument to the expectation and is regarded as fixed 
and known at every E-step. The first argument conditions the likelihood of the complete 
data. 

Wstep .  Let B ' ~ " ]  be that value of Q that maximizes Q(8 / @ I k 1 ) :  

O i h + l l  = argmax B Q(@ 1 ~ [ ~ l ) .  (17.7) 

It is important to note that the maximization is with respect to the first argument of the Q 
function, the conditioner of the complete-data likelihood. 

The EM algorithm consists of choosing an initial Qlkl, then performing the E-step and 
the M-step successively until convergence. Convergence may be determined by observing 
when the parameters stop changing; for example, when l l ~ ~ ~ ~  - 8[k- ' ] / j  < c for some c and 
some appropriate distance measure / I  11. 

The general form of the EM algorithm as stated in (17.6) and (17.7) may be special- 
ized and simplified somewhat by restriction to distributions in the exponenrzal family (see 
section 10.6). These are pdfs (or pmfs) of  the form 

where 8 is a vector of parameters for the family, and where 

is the vector of sufficient statistics for 8. For exponential families, the E-step can be written 
as 

Let t ik+'] = E[t(x) 1 y ,  8ck]]. Because a conditional expectation is an estimator, tlkt'j is an 
estimate of the sufficient statistic.' 1n lrght of the fact that the M-step will be rnaximizlng 

E[log a(x) / y,  0 ~ ~ ~ 1  + ~ ( 8 ) ~ t ~ ~ '  ' I  + log c(0) 

wlth respect to 0 and that E[loga(x) / y.  OiU] does not depend upon 8, i t  1s sufficient to 
write the following. 

E-step. Compute 

'The EM algorithm I \  \omellme$ called the e~r1mdt:on-max1m17atron dlgorithm because for exponentlnl 
iamil:e\ the fmt  \tep I \  an e\tlmdtor I t  hd\ al\o been called the expe~rat:on-mod~fication dlgonthm 12661 
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.M-step. Compute 

The EM algorithm may he diagr~~intneci starting from an initial giless of the pamineter Qloi 
as follows: 

i:-\tep kt-itep E-3tep M-\trp 
ol0l - t l  1 I - ,gl 1 I . ti2! . . . . . 

The EM dlporithm ha\ the adv'intage of being simple, at least In prrnciple, dctually 
computing the expectations and performing the maximizations may be computationally 
(or intellectuallyf) taxing Unl~ke other optlmliatlon techniques, i t  does not require the 
computation of gradients or Hescians, nor I F  i t  neces5ary to worry dbout \etting step-size 
pdrameters. as algorithms such as gradient descent require 

17.3 Convergence of the EM algorithm 

For every iterdtlve algonthm, the question ot convergence must be addrersed does the 
dlgonthm come finally to a bolution, or does ~t ~terate all nnu.searn, ever learning but never 
coming to a knowledge of the truth' For the EM algonthm, convergence may be stated 
simply at every iteration of the dlgonthm, a value of the parameter is computed so that the 
llkellhood function of y does not decrease That IS, at every iteratlon,  he estimated parameter 
provides an Increase In the ltkelihood function until J local maximurn is achieved, at whlch 
point the Ilkellhood function cannot increase (but w111 not decrease) 

We pre\ent a proof of t h ~ s  general concept ac follows Let 

and note that k(x / y, 0)  may be interpreted as a conditional density. Then the log-likelihood 
function L,(6) = log g(y / 8) may be written 

L, (6 )  = log f (x / 8) - log k(x 1 y, 0) .  

Define 

clr(el I 8 )  = E [ ~ O ~ ~ ( X  I y,  80 1 y, 01. 

Let M: 8['l -+ O[k+'I represent the mapping defined by the EM algorithm in (17.6) and 
(1 7.7), so that 8[k- '1  = M(B['~).  

Theorem 17.1 L ,  ( M ( B [ ~ + ' ~ )  3 L, (8), with equality if and only if 

and 

That IS, the likelihood function Increase? at each lteratlon of the EM algonthrn, until the 
cond~t~ons  for equallty are satisfied and a fixed point of the iteratlon is reached If 8* is an 
ML parameter e?timate, so that L, (0*) 2 L ,  (0) for all 0 E O, then L, (M(8*)) = L,  i8*) 
In other words, ML estimates are fixed points of the EM algonthrn Since the likelihood 
funct~on IS bounded (for distnbut~ons of practical interest), the sequence of parameter esti- 
mates @['I, @ [ ' I ,  , 0lk1 ylelds a bounded nondecreas~ng sequence ~ ~ ( 0 ~ ~ )  5 L, (Q1'l) - 4 

< L, (@['I), which must converge as k -+ cc - 
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Proof 
L,(M(8))  - L,(%) = Q(M(Q) I @ )  - Q ( @ / @ >  + H ( Q / @ )  - H(M(Q) 10). (17 12) 

By the definition of the M-step, it must be the case that 

Q(M(@) 18) 2 Q(Q I @ )  
for every B E O. For any pair (8'. 8 )  E O x O,  it is the case that 

H($' / 0) 5 H ( 8  / 0). 

This can be proven with Jensen's tnequality (see section A.31, whlch states: If f ( x )  1s 
a concave function, then E[f ( x ) ]  5 f ( E l n ] ) ,  with equality ~f and only if x is constant 
(nonrandom). This inequality may be employed as follows. 

1 k(xIy.8')  
< l o g  E log - 1 k(x I Y .  6) i Y .  $1 

Equat~on (17 13)  follow^ from Jensen's lnequallty, wlth f ( A )  = log(>). which I \  

concave, and (17 14) 1s true since k(x / y, 8) 1s a condltlonal denslty 
Examlnat~on of ( 1  7 12) In light of the M-step and the condltlons for equally In Jensen's 

lnequaltty reveals that equallty In the theorem can only hold for the stated condltlons D 

The theorem falls short of provsng that the fixed polnts of the EM algorlthm are In fact 
ML estimates The latter 1s true. under rather general condltlons, but the proof 1s someuhat 
involved and 1s not presented here (see 13751) 

Despite the convergence attested in theorem 17 1. there IS no guarantee that the con- 
vergence wlll be to a global maxlmum For l~kelihood functions w ~ t h  multlple maxsma. 
convergence wrll be to a local maxrmum that depends on the inltlal srartlng polnt 8('1 

17.3.1 Convergence rate: Some generalizations 

The convergence rate of the EM algorlthm is also of Interest Based on mathemattcal 
and empirical examlnatlons, st has been determined that the convergence rate 1s usuall) 
slower than the quadratic convergence typical1 y available w~th a Newton-type method [273] 
However, as observed by Dempster 1721. the convergence near the maxlmum (at least for 
exponentla1 famll~es) depends upon the e~genvalues of the Hessian of the update functlon 
M. so that rapld convergence ]nay be possible. More prectsely 1721, let 

and 

Then the a.;ynlptotlc rate of convergence 15 proport~ondi to the Idrgest elgen~alue of 
( F ,  - F,)F,- '  It ha\ a lw been shown that the rnonotlc rdte of convergence I \  equal t o  

IIF;' ' ( F ,  - F,)F,- '  ' 1 1 .  uhere the norm 15 the rnatrlx l 2  norm [ I  35) On thl\ bas]?. ~ t c  
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ob\erve that as F,  cippro,i~he\ I ,  ( I  e . ,t\ the complete d'tt,~ X be~orne\ le\\ ~nformatice). the 
speed of convergence of the EM dlgortthtn Increa\e\ I lowever. a\ a general rule. the M-\tep 
become\ more dithcult a\ X become\ le\\ inform,itive Thts tradeotf ~ d n  be eaied by u\irig 
'hidden data" \et\ (871 that are le\i intorrnati\e than complete ddta iet\,  ,ind th'lt can vdry at 

each lteratlon Th15 algorithm c'lmes the acronym SAGE-"5p'ice ,tlternattng expectation 
maximization"-and I \  chLtractenzed by upd'iting only \mall group\ of the pdrarneters at 
each iteration Thts algonthm 1s \imilar to the "expectdtion condit~onal maximtz;ltion either" 
(ECME) algonthm (2061 A turther generaltzation appear\ in the "alterndtlng expectation 

conditional maxtrnt~ation" (AECM) ,tlgorithm 12251 
Regardlesj of the specific form of the algorrthm employed, there are general advantages 

to EM algorithms over Newton-type algorrthm\ In the first place, no Heisian needs to be 
computed Also, there 1s no chance of "overshootrng" the target or diverging from the 
maximum The EM algorithm is guaranteed to be stable and to converge to an ML estimate 
Further dl5cussion of convergence appear5 tn 1375, 391 

Example applications of the EM algorithm 

We now present several applications of the EM algorithm to problems of signal-processing 
interest, to illustrate the computations required in the steps of the algorithm. The diversity 
of the applications illustrates the breadth of the EM algorithm's utility. The example of 
section 17.5 and the introductory example of section 17.1 illustrate the case in which the 
densities are members of the exponential family. The examples of sections 17.6, 17.7, and 
17.8 treat densities that are not in the exponential family, so the more general statement of the 
EM algorithm must be applied. The focus of the examples is on the algorithm; assumptions 
and details of the systems involved are therefore not presented. The interested reader is 
encouraged to examine the references for details. 

17.4 Introductory example, revisited 

The multinomial distribution of the introductory example is a member of the exponential 
family with t(x) = x. The E-step consists simply of estimating the underlying data, given the 
current estimate and the accessible data. This is followed by a straightforward maximization. 

17.5 Emission computed tomography (ECT) 
image reconstruction 

In ECT [309], tissues within the body are stimulated to emit photons by means of a radio- 
active tracer that is administered to the body. These emitted photons are measured by 
detectors surrounding the tissue. For purposes of computation, the body is divided into B 
boxes. We model the photons generated in each box by a random variable N ( b ) ,  with a 
particular realization at box b having n ( b )  photons, where b = 1 ,2 ,  . . . , B. There are D 
detectors around the body, and we model the measurement of the detector as a random 
variable Y (d), with a particular realization denoted by y ( d ) ,  where d = I , 2 ,  . . . , D.  The 
measurement configuration is diagrammed in figure 17.3. Let y = [y ( l ) ,  y(2). . . . , JJ (D)] '  
denote a vector of observations. 

In a commonly assumed model, the generation of the photons from box b can be 
described as a Poisson process N ( b )  with mean h(b) .  We use the notation f (n(b)  1 A(b ) )  
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detectors 

"boxes" 
body ex 

Figure 17.3: Representation of emission tomography. There are B boxes in the body and 
D detectors surrounding the body. 

to indicate the pmf. that is, 

The parameter A(b) is a function of the uptake of radioactive tracer in the tissue, so that 
by estimating the parameters A(b) in each box it is possible to construct an image of the 
body on the basis of the tracer density in the tissue. The boxes are assumed (in the simplest 
development) to be independent. Let the set of unknown parameters be denoted by 

A photon emission from box b is detected in detector d with a probability that we 
denote as p(d I b) .  We assume in this development that all emitted photons are detected by 
some detector, so that 

e p ( d b ) = l  b'b. (17.15) 
d=l 

The trans~tlon probabtllty p(d 1 b )  depends upon the geometry of the detectors relat~ve to 
the body under examination, and the physrcs of the excltatlon process A descr~ption of a 
falrly reallst~c model of p(d j b )  for emission tomography Is glven tn [309] The simulat~ons 
presented rn the following present a s~mpl~fied model 

The detector vanables y ( d )  are Po~sson distributed, 

where 

Let x(b.  d )  be the sample of the number of emlsslons from box b detected In detector d, 
an observation of the random var~able X (b .  d ) ,  and let x = {x (17, d ) ,  b  = 1 ,  . B ,  d  = 
1, . , D ]  For any given set of detector data { y ( d ) } ,  there are many drfferent ways that the 
photons could have been generated There 1s thus a many-to-one mapplng from x ( b ,  d )  to 
~ ( d ) .  and x con<tttute\ the complete data set Each vanable of the complete data x (b .  d )  t i .  
Poisson wlth mean 
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Aisurn~ng that e a ~ h  box generdtei photon\ independently of every other box 'ind that the 
detectori operate independently, the Iikelrhood tiinction of the complete data I \  

and. Liilng ( I 7  16). the log-Ilkellhood tunct~on I \  

Application of the EM algortthm 1s now straightforward What 1s assumed to be known 
IS the iet of detector measurements y, which are Polsson drstributed, and the tran\itlon 
probabll~tie\ p(d / b )  Porsson distr~butions are In the exponential family The sufficrent 
itatistlcs for the d~str~butlon 'ire the data, t(x) = x Let Xi" be the estimate of the parameters 
at the llth iteration and let xr"(b, d )  be the estlmate of the complete data For the E-step, 
compute 

~ ' ~ - " ( b ,  d )  = E[x(b ,  d )  1 y,  Alk1] = E[x(b ,  d )  1 y ( d ) ,  h rk l ] ,  

where the latter equality follows since each box is independent. Since x(b ,  d )  is Poisson with 
mean hlkl(b, d )  and y(d)  = ~ ( b ,  d )  is Poisson with mean hrk i (d)  = x:=, hikl(b, d ) ,  
the conditional expectation may be computed (using techniques similar to those in ap- 
pendix F) 

For the M-step, xikill (b. d )  is used in the likelihood function (17.18), which is maximized 
with respect to h(b).  We will compute (to avoid confusing indices) the derivative with 
respect to h(B) ,  and equate the result to zero: 

+ xik+'l(b, d )  log p(d 1 b )  - logxLkf  I1(b, d ) !  

+ hW+il ( b )  = 'y ~ ' ~ " ] ( b ,  d ) ,  

where ( I  7.15) has been used. 
Equations (17.19) and (17.20) may be iterated until convergence. The overhead of 

storing x [ k f i j ( b ,  d )  at each iteration may be eliminated by substituting (17.19) into (17.20) 
using (17.16), much as was done in the introductory example. This gives 

Example 17.5.1 In this example, we demonqtrate the pnnclples of tomographic reconstruction with 
dn art~fic~al data set Both the detector geometry and the cond~t~onal  probablltty model are 
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Detector 
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3 
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Detector 
array 

4 

Detector array 2 

Figure 17.4: Detector arrangement for  tomographic reconstruction example.  

significantly simplified from physical measurement systems for this example Consider the gnd shown 
in figure 17 4 Each box corresponds to a pixel Around the penphery of the box are detectors, with A 

detector in each row and column For purposes of simulation, it is convenient to represent four array5 
of detectors, where array 1 represents the data across the top of the Image. array 2 represents the 
data along the bottom of the image, and array 3 and array 4 represent the left-hand and right-hand 
side of the image, respectively The detectors are numbered by banks, so that y,,. i = 1 . 2  3 4. 
J = 1 ,  2 I ? , ,  represents the jth detector In detector bank 1 ,  and n ,  + nz + ni  + n4 = D. the 
total number of detectors The detectors are constrained so that they measure a projection of the 
data onlj in their own row or column Thus, each pixel projects onto exactly four detectorc, as sug- 
gested by the arrows in the diagram As a simple measurement model. we assume that the probabllitj 
p(d  / b) is linearly proportional to the distance between the detector d and the pixel b By this scheme 
an m x n pixel array projects onto 2(m + n )  detectors The problem Ir highly underconstrained 
so that perfect image reconstructron should not be expected For the 60 x 60 image below, on]) 
240 measurements are available, from which the onginal image is to be reconstructed as closelj a\ 
possible 

Figure 17 5(a) showc an artificially generated image Figure 17 5(c) shows the array of detector 
outputs for the bank of detectors along the top of the image, and figure 17 5(d) shows the array of 
detector outputs along the bottom of the output (The no~\e-like variation is due to the fact that thr 
detectors measure \ample$ of Poiison-distributed random variables, not the actual mean values of the 
random variables ) 

Figure 17 5(b) shows the result of applying the EM algor~thm embodied in (17 21) on the 
observed data for two iterat~ons The reconstruction conveys the general characteristics of the data 
but due to the horizontal/vertical measurement symmetry imposed by the structure of the detectors 
there are 51gnificant striping artifact\ (Other measurement geometries with more radlal symmetry 
would reduce these artifacts somewhat ) 

The code in algorithm 17 2 demonstrates the processing that takes place The algorithm expects 
an image in the variable 11- Based upon the geometry just mentioned, the transfer probabilities 
p(d \ b) are computed, then the detector outputs This lr followed by the reconstruction algorithm 

Also shown in algorrthm 17 2 is the code for the Poisson random number generator used In the 
7 

sirnulation 
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(a) Ortglnal t m q e  (b)  Reconitrllcted Image (hve tterat~on\) 

Detector number Detector number 

(c) Detector array 1 outputs (dl Detector array 2 outputs 

Figure 17.5: Example emission tomography reconstruction. 

Algofithm 17.2 Simulation and reconstruction of emission tomography 
File: testet .n 

et? .m L ' 1 

17.6 Active noise cancel lation (ANG) 

Acttve nolse cancellation is accornpllshed by measuring a nolse signal and then uslng a 
speaker drrven out of phase wtth the nolse to cancel i t  In many traditional ANC techniques, 
two microphones are used in conjunction with an adaptive filter to provide cancelldtion 
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Microphone Cancelling 
speaker 

Noise 
source 

Processor 

Figure 17.6: Single-microphone ANG system. 

Predictor 
m ( t )  

Processor 

Figure 17.7: Processor block diagram of the ANC system. 

(see, for example, 1368. 3241) Uslng the EM algorithm. ANC may be achleved ~11th onl) 
one microphone [84]. The phys~cal system 1s depleted in figure 17 6, with a block dlagram 
for the ANC in figure 17 7 

The clgnal to be canceled 15 modeled ac the output of an all-pole filter, 

where 
s,,lil = [sl i  - p ] .  slt - p  i- I], . . . . s [ t ] l r .  

and u[r ]  ic a discrete-time, wh~te,  unlt-variance, zero-mean Gaussran process The s~gndl 
r [ t ]  1s generated by the processor and corresponds to the Input of the rpeaker, the delay 7 -  " 
17 the delay from the speaker to the m~crophone The slgnal a, v[r]  models the measurement 
error at the m~crophone Accord~ng to figure 17 7, the input to the procesror can be wnttcn 

we assume that i i [ r ]  1s a unlt-variance. whlte Gausslan process. The set of unknown param- 
eters 1s 

7. 7 . ,?.  
0 = [a .a; a;] 

A bloch of hr mea\urements I S  uaed for proces\lng The ob\erved data vectol 15 

these ob5ervatlons span a set of autoregresswe samples glven by 
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The cornplete data set I \  x = [ y r  sf]' It we knew s, e\timation of the A R  parameters 
would be stralghrtorward uving tdrrllidr \pectnlm estimation technique$ 

The likelihood function for the complete data is 

The cond~tioning step provides important leverage because it is straightforward to determine 
f (y / s, B )  The conditioning can be further broken down as 

Then 

and 

(see [174, page 1871). The E-step may be computed as 

E [log f (X 1 8)  1 y, ~ [ ~ l ]  = log f(s,- [o] 1 6 )  - N log 0, - N log 0, 

Taking the gradient with respect to a, and derivatives with respect to o, and o; to maximize, 
yields 

The expectations in (1  7.23), (17.241, and ( 1  7.25) are first and second moments of Caussians, 
conditioned upon observation, which may be computed using a Kalman smoother. The 
variable s, may be put into state-space form by 
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where 

and 

With an estimate of the parameters, the canceling signal c[t + MI is obtained by estimating 
s[t + MI using E[s , [ t ]  I y. B ]  and Bf ' ] .  

17.7 Hidden Markov models 

The hidden Markov model 1% a stochastlc model of a process that e x h ~ b ~ t s  features that changr 
over tlme It has been appl~ed In a broad varlety of sequential pattern recognltlon problem\ 
such as speech recognition and handwr~tlng recognition [266, 3 141 Detalled descrrptron~ 
of HMMs and the~r  applicat~on are glven in [265, 68. 2661, see also the ~ntroduct~on in 
sectlon 1 7 In this section we introduce one method of training the parameters of an HMM. 
known as the forward-backward algonthm or the Baum-Welch method Another method 
of tralnlng the HMM, based upon the Mterbi algonthm, 1s presented In section 19 6 

A Markov model is a stochastlc model of a system that is capable of belng in a finlte 
number of states { I ,  2, . S)  The state of the system is a random vanable S[t], goberned 
by an underlying Markov process The particular value of the Ttate at a t ~ m e  t IS denoteti 
by s[r] (We will use r to Indicate the state here, unltke In sectlon 1 7. reserving the rymbol 
x to represent the complete data) The probabll~ty of transltlon from a state at the current 
(d~screte) time t to any other state at time t + 1 depends only on the current state, and not 
on any prlor states 

P ( S [ t +  I ] = i I S [ t ] =  ;,S[t - 1 1  = ; I , . . . )  = P(S[ t  + 11 = i  /S[r ]  = j ) .  

where P ( i  I j )  is used as an abbreviation for P(S[t + I] = i / S[t] = j ) .  The initial state 
S[ 1 j is chosen according to the probability 

It is common to express the transition probabilities as a matrix A with elements P(s[r + I ]  = 
1 I s[ f ]  = J )  = a,,, ,  

111 each state at tlme f .  a (pors~bly vector) random var~able Y[r] E R"' 1s $elected accord~np 
to the dens~ty (or pmf) f v  I s(y[t] 1 S[r 1 = I )  The bariable y[t] is observed as an Instance 
of Y[t]. but the underly~ng state is not, hence the name hidden MarLov model We will 
denote the dens~ty by whlch Y[t] is selected when In rtate F by f (y[t] 1 r) or. more simplj. 
by f,(y[f]). and denote the set of dens~ t~es  { f i .  f2. , f $ ]  by fi,, The probab~lity of a 
sequence, such as f (y[l] ,  y[2] / r [ l ] ,  s[2]), we will denote as f (y / s) 

Ar introduced in sect~on 1 7. the HMM operates ar follows An tnitial state S[I]  = r[ 1 1  
I \  cham dccordlng to the probab~lity law n. dnd dn output 11 I]  14 generated from th'tt 

state At 5ucceedlng t ~ ~ n e s  t = 2. 3 the \tale S[r] 1s \elected according to the Mark05 
probdbtllty tran\ition rndtrix A At each t ~ m e  instant r = 2 ? ,in output Y[r] = j l l  I 

A = 

1 1 1 P(1 12) . . .  P ( l  / S)- 
P ( 2 l l )  P(212)  . . .  P ( 2 / S )  

P ( S I 1 )  P(S12)  . . P ( S / S )  - 
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is generated according to f Y f , ] .  Then a new state is chosen, and the process continues. 
It is common to assume that the distributions in each state have the same form, but not 
necessarily the same parameters-for example discrete or Gaussian-so that the problem 
of finding parameters for each state is identical. 

The triple ..bf = ( A ,  x .  fi,,) defines the HMM. (In section 1.7, the densities were 
discrete, and the family of densities was represented by the matrix C.) The parameters of the 
HMM are the initial state probability x, the components of the state transition matrix A ,  and 
the parameters of the densities in each state. Let the elements of the HMM be parameterized 
by 0 ,  that is, there is a mapping 0 -+ ( A ( $ ) ,  x(0). fiSJ (. 1 0 ) ) .  The mapping is assumed to be 
app;opriately smooth. In training the HMM, the densities are viewed as being parameterized 
by 0 .  For example, the output generation probability f s ( y )  = f ( y  / S = s ) ,  viewed as a 
function of the parameters, is written as f , ( y  / 0 ) ,  and the state transition probability a,,, is 
written as ni,, ( 0 ) .  The parameter estimation problem for an HMM is this: given a sequence of 
observations, y = ( y T [ l ] ,  y T [ 2 ] ,  . . . , y T [ ~ ] } ,  determine the parameter 8 which maximizes 
the likelihood function 

I ? ( @ )  = f ( Y I I I ,  y[21, . . . ,  y[Tl  10) 

= 2 n , s j ~ i ( e ) f s l  I ~ ( Y [ I  1 i 0)a.s(arlll (Q)/ipjiy[211 @)a.~[31..~[21(0) 
r j l ]  ..... s[T]=l 

x f s [3] (~[31  10) ' . ' ~.T[T],S[T-I](~)~~[T](Y[T~ 1 $1. (17.26) 

From the complicated structure of (17.26), it is clear that this is a difficult maximization 
problem. The EM algorithm, however, provides the leverage necessary. 

We introduce some notation that is useful in what follows. ~ e t  yil represent the sequence 

Y:; = {yCt,l* . . . 7 ylt211. 

Then the pcirtiul forward sequence of observations at time t is 

Y: = { ~ [ l l ,  Y[21, . . . ,  yltll 

and the partial backward sequence of observations at time t is 
T y,+i = {y[ t  + 1 1 ,  y[t + 21, . . ' > yIT11. 

The notation y can also be written as 

Y = y ; .  

Let s = (s [ 1 1 .  s 121, . . . , SET]} be the sequence of the (unobserved) states. The complete 
data can be expressed as x = ( y ,  s) .  The pdf of the complete data can be written as 

f ( x I 6 )  = f ( y , s l @ )  = f ( y I s , 6 ) f ( s I @ ) .  (17.27) 

This factorization, with the pdf of the observation conditioned upon the unknown state 
sequence and the distribution of the unknown state sequence, is the key in the application 
of the EM algorithm. 

Because of the Markov structure of the state, the state probabilities in (17.27) may be 
written 

1 

f i s  I 6 )  = nr:11(@) IT aA,,],i,r-i](@), (17.28) 
r=2 

where the explicit dependence of the initial probabilities and the state transttion probab~lity 
upon the parameter 6 is indicated. The logarithm of (17.28), used in what follows, is 

T 

l o g f ! s  Ioj = l~ ,on ,~[~(@)  + l o g a , ~ i l . s ~ r - ~ ~ ( @ ) .  (17.29) 
t=2 
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For the moment, we will leave the output density f (y / s, 8 )  unspecified. and focus 
on findmg the initial probabtlity T and the state transition probabilities A in terms of this 
density We subsequently consider the problem of identifying parameters of the density 
f (y / s, 8 )  for various famllies of d~stnbutions, but for now we simply make the observatiol? 
that the pdf of the observations, conditioned upon the unobserved states, factors as 

T 

f (Y Is. 8) = f ( ~ [ r l  I $[I], 8 )  (1 7 30) 
r=l 

The logarithm 1s 
T 

log f (y I s7 0)  = x log f ( ~ [ t l  I ~ [ t l .  $1 
r = l  

17.7.1 The E- and M-steps 

The first step of the parameter estimation is the E-step, 

Q(O 1 6lL1) = E[log f (y, s 18) / y, Oiil]. 

Since the expectation is conditioned upon the observations, the only random component 
comes from the state variable. The E-step can thus be written 

where S = { I ,  2. . . . . s}: denotes the set of all possible state sequences of length T .  The 
conditional probability In (17.32) can be wrltten as 

Substituting from (17.29), ( 1  7.31), and (I7.33), we obtatn 

The updated parameters are then obtarned by the M-step We start wlth the parameters 
of the underlying Markov chain The Markov cham parameters n, and a,, may also be 
obtained by maximizing (17 34) with constraints to preserve the probabilistic nature of the 
parameters We wlll demonstrate the details for a, , 

ujh;" = arg max Q ( 8  1 8l") subject to 1 a/:''' = 1 .  a, , 2 0. 
0, , ( @ I  

I = /  

The constrarned opt~mrLation may be accomplished usrng Lagrange multiplrers We set up 
a Lagrange multiplier problem, take the derivatrve, and equate to zero as follows 

- 
I - -- ' I  1 j (y. s 1 81i') - 

f ( Y  I 8'" i) ( E S  
J , j r ~  ! & , l , - ~ i  , - i.. (17 35) 

i = z  0, , (8 )  
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where 6,, . I \  the Kronecker delta The ~ipddted parameter is that value ot a, , ( 8 )  that 
\olvei ( 17 35) ,  

The value of A will be chosen to normal~ze the probability Let u\ contemplate what the 
inner sum in (17 36) means it IS the probability of generating the sequence y; over any 
state sequence, provided that 5 [t] and s[t - 1) are constrained to be I and J ,  respectively 
Performing the computations in a brute-force manner would require a very large number of 
computations there are S state\, which are free for each of T - 2 tlme steps, resulting in 
ST-" terms In the sum However, this can be simplified cons~derably by introducing some 

new notation 

17.7.2 The forward and backvvard probabilities 

Let us define a(y:, j )  as the forwardprobability of generating the forward partial sequence 
y', and ending up in state j :  

Where the dependence upon the parameters is to be explicitly indicated, we write cu(y;, j / 0) .  
Note that a(y{. j )  denotes the probability independent of the state sequence, provided that 
the final state is j :  

This summmg over the states is what is needed in (17 36) Fortunately, the sum over all 
states is not necessary, iince cu(y:, J )  can be computed using a simple recursion 

k=l 
with initial value 

Let us also define the backwardprobability as the probability of generating the backward 
partial sequence yT+, , given that s[t] = i : 

B(yL,  li) = P(Y;, = Y:+, = i )  . 

As before, when dependence on the parameters is to be explicitly shown we write 
/3(YfLI 1 i, 0) .  A recursive formula for computing /3(yT+, 1 i) can be written as 

S 

B(yLI  i )  = x B ( Y : + ~ ~ )  a i i , i f i ( ~ [ t  + 11). 
k=l 

where recursion is initialized by 

1 if i is a valid final state, 
B(Y:+~ I i )  = { 0 otherwise. 
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Now let us return to (17.36), and write the probability in terms of these forward and 
backward probabilities. 

The normalizing factor is 

= C cx ( f - l ,  j 1 B~~~ j 2 a,., ( 8 [ ' l ) ~  (y/rl I @lkl)P (yL1 1 i, 0'") (1 7.40) 

T 

= ~ C X  (y;-', J 1 @'") b (y: / J ,  @ I h 1 )  . (17.41) 
r=2 

where the last equality follows from ( 1  7.38). Comb~ning (1 7.39) and (17.41 ), we obta~n the 
update formula 

The ~nitlal state probabilltles can be found as the solution to the constrained optimization 

problem 

J 

IT:"" = arg nlax Q(8 1 ei") subject to ri = 1,  r, 1 0 
x, ( 8 )  

, = I  

Proceeding as for the tranqltlon probabll~ties, the inltial probab~lities can be found from 
(17 34) 

17.7.3 Discrete output densities 

Let us suppose. that there are M poss~ble discrete outcomer In each state, so that 

f s ( \ [ r ] )  = P(][ t ]  = I  / r [ r ]  = s )  = L , , .  I = 1.2 ,  , M  

Then 

1 
T 

Q(@ 1 @Iq) = 1% c,l,l , I l l (@) + log f (s 1 $ f i l )  

Now taking tile derlvatlve with respect to i, , (0). under the constraint that c,':, I ,  , (0 )  = I .  
and equating to zero. we find 

17.7.4 Gaussian output densities 

Let us now assume that the density in each state i s  Gaussian, 

,f$ - ,k'(p,, . I?, ) .  c =  1 .2  . . . . .  5. 
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wlth covarlance R ,  and mean p , .  s = 1 . 2 ,  , S Then, showlng the explic~t dependence 
of the parameter\. we have 

The upddtes to the mean p, and the covarlance R, can be found by taklng the derivative 
of Q(O I O l k l )  with recpect to pr(Q) and R,(0) ,  respectively, then equatlng the result to zero 
and solvlng for plkLll and as those values of p, (B) and R, (Q), respecttvely, which 
solve the denvatwe equations. By this means we find 

17.7.5 Normalization 

Because formulas for computing the updates for the HMM lnvolve products of probabll- 
Itles, the numbers involved can become very small, often beyond the range of accurate 
representation. It is ~mportant In pract~cal algorithms to normalize the computations as far 
as possible 

Let iu(y', J )  be the normallzed forward probablltty, defined by 

(Y:. J )  = ff (Y:, J )  ~ ( 1 )  
where 

Now, update (17.37) to compute j j ,  but replace a (y t ,  j )  with B(y 1, i) and call the 
result ~ ( y ? ,  j ) :  

Again, we normalize to obtain 

B (y;, j )  = ti (y:, j )  c(2) = cr (y:, j )  c(l)c(2) 

where 

Proceeding inductively, we define 
S 

5 (y:. j) = (y;-'. k )  aj , r fJ  (YL'I) 
k= l  

and 

where 
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Now, substituting (17.49) into (17.51) and placing the result in (17.50) using (17.49), we 
find the normalized update 

It is straightforward to show that 

Let us also normalize the backward probability by the same normalization factor, since 
the forward and backward probabilities are roughly of the same magnitude. That is. define 

Using the normalized variables, the transition probability update formula (17.42) can 
be written using (1 7.40) as 

The ~ n t t ~ a l  probabtlity, dlscrete output probability, and Gaussian parameter probabilt- 
tles s~milarly can be written in terms of the scaled parameters, as examined tn the exercises 

17.7.6 Algorithms For HMMs 

The concepts descr~bed above are embodted in the MATLAB code In this section Severdl 
short functions are presented that provide for generation of HMM outputs, computation of 
itkellhoods. and update of the parameters, ba\ed upon the scaled forward and backward 
probabillttes Algor~thm 17 3 provldes an overvtew of the code and the data \tructures 
employed, for completeness, ~t also provide., a list of appropriate functions for trarning 
HMMs uslng the V~terbt algorithm method\ dlscussed In sectlon 19 6 The functtons in 
algorithm 17 4 prov~de (scaled) forward and backward probabiltty computations, and Iihe- 
lihood cornputattons (of samples and sequences) Algorithm 17 5 contalns the model update 
functions The function hmmupda~en calls hnmApl dpn to update the Markov parame- 
ters. and hfupdaten to update the output d~stnbution. which in turn calls function\ 
appropriate for the distribut~ons Finally, algorithm 17 6 ha\ functions for generating outputs 
from an HMM. for simulation and testmg purpo\es 

Algorithm 17.3 Overv~ew of fiMM data muctures and functton\ 
F ~ l e  b m ~ n o t e s . ~  
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Algorithm 17.4 HMM I~kel~hood computation function\ 
F ~ l e  hrrnlpyseqn . T; 

hLwal;n. rn 
h m f  .m 
hmdlscf .rn 
hmngaus f . m 

Algorithm 17.5 HMM model update funct~ons 
File: hmmupdat en. m 

h>mrAp i upn . m I ' 1 

.mtfupdaten.m 
hmmdLscfupr.m 
hmngaus f upn . m 

Algorithm 17.6 HMM generation functions 
File: nmmgenda t . m 

'rum?1gendlsc. rn 
b-mgengaus . m 

Example 17.7.1 We briefly demonstrate the use of the HMM code. A three-state HMM with Gaussian 
output densities having means 

and covariance mauices 

and with initial probability and state-transition probability matrix 

is represented in MATLAB using the code 

H m . A  = i0 1/4 .2; 1 1/4 .4; 0 1/2 . 4 3 ;  
HPA.pi = [1;0;0]; 
HMM.final = [ O  0 I]; 
HMM.f{lj = 2; % Gaussian distribution 
BM,"i.f{2,lj = [1;1;1j; 
HW.f.f{2,2j = [-1;-1;-11; 
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140 ' I 

1 2 3 4 5 
iterations 

Figure 17.8: log P ( ~ T  / for an HMM. 

A sequence of eight outputs can be generated by 

The code to compute the Ithelihood, then tram 211 NMM (starting from the lnttlal HMM) is 

ipy = hmipyseqn (y , HMM) ; % cornpuze tt,e iog-1lkel;hood 
ipv = ipy; 
n,mnnewn = HMM; 
for ; = l : C  

% start x t h  the given HYT 

hmnnewn = hmopdaten ( y  , hmnne.dr.) ; 8 update the HYW 
ipy = hmn~lpyseqn (y, hmmnewi ; 8 compute tne likelihood, and 
ipv = lipv lpyl; 8 save ~t 

en2 

Flgure 17 8 shows lop ~ ( y :  / @'I) .  illustrating how the algor~thm converges Convergence 1s obtalned 
(in thls example) ~n three ~terations C 

17.8 Spread-spectrum, multiuser communication 

In direct-sequence spredd-spectrum multtple-accesr (SSMA) communication\ (also known 
a\ code-divis~on inult~ple access (CDMA)), all u\er\ 111 a channel trdn\mlt slmultaneouslq. 
uslng quasiorthogonal cpreadlng code, to reduce the tnteruser Interference 13541 The iyctem 
bloch d~agr'tm 1s sho~ tn  In ltgure 17 9 A \ignal recelved in a K-user \yctem through a 
Cduri~dn ~hannel  may be urltten a i  
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Figure 17.9: Representation of signals in an SSMA system. 

where iV( t )  is unit-variance, zero-mean, white Gaussian noise, and 

is the composite signal from all K transmitters. Here, ak is the amplitude of the kth trans- 
mitted signal (as seen at the receiver), b represents the symbols of all the users, bk(i) is 
the ith bit of the kth user, t k  is the channel propagation delay for the kth user, and sk(t)  
is the signaling waveform of the kth user, including the spreading code. For this example, 
coherent reception of each user is assumed so that the amplitudes are real. 

At the receiver, the signal is passed through a bank of matched filters, with a filter 
matched to the spreading signal of each of the users, as shown in figure 17.10. (This 

Figure 17.10: Multiple-access receiver matched-filter bank 
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assumes that synchron~zation for each user has been obtained.) The set of matched filter 
outputs for the 2 th bit interval is 

Because the interference arnong the users is sim~lar to intersymbol interference, optrmai 
detect~on requires dealing with the entlre sequence of matched filter vectors 

For a Gaussian channel. it may be shown that 

where H ( b )  depends upon the correlations between the spread~ng s~gnals and the b ~ t s  
transmitted. and z is nonwhite, zero-mean Gaussian noise The likelihood function for the 
recelved sequence may be wrltten (see [258]) as 

f ( y  la ,  b )  = cexp - - a T s ( b ) a )  , I (17.54) 

where R ( b )  and S ( b )  depend upon the b ~ t s  and correlat~ons and c is a constant that makes 
the density ~ntegrate to 1 Note that even though the noise is Gaussian, which is In the 
exponential family, the overall likelihood function is not Gaussian because of the presence 
of the randoin b~ts-it is actually a mixture of Gausnans For the special case of a single 
user. the likel~hood function becomes 

What we ultimately desire from the detector 14 the set of bits for each u\er It has 
been shown 13541 that the ~nteruser ~nterference increases the probabil~ty of error very 
little, provided that sophisticated detection algor~thms are employed after the matched 
filters However, most of the algorithms that have been developed require knowledge of 
the amplitudes of each user (21 11 Therefore, In order to determine the bits reliably. the 
amplitude of each user must also be known Seen from the polnt of vlew of amplitude 
estimation, the b ~ t s  are unknown nuisance parameters (Other estlmatlon schemes rely~ng 
on decision feedback may take a different point of vlew ) 

If the b ~ t s  were known. an ML estimate of the amplttudes could be easily obtained 
a,] = S(b)-I R ( b ) y  Lacklng the bits, however. more soph~sticated tools for obtaln~ng the 
amplltudes must be applied as d precursor to detect~ng the bits One approach to estlmatlng 
the signal amplltudes is the EM algorithm 12581 For purposes of applying the EM algorithm, 
the complete data set 1s x = {y,  b ]  and the parameter set Ir Q = a To compute the 
expectations in the E-step. it 1s assumed that the bits are ~ndependent and equally likely & 1 

The l~kellhood function of the complete data is 

T h ~ s  c o n d ~ t ~ o n ~ n g  1s i im~lar to that of ( 1  7 22) and ( 1  7 27) the complete-data likelihood is 
broken into a l~kel~hoodof the obrerkat~on, cond~troned upon the unob4erved datd, inult~plied 
by a l~kelihood of the unob4erved dat'i From ( 1  7 54). f ( y  j b .  a )  rr Gaurrran To compute 
the E-rtep 

Ejlog f (x  1 a )  / v. ai i]  = / (b  / y a'") log f (x / a ) .  
h ~ { = I l ' " - '  

11 1s necc\\,iry to deteirn~ne the contiitron~l probab~lrty f (b  / y aiL1) 
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It 15  revedling to coniicler a s~ngle-uier syatem In t h ~ s  ca,e the log-llkel~hood funct~on 
li 

and the E-step becomes 
1w 

E l l o g f  (x / a) i Y .  alk11 = 'r: C f (bl(i) / yl( i ) ,  ajk') log f (.xi(i) I a l l .  (17.56) 
i=-IM b i ( ~ ) E r t - l  

The conditional probability required for the expectation is 

- exp [& (2ajk1bl(i)yl(i) - ajks2)] - 
Cbeil exp [& (2aIk'byt (i) - aYi')] 

Substituting 117.58) into (17.56) yields 

M a: 
E [log f (x I a11 / y, ojk'] = 2 y1 (i) tanh (a/xlYl ( i ) /02)  - -(2M + 1) + constant. 

0 
I=-1w 

2a2 
(17.59) 

Conveniently, (17.59) is quadratic in a1 , and the M-step is easily computed by differentiating 
( 1  7.59) with respect to a , ,  giving 

I 
a[k+ls  - 

I 2 M f  1 
yl(i) tanh (ay1yl ( i ) /c2) .  

I=-M 

Equation ( 1  7.60) gives the update equation for the amplitude estimate, which may be iterated 
until convergence. 

For multiple users, the E-step and M-step are structurally similar, but more involved 
computationally 12581. 

17.9 Summary 

The EM algorithm may be employed when there is an underlying set with a known dis- 
tribution function that is observed by means of a many-to-one mapping. If the distribution 
of the underlying complete data is exponential, the EM algorithm may be specialized as in 
(17.9) and (17.10). Otherwise, it will be necessary to use the general statement of (17.6) 
dnd (17.7). In many cases, the type of conditioning exhibited in (17.22), (17.27), or (17.55) 
may be used: the observed data is conditioned upon the unobserved data, so that the likeli- 
hood function may be computed. In general, if the complete data set is x = (y, z) for some 
unobserved z, then 

Ellog f (x / $1 I y, 8 f (z I Y, ~ ' ~ ' 1  log f (x I $1 dz, 

since, conditioned upon y, the only random component of x is z. 
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Analytically, the most difficult portion of the EM algorjthrn 1s the E-step This is often 
also the most difficult computational step for the general EM algonthrn the expectation 
must be computed over all values of the unobcerved variables There may be. as in the case 
of the HMM, efficient algorithms to ease the computation, but even these cannot compieiel> 
eljmlnate the compurat~onal burden 

In most instances where the EM algorithm applles, there are other algorithms that 
also apply, such as gradient descent (see, for example, [243]) As already observed, how- 
ever, these may have problems of their own, such as requlnng der~vatives or setting of 
convergence-rate parameters Because of its generality and guaranteed convergence, the 
EM algor~thrn IS a good choice to conslder for many estimation problems 

As noted in sectlon 17 3 1, there have also been more recent developments, such as 
ECME. SAGE, and AEGM, which provide the advantages of the EM algorithm wlth faster 
convergence Work continues In this area 

17.1 0 Exercises 

17.2-1 [273] A mixture density is a density of the form 

whlch models data from a \tatlsttcal population that IS a mixture of 171 component densitle5 
f ,  and m~xlng proportions a, (For example, thlnk of the dlstrtbutton of wetghts of a hutnan 
populat~on, uhlch 1s a mlxture of the welghts of males and the weights of females) In 
(17 61), the mtxing proporttons sattsfy x:ll a, = 1 and a ,  2 0 The total parameter 
set 6 = ( e l ,  0 ,  a , a,,) The parameter e\tlmatlon problem 1s to determ~ne the 
mlxture parameters a , ,  as well as the parameter set @,, for the dens~ty f ,  Assume that 
y l  y z  , j n  is an independent sample 

If the data y = y2 I,] were labeled according to which distrtbution generated 
j ,  , then the parameters of the dlstrlbutlon S, could be estimated ba5ed upon the data associated 
wlth 11 Most commonly, however, the data are not labeled 

Let x = (y, c) be the complete data, where c = ( c l  . c2,  c,,), c ,  E ( I  n2). is the 
set of labels Then a, = P(c, = I ) ,  the probablllty that the ~ t h  den\lty ts uted 

(a) Show that the log-likelihood function 1s 

(b) Show that the Q(O / @Iu) computed tn the E-step IS 



17.10 Exercises 745 

( c )  Show that the M-step provtde5 

(d) Show that 

@ik--" = argmax 1 log i, ( y ,  16,) 
d k ' j ;  ( J !  1 @ ! k l )  

8, 
, = I  

f (.v, I @ ' k ' )  

17 5-2 Show, ucrng the update formula (1 7 2 I ) ,  that for every rteratlon, 

17.7-3 Show that for an HMM, 

Hence, show that 

all iegd final i 

17.7-4 Show that (17.43) is correct. 

17.7-5 Show that (17.44) is conect. 

17.7-6 Show that (17.46) is correct 

17.7-7 Show that ( 17.47) is correct 

17.7-8 (Mlxture HMM) In some applications of an HMM, a Gaussian mixture model is used 

where the c,, are the mixture gains satisfying 

and Id is a Gaussian density function, 

In the mtxture model, the denrity for each state 1s parametenzed by the means, covanance 
matnces, and mlxture garns 

(a) Show that the update rule for the mean In the mlxture model is 
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where 

(b) Show that 

(c) Show that 

(d) Show that the initial probabrlity esttmate for an H'MM can be wrltten tn terms of the 
gcaled forward and backward probabtllties as 

(e) Show that the mean and covariance for the HMM model can be updated using 

17 7-9 Show that for an HMM, the log-I~kellhood functlon log P ( Y ;  18) can be wrltten as 

i = I  va!!d final i 

17 7- 10 Wrlte MATLAB code to do the following 

(a) Generate a sequence of e~gh t  output\ of a three-state HMM w ~ t h  Gau5slan state output 
dlstrlbutionc and the followtng parameters 

(b) Compute the log-Ilkellhood of thts sequence uslng the current HMM 

(c) Start~ng from an lnztral tralnlng HMM wlth unlform prtor and state-transltton proba- 
b~lttles, and ~nttlal-.;tare output probabtltties that are Ar(random 1). tram an HMM to 
match your output sequence unttl convergence Determine an appropriate convergence 
crlterton 

(d)  Plot the log-Ilkelrhood of the q u e n c e ,  gtven your tratning HMM, as a funct~on of 
tterdtlon 



17.1 1 References 

The follow~ng reterencei ihould be conwiered In add~tion to those that have appeared 
throughout the ~hapter  Thrs chapter 1s a modified and extended veriion of 123 1 ] A ienitnal 
reference on the EM algorithm 1s [72] A more recent surbey arttcle wlth spectfic appli- 
cation to m~xture-den51ty parameter est~matlon 1, [273] (an even more recent survey w ~ t h  
more modern techniques IS found In 12251) Our pre\entation was helped by the very short 
iummary appearing In [I341 A recent book dedicated to the EM dlgonthm IS [224] 

Our dlscusi~on of emliston tomography wa, drawn largely from [3091 The HMM 
matenal was drawn largely from Rab~ner's excellent tutortal 12663, w ~ t h  addit~onal Input 
from [68], [265] dl30 has valuable information on HMMs 





Part V 

Methods of Optimization 

Signal-processing design and analysis frequently begin by the statement of a criterion of 
optimality, followed by an optimization procedure. In this part, we examine constrained 
optimization, shortest-path optimization on graphs, and linear programming, as well as 
applications of these concepts. 





Chapter 18 

Theory of Constrained Optimization 

Life is a constra~ned opt~mltation problem 
-Rick Frort 

What e'er thou art, act well thy part 
- Scottish proverb 

The approach to an effective design often begins with a statement of a function to be op- 
timized. We have encountered several design criteria in this book: maximum likelihood, 
minimum variance, minimum norm, minimum risk, minimum mean-squared error, and so 
forth. In some cases, a criterion of optimality in a design leads to a problem that is differen- 
tiable in the parameters of the problem. We focus on differentiable problems such as these in 
this chapter. In particular, we wish to address the question of how to incorporate constraints 
in the optimization problem. Constrained optimization problems have arisen several times 
throughout this text, and the problem has been treated using Lagrange multipliers, which 
were introduced in section A.7. This chapter provides geometrical justification for the use 
of Lagrange multipliers, as well as a treatment of inequality constraints. 

The theory of optimization is very broad, a testament to both the importance of the 
problem, and the theoretical and algorithmic richness necessary to treat it well. This chapter 
can only serve to introduce a few significant points of the theory. 

For the purposes of this chapter, we consider optimization to mean minimization of 
some function f over a domain R c Rn. When a function g is to be maximized, we will 
consider instead the minimization o f f  = -g. 

18.1 Basic definitions 

Consider the function shown in figure 18.1, where the domain is R = {x: x 2 0) .  In that 
function, there are three points at which the function obtains a minimum; the point xl is a 
local minimum, while the point xz is a global minimum and xj is a boundary point at which 
a minimum occurs. The concept demonstrated by the figure is formalized in the following 
definition. 

Definition 18.1 A point x* E R is said to be a local minimum point (or minimizer, 
or weak local minimum) of f :  Rn -+ 23 over the domain R if there is an r > 0 such that 
f (x) L f (x*), for all x E S2 where / x  - x* /  < r .  If f (x) > f (x*) for all such x, then the 
point x* is a strict (or strong) local minimum. 

A point x* E Q is a global minimum point of f over R if f (x) 2 f (x*) for all 
x E R. CI 
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Figure 18.1 : Examples of minimizing points. 

Consider again the functlon in figure 18 1 The polnt xi is a strong local minlmum The 
posnt X* is a weak local minimum At the points xl and XZ, the derlvatlve of the functlon is 
zero At these points, the second denvative IS positive At the point x?, the denvat~ve 1s zero, 
but the second der~kative IS negative-x3 1s a maxlmum polnt At the point x4 the derivat~ve 
1s nonzero. even though a mlnlmum occurs there, t h ~ s  I S  because x4 I S  on the boundary 
of S2 The zero-derivat~ve cond~tlon provides a way to character~ze extrema (mtnimtzers, 
maximizers. or points of inflection) on the Interlor of a domain, but not on the boundary of 
the domaln We are looking for a way to generalize the denvative condition to character~ze 
the mlnimum (or maximum) on the boundary of a domain, and to general~ze it In such a 
way that ~t can be extended to multiple dimensions 

Let x E S2. and conslder points y = x + cud for a scalar cu and a displacement vector d 
The point y IS wid to be a feasible point ~f y E 52, and the displacement vector d IS said 
to be a feasible direction at x ~f there is an €0 > 0 such that x + t d  E 52 for all t where 
0 F c 5 60 

For the posnt x4 in figure 18 1. a feas~ble direction is d = I ,  but d = - 1 is not a feas~ble 
direction For the points xl and x2, both d = 1 or d = - 1 are feasible d~rectlons 

We recall the definition of the gradient of a (real) function defined over a subset of Wn, 
and define the gradlent of a C 1  function f by 

In many clrcumstances. the derivative 1s taken with respect to var~ables that are clear from 
the context In such cases, we o m ~ t  the subscript Thu5, we may write V, f (x) or V f (x)  

We define the Hesslan (second denvatrve) of the C2 function to be the matrix 

We are now led to the foliowlng theorem 
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Theorem 18.1 (~Vece,~czrv ~ o n d ~ t i o ~ z ~ f i ~ r r n t n l r n u l ~ t ~  [210, P U ~ P I  160, 1741) Let R c W", 
crnd let j W" + R he ~1 Ci jun~tlon on R c R" 

I Ifx* 1 \  il loccrl rnrrzlrnurn r ,S  /- over 0, then for unv d  E Rn that r v  cl fenrrhle drre-ectlon 
ut x*, we have 

( ~ f ( x * ) ) ~ d  2 0 (18 I )  

2 I f  x* 1 r un ~nterzor polrzt of 52, therz 

V f (x*)  = 0. 

3. If; In nddlrion, f E C' and (V f (x*)lTd = 0, then 

dT V' f'(x*)d 2 0. 

Proof 

1 Let X ( E )  = X* + t.d, and define the function g(t.) = j ( ~ ( 6 ) )  The function g(t.) har d 

relative minimum 'lt t. = 0 since x* is a mlnimum, and has a Taylor series expansion 
about c = 0 ds 

g(t.1 = g(0) + g'(0)r + o ( t ) ,  
so that 

g(t.1 - g(0) = g'(0)e + o(e) .  

If g'(0) < 0,  then for sufficiently small values oft .  we must have g(6) - g(0) .c: 0, 
whlch contradicts the minimality of g(0).  Thus g'(0) 3 0. But we observe (see 
section 18.2) that 

2. If x* is an interior point, then every direction is feasible, so that if d is feasible then so 
is -d. Hence, if (V f (x))'d 2 0  and -(v f (x)lTd 2 0, we must have V f ( x )  = 0. 

3. In the case that (V f (x*)lTd = 0, from the Taylor series for g ( t )  we obtain 

If g"(0) .c: 0, then for sufficiently small values of 6 we have g(t.) - g(0) .c: 0, which 
contradicts the minimality of g(0).  Thus, we must have g"(0) 2 0, and we compute 
that 

Observe that if the point x" IS an interior point of R, then every direction is feasible, and so 

for any d; that is, the Hessian V 2  f (x*)  is positive semidclfinite. 
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Example 18.1.1 Let 

be inintrnlzed subject to 2 0, xz 2 0 The derivatives are 

In the absence of the constraints, the global miniinum would be at ( x i  x2)  = (4 -2), where the 
function takes on the value -44 However. the minlmum tahng into account the constraints 1s at 
( x ,  2 2 )  = (10/3,0) At t h i ~  point the function takes on the value -33 33, and the denvatives take 
on the values 

Because of the constraint, both der~vatlves do not vani5h at the minlmurn point but since any feasxble 
direction has a posttrve X? component, condition ( I  8 1 )  is satisfied 

Figure I8 2 shows the contour5 o f f  (x, xz), ahere  the unconstrained global mtn~rnum is tndr- 
cated with c and the constrained mrntmum i i  ind~cated with x For future reference, we make the 
observation that the constramt ltne x7 = 0, indicated with the dotted. line is tangent to the contour at 
the point of miniinurn i] 

Figure 18.2: Contours of f (1,. x2). showing minimum and constrained minimum 

A converce to theolem 18 1 p ~ o v ~ d e s  wfficlent condit~ons for local rnlnlmltatlon when the 
minimum is in the lntellor of the donldln 

Theorem 18.2 /[210,  prrgc 1761) Let f E c2 be ~i f111rcfro/7 defrncd clrr rr Y<lglO1l a, and Ii't 

X* he 117 rlre intrrror of  Q I f  'V f (x*)  = 0 u f ~ d  V' f (xX)  ri l~o\rrr~*e dcifrrlrre, tl1e17 X *  ri 11 i 

l O ~ ~ l /  / ! I l / l l t f ? L ~ / 7 7  of- / 
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Proof Expanding f tu*  T d )  u\ing Taylor'j theorem. we have 

which. in light of the conditions of the theorem, can be written a\ 

Since V' f (x") ic (by hypothe\,\) pocttive definite, then for any d there ~c an c > 0 iuch that 

Employing this in (18.2)' we have 

For Id/ sufficiently small, the first term dominate? the second, and we have that f (x* + d) > 

f (x*h  

18.2 Generalization of the chain rule 
to composite functions 

In the follow~ng development, we need to take denvatrves of composite functions, as a 
generalization of the familiar chain rule 

to functions that are composites of multiple functions and multiple variables. We introduce 
the generalization by an example. Let 

Also let 

F(x ,  y) = f ( g ( x ,  y ) ,  h ( x ,  y)) .  

We desire to compute and F. It is helpful to introduce auxiliary variables. Let 

u = g ( x ,  y)  w  = h ( x ,  y ) ,  

so that 

u = f ( u ,  w ) .  

Figure 18.3 illustrates the relationships among the variables and functions. The first partial 
derivative may be computed as 
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Figure 18.3: Relationships between variables in composite functions 

In our example, we get 

Then 

More generally, suppose that x i ,  x2, . x,, are the independent variables, and that 
there are m functions g l  ( x l ,  , x,,), g Z ( x l .  , x,,), , g m ( w i ,  , x,,) If our functlon 
of Interest is 

then the derivative is 

where the operator DL 1s the derivative with respect to the kth argument 
The sltuatlon can be more complicated when there are mult~ple dependencies For 

example, let 

The functional dependencies are shown in figure 18.4. Each path from x  to u represents a 
term that must be included in the derivative. Thus, 

Flgurel18 4 Illu\tratlon of functional dependencle\ 
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The correspondence between the term$ in thi, partial der~vatrve and the paths In figure 18 4 
are 

(*) x -+ u.  

The notation may be more clear by writing 

18.3 Definitions for constrained optimization 

Constraints may enter Into an optimization problem in a varlety of ways For example, there 
may be a constraint that all the variables In a problem must be integers. this frequently leads 
to equations known as Diophantlne equations, which have thew own methods of solutron 
(when they can be solved at all) Or there may be a coni;traint as to the nature of a signal- 
for example, the signal may need to be positive-where there is no obvtous connection 
between the constraint and the available parameters In this chapter, however, we restnct 
our attention to optimization problems that can be expressed in the following form 

minimize f (x) 
subject to h (x) = 0. 

h2(x) = 0, 

g,(x) 5 0, 
XES-2, 

for L? C Cn. This can be represented more briefly by letting h = (h  ,, h2,  . . . , h,) and 
g = ( g ~  , g ~ ,  . . - , gp) ,  SO the problem is stated as 

minimize f (x) 

subject to h(x) = 0, 

g(x) 5 0, 
x E n. 

The constraints h(x) = 0 are said to be equality constraints, and the constraints g(x) 5 0 
Are inequality constraints; combined, they fonn the functional constraints. A point x E S-2 
that satisfies all of the functional constraints is said to be feasible. The optimization problem 
can be stated in words as: determine that value of x that is feasible and that minimizes f (x). 

Example 18.3.1 Consider again the optimization problem of example 18.1.1, 

minimize f ( x l ,  x!) = 3 4  + 2x,.r2 + 3x; -  OX, 

subject to x i  3 0, 

XZ 2 0. 
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The mlnlmum is at (xi, x 2 )  = (10/3.0) The element of the solution x2 = 0 is on the boundary of 
the feastble reglon, making the constraint assoc~ated with xz acftve The component of the s o l ~ t ~ o n  
xi = 1013 is not on the boundary of the feasible reglon, the constraint on xi is inactrve 0 

In general, a constraint g, (x) 5 0 is sald to be actlve at a feasible point x tf g, (x) = 0, so 
that x 1s on the boundary of the feasible reglon Note that a constraint of the form I?,  (x) = O 
must always be active In the feasible region A constralnt g, (x) 5 0 is inactive ~f g, (x,) < 0 
An lnactlve constraint has no influence on the solutlon In a suffic~ently small neighborhood 
of x, whereas the active constraints restnct the feasible values of x All active constraints 
affect the problem locally as equality constraints If the set of active constraints could be 
determined at any potnt x, then the problem could formulated at that point In terms of 
equality constraints alone Thls observation will guide most of the theoretical development 
that follows 

18.4 Equality constraints; Lagrange multipliers 

We assume for now that the optimization problem of interest has only equality constraints 
(Any inequality constraints are either inactive, or are regarded here as belonging to the set 
of equality constraints.) For x E Rn, a set of rn constraints 

which we also write as 
h(x) = 0, 

determines a hypersurface S of I? - n? dimension\ In order to apply the cdlculus-based 
theory of this chapter, we assume that the surface S 1s smooth, tn practice, we need at least 
h, E C' (If thls smoothness requirement I S  not met, then more specialized techniques must 
be applled, which are beyond the scope of this chapter ) 

We first argue geometrically that 

A local extremum x* of f ,  subject to the equality constraints h(x) = 0, is 
obtained when the gradient o f f  is orthogorzal to the .tangeizr plane of h at x*. 

We then back up this geometric viewpoint wtth additional mathematical just~fication 
Recall that the gradient of a functlon f (x) points In a dtrection normal to the con- 

tours of the function At a polnt x. the gradient of f points "uphrll"-toward increasing 
values of f -so that motion tn a dlrection opposlte the gradlent 1s downhill This fact is the 
bass  of the gradient-descent optimization procedure introduced in section 14 5 Consider 
the functton f (x) as a mountain range In the absence of conitralnts, a marble released 
upon a mountaln will roll downhlll (in the direction of the negatlve gradlent) unttl t t  arrlves 
at the lowest polnt in the valley in which it tnitlally finds ~tself 

An equality constraint introduces a surface upon whlch the final solution must occur 
A marble rolhng downhill will conttnue In the negattve dtrectton of the gradient until tt 
runs into the constraint surface, and it must rema~n on thls surface (sattsfy the equality 
constralnt) At thls point, ~t will sllde downhill along the constraint surface unttl the surface 
cannot allow any more downhlll motion This occurs when the gradient o f f  at a point x 
is polnttng In a dlrection orthogonal to the constratnt Iz(x) Any other motlon along the 
constralnt curve can only increase the funct~on, whtle motlons not along the curve are 
restricted by the constralnt 

Ar  an exdmple, cons~der the functlon 
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('1) Surtii~e plot of j ( uj r2) ( h j  Contour plot and conrtrrunt curve 

Figure 18.5: Surface and contour plots of f (.xi, x2). The arrows in (b) indicate gradient 
directions. 

plotted in f~gure 18 5(a) The global mlnimum occurs dt (x , ,  x2) = (0  5 . 0  7) The contour? 
of thli function are ~ h o w n  In figure 18 5(b) Now, con5lder finding the minlmum of thls 
function, \ubje~t  to the con\tralnt 

which 19 the "curve" (actually a Ilne, for plotting convenience) shown on the contours of 
figure 18 5(b) The gradient vectors of the function are shown at three different polnts 
along the constraint llne At the polnt of constrained minimum, ( r I  = 0 1888,O 6333), the - 
gradient vector is orthogonal to the constraint line. 

In extending this geometric concept to more constraints and higher dimensions, we 
need to describe the concept of a tangent plane to a surface at a point and to review how 
planes are described analytically. Figure 18.6 illustrates a curve and a surface, and "planes" 
tangent to each of them. (The tangent "plane" to a curve is simply a line.) The tangent plane 
is defined as follows. We define a curve C on a surface S as the set of points x(c) E S 
continuously parameterized by E X for some a 5 4 5 b. Figure 18.7 illustrates several 
curves on a surface S. The derivative of the curve at the point x(c) is 

Figure 18.6: Tangent plane to a surface. 
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Figure 18.7: Curves on a surface. 

(The dot in this case indicates differentiation with respect to the independent parameter 
c.1 The derivative is a vector' in Rn that points in the direction of the tangent to the curve 
C at the point x(t j .  Different curves defined upon a surface S have different derivatives 
(different directions) at a point x.  

Definition 18.2 The tangent plane to a surface S at a point x on S is the linear span of the 
derivatives of all of the differentiable curves on S at x. Ci 

Example 18.4.1 The "curve" defined by (18 6) 1s descrrbed by the set 

S = {xi .  X? h(xi .  x?) = 0) 

A parametenzat~on of polnts on the set 1s 

X )  x z ( < ) = 0 6 < + O 5 2  

The tangent vector at a po~nt ( x i .  z2)  points 1x1 the direction 

(Since the "curve" is actually a straight Ilne. the tangent vector 1s constant,) Ci 

ExampIe 18.4.2 Consider the constraint curve h(xl ,  x2) = xi  cos(x2) - 1. The surface (a curve) 
described by thls constraint 1s 

A parameterization of points on S is 

I 
X I  = - x? = < 

cos 6 
The tangent to S at a point ( x t  , x2) is 

At a point x*, the gradient to a function lz(x) is orrhogonu1 to the level curves lr (x) = f 

Example 18.4.3 The gradtent of the constraint funct~on h ( w t .  I ? )  In ( I 8  6) 15 

'Strictly speaking. there is a difference betweel? a ' .~ector" that I \  a sriidienr and a "vector" that i s  a tangc!?! 
vector. In the language of differential geometry. a pradient I\ ;i iol~nrirmi iJe,,ior and a ranpent to a cltrve 15 .: 

contruvurii~rrt vc,ctor (bee, for example, 1297jl. However, we have no neecl of t h ~ s  drstrnctton iierc. 



a vector t h ~ t  is orthogonal to the level cirrLe lzir ,  r:) = c ,  u h ~ c h  h;ts '1 tangent polnting In the 
d~rec t~on  1 l h] '  0 

If- x(6)  i i  a pdrametertration of point5 5atisfy1ng h(x(6))  = 0 (that I \ ,  u (6)  15 a curve on the 
"surface" h(x)  = O), then, a\ mentioned, d / d t u ( t )  t j  tilngerrt to the curke These ideas are 
explored in exerciie 18 4-2 

Now recall that a plane P pai5ing through a polnt x" 1s defined In terms of the polnt x* 
,~nd a vector n normal to the surface at x* If n is a vector normal to the surface at x", then 
the plane can be wrltten as 

P = (y E Rr': n7 (y - x*) = 0) 

We can use this concept to define a tangent plane to a surface at a point x*: The tangent 
plane P to a surface S defined by h(x) = 0 at the point x* is given by 

P = (y  E R": ~ h ( x ) ~ ( ~  - x") = 0). 

where 

Vh(x)  = [ V h i ( x )  Vh2(x )  . . .  Vhm(x)l  =: 

Example 18.4.4 For h(xl .  r?) defined 111 (18 6 ) ,  we have 

V h ( u ) = [ 6  - l j r ,  

' ah ,  ah:! ah, - - . . .  - 
ax, a l l  ax I 
a h l  ail2 ah, - - . . .  - 
a x 2  ax2  8x2 

and the tangent plane at a point (xl , ,r2) is described by 

P = {(FI .  ~ 2 ) :  1.6 - l ] [y I  - X I  y? - X ? ] ~  = 0) 

which, given that ( r , ,  x?)  satisfy (18.61, is equivalent to 

0 . 6 . ~ ~  - ~2 -t- 00.52 = 0, 

as expected. 0 

For reasons to be clarified, in this specification of the tangent plane, it is important that the 
gradient vectors 

be linearly independent at the point x  = x* 

Definition 18.3 When the gradient vectors O h 1 ,  Vhz. . . . , V h ,  are linearly independent 
at x*, the point x* is said to be a regular point. CI 

Example 18.4.5 To see the impact of havlng a point that IS irregular, let h(xl ,  r2) = x2 Then the 
surface h(x) = 0 IS the r ,  axls, and 

The tangent plane is the x i  axis. 
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Now cons~der &(xi .  x ? )  = x:. The surface h ( x )  = 0 I S  the same as before, the xi  axls, which 

also has the xi  as the tangent plane However, the gradlent glves 

At (xi. x2) = (0,O). the set of points 

is the ent~re plane R', whlch I S  not the same as the tangent plane T h ~ s  rs because & 1s irregular at the 
ortgin 0 

As this example shows. the attribute of being a regular point depends upon the representation 
of the function h. We assume that the representation has been chosen so that points have 
the regularity property as necessary. 

Given the notion of a curve on the constraint surface, we are now ready for the following 
lemma. 

Lemma 18.1 Let x(t )  be u paranzeterlzatzon of a cuwe on the suvfhce h(x) = 0, wlzere the 
parameterzzatzon is chosen so tlzat x* = x(0) 1s a constrained local mznzrnutn off. Then 

Proof Expand f (x( t ) )  as a Taylor series, 

so that 
d 

f (x(t) - f ( ~ ( 0 ) )  = 6 - f ( ~ ( 0 ) )  + 4 t ) .  
d t  

If f (x(0)) I S  a local mlnlmum, then for sufficiently small 161 we must have f ( ~ (0 )  - 

f ( ~ ( 0 ) )  > 0 Since 6 can be both positive and2negative, we must therefore have 
& f (x(t)) = 0 and, furthermore, it follows that -$ f ( ~ ( f ) )  must be posiilve ai  well 

0 

Recall from section 18.2 that we can write 

Since x(t*)  is a vector tangent to the surface h(x) = 0. we can state the geometric result of 
the constrained minimization problem as follows: at a feasible point x* of an extremum 
off, the gradient Vf (x*) is orthogonal to the plane tangent to h(x*). More formally, we 
have the following. 

Lemma 18.2 Let x* be a regular pozizt ($the surj5ace dejined by tlze corzstralnts h(x) = 0 
and a local extrenzuin off subject to these constraints. For a l l y  E R" such that 

( t l~z t  is, fi)r any \.ector in the tangent plane), tlzen 

V f (x")y = 0. 

Proof Let the coordinate sy\tern be translated 50 that x" = 0. to s~rnpl~fy our notatlon 
S ~ n c e  x' I \  a regular po~nt, the tangent plane I \  equivalent to the iet of vectors z satl\fy~ng 
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Vh(x") 'z  = 0 Let y  be any part~cular vector on the tangent plane Then we have 

~ h ( x * ) ~ y  = 0. 

Let x ( ( )  be a smooth curve on the constraint surface such that x(0)  = X* and x(0)  = y  
From (18 7 )  and (18 81, we have 

Another way of looklng at the geometry of the problem 1s apparent from figure 18 5 
At A point of constrained extremum u", the gradient V f (x* )  IS parallel to each gradient 
V h ,  ( x ) ,  I = 1 ,  2 , rvz ,  so that there exist constants A, ~ u c h  that 

Since these must hold simultaneously, they hold in the sum, 

V f  ( x * )  + Xi V h ,  (x') = 0. 

Letting 

we can write this as 

V f (x* )  + Vh(x*)X = 0. 

We have thus established the following theorem. which is the "bottom line" for equality- 
constrained optimization problems. 

Theorem 18.3 (Necessary conditions for equality constraints) Let x* be a local extremum 
polnt o f f  subject to the m constraints h ( x )  = 0, and let x* be a regular point of these 
constraints. Then there is a X E Rm such that 

The quantities A, are called Lagrange multipliers. In the interest of making the condition 
clearer it can be rewritten as 

m 

V f (x*)  + A, vh, (x*) = 0 
, = I  

In the constrained optrm~zation problem as stated, there are n unknowns In x* and m 
unknowns tn A. The m equations in h(x")  = O and then equations In V f (x*)  f Vh(x*)X = 
0 glve a total of n + m (generally nonlinear) equations, so that the solution is at least locally 
unlque. 

In formulating constrained optim~zation problems, rt is common to formulate a 
Lugranglan as 

L(x,  A) = f ( x )  + h(x )X .  
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The necessary conditions for optimization are then expressed as 

v, L (x, A) = 0, 

V>;L(x. A) = 0. 

18.4.1 Examples of equality-constrained optimization 

Exampte 18.4.6 We want to maximize 

subject to the single constraint 

The constrant function 1s h (x l .  x2) = x i  + x2 - 4. 
The Lagrangian is 

The necessary conditions are 

and 

The latter condition, as always, IS  srmply a restatement of the origrnal constraints Solution of thece 
four equations leads to 

We are left w ~ t h  the question of whether this 1s a minlmum, a maximum, or perhaps some klnd of 
saddle point This question is addressed in the following usrng second-order condlt~ons (We see 1n 
example 18 5 2 that this IS ~n fact a ?addle polnt ) 

Example 18.4.7 (Maxlmum entropy I)  The entropy of a dlscrete random vanable that takes on the 
values x i ,  x2, X, w ~ t h  corre~ponding probabilities p = ( p i  p? p,,) I$ 

We des~re  to find the distribution p that maximizes the entropy The constraint\ on the prohablltt~e\ 
are 
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We w11l ~gnoie  for the monlent the nonneg'itivity con\tralnts, and return toc l i e~k  that they are \at~\t~ecl 
7 he Ia,igr~ng~dn r \  

leading to the necc\i'iry condit~on\ 

Since this is true for every p , ,  we must have p, = L. = c A - I ,  which is constant for all i .  This means 
that p, = I / I ? .  and the uniform distribution rnaxi~nizes the entropy. Note that in this casc it is not 
necessary to explicitly determine the Lagrange multiplier; simply observing its effect on the solution 
suffices. C! 

Example 18.4.8 (Maxlniurn entropy 11) We nou want to maximize the entropy ( I  8 10) subject to the 
~on\trarnt that the mean ot the random variable I \  equal to m The constrainti are 

The Lagmng~an now Incorporate5 two con\tr,unt\, each wtth their own Lagrange mul t~pl~ers  A l  
and i2 

The necessary conditions are 

so that 

These probabilities are all positive. so the nonnegativity constraints are inactive. The probabilities in 
( 18.11) are of the form p, = ce'l", which is a discrete exponential density. The parameters c and h2 
must be chosen (by solving nonlinear equations) to satisfy the constraints. D 

Example 18.4.9 (Constrained least squares) Ellipsoidal sets arise in several signal-processing ap- 
plications, such as set-valued Kalman filtering and set-based estimation. In some problems, it is of 
interest to determine the point of an ellipsoid nearest to a point outside the set. This is a constrained 
minimization problem. 

Let / I  . / /  be the L2 norm, let E be an ellipsoidal set in R", 

and let y be a polnt not In the ell~psord, as shown In figure 18 8 S ~ n c e  it IS clear geometr~cally that 
the nearest polnt to y muct be on the boundary of the ellipse, the problem can be stated as 

minimize / /y  - z / /  

subject to 1 1  Lzil = 1 

Since jjzlj' = z T z  is employed, the problem is differentiable, and is in fact a constrained quadratic 
minimization problem. This problem can be viewed as an example of a class of coastrainetl 
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/mi n 

Y 

Figure 18.8: Minimizing the distance to an ellipse. 

leart-squares problems A Lagrangian can be written as 

L(z ,  A )  = ( y  - z ) T ( y  - z) + A ( L Z ) ~ ( L Z ) .  

leading to the necessary condttlons 

( I  + X L ' L ) ~  = y 

Since solut~on of thls equat~on problder a least-squares solution. an equation of thls sort for a con- 
strained quadratic problem IS Tometimes called a normal equarrorl If i, were known. determ~nation 
of the mlnlmlzlng z would be straightforward Solvlng for L In terms of the unknown h we have 

The computations can be s~mpl~fied slgnlficantly uslng the SVD of L ,  

L = u c v T ,  

from which 

z (h)  = V ( I  + i . ~ ~ ) - ' e  

where e = V T y .  We then have 

from which the constraint llLzll = 1 becomes 

where the a, are the singular values of L  An equation of the form ( 1  8 14), used to satisfy the constraint 

in an optlmlzatlon problem, is sometimes called a recular equarlon This nonlinear equation in the 
unknown A can be read~ly solved numer~cally using Newton's method CI 

Example 18.4.10 (Least squares with mult~ple constraints) Consider the following problem 

minlmlze b7 Pb 

subject to b T c ,  = P I .  
bTc2 = B2. 
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Lct 

and 

Then a Lagrangian (incorporating a factor of -2 for later convenience) is 

brPb - 2bTCX 

with the constraint 

b T c  = f i r .  

The necessary conditions are 

2Pb - 2CX = 0. 

A solution (assuming that P is invertible) is 

h = P-'cX 

If P 1s not invertible. a pseudolnverse can be used Incorporating the constraints using (18 l j ) ,  we 
find (again, aswming ~nvert~brlity) that 

from which 

18.5 Second-order conditions 

Second-order conditions provide information about whether an extremum is a minimum or 
maximum (or neither). Second-order conditions for constrained optimizations exist that are 
similar to those for unconstrained optimization. 

We let F(x) be the n x n Hessian of f (x), 

and N(x, A) be the n x n matrix defined by 

We introduce the matrix 

as the matrix of second partial derivatives of the Lagrangian L 

Theorem 18.4 (Second-order conditions, [210, page 3061) 
Let f and h be in c'. 

1. (Necessity) Suppose there is a point x" that is a local minimum o f f  subject to 
h(x) = 0, and that x* is a regular point of h. Then there is a vector X such that 

V f (x*) + Vh(xf)A = 0. 
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Lef P be the tangent plane of h(x) at x*, that is, 

P = {y: Vh(x*jTy = 0): 

then tlze matrix 

L(x*) = F(x*) + H(x*. A)  

isposltrve semidejnzte for ~)ulues of y E P (We saj that L(x*) tsposztrve senzzdejrlrre 
on P ) 

2 (Sufficiency) Ifx* satisjes h(x*) = 0, and there ZJ a X such that 

and  here 1s a matrix L(x*) dejCined as in (18 16) fhat rs positwe dejnlte on P ,  then 
x* rs a strlct local minimunz o f f  subject to h(x*) = 0 

Proof 

1. Let x( t )  be a curve on the constraint surface S through x* with x(0) = x*. Then (see 
exercise 18.4-5), 

We also have (see exercise 18.4-4) 

d 2  
-@f ( ~ ( t ) )  = x ( ~ ) ' ~ x ( t )  + V f (xlT x ( 0 ,  (18 18) 

and (see exercise 18.5-6) 

Adding (18.19) and (18.18) using (1 8.17), we obtai11 

Slnce x(0) 1s arbitrary in P. L(x*) must be posltlve semidefinlte on P 

2 Let x ( t )  be a curve on the surface h(x) = 0. with x(0) = x* We wnte out the Taylor 
serles for f (x([)) to the quadratic term 

and the Taylor series for h,(x(t)) .  for i = 1 .  2. . . . , m ,  as 

We note that h ,  (x( t ) )  I t= , ,  = 11, (x*) = 0 Now, for each I = 1 .  2, , m.  ~nultlpl) 
( I  8 2 1 ) by j,, , then add all these w ~ t h  m t1111es ( 1  8 20) U51ng ( 1  8 1 G) ,  we obtaln 
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S~nce  x(0) E P, dnd iince L(u*) 15 positive dehnite on P, we conclude, for iufficlently 
small 4, that 

f ( ~ ( 0 )  - f (x* )  > 0% 

so that f (u*) I \  a local mlnimum 13 

Obviously, ~f x* 1s a local maxrmum, then a negat~ve definlte L matrlx on P results. 

Example 18.5.1 Coniider the problem 

maximize .ui .rz i- x2x3 + xi  .r3 

subject to xi + .rl + x1 = 3. 

Solution of this leads to 

L has eigenvalues - 1 ,  - I ,  and 2, so it is neither posrtrve nor negattve definite The tangent plane 1s 
P = (y yl + j? + j j  = 0) TO determine if a maximum or minimum 1s obtained, we must find out 
if xr Lx > 0 tor every x G P For this partrcular problem, using x = [ y i ,  y ~ .  - (y l  + y2)] E P ,  it IS 

\tra~ghtkorward to \how that 

so L is negative definite on the plane P,  and a maximizing point is obtained. 

Example 18.5.2 Returning to example 18.4.6, we find that 

There are two posrtrve elgenvalues and one negatlve eigenvalue of L, so the problem is at t h ~ s  point 
indeterminate 

Let us therefore restrict attentron to the tangent plane 

Letx = [ y i .  -y , ,  y,jr b e a ~ o i n t i n  P .Then 

This is neither positive definite nor negative definite. The solution obtained in example 18.4.6 is 
actually a saddle point. 

In determlntng the definiteness of L, it is necessary to conslder specifically the restnc- 
t ~ o n  of points to P. Problems will not, in general, be as straightforward as these examples, 
slnce P may be more difficult to describe. 

The restriction of L to P may be understood geometrically as follows. Let y E P. The 
vector Ly might not be in P. We therefore project Ly back into P. The operator that first 
computes Ly then projects into P we will call Lp (see figure 18.9). We desire to find an 
explicit matrix representation for Lp SO that its eigenvalues can be found, and hence the 
nature of the solution. This may be done by finding a basis for P. Let e l ,  ez, . . . , en-., be an 
orthonormal basis for P, and let E = [e l ,  el_, . . . , en-,]. Any point y E P can be written 
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Figure 18.9: The projection of Ly into P to form Lp.  

as y = Ez  for some z E Then the projection of Ly = L E z  into P is 

Thus E'LE gives the coordinates of the projection in terms of the basis E .  The matrix 
ET L E is the matrix representation of L restricted to P . The positive or negative definiteness 
of L can be determined by finding the eigenvalues of E'LE. 

Example 18.5.3 Cons~der aga~n L and P of example 18 5 1 P is the null space of the matnx 
[ I  I I ]  A haw for the null \pace may be found using the SVD (see section 7 2), an orthogon,il 
basis is found to be 

Then 

Example 18.5.4 Returning to example 18 5 2. P IS the nullspace of [1 I 01 for wh~ch a basis 15  

found to be 

Then 

which has eigenvalues 1 and - 1 .  C 

18.6 Interpretation of the Lagrange multipliers 

A question that may arlse I n  the context of convtra~ned mtnimlzation I S  What do the 
Lagrange multiplterc, mean in a physlcal sense' We will show that, in some regard, the 
Lagrange multiplierc, provlde an ~ n d ~ c a t ~ o n  of how much the constralntc, "coit." in t h ~  
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netghborhood of the optrmum 5oltltton Let 115 allow tor the con5tratnl eq~tations to take on 
dtfferent value5 c. 

m~ntmtze f (x) 

bub~ect to h(u) = c 

Let u* be the wlutton to ( 1  8 22) when c = 0 (as before). ~ n d  let A* be the vector of Lagrange 
multtplier\ 'it tht5 iolutton For c in ,t stitfic~ently itnilll netghborhood of 0 there is a solutton 
to ( I  8 22) that depends conttnuously upon c Let thts solution be denoted by x(cj, with 
x(0i = u* 

Our development i i  ctraightforward, but ~nvolvec constderdhle manipuldt~on of denva- 
tnes vta the chain rule 

Computation of V,h(x) We first note from (18.23) that 

We also have 

where, by the chain rule, the ith column is of the form 
F 7 

in which we introd~tce the notation 

Stacking these together, we have 

where 

A,x(ci =: [A, ,  x(c) A,,x(c) . . Ac,,,x(c)1. 

Combining (18.23) and (18.24), we have 

a ,  x ( c ) ~ v , ~ ,  (x(c))I,=o = 6, , ,  , 

where 8, , is the Kronecker delta function. 
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Computation of V, f (x(c)). The ith component of V, f (x(c)) is 

Using the necessary conditions for the constrained solution, we write 

Stacking these and using (18.25), we obtain 

where e, = [O . . . 1 . . . OIT is the vector with 1 in the ith place and 4 elsewhere. 
Thus, from (1 8.26). we obtain 

In other words. -A indtcates how f changes at (or near) the optllnum ~01ut1o11 thc 
constralnt values are changed. 

Example 18.6.1 

Minimize f (x i .  x,) = x :  

subject to x i  + x2 - 1 = c.  

To demonstrate the prlnclple, we first find adirect solution wlthout Lagrange ~nultiplier\ By symmeti 4. 
x i  = X? From the constraint. x i  = ( I  + (-)I2 Then 

and 

Now we iolve the problem using Lagrange multiplierr, U \ ~ n g  the necessary condition? (18 9). we 
obtain 

which has \elution h = - ( I  + c )  The interpretation of this is that dn incremental increa\e t in ( 

leads to an increase In the value o f f  by approximately ~ ( 1  + r ) 

If the constralnt x ,  + x 2  - 2 = ( is uced then we find that A = -(2 + ( )  and dflclc = (2 + ( ) 
In thi\ case. there 15 more change in  j d \  ( I \  changed 3 

A\ t h ~ s  example ~llustrates. the Lagrange mult~pliers can be Interpreted a\ providing d 

rneacure of the renylrll I& of the minimum o f f  to change5 In thc constraint\ Large ab\oli~te 
value\ of the Lagrange ni t~l t~pl ler~  mean that a \mall change In the constraint lead\ to a 
large change In the value ot f the conrtraint cost\ more In that caw 
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18.7 Complex constraints 

The theory of opt1rn17atron over real vector, ,li j u i t  prewnted can be ea\rly generalized to 
optimiratton over complex vector, For the problem 

minimize f ( x )  

subject to h(x) = 0, 

where x is now ccrmp1e.r and 

f ' : C R + X  h : C " - + C " ' ,  

we consider the real and Imaginary parts of the con\traintc, ieparately, form~ng the 
Lagrangian a? 

L = j (x) + ~ e [ h i x ) ~ l X i  + 1mlhixiT1X~, (18 27) 

where XI E K'' and X2 E R"' Now, letting X = XI + /Ar,  we can rewnte (18 27) as 

L = f (x) + ~ e [ h ( x } ~ X ]  = 0 

Minimization can be acchmplished by taklng the dertvattve with respect to 3. 

Example 18.7.1 Let x be complex, and rnlnirnize 

f (x) = xH Rx, 

where R is Hermitian synln~etric. subject to the linear constraint 

The Lagrangian is 

where i, E C T'iklng the gradrent, Lislng the methods In sectlon A 6 4, we find 

or, by taking the conjugate transpose, we have 

Multiply~ng by R-' and then by s, we obtain 

from which the Lagrange multiplier may be found: 

Substituting back into ( l8.28), the solution is fbund to be 

18.8 Duality in optimization 

A principle of some importance in many optimization problems is that of duality. Essentially 
what the duality principle states is that for a minimization problem, there is a corresponding 
maximization problem, such that the minimizer of the former problem is the maximizer of 
the Latter. 
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Example 18.8.1 The problem of findlng the shortest distance to a hne 1 1s a constrained mln~mization 
problem mln / / X I /  such that x l ~ e s  on 1 The dual to this 1s the problem of finding the maxlmum dlstance 
to planes that pass through the llne I G 

Example 18.8.2 Let K be a convex set A mlnimtzatlon problem is to find the po~nt  In K nearest to 
the ongln The dual problem 1s to find the largest dlstance to a plane separating the convex set from 
the ongin (see figure 18 10) 0 

We introduce the notion of duality by studying a problem with a quadratic cost function 
and linear constraints. Generalizations are possible and are discussed in the references cited 
at the end of the chapter. Consider the problem 

1 
minim~ze f ( x )  = - x T c - ' x  - b T x  subject to A ~ X  = C,  

2 
(18 29) 

where C is a symmetric positive-definite matnx This problem is simply a generalrzation 
of the "nearest distance to the line" problem, where f ( x )  measures the squared distance (tn 
some norm), and the "line" is actually the plane A T x  = c We determ~ne the dual problem 
by means of Lagrange multipl~ers The Lagrangian is 

L(x .  A) = f ( x )  + ( A T x  - c lTX .  (18.30) 

Taking derivatives with respect to x  and X and equating to zero. we find 

From the first of these we obtain x = C(b - AX).  Substituting of x into (18.30) and 
simplifying, we obtain 

Because of the minus sign. this function is concave. The function g (A) is the dual function. 
the one to maximize to obtain the optimum solution. Thus 

minimi~e f ( x )  
is equivalent to maximize g ( X )  

subject to A' x  = c  

in the sense that they both have the same value, and describe, from two different po~nts 
of view, the same problem The first optimization problem is called the "pnmal" problem. 
in comparison to the dual problem Note that whereas the pr~mal problem in this case is 
constrained, the dual problem is unconstrained, the constraint havlng been absorbed by the 

Flgure 18 10 Duallty the nearest polnt to K i \  the maxlmum di\tance ro a \eparating 
hyperplane 
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proleis of con\tructtng ? ( A )  S t n ~ e  unconitr;lined problemi are often easier to solve, or 
may ~ n v o l b e  fewer v,~r~,lbleg. 11 may be of benefit ~n cert;lln c'iiei to determ~ne the dud1 
problem 

Example 18.8.3 We desire to rndxtrnlze 

subject ro 3.rl - 2.rL = - I .  We identify 

dnd, using ( I8 3 1 1, 

A plot of this function is shown in figure 18.1 1. As is apparent, this achieves a maximum value 
at h = I :  an itnconstrained maximization problem. Knowing i, x, and .x2 can be obtained from 
x = C(b - AX)  as xl  = 1 ,  .r2 = 2. 0 

Another aspect of the constrained optimization problem remains to be examined. The 
Lagrangian L(x, A) is conver in x, since fix) is a convex function, and concave in A. As 
shown in exercise 18.8- 1 I ,  for every x satisfying the constraint A T x  = C ,  

Slnce g ( A )  t i  unconstrained and does not depend upon x, g ( A )  forms d lower bound on f (x), 
sim~larly. f ( x )  forms an upper bound on g(A) The constrained optlmizatjon essent~ally 
concicts of rrzlnrmlzlrzg f ( x )  while rnaxlmrzlng g (X)  At the point of optimality, a saddle 
po~nt 1s achieved, where both functions achieve thelr extrema 

subject to the constraints. 
At the point of optimality, 

min max L(x ,  A) = max min L(x ,  A). 
x X X x 

(To envision what is being described, it is helpful to think of a saddle surface, as shown in 
figure 18.12. While not an exact portrayal of the current circumstance in which L is linear in 
1, it conveys the notion of the geometry.) To show that the minimization and maximization 

h 

Figure 18.1 1: The dual function g(h) .  
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Figure 18.12: Saddle surface for minimax optimization 

can be done in either order for the particular case of quadratic cost with linear constraints, 
consider first the maximum with respect to A: 

max L ( x ,  A )  = max f ( x )  + ( A T x  - C ) ~ X  
X X 

If the constraint is satisfied so that A T x  = C,  then the maximum value is f ( x ) .  If the constraint 
is not satisfied, then the maximurn value is oo, since x  can be chosen arbitrarily large with 
the appropriate sign so that ( A T x  - c l T A  is infinitely large. Thus, maximization over 
X followed by minimization over x  leads to the condition that A T x  = C. In this case. 
we have 

min max L(x .  A)  = min f ( x ) .  
x X A T x = c  

In the other case, taking the minimum first with respect to x  by computing a L / a x  = 0, we 
obtain the expression x  = C ( b  - AX).  Substituting this into L(x .  A )  gives 

1 
m i n L ( x . X )  x = - - (b -  Ax) 'C(b-  Ax )  - x r c = g ( A ) .  

2  

Now the maximum is over g ( A ) ,  which we observed IS  upper-bounded by f ( x ) .  
The minlmax interchange expressed in (18.32), which we proved for quadratic costs 

with linear constraints. is true in more general cases. In fact, we have the following gener- 
alization. 

Theorem 18.5 Let L ( x ,  A)  be a real-valued continuous function that rs convex rn x  for 
each value of A, and concave rn X for each value of x, If C and D are closed bounded 
concave sets. then 

mln max L ( x ,  A) = max mln L ( x ,  A) 
xeC XED xeC XGU 

The proof of thls theorern is found in [ 17 1 ,  page 281 
More ~nslght into Lagrangian duality can be obta~ned by study~ng duality for linear 

programming ploblern4. exercr\e 20 5-1 1 \hould be valuable rn this regard 
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18.9 Inequality constraints: Kuhn-Tucker conditions 

We return to the problem utth inequdlity constralnti, 

minirniie f (u) 

sub~ect to h(X) = 0. (18 33)  

g(x) 5 0. 
where there are rn zqual~ty constralnti and p lnequal~ty constratnts In the context of con- 
strained mintm~zatlon. when we say that J. vector 1s lesi than zero, such as 

g .c 0, 

we mean that each component of g is less than zero, and similarly for other comparisons. 
We say that a point x" is regular if the gradient vectors V,,h, (x") and the gradient vectors 
V,g,  (x") are linearly independent for i = 1 ,2 .  . . . , m and for all j such that g, is an active 
constraint. 

Inequality constraints can make solution ofthese problems more difficult, since it is not 
clear in advance which constraints are active, and only active constraints directly affect the 
solution. The fundamental result for the optimization is provided by the following theorem. 

Theorem 18.6 (Kuhn-Tucker conditions) Let x* be a local minimum to (18.331, (2nd sup- 
pose that the  constraint,^ are regular (11 X* (considering both the equality and inequality 
constraints). Then tlzere i.s Q Lagmrzge multiplier vecttjr X E R'" and a Lagrange multiplier 
vector p E RP with 

p > 0 
such that 

g(x*fP = 0, (18.34) 

V f (x*) + Vh(x*)X + Vg(xF)p = 0. (18.35) 

The condition that g(x"17 p = 0 IS sometimes called the complementarity condition the 
Lagrange multrpl~er 1s zero when the constralrlt 1s not (that IS, when the constra~nt is ~nactlve) 

Proof For those constraints that are active, the problem becomes (relative to those con- 
straints) a Lagrange multiplier problem, so that (18.35) can be seen to hold using these 
Lagrange multipliers by setting LL, = 0 for every gi (x) that is nonzero (i.e., not an active 
constraint). On this basis, (18.34) also holds. 

Suppose gi (x) is not an active constraint, that is, gi (x) < 0. Then, by (1 8.34) and p 1 0, 
we must have pi = 0. Stated another way, a component pi may be nonzero only if gi(x) is 
active so that gi (x) = 0. 

We now show that p > 0. Our thinking is demonstrated first with a one-dimensional 
function, following which the concept is extended to higher dimensions. Let x* be a local 
minimum for which gk (x*) is active, and let S F  denote the surface defined by all active con- 
straints other than gk. Let x(4) be a curve on S F  passing through x* at ! = 0. Figure 18.13(a) 
illustrates f (x([)) and the point gk(x(!)) = 0. The directions of the gradients Vx f and 
V,xgk are also shown as arrows. If, as shown, gk(x( t ) )  > 0 in the direction of decreasing f ,  
then no further decrease in f is possible, since ibis would violate the constraint gk(x) ( 0. 
Since the gradient directions (on the constrained surface) point in opposite directions, there 
is a positive p k  such that 

V f $- [ - ~ k  Vgk = 0. 

On the other hand, if (as in figure 18.13(b)), gk(x({)) < 0 in the direction of decreasing f ,  
then the point x* cannot be an optimum, because further decrease in the value o f f  would 
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(a) At an optlmum polnt (b) At n nonopt~mum potnt 

Figure 18.13: Illustration of the Kuhn-Tucker condition in a single dimension. 

be possible by decreasing gk wlthout v~olating the ~nequallty constra~nt If the direct~on of 
Increase of f is the same as the d~rection of increase of gk, then further decrease of f i \  

possible by moving f downh~ll, rendering gk inactlve More generally, let ST be as before, 
and let P6 be the tangent plane of ST at x* We shou by contradlct~on that p > O For any 
2 E Py ,  

( ~ h ( x * ) ) ~ z  = O (18 36) 

and 

Vg, (x") Tz = 0 (18 37) 

for an dctive constraint g,, wlth I # k Let y E Pn be a vector such that VgA(x*jTy > 0 
(By the regulartty assumption, there 1s such a y ) This vector po~nts in the general d~rection 
of Increase of gk (x) at the point x* Let x ( t )  be a curve on ST passing through x* at [ = 0. 
parameterized such that x(0) = y Then 

where ( 1  8 38) comes from (18 35), ( 1  8 39) conles from ( I  8 36), and ( 1  8 40) follows from 
(18 37) Slnce at a point of min~mum we should have df(x(())/d( > 0, we have a 
contrad~ction 0 

The Kuhn-Tucker cond~t~on \  mn) be applied ds follows The nece\\nry cond~i~ons 
are establi\hed v ~ a  (18 35) Then solutions nre found u\lng \inriou< cornbtndtlon\ of actne 
constrdints, nnd that \oIul~on thdt give5 p > 0 I C  selected 
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Example 18.9.1 

rninirnize , f (xl ,  x ~ )  = 3xf + 4x22 + 6.xI x2 - 6x1 - 8x2 

subject to g l  (xl, x2) = .Y: + 122 - 9 5 0. 

g2(x1, IT?) = 2x1 - xz - 4 ( 0. 

From (18.35), the necessary firut-order conditions are 

We try various combinations of no, one, or two active constraints, and check the signs of the Lagrange 
multipliers /*, . 

I .  (gl is active, g2 is inactive) This has p2 = 0 and leads to the equations 

There are tour solut~ons (obtained, for example, using MATHEMATICA), all of whtch have 
gl < 0 For example. one solution 1s 

2. (gZ is active and gl is inactive) This leads to the equations 

The solution is 

x, = 1.77419 xz = -0.451613 ~2 = -0.967742 

3. (Both constraints are active) In this case, we find the points of intersection of the two constraints 
(the intersection of the clrcle and the line) at 

The first solution has (p,, p2)  = (-7.20275, 14.0601). while the second solution has 
(PI, p2) = (-5.19725,4.8199). 

(Each of the solutions to this point fails to satisfy the constraint p > 0) We therefore make all 
inequality constraints inactive, obtaining p = 0, and find the minimizing point at (x,, x2) = (0, 1) .0  

Example 18.9.2 [56] In this example, we illustrate the application of Kuhn-Tucker in a more com- 
pllcated problem that demonstrates typical Issues that anse when inequaltty constraints are employed. 
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The problem is that of a gambler placing repeated bets at horse races (It also has beanng on cer- 
tain communication models ) We first pre\ent a background to the problem, then proceed with the 
optimization 

In a rac~ng scenano there are rn horses The odds 011 the horses are o,, so that a gambler receive\ 
o, dollars for every bet placed on horse 1 if that horse wins In thls problem, we aswme that the rdce 
is "subfa~r," meanlng that track gets a take (a portlon) on every bet Thi\ means that 

The gambler knows (somehow') the win probab~llties for each horse, we will call these probabil~ties 
p, If play occurs only once, ~t rs reasonable to place all the money on the best horse However, when 
play is repeated and the winnings are "reinvested" In the next match, it is better to distribute the money 
across all of the options The gambler places his bets on the horses uslng the proportrons b,, where 17, 

IS the proportion bet on the rth horse Since there is a track take. 11 may make sense for the gambler 
to hold some back Let bo represent the amount held back 

The money the gambler has after a race 1s 

if horse i wins. Then, the wealth after n matches is 

where z k  is the winner on the kth race and So is the lnltlal money The rate of growth of the gambler5 
stake after many races IS 

where E IS the expectation (average) operator The problem can now be \tated as follows How can 
the gambler dlstnbute his money so as to maxlmize the rate of growth 

subject to the constraints that he cannot use more or less money than he has. 

and that each bet placed cannot be negative, bi 0. We form the Lagrangtan 

(Since bo r 0. there 1s no need to Introduce the Lagrange multiplier ) We obtain a necessar) 
condttion by 

To apply the Kuhn-Tucker condition. we let B denote the \et of indicei of outcomes for which hi > 0 
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(the conitraints are ina~ti te)  and let B' denote the complement of that set Then we h a ~ e  the tollou~ng 
two case, 

1 For I E B ,  we muit hdve p, = 0, dnd 

2 For I E B i ,  we must have p, < 0 (since the comtraint 1s that h, 2 0). and we obtain 

Since. in th~s  case, b, = 0 and F ,  5 0, the preceding can be rewritten as 

We first use the equalities (18.41) and (18.42). From (18.42), we obtain 

From the constraint 

kc5 

and (1 8.44), we obtain 

where 

Substituting (18.45) into (18.41), we obtain 

Ustng t h ~ s  value of h, let us denote the proportion of the bet wlthheld as a functlon of the set B of 
bets placed, as 

From (1 8.44), we find 

Now (18.43) can be written as 

Plot I b o . ~  i E B'. (18.48) 

We note that since bo 2 0, from (18.46) we must have o8 < 1. It remains to determine the set 
of active bets B. This must be done so that the inequality (18.48) and other constraints are satisfied. 
This is most conveniently done by reordering the indices so that the expected returns p,o, are ordered, 
pto, 2 p,+lo,+l, and bets are placed starting (potentially) with the highest probable return p i o l .  Let 
t indicate how many bets are placed, and let 

and 
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We make the o b s e ~ a t i o n  that (for these sorted returns) ~f 

P , + I O , L ~ < ~ O ~  then b o t - , > b o , ,  (1 8 49) 

provided that we malntarn cr, < 1 In particular, ~f piol < I ,  then D o ,  increases 61th r and no bet. 
should be placed We can find the mlnimum value of bo, subject to the constramis by increastng r 
untll the mrnlmum posrtlve value of bo,  1s obtained After the mrnimunl value of Do,  1s found, then 

b, = max(p, - bo,, l o , ,  0) 

As a particular numerical example, suppose that the probabllit~es and odd\ are 

p = [ j  f t ]  0 = [ 4  2 I ]  

(already sorted) Then the mintmum value of bo , IS found when t = 1.  and 

T h ~ s  result 1s computed uslng the example code shown in algorithm 18 1 

Algorithm 18.1 A constrained opttmization of a racing problem 
File: gamble . m 

Example 18.9.3 The capaclty of a channel is a measure of how much tnformation (In blts per channel 
use) can be transmitted rehably through the channel When a message pass2ng through a channel 15 

corrupted w ~ t h  add~tive white Gausslan nolse. the capac~ty is known to be 

where P 1s the signal power and N is the vartance (average power) of the noire 
Suppose that there are n channels over whlch we can send tnfonnation, and that a total amount 

of power P is available Each channel hac rts own variance N I ,  N?. N,, We deslre to apportion 

the power Into each of the n channels to max1mlze the total transmtss~on capaclty without exceeding 
the total power avallab~lity We must also enforce the inequality constrant P, 5 0 The 1,agrangian 1s 

We now have two cases 

1 If P, > 0 (an inactlve con\tralnt) then. by the Kuhn-Tucker condltlon. /L, = 0 and 

from which 

where ti = - 1 / 2 h  

2 On the other hand. t f  P, = 0 (an active con\lra~nt) then. by the Kuhn-Tucker condition. j ~ ,  5 0 
We obta~n 
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Figure 18.14: Illustration of "waterfilling" solution. 

This can be wrrtten 

In conjunction with this, we also have the constraint P, = 0 

Comb~ntng (18 50) wtth the nonnegatlvity conatralnt, we obtaln 

where K is chosen so that 

A graphical illustration of the solution is shown in figure 18.14. This solution is commonly called a 
wuterJilling solution. The different noise levels are shown as vertical levels. As the available power 
P increases, power is first put into the channels with lowest noise, then the next highest, and so forth. 
The power fills channels until the total power expended is equal to the power available. If the noise 
in a channel is too high (as Ni in the figure), then no power is expended in that channel. 0 

18.9.1 Second-order conditions for inequality constraints 

The second-order conditions for problems with inequality constraints, used to determine 
whether a maximum or minimum is obtained, are very similar to the results for problems 
with equality constraints. We present the following results without proof. 

Theorem 18.7 Let x* be a regular point of h and the active constraints in g , and let P be 
the tangent space of the active constraints at xr. Then, ifx* is a local minimum o f f ,  

is positive semidefinite on the tangent subspace of the active constraints. 
(Almost) conversely, if there exist a X and p satisfying (18.34) and (18.35) at a poirtt 

x*, and if L(x*) defined in (18.51) is positive definite on the tangent subspace, then x* is a 
strict local minimum o f f .  

18.9.2 An extension: Fritz John conditions 

A minor extension of the Kuhn-Tucker conditions is found the Fritz John conditions [ 2  18, 
941. Under these conditions, a necessary condition for the inequality-constrained problem 
( 1  8.33) to have a solution x* is that there exists a vector X E Rm, a vector p E RP+', and a 
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scalar $0. such that 

18.1 0 Exercises 

18.2-1 Let 

and let 

Determine 
a F - a F 

and - ax ax 

18 4-2 This problem explores the orthogonality of gradlent., and tangent5 

(a) L e t / ~ ( x )  = h(x i .x2 )  = X I  - ~2 + 1 

I Make a plot of the "surface" h(x) = 0 
11 Determtne a parameterizatton x ( t )  of point\ on the surface between. say. the potnt5 

(xl. x2) = (1 ,2)  and (3 .4)  
111 Compute dx/d[ and Vh(x) and show that they are orthogonal 

(b) Let h(x) = x: - x2 
I Make a plot of the "wrface" h (x) = 0 

11 Determine a parameterization x(6) of po~nts on the surface 
111 Plot the vector dx(()/d< and the vector Vh(x) at the polnt x = (2  4) Show that 

these vectors are orthogonal 

(c) More generally. let h(x) = 0 be a curve in R", and let x ( t )  be a parameterization of the 
c u n e  for \oine u 5 t 5 b Show that 

and Vh (x) 

are orthogonal at every polnt x of the parametenration 

18 4-3 Work out the detalls of the developme~~t from equatton (18 12) through ( 1  8 14) 

18 4-4 Show that 
ri li 

d ?  " d f  d 2 ~ , ( 0  t l 2 l  dx, dx, 

I -  I 

where ' i \  the I-ie\ilan mdrlx ul f 
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18.4-5 Extend lemma 18.1 by showing that if x(4) is a curve on the surface h(x) = 0 and x(0) = x* 
is a constrained local minimum of f', then 

Use a Taylor series argument. 

18.5-6 Show that 

18.5-7 Consider the problem 

maximize 2x1x2 + x2x3 + xlx3  

subject to x, + x2 + x3 = 3. 

Determine the solution (xi,  x2, x3, A). Compute the matrix L, and determine if your solution 
is a minimum, maximum, or neither. 

18 5-8 In example 18 4 7, let n = 4 Examine the appl~cat~on of the second-order cond~iions to 
the maxlmum-entropy solution found there, by finding ET L E ,  where E  is a matnx of basis 
functions for the nullspace representing the tangent plane 

18.5-9 Verify that h = -1 satisfies (18.41) when (18.45) is substituted in 

18.5-10 Show that (18.49) is true 

18.8-1 1 Let f (x) be the quadratic function in (18.29), and let g(A) be as in (18.31), where C is 
symmetric positive definite. Prove that 

for all x and X for which the constraint ATx = c is satisfied. This is known as weak duality. 

18.8-12 Consider the problem 

minimize f (x) = 4x: + 3 4  + 6xIx2 - X I  + 2x2 

subject to 2xl - x2 = 1. 

(a) Identify C-', A ,  b, and c as in (18.29). 

(b) Find the solution using Lagrange multipliers. 

(c) Determine the dual function g(A), and determine its maximizing A. 

18.8- 13 Consider the problem 

minimize f (x) = x: + 2 4  + 4.4 - xi  + 2 , ~ ~  + 3 ~ ,  

subject to 3x1 - 2x2 + X) = 4. 

(a) Identify C-I , A, b, and c as in (1 8.29). 

(b) Find the solution using Lagrange muftipliers. 

(c) Determine the dual function g(h), and determine its maximizing A. 

18.8-14 The first (easy) half of theorem 18.5 can be stated as follows: If L(x, A) is a real-valued 
function on some domain C x D (not necessarily closed, bounded, or convex), then 

inf sup L(x, A) 2 sup inf L(x, A). 
X E D  XGC x e ~  
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Show that this is true 

18 9- 15 (Kuhn-Tucker) Determine conditions for minimizing the function 

subject to the constraints that xy=, d, = d (where d is known and fixed) and also to the 
constraints that 

d, 5 a? 

18 9-16 ([210, page 3211) Max~mtze 14x - x Z  + 6 )  - y2 + 7 subject to x + v 5 2. 2x + 2v 5 3 

18 9-17 By expressing the constrained optimlzatjon problem ( I 8  5 )  as the minimax problem 

min rnax f (x) + [XTpTl  
x X,P 

argue that the cornplementanty cond~tion evident In the Kuhn-Tucker conditions must be 
true, that is, 

18.1 1 References 

An excellent source for both the theory and pract~ce cf optim~zation IS [210], from whlch 
the matenal of this chapter is largely drawn Other good sources on optimizat~on Include 
[89], 11061, [254], and 12601 The con~trained least-squares problem of example 18 4 9 1s 
discussed In greater generality In [97] and [91] The gambl~ng problem is d~scussed in 1561 
and [I781 The multichannel capac~ty problem is d~scussed In [56] 

The concept of duality introduced in sectlon 18 8 1s of considerable importance In game 
theory, in this regard, see [I71 ] A general statement related to Lagrangian optimizdtion 
appears In [217, 2181 Our presentation of duality was drawn from [332] 



Chapter 19 

Shortest-Path A gorithms and 
Dynamic Programming 

The Viterbi algorithm is to sequence estimation what the FFT is to convolution. 
- Darryl Morrell 

A variety of problems can be expressed in terms of finding a shortest path through a graph. 
Some examples, to name a few: hidden Markov model training, optimum sequence detec- 
tion, dynamic time warping in speech recognition, convolutional and trellis code decoding, 
constrained optimal bit allocation, and a variety of problems in discrete-time optimum con- 
trol. We present in the following section the basic concepts behind forward and backward 
(Viterbi) dynamic programming algorithms. After the initial discussion, specific applica- 
tions are discussed. 

19.1 Definitions for graphs 

Many types of problems, particularly those that involve sequences of steps, may be re- 
presented using graphs. We begin with nomenclature relating to graphs to facilitate 
discussion. 

Definition 19.1 A graph G = (V ,  E) is a collection of vertices V and edges E. A vertex 
is a point in space, and an edge is a connection between two vertices. We will also refer to 
a vertex as a node and, in the context of trellises, as a state. We will refer to a branch as a 
single edge. The edge between the vertices a and b is denoted as ( a ,  b). 

A path from a vertex a to a vertex b is a list in which successive vertices are connected 
by edges in the graph; it is a list of adjacent branches. A directed graph is a graph in which 
travel along an edge is allowed in only one direction: an edge may go from say, a to 6,  but 
not the other way. Often the edges in a directed graph are indicated by arrows. 

A weighted graph is one in which numerical weights are assigned to each edge. The 
cost of a path is the sum of the weights along the path. 

Example 19.1.1 Figure 19.l(a) shows a graph with four vertices and four edges. The vertex set 
is V = (a ,  b, c, d l ,  and the edge set is E = {(a, d f ,  (a, c), ( a ,  b), (b, c)). Figure 19.l(b) shows a 
weighted directed graph. The cost of the path passing through vertices a ,  b, and c is 13. 
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Figure 19.1 : Graph examples. (a) A simple graph. (b) A weighted directed graph. 

Representations of graphs in software take a variety of forms; we mention just a few 
In these representations, it is most convenient to label the nodes numerically, rather than 
alphabetically as in the previous examples. 

Adjacency matrix. If G = ( V ,  E) has m vertlcec labeled 1, 2, , nz, then the adjacency 
matnx A of the graph IS the m x m matrlx In whlch the 1 ,  j th element 1s the number of 
edges jolnlng vertex I to vertex J If the graph 1s undirected, then the adjacency matnx 15 

cymmetnc For the graph of figure 19 1 (a), the adjacency matrlx IS 

For the directed graph of figure 19.1(b), the adjacency matrix is 

where a corresponds to i = 1. b corresponds to i = 2, and so forth. For a weighted graph, a 
cost adjacency matrix is sometimes used, in which the elements indicate the weights (using 
a weight of 00 to indicate the absence of a branch). For the graph of figure 19.1 (b), a cost 
adjacency matrix is 

Cost adjacency matrices are also sometimes used in conjunction with adjacency matrices 
to avoid the presence of x. 

Incidence matrix. If there are n labeled edgei of a graph, then the ~ncidence matrlx M 
$5  the m x n matrlx In whlch the I .  jth element 15 1 if vertex I 15 ~ncldent to edge J .  dnd (1 
otherwlre In figure 19 I (a). let the edge5 be labeled. rerpect~vely, as 

( ( a .  (1). ( 0% ( ), (li. l j ) .  ( / j .  ( 1 )  = { I ,  2,  3, 41 
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(these are labels, not branch weights). Then an incidence matrix for this graph is 

Next-node lists. In some cases, a graph is conveniently represented using next-node lists, 
with corresponding weight lists. For the graph of figure 19.l(b), the next-node lists could be 

n e x t  (1) = (2 ,4}  n e x t ( 2 )  = (3) n e x t ( 3 )  = ( }  n e x t  (4) = (21, 

where n e x t ( i )  is the list of successor nodes to node i. Corresponding to these are the 
branch weights, 

19.2 Dynamic programming 

The fundamental problem we address in this section can be stated: given a weighted, directed 
graph G with a vertex a designated as an ~nitial node, find the best path to some terminating 
vertex. In some cases, the terminating vertex is explicitly specified; in other cases, the 
terminating vertex must be among a specified set of vertices. Depending on the metric of 
the problem, the "best" path may be interpreted as either "lowest cost" or "highest return" 
path. Throughout our discussion we assume that a shortest (lowest cost) path is desired. If 
the path cost 1s to be maximized, the problem can be converted to one of minimizing the 
path cost by replacing each path cost by its negative. 

Consider the graph shown in figure 19.2. A directed graph G = ( V ,  E) of this form, 
in which the vertices can be partitioned into disjoint sets Vt , V2, . . . , Vk, such that if ( u ,  v )  
is an edge in E then u E V,  and v E V,,, , is said to be a multistage graph. The sets V,  are 
stage sets. For the discussion of dynamic programming, we restrict our attention to multi- 
stage graphs. 

One way to find the shortest path through a graph is to enumerate all possible paths. 
However, for graphs of even modest size, the number of possible paths can be too large for 
practical use. Consider the graph in figure 19.2. At the first stage, there are four choices. 
At the second stage most vertices have two choices (we will approximate the complexity 
by assuming that all vertices have the same number of edges), and each choice may be 
made independently of the first choice. At the third stage, there are (again assuming equal 

Figure 19.2: A multistage graph. 
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structure from each node) three choices, followed by a final choice at the fourth stage. The 
total number of paths is thus upper bounded by 

paths. More generally, for an m-stage multistage graph with n,  possible choices at the i t h  
stage, the number of paths grows as 

m 

r = l  

If each stage has the same number of chotces n (as is most frequently the case), then the 
number of paths grows as N = nm,  exponentially 

Whtle the total complexity grows qu~ckly, the number of paths that must actually be 
exam~ned can often be dramatically reduced by employ~ng theprznczple of optlmulrty, whlch 
1s tntroduced now by example 

In the graph of figure 19 2, we will find the shortest path by starttng at the terminating 

node 0 and work~ng toward the ~nitial node @ Let F ( i ,  J )  denote the cost to go from 
vertex number J at stage z to the terminating node At the penult~mate stage, determintng 
F ( 4 ,  J )  requires no cornputatton 

F ( 4 , 9 )  = 4 ,  

Observe that from @the shortest path can be computed as 

F ( 3 , 6 )  = mini2 + F ( 4 , 9 ) ,  3  + F ( 4 ,  10). 7  + F ( 4 ,  1 1 ) )  = 5 

where the path passing through @ is selected. Now observe that any shortest path to 0 
that passes through @ must also pass through @. If not, then a shorter path could be 

obtained by choosing a path that does go through @. Similarly, the other paths in V3 to @ 
can be obtained as 

F ( 3 . 7 )  = mini5 + F ( 4 ,  10): 2 i- F ( 4 ,  11 ) , 6  + F ( 4 ,  12) )  = 5 (through @), 
F ( 3 , 8 )  = min(3 + F ( 4 ,  1 I)} = 6 (through 0). 

Thts example demonstrates what has come to be known as Bellman's pr~nctpal of optimaltty 
1221 An optzmal sequence of declsio~zs has the property that whatever the l~zitlal state and 
inltral deczston are, the remaining decisloizs must consrzrure an optlrnal policl w ~ t h  regard 
to the state re~ultzng from thejirsr decisron As applled to this example, for any path through 
V4, the dectstons from V4 toward the final node must be optimal 

Cont~nuing to work backward, we can find the shorte4t path For vertices In V2,  we 
have 

The optrrnal path fronl 3 to 0 'r ( 1 .  4. 6. 10. 13). w~tl? a total cort of L 1 
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This process of finding the optimal path is known as forward dynamic programming: 
the decision at stage k is made in terms of the optimal decisions for stages k + 1 ,  k +2, . . . , r ,  
looking forward. Confusingly, in forward dynamic programming, the path is formed by 
working backward from the terminal vertex. 

More generally, the cost at stage i and vertex j  can be obtained as follows. Let S, denote 
the successor vertices to node j (which, for multistage graphs, will be in stage i + I) ,  and 
let c ( j ,  k )  denote the cost of the path from vertex j to vertex k .  Then, for each j  E V, ,  

F ( i ,  j )  = min(c(j, k )  + F(i + 1, k ) ]  
keS, 

An implementation of forward dynamic programming on multistage graphs is shown 
in algorithm 19.1. This function requires that the n vertices are enumerated by stages, as 
shown in figure 19.2. The parameters G and W are a list of next-state vertices and edge costs. 
For the graph of figure 19.2, these parameters are 

For example, this says that the states that are successors to @ are @, 0, @, and a, with path costs 6, 2, 3, and 4, respectively. 

Algorithm 19.1 Forward dynamic programming 
File: f ordyn . m 

19.3 The Viterbi algorithm 

It is also possible to find the shortest path through a graph using reverse dynamic program- 
ming which, perversely, starts at the initial node and works toward a terminating node. 

In figure 19.2, consider the shortest path to@, which has two paths to it from@, one 

path through @ and the other path through @. The key observation is: any optimum path 

that is an extension of a path from node @ to node @ must be an extension of the optimum 

path from @ to @. Thus only the shortest path to @ needs to be retained, which in this 

case is @-@-a. 
Let B( i ,  j) be the cost from the initial vertex @ to vertex j at stage i. For the graph 

of figure 19.2 the shortest costs are obtained as 

B ( 2 , 2 )  = 6 ,  

B ( 2 , 3 )  = 2, 

B ( 2 , 4 )  = 3 ,  

B ( 2 , 5 )  = 4,  
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B(3,6) = min{2 + B(2,2),  3 + B(2,4)} = 6 (through @), 

B(3,8) = mini4 + B(2,3),  5 + B(2,4),  2 + B(2.5)) = 6 (through @or@), 

= I 1 (through @) 
The best path can be obtained by worklng backward through the graph to obtaln (1,4.  6. 
10, 13), as before 

The Viterbi algonthm (VA) 1s a reverse dynam~c programming algorithm The graphs 
that most commonly occur In conjunction w ~ t h  appllcatlons of the VA are trellises, which 
are multistage graphs that have the same edge structure between each stage, with the poss~ble 
exception of some initla1 and term~nal stages We present examples that illustrate why the 
trellis structure is of partlcuIar Interest A trell~s 1s shown In figure 19 3 The graph I \  

dlrected wlth movement along the edges always toward the r~ght, so that arrowheads are 
not portrayed along the edges The trellis may be vtewed as proceeding from left to r~ght  in 
time, and a tlme Index k = 0, 1.  2. , 1s ~ndicated 

Figure 19.3: A trellis diagram. 

The vertlces at a given stage In a trellrs are frequently referred to as states-thir 1s 
because a trellis is often used to represent the hme behavior of a state machine For example. 
the trellis of figure 19 3 represents the set of possible sequences and outputs of the state 
machine wlth four states shown In figure 19 4 The branch welghts of the trellts correspond 
to outputs of the state machine In this context, finding the chortest path through the trellis 
corresponds to finding the best sequence of states In the state machtne In the VA in general 
~t is not known in advance which vertlces will be In the final optimum path, so the best path 
to each vertex must be computed at each time A rurvlvor pat/? ic malntalned to each vertex 
at each time The Viterbi algorithm can be sul-l~marized as followc 

1 Flnd the path metrtc for each path enrenng each vertex dt tlme k by adding the pdrh 
metric of the rurvlior path to each vertex at t~rne h - 1 to the branch metric (welghr 
for the branch fronl the certcx set at time X - 1 
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Figure 19.4: State machine corresponding to a trellis. 

2. For each path into vertices at time k, determine the path with the best metric. Call 
this path the survivor path. 

3. Store the survivor path and metric for each vertex at time k.  

4. Increment k and repeat. 

Example 19.3.1 We examme some parttcular aspects of a VA ~mplementation wtth an artificial ex- 
ample Suppose a source produces a sequence of outputs, according to the state mach~ne in figure 19 4, 
where the numbers along the branches are machine outputs, not branch wetghts The outputs of the 
source are observed after passlng through a noisy channel, as shown In figure 19 5 The problem 
1s to determ~ne ( ~ n  an optimal fash~on) the sequence of outputs (and hence the sequence of states) 
produced by the source Since the output at ttme k depends upon the state of the source at that time, 
the outputs are not independent Given a sequence of measured values r = ( ro ,  r , ,  }, the branch 
metnc (weight) along a branch at time k labeled with a value ae is obtained as w = (rk - ak)', the 
path metnc IS the sums of the squares of the distances along the path 

Figure 19.5: State-machine output observed after passing through a noisy channel. 

For many shortest-path problems on trellises, including this example, the number of branches 
may be indefinitely long. In implementing the VA, therefore, some provision must be made 
to produce outputs before the end of the observed sequence, since the observed sequence 
may continue indefinitely. A common approach is to preserve the paths in the VA over a 
finite-length window. When the length of the path has grown to the window length, the state 
with the lowest cost is selected. The path leading to this best state is searched backward, and 
the first branch in the window is produced as the output. At the next time step, the window 
"slides over" by one: the paths at the end of the window are each extended, the best path 
is selected and traversed backward, and again a single output is produced. If the window is 
sufficiently wide, this approach almost always produces the optimum path. However, since 
the optimum path is defined from the beginning to the end of the sequence, it is still poss~ble 
that windowing the VA will occasionally produce an incorrect output. 
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Example 19.3.2 The windowed VA for the state-rnach~ne example is illustrated In figure 19 6 The 
window wrdth has been selected to be seven branches i A  wldth of seven 1s actually shorter than is 
typical of most appllcat~ons, but has been chosen to make the graphical representation e a s ~ e r )  In the 
sequence of paths shown, the sequence 

is observed We deslre to determine the best estlmate of the outputs and the correspond~ng states 
The numbers shown at the nght of the paths in figure 19 6 are the path metrtcs The paths grow 

until they are the wldth of the wlndow, with no outputs produced, as shown In the first six frames At 
the seventh frame. the state with the shortest path to it 1s chosen, and that path 1s traversed back (as 
shown by the th~ck  line) to the first tlme frame in the wlndow, where the first state in the .iurvlving 
path 1s shown with a 0 The path segment which begins at the state 0 1s on the least-cost path The 

Figure 19.6: Steps in the Viterbi algorithm. 
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paths are shown after step 3 of the VA outl~ned prev~ously, in wh~ch  the survivor paths to each node 
have already been selected. C1 

It may be observed that as the algorithm progresses, the survivor paths usually have the 
first few branches in common. For example, for the paths shown in frame 6 in figure 19.6, the 
first four branches of all paths are common. This could be used to provide an alternate way 
of producing output: any branches common to all survivor paths can be output. However, 
determining this condition is usually more difficult than searching backward from the state 
with lowest path cost and, provided that the survivor paths do in fact merge within the 
window width, provides the same output. 

It may also be observed that there may be tie conditions, both in selecting the best path 
to a state and in selecting the state with lowest cost. The tle may be handled by selecting 
one of the tied values arbitrmly. 

If the input sequence is of finite length, at the end of the input sequence the branches 
on the best path can be "flushed out of the window to get the rest of the data by simply 
finding the best path and working backwards, without processing any more inputs. 

19.4 Code for the Viterbi algorithm 

Code implementing the VA is shown in algorithm 19.2. Before calling this code, the data 
structures must be set up by calling lnltvitl, which is shown in algorithm 19.3. The 
description of the trellis is provided by the variables trellis and branchweight. The 
t re1 1 is variable indicates the successor states. For example, writing in MATLAB notation, 

indicates that the successor states to state 1 are 1 and 3; the successor states to state 2 
are 3 and 4; and so forth. This therefore describes the trellis shown in figure 19.3. The 
branchweight variable describes the state-machine outputs on each branch. Provision 
is made for vector-valued outputs by the use of MATLAB cells. The branchweight for 
the trellis of this example is 

tbranchwelghtl1,l) = 0; % node 1, 
tbranchwelght{1,2) = 6; % node 1, 
tbranchwelghti2,i) = 3; % node 2, 
tbranchweight{2,2) = 3; % node 2, 
tbranchwelght(3,l) = 6; % node 3, 
tbranchwelghtI3,2) = O ;  % node3, 
tbranchwerghtl4,l) = 3; % node 4, 
tbranchwe~ght{4,2) = 3; % node 4, 

branch 1 
branch 2 
branch 1 
branch 2 
branch 1 
branch 2 
branch 1 
branch 2 

The third argument to ini tvi t 1 is the length of the window, and the fourth is the norm 
function used. This can be a simple function, such as: 

functlon d = vltsqnorm(branch,lnput,state,nextstate) 
% functlon d = vitsqnormfbranch,lnput,state,nextstate) 
% 
% Compute the square norm of the difference between lnputs 
% Thls function may be feval'ed for use wlth the Vlterbl algorithm 
% (state and nextstate are not used here) 
d = norm(branch-lnput)^2; 
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A routine to flush the w~ndow 1s vl t f lush, shown In algorithm 19.4, which takes as 
an argument the desired target state (or states), or a 0 to indicate that the state with lowest 
path cost should be selected. 

In this implementation, the survivor path list is maintained in the array savepath. 
which indicates the previous state. Time indexing into savepath is done modulo the path 
length (a circular buffer), to produce a shifting window with no need to physically shlft 
the data. The initialization function takes the trellis and weight description and a strrng 
representing the norm function, and sets up the appropriate data structures. The most Im- 
portant computation is to determine the data in priorstate. This is used to set up the 
savepath data by recording the predecessor of every state. 

Algorithm 19.2 The Viterbi algonthm 
File: viterbil .m 

Algorithm 19.3 Initializing the Viterbi algorithm 
File: initvitl .m 

Algorithm 19.4 Flushing the shortest path in the VA 
File: vit f l u s h .  m 

Example 19.4.1 The following code produces the paths shown in figure 19.6. 

% demonstrate the VA 

rlist= [ 6 ,  3, 6, 6, 3 ,  3 ,  0, 5, 1, 31; 
plist = [I; 
% Go through t h e  inputs one at a time 
for r = rlist 
p = vlterbll (r) ; 
if ip) 

plist = [piist pj; 
end 

end. 
% NOW flush the resc out 
plist = [plist vitfiush(Gi 1 ; 
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The List of states produced by this example code (the shortest path sequence) is 

plist = [I 2  3 1 2  4 3 2 3 2 31 CI 

The function v i  t erbi  1 has provisions for more than regular trellises with scalar- 
valued branches. 

Example 19.4.2 The trregular trell~s shown in figure 19 7, w~th different numbers of branches emerg- 
tng from each state, can be represented by the foilowlng 

Figure 19.7: A trellis with irregular branches. 

Example 19.4.3 A trellis with vector outputs, such as might be used for a convoiutional code, can 
be set using a vector branchweight such as: 

The trellis represented by this assignment is shown in figure 19.8. For a multioutput trellis such 
as this, a norm function such as the following can be used. 

functlon d = convnorm(branch,lnput,state,nextstate) 
% 
% Compute the Hamming dlstance between the branchwelghts and 
% the lnput 
% Thls functlon may be feval'ed for use wlth the Vlterbl algorithm 
% (state and nextstate are not used here) 
d = sum(r "= branch) 
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Figure 19.8: A trellis with multiple outputs. 

19.4.1 Related algorithms: Dijkstra's and Warshall's 

The VA as just described provided the shortest path through a multistage graph. A minor 
modification of this, known as Dijkstra's algorithm, IS a shortest-path algor~thm that works 
for a general weighted directed graph. Gwen a starting node, the algorithm finds the shortest 
path to every vertex that can be reached from the starting node. The key idea is as in the VA: 
if multiple paths from the startlng vertex converge at a given node, then only the shortest 
path to that vertex is retained as the surviving path. The outline of the algorithm is as follows. 

1 Init~alizat~on Denote the ~ n i t ~ a l  node as a  Let S ~ndlcate the set of vertlces to wh~ch 
the shortest paths have been found For a vertex u), let d ( w )  be the length of the 
shortest path starting at a and ending at vertex w  The in~tlal value of d ( w )  1s set to 
c(a,  w ) ,  where c(a. w )  Ir the branch cost (c(a.  w )  may be set to oo ~f there 1s no edge 
between a and w )  

2 New vertex Choose the vertex u  that has minimum d~stance d ( u )  among all those 
vertlces not in S, u now becomes a vertex In S 

3 Distance update Update the shortest path to all vertlces w  not In S If the dlstance 
does change, 11 is because there must be a shorter path starting at a passlng through 
u  and going to uj 

4 Repeat from step 2 until all vertlces have been examined 

Algorithm 19.5 illustrates an implementation. 

Algorithm 19.5 Dijkstra's shortest-path algonthm 
File: dijkstra.m 

Example 19.4.4 Constder the accompanytng graph and ~ t s  a\soclated cost adjacency rnatnx (not 
shown in the graph for d r a ~ ~ n g  convenience is the fact that the weight of the path from any node to 
itself 1s 0) 
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The results of calling d i  j ks tra with this cost adjacency matrix and a = 5 are the set of shortest 
distances 

and the set of previous nodes 
p = [ 8  3 4 6 5 5 5 61 

As an example, the shortest path to@ is shown with a bold line. 

Definition 19.2 The transitive closure of a graph G is the directed graph G, that contains 
an edge (a, b) if there is a way to get from a to b in the graph G in one or more branches. 

D 

In other words, the transitive closure indicates which vertices are reachable from which 
other vertices, perhaps by traversing multiple branches. One way to determine the transitive 
closure would be to run d i  j ks tra starting from each node, and determine those nodes 
to which there is a finite-cost path. Another way is using Warshall's algorithm, which is 
based on the observation that if there is a way to get from u to b, and a way to get from b to 
c, then there must be a way to get from a to c. This concept is embodied in the following 
algorithm. 

Algorithm 19.6 Warshall's transitive closure algorithm 
File: warshal1.m 

Example 19.4.5 Calling warshall with the adjacency matrix for the graph of example 19.4.4. 

as the adjacency matrix for the graph of the transitive closure. 

19.4.2 Complexity comparisons of Viterbi and Dijkstra 

Let us consider the complexity of the Dijkstra and Viterbi algorithms using the 0 notation 
introduced in section A.4. Starting with the Dijkstra algorithm, we see that the line for 
nn=2 : n must run n  - 1 times, where n is the number of vertices, and that finding the 
minimum distance to all paths not in S requires O(n)  operations. Updating S then requires 
0 ( n )  operations, so the overall complexity is 0 (n2) .  

If Dijkstra's algorithm were used to find the minimal spanning tree, then the complexity 
would be multiplied by the number of vertices, resulting in 0 ( n 3 )  complexity. By contrast, 
Warshall's algorithm requires 0 (n )  iterations through the outer loop for b= 1 : n and 
O(n)  iterations through the inner loop for a=l : n, resulting in an overall complexity of 
0 ( n 2 ) .  

The Viterbi algorithm cost per iteration is computed as follows. Each state must be 
examined in the loop for state=l : numstate. Then each succeeding state must 
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beexamineineachstateintheloop f o r  n e x t s t a t e = t r e l l l s  { s t a t e j . I f w e l e t n  
denote the number of states, and m denote the number of connections to next states, then 
the complexity per trellis stage is O(miz). 

Applications of path search algorithms 

We now illustrate a variety of applications in which shortest-path problems arise. 

19.5 Maximum-li keli hood sequence estimation 

We have already met the problem of maximum-likelihood sequence estimation In the intro- 
duction to the VA associated with figure 19.3; More formally, we have the following: A state 
machine produces a sequence of outputs x  = { x l ,  x*, . . .) as a function of the sequence of 
states in the state machine s = {sl , s2, . . .). The outputs are observed after passlng through 
a noisy channel. to obtain 

for some function f .  In the case of an additive noise channel, for example, 

The MLSE problem 1s to determine the most ltkely sequence of symbols x, given the 
observations r The Vtterbi algonthm provldes a computational approach to solving the 
sequence-estlmatton problem In thls case, the branch we~ghts are distances (uslng an ap- 
propnate metric) between the observed values rk and the state machine output xk The 
vertlces In the graph underlying the problem are assoc~ated with the states of the state ma- 
c h ~ n e  Appl~cat~on of the VA in practlce depends on being able to identtfy that there is an 
underlying state "machine" In the process 

If the notse is zero-mean AWGN wtth nolse Independent from sample to sample and 
variance a*, then the hkelihood functton for the sequence (assum~ng, for convenlence, that 
the samples are scalar valued) can be wrltten as 

The distance function is then the log-likelihood function (throwing away terms that are 
independent of the r , ) ,  

We now illustrate several circumstances in which MLSE problems arise. 

19.5.1 The intersymbol interference (ISI) channel 

A linearly-modulated signal may be represented as 

I7 

where I, (posilbly complex) represents the \~gnal amplttude that dependi upon the b1t4 tc' 

be trani~n~tted,  and T 15 the \ymbol tlme An example wavefo~m 1s ihown In figure 19 9(&1i 
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(a) Transmitted waveforms 

Transmitted 

signal 

(b) Channel with noise 

( c )  Channel response h( r )  

Figure 19.9: MLSE detection in ISI. 

where g ( t )  is a simple flat-topped pulse and the amplitudes are binary, I ,  E (+.I). If 
this signal is transmitted through a channel with impulse response c(t) ,  then corrupted 
with additive Gaussian noise, as shown in figure 19.9(b), then the received signal can be 
expressed as 

where 

and z ( t )  is the noise. 

Example 19.5.1 As an example, suppose that c ( t )  has the simple impulse response 

Then, still using the flat-topped pulse for g ( t ) ,  the signal h ( t )  is as shown in figure I9.9(c). 0 
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The filter action of the channel causes the output symbols to overlap in time. Intuitively, 
if the amplitudes of the signals overlapping the kth symbol could be determined and canceled 
out, then the kth symbol could be reliably determined. Of course, in order to determine 
reliably the symbols overlapping the kth symbol, we must first determine the symbols 
overlapping the k - 1st symbol, and so forth. Thus the optimal detector must detect the 
entire sequence, which requires the use of the Viterbi algorithm. 

Using the techniques of section 1 1.9, the likelihood function for the received signal, 
conditioned upon the sequence I  = {. . . , I-, , l o ,  I , ,  . . .), can be written as 

[ ( I ,  r ( t ) )  = f ( r ( t )  / I )  = Cexp [ -- 1 - F lnh( t  - nTl  

Expanding the logarithm of the likelihood function and eliminating those terms that do not 
depend upon the Ik ,  we have 

A ( I r ( t ) )  = r ( t ) % ( t - n ~ ) d t - z x f . , ~ ~  
n m 

(1 9.1) 
Let 

this is just the output of a filter matched to the signal h ( t ) .  Also let 

xk = x ( k T )  = h( t )h ( t  + k T )  d t ;  L- 
this is the autocorrelation function of h ( t ) ,  and provides a measure of the channel dispersion. 
In a transmission system, the IS1 will affect only a finite number of symbols, so that xk = 0 
for Ikl > M for some M .  

Example 19.5.2 For the signal I z ( t )  shown in figure 19.9(c), we have (with T = 1 )  

In this case M = 2. 0 

Using (19.2) and (19.3), we can write the log-likelihood function (19.1) as 

The log-hkellhood funct~on (19 4) forms the path metr~c-the total cost of detecting the 
sequence { y n )  In order to form a branch metnc for the kth branch, we determine thoce 
terms of the log-ltkel~hood that depend upon f a  and the M pre~wus  values-thls makes 
computation of the branch metnc causal Letting b o b ,  Ik / uk )  denote the branch metric 
corresponding to the matched filter output jn and the symbol Ik at the state u k ,  we see that 
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In order to compute this, we must know ( I k .  I k .  I ,  . . . . Ik - . ,MI .  The previous inputs form the 
state: 

f l k  = I k - 2  , . . . ,  1 k - M ) .  

As various branches are taken depending on the value of I k  used, the state changes accord- 
ingly. 

Example 19.5.3 A trellis d~agrarn  correi;pondtng to the case when M = 2 t i  shown In figure 19 10(a) 
C 

(a) One stage of the trellis d~agram 

(b) IS1 detector 

Figure 19.10: Trellis diagram and detector structure for IS1 detection 

The detector consists of a matched filter followed by a Viterbi algorithm. The overall MLSE 
detector is shown in figure 19.10(b). 

While the MLSE just described provides an optimal (in an ML sense) detector, it can 
be very computationally complex. If there are S symbols in the alphabet ( S  = 2 for binary 
transmission), and the channel impulse response lasts for M f 1 symbol times, then there 
are SM states necessary in the trellis. In many practical channels, the impulse response can 
last for more than ten symbol times. Even for simple binary transmission, this corresponds 
to more than 1000 states. For this many states, real-time detection is difficult to achieve. 
What is commonly employed in these circumstances is a suboptimal detector of some sort, 
such as those described briefly in section 19.7. 
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19.5.2 Code-division multiple access 

Closely related to the IS1 channel (at least In terms of detection algonthms) is code-division 
multiple access In CDMA. K users transmlt simultaneously The signal sequence of the 
kth user v x ( t )  is multiplied by a spreading sequence ck(t) ,  which is chosen to reduce the 
correlation between the users In traveling from the transmitter to the recelver, the kth user'\ 
signal 1s delayed by rk The received signal is 

where z ( t )  is noise and where 

is the kth users signal A system model is shown in figure 19 I 1 (a) 
Ideally, the correlation between spreading sequences of different users would be zero, 

so that a receiver can detect the slgnal from any user w~thout any interference from any 
of the other users However, in practice there is correlation between users that depends 
on the relative delay of the signals The optlmum recelver takes into account the cor- 
relation between all of the recelved slgnals, just as for the IS1 channel Intuitively, ~f 
the sequence of transmitted symbols for all users that interfere with the mth symbol of 
user k were known, then this interference could be subtracted and the symbol could be 
reliably detected Of course, determining the interfenng symbols agaln requires know- 
Ing the symbols from all the other users, and so the entire sequence must be detected 
Writing down the likel~hood function leads, after some stra~ghtfonvard analysis, to a 
Vlterbi-type sequence estimation problem, where the path cost is slmllar to that for the 
IS1 problem in (19 4), and where the state conslsts of the symbols of the previous K - 1 
users. 

To be more specific, consider the case with K  = 3 users Assume that the users are 
transmltttng nonsynchronously, so that each user has a delay between transmission and 
reception Denote the delay for the kth user as rk, and assume that the users are or- 
dered so that rl ( r2 5 tl The received signal is the sum of the overlapp~ng signals 
shown in figure 19 I I(b) Let the symbols be indexed sequent~ally as v = 0. 1 ,  2, . 
where 

v = K n  +((k  - I )  mod K). 

As an example, consider decoding the symbol ~ndexed by v = 4, shown shaded In fig- 
ure 19 I l(b) Optimal decoding of this would require decoding the overlapping symbols. 
those with indices v = 3 and v = 2 (the K - 1 previous symbols) and w ~ t h  indices v = 5 
and v = 6 (the K - 1 following symbols), each of which In turn is optimally decoded by 
knowlng what symbols overlap with them This is an ideal case for the Viterbl algorithm 
The state of the V~terbi algorithm IS glven by the K - 1 prtor symbols, and the branch 
metric is that port~on of the log-likelihood function that can be causally computed given the 
state, much as was done for the IS1 case The branch metric require? knowledge of the 
cross-correlat~ons dmong the users, 
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delay r~ uKK 
(a) CDMA s ~ g ~ r a l  model 

(b) Overlapping CDMA signals 

Figure 19.1 1 : CDMA signal model. 

just as IS1 decoding requires knowing the correlation of the channel output signal x,. A trellis 
diagram for this three-user system, where each user employs binary signaling, is shown in 
figure 19.12(a), where I, indicates the symbol Ik,n for the value of k, n corresponding to v .  
The branch metric is a function of the correlation between the overlapping signals, which 
in turn depends upon the relative delays between signals and the spreading codes selected 
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(a) One stage of the trellis for CDMA decod~ng 

(b) Detector structure 

Figure 19.12: CDMA detection. 

for each user, and the outputs of filters matched to each of the user's signals, 

The general receiver structure is illustrated in figure 19.12(b). 
The number of states in the trellis is 2 K - q o r  binary transmission. Since the decoding 

complexity is proportional to the number of states, computational issues impose limitations 
on the number of users when optimal decoding is employed. For this reason, a variety of 
suboptimal decoding strategies that have been developed are discussed in the following 
sections. 

19.5.3 Convolutional decoding 

Error-correction cod~ng is commonly employed in the transmission of digital data to de- 
creace the probability of error for a given signal transmissson energy. Error-correct~on codes 
operate by adding redundancy to a signal in cuch a way that some errors that occur on the 
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(a) Convolutional encoder 

(b) State machine for convolutional encoder (c) One stage of trellis for 
convolut~onal encoder 

Figure 19.13: Convolutional coding. 

signal can be eliminated at the decoder. One major family of error-correction codes is the 
convolutional codes. A convolutional encoder is (in general) a multi-input, multioutput, 
linear time-invariant filter. The number of inputs IS denoted by k ;  the number of outputs is 
denoted by n ,  and in order to obtain the necessary redundancy, it is always the case that n > k. 

An example of a convolutional encoder is shown in figure 19.13(a), with k = 1 and 
n = 2. A single input bit xk is presented at the input, and a pair of bits is obtained from each 
of the outputs in succession, the output y k .  The finite memory in the encoder gives rise to a 
finite-state machine, as shown in figure 19.13(b), and a trellis that describes the sequence. 
One stage of the trellis associated with the convolutional encoder of figure 19.13(a) is shown 
in figure 19.13(c). 

What allows the convolutional encoder to correct errors is that only certain paths through 
the trellis are permitted. If a sufficiently small number of errors occur, then the shortest path 
through the trellis corresponds to the original path through the trellis. This is illustrated in 
the following example. 

Example 19.5.4 The sequence of bits ( 1 ,  1 ,  0,0, 1, 0, 1.0) is passed through the convolutional en- 
coder of figure 19.13. The following table shows the results of the coding operation, assuming that 
the encoder starts in state 00. 
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, time input state output 

k X k  X I - I ,  Xi-2 Yk 

The output sequence is 

Now suppose that thts sequence passes through a btnary Fymmetrlc channel that introduces two errors, 
so that the received sequence 1s 

The rece~ved btts In error are underlined, although the receiver does not know thts yet 
The rece~ved sequence IS passed through a Vlterbt algonthm that uses as the branch metnc 

the Hamming dlstance (number of blts dtfferent) between the recelved blts for that branch and the 
trellis btts for that branch The result is that the best path through the t r e l l ~  corresponds to the b ~ t  
sequence 

the orlgtnal sequence' Two errors have been corrected From thls sequence, knowtng the structure of 
the state machlne, the onginal Input sequence xk can be reconstructed El 

The branch metric employed in decoding the signal depends upon the assumed channel 
model. For the binary symmetric channel model of the previous example, the appropriate 
metric is the Hamming distance, which counts the number of differing bits between the 
received sequence and a path through the trellis. If the channel is assumed to be AWGN, a 
Euclidean distance metric is employed. 

19.6 HMM likelihood analysis and HMM training 

The hidden Markov model is descr~bed in sectlon 1.7, wlth add~tional tnformation and 
a maximum likelihood training procedure presented In section 17 7 In this section, we 
present a Viterbi algonthm for determining the most likely sequence of states that an HMM 
traverses, based on an observed output from the HMM. This sequence of states can be used 
to compute the l~kelthood of the sequence, given the HMM model, in what I S  known as the 
"best path" approach Us~ng  this technique, the state corresponding to a given output can 
be est~mated-the states are no longer "hidden." On the barn of knowlng which outputs 
correspond to which states. a mod~fied training algonthm Ir proposed 

Let M = ( A ,  n, fisi) be a given HMM, and let y = {yj ,  y2, . y T ]  be a sequence of 
observations generated by the HMM Let S [ t ]  denote the state (random variable) at time t  

and let S = ( r [ l ] ,  $121. . s [ T ] ]  denote a cequence of \tate outcome5 Slnce the output\ 
of the HMM are conditionally tndependent. g~ven the states, the probab~lity of ob\er\ing 
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the cequence of outputs 1s 

P (Y Is ,  ~ q )  = f (yll1lslll)f (y[21l~[21) f (ylT1I~lTl) 

= f r [ ~ l ( ~ [ l l )  fr[2j(yl21) ~T[TJ(YCTI) (19 8) 

Given the Markov structure, the probabil~ty of the state sequence s 15 

P(s / M )  = P(S[ l ]  = s[I])P(S[2] = s[2]/S[1] = s[l])  

P(S[T] = c[T]jS[T - 11 = s[T - I]) 

= n(sLII)a(~[21, a(slT1, s[7 - 11) (19 9) 

Mult~plying (19 8) and (19 9), we obtain 

P (y, s l M )  

= frri~(~[1I)f,[,~(y[21) f,jli(yCTl)n(slll)~(s121, sill) 4y[T17 s[T - 11) 

(19 10) 

The maximum-likelihood state sequence is that sequence of states that maximizes (19.10): 

s* = arg max P(y,  s / M ) .  
S 

It will be convenient to deal with the negative log-likelihood function instead of the like- 
lihood function. One reason is that the products in (19.10) tend to become very small; 
another reason is that it converts the multiplicative cost into an additive cost. We will want 
to minimize the negative log-likelihood function 

I 

L(s) = -log P (y, SIJW = - logn(sll1) - logais[tl, s[ t  - 11) - log frcti(y[tl). 
t = I  

(19.1 1) 
The log-likelihood function of (19.1 1) can be used as the path metric in a maximum- 
likelihood sequence estimation problem, where the ML sequence corresponds to the shortest 
path through the trellis derived from the state diagram underlying the HMM, where the path 
weight is 

and where the state in this case is 

The initial path cost is set according to - logjr(s[k]). 
Using the VA code of section 19.4 requires computation of an appropriate branch 

metric, as well as setting up the trellis parameters based on the parameters of the HMM. 
Code to accomplish these is shown in algorithm 19.7, which has the functions hrnrnnorm 
to compute the norm, and hmminitvit to initialize the trellis information. 

Algorithm 19.7 Norm and ln~t~al~zat lon for V~terbl HMM computatlons 
Flle: hmmnorm . m 

hmmlnltv1t.m 

Using the VA, the best-path cost is the maximum negative log-likelihood 
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which can be used to measure how closely the sequence y "fits" the HMM. In sectlon 1.7, 
an algorithm was provided for computing log P ( y  1 M ) .  This is referred to as the "any 
path" likelihood, since any (and every possible) path that contributes to the likel~hood 1s 
considered. Using the VA, only the best (in the ML sense) path is used to compute the 
I~kelihood. This is referred to as the "best path" likelihood. Code that computes the best- 
path l~kelihood, by finding the shortest path through the trellis associated with the HMM, 
is given In algorithm 19.8. 

Algorithm 19.8 Best-path likelihood for the HMM 
File: hlpyseqv. m 

vitbestcost.m 

Once a state sequence {s[I], s[2] ,  . . . . s [ T ] )  is available. an update of the transition 
probabilities and the output density parameters is possible conditioned upon this sequence. 
The transition probabilities can be estimated as 

number of times the transition from i to j occurs 
a( i .  j )  = 

number of times transition from i occurs 

Note that if several observation sequences are available, they can be pooled together to 
estimate these transition numbers. 

The output density parameters associated with each state can also be updated if the state 
sequence is known. Let y, be the set of output data associated with state s, s = I ,  2,  . . . , S. 
The density parameters can be updated as follows. 

Discrete outputs. The probability b,,, = P ( Y [ t ]  = i l S [ t ]  = s) can be estimated from 

number of times output i occurs in y, 
b1,s = 

number of outputs from state j 
. 

Gaussian distributions. The mean and covariance of the Gaussian distribution associated 
with state s is simply the sample mean and sample covariance of the data y, .  
MATLAB code that provides an update of the HMM parameters is shown in algorithm 19.9. 

Algorithm 19.9 HMM tralntng using V~terbl methods 
File: 'iunmupdatev . m 

hmmupfv.rn 

W ~ t h  these methods, there 1s some flexlb~lity in tralnlng and evaluation We now have 
two tralnlng methods-based on the EM algor~thm and the Vlterbi algorithm-as well as 
two methods of computing the Ilkellhood-the any-path method and the best-path method 
The following example illustrates the use of the Viterbl methods associated with the HMM. 
as well as prov~ding a comparison among the four possible cholces of tralnlng crossed with 
eval uat~on 

Example 19.6.1 The code shown in algorlthrn 19 10 perform the follow~ng. 

1 Data for a tejt H M M  are e\tdbl~\hed. and a \equence of eight data jample\ y- 1 5  generated 
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5 .  
- EM trained, any path 

10 - 
EM trained, best path 
VA trained, any path 

- - VA trained, best path 

- - - - - - - - - -  - - - - - - - - - - - -  

40 I 

0 1 2 3 4 
iteration number 

Figure 19.14: Comparing HMM training algorithms. 

2 The results of updating the HMM based on t h ~ s  observation sequence are presented for both 
methods of traimng, and both methods of computing likelihood Tralning continues for four 
~terations 

Figure 19 14 illustrates the rewlts of the four poss~ble outcomes The following observations may be 
drawn for this particular example with a small amount of test data 

1 The V~terbt methods converge after only one iteration 

2 The any-path likelihood is larger than the best-path Iikel~hood, since the any-path l~keiihood 
includes the best path, as well as others However, they tend to follow each other closely 

Algorithm 19.10 Use of the Viterbi methods with HMMs 
File: hmtes t2vb  .m 

19.6.1 Dynamic warping 

Let A represent a sequence of feature vectors, 

This sequence of vectors is to be compared with another sequence of vectors 

Ideally, we could make a comparison vector by vector, and add up the distortion, as in 
M 

d ( A .  B )  = C Ila. - bl I l .  
, = I  

However, if vector a, does not "line up" with b,, then this simple cumulative distance may 
not work. In particular, the sequence A and the sequence B might not even be of the same 
length, so that N # M. In this case, it may be necessary to introduce an association function 
between the vectors in A and the vectors in B.  This is illustrated in figure 19.15, in which the 
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Figure 19.15: Illustration of the warping alignment process. 

horizontal axis represents vectors in A indexed by i and the vertical axis represents vectors 
in B  indexed by j .  (The vectors are drawn as scalar quantities for the sake of representation.) 
The correspondence between the data is given by C, where 

with 

With each correspondence there is a discrepancy (distance) between the associated points 
in A and B ,  which is 

The correspondence C determines an overall distance between A and B as 

The goal in dynamic warping is to determine the best correspondence G, so that the distance 
V ( C ;  A ,  B )  is minimized. This is a "warping" of A onto B  so that they are as similar as 
possible. Some reasonable constraints imposed on C are the following: 

1. The function must be monotonic (proceed from right to left and from bottom to top): 

ikLik-l  jk2jk-1. 

2. The function must match the endpoints of A and A: 

3. The function must not skip any points: 
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4. A global limlt on the maximum amount of warping mu\t also be imposed: 

The computat~onal tack of finding the be\t correcpond~ng path 1s reduced by the prlnclple of 
optimality the best path from the ctarting pan t  ( I ,  1 ) to any other po~nt  ( 1 .  J )  1s independent 
of what happens beyond that potnt Hence, the total cost to the point ( i k ,  j k )  1s determined 
by the covt of the best path to a predeces\or to that point, plus the c a t  of that point If Ck 
denotec the sequence of correipondence\ Ck = {c  i ,  c2, , c k } ,  then 

where "legal ck-," denotes all allowable predecessors of the point ck, which are ( i ,  j - I), 
(i - 1, j - l ) , a n d ( i  - 1, j ) .  

A common application of this warping algorithm is in speech recognition, where the 
vectors in A and B are feature vectors, and it is desired to match an observed word to a 
sequence of stored templates for purposes of recognition. Due to the temporal variation in 
speech, the alignment of the speech vectors may vary. In such an application, the shortest- 
path algorithm is referred to as dynamic time warping. 

Another application is for spectral matching. Given a measured spectrum (computed, 
for example, using FFT-based techniques), it is desired to determine which other measured 
spectrum best matches. If there are shifts in the some of the frequency peaks, then simply 
computing the difference spectrum may be inappropriate. In this case, it may be more 
appropriate to first align the peaks using this warping technique, then use the distance 
between the aligned peaks as the degree of spectral match. For this kind of matching, we 
coin the term dynamic frequency warping. 

MATLAB code that performs dynamic warping is shown in algorithm 19.11 (following 
125 11). 

Algorithm 19.11 Warping code 
File: warp .m 

19.7 Alternatives to shortest-path algorithms 

Despite the fact that optimal solutions to a variety of sequential problems can be theoretically 
computed, the algorithms are not always employed because of the computational complexity 
involved in computing the true optimum. We discuss briefly some alternatives to the path- 
search algorithms thus far described. 

Reduced-width search. Instead of maintaining and propagating a path to each state, only 
the best m paths are propagated at each time. Provided that m is sufficiently large, then with 
high probability the correct path will be propagated. An examination of this and related 
algorithms can be found in [229]. 

State reduction. In some instances the number of states, hence the computational com- 
plexity of the VA, can be reduced by dividing the set of states into subsets of states that are 
used in the VA search. An exploration of this concept is provided in [8 1, 821. 
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Linear and adaptive equalization. This alternative is very common for IS1 communica- 
tion and CDMA detection. Instead of an attempt to perform optimal detection, the received 
signal is passed through a channel that models (in some sense) the inverse of the chan- 
nel that gives rise to the interference. At the output of this channel, the signal is passed 
through a detector. In some applications, the filter is determined adaptively. The minimum 
mean-squared error and least-squares error filter designs discussed in chapter 3 are of- 
ten employed. A thorough discussion of these techniques is provided in [261, chapters 10 
and 111. 

Deciswn feedback equalizaCion (DFE). This method is also appropriate as a subop- 
timal approach to detection in IS1 or CDMA channels. In DEE, decisions made at the 
output of the detector are fed back and subtracted from the incoming signals. While 
there is always the probability that an incorrect decision will be subtracted (leading to 
potentially worse performance), DFE tends to work fairly well in practice, in the pres- 
ence of modest noise and interference. For IS1 channels. this is discussed in [261, 
chapter 1 I]. 

Sequential algorithms. Sequential algorithms are search algorithms related to the VA. 
However, unlike the VA, they do not rely on a trellis structure-they are applicable for 
searching trees-and may not find the true optimum solution. Also, because there is some 
forward and backward searching on the tree, the number of computations made as the com- 
putation proceeds through the tree is a random variable. This means that buffers employed 
in the implementation of the algorithm must be large, so that they do not overfill (or only 
do so with very low probability). 

The basic concept of sequential algorithms is to trace a path through the tree, observing 
how the path metric grows. If the path metric starts to grow too quickly, the algorithm will 
back up through the last few frames of data and explore alternate paths. The particular rules 
for computing the path metric appropriate for the search and for backing up are determined 
by the specific type of sequential algorithm. A window of some width b is maintained, and 
as the path exceeds b branches in the window. the oldest branch is output, and the windou 
is shifted, much as for the VA. 

An example of a sequent~al algorithm is the stack algorithm. The stack algonthm 
extends a number q of paths at each frame. The stack algorithm mainta~ns three pieces of 
information on the stack for every path it is considering: the path length. the path description, 
and the path d~screpancy (path metric). Startlng from an empty path, the following steps 
are used: 

I .  Extend the path at the top of the stack (the best path on the stack) to its q successors, 
computing the metric for each new path. 

2. Sort the stack according to the new path metrics. 

3. If the top path is at the end of the tree (or window width is achieved) output a branch 
decision. 

4. Return to step 1 .  

Slnce the path metncs are for paths of different lengths, in order to make a valid comparison 
in step 2 (the sorting step), the metric must be normalized In some sense by the path length 
A thorough d~scusr~on of the stack algorithm, includ~ng an appropriate metric for binary 
requences, ir provided in [201] An alternative sequent~al algorithm that l r  slower but 
requires less memory is the Fano algorithm, also described in 12011 
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19.8 Exercises 

19.1-1 For the graph of figure 19.2, determine an adjacency matrix, a cost adjacency matrix, and an 
incidence matrix. 

19 2-2 [254] A performance measure P is to be m~nimized, where 

in which the functions f, are the piecewise linear functions shown in the following table. 

P is to be minimized with integer values of ,q, subject to the constraint 

for an integer b. 

(a) Determine the optimum solution (x,, x2, x3) and optimum cost P,,, when b = 14. 

(b) Repeat when b = 10 and b = 1. 

19.2-3 [I431 Consider a warehouse with a storage capacity of B units and an initial stock of u units. 
Each month, y, units are sold, where i = 1, 2, . . . , n.  The unit selling price is p, in month i .  
(The price may vary from month to month.) Let x, be the quantity purchased in month i ,  at 
a buying price of c,. At the end of each month, the stock on hand must be no more than B, 
so that 

The amount sold each month cannot be more than the stock at the end of the previous 
month (new stock arnves at the end of each month), so that y, 5 u + (x, - y,) for 
I = 1, 2, , n Also, x, and y, must be nonnegative integers The total profit is 

The problem is to determine x, and y, so that P, is maximized. Let f,(u,) represent the 
maximum profit that can be earned in months i + 1, i + 2. . . . , n ,  starting with u, units of 
stock at the end of month i .  Then fo(u) is the maximum value of P,. 

(a) Obtain the dynamic programming recurrence for f ,  (u,) in terms off,,! (u,) 

(b) What is f,,(u,)? 

(c) Show that f ,  (ui) = a,x, + b, u, for some constants a, and b, 

(d) Show that an optimal P, is obtained using the following strategy: (i) If p, 2 c, and 

b,,, 2 c, then y, = u, and x, = B, 

b,+[ ( c, then y, = u; and x, = 0. 
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(ti) If pi 5 c, and 

b t c 1 ? c ,  then y , = O  and x , = B - v , .  

b , , , ( p ,  then y , = v ,  and x , = O .  

p , ( b , + , ~ c ,  then y , = O  and x , = O  

(e) Assume B = 100 and v = 60 For the following pncelcost quantxties, determrne an 
optimal decision sequence 

19 3-4 In a certaln network, the probability of failure of the links between the branches 1s shown 
in figure 19 16, where each llnk falls independently of the other links D e t e m ~ n e  the most 

reliable network path between nodes) and @ 

Figure 19.16: Probability of failure of network links. 

19.5-5 In the IS1 problem, show that the matched filter output yk of (19.2) can be wntten as 

YL = i n x i - n  + vk. 
n 

where vk is a noise sequence. Determlne the statistics of vi if z ( r )  is AWGN 

19 5-6 (Constrained transm~ssion) Suppose a binary transmission system 1s constrarned so that run\ 
of more than two repetitions of the same symbol are not allowed For example, the sequence 
001010 is allowed, but 000101 IS not, since there 1s a run of three zeros 

(a) Draw a state dragram that represents this conrtralned transmlscion 

(b) Draw the corresponding trellis How many states are there? 

19.5-7 (ISI) Suppose a channel has an impulse response 

(a) Determ~ne h ( t ) .  assuming that a flat pulse of duration T 1s used at the Input of the 
channel 

(h) Determlne the autocorrelatlon functlon x, 

I9 5-8 Show that (19 5)  is an appropriate branch metnc for the log-Itkelihood function shown In 
(19 4) 

19 5-9 (CDMA) For the received signal of (19 6) and \ignal-transmiss~on model of ( I  9 7) 

(a) Determine the log-likelihood functton, assumtng that the noise is AWGN w ~ t h  two-sided 
PSD N o / 2  

(b) Determlne an appropriate branch metrlc for the Viterbi decoding algortthm 

19 5- 10 Wrrte a MATLAB functton hnmupda t e y n  that accept5 nlultrplc ob5ervdtion sequencek 
( 1  , ( 2  , y(~:] and compute\ an update to an HMM wing Vrterb~ method\ thdf 
uie the ensemble of observations 
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19.9 References 

There is a tremendous literature on graph theory and algorithms on graphs for a variety of 
purposes; only the barest minimum is presented here. An excellent starting point from the 
algorithmic standpoint is [298]. An introductory text on graph theory and related combi- 
natorial topics is [372]; 1801 provides another good summary, while 11431 provides a good 
description of forward and backward dynamic programming. An excellent introduction to 
the Viterbi algorithm in association with convolutional codes, and the important idea of 
the transfer function of a graph for systems analysis, is in [90]. A recent text dedicated to 
dynamic programming, particularly as it applies to controls, is [25]. A variety of interesting 
examples can be found in [254]. 

For the applications of the Viterbi algorithm, [68, chapter 121 provides a good sum- 
mary of hidden Markov models and training using the Viterbi algorithm, as do [265, 2661. 
Maximum-likelihood sequence estimation and convolutional codes are standard topics in 
digital communications; see for example 12611 or [198]. CDMA detection using the Viterbi 
algorithm is discussed, for example, in [353,355,3 1 11. Dynamic (time) warping is discussed 
in [251]. 



Chapter 20 

Linear Programming 

20.1 Introduction to finear programming 

Linear programming (LP) is a special case of the general constrained optimization problem 
we have already seen. In this case, the function to be minimized is linear, c T x ,  where 
x  E Rn. The constraints are also linear, being of the form Ax = b or Ax < b, where 
b E W m .  Furthermore, there is an inequality constraint x  > 0. Generally A is not invertible 
(or else the problem becomes trivial). Thus we have the problem 

minimize c T x  
subject to Ax = b. 

x  > 0. 

A problem of the form (20.1 ) is said to be in standard form. A solution that satisfies all of 
the constraints is said to be a feasible solution. The value of the Iinear program is c x  when 
x  is the optimal feasible solution. 

The linear programming problem can also be expressed in terms of inequality con- 
straints in the form 

minimize c T x  
subject to Ax 5 b, (20.2) 

x , 0. 

We see in what follows that, despite the apparent difference between the form (20.1 ) with 
equality constraints and the form (20.2) with inequality constraints, the inequality con- 
straints can be expressed as equality constraints. 

Example 20.1.1 It may be easier to visual~ze the geometry of the problem wtth the constralnts 
expressed as inequallttes Cons~der the problem 

maximize x i  t x2 

subject to x i  + 2x2 5 10, 

6x1 -f- 5x2 5 45. 

x i 2 0  X 2 2 O  

The reg~on determined by the constralnts is shown In figure 20 1 Also shown IS the dtrectlon of 
maximum Increase of the objective x i  $ xl (the gradlent vector for the function) If you think of the 
gradlent pointing rn the d~rectlon of a stream of water, then a marble In the \&earn wlll roll rn the 
dtrectlon of the gradlent unt~l  tt runs Ento one of the wall5 uhlch represent the constralnts The marble 
wrll then iltde along the constramt wall unt~l  ~t can go no further in the directton of the gradlent Th15 
I \  the optimum 5olutron 
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increasing function 1 
\ ,maxtmum value 

feasible 
region 

Figure 20.1 : A linear programming problem 

From the geometry. it is clear that if one of the constraint lines lies orthogonal to the gradient 
of the objective function, there may be an infinite number of solutions: any solution along that 
constraint line is optimum. Otherwise, there will be a solution at the intersection of two or more of the 
constraints. 

From the geometry of the problem, the following cases may occur: 

1. There may be no feasible solution, that is, no solution which satisfies all of the 
constraints. This occurs if the constraints are contradictory. 

2. There may be no bounded optimum feasible solution. For example, the feasible region 
may extend infinitely in a direction of increase for the objective function. 

3. There may be one solution. 

4. There may be an infinite number of solutions 

In the general case, the feasible region will be bounded by hyperplanes. It can be shown 
that, provided that the feasible region where x satisfies the constraints 

Ax = b, 

x 2 0, 

is bounded, the feasible region is convex. 

20.2 Putting a problem into standard form 

The algorithm presented in the following for solving linear programming problems requires 
that the optimization problem be placed into standard fonn. While the standard form may 
appear to be somewhat limited in applicability, by employing a few straightforward tricks 
a variety of problems can be placed into this form. 

20.2.1 Inequality constraints and slack variables 

By the introduction of variables called slack variables and surplus variables, inequality 
constraints can be converted to equality constraints, so that the two problems are effectively 
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equivalent. For example, a constraint of the form 

with XI 1 0, xz L 0, x3 1 0, can be written as 

with the additional constraint that yl L 0. The new variable yl is known as a slack variable. 
A constraint of the form 

with xl > 0, x2 1 0. x3 L 0, can be written as 

with y2 > 0. The new variable y? is known as a surplus variable. 
A problem with inequality constraints on both sides, such as 

can be treated by adding both slack and surplus variables: 

A problem with absolute value constraints can be converted as follows: 

is, of course, equivalent to 

which leads to the two constraints 

20.2.2 Free variables 

The problem (20 1) also Imposes the constraint that x, 1 0 for I = 1.2 ,  , n A vanable 
x, that IS not so constra~ned IS called a free varzable There are two ways of treatmg free 
var~ables The first is by introducing two other vanablec that are not free, the second 1s by 
ehmlnat~ng the free variables by Gaussian eliminations 

A problem w ~ t h  a free variable x, can be put Into standard form by introducing two 
new variables u, and v, and uslng 

where u, 2 0 and v, 2 0. 
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Example 20.2.1 Place the following linear programming problem into standard form. 

maximize 3x1 - 2x2 + 4x3 

subject to 7x1 + 5xr - . ~ 3  5 9. 

2x1 + 2x2 + 3x3 = 5 ,  

5X1 + 6x2 - 8xi > 10. 

n l > O  ~ 3 ~ 0 ,  

xr free. 

By the introduction of a slack and a surplus variable, the first and last constraints become 

Now, letttng xz = uz - vz, we can write the problem as 

minimize -3x1 + 2(uz - u2)  - 4x3 

The method of dealing with free variables just described introduces two new variables into 
the problem for every free variable. If every variable is free, computation of the solution 
of the dual problem, as discussed in section 20.5, is advised. When there are a few free 
variables, another approach is advised. The variables may be eliminated-expressed in 
terms of other variables in the problem-then computed after the solution to the problem 
is known. This can be done using the row operations familiar from Gaussian elimination 
(section 5.1). 

Example 20.2.2 The problem 

minimize x, + 5X2 + 3x3 

subject to x l  + 2x2 - x3 = 3, 

2x1 + 3x2 + 2x3 = 8, 

xz L 0 x3 2 0, 

x l  free, 

is in standard form, except for the presence of the free variable x l  . This problem is in the form 

minimize cTx, 

subject to Ax = b, 

where cT = [1 5 31 and 

To elim~nate the free vanable, it is useful to represent the problem using an array of coefficient3 known 
as the tableau, which IS the rnatnx formed by 
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For this problem, the tableau is 

To elimtnate the free variable xi. we perform Gaussian elimination on the first column 

to obtain the tableau 

The last two rows of the resulting tableau correspond to an opttmtzatton problem that IS equtvalent to 
the orrglnal problem, except that the vanable xi has been eliminated 

minimize 3x2 + 4x3 - 3 

subject to -x2 + 4x3 = 2. 

Once the solut~on (x2. x3) to thls problem 1s obtaned, xl can be obtalned from the onginal first 
constraint x l  + 2x3 - x i  = 3. or 

Multiple free vanables can be eltminated using Gaussian ehmination The resulting smaller 
problem 1s solved, then the free vanables are obtained by back-substitutton from the or~glnal 
constraints 

20.2.3 Variable-bound constraints 

The constraint in the normal form 

x > d  

can be converted readily to a constraint of the form 

Y > Q  

by letting y = x - d and making the appropriate substitutions. Thus. the problem 

minimize cTx 

subject to Ax = b. 

x d, 

becomes 

minimize cry 

subject to Ay = b - Ad. 

y L. 0. 

The value of this is offset from the origlnal value by cTd. 
A constraint of the form 

r i  treated by lett~ng y = d - x, wlth the constraint that j > 0, and maLtng the approprl'ite 
subitrtutlons 
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20.2.4 Absolute value in the objective 

The objective to 

minimize lcTxl 

subject to (other constraints) 

can be treated as two cases. In the first case, solve where c T x  is positive by using c T x  as the 
objective, adding in the extra constraint that c T x  L 0. This can be done, of course, using a 
surplus variable. That is 

minimize c T x  

subject to c T x  - y = 0, 

Y L 0, 
(other constraints). 

In the second case, where c T x  is negative, we want to find a maximt~m of c T x .  We throw in 
the extra constraint. Thus we solve 

minimize - c T x T  

subject to c T x  + y = 0, 

Y L 0, 
(other constraints). 

Both subcase problems must be solved, then the problem that leads to the minimum value 
of 1 ~ ~ x 1  is used. 

20.3 Simple examples of linear programming 

We present in this section some simple (and historic) examples of linear programming to 
demonstrate how such problems may arise. Examples of more interest in signal processing 
and systems theory in general are presented in section 20.6.3. The examples are presented 
in the form most natural to the statement of the problem, not in standard form. 

Example 20.3.1 (Transportation problem) A producer produces a substance at m warehouses and 
des~res to ship from these warehouses to each of n stores At warehouse 1 there IS s, (supply) of the 
substance to be shipped, r = 1.2, , m Each store requlres m amount dl  (demand), J = 1, 2, , n ,  
of the substance to be delivered In shlpplng from warehouse r to store J ,  there 1s a unlt shlpplng 
cost c,, Let x,, denote the amount of substance sh~pped from warehouse 1 to store J We des~re to 
detennlne x,, In such a way as to mlnlmlze s h ~ p p ~ n g  cost and ach~eve the requirements of the stores, 
w~thout exceed~ng the output capab~hty of the warehouse We have the constraints 

n 

1 x,,  = st i = 1.2, . . . , m (meet supply), 
, = I  

m 

E x , , = d ,  j = l , 2  , . .  n (meetdemmd) 
t = l  

Also, since we cannot ship a negative amount, we also have x,, 2 0. The cost IS 

This is a linear programming problem in mn variables 
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Example 20.3.2 (Activity analys~s) Suppose that a manufacturer has several different manufacturing 
resources, such as raw materials, labor, and vanous pieces of equipment. Each of these resources can 
be comb~ned to produce any one of several commodltres The manufacturer knows the amounts of 
the vanous resources that are needed to produce each of the commodities, and he also knows how 
much profit he can make on each of the cornmod~ties The problem is how to apport~on each of the 
resources among the vanous commodities In order to rnaximlze profit? 

Let rn denote the number of resources and n the number of producible commodities. Let a,, be 
the number of unlts of resource I required to produce one unit of the commodity J The constraints 
on the resources are lndlcated by b, Let c, denote the profit per unit of commodity J Finally, let x, 
denote the amount of the jth commodity produced We want to 

n 

maximize c,x, 
, = I  

subject to 

and, since we cannot produce negative commodities, 

20.4 Computation of the linear programming solution 

Efficient algorithms exist for the solution of linear programming problems, the most famous 
of which is known as the simplex method. It relies upon several remarkable facts about 
linear programming problems, but ultimately proves to be essentially the same as Gaussian 
elimination on selected columns of the tableau. 

20.4.1 Basic variables 

In the set of equalities from the problem in standard form, 

Ax = b 

where A is m x n ,  we assume that there are more variables than constraints, m < n, and also 
that A is full rank. If A is not full rank the problem is said to be degenerare. Degenerate prob- 
lems arise either because the constraints are contradictory, or because there is redundancy 
in the constraints. In the first case there is no solution; in the second case the redundant 
constraints may be eliminated. We therefore assume in all cases that rank(A) = rn. 

For notational simplicity, we assume for the moment that the first m columns of A are 
linearly ~ndependent. Let us decompose A as 

A = [A A], 
where A is m x m and is nonsingular. Then (20.4) can be written as 

which has the (not necessarily unique) solution 
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A solution (not necciianly optimal) I \  obtalned by chooilng m independent columns of A,  
finding a solution ~nvolvlng thoie columns, dnd settlng the other r.1 - rn components of x to 
zero A solutlon i n  which the n - rn components of x not assoc~ated w ~ t h  A dre set to zero 
i i  called a basic solution of (20 1) The components of x disocrated with the columns of 
'ire called the basic variables. Of courie, in general, the basic vanables do not need to be 
the first rn vanables. they may be any m varlableg prov~ded that the correspond~ng columns 
of A are l~nearly Independent (or more generally, i o  that b Ile\ in the column space of there 
columns) 

Is r t  also possible that a bdsrc varlable IS zero Such a baslc variable I \  said to be 
degenerate, and the solution obtdlned IS d degenerate bas~c sol~~t lon 

Example 20.4.1 For the problern 

let us take columns 1,3, and 5 as the components in a These are l~nearly independent Then a solution 
(with the component5 of x presented in the order of the ong~na l  problem) 1s 

This is a basic solution, involving n - rn linearly independent columns of A 

If the r~ght-hand side changes to , then the solutron becomes [:'I 

which is basic. but degenerate 

The key fact that is used in linear programming is: 

/ The optimum solution of a linear programming problem is a basic feasible 
/ solution. 

More formally, we have the following result. 

Theorem 20.1 For the linear programming problem (20. I ) ,  where A is m x n of rank m, 
if there is an optimal feasible solution, then there is an optimal basic feasible solution. 

Proof The proof of theorem 20.1 will set the stage for the simplex algorithm. Suppose that 
xi, x2, . . . , X, is an optimal feasible solution. Then 

where a, is the ith column of A. Also, x, 2 0. Suppose that in the solution there are exactly p 
values of x, that are nonzero, and assume (for notational convenience) that they are indexed 
so that they are the first p components. Then 
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If p < rn and the vectors al  , a2, . . . , a, are linearly independent, then a basic solution 
can be found by finding an additional rn - p columns of A such that the resulting set of 
vectors a l ,  a*, . . . . a, is linearly independent (which can be done because A has rank m). 
Then a basic (although degenerate) solution can be found by setting p components of x as 
in (20.6), and the remaining components to zero. 

If the vectors a l ,  az, . . . , a, are not linearly independent, then (because A has rank in). 
it must be that p > rn. We must find another solution with rn nonzero components that 
has the same value. By the linear dependence of the vectors, there are values y , ,  y2, . . . , y p  
such that 

where y, is positive for some i .  Multiplying (20.7) by t and subtracting from (20.6), we 
find 

so the vector x - cy still satisfies the constraint A(x - t y )  = b. In order to satisfy the 
constraint x- cy > 0, we note that since at least one value of y, is positive, the ith component 
of x - cy will decrease as E increases. We find the value of t to the first point where a 
component becomes zero: 

xi 
t = min - 

P, >o y, 

By this means, the p components of x are reduced to (not more than) p - 1 components 
in x - t y .  This process is repeated as necessary to obtain a solution that has m nonzero 
components. 

In converting the optimal feasible solution to a basic solution, we must ensure that the 
optimality has not been compromised. The value of the solution x - t y  is 

On the basis of the optirnality of x, we conclude that 

Otherwise, for values of r sufficiently small that x - ey is still feas~ble. selection of an t 
of appropriate sign t c T y  would be positive, so that cT(x - t y )  would be smaller than crx, 
violating the optimallty. In light of (20.8), the basic solution has the same optimal value as 
the optimal feasible solution, hence the basic solution is optimal. C 

The theorem means that the solution can be found slmply by searching appropriately 
over only the basic soiutions Slnce there are n var~ables and rn unknowns. a brute-force 
solutlon would require solvlng each of ,,C, (the number of combinat~ons of n things taken 
m at a time) systems of equations Rather than using bnlte force over all possible feastble 
solutions, however, much more elegant computational algorithms exist. the moit famous of 
wh~ch 1s the simplex algortthm 

20.4.2 Pivoting 

Startlng from an initial bas~c feasible solut~on. the s~mplex algorithm works by substituting 
one basic varlable for another in such a way that c rx  decreases In the linear programming 
l~terature, the subst~tution step IS known as prvotlizg, and it is eisentially juit a C a w i ~ a n  
el~minat~on step (It should not he confused with the p~voting step performed In the Lt 
factorization ) Plvot~ng 1s u\ed to move from one basic iolution to another 
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We will introduce the concept by an example. We want to solve the following problem, 
which is already in a form such that a basic feasible solution can be readily identified. 

minimize 2x1 + 3x2 - 4x3 - 5x4 + xs - 2~~ 

X l  - 2x2 + 2x5 + 7x6 = 3, 
3x2 + x4 - x5 i. 4x6 = 5, (20.9) 

subject to 
~3 + -3x5 + 2~~ = 47 

In this form, basic variables are those that appear uniquely in their respective columns. 
From (20.9), it is clear that x l ,  x3, and x4 are basic variables, and that a basic solution is 

It is convenient to represent these equations in an array known as a tableau. The tableau 
representing the constraints for this problem is 

The columns of the tableau represent the variables x l ,  xz, . . . , x6, as indicated. 
Suppose we now want to make xs basic instead of x4 in the tableau (20.10). In the 

original tableau, the basic variable x4 has its nonzero coefficient in the second row of the 
table. We make x5 basic by performing Gaussian elimination row operations to modify 
the fifth column, so that all elements in it are zero except in the second row, in which a 1 is 
to appear (at the location of the circled element in (20.10)). The row operations are 

The result of the elimination step is the new tableau 

X I  x2 x3 x4 x5 x6 

1 4 0 2 0 1 5  13 
0 -3 0 -1 1 -4 -,I. 
0 -9 1 - 3  0 -10 -11 

The basic variables are now x i ,  x3, and x ~ ,  and the basic solution is 

Let us now denote the elements of the tableau by y,,, i = 1, 2,  . . . , m, j = 1 ,  2, . . . , 
n + 1, where m is the number of constraints and n is the number of variables. To replace the 
basic variable x, with nonzero coefficient in the kth row of the table for a nonbasic variable 
x,, we perform the following row operations: 
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20.4.3 Selecting variables on which to pivot 

Having the ability to select new basic var~ables by pivoting, the question now arises: How 
should the basic variables be selected to obtaln the des~red minimum of cTx? For the sake 
of discussion, we assume for the moment that the variables are indexed so that the baslc 
vanables are the first m variables. The tableau can be wntten as 

al  a;? . . .  a, an,+1 , . -  an b 

The elements y,,, are used to represent the elements of the tableau. The column headers 
indicate that the columns come from the A matrix. Thus a] is the first column of A ,  and 
so forth. The identity matrix in the first n1 columns indicates that the first in variables are 
basic. The solution is 

The value of the objective function is 

For the basic solution indicated in the tableau, the value is 

where cg  = [ C I ,  c2, . . . , cmlT.  For problem (20.9), the value of the basic solution shown is 

If we were to use other than a basic solution in (20.12), so that x,,+l, . . . . x, are not 
all zero. we can express the first rn variables in terms of these values as 

Now, we substitute (20.14) into (20.13). We obtaln 

where 
11 
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In (20.13, the basic variables have been eliminated. If we examine (20.15) with the intent of 
minimizing z ,  we see that we can reduce :: below its value due to the current basic solution 
z b  by increasing any of the variables xk for which (ck - wk) is negative. (Recall that we 
have the constraint that xk > 0.) Furthermore, if each ck - wk is positive, then no further 
decrease in the value is possible, and the optimum solution has been reached. Let 

These values are known as the reduced-cost coeficients. Then the value can be decreased 
by increasing any variable for which rk < 0. In practice, it is common to choose the smallest 
(most negative) rk. Let q be the index of the variable chosen, 

q = arg min rk . 

The next question is: How much can x,  be increased? It should be noted that x ,  cannot 
be changed completely arbitrarily: as x ,  is changed, the other variables also must change 
to still satisfy Ax = b. Change in x,  can only go far enough to ensure that x 2 0. Let us 
consider how the basic variable xl can change. From (20.14), 

as x,  increases, the basic variable x l  changes by - y l q x q .  If y l q  < 0, then as x,  increases 
X I  increases and the constraint on xl never becomes active. If this is true for each variable, 
then the feasible region is unbounded. 

On the other hand, if yl ,  > 0, then x l  decreases as x, increases. By the constraint, 
x,  can only increase until X I  = 0. On this basis, the largest x,  can be is y ~ , ~ + ~ / y ~ , .  Since 
similar constraints must hold for each basic variable, we must have 

Let 

yi,n+ l p = arg min - 
Yiq 

for those y, ,  that are greater than 0, and set 

Then, as xq is introduced into the problem, the variable x p  is reduced to zero. By appropriate 
row operations, the operation takes place as a pivot. This is the key step of the simplex 
algorithm. 

20.4.4 The effect of pivoting on the value of the problem 

Computationally, the effect of pivoting variables on the value of the problem can be obtained 
as follows. Note that (20.13) can be written as 

In this equation, z may be regarded as another basic variable. This variable remains basic 
through all the computations (pivoting never takes places on z). The variable z does not 
need to be explicitly added to the tableau. For the example problem (20.9), the tableau with 
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the last row added to represent (20.18) is 

Since the coefficients of the basic variables X I ,  .r2, and x j  no longer appear alone in their 
columns in this augmented tableau, the variables no longer look like basic variables. How- 
ever, standard row operations can be performed to make the elements in the last row corre- 
sponding to the basic elements be equal to zero. Before expressing this as row operations, 
however, let us examine ~ t s  effect. Subtract from each side of (20.1 8) the quantity 

Recognizing from (20.16) that for I = 1.  2, . . . , m we have c, = w,, and using the fact that 
r~ = ck - U i i .  we find that (20.18) becomes 

The coefficlents in the last row of the tableau thus become the reduced-cost coefficlents. 
and row operat~ons carr~ed out on the tableau can be applied to t h ~ s  row as to the other rows. 
as the basic variables are moved around. 

For example (20 9). the row operations are 

yielding the tableau 

The value corresponding to the current basic variables is shown i n  the lower rlght corner. 

20.4.5 Summary of the simplex algorithm 

Once the tableau is in this form. wlth the baslc variables identified and the reduced-cost 
coefficients on the last row obtained by row operatlons on cT,  the \implex algorithm operates 
by the pivoting method described previousIy Let J,, , 1 = I ,  2. . i n  + 1 .  j = 1 .  2.  
n 4- 1 represent the current value\ of the tableau. tncluding the last row 

1. If each r, 0 ,  j = 1, 2. . . . . 1.1, then the current basic solution is optimal. Stop. 

2. Otherwise, select a q such that I-, < 0. Commonly. 

y =a rg  mtn r, 
,=I 7 n 

3 If there are no I , ,  > 0 for 1 = 1 .  2, . nr ,  the problem r \  unbounded Other\lii\e, 

!'l.ili I 
17 = arg min ----- . 

1," >o ). . I< {  

4 Plvot on the pyth element, ilpddt~ng row\ 1 ,  2. . in  + I Return to \tep 1 
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At each step of the algorithm, the current value of the solution appears in the lower right 
corner. 

Example 20.4.2 We now complete the linear prograrnrnlng solutton to the problem posed In (20 9) 
The lnltial bastc solutlon is the tableau of (20 19), 

The first column on which to pivot has the negative residual underlined. The row on which to pivot 
has the pivot circled. The result of pivoting on this element is the tableau 

As all elements In the last row are nonnegative, the algonthm is complete. We identify the solution as 

The value of the solution is 

the negative of the lower right comer of the tableau. 

20.4.6 Finding the initial basic feasible solution 

We have seen that the optimal feasible solution is basic, and that pivoting can be used to 
move from one basic solution to another to decrease the objective function. There remains 
only one question: Given a general problem, how can an initial basic solution be obtained? 
For problems in which slack or surplus variables are introduced on each variable, the slack 
variables appear as basic variables. For example, the problem 

minimize 3x1 + 4x2 + 2x3 

subject to 3x1 - 2x2 > 2, 

2x1 + 4x2 - 7x3 > 1, 

Xl  1 0 X2 1 0 X3 L 0, 

can be written using slack variables as 

minimize 3x1 + 4x2 + 2x3 

subject to 3x1 - 2x2 - y, = 2, 

2x1 +4x2 -7x3 -y2 =: 1, 

X I 2 0  X21.0 X 3 1 0  Y I L O  y2>O, 
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with tableau 

The initial basic solution is apparent from the following: 

For problems without slack variables, a basic solution can be found by the introduction 
of artificial variables. The constraints 

(where the problem is scaled so that b > 0) are written using artificial variables as 

minimize Gi 
["I 

subject to Ax + y = h, 
x 2 0  y > 0 .  

The vector y  = [ v , ,  12, , \,,]T 1s the vector of drttfictal variable\ When a feastble 
solutton to the constratnts on x extsts, the mintmum value of xy=~+ IS zero Problem 
(20 20) I S  agatn a linear programming problem, and In the tabieau the y appear as bastc 
vanables Thls provides a starting point By applylng plvoting to obtatn the rnin~mum 
solutton, y becomes zero, and among the remaining variables a basic solutlon beconlei 
dpparen t 

Example 20.4.3 Ftnd a bastc feasible solut~on to the set of constratnts 

with 

We lntroduce the artrfic~al var~ables \ and v2 dnd the artifictal objecttve funct~on y ,  + y2 The initla1 
tableau w ~ t h  the artifictal variable\ 1s 

In order to arrtve at baclc variable\. we '~ppl)  row operation\ to the last row so that there arc zero5 
under the baslc ~artables,  obtainlnp the tdbieau 
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Pivoting is applied about the circled element to obtain the updated tableau 

Now pivotlng I ?  applied about the underlined element to obtaln the tableau 

The artificial variables are now not basic variables, and we identify the initial basic solution as 

Once a basic solution is obtained using artificial variables, we can use it as the initial basic 
feasible solution. By this approach, there are two phases to the solution: 

1. Phase 1: introduce artificial variables, and solve the linear programming problem 
(20.20) to find an initial basic feasible solution. 

2. Phase 11: using this initial basic feasible solution, solve the original linear program- 
ming problem. 

Example 20.4.4 We wish to minimize 

subject to the same constraints as the previous example, 

Having obtained an initial feasible basic solution from the last example, we can write an initial tableau 
for this problem as 

We now perform row operations to place zeros in the basic columns, and obtain the tableau 

No additional pivoting is necessary in this case. The solution to the linear programming problem is 
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20.4.7 MATLAB code for linear programming 

The MATLAB code for h e a r  programming shown in algonthm 20 1 accepts the matrlces 
A ,  b, and c for a problem in standard form It computes both phases of h e a r  program- 
lnlng (without checking first to see lf any vartables are already baslc) A vector indlcat~ng 
wh~ch variables are free (if any) may also be passed in If there are free vanables, they 
are ellmlnated uslng Gaussian elimination prior to obtaining the linear programmtng so- 
lution, then computed by backsubstltut~on after the linear programming problem has been 
solved The functions that perform these operations for free variables are rediicef ree 
and rest ore f ree, respectively The main linear programming function 1s s lmpl ex1 
Essentially. all this functlon does IS set up the necessary tableau, and call plvot t a~leau 

AIgorithm 20.1 The simplex algorithm for linear program~ning 
Fl le  slmplexl .m 

Algorithm 20.2 Tableau pivoting for the simplex algorithm 
File: pivottableau .m 

Algorithm 20.3 Elimlnatlon and backsubstttut~on of free variables for l~near programmtng 
F~le :  reducefree .m 

rest0refree.m 

Example 20.4.5 Solve the l~near  programmrng problem 

mlnimize 7x, + 4~~ - 2x1 + x4 + S Y ?  

subject to 31, + 2x2 - x? + x4 + x5 = 6. 

2x1 + x2 - x? + xq + 2x5 = 7 

XI  + x 2  - X i  + 2x4 4-15 = 4. 

XI 1. 0. xz 1. 0, x l  free, x4 2 0, xz > 0 

The data for MATLAB can he entered a\ 
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and the solution obtalned by 

[x ,  value]  = simplex1 [A, b, c ,  f reevar i  ; 

The solutlon obtained is 

x l = l  x 2 = 0  r 3 = - 1  x 4 = O  x 5 = 2  value=-12 0 

20.4.8 Matrix notation for the simplex algorithm 

It is convenient for some theoretical explanations to express aspects of the simplex algorithm 
using matrix notation. In this notation, we assume without loss of generality that the basic 
vectors consist of the first m columns of A. We will write 

A = [A A"] 
and partition the vectors in the problem similarly: 

where f  and S  correspond to the basic solution, and f i  and S  correspond to variables not in 
the basic solution. The linear programming problem in standard form is 

minimize S T f T  + S T %  

subject to a i r  + A"fi = b, 
2 2 0  % L O .  

The basic solution is found by setting f i  to 0 and solving 

However, other solutions can be found for arbitrary values of 3 by 
..-I - 

f  = A-lb - A AW. 

The cost function is 

T z = c  X 
= t ~ 2 - l ~  + ( 5 7  - C~i- 'A") f i  

=: eT2 + ( e T  - c T ~ - ' i i ) f i .  

Comparison of this with (20.17) shows that the reduced-cost coefficient vector is 

T r =; ET - C ~ a - l j ,  (20.21) 

The operation of the simplex algorithm is such as to make rT 2 0. 
The simplex tableau (not necessarily expressed in terns of basic vectors) is 

The result of the simplex algorithm is to write this tableau (by means of row operations) as 
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20.5 Dual problems 

Every h e a r  programming problem has an associated problem called a dual, whlch 1s related 
by hav~ng the same value and involving the same parameters By comparison with the dual. 
the original problem 1s called the prlrnul problem A linear program of the form (20 2) has 
the most symnletrlc dual 

Pr~rnal Dual 
minimize cTx maximize w T b  

subject to Ax > b subject to w T A  5 cT7  (20.23) 

x  2 0  w  2 0. 

The dual of the standard form (20.1) can be obtained by expressing the equality constraint 
Ax = b as a pair of inequality constraints. The standard form can be written as 

Prz~zal 
lnlnlmize cTx 
fub~ect to Ax 2 b ,  

-Ax 2 -b ,  

x > 0  

T h ~ s  1s of the form of the pr~mal problem tn (20 23), uslng the lnequallty coefficient matrlx 
[ -AA]  Let [ y ]  be the dual vanable Then the dual problem can be expressed as 

Dual 
inaximize u T b  - v r b  
subject to u T A  - v T A  5 c T .  

u > 0  v > 0 .  

Now let w  = u  - v Maktng the same observation that we made In ascoclatlon with (20 3), 
w  is a free varlable The llnear programming problem in standard folm and ~ t s  dual can now 
be expresed as 

Pr~mul  Dual 
mtnlrnlze cTx maxtmlze w T b  

subject to Ax = b  subject to w T ~  5 c T ,  (20 24) 

x 1 0  w free 

In general, a5 linear ~nequalit~es in a prlmal problem are converted to equal~tles, the corre- 
sponding components of w In the dual problem become free variables Conversely, if some 
of the components of x are free variables, then the corre~pondtng tnequalit~es w T A  5 cT 
in the dual become equalities One of the useful features about the dual problem in relation 
to the standard form 1s rhat the standard form requlres cat~sfaction of the constraint x  > 0. 
whereas the dual problem doe5 not A problem ~nvolving l~near ~nequalitlec. but lacking 
t h ~ c  posit~vlty conctraint. can often be rolved most eff~c~entiy in termc ot its dual A l~ttlc 
thought reveals that the dual to the dual IS again the prlmal problem 

The bastc result for duality 1s that both a problem and ~ t s  dual have the same value 
Conr~der the duality \tated In (20 24) If x is feastble for the pnmal problem and w IS feasible 
for the dual problem, then we have 

Thus. for any feasible solutions to the t u o  p~obleins, the quantity from the primal c 7 x  ~i 

greater than or equal to the corresponding quantity from the dual problem w '  b  By the\e 
bound$, we can observe th'it t f  there 1s an x" and a m *  wch that c ' x *  = (w*)' b, then (iince 
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no higher values can be found) x* and w* must be the optimal solutions to their respective 
problems. Thus x works its way "down" while w  works its way "up" until the two bounds 
meet at the middle. In fact, if a primal problem has a finite optimal solution, then so does 
its dual. 

If the solution to the primal problem is known, then it is straightforward to determine 
the solution to the dual problem. Suppose that for the problem 

minimize cTx 
subject to A x  = b ,  

x L 0 ,  

A is partitioned as A = [A, A] and the optimal solution is 

where 2  = A-' b. The value of this problem is t T f .  We will show that 

is the solution to the dual problem 

maximize wTb 
subject to wTA _( cT 

Note first that, for this w, 

so that the value of the dual problem is the same as the value of the primal problem. It 
remains to show that w  is feasible. To this end, recall from (20.21) that 

T - -T - t T i - ' / i .  r - c  

By means of the simplex algorithm, the relative-cost vector is obtained such that r 2 0, so 
,.-I - 

that ET 2 t T A  A .  Then the constraint in the dual problem is 

So w  is both feasible and optimal. 
Computationally, the dual solution often can be obtained with few extra computations 

after the simplex algorithm has been applied to the primal problem. If an m x m identity 
matrix appears in the original A matrix then, after the simplex algorithm, those columns of 
the tableau in which the identity appeared will contain the matrix A - I .  Let cT denote the 
original elements in the last row of the tableau corresponding to the columns of the identity 
matrix. After the simplex algorithm, these elements are converted by row operations to 
cT - cT - C T A - I .  Hence, by (20.25), the solution can be obtained as f -  1 

Example 20.5.1 The problem 

minimize xl - xz + 4x3 

subject to 5x1 + 1, = 2 ,  

- 3 ~ 1  + x* = 6, 

x l  L 0, x* 10, x, 2 0, 



838 Linear Programming 

has the tableau 

The initial vector c, correspond~ng to the columns of the identity is c, = 14, -11' (the underlrned 
elements of the tableau) The tableau after plvottng 1s 

Thus cf = [4.4,0jT. and the dual solution is 

In order for thls techn~que to find the solution to the dual problem, there must be an ~ d e n t ~ t y  
In the tn~tlal A matrlx. whlch is the case when there are slack var~ables In the problem 
When artlficlal var~ables are used to detennlne the ~ n ~ t i a l  basic feasible solution, the dual to 
the result~ng primal problem has a d~fferent solut~on However, ~t 1s possible to transform 
the solutlon of the mod~fied dual solutlon Into the solution of the onglnal dual solut~on (see 
exerclse 20 5- 10) 

20.6 Karmarker's algorithm for LP 

In t h ~ s  sectlon, we examlne an alternatlve to the slrnplex algonthrn for linear programming. 

wh~ch 1s known by the gener~c name of Karmarker's algorithm Th~s, 1s a fairly recent 
algonthm, originally proposed In 1984, based upon extensions of gradlent-descent tech- 
n~ques (Karmarker's algonthm has been used in \ome slgnal-process~ng appllcatlons, such 
as [286], and 1s connected w ~ t h  the iterative rewelghted least-squares techn~que 1451 Greater 
exposure to the stgnal processing community will lead to future appllcatlons ) A karlety of 
reasons, both technical and pedagog~cal, can be given for examining alternate methods of 
comput~ng solut~ons to llnear prograrnmlng problems 

Conzputational complexity. The stmplex algor~thm works by moving from vertex to ver- 
tex of the polytope of the constraints S ~ n c e  the algor~thm prov~des no a prior1 way of 
determining which vertices to examlne, In the worst case ~t must examlne a slgnlficant 
number of them In some worst-case examples, a problem wlth n unknowns requires up to 
2" slmplex Iterations [I821 

Karmarker's algonthm and ~ t s  vanants. on the other hand, have complex~ty that IS 

polynomial In the number of var~ables In the problem 
(However, ~t should be polnted out that the exponential complex~ty of the s~mplex 

algor~thm 1s only in the worst case, and best-case complexity 1s typrcally around 3n Iterations 

1374, pdge 571 Thus, Karmarker's algonthm 1s theoretlcaliy faster, but In many practical 
Instances rlower, then the slmplex algorithm ) 

Extra utilty from gradietzt descerzf. Con\~der the linear program~ng problem mln cTx.  
subject to some con\tralnt\ If a gradlent-descent method t i  u\ed, then movement 1s In the 
d~rect~on of -c as far a i  pos\~ble unttl the boundary of the constraint region If the mlnimunl 
has not been reached by the time the boundary I \  reached. conventional gradlent technique\ 
have nothlng else to say Libout the problem! Karmnrker.5 vrtdl tniight i \  that the domaln 
of the problem and the functlon bang m1n11n17ed can be changed. provtdtng more rooni 
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for the gradient to descend, breathing new life into an old tool. He also showed that at 
each iteration, some improvement in the objective function is guaranteed, provided that an 
optimum point actually exists. 

Our presentation also provides an introduction to new tools such as projective trans- 
formations and barrier functions. 

Let the unknown vector be x E Rn, and let A be m x n. The Kannarker formulation of 
the linear programming problem is 

minimize crx 
subject to AX = 0, 

l T x  = n ,  

x 2 0, 
where 1 is the vector of all ones of appropriate size. The matrix A is such that Al = 0. 
Thus xl0] = I is an initial feasible point. We also assume that A has rank m. Finally, at the 
optimum value x*, cTx = 0, SO the optimal value of the problem is zero. 

While this formulation of the LP problem seems fairly restrictive in comparison to the 
standard form introduced in section 20.1, we show that standard form LP problems can be 
mapped to the form of (20.26). We refer to an LP problem in the form of (20.26) as being 
in "Karmarker standard form." 

The constraints lTx  = n and x 2 0 mean that x lies in a simplex. We shall denote the 
interior of the simplex by 

S = {x E R;+: lTx  = n } ,  

where R$+ = (x E Rn: xi > 0 for all j } .  (This region R l +  is called the strictly positive 
octant.) In the Karmarker algorithm, we only search inside S, never quit getting to the 
solution that lies on the boundary. Methods such as this that search on the interior of the 
feasible region are termed interior point methods. 

Let F denote the constraint set 
T F = {X E R:+: Ax = 0 , 1  x = n} .  

Then the set of feasible solutions is 

These sets are depicted in figure 20.2(a) for n = 3. 
Karmarker's algorithm has the following outline, which is depicted in figure 20.2(b-cj. 

1. Starting from the initial point xlOl = 1, the point XI'] is found by steepest descent 
(figure 20.2(b)). 

2. By means of a projective transformation (not a projection) T ,  the point x[ll is remapped 
to the center 2[11 = 2 = 1 (figure 20.2(c)). This transformation maps S -+ S, and 
creates a new constraint set F -t p. (It is helpful to think of the domain S as a piece 
of rubber fixed at the edges, which stretches to move x[ll to 1 under T.) 

3. A new point 2[*] is found by gradient descent in the new domain (figure 20.2(c)). 

4. This new point 81*1 is mapped back to the original domain to produce the updated 
point x['] (figure 20.2(dj). 

5. The process repeats from step 2 starting with xtZ1. 

In order to make this sequence of steps work, the objective function must be modified: we 
must find a function that assists in the enforcement of the constraints and that decreases 
both in the transformed domain and also after it is transformed back. 
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(a) The constraint regions (b) First step gradsent descent 

(c) Map to 1, then gradient dexent agdln (d) Map back to orsginal domain 

Flgure 20.2: Illustratson of Karmarker's algorithm. 

The objective function. Rather than deallng simply wlth mlnlmlzsng c T x ,  Karmarker 
suggested the use of the function 

Observe that for any point on the boundary x, = 0 where c T x  # 0, f ( x ,  c )  attains the value 
CG Because of thls. any gradlent descent operat~ng on f ( x .  c )  will not violate the constraint 
x  2 0 A function in whlch the constraint 1s enforced impl~citiy by the functlon values In 
this way 1s called a penalty functlon or bamer function 

Projective transformatiorz. The transformatlon T employed In the algorithm has the prop- 
erty of picklng up xlh] and placlng it In the center of the slrnplex reglon For an arbitrary 
po~nt  x  E S, the transformatlon is aprqectlve trunsforinatlon', defined as 

 h he general form for a projective trnntfonnarion IS T ( x )  = Ccd for some ( C ,  d. f .  8 ) .  where [$  z \  
r l  x ~ . s  

nonsingi~lar. 
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where Xk = diag(xikl). It is straightforward to show that T maps S (the simplex region) 
into itself, mapping xrkJ to 1. The set F maps under T to the set 

F' = ( X  IRL: ax = 01, 
where a = A Xk.  The inverse transformation is 

Furthermore, the function f (x:  c )  is essentially invariant under the transformation T ,  as 
follows: Let i. = Xkc, then 

n 

f ( a ;  2) = 10~(i .~2/; ,)  = f (x;  C) + log det xk .  (20.30) 
j = I  

Thus, a decrease in the function f (2 ,  2) leads to a corresponding decrease in f ( x ,  c), up to 
the additive factor of log det Xk.  We let f ( 2 )  = f (2 ;  2). 

Gradient descent. Given a point 2 = xCk1 = T ( x [ ~ ] )  = 1,  we desire to determine a point 
2[k+lJ to minimize f(2) while satisfying the constraints 21k+ ' I  E S n k. Satisfaction of the 
constraint f i k f  1 0 is accomplished by virtue of the barrier implicit in f .  Minimization 
of f subject to the constraints = 0 and l T 2  = n is accomplished by computing the 
gradient of f ,  then projecting the gradient on the space orthogonal to the nullspace of A 
and 1. We note that the gradient evaluated at 2 = 1 is 

Let 

denote the projectors onto the nullspace of r?i and 1, and let 

Pfji = PiL  P I L .  

Then 

projects the gradient so that the updated point 2[k+'1 still satisfies the constraints, since 
P l L l  = 0, is proportional to -Pbii.. We absorb the constant of proportionality by 
normalization: let 

illk1 = - p  &i X kc/ll P&,Xkcll. 

A gradient descent update in the transformed domain can be computed by 

g[k+ll = 2 + @ [ k I ; l [ k l  = 1 + fflkl;l[kl, 

where dkJ is the step size. In our implementation (as per Karmarker's suggestion), we 
choose @ I k 1  = 113 for all k. More effectively, one might choose cdkl by searching in the dCk] 
direction from 1 until a minimum point is reached (a line search), or take the largest crLkl 
such that 2ikf  ' I  > 0 and scale it back slightly to remain on the interior of the region. 

From f [k ' ' l ,  the solution in the original space is obtained by transforming back, 

Xlk+ll = ~ - l ( g [ k + l l  1. 
Algorithm 20.4 illustrates an implementation, assuming that the problem is set up in the 
appropriate form. 
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Algorithm 20.4 Karmarker's algorithm for linear programming 

File: k a r m a r k e r  . m  
k a r f  .m 

20.6.1 Conversion to Karmarker standard form 

In this sectlon. we describe how to place a problem in the "Karmarker standard" form shown 
In (20 26) Assume that the problem 1s standard form in the vanable Tt, 

mlnimize cT% 
subject lo Aox = bo, 

x > o  
As discussed in section 20.5. the equality constraints can be written as inequality constraint 
to produce a primal problem and its symmetric dual, of the form 

Primal Dual 

Let 2 = [ and let b = [-hb]. The conversion to Karmarker standard form is accom- 
plished in 4 steps: 

1 S ~ n c e  the primal problem and the dual problem have the same value at the polnt of 
-T - 

solution, we have c:Ji - b o w  = 0 at a polnt of solut~on By the introduct~on of slack 
vanables 7 and V, we can wrlte the primal and dual problem combined as 

- - 
A x - y = b .  

-T - 
A w + V = E ,  

- -  -T- c X - b  w = 0 ,  

2 The next step 1s to introduce an artificial bariable v to create an in~ttal interior polnt 
Let xo yo, wo, and vo be points $att\fylng (20 32) Conslder the problem 

mlnimlze v 

subject to Ax - 7 + (b  - 2x0 +  yo)^ = b, 
-7 - 
A W + V +  ( T - A ~ M ~ - - V ~ )  v = c ,  (20 33)  

ciJi - bLF + (-c;xo + b; WO) v = 0. 

x 2 0  Fro V l 0  y 1 0  

The porntr x = xo. M- = wo. V = vo, and 5 = yo, wlth t i  = I ,  I \  \tr~ctly interior 
fea\ible \olutlon that can be u\ed a\ a stdrtlng point The mintmum value of v 15 7ero 
~f 'ind only ~t the probletn In \tep 1 15 fediihle 
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3. We write problem (20.33) in matrix fo rn  as follows: 

minimize v 

This we write as 
minimize e T f  

subject to A f  = b, 

x  > 0, 

where we identify f and A as the stacked vector and matrix in (20.34), and eT = [ O ,  I]. 
Assume that n is such that f E Rn-I. 

4. The next step is to project this problem so that the simplex enters as a constraint. 
Define a transfornation P: R";,' -+ S by x = P ( f )  when 

Then points 2  > 0 map to the simplex S = {x G Rn: x, = 1) .  The inverse 
transformation P - ' :  S s Rn-I ++ lS ' 

Write A in terms of its columns as 

Then the constraint A f  = b can be written as 
, n- l  

or, using (20.35 j, 
n- l  

i = l  

We define the matrix A by 

to create the constraint in the transformed coordinates Ax = 0. 
The objective e T 2  can be written as 

n-1 , n - l  

Since the objective is to be zero, the factor 1 /xn is unimportant, and we define 

Thus c T x  = 0 implies eTjt = 0. 
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Algorithm 20.5 illustrates M A T L ~ B  code that implements the transformation from 
standard to Karmarker standard form. 

Algorithm 20.5 Conversion of standard form to Karmarker standard foml 
File: tokarmarker . m 

20.6.2 Convergence of the algorithm 

In this section we will show that the method just outlined decreases f at each iteration. It 
can be shown (see exercise 20.6-17) that the dual to (20.26) can be written using the dual 
variables y E Rm and z E iW as 

maximize n z  

subject to A T y  + l z  5 c ,  

y free z free. 

For any value of y, z = min, ( c  - A T y ) ,  is feasible. 
The function f (x;  c) = n log c T x  - x, logx,. Our approach takes two steps. Starting 

fr6m an initial value x = 1, we first show that each step of the algorithm decreases n log c T x  
Second, we show that the extra term - x, logx, does not Increase f too much. We use 
the follow~ng notation. 

In the following theorem. we assume that the initial value is xlkl = 1, since for all other 
iterations, c and A can be replaced by i. and a, with the statement applying to klkl = 1 .  

Theorem 20.2 [339] Lei d be the l~rojected gradrent, d = - PBic. Lei y he the leasf- 
squares solurion y = ( A A ~ ) - ' A C ,  and let z = min,(c - A T y )  Startrrzg from an initial 
value of x = 1, fhen either d = 0 (in wlziclz case x = 1 1s an optrmal solutlon to (20 26)), 
or xnew = 1 + cud/lldll sati.$es 

T c~x , , ,  5 c x - -C'X + ~ i .  (20 37) 
n 

Proof If d = -PB-c = -PIIP,t,i(c - A r y )  = -Pl i (c  - A T y )  is zero, then c - ~ ' y  1s 
a multiple of 1. say c - A T y  = B1. Then 

Thus the value of the dual problem 1s equal to the value of the pnmal problem. and an 
optlmal solutton must exist. 

Otherw~se, we note that 

ltdl/' = cT PBLc = -cd 

Then 

c7 xnew = cT1  + a c T d / / / d / /  = c7 1 - CY I/dj/. 

If we can chow that ]/dl1 2 cT1  - :. then the bound (20 37) will be established We have 
I I r d = - P ( c -  .ATY) = - ( c -  A y - 11 ( c -  A y ) / n )  
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where the last equality follows since A1 = 0. The quantity c T l  is greater than or equal to 
the value of the primal problem, which in turn is greater than or equal to the value of the dual 
problem, so cT1 2 nz, thus c t l / n  2 z .  By our choice of feasible solution, z = (c - A ~ ~ ) ,  
for some i .  Then for that i ,  

dl = ( cT l ) /n  - z 2 0. 

So for that i ,  d, = lcl, I. Now simply recognize that //dl/ 2 Id, I = c T l / n  - z. I? 

If z < 0 (that is, the optimal solution has not been obtained), then it is straightforward 
to show (see exercise 20.6- 19) that 

n log cTxne, 5 n log cTx - a .  (20.38) 

To proceed with the next step, we use the following inequality: If 161 5 a < 1, then 

Lemma 20.1 (1721 If Ilx - 111 5 CY < 1 and l T x  = n then 

Proof Using the inequality (20.39) with r = x, - 1 we have 

Summing both sides over, and using the fact that z, x, = n,  we have 

Since Ilx - 111 5 a, it follows that x, (x, - 112 5 a 2 .  Using this in (20.41) we obtain 

Now, using (20.38) and (20.40), we find that 

The offset -a + a2/(2(1 - a2) )  achieves a minimum at a = .3 177. K m a r k e r  suggests a 
fixed value of a = 1/3, giving the bound 

1 
f(~new; C) 5 f(x;  C> - -. 

5 
As f is reduced by at least a constant at every step, cTx goes to zero exponentially 

(leading to the reported covergence in polynomial time). 1f cTx does increase (as it might), 
the factor C, logx, must also increase. In so doing, the algorithm "gains altitude" for later 
steps, moving away from the boundaries x, = 0. 

Notwithstanding the proven convergence properties, the algorithm must remain on the 
interior, and the algorithm can at best get close. In practice, it may take many iterations to 
get close. In commercial software employing Karmarker's algorithm, once a sufficiently 
advanced point is identified, then another algorithm is used for final termination. This is not 
represented in the code demonstrated here (but see, for example, [374, chapter 71). 
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Example 20.6.1 The following code 

% testkarmarker.m: Test the Karmarker ;?near programmlng solutlon 
C O  = [3 -2 4 0 0 01'; 
A O =  : 7 5 - 1 ; o o  
2 2 3 0 1 0  
-5 -6 8 0 0 11; 

bO = 19; 5; -101; 
[x,value,w] = slrnplexl(AO,bO,c0) 
[A, c] = tokarmarker (740, b0, cC) ; 
xk = karmarker(A,c) 

demonstrates an example solutlon. Using the simplex algonthm, the opttmum solutlon obtained is 

Uslng Kannarker's algorithm, the solutlon (the first six elements of xk) is 

While not particularly close, the value cTx = 4.2 x G 

20.6.3 Summary and extensions 

Stnce the lnlt~al development of the algorithm, many extensions have been proposed For 
example, uslng the y and z that arlse in the proof of theorem 20 2, Todd and Burrell 13391 
have extended Karmarker's algonthm so that the solutsons to both the primal and the dual 
are found simultaneously. providing an example of what 1s known as a pr~mal/dual Intenor- 
polnt method A variety of other extensions have also been developed; for an excellent 
survey, see [374]. 

Examples and applications of linear programming 

Linear programmlng has been ernployed In a varlety of ~ignal-processing apphcat~ons We 
bslefly introduce a few of these appl~catlons, maklng reference to the appropriate literature 
for more deta~led snvestlgatlons 

20.7 Linear-phase FIR filter design 

Let the coefficlents of a l~near phase filter beg,,, n = -(N - 1)/2. . ( N  - 1)/2, with N 
odd and g, = g-, (With suitable modlficatlons. the results can be extended to filters wlth 
an even number of coefficlents, and defining h, = g,- (~- , ) , : !  results In a causal filter w ~ t h  
the same magn~tude response ) The frequency response of the filter 1s 

( & - I ) / ?  
G(eJu )  = go + 2 g,, coswn. 

11=l  

We want to deslgn a lowpa% t~lter. with pa5sband frequency F,, dnd ctopband frequency 
F,, as shown In figure 20 3 The rlpple in the pasband I \  and the r~pple In the stopband 
r i  kt?? We wtll arwrne that S1  1s specified (there are other de\lgn po\\1bil1tre5) Then In  
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Figure 20.3: Filter design constraints 

the design of the filter, we desire to choose the filter coefficients and 62, subject to the 
constraints 

2 n F , ( o z n :  go + 2 c!,~,N_;"/~ g, cos wn - 62 5 0 ,  
-go - 2 ~ ! , ~ ~ 1 ) / 2  g, cos o n  - 62 5 0,  

in such a way as to maximize the negative stopband ripple, -62. This is clearly linear in 
the unknowns; it is a linear programming problem in the form of the dual to a problem in 
standard form. Matrices for a linear programming solution are obtained by suitable sampling 
in w. 

The MATLAB code in algorithm 20.6 accepts filter parameters and returns parameters 
for a causal filter. For this example, the stopband ripple and passband ripple are set equal, 
and are determined by the program. That is, 61 = 62 = 6, and we wish to maximize -6. 

Algorithm 20.6 Optimal filter design using linear programming 
File: lpfil t . m 

Figure 20.4 shows the frequency response and impulse response of a filter design with 
F, = 0.1, Fp = 0.2, and N = 45 coefficients. The value of 6 returned is 6 = 0.0764, which 
corresponds to -22 dB of attenuation in the stopband. 

One advantage to filter design in the form of a linear programming problem is that 
a variety of additional constraints can be utilized. For example, the response at a given 
frequency can be completely nullified. Or a constraint can be added to limit the amount of 
overshoot in the impulse response. Filters can also be designed to minimize deviation from 
a given spectral prototype. 

20.7.1 Least-absolute-error approximation 

We have seen throughout this text several examples of approximation using an L2 norm, 
leading to minimum mean-squared error or least-squares error designs (chapter 3 provides 



848 Linear Programming 

0.3 

0 

0.2 
-20 

V 

e, - 
7J 
TTJ 
C 

.E, 0.1 r: 
'E  -40 
0 

2 
-60 0 

-80 0.1 
0 0.1 0.2 0.3 0.4 0.5 0 10 20 30 40 

frequency (0.5=Nyquist) n 

Figure 20.4: Frequency and impulse response of a filter designed using linear programming 
(n = 45 coefficients). 

several examples). These approximation techniques are corninonly employed because the 
quadratic terms arising In the norm are differentiable, and the method is defensible as a 
max~mum-ltkelihood techn~que in Gauss~an noice 

However, there are Instances where an L 1  or L ,  norm may be desirable One reason 
for choos~ng another nonn 1s that the L2 optimization problems tend to provide "smoother" 
answers than may be desirable in some cases. 

Example 20.7.1 We des~re  to find a solutron to the underdetermlned problem 

subject to the constraint that llxll is rnrnrmized If the norni I F  the 2-norm, //x//' = xrx. then the 
solution 1s glven (see sectton 3 15) by 

Let 

Suppose that the true solutron IS 

whrch rs "sprky," and that there are physical reasons for the splk~ness of the data If the true solution 
were not known. then the m~nlinum squared norm solutlon from (20 43) would be 

which is considerably smoother than the original vector. 
Now we use something related to the L ,  nonn: We desire to minimize / /x/ /  = /x i  + xz + x - 3 1 .  

sub.ject to the constraints (20.42). We also a sun ie  for convenience the constraint x ; 0. Using the 
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techniques of section 20.2, this can be expressed as two linear programming problems: 

minimize xi + x2 + x3 

subject to Ax = b. 

x  2 0, 

and 

minimize - ( x r  + xz -t x3)  

subject to Ax = b, 

x  > 0. 

The linear programming solution to the second problem gives 

T h ~ s  I & ,  rn fact, the true solut~on, and is observed to be more splky than the L2 solut~on. 0 

As this example illustrates, problems stated using the L  1 norm with linear constraints 
can often be expressed as linear programming problems. In addition to providing more 
"spiky" answers, optimization using the L 1  norm is natural when the noise in the problem 
is double exponential. For example, if the jgnal measured in noise is of the form 

where n [t  ] has the distribution 

then the natural norm to use for maximum-likelihood estimation of the signal parameters 
(a,} is the L1 norm. Such a problem can be expressed as a linear programming problem 
(see the references for illustrations and applications). 

20.8 Linear optimal control 

Given a discrete-time system with n-dimensional state x and scalar input 

where 6 and h are known, we can write the state x as 

k- l 

~ ( k )  = ~ ~ r ( 0 )  + 6 ' h u ( k  - i - 1), 
i =O 

where x(0) is the state at time 0. Suppose that the input is constrained so that u,,, 5 
u 5 u,,,. Then, given various linear costs, we can determine an optimum input sequence 
uo, u 1 . . . . , uk, using linear programming. 

For example, suppose that we desire the discrete-time system to reach as closely as 
possible some target state f at a fixed time K.  Then we want to minimize the L I  nonn 
/ /f  - x(k) 11 1 ,  that is, 
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20.9 Exercises 

20 2-1 Convert the followlng problems to stdndard form 

(a) maxtmtze 2xi + 3x2 + 4x1 

subject to 2xi - 3x3 > 0, 

x, > 2, X2 2 4  X i  , 7 

(b) mlnimlze xi + X? + 7x3 

subject to 2 ( 4x1 - 2X3 ( 7 ,  

6x1 + 2x2 - 5x1 = 2, 

-2 ( xj ( 3. X2 > 0, X1 ( 0 

(c) minim17e xi + x2 

subject to lxj - xzl ( 3, 
x i 2 1  X ? 5 2  

(d) niinimlze /2xl + 3x21 

subject to 3x1 - 2Xi ( 7 

X i  > 0. X2 0. Xs ( 0 

20 2-2 Place the followlng problem In standard form 

mlnlmlze /xi  / + /2x2/ + /3xij 

wbject to x l  + x2 ( 2, 

.%I + 3x3 =: 2 

20 2-3 For the follow~ng problem with free variables. 

mtniru17e 2wi + 2x2 - 3xi 

subject to X i  - Xz + 4x1 ( 2 

3x2+4x1 = 7  

xi 2 0 x2 > 0, (x? free), 

elim~nate the free variable and find a tableau for the problem 

20 2-4 A materials sclentlst wishes to formulate a compound that IS 20% element X and 80% element 
Y Several compounds with different proportions of the elements avatlable for different costs 
The deslred compound may be produced by combrning some of the other compounds 

Compound i 2 3 4 
% X  15 20 30 70 
% Y  85 80 70 30 
P r ~ c e k g  $5 $4 $3 $2 

Set up a linear programming problem to determrne the amounts of the alloys needed to 
produce the least expensive compound Solve the problem 

20 4-5 Conslder the Illleal programrnlng problem. 

maximize x 1 + x2 

subject to xl  + x2 5 3, 

(a) Solve thlr problem. us~rlg the simplex algorrthm by hand 

(b) Draw the grapl-i~cdl repreientatron of the problem and show that the \olutron mdkes 
sen\e 

(c) On the pr'iph. indlcdte the pornts corre5pondlng to thc step\ of tlie srmplex algorithm 
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20 5-6 Show that the dual of d dual 1s the orrgrnal problem 

20 5-7 Show that ~f a llnedr ineqiralrty In a prrmdl problem i i  ch'inged to ,In equality, the cone- 
spond~ng dual varrdble becomes tree 

20 5-8 An ~nequallty relation~htp that is useful rn a variety ot optrmlzation studres 12161 1s the 
Mot:ktn trunspasrtton theorem Let A,  B ,  and C be real constant matrrces, w ~ t h  A berng 
nonempty (B  or C may be empty) Then either the system 

has a solution y, or the system 

has a iolutlon ( z l ,  z2, z3), but neber both 

20 5-9 F ~ n d  the dual of 

inaxlmize cTx 

S U ~ J ~ C ~  to Ax = b, 

x > d  

20 5-10 Conq~der the pnmal h e a r  prograrnmrng problem 

minimize cTx 

subject to Ax = b, 

x > 0, 

and its dual 

maximize w T b  

subject to wT A cT 

The primal problem is transformed to 

minimize cTx 

subject to Ax = b, 

x L 0, 

where A = X-' A and b = X-'b.  The dual of the transformed problem is 

maximize z T b  

subject to zTA 5 cT  

Suppose that a solutron to the transformed problem x and its dual z are known Show that 
w = X-"z is a solution to the ongindl dual problem 

20.5-1 1 (Minlmax optimzation and duality) 

(a) Show that the primal m~nization problem of (20.24) can be expressed as the minimax 
problem 

What values of x lead to a finite maximum? (Note that the argument is simply the 
Lagrangian of the constrained problem, where w is the Lagrange multiplier; see sec- 
tion 18.8.) 

(b) Now consider the interchanged problem, written as 

max min[(cr - 
w x>o 
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Show that this is equivalent to the maximization problem 

max wTb. 
cT-wTA?O 

(For what value of x 1s the rnlnimum finiteq) Hence, assumlng that the minimax equation 
of (20 44) is equal to the max/m~n equatron of (20 45), we have shown that the value of 
the pnmal l~near  programming problem is the same as the value for the dual 

(c) The problem of (20.23) can be expressed similarly. Argue that the following is true: 

min cTx = min 1nax[cTx - wT (AX - b)]. (20.46) 
Ax>b  x?O u>O 
x>o 

(d) Interchanging min and max in (20.46), argue that the following is b e :  

max min[(cT - W ~ A ) X  + wTb] = rnax wTb. 
w y o  x>o w7,45cT 

H>O 

20 6-12 Wnte  MATL LAB functlon lpf 11 t2 (Hdes~red, Oinegal 1 st , n) that. using linear pro- 
gramming, designs a 11near-phase FIR filter that minimizes the amplitude error between a 
spec~fied frequency response H (el"') and the frequency response 

That is, that chooses coefficients ho, h l ,  . . . . h,-] and S so that 6 In 

is as slnall as possible. The parameters Iides ired and Oonegal ist are, respectively, the 
desired magnitude and frequency value. 

20 6-13 Show that 

(a) The transformation in (20 28) maps S into itself and maps the point xlil ~ n t o  1 

(b) The transformation (20 29) is an inverse of that in (20 28) 

(c) Equation (20 30) is correct 

20 6-14 Show that the gradtent-descent update rule can be wntten In terms of the ongmal vanable5 
as 

20.6- 15 Let 

Show that P,,, the projector onto the nullspace of b, can be written as 

20 6-16 Let + ( a )  = f ( x  + cud, c),  where d is the gradlent direction and d and x are not proportional 
Show that 4 ( a )  ha5 at most one stationary point where 4 (u) = 0. and if i t  ha\ one it 
15 a minimiLer (Hint T'ike the derivative. and recognire the mean of the quantltres 6, = 

d, / (x ,  curl,) U\e the convex~ty ot the function &; ) 
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20.6- 17 Show that (20.36) is correct. 

20.6- 18 Show that (20.39) i s  correct. 

20.6- 19 Show that (20.38) i s  correct. 

20.1 0 References 

There is an enormous literature on linear programming. Our approach has been to introduce 
the salient concepts, while leaving out many of the fascinating details. A good starting point 
is [210]; [61] is a classic; and [I001 has a variety of interesting examples. 

FIR filter design using linear programming as presented in section 20.7 is discussed 
in [264]. Several other examples of filter design using linear programming appear in the 
literature; for example, design of IIR filters using linear programming is presented in [52]. 
Another discussion of FIR filter design using linear programming appears in [320], in which 
it is pointed out the linear programming techniques can be used to find filters of specified 
characteristic of minimum filter length. While the linear programming method is slower 
to design than the more common Remez exchange technique, it is straightforward under 
LP to incorporate other constraints. A discussion of filter design using linear programming 
for multirate filters is in 13081. For two-dimensional filter design, see, for example, [107]. 
Nonuniforrnly-spaced FIR filters appear in [180]. 

A stack filter minimizes a mean-absolute-error criterion (as opposed to the more con- 
ventional mean-squared error criterion). Design of stack filters can be accomplished using 
linear programming [57, 951. 

The problem of optimization using a least-absolute-error ( L I )  criterion instead of a 
least-squares ( L 2 )  criterion has been examined in a variety of applications. For example, 
1295) has used L optimization for robust sinusoidal frequency estimation. Power spectrum 
estimation using linear programming and an L ,  norm is discussed in 12001, in which it 
is shown that the linear programming-based methods provide spectral resolution superior 
to conventional techniques based on solution of the normal equations. The study of least- 
absolute-error optimization, also called least-absolute deviations (LAD), has been examined 
in [378,20,359,73]. In such applications, the solution is typically foundusing modifications 
to RLS algorithms known as iteratively reweighted least squares and residual steepest 
descent, which may converge faster than many algorithms based on steepest descent. A 
discussion of LAD methods, including regression, autoregression, and algorithms, appears 
in [37]. 

Karmarker's original algorithm appears in [172]. Our presentation follows the notation 
in [339]. A thorough treatment of related algorithms appears in [374]. Application of Kar- 
markar's and simplex algorithms to approximation under L 1 and L ,  norms is described in 
[286]. 

Application of linear programming to optimal control, as in section 20.8, is described 
in [2541. 
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Basic Concepts and Definitions 

The nords or the language as they are wntten or spoken. do not seem to play any role 
In my mechan~sm of thought The psychical entities whlch seem to ierve as elements 
In thought are certatn .iigng and more or less clear Images whlch can be "voluntanly" 
reproduced and combined The above-mentioned elements are, in my case, of vtsual 
and some muscular type Conventtonal words or other slgns have to be sought for 
laboriously only In a secondary stage 

-Albert Elnrteln 

Mathematics is a language with its own vocabulary, grammar, and rhetoric. Adeptness at 
mathematics requires a solid understanding of the basic vocabulary, and the use of this 
specialized vocabulary adds precision and conciseness to mathematical developments. In 
this appendix, we present a summary of concepts that should be generally familiar in topics 
related to sets and functions. This material provides a reference to topics used throughout 
the book and establishes several notational conventions. 

A.1 Set theory and notation 

Existential quantifiers 

The notation 3 means "there exists." The notation V means "for al1,"or "for each," or "for 
every." The abbreviation s.t. means "such that." 

Example A . l . l  The statement "3 x E X s.t. x 3  =. 23" means: there IS a real number x such that 
x 3  > 23. 

The statement "Vx E R, x 2  > 0" means: for every real number x ,  x 2  is nonnegative. 

Notation for some common sets 

m is the null set, the set containing no elements, which is a subset of every set. 

Z is the set of integers,. . . , -3, -2, - l ,O, 1 , 2 , 3 ,  . . . . The set of nonnegative integers 
(including zero) is Z+. Sets of integers in a range may be denoted by [a, b]  which is 
the set { a ,  a + I ,  . . . , b ] .  The notation a:b may be used to indicate the same set. The 
notation a:s:b  indicates the set { a ,  a + s ,  a + 2s, . . . , d}, where d ( b. 

Q is the set of rational numbers, that is, numbers that can be expressed as the ratio m / n ,  
where m E Z and n E Z, n # O (that is, they are both integers). 
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R is the set of real numbers These are the numbers that we are most likely to be famlliar 
w~th ,  such as 2, n, a, -7 23, and so forth R+ is the set of nonnegative real numbers, 
R\{O) is the set of real numbers excludtng O Sets of real numbers formed by intervals 
are indicated by [a ,  b] ,  which is the set of numbers in the interval from a to b. including 
the endpoints, or [ a ,  b), which is the interval from a to b, whtch includes the endpoint 
a but excludes the endpoint b 

@ is the set of complex numbers 

When dealing with n-dimensional space, or n-space, we may refer to R". Points (elements) 
in n-space are denoted by an n-tuple x = (xl .  x;?, . . . , x,). When regarded as vectors, 
however, they are represented as column vectors (see box 1.2 on page 6). 

Basic concepts and notations of set theory 

A set is a collection of objects. The notation x E A means x is an element of (or x is in) 
the set A. We write x @' A to indicate that x is not an element of A .  

Intersection. A n B denotes the intersection of A and B. An element x E A n B if and 
only If x E A and x E B. The intersection of multiple sets Al, A*, . . . , A, is denoted 

Union. A U B denotes the union of A and B. An element x E A U B if and only if x E A 
or x E B (or possibly both). The union of multiple sets Al. A 2 ,  . . . . A, is denoted 

Complement. The complement of the set A denoted, AC, is such that x E AC if and only 
if x # A .  The complement is always with respect to some universal set X, where A C X. 

Exclusion. The set A \B means those elements of A that are not common with B. x E A \ B 
if and only if x E A and x # B. 

Subset. We say that B c A if and only if every x E B is also in A. When B is possibly 
equal to A we write B & A. When B IS  a subset of A not equal to A then B is a proper 
subset of A. 

If A & B and B & A then A = B. Two sets A and B are often shown to be equal by 
showing that each is a subset of the other. 

Cartesian product. The set A x B is obtained by taking each element of A with each 
element of B. The elements may be displayed in a comma-separated list. For example, ~f 

A = (1 .  21 and B = { z ,  y , x l  

then 

A x B = ( ( 1 , ~ ) .  (1 .  y). ( 1 , ~ ) .  (2, z ) .  (2, y ) ,  (2 .x))  

The same principle extends to multiple Cartesian products, such as A x B x C ,  if n sets 
are involved in the product, then the resulttng set has elements de\cr~bed as n-tuples 

Cardinalig of a set. The cardinality (or cardinal number) of a set A is the number of 
element\ In  the set, denoted lAl (There ir iome notationdl dmb~guity betheen the order of 
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a set and the determinant of a matrix. However, context will establish which is intended). 
For the set 

the cardinality is j A 1 = 4. 
For the set B = ( x  E R: 0 < x r_< 1 )  = (0, I], what is the cardinality'! There is clearly 

an infinite number of points. For the set Z, there is also an infinite number of points. Is the 
cardinality of (0, I ]  the same as the cardinality of Z? Interestingly, it can be shown that the 
answer is no: IBI > IZI. The set of integers is said to be countable; a set such as (0, I] is 
said to be noncountable. 

The noncountability of the set (0, I] was established by the mathematician Georg 
Cantor using a subtle and powerful idea that has come to be known as Cantor's diagonal 
argument. To determine the cardinality of a set, we form a one-to-one mapping from the 
elements of the set to the positive integers. In other words, we simply count the elements in 
the set. To prove that the cardinality of the set (0, I ]  exceeds that of the integers, we try to 
establish a counting mapping which is ostensibly complete, then demonstrate that no matter 
what we do there are still elements in the set uncounted. Hence we conclude that no matter 
how we count, even up to an infinite number, there are still numbers uncounted, and hence 
the cardinality of elements in the set is too large to count. 

To set up the mapping, we write a list of all the numbers in the interval (0, I ]  as decimals, 
and simply put an integer to indicate the row number. We might end up with a table like the 
following: 

1 0.323422 12. . . 
2 0.43235532. . . 
3 0.32453232. . . 
4 0.67624543 . . . 

(There are some minor technical arguments about the uniqueness of the decimal represen- 
tation that we are overlooking.) If we presume that the list is a complete enumeration of all 
the numbers in the interval (0, I], then we simply count the number of rows in the table. We 
will now show that we cannot produce such a complete listing. We will create a new number 
in the interval that cannot be in the table. The first digit is formed by taking the number 
from the first row, and modifying its first digit (the one that is underlined). We wlll choose 
7, since it is different from 3. The second digit of our new numbers is formed by modify~ng 
the second digit of the second row, and so forth. We can get a number 0.7216. . . . This 
number is different from every number in the table since it differs by at least one digit from 
every number. Hence it does not appear in the table, and the supposedly complete table is 
incomplete. This incompleteness of the table remains no matter how many new rows we 
add. We conclude (reluctantly) that there is no one-for-one mapping from the integers to the 
real numbers so there must be more real numbers in (0, 11 than there are positive integers. 

There are some counterintuitive notions associated with the cardinality of infinite sets. 
For example, the set of even integers 2 2  has the same cardinality as the set of integers. 
It can also be shown that the set (0, 1 1  has the same cardinality as R. The set of rational 
numbers Q is countable. 

Convex sets. A set in R" is said to be convex if all points of the line segment connecting 
any two points in the set remain in the set (see figure A. 1). In general, a set S is convex if 
for any two points p and q in S ,  then all points of the form 

for 0 5 A 5 1, are also in S. Observe that the point Ap + (1 - h)q is on the line adjoining 
p a n d q f o r 0 5 A . 5  1. 
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A convex set A nonconvex set 

Figure A. 1 : Illustration of convex and nonconvex sets. 

Indicator functions. When representing sets, both mathematically and in computer im- 
plementations, it is occasionally useful to use an indicator function for a set. A binary 
indicator function x A  ( x )  for a set A takes the value 1 for arguments that are in the set, and 
the value O for arguments that are not in the set: 

The basic set operations can be represented easily using indicator functions. Let A and B 
be sets with indicator functions X A  ( x )  and X B ( X ) ,  respectively. Then the indicator function 
for the set C = A n B is 

The indicator function for D = A U R is 

As a matter of notation, the operator v is often used to indicate maximum, 

and the operator A is often used to indicate minimum: 

So we can write x c ( x )  = x A ( x )  A x B ( x ) .  The indicator for the set E = A' is 

Example A.1.2 Let 

and 

T = ( x ~ R : x ( 4 )  

Then 

a union S U T = R (the entire real line), 

an ~ntersection S il T = [3.4], 

and a complement S n T = (-x 3 )  L (4 x) 

The ind~cator functions for S, T, and S n T are \hewn In figure A 2 
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Figure A.2: Indicator functions for some simple sets. 

A.2 Mappings and functions 

Definition A.1 A mapping M: S, i S2 is a rule for associating elements of the set Sl with 
elements of the set S2. 

A mapping M is said to be one-to-one if the images of distinct elements in SI are 
distinct in S?. That is, if x i ,  x2 E SI with x l  # x2, the mapping is one-to-one if M ( x r )  # 
M  (xz). 0 

Example A.2.1 Our first example is a familiar one. Let Sl be the set of real signals with bounded 
energy, 

13 

SI = i f@):  Lm f 2 ( f l d t  < ~ 1 .  

There is a mapping F :  SI -+ S2 to the set of square integrable functions, 

defined by 

F ( f  ( t ) )  = F(w)  = 

Stnctly speakrng, the Four~er transform 1s not one-to-one there is a whole set of s~gnals that have 
the same Founer transform For example, consider the two funct~onq which are ~dent~cal  except at 
a single pornt Both of these functions have the same Founer transform, because the single polnt of 
difference whlch does not affect the value of the Integral (In fact, functions that are equal almost 
everywhere all have the same Founer transform ) 

Definition A.2 A function f from a set A to a set B is a rule for assigning to each point 
a E A exactly one element b E B. The domain of a function is the set of possible objects 
the function can be applied to (the set A). The range of a function is the set of possible 
values that may be mapped to. We write 

f:A+ B 

to explicitly indicate that f is a function from the domain A to (possibly a subset of) the 
range B. 
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Definition A.3 A function f from A into B is one-to-one if each element of B has at 
most one element of A mapped into it. That is, if f (x) = f (y), then x = y .  Sometimes 
"one-to-one" is written 1-1. A one-to-one function is also called an injection. 

A function is onto if each element of B has at least one element of A that is mapped 
into it. That is, for every b E B there is an a E A such that f (a) = b. (Every element of B 
is covered.) An onto function is also called a surjection. 

A function that is both one-to-one and onto is called a bijection. 0 

Example A.2.2 Consider f R -+ R defined by f ( x )  = x2 This function is not one-to-one. slnce 
f (-3) = f (3) 

The function f (x) is also not onto, sxnce there 1s no x E R such that f (x) = -2 However, we 
could redejne the functlon wxth a d~fferent doman Let f C -+ R be defined by f (x) = x2 This 
funct~on is now onto (but still not one-to-one) We could alqo define the function with f Rf + R+ 
Uslng this restriction, the functlon is both one-to-one and onto Ci 

As this example shows, the domain and range should properly be part of the description of 
the function. 

A transformation f is a mapping f :  R" -+ Rm. For example, a mapping from 
( u ,  u ,  w) E R3 to (x, y )  E R2 might be defined by 

Definition A.4 Let f :  A -+ B be a one-to-one function, and let f ( A )  denote the range 
of f .  Then the inverse function f-': B -+ A is defined as follows: if y = f (x), then 

x = f If a function is not one-to-one, then there is no unique inverse functlon. D 

Example A.2.3 The function f :  R + IIB: defined by f (x) = x2 has no inverse, since if y = f (x) = 9 
there is no way to determine, given y, whether x = 3 or -3. However, we can talk about the inverse 
mapping. We could say that the inverse mapping f - '  (9) is the set of values (3, -3). U 

A.3 Convex functions 

Definition A.5 A function f is said to be convex over an open set D if for every s, r E D. 

for all h such that 0 h _( 1. If equality holds onty for h = 0 or A = 1, then the function 
is strictly convex. 0 

Since As + (1 - h)t is a point on the line segment connecting s and t ,  and h f (s) + (I  - A )  f (r) 
is the chord connecting f (s) and f (r), we observe that a function is convex if the function 
lies below the chord. Figure A.3 illustrates a convex function. A function that is convex on 

Figure A.3: Illustration of a convex function 
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its whole domdin i i  said to be simply convex A function J 15 concave if - f 1s convex 
I f  f ( u )  is a convex tunct~on, then g(u)  = CL f (x) + b 1s an atfine transformation of f A 
l~nedr fiinction of a convex function is also convex it n > 0 In perform~ng optimization, 

the function j be~ng optimized may be examined to determine if it is convex, because '1 

rnlnimum point In a function convex over a set D 15 guaranteed to be the global mintmum 
over that set 

We pduse now in our introduction ot vocabulary for a statement of a geometrically 
obvious fdct 

Theorem A.l /ff: R + R hus u second derivar~ve that rs nonnegatcve everywlrere, then 
f 1S convm. 

Let f (.u) be a function that is convex over a set D, and let x, E D, i = 1, 2, . . . , m ,  
and let p, 2 0 be such that 

Then, by the convexity of f (x) applied inductively, 

If the x, represent outcomes of a random variable X ,  occurring with probability p , ,  then 
the sum on the left-hand side of (A. I )  is recognized as f ( E [ X ] ) ,  while the sum on the 
right-hand side is E[ f ( X ) ] .  This gives us Jensen's inequality, 

for a convex function f .  Jensen's inequality also applies to random variables having con- 
tinuous distributions (described by pdfs instead of pmfs). 

A.4 0 and o notation 

The 0 and o notation are used to indicate "order of magnitude'Yor a function. Saying that 
f is O ( g )  says that f is approximately the same "size" as g, in some limit. Saying that f 
is o(g)  means that f gets small faster than g, in some limit. More precisely, we have the 
following: 

Definition A.6 Let f and g be real-valued functions. The function f is O ( g )  as x -+ xo if 
there is a constant C (independent of x) such that 

for all x in a neighborhood of xo or, to put it another way, if 

The function f is o ( g )  as x -+ xo if 



862 Appendix A: Basic Concepts and Definitions 

Example A.4.1 

1. The function f ( x )  = x2 In x  is o(x )  as x -+ 0' (that is, approaching 0 from the right). To see 
this, take the limit using L'Hospital's rule twice: 

x2 l nx  In x  
lim - = lim - = 0 

x i o +  X x-+o+ 1 /x  

2. The function f ( x )  = x2  is o(x )  as x  -+ 0: 

x 
lim - = 0. 
x i 0  X 

3. Let f ( x )  = x2 and g (x )  = -4x2 + 3x. Then f is O(g )  as x  -+ 0: 

Saying f is O(1) means that f is bounded, and saying f IS o(1) as x  -+ 0 means that f is 
"infinitesima1." 

The O notation is often used in describing the computational complexity of algorithms. 
For example, it is we11 known that the computational complexity of an n-point FFT algorithm 
is O(n log n). If the actual number of computations required by the computation is c, then 
this notation says 

C = c 
n logn 

for some constant C. What the exact constant is depends on many particulars of the al- 
gorithmic implementation. Thus O(n log n) is only an "order of magnitude," not an exact 
description. 

A.5 Continuity 

The concepts of continuity should be familiar from basic calculus. We present here a 
definition for functions defined on metric spaces. 

Definition A.7 Let (X, d l )  and (Y, d2) be metric spaces, and let f: X -+ Y be a function. 
Then f is continuous at a point xo E X if for every 6 > 0 there is a 6 so that, for points 
x  E X sufficiently close to xo, 

dl (XO, < 8; 

then the points in the range are close also, 

Intu~tively, a function IS continuous if there are no jumps 
The slze 6 of the nerghborhood about xo may depend upon xo Consider the figure shown 

In figure A 4 The neighborhood around the point x l  must be smaller than the neighborhood 
around the point xo, since the function f is steeper near x l  Let D be a doma~n of the 
function f When the size of S in the definition for continuity doe? not depend upon the xo 
for any xo E D, then the functlon is caid to be uniformly continuous 

Example A.5.1 The funct~on f ( x )  = l /x IS  continuous over the dornatn D = (0. I )  However. 11 1s 

not uniformly continuous G~ven an t, no matter how small 8 I \ .  an xc, near zero can be found such 
that 

l S ( x ~ )  - f(no+6)1 1 6  

Note that the domain D 1s not compact, and the functlon does not ach~eve an extremum over D O 
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I xo I 

Figure A.4: Illustration of the definition of continuity. 

Some useful facts (theorems) about continuous functions: 

I .  Continuity preserves convergence: if x, -+ x, and if f is continuous, then f (x,) -+ 
f (x). Conversely, i f f  (x,) -+ f (x) for any convergent sequence {x,] in the domain 
o f f ,  then f is continuous. 

2. A function f :  D -+ R is continuous on an open set S if and only if the inverse image 
of every open set is open. That is, if for every open T C R,  f - ' ( T )  C S is open, 
then f is continuous on S. 

3. If f and g  are continuous functions, then so are f ( s )  ( f  composed with g),  f + g ,  
f g ,  and f / g  where g # 0, where these operations are defined. 

4. A function continuous on a compact set S is uniformly continuous on that set. 

5 .  If f :  D -+ R is a continuous function such that f (po )  > 0 for some po E D, then 
there is a neighborhood N around po such that f (p) > 0 for all p E N n D. That is, 
if a continuous function is positive at a point, then it is locally positive around that 
point. 

6. If a real-valued continuous function f :  [a,  b] -+ R is one-to-one, then f is strictly 
monotonic on [a ,  b] .  

7. (Intermediate value theorem) Let f be a real-valued continuous function defined on 
a connected set S, and let f (xi )  = a and f (xz) = b for X I ,  xa E S and a < c  < b. 
Then there must be a point y E S such that f (y) = c. This theorem provides the 
theoretical basis for several algorithms that hunt for solutions to equations of the form 
f (x) = 0. 

8. A continuous function f :  [a ,  b]  -+ R can be uniformly approximated arbitrarily 
closely by a polynomial. By uniform approximation, we mean that for any E > 0, 
an approximating polynomial p(x) can be found so that the maximum error between 
f and p(x) is less than E for any x E [a,  b]. This fact (known as the Weierstrass 
approximation theorem) points to the importance of polynomials in computational 
mathematics. 

9. (Intermediate value theorem) If f is a continuous function on some interval [a ,  b] ,  
and f (a )  > 0 and f (b)  < 0, then there is some c E (a,  b) such that f ( c )  = 0. 

One of the reasons for studying continuous functions, of all the mathematical func- 
tions that might exist, is a matter of practicality: continuity makes a lot of things possible. 
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Further, it may be argued, at least from an engineenng polnt of view, that there are no truly 
discontinuous functions occumng in nature. 

Differentiation arises in a variety of contexts, from linearization of functions to optimization. 
We first review the basic concepts of differentiation of real functions of a single real variable, 
then generalize to functions defined over several variables. 

A.6.1 Differentiation with a single real variable 

The basic definition of a derivative is assumed to be familiar for a continuous function 
f : R  + R: 

= f l (xo)  = lim 
.f (x) - f (xo) - 

- lim f (xo + Ax) - f (xo) 
Ax-0 

. (A.3) 
x-xo x - Xo Ax 

If this limit exists, then f is said to be differentiable at x0. A function that is continuous at 
a point xo may not be differentiable at xo; the function f (x) = Ix 1 is not differentiable at 
x = 0, but it is continuous there. 

Some basic facts about derivatives: 

1. The derivative provides for a local linear representation of f .  That is, near xo, f can 
be approximated as 

2. If f has a local extreme value (maximum or minimum) at a point xo and f is 
differentiable at xo, then f '(xo) = 0. 

Proof Assume f has a local maximum. In (A.3), let x -+ xo from the right, so 
x - xo 1 0. Then f '(xo) 1 0. Now let x -+ xo from the left, so x - x0 5 0. Then 
ft(xo) 1 0. The only way both inequalities can be satisfied is if fl(xo) = 0. The 
method is similar i f f  has a local minimum. D 

3 (Rolle's theorem) If f .  R --+ R is continuous on [a ,  b] and f '(x) exists forx E (a,  b), 
then tf f (a)  = f (b) there I S  a point xo E (a. b) such that f '(xu) = 0 

4 (Mean value theorem) I f f  1s continuous on [a. b] and f ' (x j  exists on (a, b), then 
there is a polnt xo E (a,  b) such that 

More generally, if gl(x) also exists on (a,  b), then there is a point x0 E ( a ,  b) such 
that 

Proof We will create a new function to which Rolle's theorem may be applied. Let 
F(x)  = f (x) - Kg(x),  with K to be determined To apply Rolle's theorem, we need 
F ( a )  = F (b ) ,  or 

If g(b) # ~ ( r r ) ,  we can solve for K as 
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Now, by Rolle'i theorem, there is a polnt xo such that F'(xo) = 0, whlch means, that 

f ' ( ' i 0 )  = Kql( ' io)  

Subst~tutrng the vdlue ot K give., (A 6) If g i b )  = g ( n )  then there 15  an x ~  such that 
g'(x0) = 0, In this case both vides of (A 6) are zero 

The trrit form of the mean value theorem (A 5 )  follow\ from the second by letting 
i:(r) = x  C: 

The second der~vatrve of j 1s denoted as f " ( x )  The third derivative is f ( " ( x )  The nth 
derlvatlve 1s f ' " ) ( x ) ,  with the convention that f ' " ( x )  = f ( x ) .  

A.6.2 Partial derivatives and gradients on Rm 

We now move from functions on 35 to functions on R". Let f :  Rm -t R be des~gnated as 
f ( x i ,  xz, . . . . x,,). The derivative of f with respect to .r, (regarding the others as fixed) is 
denoted as 

- 
a x, 

This partial derivative is the change in f  as the ith argument is infinitesimally changed. For 
example, for x l  , 

a f --  - lim f ( X I  + h ,  X?, . . . , .z,) - f  ( X I ,  ~ 2 , .  . . , x,) 
axl h-+O h 

Another notation for the parttal denvat~ve 1s to lndtcate the der~vat~ve with respect to the 
1 th argument a5 /, Yet another notation IS to indicate the derivative with respect to the z th 
argument ~v L), f , then 

The notation f, may be confusing when f has several components, so it is not used in this 
text. 

A function over Rm is said to be differentiable at a point xo if all its partial derivatives 
exist at xa. 

Definition A.8 Let f be continuous and defined on a domain D. Then f  is said to be in 
class ck In D, sometimes denoted as f E c ~ ( D ) ,  if all partial derivatives of f of order 
up to and including k exist and are continuous. Where the domain D  of the function is 
significant, we write c ~ [ D ] .  0 

Example A.6.1 

I .  The set of all functions continuous over [O ,  2x1 is denoted as C[O, 2x1 

2 A function f E C o ( D )  is conttnuous, but does not have a denvative The funct~on f (x) = 1x1 
1s a CO funct~on 

3. A function f E C 1 ( D )  is both continuous and differentiable 

4. The function f ( x )  = sin(x) is in Cm(W); that is, it is infinitely differentiable over the whole 
real line. 

Definition A.9 The gradient or total derivative of a function f :  Rm -+ R  at a point 
xu = ( X I .  x2, . . . , x,,) is denoted as 
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The gradient is obtained by stacking the partial derivatives: 

Where the variables with respect to which f is differentiated are to be emphasized, they are 
indicated with a subscript, as in 

In other sources (see, for example, [132]), a distinction is made between V f and g. In 
this text, they are always taken to have the same meaning. We will use both notations 
interchangeably. 

In this book, gradients are always column vectors, as are vectors in general. (This 
may be inconsistent with other definitions, but it maintains an internal consistency.) 

Example A.6.2 Let 

Then 

and 

We now state without proof a useful generalization of the mean value theorem. 

Theorem A.2 (Mean value theorem for multiple variables) Let f he diflerentiable on urz 
* T open convex set D c Rm, and let x ,  y E D. Then there is a point x* = [ x ; ,  x;, . . . , x,] 

that is on rhe line between x and y such that 

The expression (A.8) can be expressed more concisely using an inner product. An inner 
product of two vectors a and b may be defined as 
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(Other concepts related to inner products are presented in section 2.4.) Using inner-product 
notation, the mean value theorem becomes 

f ( x i  - f ( y )  = (V f  ( x * ) ) ~ ( x  - y) .  ('4.9) 

A.6.3 Linear approximation using the gradient 

We observed rn equation (A 4) that the derivative can be used to determ~ne a linear approx- 
mation to a real-valued function defined on X In a similar way, the gradient can be used 
to define a linear approxlmatlon to a real-valued function defined on Em 

Theorem A.3 Let f E C'  be in an open set D C Rm. Let xo E D. Then at a point 
x  = xo + Ax  near the point xo, we can write 

f (xo + A w )  = f  (xo) + (V f ( x o ) l T a x  + R, (A. 10) 

where R is a remainder term such that R = o(1lx - ~ ~ 1 1 ) .  

Proof Comparison of (A. 10) with (A.9) reveals that 
m 

R = (V  f ( x* )  - v f ( x ) ) 'Ax  = Ax , .  

Since V  f is continuous (because f E c'), there is a neighborhood JV about xo such that 
each 

am*) afw - - -- 
ax, ax, 

is less than any positive E .  Hence 

We now examine the geometry of the linear approximation described by theorem A.3. 
Recall from analytical geometry that a multidimensional plane is defined by a point on the 
plane and a vector orthogonal to the plane. We will use this notion to show that the gradient 
vector of a function is orthogonal to the tangent surface of that function at a point. 

Let f :  Rm -+ R, and consider the "graph" of this function defined in Wm+' as the point 
( x ,  f  ( x ) ) .  At a point XQ, let P be the plane in Ern+' tangent to f  ( x ) ,  and let n E Rm+' be a 
vector normal (orthogonai) to the plane P at xb. Notationally, the plane is defined as 

We now show that the linear approximation (A. 10) corresponds to a plane tangent at f  ( xQ) .  
Let 

and consider the plane which has n as the normal and the point 

as the point of intersection. Then the points ( x ,  2 )  lying on the plane satisfy the equation 

Comparison with (A. 10) indicates that z is the linear approximation of f  ( x ) .  
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Application of these principles to a variety of vector and matrix derivatives of use in 
practice is presented in appendix E. 

A.6.4 Taylor series 

The Taylor series provides a polynomial representation of a function in terms of the function 
and its derivatives at a point. Application of the Taylor series often arises when nonlinear 
functions are employed and we desire to obtain a linear approximation. In its simplest 
form, only the first two terms of the Taylor are employed, giving essentially the mean value 
theorem in which functions are represented as an offset and a linear term. Often the third 
term (the quadratic term) is also employed to provide an indication of the error in using the 
linear approximation. 

For a function f :  R -+ IW, the Taylor series should be familiar. Let f :  R -i IW be such 
that f E Cn+' in an open neighborhood about a point xo. Then 

where 

and x* E [ x ,  xo]. 
Extension of Taylor's theorem to f :  Rm -i R is stra~ghtfonvard. Let Ax = x - xo = 

( A x , ,  Ax,, . . . , Ax,). We define the operator 'D by 

Then 

D f  ( x )  = ( V f  ( X I I T  Ax  

- -- a f  Axl + - a f  Ax* + . . . + - AX,. a f  (x) 
8x1 8x2 axm 

Using 'D, the Taylor expansion formula is 

f (xo + A x )  

- 1 1 
- f ( K O )  + D f  ( X O )  + F D 2 f  (xo) + + -'D"/(x,) I? ! + , ) ( / ~ ~ l ! " ) ,  (A.  12) 

where x* is a point on the line segment adjoining xo and x 

Example A.6.3 Let f (x, y)  = x + sin(xy). Then 

a a 
D = ax -  a x  + ay- a?. 

and 
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Then for XI, = (x(,. y,,). 

and the lirst three terms of the Tziylor series are 

f ( %  + Ax)  = .r,, + s in ( . r~~y~)  + A.rc 1 + yo cos(.roy~)) + Ay(.uo cosi.rojo)f 

A.7 Basic constrained optimization 

Constrained optimization tc employed at several points In book We present here the baste 
concepts, leav~ng the justlficatlon for the method to chapter 18 

Let f (t)  be d function to be minimized or maxlm~zed, subject to a constraint g(f) = 0 
The constraint is introduced by forming the function 

J = f (t)  + Ag(t>, 

where A. is a Lagrange multiplier. Then, sufficient conditions for an optimal value are 

The last equation always returns the original constraint. 
When there are several variables, a partial derivative is introduced for each. When there 

are several constraints, each constraint is introduced using its own Lagrange multiplier. For 
example, if gl( t)  = 0, gz(t) = 0, . . . , g,(t) = 0 are p constraints, then we form 

then find sufficient conditions for constrained optimality by 

Example A.7.1 We will demonstrate the optimization with a single constraint and two variables. 
A fence is to be built along a river so as to enclose the maximum possible area, as shown in figure A.5. 
The total length of fencing available is R meters. The constraint is 

Figure A.5: A constrained opttmtzatton problem. 

The function to be max~rnlzed is the area enclosed, 
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We form the function 

J = x\  + h ( x  + 2)) - R )  
and compute the derivatives 

From the first equation we find i. = -), and from the second we find i. = -x/2. Equating these, we 
find 

Substituting this into the constraint we find that x = R/2 meters 

A.8 The Holder and Minkowski inequalities 

In this sectlon we examme some useful ~nequalities, both to establ~sh that the I ,  and L, 
norms are, in fact. norms, and to provide an introduction to the study of inequalities in 
general The proofs Introduce several add~tional inequal~tles that are useful in thelr own 
right In addition, several other useful inequalit-res are examined In the exerclses 

That the 1, and L ,  norms satisfy the propertles of norms given in sectlon 2 1 must be 
established A11 of the propertles are stra~ghtforward to establ~sh except the property that 
llx + yli 5 llxll + IIyli For the p-norms, this Is established by means of the M~nkowsk~  
inequality. wh~ch In turn follows from Holder's ~nequal~ty  

Lemma A. l  (hriilder's inequality) For x , y > 0 such thaf x + y = I ,  und (possibly conzplex) 
sequences {a , ,  i = 1.2 ,  . . . , n )  and {b , ,  i = 1.2.  . . . , n } ,  

( A .  1 3 )  

We note that when x = y = 1/2 we obtain the Cauchy-Schwarz inequality. Equation 
(A.13) can be written more succinctly (and more generally) as 

b)l 5 I I ~ I I I / L  llblll/Y. 

Proof If either a!  = a* = . . . = a, = 0 or b1  = b:, = . . . =I bn = 0, then the inequality 
(A.27) is trivial, so we exclude this case. Let us consider first the case that the numbers a, 
and b, ,  i = 1, 2. . . . , n are nonnegative real numbers. We begin with the inequality 

Y~ 5 1 + C Y ( J  - 1). (A. 14) 

for y > 0 and 0 < a < 1 (see exercise A.7-27). Let y = A / B  for A. B > 0. Then 
A" B1-" - < B + a ( A  - B ) .  Now let x = a and y  = 1 - a to obtain 

A" B' 5 x A  + y B .  ( A .  15) 

Equality holds in (A. 15) if and only if A = B. Now let 

(A. 16) 

Then. using ( A .  15), we get 

(A.  17) 
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Substituting from (A. 16) into (A. 17), we obtain 

(A. 18) 

In the case that the ( I ,  and h, are complex, we have 

from which, using (A. 18), equation (A. 13) follows. 
From the equality condition for (A. 15), equality holds in (A. 1 3 )  if and only if A, = B, 

for i = 1,2, . . . , n ,  which is equivalent to 

Now the triangle inequality for p-norms is established by the Minkowski inequality: 

Lemma A.2 (Minkowski i n e q u a l i ~ )  Forpositive numbers A, and B,, i = 1 , 2 ,  . . . , n,  

with equality ifand only if 

The proof is discussed in exercise A.7-28. 
The Holder and Minkowski inequalities also have an integral form. Let p, q > 0 such 

that + = 1. For the Holder inequality: 

ISb (A. 20) 

Equality holds if at least one of f or g is identically zero, or if fg  does not change sign on 
[a ,  h]  and there are positive constants a and j? such that 

For the Minkowski inequality: 

( f + g P  d )  ' 5 ( ( t p  t I p  + ( t p  t  l i p .  (A.21) 

Proofs of these statements are examined in the exercises. 

A.9 Exercises 

A 1 - 1 Show that the following setc are convex 

(a) The set of Toeplitz matnces 

(b) The qet of montc polynom~als of the same degree (A polynomial is monlc if the coefficient 
of the hlghest-order term is 1 ) 

(c) The set of symrnetnc matrices 
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A 1-2 The use of an zndicator functron can be generalized for the descnption offuzzy sets In thls 
case, the indicator function 1s not simply binary valued, but takes on values in a continuum 
from 0 to I Flgure A 6 provides the indicator functlon for the fuzzy set of T = "set of real 
numbers near 10" Note that there 1s a degree of arbrtranness about the descnptlon, fuzzy 
sets can be used to represent human taste and vanatlon to a much greater degree than can 
nonfuzzy (cnsp) sets 

(a) Draw the indicator function for the fuzzy set of real numbers "near 3." Call this set /I. 
(b) Draw the indicator function for the fuzzy set of real numbers "near 4." Call this set 8. 
(c) Draw the indicator functions for A f l  8 and A U B .  

(d) A fuzzy set defined over the real numbers is called (loosely) a fuzzy number. Devise a 
reasonable rule for the addition of fuzzy numbers. Show the result of the rule for A + B .  

Figure A.6: The indicator function for a fuzzy number "near 10". 

A 1-3 The set of even integers can be represented as 2 2  Show that 1221 = 121 (that is, there are as 
many even Integers as there are integers) Sim~larly show that there are as many odd integers 
as there are integers 

A 1-4 Show that I(0. I ] /  = jRI 

A. 1-5 Show that the intersection of convex sets is convex. 

A. 1-6 If S and T are convex sets both in Rn, show that the set sum 

is convex. Figure A.7 illustrates the set sum. 

Figure A.7: The set sum. 

A. 1-7 If S and T are convex sets. show that S i l  T IS convex 

A.1-8 Show that the polytope In n dimensions defined by 
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A 1-9 For the polytope P,, of the prebious exercise, let ( a l ,  ( 1 2 ,  , a,) E P, Show (by ~nductlon) 
that 

A 3- 10 If f ( u )  1s convex, show that a f (x)  b 1s a150 convex for n > 0 

A 3- 1 1 (Order notation) 

(a) Show that f = m ( x )  IS O(x )  as x -+ 0 

(b) Show that j = r sln(1 + l / x )  1s O ( r )  as r -+ 0 

(c) Show that f = e - l f 9 s  o ( r m )  as x $ 0 for all values of a 

A 5-12 Using f ( r .  Y)  = r', show that a contlnuouc; functlon does not necessarily map an open ret 
to an open set 

A.5-13 Using f (x) = x Z / ( l  + x2),  show that a continuous function does not necessarily map a 
closed set to a closed set. 

A.5-14 Find an example of a continuous functlon that maps an open set to a closed set. 

A.5-15 Show that property 1 for continuity is true 

A.5-16 Show that property 2 for continuity is true. 

A 5-17 Let (X. dZ) be a metnc space of f u n c t ~ o n ~  defined on R wtth the Euclidean metric, d:( f ,  g )  = 
f:( f (t)  - g(t))2 d t  Define the mapping cP,, X -+ B by 

Show that if 4 is square integrable, 

then QS, IS a continuous mapplng. H~n t :  Use the Cauchy-Schwarz tnequaltty 

A.5-18 Prove Rolle's theorem 

A.5-19 Show that if f is differentiable on an interval (a,  b) then the zeros o f f  are separated by the 
zeros o f f ' .  Hint: Use Rolle's theorem. 

A.5-20 Show that i f f  and g are both continuous on [a, b] and both differentiable on (a .  b),  and if 
f (a )  = g(a)  and f (b) = g(b), then there is a point xa E (a,  b) such that f'(xo) = g'(xo). 
Hint: Use Rolle's theorem. 

A.5-21 Using Rolle's theorem, show that if f is a function differentiable on (a.  b) with f (a)  = 
f '(a) = f "(a) = f '3)(a) = 0 and f (b) = 0, then there is a point c E (a, b) such that 
f '" ((C) = 0. 
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A 5-22 Using the mean value theorem, 

(a) Show that ~f f '(x) = 0 on an interval, then f is constant on that interval 

(b) Show that i f f  ' ( x )  never changes sign on an interval, then f 1s monotonic on that Interval 

A 6-23 Detern~ine a h e a r  approximation to each of the follow~ng functions 

(a) f (x, y, z )  = x ' + ~  at (1, 1 ,  1) 

(b) f (x, Y) = cos(xy) at (1,2) 

(c) f (x ,  y) = ex2-)* at (1.2) 

A 6-24 Wnte a MATLAE funct~on x = gradesc ( f , df , n, xO , mu 1 that Iterates the gra- 
d~ent  descent algonthm on a function f wrth denvatrve df in n dlmenslons starting from xO 
(The functlon and its denvatlve are MATLAB function-functions ) 

A.5-25 Determine a complex vector c that minimizes 

(b - ~ c ) " ( b  - Ac) 

using gradients. 

A.5-26 Detemne  the Taylor senes for the followmg functtons up to the quadratic term A symbol~c 
manipulation program may be helpful 

(a) f ( x ,  y, z )  = xV" at (1, 1, 1) 

(bi f ( x ,  y) = cos(xy) at (1.2) 

,(c) f ( x ,  y )  = ex2-" at ( 1 , ~ )  

A.8-27 In this exercise, we develop aproof of (A.14), whlch introduces some other useful ~nequalitles 
along the way. 

(a) For x > 0 and for n an Integer > 1, show that 

(I + x)" > 1 + nx. 

Hint: Use the binomial theorem (I .83). 

(b) The geometric mean of a set of numbers z l  , z2 .  . . . z,, 1s defined by 

The arithmetic mean of this set of numbers is 

The following result holds: 

The geometric mean of n posltlve real numbers is less than or equal to their 
anthrnetlc mean. wlth equal~ty tf and only if all of the numbers are equal 

We now show that for .x >. - 1 and 0 < a < 1 .  
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Assume that a = m l n ,  then we can write 

m factors n - rn factors 
Us~ng  the ~nequallty relating the geometnc and anthmet~c means, show that 

(c) Employ a continuity argument to extend this result for all o! such that 0 < cr < 1. 

(d) FinaIly, to establ~sh (A. 141, let x = ;. - 1. 

A 8-28 (Proof of Mlnkow\k17s ~nequal~ty)  

(a) App ly (A13)us1nga~  = ! A k / a n d b k = l A t + ~ t / P 1 q , w l t h ~ =  l / p a n d y =  l - l / p =  
1 l q  

(b) Sim~larly, apply (A 13) where now ak = I Bt 1 and bk = !Ak + Bk l P t q  
(c) Add the two equations just obtained, uslng p = 1 + p /q ,  to obtain 

(d) Conclude, using I /q  = 1 - lip, that 

A.8-29 Prove (A.20). Hint: In (A. 1 S ) ,  let 

A = 
I f  (tjl" and B = Is(t)I4 

sob I f  ( t ) lPd f  Sf I f  (t)19 dt  

and Integrate from u to b. 

A.8-30 Prove (A.21). 

A.8-31 [325] Show that ~f p .  q > 1 with p-i + q-' = 1 then for all scalars a and /3 

Hint: Let @ ( r )  = r P / p  + r-q/q, and show that @ ( r )  satisfies @ ( t )  2 1 for all positive t .  
Then let r = lali/91/31-'l" 

A.8-32 Prove the "information theory inequality," 

logx ( X -  1. 

A.8-33 In the proof of lemma A.1, the inequality AXBY 5 XA + y B  for x + y = 1 with A ,  B, 
x ,  y > 0. Another inequality (not as tight) for these conditions is 

Prove this inequality. Hint: Use the information theory inequality of the preceding exercise. 

A.8-34 Let 

be a unit sphere defined by the norm /I . 11. Show that S is convex. 
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A.8-35 [56J Show for 0 5 x ,  3 5 1 and n z 0 that 

Hint Let f (3)  = e-' - 1 + \J Show that f 0) I, 0 for \ 0 S h o ~  that {hi\ give. the 
result for x = 1 Then show that g ,  (x) = (1 - xv)" is a convex function of x and hence 
R , ( x )  5 (1 -xIR,(O)+ X R , ( I )  

A.10 References 

A comprehensive introduction to set theory IS provlded in [I261 The fuzzy sets alluded to in 
exerclse A 1-2 were introduced in [383] A recent treatment glving a varlety of eng~neering 
apphcat~ons IS 12791 

The anzlysis presented in t h ~ s  dppendlx is available from a vanety of sources, including 
142, 921 Some of the materlal has also been taken from [209] The materlal on denvatlves 
with respect to complex vectors 1s from [I321 

Our discussion of the Holder and Mlnkowsl inequalities 1s drawn from [I761 
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Completing the Square 

Completing the square is a simple algebraic technique that arises frequently enough in both 
scalar and vector problems that it is worth illustrating. 

B.l The scalar case 

The quadratic expression 

can be written as 

In completing the square, we write this as a perfect square with a constant offset. Taking 
the coefficient of x and dividing by 2 ,  it is straightfornard to verify that 

By means of completing the square, we can obtain both the minimizing value of x  and 
the minimum value of J ( x )  in (B.l). Examination of (B .2)  reveals that the minimum must 
occur when 

b 
x = -- 

2a ' 
a result also readily obtained via calculus. In this case, we also get the minimum value as 
well, since if x = - & then 

Example B . l . l  We demonstrate the use of completing the square for the estimation of a Gauss~an 
random variable observed in Gaussian noise. Suppose X - N(p,, a:) and N - N(O,a;), where X 
is regarded as a signal and N is regarded as noise. We make an observation of the signal in the noise, 

Given a measurement of Y = y ,  we desire to find f (x I y). By the Bayes theorem, 
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The densrty f ( y  / x) can be obtalned h) oh\?] \ 111g th'it foi a glven value of X = x. 

2 = \ + R !  

is simply a shift of the raniion1 v;lri:ihlc i l ' .  iind hence is Gaussian with variance n i  and me;tn n.  That 
is. 

f ( >  1.c) = A,(! - x ) .  

where S,, is the density of N Vl'c can therefore wrlte 

The constant In the denominator 1 5  iirnplq a normal~zing value to make the den\lty f ( I J 1 ) rntegrate 
to 1. we call it C and pay I~ttle attentton to i t  We can wrlte 

Let us focus our attention on the exponent. whrch we denote by E. 

This can be written as 

where C1  does not depend upon x By completing the iquare. fie have 

nhere C- doe\ not depend upon x The denilty can thus be wntten 

This ha\ the forlii ol':~ Cl;r~l\\laii tien\~r!. \o the con\tanr\ in front of the exponential inust be such that 
this i~itegr:tte\ to I .  The ITIC:II~ 0 1  11i1\ C ~ : i ~ t ~ ~ i ~ u l  ( i e~~ \ i t>  I \  

and the variance r \  

0 ,~ .s : 
/ L  = ----- 

. >  , 2 ,- . , / I !  
C i ~  - fl, fl + 0(- 

Let us consider an interpretation of this I-ewlt. I f  nj >> n?, then an observation of Y does not 
tell us much about X because the interfering nolse A' i \  too st]-ong. The irifbrll~ation we have about 
X given Y is thus about the same as the infol-]-nation we have about X alone. This observation i h  

validated in the analysis: if a: >> a'. then 
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On the other hand, rf the nol\e vanance rs small. $0 that a,? << a:, then an observdtlon of Y 1s almost 
the same as an observatron of X itself In th15 case we have 

wd, 2 y and a:, %::ah 0 

8.2 The matrix case 

The equation 

x T A x + x T Y  + C  

where A is symmetric and invertible can be written as 

( x + z l T ~ ( x +  Z) + d ,  

where 

and 

B.3 Exercises 

B.1-1 The characteristic function of a randclm variable X is the (conjugate of the) Fourier transform 
of ~ t s  density, 

@,(w) = fx(x)eJ"" d x .  

(a) Show that a Gaussian den~ i ty  with 

I 

has the characteristic function 

(b) To follow up the characteristic function idea, show that the nth moment of X can be 
obtained from its characteristic function by 

B. 1-2 Show that the conditional density in (1.52) is correct 

B.2-3 Using (B.3), determine f (x I y) when 

Y = X + N  

and X and N are independent Gaussian-distnbuted random vectors with 

X - N ( p ,  R,) and N - N(O, R,). 

Identify the mean of X / Y and the covariance of X / Y .  
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Basic Matrix Concepts 

C.1 Notational conventions 

In thts text, matrlces are denoted by capital letters iuch as A An m x n matrix conslsts of 
nz rows and n columns The elements are usually considered to be from C or R Where the 
underlying field Ie specified, we may use the notation A E M,, ,, ( F )  to lnd~cate that A is a 
172 x n matrix wlth elements from F Where the field is understood. we may stmply wrtte 
A E Mi,, . 

We can wrlte a matrix A In the form 

a 12 

A = 1:;: :):I = IAI,, 

ail, I ~ , , , 2  a,,,,, 

In thts display. the startlng index is 1 However, In many Instances it turns out to be conventent 
to allow other starting ind~ces Sometime\ the convenience 1s a matter of adjusting to the 
exped~enc~es of a programming language by default. C arrayc \tart indlces at 0, while 
Fortran and MATLAB tnd~ces start at 1 When codlng matnx operations, care should be 
taken to start and end at the correct tndex 

The r th element of the vector x I \  denoted by x i  or by x, .  unless there 1s some notational 
confus~on, in whtch case tile notatlon [x], 1s employed For example, the ith element of the 
vector x, might be denoted [x, ] ,  Thc ( 1 ,  j ) th  element of the matrix A 1s denoted as a,, or 

A 1, 
An in x n matrlx can be considered a\ a srde-by-side stack of n column vectors. each 

w ~ t h  177 elements. In whlch cace we could write 

A = [ a i  a:! . . .  a,,]. (C. 1 

where each a, E @I" I \  a vector The notation employed to indlcate the slde-by-side stack- 
lng IS slmply juxtapoc~tlon. filth the vectors separated by a cpace A matrlx can also be 
cons~dered as a etack of r o w ,  one on top of the other Thts would be vvritten as 

where each b, E @" 
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It is occasionally necessary to extract portions of a matrix to form submatrices. The 
notation for that employed here follows [ I  141 and MATLAB. If A is a matrix, then A(1: i, I : j )  
is used to indicate the submatrix consisting of the first i rows and the first j columns. The 
colon : is a separator in a range unless it appears alone in a dimension, in which case it 
indicates the maximum possible extent in the index for that dimension. 

Example C.l.1 For the matrix 

some representative submatrices are 

When the rows and columns are not contiguous, the rows and columns can be presented in 
a list. 

Example C.1.2 For the matrix 

the following are submatrices: 

The j th column of A may be represented as A: ,  , , and the i th row of A may be represented 
as a column as A,,:. 

A useful notation is the unit vector or element vector e l ,  which is a vector of length 
n (usually determined by context) that is all 0s except for a 1 in the ith location. Thus 

Using the unit vectors, the j th column of A can be written as 

A: , ,  = Ae, 

and the ith row of A as a row is 
T T A,.: = el A .  
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A unit element matrix is a matrix E , ,  of size rn x n (usually deternlined by context) 
that is all 0s except for a 1 at location (r, s) .  For example, E3,2 E M4,4 is 

Clearly E,, = e ,eF 
A diagonal matrix is a matrix of the form 

where 0s appear in all locations not on the diagonal. This is occasionally written in abbre- 
viated form as 

If the matnx is not square, then a d~agonal matnx has rectangular sectton of 0s at the bottom 
~f the number of rows exceeds the number of columns or a rectangular section of 0s at the 
right tf the number of columns exceeds the number of rows 

Throughout the text tt wtll be common to deal wtth vectors and matrlces of Os, for 
exampIe [0 0 0 O I T  Where there IS little room for confusion, a vector or matnx of 0s w~fl 
be lnd~cated slmply by the symbol 0, where the shape IS detennlned by the context of the 
symbol Where there may be confusion between a vector or matrix of 0s and a scalar 0, the 
vector or matrix IS denoted wtth a bold font, as 0 

B a s ~ c  properties of matnx addrtlon and mult~pllcatlon are assumed to be understood 
It 1s helpful to remember the shape of some matnxlvector products 

A matrix times a column vector is a column vector: 

A row vector times a matrix is a row vector: 

* A row vector times a column vector is a scalar: 

* A product such as xTAy yields a scalar: 

C.2 Matrix identity and inverse 

There 1s an identity element for matrix multiplication, utually denoted by I or, where the 
size must be expl~cltly shown for clartty, I, The ident~ty 1s ~ c h  that for an nz x n matrlx 
A ,  

I A =  A ,  



C.3 Transpose and trace 883 

where in the first case the identity is m x m and in the second case i t  is n x n: without 
indication, the identity is usually taken to size itself as appropriate to be conformable. The 
n x n identity matrix is 

The inverse of a matrix A (when it exists) is a matrix, denoted A-', such that 

AA-'  = I and A- 'A = I. 

If the inverse exists, the matrix must be square. (However, squareness is not sufficient for 
the existence of an inverse.) Unfortunately, for many matrices an inverse does not exist. 

Example C.2.1 The matrix 

does not have an inverse. One way to show this is to presume an inverse A-' = [z and show 
that a consistent set of elements of the matrix cannot be found. Multiplying AA- '  and equating to the 
identity yields (among others) the two equations 

which are inconsistent: they cannot both be true. 

The matrix inverse is studied further in chapter 4. 
To summarize the properties of addition and multiplication: 

1. Matrix addition forms a commutative group: addition is associative and commutative, 
an additive identity exists, and each matrix has an additive inverse. 

2. Matrix multiplication is associative. 

3. There is a multiplicative identity, denoted as I. 

4. There is not a multiplicative inverse for each matrix. 

5. Matrix multiplication is not commutative. 

Matrix multiplication is not a group operation, hence the arithmetic of matrices does not 
form a field. 

6.3 Transpose and trace 

Definition C.1 The transpose of an m x n matrix A is an n x m matrix AT, where the 
(i, j)th element of AT is A,,: the rows of A become the columns of AT. 

Example C.3.1 Suppose 
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Then 

Definition C.2 A (real) matrix such that A = AT i~ said to be symmetric. 0 

For complex matrices. t t  I \  often of interest to both tranrpo\e a matrix and conjugate its 
elements 

Definition 6.3 The Hermitian transpose of an 171 x rt  matrix A 1s an n x n~ n2atrtx A" 
where the ( r .  j)th element of A" 1, A,,. (The overl~ne denote\ complex conjugate ) Cli 

Example C.3.2 I f  

then 

Definition C.4 A matrix such that A = AH is said to be Hermitian or Hermition sym- 
metric. G 

The transpose of the product is the product of the transposes in reverse order: 

Another useful fact is that the transpose of the inverse is the lnverse of the transpose: 

The inverse transpose I \  often wrltten a\ A 
The trace ic an eas~ly computed funct~on of \quare matrlx 

That I\. the tiace I \  the \urn of Ih? c l e r - r ~ c ~ ~ t ~  along tile maln diagonal When AB and B A  
borh exl\t. 

/ I I - ( A B )  = wian)  1 (C.9) 

Since M'C LYLII  rite ti!, = e,' .4e,. \+l~i.~.e e, i 4  ;I kinit veclor. we can write using (C.4) and 
( C . 3 )  a \  
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The trace is sometimes used to define an inner product between matrices as ( A ,  Bj = 
tr(AT B).  

6.4 Block (partitioned) matrices 

In many applications it is convenient to partition a matrix into blocks. For example the 
matrix 

can be written as 

where the A,, are the blocks 

Operations on block matrices go as if the blocks were scalars. For example, 

provided that all of the block products are conformable. 

6.5 Determinants 

A determinant of a square matrix is a scalar quantity that can provide some useful informa- 
tion about a matrix; for instance, about its invertability. However, since it provides only a 
scalar quantity, it cannot summarize all the useful information about a matrix. 

6.5.1 Basic properties of determinants 

To introduce the determinant, consider the simple matrix 

L J 

It can be verified by direct multiplication that 

The quantity in the denominator ad - bc is the determinant of this matrix. The determinant 
is denoted either by enclosing the matrix in straight lines, or by using "det" as an operator: 

Permuting the order of the rows we obtain a new matrix 
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with inverse 

Observe that the determinant in this ca\e is be - a d ,  which is the negative of the determinant 
for A Similarly ~f the columns of the matnx were permuted the determrnant would change 
sign. This lrttle demonstration reveals one of the propertles of determinants: 

1. The determinant changes sign when two rows are exchanged. 

2. More generally, for an n x n matrix, ~f the rows or columns of a matnx are permuted 
by a pennutation of order m ,  then the sign of the determinant changes by (-1)". 

It is also straightforward to show for the 2 x 2 matrix. and is true in general. that 

1. The determinant depends linearly on the first row: 

2. The determinant of the identity matrix is 1.  

These three propert~es are axiomatically sufficient to estabIi\h exactly what the determinant 
1s Other important propertles may be denved from the first three 

1.  If two rows are the same, the determinant is 0 

2. The determinant is unchanged by elementary row operations. That is,  fa multiple of 
one row is subtracted from another row. the determinant remains the same: 

3. If one of the rows is 0. then the determinant is 0. 

4. If A is triangular (either upper or lower), then 
n 

, = I  

5. The determinant of the product of square matrices A B is the product of the determi- 
nants: 

det(A B) = det(A) det(B) 

From this we determine that d e t ( ~ - I )  = 1 / det(A) 

6 If A 1s singular, then det(A) = 0 If A is invertible, then det(A) # 0 This provide5 a 
straightforward test for the invertabllity of a matrix 

7. The rnatrix A has the same determinant as AT: 

8 B a ~ e d  upon the prevloui re\ult and property 5. it follows inimediately that for an 
orthogonal matrix Q. 

det(Q) = 1 
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C.5.2 Formulas for the determinant 

The basic properties can be used to build up formulas for the determ~nant This will be 
demonstrated for 2 x 2 mdtrices, dnd can be gener'ilized Employing the l~nearity property 
row-by-row we obtain 

a b  a O  u O  O b  O b  i r  dl  = I c  0 1  + o d + i c  0 1  + o dl (by linearity) 

(since det(co1umns of 0)  = 0) 

(by linearity of rows). 

In the more general case, an n x n matrix can be expanded using linearity on each row into 
nn determinants. All but n ! of these will have repeated columns and hence have determinant 
0. From the n !  determinants that remain, the constants can be factored out, leaving only 
permutation matrices. A further illustration for the 3 x 3 determinant is 

The first permutation matrix comes from the columns (1,2,3); no rows are interchanged. 
The second matrix comes from the columns (2,3,1); four row interchanges are required, and 
so forth. The determinant of a permutation matrix is rfrl, with the sign depending on the 
parity of the number of permutations. From this, the 3 x 3 determinant can be determined 

For a general n x n matrix, the determinant can be written as 

(C. 10) 

where the sum is taken over the n !  permutations of n integers, represented as a = (al, 
a*, . . . , an), and t (a) is the number of transpositions in the permutation a .  

A more computationally oriented formula for the determinant is expansion by cofac- 
tors. This begins by expanding the determinant using linearity, as 
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By paying attention to which terms vanish now in (C.l I ) ,  it can be shown that 

C 
= a1 I det(M1 I )  - a12 det(Ml2) + a13 det(M13 j. (C. 12) 

The matnx Mi, IS the submatnx formed by deletlng the zth row and the jth column of 
A The (I, j ) t h  minor is the determlnant of Mi, (More generally, the determlnant of any 
square submatnx of A is said to be a mlnor of A A principal minor is any minor whose 
dlagonal element? are also the diagonal elements of A ) 

The cofactor A,, 1s formed by taklng the determinant of the minor M,, with the slgn 
as in (G 12), 

Example C.5.1 Let 

Then the minors and cofactors are 

M I ,  = azz Mi2 = a21 M21 = a12 Mz2 = a11 

A i l  = a22 Alz = -azl A21 = -a12 A22 = ail 

respect~vely. 

Using the cofactor notation, the determinant may be written as 

More generally, the determinant can be computed using the cofactors from any row: 

(C. 13) 

for some row i .  It is common to choose the row with the most zeros, to reduce the number 
of cofactors that have to be computed. 

Example C.5.2 Find the determinant of the matrix 

The second row has rhe most zeros, and the determlnant can be expanded as 
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C.5.3 Determinants and matrix inverses 

The adjugate of a matrix A (not to be confused w ~ t h  the adjolnt) is the transpose of the 
matnx formed of the cofactors, 

a d ~ ( A )  = [ A , , I ~  

Example C.5.3 For the matrix of example C.5.1, the adjugate is 

Observe that 

What holds for the 2 x 2 case holds in general: The adjugate is designed precisely so that 
it contains those portions of A that are the algebraic complements of the determinant of A, 
so that A adj(A) gives the determinant on the diagonal. 

Based on this observation, if A is invertible then 

adj(A) A - 1  = - 
det(A) ' 

From this, we observe that 

det(A)Z = A adj(A). (C. 14) 

C.6 Exercises 

C. 1-1 Show that (C.5) is true. 

C. 1-2 To exercise understanding of unit vectors and their notation, show that the following are true. 

(a) A,,: = XI a,,e,. 

(b) A:,) = Z ,  ar,el. 

(c) AT: = El aileT. 

(4 A = XI A:&. 

(el A = e, A:, . 
(0 E,,A = e i ~ I : .  

(g) AE,, = A:,,el. 

(h) Ei, A E,, = air Els. 

(i) 6,, = eTe, 

C.1-3 Show that tr(E,.,X) = X,, = tr(XE,,). 

C. f -4 Show that 

tr (E:x) = X,, 
C. 1-5 Show that 

(a) tr(E:A) = a,, and hence that 

(C. 15) 
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(b) Show that tr(E,, A)  = a,, and hence that 

I 
tr (E, ,  A)  t r (E12A)  . .  . t r (E lmA)  

tr(EZI A)  tr(Ez2A) . . . tr(Ez,A) 
= A ' .  

~ ( E , I  A )  u(Ern2A) . . @(EmrnA) 

C.3-6 Show that (C.7) is true. 

C.3-7 Show that (C.9) is true. 

C.7 References 

This material is summarized from [333 1 and [114]. 
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Random Processes 

In this appendix, we review the basic concepts and definitions of random processes. Nota- 
tion for both continuous-time and discrete-time random processes is presented, insofar as 
possible, in parallel, with the continuous-time notation appearing on the left of a display, 
and the discrete-time notation appearing on the right. This should help to strengthen the 
awareness of the connections between discrete-time and continuous-time signals. 

D.1 Definitions of means and correlations 

A random process x( t )  or x[t] (for continuous time) or x, (for discrete time) is a family 
of functions, real or complex, scalar or vector, defined on a probability space. At specified 
times, such as ti,  t ~ ,  and so forth, the samples x( t l ) ,  x(t2), and so forth, are random variables 
(or random vectors). 

The mean of a random process is Ex(t) ,  and may be a function of the time index. In 
these definitions, we will denote the mean by 

The autocorrelation of a random process is defined by 

where the subscript on rx, indicates the random process whose autocorrelation is computed. 
This is also written as 

r x  (.'I > f2) rx[tl> t21, 

using a single subscript. For a vector random process x,, 

Rxx(t17 t2) = ~ X ( t l I X ( t 2 ) ~  RxX [ t ~ ,  t21 = ~ ~ [ t t l X ( t z ) ~ ,  

which is a matrix. 
The autocovariance is the autocorrelation of a centralized (mean-removed) random 

process, 
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The cross-correlation between two random processes x, and y, is 

r,, (ti,  f2) = E x ( ~ I  )7(t2) r,, S f ] .  t 21  = Ex[tl ITLr21. 

For vector random processes we define the cross-correlation as 

Rr, (ti,  12) = Ex(fi )yT(fz) R,, [ ? I ,  f21 = ~ x l f i  lyT l f 2 1  

and define the cross-covariance as 

C X , ( ~ I ,  f2) = E(x(tl)  - ~x( t1 ) ) (7 ( t2 )  - Db(f2)) 

= Ex(ti )Y(f2) - PX ( f ~  ID\ (f2). 

D.2 Stationarity 

A stochastic process 1s strict-sense shtionary 1fal1 of ~ t s  stat~stlcal properties are invariant 
wlth respect to sh~fts of the time origin For example. the jo~nt  dlstribut~on of the random vec- 
tor [x,, , xt,, . xl,IT IS the same as the jolnt dlstributson of the random vector [x(tl + r ) .  
x(fq + r ) ,  , ~ ( f ,  + r)] ,  for any dimensional~ty rn and any shift r In particular, the mean 
and the correlation and covariance functions must all be Invariant to shift. that IS, the mean 
must be constant (w~th s~milar notatlon for dlscrete tlme) 

A stochastic process is wide-sense s t a t i o n a ~  if its mean is constant, and the autocor- 
relation depends only on the tlme difference r = tl - 12 By an abuse of notatlon. we write 
r, (ti , t2) = r, (r ), SO that 

By a simple change of variable, equivalent forms are 

with simllar changes for discrete time. The auto-covariance is s~mllarly defined for wlde- 
sense statsonary processes. 

The autocorrelation function has the symmetry 

For real random processes, the autocorrelation function is even: 

Two processes x (t) and y (f) are jointly stationary ~f each 1s stationary and their cross- 
correlation r,,(tl. t2) depends only on r = t i  - 12. We then wrlte r,, ( r )  = rx, ( t i ,  t2). 
or 

r,,(r) = Ex(t  + t)), = E.u(t)V(t - r ) ,  

wlth slm~lar notatlon for discrete-time 
In the general case, a strict-sense stationary process I \  wide-senie stdtlonary. but a 

w~de-sense statlonary process IS not necessarily str~ct-sense itatlonary Houever. a Gdu\sian 
rdndoin process (in uhich each sample x, 15 dist~tbuted a i  a Gaus\ian rdndom vartdble) thd t  

r i  wide-iense itdtlondry Is also str~ct-ien\e itatlonary. since d Gdusmn I \  chdrdcterlzed h\ 
only two momenti 
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D.3 Power spectral-density functions 

For both continuous-time and discrete-time random processes, the power spectral-density 
of a wide-sense stationary random process is the Fourier transform of the autocorrelation 
function. For continuous-time random processes, 

h3 

S.,,(w) = /__ r .,, ( r )e- jWT d r .  

This is also denoted as S,(w). Because of symmetry (D. I ) ,  the PSD is a reul function of o. 
Furthermore, since real power cannot be negative, the PSD must satisfy S, (w)  2 0 for all 
w. I t  is straightforward to show that the average power of a random process is 

The cross-spectral density is 

We shall also have occasion to use the Laplace transform of the autocorrelation function. 
We thus define (by an abuse of notation) 

CC 

Scy(.y) = 1_ rxy( r )e-s7 cfr. 

This is a bilateral Laplace transform. 
For a real random process, since the autocovariance is real and even, its bilateral Laplace 

transform will be even; that is, 

Furthermore, when s = jw ,  the PSD will have the property 

For discrete-time functions, we have the PSD 

k 

This is also frequently written S,,(eJW). Similarly, 

SXr (o) = SrY ieJw) = x r , ,  [ k~e- jWk 
k 

Similarly, we define 

For a real random process. 

and 
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D.4 Linear systems with stochastic inputs 

D.4.1 Continuous-time signals and systems 

Let x(t) be the input to a linear system having impulse response h(t), and let y(t) be its 
output. Then 

If x(t) is a random process, then y (t) is also, with mean 
as 

Ey(r) = Ex(r  - u)h(u) du = p,(t) x h ( r ) .  

The cross-correlation is 

The output autocorrelation is 

For wide-sense stationary random processes, we have 

For the cross-con-elation function, in the integral (D.2) we note that r,,(ti, tz - a )  = 
r,, (tl - tz + a )  for a wide-sense stationary process, so that for r = ll  - t 2 ,  

Similarly, we find that 

r , , ( r )  = r , , ( t )  c h ( t )  = r,,(r) * h( t )  * %(-T). 

If h(t) has Fourier transform H(w) and Laplace transform H ( s )  (using the familiar 
abuse of notation), then 

- 
I?(-t) ++ P(w)  (Fourier). 

- 
h(-f) t-t P(-F) (Laplace). 

Then ( ~ n  the Fourier tran\form context) 

S,, ((0) = s ~ ~ ( w ) N ( ~ )  s,, (w )  = S,, (w) H ( w )  s,,  (w)  = s,, ( W ) I N ( W ) I '  
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and (in the Laplace transform context) 

, (  = S -  S,,(s) = S, , (y)H(r)  S,,(r) = s,,H(s)N(-s) 

If h(t)  1s a real function, then z(-t)  = h(-t) and 

h(-t) t, H (-w) (Fourier), 

h(-t) tt H(-s) (Laplace) 

D.4.2 Discrete-time signals and systems 

Let x[t] be the input and y[r] be the output of a linear system with impulse response h[t] 
Then 

Eyltl pxIt1 *hi t ] ,  

for a stationary process, Ey[t] = p, C, h[t] 
The cross-correlation can be written (reasoning as before) 

r,,ltl, t?l = r , , [ f ~ ,  t21 *E[tzl, 

for a stationary proce\s, 
- 

r,,[tl = r,,[.t-l * hl- r l  

The output autocorrelation 1s 

r,,[ti, f z l  = r , , I t ~ ,  t ~ l  * hltll * z[ t .~I ,  

and for a stationary random process, 

If h[t] has discrete-time Fourier transform H(eJ") = H(w) (by the familiar abuse of 
notation) and Z-transform H(z), then 

- 
- 1  * ( w )  (Fourier), 
- 
h[-t] t, H ( l / i )  (2). 

Then (in the Fourier transform context) 

s,, (w) = S ~ ~ ( W ) H ( W )  Syy (w) = S,, (0)) H (w) S L Y  ( w )  = (w) I N(LC)) I' 

and (in the Z-transform context) 

S,,(z) = ~ , , ( z ) E i ( l / t )  S,,(z) = S,,(z)H(z) S,,(z) = ~,,(z)~(z)Fi-(117).  

If h[t] is a real function, then h[-t] = h[-t] and 

h[-t] t, H(-w) = H(e-I") (Fourier), 

h[-tl t+ H ( l / z )  (2) .  

D.5 References 

Our summary of concepts associated with random processes has been drawn largely from 
the summary provided in [248]. 
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Derivatives and Gradients 

E.1 Derivatives of vectors and scalars with respect to 
a real vector 

The derivative of a scalar function y with respect to a real vector x E Rn is the gradient, 
and is defined as 

Example E.l.l  Let y E R3 and x E R2, and define the following functions: 

ay - - - 
ax 

Then 

-*- 
a x ,  

2.L 
axz 

2.L 
,ax, - 

A chain rule for vector derivatives may be derived using the foregoing definitions. If 
z E R', 

This is also written as V,y. 
The derivative of the real vector y E Rm with respect to a real vector x E Rn is defined 
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then 

In matrix form, 

Example E.1.2 Suppose that functions are defined as In example E. 1 1 and, add~tionally, that 

Then 

- - 
a:, , . .  - 

ayl a y j  8~ I 
a:, & , , ,  - 

ay2 a ~ ?  ay2 

a:, & - . . . & 
-aym aynr a?m , 

- - 

so that, from (E. 1 )  and (E.2), 

Thus 

- 
""2 , , .  - 

axl a.rj ax, 
ijvi , , , - 
axz ax> ax2 

ay, , ,  s;i, 
a.r, a.r, ax, - - 

Substituting from (E. 1.1). we obtain 

3x?x2 + x2 (x: - 21;) 3 ~ :  - X? 

-2xi.X; + xl  (x: - 2 x 3  1 -xi  - 2x2 

E.1.1 Some important gradients 

Linear and quadratic functions of multiple variables arise frequently in practice. We derive 
here formulas for the gradients of these functions. The formulas are for the gradients with 
respect to x of the linear functions 

xHd and dHx 

and 

xH RX,  
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where R  is a Hennitian symmetric matrix, R H  = R,  with separate consideration for the case 
that x  is real and the case that x is complex. The complex case is considered in section E.8. 

Gradient of a linear function of a real vector 

The gradient of xrd is computed simply by 

so that 

Similarly, 

Gradient of a quadratic function of a real vector 

where R is symmetric. Let us consider the first component as typical: 

We want to compute 

When i # 1 and j # I ,  there is no contribution to the gradient. When i = 1 and j # 1 ,  we 

V , X ~ R X  = 

get 

Similarly when i f 1 and j = 1 we get 

- - a - 
ax, 

- a 
"' 
, 

. 
a - 

-ax, _ 

where the last equality follows from the symmetry of R. When i = j = 1 we get 

m m  

C C X , X ~ R ~ ,  
i = l  , = I  

Adding (E.5), (E.6), and (E.71, we get 



E.2 Derivatives of Real-Valued Functions of Real Matrices 899 

which is the first element in the product 2Rx. Now, stacking the partial derivatives, we 
obtain 

Some commonly-used derivatives which may be developed using these rules are shown 
in table E. 1. 

Table E.l: Derivative of scalar and vector 
functions with respect to a real 
vector 

axT AX 
= 2Ax (if  A is symmetric). 

ax 

€2 Derivatives of real-valued functions of teal matrices 

Let X be an m x n matrix and let y = f (X) be a scalar function of X. The derivative of y 
with respect to X is defined as 

An application that arises when X is square is the computation of the derivative of 
the determinant with respect to the matrix (that is, if y = det(X), compute ay/aX). We 
consider a more general case of y = det(Y), where Y is an n x n matrix whose elements 
are functions of a p x q matrix X, 

Y E ,  = f,,(X). 

We compute 

a det(Y) 

ax,, ' 

from which a det(Y)/aX can be obtained by stacking according to (E.9). The key is to 
recall the determinant expansion by cofactors from (C. 131, 

n 
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where Y,, is the cofactor of the element y,, in det(Y). Note that 

since the cofactor YIJ is independent of ykl. By the chain rule, 

Now form the matrix A from the cofactors of Y, and the matrix B from the partials as 

a ~ k i  
ffki = Yk/ hk/ = -- 

ax?] 
SO 

Then 

(see exercise E.7-7). 

Example E.2.1 As an example of the use of (E. lo), we compute 

a det(X) 

ax 
for a 2 x 2 matnx X when X is a general matnx, and when X is symmetric In this case. 

Let 

be the matnx of cofactors of X. and observe that 

ax 
- = E , ] .  
ax,, 

where E,, is an elementary matrix (see C. 1). Then 

which may be wr~tten using (9. IS) as 

For the 2 x 2 example, stacking according to (E 9) leads to 

(E. 10) 

where [X,,] 1s the matrlx formed by the cofactors of X 
U w g  the matrix Inver5e forinula (C 14). we ohtaln 

0 de t (X)  
-- = det(X)X ' 

0 X 
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This formula also applies to a general n x n matrix X. 
When X is symmetric, a little more care is needed. In this case, 

and 

where X l z  is the cofactor of X. Stacking the results as before we obtain 

Notationally, this can be written for an n x n matrix as 

diag(X,, ) ( X  symmetric), 

where [X,,] denotes the matnx formed by the cofactors of X and dlag(X,,) denotes the diagonal 
matnx of rnd~cated cofactors. Then slnce X 1s symmetnc, [X,,] = X-' det(X), and we can wnte 

Example E.2.2 Computation of the derivative of log det /XI is now straightforward: 

a log det(X) 
- 

1 a det(X) 

ax det(X) ax 
(general X),  

2X-I - diag(X-I) (symmetric X). = {"-' 
Exampte E.2.3 As a final example of this type, we have 

E.3 Derivatives of matrices with respect to scalars, 
and vice versa 

In many problems, it is useful to be able to determine derivatives of the trace of a function 
of a matrix. This is discussed in section E.7; as shown there, computation of some of these 
derivatives can be facilitated by computing 

when Y is a function of X. Accordingly, the remainder of this section examines derivatives 
of this type and the relationship between them. The derivatives are defined, respectively, as 

-- 
ax., - I : 

(E. 12) 
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and 

(E. 13) 

a?,, a?,, . . .  a?,, 
ax,,, -1 

Example E.3.1 Flnd % when Y = A X B  for a p x m matrix A  and an r7 x q matrlx B. The ( 1 .  j ) t h  
element of Y is 

so that 

Stacking according to (E.l3), we obtain 

T h ~ s  can be wrltten uslng elementary matrices as 

Example E.3.2 Ftnd when Y = A X B .  ar before Stacking (E 14) as per (E 12) leads to 

wh~ch can be wrltten as 

Example E.3.3 When Y = AX' B ,  we can proceed as before to determine that 

and 

(E. 14) 

(E. 15) 

(E. 16) 
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E.4 The transformation principle 

Observe that there I \  a symmetry between (E 15) and (E 16), and symmetry between 
(E. 17) and ( E  18) The rule for transforming between the partla1 of an element w ~ t h  respect 
to a matrlx and the partial of a rnatrlx with respect ro an element, when the derivattve 
tnvolves linear operation\, i <  called the truncforwlatlorz przn~lple [ I  17, 651 It can be stated 
'IS follows 

1 .  When 2 i i  of the form 

a ~ i j  
---- = C E,, D 
3X 

the der~vative may be obtained by 

Note that in this rule there 1s no transpose on the elementary matrix. 

2. When 2 1s of the form 

the derivative may be obtained by 

Note that in this rule there is a transpose on the elementary matrix. 

These rules apply even when C andlor D are functions of X.  

E.5 Derivatives of products of matrices 

Another useful rule determines derivatives of products of matrices. Let Y = U V ,  where 
U = U ( X )  is m x n and V  = V ( X )  is n x p, and consider 

a Y - ayL, 
and - 

ax,, ax ' 

Since y,j = xi=, u,kuki, it follows that 

a v,, B u l k  
n a V k J  

= c --Vk1 + c uLk-- .  
k = I  axr ,  k =  I a x r ,  

Stacking the partials leads to 
a~ au av 
- = -V + U- ,  
ax,, axrs  axrs 

which is similar to the familiar product rule. 

Example E.5.1 Let Y = A X - '  B and find 

a Y - ayt, and -- 
ax,, ax 

First, note by (E. 16) that 

(E. 19) 
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Now dtfferentlate Y Y - '  = I using (E 19) 

a Y a y - '  
-y-' + y- - - 0, 
ax,, ax,, 

so that, solvlng and substttutlng from (E 20), 

Finally, using Y = AX-' B ,  we obtatn 

To find the other derrvative, use the first rule of the transformation prlnctple wlth C = AX-' ,  
D = X-'  R Then. 

Example E.5.2 Flnd and 2 when Y = X ~ A X .  Uslng (E 191, we can wnte 

By (E. 17) and (E. 16), we can write 

To find 2. use the transforn~ation prtnclple For the first term ELAX, ler C = 1 and D = AX In 
the second transformatlon principle, 

For the second term In (E.21), use C T  = X7 A and DT = I In the first transformatlon principle, so 
that 

Comblnlng thex .  we obtain 

E.6 Derivatives of povvers of a matrix 

A ntle for powerc of a matrlx Y = X" md) be obtalned by repeated application of the rule 
for product\ (E 19) Thl\ lead\ to 
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and application of the transformation rule leads to 

n-i 

a('')., - x ( " ) k E , ,  ( X T ) ~ - * - I  -- 
a x  

k = l  

It is also straightforward to show that 

(E. 24) 

These results, and others which may be similarly derived, are summarized in table E.2. 

Table E.2: Derivatives of matrices with respect to 
an element, or elements with respect to 
a matrix 

a u v  a u  -- a v - -v+u- 
ax,, axrs ax,, 
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E.7 Derivatives involving the trace 

Given that Y = F(X) where Y is an rn x m matrix and X is an m x m matrix, we want to 
find 

When Y = AX and X is a general matrix, the derivative with respect to an element can be 
found by expansion of the operations 

so that 

When X is symmetric, somewhat more care is required. 

= (1:; +.r~ r i ~ 7 '  

r = S. 

Stack~ng these, we obtain 

It may be shown similarly that 

a t r ( x x T )  
= 2X. ax 

A rule that helps to derive a variety of other formuIas is to observe (see exercise E.7-11) 
that 

Example E.7.1 The denvat~ve when Y = X n  is treated using (E 26) and (E 22)  

n- l  

Stackrng these as in (E 25),  we obtaln 
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Example E.7.2 W h e n  Y  = X ' A X .  then by  (E.17) and (E.26). 

Using (C.  15 j leads to 

a t r ( x T A x )  = A X  + A T X ,  

ax 
These results are summarized in table E.3. 

Table E.3: Derivatives of scalar functions with respect to a 
real matrix 

(general X ) ,  
1. ax d e t ( X ) ( 2 X - '  - diag(X-I ) )  (symmetric X ) .  

a log de t (X )  
- 

1 a d e t ( X )  
2. --p 

ax d e t ( X )  ax . 

a t r ( x )  -- - I .  ax 
aY a t r (Y)  

tr- = -. 
axrs axrI 

(general X ) ,  

ax AT + A  - 2d iag (A)  (symmetric X ) .  
a t r ( A T X )  

= A. ax 
a tr(A x B )  

= A ~ B ~ .  ax 



908 Appendix E: Derivatives and Gradients 

E.8 Modifications for derivates of complex vectors 
and matrices 

Some minor modifications to the der~vative formulas are necessary when dealing with 
complex vectors and matrlces In most circumstances in which complex vector5 are used, 
a real cost functional such as zH Rz appears We w ~ l l  define a new derivat~ve operator 
that is appropriate for opttmization problems of the sort commonly encountered In signal 
processing Let z = x + j y  be a complex number with real part 

1 
x = - ( z + Z )  

2 
and imaginary part 

1 - 
Y = -(i 2 j  - i ) .  

We define the derivative with respect to r, by the following operators 1132, page 8911 as 

a and -=- (a+j$ ) .  a 1 (E.27) 

az 2 ax 
By this definition, 

and 

Properties of the operators in (E.27) are explored in exercise E.8-12. 
For a complex vector z = 12,. 22. . . . . z,lT with z k  = xk + jyk, we define the differ- 

entiation operators 

By these definitions, 

and 
az - -  - - = @  

az Dz 
Appllcatlon of these definitions can lead to results that are somewhat different than might 
be expected baced on recults from calculus on real vectors 

Gradient of a linear function of a complex vector 

Let a and z be complex vectors of length n .  Then 
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and 

and 

Another useful result is 

Gradient of a quadratic function of a complex vector 

It may be verified that when R is a Hermitian symmetric matrix, 

and 

Contrast these with row 4 from table E. 1 .  

Exan~ple E.8.1 In the least-squares solution of 

we min~mize the norm of the error e = b  - Az. Taking the norm as 

we can minimize by taking the denvative wlth respect to the unknown vector z. Using $ and equating 
to zero leads to 

In this equation, observe that z  appears conjugated. Solving for z, we obtain z  = ( A H A ) - ' A H b  as 
expected. 

By the use of $, we obtain the equation 

a 
--/le//" A H b  + A'AZ. az 

In this equation z  is not conjugated. The solution is the same as before. 

As the last example illustrates, the operator 3/82  yields unconjugated results that are easier 
to deal with. This operator, known as the conjugate derivative, is therefore adopted as the 
derivative with respect to a complex vector. 

For derivatives of matrices with respect to complex elements, the rules change some- 
what. For example, modifying row 10 of table E.2, we obtain 

and, similarly, 
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For derivatives involving traces, the follow~ng equations illustrate some useful facts: 

a t r ( X H X )  - a t r ( x H x )  3  tr(X X )  
= X  - = X  = xT (E.31) 

ax ax axH 
a t r ( X H A X B )  = A T X I I T  a t r ( X H A X B )  

= A X B  ax ax 

a t r ( A X x H B )  
= A i B I X  

a ~ ~ ( A x x ~  B )  
= BAX ax a 2  

E.9 Exercises 

E 1-1 Verify the dertvatlver tn table E 1 

E 5-2 [ I  171 Ver~fy for Y = A X E ,  wtth Y E M I ,  and X  E &,, that 

(a) The der~vatrve of an element of Y w ~ t h  respect to an element of X  1s 

a ~ , ,  
- = a,,b,, 
ax,., 

(b) The der~vative of an element of Y with respect to X ,  defined tn (E.13). may be wntten as 

% = ATE.,  B~ . 
ax 

where E,, E Mlq 1s dn elementary matrix 

(c) The derivative of Y with respect to an element of X ,  defined In (E 12), may be wntten as 

a Y 
- = A E , , B .  
ax,, 

where E,, E M,,,, is an elemel~tary matrlx 

(dl 1 a x T A X  
- = E:AX + x7 A E,, 

ax,, 

I i  U\e the tran\fo~niatton prtnciple 

( 3 ( X T A X ) , ,  = A X E ;  + A ~ X E , ,  ax 
E 5-3 Shou that 

= E,,AX + X A  E,, (dl - a Y,, 
' ( X A X ) i ~  = E , , f l A r  + A' X 7  E, ,  

ax 
a x T A X 1  

( L 1 -------------- = E; ,AX'  + x ~ A c , ' ,  
O k , <  

d ( X 1  A X 1 ) , ,  

OX 
= / 1 X 7 1 - :  I . , : X ' A  
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E.6-4 Verify (E.22). 

E.6-5 Verify (E.23). 

E.6-6 Verify (E.24). 

E.7-7 Show for a matrix A = [a,,] and B = [b,,] that 

E.7-8 If y = tr(X), show that 

(the derivative of a scalar with respect to a matrix) 

E.7-9 Show that 

&(AX) 
= A T .  ax 

E.7-10 Show that 

3 tr(AXB) 
(a) ax = A ' B ~ .  

8  tr(ex) r 
(e) - = e" ax 

E.7-11 Show that 

E.8- 12 Show by direct application of the operators defined in (E.27) that the following properties are 
true for the derivative operator. 

a z  
(a) - = 0. az 

alzI2  
(c) - = 7. a z 

a z Z  
(e) - = 22.  a z 

a z R  
(g) - = n z n - ' .  a z 

a a f  a g  
(i) - f g  = --g + f -. a z a z a z 

a 
(k) ataz = a .  

a I 
(m) - logz = -. a z z 

a z 
(b) - = 1 .  a z 

4 z I 2  (d) ----- = Z .  az 
a z 2  

(f) - = 0. az 
azn 

(h) - = 0. az 

U) " a z  (') &? 

a 
( I )  -eZ = eZ. a z 
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E.8-13 Verify the following by application of the operators defined in (E.28): 

a 
(a) -zHa = 0. 

a 
(b) -zHa = a. a a~ 

a a 
(c) -aHz = a. (d) _aHz = 0. a z d z 

a a 
(e) _zT Rz = Rz + RTz. (e )  -zT Rz = 0. 

d z az 
a (0 -zH R Z  = R ~ Z .  

a 
(g) -zH R Z  = Rz. 

a2 az 
E.8-14 Verify (E.30). 

E.8-15 Verify (E.31) and (E.32). 

E.10 References 

The information in this section has been drawn from [117, 1321 



Appendix F 

Conditiona Expectations of 
Multinomia and Poisson r.v.s 

F.l Multinomlal distributions 

Let X I ,  X2 ,  X3 have a muitinomial distribution with class probabilities ( p l  , p2, p 3 ) ,  SO that 

This nlultinomial in three outcomes can be combined to form a multinomial in two outcomes, 
and in general a multinomial distribution with m outcomes can be similarly reduced to a 
multinomial with m - 1 outcomes. 

Let Y  = X I  + X 2 .  The (binomial) probability P ( Y ,  X 3 )  can be determined as follows: 

- - (Y + x3 ) !  
P: i: Y!  

y  ! x 3  ! ~ ! ( y  - i ) !  
P;  

1 =o 

where the last step follows from the binomial theorem. So ( X I  + X 2 ,  X 3 )  is binomial with 
class probabilities ( p i  + p z ,  p3 ) .  This generalizes by induction to other multinomials. 

To compute the conditional expectation E I X I  I Y = y ] ,  it is first necessary to determine 
the conditional probability, P ( X 1  = XI  I Y  = y )  = P ( X I  = XI  I X I  + X 2  = y ) .  The 
conditional probability can be written as 

- P ( X ,  = x , ,  X* = y - X I )  - 
P ( Y  = Y )  

where the numerator probability is trinomially distributed out of n = x l  + x2 + x ,  trials, 
and the denominator probability binomially distributed out of n trials. Then, 
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The conditional expectation is then 

Similarly, it can be shown that 

F.2 Poisson random variables 

Computations are similar for Poisson random variables. If X I  and Xz are independent 
Poisson random variables with means iil and h2, respectively, and Y  = X i  + X Z ,  then 

i !  (y - i)! 
i =o 

so Y 1s Poisson w ~ t h  mean A, + j.2 The conditional expectat~on E I X l  / Y ]  requ~res the 
cond~tional probab~lity 

P ( X I  =xi, Y = y )  P ( X 1  =xi. X 2  = y - x ] )  
P ( X I  = X I  1 Y = Y )  = - - 

P(Y  = 1) P ( Y  = Y )  

The conditional expectation can then be computed in a fashion similar to that for (F.2). to 
obtain 

F.3 Exercises 

F 1-1  Show that F 1 I \  correct 

F 1-2 Show that the condlt~onal expectation In (F2)  correct 

F2-3 Show that (F3). (F4). and (FS) ale correct 
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dyadic number, 358 
dynamic programming, 789 
dynamic warping, 81 1 

E 
ECME, 725 
edge (ot d grdph), 787 
ethctency (of an estimator), 

552 
eigenhlter, 330 

desrred spectral response, 
332 

random srgnals, 330 
ergenvalue, 236, 306 

dispanty (spread), 320, 255 
64 1 

tnangular matrrx, 356 
etgenvector, 306 
e l g f l l  .m,  334 
e l g f  l i c o n  m, 336 
e l g m a ~ e P Q .  m, 334 
e l g q r s h l f t s t e p  rn, 

354 
elementary matnr, 279 
EM algonthm, 37 
e m 1  . m, 720 
emrsston tomography, 725 
emptnc drstnbution 

esttmatlon, 543 
energy s~gnal, 25 
energy spectrdl denylty, 25 
entropy, 660 
equal~ty constratnts, 758 
equalizer 

least-squares, 153 
LMS (adapttve), 645 
mtnlmum mean-square, 

159 
RLS (adaptive), 26 1 

ergod~c, 162 
error surface, 137 
ESPRIT, 341 
e s p r l t  . m, 342 
essentral supremum, 84 
esttmation, 36 
e t l  .rn, 729 
Euclidean norm, 237 
even functton, 13 
expectation cond~tional 

maxlmtzation e~ther, 
725 

expectation-max~mizatlon 

algonthm, 7 17 
exponent~al family, 453 

and EM algonthm, 722 
exponent~al random vanable. 

458 
extended Kalman filter, 608 

F 
factonzdtion theorem, 448 
false alarm, 462 
Fdno algonthrn, 8 14 
f S l p  . m, 156 
teasible dtrect~on, 752 
feastble solutron, 818 
Fejttr-Rtesz theorem, 22 1 
field, 48 

finite, 48 
hlter destgn, 2 1 

eigenfilters, 330 
usrng ltnear programming, 

846 
finlte rmpulse response, 10 
Fisher ~nformation matnx, 550 
fixed polnt, 624 
fixed-polnt problems, 358 
f o r d y n  . rn, 791 
forward predtctor, see ltnear 

predtctor 
forward substrtutton, 277 
four fundamental subspaces, 

242,304 
Founer senes, 189 

generalzed, 188 
Founer transform, 63 
frame, 129 
Fredholm altemat~ve theorem, 

243 
frequency estlmatton, 382 
frequency-shtft key~ng, 213 
Frobentus norm, 237 
functton (definition), 859 

space, 74 
fundamental theorem of 

algebra, 278 
fuzzy 

k-vanettes, 7 15 
clustering, 700 
set. 872 

G 
g a m b l e .  m, 782 
game (definition), 438 
gamma function, 478 
gamma random variable, 458, 

588,576 
Gauss-Seidel iteration, 

703 
Gaussian 

elimination, 278 
mean factoring theorem, 

667 



Gausslan (cont ) 
quadrature, 224 
random number, 283 
random vanable, 3 1 

attributes, 32 
conditional dens~ty, 34, 

36,266 
white noise, 5 13 

gaussserd.m, 703 
generalxed e~genvalues, 340 
generailzed maximum- 

i~kel~hood detection, 
563 

genetlc algonthm, 643 
geometnc mean, 874 
geometnc random vanable, 

45 8 
geometnc series, 20 
geometnc sum, 66 
Gershgonn clrcle theorem, 

324 
CF(2), 50, 110 
Givens rotations, 293 
global mnimum, 75 1, 861 
Godel, Kurt, 107 
Golub-Kahan step, 391 
golubkahanstep. m, 392 
gradient, 137, 865, 896, 

cham rule, 896 
linear funct~on. 898 
quadrat~c function, 898 
scalar with respect to vector, 

896 
vector wlth respect to vector, 

896 See also denvative 
Gram-Schm~dt process, 1 18, 

209,287,370,596 
Grammlan, 133, 2 15 
gramschldtl .m, 120 
graph, 787 

multistage, 789 
(of a map), 678 
trellls, 792 

greatest lower bound, 74 
group, 85 

N 
Haar function, 198 
Hadamard matnx, 425 
Hadamard's ~nequalrty. 357 
Hamel barn, 90, 1 11 233 
Hamm~ng distance, 73 
Hamming wtndow. 682 

Hankel matnx, 366, 379, 398, 
564 

given rank, 687 
H e n t l o n ,  418, 884 
HermitIan symmetnc, see 

symmetnc 
Hermltlan transpose, 884 
Hessenburg matnx, 300 
Hess~an matnx, 137, 636, 752 
h~dden Markov model, 39 

EM traning algonthm, 732 
V~terb~  tralnlng algonthm, 

808 
Hilbert matnx, 143 
H~Ibert space, 106 
Hilbert, Davld, 107 
HMM, see hldden Markov 

model 
hmmabn . m, 739 
hmm4p r upn . m, 739 
hmmdrscf .m, 739 
hmmdr sc f upn . m, 739 
hmmf . m, 739 
hmmf updat en. m, 739 
hmmgausf .m. 739 
hmrngaus f upn . m, 739 
hmmgendat . m, 739 
hmmgendrsc .m, 739 
hmmgengaus . m, 739 
hmmrnltvrt .m, 809 
hrmilpyseqn . m, 739 
hmmlpyseqv.m, 810 
hmmnorm. m, 809 
hrnmnotes . m, 738 
hm~testZvb.m, 811 
hmmilpdat en. m, 739 
hmmupdat ev . m, 8 10 
hmmupfv.m. 810 
Hoffman-Wlelandt theorem, 

36 1 
Holder's lnequallty, 870 
Householder transformat~ons, 

287 
houselef t .m, 291 
houserlght .m, 291 
hypothesis testlng, 441 

composite, 462, 483 
simple, 462 

I 
idempotent, 113 
~dentity, 882 
~f and only ~ f ,  43 
~ f f ,  Tee ~f and only ~f 

ifs3a.m, 628 
ill conditioned, 143, 254, 320, 

375 
implication, 43 
implicit QR shift, 354 
impulse response, 10 
imputed data, 720 
incidence matrix (of a graph), 

788 
incoherent detection, 507, 510 
independent component 

analysis, 660 
indicator function, 45 1, 858 
induced norm, 99 
inequalities, 

arithmetic-geometric mean. 
357,874 

Bessel's, 188 
Cauchy-Schwarz, 100 
Haramard's, 357 
Holder's, 870 
information, 875 
Jensen's, 724, 861 
Minkowski. 87 1 
Motzhn transposition, 851 
mangle, 44,72 

inequality constra~nts, 777 
Inertla (of a matnx), 3 16 
inf, 74 
infinite dimensional space, 74 
infinite impulse response, 10 
information inequality, 668, 

875 
information theory, 660 
initcluster .m, 699 
initpoisson.m, 729 
initvit 1. m, 796 
injection, see one-to-one 
inner product, 97, 866 
inner sum, I 10 
~nnovations, 167,596 
integral 

Lebesgue, 84 
Rlemann, 83 

Integral equation. 230 
Interference cancellat~on, 30 
Intenor, 76 
interior point methods, 839 
rntermedlate value theorem, 

863 
lnterpolatlng polynom~al, 146 
intersymbol interference 

channel, 800 
invariance, 841 
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Invariant \ub\pace, 3 16 
tnvartant te5tc. 504 
inverse mapping, 860 
inverce \ystem   den ti tic at ion, 

29 
~nvertlble, 248 
In-mavet rans . m, 207 
~nvwavetransper .IT, 

207 
~rrational, 45 
irrelevance, 5 17 
lrwls .m,  185 
tsonletnc, 269, 285 
tsomorphrsm, 1 12 
iterative algonthm, 78 

LMS filter, 643 
neural network, 648 
RLS filter, 259 

J 
Jacob1 rteratton, 63 1 ,  702 
; aco51. m, 703 
Jacobran, 609, 663 
Jewen's ~nequalrty, 724, 861 
Jordan form, 6 1 , 3  1 1 

K 
k-means clustering, 698 
kalexl . m, 595 
Kalman filter, 37,591 

Bayes~an denvation, 592 
cont~nuous-tlme to 

d~screte-tlme, 606 
extended, 608,611 
Innovations denvat~on, 595 
mlnlmum-vanance 

denvat~on, 61 9 
nonltnear systems, 607 
?moother, 6 1 3 

Kalman gatn, 260 
kalmanl . m, 594 
car f . m, 842 
Karhunen-Loeve, 327 
karmarker m, 842 
kernel, 109 
krssarma .m, 565 
Kronecker delta, 102 
Kronecker product, 422 

and DFT, 426 
ezgenvalues and, 424 
properties, 423 

Kronecker sum, 424 
elgenvalues and, 424 

Kuhn-Tucker cond~ttons, 777 

1, 
L , -norm e\tlmatton, 228 
Lagrange multiplier, 236, 321, 

544,758,763,869 
complex, 773 

Lagrangran, 763 
Laplace tramform, 20 

two-slded, 165 
Laplactan random vanable, 

535 
lattrce filter, 404 
least-absolute error 

approxrmation, 847 
least favorable pnor, 524 
least squares, 106, 133. 239, 

248,25 1 
least upper bound, 74 

condltron, 257 
filtering, 150 
normal equation approach, 

284 
QR solution, 286 
VLSI-appropnate 

algonthms, 296 
left null\pace, 242, 372 
Legendre poiynomlal, 103, 

120 
Leverner formulas, 365 
Levlnson algortthm, 408 
levrrison . m, 409 
LGB algonthm, 698 
lgb m, 699 
likelihood equatton, 545 
lrkelthood function, 503, 5 15, 

543 
likelrhood ratro, 467 
Irm inf, 80 
Ilmlt. 79 
11mrt point, 79 
11m sup, 79 
llne search, 642, 841 
llnear combination, 87 
ltnear feedback shlft regrster, 

48 
h e a r  independence, 2 15 
h e a r  least squares. 133 
h e a r  observer, 366 
linear opttmal control (uslng 

LP), 849 
h e a r  predlctlon, 29 
linear predtctor, 21, 22, 154 

backward, 154, 219 
forward, 154, 2 1 8 
forward-backward, 155 

ltnear programming, 8 18 
I ~ n e u  structure matrtx, 685 
Itnear system, 7 
linear vanety, 179, 68 1 
Iineanzat1on, 608 
llnearly tndependent, 88, 

134-35 
LMS adaptrve filter, 643 

normairzed, 667 
vanable step, 669 

lms . m, 645 
lmsrnr t . m, 645 
local mlnimum, 75 1 
log-likeiihood function, 545 
log-likelihood ratio, 467 
logistic functton, 627 
logAstrc .m, 628 
low-rank approxtmatton, 328, 

362 
lpf i i  t . m, 847 
lsfllt m, 153 
LU factonzatlon, 275-276 
lumped system, 163 

M 
M-ary detection, 499 
machtne epsrlon, 255 
Mahalonobls dtstance, 105 
makehankel. rn, 380 
makehouse. m, 291 
mantfold, 67 1 
mapping, 859 
Markov 

model, 37 
parameters, 19, 2 1,367,378 
process, 619 

Massey's algonthm, 50 
matnx exponent~al, 20 See 

also state transltlon 
matnx 

matnx factorizations 
Cholesky, 275, 283 
LU. 275.276 
QR, 275 
SVD, 275 
rdent~ty, 882 
Inverse, 247 

2 x 2, 18 
Inversion lemma, 258 
multlpi~cation 

matnx properties 
preserved, 4 1 8 

norms, see norm 



matrix (cunt ) 
notation, 9 
pencil, 340 
polynomial. 342 
properties preserved under 

multiplication, 41 8 
square root, 283 

max (distnbutlon of random 
vanable), 452 

maxelg.m,  351 
maximal-length sequence. 50, 

67 
max~mum-Itkelihood 

estimation. 4 1, 64,503, 
542 

iterative, 7 17 
~l~aximum-l~kelihood sequence 

esamatlon, 800 
maximum a postenon 

detection, 501 
maximum a postenon 

estimate, 573 
mean value theorem, 626, 864, 

866 
measure. 82 
measure zero, 82 
medlan (as least-abcolute error 

estimate), 572 
metnc, 72 

L,, 74 
L,, 75 
I , ,  73 
12. 73 
l,, 73 
See also norm 

metnc space, 74 
m l n e l g  .m,  351 
m~nimal polynom~al, 

342,344 
mlmmal sufficient stattstic. 

45 1 
minimal system, I I 
mlnlmax declston, 524 
minimax pnnclple (for 

elgenvalues), 323 
rntnlmurn error, 141 
mxnimum mean squares, 106. 

133, 156 
Bayesian estimate, 571 
filtenng. 157 

mtnimum variance, 141 
Minkowsk~ inequality, 871 
minmdx theorem, 776 
mlnor 888 

ML estimation (continuous 
time), 566 

ML estimator 
asymptotic efficiency, 556 
asymptotic normaltry, 555 
consistency, 554 

modal analysis, 26. See also 
modal matrix 

modal matrix, 396 
mode, 11 

of a distribution, 572 
modified covariance method, 

156 
modified Gram-Schmidt, 128, 

287 
moments of a random variable, 

879 
momentuin (in neural 

networks). 654 
monic, 87 1 
monotone Itkellhood ratio, 484 
Motzkin transposit~on, 85 1 
movlng average, 8 
multinomial random variable, 

458 
MUSIC, 339 
m u s i c f u n . m ,  340 
mutual information, 660, 662 

N 
Nash equ~libnum, 456 
necessary, 43 
negative semidefintte, 134 
ne~ghborhood, 76 
Nelder-Mead algorithm, see 

simplex algorithm 
Neumann expansion, 20,235 
neural network, 648 
n e w e l g  .m, 355 
n e w l u  . m, 282 
newsvd . m, 392 
Newton ldentrtres, 365 
Newton's method. 632 
Neyman-Pearson lemma, 463 
n n l  . m, 655 
n n r a n d w .  m. 655 
n n t r a l n l  . m ,  655 
nojse subspace, 336 
nominal trajectory, 608 
nonexpanstve operator, 69 1 
nonsingular, 248.41 8 
norm, 94 

1 2 .  236, 37 1 
Euclidean. 237 

Frobeniuc, 237,371 
spectral, see norm. l2  
subordinate, 232 
See also metric 

normal, see orthogonal, 
normal equation, 766 
normal equations, 133, 137, 

139 
normal matrtx, 359,411,418 
normal random vanable, see 

Gaucstan random 
vanable 

normaltzed vector, 95 
nulsance parameters, 507 
null hypothesis, 441 
nulllty, 242 
nullspace, 109, 242, 372 
numerical Integration, see 

Gaussian quadrature 
Nyquist filter, 363 

0 
observabtlity test matrix, 366 
observer canonical form, 60 
on-off keylng, 212 
one-to-one, 860 
open set, 77 
operator, 108 
orblt, 624 
order (of a system), 378 
order of convergence, 63 1 
Omstein-Uhlenbeck process, 

174 
orthogonal, 102, I35 

matnx, 269, 285 
polynom~al, 104, 120. 190 
Procrustes problem, 389 
projectton, 1 14 
s~gnal constellation, 477 
subspace, 107 

orthogonality pnnc~ple, 135 
orthonormal. 102 

basts, 121 
over-relaxed operator, 692 

P 
parameter estimat~on, 41 
Parseval's equality, 188 
Parseval 's theorem, 2 14 
partral frdct~on expansron, 1 1  
partial total least quares, 

186 
pdrtttloned matrix, .we block 

matrlx 



pattern recognition, 4 1 105 
697 

NN and ML  omp pa red, 659 
penalty function, 840 
periodic point, 625 
permutation matrix, 399 
p e r - i i ~ ~ t e d a t a  r. 665 
perpendicular, ree orthogonal 
persymmetric matrix, 401 
phdse estimation (MLj, 566 
pha5e-shift keyrng, 21 1 ,  537 
Pr5arenko harmonlc 

decomposition, 338 
p l s a r e n K o  n, 339 
pivoting, 280 

(tor LP), 826 
prvot\, 277, 279 
p r  i o t t a b i e a u  m, 834 
point-to-set map, 678 
Poisson random number 

generator (Matlab 
code), 728 

Poisson random vanable, 455, 
457-58,727 

p o l s s o ~  F,, 729 
pole 10 
polynomial dpproxlmatlon 

continuous polynomials, 143 
dixrete polynomials, 145 

polytope, 872 
posltive defintte, 103, 134, 

248,359,418 
comparing matrices, 548 

po.;itive semidefintte, 14 1, 359 
condition for minimallty, 

753 
positive-semidefin~te matnx, 

142 
posrtive sequence 

determination, 68 1 
positive-remidefinite, 134 
posterior dtstnbution (for 

Bayes), 494 
power method, 350 
power of a test (detection), 

462 
power spectral density, 

25,893 
prewindowing method, 152 
principal component, 329 
pnnciple of opttmal~ty, 790 
prior estzmate, 36 
probabil~ty density function, 

3 1 

probabrllty m'i\\ tunction 31 
projection, I 13, 112, 672 
projection r-tratrlx, 1 15, 1 16 

119,117 
projection on convex set\, 689 
projection theorem, 1 16 
projecti\e trancfomration 

839-840 
Prony's method, 398 
proof 

by 'computdtion", 43 
by contradiction, 45, 54 
by rnduction, 46, 55,402, 

404 
p\eudoin\erse, 139, 183 248, 

25 1,373 
preudometn~, 122 
pseudonoi\e sequence, 50 
ptLsL.m, 387 
p t i s 2  rn, 388 
pulce-pos~tron modulation, 21 3 
Pythagorean theorem 

(stat~rticiani), 102, 142 

Q 
Q function, 472 
QR factorization, 252, 275 
q r y  i v e n s  . m, 295 
q r n o u s e  . m, 292 
qrmakeq  . rn, 293 
qr rnakeqgiv  . m, 296 
q r q t b  . m, 292 
q r q t b g i v .  in, 296 
q r t h e t a  .m, 295 
quadratic form, 3 18 
quadrature-amplitude 

modulation, 2 13,537 

R 
random proce\s, 89 1 
random processes 

through h e a r  systems, 894 
random vartable 

Bernoulli, 447 
beta, 575 
binomtal, 455,457 
exponential, 458 
gamma, 458,576 
Gaussian, 3 1 
geometric, 458 
Laplacran, 535 
multinomial, 458 
Poisson, 455,457-58 
Rayleigh, 446,458 

tr,~n\forrrrdtion\, 445 
y '  378 

range, 109, 241 772, 859 
rank, 244, 249 

deh~ient,  240 
one, 239 

Rayleigh quotient, 322, 31 1 ,  
334 

Rayle~gh random vanabie, 
346,458 

r c o n d ,  256 
real~zation, 378 
Receiver operating 

characteri\tic, 468 
r e d u c e f r e e  rn, 834 
Reed-Muller coder, 425 
reflection, 288 
reflection coetficrent, 403 
regression, 147 
repeated poles, 1 1 
recolution ot ~dentity, 317 
rerolvertt identttles, 363 
resolvent ot a matnx, 363 
r e s t o r e f r e e  m, 834 
r e f  l t o d l r  .m, 407 
R~ccatr equatton, 600 
R i e c ~  representation theorem, 

232 
nsk functlon (R),  487 
RLS adaptive filter, 259 

comparison with Kalman 
filter, 603 

r l s l n l t  .m, 261 
Rolle's theorem, 864, 873 
Rosenbrock function, 636 
rotatzon matrix, 294, 303 
rotation of subspaces, 389 
row operation, 278 
row space, 242, 278, 372 
runlength-constrained coding, 

367 

saddle point optimality, 775 
SAGE, 725 
sampling, 23 1 
scaling, 195 

function, 195, 358 
Schur complement, 216,264 
score functlon, 548 
recant method, 642 
5econd companion form, 60 
recular equation, 766 
separable operator, 430 



sequence space, 74 
sequenttal estimation, 580 
set sum, 872 
Sherman-Mornson formula, 

258,260 
shlftlng, I95 
shortest path algonthm, see 

dynamic programming 

or Vtterb~ algonthm 
s~gnal plus nolse. 22 
ssgnal processing 

definition, 4 
signal sub\pace, 336 

~dentlfication, 565 
signature of a matnx, 3 16 
stmilar matnx, 17, 309 
stmplex, 642, 839 

algonthm, 642 
s l m p l e x l  . m, 834 
stmulated annealing. 643 
slnc functton, 193 
singular value decomposition, 

see SVD 
'singular values. 369 
slze of a test (false alarm), 462 
skew Nennttian, 359 
skew-syrnmetnc, 301,359 
slack variables. 819 
smoothing 

Rauch-Tung-Strelbel. 6 13 
s o r  . m, 706 
source separation, 660 
space alternatrng expectation 

rnaxlmlzation. 725 
spectral 

decomposttion, 3 17 
factonzatlon, 166, 221 
norm, Fee norm, I?  
radsus, 236, 701 
theorem, 3 13 

spectrum (of an operator), 
306 

spectrum analysss, 25 
spectrum estimation, 154 
speech processing, 23,41 

pattern recognstion, 697 
spread-spectrum multi-user 

comrnuntcatlon, 740, 
804 

square root 
of a matrix, 134, 275 
of a transfer function. 221 

\quare-root Kdllnan filter 284, 
604 

squdred-error loss (Bayesian). 
570 

stability, 11 
stack algorithm, 814 
standard form (for LP), 8 18 
state-transitton matr~x, 21, 348 
state-space form, 15 
\tattonary 

stnct-sense, 892 
wide-sense, 892 

statistic (definition), 444 
5tochasttc approximation, 663, 

644 
stochastic gradlent descent, 

644 
stochastic matnx, 39 

nearest, 684 
rrochastlc processes, 12 

review, 162 
stnct-sense stationary, 892 
strong law of large numbers, 

555 
subordinate norm, 232 
subsequence, 79 
subspace 86, 107 
5uccesssve approxtmatlon. 625 
successive over-relaxation, 

705 
wfficient, 43 
~f f ic ien t  statlstrc, 446 
sup 74, 76 
superv~sed training, 649 
support, 78, I 10 
surjection, ree onto 
SVD, 252,275,369 
Sylvester's equation, 432 
Sylvester's law of tnertia, 

316 
symmetric, 14,238, 884 
s y s ~ d s v d . r n ,  380 
system functron, vee transfer 

function 
system ~denttficatton. 29, 264, 

378,384 
Szego's theorem, 416 

T 
r statistic. 506, 507 
tableau, 82 1 
tangent plane. 760, 867 
Taylor series. 20. 868 

linearization, 608 
i e s t . e t  .m. 729 
tcc t i rw1s .z .  185 

time-varying system, 17, 21 
t i s . m ,  384 
Toeplitz matrrx, 14,5 1, 152, 

159.400,418,871 
elgenvalues, 41 3 

t o h a n k e i  . m, 687 
t o h a n k t o e p  . n. 688 
t o k a r m a r k e r  .m. 844 
tomography, 706. 725 
t o s t o c h . m ,  686 
total least squares, 38 1 
total set, see complete set 
trace, 106, 884 

sum of eigenvalues, 356 
training 

data, 696 
phase, 4 1 
set, 162 

transfer function, 10 
transformation, 860 

linear, 108 
of random variables, 445 

transitive closure, 799 
transpose, 883 
' (Hermitian), 9 
T ,  9 

trellis, 792 
triangle snequallty. 325 
triangular matnx, 276.41 8 

elgenvalues, 356 
t r l d l a g .  m, 352 
tridiagonalization, 352 
truncation 

tn frequency, 109 
In time, 109 

two-scale equation, 196 
Type I error, 442 
Type I1 error, 442 

u 
unbiased, 64. 140,452 
uncorrelated, 34 
uniformly most powerful test, 

483 
untqueness, 1 18. 244 
unit element matrlx E,,, 882 
unlt vector, 95 

e,. 881 
unlt-\tep function. I I 
unitary. 4113 

determinant, 30 1 
matrix, 269. 285. 369, 174 



Index Y37 

V 
Vandermclnde matrix, 146. 

317, 397, 409, 412, 
418 

vanable-\tep LMS. 669 
vec (operator), 428 
vector notatton, 9 
vector quantization, 44, 220, 

695 
vector space, 85 
vertex (of a graph), 787 
v~tbestcost . m ,  810 
Viterbi algortthm, 37. 791 
vlterbll . m, 796 
vr t t lusn n-, 796 
Voronot reglon, 44,698 

W 
darp.m, 813 
Warrhall's algonthm. 798 
~~drshail . m ,  799 
water hll~ng solution. 783 
>~a-~ecoe f f . n, 199 
wavelet transform. 199 
wavelets, 194 
wave t es t . m, 204 
wavetesto.n, 205 
wavetrans. m, 207 
weak dualtty, 785 
Weterstrass theorem, 19 1 ,4  16 
we~ghted Inner product, 103 
wetghted least squares, 140, 

148 

wfcest .m. I61 
wide-sense stationary, 33, 

892 
Wiener titter, 157 
Wiener-Hopf, 2 19 

equations, 158 
continuous time, 169 

Wilkinson shift, 354 

Y 
Yule-Walker equations, 13, 

51,401 

z 
rero, 10 
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