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Preface

Rationale

The purpose of this book is to bridge the gap between introductory signal processing
classes and the mathematics prevalent in contemporary signal processing research
and practice, by providing a unified applied treatment of fundamental mathematics,
seasoned with demonstrations using MATLAB®. This book is intended not only for
current students of signal processing, but also for practicing engineers who must be
able to access the signal processing research literature, and for researchers looking
for a particular result to apply. It is thus intended both as a textbook and as a
reference.

Both the theory and the practice of signal processing contribute to and draw
from a variety of disciplines: controls, communications, system identification, in-
formation theory, artificial intelligence, spectroscopy, pattern recognition, tomog-
raphy, image analysis, and data acquisition, among others. To fulfill its role in these
diverse areas, signal processing employs a variety of mathematical tools, includ-
ing transform theory, probability, optimization, detection theory, estimation theory,
numerical analysis, linear algebra, functional analysis, and many others. The prac-
titioner of signal processing—the “signal processor’-——may use several of these
tools in the solution of a problem; for example, setting up a signal reconstruction
algorithm, and then optimizing the parameters of the algorithm for optimum per-
formance. Practicing signal processors must have knowledge of both the theory and
the implementation of the mathematics: how and why it works, and how to make the
computer do it. The breadth of mathematics employed in signal processing, coupled
with the opportunity to apply that math to problems of engineering interest, makes
the field both interesting and rewarding.

The mathematical aspects of signal processing also introduce some of its major
challenges: how is a student or engineering practitioner to become versed in such
a variety of mathematical techniques while still keeping an eye toward applica-
tions? Introductory texts on signal processing tend to focus heavily on transform
techniques and filter-based applications. While this is an essential part of the train-
ing of a signal processor, it is only the tip of the iceberg of material required by
a practicing engineer. On the other hand, more advanced texts typically develop
mathematical tools that are specific to a narrow aspect of signal processing, while
perhaps missing connections between these ideas and related areas of research.
Neither of these approaches provides sufficient background to read and understand
broadly in the signal processing research literature, nor do they equip the student
with many signal processing tools.

The signal processing literature has moved steadily toward increasing sophisti-
cation: applications of the singular value decomposition (SVD) and wavelet trans-
forms abound; everyone knows something about these by now, or should! Part of this
move toward sophistication is fueled by computer capabilities, since computations
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that formerly required considerable effort and understanding are now embodied in
convenient mathematical packages. A naive view might held that this automation
threatens the expertise of the engineer: Why hire a specialist to do what anyone can
do in ten minutes with a MATLAB toolbox? Viewed more positively, the power of
the computer provides a variety of new opportunities, as engineers are freed from
computational drudgery to pursue new applications. Computer software provides
platforms upon which innovative ideas may be developed with ever greater ease.
Taking advantage of this new freedom to develop useful concepts will require a
solid understanding of mathematics, both to appreciate what is in the toolboxes and
to extend beyond their limits. This book is intended to provide a foundation in the
requisite mathematics.

We assume that students using this text have had a course in traditional
transform-based digital signal processing at the senior or first-year graduate level,
and a traditional course in stochastic processes. Though basic concepts in these
areas are reviewed, this book does not supplant the more focused coverage that
these courses provide.

Features

e Vector-space geometry, which puts least-squares and minimum mean-squares
in the same framework, and the concept of signals as vectors in an appropri-
ate vector space, are both emphasized. This vector-space approach provides
a natural framework for topics such as wavelet transforms and digital com-
munications, as well as the traditional topics of optimum prediction, filtering,
and estimation. In this context, the more general notion of metric spaces is
introduced, with a discussion of signal norms.

« The linear algebra used in signal processing is thoroughly described, both in
concept and in numerical implementation. While software libraries are com-
monly available to perform linear algebra computations, we feel that the nu-
merical techniques presented in this book exercise student intuition regarding
the geometry of vector spaces, and build understanding of the issues that must
be addressed in practical problems.

The presentation includes a thorough discussion of eigen-based methods
of computation, including eigenfilters, MUSIC, and ESPRIT; there is also
a chapter devoted to the properties and applications of the SVD. Toeplitz
matrices, which appear throughout the signal processing literature, are treated
both from a numerical point of view—as an example of recursive algorithms—
and in conjunction with the lattice-filtering interpretation.

The matrices in linear algebra are viewed as operators; thus, the important
concept of an operator is introduced. Associated notions, such as the range,
nullspace, and norm of an operator are also presented. While a full coverage
of operator theory is not provided, there is a strong foundation that can serve
to build insight into other operators.

« In addition to linear algebraic concepts, there is a discussion of computation.
Algorithms are presented for computing the common factorizations, eigen-
values, eigenvectors, SVDs, and many other problems, with some numerical
consideration for implementation. Not all of this material is necessarily in-
tended for classroom use in a conventional signal processing course——there
will not be sufficient time in most cases. Nonetheless, it provides an important
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perspective to prospective practitioners, and a starting point for implementa-
tions on other platforms. Instructors may choose to emphasize certain numeric
concepts because they highlight particular topics, such as the geometry of
vector spaces.

« The Cauchy-Schwartz inequality is used in a variety of places as an optimizing
principle.

e Recursive least square and least mean square adaptive filters are presented
as natural outgrowths of more fundamental concepts: matrix inverse updates
and steepest descent. Neural networks and blind source separation are also
presented as applications of steepest descent.

» Several chapters are devoted to iterative and recursive methods. Though it-
erative methods are of great theoretical and practical significance, no other
signal processing textbook provides a similar breadth of coverage. Methods
presented include projection on convex sets, composite mapping, the EM al-
gorithm, conjugate gradient, and methods of matrix inverse computation using
iterative methods.

e Detection and estimation are presented with several applications, including
spectrum estimation, phase estimation, and multidimensional digital commu-
nications.

« Optimization is a key concept in signal processing, and examples of optimiza-
tion, both unconstrained and constrained, appear throughout the text. Both a
theoretical justification for Lagrange multiplier methods and a physical inter-
pretation are explicitly spelled out in a chapter on optimization. A separate
chapter discusses linear programming and its applications. Optimizations on
graphs (shortest-path problems) are also examined, with a variety of applica-
tions in communications and signal processing.

» The EM algorithm as presented here is the only treatment in a signal processing
textbook that we are aware of. This powerful algorithm is used for many
otherwise intractable estimation and learning problems.

In general, the presentation is at a more formal level than in many recent digital
signal processing texts, following a “theorem/proof™ format throughout. At the
same time, it is less formal than many math texts covering the same material. In this,
we have attempted to help the student become comfortable with rigorous thinking,
without overwhelming them with technicalities. (A brief review of methods of
proofs is also provided to help students develop a sense of how to approach the
proofs.) Ultimately, the aim of this book is to teach its reader how to think about
problems. To this end, some material is covered more than once, from different
perspectives (e.g., with more than one proof for certain results), to demonstrate that
there is usually more than one way to approach a problem.

Throughout the text, the intent has been to explain the “what” and the “why”
of the mathematics, but not become overwrought with some of the more technical
mathematical preoccupations. In this regard, the book does not always thoroughly
treat questions of “how well.” (For example, in our coverage of linear numerical
analysis, the perturbation analysis that characterizes much of the research literature
has been largely ignored. Nor do issues of computational complexity form a major
consideration.) To visualize this approach, consider an automotive analogy: Our
intent is to “get under the hood” to a sufficient degree that it is clear why the engine
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runs and what it can do, but not to provide a molecular-level description of the
metallurgical structure of the piston rings. Such fine-grained investigations might
be a necessary part of research into fine-tuning the performance of the engine—or
the algorithm——but are not appropriate for a student learning the basic mechanics.

Throughout the chapters and in the appendices, there is a great deal of material
that will be of reference value to practicing engineers. For example, there are facts
regarding matrix rank, the invertibility of matrices, properties of Hermitian matrices,
properties of structured matrices preserved under multiplication, and an extensive
table of gradients. Not all of this material is necessarily intended for classroom use,
but is provided to enhance the value of the book as a reference. Nevertheless, where
such reference material is provided, it is usually accompanied by an explanation of
its derivation, so that related facts may often be derived by the reader.

Though this book does not provide the final word in any research area, for
many research paths it will at least provide a good first step. The contents of the
book have been selected according to a variety of criteria. The primary criterion
was whether material has been of use or interest to us in our research; questions
from students and the need to find clear explanations, exceptional writings found
in other textbooks and papers, have also been determining factors. Some of the
material has been included for its practicality, and some for its outstanding beauty.

In the ongoing debate regarding the teaching of mathematics to engineers,
recent proposals suggest using “justin time” mathematics: provide the mathematical
concept only when the need for it arises in the solution of an engineering problem.
This approach has arisen as a response to the charge that mathematical pedagogy
has been motivated by a “just in case” approach: we’ll teach you all this stuff just
in case you ever happen to need it. In reality, these approaches are neither fully
desirable nor achievable, potentially lacking rigor and depth on the one hand, and
motivation and insight on the other. As an alternative, we hope that the presentation
in this book is “justified,” so that the level of mathematics is suited to its application,
and the applications are seen in conjunction with the concepts.

Programs

The algorithms found throughout the text, written in MATLAB, allow the reader
to see how the concepts developed in the text might be implemented, allow easy
exploration of the concepts (and, sometimes, of the limitations of the theory),
and provide a useful library of core functionality for a variety of signal processing
research applications. With thorough theoretical and applied discussion surrounding
each algorithm, this is not simply a book of recipes; raw ingredients are provided
to stir up some interesting stews!

In most cases, the algorithms themselves have not been presented in the text.
Instead, an icon (as shown below)

1s used to indicate that the text an algorithm is to be found on the included CD-ROM
(in some instances the algorithm consists of several related files).
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In the interest of brevity, type-checking of arguments has not been incorporated
into the functions. Otherwise, we believe that all of the code provided works, at least
to produce the examples described in the book. Of course, information regarding
program bugs, fixes, and improvements is always welcome. Nevertheless, we are
required to make the standard disclaimer of warranty which can be found on the
Jast page of the book.

Readers are free to use the programs or any derivatives of them for any
scientific purpose, with appropriate citation of this book. Updated versions
of the programs, and other information, can be found at the following website:
www.prenhall.com/moon

Exercises

The exercises found at the end of each chapter are loosely divided into sections, but
it may be necessary to draw from material in other sections (or even other chapters)
in order to solve some of the problems.

There are relatively few merely numerical exercises. With the computer per-
forming automated computations in many cases, simply running numbers doesn’t
provide an informative exercise. Readers are encouraged, of course, to play around
with the algorithms to get a sense of how they work. Insight frequently can be
gained on some difficult problems by trying several related numerical approaches.

The intent of the exercises is to engage the reader in the development of the
theory in the book. Many of the exercises require derivations of results presented in
the chapters, or proofs of some of the lemmas and theorems; other exercises require
programming an extension or modification of a MATLAB algorithm presented in the
chapter; and still others lead the student through a step-by-step process leading to
some significant result (for example, a derivation of Gaussian quadrature or linear
prediction theory, extension of inverses of Toeplitz matrices, or another derivation
of the Kalman filter). As students work through these exercises, they should develop
skill in organizing their thinking (which can help them to approach other problems)
as well as acquire background in a variety of important topics.

Most of the exercises require a fair degree of insight and effort to solve—
students should plan on being challenged. Wherever possible, students are en-
couraged to interact with the computer for computational assistance, insight, and
feedback.

A solutions manual is available to instructors who have adopted the book for
classroom use. Not only are solutions provided but, in many cases, MATLAB and
MATHEMATICA™ code is also provided, indicating how a problem might be ap-
proached using the computer. Solutions to selected exercises can also be found on
the CD-ROM.

Courses of study

There is clearly more information in this book than can be covered in a single
semester, or even a full year. Several different courses of study could be devised
based on this material, giving instructors the opportunity to choose the material
suitable for the needs and development of their students. For example, depending
on the focus of the class, instructors might choose to skip completely the numerical
aspects of algorithms or, conversely, make them a focus of the course.
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Several possible course options are described in the following list.

1. In a straightforward overview, the material in the first two parts is regarded as
the foundation upon which the major concepts of signal processing are built.
The first part provides a review of signal models and representations (e.g.,
difference equations, transfer functions, state-space form), and introduces
several important signal processing problems, such as spectrum estimation
and system identification. The second part provides a thorough foundation
in linear algebra, working from an undergraduate level up through several
applications. Selections from these first two parts, with possible additions
from the first appendix on mathematical fundamentals, would make a solid
single-semester course in “mathematical methods for signals and systems.”
A possible course sequence might be as follows:

« Move fairly quickly through Chapter 1 (with sections 1.8 and 1.10 op-
tional, depending on interest (1-2 weeks)).

e In Chapter 2, move quickly to the vector-space concepts, then focus on
the concept of orthogonality. It may be useful to skip the more technical
sections associated with infinite-dimensional vector spaces (for example,
sections 2.1.2, 2.1.3, and 2.16). (2 weeks)

¢ Spend time in Chapter 3 on least-squares and minimum mean-square
filtering and estimation concepts, and the dual approximation problem
(sections 3.1-3.14). (2-3 weeks) Depending on interest, examine either
wavelet transforms or digital communications from this geometric view-
point. (1 week)

s In Chapter 4, focus on sections 4.1-4.5 to get the geometry of the opera-
tors, 4.9 for a return to the least-squares idea, and 4.10 for practical com-
putation issues. Introduce the recursive least square filter in section 4.11,
and visit partitioned matrix inverses in section 4.12. (2-3 weeks)

» In Chapter 5, focus on sections 5.2 and 5.3. The QR factorization, in
particular, is a foundation for many signal processing algorithms. If a
numeric implementation viewpoint is not of interest, then material after
section 5.3.5 may be omitted. (2-3 weeks)

¢ Sections 6.1-6.5 constitute the principal theory of chapter 6. After these
sections have been covered, applications may be drawn from sections 6.7-
6.12, with those in 6.8 and 6.9 probably of the most interest. If a numeric
focus is desired, section 6.14 may be covered. (2-3 weeks)

« The theory of the SVD in sections 7.1-7.5 should be covered, followed
by a subset of applications from sections 7.6-7.9. (2-3 weeks)

« Topics related to special matrices (with special emphasis on Toeplitz ma-
trices) can fill any remaining time.

2. Chapters 10-14 would fit well into a first course on detection and estimation,
especially when supplemented by some of the material on linear algebra (such
as eigendecompositions and the SVD).

3. This book can be the basis for a one-semester tools course that selects topics
from parts I, 11, and I11. Assuming prior familiarity with continuous-time and
discrete-time systems, topics in such a course could include the following.

(a) The multivariate Gaussian density (section 1.7). (< 1 week)
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{b) Essential vector-space notions (sections 2.1-2.6,2.10, 2.13, 2.14-2.15).
(2 weeks)

(c) Applications of vector-space concepts; for example, least-squares and
minimum mean-squares filtering (sections 3.1, 3.2, 3.4, 3.8-3.12).
(3 weeks)

(d)y Matrix factorizations (sections 5.2 and 5.3, no numeric discussion).
(<1 week)

(e) Singular value decompositions (sections 7.1-7.3, 7.5), with some ap-
plications (such as section 7.6). (2 weeks)

(f) Introduction to detection and estimation (sections 10.1-10.3, 10.5-
10.6). (1 week)

(g) Detection theory (sections [1.1-11.6). (3 weeks)
(h) Estimation theory (sections 12.1-12.2, 12.4-12.6). (2 weeks)
(1) Kalman filtering (sections 13.1, 13.2, or 13.3). (1 week)

4. A course in “iterative methods for signal processing” could focus on chapters
in part IV. The course material could well be accompanied by a student
research project.

5. A course in “methods of optimization for signal processing” could focus on
chapters in part V.

6. Yet another alternative is a wrap-up course for students in the signals and
systems area, who are familiar with their topic areas but wish to sharpen
their analytical skills. This course could be similar to the first one outlined,
with less time spent in Chapter | and more time spent examining nuwmer-
ical implementations. Topics from the last parts of the book could also be
selected.
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Part 1

Introduction and Foundations

In this first part, we set the stage for what follows by presenting some commonly-used
signal processing models for applications developed throughout the book. We also provide
some background on proofs.






Chapter 1
Introduction and Foundations

There is full-time employment for all simply in exploring the world without destroying
it. and by the time we begin to understand something of its marvelous richness and
complexity, we'll also begin to see that it does have uses we never suspected . ..

— Hugh Nibley
At this point I am reminded of a paper described in Littlewood’s Mathematician’s
Miscellany. The paper began “The aim of this paper is to prove ...” and it transpired

only much later that this aim was not achieved (the author hadn’t claimed that it was).

What I have outlined above is the content of a book the realization of whose plan and

the incorporation of whose details would perhaps be impossible; what [ have written is
a second or third draft of a preliminary version of this book.

— Michael Spivak

A Comprehensive Introduction to Differential Geometry

1.1 What is signal processing?

The scope of signal processing far exceeds the capability of any single book to contain it.
Though the subject has grown so broad as to obviate a perfect and precise definition of
what is entailed in it, certain concepts must be considered indispensable for rudimentary
understanding. Certainly, signal processing includes the material taught in traditional, DSP
courses (see, e.g., [262, 244]), such as transforms of many varieties (Z, Laplace, Fourier,
etc.) and the concepts of frequency response, impulse response, and convolution, for both
deterministic and random signals. It also includes the basic concepts of filtering and filter
design. These concepts are assumed as a background to this text and are used, as necessary,
throughout the text. Traditional areas in signal processing include (as taken from the IEEE
Transactions on Signal Processing classifications): filter design, fast filtering algorithms,
time-frequency analysis, multi-rate filters, signal reconstruction, adaptive filters, nonlinear
signals and systems, spectral analysis, and extensions of these concepts to multidimensional
systems. These topics are employed in a variety of application areas. Implementation, in
hardware or software, is also an important facet of signal processing. Providing a thorough
coverage of these topics alone requires multiple volumes.

But, in the view of this book, signal processing has an even greater reach, because of
its influence on related disciplines. Signal processing overlaps with the study traditionally
known as controls, since control ultimately involves producing a signal based upon mea-
sured output of a plant by means of some processing upon that signal. Before a system
can be controlled, the particular parameters of that system usually must be determined,
so system identification is an aspect of signal processing. This in turn relates to spectrum
estimation and all of its applications. Signal processing has strong ties to communications
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theory and, recently, especially to digital communication, since the capabilities of mod-
ern communication systems are the result of the signal processing performed within them.
Related 1o digital communication are questions of detection and estimation theory: how
to get the best information out of signals measured in the presence of random noise. De-
tection and estimation theory in turn relate to pattern recognition. Digital communication
also spills over into the areas of information theory and coding theory. System identifica-
tion and estimation theory treat questions of solving overdetermined systems of equations
that, in turn, have application in romography. These, in turn, have some bearing on ques-
tions of approximation and smoothing of signals. If a treatment of fundamental signal
processing topics requires several volumes, then inclusion of these latter topics requires a
library.

Signal processing covers a large territory. However, there is a common thread among
all the areas mentioned: they all involve a fair degree of mathematical sophistication, and
in both theory and practice assume an analytical and a computational component. Most
of these areas share a large overlap in conceptual content. We propose the following as a
tentative definition of signal processing, at least for the purposes of this book.

Definition 1.1 Signal processing is that area of applied mathematics that deals with op-
erations on or analysis of signals, in either discrete or continuous time, to perform useful
operations on those signals. O

With its focus on “applied mathematics,” this book neglects several important aspects
of signal processing, including hardware design and implementation on signal processing
chips. “Useful operation” is deliberately left ambiguous. Depending upon the application,
a useful operation could be control, data compression, data transmission, denoising, pre-
diction, filtering, smoothing, deblurring, tomographic reconstruction, identification, classi-
fication, or a variety of other operations.

The primary intent of this book is to present a treatment of relevant mathematics
such that students and practitioners of signal processing and related fields are able to
read, apply, and ultimately contribute to the literature in a variety of areas of signal
processing research and practice. The intent is not to explore pure mathematics, however,
but rather to provide a mathematical modicum sufficient to explain and explore the more
important mathematical paradigms used in signal processing algorithms. A student with
a background from this book should be able to move expeditiously to a particular area of
interest and begin making effective progress in the specialized literature of that area. We
have endeavored to maintain a precarious balance: purists in mathematics will find some
of the analytical methods deficient, while pragmatists will argue that there are far too many
equations. To use a garage analogy, we have provided enough information to get under the
hood of the car, taking apart for examination many of the engine components, but without
getting into detail at the level of metallurgical phenomena. Such minute investigations are
best conducted after the student understands how the car operates.

In addition to the primary goal of this book, there are two others. First, to develop within
the student a degree of “mathematical maturity.”” The student with this maturity will (it is
hoped) be able to organize effective approaches of his/her own to a variety of problems. This
maturity will be developed by working problems, following and doing proofs, and writing
and running programs. Second, the book is intended as a useful reference, with reference
material gathered on several areas in signal processing, such as derivatives, linear algebra,
optimization, inequalities, etc.

This statement of intent should make clear what this book is not. There are several
very good books available on application areas in signal processing, such as spectrum
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1.2 Mathematical Topics Embraced by Signal Processing

estimation, adaptive filtering, array processing, and so on. This book does not choose any
of those particular areas as its focus. Thus, while many diftferent techniques of spectrum
estimation will be presented as applications of the techniques discovered, issues central to
the study of spectrum estimation (such as comparisons of the different techniques in terms
of spectral resolution, bias, etc.) are not presented here. Similarly, the major paradigms
of adaptive filtering are presented as applications of other important concepts (e.g., least-
squares and minimum mean-squares, and recursive computation of matrix inverses), but
a thorough treatment of the convergence of the filters is avoided. Rather than focusing on
one particular area of research interest, this book presents the tools that are used in these
research areas, enabling the interested student to move into a variety of different areas.

1.2 Mathematical topics embraced by signal processing

So what does a signal processor—that is, an individual who wants to design signal pro-
cessing algorithms, not the specialized microprocessor that might be used to implement the
algorithms—need to know, to be effective? Depending on the problem, several mathematical
tools can be employed.

Linear signals and systems, and transform theory These topics, core to many under-
graduate and introductory graduate courses, are assumed as background to this book.
Familiarity with both continuous- and discrete-time systems is assumed (although a
review of some topics is provided in section 1.4).

Probability and stochastic processes Thisis acritically important area that is also assumed
as background. Students should be acquainted with probability, and have had a course
in stochastic processes as a prerequisite to this book. Probability is an important tool,
and students are advised to continue sharpening their skills with it. A brief review of
important topics in stochastic processes is provided in appendix D.

Programming A signal processor must know how to program in at least one high-level
language. In most cases, signal processing ultimately boils down to a software or
hardware implementation on some kind of computing platform. This requires deploy-
ment of the concept, simulation, and testing, all usually software-related activities.
An understanding of basic programming concepts such as variables, program flow,
recursion, data structures, and program complexity, is assumed.

Calculus and analysis These foundation concepts occur repeatedly in the signal processing
literature. A broad and shallow coverage of analysis appears in appendix A.

Vector spaces and linear algebra While every undergraduate engineer has some exposure
to linear algebra, these topics are so important to signal processing that additional
exposure is critical. Many of the basic concepts are reviewed in this book, with an
eye toward applications in signal processing. Because of its importance, chapters 2
through 9 are devoted largely to linear algebra and its applications.

Numerical methods With the increasing penetration of computers into engineering culture
there is, paradoxically, a decrease in many students’ exposure to numerical methods.
And yet, a significant portion of signal processing consists of nothing more than
numerical methods applied to a particular set of problems involving signals. Many
of the techniques described in this book are borrowed from the numerical methods
literature.

Functional analysis In signal processing, a signal is a function. The tools from functional

analysis provide a framework from which to view the signal, leading the way to pow-
erful signal transforms and signal spaces in digital communications. In this book we
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present concepts from functional analysis in the context of vector spaces, particularly
in chapters 2 and 3.

Optimization A common theme running through many signal processing applications is
optimization: whatever is being computed, we wish to do it in the best possible way.
Or, if we cannot get to the optimal operation point in one step, we will progress toward
it as we continue to process data (that is, we will adapt). Because of its ubiquity in
application, in Part IV we present fundamental concepts in optimization, including
constrained optimization, linear programming, and path search algorithms.

Statistical decision theory Statistical decision theory can be described as the science
of making decisions in the face of random uncertainty. Such decision-making also
describes what is done in many signal processing applications. The application of
statistics to signal processing can be divided into two major overlapping areas, de-
tection theory and estimation theory. Detection theory is a framework for making
decisions in the presence of noise. Estimation theory provides a means of determining
the value of a quantity in the presence of noise. Detection and estimation are covered
in chapters 10 through 13. ‘

Iterative methods Many signal processing methods converge to their solution after several
iterations—for example, adaptive filters and neural networks. We present some basic
concepts and examples of iterative methods in chapters 14 through 17.

These topics cover a very large territory. In each of these topic areas, numerous volumes
have been written. Our intent is to not to provide an exhaustive treatment in each area, but
to present enough information to provide a useful set of tools with broad application.
Our approach is different from many other books on signal processing, in that we do not
exhaustively examine a particular discipline of signal processing—for example, spectrum
estimation—bringing in mathematical tools as necessary to treat issues that arise. Instead,
we present the mathematical perspective first, introducing new signal processing problems
and enhancing understanding of already-introduced problems as the material permits. By
this means, parallels may be drawn between areas that share mathematical tools, but that
are not commonly presented together.

1.3 Mathematical models

Throughout most of the remainder of this chapter, we present examples of several different
models that are commonly used in signal processing. The models are roughly categorized
as follows:

1. Linear signal models for discrete and continuous time, including transfer function and
state space representations. Also, applications of these models to signal processing
problems such as prediction, spectrum estimation, and so on.

2. Adaptive filtering models, and applications to prediction, system identification, and
so forth.

3. The Gaussian random variable, including the important idea of conditioning upon an
observation.

4. Hidden Markov models.

These examples illustrate some of the notation used throughout this book, and provide
a starting point for several of the signal processing applications that are examined. The
material here is presented partly by way of review, and partly as a partial survey and
motivator of concepts to be developed throughout this book.
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After this introductory material, we present a discussion of proofs. The chapter ends
with the development of a fast algorithm—finally, an algorithm!-—for fast solution of a sys-
tem of Toeplitz equations. This algorithm-—more commonly discussed in the error control
literature than the signal processing literature—ties together several themes of the chapter:
linear systems notation, autoregressive models, algorithms, and proofs.

1.4 Models for linear systems and signals

Most of the systems treated in signal processing are assumed to be linear, a concept that
should be familiar from introductory signal processing courses. We will focus principally
on systems that are also time invariant; such systems are said to be linear time-invariant
(LTT). Systems are divided according to whether they operate in continuous time or discrete
time. In discrete time, the data associated with time ¢ are indicated by either square brackets,
such as x{t], or by subscripts, such as x,, where ¢ is an integer. We will also employ other
variables as a discrete-time index, such as n or k. For continuous-time signals, the notation
x(t) or x, is commonly employed, where ¢ is a real number. The material in this section is
intended primarily as a review.

1.4.1 Linear discrete-time models
Difference equations

Let f{t] denote the (scalar) input to a discrete-time linear system, and let y[r] denote
the (scalar) output. It is common to assume an input/output relation of the form of the
difference equation

yltl = =aylt = 1 —agylt = 2] — -+ = dpylt — pl +bo fl1]
+ o flt =1+ + by flt —ql. (1.1)
The equation is shown under general assumption of complex signals, and the bar over the
coefficients denotes complex conjugation. (See box 1.1.) By redefining each coefficient a;
and b; in terms of its conjugate, (1.1) could also be written without the conjugates as
it = —aylt = 1] = apylt = 2] — -~ —apy[t — pl + bo f[1]
+ b flt =11+ -+ by flt —ql.
With consistent and careful use of the notation, the question of whether the coefficients are
conjugated in the definition of the linear model is of no ultimate significance—the answers

obtained are invariably the same. However, the bulk of signal processing literature seems
to favor the conjugated representation in (1.1), and we follow that convention. Of course,

Box 1.1: Notation for complex quantities

We use the engineer’s notation j = /=1, rather than the mathematician’s ;.
However, in some places j will be used as an index of summation; context
should make clear what is intended.

A bar over a quantity denotes complex conjugation. Other authors com-
monly indicate complex conjugation using a superscript asterisk, as a*. How-
ever, the @ notation is used in this book to indicate conjugation, since a* is
also commonly used to denote a particular value of a, such as a minimizing
value, or to indicate the adjoint of a linear operator.
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when the signals and coefficients are strictly real, the conjugation is superfluous and the
system can also be written in the form

yitl = —ayylt = 11 —axylt = 2] = -+ —apylt — pl + bo f 1]
+biflt =14+ by flt —q]
without the conjugates on the coefficients.
In the case of a system that is not time invariant, the coefficients may be a function of

the time index r. We will assume, for the most part, constant coefficients. The relation (1.1)
can be written as

14 q
@yl —kl=) beflt —kl, (1.2)
k=( =()
with ag = 1.
In (1.2), when p =0,
q
Yl = beflr — k) (1.3)

k=0

the signal y[r] is called in the statistical literature a moving average (MA) signal, since it is
formed by simply adding up (scaled versions of ) the input signal over a window of ¢ + 1
values. The number g is the order of the MA signal. The signal is denoted either as MA or
MA(g). We can also write (1.3) using a convenient vector notation. Let

flr] bo

flr=1] by

fit] = : and b= :
flt =4l by

Then
ylt] = b#t[t] = (T [1]b).

The vector notation used in this example is summarized in box 1.2. In equation 1.2, when
g = 0, so that

r
Yl =boflt] =Y @ylt — k),
k=1
the signal y is said to be an autoregressive (AR) signal of order p. Aufo because it expresses
the signal in terms of itself; regressive in the sense that a functional relationship exists
between two or more variables. An autoregressive model is denoted as AR or AR(p). Writing

y[t - l] ai

yit = 2] a
y[t] = . and a= aE

y[t "P] ap

we can write the AR signal as
il =boflr] — a”ylr.

The general form in (1.2), combining both the autoregressive and the moving average
components, is called an autoregressive moving average, or ARMA, or ARMA(p, g). Where
all the signals are deterministic, the term DARMA (deterministic ARMA) is sometimes
employed.
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Box 1.2: Notation for vectors

1. Vectors in a hnite-dimensional vector space are denoted in bold font,
such as b.

3]

All vectors in this book are assumed to be column vectors. In some
cases a vector will be typeset in horizontal format, with 7 (transpose) to
indicate that it should be transposed. Thus we could have equivalently
written

b=1{by by, .... b7 ot B =lby. by, .... byl

3. In general, the ith component of a vector b will be designated as b;.
Whether the index i starts with 0 or 1 (or some other value) depends on
the needs of the particular problem.

4. The notation b*’ denotes the Hermitian transpose, in which b is trans-
posed and its elements are conjugated:

bH = [E(),E[, ,Eq].

These rules notwithstanding, for notational convenience we will sometimes
denote the vector with n elements as an n-tuple, so that

T
]

X=[x X2 ... X, and X = (xy, X2, ..., %)

are occasionally used synonymously. This n-tuple notation is used particularly
when x is regarded as a point in R". Furthermore, since we will generalize the
concept of vectors to include functions, the math italic notation x will be used
in the most general case to represent vectors, either in R” or as functions.
Matrices are represented with capital letters, as in A or X. The matrix /
is an identity matrix. The notation 0 is used to indicate a vector or matrix of
zeros, with the size determined by context. Similarly, the notation 1 is used
to indicate a vector or matrix of ones, with the size determined by context.

System function and impulse response

In the interest of getting a system function that does not depend upon initial conditions, we
assume that the initial conditions are zero, and take the Z-transform to obtain

which we write as
Y(2)A(2) = F(2)B(2).
We will occasionally write the transform relationship as
¥yt = Y(o),

where the particular transform intended is determined by context. We will also denote
Z-transforms by

Y(2) = Z[y[]].
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The system function is

Y(@)  Yiohz™ Yl bzt B(@)
F(Z) Zf:() EkZ“k 1+ ZII::X Zikz"k A(Z)

This is also called (usually interchangeably) the transfer function of the system. We write

Y(2) = H()F(2), (1.5)

(1.4)

and represent this as shown in figure 1.1. If the system is AR, then

F ) HG) Y(z)

Figure 1.1: Input/output relation for a transfer function

1 1
L+ Y@t A
and H (z) is said to be an all-pole system. If the system is MA, then

H(z) =

q
H@) = ngz“k = B(z2),
=0

which is called an all-zero system. The corresponding difference equation (1.3) has only a
finite number of nonzero outputs when the input is a delta function f|7] = §[z], where

I =0
ol = {0 1 #0.
We will also write the delta function as §,. Occasionally the function §{r — t] will be written
as &; ;.

A system that has only a finite number of nonzero outputs in response to a delta function
is referred to as a finite impulse response (FIR) system. A system which is not FIR is infinite
impulse response (IIR).

We can view signal ¥ (z) as the output of a system with system function H (z) driven
by an input F(z). Taking the inverse Z-transform of (1.5), and recalling the convolution
property (multiplication in the transform domain corresponds to convolution in the time
domain) we obtain

oo
Vil = fIkIhl — k),
=00

where h[t], the impulse response, is the inverse transform of H(z).

To compute the inverse transform of H(z), we first factor H(z) into monomial factors
using the roots of the numerator and denominator polynomials,
bolli_ (01 —zz™)  B(2)

[, (1 = piz™h A(z)’

where the z; are the nonzero roots of B(z) (called the zeros of the system function) and the
p; are the nonzero roots of A(z) (called the poles of the system function). In this form, we
observe that if a pole is equal to a zero, the factors can be canceled out of both the numerator
and denominator to obtain an equivalent transfer function. A word of caution: even though

terms may cancel from the numerator and denominator as seen from the transfer function, the
physical components that these terms model may still exist and could introduce difficulty.

H(z) =
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A system with the smallest degree numerator and denominator is said to be a minimal
system.

Example 1.4.1 The system function

1— 7770+ 12272

H(p) = — & T2
(@ = T 57T 062

can be factored as

(=3 - 41— 4

@ = T a0 ~ 12 2

Thus the H(z) is not a minimal realization. |

Partial Fraction Expansion (PFE)

Assuming for the moment that the poles are unique (no repeated poles) and that g < p, then,
by partial fraction expansion (PFE), the system function can be expressed as

p N,
H(z) =§.1_.:;k_z_:l., (1.6)
where

Ne = H@(1 = pez Do,

Taking the causal inverse Z-transform of (1.6), we obtain

r
hitl = Ne(p)'  t20.
k=1
The functions pj, are the natural modes of the system H (z). Clearly, for the causal modes to
be bounded in time, we must have |p| < 1. In general, the output of a linear time-invariant
system is the sum of the natural modes of the system plus the input modes of the system.

Example 1.4.2 Let

1~ .3z7" 1.3z
H = = .
@ 1—1t1z7v+ 3272 (1 —.5z27H1 —.6z7Y)

Then, a partial fraction expansion is
-2 3

H(z) = .
@ 1—.5z71 +1—-.6z‘l

The impulse response is

hlt] = [(=2)(.5)" + 3(.6)"Tult],

where #[r] is the unit-step function,

I =1
ulr) = 0 <0 0

To compute the PFE when ¢ > p, the ratio of polynomials is first divided out. When
there are repeated poles, somewhat more care is required. For example, a root repeated r
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times, as in
B(z)
Hzp oo
(I—=pz7)
gives rise to the partial fraction expansion

k() k] kr—l

o=y Ty T Ay a-n
where!
k= L1y i (1-pz”YH@)| . (1.8)
plJ d(z™') =p

The inverse Z-transform corresponding to (1.7) is of the form
hlt] = [cop" + c1tp’ + -+ ¢,y p'lult],

where the coefficients {c;} are linearly related to the PFE coefficients {k;}.
Using computer software, such as the residue or residuez command in MATLAB,
is recommended to compute partial fraction expansions.

Example 1.4.3 Let

3424771+ 6777
H() = ———————.
] = 7z71 4+ 1772

We desire to find the impulse response h{t]. Since the degree of the numerator is the same as the
degree of the denominator, we divide, then find the partial fraction expansion.

44 4771 - 57
H = 60
@ =00+ A - s
-110 53
= 60 4

1~ .2z"1 + 1-—.5z7"

then,

h[t] = 608[1] — 110(.2)" + 53(.5) >0 0

1.4.2 Stochastic MA and AR models

In stochastic MA and AR models, the input f[r] is assumed to be a white discrete-time
random process that is usually zero mean. (The reader is encouraged to review the concepts
of random processes summarized in appendix D.) The input coefficient by is set to 1, with
the input power determined by the variance of the signal. Thus,

E[fit]l=0 for all ¢

and
U}' =5

0  otherwise.

E[fl1fIs)) = {

"The symbol j here does not represent +/—1. In instances where confusion is unlikely, we may use j as an
index value.
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Autocorrelation function

Signal processing often involves comparing two signals; one means of comparison is by
means of correlation. When a signal is compared with itself, the correlation is called autocor-
relation. For stochastic signals, we define the autocorrelation of a zero-mean (wide-sense)

stationary signal y[t] as
ryyll =kl = Ely[t — k]y[t — 111, (1.9)

or, equivalently, r,,[k] = E[y[t]3[tr — k]]. The autocorrelation function has the property
that

ryylk] =7,,[—k]. (1.10)

For real random processes, ry,[k] = ry,[~k]; a function that has this property is said to be
even.
For the MA process

Yl = flel+ b1 flt — U+ by flt — g,
it is straightforward to show that the autocorrelation function is
Pyl =07 by kb (111
I

For the AR model
ylel+aylt =114 - +a@pylt — pl = flzl, (1.12)

multiply both sides by ¥{r — /] and take expectations, to obtain

P
E{E:myh—kWU—H}=lﬂfM?b~ﬂl (1.13)

k=0
We recognize that E[y[t — k]y[t —[]] = r,,[ — k], and that the RHS

ELfII¥l -1 =0
for! > 0, since f[t] is a white-noise process. Then, using the fact that gy = 1, we can
write
rylll = =a@iryll — 11 = @ory [l =21 — -+« —@pry,il — pl for! > 0. (1.14)

This difference equation for the autocorrelation is similar to the equation for the original
difference equation in (1.12). Stacking (1.14) for[ = 1, 2, ..., p, we obtain

ryy(0] ryl=11 o ryl=(p=DI| [—a@ ryy[1]
ryy.[l] ryy[0] o ryl=(p = 2)] -—jdz _ ryyt[z] . (1.15)
ryy[;; —-11 rylp=21 - ryy (0] —‘éip fyy.[P]
Conjugating both sides using (1.10), we obtain
ryy [0} ryplll ey [(p—= DI | —a Fyyll]
'Fyy‘[ll ryy[0] < Tywl(p = 2)] -'ag _ Fyy.[z] (1.16)
Folp =11 Fplp=20 - ryl00 | [=ap] [Flp)

These equations are known as the Yule-~Walker equations. We commonly write (1.16) as

Rw =r,
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where
w=[-a —ay - —a,]" r=[Fu[1] 7,21 - Fulpll

The matrix R is said to be the autocorrelation matrix of y. We will have considerable
to say about the properties of R and algorithms that operate on it. For now, we make the
following observations.

1. R is Hermitian symmetric, which means that
R=R".

We will see that this means that the eigenvalues of R are real and the eigenvectors
corresponding to distinct eigenvalues are orthogonal. If R is real, then R is symmetric:
RT =R.

2. R is a Toeplitz marrix, which means that R is constant along the diagonals. If ry;
denotes the i, jth element of R, then

Tij = Fi—j:

which is to say, the element of R depends only on the difference between the index
values. We shall see that the Toeplitz structure of R leads to efficient algorithms for
solving equations similar to the Yule—Walker equations.

Realizations

A block diagram, or realization, of (1.2) can be easily derived. The realization presented
here is known in the control literature as the controller canonical form. Write the system
function as

Y(z) W) I ( 1 )
Hz) = = E 3 e | = Hi (2 , )
@) W(z) F(z) <k=0 biz ) 1+ S a 1(2YHa(2) (1.17)

where the signal W(z) has been artificially introduced. From the transfer function H»(z)
we get the relationship

p
W(2) <1 + Zmﬂ) = F(2), (1.18)

k=1

corresponding to the difference equation
wlil+aqywir — 1+ +a@,wlt — pl = flr],
or,
wltl = fI1] —aywir — 1] —aquwit = 2] — - —d,wlr — pl.

A block diagram of a realization of (1.18) is shown in figure 1.2. From H;(z) in (1.17),
we have

Y(z) = W(z)B(2),
with the corresponding difference equation

ylt] = bowlt] + bywlr — 1]+ -+ bywlt — g].
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Figure 1.3: Realization of a transfer function

This realization (drawn assuming that p = g) is shown in figure 1.3. We explore other
possible realizations in the exercises.

State-space form

Consider the block diagram in figure 1.4, in which the outputs of the delay blocks are
labeled x;, x2, . . ., x,, from right to left. From this block diagram, we obtain the following
equations:

xi[t 4+ 1] = xalt]
xoft + 1] = x3¢]

Xp-ilt + 1] = x,[t] (1.19)
xplr + 11 = flt] =@y x,[t] = @axp [(] — - - — Gprxalt] — @pxilr]
Yl =b,oxi[t] + by xaft] + -+ baxpo (1] 4 by x,p[1]

+ bo(flt] — @ix,lt] — @pxp[t] — - — @pxi(2]).
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xple}

_Ep H———

Figure 1.4: Realization of a transfer function with state-variable labels

Observe that the direct connection from input f to output y is via by. The variables
Xy, X2, ..., X, are the state variables. Let x[7] be the state vector

xy[1]
x2(1]

xplt]
We also introduce the vectors

b=1[0,0..,01"7
T ———

p elements
b, — bod,
Bn~‘ - 505%1 _
¢ = ) and d=by
by — bod
and the matrix
0 1 0 0 0 0
0 0 1 0 -0 0
0 0 0 0 0 1
—dp, —~Ap-i ~—Ap-2 —dp-3 —d,  —d
If by = 0, then ¢ is
e =1, b, ....by),

which explicitly displays the numerator coefficients of H(z). The equations in (1.19) can
be written using these definitions as

x[t + 1] = Ax[t] + b f[r]
vl = c"xli) +dfle].
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Anequation of the form (1.21) is in state-space form. The system is denoted as (A, b, ' d)
or, when d = 0, as (A, b, ¢7). The particular form of the state-space system in (1.21) is
called the controller form. The form of the matrix A, with ones above the diagonal and
coefficients on the last row, is called a first companion matrix.

System transformations; similar matrices

The state-variable representation is not unique. In fact, an infinite number of possible
realizations exist which are mathematically equivalent, although not necessarily identical
in physical operation. We can create a new state-variable representation by letting x = Tz
for any invertible p x p matrix T. Then (1.21) becomes

Tzt + 1] = ATz[t] + b f1]

ylr] = ' Tz + df 1],

which can be written as
zit + 1] = _/‘iTz[t] + lif[t] (1.22)

ylel=¢ zlt] +d f[z],

where
A=T"'"AT b=7T""p €=T"c d=d

(The bar does not indicate conjugation in this instance.) Matrices A and A that are related as
A = T~' AT are said to be similar. It is straightforward to show that the system (A, b, €7, d)

has the same input/output relationships (dynamics and transfer function) as does the system
(A, b, ¢, d)—which means, as we shall see, that A and A have the same eigenvalues.

Time-varying state-space model
When the system is time-varying, the state-space representation is
x[r + 1] = Alr]x[t] + b[1] f[1]
y[e] = T [1)x[t] + d[e] f 1],

in which the explicit dependence of (A{t], b[t], ¢”[¢], d[¢]) on the time index ¢ is shown.

(1.23)

Transformed state-space model

The time-invariant state-space form can be represented using a system function. We can
take the Z-transform of (1.21). The Z-transform of a vector is simply the transform of each
component. We obtain the equations

zX(z) = AX(2) + bF(2) (1.24)
Y(z) = X(2) + dF (D). (1.25)
From (1.24), we obtain
(zl — A)X(2) =bF(2).
The matrix [ is the identity matrix. Then
X(2) = (zI = A)7'bF(2),

where (z/ — A)~! is the matrix inverse of zJ — A. (Matrix inverses are discussed in chapter 4.)
Substituting X(z) into (1.25), we obtain

Y =@l -A) " 'b+dF(2).
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Since Y(z) and F(z) are scalar signals, we can form their ratio to obtain the system
function

H(z) = —i% ="zl = A) b+ a). (1.26)

Example 1.4.4 We will go from a system function to state-space form, and back. Let

In some literature, it is common to eliminate negative powers of z in the system functions. This can
be done by multiplying by z2/z%:

Placing the system in controller form, we have
_ 10 LR ) N R |

0 1
e[ 1] aes

To return to a transfer function, we first compute

z -1
@l =A)= [5 z+3}
and

1

A=A {

-5 z

z+3 1
2(z+3)+5 )

The inverse of a 2 x 2 matrix is

Then, using (1.26), we obtain

1 z+3 1|0 32242744
H(z) = ———[-11, -7 d= \
@ 22+3z+5[ ' ]{—5 ZJ [1 * 2+3z245
as expected.
To emphasize that the state-space representation is not unique, let
P 5 4.5 - -1 ~ -2 -
A“L].s —3.5} b“{l} C‘L()} d=3

This system is not in controller form. We may verify that

Hy =@z - A7 b +d)y= H(z). 0
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Solution of the state-space difference equation

It is also possible to determine an explicit expression for the state of a system in state-variable
form. It can be shown (see exercise 1.4-19) that, starting from an initial state x[{0],

t—1

x[t] = A'X[0] + Y A*bflr — 1 — k. (1.27)

k=0
The sum is simply the convolution of A'b with f[r — 1]. The output is

r—1

il =c"AX[01+ > ¢ Akbflr — 1 — k] +df[t].
k=0

The quantities ¢’ A*b are called the Markov parameters of the system; they correspond to
the impulse response of the system (A, b, 7).

Multiple inputs and outputs

State-space representation can be used to represent signals with multiple inputs and outputs.
For example, a system might be described by

xilr + 1] 3 2 -1 21 1]
x[t+1]= |xat +11| = |1 2 =5|x[r]+ |-1 =5 {f*[i]}
x3[t + 1] 2 1 1 _1 g | LP

_in [z] . 2 4 6
ylel = L’z[!]} = L 5 ol XUl
This system has three state variables, two inputs, and two outputs. In general, a multi-input,

multioutput system is of the form

x[t + 1] = Ax{[t] + Bu[t]

(1.28)
yit] = Cx{t] + Dulz].
If there are p state variables and [ inputs and m outputs, then
Aispxp
Bispxl
Cismxp
Dism x[.
State-space systems in noise
A signal model that arises frequently in practice is
x[t + 1] = Ax[t] + Bufr} + wlt
{r]+ wle] (1.29)

yit] = Cx[t] + Dufe] + v[z].

The signals w[t] and v[z] represent noise present in the system. The vector w{t] is an input
to the system that represents unknown random components. For example, in modeling
airplane dynamics, w{t] might represent random gusts of wind. The vector v{t] represents
measurement noise. Measurement noise is a fact of life in most practical circumstances.
Getting useful results out of noisy measurements is an important aspect of signal processing.
It has been said that noise is the signal processor’s bread and butter: without the noise, many
problems would be too trivial to be of significant interest.
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This book will touch on some aspects of systems in state-space form, but a thorough
study of linear systems, including state-space concepts, is beyond the scope of this book.
(For supplementary treatments, see the reference section at the end of this chapter.)

1.4.3 Continuous-time notation

For continuous-time signals and systems, the concepts for input/output relations, transfer
functions, and state-space representations translate directly, with z ! (unit delay) replaced by
1/s (integration). The reader is encouraged to review the discrete-time notations presented
above and reformulate the expressions given, in terms of continuous-time signals. The
principal difference between discrete time and continuous time arises in the explicit solution
of the differential equation

x(1) = A(O)x(1) + B()E(r)

(1.30)
y(t) = C(tyx + D()f(@).
For the time-invariant system (when (A, B, C, D) is constant), the solution is
‘ "
x(1) = e*'x(0) + / MM BEG) d, (1.31)
0
where e’ is the matrix exponential, defined in terms of its Taylor series,
1? 1
eA’=]+At+A2§+A3§T+A.., (1.32)

where [ is the identiry matrix. (See section A.6.5 for areview of Taylor series, and section 6.2
for more on the matrix exponential.) The matrix exponential can also be expressed in terms
of Laplace transforms,

e = L7 s — A)7,

where 51 — A is known as the characteristic matrix of A and L[] denotes the Laplace
transform operator,

CIF(0] = / Fe dr.
X

An interesting and fruitful connection is the following. Recall the geometric expansion
1 2 3
T_:I+X+X +x7 4+ (1.33)
X

which converges for |x| < 1. This also applies to general operators (including matrices) to
(I-F) '=I4+F+F+F+... (1.34)

when || F|| < 1. The notation || F'|{ signifies the operator norm; it is discussed in section 4.2.
The expansion (1.34) is known as the Neumann expansion (see section 4.2.2). Using (1.34),
the expression (s — A4)~ ! is

i 3,2
;(1+A/‘9+A/s“+~~)

from which the Taylor series formula (1.32) follows immediately, from the inverse Laplace
transform.
For the time-invariant single-input, single-output system

x(1) = Ax(1) + b f(r)

v(r) = ¢'x(1)
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the transfer function is
H(s) =c(sl — A 'b.

Using (1.34), we write

oG
His) = Zhisi,
[e=]

where h; = ¢/ A"'b are the Markov parameters of the continuous-time system.
The first term of (1.31) is the solution of the homogeneous differential equation

x(1) = Ax(1),
while the second term of (1.31) is the particular solution of
X = A()x(r) + B(O().

It is straightforward to show (see exercise 1.4-22) that, starting from a state x(7), the
state at time ¢ can be determined as

t
X(I):e/"('”r)x(t)—i-/ e Bu(d) dA. (1.35)

Since ¢*¢~%) provides the mechanism for moving from state x(t) to state x(¢), it is called
the state-transition matrix.
For the time-varying system (1.30), the solution can be written as

x(1) = Pz, 0)x(0) + / P, MBHuh) di, (1.36)
0

where ®(z, ) is the state-transition matrix—not determined by the matrix exponential in
the time-varying case. The function ®(z, t) has the following properties:

1. &, t) =1,
o0(t, T)
2. = ADYD(, 1),

3. @(t, 1) = [P(r, )]} (the matrix inverse).

1.4.4 Issues and applications

The notation introduced in the previous sections allows us now to discuss a variety of issues
of both practical and theoretical importance. Here are a few examples:

¢ Given a desired frequency response specification—either
H(e!”)
for discrete-time systems, or
H(jw)
for continuous-time systems—determine the coefficients {a;} and {b;} to meet, or
closely approximate, the response specification. This is the filter design problem.

» Given a sequence of output data from a system, how can the parameters of the system
be determined if the input signal is known? If the input signal is not known?

» Determine a “minimal” representation of a system.
e Given a signal output from a system, determine a predictor for the signal.
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+ Determine a means of efficiently coding (representing) a signal modeled as the output
of an LTT system.

¢ Determine the spectrum of the output of an LTI system.
¢ Deternuine the modes of the same system.

s For algorithms of the sort just prescribed, develop computationally efficient
algorithms.

e Suppose the modes of a signal are not what we want them to be; develop a means of
using feedback to bend them to suit our purposes.

Examination of many of these issues is taken up at appropriate places throughout this
book, with varying degrees of completeness.

Estimation of parameters; linear prediction

It may occur that a signal can be modeled as the output of a discrete-time system with system
function H(z), for which the parameters {p,q,bo, ..., b, a1, ..., a,} are not known.
Given a sequence of observations y[0], y{1], ..., we want to determine, if possible, the
parameters of the system. This basic problem has two major variations:

e The input f[¢] is deterministic and known.
¢ The input f{r] is random.

Other complications may also be modeled in practice. For example, it may be that the output
ylr] is corrupted by noise, so that the data available is

z[t] = ylt] + elt],

where wt] is a noise (or error) signal. This is a “signal plus noise” model that we will
employ frequently.

In the case where the input is known and there is negligible or no measurement noise, it
is straightforward to set up a system of linear equations to determine the system parameters.
For the ARMA(p, q) system of (1.2), if the order (p, ¢) is known, a system of equations to
find the unknown parameters can be set up as

AX = b, (1.37)
in which
ylp—=1] ylp-=21 -~ y[0] flpl flp—=11 -~ flp—q—1]
3 vipl  ylp—-11 - y[11  flp+1l flp~1] -+ flp—gq]
yIN—=1] y[N~-2] -« y[N-p] fIN] fIN-1] -+ fIN—g—1]
F_.al'
—d3
: vip]
-7 p+ 1]
X = EC;‘” and = }PE ,
by [N
5, ]
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where N is large enough that there are as many equations as unknowns. When there is
measurement noise in the system, N can be increased so that there are more equations
than unknowns, and a least-squares solution can be computed, as discussed in chapters 3
and 5.

An important special case in this parameter estimation problem in which the input is
assumed to be noise, is when H(z) is known to be, or assumed to be, an AR(p) system,
with p known:

1

L+ 3wz

Such a model is commonly assumed in speech processing, where a speech signal is modeled
as the output of an all-pole system driven by either a zero-mean uncorrelated signal in the
case of unvoiced speech (such as the letter “s”), or by a periodic pulse sequence in the case
of voiced speech (such as the letter “a”"). We assume that the signal is generated according
to

H{z) =

ylel = =alyle — 11+ fl2]

(Further assuming here the model uses real data). Our estimated model has output y[r],
where

Pt = —aTylr),

and

The mark “”” over a quantity indicates an estimated or approximate value. We can interpret
the estimated AR system as a linear predictor: the value $[t] is the prediction of y[t] given
the past data y[t — 1], y[r — 2], ..., y[t — p]. The prediction problem can be stated as
follows: determine the parameters 4, .. ., @, to get the “best” prediction. There is an error
between what is actually produced by the system and the predicted value:

e[t] = ylt] - 3lz].

This is illustrated in figure 1.5. A “good” predictor will make the error as “small” in some
sense as possible. The solution to the prediction problem is discussed in chapter 3.

One application of linear prediction is in data compression. We desire to represent a
sequence of data using the smallest number of bits possible. If the sequence were completely
deterministic, so that y[r] is a deterministic function of prior outputs, we would not need
to send any bits to determine y[t] if the prior outputs were known: we could simply use
a perfect predictor to reproduce the sequence. If y{t] is not deterministic, we predict y{r],

Predictor

U Z,P:;ffiy{t—i] el1]

Prediction
error

Figure 1.5: Prediction error
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then code (quantize) only the prediction error. If the prediction error is small, then only
a few bits are required to accurately represent it. Coding in this way is called differential
pulse code modulation. When particular focus is given to the process of determining the
parameters 4, it may be called linear predictive coding (LPC). To be successful, it must be
possible to determine the coefficients inside the predictor.

Linear prediction also has applications to pattern recognition. Suppose there are several
classes of signals to be distinguished (for example, several speech sounds to be recognized).
Each signal will have its own set of prediction coefficients: signal 1 has a;, signal 2 has
a,, and so forth. An unknown input signal can be reduced (by estimating the prediction
coefficients that represent it) to a vector a. Then a can be compared with a,, a;, and so
forth, using some comparison function, to determine which signal the unknown input is
most similar to.

We can examine the linear prediction problem from another perspective. If

Y(z) = H(2)F(2),

then

i
F(z) = Y(Z)H(Z).

That is,
flil =yl +a’ylr — 13.

If we regard y[r] as the input, then f[r] is the output of an inverse system. If we have an
estimated system

I

H(G) = —=5——7
( ) 1+Zf:1&k2'k

then the output

flil=ylr1+a"y[r — 1]

should be close (in some sense) to f[t]. A block diagram is shown in figure 1.6. In this
case, we would want to choose the parameters 4 to minimize (in some sense) the error
fle] - f[r]. That is, we want to determine a good inverse filter for H(z).

Interestingly, using either the point of view of finding a good predictor or of finding
a good inverse filter produces the same estimate. It is also interesting that computationally
efficient algorithms exist for solving the equations that arise in the linear prediction problem;
these are discussed in chapter &.

vlr] . = flr]
o 1 - N P -k
- H(é)—W o /HE@) =1+, arz -
Assumed Inverse elr}
system system Inverse system
model model error

Figure 1.6: Linear predictor as an inverse system
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Estimation of parameters: spectrum analysis

It is common in signal analysis to consider that a general signal is composed of sinusoidal
signals added together. Determining these frequency components based upon measured
signals is called spectrum estimation or spectral analysis. There are two general approaches
to spectral analysis. The first approach is by means of Fourier transforms, in particular, the
discrete Fourier transform. This approach is called nonparametric spectrum estimation.
The second approach is a parametric approach, in which a model for the signal is proposed
(such as the one in (1.2)), and then the parameters are estimated from the measured data.
Once these are known, the spectrum of the signal can be determined. Provided that the
modeling assumptions are accurate, it is possible to obtain better spectral resolution with
fewer parameters using parametric methods.

Discussion of spectrum analysis requires some familiarity with the concepts of energy
and power spectral densities. For a discrete-time deterministic signal y[¢], the discrete-time
Fourier transform (DTFT) is

o

Y()= ) yltle /™

t=—00

where j = «/—1. The energy spectral density (ESD) is a measure of how much energy
there is at each frequency. An energy signal y[r] has finite energy,

> P < oo

[ OO

For a deterministic energy signal, the ESD is defined by
Gyy(@) =Y (@),

where the subscript in G, indicates the signal whose ESD is represented. The autocorre-
lation function of a deterministic sequence is

pyylk) = > y[tIyle — k.
tE=—00
Then (see exercise 1.4-27),
o]
Gyy(w) =Y pyylkle™ (1.38)
k=00

that is, the energy spectral density is the DTFT of the autocorrelation function.

The power spectral density (PSD) is employed for spectral analysis of stochastic signals.
It provides an indication of how much (average) power there is in the signal, as a function
of frequency. We assume that the signal is zero mean, E[y{t]] = 0. For the signal y[¢] with
autocorrelation function ry,[k], we also assume that

N
1
Jim Dkl [kl =0. (1.39)
kz=—~N
The PSD is defined as
oG
Sy(w) = D ryylkle ™.
k00

That s, the PSD is the DTFT of the autocorrelation sequence. One of the important properties



26 Introduction and Foundations

of the PSD is that
Syy(w) =0 forall w.

This corresponds to the physical fact that real power cannot be negative.
A signal f[r] with PSD S/ (w), input to a system with system function H (z), produces
the signal y[t], as shown in figure 1.7. Let us define

Hw) = He'®) = H(@)|,meiw.

£l ylz]
| H(Z) ——
Sglw) Sylw)

Figure 1.7: PSD input and output

The first equality is “by definition,” and is actually an abuse of notation. However, it affords
some notational simplicity and is very common. Then (see appendix D), the PSD of the
output is

Sy (@) = [H(@)*S 7 ().

The spectrum estimation problem is as follows: given a set of observations from a
random signal, y[0], y[1], ..., y[N], deiermine (estimate) the PSD. In the parametric ap-
proach to spectrum estimation, we regard y[r] as the output of a system H (z). It is common
to assume that the input signal is a zero-mean white signal, so that

S¢r(w) = constant = o}.

The parameters of H(z) and the input power provide the information necessary to estimate
the output spectrum S, (w).

1.4.5 ldentification of the modes

Related to spectrum estimation is the identification of the modes in a system. We present
the fundamental concept using a second-order system without the complication of noise in
the signal. Assume that a signal y[r] is the output of a second-order homogeneous system

vir+ 21+ aylt + 11+ apy[i] =0, (1.40)
subject to certain initial conditions. The characteristic equation of this system is
dHaiz+a;=0. (1.41)
The modes of the system are determined by the roots of the characteristic equation. Writing
FHaztar=(-p)i-p)
and assuming that p; # p», then
yitl=ca(p) +aalp))’ 120,

where the mode strengths (amplitudes) ¢; and ¢, are determined by the initial conditions.
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Based upon the (noise-free) equation (1.40), we can write a set of equations to determine
the system parameters (ay, az).

y{1]  —y{0] vi2]

1
Y21 =1 M: 3]
. a3 R

Provided that the matrix in this equation has full rank, the parameters a; and a; can be
found by solving this set of equations, from which the modes can be identified by finding
the roots of (1.41). Using this method, two modes can be identified using as few as four
measurements. Two real sinusoids (with two complex exponential modes in each) can be
identified with as few as eight measurements, and they can (in principle, and in the absence
of noise) be distinguished no matter how close in frequency they are.

Example 1.4.5 Suppose that y{t] is known to consist of two real sinusoidal signals,
y{t] = A cos(wit + 6)) + Bcos{wsyt + ;).

Each cosine function contributes two modes,

/Wit gmiwie

cos{wyt) = 5

so we will assume that y[¢] is governed by the fourth-order difference equation
vitl+aiyle = 1]+ agylt =21+ a3yt = 3] +asylt —4]1 = 0.

Then, assuming that clean, noise-free measurements are available, we can solve for the coefficients
of the difference equation by

-yB -2l -y -0 [a] [y
—y4 -3l -2l | e _ [yI5) (142)
—5] —y4 Bl -2l as| T |6l ‘
-6 51—y -6l la Lo

If the measured output data set is

y = IOLy[l, .. (07
= (255433, 1.91774, 1.15137, 0.33427, —0.451325, —1.1354, —1.67244, —2.0477},

substitution in (1.42) yields

(ay, az, ay, as) = (—3.7153, 5.4404, =3.7153, 1)
7% —3.71537% + 5.4404z% — 37153z + 1,

which has roots at

*£j0.5 ;02

e and e

So, the frequencies of the modes are w; = 0.5 and w, = 0.2. Once the frequencies are known, the

amplitudes and phases can also be determined. t

Generalization of these concepts to a system of any order is discussed in section 8.1.
Treatment of the measurement noise is discussed in sections 6.9. and 6.10.1.
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1.4.6 Control of the modes

Suppose we have a system described by the dynamics

xifr+11) 105 0f ixlf] 1

[xz[r+ 1]] = [o 3| |xal) * 1) S
Because the A matrix is a diagonal matrix, the state variable equations are said to be
uncoupled:

xift + 11 = 0.5x,{r] + flz]
does not depend on x», and
X[t + 1] = 3xa[t] + f11]

does not depend upon x;. (The question of how to put a general system into diagonal form is
addressed in section 6.2.) The homogeneous responses (zero-input) of the modes separately
are

xi[t] = (0.5)"x;[0)  x2[r] = (3)"x2[0].

The state variable x,[r] decays to zero as n — oo, while the state variable x;{r] blows up. If
this represented the state of a mechanical system, such exponential growth would probably
be undesirable. A natural question arises: Is it possible to determine an input sequence
flt] (in conjunction with feedback) that controls the system so that both state variables
remain stable? The means of accomplishing this falls very naturally into place using some
techniques from linear algebra; see section 6.12.

1.5 Adaptive filtering

An adaptive filter is a filter, usually with an FIR impulse response, in which the coefficients
are obtained by attempting to force the output of the filter y[t] to match some desired input
signal d[r]. (Several examples of desired input signals are given below.) Schematically, the
filter is shown in figure 1.8. The error signal

elt] = d[1] — y[1]

is used in specialized algorithms (the adaptation rule) to adjust the coefficients of the
adaptive filter. A variety of adaptation rules are employed; in particular, we will study the
recursive least-squares (RLS) algorithm presented in section 4.11.1 and the least mean
squares (LMS) algorithm presented in section 14.6. Adaptive filters are employed in a
variety of configurations, some of which are highlighted in this section.

/

fin Adaptive y
B filter

elr]

Figure 1.8: Representation of an adaptive filter
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1.5.1 System identification

An adaptive filter can estimate the the transfer function of an unknown plant, using the
configuration shown in figure 1.9. The adaptive filter and the plant are both driven by the
same input signal, and the desired signal d[t] is the plant output. The adaptive filter will
converge to a “best” representation of the unknown system. If the system is an IIR system
and the adaptive filter is an FIR system, or if the order of the adaptive filter is less than
the order of the system, then the adaptive filter can be at best an approximation of the true

system response.

bl

Adaptive y
filter
t t
Sl elt] 5
Unknown +
plant i

Figure 1.9: Identification of an unknown plant

1.5.2 Inverse system identification

When the adaptive filter is configured as shown in figure 1.10, then it will converge when
the output of the adaptive filter matches the delayed input of the inverse system as closely
as possible. Ideally, the adaptive filter will converge to the inverse of the plant, so that the
cascade of the plant and the adaptive filter is simply a delay. This configuration is employed
in some modems to reduce the effect of the channel on the transmitted signal. The signal
representing a sequence of input bits (f[¢]) passes through a channel with an unknown
transfer function H (z). At the receiver, the signal is processed by an adapted inverse system
before detecting the bits.

/

Unknown Adaptive vzl
plant #1 filter
t t N
Sl eft] -
e P
ela

Figure 1.10: Adapting to the inverse of an unknown plant

1.5.3 Adaptive predictors

In the configuration shown in figure 1.11, the input to the adaptive filter is a delayed version
of the desired signal. In this case, the adaptive filter converges in such a way as to provide
a predictor of the input signal (if prediction is possible). In this mode it can be used for
all the applications mentioned previously for linear predictors, including data compression,
pattern recognition, or spectrum estimation.
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Adaptive yir]

[r]
B Fr W

elt] -
dlt] “+

Figure 1.11: An adaptive predictor

1.5.4 Interference cancellation

In the context of interference cancellation, the signal d[r] is commonly referred to as the
“primary signal,” while the filter input is referred to as the “secondary signal.” The primary
d[t] is modeled as the sum of a signal of interest, x[¢], plus noise:

dlt] = x[t] + wir].
The secondary input consists of a noise signal,
fli} = nl1]

(see figure 1.12). As an example, suppose that a background acoustic noise source (say
the hum of a fan), w(r] is superimposed on a desired audio signal, x[r], which is recorded
using a microphone to form the primary input. A second microphone placed far from the
desired signal records the noise, n[t], but not the desired signal. There is a different acoustic
transfer function for each of the two microphones, hence n[r] is not the same as w(r]. The
adaptive filter is driven to minimize the error, which adapts to accommodate this difference
in transfer function from the noise source. Thus, the resulting difference signal, e[t], will
have (insofar as possible) the noise from the reference signal subtracted from the noise from
the primary signal.

The interference cancellation configuration has been used in several applications, such
as noise cancellation, echo cancellation, and adaptive beamforming in array processing.

/

flt] = nlr} Adaptive vir]
= filter

noise z

wt] 5 dir] &+

!

signal = x{z]

Figure 1.12: Configuration for interference cancellation
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Box 1.3: Notation for random variables and vectors

Scalar random variables are represented using capital letters, while a partic-
ular outcome value for a random variable is indicated in lower case, usually
the same letter. Thus X is a random variable, and x may be an outcome of
the random variable. Random vectors are usually presented as bold capital
letters. Where the notation of the literature commonly employs lower case,
we follow suit.

A probability density function (pdf) or probability mass function (pmf)
for a random variable X is written as fx(x). However, it will be common
throughout the text to suppress the subscript notation, letting the argument
of the function provide the indication of the random variable. Thus we will
frequently write f(x) to mean fx(x).

1.6 Gaussian random variables and random processes

We begin by reviewing the basic properties of single Gaussian random variables. (See
box 1.3 for typographical notation.) Let W be a Gaussian random variable with mean p
and variance o2. Notationally, we write

W~ AN(u, o).

The scalar Gaussian probability density function (pdf) should be familiar,

1

o2

o~ (w—n/20*

Sww) =

where 1 is the mean and o2 is the variance of the distribution. That is,

e 1 e 2 2
= E[W] = wfww)dw = / we™ W oy
2 (W] [_m fw (w) e )

1 o
02 — E[(W _ M)z] — E[WZ] . uz — / wze“‘(LU‘[.L)l/Zgz dw — uz.

V2o Jox

Figure 1.13 illustrates a Gaussian pdf with x = 0 and ¢ = 1.

and

4 2 0 2 4
w

Figure 1.13: The Gaussian density
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Associated with the Gaussian pdf are the following useful integrals, true for all values
of pando #= O

1 i 2 2 2
= / e T gy = ] (1.43)
o T Jero
1 o 2 2 2
5 / xe TR gy = (1.44)
o T J o
] * 2 /267 2 2
> / x2e G gy =6t 4 (1.45)
a T J-x

Measured signals are commonly corrupted by noise. If Y{r] represents a vector system
output, the measured value is often modeled as

Zit] = Y[1] + W[z,
where W{r] is a vector of noise samples,

Wilt]
Wy(1]

Welr]
This is the “signal plus noise” model.

In the absence of specific reasons to the contrary, it is common to assume that additive
noise signals are distributed with a Gaussian (or normal) distribution. (Quantization noise
is an exception to this assumption; it is usually modeled as a uniform random variable.)
There are reasons for assuming that random variables and random processes are Gaussian.
First, Gaussian noise occurs physically. For example, the thermal noise at the front end of
a radio receiver is often Gaussian. Second, Gaussian noise signals have a variety of useful
properties which simplify several theoretical developments. Some of these properties are
described in the following list.

1. By the central limit theorem, the distribution of the sums of several random vari-
ables tends toward a Gaussian distribution. That is, if X, X,, ..., Xy are indepen-
dent random variables, with means wy, us. ..., iy and variances 012, (722, N cr,%,
respectively, then

N
Xi— Wi
Y Z; -
is distributed almost like a Gaussian with mean 0 and variance 1, if N is large enough.
In the limit, as N — oo then ¥ ~ A(0, 1). The central limit theorem accounts, in
large measure, for the occurrence of Gaussian noise in practice; the measured noise
1s actually the sum of many small independent effects.

Example 1.6.1 An appreciation of the central limit theorem can be gained by looking at the
sum of only three variables. Let X;. X,, and X; be independent random variables uniformly
distributed from —1/2 to 1/2. Notationally, we write X; ~ U(—1/2,1/2). The pdf for this
uniform random variable is shown in figure 1.14(a). Let Z = X, + X;. (Keep in mind that the
pdf of the sum of independent random variables is the convolution of the pdfs.) The pdf of Z
is thus the “hat” shaped function shown in figure 1.14(b). the convolution of two flat pulses.
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[
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Figure 1.14: Demonstration of the central limit theorem

LetY =2+ X; =X, + X, + X;. The pdf of Y, obtained again by convolution, is shown in
figure 1.14(c). This is a piecewise quadratic function, but observe how it is already beginning
to look like the Gaussian density in figure 1.13. 0

A Gaussian random variable W is entirely determined by its mean and its variance.
A Gaussian random process w(z) is determined by its mean

my(t) = Elw(t)]
and autocorrelation
ry(t, s) = Elw(Ow(s)]. (1.46)

A Gaussian random process with constant mean and ry, (¢, 5) = r,(s — ¢) (that is,
with the autocorrelation dependent upon the time difference in sample points) is
stationary.

Linear operations on Gaussian random variables produce Gaussian random variables.
That is, if X and Y are jointly Gaussian, then

Z=aX +bY

is also Gaussian for any constants ¢ and b. In particular, the sum of Gaussians is
Gaussian. (This follows since the convolution of Gaussians is Gaussian.)

Furthermore, if a Gaussian random process is input to a linear system, then the
output is also a Gaussian random process. All that must be determined is the mean
and autocorrelation of the output signal, and it is fully characterized.

. Maximum likelihood detection or estimation involving Gaussian random variables

corresponds to a Euclidean distance metric. This is generally geometrically palatable
and analytically tractable.

. Wide-sense stationary (WSS) Gaussian random processes are also strict-sense sta-

tionary (SSS). (See appendix D.)
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6. Uncorrelated Gaussian random variables are also independent.
7. A Gaussian conditioned upon a Gaussian is Gaussian.

Justifications for some of these properties are provided later.
For a Gaussian random vector W of dimension k with mean g and covariance matrix
R, we write W ~ A (u, R). The pdf is

1 1 T p—1
Jw(w) = Wexp “E(W‘H) R (w—p) (1.47)
where p is the mean,
Elw]
Elw,]
p = E[W]= : ,
Elwy]

and R is the k x k covariance matrix,
R=E[W-p)W-p)1=EWW]-puu’

The notation |R]| in (1.46) indicates the absolute value of the determinant of the matrix R
(see section C.5). (In other contexts, the notation |R| will indicate the determinant, but the
absolute value is needed in this case since a density function is always nonnegative.)
Many of the significant concepts associated with Gaussian random vectors can be
obtained by examination of two-dimensional vectors. When W = [w, u]”

s

o} o
R=1|" "2, (1.48)
[e3 %] o5
where
0'12 = E[w%] — uﬁ 022 = E[w%] — u%
and

o1z = Elwiwa] — pypa.
The correlation coefficient is defined as

o= Elwyws] — pipn
01072 .

(1.49)

Using the Cauchy-Schwarz inequality introduced in section 2.6, it can be shown that
-l=<p=<l.

The correlation coefficient provides information about how w; varies with wy. If p = 1, then
wy = wy, and w; tells everything there is to know about w; (and vice versa). If p = —1,
then w; = —w,. If p = 0, then the variables are said to be uncorrelated: w,; does not
provide any information about w,. More generally, for a k-dimensional random vector w,
if the correlation matrix R is diagonal, the components of w are uncorrelated.

We can write the inverse of the covariance matrix (1.48) in terms of the correlation
coefficient and variances, as

i : (1.50)
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The joint pdf of wy and w, can now be written as

I 1 (wi — 1) (w2 — pa)?
(wy, un) = — e X {— 3 { + hat
fw 2royory/ 1 — p? g 2(1 = p%) of %t
20(w — ) (w2 —
_ 2p(wy — p)(wy MZ)H' (1.5
[egYoM]

A surface-curve plot of this function is shown in figure 1. 15 foru, = p, = 0,02 =2 = 1,
for two values of p.
In (1.51),if p = 0, then

flwy, wr) = _l{(wl—ul)'+(w2—

o 1a)? .
2naioy exp { 2 Z 3 H = fwy) f(wr),

g %2
substantiating the claim made previously that uncorrelated Gaussian random variables are
independent.

byp=0

Figure 1.15: Plot of two-dimensional Gaussian distribution
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1.6.1 Conditional Gaussian densities

Conditional probabilities constitute the core of many detection and estimation algorithms.
In this section, we present a simple example of conditioning as forerunner to the more
complete development of statistical decision making in part I1.

Suppose that X and Y are jointly Gaussian random variables, X ~ N (i, af)ﬁ Y ~
Ny, 03), with correlation coefficient p. We want to estimate a value for X, which we
will denote as %. In the absence of any measurements, a reasonable value for £ is simply
the mean of X, so

X o= .
Such an estimate——obtainable without the benefit of any measurements—is a prior or
a priori estimate, and the density fy(x) is known as the a priori density for X. When
a measurement of Y is available, say ¥ =y, then this can be used to modify our prior
estimate of X, since X and ¥ are correlated. One approach to this is to form the conditional
pdf fxy(xly), the density of X given that ¥ = y is known, and determine our estimate X
by the mean of this new density. The conditional density is defined as

( c oy
Fxyxly) = flxly) = 1;%‘—;2

From (1.51), with x = w; and y = w;, we obtain

! 1 Gmpe)® | et 20 L
Znﬁxm»«/}-pzexp{i 2”_”2)< o; + o3 ”x”‘(x M) (¥ ,u},))}

e exp [~ — 1,

fxly) =

|

1 1 oy ?
= Wr—-—m—«-zn(] sy exp ~-——~—2a3(} — ) (x - </1.r + U—yp()/ - My)>>
(1.52)

The algebra here requires completing the square, as described in appendix B. From the form
of the pdf we recognize that f(x|y) is Gaussian, with mean

E[X|y] = e + gim,v — ) (1.53)

¥

var(X|y) = o2(1 — p?). (1.54)

and variance

If x and y are correlated (that is, p 5 0), then knowing y should tell us something about x.
Based on the information available about v, a reasonable estimate of X is the conditional
mean,

N Ox .

F= et o0 = ). (1.55)

¥
The variance of this estimate is the conditional variance of (1.54). We can make a meaningful
interpretation of the estimate (1.55). If there is no correlation, the conditional mean is the
same as the prior mean. If p is small, we make only a small modification to the prior mean.
If oy is large, then the correction to the prior mean is small. as it should be if we have large
uncertainty about the outcome y. We also observe that incorporating information about y
reduces the variance in x:

oI T=pr <ol
since [p] < 1.

This conditional density with only two variables is extended in section 4. 12 to Gaussian
vectors conditioned on Gaussian vectors.



1.7 Markov and Hidden Markov Models 37

This example introduces an important part of estimation theory. An observed (or mea-
sured) variable such as y in the foregoing can be used to modify our understanding of
variables that we have not measured (or cannot measure). A powerful extension of this
simple example is the Kalman filter, in which the state of a system in random noise, such as
in (1.29), is estimated based upon observations that are also in noise. In the Kalman filter,
the density of the state variable, f(x{t]), is modified by the observation y[¢], taking into
account the dynamics of the system and the mechanism for observation. The Kalman filter
is discussed in chapter 13.

Several other extensions and issues now arise, among them:

¢ Given a sequence of data from some source, which is assumed to be drawn accord-
ing to a Gaussian distribution, how can the parameters of the Gaussian distribution
be estimated? How can the quality of the estimates be assessed? These questions
are answered in part by estimation theory. (An early answer is explored in exer-
cise 1.6-37.)

e If asignal is chosen at random from among a discrete set of signals, and then observed
in additive noise, how can the chosen signal be discriminated? This is the detection
problem which lies at the heart of digital communication.

¢ Given correlated random vectors x and y, how can the conditional density f(x|y) be
computed? How may this be applied?

* How can Gaussian random variables of given parameters be generated, and used in
simulation, for testing of signal processing algorithms? (An answer for scalar Gaussian
r.v.s is found in exercise 1.6-36.)

1.7 Markov and hidden Markov modeis

A hidden Markov model (HMM) is a stochastic model that is used to model time-varying
random phenomena. It is based upon a Markov model, and can be understood in terms
of the state-space models already derived. We now present the basic concepts, providing
resolution to the issues raised here in chapters 17 and 19. Placement here serves several
purposes: it provides a demonstration of the utility of the state-space formulation to yet
another system; it smoothes the development of HMM algorithms in later chapters; and it
provides introduction and motivation for two important algorithms, the EM algorithm and
the Viterbi algorithm.

1.7.1 Markov models

The Markov model is used to model the evolution of random phenomena that can be in
discrete states as a function of time, where the transition from one state to the next is
random. Suppose that a system can be in one of S distinct states, and that at each step of
discrete time it can move to another state at random, with the probability of the transition
at time ¢ dependent only upon the state of the system at time ¢. It is convenient to represent
this concept using a probabilistic state diagram, as shown in figure 1.16. In this figure, the
Markov model has three states. From state 1, transitions to each of the states are possible;
from state 1 to state 1 with probability 0.5, and so forth. Let S[r] denote the state at time ¢,
where S[¢] takes on one of the values 1, 2, ..., S. The initial state is selected according to
a probability m;,

mo=P(S[1=i) i=12..,8.
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Figure 1.16: A simple Markov model

By the foregoing description, the probability of transition depends only upon the current
state:

P(SIr+ 11 = jIS[t1 =i, S[t — 1] =k, S[t = 2] =1,...) = P(S[t + 1] = j|S[t] = i).

This structure on the probabilities is called the Markov property, and the random sequence
of state values S[0], S[1], S[21, ..., is called a Markov sequence or a Markov chain. This
sequence is the output of the Markov model.

We can determine the probability of arriving in the next state by adding up all the
probabilities of the ways of arriving there.

P(Sit+1]=j) =Pt +1]1=jlStl=DPSt] =1
+ P(S[t + 1] = jiSUt] = 2)P(St) =2) + - -
+ P(S[t + 11 = j|S[t] = S)P(S[] = S). (1.56)

The computation in (1.56) can be made conveniently in matrix notation. Let

PS]=1)

P(S[t]=2)
pl] = :

P(SI] = 5)

be the vector of probabilities for each state, and let the matrix A contain the transition
probabilities

P P42y --- PAIS)
PQIL PQIZ) - PQ2IS)

= : . (1.57)
P(Sll) P(S12) --- P(SIS)

where P(i|j) is an abbreviation for P(S[t + 1] = i|S{t] = j),ora; = P(Sit+ 1] =
i8]} = j). For example, for the Markov model of figure 1.16

3 2
0 71 (1.58)
AN

A=

W o

A steady-state probability assignment is one that does not change from one time step to the
next, so the probability must satisfy the equation Ap = p. This is a particular eigenequation,
with an eigenvalue of 1. (More will be said about eigenvalue problems in chapter 6.)

By the law of total probability, each column of A must sumto 1.
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Definition 1.2 Anm x m matrix P, such that 3 7_, pi; = 1 (each row sums to 1) and each
element of P is nonnegative, is called a stoehastic matrix. If the rows and columns each
sum to 1, then P is doubly stochastic. O

The matrix A of (1.57) is the transpose of a stochastic matrix. The vector  contains
the initial probabilities. Thus, we can write the probabilistic update equation as

plr +1]=Apltr]  with  p[0]=m.
Or, to put it another way,
plr + 1] = Aplt] + 7 8, (1.59)

with p(t] = 0 for + < 0. The similarity of (1.59) to the first equation of (1.21) should be
apparent. In comparing these two, it should be noted that the “state” represented by (1.59)
is actually the vector of probabilities p{r], not the state of the Markov sequence S[t].

1.7.2 Hidden Markov models

The idea behind the HMM can be illustrated using the urn problems of elementary proba-
bility, as shown in figure 1.17. Suppose we have § different urns, each of which contains
its own set of colored balls. At each instant of time, an urn is selected at random according
to the state it was in at the previous instant of time. (That is, according to a Markov model.)
Then, a ball is drawn at random from the urn selected at time ¢. The ball is what we observe
as the output, and the actual state is hidden.

The distinction between Markov models and hidden Markov models can be further
clarified by continuing the analogy with the state-space equations in (1.21). Equation (1.59)
provides for the state update of the Markov system. In most linear systems, however, the
state vector is not directly observable; instead, it is observed only through the observation
matrix C (assuming for the moment that D is zero),

ylt] = Cx[t],

so the state is hidden from direct observation. Similarly, in the HMM we do not observe the
state directly. Instead, each state has a probability distribution associated with it. When the
HMM moves into state s[f] at time ¢, the observed output y[t] is an outcome of a random
variable Y'[¢] that is selected according to distribution f(y([t]|S[t] = s5), which we will

Figure 1.17: The concept of a hidden Markov model
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represent using the notation
fOIStl =5) = £, ().

(This idea is illustrated in figure 1.18.) In the urn example of the preceeding paragraph,
the output probabilities depend on the contents of the urns. A sequence of outputs from an
HMM is y{0], y[1], y{2]. .. .. The underlying state information is not seen directly; it is
hidden. The probability distribution in each state can be of any type and, in general, each
state could have its own type of distribution. Most often in practice, however, each state has
the same type of distribution, but with different parameters.

Figure 1.18: An HMM with four states

Let M denote the number of possible outcomes from all of the states, and let Y[¢] be
the random variable output at time ¢, with outcome y[r]. We can determine the probability
of each possible output by adding up all the probabilities,

P(XYlr}=j) = P(X[r]=jISkt} = DHPSI]=1)
+ P(Y[t] = jISlt]=2)P(S1] =2)) + - -
+ P(Y[1] = jISlt] = S)P(S[t] = $).

Let
PYlt]=1)
P(Y[t] =2)
qlr] = :
PY[i] = M)
and
PY[t}=DiSltl=1 -+ PXl=18[]=S)
PY[tl=2iStl=1 - Pl =2|811=9)
P(Y[t] = M)IS[t] =1) ... PY[t]=MS[t]=2S5)

s0, ¢;; = P(Y[r] = i|S[t] = j). For the urns shown in figure 1.17, with the ball colors
black, green, and red corresponding to values 1, 2, and 3, respectively,

1/2 13 13
C=|1/3 7/15 1/3
1/6 1/5 1/3
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Each of the columns must sum to one. Therefore, the output probabilities can be computed by
qlt] = Cplz].

The similarity with (1.21) should be clear. Based on this discussion, the HMM parameters
are described by the triple (A, 7, C), much like our state-space models.

The HMM can be applied to pattern recognition, where the patterns occur as events
occurring sequentially in time. The most successful application is to speech processing.
Each word or sound (phoneme) to be recognized is represented by an HMM, where the
output is some feature vector that is derived from the speech data. The random variability in
the feature vector and the amount of time each feature is produced is modeled by the HMM.
The variability in the duration of the word is modeled by the Markov model. The variability
in the outputs is modeled by the random selection from within each state. For example,
in a small vocabulary system with N words, there are N HMMs, (A;, 7;, C;), each being
_ trained (or adapted) to represent the parameters for that word. This is the training phase of
the pattern recognition problem.

To perform recognition of an unknown word, its sequence of feature vectors is com-
puted, and the likelihood (probability) that this sequence of feature vectors was produced
by the HMM (A4, ;, C;) is computed for each i. That HMM which produces the highest
probability selects the recognized word.

The HMM has also been applied to handwriting recognition, speaker identification,
and other areas.

Based on this simple discussion, there are several questions that can be posed in con-
junction with HMMs.

1. How can the parameters (A, 7, C) be estimated based upon observations of the
data? (Or, more generally, how can the parameters of other output distributions be
computed?) In other words, how can we train the parameters of the models in the
pattern recognition problem?

2. Suppose we have an HMM and we observe a sequence of data. How can we determine
how well the data fits the model? In other words, can we (efficiently) determine the
likelihood of the data?

3. Related somewhat to the previous, suppose we have an HMM and we observe some
data supposedly generated from it. How can we determine the sequence of states of
the underlying Markov model? (That is, we want to uncover the hidden states.)

These issues are explored in chapters 17 and 19, where the EM algorithm and the Viterbi
algorithm are introduced and applied to this problem.

1.8 Some aspects of proofs

Mathematics is simply sustained logical thinking.
— H.PP. Ferguson

There is no royal road to geometry.
— Plato

Some people believe that a theorem is proved when a logically correct proof is given;
but some people believe it is proved only when the student sees why it is inevitably true.
— Richard W. Hamming

Coding and Information Theory, p. 164

In engineering classes that require proofs, it almost inevitably arises that a student will
complain that he or she does “not know how to do proofs.” The way it is usually stated, of
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“doing proofs,” seems to suggest that the student perhaps believes there is some universally
applicable method of doing proofs that will prove all problems. On the one hand, there is no
one that knows how to “do proofs” of everything. A proof requires insight, understanding,
background, and creativity, and some plausible conjectures have thus far eluded proof (and
will continue to do so: that itself is a theorem). Some proofs have the subtlety and beauty of a
well-crafted sonnet. On the other hand, most proofs consist of clarifications of patterns that
have been previously observed, or are precise statements of some fact. Every engineering
student should be able to “do proofs” to some extent.

Signal processing, employing mathematical concepts to accomplish engineering pur-
poses, often presents a difficult challenge to engineering students who want to know how to
use the material, but resist the mathematical formalities—in particular, theorems and proofs.
Nevertheless, throughout this book, many of the concepts are presented in a theorem-—proof
format as a means of organization, and opportunities for proving some concepts are pro-
vided in the exercises. The following justifications are provided for requiring proofs of
engineering students:

1. Because an engineer puts things together, with an eye to design and utility, the ability
to move from a requirement specification to a finished design is an important skill. In
its restricted domain, proving a theorem is nothing more than design; taking specifi-
cations and using available components to produce a result. The specifications are the
hypotheses of the theorem, and the available components are whatever knowledge
can be brought to bear on the problem. Like most design problems, there may be
many correct solutions, and many incorrect approaches. (It is perhaps the flexibility
of choice exercised against inflexible logic that makes proofs challenging.) Like de-
sign, a proof may require trying many different avenues before a fruitful approach is
encountered.

2. A proof provides an opportunity to review and deepen understanding of concepts and
definitions that have been presented. Tools that don’t get used or are not understood
correctly will never become useful tools.

3. As new algorithms are developed, they must be evaluated. Often this is done empir-
ically, by means of computer simulation or by testing of prototypes. However, it is
better to have a sense of the correctness of a design before too many resources are
expended in its prototyping. The skills developed in learning to do proofs of theorems
may assist in evaluating and improving signal processing algorithms.

4. There 1s no escaping the fact that the signal processing literature is very mathematical.
A broad mathematical vocabulary and the ability to read mathematics are necessary
to draw meaningful information from the literature. Should the occasion arise when
students wish to publish their own results in signal processing literature, they will
need to speak the language.

5. Doing a proof is a good chance to stretch some intellectual muscles.

The intent of this section is to provide some suggestions on methods of proof that appear
in the literature. This is by no means an exhaustive list; new and important concepts can
arise as new ways of answering questions are created. As an example, consider Shannon’s
channel-coding theorem, which states (basically) that there is a code which can be used to
transmit data over a channel with arbitrarily low probability of error, provided that the rate
of transmission is less than the capacity of the channel. In proving the theorem, Shannon
took an unprecedented step. Instead of looking for a particular code to answer the question,
he instead averaged over all possible codes. This particular trick made the analysis fall right
into place. Such “tricks,” or creative insights, cannot be taught. There are, however, some
logical approaches which can be taught and exercised.
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A theorem may be stated something like: if P, then Q. Inthis, P is called the hypothesis
and Q is called the conclusion. We say that P implies Q, and may write P = (. The
statement “if P, then Q7 is not logically equivalent to saying that, because Q occurs, P
must also occur. For example, consider the following syllogism: 4

If a book falls on Frank’s head, his head will hurt.
Frank’s head hurts.

We cannot conclude that a book has fallen on Frank’s head; he may simply have a headache.
In the implication P = (J, we say that P is sufficient for Q: knowledge that P occurs is
sufficient to establish the presence of (. However, P is not necessary for Q: Q could
{perhaps) have happened another way.
Note that if P = Q and if Q is not true, then P cannot be true. Based on the syllogism
above, if Frank’s head does not hurt, we can conclude that a book did not fall on his head.
Equivalent ways of expressing this implication are:

P implies O

if P, then Q

P=0

Q,if P

Ponlyif O

P is a sufficient (but not necessary) condition for g
not Q implies not P (this is the contrapositive)

Q is a necessary condition for P

For the statement P = Q, the statement obtained by reversing the roles of P and Q
Q=P

is called the converse. That fact that P = ( and its converse Q => P are both true can be
stated in a variety of equivalent ways:

P implies Q and Q implies P

P implies @, and conversely

P if and only if QO

P is a necessary and sufficient condition for Q
P& 0

The statement “P if and only if Q7 is often abbreviated P iff Q.

We now present some comments about proofs in a general framework. These sugges-
tions do not provide an exhaustive bag of tricks, but are merely intended to suggest some
approaches that might work.

1.8.1 Proof “by computation”: direct proof

Proofs of some statements may be mostly computational, may involve such techniques as
integration (often using change of variables), properties of integration, linear algebra, Taylor
series, etc. As a simple example, to prove that convolution commutes, that is, that

/ f@t—1)h(v)dr :/ f(oh(t —t)dr,

it suffices to make a change of variable x = r—r in the firstintegral. If you were approaching
the problem without knowing the “trick,” the best thing to do would be to simply try several
approaches. If what you are trying to prove is true, sooner or later you may stumble across
the correct approach. While this may lack polish, it mirrors the way things are discovered
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in the real world: rarely does a useful concept or product spring forth full-blown, as if from
the head of Zeus. Discovery requires exploration, thought, and trial-and-error. Of course,
experience in an area can shorten the time between concept and execution. To experienced
mathematicians, some things become transparently obvious because they have solved so
many related problems. A student starting out in an area may not have the benefit of that
insight. What is often required is the determination to try things out, possibly without being
able to foresee at the outset what will result. Experience will lengthen the number of steps
you can see ahead.

Example 1.8.1 Here is an example of a direct proof.
Let X = Xy, Xy, ..., X, be a set of discrete points in R”. The sets defined by

V; = {x € R" : x is closer to x; than to any other x;, 1 3 j},
that is,
Vi={xeR 1dxx) <dXxx),i# j},

are called the Voronoi regions of X. The vector x; in V; is called the cell representative. Voronoi
regions arise in vector quantization and data compression (see section 16.1). We will prove that
Voronoi regions are convex sets. Pick a Voronoi cell; without loss of generality we will call the cell
Vi, with its cell representative X;.

Let p and g be arbitrary points in V;, and let us designate p as the point which is further from
x;. If every point on the line between p and q is in V|, then the set is convex. Let x be a point on the
line between p and q,

x = Ap+ (1 - Mg, 0<xr<l.
Then,
% — x| = IIxy — Qp + (1 — V)P
= At —p) + 0 = D& — @l
< Alx = pll+ (1= Dix = qll

< i —pll = lIxe — pl,

where the first inequality follows from the triangle inequality. Thus x is closer to x; than is p, which
is in the Voronoi cell. By the definition of the Voronoi cell, if p is in the Voronoi cell, then x must
also be. o

Of course, the trial-and-error aspect of finding the correct computation in this example is
not shown, only the finished product.
Some standard “tricks” that are employed in proofs are worth mentioning:

1. Counting and lists. Make an exhaustive list of all the elements, and consider what
you are trying to do applied to all of them.

2. To show that A and B are the same, it may work to show that A C B and B C A.
Similarly, to show that x = y, show that x > y and y > x. (See, for example, the
proof to theorem 2.2.)

3. In analytical work, the Taylor series and the mean value theorem are excellent tools.

4. Exhaustive checking. For example, to verify that a set satisfies certain properties,
simply validate that the properties hold individually.
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1.8.2 Proof by contradiction

Contradictions do not exist. Whenever you think that you are facing a contradiction,
check your premises. You will find that one of them is wrong.

— Ayn Rand

Atlas Shrugged

A powerful proof technique is proof by contradiction. In order to show that P = O, we
take as true the hypothesis P and assume that Q is not true. The proof follows by showing
that this assumption leads to a logical contradiction.

Example 1.8.2 We will prove a millennia-old theorem known to the Pythagoreans of Greece. Recall
that a rational number is a number that can be expressed as a ratio of integers. Thus 3/7 is a rational
number. 0

Theorem: ~/2 is irrational.

Prior to establishing this theorem, the Pythagoreans held the viewpoint that the har-
monies of the cosmos could be expressed as ratios of integers. This theorem lead to con-
siderable religious upheaval in its day.

Proof We will assume a result contrary to the statement of the theorem, and show that this
leads to a contradiction. We assume that +/2 is rational, that is, that

V2=m/n (1.60)

for some integers m and n. Now we show that this leads to a contradiction. Squaring (1.60),
we obtain

I

=" (161)
pe
SO
2nt =m*.

From this we see that m? must be an even number, and hence that m must be even (show
this!). Let us write m = 2k for some integer k. Substituting this into (1.61), we obtain

4k*
2= —
n2
or,
n?
This is equivalent to
Vi="
k

Now we have returned an expression having the same form as (1.60), but with k <n.
Being now in a position to repeat the operation, we have reached the precipice leading
to a contradiction, because the numbers in the ratio will be reduced by iteration of these
same steps, down to absurdly small values. By this contradiction, we must conclude that
the original assumption (1.60) is false. O

One of the issues over which mathematicians sometimes fret is the uniqueness of a
solution to a given problem. Proving uniqueness is very commonly done using contradiction.
Two distinct solutions to the problem are proposed, and it is shown that these solutions are
equal, a contradiction which points out that only one solution is possible. This method is
exemplified in the proof of theorem 2.1.
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1.8.3 Proof by induction

The essential characteristic of reasoning by recurrence is that it contains, condensed so
to speak, in a single formula, an infinite number of syllogisms.

— Henri Poincaré

Science and Hypothesis

Proof by induction allows one to establish general conclusions from a limited set of test
cases. Suppose you have some statement that depends upon an integer n. We will denote
this statement by S(n)-—statement S is a function of n. You begin by showing that S(n) 1s
true for n = 1 (sometimes another small value of n is the starting point). Then you show
that assuming S(n) is true leads to an implication that S(n + 1) is also true. What is amazing
and powerful is that you get to assume the truth of S(n), and use this to show the truth of
S(n + 1). The assumed hypothesis S(n) is called the inductive hypothesis.

Example 1.8.3 The first example should be familiar. We want to show that the sum of the first n
integers is

. an+1)
Zk:~——-—-2~——~.

k=

Clearly this is true for n = 0, and also clearly it is true for n = 1. Let us assume its truth for n. That
is, we now assume that

Sk
2
k=0

and show that this implies the truth for n + 1. That is, we need to show that

"z%: (n+ )n+2)

We have

LES] n
Zk:( k)—l~(n+l)
k() k=0

1
=M+(n+l}
2
mn2+3n+2‘(n+l)(n+2)
N 2 - 2

0

where the second equality comes by assumption of the inductive hypothesis.

We do another inductive proof of mathematical flavor to illustrate another point.

Example 1.8.4 We will show that,
if n>35 then2" > nl.

What makes this example fundamentally different from the previous is that the starting point is not
n=0butn=>5
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The statement is clearly true when n = 5. Let us assume that it holds for n; that is, our inductive
hypothesis I

2" > n?

and show that it must be true for n + 1, that is,

2n+l - (l’l + l).’_

We have
2n+l =2.0"
> 2n? (by the inductive hypothesis)
=n?+n?>n*+5n (because n > 5)

=n*+2n+3n>nt+2n+1
> (n+ 1)% O

We now offer an example with a little more of an engineering flavor.

Example 1.8.5 Suppose there is a communication link in which errors can be made with probability
p. (This link is diagrammed in figure 1.19(a).y When a 0 is sent, it is received as a O with probability
1 — p,and as a | with probability p. This communication-link model is called a binary symmetric
channel (BSC). Now, suppose that n BSCs are placed end to end, as in figure 1.19(b). Denote the
probability of error after n channels by P,(e). We wish to show that the end-to-end probability of

error is
I
P,,(e):i[l—(l—ZP)"]. (1.62)

When n = 1, we compute P(e) = p, as expected. Let us now assume that P, (e) as given in (1.62)
is true for n, and show that this provides a true formula for P, (e).

In n 4+ 1 stages, we can make an error if there are no errors in the first n stages and an error
qceurs in the last stage, or if an error has occurred over the first n stages and no error occurs in the

last stage. Thus,
Poyile) = (1 — p)Pr(e) + p(l — Py(e))

1 1
=(- P)E[l - =2p)"1+ p(l - ~2~(1 - - 2P)”>

(by the inductive hypothesis)

1
= [l - (1 -2p)""'L

2[ ( P’ -

o l=-p i—p l—p 0
W ><
i 1
L—p I—p b=p
(a) A single channel (b) n channels end-to-end

Figure 1.19: Binary symmetric channel model
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Proof by induction is very powerful and works in a remarkable number of cases. It
requires that you be able to state the theorem: you must start with the inductive hypothesis,
which is usually the difficult part. In practice, statement of the theorem must come by some
initial grind, some insight, and a lot of work. Then induction is used to prove that the result
is correct. Some simple opportunities for stating an inductive hypothesis and then proving
it are provided in the exercises.

1.9 An application: LFSRs and Massey’s algorithm

In this section we introduce the linear feedback shift register (LFSR), which is nothing
more than a deterministic autoregressive system. The concepts presented here will illustrate
some of the linear systems theory presented in this chapter, provide a demonstration of
some methods of proof, and introduce our first algorithm.

An LFSR is simply an autoregressive filter over a field F (see box 1.4) that has no input
signal. An LFSR is shown in figure 1.20. An alternative realization, preferred in high-speed
implementations because the addition operations are not cascaded, is shown in figure 1.21.
If the contents are binary, it is helpful to view the storage elements as D flip-flops, so that
the memory of the LFSR is simply a shift register and the LFSR is a digital state machine.
For a binary LFSR, the connections are either 1 or O (connection or no connection), and
all operations are carried out in GF(2); that is, modulo 2 (see box 1.5). Massey’s algorithm
applies over any field, but most commonly it is used in connection with the binary field.

The output of the LFSR is

(1.63)

Figure 1.21: Alternative LFSR realization
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Box 1.4: Groups, rings, and fields

At various places throughout the text, we will have occasion to refer to
algebraic systems different from the familiar real or complex numbers. In
these different systems, the operations are organized into particular sets of
arithmetic rules. We define here three important sets of operations.

Groups. A set S equipped with a binary operation * is a group if it satisfies
the following:
1. There is an identity element e € S, such that for any a € S,

axe=—e¢xad=4qa.

That is, the identity element leaves every element unchanged under the
operation .
2. For every element a € S there is an element b € § called its inverse,
such that
axb=c¢ bxa=e.
3. The binary operation is associative. For every a, b, c € S,

(axb)yxc=ax{bxc).

We denote the group by (S, *).
Ifitistrue thata b = b x a forevery a, b € S, then the group is said to
be a commutative or Abelian group.

Rings. A set R equipped with two operations, which we will denote as +
and %, is a ring if it satisfies the following:

I. (R, ) is an Abelian group.

2. The operation = is associative.

3. Left and right distributive laws hold. For alla, b, c € R,

alb+c)=ab+ac (a 4+ b)c = ac + bc.

The operator * is not necessarily associative; nor is an identity or inverse
required for the operation x. We denote the ring by (R, +, %).

Fields. incorporate the algebraic operations we are familiar with from work-
ing with real and complex numbers. A set F equipped with two operations
+ and * is a field if it satisfies the following:

1. (F,+) is an Abelian group.
2. The set F excluding O (the additive identity) is a commutative group
under *.

3. The operations + and * distribute.

Example 1.9.1 The LFSR over GF(2) shown in figure 1.22(a) satisfies

Vi = Yjm1 F Yj~3.

With initial register contents y_3 = 1, y_, = 0 y_; = 0, the LFSR output sequence is shown in
figure 1.22(b), where the notation D = z~' is employed. The alternative realization is shown in
figure 1.22(c).
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Box 1.5: GF(2)

An important class of fields are those that have a finite number of elements.

These are known as Galois fields. All Galois fields have a number of elements
equal to p™, where p is prime and m is an integer. Of these, arguably the
most important is G F(2), the field of binary arithmetic done without carry.
The addition and multiplication tables for G F(2) are shown here:

The addition operation is the exclusive-or operation familiar from digital
logic, and the multiplication operation is the and operation. The reader can
verify that these operations satisfy the requirements of a field.

After j = 6 the sequence repeats, so that seven distinct states occur in this digital state ma-
chine. Note that for this LFSR, the register contents assume all possible nonzero sequences of three
digits. ]

Taking the Z-transform of (1.63), we obtain
Y@ +az o+ +c,277) =0 (1.64)
It will be convenient to represent the LFSR, using the polynomial in (1.64), in the form
C(Dy=1+ciD+cD*+ - +¢,DP,

where D = z~! is a delay operator. We note that the output sequence produced by the LFSR
depends upon both the feedback coefficients and the initial contents of the storage registers.

1.9.1 Issues and applications of LFSRs

With a correctly designed feedback polynomial C (D), the output sequence of a binary LFSR
is a “maximal-length” sequence, producing 27 — 1 outputs before the sequence repeats. This
sequence, although not truly random, exhibits many of the characteristics of noise, such
as producing runs of zeros and ones of different lengths, having a correlation function
that approximates a delta function, and so forth. The sequence produced is sometimes
called a pseudonoise sequence. Pseudonoise sequences are applied in spread-spectrum
communications, error detection, ranging, and so on. The global position system based on
an array of satellites in geosynchronous orbit, employs pseudonoise sequences to carry
timing information used for navigational purposes.

In some of these applications, the following problem arises: given a sequence
{¥o, y1, ..., Yn-1) deemed to be the output of an LFSR, determine the feedback connection
polynomial C (D) and the initial register contents of the shortest LFSR that could produce
the sequence. Solving this problem is the focus of the remainder of this section. The al-
gorithm we develop is known as Massey’s algorithm. Not only does it solve the particular
problem stated here but, as we shall see, it provides an efficient algorithm for solving a
particular set of Toeplitz equations.

An LFSR that produces the sequence
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Y J Yj—1Yj=2Yj-3 Y (output)
0 001 1
e D # D 2 1 100 1
) T 2 1o I
— - 3 111 0
4 011 1
(a) Block diagram 5 101 0
6 010 0
7 001 1

i
©

[

©
P

(b) Output sequence

(c) Alternate block diagram

Yi-1Yj-2Yj-3

y; (output)

001
101
111
110
011
100
010

1

1O B W N — O

001

—_— O D e O e e

(dy Output sequence for alternative realization

Figure 1.22: A binary LFSR and its output

w

could clearly be obtained from an LFSR of length N, each storage element containing one
of the values. However, this may not be the shortest possible LFSR. Another approach to
the system synthesis is to set up a system of equations of the following form (assuming that

the length of the LFSR is p = 3):

Y2 n
DTN )
V4 N3

Yo Cy Y3
N Crf = | —Va
Y2l | €3 —Ys

These equations are in the same form as the Yule~Walker equations in (1.16); in particular,
the matrix on the left is a Toeplitz matrix. Whereas the Yule-Walker equations were orig-
inally developed in this book in the context of a stochastic signal model, we observe that
there is a direct parallel with deterministic autoregressive signal models.

Knowing the value of p, the Yule~Walker equations could be solved by any means
available to solve p equations in p unknowns. However, directly solving this set of equations

is inefficient in at least two ways:
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1. A general solution of a p x p set of equations requires O(p?) operations. We are
interested in developing an algorithm that requires fewer operations. The algorithm
we develop requires O (p?) operations.

2. The order p is not known in advance. The value of p could be determined by starting
with a small value of p, and increasing the size of the matrix until an LFSR is obtained
that produces the entire sequence. This could be done without taking into account
the result for smaller values of p. More desirable would be an algorithm that builds
recursively on previously-obtained solutions to obtain a new solution. This is, in fact,
how we proceed.

Since we buildup the LFSR using information from prior computations, we need a notation
to represent the polynomial used at different stages of the algorithm. Let

C[ﬂ}(D) =1+ Cll”]D 4 CE’.n,,]DL”

denote the feedback connection polynomial for the LFSR capable of producing the output
sequence {yo, ¥1, . - . » Yu—1}, Where L, is the degree of the feedback connection polynomial.

The algorithm we obtain provides an efficient way of solving the Yule—Walker equations
when p is not known. In chapter 8 we encounter an algorithm for solving Toeplitz matrix
equations with fixed p, the Levinson~Durbin algorithm. A third general approach, based on
the Euclidean algorithm, is also known (see, e.g., [36]). Each of these algorithms has O (p?)
complexity, but they have tended to be used in different application areas, the Levinson-
Durbin algorithm being used most commonly with linear prediction and speech processing,
and the Massey or Sugiyama algorithm being used in finite-field applications, such as
error-correction coding.

1.8.2 Massey’s algorithm

We build the LFSR that produces the entire sequence by successively modifying an existing
LFSR, if necessary, to produce increasingly longer sequences. We start with an LFSR that
could produce y;. We determine if that LFSR could also produce the sequence {yg, y1}; if
it can, then no modifications are necessary. If the sequence cannot be produced using the
current LFSR configuration, we determine a new LFSR that can produce the entire sequence.
We proceed this way inductively, eventually constructing an LFSR configuration that can
produce the entire sequence {yo, y1, ..., ¥n—1}. By this process, we obtain a sequence of
polynomials and their degrees,

€Dy, L)
(CH(D), Ly)

(CWU(D), L),

where the last LFSR produces {yo, ..., Yy-1}.

At some intermediate step, suppose we have an LFSR C!U"/(D) that produces
{¥6, Y1+ ---» Vn—1} for some n < N. We check if this LFSR will also compute y, by com-
puting the output

Ly

S]n = Z C,I'"},Vn—-i -

f=}

If 9, is equal to y,, then there is no need to update the LFSR, and C"*' (D) = C"}(D).
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Otherwise, there is some nonzero discrepancy,

L, L,
dy = Yy = Yn = Y + ZC,{"],Y/H' = thgn}yll“i'
=0

i=1

In this case, we will update our LFSR using the formula
ct(py = c"(Dy + AD'CI™(D), (1.65)

where A is some element in the field, / is an integer, and Cm( D) is one of the prior LESRs
produced by our process that also had a nonzero discrepancy d,,,. Using this new LFSR, we
compute the new discrepancy, denoted by d, as

Ly

i
d:x = ZC:{’H— I.Vn——i
i=0
L, L
=S My A My (1.66)
[=() (=0

Now, let ! = n — m. Then the second summation gives

L
A Z cfmjy,,,_,» = Ad,,.
i=0

Thus, if we choose A = ——d,;‘dn, then the summation in (1.66) gives
d, =d, —d;'d,d, = 0.

So the new LFSR produces the sequence {yo, yi, ..., Yn}-

1.9.3 Characterization of LFSR length in Massey’s algorithm

The update in (1.65) is, in fact, the heart of Massey’s algorithm. From an operational point
of view, no further ahalysis is necessary. However, the problem was to find the shortest
LFSR producing a given sequence. We have produced a means of finding an LFSR, but
have no indication yet that it is the shortest. Establishing this will require some additional
effort in the form of two theorems. The proofs are challenging, but it is worth the effort to
think them through.

(In general, considerable signal processing research follows this general pattern. An
algorithm may be established that can be shown to work empirically for some problem, but
characterizing its performance limits often requires significant additional effort.)

Theorem 1.1 Suppose tharan LESR of length L, produces the sequence {yy, vy, ..., Yn-1},
but not the sequence {yg, yi, - . ., yu}- Then any LFSR that produces the latter sequence must
have a length L, satisfying

LIH—[ Zn-i—lan
Proof The theorem is only of practical interest if L,, < n (otherwise it is trivial to produce
the sequence). Let us take, then, L, < n. Let
c"Dy=1+c"D+-- + Dk
represent the connections for the LFSR which produces {yg, yi, ..., y.—1}, and let

C[n+l](D) =14 C[{H—HD U C[L"n’i:]DLn-r!
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denote the connections for the LFSR which produces {vyg, vi, ..., ¥,}. Now we do a proof
by contradiction:
Assume (contrary to the theorem) that

LH—H =n-— Ln- (167)

From the definitions of the connection polynomials, we observe that

Ly .
- =y, J=L,L,+1. .. n~1

=> My { N (1.68)

py #Ey. j=n
and

Ln~+!

_ZC’[nH}),]_i =y; J=Lpei Lysy +1,... .0, (1.69)
i=1

From (1.69), we have
Lyt
+1
¥n = _ch{” j,\,"l1~i‘
il

The indices in this summation range fromn — 1 to n — L, which, because of the (contrary)
assumption made in (1.67), is a subsetof therange L,,, L, +1. ..., n— 1. Thus, the equality
in (1.68) applies, and we can write

Lyt Ln+i Ly

A RUESI N . An+1] Jdnl o

Yo = — < Vp—i = & Co Yneiek-
i=| (=} k==

Interchanging the order of summation we have

Ly Lopsy
ki 41
vom= = Ty (1.70)
k==l i==1

Setting j = n in (1.68), we obtain

Ly

Vu # “Z C}EHJ,Vn-Ic-

k=1
In this summation the indices range from n — | to n — L, which, because of (1.67), is a
subset of therange Loy, Loy + 1. ., i of (1.69). Thus, we can write

Lisy

Ly
o i

o #E Y "> e My (1.71)
k=1

i=1
Comparing (1.70) with (1.71), we observe a contradiction. Hence, the assumption on the
length of the LFSRs must have been incorrect. By this contradiction, we must have

Ln«H zn+ ] “Lrw [

Since the shortest LFSR that produces the sequence {vg. vj. ..., v, } must also produce the
first part of that sequence, we must have L, > L,. Combining this with the result of the
theorem. we obtain

L,y > max(L,.n+1~L,). (1.72)

In other words. the shift register cannot become shorter as more outputs are produced.
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We have seen how to update the LFSR to produce a longer sequence using (1.65), and
also have seen that there is a lower bound on the length of the LFSR. We now show that this
lower bound can be achieved with equality, thus providing the shortest LFSR that produces
the desired sequence.

Theorem 1.2 Let {(L;. C"Y (D). i =0,2, ..., n} be a sequence of minimum-length LFSRs
that produce the sequence {yo. vy, . ... yii}. f CU"*(D) # C(d), then a new LFSR can
be found that satisfies

Loy =max(L,, n-+1—L,).

Proof We will do a proof by induction, taking as the inductive hypothesis that
Lisy = max(Lg, k+1—Ly) (1.73)

fork=0,1,..., n. This clearly holds when & = 0, since Lg = 0.
Let C'™ m < n, denote the lasr connection polynomial before C"(D) that can

produce the sequence {vg, yi, ..., Ym—1} but not the sequence {vg, ¥;, ..., Y¥m}, such that
L, <L,
Then
Lm+l = Ln;

hence, in light of (1.73),
Lyt =L, =m+1~—L,. (1.74)
If C"*11(D) is updated from C"I(D) according to (1.65), with [ = n — m, we have
already observed that it is capable of producing the sequence {yy, y1, ..., y»}. By the update
formula (1.65), we note that
Lyry =max(L,,n —m+ L,).

Using (1.74) we find that

Loy =max(L,,n+1-—L,). .

In the update step, we observe that if

2L, > n
then, using (1.73), ¢""*!! has length L, = L,, that is, the polynomial is updated, but there
is no change in length.

The shift-register synthesis algorithm, known as Massey’s algorithm, is presented first
in pseudocode as Algorithm 1.1, where we use the notations

c(Dy=C"(D)y  p(D)=C"(D).
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Algorithm 1.1 Massey’s algorithm ( pseudocode)

Input: yo, y1, ..., yv_i

Initialize:

L=0

c(D) = 1 (the current connection polynomial)

p(D) =1 (the connection polynomial before last length change)
s = 1 (s is n — m, the amount of shift in update)

d,, = 1 (previous discrepancy)

forn=0to N — 1

d= Yn + Z,‘L:; Ci Yn~i

if (d =0)
s =5+ 1
else

if (2L > n) then (no length change in update)
c(D) = (D) — dd;' D* p(D)
s=s54+1

else (update ¢ with length change)
1(D) = c(D) (temporary store)
c(D) = (D) ~ dd;' D*p(D)
L=n+1-1L
p(D) =1(D)
d, =d
s=1

end

end

A MATLAB implementation of Massey’s algorithm with computations over GF(2)
is shown in Algorithm 1.2. The vectorized structure of MATLAB allows the pseudocode
implementation to be expressed almost directly in executable code. The statement ¢ =
mod ([c zeros{(l,Lm + s - Ln}] + [zeros(l,s)pl,2); simply aligns the
polynomials represented in ¢ and p by appending and prepending the appropriate number
of zeros, after which they can be added directly (addition is mod 2 since operations are in
GF(2)).

Algorithm 1.2 Massey’s algorithm

function {[c] = massey(y)

% function [c] = massey(y)

This function runs Massey's algorithm (in GF(2)), returning
the shortest-length LFSR

20

o

=
g

= input seguence
LFSR connections, ¢ = 1 + c(2)D + c(3iD"2 + ... <c{L+1)D"L
(Note: opposite from usual Matlab order)

o
(e}
1

oe

= lengthiy);
Initialize the variables

o
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no= 05 % current length of LFSR
tm = 0; % length before last change
c = 1; % feedback connections

p =1 c before last change

o0 oe

amount of shift

‘or n=1:N % N = current matching output sequence length
d = modic*y(n:-l:n-Ln)’,2); compute the discrepancy (binary arith.)

e

if{d == 0) % no discrepancy
s = s+1;
else
if(2*Ln > n-1) % no length change in update
c = mod(c + [zeros(l,s) p zeros(l,Ln-{(Lm+s))],2);
s = s+1;
else % update with new length
t o= C;
c = mod({c zeros(l,Lm+s-Ln)] + [zeros(l,s) pl,2);
Lm = Ln; Ln = n - Ln; p = t; s = 1;
end
end

end

Because the MATLAB code so closely follows the pseudocode, only a few of the algorithms
throughout the book will be shown using pseudocode, with preference given to MATLAB
code to illustrate and define the algorithms.

To conserve page space, subsequent algorithms are not explicitly displayed. Instead,
the icon

is used to indicate that the algorithm is to be found on the CD-ROM.

Example 1.9.2 For the sequence of example 1.9.1,
y=1{1,1,1,0,100},
the feedback connection polynomial obtained by a call to massey is
c={1,1,01},
which corresponds to the polynomial
C(D)=1+4+D+ D"
Thus,
Y@+ +77) =0,
or

Yi = Vi1t V-3,
as expected. O
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1.10 Exercises

1.4-1 (Complex arithmetic) This exercise gives a brief refresher on complex multiplication, as well
as matrix multiplication. Let z; = a + jb and 2, = ¢ + jd be two complex numbers. Let
n=gn=e+jf.

(a) Show that the product can be written as

i <] E
f d ¢ bl’
In this form, four real multiplies and two real adds are required.
(b) Show that the complex product can also be written as
e=(a—byd+alc—d) f=(a—-bd+blc+d).

In this form, only three real multiplies and five real adds are required. (If addition is
significantly easier than multiplication in hardware, then this saves computations.)

(c) Show that this modified scheme can be expressed in matrix notation as

. 1o 1 (c—d) 0 01 o 2
[fJ = [0 1 1} 0 (c+d) 0} {0 1 Ib} .
0 0 dj |1 -1
1.4-2 Show that (1.8) for the partial fraction expansion of a Z-transform with repeated roots is

correct.

1.4-3 Determine the partial fraction expansion of the following.

1 — 3Z-1 1 - SZ&] - 62“2
@HO =T 5o see OHO= T e
2 -3z~ 5627
@ H@ == WHG = 30—,

Check your results using residuez in MATLAB.

1.4-4 (Inverses of higher-order modes)
(a) Prove the following property for Z transforms: If
x[r] < X (2),

tx{t] « —zd};iZ) .

then

(b) Using the fact that p'ulr] < 1/(1 — pz~!), show that

-
pz
tp’u[t] <> --—(] — p2_1>2.
(c) Determine the Z-transform of t* p'u[t).

(d) By extrapolation, determine the order of the pole of a mode of the form % p'ulr].

1.4-5 Show that the autocorrelation function defined in (1.9) has the property that
rylk} = rol—k)
1.4-6 Show that (1.11)is correct.
1.4-7 For the MA process
ylirl= flel+2fr =11+ 3t = 2],
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where f[r]is a zero-mean white random process with aj? = .1, determine the 3 x 3 autocor-
relation matrix R.

1.4-8 For the first-order real AR process
yir+ 1+ aylel = flr + 1],
with |a,| < 1 and E{f[f]] = 0, show that

g
1 L. (1.75)
s

1.4-9 For an AR process (1.12) driven by a white-noise sequence f[¢] with variance O'/%, show that

ol = ELY'lil =

4
o= air,lil. (1.76)
i=0
1.4-10 (Second-order AR processes) Consider the second-order real AR process
ylit + 21+ aylr + 1+ apyltl = fIt + 2], (1.77)

where f[t] is a zero-mean white-noise sequence. The difference equation in (1.14) has a
characteristic equation with roots

puopr= % (—m + /a? —-4a2> .
(a) Using the Yule—~Walker equations, show that if the autocorrelation values
ryll =kl = Elylr — kI3l = 1]}
are known, then the model parameters may be determined from
= [0y [0] -y [2D)
ri {01 =2 I1]
o= _ryy[(z}ryy[Z] —r}(1
r} 101 -2 (1]

(b) On the other hand, if 0'3 = ry,[0] and @, and a, are known, show that the autocorrelation
values can be expressed as

(1.78)

a;

L 2
= I+aga'”
) (1.79)
ry(2) = o’},2 a ag\ .
! 1+ a; /
(c) Using (1.76) and the results of this problem, show that
14+a; 0'/2’
0] =0’ = 4 1.80
ryy[ ] O'y <1——a2> [(1-{—02)2—012] ( )
(d) Using r,,[0] = o‘f and ry, (1] = —a;ayz/(l + ay) as initial conditions, find an explicit

solution to the Yule—Walker difference equation
rolk] +agryfk — 1] +ayry,fk = 21 = 0
in terms of py, p2, and 0.
1.4-11 For the second-order difference equation
yle+2]1 = Tyl + 1]+ . 12y[r) = flt +2],

where f[t] is a zero-mean white sequence with o} = .1, determine o} =r,[0], r,[1] and
ry (2]
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1.4-12 A random process y{r], having zero-mean and m x m autocorrelation matrix R, is applied
to an FIR filter with impulse response vector h = [hg, h}, iy, ..., hpy]7. Determine the
average power of the filter output x[¢].

1.4-13 Place the following into state variable form (controller canonical form), and draw a realization.
1-3z7! 1—5z71 — 6272
— " (b) H(z) = — =
1 —1.5z71 + .56z 1—1.5z"1 4 .562

1.4-14 In addition to the block diagram shown in figure 1.3, there are many other forms. This problem
introduces one of them, the observer canonical form.

(a) H(z) =

(a) Show that the Z-transform relation implied by (1.2) can be written as
Y(2) = boF@) + B F() —a Y (@12 + [ F() —a@Y ()22 + -
+1b,F(2) —d,Y(2)]z". (1.81)

(b) Draw a block diagram representing (1.81), containing p delay elements.

(c) Label the outputs of the delay elements from right to left as x;, x5, .. ., x,. Show that the
system can be put into state space form with
- 1.0 - 0 b =@y !
—-d; 0 1 0 by — @ybg 0
A= b= : e= |0 d=bh
—Zl.p..1 o 0 .- 1 Ep-l "Ep~150
-@, 00 .- 0 b, —a,bq 0

A matrix A of this form is said to be in second companion form.
(d) Draw the block diagram in observer canonical form for
2437 4477
14z7t =672 — 7773
and determine the system matrices (A4, b, e’ d).

H(z) =

1.4-15 Another block diagram representation is based upon the partial fraction expansion. Assume
initially that there are no repeated roots, so that
P
N
H(z) = .
(a) Draw a block diagram representing the partial fraction expansion, by using the fact that
Y 1
F(z) z-p

has the block diagram
£l

yir]

(by Letx;, i =1.2,..., p denote the outputs of the delay elements. Show that the system
can be put into state-space form, with
pr 0 0 - 0 1 N;
0 p, 0 - 0 1 Ny
A= . b= . ¢ = . d = b().
o 0 0 - p, ] N,

A matrix A in this form is said to be a diagonal matrix.
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(c¢) Determine the partial fraction expansion of
1 -2z
and draw the block diagram based upon it. Determine (A, b, ¢. d).

H(z) =

{(d) When there are repeated roots, things are slightly more complicated. Consider, for sim-
plicity, a root appearing only twice. Determine the partial fraction expansion of

I+

H@ = a5 0500

Be careful about the repeated root!

(e) Draw the block diagram corresponding to H(z) in partial fraction form using only three
delay elements.

(fy Show that the state variables can be chosen so that

S5 0 0
A=11 5 0}.
0 0 2

A matrix in this form (blocks along the diagonal, each block being either diagonal or
diagonal with ones in it as shown) is in Jordan form.

1.4-16 Show that the system in (1.22) has the same transfer function and solution as does the system
in (1.21).
1.4-17 For a system in state-space representation,
(a) Show by induction that (1.27) is correct.
(b) For a time-varying system, as in (1.23), determine a representation similar to (1.27).
1.4-18 (Interconnection of systems)[164] Let (A, by, c,T) and (A, b, CZT) be two systems. Deter-
mine the system (A, b, ¢7) obtained by connecting the two systems:
(a) In series.
(b) In parallel.
(¢) In a feedback configuration with (A, by, ¢/} in the forward loop and (A,, by, ¢} ) in the
feedback loop.
1.4-19 Show that
A A b o7
and
A 0 b T
c'o
and (A, b, ¢7) all have the same transfer function, for all values of A|, A,, and q that lead to
valid matrix operations. Conclude that realizations can have different numbers of states.
1.4-20 Consider the system function

2432+ 2z
224+ 1022+ 31z + 30
(a) Draw the controller canonical block diagram.

H(z) =

(b) Draw the block diagram in Jordan form (diagonal form).

(c) How many modes are really present in the system? The problem here is that a minimal
realization of A is not obtained directly from the H(z) as given.
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1.4-21

1.4-22

1.4-23

1.4-24

1.4-25

[164]If (A, b, ¢, d) with d 5 0 describes a system H (s) in state-space form, show that
(A—be’/d b/d, —c" /d, 1/d)
describes a system with system function 1/H (s).

(State-space solutions)

(a) Show that (1.35) is a solution to the differential equation in (1.30), for constant (A, B,
C. D).

(b) Show that (1.36) is a solution to the differential equation in (1.30), for non-constant
(A, B, C, D), provided that ¢ satisfies the properties given.

Find a solution to the differential equation described by the state-space equations

. 0 1
x(1) = {_1 0} x(1)
v =1[1 0Jx(),
with x(0) = xg. These equations describe simple harmonic motion.

Consider the system described by

X(1) = hz ?] x(1) + [_ﬂ f@

y(@) =[0 2x().
(a) Determine the transfer function H (s).
(b) Find the partial fraction expansion of H(s).

(¢) Verify that the modes of H(s) are the same as the eigenvalues of A.

Verify (1.33) by long division.

1.4-26

(System identification) In this exercise you will develop a technique for identification of
the parameters of a continuous-time second-order system, based upon frequency response
measurements (Bode plots). Assume that the system to be identified has an open-loop transfer
function

b

s(s+a)
(a) Show that with the system in a feedback configuration as shown in figure 1.23, the transfer
function can be written as

Hy(s) =

H(s) = Y{(s) _ i y

F(s) 14 (a/b)s + (1/b)s?
Fés) b o
+ / s(s+a) -

Figure 1.23: Simple feedback configuration

(b) Show that

H(o) = A(jw)ig(jw).

where

1
A(jw) = 5 (b — &) + (aw)? and tan ¢ (jw) = aw .
T2

b
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1.4-27
1.4-28

1.4-29

1.4-30

1.4-31

The quantities A(jw) and ¢(jw) correspond to the reciprocal amplitude and the phase
difference between input and output.

(¢) Show that if amplitude/phase measurements are made at n different frequencies
Wi, th, ..., w,, then the unknown parameters a and b can be estimated by solving the
overdetermined set of equations

[ AGw) —on/1+ el e(jo) ) T0 ]

tan ¢ (jw,) —w witang(jw)
A(jan)  —wny/1+1/tan’ ¢(jon) 0

tan g (jws) —twr {b} _ |@itang(jwr)
, a ]

Aljw,) =,/ 1+ 1/tan? ¢ (jew,) 0

tan @ (jeon) o [n tan g (jewn)

Verify (1.38).

Show that

i BUIR = 5
2

t=—00

bit
/ Gyylw)dw.
Hint: Recall the inverse Fourier transform

1 * ;
y[t] = 3—;/ Y{(wye!” dw.

Show that under the condition that (1.39) is true, the PSD satisfies

N 2
> vinle
n=1}

1
Syy(w) = ’}m;oE N

Hint: Show and use the fact that
N N N

SN fa—m= > (N =UDFO),

=l me=1 I=—N+1
(Modal analysis) The following data is measured from a third-order system:

y = {0.3200, 0.2500, 0.1000, —0.0222, 0.0006, —0.0012, 0.0005, —0.0001}.

Assume that the first time index is 0, so that y{0] = 0.32.
(a) Determine the modes in the system, and plot them in the complex plane.
(b) The data can be written as

il =c(p) +ap) +olps)’ 120

Determine the constants ¢y, ¢», and ¢s.

(¢) To explore the effect of noise on the system, add random Gaussian noise to each data
point with variance o> = 0.01, then find the modes of the noisy data. Repeat several
times (with different noise), and comment on how the modal estimates move.

(Modal analysis) If y[¢] has two real sinusoids,
y[t] = A cos{wt + 6,) + Bcos(wyt + 62),

and the frequencies are known, determine a means of computing the amplitudes and phases
from measurements at time instants £y, f, ..., Iy..

1.6-32
1.6-33

Show that R~! from (1.50) is correct.

Show that (1.51) follows from (1.47) and (1.50).
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1.6-34

1.6-35

1.6-36

1.6-37

Suppose that X ~ N (u,,0?) and N ~ N(0, o?) are independently distributed Gaussian
r.v.s. Let
Y=X+N.
(ay Determine the parameters of the distribution of Y.
(b) If Y = y is measured, we can estimate X by computing the conditional density f(X]y).

Determine the mean and variance of this conditional density. Interpret these results in
terms of getting information about X if (i) o > ¢2, and (ii) 0} & o2.

Suppose that X ~ N (u,, 03 and ¥ ~ N (u,, cr)?) are jointly distributed Gaussian r.v.s with
correlation p. Determine the parameters of the distribution of Z = aX + bY .

If X ~ N(0, 1), show that
Y=cX+pu
is distributed as ¥ ~ N (u, 62).
Let xy, x3,...,x, be n independent observations of a Gaussian random variable X with
unknown mean and variance. We desire to estimate the mean and variance of X. The joint

density of n independent Gaussian r.v.s, conditioned on knowing the mean g and the variance
7 .
0%, is

1 1 —
fo el ) = ey {"5}? > - mz} |
i=1

(a) Determine a maximum likelihood estimate of u by maximizing this joint density with
respect to u (i.e., take the derivative with respect to ). Call the estimate of the mean thus
obtained f&.

(b)y Since [ is a function of random variables, it is itself a random variable. Determine the
mean (expected value) of /i. An estimate whose expected value is equal to the value it is
estimated is said to be unbiased.

(c) Determine the variance of {i.
(d) Determine an estimate for 2.

It is natural to ask if there is a better estimator for the mean than the “obvious” one just
obtained. However, as will be shown in section 12.3.2, this estimator is dependably the best,
in that it has the lowest possible variance for any unbiased estimate.

1.7-38

A Markov random process X (7) has the property that
P(X(13) = x| X (1) = x2, X (1) = x1) = P(X(3) = 53] X (1) = x2)

when 13 > 1, > t;; that is, the probability depends only upon the most recent conditioning
event. We will abbreviate this using the notation

Sleslxa, xi) = flezlx).
(a) For a Markov process, show that
Sz, xilx2) = fxslx) fOealxi).
This is the property of conditional independence (x; is independent of x,, provided that
they are each conditioned on an intermediate observation x;).
(by Now suppose X (¢) is a Gaussian random process, and assume (for convenience only) that
it is zero-mean. Let
re(t,s) = E[X (1) X (s)].
If X (1) is also Markov, show that
s, 1) (. 1)

Yy (IZs Tz)
Hint: Use the fact that E{E[X (1) X ()| X (12)]] = E[X (1:) X (1)]. and use the formula

for conditional expectation derived in (1.52).

rx(t% II) =
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1.7-39

For the state-transition probability matrix A given in (1.58), find a probability vector p such
that

Ap = p.
Such a probability vector is called the steady-state probability of the Markov model.

1.8-40
j.8-41

1.8-42
1.8-43

1.8-44

1.8-45

1.8-46
1.8-47

1.8-48

1.8-49

Show that +/3 is irrational.

Show that there are an infinite number of primes. Hint: Use a proof by contradiction, assuming
that there are only a finite number of primes. Then build a number 2-3-5.---- p+ 1, where
p is the assumed last prime, and show that this is not divisible by any of the listed primes.

Show that if m? is even, then m must be even.
By trial and error, determine a plausible formula for
LS
i=0
Then prove by induction that your formula is correct.
Determine (by experiment) a plausible formula for the sum of the first # odd integers
143454+ @2n—1).
Then prove by induction that your formula is correct.

Determine (by experiment) a plausible formula for

n

1
E:ﬁ+f

=]

Then prove by induction that your formula is correct.

Show by induction, for every positive integer n, that n® — n is divisible by 3.

ny n!
k) 7 kln -k

is the number of ways of choosing k objects out of n objects, where n > k. The quantity (Z)
is also known as the binomial coefficient. We read the notation (:) as “n choose k.”
Show by induction that, for | <k < n,

(7))

Show by induction that, forn > 0,

The quantity

Show by induction that

n

(x+yy==§:<z>ﬁy“k (1.83)

k=0

This important formula is known as the binomial theorem.
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1.8-50 Prove the following by induction:
Z":kz _nnthen+ 1)
6
ke=1
1.8-51 Prove the following by induction:
‘ . e
Zr = r#1
r—1
k=1
1.8-52 Prove by induction that
1 1 3 2n—3 2n-1 1
s v e s e b e e . < .
Jan + 1 2 4 2n—2 2n J3n + 1
for integers n > 1.

1.8-53 Prove by induction that, for x, y € Z and any nonnegative integer n, (x — y) divides x" — y".

This is written as
(x = IE" ~ 7).

1.9-54 Prepare a table showing the storage contents and outputs for the LFSR shown in the accom-
panying illustration, with initial conditions shown in the delay elements. Also, determine the
connection polynomial C(D).

—
— - 0 = 0 ] :]
1.9-55 Consider the LFSR described by the polynomial
C(Dy=1+D+D*+ D’
(a) Draw the LFSR block diagram using both the realization shown in figure 1.20 and the
realization shown in 1.21.
(b) For the initial condition {0, 0, 1} trace the operation of both realizations of the LFSR and
verify that the output sequence of each is the same. How many district states are there?
1.9-56 Consider the LFSR described by the the polynomial
1+ D+ D°.
(a) Draw the LFSR block diagram using both the realization shown in figure 1.20 and the
realization shown in 1.21.
(b) For the initial condition {0, 0, 1} trace the operation of both realizations of the LFSR and
verify that the output sequence of each is the same. How many district states are there?
1.9-57 Given the sequence {0,0.0,1,0, 1,0},
(a) Determine the shortest-length LFSR that could produce this sequence, performing the
computations by hand.
(b} Check your work using Algorithm 1.2 in MATLAB.
1.9-58 Show thatfor j =0,1,..., n, the output of the LFSR with connection polynomial C!"*'(D)

asin (1.65) with A = —d7'd, and ! = n — m satisfies d; = 0 (no discrepancy).
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1.9-59 Write the output sequence as a polynomial
Y(D)=yo+yiD+ D+ .

(a) Using (1.63), show that the jth coefficient in Y (D)C(D) vanishesfor j = p, p+1, ...,
where deg(C(D)) = p. Hence, we can write

C(DYY (D) = Z(D),
where
ZD)y=z4+uD+-- +7,0D7".

Thus, knowing Z(D), we can find the output by polynomial long division:

Y(D) = 2(D) (1.84)
=o' .
(b) Show that the coefficients of Z(D) can be related to the initial conditions of the LFSR by
1 o - 0 Yo 20
C| 1 S 0 ¥i 21
C o5} v 0 Yo = 22
Cpt Cpy -y 1] Lypo Zpmt

1.9-60 Let C(D) = 1+ D? 4+ D?, with initial contents {yp, y;, y2} = {1, 0, 0}. Determine the first six
outputs using polynomial long division (1.84). Compare the results to those obtained directly
from the LFSR.

1.9-61 Determine the sequence (y,} of length seven generated by C(D) = 1 + D + D?, and call its
length N. Then compute the cyclic autocorrelation function

N-1
1
otk) = 7\/:' ; Yi Yii=kyy»

where .« means that the subscript is computed modulo N. Plot this antocorrelation
function.

1.11 References

The linear systems theory presented here in broad strokes is painted in considerably finer
detail in [284] and [164]. Our brief introduction to linear prediction is more extensively
presented in [68, 132], while considerably more on spectrum analysis appears in [174, 220].
The applications of adaptive filtering highlighted here are discussed in depth in [132] and
[368]. The hidden Markov model is presented in [266, 68] and [265]. For an enjoyable
and readable introduction to proofs, with a variety of suggestions and examples and some
good mathematical background, [352] is recommended. A thought-provoking book on
mathematical thinking is [256].

Massey’s algorithm is presented in [221]. An excellent presentation of the algorithm
is in [32]. The book {109] provides an introduction to LFSRs, and the paper {288] an
interesting discussion of decimated maximal-length sequences. Applications of LFSRs to
spread-spectrum communications are discussed in [387].






Part 11

Vector Spaces and
Linear Algebra

The first important theme of this part is that signals are vectors, allowing us to apply the
powerful tools of vector analysis and linear algebra to signal analysis. This identification
leads to a variety of applications, including optimal filtering, approximation, interpolation,
data compression, and transforms.

The second important theme is the existence and nature of the solution of linear equa-
tions that arise in signal processing. Results are discussed for matrix linear operators and
other linear operators.

The third important theme is how solutions to linear problems are computed in a
reliable and efficient manner. Examination of this issue leads to useful matrix factorizations,
including LU, Cholesky, QR, and SVD, and specialized techniques for matrices which arise
in signal processing.

The concept of invariance under linear transformation—the eigenspace of an operator—
forms a fourth theme. A variety of applications of eigenvalue and eigenvector concepts are
presented, including modal estimation, controls, and filter design.

Before embarking on the material in this part, the reader is encouraged to review basic
matrix notation and concepts in appendix C.






Chapter 2

Signal Spaces

Language makes a mighty loose net with which to go fishing for simple facts, when
facts are infinite.

— Edward Abbey

Desert Solitaire

Beginners are not prepared for real mathematical rigor; they would see in it nothing but

empty, tedious subtleties. It would be a waste of time to try to make them more exacting;

they have to pass rapidly and without stopping over the road which was trodden slowly
by the founders of the science.

— Henri Poincare

Science and Hypothesis

This chapter is mostly about two kinds of mathematical objects: metric spaces and linear
vector spaces. The idea behind a metric space is simply that we provide a way of measuring
the distance between mathematical objects, such as sets, points, functions, or sequences.
With this notion of distance we will be able to generalize some of the familiar concepts of
calculus, such as continuity or convergence, beyond operations on a single dimension to
operations in higher dimensions.

The concept of a vector space is also simple: it is a set of objects that can be combined
together using linear combinations. But the theory of vector spaces has far-reaching ram-
ifications, covering a significant portion of the theory of signal processing. A key insight
in vector space theory is that, in a geometrically useful sense, functions (i.e., signals) can
be regarded as vectors. This geometric understanding provides a powerful tool for signal
analysis. In this chapter, the basic theory and notation of vector spaces is developed. In
chapter 3 we put this notion to work in a variety of applications, including optimal filtering
(both least squares and minimum mean squares), transforms, data compression, sampling,
and interpolation.

In our study of metric spaces and vector spaces, the intent is to provide a framework for
the general discussion of signals. Before embarking on this chapter, the reader is encour-
aged to review the basic definitions of functions and sets appearing in appendix A. In this
study, matrix notation is heavily employed sections so review of the basic matrix notations
presented in appendix C is also recommended.

In the development of this chapter, we build successively from metric spaces, to
vector spaces, to normed vector spaces, to normed inner-product spaces. This will lead
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us to the important idea of projections and orthogonal projections. Orthogonal projection
will be a tool of tremendous importance to us in the next chapter, where it will be used
as the geometrical basis for both least-squares and minimum mean-squares filtering and
prediction.

2.1 Metric spaces

We may consider that the signals (functions) of interest to us in a particular problem are
members of some set X. In studying and applying these signals, we may be interested
in understanding how a signal compares with other signals in this set. One way to do
this is to measure a “distance” between the signals using a measure of distance that is both
mathematically practically and physically meaningful. The mathematical aspects of a useful
measuring function are expressed in the following definition.

Definition 2.1 A metric 4: X x X — R is a function that is used to measure distance
between elements in a set X. In order to be a metric, it must satisfy the following properties,
forallx,y € X:

M1 d(x, y) =d(y, x).

M2 d(x,y) >0

M3 d(x,y)=0ifand only if x = y.

M4 For all points x, y,z € X,

dx,z) <d(x,y)+d(y,2). 2.1

Example 2.1.1 For x, y € R we can define a metric using the absolute value function by
dx,y) =|x -yl

The required properties of a metric are all satisfied. The last property follows from the triangle
inequality, so called because of the relationship it imposes on the sides of a planar triangle. Let x, y,
and z denote the corners of a triangle, as shown in figure 2.1. Then d(x, z) is the length of one side,

X

Figure 2.1: Illustration of the triangle inequality

d(y.z) is the length of the second side, and d(x, z) is the length of the third side. The length of the
third side cannot be longer than the lengths of the first two sides. t

There are a variety of metrics used; the following example demonstrates a few of them.
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Example 2.1.2 Let X be the set of numbers in R". Letx ¢ R" and y € R"™.

1. The metric di: R" x R” — R defined by

di(x,y) = Z Jxi = wil
i=1

is called the [{ metric, also known as the Manhattan metric, since distance measured in a city
laid out on a Cartesian grid must follow straight along the streets. Satisfaction of property (2.1)
for this metric follows from the triangle inequality applied to each term.

2. The metric dy: R” x R" — R defined by

2

" 172
d(X, y) = (Z fxi — }’i|2)
P=1

is called the /; metric. It represents the Euclidean distance between the points. The fact that
this metric satisfies property (2.1) is proved in section 2.6.

3. Generalizing the first two metrics, we have

. e
d,(x,y) = <Z Jx; = Yii’?) .
i=1

This is the [, metric. The fact that this metric satisfies (2.1) follows from the Minkowski
inequality, which is proved in appendix A.

4. As p — 00, the [, metric becomes the [, metric,

de(x,y) = max Jx; — yil. -

Example 2.1.3 Consider a vector x € R” which is to be approximated (quantized) by a vector as
% illustrated in figure 2.2. To have a good representation of the data, we desire that % “look like” x,
according to some criterion, and the quantizer should be designed with this in mind. While many
different metrics have been examined, frequently the metrics employed in quantizer design turn out

to be one of these mentioned above, such as d, (X, X) or dy(x, X). 0

ot

o Quantizer |

Figure 2.2: Quantization of the vector x

Example 2.1.4 Let x be a binary sequence, X = {xg, X{, ..., X,~1 }, where x; is either O or 1. This
sequence is transmitted through a channel where it may be corrupted by some noise. The received
sequence isy = {yo, ¥1, .- .. Ya—1}- In receiving such sequences, the goal for good reception is that the
bits in y should match the bits in x. An appropriate metric for this criterion is the Hamming distance
between the sequences, which is the number of places that x; and y; are different,
n—1
du(x,y) =Y hxi =)

i=0)

h(x——y):{l ifx—y#0

where

0 ifx—y=0.

When x and y are binary sequences, then the Hamming distance between them can be written as

n-1

dy(x, y) = in & yi,

i=0

0

in which @ denotes addition modulo 2.
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Definition 2.2 A metric space (X, d) is a set X together with a metric d. O

There are many possible metric spaces. We begin with metric spaces defined for sequences.

Example 2.1.5

1. The set R" equipped with the metric d;(X, y) is a metric space.

2. Letl, = [,(0, co) be the set consisting of all infinite sequences of real or complex numbers

{xg, x1, X2, ...} such that Z,’io lx:17 < oo. We will take 1 < p < oc. The function

- 1/p
dp(x,y) = [Z [x; — yil"}
iz}

defines a metric on [,, which we will call the [, metric. We refer to this metric space as
the 1,(0, oo) space, or simply the [, space. This is an infinite-dimensional space known as a
sequence space.

The set of two-sided sequences {...,x_j, Xy, X1, ...} with metric d, gives the metric
space [, (—00, 00).

In discrete-time signal-processing applications, we deal most frequently with /; space or
with [, space, the former because absolute values are easy to compute, and the latter because
the quadratic metric function is easily differentiable.

. The space [ (0, 0o} consists of all sequences of numbers {xg, X1, x2, ...} such that |x,| < M
for some finite bound M, equipped with the metric

doo (X, y) = SUp [Xn — Yul. (2.2

See box 2.1. The corresponding space of two-sided sequences is denoted as [, (—00, 00).
O

There are also many useful metric spaces defined over functions. These infinite-

dimensional spaces are called function spaces.

The metric space (Cla, b}, d,). Let X = Cla, b] be the set of real-valued (or complex-
valued) continuous functions defined on the interval [a, b], with b > a. We can define a

Box 2.1: Sup and inf

For aset § C R, the least upper bound (LLUB) is the smallest number z such
that z > x forevery x € S. The LUB of a set S is called the sup (supremum)
of the set. If there is no number that is greater than all the elements of S,
then sup(S) = oo. Similarly, the greatest lower bound (GLB) of a set is the
largest number w such that w < x for every x € §. The GLB is called the
inf (infimum) of S. If there is no number less than all the elements of S, then
inf(§) = —oo.

The inf and sup are generalizations of min and max, respectively. Gener-
ally the inf and sup are used when there is a continuum of values over which
to find the max or min, or where the extrema may be infinite.

Example 2.1.6 Let § = (2.5) C R. (This is an open set, and does not contain the
endpoints.) Then,
sup{S) =5 and inf(S) = 2.

Let7 =1{4,7). Then inf(T) = 4 and sup(T) = 7. Let U = (1. o0). Then inf(U) = 1
and sup(U) = oc O
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metric on functions x and y in X by

1/p

b
dp(x,y) = {/ [x(ry —y@)17de) (2.3)

where 1 < p < oc. This gives the metric space (C{a, b}, d,,). The metric d,, between func-
tions is referred to as the L, metric. It must be established that (2.3) is, in fact, a metric.
For p = 2 this is established using the Cauchy-Schwarz inequality (see section 2.6). For
other values of p, the Minkowski inequality proved in appendix A is used.

The metric space (Cla,b],d ). Letting p — oo in the definition of the last metric, we
obtain (see box 2.1),

doo(x, y) = sup{lx(t) — v(t)]:a <t < b}. 2.4)

In other words, the distance between the functions is obtained at the point where the functions
are farthest apart. This metric space is denoted as (Cla, b], d) or, more simply, as Cla, b]
(the metric being understood by convention).

The difference between the metric spaces (Cla, b], dx) and (Cla, b}, d,) can be ap-
preciated by considering the functions illustrated in figure 2.3. Let X = C[0, T'], and let xg
be a point in X (a function). Figure 2.3(a) shows the region within which all functions x
that satisfy

doo(xg,x) < €

i xo{#)

\

(a) d approximation

) T

(b) d; approximation

Figure 2.3: Comparison of d,, and d» metrics
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must fall. For example, the function x;(¢), as shown, falls in the region. While there may
be some wiggling around within the region, the function is never allowed to escape.
By contrast, figure 2.3(b) illustrates some functions that satisfy

da(xg, x) < €.

That is, these are functions for which

T
/ (xo() — x(1))*dr < €.
)

At any given point tg, there may be significant deviation from x,(), as long as the region
over which the deviation occurs is not too long. The narrower the region of deviation, the
bigger the deviation might be. If x () is an approximation to xo(¢), using the do metric in
expressing the approximation criterion provides an upper bound to the approximation error
x(r) — xo(r) that cannot be obtained when using the d, metric for 1 < p < co.

The metric space Lyla,b]. Let L,[a, b] denote the set of real- or complex-valued func-
tions x(r) defined on the interval ¢t € [a, b] such that

b
/ x (O dr < oo,

where 1 < p < oc. This set, equipped with the metric d,, of (2.3), forms the metric space
(Lyla, b, dy,) or, more simply, L,[a, b]. When the interval is understood, this is often
written simply as L ,. The metric (2.3) is often referred to as the L , metric.

Several technicalities associated with the L, space are discussed in section 2.1.3. For
many problems of engineering interest, these technicalities do not present a difficulty, but
they do bear some consideration.

The metric space Lo [a,b].  Let Ly [a, b] denote the set of real- or complex-valued func-
tions x (1) defined on the interval [a, b] such that

sup |x(1)| < co.
refa,b}

This set, equipped with the metric dy of (2.4), is a metric space.

2.1.1 Some topological terms

With the notion of a metric established, we can introduce some elementary concepts from
point-set topology.

In a metric space X, the ball or sphere centered at xy of radius § is the set of points
which are within a distance § of xq:

B{xg,8) = {x € X : d{(xg., x) < §}. 2.5)
Such a ball is also said to be a neighborhood of xg: it is the set of points that live close to
X0

Definition 2.3 A point xo € X is interior to a set § C X if all points sufficiently near to
xg are in S. That is, there is some § > O such that B(xg,8) C S.

The interior of a set S is the set of all points in x that are interior to the set. A point
xo & S is exterior if there is neighborhood of xq that is outside (does not intersect) S. [

Figure 2.4 illustrates an interior point, an exterior point, and a point which is neither
interior nor exterior.
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Figure 2.4: x; is interior, x; is exterior, and x| is neither interior nor exterior

Definition 2.4 A set S is open if every point in § is interior. O

Example 2.1.7 The set § = (0, I) € R is an open set. We will show that every point is interior. Let
ty € S. Then the neighborhood B(x;, ), where

1
§ = ;miD(X(), 1= xu),

is a subset of S for any xo € S.
The set Y = [0, 1] C R (including the endpoints) is not open. The point 0 has no neighborhood
surrounding it that lies entirely in Y. O

It is straightforward to show that finite unions and intersections of open sets are open.
Definition 2.5 A set § C X is said to be closed if the complement of § is an open set. [

Example 2.1.8 Let X = (0,4), and let S = [1,2] C X. Then S = (0, 1) U (2, 4). This is the union
of two open sets, and hence is open. Thus § must be closed. O

For many purposes in this book, we will use open sets because they cannot contain
only a single point. For example, in some results on optimization, we might state something
like: “ f(¢) is continuous in an open neighborhood around #,.” What this means is that we
can look at the points around fo—in at least some neighborhood—and use continuity there.

Definition 2.6 A boundary point of a set S is a point xy such that every neighborhood of
xp contains elements both in S and not in S. A boundary point is not necessarily an element
of §.

The boundary of a set § is the collection of all the boundary points of S. The boundary
of a set S is sometimes denoted as bdy(S). 0

Example 2.1.9 Fortheset § = [0, 1) C R, the point 0 is a boundary point, since every neighborhood
of 0 has points in S and points not in S. The point 1 is also a boundary point (which is not an element
of §). The boundary of S is bdy(S) = {0, 1}.

This set is neither open nor closed in R. O

Definition 2.7 The closure of aset § is the union of the set § with its boundary. The closure
of S is denoted as closure(S). (Other texts use S to indicate closure.)

closure(S) = S U bdy(S).
The closure of a set is always closed. O

Example 2.1.10 For the set § = [0, 1), the closure is
closure(S) = [0, 1].
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Figure 2.5 illustrates open and closed sets.

(a) Open set (b) Closed set

Figure 2.5: Illustration of open and closed sets

Example 2.1.11 Some examples of open and closed sets:
1. The set of (x, y) such that x2 — 2yx = 0 is closed in R%. (Every point is a boundary point.)
2. The set of (x, ) such that x>y > 3(x — v) is open in R2.

3. The set Z is closed in R. (Every point is isolated from every other point; every point is a
boundary point.) O

In addition to the simple sets of points in R”, it is interesting to examine open and closed
sets over more complicated metric spaces.

Example 2.1.12 Let X = C[0, T']. The set of functions x € X such that
deo (X0, X) < €,

which is portrayed in figure 2.3(a), is an open set. This is the open neighborhood of functions around
Xo(t). [

Definition 2.8 A point x € X is said to be a cluster point in X if every neighborhood
around x contains infinitely many points of X. O

Definition 2.9 The support of a function f: A — B is the closure of the set of elements
a € A where f(a) # 0. O

In concluding this section of definitions, we summarize some of the basic topological
properties of sets, as follows.

1. The union of any number (even an infinite number) of open sets is open. The inter-
section of any number (even an infinite number) of closed sets is closed.

2. The intersection of an infinite number of open sets need not be open. To see this,
let Ay = (0,14 1/k). Then, Ay D Ay D A3 D ---. The intersection of all these
intervals, B = M2, Ay is the interval (0, 1], which is not an open set.

3. The union of an infinite number of closed sets need not be closed.

2.1.2 Sequences, Cauchy sequences, and completeness

Sequences of numbers or functions arise frequently in signal processing theory and practice.
As an example, an iterative algorithm such as an adaptive filter produces a sequence of
vectors (filter weights).
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Many sequences are generated as follows: Starting from some initial point x in a metric
space X, a sequence is obtained by updating the last point, possibly incorporating some
new data. The update for an iterative algorithm can be written abstractly as

Xntt = f(xn- Uy),

where f is an update function and u,, is the input data at the nth iteration. Repeated iteration
gives the sequence xp, xq, .. ..

If x, ultimately gets close to some value for large enough n, we can say that the sequence
{x,} converges. This is stated more precisely in the following definition.

Definition 2.10 If for every § > 0, there is an np such that d(x,, x™) < & forevery n > ng
for some fixed value x*, then the sequence {x,} is said to converge to x*. In this case we
write

X, — x*.

We say in this case that x* is the limit of x,,. O

Another way of stating this is as follows: The sequence {x, } converges to x* if and only if
every neighborhood around x* contains all the terms x,, for n > ng. For every neighborhood
N around x*, there is an ng such that x,, € N when n > ny.

Example 2.1.13 Convergence can be appreciated by considering sequences that do not converge.

The sequences R

a, = n-,

b, = 1+ (-1)",

i

do not converge: the first sequence is not bounded, and the second sequence oscillates between 0
and 2. |

The following facts about convergent sequences are important:

1. Let (X, d) be a metric space. The closure of a set A C X is the set of all limits of
converging sequences of points from A.

2. Aset A C X isclosedif and only if it contains the limit of every converging sequence
{x,} whose points lie in A.

Example 2.1.14 Consider the following sequence of numbers:
{1,1.41,1.414, 1.4142,1.41421,...}.

Each number in this sequence is a rational number, an element of (J. This sequence is converging to
/2, which is an irrational number. Since the limit of the sequence is not in the set Q, we conclude
that Q is not closed. However, the set of real numbers R is closed: every convergent sequence in R
has its limit in R. O

Similar to a limit is a limit peint: if the sequence x, returns infinitely often to a
neighborhood of a point x*, then x* is a limit point. In the sequence

by =1+ (=",

the points 0 and 2 are both limit points (but not limits) of the sequence. If there are limit
points of a sequence, however, we can take a subsequence which converges to a limit.

The largest limit point of a sequence {x,} is called the limit superior, or limsup. It is
often written as

lim sup x,.
n-—r0Q
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The smallest limit point of a sequence is called the limit inferior, or liminf. It is often written
as
Iiminfx,.

n—»oc

Obviously, if lim sup x,, = liminf x, then the sequence is convergent.

Example 2.1.15 Consider the sequence
1
=14 -+ (1"
n

There are two limit points: 2 and 0. The subsequence {cg, ¢2. ¢4, . .. } has the limit 2, and the subse-
quence {¢;. ¢3, ¢s, . .., } has the limit 0. For the sequence {c,},

limsupc, = 2,

n—o0

liminfc, = 0.

nes oo )
Definition 2.11 A sequence {x,} in R is monotonic if
X1 xS x3 5
or
Xy Z Xy 2 X320, O

For sequences over the real numbers, the following fact is clear: every bounded mono-
tonic sequence is convergent. Since the sequence is bounded, the monotonic sequence “runs
out of room,” and hence must have a limit point, which (because the sequence is monotonic)
must be unique.

Definition 2.12 A sequence {x,} in a metric space (X, d) is said to be a Cauchy sequence
if, for any € > 0, there is an N > 0 (which may depend upon €) such that d(x,, x,) < €
foreverym,n > N. O

It can be shown (see the exercises) that if a sequence converges, it is a Cauchy sequence.
On the other hand, it is possible for a sequence to be a Cauchy sequence and not be convergent
in X.

Example 2.1.16 Let Cla, b] be the set of continuous functions defined on the interval {a, b]. Let
X = C[—1, 1], and consider the sequence of functions f, (¢} defined by

0 t<-—1/n,
fn(t)::{m/2+l/2 —~1/n<t<1/n, (2.6)
1 t>1/n.

A typical function is shown in figure 2.6. In the metric space (X, d,), where d, is the metric defined
by

H
d;i(f.g) = / (f(r)—g())*dt,
-1

Jn(x)

1

"H’E

Figure 2.6: The function f, (1)
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we find that

d2(fns fm) =

6m3n

which — 0 for m and n large. Thus, the sequence is a Cauchy sequence, but the limit function

0 t <0,
fin=41/2 =0,

(m —n)" m > n,

1 r > 0.

is a discontinuous function and hence is not in X. Therefore, we cannot say that f,(r) is a convergent
sequence in X, 0

The failure of a Cauchy sequence to converge is a deficiency—a “hole”—in the under-
lying metric space.

Definition 2.13 A metric space (X, d) is complete if every Cauchy sequence in X is
convergent in X. 0

By this definition, the metric space (Cla, b], d;) of example 2.1.16 is not complete: There
exist Cauchy sequences in it where the limit is not in the metric space.

Example 2.1.17 Whether a metric space is complete or not depends on the metric employed. Consider
the metric space (C[—1, 1], dy), and d is the metric
dw(f ) = sup [f() — gl
rel~1,1]
[t can be shown that the sequence f,(¢) is not a Cauchy sequence in this metric space, so we cannot use
this sequence to test the completeness of (Cla, b], d,). But we can still argue for the completeness
of the space. Let x,(t) be a Cauchy sequence in (Cla, b], dw); then for any € > 0,
sup fxn (1) — x,(1)] <€
ref~1.1}
for m and n sufficiently large, so that [x,, (1) — x,(¢)] < € forevery t € [—1, 1]. Hence, for every fixed
o € [—1, 11, x, (1) is convergent to some number x(f). Collectively, these define a function x (). To
show completeness, we must show that x(¢) € Cla, b]; in other words, that it is continuous. Let n be
sufficiently large that [x,(t) — x(#)} < €/3. Let § be determined so that [x,(f) — x, ()} < €/3 when
It — 15l < 8. (Since x,(t) is continuous, such a § exists.) Then

(x(2) — x(to)| = |(x (1) — x4 {8)) + {xXa (1) — xx{10)) + (x4 (fp) — x(t0)]
< x(0) = x5 (D + (2, (F) = x5 ()} + x4 (80) — x{t0)} < €,

where the first inequality follows from the triangle inequality. Thus we see that for |t — 53] < § we
have |x(£) — x ()] < €, 30 x(t) must be continuous. 0

Inexamining the convergence of sequences (such as the result of an iterative algorithm),
it is usually easier to show that a sequence is a Cauchy sequence than to show that it is a
convergent sequence. To determine if a sequence is Cauchy requires only that we examine the
sequence, and establish that points become sufficiently close. On the other hand, establishing
convergence requires information apart from the sequence; namely, the limiting value of the
sequence. However, if the underlying space is complete, then establishing that a sequence is
a Cauchy sequence is sufficient to establish convergence. For this reason, we shall usually
assume that the work on function spaces is carried out in a complete metric Space.

Example 2.1.18 An example of an incomplete space is the metric space (Q, dy), the set of rational
numbers. In this space, the sequence {1, 1.4, 1.41, 1.414, 1.4142, ...}, the sequence approaching V2,
is a Cauchy sequence, but it is not convergent in (, since +/2 is not rational, 0
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Box 2.2: The measure of a set

Given a real interval S = [a, b), the measure of S is simply the length of the interval,
w(S) = b — a. For a set that is the union of disjoint intervals, S = S U S U -,
where 5; N §; = @, the measure is the sum of the individual measures,

w(S) = p(S) + pu(S) + .

A set of real numbers is said to have measure zero if, for every € > 0, the set can be
covered by a collection of open intervals whose total length is < €. A single point has
measure 0; so does a finite collection of isolated points. Any countable set of points
has measure zero, since around the nth point an open interval of length €/2” can be
placed. The total length of the countable set is thus less than or equal to

Lol ) o
“\27273 =€

The measure of sets in R” is defined by finding areas, volumes, and so forth, of sets
in R”.

Generalizing the results of example 2.1.16 it can be shown that, (Cla, b], d,) is not a
complete metric space for p < 0o. However, the space (L ,la, b], d,,) is a complete metric
space.

2.1.3 Technicalities associated with the L, and L spaces*

There are several technicalities associated with the L, space that bear at Jeast brief consid-
eration.

1. Consider the functions defined by

sin(f) 0<tr<4 sin(t) 0<r<4,1+#2,
0= {O otherwise; ft) =45 1=12,
0 otherwise.

These functions are clearly not equal at every point. However, for any p in the range
1 < p < 00,d,(fi, f2) = 0. Thus we have functions which are not equal but for
which the metric is zero, in violation of requirement M3 for metrics, as stated in
definition 2.1. The functions fy(¢) and f>(z) are said to differ on a ser of measure
zero, or to be equal almost everywhere, abbreviated as a.e. (See box 2.2.)

For our purposes, functions f and g for which d,,( f, g) = 0 are said to be equal,
even though they may not be equal at every point. Thus, when we talk of a function,
we are actually referring to a whole class of functions which differ on a set of measure
zero. So “equality” does not necessarily mean equality at every point!

Example 2.1.19 It is understood from elementary signals theory that a periodic function can
be represented using a Fourier series. The periodic square-wave function defined by

i !
0 —i=r<-L
= L 1
f@y=41 —7=r=3
! |
0 X<I<i.

*Note: This section can be skipped on a first reading.
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Figure 2.7: Hlustration of Gibbs phenomenon
has the Fourier series
I 1 2 2
f) = 3 + — |2cos2mt — §c056m+ -S-colent+--~ = g(1). 2.7
bid

Then, by the convergence of the Fourier series we have

1/2 172
d(f(1), g(1) = U (f(t)—g(r))zdt} =0.

12

However, it is also known that for discontinuous functions, the Gibbs phenomenon occurs: at
a point of discontinuity there is an overshoot or an undershoot, no matter how many terms are
taken in the summation. Figure 2.7 illustrates the nature of the convergence by showing the
sum in (2.7) truncated to N terms, for N == 1, 3, and 10 terms in the summation, with the plots
on the left showing the function and its N-term Fourier representation gy (2), and the plots
on the right showing the error f(f) — gn(). The point-by-point error is converging to zero
everywhere except at the points of discontinuity, where it never converges to zero. However,
since the width of the error location becomes narrower and narrower, the integral of the square
of the error approaches 0 as N — oo, 0

2. The space (L ,[a, b, d,) is larger than the space (Ca, bl, d,), in the sense that the
former contains the latter. This is true because there are functions in L, that are not
continuous, whereas all functions in C[a, b] are also functions in L, (why?). L, isa
“completion” of Cla, b]: sequences in C{a, b] that do not have a limit in Cla, b] do
have a limitin L.

3. In fact, L, is a large enough space of functions that the concept of integration that

we learn in basic calculus, the Riemann integral, does not consistently apply to every
function in L,. Recall that the Riemann integral is defined as the limit of a sum
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S f(x;)Ax;, where the x; are chosen as points inside Ax; . There are functions in
L, that cannot be integrated by this limiting process.

Example 2.1.20 The usual pathological example of such a non-integrable function is the
function defined on the interval [0. 1] by

1 if r is rational,
fo= {() if 1 is irrational. 28

In the Riemann integral, if the points x; are chosen to be rational, then fol ftydt = 1. If the

. L i . .
points x; are chosen to be irrational, then Jo f(t)dr = 0. By careful selection of the points x;,
the integral can take any value between 0 and 1. O

The integral appropriate for use in L, spaces is the Lebesgue integral. For our pur-
poses, we will not need to worry (beyond this brief mention) about the distinctions.
Letting [, denote Riemann integration and | , denote Lebesgue integration, the fol-
lowing rules apply:

(a) If [, f(t)dr exists, then [, f(r)dr exists, and Je fydr = |, f(r)dr.

(b) The Lebesgue integral is linear: For a scalar «,

/af—a/f Juro=[r+[e

(c) If f, I f)|*dr and [, |g(1)|* dr exist (are finite), then so are [, f(r)g(r)dt and
[ +g)dr

(d) If f and g are equal except on a set of measure zero, then
(f-g)=0 /(f—g)zzo
L L

This last rule suffices to cover many of the pathological functions for which the
Riemann integral has no value. For example, the function f(r) defined in (2.8)
is equal to the function g(r) = 0, except on a set of measure zero (since the
rational numbers form a countable set). Thus, using the Lebesgue integral there
is no ambiguity and ‘[0] fyder =0.

. When dealing with the L. norm, yet another issue arises. Consider the function

x(1) = {é ; ;3 (2.9)

For this function sup x (1) = 1. However, x(r) differs from the all-zero function only
on a set of measure zero. As for the case of the L, norms, it is convenient to define
the L., norm so that functions that are equal almost everywhere have the same norm.
We accordingly define the L. norm by finding the function y(r) that is equal to x (1)
almost everywhere and which has the smallest supremum,

fxlloo = inf  suply(r)].

yU=x{1) a.e.

For the function x(1) in (2.9}, we find that y(1) = 0 satisfies this; hence,
et e = 0.

The quantity inf, =, suply (1)} is called the essenrial supremum of x(1).
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2.2 Vector spaces

A finite-dimensional vector x may be written as

Xj
X2
X =
Xn
The elements of the vector are x;, i = 1, 2, ..., n. Each of the elements of the vector lies

in some set, such as the set of real numbers x; € R, or the set of integers x; € Z. This set
of numbers is called the set of scalars of the vector space.

The finite-dimensional vector representation is widely used, especially for discrete-
time signals, in which the discrete-time signal components form elements in a vector.
However, for representing and analyzing continuous-time signals, a more encompassing
understanding of vector concepts is useful. It is possible to regard the function x(r) as a
vector and to apply many of the same tools to the analysis of x(¢) that might be applied to the
analysis of a more conventional vector x. We will therefore use the symbol x (or x (1)) also
to represent vectors as well as the symbol x, preferring the symbol x for the case of finite-
dimensional vectors. Also, in introducing new vector space concepts, vectors are indicated
in bold font to distinguish the vectors from the scalars. Note: in handwritten notation (such
as on a blackboard), the bold font is usually denoted in the signal processing community
by an underscore, as in x, or, for brevity, by no additional notation. Denoting handwritten
vectors with a superscripted arrow X is more common in the physics community.

Definition 2.14 A linear vector space S over a set of scalars R is a collection of ob-
Jects known as vectors, together with an additive operation + and a scalar multiplication
operation -, that satisfy the following properties:

VS1 § forms a group under addition. That is, the following properties are satisfied.
{(a) Foranyxandy € §, x +y € S. (The addition operation is closed.)!

(b) There is an identity element in S, which we will denote as 0, such that for
any x € S,

X+0=0+x=x
(c) For every element x € § there is another element y € S such that
Xx+y=0

The element y is the additive inverse of x, and is usually denoted as —x.

(d) The addition operation is associative; for any x, y, and z € S,
x+y)+z=x+(y+1z).
VS2 Foranya,b € Randanyxandyin S,
ax € S,
a(bx) = (ab)x,
(a + b)x = ax + bx,
a(x+y) =ax-+ay.

1A closed operation is a distinct concept from a closed set.
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VS3 There is a multiplicative identity element 1 € R such that 1x = x. There is an element
0 € R such that Ox = 0.

The set R is the set of scalars of the vector space. O

The set of scalars is most frequently taken to be the set of real numbers or complex
numbers. However, in some applications, other sets of scalars are used, such as polynomials
or numbers modulo 256. The only requirement on the set of scalars is that the operations
of addition and multiplication can be used as usual (although no multiplicative inverse is
needed), and that there is a number 1 that is a multiplicative identity. In this chapter, when
we talk about issues such as closed subspaces, complete subspaces, and so on, it is assumed
that the set of scalars is either the real numbers R or the complex numbers C, since these
are complete.

We will refer interchangeably to linear vector space or vector space.

Example 2.2.1 The most familiar vector space is R", the set of n-tuples. For example, if x5, x; € R,
and

1 5
5 2
Xi = 4 X; = 0 »
2 -2
then

6 13
7 19

Xy + Xy = 4 3%y + 2%y = 12
0 2

Several other finite-dimensional vector spaces exist, of which we mention a few.

Example 2.2.2

1. The set of m x n matrices with real elements.
2. The set of polynomials of degree up to n with real coefficients.

3. The set of polynomials with real coefficients, with the usual addition and multiplication modulo
the polynomial p(r) = 1 + t*, forms a linear vector space. We denote this vector space as
R/ (e + 1), 0O

In addition to these examples (which will be shown subsequently to have finite dimension-
ality), there are many important vector spaces that are infinite-dimensional (in a manner to
be made precise in the following).

Example 2.2.3
1. Sequence spaces: The set of all infinitely-long sequences {x,} forms an infinite-dimensional
vector space.

2. Continuous functions: The set of continuous functions defined over the interval [a, b] forms a
vector space. We denote this vector space as Cla, b].

3. L,la. b]: The functions in L, form the elements of an infinite-dimensional vector space.  [J

Definition 2.15 Let S be a vector space. If V C S is a subset such that V is itself a vector
space, then V is said to be a subspace of S. O
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Example 2.2.4

i. Let S be the set of all polynomials, and let V be the set of polynomials of degree less than 6.
Then V is a subspace of S.

!\)

Let S consist of the set of S-tuples
S=100,0,0.0,0),(0.1,0.0. 1), (1.0,0,0. D), (1, 1,0,0,0)}
and let V be the set
V= {(0,0,0,0,0),(0,1.0,0, D},

where the addition is done modulo 2. Then § is a vector space (check this!) and V is a
subspace. 7

Throughout this chapter and the remainder of the book, we will use interchangeably
the words “vector” and “signal.” For a discrete-time signal, we may think of the vector
composed of the samples of the function as a vector in R" or C". For a continuous-time
signal s(r), the vector is the signal itself, an element of a space such as L[a, b]. Thus

the study of vector spaces is the study of signals.

2.2.1 Linear combinations of vectors

Let S be a vector space over R, and let py, p2, . .., P be vectorsin S. Then for ¢; € R, the
linear combination

X=cCipr+P2+ - CmPm

is in S. The set of vectors {p;} can be regarded as building blocks or ingredients for other
signals, and the linear combination synthesizes x from these components. If the set of
ingredients is sufficiently rich, than a wide variety of signals (vectors) can be constructed.
If the ingredient vectors are known, then the vector x is entirely characterized by the
representation (cy, ¢z, . . ., ¢ ), Since knowing these tells how to synthesize x.

Definition 2.16 Let S be a vector space over R, and let T < § (perhaps with infinitely
many elements). A point x € S is said to be a linear combination of points in 7 if there is
a finite set of points py, pa2, ..., P in T and a finite set of scalars ¢y, ¢2, ..., ¢ in R such
that

X=Cpi + P2+t CnPa. O

It is significant that the linear combination entails only a finite sum.

Example 2.2.5 Let § = C(R), the set of continuous functions defined on the real numbers. Let
pi(t) = 1, pa(t) = ¢, and p3(1) = t2. Then a linear combination of these functions is

x(t) = ¢y + oot -f‘(,‘3lz~

These functions can be used as building blocks to create any second-degree polynomial. (As will be
seen in the following, there are other functions better suited to the task of building polynomials.)
If the function p4(r) = t> — 1 is added to the set of functions then, a function of the form

x(t) = ¢ + ¢yt +C3[2 +C4(t2 — 1y = (¢; —c4) +ast + (3 +C4)t2

can be constructed, which is still just a quadratic polynomial. That is, the new function does not
expand the set of functions that can be constructed, so p4(¢) is, in some sense, redundant. This means
that there is more than one way to represent a polynomial. For example, the polynomial

x(t) =6+ 5t +1*
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can be represented as
x(t) = 8pi(t) + 5p2(1) — ps(t) + 2ps(t)

or as
X(8) = 9py(t) + Spalt) — 2palt) + 3pa(r). U

Example 2.2.6 Letp,,p; € R, withp; =[1,0,1]7, ps = [1,1,0}". Then

cy + o
X=c\py+p = c2 .
1

The set of vectors that can be constructed with {p;, p2} does not cover the set of all vectors in R*. For

example, the vector
5
6

cannot be formed as a linear combination of p; and p,. O

Several questions related to linear combinations are addressed in this and succeeding
sections, among them:

e Is the representation of a vector as a linear combination of other vectors unique?
s What is the smallest set of vectors that can be used to synthesize any vector in S7

e Given the set of vectors pi, pz. . . . , Pm, how are the coefficients ¢y, ¢3, .. ., ¢, found
to represent the vector x (if in fact it can be represented)?

¢ What are the requirements on the vectors p; in order to be able to synthesize any vector
xes§?

¢ Suppose that x cannot be represented exactly using the set of vectors {p;}. What is the
best approximation that can be made with a given set of vectors?

In this chapter we examine the first two questions, leaving the rest of the questions to the
applications of the next chapter.

2.2.2 Linear independence

We will first examine the question of the uniqueness of the representation as a linear
combination.

Definition 2.17 Let S be a vector space, and let 7 be a subset of S. The set T is linearly
independent if for each finite nonempty subset of T (say {pi, p2. .... pn}) the only set of
scalars satisfying the equation

apr+cepr+ -+ onpm =0

is the trivial solution¢; = ¢y = --- = ¢, = 0.
The set of vectors p;. p2. .. .. P is said to be linearly dependent if there exists a set
of scalar coefficients ¢), ¢, . .., ¢, which are not all zero, such that
c1p1 +c2pa+ -+ CnPm = 0. 0
Example 2.2.7

1. The functions p, (1), p2(1), p3(1), ps(t) € S of example 2.2.5 are linearly dependent, because
pa(ty + pi(t) = p3(t) = 0:

that is, there is a nonzero linear combination of the functions which is equal to zero.
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-

2. The vectors py = [2. —3,4]7, ps = [~1,6,=2], and p3 = [1,6,2]" are linearly.dependent
since

4p, +5p2 +3p; = 0.

3. The functions p;(r) =t and p2(r) = | + r are linearly independent. O

Definition 2.18 Let T be a set of vectors in a vector space § over a set of scalars R (the
aumber of vectors in T could be infinite). The set of vectors V that can be reached by
all possible (finite) linear combinations of vectors in T is the span of the vectors. This is
denoted by

V = span{T}.
That is, for any x € V, there is some set of coefficients {¢;} in R such that
X = Z Cipis
i==
where each p; € T. 0

It may be observed that V is a subspace of S. We also observe that V = span(T) is the
smallest subspace of S containing 7', in the sense that, for every subspace M C § such that
T CM,thenV C M.

The span of a set of vectors can be thought of as a line (if it occupies one dimension),
or as a plane (if it occupies two dimensions), or as a hyperplane (if it occupies more than
two dimensions). In this book we will speak of the plane spanned by a set, regardless of its
dimensionality.

Example 2.2.8

1. Letp, = [1,1,0]" and p; = [0, 1, 0] be in R>. Linear combinations of these vectors are

’

&}
X= |+
0

for ¢;. c; &€ R. The space V = span{p,, p1} is a subset of the space R?: it is the plane in which
the vectors [1, 1,017 and [0, 1, 0]7 lie, which is the xy plane in the usual coordinate system,
as shown in figure 2.8.

2. Let p1(#) = 1 + ¢ and py(t) = r. Then V = span{p,, p,} is the set of all polynomials up
to degree 1. The set V could be envisioned abstractly as a “plane” lying in the space of all
polynomials. O

Figure 2.8: A subspace of R?
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Definition 2.19 Let T be a set of vectors in a vector space § and let V' C S be a subspace.
If every vector x € V can be written as a linear combination of vectors in 7', then 7 is a

spanning set of V. 0
Example 2.2.9
1. Thevectorspy = [1,6,5).p2 = [-2.4,217,p;s = [1, 1,007, ps = [7. 5, 2]7 form a spanning
set of B
2. The functions p;(r) = 1 41, pa{t) = 1 + 1%, pa(t) = 1, and p4(1) = 2 form a spanning set
of the set of polynomials up to degree 2. O

Linear independence provides us with what we need for a unique representation as a
linear combination, as the following theorem shows.

Theorem 2.1 Let S be a vector space, and let T be a nonemprty subset of S. The set T
is linearly independent if and only if for each nonzero x € span(T), there is exactly one
finite subset of T, which we will denote as {p1. Ba. . ... Pm}, and a unique set of scalars
{c1,¢a, ..., Cwm} such that

X=cpr+ep2+ -+ CnPm-

Proof We will show that “T linearly independent” implies a unique representation. Suppose
that there are two sets of vectors in 7,

{plsp2~,~"~,pm} and {qlﬁqzﬂ""q"}

and corresponding nonzero coefficients such that
X =P +C7.p2+"'+cmpm and X:dl(h +d2q2+'“+dnqn‘

We need to show thatn = mand p; = q; fori = 1,2, ..., m, and that ¢; = d;.
We note that

Cip1 + P2 + - F Co P _dlq] —dz(h o —dnqn = 0.

Since ¢; # 0, by the definition of linear independence the vector p; must be an element
of the set {q). qa. . ... q,} and the corresponding coefficients must be equal: say, p; = q,
and ¢; = d;. Similarly, since ¢, # 0 we can say that p» = q and ¢; = 4. Proceeding
similarly, we must have p; = q, fori = 1,2, ..., m, and ¢; = d;.

Conversely, suppose that for each x € span(7T) the representation X = ¢1p; + - - * € Pm
is unique. Assume to the contrary that 7 is linearly dependent, so that there are vectors
Pi. P2. .. .. Pm such that

P =—@p2 —a3pz — - — QyPm- (210)
But this gives two representations of the vector p;: itself, and the linear combination (2.10).
Since this contradicts the unique representation, 7 must be linearly independent. 0

2.2.3 Basis and dimension

Up to this point we have used the term “dimension” freely and without a formal definition.
We have not clarified what is meant by “finite-dimensional™ and “infinite-dimensional”
vector spaces. In this section we amend this omission by defining the Hamel basis of a
vector space.

Definition 2.20 Let S be a vector space, and let T be a set of vectors from § such that
span(T) = S.If T is linearly independent, then T is said to be a Hamel basis for S. [
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Example 2.2.10
1. The set of vectors in the last example is not linearly independent, since
—4p; +5p2 — 21p; +5p; = 0.

However, the set T = {p;. p2, p3} is linearly independent and spans the space R*. Hence T is

a (Hamel) basis for R*.
1 0 0
€ = 0 e; = | | ¢ = 0
0 0 1

2. The vectors
form another (Hamel) basis for R*. This basis is often called the natural basis.

3. The vectors pi(1) = 1, pa(t) = t, p3(t) = t* form a (Hamel) basis for the set
§ = {all polynomials of degree < 2}.

Another (Hamel) basis for § is the set of polynomials {g, (1) = 2, g2(t) =1 + 2, q3(t) =t}
O

As this example shows, there is not necessarily a unique (Hamel) basis for a vector space.
However, the following theorem shows that every basis for a vector space have a common
attribute: the cardinality, or number of elements in the basis.

Theorem 2.2 If T\ and T, are Hamel bases for a vector space S, then Ty and T, have the
same cardinality.

The proof of this theorem is split into two pieces: the finite-dimensional case, and the
infinite-dimensional case. The latter may be omitted on a first reading.

Proof (Finite-dimensional case) Suppose
Ti={p1,p2 .-, Pn} and T ={q Q. -, 4}
are two Hamel bases of S. Express the point q; € T; as
qi =cip1 + Pz + -+ CnPm-

At least one of the coefficients ¢; must be nonzero; let us take this as ¢;. We can then write

1
p1=—(q —C2p2 =+~ CmPrm)-
(5]

By this means we can eliminate p; as a basis vector in T} and use instead the set {q;, p2, . . .,
Pn} as a basis. Similarly, we write

QG =diq +dopa+ -+ duPm

and as before eliminate p, so that {q1, qz, P3, - - . , P} forms abasis. Continuing in this way,
we can eliminate each p;, showing that {q,, ..., q,} spans the same space as {pi, ..., Pm}.
We can conclude that m > n. Suppose, to the contrary, that n > m. Then a vector such as
Qm-+1, which does not fall in the basis set {q,, . . ., @=}, would have to be linearly dependent

with that set, which violates the fact that 75 is itself a basis.

Reversing the argument, we find that n > m. In combination, then, we conclude that
m=n.

(Infinite-dimensional case) Let T, and 75 be bases. For an x € T}, let T;(x) denote the
unique finite set of points in T, needed to express X.
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Claim: If y € T», theny € T;(x) for some x € T}. Proof: Since a pointy isin §, then y
must be a finite linear combination of vectors in 75, say,

Yy =ax +caXg o X

for some set of vectors x; € Ty. Then, for example,
mz;w—nn~m—%mx
1

so that, by the uniqueness of the representation, y € T>(x).
Since for every y € T, there is some X € Ty such thaty € T>(x)}, it follows that

n:Un@.

xeTy

Noting that there are |7}/ sets in this union?, each of which contributes at least one element
to T3, we conclude that [75] > |T}].

Now turning the argument around, we conclude that {T7] > |T»|. By these two inequal-
ities we conclude that |Ty| = |T3|. ]

On the strength of this theorem, we can state a consistent definition for the dimension
of a vector space.

Definition 2.21 Let T be a Hamel basis for a vector space S. The cardinality of T is the
dimension of S. This is denoted as dim(S). It is the number of linearly independent vectors
required to span the space. |

Since the dimension of a vector space is unique, we can conclude that a basis T for a
subspace S is a smallest ser of vectors whose linear combinations can form every vector in
a vector space S, in the sense that a basis of | 7| vectors is contained in every other spanning
set for S.

The last remaining fact, which we will not prove, shows the importance of the Hamel
basis: Every vector space has a Hamel basis. So, for many purposes, whatever we want to
do with a vector space can be done to the Hamel basis.

Example 2.2.11 Let § be the set of all polynomials. Then a polynomial x(¢) € S can be written as a
linear combination of the functions {1, 7, 1%, ...}. It can be shown (see exercise 2.2-32) that this set
of functions is linearly independent. Hence the dimension of S is infinite. O

Example 2.2.12 [Bernard Friedman, Principles and Techniques of Applied Mathemarics, Dover,
1990.] To illustrate that infinite dimensional vector spaces can be difficult to work with, and particular
care is required, we demonstrate that for an infinite-dimensional vector space S, an infinite set of
linearly independent vectors which span S need not form a basis for §.

Let X be the infinite-sequence space, with elements of the form (x,, x5, x3.... ), where each
x; € R. The set of vectors

p,=01,00...,010,...), J=2.3,...
where the second 1 is in the jth positions forms a set of linearly independent vectors.

We first show the set {p;, j = 2,3,...} spans X. Let x = (x;,x;,x3,... ) be an arbitrary

element of X. Let
Oy = X =~ X3 — - — Xn,

and let 7, be an integer larger than nlo, 1*. Now consider the sequence of vectors

Op
Yo = X2P2 +x3P3 + -+ XnPe + =~ (Prs1 + -+ pp)-

n

IRecall that the notation | S| indicates the cardinality of the set S see section A.1.
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where p = n + 1,. For example,

- X2

x - X
¥y = Xap2 + X3ps + "L"T”i(lh +Ps+ -+ Paer,)

I 1 1
=X +xps+(xy—x—x) | L= —. .., — 1.

[n the limit as n — o0, the residual term becomes
(x; =—xy~--)1.0,0,...)

and ¥, — X. So there is a representation for x using this infinite set of basis functions.

However—this is the subtle but important point—the representation exists as aresult of a limiting
process. There is no finite set of fixed scalars ¢, ¢3, ..., cn such that the sequence x = (1,0,0,...)
can be written in terms of the basis functions as

x=(1,0,0,...)=cp+cps+ - +CyPu-

When we introduced the concept of linear combinations in definition 2.15, only finite sums were
allowed. Since representing x would require an infinite sum, the set of functions p,, ps . .. does not
form a basis.

It may be objected that it would be straightforward to simply express an infinite sum 27:2 Capa,
and have done with the matter. But dealing with infinite series always requires more care than does
finite series, so we consider this as a different case. 0

2.2.4 Finite-dimensional vector spaces and matrix notation

The major focus of our interest in vector spaces will be on finite-dimensional vector spaces.
Even when dealing with infinite-dimensional vector spaces, we shall frequently be interested
in finite-dimensional representations. In the case of finite-dimensional vector spaces, we
shall refer to the Hamel basis simply as the basis.

One particularly useful aspect of finite-dimensional vector spaces is that matrix notation
can be used for convenient representation of linear combinations. Let the matrix A be formed

by stacking the vectors py, pa, .. ., Pm side by side,
A=[pt P2 - Pml
For a vector
(4]
c
c= ,
Cm

the product x = Ac¢ computes the linear combination
X=cip1+Cp2+ -+ CnPm-

The question of the linear dependence of the vectors {p;} can be examined by looking at
the rank of the matrix A, as discussed in section 4.7.

2.3 Norms and normed vector spaces

When dealing with vector spaces it is common to talk about the length and direction of the
vector, and there is an intuitive geometric concept as to what the length and direction are.
There are a variety of ways of defining the length of a vector. The mathematical concept
associated with the length of a vector is the norm, which is discussed in this section. In
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section 2.4 we introduce the concept of an inner product, which is used to provide an
interpretation of angle between vectors, and hence direction.

Definition 2.22 Let § be a vector space with elements x. A real-valued function ||x|| is said
to be a norm if ||x|| satisfies the following properties.

N1 {ixl = Oforanyx € S.

N2 {ix|| = 0ifand only if x = 0.

N3 |lax|| = |a] [|x]||, where & is an arbitrary scalar.
N4 [x +yl < x| + lyl} (triangle inequality).

The real number |ix|| is said to be the norm of x, or the length of x. O

The triangle inequality N4 can be interpreted geometrically using figure 2.9, where
X, y, and z are the sides of a triangle.

zZ=X-+Yy

X
Figure 2.9: A triangle inequality interpretation

A norm “feels” a lot like a metric, but actually requires more structure than a metric.
For example, the definition of a norm requires that addition x 4+ y and scalar multiplication
ax are defined, which was not the case for a metric.

Nevertheless, because of their similar properties, norms and metrics can be defined in
terms of each other. For example, if ||x|| is a norm, then

dix,y) = lx =yl
is a metric. The triangle inequality for metrics is established by noting that
Ix—=yll=lx—z+z-yl < Ix—z[+ [y -zl

{This trick of adding and subtracting the quantity to make the answer come out right
is often used in analysis.) Alternatively, given a metric d defined on a vector space, a norm
can be written as

x|l = d(x, 0),
the distance that x is from the ornigin of the vector space.
Example 2.3.1 Based upon the metrics we have already seen, we can readily define some useful
norms for n-dimensional vectors.
1. The /; norm: [|x[l; = >/ |xil.
2. The I norm: x|, = (3.7, Ix17)

i/p
i=1 .

3. The [ norm: [|Xllc = maxX;=12. . X 1.

Each of these norms introduces its own geometry. Consider, for example, the unit “sphere” defined
by

S, =ixeR: x|, <1}

Figure 2.10 illustrates the shape of such spheres for various values of p. 2
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|t

Ixlh <1

Ixfls <1 IXlle = 1

Figure 2.10: Unit spheres in R? under various /, norms

Example 2.3.2 We can also define norms of functions defined over the interval [a, b].
I The L; norm: [x(n, = [7 |x(@)]dr.

i/
2. The L, norm: |x(t)], = (f: }x(t)!”dt) "for 1 < p < 0.

3. The Lo norm: [[x () flae = SUP,cry ) X (D). O

The [, and L norms are referred to as the uniform norms.

Definition 2.23 A normed linear space is a pair (S, || - |), where S is a vector space and
Il - Il is a norm defined on S. A normed linear space is often denoted simply by S. O

When discussing the metrical properties of a normed linear space, the metric is defined
in terms of the norm, d(x,y) = ||[x — yi.

Definition 2.24 A vector X is said to be normalized if [|x|| = 1. It is possible to normalize
any vector except the zero vector: y = x/||x| has {jy]] = 1. A normalized vector is also
referred to as a unit vector. O

With a variety of norms to choose from, it is natural to address the issue of which norm
should be used in a particular case. Often the l; or L, norm is used, for reasons which
become clear subsequently. However, occasions may arise in which other norms or norm-
like functions are used. For example, in a high-speed signal-processing algorithm, it may
be necessary to use the [ norm, since it may be easier in the available hardware to compute
an absolute value than to compute a square. Or, in a problem of data representation of audio
information (quantization), it may be appropriate to use a norm for which a representation is
chosen that is best as perceived by human listeners. Ideally, a norm that measured exactly the
distortion perceived by the human ear would be desired in such an application. (This is only
approximately achievable, since it depends upon so many psychoacoustic effects, of which
only a few are understood.) Similar comments could be made regarding norms for video
coding. In short, the norm should be chosen that is best suited to the particular application.

The exact norm values computed for a vector x change depending on the particular
norm used, but a vector that is small with respect to one norm is also small with respect to
another norm. Norms are thus equivalent in the sense described in the following theorem.
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Theorem 2.3 (Norm equivalence theorem) If || - || and || - ||" are two norms on R" (or C"),
then

il = 0 ask — o0 if and only if ' = 0 ask — oo.

The proof of this theorem makes use of the Cauchy—Schwarz inequality, which is introduced
in section 2.6. You may want to come back to this proof after reading that section.

Proof It suffices to show that there are constants ¢y, ¢» > 0 such that
allxlh < Ixl" < eollx|l. (2.11)
To prove (2.11), it suffices to assume that || - " is the /; norm. To see this, observe that if
dilixl| < lIxlla < dolixl  and  dilIxll" = Ix]2 < dyllx]
then
dillxll < dalIxIl’

and
dilx|l" < dallx|l,

$0(2.11) holds with ¢; = d, /d} and ¢; = d, /d;. Let x be expressed as a linear combination

of basis vectors
1
X = E X;€;.
i1

Then, by the properties of the norm,

I'n n

S well =S il lle

li=1 i=1

The sum on the right is simply the inner product of the vector composed of the magnitudes

of the x;’s with the vector composed of the magnitudes of the basis vectors. Being an inner
product, the Cauchy-Schwarz inequality applies, and

n 12
Il < 1xll> <Z le; nz) :
i=1

n 1/2
= <Z neuﬁ) :

f=x]

Ix] =

Let

Then the left inequality of (2.11) applies with ¢; = 1/8.
For points x on the unit sphere S = {x: ||x[| = 1}, the norm || - || must be greater than
0 (by the properties of norms) and, hence, ||x{| > o for some o > 0 forx € S. Then

Ix1l2

so the right-hand inequality holds with ¢; = 1/«. 0

Ixfl = X2 = alx]l,

For example,

Ixll2 < Ixfly < Valxls.
¥l < Ixl2 < Vil (2.12)

[xlloc = lIxlh = nlixx.
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Definition 2.25 For a sequence {x,}, if there exists a number M < oo such that

Hxnll < M Ynasn — o0

0

then the sequence is said to be bounded.

2.3.1 Finite-dimensional normed linear spaces

The notion of a closed set and a complete set were introduced in section 2.1.2. As pointed
out, having complete sets is advantageous because all Cauchy sequences converge, so that
convergence of a sequence can be established simply by determining whether a sequence
is Cauchy.

Finite-dimensional normed linear spaces have several very useful properties:

1. Every finite-dimensional subspace of a vector space is closed.
2. Every finite-dimensional subspace of a vector space is complete.

3. If L: X — Y is a linear operator and X is a finite dimensional normed vector space,
then L is continuous. (This is true even if Y is not finite dimensional.) As we shall
see in chapter 4, this means that the operator is also bounded.

4. As observed above, different norms are equivalent on R" or C”. In fact, in any finite
dimensional space, any two norms are equivalent.

A lot of the issues over which a mathematician would fret entirely disappear in finite-
dimensional spaces. This is particularly useful, since many of the problems of interest in
signal processing are finite dimensional.

We will not prove these useful facts here. Interested readers should consult, for example,
{238, section 5.10].

2.4 Inner products and inner-product spaces

An inner product is an operation on two vectors that returns a scalar value. Inner products
can be used to provide the geometric interpretation of the “direction” of a vector in an
arbitrary vector space. They can also be used to define a norm known as the induced norm.

We will define the inner product in the general case, in which the vector space S has
elements that are complex.

Definition 2.26 Let S be a vector space defined over a scalar field R. An inner product is
a function (-, -): § x § — R with the following properties:

IPL (x,y) = (¥, X), where the overbar indicates complex conjugation. For real vectors this
simplifies to (X, y) = (y, x).

IP2 (ax,y) = a(x,y) for all @ in the scalar field R.

IP3 (x+vy,2) =X, 2+ {y,2).

P4 (x,x) >0if x5 0,and (x,x) = 0if and only if x = 0. O

Definition 2.27 A vector space equipped with an inner product is called an inner-preduct
space. ]

Inner-product spaces are sometimes called pre-Hilbert spaces. We encounter in
section 2.9 what a Hilbert space is.

There are a variety of ways that an inner product can be defined. Notational advantage
and algorithmic expediency can be obtained by suitable selection of an inner product. We
begin with the most straightforward examples of inner products.
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Example 2.4.1 For finite-dimensional vectors X, y € R”, the conventional inner product between the
vectors

X1 Y1
X2 Y2
X = and y= | .
xn }Vn

is

—~

= x1y1 +X2y2 A X Wy

n
= E X Yi
i=1

=y x=x"y.

x.y

This inner product is the Euclidean inner product. This is also the dot product used in vector
calculus, and is sometimes written

x,y) =x-y.

If the vectors are in C* (with complex elements}, then the Euclidean inner product is
oy =Y uy =y'x
k=1 ]

Example 2.4.2 Extending the “sum of products” idea to functions, the following is an inner product
for the space of functions defined on [0, 1]:

1
<x<t)-y(r)>=/ x(OF() dt.
4]

For functions defined over R, an inner product is

(x(t),y(r)):/ x(tyy(r) de.

o

O

Example 2.4.3 Consider a causal signal x(r) which is passed through a causal filter with impulse
response h(r). The output at a time T is

T
)‘(T)=X(I)*h(1)i,=r=/ (DT ~1)dr.
0

Let g(r) = (T — ). Then

.
¥(T) =/ x(r)glrydr = {x. g).
)]

where the inner product is

T
(f 8 =/ fHgndr.
0

So the operation of filtering (and taking the output at a fixed time) is equivalent to computing an inner
product. O

An inner product can also be defined on matrices. Let § be the vector space of m x n
matrices. Then we can define an inner product on this vector space by

(A, B) = w(B" A).
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2.4.1 Weak convergence”

When we have a sequence of vectors {x,}, as we saw in section 2.1.2, we can talk about
convergence of the sequence to some value, say X, — X, which means that

fix, —xj| — 0
for some norm | - || It is interesting to examine the question of convergence in the context

of inner products.

Lemma 2.1 The inner product is continuous. That is, if X, — X in some inner product
space, S then (X,.y) — (X, y) foranyy € §.

Proof Since x,, is convergent, it must be bounded, so that [|x,|| < M < oo. Then
1xa, ¥) — (X, 9l = Hx, — X, ¥
< 1%, = x[H Iyl
Since ||x, — x|} — 0, the convergence of (x,, y} is established. [
From this we note that convergence x,, — x (called strong convergence) implies (x,.y) —

(x, y) (which is called weak convergence). On the other hand, it does not follow necessarily
that if a sequence converges weakly, so that

Xp. y) = (X, ¥),

that it also converges strongly.

Exampie 2.4.4 Let x, = (0,0,0,...,1,0,0,...) be the sequence that is all 0 except foral at
position n, and lety = (1, 1/2, 1/4,1/8,...). Then

(x,.y) — 0,

but the sequence {x,} has no limit. The sequence thus converges weakly but not strongly. O

2.5 Induced norms

We have seen that the Buclidean norm of a vector x € R” is defined as
IxlI2 = x? + x4+ +xp

We observe that the inner product of x with itself is
(X, X} ::x%-{»xzz +~-+x3.

Hence, we can use the inner product to produce a special norm, called the induced norm.
More generally, given an inner product (-, -) in a vector space S, we have the induced norm
defined by

x|l = (x, x)'/?

for every x € S. It should be pointed out that not every norm is an induced norm. For
example, the {, and L, norms are only induced norms when p = 2.

*The concepts in this section are used briefly in section 2.10 and mostly in chapter 15; it is recommended
that this section be skipped on a first reading.
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Example 2.5.1 Another example of an induced norm is for functions in L,[a, b],

b 1/2
()l = (x (). x()'* = (/ Ix(l)!zdr> .
« 0

For an induced norm, we have the following useful fact (for an inner product over a complex
vector space):

x—ylIP=x—y.x—y =X — Xy~ ¥x)+{yy
= Ix|I* = 2Re (x, y) + |Iyl*.

For a vector over a real vector space, this simplifies to

Ix — ylII* = %I = 2(x, y) + llylI%

2.6 The Cauchy-Schwarz inequality

In the definition of a norm, one of the key requirements of the function || - || is that
x +yll < lIxf + lyll.

Up to this point, we have assumed that the metrics mentioned do satisfy this property. We
are now ready to prove this result for the important special case of the /; or L, norm, or
more generally for a norm induced from any inner product. In the interest of generality we
shall express this result in terms of inner products first.

The key inequality in our proof is the Cauchy-Schwarz inequality. This inequality
will prove to be one of the cornerstones of signal processing analysis. It will provide the
basis for the important projection theorem, and be the key step in the derivation of the
matched filter. It can be used to prove the important geometrical fact that the gradient
of a function points in the direction of steepest increase, which is the key fact used in
the development of gradient descent optimization techniques. Not only is it specifically
useful, but the analysis and optimization performed using the Cauchy—Schwarz inequality
provides a powerful archetype for many other optimization problems: optimizing values can
often be obtained by establishing an inequality, then satisfying the conditions for which the
inequality achieves equality. If the Cauchy—-Schwarz inequality does not serve the purpose,
other inequalities often will, such as the Cauchy-Schwarz’s big brothers, the Holder and
Minkowski inequalities which are presented in Appendix A.

Theorem 2.4 (Cauchy-Schwarz inequality) In an inner product space S with induced
norm |-,

Hx ] = lix[H iyl (2.13)

forany x,y € S, with equality if, and only if, v = ax for some scalar «.

Proof By expressing our proof in terms of inner products, we cover both the case of finite-
and infinite-dimensional vectors. For generality, we assume complex vectors.

First, note that if x = 0 or y = 0, the theorem is trivial. so we exclude these cases.
Form the quantity

Ix — ayl? = |IxlI* = 2Re (x, ay) + la*[ly]°. (2.14)

This is always positive. We want to choose « to make this as small as possible. For real
vectors, this can be done simply by taking the derivative with respect to «. and equating



2.7 Direction of Vectors; Orthogonality 101

the derivative to zero. We demonstrate another technique by completing the square (see
appendix B). We can write

2
05nx-—ayn2=nyn3Ka <x'y>> (a (’"”H—“’"y” + xR

I VANERETR Iy
Then the minimum value of |x — ay|}? is obtained when
oo X y)
Iyli>”

in which case the completion of the square leaves

RS
T

from which the desired inequality follows.

Now examine the condition for equality. If y = ax, then equality in (2.13) is immediate.
On the other hand, suppose that the equality in (2.13) is satisfied. Then working backward
through (2.14) indicates that ||x — ay[l = 0. But by the properties of a norm, this means
that x = «y for some «. O

+ Ixi? = 0,

This theorem applies to any normed linear vector space with an induced norm. For the
vector space R" with the Euclidean inner product, the Cauchy—Schwarz inequality is

x'y? < &0GTy

For the vector space C" with the Euclidean inner product, the Cauchy-Schwarz inequality
is (x7y)? < (x!'x)(y"y). For the vector space of real functions defined over [a, b], the
Cauchy-Schwarz inequality is

b 2 b b
(/ f(r)g(t)dt> s/ fz(t)dt/ Sty dr

Using the Cauchy-Schwarz inequality, we can now show that the induced norm sat-
isfies the required triangle inequality property. For vectors x and y (which we assume for
convenience to be real), we have

Ix+yl* = (x+y,x+y) = (X% +2(x5) + (5.y)
< (x, %)+ 20x]l Iyl + (v, y) = (Ixll + lyID*.

2.7 Direction of vectors; orthogonality

The inner product can be used to define a direction of angular separation between vectors,
and hence a concept of direction.

For vectors x and y in R? or R?, it is well known that the cosine of the angle between
the vectors is
_ &k

Ixll2llylla

Note that the 2-norm-—which is the induced norm—is used in defining the length. Using
the Cauchy-Schwarz inequality, it can be shown that

e Xy 2.15)

o lixlz2liyll T

cos o
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so the angle & is real. This same expression, with the appropriate inner product, defines
direction in any inner product space.
Example 2.7.1 Consider the vectors
x=1{1 2 3 47 y=[4 2 4 5.
Then the angle 6§ between the vectors is determined by

Iyl O

Example 2.7.2 For functions defined on [0, 1], find the angle between the functions

@ =1+ and  xp() =17 2.

i 172
fxill = (/ (x;(r))zdl) = 1/28/15
O

First compute

and
1 172
flxall = (/ (Xz(f))zdl> = /8/15.
Then ‘
fO’ X1 (Dx: (1) dr 29
COs == = - .
[ ez 814 0

Definition 2.28 If x and y are nonzero vectors and x = oy for some scalar «, then x and y
are said to be colinear. In an inner-product space, this means that the angle between x and
y satisfies cos§ = 1. O

A geometric concept which will be of considerable importance to us is the idea of
orthogonal vectors.

Definition 2.29 Vectors x and y in an inner product space are said to be orthogonal if
(x,yy=0.

Notationally, this is denoted as x L y. The words “perpendicular” and “normal” are syn-
onymous with “orthogonal.” 0

The zero vector is orthogonal to every other vector.

Definition 2.30 A set of vectors {p;. p2. . ... Pm} is said to be orthenormal if they are
mutually (pairwise) orthogonal and each have unit length,

pi-p;) =4 ;.

where §; ; is the Kronecker delta function, defined by

5 = I 0=,
"7 10  otherwise. 0
For orthogonal vectors, regardless of the inner product, the familiar Pythagorean
theorem holds:
Lemma 2.2 (The Pythagorean theorem) If x L'y and || - || is an induced norm, then

2

x4 viI2 = Ixf” + iyl (2.16)

The proof is straightforward.
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Example 2.7.3 Consider the set of polynomials
| 1
Po(r) =1 Py =1t Pz(!)=§(3t'“~l) P3(l):—2—(513~—3t)

1 3
Rm)=§6y4~mr+3y

Then it may be verified by direct computation, when the inner product is defined as

i
(f g =/ fltyg(t)de.
~1

these polynomials are orthogonal,

(P, P,) = {02 m
nm o= n.

n+1

These polynomials are the first few Legendre polynomials, afl of which are orthogonal over
{(~1, 1% O

2.8 Weighted inner products

For a finite-dimensional vector space, a weighted inner product can be obtained by insert-
ing a Hermitian weighting matrix W between the elements:
H
<Xv Y>W =¥ Wx.

The concept of orthogonality is defined with respect to the particular inner product used:
changing the inner product may change the orthogonality relationship between vectors.

Example 2.8.1 Consider the vectors

(i) =[]

It is easily verified that these vectors are not orthogonal with respect to the usual inner product x] x,.
However, for the weighted inner product

2 =2
T
X, ¥w =X {_,2 z}y,
the vectors x; and x; are orthogonal. O

In order for the weighted inner product to be used to define a norm, as in
Ixlly = (x. x)w = x"Wx,

it is necessary that x Wx > 0 for all x # 0. A matrix W with this property is said to be
positive definite.

Example 2.8.2 The weighted inner product of the previous example cannot be used as anorm because,
for any vector of the form
X = ,
o

the product x” Wx = 0, which violates the conditions for a norm. 0

Weighting can also be applied to integral inner products. If there is some function
w(t) > 0 over [a, b}, then an inner product can be defined as

b
(fs g>w=/ w(t) f(tyg(e)dr.
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The weighting can be used to place more emphasis on certain parts of the function. (More
precisely, we must have w(r) > 0, with w(r) = 0 only on a set of measure zero.)

Example 2.8.3 Let us define a set of polynomials by
T, (1) = cos(ncos™ (#))
fort € [—1, 1]. The first few of these (obtained by application of trigonometric identities) are
Tolt) = 1 Ty =1 Ty(1) = 21* — 1 T3(t) = 41> — 31.

A plot of the first few of these is shown in figure 2.11. These polynomials are the Chebyshev polynomi-
als. They have the interesting property that over the interval [—1, 1], all the extrema of the functions
have the values —1 or 1. This property makes them very useful for approximation of functions.
Furthermore, the Chebyshev polynomials are orthogonal with weight function

1
J1 =12

over the interval [—1, 1]. The orthogonality relationship between the Chebyshev polynomials is

wit) =

T n=m=0

T.(0 T (1) dt = 8y {n’/Z n=mn>0m>0. 0O

1
1
/_1 VI—12
We can define a weighted inner product on the vector space of m x n matrices by
(A, B) = u(B"wWA),

where W is a (Hermitian) symmetric positive-definite m x m matrix.
Using a norm induced from a weighted inner product, we can define a weighted distance
between two vectors:

dw(x ) = x =y} = x—9IWx-y). 2.17)
1 n=0
0.5
2
0
3
0.5
4 5
1
1 0.5 0 05 1

Figure 2.11: Chebyshev polynomials T;(¢) through T5(¢) forr € [—1, 1]

Example 2.8.4 A weighted distance arises naturally in many signal detection, estimation, and pattern
recognition problems in non-white Gaussian noise. In this example, a detection problem is considered.
Detection problems are discussed more fully in chapter 11.

Let S € R” be a signal which takes on one of two different values, either S = s; or § = s;. One
of these signals is chosen at random with equal probability—either by a binary data transmitter or by
nature. The signal S is observed in the presence of additive Gaussian noise N which has mean ¢ and
covariance matrix R. The observation Y can be modeled as

Y=S8S+N.
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From the observation of Y =y, we desire to determine which value of S actually occurred. This is
the detection problem.

Conditioned upon a value of S = s, the observation is Gaussian with mean s and the same
covariance:

1 "
fyIS=s = p —§(y~5>’R"(y-S) .

e @
(27" det(R) 12

where either s = sy or s = s;. From the observation y, we can compute the likelihood that the signal
was produced by s for each of the possible values of s, then select the one with the highest likelihood.
That is, we compare

FyIS = sp) with FyIS =sp), (2.18)

and determine our decision about S on the basis of which likelihood function is largest. (This is the
maximum likelihood decision rule.) Canceling common factors in the comparison, this is equivalent
to comparing

(y-s) R y—s)  with (y—s) R'(y—s) (2.19)
and choosing either s; or s;, depending upon which quantity is smaller. These quantities can be

observed to be weighted distances of the form (2.17). Let W = R™!, and define the weighted inner
product in R" by

X, ¥y =x Wy.
This induces a weighted norm
x| = x" Wx.
The comparison in (2.19) corresponds to computing
‘ fly — sollw and Iy —sillw,
with the maximum likelihood choice being that which has the minimum weight distance. This weighed
distance measure arises commonly in pattern recognition problems and is known as the Mahalonobis
distance.
Further simplifications are often possible in this comparison.
ly = sollw = y" Wy — y" Wso — s Wy + 5§ Wso

=y Wy — 2y Wsy +sf Wsg,
and similarly for |y — s, |w. If s, and s; have the same inner product norm so s} Wso = s/ Ws,, then,
when comparing }|y — sq || w with ||y —s; || . these terms cancel, as well as the y7 Wy term. The choice
is made depending on whether

yT Wsq or yT Ws,

is larger, that is, depending on which weighted inner product is largest. The inner product is thus seen
to be a similarity measure: the signal s is chosen that is most similar to the received signal vector,
where the similarity is determined by the weighted inner product. &

2.8.1 Expectation as an inner product

The examples of weighted inner products up until now have been of deterministic functions.
An important generalization develops when a joint density is used as a weighting function
in the inner product. Let X and ¥ be random variables with joint density fy y(x, y). We
define an inner product between them as

(X, Y) = /xyfx.y(x,y)dx dy.

This inner product is, of course, an expectation, and introduction of this inner product allows
the conceptual power of vector spaces to be applied to mean-square estimation theory. Thus

(X,Y) = E[XY]
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(E is the expectation operator). Orthogonality is defined for random variables as it is for
deterministic quantities; the random variables X and Y are orthogonal if E{XY] = 0. The
inner product induces a norm,

(X, X) = EX*.

If X is a zero-mean r.v., then (X, X} = var(X) is an induced norm.’

We can also define an inner product between random vectors. Let X = [X;, X5, ...,
X, )" and Y = [¥1, Yo, ..., ¥,,)7 be n-dimensional random vectors. Then we can define an
inner product between these vectors as

X.Y)=E> XY,
i=1
Note that we can write this inner product as
Y. Y) = E[Y?Y].
Another notation that is sometimes convenient is to write
(Y, Y) = tw(E[YY?)),

where the tr(X) is the trace operator, the sum of the elements on the diagonal of the square
matrix X. (See section C.3.)

When the vector-space viewpoint is applied to problems of minimization, as discussed
subsequently, there are two major approaches to the problem. In the first case, an inner
product is used that is not based on an expectation; minimization of this sort is referred to as
least-squares (LS) in the signal processing literature. When an inner product is used that is
defined as an expectation, then the approximation obtained is referred to as a minimum mean-
squares (MMS) approximation. In fact, both approximation techniques rely on precisely
the same theory, but simply employ inner products suited to the needs of the particular
problem.

2.9 Hilbert and Banach spaces

With the definitions of metric spaces and inner-product spaces behind us, we are now ready
to introduce the spaces in which most of the work in signal processing is performed.

Definition 2.31 A complete normed vector space is called a Banach space. A complete
normed vector space with an inner product (in which the norm is the induced norm) is called
a Hilbert space. O

See box 2.3 for an introduction to the man Hilbert.
Some examples of Banach and Hilbert spaces:

1. The space of continuous functions (Cla. b}, d~.) forms a Banach space. (Recall that
in example 2.1.17 (C[—1, 1], d) was shown to be complete.)

2. However, the space of functions Cla. b] with the L, norm, p < oc, does not form
a Banach space, since it is not complete. (We saw in example 2.1.16 a sequence of
continuous functions that does not have a imit in C[—1, 1].)

*As with other function spaces. there are some technical problems associated with vector spaces over
probability spaces, since there may be random variables X and ¥ such that | X — Y| = O but X # ¥ always.
However, it can be shown thatif | X — V|| = O.then X = } a.s. {almost surely, that is. except on a set of probability
measure 0.)
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Box 2.3: David Hilbert (1862-1943)

David Hilbert has been called the “greatest mathematician of recent times.”
Born and educated at Konigsberg, he received a professorship in Géttingen
in 1895,

Throughout his life he worked in a variety of areas, including algebraic in-
variants, algebraic numbers, calculus of variations, spectral theory and Hilbert
space, and axiomatics. He is well known for proposing, in 1900, 23 signif-
icant mathematical problems. Work on these problems since that time has
tremendously enriched mathematics.

He spent considerable effort working on the foundations of mathematics,
attempting to prove that mathematics provides an internally consistent system,
so that it is not possible, for example, to prove that “F and not-F” is true.
His efforts were doomed, however; Kurt Godel demonstrated, in 1931, that
it is impossible for any sufficiently rich formal deductive system to prove
consistency of the system by the system itself. There are, Godel showed,
formally undecidable propositions, which cannot be proven to be either true
or false, and the consistency of the system is one of these propositions.

3. The sequence space [,(0, co) is a Banach space. When p = 2, it is a Hilbert space.

4. The space L,[a, b] is a Banach space. When p = 2 it is a Hilbert space. The Hilbert
space of functions with domain over the whole real line is denoted L ,(R).

Because of the utility of having the norm induced from an inner product, the emphasis in
this and succeeding chapters is on Hilbert spaces.

It can be shown that if a normed vector space is finite-dimensional, then it is complete
[238, p. 267]. Hence, every normed finite-dimensional space is a Banach space; if the
norm is induced from an inner product then it is also a Hilbert space. Furthermore, every
finite-dimensional subspace of a space is complete.

2.10 Orthogonal subspaces

Definition 2.32 Let § be a vector space, and let V and W be subspaces of §. V and W are
orthogonal if every vector v € V is orthogonal to every vectorw € W: (v, w) = 0. 0

Definition 2.33 For a subset V of an inner product space S, the space of all vectors ortho-
gonal to V is called the orthogonal complement of V. This is denoted as V' *. O

Example 2.10.1 Let V be the plane shown in figure 2.12. Then the orthogonal space W = V1 is
spanned by the vector w. ]

The orthogonal complement of a subspace is itself a subspace (see exercise 2.10-52).
The orthogonal complement has the following properties:

Theorem 2.5 Ler V and W be subsets of an inner product space S (not necessarily com-
plete). Then:

1. V%tisa closed subspace of S.
2. Vv

3. IfVCW, then Wt C vV
4. vyt =vi
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Figure 2.12: A space and its orthogonal complement

5. Ifxe VNVt thenx =0.
6. {0}t = S and S+ = {0}.

Proof We will prove part 1. The rest of the properties are to be proved as an exercise (see
exercise 2.10-53). To show closure of V+, let {x,} be a convergent sequence in V*, so that
%, — X. Then by the continuity of the inner product shown in lemma 2.1, we have, for any
veV,

0= (x,,Vv)— {x,v),
sothatx € V+. O

What is perhaps a little surprising at first about this theorem is the fact that it may nor
be the case that V+1+ = V. What is lacking is the completeness: V+* may have Cauchy
sequences in it that V does not.

2.11 Linear transformations: range and nullspace
We pause in our development of vector spaces to reintroduce a concept that should be
familiar.

Definition 2.34 A transformation L: X — Y from a vector space X to a vector space ¥
(where X and Y have the same scalar field R) is a linear transformation if for all vectors
X, xy,x3 € Xt

1. L(ax) = aL(x) forall x € X and all scalars @ € R, and

2. L{xy +x2) = L(x;) + L(x2). O

We will think of linear transformations as operators.

Example 2.11.1 We will begin with several examples from vector spaces of functions.

1. Let X be the set of continuous real-valued functions, and define L: X — X by

Lx{1) =/ hit)x(t — t)dr

0
for all x(1) € X. Then L is a linear transformation which convolves the signal x with the
signal h.

2. Let X be the set of continuous real-valued functions defined on [0, 1]. Then L: X — R defined
by

o
Lx(1) = / hit)x(t)dt
0

1s a linear transformation (an inner product).
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3. Let X be the set of continuous real-valued functions, and let T7,: X — X be defined by
ey < KO < T
T 0 otherwise,
where Ty is a parameter of the transformation. Then Ty, is a linear transformation. This trans-
formation truncates a signal in time.

4. Let X be the set of all Fourier transformable functions, and let ¥ be the set of Fourier transforms
of elements in X. Define F: X — Y by

Fx(t) = / x(tye /™ dr.

OQ
The operator F is a linear operator.

Let B: X — X be defined by

W

Bp,x(t) = F ' Tg X (w),

where X (w) is the Fourier transform of x(¢), F ! is the inverse Fourier transform operator,
and Ty, X (w) truncates the Fourier transform. Thus By, x(¢) is a bandlimited signal. o

Example 2.11.2 Perhaps more commonly, we see linear transformations between vector spaces of
finite dimension. In general a linear transformation L from the vector space R" to R™ can be expressed
using the notation of an m x n matrix L. That is, the matrix becomes the linear transformation.

1. Let L: R* — R? be defined by
L(Xl,XZ,Xj,) = (x; + 2x2, 3x7 + 4x3).

This linear transformation can be placed in matrix notation. By writing an element in R? in
vector form as [x;, x2, x3]7 € R?, we can write
120
L= .
0 3 4
Then,

(X +2x
Lx = .
_3x2 -+ 4X3

2. Let L: R® — R? be defined by the matrix

M 0 1
L=10 1 0}.
1 0 0
Then L is the linear transformation that reverses the coordinates of a vector x € R>. O

Considerably more is said about linear transformations between finite-dimensional vectors
spaces in chapter 4.

Associated with any operator (linear or otherwise) are two important spaces. These
spaces are the range and the nullspace. (Two more spaces associated with linear operators
are presented in section 4.5.)

Definition 2.35 Let L: X — Y be an operator (linear or otherwise). The range space
R(L)is

R(L) ={y=Lx:x e X};
that s, it is the set of values in ¥ that are reached from X by application of L. The nulispace
N(L) is

NL)={xe X :Lx=0};
that is, it is the set of values in x that are transformed to @ in Y by L. The nullspace of an
operator is also called the kernel of the operator. O
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Let A be an n x m matrix,
A=[p1.p2 ... Pml.
which we regard as a linear operator. Then a point x € R™ is transformed as
AX = x1p| + x2p2 + - + X Py
which is a linear combination of the columns of A. Thus, the range may be expressed as

R(A) = span({p1. P2. - .- - Pm})-

The range of a matrix is also referred to as the column space of A. The nullspace is that set
of vectors such that Ax = 0.
Example 2.11.3 Let

1 00

A= 10 0 0f.

1 0 1

Then the range of A is
span([1, 0, 1]7. 10,0, 137).

The nulispace of A is

N(A) = span([0, 1.0]7). .

Example 2.11.4

1. Let Lx(1) = fo, x{1)h(t — 1) dr. Then the nullspace of L is the set of all functions x(z) that
result in zero when convolved with 4(r). From systems theory, we realize that we can transform
the convolution operation and multiply in the frequency domain. From this perspective, we
perceive that the nullspace of L is the set of functions whose Fourier transforms do not share
any support with the support of the Fourier transform of A.

2. LetLx(t) = fO' x(1)Yh(r) dt, where X is the set of continuous functions. Then R(L) is the set
of real numbers, unless h(r) = 0.

3. The range of the operator

b

is the set of all vectors of the form [c, 0])7. The nullspace of this operator is span([0. 1]}. [

2.12 Inner-sum and direct-sum spaces

Definition 2.36 If V and W are linear subspaces, the space V + W is the (inner) sum
space, consisting of all points x = v+ w, whereve Vandwe W. O

Example 2.12.1 Consider S = (GF(2))?, that is, the set of all 3-tuples of elements of GF(2) (see
box 1.5). Then, for example,
x= (1,0, e § and y=(0.0,1)e S,

andx+y = (1.0, 0).
Let W = span{(0. 1, 0)] and V = span{[(1, 0. 0)] be two subspaces in S. Then

W = {(0,0.0). (0. 1.}
and
Vo= {(0,0.0). (1.0,0)}.

These two subspaces are orthogonal.
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The orthogonal compiement to V is
V&= {(0,0,0), (0, 1,0), (0,0, ). (0, 1, D)}.

Thus, W C V+.
The inner sum space of V and W is

V4 W=1{000),0.10)(,00), (1, 1,0}
O

Definition 2.37 Two linear subspaces V and W of the same dimensionality are disjoint
if V.1 W = {0}]. That is, the only vector they have in common is the zero vector. (This
definition is slightly different from disjoint sets, since they must have the zero vector in
comimon.) O

Example 2.12.2 In figure 2.13, the plane S is a vector space in two dimensions, and V and W are two
one-dimensional subspaces, indicated by the lines in the figure. The only point they have in common
is the origin, so they are disjoint. (Note that they are not necessarily orthogonal.) t

Figure 2.13: Disjoint lines in R?

When S = V + W and V and W are disjoint, W is said to be the algebraic complement
of V. The last example illustrates an algebraic complement: the inner sum of the two lines
gives the entire vector space S. On the other hand, the sets V and W in example 2.12.1 are
not algebraic complements, since V -+ W is not the same as S. An algebraic complement
to the set V of that example would be the set

Z =span({(0, 1, 0), (0,0, )} = {(0,0,0), (0, 1,0), (0,0, 1), (G, 1, D}.

It is straightforward to show that in any vector space § every linear subspace has an
algebraic complement. Let B be a (Hamel) basis for S, and let B; C B be a (Hamel) basis
for V. Then let B, = B — By (the set difference), so that B; N B, = @. Then

W = span(B;)

is a (Hamel) basis for the algebraic complement of V.
The direct sum of disjoint spaces can be used to provide a unique representation of a
vector.

Lemma 2.3 ([238]) Let V and W be subspaces of a vector space S. Then for each x €
V 4+ W, there is a unique v € V and a unique w € W such thar x = v +w ifand only if V
and W are disjoint.

Another way of combining vector spaces is by the direct sum.
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Box 2.4: Isomorphism

What’s in a name? that which we call a rose,
By any other name would smell as sweet.
— William Shakespeare

Isomorphism denotes the fact that two objects may have the same operational
behavior, even if they have different names.

As an example, consider the following two operations for two groups
called (G, +) and (Ga, *).

+ | 00 ©On 10 (1D * | abcd
©0) | ©0 O 1oy (LI a | a bcd
0,1) i ©1) (00 (1,1) (1.0) b | boadc
1L0) | (1,0 (LD 00 ©1) c | cdab
(1,1) ‘ (L, (1,00 ©1) (0.0 d | d c b a

Careful comparison of these addition tables reveals that the same operation
occurs in both tables, but the names of the elements and the operator have
been changed.

More generally, we describe an isomorphism as follows. Let G, and G»
be two algebraic objects (e.g., groups, fields, vector spaces, etc.). Let x be a
binary operation on G and let o be the corresponding operation on Ga. Let
¢: Gy — G be a one-to-one and onto function. For any x, y € Gy, let

s=¢x) and  1=¢(),
where s € G, and r € G,. Then ¢ is an isomorphism if
Px*xy)=¢x)od(y).

Note that the operation on the left takes place in G while the operation on
the right takes place in G.

Definition 2.38 The direct sum of linear spaces V and W, denoted V @ W, is defined on
the Cartesian product V x W, so a pointin V @ W is an ordered pair (v, w) withv € V and
w € W. Addition is defined component-wise: (vy, wy) + (vz, un) = (v; + vy, wy + wa).
Scalar multiplication is defined as « (v, w) = (av, qw). O

The sum V + W and the direct sum V & W are different linear spaces. However, if V
and W are disjoint, then V -+ W and V & W have exactly the same structure mathematically.
they are simply different representations of the same thing. When different mathematical
objects behave the same, only varying in the name, the objects are said to be isomorphic
(see box 2.4).

Example 2.12.3 Using the vector space of example 2.12.1, we find
Ve Ww=1{000000.0,00000)),0,0001020),(,000 10}
Under the mapping ¢{(v. w)] = v + w, we find
(V& W)=1{0.0,0),(1.0,0,0.1.0), (1. 1.0},

which is the same as found in V + W in the previous example. Vector space operations (addition.
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multiplication by a scalar, etc.) on V @ W have exactly analogous results on ¢(V @ W), so Vo W
and V + W are isomorphic. 0

The direct sum V & W is commonly employed between orthogonal vector spaces in the
“isomorphic” form, that is, as the sum of the elements. This is justified because orthogonal
spaces are disjoint (see exercise 2.12-60).

The following theorem indicates when V + W and V & W are isomorphic:

Theorem 2.6 [238, page 199] Let V and W be linear subspaces of a linear space S. Then
V + Wand V & W are isomorphic if and only if V and W are disjoint.

Because of this theorem, it is common to write V + W in place of V & W, and vice
versa. Care should be taken, however, to understand what space is actually intended.

2.13 Projections and orthogonal projections

As pointed out in lemma 2.3, if V and W are disjoint subspaces of a linear space § and
§ =V + W, then any vector x € S can be uniquely written as

X=V+w,

where v € V and w € W. This representation is illustrated in figure 2.14.
Let us introduce projection operator P: § — V with the following operation: for any
x € S with the decomposition

X=v+w,
let
Px=v.

That is, the projection operator returns that component of x which liesin V. If x € V to
begin with, then operation by P does not change the value of x. Thus since Px € V, we
see that P(Px) = Px. This motivates the following definition.

Figure 2.14: Decomposition of x into disjoint components

Definition 2.39 A linear transformation P of a linear space into itself is a projection if
P*=P. .

An operator P such that P? = P is said to be idempotent.

If V is a linear subspace and P is an operator that projects onto V, the projection of a
vector x onto V is sometimes denoted as Xy v

The range and nullspace of a projection operator provide a disjoint decomposition of
a vector space, as theorem 2.7 will show.
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Example 2.13.1 Let x(r) be a signal with Fourier transform X (w). Then the transformation P,,
wy > 0 defined by

X(w) for —wg < w < wy,

0 otherwise,

Pl X {(w)] = {

which corresponds to filtering the signal with a “brick-wall” lowpass filter, is a projection
operation. 0

Example 2.13.2 Let Py, T > 0 be the transformation on the function x (¢) defined by

_Jx@ for—-T <1 2T,
(Prx)(r) = {() otherwise.

This is a time-truncation operation and is a projection. 0

Example 2.13.3 A matrix A is said to be a smoothing matrix if there is a space of “smooth” vectors
V such that, fora vectorx € V,

AX = X;
that is, a smooth vector unaffected by a smoothing operation. Also, the limit

A% = lim A”?
p>o0

exists. As an arbitrary vector that is not already smooth is repeatedly smoothed, it becomes increasingly
smooth. By the requirement that Ax = x for x € V, it is clear that the set of smooth vectors is in fact

r—

R(A), and A is a projection matrix. (Smoothing matrices are discussed further in {120, 121].) {7

Theorem 2.7 Let P be a projection operator defined on a linear space S. Then the range
and nullspace of P are disjoint linear subspaces of S, and § = R(P) + N (P). That is,
R(P) and N(P) are algebraic complements.

Let P be a projection onto a closed subspace V of S. Then / — P is also a projection
(see exercise 2.13-72). Then we can write

x= Px+ (I - P)x.
This decomposes X into the two parts,
PxeV
and
(I—P)xeW.

As figure 2.14 suggests, the subspaces V and W involved in the projection are not
necessarily orthogonal. However, in most applications, orthogonal subspaces are needed.
This leads to the following definition.

Definition 2.40 Let P be a projection operator on an inner product space S. P is said to be
an orthogonal projection if its range and nullspace are orthogonal, R(P) L N(P). O

The need for an orthogonal projection matrix is provided by the following problem:
Given a point X in a vector space S and a subspace V C §, what is the nearest point in V
to x7 Consider the various representations of x shown in figure 2.15. As suggested by the
figure, decomposition of x as

X = Vg + Wy

provides the point vy € V thatis closest to x. The vector wy is orthogonal to V, with respect
to the inner product appropriate to the problem. Of the various w vectors that might be
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Figure 2.16: Orthogonal projection onto the space spanned by several vectors

used in the representation (the vectors wy, Wy, or w, in the figure), the vector wy is the
vector of the shortest length, as determined by the norm induced by the inner product. Proof
of this geometrically appealing and intuitive notion is presented in the next section as the
projection theorem. It is difficult to overstate the importance of the notion of projection.
Projection is the key concept of most stochastic filtering and prediction theory in signal
processing. Chapter 3 is entirely concerned with applications of this important concept.

Another viewpoint of the projection theorem is represented in figure 2.16. Suppose that
V is the span of the basis vectors {p, p2}, as shown. Then the nearest point to x in V is
the point vy, and the vector wy is the difference. If wy is orthogonal to vy, then it must be
orthogonal to p, and p;.

If we regard v, as an approximation to X that must lie in the span of p, and pa, then

Wy = X~ Vp

is the approximation error. Consider the vectors p; and p; as the data from which the
approximation is to be formed. Then the length of the approximation error vector wy is
minimized when the error is orthogonal to the data.

2.13.1 Projection matrices

Let us restrict our attention for the moment to finite-dimensional vector spaces. Let A be
an m x n matrix written as

A=[p,, P2 ... Pl
and let the subspace V be the column space of A,

V = span(p;. p2. . ... Pn) = R(A).
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Assume that we are using the usual inner product, (x, y) = y”x. Then, as we see in the next
chapter, the projection matrix P4 that projects orthogonally onto the column space of A is

Py = A(A" A 1AM, (2.20)
We can characterize projection matrices as follows.

Theorem 2.8 Any (Hermitian) symmetric matrix with P* = P is an orthogonal projection
matrix.

Proof The operation Px is a linear combination of the columns of P. To show that P is
an orthogonal projection we must show that x — Px is orthogonal to the column space of
P. For any vector Pc in the column space of P,

(x = Px)" Pe=x"(P—-PHe=0,
$0 x — Px is orthogonal to the column space of P. o
It will occasionally be useful to do the projection using a weighted inner product. Let
the inner product be
(x.y)w =y" Wx, 2.21)
where W is a positive definite Hermitian symmetric matrix. The induced norm is
Iy = (x. %)y = x"Wx.

Let A be an m x n matrix, as before. Then the projection matrix which projects orthogonally
onto the column space of A, where the orthogonality is established using the inner product
(2.21), is the matrix

Piw = AATWA) AT W, (2.22)

2.14 The projection theorem

Important attributes of many fully evolved major theorems:

1. Itis trivial.
2. It is trivial because the terms appearing in it have been properly defined.
3. It has significant consequences.

— Michael Spivak
Caleculus on Manifolds

The main purpose of this section is to prove the geometrically intuitive notion introduced in
the previous section: the point vy € V thatis closest to a point x is the orthogonal projection
of x onto V.

Theorem 2.9 (The projection theorem) ([209]) Let S be a Hilbert space and let V be a
closed subspace of S. For any vector x € S, there exists a unique vector vy € V closest to
x; that is, |x — vgll < |Ix — v|| for all v € V. Furthermore, the point vy is the minimizer of
[ix — voll if and only if X — vy is orthogonal 1o V.

The idea behind the theorem is shown in figure 2.17.
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Figure 2.17: The projection theorem

Proof There are several aspects of this theorem.

1. The first (and most technical) aspect is the existence of the minimizing point vy.
Assume x € V, and let § = infycv||x — v{|. We need to show that thereisavy € V
with ||x — vg|| = &. Let {v;} be a sequence of vectors in V such that ||x — v; [} — §.
We will show that {v;} is a Cauchy sequence, hence has a limit in S. By (2.27),

v = %) + = V) I + (v = %) = (= v)|I* = 2]Iv; = x[I* + 2[Ix = v .
The latter can be rearranged as
vy = vill® = 2llv; = xII* + 2lIx = vill* = 4lIx = (vi +v,)/2[I".
Since § is a vector space, (v; +v;)/2 € S. Also, by the definition of §,
Ix — (vi +v;)/2] = 8,
so that
Vi = 11> < 20v; = xI* + 2]lx = vi |* — 48%.
Then, since {v;} is defined so that ||v; — x||> — &%, we conclude that
lvi = v;I* =0,

so {v;} is a Cauchy sequence. Since V is a Hilbert space (a subspace of S), the limit
exists,and vy € V.

2. Let us now show that if vy minimizes |[x — vglf, then (x — vg) L V. Let vy be the
nearest vector to X in V. Let v be a unit-norm vector in V such that (contrary to the
statement of the theorem)

(X —vp, V) =8 #0.
Letz = vy + év € V for some number §. Then
Ix =z = fIx = voll* = 2Re (x — vo, §v) + |
= Ix = voll* = 18] < Ix ~ vol*.
This is a contradiction, hence § = 0.
3. Conversely, suppose that (x — vg) L V. Then for any v € V with v 5 v,
Ix = v|* = Ix = vo +vo — v|®
=[x = voll* + lIlvo — vI*, (2.23)
> [Ix = voll%, (2.24)

where orthogonality is used to obtain (2.23).
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4. Uniqueness of the nearest point in V to x may be shown as follows. Suppose that
X =V 4+ W, =Vy+wy, wherew; =x—v; L Vandw; =x — v, L V for some
vi,v2 € V.Then 0 = v| — v, + w; — W3, Or

Vy — V) = W — W3,

But, since v, — v; € V, it follows that w; — wy € V, so w; = w», hence v; = va.
0

Based on the projection theorem, every vector in a Hilbert space § can be expressed
uniquely as that part which lies in a subspace V, and that part which is orthogonal to V.

Theorem 2.10 ([209]) Let V be a closed linear subspace of a Hilbert space S. Then
S=vVvaevt

and
vV =yt

{The isomorphic interpretation of the direct sum is implied in this notation.)

Proof Let x € S. Then by the projection theorem, there is a unique vy € V such that
Ix — voll < [Ix —v| forallve V,and wy = x — vg € VL. We can thus decompose any
vector in § into

X=vo+wy with vyeV, woyeV™

To show that V = V44, we need to show only that VL < V, since we already know by
theorem 2.10 that V ¢ V4. Let x € V44, We will show that it is also true that x € V. By
the first part we can write X = v + w, where v € V and w € V. But, since V C V*++ we
have v € V++, so that

w=x—ve V.

Sincewe Viandwe VA wemusthavew L w,orw=0Thusx=ve V. 0

This theorem applies to Hilbert spaces, where both completeness and an inner product
(defining orthogonality) are available.

2.15 Orthogonalization of vectors

In many applications, computations involving basis vectors are easier if the vectors are
orthogonal. Since vector space computations are more conveniently done with orthonormal
vectors, it is useful to be able to take a set of vectors T and produce an orthogonal set
of vectors 7' with the same span as T'. This is what the Gram~Schmidt orthogonalization
procedure does. Gram-Schmidt can also be used to determine the dimension of the space
spanned by a set of vectors, since a vector linearly dependent on other vectors examined
prior in the procedure yields a zero vector.

Given a set of vectors T = {p;, pa2.....Pn}, we want to find a set of vectors T’ =
{4, q2. - .., qn} With n’ < n so that

span{q;, qa. ..., Qn} = Span{pi. p2, .. .. Pn}
and
(9;.4q;) =6 ;.

Assume that none of the p, vectors are zero vectors.
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The process will be developed stepwise. The norm ||-]| in this section is the induced
norm.
I. Normalize the first vector:
B
pill
2. Compute the difference between the projection of p; onto q; and p;. By the orthog-
onality theorem, this is orthogonal to p;:
(P2, q1)
lq: 12
If e, = O, then q» € span(q;) and can be discarded; we will assume that such discards
are done as necessary in what follows. If e; # 0, then normalize
€
ezl

qi

€ = p; — q) = p2 — {P2. 91)q1-

42 =
These steps are shown in figure 2.18.

P2
€2
q2

o P}
o ]

q1

Figure 2.18: The first steps of the Gram-Schmidt process
3. At the next stage, a vector orthogonal to q; and g, obtained from the error between
p; and its projection onto span(q;, q»):

e; =p3 — (P3s, 4G — (P3. @2)92.

This is normalized to produce qs:
€3

Q3=m.

See figure 2.19

q3

i y= <

e

Figure 2.19: Third step of the Gram-Schmidt process

4. Now proceed inductively: To form the next orthogonal vector using py, determine the
component orthogonal to all previously found vectors.
k-1
e =pc— ) Pk GG (2.25)
i=1
and normalize e
Qo= (226)
flecll
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Example 2.15.1 The set of functions {1, 1,1, ..., "} defined over [—1, 1] forms a linearly inde-

pendent set. Let the inner product be
!

(fig)= [ fgh)de
-1
By the Gram~Schmidt procedure, we find the nonnormalized functions
Yo(r) =1

yi(t) =t
@) =1 —1/3
y3() = 17 —31/5

The functions so obtained are known as the Legendre polynomials.
If we change the inner product to include a weighting function,

1
1
(fs >=/ ——=f(t)g(t) ds,
fe g mf g
then the orthogonal polynomials obtained by applying the Gram—Schmidt process to the polynomials
{1,1,...,1") are the Chebyshev polynomials, described in example 2.8.3. ]

A matrix-based implementation

For finite-dimensional vectors, the Gram-Schmidt process can be represented in a matrix

form. Let A = [py, p2, ..., pn]. The orthogonal vectors obtained by the Gram-Schmidt
process are stacked in a matrix Q = [q;, 2. . - .. G, ], to be determined. We let the upper
triangular matrix R hold the inner products and norms from (2.25) and (2.26):
el p2oq) @3 - Pe @)
leat  (pa. @) - (Pn.Q2)
R = “e3H (pna ‘I3>
el

The inner products in the summation Zf;l‘ {Pr. q;)q, are represented by R(1:k — 1, k) =
QC, Itk — DHAG. k), and the sum is then QC, 1k — DR(1:k — 1. k). Algorithm 2.1
illustrates a MATLAB implementation of this Gram-Schmidt process.

Algorithm 2.1 Gram-Schmidt algorithm (QR factorization)
File: gramschmidtl.m

With the observation from (2.25) that
k-1
Pr = Quluk + Zrik(bu
i=1
we note that we can write A in a factored form as A = QR, and that Q satisfies 07 Q = 1.
The matrix Q provides an orthogonal basis to the column space of A.

For finite-dimensional vectors, the computations of the Gram-Schmidt process may be
numerically unstable for poorly conditioned matrices. Exercise 2.15-80 discusses a modified
Gram-Schmidt, while other more numerically stable methods of orthogonalization are
explored in chapter 5.



2.16 Some Final Technicalities for Infinite-Dimensional Spaces 121

2.16 Some final technicalities for infinite-dimensional spaces

The concept of basis that was introduced in section 2.2.3 was based upon the stipulation
that linear combinations are finire sums. With the additional coneepts of orthogonality and
normality, we can introduce a slightly modified notion of a basis. Aset T = {p;, pa2, ...}
is said to be orthonormal if {(x;, x;) = §;_.;. For an orthonormal set T, it can be shown that

the infinite sum
o

D_cip
i=1
converges if and only if the series Y "_, lc; I* converges.
An orthonormal set of basis functions {p;, p2, ...} is said to be a complete set for a
Hilbert space S if every x € § can be represented as

]
X = E CiPi
==

for some set of coefficients ¢;. Several sets of complete basis functions are presented in
chapter 3, after a means has been presented for finding the coefficients {c;}. A complete
set of functions will be called a basis (more strictly, an orthonormal basis). The basis and
the Hamel basis are not identical for infinite-dimensional spaces. In practice, it is the basis,
not the Hamel basis, which is of most use. It can be shown that any orthonormal basis is a
subset of a Hamel basis.

In finite dimensions, none of these issues have any bearing. An orthonormal Hamel
basis is an orthonormal basis. Only the notion of “basis” needs to be retained for finite-
dimensional spaces. In the future, we will drop the adjective “Hamel” and refer only to a
“basis” for a finite-dimensional vector space.

2.17 Exercises

2.1-1 We will examine the [, metric to get a sense as to why it selects the maximum value. Given
the vector x = {1, 2, 3,4, 5, 6]7, compute the [, metric d,(x, 0) for p = 1, 2, 4, 10, 100, co.
Comment on why d,(x, 0) — max(x;) as p — oo.

2.1-2 Let X be an arbitrary set. Show that the function defined by
0 x=y
dlx,y) = {1 x#0
is a metric.

2.1-3 Verify that the Hamming distance dy (X, y), introduced in example 2.1.4, is a metric.

2.1-4 Proof of the triangle inequality:

(a) Forx,y e R, prove the triangle inequality in the form
¥+ yI < lxl+1yl.
What is the condition for equality?
(by Forx,y e R", prove the triangle inequality

x+yil < UIxll + 1yl

where || - || is the usual Euclidean norm. Hint: Use the fact that Z;I Xy < lxliiyll. (e,
the Cauchy-Schwarz inequality).
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2.1-5 Let (X, d) be a metric space. Show that
dix. y)
dy(x,y) = ——2
1 +d(x, y)
is a metric on X. What significant feature does this metric possess?
2.1-6 Let (X, d) be a metric space. Show that
dp(x, ) = min(l, d(x, y))
is a metric on X. What significant feature does this metric possess?
2.1-7 In defining the metric of the sequence space [(0, oo} in (2.2), “sup” was used instead of
“max.” To see the necessity of this definition, define the sequences x and y by
1 n
x!’-’ = y"’l -
n+1 ’ nA+1
Show that do. (x, y) > |x, — y,| foralln > 1.

2.1-8 For the metric space (R". d,), show that d,(x, y) is decreasing with p. That is, d,(X, y) >
d,(x,y) if p < ¢g. Hint: Take the derivative with respect to p, and show that it is < 0. Use
the log sum inequality [56], which states that for non-negative sequences a,, ay, .. ..a, and
b, by, ... by,

n a; n Z a{
Za,v log (—-) > <Z ) log
i=1 bi Z
Use b; = [ and ¢; = |x; — ¥;{7. Also use the fact that for nonnegative sequence {¢;} such that
S a; = 1. the maximum valde of
Z a;loga;
fux}
is 0.
2.1-9 If requirement M3 in the definition of a metric is relaxed to the requirement
dx,y) =0, ifx =y,
allowing the possibility that d(x, y) = 0 even when x # y, then a pseudomerric is obtained.
Let f: X — R be an arbitrary function defined on a set X. Show thatd(x, y) = | f(x) — f(y)|
is a pseudometric.
2.1-10 Show that if A and B are open sets:
(a) AU B isopen.
(b) AN Bisopen.
2.1-11 Devise an example to show that the union of an infinite number of closed sets need not be
closed.
2.1-12 Let
B = {all points p € R? with 0 < |p| < 2} U {the point (0, 4)}.
(a) Draw the set B.
(b) Determine the boundary of B.
(c) Determine the interior of B.
2.1-13 Explain why the set of real numbers is both open and closed.
2.1-14 Determine inf and sup for the following sets of real numbers:

A=1(0.4) B = (0. 00) C = (-, 5].



Exercises 123

Show that the boundary of a set S is a closed set.

Show that the boundary of a set S is the intersection of the closure of § and the closure of the
complement of S.

Show that § < R" is closed if and only if every cluster point of § belongs to S.

217
2.1-15
2.1-16
2.1-17
2.1-18
2.1-19
2.1-20
2.1-21
2.1-22
2.1-23
2.1-24
2.1-25
2.1-26

Find limsup, _, . a, and liminf, . a, for

(a) a, = cos (%”n)

(b) a, = cos(~/2n).

¢y a, =2+ (=13 -2/n).

(dy a, = n*(—~D"

Iflimsup,_, . a, = A and imsup,_, ., b, = B, then is it necessarily true that

limsup(a, + b,) = A + B?

Show that if {x,} is a sequence such that
d{xpsy, x5) < Cr"
for 0 < r < 1, then {x,} is a Cauchy sequence.
Letp, = (Xn, Vu, 20) € R?*. Show that if {p,} is a Cauchy sequence using the metric
d(p;, p) =/ (x; — x0)* + (v; =y + (g — )

then so are the sequences {x,}, {y.} and {z,} using the metric d(x;, x¢) = |x; — xk|.

Show that if a sequence {x,} is convergent, then it is a Cauchy sequence.

Show that the sequence x, = fln Cf—?' dt is convergent using the metric d(x, y) = |x — y|. Hint:
show that x, is a Cauchy sequence. Use the fact that

jcos ¢} 1
/ 3 dtf/?idt.

(Note: this is an example of knowing that a sequence converges, without knowing what it
converges t0.)

The fact that a sequence is Cauchy depends upon the metric employed. Let f, () be the sequence
of functions defined in (2.6) in the metric space (Cla, b], d), where

doo( f\ 8) = sup | f(1) — g(D)I.

Show that

1 n
doo(fmfm)=‘i"i‘; m>n.

Hence, conclude that in this metric space, f, is not a Cauchy sequence.

In this problem we will show that the set of continuous functions is complete with respect to the
uniform (sup) norm. Let { £, (1)} be a Cauchy sequence of continuous functions. Let f(¢) be the
pointwise limit of { f,(r)}. For any € > 0 let N be chosen so that max | f,(t) — f(t)] < €/3.
Since fi(¢) is continuous, there is a D > 0 such that | fi(t + 8) — fi(t)| < €/3 whenever
§ < D. From this, conclude that

[ft+8)~fOl <&,

and hence that f(r) is continuous.

Find the essential supremum of the function x(¢) defined by

, L0,
x(t):{;m(m) ;i[@,l'” r#
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2.2-27

2.2-28

2.2-29

2.2-30

2.2-31

2.2-32

An equivalent definition for linear independence follows: A set T is linearly independent if, for
each vector x € T, x is not a linear combination of the points in the set T — {x}; that is, the set
T with the vector x removed. Show that this definition is equivalent to that of definition 2.17.

Let S be a finite-dimensional vector space with dim(S) = m. Show that every set containing
m + 1 points is linearly dependent. Hint: use induction.

Show that if T is a subset of a vector space S with span(T) = S, then T contains a Hamel basis
of S.
Let § denote the set of all solutions of the following differential equation defined on C3[0, co)
(see definition A.8.);
d*x n bdzx n dx
il L g el
dr? dr? dr
Show that § is a linear subspace of C*[0, oc)..

+dx = 0.

Let S be L,[0, 2], and let T be the set of all functions x,,(r) = e/ forn = 0, 1,.... Show
that T is linearly independent. Conclude that L;[0, 2] is an infinite-dimensional space. Hint:
assume that ¢;e/™ 4 cye™ + .- .4 ¢ e = Oforn; 3 n; wheni # j. Differentiate (m — 1)

times, and use the properties of Vandermonde matrices (section 8.4).

Show that the set 1, 1,12, ..., 1™ is a linearly independent set. (Hint: the fundamental theorem
of algebra states that a polynomial f(x) of degree m has exactly m roots, counting multiplicity.)

2.3-33

2.3-34
2.3-35
2.3-36

2.3-37

Show that in a normed linear space,

Hlxlb =iyl < dlx = v

Show that a norm is a convex function. (See section A.3.)
Show that every Cauchy sequence {x,} in a normed linear space is bounded.

Let X be the vector space of finitely nonzero sequences X = {x], x3, X3,...,%,.0,0,...}.

Define the norm on X as ||x|| = max |x;|. Let x,, be a point in X (a sequence) defined by

1 |
=d1 2 2 200, %
X { 23 n }

(a) Show that the sequence x, is a Cauchy sequence.

(by Show that X is not complete.

Let p be in the range O < p < 1, and consider the space L ,[0, 1] of all functions with

t/p

I
x|t = li/ Ix(t)I”dt} < o0,
0

Show that x| is not a norm on L ,[0, 1]. Hint: for a real number o such that 0 < « < 1, note
thato < a? < 1.

Let S be a normed linear space. Show that the norm function || - ||: § — R is continuous. Hint:
See exercise 2.3-33.

For each of the inequality relationships between norms in (2.12), determine a nonzero vector
x € R” for which each inequality is achieved (separately) with equality.

2.4-40

Compute the inner products (f, g} for the following, using the definition

i
(fxg}s/ Fg()dr.
G
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@ fy=r+2 g =t+1
(b) fltry=e¢""g(t) =1+ L.
(cy f(ty =cos2mr), g(t) = sin(271).
2.4-41 Compute the inner products x” y of the following, using the Euclidean inner product.
(@ x=1[1,2,-3.4]",y =[2.3,4,1]7.
(b) x= 12,3}, y =[1, -21".

3.4-42 Which of the following determines an inner product over the space of real continuous functions

with continuous first derivatives?
! l
m{f 8 =/ flng @yde + f(0)g(0) (i) {f. &) =/ flingndr.
0 0
2.5-43 Show that for an induced norm || - || over a real vector space:
(a) The parallelogram law is true:
e+ Y17+l = y1? = 20l + 21y 17 (227

In two-dimensional geometry, as shown in figure 2.20, the result says that the sum of

squares of the lengths of the diagonals is equal to twice the sum of the squares of the

adjacent sides, a sort of two-fold Pythagorean theorem.

y
X
Figure 2.20: The parallelogram law
(b) Show that
I + 07 =l = yIi?
(x.y) = .
4
This is known as the polarization identity.
2.6-44 For the inner produce (f, g) = f(; f(r)yg(t)dr, verify the Cauchy-Schwarz inequality if:

(@) f(y=e".g)=t+1
(b) f(r)y=e", g(t) = —Se™".

2.6-45 Show that the inequality (2.15) is true.

2.7-46 Prove lemma 2.2.

2.7-47 Let x1(t) = 3t% — 1, x2(t) = 5¢* = 3t and x3(r) = 2r> — 1, and define the inner product as
(f g)= f-|1 f(t)g(r) dr. Compute the angles of each pairwise combination of these functions,
and identify functions that are orthogonal.

2.7-48 Let

¥ =[1,2,4, 217,
Xy =[5, =2, =3, 1]",
x; = [1,2,1,2]7,
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2.7-49

and compute the angles between these vectors, using the Euclidean inner product, and identify
which vectors are orthogonal.

Show that a set of nonzero vectors {p), ps, . ... P} that are mutually orthogonal, so that
pi.pjy =0 Hi#]j

is linearly independent. (Orthogonality implies linear independence.)

2.8-50
2.8-51

Perform the simplifications to go from the comparison in (2.18) to the comparison in (2.19).

Show by integration that

/1 1 {:rr n=m=0,
7Tn(t)T,,,(t)a’!: /2 n=mn+#0,
A 0 n#m.

Hint: use t = cosx in the integral.

2.10-52
2.10-53

Show that the orthogonal complement of a subspace is a subspace.

Prove items 2 through 6 of theorem 2.5. Hint: for item 5, use theorem 2.10.

2.11-54

2.11-55

Determine the range and nuilspace of the following linear operators (matrices):

1 0 1 0 1
A= 15 4 B= 1|5 4 9.
2 4 2 4 6

Let X and Y be vector spaces over the same set of scalars. Let LT[X, Y] denote the set of
all linear transformations from X to ¥. Let L and M be operators from LT[X, Y] Define an
addition operator between L and M as
(L + M)(x) = L(x) + M(x)
for all x € X. Also define scalar multiplication by
(aLl)(x) = a(L(x)).
Show that LT'[X, Ylis a linear vector space.

2.12-56
2.12-57

2.12-58
2.12-59

2.12-61

Prove lemma 2.3.

Show that if V and W are subspaces of a vector space S then their intersection V N W is a
subspace.

Show that if V and W are subspaces of a vector space § then their sum V + W is a subspace.
[238, p. 200] Let X = Ly[—~m, ], and let
Sy = span(l, cost,cos2r, ...} S; = span(sinrs, sin2s, ... }.
(a) Show that S; & $; and §; + §; are isomorphic.
(b) Show that dim(S$; & 57) = dim(S,) + dim(S,).

Show that:

(a) If V and W are orthogonal subspaces, then they are disjoint.

(b) If V and W are disjoint, they are not necessarily orthogonal.

Let § be a linear space and assume that § = S, + S + -+ + S,,. where the §; are mutually

disjoint linear subspaces of S. Let B, be a Hamel basis of 5. Show that B = B,UB,U---UB,
is a Hamel basis for §.

Prove theorem 2.6.
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2.12-63 Let V and W be linear subspace of a finite-dimensional linear space S. Show that
dim(V + W) = dim(V) + dim(W) — dim(V N W).
Then conclude that dim(V @ W) = dim(V) + dim(W).
2.13-64 If v is a vector, show that the matrix which projects onto span(v) is
b vy
2
2.13-65 Show that the matrix P4 in (2.20) is a projection matrix.
2.13-66 For the projection matrix P, w in (2.22):
(a) Show that P3 ,, = P, w.
(b) Show that Piw = [ — P, y is orthogonal to P, w, using the weighted inner product (that
is, P/f{w WPy =0
2.13-67 Let
1 4 3
12 -2 4
Pr= |4 Pr=1 e Bs=1 _,
4 -7 1
and
1
‘= 2
T3
7
Determine the nearest vector X in span{p;, pz, p3]. Also determine the orthogonal complement
of x in span(p:, P2, p3].
2.13-68 Let A be a matrix which can be factored as
A=UTVH, (2.28)
such that
vl =1 viv=1
and ¥ is a diagonal matrix with real values. The factorization in (2.28) is the singular value
decomposition (see chapter 7). Show that Py = Py.
2.13-69 Two orthogonal projection operators P, and Py are said to be orthogonal if P4 P = 0. This
is denoted as P, L Pg. Show that:
(a) P4 and Pp are orthogonal if and only if their ranges are orthogonal.
(b) (P4 + Pp) is a projection operator if and only if P4 and Pg are orthogonal.
2.13-70 Prove theorem 2.7.
2.13-71 Let Py, P, ..., P, be a set of orthogonal projections with P, #; = 0 for i # j. Show that
Q = P+ Py-+---+ P, is an orthogonal projection.
2.13-72 If P is a projection operator, show that / — P is a projection operator. Determine the range and
nullspace of / — P.
2.13-73 Let S be a vector space, and let Vy, V4, ..., V, be linear subspaces such that V; is orthogonal

to Z}.#i V;, for each i, and where
S=Vi+Vi+---+ V.

Let P; be the projection on S for which R(P;) = V; and N(P)) = Z#k V.. Define an
operator
P Z}LIP] +;\2P2++)‘~nPn
(a) Show thatif x € V;, then Px = A;x.
(b) Show that P is a projection if and only if A; is either Q or L.
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2.13-74 Let A and B be matrices such that A” B = 0. Then V = R(A) and W = R(B) are orthogonal.
Show that P4y = [ — Pjp.
2.15-75 Using a symbolic manipulation package, write a function which performs the Gram-Schmidt
orthogonalization of a set of functions.
2.15-76 Determine the first four polynomials orthogonal over [0, 1]. A symbolic manipulation package
is recommended.
2.15-77 For the functions shown in figure 2.21, determine a set of orthogonal functions spanning the
same space, using the functions in the order shown.
Ap1(®) Ap2(0)
i ¥ ﬂ
N J A
Ap3) pa(®)
1 i
i
o
Figure 2.21: Functions to orthogonalize
2.15-78 Modify algorithm 2.1 so that it only retains columns of Q that are nonzero, making correspond-
ing adjustments to R. Comment on the product QR in this case.
2.15-79 Modify algorithm 2.1 to compute a set of orthogonal vectors with respect to the weighted inner
product (x,y) = x’ Wy for a positive definite symmetric matrix W.
(Modified Gram-Schmidt) The computations of the Gram—Schmidt algorithm can be reorga-

©2.15-80

nized to be more stable numerically. In these modified computations, a column of Q and a row
of R are produced at each iteration. (The regular Gram-Schmidt process produces a column
of @ and a column of R at each iteration.) Let the kth column of Q be denoted as q,, and let
the kth row of R be denoted as r} .

(a) Show that for an m x n matrix A,

k—1 n
A ‘Zq,'r,-r = Z%“}T = {0 Am},
i=1 ik

where A¥lism x (n — k + 1).

(b) Let A® = [z, B], where B is m x n — k, and explain why the kth column of Q and the
kth row of R are given by

Fie = el QG =€ /ry (Fegsts oo Top) = QL B.

(¢) Then show that the next iteration can be started by computing
k
A=Y ar =10 Ak
i==|

where AR = B — q, (r et . Fen).

(d) Code the modified Gram~Schmidt algorithm in MATLAB.
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2.18 References

Much of the material on metric spaces, Hilbert spaces, and Banach spaces presented here
is significantly compressed from [238]. In their expanded treatment they provide proofs
of several points that we have merely mentioned. An excellent historical source on vector
spaces and their applications to signal processing and engineering is [209]. Function spaces
with an emphasis on series representations are discussed in [177]. A similar treatment of
metric and vector spaces is found in [92].

Extensive properties of the orthogonal polynomials introduced here are discussed and
tabulated in [2]; see also [358].

An extension of the concept of a basis is that of a frame, which provides an overdeter-
mined set of representational functions. A tutorial introduction to frames, with applications
in signal processing, appears in [253].



Chapter 3

Representation and Approximation
in Vector Spaces

Any good mathematical commodity is worth generalizing.
— Michael Spivak
Calculus on Manifolds

3.1 The approximation problem in Hilbert space

Let (S, ||-]|) be anormed linear vector space for some norm ||-|. Let 7 = {p;. p2. .. .. Pm} C

S be a set of linearly independent vectors in a vector space § and let V = span(T ). The

analysis problem is this: given a vector x € §, find the coefficients ¢y, ¢2, .. ., ¢, 50 that
X=capr+cap:+ -+ CuPn (3.1)

approximates x as closely as possible. The " (caret) indicates that this is (or may be) an
approximation. That is, we wish to write

x=%+e
=Cipr+apr+t ot CnPm €
where e is the approximation error, so that
Ix — %I = llef}

is as small as possible. The problem is diagrammed in figure 3.1 for m = 2. Of course,

P1

P>

P2

Figure 3.1: The approximation problem

if x € V then it is possible to find coefficients so that ||x — x|| = 0. The particular norm
chosen in performing the minimization affects the analytic approach to the problem and the
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final answer. If the [, (or L) norm is chosen, then the analysis involves absolute values,
which makes an analytical solution involving derivatives difficult. If the [ (or L) norm
is chosen, the analysis may involve derivatives of the max function, which is also difficult.
If the [ (or Ly) norm is chosen, many of the analytical difficulties disappear. The norm is
the induced norm, and the properties of the projection theorem can be used to formulate the
solution. Alternatively, the solution can be obtained using calculus techniques. (Actually,
for problems posed using the [, norms, a generalization of the projection theorem can be
used, optimizing in Banach space rather than Hilbert space, but this lies beyond the scope of
this book.) Choosing the /; norm allows familiar Euclidean geometry to be used to develop
insight. The approximation problem when the induced norm is used (for example, either an
{5 or L, norm) is known as the Hilbert space approximation problem.

To develop geometric insight into the approximation problem, the analysis formulas
are presented by starting with the approximation problem with one element in 7', aided by
a key observation: the error is orthogonal to the data. The analysis is then extended to two
dimensions, then to arbitrary dimensions. We will begin first with geometric plausibility
and calculus, then prove the result using the Cauchy-Schwarz inequality.

To begin, let T € R? consist of only one vector, T = {p;}. For a vector x € R?, we
wish to represent x as a linear combination of T,

X =cp +e

in such a way as to minimize the norm of the approximation error |lel|. In this simplest case,
there is only the parameter ¢, to identify. The situation is illustrated in figure 3.2(a). If the
I or L, norm is used, it may be observed geometrically that the error is minimized when
the error is orthogonal to V; that is, when the error is orthogonal to the data that forms
our estimate. Written mathematically, the norm of the error |je|| is minimized when

e Ll p.
or
(x—cip1, p1) =0.
Using the properties of inner products,

{x,
o = m—p’; (3.2)
IIpills
Geometrically, the quantity
x,p1)
lIpul3

X
€
- Rl
c1p1 P2 X
(a) One vectorin T (b) Two vectors in T

Figure 3.2: Approximation with one and two vectors
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is the projection of the vector X in the direction of py; it is the length of the shadow that x
casts onto p, (expressed as a proportion of the length of p;).
The same approximation formula may also be obtained by calculus. We find ¢; to
minimize
Ix = cipill3 = (x — cipi. p — a1%1)

by taking the derivative with respect to ¢; and equating the result to zero. This gives the
same answer as (3.2).

Continuing our development, when T contains two vectors we can write the approxi-
mation as

X == C|p; + 2Py + €.

Figure 3.2(b) illustrates the concept for vectors in R>. It is clear from this figure that if
Euclidean distance is used, the error is orthogonal to the data p; and p,. This gives the
following orthogonality conditions:

{(x — (c1p1 + c2p2), p1) = O,
x = (c1p1 + c2p2), p2) = 0.

Expanding these using the properties of inner products gives

x,p1) = c1{p1, p1) + c2{p2, P1)s

(x,p2) = c1(p1. P2) + c2(p2, P2)»

which can be written more concisely in matrix form as

(Pr.p1) (p2.Py)| ja] _ (X P1)
(p1. p2) (Pz.pz)} LJ - [(x, pﬂ} (3.3)

Solution of this matrix equation provides the desired coefficients.
Example 3.1.1 Suppose x = [1, 2,3}, p; = [1, 1,017, and p, = [2. 1, 0. It is clear that
f=ap+oap

cannot be an exact representation of x since there is no way to match the third element. Using (3.3),

we obtain
2 3] [e] %]
3 5 [&] - 4_1

This can be solved to give

Then the approximation vector is
K =c1p; +cpr =31, 1,01 —12.1,0) =1[1,2.0).

Note that the approximation % is the same as x in the first two coefficients. The vector has been
projected onto the plane formed by the vectors p, and p,. The error in this case has length 3. O

Jumping now to higher numbers of vectors, what we can do for two vectors in T, we
can do for m ingredient vectors. We approximate x as

m

X = g cipite=%xX+e

(=1
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(o minimize |jel} = |lx — %X||. If the norm used is the [ or L, norm, this is the linear
jeast-squares problem. Whenever the norm measuring the approximation error ||ef is in-
duced from an inner product, we can express the minimization in terms of an orthogonality
condition: the minimum-norm error must be orthogonal to each vector p;:

<X”ZCiPi,P,‘>=0, j=12 ..., m
i=1

This gives us m equations in the m unknowns, which may be written as

Pr.po PP} 0 (Bm PO [ (x, p1)
P p2) (PP - Pm.p2 | |2 (X, p2)
. . = . . 3.4)
<pl7pm> (p?.»pm) (prmpm) Cm (x, pm)
We define the vector
x, p1)
(X, p2)
p=1| . (35)
(X, Pm)
as the cross-correlation vector, and
Cy
(%]
c= | . (3.6)
Cm

as the vector of coefficients. Then (3.4) can be written as
Re =p,

where R is the matrix of inner products in (3.4). Equations of this form are known as the
normal equations. Since the solution minimizes the square of the error, it is known as a
least-square or minimum mean-square solution, depending on the particular inner product
used.

3.1.1 The Grammian matrix

The m x m matrix

P, (PP} - Pm BV
_ (pz,'pz> (p2.p2) - <me P2) a7
P BPm) (P2 Pm) - (PmDPm)

in the left hand side of (3.4) is said to be the Grammian of the set T. Since the (i, j)th
element of the matrix is
Rij = (p;. i),
it follows that the Grammian is a Hermitian symmetric matrix; that is,
R =R

(where # indicates conjugate-transpose). Some implications of the Hermitian structure
are examined in section 6.2. Solution of (3.4) requires that R be invertible. The following
theorem determines conditions under which R is invertible. Recall that a matrix R for which

x"Rx >0
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Box 3.1: Positive-definite matrices

We will encounter several times in the course of this book the notion of
positive-definite matrices. We collect together here several important facts
related to positive definite matrices.

Definition 3.1 A matrix A is said to be positive definite (PD) if x7 Ax > 0
for all x # 0. This is sometimes denoted as A > 0. (Caution: the notation
A > Qis also sometimes used to indicate that all the elements of A are greater
than zero, which is not the same as being PD.) If x Ax > 0 for all x, then
A is positive semidefinite (PSD). If > is replaced by <, the matrix is said to
be negative definite (ND), and if > is replaced by <, the matrix is negative
semidefinite (NSD). O

Here are some properties of positive-definite (or semidefinite) matrices.

1. Alldiagonal elements of a PD (PSD) matrix are positive (nonnegative).
(Caution: this does not mean that positive diagonal elements imply that
a matrix is PD).

2. A Hermitian matrix A is PD (PSD) if and only if all of the eigen-
values are positive (nonnegative). Hence, a PD matrix has a positive
determinant. Hence, a PD matrix is invertible.

3. A Hermitian matrix P is PD if and only if all principal minors are
positive.

4. If A is PD, then the pivots obtained in the LU factorization are positive.

5. fA>0and B >0,then A+ B > 0.If AisPD and B is PSD, then
A+ BisPD.

6. A Hermitian PD matrix A can be factored as A = B B (using the
Cholesky factorization, for instance), where B is full rank. This is a
matrix square root.

for any nonzero vector X is said to be positive-definite (see box 3.1). An important aspect
of positive-definite matrices is that they are always invertible. If R is such that

x"Rx >0

for any nonzero vector x, then R is said to be positive-semidefinite.

Theorem 3.1 A Grammian matrix R is always positive-semidefinite (that is, X" Rx > 0

Jor any x € C™). It is positive-definite if and only if the vectors py, pa. . . ., pm are linearly
independent.
Proof Lety = [v, v2, ..., m] be an arbitrary vector. Then

m

= ZZy vi(pj, pi) = ZZ()’,’PJ,,V[P:‘}
= —

je=1 i=l

zEZ

> 0. (3.8)

Hence R is positive-semidefinite.
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If R is not positive-definite, then there is a nonzero vector y such that
y7Ry =0,
so that (by (3.8))

zm: yipi = 0;
f=1

thus, the {p;} are linearly dependent.
Conversely, if R is positive-definite, then

y?Ry >0
for all nonzero y and by (3.8)

Z yip: #0.
=1

This means that the {p,} are linearly independent. O
As a corollary to this theorem, we get another proof of the Cauchy-Schwarz inequality. The

2 x 2 Grammian

(yox) .y
is positive-semidefinite, which means that its determinant is nonnegative:

R = {(x,X) (x, y>}

{(x, x)(y, y) = (x, y)y, x) 20,
which is equivalent to (2.13).

The concept of using orthogonality for the Euclidean inner product to find the minimum
norm solution generalizes to any induced norm and its associated inner product.

If the set of vectors {pi, pz2, ..., Pm} are orthogonal, then the Grammian in (3.7) is
diagonal, significantly reducing the amount of computation required to find the coefficients
of the vector representation. In this case, the coefficients are obtained simply by

¢ = %P 3.9)
pj»pj)
Each coefficient uses the same projection formula that was used in (3.3) for a single dimen-
sion. The coefficients can also be readily interpreted: for orthogonal vectors, the coefficient
of each vector indicates the strength of the vector component in the signal representation.

3.2 The orthogonality principle

The orthogonality principle for least-squares (L.S) optimization introduced in section 3.1
is now formalized.

Theorem 3.2 (The orthogonality principle) Let py, pa, ..., Pm be data vectors in a vector
space S. Let X be any vector in S. In the representation

m
X:ZC,'[),' +e=%X+e,
i=1
the induced norm of the error vector ||e|| is minimized when the error e = x—X is orthogonal
to each of the data vectors,

<X~Zc,vpg,p,->=0 j=1,2,...,m.
i=1
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Proof One proof relies on the projection theorem, theorem 2.8, with the observation that
V = span(p;. p2.....Pm) is a subspace of S. We present a more direct proof using the
Cauchy-Schwarz inequality.

In the case that x € span(p;, p2, ..., P ). the error is zero and hence is orthogonal to
the data vectors. This case is therefore trivial and is excluded from what follows.

If x ¢ span(py, p2. - ... Pm), let y be a fixed vector that is orthogonal to all of the data
vectors,

y.pi) =0 i=1,2,...,m,

such that
X = iaipi +y
i=1
for some set of coefficients {a;, a3, .. ., a,}. Let e be a vector satisfying
x:icipi+e (3.10)
i=1
for some set of coefficients {ci, ¢3, . . ., ¢, }. Then by the Cauchy-Schwarz inequality,
lel*liyl* > ite. »)1* (Cauchy-Schwarz)
" 2
= |(x.y) - <ZCiPi-Y>
i=1
= |(x, y)? (orthogonality of y). (3.11)

The lower bound is independent of the coefficients {¢;}, and hence no set of coefficients can
make the bound smaller. By the equality condition for the Cauchy—Schwarz inequality, the
lower bound is achieved—implying the minimum |le|—when

e=ay

for some scalar . Since e must satisfy (3.10), it must be the case that e = y, hence the error

is orthogonal to the data. C

When c¢ is obtained via the principle of orthogonality, the optimal estimate

n
f=1
is also orthogonal to the error e = x — X, since it is a linear combination of the data vectors
{p;}- Thus,
(x.e)=0. (3.12)

3.2.1 Representations in infinite-dimensional space

If there are an infinite number of vectors in T = {p). p2, .. .. }. then the representation

R = Z Cipi

i=1

is suspect, because a linear combination is defined, technically, only in terms of a finite
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sum. The convergence of this infinite sum must therefore be examined carefully. However,
if T is an orthonormal set, then the representation can be shown to converge.

3.3 Error minimization via gradients

while the orthogonality theorem is used principally throughout this chapter as the ge-
ometrical basis for finding a minimum error approximation under an induced norm, it is
pedagogically worthwhile to consider another approach based on gradients, which reaffirms
what we already know but demonstrates the use of some new tools.

Minimizing ||e||? for the induced norm in

m
X = Zc,pi -+ e
f=1l

requires minimizing
J(e) = <X” > e x - Zcipf>
Jj=1 i=1
;—.(x,x)—2Re(ZE,«(x,pi)) +> > cieipy pi)- (3.13)

i=1 i=1 j=1
Using the vector notations defined in (3.5), (3.6), and (3.7), we can write {3.13) as
J(e) = ||x||* — 2Re(cp) + ¥ Re. (3.14)

Gradient formulas appropriate for this optimization are presented in section E.1.1 of ap-

pendix E. In particular, the following gradient formulas are derived:
0 a3 ] 1 d
—dflc=0 —cfd=d —Re(cfd) = -d —c” Re = Re.
ac Jc ac 2 ¢

Taking the gradient of (3.14) using the last two of these, we obtain

0
5%(uxuz —2Re(e”p) + ¢ Re) = —p + Re. (3.15)
Equating this result to zero we obtain
Re =p,

giving us again the normal equations.
To determine whether the extremum we have obtained by the gradient is in fact a
minimum, we compute the gradient a second time. We have the Hessian matrix

d
— Re = R,
ac
which is a positive-semidefinite matrix, so the extremum must be a minimum.

Restricting attention for the moment to real variables, consider the plot of the norm of
the error J(c) as a function of the variables ¢(, 2, ..., ¢n. Such a plot is called an error
surface. Because J(c¢) is quadratic in ¢ and R is positive semidefinite, the error surface is
a parabolic bowl. Figure 3.3 illustrates such an error surface for two variables ¢; and c¢;.
Because of its parabolic shape, any extremum must be a minimum, and is in fact a global
minimum.
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100

504

J(e)

Figure 3.3: An error surface for two variables

3.4 Matrix representations of least-squares problems

While vector space methods apply to both infinite- and finite-dimensional vectors (signals),
the notational power of matrices can be applied when the basis vectors are finite dimensional.

The linear combination of the finite set of vectors {py. p2. ..., P} can be written as
g
X= Cipi = [Pl P2 pm] .
i=1 :
Cm

This is the linear combination of the columns of the matrix A defined by

A=[p1 P2 - Puml
which we compute by
% = Ac.

The approximation problem can be stated as follows:

Determine ¢ to minimize ]Ieﬂ% in the problem x=Ac+e=%X+e (3.16)

The minimum l}eH% = ||x — Ac|]? occurs when e is orthogonal to each of the vectors
(x—Ac,p,) =0, j=12,...,m

Stacking these orthogonality conditions, we obtain

H
p/”
Recognizing that the stack of vectors is simply A”, we obtain

A Ae = Alx. (3.17)
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The matrix A™ A is the Grammian R, and the vector A7 x is the cross-correlation p. We can
write (3.17) as
Re = A¥x =p. (3.18)

These equations are the normal equations. Then the optimal (least-squares) coefficients are

c=(A"A)"'Af'x=R""p (3.19)

By theorem 3.1, A" A is positive definite if the p;, ..., p are linearly independent. The
matrix (A® A)~'A# is called a pseudoinverse of A, and is often denoted Af. More is said
about pseudoinverses in section 4.9. While (3.19) provides an analytical prescription for the
optimal coefficients, it should rarely be computed explicitly as shown, since many problems
are numerically unstable (subject to amplification of roundoff errors). Numerical stability
is discussed in section 4.10. Stable methods for computing pseudoinverses are discussed in
sections 5.3 and 7.3. In MATLAB, the pseudoinverse may be computed using the command
pinv.

Using (3.19), the approximation is

= Ac=AATA) 4% (3.20)

The matrix P = A(AY A)~'A" is a projection matrix, which we encountered in section
2.13. The matrix P projects onto the range of A. Consider geometrically what is taking
place: we wish to solve the equation Ac = x, but there is no exact solution, since x is not
in the range of A. So we project x orthogonally down onto the range of A, and find the best
solution in that range space. The idea is shown in figure 3.4

Figure 3.4: Projection solution

A useful representation of the Grammian R = A A can be obtained by considering A
as a stack of rows,

qf
H
a= T (3.21)
qy
so that A = [q;,q2, ..., q,] and
qf’
qf .
A"A=lq @ - ql]|=) aq (322)
i==1
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3.4.1 Weighted least-squares

A weight can also be applied to the data points, reflecting the confidence in the data, as
illustrated by the next example. This is naturally incorporated into the inner product. Define
a weighted inner product as

X, ¥)w =y Wx.
Then minimizing Hei]%v = ||Ac — xl!%v leads to the weighted normal equations
AW Ac = AT Wk, (3.23)
so the coefficients which minimize the weighted squared error are
e=(ATWA T AFwx. (3.24)

Another approach to (3.24) is to presume that we have a factorization of the weight
W = SY S (see section 5.2). Then we weight the equation

SAc ~ Sy.
Multiplying through by (SA)" and solving for ¢, we obtain
c=((SATSA)T (A sy,

which is equivalent to (3.24).

3.4.2 Statistical properties of the least-squares estimate

The matrix-least squares solution (3.20) has some useful statistical properties. Suppose that
the signal x has the true model according to the equation

X = A¢y + e, (3.25)

for some “true” model parameter vector ¢y; and that we assume a statistical model for the
model error e: assume that each component of e is a zero-mean, i.1.d. random variable with
variance o2, The estimated parameter vector is

c= (A7 A) 1A x. (3.26)

This least-squares estimate, being a function of the random vector x, is itself a random
vector. We will determine the mean and covariance matrix for this random vector.

Mean of c.  Substituting the “true” model of (3.25) into (3.26), we obtain
c= (A" A) A" Acy + (A A1 AFe
=co + (A7 A)7 A e.
If we now take the expected value of our estimated parameter vector, we obtain
Ele) = Elco + (A7 A)"" A" e] =«

since each component of e has zero mean. Thus, the expected value of the estimate is equal
to the true value. Such an estimate is said to be unbiased.

Covariance of . The covariance can be written as
Covle] = El(c — eo)(e — )]
= (A" AT A" Elee” 1A(A" )7L
Since the components of e are i.i.d., it follows that E[ee”] = arfl, so that

Covie) = o2 (A" A) ' = o2R7".
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Smallest covariance. Another interesting fact: of all possible unbiased linear estimates,
the estimator (3.19) has the “smallest” covariance. Suppose we have another unbiased linear
estimator € given by

¢ = Lx,
where E[€] = ¢;. Using our statistical model (3.25), we obtain
€= LAcy + Le.
In order for the estimate € to be unbiased, we must have E[€] = ¢, so
LA =1
We therefore obtain ¢ = ¢ + Le. The covariance of ¢ is
Cov[e] = E[(€ — ¢)(€ —ep) 1 =o2LL".

We will show that LLY > R~! in the sense that the matrix LL¥ — R~! is positive
semidefinite. Let

Z=L-R"'A"
Then for any z,
0<|Z%2))* = (z"2, 2%2) = 2" Z2Z"1.
But
zz" =LL" - R7Y,
where we have used the fact that LA = [. Thus, for any z,
Z(LL? — R"Hz > 0,

so LL™ — R~ is positive semidefinite, or R~! is a smaller covariance matrix. The estimator
¢ is said to be a best linear unbiased estimator (BLUE).

3.5 Minimum error in vector-space approximations

In this section we examine how much error is left when an optimal (minimal-norm) solution
is obtained. Under the model that

m
X = Zc,»pi + e,
i=1

when the coefficients are found so that the estimation error is orthogonal to the data, we
have

X:ﬁ‘f—emm,

where e,;, denotes the minimum achievable error. Taking the squared norm of both sides,
we obtain

1|1 = 1K1 + lleminll®. (3.27)
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This result, sometimes called the statistician’s Pythagorean theorem, follows because X is
orthogonal to the minimum-norm error,

()'i, Cmin) = 0.

The statistician’s Pythagorean theorem is illustrated in figure 3.5. (See also lemma 2.2.)

z

Figure 3.5: Statistician’s Pythagorean theorem

The squared norm of the minimum error is
leminll® = [Ix11* = 111,

When we use the matrix formulation, we can obtain a more explicit representation for
the minimum error. Then & = Ac, so

[%]1* = ¢” A¥ Ac = ¢ Re = ¢p, (3.28)
where p from (3.18) has been employed. This gives
leminl? = x"x — ¢"p.

Another form for |%||? is obtained from (3.20),
%1% = (Ao) (Ae) = x"A(AT AY 1A x. (3.29)
Then
lemnl® = xPx —x7 AA" A)" A x
=x7(1 — A(A" A AT )x.
It can be shown (see exercise 3.5-2) that
(I — AAT A) AT (3.30)

is a positive-semidefinite matrix, from which we can conclude that |jey;, II? is smaller than
lIxI%.

Applications of the orthogonality theorem

Because a number of vector spaces and inner products can be formulated, the orthogonality
principle is used in a variety of applications. The orthogonatity theorem provides the foun-
dation for a good part of signal processing theory, since it provides a prescription for an
optimum estimator: in the optimum (least-squares) estimator, the error is orthogonal
to the data. The theorem is applied by defining an inner product, and hence the induced
norm, to match the needs of the problem. Under various inner-product definitions, much
of approximation theory, estimation theory. and prediction theory can be accommodated.
Examples are given in the next several sections.



1.6 Approximation by Coentinuous Polynomials 143

3.6 Approximation by continuous polynomials

Suppose we want to find the best polynomial approximation of a real continuous function
f(r) over an interval ¢ € [a, b], in the sense that

b

(f(t) = p(6))*dt

is minimized for a polynomial p(¢) of degree m — 1. The vector space underlying the problem
is § = Cla, b]. We will (naively) take as basis vectors the functions {1, ¢, %, ..., ™1, so
that

p(t) =co+ oyt + eptr -+ et

The optimal coefficients can be determined (for example) directly by calculus, but the
orthogonality theorem applies, using the inner product

b
(f»g)—‘-/ Fg)dr.

Then, using (3.4) we obtain

<l»l> (1vt> <1»tm‘l> o (f*1>

(t, 1) (e.ty oo (rmh ci (fir)

' - (3.31)
Ly e e ey e LR

If we take the specific case that the function is to be approximated over the interval
[0, 1], then the Grammian matrix in (3.31) can be computed explicitly as

i
o o I
(t’,tf)z/ HHdt =
JO

i+j+1
so that
1 1 1
L s 3 p
1 1 1 R
b 3 i m+1
R= . (3.32)
B UR | A
m m-1 m+2 2m

A matrix of this particular form is known as a Hilbert matrix. The Hilbert matrix is famous
as a classic example of a matrix that is ill conditioned: as m increases, the matrix becomes ill
conditioned exponentially fast, which means (as discussed in section 4.10) that it will suffer
from severe numerical problems if m is even moderately large, no matter how it is inverted.
Because of this, the particular set of basis functions chosen is not recommended. The use of
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the Legendre polynomials described in example 2.15.1, or other orthogonal polynomials,
is preferred for polynomial approximation.

Example 3.6.1 Let f(1) = ¢ and m = 3. (For only three parameters, the Hilbert matrix (3.32) is
still well conditioned.) The vector on the right hand of (3.31) is

e—1
b= 1 R
e—2

and the coefficients in (3.31) are computed as
Co 1.0130
¢ | =R'b=]08511].
L 0.8392

e~ 1.0130 + 85117 + .8392¢%.

The approximating polynomial is

— Least-squares
— Weighed least-squares
Taylor

0 0.2 0.4 0.6 0.8 1
t

Figure 3.6: Comparison of LS, WLS. and Taylor series approximations to ¢’

Figure 3.6 shows the absolute error e’ — p(r)| for this polynomial for r € [0. 1]. For comparison, the
error we would get by approximating e’ by the first three terms of the Taylor series expansion,

=l 14172,

is also shown, as is the weighed least-squares (WLS) approximation discussed subsequently. The
error in the Taylor series starts small, but increases to a larger value than does the least-squares
approximation. (How would the Taylor series have compared if the series had been expanded about
the midpoint of the region, at 1y = 17) 0

The basis functions of the previous example give rise to the Hilbert matrix as the Grammian.
However, a set of orthogonal polynomials can be used that has a diagonal (and hence well-
conditioned) Grammian.

Now suppose that for some reason it is more important to get the approximation more
correct on the extremes of the interval of approximation. We will denote the approximating
polynomial in this case by p, (r). To attempt to make the approximation more exact on the
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extremes of the interval of approximation, we use a weighted norm

b
/ w(E)(f (1) — pu(0))idt,

Ja

which is induced from the inner product
b
(f.8)= / Vw() f()gle)de.

Example 3.6.2 Continuing the example above with f (1) = ¢’ over [0, 1], take the weighting function

as
w(r) = 10( — 0.5)2.

Then the Grammian matrix is

LA WA EVER
R=| 152 L3572 £V3/2
232 5572 BV372

and the right hand vector (computed numerically) is
b =[1.38603 0.860513 0.690724]".
The approximating polynomial is now
Pu(t) = 1.0109 + 85351 + .8415:7.

Figure 3.6 shows the error ¢/ — p,(¢) and €’ — p(r). As expected, the error is smaller (though only
slightly) for p,,(¢) near the endpoints, but larger in between. O

As various weightings are imposed, the error at some values of ¢ is reduced, while error
for other values of ¢ may increase. This raises the following interesting (and important)
question: Is there some way to design the approximation so that the maximum error is
minimized? This is what L, approximation is all about:

min || f () = p()lloo-

The approximation is chosen so that the maximum error is minimized.

3.7 Approximation by discrete polynomials

We can approximate discrete (sampled) data using polynomials in a manner similar to the
continuous polynomial approximations of section 3.6 using a set of discrete-time basis
functions {1, k, ..., k™~!}. We desire to fit an (m — 1)st order polynomial through the data
points x;, X2, ..., X,, SO that
xp = p(k), k=1,2,...,n,
where
plk) = co+ 1k + crk? + -+ kL
The polynomial p(k) can be written as
Co
€
ply=[1 k K .- k" @

Cm—1
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If m = n and the x; are distinct, then there exists a polynomial, the interpolating polynomial,
passing exactly through all n points. If m < n, then there is probably not a polynomial that
will pass through all » points, in which case we desire to find the polynomial to minimize

the squared error,

n

This can be expressed as a vector norm

>l = pl

k=1

Ix —pll2,

which is induced from the Euclidean inner product (x, y) = x/! y, where

x|
X3
X =

Xn

p(1)
p2)
and p= .

pn)

We can write p in terms of the coefficients of the polynomial as

11 1 1 co o
1 2 4 gm-1 Cy Cy
m~1
p=1|1 3 9 3 21 =[p p ps Pnl| €2 | = Pa
1 n n? nml | Cm—1 Cr1
The vectors py, i = 1,2..., m represent the data in this approximation problem. If P is

square, it is called a Vandermonde matrix, about which more is presented in section 8.4. As
with the continuous-time polynomial approximation, there may be better basis functions
for this problem from a numerical point of view.

Using this notation, the approximation problem becomes

x = Pc+e,

which is a problem in the same form as (3.2), from which observe that the ¢ which minimizes

llell* is

The approximated vector p is thus

c=(PTP)'PTx.

p=Pe=PP P)'Px

Example 3.7.1 We desire to approximate the function

x{k] = sintkn /7)

using a quadratic polynomial (m = 3) to obtain the best match for k = 1:7. The P matrix is

[V UV U U U

1
4
9
16
25
36

49

=3 N LA s 0 B e
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1 0.05
0.5 = T E}D
Q.
= = 9 o)
>
* i 4) L
0 =
[

0.5 0.05
0 2 4 6 0 2 4 6

k k

(a) x[k] (b) x{k] — pik]

Figure 3.7: A discrete function and the error in its approximation

and the coefficients are computed as ¢/ = {~0.0612, 0.5885, —0.0833]. Figure 3.7(a) shows x[k]
and figure 3.7(b) shows the error p{k] — x[k]. d

3.8 Linear regression

From the data in figure 3.8(a), where there are n points x;,i = 1,2,...,n with each
X; = [x;, y;17, it would appear that we can approximately fit a line of the form

v, & ax; + b, i=1,2,...,n (3.33)

for suitably chosen slope a and intercept b. As stated, this is a linear regression problem;
that is, a problem of determining a functional relation between the measured variables x;
and y;. Nonlinear regressions are also used, such as the quadratic regression,

Vi & ag + ayx; + azx,-?'. (3.34)

Or we may have data vectors x; € R?, with x; = [x;, i, 7,17, and we may regress among
the points as

z; = ax; + by; +c. (3.35)
35 35 b
30 301
o ©
25 25
o]
20 o 20t
S >
15 © 15
0
10 o ° 10
5 5
¢ O
0 0
0 2 4 6 8 10 0 2 4 6 8 10
X X
(a) Original data (b) Interpolated line and errors

Figure 3.8: Data for regression
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In all such regression problems, we desire to choose the regression parameters so that
the Right Hand Side of the regression equations provides a good representation of the Left
Hand Side.

We will consider in detail the linear regression problem (3.33). We can stack the
equations to obtain

Vi axy+ b e
y2 axy +b e
L= . + . (3.36)
Vi ax, +b €n

for some error terms e;. Let

a
y:[}’l,)’z,.‘.,yn}T e:[e;,eg,..’,en]T C:{b}

and
X1 1
X2 1
A=
x, 1
Then (3.36) is of the form
y = Ac + e, (3.37)

which again is in the form (3.16), so the best (in the least-squares sense) estimate of ¢ is
c= (A" A 1Afy. (3.38)

The line found by (3.38) minimizes the sums of the squares of the vertical distances between
the data abscissas and the line, as shown in figure 3.8(b). To minimize shortest distances of
the data to the interpolating line, the method of rotal least squares discussed in section 7.7
must be used.

Since A7 A in (3.38) is 2 2 x 2 matrix, explicit closed-form expressions for a and b in
¢ can be found. The slope and intercept (for real data) are

ny o xiye— (i x) (2 vi)
nY - (D k)t

() (T v) = (Sl ) (S xv)

(3.39)

Example 3.8.1 (Weighted least-squares) Five measurements (x;. y;). /i = 1.2, ..., 5. are made in 2
system, of which the first three are believed to be fairly accurate, and two are known to be somewhat
corrupted by measurement noise. The measurements are

(1,2.5) (3.35) (6.5 (5.3) (3.4).
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6]

— weighted least-squares
least-squares

>4 O
;XA.
3 O
2 1
1 2 3 4 5 6

X

Figure 3.9: Illustration of least-squares and weighted least-squares

From these five measurements, the data are to be fitted to a line according to the model y = ax+b.
The measurements stack up in the model equation as

11 2.5
301 3.5
a
6 1 {b} =151 +e,
5 1 3
31 4
or
Ac=y+e

In finding the best (minimum squared-error) solution to this problem, it is appropriate to weight most
heavily those equations which are believed to be the most accurate. Let

W = diag{10, 10, 10, 1, 1}.

Then using (3.24), we can determine the optimal (under the weighted inner product) set of coefficients.
Figure 3.9 illustrates the data and the least-squares lines fitted to them. The accurate data are plotted
with x, and the inaccurate data are plotted with o. The weighted least-squares line fits more closely (on
average) to the more accurate data, while the unweighted least-squares line is pulled off significantly
by the inaccurate data at x = 5. 0

3.9 Least-squares filtering

In the least-squares filter problem, we desire to filter a sequence of input data { f1t]}, using
a filter with impulse response A[¢] of length m to produce an output that matches a desired
sequence {d[t]} as closely as possible. (Examples in which such a circumstance arises are
given in section 1.5, in the context of adaptive filtering.) If we call the output of the filter
y[t], we have the filter expression

m—1
Yl =Y Alilfle =il
(=0
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We can write d[r] = y[z] + e[t], where e[r] is the error between the filter output and the
desired filter output,

m—1

d[r]=> hlilflt —i] + el1].
[ =0

We want to choose the filter coefficients {h[i]} in such a way that the error between the filter
output and the desired signal should be as small as possible; that is, we want to make
elt] = d[t] — y[1]
small for each 1.
When doing least-squares filtering, the criterion of minimal error is that the sum of the
squared errors is as small as possible:

minz leli1, (3.40)

where iy is the starting index and i, the ending index over which we desire to minimize.
The squared norm in (3.40) is induced from the inner product defined by

iz

(x.y) = > x7, (3.41)
=iy

Letting

vlii] h{0] x[iy]

yliy + 1] n1] xliy+1]
y= . = . X = . ,

vlia] him —1] x[ir]

the inner product (3.41) can be written as
x.y) =vy"x,

and the filtered outputs can be written as
y = Ah,

where A is a matrix of the input data, f{r]. The matrix A takes various forms, depending
on the assumptions made on the data, as described in the following. Let

{ dliy]
dliy + 1]

dliz]
be a vector of desired outputs. Then we want
d~y=Ah

d=

We can represent our approximation problem as
d = Ah +e,

where e is the difference between the output y and the desired output d. We desire to find the
filter coefficients h to minimize |le||. By comparison with (3.16), observe that the solution
1s

h=A"4)7"4"4. (3.42)
We now examine the form of the A matrix under various assumptions about the inputs.

Assume that we have available to us, for the purpose of finding the coefficients, the data
FIH). fI2) ..o fIN], with a total of N data points.
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The “covariance” method. In this method, we use only data that is explicitly available,
not making any assumptions about data outside this segment of observed data. The data
matrix A in this case is the (N — m -+ 1) x m matrix

fim}  flm—=1] fim=2] .- S
fim+11  flm]  flm—=1] - f12]

FINT  fIN=11 fIN=2] - fIN —m+1]

Let g[i] be the m x 1 data vector corresponding to a (conjugated) row of A, as in (3.21);
then

Wio
qir=| U (3.43)
fli—m+1]
with the notation that f[i] = 0 where i is outside the range | to N, and we can represent
the data matrix as

qim1”
glm + 117
A= .
q[N1*
The Grammian can be written as
N
R=A"A=> qlilg"[i]. (3.44)

The Grammian R is a Hermitian matrix.

The “autocorrelation’ method. In this case, we assume that data prior to f[1] and after
FIN] are all zero, and fill up the data matrix A with these assumed values. The output is
taken from i; = 1 up through i = N +m — 1. The data matrix isthe (N +m — 1) x m
matrix

M fIi 0 0 0 ]
f12] S 0 a 0
f3] f12] s 0
flm}  flm—1] fim-=2] .- f11

A= [flm+1]  flm]  flm-=-2] .- f12]

fIN]  fIN=-1)] fIN=2] - fIN=-m+1]
0 fIN]  FIN=1] - fIN—=m+2]

0 0 0 e fINT ]

The terms “covariance method” and “autocorrelation method” do not produce, respectively,
a covariance matrix and an autocorrelation matrix in the usual sense. Rather, these are the
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terms for these methods commonly employed in the speech processing literature (see, e.g.,
[215]). Using the notation of (3.43), we can write the data mafrix as

q”[1]
vl
A = d .
q”[N +m —1]
In a manner similar to (3.44), we can write
N+4m—1

R=4"A= 3 qlilq"li}.

i==}

This is a Toeplitz matrix.

Pre-windowing method. In this method we assume that f[r] = 0 forr < 1, and use data
up to f[N], sothati; = 1 and i, = N. Then the data matrix is the N x ¢ matrix

fI1] 0 0 0
21 f o .. 0
B fi e 0 11
a e : B q”[ 245
=| fim fm-1 fm-2 - gm0 O
Slnt1Slm o flm=2) f12] ¢ IN]
FINI  fIN=1] fIN=2 - fIN—m+1],
and
N

R= qlilg"[il.

=1

Post-windowing method. We begin with i} = m, and assume that data after N are equal
to zero. Then A is the N x m matrix

fiml fim—11 flm—21 - f[1]
fim+11  fim]  fm—21 - fI2]
A=| FIN] fIN-1] fIN-2] - fIN-m+1]],
0 FIN] FIN—-11 -+ fIN —m+2]
L O 0 0 fIN] ]

and
m+N

R=_ alilg"li].
i=m
Example 3.9.1 Suppose we observe the data sequence
(UL 150 = {1, =23, -4, 5]

and want to filter these data with a filter of length m = 3. The data matrices corresponding to each
interpretation, labeled respectively Aoy, Auc, Apre, and Apeq. with their corresponding Grammians.
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are shown here:

ol 0 0]
-2 1 0
T3 =2 1 3 =2 1
Acov = | -4 3 -2 Az\c = | —4 3 -2
L5 -4 3 5 ~4 3
0 5 -4
L O 0 5]
[ 1 6 0 f 3 -2 1]
-2 ! 0 -4 3 =2
Ape=| 3 =2 1 A =] 5 —4 3
-4 3 =2 6 5 -4
5 -4 3 L0 0 5
50 -38 26 [ 55 —40 26
Reov = {—38 29 —20} Ry = |—40 55 -—40:}
| 26 —20 14 26 —40 55
55 —40 26 r 50 -38 26
Rye = |—40 30 -20} Roo = | —38 54 —40]
L 26 20 14 L 26 —40 55 O

Observe that while all of the data matrices are Toeplitz (constant along the diagonals), the
only Grammian which is Toeplitz is the one which arises from the autocovariance form of
the data matrix.

MATLAB code to compute the least-squares filter coefficients is given in algorithm 3.1.

Algorithm 3.1 Least-squares filter computation
File: 1sfilt.m

Example 3.9.2 For the input data of the previous example, the following desired data are known:
d=[2-511,-17,23,-17,15]".

We want to find a filter of length m = 3 that produces this data. Using the four different data sets
in the example, with selections of d corresponding to the data used, we obtain from the MATLAB
commands

hcv = lsfilt(£,d(3:5),3,1)
hac = 1sfilt(f,d,3,2)

hpre = 1sfilt(f,d(1:5),3,3)
hpost = 1sfilt(£,d4(3:7),3.4)

the filter coefficients
oo = [15 =2 257 hwe=[2 -1 31
hpre =[2 -1 3]T hposl =[2 -1 3]T~

respectively. O

Example 3.9.3 An application of least-squares filtering is illustrated in figure 3.10 in a channel
equalizer application. A sequence of bits {b[r]} is passed through a discrete-time channel with unknown
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p delay

blr] Channel

® (anknown) *—’?—* Equalizer

nlz}

Figure 3.10: Least-squares equalizer example

impulse response, the output of which is corrupted by noise. To counteract the effect of the channel,
the signal is passed through an equalizer, which in this case is an FIR filter whose coefficients have
been determined using a least-squares criterion. In order to determine what the coefficients are, some
set of known data—a fraining sequence—is used at the beginning of the transmission. This sequence
is delayed and used as the desired signal 4[r]. Using this training sequence, the filter coefficients i[k]
are computed by using (3.42), after which the coefficients are loaded into the equalizer filter.

This example is more a demonstration of a concept than a practical reality. While equalizers are
common on modern modem technology, they are more commonly implemented using adaptive filters.
Adaptive equalizers are examined in section 4.11.2 (RLS adaptive equalizer) and section 14.6 (LMS
adaptive equalizer). 0

3.9.1 Least-squares prediction and AR spectrum estimation

Consider now the estimation problem in which we desire to predict x{t] using a linear

predictor based upon x[r — 1], x[r — 2], ..., x[t — m]. We then have
x[] = —Zaix[t —il+ [l (3.46)
i=1
using a; = —h; as the coefficients, where f[¢]is now used to denote the (forward) predictor

error. The predictor of (3.46) is called a forward predictor. This is essentially the problem
solved in the last section, in which the desired signal is the sample d[r] = x[r], and the data
used are the previous data samples. We can model the signal x[z] as being the output of a
signal with input f{r], where the system function is

X(z) 1 1

F@  1+siaz AR

If f[t]1s arandom signal with power spectral density (PSD) 5,(z), then the PSD of x[r] is
1

(1+ 3 az™) (1+ 2L, @)

If f[r]is assumed to be a white-noise sequence with variance o % then the random process

x{t] has the PSD

H(z) =

Sc(z) = Sy(2) = Sr(2). (3.47)

1
A(z)A(1/2)

Py

S0 = —oL
T AAGD

Evaluating this on the unit circle 7 = ¢/¢, we obtain
o2 o2
= L= (3.48)
fl + 5 areiv [' [A(a)}?

Sc(@) 2 8,(2)

rumelw

Thus, by finding the coefficients of the linear predictor, we can determine an estimate of

the spectrum, under the assumption that the signal is produced by the AR model (3.46).
We can obtain more data to put in our data matrix (and usually decrease the variance

of the estimate) by using a backward predictor in addition to a forward predictor. In the



backward predictor, the m data points x{t], x[t — 1], ..., x[t —m + 1] are used to estimate
x[t — m], by

xp—m:—i}mu~m+n+mm
f==]

where b{t] is the backward prediction error. As before, if we view x[f — m] as the output
f a system driven by an input b{z], we obtain a system function

x(@) _ 1 S
b (It L @) | AL

It b(t] is a white-noise sequence with variance o7 = G}, then the PSD of the signal x[r —m]

Hb(l) B

18

S:(z) =0} (3.49)

A(/DAR)
the same as in (3.47). Since both the forward predictor and the backward predictor use
the same predictor coefficients (just conjugated and in a different order), we can use the
backward predictor information to improve our estimate of the coefficients. If we have

measured data x[1], x[2], ..., x[N], we write our prediction equations as follows (using
the covariance method employing only measured data):
x[m] x[m — 1] x[1]
x[m + 1] x[m] x[2]
z —a
x[N — 1] x[N — 2} -oo x[N —m] —a2
x[2] x[3] <o Xm + 1] :
x[3] x[4] e EmA+21) | g
_)?[N‘vmﬁ-l] XIN-m+12] - x[N]
[x[m+ 17 [ fim+1]
xim + 2] Sflm + 2]
_ o || s
- x[1] B[N —m + 1]
2] b[N —m +2]
ﬁN¥m_ -HN;M

Let us write this as
x = Ah + e,

where x and e now are 2(N — m) x 1 and A is 2(N — m) x n. In the data matrix, the first
N — m rows correspond to the forward predictor and the second N — m rows correspond
to the backward predictor. Our optimization criterion is to minimize

N
> IFUIR + 1Bl

i=n+1
As before, a least-squares solution is straightforward. This technique of spectrum estimation
1s known as the forward-backward linear prediction (FBLP) technique, or the modified
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covariance technique. An estimate of the variance is
22 _ 22 2
Op =0y = fleminll”.

A MATLAB function that computes the AR parameters using the modified covariance tech-
nique is shown in algorithm 3.2.

Algorithm 3.2 Forward-backward linear predictor estimate
File: fblp.m

3.10 Minimum mean-square estimation

Inthe least-squares estimation of the preceding sections, we have not employed, nor assumed
the existence of, any probabilistic model. The optimization criterion has been to minimize
the sum of squared error. In this section, we change our viewpoint somewhat by introducing
a probabilistic model for the data.

Let Py, P, ..., P, be zero mean random variables. We desire to find coefficients {¢;}
to estimate the random variable X, using

X=ciPi+oPh+ - 4cpPyp+e
in such a way that the norm of the squared error is minimized. Using the inner product
(X,Y) = E[XY], (3.50)

the minimum mean-square estimate of ¢ 1s given by

Re =p,
where
E[PP\] E[PP\] --- E[P,P)] E[XPi]
E[P\P;] E[PPy] --- E[PnP2] E[XP,]
R = . and p= ) (3.51)
E(P{Pn] E[P;Py] - E[PyPyl] E[XP,]
The minimum mean-squared error in this case is given using (3.29) as
el = ol =p"R™'p
=o? —pe (3.52)

Example 3.10.1 Suppose that
Z=[X,. X X:V

is a real Gaussian random vector with mean zero and covariance

FER—

12
R..=cov(Z) = E|ZL") = [z 2 3.
13 4

Given measurements of X, and X,. we wish to estimate X; using a linear estimator,

)23 = C1X) +L‘_7Xz.
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The necessary correlation values in (3.51) can be obtained from the covariance R..,

[Exxa Exoxg] 12 C[Exsxa] [
k= H%&]Ewﬂj'ml J and p‘[a&&J‘{J’

from which the optimal coefficients are

100714
€= 01429
The minimum mean-squared error is
ez, =4—p"R™'p =395 -

3.11 Minimum mean-squared error (MMSE) filtering

A minimum mean-square (MMS) filter is called a Wiener filter. It is mathematically similar
to a least-squares filter, except that the expectation operator is used as the inner product.
Given a sequence of data { f[1]}, we desire to design a filter in such a way that we get as
close as possible to some desired sequence d{t]. In the interest of generality, we assume the
possibility of an IIR filter,

v =Y hlfl -1, (3.53)

1=0
In adopting a statistical model, we assume that the signals involved are wide-sense stationary
so that, for example,

E[x[t]] = E{x[r — 1] for all /
and
Elx[t]x{t — 1]

depends only upon the time difference / and not upon the sample instant ¢.
Using

e[t} =dt] — ylt] (3.54)

as the estimator error, by the orthogonality principle, the squared norm of error, which in
this case is termed the mean-squared error,

le[t1I* = Elelr]elz1],

is minimized when the error is orthogonal to the data. That is, the optimal estimator satisfies

<d{z1 =Y ROl =1, Lt = i]> =0

1=0
fori =0,1,2,...; or,

(dle], flr —i]) =§:h[1]<f[t—1]»f[t-i]>, (3.55)
Using the inner product (3.50), we obtairll=O

ih[l]E[f(t —flr = i1l = E[flr — ild[e]]. (3.56)

1==0
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Equation (3.56) is an infinite set of normal equations. For this case in which the inner product
is defined using the expectation, the normal equations are referred to as the Wiener—Hopf
equations. We can place the normal equations into a more standard form by expressing the
Grammian in the form of an autocorrelation matrix. Define

ri =) = E[flr =10 flr = ill = (fle =11, flr = i])

and

p(i) = E[f[t —ild[1]] = (d[1], [Tt —i]),

and observe that r(—k) = 7(k). Then (3.56) can be written as

S hllrG =0 =p@). i=01.. (3.57)

1=0

Solution of this problem for an IIR filter is reexamined in section 3.13.
For now, we focus on the solution when {/} is an FIR filter with m coefficients. Then
the filter output can be written as

y[e] = f[1]"h,

where
£l =[flr] fle—=11 ... Flr—=—m+111 (3.58)
(note the conjugates in this definition) and
h=[h[0] A[1] ... him-1).

Under the assumption of an FIR filter, (3.57) can be written as

m—1

S hlllrG =D =p@). i=01.., (3.59)
1=0
which we can express in matrix form with R;; = r(i — [} as
Rh = p, (3.60)
where
r(0) 7(1) F2) o Flm= 1]
r{1) r(0) r(1) e Fm = 2)
R = r(2) r(1) r(0) s Fm = 3)
r(m'—l) rm—2) rim-3y - r(0)
= E[ff [ (3.61
and
p(0)
p(l)
p= p(2)
plm — 1)
= Ef[r]}d[r]]. (3.62)

The optimal weights from (3.60) are h = R~'p.
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The matrix R is the Grammian matrix and has the special form of a Toeplitz matrix:
the diagonals are equal to each other. Because of this special form, fast algorithms exist
for inverting the matrix and solving for the optimum filter coefficients. Toeplitz matrices
are discussed further in section 8.3. (We have already seen one example of the solution of
Toeplitz equations with a special right-hand side, in Massey’s algorithm in section 1.9.)

The minimum mean-squared error can be determined using (3.52) to be

lelrn = Ele’Tmin = Id]* = I¥II*.
Using the notation [le]|* = o and ||d||? = o}, and noting that
Iy[I1P = Ely[]5(e)) = E™ [1)x[e1x"[¢]]h = h” Rh = p”h,
we obtain

(67)... =o0;—p"h (3.63)

4

Fxample 3.11.1 In this example we explore a simple equalizer. Suppose we have a channel with
rransfer function

I
H(2) = T 61

Passing into the channel is a desired signal d[¢]. The output of the channel is u[¢], so that we have
ult] — 0.6ult — 1] =d[r]. (3.64)
However, we observe only a noise-corrupted version of the channel output,
Slt) = ult] + nlt],

where n{t] is a zero-mean white-noise sequence with variance o;f = (.16, which is uncorrelated with
v{r]. Suppose, furthermore, that we have a statistical model for the desired signal, in which we know
that d[r] is a first-order AR signal generated by

dlt] = —.5d[t — 1]+ v(z],

where v{t] is a zero-mean white-noise signal with variance a} = (.1. Based on this information, we
desire to find an optimal Wiener filter to estimate d[¢], using the observed sequence f[t]. The diagram
is shown in figure 3.11. The cascade of the AR process and the channel gives the combined transfer

ln[r}
AR 5
Signal dfr] g Channel ulr] (] fl] Equalizer ___i[_[L
Generator Hc(z)
Equivalent Model
{t[t]
virl > H(z) u[t]= ; f[t], Equalizer _..._d[_L]

Figure 3.11: An equalizer problem

function from v[t] to u[r] as
1 1 1

H ) = feeed =
@ (+ 52700 =627 1—.1z7"=3z22  ldaz ! +ayz?
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so that
ult] — Tufr — 1] — 3uft — 2] = v[1].
In this example, since the channel output is an AR(2) process, the equalizer used is a two-tap FIR

filter.
We need the matrix R, containing autocorrelations of the signal f[r], and the cross-correlation
vector p. Since f[r] = ulr] + n[r], and since v[r] and r{r] are uncorrelated, we have

R= Rff - Ruu +Rnna

where R,, is the autocorrelation matrix for the signal u[f] and R, is the autocorrelation matrix for
the signal n[t]. Since n[t] is a white-noise sequence, R,, = 031, where ] is the 2 x 2 identity matrix.

To find
0y (1)
R = L(l) ru<0)}’

we use the results from section 1.4.2. Specifically, from (1.79) and (1.80) we find
o2
o =0.1122

(A +ay)? —a}

“EL 62 = 0.0160.

r(l) = T
Thus,
. [.16 OJ [.1122 .()160} _ {2722 Dlé()]
0 .16 0160 1122 0160 2722
For the cross-correlation vector,
{ Flnd(r] ]_ { @r] + Alr)d[1) }
Sl —11d[t] (@lr = 1]+ nfr — 1])d[t]

ultldir
—F [s]alr] ‘
ult — 1}d[f]
since d{r] is uncorrelated with n{r —n]. Multiplying (3.64) through by #{t — k] and taking expectations,

we obtain
pky = Elulr ~ k}d[r]} = r, (k) — 0.6r,(k ~ 1),
from which we can determine
| 0.1026
P=1_0.0513|

The optimal filter coefficients are
0.3893}

— Pl
h =R p‘[—o.zm

2

To compute the minimum mean-squared error from (3.63) we need crdz. This 1s found using (1.75) as

Then
o? = 0.0826.

The error surface is obtained by plotting (see (3.14))
. 3 r 1h[0] ,
) 2 T
J(h) =0, - 2p [HIJ + [A[0], R{1TIR {h[
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00.083

Figure 3.12: Contour plot of an error surface

as a function of {h[0], k[1]}. Figure 3.12 shows a contour plot of the error surface. Algorithm 3.3 is
MATLAB code demonstrating these computations.

Algorithm 3.3 Two-tap channel equalizer
File: wftest.m

O

Another example of MMSE filter design is given in conjunction with the RLS filterin 4.11.2.

3.12 Comparison of least-squares and minimum
mean-squares

It is interesting to contrast the method of least-squares and the method of minimum mean
squares, both of which are widely used in signal processing. For the method of least-squares,
we make the following observations:

1. Only the sequence of data observed at the time of the estimate is used in forming the
estimate.

2. Depending upon assumptions made about the data before and after the observation
interval, the Grammian matrix may not be Toeplitz.

3. No statistical model is necessarily assumed.
For the method of minimum mean-squares, we make the following observations:

t. A statistical model for the correlations and cross-correlations is necessary. This must
be obtained either from explicit knowledge of the channel and signal (as was seen in
example 3.11.1), or on the basis of the multivariable distribution of the data (as was
seen in example 3.10.1). In the absence of such knowledge, it is common to estimate
the necessary autocorrelation and cross-correlation values. An example of an estimate
of the autocorrelation r (n) = E{x(k)X(k —n)] using the data {x (1), x(2), ..., x(N)}




162 Representation and Approximation in Vector Spaces

is
N

F(n) = Xl; S x()Fk —n). (3.65)

k==1-+n

This is actually a biased estimate of r (n) (see exercise 3.12-21), but it has been found
(see, e.g., [38]) to produce a lower variance when the lag n is close to N.

In order for (3.65) to be a reasonable estimate of r(n), the random process x (k)
must be ergodic, so that the time average asymptotically approaches the ensemble
average. This assumption of ergodicity is usually made tacitly, but it is vital.

When the data sequence used to compute the estimate of the correlations’ param-
eters is the same as the data sequence for which the filter coefficients are computed, the
minimum mean-squared error technique is essentially the same as the least-squares
technique.

2. Commonly, the coefficients of the MMS technique are computed using a separate set
of data whose statistics are assumed to be the same as those of the real data set of
interest. This set of data is used as a training set to find the autocorrelation functions
and the filter coefficients. Provided that the training data does have the same (or very
similar) statistics as the data set of interest, this works well. However, if the training
data is significantly different from the data set of interest, finding the optimum filter
coefficients can actually lead to poor performance, because one has found the best
solution to the wrong problem.

3. We also note that the (true) Grammian matrix R used in prediction and optimal FIR
filtering problems is always a Toeplitz matrix, and hence fast algorithms apply to
finding the coefficients.

In section 4.11.1 we examine how the coefficients of the LS filter can be updated adaptively,
so that the coefficients are modified as new data arrives. In section 14.6, we develop an algo-
rithm so that the coefficients of the MMS filter can be updated adaptively by approximating
the expectation. These two concepts form the heart of adaptive filtering theory.

3.13 Frequency-domain optimal filtering

We have seen several examples of FIR minimum mean-squared filters, in which the equations
obtained involve a finite number of unknowns. In this section, we take a different viewpoint,
and develop optimal filtering techniques for scalar signals in the frequency domain. This
allows us to extend the minimum mean-squared error filters of section 3.11 to IR filters.
Following a brief review of stochastic processes and their processing by linear systems, we
present the notion of two-sided Laplace transforms, and some decompositions of these that
are critical to the solution of the Wiener filter equations. This is followed by the development
of the continuous-time Wiener filter. Finally, we present analogous results for discrete-time
Wiener filters.

3.13.1 Brief review of stochastic processes and Laplace transforms

To expedite our development of frequency-domain filtering, it will be helpful to review
briefly some fundamental results from stochastic processes associated with linear systemis
(see also appendix D).
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Power spectral density functions and filtering stochastic processes

Let {x;, =00 <t < oo} and {y,, —00 < t < oo} be two wide-sense stationary, zero-mean,
scalar stochastic processes. Throughout this development, we will assume that all processes
are real. The auto- and cross-correlation functions are

Rx (I) = Exm+rxa Ry(t) = E}’aﬁﬁ}’a
ny(t) = Exa%—t))a Ryx () = EYOIJHXuv

The bilateral Laplace transforms of these functions are denoted by

S;(s)-—_—/ R (1)e™*'dt Sy(s)z/ R, (t)e *'dt

e o
Sey(s) = / Rey(e™dt S, (s) = / Ry (ne™'dr,

where s = o + jw is a complex variable. These bilateral Laplace transforms exist whenever
s is in the region of convergence. For all of our applications, the region of convergence will
include the imaginary axis, and we may obtain the Fourier transform of these functions by
restricting s to the imaginary axis, that is, setting s = jw. The resulting function, S, (jw),
ete., is the usual power spectral density function. By an abuse of notation, we will usually
drop the explicit inclusion of the imaginary unit in the argument, and simply refer to the
power spectral density as S, (w), and so on.

We observe that, since the autocovariance is real and even, its bilateral Laplace trans-
form is even; that is,

S:(s) = Sc(—s).
Furthermore, when s = jw, the power spectral density has the property

Se(—w) = $*(w).

Filtering of stochastic processes

Let A, be the impulse response function of a time-invariant linear system Laplace transform
H (s). We will be concerned (as usual) mainly with causal systems, in which A(z) = 0 for
< 0.

Let y, be the output of a system with impulse response driven by the wide-sense
stationary stochastic process {x,, —o0 < t < oo}. The output of this system, denoted
{y,, —00 < I < 00}, is also a wide-sense stationary stochastic processes. The correlation
functions R, (t), Ry:(r) and R,(r) are given by

Rey(t) = Re(1) * h(—1) Ry () = h(1) * Re(7)
Ry(t) = h(1) * R () * h{(~7).
The equivalent relationships in the spectral domain are
Sey(s) = Sc(s)H (—s) Syx(s) = H(s)S:(s)
Sy(s) = H(s)Sc(s)H(—s).

Lumped systems and processes

A linear system is said to be lumped if it has a rational transfer function; that is, its transfer
function is a ratio of polynomials in s. Thus, if G(s) is a rational transfer function, then it
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is of the form

ITm s —zi)

[T = pd)

where z; and p; are the roots of the numerator (the zeros) and the denominator (the poles).
respectively. We require that n > m.

A stochastic process is said to be lumped if its power spectral density 1s a rational
function. Let {y,} be a lumped stochastic process. Its spectral density function, Sy(w), is
even and nonnegative. We will sometimes refer to S,(s) as the power spectral density,
although the nonnegativeness only holds for s = jw. The evenness and nonnegativeness
of Sy(w), however, means that the poles and zeros of S,(s) have a particular quadrantal
symmetry:

G(s) =

* The poles and zeros are symmetric about the real axis of the complex plane, because
Sy(w) is real.

¢ The poles and zeros are symmetric about the imaginary axis of the complex plane,
because S, (w) is even.

e The imaginary axis of the complex plane has zeros of even multiplicity, becanse S, (w)
is nonnegative.

¢ There are no poles on the imaginary axis, because the inverse Fourier transform cannot
be a covariance function.

Figure 3.13 illustrates the pole~zero structure of a rational power spectral density function.
The region of convergence for a stable inverse of S,(s) is a strip in the complex plane
containing the jw axis. The inverse Laplace transform of S, (s) is of the form

Ry(t) =Y cie™",

=1
which is a sum of damped exponentials for positive as well as for negative . If any coefficient
d; is complex, then its complex conjugate, d*, must also be one of the coefficients. Purely
imaginary d; are excluded since R, must be a correlation function. The coefficients ¢; must
be real.

jw

Figure 3.13: Pole—zero plot of rational 5. (s) (x = poles, o = zeros).
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3.13.2 Two-sided Laplace transforms and their decompositions

The one-sided Laplace transform should be familiar to students of signal processing. Less
familiar, but applicable to our current study, is the two-sided, or bilateral, Laplace transform,
defined as

F(s) = [,two-sided(f(l)) = / f(t>€——.vt dt.

Of course, for a causal function f(r), the bilateral transform is equivalent to the one-sided
transform.

Like the two-sided Z-transform (which should be somewhat more familiar), different
inverses of a given function F(s) can be obtained depending upon the region of convergence
that is selected. We make the following summarizing observations, where f(r) and F(s)
are Laplace transform pairs.

1. If the region of convergence includes the jw axis, then the inverse transform f(¢) is
stable.

2. If the region of convergence is to the righr of all poles of F(s), then the inverse f(z)
is causal. That is, the region of convergence is a region of the form Re(s) > Re(p),
for all poles p of F(s). Conversely, if f(¢) is a causal, stable function, then there are
no poles in the RHP.

3. If the region of convergence is to the left of all poles of F(s), then the inverse f(t)
is anticausal. Conversely, if f (1) is an anticausal, stable, function, then there are no
poles in the RHP.

4. If the region of convergence is neither to the right nor to the left of all of the poles,
the inverse transform is two-sided.

Some simple examples will demonstrate these concepts.

Example 3.13.1 1. The transform F(s) = 1/(s + @), « > 0, has its poles in the LHP, and the
region of convergence to the right of the poles contains the jw axis, indicating that f(¢) is
stable. In fact, the inverse (one-sided) Laplace transform is f(¢) = e™*u(t), a stable, causal
function.

2. Let f(t) = —e*u(—1). Then the two-sided transform of F(s) is

1
F(s) = .
s — o

with region of convergence Re(s) < Re(a). If Re(a) > 0, then f(¢) is stable, and F(s) has no
poles in the LHP.
3. Let
20 I 1

F(s) = = — .
() a?—s? s+a s—«

The region of convergence of F(s) containing the jo axis has poles both to the right and to
the left, hence the inverse using this region of convergence is stable, but not causal. In fact, it

~atjt}

can be verified that the inverse corresponding to this region of convergence is f(¢) = e™*"!,

4. Suppose

1 .
F(s) = e, a>0, x>0
a+s

This is nor the transfer function of a lumped system. Let the region of convergence be
Re(s) > —a, which includes the jw axis and hence is stable. The stable inverse transform
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of F(s)is
F) = et + 1) = e e ult + 1),
which is not causal. The causal portion of this function is
fOu@y = e e ulr).

This causal function has Laplace transform

ke

€
f(t)u(f)<~+5+a- 0]
Canonical factorizations
Let {zy, ..., zn} be the LHP zeros of a lumped system F(s), and let {p, ..., pm} be the

LHP poles of F(s) for some Laplace transform function F(s). We may then express F(s)
as

F(s) = FY(s)F ™ (s), (3.66)
where
Hr'nzl(s - Z;)
Fris) == 222
(s) TS

Then, since the jw axis is to the right of all the poles of F*(s), the stable inverse Laplace
transform of F*(s) is causal.

For a power spectral density §,(s) with LHP zeros and poles {z;,...,z,} and
{P1, ..., Pm}, respectively, the zeros and poles occur in mirror images, so that S,(s) has
the canonical factorization

Sy(s) = S;(S)S;(S),

where

H?;l (s —2z)
H?:l(s —= pi)
S7(s) is often called the canonical spectral factor of Sy(s). Since S7(s) has all of its
pbles and zeros in the LHP, its reciprocal, W(s) = 3‘*1'(}‘)’ also has its 'poles and zeros in
the LHP. Functions that have both poles and zeros in the left-half plane are said to be of
minimum phase, and such functions may be viewed as transfer functions of causal systems
that possess the property that their inverse is also causal. Thus, we may view {y,} as the
output of a linear system with transfer function $7 (s), driven by a white noise, {v;}, as
illustrated in figure 3.14. We take the spectral density of the white noise process {v,} to be
unity (S, (s) = 1), so the spectral density of {y,} is

Sy(s) = ST (5)8,(s)ST (=5) = 57 (s)S] (s).

57(s) = S7(s) = S (~s).

which agrees with the canonical factorization (3.66).

Since Sj (s) 1s causally invertible, we may also view {v,} as the output of a causal and
causally invertible linear system with transfer function 5—.‘(—3) driven by {y,}, as illustrated
in figure 3.15.

The relationship between {y,} and {v,} is very important. Since the transfer function
S:’ (s) is causal, we can obtain v, from {v,, @ < t}; and since the transfer function gl(; 15
causal, we can obtain y, from {v,, & < 1}. Thus, {y,, & < t}and {v,, @ < 1} contain exactly

the same information—nothing is lost or destroyed as a result of the filtering operations.
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Vr Y

T O -

Figure 3.14: y, as the output of a linear system driven by white noise

Y 1 Vr
STy

Figure 3.15: v, as the output of a linear system driven by y,.

We will say that two signals that enjoy this relationship are informationally equivalent.!
The main difference between the two processes is that, while y, may be dependent on
{yo. @ < t}, v, is not dependent on {v,,a < t}, v,. In other words, {y,} is a correlated
process, and {v,} is an uncorrelated process. The action of filtering by S;L‘(S) is to decorrelate
{v:} by, essentially, removing all redundant information (that is, the part y, that can be
obtained as a function of y, for @ < 1) from vy, at each time . The process {v,} is called the
innovations process, and contains only new information about y, that cannot be predicted
from past values. Since v(¢) is a white-noise signal, we say that the filter W(s) = 5"‘1(—5 is a
whitening filter. The process {v,} is a very special white-noise process, since it represents
exactly the same information as is contained in the original signal.

Additive decompositions

Let f(r) be any function whose bilateral Laplace transform, £{f(¢)}, exists in a region
containing the jw axis. The auto- and cross-correlation functions associated with lumped
processes and transfer functions of lumped systems all satisfy this constraint. We may
decompose f(¢) into its left- and right-hand components

f@) = f@Ou@) + f@u(-t) - f(0),

u(t)___{é t>0

where

t <0

is the unit step function. The bilateral Laplace transform of f(r), denoted

o0

F(S)=E{f(l)}=/ f(ne *ds,

—0C

may be decomposed into
F(s) = {F()}+ +{F()}-,

where
o

{(F))e = L{fOu®)} = fye™'de

J 0=

"This notion of information is not the same as either Shannon information or Fisher information.
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is the Laplace transform of the causal part of f(r), and
0—
{F()}- = L{f(Du(=1)} = fwedr
~00
is the Laplace transform of the anticausal part of f(r). Here 0— signifies taking a left-hand
limit (this is necessary to account for impulsive autocorrelation functions).

Since f(t)u(r) is aright-sided function, the region of convergence for its Laplace trans-
form includes the RHP; that is, the transform {F (s)}. has no poles in the RHP. Similarly,
since f(r)u(—r) is an anticausal (left-sided) function, the region of convergence for its
Laplace transform includes the LHP. Thus, for rational F(s),

{F(s)}+ = L{impulsive functions} + Z {partial fraction expansion of F(s)},
LHP poles

{F()}. = Z {partial fraction expansion of F(s)}.
RHP poles

Despite the confusing notation, the canonical factorization and the additive decompo-
sition should not be confused: the canonical factorization is a multiplicative decomposition.
For a function F(s), we have the canonical factorization

F(s) = FT(s)F~(s),
and the additive decomposition
F(s) = {F(s)}+ + {F(s)}-.

and it is not the case that F¥(s) = {F(s)}.. What is true is that they both have poles only
in the RHP, and causal inverse transforms. (Note that the canonical factorization places
the + and — in the exponent, while the additive decomposition placed the + and — in the
subscript.)

Example 3.13.2 Let

f(ty=e™",
where « > 0. Then
Fls) = 20 1 1
s Taet—s5? T s4a s—a
This has the canonical factorization
200 /20
Fis) = 222 = FH(s)F(s).
s+oa-—s

The causal part of f(r)is f(r)u(r), which has Laplace transform

1
{F(s)}e = T Re(s} > —a,

leading to the additive decomposition

s+ o s -

F(s) = = {F(s)}}e + {F(s)}..

4

Example 3.13.3 Let S (s) be the canonical factor with its poles and zeros in the RHP, of the form

S (5) = s =35+ 2 N 4y — 10
e Tsl 75412 §2—Ts+2
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We desire to find {S; (5)}+, the transform due to the causal part of the inverse Laplace transform of
S, (s). We first find

LTS (5)) = 8(1) — 6e¥u(—1) + 2™ u(—1),
so that the “causal” part is simply 8(¢). Taking the transform of the causal part, we thus have

{S7)}h =1 O

As this last example shows, {S; (s)}+ may have a nonzero part. In fact, if S, (s) is rational,

0]
Sy (s5) = 2G)

for polynomials B(s) and w(s) of equal degree, then with a little thought, we realize that

(S, = 1. (3.67)

3.13.3 The Wiener-Hopf equation

Let x, and y, be zero-mean, stationary stochastic processes, and let )V, = {y,, o < t} be
observed. Suppose we wish to estimate x,.;, given V,. If A > 0, we wish to predict future
values of x, given past and present values of y,. This is called the prediction problem. If
A = 0, we wish to estimate x, in real time; this is called the filtering problem. If A < 0, we
wish to estimate the signal A time units in the past; this is called the smoothing problem. The
prediction and filtering problems are causal, and can be implemented in real time, while
the smoothing problem is noncausal, and cannot be implemented in real time.
We first formulate the integral

1
x,Hz/ h(t, s)ys ds, (3.68)

—oC

where h(t, 5) is to be chosen such that
E(xpn — 22) (3.69)

is minimized and h(z, s) is causal (that is, h(f,s) = 0 for t < s). The integral in (3.68)
is to be taken in the mean-square sense. We address this problem by appealing to the
orthogonality principle, as we have done so many times, whereby we require

El(xiin — £i20) Y] =0, Yo <t (3.70)

that is, the estimation error must be perpendicular to all data used to generate the estimate.
This condition implies that
1

Exi1¥e = EXr0 Y0 =/ h(t, T)Ey.y, dr, Yo <t,

—0
or
I
ny(t+}»—~0')=/ h(t, )R, (x — o) dr, Yo <t.

-
We can render this expression more simply by making some changes of variable. First, let
« =t — t; then

o
ny(t+k~—a)=/ h(t,t —a)Ry(t —a — o) da, Yo <t.
0
Next, let £ = r — o, to obtain

ny(5+k)=/ hé+o,§+0—-a)R(§ —a)da, Y& > 0.
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Since the left-hand side of this expression is independent of o, the right-hand side must also
be independent of o, which in turn implies that h is not a function of . The only way this
can happen is if & is a function of the difference of its first and second arguments; that is, if
h is a function of o only. So, we introduce the (abuse of ) notation h(z;, z2) = h(z; — z2)
and, reverting back to ¢ as the independent variable, we obtain

Rey(t+ 1) = / h(T)R,(t — 1)dT, Ve >0, (3.71)

the celebrated Wiener—Hopf equation.

Equation (3.71), describing the solution of an optimal filter in continuous time, should
be contrasted with (3.56) of chapter 3. In chapter 3, a set of matrix equations is obtained,
whereas in the present case an integral equation is obtained. However, the structure in both
cases is equivalent: the optimal filter coefficients are operated on by the autocorrelation of
the input function to obtain the cross-correlation between the input and output.

Once the Wiener-Hopf equation is solved for A, then

t
fry = / Wt = T)y, de 3.72)

o0
represents the minimum mean-square estimate of x,4,. Solving (3.71), however, involves
more than simply taking Fourier or even bilateral Laplace transforms. To see why this is
so, take the Laplace transform of both sides of (3.71):

oG o o
/ Roy(t + My "dt = / / R(T)Ry(t — T)e ™ " Ve ™ dr dt
0 0— -

oo -0
= / e *Th(t) Ry(t — e dt
0 0

:/' e“”h(r)/ Ry(c)e*do dr, (3.73)
0 -1

where we make the change of variable o = r — 7 for the last integral. We observe that the
right-hand side of (3.73) is not equal to the product of the Laplace transforms of # and R,
since the limits of the inner integral depend on v. This condition arises from the requirement
that r > O in (3.71). If we did not worry about physical realizability (that is, causality), we
could relax the condition that A(r) = 0 for r < 0. In this case only, we may obtain, via
Fourier analysis, the result that the optimal filter transfer function is given by

Sxy(@) |
Sy(w)’
the resulting impulse response function is noncausal unless x; and y, are white. For appli-

cations where causality is not a constraint, this result is perfectly valid. For example, let x,
be an image (here, 1 represents spatial coordinates), and suppose we observe

H(w) =

(3.74)

Vi =X + v,
where {v;, —00 < 1 < oc} is a white-noise process with R, (1) = o?8(1). It is easy 1o see
that Ry(t) = R.(t) + 028(r) and R,, (1) = R (1), 50
Se(w)
Se(w)+o?
This result admits a very intuitive interpretation. Over frequencies where the signal energy
is high compared to the noise, the filter acts as an identity filter and passes the signal without

change. Over frequencies where the noise power dominates, the signal filter attenuates the
observation.

H(w) =
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In some contexts, (3.74) is called a Wiener filter, but that is not quite accurate. More
precisely, the Wiener filter is the solution to (3.71), and more sophistication is needed to
obtain that solution. The solution comes via the celebrated Wiener—Hopf technique.

As we examine (3.71), we observe that we could solve this equation with transform
techniques if R,(0) = 0 for o < 0. Unfortunately, since R, is a correlation function, this
situation generally will not occur. One notable and important situation in which this does
occur, however, is when {y,} is a white-noise process, for then R, () = 4(¢). In this case,
the solution to (3.71) is trivial:

Rott+2) = [ h@st —ndr=he), =0 (3.75)
0
SO
Ryt +2)y 20,
ht) = {O f <0 (3.76)

3.13.4 Solution o the Wiener-Hopf equation

We will present two approaches to the solution of the Wiener-Hopf equation. The first is
based upon careful consideration of the locations of poles. The second is based upon the
innovations representation of a process. The second is easier, pointing out again the utility
of placing signals in the proper coordinate frame (i.e., a set of orthogonal functions).

Theorem 3.3 The solution to the Wiener-Hopf equation,

Ry(t+2) = / h(T)R,(t — T)dT, vr > 0, (3.77)
0—
where
h(t) =0, t <0,
is
1 Sey(s)e*
H(s) = S;'(s) { S;(s) } . (3.78)

Proof We first observe that since h(z) is to be stable and causal, its bilateral Laplace
transform will have no poles in the RHP. The transform of R,,(¢) is

Sxy(s)z/ Ry (e~ dr.

-0

Consequently,

oG
Sxy(s)e“ = es;‘/ Ry (r)e ™ dr

o3

o .
= / R (r)e*Pdr

-

o

=/ Ry (t + M)e™"dt, (3.79)

—oC

where we have made the change of variable t = r — X in the last integral.
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Let
g(t) = ny(t + A) “/ h(f)Ry(l —1)dr.
a—

From (3.77), the right-hand side of this equation is zero for ¢t > 0, so

s =1 oy

unknown 1 < Q0.

We will establish our result by examining the bilateral Laplace transform of g(z). Since g(r)
is an anticausal (left-sided) function, its region of convergence 1s the LHP; consequently
G (s) has no poles in the LHP. Taking the bilateral Laplace transform of g(¢) and using
(3.79),

G(s) = Syy(s)e™ — H(s)Sy(s).
Now, observing that S, (s) = S)T (S)S; (s) (canonical factorization) and dividing both sides
of this equation by S; (s), we obtain
G(s) Sey(8)e'
S S )

~ H(s)S] (s). (3.80)

Since G(s) has no LHP poles and ST (s) has no LHP zeros, GG) has no LHP poles.
p y 6 p

Furthermore, H (s) has no RHP poles, and neither does S;_* (s), so the product H (S)S;’ (s)

has no RHP poles. The quantity Syls)e? however, may have poles in both the RHP and the

5 N
LHP. The only way equality can obtain is for the LHP poles of —S—Si—f% to be equal to the

Sey(sret .
S that is,

poles of H (S)S;' (s). Let ¢ (1) be the inverse Laplace transform of

1 joo Sx» sh
Pt) = —— ———)—(—S)—e——e”ds.
2nj —~joo S;(S)

¢ () will, in general, be a two-sided function. The LHP poles of the bilateral Laplace
transform of ¢ (1), however, may be obtained by taking the Laplace transform of ¢ (r)u(r).
In other words, applying the {-}. operation to both sides of (3.80) yields

0={§4&i} — H()S (),
SO |

and, consequently,

i = L [ Sate
BIOR RN -

It may be useful to compare the causal Wiener filter,

. Syy(s)et
H(s) = S;?(s){ S75) }+,

with the noncausal “Wiener filter,”

Sev(s)
Su(s)

We note that, except for the {-}, operation, they are the same, so the structure is not s¢
foreign as it might seem upon first exposure.

H(s)=
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Let v, be a white-noise process, and let us use this process to form the estimate £, + A.
The second derivation of the Wiener filter is based upon two observations:

» The Wiener—-Hopf equation is trivial to solve if the observed process is a white noise,
since (repeating (3.75) and (3.76),

o0
Ry (t +4) = / h(t)8(t —t)dr = h(r), Vr=>0,
Jo

50

Ry +2) 20

ho) = {o 1<0°
¢ A stationary lumped process may be transformed into a white noise without loss of

information by means of a causal and causally invertible transform (see figure 3.15).

These two observations permit us to adopt a two-step procedure: (a) first, we “pre-
whiten” the observed signal, {y}, to create an innovations process, {v;}; (b) we then apply
the trivial Wiener filter to the pre-whitened signal. In other words, the Wiener filter can
be obtained by cascading the pre-whitening filter and the Wiener filter for white-noise
observations, as illustrated in figure 3.16.

e 1 Vi ) Rien
E— 6 {Sey(s)e* )y

Figure 3.16: The optimal filter as the cascade of a pre-whitening filter and a Wiener filter
with white-noise inputs

From our earlier development, the pre-whitening filter is simply W(s) = f*l(ﬁ’ the
. . . . ¥ .
canonical spectral factor of §;(s), and the optimal filter based on white-noise observations

is {Sev(s)e )4, 80
His) = 1 {Sx\,(s)e“ }
CSHe L Sy Sy

1 SA
M {va(S)e }+ )

since S (s) = 1.

The only thing left to compute is {S.u(s)e*},. But

va(t) = Exa-(—!va = F [xaw/ w(ﬂ))’a~ﬁ dﬁ]

- / W(B)E [Xassveup] dB = / W) Rey (i + B)dB = Rey (1) % w(—1),

o O
where w(z) is the inverse transform of W (s). Consequently,

1 1
Sev(8) = Sxy(S)W(_S) = Sry(s)m = S,ry(s)g;__(‘s_)y
and therefore
Hs) = 1 Sey(s)e*
EEHOREERON O

which is the same formula we obtained with our original derivation.
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3.13.5 Examples of Wiener filtering

Example 3.13.4 Suppose x, = y, and & > 0in (3.68). This is a problem of pure prediction: we wish
to obtain an expression for x4, given {y,, @ < r}. Since 5,(s) = 5:(s) = S, (s), (3.78) becomes
1

SH(s)

H(s) = {S:,’(s)eS)‘}+,
Now let y, be an Ornstein—Uhlenbeck process, which is a process {y,, —00 < 1 < o¢} with zero-mean
and with correlation function
Ry(t) = e~
witha > 0. Then

V2a V2a

8§,(5) = —— §H(s) = ——.
y() a? — 52 ) a+s
Our task is to compute {;—*fée“h. Since this transform is not a rational function of s, we cannot use
partial fractions directly, and must appeal to the definition by finding the inverse Laplace transform,
then taking the causal part:

J2ae™

a+s

F(s) =

and specifying the region of convergence as Re s > —a. Taking the (stable) inverse Laplace transform,
we find

F() = V2ae ™ e ™ u(r + 3),
which is not causal. We find that the causal part of f(r) is

FOu@) = v2ae %™ u(1),

and so, taking transforms,

/2 A
{F)e = yeee , Res > —a.
s+ o
Therefore,
1 + 5k
H(s) = Sj.(s) {Sv\'e }+

_a+s 26"
B J2a o+s

—ah

=¢

so the impulse response function of the optimal filter is

h(t) = e **8(1),

and the optimal predictor is

Xy = / e 8 (1 — Tix,dr

Thus, the predicted value of x, decays from its last observed value exponentially at a rate governed
by the correlation time-constant. o

Example 3.13.5 Filtering in White Noise. Let

Y, = Xt U,
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S,,(S) = ],
CbshH
S (5) = ———,
(s) )

where b(s?) and a(s*) are polynomials in s? with the degree of b(s?) strictly lower than the degree
of a(s*). Furthermore, assume R, (¢) = 0. Direct calculation yields

S.ry(s) = SX(S)
Sy(s) = S(s) + 1,

SO

N Sey(8)
5 {S;m }
S,(s)—1

S7) ),

1 . 1
30 {S>' (s) = 5-(5) }+

1
S7(s)

i

—

i

Now, observe that

_b(sH L a(s?y + b(s?)
T a(sh - a(s?) ’

S, (s)

Since the degree of b(s?) is lower than the degree of a(s?), the degrees of the numerator and denomi-
nator of S, (s) are the same, say of degree 2n. The canonical factors of S, (s) will therefore be rational
functions with numerators and denominators of degree n. Thus, S (s) is of the form

/_5:(;?.2=1+Z_(§_)_

50 =05 als)

since the leading coefficients of both 8(s) and «(s) are the same. Since the rational function 52‘3 has
all of its poles in the RHP, we immediately obtain (see (3.67))

1
{S;(s)}+21‘ (3.81)

1 . !
9= 56 {{S*' ©}. - {5;(5) }J

1
I - .
S5 )

Thus,

i

(3.82)

O
Example 3.13.6 As an application of the results of the previous problem, consider the case when

s$-9 G+~
st 55244 (243s+2s2—3s+2)’

S.(s) =

so that

PRSP i PR L LR bR Bl LRI LARE BTN
T A 55244 s24+35+2 s2—35+2 T ’
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and, thus,
I et e S V5-2
S;L(S)"Sz—(x/g%-l)s—%-«/g 2 (/54 Ds 4+ /5

The inverse Laplace transform of 1/57 (s) is anticausal, except for the constant term 1, so that, as in
(3.81), the portion due to the causal part is

L L o)
{S;<s>}+"”{a<s>}f

1 fseys+5-2
Sj(s‘)_sl+(\/§+l)s+\/§l o

Then

H(s) =1

3.13.6 Mean-sguare error

The error associated with the Wiener filtering problem is given by
Fren = Xpex = X

with

t
X =/ h(t — 1)y dr,

o0
where

h(t) = L7H(s)},

which is the inverse Laplace transform of the optimal transfer function given by (3.78). The
covariance of the estimation error is

EXIZ-M = Elxi 0 — fr+;~]2 =E ’}Ym‘z - /

1

—00

2
h(t — )y, dr} . (3.83)

Since £,.; is a function of {y,, o < t}, the orthogonality condition (3.70) requires that the
estimation error be orthogonal to the estimate, that is,

1
E{[XH-}»_/ h("'f)yrdr} jl+)\}:05
-
50 (3.83) becomes

1
Efrzw\ =E { [Xzﬂ —/ h(t — 1)y df} Xxﬂ}
hade o}

t
= R.(0) —/ h(t = 1)Ry(t — 1 = X)dr

o

ot
:R.X(O)—'/ h(t = T)R (1 — T + 1) d7t

= R.(0) - / h(a) R\ (o + M) da,
JO

where the last equality holds by making the change of variable ¢ =1 — 7.

3.13.7 Discrete-time Wiener filters

The Wiener filter theory also applies in discrete time. We have already seen, the Wiener filter
results for FIR filters. We now apply the notion of spectral factorization to the Wiener—Hopt
equations with causal lIR filters. We summarize the results for this development.
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Canonical factorization

Let S,(z) be the power spectral density of a discrete-time random process. Then S,(z) has
poles inside and outside the unit circle. The canonical factorization is

S,(2) = §7(2)S; (2),

where 87 (z) has all of its poles and zeros inside the unit circle.

Additive decomposition

Let ft].t=...,—1,0,1,..., be adiscrete-time function. Then

flel = flelule]l + flelul—k] = f1O].

where u[t] is the discrete-time unit-step function. The Z-transform of f[¢] is

Fy= ) flnlz™

A=0C
-1 oC
= > flal" 4> flale™"
n=-—0C n=0
{FlD)}- {F{D},

Wiener—Hopf equation

Let x, and y, be zero-mean, jointly stationary discrete-time stochastic processes. We wish
to estimate x,.,, given {y;, j < r}, with an estimator of the form

!
Krpy = Z hlt — iy, A an integer > 0,

[z=—00

where A(7) is the solution (from orthogonality) to
0
R lt + pl = Zh[i]Ry[t —il], t>0.
=0
To solve this equation for & we follow the Wiener-Hopf technique of defining the function

glt] = Ryt +21 =D h[iIR,[t —i],  allt,
[ =0

_Jo t >0,
" lunknown ¢ < 0.

Since g[¢] is an anticausal function, its region of convergence is the interior of the unit
circle—it has no poles within the unit circle.
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Taking the bilateral Z-transform of g{t],

G@ = Y Ryln+il™+ H@)S, ()

Rem—OC

=27 Y Ry + H@)S,(2)

JE=—00
= 7"S,,(2) + H(2)S,(2). (3.84)
The canonical spectral factorization of S, (z} is of the form
S5,(2) = §§ ()} (2),

where S, (z) has poles and zeros outside the unit circle and S. y(z) has poles and zeros
inside the unit circle. Dividing both sides of (3.84) by S, (z) and applying the {-}.. operation

to both sides yields
I 25,@)
H(z) = {——7—} ;
S5 | S7() .

the discrete-time Wiener filter.

Example 3.13.7 Let {y,, —oo < 1 < oo} be a discrete-time, zero-mean, wide-sense stationary
process with correlation function
o=t (1)
A1) = — - .
! 3\2

Let x, = y,, and predict x,, for A > 0.
We seek a predictor of the form

o

=Y W=y, 220

[e=toate <}

We have R, [r] = R,,[t] = R,[r], and

o0 -1 - o0 n
S@= Y Rl =Y 3 G) +Y % G)

fow oc 2
4 r2NJ 4 4 /1 4 1 I
= lz] — % ol e = -1+
Z3(2> 3+Z3(2> ¢ ’3[1—§ ;_:_J
==t n=0 - 2z
R 1
IR
z
5@ st

By long division, we obtain

27441 N I,
27 — 1 2"
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We may obtain the inverse Z-transform as the coefficients of 7. The operation {-}. is effected by
discarding all samples before n = 0 and returning to the transform domain:

28,,(2) L1\ ., 1 1
G e ) e

n=0) A

and

H(z) = 5T

¥

hie)

3.14 A dual approximation problem

The approximation problems we have seen up till now have selected a point from a finite-
dimensional subspace of the Hilbert space of the problem. In each case, because the solution
was in a finite-dimensional subspace, solving an m x m system of equations was sufficient.
In some approximation problems, the subspace in which the solution lies is not finite
dimensional, so a simple finite set of equations cannot be solved to obtain the solution.
There are some problems, however, in which a finite set of constraints provides us with
sufficient information to solve the problem from a finite set of equations.
We begin with a definition.

Definition 3.2 Let M be a subspace of a linear space S, andletxy € S. Theset V = xo+ M
is said to be a translation of M by xq. This translation is called a linear variety. n

A linear variety is not in general a subspace.

Example 3.14.1 Let M = {(0,0,0), (0, I, ®)} in the vector space (GF(2))° introduced in exam-
ple2.12.1,and let xg = (1, 1, 1) € §. Then

x+M={(1101.(1,0 D}

s a linear variety. >

A version of the orthogonality theorem appropriate for linear varieties is illustrated in
figure 3.17. Let V = xp + M be a closed linear variety in a Hilbert space H. Then there
is a unique vector vp € V of minimum norm. The minimizing vector vq is orthogonal to
M. This result is an immediate consequence of the projection theorem for Hilbert spaces
(simply translate the variety and the origin by —xp).

V=xp+M

Yo

0

Figure 3.17: Minimum norm to a linear variety
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Let § be a Hilbert space. Given a set of linearly independent vectors y;, ¥z, ..., ¥m € S,
let M = span(y,,¥2, ..., ¥m). The setof x € S such that
x,y1)=0
(X,y2) =0
(X, ¥m) =0

is a subspace, which (because of these inner-product constraints) must be ML Suppose
now we have a problem in which there are inner-product constraints of the form

X, y1) = ay
Xy =a

(3.85)
X, ¥im) = G-

If we can find any point x = X that satisfies the constraints in (3.85), then for any v € M+,
X0 + v also satisfies the constraints. Hence the space of solutions of (3.85) is the linear
variety V = xg + M*. A linear variety V satisfying the m constraints in (3.85) is said to
have codimension m, since the orthogonal complement of the subspace M+ producing it
has dimension m.

Example 3.14.2 In R%, let y; = (1,0,0) and y; = (0, 1,0), and let M = span(y,, ¥2). The set of
points such that

x,y1) =20 (X, y2) =0

span(0,0, 1) = M*.
Now, for the constraints

X, ¥} =3, (X.y2) = 4.

observe thatifx = (3. 4, s) forany s € R then the constraints are satisfied. Theset V = (3,4, 0) + M*

is a linear variety of codimension 2. .

We are now in a position to state the minimization problem.

Theorem 3.4 (Dual approximation) Let {y1,¥a.....¥m) be linearly independent in a

Hilbert space S, and let M = span(yi. ..., Ym). The element x € S satisfying
X, y1) =a
X.¥2) =@
. (3.86)
(X, ¥m) = an

with minimum norm lies in M, specifically,

m

X = Z Ciyi.

i=1
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where the coefficients in this linear combination satisfy

yoyb oy o Oe ¥ @ aj
Yoy Y.y o e Y2l a2 as

. = (3.87)
<yl»an> ()’2-}’m> 4)’m,Ym> Cm Am

Proof By the discussion above, the solution lies in the linear variety V = x5 + M* for
some Xp. Furthermore, the optimal solution x is orthogonal to M*, so thatx € M+ = M.
Thus, Xg is of the form

m
X = E Ciyi-
i=1

Taking inner products of this equation with y{, ¥3, ..., ¥, and recognizing that, for the
solution, (Xg., ¥:) = a;, we obtain the set of equations in (3.87). O

Example 3.14.3 For the linear variety of the previous problem, let us find the solution of mini-
mum norm. Using (3.87), we find x = (3,4, 0) to be the minimum norm solution satisfying the
constraints. 0O

Example 3.14.4 We examine here a problem in which the solution space is infinite dimensional.
Suppose we have an LTI system with causal impulse response A(¢f) = e~ + 3¢™¥, in which the
initial conditions are y(0) = 0 and y(0) = 0. We desire to determine an input signal x(z) so that the
output y(r) = x(r) % h(t) satisfies the constraints

i
y() =1 / y(ydt =0
0

in such a way that the input energy j;) lx(t){* dt is minimized. Writing the convolution integral for
the first output, the first constraint can be written

1
/ (e7 1T L 3o~ MI- e (1Y dr = 1.
o

Using the inner product

H
(f.8)= / fmig(rydr,
0
the first constraint can be written as
(X~ }’I> = 17
where
() = e HImT) 3 H-T)

The second constraint can be written using the integral of the impulse response (see exercise 3.14-27),

1
5 3 1
k(t) = / h(r)dr = = — Ze™ — —¢7%.
o 4 4
Then the second constraint is

(x» }’2) = 0»
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where

3 1
Dedi-ny 2 -20-m)
4 2

The solution xo(r) must lie in the space spanned by v, and y,

5
(1) = i

xg = 1 yi{t) + caya(i).

Then the equation (3.87) becomes
(yi.»1) oy e} _ 1236756 0.682808| ¢y |1
(yi.y2) (2, y2) | [ea| T 10682808 0.818254] |co| ~ 0]
which has solution

[er ) =10.5562 —0.4642]. O

3.15 Minimum-norm solution of underdetermined equations

The solution to the dual approximation problem provides a method of finding a least-squares
solution to an underdetermined set of equations.

Example 3.15.1 Suppose that we are to solve the set of equations

12 =3P —4 ‘
13- s
X3
1
X = 2]
3

However, observe that the vector v = [1, 1, 1]7 is in the nullspace of A, so that Av = 0; any vector

of the form
1 1
20 +1 |1
3 1

for: € R is also a solution to (3.88). O

One solution is

When solving m equations with n unknowns with m < n, unless the equations are incon-

sistent, as in the example
12 3T 4
2 4 6 |2 T )

X3

there will be an infinite number of solutions.

Let x be a solution of Ax = b, where A is an m X n matrix with m < n, and let
N = N(A). Then, if x4 is a solution to Ax = b, so is any vector of the form xq + n,
where n € N. If the nullspace is not trivial, a variety of solutions are possible. In order to
have a well-determined algorithm for uniquely solving the problem, some criterion must be
established regarding which solution is desired. A reasonable criterion is to find the solution
x of smallest norm. That is, we want to

minimize  [Ix/|

subject to Ax = b.
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The minimum norm solution is appealing from a numeric standpoint, because represen-
tations of small numbers are usually easier than representations of large numbers. It also
jeads to a unique solution that can be computed using the formulation of the dual problem
of the previous section.

Let us write A in terms of its rows as

vl
¥
A= 1
Y
Then we observe that the equation Ax = b is equivalent to
y {1?( = b
yix =by
yix = b,.

Our constraint equation therefore corresponds to m inner-product constraints of the sort
shown in (3.85). By theorem 3.4, the minimum-norm solution must be of the form

X == i Ci¥i, (389)
i=1
where the ¢; are the solution to (3.87). We can write (3.89) as
x=A"c, (3.90)
where
AY=Tyy v2 o ¥ml.

Furthermore, in matrix notation we can write (3.87) in the form

(AAfye =b.

Provided that the rows are linearly independent, the matrix AA* is invertible and we can
solve for ¢ as

c=(AAT) b,
Substituting this into (3.90), we obtain the minimum-norm solution

x = AT(AAT) 'b. (3.91)

Example 3.15.2 The minimum norm solution to (3.88) found using (3.91) is

-1
X = 0 .
1 |
The matrix A7 (AA")~! is a pseudoinverse of the matrix A.

3.16 lterative reweighted LS (IRLS) for L optimization

This chapter has focused largely on L, optimization, because the power of the orthogonality
theorem allows analytical expressions to be determined in this case. In this section, we
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examine an algorithm for determining solutions to L, optimization problems for p # 2.
The method relies upon weighted least-squares techniques, but using a different weighting
for each iteration.

We begin by examining a weighted least-squares problem. Suppose, as in section 3.1,
we wish to determine a coefficient vector ¢ € R™ to minimize the weighted norm of the
error e in

X = Ac+e.
Let W = ST S be a weighting matrix. Then, to find
min e’ We = min e’ ST Se,
we use (3.24) to obtain
c=(ATSTsA) AT ST sx. (3.92)

Now consider the L, optimization problem
; _ | - Ny
min Ix — Acll) = min Z} [x; — (Ae)|”. (3.93)
Let ¢* be the solution to this optimization problem. The problem (3.93) can be written using
a weighting as

m
Z wilx; — (Ae);?
i=1
where w; = |x; — (Ac,?‘)]f"2, producing a weighted least-squares problem which has a
tractable solution. However, the solution cannot be found in one step, because ¢* is needed
to compute the appropriate weight. In 1terative reweighted least-squares, the current solution
18 used to compute a weight which is used for the next iteration.
To this end, let S¥! be the weight matrix for the kth iteration, and let ¢! be the
corresponding weighted least-squares solution obtained via (3.92). The error at the kth
iteration is

el = x — aclt),
Then a new weight matrix S+l is created according to

k41 . KTy (p=2)/2 Hy(p-2)/2 3 (—2)
Slk+ 1 :dlag[}e!l 1!(;; 2)/2 (612]‘(/) /2 lgllr/:”(p 2)/2}.

Using this weight, the weighted error measure at the (k 4+ 1)st iteration is

m
el (SI+INT glk+ilglk+1] Z by — (Aclk+TTy 7.
i=1
If this algorithm converges, then the weighted least-squares solution provides a solution to
the L, approximation problem.
However, itis known that the algorithm as described has slow convergence [45]. A more
stable approach has been found; let

Sl = (AT (SUI)T Sl ) =1 AT (Gl 1T glk+ Ty
and
i = el (1 — e,

for some A € (0, 1]. It has been found [89. 162] that choosing
I

AE=

:pm]
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leads to convergence properties of the algorithm similar to Newton’s method (see sec-
tion 14.4).

One final enhancement has been suggested [43]. A time-varying value of p is chosen,
such that near the beginning of the iterative process, p is chosen to be small, then gradually
increased until the desired p is obtained. Thus

3 k»l))

p™*! = min(p, v p!

is used for some small y > 1 (atypical value is y = 1.5). Algorithm 3.4 incorporates these
ideas.

Algorithm 3.4 [terative reweighted least-squares
File: irwls.m

Example 3.16.1 L, optimization methods have been used for filter design [43]. In this example we
consider an odd tap-length filter

N
H@ =Y hinlz™,

n={}

with N even. The filter frequency response can be written (see section 6.8.2) as
H(e') = 7N Hy(w),

where
N2
He(w) = Z b, cos(wn) = b7 ¢(w).

LESS)

Let | Hy(w)| be the magnitude response of the desired filter. We desire to minimize

/ [H (@) — [Hy()|]” dw.
0

This can be closely approximated by sampling the frequency range at L, frequencies
Wy, Wy, .., @, -1, and minimizing

Ly-1

> H, (@) = [H@)|I"-

k=0

This is now expressed as a finite-dimensional L, optimization problem, and the methods of this
section apply. Sample code that sets up the matrices, finds the solution, then plots the solution is
shown in algorithm 3.5. Results of this for p = 4 and p = 10 are shown in figures 3.18(a) and (b),
respectively. The p = 10 result shown closely approximates L, (equiripple) design. D

Algorithm 3.5 Filter design using IRLS
File: testirwls.m
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Figure 3.18: Magnitude response for filters designed using IRLS

3.17 Signal transformation and generalized Fourier series

Much of the transform theory employed in signal processing is encompassed by representa-
tions in an appropriate linear vector space. The set of basis functions for the transformation
is chosen so that the coefficients convey desired information about the signal. By determin-
ing the basis functions appropriately, different information can be extracted from a signal
by finding a representation of the signal in the basis.

In this section, we are largely (but not entirely) interested in approximating continuous-
time functions. The metric space is L,, and we deal with an infinite number of basis
functions, so somewhat more care is needed than in the previous sections of this chapter.

Finding the best representation (in an L, norm sense) of a function x(¢) as

m
X(1) =Y eipi(n),
i=0
where p;(f) is a set of basis functions, is the approximation problem we have seen al-
ready many times. If the basis functions are orthonormal, the coefficients which minimize
hx — Z'i’;o ¢;pilla canbe found as ¢; = (x, p;). The set of coefficients {¢;, i = 1,2, ..., m}
provides the best representation (in the least-squares sense) of x. The minimum
squared error of the series representation is
m 2 m
=S epi| = lxP = txopi)
i i=1 i=
Since the error is never negative, it follows that
m m
STiel =Yt p)? < Ixl” (3.94)
== i=1
This inequality is known as Bessel's inequality.
The function y_[_, ¢; pi, obtained as a best Ly approximation of x(¢). is said to be the
projection of x (1) onto the space spanned by {p1. p2. .. .. P t. This may be written as

Xprc)j(m ‘[)2”..‘[7,,,)([)‘

Assume that x and {p;} are in some Hilbert space H. If the set of basis functions {p; |
is infinite, we can take the limit in (3.94) as m -+ oc¢. The representation of this limit is the
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infinite series

v =Y cpi).

i=l

m
ym(t) = ZQ‘P:’(T)

i=1
is a Cauchy sequence and the Hilbert space is complete, we conclude that y(¢) is in the
Hilbert space. For any orthonormal set { p;}, the best approximation of x (in the L, sense) is
the function y. We now want to address the question of when x = y for an arbitrary x € H.
We must first point out that by the “equality” x = y, what we mean is that

Since

lx =yl =0,

where the norm is the L, norm (since we are dealing with a Hilbert space). Functions that
differ on a set of measure zero are “equal” in the sense of the L; norm. Thus “equal” does
not necessarily mean “point-for-point equal,” as discussed in section 2.1.3.

We now define a condition under which it is possible to represent every x using the
basis set {p;}.

Definition 3.3 An orthonormal set {p;,i = 1,2, ..., oo} in a Hilbert space S is complete?
if
oC
X = Z (x. pi)pi
i=1
forevery x € §. O

Example 3.17.1 It is straightforward to show (by means of a simple counterexample) that sim-
ply having an infinite set of orthonormal functions is not sufficient to establish completeness. In
L,[0, 21}, consider the function x(¢) = cos t. An infinite set of orthogonal functionsis T = {p,(t) =
sin(nt),n = 1,2, ..., }. In the generalized Fourier series representation

oG

2= apio),

i=1

we find that the coefficients are proportional to
2
(cost,sinnt) = / cos(t) sin{nt)dt = 0.
0

Hence %(t) = 0, which is not a good representation. We conclude that the set is not complete. O

Some results regarding completeness are expressed in the following theorem, which we
state without proof.

Theorem 3.5 [177] A set of orthonormal functions {p;,i = 1,2,...} is complete in an
inner product space S with induced norm if any of the following equivalent statements
holds:

I. Foranyx € S,
o0}
= (x,pi)pi

i=1

*This concerns completeness of the set of functions, which refers to the representational ability of the
functions, not the completeness of the space, which is used to describe the fact that all Cauchy sequences converge.
Some authors use “total” in place of complete here.
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2. Foranye > 0, there isan N < o such that foralln > N,
N

X = Z(x,mpf <€
|

I=1

(In other words, we can approximate arbitrarily closely.)

3. Parseval’s equality holds: fxl? = Z?Z) {x, p,«)zfor allx € §.
4. If {x, p;y = O forall i, then x = Q. (This was shown to fail in the last example.)

5. There is no nonzero function f € § for which the set {p;,i = 1,2, ...} U f forms an
orthogonal set.

For a finite-dimensional space S of dimension m, to have m linearly independent functions

pr.k=1,2,...,m,is sufficient for completeness.

When {p;} is a complete basis set, then the sequence {cy, ¢3, ..., } completely de-
scribes x; there is a one-to-one relationship between x and {c;, ¢, ...}. (Except that x is
only unique “upto” a set of measure zero.) We sometimes say that the sequence {¢y. ¢z, ..., }

is the transform or the generalized Fourier series of x. Writing
¢ = {C},Cz,...,}
we can represent the transform relationship as
X < c

We can define different transformations depending upon the set of orthonormal basis func-
tions we choose. Since each coefficient in the transform is a projection of x onto the basis
function, the transform coefficient ¢; determines how much of p; is in x. If we want to look
for particular features of a signal, one way is to design a set of orthogonal basis functions
that have those features and compute a transform using those signals.

If{p;,i =1,2,...}isacomplete set, there is no error in the representation, so Bessel’s
inequality (3.94) becomes an equality,

el =" leil. (3.95)

i=1
This relationship is known as Parseval’s equality; it should be familiar in various special
cases to signal processors. We can write this as

lxfh = llefl.

where the norm on the left is the L, norm (if x is a function) and the norm on the right is
the [, norm.
For transformations using orthonormal basis sets, the angles are also preserved:

Lemma 3.1 If x and vy have a generalized Fourier series representation using some or-
thonormal basis set {p;, i = 1,2, ...} in a Hilbert space S, with

X ¢ and y< b
then
{x, ¥) = {c, b). (3.96)

Proof We can write

oC o0
X = Zc,p, and V= Zb,»p,v.
i=1

i=]
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Then ~ I
X y <Z CiPis jpj>
o0

H

j=1

Z (3.97)

i=I

where the cross products in the inner product in (3.97) are zero because of ortho-
gonality. O

Example 3.17.2 (Fourier series.) The set of functions which are periodic on {0, 27) can be repre-

sented using the series
X

l jnt
fit)y = Z Cnﬁ;e’ .

Fomm -0

The basis functions p,(t) = /"' /+/2n are orthonormal, since

I
i 0 n#m,
ejﬂx'e ]m! dt — #
o 27 n=m.

2r
1 ,
TaR—p—— (tye " dr.
V2n /o /

By Parseval’s relationship, we have

Then from (3.9),

/' R =l

i} "

More commonly, we use the nonnormalized basis functions y,(t) = /™, so the series is
fn = E bpe’™,
n

absorbing the normalizing constant into the coefficient as

= ——/ f(e ™ dr.

In this case, Parseval’s relationship must be normalized as

2T ? 1 s
/ LF(O1 di = EZW :

0

More generally, for a function periodic with period Tj, we have the familiar formulas
Fy =" b7,

where wq = 27/ Ty, and
o[ .
by = — He " dr,
To/O fne o

Example 3.17.3 (Discrete Fourier transform (DFT)) A discrete-time sequence x[t], t = 0, 1,...,
N — 1, is to be represented as a linear combination of the functions p[t] = (I/W)eﬁ””‘/"", by

N-1
1 )
x[t} = ~——.__N E Ckejzmk/NA
k=0
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The inner product in this case is
N

(], ¥y = > x (11501,

r==0

It can be shown (see exercise 3.17-32) that the set of basis functions {p,[r]} are orthogonal, with

1 kmod! (mod N),
0 otherwise.

(pelt], pilt]) = {

The coefficients are therefore computed by

Nt
I e

[ E x{tle /TN,
N 1=0

More commonly we use the nonnormalized basis functions e/***/¥_ and shift all of the normal-
ization into the reconstruction formula. Then we have

N-1
1 . ;
_ J2mnk /N
x[t] = I EO dye

N1

dy = Zx[t]e"jz”’k/";

£=0

and

which is the usual Fourier transform pair. Parseval’s relationship (under this normalization) is
N-1 g -
2 2
PO
1=0 k=0

3.18 Sets of complete orthogonal functions

There are several sets of complete orthogonal functions that are used in common appli-
cations. We will examine a few of the more commonly-used sets, mostly stating results
without proofs.

3.18.1 Trigonometric functions

As seen in example 3.17.2, the familiar trigonometric functions employed in Fourier series
are orthogonal. They form a complete set of orthogonal functions.

3.18.2 Orthogonal polynomials

As we have seen, one way to obtain orthogonal functions is by means of polynomials.
Different sets of orthogonal polynomials are obtained by using different weighting func-
tions, and the inner product is taken over some given interval. Some kinds of orthogonal
polynomials arise commonly enough that they have been given names.

Let f(r) and g(r) be polynomials, and let / be a domain of interest, [ = [a, b]. The
polynomials f(r) and g(r) are orthogonal with respect to the weighting function w(r) if

(f.8w=0
where

b

(f.g>u;=/ w(r) f()g(r)dr.
Ja

Using the Gram-Schmidt procedure it is possible to orthogonalize any set of polynomials

with respect to any inner product; in particular, the set of polynomials 1.7, 7%, ..., 1" can
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be orthogonalized with respect to the weighted inner product. We will denote a set of
orthogonal polynomials by po(t), p,(¢), p2(¢), and so forth, where the subscript denotes
the degree of the polynomial.

It can be shown that the orthogonal polynomials (properly normalized) form a complete
orthonormal basis for L,fa, b). The proof of this (which we do not present here) relies on
the Weierstrass theorem, which states that any continuous function on an interval [a, b]
can be approximated arbitrarily closely by a polynomial. By this theorem we can establish
a basis for Cla, b]. Extending this to L,[a, b] (which contains non-continuous functions)
makes use of the fact that every discontinuous function over the interval [a, b] is arbitrarily
close to a continuous function.

An interesting fact about orthogonal polynomials is the following.

Lemma 3.2 Orthogonal polynomials satisfy the recursion
[pn(t) :anpn+l([)+bnpn(t)+Cnpn—'l([) (398)
forn=172....

Proof Choose a, so that tp,(¢) — a, p,+1 (1) 1s of degree n,

tp(t) - Gn Prs1 (F) = gn([)~

Then g, (¢) can be written as a linear combination of pg, p1, ..., Pa:

gn(t) =Y dipi(t),
i=0
where the coefficients are obtained by

d; = {ga (1), pi(1)).

But for i < n — 1, the coefficients are zero, since

{tpn, pi) = {Pn, tPi),

and that p, is orthogonal to all polynomials of lesser degree, including tp;. Wheni =n —1
and i = n, the coefficients are not zero,

bn = (gn» pn) Cp = (gns pn—l>~ O

Families of orthogonal polynomials

A variety of types of orthogonal polynomials have been explored over the years. One of
the general motivations for this is that orthogonal polynomials can be used to provide
solutions to particular differential equations. Since these orthogonal polynomials form a
complete orthogonal basis, they can be used to form series solutions for any boundary
conditions and input function. Details of this kind of analysis are not discussed here, but
may be found in applied mathematics or partial differential equations books, such as [259,
177]. However, the differential equations and several common orthogonal polynomials are
presented in the exercises. Another important use of orthogonal polynomials is for Gaussian
quadrature, which is an efficient method of numerical integration. This is also derived in the
exercises; more details can be found in [265]. In this section we examine only two families
of orthogonal polynomials, the Legendre and the Chebyshev polynomials.

Legendre polynomials

The Legendre polynomials are not the most commonly used orthogonal polynomials in
signal processing, but occasional uses do arise. The Legendre polynomials use a weighting
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Figure 3.19: Legendre polynomials po(t) through ps(r) forr € [—1, 1]
function w(r) = 1 over the interval {a, b] = [—1, 1]. The first three are

1 3
PO =1 pO=r pO=r-z poO=c-

Additional values can be obtained using the recurrence (3.98), which specializes for
Legendre polynomials to

1
I n—-1U
2+1P+1()+2 +1,17 1(1).

Figure 3.19 shows po, p1, p2. P3. ps, and ps. Observe that not all polynomials have the
same amount of “ripple.” This is to be contrasted with the Chebyshev polynomials, discussed
next.

1pa(1) =

Chebyshev polynomials

Chebyshev polynomials are orthogonal with respect to the weighting function w(1) = —=—

over the interval [ = [—1, 1]. In particular, if 7, () and T, (r) are Chebyshev polynomials.
then
/ 0 r+#s,
T OHT.(Hdt=<nm r=s5=0, (3.99)
v 5 r=s5#0.
(See exercise 2.8-51) The recurrence relation for Chebyshev polynomials is
Thi1 (1) = 2T, (1) — Ty (1), () =1, T (1) = 1. (3.100)

The Chebyshev polynomials can be expressed as

T, (1) = cos(ncos™" 1. (3.101)

Using either (3.100) or (3.101}, the next few Chebyshev polynomials can be found:
To(r) = 217 — 1 T5(t) = 417 = 3¢ Ta(r) = 81* — 82 + 1.
The leading coefficient of the Chebyshev polynomial 7, (r) is 277}, so that 5 s T (1) s a

monic polynomial. From (3.101), is clear that the zeros of T, (r) are at

2k + 1

[ = COS - k=0,1,..., n~— 1.

2n
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Qver [—1, 1] there are n + 1 extrema (counting the end points) of magnitude | at

k
t::cos—f-, k=201 n.
n

Figure 2.11 illustrates the first six Chebyshev polynomials forr € [—1, 1]. What is remark-
able about these polynomials is that over this interval, each of the local extrema (maximum
or minimum) takes on the value +1. This is an important feature in the Chebyshev polyno-
mials, and accounts for most of their applications. This is called the minimum maximum
amplitude property: the maximum amplitude (deviation from zero) is minimized.

Theorem 3.6 Ofall monic polynomials of degree n, only the polynomial Q,(t) = —2,,—1;[ T.(t)
(the scaled Chebyshev polynomial) oscillates with the minimum maximum amplitude on the
interval [—1, 1].

Proof The proof is by contradiction. Suppose there exists a monic polynomial g,(r) of
degree n with smaller minimum maximum amplitude on [—1, 1]. Let

Pt () = Qn(t) — qn(2).

Since both g, and Q,, are monic, p,- must have degree not exceeding n— 1. The polynomial
O, has n + 1 extrema, each of magnitude 1/2*~!. By assumption, g,(¢) has a smaller
magnitude at each of these extrema, so that p,_((¢) has the same sign as Q,(¢) at each of
these extrema. Note that the n + 1 extrema of T, (¢), and hence Q,(¢), alternate in sign.
Thus pn- () alternates in sign from one extremum of (,(z) to the next. Since there are
n + 1 extrema, there must be n zeros of p,_(t) in [—1, 1]. But p,_;(r) is a polynomial of
degree n — 1, which has only n — 1 zeros, which is a contradiction.

Now suppose that ¢,(t) is another polynomial having the same minimum maximum
amplitude as Q,(¢). If ig, ()] < |Q.(?)] at an extremum, then we again arrive, as before, at
a contradiction. On the other hand, if ¢, (zp) = Q. (#) at an extremum fy, then p,_ (%) =0
and p,_,(t9) = 0. Then p,_,(¢) has (at least) a double zero at #;. Counting the zeros of
Pn—1(1) again leads to a contradiction. )

One application of Chebyshev polynomials is as basis functions in a series expansion,
such as

>0
)= ¢;T;(0).
j=0
This series converges uniformly whenever f(r) is continuous and of bounded variation
in [—1, 1]. Because of the minimum maximum property of Chebyshev polynomials, the
approximate representation up to mth degree polynomials,

m
fO =Y T,
j=0
usually has less error than a corresponding representation using either the basis 1, ¢, . . .,
or the Legendre polynomials.

tm

3.18.3 Sinc functions

The function commonly known as a sinc function,
sin(t)
(t)
can be used to form a set of orthogonal functions

pi(t) = sinc(2B(t — k/2B)). (3.102)

sinc(t) =

w
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It can be shown (see exercise 3.18-39) for the inner product
oo
(f.g)= / fg)de
-0

that (pi(t), pi(t)) = 5158,(_1. If £(z) is a bandlimited function such that its Fourier transform
satisfies

F(w)=20 forw & (—2n B, 2n B),

then, in the series representation

FO = eplr).
k

the coefficients are found to be (see exercise 3.18-39)

o = opd fk/2B). (3.103)
{(Pr. Pic)
This gives rise to the familiar sampling theorem representation of a bandlimited function,
sin(27 B(1 — k/(2B)))

2nB(t —k/(2B))

S =3 fk/2B)
k

3.18.4 Orthogonal wavelets

Recently, a set of functions known as wavelets has sparked considerable interest. Like the
Fourier transform, the wavelet transform can provide information about the spectral content
of a signal. However, unlike a sinusoidal signal with infinite support, wavelets are pulses
which are well localized in the time domain so that they can provide different spectral
information at different time locations of a signal. In doing this, they sacrifice some of
their spectral resolution: by the uncertainty principle, we cannot localize perfectly well in
both the time domain and the frequency domain. Wavelets have another property that make
them practically useful. When used to analyze lower-frequency components, a wide wavelet
signal is used; to analyze higher-frequency components, a narrow wavelet signal is used.
Thus wavelets can (in principle) identify short bursts of high-frequency signals imposed on
top of ongoing low-frequency signals. One of the major principles of wavelet analysis is
that it takes place on several scales, using basis functions of different widths.

There are, in fact, several families of wavelets, each with its own properties and as-
sociated transforms. Not all families of wavelets form orthogonal waveforms. A particular
family of wavelets that has perhaps attracted the most attention is known as the Daubechies
wavelets. These wavelets, which form a complete set, have some very nice orthogonality
properties that lead to fast computational algorithms. The Daubechies wavelets can be un-
derstood best in the context of a Hilbert space, using what is known as a multiresolution
analysis. This involves projecting a function onto a whole series of spaces with different
resolutions. We now present a brief introduction to the construction of these wavelets. Con-
siderably more information is provided in the literature cited in the references, including
generalization in a variety of useful ways of the concepts outlined here.

Characterization of wavelets

Throughout this section we will assume real functions for convenience. Most of these
concepts can be generalized to functions of complex numbers. Suppose we have a set of
closed subspaces of the Hilbert space Lo(R), denoted by ..., V_, Vi Vi, ..., with the
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following properties:

1. Nesting:
VyoviacVy o Vo V-

2. Closure:

closure U Vi | = La(R);
Jel
that is, the closure of the set of spaces covers all of L;(R), so that every function in
L, has a representation using elements in one of these nested spaces.

3. Shrinking:
(Vi =0}
JjeZ
4. The “multiresolution™ property is obtained by the requirement that if f(r) € V;, then
fQ) e V.
5. If f(r) € Vg, then f(t —n) € Vyforalln e Z.
6. Finally, there is some ¢ € Vg such that the integer shifts of ¢ form an orthonormal
basis for Vy:

Vo = span{¢p(t —n), n € Z}.

The function ¢ (¢) is said to be a sca[iﬂg function. The property that ¢(¢) L ¢ (¢t — n) for
n € Z is called the shift orthogonality property.
We will use the notation P; f(¢) to denote the projection of the function f(z) onto V;.

Example 3.18.1 Let
$@) =ul@) —ut - 1) (3.104)
(a unit pulse), and form
Vo = span{¢(t —n), n € Z}.

The set of functions {¢ (¢ —n), n € Z} forms an orthonormal set. Then functions in V; are functions that
are piecewise constant on the integers. Figure 3.20 shows a function f(¢), the projection Py f (t)—the
nearest function to f(¢) that is piecewise constant in the integers—and P_; f (¢)-—which is piecewise
constant on the half-integers. 0

As j decreases, the projection P; f (r) represents f(r) with increasing fidelity.
Let us define the scaled and shifted version of the function ¢ by

bin(t) =271 (27t — k).

The index j controls the scale and the index k controls the location of the function ¢ ;.. If ¢ (1)
is normalized so that ||¢ (1) || = 1, thensois ¢; (¢) forany j and k. Since ¢ (1) € Vo C V_;
and ¢_, 4 (r) form an orthonormal basis for V_,, it must be possible to express ¢(s) as a
linear combination of ¢, 4 (¢):

S() =D hpoix(t) =2 hp2t — k). (3.103)
k k

The set of coefficients in (3.105) determines the particular properties of the scaling function
and the entire wavelet decomposition. Let N denote the total number of coefficients A in
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Figure 3.20: A function f(¢) and its projection onto Vj and V_;

Y

(3.105). In general, N could be infinite, but in practice it is always a finite number. We also
generally assume that the coefficients /i, are indexed so that 4, = 0 for k < 0. Let us define
¢ = ~/2h;. Then we can write

$(1) = (2 —k): (3.106)
k
or, given our assumptions, we can write this more precisely as
N-]
¢() = cap@r—k). (3.107)
k=0

An equation of the form (3.107) is known as a rwo-scale equation.

Example 3.18.2 In (3.107) let us have two coefficients, ¢y = | and ¢; = 1. Then the two-scale
equation becomes

O(t) = ¢(2t) + ¢ (2t — 1).

It 1s straightforward to verify that the pulse in (3.104) satisfies this equation. O

Lemma 3.3 If ¢(1) satisfies a rwo-scale equation (3.106) and ¢(try L ¢(t — n) for all
n € Zwithn # 0, then

> ereiap =28, (3.108)
Proof Using (3.106), we have ‘

/¢(z)¢(z ) dr = /Zcmd)@r k)Y ;020 —n) — jydi
. ]~ -
| :
sy {z } [ o0 ar
T :

k
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In order for this to be zero (because of the orthogonality), the bracketed term must be zero
when j = 0and 2n # 0. Then 3, cici—20 = 280n- O

In going from a projection P;_; f(¢) to a lower-resolution projection P; f (), there is
some detail information that is lost in the orthogonal complement of V;. We can represent
this detail by saying that

Vii=V, & W, (3.109)

where W; = VjL in V;_;. (The direct sum is interpreted in the isomorphic sense.) Thus, W;
contains the detail lost in going from V;_; to V;. Also (as we shall see), the W, spaces are
orthogonal, so W, L W, if j # j.

Now we introduce the set of functions ¥, 4 (r) = 27//2y(27/¢ — k) as an orthonormal
basis set for W, with ¥ (r) € W;. The function ¥ (¢) is known as a wavelet function, or
sometimes as the mother wavelet, since the functions ;¢ (¢) are derived from it. Since
Vo, =Vy® Wyand ¥ (1) € V_,, we have

VO = b ixlt) =2 qp 2t — k). (3.110)
k k

We desire to choose the g, coefficients to enforce the orthogonality of the spaces. It will be
convenient to write

dk - \/_Z_gk.
Theorem 3.7 If {¢p(t — n), n € Z} forms an orthogonal set and

di = (= D¥cappi—i

for any M € Z. then {4; (1)} forms an orthogonal set for all j, k € Z. Furthermore,
ety L g (0) forl = j.

Proof We begin by showing that {/; ;(t)} forms an orthogonal set for fixed ;.

/z—f'w(z“f.r)w(z*fz —k)ydr = /Zdl¢(2u -1 Zd,,,qs(z(u —k) —m)du
i ! m

1
=/<§ Z<~—1>lczMH~z¢(x>>
{

x (Z(—l)"’czw,m +1 =2k ~ m)) dx

(where u = 27/1)

(where x = 2u — [)
1
=3 chcj+2k /¢2(x)dx
j
(by orthogonality, with j = 2M + 1 — )
= §pk. (using (3.108))

Now we show that ¢; x(t) L ¥, . (¢) for all k, m € Z, for fixed j. We have
/ Vjk()jm(t)dt = / 27yt = k)27t —mydr

= /w(u — kYo (u — m)dt (where u = 277¢)
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[ SV i@ =0 =) e = m) = ) du
! J

I

1
5/Z(-U’cwﬂummzcmu +142k —2m — j)dx
! J
(where x = 2u — [ — 2k)

1 5 .
5 E (-1 )1C2M+l-1C1+2k-2m /qb“(l) dt (by orthogonality)
I

It

(3.111)
In the summation in (3.111), let p = m — k, so the summation is

S = Z(_I)ZCZMH»ICI—Z/)»
]

Now, letting j = 2M + 1 — [ + 2p, we can write
S = Z("l)"jcj~2;;62M+1~j = - Z(”l)jCZM+l~jCj~2p = -§.
J J

Since § = — S, we must have

0=5=3 (~D'cousiicr-2. (3.112)
l

establishing the desired orthogonality.

Finally, we show that v, L ., forall j.k,[,m € Zif j # [ and k # m. We have
already established this for j = /. By the multiscale relationship, ¥, (r) € W;. Let j' < J.
so that W, € V;.. But Vi, L Wj., so that ¢, (r), which is in W}, must be orthogonal to
Vix(t). O

Example 3.18.3 We have seen that a scaling function ¢ (1) can be formed when ¢; = ¢, = 1. The
wavelet ¢ (1) corresponding to this scaling function is

Yt) = ¢2t) —¢Q2r — 1).

A plot of ¢ (1) and ¥ (1) is shown in figure 3.21. The function ¥ (7} is also known as the Haar basis
function. O

Lo Ao

¥~

4

Figure 3.21: The simplest scaling and wavelet functions

There are several families of orthonormal compactly supported wavelets. Algorithm 3.6
provides coefficients for several Daubechies wavelets (there exist wavelets in this family
with coefficients of every positive even length). The transform for these coefficients is
called the Dy, where there are N coefficients. Plots of some of the corresponding scaling
and wavelet functions are shown in figure 3.22. We observe that the functions become
smoother as the number of coefficients increases.
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Figure 3.22: Illustration of scaling and wavelet functions

Algorithm 3.6 Some wavelet coefficients [63, page 195]

L..10130261, .

File: wavecoeff.m @—-[ggi]

Wavelet transforms

In the wavelet transform, a function f(r) is expressed as a linear combination of scaling
and wavelet functions. Both the scaling functions and the wavelet functions are complete
sets. However, it is common to employ both wavelet and scaling functions in the transform
representation.

Suppose that we have a projection of f(¢) onto some space V; of sufficient resolution
that it provides an adequate representation of the data. Then we have

FORPf@) =D (f0), ¢jx(1)ju(0).
k
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Commonly we assume that the data has been scaled so that the initial scale is j = 0, so that
our starting point is P f (r). Let us call this starting function fo(1), so that

Fo) = (£), dox (D))o (0).

For the purposes of the transform, we regard the coefficients of this representation as the
representation of f(r). In practice, the set of initial coefficients are simply samples of f(1)
obtained by sampling every T seconds. That is, we assume that (f (1}, ¢o, (1)) =~ f(nT)
for some sampling interval T. Under this approximation, the wavelet transform deals with
discrete-time sequences. (Further discussion of this point is provided in [63, page 166].)
For convenience of notation, let us denote the sequence {{ fy, $0.,(1)}} as {cg}, and let us
denote the vector of these values as ¢’

- T
c0=L8 C‘f C(z) }

In the wavelet transform, we express fo(r) in terms of wavelets on longer scales. For
example, using (3.109) we have Vy = V| @& Wi, so that fo(7) € Vj can be represented as

Fo) = 3" (o) UinOWnn () + > (folt), $1.4 (1)) bral0).

"

Letc! = (fo(t), ¢1.n(1)) and d} = (fo(2), Y1, (1)), and let us denote
HO =D o), $ragia() = crdin

n

and

8511 = (fo) i) = divri,

n

where f; € Vi and §; € W,. Then
Jo(t) = fi(1) +8:(1). (3.113)
Since f) € V) and V| = V; + W,, we can split f; into its projection onto V, and W as

@ =0, $2n(D)@2n ) + D {F1(), Y2 (D) W20 (D)

n
2 2
= E (~n¢2.n+§ dnl//Z.n
n "

= fa(t) + &2(1), (3.114)
where f,(r) € Vs, and 8,(r) € W, and C,f = (fi(1), ¢2.,) and d,? = (fy(1), ¥1,). Substi-
tuting (3.114) into (3.113), we have

Jolt) = 8,(1) + 82(1) + f2(r).

We will use the notation ¢/ and d/ to represent the coefficients ¢/ and d/. respectively.
We can repeat this decomposition for up to J scales, writing f;(r) € V; on each scale
j=12,.... J as

Fi) = fi () + 6,41(0), (3.115)
50
J
Sy =8+ f,(),
=1
The set of coefficients {d'. d>. ..., d’, ¢’} collectively are the wavelet transform of the

function fp(r).
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Figure 3.23: Illustration of a wavelet transform

The computations just described are outlined in figure 3.23. Starting from the initial set
of coefficients ¢, the algorithm successively produces ¢/*! and d/*! until the Jth level is
reached. The set of coefficients {d'. d?, ..., d’, ¢/} is the wavelet transform of the original
data. The coefficients at scale d’/ represent the signal on longer scales (lower-frequency
band) than the coefficients at scale d/~!. The coefficients ¢’ represents an average of the
original data.

While it is conceivable to compute the transform by directly evaluating the indicated
inner products, a significantly faster algorithm exists. We note that by (3.107)

Yia() =279 2=k =27PV2Y g 227 — k) = n)

= Z gn¢j-—l.2k+n([)

= gn-udj-1a(0). (3.116)
When we compute the wavelet transform coefficient ( fo(t), Y11 (t)), we get
o), Yia()) =D gaalfolt), Gon()) =D gnrech. (3.117)
To understand this sum better, let us write
Xy = Leens
and form the vector X = [xg, X1, ..., xy—1]. Let ¥y = x = ¢” (convolution); then

z : 0 § 0
)’j = Xj_,;Cn = g"*‘jcn'
n n

From this we observe that the summation in (3.117) is the convolution of the sequence
{g-n} with the sequence {CS}, in which we retain only the even-numbered outputs.
At a general scale j, we compute the wavelet coefficients as

(for rja®) = gn-at(for j—1n), (3.118)

which is a convolution of the sequence {g_.,} with the sequence {{ fo, ¢;~1..)}, retaining even
samples. To compute the coefficients in (3.118), we need to know {fy, ;-1 ). However,
these can also be obtained efficiently, since

Gja(t) =272 (27t — k)
= Zhn—2k¢j—l.n(t)v (3.119)

so that

(fo. i) = D hn-2e(fo, Bj—1.n),

which is again a convolution followed by decimation by 2.
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Putting all the pieces together, the wavelet transform is outlined as follows:

1. Let ¢ = {fo. ¢ox) be the given initial data. (Normally a sequence of samples of
f(n)

2. Compute the set of wavelet coefficients on scale 1, a’é = {fo, ¥1.4), using

d} = Z k. (3.120)

Also compute the scaling coefficients on this scale, ¢; = {fo, ¢1.4), using

=y hixc. (3.121)

3. Now, proceed up through level J similarly,

d]{ = Zgn—ZkC};”ls (3]22)
o= hoawc) j=120000 (3.123)

The wavelet transform computations can be represented in matrix notation. The op-
eration (3.123) can be represented as a matrix L, where L;; = hj_ fori and j in some
suitable range. The operation (3.122) can be represented as a matrix H, where H;; = g;..0;.

Example 3.18.4 We will demonstrate this matrix notation for a wavelet with four coefficients,
ho, by, ha, ks, We choose M so that {go. 1. &2, €31 = {h3. —ha. hy, he). Also, for the sake of a
specific representation, we assume that {c7} has six elements in it. From (3.121),

4
el hy  hs e
o = & | _ [ho hi o hy By el L
C} ho h, /’)2 hg Cg
sz hy CQ
L3

(The truncation evident in the first and last rows of the matrix corresponds to an assumption that data
outside the samples are equal to zero. As discussed below, there is another assumption that can be
made.)

From (3.120).

[0
Co
! 0
d_ g 83 <
! 0
dt = dy | _ 18 & & & o
d; g & & & |
dl B &1l 10
0
L‘s,
[ o]
Cy
0
)7; —h() <y
- /7} '—‘173 h; "/7(, C(Zj . HCU
hy —hy hy —hy (g
/I: —f1a {»-,
; 2 @
K4
L5
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Figure 3.24: Multirate interpretation of wavelet transform

The transform data at the next resolution d?, and the data ¢?, can be obtained (using the same indexing
convention as before) as

hs &3
= h hy hs ¢t =g & & c'.
he hi ) 8 &1 %2
It is perhaps worthwhile to point out that the indexing convention on ¢' could be changed (with
a corresponding change in (3.123)), so that we interpret ¢! as the vector

N Y R LS |
¢ —[‘0 o6 cj}A

Making this change, the matrix for the second stage transformation would be written as

hy  —hg
(:2 =3 h3 —hz hl "h() Cls
hy —h;

with similar changes for d? and its associated transformation matrix. Provided that the same indexing
convention is used for the forward transformation as the inverse transformation, the transform is still
fully reversible. O

The notation L and H for the matrix operators is deliberately suggestive. The L matrix
is a lowpass operator, and the data sequence ¢! is a lowpass sequence. It corresponds to a
“blurring” of the original data ¢”. The H matrix is a highpass operator, and the data @' is
highpass (or bandpass) data.

The filtering/subsampling operation represented by these matrices can continue through
several stages. The transform coefficients at the end of the process are the collection of data
d'.d* ... d’ and ¢/, where ¢’ is a final course approximation of the original starting data
¢¥. The wavelet transform computations can also be represented as a filtering/decimation
operation, as shown in figure 3.24. The signal ¢ passes through a lowpass and highpass

filter, whose outputs are decimated, as indicated by , taking every other sample.

Inverse wavelet transform

The inverse wavelet transform can be obtained by working backwards. Given d’ and ¢/, we
wish to find ¢/~'. We note from (3.115) that

fj~l = fj -+ 5j
= Zci‘pj.k + Zd;{'//j,k- (3.124)
k P
Then, using the fact that ¢/=! = (f/~!, ¢,_, ,) and taking inner-products of both sides of

(3.124), we have
& = (fi=1. b1
= clin b+ YA ;1) (3.125)
k k
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Figure 3.25: Hlustration of the inverse wavelet transform

Taking inner products on both sides of (3.119) with ¢;_, ,, we observe that

(i Bjmtm) = O hnoi (Bt i) =

by the orthogonality of the ¢ function. Similarly, from (3.116),
Wjxs Giatm) = Em—2k-

Substituting these into (3.125), we find that
o7 =Y huu ) dign (3.126)
k k
This tells us how to go upstream from ¢/ and d’ to ¢/~!. The process is outlined in figure 3.25.
As before, the reconstruction can be expressed in matrix form,
7 =L+ B,

where L* is the adjoint (conjugate transpose) of L and H™ is the adjoint of H (see sec-
tion 4.3).

Example 3.18.5 Letus consider a specific numeric example. Using the wavelet with four coefficients,
the code in algorithm 3.7 finds the two-scale wavelet transform data d', d?, ¢ for the data set ¢ =
{1,2.3,4,5,6) . Also, the inverse transform is found. The pertinent variables of the execution are

~0.482963

]
2 ~0.541266 ~0.145032
c_ 3l g e R 0670753 | 0557132
0= 1y Ul ¢ 271 0.270032 2= 1 868838
5 3.38074 —~0.375 1.39952
. —0.776457 - :

Observe that there are six points in the original data, and thirteen points in this transform. The
reconstructed signal cOnew is equal to the original signal ¢;.

Algorithm 3.7 Demonstration of wavelet decomposition
File: wavetest.m

For comparison, algorithm3.8 shows a decomposition and reconstruction with a different index-
ing convention. In this case, the transform data is

- 102941 —1.14503 —0.30681
G=1 0 dp = | 0.195272 o= 210617 | .
~233
~1.9919] 33133 8.70064

The reconstructed signal cOnew is equal to the original signal. This transform has ten points in it,
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Algorithm 3.8 Demonstration of wavelet decomposition (alternative indexing)
File: wavetesto.m

O

The L and H matrices have some interesting properties. In the following theorem, the
L and H matrices are assumed to be infinite, so that partial sequences of coefficients do not
appear on any rows.

Theorem 3.8 The L and H operators defined by the operations
Le= Z hn~2kcn He = Z 8n—2kCn

have the following properties:

1. HL? =,
2. LL" = [ and HH" = I, and
3. LA L and H¥ H are mutually orthogonal projections.

Proof Let h,_»; denote the kth column of L, and let gn- denote the /th row of H. The
inner product of these can be written

P R N N C D I

which is zero by (3.112). Since this is true for any / and k it follows that HL? =0,
The fact that LL¥ = [ and HH" = I is shown by multiplication, using (3.108).
Then we note that (LYLLAL) = LH¥(LL¥L)L = LYL, so L L is a projection,
and similarly for H H#. By the fact that HL = 0 it follows that L#L and H" H are
orthogonal. Now note that

HLYL+ HYHY=H(H+«H)=H
and
LILAL+HYHY=L.

Thus L#L + H"H acts as an identity on the ranges of both H and L, so it is an
identity. ]

The filtering interpretation for the reconstruction is shown in figure 3.26: the samples
are expanded by inserting a zero between every sample, then filtering. When the forward
operation and the backward operation are placed together, as shown in figure 3.27, an

¢/ B2 = LY 3 o
4/ —=12 H*

Figure 3.26: Filtering interpretation of an inverse wavelet transform
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- L ]2 =12 = L*

Y

H =2 =12 - H*

Figure 3.27: Perfect reconstruction filter bank

identity operation from end to end results. One family of such filtering configurations is
known as a quadrature mirror filter; it is an example of a perfect reconstruction filter. This
multirate configuration is used in data compression, in which the lowpass and highpass
signals are guantized using quantizers specialized for the frequency range of the signals.

Periodic wavelet transform

The wavelet transform produces more output coefficients than input coefficients, due to
the convolution. If there are n input points and the filters are m points long, then the
convolution/decimation operation produces [ (n + m) /2] points (or one less, depending on
how the indexing is interpreted), so each stage of the transform produces more than half the
number of points from the previous stage. Having more transform data than original data
is troubling in many circumstances, such as data compression. It is common to assume that
the data is periodic and to perform a periodized transform. Suppose that there are L points
in %,
o 0 0 0 4T
¢ =lcg, ci, ..., cp 1.
Then periodized data & is formed (conceptually) by stacking c?,
=0 ONT  (oONT (oONT T
e =10[...), ). ). . . 1.

Then an L-point wavelet transform is computed on the periodized data. The effect is that
the wavelet transform coefficients appear cyclically shifted around the L and H matrices.
For example, with four coefficients and eight data points, the L and H matrices would lock
like the following:

ho hy hy hs ]

[ = h() /71 hz ]23
- h() h] ]72 /”13
/12 /13 h() h]_
g0 & 82 &3 1

H = 8 81 & &
o &1 82 &
82 & 80 &1

The same equations used to represent the nonperiodized transforms (3.122) and (3.123).
and the inverse transform (3.126), also apply for the periodized transform and its inverse.
provided that the indices are taken modulo the appropriate data size.

Wavelet transform implementations

Algorithm 3.9 performs a nonperiodic wavelet transform. The first function, wavet rans.
sets up some data that is used by the recursively-called function wave. Implementation of
wave is straightforward, with some caution needed to get the indexing started correctly.
Since different levels have different lengths of coefficients, an array is also returned indexing
the transform coefficients for each level.
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Algorithm 3.9 Non-periodic wavelet transform

File: wavetrans.m iﬂ:‘[g]

An inverse nonperiodic wavelet transform is shown in algorithm 3.10.

Algorithm 3.10 Nonperiodic inverse wavelet transform
File: invwavetrans.m

Example 3.18.6 The two-level nonperiodic wavelet transform ¢ = [1, 2, 3,4, 517 using the D,
coefficients is computed using [C, ap] = wavetrans (c,d4dcoeff, 2}, which gives

C =[-0.1294 0 2.8978 —0.647 —1.145 3.2688 -—1.3068 —0.3068 29297 4.8771]
ap=1{5 1 5 8],

from which we interpret

—0.1294 0.0000 2.8978 —0.6470],

[
[—1.1450 3.2688 —1.3068],
= [-0.3068 2.9297 4.8771].

d
d;
<
The inverse transform computed by invwave(C,ap,d4coeff) returns the original data

vector. .

Code for the periodized wavelet transform appears in algorithm 3.11, and the periodized
inverse wavelet transform is in algorithm 3.12.

Algorithm 3.11 Periodic wavelet transform
File: wavetransper.m

Algorithm 3.12 Inverse periodic wavelet transform
File: invwavetransper.m

Applications of wavelets

Wavelets have been used in a variety of applications, of which we mention only a few.

Data compression. One of the most common applications of wavelets is to data com-
pression. A set of data f is transformed using a wavelet transform. The wavelet transform
coefficients smaller than some prescribed threshold are set to zero, and the remaining coef-
ficients are quantized using some uniform quantizer. It is a matter of empirical fact that in
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most data sets, a large proportion of the coefficients are zeroed out. The truncated/quantized
coefficients are then passed through a run-length encoder (and perhaps other lossless en-
coding techniques), which represents runs of zeros by a single digit indicating how many
zeros are in the run.

A more sophisticated version of this algorithm is employed for image compression,
in which a two-dimensional wavelet transform is employed. In this case, the hierarchical
structure of the wavelet transform is exploited, so that if coefficients on one stage are small,
there is a high probability that coefficients underneath are also small. Details of an algorithm
of this sort are given in [305].

Time/frequency analysis. Wavelets are naturally employed in the analysis of signals
which have a time-varying frequency content, such as speech or geophysical signals.

3.19 Signals as points; digital communications

The vector space viewpoint allows us to view signals, either in discrete or continuous time,
as points in a vector space. This signals-as-points interpretation is especially useful in digital
communications. In digital communications, a small set of basis functions is chosen—not
a complete set—to have certain desired spectral properties. Signals that are transmitted are
represented as linear combinations of these points.

As a particular example, let ¢; () and ¢ (1) be two orthonormal functions as illustrated
in figure 3.28(a). (Note: the use of the notation ¢ (1) as a basis function in this section is
distinct from the notation for ¢(7) as a scaling function in section 3.18.4.) Then a variety
of functions, such as those shown in figure 3.28(b), can be formed as linear combinations

of ¢ (1) and ¢;(r):
1) = 2V2, (1) + 4vV2¢0 (1) — £ = (2+/2,4Y2),
(1) = 3326, (1) = 332¢:(1) — £, = (3v/2, =3+/2),
f3(t) = 3201 (1) + 332¢,(1) — £3 = (3v/2.3V/2).

Figure 3.28(c) shows the points in R? corresponding to the coordinates of the functions.
A function represented by a generalized Fourier series of m orthonormal functions

i

)= cdir)

i=1
may be equivalently represented by the set of coordinates
f(l) D ((.‘[, (2 O Cm) = C,

and be conceptualized as a point in R”. As shown in (3.96). the inner-product relationship
between the functions is the same as the inner product between the vectors: if f|(7) has the
coordinate representation ¢; and f>(r) has the coordinate representation ¢,, then

(fi. f2) = (ey. 2},

where the inner product on the left is defined for functions and the inner product on the
right is defined for vectors. This means that

[l = lley (3.127)
and

I = Ll = ey — el
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Figure 3.28: Two basis functions, and some functions represented by using them

So the distance can be computed for either the function or the vector. Note that if the basis
functions are not normalized, then |jc¢;]] in (3.127) must be normalized according to the
norm of the basis functions.

Suppose we have m orthogonal basis functions ¢;(¢),/ = 1,2,...,m, and assume
that they have support over [0, T). (It is not strictly necessary to deal with orthogonal basis
functions, but it makes several of the computations easier. Of course, by the Gram-Schmidt
orthogonalization procedure, we can always determine an orthonormal set spanning the
same space as a set of nonorthogonal functions, so assuming orthonormality does not
represent any loss of generality.)

In the m-dimensional space S spanned by these functions, a set of M = 2% signal
points, known as the signal constellation, is selected. Let sy, 8, ..., sy denote the signal
constellation points, where the points are

T
s = [sit 8202 Siml
These points in the signal constellation represent the signals that can be sent, 5;(¢),i =

1.2, ..., M, where

m

si(t) = ZSMZHU) e S.

I=1
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The vector s; is sometimes referred to as the symbol, while the corresponding s, (7) is referred
to as the signal. Normally (though not always), the basis functions ¢;(r) are designed to
last T seconds, and such that ¢; (¢) has support over [0, T). The time T is called the symbol
time.

Every T seconds, k bits are accepted into the transmitter. These & bits are used to select
one of M = 2 signal points, with its corresponding signal. The transmitted signal s(r) is
obtained by concatenating these signals together in time, which we can write as

s(t)y =5, —nT),

where s; (1 —nT) is the signal that starts at time n T and has supportovers € [nT, (n+1)7T),
and [, is the index of the signal selected at the nth symbol time. We will denote the signal
that is transmitted at the nth symbol time as s (1),

s™(t) =5, (t —nT).

In a practical system, it is customary to produce the signal s(z) at baseband, then mix
it up to some appropriate carrier frequency. In this presentation, we will focus only on
the baseband signal s(r). For additional simplicity, we will assume that all signals are
real.

3.19.1 The detection problem

In a channel model that is commonly assumed, the signal s(r) is delayed by some delay ¢
as it passes through the channel, and corrupted by additive noise v(r). The received signal
is modeled as

r{t) = s — 1)+ v().

Most of the intuitive discussion that follows in this section is accurate only in the case that
the noise is Gaussian. We assume that the delay t is known.

The signal r(¢) fort € [nT + 7, (n + 1)T + ) does not, in general, lie in S because of
the additive noise. The problem of reliable reception (the detection problem) is to determine
the best estimate of the transmitted signal §”(r), given r(r). A more formal exploration of
this problem is conducted in chapter 11. However, for the purposes of this section we can
employ our intuition about how the detection problem should work.

The first step in detection is to project the received signal over one symbol time onto
S. The component of the nth received signal in the /th direction (assuming that 7 is known)

1S
t+{n+1)T

rp={r(t), ¢t =t —nT)) :/ r(yg(t —t —nT)dr. (3.128)

t+nT
The processing accomplished by (3.128) is termed a correlator, illustrated in figure 3.29(a).
It is also possible to implement the correlator by using a filter with impulse response
hi(t) = ¢; (T —1). In this case, the filter is termed a matched filrer. The output of the filter
is

vy = /r(u)hi(t —uydu = /r(u)qbi(u -t 4+ TYydt.

Sampling the output at the instant r = 7 + (n + 1)T produces the output value r; (see
exercise 3.18-47). The coordinates r'" = [r{.r, ..., )7 represent the projection of the
received signal onto S for the nth symbol interval. The detector determines which of the
signal points §;, 82, ..., sy 1s closest to r. The closest point corresponds to §7(r), frow

which it can be determined which bits were sent.
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Figure 3.29: Implementations of digital receiver processing

The projection onto the signal space is illustrated geometrically in figure 3.30 for
m = 2. The signal r(¢) is projected onto the signal-space point r. The nearest point in S to
r is then determined as the estimate of the transmitted signal. The overall processing (using
a matched filter implementation) is shown in figure 3.31.

¢ Received signal

Figure 3.30: Digital receiver processing
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Figure 3.31: Implementation of a matched filter receiver

i

Example 3.19.1 Let ¢,(t) = 2/ 7T cos(2t) and ¢ (t) = 2/ 7 sin(2rxt) fort € {0, T). These are
orthonormal signals. Let the signal constellation be as in figure 3.32. This type of constellation, in
which every signal has the same amplitude but different components of phase {due to the combinations
of the basis functions), is known as phase-shift keying (PSK).

In this signal constellation, suppose that the symbol s, is sent, and the projected received signal
r is as shown. The vector r falls in the decision region of sq, shown shaded in the figure. Thus r is

detected as the signal sq.

O

Of course, it is possible that the noise is severe enough that a received signal is in-
correctly detected, and so there is still a nonzero probability of error. Nevertheless, the
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%]

Figure 3.32: PSK signal constellation and detection example

operation of projection and finding nearest neighbor is (for white Gaussian noise) the opti-
mal decision rule. Some examination of the computation of probability of error takes place
in chapter 11.

Another way of looking at the detection problem is to find the signal point s; (t — t —nT)
thatis closesttor(r) forr € [nT+1, (n+1)T +1). That is, we wish to find s; (¢) to minimize

T+ (n+1)T
/ (r(t) —s;(t — 7 — nT))*dr.

+nT
Expanding this, we want to minimize

t4+(n+ 13T T+{n+1T T+n+ DT
/ rz(t)dt—?./ r()si(t — 1 —nT)dt+/ sP(r)dr.
+nT t+nT t+nT

The first term does not depend upon s;, and the last term represents signal energy Is; |2,
which can be precomputed. The decision statistic that we use is

T+ (n+13T

7 = / r(t)s;(t — 1t —nTYdl (3.129;
Jr+nT

The processing in (3.129) can be done either by a correlator or a matched filter with impulse

response h; (1) = s;(T — 1), sampling the output of the filteratr = v + (n + 1)T. The

decision rule, in terms of this nearest signal interpretation, becomes: select the point s; such

that

—~2z; + |Isi |

is minimized.

One of the particularly interesting aspects about the vector space viewpoint for digital
communications is that it allows different aspects of the problem to be addressed separately.
The probability of error for a signal constellation depends ultimately on the geometry of
the points in the signal constellation, and the average energy required to send the signals in
comparison to the strength of the noise signal. The probability of error is thus completely
unaffected by the particular waveforms underlying the signal constellation, provided only
that orthonormal waveforms are selected. In contrast, the power spectral density of the
transmitted signal depends very strongly on the waveform shapes of the signals transmitted.
This separation of probability of error performance from spectral performance leads to better
designs.

3.19.2 Examples of basis functions used in digital communications

A variety of waveforms can be used in digital communications. We met in example 3.19.1
the basis functions used for phase-shift keying. Here is a brief survey of some other simple
signaling waveforms.

On—offkeying, or OOK. When asingle basis function ¢; (1) is used (regardless of its wave-
shape), with one point in the signal constellation at the origin and the other somewhere
along the ¢, (1) axis, a signaling technique known as on-off keying is produced. (Ser
figure 3.33(a).)
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Figure 3.33: Ilustration of concepts of various signal constellations

Binary phase-shift keying, or BPSK. When a single basis function is used with two
points in the signal constellation s; = —sy, the resulting signaling is known as BPSK. (See
figure 3.33(b).)

Pulse-position modulation, or PPM is obtained by using a set of N short orthogonal
pulses, as shown in figure 3.33(c), which shows a four-dimensional set of basis functions.
Usually, a single amplitude is employed along each orthogonal axis.

Frequency-shift keying, or FSK is obtained by using M sinusoidal signals of different
frequencies which are spaced so that they are orthogonal over the interval [0, T).

Quadrature-amplitude modulation, or QAM is obtained by using two orthogonal basis
functions, as for PSK, but by employing both amplitude and phase modulation.

3.19.3 Detection in nonwhite noise

In the last section, the channel noise was assumed to be white and the optimal detector
was obtained by simply projecting the received signal r(¢) onto the signal space § with an
orthogonal projection. When the noise is not white, however, the noise may tend to pull
the received signal predilectably toward different spectral components. In this case, a more
sophisticated filter must be used to obtain a projection onto the signal space to compensate
for any bias introduced by the noise. The design of the filter provides yet another application
of the Cauchy~Schwarz inequality.

We desire to find a filter with impulse response A (t), so that when r(z) is passed through
the filter, the ratio of the signal power to the noise power is maximized at some particular
sample time ¢y, as shown in figure 3.34. When

r(t) =s@) + v,
then the output of the filter is

r(t)y* h(t) = sty x h(t) +v() =« h(t) = 5,(t) + n,(1).

Sample at t = 1

Figure 3.34: Block diagram for detection processing
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Signal power

Assuming a causal signal s(r), the portion of the output due to the input signal is
i
Sp(t) = / s{(TYh(t — 1) dr.
0
At the time instant 75, we have
g
Sollg) = / s(tYh(ty — 1) dr.
0

If we assume in addition that s(7) is supported only over [0, 7p) (so that we are using the
entire signal s to make our decision), then we can write

s,lty) = / s(t)h(tg — 1) dr.

-0

Let w(t) = h(tg — v). Then

So(ty) = / s()yw(r)dt = / ’S(f)W(f)df,

o0 oC

where S(f) and W(f) are the Fourier transforms, respectively, of so(r) and w(r), and where
the equality follows by Parseval’s theorem. Using the definition of w, we have

6o lto) = / S(HH 0 gy,

e8]

The signal power S at some time instant f; is }5;,(t(,)12, or

S = 1/ S(f)mf)eﬂ”f’Odf!". (3.130)
0

Noise power

Let the PSD of v(r) be S, (f). Then the PSD of the noise component at the output of the
filter is

SOAIH (IR

and the total noise power is

N:/Z SUOIH P S, (3.131)

The ratio of the signal to noise (SNR) power is, from (3.130) and (3.131),

o el g r)?
S _ U SiH (e dr]” G

N [ SUNOIH )P df

The problem can now be stated as: determine a filter with transfer function H(f) that
maximizes S/N in (3.132). There is a tradeoff here: the wider the bandwidth of H(f).
the more signal gets through, but the more noise also gets through. This is a maximization
problem that looks difficult, since the approach to maximization usually involves taking a
derivative, and at this stage of development it is difficult to see what it would mean to take
a derivative with respect to a transfer function. As we shall see, we will not have to take 2
derivative at all.
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Maximizing S/N

The key to maximizing (3.132) is to use the Cauchy-Schwarz inequality in its integral form,

!/"’(-”7V'(f">df"§w < [sniar [iveoitar a1
We can write
2 t i (_é(_ﬁ,, 'Zﬂj'z(,> ‘1
S SCHH (e rmap> ff‘%(H(f)m) \/5777)6’ df!
J2 SUOIH (R df GG
S S PIHGPR S [, §ras
<
) S SADIHRdf

00 2
L [T, o1

where (3.134) comes from the Cauchy-Schwarz inequality, using (by comparison with
(3.133))

S .
x(f)=VSJAHH(f)  and ‘y*(f)z-ﬁ—g:__’?ﬁeﬂ"f'o.

By this inequality, an upper bound on the SNR has been obtained which is independent of
any filter and which, therefore, must be the largest possible regardless of the filter employed.
The filter that can be used to achieve this upper bound with equality is found by employing
the conditions under which the Cauchy—Schwarz inequality is satisfied with equality; in
this case, that means that we must have x{ f) = Cy(f) for some nonzero complex constant
C,or

“—S;(f) e i

H =C
) Su(f)

for any nonzero complex constant C.
If v(z) is white, so that S,(f) = §No, then we have

E(f) e~j271fl(;‘

Ny/2

Assume for ease of notation that C = 2/Ny. Then, taking the inverse transform, we have
h(t) =5(tg — ).

The output of the filter with this impulse response when g = T is

H(f)=C

T
/ r(0)s(t)de.
0
3.20 Exercises
3.1-1 There is a connection between Grammians and linear independence, as demonstrated in
theorem 3.1. We explore this connection further in this problem.
Let {pi.p2..... P.} be a set of vectors, and let us suppose that the first k — I vectors

of this set have passed a test for linear independence. We form
k & k
e = (Pt T Cp P2+ C Pt + P
and want to know if e, is equal to zero for any set of coefficients

[ (Cknnck—z »»»»» Cls 1}-
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If so, then py is linearly dependent. Let

Ag=[p1.p2.. ... Pyl
be a data matrix, and let R, = A A, be the corresponding Grammian.
(a) Show that the squared error can be written as
R h
Ho 2 o1 e By
e e =0, =C [hf’ FUJ ¢ (3.135)
for some h, and ry,. Identify by and ry.

(b) Determine the minimum value of ¢ by minimizing (3.135) with respect to ¢, subject

to the constraint that the last element of ¢, is equal to 1. Hint: take the gradient of
R h
B Ry ey gy
c { b ml c—A(e"d - 1),
where A is a Lagrange multiplier and d = [0, 0, ..., 0, 1}". Show that we can write the
corresponding equations as
Rk_] hk s
c=o;d. 3.136
{ h;:’ Frk k ( )
(¢) Show that (3.136) can be manipulated to become
Ukz = Py — hlfle.—]lhk
The quantity o is called the Schur complement of Ry. If o = 0, then py is linearly
dependent.
3.5-2 Referring to (3.30), show that
(1 — AT AT AR
is positive semidefinite, and hence that the minimum error ey, has smaller norm than the
original vector x. Hint: consider 0 < || Bx||?, where B = [ — A(A7 A)"1AH.
3.8-3 Consider the set of data
x=1{2,2.5,3.5,9} y={—-42 -52 1243}

(a) Make a plot of the data.

(b) Determine the best least-squares line that fits this data and plot the line.

(c) Assuming that the first and last points are believed to be the most accurate, formulate &
weighting matrix and compute a weighted least-squares line that fits the data, Plot this
line.

3.8-4 Formulate the regression problem (3.34) in a linear form as in (3.37).

2.8-5 Formulate the regression problem (3.35) in a linear form as in (3.37).

3.8-6 Formulate the regression v & ce”” as a linear regression problem, with regression parameters
canda.

3.8-7 Formulate the regression y & ax” as a linear regression problem.

3.8-8 Perform the computations to verify the slope and intercept of the linear regression in (3.39}
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3.8-9

3.8-10

As a measure of fit i a correlation problem, the correlation coefficient, analogous to (1.49),
can be obtained as
o Wl D
(xl — x Uyl — v, 1)
The correlation coefficient p = +1 if x and y are exactly functionally related, and p = 0

if they are independent. For the linear regression in (3.38), determine an explicit expression
for p.

Define an inner product between matrices X and ¥ as
(X,7)=u(Xr"),

where tr(-) is the sum of the diagonal elements (see section C.3). We want to approximate
the matrix Y by the scalar linear combination of matrices X, X5, ..., X,,, as

Y:C;X1+C3X2+"'+CMXM+E.

Using the orthogonality principle, determine a set of normal equations that can be used to
find ¢y, ¢a, ..., ¢ that minimize the induced norm of E.

For the ARMA input/output relationship of (1.2), determine a set of linear equations for
determining the ARMA model parameters {a;. a2, ..., a,, by, by, ..., b,}, assuming that
the model or (p, g) is known, and that the input is known.

3.9-12

For the data sequence {1, 1, 2,3, 5, 8, 13}

(a) Write down the data matrix A and the Grammian A A using (i) the covariance, and
(ii) the autocorrelation methods. Assume m = 2.

(by We desire to use this sequence to train a simple linear predictor. The “desired signal”
dr] is the value of x{r], and the data used are the two prior samples. That is,

x{t] = ayx[t = 1] + ayx[t — 2] + e[t],

where ¢[r] is the prediction error. Determine the least-squares coefficients for the pre-
dictor using the covariance and autocorrelation methods

(c) Determine the minimum least-squares error for both methods.

3.10-13

310-14

Consider a data sequence {x[r]}, the correlation matrix R is

k=133

and the cross-correlation vector p with a desired signal is
12
P=1s|

Consider a zero-mean random vector X = [x;, x2, x3] with covariance

Determine the optimal weight vector.

1 7 5
cov(x) = E[xxT] = {7 4 .Z:I .
S5 2 3

(a) Determine the optimal coefficients of the predictor of x, in terms of x; and x3,

f] = C1X7 +C2X3.
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3.10-15

3.11-16

31117

(b) Determine the minimum mean-squared error.

(c) How is this estimator modified if the mean of x is Ex = [1, 2, 3]7?
[132] A discrete-time radar signal is transmitted as
s[t] = Age™ ™",
The sampled noisy received signals are represented as
x[f] = Ae™ /" +vlr],

where w; is the received signal frequency, in general different from wy because of Doppler
shift, and v{r] is a white-noise signal with variance o,f. Let

x[1] = [x[0], x[1), ... . x[m — 1]}7

be a vector of received signal samples.
(a) Show that

R = E[X1]x"[1]) = 01 + o15(w))s” (w)),
where
s(wy) =[1,e7/, e7 21 g7 ieT  and o} = E[|A ).

(b) The time series x[r] is applied to an FIR Wiener filter with m coefficients, in which the
cross-correlation between x[r] and the desired signal d[t] is preset to

p = s(wo).
Determine an expression for the tap-weight vector of the Wiener filter.

A channel with transfer function
1
and output u[r] is driven by an AR(1) signal d{r] generated by

Hy(z) =

dlt] — A4d[r — 1] = v(1),

where v(1) is a zero-mean white-noise signal with o7 = 2. The channel output is corrupted
by noise n[t] with variance o = 1.5, to produce the signal

S} = ult] + nlz].

Design a second-order Wiener equalizer to minimize the average squared error between f[f]
and d{r]. What is the MSE?

Linear prediction A common application of Wiener filtering is in the context of linear
prediction. Let d[r] = x[t] be the desired value, and let

n

i) = }:u»ﬁ,x{z — ]

f=1

be the predicted value of x[r] using an mth order predictor based upon the measurements
fxfr — 1] xfr —21,.... x[t — m]}, and let

Sult] = x[1} = %[1]

be the forward predicrion error. Then

m

fm“} = ZQ;(,X[/ - I’},

i={)
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whereaf_u:landaf_, :_U?/‘A,,IA:IAZ ..... M.
Assume that x[r] 15 a zero-mean random sequence. We desire to determine the optimal
set of coefficients {wy;, i = 1,2, ..., M1 to minimize E[} £y [t1°].

(a) Using the orthogonality principle, write down the normal equations corresponding to
this minimization problem. Use the notation r[j — [] = E{x[t — {]X[t — j]] to obtain
the Wiener—Hopf equation

RW/ =r,

where R = E[x[r — 1]x7 [t —1]],r = E[x{r—1]x{t]],and x[t — 1] = [X[t — 1]. ¥[r - 2],

(b) Determine an expression for the minimum mean-squared error, P, = min E[| fult]i?].

(¢) Show that the equations for the optimal weights and the minimum mean-squared error
can be combined into augmented Wiener—Hopf equations, as

r[o] rf | | Pa
r R||-w; |8
(d) Suppose that x[¢] happens to be an AR (m) process driven by white noise v(z], such that
it is the output of a system with transfer function
1
L+ 50 ar ™
Show that the prediction coefficients are wy; = —a;, and hence the coefficients of the
prediction error filter f,[¢] are

H(z) =

e = ;.

(Hint: see section 1.4.2; write down the Yule-Walker equations.) Hence, conclude that
in this case the forward prediction error f,[t]is a white-noise sequence. The prediction-
error filter can thus be viewed as a whitening filter for the signal x[r].

(e) Now let
e —ml= wyxlt —i+1]
i=}
be the backward predictor of x[t —m] using the data x{r —m+1], x[t —m +2], ..., x[1r],
and let

b, lt) = x[t —m} — X[t —m]

be the backward prediction error. A backward predictor seems strange—after all, why
predict what we should have already seen—but the concept will have useful applications
in fast algorithms for inverting the autocorrelation matrix. Show that the Wiener—Hopf
equations for the optimal backward predictor can be written as

Rw, =18, (3.137)

where r? is the backward ordering of r defined above.

(f) From (3.137), show that

—

Ho B _
R"w, =r,
where w,‘f is the backward ordering of w,. Hence, conclude that
Wy = Wy,

that s, the optimal backward prediction coefficients are the reversed conjugated optimal
forward prediction coefficients.
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3.11-18

3.11-19

3.11-20

Let
x[t] = 0.8x[r — 1]+ v[r],

where v[r] is a white-noise zero-mean, unit-variance noise process. We want to determine
an optimal predictor.

(a) If the order of the predictor is 2, determine the optimal predictor £[¢].
(b) If the order of the predictor is 1, determine the optimal predictor X[r].

Random vectors The mean-squared methods to this point have been for random scalars.
Suppose we have the random vector approximation problem

y=ap+opr+--- + CmPm + €,

in which we desire to find an approximation y in such a way that the norm of e is minimized.
Let us define an inner product between random vectors as

(x.y) = w(Efxy")).

(a) Based upon this inner product and its induced norm, determine a set of normal equations
for finding ¢y, ¢2, ..., Cy-

(b) As an exercise in computing gradients, use the formula for the gradient of the trace (see
appendix E) to arrive at the same set of normal equations.

Multiple gain-scaled vector quantization Let X and ¥ be vector spaces of the same di-
mensionality. Suppose that there are two sets of vectors Ay, &> C X. Let ) be the set of
vectors pooled from X, and A3 by the invertible matrices Ty and T, respectively. That s,
ifx € &, then y = T:x is a vector in V. Indicate that a vector y € Y came from a vector
in X; by a superscript /, s0 y' € ) means that there is a vector X € A; such that y = T;x.
Distances relative to a vector y' € ) are based upon the I, norm of the vectors obtained by
mapping back to A}, so that

dy.y) =1y = YISl ~yl = 1770 =9l = ¢ -9 WG -y,

where W, = 7,77 7,7}, This is a weighted norm, with the weighting dependent upon the
vector in V. (Note: in this problem || - ||, and || - ||; refer to the weighted norm for each data
set, not the /, and /; norms, respectively.)

We desire to find a single vector vy € Y that is the best representation of the data
pooled from both data sets, in the sense that

Dy =yol =D Iy =yl + Y Iy = voll:

yey yley viey
is minimized. Show that
vo=2""r.
where
Z:ZW;+Z W, and r:ZW’y]JrZWﬂ:'
yiey yley viey yley

Hint: this 1s probably easier using gradients than trying to identify the appropriate inner
product.
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3.12-21

Assume the estimated autocorrelation

N

. ! .
Fln] = v Z x(k)yx(k —n)y.

k=1+4n
(a) Take the expectation E[#[n]] and show that it is not equal to r[n], the true value of the
autocorrelation.
(b) Determine a scaling factor to make the #{n] an unbiased estimate.

(c) Write a MATLAB function that computes 7(n) from (3.65).

3.13-22

3.13-24

Let x,, y,, and v, be continuous-time random processes, with y, = x, + v,, and S,(s) = .
Determine an optimal causal filter 4 (r) to determine x(z) when:

(a) The PSD of x(¢) is

sT— 16

S0 = T e

(b) The PSD of x(r) is

s*— 1052 + 9

$:) = G5 196

(Spectral factorization; the Fejér—Riesz theorem) Because of the importance of the
canonical factorization in signal processing, it is of interest to determine when a “square root”
of a function exists. In this problem you will prove the following: If W(z) = Zm win]z™
is real and W{e/“) > 0 for all w, then there is a function

H=—m

such that W (e/®) = |Y (e/®)|?.

(a) Show that w_, = W,.

(b) Show that W(z) = W(1/2).

(c) Show that if z; is a root of W(z), then 1/Z; is a root of W (2).

(d) Argue that if z; = ¢/% is a root on the unit circle, then it must have even multiplicity.

(e) Let Z = {z; : W(z;) = 0;|z;] < I, (only half the roots on |z] = 1)} be the set of roots
inside, and half those on, the unit circle. Then Z has m elements and

W) = A" ﬁ(z - ;) ﬁ(ZZi - 1),
=t =1

From this form, find Y (z).

Filtering in White Noise Let x,, y, and v, be discrete-time random processes with

=X+
and
S =1,
b(z2)
Sc(z) = .
a(z)

where b(z) and a(z) are polynomials in z with the degree of b(z) strictly lower than the
degree of a(z). Furthermore, assume R, (¢) == 0. Show that (3.82) holds in the discrete-time
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3.13-25

3.13-26

case; that is, show that
1
5;' @)

H@) =1~

Let
Vi =X+,
where

2
Ry(1) = 34,

10 1 trt
R}.(t) = E ‘i R

with Ex, = Ev, = Ex,v, = 0. Show that

(1
(a) 5,(z) = %‘i—; and thus obtain 57 (z) and S (z).

N ! . .
(b) {%‘{—;} = 7—37 and, thus, that the Wiener filter is
oy i)y %

H(z) = —.

Let x;, y,, and v, be discrete-time random processes with y, = x, + v,, S,(z) = 1, and
24— 9.00677° + 28.04z% — 9.00677 + 1
24— 2011123 +3.044622 — 20111z + 1"

Determine the filter i{z] to optimally predict x,..

Sx(z) =

3.14-27

3.14-28

3.14-29

Let h(r) be the impulse response of a system, and let y(r) = x () * h(¢). Show that

r
/ y(rydr = x(1) = k(1)
0

r=T

where k(1) is the integral of the impulse response,

k(r)y = / h(rydr.
Jo

A system is known to have impulse response (1) = 3¢~ + 4¢™. and is initially relaxed
{initial conditions are zero). Determine an input x (1) so that the output satisfies the conditions
2

y(2) =2 and / y(rydr =3,

0
in such a way that the input energy lx(ry}f? is minimized. Plot x (¢).
Let h{z] = (0.2)" +3(0.4)" for 1 > 0 be the impulse response of a discrete-time system with

zero initial conditions. It is desired to determine a causal input sequence x[7], such that the
output y[r] = h[1] = f[r] satisfies the constraints

¥y[10] = 5.

0%

Y ovir=2

j=0

. 10 g . .
and such that the input energy Z’=” lx[r)i* is minimized. Formulate this as a dual approxi-
mation problem and find the minimizing sequence x{r].
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3.15-30

1.15-31

[209] Using the projection theorem, solve the finite dimensional problem
minimize x Ox
subject to Ax = b,
where x € C", ( is a positive-definite symmetric matrix, and A is an m x n matrix with

m o< n.

[209] Let x be a vector in a Hilbert space S and let {x;,X;, ..., Xt and {y;, ¥2, ..., y.} be
sets of linearly independent vectors in S. We desire to minimize [|x — &||, while satisfying

X e M =span({x;, Xz, ..., X })

and (&,y;) = ¢;,i = 1,2,...,n. Find equations for the solution which are similar to the
normal equations.

3.17-32

3.17-33

Show that the functions defined by
! 2mki /N
{” - ___.__'ej“‘F 11
Di N
are orthonormal with respect to the inner product
Nt
(x[e), ylel) = > x[eIFle).
r=0

Let g(r) = e~"/* for 0 < ¢t < m, and let f(r) be the w-periodic extension of g(),

foy=> gt —km).
k

(a) Find the Fourier series coefficients of f(¢).

(&
7t 1+ 16n% )"

(b) Find the sum of the series

Hint: Use Parseval’s theorem.

3.18-34

3.18-35

Show that the definition of Chebyshev polynomials (3.101) satisfies the recurrence in (3.100)
for |t| < 1. Show for |f] > 1 that T, () = cosh(n cosh™ 1) satisfies the recursion (3.100).
The Christoffel-Darboux formula

(a) Using (3.98), show that the polynomials p,(r), orthonormal with respect to the inner
product (f, g),, = fab fFOg(®w(t)dr, satisfy

b
/ (P2 () pryrt (Dw () dt = a,.

a
Also show that
Cp == Upt-

(b) Consider the partial sum

S (t) = Z (f, Pe) o Pe().

k=0

Show that the sum can be written as

b
Sn(t)z/ FONYK (e, yyw(y)dy,
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where
An(Prst X PrlY) = PrX)Prar1 ()
X —y

Kplx.y) =

and where a, comes from (3.98). This formula for K, (x, y) is known as the Christoffel-
Darboux formula, and is analogous to the Dirichlet kernel of Fourier series. Hint: form
(x — y)K, (x, y) and use the results from part (a).

3.18-36 Show that each of the polynomials produced by orthogonalizing {1, 1, ¢, ...} using the
Gram~Schmidt procedure over the interval [a, b] has zeros which are real, simple, and
located in (a, b).

3.18-37 In this exercise we introduce the idea of Gaussian quadrature, a fast and important method
of numerical integration. The idea is to approximate the integral as a summation:

b m
/ f@ydi=>"aif).
a i=1

Unlike many conventional numerical integration formulas, in Gaussian quadrature the ab-
scissas are not evenly spaced. The problem is to find the {t;} (abscissas) and {g;} (weights)
so that the integral is as accurate as possible. In the Gaussian quadrature method of numeric
integration, for polynomials up to degree 2m — 1 the result of the integration is exact. For
sufficiently smooth nonpolynomial functions the method is often very accurate. The solution
makes significant use of orthogonal polynomials. For the purposes of this exercise, we will
assume the inner product {f, g} = f_r, fng(rydr.

(a) As this first part shows, without loss of generality, we may restrict attention to the interval

a = —1,b = 1. Show that for the integral
b
/ glx)dx
the substitution
f = 2x —a—b)
b—a

leads to an integral of the form

i
/ f(nydr.
-1

(Hence the limits of @ and b can be converted to limits of —1 to 1.)

by i{p,(t).,n=20,1,..., m} is a set of polynomials orthogonal over [—1, 1], where p, (1)

1s a polynomial of degree n, show that
(P(?)~ Pm(l)> =0
for all polynomials p(r) of degree < m — |.
(¢) Let f{(r) be a polynomial of degree 2m — 1. Show that /(1) can be written as

f@)y=qtypu(t)y+rir).

where g (1) and r(r) are of degree < m — 1. Hint: divide.

(d) Show that there are series expansions

me} m—1

([(”:Zal.pk([) and F(U:Zﬁuh“)»

k=0 k=0
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(e¢) Show that

i i
/ fyde = ,30/ polt) dr. (3.138)
-1 -1

(f)y Letr), 65,..., 1, be the roots of p,(¢). Show that

nt m—1 m
af(t)= By apt). (3.139)
f==i

k=03 i=1

(g) Show that if the weights a; are chosen so that

m 1
tydr k=20,
Zaipk(xi): f_;PO()
0 k=1,2,...,n—1,

i=1
then (3.139) can be written as

”m i

Zaif(f:)=ﬁ0/ polt) dt. (3.140)

i=] -t

(h) Write a matrix equation for the weights {«,}, chosen in part (g).

(i) Hence, equating (3.138) and (3.140), write down the formula for Gaussian quadrature.

(j) Generalize this to finding f—lx w(z) f(r) dt, where the polynomials p/;(t) are orthogonal
with respect to the inner product {f, g) = fj[ f)gHw(r)de.

3.18-38 Prove Parseval’s theorem for Fourier transforms: If v, (1) < Y| (@) and y2(t) < Y3(w), then

oo 1 o _
/ yi®)y, () de = 2—/ Y)Y (w)dw.
—s EL2 JEONS

o0
3.18-39 Sampling theorem representations.
(a) Show for p, (1) defined as in (3.102) that (py. p1} = 5-1581(‘,. Along the way, show that

* sint sin(t — 2) wsinz
/—-——— dt =

t -z Z

Hint: use Parseval’s theorem and Fourier transforms.
(by Show that (3.103) is correct for a bandlimited function f(¢).
(c) Show that if f(¢) is bandlimited to B Hz,

flo = 28/ &) polr — 2) dt,

Thus, for bandlimited functions, pg(r) behaves like a § function.

3.18-40 Show that if ¢ (¢) is normalized then 27//2¢(27/¢) is normalized.
3.18-41 In (3.106), show that the coefficients ¢, must satisfy

ZC,,=2.

n

3.18-42 Show that there is no orthogonal scaling function defined by a two-scale equation (3.106)
with exactly three nonzero coefficients ¢, ¢;, and c,.

3.18-43 For the multiresolution analysis:
(a) Show that W; L W;.
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(b) Show that for j < J,
J—j1
= V! 2] @ WJ—-k~
k=0

3.18-44 Show that if ¢ () obeys the two-scale relationship in (3.105), and if ¢(w) represents the

Fourier transform of ¢ (¢), then
$(@) = mo(w/2)¢(w/2),
where
i .
—_— - jr
my(w) = 7 z;hne (3.141)
is the scaled discrete-time Fourter transform of the coefficient sequence.

3.18-45 Decimation Because of the connection of wavelet transforms to multirate signaling, it is
worthwhile to examine the transform of decimated signals. You will show that if y[n]is a
decimation of x[n],

yin} = x[nD].
then
| b
Q) = D X (e PPy, (3.142)
k=0
(a) Let p[n] be the periodic sampling sequence
1 n=0,+D,£2D,...,
pln] = .
0 otherwise.
Show that
, o
o J2xkn/D
pln] = ) Ze .
k=
(by Letz{n] = x[n]p[n]. Then y{n] = z{n D]. Show that
Y(z) = Z ylmlz™" = Z mDlz™" = Z.x{n]p[n]z_"/p.
(c) Finally, show that (3.142) is true.
3.18-46 Show that the orthogonality condition (3.108) is equivalent to
|171(>((u/2){2 + mglw/2 + o = 1.
Hint: recognize that (3.108) is a decimated convolution, and use the fact that if the Fourier
transform of a sequence z,, is Z(w). then the Fourier transform of z, is
1
;fZ(w/?.) + Z{w/2 + 7).
3.19-47 Let ¢ (1) be a one-dimensional basis function for digital transmission, of the form

@Uy = wl(r) —ul(t — 1)
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3.19-48

3.19-49

(aunit pulse). Assume that s(¢) = ¢ (1) is transmitted. Let r (1) = s(¢) (noise-free reception).
Show the output of the correlator

,Vl(l‘)=/r(s)¢»(s)ds

JO

and the output of the matched filter with impulse response (1) = ¢(T — 1),
yalt) = r(t) x h(1).

Show that at the sample instant r = T, y{t) = y2(1).

Let
cos[Qrf. +2mmAf)] 0<r<T,
() = ,
0 otherwise
form =0,1,..., M — | be a set of basis functions. Determine the minimum frequency

separation Af such that

T
/ G () (1) dt =0
0

for k # m. Assume that f.T = n for some integer n. (Digital transmission with such signals
is called frequency-shift keying.)

(Spread-spectrum multiple access) In this exercise, we examine matched filters for a
more complicated scenario: spread spectrum multiple access. In this model, K users are
transmitting simultaneously, with the kth user transmitting a signal

se(t) = Z bi(m)N 2w (t — nT).

where ¢ (1) is the kth user’s unique waveform, a signal with support over [0, T']. The received
signal consists of the sum of each user’s delayed signal, appearing in additive noise:

K
ry =Y > bmuwidi(t —nT = 5 +2(0).

k=1 n

The users’ basis functions are not orthogonal. Assume that the users are ordered so that
7, €1 < < 1x < T. A matched-filter (or correlator) output is obtained for each user
over the nth bit interval, as

yeln) = / r{O@p(t —nT — o).

oG

Let y(n) = [y;(n), ya(n), ..., v(n)]7 be the vector of matched filter outputs for all users at
interval n.

(a) Show that
yin) =[HBn ~ 1)+ HOB(n) + H(—=1B(n + D]w +z(n)

where H(m) is a correlation matrix with elements

H;j(m) =/ Gt — 1)@ (¢ —mT —1;)ds,

B is adiagonal matrix of bits, B(n) = diag(b, (n), b2 (n), ..., b (W), w = [wy, wy, ..., wil”,

and z(n) = [z,(n), 22(n), ..., zx (bn)]T, where

zin) = /z(t)¢k(z —nT — 1) de.
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(b) If z(r) is white with E{z{(t)z(t — 5)] = 535(1 — s5), show that z(n) satisfies
(TSH(O) no==m,

glH(1) n=m+1.
cer(—l} n=m-—1,

0 otherwise.

Elztm)z” (m)] =
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Chapter 4

Linear Operators and
Matrix Inverses

Everything that goes on in spacetime has its geometric description . ..
— Misner, Thorne, and Wheeler
Gravitation

In this chapter we begin a study of linear operators. The most familiar linear operator is a
matrix, appearing in a linear equation of the form

Ax = b, 4.1

of which several instances have already arisen in this text. However, in the interest of getting
the most “bang for the buck,” we introduce more general linear operators than matrices. We
examine the questions of the existence and uniqueness of the solution of a linear equation
of the form (4.1). These results are general, and apply to any linear operator. Finding a
solution to (4.1) becomes more complicated, and more interesting, if A is not an invertible
operator. In this case there may be no solution, or multiple solutions. We will examine some
important theoretical results related to these solutions, and present the important Fredholm
alternative theorem.

We then narrow our focus to matrix linear operators, and consider matrix characteristics
related to the existence and uniqueness of matrix equations, such as the rank and determinant
of a matrix. Even in the apparently simple situation in which A is invertible, there are
important issues to address regarding the quality of the result. If the matrix A is “nearly not
invertible,” then the answers obtained by a numerical algorithm are likely to be unreliable.
Some qualitative results regarding how close a matrix is to being noninvertible are obtained
by introducing the condition number of a matrix.

We conclude this chapter with a discussion of properties of matrix inverses, including
inverses of block matrices and small-rank updates to a matrix. These will lead us directly
to the RLS and Kalman filters. The trend of this chapter is thus from the more theoretical
towards the more applied. We stop short of presenting a numerical algorithm for solving
linear matrix equations. This topic is taken up in the next chapter, in association with other
matrix factorizations.

The basic goals of this chapter are as follows: to understand when solutions of linear
equations exist and are unique, and to develop insight into factors that can affect the quality
of the solution.

Another problem that arises frequently in linear systems theory is an equation of the
form

AX = AX.
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The vector x which solves this equation 1s called an eigenvector of A, and the associated
value A is called an eigenvalue. Examples and applications of eigenvectors and eigenvalues
are presented in chapter 6.

4.1 Linear operators

In (4.1), we can regard A as a linear transformation (or operator), which maps a vector x
into the column space (range) of A. There are a variety of other linear transformations that
arise in practice, producing equations of the form

Ax = b,

with x € X and b € Y where X and Y are vector spaces, and A is a linear transformation
(operator) from X to Y. For example, the equation

dx
o ax(t) = b(t)

may be written in operator notation as Ax(t) = b(¢), where A is the operator

A= — —a.

T dr
Given an input signal b(¢), the problem is to find the solution x(r). Solving this linear
operator equation amounts to finding the solution to the differential equation. Another
example of a linear equation is

b
b(1) =/ k(t, m)x(r) dr. 4.2)

The problem again is to find x(¢). Again, this may be written as Ax(t} = b(t), where A is
now the integral operator

b
Ax(z‘)z/ kt, T)x(r)dr.

An integral equation of the form (4.2) is called a Fredholm integral equation of the first
kind. Another example is an equation of the form

b
x(1) = / k(t, Dx(t)ydr + b(1).

i

This is an integral equation known as a Fredholm integral equation of the second kind.

Obviously, these different kinds of equations will have different methods of solution.
The algorithmic focus of this and succeeding chapters is on linear operators that can be
expressed in matrix form, so we will not present details of the solution of these more
general linear operator equations. Nevertheless, the principles regarding the existence of
the solutions apply to most of these operators. Furthermore, by examining these more
general forms of operators, we can gain further understanding of matrices.

Having seen several examples of linear transformations, it is appropriate now to intro-
duce a formal definition.

Definition 4.1 A transformation A: X — Y, where X and Y are vector spaces over a ring
R, is said to be linear if for every x), x, € X and all scalars ¢y, & € R,

Alayxy + aoxy) = ayAlxy) + aa Axy). 0

The most important example of a linear transformation, in fact the algorithmic focus

of this part of the book is the transformation A: R" — R"™. In this case, A is the m x
matrix with elements from R.
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el

Then A: B* — R O

Example 4.1.1 Let

[SO I )

Several different notations can be used to represent a matrix A with elements from R. We
can write A1 R” — R™. We can say A is an m x n matrix (where implicitly the elements
are usually either real or complex). Or we can say that A € R™*" = R™" If we want to
emphasize the underlying ring of scalars R, we will also write A € M, ,(R) to indicate that
Ais an m x n matrix with elements from R. We will also use the shorthand A € M,,(R) if
m =n,or A € M, , if the ring is implicitly understood.

Example 4.1.2 (Another example of a linear operator). Let X = C[0, 1] (the continuous functions
defined on [0, 1]), and let ¥ = R". Define the operator A: X — Y by

Ax = (x(t), x(f2). . ... x(f2)),

where 0 <t; <t < --- <1, <1 are fixed. This is a sampling operator, and is linear. O

4.1.1 Linear functionals

Definition 4.2 A functional f: X — R is a mapping from a vector space X to areal scalar
value. (More generally, the range of the mapping could be any set of scalars.)

If f has the property that f(ax + 8y) = af (x) + Bf(y) for all real o and B and all
X,y € X, then f is said to be a linear functional. O

Example 4.1.3 (Examples of functionals). Let x(¢) be a function. Then the following are examples
of tunctionals on x(z):

e
filx)y = ?/ x(r)drt

4]

b
fg(X):/ x(Do(t) dr

b
filx) = / e/ dr for fixed w

a

falx) = / x(1)8(t ~ to) dt = x(ty)

O
fsx) = lxll,
All of these examples of functionals are expressible as integrals. &

Example 4.1.4 (More examples of functionals).

I. Let X = R". Then for x € R" and a fixed set of scalars (&, a3, . .., &,), the functional

n

fx) = Zx,a‘-

i=1

is a linear functional.
2. Let X = C[0, 1]. Then the functional f: C[0, 1] — R defined by

flxy=x (%)

is a linear functional.
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3. Let X = Ly(R), and let y € L,(R). Then the functional defined by

flxy= / x(0)v(0) dr

O

is a linear functional. N

As these examples show, functionals can be used to represent measurements made of func-
tions.
If ¢ € X, then we can define a functional f4 by

Jo(x) = (x. ).

In other words, inner products are functionals. Conversely (and surprisingly), if X is a
Hilbert space (complete), then any continuous linear functional can be expressed as an
inner product. This is known as the Riesz representation theorem.

If ||¢]l is bounded, so that |[¢|| < K < oo (using the induced norm), then fu(x) is
continuous, since by the Cauchy-Schwarz inequality

Il fo(x) = foxo)ll < llx — xoll @]l

As shown in theorem 4.1, this means that f must also be bounded.

4.2 Operator norms

An operator norm, like any norm, must satisfy the properties described in section 2.3. There
are several different ways of defining the norm of a transformation (operator). One way is
to define the norm so that it provides an indication of the maximal amount of change of
length of a vector that it operates on. Let X and ¥ be [, or L, and let A be a linear operator
A: X — Y. The p operator norm, or p norm, or [, norm, of A is

HAxIl,
fAll, = sup ——