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PREFACE

The core parts of this book are Chapter 1 on Monte Carlo methods, Chapter 2 on
discrete time Markov chains with values in a finite or countable set, and Chapters 6
and 7 on the Poisson process and continuous time jump Markov processes, likewise
with values in a finite or countable set.

With these chapters are their starting point, this book presents applications in
several fields. Chapter 3 deals with stochastic algorithms. Specifically, we present
the Markov chain Monte Carlo method invented in the 1950s for applications
in statistical mechanics. Used in image processing, it has become an essential
algorithm in Bayesian statistics when the data to hand are complex and numerous.
We also present a stochastic optimization algorithm, namely simulated annealing.

Another application concerns molecular biology, with two distinct examples.
One, presented in Chapter 4, concerns the annotation of DNA sequences and
sequence alignment. The main tools here are hidden Markov models, which are
also very commonly used in signal processing, in particular in speech recogni-
tion. A second biological application is concerned with phylogeny, which is the
study of the relations between living species, those relations being illustrated by
the ‘phylogenetic tree’. Several phylogenetic tree reconstruction methods are based
on probabilistic models of evolution of genomic sequences. These models are
continuous time jump Markov processes on trees. This application is in Chapter 7.

Chapter 5 presents an introduction to control and filtering, including the famous
Kalman—Bucy filter, an algorithm which is frequently used for guiding satellites.

The subject of Chapter 8 is queues and networks.

Finally, Chapter 9 gives an introduction to financial mathematics. It presents
both discrete and continuous time models. In particular, it contains a presentation of
1td’s stochastic calculus and diffusion processes, which again are Markov processes,
but this time both in continuous time and taking their values in the Euclidian space
R?. Note that this chapter is the only one where several proofs of basic results are
omitted. Including them would have made the book too long, and they are available
elsewhere.

Each chapter is followed by a number of exercises. Some of these bear the label
‘Programming’. This means that they suggest simulations, for example with Matlab,
in most cases with the idea of visualizing the results graphically. Solutions to more
than half of the exercises are given in Chapter 10. Students are urged to try to solve
the exercises by themselves, without immediate recourse to the solutions. This is
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essential for mastering the content of the book. While most exercises are designed
for understanding the content of the book, a few present additional applications.

The content of this book was taught in several courses both at the Université
de Provence in Marseille, and at the Ecole Centrale de Marseille.

A complete reading of this book (including Chapter 9) requires reader to have a
knowledge of probability theory, including measure theory and conditional expec-
tation. However, most of the book uses only discrete laws, together with some laws
with density, and the two basic limit theorems: the law of large numbers and the
central limit theorem. Hence, large parts of the book will be accessible to mathe-
maticians who have only studied probability at undergraduate level, as well as by
computer scientists, statisticians, economists, physicists, biologists and engineers.

I am grateful to Genevieve Foissac, who typed most of the French version of
this book, and my colleagues Julien Berestycki, Fabienne Castell, Yuri Golubev,
Arnaud Guillin, Stéphanie Leocard, Laurent Miclo and Rémi Rhodes, who read
parts of the manuscript and whose comments and criticisms helped me improve
the original version.

This is a translation of the original French version Processus de Markov et
applications: algorithmes, réseaux, génome et finance, published by Dunod in 2007.
I have added one section (Section 2.8). I wish to thank Judith R. Miller, who
kindly read and improved my English translation. She could not of course make
my English perfect, but thanks to her I hope it is readable.

Marseille






Simulations and the Monte
Carlo method

Introduction

In order to introduce the Monte Carlo method, let us consider a problem of
numerical integration. There exist several numerical methods for the approximate
computation of the integral
f(x)dx,
[0,1]

based on formulae of the type >, w; f(x;), where the w; are positive numbers
whose sum equals 1 and the x; are points in the interval [0, 1]. For example, if
w; = 1/n, 1 <i <n, and x; = i/n, this is the trapezoid rule. But there exist other
approximations, such as Simpson’s rule and the Gaussian quadrature formula. A
Monte Carlo method is of the same type: we choose w; = 1/n, and we choose
the x; ‘at random’ (meaning here according to the uniform law on [0, 1], later
denoted by U£(0, 1)). As we shall see below, the convergence is guaranteed by the
law of large numbers, and the rate of convergence, of order n~!'/2, is given by the
central limit theorem. Clearly, that rate of convergence may seem rather slow, if we
compare it with the rate of other numerical integration methods in dimension 1. But
all these numerical methods collapse if we go to higher dimensions. Indeed, in all
these methods, the precision is a function of the distance between two contiguous
points of the discretization. But if we use n points for the discretization of [0, 114,
the distance between two contiguous points is of order n~'/¢, hence if we want a
precision of order 1/n with a ‘first-order’ method of approximation of an integral
over [0, 119, the number of points we need is of order n¢. On the other hand, the
Monte Carlo method is essentially unaffected by the dimension.

Historically, the method goes back to Count Buffon who described in 1777 a
method for the approximate computation of , based on the realization of repeated

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd



2 MONTE CARLO METHOD

experiments. But the true birth of the Monte Carlo method is linked to the appear-
ance of the first computers. The first papers describing methods of this type date
back from the late 1940s and early 1950s. These methods continue to grow more
and more popular. This is in large part due to the simplicity with which one can
program them, as well as the ability of today’s computers to perform a huge number
of random draws in a reasonable length of time.

1.1 Description of the method

If we wish to use a Monte Carlo method, we need first to write the quantity of
interest as the expectation of a random variable. This is often easy, as in the case
of the computation of an integral, but it might be much more involved, as when
we wish to solve a parabolic or elliptic partial differential equation (see Sections
7.9 and 9.3 below).

The next step is to compute a quantity of the form E(X), where X is a random
variable. In order do so, we need to be able to simulate mutually independent ran-
dom variables X1, ..., X, all having the law of X. It then remains to approximate
E(X) by

1
E(X) ~ (X1 +...+ X,).

Let us describe one example of the application of the Monte Carlo method, to
the computation of an integral. We will explain in detail the two steps presented
above: how to write the integral as an expectation, and how to simulate the random
variables. Suppose that we wish to compute an integral of the form

I:f f(u],...,ud)du]...dud.
[0, 134

Weset X = f(Uy,...,Uy), where the U;, i =1, ..., d, are independent and iden-
tically distributed (i.i.d.) random variables, each one having the law ¢/ (0, 1). We
have

EX)=E(f(U,...,Uy) = /[;) i f@uy,...,ug)duy...dugy.
We have just completed the first step — our integral is written as an expectation.

For the simulation, suppose we can produce a sequence (U;,i > 1) of i.i.d.
random variables whose common law is ¢/(0, 1). We define X; = f(Uy, ..., Uy),
Xo = f(Ug41, ..., Usy), etc. Then the sequence (X;,i > 1) is an i.i.d. sequence
of random variables, all having the same law as X. We can now implement the
Monte Carlo method.

It is important to note the simplicity with which the corresponding program
can be written. Note also that no specific regularity of f is required. f need only
be integrable.

One often needs to compute a more general type of integral, namely

I:/ g(x)f(x)dx:/ g(x1, ..., xg) f(x1,...,x0)dx; ...dxg,
R4 RrRd
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with f(x) non-negative and ff(x)dx = 1. Then I equals E(g(X)) if X is an
R?-valued random variable whose law is f(x)dx. The problem now is to simulate
random vectors having that probability law. Some answers, related to commonly
used probability laws, will be given in Section 1.3 below.

But let us first answer the two questions:

e When and why does this algorithm converge?

e Can we get a precise idea of the accuracy of this algorithm?

1.2 Convergence theorems

The answers to the two above questions are given by the two most fundamental
theorems in the calculus of probability, namely the law of large numbers, which
permits us to establish the convergence of the method, and the central limit theorem,
which gives a precise indication of its rate of convergence.

Theorem 2.1 Let (X,,n > 1) be a sequence of i.i.d. random variables, all having
the law of X. If E(|X|) < 400, then, for P almost all w (this means that there exists
N C @, with P(N) = 0 and such that whenever w ¢ N ),

) 1
E(X)= lim —-(X;+...+ X,))(w).
n—+oo n
The evaluation of the method relies upon estimating the error
1
en = E(X) — ;(Xl + .o+ X))

The central limit theorem gives the asymptotic behaviour of the quantity ¢,, which
has a random nature. It says that the law of ¢, tends to look like a centred Gaussian
law.

Theorem 2.2 Let (X,,n > 1) be a sequence of i.i.d. random variables, all having
the law of X. Assume that E(X?) < +o00. Let o denote the variance of X:

0o =EX) -EX)* =E((X —E(X))?).

Then
ﬁen converges in law towards Z >~ N (0, 1).
o

In other words, for all a < b,

b

o o 2, dx
lim P|—a<¢,<—b)| = —x°/2 )
n=e (ﬁ“—g _ﬁ) K N

In practice, if n is not too small (which will always be the case in the situation
of a Monte Carlo computation), the above probability can be replaced by its limit,
hence we may act as if ¢, were a centred Gaussian random variable with variance

2
o°/n.
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Remark 2.3 ]. This result is extremely powerful, since it gives us a rate of con-
vergence which can be easily estimated with the help of the simulations
which have already been realized. The fact that we have a reliable esti-
mate of the error, without any further computation, is a real strength of the
method.

2. However, the central limit theorem never provides a bound for the error,
since the support of a Gaussian random variable is R. One way to describe
the error in the Monte Carlo method is either by providing the standard
deviation of &, which is equal to o /\/n, or else by providing a 95% confi-
dence interval for the result. This means that there is a 0.95 chance that the
quantity of interest is in the given interval (and hence there is a 0.05 chance
that it is outside that interval). Clearly 0.95 can be replaced buy any value
close to 1.

Note the important role played by the variance of X in the estimation of the
error. Since we can choose the law of X, with the restriction that E(X) be the
quantity which we are interested in, we may wish to replace X by another random
variable with the same expectation and a smaller variance. Such a procedure is
called a variance reduction method (see Section 1.4 below).

We should also note that the rate at which the error goes to 0 is not very
fast. However, there are several situations where this slowly converging method
is the only available one (e.g. integral or parabolic partial differential equations in
dimension higher than 4). It is also remarkable that the rate of convergence does
not depend upon the smoothness of the function f.

We will now describe the use of the central limit theorem for analysing the rate
of convergence of the Monte Carlo method, in two examples. This will allow us
to present a limitation of the use of the Monte Carlo method.

A good case Suppose we wish to compute p = P(Y <)), where Y is a random
variable with an arbitrary law. Define X = 1{y<;;. Then E(X) = p, and ol =
var(X) = p(1 — p). Consequently, after n independent draws X1, ..., X, of X,
we have

Xi+...+X o
py= T "%p+—nZ.

n vn
Since p(1 — p) < 1/4, if we want the standard deviation o/+/n of the error to
be of the order of 0.01, we should choose n of the order of 2500. If we choose
n = 2500, the 0.95 confidence interval for p is then, according to the central limit
theorem, [p, — 1.96 x 0.01, p, + 1.96 x 0.01]. If the true unknown value p is of
the order of 0.50, this leads to an acceptable error.

However, if the true value of p is very small, the above value of n may be
insufficient, if we want the error to be smaller than the quantity to be estimated.
We need a number of simulations of the order of 1/p.
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A tough case Imagine that we wish to compute E (exp(8Z)), where Z is an
N(0, 1) random variable. Clearly

E = ]E(eﬂz) = eﬂz/z.

If we apply a Monte Carlo method to this case, we let X = ¢#%. The variance of
X is 02 = 2> — ¢, After n simulations X, ..., X, according to the law of X,

we have
:X1+...+X,, %E—i—iZ.
n n

E,

The standard deviation of the relative error is

o P —1
EJn n o

If we want that quantity to be smaller than a given & > 0, then we should choose
na~e 2P —1).Ife=1and B =S5, this means n = 7 x 10'°, which is far too
high. After 10> simulations, the 0.95 confidence interval might be [—467 647, 2 176
181], which is a disaster. The only positive point is that we are aware of the fact that
our estimate is terrible, at least if we have a good estimate of the variance of the X,.

This example shows a practical limitation of the Monte Carlo method, when
we use random variables with large variances. This leads us to formulate the fol-
lowing rule: in any Monte Carlo computation, one must exploit the simulations, in
order to estimate the variance of the random variable whose expectation we wish
to compute.

Note that reducing the variance of the random variable to be simulated is often
a crucial step in making a Monte Carlo computation efficient. We shall discuss this
issue in Section 1.4.

1.3 Simulation of random variables

Simulation of 1/(0, 1) Any programming language today possesses a pseudo-
random number generator. Such a program produces as output a perfectly determin-
istic (and also periodic) sequence, but whose statistical properties resemble those of
a sequence of independent realizations of the law I/(0, 1). The problem of inventing
a good ‘random number generator’ is to create a recurrence formula which, in a rea-
sonable time, produces a sequence of numbers which looks as much as possible like
a sequence of realizations of independent ¢/(0, 1) random variables, with a period
which should be as large as possible. The study of those generators is part of the
theory of dynamical systems. Most classical algorithms generating pseudo-random
numbers are presented in [23] and [32], among others. More recently, Matsumoto
and Nishimura [26] proposed a generator with period 2'°%37 — 1!
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Note that all random number generators try in fact to deliver draws from a
uniform law on {1/M,2/M, ..., (M — 1)/M, 1}, with M very, very large.
It remains to simulate laws other than the uniform law.

Simulation of a Bernoulli random variable Let 0 < p < 1. If U is a U(0, 1)
random variable, X = 1{y<,) is a Bernoulli random variable with parameter p.

Simulation of a binomial random variable If U,,..., U, are independent
U(0, 1) random variables, then

X = 1[U1§P] +...+ I{Unfp]

is a B(n, p) random variable (binomial with parameters n and p).

Simulation of a geometric random variable X = inf{k > 1; U, < p} is a geo-
metric random variable with parameter p. A more efficient simulation procedure,
based on the next lemma, is proposed in Exercise 5.1.

Inversion of the distribution function Recall the following classical result:

Lemma 3.1 Let X be a random variable, and F its distribution function (i.e.
F(x) =P(X < x)). Define, for 0 <t <1,

F~'(t) = inf{x; F(x) > 1}.
Then if U has the law U[O0, 1], F~YU) has the same law as X.
Proor This is immediate:
P(F7'(U) = x) =P(U < F(x)) = F(x).

Indeed, {t; F @) < x} C{t;t < F(x)}, and the difference between those two

sets is at most a one point set.
(]

This method can be used whenever we have an explicit expression for the
inverse of F. This is particularly the case for the exponential probability law.

Simulation of an exponential random variable Recall that a random variable
X has the exponential law with parameter A whenever, for all t € R,
P(X > t) = exp(—Af).

Hence, if F is the distribution function of X, F(r) = 1 — e, and

log(1 —
Flo) = — e =)
A
If U >~ U[O0, 1], the same is true with 1 — U, and
logU

~ E(A).
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Simulation of Gaussian random variables (Box—Miiller algorithm) A classical
method for the simulation of Gaussian random variables is based on the remark
that, if U and V are two independent ¢/ (0, 1) random variables,

v—2log(U)cos(2xV) and +/—2log(U)sin(2xV)

are independent N (0, 1) random variables. One can check this result as follows. If
X and Y are independent N (0, 1) random variables, f : R? — R.,

1 2 2
Ef(X, Y):—/ exp(—x +y )f(x,y)dxdy
2 R JR 2
1 2 00 1’2
= — / rexp|——) f(rcos@,rsin@)drdo
2 2

/ / —210gu cos(2mv), /—2logu sm(ZJTv)) dudv
=Ef (w/—210g Ucos2n V), /—2log U sin(2w V)) .

For the simulation of a Gaussian random variable with mean u and variance
o2, it suffices to define X = u + oY, where Y >~ N(0, 1).

Simulation of a Poisson random variable A Poisson random variable with
parameter A is an N-valued random variable such that

n

A
]P’(X:n):e_)‘—', for n>0.
n!

We shall see in Chapter 6 that whenever {7;;i > 1} is a sequence of i.i.d. ran-
dom variables, all being exponential with parameter A, then the law of N, =
anl nlr . 4T, <t <Ty+..4T,,) 1S Poisson with parameter Az. Hence N has the
law which we want to simulate. On the other hand, any exponential random vari-
able T; can be written in the form —log(U;)/A, where the (U;);>; are mutually
independent U/ (0, 1) random variables. Hence N | can be written

Ny = an{U} Uy Upq1<e *<UUz-Up}+
n>1

This gives an algorithm for the simulation of Poisson random variables.

The rejection method Suppose we wish to simulate a random variable with den-
sity f (e.g. with respect to Lebesgue measure on R¥), and suppose that there is an
easily simulable density g, such that, for all x € R4,

Jx) =kgx), gk >0%s flx)>0,

where k is a real constant. Define

wy = J®

k g(x)

on the set {g(x) > 0}.
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Proposition 3.2 Let (X, U,)n>1 be a sequence of independent random vectors
where, for each n > 1, X, and U,, are independent, X, has the density g and U,, >~
U, 1). Let N =inflk > 1; Uy < a(Xy)} and X = Xy. The random variable X
has the density f.

Remark 3.3 ], The probability of acceptance at the first step is
p1 =P = a(Xy))

_ / P(U; < a(x))Py, (dx)

= [ a(x)g(x)dx

1
0

since Uy and X are independent.

If we wish to reduce the number of rejections while simulating X, we need
to maximize the acceptance probability pi, hence to minimize k. Given that
f and g are probability densities and that f < kg, necessarily k > 1. Note
that the number of rejections is limited if f(x)/kg(x) is close to 1, that is,
if the function g is similar to f.

2. The above algorithm is still valid if X has a density f with respect to an
arbitrary positive measure |1, which is bounded from above by kg, where g
is the density with respect to | of an easily simulable random variable Y.
In other words,

P(X € A) = _/ Jf)puldx) < / kg(x)p(dx) = kP(Y € A).
A A

If the law of X is supported by a discrete set E, we can choose for u the
counting measure of the points of E. The rejection method can be used for
laws on a discrete set. In this case, f(x) = P(X = x).

PrOOF OF PrOPOSITION 3.2 Note that the inequality U; < a(Xj) will be satisfied
after a finite number of steps. Indeed,

P(Vk = 1, X # X)) = lim P(Mi<p{X # Xi})

= lim P(Mi<,{Ux > a(X)})
n—o0

= lim P(U; > a(X)))"
n—o0

= lim (1—p))" =0,
n—oo
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since the random variables (X, Uy) are i.i.d. Consequently,

IP’[XeA]:Z]P’[N:n,XeA]

n>1

=Y Plken-1{Us > (X} N {Up < (X)) N {X, € A}]
n>1
=Y (1= p0)" "PI{UI < (XD} N {X) € A}]
n>1
1
= ;P[{U1 =a(XD}N{X, € A}]
=P[X; € AlU1 = a(X1)].
The law of X is then the law of X, conditioned upon the acceptation set
{U; < a(X1)}. From the independence of X; and Uy,

PIX € A] = - f P(U, < a(x)) Py, (dx)
P1Ja

:kf a(x)g(x)dx

A
= / f(x)dx.
A

For the simulation of other laws, or other simulation methods of the above
laws, one can consult, among others, [7], [8], [13] and [35].

]

1.4 Variance reduction techniques

We have seen that the rate of convergence of the Monte Carlo method is of order
o/+/n. Clearly, the convergence is accelerated if the variance is reduced. We now
present several variance reduction methods.

Importance sampling Suppose that we try to compute E(g(X)), where the law
of X is f(x)dx (on R, for the sake of argument). We have

E(g(X)) = /R 2(0) f(x)dx.

But if f is the density of a probability such that f > 0, then one can rewrite
E(g(X)) as
g§(x) f(x)

E(g(X)) = | =—=—=f(x)dx.
(&(X)) fR 7o J(x)dx
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This means that E(g(X)) = E (g(Y) f(Y)/f(Y)), where Y has the law f(x)dx.
Hence, there is another method for computing E(g(X)), using n simulations

Yy,..., Y, of Y, and approximating E(g(X)) by
l(g(Yi)f(YO L4 g(Yf)f(Yn)).
n VASSY; J(Yn)

If we let Z = g(Y) f(Y)/f(Y), then this alternative method improves the conver-
gence provided var(Z) < var(g(X)). It is easy to compute the variance of Z:

fx)

If g(x) >0, it is easy to see that choosing f(x) =g(x)f(x)/Eg(X) makes

var(Z) = 0. Of course, this relies on the fact that we can compute E(g(X)) exactly.
This justifies the following heuristic: choose f(x) as close as possible to

|g(x) f (x)], then normalize (divide by f f(x)dx) so as to obtain a density of an eas-

ily simulable probability law. Of course, these constraints are largely contradictory.
Let us give one simple example. Suppose that we seek to compute

var(Z) = E(Z%) —E(Z2)* = fR dx —E(g(X))%.

1
/ cos (mx/2)dx.
0

Let us replace the function cos by a polynomial of degree 2. Since the integrand
is even and equals 0 at x = I and 1 at x = 0, it is natural to choose f(x) of the
form A(1 — x?). If we normalize, we get f(x) = 3(1 — x?)/2. If we compute the
variances, we can verify that the method has reduced the variance by a factor of 100.

Control variate This method involves writing E(f (X)) in the form
E(f (X)) = E(f(X) — h(X)) + E(h(X)),

where E(h(X)) can be explicitly computed, and var(f(X) — k(X)) is significantly
smaller than var(f(X)). We then use a Monte Carlo method for the computation
of E(f(X) — h(X)) and a direct computation for E(/(X)).

Let us start with a simple example. Suppose we wish to compute fol e“dx.
Since near x = 0, ¢ &~ 1 4+ x, we can write

1 1 3
/ exdx=f (" —1—x)dx + =.
0 0 2

It is easy to see that the variance is significantly reduced.
In applications to finance (see Chapter 9), one needs to evaluate quantities of
the type

C=E(("* - K),), (1.1)
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where Z is standard normal random variable and x4 = max(0, x). Such a quantity
is the price of a call option. Of course, in this precise case, there is an explicit
formula for the above quantity, namely the celebrated Black—Scholes formula,

o 52 log(K) log(K)
E((e - K),)=e""F <O‘—T>—KF <_T> (1.2)

where

F(x) = 2y,

1 / o
— e
V2r Jox
However there are variants of this problem which can be solved only by the
Monte Carlo method (see Chapter 9). Suppose that we wish to compute the
above quantity by the Monte Carlo method, that is, we approximate that quantity
by

C:n’l[(e“Z‘—K) +...+(e”z”—K)+].

+

Suppose now that we wish to evaluate the price of a put option,
P=E((K-e7),). (13)

hence
Pan (K =e™), .t (K =) .

At least whenever K2 << exp(c2/2),

var [(K — e"z)+] < var [(e"z — K)+] )

The put—call parity relationship (which follows from C and P, and the relation
x = xT —x7) says that
C—P=c_K,

hence we should instead compute P by a Monte Carlo procedure, and use the
put—call parity relationship in order to get C, rather than computing C directly by
Monte Carlo (see Exercise 5.9 below).

Antithetic variables Suppose we wish to compute

1
I=/ f(x)dx.
0

Since x — 1 — x leaves the measure dx invariant on [0, 1],

1 1
125/ (f () + f(1 —x))dx.
0
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We can then compute / as follows. We simulate n i.i.d. Z/(0, 1) random variables
Uy, ..., U,, and we approximate / by

I2n

1 /1 1
. <§(f(U1) A=V +. .+ S U) + fA = Un)))

1
E(f(Ul)'f'f(l_U1)+---+f(Un)+f(l_Un))-

If we compare this method with a direct Monte Carlo method after » simula-
tions, we note that the approximation is improved provided

Ef(U)f(1—U) <Ef3U),

which holds true provided the random variables f(U) and f(1 — U) are linearly
independent.

The method can be generalized to higher dimensions, and to other transforma-
tions which leave the law of the random variable to be simulated invariant.

For example, if we try to compute the price of a put option (1.3), we can use the
fact that the law of Z is identical to that of —Z and reduce the variance by a factor of
at least 2. Indeed, if f(x) = [K — e*]4, 0 > 0, f is monotone decreasing, hence

<f(Z) +f(—Z))
ar| ——m——

1 1
5 = —var(f(Z)) + ECOV(f(Z), f(=2))

2

IA

% var(f(Z)),
since

cov(f(Z2), f(=2)) <Ef(Z) — fFOILf(=2Z) = fO)])
<0.

Stratification method This method is well known in the context of survey sample
design. Suppose we seek to compute

I'=E(g(X)) = /g(X)f(X)dx,

where X has the law f(x)dx. We start by decomposing I into

=> "I =Y E(lixep)8(X)).
i=1 i=1

where D; is a partition of the integration set. We then use n; simulations for
the computation of /;. Define 052 = var(l{xep,}&(X)). Then the variance of the

approximation is
Zm:
n;

i=1



MONTE CARLO METHOD 13

If we minimize this quantity with the constraint that Y ., n; = n is fixed, we get
ni = no; /Y ", ;. The minimum equals 2! (Y7, 0;)>. We can show that it is
smaller that the variance obtained with n simulations of a standard Monte Carlo
procedure. Of course, one can rarely compute the o;, which limits the use of this
technique (but we can estimates the o; via a Monte Carlo procedure!). To learn
more about this procedure, see [10].

Mean value Suppose we wish to compute

E(g(X, ¥)) = / g (o) f(x. y)dxdy.

where f(x, y)dxdy is the law of the pair (X, Y).
If we let

1
h(x) = —— /g(x, W Jf(x, y)dy,
m(x)
with m(x) = [ f(x, y)dy, it is easy to check that
E(g(X,Y)) = E(h(X)).

Indeed, the law of X is m(x)dx, hence

B000) = [ mehods = [ dx [ 0 dy = Bex. 7).
On the other hand, interpreting /(X) as a conditional expectation, we can show that
var(h(X)) < var(g(X, Y)).

Consequently, if we can compute the function % explicitly, it is preferable to use
a Monte Carlo procedure for i (X).

Remark 4.1 We wrote in the introduction to this chapter that the Monte Carlo
method is particularly well suited to the computation of multiple integrals. We shall
see a typical example of such a situation, for a mathematical finance problem, in
Exercise 7.5. of Chapter 9.

1.5 Exercises
Exercise 5.1 Let X be a geometric random variable with parameter p, that is,
PX=k=pl-p“l k=1

1. Describe a method for simulating X based on a sequence of Bernoulli trials.

2. Give another method for simulating this law based on the formula
P(X >k)=(1— p)k, k > 0, and compare the two methods.
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Exercise 5.2 1. Describe a standard method for simulating the Gaussian
N, 1) law.

2. Propose a rejection algorithm for the simulation of a Gaussian random vari-
able, based upon the simulation of doubly exponential random variables with
density (A/2) exp (—X|x]).

3. Let X and Y be two independent random variables, both exponential with
parameter 1.

(a) Give the conditional law of X, given that {Y > (1 — X)2/2}.

(b) Let Z be a random variable having the above conditional law, and S an
independent random variable taking the values £1 with probability 1/2.
Give the law of SZ.

(c) Deduce another method for simulating the Gaussian N (0, 1) law.

Exercise 5.3 A process {X(t); t > 0} with continuous trajectories is said to be a
Brownian motion if it possesses the two following properties:

(i) Foranyn>1, 0=ty <t] <t) <...<lty, the random variables X (t;) —
X (tr—1)(1 < k < n) are mutually independent (we say that X(t) has indepen-
dent increments).

(ii) X(0) = 0 and the law of X (t + h) — X (¢) is the Gaussian law N (0, h), for
allt >0, h > 0.

1. Propose a method for simulating {X (kh); k > 1}, for a given h > 0.

2. Give the conditional law of X (t), given that X(t —a) = x and X(t +a) =
y. Deduce a method for simulating {X (kh/2); k > 1} which avoids the need
to redo the simulations of part 1.

Exercise 5.4 Let (X1, X») be a Gaussian random vector, with correlation coeffi-
cient p and such that, for i = 1, 2, the random variable X; has the law N (u;, O’iz).

1. Show that if (Y1, Y») is a pair of N (0, 1) independent random variables, then
the pair Z| = w1 + o1Y1, Zr = o + o2(pY1 + /1 — p2Ys) has the same
law as (X1, X»). Deduce a method for simulating this random vector.

2. Generalize to the case of an arbitrary dimension.

Exercise 5.5 Let X denote a random variable with the distribution function F.
Assume that F is one-to-one, and denote its inverse by F -1

1. Give a method for simulating X conditionally upon X > m, based on a
rejection method. Discuss the efficiency of the method. What happens when
m is large?
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2. For ald(0, 1) random variable U, define
Z=F"(F(m)+ (1 - F(m)U).

Compute the distribution function of Z and deduce a method of simulating
X, conditionally upon X > m. Compare with the above rejection method.

3. Generalize the previous method to the case where one seeks to simulate X
conditionally upon a < X < b.

4. Suppose we now try to simulate a Gaussian N (w, o*) random variable X,
conditionally upon X > m. Show that we can restrict ourselves to the case
of a standard normal random variable, provided we modify the value of m.

5. Propose, for the problem of part 4, a rejection method based upon a trans-
lated exponential law with the density Ge’e(x’m)l{x > m). How should one
choose the parameter 67

Exercise 5.6 (Importance sampling) Suppose we wish to compute by a Monte
Carlo method the quantity

pe=PX ele, £+1]),
where X is an exponential random variable with parameter 1.
1. Give the standard estimator of p, and compute its variance.

2. Propose an importance sampling method, such that the new simulations all
belong to the interval [£, £ 4 1]. Compute the variance of this new estimator
and discuss the case of large values of .

Exercise 5.7 (Variance reduction)
1. Propose an importance sampling method for the computation of
I=FE (I{X > oy exp BX),
where X is a Gaussian N (0, 1) random variable and B = 5.
2. Propose a control variate method for the same computation.

3. Improve the method with the help of an antithetic variable method.

Exercise 5.8 The aim of this exercise is to prove that the method of antithetic vari-
ables reduces the variance whenever we have a function which is monotone in each
of its variables.
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1. Suppose that f and g are both bounded and increasing from R into R. Show
that for any real-valued random variables X and Y,

E(f(X)gX)+E(f(Y)g(Y) = E(f(X)g() +E(f(¥)gX)).

Deduce that for any real random variable X,
E(f(X)g(X) = E(f (X)) E(g(X)) < cov(f(X), g(X)) = 0.

2. Show that if Xy, ..., X, are mutually independent real random variables,
E(f (X1, ... X)gX1, ..., Xp)|Xy) = ®(Xn),

where ®© is a function to be expressed as an expectation. Deduce that when-
ever f and g are increasing in each of their arguments,

E(f(X1, ... X)gXy, .., X)) 2 E(f (X1, ..., Xu) E(g(Xy, ..o, X))

3. Let h be a mapping from [0, 11" into R, which is monotone in each of its
arguments, and let Uy, ..., U, be independent U(0, 1) random variables.
Show that

cov(h(Uy,...,Uy),h(1 =U;,...,1=U,)) <0,

and show that the method of antithetic random variables reduces the vari-
ance in this case.

Exercise 5.9 (Programming) Recall the formula (1.1) for the price of a call
option, and (1.3) for the price of a put option. Deduce from the identity x = x+ —
(—x)T the put—call parity relationship

C—P=FEe? - K,

where the expectation Ee®? can be computed explicitly and equals exp(o?/2).
Deduce from this identity a control variate method, and show that it reduces the
variance.

Since Z and —Z have the same law, one can apply a method of antithetic random
variables to the two Monte Carlo computations of the call and of the put.

Choose for the simulation o = 1.5 and K = 1. Do the Monte Carlo computa-
tions with sample sizes N = 1000, 10 000 and 100 000. For each computation, give
the estimate deduced from the Monte Carlo simulations, and a 95 % confidence
interval, based on the central limit theorem and an estimate of the variance.

1. Compute the value deduced from the Black—Scholes formula (1.2).

2. Compute C by a Monte Carlo procedure, using first the formula (1.1), and
then the put—call parity relationship and (1.3) for the computation of P by
a Monte Carlo procedure.

3. Repeat the same two computations, using an antithetic variable method.
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Markov chains

Introduction

A Markov chain is a sequence of random variables {X,;n =0, 1,2, ...}, defined
on some probability space (€2, F, P), taking its values in a set £ which could be
arbitrary, but which for us will be either finite or countable, and which possesses
the Markov property. Intuitively, a Markov chain has the property that, knowing
the present state X,, one can forget the past if one wants to predict the future.
One way to construct a Markov chain is as follows. Let {Y,; n > 1} be mutually
independent F-valued random variables, which are globally independent of Xj.
Given a mapping f : N x E x F — E, we define {X,,; n > 1} recursively by

X, =f(n, X,-1, Ya).

In a way, this is the simplest model of non-mutually independent random variables.

The next two chapters will present many applications of Markov chains. Note
that we shall restrict our presentation to homogeneous Markov chains (in the above
recurrence relation, f does not depend upon 7, and the Y, all have the same law),
even though non-homogeneous chains are necessary in many applications. Even in
those cases, understanding the long time behaviour of the homogeneous chains is
crucial.

2.1 Definitions and elementary properties

We wish to define and study Markov chains {X,,; n € N} with values in a (finite or)
countable state space E. We shall denote by x, y, ... generic points of E. We shall
use the convention that whenever a condition involves a conditional probability
P(A|B), that condition is assumed to be satisfied only when P(B) > 0.

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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Definition 1.1 The E-valued stochastic process {X,;n € N} is called a Markov

chain whenever, for all n € N, the conditional law of X,+1 given Xo, X1, ..., Xn
equals its conditional law given X,, that is, for all xg, ..., x,4+1 € E,
P(Xut1 = xp411X0 = x0, X1 = X1, ..., Xpp = xp) = P(Xpp1 = X111 X0 = x3).

A simple criterion, which allows us in many cases to verify that a given process
is a Markov chain, is given by the following lemma:

Lemma 1.2 Let E and F be two countable sets, and let f be a mapping from
N x E x F into E. Let Xy, Y1, Ya, ... be mutually independent random variables,
Xo being E-valued, and the Y, being F-valued. Let {X,; n > 1} be the E-valued
process defined by

Xn+1 = f(ns X, Yn+l)v neN.

Then {X,; n € N} is a Markov chain.
ProoF

P(Xy+1 = xp+11Xo = X0, - ., Xup = xp)

_ P(Xo=x0,..., X = X, X1 = Xpn41)

B P(Xo = X0, ..., X = X,)

_ Z P(Xo=x0,..., Xy =X, Y1 = 2)
P(X():)C(),...,Xn:xn)

{25 f(n,xn,2)=xp41}

= > Pua=2

{25 f(n,xn,2)=xp41}

_ P(X, = xn, X1 = Xnt1)
B P(X, = x,)
[l

A Markov chain is the analogue of a deterministic sequence which is defined
by a recurrence relation of the type

Xpt1 = f(n, xp),
as opposed to a system ‘with memory’, of the type
Xnp1 = [, Xp, Xn—1, ..., X1, X0).
Here the function f(n, -) is replaced by the ‘transition matrix’
Py = P(Xp41 = y| Xy = x).

From now on, this matrix P = (Py,; x, y € E) will be assumed to be independent
of the time variable n. One then says that the Markov chain is homogeneous.
The chain constructed in Lemma 1.2 is homogeneous whenever f does not
depend upon n, and the Y, all have the same law. We now state a variant of
Lemma 1.2, whose proof is essentially identical, and which will be useful below.
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Lemma 1.3 Ler E be a countable set, and f be a mapping from E x [0, 1] into
E, such that for all x,y € E, the set {u € [0, 1]; f(x,u) = y} is a Borel subset
of [0, 1]. Let Xy, Y1, Ya, ... be mutually independent random variables, with X
taking its values in E, and the Y, being uniform on [0, 1], and let {X,; n > 1} be
the E-valued random sequence defined by

Xny1 = f(Xp, Yuy1), nelN.
Then {X,; n € N} is a Markov chain.

The matrix P is called Markovian (or stochastic), in the sense that it has the
property that, for all x € E, the row vector (Py,; y € E) is a probability measure
on E, or in other words,

Py >0, Vy € E; ZPX}, =1
yekE

Remark 1.4 P, is the entry in row x and column y of the matrix P. This notation
may surprise the reader, but it is very convenient. It is more common to enumerate
rows and columns, and hence to index them by 1, 2, . ... We note, moreover, that our
matrices are square matrices, with possibly an infinite number of rows and columns,
in the case where |E| = oc.

As we will now see, the law of a Markov chain is entirely determined by the
‘initial law’ (y; x € E), which is the law of X, and the transition matrix of the
chain.

Definition 1.5 Let i be a probability on E, and P a Markovian matrix. An E-valued
random sequence {X,; n € N} defined on a probability space (2, F,P), is called
a (i, P) Markov chain (i.e. with initial law w and transition matrix P) if:

(i) P(Xo =x) =y, Vx € E;

(ii) P(Xn+l = leO =X0, .- Xn1 =Xp—1, Xp =X) = ny;
Vxo, ..., Xp—1,X,y € E.

Proposition 1.6 A necessary and sufficient condition for an E-valued random
sequence {X,; n € N} to be a (i, P) Markov chain is that, for all n € N, the law
of the random variable (Xo, X1, ..., X,) be given by

P(Xo=x0, X1 = X1, ..., Xn =Xn) = pay Prox; X -+ X Py, |,
ProoF For the necessary condition, if P(Xo = x¢, ..., X;,—1 = x,—1) > 0, then
P(Xo=x0,..., X, =x,) =P(X,, = x,| X0 =x0, ..., X1 =Xp_1)
x - x P(X) = x11Xo = x0)P(Xo = x0),

and the above identity follows from the definition. Otherwise, both sides of the
identity in the statement are zero (consider the smallest index k such that P(Xy =
xo,...,Xk =xk)=0).
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We now turn to the sufficient condition. (i) The identity in the statement follows
from the definition. Let us prove more than (ii):

IP)()(rH»l = Xn4ly - Xn+]7 = xn+p|X0 =X0,..., Xy = xn)

Xn+p—1Xn+p

_ MX()PX()XI XX P

/"LXOPXOXI XX Pxn—lxn

and (ii) now follows if we choose p = 1. O

We have in fact established the following result:

Corollary 1.7 If {X,; n € N} is a (u, P) Markov chain, then for all n, p, xo, ...,

Xn+p>
P(Xn+l = Xn41s .-, XrH—p = xn+p|XO =X0, ..., Xy = Xp)

=P X -+ X P

XnXp+1 Xn+p—1Xn+p*

A probability i on E is considered to be a row vector, a mapping g : E — R
as a column vector, which justifies the notation

(/’LP)y = ZMxny,

xek

(Pg)x = Z nygy,

yeE

and the integral of a function g with respect to a measure p is written (whenever
the sum converges absolutely) as the product of a row vector on the left with a
column vector on the right:

ug = Z Mox 8-

xeE
Proposition 1.8 Let {X,;;n € N} be a (i, P) Markov chain. Then
(i) P(Xn = y|Xo = x) = P(Xpqp = y1Xp = x) = (P")xy,
(i) P(Xn = y) = (uP"),,
(iii) E[g(Xn)|Xo = x] = (P")x.
PrOOF
Q)
P(X, =y|Xo=x) = Z PX, =y, Xo-1 =Xu—1,..., X1 =x1|Xo =x)

-y Pox Py X - X Py
[hx
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= E Piyy X oo x Py |y

XLy Xn—1

= (Pn)xy-
(i1) We note that

P(X, =y) =) P(X, =y, Xo=x)

xekE

=Y P(X, = yIXo = X)phs,

xekE

and we use (i).
(iii)) We again use (i) starting from

E[g(X,)|Xo = x] =) &,P(X, = y|Xo = x).
yeE

2.2 Examples
2.2.1 Random walk in E = 7¢

Let {Y,; n € N*} denote an i.i.d. 74 -valued random sequence, with the common
law A, and let X, be a Z%-valued random variable, independent of the Y,. Then
the random sequence {X,; n > 0} defined by

Xpp1 =Xy +Yuq1, ne N,

is a (u, P) Markov chain, with p the law of Xy, and P, = A,_,. The classical
case is that of the symmetric random walk starting from 0, that is,

1
= do, Ate = =,
12 0 +e; 2d

where (eq, ..., ey) is an orthonormal basis of R4,

2.2.2 Bienaymé-Galton—Watson process

This is a branching process {Z,; n € N} where Z, denotes the number of males in
the nth generation with a certain name, those individuals being all descendants of
a common ancestor, the unique male in generation 0 (Zy = 1 almost surely). We
assume that the ith male from the nth generation has &/ male children (1 <i < Z,),
in such a way that

Zn
Zpy1 = Z Sin~
i=1



22 MARKOV CHAINS

Our main assumption is that the random variables {£';i=1,2,...,n=
0,1,2,...} are i.i.d., so that in particular Z, and {§}, ..., [’j, ...} are independent.
The random sequence {Z,; n € N} is a (u, P) N-valued Markov chain, with
u = 38; and
ny = (P*x)y,

where p** denotes the xth convolution power of the joint law p on N of the &,
that is, the law of the sum of x i.i.d. random variables, all having the law p.

2.2.3 A discrete time queue

We consider a queue at a counter. X,, denotes the number of customers who are
either waiting or being served at time n. Between time n and time n + 1, ¥,,;| new
customers join the queue, and whenever X,, > 0, Z, ;| customers leave the queue
(with Z,,11 = 0 or 1). We assume that X, Y1, Z, Y2, Z; ... are mutually indepen-
dent, with 0 < P(Y, =0) < 1, and moreover P(Z, =1)=p=1—-P(Z, =0).
We have

Xor1 =X+ Yo — Lix,>01Znt 1

2.3 Strong Markov property

Let us first reformulate the Markov property. Let {X,;n € N} be an E-valued
Markov chain defined on the probability space (€2, F,P). Given a probability
measure p on E, we shall use the notation PP, to denote any probability on (2, F)
such that under P, the sequence {X,; n > 0} is a Markov chain with initial law 1;
in other words, u is the law of Xy, that is,

P (Xo=x)=pu,, x € E.

Whenever u = §,, we shall write PP, instead of IPs . P, can be interpreted as the
conditional law of X, given that Xo = x. For any n > 0, we define F, to be the
sigma-algebra of those events which are ‘determined by Xy, X1, ..., X,,’, that is,

-7:11 - {{wv (XO(U)), ooy Xn(a))) = Bn}, Bn c P(En_;’_l)} ’
where P(F) denotes the collection of all the subsets of F.

Theorem 3.1 Let {X,;; n > 0} be a (u, P) Markov chain. Then for anyn € N, x €
E, conditionally upon {X, = x}, {X,4p: p > 0} is a (8x, P) Markov chain, which
is independent of (Xo, ..., X,). In other words, for all A € F, and any m > 0,
Xlyeooy X € E,

PAN{Xur1 =x1, .0 Xogm = X} X, = X)

=PAIX, =P (X1 =x1, ..., Xp = Xp).
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Proor It suffices to prove the result in the case where A = { Xy = yo, X1 = y1, ...,
X, = yn} (A is a finite or countable union of disjoint sets of that form, and the
result in the general case will then follow from the o-additivity of P). It suffices
to consider the case y, = x, since otherwise both sides of the equality vanish. The
left-hand side of the identity in the statement equals

IP(XO =y07 ~-~»Xn =-x7X}’l+l =-x11 "'an+m :xm)
P(X, =x)

’

which, applying Proposition 1.6 twice, is shown to equal

P(A)

mexxlexlxzx---xP

X1 Xm 2
or, in other words,
PA|X, =0)P (X1 =x1,..., Xy = Xp).
]
The preceding result says in particular that the past and the future of the chain
are conditionally independent, given the position of the chain at the present time n.

We now wish to extend the Markov property, replacing the fixed time n by a
random time (but not any random time).

Definition 3.2 A random variable T taking values in the set N U {400} is called a
stopping time if, for all n € N,

{T =n} e F,.

In other words, the observation of Xy, Xy, ..., X,, the trajectory of the chain
up to time 7, is enough to decide whether or not 7 equals n.

Example 3.3  (i)For all x € E, the first passage time at state x,

S — {inf{n > 0; X, = x} if such an n exists,
=

+o00, otherwise,
and the time of the first return to state Xx,

T inf{n > 1; X,, = x} if such an n exists,
T +00, otherwise,
are stopping times. (With the convention that the infimum of the empty set

is +o00, it is sufficient to write: T, = inf{n > 1; X, = x}.) In the case of Ty
this is because

(T, =n}={X1 £x}N...N{X,—1 Zx}N{X,, = x}.
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(ii) For all A C E, the time of the first visit to the set A,
Th =inf{n > 1; X,, € A},
is a stopping time.
(iii) On the other hand, the time of the last visit to A,
L4 =sup{n >1; X, € A},

is not a stopping time, since we need to know the trajectory after time n in
order to decide whether or not L 4 = n.

We shall denote by Fr the o-algebra of events which are ‘determined by
Xo, X1, ..., X7, which is defined as the o-algebra of those events B € F which
are such that for all n € N,

BN{T =n} e F,.

Theorem 3.4 (Strong Markov property) Let {X,;n > 0} be a (n, P) Markov
chain, and T a stopping time. Conditionally upon {T < oo} N{Xr = x}, {X74n;
n >0} is a (8x, P) Markov chain, which is independent of Fr. In other words, for
all Ae Frandallm >0, xy,...,x, € E,

PAN{Xry1=x1, .., Xrgm =} Xr =x, T < 00)
=PAIXr=x, T <o) x P (X1 =x1,..., Xy = Xpn).
Proor It suffices to show that, for all n € N,
PAN{T =n}N{Xr41 =x1, -, X74m = X }| X7 = X)
=PAN{T =n}| X7 = )P, (X1 =x1, ..., X;n = Xpn),

which follows from Theorem 3.1, and then to sum over all possible values of n. [

2.4 Recurrent and transient states
Define T, = inf{n > 1; X,, = x} as in Example 3.3.

Definition 4.1 x € E is said to be recurrent if P, (T, < 00) = 1, and transient oth-
erwise (i.e. if Py (Ty < 00) < 1).

We define the number of returns to the state x:

Ny = 1ix,=)-

n>1
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Proposition 4.2 (a) If x is recurrent, then

Py(Ny = +00) = 1.
(b) If x is transient, then
Po(Ny = k) = (1 = I, k =0,
where Ty = P (Ty < o0) (in particular, N, < oo, Py almost surely).
Proor Let
sz =inf{n > T\; X, = x}

=T, +inf{n > 1; X740 = x}.

It is not hard to show that sz is a stopping time:

P, (T? < 00) = P, (T? < 00|T, < 00)P, (T, < 00)
o0
=Y PuT? =T, +n|T, < 00)Py(T; < 00).
n=1

But from Theorem 3.4 we deduce that
}P’X(TX2 =Ty +n|T, < 00)
=P, (Xr41 # X, ..., X1y qn—1 # X, X1pqn = x|T, < 00)
=P (X1 #x,..., X1 #x,X,, =x)
=P (T, = n).

Finally,
P, (T? < 00) = (P (T, < 00))*

or
P, (N, > 2) = (P, (T, < 00))*

and, iterating the same argument, we deduce that
Pi(Ny 2 k) = (P(Ty < 00))*, keN.

Both statements of the proposition follow easily from this identity. (]

Corollary 4.3 x is recurrent if and only if

Z(Pn)xx = +00.

n=0
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PROOF

Ec(Ny) =Y Pe(X, =x)

n>1
= Z(Pn)xx'
n>1

It follows from Proposition 4.2 that this quantity is infinite whenever x is recurrent.
On the other hand, if x is transient, then

E.(Nx) = ) k(1 =TT}

k=1

O

Definition 4.4 We say that the state y is accessible from x (denoted by x — y)
whenever there exists n > 0 such that Py (X, = y) > 0. We say that x and y com-
municate (written <) whenever both x — y and y — Xx.

The relation x <> y is an equivalence relation, and we can partition E into
equivalence classes modulo the relation <.

Note that x — y < 3In > 0 such that (P"),, > 0, since P, (X, = y) = (P"),,
(Proposition 1.8(i)).

Theorem 4.5 Let C C E be an equivalence class for the relation <>. Then all states
in C either are recurrent, or else they all are transient.

Proor Letx, y € C. It suffices to show that x transient = y transient (since then y
recurrent = x recurrent). Since x <> y, there exist n, m > 0 such that (P"),, > 0
and (P™),, > 0. But for all » > 0,

(Pt > (Pn)xy(Pr)yy(Pm)yx)
and

Z(P = P (P (P’”))x Z(PWM)

n=0
U

Definition 4.6 A (i, P) Markov chain is said to be irreducible whenever E con-
sists of a single equivalence class. It is said to be irreducible and recurrent if it is
irreducible and all states are recurrent.

Proposition 4.7 Any irreducible Markov chain on a finite state space E is recurrent.

ProOF Whenever E is finite, at least one state must be visited infinitely many
times with positive probability, hence almost surely by Proposition 4.2, and that
state (as well as all states) is (are) recurrent. [
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2.5 The irreducible and recurrent case

In this section, we assume that the chain is both irreducible and recurrent. We start
by studying the excursions of the chain between two successive returns to state x:

E = (XTXk,XTXk_l_I,...,XTXHl), k> 0.

These excursions are random sequences whose length is random, at least 2 and
finite, composed of elements of E\{x}, except for the first and the last, which are
equal to x. Denote by U the set of sequences

MZ(X,)C],...,X,,,X),

withn > 0, x; # x, 1 <€ < n. U is countable, and it is the set of all possible excur-
sions &y, &1, . . .. Hence these random variables take their values in a countable set,
and their probability law is characterized by the quantities

P& =u), uel.

Proposition 5.1 Under Py, the sequence (&, &1, ...) of excursions is i.i.d.; in other
words, there exists a probability {p,; u € U} on U such that, for allk > 0, ug, ...,
Uy € U,

k
Po(€o=uo, &y =ur, ..., & =ug) = [ [ pu,-
=0

Proor This is a consequence of the strong Markov property. Indeed, {€y = up} €
Fr,, and the event
{&r=ur, ..., & =u}

is of the form
(Xr41=x1,..., X1oqp = Xp},
for some p > 0, xq,...,x, € E. Consequently,
P.(& =up, &1 = uy, ..., E = uy)
=P, ({& =uo) N {X7,41 =x1, ..., X1p9p = Xp}|Tx < 00)
=P (& =ug)P (X1 =x1,..., X, =x))
=Py (& = uo)Pr(Eo = uy, ..., E—1 = ug)
=P (& = up)Pr(Eo = u1) x ... x Pr(& = uyg)
= PugPuy * " Puy>
where {p,; u € U} is the law of & under P,. U

A measure on the set E is a ‘row vector’ {y,; x € E} such that 0 < y, < oo,
for all x. Whenever the measure is finite, > veE Yx < 00, we can normalize it, to
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make it a probability on E, (yx /> Vs X€E ) A measure y is said to be invariant
(with respect to the transition matrix P) whenever

yP =y,

that is,

ZVYPW =Y X €E.
yeE

A measure y is said to be strictly positive if y, > 0, for all x € E.

A probability measure y is invariant if and only if the chain (y, P) has the
property that y is the law of X,,, for all n € N, hence for all n, {X,,1,,; m € N} is
a (y, P) Markov chain.

Remark 5.2 An invariant probability is a probability m which satisfies TP = m,
or equivalently, for all x € E,

Zﬂypyx = nx(l - Pxx)»
y#X

that is,
P(X, #x, Xp41 =x) =P(X,, = x, Xy1 #X),

which means that at equilibrium, the mean number of departures from state x
between time n and time n + 1 equals the mean number of arrivals at state x between
time n and time n + 1. The relation which characterizes the invariant probability is
very intuitive.

Theorem 5.3 Let {X,; n € N} be a Markov chain with transition matrix P, which
we assume to be irreducible and recurrent. Then there exists a strictly positive
invariant measure y, which is unique up to a multiplicative constant.

Proor To prove existence, let y; denote the mean number of visits to state y
during the excursion & starting at x, that is,

T
y}x = EX Z l{Xn:y}
n=1

00
= ZPX(X}'I =y,n=<T,)

n=1

=Y Y PXpi=z.n— 1 <T}N{X, =y))

zeE n=1

o0
:Z( IF’X(Xn_1=Z,n—1STx)> Py
2

zeE \n=

= (y"P)y.
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Note that we have used recurrence to obtain the penultimate equality. We now
exploit the irreducibility of the chain. There exist n,m such that (P"),, > 0,
(P™)yx > 0. Hence, since y; =1,

0< (Pn)xy = V;(Pn)xy = ()/XP")y = V;C,
]/;(Pm)yx = (]/XPm)x = V,{x =1

Consequently, y* is a strictly positive measure, which satisfies y; = 1.

Turning to uniqueness, let A denote an invariant measure such that A, = 1. We
shall first prove that A > y*, then that A = y*. Note that this part of the proof of
the theorem exploits only irreducibility (and not recurrence). We have

Ay = Puy + Z)”mpmy

Z1F#X
= Puy + Z Py Pyyy + Z Azy Pryzy Pryy
Z1#X 21,20#X

oo
z Z Z Prgy Pryzyy - Pryy

n=0 Z|,.»~»Zn7éx
00

=Y PXpp1=y.Te =n+1)
n=0

Hence u = A — y* is also an invariant measure, and u, = 0. Let y € E, and n be
such that (P"),, > 0. Then

0=p, = ZMz(Pn)zx = My(Pn)yx'
zeE

Hence p, = 0, and this holds for all y € E. |

We have seen that a state x is recurrent whenever
P (T, < o0) = 1.

Let m, = E,(T,). If this quantity is finite, then x is called positive recurrent, and
otherwise it is called null recurrent.

Theorem 5.4 Assume again that the chain is irreducible. A state x is positive recur-
rent if and only if all the states are positive recurrent, if and only if there exists an

invariant probability m = (7, = m;l, x € E).

mXZZ)/;,C.

yeE

Proor Note that
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Hence if x is positive recurrent, then the probability 7 = (ry = y5 /my, y € E) is
invariant.

Conversely, if 7 is an invariant probability, from the irreducibility (see the end
of the proof of existence in Theorem 5.3), 7 is strictly positive, hence if x is an
arbitrary state, A = (Ay =Ty/TTy, ¥ € E) is an invariant measure which satisfies
Ax = 1. From the irreducibility and the proof of uniqueness in Theorem 5.3,

X ﬂ}' 1
my = Yy = — = — < 00.
T T
yeE yeE =¥ x
Hence x is positive recurrent, as are all the states. O

The following dichotomy follows from the two preceding theorems: in the
irreducible and recurrent case, the chain is positive recurrent whenever there exists
an invariant probability, null recurrent if one (hence all) invariant measure(s) has
infinite total mass (), m; = +00). In particular, if | E| < oo, there do not exist null
recurrent states, rather, any recurrent state is positive recurrent.

Corollary 5.5 Let {X,} be an irreducible Markov chain which is positive recurrent.
With any x € E we associate T, = inf{n > 0; X,, = x}. Then for all y € E,

E,(Ty) < o0.

Proor Note that
Tc > Te i1, <1y}

whence, taking the expectation under P,
my = Ex(Tx|Ty < Tx)]P;x(Tx <T).

But it follows from the strong Markov property that E, (7|7, < T,) > E,(T,),
and from the irreducibility that P, (7}, < T;) > 0, and the proof is complete. []

Remark 5.6 (The non-irreducible case) For simplicity, we consider here only
the case |E| < oo. There exists at least one recurrent class (which is positive recur-
rent), hence there exists a least one invariant probability. Any invariant probability
charges only recurrent states. If there is only one recurrent class, then the chain
possesses one and only one invariant probability. Otherwise, we can associate with
each recurrent class a unique invariant probability whose support is that class,
and all invariant measures are convex linear combinations of these, which are the
extremal ones. Hence, if there are at least two different recurrent classes, there are
an uncountable number of invariant probabilities.

We restrict ourself again to the irreducible case. We can now establish the
ergodic theorem, which is a generalization of the law of large numbers.
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Theorem 5.7 Suppose that the chain is irreducible and positive recurrent. Let 1 =
(7, x € E) denote its unique invariant probability. If f : E — R is bounded, then
P almost surely, as n — 00,

% DTFX) = > m f ).
k=1

xeE

PrOOF By assumption, there exists ¢ such that | f(x)| < ¢, for all x € E.
Let

Ni(n) = Z Lix,=x

1<k<n

denote the number of returns to state x before time n. We wish to study the limit
as n — oo of

Ny (n)

n

Let SO, S, ..., Sk, ... denote the lengths of the excursions &y, &, ..., &, . . . start-
ing at x. We have

SO 4 SN <y g0 g,

Hence

SO st o SO s
Ny (n) ~ Ny(n) — Ny (n)

But since the random variables & are i.i.d. (hence the same is true for the S)’C‘), as
n— 00,
SO 4. 4 s

— E (Ty) =m, P, as.,
N:(n)

since Ny(n) — 400 P, almost surely. Again from the law of large numbers,

— m, P, as.,

Ny (n)

that is

N, 1
() — — P, as.
n my

This convergence is also true P, almost surely, for any initial law w , since the
limit of N,(n)/n is the same for the chains {X,;n > 0} and {X71 4+,;n > 0}.
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Now let F C E. We define f = erE y f(x), c = sup, | f(x)|. We have

XX&?”—M)ﬂﬂ

xeE

1 ¢ .
;Zﬂ&%4=
k=1

N,(n) Ny (n)
< C:E: 11 — JTx +‘CZE: ( il + 7Ty
xeF x¢F
N (n) N (n)
_cZ — Ty +CZ<7Tx— , —i—ZCan
xeF xeFr x¢F
N (n)
<2 — .
< CZ o Ty —+—2€an
xeF X¢F

We choose a finite F such that Zx¢ F T < &/4c, and then N (w) such that, for all
n > N(w),

which proves the result. (]

We shall state a central limit theorem in the next section.

2.6 The aperiodic case

We have just shown that in the irreducible, positive recurrent case,

l n
p Z lix,=y} — 7, as.,
k=1

as n — oo. Taking the expectation under P,, we deduce that

1 n
; Z(Pk)xy — 7, Vx,y €E.
k=1

We see that the Cesaro means of the (Pk)xy converge. This raises the natural
question whether it is true under the above assumptions that, as n — oo,

(P")yy = my, Vx,y € E.

It is easily seen this is not the case.
Consider a random walk on E = Z/N, where N is an even integer (we identify
0 and N),
Xp=Xo+Y1+...4Y,,
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with the Y, i.i.d. with values in {—1, 1}; in other words,
X,=Xo+Y1+...4Y,) mod N.

This chain is irreducible, and positive recurrent since E is finite. But (P?**1),, =0,
for all x € E. In the particular case N = 2, we have P?* = I and P**+! = P.

In order for the desired convergence to be true, we need an additional assump-
tion:

Definition 6.1 A state x € E is said to be aperiodic if there exists N such that

(P >0, Vn>N.

Lemma 6.2 If P is irreducible and there exists an aperiodic state x, then for all
v,z € E, there exists M such that (P"),, > 0, for all n > M. In particular, all
states are aperiodic.

Proor From the irreducibility, there exist r,s € N such that (P"),, > 0,
(P%)y, > 0. Moreover,

(P’J"'J’S)yZ > (P)yx(P")xx(P*)yz > 0

if n > N. Hence we have the desired property with M = N +r + s. (]

Remark 6.3 Suppose we are in the irreducible, positive recurrent case. Let 7 be the
invariant probability, so that t, > 0, for all y € E. Hence the fact that there exists
N such that, for alln > N, (P"),, > 0 is a necessary condition for the convergence
(P")xy — 1y to hold. We shall now see that it is a sufficient condition.

Theorem 6.4 Suppose that P is irreducible, positive recurrent and aperiodic. Let
7 denote the unique invariant probability. If {X,; n € N} is a (u, P) Markov chain,
forally € E,

P(X, =y) > my,, n— oo;

in other words,
(MPn)y —> Ty,

for any initial law . In particular, for all x,y € E,
(P")xy = m,y.

ProorF We shall use a coupling argument. Let {Y,;n € N} be a (7, P) Markov
chain, independent of {X,; n € N}, and x € E be arbitrary. Let

T=inf{n >0; X,=Y, =x}.

Step 1. We show that P(T < o0) = 1. {W, =(X,,Y,);n €N} is an (E x E)-
valued Markov chain, with initial law A (where Ay ) = p,7,) and transition matrix
Is(x,u)(y,v) = P,y P,,. Since P is aperiodic, for all x, u, y, v, for all n large enough,

(P eayyv) = (PM)xy (P > 0.
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Hence P is irreducible. Moreover, P possesses an invariant probability
ﬁ(x,u) = TTxTTy.

Hence, from Theorem 5.4, P is positive recurrent. T is the first passage time of
the chain {W,} at the point (x, x); it is finite almost surely.
Step 2. Define

X,, n<T,;
Z, =
Y,, n>T.

By the strong Markov property, both processes {X7,;n > 0} and {Yr,; n > 0}
are (8,, P) Markov chains, independent of (X, ..., X7). Consequently, {Z,;n €
N} is, like {X,}, a (i, P) Markov chain.

Step 3. We now conclude. We have the three identities

P(Z, =y) =PX, =),
P(Y, =y) = Ty,
PZ,=y)=PXy=y,n<T)+ P, =y,n>T).
Hence
IP(Xn =y) —my| = |P(Z, =y) = P(Yyu =) =P(n <T) =0,

as n — 00. O

Remark 6.5 One can define the period of a state x € E as the greatest common
divisor of the integers n such that (P")y, > 0. One can show with an argument
very close to that of Lemma 6.2 that whenever P is irreducible, all states have the
same period. A state is said to be aperiodic if its period is 1. The equivalence of the
two definitions of aperiodicity is proved in Exercise 10.6.

We now make precise the rate of convergence in the preceding theorem, under
an additional assumption, called Doeblin’s condition : there exist ngp € N, 8 > 0
and a probability v on E such that

(D) (Pno)xy = ,vaa Vx, y€EE.
Remark 6.6 Condition (D) is equivalent to the condition

dx € E,ng > 1 such that ing(P”O)yx > 0.
ye

This implies that this state x is aperiodic. But it does not imply irreducibility (it is
easy to construct a counterexample). We shall see in Exercise 10.4 that this condition
implies existence of a unique recurrence class, and of a unique invariant probability.
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Lemma 6.7 If P is irreducible and aperiodic, and E is finite, then condition (D)
is satisfied.

Proor Choose x € E. For all y € E, there exists n, such that n >n, =
(P")yx > 0. Let i
i=supny, o =inf(P"),,.
yeE y

Then @ > 0, and for all y € E,
(P")yx > c.
Hence condition (D) is satisfied with no =1, 8 = o, v = J. [l
On the other hand, Doeblin’s condition is rarely satisfied in the case where
card(E) = +o0, since then typically, for alln e N, y € E,
inf (P"),, = 0.
xeE

Theorem 6.8 Suppose that P is irreducible and satisfies Doeblin’s condition (D).
Then P is aperiodic, positive recurrent, and if 7w denotes its invariant probability,

DIP Yy —ml <20 =™, VxeE, neN,
yeE

where [n/ng] stands for the integer part of n/ny.
Let us first introduce a tool which will be useful in the proof of this theorem.

Definition 6.9 A coupling of two probabilities p and q on E is any pair (X, Y) of
E-valued random variables such that p is the law of X and q is the law of Y.

Lemma 6.10 Let p and q denote two probabilities on E. We have the identity

- =2 inf P(X #Y).
llp —qll (X,Y)coulpl)}ingofp,q (X#Y)

Proor First, note that whenever (X, Y) is a coupling of p and ¢,

PX=Y)=) PX=Y=x)<) pAq.

xeE xeE
whence
PX#Y)>1=Y peAge=y (px—q0"
xeE xeE
and

lp—qlhi=Y_I1ps — gl <2P(X #7Y).

xeE

On the other hand, define o = er gPxAqx. If &, U, V and W are mutually
independent random variables satisfying P(§ = 1) =1 — P(§ = 0) = «, the law
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of U is r defined by r, = a~!p, A q,, the law of V is p defined by p, = (1 —
o) '(px — q¢)T, and the law of W is § defined by G, = (1 — a) "' (g, — px)*, then

X=tU+(1-8&V,

Y=¢U+1-&W
is a coupling (X, Y) of p and ¢, such that 2P(X # Y) = ||p — q|1- ]
PrOOF OF THEOREM 6.8 The chain being irreducible, Doeblin’s condition (D)

clearly implies that it is aperiodic.
Step 1. We first show that for any two probabilities ¢ and v on E,

[P —vP™|y <2(1 — g)lr/mol, 2.1)

To prove this, by Lemma 6.10, it suffices to construct a coupling (X,,, ¥;,) of the
probabilities u P and vP" such that

P(X, # Y,) < (1 — g)ln/mol,

Suppose that n = kng + m, with m < ngy. Given (X, Yy) with the law © x v on
ExE, for£=0,1,...,k—1, we define (X(¢41)ynq- Y(e+1)ny) In terms of (Xgy,,
Yin,) as follows. Let {&, Uy, Vp; £ > 0} be a sequence of mutually independent
random variables, the &, being Bernoulli with P(§, = 1) = =1 — P(§, = 0), the
law of the U, being m = ,B_Im and the V; uniform on [0, 1]. Define

Oy = (1 = B (P")yy — my)

and f: E x [0, 1] — E such that, for all x,y € E, {u; f(x,u) =y} is a Borel
subset of [0, 1], and provided V is uniform on [0, 1], the law of f(x, V) is Q,.,
x € E. We now let

Xe+vng = &eUe + (1 — &) f (Xing> Vo),
Yty = &cUe + (1 —&0) f (Yeng, Vo).

Note that we have really constructed a coupling (X, Yen,) of wP 0 and v P,
for £ =0, ..., k, which is such that

P(Xony 7 Yong) < PN, _o&m =0) = (1 — B)".

It remains to construct a coupling (X,, Y,) of uP" and vP", such that {X, #
Y.} C {Xkny # Yiny)> which is easy.

Step 2. We now show that for any probability u on E, {P"; n > 0} is a Cauchy
sequence in the Banach space (YE). If v = wP™, it follows from (2.1) that

Il P™™ — wP"|ly = |vP" — wP"|l < 2",

where ¢ = (1 — B)/"0. The result follows.
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Step 3 . It follows from the second step that the sequence of probabilities {u P"; n >
0} converges in £!(E), towards a probability 7 on E. But

7P = lim pP"' =g,
n—00

hence 7 is invariant, and the chain is positive recurrent. Consequently, from (2.1),
for any probability u on E,
lwP" — |y <2(1 — g/,

which establishes the claimed rate of convergence, together with aperiodicity. [J

We now state a central limit theorem for irreducible, positive recurrent and
aperiodic Markov chains. Such a chain, if it also satisfies

SUPay —myl <Mt", x€E.neN
yeE
with M € Rand 0 < ¢ < 1, is said to be uniformly ergodic. We have just shown that

Doeblin’s condition implies uniform ergodicity. That property implies the central
limit theorem.

Theorem 6.11 Let {X,,; n € N} be an E-valued Markov chain, with an irreducible
transition matrix P, which is moreover uniformly ergodic and aperiodic. Let
denote the unique invariant probability of the chain, and f : E — R be such that

anfz(x) < oo and anf(x) =0.
xeE xeE

Then as n — o0,

1 n
— Z S (Xy) converges in law to o4 Z,
1

Jn
where Z >~ N (0, 1) and
of =Y m(QN); = Y m(POf);

xeE

=2 1 (O fi — Y S

with

o
(0f)x =Y B f(X)], x €E.
n=0
Note that the uniform ergodicity property implies that the series which defines
the operator Q converges. The reader may consult [22], Corollary 5 and the ref-
erences in that paper, for a proof, and other conditions under which the theorem
holds. One of the other versions (without the uniform ergodicity, but with a stronger
moment condition on f) is established in [12], Theorem 3.18. of Chapter 4.
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2.7 Reversible Markov chain

Consider the irreducible, positive recurrent case. The Markov property — that the
past and future are conditionally independent given the present — tells us that when-
ever {X,; n € N} is a Markov chain, it follows that, for all N, {}A(,[l\' =Xy_n;0<
n < N} is also a Markov chain. In general, the time-reversed chain is not homo-
geneous, unless {X,} is initialized with its invariant probability 7.

Proposition 7.1 Let {X,; n € N} be a (;r, P) Markov chain whose transition matrix
P is supposed to be irreducible, and m be its invariant probability. Then the time-
reversed chain {)A(,ﬂv; 0<n<N}isa (m, f’) Markov chain, with

nyﬁyx =myPyy, Vx,y€E.
Proor
P(X )41 =xI1X, =)
= P(X, = x|X,11 = y)

P(X, =x)

=P(X =y|X, = _—.
(Xnt1 yIX, X)X]P(Xn+1:y)

O

We say that the chain {X,; n € N} is reversible if P = P, which holds if and
only if the following detailed balance equation is satisfied:

nxny = nyPyx’ VX,y €E,

where 7 denotes the invariant probability. It is easily checked that whenever a
probability 7 satisfies this relation, then it is P-invariant. The converse need not
be true.

Remark 7.2 If 7 is the invariant probability of an irreducible (and hence also
positive recurrent) Markov chain, the chain need not be reversible. Suppose that
card(E) = 3. Then there may exist x # y such that Py, = 0 # Py.. Consequently,
7y Pry = 0 % 7y, Pyx. The transitions from y to x of the original chain correspond to
the transitions from x to y of the time-reversed chain, hence Py, # 0 = ﬁxy # 0,
whence P # P.

Remark 7.3 Given the transition matrix P of an irreducible positive recurrent
Markov chain, one might wish to compute its invariant probability. This problem is
not always solvable.

Another problem, which will appear in the next chapter, is to determine an
irreducible transition matrix P whose associated Markov chain admits a given
probability 7 as its invariant probability.

The second problem is rather easy to solve. In fact there are always many solu-
tions. The simplest way to solve it is to look for P such that the associated chain
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is reversible with respect to w. In other words, it suffices to find an irreducible
transition matrix P such that the quantity mwy Py, is symmetric in x, y.
In order to solve the first problem, one can try to find w such that

Py =m, Py, Vx,ye€E,

which, unlike solving m P = m, implies no summation with respect to x. But that
equation has a solution only if the chain is reversible with respect to its unique
invariant probability measure, which need not be the case.

Suppose now that we are given a pair (P, ), and that we wish to check whether
or not 1 is the invariant probability of the chain with the irreducible transition
matrix P. If the quantity 1, Py, is symmetric in x,y, then the answer is yes, and
we have an additional property, namely the reversibility. If this is not the case, one
needs to check whether or not w P = . One way to carry out that verification is
given by the next proposition, whose elementary proof is left to the reader.

Proposition 7.4 Let P be an irreducible transition matrix, and 7 a strictly positive
probability on E. For each pair x, y € E, we define

P — %Pyxv ifx#y,
xy = .
Py, lfx=y~

7 is the invariant probability of the chain having the transition matrix P, and P is
the transition matrix of the time-reversed chain if and only if, for all x € E,

Zﬁxyzl.

yeE

2.8 Rate of convergence to equilibrium

Suppose we are in the irreducible, positive recurrent and aperiodic case. We then
know that for all x,y € E, (P”)m, — 1y as n — o0, where 7 denotes the unique
invariant probability measure. More generally, we expect that for a large class of
functions f : E — R, (P" f), — (f.m) asn — oo for all x € E, where, here and
below,
(o) =) f)ms.
xeE
In this section, we discuss the rate at which the above convergence holds.

2.8.1 The reversible finite state case

Let us first consider the simplest case, in which we assume that E is finite (we
write d = |E|) and that the process is reversible. We first note that we can identify
L?(rr) with R9, equipped with the scalar product

(f. 8)x =) fX)gx)T.

xeE
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Next the reversibility of P is equivalent to the fact that P, as an element of
L(L?(1r)), is a self-adjoint operator, in the sense that

(Pf.g)lx = Y Poyf(0E)m,

x,yeE

= Y Py f(gl0)m,

x,yeE
=(/f, Pg)x,

where we have used the detailed balance equation for the second identity. We now
check that the operator norm of P, as an element of E(Lz(rr)), is at most 1. Indeed,
if || - || denotes the usual norm in L2(r),

1PFI2 =Y [(PH] 7

xekE

= ELf(X)|Xo = x])’

xek

<E[f*(X)|Xo = x]m,

=Y from,,

xekE

where we have used Schwarz’s (or equivalently Jensen’s) inequality for the inequal-
ity, and the invariance of 7 for the last identity.

In order to be able to work in RY equipped with the Euclidean norm, let us
introduce the new d x d matrix

- Ty
Pyy = [—Pyy.
Ty

In matrix notation, P = ITY/2PI1~1/2, where Iy, = 8, ,m, is a diagonal matrix.
Moreover, if we denote by || - || the Euclidean norm on R?, for any f: E — R
(i.e. f is a collection of real numbers indexed by the d elements of the set E, in
other words an element of R?), denoting g = IT~!/2 f, we have

1PfI7 =Y (P22 = |IPgll% < llglk = I 1.

xeE

First, note that f is an eigenvector of P if and only if g = [T"'/2f is a right
eigenvector of P, and g’ = I1'/2 f is a left eigenvector of P associated with the
same eigenvalue. We have that P is a symmetric d x d matrix, whose norm is
bounded by 1. Hence, from elementary results in linear algebra, P admits the
eigenvalues —1 < Ay < Ag—1 < Ap < A1 < . Let us establish the following lemma.

Lemma 8.1 We have A, < Ay =1 and —1 < Ay.
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Proor If e denotes the vector whose xth component equals /., we have (Pe), =
T Zve g Px,y = ex, and we have an eigenvector for the eigenvalue A; = 1.
This is also an eigenvalue of P, the associated right eigenvector being the vec-
tor [171/2¢ = (1,1,...,1) and the associated left eigenvector being the vector
n'2e = .

The equality A, = A; would mean that the eigenspace associated with the eigen-
value 1 would be two-dimensional; in other words, there would exist f linearly
independent of e such that P f = f, which would imply that f’ = I1'/2 f, con-
sidered as a row vector, would be such that f'P = f’. Now there would exist
a € R such that (f' + am), > 0, for all x € E. We would have a second invariant
measure linearly independent of w, which contradicts irreducibility.

Finally, if —1 were an eigenvalue of P, it would also be an eigenvalue of P,
hence there would exist f such that Pf = — f, then we would have P f = f,
hence f = lim,_, o P> f = (f, ). But g = I1'/? f is an eigenvector of P associ-
ated with the eigenvalue —1, hence it is orthogonal to e, in other words (f, ) = 0,

hence f =0, and —1 is not an eigenvalue. ]
Denote by g1, .. ., g4 the orthonormal basis of L?(r) made of right eigenvectors
of P, corresponding respectively to the eigenvalues 1, Xy, ..., 4. For any f €

L*(7), since g=,...,1),

d
f={fm) =) ([ g)nsr,
=2
d
Pf—(f.m) =Y hlf g)nge.
=2
d
P f —(f.m) =Y N (f g8t
=2

d
IP"f = (fom)l% =D A7 (f 803
=2

< sup AP f — (f. )2,
2<t<d

hence we have the following proposition:

Proposition 8.2

IP"f = (fim)llz = (A= B)"If = (f, m)llx.

where B := (1 — X2) A (1 4 Ay) is the spectral gap.
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2.8.2 The general case

More generally, the same is true with

Bi=1- sup IPf = {f, )l

FeL2(@), Ifllz=1

Indeed, with this S, considering only the case f # 0, since all inequalities below
are clearly true for f = 0, we have

IPf (f,n)lln—HP<“f”ﬂ> <||f||n’ﬂ>

=A=PBIfx-

X ALf Nl

b4

Finally, we check that Proposition 8.2 still holds in the general case, with 8 defined
above. Note that

1P f = (fo ) lle = IPLP" f = (f, )]l
SUA=PIP"f = (f.7)]x-

The result follows by induction.

In practice the problem is to estimate the spectral gap B precisely. We shall
describe one such result in Section 3.3. The notion of spectral gap will appear
again in Section 7.10.

The content of this section was inspired by the treatment in [37]. For a more
complete introduction to this topic, see [36].

2.9 Statistics of Markov chains

The aim of this section is to introduce the basic notions for the estimation of the
parameters of a Markov chain.

We have seen that, for all n > 0, the law of the random vector (X¢, X1, ..., X,)
depends only on the initial law p and on the transition matrix P. We are inter-
ested in the conditions under which one can estimate the pair (u, P), given the
observation of (Xy, X1, ..., X,), in such a way that the error tends to zero, as
n — oo.

Let us first discuss the estimation of the invariant probability . For any x € E,

1 n
AN
A= ;_0 Lix,=x)

is a consistent estimator of ., since the following is an immediate consequence
of the ergodic theorem:
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Proposition 9.1 For any x € E, "} — u, almost surely, as n — oo.

Let us now discuss the estimation of the Py, x, y € E. We choose the estimator

n—1 1
pn — =t=0 {Xz—x Xot1 y}
xy —

z 0 I{Xe—x}

We have the following proposition.
Proposition 9.2 For any x,y € E, ﬁ;’y — Py, almost surely as n — oo.

ProOF We clearly have

1 n—1 1 n—1
£=0

S

We know that
1 n—1
; Z I{ngx} — Mx.
£=0

For n > 0, define ?n = (X, Xy+1). It is not very hard to check that {§n; n>
0} is an irreducible and positive recurrent E= {(x,y) € E x E; Pyy > O}-valued
Markov chain, with transition matrix P(x W) = Oy Pyy. It admits the invariant
probability [Z(. y) = iy Pyy. The ergodic theorem applied to the chain {X } implies
that almost surely, as n — oo,

—1

1 n

n Z 1{X5=XVX4+1=)'} = fx Pry.
=0

2.10 Exercises

Exercise 10.1 Show that the E = {1, 2, 3}-valued Markov chain {X,; n € N}
whose transition matrix is

0
-q q|, p,g>0,p+qg<1,
1

o O

1
0

starting at Xo = 2, first changes its value at a random time T > 1 whose law is
geometric. Show also that Xt is independent of T, and give the law of Xr. Finally,
show that X, = X7 ift > T.



44 MARKOV CHAINS

Exercise 10.2 Let {X,; n € N} bean E = {1, 2, 3, 4, 5}-valued Markov chain, with

transition matrix
1/2 0 0 0 1/2

0 12 0 1/2 0
p=lo o 1 o0 o
0 1/4 1/4 1/4 1/4
12 0 0 0 172

Find the equivalence classes, the transient and recurrent states, and all invariant
measures of {X,}.

Exercise 10.3 Consider a Markov chain {X,; n € N} taking values in the finite
state E = {1,2,3,4,5, 6}, with a transition matrix P whose off-diagonal entries

are given by 3 15 0 . 0

14 - 0 0 1/5 2/5
p_|0 0 - 12 0 0
o o 23 - 0o o

o 0 0 0 - 172

o 0 0 0 12 -

1. Find the diagonal entries of P.

2. Show that E can be partitioned into three equivalence classes to be specified,
of which one (T ) is transient and two (R and R,) are recurrent.

3. Find an invariant probability whose support is R and another whose sup-
port is Ro. Find all invariant probabilities.

Exercise 10.4 Let P be a Markovian matrix over a finite or countable set E, which
satisfies Doeblin’s condition (D) of Section 2.6.

1. Suppose first that condition (D) is satisfied with ng = 1. Show that there
exists at least one recurrent state, which is visited infinitely often by the
chain, for any starting point. Deduce that the chain has a unique recurrent
class. (Hint: first show that there exist x € E, B > 0 such that the chain
can be simulated by setting, at each time n, X,, = x with probability B, and
following a certain Markovian transition with probability 1 — B.)

2. Show that the result is still true in the general case of condition (D). (Hint:
consider the subchain {Xy,,; k =0,1,...}.)

Exercise 10.5 Show that whenever x is recurrent, anO(P")Xy equals +oo if and
only if x <>y, and equals 0 if and only if x / y.

Exercise 10.6 (Equivalence of the two definitions of aperiodicity) Ler x € E.
Define N, = {n; (P")xx > 0}.
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1. Show that whenever N, contains two consecutive integers, the greatest com-
mon divisor of the elements of N, is 1.

2. Show that if n,n + 1 € Ny, then n®,n>+1,n2+2,..) C N,

3. Show that if the greatest common divisor of the elements of N is 1, then
there exists n € N such that {n,n + 1} C N,.

4. Conclude that the two definitions of aperiodicity of a state x are equivalent.

Exercise 10.7 Consider an E = {1,2,3,4,5, 6}-valued Markov chain {X,; n €
N} with transition matrix P, whose off-diagonal entries are specified by

.12 0 0 0 0
/3 - 0 0 0 0
p_| 0 0 - 0 78 0
14 14 0 - 1/4 1/4
0 0 34 0 - 0

0 1/5 0 1/5 1/5

1. Find the diagonal terms of P.
2. Find the equivalence classes of the chain.

3. Show that 4 and 6 are transient states, and that the other states can be
grouped into two recurrent classes to be specified. In the sequel, we let T =
{4, 6}, C be the recurrent class containing 1, and C' the other recurrent class.
Forallx,y € E, define p, :== P, (T < o0), where T := inf{n > 0; X, € C}.

4. Show that
)L ifxed,
=N, ifxec,

and that 0 < py < 1ifx € 7.

5. Using the decomposition {T < oo} ={T =0} U{T =1}U{2 <T < oo}
and conditioning in the computation of P,(2 < T < 00) by the value of X1,
establish the formula

Ox = Zny,oy, ifxeT.

yeE

6. Compute py and pe.

7. Deduce (without any serious computation!) the values of P4(Tp < 00) and
Pe(Te < 00), where Ter := inf{n > 0; X, € C'}.
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Exercise 10.8 Consider an E ={1,2,3,4,5, 6}-valued Markov chain {X,; n €
N} with transition matrix P, whose off-diagonal entries are given by

1/4 1/3 0 0 0

/4 - 0 1/4 1/3 0

p_ |12 0 0 0 0
0 0 0 12 1/3
o 0 0 12 - 12
0 0 0 1/3 1/4

1. Find the diagonal entries of P.

2. Show that E is the union of two equivalence classes to be specified, one (R)
being recurrent and the other (T ) transient.

3. Define T :=inf{n > 0; X, € R} and h, =E,(T), for x € E. Show that
hy =0forx € R, and that 1 < h, < oo forx € T.

4. Show that, for all x € T,

hy =14 Pyyhy.
yeE

Deduce the values of h,, x € T.

Exercise 10.9 Given 0 < p < 1, we consider an E = {1, 2, 3, 4}-valued Markov
chain {X,; n € N} with transition matrix P given by

p 1—p O 0
p— 0 0 p l—p

p 1—p O 0

0 0 p l—p

1. Show that the chain {X,} is irreducible and recurrent.
2. Compute its unique invariant probability .

3. Show that the chain is aperiodic. Deduce that P" tends, as n — 00, towards
the matrix
Ty T T3 T4
Ty T T3 T4
Ty T T3 T4
Ty T T3 T4

4. Compute P?. Show that this transition matrix coincides with the above limit.
Determine the law of X, as well as that of X,,, n > 2.

5. Define Ty = inf{n > 1; X, = 4}. Compute E4(T}).
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Exercise 10.10 Consider an E = {0, 1, 2, 3, 4}-valued Markov chain {X,; n € N}
with transition matrix

1 1 1 1
0 2z 3 7 3
N
_ 1—p 1—p
P=1r = 2 = O
po 050 005
p 3= 0 F 0

where 0 < p < 1. Let T :=inf{n > 1; X, = 0}.

1. Show that the chain {X,} is irreducible and recurrent. Denote its invariant
probability by .

2. Show that under Py, the law of T is a geometric law to be specified. Show
that Eo(T) = (p + 1)/ p.

3. Let .
N, = Z 1ix,=0y, M, = Z 1ix, 20}
k=1

Compute the limits as n — oo of n='N,, and n='M,,.
4. Give an intuitive argument to support the identity
T =Ty = T3 = TT4.
Deduce the probability i, exploiting this identity.

5. Show the following general result. If there exists a one-to-one mapping t
from E into itself, such that

Prx,tyZnyy Vx,yGE,

then the invariant probability 7 has the property ., = 7, x € E. Deduce
a rigorous argument for the result in part 4.

Exercise 10.11 (Random walk in Z) Let
Xpn=Xo+Yi+...4Y,,

where the X, take their values in 7., the Y, in {—1, 1}, X0, Y1,...,Y,, ... being a
sequence of independent random variables, and for all n,

]P)(Ynzl):p:l—P(Yn:—l)’ 0<p<1'

1. Show that the chain {X,} is irreducible.
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2. Show that if p # 1/2, the chain is transient (use the law of large numbers).

3. Consider the case p = 1/2. Show that the chain is recurrent (evaluate
> =1 (PMoo using Stirling’s formula n! ~ «/2xn(n/e)"). Show that the
chain is null recurrent (look for an invariant measure). Determine the quan-
tities

limsupX, and liminfX,.

Nn—00 n—oo

Exercise 10.12 (Random walk in Z%) Let
X, =Xo+YV14+...4+7Y,,

where the X, take their values in 7% the Y, being i.i.d., globally independent of X,
and their law specified by

P(Y, =+e) =Qd)"', 1<i=<d,
where {ey, ..., eq} is the canonical basis of 74,

1. Show that the common characteristic function of the Y, is given by
d
p)=d" ) cos(;).
j=1

and that
(P")oo = (2m) ™ /

[-m.7]

Q" (t)dt.
d

2. Deduce that, for all0 <r < 1,

> = em [

n>0 [=m.7

(1—r¢@) dr.
]d

3. Show that, for all « > 0, the mapping

r,t)—> (1—ro@)™!

is bounded on 10, 1] x ([—m, n]d\Ca), where Co = {t € RY: ||t < a), and
that whenever ||t| is sufficiently small, r — (1 — r¢(t))~! is positive and
increasing.

4. Deduce from the fact that 1 — ¢(t) =~ ||t]|>/2, as t — 0, that {X,} is an
irreducible 7% -valued Markov chain, which is null recurrent ifd=1,2,
and transient if d > 3.
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Exercise 10.13 Consider again the Z-valued random walk from Exercise 10.11 in
the symmetric case (p = 1/2). The goal of this exercise is to establish the null recur-
rence of the walk by a method which is completely different from that of Exercise
10.11. Suppose for simplicity that Xg = x € Z.

Foralla,b € Z witha < x < b, let

Ty = inf{n > 0; X, ¢la, bl},
T, = inf{n > 0; X,, = a},
T, = inf{n > 0; X, = b}.
We note that .,
Xunt,, =X + Z Yilir,, > k13-

k=1

1. Show that the random variables Y, and 1i1,, > r—1) are independent.
Deduce that
EXn/\T,w = X.

2. Show that |X,at, ,| < sup(lal, |D]), Ta,p < 00 almost surely, and

E’XTa,b = X.
3. Establish the identities
b—x X —a
]P(XT"‘b:a):b—a’ P(XTa’b:b):b—a.

4. Show that P(T, < T,,) — 1, as n — oc.

5. Show that T, < oo almost surely, and similarly that T, < 0o almost surely.
Deduce that the chain is recurrent.

6. In the sequel we consider without loss of generality the case x = 0, for the
sake of notational simplicity. Show that, for all n > 1,

n
XI%ATH_;, = Z(l —2Xi 1Yol , > k-1
k=1

7. Deduce that E(X%ab) =E(T,p) = —ab and that, for all a € Z, E(T,) =
+00, which shows that the chain is null recurrent.

Exercise 10.14 (Reflected random walk) With the {Y,} as in Exercise 10.11,
define the N-valued Markov chain {X,} by the recurrence formula

X1 =X+ 1ix, > 0y Vg1 + 1ix,=0)-
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Assume that Xy € N. Denote by {X,} the (unreflected) random walk from Exercise
10.11, with the same Xo and the same {Y,}. Below we shall use freely the results
from Exercise 10.11.

1. Show that the chain {X,} is irreducible, as an N-valued chain. Give its
transition matrix.

2. Show that X, > X/, almost surely, for all n. Conclude that {X,} is transient
in the case p > 1/2.

3. Let T =inf{n > 0; X, = 0}. Show that X, = X|, whenever T > n. Con-
clude that the chain is recurrent in the case p < 1/2 (one can, for example,
show that the state 1 is recurrent).

4. Show that the chain is null recurrent in the case p = 1/2, and positive recur-
rent in the case p < 1/2. (Hint: check that in the first case (1/2,1,1,1,...)
is an invariant measure, and in the second case that the probability u defined
by

1-2p 1-2p p*!

= . > MHx = , X Z 17

2(1 = p) 2 (1=prtt

Ho

is an invariant measure.)

Exercise 10.15 (Birth and death Markov chain) Ler {X,,} be an E = N-valued
Markov chain with transition P given by

Pix1=qy, Pix=ry, Pixy1=ps,

where forallx e N, py +7ry +qx =1, 90 =0, g« > 0ifx > 0, and p, > 0 for all
x e N.

Forx € N, let t, = inf{n > 0; X,, = x}. Given three states a, x and b such that
a <x < b, define u(x) =P, (t, < 1p). Let {yy; x € N} be defined by yy = 1 and,
forx >0, yx =(q1---qx)/(p1-++ px)-

1. Show that the chain is irreducible.

2. For a < x < b, establish a relation between u(x) —u(x + 1) and u(x —
1) — u(x). Compute u(a) — u(b) in terms of the y,, and deduce that, for

a<x<»b,
Zy:b—l
y=x yy
ux) = ———.
y=b—1
y=a Vy

Consider the particular case where py = q, for all x > 0.

3. Compute P (19 = 00) and show that the chain is recurrent if and only if
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4. Find the invariant measures, and deduce that the chain is positive recurrent
if and only if
o~ POP1 " Px—1
— Q192" 4x

< Q.

5. Show that in the positive recurrent case, the chain is reversible. (Hint: first
note that, for x > 0, the relation w, = (7w P), can be written

”xPx,x—l + ”xPx,)H-l = TTx—1 Px—l,x + 7Tx+1Px+l,x;
then consider the case x = 0, and show by recurrence that

ﬂxPx,x+l == nx+1Px+1,Xa Vx > O)

Exercise 10.16 (Queue) Consider a discrete time queue such that, at each time
n € N, one customer arrives with probability p (0 < p < 1) and no customer arrives
with probability 1 — p. During each unit time interval when at least one customer is
present, one customer is served and leaves the queue with probability g, 0 < g < 1,
and no customer leaves the queue with probability 1 — q (a customer who arrives
at time n leaves at the earliest at time n + 1). All the above events are mutually
independent. Denote by X, the number of customers in the queue at time n.

1. Show that {X,; n € N}isanirreducible E = N-valued Markov chain. Deter-
mine its transition matrix Pyy, x,y € N.

2. Give a necessary and sufficient condition on p and q for the chain {X,}
to possess an invariant probability. We assume below that this condition is
satisfied. Specify the unique invariant probability {r,; x € N} of the chain
{Xn}.

3. Compute E,(X,).

4. Customers are served according to the order in which they arrive. Denote
by T the sojourn time in the queue of a customer who arrives at an arbi-
trary fixed time. Assuming that the queue is initialized with its invariant
probability, what is the expectation of T ?

Exercise 10.17 (Queue) Consider a queue at a counter. X, denotes the number of
customers in the queue at time n. Between times n and n + 1, Y, | new customers
join the queue, and provided X, > 0, Z,4 customers leave the queue. Assume
that X, Y1, Z1, Y2, Zo, ... are mutually independent, the Y, all having the same
law, such that 0 < P(Y, =0) < 1, and the Z, satisfying P(Z, =1)=p=1—-1P
(Z, =0).

1. Show that (X,; n € N) is a Markov chain, and give its transition matrix.
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2. Let ¢ denote the common characteristic function of the Y,, p that of the Z,,
W, that of X,. Compute W, in terms of V,,, ¢ and p.

3. Show that there is a unique invariant probability if and only if E(Y1) < p,
and determine its characteristic function.

Exercise 10.18 (Queue) Ler X denote the random number of individuals in a
given population, and ¢ (u) = E[uX], 0 < u < 1, its generating function. Each indi-
vidual is selected with probability q (0 < g < 1), independently of the others. Let Y
denote the number of individuals selected in the initial population of X individuals.

1. Show that the generating function ¥ of Y (defined as ¥ (u) = E[u"]) is given
by
YW =¢( —q+qu).

Consider a service system (equipped with an infinite number of servers), and denote
by X, (n=0,1,2,...) the number of customers present in the system at time n.
Assume that, at time n + %, each of the X, customers leaves the system with proba-
bility 1 — p, and stays with probability p (independently of the others, and of all the
other events), denote by X| the number of remaining customers, and assume that, at
time n + % Y11 new customers join the queue. Assume that the random variables
Xo, Y1, Yo, ... are mutually independent, and globally independent of the service
times, and that the joint law of the Y, is the Poisson distribution with parameter
A >0 (ie. P(Y =k) = e A/ k! and E[u"] = exp[A(u — 1)]).

2. Show that {X,;; n > 0} is an irreducible E = N-valued Markov chain.
3. Compute E[u*»+1|X, = x] in terms of u, p, » and x.

4. Denote by ¢, (u) = E[uX"] the generating function of X,,. Compute ¢, in
terms of ¢,, and show that

n—1

$uu) = exp [A(u -ny pk} go(1 — p" + p"u).
0

5. Show that p(u) = lim,_, « ¢, (1) exists and does not depend on ¢o, and that
p is the generating function of a Poisson distribution whose parameter is to
be specified in terms of A and p.

6. Show that {X,; n > 0} is positive recurrent and specify its invariant proba-
bility.

Exercise 10.19 Let X, Ao, Dy, A1, Dy, ... be N-valued mutually independent ran-
dom variables. The D, are Bernoulli random variables with parameter ¢, that
is, P(D,=1)=1—-P(D,=0)=¢q, 0<qg < 1. The A, all have the same law
defined by P(A, = k) =ri, k e N, where0 <r, < 1,0 <rg <l and Z,fio re = 1.
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Assume that p =), kry < 0o. Consider the sequence of random variables {X,;
n € N} defined by
Xny1 = (X + Ap — DI1)+1 n>0,

with the usual notation x* = sup(x, 0).

1. Show that {X,; n € N}isan E = N-valued Markov chain. Give its transition
matrix P, and show that the chain is irreducible.

Assume from now on that Xo =0. Let T = inf{n > 0; X,, = 0}. Define S, =
Y i Zo(Ax — D).

2. Show that X, > S,, and that X,+1 = Sy+1 on the event {T > n}.
3. Show that S,,/n — p — q almost surely, as n — 0.

4. Show that whenever p < q, T < 0o almost surely.
5

. Assume that p > q. Show that {X,; n € N} visits O at most a finite number
of times.

6. In the case p # q, specify when the chain is recurrent, and when it is tran-
sient.

Assume from now on that P(A, =1)=1—-P(A, =0)=p, where 0 < p <1 (p
is again the expectation of A,).

7. Specify the transition matrix P in this case.

8. Show that if p = q, the chain is null recurrent. (Hint: use the result of
Exercise 10.11, part 3, in order to show the recurrence, and then look for
an invariant measure.)

9. Assume that p < q. Show that the chain has a unique invariant probability
7w on N, and that my = (1 — a)a®, with a = p(1 — q)/q(1 — p). (Hint: first
establish a recurrence relation for the sequence Ay = mw; — Ti+1.) Show that
the chain is positive recurrent.

Exercise 10.20 (Discrete Aloha) The aim of this exercise is to study the following
communication protocol: users arrive at times {1,2, ..., n, ...} in order to transmit
a message through a channel, which has the capacity to transmit only one message
at a time. If several users try to transmit a message at the same time, no message is
transmitted, and each user knows this and makes a new attempt later. We look for
a ‘distributed’ retransmission policy, such that each user may decide when to try
to retransmit, without knowing the intentions of other users. The ‘discrete Aloha’
protocol prescribes that each user whose message has been blocked at time n makes
a new attempt at time n + 1 with probability p. If he decides not to try at time
n + 1, he again makes an attempt at time n + 2 with probability p, and so on until
by chance he does try. Let Y, denote the number of ‘new’ messages (i.e. which
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have not been presented before) arriving at time n. We assume that the Y, are i.i.d.,
with P(Y, =i) =a;, i €N, and E(Y,)) > 0. Let X,, denote the number of delayed
messages which are waiting to be transmitted at time n.

1. Show that {X,} is a Markov chain, and give its transition matrix.

2. Show that {X,} is irreducible, but not positive recurrent.

Exercise 10.21 (Programming) Consider again the queue in Exercise 10.16.

1. Simulate and plot a trajectory {X,; n > 0} from n =1 to n = 1000, with
p = 1/2 and successively g =3/5,7/13,15/29, 1/2.

2. Since {X,} is irreducible, positive recurrent and aperiodic, (P"),, — mx.
Plot either the empirical histogram or the empirical distribution function of
(P")y., forn =100, 500, 1000, and a sample size of 10*. Show the histogram
(or the distribution function) of w on the same plot. Treat the cases p = 1/2,
q =3/5,7/13.

3. Graphically compare the quantities

n
l’l_l Zl{xk:x}, X € N,
k=1

and the histogram of w, for n = 10>, 10*, 10°. Treat the cases p = 1/2,
q = 3/5,7/13. For each value of q, choose the interval of values of x from
the previous results.

Exercise 10.22 (Ordering a database) Suppose that a computer memory contains
n items 1,2, ...,n. The memory receives successive requests, each consisting of
one of the items. The closer the item is to the top of the list, the faster the access
is. Assume that the successive requests are i.i.d. random variables. If the common
law of those random variables were known, the best choice would be to order the
data in decreasing order of their associated probability of being requested. But
this probability (p1, pa, ..., pn) is either unknown or slowly varying. Assume that
pr >0, forallk e {1,2,...,n}.

We need to choose a method of replacement of the data after they are requested,
in such a way that in the long run the time taken to get the requested data will be
as small as possible.

We will compare two such methods. The first involves systematically replacing
any item which has been requested at the top of the list. The second involves moving
each item which has been requested one step ahead. In both cases, we have an
irreducible Markov chain with values in the set E of all permutations of the set
{1,2,...,n}. Denote by Q (P) the transition matrix of the first (second) chain, and
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by w () the associated invariant measure. We associate with the Markov chain

with transition matrix Q, the quantity

n

Z 7 (position of k) py,

k=1

def

Jo £

where 1 (position of k) is the expectation under 1w of the position of the element k.
We associate with the Markov chain with transition matrix P, the quantity

Jp 2 Z w(position of k) p.
k=1

1. Show that the chain with transition matrix Q is not reversible.

2. Show that any irreducible and positive recurrent Markov chain which satis-
fies the following conditions is reversible:

(i) Pre > 0<% Py > 0;
(ii) for any excursion k, ki, ka, ..., ky, k,

m 1
Py, l_[ Py, ik Pruk = Pua,, l_[ Pr; ki Proyk-

i=2 i=m—1

This is known as the ‘Kolmogorov cycle condition’.

3. Show that P satisfies (i) and (ii).

4. Show that the second procedure is preferable, in the sense that Jp < Jg.






3

Stochastic algorithms

Introduction

The aim of this chapter is to present some algorithms which are based on the
simulation of a Markov chain. Sections 3.1-3.3 are devoted to the study of the
Markov chain Monte Carlo (MCMC) method, which is very much used for sim-
ulating random variables with values in a finite but very large set, in cases where
the usual Monte Carlo method is not feasible. In particular, it has in recent years
become the main numerical method in Bayesian statistics. Section 3.4 is devoted
to simulated annealing, a random optimization algorithm.
In this chapter, all the Markov chains take their values in a finite set E.

3.1 Markov chain Monte Carlo

We have seen in Chapter 1 that one way to compute a sum of the type

D fm,

xekE

where {m,; x € E} is a probability, is to approximate it by

1 n
- fWw,
n k=1

where (Uj, U, ...) is a sequence of i.i.d. random variables with common law 7,
and the convergence of the algorithm is guaranteed by the strong law of large
numbers. In a number of important applications, it is very hard (if not impossible)
to simulate random variables following the law 7, even in the case of a finite (but
very large) set E. A typical case is where the 7, are known up to a multiplicative
constant, and where the straightforward computation of the normalization constant

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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is impractical, because it would imply summing a huge number of terms. It might
be much simpler to find an irreducible Markovian matrix P which admits 7 as its
invariant probability, and such that simulating a Markov chain having the transi-
tion matrix P is easy. This is what Metropolis et al. [27] were the first to propose
in 1953. How can one determine an irreducible matrix P which admits 7 as its
invariant probability measure? By determining a matrix P such that the pair (r, P)
satisfies the ‘detailed balance equation’. Note that knowing 7 up to a multiplica-
tive constant is sufficient for that purpose. It remains to simulate a Markov chain
{X,; n > 0} having the transition matrix P, and use the ergodic theorem in order
to justify the approximation of

X
(x)r, b -~ (Xn).
é f Y5 ; f
Given a probability # on E such that 7, > 0, for all x € E, how can we find
a Markovian matrix P such that the pair (;r, P) satisfies the detailed balance
equation? Let R be an arbitrary Markovian transition matrix on E. Then the formula

Ty
Pyy = Ry A ﬂ_Ryx . X FEY,

X

Py=1-Y) P,
y#X
(where a A b = inf(a, b)) defines a Markovian matrix P such that 7, P, = my Py,
for all x,y € E. The irreducibility of R is not sufficient for ensuring that of
P. For P to be irreducible, we need, for any x # y, that there exist n > 1 and
{xo,...,x,} C E with xo = x and x,, = y such that

3.1)

Ry i ARy, >0, V1I<k=<n.

How will we choose R in practice? We first choose a non-oriented graph G on
E, such that for all x, y € E, there exist n € N, xy, ..., x,4+1 such that x; = x,
Xp+1 =y and for all 1 <k <n, (xt, xk+1) € G, and we choose R such that

R,y >0& (x,y) €G.

Then the matrix P defined by (3.1) is irreducible.
There are two ‘classical’ choices for R once the graph G has been chosen. The
first choice, which is known as the Gibbs sampler , involves choosing

e ) (Zhwowa ™) ™. i eG,
xy =
0, if (x,y) ¢ G.

The second choice, known as the Metropolis algorithm, involves choosing

R (ny~t, if(x,y) € G,
7 o, if(x, y) & G,

where n, = |{z; (x, z) € G}|.
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Note that the MCMC procedure was invented for problems where E is very
large in size. The idea is to choose G in such a way that n, will be significantly
smaller than the cardinality of E. Then simulating the transitions of a Markov
chain with transition matrix R is relatively easy in both the Gibbs and Metropolis
cases. It remains to combine that simulation with Hastings’ algorithm, in order to
perform a transition according to the matrix P, from X, to X,4;. That algorithm
makes formula (3.1) practical. Given that X,, = x, we first choose Y,, according to
the probability law R,., and given that ¥,, = y, we make a new random simulation
(independently of all preceding simulations) which results in choosing

Y,, with probability % A,
X1 = : e TR
X,, with probability 1 — ey S 1.

One way to do this is to draw a random variable U,,, distributed uniformly on [0, 1]
and independently of all other random variables, and let

Xnt1 = Yy, <a Ry jme R} Yn + LU, > 7Ry /R X

3.1.1 An application

We now describe the classical application of the MCMC method in statistical
physics and in image processing. Another very popular application of the MCMC
algorithm is in Bayesian statistics (see Section 8.3 of Chapter 7).
We choose E of the form
E=S§",

where a point x € E is an application
meAN— x(m)eS.

A is the set of ‘sites’ (set of points (or ‘pixels’) of the discretized image). A and
§ are finite, hence so is E.

Typically, A is very large. On the other hand, S (the set of grey levels or of
colours of the image) is a much smaller set. In some applications, S = {—1, +1}.
Even in this simplest case, card E = 26414 o clearly E is very large if A is
large.

Each random variable X, takes its values in the set S*. It is a map from A
into S. For each m € A, X,,(m) is an S-valued random variable.

The Markov chain {X,; n € N} evolves in such a way that between times n and
n + 1 only one component of X is modified. In other words, there exists m € A
such that

m
Xnt1 ~ X,

in the sense that X, (m’) = X, (m’), for all m # m’. This means that the graph
G mentioned above is such that (x, y) € G if and only if x and y differ at one
site only. Simulating the Markov chain will involve choosing at each step one site
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m where the value of X, should be modified, and changing the value of X, (m)
randomly.

Let us first describe how we wish to change X, (m) into X, 1(m). We shall
explain afterwards how we wish to ‘visit’ the various sites, that is, which site m
should be chosen at time n. The way to change X, (m) into X, (m) is described
by a Markovian matrix P, which possesses the property that Px(;") = 0 unless
x = y (i.e. all components of x and y coincide, except perhaps that called m). We
want the measure 7 to be invariant under P,

For that purpose, we want to ensure that

mPYY =my P, Vx,yeE, meA.
We choose P as follows. Given a Markovian matrix R such that
R #£0 < x 2y,

we let, for x # vy,

T POV = ( RU) A (y R
and

P =1-% P >0.

VF#X

In other words (this is Hastings’ algorithm), given that X, = x, we simulate Y,

according to the probability law R, and given that ¥, = y, we make a new
random draw (independently of all the others) so as to choose

(m)
Y,, with probability 2 3 A

X)»\

Xn+] - R(m)
(m)

YX\

A 1.

X,, with probability 1 —

Again the two ‘classical’ choices for R" are the Gibbs sampler, which corre-
sponds to the choice
~1
P(m) R(’”) = an my, ifx Ay,

~x

and involves choosing X,,41(m) according to its conditional law under 7, given the
other components (except m); and the Metropolis algorithm, which in its simplest
form involves choosing

R =(S|— D7, ifx~y,

so that
T m
PO = (S| - 17! (—y A 1) . X~y X #E Y.
7Tx
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In the Metropolis algorithm we first choose a new value y,, at site m, uniformly
in the set S\{X,(m)}, and then choose X, ;1(m) = y,, if wy, > m,, otherwise with
probability 7, /7, (whenever that quantity is less than 1).

It remains to describe the ‘program of visits to the successive sites’, that is, to
decide at each time n which component m of X, should be modified. One method
involves visiting A in a fixed order, and then repeating again and again. Another,
which we will adopt because of its simple mathematical formulation, involves
choosing the site m at random at each time n, according to the uniform law on A,
independently of all the rest. In that case, {X,; n € N} is a homogeneous Markov
chain with transition matrix

P=|AIT" Y P

meA

We then clearly have
nxny = nypym

hence, provided P is irreducible, w is the unique invariant probability of the
Markov chain {X,; n € N}. Note that irreducibility is ensured by any of the choices
described above for R", and a random uniform choice of the site at each step.

3.1.2 The Ising model

This is one of the most popular models of statistical physics. Given N € N (N
is supposed to be ‘large’), let (we have chosen to describe the two-dimensional
model)

A={=N,...,—1,0,1,..., N c 7?,

(A = Ay), whose boundary is A = Ay\An_1, and define the space of configu-
rations as
E ={—1, 1}".

For x € E, we set

1
Hx=2 Y0 lxom) —x(m).

m,m/eA
Im—m’|=1

Note that H is small whenever x is essentially constant at neighbouring sites. We
define
Et={xeE;x(m)=1, Vm € dA}.
For all 8 > 0 (1/B might be interpreted as a temperature), we define the probability
on E*: |
7(x) = e PHO x e ET,

Z(8)

Z(B) = Z e PH&)

xeEt

with
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As B — 0,  converges towards the uniform measure on E™*, while as 8 — +oo,
converges towards the uniform measure on the global minima of H, in the present
case towards the Dirac measure at the point whose coordinates are all equal to 1.

Physicists have been very interested in realizing simulations under the measure
m for large N. But if N is really large, it is impossible to simulate directly under
the law 7. It is in fact essentially impossible to compute the normalizing constant
Z(B). We will now describe a version of the MCMC method which exploits the
particular form of the Ising model, in such a way that the algorithm is easy to
parallelize — that is to say, most of the computation involved can be distributed
between independent processors which need not exchange much information.

Let us first describe the Gibbs sampler. Consider a partition of A according to
whether the sum of the two coordinates of the point m is even or odd:

At ={(m1, m2) € A; my + mj even},

AT ={(my,my) € A;my 4+ my odd}.
For x € E, denote

xT = (x(m),me A"),

xT =((x(m),me A7).

It follows from the form of the Ising model that 7, _(x™|x ™), the conditional
probability of the event X = x™, given that X~ = x, in the case where the law
of X is m, is of the form

7.[+_(x+|x—) o l_[ eﬁx(m)s(m)’
meAT\dA

(we use the notation o if two functions are equal up to a multiplicative normal-
ization constant) where, if m € AT\0A,

s(m) = Z x~(m).

m’;m’'—m|=1

We have an analogous formula for 7_, (x~[x™).

Performing simulations under those two laws is easy, thanks to their product
form, and the normalizing constant of each factor is explicit. The procedure is
as follows. We first choose an arbitrary configuration Xo in ET. We next use
the following recurrence. Given X,, we first simulate X : 41 according to the law
7+-(|X;), then X, according to the law 71_+(-|X:+1).

This procedure is precisely the Gibbs sampler of the previous subsection, where
we visit alternately all sites of AT\3A, then those of A™\dA (with a differ-
ent labelling of the sequence X,). The convergence follows from the arguments
given in the general discussion above. It is not hard to verify that we simulate an
irreducible Markov chain whose invariant probability measure is indeed .
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Let us now describe the Metropolis algorithm. Given that X, = x, indepen-
dently for each m € AT\dA, we change the sign of x(m) with probability

TT(X,
0 |\ = g2prmson) 1,

p(m, x) = ()
with x,, ~ X, X (m) = —x(m), and
s(m) = Z x~(m).
|m’'—m|=1

We have thus obtained X :[ 1 (m). We then simulate X, (m) by conditioning upon
the value of X;Zrl(m). The process {X,; n € N} which we obtain in this way is an
irreducible Markov chain whose invariant probability is 7.

3.1.3 Bayesian analysis of images

One can use the Ising model (or other similar models) as the a priori law of a
two-dimensional digitized picture. Each point m € A is called a ‘pixel’. x(m) is
the grey level or colour of the pixel m (in the case of the Ising model there are just
two colours, black and white). By changing the parameter f of the Ising model, we
change the ‘texture’ of the image: for large values of 8, the image will consist of
large white patches and large black patches, while smaller values of g will produce
images where smaller white and black patches coexist.

We observe the colour (white or black) of each pixel, and the observation gives
the exact colour of each pixel with probability p €]0, 1[, the possible errors being
independent among the pixels.

Then the a posteriori law, or more precisely the conditional probability of the
event X = x, given that we have observed the configuration y , equals

7 (x]y) o e—ﬂH(X)pa(X,y)(l _ p)d(x,y)’

where a(x, y) is the number of sites where the configurations x and y coincide
and d(x, y) the number of sites where they differ.

We obtain an image where the observation errors have been suppressed by
simulating according to the probability 7 (x|y). Although we are no longer dealing
strictly with the Ising model, the same methods apply. Let us describe the Metropo-
lis algorithm. Given that X,, = x, independently for each site m € AT\dA, we
change the sign of X (m) with probability

RELT
7 (&)

x(m)y(m)
— o 2Bx(m)s(m) <1__P> AL
P

pim,x,y)

thus producing X :l“ +1- We then simulate X, using the values thus obtained on
AT\JA. In this manner we construct an irreducible Markov chain with the invariant
probability 7 (-).
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3.1.4 Heated chains

The convergence of the MCMC algorithm requires the simulated chain to visit
each state sufficiently often. But the shape of the transition probability distribution
may be such that the chain tends to get stuck for long periods of time in certain
regions of the state space. Suppose, for example, that £ = 7Z (or an interval of Z,
or Z/N), and that R, ,11 = Ry x—1 = 1/2. Let

H(x) = —log(my).

We might choose for the transition matrix P of the Markov chain the matrix

exp[H (x)—H(y)] if y=x +1
2 ) - 1)
Py = {1 — SRAW_HD] _ eplHO-HG-D] o
0, otherwise.

Suppose that there are two regions A and B of Z where 7 takes relatively large
values, which are separated by an interval where m is extremely small (or equiva-
lently, where H takes huge values). In that case, the chain will very rarely move
from A to B (or from B to A). One solution is to introduce a family of transition
matrices indexed by B:

Pg xy = %eXp[ﬂ(H(x) —H(y), ify=x=+£l,

with 0 < B < 1. The corresponding chains are called ‘heated’ (8 can be thought
of as the inverse of a temperature). One simulates in parallel the chain {X,} cor-
responding to B = 1, and several chains {X}}, ..., {X*}, corresponding to values
1> 81 >p > ... > B > 0. Clearly, the smaller 8 is, the less the chain tends
to get stuck in certain regions of the state space. The trick is then to permute
randomly from time to time the values of (X,, X}, ..., X¥), in such a way that
X, visits the state space E more rapidly. Of course, in the final computation, only
the values of {X,; n > 0} are retained.

3.2 Simulation of the invariant probability

One problem in MCMC algorithms is the choice of the number of times one should
iterate the Markov chain. The difference from a standard Monte Carlo computation
is that we start the chain from an arbitrary point, that is, the chain is not started
from the invariant probability. In a sense one may think that there is an ‘initial
phase’ of the algorithm, during which the law of the chain gets close to the invariant
probability. Then, during the second phase of the algorithm, we should control the
rate of convergence in the ergodic theorem, which — as in a standard Monte Carlo
method — can be done with the help of the corresponding central limit theorem
(see Theorem 6.11 of Chapter 2).



STOCHASTIC ALGORITHMS 65

We shall discuss the rate of convergence towards the invariant measure in the
next section. Let us first discuss ideas due to Propp and Wilson [31], which permit
a ‘perfect’ (in the sense of ‘exact’, as opposed to ‘approximate’) simulation under
the invariant probability measure. The idea is that it can be reached in a finite (but
random) number of steps.

We assume in this section that card(E) < oo and, to fix notation, specify that
E={1,2,...,N}.

3.2.1 Perfect simulation

We assume here that
B(P) =) inl Pyy >0,
yeE
or in other words that there exists y € £ such that Py, > 0, for all x € E. This

condition is nothing but condition (D) from Section 2.6, but with the restriction
that ng = 1. Clearly B(P) < 1. We set

; _infoxy cE
R TU B

hence v is a probability on E.

Remark 2.1 One could choose another pair (B, v), with B > 0 and v a probability
on E such that Py, > Bvy, but the above choice is optimal in the sense that it
maximizes .

Remark 2.2 The assumption B(P) > 0 entails the existence of a unique recur-
rent class (see Exercise 10.4 of Chapter 2), hence P possesses a unique invariant
probability, which we denote by m.

We choose a function
F:Ex[0,1] > E

such that if U is a 4([0, 1]) random variable,
P(F(x,U)=y)=P,,, x,y€E.

Hence if {U,; n € N} is a sequence of i.i.d. ¢/([0, 1]) random variables, which are
independent of X,
Xn = F(Xn—la Ul’l)a n Z 15

defines a Markov chain with transition matrix P.
We define ¢ : {0} U E — [0, B(P)] by

2(0) = 0,
L(y)=4€(y—1)+infP,,, 1<y <N,
X
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and we let J(y) =[€(y—1),£4(y)). We further define k: E x ({0}UE) —
[B(P), 1] by

k(x,0) = B(P),
k(x,y)=k(x,y—1)+ Py, —infP,,, 1<y <N,

and K (x,y) = [k(x, y=1),k(x,y)), 1 <x,y < N. We have

I(x,y)=J(y)UK(x,y).
We note that |/ (x, y)| = Py,. Finally, let
Frou) =Y yluerwyy 1<x <N, uel0,1].
yeE
Note that P(F'(x, U) = y) = Pxy, so that
P(F(Xp—1, Up) = yIXn—1 = x) = Pyy.

The crucial point about this construction is that if at time n, U, < B(P), then
the value of X,, does not depend on X,,_. In other words, if we run this algorithm
in parallel with the same sequence {U,} and different starting points Xy, then
the various sequences coalesce at the first time n when U, < B(P). We have the
following proposition.

Proposition 2.3 Let T =inf{n > 1; U, < B(P)}. Then T and Xt are indepen-
dent, T follows the geometric law with parameter B(P), and the law of Xt is
V.

PROOF
{(Xr =x,T=n}={U; = B(P),..., U1 2 B(P), U, € J(x)}.

Hence
P(X7r =x,T =n) = (1 - B(P)"'B(P)v,.
O

Let us now construct a stationary chain with the transition matrix P. Let
{U,; n € Z} be an i.i.d. sequence of U/([0, 1]) random variables, and let

Ne = L, <ppy)s k € Z.

The {N;} are mutually independent Bernoulli random variables.
For all n € Z, we let

t(n) = max{k < n; Uy < B(P)}.

Note that t(k) = t(n), for all k € [t(n),n]. Moreover, P(n—t(n) > k) =
(1—B(P))X, or equivalently P(n—t(n) = k) = (1—B(P))*"1B(P).
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We then define the process {X,; n € Z} as follows. For all k € Z such that
Ni =1, we let

X =Y yleso)-

yeE

Now let k be such that Ny = 0. X, is defined by the above formula. Moreover
Xe+1 = F(Xewy Ury+1)s -+ - Xk = F(Xi—1, Up).

Proposition 2.4 The process {X,;n € 7Z} thus defined is stationary (this means
that, foralll € Z, k € N, (X141, ..., Xegr) = (X1, ..., Xp), in the sense that these
two random vectors have the same law). In particular, the law of X is the unique
invariant probability w of the Markov chain with transition matrix P.

Proor It suffices to establish the last point. Define P by
Pey = (1= B) Py + Buy,
where 8 = B(P). Note that
Piy = P(Xy = y|Xu—1 = x, Uy = ).

Consequently,

P(Xy = x) = ZIF’(XO =x,7(0) = —k)
k=0
=D P(Xo=x[t(0) = —h)(1 - BB
k=0

=By wPH.(1-p*.

k=0
But if we let u, = P(Xo = x), we have

pP =y Y wPH.(1-p)P.

x€E k=0

=B WP (=B + B

k=0

:M’

hence the law of X is the unique probability which is P-invariant. (I
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Perfect simulation algorithm. The algorithm works as follows:

1. Simulate Uy, U_q, ..., Uy (this requires a number of simulations which
follows a geometric law).

2. Compute Xf(o) = Zy yl{Ur(O)ej(y)}.

3. Compute X;0)+1, .- ., Xo using the formula X, = F(X,_, U,), and the
Ur©0)+1, - - . » Up simulated above.

4. The law of the random variable X thus simulated is the probability which
is invariant under P.

Remark 2.5 This approach requires that B(P) > 0. One might wish to generalize
the approach to the case where there exists k > 1 such that B(P*) > 0, but it does
not seem that this leads to an effective algorithm.

3.2.2 Coupling from the past

We now assume only that P is irreducible. Suppose we are given a mapping
F:Ex[0,1]—> E
such that if U has the law U/ ([0, 1]), then
P(F(x,U)=y)= Py, Vx,yekFL.

Let us now define a ‘multiple coupling’. Let {U,’;; 1<i<N, neZ} be a
sequence of i.i.d. random variables, all having the law U/([0, 1]), and, for k € Z,
let

Xl,k_ 1’ lfnzk,
n f(Xn I,Unl), ifn > k;
2, if n =k,
X%k = ‘F(Xn 1’ 2) if n > k and szlkl ¢Xn .
]:(X,, 11U) 1fn>kandX2k _Xrllk]7
N, if n =k,
XNk — F(X n- 1,UN) 1fn>kandXNkl¢{Xn kL XNy
n F(xY lN) if k, XNk c {X XN—I,k}
( n— lv , 1In> 1 e 1,..., n1

and iy = inf{i; ;kl = X }

Define the stopping time

=inf(t > k; X, =x7 = =x")
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and, for all n € Z, let
t(n) = suplk < n; Sy <n),

the largest of those times which are such that the state of the process at time n
does not depend upon its values before time t(n) (and this for all £ between 1 and
N), since at time t(n) the kth process had the value k, and at time n its value does
not depend upon its index.

Theorem 2.6 Fork € Z, ler (X5, ..., Xﬁ”‘; n > k) denote the multiply coupled

n >

process defined above. Suppose that P(t(0) > —oo) = 1. Then, for all x € E, the
law of XS’T(O) is the P-invariant probability.

Proor Fork e Z,y € E,
P((Xy ™ =y} N{z(0) > k}) =P((Xg" =y} N {z(0) > k).

Hence
PX,"” =y = lim POGH =y).
——00

Let m denote the P-invariant probability. Then

IPXy" = y) = myl = [P(Xo = y| X, =x) — »_7.P(Xo = y|X; = 2)|

zeE
<Y mIP(Xo = yIXk = x) — P(Xo = y| Xy = 2)]|
zeE
< (Z nz> P(z(0) < k)
zeE

— 0, ask— —oo.

Coupling from the past: the algorithm. Choose some k € Z_.
1. Simulate U, U{,,..., U}, 1<i <N.
2. Construct the sequence
X5 XN =k k+1,...,0)
with the above Us and the above algorithm.
3. Check whether or not
Xt =xtr = =x{h

If this is the case, then Xé’k is a realization of the invariant probability .
If not, we need to go back further in the past. In that case, we simulate

i i i .
Uss Uspyrs - Uy, 1 <0 <N.
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With the help of that sequence and the previous one, we construct
X xN s e=2k,...,0)

and proceed as above. Note that it is essential to combine the two sequences
of Us as indicated above, since we must go back into the past until we
reach 7(0).

It remains to give conditions under which P(z(0) > —o0) = 1.

Theorem 2.7 If P is aperiodic, then the above algorithm satisfies P(t(0) >
—o0) = 1.

Proor This result can be proved by following step 1 of the proof of Theorem 6.4.
of Chapter 2 (]

Remark 2.8 In the case B(P) > 0, this is a variant of the perfect simulation algo-
rithm of Section 3.1.1 applying the procedure of the present section, simplified as
follows. We simulate a unique sequence (U,,n € 7Z), and we use the recurrence
relation

(XLE L xNRy = (... N), ifn=k,
mo o (FXMH U, .. FxXME o), ifn > k.

n—1°

3.3 Rate of convergence towards the invariant
probability

The ‘coupling from the past’ algorithm cannot be used in most concrete situations.
Most users of the MCMC algorithm reject the first n iterations (this is the so-called
‘burn-in’ procedure), hoping that the law of X, is ‘close’ to the invariant proba-
bility. The problem is clearly to choose the number n correctly. The statements in
Section 2.8 are useful, provided one can compute the spectral gap S.

Several authors, in particular Diaconis [14] (see also Saloff-Coste [36]), have
shown that in many situations the total variation distance between the law of X,, and
the invariant probability evolves as follows. During an initial phase, the decrease is
very slow, and the distance stays close to 1. Then there is a fast decrease in a few
iterations, followed by a third phase, with slow convergence towards zero. In such a
situation, after the few first iterations, the result remains very poor, then it improves
quickly, and after the phase of rapid decrease it is not really worth continuing the
iterations. The problem then is to know precisely how many iterations are necessary
in order to reach the end of the rapid decrease phase. Diaconis and Saloff-Coste
have given very precise results in certain specific situations, such as the problem of
card shuffling, but of course in most practical situations we do not have such precise
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information. Let us describe a result due to Diaconis, Khare and Saloff-Coste [15],
which provides an opportunity to give an interesting example of the use of the
MCMC method, namely simulating the ‘Glauber dynamics’.

Suppose that we wish to simulate realizations of an £ = E; X --- x Ey-valued
random vector, with the law

uldxy, ..., dxg) = f(x1, ..., x)v(dxy, ..., dxg),
where the measure v on E is a product measure,
v(dxl, ceey dxd) = U](dX]) X oo X vd(dxd).

Suppose that there is no easy direct way to perform simulations under p, but that,
for all x = (xy,...,x,) and each 1 <i <d, we know how to simulate X; with
the law
S X, Y, X - X)) Vi(dy)
Je, FOos o xion 20X, L X)) vi(d2)

We will construct a Markov chain (if E is uncountable, such an E-valued Markov
chain is outside the scope of this book, but we can restrict ourselves to the case of
a Markov chain with values in a finite or countable state space by discretization)
whose transition is given by the transformation of the random vector X into the
random vector X', which we now specify by describing the conditional law of X’
given that X = x.

The conditional law of X ’1 given that X = x, is the law

f,x2, ..., xg)vi(dy)
fE] f(z,x2, ..., x0)v1(dz)

and, for 2 <i <d, the conditional law of X/, given that X =x and (X{,...,
X)) =(x{,...,x]_,), is the law

.f(-xi’ ---a-xl‘/,la Vs Xit1, ...,.Xd)\)[(dy)
Je, PO X[y 2 X - Xa) Vi (d2)

In the following proposition we assume that E is countable, and we write p(x)
(resp. v(x)) for u, (resp. vy).

Proposition 3.1 If E is countable and u(x) > 0 for all x € E, then the Markov
chain with transition matrix

ny=P(X/=)’|X=X)

is irreducible and positive recurrent, and has | as its unique invariant probability.
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ProOF The condition p(x) > 0, for all x € E, implies that the chain is irreducible.
It remains to show that the probability w is invariant by P. We have

ZM(X)P = F O, x2, o xg)vi(yn)

xeE Xl

o SO Y2, X3 X)v2(y2)
D, FO 22, %3, Xa)v2(22)

X e

SO -y Ya—1, Xa)Va—1(ya—1)
Yooy FOL o Zam1, Xa)Va—1(Za-1)

FO1 -y Ya—1, Ya)va(a)
X
>y FOL - Yt za)va(za)

X fx1, .., xg)vi(xg) X - X vg(xg)

_ Z fx,x2, 000, xg)vi(xq)
>

o 2 @ X, xa)vi(2)
» SO, x2, %3, ..., Xxa)va(x2)

>, fOL 22,33, xa)1a(22)
X ..

FOL o Ya—1, Xa)va(xq)
X
sz f()’l» cees Yd—1, Zd)vd(Zd)

X fO1 ey Ya—1, YOV1 (YD) X -+ X vg(ya)

=n(y),

where the second equality is obtained by rearranging terms. The third equality
follows from the fact that only the first factor depends on x; and its sum over
x1 € Ey is 1, and the fact that in the remaining expression only the first factor
depends upon x», and its sum over x; € E; is 1, etc. U

Diaconis, Khare and Saloff-Coste [15] study in particular the following case
where d = 2:

e £E1={0,1,...,m}, E; =[0, 1], v; (vp) is the uniform probability on E|
(E2),

o fk,p)=Ckp*(1—p)"*,

where, m € N* is arbitrary. Their result for this example is that the number of
iterations one needs to perform for the law of the chain to be close to its invariant
probability is of the order of m. Specifically, they show that if f, denotes the
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density with respect to the measure v = v; x v, of the law of the nth iterate in the
above procedure, starting from the point (m, p), then

2 n 2 n—1/2
1———) <lfi— <6(1-—— .
< m+2> =lIfu—fllpe = ( m+2>

3.4 Simulated annealing

The search for the global maxima of a function is one of the most important
problems in applied mathematics. In the case of a differentiable function defined
on R?, one can start at an arbitrary point and move in the direction of the gradient
as far as the function decreases. Unfortunately such a method leads to a local
minimum, which need not be a global one. In the case of a function defined on
a finite set E, one could in principle compute all the values f(x) for all x in E,
but in the interesting cases such a procedure is impossible to implement because
of the size of the set E.

In this section we present the ‘simulated annealing’ algorithm which, compared
with the classical gradient method, introduces random perturbations which allow us
to escape from the basins of attraction of the local minima. While the computations
progress, the random perturbations are reduced in such a way that one may hope
that the algorithm reaches one of the global minima. The name for this algorithm
comes from the analogy with chemical processes for manufacturing certain crystals,
which reach the desired state at the end of a process which involves slow cooling,
possibly interrupted by phases where the crystal is heated up.

We now present the simulated annealing algorithm for the minimization of a
function defined on a finite set E. Let us first present two particular minimization
problems of a function on a finite but very large set E.

Example 4.1 (The travelling salesman problem) Ler {1,..., N} be a set of N
towns. The salesman must visit each of the towns, starting and finishing at 1. E is
the set of all the possible routes, and card(E) = (N—1)!. Each route is an ordered
sequence

X=X, ..., xN)

such that x; = 1 and (x3, ..., xy) constitutes a permutation of the set {2, ..., N}.
The cost function to be minimized is

N
V) =Y d0u, xip),

k=1

where d(n, m) denotes the distance from town n to town m and xy11 = 1. The
search for a global minimum of 'V is one of the classical problems in operational
research.
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Example 4.2 (Image restoration) Let us return to a model presented in
Section 3.1.3. Here we wish, in order to restore the image, to find the maximum
of the a posteriori law — that is, in the notation of Section 3.1.3, for a given y, we
look for

% = argmax e PA paey) (] — pyden),
X

Suppose that we wish to maximize a function
U:E— R_
such that, in order to fix ideas,

max U, = 0.
xekE

We seek an x such that U, = 0.
For any 8 > 0, we define the probability 7g on E by

T = Zgleﬂu*’, x eE,

with Zg =" ¢PUx The parameter 8 will eventually go to +00. As 8 — +00,
the probability 74 converges towards the uniform probability on the maxima of U.

We associate with each 8 > 0 the transition matrix of an irreducible and ape-
riodic Markov chain, with invariant probability 7g. The transition matrix can be
chosen as follows. Let G denote a non-oriented graph in E, that is, a collec-
tion of pairs of points in E. We suppose that G has the property that, for all
x,y € E, there exist n and x = x1, x2,...,x, =y € E such that (xt, xx4+1) € G,
1 <k <n-—1.Let

ne = l{y; (x,y) € G}|.

Then the matrix Pg whose off-diagonal elements are given by
Ppxy = Liwpeainy ' [7 7 A1),

with appropriate diagonal elements, has the required properties. Note that the tran-
sitions which decrease U become less probable as B gets larger. Provided that the
choice of the graph G does not make the chain periodic, for a fixed value of 8,
if {X f ; n > 0} denotes a Markov chain with transition matrix Ppg, then the law of
X ff converges towards g as n — oo. The idea of the annealing algorithm is to let
B depend upon n, in such a way that 8, — +o00 as n — oo, in the hope that X,
converges towards the maximum (or the set of maxima) of the function U. This is
true if B, converges sufficiently slowly to +oco. We shall present in Section 7.10
below a result in that direction, for an analogue in continuous time of the chain
(X" n = 0},
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3.5 Exercises

Exercise 5.1 Let p and q be two probabilities on a countable set Ewith) < p < cq,
q being easily simulable. Let {Y,; n > 1} be i.i.d. random variables with the common
law g, jointly independent of the random variable X. Define

Y,41, with probability C’;((};ltrll))7

Xy, with probability 1 — ;;((’;—*tll)).

X1 =

1. Write X1 explicitly in the form f(X,, Up+1, Yn41), where the U, are i.i.d.
U0, 1] random variables, and deduce that {X,; n > 0} is a Markov chain.

2. Compute the transition probability Py, of X,,.

3. Compute P for a probability u, as well as (u—p)P". Conclude that the
law of X,, converges as n — oo towards the unique invariant probability p.

4. How can you compare this chain and the classical rejection method?

Exercise 5.2 Let P, be the transition matrix of an E-valued Markov chain (where
E is at most countable). We assume that

Py, >acy, VxekLk, (3.2)

where c is a probability and o > 0. We identify the set of all bounded signed mea-
sures on E with €' (E), equipped with the norm |v| = Y over lvxl

1. Let v be a bounded signed measure with total mass equal to zero. Show that
[vP| < (1—a)|v|. Deduce that if u are u' two probability measures on E,
then

IuP —p/'Pl <1 —a)|pn—p|.

2. Show that if an invariant probability measure exists, then it is necessarily
unique, and for any probability | the sequence (W P",n > 0) is a Cauchy
sequence in L' (E).

3. Let (X,,n > 0) be a Markov chain with transition matrix P. Show that,
whatever the initial law u of Xy, the law of X, converges towards the unique
invariant probability w, and that

|uP" —m| < Cp",
where C is a finite constant and 0 < p < 1.
4. Show that the above results still hold if there exists £ > 1 such that

Pfy >acy, VYx,ye€L.
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5. We now consider the Metropolis algorithm on a finite set E. We assume that
Py, = Py, and that relation (3.2) is satisfied. We try to simulate a law w
given up to a multiplicative constant by

wy = Ce ™ PH® - \pith H(x) > x,Vx € E.

Describe the transition matrix of the chain which combines the transitions
of P and Hastings’ algorithm.

6. Show that this new transition matrix satisfies a relation of type (3.2), and
state it precisely. Propose an approximate simulation method under the
law p.

Exercise 5.3 We wish to solve in RY the equation
(I —A)x=b, (3.3)

where A is a matrix whose norm is strictly less than 1. To do so, we consider a
Markov chain {X,} on E = {1,2,...,d}, with the strictly positive initial law wu,
and the transition matrix P, which is assumed to be strictly positive on E x E.

1. Show that the solution x can be written in the form
o0
x = Z A"b.
n=0

2. Forn>1and b e RY, define

A(Xo, X1) - A(Xp21, X,

anb(Xo) ( 0 1) (Xn—1 1) b(Xn)
w(Xo)P(Xo, X1) -+ P(Xp—1, Xn)

Compute E(W,). Deduce a method for the computation of an approximate

solution of equation (3.3).

3. WeletE=E U {8} and now consider a chain with a cemetery §. By this we
mean a chain X, with the initial law [t supported by E, strictly positive on
E, with transition matrix P defined by

(1_P)P(x’y)7 ifx’yeE,

~ D, ier,y=5,
P(x,y) = f

1, ifx,y=3,

0, ifx=246,y€E,

where 0 < p < 1. Define T = inf{n > 1; in =5}

(a) Show that T is finite almost surely. Let
AXo, X)) AX7-2, X7_1)
n(Xo)P(Xo, X1) - P(X7-2, Xr_1) P(X7_1, XT)

W = b(Xo) b(X7—1).

4. Compute E(W). Deduce a method for the computation of an approximate
solution of equation (3.3).
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Markov chains
and the genome

Introduction

This chapter is devoted to the presentation of algorithms for the annotation of the
genome (and especially the search for coding regions as well as genes) and for
sequence alignment which make use of Markov chains. It discusses the so-called
hidden Markov model and associated algorithms. This concept is used in many
applications outside bioinformatics, for example in speech recognition, see Jelinek
[21]. For further reading on the subject of this chapter, one can consult among
other sources [17], [19] and [28].

4.1 Reading DNA

Consider a fragment of DNA, a single string composed of a succession of nucleo-
tides, which we will view as letters in the alphabet {A, C, G, T}, where A stands
for adenine, C for cytosine, G for guanine, and T for thymine, for example,

ACCGTAATTCGGA...TTGC

To ‘read’ or ‘annotate’ such a sequence mainly involves decomposing it into for-
ward coding regions, backward coding regions (the DNA macro-molecule is made
of two complementary strings, with an A always coupled with a T, a C with a
G, which are read in opposite directions), and non-coding regions; in the case of
a eukaryotic genome, within the coding regions one also needs to separate the
introns from the exons. Note that the coding region is read codon by codon, where
a codon is made of three nucleotides, each codon then being translated into an

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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amino acid. The succession of amino acids constitutes a protein. It is therefore
essential to read each coding region with the right phase. Skipping one codon
may not necessarily be too serious, but shifting the reading frame by one or two
nucleotides is catastrophic!

The presence of a start (stop) codon at the start (end) of each coding region
is a great help. But a potential start need not be a start codon. In contrast, a
potential stop codon, in a coding region, encountered in the correct phase, is a
stop. There are no very precise signals for the transition between an intron and
an exon.

In order to distinguish between coding and non-coding regions, a first possibility
is that the proportions of As, Cs, Gs and Ts differ significantly between coding
and non-coding regions. A second possibility is that these proportions do not differ
significantly, and that one should count the di- or the trinucleotides.

In the first case, we should try to distinguish between coding and non-coding
regions by comparing the proportions of As, Cs, Gs and Ts. In the second case,
one should count pairs or triplets. And whatever the criteria might be, the hardest
part of the job is to localize precisely the boundaries of the different regions.

The methods which we have just discussed for decomposing a DNA sequence
into different regions — the goal being to detect the genes — can be seen as statistical
procedures associated with a given probabilistic model. This model is not the same
if one counts nucleotides, di- or trinucleotides. At any rate, in the sequel we shall
consider the sequence of nucleotides as a sequence of random variables with values
in the set £ = {A, C, G, T}.

Before we discuss the various possible probabilistic models for a DNA
sequence, let us discuss two of the simplest possible problems associated with
the analysis of DNA sequences.

4.1.1 CpG islands

We denote by CpG the dinucleotide C followed by G (the notation C G or C-G
denotes the pair of coupled bases C and G, one on each of the two complemen-
tary strings). In the human genome, those dinucleotides tend to disappear, because
whenever a cytosine C is followed by a guanine G, it tends to be modified by
methylation, and methyl-C mutates easily to thymine T. For that reason, the din-
ucleotides CpG are less frequent than the product of the two frequencies of Cs
and Gs would predict. On the other hand, the methylation process is inhibited in
certain portions of the genome, around the promotor regions and the start codons.
In those regions one finds many CpGs (in fact more than what the product of the
frequencies of Cs and of Gs predicts). Such regions are called ‘CpG islands’.

One can formulate two kinds of questions. Given a small piece of the genome,
how do we decide whether or not it is a part of a CpG island? Given a long
sequence, how do we locate the CpG islands?
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4.1.2 Detection of the genes in a prokaryotic genome

In a prokaryotic genome, a gene is a collection of codons (i.e. of trinucleotides),
each one coding for an amino acid, flanked by a start and a stop codon. The start
codon is almost always the codon ATG, while there are three possible stop codons.
But while a potential stop codon encountered in the correct phase is always a stop,
the codon ATG in the middle of a non-coding region need not be a start codon.

Hence in a prokaryotic genome we have potential genes made of a start codon,
a given number of codons (i.e. a multiple of 3 nucleotides), and a stop codon. How
do we distinguish, among a collection of potential genes, the true genes from the
Jfalse genes? How do we find the genes in a prokaryotic genome?

Remark 1.1 In the previous chapters, the random sequences (in particular, the
Markov chains) were indexed by the time parametern = 0, 1,2, .. .. In this chapter,
we consider random sequences indexed by the position n on a genome sequence.
We shall let n = 1,2, ..., that is, the index n starts at 1, and not at Q.

4.2 The i.i.d. model

Let X; denote the first nucleotide of our sequence. Its probability law is defined
by the vector p = (pa, pc, pg, pr) given by

PAa=PX1=A), pc=PX1 =0), pc =P(X1 =0), pr=PX; =T

Note that pa, pc, pG, pr = 0 and pa + pc + pc + pr = 1.

We shall say that the random variables (X, ..., X,,) are i.i.d. if they are inde-
pendent and have the same law. One might say (in the language of statistics) that
the sequence (X, ..., X,,) is a sample of size n of the common law of the X;.
With that sample we associate its empirical probability defined by

1 « | «
PA= - Y lx=ay pE= - > lxi=c),
i=1 i=1

1 n
=Y Lix=m.
n

i=1

1 n
pe = Y L=, Ph
i=1

p" = (pi. P¢» G- P) is a probability on E.

In practice, the common law p = (pa, pc, pg, pr) of the X; is unknown. At
least if n is sufficiently large, p" is a good approximation of p. Indeed, it follows
from the law of large numbers that

1 n
"= 1y — Edx,—a) =P(X; =A
DA n; xi=A) = E({x,=a})) (X4 )
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as n — oo (and similarly for C, G, T), and, moreover, from the central limit
theorem,

7x2/2dx

pa(l — pa) pa(l — pa) 1 fs
Pl—6,/—— < —ph < — e
( n =PAT A= N2 J s

and hence since /pa(1 — pa) < 1/2,

| = 8 - [2 /‘oo _xz/zd
I — — — e X.
PA Pa 2\/5 = s

One then can estimate p, under the assumption that the nucleotides are i.i.d., hence
in particular that the region considered is homogeneous.

The assumption of independence need not be correct, and in fact is not really
necessary, in order to justify the above procedure.

4.3 The Markov model

It is not very reasonable to assume that the nucleotides are mutually independent.
For example, in a coding region, the law of the second nucleotide of a codon may
depend upon which is the first nucleotide.

It is then natural to think of the sequence (Xi,..., X,) as a Markov chain.
However, it is useful for applications to genome sequences to consider a more
general Markov property than we have considered so far.

Definition 3.1 The sequence (X1, ..., X,) is called an Lth-order Markov chain
(€ > 1), (this is the M{ model) if for all k>,
P(Xx = x| X1 = x1, .o o, Xpm1 = Xp—1)
= P(Xk = x| Xk—e = Xp—e, -+ s Xk—1 = Xp—1)-
An independent sequence follows a model M0. The model M1 is the usual

Markov model, which has been studied in the previous chapters. An E-valued Mk
model can be viewed as an EX-valued M1 model.

4.3.1 Application to CpG islands

The data below are taken from [17]. We estimate two Markov transition matrices
(M1 model), one for CpG islands, and one for sequences which are not in a CpG
island. For the first case we obtain the estimated transition matrix
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A C G T
A 0.180 0.274 0.426 0.120
Pt =C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0355 0.384 0.182

and for the second case we obtain
A C G T

A 0.300 0.205 0.285 0.210
P~ =C 0322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292
Given a sequence x = (xi, ..., x,) of nucleotides, we compute a score which is

in fact a log-likelihood ratio of the form

S(x) = log M Z Og XI 1X; _ i: R
]PmOdel_ (X = x) PXT 1Xi i=2 e
One can normalize this score by dividing by the length n of the sequence. The R
matrix is given by

A C G T
A —-0.740 0.419 0.580 —0.803
R=C -0913 0302 1.812 —-0.685
G -0.624 0.461 0.331 -0.730
A —1.169 0.573 0.393 -0.679

If one compares the scores S(x) for various sequences for which we know whether
or not they belong to a CpG island, the above score distinguishes between CpG
islands and other sequences fairly well.

4.3.2 Search for genes in a prokaryotic genome

We proceed as we did in the previous subsection. Suppose that we have at our
disposal true genes and false genes. We use part of the data for a learning step,
and the rest of the data for testing whether or not our score distinguishes true from
false genes well.

We use a first subset of the frue genes for estimating the transition matrix
of a Markov chain. Denote by P* the estimate obtained. The model ‘- is an
i.i.d. model, where the probability of each of the four nucleotides is given by its
frequency, computed from a set of sequences containing both true genes and false
genes. Denote by 7 the estimate obtained.

If x is a potential gene, we compute its score

Podel+ (X = x) x 1% -
S =log—mMm = 1 /) = R, ..
(X) og ]Pmodelf(X _ x) Z og ; Xj_1%Xj

i—
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It turns out that this statistic distinguishes frue genes from false genes very poorly.
However, if we choose for the + model a Markov model M1 for codons, and
proceed as above, then the new statistic S(x)distinguishes between true genes and
false genes rather well.

4.3.3 Statistics of Markov chains Mk

In order to simplify the exposition, let us restrict ourselves to the M2 model. In this
case, what replaces the usual transition matrix P from E to E is a transition matrix
from E x E to E, which gives the law of X;., given the pair (X;_;, X). Here
E = {A, C, G, T}, hence we have a transition matrix with 16 rows (indexed by the
dinucleotides {AA, AC, ..., GT, TT}) and 4 columns (indexed by {A, C, G, T}).

Remark 3.2 We can also reduce to an M1 model on the state space E x E, since if
(X1, X, ..., X,) is an E-valued M2 Markov chain, then ((X1, X»), (X2, X3), ...,
(X,—1, X)) isan M1 E x E-valued Markov chain. Then the transition matrix is a
square matrix, and we can study the associated invariant measure.

We estimate the transition matrix Py, . with the help of the quantity

n—2 1
Zk:l {Xk=x Xp41=y, Xk+2=2}

’

n—2 1
Zk:l {Xk=xXk+1=y}

which converges almost surely towards Py, , as n — 0o. Note that this statistic
includes a counting of trinucleotides, and so in particular of codons, so that M2
Markov chains are very commonly used as models for coding regions of DNA.

4.3.4 Phased Markov chains

In a ‘coding region’, one might guess that the transition matrix should not be taken
as constant, but rather as periodic, with period 3. Since the notion of a ‘periodic
Markov chain’ has already been wused for something very different
(a periodic chain is one which is not aperiodic in the sense of Definition 2.6.1),
we shall use, following [34], the name phased Markov chain to denote a Markov
chain (X,, 1 <n < N) such that, for all x, y € E, the mapping n — P(X,+1 =
y|X, = x) is periodic. In the case we are discussing here, one might think of an M2
Markov chain, which is such that, for all y € E, the quantity P(X,+; = y|X, =
x, X,—1 = x/) does not depend upon x, x/ for n = 3k, but rather only upon x for
n =3k +1 and upon x, x/ for n = 3k + 2. This would imply, in particular, that
successive codons are i.i.d. More generally, we could also assume that the codons
constitute an M1 Markov chain.

4.3.5 Locally homogeneous Markov chains

If we consider the genomic sequence at a larger scale, we might expect that the
Markov chain described above is homogeneous in the union of the non-coding
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regions, as well as in the forward coding regions, in the backward coding regions,
and in the union of the introns, but the chain is probably not globally homogeneous,
and this is precisely what should help us to annotate the genome. The main problem
is precisely to detect ‘changes of model’.

There exists a substantial statistical literature concerning such change-of-model
problems, but it is not clear that those algorithms would be useful for solving our
problem, where it is essential to take advantage of the homogeneity of the chain
on the union of regions of the same type (non-coding, forward coding, ... ), and
not just on one such region alone.

We shall present an algorithm due to Audic and Claverie [1] for the annotation
of prokaryotic genomes. For an explanation of why this algorithm converges, and a
connection with the EM algorithm (which we shall present below for the estimation
of HMM parameters), see Baldi [3]. We assume that our model (which could be
of type MO, M1, M2, ... ) is described by a parameter 6 (which is a probability
on E in the MO case, a transition probability in the M1 case, ... ), which can
take three distinct (and unknown!) values (6, 6, 8>), depending upon whether we
are currently reading a non-coding region, a forward coding region, or a backward
coding region.

1. Initialization step. We cut the sequence into intervals of length 100 (the last
interval might be of length greater than 100). We put each of these intervals
at random, independently of the others, into one of the three ‘boxes’ 0, 1,
and 2. Based upon all the nucleotides which are in the union of the intervals
located in box 0, we estimate the parameter 6, giving (say) an estimate 9(51) .
We estimate similarly the values 91(1) and 92(1).

2. Iteration step. Suppose that each of the three ‘boxes’ 0, 1, and 2 contains
distinct intervals of length 100 or more, which have been used to compute
the estimated values 90("), 91(") and 62("). We first empty these boxes, and

consider once more the whole sequence {X,; 1 <n < N}. We extract the
subsequence {X,; 1 <n < 100}. We estimate the parameter 6 on the basis
of this subsequence, and decide which of the three values 95”) , 0](”) and 92(")
is the closest to this newly estimated value. Next we ask the same question
with the sequence {X,; 10 <n < 110}, with the sequence {X,; 20 <n <
120}, and so on until the estimated value is closest to another of the three
values 9(()”) , 91(”) and 92("). Then we go back 50 nucleotides, and we put
the selected interval (which starts at 0) in the box which was selected
first. We next start afresh, with an interval of length 100, adjacent to the
interval which we have just put in one of the boxes, and we repeat the
above procedure. When the sequence has been exhausted, we have three
boxes each containing (we hope) intervals of length at least 100. We then
compute three new estimates GS"H), 91("+1) and GZ("H) , on the basis of the
content of the boxes 0, 1, and 2 respectively.

If the sequence is effectively an aggregate of intervals whose composition is of
three different types, then the algorithm converges rapidly, and when we stop, our
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sequence is split into subsequences of three different types. All that remains is to
decide ‘which is which’, and this requires some a priori knowledge, which can be
obtained from already annotated sequences.

4.4 Hidden Markov models

The Bayesian point of view on a locally homogeneous Markov chain involves
giving oneself an a priori law on the unknown parameter values 6; and on the
evolution of 6. More precisely, we consider another Markov chain (Y1, ..., Yy),
which is said to be ‘hidden’ since we do not observe it. For instance, in the case
of a prokaryotic genome, the chain (Y,) takes its values in the state F' = {0, 1, 2},
and in the eukaryotic case one must also split the states 1 and 2 into introns and
exons. In fact the situation is slightly more complicated, since one should take
into account the start and stop codons, but we will discuss that further below. The
advantage of this approach is that we have at our disposal algorithms which are
well adapted to our problems. Denote by F the state space into which the hidden
chain takes its values, and let d = card(F’). Recall that in the application which
we have in mind, d > 3.

In order to simplify the presentation of the hidden Markov model algorithms,
we will assume that (Yy, ..., Yy) is a (u, P)F-valued Markov chain and that, for
each n, conditionally upon (Y1, ..., ¥,) = (y1, ..., yn), the sequence of nucleotides
(Xq, ..., Xp) is independent, the law of each X being a given function of y; alone.
In other words, forall 1 <n < N,

PXi=x1,....Xu=xY1=y1,..., Yy = yn)

n
=[Pk = xilYe = i)
k=1

n
= 1_[ Qi -
k=1

Our problem is as follows: having observed the sequence of nucleotides (xy, ...,
xy), which sequence of hidden states (y, ..., yy) ‘best explains’ those observa-
tions? In other words, we should find the sequence which maximizes the a posteriori
law, given the observations, which is the sequence

O, ... yy) =argmaxP(Yy = yi, ..., Yn = yw| X1 =x1, ..., Xy = xn).
V1o YN

Note that in this model we have as unknown parameters (u, P, Q). In order to
solve the above problem, one first needs to estimate those parameters (but we shall
discuss this at the end). Given that we know the values of those parameters, our
problem will be solved by the Viterbi algorithm.

But let us first describe the computation of the likelihood.
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4.4.1 Computation of the likelihood

It should be clear, from the above description, that
PoYi=yi, X1 =x1,Ya=y, Xo=x2, ..., Yy = yn, Xy = xn)
= MKy P.\'lyz Koo X P)’N—l.\'N X Qym Q.\'zXz Koo X QyNXN'
And so
Po(X1 =x1,..., Xy = xN)
= Z Py Pypyy X oo X Py iy Qypag X X Qypey
V1:Y25esYn€F

But this formula cannot be used in practice, since that would involve of the order
of NdV operations, which, for large N, is unrealistic. We now describe a recursive
procedure for the computation of the likelihood, namely the forward algorithm.

Forward algorithm. Consider the sequence (indexed by n) of row vectors «(n)
defined by

ay(n)=P6(X1=x17X2=x2y---,Xn=xnyYn=)’), yeF
This sequence can be computed by a ‘forward’ algorithm as follows:

1. Initialization:
ay(1) =uyQyy, YyEF.

2. Recurrence:
ay(n+1) = (oc(n)P)ynynH, yeF.

The desired quantity is
> (V).
yeF
This computation requires of the order of d”?N operations.
The same quantity can also be computed by the backward algorithm.
Backward algorithm. Consider the column vectors §(n), defined by
By(n) =Po(Xut1 = Xnt1, ..., Xn =xn1Yyn =Y), yeF.
This sequence can be computed by a ‘backward’ recurrence as follows:

1. Initialization:
By(N)=1, yelF.

2. Recurrence:
(@) By(n) = By(n)Qyy,.y € F.
(b) B(n—1) = PB(n).
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Finally, the desired quantity is the real number (product of a row vector on the left
by a column vector on the right)

nB).
Again, the number of operations necessary is of the order of d”N. Note that

By(n) = Po(Xy = Xy Xnt1 = Xnt1, ..., Xy =xn|X, =), ye€F.

4.4.2 The Viterbi algorithm

Once the value of the parameter 6 is known, the Viterbi algorithm computes the
sequence (y{,...,yy) which maximizes the likelihood. Define the sequence of
row vectors §(n) by

8)’(”) =y1 énax ]P)G(Yl = )’1, crt Yn—l = yn—h Yn = )77 Xl =Xl ee, Xn =xn)'

Y2seees Yn—1

dy(n) is the highest probability of a trajectory {Y;;1 <k <n — 1} ending with
Y, =y and corresponding to the observed nucleotides xi, ..., x,. We have the
following recurrence formula for the §(n):

Sy(n+1) = () * P)yQyx,

where the operation * associates to a d-dimensional row vector § and a d x d
matrix P a d-dimensional row vector defined by

(6% P)y =supd, P,y.

zeF

The Viterbi algorithm involves computing §(n) from n =1 to n = N, then
finding the optimal trajectory backward step by step as follows: given y;, we
deduce y;_, from the formula

y;;k—l = 1/fy,’; (I’l),

where
Yy(n) = argmax, g8, (n — 1) Pyy.

The Viterbi algorithm can be described as follows.
1. Initialization:
Sy(D) = uyQyxy, y€F;
¥(1) =0.
2. Recurrence: for 1 <n <N,

5\(11) =@Bm -1 P)y Q}'an
Yy(n) = argmax, 6,(n — )P, y € F.
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3. Final step:

8" = max 8,(N);
yeF -~
Yy = argmax, g8, (N).

4. Backward recurrence

v =¢y7l+l(n+1), 1<n<N.

Remark 4.1 Note that the Viterbi algorithm belongs to the class of dynamic pro-
gramming algorithms. The dynamic programming algorithm was invented by
Richard Bellman in 1950, as an algorithm for control optimization; see Chapter
5 below.

4.4.3 Parameter estimation

There are two possible strategies. The first involves estimating the parameters with
the help of a ‘learning’ sequence which has already been annotated. In that case,
one estimates the parameters of a model, where the whole sequence {(X,,, ¥;,); 1 <
n < N} is observed. One uses the well-known estimation algorithms presented in
Section 2.9.

The second strategy involves estimating the parameters on the sole basis of
observation of the sequence of nucleotides. The advantage is that we do the esti-
mation from the genome under study, and not from a different one. The drawback,
of course, is that we are estimating the parameters of a model on the basis of very
partial observations. However, there are classical algorithms (the EM algorithm,
and its variant SEM) which allow us to solve this problem.

EM algorithm. Mathematical statistics teaches us that a good estimator of 6 is the
maximum likelihood estimator

Oy = argmaxy Py (X = x1, X2 = x2, ..., Xn = xp).
Let us henceforth use on the notations

Oy ={X1=x1,X2=x2,..., Xy = xn},

YN =, Yoo Y, Y =0y o).

There is no known algorithm for the computation of a global maximum of the
function
0 — P@(ON).

We now present an iterative algorithm which converges towards a local maximum
of that function, the Baum—Welch algorithm. First, note that

Pe(YN =yN, Op)

Po(YN = yN|ON)’

Py (On) =
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hence
Pa, (YN = yV|0On) 10g Py (On) = Pg, (YN = yV|ON) log Po (YN = yV, On)
—Pa (YN = yV|ON) log Po (YN = yV|Oy).

Summing over y¥ € FV, we obtain

log Py (Oy) = D B (YN =y, 0n)log P (YN = y", On)

y N

Py, (ON)

=Y Po (YN = yN|ON) log Py(YY = yV|Ow)

N

from which, subtracting the same identity with 6 = 6y, we deduce
10g ]P@ (ON) — 10g P@O(ON)

1

- Py (YN =N, On) logPo (YN =yV, 0
Peo(ON)yZN9°( ¥V, On) log Py ( N, on)

= Y Po (YN = yN. On) log By, (YN = 3N, On)
yN

Py, (YN = yN|On)

Py(YN = yN|Oy)

+ ) Py (rV = yV0Oy) log

yN

From the convexity of the negative log function and Jensen’s inequality, the last
term of the above identity is non-negative. Define

Q0. 0) = Y Pg(¥¥ =yN, On)logPy(Y" = yN, Op).

yN cFN
It follows from the above computation that
Q(60, 0) = Q(6o, 0o) = Py(On) = Py, (On).

The iterative Baum—Welch algorithm involves, at each iteration, computing 6,4
as a function of 6, according to the formula

611 = argy max Q(6,. 0).

This algorithm can be interpreted as an EM algorithm, adapted to our problem.
The EM algorithm is well known in statistics. The expectation step (E-step) here

involves computing the function 6 — Q (6, 6), and the maximization step (M-step)

involves the search for the point & where the function achieves its maximum.
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Note that

N
Py(Y" = yV, On) = My Qyixy 1_[ Py iyn Qs
n=2

N N
log Py (YN = yN, On) = log ey, + Zlog Py iy T Zlog Oy

n=2 n=1

It is then easy to see, with the notation 6 = (i, P, Q), that

Q(60,6) = Qo(Bo, 1) + Y 0160, Py) + Y 0a(60, Qy),

yeF yeF

where

Qo(0o, ) = Y Py, (On, Y1 = y)log iy,

yeF

N
Q100 Py) =YY Py(On. Y1 =y, Y, = x)log Py,

n=2xeF
N

0200, Q) =YY 84, Py (O, Yo = y)log Q..

n=1 zeE

We see that the search for the maximum decomposes into 1 + 2 card(F) searches
for a maximum, each of the form

argO lmzzx ] E wy log vy,
< <l;yefl, =
=vy=Ly Zy Vy yeF

where the w; € [0, 1]. We can get rid of the constraint Zy v, = 1 by expressing
one of the v, in terms of the others, and setting the gradient to zero leads to the

solution
Wy

V)= .
y
Zy/eF Wy,

From this come the following formulae for the maximum 6 = (ji, P, 0):

_ P (On, Y1 =y)
My ="~ ~
Py, (On)

5 T Pa(On. Yy =x. Y, = y)
xy —
Y5 Poy(On. Yoot =)

N
_ Py, (On, Y, = x)6
sz — anl 00( Ny In X) x,,z’ ¥ e F,Z c E,

SN Pa (O, Yy = x)

=P, (Y1 =y|0n), ye€eF,

, X,yeF,
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where x,, denotes the observed value of X,,, and § stands for the Kronecker delta
(8ym = 1 or 0, according to whether u/ = u or u/ # u). All that remains is to see
how one can compute the probabilities which appear above. In order to avoid
supplementary indices, we write 6p = (i, P, Q). We have

i, = By(l)My
’ ZyeF 5}'(1)/‘}'.

Define A={X1=x1,....Xp1 =1, Vim1 =x}, B={Ya =y, Xn =Xp, ...,
Xn = xy}. We have

Pgy (AN B) = Py, (B|A)Pg, (A),
Pgy(A) = ax(n — 1),

and thanks to the Markov property and the conditional independence of the Xj,
given the Yy,

Py, (B|A) = Pgy(B|Y,—1 = x)
=Po(Xy = xp, ... X = x§1Yy = Y)Pg (Y, = yY1 = x)
= xyﬁy(n)~

For the computation of the denominator, we note that 8, (n — 1) = Zy cr Pry Ey (n).
We deduce from the above the formula

2’11\122 oy (n — DPX_v:gy (n)
SN e = 1) (n—1)

Finally, an analogous computation produces

~ Y )B()S,, -
sz = N '
D o1 (1) B (1)

~

xy —

Remarks on implementation The Viterbi and Baum—Welch algorithms above
cannot be directly implemented on a computer. The reason is that one manipulates
products of a large (if N is large) number of terms which are less than 1, which
produces microscopic quantities.

The Viterbi algorithm contains only products and maxima. In this case the
solution is to replace the quantities of interest by their logarithm (which replaces
products by sums). The final step in the search for the optimal trajectory is
unchanged, since the function log is increasing.

The Baum—Welch algorithm involves sums. In this case one should instead use
normalization constants.

In practice, we replace the «’s by &’s defined by

-1

G = Y aym) | (),

yeF
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denoting
~1
Cmy =Y ey
yeF
= C1Cp X +++ X Cyp,
where

-1

o= @n—-1P),0,,
yeF
We define analogously

~

By(n) =cy X Cpy1 X -+ X cnBy(n),
By(n) = CpCpg1 X -0 X CNﬂy(”)a

and it is clear how one should rewrite P and Q in terms of the @s, ﬁs and Bs, in
such a way that each term in the sum appearing in the numerator, as well as in the
denominator, is multiplied by C(N).

Note that with this notation,

N
logPy(Oy) = —log C(N) = — > "logcy.
n=1

SEM algorithm. We now finally present the main ideas of the SEM algorithm,
which is the most efficient one in situations to be described below. With each value
of the unknown parameter 6 we associate the conditional law of the hidden states,
given the sequence of nucleotides, denoted

Po (Y1 =y1,....Yn = yn|X1 =x1,..., Xy = xn),

or rather

P (Y1 = y'IX7 = ).
The SEM algorithm is an iterative algorithm, which can be initialized with an
arbitrary value 6. The iteration which replaces 6, by 6,41 can be decomposed into
two steps as follows:

e Simulation We draw at random a realization of the random sequence YN,
according to the law Py, (Y)Y = :|XV = xI). Denote by y! (n) the sequence
thus obtained.

e Maximization We choose

N N N N
Op+1 = argmax,Py (Y1 =y (), X =x )

Note that in the EM algorithm, the simulation step is replaced by the computation
of the conditional expectation Eg, (Y}¥ | XV = x1V).
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4.5 Hidden semi-Markov model
4.5.1 Limitations of the hidden Markov model

One consequence of the Markov property is that the time spent by a Markov chain
in each of the states that it visits follows a geometric law. Consequently the model
from Section 4.4 implies that the lengths of the coding and non-coding regions of
a prokaryotic genome follow geometric laws. But that assumption is inconsistent
with some of the data at our disposal. This is a first argument for considering a
more general model. We now give another argument for abandoning the hidden
Markov model.

Let us consider our problem more precisely, restricting ourselves for the sake
of simplicity to eukaryotic genomes. It is of course essential to take into account
the information contained in the start and stop codons. Ignoring the phased models
for now, we are forced to introduce three start states, three coding states, and three
stop states, each one corresponding to its place in the corresponding codon, all this
being multiplied by 2 if we wish to take into account the complementary strand.
We add one non-coding state. This adds up to 19 states. Of course, most of the
entries of the transition matrix will be zeros, but that still means a lot of states, and
the situation is much worse in the eukaryotic case. We can reduce this number by
using a phased model, but then we multiply by 3 the number of transition matrices
to be estimated. We might also think of working with the sequence of codons rather
than nucleotides, but this would work only for the coding regions.

We will see below that a semi-Markov model allows us to reduce the number
of states to 3 in the prokaryotic case, while it also allows us to choose a distribution
which is more realistic than the geometric, for the length of the coding regions.

4.5.2 What is a semi-Markov chain?

Let us give one possible definition. As its name indicates, a semi-Markov chain
is ‘less Markovian’ (i.e. forgets less about its past) than a Markov chain. Given a
random sequence (X, ..., Xn), and 1 <n < N, we define, for each 1l <n < N,
the random variable 7, by

NMp = Sup{k > 0; ank - ank+l — ... = Xn}-

In the application which we have in mind, this is the number of sites located on
the left of the site n, which belong to the same region as it. Of course, if one
knows the realization of the sequence (X1, ..., X,), one knows the value of 7,.
Denote by ¢, (x1, ..., x,) the value of n, when (X1,...,X,) = (x1,...,x,). In
other words,

On(x1, ..., X)) =suplk; Xk = ... = X},

whence 7, = ¢, (X1, ..., Xpn)-



MARKOV CHAINS AND THE GENOME 93

Definition 5.1 An E-valued random sequence (X1, ..., Xy) is called semi-Markov
if and only if, forall 1 <n < N, all (x1,...,X,—1,X,y) € Entl

P(Xl’l+1 = lel =X, .., Xpo1 = X1, Xy :X)
= ]P(Xn-H = len =X,NMn = (Pn(xl» sy Xn—1, -x))

The fact that the next state of a semi-Markov chain depends not only upon the
current state, but also upon the time which has already been spent in that state,
allows the law of the time spent by the chain in any state to be completely arbitrary.

More precisely, a ‘generic’ way to specify the law of a semi-Markov chain
(and also to give a method of simulation for it) is as follows.

1. We associate with each state x € E a probability distribution (d,(n), n €
N\{0}) on N*:=N\{0}, which is the law of the time spent by the
chain at x.

2. We specify a transition matrix P on E x E of a Markov chain, whose
diagonal entries are zero. This matrix describes how the chain moves from
one state to another.

Let us now see how we can simulate a semi-Markov chain whose law is spec-
ified by the following data: for each x € E, d, denotes the probability distribution
of the time spent by the chain at x, and P,. is the probability distribution of the next
state which is visited on leaving x. If x denotes the starting point (X; = x), we sim-
ulate a random variable 7| with values in N*, whose probability distribution is d.
Let n denote the result of this simulation. Then X1 =X, =X35=... =X, = x.
We next simulate a random variable Z; whose probability distribution is P,. on
E\{x}. Suppose that we obtain Z; = y. Then X, ; =y, and we now simulate
a random variable 7, whose probability distribution is dy, a random variable Z;
whose probability distribution is Py., and so on. These successive simulations must
clearly be mutually independent.

4.5.3 The hidden semi-Markov model

Let us restrict ourselves once more to the prokaryotic case. Consider three hidden
states, state O standing for non-coding, state 1 for forward coding, state 2 for
backward coding. State 0 is a Markovian state (i.e. the future after visiting state 0
does not depend upon the past — we shall see at the end of the next subsection why
we make this restriction), in other words the law of the lengths of the non-coding
regions is geometric with parameter g (to be estimated). States 1 and 2 are said
to be semi-Markov. We will choose for the law of the lengths of the forward
and backward coding regions the image under the mapping x — 3x of a negative
binomial law with parameters m € N* and 0 < p < 1 (i.e. this law concerns the
number of codons rather than the number of nucleotides).

Definition 5.2 We say that the law of the random variable T is negative binomial
with parameters m and p if T is the number of times one must toss a coin in order
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to obtain exactly m heads, p being the probability of obtaining heads at each toss.
In other words,

BT = k) = ( W )(1—p>k'"p’”,

which is the probability of obtaining m — 1 heads in the first k — 1 tosses, times the
probability of obtaining head at the kth toss. T can also be considered as the sum
of m mutually independent geometric (p) random variables.

It would be natural to choose for the value of the parameter m the smallest
number of amino acids which a gene contains, plus 2 (for the start and stop codons).
Unfortunately, this minimal number is extremely small in a few exceptional cases,
while it is of the order of 10 in almost all cases. A reasonable choice seems to
be m = 10, but this choice should be validated (and confronted with the sequence
under study).

The parameter p must be estimated.

The transition probability from one state to another is chosen as follows. We
admit that each coding region (forward as well as backward) is followed by a
non-coding region. Hence Py = P>y = 1. Moreover, Py; + Py, = 1, and one can
either choose Py; = 1/2 or estimate that quantity.

Let us now discuss the law of the nucleotides, given the hidden state. One
might allow the nucleotides in the non-coding region to be i.i.d., the common law
having to be estimated. In a coding region, we assume, for example, that the codons
are mutually independent, the first being a start codon, the last having the uniform
law on the possible stop codons, and the rest being i.i.d. with values in the set of
codons which code for an amino acid (in particular, those codons cannot take as
value a possible stop codon). The description of the law of the backward coding
regions can easily be deduced from that of the forward coding regions.

4.5.4 The semi-Markov Viterbi algorithm

Let us now describe the Viterbi algorithm in the present situation (which is a
mixture of hidden Markov and hidden semi-Markov models). As for hidden Markov
chains, the idea is to compute the quantities d,(n), for each hidden state y and
1 <n < N. For y =0 we define, as before,

8)}(”) :\'1 yrzna)if ]IPB(YI =V,.- Y=, =y, X1=x,..., X, = Xp).

For y = 1 (and similarly for y = 2), we define

3y (n) = max IPB(YI =V, Yt =Y =y, Yo #y, X1 =x1, ...,

Xy = x,).
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The recurrence formula is
8,0 = max | Po(X} = {1} = v, Yot # 0y (0,

max [PQ(X:L]{H = X::7k+1|Yn7k # Y, Y,:Lkﬂ =y, Yut1 # ),

1<k<n—1
max (8.1 — k) P.y) d (k)]}.

Note that the fact that we need to compute a maximum over 1 < k <n at each
step makes the algorithm quadratic in N, which is bad news. However, the range
of this maximum can be restricted, since a coding region terminates at the first stop
codon. This remark is still valid for an exon in the case of a eukaryotic genome: it
ends at the latest at the first stop codon (either since this codon effectively marks
the end of the gene, or else since this codon is located in an intron, or possibly in
the wrong reading phase, but beyond the first intron). This remark does not apply
to non-coding regions. This is why we choose the state O to be a Markov state.

4.5.5 Search for genes in a prokaryotic genome

The a priori law of the Y’s
We have three hidden states: coding + = 1, coding — = 2, non-coding = 0.

e The law of Yy is u = (o, i1, U2).

e If ¥, =0, we choose Y, according to the probability p = (po, p1, p2),
with po>0, p;>0, p»>0 and pyo+ p1 + p2 = 1.

e IfY, 1 =0and Y, =1 (orif ¥,_; =0 and ¥, = 2), we choose the length of
the coding region according to a law whose support is included in the set of
multiples of 3. Just after a coding region, Y is in the non-coding state (state 0).

The conditional law of the X’s given the Y’s

e Given that V,, = 0, X, is independent of all other random variables, and its
law is ¢ = (ga, qc; 96, g1), With gA>0, gc>0, g6>0, gr>0 and ga + gc +
g6 + g1 = 1).

e If Y, = 1 (and analogously for Y, = 2), it depends upon where we are in the
coding region.

1. The first codon is a start codon.

2. The next codons are chosing according to a law which charges the various
codons which code for an amino acid, the possible stop codons being
excluded.

3. The last codon is chosen according to a law whose support consists of
the stop codons.
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Computing the §’s

For y =1 and y = 2, we define

8y(n) = | max IIP’(YI”’I =y Y, =y, Y =0, X} = xh.

For y = 0, we define

So(n) = max P ' =yl vy, =0,X! =x)).
Viseeos Yn—1

For n < 3m, 8;(n) = §,(n) = 0. Moreover, if ¥,, = 0, then the whole sequence
Y1,...,Y, is constant and equals 0. In that case

So(n) =P(Y{ =0, X1 = x}) = poply " [ [ dx-
k=1
Now suppose that n > 3m.

e Consider first the recurrence formula in the case y = 0. If n>3m, the set
of yi, ..., y,—1 over which one maximizes is subdivided into three classes,
depending upon the value of y,_;. We have

o(n) = max[do(n — ) po, 61(n — 1), é2(n — 1)1gx,.
e Consider now the case y = 1 (the case y = 2 is treated similarly).

1. Either Y{' =1 and Y,y # 1 (in this case n is a multiple of 3). This
implies that

PY=1,Y1 # L, X =x)) =P(X} =x] | Y]'=1, Yyy1 # Ddi(n) 1.

2. Or the hidden sequence is constant and equal to 1 on the interval [n —
k + 1, n], hence (with y,_x # 1, consequently y,_; = 0, which implies
that k is a multiple of 3; and the following quantity is zero unless both
(Xn—k» Xn—k+1> Xn—k+2) is the start codon and (x,_2, x,_1,x,) iS a stop
codon)

max  PY =y v =1, Y =0, X =)

V1seosYn—k—1
= do(n — k) pi
X POX3 i1 = Xn—gi1s Yogp1 = L Yot = 01Yypy1 = 1, Yy = 0)
=do(n —k)p1

X POX)_yy = 0y Yok = 0. Yy = 1, Y1 = )i (K).
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The above conditional probability factorizes as
k/3

k+3j+3 k+3j+3
HP(XZ k+35+1 = Z k+3}+1|Y =0, =LY #1D

k/3—1
=Pstart(xz ]]{(i_l) 1_[ Pcodlng(xn k+3j+1)PStOp(-xn 2)
j=1

=Pt (g 4q1)-
Finally, with the convention §y(0) = w1/ pi,

s1(n) = max So(n — k) p1Pey (xy_Dd1 (k).
k multiple of 3;3m<k<n

4.6 Alignment of two sequences
Consider two nucleotide sequences (or amino acid sequences)

= (X1,..., Xn),
m
=01 Ym)-
Suppose we are considering nucleotide sequences, such as

AAACGGTTT CCCAGTT
A CGTTTT CCAGTC

We wish to align them as follows:

AAACGGTTO CCCAGTT
A - CGTTTCC - AGTC

To do this, we need to create gaps in one of the sequences (one might in other
examples wish to create gaps in both sequences). Note that whenever n # m, there
are at least |[n — m| gaps.

We can associate with each alignment of two sequences x| and y{" a score
which measures the quality of the alignment. Suppose that the common length of the
aligned sequences (counting the gaps) is 7. Clearly T > sup(n, m).For 1 <i < T,
if the nucleotide g; is at position i in the first sequence and the nucleotide b; in the
second sequence (a; = x; only when there is no gap in the first sequence at the left
of position 7; the same remark is valid for the second sequence), then position i
contributes s(a;, b;) to the global score of the alignment. If a gap opens at position
i in one of the two sequences (in the sense that there is a gap in the first (or second)



98 MARKOV CHAINS AND THE GENOME

sequence at position i, and no gap in the same sequence at position i — 1), then that
position contributes —d to the global score, and if a gap continues at position i,
then i contributes —e to the global score. Finally, the global score of an alignment
of length T is

> saib)y— Y (d+j—De)— Y (d+ Wy —De),
1<i<T, gaps of the gaps of the
no gap at i first sequence second sequence

if £; (£/;) denotes the length of the jth (kth) gap of the first (second) sequence. s
is a map from {A, C, G, T}2 into R, which is maximal on the diagonal. In the case
of amino acid sequences, we replace {A, C, G, T} by the set of 20 amino acids. In
both cases, s is chosen in such a way that, for a # b, the more probable a mutation
from a to b (or vice versa), the bigger s(a, D).

4.6.1 The Needleman—Wunsch algorithm

The search for an optimal alignment can be done with the help of a dynamic
programming algorithm. Define M (i, j) as the best possible score among all partial
alignments which end with x; aligned with y;. I, (i, j) is the best score among all
partial alignments which end with x; aligned with a gap in the second sequence,
y; being the last nucleotide in the second sequence on the left of the gap. Finally,
1,(i, j) is the best score among all partial alignments which end with y; aligned
with a gap in the first sequence, x; being the last nucleotide of the first sequence
on the left of the gap. Then we have the following recurrence formulae:

M(l - 17]_ 1)+S(-xivyj)v
M@, j)=max { L,(i — 1, —1)+s(x, ),
LG —1,j—1)+ s, y;));

M@G-—-1,j)—d,
I, (i, j) = max (‘l J.)
L,(i—1,j)—e
M@G,j—1)—d,
1. j) = max {1~ D
LG j—1) —e.

We have excluded in these formulae the possibility that a gap in one sequence
could be immediately followed by a gap in the other one, which is certainly the
case for the optimal alignment provided —d — e < inf, , s(a, b). In the case e = d,
the above triple recurrence reduces to the unique recurrence

Fi—1,j—=1+s,y),
F(@,j)=max{F(i—1,j)—d,
F@G,j—1) —d.
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There exist many variants of this algorithm. In particular, one can search for
the best local (and not necessarily global) alignment. This is obtained in the case
d = e by modifying the recurrence as follows:

O»

Fi—1,j—1 LY
F(. j) = max (l. J ) +s(xi, y)),

FG@-1,j)—d,

F(i,j—1) —d.

A maximum of 0 indicates the beginning of a local alignment. Note that in this
case, F(-,0) = F(0,-) =0. The local alignment algorithm which we have just
described is called the Smith—Waterman algorithm.

4.6.2 Hidden Markov model alignment algorithm

We now formulate the search for an optimal alignment of two sequences in the
framework of hidden Markov models. This model is often called ‘pair HMM’ (see
in particular [17]), since the hidden chain is in fact a pair of processes. as we shall
see. Here the hidden chain will be denoted by Z, ..., Zy. Note that T is not given
a priori, it is random. This chain takes its values in a space containing four states,
which we shall denote by {A, I, S, E}: A for align, I for insert a gap in the first
sequence, S for suppress, which means inserting a gap in the second sequence,
and E for end, which is an absorbing state of the chain.

We can now specify both the a priori law of the chain Z;, ..., Zy, and the
conditional law of the double sequence

(7))

with values in the set {A, C, G, T, —}, given the sequence Zi, ..., Z7 (the value
of T, the length of the sequence, being part of the unknowns which are specified
by the alignment).

We now consider {Z;; ¢ > 1} as a Markov chain with values in the space
{A,I,S,E},and T := inf{t > 1; Z, = E}. The transition matrix of this chain takes
the form

1—-26—17 &6 6 =
l—e—1 & 0 1
l—e—1t 0 & 1

0 0 0 1

We choose for the law of Z; the probability
1-o'a=25—7t 8§ & 0.

The law of (Zy, ..., Z7) is now completely specified.
Note that the law of T is given by

P(T=t)=0-1)27, t>2.
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One can also specify the law of the transitions, conditioned upon the fact that they
do not produce E. If we let

PG[-[ = ]P)(Z[+] - HlZ[ - G, T>t + 1),

G,H € {A, I, S}, we have

1-25—1 )
ll—‘L’ -1 1-7
_ —e—1 £
P = 11—‘[ -7 0
—&—1 3
-1 0 1-t

We can now describe the conditional law of the Xs and the ¥, given (Zy, ...,
Z7). Let us again consider the case of sequences of nucleotides. There is no
difficulty in translating the formulae to the case of amino acid sequences. We
specify both a probability {p,.»; (a,b) € {A, C, G, T}?} and a probability {g,; a €
{A, C, G, T}}. Conditionally upon (Z, ..., Z7), the random variables X., Y,
1 <t < T, are independent. Given that 1 <t < T and Z, = A, the law of X, ¥)

is p. Giventhat | <t < T and Z;, =1, f(t = — and the law of Y, is ¢. Given that
1<t<Tand Z, =S, the law of X; is ¢ and Y; = —. (X, ¥;) is not defined for

t > T. In other words,

XT—] xt—l
P((?ITA):()}—I Zszztl = 1_[ Pxiyi 1_[ I{X_/=—}Qyj
1 1

I<i<t;zij=A 1§j<t;zj:l
X 1_[ G Liy=—)
1<k<t;zp=S

We can compute this as

XTI) <xtl>
]P’ ~ 1 _ = 17 N ZT == Zt
<<Y1T 1 yi 1 1 1

= -0 T pew [l o [1 4w

I<izn xj#—,yi#— 1<j<n xj=— I<k=<n yr=—

1—25—7\"/ 6 \2/ & \B/1—e—1\"
X
1—1 1—1 1—1 1—1

=HzT 1_[ Dxiyi 1_[ 9y, 1_[ Dxi

1<i<n;xj#—,yi#— I<j=nixj=— I<k<n;yp=—

x (1 =28 —1)15%2e5(1 —e — 1),

where £, is the number of transitions of the chain {Z.} from A to A, ¢, is number
of transitions from A to [ or S (opening of a gap), £3 the number of transitions
from 7 or S to itself (continuation of a gap), and £4 the number of transitions from
I or S to A (closure of a gap).
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Note that the observation is made of realizations of the two sequences (X1, ...
Xy) and (Yy, ..., Yy) obtained from the double sequence

<< :1> <:T1>>
i) U \Yro ) )’
by deleting the gaps.

We still need to specify the quantity
PXY =x}, Y =y, z] =2)).

In fact we will instead compute the following quantity, whose maximization with
respect to z} will produce the same result:

PO =2, 1 =" 2] =)

[Ti=i ax, 1'[?’:1 dy;

PO = 1 = 2] =) =

We have
-1
T
% N n M m T t .
PPXY =X, Y7 =)y, 2y =2) = l—rnv(l)’
i=1
with
Py e . . .
(1 =28 — 1)K " if 7. = A and either i = 1 or z;_; = A,
pqu(i) Dye(i
XI(i i . .
(1—g—17)*0MO) = §f = A,i >land z;_; =1 or S,
g Dxg iy Dyeciy
8%:8, ifz; =1, and eitheri =1 orz;_; = A,
N Ve
U(l) - qu((;)) . . .
(Sq— =34, if z; = S, and either i = lorz,_; = A,
k(i)
Do ifz;=1,i>1landz_, =1
8m—8, mz;, =1,1 > and z;,—1 =1,
Ye(i
qxp(; . .
equﬂzs, ifzg=2S,i>1land z;_; = S,
170}
where

i—1 i—1
k() =i+Y 1g=p. @) =i+y 1.

J=1 Jj=1

Note that []:Z} v(i) = []'_, v/(i), where

Pxpiyyei .
(1—28 —7) 0 1 if 7; = A,
iy Dyeiy

D if z; = I, and either i = lorz;_; = A,
(i) =45 11_’288’_2, if z; = S, and either i = lorz;_| = A,
&, ifzi=1,i>1andz,-_1=1,

&, ifz,-:S,i>1andz,-_1=S,
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for1 <i <t and

) L ifz,1=A,
v/(t) = .
f_’;{_’r, if z,_y = TorS.

Looking for a sequence (z*)| which maximizes P*(X}) =x, YM = y", zT =2))
is equivalent to look for a sequence (z*)| which maximizes

logP*<xlN=x?,YF4=yi,zl—zmog( ) Zlogvr(z)

It is now easy to see that the Viterbi algorithm for solving this problem coincides
with the Needleman—Wunsch algorithm if we let

s(a,b) =

5(1—¢e—1)
1-28—7
—loge.

d = —log

’

Note that the algorithm computes a trajectory zj which maximizes the a posteriori
probability. In particular, the value ¢ of the length of the optimal alignment is
given by

t =inf{s; k(s — 1) =n, (s — 1) = m}.

4.6.3 A posteriori probability distribution of the alignment

Having just put the Needleman—Wunsch algorithm in a probabilistic framework,
we will now exploit this framework in order to introduce new concepts.

Trying to align two sequences is related to the belief that there is a similarity
between these two sequences, for example because they are the result of evolution
from the same ancestral sequence. If an alignment is of poor quality, it may be
because the alignment is not the right one, or because no good alignment exists, for
example because the two sequences have nothing in common. It may be interesting
to have a criterion for deciding how well two sequences x| and y{* can be aligned.
Such a criterion can be given by the probability that our hidden Markov model
produces the pair of observed sequences, i.e. by the quantity

PP =il v == Y RO =l v = 2] =2,
¢t e alignments

What is the ser of alignments in which z/ takes its values? It is the set of sequences
of arbitrary length 7, whose first # — 1 entries belong to the set {A, I, S} and whose
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last entry is E. Clearly, for the corresponding probability to be non-zero, a very
strong constraint relating z} to n and m must be satisfied, namely

t =inf{s; k(s — 1) =n, (s — 1) = m}.

Necessarily ¢ > sup(n, m) + 1.

We now describe a forward algorithm which computes the quantity P(XY =
Xy, YIM = y{"). This is just the forward part of the Viterbi—Needelman—Wunsch
algorithm, with the maximization replaced by a sum. That is, one computes
(fAG, ), f1G, J), £33, j)) by a forward recurrence on (i, j) as follows:

[ =D =f(1,/)=0, Vi
f40,00=1, f1(0,0)=0, f50,0) =0,

FAG D) = Pyl =28 =) fAG =1, j = D),

+—e—O(lG-1,j—D+fSG—1,j—D1,

flG ) = a6 j =D +ef'G, j = DI,

20 = qulsf G =1, ) +ef6 =1, jl.

Finally,
PXY =x}. Y =y = tlfAnm) + fL(nom) + £S5, m)].

We can now consider the a posteriori law of the alignment, that is, the conditional
probability
POY = o, 1Y = . 2] =5

IF’(X{V =x, YIM =y"

P(Z{ = z|X] =x, ¥} =) =

The most favourable case is when that law is very much concentrated around
the optimal alignment, that is, when the quantity P(Z] = (z*)||X N = X, YM =
y{") is close to 1, or at least significantly non-zero. If this is not the case, it
can be interesting to know whether the set of alignments which are close to the
optimal one carries a significant mass of the a posteriori law. The a posteriori
law contains much information about the quality and pertinence of the optimal
alignment. We now describe a backward algorithm for simulating according to
the a posteriori law, which makes use of the above computations of the quantities
(FAG ) f1G s £5G, )

We first choose at random, according to the probability

(fAm,m)+ ffo,m) + fSm,m)~ (A mm)y  fln,m) 5, m)),

whether the alignment terminates at site + — 1 by the alignment of x, with y,,
(choice of A), by the alignment of y,, with a gap in the first sequence (choice of
I), or by the alignment of x, with a gap in the second sequence (choice of S).
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Let us now describe the iteration step of this algorithm. Suppose that at some
point the algorithm led us to align x; and y;. Let us now examine the quantity

A J) = Pyl =28 =) fAG =1, j = 1)
+(U—e—(flG—1Lj—D+f5G—1,j—D
We now decide to
pxl-yj(17257r)f"‘(i71.,j71)
FAGL)) >

e align y;_; with a gap in the first sequence sequence with probability
Py (=e=0)f1(i=1.j=1)
) ’

e align x;_; with y;_; with probability

e align x;_; with a gap in the second sequence with probability
Priy; (1—e=0)f3G=1,j-1)
)
If, however, the algorithm had led us to align y; with a gap in the first sequence,
x; being the first as yet unaligned nucleotide of that sequence, we decide to

. . . e @y OG-
e align x; with y;_; with probability e

ay;ef "G j—1)
)
The case where x; is aligned with a gap in the second sequence is described
analogously.

e align y;_; with a gap in the first sequence with probability

4.6.4 A posteriori probability of a given match

If the probability of any alignment is small, it might be the case that that of certain
partial alignments is high. We will see that one can compute the probability that
the alignment matches certain pairs (x;, y;). Denote by x;<y; the set of those
alignments z| which put x; in front of y;. We now compute the probability

PXY =x}, M = L xidy)) = Z PxN =x1, vM =y, zl =2).
ex;oy;
In fact
PXY = xi, Y =y xi0y) = P(X§ = xi. Y] =y x;0y))
x PX)Y =xI' Y =y |xi0y)).

The first factor in this formula is precisely the quantity f4(i, j) which was com-
puted by a forward algorithm in the preceding subsection. The second factor is the
quantity b4 (i, j), which can be computed by a backward recurrence as follows:

bA(n, m) = bl(n, m) = bS(n, m) =rt;

b(.m+1)=bn+1,)=0.
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For all (i, j) # (n, m),
b, j)=(1=28 = O)pyyy, b G+ 1 j+1)
+8[qs, DO+ 1. ) + gy, b' G j + D],
DU )= —&—=T)pu,y b G+ 1, j+1) +eqy, b j+1),
b5, )= (1 =& —=T)puyy, 0 DG+ 1 j+ D +eqe, DG+ 1, ).
We define

_ P = v =y xidy))

POy | XY = xf, vM =ym
(O = X0 = 30 = T e v = )

which it will be convenient to write as P(x; ;).

Given two sequences x| and y!", and an alignment z/ of those sequences, we
shall write (i, j) € z| whenever z} € x;<yj, that is, if the alignment z| matches x;
and y;. The following quantity is a sort of expectation, for two given sequences x/
and y{", of the overlap between the alignment z| and an alignment taken at random
according to the a posteriori law of the alignments:

A @)= > Pxoy)).

(i.j)ez

This is a new criterion for the quality of an alignment, for which we can
compute the optimal alignment, by the classical dynamic programming algorithm
associated with the following progressive recurrence (we abandon below the nota-
tion (x{, y{")):

A —1,j =1 +Px;0y)),
AG, j) =max { AGi — 1, j),
AG,j—1).

Note that all the P(x;<y;) can be readily deduced from the quantities computed
by the above forward and backward algorithms.

4.7 A multiple alignment algorithm

It is often necessary to align more than two sequences. This is a very difficult
problem, and most of the algorithms which solve it in a reasonable time (i.e. those
which are used in practice) proceed by successive alignments of two sequences.
ProbCons is a recent algorithm which is to date one of the best in terms of
precision, as well as being faster than some of its competitors; see [16]. It is one
of those algorithms which measure the ‘consistency’ of each alignment of a pair
of sequences (x, y) by confronting them with the m — 2 alignments of (x, z) and
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(z, y) (see the matrix P/ below). The same idea was already present in the T-Coffee
algorithm (see [30]), which can be considered the prototype of algorithms based
upon consistency; see the survey [18]. We prefer to present ProbCons since it
uses, as we shall see, the pair HMM framework which we met in the previous
section. We shall introduce a change in the notation introduced above: henceforth
the alignments will be denoted by a rather than z. The reason is that we will be

forced to denote three sequences at the same time, for which we will write x'lxl,

yi'l and 217,
Given m sequences {s', ..., s™}, the algorithm does the following successive
operations:
1. Computation of the a posteriori probability matrices. For each pair x, y € S,
we compute the matrix

P(x,y)=(Pj(x,y), 1<i<|x|, 1<j<lyl,
given by
Pij(x,y) = P(xioy XY = x v = yi'h.

2. Two by two alignments. For each pair x, y € S, we compute the alignment
a* which maximizes the quantity

Ax'f'u"llyl (a),

and we let

EGy) = ——— A @)
T il Ty T

3. Transformation by consistency. We associate with the three sequences
X, Y,z € §in particular the x| x |z| matrix P(x, z) and the |z| X |y| matrix
P(z,y). Then, forany 1 <i < |x|and 1 < j <|y],

Iz]

(P(x, P )i = Y Pu(x, )Py (2, y),
k=1

and we define a new matrix P/(x, y) by
1

Pi(x,y) = — Y P(x,2)P(z, ).
5] zeS
Note that, by definition,
1, ifi=j,
Py =14 it ;éj'

In each of the above matrices, many entries are very small. All entries
which are smaller than a given value are set to zero, and an algorithm
for multiplication of sparse matrices is used. The transformation P — P/
can be iterated an arbitrary number of times. Unless otherwise specified,
ProbCons does it twice.
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4. A tree construction. Here we make use of the quantities E(x, y) computed
in step 2. The construction is done by the following iterative method. To
start with, each sequence is identified with a group. With each pair of
groups x and y we associate the quantity E(x, y) computed in step 2. We
look for the pair of groups (x, y) which maximizes the quantity E(x, y).
We then merge those two groups into a unique one, denoted xy, we define
for any other group z the quantity

E(x,2)+ E(y,2)
2 9

and we continue until all the sequences constitute a unique group.

E(xy,z) == E(x,y)

5. Progressive alignment. We align all sequences two by two, using the
Needleman—Wunsch algorithm, with the score

s(xi, yj) = Prij(x,y),

and gap penalties (d and e) equal to zero. Two groups are aligned following
the best alignment of two sequences, one taken in each group.

6. Iterative refinement. We randomly partition the set S into two subgroups,
to which we apply steps 4 and 5.

4.8 Exercises

Exercise 8.1 We wish to use the Viterbi algorithm from hidden Markov models for
the detection of CpG islands in the human genome. We choose as hidden Markov
model a {0, 1}-valued Markov chain {Y,; 1 <n < N} (1 for ‘CpG island’, O for
‘non-CpG island’) with transition matrix

0.9 0.1
F= <0.1 0.9)'
Assume that Y1 = 0. We assume that the sequence {X1, ..., Xn} of observed nucleo-
tides has been produced as follows. Let w denote the probability (%, 4—1“ }1, %) on
the set E = {A, C, G, T}. Suppose that the law of the random variable X is 1.

Moreover, for n > 1, if X,, # C, the law of X,+1 is @, and X4 is independent of
all the other random variables; if X,, = C,

(0.3,0.3,0.1,0.3), if Yoy =0,

the | X =
¢ law of( Xw+1) {(0.2,0.2,0.4,0.2), i Y = 1.

Explain how the Viterbi algorithm can be written in this case, which is slightly
different from that treated above (the X, are not mutually independent, given
{Yu; 1 =n <N}
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In particular, give explicitly the formula for the vector §(n + 1) in terms of 8 (n),
according to whether X,, # C or X,, = C. Give the formula for §(n;) in terms of
8(ny), in the case where X, # C, for all ny < n < ny, and assuming that the ratio
between both coordinates of §(ny) lies between 1/9 and 9.

Exercise 8.2 (Programming)

1.

Simulate a non-homogeneous E = {A, C, G, T}-valued Markov chain {X,},
from n =1 to 5000, using three different transition matrices Py, P, and P3,
changing the transition matrix each 200 to 400 nucleotides (the length of
the homogeneous regions should vary).

. Find the three matrices and the homogeneous regions from the simulated

data, using the Audic—Claverie algorithm.

. Test the hidden Markov model algorithm on the same data set, with and

without knowledge of the three matrices P;.

. Repeat these operations with matrices estimated from the three types of

regions of an annotated prokaryotic genome sequence. Then apply the same
algorithms to that sequence, and compare the results with the annotation
given in the database.

. Now apply to that sequence a hidden semi-Markov model algorithm, taking

into account the fact that a coding region starts with a start codon and ends
with a stop codon.
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Control and filtering
of Markov chains

Introduction

Consider a moving body (e.g. an airplane or satellite) whose trajectory, which is
subject to random perturbations, must be controlled. The aim might be to keep the
trajectory close to a desired one. The problem will be very different, depending
upon whether or not the perturbed trajectory is directly observed.

After a short section on optimal deterministic control, we present some notions
on the control of Markov chains, then on the control of Gaussian sequences,
with a quadratic cost. We will then consider the problem of ‘filtering’ (i.e. try-
ing to follow a randomly moving vehicle whose trajectory is partially observed) of
Markov chains, and of Gaussian sequences, whose solution is given by the famous
Kalman—Bucy filter. We will close this chapter with the linear quadratic partially
observed control problem, whose solution combines the Kalman filter and the linear
control problem with quadratic cost.

5.1 Deterministic optimal control

We consider the controlled discrete time dynamical system
Xn = f(Xu—1,u,), n>1, Xq given,

where X, € E CR?, u, € U C R, f:ExU — E.Thesequence {u,;n =1,2,
...} is the ‘control’ which can be chosen at each time n from the set of admissible
controls U, the goal being to minimize a cost of the form

N
J(u) = ZL(Xn,un).
n=1

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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This means that one looks for a control u* = (u7, ..., u}) such that
J(W*) = min J(u).
ueUN

Assuming that such an optimal control exists (one can give conditions under which
this is the case — existence is, for instance, obvious if U is a finite set), let us now
give an algorithm for computing it. For this purpose, we introduce the quantities

N

D(n,x) = min L(Xy, uy),
(nx)= m WU}; (X, uy)

where X,,_; = x. We have the dynamic programming equation
P (n, x) =min{L(f(x,u), u) + @+ 1, f(x, u))}
ue

due to R. Bellman. This equation follows from the fact that if u*" = (uj;, u} P

..., uy) is optimal for the control problem between times n and N, with the

. e, o . def . .
initial condition X,,_; = x, then u*"*! = uZH, ..., uy) is optimal for the control

problem between times n + 1 and N, with the initial condition X, = f(x, u}).
Dynamic programming algorithm. Suppose that E is a finite set. The algo-

rithm first progresses backward, starting from the final time N, for computing

d(n,x),forn=N,N—1,...,1,and all x € E.

e At instant N, for each x € E, we compute

Q(N,x) = miLrllL(f(x, u), u),
ue
and we denote by u™ (N, x) one of the arguments which realize that minimum.

e From n + 1 to n, for each x € E, we compute
D(n,x) = milrjl{L(f(x, u),u) +®n+1, f(x,u)},
ue

and denote by u*(n, x) one of the arguments which realize that minimum.

After these computations, we have at our disposal the quantities {®(n, x); 1 <
n < N, x € E} and, in particular,

d(1,x) =
Ulyeeny uye
for all x € E.

Provided we have conserved all values {u*(n,x); 1 <n < N, x € E}, we can
now construct the optimal trajectory (and — this is the most important thing —
determine an optimal control) by the following forward recursion:

X7 = f(Xo,u™(1, Xo)),
X;; = f(X;,k_lv M*(”, XZ_1))»

X?{/ = f(X*N_]’ M*(N, X*N_]))
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5.2 Control of Markov chains

Suppose now that {X,;n=0,1,2,...} is a controlled E-valued Markov chain
(where E is either finite or countable), that is, its evolution is described by:

X, = f(Xp1, Yy, u,), n>1, Xge€E given,

where {Y,; n > 1} is a sequence of i.i.d. F-valued random variables, {u,; n >
1} is a sequence of U-valued random variables, such that for all n > 1, u, is
0 (X,—1) measurable and f : E x F x U — E.If F and/or U is uncountable, the
relevant measurability assumption must be imposed upon f. It is easy to verify
that the sequence {X,,; n > 0} thus defined is a Markov chain. We seek to minimize
the cost

N
J)=E  L(Xy. u).

n=1

We introduce as in the previous section the quantities (1 <n < N, x € E)

{unely,..., Uy €

N
d(n,x) = min E L(Xy, ug),
( ) LUy ) n,x; ( k Mk)

where U denotes the set of the U-valued o (X _1)-measurable random variables,
and E, , stands for the conditional expectation E(-|X,_; = x). We then have the
dynamic programming equation

CD(I’Z,X) = mlgE{L(f(xa an M), M) + CD(n + 1’ f(x’ Yn5 u))}

and we denote by u*(n, x) any of the values of u € U which realizes this minimum
(such a value exists at least if U is finite).

The dynamic programming algorithm then involves, as in the deterministic
case, computing the ®(n, x) and the u*(n, x) by a backward recursion, starting
with n = N and finishing with n = 1. We can then activate the optimal control by
using the control u*(n, X,_1) at time n, starting at time n = 1.

Remark 2.1 More generally, one could look for an optimal control in the class of
controls u = (uy, ..., uy) such that, for each n, u, may depend upon (Xg, X1, ...,
Xu—1). One would then show that there exists an optimal ‘Markovian’ control, that
is, a control such that u, depends only upon X, _1, so that the sequence {X,} is a
Markov chain.

5.3 Linear quadratic optimal control

In this section, we assume that {X,;n € N} is an R9-valued Gaussian sequence
which satisfies the linear recursion

XnZAXn—]+Bun+fn+nn’ nzl,
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where Xy, 71, 172, ... 1S a sequence of mutually independent Gaussian random
vectors, Xo =~ N(Xo, 20), 1. =~ N(0, Q), and the f, are given vectors in R4, We
suppose that the controls u,, take their values in U = RK, A is a d x d matrix, and
B a d x k matrix. We seek to minimize the functional

N
J@) =B [(FXp, Xp) + (R, )],

n=1

where F (R) is a symmetric d x d (k x k) matrix and R is positive definite.

The linear quadratic control problem is particularly interesting because it has an
explicit solution, in the sense that we will give an explicit formula for the optimal
control.

Remark 3.1 One could introduce a more general cost functional of the form

N
J@) =Y UF(Xy = xn), Xo = ) + (Ruty, )],

n=1

where (x1,...,xy) is a ‘nominal trajectory’ which we wish {X,} to stay close to,
the cost leading to a compromise between having the X,, close to the x,, and using
a control with a small norm. In any case, such a problem can be put in the form of
the problem above, choosing X, = X,, — x,, and changing the f, in the recurrence
formula.

Note that, provided each u,, depends only upon X,_1, the sequence {X,; n > 0}
is a Markov chain, but with values in R, which is not countable, so we are no longer
in the framework studied so far in this book!

With the notation of Section 5.1, we have the following characterization of an
optimal control:

Theorem 3.2 Forall 1 <n <N, x € R?,
CD(ns x) = <ans x) + 2<hn7x> + Cnv

and  u*(n,x) = —(R + B*(F + G,3:1) B) ' B*[(F + Gp1)(Ax + fu) + hyy1]
where the sequence {(G,, h,, c,); 1 <n < N},) is defined by the following back-
ward recurrence:

G, =A"(I — (F + Gy )B(R+ B*(F 4+ Gpy1)B) ' B*)(F + G,11)A,
hy = A*(I — (F + Gpi1)B(R + B*(F + G,11)B) "' B¥)

X [(F + Gpy1) fu + hny]
Cn = Cpgt HO[(F + Gy ) Ol + ((F + Guy ) f + 2huygts fo)

— (B(R + B*(F + Guy1)B) "' B*[(F + Goy1) fr + hnt1]

X (F + Guy1) fu + hag)

and Gyy1 =0, hyy1 =0, ey =0.
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The proof of this theorem is based upon the following elementary result:
Lemma 3.3 Let P be ak x k self-adjoint positive definite matrix and g € R¥. Then

min[(Pu. 1) +2(u. 8)] = ~(P~'g. 8.

and the minimum is achieved by u* = —Pg.
ProOF OF THEOREM 3.2 First suppose that the formula of the statement holds
for ®(n + 1, x). Then

d(n,x) = mg}( En,x“FXn» Xp) +(Ru, u) +(Gpp1 Xy, Xp) +2(hnt1, Xp)] + cng
ue

= ((F + GutD)(Ax + fu), Ax + fu) + 2(hns1, Ax + fu) + a1
+l(F + Guy1) Q1 + min {((R + B (F + Gus1) B)u, u)

+2(B*[(F 4 Guy1)(Ax + fu) + byl u) |

The formula for u*(n, x) follows from Lemma 3.3, and moreover

®(n, x) =(A*(I = (F + Gu11)) B(R 4+ B*(F + G,11)B) "' B )(F + G, 11) Ax, x)
+2(A*(I — (F 4 Guy1) B(R + B*(F + G,11)B) ' B)[(F + Guy1) f
+ hp1], X) + cupt HUL(F + Guy) Q1 + ((F + Gug1) fu + 2hns1s fn)
— (B(R + B*(F + Gu1)B) ™' B*[(F + Guy) fu + huga], (F + Gui) fi
+ hut1),

from which one deduces the recurrence formulae of the statement. Indeed, since the
above formulae are correct for n = N, if we let Gy =0, Ayt =0, cyv1 =0,
the result is established by recurrence. (]

Remark 3.4 Only the values of the constants c, depend upon the covariance matri-
ces Ao and Q; in particular, the formula for the optimal control does not depend
upon them. It is the same as in the case Ao = Q = 0, which is the deterministic
case.

5.4 Filtering of Markov chains

Let {X,,;n € N} be an E-valued Markov chain, with transition matrix P, which
is not observed. One observes the sequence {Y,; n € N} of F-valued random vari-
ables, given by

Y, = h(an %_n)»
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where the &, are i.i.d. G-valued random variables, globally independent of the
chain {X,},and h : E x G — F is given. E and G are assumed to be either finite
or countable.

The situation is in fact that of hidden Markov models, but here we are in a
dynamical situation, where one seeks at each time n to ‘estimate’ X,,, given the
past and present observations Y1, Y», ..., Y,. We want a ‘recursive’ algorithm, such
that at time n + 1 the computation makes use of the result of the computation at
time 7, as well as the new observation Y, |, without having to use the observations
Y1, Y, ..., Y, again. The idea is to be able to have the algorithm run in ‘real time’.
It turns out that the right quantity to compute at each time n is the conditional law
1, of X,, given Y1, Y>,...,Y,. We also define the conditional law IT,,,— of X,
given Yy, Y>, ..., Y,_;. Recall that these probability distributions are defined as
row vectors.

Forany x € E, y € F, we let

g(x,y) =Ph(x, &) =y) =P¥, = y|X, = x).
The evolution of the conditional laws {I1,} is given by the following theorem.
Theorem 4.1 Foralln > 1,
My —1(x) = (I1,-1 P),,
-1 (x)g (x, ¥y)
> ver Mun—1 (XN, ¥y)

ProOF We may assume that the chain {X,} has been constructed by the recurrence
formula

I, (x) =

X, = f[(Xu—1,m0),

where the {n,} are i.i.d., globally independent of the {£,}. It follows in particular
that
P(X, =x|Y1, ..., Y1, X)) =P(X,, = x[X,—1),

whence
Myp—1(x) =P(X,, = x|Y1, ..., Yar1)
=E[P(X, = x|Xu—DIY1, ..., Yoei]
= (Il,—1 P)x.

In order to establish the second relation, first note that if PY1-Y»—1 denotes the
conditional probability P(-|Yy, ..., Y,_1), we have

P(Xy = x[Y1. ..., Yoo, V) = PPl (X, = ().
But for any probability Q,
QX =x|Yy) = H(x, Yy),
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where
H(x,y) =QX, =x|Y, =y)

— QY = yIX, = 0)Q(X,, = x)
Zx’ Q(Yn = len = X/)Q(Xn =x’)

from Bayes’s formula. The second relation follows, since

PYet-t(y, = y|X, = x) = P(h(x, &) = y) = g(x, y).

5.5 The Kalman-Bucy filter

In the Gaussian case, the computations become simpler, and we obtain the famous
‘Kalman—Bucy filter’, which is very widely used in practice.

5.5.1 Motivation

Consider a satellite which moves in space according to the differential equation

dx
E(t) = f(x(@®), x(0)= xo.

Since numerical computations impose a discretization on the equations (and we do
not wish to discuss the continuous time Kalman filter), we first replace the above
ordinary differential equation by a recurrence formula for the x,, = x(nt), where t
is a time step (in other words, 1/7 is the sampling frequency). The exact formula
reads
(n+1)t
Xn4+1 = Xp + / f(x(s))ds,
n

T

which we approximate by the simplest numerical scheme, the Euler scheme, whose
precision is acceptable if 7 is small enough:

Xntl =Xp +7f(x,), n >0, xp given.

In fact this trajectory is a theoretical one; let us call it the ‘nominal’ trajectory. The
point is that the above equation is not exact, since we cannot pretend that we have
taken into account the attractions due to all celestial bodies (for some of them, the
fact that they get close to the satellite at some give time cannot be predicted, and
can be considered as random), the exact shape of the earth, etc. These arguments
justify the introduction of a random model for the evolution of the x,,:

Xpp1 = Xp +Tf(xy) +V,, n >0,  xp given,
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where the V,, are centred Gaussian vectors. In most applications, the random per-
turbations are small enough that we can approximate the difference X, = x, — x?
between x, and the nominal trajectory x° (note that this will be even more true if
the Kalman filter is used to maintain the true trajectory close to the nominal one)

by the solution of the linearized difference equation
Xn+l = Aan + Vn,

where
Ay =1+1V, f(xY).

When this approximation is not valid, more complex filtering algorithms need to
be implemented.

In order to track the satellite, radar observations are made from the earth.
But these observations need not give all components of the vector X, (note that
typically X, denotes the six-dimensional vector corresponding to the position and
speed of the satellite at time nt, while the radar might return information about
the position only), and moreover that measurement contains some error (like any
real measurement!). Moreover, depending upon the position of the satellite above
the earth, it might be observed by one or no radar sites. Those measurements can
be modelled by the observation at each time n of

Y, = H, X, + W,,

where H,, = 0 whenever the satellite is invisible to the various radar sites, and the
W, are again centred Gaussian random variables. Moreover, the initial condition
is also a random vector, which we again assume to be Gaussian.

5.5.2 Solution of the filtering problem

We assume that X,, takes its values in R?, ¥, in R¥, and that
Xy =AXy 1+, n=l,
Y,=HX,+§&, n>1,

with Xo, 01, &1, 12, &2, .- ., W, &y, ... mutually independent, the law of X being
N(Xo, Pp), the common law of the 7, being N (0, Q) and that of the &, being
N (0, R). We assume that the matrix R is invertible. Of course, we are no longer
talking about Markov chains with values in a finite or countable state space. But
we will not use the theory of Markov chains.

We give the formulae for the Kalman filter in the stationary case (A and H
are assumed independent of n) in order to simplify notation. But the extension
to the non-stationary case is both obvious and essential for the applications (see
above). This ability to treat non-stationary signals is one of the main reasons for
the success of the Kalman filter. It explains its superiority over older algorithms,
notably the Wiener filter.

Let IT,, again denote the conditional law of X,, given Y1, ..., Y,.
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Theorem 5.1 I1, equals N(X,,, Ay), where (Xn, Ay)n>o is given by the recurrence
formula

Xps1 = AKX, + Z,H*(HZ, H* + R)"' (Y41 — HAX,),
X, = AN A"+ O,

Apt1 = 5, — S, H*(HE,H* + R)'HY,,
Xo = Xo, Ao = Pp.

The theorem could be deduced from the results of the preceding section,
once we had generalized them to R?-valued Markov chains. But we will give
an independent derivation. First recall two results concerning conditioning in the
Gaussian case.

Proposition 5.2 Let (X be a Gaussian (d + k)-dimensional random vector, hav-

Y
ing the law N )—( , X X . We assume that ¥, > 0. Then the law iy =
Y o1 X
N(X, %), where
(i) X=X+ 2%, (¥ - 1),
(i) £ =21 — Z1nTy Doy,

is a regular conditional probability distribution of X, given Y, that is, for all B €
By,
P(X € B|Y) = iy(B) a.s.

Moreover 3 = cov(X — X).
Proor If X denotes the random vector defined by (i), we let
X=X-X.

It is easily seen that (Y) is a Gaussian random vector, and that

cov(X,Y) =0.

Hence X and Yare independent, while X is a function of ¥. Consequently, when-
ever ¢ € Cp(RY),

Elp(X)|Y] = Elp(X + X)|Y]

:/ o(X + x)Pg(dx)
Rd

= / @(x)fiy (dx),
R4
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where iy = N(X, £), £ = cov(X).

Finally,
cov(X) = cov(X — )A()
=cov(X — X — Zp2,' (Y — 7))
= %1 — 2312 o1 + Ty T
=X — 21222_21221-
O
X
Proposition 5.3 Let | Y | be a Gaussian (d + k + £)-dimensional random vector,
VA

such that Y and Z are independent. We denote by fiy = N(X, ¥) the conditional
law of X given Y, and ﬁY’Z = N(X, Y) the conditional law of X given (Y, Z).
Again we let X = E(X). Then

i) X=X +EX-XZ)=X + X,
(i) £ =% — cov(X).

PrROOF We may assume without loss of generality that E(Z) = 0. Denote by U/, Y
and Z the closed subvector spaces of L?(2, F, P) respectively generated by: the
constants and the coordinates of Y, Z; the constants and the coordinates of Y; apd
the coordinates of Z. Then i = Y@ Z, and Y L Z. Hence, forall 1 <i <d, f(,-,
the orthogonal projection of X; on U, is the sum of X;, the orthogonal projection
of X; on ), and E(X; — X;|Z), the orthogonal projection of X; on Z. Thus (i) is
proved.
Consequently, .
X-X=X-X+EX-X|2)

forall 1 <i,j <d,E(X; — Xi|Z) € Z C U, hence it is orthogonal in Lz(Q, Z,P)
to X; — )A(A,-. This implies that

cov(X — R) = cov(X — X) + cov(E(X — X|2)),

which, together with the last assertion of Proposition 5.5.2, implies (ii). U

Proor oF THEOREM 5.1 Since (X,,, Y1, Y», ..., Y,) is a Gaussian random vector, it
follows from Proposition 5.5.2 that T, = N (X,,, A,), where X, is an affine func-
tion of Y;, ..., Y,, and A, = cov(X, — X,,). It remains to compute ()?n+1, Apt1)
as a function of ()A(,,, Ay,). Since

Xn+l == AXn + Nn+1,
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where 7,4 is centred and independent of (X, Yy, ..., Y,), hence also of X,

A

E(Xn+l|yl7 ceey Yn) = AXn

and, moreover,

cov(X,p1 — AX,) = AN, A* + Q.

It remains to apply Proposition 5.3, in order to ‘add the conditioning by Y,,+;’. For
that purpose, we need to define the‘innovation’
In+1 = Ipt1 — IE(Yn—t-1|Ylv ceey Yn)

= In4+l1 — HAXn

- HAXn + HnrH-l + %‘Il-‘rlv
where X, = X, — X,,.

Note that (Yy,...,Y,, I,+1) is a Gaussian random vector, and that the coor-

dinates of I,,; are orthogonal in L*(Q, Z,P) to those of Yi,...,Y,. Hence,
(Yy,...,Y,) and I, are independent. Moreover, [, is centred. Since in addi-

tiono (Y1, ..., Yy, Yuyr1) =01, ..., Yy, I,4+1), we can use Proposition 5.3, which
tells us that

X1 = AXy + EXpp1 — EXppi [ L),
Apy1 = AN A* + Q — cov(X,p 1 — AX,).

The above conditional expectation can be computed with the help of Proposition
5.2. Now

E(Xy111},) = AE[X, (X, — X,)*] A*"H* + QH*
= AN, A*H* + QH*,
El, 11}, = HAN,A*"H* + HQH* + R.

Hence,

Xy11 =AX, + (AA, A"+ Q)H* [H(AN,A* + Q)H* + R]‘l (Yuy1 — HAX,),
Apt1 =AAnA* +0

~ (AN A"+ Q)H* [H(AA,A* + Q)H* + R] ™ H(AA, A" + Q),

which proves the theorem. (]
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5.6 Linear—quadratic control with partial
observation

We now consider the following problem:
Xy =AXy 1+ Buy+ fu+m,, nx=1,
Y,=HX, + Ena

where again Xy, 11, &1, 12, &2, . . . is a sequence of mutually independent Gaussian
random vectors, Xy and the 7, being d-dimensional, the &, k-dimensional, with
an invertible covariance matrix R, and u, takes values in R? and is a function of
Yy, ..., Y,—1. The aim is to minimize the criterion

N
J(u) = ]EZ[(FXan +(Quy, uy)].

n=1

We shall need the following technical result. Define the sequences
X)=AX)_ + fut e n= 1 Xg= X,
Y, = HX) +&., n=1,

and let yf’l =O'(Y], -~-9Yn), yr(l) :U(Yoa M) Yy(l))7 n Z 1’ yO :)}8 = {Qv Q}‘
Lemma 6.1 Foralln, Y, = y,?.
PrOOF Let

X, =AX, 4+ Bu,, n>1, Xj=0,
Y'Y= HX", n>L

Since (u1, ..., u,) is V,—1-measurable, the same is true with (Y{, ..., Y}). But
Y, =Y +7v" n>1
Hence (YO, R Y,?) is ),-measurable and y,? C Y,. Now since u; is deterministic
(because it is Vp-measurable), Y| is known, hence Y| = Ylo + Y| is a function of
Y, hence Yy C VY. Suppose that J, C V0. Then (uy, ..., uy41) is V°-measurable,
and the same is true for Y P hence
0
Yop1 = ntl T Ynu+1
e 10
is Y, +1—measurable. O

A consequence of Lemma 6.1 is that the sequence of sigma-algebras (}/y, ...,
V) does not depend upon the choice of the control. It is now clear that

N
J@)=EY [EY(FX, X, + (Rup, un)].

n=1
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But
Xn = Xn + Xn»

where )?,, =E(X,|Y,), and X, is independent of )),. Hence, if we let A, =

cov(X,),
N

Jw)=E> [(FXy. X)) + (Ruy, uy) + tF A, ]

n=l1
It remains to solve the problem (see Section 5.4)
Xy =(I =%, \H*(HZ, 1H*+ R)"'"H)AX,\ + Bu, + ,
+ %, H (HE, 1H*+ R)'Y,,
X() ZX().
We seek to minimize
N
Ty =B [(FXy. X)) + (Ruy, un)].
n=1

This is a ‘deterministic’ optimal control problem (since the Y,’s are observed,
hence known), whose solution is given by Theorem 5.3.2.

5.7 Exercises

Exercise 7.1 (Programming) Consider the Kalman—Bucy filtering model, with
d=k=1 A=098 Xo=1, Q=2, R=2, H, =cos(wtn/13) (or some other
periodic function to be chosen).

1. Simulate X, and Y, for 1 <n < 100.

2. Write a program which computes the Kalman estimate X, of X,, for 1 <
n < N. Graph (X,,, X,) and the estimation error.

3. Do the second step with other values of A, and possibly also of Q and R.
To what extent can the Kalman filter tolerate errors in the model?

Exercise 7.2 1. Give the Kalman filter formulae in the non-homogeneous case,
where the matrices A and H depend upon n. In other words, the model from
the beginning of Section 5.5.2 is replaced by

X, =AXp1+0,, nx>1,
Y, =H,X,+&, n>1L
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2. Now suppose that we specify, for each n > 1, Borel measurable and bounded

mappings

Vs ooy Yne) = A1 ooy yuo1) from ROTDXE jpgo REXd

(yls L] yn—l) - H(yl» cee )’n—l)from R(”—I)Xk lnlo Rkde

and we now assume that the sequences {X,} and {Y,} are related by the
formulae

XnZA(YI’---aYn—])Xn—]+77na n>1,
Yn:H(Yh-u»Ynfl)Xn'i_gnv I’l>1,

the assumptions on (Xo, 01, &1, - .., M, &n, - . .) being the same as in Section
5.2. Clearly the sequence of random vectors {(X,, Y,); n > 1} is no longer
Gaussian. Show that for eachn > 1, the conditional law of X,,, given Y1, ...,
Y, is Gaussian, and give the recurrence formulae for the mean and covari-
ance matrix of that law. This model is called ‘conditionally Gaussian’.
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The Poisson process

Introduction

In this chapter and the two following, we will study Markov processes which are
indexed by R, with values in a finite or countable set E, and which are constant
between their jumps, which happen at random times. These are called jump Markov
processes.

In this chapter, we shall introduce the ‘prototype’ of jump Markov processes,
namely the Poisson process. This process models random distributions of points on
R, which could be times of collisions of particles, times of arrivals of customers
in a queue, times of arrivals of telephone calls, etc.

6.1 Point processes and counting processes

A point process on R, can be described as an increasing sequence of random
points
O<Thi<h<---<T, <---

which are random variables defined on a probability space (2, F, IP). In addition
to the above inequalities, we assume that 7,, 1 oo, n — oo. Let

Si=T, =T -T,....5% =T, —T,—1,....

The T, are the times when events happen, and the S, are waiting times between
successive events.

We define the random counting function {N;;t > 0} of the point process
{T,; n € N} as follows:

Ny =sup{n; T, <t} = ZI{T/.S,}.

j=1

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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Thus N; is the number of events which have happened before time ¢. Note that
No =0, since T; > 0; and for all r > 0, N; < oo since T,, oo, n — oo. For
0 <s < t, N; — Ny is the number of events which have happened during the time
interval ]s, ¢]. A typical trajectory of the process {N;; t > 0} is shown in Figure 6.1.
Note that the trajectories of {N,} are right continuous.

4
3 '
1
0
T, T, T, T T,

Figure 6.1 Trajectory of a Poisson process.

The knowledge of {N,; t > 0} is equivalent to that of the sequence {7,; n € N},
and we have the identities

Ny =z n} ={T, <1},

{Nt :n} = {Tn <tr< Tn+l}’
Ny <n=<N}={s <T, <t}.

6.2 The Poisson process

Definition 2.1 We will say that the point process {T,; n € N} or its counting func-
tion {N;;t > 0} is a Poisson process if {N;;t > 0} is a process with stationary
independent increments, that is, whenever

(a) foralln > 2,0 <ty <t; <--- <ty the increments {N,, — N;_;; 1 < j <
n} are mutually independent, and

(b) for all 0 <s < t, the law of N; — Ny depends upon the pair (s, t) only
through the difference t — s.

Property (b) is called the ‘stationarity of the increments’ of {V,}.
The term ‘Poisson process’ is justified by the following proposition.
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Proposition 2.2 Let {N;;t > 0} be the counting function of a Poisson process.
There exists A > 0 such that, for all 0 < s < t, the law of N; — Ny is the Poisson
distribution with parameter A(t — s), that is,

P(N, — Ny = k) = e =90t — ) /k !, keN.

Remark 2.3 The parameter X is called the intensity of the Poisson process {N;; t >
0}. It is equal to the mean number of events which happen during a time interval of
unit length,

E[Niy1 — Nl = A.

PrOOF OF ProOPOSITION 2.2 For all 0 < s < ¢, consider the generating function of
the random variable N, — Ny, which is the mapping u — f;_(u) from [0, 1] into
itself and is defined by

frsu) =B[N =Y "P(N, = Ny = kyu*.
k>0

From property (a) of Definition 2.1,
fiw) = f) fi—sw), 0=<s<t, uel01]
It follows from this identity that
fiw) =AY

first for ¢ rational, then for all # in R4 since r — f;(u) is decreasing. Since,
moreover,

fi(u) = P(N; =0)
= P(T) > 1)
1, ast |0,
fi(u) # 0, hence there exists A(u) € R4 such that
filu) = e,

Since u — exp(—0(1 —u)) is the generating function of the Poisson distribution
with parameter 0, it just remains to show that

) = A0)(1 — u).

But clearly
1
Au) =lim—-(1 —
() zlﬁ)lt( fi(u))

1
=1lim Y -P(N, = k)(1 — u").
10 1
k>1



126 THE POISSON PROCESS
Since 0 <u <1,
1 1
0< ) PN, =k —u") < =P(N, > 2)
2 t t

and the result follows from the identity
1
Aw) =lim|-P(N, =1 | (1 —uw),
() Ilfgl[t (N )]( u)
provided we have
1
;IP’(Nt >2)—0, ast]O0. (6.1)

But

UtV = 0. Negiy =2} C{T> < Ty +1).

neN
Since P(N;, = 0) = f;(0) = exp(—A(0)7), we deduce from this inclusion and prop-
erty (a) of Definition 2.1 that

> exp(—1(O)nH)P(N, > 2) = [1 — exp(—A(O))]'P(N, > 2)
neN
<Py <Ti +1).
Ast O,
P(Ih<Th+1)— P(T, =Ty) =0,

and for all ¢ sufficiently small,
A0~ < (1 —exp(—=1(0)) ",
hence (6.1) is established. U

Remark 2.4 We can give an intuitive interpretation of the preceding result. From
the last part of the above proof,

P(Niyp — N, =0) =1—rh +o(h),
P(Ny — Ny = 1) = M + o(h),
P(Ny1 — Ny = 2) = o(h).

Then up to probabilities which are small compared with h, N(t +h) — N(t) is a
Bernoulli random variable taking the value 0 with probability 1 — Lh and the value
1 with probability Lh. This, together with the independence of the increments and
the formula

n

) s
Niys — N; = Z[Nerjh — Nit(j—pnl, withh = o
j=1
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implies that Ny, — N, is approximately a binomial random variable with parame-
ters (n, As/n). But as n — oo, that law converges towards Poisson with parameter
AS.

Note that, foralln >2,0 <t <t < ... < t,, the law of the random vector
(Ny, Ny ..., Ny,) is determined by Proposition 2.2 and condition (a) in Defini-
tion 2.1.

Corollary 2.5 The law of the time T\ of the first event is exponential with parameter
X (i.e. the law on Ry with density Ae™!). The same is true for the law of Ty,+1 — s,
which is the waiting time after s of the next event, for all s > 0.

ProorF It suffices to note that, for r > 0,
P(Ty > 1) =P(N, =0) =e M
and similarly

P(Tn,41 —s > 1) = P(Nyyy — Ny = 0) = P(N; = 0).

6.3 The Markov property
Let {N;; ¢t > 0} be a Poisson process with intensity A. For all s,¢ > 0, let
N} = Ny — N;.

It follows from Definition 2.1 that {N;; ¢ > 0} is a Poisson process with intensity
A, independent of {N,; 0 <r < s}. Note that the knowledge of {N,; 0 <r < s} is

equivalent to that of (Ny, T1, T», ..., Tn,). The above independence is equivalent
to that of the random vectors (Ny, Ty, T2, ..., Tn,) and (T, 11, Tng425 - -+ Tvg+p),
for all p.

Since the increments {N;i, — Ny;t > 0} after s are independent of the past
{N;; 0 <t <s}, clearly the future {Ny,;t > 0} after s depends upon the past
{N;; 0 <t < s} only through the present value Ny; in other words, the past and
the future are conditionally independent, given the present. This is the Markov
property, and we shall return to it in the next chapter.

We shall now generalize the above property to the case where s is a certain
type of random time. Let us first recall some notation, and state a definition.

A o-algebra of subsets of a set £ is a class of subsets of £ which is closed
under complement, countable unions and intersections. One can always speak of
the ‘smallest o -algebra containing the class C C P(£)’, since it is the intersection
of all o-algebras containing C (there exists at least one such o algebra, namely
P(E), and an arbitrary intersection of o-algebras is a o-algebra, as can be easily
checked). For example, the Borel o-algebra of subsets of R4, denoted By, is the
smallest o-algebra of subsets of RY containing all the open sets.
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In the case of a random variable with values in a countable state space E,
o(X)={X"Y(F); F C E}. Given a d-dimensional random vector X (i.e. an R%-
valued random variable), we denote by o (X) = {X~!(B); B € B;} the smallest
o-algebra of subsets of 2 which makes X measurable. This is the set of events
for which we know whether or not they are realized provided that we know the
value of X. Given an arbitrary collection {X;; i € I} (of arbitrary dimensions), we
denote by o{X;;i € I} the smallest o-algebra containing o (X;), for all i € I.

It will be convenient in this chapter to use the following notation: for any
t >0,

F'=0{NgO0ss<t)=0(N,T1. Ta..... Ty, }-
Definition 3.1 Given a Poisson process {N;;t > 0}, a stopping time (associated

with {N,}) is a random variable S taking values in R, U {400} such that, for all t
in R+,

(s<tyerFN.

For all s in Ry, S = s is a stopping time. For all n, 7,, is a stopping time. Ty, 11
is also a stopping time. But T, is not a stopping time, since whenever ¢ < s,

{Ty, <t}={Ny—N, =0} ¢ 7', 0<t<s.

With any stopping time S associated with {V,}, we associate the o -algebra of those
events which are ‘determined by the trajectory {N;,s; ¢ > O} stopped at time S’:

FYE(AeFN, An(S <t} e FN, vt = 0}.
We have the following proposition:

Proposition 3.2 Let {N,;t > 0} be a Poisson process with intensity A, and S a
stopping time associated with {N,}. On the event {S < oo} we define, for t > 0,

NS = Ngi; — Ns.

Conditionally upon {S < oo}, {Nts ;t > 0} is a Poisson process with intensity A,
independent of F év .

Proor We already know that the result holds if S is constant. Suppose next that
S takes its values in an increasing sequence (s;, j > 1) of positive real numbers.

Note that, since S is a stopping time,

(S=s;}={S <s;\{S <551} e 7.
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LetAe]—'éV,O<t1 <t <...<tgand ny,...,n; belong to N. We have

P (A N (kri]l{N,f = m))

14
=) P ({S =s;}NAN (ﬂ{stﬂk ~ Ny, = nk}))
j k=1
2
=) PAS=s;)N AP (ﬂ{zvs,m — Ny, = nk}>
7

k=1

e
=P(A)P (ﬂ{N,k = nk}) :

k=1

where we have used the property {S =s;}NA € .7-'3’ for the second equality, and
the fact that the second factor of the penultimate expression does not depend upon
s, by the stationarity of the increments of {N;}.

The result is thus established in the case of a stopping time which takes its
values in an increasing sequence. But any stopping time S can be approximated
by a decreasing sequence of stopping times of this form. Indeed, for all n, define

Sn = Z k27n1{(k,1)2—n<sfk2—n}.
keN

The above identity is true with S replaced by S,,, since
S<8,=Fy CFg.

We can now easily take the limit in the above identity, with S replaced by S,,,
since from the right continuity of the trajectories of {N;; t > 0},

4 4
P (A N (ﬂ{N,f“ - nk})> > P (A N (ﬂ{N;Z = nk}>> .
k=1 k=1

Corollary 3.3 Let {N;;t > 0} be a Poisson process with intensity A, and (T,)n>1
its jump times. Welet Sy =T, S =T, — Ty, ..., S =T, — T,—1, .... The random
variables Sy, Sa, ..., S, ... are i.i.d., their common law being exponential with the
parameter A.

ProOF We already know that the law of 71, the first jump time of a Poisson process
with intensity A, is exponential with parameter A. It follows from Proposition 3.2
with § = T, that S, 41 = T,+1 — T, is the first jump time of a Poisson process with
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intensity A, hence its law is exponential with parameter A, and is independent of
Ty, T», ..., T,, hence also of S, S,, ..., S,. The result follows from the fact that
this statement is true for all n > 1. O

In the other direction, we have the following result:

Proposition 3.4 Let {S,; n > 1} be a sequence of i.i.d. random variables, their com-
mon law being the exponential law with parameter X > 0. We define

Li=8+...+8, n=1,

Ny =sup{n; T, <t}, t=>0.
Then {N;; t > 0} is a Poisson process with intensity A.

We then have a way to ‘construct’ a Poisson process, which in particular shows
that there does exist a process satisfying the requirements of Definition 2.1! We
also have here a way to simulate a Poisson process.

6.4 Large time behaviour

Again, let {N;; t > 0} be a Poisson process with intensity A. Then
E[N;] = At, var[N;] = At.

In particular E[N,/t] = X, var[N,/t] = A/t, hence N(¢)/t — A in mean square, as
t — oo. In fact we have the ‘strong law of large numbers’:

Proposition 4.1 Let {N,;t > 0} be a Poisson process with intensity . > 0. Then
N;/t — A almost surely as t — o0.

Proor First, note that
Ny= > [Ni = Nii]
1<i<n
is the sum of n i.i.d. random variables, their common law being Poisson with
parameter A (hence, they are integrable). It then follows from the strong law of

large numbers that

Nn
— — A, a.s.,asn — o0.
n

But with [¢] denoting the integer part of t,
N, N t N, — N
Ne o N U N Nig

t [£] t t
It then suffices to show that
N, — N,

n
sup — — 0, asn — oo.
n<t<n+l n
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Let

def
g2 sup N,— N, =Ny — N,.
n<t<n+1

The {&,} are i.i.d. and integrable. Then (&; 4+ ...+ &,)/n — X\ almost surely, con-
sequently
§

22 5 0as.
n
|
We have the following ‘central limit theorem’:
Proposition 4.2 Let {N;;t > 0} be a Poisson process with intensity A. Then
N, — At Zinl .
— Zinlaw, ast — oo,
Vit
where Z is a centred Gaussian random variable with unit variance.
Proor We essentially argue as in the preceding proof:
N, — An Zinl
—— — Zinlaw, asn — oo,
vV An
from the ‘classical’ central limit theorem. And
N; — N[z] < 5[1]
JAE] T VAt
converges to 0 in probability as + — oo since
p (é,,/«/kn > s) —P (gn >¢ An)
=P (fl > e+/ An)
— 0, asn— oo.
Then also (N; — Nj;1)/+/Alt] — 0 in probability as ¢+ — oo. Finally,
N, — At Npp—Ale] [t N, — N t t]—t
: _ Nin [7] u+z 1 Q_i_ﬁ[] ’
N S Ve U Vo Vi
and we know that whenever X, — X in law, ¥,, — 0 in probability, then
X, +Y, > X in law.
(]

One could in fact establish a ‘functional central limit theorem’ which we now
briefly describe. A proof very similar to that of Proposition 4.2 shows that, for all
t >0,

N, tu — AU

Vau

— B; in law, as u — o0,
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where B, is a centred Gaussian random variable with variance ¢. Note that, for
each u > 0, {[N;, — Atul]/ St > 0} is a process with independent increments,
whose jumps are of size (Au)~!/2. It follows that one can take the above limit as
u — oo jointly for the various values of ¢, in such a way that the limit {B;; t > 0}
is a centred Gaussian process with independent increments and continuous trajec-
tories, satisfying E [Btz] =1t. {B;;t > 0} is called a Brownian motion, and will be
discussed in Chapter 9.

6.5 Exercises

Exercise 5.1 Let X be an R -valued random variable such that P(X > t) > 0, for
all t > 0. We assume, moreover, that for all s,t > 0,

PX >s5s4+1tX >1t)=P(X > s).
Conclude that the law of X is exponential with some parameter ) > Q.

Exercise 5.2 Three persons, A, B and C, get to a post office at the same time. They
each want to make a telephone call. There are two telephone booths, which are
immediately occupied by A and B. C makes her call after whoever finishes first.
They leave the post office as soon as they have completed their calls.

We denote by X, Y and Z the length of the telephone calls made by A, B and C,
respectively. These three random variables are assumed to be i.i.d., their common
law being exponential with parameter A > 0.

1. Compute the probability that C leaves last.

2. Give the probability distribution of the total time T spent by C in the post
office.

3. With O being the time of arrival of the three persons at the post office, give
the probability distribution of the time of the last departure.

(Hint: first give the probability distribution of the random vector (X ANY, X VY —
X NY), where A = inf and v = sup.)

Exercise 5.3 A machine has a lifespan t) whose law is exponential with parameter
6. As soon as it breaks down, it is instantly replaced by an identical machine with
lifespan 1o, and so on. We assume that the random variables (t,; n € N) are i.i.d.
The first machine starts running at time 0; the successive machine failure times
T, (n > 1 —in other words, Ty = 11, T» = 11 + T2, .. .) constitute a Poisson point
process.

1. Given t > 0, let D, denote the elapsed time since the machine running at
time t started to run. In which set does the random variable D, take its
values? What is the law of D,;? Show that as t — oo, this law has a limit.
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2. Let S; be such that t + S, is the failure time of the machine running at time
t. What is the law of S;? What is the law of the pair (D;, S;) and what is the
limit of that law as t — oo? Why are D, and S; not identically distributed,
and why do they tend to be identically distributed as t — 00?

3. What is the law of D; + S;, the lifespan of the machine which is running at
time t? Compare the limit of that law as t — oo with the joint law of the t,,.
Explain the apparent contradiction.

Exercise 5.4 1. Let X1, X2, ..., X, be i.i.d. random variables, whose common
law is the uniform law on [0, t], and Y1, Ya, ..., Y, be the same sequence,
but in increasing order. In other words, the Y are defined by

Y1 = inf Xi =Xi1,

I<i<n

Yz = inf X,' s
l<i<n,i#i|
and so on. Give the probability distribution of the random vector (Y1, Y2,
oL Y.

2. Let {N;;t > 0} be a Poisson process with intensity A. Show that the condi-
tional law of the random vector (T1, T», ..., T,), given that N; = n, is the
distribution which was identified in part 1.

Exercise 5.5 Let {N!; t > 0} and {N?; t > 0} be two independent Poisson pro-
cesses of intensity A1 and Ay, respectively. Show that {N} + Ntz; t > 0} is a Poisson
process with intensity Ay + A.

Exercise 5.6 Suppose that the number of individuals infected by HIV follows a
Poisson process of a given intensity . We denote by N; the number of individuals
infected at time t. We do not take deaths into account.

Each infected individual has an incubation period between the time of infection
and the time when the symptoms of AIDS appear. The length of this incubation
period is random. The incubation periods for various individuals are i.i.d., their
common law on Ry having a given distribution function G. We denote by G the
function G(t) =1 — G(1).

Let N} denote the number of individuals who have AIDS symptoms at time t,
and let Nt2 denote the number of individuals who at time t are infected by HIV but
do not yet have AIDS symptoms. Of course

N, = N} 4+ N2.

Show that, for each t > 0, N} and NI2 are independent, the probability distribution
of N/! is Poisson with parameter A fot G (s)ds, and that of N? Poisson with parame-
ter A fot G (s)ds. You can make use of the result from Exercises 5.4, which says that
conditionally upon N; = n, the infection times between O and t which are counted
by a Poisson process have the same law as an i.i.d. sequence of n uniform [0, t]
random variables.
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Exercise 5.7 (Programming) Define the failure rate of an R, -valued random
variable X with density f and distribution function F to be the function )\ : Ry —

R, defined by 0
t

1—F@)
Exercises 5.1 proves that the only probability distribution with a constant failure
rate is the exponential.

The Weibull distribution with parameters A, o > 0 is the distribution on R with
survival function

A1) =

F()y=1—F(1) = e *"

and failure rate
A1) = ar()* L

The Weibull distribution has an increasing failure rate if « > 1 and a decreasing
rate if o < 1. It reduces to the exponential distribution with parameter A when
o=1

The gamma distribution T (o, A) is the distribution on R with density

_L —\t a—1
f(t)—r(a)e ()",

where I' (0) = fooo e~ 't~ 1dt. Again the gamma distribution has an increasing fail-

ure rate if a > 1 and a decreasing rate if o < 1. Note that the sum of n ii.d.
exponential random variables with parameter A follows the T'(n, A) distribution
with an increasing failure rate.

Suppose that two machines function in parallel, and need a fragile part M.
Suppose that we have only one spare part, which immediately replaces whichever
breaks down first. The three parts M (the two in place at the beginning, plus the
spare) have i.i.d. lifetimes. The second failure is fatal for the machine that suffers
it. If the lifetimes are exponential, then Exercises 5.2 shows that the two machines
have the same probability of suffering the fatal failure.

Suppose that we replace the exponential law by a law with an increasing failure
rate. Then the machine whose part has already been replaced has a better chance
of functioning longer than its counterpart, and the reverse is true in the case of a
decreasing failure rate.

Lllustrate by a Monte Carlo computation the result from Exercises 5.2, and the
two conjectures which we have just formulated. More precisely, with P given suc-
cessively by the exponential distribution with parameter 1, the T'(3, 1) distribution
and the Weibull (1, 0.5) distribution (easy to simulate by inversion of its distribu-
tion function), simulate a matrix 3 x N of i.i.d. random variables with the law P,
denoted by X. Graph, for n from 1 to N, the three quantities

n=' > (min[X (1, k), X (2. k)] + X (3. k) — max[X (1, k). X (2, k)1}.
k=1

You can choose N = 10° or N = 10*.
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Jump Markov processes

Introduction

In this chapter, we present the theory of continuous time jump Markov processes,
with values in a finite or countable state space E. As we will see in Section 7.4,
these processes are in a sense combinations of a Poisson process and a discrete time
Markov chain (the ‘embedded chain’). Sections 7.8—7.10 are devoted to applica-
tions to phylogeny, to discretized partial differential equations, and to the annealing
algorithm. The proof of convergence of the annealed algorithm which we present
here is due to Francis Comets (private communication). Applications to queues
will be developed in the next chapter.

7.1 General facts

We wish to study continuous time Markov processes with values in a finite or count-
able state space E. We will assume that their trajectories are constant in between
jumps, and that the latter are isolated. Moreover, we will assume that the trajecto-
ries are right continuous. They will have left limits at each point. The jumps of such
a process {X;; t > 0} happen at random times Tj(w), T»(w), ..., T,(w), .... The
main difference with the Poisson process of the preceding chapter is that, given the
time of the jump and the position before the jump, the position after the jump is ran-
dom. If we denote by Z, (w) the value of {X,} just after the nth jump 7, (w), n > 1,
a typical trajectory of the process {X;; ¢ > 0} is shown in Figure 7.1. The knowl-
edge of {X,; t > 0} is equivalent to that of the double sequence {7},, Z,; n > 0}.

For certain applications, it is convenient to make certain states absorbing (for
instance, in a model describing the evolution of the size of a population with-
out immigration, 0 is an absorbing state). x € E is absorbing if X7, (w) =x =
Tht1(w) = +o00.

We will then assume that the jump times constitute an increasing sequence

0O=Ty<Th<h<..<T,<... (7.1)

Markov Processes and Applications: Algorithms, Networks, Genome and Finance ~E. Pardoux
© 2008 John Wiley & Sons, Ltd
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Z3
Z :
Z, —_—
T, T, T, T, T
Z

Figure 7.1 Trajectory of a continuous time jump Markov process.

with 7, € Ry U {400} and
T, (@) < Tyy1(w) if Ty(w) < oo. (7.2)

We assume, moreover, that there is no explosion, that is, jump times do not accu-
mulate at finite distance; in other words,

T,(w) > 400 a.s., asn — o0. (7.3)

In what follows, (7.1)—(7.3) will implicitly be assumed to hold.
An E-valued random function {X,; ¢ > 0} is called a random jump function if
it is of the form

Xi@= > Zu@l). 1 @10
{n>0; T) (w) <00}
where the random variables Z,, take their values in E.

Definition 1.1 An E-valued random jump function {X;; t > 0} is called a jump
Markov process (or a continuous time Markov chain) if, for all 0 < s < t, the con-
ditional law of the random variable X; given {X,; 0 < u < s} depends upon X;
only, that is, foralln e N, 0 <ty <t) <...<t, <S, X0, X1,...,%Xn, X,y € E,
Note that this condition makes sense only when

P(X (ty) = x¢, X(t1) = x1, ..., X(,) = x,,, X(s) =x) > 0.

In this condition we shall disregard the values n, xg, X1, ..., Xy, X for which that
inequality does not hold.
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P(X; =Y Xzo =X0,Xt1 =x1,.... X, =xp, Xy =x)=P(X, = Xy = x).

n

We shall say that the jump Markov process {X;; t > 0} is homogeneous if
the quantity P(X; = y|X, = x) depends upon s and ¢ only through the difference
r—s.

We restrict ourselves to the study of homogeneous Markov processes. For s < ¢
let us write

PX, = y|Xs; =x) = Pyy(t —5),

where, for all + > 0, P(t) is a ‘Markovian matrix’ on E x E, which is called
the transition matrix from time O to time ¢. We shall denote below by u(¢) the
probability distribution of X; on E, r > 0; n(0) is called the ‘initial law’ of the
process {X;; t > 0}.

Proposition 1.2 Let {X;; t > 0} be a jump Markov process, with initial law | and
transition matrices {P(t); t > 0}. Foralln e N, 0 <t; < ... <t,, the law of the
random vector (Xo, Xy, ..., X;,) is given, for all xo, X1, ...,x, € E, by

P(Xo = xo, th = X1, sz =X, ..., th =Xx,)
= MXOPXOXI (tl)lexz(tZ —n)--- erl—lxll (tn — th—1).

Consequently, for all t > 0,
w(t) = n(0)P(t)

in the sense that j1,(t) = erE 1y (0) Py (1), and for any positive or bounded func-
tion g : E — R,

E[g(X)|Xo = x] = (P()g)x = Y _ Pey(1)gy.
yeE

Moreover, the transition matrices { P (t); t > 0} satisfy the semigroup property (also
called the Chapmann—Kolmogorov equation)

P(s+1t)=P(s)P(t)
in the sense that, for all x,y in E,

Poy(t +5) = Y Pez(t)Py(s).

zeE

ProoF It follows from the definition of conditional probability and the Markov
property that

P(Xo = xo, le =X1,...,th = X)
=P(Xo = x0) P(X;, = x11Xo = x0)P(X;, = x2|X0 = x0, X;; = x1)
X oo X P(Xt,, = x,,|X0 = X0, X’l =X{,..., anfl — xn—l)

:onpxoxl (ll)lexz(tZ —1)- - Pxn,lx,, (ty — ta—1).
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In the case n = 1, this formula reduces to
P(Xo =x, Xi = y) = i Pry (1),
and the second result follows by summing over x € E. From the definition of P(¢),
P(X; = y[Xo = x) = Py (1),

the third result follows by multiplying by g, and summing over y € E.
Finally, the above formula in the case n = 2 gives, after division by i,

P(Xy =z, X5y =y Xo=x) = sz(s)sz(t)~

The last result follows by summing over z € E. O

We now present some examples of jump Markov processes.

Example 1.3 A Poisson processes {N; t > 0} of intensity X is an N-valued Markov
process, with transition matrix

e/ (y —x), ify>nx,
Py () = /(y if y .

0, otherwise.

Example 1.4 (The telegraph process) Given a Poisson process {N;} of intensity
A, and an E = {—1, +1}-valued random variable X, independent of {N;; t > 0},

we define
X, = Xo(=DN, t>0.

{X;; t = 0} is a Markov process with transition matrix

)\,t 2n
Pop() =P (1) =e ™ ; ((211))! '
- ()\t)2n+l
P_i1(t) = Py () =e ™ Z Qn+ D!

n>0

Example 1.5 Let {N;; t > 0} be a Poisson process with intensity A, and jump times
O0<Ti<Th<Ty<...<T,<....Alsolet{Z,; n € N} be an E-valued discrete
time Markov chain, with transition matrix { P,y; x,y € E}, independent of {N;; t >
0}. One can show (see Exercises 11.1) that

o0

X, = Z Z”I[Tan-i-][(t)v t >0,
n=0

is a jump Markov process.
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7.2 Infinitesimal generator

It follows from the semigroup property that P () is known for all # > 0 if it is
known for all small enough 7. In fact, we will see that it is completely determined
by its right derivative at t = 0 (we know that P(0) = I).

Theorem 2.1 Let {P(t); t > 0} be the semigroup of transition matrices of a jump
Markov process {X;; t > 0}. There exists a matrix {Qxy; x,y € E} (called the
infinitesimal generator of the semigroup {P(t); t > 0} or of the Markov process
{X:; t = 0}) which satisfies

Oy 20, ifx#y,
Qxxz_ Z Qxyfo

yEE\{x}

(this last inequality being strict, unless the state x is absorbing) and such that, as

hio,

ny(h):thy +0(h), lfx;éy,
Pex(h) =1+ hQxx + o(h).

Moreover, conditioned upon Xy = x, the time Ty of the first jump and the position
Z1 = X, after that jump are independent, the law of T being exponential with
parameter q, = —Qxyx, and the law of Z1 on E being given by {Qy/q<; y # x}.

Proor First, note that
{T1 >nh} C{Xo=Xp=...=Xu} C{T1 > nh} U{T, — T\ < h}.

Since P(T» — Ty <h) - 0 as h — 0, we have that as h — 0, nh — t (with
nh > t),

P(T, > t|Xg=x) =1imP(Xg=X;, = ... = X,;;| Xo = x)
= lim[ Py, (h)]".

Existence of this limit implies that
1
Z[l — Pex(h)] — g« € [0, +00],
as h — 0, and consequently
P(T; > t|Xg=x) = e %,

Hence necessarily g, < oo and g, = 0 if and only if x is absorbing. Define Q. =
—Yqx-
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The proof of existence of the limits of /™! P, (h) for x # y is done similarly:
we have

{(Th <t, Zo=x, Z; =y}

= 1. = —_ ... = . = =
pim U {Xo = Xj, Xm—typ = X, X = y}
1<m=<n
and
. l_Pxx(h)n
P(Ty <t, Zi =y|Xo = =lim—P,.,(h
(T < 1 yIXo=x) 1= P, (h) xy( )
LTI PR
= —— 1lim — , .
qx h

Hence, Qy, = lim = Py (h) exists for x # y and

Qxy
b

X

IP)(Tl <t, Z] = y|X0 =)C) — (1 _e_[bcl)

whence
P(Ty <1, Z1 = y|Xo =x) =P(T1 <1|Xo = x)P(Z; = y|Xo = x)

and

P(Z) = y|Xo =x) = Oy

X

O

In the case where E is a finite set, we immediately deduce from the theorem
the following corollary.

Corollary 2.2 (i){P(¢); t > 0} is the unique solution of Kolmogorov’s backward
equation
dP
E(I) =QP(), t>0, P0O)=1I.

Moreover, u(t, x) := E[g(X;)|Xo = x] also solves a Kolmogorov backward
equation

9
B—L;(t,x) =Y Quul.y). 1>0 xeL.

yeE

u0,x)=gx), x¢€eE.

(ii) {P(t); t > 0} is also the unique solution of the forward Kolmogorov equation

% = P(1)Q,t>0, PO =I.
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Moreover, the family of marginal probability distributions {u(t); t > 0} of
the random variables {X,; t > 0} satisfies the Fokker—Planck equation

Oy (1)
ot

= Z,Ly(t)ny, t>0,xekE.

yeE

Proor The Kolmogorov backward equation follows by differentiating Py, (1),
exploiting the semigroup property in the form

P(t+h) = P(h)P(1).

The equation for u then follows from the equation just obtained by multiplying it
on the right by the column vector {g,}.
The forward equation is obtained by differentiating, starting with the identity

P(t +h) = P(t)P(h).

The Fokker—Planck equation then follows by multiplying on the left by the row
vector {(0)}. O

Remark 2.3 Let us explain the terms ‘forward equation’ and ‘backward equation’.
The backward equation is an equation for the function (t, x) — Py, (t), wherey € E
is fixed. The variables are t and the ‘backward’ variable x: x is the position at
the initial time — the position in the past. In contrast, the forward equation is an
equation for the function (t,y) — Py, (t), with x € E fixed. The variable y denotes
the position of the process at time t — the position at the present time.

Consider now the backward equation for the quantity u(t, x) = E[g(X,)|Xo =
x]. Fix T > 0 and define, for 0 <t < T, v(t,x) =u(T —t,x) = E[g(X)|X; =
x]. v satisfies the equation

v
5,60 +Y Qqu(t.y)=0, t>0,x€eE,

yeE

v(T,x)=g(x), x¢€eE.

The equation for v is a backward equation in the sense that it is solved in the
backward direction of time, fromt = T to t = 0. Note that in the non-homogeneous
case, where the infinitesimal generator Q depends upon t, the quantity v(t, x) =
Elg(X7)|X; = x] solves that same equation, while we no longer have an equation
for u.

The proof of the corollary is not rigorous in the case where E is countable,
since it implies interchanging a derivation and an infinite sum. The backward
Kolmogorov equation will be established in the general case in the next section.
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7.3 The strong Markov property

The notion of a stopping time S and the associated o-field F § are defined as in
Section 6.3, replacing {N;; t > 0} by {X;; ¢t > 0}.

Theorem 3.1 Let S be a stopping time of the jump Markov process {X;; t > 0}.
Conditionally upon {S < oo} and {Xs = x}, {Xs4:; t > 0} is independent of FY,
and its law is that of {X;; t > 0} given that Xy = x.

Proor It suffices to prove the theorem in the case of a constant stopping time
S = 5. The general case then follows as for the Poisson process (see the proof of
Proposition 3.2 of Chaptet 6). Let 0<s;<smx <...<sp<s; 0<1t <
thy < ...<tgyX,Xly...y Xz, V1,..., Y €S. We have

]P(Xs-i—tl =Vl eens X.H—I@ = yélel =-x17"'7XSk =X, Xy = X)

_ P(Xsl = X1, '-'7XSk = Xk, XS =X, X:—Hl = Vi, "'»Xs+tg = ye)
]P)(X.H =x17"'5XSk =xkaXS =x)

= Ly (tl)Py|y2(t2 —1)- - Py(_]y( (te —te—1)

:P(Xll =i, -~-9th = yi'XO ZX).

We now establish the backward Kolmogorov equation in the general case.

Theorem 3.2 For all x,y € E, the function t — Py, (t) is differentiable and

d
pry(t) = (QP)xy(t)-

PrOOF Define for all n € N the conditional law of (Z,,T,), given that
XO = Z() = X:

R,(x;y,B)=P(Z,=y,T, € B|Zy =x), B Borel subset of R.

Note that
1, ifx=y, 0B,

Ro(x; vy, B) =
olx:y. B) {0, otherwise.

and it follows from Theorem 2.1 that

Qxy/ e Wdt, if x # y;
B
0, if x = y.

Ri(x;y, B) =

The strong Markov property at time 7,, implies that

IP)(Zm+n =2z, Tiyyn € B|]:])"fn) = Rn(XTm; z, B —Ty),
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where we have used the notation
B—t={seRy; s+t e B}
Hence,
P(Zpin =2, Tntn € BlXo = x) = E[Ry(Zy; 2, B — T)|Xo = x]
= Z/ R (x: y; dD) Ry (y; 2, B —1).
yek YR+
In other words,
Ryin(x; 2, B) = Z// R (x: y, dO)Ry (y; 2, du — 1),
yeE Y B Ry

hence also
R (5 2. du) = Z/ R (x: y, di) Ry (y: 2, du — 1),
0
y
where the measure R, (y; z, du — t) is defined by

/ Rn(y;z,du—t)f(u)=/ Ry(y: 2. dit) (1 + 1),
Ry Ry

Clearly the {R,; n > 1} are completely determined by R; and this equation.
Note that

Poy(s) =D P(Zy=y.Ty <5 < Typ1lZo = x)

m=>0

=Y P(Zny=y.Tn <5 Tys1 — T > 5 — Tyl Zo = x)

m=>0

> CEIP(Tuis — T > s — Tl Zs Tw)iz,=y.1, <) Zo = x]

m=>0

— ZE[e—qzm (S_Tm)l{z,,,:y,Tmfs}IZO = x]

m=>0

N
= 2/ e WETOR, (x; y, di),
0

m=>0

143

where we have used the strong Markov property at time 7, for the third equality.

Hence, from the above equation,

Pry(s) = Sy ™ + Z/ e DETIR, (x1 y, di)
0

m>1

s 1
= 8yye 9 + Z f e ye=D / Ri(x;z,du)R,,(z; y,dt —u)
0 0

m=>0,zeE
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or, equivalently,

!
P, (t) = 8”87""[ + 2/ Ri(x;z,ds) P, (t — )
0

zeE
t
eqxthy(t) =8y + / edx’ Z Oy Py (s)ds.
0
ZF#X
Hence the function t — Py, (¢) is differentiable and

d
TP () =3 Qe Pry(t) = g Py (1)
ZF#X

= Z szsz(t)-

The above argument shows that

PZi=y,.TheB,Z,=2,To—T) € C|Zy = x)

=/ fR1<x,y,dr>R1<y,z,du).
B C

This formula generalizes to the law of ((Z1, T1), ..., (Z,, T;)). One can deduce
the Markov property of the corresponding process {X,; ¢t > 0} from that joint law.

Remark 3.3 If we allow an arbitrary generator Q, one can always define Ry, and
hence the law of the (Z,, T,)). But the sequence {T,} does not necessarily satisfy the
non-explosion condition (7.3), that is, the corresponding process {X,} need not be
defined for all t > 0. In the next section we shall give sufficient conditions on Q for
the non-explosion condition to hold.

7.4 Embedded Markov chain

Let {X;; t > 0} be a jump Markov process, whose jump times 71, 15, ..., T, ...
satisfy the non-explosion condition (7.3). The sequence {Z,; n € N} defined by

Z, = X7, (with Ty = 0)

is a discrete time Markov chain (this is a consequence of the strong Markov property
of {X,}), called the ‘embedded chain’, which has the property that Z, | # Z,
almost surely, for all n > 0. Its transition matrix P is easily computed in terms of
the infinitesimal generator Q of {X,}:

P — (_Qxx)_leya if y # x,
w 0, if y=ux.
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Define, for n > 1,
Sy = qz,_4 (T, = T,—1) (where g, = —Qyy)

and, for t > 0,
sup{ ZSk < t}

Then {N;; t > 0} is a Poisson process W1th intensity 1 (this follows from the
strong Markov property of {X;}, and the fact that if U =~ exponential (i), then
AU =~ exponential (1)).

Now let Q be an infinitesimal generator, that is, a matrix indexed by E x E,
such that, for all x € E,

QxyZO’ y # X,
Qxx = _ZQX_V < 0.

y#ExX
We let g, = —Q.y, and we define the transition matrix P by
Qv 5
o (74
0, ify = x,

with the convention that if Q. =0, Py, =0 for all y # x, P,, = 1. With any
initial condition x € E we associate the Markov chain {Z,;; n > 0}, with transition
matrix P. Now let {N;; t > 0} be a Poisson process with intensity 1, independent
of the chain {Z,; n € N}. Denote by 0 =Ty < T} < T < ... the times of the
jumps of the Poisson process, and define, for n > 1,

Tn - Tn—l

q(Z,—1) '

Tn/=S1+...+Sn.

n =

If the non-explosion condition (7.3) is satisfied by the sequence {7}, then
X=Y " Zdyy, o0, 120, (7.5)
n>0

is a jump Markov process with the infinitesimal generator Q.

It remains to answer the question: given an infinitesimal generator O, when does
the associated sequence of stopping times {7,,; n > 0} satisfy the non-explosion
condition, that is, when does (7.5) define X, for all r > 0? Let us establish the
following proposition.

Proposition 4.1 The non-explosion condition (7.3) is satisfied if and only if

qunl = 400 as. (7.6)

n>0

Let us first state a corollary.
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Corollary 4.2 A sufficient condition for the infinitesimal generator Q to be the
infinitesimal generator of a Markov process which satisfies condition (7.3) is that
one of the two following conditions holds:

1. Sup,cp gx < 0.
2. The Markov chain {Z,} with transition matrix P defined by (7.4) is recurrent.

It is clear that each of the two conditions in this corollary implies (7.6). Propo-

sition 4.1 follows from the following lemma if we let
1
Ay=Tw1—T,, By=-—, nx=0.
qz,

Lemma 4.3 Let {A,; n> 1} and {B,; n > 1} be two mutually independent
sequences of R’ -valued random variables, the sequence {A,} being i.i.d., and the
common law being the exponential distribution with parameter 1. Then the following
two statements are equivalent:

1. Y >, AyB, = +00 a.s.
2.3 | By =400 as.

Proor Since the two sequences are mutually independent, the lemma will follow
from the fact that, for any sequence {b,; n > 1} of strictly positive real numbers,

o0 o0
Z Aub, = +00 a.s. an = 4o00. (7.7)

n=1 n=1

If Y, b, <oo, then EY  A,b, =), b, <o0o and a fortiori ), A,b, < 00
almost surely. It remains to prove that if ) b, = 400, then

n
A, = ZAkbk — 400 a.s., asn — Q.
k=1

In the case where there is a subsequence n; such that b,,j — o0, clearly >, A,b,
>3 j A,,jb,,j = 400, since, the A,,j being i.i.d. exponential random variables,
infinitely many of them are greater than 1. It thus remains to consider the case
where 0 < b, < C and Zn b, = +o00. In this case, for all M > 0, if n is big
enough such that EA, > 2M, then

EA
P(An = M) < P(IAn —EAl = 2")

- var(A,) _ b}
~ (EA,)? - bi)?
4C

-0

>\ br ’

=
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hence A, — +o0o in probability, and also almost surely since the sequence is
monotone. ]

Remark 4.4 In the next chapter, we shall specify jump Markov processes by
describing their infinitesimal generator Q. The reader can check that in each of
the examples considered, one (usually the first) of the two sufficient conditions of
Corollary 4.2 is satisfied.

7.5 Recurrent and transient states

In what follows, as in the discrete time case, we shall denote by P, the conditional
law of {X,; r > 0} given that X; = x. The equivalence classes of the jump Markov
process {X;;t > 0} are those of the embedded chain. Note that if {X;;7 > 0} is
irreducible,

P.(@) >0, Vx,yeE,t>0. (7.8)

Indeed, for all x, y € E, there exist n > 1 and xo = x, X1, ..., X,—1, X, = y such
that Qy, ,x, > 0, 1 <k <n, and it follows from the property of the exponential
law that Py, (1) > Py, (t/n) x --- X P, (t/n) > 0.

A state x € E 1is called recurrent (transient) for {X;;¢ > 0} if it is recurrent
(transient) for the embedded chain. Then, in particular in the irreducible case,
either all states are recurrent or all are transient.

As in the case of discrete time Markov chains, we have the following theorem.

Theorem 5.1 Let {X;;t > 0} be an irreducible and recurrent jump Markov process.
Then there exists a strictly positive invariant measure © on E which solves the
equation T Q = 0 and is unique up to a multiplicative constant. Moreover, such a
measure is invariant for the semigroup {P(t)} in the sense that = P(t) = m, for all
t>0.

ProOOF We note that if Q is the infinitesimal generator of the jump Markov process
{X,} and P is the transition matrix of its embedded chain, then

Q0=q(P -1,
where q is the diagonal matrix defined by
Qy =6xyqx, X,y € E.

Note that the assumption that the process is irreducible implies that g, > 0, for
all x € E. Hence, we can multiply by q~!. Our assumption is that the embedded
chain is irreducible and recurrent. Hence, the measure y* defined in the proof of
Theorem 5.3 of Chapter 2 is strictly positive, and it is the unique solution (up to
a multiplicative constant) of the equation y* P = y*. Hence, the strictly positive
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measure ¥ = q 'y~ satisfies u*Q = 0, and any other solution y’ of the same
equation is such that qu’ is P-invariant, hence there exists a constant ¢ such that
u' = cp*. It remains to check that u* is invariant by P(¢), for all # > 0.

Since yy is the expectation of the number of visits to state y by the embedded
chain during an excursion starting at x, g, ! is the expectation of the time spent at
state y by the process {X,} at each of the visits to y of the embedded chain, and
the embedded chain is independent of the times spent at each state by the jump
Markov process,

Yy Ry
Wi = = E, /O 1x,—)ds
y

o0
= ]Ex / l{xs:)'~S<Rx}dS’
0

where R, = inf{r > T;; X, = x} denotes the time of the first return to x. But if
t > 0, by the strong Markov property,

t Ry+t
Ex/ l{xj:y}ds = Ex/ l{xszy}ds.
0 Ry

Hence,

)
=f Py(Xi4s =y, < Ry)ds
0
o0
:f Z]PX(X‘Y =27,5§ < Rx)sz(t)ds
0

=Y WP, ).

7.6 The irreducible recurrent case

In order to distinguish between the positive and null recurrent cases (this is an
open question only if |E| = +00), it is not sufficient to consider the property
of the embedded chain, as we shall now see. As in the previous section, define
R, = inf{t > T; X, = x} again as the time of the first return to state x.

Definition 6.1 The state x is said to be positive recurrent if it is recurrent and
E;(R,) < oo, and null recurrent if it is recurrent and E,(R,) = +o00.
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Again in the irreducible recurrent case, states are either all null recurrent or all
positive recurrent, and we say accordingly that the process {X,} is null recurrent
or positive recurrent. We now prove that the positive recurrent case is equivalent
to the existence of a unique invariant probability distribution.

Theorem 6.2 Let {X;; t > 0} be an irreducible jump Markov process. A state
x € E is positive recurrent if and only if all states are positive recurrent, if and
only if there exists a unique invariant probability distribution 7, and in that case

ER, = ! , Yx€eE.
TTxqx
ProoF If state x is positive recurrent for {X,}, then x is recurrent for the embedded
chain {Z,; n > 0}. Denote by y;f the mean number of visits to state y during an
excursion of {Z,} starting at x. Since the time spent at y by {X,} at each visit of
{Z,} is independent of the embedded chain and has expectation g h

E.Ry =) y—;.

yeE qy

But we saw in the proof of Theorem 5.1 that the measure p* defined by
vy

Wy = —

qy

satisfies u* Q = 0. The condition that x is positive recurrent therefore implies the
existence of an invariant measure with finite mass, hence of an invariant probability
distribution, whose uniqueness follows from Theorem 5.1. Suppose now that there
exists a probability distribution 7 which solves w Q = 0. Then the measure qzm is
P-invariant, and, for all x, y € E,

qyTy
gxTTx

is the mean number of visits to state y during an excursion of {Z,} starting at x.
Hence

bid
ExRX:Z * <00, Vxe€kE,

T
O

and any state x € E is positive recurrent. (]

Remark 6.3 An invariant measure w of the jump Marov process {X,} is a solution
of 1 Q = 0. An invariant measure |u of the embedded chain is a solution of w(P —
I) = 0. Hence, m is invariant for {X,;} if and only if u = wq is invariant for the
embedded chain. It is then easy to choose q (which specifies the expectations of
the lengths of the visits of {X;} to the various states) in such a way that & has a
finite mass while w has infinite mass (hence {X,} is positive recurrent while the
embedded chain is null recurrent), or vice versa. See part 8 of Exercises 11.8 and
the explanations at the end of the solution.
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We now restrict ourselves to the positive recurrent case, establishing an ergodic
theorem and convergence of transition probabilities towards the invariant probabil-

1ty.
Theorem 6.4 Let {X;;t > 0} be an E-valued irreducible, positive recurrent jump

Markov process. Let Q be its infinitesimal generator, and w the unique invariant
probability distribution. Then if f : E — R is bounded,

} fo ' Fxds > > fom,

xeE

almost surely as t — o0.

Proor It suffices to consider the case f(y) = 1;,—) and to work under P, (see the
proof of Theorem 5.7 of Chapter 2). As in the discrete time case, the successive
excursions starting at x are i.i.d. Let N*(¢) denote the number of visits to state
x between time 0 and time #, and let 7;' denote the time spent at state x by the
process {X,} during its kth visit. Since the N*(¢)th visit to state x need not be
terminated at time 7, we have

1 1 1Y

X X
7 > T <;/0 Lix=nds = - ;Tk‘
But clearly T]f,x(t)/t — 0 almost surely as t — oo, and

N* (1)

1 N*(t 1
D DI
t t N*(1) pa

1 1

X
Ex Rx qx

= TTy.

Indeed, since the sequence {7}'; k > 1} isi.i.d., and since from recurrence N*(¢) —
oo almost surely as ¢ — oo,

1 N*(1) 1
— T — E(T") = —,
N*(1) ; co BRI =0

and the proof of the fact that

e~ BB

follows the same argument as in the proof of Theorem 5.7 of Chapter 2. (]
In the continuous time case, the convergence of the probability distribution of

X, towards the invariant distribution as t — o0 holds in the irreducible and positive
recurrent case, without further restriction.



JUMP MARKOV PROCESSES 151

Theorem 6.5 Let {X;;t > 0} be an E-valued irreducible, positive recurrent jump
Markov process, and 7 its unique invariant probability distribution solving the sta-
tionary Fokker—Planck equation & Q = 0. Then, for any probability distribution 1
on Eand x € E, (WP)(t) = m, ast — o0.

PrOOF One could imitate the proof of Theorem 6.4 of Chapter 2, but instead we
shall use that result.

If we sample the process {X;} by letting ¥, = X, n =0, 1,..., where h > 0
is arbitrary, then clearly {Y,; n € N} is an irreducible and aperiodic (see (7.8))
Markov chain, whose unique invariant probability distribution, which does not
depend upon £, is w. Let us assume the following lemma, which we will establish
once the proof of the present theorem is complete.

Lemma 6.6 Forallt,h >0, x,y € E,
|Poy(t +h) — Poy(t)] < 1 — e xR,

Fix ¢ > 0 and x, y € E. We first choose & > 0 sufficiently small, in such a
way that
l—e ™ <g/2, if0<s=<h.

Then we choose N large enough such that
|Pyy(nh) —my| <e/2, ifn>N.
We conclude that if # > Nh, denoting by n the integer such thatnh <t < (n + 1)h,
| Pey(t) — y| < [Pry(t) = Pyy(nh)| + | Pyy(nh) — mp| < €.

The theorem follows easily from this result, if we decompose the set of start-
ing points into a finite set which supports the mass of p except for §, and its
complement. ]

Proor oF LEMMA 6.6 It suffices to note that

|ny(t +h) - ny(t)| = |Zsz(h)sz(t) - ny(t)|

=Y Pe(h)Py(t) = (1 = Pyy(h)) Py (1)
ZF#X

=Y P (Poy(t) — Pry (1))
ZF#X

<Y Pu(h)
Z#X
=1- Pxx(h)
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Remark 6.7 The convergence in Theorem 6.5 is in the sense of weak conver-
gence of probability distributions on E. This follows from the fact that, as t —
00, (WP)x(t) — 7y for all x € E, hence also for any finite subset F C E, Y . _p
(WP)(t) = Y cp 7x. Since, moreover, WP (1) and 7 are probability distributions
on E, it is not hard to show that, for any bounded f : E — R,

Y WP fE) = Y mfx), ast— oo

Note that if we choose the invariant probability distribution 7 as the law of
Xo, then the process {X,;t > 0} is stationary in the sense that, for all n € N,
0<1t <t <... <ty thelaw of the random vector (X;, 45, Xr,+s, - . . » Xy, +5) doO€S
not depend upon s > 0.

Remark 6.8 For all x € E, the equation w Q = 0 reads

Znyny =Ty Z Qxy~

y#X YFX

The left-hand side of this equality is the mean flux entering state x at equilibrium,
coming from the various other states, and the right-hand side is the mean flux leav-
ing x at equilibrium, towards the other states. The equation w Q = 0 says that at
equilibrium the mean numbers of departures and arrivals per unit time are equal.

We also have a generalization of the central limit theorem. The next result is a
special case of Theorem 2.1 in [5].

Theorem 6.9 Suppose that the jump Markov process {X;;t > 0} is irreducible,
and that it has an invariant probability distribution 7. Let f € L*>(E, ) be of the

type f = Qg, where g € L*(E, 1) (this implies that (nf) = Y .y Tx fx = > vyeE
7 Qxy8y = 0). Let

C(f)i==2) fegeme,

xeE

which we suppose not to be equal to zero (consequently, C(f) > 0). Then

tC(f / f(Xy)ds — Z

in law, as t — 00, where Z is a centred Gaussian random variable with unit vari-
ance.

Finally, we have the convergence of

{ uC(f/ f(Xs)ds, t>0}

towards a Brownian motion {B;; t > 0}, as u — oo.



JUMP MARKOV PROCESSES 153

7.7 Reversibility

Given a jump Markov process {X;; t >0} and T > 0, {Xf =Xr;, 0<t<T}
is also a Markov process. If the law of X is an invariant probability distribution
7, then X7 is time-homogeneous. Denote by ( its infinitesimal generator.

Theorem 7.1 O = Q if and only if the detailed balance equation

nxQxyznyny, Vx,y € E,

is satisfied. In this case, we say that the process {X,} is reversible (with respect to
the probability distribution 7, which then is invariant).

Proor The same argument as in the discrete time case implies that, for all # > 0,
x,yeE,
N Ty
ny(t) = _Pyx(t)a
Ty

from which it follows, by taking the ¢-derivative at + = 0, that

A

7'[},
Qxy = ny-
Ty

The result is now obvious. O

Remark 7.2 As in the case of discrete time Markov chains, a jump Markov pro-
cess which is irreducible and positive recurrent need not be reversible. Again, a
counter-example is provided by a Q-matrix such that, for a given pair x # v,
Oy = 0% Q,y, which does not contradict irreducibility if |E| > 3.

Remark 7.3 As in the case of discrete time Markov chains, to find a generator Q
such that a given distribution 1 is Q-invariant is not difficult. The easiest approach
is to look for Q such that the associated process is reversible with respect to m,
hence to look for an infinitesimal generator Q such that the quantity 7, Qyy is
symmetric in x and y.

To find the invariant probability distribution, given an irreducible generator, is
in general more difficult. One can try to solve

7TxQ)cy=7Tyny: Vx,y € E,

but this equation has a solution only in the reversible case. In the non-reversible
case, one should solve the stationary Fokker—Planck equation m Q = 0. If one
can guess 7 up to a multiplicative constant, then one can take advantage of the
following result.

Theorem 7.4 Given a probability distribution w on E, define, for x,y € E,

N T

y
Qxy = ny-
x

T
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IJC A
Z Qx_\' = Z Qxya

Y#X Y#X

then 7 is an invariant probability distribution and Q is the generator of the time-
reversed process.

Proor Using the first and then the second identity from the statement, we deduce

that

Znyny = Ty Z Qxy = Tlx Z Qxy = Ty Qxx’

yF#X y#x y#x
which implies that 7 Q = 0. The second part of the statement is then a consequence
of the formula which appears in the proof of Theorem 7.1. O

Note that if we can guess the generator of the time-reversed process, we can
deduce the invariant probability distribution up to the normalization constant.

7.8 Markov models of evolution and phylogeny

This section is devoted to the presentation of probabilistic models of molecular
evolution, and maximum likelihood and Bayesian methods for the construction
of phylogenetic trees. In this section only, we depart from our usual practice of
listing works cited at the back of the book. Instead we give the names of the
author(s) followed by a date, and direct the reader to the excellent bibliographies
in Felsenstein [20] and Yang [38]. Note that Felsenstein (F84) does not correspond
to a paper; see the details on page 220 of [20]. We also refer to those two books
for further reading on the topics of this section.

We shall define Markov processes on trees, which is a model frequently used in
phylogeny. We shall consider rooted and unrooted binary trees. Figure 7.2 shows
a rooted binary tree (the root is at the top and the leaves are at the bottom) and
Figure 7.3 an unrooted binary tree.

Figure 7.2 Rooted binary tree.
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Figure 7.3 The unrooted version of the tree in Figure 7.2.

The Markov process on a rooted binary tree starts at the root (which plays
the role of the initial time 0) in a certain state, say x. It evolves up to the first
node which is located at distance r from the root, as a continuous time jump
Markov process during a time interval of length r. Denote by y the state of
the process at that node. On each branch which starts from that node a jump
Markov process runs, starting at y, in such a way that the processes on the two
branches are independent, up to the next node, and so on down to the leaves of
the tree. Note that we shall only consider irreducible processes with values in a
finite state space, hence the process will be positive recurrent, and we shall choose
the invariant probability distribution as the law at the root. We can then, without
changing the law of the process, suppress the branch between the root and the first
node.

Turning to the Markov process on an unrooted tree, let us suppress the branch
between the root and the first node. This means that the process starts at the
root (located at the first node) under the invariant probability distribution, and
evolves independently on the two branches, until it encounters the next node, etc.
Consider Figure 7.3. The root is no longer indicated on the central branch. One
can still imagine that it is there, and consider that two processes start at that
point, one in each direction, towards the two nodes located at the two ends of
the central branch. Suppose now that we move the root on the central branch
either to the right or to the left. It is easy to convince oneself that the law of the
resulting process on the tree is not modified, provided the process is reversible.
Indeed, the difference between the two constructions with the root at two dif-
ferent points on the central branch is that a portion of that branch is run in
the two different directions by the two versions of the process. In the reversible
case, the root can equivalently be located at either end of the central branch, or
even at any node of the tree, or at any point of any branch of the tree. This
means that one can define a jump Markov process on an unrooted tree, provided
the dynamics is time-reversible, by locating the starting point anywhere on the
tree.



156 JUMP MARKOV PROCESSES
7.8.1 Models of evolution

In order to compute the likelihood of a given tree as a function of the data, we
need to choose a model of evolution which tells us how the data have been ‘manu-
factured’ by evolution along the branches of the tree, for each DNA site. We shall
describe several Markovian models of DNA evolution, by describing the transition
rate from one nucleotide to another. This means that we shall prescribe the matrix
Q in the form

A CG T

Q
Il
HQa»

The Jukes and Cantor (1969) model This is the simplest one, which assumes
that all mutations happen at the same rate, that is, for a given o > 0,

—3a o o o

_ o —3a o o

Q= o a —3a «
o o o —3a

The associated invariant probability distribution is uniform over the four nucleo-
tides. The transition probabilities are easy to compute: P(¢) is given by

0.25 4+ 0.75¢%"  0.25 — 0.25¢%" (.25 — 0.25¢%" (.25 — 0.25¢ %
0.25 — 0.25¢~%  0.25+0.75¢~%  0.25 — 0.25¢~% (.25 — 0.25¢ %
0.25 — 0.25¢~%  0.25 — 0.25¢7%"  0.2540.75¢~%  (0.25 — 0.25¢ 4
0.25 — 0.25¢~%  0.25 — 0.25¢~%"  0.25 — 0.25¢~%" (.25 + 0.75¢ 4

The Kimura (1980, 1981) models Among the four nucleotides, cytosine and
thymine are pyrimidines, while adenine and guanine are purines. It is reasonable
to assume that transitions (replacement of one purine by the other, or of one
pyrimidine by the other) are more frequent than transversions (replacement of a
purine by a pyrimidine or vice versa). One is then led to assume that the substitution
rates between A and G or between C and T are greater than all others, hence the
model (with 8 > &)

—2a — B o B o

_ o —2a — o B

Q= B a —2a — B a
o B o —2a —p

The invariant probability distribution is again uniform. The transition probabilities
are given by

P (1) =025+ 0.25674:3[ + 0'5672(014»,5)1’
Py (1) = 0.25 + 0.25¢ 4" — 05072 TP



JUMP MARKOV PROCESSES 157
if x # y are either both purines or both pyrimidines, or
Py (1) = 0.5 — 0.5¢ 4

in the other case.
Kimura proposed a second model, of the form

—a—B—-y o B Y
0= o —a—p -y Y B
B 14 —a—B—y o ’
14 B o —a—B—y

for which the invariant probability distribution is still uniform.

The Felsenstein (F84) model Given a probability distribution 7 on
E ={A,C, G, T}, and a positive number u, Felsenstein proposed the model

u(ms — 1) ume UG UTT

. UTTA M(JTC — 1) UumG uimr

Q - UTTA Uumc M(]TG — 1) Umr
UTTA UTC UG u(mr —1)

Clearly, for x # vy,
nxQxy = n)’ny:

hence m is the invariant probability distribution and the chain is reversible. The
matrix Q has two eigenvalues: —u, whose associated eigenspace is composed of
those vectors which are orthogonal to 77 in R*; and 0, whose associated eigenspace
is composed of those vectors which are collinear to (1, 1, 1, 1). One can then show
that

Py (1) = (etQ)xy

In the special case where m = (1/4,1/4,1/4,1/4), this model reduces to the
Jukes—Cantor model.

=e 8y + (1 —e ",y

The Hasegawa, Kishino and Yano (1985) model This is a generalization of
both the first Kimura model and Felsenstein’s. Given again an arbitrary probability
distribution 7 on E, and u, v two positive numbers, let

—UTG — VMM 1% 1} UumG vITT
_ VITA —UTTT — V] VTG Umr
Q= UTTA VITC —UTTA — VT2 VT ’
UTTA umc VTG —UITCc — VT

where 7y = wa + g, My = mc + wr. Again 7 is the invariant probability distri-
bution, and again it is possible to deduce an explicit expression for P ().

There are good reasons to assume that 7¢ = g and wp = 7, since DNA is a
molecule with two strands, made of pairs C : G and A : T. The above identities are
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a consequence of the effect of this constraint on evolution. With this restriction,
the HKY model becomes a three-parameter model, namely u, v and 6 = ¢ + ng,
as proposed by Tamura (1992). It takes the form

—uf —v vl ub v(l —6)
v -6 —u(l—-60)—v vl u(l —0)
0=3 u(l —6) v6 —u(1—0)—v v(l—6)
v(l —0) ub vl —uf —v

The general reversible model Since |E| is very small, one can try to use the
most general model. It is easy to parameterize the most general reversible model

in the form
—uW uAnc uBng uCmy

0= uDmy —uX uEng uFnrp
" | uGrpn uHnc —uY ulnt |’
uJnpn uKnc ulLnmg —uZ

where u is a positive number, 7 the invariant probability distribution,

W = Anc + Brg + Crnr
X = Dnp+ Eng + Frp
Y =Gnra+ Hrg + Iny
Z =Jnpn+ Knc + Lng,

and the parameters A, B, ..., L are to be chosen. As we shall see below, it is useful
for the computation of the likelihood that the model be reversible. The constraint
of reversibility imposes six relations, namely

A=D, B=G, C=J,E=H, F=K,I=1L.

There remain six parameters to choose, for example A, B, C, E, F and I. There are,
moreover, three free parameters describing the invariant probability distribution.
Thus, nine parameters need to be chosen.

Codon models A codon is a triplet of nucleotides which codes for an amino acid.
Among the 4° = 64 possible codons, three are possible stop codons, while the 61
others code for the 20 amino acids. Note that the genetic code (the translation
rule from codons to amino acids) is degenerate, in the sense that several distinct
codons code for the same amino acid. Hence, among the possible codon mutations,
one must distinguish the synonymous mutations (which transform one codon into
another which codes for the same amino acid) from the non-synonymous muta-
tions. The latter are either slowed down or favoured by selection, while the former
accumulate at the rate of the mutations. In general, the ratio of synonymous to
non-synonymous mutations is greater than 1.
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Goldman and Yang (1994) proposed a model with 63 parameters, namely 60
for the frequencies m,,,, the remaining three being for the transition rate «, the
transversion rate 8, and the ratio of synonymous to non-synonymous mutations .
The GY model can be written

0, if 1 and 2 differ by more than one base,
QT xyyy205 for a synonymous transition,
O 1y121)(0v222) = § BMxyyazys  fOr a synonymous transversion,

WATyyy,7,, 1O @ nON-synonymous transition,

®PTxyy,2,, fOr a non-synonymous transversion.

Note that among the 63 parameters to be estimated, the 60 which determine the
invariant probability distribution 7 are usually estimated not by a maximum likeli-
hood procedure, but from the empirical frequencies of the various codons present
in our data. Another possibility is to estimate m,,, by the product JT)}T[‘%]TS of the
frequencies of the various nucleotides at positions 1, 2 and 3 of the codons.

Non-homogeneous models An implicit assumption in all the Markovian models
we have considered so far is their stationarity. The infinitesimal generator is the
same on all the branches of the phylogenetic tree. Hence, the invariant probability
distribution is the same on the various branches, which implies that the various
sequences must have roughly the same composition in bases. Some data contradict
this assumption. One can then relax the homogeneity assumption of the Markov
process on the whole tree. For example, Galtier and Gouy (1998) adopt the Tamura
model, with parameters o and § which are constant on the tree, and a parameter
6 (which regulates the proportion of G + C) which is allowed to vary from one
branch to another.

Dependence or independence between sites Almost all Markovian models
assume that mutations at the various sites are mutually independent. This assump-
tion is of course not reasonable, but it makes the computations (in particular of the
likelihood, see below) feasible. There has so far been very little work on Markovian
models where the evolutions at the various sites are correlated.

Consider a model of the type

Qxy = SxyTy,

which is a reversible model provided that s,, = s,,. Pollock, Taylor and Goldman
(1999) model the evolution of a pair of proteins by choosing an infinitesimal
generator of the form

Qxx’,yx/ = Sxyﬁyxﬂ
Qxx/,xy/ = sx’y/ﬁxy’a
Qv yy =0, if x #yand x’ #

where 7 is an invariant probability distribution on the set of pairs of proteins.
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Variation of the evolution rate between the branches Given an infinitesimal
generator Q, for all u > 0, uQ is also an infinitesimal generator. Suppose that Q
is constant on the tree. If u is constant as well, since the leaves (the species living
today) are all at the same distance from the common ancestor, located at the root
of the tree (distances are measured in elapsed time), this means that we are making
the assumption of a ‘molecular clock’. Certain sets of data are incompatible with
such an assumption. One should then, in order to use a model which is coherent
with such data, allow the parameter u to take a different value on each branch
of the tree. We then have a new parameter on each branch of the tree, which all
together means a lot of parameters.

Another point of view involves assuming that the u’s are the values taken by
a stochastic process, which evolves on the tree as a Markov process, either in
continuous time, or else in discrete time (in which case the process is constant
on each branch, the transitions taking place at the nodes). Conditionally upon the
values taken by that process, the various nucleotides evolve as a non-homogeneous
Markov process along the tree. We then are in a Bayesian framework, for which
the MCMC algorithm (see Sections 3.1 and 7.8.3) makes the required simulations
feasible.

Variation of the evolution rate between sites The most popular model for the
variation of rate between sites is to assume that the rates associated to the various
sites are i.i.d., the common distribution being a gamma distribution (or a discretized
version of the same).

Another approach, due to Felsenstein and Churchill (1996), assumes that they
form a Markov chain along the DNA sequence (which is ‘hidden’), taking its values
in a set which, for practical reasons, is taken to be of very small cardinality.

‘Covarion’ models In the concomitantly variable codon or covarion model the
rate of evolution not only differs from one site to another, but also, at a given site,
from one branch of the tree to another. Write E = {A, C, G, T} and let G be the
set of all possible values of the rate u. Galtier (2001) considers an independent
E x G-valued Markov process at each site.

7.8.2 Likelihood methods in phylogeny

Comparison of the genomes of the various species is at present the main tool for the
reconstruction of phylogenetic trees. Several algorithms exist for the construction of
such trees. We shall now give some comments concerning the maximum likelihood
method.

Note that we can compare either genes (i.e. amino acid sequences) or DNA
sequences. In order to fix ideas, we shall consider DNA sequences, which we
assume to be already aligned.

Computation of the likelihood of a tree Suppose we use the Felsenstein (F84)
model. Time ¢ corresponds here to distance along the tree. Note that the only
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parameter of interest is the product u x ¢. If we modify the lengths of the branches
of the tree accordingly, we can and shall from now on assume that u = 1. We shall
consider below only binary trees.

For the remainder of this section, we shall assume that each of the various sites
evolves independently of the others, and that all evolve at the same rate, this rate
being constant along the tree. This assumption is not very realistic, and several
recent works concentrate on the detection of those sites which evolve faster than
others, possibly only on a portion of the tree. However, this simplifying assumption
is natural for starting the analysis and constructing a first tree. Another popular
assumption would be that the evolution rates of the various sites are i.i.d. random
variables, with a common law gamma.

The information at our disposal, the data, consists of a set of k aligned
sequences of length m; that is, for each site s, | < s < m, we have k letters from
the alphabet A, C, G, T, one for each leaf of the tree. With each rooted binary
tree T with k leaves, we shall associate its likelihood L(7'), which is a function
of the data. The likelihood L(T) is a product from s = 1 to m of the likelihoods
associated with each site s:

m
L(T) = ]_[ Ly(T).
s=1
The computation of each factor L;(7T) takes advantage of the Markov property,
as we shall now see. Let 7 denote a rooted tree. We can, for example, code as
follows the nodes of such a tree, starting from the root, towards the leaves (see
Figure 7.4):

e 0 denotes the root;

e 1, 2 are the ‘sons’ of the root, that is, the nodes which are directly connected
with the root by one branch;

e 1.1, 1.2 denote the sons of 1; 2.1, 2.2 those of 2;

e and so on up to the leaves.

222

I.1.I.1 1.1.1.2 1.1.2.1 1.1.22 12 ™ '2141.2 -

Figure 7.4 Rooted binary tree with coded nodes.
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For each node o € T\ {0}, denote by ¢, the length of the branch joining « and the
‘father’ of o. We associate with « the set A, of the leaves of the subtree whose
root is «. In particular, Ay denotes the set of the leaves of the tree. If o € Ao,
Ay = {a}. For @ € T\ Ay, we denote by I'y, = {e.1, .2} the two ‘sons’ of «.

Let {Xy; @ € T} denote the nucleotides at the nodes of the tree. We assume
that they are the values at these nodes of a Markov process on the tree whose
infinitesimal generator is Q. Only the values of {X,; o € Ao} are observed. We
denote by x, the observed value of X,, for « € Ag. The likelihood of the tree,
based upon the nucleotides at site s, is

Ly(T) =Pr | [ (Xa = X}

aelg

We shall explain how to compute this quantity, and we shall show how it depends
upon the tree 7.

Foreacha € T, x € E, we define LE"‘,? the conditional likelihood of the subtree
whose « is the root, conditioned upon X, = x, which we compute by the following
upward recurrence: for @ € Ao,

L@ _ 1, if x = xg,
X 0, otherwise;

in all other cases,

LO) = Y Pey(la) LD X Pry,, (La2) L2

Xo.1: % 2€E

This computation eventually specifies the quantities Lg%, x € E. Finally,

L(T) =Y mLY,

xeE
and

L(T) = [ [ Ls(T).
s=1

We could also have described each L (T) as a sum of 4/7\2ol terms. But the above
formulae describe the so-called pruning algorithm, due to Felsenstein, which should
be used in practice.

Maximum likelihood The computation of a global maximum of the likelihood
over all possible trees is complex. The easiest part is the maximization over branch
lengths. However, it is not clear that the algorithm commonly used for that sub-
problem leads to a global maximum. The idea is to maximize successively over
each branch length, and to iterate as long as the likelihood increases. We shall now
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see explicitly how the likelihood depends upon a particular branch length. It is then
easy to see how to maximize the likelihood with respect to that particular branch
length.

We shall assume that the values {X,; « € T} are the values at the nodes of the
tree of a reversible Markov process. Hence, the law of the {X,} does not depend
upon the choice of of a root at any node of the tree (or, more generally, anywhere
on the tree).

Consider two neighbouring nodes « and f in the tree. Denote by {4 the length
of the branch which connects them. If we put the root anywhere on that branch,
we define as above the quantities L§“,2 and Lgﬂ ;, x,y € E. Note that the first term
is the likelihood of a subtree whose root is «, taken as a subtree whose root has
been displaced. For example, in the tree of Figure 7.4, if « =2, f = 2.2, and we
locate the root between « and B, the subtree whose root is « contains the nodes
2,0,1, 1.1, 1.1.1, 1.1.1.1, 1.1.1.2, 1.1.2, 1.1.2.1, 1.1.2.2, 1.2, 2.1, 2.1.1, 2.1.2, and
the subtree whose root is  contains the nodes 2.2.1, 2.2.1.1, 2.2.1.2, 2.2.2.

Then

L(T) = 3" 7Py (teap) LILY)
x,yeE

Z ﬂ}'P}'x(ﬁaﬂ)LgﬁLgﬁs})"

x,yeE

This formula makes explicit the dependence of Ly(7") and L(T") upon the length
of a given branch, and allows us to compute the maximum of the likelihood with
respect to that branch. The search for that maximum is rather easy in the case of
the evolution model described above (one maximizes the logarithm of L(7"), which
replaces the product of the L;(7T) by a sum, and thus simplifies the maximization).

Remark 8.1 Not all evolution models are reversible. It is still possible to give
explicitly the dependence of the likelihood with respect to the length of a given
branch, but one has to be careful using the transition probability of the time-reversed
process whenever the displacement of the root makes the process starting at the new
root run along a branch in the direction opposite to that of the initial one.

7.8.3 The Bayesian approach to phylogeny

Let us return to the expression for the likelihood. Denote by D the vector of the
observed random variables, and by d the vector of the observed values; that is, d
contains the various aligned sequences. We now describe the various parameters
upon which the likelihood depends. Among the unknown parameters (which we
wish to estimate), we have:

e on the one hand, the shape of the tree, which we shall denote by t, which is
an unknown in a finite set 7 (whose cardinality is (2n — 3)!! in the case of
a rooted tree with n leaves and (2n — 5)!! in the case of an unrooted tree,
where k!! =1 x 3 x5 x --- x k for an odd number k);
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e on the other hand the lengths of the various branches, and the infinitesimal
generator Q of the evolution model (at least the parameters of that matrix
other than the invariant probability distribution). The branch lengths and the
unknown parameters of the matrix Q vary in a subset V of a Euclidian space
R?. We shall denote this set of parameters by A.

Thus the unknown parameter is the pair 0 = (r, A) whose value is arbitrary in
the set ® = 7 x V, and the likelihood is the function

L(0) = Py(D = d).

The likelihood of the value 6 of the unknown parameter is the probability of
observing the data which we have in our computer, if 6 is the true value of that
parameter.

In the Bayesian framework, the unknown parameter 6 is the realization of a ran-
dom variable, that is, (7, 1) is the realization of a random vector (7, A). This point
of view forces us to choose an a priori probability distribution, which gives us the
chance to incorporate a priori information about the unknown parameter, which
the anti-Bayesians refuse to do, claiming that the only information one should use
is that contained in the data.

We shall thus obtain an a priori probability distribution for the random vector
(T, A) as follows:

e We specify the law of 7', which is a probability distribution on the finite set
7T, hence we specify the oy =P(T =1), 1€ 7.

e We specify the conditional law of A, given T, and we assume that, for all
7 € 7, the conditional law of A, given that 7 = 7, has a density ¢.(1); in
other words, for any Borel measurable function f:7 x V — Ry,

ELf(T, M=) / [T 1) pe(yda,

rer?V
where p;(A) = ar X gz (A).

In this context, we have a random pair, consisting of both a ‘parameter’ (7', A),
and the data D. The law of this pair is specified by, on the one hand, the a priori
law of (T, A), and on the other hand, the conditional law of the data, given the
parameter. More precisely, in this Bayesian framework, the likelihood is interpreted
as the conditional probability distribution of the data, given the parameters:

L(t,2) =P (D =d|(T, A) = (1, 1)).

The rule of the game is to compute the a posteriori law of the parameter, which is
the conditional law of the ‘parameter’ (7', A), given the data, that is, given that D =
d. This conditional probability distribution is given by the famous ‘Bayes formula’,
which in our case specifies the joint law of (7, A) given that D = d in the form

P(D =d|(T,A) =(r,)) p:(V)
YoerJyP(D =d|(T, A) = (t, 2) p-(W)ddr

pc(AD =d) =
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In other words, again if [ : 7 xV — Ry,
Yocer Sy (@, MVP(D =d|(T, A) = (1, 1)) p-(L)dAr
Yeer [y P(D=d|(T. A) = (1.2) pr(Mdh

For example, we might wish to specify the a posteriori probability distribution
of the shape of the tree, that is, of the random variable 7. It is given, for all
t €7, by

E[f(T,MN|D=d] =

[, B(D =d|(T, A) = (t, 1)) pr (W)dAr
Yeerfy P(D =d|(T, A) = (T, 1) p(Mdr

P(T =1|D =d) =

The MCMC algorithm Suppose that we wish to compute the last quantity for
a small number of values of t. An explicit computation is pointless, because of
the size of the data (the number of species we consider) and the complexity of the
models we might use. One is thus led to use a Monte Carlo type of method, using
random draws. However, it is not really possible to simulate under the a posteriori
probability distribution of (7', A), given the data. Indeed, in order to identify this
probability distribution, it would be necessary to compute the denominator in the
formula above. If the cardinality of 7 is very large, this task becomes impossible.
We are exactly in the situation described at the beginning of Section 3.1.

Let us recall the Metropolis—Hastings algorithm. Denote by 7 the a posteriori
probability distribution. Let Q denote a transition matrix on F (which has nothing
to do with the probability distribution 7), whose transitions are easy to simulate.
We choose as transition matrix P the matrix whose off-diagonal entries are given
by

. Ty
ny = min Qxy, _ny ,
T
and whose diagonal entries are
Py =1 _ZPX)'s
y#x

provided the matrix P thus defined is irreducible, which is the case if, for instance,
Q is irreducible and satisfies the property that, for all x, y, Q., > 0 & Qy, > 0.
This matrix P is clearly a transition matrix (P, < Qxy, X # y, implies that Py, >
0), and 7 is P-invariant, since the detailed balance equation

T Pry =my Py, VYx #y,

holds. For x,y € F, let

r(x,y) = gx’v = min (1, LQ”) )

Xy 7Tx Oxy

One way of simulating a transition of the chain {Xj} with the transition matrix P is
as follows. Suppose that X; = x, and we wish to simulate X;;. We first simulate



166 JUMP MARKOV PROCESSES

a transition of the chain {Y;} with the transition matrix Q, starting from Y; = x.
Suppose that the result of this simulation is Yy = y. We accept this transition
(and in this case Xy = y) with probability r(x, y); we reject this transition (and
in this case X4 = x) with probability 1 — r(x, y). Note that r(x, x) = 1, hence
whenever y = x, X4 = x.

In other words, the transition from X; = x to Xy is computed as follows:

e we draw a realization Y| of the probability distribution Q,.;

e we draw U4 with the uniform law on [0, 1];

and we let

X1 = Y Ly <reviooy + Xiliuey > reviqny-

Implementation of the MCMC algorithm The implementation of the MCMC
algorithm poses delicate questions, for which we essentially have no satisfactory
answers, in particular in the application to phylogeny. We have already discussed
this issue in a general framework in Section 3.3. Recall that one should eliminate the
first simulations (burn-in). Moreover, in order to obtain a sample of the a posteriori
law, one keeps only one iteration among n, where the choice of n depends upon
the rate of decorrelation of the chain, which might be estimated from simulations.
Some implementations involve the simulation of several chains in parallel, some
of them possibly being ‘heated’ (see Section 3.1.4).

7.9 Application to discretized partial differential
equations

Let D be a bounded domain in R?> (we could also treat a problem in higher
dimensions) whose boundary dD is Lipschitz continuous. Suppose that 0 € D.
Consider the Dirichlet problem

Au(x) =0, xeD,
u(x) = f(x), xeaD,
where f € C(dD). It is well known that this equation has a unique solution u« in
C(D).
Given h>0, let hZ? denote the set of points in the plane whose coordinates are
multiples of /. Define D;, = D N hZ?. 3Dy, consists of those points in D¢ N hZ?
which are at distance / from at least one point in Dy, and D, = D, U dDy,. Let

e1 and e, be the two vectors of an orthonormal basis. We define the approximate
operator Ay, as

1 2
(Apv)(x) = 7 D ((x + hep) + v(x — hep)) — v(x).

i=1
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From Exercises 11.4 below, the solution of the discretized Dirichlet problem

Apup(x) =0, x € Dy,
up(x) = f(x), x € 9Dy,

is given by the formula

wy(x) = ELf (X}, )I1Xg = x],

C
D

where {X”; ¢ > 0} is an hZ>-valued jump Markov process with infinitesimal gen-
erator %Ah, and

Tpe = inf{t = 0; X{' € D}.

Note that {X,h; t > 0} has the same law as {hX}ll,zl; t > 0}, and we explained just
after Theorem 6.9, that this process converges towards a standard one-dimensional
Brownian motion, as # — 0. It is not too hard to deduce that

up(x) — u(x) = E[f(Bry.)|Bo = x],

where Tpe = inf{t > 0; B, € D¢}. This formula gives a probabilistic interpretation
of the Dirichlet problem. We then have a proof (which is an alternative to classical
arguments from numerical analysis) of the convergence of u; towards u.

Note that the discretized Dirichlet problem could also be interpreted in terms
of a discrete time Markov chain with transition matrix Ay, + 1.

Such a probabilistic interpretation justifies the use of Monte Carlo numeri-
cal methods for the approximate computation of solutions of partial differential
equations. These methods are mainly used when ‘classical’ numerical analysis
algorithms cannot be used (in particular, in high-dimensional problems); see [25].
They are also very popular because of the simplicity with which the associated
programs can be written, a few lines of code being sufficient to program the com-
putation of the approximate solution of a partial differential equation! Even if we
need to let the computer run a bit longer than would be needed to obtain the same
precision with a finite difference, finite element or finite volume method, the fact
that the program is very easy to write is greatly appreciated by users, especially in
situations where a program written by one person might have to be modified later
by another.

7.10 Simulated annealing

In this section, which follows on from Section 3.4, E is assumed to be finite. Recall
that we wish to maximize a function

U:E—R_,
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such that

max U, = 0.
xekE

In other words, we are looking for an x which is such that U, = 0.
With each 8 > 0 we associate the infinitesimal generator Q = {Qyy; x,y € E}
where, for x # y,

Qxy = 1{(x,y)€G] exp |:§(Uy - Ux):| .

Let G be a non-oriented graph in E, that is, a collection of pairs of points in E,
chosen in such a way that the jump Markov process with infinitesimal generator Q
is irreducible (which means that, for all x, y € E, there exist n and x, x2, ..., X,
such that (x, x1) € G, (x1,x2) € G, ..., (x,,y) € G).

The jump Markov process with infinitesimal generator Q is clearly reversible
with respect to its invariant probability distribution 74 defined by

Mgy = Zgle’w", x € E.
We define the Dirichlet form associated with Q as the bilinear form on R%:
E(p. 9) = (9, —09¢),
==Y 0 0uypy,
X,y

1
= E Z lox — ¢y|2Qxy7Tx,
X,y

where we have exploited reversibility and (twice) the identity Zy 0O,y =0, hence
—Q : £%() — £3(7) is a self-adjoint positive semi-definite operator.

Definition 10.1 We call the quantity

def . 5«0’ w)
A= inf
@ non-constant Var, (QD)

the spectral gap of Q, where

2
var(p) = ) ¢ — <Z %m) :

xekE xekE

Lemma 10.2 Since Q is the infinitesimal generator of an irreducible jump Markov
process with values in a finite set E, its spectral gap is strictly positive.

ProoOF From the above formula for £ (¢, ¢), the ratio £(p, ¢)/var; (¢) is not mod-
ified if we add a constant to ¢. We can then minimize this ratio over those ¢ that
are such that E; (¢) = 0, whence

(p, — Qo)

A= inf
9£0;E+ (9)=0 (@, ox)
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and A is the smallest eigenvalue of —Q, considered as a linear operator on 02(n),
restristed to the subvector space orthogonal to the constants. Since Q is a self-
adjoint positive semi-definite operator, it suffices to show that the eigenspace asso-
ciated with the eigenvalue O is the set of constant functions. But if ¢ belongs to
that eigenspace,

> 0wy =0, VxeE,
5
then a fortiori

1
0=- Z 0y Qxy@yTry = E Z lox — ¢y|2QxijXa
X,y X,y

which, since Q is irreducible, does imply that ¢ is constant. O

Now let {X;; ¢ > 0} be a jump Markov process with infinitesimal generator Q.
For each t > 0, let u(t) = (u,(¢); x € E) denote the law of X,. We let

2
8(t) = Z <M;;—(t) - 1) Tlx,

xeE *
and remark that e(¢) = 0 if and only if u(t) = .
Lemma 10.3 If A denotes the spectral gap of Q, then
e(r) < e(0)e 2.
Proor We first remark that

2
(i)=Y <“’;‘T(t) - 1) 7

X

2
=Z<M;—(t)> m, — 1.

Hence,

TTx

de _ Mx(t):u:c(t)
S 0=2 Z A L

—) Z /’Lx(t)l':;x(t)ny
X,y

=20 x 2 xm0n

Ty

X,y

o))
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< —2Avar (&>
T T

= —2Xxe(t),

and consequently

d
o loge(t) < —2A.
O

We have shown that ;t, — 7 at exponential rate (cf. Theorem 6.8 of Chapter 2).

We now come to ‘annealing’. Let 8 depend upon ¢, and let it go to infinity (and
hence the ‘temperature’, its inverse, towards zero) as t — o0o. More precisely, A
being a constant which will be specified below, we choose

B) = %log(l +1),

hence B(0) =0 and B(¢) - +o00 as t — oo. Of course, the chain is no longer
time-homogeneous, since the infinitesimal generator Q, the spectral gap A, the
invariant measure 7v, and the normalization constant Z all become functions of ¢:
O(t), A(t), w(2), Z(r). Note that 77 (0) is the uniform measure on E, Z(0) = |E|~",
while 7 (00) = lim,_, o, 7 (¢) is the uniform measure on the zeros of U (i.e. on the

maxima of U).
Let M= sup, g (—=Uy). Our goal is to prove the following theorem.

Theorem 10.4 If A > M, then u(t) — w(c0) ast — oo.

We first establish the following lemma.

Lemma 10.5

1 M/A
A1) = 2(0) <1—+t> .

Proor Choose ¢ such that E;)[¢] = 0. Then from the definition of 1(0),
1
5 210 = 0,2 0y (07:(0) = 2(0) 3 4774 (0).
X,y x

On the other hand,

BOWU+U) 2
Z(1)

e—ﬂ(f)M|E|

> Qxy(O)Tﬂx ).

Qxy (t)ﬂx (t) = Qxy (0)
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Hence,

1
E@.9) =53 100 = P Qe (D72 (1)
X,y

e—ﬁ(t)M|E| )
> x er xO
=570 XZij 9y 1> Qxy (0)7,(0)

1
> 1 (0)e POM 2
> 1(0)e Zx:% 70
> 2(0)e POM N gl (1)
X

> 1(0)e POM yar(g),
7 (t)

171

where we have used for the third inequality the fact that U, < 0, hence Z ) <
7, (t). The two extreme expressions of this set of inequalities being invariant under
the addition of a constant to ¢, the resulting inequality still holds without the

restriction that E; ) [¢] = 0. The lemma is established, since
1\ M/A
—BOM _ .
1+t

ProoF oF THEOREM 10.4 It suffices to show that e(¢) — 0, where
2
e (1)
o(t) = ( - 1) (1)
; (1)

[ (1)?
B ; ﬂx(t)

Note that £(¢) is an upper bound on the square of the L'-norm of the difference

w(t) — m(t). Indeed, from Cauchy—Schwarz,

3 ) — @ =Y %\/%}Mm“ =N0)

We have that
de — ~—~d [pe()?
D= Z dt [ 7. (1) }
= Zm(r) ’ [2ux

_ w) p) , 13 (1)
= -2 <%7 %> — B (1) Zx: U, ijz(t)fo(f)

(t) — m(t)z

o)
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U, ePOUy M (t) .
+8 (r)Z 70 < mnt

< =200)e() + B/ (OM(e(t) + 1)
< —QA(1) — MB'(1)e(t) + MB'(1)

<_< 20 M )(r)+L
= \a+o0"s " ad+0 ) T Ad T+

where the last inequality uses Lemma 10.5. Since A > M, (1 +1)"M/2 » (1 +
1)~ as t+ — oo, and there exists ¢ > 0 such that, for ¢ large enough,

%(r) < —c(+0)MA2@1) + %(1 +07

and the theorem follows from the next lemma. O

Lemma 10.6 Let x,b € C! Ry;Ry), a € CRy; Ry) be such that:
o0
(i) f a(t)dt = 400,
0
(ii) b(t) (O ast — oo;

... dx
(iii) E(t) < —a()(x() — b(1)).

Then x(t) — 0 as t — oo.

t
% (x(t)exp ( /0 a(s)ds)) — elyat)ds <ili—);(t) + a(t)x(t))

< 09O (1) b(1).

PROOF

Integrating, we obtain

t ¢ t
x(1) < x(0)e Joa®ds 4 f e s O g (5)b(s)ds.
0

The right-hand side of this inequality is the solution of a linear ordinary differential
equation, which majorizes x(#). Hence, it suffices to establish the result with x (7)
as solution of the ODE; in other words, we can also assume that

X 1) = —a)x() — b(r)
— () = —a@®)(x(t) — .
dt
Let y(t) = x(¢t) — b(¢). It suffices to show that y(#) — 0 as t — oco. We have that

dy . b
E(t)——a(t)y(t)— ().
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Note that &'(z) <0, and — ftoo b'(s)ds = b(t) < oco. Hence, fort > N,

13
y(t) — eff(; a(s)dsy(()) _/ eff;a(r)drb/(s)ds
0

N 00 t N N
< e—jo a(s)dsy(o) +/ |b’(s)|ds +e—fNa(r)dr/ e_f»v a(r)dr|b/(s)|ds.
N 0
Let § > O be arbitrary. We choose N large enough that the sum of the first two
terms on the right-hand side is less than §/2. Now choosing ¢ large enough, the
third term is less than §/2. The lemma is established. |

Remark 10.7 The function B(t) = A~ log(l +t) tends too slowly to infinity as
t — 00 to be used in practice. One can prove some results which are weaker than
w(t) — m(o0) with a function  which grows faster than a logarithm (a power
function). If, on the other hand, we ask how to achieve the best possible result on a
fixed finite horizon, it can be shown that some B’s growing at exponential rate are
close to the optimum.

7.11 Exercises

Exercise 11.1 Let {T,;; n > 1} be a Poisson point process with intensity A, and
{Z,; n >0} be an E-valued Markov chain which is independent of {T,; n > 1},
with transition matrix Pyy,x,y € E. Let

o0
X, = Zznl[rn,rnﬂ[(f), t>0.
n=0

Show that {X;;t > 0} is a jump Markov process, and give its transition matrices,
its infinitesimal generator, and the law of its first jump time.

Exercise 11.2 Let {X,;t > 0} be a jump Markov process with values in a finite or
countable state space E, with infinitesimal generator {Q,,; x,y € E}. Assume that
A=sup, —Q,x < 00. Let {N;; t > 0} denote the counting process of the jumps of
{X;}, and {N]; t > 0} a Poisson process with intensity . Compare P(N; > n) and
P(N; = n), E[ f(N,)] and E[ f (N])], where the function f is increasing from N into
R. Show that Exercises 11.1 gives another proof of this result.

Exercise 11.3 Let {N;; t > 0} and {P;; t > 0} be two mutually independent Pois-
son processes with intensities ). and |, respectively.

1. Show that {X,; t > 0}, defined by
X, =N — P,

is a Z-valued irreducible jump Markov process, and give its infinitesimal
generator.
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2. Assume that A # (. Show that {X,/t} and {X,} converge almost surely in
R as t — oco. What is the limit of {X;}, depending upon the sign of . — u?
Show that {X,} is transient.

3. Assume that A = u. Give the transition matrix of the embedded chain.
Deduce from Exercises 10.11 and 10.13 of Chapter 2 that {X,} is null recur-
rent.

Exercise 11.4 1. Let {X;;t > 0} be an E-valued jump Markov process, with
infinitesimal generator {Qyy; x,y € E}. Let ' C E. Define

inf{t; X; € F}, if sucht exists;
F= .
00, otherwise,

the function u : E — R by
u(x) = E[h(X7:) {15 <00)| X0 = x],

where h is a bounded mapping from F into R, and the function v : E —
R U {400} by
v(x) ;= E[Tr|Xo = x].

Show that Tr is a stopping time. Show that u and v solve respectively the
equations:

Qu(x) =0,x € E\F,
u(x)=hx),x € F,

Quv(x)+1=0,x € E\F,
v(x) =0,x € F.
(Hint: condition upon (Ty, X (T1)).)

2. Consider next the case of an E = Z-valued birth and death process, whose

infinitesimal generator Q satisfies Qy y+1 = @ (x), OQxx—1 = (x), Oxx =
—a(x) — B(x), inthe particular case a(x) = o, B(x) = B, x € Z (o, B > 0).
Let F ={1,2,..., N — 1}, where N is a positive integer. Compute u(x) =

E[X7.1X0o = x], x € Z. Show that Tr is almost surely finite. Give the con-
ditional law of the random variable Xrt,., given that X = x.

Exercise 11.5 Given a probability space (2, F, P) equipped with a filtration {F;}
(i.e. an increasing collection indexed by t € R of sub-o-fields of A), a martingale
(with respect to the filtration {F;}) is a stochastic process {M;;t € R} such that

M, is integrable, Vt > 0; E[M;|F;] = M;, VO <s <t.
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1. Let {M;; t € Ry} be a martingale which is continuous on the right, and
S a stopping time which is bounded by a constant t. Show that E[Mg] =
E[M;] = E[Mo].

2. Let {X;; t = 0} be an E-valued jump Markov process, with the infinitesimal
generator {Q.y; x,y € E} satisfying sup, Q. < 00, and f be a bounded
mapping from E into R. Show that {M;; t € R} defined by

M, = f(X,) - fo 0F (X,)ds

is a martingale with respect to the filtration {FX} (accept the fact that for
any bounded function f from E into R, and anyr > 0, P.Qf = QP, f).

3. Using the notation from part 2 of Exercises 11.4, compute
E[Tr|Xo = x] in terms of the law of Xr,. (Hint: in the case o # B, use the
results of parts 1 and 2 of the present exercise with the function f(x) = x
and the stopping time S = inf(Tr, t), then let t tend to infinity; in the case
o = B, do the same computations with f(x) = x2.) You should assume that
the result in part 2 of the present exercise applies to these two functions,
even though they are not bounded.

Exercise 11.6 Let {X;; t > 0} be an N-valued jump Markov process with infinites-
imal generator

—u % 0 0 0
A =+ m 0 0

0=1 o A —~(A+w) w0 :
0 .

where A, i > 0.
1. Specify the embedded chain. Show that {X;; t > 0} is irreducible.

2. Show that {X;; t > 0} is recurrent in the case A > [, and transient in the
case A < L.

3. Show that whenever » > u, {X;; t > 0} possesses a unique invariant prob-
ability distribution w and specify it.

4. Show that {X,; t > 0} is positive recurrent in the case . > 1, and null recur-
rent in the case A = [L.

Exercise 11.7 With P denoting the transition matrix defined in Exercise 10.9 of
Chapter 2, let Q = P — I and consider a continuous time jump Markov process
{X;; t = 0} whose infinitesimal generator is Q.

1. Give the transition matrix P’ of the embedded chain.
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2. Describe the trajectories of the process { X}, and specify the parameters of
the exponential laws of the time spent in the various states.

3. Show that the process {X,} is irreducible and positive recurrent. Determine
its invariant probability distribution.

4. Determine the invariant probability distribution of the embedded chain.

Exercise 11.8 Consider both the E = N-valued discrete time Markov chain
{X,; n € N} whose transition matrix is

o O

~

I

c o
- o o
ow oo

and the E = N-valued continuous time jump Markov process {X;; t > 0} whose
infinitesimal generator is

where 0 < p,q < 1, p+ q = 1. You might compare the chain {X,; n € N} and the
Z-valued random walk which was studied in Exercise 10.11 of Chapter 2 (which
we proved to be transient if p # q, and null recurrent if p = q), and note that the
process {X;; t > 0} is an M/M /1 queue as studied in the next chapter.

1. Is the Markov chain {X,; n € N} the embedded chain associated with the
Jjump Markov process {X;; t > 0}?

2. Show that the two processes {X,; n € N} and {X,; t > 0} are irreducible.

3. Show that any invariant probability distribution for {X,; n € N} is also
invariant for {X;; t > 0}, and vice versa. Show that the two processes are
either both transient, both null recurrent, or both positive recurrent.

4. Show that the two processes are transient in the case p > q.

5. Show that they are recurrent in the case p = q = 1/2 (you can compare
with the chain studied in Exercise 10.11 of Chapter 2). Specify for this case
an invariant measure with infinite mass, and deduce that the processes are
null recurrent.



JUMP MARKOV PROCESSES 177

6. Now assume that p < q. Set A, = p/q, and note that g~ (. — p) = A*. Show
that there exists a geometric probability distribution w which is invariant for
the two processes (compute 1| in terms of wo, 7 in terms of mo, .. .).

The rest of this exercise studies two variants of the continuous time jump Markov
process {X;; t > 0}.

7. Modify the infinitesimal generator Q by multiplying p and q by the same
constant ¢ > 0. Show that neither the classification of the process (transient,
null recurrent or positive recurrent) nor the possible invariant measure is
modified by the presence of the constant c. What is changed in the process?

8. Suppose now that p < q; still using the notation A = p/q, we now consider
the jump Markov process {Y,; t > 0} whose infinitesimal generator Q' is

defined by
-p. fy=0,
Ooy=1p, ify=1,
0, otherwise

and, for x > 1,
Mg, ify=x-—1,

0. = -\ ify=ux,
xy — )\‘xp’ tfy:x—l—l,
0, otherwise.

Compare the embedded chains of {X;; t > 0} and {Y;; t > 0}. Show that
{m, = 1; x € N} is an invariant measure, and deduce that {Y;; t > 0} is null
recurrent. Explain why the mean time taken by {Y;} to return to x, starting
from x, is longer than it is for {X,}.

Exercise 11.9 Consider an N-valued random sequence {X,; n > 0}, defined as fol-
lows: Xo = xo € N and, foralln € N,

(Xn + Ui‘l+1)+’ ierH-l = 1,

X =
17 o, if Viy1 =0,

where the sequence (Uy, Vi, Uz, Va, ...) is independent and, for all n > 1,
PWU,=1)=PU, =-1)=1/2, PV, =1)=1-PV, =0) = p,
with) < p < 1.

1. Show that {X,;; n > 0} is an N-valued irreducible Markov chain, and give
its transition matrix.

2. Show that {X,; n > 0} is positive recurrent (do not look for an invariant
probability distribution; instead use a more ‘probabilistic’ argument).
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3. Show that if a solves the equation p(1 + «?) =2 and 0 < a < 1, then the

geometric probability distribution w on N given by 7, = (1 —a)a®, x € N,
is the unique invariant probability distribution of the chain.

Consider now an N-valued continuous time jump Markov process {X;; t >
0} whose infinitesimal generator is given by

-p/2 p/2 O 0 0
1—p/2 -1 p/2 0 0

0= 1—p p/2 -1 p/2 0
1—p 0 p/2 -1 p/2 0...

. Specify the transition matrix of the associated embedded chain (compare

with the chain from parts 1-3). Show that {X;; t > 0} is irreducible and
recurrent. Show that the probability distribution from part 3 is invariant for
X:. Deduce that {X,; t > 0} is positive recurrent.
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Queues and networks

Introduction

Jump Markov processes are used to model queues. These were first studied in the
context of the telephone, then for operational research. Later mathematicians stud-
ied networks of queues, which are used to evaluate the performance of computing
systems and also production systems.

The basic mathematical model of queues is as follows. Customers arrive accord-
ing to a certain point process. When a customer arrives, if a server is free the
customer is served straight away. If no server is available, then the customer waits,
and is served as soon as a server is free (and the customers who arrived before him
have been served — unless another priority policy is in order). The various service
times are mutually independent and follow a certain probability distribution (which
in certain cases may depend upon the type of customer). We shall implicitly assume
that the ‘waiting room’ has unlimited capacity and that no customer is rejected,
unless we explicitly say otherwise.

The queue will be characterized by the law of the arrival times, the law of the
service times, and the number of servers. We shall always assume that the service
times are i.i.d. and independent of the process of the arrival times.

See [2] and [33] for more complete treatments of this subject.

81 M/M/1 queue

Assume that the arrivals constitute a Poisson process with intensity A, that the
service times are i.i.d., their common law being exponential () — M stands for
‘memoryless’ or ‘Markovian’ — and that 1 is the number of servers. The number of
customers present in the queue (either being served or waiting) is then an N-valued
jump Markov process whose infinitesimal generator Q is given by

Qx,erl - )h X € N; Qx,xfl =W, X = l; Qxy =0if |)C - yl > 2;

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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hence
QOO - _)"7 Q.XX - _()\’ +l'l’)7 X 2 l~

Indeed, let t > 0 and x > 1. Let {N,} be the arrivals process and S the waiting
time after ¢ for the current service to be completed. We have

PX;p=x+1X;, =x) =P(N;yp, — N, = 1,8 > h) + o(h)
= e Mrhe™™ 4+ o(h),
R P 1(h) = A, h— 0.
P(X;p=x—1|X; =x) =P(N;4, — N, =0, S < h)+o(h)
=e (1 —e ) +o(h),
h™'Pexi(h) >, h—0.

We have used independence between the arrivals process and the service times. If
we conditioned upon past values of {X;} before time ¢, the result would not be
affected. This follows from both the Markov property of {N} and the properties
of the exponential law of S (see Exercise 5.1 of Chapter 6).

Moreover, by the same argument, for |y—x| > 2,

P(Xi4n = y|Xi = x) = o(h).

The M/M/1 queue is an irreducible N-valued continuous time ‘birth and death
process’. If A > u, the mean number of arrivals per unit time is greater than
the mean number of departures per unit time, and X, — 400 almost surely. The
process is transient.

If & = u, the process is null recurrent; if A < pu, it is positive recurrent. Its
invariant probability distribution is given by

(26

The detailed justification of these facts is left to Exercises 13.1. At equilibrium,
the mean number of customers present in the queue is

> A
E,(X;) = XMy = ——.

The expectation of the return time to 0 is

"w

Eo(Rpy) = — .
o) = e = A=)

The expected time between two periods when the queue is empty is

1
Eo(Rp) — — = ——.
qo H—A
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Let us compute the mean time spent by a customer in the queue. Conditioned upon
the fact that there are x customers in front of him when he arrives, the mean time
spent by a customer is (x + 1)/u. Hence the mean time is

E(X;+1D)/pn= ;
w—A

The above argument, which may seem contradictory (why should the state of
the queue at an arrival time be in the stationary regime?), is correct asymptotically,
in the sense that the law of the number of customers that the nth arriving customer
finds in front of him converges towards the invariant probability distribution of
{X;}, as n — oo (see Exercise 13.2). It is, moreover, a consequence of the very
intuitive Theorem 1.1, where {X,} denotes the number of customers present in a
queue, which need not be of M/M/1 type. Let us formulate three assumptions,

which in particular are satisfied in the positive recurrent Markovian case. First,

t
t_l/ X(s)ds — X as., ast— o0, (H1)
0

where X is a constant. Second,
3 a random sequence t, — 0o, as n — oo, such that X; = 0. (H2)

Third, the time spent in the queue by each customer is finite, and if D, denotes
the time spent in the queue by the nth arriving customer, there exists a constant D
such that

R
b= lim — > D (H3)
k=1

Theorem 1.1 (Little’s formula) Consider a queuing system such that the mean
number of arrivals per unit time equals X, and which satisfies assumptions
(H1)—(H3). Then

X =xD.
ProOF Denote by N(f) the number of customers who arrived before ¢, and by
{t,; n € N} a sequence which is such that X, =0, for all n and 1, — oo, as
n — o0. Then, if Xy = 0, it is not hard to check that

N(tn)

n
> o= [ xas
k=1 0

Hence,
N(tn)

| o NGy 1
S xas =2 1 NS
tn/o T Naw 2 Dy

k=1
It remains to let n — oo and exploit the assumptions. The case X # 0 then follows,
since the lengths of the visits of the customers present at time O are finite. ]
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82 M/M/1/K queue

In practice, only a finite number of customers can be waiting. In the M/M/1/K
model, arrivals are modelled by a Poisson point process with intensity X, service
times are exponential with parameter i, there is one server, and the ‘waiting room’
contains at most K customers (including the one being served). This means that
any customer who arrives while the waiting room is full is rejected.

The number of customers present in the queue is then a {0, 1,2..., K}-valued
jump Markov process. Its infinitesimal generator is given by

Oxxy1 =4, 0<x =<K -1, Oxx—1=un, 1=<x=K;
Qxy =0, if|x—y|>2.
QOOZ_)M Qxx:_()‘"f_:u)v lS)CSK_l, QKK:_/’L'

This Markov process is irreducible, with values in a finite set, hence it is positive
recurrent. Its invariant probability distribution 7 can be easily computed. If A # u,

we have . .
A —A
7, == 7/M 0<x<K.
w) 1—@/wk+!

If » = u, we have
1
K+
The probability that an arriving customer is rejected equals the proportion of
the time the waiting room is full, that is,

K
) R ()
Tk = (#) RO 1 7 1
T = K+’ if A = M.

Tlx

83 M/M/s queue

Let us again assume that the ‘waiting room’ has infinite capacity, but now there
are s available servers. The service times at the various counters are of course
assumed to be i.i.d. It is not hard to see that

Qo =%, Qox=0,x>1
forl <x <y,
Oxxr1 =%, Quix1=xi, QOx=0, [x—y>1
for x > s,

Oxx+1 =X, QOyx—1 =5, Qxy =0, [x—y|l>1
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The only new computation needed in order to justify those statements is: if
S1, ..., Sy are i.i.d. exponential (1) random variables, then

PSSy A--ASy > h) = (e M,

Hence, the probability that there are at least two departures during a time interval
of length &, while x counters are busy, is

1 — e X1
and
1 — e *1h
; — X/.

Moreover, the probability that at least two departures take place during an interval
of time of length % is of order o(h).
{X;} is positive recurrent if A < ws. In that case, one can look for an invariant
probability distribution by looking for a solution of the detailed balance equation
Ty Qi1 = Txp1 Qxplx-

We find that

0 /)y /s sl if x > s.

The two cases which lead to a simple formula are s = 1 (already treated -
geometric law) and s = oo, in which case mp = e M1 and

e = e ME ) x !,

T {(A/M)X/x!, if0<x<s

that is, the invariant probability distribution is Poisson (A /).
We have the following theorem.

Theorem 3.1 (Burke) IfA < su, at equilibrium the departures process is a Pois-
son process with intensity A.

PrOOF Since {X;} is time-reversible with respect to m, at equilibrium (i.e.under
P.), {X7-s; 0 <t < T} has the same law as {X,; 0 <t < T}, and the departures
of {X,} are the arrivals of {X7_,}. ([l

Let us now compute the probability that a customer arrives while all servers are
busy (and hence that he has to wait before being served). This equals the proportion
of time during which all servers are busy, hence

[ee} s o0 X s
s A (/) s
an =7T0—'2<—> =Ty X = (8.1)
= st e\ s s! us —
with .
s—1 -
A/ /)’ us
Y = + X .
0 [g x! s! ns — A

Equation (8.1) is known as Erlang’s formula.
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Finally, we wish to know whether it is more efficient, when arrivals happen
with intensity 21, to have two servers in parallel, each with service time following
the exponential law with parameter p (solution 1), or one server, with service
time following the exponential law with parameter 2 (solution 2) (A < u). Let
us compute the mean time spent by a customer in the system in each case. For
solution 1, at equilibrium the law of the number of customers is given by

=/ . =2(X>x 1—A/u

— ) - ) xz
14+A/n w) 14+i/u

o

So the mean number of customers present in the queue equals

o0

S ST ) N TR
Tt an = i)~ A=+ /)

Hence, by Little’s formula, the mean time spent by each customer in the queue
equals

X 1

D - :
20 (=1 + A/

For solution 2, .

DQZW.

But 1 + A/u < 2, hence D> < Dy, and the solution of a unique server, with service
time following the exponential law with parameter 2u, is preferable.

84 M/M/s/s queue

We now consider an M /M /s queue with no waiting room, where any customer
arriving while all s counters are busy is rejected. This is how a telephone exchange
works.

The number X; of customers in the system at time ¢ is a {0, 1, ..., s}-valued
jump Markov process, with infinitesimal generator

Qoir=A, Qu=0x>1;

if0<x <y,

Qx,x+1 =A, Qx,x—l = XM, Qx_\' =0,x— y| > 1

Qs,s—le/fLs QS}':Os y#s,y#s—1
The invariant probability distribution is the ‘truncated Poisson’,

(A/pn)*/x! <y
Sohmo A/ yy T T

Y =
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From the ergodic theorem, the proportion of time during which the system is full,
which is also the proportion of lost calls, equals

(/1) /s!
Y50 (/) /3!

s

which is another way of writing Erlang’s formula.

8.5 Repair shop

Suppose that s machines are working in a factory. Each has a failure rate A (i.e. the
failure times are i.i.d. exponential random variables with parameter A). The factory
is equipped with a repair shop. The repair times are exponential with parameter p.

Denote by X; the number of machines in working condition at time ¢, taking
values in the set £ = {0, 1, ..., s}. {X,} is a jump Markov process. Its infinitesimal
generator is the same as that of the queue M /M /s /s, but with A and p interchanged.
Hence, the invariant probability distribution of this process is

NXZM 0<x <s.

oo/t TS

The global failure rate is

S UL (/) /x!
Ay = My =S o
’ ; S /!

The mean number of machines which are repared per unit time equals

np = pu(l —ms) = Ap.

8.6 Queues in series

Suppose that customers require two services: they queue first at counter A, then at
counter B, whose service times are independent. The service time at A follows an
exponential («) distribution, and that at B an exponential (8). What is the mean
length of the queue at B? Denote by {X,} the number of customers (being served
or waiting) at A, {Y;} the number of customers at B.

Arrivals at A are supposed to constitute a Poisson point process with intensity
A If A > o, X; — 00, we might as well assume that there are always customers
in A, and they exit according to a Poisson process with intensity «. If A < «, by
Burke’s theorem the departures from A follow a Poisson process with intensity
A. It is then natural to pretend that the process of arrivals at B is Poisson with
intensity A A «. Hence, {Y;} is positive recurrent if and only if A Ao < 8, and in
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this case the mean length of the queue at B is (¢ A 1) /(B—a A A). The two queues
are positive recurrent if and only if A <« A B. In that case, at equilibrium, the
mean time spent by a customer in the system A+B is

1 N 1
a—Xr B—=Ar

8.7 M/G/oo queue

Customers arrive according to a Poisson point process with intensity A, as before.
Service times are i.i.d., the common law being completely arbitrary (‘general’), with
distribution function F(t) = P(T <t), t > 0. We assume here that the number of
servers is infinite, which simplifies the analysis a great deal, since there is no
interaction between the customers.

The number N; of customers who arrived before time ¢ follows a Poisson
distribution with parameter Az. Let us condition upon N, = n. If we label these n
customers randomly, then their arrival times Ay, ..., A, are i.i.d., their common
law being uniform on [0, ] (see Exercise 5.4 of Chapter 6).

For each of these customers, service is not completed at time ¢ with probability

1 [ 1 [
p= —/ P(T > s)ds = —/ (1 — F(s))ds.
t Jo t Jo

Hence the conditional law of X;, given that N, = n, is binomial (n, p).
Finally,

P(X, =x) = » P(X, = x|N, = m)P(N, = n)
n=0

o0
— Z C;lpx(l _ p)n—xe—M ()\,t)n/l’l'
=X

o0

Y (Apt)* Z ad—-po)"

x! (n—x)!

_ e—kpz ()\pt)x

x!

Hence, the law of X, is Poisson with parameter A fot (I—F(s))ds. Note that

/00(1 — F(s))ds = /OOJP’(T > s)ds = E(T).
0 0

If E(T) < oo, the asymptotic probability distribution of X, as ¢t — oo is Poisson
with parameter AE(T).
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8.8 M/G/1 queue

Customers arrive according to a Poisson point process with intensity A > 0. Suc-
cessive service times are i.i.d. random variables, which are globally independent of
the process of arrivals. We denote by v the law of service times, and L its Laplace
transform,

L(u) :f e "v(dt), u > 0.
0

Let n denote the expectation of the probability v, which is assumed to be finite.

8.8.1 An embedded chain

For all n > 0, let X,, denote the number of customers waiting (or being served)
just after the nth departure. For n > 0,

Xn-H = Xn + Yn+1 - 1X,1 > 0,

where Y, is the number of arrivals while the nth customer is being served. The
fact that {X,; n > 0} is a Markov chain is a consequence of the following lemma.

Lemma 8.1 The random variables {Y,; n > 1} are i.i.d., independent of Xy, and
their joint law has the generating function

A(z) = L(A(1 —2)).

Proor Independence between the Y, and Xy is clear. Let n > 1. Denote by S; the
length of service of the ith customer. Then

E (zfl . -z,{”)E [E (zf' cegimSy, L Sn)]

=/" E (<2 1S =1, 0= 1) v(dn) - v(d)

+

:1‘[/ e M=)y (dt;)
/R

=[Tzea—z.

i=1

Clearly the N-valued Markov chain {X,} is irreducible. Note that

def

p=EY,) = in.
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8.8.2 The positive recurrent case

Proposition 8.2 If p < 1, the chain {X,} is positive recurrent.

Proor Denote by Z, the number of times the chain visits O before the nth depar-
ture. Note that

Xpn=Xo+V1+...4+Y,—n+2,.

Suppose that the chain is transient. Then X,, — oo almost surely as n — oo, and
Z,/n — 0 as n — oo, since there are almost surely at most a finite number of
returns to 0. From the law of large numbers,

nl\Y .+ YY) > p <1,
hence
Yi+...+Y, —n— —o0,

as n — 00, which contradicts the fact that X,, > 0, and the chain is recurrent. Let
us take the expectation in the above recurrence formula. Since X, > 0,

O0<l—p< n_lEXo—l—n_lEZn — mal

as n — oo, where mg is the mean return time to 0, from the ergodic theorem.

Hence
1

my< —— < Q.
1 —

O

Denote by 7 the invariant probability of {X,}, and by G its generating function.
Then

ZG(Z) — E (ZXn+l+1)

= ]E (ZX”+Y7!+1 +1Xn =0)

= A(z)(moz + G(z) — 7o),

hence

(A(z) —2)G(2) = mpA(2)(1 — 2). (8.2)
Asz— 1,

AD =2 oy =1-p,

-z

hence 7y = 1—p and
1—-2)A
G = (1 _p)( A )

A(z) — 2
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Let us compute the mean length of the queue. Differentiating (8.2), we get
(AR =G + (A'(2) = DG = (1 = p)[A' (D)1 —2) — A@D)],

hence, substituting for G(z),

- Az — D — Alz) —
G/(Z)=(1—P)A’(Z)sz—(l—p)A(z)( @) (if@_z)z; @ -z

Butas z — 1,
A—-1DA—-2)+AkR)—z AR —-1-A@GE-1

(A(z) — 2)2 B (A(z) — 2)2
r (11— z)2
~——A()———
A G2
A"(1-)
- .
2(1 —p)?

Hence

Er(X,) = G'(1-)

A"(1-)
R TI)
_ A2L"(04)
TR0
. 22ES?

2(1—p)’

where S denotes the service time (i.e. a random variable whose probability distri-
bution is v).

We now compute the mean time spent by a customer waiting before being
served. Consider the queue at equilibrium. A customer who leaves has spent time
QO waiting and time S being served. Conditionally upon the fact that Q + S = ¢,
the number of customers left behind him follows the Poisson distribution with
parameter Af. Hence, if M(u) = E(e™*?) denotes the Laplace transform of the
law of Q,

Giz)=F (ef)n(QJrS)(l*Z))

= MO —2) LA - 2)).

Hence (1 )
M(u) = i
u—Ar(l—Lu))
It then follows from the independence of Q and S that
AE(S?
EQ =-M'(0+) = #

2(1—p)
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Finally, we wish to compute the mean length of the periods of activity O, during
which the server is busy. Denote by

B(u) = E(e79)

its Laplace transform. Let S denote the service time of the first customer during
the period of activity. Conditionally upon § =t¢,

O=t+0,+...4 Oy,

where N is the number of customers who arrive while the first customer is being
served, whose conditional law given that S =1t is Poisson with parameter Af,
and Oy, Oy, ... are i.i.d., with the same law as O, jointly independent of N.
Hence,

B(u) = /OOE(e_“()'S:’)v(dt)
0

— /‘OO efutef)\t(lfB(u))U(dt)
0
= L(u+ A(1 — B(w))).

One can deduce from these calculations the expectation of O:

E(0) = u(1 + AE(0)) = %

8.9 Open Jackson network

Consider a network consisting of N interconnected service stations. Each station
p (1 < p < N) must serve customers arriving from outside, as well as those sent
from the other stations.

In the Jackson model, exogenous arrivals at station p constitute a Poisson point
process with intensity Ag. Each station is a queue. The rate at which customers
leave the station p is w,(n), if n customers are present at station p. For example,

@) mpliy>0y, foran M/M/1 server,
n)—=
Ko nASpik,, foran M/M/s server.

A customer leaving station p goes next to station ¢ with probability r,, (1 < g <
N), and leaves the network with probability r,0. We assume for simplicity that
rpp =0, 1 < p < N; one can easily dispense with this assumption.

The process X; = (X ,1, X ,N ) of the numbers of customers present at stations
I,..., N at time ¢ is an E = N"-valued jump Markov process.

Denote by e, = (0,...,0,1,0,...,0) the vector whose pth entry is 1, all
others being zero.
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The only non-zero off-diagonal entries of the infinitesimal generator of the
process {X,} are given by

Qx,x+e,,:)\gs x e E, 1SPSN1
Qx+ep,x = ,pr(Xp + 1)”])0» xek, 1= p= N,
Qx+ep,x+eq =up(xp,+Drpy, 1<p#qg=<N, xeL.

We say that the network is ‘capture-free’ if, for all p € {1, ..., N}, there exist
n>0,p,...,pp €{1l,..., N}, such that

TpprTpips " T pu—ipa?pa0 > 0 (8.3)
We consider the equation
Ko+ Y hryp =ty 1=p =N, (8.4)
q#p

whose unknowns are A,, 1 < p < N.

Lemma 9.1 Under assumption (8.3), equation (8.4) has a unique positive and finite
solution.

ProoF Let R be the N x N matrix whose entries are R,, = r,,. Equation (8.4)
can be written in the vector form

Al —R) =20,
which has the unique finite solution
20 =K,

with K = Y% R", provided this series converges in RV*Y.
Consider the Markovian matrix

r10
_ o R
| rvo
1 0---0
Assumption (8.3) implies that the states 1, 2, ..., N are transient for the {0, 1,2, ...,

N}-valued chain whose transition matrix is P, hence, by Exercise 10.5 of Chapter 2,

[e.¢]
D (P <00, 1=<x,y=<N.
n=0

But (P")xy = (R")yy, 1 <x, y <N, from which the result follows. O

We can now prove the following result.
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Theorem 9.2 Under assumption (8.3), if, forall 1 < p < N,

11

n=1r=1

o0,

Mp(r)

then the E-valued jump Markov process {X,} possesses the unique invariant prob-
ability distribution
N
Ty = 1_[ Ty
p=1

where, for 1 < p < N, the probability distribution w? on N is defined by
A’f’l

. =bp

! | wp(r )’

with

,,_(1+21‘[Mp(r)> }

n=I1r=1
Before proceeding, let us first state the result more precisely in two particular
cases.

Corollary 9.3 In the case j1,(n) = uply, > oy (M/M/1 queue network), if (8.3)
is satisfied and X, < |1, for all p, then the process {X;} possesses the invariant
probability 7w, = ]_[2/:1 i, where

A Ao\
nf:(l——p><—p>, 1<p<N, neN.
Mp Mp

Corollary 9.4 In the case j1,(n) = pp X (n /\sp) (M/M|/s, queue network), if
(8.3) is satisfied and A, < u,S,, then the process {X;} possesses the invariant
probability 7, = 1_[2[71 nl,, with

P_p ()\p/ﬂp)n

TP (i Asy)!
and .
sp—1 -
Ap/up)  p/up)’r 1
b, = Z Pr'l + ps 'p —
—0 : p- p/ MpSp

PrROOF OF THEOREM 9.2 If an invariant probability 7 exists, and if O denotes the
infinitesimal generator of the time-reversed process, then

TTx Qx,x+ep = 7Tx+ep Qx+e,,,x:
nx+e,, Qx+e,,,x = Ty Qx,x+e,, 5

Tlx+eq Qx+ep,x+ep = Tx+te) Qx+e,,,x+eq .
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If 7 exists and is given by the formula in the statement, then

0

A P

Qx+ep,x = )\._MP(XI7 + D),
P

Qx,x+ep = KprpOs

N A
Qx+ep,x+eq = k_qrpqﬂp(xly +1).
P

The formula for 7 then follows from Theorem 7.4 of Chapter 7, provided that, for

all x € E,
>0y =2 0w
Y#X Y#EX
But
N
Z Qxy = Z ()\O + :u'p(xp)) ,
V#X p=1
and
N 0
A A p(xp)
Z Qxy = Z Aprpo + )L_p:“p(xp) + Z)“qrqp p)\ .
yF#X p=l1 p q#p P

I
M=

()‘p”po + “p(xp)) )

Il
=

D

~

where we have used (8.4). But summing (8.4) over p, we get
0
=3 (1 ) = T
P P q p
from which the desired identity follows. (]

The formula for the infinitesimal generator of the time-reversed process follows
from the proof of the theorem, hence we have the following corollary.

Corollary 9.5 Under the conditions of Theorem 9.2, if {X,} is initialized with its
invariant probability distribution, then the process reversed at time T, X, = X1_,,
0 <t <T,isajump Markov process, which can be interpreted as a Jackson net-
work with N interconnected queues, with the following parameters: intensity of the
exogenous arrivals at station p,

0 __ .
)‘p = ApTpo;

routing probability from p to q,
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exit probability when leaving station p,

> >
e

Fro =

=

and service rate at station p,

:ap(xp) = Mp(xp)'

Moreover, the exit processes from the network for the initial process from stations
{1, ..., N} are mutually independent Poisson point processes, each having the inten-
Sity Apr po.

8.10 Closed Jackson network

Let us again consider the model of the preceding section, except that there is no
exogenous arrival (XIOJ = 0, forall p), and no exit from the network (7,0 = 0, for

all p), that is,
N
rpp =0, Zr,,q =1.
g=1

The matrix R = (rpq)1<p.qen is then Markovian. We suppose in what follows that
it is irreducible. Under these assumptions, there is clearly conservation of the total
number of customers in the network. Let 7/ ( > 0) stand for this number.

Here {X;} is a jump Markov process with values in

E()={xeNY xj+...+x,=1}.
The infinitesimal generator of {X,} is given by

Qx+ep,x+e,, =wupx, +Drpy, p#q, x € E(I).

Let {A,; 1 < p < N} denote the probability distribution on {1, ..., N} which is R-
invariant. We then show, for example by the same method as in the preceding
section, the following result.

Theorem 10.1 If R is irreducible,then the process {X;} admits the unique invariant

probability
N

A7
n}{ — G(I)*l #
,!:[1 l_[r l,up(r)

with

ain= 3 [ =

xeE(l) p=1 IT.Z IMP(V)
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The main difficulty is in the computation of the normalization constant (also
called the ‘partition function’) G(1). If the values of / and N are not small, the
cardinality of E (/) (which is equal to C;VJ:A}_l) makes the computation of G (/)
by direct summation impossible.

Suppose now for the rest of this section that w,(r) = tp1j>0). Define p, =

Ap/ip.

Mean number of customers Let 1 <k < I. For all y € E(I—k), note that

7 ik, G = ] ph G — b,

if we let 7/ denote the invariant probability on E(I). Hence if {X,} is initialized
with the invariant probability 7l and if 1 <k < I, then

PO zh= Y al,

yeE(I—k)

G —k) I—k
= "o Pr Z Ty
G() yeE(I—k)

L GU-k)
~Tom

Hence,
I

) G —k)
EX] =) pf ———.
pat G(I)

where G(0) = 1.

Intensity of the arrivals At equilibrium, the intensity of departures from station
p towards station ¢ equals

dpq = E TTx Qx,xfep+eq~

xeE(I),xp>0
From the bijection between {x € E(/), x, > 0} and E(/—1), and the identity
L G() = 7= G = 1) py,

we deduce the formula
_ AprpeGU —1)
pq = G() :
We then obtain, by an argument based upon time reversal, the following formula
for the intensity of the arrivals at station p:

_3,GU = 1)
ap = 7G(1) .
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Computation of the partition function Consider the generating functions

1
1—ppz’

o0
®,(x) = (pp2)" 1<p<N, [zl <L
n=0

Comparing the coefficients of the z/ on both sides, we obtain the identity

00 N
Y G =[],
p=1

n=0
Define
p
Bp) =[] ®). 1=<p=<N, [z2=L
g=1
We have

Bp()(1 — ppz) = Pp-1(2), p > 1.
Denote by T'(k, p) the coefficient of z* in Bp(z). We have

I'k,p)—ppT k=1, p)=Tk,p—-1), k=1 p>1,

with 7(0,p) =1, p> land T(k, 1) = pf, n > 0.

We deduce from those formulae an algorithm for computing G(I) = T (I, N),
of complexity O(/ x N), which involves computing the 7' (k, p) row by row for
1 < p < N (i.e. for increasing values of k).

8.11 Telephone network

We consider a telephone network which consists of N interconnected channels.
Establishing a communication requires the exclusive use of (for example) n chan-
nels. If one or more of the requested channels is busy, the call is rejected. Otherwise,
communication is established and lasts a random length of time, whose law is expo-
nential with parameter w,. The calls requesting n channels arrive according to a
Poisson process with intensity A,. The flow of arrivals of different types and the
durations of the calls are mutually independent.

Let X, = (X',.... X ZP ) where X} represents the number of communications
established at time #, which request n channels. X, is a jump Markov process with
values in

E={x=(x,...,xp) e N'|% < N},

where ¥ = x| + 2x5 + ... 4+ Pxp, with infinitesimal generator Q, whose only non-
zero off-diagonal entries are given by
Qx—t—en,x = p X (x, + 1),
Cy_s

Qx,x+en=)\n cr 5
N
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where e, = (0,...,0,1,0,...,0), the vector in E whose entries are all zero, except
for the nth which is 1. Note that C},_./C% is the probability that a customer is
not rejected if X, = x. Define 7, = (C%) "' A,

Invariant probability

Theorem 11.1 The jump Markov process {X,;} described above is time-reversible
with respect to its invariant probability

P X
N! l—[ " |
(N —x)! i Unn! X!

Proor Let us look for a solution to the detailed balance equation

(N —x)! _
TyTp——— = Txqe, Mn(Xn+1), x€E, 1<n<P, Xx+e, €FL;
! n)!

that is,
Ty 1 (N —x)!
Uy X, +1 nl(N—%—n)!

Txte, = x-

Hence, if x, > 1,
7, 1 (N—X+n)!

Ty = - Ty—e -
Man! Xn (N —X%)! "

So
B MY 1 (N—%+x)!
Ty = Mx_xje Z x—l’ W,
_ A\ A \?2 1 (N—=xX+x+2x)!
o= Menamne Uy ) w0 nat) wol (N — 1!

The formula in the statement can be obtained by completing this computation. [J

It remains to compute my. Define

Tn

yl’l_ y:()’I»--w}’P)’

B :u'nn!’
P

N! et

G(N,x) = —_— L

( ) Z (N —Xx)! Xp!
xekE n=1

Then 7wy = G(N, y)~!. We shall see below an algorithm for the computation of
the partition function G(N, ).
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Probability of rejection In the stationary regime, the successive instants when
communications requesting n channels end constitute a Poisson point process with
intensity

Z MnXpTTx = E(X;l),u'n'

xek
Reversibility implies that this quantity equals the intensity of accepted communi-
cations requesting n channels. Hence the ratio between the rate of acceptance of
and rate of demand for communications requesting n channels, which represents
the probability of acceptance, equals E(X}')w,/A,. It then remains to compute the
mean number of communications requesting n channels.

Mean number of communications requesting n channels We have

P
N| yxn
Y o xme =GN,y Y X m
!
xek xek (N ) m=1 K
But .
— ) — 1) 1
A = (N —-—x)! (x, — D! o Ym!
Hence, 5
annx = Yn G(N, )’)_1 P)
xekE In
With the convention that n! = —oo if n < 0, we have
1 X
" Vot
—G N,
N, y) = Z Z (N—x)‘ o, — D1 L1 1
x1=0 xp=0 m#n
that is,
9 v (N=m! oy
G(N, mn_
8yn ( y) Z Z (N—n—x)' Xm!
x1=0 xp=0
hence
N!
G(N,y) = —— G(N —n,y),
o (N, y) Y (N =n,y)
and

" pe GN,Yy)

Probability of rejection (continued) The probability of rejection of a commu-
nication requesting n channels then equals
G(N —n,y)
G(N,y) ~

DPn
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Computation of the partition function One can establish recurrence relations
for the G(N, y), which are similar to those obtained in the case of closed Jackson
networks. Consider, for z € C, the generating function

& N

2@y =Y G,y

!
frr N!

with G(0, x) = 1. One can show that

P
g(z,y) = exp |:z + Zynz”:| .

n=1

from which one deduces the recurrence formulae

G@O,y) =1,
N (N — 1)!
G(N,y)=G(N—1,y)+;ny,, =i G(N—n,y), N=12,...,P;
i (N — 1)!
G(N,y):G(N—l,y)—l-;ny,, - G(N —n,y), N=>P.

8.12 Kelly networks

We now consider ‘multi-class’ networks, also called ‘Kelly networks’. The main
difference between Kelly and Jackson networks is that a given customer no longer
follows a trajectory that is the result of random drawings that are the same for all,
but rather a deterministic trajectory which depends upon the class to which the
customer belongs. We consider customers of class j = 1,2, ..., J, where J € N.

Since now all customers are no longer the same, in order to study the evolution
of fluxes in the network it becomes crucial to specify the priority policy at each
queue, which hitherto has not really been important (since we have only been
interested in global fluxes, and not in what happens to a particular customer).

Let us consider first the case of a single queue.

8.12.1 Single queue

Arrivals consist of J Poisson point processes with intensity Ay, ..., Ay, A; denoting
the intensity of arrivals of customers of class j. Whatever his class may be, a
customer who joins a queue which already has n customers will be placed in
position £ = 1, ..., n + 1, with probability y (¢, n), where Z’Zill y(,n)=1.

If n customers are present in the queue, the customer in position ¢ receives
a service which follows the exponential law with parameter ®(n)8(¢, n), where
Y y—1 8(¢,n) = 1. Globally, the server then works with ‘intensity” ®(n) > 0 when
n > 0.
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The state of the queue is described by a jump Markov process with values in
o0
E=¢u | Ji.....0m
n=1

A point ¢ € E is a sequence of length n = |c|,
c=(C1,...,Cn),

where ¢c; € {1,...,J}, 1 <i <n.

Let us specify the possible transitions of the E-valued process X; which
describes the state of the queue at time . Two types of transition are possible
from state c:

(i) addition of a customer of class j, added between the (i—1)th and the ith
customers (1 < j <J,1<i <n+1,n>0), that is, transition from state
¢ to state _

A{(c) =(Cly .-y Ciz1y ]y Citl---sCn);

(ii) departure of a customer who was at rank i in the queue, that is, transition
from state ¢ to state

Si(c) = (Clv v Ci1, Cigl, '°'7cn)'

The transition matrix Q is completely characterized by its off-diagonal entries,
given by:

Qs =My @, 1=i=lel+1 1=j=J;

Qc,si0) = Pchd(, e, 1 =i =]l

Note that a customer’s class has no bearing on the way he is placed in the queue,
nor upon his service.

Example 12.1 Foran M/M /K /FIF O queue, characterized as ‘first in, first out’,

we have:
d(n) =nAK;
1/nAK, ifl<l<nAK,
sty =" fl<t=n
0, if¢t >nAK,;
0, ife=1,...,n,
v, n)= f
I, ift=n+1.

Example 12.2 Foran M/M/K /LI F O queue, characterized as ‘last in, first out’,
® and y are as in Example 12.1, but now

I/nAK, ifn—K)r<&<n, n#0,

olt.m) = {0, ife<@m— Kt
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Example 12.3 For an M/M/1 queue with process sharing, ®(n) = ® > 0, the
choice of y is unimportant, and
1
s,n)=—, 1<t<n.
n
The jump Markov process {X;} with the above generator Q is clearly irre-
ducible. Moreover, we have the following theorem.

Theorem 12.4 A queue with several classes of customers is positive recurrent if
and only if

lel

3

cek (=1 @(Z)

and in this case the invariant probability distribution is

le]

=7z
c1>(e)

Furthermore, at equilibrium, for 1 < j < J, the departures process of class j cus-
tomers is a Poisson point process with intensity A ;.

Proor We shall exploit Theorem 7.4. of Chapter 7 Let

T
QC,A{(C) = %QA{(C)’C
= )Lid)(lcl + D3, |c] + 1)
D(lcl+ 1)
=A;8@0, el + 1),
Oc.si0) = @Sd) Osi0).c
= q)i'f')x yG.lel — 1)
=P (lcDy, le] = D).
Note that
lel+1 lel+1
Z QC,A-[(c) =Aj= Z Qc,A'I./(c)’
i=1 i=1
Ic| le|

Z Oc.si0 = (lc]) = Z Qc.5:(0)-
i=1 i=1

It then follows from Theorem 7.4 of Chapter 7 that under the assumption of the
present theorem, m is the invariant probability distribution, Q is the generator of
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the time-reversed process, and arrivals of class j customers constitute a Poisson
point process with intensity A; = ZZ‘L_P{I C Al o) (]

Note that the total number of customers in the queue is a Markov birth and
death process with generator Q characterized by

J
Qiivi =Y _hjr Qi1 =D().
However, the above detailed description will be necessary in what follows.

8.12.2 Multi-class network

Consider now a network consisting of N nodes, each being a queue of the above
type. For each 1 < j < J, class j customers arrive in the network according to a
Poisson point process with intensity A;. Each class j customer first joins queue
flj € {1 , N}, then when he leaves that queue he joins queue fzj , and so on
until fn , and then he leaves the network. This means that the jth flow follows the
route fl , f2 Yo fnj in the network. At each node i, 1 <i < N, the functions P,
8, y associated w1th the node i are denpted by D;, 8, i

There is no reason to forbid tours flj e, f,{j/ from visiting certain nodes of the
network several times. For this reason, and in order to make the process Markovian,
we need to attach to each customer present in the network not only his class, but
also the number of queues already visited.

The state of the ith queue (1 <i < N) is then described by the vector

Xi = ((Cils Sil)s cee (Cim[s Sim,‘))s

where c;; denotes the class of the customer who occupies the kth position, and
six the number of queues already visited (including the one in which he presently
stands). Hence, 1 < ¢ < J and 1 <s; <n,,. The state space describing the
queue at node i is

o0
E=gulJu.....0y. Xi=&!..... X)),

n=1

where X! € E; is the state of the queue at node i at time ¢. The jump Markov
process {X;} takes its values in E = ]_[IN= | E;. It is an irreducible process. The
possible transitions from the state x = (xy, ..., xy) are as follows:

1. A class j customer arrives, according to a Poisson point process with
intensity A;, in the network at node flj . The pair (j, 1) is inserted in the
£th position in that queue with probability y i o, |c i |). This happens with

1 1
intensity
)»j)/flj , |Cf1j D.
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2. A class j customer at step s < n; of his journey, at position ¢ in the
queue at node ij , leaves that queue for position m in the queue fs]+ 1» with
intensity

P ille iDL, le I)J/fsf;l(m, ICf;_jHI)-
After that transition, the pair (j, s + 1) is at position m in the queue at
node f7, .

3. A class j customer at step n; of his journey, at position £ in the queue at

node f’

»;» leaves the network. This happens with intensity

® (e, D8, (L le, |).
AT RS

Let

We have the following result, which can be proved similarly to the previous
theorem.

Theorem 12.5 If Z < oo, then {m,; x € E} defined by

N Jxi |

. ) Ae
7, =2 l_[ Ty, Withm, = l_[ q)}c(l]k(),
i=1 k=1 '

is the invariant probability distribution of the process {X;} which describes the
customers present in the network of multi-class queues. Moreover, at equilibrium
the departures process of class j customers is a Poisson point process with intensity
rpl<j=<J.

8.13 Exercises

Exercise 13.1 We study the N-valued jump Markov process {X;} which models the
M/M/1 queue, that is, the jump Markov process with infinitesimal generator

—A A 0 0 0
w =+ A 0 0

2=10o0 m —(A4+w A0

1. Show that the embedded chain is the reflected random walk from Exercise
10.14 of Chapter 2, with p = L/(A + ).
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2. Deduce that the process {X,} is transient in the case A > |, and recurrent
in the case . < .

3. Show that {X,} is null recurrent in the case A = [, positive recurrent in the
case ). < [L. Note that in the former (latter) case, the measure (1,1, 1,1, ...)
(the geometric measure with the parameter A/|L) is invariant.

Exercise 13.2 Consider the M/M/1 queue {X;; t > 0}, and define the random
sequence {Y, = XT s n > 1}, where {T|, T», ...} denotes the successive arrival
times of customers starting at time 0, and X — > 0 is then the number of customers
which the nth arriving customer finds in front of him in the queue.

1. Show that {Y,; n > 1} is an N-valued Markov chain. Specify its transition
matrix. Show that this chain is irreducible and aperiodic.

2. Consider the case A < . Show that the geometric probability distribution
7 with parameter A/ (which is the invariant probability distribution of the
Jjump Markov process {X;; t > 0}) is the invariant probability distribution
of the chain {Y,; n > 1}, and that the law of Y,, converges to ™ as n — oQ.

3. Show that Little’s formula in the particular case of the M/M /1 queue is a
consequence of the result of part 2.

4. Suppose now that the queue is initialized with its invariant probability dis-
tribution (i.e. the law of X is 7). Compute the law of X T Show that for
any increasing function f from N into R, IEf(XTlf) <> o f(x), and
that the inequality is strict if f is not constant. Is this result in accordance
with your intuition? Why does the law of X T differ from w ? Compare with
the result of Exercise 5.3. of Chapter 6
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Introduction to mathematical
finance

Introduction

The goal of this chapter is to present mathematical models which allow us to
solve the problem of pricing European and American options, as well as to spec-
ify the associated hedging strategies. We shall present in particular the famous
Black—Scholes formula; see [6]. In addition to the continuous model of Black and
Scholes, we shall develop the discrete model of Cox, Ross and Rubinstein [11].

The nice feature of the discrete model is that it allows elementary proofs of
the results; that of the continuous model is that it leads to formulae that are in
constant use by finance practitioners. We shall introduce the necessary tools from
stochastic calculus, which will allow us to describe diffusion processes which are
continuous time R?-valued Markov processes. Note that this is the only part of
this book where a few fundamental results are stated without proof. Including all
proofs would have made the book too long. There are by now plenty of well-
written manuals on stochastic calculus.

The chapter closes with an introduction to interest rate and bond models.

We found our inspiration for this chapter in the book by Lamberton and Lapeyre
[24], as well as in [4] and [29].

In this chapter, we shall always use ¢ to denote time, whether it is discrete
(t=0,1,2,...,T ort € N) or continuous (0 <t < T or ¢t > 0), unlike in Chapters
1-5.

9.1 Fundamental concepts

In this chapter, we consider an investor who can split his assets between two types
of investments: a bank account deposit, with a fixed and guaranteed return (constant

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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interest rate), and a risky investment, which involves, for example, buying shares
on the stock market. We shall mainly be concerned with the simple case where
there is only one type of available stock (except in Section 9.3.10). The price at
time ¢ of that asset will be denoted by S,. We shall present two probabilistic models
for the fluctuations of {S;}, one in discrete time and the other in continuous time.
In our model, the economic agent acts only as an investor, he does not consume.
He is a ‘small’ investor, in the sense that his investment choices have no effect
on the evolution of the price of the risky asset. Moreover, we allow him to buy
an option based on the risky asset. We should also mention that in our models we
neglect transaction costs.

9.1.1 Option

An option is a contract which gives its holder the right (but not the obligation) to
buy (in the case of a call option) or to sell (in the case of a put option) a fixed
quantity of a given asset (which can be a stock, a bond, a currency, a raw material,
...) at a price which is fixed by the contract (called the strike price), at a time (the
exercise time) which is fixed by the contract in the case of a European option, or at
any time between when the contract is signed and when it expires in the case of an
American option. An option is also called a derivative, since its value is derived
from an underlying asset.

In the case of a European call option with exercise time 7', based on an asset
whose price at time ¢ is S;, and with strike price K, the option holder makes at
time T a profit equal to (S7 — K). Indeed, he earns S — K per unit of the asset
by exercising the option if S7>K (buying at price K and selling at the market
price S7), and he neither gains nor loses anything by not exercising the option
if S7 < K. An analogous argument tells us that, in the case of a put, the option
holder’s profit at time 7 is (K — S7)+. The profit of the holder (i.e. the buyer) of
the option is the loss of the seller of the same option. The price of this option, also
called the premium, is supposed to compensate for this loss.

The mathematical theory of options treats two problems:

(a) option pricing, that is, the premium that the buyer of the option pays the
seller;

(b) hedging, that is, what the seller of the option should do with the money
he receives for selling the option, in order to compensate for a loss at
time 7 of (St — K);+ ((K — St)+) in the case of a European call (put)
option.

9.1.2 Arbitrage

One of the basic assumptions which will be needed for our model is the absence
of arbitrage opportunity — it should not be possible to earn money without taking
any risk; in other words, ‘there is no such thing as a free lunch’. This assumption
implies the so-called call—put parity relation for European options:
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Proposition 1.1 If there is no arbitrage opportunity, then the prices C, and Py at
time t of a call and a put option with the same exercise time T and strike price K
satisfy the relation

C,—P=8—Ke "™,

where r is the bank deposit interest rate.

Remark 1.2 Here and below, we assume that the interest rates for depositing and
borrowing money are the same, and they equal the constant r. Of course this assump-
tion is not realistic. This is crucial for our model to be linear, and for us to be able
to deduce the explicit Black—Scholes formula. A generalized Black—Scholes model
which avoids this assumption will be presented in Section 9.3.6.

PrOOF Suppose that the parity relationship is not satisfied, that is, assume that at
time ¢ we have, for example,

C,— P>S — Ke T

(an analogous argument applies to the ‘less than’ case). We will deduce from this
inequality an arbitrage opportunity. At time ¢ we buy one stock (or bond, or ...),
and also buy a put and sell a call. The combination of these operations gives a net
profit of

X, =C, —P —S;.

If X;>0, we deposit X, at the bank (i.e. at rate r) until time T; otherwise, we
borrow —X; at the same rate until time 7.
At time T, either of two things can happen:

1. S7>K. In this case we exercise the call (and not the put) — we receive
K, withdraw the deposit (or repay the loan), so that we end up with a
wealth of

K+ 79, — P, — §,)>0.

2. St < K. In this case we exercise the put (and not the call), and close the
bank account as above, so that we end up with the same wealth as above.

In both cases we realize a strictly positive profit at time 7 without investing any
money at time ¢ — this is an example of arbitrage. O

9.1.3 Viable and complete markets

A market is said to be viable if there exists no arbitrage opportunity.

A market is said to be complete if any asset at time 7 (i.e. any function of
{S;; 0 <t < T}, in particular of Sz, for example (S7 — K)4+ or (K — S;)4+) can
be realized, in the sense that there exists an admissible strategy which, starting
with a given initial wealth at time 0, produces exactly that wealth almost surely
at time 7.
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The notion of an admissible strategy will be made precise below, in both
the discrete and continuous models. It is a self-financing strategy, which follows
decisions based upon past information only. The fair price of a European call
(put) will then be the initial value of an admissible strategy with final value equal
to (S7 — K)+ ((K — S7)+). Such a strategy acts as a hedge for the option, and
is called the replication strategy. It allows the seller to make sure that he does
not lose money (and does not make any profit either), no matter how the market
fluctuates.

9.2 European options in the discrete model
9.2.1 The model

We consider a discrete time model with a single risky asset, whose price at time
t is denoted by S;, t =0, 1,..., T, and a riskless asset whose price at time ¢ is
denoted by R,. We assume that there exists >0 such that

Riy1 = R/(1+r).
For simplicity we take Ry = 1, hence
Ri=(1+r)' 0<t<T.

We assume that Sy is constant, and that there exist i.i.d. random variables &,
1 <t < T, taking their values in the set {d, u}, where 0 < d < u, such that

Siv1 =884+, t=0,1,...,T—1.

Our probability space here is (2, F, P), where Q2 = {d, uy', F=P(Q), and P
is such that the random variables &, 1 <t < T, are i.i.d. with P(§; = d)>0 and
P& = u)>0.

We define the discounted price of the risky asset at time ¢ as the quantity

9.2.2 Admissible strategy
A strategy is an R2-valued random sequence {(X;, Y;); t =0,1,..., T} such that
Fo1=Fo=1{0, @},
Fr=olé,....&L =1

(X;,Y,) is assumed to be F;_j-measurable, for each 0 <t < 7. We say that the
sequence {(X;, Y;)} is predictable.
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The value of the portfolio at time ¢ is given by
Vt(X’ Y) = Xsz + YtSt,
and its discounted value is the quantity

Vi(X.,Y)

t

Vi(X,Y) = =X, +Y,5,.

The strategy is said to be self-financing (with neither addition nor subtraction of
money) if

XiR + Y S = Xt+1Rt + Yt+1St
or, equivalently,
Vier(X,Y) = Vi(X,Y) = Xt (Rig1 — R) + Y1 (Si1 — S0

in other words,
X+ 1S = Xt+1 + Yt+ISt-

This can be rewritten as
Vir1 (X, Y) = Vi(X, Y) = Y1 (S0 — S)).

With the notation AS; = S, — S;_1, Agt = 5, — §t_1, we have the following propo-
sition.

Proposition 2.1 The following three conditions are equivalent:
(i) The strategy {(X;,Yy); 0 <t < T} is self-financing.
(ii) Forall1 <t <T,

!
Vi(X.Y) = Vo(X.Y) + ) (X;AR, + Y,AS).

s=1

(iii) Forall1 <t <T,

t
Vi(X.Y) = Vo(X.Y) + ) VA5,

s=1

Proposition 2.2 For any predictable process {Y;; 0 <t < T} and any determin-
istic initial condition Vjy of the portfolio, there exists a unique predictable process
{X:; 0 <t < T} such that the strategy {(X;, Y;); 0 <t < T} is self-financing and
corresponds to a portfolio with initial value V).
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ProoF The self-financing condition implies that, for all 0 <7 < T,
V(X.Y) =X, + Y5,

t
=Vo+ Y _YAS,,

s=1

which defines X,. Predictability can easily be verified. (]

Definition 2.3 A strategy (X, Y) is said to be admissible if it is self-financing and
satisfies Vi(X,Y) >0, forall 0 <t <T.

Definition 2.4 An arbitrage strategy (X,Y) is an admissible strategy such that
Vo(X,Y)=0and Vr(X,Y) # 0, or equivalently Vo(X,Y) =0and Vr(X,Y) # 0.

9.2.3 Martingales

Definition 2.5 A sequence {M;; 0 <t < T} is said to be adapted if M, is
Fi-measurable, 0 <t < T it is a martingale if it is adapted and, forall1 <t < T,

E[Mtw:t—l] =M, .

Proposition 2.6 Let {M,; 0 <t < T} be a martingale, and {Y;; 0 <t <T} a
predictable sequence. Then the sequence {M(Y),;; 0 <t < T} defined by

M(Y)y = YoMy,

M(Y), =YoMo+ Y Y,AM,, t>1,

1<s<t
is a martingale.
Proor It suffices to note that
E[Y,AM;|Fi—1]1 =Y E[AM;|F,-1]1=0,

where we have used first the predictability of Y and then the martingale property
of M. (Il

Corollary 2.7 (Optional stopping theorem) Let {M;; 0 <t < T} be a martin-
gale, and t a stopping time which is bounded by T, that is, an {0, 1, 2, ..., T }-valued
random variable such that, for all0 <t < T, {t =t} € F,. Then

EM, = EM,.
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Proor It suffices to note that M; = M (Y)r if Y is defined by

Yi=14>-1;, 0=<t=T,

and that if M is a martingale, EM, is a constant (independent of ). (]

Remark 2.8 Although it plays a very important part in the theory of stochastic pro-
cesses, the martingale appears here for only the second time in this book — the first
appearance having been in Exercise 11.5 of Chapter 7. As that exercise shows, there
is a very strong connection between the notions of Markov process and martingale.
Constructing the law of a Markov process is equivalent to solving a martingale prob-
lem, that is, finding a probability distribution under which a large class of processes
are martingales. Martingales also appear naturally in the formulation of rather sim-
ple games. But their introduction becomes really useful when one wishes to prove
difficult results, which is not what we are doing in this book. Martingales have very
important mathematical properties, notably that one knows how to estimate their
fluctuations. A simple but deep result concerning martingales is the optional stop-
ping theorem which we have just proved. At the relatively elementary level of this
book, almost the only the property of martingales which we use is the fact that if
{M;; t > 0} is a martingale, then E[M,] = E[M,], which gives E[M,] since E[ My
is usually known.

9.2.4 Viable and complete market

Theorem 2.9 The market defined above is viable (i.e. there is no arbitrage strategy)
ifand only ifa < 1+r < b.

PrOOF 1t is not hard to show (and we leave it as an exercise) that if 1 4+ r &]a, b],
then there exists an arbitrage strategy.

On the other hand, if @ < 1 + r < b, the probability distribution P* on (€2, F)
such that the random variables &; are i.i.d. with

E*¢&)=1+r

(called the risk-neutral probabiliQ) is equivalent to P (since P*(¢; = a)>0 and
P*(§; = b)>0). But under P*, {S,;} is a martingale, hence by Proposition 2.6,
V(X Y) 1s a martingale for all strategies (X, Y). Consequently 1f Vo(X,Y) =

0 then E* VT (X,Y) = 0. The admissibility condition implies that VT (X,Y)=0
almost surely, hence VT(X ,Y)=0. O

For notational convenience we write ¢ = 1 + r. It is easy to check that

b— _
Prei=a)=7—. P& =b=—
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Theorem 2.10 Ifa < 1 4+ r < b, then the market defined above is complete, that is,
for any Fr-measurable random variable H > 0, there exists an admissible strategy
(X, Y) such that Vy(X,Y) = H. Moreover, forall 0 <t < T,

Rt %
Vi(X,Y) = —E"(H|F).
Rt
Proor If there exists an admissible strategy such that Vr(X,Y) = H, then by

Proposition 2.1(iii), forall 0 <t < T,

H T
= = V(X + D0 VAS,
r s=t+1

From thg same computation as in Proposition 2.6 it follows that, for s > ¢ + 1,
E*(Y;ASs|F;) = 0, hence

~ H
Vi(X,Y)=E" <_R Iﬁ)
T

and also
Rt %
Vi(X,Y) = —E"(H|F).
Ry

Note in particular that H > 0 implies that V;(X, Y) > 0, hence if there exists a
self-financing strategy which produces the above sequence {V;(X,Y); 0 <t < T},
then it is admissible. In view of Proposition 2.2, it remains to show that there exists
a predictable sequence {Y;; 0 <t < T} such that

T
~ H H
ZYSASS=——IE* — .
Ry Ry

Taking first E*(:|F;) and then E*(:|F;_;) in this formula, and computing the dif-
ference between the two expressions thus obtained, we note that ¥; must satisfy

Y5, 1(5’ )=E*<E|f,>—IE*(ﬁ|f,1>,

where H := H /Rt (recall that S‘; = gt_lé,/c), and

c(E*(H|F) — E*(H| Fie D)

t =

Si—1(& — )
It remains to show that Y, is F,_;-measurable (i.e. does not depend upon &).
Write £ := (&,...,&_1). Then the random variable IE*(H|f,)/S, 1 is a
function of the pair (§'~ 1, &).
Write
*(H IFz)

g@E g =

t—1



INTRODUCTION TO MATHEMATICAL FINANCE 213

We have
y, — €8 —EN @G I
& —c
Note that
E* (56" 601Fi-1) = 016" @) — + g b
hence
v (grE &) — g€ @) =5 + (aE " &) — (€, b)) =2 7

& —c
and in both cases & = a and & = b, we have

_ g1 b) — g a)

Y,
! b—a

O

Remark 2.11 The formula above gives the fraction of the portfolio to be invested
in the risky asset, at each time t, in order to produce a hedging strategy. Note the
particular form of the right-hand side, which looks like an ‘approximate derivative’.
In the case of the continuous model of the next section, this will be a derivative.

9.2.5 Call and put pricing

We shall now write the formula for V;(X, Y) explicitly in the two cases of a call
and a put option. Write

b—c
b—a

p= =P*¢& =a),

hence
1 —p =P =b).
In the case of a European call option,

T
Vi(X,Y) = TR (s, I1 ss—K) |7
+

s=t+1

Butforal 0 <k <T —1,

T
P* ( l_[ & = Clka_t_k> = ( Tk_t )Pk(l — P)T_t_k.

s=t+1
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Hence,

T—t

(T— T —1t i
‘/Z‘(Xr Y) =c (T—1) ( k )pk(l _p)T t k(Stk_ K)+,
k=0

in particular,

T
WX )=’y ( ' ) P = p)" T (Sok — K
k=0

=c TE*[(Sr — K)+].

In the case of a European put option,

T—t
(T— T —1t i
V(X Y)=c Ty ( . )pm—p)T HK = Sk
k=0

9.2.6 The Black—Scholes formula

We shall now establish the formulae for the price of an option in the continuous
model which we shall present at Section 9.3, namely the celebrated Black—Scholes
formula, by taking the limit on discrete models. We shall later do the same thing
again by two different methods directly from the continuous model.

Let T be an arbitrary positive real number, and ¢ take its values in the set

1 [NT]

7N7"'5 N

Suppose now (here and below the superscript N is an index not an exponent) that
[N1]
Si=So[]&".
k=1

[N1]
S; = Soexp (Z n;iv) )

k=1
with ,
N N
=lo - —.
M g & N

We assume that the random variables n,lcv take their values in the set {_j_ﬁ’ %}.
This means, in comparison with the previous notation, that

¢V =exp(r/N), a" =exp(r/N —a/v/N), bY =exp(r/N +c/vN).
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The formula for the price of a call option then becomes, if Z,N = ,[fitl] n,’(v ,

E* [(SO exp(ZlTv) - Ke*rT)Jr] ,
while that of a put option becomes

B [(Ke ™" = Soexp(z})), |-
It remains to find the limit law of Zy as N — oo under P*.

Theorem 2.12 IthN Zk ] nk and for each N the random variables {r)k , k>
0} are i.i.d., taking their values in the set {— ﬁ W} with Enk = Ay, and NAy —
A as N — oo, then under P, as N — oo,

ZN = At +o0B, t>0,
where {B;; t > 0} is a Brownian motion (see Definition 3.1 below).

ProOF We know (see [9], p. 180) that if a random variable X admits a moment
of order 3, then for all r € R,

E(exp(irX)) = 1+ irE(X) — —IE(XZ) —i— (E(X3) +8(X,r)),

where |8(X, r)| < 3E(X|?) and 8(X, r) — 0, as r — 0. Hence

2.2
NN . o —3/2
E(exp(irn)) =1+ iriy N +O(N"9),

then

252 [N1]
E(exp(ithN)) = <1 +irky — N + 0(N3/2))

. r’ot
— exp|irit — 2

as N — oco. We recognize the value at r of the characteristic function of the
Gaussian N (At, azt) law, which is the law of At + o B;, since the law of B; is
N(O,1). O

In order to apply this theorem, it remains to compute the expectation of n,lcv
under P*. This last probability distribution is characterized by the identity

exp(nk ) =1,
that is, with p, := ]P’*(n,lcv = —ﬁ), Dy = ]P’*(n,lcv = ;—N),

o

exp <_ﬁ) Pa + exp (j—ﬁ) pp=1
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hence
exp (%) -1 1 —exp (—%)
pa - ’ pb - )
e s M o Ry ey
and

It then follows from Theorem 2.12 that under P*,

2

N o
Zt = —71‘—’—0‘31.

We now deduce the limiting formula for the price of a call option,

+00
Co = (2n)_1/2f (Soe—azT/2+aﬁy _ Ke—rT) e—y2/2dy’
—00 +
and that of a put option,
+o00

Py = (2;1)—1/2[

—00

(Ke_’T - S()e_(rzT/H”*/f")_Ir e_-"z/2dy.

These formulae can be written as follows in terms of the distribution function F
of the centred normalized Gaussian probability distribution N (0, 1):
Co = SoF(d)) — Ke "' F(dy),

Py=Ke T F(—dy) — SoF (—d)),

where
d 1 ) So n rvT + ovT
= 0 — s
! oNT £ K o 2
1 S VT VT
dr, = log 20+ ! _e .
gﬁ K o 2

Observe that the call-put parity formula follows from these expressions, noting
that F(d;) + F(—d;) =1,i =1,2.

9.3 The Black-Scholes model and formula

We now consider a model in which the price of the underlying asset S, € R, varies
in continuous time, € R,. From now on, all functions will be defined on some
subset of a Euclidean space R¥ into R. All the functions we shall introduce will
be assumed to be Borel measurable, that is, the inverse image of any open subset
of R must be a Borel subset of R¥. Recall that the class of the Borel subsets of R¥
is the smallest class which contains all open balls and is closed under countable
union and complementation.



INTRODUCTION TO MATHEMATICAL FINANCE 217

9.3.1 Introduction to stochastic calculus

All random variables and processes below will be defined on a probability space
(2, F, P). The Black—Scholes model stipulates that

S, = Soexp(At + o By),
which by It6’s formula in Theorem 3.4 below is equivalent to
dS[ = ,bLStdt + UStdBt,

with A = u — 02/2, where € R is the drift coefficient and o € R is called the
volatility. {B;; t > 0} is a (standard) Brownian motion.

Definition 3.1 A stochastic process {B;;t > 0} is called a Brownian motion if its
trajectories are continuous, By = 0, and

(i) foralln e N, 0 =tg < t| < ... < ty, the sequence By, B;, — By, ..., B;, —
B;, | is a sequence of independent random variables;

(ii) for all 0 < s < t, the law of B; — By is the Gaussian probability distribution
N, t —s).

We then deduce that the process {log (S;/So); t > 0} has independent incre-
ments (i.e. also possesses property (i) from the definition), and that forall0 < s < ¢,
the law of log(S;/S,) is the Gaussian law N (A(t — s), o>(t — s)). The process {S;}
is called a geometric Brownian motion.

The following proposition states a fundamental property of Brownian motion.

Proposition 3.2 Let t>0, and 0 =t <t} < ... <t} =t be a sequence of subdi-
visions of the interval [0, t] such that sup,_, (t;/ —t;_}) — 0 as n — oo. Then

n

2
> (B — By ) — 1,
k=1

in mean square, as n — 0OQ.

PrOOF We have the identity

But

n n
Var [Z(Bf}! - Br}:ﬂz] =D Var [(Br;: - Br;s,l)z]
k=1 k=1

=2 (=1 )’
k=1
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< 2 sup(f — )

k<n

— 0,

as n — oo. O

This result shows that the trajectories of Brownian motion are very irregular.
Were they differentiable (with an integrable derivative), then the above limit could
not be ¢t but would have to be 0 (exercise). We will, however, define a stochastic
integral of the type

1
/ gDSdBSv t Z 0
0

(which cannot be written as fé ¢s(dBg/ds)ds, since the derivative dB;/ds does
not exist as a function). We shall distinguish two types of stochastic integrals: the
Wiener integral, in the case where the integrand ¢ is deterministic; and the Itd
integral, in the case where the integrand ¢ is a stochastic process.

Let us first construct the Wiener integral. Consider a deterministic function
{f(s); 0 <s < T} such that

/T F(s)ds < .
0
Suppose first that f is a step function, that is,
n
f(S) = Z fkl]tkthrl]
k=1

with 0<fy<t; <...<t, <T. Then a natural definition of the Wiener
integral is

/O f(s)dBs = ka(BtAtk+1 - Bt/\tk)-
k=1

We easily deduce from the properties of Brownian motion that

t
E/ f(s)dB, =0,
0

(o]

n
2
=Y fRU Aty — 1 A

k=1
= [ I F2(s)ds.
0

n 2

Z fk (Bt/\tk+1 - Bt/\tk)

k=1
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The isometry formula

t 2 t
E[(/ f(s)st> } =/ F2(s)ds
0 0

allows us to extend the definition of the Wiener integral from the class of step
functions to that of all Borel measurable and square integrable functions. One can
easily verify that the process

t
{/ f(s)dBs; 0<t < T}
0

is a centred Gaussian process with independent increments, which satisfies

t 2 t
E [(/ f(S)st> :| 2/ f(s)ds, 0<t<T.
0 0

In order to present the construction of the [t0 integral, we need to introduce
the natural filtration of the Brownian motion,

FEFE=0{B;; 0<s<t}VN,

that is, F; is the smallest o-field which makes all the random variables B; mea-
surable, for 0 < s < 7, and which contains the P-null sets of the o-algebra F.
Denote by M?(0, T) the sub-Hilbert space of

L*(Q2 x [0, T], F® B([0, T]), dP x dt)

consisting of equivalence classes of square integrable processes {¢;(w); w € 2, 0
<t < T} such that, for all 0 <t < T, the random variable ¢, is F;-measurable.
We call such a process {¢;} an adapted process.

Our construction of the Wiener integral extends to the It6 integral as follows.
First consider processes of the form

0s(@) =D (@) y 1),

k=1

where ¢y is assumed to be F;, -measurable and square integrable, 1 < k < n. For
such a ¢,

' n
/ @sd Bs = Z(Ok (Bt/\thrl - Bt/\tk) .
0

k=1
We shall make repeated use of the following fact which follows from property
(i) of the Brownian motion and the definition of F; (exercise): for all 0 < s < ¢,
Fs and B, — By are independent. Then

t n
E/ psdBy = ZE(PkE(Bt/\tk+1 — Bing) =0
0 k=1
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and

E [( /0 t sosst>2} =Y E[¢} (Boes — Binn)’]

+2 Z E [W (Bt/\tHl - Bt/\tg) Pk (B[Alk+1 - BtAtk)]
t<k

=Y E(@D( Atipr —t Ali)
k

t
= Ef @2ds.
0

Again the isometry property which we have just established allows us to extend
the It6 integral to all integrands ¢ € M>(0, T).

Theorem 3.3 Forall ¢ € MZ(O, T), 0 <t <T, the Ito integral satisfies

t
E/ QOSdBS = 07
0

E [(/Ol (deBs)z:| = E/OIgofds.

Moreover, the process {fot @sdBs; 0 <t < T} is a martingale, since if 0 <s <,

then
t s
E [/ (prdBr|]:s:| =f @ dB;.
0 0

We shall assume that the It6 integral can be extended to adapted {¢,} which
only satisfy

T
/ @2dt < 00 as.
0

However, for such a {¢,}, the random variable fot @sdB; need not be integrable, and
the three formulae in Theorem 3.3 need not be true. Nevertheless the following
inequality is always valid (exercise):

t 2 t
E[(/ (psst):|§E/ @Xds, 0<t<T.
0 0

We can now establish the celebrated It0 formula:

Theorem 3.4 If ® € C2(R, x R), then, for all t>0,

t
®(t, B;) = (0, By) + / @ (s, By)ds
0

t 1 t
—i—/ @’ (s, By)dBs + —/ @’ (s, By)ds.
0 2 Jo
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Remark 3.5 The term %d);/x is new, if we compare with the formula from standard
differential calculus. Its presence is due to the irregularity of the trajectories of
Brownian motion, and specifically to the result of Proposition 3.2.

ProOF We shall prove the formula for a function ® depending upon x only (and
not upon ¢), the general case being left as an exercise. The formula is correct if
and only if it is correct with ¢ replaced by ¢ A t,,, where 1, = inf{s; |X| > n}.
Hence, it suffices to prove the result for & € le (R) and we will show that for such
a function

t 1 t

d(B,) = ©(0) +/ @' (By)d B + Ef " (By)ds.
0 0

Write #;! = (k/n)t,n € N, 0 < k < n. Then

n
BB~ BO) =Y (@(By ) - DBy )
k=1
n 1 n
= V(B )By =By )+ 5> @ OBy — By )’
k=1 k=1
by the second-order Taylor expansion, with ®} belonging to the interval (B . Bl
(or [By, By 1, depending on how the two quantities compare). It follows from
the isometry formula for the It6 integral that

2
E / ®'(B,)d B, —Zq>(3,k DBy — By )
0 k=1
_IEZf | D' (By) — @'(By)I*ds
L
— 0

by dominated convergence.
We next note that
n
> (@' By ) — @@ (By — By )

k=1

< sup ‘CD”(B,n ) — (@)

Z(Bzu — By )’

k=1

— 0

in probability, as n — oo, since

— 0 and Z(B,A By ) —t.
k=1

sup(@b (By ) — @
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Finally, a variant of the argument in the proof of Proposition 3.2 allows us to show
that

n t
@By By ~ By ) [ B
k—1 k k—1 0

k=1

as n — oo. Specifically, we show both that
n 2
E <Z "(By ) [(Bt;; — By ) — (1 - t,?_l)D -0
k=1
and that
" t
DO By ) — i) f " (By)ds.
k=1 0
O

The above Itd formula generalizes as follows. We define an 70 process to be
a process {X;; 0 <t < T} of the form

t t
X =X+f 1/fsds+/ @sd By, O.1)
0 0

where x € R, and ¥ and ¢ are adapted processes such that

T
f (V| + g |P)dt < oo as.
0

We then have the following result, whose proof is analogous to that of
Theorem 3.4:

Theorem 3.6 If {X,; 0 <t <T} is an Ito process of the form (9.1), and ® €
C'2(R, x R), then, for all t>0,

t
P, X;) = D0, x) —}—/ D! (s, Xy)ds
0
t t
+/ D (s, Xs)%dSvL[ D (s, X5)¢sd By
0 0

1 t
+3 f @ (s, X,)p2ds.
0

We shall in due course need the multidimensional It6 formula: consider an
R*-valued Brownian motion {B,; ¢ > 0} (whose coordinates are k scalar mutually
independent Brownian motions), ,R?-valued and adapted, ¢,R?**-valued and
adapted with

T
/0 (Il I + ||<p5||2) ds < 00 a.s.
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Then if x € RY, the process
t t
X,=x+/ w:ds+/ ¢udB,, 0<i<T.
0 0

is an R?-valued Itd process.
If e Cl’z([O, T] x Rd), we have the It6 formula,

t t
D1, X,) =d>(0,x)+/ @ (s, Xs)ds—i-/ < @ (s, Xy), Ys>ds
0 0

t , 1 t
+ / iq))c(s» XS)» (deBS> + E / tr[cb;/x(ss XS)(pS(p:]ds
0 0

9.3.2 Stochastic differential equations

Let f, g:[0, T] x R — R be such that

sup (1f(,0)+1g(z,0)]) < ooc.

0<t<T

We assume that, for some K >0,

|f(t7x) - f(tv )’)| + |g(t7x) _g(tv y)' = K|x _ylv Vx’y € Rs re [Ov T]
9.2)

Condition (9.2) is called the Lipschitz condition.

Theorem 3.7 Under the above conditions, in particular (9.2), for all x € R, the
stochastic differential equation (SDE)

t t
X;=x —i—[ f(s, Xy)ds —}-/ g(s, X\)dBy, 0<r<T,
0 0

admits a unique solution X € M*(0, T).

PrOOF Denote by F the mapping from M>(0, T) into itself defined by

t t
F(X) =x +f [ (s, Xy)ds +/ g(s, Xs)dBy, 0=<t=T.
0 0

A solution of the SDE is a fixed point of F. But for F to have a unique fixed point,
it suffices that F be a strict contraction for a norm on M2(0, T) to be chosen.
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Applying Itd’s formula to the It6 process F(X), — F(Y), and to the function
D(t, x) = e |x|* (a>0 will be chosen below), we obtain

T
T\ F(X)r — F(¥)7? +a / e\ F(X), — F(Y),[dr
0
T
—2 /0 e (F(X), — FOO)(F (. Xy) — £t Yoy
T
+2 /0 e (F(X), — (V) (gt X,) — g(t, Y)dB,

T
+f e_at|g(tvxt)_g(tv Yl)|2dt
0
We now wish to take expectations; we shall omit the proof of the fact that the

stochastic integral is integrable and has zero expectation. It follows, making use of
the Lipschitz property, that

T
e TE|F(X)r — F()r|? + oF / e~ F(X), — F(Y),[2dt
0

- ]E/()Te—w [2(F(X), — FON)(f(t X)) — £, )
+lg(t, X,) — g(t, Yo’ dt
< E/OTe—w [2K|F(X), — F(Y),| % |X, — Y, + K2|X, — Y,[*] 1.
It now follows from Schwarz’s inequality that

T
ZKE/ e |F(X), — F(Y),| x |X, — Y,|dt
0

T T
< Ef e F(X), — F(Y),|>dt + KZE/ e~ X, — Y, |dt.
0 0

Hence,
T T
(@ — 1)Ef e Y F(X), — F(Y),|’dt < 2K21E/ e~ X, — Y, |ds.
0 0

We now choose @ = 2K?2 + 2, whence
2

T T
2K
E / e CKD B (x), — F(Y),2dt < ————F / e~ CK21 x _y, 2.
0 2K24+1 Jo

O
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9.3.3 The Feynman-Kac formula

Now consider the backward parabolic partial differential equation (PDE)
2 100 20+ 220 1, ) = e, 0
—(t,x X)—(t,x)+ =g~ (x)— (t, x) = c(x)u(t, x),
a1 ox 28 W2 ©.3)
0<t<T, xeR; u(T,x)=h(x), x eR.

We assume that f and g satisfy condition (9.2) and that ¢ and ¢ are continuous
and bounded on R. For each 0 <t < T, x € R, we denote by {Xé”‘; t<s<T}
the solution of the SDE

s

Xot=x +/ fXpHdr +/ g(X:dB,, t<s<T.
t t

Theorem 3.8 Suppose that u € C;’z((O, T) x R) is a solution of the PDE (9.3).
Then u is given by the Feynman—Kac formula,

T
u(t,x)=E [h(xf;‘) exp (-f C(Xg’x)ds>i| .
t

ProoF We apply It0’s formula to the process (X', Y;), with Y, = — [* c(X*)dr,
and to the function ® (s, x, y) = u(s, x) exp(y), and obtain

T
u(T, X7*) exp (—f C(X?x)ds> =u(t, x)
t
T s ou
+ / exp (—/ c(Xﬁ”‘)dr) g (Xéx) a—(S, X5%)d By
t t X

T u t.x
+ (a_ + Lu — cu)(s, X;") exp(Yy)ds,
t N

where

Luts, ) = 10 25,0+ 220 e 5,
dx 2 dx2
It remains to take the expectation, and to exploit the fact that u solves (9.3) in
order to obtain the theorem. (]

9.3.4 The Black—Scholes partial differential equation

‘We now present a first solution to the problems of pricing and hedging a European
contingent claim, through the derivation of a PDE.

Consider a European option, which pays its holder H = h(S(T)) at exercise
time 7. Once again we have in mind the two examples h(x) = (x — K);+ and
h(x) = (K — x)4+. Denote by E; the price of this option at time t, 0 <t < T. Of
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course Er = h(S(T)). Assume for a moment — anticipating the proof in
Section 9.3.9 below — that there exists a mapping

u:[0, T] xRy - Ry
such that, forall 0 <r < T,
E, =u(t,S).
Assume also — this again can be proved, but it is a little more difficult — that
ueC 20, T) xRy),

so that we can apply 1t6’s formula.
Note that

E; =u(t, Soexp(At + o By)),

hence an application of 1t6’s formula from Theorem 3.4 yields
0‘2 82u

+US[ (t S[)dB[

The absence of arbitrage implies that there exists an admissible strategy {(X,, ¥;);
0 <t < T} such that the associated value of the portfolio at the final time is

Vr(X,Y) = h(St).

Then necessarily

VilX,Y)=E, 0<t<T.
Moreover,

VilX,Y)=X:R + Y:5;,

and the self-financing condition in continuous time reads

dVi(X,Y) = X dR, + Y, dS,.
But

dR, = rR,dt

and, using It6’s formula once more, we deduce that

dS[ = ,bLStdt + UStdBt.
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From the above identities there follows a second formula for the differential of E;,
namely

dEI - (FX,R, + //LYISI) dt + UY[SIdB[.

We now use a well-known result in stochastic calculus, the fact that whenever
two Itd processes are identical, the coefficient of d B, and that of dr necessarily
coincide.

Hence, we have first

O'Y[SI—US[ (t S[)
or in other words
ou
Yt = _(t, Sz)
0x

(we have just identified the hedging strategy), and second

282

rX;R, + nY, S = (t S+ MSI (f S+ _St (t S).

But we already know that

_ Ou . 5)
- ax s Ot )y
from which we deduce, thanks to
X R +Y:S: =ul(t,S),
that
~1 ou
X; =R |u(t,S)—8—@S8)).
0x

Hence, the above relation becomes
o2 2,
t a 2
u(T, St) = h(S7).

0 0
S + 1St ) + = SPE (1, S) = rut, S)),
ot 0x

A necessary and sufficient condition for these relations to hold almost surely is
that u is a solution of the parabolic PDE

o2x2 3%u

Ry 2(t,x):ru(t,x), ©.4)

0<t<T, xeRy; u(T,x) =h(x), x e Ry.

(t X) +rx—(t X))+ ——
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9.3.5 The Black-Scholes formula (2)
Recall that . .
S; = Sp + u/ Seds + O’/ S.d By.
0 0

Define
w—r

Bt* = B[+ t.

Then , ,
St=So+r/ Ssds—i—o/ SsdB;.
0 0

Now let P* be a probability on (€2, F) such that {B;"; ¢ > 0} is a Brownian motion.
Such a probability exists, and we shall see below that it is equivalent to the prob-
ability P (under which {B;} is a Brownian motion).
Note that
d(R'S,) =0 R 'S,dB},

hence the discounted price S; = R; IS, is a martingale under P*, which again is
interpreted as the risk-neutral probability .
It then follows from the Feynman—Kac formula (Theorem 3.8) and equation
(9.4) that
u(t, x) =E* [e" T Oh(Sr)|S, = x]

or, in other words,
E =u(t,S) =E*[e" T h(Sp)IS ],

and in particular
Eo = u(0, So) = E* [e " h(Sp)].

Since under P* the law of log(S7/Sp) is the probability distribution N ((r —

%Z)T, 02T), we obtain in particular the formulae for Cy and Py which we previ-
ously obtained in Section 9.2.6.

9.3.6 Generalization of the Black—Scholes model

In the case of a call, we note that 4’'(x) > 0, and we expect that
0
Mt x) >0.
ax

Clearly if the price of the underlying asset rises, the price of the option rises; hence
we expect that ¥, > 0. Note that these inequalities are reversed in the case of a
put !

On the other hand, there is no reason why the part X, of the portfolio invested
in the riskless asset must be positive or negative (i.e. a deposit or a loan), and
the assumption that the interest rate is the same for the two cases is completely
unrealistic.
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Suppose that a deposit attracts an interest rate »*, while the loans are subject
to an interest rate r~. Writing

we have, in the case of a self-financing strategy, with the notation X;” = max(0, X,),
X, = max(0, —X,),

dV, = (X' rtR — X, r~ R )dt + Y,dS,.

If we follow the same argument which in Section 9.3.4 led us to the Black—Scholes
PDE, we see that we again have

ou
Yt = _(t, St)»
ox
and this time

ou
X;"R;" = (u(, ;) — Sta(f, S+,
o ou
X, R =@, S) — Sta_(f, S))—,
X

from which we deduce the nonlinear PDE

ou o2x? 9%u _ au
E(I’x)—i_ 2 W=H(r+’r 7x7u(t7x)5 g(tvx)>;
u(T,x) = hx),

with H(a, b, x,y, p) = a(y —xp)+ —b(y —rp)-.

9.3.7 The Black—Scholes formula (3)

We now ask a question which is a little more general than the preceding one. What
is the fair price of an option that pays its holder the amount H (> 0) at time 77
Assume that the random variable H is Fr-measurable, where again, up to zero
measure sets,

Fi=0{Bs; 0<s <t} =0{S;0=<s <t}
A particular example is the case where
H = h(S7),

which notably covers the cases of a European call or put, but we shall also see
below other types of options which are not of this particular form. We shall be
guided in this section by what we have done in the case of the discrete model, and
in the previous sections.
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We phrase the question as follows: find V) and a self-financing strategy {(X;, ¥;);
0 <t < T} such that
T T
Ve v =Vo+ [ Xar+ [ vas,
0 0
=H.
Again R, = ¢"', and we define the discounted value of the portfolio at time ¢:
VX, V) = R7Vi(X,Y) = X, + ¥,
L

where 1’7, = R'Y,S; is the discounted value of the part of the portfolio which is
invested on the stock. Then

17: = ‘7t - X;.
Moreover,
dVi(X,Y) = —rV,dt + R 'V,

= —rV,dt +rX,dt + R”'Y,dS,

= —rY,dt + R'Y,dS,.
But

dS; = uS;dt + 0 S;dB;,

hence

d\7, =(u— r)17,dt + a?,dB,.

Finally, define

Then
dV, = o Y,dB},
that is,
T ~
Vi=e'TH — of Y,dB?.
t

Now define P* to be the probability on (2, F7) such that

{(Bf; 0<t<T}
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is a P* Brownian motion. We suppose that
E*(H?) < co.
Under this assumption, we can show easily that
T ~
E*/ |Y:|dt < o0,
0
hence in particular
V, = e TEN(H| ),
that is,
E =V, =e"TTUENH|F),

from which we again deduce the Black—Scholes formula for the prices of the
European call and put. -

What about the hedging strategy? Under P*, {V;} is a square integrable mar-
tingale which is adapted to the filtration }'tB*. A theorem due to Itd tells us that
this implies the existence of a unique Z € M>(0, T) such that

t
V,=Vo+/ ZdBY, 0<t<T.
0

Then

R/ Z

Y t = il .
o S[

In the case where H = h(St), we have the Black—Scholes PDE and Y; can be
computed in terms of the derivative of its solution. In more general cases, the
computation can be done (but not in a very explicit way!) with other tools from
stochastic calculus, in particular Malliavin’s calculus.

Let us close this section with two classical examples of options which are not
of the form H = h(Sr).

Example 3.9 Barrier call option This is a contingent claim which at exercise
time T pays

H = l{supogsr S,<ﬂ](ST - K)+,

in other words it pays the same as a European call, except that the holder is allowed
to exercise his option only if the stock price of the underlying asset has never reached
the barrier 8 between time 0 and time T.

Example 3.10 Asian call option This is an option which at exercise time T pays

1 T
H:(—f S,dt—K) .
T Jo .
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9.3.8 Girsanov’s theorem

The risk-neutral probability P* which we have introduced above may seem mysteri-
ous. In fact it can be deduced from the model probability P by Girsanov’s theorem.
We shall establish a simplified version of Girsanov’s theorem, due to Cameron and
Martin, which will be sufficient for our purpose.

We first prove the following lemma.

Lemma 3.11 A continuous process {B,; 0 <t < T} is a Brownian motion if and
only if, foralln, all0 =ty <t; < ... <t, <T,uy,...,u, € R,

n l n
Eexp |:Z Uy (B,k — B,kl):| = exp |:§ Zui(z‘k — tk_l)] .

1 1

ProoOF The necessity of the condition follows from the fact that if {B,} is a Brow-
nian motion, then the law of the random vector (B, B;, — B, ..., B,, — B;,_,)
is the Gaussian probability distribution N (0, A,), where A, is an n x n diagonal
matrix whose kth diagonal equals #; — fx—1.

Sufficiency follows from the fact that if that formula is true, then the law of
(B, By, — By, ..., By, — B;,_,) is the Gaussian probability distribution N (0, A,),

forallm,0 <t <...<t,1 <t,, hence (i) and (ii) in Definition 3.1 hold. ]

Theorem 3.12 Let {B;; 0 <t < T} be a Brownian motion defined on the proba-
bility space (2, F,P). If f € L*(0, T),

t
Bt*th—/ fs)ds, 0<t<T,
0

t t
Z, =exp <f0 f(s)dBs — %fo f2(s)ds>,

and P* is the probability on (2, Fr) defined by

=77,
dP T

then {B/; 0 <t < T} is a Brownian motion under P*.

ProoF In view of the preceding lemma, it suffices to show that, for all g €

L0, T),
T 1 T
E* |:exp (/ g(t)dB;‘>:| = exp (—f gz(t)dt) )
0 2 Jo
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T
E* |:exp (/ g(t)dB,*)]
0

T 1 T
= E"exp {/{; [f (@) +g@®)]dB; — > /o 2f(@)g() + fz(f)]dl}

1T,
= exp (5/0 g (t)dt).

But

9.3.9 Markov property and partial differential equation

In order to deduce the so-called ‘Black—Scholes PDE’ in Section 9.3.4, we assumed
that, at each time ¢, the price E; of the option is a function of the price S; of the
underlying asset, that is, that E, can be written as

Et = M(t, St)
We have seen in Section 9.3.7 that
R
E = —~E*(H|F).
Ry
Why and under which conditions is this conditional expectation a function of # and
S; only?

Definition 3.13 Ler {X,; t > 0} be a stochastic process. {X;} is called a Markov
process if, for all 0 < s < t, all f € Cp(R),

E[f (X)IFX] = ELf(X)|X,],

A
where .7-'5X =0o{X,; 0 <r < s} (up to zero measure sets).

Note that (again up to zero measure sets) F; = o {Ss; 0 < s < t}. We have the
following proposition.

Proposition 3.14 Under P*, {S;; 0 <t < T} is a Markov process.
Proor If 0 < s < 1,

2
S, = Ssexp|:<r - %) (t—s)+o(B — BS*):|.

Hence
2

E* [f(S)IFs] = «/%/ﬂ‘%f(& exp|:<r - %) (t —s)+ Ux\/:})e"‘z/zdx

=E*[f(S)ISs],

since S; is F; measurable, and B; — B/ is independent of F; under P*. O
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Using the Feynman—Kac formula, we can deduce the PDE satisfied by the
function u(z, x) from the formula

E, =E* [e"Th(Sp)IS:].

We can now ask ourselves whether in the cases of the barrier option and the Asian
option, the computation of the price of the option can still be done by solving a
PDE.

PDE associated with the barrier option

Consider again the barrier call option from Example 9.3.9. Define
P = Sinzy.

where 74 = inf{t < T; S, > B}, and

0, if x <K,
h(x)=3x—K, ifK<x<§8,
0, if x > B.

Then, in the case of the barrier call option, the random variable H can be rewritten
as

H = h(SP).

By an argument analogous to that in the proof of Proposition 3.14, we show that
{Stﬂ ; 0<t <T} is a Markov process. Under the risk-neutral probability, both
R;'S, and R,_Alrﬁ Sinr are martingales, and the arguments from Section 9.3.7
again lead to the formula

R
E, = E* [—’h(sﬁnsf].
Rt
Note that, for 1 > 74, E; = 0. In other words, if E; = u(z, S,’S), u(t, p) =0. The
PDE becomes
o2x? 9%u
2 09x?
u,)=0,0<t<T; u(T,x)=hx), O0<x<§p.

0 0
8—?(l,x)+rx8—u(t,x)+ (t,x) =ru(t,x), O0<t<T, 0<x<§;
X

PDE associated with the Asian option
Write U, = fot Ssds. Then in the case of the Asian option (Example 3.10),

H = h(Ur),
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now with h(x) = (T~'x — K),. It is not too hard to check that {U,;; 0 <t < T}
is not a Markov process. However, the two-dimensional process {(S;, U;); 0 <
t < T} is a Markov process, hence

R R
Et Z]E* <—IH|]:t> :E* (_IH|St1 UI) ZM(Z, StsUl)s
Ry Rt

where {u(t,x,y); 0<r<T, x>0, y>0} solves the PDE

o2x2 3%u n ou n ou « ) =0
— 4+ rx—F+x——ru|(t,x,y)=0,
2 a2 T Ty Y

0<t<T, x,y>0; u(T,x,y) = h(y),

Sxy) +
— i, x,
ot Y

x>0, y>0.

9.3.10 Contingent claim on several underlying stocks

So far we have only considered options based upon a single underlying risky asset
(e.g. a stock). There do exist contingent claims based upon several underlying
assets. A first example is the so-called spread option, which is written on the
difference between two stocks. In other words, H = (Sk — %), where S' and
§? are the prices of two different assets. A second example is the basket option,
such as an option on an index (e.g. the Dow Jones). A put option based on a
portfolio is one way to insure a portfolio. Given a portfolio consisting of a; shares
of stock i priced at S at time #,i = 1, ..., d, a put with payoff (K — Y /_, a; S;)Jr
guarantees that the portfolio can be sold at least at the price K at the exercise time.

Suppose that, in addition to the riskless asset, whose price is R, = ¢’ at time
t, the market includes d risky assets, whose prices are S,i, i=1,...,d, and which
fluctuate according to the model

d
S| = wiSidt + 8 Y oi;dB!, 1<i<d, 1>0,
j=1

where B/, ..., B are d mutually independent Brownian motions. An applica-
tion of Itd’s formula allows us to check that the unique solution of the above
multidimensional SDE is

d
S = S} exp xit+Za,~jB/ ., l<i<d, t>0,
=1

: Ivd 2
with A; = w; — 5 ijl o
The first question to raise, in order to generalize the Black—Scholes theory to
this situation, is that of the existence of a risk-neutral probability P* equivalent to
IP, under which the processes of the discounted prices {¢™"'S, = e™"' (S,l, e Std );
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t > 0} are a d-dimensional martingale. This holds provided we have a d-dimensional
P*-Brownian motion {B;"; t > 0} such that

d
dS; =rSidt+ Sy o;dB/’, 1<i<d t>0.
j=1

Write r for the vector in R? whose entries are all equal to r, and

M1 o1 s Old

Wa g1 r Oad
The second way of writing the S,i is equivalent to
(r—p)t=3%(B—B), t=>0.
We are thus led to formulate the following crucial assumption:
Y. is invertible. 9.5)

Under this assumption, we deduce from the previous relation between B; and B/
the formula

B =2 '(u—v)t +B;, t>0. 9.6)

It follows from a natural generalization (whose proof is left as an exercise) of
Girsanov’s Theorem 3.12 that if

exXp b)) )22 r BT> b)) M r 1 s
then {B,*, 0<r< T} is a d-dimensional Brownian motion (1e {Btl}, ey {Bt }

are scalar mutually independent Brownian motions) under P*.

Using the same arguments as in Section 9.3.7, we have that the price E; of the
option at time ¢ is given by the formula (which is formally identical to that in the
scalar case)

E = ¢ "TTUENHI|F),

hence in particular
Eo=e¢ "TE*H. 9.7)

If H = h(Sy), then we have Ey = ¢ "TE*h(Sr). For t > 0, denote by log §; the
vector (log S}, ..., log S,d ). Under P*, the probability distribution of log(Sr) is the
multidimensional Gaussian distribution N (log(Sp) + (r — 1T, ©3*T), where

2
- d
2= (57, .., 57), with s7 = 35, 0.
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The R?-valued process {S;; t > 0} is a Markov process, hence in the case
where H = h(Sr), there exists a function u : [0, T] x RY — R such that

E[:M(t, SI)v OSIST

We show by an argument analogous to that in Section 9.3.4 that u solves the
following parabolic PDE in RZ, with a = £ X*:

1 ¢ 9%u
(t, x) + 3 ”Z_:l xixjaijm(l,ﬂ =ru(t, x),

ou d u
R t’ l_
rat( x)—i—riz:l:x o

i

0<t<T, xeR%; u(T,x) = h(x), x € R%.

Moreover, the hedging portfolio is determined by the relation

0
=2@S)., 1<i<d 0<t<T,
Bxi

v/
in the sense that Y/ is the number of shares of stock i that this portfolio should
contain. The value of the portfolio is then

d
Vi(X,Y) = X,R, + ZY;S;, 0<t<T.
i=1

9.3.11 Viability and completeness

The notions of viable and complete market are defined as in the discrete model
case, except that now a complete market is such that with each Fr-measurable
and square integrable random variable H > 0, we can associate an initial wealth
Vo and an admissible strategy (X, Y) such that

T d
H=Y, +/ XidR, + ) _Ylds].
0 i=1

The restriction that H is square integrable is useless in the case of a discrete model,
since in this model 2 is finite, hence all random variables are bounded.
We have the following fundamental result.

Theorem 3.15 The market is viable if and only if there exists at least one risk-
neutral probability P* equivalent to P. The market is complete if there exists exactly
one risk-neutral probability P* equivalent to IP.

The fact that existence of a risk-neutral probability implies viability is proved
as in the case of the discrete model. The rest of the proof of the theorem can be
found, for example, in [24] (see Theorems 2.6 and 3.4).
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9.3.12 Remarks on effective computation

We have associated a PDE with each of the options we have considered so far.
(However, in the case of the Asian option, the price for this was a doubling of the
dimension, which is not good news for the numerical solution.) Can we produce
a probabilistic formula for the price of the option in case of the model considered
in Section 9.3.67 The answer is yes, using the theory of ‘backward SDEs’; but
the probabilistic formula is not very explicit. Let us now discuss the effective
computation of the price of the option.

Explicit formulae

A first approach, which can only be used in the simplest cases (these include almost
all the examples we have considered so far) involves exploiting the knowledge of
the law of the random variables which we consider. In the case of a European call
option we use the formula

Co = SoF(d)) — Ke "TF(dy)

(see the end of Section 9.2.6), where F denotes the standard normal distribution
function N (0, 1), which is available to very good precision in Matlab or whose
numerical computation is very easy to program. Concerning the barrier option, we
can use the knowledge of the law of the random vector (supy.,.r S;, S7); and
concerning the Asian option, progress has recently been made towards identifying
the law of the random variable Ur.

Monte Carlo method

A second method, with a much broader domain of application, is the Monte Carlo
method, presented in Chapter 1. Recall that in order to reduce the variance (and
hence accelerate the convergence) one should, provided one can use a call-put
parity formula, compute the price of the put by Monte Carlo, rather than directly
that of the call.

The Monte Carlo method is to all intents and purposes the universal method
for pricing options in banks. It is particularly well suited for basket options with
several tens of underlying assets.

Note that a variant of the Monte Carlo method involves simulating a binomial
tree (possibly with large N; see Section 9.2.6).

Numerical solution of a PDE

A final method involves computing an approximate solution of the PDE by a
numerical scheme, such as the finite difference method. Note that such a scheme
implies the discretization of both time and space (and replacing R, by a bounded
set). These numerical methods have been developed by specialists in scientific
computation for many other applications. Their main limitation is the dimension
of the spatial variable, in the case of a model with several underlying assets.
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9.3.13 Historical and implicit volatility

The use of the above models for pricing an option requires knowledge of very
few parameters (it should be noticed that the drift parameter x in the model for
the fluctuations of S, has disappeared). The interest rate r can be assumed to be
known.

On the other hand, the parameter o — the volatility — is not known a priori.
One can try to estimate it from past fluctuations; this is the so-called historical
volatility .

But since there is a market for options, where prices are regulated by the
law of supply and demand, one can invert the Black—Scholes formula in order to
deduce a value for o; this is called the implicit volatility. It should be noted that
inverting the formula for different options on the same underlying asset, with the
same exercise time 7, but with different strike prices, produces different implicit
volatilities — this is the so-called smile. This fact contradicts the Black—Scholes
model, which is too simple to reflect the full complexity of the markets. On the
other hand, its simplicity leads to explicit and intuitive formulae which are very
popular with practitioners.

9.4 American options in the discrete model

Unlike the European option, an American option can be exercised at any time
between the date of signature of the contract (time 0) and the expiry of the contract
(time T'). Write h(S;) for the payoff of the option, if it is exercised at time . In
the case of an American call, #(x) = (x — K)4; and in the case of an American
put, h(x) = (K —x)4. Let Z, = h(S;), 0 <t < T, and denote by A, the price of
the American option at time 7, 0 <t < T. In particular, A is the premium which
the buyer of the American option must pay upon signing the contract (at time 0).
We again assume that

Ri=(1+r), 0<t<T,

and we define the discounted values

Zt - - At = .
(14 r) (1 +r)

Let us first try to compute the values A, by means of a backward recurrence.
It is first of all clear that
AT = ZT.

At time T — 1, the option holder has the choice between exercising immediately
and retaining the option in the hope of making make more profit at time 7. Hence,

1
Ar_1=Zr_1 v ——E*(Z7|S7—-1).
T-1 T11+r(T|T1)
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By the same argument, for all 0 <t < T,
A1 =Z 1V ! E*(A;1S;-1)
—1 = £i—1 1+r 1191—1).
In terms of discounted values, we get

Aot = Zo o\ VERA|S.), 0<1<T. ©8)

{ Ar = Zr,
Definition 4.1 A supermartingale (submartingale) is an adapted sequence {M,;
0 <t < T} such that, forO <t <T,

EIM;|Fio1]l < (Z)M;—y.

Proposition 4.2 The sequence {A,;; 0 <t < T} is a P*-supermartingale. It is the
smallest P*-supermartingale which is greater than or equal to the sequence {Z;;
0<tr<T}

PrOOF The supermartingale property and the fact that the sequence {A,} is big-
ger than the sequence {Z,} follow directly from (9.8). Now let {M,} be another
P*-supermartingale which is bigger than {Z:}. Then My > Zr = Ay and, if M, >
A~[’

M,y = B (M| Fi—y) = E*(A|Fi-),

hence also M,_, > Z,_,, consequently
M,y > Z,1 VE*(A|Fo) = Ay

O

We now need to describe the smallest supermartingale bigger than a given
adapted sequence.

9.4.1 Snell envelope

Recall that a {0, 1, ..., T'}-valued random variable v is called a stopping time if
foral0<r<T,
{v=t}e F.

Given an adapted random sequence {X;; 0 <t < T} and a stopping time v, the
stopped sequence {X;.,; 0 <t < T} is again adapted. This follows from the fact
that v is a stopping time if and only if {v <t} € F;, for all 0 <t < T. We have
moreover the optional stopping theorem:

Theorem 4.3 If {M;; 0 <t < T} is a martingale (supermartingale), then {M;,,;
0 <t < T} is also a martingale (supermartingale).
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ProoF It suffices to observe (in the notation of Proposition 2.6) that
My =MY),, 0<1=<T,

if ¥; = 1y<yy. Since {t < v} = {v <t — 1}, the sequence Y is predictable, and the
result for martingales follows from Proposition 2.6. The same argument, exploiting
the positivity of Y, yields the result for supermartingales. (I

Given an adapted sequence {Z;; 0 <t < T}, we wish to study its Snell enve-
lope, that is, the smallest supermartingale which is bigger than Z. This is the
sequence {U;; 0 <t < T} defined by

Ur="2r,
U =2 VEU|F), 0=<t<T.

Note that when U;>Z;, U; = E(U,+|F;). This remark can be formalized as
follows.

Proposition 4.4 The random variable defined by
v=inf{0 <t < T|U; = Z;}
is a stopping time, and the stopped sequence {U;n,; 0 <t < T} is a martingale.
PrOOF Note first that
fv=t}={Uo>Zo}N---N{Ui1>Z: 1} N {U; = Z;} € F;.
We again write Y; = 1<y}, Uiay = U(Y),. Then
UX)ir1 —UX)e = Y120y (U1 — Uy),

and on the set {t + 1 < v}, U, = E(U;+1|F;), hence E(U(Y);+1 — U (Y)¢|F;) = O.

]

Denote by 7; the set of stopping times which take their values in the set
{t,t +1,...,T}L
Corollary 4.5 We have

Uo = E(Z,|Fo) = sup E(Z:|Fo).

€Ty

Proor From Proposition 4.4, {U.,,} is a martingale, hence
Up = E(Ur | Fo) = E(Z,|F0).
If © € 7y, from Theorem 4.3, {U.,.} is a supermartingale, hence

Up = E(Unnc|Fo) = E(Z:|Fo).
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Corollary 4.5 generalizes as

Ui = sup E(Z|F;) = E(Z,, | F0),

teT;

if v, = inf{s > ¢t|U; = Z;}. An optimal stopping time is a stopping time which
satisfies the same optimality property as established in the corollary. The next
theorem says that v is the smallest of the optimal stopping times.

Theorem 4.6 The stopping time v is optimal if and only if the following conditions
are fulfilled:

(i) Z,=U,;
(ii) {Uipy; 0 <t < T} is a martingale.

Proor Conditions (i) and (ii) imply Uy = E(Z,|Fp), hence optimality of v accord-
ing to Corollary 4.5.
Suppose now that v is optimal. Then

Uy = E(Z,|Fo) < EU,|F0),

and since {U.,,} is a supermartingale, E(U, | Fy) < Uy, hence E(U,|Fy) = E(Z,|Fo)
= Uy, consequently since U is bigger than Z, U, = Z,,, which is condition (i).
Again, {U.,,} is a supermartingale, hence

Uo = E(Uiav|Fo) = E(U,IFo),
but since the two extreme terms coincide, we have
EUiavlFo) = EU, | Fo) = EEWU, | F)|Fo).

Since, on the other hand, U;,, > E(U,|F;), we have the identity U, ., = E(U, |F;),

from which (ii) follows. U

9.4.2 Doob’s decomposition

Proposition 4.7 Any supermartingale {U;; 0 <t < T} can be uniquely written in
the form
U =M —C,

where {M;; 0 <t < T} is a martingale and {C;; 0 <t < T} is an increasing
predictable sequence such that Cy = 0.

Proor We must have My = Uy and Cy = 0. Moreover,

Un—-U =My —M —Ci 1 +C,
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hence conditioning upon F;,

EWU|F) — U = —Ci1 + Cy,
and C;41 > C;. Furthermore,

M1y — My = Uy — E(Ui1|F0),

hence M; = E(M,+1|F;). O

Proposition 4.8 Let {Z;; 0 <t < T} be an adapted sequence whose Snell envelope
is Uy = M; — C,. Then the largest optimal stopping time is given by

Vmax = inf{t < T; C,11 # 0}.

PrOOF The fact that vp,, is a stopping time follows from the fact that {C.} is
predictable. Since C; = 0 for 1 < vy, We have

U'Avmax = M'/\Vmax ’

hence {U.ay,,,} 1s @ martingale. From Theorem 4.6, optimality of vyax Will follow
from the identity U, = Z Write Y; = 1=t}

Vmax Vmax *

T-1

UVmax = ZYIUI + YTUT
t=0

T-1
=) Yimax(Z, BUi|F) + YrZr
t=0

T—-1
= Z Y, Z, + YrZr
t=0

zZ

Vmax ?

where we have used the following facts: E(U,y(|F;) = M, — C;4; and, on the
set {Y; =1}, C; =0 and C,11>0, hence E(U;11|F;) = M; — C;41 < U, which
implies that U, = Z,.

It remains to show that there is no optimal stopping time v such that v > v«
and P(v>vy,x)>0. Indeed, that would imply that

E(U)) = EWM,) — E(C)) = E(Uy) — E(C)) < Eo),

which would prevent {U.,,} from being a martingale. |
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9.4.3 Snell envelope and Markov chain

We now specify the Snell envelope in the Markovian case. Let {X;; 0 <t < T}
be a homogeneous E-valued Markov chain, where E is a finite set, with transition
matrix P = {Py,; x,y € E}. We assume that, for0 <t < T, F;, =o{Xo, ..., X;}.
The following proposition is a consequence of the above results.

Proposition 4.9 Let {Z;} be a sequence defined by Z; = (¢, X;), with ¢ : {0, 1,
..., T} x E — R. Then the Snell envelope {U,} of the sequence {Z;} is given by
the formula U, = u(t, X;), where the function u is defined by

u(T,x)=v(T,x), x¢€kE,
u(t,x) =y, x) vy Pyut+1,y), xe€E 0<r<T.
5

In practice, to determine the stopping time
V= lnf{t, U[ = Z[},

one might compute the solution u of the backward recurrence from Proposition
4.9, and stop at time v = inf{r < T; u(t, X;) = ¥ (¢, X;)}.

9.4.4 Back to American options

By Proposition 4.2, the discounted price {A,} of the American option is the P*-Snell
envelope of the sequence (Z,= A +r)"h(S,) = Rt_lh(S,)}. We know (general-
ization of Corollary 4.5) that

A; = sup E* (R, ' h(S\)|F),
veT;

hence

A; = R, sup E*(R; ' (S,) | F).
veT;

From Doob’s decomposition, A, = M, — C,, with {M,} a P*-martingale and C,
increasing, predictable and null at 0.

Since the market is complete, there exist an initial wealth Vj and a self-financing
strategy {(X,, Y;)} such that V7 (X, Y) = Ry My, hence Vy(X,Y) = My, and con-
sequently, for all 0 <t < T, V,(X, Y) = M,, since both are P*-martingales. It
follows that A, = V,(X,Y) — C; and A, = V,(X,Y) — C;, where C; = R,C;. An
optimal exercise time t satisfies A; = h(S;). It must also satisfy 7 < vy =
inf{t; C;41 # 0}, since by exercising the option at time vy, its holder earns
Aoy = Vi (X, Y), and with the strategy {(X, Y)} his portfolio is worth strictly
more than the option at times vax + 1, Vmax + 2, ..., T.

One can also check that if the option holder exercises it at a non-optimal time,
the seller makes a strictly positive profit.
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9.4.5 American and European options

Proposition 4.10 Let A, denote the price at time t of an American option which
pays Z, if exercised at time t, and E, the price at time t of a European option which
pays Zr at the exercise time. Then A; > E;, 0 <t < T. If, moreover, E; > Z, for
all t, then E; = A; for all t.

Proor The first identity follows clearly from the martingale (supermartingale)
property of {E;} ({A;}) under P*. If E, > Z,;, {E,} is a P*-martingale (hence also
a supermartingale) which is greater than {Z,}, hence also greater than {A,}, by
Proposition 4.2. (]

Corollary 4.11 In the case of European and American calls with the same T and
the same strike price K, on the same underlying asset with price S, at time t,
At=Et,0§t§T.

ProorF We have Z, = ($; — K)+ and
E; = R{'E* (St — K)4|F) = E*(Sr — R;'K|F) = 5, — R; 'K,

hence

R;
Et>St__KZS[—K,
Rt

but also E; > 0, hence E, > Z,. It remains to apply Proposition 4.10. (]

This property is not satisfied by a put or a call on an asset which distributes a
dividend.

9.4.6 American options and Markov model

Consider again an American option which pays Z;, = h(S;) if exercised at time
t, and suppose now that {S;; 0 <t < T} is a Markov chain. Then the price A,
can be written in the form A, = u(¢, S;). Write ii(z, x) = Rt_lu(t, x) and A(t, x) =
R ]h(x). It follows from Proposition 4.9 that

At x) = h(t,x) vV ) Poyd(t+1,y),
y

from which we deduce the recurrence formula

u(t+1,y)

1+r ©9)

u(t,x) =h(x) vy _ Py
g

An optimal exercise time is defined by

v=inf{t < T; u(t,S,) = h(S,)}.
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9.5 American options in the Black—Scholes model

The study of American options in the Black—Scholes model requires sophisticated
mathematical tools. We shall describe the associated PDE as a limit of the formulae
in Section 4.6.

Let us rewrite formula (9.9) in the framework of Section 2.6, with the following
changes of variable:

gx) =h(e"), v, x)=ul(t,e").

We get
1
v(t—ﬁ,x>=g(x)Ve—r/N<pfv<t,X+%+j—ﬁ>
wrta (rr - 7))
_v 1x - - T == bl
P N~ UN
with
o 1 o
P (n" N) 2 4N
1 o
N =IP’<17N = —i> =-+-2_+ o).
P CTTUN) T2T AN
Define

(ANU)([, x)e_"/N (pﬁv (t,x+ L —l— L) +pyv (t’_x_i_ L _ L)) .
N N N JN

Then (9.10) can be rewritten

<v <t — % x) — g(x)) ((ANU)(t,x) —v (t — % x)) =0.

If we assume that v is sufficiently regular, we get after multiplication by N, with
the help of an expansion, that as N — oo,

N [(szv)(t,x) . (x - %x>:| N

2

ov o ov 2 52
Av(t, x) = g(t,x) +\r—— a(t,x) +

v
B Tﬁ(t,x)—rv(t,x).
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Then the price of the American option is
A =v(t, log$y),
where v is the solution of the variational inequality
v(t, x) > g(x),
Av(t,x) <0,

(v(r, x) — g(x)Av(t, x) =0,

and an optimal exercise time for the option is given by the stopping time

v =inf{t < T; v(t, log §;) = g(log S,) = h(S,)).

9.6 Interest rate and bonds

So far we have assumed that the interest rate is a constant (both deterministic and
constant in time). Such an assumption is reasonable when dealing with stocks and
options on stocks, but not with bonds and options on bonds.

By a zero-coupon bond we mean a security which pays one dollar at the exercise
time 7. We denote by O, r the value at time ¢ of this security.

9.6.1 Future interest rate

The interest rate on a loan depends on both its issue date ¢ and its maturity 7. A
person borrowing one dollar at time 7 must repay R’ dollars at time 7. In the case
of the constant interest rate of the Black—Scholes model, we would have

RY = exp[(T — 1)r].

More generally, in a deterministic framework, where all quantities {R%.; 0 <t < T}
are known, the absence of arbitrage opportunity requires R to satisfy

Ry, =R/R}, YO<t<u<T.

From this relation, together with R; = 1 and the continuity of R, we deduce that
there must exist a function ¢t — r(¢) such that

T
R} = exp (/ r(s)ds), Vo<t <T.
t

Consequently, we must have

T
O;. 7 =exp <—/ r(s)ds) .
t
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9.6.2 Future interest rate and bonds

Writing R, for R?, we now assume that

t
R, =exp (/ rsds) ,
0

where {r,; t > 0} is a stochastic process which is adapted to the natural filtration
{F:; t = 0} of a Brownian motion {W;; t > 0} (i.e. up to zero measure sets, F; =
o{Ws; 0 <s <t}). r; is called the instantaneous rate.

We shall assume that there exists a probability P* equivalent to P under which
O = (R)™"0;,4,0 <t <u,is amartingale, for all 0 < u < T. Since O, , = 1,
Ou,u = (R,)™!, this assumption implies that

O~t,u =E* (GXP |:_/ rsd5:| |-7:t> s
0
0,,=FE* (exp [—/ rsds:| |.7-',) )
t

If we wish to write the quantity O;, explicitly, we need to compute the Radon—
Nikodym derivative of the probability P* with respect to P. Denote this density by
L7; it is such that, for any bounded random variable X,

hence also

E*(X) = E(XL7).
If, moreover, X is F;-measurable, then writing L, = E(L7|F;), we have
E*(X) = E(XL,).

L, is the density of the restriction to F, of P* with respect to P. It follows from
Girsanov’s theorem (which was partly proved in Section 9.3.8 above).

Proposition 6.1 There exists an adapted process {q;; 0 <t < T} satisfying

T
f qfdt < 00 a.s.,
0

such that, for all 0 <t < T, almost surely

t 1 t
L, =exp (/ qsdWs — —/ qfds) .
0 2 Jo

Corollary 6.2 The price at time t of a zero-coupon bond with maturity u >t is of

the form
u q2 u
0,,=E (exp |:—f (rs + j) ds +/ qdes:| |.7:,> .
t t
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PrOOF Write X = exp(— ft" ryds). We need to compute E*(X|F;). Let Y be an
JF;-measurable and bounded random variable. We have

E*(XY) = E(XYL7)
=EE[XLr|F]Y)

o <E[XLT|E]Y> |
L

hence from the characterization of E*(X|F;),

E[XLy|F
t

The result follows. O

Proposition 6.3 For any maturity u, there exists an adapted process {a}'; 0 <t <
u} such that, on [0, u],

dOt,u = (r[ — O'tuqt)O[’udt + OI,MG[uth~

ProoF Using first the formula established in the proof of Corollary 6.2, then the
martingale property of {O; ,; 0 <t < u} under P*, we deduce that, for 0 < s <
t<u,

E(O[,ML[LFY) = E*(Ot,u|fv)Ls = O~S,MLS'

Hence, {0,,”L,; 0 <t < u} is a martingale under P, which is strictly positive, and
its log is a semimartingale, whose martingale part takes the form

t
/ 0 dWs,
0

and again since {0,,”L,; 0 <t < u} is a P-martingale,

- ) t T
OuLy = Opy exp / 0'dWy — E_/ 0Hds ).
0 0

Multiplying by R;(L;)~"!, we get

! (6?)2 — qu ! u
O;.u = Op exp rs — — ds+ | 0y —qs)dWs | .
0 0

The result follows by using Itd’s formula, if we write o' = 6, — ¢;. |

Comparing the formula in Proposition 6.3 with that concerning the interest rate,
namely
d Rt =T R;d t,
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we see that the bond is ‘more risky’ than a bank account. The term r, — 0/'g; is a
sort of mean relative return per unit time of the obligation; —o/'¢, is the difference
between that return and the riskless rate. Hence the interpretation of —g, as a ‘risk
premium’. Note that under the risk-neutral probability P*, W, = W, — fot qsds is
a standard Brownian motion and

dOy;y =10y ,dt + O yo/'dW/.

9.6.3 Option based on a bond

Consider the case of a European option with exercise time 7 on a zero-coupon
bond with maturity 7”, with T < T'. In case of a call with strike price K, the price
of the option at time T is clearly (Or 7 — K)4, and we shall see that we can apply
the same methodology here as in Section 3.7.

The evolution of the hedging portfolio is given in the case of a self-financing
strategy by the formula

dV,(X,Y) = X,dR, + Y,dO, 1.

Definition 6.4 A strategy {(X;, Y;); 0 <t < T} is admissible if it is self-financing
and if the discounted value

ViX.Y)=X,+Y,0, 1
of the corresponding portfolio is positive and square integrable under P* for all t.

Under reasonable assumptions, we can hedge a European option with exercise
time T < T'.

Proposition 6.5 Suppose that supy., .7 |r;| < 00 almost surely, info<,<r |c7tT/|>O,

and T < T'. Let H be an Fr-measurable random variable such that He_fOT rsds g
P* square integrable. Then there exist Vi and an admissible strategy {(X, Y)} such
that Vp(X,Y) = H. Moreover,

V,(X,Y) = E* (e— i ’SdSH|]-",> .
PrOOF We have
dV,(X.Y) = Y,dO, 1 = Y,0, 70" dW}.
We then deduce that {\7t; 0 <t < T} is a P*-martingale, hence
Vi(X,¥) = el IR (¢l B ).

It remains to produce a corresponding strategy. It follows from Itd’s representation
theorem that

—fTrds * —fTrds r *
He Jo s :E (He 0 7S )+ Jtth,
0
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with a given process {J;; 0 <t < T} such that fOT J,zdt < oo almost surely. It
suffices to choose
J Ji

T
Y= = X, =E (He o) - .
O,,T/G,T G,T

9.6.4 An interest rate model

We consider Vasicek’s model, which is the simplest interest rate model (though
probably not the most satisfying). In this model, the process {r;; 0 <t < T'} solves
the SDE

dr; =a(b —r)dt +ocdW,,

where a, b and o are positive constants, and the process g from Proposition 6.1
is also a constant, g, = —A. Then if W, = W; + At, and b* = b — Ao /a, we have
equivalently

dry =a(b* —r)dt + odW;.

We can easily show that r, can be rewritten as
t
rp=roe " +b(l—e )+ ae‘“’/ e™dws,
0

and that the law of r, under P is the Gaussian probability distribution

1 — —2at
N (roe_“’ +b(1 — e, 024) .
2a

The law of r, under P* is the same law, with b replaced by b*. Hence, r; takes a
negative value with non-zero probability. However, this probability might be very
small.

Consider now the price of the zero-coupon bond,

Oy =E* (eI | 7,)
g (oI 7).
with {X; = ry, — b*} solution of the SDE
dX, = —aX,ds +odW}. (9.11)

Then ,
E* (e 0 XV = F(T =1 = "),

where F is defined by
F(s,x)=E* (eif(l; Xfxd’) ,
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{ X }denoting the solution of the SDE (9.11) satisfying Xy = x. Since fos Xidt is
a Gaussian random variable,

S 1 S
F(s,x) =exp (—IE*/ X;dt + — var / X;dt )
0 2 0

Now s | s
E* / X¥dt = x———
0 a
and S ) N
var [/ X;‘dti| =/ / cov(Xy, X})drdr,
0 0o Jo
but
t r
cov(X}, X¥) = ole “UTIES ( / e dWF f e‘”de)
0 0
_ UZe—a(H-r) eZ(l([/\r) -1
2a ’
hence R 5 5 5
o°s o —a o —as\2
Var|:/0‘ X;Cdl‘:|=a—2—¥(l—eaY)—ﬁ(l—eas).
Finally,

Orr =exp(=(T =OR(T —1,11)),

where R(T —t, r;), the mean interest rate over the period [z, T'], is given by the
formula

2
R(s,7) = R— (@) [ (R=r)(1 = ™) = T (1 —e )|,
4a?
with R = b* — 0%/2a®. R is interpreted as a long-term rate, which here is inde-
pendent of the spot instantaneous rate r. This last property is a defect of the
model.

9.7 Exercises

Exercise 7.1 From the corresponding inequalities at time T, show that if C; denotes
the price of a European call option at time t with exercise time T and strike price
K on an underlying asset whose price {S;} evolves according to the Black—Scholes
model, then

S, —Ke T <, <8,

Show that the price P; of the European put satisfies

P, < Ke T,
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Exercise 7.2 Let {S;; 0 <t < T} denote the price of an underlying asset which
follows the Black—Scholes model. Write U, =log S;. Deduce from Ito’s formula
the differential of U,, in terms of dt and dB]. Define v(t,y) = u(t, e*), where
{u(t, x)} is the solution of the Black—Scholes PDE. Write a parabolic PDE satisfied
by {v(t,y); 0<t <T, yeR}

Exercise 7.3 (A chooser option) Consider an option over an underlying asset {S;;
0 <t < T} (evolving according to the Black—Scholes model) which gives its holder
the choice at a contracted time 0 <t < T between a call and a put option, both
being exercised (if at all) at time T, with strike price K >0. At time 0, the buyer of
the option pays the premium X, at time t he chooses between call and put; at time
T he has the right to exercise the option chosen at time t, the strike price being K
in both cases.

1. Denote by C; (P;) the price of the call (put) at time t. Show that the best
choice is to choose the call (put) if C;> P, (P,>C;). Check with the help of
the call-put parity formula that C; # P, almost surely, under P as well as
under P*.

2. Deduce that at time T the option pays almost surely

H = (St — K);:1ic,>p) + (K = St)+1ic, <Py
=8t — K)y + (K = St)1lic,<py
= (K —=Sp)y + St — K)lic,>p.

3. Recall that the general theory of options tells us that Xo = e "TE*(H).
Write the events F; = {C, < P,} and G; = {C,> P,} in terms of S;, K and
r(T —t). Show that e "TE*(Sy1F,) = e ""E*(S,1F,), and similarly for G,.

4. Deduce formulae for the quantities Xo — Co and Xo — Py, which you should
write explicitly in a form similar to that of the formulae for Cy and Py at the
end of Section 9.2.

5. Show that the price of the chooser option at time t is max(C,, P;). Write
{u(s, x)} for the solution of the Black—Scholes PDE for the call, and {v(s, x)}
for the solution of the same PDE for the put (these PDEs differ only in their
final condition at time T ). Denote, finally, by {w(s, x); 0 <s <t, x>0} the
solution of the same PDE with the final condition sup(u(t, x), v(t, x)) at
time t. Describe a hedging strategy for the chooser option, in terms of these
three functions.

Exercise 7.4 (Programming) Consider a European call option over an underly-
ing asset whose price at time O is 105 dollars, with strike price K = 110 dollars,
exercise time 1 year, interest rate equal to 5% (i.e. rT = 0.05), and a volatility such
that o~/T = 0.3.
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1. Compute the price of the call using the Monte Carlo method applied to the
formula

Co=E"[ (57— Ke™'"), ],

with 1000 simulations. Find (approximately) the variance of the random
variable whose expectation you are trying to evaluate, and give a confidence
interval for the desired quantity.

2. Do the same computation (including the confidence interval) combining the
same method applied to the formula for the price of the put,

Po=E[(Ke" = 57),].

with the same number of simulations, and the call-put parity formula.

3. Compute the price of the same call option a third time, using the formula

Co = SoF(d)) — Ke "' F(dy),

with
1 S rT —oNT
dy = log (—0) + + :
oNT K o 2
1 S T T
d) = log 20 + d _Z ,
oNT K g 2

and the distribution function F of the Gaussian law N (0, 1) given by Matlab.
4. Compare the results with those given by a pricer on the internet.

5. The market price for the above option being 15 dollars, deduce the implicit
volatility (i.e. invert the Black—Scholes formula) using Newton’s method.

Exercise 7.5 (Programming) In the model with several underlying assets from
Section 3.10, denote by C the price of a call option with exercise time T, strike
price K, over a basket containing a; shares of stock i, | <i <d, and P the price
of the corresponding put; that is, C = Eo with H = h(S;) and

d
h(x) = (Zaixi — K) ,
i=1

+

and let P be given by the same formula with

d
h(x) = (K - Zam) :
i=1

+
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where Eq is defined by formula (9.7). Apply the Monte Carlo method to compute
the price of this option with d =5,

5 80
3 95
a= |8, So=|105], K =12000, T =0.05,
2 75
4 35
03 0 0 0 0
0 05 0 0 0
JTx=|0 0 04 0 0
0 0 0 07 0
0

1. Compute the price of the call by applying the Monte Carlo method to the
computation of the formula for Cy with 1000 simulations. Find (approx-
imately) the variance of the random variable whose expectation you are
trying to estimate, and give a confidence interval for the searched quantity.

2. Write the call—put parity formula explicitly in this case. Repeat the same
computation (including the confidence interval) by combining the same
method applied to the formula for the price of the put Py with the same
number of simulations, and the call-put parity formula. How do these two
approaches compare?






10
Solutions to selected exercises

10.1 Chapter 1

Exercise 1.5.1
1. We draw i.i.d. random variables {Uy; k > 1}, whose common probability
distribution is uniform on the interval [0, 1], and we define
X =inf{k > 1; Uy < p};

in other words, X is the index of the first of those U, which are smaller
than p.

2. Let U denote a random variable whose probability distribution is uniform
on [0, 1]. Define
log U
X = [7% ] +1,

log(1 - p)
where [x] denotes the integer part of the real number x. Then for all k € N,

P(X > k) =p<[‘°i} zk)
log(1 — p)

log(1 — p)
=PWU <(1-phH
=(1-p,

hence the probability distribution of X is the geometric distribution. This
method is more efficient than the previous one, since one unique U pro-
duces one X.

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
© 2008 John Wiley & Sons, Ltd
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Exercise 1.5.2
1. The classical method is the Box—Miiller method, which is presented in
Section 1.3

2. We need to find k > 1 such that, for all x > O,

1 <x2><kA .
——exp| —— —exp(—Aix),
Von P \T ) =P

which is equivalent to

x? e T
supexp(ix — — ) =exp| = ) <kXr,/—=,
x>0 2 2 2

[2 <x2>

k>, —x"exp|—=|.
b4 2

The choice of A which minimizes the right-hand side above is A = 1, so
we should choose

or

2
k==
b4
With the notation of Proposition 3.2, f denoting the density of the Gaussian

probability distribution N (0, 1), g the density of the double exponential

with parameter 1,
ey = TO (_(|x|—1>2>
T ke P 2 )

The rejection algorithm works as follows. At each step, we draw three
mutually independent random variables U, V and W, whose probability
distribution is uniform on [0, 1]. We write

X =—log(U) xr(V),

where

1,  ifv<1/2,
r(v) = .
—1, ifv>1/2,

hence the law of X is double exponential with parameter 1. If W < o(X),
accept X; if not, start afresh.

3. (a) This law is that of |V|, where the law of V is N (0, 1). Indeed, since
P(Y > y) =exp(—y) and X and Y are independent,

o 2 T
P(Y > (1 —X)%/2) =/ eI =gy = |,
0 26



SOLUTIONS 259
Moreover,

o0
P(X > x,Y > (1 — X)?/2) :/ e~ U=720=v gy,

X

1 o 2
= — eV dy,
ﬁ/x Y

hence
2 2 (% ep
P(X > x|Y > (1 —-X)*/2)=,/— eV dy =P(V| > x).
v X

(b) If Z = |V] is the absolute value of a standard normal random variable,
and S is independent of Z and equals +1 with probability 1/2, then
the law of ZS is N (0, 1) since, for x < 0,

P(ZS <x) =P =—-DP(Z > —x)

1 o0 k
e_-‘z/zdy

- kY, 27 J—x

1 [x 2
= — e Pdy,
v 21 —00
and for x > 0,

P(ZS <x) =P(S = —1) + P(S = DP(Z < x)

11 2 [®
=—4+—(1-— -y /2q
2*2( N y)

(c) We simulate three mutually independent random variables, U, V and
W, the law of each being uniform on [0, I]. We let X = —log(U),
Y = —log(V), S = r(W) (with the function r as defined in part 2). If
Y > (1 — X)?/2, the simulated value is X S. If not, we reject and start
afresh.

Exercise 1.5.5

1. We simulate a sequence {X,; n > 1} of mutually independent random
variables, each having the same law as X, and we accept the first value
which is greater than or equal to m (for the justification of this procedure,
see the end of the proof of Proposition 3.2). The bigger m is, the smaller
P(X > m) is, and the less efficient the method is.
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2. Ifx<m,P(Z<x)=0.1f x > m,

<F(x)—F(m)>
- 1—=F(m)
F(x) — F(m)

T~ 11— Fm)
P(m < X <x)

- P(X > m)

=P(X <x|X > m).

IP’(ng):IP’(U

Hence, provided that F (m) is known or computable, and F ~1is also known
or at least approximately computable, we deduce a method of simulation
of the law of X, conditioned upon {X > m}, which only requires the sim-
ulation of one random variable whose law is uniform on [0, 1].

. More generally, if a < b, the law of the random variable

Z =F ' (F(a) + (F(b) — F(a)U)

is the conditional law of X, given that a < X < b.

. Note that X = u + oY, with Y a standard normal random variable, and

that {X > m}={Y > (m —pn)/o}.

. Replacing m by m’, we may assume that we wish to simulate a standard

normal random variable X, conditioned upon X > m. We need to choose
0 such that (with the notation F(m) = P(X > m))

(V27 F(m)] e 1? < ke 00—,

for all x > m, with k as small as possible. If & < m, the above inequality
is equivalent, with k' = k+/27 F (m), to

exp(—m?) < k'6,

which suggests that 0 should be as large as possible in order to minimize
k’, hence the choice & = m. We then proceed as in Exercise 1.5.2.

Exercise 1.5.7

1. Note that

2
S5x—x /de

1 oo
E 5X1 =—/
(l>0)= 7= | e

25/2
V2m Jo
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25/2  poo
_ ¢ e_yz/zdy
V2 J-s

=ePPP(X > —5).

In other words, if N (0, 1) is the law of X, the random variables X 1ix > o
and ¢*/?1(x 15 > () have the same expectation. The variance of the former
is close to that of X, that is, of 0 — ¢25/2 (in fact it is bigger than or
equal to ¢ — ¢>/2 — 1), while the variance of the latter is bounded above
by > /4.
2. Since E[e’X] = ¢23/2,
1 = 625/2 —-E (ESXI{X<()}) .
The reduction of the variance here is enormous, since

e*1ix<op < 1, hence var (e 1ixq)) < L.

3. The antithetic variable method here involves replacing the random variable
X1y + ey > g

2 9
which has the same expectation in the Monte Carlo computation. We

may note that here we do strictly better than dividing the variance by
2, since

cov (eSXI{X<()}, eisxl[x > ()}) = — (E [eSXI{X<0}])2 < 0.

e ix-0 by

Exercise 1.5.8

1. In the two cases X > Y and X < Y, we have

(f(X)— f(V)(gX) —g¥)) =0,
hence

FX)gX)+ f(V)g(Y) = f(X)g(¥) + f(¥)g(X),

from which the first result follows by taking the expectation. The second
result follows if we choose X and Y to be independent with the same
law.

2. The identity in question follows from independence of the random vari-
ables, with

<I>(x) IE[f(Xl,...,Xn_l,x)g(Xl, ...,Xn_l,x)].
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Suppose that the desired result holds for functions of n — 1 random vari-
ables. Then
Q(x) = F(x)Gp(x),

if
Fu(x) =Ef(X1,..., Xn-1,%),  Gulx) =Eg(Xy, ..., Xp—1, %),
and these two functions are increasing, hence from part 1,
E®(X,) = E[F,(X,)Gn(Xn)] = EF, (X)EG, (Xy),
which is what we wanted to prove for functions of n random variables.

3. The desired inequality follows from part 2 and the fact that if / is increasing
(or decreasing) in each of its arguments, the same is true for the function
g defined by g(x1,...,x,) = —h(l —xq,..., 1 —x,). But h(Uy, ..., Upy,)
and h(1 — Uy, ..., 1 —U,) have the same law, hence the inequality just
established shows that

cov(h(Uy, ..., U,),h(1 = Uy, ..., 1 =Up,)) <0,

hence
h(Uy, ..., U, had-U;,...,1=-U,

]E|: Uy ) + (2 1 n)]=Eh(U1, Uy,
h(Uy, ..., U, h(d-U;,...,1-=-U, 1

var[ Sl e ”)]sivar[h(ul, LU

10.2 Chapter 2

Exercise 2.10.2

States 1 and 5 communicate, as well as states 2 and 4. Starting at 4, we can (in
addition to going to 2) go to 5 or to 3. The recurrent classes are {1, 5} and {3}
(3 is an absorbing state). The class {2, 4} is transient. Starting from this class, we
eventually end up in one of the two recurrent classes. The transition matrix of the
chain restricted to recurrent class {1, 5} is

1/2 1)2
/2 172)°
hence the invariant probability whose support is {1, 5} is (1/2,0,0,0, 1/2). The

invariant probability whose support is {3} is (0, 0, 1, 0, 0). Hence r is invariant by
P if and only if there exists 0 < p < 1 such that w = (p/2,0,1 — p, 0, p/2). We
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would obtain the same result if we looked for probability distributions which are
solutions of the equation 7 P = .

Exercise 2.10.5

x /> y if and only if (P"),, = 0, for all n, hence if and only if anO(P”)xy =0.
On the other hand, x — y and the fact that x is recurrent together imply that
x <> y. Consequently, there exists m > 0 such that (P™),, > 0. But

(Pm+n)xy = (Pn)xx(Pm)xy-

The result now follows from Corollary 4.3.

Exercise 2.10.6

1. The greatest common divisor of n and n + 1 divides their difference, hence
it is 1.
2. If n,n+1¢€ Ny, then kn +€(n+ 1) € Ny, for all k, £ € N, since
n+0(n n k n 14
(PEHED) = [(PM)] [P ]

Any integer m > n? is of the form m = n? + ¢n + k, with k < n. Then
from the above property m = (n +{¢ — k)n +k(n 4+ 1) € N,.

3. Write A, = N, N[0, n], and denote by «,, the greatest common divisor of
A,. Then o, 41 < «,. If the greatest common divisor of N, is 1, there must

exist ng such that o;,,, = 1. Let ay, as, .. ., a; denote the distinct elements of
Ay, - Iterating the Euclidean algorithm, we show that there exist k elements
Uy, uy, ..., u, of Z such that

ajuy +aguy + - - +agup =1,

hence there exist by, ..., by, byt1,...,br in Ny, and positive integers
Vi, ..., U such that

bivi + ...+ bpvg = bpr1verr + ...+ brvg + 1.

Since the b; belong to N, and the v; are integers, byjvy + ...+ byvy € Ny,
and by 1veq1 + ... + brvr € Ny, from which the result follows.

4. Clearly if N, contains all integers greater than or equal to a certain z, the
greatest common divisor of N, is 1. We have already shown that, con-
versely, if the greatest common divisor is 1, then there exists n € N such
that n,n 4+ 1 € Ny, hence N, contains all integers greater than or equal
to n’.
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Exercise 2.10.7

. We deduce the diagonal entries of P from the fact that the sum over each

row is 1. We find successively as diagonal entries 1/2, 2/3, 1/8, 0, 1/4,
2/5.

. Clearly 1 and 2 communicate, 3 and 5 communicate, as well as 4 and 6.

Hence the chain can move from 4 to 1, 2 or 5, and from 6 to 2 or 5. But
the reverse is not true. Hence there are three classes, namely {1, 2}, {3, 5}
and {4, 6}.

. As noted above, the chain can leave the class {4, 6}, while once it is in the

class {1, 2} or {3, 5}, it cannot exit from it. Hence if the chain starts from 4
or 6, its ends up in one of the other two classes sooner or later. The states
4 and 6 are transient, and the two classes {1, 2} and {3, 5} are recurrent,
since once the chain reaches one of those classes, it stays there.

. If x € C, then Xy € C almost surely under P,, hence T =0 P, almost

surely, and p, = 1. If x € C’, under P, the chain never reaches C, since
it stays in C’, hence T = oo P, almost surely, and p, =0. If x € 7,
P.(X; =2) > 0,and P, (X; = 5) > 0, hence, since {X; =2} C {T < oo}
and {X| =5} C{T =00},0 < p, < 1.

. Choose x € T.

P(T <00) =P (T=0)+P.(T=1)+P,2<T < 00)

=0+P(X1 €0+ ) Pu(X1=2,T < 0)

zeT
ZZny+Zszpz
yeC zeT
= Z nyloyv
yeE

where we have used for the penultimate step
Y Pu(X1=2,T <00) =Y _ PP < 00),
zeT zeT

which follows from the Markov property, and in the last step the values of
py foryecCcucl.

. The above equation leads to

pa = Pa1 + Pay + Paaps + Pasps
P6 = Po1 + P + Peaps + Poops,
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or
o4 =1/2+ ps/4,  pe=1/5+ p4/5+2p6/5,
from which we deduce ps = 7/11, pg = 6/11.

7. The chain ends up almost surely in one of the two recurrent classes (and
does not visit the other one), hence for all x € E, P, (T < 00) + P, (T <
o0) = 1. Consequently, Py(Ter < o0) =1 — pg =4/11 and Pg(Te < 00)
=1—p¢=5/11

Exercise 2.10.8

1. The diagonal entries are (5/12,1/6,1/2,1/6,0,5/12).
2. It is easily verified that 7 = {1, 2, 3} and R = {4, 5, 6}.

3.If xe R, T =0P, almost surely, hence h, =0. If xe7, T > 1P,
almost surely. Since, moreover, P,.(T > 1) > 0,

Ex(T)>P (T =1)+2P (T > 1) > 1.

To show that h, < oo, we modify the matrix P, changing the last row
into (5/12,0,0, 1/3, 1/4,0), which makes the chain irreducible, without
changing the law of T under PP,, hence without changing /,. We conclude
with the help of Corollary 5.5.

4. The identity in question follows from writing that the time needed to reach
R, starting from x at time 0, equals 1 plus the time needed to reach R,
starting from X, hence

he =1+E[Ex, (D)].

Taking into account that hy = hs = hg = 0, we deduce the linear system

5 1 1
hi=14+—h —h —h
1 +121+42+33

1 1
hy=1+-h —h
2 +41+62

1 1
hy=14+=h —hj.
3 +21+23

The solution is hy = 236/21, hy =32/7, hz = 278/21.

Exercise 2.10.9

1. The chain can move from 1 to 2, from 2 to 4, from 4 to 3 and from 3 to
1, hence the chain is irreducible, hence positive recurrent since the state
space is finite.
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2. We solve the system of equations 7 =7 P, ) 7w, =1, and we find 7 =
(p*, p(1 = p), p(1 = p), (1 = p)?).

3. We easily check that (P");; > (P)" = p" > 0, for all n. Hence, by Def-
inition 6.1 and Lemma 6.2, the chain is aperiodic. It now follows from
Theorem 6.4 that (P");; — m; as n — oo, hence the result.

4. The identity P? = lim,_ o, P" follows from an elementary computation.
We also have P" = P2 for all n > 2. The law of X,, is w P, if u denotes
the law of Xg. For all n > 2, uP" =  for any probability distribution ,
since all entries of the xth column of P" are identically equal to 7,.. Hence,
for all n > 2, the law of X,, is the invariant probability 7. The asymptote
is reached here for n = 2.

5. From Theorem 5.4, E,(T,) = 1/, hence E4(Ty) = (1 — p)_z.

Exercise 2.10.10

1. The states 1, 2, 3 and 4 communicate with 0. Consequently, the chain is
irreducible, hence recurrent since the state space is finite.

2. Define E’ = {1, 2, 3, 4}. For k > 2, we have
(T=ki={X|€E,....Xs_1 € E, Xy =0},
Po(T =k) =Po(X1 € E',..., Xs_1 € E', Xs = 0)
=(1-p"p,

since given that X; € E’, X;;| € E’ with probability 1 — p, and X =
0 with probability p, independently of the values of Xo, Xy,..., X;_;.
Hence

= i P+l
Eo(T) =Y k(1 —p)?p="—.
k=2 P

3. Combining Theorems 5.7 and 5.4, we deduce that n~'N,, — p/(p + 1) as
n — oo. Hence n='M,, — 1/(p + 1), since n='(M,, + N,,)) = 1.

4. The states 1, 2, 3, 4 play symmetric roles in this problem. From Theorem
54, 10 = p/(1+ p). Then m) = my =13 = w4 = [4(1 + p)]_l.

5. Define 7/ = ;.. We have

Ty = E Ty Py = E Tz Przx,
y z
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hence if x = tu,
/ / ’
T, = § ”ZPrz,ru = E 7TZPz,u~
4 Z

Consequently, 7' is invariant, and from uniqueness of the invariant prob-
ability distribution, 7’ = .

Returning to our problem, we note that for any permutation 7 of the points
1,2,3,4, P,y = P,,. The identity 7y = my = w3 = 74 follows.

Exercise 2.10.12
1. Clearly

d it: it

) 1 e”/ +e—ltj
E(explit1]) = - > —
j=1

hence the formula for ¢ (). Note that
(P =P, +---+Y, =0).
For X a Z-valued random variable,

E(e'™) =) (cos(tx) + i sin(tx))P(X = x).
X€L
From the periodicity of the functions cos and sin, for all x € Z\{0},

T
(costx +isintx)dt =0,
-7
hence .
P(X =0) = 27)"! dx (1)dt.

-7

If 1 — ¢"(¢) denotes the characteristic function of the Z?-valued random
variable Y| 4 - - - + Y}, we have by a similar argument that

mm+m+n=m=amﬁf ¢"(t)dt.

[-m.7)d

2. The formula follows from the last result and the fact that forall 0 <r < 1,
|[r¢(¢)| < 1, and consequently

Dot = —ré) .

n>0
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3. The first claim follows from the fact that ||7|| > @ > 0= ¢ () < 1 — p(),
with p(a) > 0. For ||¢]| small enough, —7/2 <t; <7/2,1 < j <d, and
then 0 < ¢(¢) < 1, hence the second claim.

4. Clearly Y, _o(P")oo = lim,41 Y, 7" (P")00. But for 0 <r < 1,

@m)* Yy (P = f (I —re@) 'dr + f (1 —ro@)~'dr.
Coc

n>0 [—ﬂ,ﬂ]d\ca

The first term is bounded for 0 < r < 1. Hence the convergence or diver-
gence of the series at » = 1 depends upon the value of the limit as r — 1 of
the second integral, which by the monotone convergence theorem equals

dt dt
[l
co L= &) co N2l
= c(d)/ rd_3dr,
0

which is finite if and only if d > 3, hence the result by Corollary 4.3.

Exercise 2.10.14

. IfX,=0,X,;y=Landif X, >0, P(X,41 =X, + 1) = p, P(Xp41 =
X, —1)=1— p,hence Py; = 1,and forx € N\{0}, Py x+1 = p, Prx—1 =
1 — p. Consequently, if x # y, (P*=1),, > 0, which implies irreducibil-
ity.

2. Since Y, 4| < 1, clearly

Yor1 < Lix, > oy Yus1 + 1ix,=0),

from which we deduce that X,, > X/ by a recurrence on n. If p > 1/2,
X/ — oo as n — 0o, hence also X, — oo, which establishes transience
of the chain.

3. Provided n < T, for all 0 <k <n, Xiy1 = Xg + Yry1, whence X, =
X, 1> as claimed in the statement of the question. Suppose that X, = 1.
Either X| = 0, in which case X, = 1, and the chain returns to 1. Otherwise
X, =2, and we have that X, = X, if n < T. It follows that 7 = inf{n >
0; X/, = 0}. Now either {X)} is recurrent (if p = 1/2), or it tends to —oo
as n — oo. In either case, starting at 2, {X,,} visits 1 in finite time almost
surely, and since it must visit 1 before reaching 0, {X,} also visits 1 in
finite time, hence the state 1 is recurrent, and the same is true for all states
by irreducibility.
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4. In the first case, the measure (with infinite mass) v = (1/2,1,1,1,...) is
invariant, since

SO OO

0 1 0 o 0 o0
1—p 0 P 0O 0 0

P = 0 1—p 0 p 0 O ,
0 0 1-p 0 p O

hence for u as specified,
(= prr = o
po + (1 = pluz =
Plx—1t + (= P)plar =y, x =2,
that is, u P = u. But p < 1/2 implies that
_r
I—p
and we conclude that ) iy < 00

<1,

Exercise 2.10.16
1. With {Y,; n > 1} and {Z,;; n > 1} mutually independent random variables
with
PY,=D)=p=1-P¥,=0), PZ,=1)=q=1-P(Z,=0),
define the sequence {X,; n > 0} by
Xony1 = X0 +Yug1 — Zuplix, > o)

It follows from Lemma 1.2 that {X,; n > 1} is a Markov chain. Its tran-
sition matrix is given by

1—p p 0 0 0 0
Q(l _p) ap,q p(l _q) 0 0 0

P = 0 gl —p) o,y p(l—q) 0 0 ,
0

0 0 qg(1—p) ®p.q p(l—q)
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with ap , = pg + (1 — p)(1 — q). Irreducibility follows from the fact that
the entries Py 11, x > 0, and P, ,_;, x > 1, are strictly positive.

If p>gq, EY, > EZ,, and X,, - o0, as n — oo. If p =g, the mea-

sure (I —p, 1,1, 1,1,...) (with infinite mass) is invariant. {X,; n > 1}
is positive recurrent if and only if p < ¢, since in that case the following
probability distribution 7 is P-invariant:

X
_q-p _(prd—q) q—p
Ty = ———, Ty = , x> 1.
q gl —=p)) q(1—q)

. We have

p(l—p)
E, (X, = = —.
(Xp) =Y xm -

x>0

. A customer who arrives at the arbitrary time n finds in front of him a

random number of customers, whose probability distribution is w. The
service times being i.i.d. geometric with expectation 1/¢, and independent
of the number of customers which the newly arriving customer finds in
front of him, E(T") equals

1+ E(Xy) _ g—p°
q q(q — p)

Exercise 2.10.18

1. First compute E[u?|X = x], which equals the generating function of the

binomial probability distribution B(x, g), hence
Elu"|X =x]= (qu+1-q)",
consequently

V() = E[u"]

ZE[uY|X = x]P(X = x)
x=0

E[(qu+1—¢)*]
¢(qu+1—gq).

2. One way to construct the chain {X,; n € N} is as follows. Let {Z, x;

n, k € N*} be i.i.d. Bernoulli random variables such that P(Z,; = 1) =
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1 —P(Z,r =0) = p. Define

X}l
X, =Y Zntik
k=1
and
Xn+l = X,/1 + Yn+1-

It is easy to see that one can apply Lemma 1.2 to show that {X,; n € N}
is a Markov chain. Note, however, that the role of the Y, in this lemma
is played by the (Y,, Z, ), which take values in {0, 1}N. This set is not
countable, but continuous (Lemma 1.2 is of course still valid in this case;
see the analogous Lemma 1.3). This chain is irreducible, its transition
matrix P having the property that P, ,>0 for all x, y € N, since

Py > P(X, =0[X, = x)P(Y,y1 =y) > 0.

. The second equality below follows from independence between Y, and
the pair (X, X)):

E [anH X, = x] —F I:MX;/1+Yn+1 X, = x:l
=E [uY”“] E [uX',l | X, = x]

=D (pu+1-p),

. It follows from the last computation that
Gu1 (@) =E[" "V (pu+1 - p)*r]
="V, (pu+1-p),
from which the desired formula follows by recurrence.

. Asn — oo, 1 — p" + p"u — 1. Moreover, ¢q is continuous and ¢y(1) =
LY P a=-ph

¢n(u) — p(u) =exp[0(1 — p)~'(u — D],

which is the generating function of the Poisson probability distribution with
parameter (1 — p)~'.

. It follows from the computations above that if p is the generating function
of the distribution of X,,, then it is also that of the distribution of X, ;.
Hence the Poisson distribution with parameter #(1 — p)~! is an invariant
probability distribution of the Markov chain {X,; n € N}. Since this chain
is irreducible, it follows from Theorem 5.4 that it is positive recurrent.



272

SOLUTIONS

Exercise 2.10.19

1. If we define Y,,.; = A, — D, and f(x,y) = (x — y)*, the Markov prop-

erty follows from Lemma 1.2. We have

Pyo =P(A, —D, <0)=ro+qnr
P si=qriv1 + A —q)ri, keN,
P. x_1=qro, xeN*

Pix¢=0, £=2, x>1{.

Since rg < 1, there exists k > 0 such that r, > 0. Moreover, g < 1. There-
fore Py 4x > 0 and, moreover, P, ,_; > 0, hence starting from x, the
chain can reach x +nk — ¢ in n + ¢ steps, n, £ € N*. But for all x # y,
there exists n, £ € N such that y = x 4+ nk — £.

. We have

Xn+1 = Xn + An - Dn-

Hence if X, > S,,, X411 = Sy41- But Xg = Sp = 0. The inequality follows
by recurrence. If T > n, Xy > 0, 1 < k < n, then

X1 =Xk +Ar— Dy, 0=k <n,
consequently X, = S, > 0 and X,, > 1. Since A, — D, > —1,
X,+A,—D,>0

Xnt1 = Sut1-

. From the definition of S,,,

S 1nfl 1nfl

n

234 --3"D
—)EA()—ED():p—q

almost surely as n — oo, by the law of large numbers.

.If p<gq, Sy/n— p—q <0, hence S, - —oo. Consequently, T < oo

almost surely, since on the set {7 = +o0o}, X, = §,,, for all n, and X,, > 0.

.Ifp >gq, S, = +o0. Since X,, > S,, X,, = oo almost surely, from which

the result follows.

. In the case p > ¢, we have just seen that the state 0 is transient (indeed,

a recurrent state is visited infinitely often almost surely), hence the chain
is transient. In the case p < g, P(T < oo) = 1, which says exactly that 0
is recurrent, hence the chain is recurrent.
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7. We have, writing a = (1 — ¢)(1 — p),

l—p+qp (1—-9g)p 0 0 0
gl—=p) gp+a (A—q)p 0 0

0 gl—-p) gp+a (A-qp O

8. In the case p = ¢, as long as it stays in N*, the chain behaves like a
symmetric random walk, except that P(X,+; = X,) > 0. If we define T}
=inf{n > 0; X,, # Xo}, T» = inf{n > T1; X, # X7}, ..., etc., then Z,, =
X7,,n € N, is a Markov chain with transition matrix

0 1 0 0 0 0
12 0 12 0 0 0
p—| 0 12 0 12 0 o
0 0 1/2 0 1/2 0

On N*, {Z,} behaves like the symmetric random walk in Exercises 2.10.11
and 2.10.13. Tt is easy to deduce that the state 1 is recurrent. The same is
true for the original chain {X,}.

Ifr=(,1,1,...), it is easily checked that 7 P = m, hence there exists
an invariant measure with infinite total mass, and {X,} is null recurrent.

9. The chain {X,} being irreducible, it admits at most one invariant probability
measure. We note that

1 —

9d-p _q)p+q,,+(1_p)(1_q)+q(1_p)J=1,
p(l—gq) q(l—p)
hence

(r P)y=m,, x>1.

We note that we also have (& P)o = mg. Hence m = {(1 — a)a*; x € N}
is an invariant probability distribution, and the chain is positive recurrent.

Exercise 2.10.22

1. It suffices to note that for many pairs (k, £) € E%, Qr =0 < Q.

2. If a chain is irreducible, recurrent, aperiodic and satisfies (ii), then summing
over ki, k, ..., ky—1 and writing £ = k,,, we obtain

(P™Yke Pex = Pre(P™) k.

It remains to let m — oo in order to deduce the detailed balance equation.
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3. P satisfies (i). Let us check that it satisfies (ii) in the theorem. Consider an
excursion. Each element i € (1, ..., n) experiences f; moves ahead, and
stays in front r; times while no other point moves. The product of the
transition probabilities along the excursion in the forward direction is

itri
[T»
1<i<n

and the product of the transition probabilities in the backward direction has
the same value.

4. We associate with each permutation (iy, ..., i,) of (1, ..., n) the quantities

1, if ig < ik,
Lo = .
0, otherwise.

Then
position of k = 1 + Z Ine.
0k
Hence
Jo = Z pr (position of k)

1<k<n

- Z pe |1+ Zn(@ is in front of k)
I<k<n L#£k

=1+ Z Zpkrr(ﬁ is in front of k)
k tk

=1+ Z [pkn(ﬁ is in front of k) + pym (k is in front of E)]

k<t
= 14> (px — po)m(L is in front of k) + Y _ py.
k<t k<t

Under m, the probability that £ is in front of k is the probability that £ has
been called more recently than k. Hence

P
pe+ i

(£ is in front of k) =

It remains to show that if p, > py, then
Pe
pe+ e

We now exploit the reversibility of the chain with the transition matrix P.
We have

(£ is in front of k) >

p,'jH/L(il,...,l"/',l'j+1,...,l',,) = pijﬂ(il’---aij—ﬁ—l’ija ...,in).
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Iterating this formula, we deduce that

I Jj+1
/L(...,k,il,...,ij,g,...): (—) ,u(...,é,il,...,ij,k,...).
Pe
Hence if p; > py, then
. . k . .
M(...,k,zl,...,t(,-,Z,...)<%/L(...,Lzl,...,zj,k,...).

Write a(k, £) = w(k is in front of £). Summing over all permutations sat-
isfying ‘k is in front of £°, and using the above relation, one can check that
alk, £) < (px/pe)a(®, k). Since a(k, £) + a(l, k) =1,

P

a(l, k) > ———.
Pt + Pk

10.3 Chapter 3

Exercise 3.5.1

1. We have X,41 = f(Xp, Upi1, Yos1) with

; ()
y, ifus cq(y)’

x, otherwise.

f(x, u, y) = {
The fact that {X,,; n > 0} is a Markov chain is easy to check, combining
Lemmas 1.2 and 1.3 of Chapter 2.

2. We have
Pyy = Cilp(y) + 3y (1 - Cil) g

where 4, is the Kronecker delta, equal to 0 if x # y, and to 1 if x = y.

3. We have
1Py =c 'p(x) + (1 —c Hux).

Hence p is P-invariant and
((m=p)P), = (1 —c H(ux) — p(x)),
((w=p)P"), = (1 —c " (ux) — px)).

But pP" = p, hence the above computations show that uP" — p as
n — oo, since 0 < (1 —¢~') < 1. Moreover, if p were another invariant
probability, we would have p — p = (1 — ¢~ ")(p — p), hence p = p.
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4. This chain makes the same random drawings as the classical rejection
method (see Proposition 3.2 of Chapter 1). If the indices k and ¢ correspond
to two successive acceptances, the classical algorithm rejects the drawn
values for k < n < £, and the chain {X,} is constant and equals X; for

k<n <.

Exercise 3.5.2

1. We have P,, = acy + Qy,, with Q,, >0, Zy Oy =1—a. If vis as
defined in the exercise,

ZVxny = vaQxy,
X X

hence

WP[=) 1Y 10l
y X
<Y elQuy
X,y

= (1 —a)|v].
The second claim follows if we choose v = — .

2. The previous result implies that if uP = and W' P = i/, then u =
u' — hence uniqueness of the invariant probability distribution. Iterating
the equalities of part I, one can show that if y and u’ are two probability
distributions,

IuP" —wWP" < (1 -a)'ln—p]<2(1-a),
hence in particular, for n,m > 1,
[W P — P < 2(1 — )",
hence this is a Cauchy sequence.

3. Since the sequence of probability distributions {¢P"; n > 1} is Cauchy
in the Banach space ¢'(E), it converges to a probability distribution 7.
It follows that as n — oo, the sequence wP"+! converges both to 7 and
to m P. Hence m = m P. Moreover, since 7w P" = m, it follows from an
inequality established in part 2 that

|uP" — | <2(1 —a)".
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4. In this case, we still have the Cauchy property, since for k, n, m > 1,
| PR pREm | < (] _ gk,
The limit 7 is again invariant, and this time

P —m| <2(1 —a)"/*.

5. This transition matrix is given by

5 _ | Poexp[-BHG) —HW)4], ify#x,
T =4 Py if y = x.

6. We have

Py > acye—ﬂ(H(y)—H(X))+ > acye_’sH(y) > Bety,

where
/ c e PHM

= ———-—,
VT Y e PG

B=« Zcze_ﬁH(Z) < a.

4

Hence P satisfies (3.2) with « replaced by B, ¢ by ¢’. If we use Hastings’
algorithm for simulating a Markov chain with the transition matrix P, we
simulate a Markov chain whose law at time n converges at exponential rate
towards the probability . Note that this exercise considers a case which is
quite unlike those which are encountered in practice. The above assumption
on P contradicts the fact that the cardinality of E is very large (the only
case where the MCMC method is useful), and the transitions under P are
easy to simulate! Indeed, these constraints imply that Py, = 0 except for a
small proportion of pairs (x, y).

10.4 Chapter 4

Exercise 4.8.1

Write 1 = (0.3,0.3,0.1,0.3) and 7 = (0.2,0.2,0.4,0.2). If x,, # C,

do(n) Poy V 81(n) P1y

Sy(n+1) = i

while if x, = C,

So(n + 1) = (8o(n) Poo V 81(n) P1o) fhx, 5
d1(n+ 1) = (Bo(n) Por Vv 81(n) P11)7x, -
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If the ratio between the two coordinates of §(n) is as given in the question, the
successive maximizations lead to the choice of the diagonal entry of the matrix P,
hence, given that x, # C for ny < n < ny,

0.9\"™™M 0.9\"™"™M
do(n2) = do(ny) <T> . 01(n2) = 61(ny) <T> .

10.5 Chapter 5

Exercise 5.7.2

1. Following step by step the proof of Theorem 5.1, one can check that the

formulae for the Kalman filter are modified as follows:

Rov1 = Avn1 Ko + SuHy (Hyt SoHyyy + B (Yot — Hos1 Apr Xa),
T, = Ap1AnAL L+ 0,

Aps1 = By = Sy Hyy (Hin S Hy g + R Hy 2,
Xo = Xo, Ao = Py.

. To simplify the notation, let us just show that the conditional law of X,

given (Y1, ¥»), is a Gaussian distribution, and for the sake of further sim-
plification, we assume that d = 1 (the computation of the conditional law
of X given Y| poses no new difficulty).

Note that given two random variables X and Y, if we denote the law
of Y by puy, the conditional probability of the event X < x given that
Y = y is defined for py almost all y as ¢(y), where ¢ is the (class of uy
almost everywhere equal) function(s) from R into [0, 1], which are such
that ¢(Y) = P(X < x|Y) almost surely. In the case where the pair (X, Y)
is Gaussian, Proposition 5.2 allows us to define the conditional probability
distribution of X, given that ¥ = y, which is the Gaussian law N ()A(y, fl)
where in formula (i) of that Proposition we replace Y by y.

Consider now the triple (X5, Y1, ¥»), which is not Gaussian. Note that
Xi=AXo+m, Xo=AXDX1+n,
Yi=HX+§&§, Yr=H{)X,+6&,

hence

X2 = A(Y1)AXo + Ani + 2,
Yi =H(AXo+m) + &,
Yo = HY)AXYDIAXo +ml+ n2) + &.
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Thus the conditional probability of the event {X, < x}, given that (Y, ¥>)
= (y1, y2), is the conditional probability of the event {A(y;)AXo + An; +
1y < x}, given that

HAXo+n) +& =y, HODAODIAXo+ml+m) +& = .
But if we write
U=AWy1DAXo+ Ani + 2,
V = H(AXo+ n) + &,
W =HyDAGDIAXo +m]+n) + &,

clearly the triple (U, V, W) is Gaussian, hence the conditional law of U,
given that (V, W) = (y1, y2), is a Gaussian law whose expectation and
variance can be expressed in terms of (y;, y»). Finally, the conditional law
of X», given (Y7, Y2), is a Gaussian law whose parameters are obtained by
replacing (y1, y2) by (Y1, Y») in the formulae. A rigorous justification of
the above argument is not quite immediate. Since the joint law of the Y,
has a density, one can at least easily convince oneself that the argument
can be justified when the functions A and H of the Y, are constant on
cubes of R?. The general result then follows by approximation.

It is now easy to check that the Kalman filter formulae in the ‘conditionally
Gaussian’ case are given by the formulae of part 1, where A, is replaced
by A(Yy,...,Y,—1) and H, by H(Yy, ..., Y,—1).

10.6 Chapter 6

Exercise 6.5.2
We first identify the law of the pair (X AY, X VY — X AY). Forall s,7 > 0,
PXAY >5,XVY—-XAY >1)
=PXAY >, XVY—-XAY >, X<Y)
+PXAY >, XVY—-XAY >t,X>Y)
=2P(XAY >, XVY—-XAY >t,X<7)

=2P(X >5,Y > X+1)

o0 o0
= 2[ / re M ae M dvdu
K u+t



280 SOLUTIONS

o
— 2/ )\'e—}»ue—}x(u-Ft)du
N

— 672}@67)»[ )

We have just shown that the two random variables U = X AY and V =X VY —
X A'Y are independent, the law of U being exponential with parameter 21, and
that of V exponential with parameter A.

1. Note that
{Cexits first} ={U+Z >U+V}={Z > V}.

But Z and V are independent (since Z and (X, Y) are), and they both
have the same density. Consequently, P(Z > V) =P(V > Z) and P(Z =
V) =0. Hence P(Z > V) = 1/2.

2. The total time spent by C at the post office equals U + Z, which has the
same law as U 4+ V = X Vv Y (both are the sum of two independent random
variables, one having the exponential law with parameter A, the other the
exponential law with parameter 21). We also have

PXVY<t=PX <t,Y <1)=(P(X <1)?,

hence the distribution function of the desired probability law is the function
(1 — e™*)2, and its density equals 2A(1 — e™*)e™.

3. The probability distribution of the time of the last departure is that of
U + (V v Z), where the three random variables U, V, and Z are globally
independent (since U and V are independent, as well as (U, V) and Z).
Its distribution function equals

t
P(U+sz§t)=/ P(VVZ<t—s)he *ds
0
t
- k/ (l — e_)‘(t_s))2 e Mds
0
=1 —2xrte ™™ — ™M,

and its probability density is the function

t— 2xte Me ™M — 14 Ar).

Exercise 6.5.4

1. Denote by m the random permutation of {1, ...,n} which is such that
Yi = Xzq), 1 <k <n. By symmetry, the probability of this permutation
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is the uniform distribution on the set IT (whose cardinality equals n!) of all
the permutations of the set {1, ..., n}. Hence, for any f : [0, ] — R4,
with the notation

E[X; A] =E[X14],

we have

ELf (Y1, Yl =Y BLF (Xuqys oo X)) T =
nell

=nlE[f(X1,...., Xu); X1 < X2 <...< X,]

n!

= N dsy - -dsy,
where A} denotes the simplex
{(s1,82,...,8,); O0<s1 <sp <...<8, <t}
The law of the random vector (Y1, ..., Y,) is uniform on Af.

2. Compute, for O <t) <th <...<t, <t,

P(Ti<ti <Th<th<...<T, <t,|N; =n)
_IP’(Tl <ti<h=<th<..<T,<ty<t<Tuy)
P(T, <1 < Tuy1)
_ PNy, =1,N,-N,=1,....N,, =N, , =1,N,— N, =0)
P(N; = n)
_ Aye Mty — t)e M2 LA (t, — 1, p)e M InTin-1) g = Al —tn)
(At)re=* /n!

n!
= t—nll(tz =)ty — 1)

n!
= — dsy---dsy,

t”
O<sy <ty <sp<tr<..<$p <ty

hence the result, by comparison with the law found in part 1.

Exercise 6.5.6

It follows from Exercise 6.5.4 that, conditionally upon N; = n, the joint law of
the infection times is the law of a set of »n 1.i.d. random variables, whose common
law is uniform on [0, ]. An individual who is infected at time s has probability
G(t — s) of being sick at time ¢, and probability G(t) = 1 — G(t) of not yet being
sick at time ¢. Hence each of the infected individuals has probability p, of being
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sick at time 7, and g; of not being sick at time ¢, with
1 [ 1 [ 1 [t
pr = —/ G(t —s)ds = —/ G(s)ds, q; = —/ G(s)ds.
tJo tJo tJo
By independence of the behaviours of the various individuals, if n = k + ¢,

n!
P(N! =k, N> =¢|N, =n) = Mpqu,
P(N! =k, N) = P(N] =k, N> = £|N, = n)P(N, = n)

n! oo A"

T n!
k 12
— e_)\tp[ ()"tpt) €_Mqr (MC]z)
k! e

which proves exactly what was claimed.

10.7 Chapter 7

Exercise 7.11.1

Denote by {N,; ¢t > 0} the counting process of the Poisson point process {7,,; n >
1}. It is not too hard to deduce from the assumptions that, with the same notation
as in Definition 1.1,

P(X; = y| Xy = x0, Xy, = X1, ..., Xp, =X, Xy = X)

n

=Y P(X, =y, N, = Ny = n|X;y = x0, X, = x1,..., X;, = X, Xg =)

n>0

n!
n>0

=P(X, = y|X; = x).

We deduce that the semi-group of transition matrices of the jump Markov process
{X;; t = 0} is given by

P(t) =explat (P —1)], t=>0.
The infinitesimal generator is the matrix Q = A(P — I). Denote by S; the time of

the first jump of {X,}. Clearly S; > T;, with P(S; > T;) > 0. More precisely, if
we denote by N, the first n such that Z, # Zy = x, under P, the law of N, is
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geometric with parameter Py, hence

Pe(S) > 1) =Y (1= Po)" ' PP(T, > 1)

n>1

—p Z(l — P)"! /Ooe_y 1y
xx =11 y y y
e—)LtP”.

Consequently, the law of S} is exponential with parameter A P;.

Exercise 7.11.3

1. We note that
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P(Xt = )’|Xt0 = X0, XI] = X1, "'»th = Xn, XS :x)

= > PWNi—Ny=nP—P=k—y+xlX, = ... X =x

n=(y—x)*

= Y PWN,—Ny=nP—P=k—y+x)
n=(y—x)*t

= Z P(N,—Ny=n,P,—Ps=k—y+x|X; =x)
n=(y—x)*

=P(X; = y|Xy = x),

from which the Markov property follows. The row indexed by x of the
infinitesimal generator Q has only three non-zero entries: Q. —1 = U,
Qxx = —(+ ) and Qy 41 = A. The process can jump from x to x + 1
and to x — 1, from which irreducibility follows.

—=————=A—u, ast— oo.
t t t

Hence, X, — +o00 as t — oo, whenever A > w, and X; - —o0 as t —
0o, whenever A < . In these two cases, the process {X,; ¢t > 0} is tran-
sient.

. In this case, the embedded chain is a symmetric nearest-neighbour Z-valued
random walk, which we know is recurrent. Moreover, the counting measure
7 of the points of Z satisfies 7 Q = 0, hence it is invariant. But that measure
has infinite total mass, hence {X,; t > 0} is null recurrent.
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Exercise 7.11.5
1. Approximating a general stopping time by stopping times which take their

values in the set of multiples of 27" as in the proof of Proposition 3.2, we
can restrict ourselves to the case where the stopping time S takes its values

in the set {sy,...,sy}, where 0 <s; <5 < ... < sy <t. Then
N
Mg = ZMskl{s:sk},
k=1

N
EMg = ZE (M5k1{5=5k})
k=1

N

=EM, — ) E((M, — My)1s=))
k=1

= EM I
The last equality follows from {S = s;} € F;, and the martingale property.

2. From the Markov property, if 0 < s <,
E[M, — M,|Ff1=E [f(xo — f(Xy) — f Qf(Xr)drlff}
—E [f(xa X - f Qf(xr>dr|xx}

= |:Ptsf_f_/‘0_ Perdri| (XY)

If we admit the identity P.Q = Q P,, then, from the proof of Theorem 3.2,
the right-hand side of the above identity vanishes.

3. If f(x) =x, then Of(x) =B —«, for all x. It then follows from the
answers to parts 1 and 2 that

E, (XTF/\I) =x+ (B —)E(TF A D).

We can pass to the limit as t — oo in this equality, applying the dominated
convergence theorem to the left-hand side, and the monotone convergence
theorem to the right-hand side, whence if 8 # «,

Ex (XTF) — X

Bo(Tp) = =2
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Now in the case @ = B we choose f(x) = x2, so that, for all x, Qf (x) =
2a, hence by the same argument as above, we deduce

E, (X%F> —x2

Ex (TF) = 2o

Exercise 7.11.6

1. The transition matrix of the embedded chain is

o 1 0 0 0 0
A M
20 £ 0 0 0

A

p=0 wm O & 0 0

A I
0O 0w 0o 0

All entries of the sub- and superdiagonals are non-zero, hence the embedded
chain is irreducible, and the same is true for {X,}.

2. Note that one way to construct the embedded chain {Z,, = X7, } is to start
with an i.i.d. sequence of {—1, 1}-valued random variables {Y,; n > 1}
such that P(Y; =1) = u/(A+u) =1—-P(¥,; = —1), and to define, for
n >0,

{ 1, if X, =0,
Zn+1 =
Z,+7Y, ifX,>0.

The transience or recurrence of {Z,}, hence also of {X,}, can be established
as in Exercise 10.19 of Chapter 2.

3. The identity (w Q)¢ = 0 implies that 7, = mo(/A)*. With the additional
condition ), w, = 1, we deduce

)
T,=—1=) .
A A

7 is a geometric probability law on N.

4. From what we have just seen, {X;} is positive recurrent if A > p. If A = pu,
the measure 7 = (1/2, 1, 1, ...) is invariant and has infinite total mass,
hence {X,} is null recurrent.
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Exercise 7.11.7

1. We have
p—1 1—p O 0 0 1 0 0
_|1 0 -1 p 1-p 0 0 p 1-p
Q= p 1-p -1 0 » P= p 1—p O 0
0 0o p —p 0o 0 1 0

. Starting at state 1, {X,} waits an exponential time with parameter 1 — p,

then jumps to state 2. Starting at state 2, {X,} waits an exponential time
with parameter 1, then jumps to state 3 with probability p, and to state
4 with probability 1 — p. Starting from state 3, {X,} waits an exponential
time with parameter 1, then jumps to state 1 with probability p, and to state
2 with probability 1 — p. Starting at state 4, {X,} waits an exponential time
with parameter p, then jumps to state 3.

. The embedded chain is clearly irreducible. Since the state space is finite,

the chain is positive recurrent. The equation satisfied by the invariant prob-
ability is ©Q = 0, which is equivalent to P = u, hence the invariant
probability is the same as that in Exercise 10.9 of Chapter 2.

. The invariant probability of the embedded chain is the solution of u P’ = pu,

which is (p/3,1/3,1/3, (1 — p)/3).

Exercise 7.11.8

1. The Markov chain {X,} is not the embedded chain associated with {X,}.

The first row of the transition matrix of the embedded chain is (0, 1, ...),
the rest of the transition matrix being the same for both chains.

. Since 0 < p,g < 1, both {X,} and the embedded chain {Y,} jump with

positive probability from O to 1, and from x to both x — 1 and x + 1,
for x > 1. Hence for x,y € N, each of the two chains has a non-zero
probability, starting at x, of reaching y in |y — x| steps. Both chains are
then irreducible, as N-valued processes.

. It is easy to see that the equation w P = 7 is equivalent to 7 Q = 0, since

Q = P — I. Consequently, {X,} and {X;} have the same invariant measure.

{X;} is transient or recurrent if and only if the embedded chain {Y,} has
the same property, which in turn is equivalent to the fact that {X,} has
the same property. Indeed, an irreducible N-valued Markov chain {X,} is
transient if and only if X,, — oo as n — oo. This property depends only
on the rows of the transition matrix after the mth, for arbitrary m, and these
are the same in the transition matrices of both {X,} and {Y,}.
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Finally, one way to distinguish between positive recurrence and null recur-
rence is to check whether the invariant measures have finite or infinite total
mass. We can conclude from the above arguments that if both {X,} and
{X;} are recurrent, then either both are positive recurrent, or else both are
null recurrent.

. Itsuffices to consider {X,,}. But X, 11 = X,, + Lx, > 0 Y41 + Lix,=0) Y, 1
with Xy, Y1, Y2, .. .independent, P(Y; = 1) = p = 1 — P(¥Y; = —1). Hence
Xn > Xo+ Y_;_; Yx, and since the Y are i.i.d., with E(Y;) = p — g > 0,
22:1 Yy — +ooasn — oo, and also X,, - 400 asn — 00. {X,,} is tran-
sient.

. It suffices to show that X,, & oo as n — o0. This will follow from the fact
that, starting at any x > 1, the chain visits almost surely the state x — 1
(and then returns almost surely to x from irreducibility). Since between its
visits to x and to x — 1 the trajectory of X,, does not visit 0, the probability
distribution of the time it takes for X, to reach x — 1, starting at x, is the
same as for the random walk Z'l’ Y, and we know from Exercise 10.11
of Chapter 2 that this chain is recurrent in the case p = ¢. In particular,
the time taken to reach x — 1 starting from x is almost surely finite. One
could then argue that the null recurrent behaviour of {X,} follows from
that of )" Y%, but it is even simpler to note that the measure 7 defined by
. = 1, for all x € N, is invariant for the chain {X,}.

. Solving the equation w Q =0, we find that 7; = (p/q)mo, T2 = (7] —
po)/q = mo(h — p)/q = A*my. More generally, for all x > 1, w4 =
(wy — pmy_1)/q. Hence if m, =2Amy |, then m, ) =m 1(A—p)/g
= A2m,_| = Am,. We deduce easily that m, = A*mp, and 7 is a proba-
bility if mp = 1 — A, from which we finally deduce that w, = (1 — A)A¥,
x € N. This is a geometric distribution; in fact the process which we con-
sider here is a particular case of the M/M /1 queue (see Section 8.1). In
the case p < ¢, both chains are positive recurrent.

. Itis easily checked that all the arguments above remain valid in the presence
of the constant c¢, since it modifies neither the embedded chain, nor the
equation for a possible invariant measure. The constant ¢ changes only
the law of the time spent by the continuous time process in each state,
multiplying the parameter of the corresponding exponential distribution by
c. If ¢ > 1 those times are shortened, while if ¢ < 1 they are lengthened.

. One can easily check that the embedded chain associated with {Y,} is
the same as that associated with {X,}. But the equation for the invari-
ant measure is now Agm; = pmy, and, for x > 1, k"“qan =AM, —
Al pry_i. Clearly the ‘uniform’ measure (7, = 1, for all x) is invariant.
Making the times spent in the states which are ‘far from 0 (the larger x,
the smaller the factor A*) longer and longer makes the expectation of the
time taken to return to x infinite.
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This last question gives one example of a jump Markov process which
is null recurrent while its embedded chain is positive recurrent. For an
example where the jump Markov process is positive recurrent while the
embedded chain is null recurrent, it suffices to choose p = g = 1/2, and
to multiply the xth row of the matrix Q by A~ (A < 1 as above). Then
the same geometric probability as in part 6 is invariant for the process in
continuous time. Dividing the xth row by A* shortens the time spent at state
x, the factor A* being smaller for larger x. The lengths of the excursions
from O are shortened, in the sense that their expectations become finite,
even though the number of states visited during an excursion is infinite
(the embedded chain is null recurrent).

Exercise 7.11.9

1. Clearly Lemma 1.2 applies here, and we have a Markov chain. Its transition

matrix is
1—p/2 p/2 0 0 0
1—p/2 0 p/2 0 0
p=|1—-p p/2 0 p/2 0
l—p 0 p/2 0 p/2

(=i iNe)

and since all entries of the sub- and superdiagonals are non-zero, the chain
can go in a finite number of steps from x to y, for all x, y € N, hence the
irreducibility.

. Let T denote the time of the first return to 0, starting from 0. P(T > k) <

pk for all k > 1. Hence,

E(T) = ZP(T > k) < 00.
k=0

Then the state O is positive recurrent, and from irreducibility the chain has
that property.

. It is easy to verify that the probability = from the statement of the exercise

satisfies 7 P = 7, hence it is an invariant probability distribution, which is
unique from irreducibility.

. The transition matrix of the embedded chain differs from the matrix P in

part 1 only in its first row, which equals (0100 ...). Hence, the embedded
chain is irreducible and recurrent (the fact that O is recurrent is not affected
by a modification of the first row of the transition matrix), and {X,} is
irreducible and recurrent. Since Q = P — I, and 7P =, 7 Q = 0, and
by Theorem 6.2, {X,} is positive recurrent.
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10.8 Chapter 8

Exercise 8.13.2

1. One can put the sequence {Y,,; n > 0} in the form
Yn+1 = (Yn +1 - Zn)+»

where Z, is the number of potential departures (effective number of depar-
tures if enough customers are present) between two arrivals. In other words,
the law of Z, is the law of Ny, where {N;; t > 0} and T are indepen-
dent, the former being a Poisson process with intensity p, and 7 is an
exponential random variable with parameter A. Then

auk k
P(Z, =k) = #kl, P(Z, > k) = (L) .
(A + )t A4
Hence {Y,;; n > 0} is a Markov chain with transition matrix
" A
pan ot 0 0 0

2
2 A A
) OAw?  Atp 0 0

( 3
o o A
e () 4?2 A

Clearly the chain {Y,; n > 0} is irreducible as an N-valued process, since
all entries P, , with y < x + 1 are non-zero. The chain is aperiodic since
the diagonal entries of P are non-zero, hence the same is true for the
diagonal entries of Pk for all k > 1.

2. It is easy to check that the probability distribution 7 defined by

A A\*
nx:<1——><—>, x eN,
w) \

is P-invariant. Hence the chain is positive recurrent, and by aperiodicity
the law of Y, converges to mw as n — oo.

3. The mean time D spent by a customer in the system equals (14 mean
number of customers which he finds in front of him when he arrives)x
mean service time; hence, from what we have just seen,
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Then

which is Little’s formula.

4. For all x > 0, we have

P(X7- =x) = ZIP’(ZO =y —x|Xo=y)P(Xo=y)

y=x

=) PZo=y-0PXp=1y)

y=x
2 A x+1
(-6
M 1%

P(X7-=0) = ) P(Zy = yIXo = »)P(Xo = y)

while

y=x
= P(Zy = y)P(Xo =)
y=x
B <1 A) A+
w) wo

Denote by p the law of X - We have that
o+ T = Mo, Tx = fyx—1, X = 2.

Hence,

D f ) =o+m)fO) + Y mfx—1)

x>0 x>2

<Y mf),

x>0

provided that f is increasing, with strict inequality if f is not constant.
This result is very intuitive, since X T equals Xo minus the number of
departures between 0 and 7;. But part 2 of the exercise tells us that X,
converges in law towards m as n — oo. As in the case treated in Exercise
5.3 of Chapter 6, the law of X T would be its asymptotic distribution (here
1), had the system been initialized at time —oo.
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10.9 Chapter 9

Exercise 9.7.1

We shall make use of the fact that S, is a martingale under P* (see Section 9.3.5),
hence
E'e™ S| ] = S,.

But
St — K < (St — K)y < Sr,

hence, multiplying by ¢~ 7= and taking the conditional expectation given F;
under P*, we deduce that

S, —e T DK <, <8,.

The result for P, can be deduced similarly from the inequality (K — S7)4+ < K.

Exercise 9.7.3

1. Under P, as under P*, the law of S; is lognormal, in particular it has a den-
sity, hence the probability that S, = e"" ="K, or equivalently that C, =
Py, is zero. The inequality C, > P, means that the conditional expectation,
given the price S; of the underlying asset at time ¢, of the gain from the call
at time 7T is greater than the gain from the put, and vice versa if P, > C,.

2. If the buyer follows the strategy defined in part 1, the option yields at time
T exactly what the statement of the question claims.

3. The call-put parity formula tells us that
C,— P =5—e"TVkK,
hence
F,={C, < P}={S <e"T-DK},
G, ={C, > P} ={S > e Tk}

In particular, these two events belong to the o-algebra o (S;), hence the
identity of the statement follows from the fact that {¢~"'S;; ¢ >0} is a
martingale under P* (see Section 9.3.5).
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4. From the formulae in part 2,
— (St = K)y = (K = Sr)lic,<p,
— (K =S87)+ = (St — K)li¢,>p,.

Hence, multiplying by e~"7 and taking the expectation under P*, we deduce
that

Xo— Co = e "TKP*(F,) — e ""E*[S/1F,],
Xo— Py = e "E*[S1g,] — e T KP*(G)).

From now on let £ denote a random variable whose probability distribution
is N (0, 1) under P*, and let F denote the distribution function of N (0, 1).
To compute Xy — Cy and Xy — Py we first need to compute

S K
PYC, < P) =P (e F <o T—
So So

(a\/—f;‘ <—rT+o —+log£>

So
i \f )
(af f
hence
1 K o rT
P*(C,;>P)=1—F | —=1log — + =t — )
(Ci>PFy) (0_\/2 gSO 2«/— G\/;
and

1 K
E*(S,: C P)=S§ (r—02/2)tE* afg 9 log —
S Cr < Py) 0e &< \/— \/Z 0og So

1 K -
ot TS 2 ot

Hence, since E*(S;) = Spe'”,

1K T
E*(S,: C > P,) = Spe! [1 ~F <—log— il )]

o/t So 2 o/t
Finally,
Xo—Co—e_’TKF<U—log§+%\/;—;—§;>
XO—PO_SO[I F(:logsfo %J ;—Tt)}
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5. The equality X, = max(C,, P;) follows from part 1. The hedging strategy
is as follows. Between time s = 0 and time s = ¢ we invest

ow
A (Sv S )
ax *
on the risky asset, and between time s = ¢ and time s = 7 we invest

ou dv
1{u(r,s,)>v(r,5,)}£(sﬁ Ss) + l{u(t,St)<v(t,S;)}£(sa Ss)-
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