


International Series in Operations
Research & Management Science

Volume 189

Series Editor

Frederick S. Hillier
Stanford University, CA, USA

Special Editorial Consultant

Camille C. Price
Stephen F. Austin State University, TX, USA

For further volumes:
http://www.springer.com/series/6161





Wai-Ki Ching • Ximin Huang
Michael K. Ng • Tak-Kuen Siu

Markov Chains

Models, Algorithms and Applications

Second Edition

123



Wai-Ki Ching
Department of Mathematics
The University of Hong Kong
Hong Kong, SAR

Michael K. Ng
Department of Mathematics
Hong Kong Baptist University
Kowloon Tong
Hong Kong SAR

Ximin Huang
College of Management
Georgia Institute of Technology
Atlanta, Georgia, USA

Tak-Kuen Siu
Cass Business School
City University London
London
United Kingdom

ISSN 0884-8289
ISBN 978-1-4614-6311-5 ISBN 978-1-4614-6312-2 (eBook)
DOI 10.1007/978-1-4614-6312-2
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013931264

© Springer Science+Business Media New York 2006, 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To Mandy and my Parents
Wai-Ki Ching

To my Parents
Ximin Huang

To Anna, Cecilia and my Parents
Michael K. Ng

To Candy and my Parents
Tak-Kuen Siu





Preface

The aim of this book is to outline the recent development of Markov chain models
and their applications in queueing systems, manufacturing systems, remanufactur-
ing systems, inventory systems, ranking the importance of a web site, and also
financial risk management.

This book consists of eight chapters. In Chapter 1, we give a brief introduction
to the classical theory on both discrete and continuous time Markov chains. The
relationship between Markov chains of finite states and matrix theory will also
be highlighted. Some classical iterative methods for solving linear systems will be
introduced for finding the stationary distribution of a Markov chain. We then give
the basic theories and algorithms for hidden Markov models (HMMs) and Markov
decision processes (MDPs).

Chapter 2 discusses the applications of continuous time Markov chains to model
queueing systems and discrete time Markov chains for computing the PageRank, a
ranking of the importance of a web site in the Internet. Chapter 3 studies Markovian
models for manufacturing and remanufacturing systems. We present closed form
solutions and fast numerical algorithms for solving the captured systems. In
Chapter 4, we present a simple hidden Markov model (HMM) with fast numerical
algorithms for estimating the model parameters. We then present an application of
the HMM for customer classification.

Chapter 5 discusses Markov decision processes for customer lifetime values.
Customer lifetime values (CLV) is an important concept and quantity in marketing
management. We present an approach based on Markov decision processes for the
calculation of CLV using real data.

In Chapter 6, we consider higher-order Markov chain models. In particular, we
discuss a class of parsimonious higher-order Markov chain models. Efficient esti-
mation methods for model parameters based on linear programming are presented.
Contemporary research results on applications to demand predictions, inventory
control, and financial risk measurement are presented. In Chapter 7, a class of
parsimonious multivariate Markov models is introduced. Again, efficient estimation
methods based on linear programming are presented. Applications to demand
predictions, inventory control policy, and modeling credit ratings data are discussed.
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viii Preface

In Chapter 8, we revisit hidden Markov models. We propose a new class of hidden
Markov models with efficient algorithms for estimating the model parameters.
Applications to modeling interest rate, credit ratings, and default data are discussed.

The authors would like to thank Operational Research Society, Oxford University
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Media, Incisive Financial Publishing Limited, and Yokohama Publishers for their
permission to reproduce the material in this book. The authors would also like
to thank Werner Fortmann, Gretel Fortmann, and Mimi Lui for their help in the
preparation of this book.
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Chapter 1
Introduction

Markov chains are named after Prof. Andrei A. Markov (1856–1922). He was born
on June 14, 1856 in Ryazan, Russia and died on July 20, 1922 in St. Petersburg,
Russia. Markov enrolled at the University of St. Petersburg, where he earned a
master’s degree and a doctorate degree. He was a professor at St. Petersburg and also
a member of the Russian Academy of Sciences. He retired in 1905, but continued his
teaching at the university until his death. Markov is particularly remembered for his
study of Markov chains. His research works on Markov chains launched the study
of stochastic processes with a lot of applications. For more details about Markov
and his works, we refer our reader to the following interesting website (http://www-
groups.dcs.st-and.ac.uk/�history/Mathematicians/Markov.html).

In this chapter, we first give a brief introduction to the classical theory on both
discrete and continuous time Markov chains. We then present some relationships
between Markov chains of finite states and matrix theory. Some classical iterative
methods for solving linear systems will be introduced. The iterative methods can be
employed to solving the stationary distribution of a Markov chain. We will also give
some basic theory and algorithms for standard hidden Markov models (HMMs) and
Markov decision processes (MDPs).

1.1 Markov Chains

This section gives a brief introduction to discrete time Markov chains. Interested
readers can consult the books by Ross [181] and Häggström [111] for more details.

Markov chains model a sequence of random variables, which correspond to the
states of a certain system in such a way that the state at one time depends only on the
state in the previous time. We will discuss some basic properties of a Markov chain.
Basic concepts and notations are explained throughout this chapter. Some important
theorems in this area will also be presented.

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 1,
© Springer Science+Business Media New York 2013

1



2 1 Introduction

Let us begin with a practical problem for motivation. Marketing research has
indicated that in a town there are two supermarkets only, namely Wellcome and
Park’n. A marketing research indicated that a consumer of Wellcome may switch
to Park’n for their next shopping with a probability of ˛.> 0/, while a consumer
of Park’n may switch to Wellcome for their next shopping with a probability of
ˇ.> 0/. Two important and interesting questions that a decision maker would be
interested in are: (1) What is the probability that a current Wellcome’s consumer
will still be shopping at Wellcome for their nth shopping trip? (2) What will be the
market share of the two supermarkets in the long-run? An important feature of this
problem is that the future behavior of a consumer depends on their current situation.
We will see later that this marketing problem can be formulated by using it as a
Markov chain model.

1.1.1 Examples of Markov Chains

We consider a stochastic process

fX.n/; n D 0; 1; 2; : : :g

that takes on a finite or countable set M .

Example 1.1. Let X.n/ be the weather of the nth day which can be

M D fsunny; windy; rainy; cloudyg:

One may have the following realization:

X.0/ Dsunny, X.1/ Dwindy, X.2/ Drainy, X.3/ Dsunny, X.4/ Dcloudy, : : :.

Example 1.2. Let X.n/ be the product sales on the nth day which can be

M D f0; 1; 2; : : : ; g:

One may have the following realization:

X.0/ D 4; X.1/ D 5; X.2/ D 2; X.3/ D 0; X.4/ D 5; : : : :

Remark 1.3. For simplicity of discussion we assume M , the state space to be

f0; 1; 2; : : :g:

An element in M is called a state of the process.
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Definition 1.4. Suppose there is a fixed probability Pij independent of time such
that

P.X.nC1/ D i jX.n/ D j; X.n�1/ D in�1; : : : ; X.0/ D i0/ D Pij n � 0

where i; j; i0; i1; : : : ; in�1 2 M . Then this is called a Markov chain process.

Remark 1.5. One can interpret the above probability as follows: the conditional
distribution of any future state X.nC1/ given the past states

X.0/; X.2/; : : : ; X.n�1/

and present state X.n/, is independent of the past states and depends on the present
state only.

Remark 1.6. The probability Pij represents the probability that the process will
make a transition to state i given that currently the process is in state j . Clearly
one has

Pij � 0;

1X

iD0

Pij D 1; j D 0; 1; : : : :

For simplicity of discussion, in our context we adopt this convention which is
different from the traditional one.

Definition 1.7. The matrix containing Pij , the transition probabilities

P D

0
B@

P00 P01 � � �
P10 P11 � � �

:::
:::

:::

1
CA

is called the one-step transition probability matrix of the process.

Example 1.8. Consider the marketing problem again. Let X.n/ be a 2-state process
(taking values in the set f0; 1g) describing the behavior of a consumer. We have
X.n/ D 0 if the consumer shops with Wellcome on the nth day and X.n/ D 1

if the consumer shops with Park’n on the nth day. Since the future state (which
supermarket to shop in the next time) depends on the current state only, it is a
Markov chain process. It is easy to check that the transition probabilities are

P00 D 1 � ˛; P10 D ˛; P11 D 1 � ˇ and P01 D ˇ:

Then the one-step transition matrix of this process is given by

P D
�

1 � ˛ ˇ

˛ 1 � ˇ

�
:
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−2 −1 0 1 2

p1 − p

Fig. 1.1 The random walk

0 1 2 3 N

p1 − p

Fig. 1.2 The gambler’s ruin

Example 1.9. (Random Walk) Random walks have been studied by many physicists
and mathematicians for a number of years. Over time, random walk theory has seen
extensions [181] and applications in many fields of study. Therefore it is obvious to
discuss the idea of random walks here. Consider a person who performs a random
walk on the real line with a line of real counting numbers:

f: : : ; �2; �1; 0; 1; 2; : : :g

being the state space, see for instance Fig. 1.1. Each time the person at state i can
move one step forward (+1) or one step backward (-1) with probabilities p .0 <

p < 1/ and .1 � p/ respectively. Therefore we have the transition probabilities as
follow:

Pij D
8
<

:

p if i D j C 1

1 � p if i D j � 1

0 otherwise

for j D 0; ˙1; ˙2; : : :.

Example 1.10. (Gambler’s Ruin) Consider a gambler gambling in a series of
games, at each game, he either wins one dollar with probability p .0 < p < 1/

or loses one dollar with probability .1 � p/ (Fig. 1.2). The game ends if either he
loses all his money or he attains a total amount of N dollars. Let the gambler’s
fortune be the state of the gambling process then the process is a Markov chain.
Moreover, we have the transition probabilities

Pij D
8
<

:

p if i D j C 1

1 � p if i D j � 1

0 otherwise:
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j

P0j
(n)

Pkj
(n)

PNj
(n)

0

k

N

i

Pi0
(1)

Pik
(1)

PiN
(1)

In n transitions In one transition

Fig. 1.3 The .n C 1/-step transition probability

for j D 1; 2; : : : ; N � 1 and P00 D PNN D 1. Here state 0 and state N are called
the absorbing states. The process will stay at 0 or N forever if one of the states is
reached.

1.1.2 The nth-Step Transition Matrix

In the previous section, we have defined the one-step transition probability matrix
P for a Markov chain process. In this section, we are going to investigate the n-step
transition probability P

.n/
ij of a Markov chain process.

Definition 1.11. Define P
.n/
ij to be the probability that a process in state j will be

in state i after n additional transitions. In particular, we have P
.1/
ij D Pij .

Proposition 1.12. We have P .n/ D P n where P .n/ is the n-step transition
probability matrix and P is the one-step transition matrix.

Proof. We will prove the proposition by using mathematical induction. Clearly the
proposition is true when n D 1. We then assume that the proposition is true for n.
We note that

P n D P � P � : : : � P„ ƒ‚ …
n times

:

Then we have (see Fig. 1.3)

P
.nC1/
ij D

X

k2M

P
.n/

ki P
.1/

jk D
X

k2M

P n
ki Pjk D ŒP nC1�ij :

By the principle of mathematical induction the proposition is true for all non-
negative integer n.
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Remark 1.13. It is easy to see that

P .m/ � P .n/ D P m � P n D P mCn D P .mCn/:

Example 1.14. We consider the marketing problem again. In the model we have

P D
�

1 � ˛ ˇ

˛ 1 � ˇ

�
:

If ˛ D 0:3 and ˇ D 0:4 then we have

P .4/ D P 4 D
�

0:7 0:4

0:3 0:6

�4

D
�

0:5749 0:5668

0:4351 0:4332

�
:

Recall that a consumer is in state 0 (1) if they are a consumer of Wellcome (Park’n).
Here P

.4/
00 D 0:5749 is the probability that a Wellcome’s consumer will shop with

Wellcome on their fourth shopping trip and P
.4/
10 D 0:4351 is the probability that

a Wellcome’s consumer will shop with Park’n on their fourth shopping trip. And
P

.4/
01 D 0:5668 is the probability that a consumer of Park’n will shop with Wellcome

on their fourth shopping trip, while P
.4/
11 D 0:4332 is the probability that a consumer

of Park’n will shop with Park’n on their fourth shopping trip.

Remark 1.15. Consider a Markov chain process having states in f0; 1; 2; : : :g.
Suppose that we are given at time n D 0 the probability that the process is in
state i is ai ; i D 0; 1; 2; : : : ; then one interesting question is the following: What
is the probability that the process will be in state j after n transitions? In fact,
the probability that given the process is in state i and it will be in state j after n

transitions is P
.n/
j i D ŒP n�j i , where Pj i is the one-step transition probability from

state i to state j of the process. Therefore the required probability is

1X

iD0

P.X.0/ D i/ � P
.n/
j i D

1X

iD0

ai � ŒP n�j i :

Let

X.n/ D . QX.n/
0 ; QX.n/

1 ; : : : ; /

be the probability distribution of the states in a Markov chain process at the nth
transition. Here QX.n/

i is the probability that the process is in state i after n transitions
and

1X

iD0

QX.n/
i D 1:

It is easy to check that

X.nC1/ D P X.n/
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and

X.nC1/ D P .nC1/X.0/ D P nX.0/:

Example 1.16. Refer to the previous example. If at n D 0 a consumer belongs to
Park’n, we may represent this information as

X.0/ D . QX.0/
0 ; QX.0/

1 /T D .0; 1/T :

Where will be the consumer shop on their fourth shopping trip?

X.4/ D P .4/X.0/ D
�

0:7 0:4

0:3 0:6

�4

.0; 1/T D .0:5668; 0:4332/T :

This means that with a probability 0:4332 they will be a consumer of Park’n and
with a probability of 0:5668 they will be a consumer of Wellcome on their fourth
shopping trip.

1.1.3 Irreducible Markov Chain and Classifications of States

In the following, we define two definitions for the states of a Markov chain.

Definition 1.17. In a Markov chain, state i is said to be reachable from state j if
P

.n/
ij > 0 for some n � 0. This means that starting from state j , it is possible (with

positive probability) to enter state i in a finite number of transitions.

Definition 1.18. State i and state j are said to communicate if state i and state j

are reachable from each other.

Remark 1.19. The definition of communication defines an equivalent relation.

(i) state i communicates with state i in 0 step because

P
.0/
i i D P.X.0/ D i jX.0/ D i/ D 1 > 0:

(ii) If state i communicates with state j , then state j communicates with state i .
(iii) If state i communicates with state j and state j communicates with state k

then state i communicates with state k. Since P
.m/
j i ; P

.n/

kj > 0 for some m and
n, we have

P
.mCn/

ki D
X

h2M

P
.m/

hi P
.n/

kh � P
.m/
j i P

.n/

kj > 0:

Therefore state k is reachable from state i . By inter-changing the roles of i and
k, state i is reachable from state k. Hence i communicates with k. The proof
is then completed.
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Definition 1.20. Two states that communicate are said to be in the same class. A
Markov chain is said to be irreducible, if all states belong to the same class, i.e. they
communicate with each other.

Example 1.21. Consider the transition probability matrix

0

1

2

0

@
0:0 0:5 0:5

0:5 0:0 0:5

0:5 0:5 0:0

1

A :

Example 1.22. Consider another transition probability matrix

0

1

2

3

0
BB@

0:0 0:0 0:0 0:0

1:0 0:0 0:5 0:5

0:0 0:5 0:0 0:5

0:0 0:5 0:5 0:0

1
CCA :

We note that from state 1, 2, 3, it is not possible to visit state 0, i.e

P
.n/
01 D P

.n/
02 D P

.n/
03 D 0:

Therefore the Markov chain is not irreducible (or it is reducible).

Definition 1.23. For any state i in a Markov chain, let fi be the probability that
starting in state i , the process will ever re-enter state i . State i is said to be recurrent
if fi D 1 and transient if fi < 1.

We have the following proposition for a recurrent state.

Proposition 1.24. In a finite Markov chain, a state i is recurrent if and only if

1X

nD1

P
.n/
i i D 1:

The proposition implies that a transient state will only be visited a finite number
of times. Thus it is easy to see that in a Markov chain of finite states, we cannot have
all states being transient. By using Proposition 1.24 one can prove the following
proposition.

Proposition 1.25. In a finite Markov chain, if state i is recurrent (transient) and
state i communicates with state j then state j is also recurrent (transient).

1.1.4 An Analysis of the Random Walk

Recall the classical example of a random walk (the analysis of the random walk
can also be found in Ross [181]). A person performs a random walk on the real
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line of integers. At each time point the person at state i can move one step forward
(+1) or one step backward (-1) with probabilities p .0 < p < 1/ and .1 � p/

respectively. Since all the states communicate, by Proposition 1.25, then all states
are either recurrent or they are all transient.

Let us consider state 0. To classify this state one can consider the following sum:

1X

mD1

P
.m/
00 :

We note that

P
.2nC1/
00 D 0

because in order to return to state 0, the number of forward movements should
be equal to the number of backward movements and therefore the number of
movements should be even and

P
.2n/
00 D

�
2n

n

�
pn.1 � p/n:

Hence we have

I D
1X

mD1

P
.m/
00 D

1X

nD1

P
.2n/
00 D

1X

nD1

�
2n

n

�
pn.1 � p/n D

1X

nD1

.2n/Š

nŠnŠ
pn.1 � p/n:

Recall that if I is finite then state 0 is transient or it is recurrent. We can then apply
the Stirling’s formula to get a conclusive result. The Stirling’s formula states that if
n is large then

nŠ � nnC 1
2 e�n

p
2�:

Hence one can approximate

P
.2n/
00 � .4p.1 � p//n

p
�n

:

There are two cases to consider. If p D 1
2

then we have

P
.2n/
00 � 1p

�n
:

If p ¤ 1
2

then we have

P
.2n/
00 � an

p
�n
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where

0 < a D 4p.1 � p/ < 1:

Therefore when p D 1
2
, state 0 is recurrent as the sum is infinite, and when p ¤ 1

2
,

state 0 is transient as the sum is finite.

1.1.5 Simulation of Markov Chains with EXCEL

Consider a Markov chain process with three states f0; 1; 2g with the transition
probability matrix as follows:

P D
0

1

2

0

@
0:2 0:5 0:3

0:3 0:1 0:3

0:5 0:4 0:4

1

A :

Given that X0 D 0, our objective here is to generate a sequence

fX.n/; n D 1; 2; : : :g

which follows a Markov chain process with the transition matrix P .

To generate fX.n/g there are three possible cases:

(i) Suppose X.n/ D 0, then we have

P.X.nC1/ D 0/ D 0:2 P.X.nC1/ D 1/ D 0:3 P.X.nC1/ D 2/ D 0:5I

(ii) Suppose X.n/ D 1, then we have

P.X.nC1/ D 0/ D 0:5 P.X.nC1/ D 1/ D 0:1 P.X.nC1/ D 2/ D 0:4I

(iii) Suppose X.n/ D 2, then we have

P.X.nC1/ D 0/ D 0:3 P.X.nC1/ D 1/ D 0:3 P.X.nC1/ D 2/ D 0:4:

Suppose we can generate a random variable U which is uniformly distributed over
Œ0; 1�. Then one can easily generate the distribution in Case (i) when X.n/ D 0 easily
as follows:

X.nC1/ D
8
<

:

0 if U 2 Œ0; 0:2/;

1 if U 2 Œ0:2; 0:5/;

2 if U 2 Œ0:5; 1�:
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The distribution in Case (ii) when X.n/ D 1 can be generated as follows:

X.nC1/ D
8
<

:

0 if U 2 Œ0; 0:5/;

1 if U 2 Œ0:5; 0:6/;

2 if U 2 Œ0:6; 1�:

The distribution in Case (iii) when X.n/ D 2 can be generated as follows:

X.nC1/ D
8
<

:

0 if U 2 Œ0; 0:3/;

1 if U 2 Œ0:3; 0:6/;

2 if U 2 Œ0:6; 1�:

In EXCEL, one can generate U , a random variable uniformly distributed over Œ0; 1�

by using “=rand()”. By using a simple logic statement in EXCEL, one can simulate
a Markov chain easily, see for instance Fig. 1.4. The followings are some useful
logic statements in EXCEL used in the demonstration file.

(i) “B1” means column B and Row 1.
(ii) “=IF(B1=0,1,-1)” return 1 if B1=0 otherwise it returns -1.

(iii) “=IF(A1 > B2,0,1)” return 0 if A1 > B2 otherwise it returns 1.
(iv) “=IF(AND(A1=1,B2>2),1,0)” return 1 if A1=1 and B2>2 otherwise it returns

0.
(v) “=max(1,2,-1) =2 ” returns the maximum of the numbers.

A demonstration EXCEL file is available at http://hkumath.hku.hk/�wkc/sim.xls for
reference. The program generates a Markov chain process

X.1/; X.2/; : : : ; X.30/

whose transition probability is P and X.0/ D 0.

1.1.6 Building a Markov Chain Model

Given an observed data sequence fX.n/g, one can find the transition frequency Fjk

in the sequence by counting the number of transitions from state j to state k in one
step. One can then construct the one-step transition matrix for the sequence fX.n/g
as follows:

F D

0

BBB@

F11 � � � � � � F1m

F21 � � � � � � F2m

:::
:::

:::
:::

Fm1 � � � � � � Fmm

1

CCCA : (1.1)
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From F , one can get the estimates for Pjk as follows:

P D

0

BBB@

P11 � � � � � � P1m

P21 � � � � � � P2m

:::
:::

:::
:::

Pm1 � � � � � � Pmm

1

CCCA (1.2)

where

Pjk D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

Fjk
mX

j D1

Fjk

if
mX

j D1

Fjk > 0

0 if
mX

j D1

Fjk D 0:

We consider a sequence fX.n/g of three states .m D 3/ given by

f0; 0; 1; 1; 0; 2; 1; 0; 1; 2; 0; 1; 2; 0; 1; 2; 0; 1; 0; 1g: (1.3)

Using the counting method (see Fig. 1.5), we can obtain the transition frequency
matrix

F D
0

@
1 3 3

6 1 1

1 3 0

1

A : (1.4)

Therefore the one-step transition probability matrix can be estimated as follows:

P D
0

@
1=8 3=7 3=4

3=4 1=7 1=4

1=8 3=7 0

1

A : (1.5)

A demonstration EXCEL file is available at http://hkumath.hku.hk/�wkc/build.xls
for reference.

1.1.7 Stationary Distribution of a Finite Markov Chain

Definition 1.26. State i is said to have period d if P
.n/
i i D 0 whenever n is not

divisible by d , and d is the largest integer with this property. A state with period 1

is said to be aperiodic.
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X(t) P00 P01 P02 P10 P11 P12 P20 P21 P22

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

F(ij) 1 6 1 4 1 3 3 1 0

P(ij) 0.125 0.75 0.125 0.5 0.125 0.375 0.75 0.25 0

Fig. 1.5 The construction of the transition probability matrix

Example 1.27. Consider the transition probability matrix

P D
�

0 1

1 0

�
:

We note that

P .n/ D
�

0 1

1 0

�n

D 1

2

�
1 C .�1/n 1 C .�1/nC1

1 C .�1/nC1 1 C .�1/n

�
:

We note that

P
.2nC1/
00 D P

.2nC1/
11 D 0

so both States 0 and 1 have a period of 2.

Definition 1.28. State i is said to be positive recurrent if it is recurrent, and starting
in state i , the expected time until the process returns to state i is finite.
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Definition 1.29. A state is said to be ergodic if it is positive recurrent and aperiodic.

We recall the example of the marketing problem with

X.0/ D .1; 0/T :

We observe that

X.1/ D P X.0/ D
�

0:7 0:4

0:3 0:6

�
.1; 0/T D .0:7; 0:3/T ;

X.2/ D P 2X.0/ D
�

0:61 0:52

0:39 0:48

�
.1; 0/T D .0:61; 0:39/T ;

X.4/ D P 4X.0/ D
�

0:5749 0:5668

0:4251 0:4332

�
.1; 0/T D .0:5749; 0:4251/T ;

X.8/ D P 8X.0/ D
�

0:5715 0:5714

0:4285 0:4286

�
.1; 0/T D .0:5715; 0:4285/T ;

X.16/ D P 16X.0/ D
�

0:5714 0:5174

0:4286 0:4286

�
.1; 0/T D .0:5714; 0:4286/T :

It seems that

lim
n!1 X.n/ D .0:5714; 0:4286/T :

In fact this limit exists and is also independent of X.0/! This means that in the long
run, the probability that a consumer belongs to Wellcome (Park’n) is given by 0:57

(0:43).
We note that X.n/ D P X.n�1/ therefore if we let

lim
n!1 X.n/ D �

then

� D lim
n!1 X.n/ D lim

n!1 P X.n�1/ D P �:

This leads us to Definition 1.30. We have the following definition

Definition 1.30. A vector � D .�0; �1; : : : ; �k�1/T is said to be a stationary
distribution of a finite Markov chain if it satisfies:

(i)

�i � 0 and
k�1X

iD0

�i D 1:
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(ii)

P � D �; i:e:

k�1X

j D0

Pij �j D �i :

lim
n!1 jjX.n/ � �jj D lim

n!1 jjP nX.0/ � �jj D 0

then � is also called the steady-state probability distribution and jj:jj is a vector
norm.

Proposition 1.31. For any irreducible and aperiodic Markov chain having k states,
there exists at least one stationary distribution.

Proposition 1.32. For any irreducible and aperiodic Markov chain having k states,
for any initial distribution X.0/

lim
n!1 jjX.n/ � �jj D lim

n!1 jjP nX.0/ � �jj D 0:

where � is a stationary distribution for the transition matrix P and jj:jj is a vector
norm.

Proposition 1.33. The steady-state probability distribution � in Proposition 1.32
is unique.

Remark 1.34. An irreducible finite Markov chain has a unique stationary distri-
bution vector but it may have no steady-state probability distribution (one may
consider Example 1.27). In this case, one has to interpret the stationary distribution
as follows, as it gives the proportion of the occurrence of the states in the Markov
chain in the long run.

To measure the distance between two vectors, we have to introduce a norm. In
fact, there are many vector norms jj:jj. In the following, we introduce the definition
of a vector norm in Rn with three popular examples.

Definition 1.35. On the vector space V D Rn, a norm is a function k � k from Rn to
the set of non-negative real numbers such that

(1) kxk > 0 for all x 2 V and x ¤ 0
(2) k�xk D j�jkxk for all x 2 V; � 2 R
(3) kx C yk � kxk C kyk for all x; y 2 V .

The followings are L1-norm, L1-norm and L2-norm defined respectively by

jjvjj1 D
nX

iD1

jvi j; jjvjj1 D max
i

fjvi jg and jjvjj2 D
vuut

nX

iD1

jvi j2:
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In general we have the following proposition. All the three vector norms are
particular examples of

jjvjjp D
 

nX

iD1

jvi jp
! 1

p

where p � 1. In particular, we have (left as an exercise)

jjvjj1 D lim
p!1

 
nX

iD1

jvi jp
! 1

p

:

Proposition 1.36. For p � 1, the following is a vector norm on Rn

jjxjjp D
 

nX

iD1

jxi jp
! 1

p

:

Proof. We leave the case of p D 1 as an exercise and we shall consider p > 1.
We have to prove the following:

(1) It is clear that if x ¤ 0 then jjxjjp > 0.
(2) We have

jj�xjjp D
 

nX

iD1

j�xi jp
! 1

p

D j�j
 

nX

iD1

jxi jp
! 1

p

D j�jjjxjjp:

(3) Finally we have to show that jjx C yjjp � jjxjjp C jjyjjp, i.e.

 
nX

iD1

jxi C yi jp
! 1

p

�
 

nX

iD1

jxi jp
! 1

p

C
 

nX

iD1

jyi jp
! 1

p

:

Note that if either x or y is the zero vector then the result is easy to see. Here we
assume that both x or y are non-zero vectors.

In the proof we need the following inequality and the proof is left as an exercise.
Let p > 1 and q be defined such that

1

p
C 1

q
D 1

then for x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/, we have

nX

iD1

jxi yi j �
 

nX

iD1

jxi jp
! 1

p
 

nX

iD1

jyi jq
! 1

q

: (1.6)
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Now for p > 1 and x; y ¤ 0, we have

nX

iD1

jxi Cyi jp D
nX

iD1

jxi Cyi jjxiCyi jp�1 D
nX

iD1

jxi jjxiCyi jp�1C
nX

iD1

jyi jjxiCyi jp�1

By (1.6), we have

nX

iD1

jxi jjxi C yi jp�1 �
 

nX

iD1

jxi jp
! 1

p
 

nX

iD1

jxi C yi j.p�1/q

! 1
q

and
nX

iD1

jyi jjxi C yi jp�1 �
 

nX

iD1

jyi jp
! 1

p
 

nX

iD1

jxi C yi j.p�1/q

! 1
q

:

Hence we get

nX

iD1

jxi C yi jp �
0

@
 

nX

iD1

jxi jp
! 1

p

C
 

nX

iD1

jyi jp
! 1

p

1

A
 

nX

iD1

jxi C yi jp
! 1

q

and by re-arranging the terms we have

 
nX

iD1

jxi C yi jp
!1� 1

q

�
0

@
 

nX

iD1

jxi jp
! 1

p

C
 

nX

iD1

jyi jp
! 1

p

1

A :

The result follows as we have 1 � 1
q

D 1
p

.

1.1.8 Applications of the Stationary Distribution

Returning to the marketing problem, the transition matrix is given by:

P D
�

1 � ˛ ˇ

˛ 1 � ˇ

�
:

To solve for the stationary distribution .�0; �1/
T , we consider the following linear

system of equations 8
<

:

.1 � ˛/�0 C ˇ�1 D �0

˛�0 C .1 � ˇ/�1 D �1

�0 C �1 D 1:
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Solving the linear system of equations we have

�
�0 D ˇ.˛ C ˇ/�1

�1 D ˛.˛ C ˇ/�1:

Therefore in the long run, the market shares of Wellcome and Park’n are respectively
given by

ˇ

.˛ C ˇ/
and

˛

.˛ C ˇ/
:

1.2 Continuous Time Markov Chain Process

In the previous section, we have discussed discrete time Markov chain processes.
In many situations, a change of state does not occur at a fixed discrete time. In
fact, the duration of a system state can be a continuous random variable. In our
context, we are going to model queueing systems and re-manufacturing systems
by using continuous time Markov processes. We first begin with a definition for
a Poisson process which is commonly used in modeling continuous time Markov
chain processes. We then give some important properties of the Poisson process.

A process is called a Poisson process if:

(A1) The probability of occurrence of one event in the time interval .t; t C ıt/ is
�ıt C o.ıt/: Here � is a positive constant and o.ıt/ is such that

lim
ıt!0

o.ıt/

ıt
D 0:

(A2) The probability of occurrence of no event in the time interval .t; t C ıt/ is
1 � �ıt C o.ıt/:

(A3) The probability of occurrences of more than one event is o.ıt/.

Here an “event” can be an arrival of a bus or a departure of customer. From the
above assumptions, one can derive the well-known Poisson distribution.

Let Pn.t/ be the probability that n events occurred in the time interval Œ0; t �.
Assuming that Pn.t/ is differentiable, then we can get a relationship between Pn.t/

and Pn�1.t/ as follows:

Pn.t C ıt/ D Pn.t/ � .1 � �ıt � o.ıt// C Pn�1.t/ � .�ıt C o.ıt// C o.ıt/:

Rearranging the terms we get

Pn.t C ıt/ � Pn.t/

ıt
D ��Pn.t/ C �Pn�1.t/ C .Pn�1.t/ C Pn.t//

o.ıt/

ıt
:
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If we let ıt go to zero, we have

lim
ıt!0

Pn.t C ıt/ � Pn.t/

ıt
D ��Pn.t/ C �Pn�1.t/ C lim

ıt!0
.Pn�1.t/ C Pn.t//

o.ıt/

ıt
:

Hence we have the differential-difference equation:

dPn.t/

dt
D ��Pn.t/ C �Pn�1.t/ C 0; n D 0; 1; 2; : : : :

Since P�1.t/ D 0, we have the initial value problem for P0.t/ as follows:

dP0.t/

dt
D ��P0.t/ with P0.0/ D 1:

The probability P0.0/ is the probability that no event occurred in the time interval
Œ0; 0�, so it must be one. Solving the separable ordinary differential equation for
P0.t/ we get

P0.t/ D e��t

which is the probability that no event occurred in the time interval Œ0; t �. Thus

1 � P0.t/ D 1 � e��t

is the probability that at least one event occurred in the time interval Œ0; t �. Therefore
the probability density function f .t/ for the waiting time of the first event to occur
is given by the well-known exponential distribution

f .t/ D d.1 � e��t /

dt
D �e��t ; t � 0:

We note that
8
ˆ̂<

ˆ̂:

dPn.t/

dt
D ��Pn.t/ C �Pn�1.t/; n D 1; 2; : : :

P0.t/ D e��t ;

Pn.0/ D 0 n D 1; 2; : : : :

Solving the above differential-difference equations, we get

Pn.t/ D .�t/n

nŠ
e��t :

Finally, we present the important relationships among the Poisson process,
Poisson distribution and the exponential distribution [46].
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Proposition 1.37. [181] The following statements (B1),(B2) and (B3) are
equivalent.

(B1) The arrival process is a Poisson process with mean rate �.
(B2) Let N.t/ be the number of arrivals in the time interval Œ0; t � then

P.N.t/ D n/ D .�t/ne��t

nŠ
n D 0; 1; 2; : : : :

(B3) The inter-arrival time follows the exponential distribution with mean ��1.

1.2.1 A Continuous Two-State Markov Chain

Consider a one-server queueing system which has two possible states: 0 (idle) and
1 (busy). Assume that the arrival process of the customers is a Poisson process with
mean rate � and the service time of the server follows the exponential distribution
with mean rate �. Let P0.t/ be the probability that the server is idle at time t and
P1.t/ be the probability that the server is busy at time t . Using a similar argument
as in the derivation of a Poisson process, we have

�
P0.t C ıt/ D .1 � �ıt � o.ıt//P0.t/ C .�ıt C o.ıt//P1.t/ C o.ıt/

P1.t C ıt/ D .1 � �ıt � o.ıt//P1.t/ C .�ıt C o.ıt//P0.t/ C o.ıt/:

Rearranging the terms, one gets
8
<̂

:̂

P0.t C ıt/ � P0.t/

ıt
D ��P0.t/ C �P1.t/ C .P1.t/ � P0.t//

o.ıt/

ıt
P1.t C ıt/ � P1.t/

ıt
D �P0.t/ � �P1.t/ C .P0.t/ � P1.t//

o.ıt/

ıt
:

Letting ıt go to zero, we get
8
<̂

:̂

dP0.t/

dt
D ��P0.t/ C �P1.t/

dP1.t/

dt
D �P0.t/ � �P1.t/:

Solving the above differential equations with P1.0/ D 1, we have

P1.t/ D 1

� C �
.�e�.�C�/t C �/

and

P0.t/ D 1

� C �
.� � �e�.�C�/t /:
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Here P0.t/ and P1.t/ are called the transient solutions. We note that the steady-state
probabilities are given by

lim
t!1 P0.t/ D �

� C �

and

lim
t!1 P1.t/ D �

� C �
:

In fact, the steady-state probability distribution can be obtained without solving the
differential equations. We write the system of differential equations in matrix form:

 
dP0.t/

dt
dP1.t/

dt

!
D
��� �

� ��

��
P0.t/

P1.t/

�
:

Since in the steady-state, P0.t/ D p0 and P1.t/ D p1 are constants and independent
of t , we have

dp0.t/

dt
D dp1.t/

dt
D 0:

The steady-state probabilities will be the solution of the following linear system:

��� �

� ��

��
p0

p1

�
D
�

0

0

�

subject to p0 C p1 D 1.
In fact, we are often interested in obtaining the steady-state probability distribu-

tion of the Markov chain. This is because indicators of system performance such as
the expected number of customers, and average waiting time can be written in terms
of the steady-state probability distribution, see for instance [41–43, 46]. We will
also apply the concept of steady-state probability distribution in the upcoming
chapters. When the number of states is large, solving the steady-state probability
distribution will be time consuming. Iterative methods are popular approaches for
solving large scale Markov chain problems.

1.3 Iterative Methods for Solving Linear Systems

In this section, we introduce some classical iterative methods for solving large linear
systems. For a more detailed introduction to iterative methods, we refer the reader
to books by Bini et al. [18], Kincaid and Cheney [132], Golub and van Loan [108]
and Saad [182].
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1.3.1 Some Results on Matrix Theory

We begin our discussion with some useful results in matrix theory and their proofs
can be also found in [108, 119, 132]. The first result is a useful formula for solving
linear systems.

Proposition 1.38. (Sherman-Morrison-Woodbury Formula) Let M be a non-
singular n � n matrix, u and v be two n � l .l � n/ matrices such that the
matrix .Il C vT M u/ is non-singular. Then we have

�
M C uvT

��1 D M �1 � M �1u
�
Il C vT M �1u

��1
vT M �1:

Proof. We have

n
A�1 � A�1u

�
Ik C vT A�1u

��1
vT A�1

o ˚
A C uvT

�

D InCA�1uvT �A�1u.Ik C vT A�1u/�1vT � A�1u.Ik C vT A�1u/�1vT A�1uvT

D In C A�1.uvT / � A�1u.Ik C vT A�1u/�1.Ik C vT A�1u/vT

D In C A�1.uvT / � A�1uIkvT

D In:

Hence we proved the equality.

The second result is on the eigenvalue of a non-negative and irreducible square
matrix.

Proposition 1.39. (Perron-Frobenius Theorem) [15, 119] Let A be a non-negative
and irreducible square matrix of order m. Then we have the following results:

(i) A has a positive real eigenvalue � which is equal to its spectral radius, i.e.,
� D maxk j�k.A/j where �k.A/ denotes the k-th eigenvalue of A.

(ii) There corresponds an eigenvector z with all its entries being real and positive,
such that Az D �z.

(iii) � is a simple eigenvalue of A.

The last result is on matrix norms. There are many matrix norms jj:jjM one can
use. In the following, we introduce the definition of a matrix norm jj:jjMV induced
by a vector norm jj:jjV .

Definition 1.40. Given a vector jj:jjV in Rn, the matrix norm jjAjjMV for an n � n

matrix A induced by the vector norm is defined as

jjAjjMV D supfjjAxjjV W x 2 Rn and jjxjjV D 1g:

In the following proposition, we introduce three popular matrix norms.
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Proposition 1.41. Let A be an n � n real matrix, then it can be shown that the
matrix 1-norm, matrix 1-norm and matrix 2-norm induced by jj:jj1, jj:jj1 and jj:jj2
respectively by

jjAjj1 D max
j

f
nX

iD1

jAij jg;

jjAjj1 D max
i

f
nX

j D1

jAij jg

and

jjAjj2 D
p

�max.A � AT /:

Another popular matrix norm is the following Frobenius norm.

Definition 1.42. The Frobenius norm of a square matrix A is defined as

jjAjjF D
vuut

nX

iD1

nX

j D1

A2
ij :

1.3.2 Splitting of a Matrix

We begin with the concept of splitting a matrix. If we are to solve

Ax D
0

@
1
2

1
3

0
1
3

1 1
3

0 1
3

1
2

1

A

0

@
x1

x2

x3

1

A D
0

@
5

10

5

1

A D b:

There are many ways to split the matrix A into two parts and develop iterative
methods for solving the linear system.

There are at least three different ways of splitting the matrix A:

A D
0

@
1 0 0

0 1 0

0 0 1

1

AC
0

@
�1
2

1
3

0
1
3

0 1
3

0 1
3

� 1
2

1

A (case 1)

D
0

@
1
2

0 0

0 1 0

0 0 1
2

1

AC
0

@
0 1

3
0

1
3

0 1
3

0 1
3

0

1

A (case 2)

D
0

@
1
2

0 0
1
3

1 0

0 1
3

1
2

1

AC
0

@
0 1

3
0

0 0 1
3

0 0 0

1

A (case 3)

D S C .A � S/
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Now

Ax D .S C .A � S//x D b

and therefore

Sx C .A � S/x D b

Hence we may write

x D S�1b � S�1.A � S/x

where we assume that S�1 exists. Then given an initial guess x.0/ of the solution of
Ax D b, one may consider the following iterative scheme:

x.kC1/ D S�1b � S�1.A � S/x.k/: (1.7)

Clearly if x.k/ ! x as k ! 1 then we have x D A�1b. We note that (1.7) converges
if and only if there is a matrix norm jj:jjM such that

jjS�1.A � S/jjM < 1:

This is because for any square matrix B , we have

.I � B/.I C B C B2 C : : : C Bn/ D I � BnC1

and
1X

kD0

Bk D .I � B/�1 if lim
n!1 Bn D 0:

If there exists a matrix norm jj:jM such that jjBjjM < 1 then

lim
n!1 jjBnjjM � lim

n!1 jjBjjnM D 0

because jjABjjM � jjAjjM jjBjjM for any two matrices A and B . We then have

lim
n!1 Bn D 0:

Therefore we have the following proposition.

Proposition 1.43. If

kS�1.A � S/kM < 1

then the iterative scheme converges to the solution of Ax D b.
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1.3.3 Classical Iterative Methods

Throughout this section, we let A be the matrix to be split and b be the right hand
side vector. We use x.0/ D .0; 0; 0/T as the initial guess.

Case 1: S D
0

@
1 0 0

0 1 0

0 0 1

1

A :

x.kC1/ D b � .A � I /x.k/

D
0

@
5

10

5

1

A �
0

@
� 1

2
1
3

0
1
3

0 1
3

0 1
3

� 1
2

1

A x.k/

x.1/ D .5 10 5/T

x.2/ D .4:1667 6:6667 4:1667/T

x.3/ D .4:8611 7:2222 4:8611/T

x.4/ D .5:0231 6:7593 5:0231/T

:::

x.30/ D .5:9983 6:0014 5:9983/T :

When S D I , this is called the Richardson method.

Case 2: S D
0

@
1
2

0 0

0 1 0

0 0 1
2

1

A

Therefore

x.kC1/ D S�1b � S�1.A � S/x.k/

D
0

@
10

10

10

1

A �
0

@
1
2

0 0

0 1 0

0 0 1
2

1

A
�10

@
0 1

3
0

1
3

0 1
3

0 1
3

0

1

A x.k/

D .10 10 10/T �
0

@
0 2

3
0

1
3

0 1
3

0 2
3

0

1

A x.k/
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x.1/ D .10 10 10/T

x.2/ D .3:3333 3:3333 3:3333/T

x.3/ D .7:7778 7:7778 7:7778/T

:::

x.30/ D .6:0000 6:0000 6:0000/T :

When S D Diag.a11; � � � ; ann/, this is called the Jacobi method.

Case 3: S D
0

@
1
2

0 0
1
3

1 0

0 1
3

1
2

1

A

x.kC1/ D S�1b � S�1.A � S/x.k/

D
0

@
10
20
3
50
9

1

A �
0

@
1
2

0 0
1
3

1 0

0 1
3

1
2

1

A
�10

@
0 1

3
0

0 0 1
3

0 0 0

1

A x.k/

x.1/ D .10
20

3

50

9
/T

x.2/ D .5:5556 6:2963 5:8025/T

x.3/ D .5:8025 6:1317 5:9122/T

x.4/ D .5:9122 6:0585 5:9610/T

:::

x.14/ D .6:0000 6:0000 6:0000/T :

When S is the lower triangular part of the matrix A then this method is called the
Gauss-Seidel method.

Proposition 1.44. If A is diagonally dominant then

jjD�1.A � D/jj1 < 1

and the Jacobi method converges to the solution of Ax D b.
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1.3.4 Spectral Radius

Definition 1.45. Given an n � n square matrix A the spectral radius of A is
defined as

�.A/ D maxfj�j W det.A � �I/ D 0g:
Or in other words if �1; �2; � � � ; �n are the eigenvalues of A then

�.A/ D max
i

fj�i jg:

Example 1.46. Let

A D
�

0 �1

1 0

�

then the eigenvalues of A are ˙i and ji j D j � i j D 1. Therefore �.A/ D 1 in this
case.

Proposition 1.47. For any square matrix A, �.A/ D inf
k�kM

kAkM .

Remark 1.48. If �.A/ < 1 then there exists a matrix norm jj:jjM such that
jjAjjM < 1.

Using the remark, one can show the following proposition 1.49.

Proposition 1.49. The iterative scheme

x.k/ D Gx.k�1/ C c

converges to

.I � G/�1c

for any starting vectors x.0/ and c if and only if �.G/ < 1.

Proposition 1.50. The iterative scheme

x.kC1/ D S�1b � S�1.A � S/x.k/ D .I � S�1A/x.k/ C S�1b

converges to A�1b if and only if �.I � S�1A/ < 1.

Proof. The proof is complete by taking G D I � S�1A and c D S�1b.

Definition 1.51. An n � n matrix B is said to be strictly diagonally dominant if

jBii j >

nX

j D1;j ¤i

jBij j for i D 1; 2; : : : ; n
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Proposition 1.52. If A is strictly diagonally dominant then the Gauss-Seidel
method converges for any starting x.0/.

Proof. Let S be the lower triangular part of A. From Proposition 1.50 above, we
only need to show

�.I � S�1A/ < 1:

Let � be an eigenvalue of .I � S�1A/ and x be its corresponding eigenvector such
that kxk1 D 1. We want to show j�j < 1. We note that

.I � S�1A/x D �x

and therefore
0

BBBB@

0 �a12 � � � �a1n

::: 0
:::

: : : �an�1n

0 � � � 0

1

CCCCA

0

BBB@

x1

x2

:::

xn

1

CCCA D

0

BBBB@

a11 0 � � � 0

a21 a22

: : :
:::

:::
: : : 0

an1 � � � � � � ann

1

CCCCA

0

BBB@

�x1

�x2

:::

�xn

1

CCCA :

Therefore we have

�
nX

j DiC1

aij xj D �

iX

j D1

aij xj for i D 1; � � � ; n � 1:

Since kxk1 D 1, there exists i such that

jxi j D 1 � jxj j:
For this i we have

j�jjaii j D j�aii xi j �
nX

j DiC1

jaij j C j�j
i�1X

j D1

jaij j

and therefore

j�j �
nX

j DiC1

jaij j
,0

@jaii j �
i�1X

j D1

jaij j
1

A < 1

1.3.5 Successive Over-Relaxation (SOR) Method

In solving Ax D b, one may split A as follows:

A D L C wD„ ƒ‚ …C.1 � w/D C U



30 1 Introduction

where L is the strictly lower triangular part, D is the diagonal part and U is the
strictly upper triangular part.

Example 1.53.

0

@
2 1 0

1 2 1

0 1 2

1

A D
0

@
0 0 0

1 0 0

0 1 0

1

A

„ ƒ‚ …
L

Cw

0

@
2 0 0

0 2 0

0 0 2

1

A

„ ƒ‚ …
D

C.1 � w/

0

@
2 0 0

0 2 0

0 0 2

1

A

„ ƒ‚ …
D

C
0

@
0 1 0

0 0 1

0 0 0

1

A

„ ƒ‚ …
U

One may consider the iterative scheme with S D L C wD as follows:

xnC1 D S�1b C S�1.S � A/xn D S�1b C .I � S�1A/xn:

We remark that

I � S�1A D I � .L C wD/�1A:

Moreover, when w D 1, it is just the Gauss-Seidel method [128]. This method
is called the SOR method. It is clear that the method converges if and only if the
iteration matrix has a spectral radius less than one.

Proposition 1.54. [108] The SOR method converges to the solution of

Ax D b

if and only if

�.I � .L C wD/�1A/ < 1:

1.3.6 Conjugate Gradient Method

Conjugate gradient (CG) methods are iterative methods for solving linear system of
equations Ax D b where A is symmetric positive definite [8,108]. This method was
first discussed by Hestenes and Stiefel [117]. The motivation of the method is that
it involves the process of minimizing a quadratic function such as

f .x/ D .Ax � b/T .Ax � b/:

Here A is symmetric positive definite and this minimization usually takes place over
a sequence of Krylov subspaces which are generated recursively by adding a new
basic vector Akr0 to those of the subspace Vk�1 generated where

r0 D Ax0 � b

is the residue of the initial vector x0.
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Usually, a sequence of conjugate orthogonal vectors is constructed from Vk so
that CG methods would be more efficient. Computing these vectors can be done
recursively which involves only a few vectors if A is self-adjoint with respect to the
inner product. The CG methods are attractive since they can give the exact solution
after at most n steps in exact arithmetic where n is the size of the matrix A. Hence
it can also be regarded as a direct method in this sense. But in the presence of
round-off errors and finite precision, the number of iterations may be greater than
n. Thus, CG methods can be seen as least square methods where the minimization
takes place on a particular vector subspace, the Krylov space. When estimating
the error of the current solution in each step, a matrix-vector multiplication is then
needed. The CG methods are popular and their convergence rates can be improved
by using suitable preconditioning techniques. Moreover, it is parameter free, the
recursions involved are usually short in each iteration and the memory requirements
and the execution time are acceptable for many practical problems.

The CG algorithm reads:

Given an initial guess x0, A, b, Max, tol:
r0 D b � Ax0I
v0 D r0I
For k D 0 to Max�1 do
If jjvkjj2 D 0 then stop
tk D< rk; rk > = < vk; Avk >;
xkC1 D xk C tkvk;
rkC1 D rk � tkAvk;
If jjrkC1; rkC1jj2 < tol then stop
vkC1 D rkC1C < rkC1; rkC1 > = < rk; rk > vk;
end;
output xkC1; jjrkC1jj2.

Given a Hermitian, positive definite n � n matrix Hn, when the conjugate gradient
method is applied to solving

Hnx D b

the convergence rate of this method depends on the spectrum of the matrix Hn, see
also Golub and van Loan [108]. For example if the spectrum of Hn is contained in
an interval, i.e. �.Hn/ � Œa; b�, then the error in the i -th iteration is given by

jjei jj
jje0jj � 2

 p
b � p

ap
b C p

a

!i

;
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i.e. the convergence rate is linear. Hence the approximate upper bound for the
number of iterations required to make the relative error

jjeijj
jje0jj � ı

is given by

1

2

 r
b

a
� 1

!
log

�
2

ı

�
C 1:

Very often the CG method is used with a matrix called preconditioner to accel-
erate its convergence rate. A good preconditioner C should satisfy the following
conditions:

(i) The matrix C can be constructed easily
(ii) Given a right hand side vector r, the linear system C y D r can be solved

efficiently
(iii) The spectrum (or singular values) of the preconditioned system C �1A should

be clustered around one.

In the Preconditioned Conjugate Gradient (PCG) method, we solve the linear
system

C �1Ax D C �1b

instead of the original linear system

Ax D b:

We expect the fast convergence rate of the PCG method can compensate for the
extra cost of solving the preconditioner system C y D r in each iteration step of the
PCG method.

Apart from the point of view of condition number, condition (iii) is also very
commonly used in proving convergence rates. In the following we give the definition
of clustering.

Definition 1.55. We say that a sequence of matrices Sn of size n has a clustered
spectrum around one, if for all � > 0 there exist non-negative integers n0 and n1,
such that for all n > n0 at most n1 eigenvalues of the matrix S�

n Sn�In have absolute
values larger than �.

One sufficient condition for the matrix to have eigenvalues clustered around one
is that Hn D In C Ln, where In is the n � n identity matrix and Ln is a low rank
matrix (rank.Ln/ is bounded above and independent of the matrix size n).
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1.3.6.1 Conjugate Gradient Squared Method

Given a real symmetric, positive definite matrix A of size n � n, the CG method can
be used to solve the linear system Ax D b. But in general a non-singular matrix
can be neither symmetric nor positive definite. This is true for the applications in
queueing systems and re-manufacturing systems in Chaps. 2 and 3. In this case, one
may consider the normal equation of the original system, i.e.,

AT Ax D AT b:

Here AT A is real symmetric and positive definite so that the CG method could
be applied, but the condition number would then be squared. Moreover, it also
involves the matrix-vector multiplication of the form AT r. These will increase
the computational cost. Thus in our context, we propose to employ a generalized
CG algorithm, namely the Conjugate Gradient Squared (CGS) method [190]. This
method does not involve the matrix-vector multiplication of the form AT r.

The CGS algorithm reads:

Given an initial guess x0, A, b, tol:
x D x0I
r D b � AxI
r0 D s D p D rI
w D ApI
� D r0T rI
repeat until � < tolI
	 D �I
˛ D 	=r0t rI
q D s � ˛wI
d D s C qI
w D AdI
x D x C ˛dI
r D r � ˛wI
otherwise
� D r0T rI
ˇ D �=	 I
s D r � ˇqI
p D s C ˇ.q C ˇp/I
end;
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1.3.7 Toeplitz Matrices

We end this subsection by introducing a class of matrices, namely Toeplitz matrices.
A Toeplitz matrix T is a matrix having constant diagonals, i.e.

T D

0

BBBBBBBBB@

t0 t1 t2 � � � tn�1 tn
t�1 t0 t1 � � � � � � tn�1

:::
: : :

: : :
: : :

: : :
:::

:::
: : :

: : :
: : :

: : : t2

t�nC1 � � � � � � : : :
: : : t1

t�n t�nC1 � � � � � � t�1 t0

1

CCCCCCCCCA

:

Toeplitz matrices and near-Toeplitz matrices have many applications in applied
sciences and engineering such as the multi-channel least squares filtering in time
series [172] and for signal and image processing problems [149]. A survey on the
applications of Toeplitz systems can be found in Chan and Ng [39]. Applications
in solving queueing systems and re-manufacturing systems will be discussed in the
Chaps. 2 and 3.

In the above applications, solving a Toeplitz or near-Toeplitz system is the focus.
Direct methods for solving Toeplitz systems based on the recursion formula are
commonly used, see for instance Trench [196]. For an n�n Toeplitz matrix T , these
direct methods require O.n2/ operations. Faster algorithms that require O.n log2 n/

operations have also been developed when the Toeplitz matrix is symmetric and
positive definite.

An important subset of Toeplitz matrices is the class of circulant matrices.
A circulant n � n matrix C is a Toeplitz matrix such that each column is a cyclic
shift of the previous one, i.e.

C D

0
BBBBBB@

c0 c1 � � � cn�1 cn

cn c0 c1 � � � cn�1

:::
: : :

: : :
: : :

:::

c2

:::
: : :

: : : c1

c1 c2 � � � cn c0

1
CCCCCCA

: (1.8)

Very often circulant matrices are used to approximate Toeplitz matrices in precondi-
tioning or finding an approximate solution. This is because circulant matrices have
the nice property that they can be diagonalized by the discrete Fourier matrix F .
More precisely,

F CF � D D D Diag.d0; d1; : : : ; dn/
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where F is the discrete Fourier matrix with entries given by

Fj;k D 1p
n

e� .2jk�/i
n ; j; k D 0; 1; � � � ; n � 1;

and D is a diagonal matrix with elements being the eigenvalues of C , see
for instance [79]. Here F � is the conjugate transpose of F . The matrix-vector
multiplication F y is called the Fast Fourier Transformation (FFT) of the column
vector y and can be done in O.n log n/ operations. Consider for a unit vector

e1 D .1; 0; : : : ; 0/T ;

we have

C e1 D .c0; cn; : : : ; c1/
T and F e1 D 1p

n
.1; 1; : : : ; 1/T

because the first column of F is a column vector with all entries being equal.
Therefore

F.c0; cn; : : : ; c1/T D F C e1 D DF e1 D 1p
n

.d0; d1; : : : ; dn/T

and hence the eigenvectors of a circulant matrix C can be obtained by using the
FFT in O.n log n/ operations. Moreover, the solution of a circulant linear system
can also be obtained in O.n log n/ operations.

The FFT can be used in the Toeplitz matrix-vector multiplication. A Toeplitz
matrix can be embedded in a circulant matrix as follows:

QC .y; 0/T 	
�

T S1

S2 T

��
y
0

�
D
�

r
b

�
: (1.9)

Here matrices S1 and S2 are such that QC is a circulant matrix. Then FFT can be
applied to obtain r D T y in O.n log n/ operations.

1.4 Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in bioinformatics [135], speech
recognition [175] and many other areas [155]. In a HMM there are two types of
states: the observable states and the hidden states. In a HMM there is no one-
to-one correspondence between the hidden states and the observed symbols. It is
therefore no longer possible to tell what hidden state the model is just by looking at
the observation symbol generated. A HMM is usually characterized by the following
elements [175]:
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• N , the number of hidden states in the model. Although the states are hidden,
for many practical applications there is often some physical significance to the
states. We denote the individual states as

S D fs1; s2; � � � ; sN g;

and the state at the length t as Qt .
• M , the number of distinct observation symbols per hidden state. The observation

symbols correspond to the physical output of the system being modeled. For
instance, “conforming product” and “non-conforming product” are two observa-
tion symbols in a production process. We denote the individual symbols as

V D fv1; v2; � � � ; vM g

and the symbol at the length t as Ot .
• The state transition probability distribution ŒA�ij D faij g where

aij D P.QtC1 D si jQt D sj /; 1 � i; j � N:

• The observation symbol probability distribution in hidden state j , ŒB�jk D
fbj .vk/g, where

bj .vk/ D P.Ot D vkjQt D sj /; 1 � j � N; 1 � k � M:

• The initial state distribution ˘ D f�i g where

�i D P.Q1 D si /; 1 � i � N:

Given appropriate values of N , M , A, B and ˘ , the HMM can be used as a
generator to give an observation sequence

O D fO1O2O3 � � � OT g

where T is the number of observations in the sequence. For simplicity, we use the
compact notation


 D .A; B; ˘/

to indicate the complete parameter set of the HMM. According to the above
specification, the first order transition probability distribution among the hidden
states is used. There are three key problems in HMMs:
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• Problem 1:
Given the observation sequence O D fO1O2 � � � OT g and a HMM, how to
efficiently compute the probability of the observation sequence?

• Problem 2:
Given the observation sequence O D fO1O2 � � � OT g and a HMM, how to choose
a corresponding state sequence Q D fQ1Q2 � � � QT g which is optimal in a
certain context?

• Problem 3:
Given the observation sequence O D fO1O2 � � � OT g, how to choose the model
parameters in a HMM?

For Problem 1, a forward-backward dynamic programming procedure [11] has been
formulated to calculate the probability of the observation sequence efficiently.

For Problem 2, we attempt to uncover the hidden part of the model, i.e., to find
the “correct” state sequence. In many practical situations, we use an optimality
criteria to solve the problem as best as possible. The most widely used criterion
is to find a single best state sequence, i.e., maximize the likelihood P.Qj
; O/.
This is equivalent to maximizing P.Q; Oj
/ since

P.Qj
; O/ D P.Q; Oj
/

P.Oj
/
:

Viterbi algorithm [204] is a dynamic programming technique for finding this single
best state sequence

Q D fQ1; Q2; � � � ; QT g
for the given observation sequence

O D fO1; O2; � � � ; OT g:

For Problem 3, we attempt to adjust the model parameters 
 such that P.Oj
/ is
maximized by using the Expectation-Maximization (EM) algorithm. For a complete
tutorial on HMMs, we refer readers to the paper by Rabiner [175] and the book by
MacDonald and Zucchini [155].

1.5 Markov Decision Process

Markov Decision Process (MDP) has been successfully applied in equipment
maintenance, inventory control and many other areas in management science
[3, 208]. In this section, we will briefly introduce the MDP, but interested readers
can also consult the books by Altman [3], Puterman [173] and White [207].

Similar to the case of a Markov chain, the MDP is a system that can move
from one distinguished state to any other possible states. In each step, the decision
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maker has to take action on a well-defined set of alternatives. This action affects the
transition probabilities of the next move and incurs an immediate gain (or loss)
and subsequent gain (or loss). The problem that the decision maker faces is to
determine a sequence of actions maximizing the overall gain. The process of MDP
is summarized as follows:

(i) At time t , a certain state i of the Markov chain is observed.
(ii) After the observation of the state, an action, let us say k, is taken from a set

of possible decisions Ai . Different states may have different sets of possible
actions.

(iii) An immediate gain (or loss) q
.k/
i is then incurred according to the current state

i and the action k taken.
(iv) The transition probabilities p

.k/
j i are then affected by the action k.

(v) When the time parameter t increases, transition occurs again and the above
steps (i)–(iv) repeat.

A policy D is a rule of taking action. It prescribes all the decisions that should be
made throughout the process. Given the current state i , the value of an optimal
policy vi .t/ is defined as the total expected gain obtained with t decisions or
transitions remaining. For the case of one-period remaining, i.e. t D 1, the value
of an optimal policy is given by

vi .1/ D max
k2Ai

fq.k/
i g: (1.10)

Since there is only one-period remained, an action maximizing the immediate gain
will be taken. For the case of two periods remaining, we have

vi .2/ D max
k2Ai

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

q
.k/
i C ˛

X

j

p
.k/
j i vj .1/

„ ƒ‚ …
subsequent gain

9
>>>>>=

>>>>>;

(1.11)

where ˛ is the discount factor. Since the subsequent gain is associated with the
transition probabilities which are affected by the action taken, an optimal policy
should consider both the immediate and subsequent gain. The model can be easily
extended to a more general situation, the process having n transitions remaining.

vi .n/ D max
k2Ai

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

q
.k/
i C ˛

X

j

p
.k/
j i vj .n � 1/

„ ƒ‚ …
subsequent gain

9
>>>>>=

>>>>>;

: (1.12)
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Table 1.1 A summary of the policy parameters

State i Alternative k q
.k/
i p

.k/
i1 p

.k/
i2

1 (high volume) 1. (No action) 8 0.4 0.6
2. (Regular Maintenance) 7 0.8 0.2
3. (Fully Upgrade) 5 1 0

2 (low volume) 1. (No action) 4 0.1 0.9
2. (Regular Maintenance) 3 0.4 0.6
3. (Fully Upgrade) 1 0.8 0.2

From the above equation, the subsequent gain of vi .n/ is defined as the expected
value of vj .n � 1/. Since the number of transitions remaining is countable or finite,
the process is called the discounted finite horizon MDP. For the infinite horizon
MDP, the value of an optimal policy can be expressed as

vi D max
k2Ai

8
<

:q
.k/
i C ˛

X

j

p
.k/
j i vj

9
=

; : (1.13)

The finite horizon MDP is a dynamic programming problem and the infinite horizon
MDP can be transformed into a linear programming problem. Both of them can be
solved easily by using an EXCEL spreadsheet.

Example 1.56. We consider an on-line game company that plans to stay in business
for 4 more years and then it will be closed without any salvage value. Each year, the
volume of players only depends on the volume in the last year, and it is classified
as either high or low. If a high volume of players occurs, the expected profit for the
company will be 8 million dollars; but the profit drops to 4 million dollars when
a low volume of players is encountered. At the end of every year, the profit of
this year is collected, and then the company has the option to take certain actions
that influence the performance of their service and hence the volume of players
in the future may be altered. But some of these actions are costly so they reduce
instant profit. To be more specific, the company can choose to: take no action,
which costs nothing; perform only regular maintenance to the service system, which
costs 1 million; or fully upgrade the service system, which costs 3 million. When
the volume of players in the last year was high, it stays in the high state in the
coming year with probability 0:4 if no action is taken; this probability is 0:8 if
only regular maintenance is performed; and the probability rises to 1 if the system
is fully upgraded. When the volume of players in the last year was low, then the
probability that the player volume stays low is 0:9 with no action taken, 0:6 with
regular maintenance, and 0:2 when the service system is fully upgraded. Assume
the discount factor is 0:9 and that the company experienced a low volume of players
last year. Determine the optimal (profit maximizing) strategy for the company. The
parameters of this problem can be summarized in Table 1.1.
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By using the MDP approach, we can compute the following:

vi .n/ D max
k2Ai

8
<

:q
.k/
i C ˛

X

j

p
.k/
j i vj .n � 1/

9
=

; ; (1.14)

and have

v1.4/ D max

8
<

:

8 C 0:9 � Œ0:4 � v1.3/ C 0:6 � v2.3/�

7 C 0:9 � Œ0:8 � v1.3/ C 0:2 � v2.3/�

5 C 0:9 � Œ1 � v1.3/�

9
=

; I

v2.4/ D max

8
<

:

4 C 0:9 � Œ0:1 � v1.3/ C 0:9 � v2.3/�

3 C 0:9 � Œ0:4 � v1.3/ C 0:6 � v2.3/�

1 C 0:9 � Œ0:8 � v1.3/ C 0:2 � v2.3/�

9
=

; I

v1.3/ D max

8
<

:

8 C 0:9 � Œ0:4 � v1.2/ C 0:6 � v2.2/�

7 C 0:9 � Œ0:8 � v1.2/ C 0:2 � v2.2/�

5 C 0:9 � Œ1 � v1.2/�

9
=

; I

v2.3/ D max

8
<

:

4 C 0:9 � Œ0:1 � v1.2/ C 0:9 � v2.2/�

3 C 0:9 � Œ0:4 � v1.2/ C 0:6 � v2.2/�

1 C 0:9 � Œ0:8 � v1.2/ C 0:2 � v2.2/�

9
=

; I

v1.2/ D max

8
<

:

8 C 0:9 � Œ0:4 � v1.1/ C 0:6 � v2.1/�

7 C 0:9 � Œ0:8 � v1.1/ C 0:2 � v2.1/�

5 C 0:9 � Œ1 � v1.1/�

9
=

; I

v2.2/ D max

8
<

:

4 C 0:9 � Œ0:1 � v1.1/ C 0:9 � v2.1/�

3 C 0:9 � Œ0:4 � v1.1/ C 0:6 � v2.1/�

1 C 0:9 � Œ0:8 � v1.1/ C 0:2 � v2.1/�

9
=

; I

�
v1.1/ D maxf8; 7; 5g D 8; p1.1/ D 1I
v2.1/ D maxf4; 3; 1g D 4; p2.1/ D 1:

With the results from the last equations, we can solve for other values by backward
substitution.

Let pi .n/ D k� such that

max
k2Ai

8
<

:q
.k/
i C ˛

X

j

p
.k/
j i vj .n � 1/

9
=

; D q
.k�/
i C ˛

X

j

p
.k�/
j i vj .n � 1/

then pi .n/ actually keeps track of the optimal policy for every single period. We can
summarize all results from the calculations in Table 1.2.
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Table 1.2 A summary of
results

n 1 2 3 4

v1.n/ 8 13:48 18:15 22:27

v2.n/ 4 8:04 12:19 16:27

p1.n/ 1 2 2 2

p2.n/ 1 2 2 3

Table 1.3 A summary of
results

n 1 2 3 4

v1.n/ 8 11:36 13:25 14:35

v2.n/ 4 6:64 8:27 9:26

p1.n/ 1 1 2 2

p2.n/ 1 1 1 1

Since the on-line gaming company started from having a low volume of players
(State 2), the optimal policy for the company is as follows: with 4 more years left,
choose Alternative 3 (fully upgrade); then use Alternative 2 (regular maintenance)
for two consecutive years; and finally, use Alternative 1 (no action) when there is
only 1 year left.

Note that the optimal policy may vary depending on the value of the discount
factor. For instance, if in this example, we have a discount factor of 0:6, then we
have different results as summarized in Table 1.3. If the company starts with a low
volume of players, the optimal policy is to stay with Alternative 1 (no action). We
leave it as an exercise for the reader to device the results themselves.

1.5.1 Stationary Policy

A stationary policy is a policy where the decision depends only on the state the
system is in and is independent of n. For instance, a stationary policy D prescribes
the action D.i/ when the current state is i . Define ND as the associated one-step-
removed policy, then the value of policy wi .D/ is defined as

wi .D/ D q
D.i/
i C ˛

X

j

p
D.i/
j i wj . ND/: (1.15)

Given a Markov decision process with an infinite horizon and a discount factor ˛,
0 < ˛ < 1, choose, for each i , an alternative ki such that

max
k2Ai

8
<

:q
.k/
i C ˛

X

j

p
.k/
j i vj

9
=

; D q
.ki /
i C ˛

X

j

p
.ki /
j i vj :

Define the stationary policy D by D.i/ D ki . Then for each i , wi .D/ D vi , i.e. the
stationary policy is an optimal policy.
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Table 1.4 A summary of
results

Policy D Values

D.1/ D.2/ w1.D/ w2.D/

1 1 50.41 44.93
1 2 53.00 48.00
1 3 52.21 47.06
2 1 55.41 47.30
2 2 58.75 52.50
2 3 59.20 53.20
3 1 50.00 44.74
3 2 50.00 45.65
3 3 50.00 45.12

Example 1.57. Determine the optimal policy and the values for the Markov deci-
sion process in Example 1.56, assuming the process has an infinite horizon and the
discount factor remains equal to 0:9.

For a stationary policy D (with D.1/ D k1, D.2/ D k2), since we have

(
w1.D/ D q

.k1/
1 C ˛Œp

.k1/
11 w1.D/ C p

.k2/
21 w2.D/�

w2.D/ D q
.k2/
2 C ˛Œp

.k1/
12 w1.D/ C p

.k2/
11 w2.D/�;

hence Œw1.D/ I w2.D/� can be solved for every stationary policy. Results are
summarized in the following table.

From the above, the optimal values are v1 D w1.D/ D 59:2, v2 D w2.D/ D
53:2; the optimal stationary policy is to choose Alternative 2 in state 1 and to choose
Alternative 3 in state 2 (Table 1.4).

1.6 Exercises

1. Prove Proposition 1.24.
Hint: Let X.n/ be the state of the process after making n transitions and define

In D
�

1; if X.n/ D i

0; if X.n/ ¤ i:

Then show that the expected number of times the process will visit state i , given
that it begins in State i is given by:

E

 1X

nD0

InjX.0/ D i

!
D

1X

nD0

P
.n/
i i :
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0

1 2

4 3Fig. 1.6 The random walk
on a square

2. Prove Proposition 1.25.
Hint: Since i communicates with j , there exist integers k and m such that
P

.k/
j i > 0 and P

.m/
ij > 0. We have also the following inequality:

P
.mCnCk/
jj � P

.m/
ij � P

.n/
i i � P

.k/
j i :

Then apply Proposition 1.24 to get the conclusion.
3. Consider a random walk on a square with its centroid as shown in Fig. 1.6.

Suppose that at each State i.i D 0; 1; 2; 3; 4/, the transition probabilities to
other adjacent states are all equal. While the probability of staying at the same
state in the next transition is assumed to be zero.

(a) Show that the Markov chain of the random walk is irreducible and all the
states are recurrent.

(b) Find the state-state probability distribution

� D .�0; �1; �2; �3; �4/

of the Markov chain where

�P D � and
4X

iD0

�i D 1 and �i � 0 for i D 0; 1; : : : ; 4:

4. Show that the transition probability matrix

P D
�

0 1

1 0

�

is irreducible and has a unique stationary distribution but it has no steady-state
probability distribution.

5. Given the transition probability matrix P of a Markov chain as follows:

P D

0

BB@

0 1 0 0

0:5 0 0 0:5

0 0:5 0 0:5

0 0 0 1

1

CCA :

Classify the states of the Markov chain (transient or recurrent).
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6. Construct a Markov chain of four states such that its steady-state probability
distribution is given by

.0:1; 0:2; 0:3; 0:4/:

7. Suppose y1; y2; : : : ; yn are n independent Poisson random variables having the
same mean 1. Let

zn D y1 C y2 C : : : C yn:

Then we note that the sum of the n Poisson random variables is also a Poisson
random variable with mean n and variance n. Furthermore, for large n, we have

zn � np
n


 N.0; 1/:

Argue that

e�nnn

nŠ
D P.zn D n/ �

Z 0

�1
p

n

1p
2�

e
�x2

2 dx � 1p
2�n

and hence deduce the Stirling’s formula.
8. Prove Proposition 1.33.
9. Prove that the following are vector norms defined on Rn:

jjvjj1 D
nX

iD1

jvi j; jjvjj1 D max
i

fjvi jg and jjvjj2 D
vuut

nX

iD1

jvi j2:

10. (a) Let p > 1 and define q such that 1
p

C 1
q

D 1. Then for any non-negative a

and b, we have

a
1
p b

1
q � a

p
C b

q
:

(b) Let p > 1 and q be defined such that

1

p
C 1

q
D 1:

Show that for two vectors x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/, we have

nX

iD1

jxi yi j �
 

nX

iD1

jxi jp
! 1

p
 

nX

iD1

jyi jq
! 1

q

:

Hint: For part (a), you may wish to consider the function

f .x/ D x
1
p � 1 � 1

p
.x � 1/:
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For part (b) Let

A D
 

nX

iD1

jxi jp
! 1

p

; B D
 

nX

iD1

jyi jq
! 1

q

; ai D jxi jp
Ap

; bi D jyi jp
Bp

and apply part (a).
11. Show that for v 2 Rn

jjvjj1 D lim
p!1

 
nX

iD1

jvi jp
! 1

p

:

12. Show that for any two n � n matrices A and B , we have

jjABjjM � jjAjjM jjBjjM :

13. Show that for a square matrix A we have

jjAjjM2 � pjjAjjM1 � jjAjjM1
:

14. Customers request service from a group of m servers according to a Poisson
process with mean inter-arrival time ��1. Suppose the service times of the
servers are mutually independent and exponentially distributed with the same
mean ��1. At time zero, you find all m servers occupied and no customers
waiting. Find the probability that exactly k additional customers request service
from the system before the first completion of a service request.

15. Prove Proposition 1.41.
16. Prove or disprove that �.A/ is a matrix norm for any n � n square matrix A.

Hint: Consider the matrix

A D
�

0 0

1 0

�
:

17. Consider solving the linear equations Ax D b by the Jacobi method where

A D

0

BBBBBBB@

2 �1 0 � � � 0

�1 2 �1
: : :

:::

0
: : :

: : :
: : : 0

:::
: : : �1 2 �1

0 � � � 0 �1 2

1

CCCCCCCA

	 2In C .A � 2In/ (1.16)

where In is the n � n identity matrix. The iterative scheme reads

xnC1 D .In � 1

2
A/xn C 1

2
b:
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We note that A is not diagonally dominant. Prove that the Jacobi method
converges by showing that

jjIn � 1

2
AjjM2 < 1:

Hint: Show that for jjxjj22 D 1 we have

ˇ̌
ˇ̌xT .In � 1

2
A/x

ˇ̌
ˇ̌ < 1:

18. Suppose A is a non-singular n�n matrix but A is neither symmetric nor positive
definite, explain how the conjugate gradient method can be applied to solve for
the solution of

Ax D .1; 0 : : : ; 0/T :

19. (a) Implement the conjugate gradient method in MATLAB (or other software
like Octave) to solve

Ax D .1; 1; : : : ; 1/T :

The zero vector is employed as the initial guess and tolerance level is 10�6.
Here A is the matrix in (1.16).

(b) For n D 10; 20; 40; 80; 160; 320 (n is the size of the matrix A) record the
number of iterations for convergence.

20. In Example 1.56, show that if the discount factor is 0:6 and we start from state
2, then the optimal policy becomes: always stick to Alternative 1 (no action).



Chapter 2
Queueing Systems and the Web

In this chapter, we first discuss some more Markovian queueing systems. The
queueing system is a classical application of continuous Markov chains. We then
present an important numerical algorithm based on the computation of Markov
chains for ranking webpages. This is a modern application of Markov chains though
the numerical methods used are classical.

2.1 Markovian Queueing Systems

An important class of queueing networks is the Markovian queueing systems. The
main assumptions of a Markovian queueing system are the Poisson arrival process
and exponential service time. The one-server system discussed in Sect. 1.2.1 of
Chap. 1 is a queueing system without waiting space. This means that when a
customer arrives and finds the server is busy, the customer has to leave the system. In
the following sections, we will introduce some more Markovian queueing systems.
A queueing system is a classical application of a continuous time Markov chain.
We will further discuss its applications in re-manufacturing systems in Chap. 3. For
more details about numerical solutions for queueing systems and Markov chains,
we refer the readers to the books by Ching [46], Leonard [144], Neuts [167, 168]
and Stewart [191].

In the following, we begin our discussion with an M/M/1=n � 2 queue, a
Markovian queueing system with one server and n � 2 waiting spaces. Here the
first ‘M’ representing the arrival process is a Poisson process and the second ‘M’
represents the service time following the exponential distribution.

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 2,
© Springer Science+Business Media New York 2013
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Fig. 2.1 The Markov chain for the one-queue system (one server)

2.1.1 An M/M/1=n � 2 Queueing System

Now let us consider a more general queueing system with customer arrival rate
being �. Suppose the system has one exponential server with service rate being
� and there are n � 2 waiting spaces in the system. The queueing discipline is
First-come-first-serve. When a newly arrived customer finds the server is busy, the
customer can still wait in the queue provided that there is a waiting space available.
Otherwise, the customer has to leave the queueing system. To describe the queueing
system, we use the number of customers in the queue to represent the state of
the system. There are n states, namely 0; 1; : : : ; n � 1. The Markov chain for the
queueing system is given in Fig. 2.1. The number of customers in the system is used
to represent the states in the Markov chain. Clearly it is an irreducible Markov chain.

If we order the states of the system in increasing number of customers, it is not
difficult to show that the generator matrix for this queueing system is given by the
following n � n tri-diagonal matrix A1 D A.n;1;�;�/ where

A1 D

0
BBBBBBBBBBBBB@

� �� 0

�� � C � ��
: : :

: : :
: : :

�� � C � ��

�� � C � ��
: : :

: : :
: : :

�� � C � ��

0 �� s�

1
CCCCCCCCCCCCCA

(2.1)

and transient solution p.t/ satisfies the following system of differential equations:

dp.t/

dt
D A1p.t/:

The underlying Markov chain is irreducible and the solution for the steady-state
probability distribution, i.e.,

lim
t!1 p.t/ D p.n;1;�;�/ and 0 D lim

t!1
dp.t/

dt
D A1p.n;1;�;�/
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can be shown to be p.n;1;�;�/ D .p0; p1; : : : ; pn�1/
T where

pi D ˛

iC1Y
kD1

�

�
and ˛�1 D

nX
iD0

pi : (2.2)

Here pi is the probability that there are i customers in the queueing system in the
steady-state and ˛ is the normalization constant.

Example 2.1. In the one-server system, the steady-state probability distribution is
given by

pi D �i .1 � �/

1 � �n
where � D �

�
:

When the system has no limit on waiting space, we have a M=M=1=1 queue (or
simply M/M/1 queue). Suppose that � < 1, the steady-state probability becomes

lim
n!1 pi D �i .1 � �/:

The expected number of customers in the system is given by

Lc D
1X

iD0

ipi D
1X

iD0

i�i .1 � �/

D �.1 � �/

.1 � �/2
D �

1 � �
: (2.3)

The expected number of customers waiting in the queue is given by

Lq D
1X

iD1

.i � 1/pi D
1X

iD1

.i � 1/�i .1 � �/

D �

1 � �
� � D �2

1 � �
: (2.4)

Moreover the expected number of customers in service is given by

Ls D 0 � p0 C 1 �
1X

iD1

pi D 1 � .1 � �/ D �:

2.1.2 An M/M/s=n � s � 1 Queueing System

Now let us consider a more general queueing system with customer arrival rate
being �. Suppose the system has s parallel and identical exponential servers with
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Fig. 2.2 The Markov chain for the one-queue system (s servers)

service rate being � and there are n � s � 1 waiting spaces in the system. The
queueing discipline is First-come-first-serve. Again when a customer arrives and
finds all the servers are busy, the customer can still wait in the queue provided that
there is a waiting space available. Otherwise, the customer has to leave the system.
To apply the continuous time Markov chains for modeling this queueing system,
one has to obtain the waiting time for the departure of one customer when there are
more than one customer (let us say k customers) in the queueing system. We need
the following lemma.

Lemma 2.2. Suppose that X1; X2; : : : ; Xk are independent, identical, exponential
random variables with mean ��1, and consider the corresponding order statistics

X.1/ � X.2/ � � � � � X.k/:

Then X.1/ is again exponentially distributed with mean 1
k

times the mean of the
original random variables.

Proof. We observe that

X.1/ D min.X1; X2; : : : ; Xk/:

Hence X.1/ > x if and only if all Xi > x .i D 1; 2; : : : ; k/. We therefore have

P fX.1/ > xg D P fX1 > xgP fX2 > xg � � � P fXk > xg
D .e��x/k

D e�k�x:

Again it is still exponentially distributed with mean 1=.k�/. If we use the number
of customers in the queue to represent the state of the system, then there are n

states, namely 0; 1; : : : ; n � 1. The Markov chain for the queueing system is given
in Fig. 2.2. The number of customers in the system is used to represent the states in
the Markov chain. Clearly it is an irreducible Markov chain.

If we order the states of the system in increasing number of customers, it is not
difficult to show that the generator matrix for this queueing system is given by the
following n � n tri-diagonal matrix A2 D A.n;s;�;�/ where
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A2 D

0
BBBBBBBBBBBBB@

� �� 0

�� � C � �2�

: : :
: : :

: : :

�� � C .s � 1/� �s�

�� � C s� �s�

: : :
: : :

: : :

�� � C s� �s�

0 �� s�

1
CCCCCCCCCCCCCA

(2.5)

and the underlying Markov chain is irreducible. The solution for the steady-state
probability distribution can be shown to be

p.n;s;�;�/ D .p0; p1; : : : ; pn�1/
T (2.6)

where

pi D ˛

iC1Y
kD1

�

� minfk; sg
and

˛�1 D
nX

iD0

pi :

Here pi is the probability that there are i customers in the queueing system in
steady-state and ˛ is the normalization constant.

2.1.3 Allocation of the Arrivals in a System of M/M/1/1
Queues

In this subsection, we consider a queueing system consisting of n independent
M/M/1/1 queues. The service rate of the server at the i th queue is �i . Again
we assume that the arrival process is a Poisson process with rate �. The allocation
of arrivals is an important decision process in a queueing system, see for instance
[193] and the references therein. Here we consider an allocation process proposed
in [193], which is implemented such that it diverts an arrived customer to queue i

with a probability given by

�i

�1 C : : : C �n

D �i

�
:
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Then the input process of Queue i is a Poisson process with rate �i . The objective
here is to find the parameters �i such that some system performance is optimized.
Here we must assume �i < �i .

There are many system performance indicators. In what follows, our main
objective is to minimize the total expected number of customers in the system. We
first obtain the expected number of customers in Queue i by the result in (2.3) as
follows:

�i=�i

1 � �i =�i

:

Then the total expected number of customers in the system is

nX
iD1

�i =�i

1 � �i=�i

:

The optimization problem is then given as follows:

min
�1;:::;�n

(
nX

iD1

�i =�i

1 � �i =�i

)

subject to
mX

iD1

�i D �

and

0 � �i < � for i D 1; 2; : : : ; n:

The Lagrangian function is given by

L.�1; : : : ; �n; m/ D
nX

iD1

�i =�i

1 � �i=�i

� m

 
nX

iD1

�i � �

!
:

Solving the following equations

@L

@�i

D 0; i D 1; 2; : : : ; n and
@L

@m
D 0

we get the optimal solution

�i D �i

�
1 � 1p

m�i

�
< �i ; i D 1; 2; : : : ; n

where
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Fig. 2.3 Case (i) Two M/M/1/1 Queues

1
μ

2
μ

λ

Fig. 2.4 Case (ii) One M/M/2/1 Queue

m D

0
BBBB@

nX
iD1

p
�i

nX
iD1

�i � �

1
CCCCA

2

:

Another possible system performance indicator is the total expected number of
customers waiting in the system. One can carry out a similar analysis and we leave
the problem to the readers as an exercise.

2.1.4 Two M/M/1 Queues or One M/M/2 Queue?

In an M/M/1/ queueing system with service rate � and arrival rate � (we assume that
� < �), suppose one extra identical server can be added, then which of following
situations is better (we assume that � < �)? (i) Separate the two operators.
Therefore we have two M/M/1/1 queues. In this case, we assume that an arriving
customer can either join the first queue or the second with equal chance. (ii) Join the
two operators together. Therefore we have an M/M/2/1 queue (Figs. 2.3 and 2.4).

To determine which case is better, one can calculate the expected number of
customers in both cases. Very often, in our consideration, the smaller the better. In
case (i), using the result in (2.3), the expected number of customers in any one of
the queueing systems will be given by

. �
2�

/

1 � . �
2�

/
:
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Hence the total expected number of customers in the queueing system is

S1 D 2 �
. �

2�
/

1 � . �
2�

/
D

. �
�

/

1 � . �
2�

/
:

Now we examine the second case. In Case (ii), the expected number of customers
in the queueing system will be given by

S2 D
. �

�
/

1 � . �
2�

/2
(2.7)

and this is left as an exercise. It is straightforward to see that S2 < S1. We then
conclude that Case (ii) is better. We should put all the servers together if our concern
is to minimize the total number of customers in the system.

2.1.5 The Two-Queue Free System

In this subsection, we introduce a higher dimensional queueing system. Suppose
that there are two one-queue systems as discussed in Sect. 2.1.2. This queueing
system consists of two independent queues with the number of identical servers and
waiting spaces being si and ni � si � 1 .i D 1; 2/ respectively.

If we let the arrival rate of customers in Queue i be �i and the service rate of the
servers be �i .i D 1; 2/ then the states of the queueing system can be represented
by the elements in the following set:

S D f.i; j /j0 � i � n1; 0 � j � n2g
where .i; j / represents the state that there are i customers in Queue 1 and j

customers in Queue 2. Thus this is a two-dimensional queueing model. If we
order the states lexicographically, then the generator matrix can be shown to be
the following n1n2 � n1n2 matrix in tensor product form [37, 46]:

A3 D In1 ˝ A.n2;s2;�2;�2/ C A.n1;s1;�1;�1/ ˝ In2 : (2.8)

Here ˝ is the Kronecker tensor product [108, 119]. The Kronecker tensor product
of two matrices A and B of sizes p � q and m � n respectively is a .pm/ � .qn/

matrix given as follows:

A ˝ B D

0
BBB@

a11B � � � � � � a1qB

a21B � � � � � � a2qB
:::

:::
:::

:::

ap1B � � � � � � apqB

1
CCCA :
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The Kronecker tensor product is a useful tool for representing generator matrices
in many queueing systems and stochastic automata networks [37,46,141,142,191].
For this two-queue free queueing system, it is also not difficult to show that the
steady-state probability distribution is given by the probability distribution vector

p.n1;s1;�1;�1/ ˝ p.n2;s2;�2;�2/: (2.9)

2.1.6 The Two-Queue Overflow System

Now let us add the following system dynamics to the two-queue free system
discussed in Sect. 2.1.5. In this queueing system, we allow overflow of customers
from Queue 2 to Queue 1 whenever Queue 2 is full and there is still waiting space
in Queue 1; see for instance Fig. 2.5 (Taken from [46]). This is called the two-queue
overflow system; see Kaufman [37, 46, 130].

In this case, the generator matrix is given by the following matrix:

A4 D In1 ˝ A.n2;s2;�2;�2/ C A.n1;s1;�1;�1/ ˝ In2 C R ˝ en2
T en2 : (2.10)

Here en2 is the unit vector .0; 0; : : : ; 0; 1/ and

R D

0
BBBBBB@

�2 0

��2 �2

��2

: : :

: : : �2

0 ��2 0

1
CCCCCCA

: (2.11)

In fact

A4 D A3 C R ˝ en2
T en2 ;

where R ˝ en2
T en2 is the matrix describing the overflow of customers from Queue

2 to Queue 1. Unfortunately, there is no analytical solution for the generator
matrix A4.

For an overflow queueing system, a closed form solution of the steady-state
probability distribution may not always be available. In fact, there are a lot
applications related to queueing systems whose problem size are very large [26–
28, 36, 37, 46, 77, 152]. Direct methods for solving the probability distribution such
as the Gaussian elimination and LU factorization can be found in [132, 191].
Another popular method is called the matrix analytic methods [141,142]. Apart from
these direct methods, another class of popular numerical methods called iterative
methods, exists. This includes the classical iterations introduced in Chap. 1, such
as the Jacobi method, Gauss-Seidel method and SOR method. Sometimes when
the generator matrix has a block structure, then the block Jacobi method, block
Gauss-Seidel method and block SOR method are also popular methods [108].
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Fig. 2.5 The two-queue overflow system

A hybrid numerical algorithm which combines both SOR and a genetic algorithm
has also been introduced by Ching et al. [213] for solving queueing systems.
Conjugate gradient methods with circulant-based preconditioners are efficient
solvers for a class of Markov chains having near-Toeplitz generator matrices. We
will briefly discuss this in the following subsection.

2.1.7 The Preconditioning of Complex Queueing Systems

In many complex queueing systems, one observes both block structure, near-
Toeplitz structure and sparsity in the generator matrices. Therefore an iterative
method such as the CG method can be a good solver with a suitable preconditioner.
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2.1.7.1 Circulant-Based Preconditioners

In this subsection, we illustrate how to get a circulant preconditioner from a
generator matrix of a queueing system. The generator matrices of the queueing
networks can be written in terms of the sum of tensor products of matrices. Very
often, a key block structure of a queueing system is the following: .n C s C 1/ �
.n C s C 1/ tri-diagonal matrix:

Q D

0
BBBBBBBBBBBBB@

� �� 0

�� � C � �2�
:: :

: : :
: : :

�� � C .s � 1/� �s�

�� � C s� �s�
: : :

: : :
: : :

�� � C s� �s�

0 �� s�

1
CCCCCCCCCCCCCA

: (2.12)

This is the generator matrix of an M/M/s/n queue. In this queueing system there
are s independent exponential servers, the customers arrive according to a Poisson
process of rate � and each server has a service rate of �.

One can observe that if s is fixed and n is large, then Q is close to the
following tridiagonal Toeplitz matrix TriŒ�; �� � s�; s��. In fact, if one considers
the following circulant matrix c.Q/:

c.Q/ D

0
BBBBB@

� C s� �s� ��

�� � C s� �s�

: : :
: : :

: : :

�� � C s� �s�

�s� �� � C s�

1
CCCCCA

(2.13)

it is easy to see that
rank.c.Q/ � Q/ � s C 1

is independent of n for fixed s. Therefore, for fixed s and large value of n,
the approximation is a good one. Moreover, c.Q/ can be diagonalized by the
discrete Fourier Transformation and a closed form solution of its eigenvalues can
be easily obtained. This is important in the convergence rate analysis of the CG
method. By applying this circulant approximation to the blocks of the generator
matrices, effective preconditioners are constructed and the preconditioned systems
are also proved to have singular values clustered around one, see for instance
Chan and Ching [37]. A number of related applications can also be found in
[36, 37, 41, 43, 45, 46, 49].
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2.1.7.2 Toeplitz-Circulant-Based Preconditioners

Another class of queueing systems with batch arrivals have been discussed by
Chan and Ching in [36]. The generator matrices of queueing systems of s identical
exponential servers with service rate � take the form

An D

0
BBBBBBBBBBBBB@

� �� 0 0 0 : : : 0

��1 � C � �2� 0 0 : : : 0

��2 ��1 � C 2�
: : :

: : :
:::

::: ��2

: : :
: : : �s�

: : :
:::

: : :
: : : � C s�

: : : 0

��n�2 ��n�3 � � � : : :
: : : �s�

�r1 �r2 �r3 � � � �rsC1 � � � s�

1
CCCCCCCCCCCCCA

; (2.14)

where ri are such that each column sum of An is zero, i.e.

ri D � �
1X

kDn�i

�k:

Here � is the arrival rate and �i D �pi where pi is the probability that an arrived
batch is of size i . It is clear that the matrix is dense and the method of circulant
approximation does not work directly in this case. A Toeplitz-circulant type of
preconditioner was proposed to solve this queueing system by Chan and Ching
[36]. The idea is that the generator matrix is close to a Toeplitz matrix whose
generating function has a zero on the unit circle of order one. By factoring the
zero, the quotient has no zero on the unit circle. Using this fact, a Toeplitz-circulant
preconditioner is then constructed for the queueing system. Both the construction
cost and the preconditioner system can be solved in n log.n/ operations. Moreover,
the preconditioned system was proved to have singular values clustered around one.
Hence a very fast convergence rate is expected when the CG method is applied to
solving the preconditioned system.

This idea was further applied to queueing systems with batch arrivals and
negative customers, see Ching [48]. The term “negative customer” was first
introduced by Gelenbe et al. [102–104] in the modelling of neural networks. Here
the role of a negative customer is to remove a number of customers waiting in
the queueing system. For example, one may consider a communication network
in which messages are transmitted in a packet-switching mode. When a server fails
(this corresponds to an arrival of a negative customer) during a transmission, parts
of the messages will be lost. One may also consider a manufacturing system where
a negative customer represents a cancellation of a job. These lead to many practical
applications in the modelling of physical systems.
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In the queueing system, we assume that the arrival process of the batches of
customers follows a Poisson process of rate �. The batch size again follows a
stationary distribution of pi (i D 1; 2; : : : ;). Here pi is the probability that an arrived
batch is of size i . It is also assumed that the arrival process of negative customers is
a Poisson process with rate � . The number of customers to be removed is assumed
to follow a probability distribution

bi.i D 1; 2; : : : ; /:

Furthermore, if the arrived negative customer is supposed to remove i customers
in the system, but the number of customers in the system is less than i , then
the queueing system will become empty. The removal (killing) strategy here is to
remove the customers in the front of the queue, i.e. “Remove the Customers at the
Head” (RCH). For i � 1, we let

�i D bi �

where bi is the probability that the number of customers to be removed is i and
therefore we have

� D
1X

kD1

�k:

The generator matrices of the queueing systems take the following form:

An D

0
BBBBBBBBBBBBB@

� �u1 �u2 �u3 : : : : : : : : : �un�1

��1 � C � C � �2� � �1 ��2 ��3 : : : : : : ��n�2

��2 ��1 � C � C 2�
: : :

: : :
: : :

:
:
:

:
:
: ��2

: : :
: : : �s� � �1 ��2

: : :
:
:
:

:
:
:

:
:
:

: : :
: : : � C � C s�

: : :
: : : ��3

:
:
:

:
:
:

: : :
: : :

: : :
: : :

: : : ��2

��n�2 ��n�3 ��n�4 � � � �2 ��1 � C � C s� �s� � �1

�v1 �v2 �v3 � � � � � � �vn�2 �vn�1 � C s�

1
CCCCCCCCCCCCCA

:

Here

� D
1X

iD1

�i and �i D �pi

and

u1 D � and ui D � �
i�1X
kD1

�k for i D 2; 3; : : :

and vi is defined such that the i th column sum is zero. The generator matrices
enjoy the same near-Toeplitz structure. Toeplitz-circulant preconditioners can be
constructed similarly and the preconditioned systems are proved to have singular
values clustered around one, Ching [48].
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Finally, we remark that there is another efficient iterative method for solving
queueing systems which is not covered in this text, the multigrid methods. Interested
readers may consult the following references Bramble [24], Chan et al. [38], Chang
et al. [40] and McCormick [154].

2.2 Search Engines

In this section, we introduce a very important algorithm used by Google for ranking
webpages on the Internet. In surfing the Internet, web surfers usually utilize search
engines to find the related webpages satisfying their queries. Unfortunately, there
are often thousands of webpages which are relevant to their queries. Therefore a
proper list of the webpages in a certain order of importance is necessary. The list
should also be updated regularly and frequently. Thus it is important to seek for a
fast algorithm for updating the PageRank so as to reduce the time lag of updating.
As it turns this problem is difficult. The reason is not just because of the huge size
of the webpages on the Internet, but also their numbers keep on growing rapidly.

PageRank has been proposed by Page et al. [169] to reflect the importance of
each webpage. Larry Page and Sergey Brin are the co-founders of Google. In fact,
one can find the following statement at Google’s website (http://www.google.com/
technology/): “The heart of our software is PageRankTM, a system for ranking web
pages developed by our founders Larry Page and Sergey Brin at Stanford University.
And while we have dozens of engineers working to improve every aspect of Google
on a daily basis, PageRank continues to provide the basis for all of our web search
tools.”

A similar idea of ranking journals has been proposed by Garfield [100, 101]
as a measure of standing for journals, which is called the impact factor. The
impact factor of a journal is defined as the average number of citations per recently
published papers in that journal. By regarding each webpage as a journal, this was
then extended to measure the importance of a webpage in the PageRank Algorithm.

The PageRank is defined as follows. Let N be the total number of webpages in
the web and we define a matrix Q called the hyperlink matrix. Here

Qij D
�

1=k if Webpage i is an outgoing link of Webpage j I
0 otherwiseI

and k is the total number of outgoing links of Webpage j . For simplicity of
discussion, here we assume that Qii > 0 for all i . This means that for each webpage
there is a link pointing to itself. Hence Q can be regarded as a transition probability
matrix of a Markov chain of a random walk. The analogy is that one may regard a
web surfer as a random walker and the webpages as the states of the Markov chain.
Assuming that this underlying Markov chain is irreducible, then the steady-state
probability distribution
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3

2

1

Fig. 2.6 An example of three
webpages

.p1; p2; : : : ; pN /T

of the states (webpages) exists. Here pi is the proportion of time that the random
walker (web surfer) spends visiting State (Webpage) i . The larger the value of pi

is, the more important Webpage i will be. Thus the PageRank of Webpage i is then
defined as pi . If the Markov chain is not irreducible then one can still follow the
treatment in the next subsection.

An Example

We consider a web of an internet with 3 webpages:1; 2; 3 such that
1 ! 1; 1 ! 2; 1 ! 3

2 ! 1; 2 ! 2,
3 ! 2; 3 ! 3.

One can represent the relationship by the following Markov chain (Fig. 2.6).
The transition probability matrix of this Markov chain is then given by

Q D
1

2

3

0
@

1=3 1=2 0

1=3 1=2 1=2

1=3 0 1=2

1
A :

The steady-state probability distribution of the Markov chain

p D .p1; p2; p3/

satisfies
p D Qp and p1 C p2 C p3 D 1:

Solving the above linear system, we get

.p1; p2; p3/ D .
3

9
;

4

9
;

2

9
/:

Therefore the ranking of the webpages is:

Webpage 2 > Webpage 1 > Webpage 3.
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One can also interpret the result as follows. Both Webpages 1 and 3 point to
Webpage 2 and therefore Webpage 2 is the most important. Since webpage 2

points to Webpage 1 but not Webpage 3, Webpage 1 is then more important than
Webpage 3.

In terms of the actual Internet, since the size of the Markov chain is huge and
the time for computing the PageRank required by Google for computing the Page
Rank is just a few days, a direct method for solving the steady-state probability
is not desirable. Iterative methods [10] and decomposition methods [7] have been
proposed to solve the problem. Another pressing issue is that the number of
webpages grows rapidly, and the PageRank of each webpage has to be updated
regularly. Here we seek for adaptive and parallelizable numerical algorithms for
solving the PageRank problem. One potential method is the hybrid iterative method
proposed in Yuen et al. [213]. The hybrid iterative method was first proposed
by He et al. [116] for solving the numerical solutions of PDEs and it has also
been successfully applied to solving the steady-state probability distributions of
queueing networks [213]. The hybrid iterative method combines the evolutionary
algorithm and the Successive Over-Relaxation (SOR) method. The evolutionary
algorithm allows the relaxation parameter w to be adaptive in the SOR method.
Since the cost of the SOR method per iteration is more expensive and less efficient
in the parallel computing for our problem (as the matrix system is huge), here
we will also consider replacing the role of SOR method by the Jacobi Over-
Relaxation (JOR) method [108, 132]. The JOR method is easier to be implemented
in parallel computing environments. Here we present hybrid iterative methods based
on SOR/JOR method, and the evolutionary algorithm. The hybrid method allows
the relaxation parameter w to be adaptive in the SOR/JOR method. We give a brief
mathematical discussion on the PageRank approach. We then briefly describe the
power method, a popular approach for solving the PageRank problem.

2.2.1 The PageRank Algorithm

The PageRank Algorithm has been used successfully in ranking the importance
of webpages by Google (http://www.search-engine-marketing-sem.com/Google/
GooglePageRank.html.). Consider a web of N webpages with Q being the hyper-
link matrix. Since the matrix Q can be reducible, to tackle this problem, one can
consider the revised matrix P :

P D ˛

0
BBB@

Q11 Q12 � � � Q1N

Q21 Q22 � � � Q2N

:::
:::

:::
:::

QN1 QN 2 � � � QNN

1
CCCAC .1 � ˛/

N

0
BBB@

1 1 � � � 1

1 1 � � � 1
:::

:::
:::

:::

1 1 � � � 1

1
CCCA (2.15)

where 0 < ˛ < 1. In this case, the matrix P is irreducible and aperiodic, therefore
the steady-state probability distribution exists and is unique [181]. Typical values
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for ˛ are 0:85 and .1 � 1=N /, see for instance [10, 113]. The value ˛ D 0:85 is
a popular one and the power method works very well for this problem [113–115].
We remark that this value can affect the original ranking of the webpages, see for
instance, the example in Sect. 2.2.3.

One can interpret (2.15) as follows. The idea of the algorithm is that for a network
of N webpages, each webpage has an inherent importance of .1 � ˛/=N . If a page
Pi has an importance of pi , then it will contribute an importance of ˛pi which
is shared among the webpages that it points to. The importance of webpage Pi

can be obtained by solving the following linear system of equations, subject to the
normalization constraint:

0
BBB@

p1

p2

:::

pN

1
CCCA D ˛

0
BBB@

Q11 Q12 � � � Q1N

Q21 Q22 � � � Q2N

:::
:::

:::
:::

QN1 QN 2 � � � QNN

1
CCCA

0
BBB@

p1

p2

:::

pN

1
CCCAC .1 � ˛/

N

0
BBB@

1

1
:::

1

1
CCCA : (2.16)

Since
NX

iD1

pi D 1;

(2.16) can be re-written as

.p1; p2; : : : ; pN /T D P.p1; p2; : : : ; pN /T :

2.2.2 The Power Method

The power method is a popular method for solving the PageRank problem. The
power method is an iterative method for solving the largest eigenvalue in modulus
(the dominant eigenvalue) and its corresponding eigenvector [108]. The idea of
the power method can be briefly explained as follows. Given an n � n matrix A

and suppose that (a) there is a single eigenvalue of maximum modulus and the
eigenvalues �1; �2; � � � ; �n are labelled such that

j�1j > j�2j � j�3j � � � � � j�njI

(b) there is a linearly independent set of n unit eigenvectors. This means that there
is a basis ˚

u.1/; u.2/; : : : ; u.n/
�

such that

Au.i/ D �iu.i/; i D 1; 2; : : : ; n; and ku.i/k D 1:
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Then beginning with an initial vector x.0/, one may write

x.0/ D a1u.1/ C a2u.2/ C � � � C anu.n/:

Now we iterate the initial vector with the matrix A as follows:

Akx.0/ D a1Aku.1/ C : : : C anAku.n/ D a1�k
1u.1/ C : : : C an�k

nu.n/

D �k
1

(
a1u.1/ C

�
�2

�1

�k

anu.2/ C : : : C
�

�n

�1

�k

anu.n/

)
:

Since j�i j
j�1j < 1 for i D 2; : : : ; n;

we obtain

lim
k!1

j�i jk
j�1jk D 0 for i D 2; : : : ; n:

Hence we have
Akx.0/ � a1�

k
1u.1/:

To get an approximation for u.1/ we introduce a normalization in the iteration:

rkC1 D AkC1x.0/

kAkx.0/k2

and we have

lim
k!1 rkC1 D lim

k!1
a1�kC1

1 u.1/

ka1�k
1u.1/k2

D �1u.1/:

It turns out that for the PageRank problem, the largest eigenvalue of P is 1, and
the corresponding eigenvector in normalized form is the PageRank vector. The main
computational cost of this method comes from the matrix-vector multiplications.
The convergence rate of the power method depends on the ratio of j�2=�1j where
�1 and �2 are respectively the largest and the second largest eigenvalues of the
matrix P . It was proved by Haveliwala and Kamvar [113] that for the second largest
eigenvalue of P , we have

j�2j � ˛ for 0 � ˛ � 1:

Since �1 D 1, the convergence rate of the power method is ˛, see for instance [108].
A popular value for ˛ is 0:85. With this value, it is mentioned in Kamvar et al. [129]
that the power method on a web data set of over 80 million pages converges in about
50 iterations.
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2.2.3 An Example

In this subsection, we consider a small example of six webpages. This example
demonstrates that the value of ˛ D 0:85 can affect the original ranking (˛ D 1)
of the webpages even if the number of webpages is small. In the example, the
webpages are organized as follows:

Webpage 1 ! 1; 3; 4; 5

Webpage 2 ! 2; 3; 5; 6

Webpage 3 ! 1; 2; 3; 4; 5; 6

Webpage 4 ! 2; 3; 4; 5

Webpage 5 ! 1; 3; 5

Webpage 6 ! 1; 6

From the given structure of the webpages, we have the hyperlink matrix as follows:

Q D

0
BBBBBBB@

0:2500 0:0000 0:1667 0:0000 0:3333 0:5000

0:0000 0:2500 0:1667 0:2500 0:0000 0:0000

0:2500 0:2500 0:1667 0:2500 0:3333 0:0000

0:2500 0:0000 0:1667 0:2500 0:0000 0:0000

0:2500 0:2500 0:1667 0:2500 0:3333 0:0000

0:0000 0:2500 0:1667 0:0000 0:0000 0:5000

1
CCCCCCCA

then the steady-state probability distribution is given by

.0:2260; 0:0904; 0:2203; 0:1243; 0:2203; 0:1186/T

and the ranking should be 1 > 3 � 5 > 4 > 6 > 2. For ˛ D 0:85, we have

P D

0
BBBBBBB@

0:2375 0:0250 0:1667 0:0250 0:3083 0:4500

0:0250 0:2375 0:1667 0:2375 0:0250 0:0250

0:2375 0:2375 0:1667 0:2375 0:3083 0:0250

0:2375 0:0250 0:1667 0:2375 0:0250 0:0250

0:2375 0:2375 0:1667 0:2375 0:3083 0:0250

0:0250 0:2375 0:1667 0:0250 0:0250 0:4500

1
CCCCCCCA

:

In this case, the steady-state probability distribution is given by

.0:2166; 0:1039; 0:2092; 0:1278; 0:2092; 0:1334/T

and the ranking should be 1 > 3 � 5 > 6 > 4 > 2. We observe that the ranking of
states 6 and 4 are inter-changed in the two approaches.
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2.2.4 The SOR/JOR Method and the Hybrid Method

In this section, we present a hybrid algorithm for solving the steady-state probability
of a Markov chain, Yuen et al. [213, 214]. We first give a review on the JOR
method for solving linear systems, in particular solving the steady-state probability
distribution of a finite Markov chain. We then introduce the hybrid algorithm based
on the SOR/JOR method and the evolutionary algorithm. For the SOR method, it has
been discussed in Chap. 1. When we consider a non-singular linear system Bx D b,
the JOR method is a classical iterative method. The idea of the JOR method can be
explained as follows. We write B D D � .D � B/ where D is the diagonal part
of the matrix B . Given an initial guess of the solution, x0, the JOR iteration scheme
reads:

xnC1 D .I � wD�1B/xn C wD�1b
� Bwxn C wD�1b:

(2.17)

The parameter w is called the relaxation parameter and it lies between 0 and 1 [8].
Clearly if the scheme converges, the limit will be the solution of Bx D b. The
choice of the relaxation parameter w affects the convergence rate of the SOR/JOR
method significantly, see for instance [213, 214]. In general, the optimal value of
w is unknown. For more details about the SOR/JOR method and its properties, we
refer readers to [8, 108].

The generator matrix P of an irreducible Markov chain is singular and has a null
space of dimension one (the null vector corresponds to the steady-state probability
distribution). One possible way to solve the steady-state probability distribution is
to consider the following revised system:

Ax D .P C eT
n en/x D eT

n (2.18)

where en D .0; 0; : : : ; 0; 1/ is a unit vector. The steady-state probability distribution
is then obtained by normalizing the solution x, see for instance, Ching [46]. We
remark that the linear system (2.18) is irreducibly diagonal dominant. The hybrid
method based on He et al. [116] and Yuen et al. [213] consists of four major steps:
initialization, mutation, evaluation and adaptation [174].

In the initialization step, we define the size of the population k of the approximate
steady-state probability distribution. This means that we also define k approximates
to initialize the algorithm. Then we use the JOR iteration in (2.17) as the “mutation
step”. In the evaluation step, we evaluate how “good” each member in the population
is by measuring their residuals. In this case, it is clear that the smaller the residual
the better the approximation and therefore the better the member in the population.
In the adaptation step, the relaxation parameters of the “weak” members are
migrated (with certain probability) towards the best relaxation parameter. The
hybrid algorithm reads:
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Step 1: Initialization: We first generate an initial population of k .2 � k � n/

identical steady-state probability distributions as follows:

fei W i D 1; 2; : : : ; kg

where ei D .0; : : : ; 0; 1„ƒ‚…
i th ent ry

; 0; : : : ; 0/T . We then compute

ri D jjBei � bjj2
and define a set of relaxation parameters fw1; w2; : : : ; wkg such that

wi D � C .1 � 2�/.k � i/

k � 1
; i D 1; 2; : : : ; k:

Here � 2 .0; 1/ and therefore wi 2 Œ�; 1 � ��. We set � D 0:01 in our numerical
experiments. We then obtain a set of ordered triples

f.ei ; wi ; ri / W i D 1; 2; : : : ; kg:

Step 2: Mutation: The mutation step is carried out by doing a SOR/JOR iteration
on each member xi (xi is used as the initial in the SOR/JOR) of the population
with their corresponding wi . We then get a new set of approximate steady-state
probability distributions: xi for i D 1; 2; : : : ; k. Hence we have a new set of

f.xi ; wi ; ri / W i D 1; 2; : : : ; kg:

Go to Step 3.

Step 3: Evaluation: For each xi , we compute and update its residual

ri D jjBxi � bjj2:

This is used to measure how “good” an approximate xi is. If rj < tol for some
j then stop and output the approximate steady-state probability distribution xj .
Otherwise we update ri of the ordered triples

f.xi ; wi ; ri / W i D 1; 2; : : : ; kg

and go to Step 4.

Step 4: Adaptation: In this step, the relaxation factors wk of the weak members
(relatively large ri ) in the population are moving towards the best one with certain
probability. This process is carried out by first performing a linear search on frig to
find the best relaxation factor, wj . We then adjust all the other wk as follows:
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wk D
�

.0:5 C ı1/ 	 .wk C wj / if .0:5 C ı1/ 	 .wk C wj / 2 Œ�; 1 � ��

wk otherwise;

where ı1 is a random number in Œ�0:01; 0:01�. Finally the best wj is also adjusted by

wj D ı2 	 wj C .1 � ı2/ 	 .w1 C w2 C : : : C wj �1 C wj C1 C : : : C wk/

k � 1

where ı2 is a random number in Œ0:99; 1�. A new set of fwi g is then obtained and
hence

f.xi ; wi ; ri / W i D 1; 2; : : : ; kg:
Go to Step 2.

2.2.5 Convergence Analysis

In this section, we consider the linear system Bx D b where B is strictly diagonal
dominant, i.e.

jBii j >

NX
j D1;j ¤i

jBij j for i D 1; 2; : : : ; N

where N is the size of the matrix.
We first prove that the hybrid algorithm converges for a range of w with the SOR

method. We begin with the following lemma.

Lemma 2.3. Let B be a strictly diagonal dominant square matrix and

K D max
i

8<
:

mX
j D1;j ¤i

jBij j
jBii j

9=
; < 1;

then
jjBwjjM

1

< 1 for 0 < w < 2=.1 C K/

where Bw is defined in (2.15). Here the definition of the matrix jj:jjM
1

can be found
in Sect. 1.3.1.

Proof. Let x be an n � 1 vector such that jjxjj1 D 1. We are going to prove that

jjBwxjj1 � 1 for 0 < w < 2=.1 C K/:

Consider
y D .D � wL/�1..1 � w/D C wU /x
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and we have
.D � wL/y D ..1 � w/D C wU /x

i.e.,

0
BBBBBBB@

B11 0 � � � � � � 0

�wB21 B22

: : :
:::

:::
: : :

: : :
:::

:::
: : : 0

�wBm1 � � � � � � �wBm;m�1 Bmm

1
CCCCCCCA

0
BBBBBB@

y1

y2

:::
:::

ym

1
CCCCCCA

D

0
BBBBBBB@

.1 � w/B11 wB12 � � � � � � wB1m

0 .1 � w/B22

: : :
:::

:::
: : :

: : :
:::

:::
: : : wBm�1;m

0 � � � � � � 0 .1 � w/Bmm

1
CCCCCCCA

0
BBBBBB@

x1

x2

:::
:::

xm

1
CCCCCCA

:

Case 1: 1 � w < 2=.K C 1/.

For the first equation, we have

B11y1 D .1 � w/B11x1 C w
mX

j D2

B1j xj :

Since

jxi j � 1 and
mX

j D2

jB1j j < KjB11j;

we have
jy1j � j1 � wj C wK D w.1 C K/ � 1 < 1:

For the second equation, we have

B22y2 D .1 � w/B22x2 C wB21y1 C w
mX

j D3

B2j xj :

Since
jy1j � 1; jxi j � 1

and
mX

j D1;j ¤2

jB2j j < KjB22j;
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we have

jy2j � j1 � wj C wK D w.1 C K/ � 1 < 1:

Inductively, we have jyi j < 1 and hence jjyjj1 < 1. Therefore we have proved that

jjBwjjM
1

< 1 for 1 � w < 2=.1 C K/:

Case 2: 0 < w < 1.

For the first equation, we have

B11y1 D .1 � w/B11x1 C w
mX

j D2

B1j xj :

Since

jxi j � 1 and
mX

j D2

jB1j j < jB11j;

we have

jy1j < 1 � w C w D 1:

For the second equation, we have

B22y2 D .1 � w/B22x2 C wB21y1 C w
mX

j D3

B2j xj :

Since

jy1j � 1; jxi j � 1 and
mX

j D1;j ¤2

jB2j j < jB22j;

we have
jy2j < 1 � w C w D 1:

Inductively, we have jyi j < 1 and hence jjyjj1 < 1. Therefore

jjBwjjM
1

< 1 for 0 < w < 1:

Combining the results, we have

jjBwjjM
1

< 1 for 0 < w < 2=.1 C K/:

Proposition 2.4. The hybrid algorithm converges for w 2 Œ�; 2=.1CK/��� where
0 < � < 1=.1 C K/.



2.2 Search Engines 71

Proof. We note that

f .�/ D max
w2Œ�;2=.1CK/���

fjj.Bw/jjM
1

g

exists and is less than one. Let us denote it by 0 � f .�/ < 1. Therefore in each
iteration of the hybrid method, the matrix norm ( jj:jjM

1

) of the residual is
decreased by a fraction not less than f .�/. By using the fact that

jjST jjM
1

� jjS jjM
1

jjT jjM
1

;

the hybrid algorithm is convergent.

We then prove that the hybrid algorithm with the JOR method converges for a
range of w. We have the following lemma.

Lemma 2.5. Let B be a strictly diagonal dominant square matrix and

K D max
i

8<
:

NX
j D1;j ¤i

jBj i j
jBii j

9=
; < 1;

then
jjBwjjM1 � 1 � .1 � K/w < 1 for � < w < 1 � �

where Bw is defined in (2.15). Here the definition of the matrix norm jj:jjM1 can be
found in Sect. 1.3.1 .

By using the similar approach as in Proposition 2.4, one can prove the following
proposition.

Proposition 2.6. The hybrid iterative method converges for w 2 Œ�; 1 � ��.

Proof. We observe that

f .�/ D max
w2Œ�;1���

fjjBwjjM1g

exists and is less than one. Let us denote it by 0 � f .�/ < 1. Therefore in each
iteration of the hybrid method, the matrix norm ( jj:jjM1 ) of the residual is decreased
by a fraction not less than f .�/. By using the fact that

jjST jjM1 � jjS jjM1 jjT jjM1;

the hybrid algorithm is convergent.

We note that the matrix A in (2.16) is irreducibly diagonal dominant only, but not
strictly diagonal dominant. Therefore the conditions in Lemmas 2.3 and 2.5 are not
satisfied. However, one can always consider a regularized linear system as follows:

.A C �I /x D b:
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Table 2.1 Number of iterations for convergence (˛ D 1 � 1=N )

JOR Data set 1 Data set 2 Data set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k D 2 41 56 42 42 57 95 58 70 31 26 32 25
k D 3 56 60 42 42 56 75 57 61 31 35 43 25
k D 4 46 59 42 42 55 72 58 62 31 32 38 25
k D 5 56 60 43 43 56 68 57 60 32 30 36 26

SOR Data set 1 Data set 2 Data set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k D 2 20 18 17 17 16 15 16 15 18 14 19 15
k D 3 30 27 17 25 16 23 16 23 18 21 29 15
k D 4 25 24 19 22 17 21 16 21 18 19 26 18
k D 5 30 28 19 23 17 21 16 20 20 20 25 17

Table 2.2 Number of iterations for convergence (˛ D 0:85)

JOR Data set 1 Data set 2 Data set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k D 2 42 56 44 47 61 82 66 64 18 28 32 26
k D 3 55 60 45 52 62 81 63 62 18 36 42 26
k D 4 53 59 45 49 58 71 62 62 18 33 38 26
k D 5 53 65 45 49 61 70 64 62 18 32 37 26

SOR Data set 1 Data set 2 Data set 3

N 100 200 300 400 100 200 300 400 100 200 300 400

k D 2 19 17 17 16 16 14 15 15 15 14 19 16
k D 3 28 26 17 24 16 22 15 23 15 23 29 16
k D 4 24 23 19 21 16 20 16 21 17 20 25 16
k D 5 28 26 19 21 17 21 16 20 16 20 23 16

Here I is the identity matrix and � > 0 can be chosen as small as desired. Then the
matrix .A C �I / is strictly diagonal dominant, although this will introduce a small
error of O.�/ to the linear system. Numerical results in Yuen et al. [213,214] indicate
that the hybrid algorithm is very efficient in solving for the steady-state probability
distribution of queueing systems and ranking webpages in the Web. Here we present
some small scale numerical results (three different data sets) for two typical values
of ˛ in Tables 2.1 and 2.2 (Taken from [214]). Here k is the size of population and
N is the number of webpages.

2.3 Summary

In this chapter, we discussed two important applications of Markov chains: the
classical Markovian queueing networks and the Modern PageRank algorithm. The
latter application comes from the measurement of prestige in a network. The



2.4 Exercise 73

computation of prestige in a network is an important issue [22, 23] and has many
other applications, such as social networks [206] and disease transmission [12]. A
number of methods based on the computation of eigenvectors have been proposed
in the literature, see for instance Langville and Meyer [139, 140] and the references
therein. Further research can be done in developing models and algorithms for the
case when there are negative relations in the network [192]. In a network, being
chosen or nominated by a popular or powerful person (webpage) would add to one’s
popularity. Instead of supporting a member, a negative relation means being rejected
by a member in the network.

2.4 Exercise

1. We consider an M/M/1=1 queue. The mean service time of the exponential
server is ��1 and the customers arrive according to a Poisson process with
mean rate � where � < �. An arrived customer may leave the system directly
with a probability of

i

i C 1
i D 0; 1; : : : ;

when they find there are already i customers in the system.

(a) Find the steady-steady probability distribution of the queueing system in
terms of � and �.

(b) Assuming that the queueing system is in steady-state, find the loss proba-
bility (probability that an arrived customer chooses not to join the queueing
system).

(c) If the mean service time ��1 can be assigned as fast as possible (i.e.
� << �), recommend the service rate � if the loss probability has to be
less than 1 %.

2. Consider an exponential server system with service rate � having no waiting
space. Customers arrive according to a Poisson process with mean rate �. As
the server is failure-prone, the normal time of the server follows the exponential
distribution with mean ��1. When it breaks down, it will be repaired at once.
The repair time of the server follows an exponential distribution with mean 	�1.
The following are the four possible states of the system

f.N; 0/; .D; 0/; .N; 1/; .D; 1/g

where N represents the server is normal, D represents the server is down, 0

represents the system is idle and 1 represents the system is busy.

(a) Write down the generator matrix of this Markov process.
(b) Obtain the steady-state probability distribution of the system.
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(c) Assuming that the system is in steady-state, find the conditional probability
that the server is under repair given that the system is idle.

3. (a) We consider a system of n identical failure-prone machines. A repairman
is assigned to repair the broken machines. The mean normal time and the
repair time of a machine are exponentially distributed with means ��1 and
��1 respectively. The system is said to be in state i.i D 0; 1; � � � ; n/ if there
are i broken machines.

(a) Write down the Markov chain and the generator matrix for the states of this
machine repairing model.

(b) Find the steady-state probability pi that there are i broken machines in the
system.

(c) Find the steady-state probability that the repairman is idle.
4. A company is going to hire a repairman to look after four identical unreliable

machines. The machines break down randomly according to a Poisson process
of mean rate of 3 per day. The non-productive time of any machine costs the
firm 200 dollars per day. The firm can hire a slow, cheap repairman charging
500 dollars per day who repairs at an average rate of 4 machines per day.
Alternatively the firm can hire a fast, experienced repairman charging 1; 000

dollars per day who repairs at an average rate of 5 machines per day. In
either case repair time is assumed to be exponentially distributed. Compute the
expected running costs in both cases and determine which repairman should be
hired.

5. Consider the allocation problem discussed in Sect. 2.1.3.

(a) Apply the result in (2.4) to show that the expected number of customers
waiting in Queue i is given by

.�i =�i /
2

1 � �i =�i

:

Hence show that the total expected number of customers waiting in the
system is given by

nX
iD1

.�i=�i /
2

1 � �i=�i

:

(b) Solve the following optimization problem:

min
�1;:::;�n

(
nX

iD1

.�i =�i /
2

1 � �i =�i

)
:

subject to
mX

iD1

�i D �
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and
0 � �i < � for i D 1; 2; : : : ; n

and get the optimal allocation.

6. Prove the formula (2.7).
7. In a post office, postmen must retrieve their assignments from the office which

is managed by an assistant. Suppose the mean number of postmen retrieving
their assignments per hour is 4 and they are paid 10 dollars per hour. There
are two possible assistants A or B to be employed for managing the office.
On average assistant A takes 11:5 min to handle one request and is paid 9:5

dollars per hour. While assistant B takes 12:5 min to handle one request and is
paid 7 dollars per hour. Assume that the inter-arrival time of postmen and the
processing time of the assistants are exponentially distributed. Which assistant
should be employed?

8. Let

P D

0
BB@

0:75 0:25 0 0

0:2 0:5 0:2 0:1

0:3 0:25 0:25 0:2

0 0:15 0:25 0:6

1
CCA :

Apply the power method for 10 iterations to get an approximate of the steady-
state probability distribution.

9. Apply the power method to the following n � n transition probability matrix

P D

0
BBBBBBBBBB@

0:75 0:25 0 � � � � � � 0

0:25 0:50 0:25
: : :

:::

0 0:25 0:50 0:25
: : :

:::

0
: : :

: : :
: : : 0

:::
: : : 0:25 0:50 0:25

0 � � � � � � 0 0:25 0:75

1
CCCCCCCCCCA

(2.19)

to get an approximation of the steady-state probability distribution for n D
10; 20; 40; 80; 160; 320. Record the number of iterations required for the
convergence under the following stopping criterion

jjxk � pjj1 < 10�6:

Here p is the true solution and xk is the approximate solution obtained in
kth iteration. We remark that the true solution of the steady-state probability
distribution is given by

p D 1

n
.1; 1; � � � ; 1/T :
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10. Consider a general PageRank matrix

P D .cQ C .1 � c/1uT / for c 2 Œ0; 1/

where u is a positive probability distribution vector.

(a) By using Sherman-Morrison-Woodbury’s formula, show that the stationary
distribution is given by

x D .1 � c/.I � cP /�1u:

(b) Hence show that

x D .1 � c/

1X
nD0

cn.P nu/:



Chapter 3
Manufacturing and Re-manufacturing Systems

3.1 Introduction

In this chapter, we consider the application of the Markovian queueing systems
discussed in Chap. 2 in modeling manufacturing systems and re-manufacturing
systems. We adopt Hedging Point Production (HPP) policy as a production control
policy. We note that in a queueing system, there are servers, customers, and waiting
spaces. To model a make-to-order manufacturing system by a queueing system,
one may regard a server as a machine. The customers can be regarded as the
inventory of product or the jobs to be processed respectively; see for instance
Buzacott and Shanthikumar [34]. In a manufacturing system, a certain amount of
inventory (called the hedging point) is kept to cope with the fluctuation of demand
and therefore production control is necessary. The system will stop production when
this level of inventory is attained.

We then discuss the inventory controls of demands and returns of single-item
inventory systems [164]. In fact, there are many research papers on inventory control
of repairable items and returns, most of them describing the system as a closed-
loop queueing network with a constant number of items inside [75, 137, 165, 195].
Disposal of returns [131, 136, 178] is allowed in the models presented here.

The justification for disposal is that accepting all returns will lead to extremely
high inventory level and hence very high inventory cost. Sometimes transshipment
of returns is allowed among the inventory systems to reduce the rejection rate
of returns. Other re-manufacturing models can be found in [122, 136, 138, 194]
and good reviews and current advances of the related topics can be found in
[21, 80, 99, 133, 163].

As a modern marketing strategy to encourage the customers to buy products,
the customers are allowed to return the bought product and obtain a full refund
within a period of one week. As a result, many customers may take advantage of
this policy and the manufacturers have to handle many such returns. Very often, the
returns are still in good condition, and can be put back to the market after checking
and packaging. The first model we introduce here attempts to model this situation.

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 3,
© Springer Science+Business Media New York 2013
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The model is a single-item inventory system for handling returns captured by a
queueing network. In this model, the demands and the returns are assumed to follow
two independent Poisson processes. The returns are tested and repaired according
to the standard requirements. Repaired returns will be put into the serviceable
inventory and non-repairable returns will be disposed of. The repairing time is
assumed to be negligible. A similar inventory model with returns has been discussed
in [118]. However, the model in [118] includes neither the replenishment costs nor
the transshipment of returns. In this model, the inventory system is controlled by
a popular .r; Q/ continuous review policy. The inventory level of the serviceable
product is modelled as an irreducible continuous time Markov chain. The generator
matrix for the model is given and a closed form solution for the system steady-state
probability distribution is also derived.

Next, two independent and identical inventory systems are considered and
transshipment of returns from one inventory system to another is allowed. The
joint inventory levels of the serviceable product is modeled as a two-dimensional
irreducible continuous time Markov chain. The generator matrix for this advanced
model is given and a closed form approximation of the solution of the system steady-
state probability distribution is derived. Analysis of the average running cost of the
joint inventory system can be carried out by using the approximated probability
distribution. The focus is on the inventory cost and the replenishment cost of the
system because the replenishment lead time is assumed to be zero and there is no
backlog or loss of demand. It is shown that in the transshipment model, the rejection
rate of the returns is extremely small and decreases significantly when the re-order
size .Q C 1/ is large. The model is then extended to multiple inventory/return
systems with a single depot. This kind of model is of particular interest when the
re-manufacturer has several recycling locations. Since the locations can be easily
connected by an information network, excessive returns can be forwarded to nearby
locations or to the main depot directly. This will greatly cut down the disposal rate.
The handling of used machines in IBM (a big recovery network) serves as a good
example for the application of this model [99]. More examples and related models
can be found in [99, pp. 106–131].

Finally, a hybrid system consisting of a re-manufacturing process and a man-
ufacturing process is discussed. The hybrid system captures the re-manufacturing
process and the system can produce serviceable product when the return rate is
zero.

The remainder of this chapter is organized as follows. In Sect. 3.2, we discuss
some Markovian queueing models for manufacturing systems. In Sect. 3.3, a single-
item inventory model for handling returns is presented. In Sect. 3.4, the model
is extended to the case that lateral transshipment of returns is allowed among
the inventory systems. In Sect. 3.5, we discuss a hybrid re-manufacturing system.
Finally, concluding remarks are given in Sect. 3.6.
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3.2 Manufacturing Systems

In this section, we study some Markovian queueing models for manufacturing
systems. We first consider reliable machine manufacturing systems and then discuss
failure-prone machine manufacturing systems.

3.2.1 Reliable Machine Manufacturing Systems

We first consider a Markovian model of a one-machine manufacturing system. We
then study the case of two machines in tandem. In both cases, the machines are
reliable.

3.2.1.1 One-Machine Manufacturing System

In the one-machine manufacturing system, the production time for one unit of
product is exponentially distributed with a mean time of ��1. The inter-arrival time
of demand is also exponentially distributed with a mean time of ��1. The demand
is served in a first come first serve manner. In order to retain the customers, there
is no backlog limit in the system. However, there is an upper limit n.n � 0/ for
the inventory level. The machine keeps on producing until this inventory level is
reached and the production is stopped once this level is attained. We therefore
seek the optimal value of n, called the hedging point or the safety stock, which
minimizes the expected running cost. The running cost consists of a deterministic
inventory cost and a backlog cost. In fact, the optimal value of n is the best amount
of inventory to be kept in the system so as to hedge against the fluctuations in
demand. The notation is summarized as follows (Fig. 3.1):

(a) I , the unit inventory cost
(b) B , the unit backlog cost
(c) n � 0, the hedging point
(d) ��1, the mean production time for one unit of product
(e) ��1, the mean inter-arrival time of demand

μ

λ

n

μ

λ

n–1

μ

λ

1 0
μ

λ

Fig. 3.1 The Markov Chain (M/M/1 Queue) for the manufacturing system
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If the inventory level (negative inventory level means backlog) is used to
represent the state of the system, one may write down the Markov chain for the
system as follows. Here we assume that � > �, so that the steady-state probability
distribution of the above M/M/1 queue exists and has an analytic solution

q.i/ D .1 � p/pn�i ; i D n; n � 1; n � 2; � � �

where p D �=� and q.i/ is the steady-state probability that the inventory level is i .
Hence it is straightforward to write down the expected running cost of the system
(sum of the inventory cost and the backlog cost) when the hedging point is n as
follows:

E.n/ D I

 
nX

iD0

.n � i/.1 � p/pi

!
C B

 1X
iDnC1

.i � n/.1 � p/pi

!
:

The first term is the expected inventory cost and the second term is the expected
backlog cost. The following proposition gives the optimal hedging point h.

Proposition 3.1. The expected running cost E.n/ is minimized if the hedging point
n is chosen such that

pnC1 � I

I C B
� pn:

3.2.1.2 Two-Machine Manufacturing System

We study a two-stage manufacturing system [43]. The manufacturing system is
composed of two reliable machines (no break down) producing one type of product.
Every product has to go through the manufacturing process in both stages. Here it
is assumed that an infinite supply of raw material is available for the manufacturing
process at the first machine. Again the mean processing time for one unit of product
in the first and second machine are exponentially distributed with parameters ��1

1

and ��1
2 respectively. Two buffers are placed immediately after the machines.

Buffer B1 of size b1 is placed between the two machines to store the partially
finished products. Final products are then stored in Buffer B2 which has a maximum
size of b2. The demand is assumed to follow a Poisson process of mean rate �.
A finite backlog of finished product is allowed in the system. The maximum
allowable backlog of product is m. When the inventory level of the finished product
is �m, any arrival demand will be rejected. Hedging Point Production (HPP) policy
is employed as the inventory control in both buffers B1 and B2. For the first machine,
the hedging point is b1 and the inventory level is non-negative. For the second
machine, the hedging point is h; however, the inventory level of buffer B2 can
be negative, because we allow a maximum backlog of m. The machine-inventory
system is modeled as a Markov chain problem. It turns out that the process is an
irreducible continuous time Markov chain. We now give the generator matrix for
the process.
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Machine 1
μ1

B1
μ2

B2Machine 2
λ

Fig. 3.2 A two-machine
manufacturing system

We note that the inventory level of the first buffer cannot be negative or exceed the
buffer size b1. Thus the total number of inventory levels in the first buffer is b1 C 1.
For the second buffer, under the HPP policy, the maximum possible inventory level
is h.h � b2/ (Fig. 3.2).

If we let I1.t/ and I2.t/ be the inventory levels of the first and second buffer at
time t respectively then I1.t/ and I2.t/ are going to take integral values in Œ0; b1�

and Œ�m; h� respectively. Thus the joint inventory process f.I1.t/; I2.t//; t � 0g
can be shown to be a continuous time Markov chain process taking values in the
state-space

S D f.z1.t/; z2.t// W z1 D 0; : : : ; b1; z2 D �m; : : : ; h:g:

To obtain the steady-state probability distribution of the system, we order inventory
states lexicographically, according to I1 first and then I2. One can then obtain the
following generator matrix governing the steady-state probability distribution

A1 D

0
BBBBB@

� C �1In ˙ 0

��1In � C D C �1In ˙

: : :
: : :

: : :

��1In � C D C �1In ˙

0 ��1In � C D

1
CCCCCA ; (3.1)

where

� D

0
BBBB@

0 �� 0

�
: : :

: : : ��

0 �

1
CCCCA ; ˙ D

0
BBBB@

0 0

��2

: : :

: : :
: : :

0 ��2 0

1
CCCCA ; (3.2)

In is the n � n identity matrix and D is the n � n diagonal matrix

D D Diag.�2; : : : ; �2; 0/: (3.3)

If we can get the steady-state probability distribution p of the generator matrix A1,
then many useful quantities such as the throughput of the system
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0
@1 �

hX
j D�m

p.0; j /

1
A�2

and the mean number of products in buffers B1 and B2 (work-in-process)

b1X
iD1

0
@ hX

j D�m

p.i; j /

1
A i

and
hX

j D1

 
b1X

iD0

p.i; j /

!
j

can be obtained. We remark that the generator A1 is irreducible, has zero column
sum, positive diagonal entries and non-positive off-diagonal entries, so that A1 has
a one-dimensional null space with a right positive null vector. The steady-state
probability distribution p is then equal to the normalized form of the positive null
vector. Similar to the previous chapters, we consider the following equivalent linear
system

G1x � .A1 C e1eT
1 /x D e1; (3.4)

where e1 D .1; 0; : : : ; 0/T is the .b1 C 1/.m C h C 1/ unit vector. Similarly one
can show that the linear system (3.4) is non-singular and hence the steady-state
probability distribution can be obtained by normalizing the solution of (3.4). We
have the following lemma.

Lemma 3.2. The matrix G1 is non-singular.

However, the closed form solution of p does not exist in this case. Thus classical
iterative methods including Conjugate Gradient (CG) type methods can be applied
to solve the problem. We remark that the idea of the Markovian model can be
extended to the case of multiple machines in tandem. However, the computational
cost for solving the steady-state probability distribution will increase exponentially
with respect to the number of machines in tandem. A heuristic method based on
Markovian approximation has been proposed in [47] to obtain an approximate
solution.

3.2.1.3 Multiple Unreliable Machines Manufacturing System

Manufacturing systems of m multiple unreliable machines producing one type of
product have been studied in [37,46,49]. Again the arrival of demand is assumed to
be a Poisson process and the machines are unreliable; when a machine breaks down
it is subject to an exponential repairing process. The normal time (functioning time)
of a machine and the processing time of one unit of product are both exponentially
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distributed. Moreover there is an inventory cost for holding each unit of product
and a shortfall cost for each unit of backlog. In [37, 49], the production process of
the machines is then a Markov Modulated Poisson Process (MMPP). Each machine
has two states, either “normal operation” or “under repair”. Since there are m

machines, there are 2m states for the system of machines. The states of the machines
and the inventory level can then be modeled as an irreducible continuous time
Markov chain. For different values of the hedging point n, the average running cost
can be written in terms of the steady-state probability distribution of the Markov
chain. Therefore the optimal hedging point can be obtained by varying the value
of n. In [49], numerical algorithm based on circulant preconditioning discussed
in Chap. 2 has been designed to obtain the steady-state probability distribution
efficiently. An extension to the case of batch arrival of demands can be found in
[44].

3.3 An Inventory Model for Returns

In this section, a single-item inventory system is presented. The demands and
returns of the product are assumed to follow two independent Poisson processes
with mean rates � and � respectively. The maximum inventory capacity of the
system is Q. When the inventory level is Q, any arrived return will be disposed
of. A returned product is checked/repaired before being put into the serviceable
inventory. Here it is assumed that only a stationary proportion, let us say a � 100 %
of the returned product is repairable and a non-repairable return will be disposed of.
The checking/repairing time of a returned product is assumed to be negligible. The
notations for later discussions are listed below:

(a) ��1, the mean inter-arrival time of demands
(b) ��1, the mean inter-arrival time of returns
(c) a, the probability that a returned product is repairable
(d) Q, maximum inventory capacity
(e) I , unit inventory cost
(f) R, cost per replenishment order

An (r; Q) inventory control policy is employed as inventory control. Here, the lead
time of a replenishment is assumed to be negligible. For simplicity of discussion,
here we assume that r D 0. In a traditional (0; Q) inventory control policy, a
replenishment size of Q is placed whenever the inventory level is 0. Here, we
assume that there is no loss of demand in our model. A replenishment order of
size .Q C 1/ is placed when the inventory level is 0 and there is an arrived demand.
This will then clear the arrived demand and bring the inventory level up to Q, see
Fig. 3.3 (Taken from [72]). In fact, State ‘�1’ does not exist in the Markov chain,
see Fig. 3.4 (Taken from [72]) for instance.

The states of the Markov chain are ordered according to the inventory levels in
ascending order and give the following Markov chain.
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Fig. 3.3 The single-item inventory model
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Fig. 3.4 The Markov chain

The .Q C 1/ � .Q C 1/ system generator matrix is given as follows:

A2 D

0

1
:::
:::

Q

0
BBBBB@

� C a� �� 0

�a� � C a� ��
: : :

: : :
: : :

�a� � C a� ��

�� �a� �

1
CCCCCA : (3.5)

The steady-state probability distribution p of the system satisfies

A2p D 0 and 1T p D 1: (3.6)

By direct verification the following proposition can be obtained.

Proposition 3.3. The steady-state probability distribution p is given by

pi D K.1 � �iC1/; i D 0; 1; : : : ; Q (3.7)

where
� D a�

�

and

K D 1 � �

.1 C Q/.1 � �/ � �.1 � �QC1/
:

By using the result of the steady-state probability in Proposition 3.3, the following
corollary is obtained.
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Corollary 3.4. The expected inventory level is

QX
iD1

ipi D
QX

iD1

K.i � i�iC1/ D K

�
Q.Q C 1/

2
C Q�QC2

1 � �
� �2.1 � �Q/

.1 � �/2

�
;

the average rejection rate of returns is

�pQ D �K.1 � �QC1/

and the mean replenishment rate is

�p0�
�1

��1 C .a�/�1
D �K.1 � �/�

.1 C �/
:

Proposition 3.5. If � < 1 and Q is large then

K � .1 C Q/�1

and the approximated average running cost (inventory and replenishment cost) is

C.Q/ � QI

2
C �.1 � �/�R

.1 C �/.1 C Q/
:

The optimal replenishment size is

Q� C 1 �
s

2�.1 � �/�R

.1 C �/I
D
s

2a�R

I

�
2�

� C a�
� 1

�
: (3.8)

One can observe that the optimal replenishment size Q� either � or R increases or
I decreases. We end this section with the following remarks:

1. The model can be extended to the multi-item case when there is no limit in
the inventory capacity. The trick is to use independent queueing networks to
model individual products. Suppose there are s different products and their
demand rates, return rates, unit inventory costs, cost per replenishment order and
the probability of getting a repairable return are given by �i ; �i ; Ii ; Ri and ai

respectively. Then the optimal replenishment size of each product i will be given
by (3.8)

Q�
i C 1 �

s
2ai �i Ri

Ii

�
2�i

�i C ai �i

� 1

�
for i D 1; 2; : : : ; s:

2. To include the inventory capacity in the system, one can have approximations for
the steady-state probability distributions for the inventory levels of the returns
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and the serviceable product by assuming that capacity for storing returns is large.
Then the inventory levels of the returns forms an M/M/1 queue and the output
process of an M/M/1 queue in steady-state is again a Poisson process with the
same mean rate, see the lemma below.

Lemma 3.6. The output process of an M/M/1 queue in steady-state is again a
Poisson process with the same mean as the input rate.

Proof. We first note that if X and Y are two independent exponential random
variables with means ��1 and ��1 respectively. Then the probability density
function for the random variable Z D X C Y is given by

f .z/ D ��

� � �
e��z � ��

� � �
e��z:

Let the arrival rate of the M/M/1 queue be � and the service rate of the server
be �. There are two cases to be considered: the server is idle (the steady-state
probability is .1 � �=�/ (see Chap. 2) and the server is not idle (the steady-state
probability is �=�.)

For the former case, the departure time follows f .z/ (a waiting time for an
arrival plus a service time). For the latter case, the departure time follows �e��z.
Thus the probability density function g.z/ for the departure time is given by

.1 � �

�
/f .z/ C �

�
.�e��z/ D ��

� � �
e��z � ��

� � �
e��z

� �2

� � �
e��z C �2

� � �
e��z C �e��z:

Thus

g.z/ D �e��z

is the exponential distribution. This implies that the departure process is a
Poisson process. From Proposition 1.37 it is evident that the departure process is
a Poisson process with mean � if and only if the inter-departure time follows the
exponential distribution with mean ��1.

3. One can also take into account the lead time of a replenishment and the check-
ing/repairing time of a return. In this case, it becomes a tandem queueing network
and the analytic solution for the system steady-state probability distribution is not
available in general. A numerical method based on a preconditioned conjugate
gradient method has been applied to solve this type of tandem queueing system,
see for instance [36, 37, 41, 43, 46, 49].



3.4 The Lateral Transshipment Model 87

3.4 The Lateral Transshipment Model

In this section, an inventory model which consists of two independent inventory
systems as described in the previous section is considered. For simplicity of
discussion, both of them are assumed to be identical. A special feature of this model
is that lateral transshipment of returns between the inventory systems is allowed.
Lateral transshipment of demands has been studied in a number of papers [9,42,72].
Substantial savings can be realized by the sharing of inventory via the lateral
transshipment of demands [180]. Here, this concept is extended to the handling of
returns. Recall that an arrived return will be disposed of if the inventory level is Q in
the previous model. In the new model, lateral transshipment of returns between the
inventory systems is allowed whenever one of them is full (whenever the inventory
level is Q) and the other is not yet full (the inventory level is less than Q). Denote
x.t/ and y.t/ to be the inventory levels of the serviceable product in the first and
the second inventory system at time t respectively. Then, the random variables x.t/

and y.t/ take integral values in Œ0; Q�. Thus, the joint inventory process

f.x.t/; y.t//; t � 0g
is again a continuous time Markov chain taking values in the state space

S D f.x; y/ W x D 0; � � � ; Q; y D 0; � � � ; Q:g:
The inventory states are ordered lexicographically, according to x first, and then
y. The generator matrix of the joint inventory system can be written by using the
Kronecker tensor product as follows:

A3 D IQC1 ˝ A2 C A2 ˝ IQC1 C � ˝ � C � ˝ � (3.9)

where

� D

0
BBBBB@

1 0

�1 1

: : :
: : :

�1 1

0 �1 0

1
CCCCCA (3.10)

and

� D

0
BBBBB@

0 0

0
: : :

0

0 a�

1
CCCCCA (3.11)
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and IQC1 is the .Q C 1/ � .Q C 1/ identity matrix. The steady-state probability
vector q satisfies

A3q D 0 and 1T q D 1: (3.12)

We note that the generator A3 is irreducible and it has a one-dimensional null-
space with a right positive null vector, see [108, 203]. The steady-state probability
vector q is the normalized form of the positive null vector of A3. Let qij be the
steady-state probability that the inventory level of the serviceable product is i in
the first inventory system and j in the second inventory system. Many important
quantities of the system performance can be written in terms of qij . For example,
the return rejection probability is qQQ. Unfortunately, a closed form solution of q
is not generally available. By making use of the block structure of the generator
matrix B , classical iterative methods such as the Block Gauss-Seidel (BGS) method
can be applied to solve the steady-state probability distribution [43,108,203]. In the
following, instead of solving the steady-state probability distribution numerically, a
closed form approximation for the probability distribution q is derived under some
assumptions.

Proposition 3.7. Let p be the steady-state probability distribution for the generator
matrix A in Proposition 3.3. If � < 1 then

jjA3.p ˝ p/jj1 � 4a�

.Q C 1/2.1 � �/2
:

The probability vector q D p˝p is an approximation of the steady-state probability
vector when Q is large.

Proof. The probability vector p is just the solution of (3.6). By direct verification,
we have 1T .p ˝ p/ D 1 and

.I ˝ A2 C A2 ˝ I /.p ˝ p/ D .p ˝ A2p C A2p ˝ p/ D .p ˝ 0 C 0 ˝ p/ D 0:

Therefore from (3.9)

A3.p ˝ p/ D .� ˝ �/.p ˝ p/ C .� ˝ �/.p ˝ p/ D .�p ˝ �p/ C .�p ˝ �p/:

One could observe that

jj�jjM1
D 2; jj�jjM1

D a� and jjpjj1 � K:

Therefore,

jjA3.p ˝ p/jj1 � 2jj�jjM1
jjpjj1jj�jjM1

jjpjj1
D 4a�K2

� 4a�

.Q C 1/2.1 � �/2
:

(3.13)
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if we adopt q D p˝p to be the system steady-state probability distribution, then the
approximated optimal replenishment size of each inventory system is the same as in
Proposition 3.5. By allowing transshipment of returns, the rejection rate of returns
of the two inventory systems will be decreased from

2�K.1 � �QC1/ � 2�

Q C 1

to

�K2.1 � �QC1/2 � �

.Q C 1/2
:

Note that the approximation is valid only if Q is large, and the error is of order
O.Q�2/.

3.5 The Hybrid Re-manufacturing System

In this section, we propose a hybrid system. This is a system that consists of
a re-manufacturing process and a manufacturing process. The proposed hybrid
system captures the re-manufacturing process and can produce serviceable product
when the return rate is zero. The demands and returns are assumed to follow
independent Poisson processes. The serviceable product inventory level and the
outside procurements are controlled by a popular .r; Q/ continuous review policy.
The inventory level of the serviceable product is modelled as an irreducible
continuous time Markov chain and the generator matrix is constructed. It is found
that the generator matrix has a near-Toeplitz structure.

A direct method is then proposed for solving steady-state probabilities. The direct
method is based on Fast Fourier Transforms (FFTs) and the Sherman-Morrison-
Woodbury Formula (Proposition 1.38). The complexity of the method is then given
and some special cases are also discussed.

3.5.1 The Hybrid System

In this subsection, an inventory model which captures the re-manufacturing process
is proposed. Disposal of returned product is allowed when the return capacity is
full. In the model, there are two types of inventory to be managed, the serviceable
product and the returned product. The demands and the returns are assumed
to follow independent Poisson processes with mean rates � and � respectively.
The re-manufacturing process is then modelled by an M/M/1/N queue: a returned
product acts as a customer and a reliable re-manufacturing machine (with processing
rate �) acts as the server in the queue. The re-manufacturing process is stopped
whenever there is no space for placing the serviceable product (i.e. when the
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Fig. 3.5 The hybrid system

serviceable product inventory level is Q). Here we also assume that when the return
level is zero, the system can produce at a rate of 	 (exponentially distributed).

The serviceable product inventory level and the outside procurements are
controlled by a popular .r; Q/ continuous review policy. This means that when the
inventory level drops to r , an outside procurement order of size .Q � r/ is placed
and arrives immediately. For simplicity of discussion, the procurement level r is
assumed to be �1. This means that whenever there is no serviceable product in the
system and there is an arrival of demand then a procurement order of size .QC1/ is
placed and arrives immediately. Therefore the procurement can clear the backlogged
demand and bring the serviceable product inventory to Q. We also assume that it
is always possible to purchase the required procurement. The inventory levels of
both the returns and the serviceable product are modelled as Markovian processes.
The capacity N for the returns and the capacity Q for serviceable product Q are
assumed to be large. Figure 3.5 (Taken from [65, 67]) gives the framework of the
re-manufacturing system.

3.5.2 The Generator Matrix of the System

In this subsection, the generator matrix for the re-manufacturing system is con-
structed. Let x.t/ and y.t/ be the inventory levels of the returns and the inventory
levels of the serviceable products at time t respectively. Then x.t/ and y.t/ take
integral values in Œ0; N � and Œ0; Q� respectively. The joint inventory process

f.x.t/; y.t//; t � 0g

is a continuous time Markov chain taking values in the state space

S D f.x; y/ W x D 0; � � � ; N; y D 0; � � � ; Qg:

By ordering the joint inventory states lexicographically, according to x first and then
y, the generator matrix for the joint inventory system can be written as follows:
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A4 D

0
BBBBB@

B0 �U 0

��IQC1 B �U

: : :
: : :

: : :

��IQC1 B �U

0 ��IQC1 BN

1
CCCCCA ; (3.14)

where

U D

0
BBBBBB@

0 0

� 0
: : :

: : :

: : :
: : :

0 � 0

1
CCCCCCA

; (3.15)

B0 D �IQC1 C

0
BBBBBB@

	 C � �� 0

�	 	 C � ��

�	
: : : ��

:: : 	 C � ��

�� �	 �

1
CCCCCCA

; (3.16)

B D �IQC1 C

0
BBBBB@

� C � �� 0

� C � ��
: : : ��

� C � ��

�� �

1
CCCCCA ; (3.17)

BN D B � �IQC1:

Here, IQC1 is the .Q C 1/ � .Q C 1/ identity matrix . The steady-state probability
distribution p is required if one wants to obtain the performance of the system. Note
that the generator A4 is irreducible, and from the Perron and Frobenius theory [108]
it is known that it has a 1-dimensional null-space with a right positive null vector.
Hence, as mentioned in Sect. 3.2.1, one can consider an equivalent linear system
instead.

G4x � .A4 C ffT/x D f; where f D .0; : : : ; 0; 1/T : (3.18)

Proposition 3.8. The matrix G4 is nonsingular.
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However, the closed form solution of p is not generally available. Iterative
methods, such as the PCG methods, are efficient in solving the probability vector
p when one of the parameters N and Q are fixed, see for instance [41, 43, 46, 49].
However, when both Q and N are getting larger, the fast convergence rate of the
PCG method cannot be guaranteed, especially when the smallest singular value
tends to zero very fast [42, 47]. Other approximation methods for solving the
problem can be found in [43]. In the following subsection, a direct method is
proposed for solving (3.18).

3.5.3 The Direct Method

We consider taking circulant approximations to the matrix blocks in A4. We define
the following circulant matrices:

c.G/ D

0
BBBBB@

c. NB0/ �c.U /

��IQC1 c.B/ �c.U /
: : :

: : :
: : :

��IQC1 c.B/ �c.U /

��IQC1 c.BN /

1
CCCCCA ; (3.19)

where

c.U / D

0
BBBBBB@

0 �

� 0
: : :

: : :

: : :
: : :

0 � 0

1
CCCCCCA

; (3.20)

c. NB0/ D �IQC1 C

0
BBBBBB@

	 C � �� �	

�	 	 C � ��
: : :

: : : ��
: : : 	 C � ��

�� �	 	 C �

1
CCCCCCA

; (3.21)
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c.B/ D �IQC1 C

0
BBBBB@

� C � �� 0

� C � ��

: : : ��

� C � ��

�� � C �

1
CCCCCA ; (3.22)

c.BN / D c.B/ � �IQC1: (3.23)

We observe that

c.U / � U D �eT
1 eQC1; c. NB0/ � NB0 D �	eT

1 eQC1;

c.B/ � B D �eT
QC1eQC1; and c.BN / � BN D �eT

QC1eQC1;

where
e1 D .1; 0; : : : ; 0/ and eQC1 D .0; : : : ; 0; 1/

are 1-by-.Q C 1/ unit vectors. Here we remark that

NB0 D B0 C 	eT
QC1eQC1:

Therefore the matrix G is a sum of a circulant block matrix and another block
matrix, with small rank except the first and the last diagonal blocks.

In view of the above formulation, the problem is equivalent to the solution of the
linear system having the form A4z D b where A is a block-Toeplitz matrix given by

A4 D

0
BBB@

A11 : : : : : : A1m

A21 : : : : : : A2m

:::
:::

:::
:::

Am1 : : : : : : Amm

1
CCCA : (3.24)

Here
Aij D Ci�j C uT

i�j v; (3.25)

where Ci�j is an n � n circulant matrix, and ui�j and v are k � n matrices and k is
much smaller than both m and n, so that Aij is an n � n near-circulant matrix, i.e.,
with finite rank being less than or equal to k. We remark that the class of matrices
A4 is closely related to the generator matrices of many Markovian models,such as
queueing systems [43, 141, 142], manufacturing systems [41, 43, 46, 49, 56], and
re-manufacturing systems [72, 99, 137].

Next, we note that an n � n circulant matrix can be diagonalized by using the
discrete Fourier matrix Fn. Moreover, its eigenvalues can be obtained in O.n log n/
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operations by using the FFT, see for instance Davis [79]. In view of this advantage,
consider

.Im ˝ F �
n /A4.Im ˝ Fn/ D

0
BBB@

D11 : : : D1m

D21 : : : D2m

:::
:::

:::

Dm1 : : : Dmm

1
CCCAC

0
BBB@

E11 : : : E1m

E21 : : : E2m

:::
:::

:::

Em1 : : : Emm

1
CCCA

� D C E:

(3.26)

Here Dij is a diagonal matrix containing the eigenvalues of Ci�j and

Eij D .F �
n uT

i�j /.vFn/ � .xT
i�j /.y/: (3.27)

We note that

E D

0
BBB@

xT
0 y : : : : : : xT

1�my
xT

1 y : : : : : : xT
2�my

:::
:::

:::
:::

xT
m�1y : : : : : : xT

0 y

1
CCCA

D

0
BBB@

xT
0 : : : xT

1�m

xT
1 : : : xT

2�m
:::

:::
:::

xT
m�1 : : : xT

0

1
CCCA
0
BBB@

y 0 : : : 0 0

0 y 0 : : : 0
:::

:::
: : :

: : :
:::

0 : : : : : : 0 y

1
CCCA

� XY:

(3.28)

Moreover, we also note that D is still a block-Toeplitz matrix and there exists a
permutation matrix P such that

PDP T D diag.T1; T2; : : : ; Tn/ (3.29)

where Ti is an m � m Toeplitz matrix. In fact direct methods for solving Toeplitz
systems that are based on the recursion formula are in constant use, see for
instance Trench [196]. For an m � m Toeplitz matrix Ti , these methods require
O.m2/ operations. Faster algorithms that require O.m log2 m/ operations have been
developed for symmetric positive definite Toeplitz matrices, see Ammar and Gragg
[4]. The stability properties of these direct methods are discussed in Bunch [32].
Hence by using direct methods, the linear system Dz D b can be solved in O.nm2/

operations. The matrix X is an mn � mk matrix and the matrix Y is an mk � mn

matrix.
To solve the linear system, we apply the Sherman-Morrison-Woodbury Formula

(Proposition 1.38). The solution of A4z D b can be written as follows:

z D D�1b � D�1X.Imk C YD�1X/�1YD�1b: (3.30)
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3.5.4 The Computational Cost

In this section, the computational cost of the proposed method is discussed. The
main computational cost of (3.30) consists of

(C0) FFT operations in (3.27)
(C1) Solving r D D�1b
(C2) Solving W D D�1X

(C3) Matrix multiplication of Y W

(C4) Matrix multiplication of Y r
(C5) Solving .Imk C YD�1X/�1r

The operational cost for (C0) is of O.mn log n/. The operational cost for (C1) is at
most O.nm2/ operations by using direct solvers for Toeplitz systems. The cost for
(C2) is at most O.knm3/ operations in view of (C1). The operational cost for (C3)
is of O.k2nm2/, because of the sparse structure of Y . The cost for (C4) is O.knm/

operations. Finally, the cost of (C5) is O..km/3/ operations. Hence the overall cost
will be .km3.n C k2// operations.

In fact, the nice structure of D allows us to solve Dr D b in a parallel computer.
Moreover DW D X consists of n separate linear systems (a multiple right hand side
problem). Again, this can also be solved in a parallel computer. Therefore the cost
of (C1) and (C2) can be reduced by using parallel algorithms. Assuming that k is
small, the costs of (C1) and (C2) can be reduced to O.m2/ and .O.m3// operations
respectively when n parallel processors are used.

3.5.5 Special Case Analysis

In this section, k is assumed to be small and some special cases of solving (3.30)
are discussed.

Case (i): When all the ui�j in (3.25) are equal, we see that all the columns of X are
equal and the cost (C2) will be at most O.nm2/ operations. Hence the overall cost
will be O.m2.m C n/ C mn log n/ operations.

Case (ii): If the matrix A4 is a block-circulant matrix, then all the matrices Ti

in (3.29) are circulant matrices. The cost of (C1) and (C2) can be reduced to
O.nm log m/ and O.nm2 log m/ operations respectively. Hence the overall cost will
be O.m3 C nm.m log m C log n// operations.

Case (iii): If the matrix A4 is a block tri-diagonal matrix, then all the matrices Ti

in (3.29) are tri-diagonal matrices. The cost of (C0) will be O.n log n/. The cost
of (C1) and (C2) can be reduced to O.nm/ and O.nm2/ operations respectively.
Hence the overall cost will be O.m3 C n.m2 C log n// operations.
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We end this section with the following proposition. The proposition gives the
complexity for solving the steady-state probability distribution p for the generator
matrix (3.14) when Q � N .

Proposition 3.9. The steady-state probability distribution p can be obtained in
O.N 3/ operations when Q � N .

Proof. In the view of case (iii) in this section, the complexity of our method for
solving (3.18) is O.N 3/ when Q � N , while the complexity of solving (3.18) by
LU decomposition is O.N 4/.

3.6 Summary

In this chapter, we present the concept of re-manufacturing systems. Several
stochastic models for re-manufacturing systems are discussed. The steady-state
probability distributions of the models are either obtained in closed form or can
be solved by fast numerical algorithms. The models here concern only single-items,
and it will be interesting to extend the results to multi-item cases.

3.7 Exercises

1. Prove Proposition 3.1.
2. Prove Lemma 3.2.
3. Develop a computer program to solve (3.4) by Preconditioned Conjugate Gradi-

ent Method with a preconditioner, by taking the circulant approximation of A1,
i.e.,

c.�/ D

0
BBBB@

� �� 0

�
: : :

: : : ��

�� �

1
CCCCA ; c.˙/ D

0
BBBB@

0 ��2

��2

: : :

: : :
: : :

0 ��2 0

1
CCCCA

and
c.D/ D Diag.�2; : : : ; �2; �2/:

4. Prove Proposition 3.3.
5. Prove Proposition 3.5.



Chapter 4
A Hidden Markov Model for Customer
Classification

4.1 Introduction

In this chapter, a new simple Hidden Markov Model (HMM) is proposed. The
process of the proposed HMM can be explained by the following example.

4.1.1 A Simple Example

We consider the process of choosing a die of four faces (a tetrahedron) and recording
the number of dots obtained by throwing the die [175]. Suppose we have two dice A
and B, each of them has four faces (1; 2; 3 and 4). Moreover, Die A is fair and Die
B is biased. The probability distributions of dots obtained by throwing dice A and
B are given in Table 4.1.

Each time a die is to be chosen, we assume that with probability ˛, Die A is
chosen, and with probability .1 � ˛/, Die B is chosen. This process is hidden as
we don’t know which die is chosen. The value of ˛ is to be determined. The chosen
die is then thrown and the number of dots (this is observable) obtained is recorded.
The following is a possible realization of the whole process:

A ! 1 ! A ! 2 ! B ! 3 ! A ! 4 ! B ! 1 ! B ! 2 ! � � � ! :

We note that the whole process of the HMM can be modeled by a classical
Markov chain model with the transition probability matrix being given by

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 4,
© Springer Science+Business Media New York 2013
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Table 4.1 Probability
distributions of Die A and
Die B

Die 1 2 3 4

A 1/4 1/4 1/4 1/4
B 1/6 1/6 1/3 1/3

A

B

1

2

3

4

0
BBBBBBB@

0 0 ˛ ˛ ˛ ˛

0 0 1 � ˛ 1 � ˛ 1 � ˛ 1 � ˛

1=4 1=6 0 0 0 0

1=4 1=6 0 0 0 0

1=4 1=3 0 0 0 0

1=4 1=3 0 0 0 0

1
CCCCCCCA

:

The rest of the chapter is organized as follows. In Sect. 4.2, the estimation method
will be demonstrated by the example giving in Sect. 4.1. In Sect. 4.3, the proposed
method is extended to a general case. In Sect. 4.4, some analytic results of a special
case are presented. In Sect. 4.5, an application in customer classification, with
practical data taken from a computer service company is presented and analyzed.
Finally, a brief summary is given in Sect. 4.6 to conclude this chapter.

4.2 Parameter Estimation

In this section, we introduce a simple estimation method of ˛ (Ching and Ng [58]).
In order to define the HMM, one has to estimate ˛ from an observed data sequence.
If we suppose that the distribution of dots (in steady-state) is given by

�
1

6
;

1

4
;

1

4
;

1

3

�T

then the question is: how to estimate ˛? We note that

P 2 D

0
BBBBBBB@

˛ ˛ 0 0 0 0

1 � ˛ 1 � ˛ 0 0 0 0

0 0 1
6

C ˛
12

1
6

C ˛
12

1
6

C ˛
12

1
6

C ˛
12

0 0 1
6

C ˛
12

1
6

C ˛
12

1
6

C ˛
12

1
6

C ˛
12

0 0 1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

0 0 1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
CCCCCCCA

�
�

R 0

0 QP
�

:

If we ignore the hidden states (the first diagonal block R), then the observable
states follow the transition probability matrix given by the following matrix
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QP D

0
BB@
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1
6

C ˛
12

1
6

C ˛
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1
6

C ˛
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1
6
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1
6

C ˛
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1
6

C ˛
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1
6

C ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
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D

0
BB@

1
6

C ˛
12

1
6

C ˛
12

1
3

� ˛
12

1
3

� ˛
12

1
CCA .1; 1; 1; 1/ :

Thus it is easy to see that the stationary probability distribution of QP is given by

p D .
1

6
C ˛

12
;

1

6
C ˛

12
;

1

3
� ˛

12
;

1

3
� ˛

12
/T :

This probability distribution p should be consistent with the observed distribution q
of the observed sequence, i.e.

p D .
1

6
C ˛

12
;

1

6
C ˛

12
;

1

3
� ˛

12
;

1

3
� ˛

12
/T � q D .

1

6
;

1

4
;

1

4
;

1

3
/T :

This suggests a natural method to estimate ˛. The unknown transition probability ˛

can then be obtained by solving the minimization problem:

min
0�˛�1

jjp � qjj:

If we choose jj:jj to be the jj:jj2, then one may consider the following minimization
problem:

min
0�˛�1

jjp � qjj22 D min
0�˛�1

4X
iD1

.pi � qi /
2: (4.1)

In this case, it is a standard constrained least squares problem, and can be solved
easily. For more detailed discussion on statistical inference of a HMM, we refer
readers to the book by MacDonald and Zucchini [155].

4.3 An Extension of the Method

In this section, the parameter estimation method is extended to a general HMM with
m hidden states and n observable states. In general, the number of hidden states
can be more than two. Suppose the number of hidden states is m and the stationary
distribution of the hidden states is given by

˛ D .˛1; ˛2; : : : ; ˛m/:
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Suppose the number of observable states is n, and when the hidden state is i.i D
1; 2; : : : ; m/, the stationary distribution of the observable states is

.pi1; pi2; : : : ; pin/:

We assume that m; n and pij are known. Given an observed sequence of the
observable states, one can calculate the occurrences of each state in the sequence
and hence the observed distribution q. Using the same trick discussed in Sect. 4.2,
if we ignore the hidden states, the observable states follow the one-step transition
probability matrix:

QP2 D

0
BBB@

p11 p21 � � � pm1

p12 p22 � � � pm2

:::
:::

:::
:::

p1n p2n � � � pmn

1
CCCA

0
BBB@

˛1 ˛1 � � � ˛1

˛2 ˛2 � � � ˛2

:::
:::

:::
:::

˛m ˛m � � � ˛m

1
CCCA D p.1; 1; : : : ; 1/ (4.2)

where

p D .

mX
kD1

˛kpk1;

mX
kD1

˛kpk2; : : : ;

mX
kD1

˛kpkn/T :

It is easy to check that

QP2p D p and
nX

kD1

pk D 1:

Thus the following proposition can easily be proved.

Proposition 4.1. The vector p is the stationary distribution of QP2.

Therefore the transition probabilities of the hidden states

˛ D .˛1; ˛2; : : : ; ˛m/

can be obtained by solving

min
˛

jjp � qjj22
subject to

mX
kD1

˛k D 1 and ˛k � 0:
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4.4 A Special Case Analysis

In this section, a detailed discussion is given for the model having two hidden states.
In this case one may re-write (4.2) as follows:

NP D

0
BBB@

p11 p21

p12 p22

:::
:::

p1n p2n

1
CCCA

�
˛1 ˛1 � � � ˛1

1 � ˛1 1 � ˛1 � � � 1 � ˛1

�
D p.1; 1; : : : ; 1/ (4.3)

where

p D .˛p11 C .1 � ˛/p21; ˛p12 C .1 � ˛/p22; : : : ; ˛p1n C .1 � ˛/p2n/T :

It is easy to check that

NP p D p and
nX

iD1

pi D 1

and therefore p is the steady-state probability distribution.
Suppose the observed distribution q of the observable states is given, then ˛ can

be estimated by the following minimization problem:

min
˛

jjp � qjj22
subject to 0 � ˛ � 1 or equivalently

min
0�˛�1

nX
kD1

f˛p1k C .1 � ˛/p2k � qkg2 :

The following proposition can be obtained by direct verification.

Proposition 4.2. Let

� D

nX
j D1

.qj � p2j /.p1j � p2j /

nX
j D1

.p1j � p2j /2

;

then the optimal value of ˛ is given as follows:

˛ D
8<
:

0 if � � 0I
� if 0 < � < 1I
1 if � � 1:
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H1 H2Hβ

p1 p2

O

p1 – p2

q – p2

q
q

q

θ(

Fig. 4.1 The graphical interpretation of Proposition 4.2

One may interpret the result in Proposition 4.2 as follow:

� D < .q � p2/; .p1 � p2/ >

< .p1 � p2/; .p1 � p2/ >
D jjq � p2jj2 cos.�/

jjp1 � p2jj2 : (4.4)

Here < :; : > is the standard inner product on the vector space Rn,

p1 D .p11; p12; : : : ; p1n/T

and

p2 D .p21; p22; : : : ; p2n/T :

Moreover, jj:jj2 is the L2-norm on Rn and � is the angle between the vectors

.q � p2/ and .p1 � p2/:

Two hyperplanes H1 and H2 are defined in Rn. Both hyperplanes are perpendicular
to the vector .p1 � p2/ and Hi contains the point pi (distribution) for i D 1; 2, see
Fig. 4.1 (Taken from [63]). From (4.4), Proposition 4.2 and Fig. 4.1, any point q0 on
the left of the hyperplane H1 has the following property:

jjq � p2jj2 cos.�/ � jjp1 � p2jj2:
Hence for such q0, the optimal ˛ is 1. For a point q00 on the right of the hyperplane
H2, cos.�/ � 0 and hence the optimal ˛ is zero. Lastly, for a point q in between the
two hyperplanes, the optimal ˛ lies between 0 and 1 and the optimal value is given
by � in (4.4). This special case motivates us to apply the HMM in the classification
of customers.
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4.5 Applying HMM to the Classification of Customers

In this section, the HMM discussed in Sect. 4.4 is applied to the classification of
the customers of a computer service company. We remark that there are a number
of classification methods such as machine learning [16, 143, 179] and Bayesian
learning, interested readers can consult the book by Young and Calvert [212]. In
this problem, HMM is an efficient and effective classification method but we make
no claim that HMM is the best one.

A computer service company offers four types of long distance call services I,
II, III and IV (four different periods of a day). From the customer database, the
information of the expenditure distribution of 71 randomly chosen customers is
obtained. A longitudinal study was then carried out for half a year to investigate the
customers. Their behavior and responses were captured and monitored during the
period of investigation. For simplicity of discussion, the customers are classified into
two groups. Among them 22 customers are known to be loyal customers (Group A)
and the other 49 customers are not loyal customers (Group B). This classification
is useful to marketing managers when they plan any promotions. The customers
in Group A will be given promotions on new services and products. While the
customers in Group B will be offered discounts on the current services to prevent
them from switching to the competitor companies.

Two-thirds of the data are used to build the HMM and the remaining data are used
to validate the model. Therefore, 16 candidates are randomly taken (these customers
are labeled as the first 16 customers in Table 4.2) from Group A and 37 candidates
from group B . The remaining 6 candidates (the first 6 customers in Table 4.4) from
Group A and 12 candidates from Group B are used for validating the constructed
HMM. A HMM having four observable states (I, II, III and IV) and two hidden
states (Group A and Group B) is then built.

From the information of the customers in Group A and Group B in Table 4.2, the
average expenditure distributions for both groups are computed in Table 4.3. This
means that a customer in Group A (Group B) is characterized by the expenditure
distribution in the first (second) row of Table 4.3.

An interesting problem is the following: Given the expenditure distribution of
a customer, how does one classify the customer correctly (Group A or Group B)
based on the information in Table 4.4? To tackle this problem, one can apply the
method discussed in the previous section to compute the transition probability ˛ in
the hidden states. This value of ˛ can be used to classify a customer. If ˛ is close
to 1 then the customer is likely to be a loyal customer. If ˛ is close to 0 then the
customer is likely to be an unloyal customer.

The values of ˛ for all the 53 customers are listed in Table 4.2. It is interesting
to note that the values of ˛ of all the first 16 customers (Group A) lie in the interval
Œ0:83; 1:00�. While the values of ˛ of all the other customers (Group B) lie in the
interval Œ0:00; 0:69�. Based on the values of ˛ obtained, the two groups of customers
can be clearly separated by setting the cutoff value ˇ to be 0:75. A possible decision
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Table 4.2 Two-third of the data are used to build the HMM

Customer I II III IV ˛ Customer I II III IV ˛

1 1.00 0.00 0.00 0.00 1.00 2 1.00 0.00 0.00 0.00 1.00
3 0.99 0.01 0.00 0.00 1.00 4 0.97 0.03 0.00 0.00 1.00
5 0.87 0.06 0.04 0.03 0.98 6 0.85 0.15 0.00 0.00 0.92
7 0.79 0.18 0.02 0.01 0.86 8 0.77 0.00 0.23 0.00 0.91
9 0.96 0.01 0.00 0.03 1.00 10 0.95 0.00 0.02 0.03 1.00
11 0.92 0.08 0.00 0.00 1.00 12 0.91 0.09 0.00 0.00 1.00
13 0.83 0.00 0.17 0.00 0.97 14 0.82 0.18 0.00 0.00 0.88
15 0.76 0.04 0.00 0.20 0.87 16 0.70 0.00 0.00 0.30 0.83

17 0.62 0.15 0.15 0.08 0.69 18 0.57 0.14 0.00 0.29 0.62
19 0.56 0.00 0.39 0.05 0.68 20 0.55 0.36 0.01 0.08 0.52
21 0.47 0.52 0.00 0.01 0.63 22 0.46 0.54 0.00 0.00 0.36
23 0.25 0.75 0.00 0.00 0.04 24 0.22 0.78 0.00 0.00 0.00
25 0.21 0.01 0.78 0.00 0.32 26 0.21 0.63 0.00 0.16 0.03
27 0.18 0.11 0.11 0.60 0.22 28 0.18 0.72 0.00 0.10 0.00
29 0.15 0.15 0.44 0.26 0.18 30 0.07 0.93 0.00 0.00 0.00
31 0.04 0.55 0.20 0.21 0.00 32 0.03 0.97 0.00 0.00 0.00
33 0.00 0.00 1.00 0.00 0.10 34 0.00 1.00 0.00 0.00 0.00
35 0.00 0.00 0.92 0.08 0.10 36 0.00 0.94 0.00 0.06 0.00
37 0.03 0.01 0.96 0.00 0.13 38 0.02 0.29 0.00 0.69 0.00
39 0.01 0.97 0.00 0.02 0.00 40 0.01 0.29 0.02 0.68 0.00
41 0.00 0.24 0.00 0.76 0.00 42 0.00 0.93 0.00 0.07 0.00
43 0.00 1.00 0.00 0.00 0.00 44 0.00 1.00 0.00 0.00 0.00
45 0.00 0.98 0.02 0.00 0.00 46 0.00 0.00 0.00 1.00 0.06
47 0.00 1.00 0.00 0.00 0.00 48 0.00 0.96 0.00 0.04 0.00
49 0.00 0.91 0.00 0.09 0.00 50 0.00 0.76 0.03 0.21 0.00
51 0.00 0.00 0.32 0.68 0.07 52 0.00 0.13 0.02 0.85 0.01
53 0.00 0.82 0.15 0.03 0.00

Table 4.3 The average
expenditures of Group A
and Group B

Group I II III IV

A 0.8806 0.0514 0.0303 0.0377
B 0.1311 0.5277 0.1497 0.1915

rule can therefore be defined as follows: Classify a customer to Group A if ˛ � ˇ,
otherwise classify the customer to Group B . Referring to Fig. 4.1, it is clear that the
customers are separated by the hyperplane Hˇ . The hyperplane Hˇ is parallel to the
two hyperplanes H1 and H2 such that it has a perpendicular distance of ˇ from H2.

The decision rule is applied to the remaining 22 captured customers. Among
them, 6 customers (the first six customers in Table 4.4) belong to Group A and 12

customers belong to Group B . Their ˛ values are computed and listed in Table 4.4.
It is clear that if the value of ˇ is set to be 0:75, all the customers will be classified
correctly.
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Table 4.4 The remaining one-third of the data for validation of the HMM

Customer I II III IV ˛ Customer I II III IV ˛

1’ 0.98 0.00 0.02 0.00 1.00 2’ 0.88 0.01 0.01 0.10 1.00
3’ 0.74 0.26 0.00 0.00 0.76 4’ 0.99 0.01 0.00 0.00 1.00
5’ 0.99 0.01 0.00 0.00 1.00 6’ 0.89 0.10 0.01 0.00 1.00

7’ 0.00 0.00 1.00 0.00 0.10 8’ 0.04 0.11 0.68 0.17 0.08
9’ 0.00 0.02 0.98 0.00 0.09 10’ 0.18 0.01 0.81 0.00 0.28
11’ 0.32 0.05 0.61 0.02 0.41 12’ 0.00 0.00 0.97 0.03 0.10
13’ 0.12 0.14 0.72 0.02 0.16 14’ 0.00 0.13 0.66 0.21 0.03
15’ 0.00 0.00 0.98 0.02 0.10 16’ 0.39 0.00 0.58 0.03 0.50
17’ 0.27 0.00 0.73 0.00 0.38 18’ 0.00 0.80 0.07 0.13 0.00

Table 4.5 Probability
distributions of dice A and
dice B

Dice 1 2 3 4 5 6

A 1/6 1/6 1/6 1/6 1/6 1/6
B 1/12 1/12 1/4 1/4 1/4 1/12

Table 4.6 Observed
distributions of dots

Dice 1 2 3 4 5 6

A 1/8 1/8 1/4 1/4 1/8 1/8

4.6 Summary

In this chapter, we propose a simple HMM with estimation methods. The framework
of the HMM is simple and the model parameters can be estimated efficiently.
Application to customer classification with practical data taken from a computer
service company is presented and analyzed. Further discussions on new HMMs and
applications will be given in Chap. 8.

4.7 Exercises

1. Solve the minimization problem (4.1) to get the optimal ˛.
2. Consider the process of choosing a die again. Suppose that this time we have

two dice A and B, and that each of them has six faces (1; 2; 3; 4; 5 and 6).
The probability distribution of dots obtained by throwing dice A and B are given
in Table 4.5. Each time a die is to be chosen, we assume that with probability ˛,
Die A is chosen, and with probability .1 � ˛/, Die B is chosen. This process is
hidden as we don’t know which die is chosen. After a long-run observation, the
observed distribution of dots is given in Table 4.6. Use the method in Sect. 4.2 to
estimate the value of ˛.

3. Prove Proposition 4.1.
4. Prove Proposition 4.2.
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Table 4.7 The new average
expenditures of Group A and
Group B

Group I II III IV

A 0.6000 0.1000 0.0500 0.2500
B 0.1500 0.5000 0.1500 0.2000

5. Consider the classification problem in Sect. 4.5. Suppose the average
expenditures of Groups A and Group B have been changed and are recorded
in Table 4.7, then find the new ˛ for the classification rule.



Chapter 5
Markov Decision Processes for Customer
Lifetime Value

5.1 Introduction

In this chapter a stochastic dynamic programming model with a Markov chain is
proposed to capture customer behavior. The advantage of using Markov chains
is that the model can take into account the customers switching between the
company and its competitors. Therefore customer relationships can be described in
a probabilistic way, see for instance Pfeifer and Carraway [170]. Stochastic dynamic
programming is then applied to solve the optimal allocation of the promotion budget
for maximizing the Customer Lifetime Value (CLV). The proposed model is then
applied to practical data in a computer services company.

The customer equity should be measured in making the promotion plan so as
to achieve an acceptable and reasonable budget. A popular approach is the CLV.
Kotler and Armstrong [134] define a profitable customer as “a person, household, or
company whose revenues over time exceeds, by an acceptable amount, the company
costs of attracting, selling, and servicing that customer.” This excess is called the
CLV. In some literature, CLV is also referred to as “customer equity” [14]. In fact,
some researchers define CLV as the customer equity less the acquisition cost.
Nevertheless, in this chapter CLV is defined as the present value of the projected
net cash flow that a firm expects to receive from the customer over time [35].
Recognizing its importance in decision making, CLV has been successfully applied
to the problems of pricing strategy [13], media selection [121] and setting optimal
promotion budget [20, 61].

To calculate the CLV, a company should estimate the expected net cash flow that
they expect to receive from the customer over time. The CLV is the present value of
that stream of cash flow. However, it is a difficult task to estimate the net cash flow to
be received from the customer. In fact, one needs to answer, the following questions:

1. How many customers one can attract given a specific advertising budget?
2. What is the probability that the customer will stay with the company?
3. How does this probability change with respect to the promotion budget?

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 5,
© Springer Science+Business Media New York 2013
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To answer the first question, there are a number of advertising models found in
the book by Lilien, Kotler and Moorthy [148]. The second and the third questions
give rise to an important concept, the retention rate. The retention rate [123] is
defined as “the chance that the account will remain with the vendor for the next
purchase, provided that the customer has bought from the vendor on each previous
purchase”. Jackson [123] proposed an estimation method for the retention rate based
on historical data. Other models for the retention rate can also be found in [82,148].

Blattberg and Deighton [20] proposed a formula for the calculation of CLV
(customer equity). The model is simple and deterministic. Using their notations
(see also [13, 14]), the CLV is the sum of two net present values: the return from
acquisition spending and the return from retention spending. In their model, CLV is
defined as

CLV D am � A
„ ƒ‚ …

acquisi t ion

C
1
X

kD1

a.m � R

r
/Œr.1 C d/�1�k

„ ƒ‚ …

retent ion

D am � A C a.m � R

r
/ � r

.1 C d � r/

(5.1)

where a is the acquisition rate, A is the level of acquisition spending, m is the
margin on a transaction, R is the retention spending per customer per year, r is the
yearly retention rate (a proportion), and d is the yearly discount rate appropriate for
marketing investment. Moreover, they also assume that the acquisition rate a and
retention rate r are functions of A and R respectively, and are given by

a.A/ D a0.1 � e�K1A/

and

r.R/ D r0.1 � e�K2R/

where a0 and r0 are the estimated ceiling rates and K1 and K2 are two positive
constants. In this chapter, a stochastic model (Markov decision process) is proposed
for the calculation of CLV and promotion planning.

The rest of the chapter is organized as follows. In Sect. 5.2, the Markov chain
model for modelling the behavior of customers is presented. Section 5.4 extends
the model to consider multi-period promotions. In Sect. 5.3, stochastic dynamic
programming is then used to calculate the CLV of the customers for three different
scenarios:

1. infinite horizon without constraint (without limit in the number of promotions),
2. finite horizon (with a limited number of promotions), and
3. infinite horizon with constraints (with a limited number of promotions).

In Sect. 5.5, we consider higher-order Markov decision processes with applications
to the CLV problem. Finally a summary is given to conclude the chapter in Sect. 5.5.
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5.2 Markov Chain Models for Customer Behavior

In this section, a Markov chain model for modelling the customers’ behavior in a
market is introduced. According to the usage of the customer, a company customer
can be classified into N possible states

f0; 1; 2; : : : ; N � 1g:

For example, customers can be classified into four states (N D 4): low-volume user
(state 1), medium-volume user (state 2) and high-volume user (state 3) and in order
to classify all customers in the market, state 0 is introduced. A customer is said to
be in state 0 if they are either a customer of the competitor company or they did
not purchase the service during the period of observation. Therefore at any time, a
customer in the market belongs to exactly one of the states in f0; 1; 2; : : : ; N � 1g.
With this notation, a Markov chain is a good choice to model the transitions of
customers among the states in the market.

A Markov chain model is characterized by an N �N transition probability matrix
P . Here Pij .i; j D 0; 1; 2; : : : ; N � 1/ is the transition probability that a customer
will move to state i in the next period given that currently they are in state j . Hence
the retention probability of a customer in state i.i D 0; 1; : : : ; N � 1/ is given by
Pii . If the underlying Markov chain is assumed to be irreducible then the stationary
distribution p exists, see for instance [181]. This means that there is a unique

p D .p0; p1; : : : ; pN �1/T

such that

p D P p;

N �1
X

iD0

pi D 1; pi � 0: (5.2)

By making use of the stationary distribution p, one can compute the retention
probability of a customer as follows:

N �1
X

iD1

 

pi
PN �1

j D1 pj

!

.1 � Pi0/ D 1 � 1

1 � p0

N �1
X

iD1

pi P0i

D 1 � p0.1 � P00/

1 � p0

: (5.3)

This is the probability that a customer will purchase service with the company in the
next period. Apart from the retention probability, the Markov model can also help
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Table 5.1 The four classes
of customers

State 0 1 2 3

Hours 0:00 1 � 20 21 � 40 > 40

us in computing the CLV. In this case ci is defined to be the revenue obtained from
a customer in state i . Then the expected revenue is given by

N �1
X

iD0

ci pi : (5.4)

The above retention probability and the expected revenue are computed under the
assumption that the company makes no promotion (in a non-competitive environ-
ment) throughout the period. The transition probability matrix P can be significantly
different when there is a promotion made by the company. To demonstrate this,
an application is given in the following subsection. Moreover, when promotions
are allowed, what is the best promotion strategy such that the expected revenue is
maximized? Similarly, what is the best strategy when there is a fixed budget for the
promotions, e.g. the number of promotions is fixed? These issues will be discussed
in the following section by using the stochastic dynamic programming model.

5.2.1 Estimation of the Transition Probabilities

In order to apply the Markov chain model, one has to estimate the transition
probabilities from the practical data. In this subsection, an example in the computer
service company is used to demonstrate the estimation. In the captured database
of customers, each customer has four important attributes .A; B; C; D/: A is the
“Customer Number”, each customer has a unique identity number. B is the “Week”,
the time (week) when the data was captured. C is the “Revenue” which is the total
amount of money the customer spent in the captured week. D is the “Hour”, the
number of hours that the customer consumed in the captured week.

The total number of weeks of data available is 20. Among these 20 weeks, the
company has a promotion for 8 consecutive weeks and no promotion for the other
12 consecutive weeks. The behavior of customers in the period of promotion and no-
promotion will be investigated. For each week, all the customers are classified into
four states f0; 1; 2; 3g according to the amount of “hours” consumed, see Table 5.1.
We recall that a customer is said to be in state 0, if they are a customer of a
competitor company or they did not use the service for the whole week.

From the data, one can estimate two transition probability matrices, one for the
promotion period (8 consecutive weeks) and the other one for the no-promotion
period (12 consecutive weeks). For each period, the number of customers switching
from state i to state j is recorded. Then, divide this number the total number of
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Table 5.2 The average
revenue of the four classes of
customers

State 0 1 2 3

Promotion 0:00 6:97 18:09 43:75

No-promotion 0:00 14:03 51:72 139:20

customers in the state i , and one obtains the estimates for the one-step transition
probabilities. Hence the transition probability matrices under the promotion period
P .1/ and the no-promotion period P .2/ are given respectively below:

P .1/ D

0

B

B

@

0:8054 0:4163 0:2285 0:1372

0:1489 0:4230 0:3458 0:2147

0:0266 0:0992 0:2109 0:2034

0:0191 0:0615 0:2148 0:4447

1

C

C

A

and

P .2/ D

0

B

B

@

0:8762 0:4964 0:3261 0:2380

0:1064 0:4146 0:3837 0:2742

0:0121 0:0623 0:1744 0:2079

0:0053 0:0267 0:1158 0:2809

1

C

C

A

:

P .1/ is very different from P .2/. In fact, there can be more than one type of
promotion in general, as the transition probability matrices for modelling the
behavior of the customers can be more than two.

5.2.2 Retention Probability and CLV

The stationary distributions of the two Markov chains having transition probability
matrices P .1/ and P .2/ are given respectively by

p.1/ D .0:2306; 0:0691; 0:0738; 0:6265/T

and

p.2/ D .0:1692; 0:0285; 0:0167; 0:7856/T :

The retention probabilities (cf. (5.3)) in the promotion period and no-promotion
period are given respectively by 0:6736 and 0:5461. It is clear that the retention
probability is significantly higher when the promotion is carried out.

From the customer data in the database, the average revenue of a customer is
obtained in different states in both the promotion period and no-promotion period,
see Table 5.2. We remark that in the promotion period, a big discount was given to
the customers and therefore the revenue was significantly less than the revenue in
the no-promotion period.
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From (5.4), the expected revenue from a customer in the promotion period
(assume that the only promotion cost is the discount rate) and no-promotion period
are given by 2:42 and 17:09 respectively.

Although one can obtain the CLVs of the customers in the promotion period and
the no-promotion period, one would expect to calculate the CLV in a mixture of
promotion and no-promotion periods. This is especially true when the promotion
budget is limited (the number of promotions is fixed) and one would like to obtain
the optimal promotion strategy. Stochastic dynamic programming with Markov
process provides a good approach for solving the above problems. Moreover, the
optimal stationary strategy for the customers in different states can also be obtained
by solving the stochastic dynamic programming problem.

5.3 Stochastic Dynamic Programming Models

The problem of solving the optimal promotion strategy can be fitted into the
framework of stochastic dynamic programming models. In this section, stochastic
dynamic programming models are presented for maximizing the CLV under an
optimal promotion strategy. The notations of the model are given as follows:

1. N , the total number of states (indexed by i D 0; 1; : : : ; N � 1)
2. Ai , the set containing all the actions in state i (indexed by k)
3. T , number of months remaining in the planning horizon (indexed by t D

1; : : : ; T )
4. dk , the resources required for carrying out the action k in each period;
5. c

.k/
i , the revenue obtained from a customer in state i with the action k in each

period
6. p

.k/
ij , the transition probability for a customer moving from state j to state i under

the action k in each period
7. ˛, discount rate

Similar to the MDP introduced in Chap. 1, the value of an optimal policy vi .t/

is defined to be the total expected revenue obtained in the stochastic dynamic
programming model with t months remaining for a customer in state i for i D
0; 1; : : : ; N �1 and t D 1; 2; : : : ; T . Therefore, the recursive relation for maximizing
the revenue is given as follows:

vi .t/ D max
k2Ai

8

<

:

c
.k/
i � dk C ˛

N �1
X

j D0

p
.k/
j i vj .t � 1/

9

=

;

: (5.5)

In the following subsections, three different CLV models based on the above
recursive relation are considered. They are infinite horizon without constraints, finite
horizon with hard constraints and infinite horizon with constraints. For each case,
an application with practical data in a computer service company is presented.
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5.3.1 Infinite Horizon Without Constraints

in this section, we consider an infinite horizon stochastic dynamic programming
formulation for the promotion problem. From the standard results in stochastic
dynamic programming [208], for each i , the optimal values vi for the discounted
infinite horizon Markov decision process satisfy the relationship

vi D max
k2Ai

8

<

:

c
.k/
i � dk C ˛

N �1
X

j D0

p
.k/
j i vj

9

=

;

: (5.6)

Therefore we have

vi � c
.k/
i � dk C ˛

N �1
X

j D0

p
.k/
j i vj (5.7)

for each i . In fact, the optimal values vi are the smallest numbers (the least upper
bound over all possible policy values) that satisfy these inequalities. This suggests
that the problem of determining the vi value can be transformed into the following
linear programming problem [3, 207, 208]:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

min x0 D
N �1
X

iD0

vi

subject to

vi � c
.k/
i � dk C ˛

N �1
X

j D0

p
.k/
j i vj ; for i D 0; : : : ; N � 1I

vi � 0 for i D 0; : : : ; N � 1:

(5.8)

The above linear programming problem can be solved easily by using speadsheet
software such as EXCEL. In addition, a demonstration EXCEL file is available at
the following site (http://hkumath.hku.hk/�wkc/clv1.zip), see also Fig. 5.1 (Taken
from [64]). Returning to the model for the computer service company, there are
2 actions available (either (P ) promotion or (NP ) no-promotion) for all possible
states. Thus Ai D fP; NP g for all i D 0; : : : ; N � 1. Moreover, customers
are classified into 4 clusters, thus N D 4 (possible states of a customer are 0; 1; 2; 3).
Since no promotion cost is incurred for the action (NP ), therefore dNP D 0.
For simplification, d is used to denote the only promotion cost instead of dP in
the application.

Table 5.4 presents the optimal stationary policies (i.e., to have promotion of Di D
P or no-promotion Di D NP depends on the state i of the customer) and the
corresponding revenues for different discount factors ˛ and fixed promotion costs
d . For instance, when the promotion cost is 0 and the discount factor is 0:99, then
the optimal strategy is that when the current state is 0 or 1, the promotion should
be done i.e. D0 D D1 D P , and when the current state is 2 or 3, no promotion
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Fig. 5.1 For solving infinite horizon problem without constraint

is required, i.e. D2 D D3 D NP (see the first column of the upper left hand box
of Table 5.3). The other values can be interpreted similarly. From the numerical
examples, the following conclusions are drawn:

• When the fixed promotion cost d is large, the optimal strategy is that the company
should not conduct any promotion on the active customers and should only
conduct the promotion scheme to inactive (purchase no service) customers and
customers of the competitor company. However, when d is small, the company
should take care of the low-volume customers to prevent this group of customers
from switching to the competitor companies.
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Table 5.3 Optimal stationary policies and their CLVs

d D 0 d D 1 d D 2

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 4791 1149 687 4437 1080 654 4083 1012 621

v0 1112 204 92 1023 186 83 934 168 74

v1 1144 234 119 1054 216 110 965 198 101

v2 1206 295 179 1118 278 171 1030 261 163

v3 1328 415 296 1240 399 289 1153 382 281

D0 P P P P P P P P P

D1 P P P P P P P P P

D2 NP NP NP NP NP NP NP NP NP

D3 NP NP NP NP NP NP NP NP NP

d D 3 d D 4 d D 5

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 3729 943 590 3375 879 566 3056 827 541

v0 845 151 65 755 134 58 675 119 51

v1 877 181 94 788 164 88 707 151 82

v2 942 245 156 854 230 151 775 217 145

v3 1066 366 275 978 351 269 899 339 264

D0 P P P P P P P P P

D1 P P NP P NP NP NP NP NP

D2 NP NP NP NP NP NP NP NP NP

D3 NP NP NP NP NP NP NP NP NP

• It is also clear that the CLV of a high-volume user is larger than the CLV of other
groups.

• The CLVs of each group depend on the discount rate ˛ significantly. Here the
discount rate can be viewed as the technology depreciation of the computer
services in the company. Therefore, in order to generate the revenue of the
company, new technology and services should be provided.

5.3.2 Finite Horizon with Hard Constraints

In the computer service and telecommunication industry, the product life cycle is
short, e.g., it is usually one year. Therefore, the case of finite horizon with limited
budget constraint is considered. This problem can also be solved efficiently by using
stochastic dynamic programming and the optimal revenues obtained in the previous
section are used as the boundary conditions. The model’s parameters are defined as
follows:

n = number of weeks remaining
p = number of possible promotions remaining
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The recursive relation for the problem is given as follows:

vi .n; p/ D max fc.P /
i � dP C ˛

PN �1
j D0 p

.P /
j i vj .n � 1; p � 1/;

c
.NP /
i � dNP C ˛

PN �1
j D0 p

.NP /
j i vj .n � 1; p/g

(5.9)

for n D 1; : : : ; nmax and p D 1; : : : ; pmax and

vi .n; 0/ D c
.NP /
i � dNP C ˛

N �1
X

j D0

p
.NP /
j i vj .n � 1; 0/ (5.10)

for n D 1; : : : ; nmax . The above dynamic programming problem can be solved
easily by using spreadsheet software such as EXCEL. A demonstration EXCEL
file can be found at the following site (http://hkumath.hku.hk/�wkc/clv2.zip), see
also Fig. 5.2 (Taken from [64]). In the numerical experiment of the computer service
company, the length of the planning period is set to be nmax D 52 and the maximum
number of promotions is pmax D 4. By solving the dynamic programming problem,
the optimal values and promotion strategies are listed in Table 5.4. The optimal
solution in the table is presented as follows:

.t1; t2; t3; t4; r�/;

where r� is the optimal expected revenue, and ti is the promotion week of the
optimal promotion strategy and “-” means no promotion. Findings are summarized
as follows:

• For different values of the fixed promotion cost d , the optimal strategy for the
customers in states 2 and 3 is to conduct no promotion.

• For those in state 0, the optimal strategy is to conduct all four promotions as early
as possible.

• In state 1, the optimal strategy depends on the value of d . If d is large, then no
promotion will be conducted. However, if d is small, promotions are carried out
and the strategy is to conduct the promotions as late as possible.

5.3.3 Infinite Horizon with Constraints

For the purpose of comparison, the model in Sect. 5.3.2 is extended to the infinite
horizon case. Similar to the previous model, the finite number of promotions
available is denoted by pmax. The value function vi .p/, which represents the optimal
discounted utility starting at state i when there are p promotions remaining, is the
unique fixed point of the equations:
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Fig. 5.2 EXCEL for solving finite horizon problem without constraint

vi .p/

D max

8

<

:

c
.P /
i � dP C ˛

N �1
X

j D0

p
.P /
j i vj .p � 1/; c

.NP /
i � dNP C ˛

N �1
X

j D0

p
.NP /
j i vj .p/

9

=

;

;

(5.11)
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Table 5.4 Optimal promotion strategies and their CLVs

˛ State 0 State 1 State 2 State 3

0:9 .1; 2; 3; 4; 67/ .1; 45; 50; 52; 95/ (-,-,-,-,158) (-,-,-,-,276)
d D 0 0:95 .1; 2; 3; 4; 138/ .45; 48; 50; 51; 169/ (-,-,-,-,234) (-,-,-,-,335)

0:99 .1; 2; 3; 4; 929/ .47; 49; 50; 51; 963/ (-,-,-,-,1031) (-,-,-,-,1155)

0:9 .1; 2; 3; 4; 64/ .47; 49; 51; 52; 92/ (-,-,-,-,155) (-,-,-,-,274)
d D 1 0:95 .1; 2; 3; 4; 133/ .47; 49; 51; 52; 164/ (-,-,-,-,230) (-,-,-,-,351)

0:99 .1; 2; 3; 4; 872/ .47; 49; 51; 52; 906/ (-,-,-,-,974) (-,-,-,-,1098)

0:9 .1; 2; 3; 4; 60/ .49; 50; 51; 52; 89/ (-,-,-,-,152) (-,-,-,-,271)
d D 2 0:95 .1; 2; 3; 4; 128/ .48; 50; 51; 52; 160/ (-,-,-,-,225) (-,-,-,-,347)

0:99 .1; 2; 3; 4; 815/ .48; 49; 51; 52; 849/ (-,-,-,-,917) (-,-,-,-,1041)

0:9 .1; 2; 3; 4; 60/ .�; �; �; �; 87/ (-,-,-,-,150) (-,-,-,-,269)
d D 3 0:95 .1; 2; 3; 4; 123/ .49; 50; 51; 52; 155/ (-,-,-,-,221) (-,-,-,-,342)

0:99 .1; 2; 3; 4; 758/ .48; 50; 51; 52; 792/ (-,-,-,-,860) (-,-,-,-,984)

0:9 .1; 2; 3; 4; 54/ .�; �; �; �; 84/ (-,-,-,-,147) (-,-,-,-,266)
d D 4 0:95 .1; 2; 3; 4; 119/ .�; �; �; �; 151/ (-,-,-,-,217) (-,-,-,-,338)

0:99 .1; 2; 3; 4; 701/ .49; 50; 51; 52; 736/ (-,-,-,-,804) (-,-,-,-,928)

0:9 .1; 2; 3; 4; 50/ (-,-,-,-,81) (-,-,-,-,144) (-,-,-,-,264)
d D 5 0:95 .1; 2; 3; 4; 114/ (-,-,-,-,147) (-,-,-,-,212) (-,-,-,-,334)

0:99 .1; 2; 3; 4; 650/ (-,-,-,-,684) (-,-,-,-,752) (-,-,-,-,876)

for p D 1; : : : ; pmax, and

vi .0/ D c
.NP /
i � dNP C ˛

N �1
X

j D0

p
.NP /
j i vj .0/: (5.12)

Since Œp
.k/
ij � is a transition probability matrix, the set of linear equations (5.12) with

four unknowns has a unique solution. We note that (5.11) can be computed by the
value iteration algorithm, i.e., as the limit of vi .n; p/ (computed in Sect. 5.3.2), as
n tends to infinity. Alternatively, it can be solved by using the linear programming
approach [3]:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

min x0 D
N �1
X

iD0

pmax
X

pD1

vi .p/

subject to

vi .p/ � c
.P /
i � d1 C ˛

N �1
X

j D0

p
.P /
j i vj .p � 1/;

for i D 0; : : : ; N � 1; p D 1; : : : ; pmaxI
vi .p/ � c

.NP /
i � d2 C ˛

N �1
X

j D0

p
.NP /
j i vj .p/;

for i D 0; : : : ; N � 1; p D 1; : : : ; pmax:
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Fig. 5.3 EXCEL for solving infinite horizon problem with constraints

We note that vi .0/ is not included in the linear programming constraints and
the objective function; vi .0/ is solved beforehand using (5.12). A demonstration
EXCEL file can be found at the following site (http://hkumath.hku.hk/�wkc/clv3.
zip), see also Fig. 5.3 (Taken from [64]).

Tables 5.5 and 5.6 give the optimal values and promotion strategies of the
computer service company. For instance, when the promotion cost is 0 and the
discount factor is 0:99, then the optimal strategy is that when the current state is
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Table 5.5 Optimal promotion strategies and their CLVs

d D 0 d D 1 d D 2

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 11355 3378 2306 11320 3344 2277 11277 3310 2248

v0.1/ 610 117 55 609 116 54 608 115 53

v1.1/ 645 149 85 644 148 84 643 147 84

v2.1/ 713 215 149 712 214 148 711 213 147

v3.1/ 837 337 267 836 336 267 845 335 266

v0.2/ 616 122 60 614 120 58 612 118 56

v1.2/ 650 154 89 648 152 87 647 150 86

v2.2/ 718 219 152 716 218 151 714 216 149

v3.2/ 842 341 271 840 339 269 839 338 268

v1.3/ 656 158 92 654 156 90 650 153 88

v2.3/ 724 224 155 722 221 153 718 219 151

v3.3/ 848 345 273 846 343 271 842 340 270

v0.4/ 628 131 67 624 128 63 620 124 60

v1.4/ 662 162 95 658 159 92 654 158 89

v2.4/ 730 228 157 726 225 155 722 221 152

v3.4/ 854 349 276 850 346 273 846 343 271

D0.1/ P P P P P P P P P

D1.1/ NP NP NP NP NP NP NP NP NP

D2.1/ NP NP NP NP NP NP NP NP NP

D3.1/ NP NP NP NP NP NP NP NP NP

D0.2/ P P P P P P P P P

D1.2/ NP NP NP NP NP NP NP NP NP

D2.2/ NP NP NP NP NP NP NP NP NP

D3.2/ NP NP NP NP NP NP NP NP NP

D0.3/ P P P P P P P P P

D1.3/ NP NP NP NP NP NP NP NP NP

D3.3/ NP NP NP NP NP NP NP NP NP

D0.4/ P P P P P P P P P

D1.4/ NP NP NP NP NP NP NP NP NP

D2.4/ NP NP NP NP NP NP NP NP NP

D3.4/ NP NP NP NP NP NP NP NP NP

1; 2 or 3, the promotion should be done when there are some available promotions,
i.e.,

D1.p/ D D2.p/ D D3.p/ D P for p D 1; 2; 3; 4

and when the current state is 0, no promotion is required, i.e. D0.p/ D NP for
p D 1; 2; 3; 4. Their corresponding CLVs vi .p/ for different states and different
numbers of remaining promotions are also listed (see the first column in the left
hand side of Table 5.6.

From Tables 5.5 and 5.6, the optimal strategy for the customers in states 1, 2 and
3 is to conduct no promotion. Moreover, it is not affected by the promotion cost
and the discount factor. These results are slightly different from those for the finite
horizon case. However, the optimal strategy is to conduct all the four promotions to
customers in state 0 as early as possible.
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Table 5.6 Optimal promotion strategies and their CLVs

d D 3 d D 4 d D 5

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 11239 3276 2218 11200 3242 2189 11161 3208 2163

v0.1/ 607 114 52 606 113 51 605 112 50

v1.1/ 641 146 83 641 146 82 640 145 81

v2.1/ 710 212 146 709 211 145 708 211 145

v3.1/ 834 334 265 833 333 264 832 332 264

v0.2/ 610 116 54 608 114 52 606 112 50

v1.2/ 645 149 84 643 147 83 641 145 81

v2.2/ 713 214 148 711 213 146 709 211 145

v3.2/ 837 336 266 835 334 265 833 333 264

v0.3/ 613 119 56 610 116 53 607 113 50

v1.3/ 647 151 86 645 148 83 642 146 81

v2.3/ 715 216 149 713 214 147 710 211 145

v3.3/ 839 338 268 837 336 266 834 333 264

v0.4/ 616 121 57 612 117 54 608 113 50

v1.4/ 650 152 87 646 149 84 643 146 81

v2.4/ 718 218 150 714 215 147 711 212 145

v3.4/ 842 340 269 838 337 266 835 334 265

D0.1/ P P P P P P P P P

D1.1/ NP NP NP NP NP NP NP NP NP

D2.1/ NP NP NP NP NP NP NP NP NP

D3.1/ NP NP NP NP NP NP NP NP NP

D0.2/ P P P P P P P P P

D1.2/ NP NP NP NP NP NP NP NP NP

D2.2/ NP NP NP NP NP NP NP NP NP

D3.2/ NP NP NP NP NP NP NP NP NP

D0.3/ P P P P P P P P P

D1.3/ NP NP NP NP NP NP NP NP NP

D2.3/ NP NP NP NP NP NP NP NP NP

D3.3/ NP NP NP NP NP NP NP NP NP

D0.4/ P P P P P P P P P

D1.4/ NP NP NP NP NP NP NP NP NP

D2.4/ NP NP NP NP NP NP NP NP NP

D3.4/ NP NP NP NP NP NP NP NP NP

5.4 An Extension to Multi-period Promotions

In the previous discussions, the problem under consideration is to decide whether
to offer the promotion at the start of each time unit with the assumption that the
promotion only lasts for a single time unit. In this section, the analysis is extended to
consider multi-period promotions proposed in [145,150]. A multi-period promotion
refers to a promotion that lasts for 2; 3; : : : ; R time units. This encourages more
purchases or continuous subscriptions than a single-period promotion does. A useful
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application is the IDD service in a telecommunication company. Customers may
think that it is convenient because they can have flexible IDD calls when the
promotion period is long, hence a greater revenue can be expected.

The degree of increase in revenue for each period during the r-period of
consecutive promotions can be described by the following formula:

1 C m.1 � e�ni / i D 1; 2; : : : ; r (5.13)

where m � 0 denotes the ceiling level, n > 0 determines the growth rate of the
exponential curve and r is an integer which stands for the number of periods of
the consecutive promotion with r � 2. The increase applies in every single period
and still applies if the customer changes to another consumption level (different
state) under the consecutive promotion. Jain and Singh [124] suggest that the
optimal acquisition and retention spending should follow the second term of the
formula. We use this formula because we believe that a multi-period promotion has
a significant advantage compared to a single-period one at the beginning, but then
the revenue increase declines as the length of promotion extends and almost stops if
the steady state of the market is reached.

We remark that other revenue adjustments can also be used. Take for example:

• Linear function: 1 C mr=n, or 1 C m minf1; r=ng which sets an upper bound
• S-shaped function: m..nr C d1/

1=3 C d2/, where d1, d2 are shifts

In our revenue adjustment mechanism, the values of m and n have to be
determined. Different values of the ceiling level of adjustment, m, will be tried in
the calculations here. However for n, we propose that the increase slows down if
it has reached the steady state. With regard to this, we calculate the sum of the
absolute differences entry-wise between P 100 and P r . When it is smaller than 0:01,
then we can say it reaches the “steady state” (roughly speaking) after r steps. Using
this r , we want to find the value of n, such that e�nr is smaller than 0:05 (hence the
increase has almost ceased). We remark that given an ergodic irreducible Markov
chain, the process will converge to its unique stationary distribution. It is well known
that the convergence rate depends on the modulus of the second largest eigenvalue
of the transition probability matrix being less than 1, i.e. j�2j < 1, see for instance
Chap. 2. Roughly speaking, this means the error between P n and P 1 will decay
at a rate proportional to j�2jn (exponential decay). Here P 1 D p1t where 1 is a
column vector of all ones and p is the steady-state probability distribution. Thus
this suggests an effective method for determining m and n. Notice that the matrix P

we are considering is indeed P .1/. Here we show some cases of P r :

P 2 D

0

B

@

0:7194 0:5424 0:4056 0:3073

0:1962 0:2884 0:2994 0:2771

0:0457 0:0866 0:1286 0:1583

0:0387 0:0826 0:1664 0:2573

1

C

A P 3 D

0

B

@

0:6768 0:5881 0:5035 0:4343

0:2142 0:2504 0:2672 0:2730

0:0562 0:0781 0:1015 0:1214

0:0528 0:0834 0:1278 0:1713

1

C

A
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P 4 D

0

B

@

0:6544 0:6072 0:5575 0:5147

0:2221 0:2384 0:2505 0:2589

0:0619 0:0739 0:0873 0:0991

0:0616 0:0805 0:1047 0:1273

1

C

A P 12 D

0

B

@

0:6267 0:6263 0:6257 0:6253

0:2305 0:2306 0:2308 0:2308

0:0691 0:0692 0:0694 0:0695

0:0737 0:0739 0:0741 0:0744

1

C

A :

In fact, the steady-state probability distribution is given by

.0:626; 0:2306; 0:0692; 0:0738/T :

We note that the eigenvalues of P are 1:0000; 0:0519; 0:2664 and 0:5656. The
second largest eigenvalue is 0:5656. This means that the Markov chain process
in this case will converge very fast to its steady-state distribution. Therefore we
find that n should be greater than 0:2496. We take n D 0:25. In the next
section we proceed to find the maximum expected profit using stochastic dynamic
programming.

5.4.1 Stochastic Dynamic Programming Models

The optimization problem with multi-period promotion is an extension of our previ-
ous problem of solving for the optimal promotion strategy with only single-period
promotions. It can also be tackled by applying the stochastic dynamic programming
models because the basic features of the problem are preserved: customers may
change their states with time and the company may take certain actions from a
well-defined set with these actions affecting the transition probabilities of the next
time unit, incurring immediate or subsequent gain or loss to the company. In the
following subsections, two CLV models are under investigation. They are infinite
horizon without constraints and finite horizon under the constraint that the number
of promotions is fixed.

5.4.2 The Infinite Horizon Without Constraints

We solve this new optimization problem with multi-period promotions by introduc-
ing the revenue adjustment into the analysis of the basic case with single-period
promotions. Recall that in the basic case, it has been demonstrated that the values
of vi which stands for the maximum expected profit starting from State i should
satisfy (5.6), and that the problem of determining the vi values can be transformed
into the linear programming problem as shown in (5.8). In fact, (5.8) can be
re-written in the following matrix form with v D Œv0 v1; � � � ; vn�1�

T and c.k/ D
Œc

.k/
0 c

.k/
1 ; � � � ; c

.k/
n�1�

T :
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8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

min x0 D
N �1
X

iD0

vi

subject to
v � c.k/ � dj 1 C ˛vP .k/;

v � 0:

(5.14)

Here 1 is a matrix with all entries 1, 0 is a matrix with all entries 0, and both of them
have the same size as v.

To proceed with our revenue adjustment, one more notation is introduced as
follows:

c0.k/.r/ D .1 C m.1 � e�nr //c.k/ � dj 1;

where both m � 0 and n > 0 are fixed; r D 2; : : : ; R with R being the maximum
duration allowed for a consecutive promotion; and k 2 Ai with k ¤ Ai0 where Ai0

represents the alternative of taking no promotion when the customer is currently in
State i .

Now we consider a policy using alternative k which lasts for 2 time units.
Following from the one-step removal policy, its intermediate form after 1 time
unit is:

v D c0.k/.2/ C ˛v0P .k/

where v0 denotes a vector of expected profit in infinite horizon given that no action
can be made in the first step.

As we have no choice but to select other alternatives after 1 time unit since the
promotion lasts for 2 time units, we have to use the matrix P .k/ for transition and
the same revenue c0.k/.2/ will be earned. Again, from the one-step removal policy,
we have:

v0 D c0.k/.2/ C v˛P .k/:

Combining the two, we have

v D c0.k/.2/ C ˛P .k/
�

c0.k/.2/ C v˛P .k/
�

or

v D
�

I C ˛P .k/
�

c0.k/.2/ C v.˛P .k//2:

Applying the similar argument inductively and changing it into an inequality, it can
be generalized as:

v �
�

I C ˛P .k/ C � � � C .˛P .k//r�1
�

c0.k/.r/ C v.˛P .k//r :

Hence the linear programming problem we should ultimately consider is the
following:
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Table 5.7 Optimal stationary policies and their CLVs with d D 0

m v0 v1 v2 v3 D0 D1 D2 D3

0:0 92 119 179 297 1 1 0 0

0:5 92 119 179 297 1 1 0 0

˛ D 0:90 1:0 93 121 180 298 1 2 0 0

1:5 101 134 189 307 1 4 0 0

2:0 111 150 209 320 1 4 4 0

0:0 205 234 295 415 1 1 0 0

0:5 205 234 295 415 1 1 0 0

d D 0 ˛ D 0:95 1:0 207 237 297 418 1 2 0 0

1:5 225 261 318 437 1 4 0 0

2:0 250 292 354 466 1 4 4 0

0:0 1113 1144 1206 1329 1 1 0 0

0:5 1113 1144 1206 1329 1 1 0 0

˛ D 0:99 1:0 1126 1158 1220 1342 1 2 0 0

1:5 1231 1269 1327 1448 1 4 4 0

2:0 1370 1414 1481 1592 1 4 4 0

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

min x0 D
N �1
X

iD0

vi

subject to
v � c.k/ � dk1 C ˛vP .k/;

v � .I C ˛P .k/ C � � � C .˛P .k//r�1/c0.k/.r/ C v.˛P .k//r ;

for r D 2; : : : ; R;

v � 0:

(5.15)

Some numerical examples are shown here with the value of R being confined to 4.
The numerical results are computed using Scilab and the program code is available
at the following site (http://hkumath.hku.hk/�wkc/MDP2.zip). We denote Di to be
the optimal plan taken when a customer is in State i . Here 0 means no promotion is
conducted in the time period and 1 represents a single-period promotion execution,
and so on. We have set jAi j D 2 for i D 0; 1; : : : ; N � 1 (the only alternatives of
actions are either to conduct a promotion or not to conduct a promotion) and N D 4

(all customers are classified into 4 states as in the basic case). We remark that when
m D 0, the situation reduces to the case studied in [64]. Tables 5.7–5.9 present the
optimal solutions.

5.4.3 Finite Horizon with Hard Constraints

Here we consider optimization in finite horizon to better model those industries with
short product life cycles. In this case, we set a limit to the number of promotions
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Table 5.8 Optimal stationary policies and their CLVs with d D 2

m v0 v1 v2 v3 D0 D1 D2 D3

0:0 74 102 164 282 1 1 0 0

0:5 74 102 164 282 1 1 0 0

˛ D 0:90 1:0 74 102 164 282 1 2 0 0

1:5 82 115 173 291 1 4 0 0

2:0 92 131 189 303 1 4 4 0

0:0 169 199 262 383 1 1 0 0

0:5 169 199 262 383 1 1 0 0

d D 2 ˛ D 0:95 1:0 170 200 263 384 1 2 0 0

1:5 188 224 283 403 1 4 0 0

2:0 211 253 315 429 1 4 4 0

0:0 934 966 1030 1153 1 1 0 0

0:5 934 966 1030 1153 1 1 0 0

˛ D 0:99 1:0 943 976 1040 1163 1 2 0 0

1:5 1042 1080 1140 1263 1 4 0 0

2:0 1175 1220 1286 1400 1 4 4 0

Table 5.9 Optimal stationary policies and their CLVs with d D 4

m v0 v1 v2 v3 D0 D1 D2 D3

0:0 58 88 151 269 1 0 0 0

0:5 58 88 151 269 1 0 0 0

˛ D 0:90 1:0 58 88 151 269 1 0 0 0

1:5 63 96 157 275 1 4 0 0

2:0 72 111 170 286 1 4 4 0

0:0 134 164 230 351 1 0 0 0

0:5 134 164 230 351 1 0 0 0

d D 4 ˛ D 0:95 1:0 134 164 230 351 1 0 0 0

1:5 150 186 247 369 1 4 0 0

2:0 172 214 276 393 1 4 4 0

0:0 755 788 854 978 1 1 0 0

0:5 755 788 854 978 1 1 0 0

˛ D 0:99 1:0 761 793 860 983 1 2 0 0

1:5 855 893 955 1079 1 4 4 0

2:0 981 1025 1091 1208 1 4 4 0

available for each customer in a period of planning. We will use the values obtained
in the last subsection as the boundary conditions. Some additional notation is
introduced here:

1. w, number of weeks remaining
2. p, number of promotions remaining
3. q, number of weeks remaining until the next decision echo
4. r , currently under a r-period promotion
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As before, we consider the case M D 2 and N D 4. The recursive relation is
given by:

vi .w; p; q; r/ D

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

max
tD0;:::;minfw;pg

(

eci .t/C˛

N
X

kD1

p
.m1/

ki vi .w�1; m2; m3; m4/

)

if q D 0

eci .r/C˛

N
X

kD1

p
.1/

ki vi .w�1; p�1; q�1; r/ if q � 2

eci .r/ C ˛

N
X

kD1

p
.1/

ki vi .w � 1; p � 1; 0; 0/ if q D 1

where

m1 D
�

2 if t D 0

1 otherwise
m2 D

�

p if t D 0

p � 1 otherwise

m3 D
�

0 if t D 0

t � 1 otherwise
m4 D

�

0 if t D 0; 1

t otherwise

and

eci .t/ D

8

ˆ
<

ˆ
:

.1 C m.1 � e�nr //c
.1/
i � d1 if t � 2

c
.1/
i � d1 if t D 1

c
.2/
i � d2 if t D 0

where m � 0 and n > 0 are fixed.
In our promotion planning, we set wmax D 52 and pmax D 4. The solution is

presented in the following form:

.t1; t2; t3; t4; v�/

where v� is the maximum expected profit, ti is the week to employ a promotion,
“-” represents as no promotion and being enclosed by square brackets represents
a consecutive promotion. For example, .Œ1; 2�; 50; 52; 83/ means we should have a
consecutive promotion in weeks 1 and 2, i.e., a two-period promotion in week 1, and
two single-period promotions in weeks 50 and 52, and that the maximum expected
profit is 83 (Tables 5.10–5.12).

From the numerical results, we observe that there is no need to conduct
promotion to customers in state 3. For customers in state 2, promotion is useful only
when m is large. For customers in state 0, generally speaking, promotion should be
conducted in the very beginning in order to keep the customer. If we let the value
of m increase, when it is greater than a certain threshold, the promotion pattern
differs from that with m D 0 (the situation where consecutive promotions have
no beneficial effect). From that level onwards, we can say consecutive promotions
have a significant benefit over single-period promotions. Also, when m is large,
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either no promotion is used or 4-period promotions are employed. In other words,
although consecutive promotion gives up the opportunity to observe the states after
a one period transition and set strategy accordingly, the benefit derived exceeds
significantly the cost of the opportunity we lost.

Finally, we remark that the new model actually provides better objective values
when compared to the previous model.

5.5 Higher-Order Markov Decision Process

The MDP presented in the previous section is a first-order type, i.e., the transition
probabilities depend on the current state only. A brief introduction was given in
Chap. 1. For the Higher-order Markov Decision Process (HMDP), the transition
probabilities depend on the current state and a number of previous states. For in-
stance, the probabilities of a second-order MDP moving from state si to state sj

depends only on the latest two states, the present state si and the previous state sh.
The transition probability is denoted by phij . In this section, we are interested in
studying a HMDP with applications to the CLV problems.

In the infinite horizon case, there are an infinite number of policies with the initial
state si and the previous state sh. The policy D prescribes an alternative, say k�, for
the transition out of states sh and state si . The probability of being in state sj after

one transition is p
.k�/

hij and this probability is re-written as p.1; j /. Now using the
alternatives directed by D, one can calculate the probabilities of being in the various
states after two transitions; these probabilities can be denoted by

p.2; l/ for l D 0; 1; : : : ; N � 1:

Similarly one can calculate the probability p.n; j / of being in state si and state sh

after n transitions. Denote D.n; h; i/ the alternative that D prescribes for use after
n transitions if the system is in state sj , the expected reward to be earned by D on
the .n C 1/-transition would be

N �1
X

j D0

p.n; j /q
D.n;h;i/
j ; (5.16)

and the present value of this sum is

˛n

N �1
X

j D0

p.n; j /q
D.n;h;i/
j ; (5.17)

thus the total expected reward of D is given by

q
.k�/
i C

1
X

nD1

˛n

N �1
X

j D0

p.n; j /q
D.n;h;i/
j ; (5.18)
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choosing Q such that

jq.k/

l j � Q for all l D 0; 1; : : : ; N � 1; (5.19)

and k 2 Ai , so that the sum is absolutely convergent. This sum is called the value
of the policy D, and it is denoted by whi .D/. It is clear that

jwhi .D/j � Q.1 � ˛/�1: (5.20)

5.5.1 Stationary Policy

A stationary policy is a policy where the choice of an alternative depends only on the
state the system is in and is independent of n. D.h; i/ is defined to be the stationary
policy with the current state si and the previous sh. For a Markov decision process
with infinite horizon and discount factor ˛, 0 < ˛ < 1, the value of an optimal
policy is defined as follows:

vhi D lub fwhi .D/jD a policy with initial state si and previous state shg (5.21)

where lub is the standard abbreviation for least upper bound.

Proposition 5.1. For a Markov decision process with infinite horizon, discount
factor ˛, where 0 < ˛ < 1,

uhi D max
k2Ai

8

<

:

q
.k/
i C ˛

N �1
X

j D0

p
.k/

hij vij

9

=

;

; h; i D 0; 1; : : : ; N � 1: (5.22)

Then, for each h; i , uhi D vhi .

Proof. Fixing h; i D 0; 1; : : : ; N � 1, let D be any policy with initial state si and
previous state sh. Suppose that D prescribes the alternative k� on the first transition
out of sh; si , and NDij denotes the associated one-step-removed policy. Thus

whi .D/ D q
.k�/
i C ˛

N �1
X

j D0

p
.k�/

hij wij . NDij /

� q
.k�/
i C ˛

N �1
X

j D0

p
.k�/

hij vij

� max
k2Ai

fq.k/
i C ˛

N �1
X

j D0

p
.k/

hij vij g D uhi :
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Therefore uhi is an upper bound for the set

fwhi .D/jD a policy with initial state si previous state shg

and
vhi D lub fwhi .D/g � uhi

where lub stands for least upper bound. Consider an alternative khi such that

uhi D max
k2Ai

fq.k/
i C ˛

N �1
X

j D0

p
.k/

hij vij g D q
.khi /
i C ˛

N �1
X

j D0

p
.khi /

hij vij :

For any given � > 0 and for each j , a policy D�
hi is chosen with initial state si and

previous state sh such that

vhi � � < whi .D
�
hi /:

Define a policy D with initial state si and previous state sh as follows: use alternative
khi out of states sh and state si , then for each h; i if the system moves to state sj on
the first transition, policy D�

ij is used thereafter. We have

uhi D q
.khi /
i C ˛

N �1
X

j D0

p
.khi /

hij vij

� q
.khi /
i C ˛

N �1
X

j D0

p
.khi /

hij .wij .D�
ij / C �/

D q
.khi /
i C ˛

N �1
X

j D0

p
.khi /

hij wij .D�
ij / C ˛�

N �1
X

j D0

p
.khi /

hij

D whi .D/ C ˛�

< vhi C �:

Since � is arbitrary, uhi � vhi . The result follows.

Proposition 5.2. (Stationary Policy Theorem) Given a Markov decision process
with infinite horizon and discount factor ˛, 0 < ˛ < 1, choose, for each h; i ,
an alternative khi such that

max
k2Ai

fq.k/
i C ˛

N �1
X

j D0

p
.k/

hij vij g D q
.khi /
i C ˛

N �1
X

j D0

p
.khi /

hij vij :

Define the stationary policy D by D.h; i/ D khi . Then for each h; i , whi .D/ D vhi .
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Proof. Since

vhi D q
.khi /
i C ˛

N �1
X

j D0

p
.khi /

hij vij ;

we have
v D q C ˛P v

where

v D Œv0;0; v0;1; : : : v0;N �1; v1;0; : : : vN �1;N �1�T ;

q D Œq0; q1; : : : ; qN �1; q0; : : : ; qN �1�T ;

and

P D Œp
.khi /

hij �:

The superscripts are omitted in the above vectors. For 0 < ˛ < 1, the matrix
.I � ˛P / is non-singular and the result follows.

According to the above two propositions, the optimal stationary policy can be
obtained by solving the following LP problem:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

min fx0;0 C x0;1 C � � � C x0;N �1 C x1;0 C � � � C xN �1;N �1g
subject to

xhi � q
.k/
i C ˛

N �1
X

j D0

p
.k/

hij xij ; h; i D 0; 1; : : : ; N � 1;

k 2 Ai :

(5.23)

5.5.2 Application to the Calculation of CLV

In previous sections, a first-order MDP is applied to a computer service company.
In this section, the same set of customer data is used with the HMDP. A comparison
of the two models can be found in Ching et al. [62].

The one-step transition probabilities are given in Sect. 5.3. Similarly, one can
estimate the second-order (two-step) transition probabilities. Given the current
state i and previous state h, the number of customers switching to state j is
recorded. Then, divide it by the total number of customers in the current state i and
previous state h. The values obtained are the second-order transition probabilities.
The transition probabilities under the promotion and no-promotion period are given
respectively in Table 5.13.
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Table 5.13 The second-order transition probabilities

Promotion No-promotion

States 0 1 2 3 0 1 2 3

(0,0) 0.8521 0.1225 0.0166 0.0088 0.8957 0.0904 0.0098 0.0041
(0,1) 0.5873 0.3258 0.0549 0.0320 0.6484 0.3051 0.0329 0.0136
(0,2) 0.4471 0.3033 0.1324 0.1172 0.5199 0.3069 0.0980 0.0753
(0,3) 0.3295 0.2919 0.1482 0.2304 0.4771 0.2298 0.1343 0.1587
(1,0) 0.6739 0.2662 0.0394 0.0205 0.7287 0.2400 0.0227 0.0086
(1,1) 0.3012 0.4952 0.1661 0.0375 0.3584 0.5117 0.1064 0.0234
(1,2) 0.1915 0.4353 0.2169 0.1563 0.2505 0.4763 0.1860 0.0872
(1,3) 0.1368 0.3158 0.2271 0.3203 0.1727 0.3750 0.2624 0.1900
(2,0) 0.5752 0.2371 0.1043 0.0834 0.6551 0.2253 0.0847 0.0349
(2,1) 0.2451 0.4323 0.2043 0.1183 0.3048 0.4783 0.1411 0.0757
(2,2) 0.1235 0.3757 0.2704 0.2304 0.2032 0.3992 0.2531 0.1445
(2,3) 0.1030 0.2500 0.2630 0.3840 0.1785 0.2928 0.2385 0.2901
(3,0) 0.4822 0.2189 0.1496 0.1494 0.6493 0.2114 0.0575 0.0818
(3,1) 0.2263 0.3343 0.2086 0.2308 0.2678 0.4392 0.1493 0.1437
(3,2) 0.1286 0.2562 0.2481 0.3671 0.2040 0.3224 0.2434 0.2302
(3,3) 0.0587 0.1399 0.1855 0.6159 0.1251 0.1968 0.1933 0.4848

The transition probability from state 0 to state 0 is very high in the first-order
model for both promotion and no-promotion periods. However, in the second-order
model, the transition probabilities

.0; 0/ ! 0; .1; 0/ ! 0; .2; 0/ ! 0 and .3; 0/ ! 0

are very different. It is clear that the second-order Markov chain model can better
capture the customers’ behavior than the first-order Markov chain model.

In Tables 5.14–5.16, the optimal stationary policy is given for the first-order and
the second-order MDP respectively for different values of the discount factor ˛ and
promotion cost d . Once again, (P) represents conducting a promotion and (NP)
represents to conduct no promotion. It is found that the optimal stationary policies
for both models are consistent in the sense that Di D Dii for i D 0; 1; 2; 3 in all the
tested cases. For the second-order case, the optimal stationary policy Dii depends
not only on states (the optimal policy depends on the current state only in the first-
order model) but also on the values of ˛ and d . It is observed that the second-order
Markov decision process always gives better objective value.

5.6 Summary

In this chapter, stochastic dynamic programming models are proposed for the
optimization of CLV. Both infinite horizon and finite horizon with budget constraints
are discussed. The former can be solved by using linear programming techniques,
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Table 5.14 Optimal strategies when the first-order MDP is used

d D 0 d D 1 d D 2

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 4791 1149 687 4437 1080 654 4083 1012 621

v0 1112 204 92 1023 186 83 934 168 74

v1 1144 234 119 1054 216 110 965 198 101

v2 1206 295 179 1118 278 171 1030 261 163

v3 1328 415 296 1240 399 289 1153 382 281

D0 P P P P P P P P P

D1 P P P P P P P P P

D2 NP NP NP NP NP NP NP NP NP

D3 NP NP NP NP NP NP NP NP NP

d D 3 d D 4 d D 5

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 3729 943 590 3375 879 566 3056 827 541

v0 845 151 65 755 134 58 675 119 51

v1 877 181 94 788 164 88 707 151 82

v2 942 245 156 854 230 151 775 217 145

v3 1066 366 275 978 351 269 899 339 264

D0 P P P P P P P P P

D1 P P NP P NP NP NP NP NP

D2 NP NP NP NP NP NP NP NP NP

D3 NP NP NP NP NP NP NP NP NP

the later problem can be solved by using a dynamic programming approach. In both
cases, they can be implemented easily in an EXCEL spreadsheet. The models are
then applied to practical data of a computer service company. The company makes
use of the proposed CLV model to make and maintain value-laden relationships with
the customers. We also extend the idea of MDP to a higher-order setting. Optimal
stationary policy is also obtained in this case.

Further research can be done in promotion strategy through advertising.
Advertising is an important tool in modern marketing. The purpose of advertising is
to enhance potential users’ responses to the company. This is achieved by providing
information for choosing a particular product or service. A number of marketing
models can be found in Lilien et al. [148] and the references therein. It has been
shown that a pulsation advertising policy is effective, see Mesak et al. [159–162]
and Ching et al. [73]. It will be interesting to incorporate the pulsation advertising
policy in the CLV model.



5.7 Exercises 137

Table 5.15 Optimal strategies when the second-order MDP is used

d D 0 d D 1 d D 2

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 19001 5055 3187 17578 4785 3066 16154 4520 2950

v00 1034 177 74 943 158 65 853 140 56
v01 1081 217 108 991 200 100 901 182 93
v02 1168 299 184 1080 282 177 991 266 170
v03 1309 433 312 1220 417 305 1132 401 298
v10 1047 188 83 956 169 74 866 152 66
v11 1110 242 129 1020 224 120 930 207 112
v12 1195 322 204 1107 306 196 1019 290 190
v13 1347 466 339 1259 450 333 1171 434 326
v20 1071 209 102 981 191 93 891 174 85
v21 1135 265 149 1046 247 141 957 230 133
v22 1217 341 221 1129 325 214 1041 310 207
v23 1370 487 358 1283 471 352 1195 456 345
v30 1094 230 120 1004 212 112 915 195 104
v31 1163 290 171 1074 273 163 985 256 156
v32 1239 359 236 1151 343 229 1062 327 223
v33 1420 531 398 1333 516 391 1245 501 385

D00 P P P P P P P P P
D01 P P P P P NP P NP NP
D02 NP NP NP NP NP NP NP NP NP
D03 NP NP NP NP NP NP NP NP NP
D10 P P P P P P P P P
D11 P P P P P P P P P
D12 NP NP NP NP NP NP NP NP NP
D13 NP NP NP NP NP NP NP NP NP
D20 P P P P P P P P P
D21 P P P P P P P P P
D22 NP NP NP NP NP NP NP NP NP
D23 NP NP NP NP NP NP NP NP NP
D30 P P P P P P P P P
D31 P P P P P P P P P
D32 P NP NP P NP NP P NP NP
D33 NP NP NP NP NP NP NP NP NP

5.7 Exercises

1. Consider an online gaming company that plans to stay in business for 4 more
years and then it will be shut down without any salvage value. Each year, the
volume of players depends only on the volume in the last year, and it is classified
as either high or low. If a high volume of players occurs, the expected profit for
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Table 5.16 Optimal strategies when the second-order MDP is used

d D 3 d D 4 d D 5

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 14731 4277 2858 13572 4148 2825 13224 4093 2791
v00 763 124 50 690 117 49 670 115 48
v01 811 167 87 739 159 86 717 156 84
v02 902 251 164 830 243 162 809 240 160
v03 1044 386 293 972 378 290 951 375 288
v10 776 135 59 703 127 57 682 124 55
v11 841 191 107 768 182 105 745 179 103
v12 930 275 184 858 267 182 836 263 180
v13 1083 420 321 1012 412 319 990 409 317
v20 801 158 79 728 150 77 707 146 74
v21 867 214 127 794 206 124 771 201 121
v22 953 295 202 881 287 200 859 284 198
v23 1107 442 340 1035 434 338 1014 430 336
v30 825 179 97 752 171 95 731 167 93
v31 896 240 149 823 231 147 800 227 144
v32 973 313 218 901 305 216 879 301 213
v33 1158 487 381 1087 480 379 1065 476 377

D00 P P NP NP NP NP NP NP NP
D01 P NP NP NP NP NP NP NP NP
D02 NP NP NP NP NP NP NP NP NP
D03 NP NP NP NP NP NP NP NP NP
D10 P P P P P P P P P
D11 P P NP P NP NP P NP NP
D12 NP NP NP NP NP NP NP NP NP
D13 NP NP NP NP NP NP NP NP NP
D20 P P P P P P P P P
D21 P P P P P P P P P
D22 NP NP NP NP NP NP NP NP NP
D23 NP NP NP NP NP NP NP NP NP
D30 P P P P P P P P P
D31 P P P P P P P P P
D32 P NP NP P NP NP NP NP NP
D33 NP NP NP NP NP NP NP NP NP

the company will be 8 million dollars; but the profit drops to 4 million dollars
when a low volume of players is encountered. At the end of every year, the profit
of the year is collected, and then the company has the option to take certain
actions that will influence the performance of their service and hence the volume
of players in the future. But some of these actions are costly so they reduce instant
profit. To be more specific, the company can choose to: (1) take no action, which
costs nothing; (2) perform only regular maintenance to the service system, which
costs 1 million; (3) or fully upgrade the service system, which costs 3 million.
If the volume of players in the last year was high, it stays in the high state in
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the coming year with probability 0:4 if no action is taken; this probability is 0:8

if only regular maintenance is performed; and the probability rises to 1 if the
system is fully upgraded. If the volume of players in the last year was low, then
the probability that the player volume stays low is 0:9 with no action taken, 0:6

with regular maintenance, and 0:2 when the service system is fully upgraded.
Assuming the discount factor is 0:9, and that the company experienced a low
volume of players last year, determine the optimal policy for the company.

2. Determine the optimal policy and the values for the Markov decision process of
the example in the previous problem, assuming that the process has an infinite
horizon and the discount factor remains equal to 0.9.



Chapter 6
Higher-Order Markov Chains

6.1 Introduction

Data sequences or time series occur frequently in many real world applications.
One of the most important steps in analyzing a data sequence (or time series) is the
selection of an appropriate mathematical model for the data. This is because it helps
in predictions, hypothesis testing and rule discovery. A data sequence fX.n/g can be
logically represented as a vector

.X.1/; X.2/; � � � ; X.T //;

where T is the length of the sequence, and X.i/ 2 DOM(A) (1 � i � T ) is
associated with a defined semantic and data type. In our context, we consider and
assume other types used can be mapped to one of these two types. The domains
of attributes associated with these two types are called numeric and categorical
respectively. A numeric domain consists of real numbers. A domain DOM.A/ is
defined as categorical if it is finite and unordered, e.g., for any a; b 2 DOM.A/,
either a D b or a ¤ b, see for instance [109]. Numerical data sequences have
been studied in detail, see for instance [25]. Mathematical tools such as the Fourier
transform and spectral analysis are employed frequently in the analysis of numerical
data sequences. Many different time sequence models have been proposed and
developed in the literature, see for instance [25] and the references therein.

For categorical data sequence, there are many situations that one would like to
employ a higher-order Markov chain model as a mathematical tool, see for instance
[1, 146, 151, 155, 176]. A number of applications can be found in the literatures
[120, 155, 177]. For example, in sales demand prediction, products are classified
into several states: very high sales volume, high sales volume, standard, low sales
volume and very low sales volume (categorical type: ordinal data). A higher-order

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 6,
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Markov chain model has been used in fitting observed data and then applied to wind
turbine design. In these applications and many others, one would like to

1. Characterize categorical data sequences for the purpose of comparison and
classification; or

2. Model categorical data sequences and hence make predictions in the control and
planning process.

It has been shown that higher-order Markov chain models can be a promising
approach for these purposes [53, 57, 120, 176, 177].

The remainder of this chapter is organized as follows. In Sect. 6.2, we present the
higher-order Markov chain model. Estimation methods for the model parameters
are also discussed. In Sect. 6.3, the higher-order Markov chain model is applied to a
number of applications such as sales demand predictions and web page predictions.
Further extension of the model is then discussed in Sect. 6.4. In Sect. 6.5, we apply
the model to the Newsboy problem, a classical problem in management sciences.
Section 6.6 discusses a higher-order Markov-switching model for risk measurement.
Finally a summary is given in Sect. 6.7.

6.2 Higher-Order Markov Chains

In the following, we assume that each data point X.n/ in a categorical data sequence
takes values in the set

M � f1; 2; : : : ; mg
where m is finite, i.e., a sequence has m possible categories or states. The con-
ventional model for a k-th order Markov chain has .m � 1/mk model parameters.
The major problem in using this kind of model is that the number of parameters
(the transition probabilities) increases exponentially with respect to the order of the
model. This large number of parameters discourages people from using a higher-
order Markov chain directly.

In [176], Raftery proposed a higher-order Markov chain model which involves
only one additional parameter for each extra lag. The model can be written as
follows:

P.X.n/ D j0 j X.n�1/ D j1; : : : ; X.n�k/ D jk/ D
kX

iD1

�i qj0ji (6.1)

where
kX

iD1

�i D 1

and Q D Œqij � is a transition matrix with column sums equal to one, such that

0 �
kX

iD1

�i qj0ji � 1; j0; ji 2 M: (6.2)
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The constraint in (6.2) is to guarantee that the right hand side of (6.1) is a probability
distribution. The total number of independent parameters in this model is of size
(k C m2). Raftery proved that (6.1) is analogous to the standard AR(n) model in
the sense that each additional lag, after the first, is specified by a single parameter
and that the autocorrelations satisfy a system of linear equations similar to the
Yule-Walker equations. Moreover, the parameters qj0ji and �i can be estimated
numerically by maximizing the log-likelihood of (6.1) subject to the constraints
(6.2). However, this approach involves solving a highly non-linear optimization
problem. The proposed numerical method guarantees neither convergence nor a
global maximum even if it converges.

6.2.1 The New Model

In this subsection, we extend Raftery’s model [176] to a more general higher-order
Markov chain model by allowing Q to vary with different lags. Here we assume that
the weight �i is non-negative such that

kX

iD1

�i D 1: (6.3)

It should be noted that (6.1) can be re-written as

X.nCkC1/ D
kX

iD1

�i QX.nCkC1�i /; (6.4)

where X.nCkC1�i / is the probability distribution of the states at time .nCk C1� i/.
Using (6.3) and the fact that Q is a transition probability matrix, we note that each
entry of X.nCkC1/ is between 0 and 1, and that the sum of all entries is also equal
to 1. In Raftery’s model, it does not assume � to be non-negative and therefore
the additional constraints (6.2) should be added to guarantee that X.nCkC1/ is the
probability distribution of the states.

Raftery’s model in (6.4) can be generalized as follows:

X.nCkC1/ D
kX

iD1

�i QiX.nCkC1�i /: (6.5)

The total number of independent parameters in the new model is (kCkm2). We note
that if

Q1 D Q2 D : : : D Qk

then (6.5) is just the Raftery’s model in (6.4).
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In the model we assume that X.nCkC1/ depends on X.nCi / (i D 1; 2; : : : ; k) via
the matrix Qi and weight �i . One may relate Qi to the i -step transition matrix of
the process and we will use this idea to estimate Qi . Here we assume that each Qi is
a non-negative stochastic matrix with column sums equal to one. Before we present
our estimation method for the model parameters we first discuss some properties of
our proposed model in the following proposition.

Proposition 6.1. Suppose Qi is irreducible and �i > 0 such that

0 � �i � 1 and
kX

iD1

�i D 1;

then the model in (6.5) has a stationary distribution NX when n ! 1 independent of
the initial state vectors X.0/; X.1/; : : : ; X.k�1/. The stationary distribution NX is also
the unique solution of the following linear system of equations:

.I �
nX

iD1

�i Qi/ NX D 0 and 1T NX D 1:

Here I is the m-by-m identity matrix (m is the number of possible states taken by
each data point) and 1 is an m � 1 vector of ones.

Proof. Let

Y.nCkC1/ D .X.nCkC1/; X.nCk/; : : : ; X.nC2//T

be an nm � 1 vector. Then one may write

Y.nC1/ D RY.n/

where

R D

0

BBBBBB@

�1Q1 �2Q2 � � � �n�1Qn�1 �nQn

I 0 � � � 0 0

0 I 0
:::

:::
: : :

: : :
: : : 0

0 � � � 0 I 0

1

CCCCCCA
(6.6)

is an nm � nm square matrix. We then define

QR D

0
BBBBBBBBBB@

�1Q1 I 0 0 � � � � � � 0
::: 0 I 0

:::
::: 0 0

: : :
: : :

:::
:::

:::
: : :

: : :
: : :

: : : 0

�n�1Qn�1

:::
: : :

: : : I

�nQn 0 � � � � � � � � � 0

1
CCCCCCCCCCA

: (6.7)
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We note that R and QR have the same characteristic polynomial in � :

detŒ.�1/k�1..�1Q1 � �I /�k�1 C
kX

iD2

�i Qi �
k�i /�:

Thus R and QR have the same set of eigenvalues.
It is clear that QR is an irreducible stochastic matrix with column sums equal to

one. Then from the Perron-Frobenius Theorem [8, p. 134], all the eigenvalues of QR
(or equivalently R) lie in the interval .0; 1� and there is exactly one eigenvalue equal
to one. This implies that

lim
n!1

n terms‚ …„ ƒ
R : : : R D lim

n!1.R/n D VUT

is a positive rank one matrix as R is irreducible. Therefore we have

lim
n!1 Y.nCkC1/ D lim

n!1.R/nY.kC1/

D V.Ut Y.kC1//

D ˛V:

Here ˛ is a positive number because YkC1 ¤ 0 and is non-negative. This implies
that X.n/ also tends to a stationary distribution as t goes to infinity. Hence we have

lim
n!1 X.nCkC1/ D lim

n!1

kX

iD1

�i QiX.nCkC1�i /

and therefore we have

NX D
kX

iD1

�i Qi
NX:

The stationary distribution vector NX satisfies

.I �
kX

iD1

�i Qi / NX D 0 with 1T NX D 1: (6.8)

The normalization constraint is necessary as the matrix

.I �
kX

iD1

�i Qi /

has a one-dimensional null space. The result is then proved.

We remark that if some �i are equal to zero, one can rewrite the vector YnCkC1

in terms of Xi where the �i are nonzero. Then the model in (7.13) still has a
stationary distribution NX when n goes to infinity independent of the initial state
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vectors. Moreover, the stationary distribution NX can be obtained by solving the
corresponding linear system of equations with the normalization constraint.

It has been shown in [216] that the condition can be further relaxed and the result
is presented in the following proposition.

Proposition 6.2. If Qk is irreducible and aperiodic, �1; �k > 0 and
Pk

iD1 �i D 1,
then the model has a stationary distribution X satisfying (6.8) and

lim
n!1 X.n/ D X:

6.2.2 Parameter Estimation

In this subsection, we present efficient methods to estimate the parameters Qi and
�i for i D 1; 2; : : : ; k. To estimate Qi , one may regard Qi as the i -step transition
matrix of the categorical data sequence fX.n/g. Given the categorical data sequence
fX.n/g, one can count the transition frequency f

.i/

jl in the sequence from State l to
State j in the i -step. Hence one can construct the i -step transition matrix for the
sequence fX.n/g as follows:

F .i/ D

0
BBBB@

f
.i/

11 � � � � � � f
.i/

m1

f
.i/

12 � � � � � � f
.i/

m2
:::

:::
:::

:::

f
.i/

1m � � � � � � f
.i/

mm

1
CCCCA

: (6.9)

From F .i/, we get the estimates for Qi D Œq
.i/

lj � as follows:

OQi D

0

BBBB@

Oq.i/
11 � � � � � � Oq.i/

m1

Oq.i/
12 � � � � � � Oq.i/

m2
:::

:::
:::

:::

Oq.i/
1m � � � � � � Oq.i/

mm

1

CCCCA
; (6.10)

where

Oq.i/

lj D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

f
.i/

lj

mX

lD1

f
.i/

lj

if
mX

lD1

f
.i/

lj ¤ 0

0 otherwise:

(6.11)
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We note that the computational complexity of the construction of F .i/ is of O.L2/

operations, where L is the length of the given data sequence. Hence the total
computational complexity of the construction of fF .i/gk

iD1 is of O.kL2/ operations.
Here k is the number of lags.

The following proposition shows that these estimators are unbiased.

Proposition 6.3. The estimators in (6.11) satisfy

E.f
.i/

lj / D q
.i/

lj E

0

@
mX

j D1

f
.i/

lj

1

A :

Proof. Let T be the length of the sequence, Œq
.i/

lj � be the i -step transition probability

matrix and NXl be the steady-state probability that the process is in state l . Then we
have

E.f
.i/

lj / D T � NXl � q
.i/

lj

and

E.

mX

j D1

f
.i/

lj / D T � NXl � .

mX

j D1

q
.i/

lj / D T � NXl:

Therefore we have

E.f
.i/

lj / D q
.i/

lj � E.

mX

j D1

f
.i/

lj /:

In some situations, if the sequence is too short then OQi (especially OQk) contains
a lot of zeros (therefore OQn may not be irreducible). However, this did not occur
in the tested examples. Here we propose the second method for the parameter
estimation. Let W.i/ be the probability distribution of the i -step transition sequence,
then another possible estimation for Qi can be W.i/1t . We note that if W.i/ is a
positive vector, then W.i/1t will be a positive matrix and hence an irreducible matrix.

Proposition 6.1 gives a sufficient condition for the sequence X.n/ to converge to
a stationary distribution X. Suppose X.n/ ! NX as n goes to infinity, then NX can be
estimated from the sequence fX.n/g by computing the proportion of the occurrence
of each state in the sequence, denoted by OX. From (6.8) one would expect that

kX

iD1

�i
OQi

OX � OX: (6.12)

This suggests one possible way to estimate the parameters

� D .�1; : : : ; �k/
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as follows. One may consider the following minimization problem:

min
�

(�����

kX

iD1

�i
OQi

OX � OX
�����

)

subject to

kX

iD1

�i D 1; and �i � 0; 8i:

Here jj:jj is a certain vector norm. In particular, if jj:jj1 is chosen, we have the
following minimization problem:

min
�

(
max

l

ˇ̌
ˇ̌
ˇ

"
kX

iD1

�i
OQi

OX � OX
#

l

ˇ̌
ˇ̌
ˇ

)

subject to

kX

iD1

�i D 1; and �i � 0; 8i:

Here Œ��l denotes the l th entry of the vector. The constraints in the optimization
problem guarantee the existence of the stationary distribution X. Next we see that the
above minimization problem can be formulated as a linear programming problem:

min
�

w

subject to
0
BBB@

w
w
:::

w

1
CCCA � OX �

h OQ1
OX j OQ2

OX j � � � j OQn
OX
i

0
BBB@

�1

�2

:::

�n

1
CCCA ;

0

BBB@

w
w
:::

w

1

CCCA � � OX C
h OQ1

OX j OQ2
OX j � � � j OQn

OX
i

0

BBB@

�1

�2

:::

�n

1

CCCA ;

w � 0;

kX

iD1

�i D 1; and �i � 0; 8i:

We can solve the above linear programming problem efficiently and obtain the
parameters �i . In the next subsection, we will demonstrate the estimation method
by a simple example.
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Instead of solving a min-max problem, one can also choose to use jj:jj1 and
formulate the following minimization problem:

min
�

(
mX

lD1

ˇ̌
ˇ̌
ˇ

"
kX

iD1

�i
OQi

OX � OX
#

l

ˇ̌
ˇ̌
ˇ

)

subject to

kX

iD1

�i D 1; and �i � 0; 8i:

The corresponding linear programming problem is given as follows:

min
�

mX

lD1

wl

subject to
0
BBB@

w1

w2

:::

wm

1
CCCA � OX �

h OQ1
OX j OQ2

OX j � � � j OQk
OX
i

0
BBB@

�1

�2

:::

�k

1
CCCA ;

0

BBB@

w1

w2

:::

wm

1

CCCA � � OX C
h OQ1

OX j OQ2
OX j � � � j OQk

OX
i

0

BBB@

�1

�2

:::

�k

1

CCCA ;

wi � 0; 8i;

kX

iD1

�i D 1; and �i � 0; 8i:

In the above linear programming formulation, the number of variables is equal to
k and the number of constraints is equal to (2m C 1). The complexity of solving
the linear programming problem is O.k3L/, where k is the number of variables and
L is the number of binary bits needed to store all the data (the constraints and the
objective function) of the problem [98].

We remark that other norms such as jj:jj2 can also be considered. In this
case, it will result in a quadratic programming problem. It is known that in
approximating data by a linear function [76, p. 220], jj:jj1 gives the most robust
answer, jj:jj1 avoids gross discrepancies with the data as much as possible and
if the errors are known to be normally distributed then jj:jj2 is the best choice.
In the tested examples, we only consider the norms leading to solutions of the linear
programming problems.
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6.2.3 An Example

We consider a sequence fX.n/g of the three states (m D 3) given by

f1; 1; 2; 2; 1; 3; 2; 1; 2; 3; 1; 2; 3; 1; 2; 3; 1; 2; 1; 2g: (6.13)

The sequence fX.n/g can be written in vector form

X.1/ D .1; 0; 0/T ; X.2/ D .1; 0; 0/T ; X.3/ D .0; 1; 0/T ; : : : ; X.20/ D .0; 1; 0/T :

We consider k D 2, then from (6.13) we have the transition frequency matrices

F .1/ D
0

@
1 3 3

6 1 1

1 3 0

1

A and F .2/ D
0

@
1 4 1

3 2 3

3 1 0

1

A : (6.14)

Therefore from (6.14) we have the i -step transition probability matrices (i D 1; 2)
as follows:

OQ1 D
0

@
1=8 3=7 3=4

3=4 1=7 1=4

1=8 3=7 0

1

A and OQ2 D
0

@
1=7 4=7 1=4

3=7 2=7 3=4

3=7 1=7 0

1

A (6.15)

and

OX D .
2

5
;

2

5
;

1

5
/T :

Hence we have

OQ1
OX D .

13

35
;

57

140
;

31

140
/T ;

and

OQ2
OX D .

47

140
;

61

140
;

8

35
/T :

To estimate �i one can consider the optimization problem:

min
�1;�2

w

subject to
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

w � 2

5
� 13

35
�1 � 47

140
�2

w � �2

5
C 13

35
�1 C 47

140
�2

w � 2

5
� 57

140
�1 � 61

140
�2

w � �2

5
C 57

140
�1 C 61

140
�2

w � 1

5
� 31

140
�1 � 8

35
�2

w � �1

5
C 31

140
�1 C 8

35
�2

w � 0;

�1 C �2 D 1;

�1; �2 � 0:

The optimal solution is

.��
1 ; ��

2 ; w�/ D .1; 0; 0:0286/;

and we have the model

X.nC1/ D OQ1X.n/: (6.16)

We remark that if we do not specify the non-negativity of �1 and �2, the optimal
solution becomes

.���
1 ; ���

2 ; w��/ D .1:80; �0:80; 0:0157/;

and the corresponding model is

X.nC1/ D 1:80 OQ1X.n/ � 0:80 OQ2X.n�1/: (6.17)

Although w�� is less than w�, the model (6.17) is not suitable. It is easy to check that

1:80 OQ1

0

@
1

0

0

1

A � 0:80 OQ2

0

@
0

1

0

1

A D
0

@
�0:2321

1:1214

0:1107

1

A ;

and therefore ���
1 and ���

2 are not valid parameters.
We note that if we consider the minimization problem:

min
�1;�2

.w1 C w2 C w3/
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subject to
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

w1 � 2

5
� 13

35
�1 � 47

140
�2

w1 � �2

5
C 13

35
�1 C 47

140
�2

w2 � 2

5
� 57

140
�1 � 61

140
�2

w2 � �2

5
C 57

140
�1 C 61

140
�2

w3 � 1

5
� 31

140
�1 � 9

35
�2

w3 � �1

5
C 31

140
�1 C 9

35
�2

w1; w2; w3 � 0; �1 C �2 D 1; �1; �2 � 0;

then the optimal solution is the same as the previous min-max formulation, and is
equal to

.��
1 ; ��

2 ; w�
1 ; w�

2 ; w�
3 / D .1; 0; 0:0286; 0:0071; 0:0214/:

6.3 Some Applications

In this section we apply our model to some data sequences. They include sales
demand data and webpage data. Given the state vectors X.i/, i D n � k; n � k C
1; : : : ; k � 1, the state probability distribution at time n can be estimated as follows:

OX.n/ D
kX

iD1

�i
OQiX.n�i /:

In many applications, one would like to make use of the higher-order Markov chain
models for the purpose of prediction. According to this state probability distribution,
the prediction of the next state OX.n/ at time n can be taken as the state with the
maximum probability, i.e.,

OX.n/ D j; if Œ OX.n/�i � Œ OX.n/�j ; 81 � i � m:

To evaluate the performance and effectiveness of the higher-order Markov chain
model, a prediction accuracy r is defined as

r D 1

T

TX

tDkC1

ıt ;
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where T is the length of the data sequence and

ıt D
�

1; if OX.t/ D X.t/

0; otherwise:

Using the example in the previous section, two possible prediction rules can be
drawn as follows:

8
<

:

OX.nC1/ D 2; if X.n/ D 1;
OX.nC1/ D 1; if X.n/ D 2;
OX.nC1/ D 1; if X.n/ D 3

or
8
<

:

OX.nC1/ D 2; if X.n/ D 1;
OX.nC1/ D 3; if X.n/ D 2;
OX.nC1/ D 1; if X.n/ D 3:

The prediction accuracy r for the sequence in (6.13) is equal to 12=19 for both
prediction rules. While the prediction accuracies of other rules for the sequence in
(6.13) are less than the value 12=19.

Next other numerical results on different data sequences are discussed. In the fol-
lowing tests, we solve min-max optimization problems to determine the parameters
�i of higher-order Markov chain models. However, we remark that the results of
using the jj:jj1 optimization problem as discussed in the previous section are about
the same as that of using the min-max formulation.

6.3.1 The Sales Demand Data

A large soft-drink company in Hong Kong faces an in-house problem of production
planning and inventory control. A pressing issue that stands out is the storage space
of its central warehouse, which often finds itself in a state of overflow or near
capacity. The company thus faces urgent need to study the interplay between their
storage space requirement and its growing sales demand. There are product states
defined by the level of sales volume. The states include:

state 1: very slow-moving (very low sales volume)
state 2: slow-moving
state 3: standard
state 4: fast-moving
state 5: very fast-moving (very high sales volume)

Such labelling is useful from both marketing and production planning points of
view. For instance, when it comes to production planning, the company can develop
a Dynamic Programming (DP) model to recommend better production strategies to
minimize its inventory build-up, and to maximize the demand satisfaction. Since the
number of alternatives at each stage (each day in the planning horizon) is very large
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Fig. 6.1 The states of four products A, B, C and D

(the number of products raised to the power of the number of production lines),
the computational complexity of the DP model is enormous. A priority scheme
based on the state (the level of sales volume) of the product is introduced to tackle
this combinatorial problem, and therefore an effective and efficient production plan
can be obtained. It is obvious that the accurate prediction of the state (the level of
sales volume) of the product is important in the production planning model.

In Fig. 6.1 (Taken from [52]), we show the states of four of the products of the
soft-drink company for some sales periods. Here we employ higher-order Markov
chain models to predict categories of these four products separately. For the new
model, we consider a second-order (n D 2) model and use the data to estimate OQi

and �i (i D 1; 2). The results are reported in Table 6.1. For comparison, we also
study the first-order and the second-order full Markov chain models. Results show
the effectiveness of our new model. We also see from Fig. 6.1 that the change of the
states of the Products A, B and D is more regular than that of the Product C. We find
in Table 6.1 that the prediction results for the Products A, B and D are better than
that of C (Taken from [52]).
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Table 6.1 Prediction accuracy in the sales demand data

Product A Product B Product C Product D

First-order Markov chain model 0.76 0.70 0.39 0.74
Second-order Markov chain model 0.79 0.78 0.51 0.83
New model (n D 2) 0.78 0.76 0.43 0.78
Randomly chosen 0.20 0.20 0.20 0.20

6.3.2 Webpage Prediction

The Internet provides a rich source for users to retrieve useful information. However,
it is easy for a user to get lost in an ocean of information. One way to assist
the user with their informational needs is to predict a user’s future request and to
use the prediction for making recommendations. Recommendation systems rely on
a prediction model to make inferences about users’ interests, upon which it will
make recommendations. Examples are the WebWatcher [126] system and Letzia
[147] system. An accurate prediction can potentially shorten the users’ access times
and reduce network traffic when the recommendation is handled correctly. In this
subsection, we use a higher-order Markov chain model to exploit the information
from web server logs for predicting users’ actions on the web.

The higher-order Markov chain model is built on a web server log file.
We consider the web server log file to be preprocessed into a collection of user
sessions. Each session is indexed by a unique user ID and starting time [183]. Each
session is a sequence of requests where each request corresponds to a visit to a web
page. We represent each request as a state. Then each session is just a categorical
data sequence. Moreover, we denote each Web page (state) by an integer.

6.3.2.1 Web Log Files and Preprocessing

Experiments were conducted on a real Web log file taken from the Internet. We first
implemented a data preprocessing program to extract sessions from the log file.
We downloaded two web log files from the Internet. The data set was a web log
file from the EPA WWW server located at Research Triangle Park, NC. This log
contained 47748 transactions generated in 24 h from 23:53:25 EDT, August 29, to
23:53:07, August 30, 1995. In preprocessing, we removed all the invalid requests
and the requests for images. We used Host ID to identify visitors and a 30 min time
threshold to identify sessions. 428 sessions of lengths between 16 and 20 min were
identified from the EPA log file. The total number of web pages (states) involved
is 3753.
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6.3.2.2 Prediction Models

By exploring the session data from the web log file, we observed that a large number
of similar sessions rarely exist. This is because in a complex web site with a variety
of pages, and many paths and links, one should not expect that in a given time period,
a large number of visitors follow only a few paths. If this is true, it would mean that
the structure and contents of the web site had a serious problem, because only a
few pages and paths were interesting to the visitors. In fact, most web site designers
expect that the majority of their pages, if not every one, are visited and paths are
followed (equally) frequently. The first and the second step transition matrices of all
sessions are very sparse in our case. In fact, there are 3; 900 and 4; 747 entries in the
first and the second step transition matrices respectively. Nonzero entries only make
up about 0:033 % of the total elements of the first and the second step transition
matrices.

Based on these observations, if we directly use these transition matrices to build
prediction models, they may not be effective. Since the number of pages (states) are
very large, the prediction probability for each page may be very low. Moreover, the
computational work for solving the linear programming problem in the estimation
of the �i are also high, since the number of constraints in the linear programming
problem depend on the number of pages (states). Here we propose to use clustering
algorithms [120] to cluster the sessions. The idea is to form a transition probability
matrix for each session, to construct the distance between two sessions based on the
Frobenius norm (See Definition 1.42 of Chap. 1) of the difference of their transition
probability matrices, and then use a k-means algorithm to cluster the sessions. As a
result of the cluster analysis, the web page cluster can be used to construct a higher-
order Markov chain model. Then we prefetch those web documents that are close to
a user-requested document in a Markov chain model.

We find that there is a clear similarity among these sessions in each cluster for
the EPA log file. As an example, we show in Fig. 6.2 (Taken from [52]) that the
first, the second and the third step transition probability matrices of a cluster in EPA
log file. There are 70 pages involved in this cluster. Non-zero entries make up about
1.92 %, 2.06 % and 2.20 % respectively of the total elements of the first, the second
and the third step transition matrices. Usually, the prediction of the next web page
is based on the current page and the previous few pages [2]. Therefore, we use a
third-order model (n D 3) and consider the first, the second and the third transition
matrices in the construction of the Markov chain model. After we find the transition
matrices, we determine �i and build our new higher-order Markov chain model for
each cluster. For the above mentioned cluster, the corresponding �1, �2 and �3 are
0:4984, 0:4531 and 0:0485 respectively. The parameters show that the prediction of
the next web page strongly depends on the current and the previous pages.
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6.3.2.3 Prediction Results

We performed clustering based on the transition matrices and parameters. Sixteen
clusters were found experimentally based on the average within-cluster distance.
Therefore sixteen third-order Markov chain models for these clusters are determined
for the prediction of user-request documents. For comparison, we also compute
the first-order Markov chain model for each cluster. In total there are 6; 255 web
documents for the prediction test. We find the prediction accuracy of our method is
about 77 %, but the prediction accuracy of using the first-order full Markov chain
model is 75 %. Results show an improvement in the prediction. We have applied
these prediction results to the problem of integrated web caching and prefetching
[210]. The slight increase of the prediction accuracy can enhance a prefetching
engine. Experimental results in [210] show that the resultant system outperforms
web systems that are based on caching alone.

6.4 Extension of the Model

In this section, we consider an extension of the higher-order Markov chain model
[68]. The higher-order Markov chain model (6.5)

XnCkC1 D
kX

iD1

�iQi XnCkC1�i

can be further generalized by replacing the constraints

0 � �i � 1; i D 1; 2; : : : ; k and
kX

iD1

�i D 1

by

0 �
kX

iD1

�i q
.i/
j0ji

� 1; j0; ji 2 M and
kX

iD1

�i D 1:

We expect this new model will have better prediction accuracy when an appropriate
order of model is used.

Next we give the sufficient condition for the proposed model to be stationary.
Similar to the proof in [176], it can be shown that:

Proposition 6.4. If we suppose that fX.n/; n 2 N g is defined by (7.13), where the
constraints 0 � � � 1 are replaced by

0 <

kX

iD1

�i q
.i/
j0ji

� 1;
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then the model (7.13) has a stationary distribution NX when n ! 1 independent of
the initial state vectors

.X.0/; X.1/; : : : ; X.k�1//:

The stationary distribution NX is also the unique solution of the linear system of
equations:

.I �
kX

iD1

�i Qi/ NX D 0 and 1T NX D 1:

We can use the method in Sect. 6.2.2 to estimate the parameters Qi . For �i ,
the linear programming formulation can be considered as follows. In view of
Proposition 6.4, if we suppose the model is stationary, then we have a stationary
distribution NX. Then NX can be estimated from the observed sequence fX.s/g by
computing the proportion of the occurrence of each state in the sequence. In
Sect. 6.2.2, it suggests one possible way to estimate the parameters

� D .�1; : : : ; �k/

as follows. In view of (6.12) one can consider the following optimization problem:

min
�

( ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

kX

iD1

�i
OQi

OX � OX
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
1

)
D min

�

8
<

:max
j

"ˇ̌
ˇ̌
ˇ

kX

iD1

�i
OQi

OX � OX
ˇ̌
ˇ̌
ˇ

#

j

9
=

;

subject to

kX

iD1

�i D 1;

and

0 �
kX

iD1

�iq
.i/
j0ji

� 1; j0; ji 2 M:

Here Œ��j denotes the j th entry of the vector. We see that the above optimization
problem can be re-formulated as a linear programming problem as stated in
the previous section. Instead of solving a min-max problem, one can also formulate
the l1-norm optimization problem. In these linear programming problems, we note
that the number of variables is equal to k and the number of constraints is equal to
.2mkC1 C 2m C 1/. With the following proposition (see also [177]), we can reduce
the number of constraints to .4m C 1/ if we formulate the estimation problem as a
nonlinear programming problem.
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Proposition 6.5. The constraints

0 �
kX

iD1

�i q
.i/
j0ji

� 1; j0; ji 2 M

are equivalent to

kX

iD1

�
maxf�i ; 0g min

ji

fq.i/
j0ji

g � maxf��i ; 0g max
ji

fq.i/
j0ji

g
�

� 0 (6.18)

and

kX

iD1

�
maxf�i ; 0g max

ji

fq.i/
j0ji

g � maxf��i ; 0g min
ji

fq.i/
j0ji

g
�

� 1 (6.19)

Proof. We prove the first part of the inequality. If inequality (6.18) holds, then

kX

iD1

�i q
.i/
j0ji

D
X

�i �0

�i q
.i/
j0ji

C
X

�i <0

�i q
.i/
j0ji

�
X

�i �0

�i min
ji

fq.i/
j0ji

g C
X

�i <0

�i max
ji

fq.i/
j0ji

g

� 0:

Conversely, we assume that

8j0; ji 2 M;

kX

iD1

�i q
.i/
j0ji

� 0:

Suppose

min
ji

fq.i/
j0ji

g D q
.i/
j0ji0

and

max
ji

fq.i/
j0ji

g D q
.i/
j0ji1

then

X

�i �0

�i min
ji

fq.i/
j0ji

g C
X

�i <0

�i max
ji

fq.i/
j0ji

g D
X

�i �0

�i q
.i/
j0ji0

C
X

�i <0

�i q
.i/
j0ji1

� 0:

This is equivalent to (6.18). One can use a similar method to prove the second part
and hence we complete the proof.
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In the following, we give a simple example to demonstrate our estimation
methods. We consider a sequence fX.t/g of two states (m D 2) given by

f1; 1; 2; 2; 1; 2; 2; 1; 2; 2; 1; 2; 2; 1; 2; 2; 1; 2; 2; 2g: (6.20)

The sequence fX.t/g can be written in vector form

X.1/ D .1; 0/T ; X.2/ D .1; 0/T ; X.3/ D .0; 1/T ; : : : ; X.20/ D .0; 1/T :

If we consider k D 2; 3; 4, then from (6.20) we have the transition frequency
matrices

F .1/ D
�

1 5

6 7

�
; F .2/ D

�
0 5

7 6

�
; (6.21)

F .3/ D
�

5 0

2 10

�
; F .4/ D

�
1 4

5 6

�
: (6.22)

Therefore from (6.21) we have the i -step transition matrices (i D 1; 2; 3; 4) as
follows:

OQ1 D
�

1=7 5=12

6=7 7=12

�
; OQ2 D

�
0 5=11

1 6=11

�
; (6.23)

OQ3 D
�

5=7 0

2=7 1

�
; OQ4 D

�
1=6 4=10

5=6 6=10

�
(6.24)

and OX D .0:35; 0:65/T . In this example, the model parameters can be obtained by
solving a linear programming problem. It turns out that the parameters obtained are
exactly the same for both k � k1 and k � k1. We report the parameters for the case of
k D 2; 3; 4. For k D 2, we have

.��
1 ; ��

2 / D .1:4583; �0:4583/:

For k D 3, we have

.��
1 ; ��

2 ; ��
3 / D .1:25; 0; �0:25/:

For k D 4, we have

.��
1 ; ��

2 ; ��
3 ; ��

4 / D .0; 0; �0:3043; 1:3043/:

We remark that to compare different models, one can also adopt the �2 statistics
method. From the observed data sequence, one can obtain the distribution of states

.O1; O2; : : : ; Om/:



162 6 Higher-Order Markov Chains

From the model parameters Qi and �i , by solving

X D
nX

iD1

�i
OQi X with 1T X D 1;

one can obtain the theoretical probability distribution of the states

.E1; E2; : : : ; Em/:

Then the �2 statistic is defined as

�2 D L

mX

iD1

.Ei � Oi /
2

Ei

:

The smaller this value is, the better the model will be.

6.5 The Newsboy Problem

The Newsboy problem is a well-known classical problem in management science
[165] and it can be described as follows. A newsboy starts selling newspaper every
morning. The cost of each newspapers remaining unsold at the end of the day is Co

(overage cost) and the cost of each unit of unsatisfied demand is Cs (shortage cost).
Suppose that the probability distribution function of the demand D is given by

Prob .D D d/ D pd � 0; d D 1; 2; : : : ; m: (6.25)

The objective here is to determine the best amount r� of newspaper to be ordered
such that the expected cost is minimized. To write down the expected long-run cost
for a given amount of order size r we have the following two cases:

1. If the demand d < r , then the cost will be .r � d/Co, and
2. if the demand d > r , then the cost will be .d � r/Cs .

Therefore the expected cost when the order size is r is given by

E.r/ D Co

rX

dD1

.r � d/pi

„ ƒ‚ …
Expected Overage Cost

C Cs

mX

dDrC1

.d � r/pi

„ ƒ‚ …
Expected Shortage Cost

: (6.26)

Let us define the cumulative probability function of the demand D as follows:

F.d/ D
dX

iD1

pi D Prob .D � d/ for d D 1; 2; : : : ; m: (6.27)

We have the following results.
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Proposition 6.6.

E.r/ � E.r C 1/ D Cs � .Co C Cs/F.r/ (6.28)

and

E.r/ � E.r � 1/ D �Cs C .Co C Cs/F.r � 1/: (6.29)

By using the above proposition and making use of the fact that F.r/ is monotoni-
cally increasing in r , we have the following proposition.

Proposition 6.7. The optimal order size r� is the one which satisfies

F.r� � 1/ <
Cs

Cs C Co

� F.r�/: (6.30)

6.5.1 A Markov Chain Model for the Newsboy Problem

One can further generalize the Newsboy problem as follows. Suppose that the
demand is governed by a Markov chain, i.e., the demand tomorrow depends on the
demand today. Again the demand has m possible states. We shall order the states in
increasing order. The demand at time t is said to be in state i if the demand is i and
is denoted by the vector

Xt D .0; : : : ; 0; 1„ƒ‚…
i th entry

; 0 : : : ; 0/T :

We let Q (an m � m matrix) be the transition probability matrix of the Markov
process of the demand. Therefore we have

XtC1 D QXt:

Here we assume that Q is irreducible and hence the stationary probability distribu-
tion S exists, i.e.

lim
t!1 Xt D S D .s1; s2; : : : ; sm/T :

Now we let rj 2 f1; 2; : : : ; mg be the size of the next order given that the current
demand is j , and C.rj ; i/ be the cost of the situation that the size of order is rj and
the actual next demand is i . We note that C.rj ; i/ is a more general cost than the
one in (6.26). Clearly the optimal ordering policy depends on the state of the current
demand because the demand probability distribution in the next period depends on
the state of the current demand. The expected cost is then given by

E.fr1; r2; : : : ; rmg/ D
mX

j D1

sj �
 

mX

iD1

C.rj ; i/qij

!
; (6.31)
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where qij D ŒQ�ij is the transition probability of the demand from the state j to the
state i . In other words, qij is the probability that the next demand will be in state i

given that the current demand is in state j . The optimal ordering policy

.r�
1 ; r�

2 ; : : : ; r�
m/

is the one which minimizes (6.31). We observe that if the current demand is j , then
we only need to choose the ordering size rj to minimize the expected cost. Since

min
rj

E.fr1; r2; : : : ; rmg/ D
mX

j D1

sj �
 

min
rj

mX

iD1

C.rj ; i/qij

!
; (6.32)

the optimal ordering size r�
j can be obtained by solving

min
rj

(
mX

iD1

C.rj ; i/qij

)
: (6.33)

By using Proposition 6.7, we have

Proposition 6.8. If

C.rj ; i/ D
�

Co.rj � i/ if rj � i

Cs.i � rj / if rj < i
(6.34)

and let

Fj .k/ D
kX

iD1

qij

then the optimal ordering size r�
j satisfies

Fj .r�
j � 1/ <

Cs

Cs C Co

� Fj .r�
j /:

We remark that one has to estimate qij before one can apply the Markov chain
model. We will propose an estimation method for qij as discussed in the previous
section. We note that when qij D qi for i; j D 1; 2; : : : ; m, (the demand distribution
is stationary and independent of the current demand state) then the Markov Newsboy
model described above reduces to the classical Newsboy problem. Let us consider
an example to demonstrate that the extension to a Markov chain model is useful and
important.

Example 6.9. Suppose that the demand .1; 2; : : : ; 2k/ (m D 2k) follows a Markov
process, with the transition probability matrix Q of size 2k � 2k given by
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Q D

0
BBBBBBB@

0 0 � � � 0 1

1 0
: : : 0

0 1 0
: : :

:::
:::

: : :
: : :

: : : 0

0 � � � 0 1 0

1
CCCCCCCA

; (6.35)

and the cost is given in (6.34) with Co D Cs . Clearly the next demand can be
determined precisely by the state of the current demand, and hence the optimal
expected cost is equal to zero when the Markov chain model is used. When the
classical Newsboy model is used, we note that the stationary distribution of Q is
given by

1

2k
.1; 1; : : : ; 1/T :

The optimal ordering size is equal to k by Proposition 6.7 and therefore the optimal
expected cost is Cok.

According to this example, it is obvious that the more “information” one can
extract from the demand sequence, the better the model will be and hence the better
the optimal ordering policy one can obtain. Therefore it is natural for one to consider
a higher-order Markov chain model. The only obstacle here is the huge number of
states and parameters. We employ a higher-order Markov chain model that can cope
with the difficulty.

Let us study the optimal ordering policy for this higher-order Markov chain
model. Define the set

˚ D fG D .j1; j2; : : : ; jn/T j jk 2 f1; 2; : : : ; mg for k D 1; 2; : : : ; ng:
let

pi;G D P.XtCnC1 D Ei j XtC1 D Ej1; XtC2 D Ej2; : : : ; XtCn D Ejng
.G D .j1; j2; : : : ; jn/T / to be the probability that the demand at time .tCnC1/ is i

given that the demand at the time t C k is jk 2 f1; 2; : : : ; mg for k D 1; 2; : : : ; n.
Here Ei is a unit vector representing the state of demand. This means that the
demand distribution at time .t C n C 1/ depends only on the states of the demand at
the time t C 1; t C 2; : : : ; t C n, and this is also true for the optimal ordering policy.
In the higher-order Markov chain model (7.12), we have

pi;G D
nX

iD1

�i Qi Eji :
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Under some practical conditions as described in previous sections, one can show that

lim
t!1 P.XtC1 D Ej1; XtC2 D Ej2; : : : ; XtCn D Ejn/ D sG;

where sG is independent of t . Let

rG; .G D .j1; j2; : : : ; jn/T /

be the ordering policy when the demands of the previous n periods are j1; j2; : : : ; jn.
The expected cost for all ordering policies G 2 ˚ is then given by

E.˚/ D
X

G2˚

sG

 
mX

iD1

C.rG; i/pi;G

!
: (6.36)

The optimal ordering policy fr�
G j G 2 ˚g is the one which minimizes (6.36). We

remark that the computational complexity for computing all the optimal ordering
policies r�

G is of O.mn/ operations because j˚ j D mn. However, we observe that if
the demands of the previous n periods are j1; j2; : : : ; jn, then we only need to solve
the ordering size rG which minimizes the expected cost. Since

min
rG

E.˚/ D
mX

j D1

sG �
 

min
rG

mX

iD1

C.rG; i/pi;G

!
; (6.37)

the optimal ordering size r�
G can be obtained by solving

min
rG

mX

iD1

C.rG; i/pi;G; rG 2 f1; 2; : : : ; mg:

By Proposition 6.7 again, if

C.rG; i/ D
�

Co.rG � i/ if rG � i

Cs.i � rG/ if rG < i;

and let

FG.k/ D
kX

iD1

pi;G;

then the optimal ordering size r�
G satisfies the inequalities

FG.r�
G � 1/ <

Cs

Cs C Co

� FG.r�
G/:

Therefore, in order to compute the optimal ordering size, the main task here is to
estimate the probabilities pi;G or equivalently to estimate the parameters �i and Qi

based on the observed data sequence.
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Table 6.2 The optimal costs of the three different models

Product A Product B Product C

Third-order Markov model 11,200 9,300 10,800
First-order Markov model 27,600 18,900 11,100
Stationary model 31,900 18,900 16,300

6.5.2 A Numerical Example

In this subsection, we present an application of the higher-order Markov model
to a generalized Newsboy problem [51]. The background is that a large soft-
drink company faces an in-house problem of production planning and inventory
control. There are three types of products A, B and C having five different possible
sales volume (1; 2; 3; 4 and 5). Such labelling is useful from both marketing and
production planning points of view. The categorical data sequences for the demand
for three products of the soft-drink company for some sales periods can be found in
[51]. Based on the sales demand data, we build the higher-order Markov models
of different orders. These models are then applied to the problem of long-run
production planning and the following cost matrix is assumed

C D

0

BBBBB@

0 100 300 700 1500

100 0 100 300 700

300 100 0 100 300

700 300 100 0 100

1500 700 300 100 0

1

CCCCCA
: (6.38)

Here ŒC �ij is the cost when the production plan is for sales volume of state i and the
actual sales volume is state j . We note that the costs here are non-linear, i.e. ŒC �ij ¤
cji � j j, where c is a positive constant. When the unsatisfied demand is higher,
the shortage cost is larger. Similarly, when the holding product is more, the overage
cost is larger. For the higher-order Markov model, we find that the third-order model
gives the best optimal cost. Here we also report the results on the first-order model
and the stationary model for the three product demand sequences. The results are
given in Table 6.2 (Taken from [51]).

6.6 Higher-Order Markov Regime-Switching
Model for Risk Measurement

In this section, we discuss an application of the higher-order Markov model in
risk measurement. The focus here is on the use of the higher-order Markov chain
as the modulating Markov chain for a Markov regime-switching model. Firstly,
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we give a brief introduction to Markov regime-switching models. Then we estab-
lish the modeling framework based on a higher-order Markov regime-switching
(HMRS) model, and evaluate risk measures using the HMRS model. This section is
based on some material in [189].

6.6.1 A Snapshot for Markov Regime-Switching Models

Markov regime-switching models are one of the major classes of models in
(financial) econometrics. The basic idea of Markov regime-switching models is to
allow the model parameters, (or coefficients), to switch over time according to the
state of an underlying process described by a Markov chain. This Markov chain is
called a modulating Markov chain. In economic and financial applications, the states
of the modulating Markov chain are usually interpreted as the underlying states
of an economy. Consequently, Markov regime-switching models provide flexibility
in incorporating the impact of the states of the economy in modeling economic
and financial dynamics, such as asset price dynamics. In physical and engineering
sciences, the states of the modulating Markov chain may be interpreted as different
states of physical and engineering systems such as energy modes in high energy
physics, modes of manufacturing machines and modes of electricity generators.

Indeed, Markov regime-switching models have a long history in engineering
science; in statistics and economics, their history can be tracked back to works
as early as [107, 174]. The idea of Markov regime switching has also appeared
in one of the pioneering works on parametric nonlinear time series analysis by
Tong [197, 200], (see [198, 199]), where one of the oldest nonlinear time series
models, namely, the class of Threshold AutoRegressive (TAR) time series models,
was first introduced. This class of parametric nonlinear time series models is general
and flexible enough to accommodate a number of interesting cases, including the
Self-exciting Threshold AutoRegressive (SETAR) time series models and Markov
regime-switching time series models. Hamilton [112] pioneered the econometric
applications of Markov regime-switching models. Since then, the Markov regime-
switching models become increasingly popular in economics and finance. Recently
there has been phenomenal growth in the applications of Markov regime-switching
models in discussing various practical problems in finance. Some examples include
[86, 94, 96, 211] for optimal portfolio allocation, [90, 93, 171, 185, 186, 215] for
modeling stochastic interest rate, [29, 30, 85, 95, 110, 166, 184] for option valuation,
[88, 89, 91, 97] for volatility estimation, [92, 189] for risk measurement. A recent
monograph [156] presents the cutting edge applications of regime-switching models
to various practical problems in economics, finance and actuarial science.

In what follows, we discuss the basic idea of a Markov regime-switching model
using a simple discrete-time two-regime model as an example. Here we suppose that
the modulating Markov chain is a standard Markov chain, (i.e., a first-order Markov
chain). To make our discussion more concrete, we adopt the two-regime model to
describe the logarithmic return of a risky asset.
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Consider a first-order two-state Markov chain X WD fX.i/; 1 � i � T g with
length T and the following transition probabilities:

P.X.n/ D j0jX.n�1/ D j1/ D qj0;j1 ; j0; j1 2 f1; 2g: (6.39)

Here f1; 2g is the state space of the Markov chain X . If X.n/ D 1, we say that the
economy is in a “Good” state. Whereas, if X.n/ D 2, we say that the economy in a
“Bad” state.

Let f�t ; 1 � t � T g be a sequence of independent and identically distributed,
(i.i.d.), random variables with zero mean and unit variance and suppose fYt ; 1 � t �
T g is the sequence of logarithmic returns of a risky asset. For each t D 1; 2; : : : ; T ,
let �t be the expected rate of return, (i.e., the appreciation rate), of the risky asset in
the t th period. Similarly, let �t be the volatility of the risky asset in the t th period.
We suppose that the expected rate of return �t and the volatility �t are modulated
by the Markov chain X as:

�t WD �.X.t//; �t WD �.X.t//:

So if X.t/ D 1, (i.e., the economy in the t th period is good), then

�t D �.1/; �t D �.1/:

Otherwise,

�t D �.2/; �t D �.2/:

It is reasonable and intuitive to assume that �.1/ > �.2/ and �.1/ < �.2/.
Now we describe the evolution of the logarithmic return of the risky asset over

time as the following discrete-time, two-regime, Markov, regime-switching, model:

Yt D �.X.t// C �.X.t//�t :

So if the economy is good, the dynamics of the logarithmic return are given by:

Yt D �.1/ C �.1/�t :

Similarly when the economy is bad, the dynamics of the logarithmic return are
given by:

Yt D �.2/ C �.2/�t :

The modulating Markov chain can be assumed as either observable or hidden.
If we assume that the Markov chain is observable, the model for logarithmic return
is completely observed, and we can interpret the states of the Markov chain as
different levels of proxies of some macro-economic factors, such as gross domestic
product and retail price index. If we suppose that the Markov chain is hidden, then
the model for logarithmic return is partially observed, and the states of the Markov
chain can be interpreted as hidden states of the economy. The model based on a
hidden Markov chain appears to be more general than its counterpart based on an
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observable Markov chain. Furthermore, in the situation of a hidden Markov chain,
filtering is often involved in the implementation of the model. In this chapter and
Chap. 8, we consider a general situation where the modulating Markov chain is
hidden.

6.6.2 A Risk Measurement Framework Based
on a HMRS Model

The main motivation for considering a HMRS model for risk measurement is that
many real-world economic and financial time series possess memories and these
memories in economic and financial time series may have significant economic
consequences. The empirical phenomenon of (long-term) memories, is coined as
the Joseph effect, see for example [78, 153]. It is known that Markov chains
serve as reasonable approximations to (continuous state) time series models. In the
same vein, the higher-order Markov chain, which is also called the weak Markov
chain (see for instance [201, 202, 205]), provides a feasible and convenient way to
approximate time series models with memories.

In this subsection we present a HMRS model which was introduced in [189].
We only highlight the main results here, and interested readers may refer to [189]
for details. The central tenet of the HMRS model is that the expected rate of return
and the volatility of a risky portfolio are modulated by a discrete-time, finite-state,
higher-order Markov chain. Note that instead of modeling returns of individual
risky assets as in the last subsection, we consider the model at a portfolio level and
describe the dynamics of the portfolio’s return. The rationale of the HMRS model
is to incorporate a regime-switching effect with long-term memory in modeling
the dynamics of the portfolio’s returns. This is different from some existing time
series models with long-term memories, where the effect of long-term memories
is incorporated in the innovations terms, or the error terms. In what follows, we
describe the mathematical set up of the HMRS.

Let T be the time parameter set f1; 2; � � � ; g of the economy. Unlike the previous
subsection, we consider an infinite-horizon, discrete-time situation for the sake of
generality. To describe uncertainty, we consider a complete probability space
.˝;F ; P /, where P is a real-world probability measure. Note that for the purpose
of risk measurement, a real-world probability measure should be used.

Let V WD fVt ; t 2 T g be a discrete-time, higher-order Markov chain defined on
.˝;F ; P / with state space

V WD fv1; v2; : : : ; vM g:
Here we suppose that the Markov chain is hidden and that the states of the chain
represent different states of a hidden economy. We may interpret v1 as the “best”
economic state, v2 as the second “best” economic state and vM as the “worst”
economic state, etc.
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We consider here the situation that V is an l th-order Markov chain. For each
l D 1; 2; � � � and each t � l � 1, let

i.t; l/ WD .it ; it�1; : : : ; it�lC1/;

where it ; it�1; : : : ; it�lC1 2 f1; 2; : : : ; M g.
We note that i.t; l/ represents the indices of the states of the Markov chain from

time t � l C 1 to t inclusively. In other words, given that

i.t; l/ WD .it ; it�1; : : : ; it�lC1/;

we have

Vt D vit ; Vt�1 D vit�1 : : : ; Vt�lC1 D vit�lC1
:

To specify the probability laws of the l th-order Markov chain, we define a set of
state transition probabilities by putting:

P.itC1ji.t; l// WD P ŒVtC1 D vitC1
jVt D vit ; : : : ; Vt�lC1 D vit�lC1

�;

itC1 D 1; 2; � � � ; M: (6.40)

The order l represents the degree of the long-term memory of the states of the
economy.

To completely determine the probability laws of the chain V , we must specify its
initial distributions as follows:

P.ilC1ji.l// WD 	ilC1ji.l/; for 0 � t < l; ilC1 D 1; 2; : : : ; M (6.41)

where 	ilC1ji.l/ is the probability that VlC1 D vilC1
given that

Vl WD vil ; Vl�1 D vil�1
; � � � ; V1 D vi1

and i.l/ D .i1; i2; : : : ; il /.
We now specify the HMRS model modulated by the l th-order hidden Markov

chain V . Let fYt ; t 2 T g be a sequence of logarithmic returns of a risky portfolio,
where Yt denotes the logarithmic return of the portfolio in the t th period. To simplify
our notation, we write Vt;l for .Vt ; Vt�1; : : : ; Vt�lC1/, for each t � l � 1, l D
1; 2; : : : .

Let �t and �t be the expected rate of return and the volatility of the portfolio in
the t th period, respectively. We suppose that both the expected rate of return and the
volatility are modulated by the l th-order hidden Markov chain V as follows:

�t WD �.Vt;l /; �t WD �.Vt;l /:

In other words, both the expected rate of return and volatility of the portfolio in the
t th period depend on the current and past values of the chain V up to lag l .
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Let f�t ; t 2 T g be a sequence of independent and identically distributed (i.i.d.)
random variables defined on .˝;F ; P /, with common distribution N.0; 1/, a
standard normal distribution with zero mean and unit variance. We assume that �

and V are stochastically independent under P . Then we suppose that the evolution
of the logarithmic returns of the portfolio over time is governed by the following
HMRS model:

Yt D �.Vt;l / C �.Vt;l /�t : (6.42)

Note that the structure of the HMRS model resembles that of the continuous-state
observation process in [87] and that the HMRS is a generalization of the simple
Markov, regime-switching, model discussed in the last subsection. In particular,
when l D 1 and the chain V has two states, the above HMRS model reduces to
the Markov, regime-switching, model in the last subsection.

To simplify our discussion, we focus on the situation where l D 2, (i.e., a second-
order hidden Markov chain). The method presented below can be extended to a
general order l . However, the notation in the general case is tedious. When l D 2,
the dynamics of the logarithmic returns of the portfolio become:

Yt D �.Vt ; Vt�1/ C �.Vt ; Vt�1/�t ; t 2 T : (6.43)

Instead of handling the second-order hidden Markov chain directly, we consider
a two-dimensional first-order hidden Markov chain X which embeds the second-
order chain. By doing so, we can adopt the filtering method for the first-order hidden
Markov chains to derive filters for the second-order hidden Markov chains.

Consider now the following two-dimensional hidden Markov chain X defined on
.˝;F ; P /, which embeds V :

Xt WD .Vt ; Vt�1/: (6.44)

Let X be an .M � M /-matrix with the .i; j /-element

xij WD .vi ; vj /; i; j D 1; 2; : : : ; M;

so that X is the state space of the two-dimensional first-order hidden Markov
chain X .

Define QX WD vec.X / where vec.�/ is the column-by-column vectorization func-
tion. Then QX is an M 2-dimensional column vector. In particular, the ..j�1/M C
i/th-element Qx.j �1/MCi of QX is given by xij WD .vi ; vj /. Consequently, we can
define a one-dimensional first-order hidden Markov chain QX , induced by the two-
dimensional first-order hidden Markov chain X , such that

QXt D Qx.j �1/MCi

whenever Xt D xij .
Following the treatment in [83], without loss of generality, we identify the state

space of the chain QX with a set of standard unit vectors in RM 2
:
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E WD fe1; e2; : : : ; eM 2g

with the i th component of ej being the Kronecker delta function ıij , for each i; j D
1; 2; � � � ;RM 2

.
The use of E to be the state space of the chain QX facilitates the use of

mathematics, and this state space is called the canonical state space of the chain QX .
Again, to specify the probability laws of the chain QX , we define an .M 2 � M 2/-

matrix representing the time-independent, (homogeneous), transition probability
matrix of the first-order Markov chain QX . The .j; k/-element ajk of A, (j; k D
1; 2; : : : ; M 2), is given by

ajk WD P. QXt D ej j QXt�1 D ek/: (6.45)

Let F
QX WD fF QX

t jt 2 T g be the right-continuous, P -completed, natural filtration

generated by the chain QX , where F QX
t is the minimal �-field generated by the

information about QX up to and including time t and all P -null sets in F . Then with
the canonical state space E of the chain QX , the following semimartingale dynamics
for the chain QX are obtained in [84]:

QXt WD A QXt�1 C Lt : (6.46)

Here L is an RM 2
-valued, .F

QX; P /-martingale difference process.
We now specify the structure of information in our model. For each t 2 T , let FY

t

and FV
t be the �-fields generated by the return process Y and the hidden Markov

chain V up to and including time t , respectively. Note that FY
t represents observable

information at time t .
For each i; j D 1; 2; : : : ; M , let


ij .x/ WD 1q
2	�2

ij

exp

�
� 1

2�2
ij

x2

�
:

This is the probability density function of a normal distribution N.0; �2
ij / with mean

zero and variance �2
ij .

Then it has been shown in [189] that the predictive distribution of FYtC1
.yjFY

t /

of YtC1 given FY
t under P is given by:

FYtC1
.yjFY

t / D
MX

iD1

MX

j D1

P. QXt D Qx.j �1/MCi jFY
t /

Z y��ij

�1

ij .x/dx;

and so

fYtC1
.yjFY

t / D
MX

iD1

MX

j D1

P. QXt D Qx.j �1/MCi jFY
t /
ij .y � �ij /:
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For each t 2 T , let QXY
t WD E. QXt jFY

t /, where E is the expectation under the
measure P . Then

FYtC1
.yjFY

t / D
MX

iD1

MX

j D1

˝ QXY
t ; e.j �1/MCi

˛ Z y��ij

�1

ij .x/dx;

and

fYtC1
.yjFY

t / D
MX

iD1

MX

j D1

˝ QXY
t ; e.j �1/MCi

˛

ij .y � �ij /;

where h�; �i denotes a scalar product in RM 2
.

Using a version of the Bayes’ rule, a recursive filter for QXY
t can be obtained as

follows:

QXY
tC1 WD E. QXtC1jFY

tC1/

D
PM

iD1

PM
j D1

˝ QXY
t ; e.j �1/MCi

˛

ij .ytC1 � �ij /Ae.j �1/MCi

PM
iD1

PM
j D1

˝ QXY
t ; e.j �1/MCi

˛

ij .ytC1 � �ij /

: (6.47)

This filtered estimate QXY
tC1 is optimal among all linear estimates in the sense of

mean-square loss. This is left as an exercise.

6.6.3 Value at Risk Forecasts

Value-at-Risk (VaR) has emerged as one of the most prominent tools in the
finance and insurance industries. Many regulatory bodies, financial institutions and
insurance companies adopt VaR as a measure for risk. Technically speaking, VaR is
a statistical estimation of a portfolio’s loss, where the owner of the portfolio expects
to incur that loss or more with a given probability level over a specified time horizon
for risk measurement (see for example, [17,81,127]). For example, if the daily VaR
at a 95 % confidence level is US$ 1 million, then there is a 0.95 chance that the actual
loss will not exceed the amount of US$ 1 million in the next day. For the practical
implementation of VaR, refer to J.P. Morgan’s RiskMetrics—Technical Document
and the monograph by McNeil et al. [157]. Basically, there are two common
approaches to the VaR implementation, namely, (a) the historical simulation and
(b) the model-based approach. The historical simulation is to calculate VaR based
on the empirical distribution of historical data by bootstrapping. This method is non-
parametric in the sense that stringent assumptions for the profit/loss distribution are
not required. The model-based method assumes a parametric form of the profit/loss
distribution and estimates the unknown parameters using historical data.
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Although VaR is a popular tool in the practice of risk measurement and
management in the finance and insurance industries, [5, 6] have pointed out the
theoretical shortcomings of VaR. In particular, VaR does not satisfy the sub-
additive property saying that the merge of two risky positions does not reduce
risk. This is counter-intuitive from the perspective of diversification, which is a
key theme in modern finance. Furthermore, VaR remains silent about the severity
of losses when the losses exceed a certain threshold level. Despite these theoretical
shortcomings, VaR still remains a popular measure of risk in practice due to its
simplistic interpretation. It provides both an easy-to-understand risk measure in
financial reporting and computational tractability under some specific parametric
assumptions, such as the multivariate normality assumption. It is also worth noting
that VaR satisfies the sub-additive property when the profit/loss distribution is in the
elliptical class (i.e., symmetrical), which includes normal distributions as a special
case. In what follows, we discuss the evaluation of VaR forecasts using the HMRS
model presented in the last subsection.

Suppose qtC1jt .˛/ is the ˛-quantile of the predictive distribution of YtC1 given
FY

t under P . By definition,

FYtC1
.qtC1jt .˛/jFY

t / D ˛; (6.48)

where FYtC1
.yjFY

t / is the predictive distribution of YtC1 given FY
t under P in the

second-order HMRS model derived in the last subsection.
Let P Vt be the market value of the portfolio at time t . The VaR, denoted by

VaRtC1jt .˛/, for the long position of the portfolio with probability level ˛ is defined
as the ˛-percentile, (in practice, ˛ can be 1 % or 5 %), of the loss distribution. It is
easy to see that

VaRtC1jt .˛/ D P Vt Œ1 � exp.qtC1jt .˛/ � r/�: (6.49)

In [189], the performance of VaR forecasts implied by the second-order HMRS
model were evaluated using backtesting, which is a standard procedure to evaluate
the performance of VaR forecasts used in the finance and insurance industries.
The numerical results of the backtesting reveal that the degree of long-term memory
described by the order of the HMRS model has a significant impact on the accuracy
of VaR forecasts. For details, please refer to Sect. 3 of [189].

6.7 Summary

In this chapter, a higher-order Markov chain model is proposed with efficient
estimation methods for the model parameters. A further extension of the model
is also discussed. The higher-order Markov chain model and its extension are then
applied to diverse fields including sales demand predictions, web page predictions,
the Newsboy problem and financial risk management.
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6.8 Exercise

1. Consider the following categorical sequence of three states:

1; 1; 2; 3; 2; 1; 1; 1; 2; 2; 3; 3; 2; 1; 2; 3; 2; 1; 2; 2; 2; 1; 2; 3; 1:

Build a third-order Markov chain model, as discussed in Sect. 6.2, by using the
Euclidean norm jj:jj2 in solving the parameters.

2. Prove Proposition 6.7.
3. Suppose the demand sequence of the product discussed in Sect. 6.5 is given as

follows:

1; 2; 5; 2; 3; 4; 4; 3; 4; 5; 1; 2; 2; 2; 4; 4; 4; 5; 4; 5; 3; 2; 2; 2; 3; 4; 4; 5; 5; 5; 4; 4; 3; 2:

(a) Construct a second-order Markov chain model by using the Euclidean norm
jj:jj2 in solving the parameters.

(b) Suppose the following non-symmetric cost matrix (compare with (6.38)) is
employed:

C D

0
BBBBB@

0 200 400 800 2000

100 0 200 400 800

300 100 0 200 400

700 300 100 0 200

1500 700 300 100 0

1
CCCCCA

:

Find the optimal production policy when the second-order Markov chain
model is adopted.

4. Derive the semi-martingale dynamics for the chain QX in (6.46).
5. Derive the recursive filter QXY

t in (6.47).
6. Show that the filter estimate QXY

t in (6.47) is optimal over the space of all linear
estimates in the mean-square-loss sense.

7. Write a Matlab program to compute the filter QXY
t in (6.47).



Chapter 7
Multivariate Markov Chains

7.1 Introduction

By making use of the transition probability matrix in Chap. 6, a categorical data
sequence of m states can be modeled by an m-state Markov chain model. In this
chapter, we extend this idea to model multiple categorical data sequences. One
would expect categorical data sequences generated by similar sources or the same
source to be correlated to each other. Therefore, by exploring these relationships,
one can develop better models for the categorical data sequences and hence better
prediction rules.

The outline of this chapter is as follows. In Sect. 7.1, we present the multivariate
Markov chain model with estimation methods for the model parameters. In Sect. 7.3,
we apply the model to the multi-product demand estimation problem. In Sect. 7.4,
an application to credit rating is discussed. In Sect. 7.5, we extend the model to a
higher-order multivariate Markov chain model. Section 7.6 discusses an improved
model with application to dependency rating transition. Finally, a summary is given
in Sect. 7.7 to conclude the chapter.

7.2 Construction of Multivariate Markov Chain Models

In this section, we propose a multivariate Markov chain model to represent the
behavior of multiple categorical sequences generated by similar sources or the same
source. Here we assume that there are s categorical sequences and each has m

possible states in the set
M D f1; 2; : : : ; mg:

Let X.j /
n be the state vector of the j th sequence at time n. If the j th sequence is in

state l at time n then we write

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 7,
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X.j /
n D el D .0; : : : ; 0; 1

„ƒ‚…

l th entry

; 0 : : : ; 0/t :

In the proposed multivariate Markov chain model, we assume the following
relationship:

X.j /
nC1 D

s
X

kD1

�jkP .jk/X.k/
n ; for j D 1; 2; : : : ; s (7.1)

where
�jk � 0; 1 � j; k � s (7.2)

and
s

X

kD1

�jk D 1; for j D 1; 2; : : : ; s: (7.3)

The state probability distribution of the kth sequence at time .nC1/ depends on the
weighted average of P .jk/X.k/

n . Here P .jk/ is a transition probability matrix from
the states in the kth sequence to the states in the j th sequence, and X.k/

n is the state
probability distribution of the kth sequences at time n. In matrix form, we write

XnC1 �

0

B

B

B

B

@

X.1/
nC1

X.2/
nC1
:::

X.s/
nC1

1

C

C

C

C

A

D

0

B

B

B

@

�11P
.11/ �12P .12/ � � � �1sP

.1s/

�21P
.21/ �22P .22/ � � � �2sP

.2s/

:::
:::

:::
:::

�s1P
.s1/ �s2P .s2/ � � � �ssP

.ss/

1

C

C

C

A

0

B

B

B

B

@

X.1/
n

X.2/
n

:::

X.s/
n

1

C

C

C

C

A

� QXn

or
XnC1 D QXn:

Although the column sum of Q is not equal to one (the column sum of P .jk/ is
equal to one), we still have the following proposition.

Proposition 7.1. If the parameters �jk > 0 for 1 � j; k � s, then the matrix Q

has an eigenvalue equal to one and the eigenvalues of Q have moduli less than or
equal to one.

Proof. From (7.2) and (7.3), the column sum of the following matrix

� D

0

B

B

B

@

�1;1 �2;1 � � � �s;1

�1;2 �2;2 � � � �s;2

:::
:::

:::
:::

�1;s �2;s � � � �s;s

1

C

C

C

A
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is equal to one. Since �jk > 0, � is nonnegative and irreducible. By Perron-
Frobenius Theorem, there exists a vector

y D .y1; y2; : : : ; ys/
T

such that
yT � D yT :

We note that

1mP .ij / D 1m; 1 � i; j � s;

where 1m is the 1 � m vector of all ones, i.e.,

1m D .1; 1; : : : ; 1/:

Then it is easy to show that we have

.y11m; y21m; : : : ; ys1m/Q D .y11m; y21m; : : : ; ys1m/:

and hence 1 must be an eigenvalue of Q.
We then show that all the eigenvalues of Q are less than or equal to one. Let us

define the following vector-norm

jjzjjV D max
1�i�s

˚jjzi jj1 W z D .z1; z2; � � � ; zs/; zj 2 Rm; 1 � j � s
�

:

It is straightforward to show that jj � jjV is a vector-norm on Rms . It follows that we
can define the following matrix norm

jjQjjM � sup fjjQzjjV W jjzjjV D 1g :

Since P .ij / is a transition matrix, each element of P .ij / are less than or equal to 1.
We have

kP .ij /zj k1 � kzj k1 � 1; 1 � i; j � s:

Here jj:jj1 is the 1-norm for a vector. It follows that

k�i1P
.i1/z1 C �i2P

.i2/z2 C � � � C �isP
.is/zsk1 � jjzjjV �

s
X

j D1

�ij D 1; 1 � i � s

and hence jjQjjM � 1. Since the spectral radius of Q is always less than or equal
to any matrix norm of Q, the result follows.

Proposition 7.2. Suppose that the matrices P .jk/ (1 � j; k � s) are irreducible
and �jk > 0 for 1 � j; k � s. Then there is a unique vector

x D .x.1/; x.2/; : : : ; x.s//T



180 7 Multivariate Markov Chains

such that x D Qx and
m

X

iD1

Œx.j /�i D 1; 1 � j � s:

Proof. By Proposition 7.1, there is exactly one eigenvalue of Q equal to one. This
implies that

lim
n!1 Qn D vuT

is a positive rank one matrix as Q is irreducible. Therefore we have

lim
n!1 xnC1 D lim

n!1 Qxn D lim
n!1 Qnx0 D vuT x0 D ˛v:

Here ˛ is a positive number since x ¤ 0 and is nonnegative. This implies that xn

tends to a stationary vector as n goes to infinity. Finally, we note that if x0 is a vector
such that

m
X

iD1

Œx.j /
0 �i D 1; 1 � j � s;

then Qx0 and x are also vectors having this property.
Now suppose that there exists y such that y ¤ x and

y D lim
n!1 xn:

Then we have
jjx � yjj D jjx � Qxjj D 0:

This is a contradiction and therefore the vector x must be unique. Hence the result
follows.

We note that x is not a probability distribution vector, but x.j / is a probability
distribution vector. The above proposition suggests one possible way to estimate the
model parameters �ij . The idea is to find �ij which minimizes jjQ Ox � Oxjj under a
certain vector norm jj � jj.

We remark that the result can be further extended to the following [216].

Proposition 7.3. If �ii > 0, Pii is irreducible (for 1 � i � s), the matrix Œ�ij � is
irreducible and at least one of Pii is aperiodic, then the model has a stationary joint
probability distribution

x D .x.1/; � � � ; x.s//T

satisfying x D Qx. Moreover, we have

lim
n!1 xn D x:
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7.2.1 Estimations of Model Parameters

In this subsection we propose some methods to estimate P .jk/ and �jk . For
each data sequence, we estimate the transition probability matrix by the following
method. Given the data sequence, we count the transition frequency from the states
in the kth sequence to the states in the j th sequence. Hence one can construct the
transition frequency matrix for the data sequence. After making a normalization,
the estimates of the transition probability matrices can also be obtained. We note
that one has to estimate s2 m � m transition frequency matrices for the multivariate
Markov chain model. More precisely, we count the transition frequency f

.jk/
ij ik

from

the state ik in the sequence fx.k/
n g to the state ij in the sequence fx.j /

n g, and therefore
the transition frequency matrix for the sequences can be constructed as follows:

F .jk/ D

0

B

B

B

B

@

f
.jk/

11 � � � � � � f
.jk/

m1

f
.jk/

12 � � � � � � f
.jk/

m2
:::

:::
:::

:::

f
.jk/

1m � � � � � � f
.jk/

mm

1

C

C

C

C

A

:

From F .jk/, we get the estimates for P .jk/ as follows:

OP .jk/ D

0

B

B

B

B

@

Op.jk/
11 � � � � � � Op.jk/

m1

Op.jk/
12 � � � � � � Op.jk/

m2
:::

:::
:::

:::

Op.jk/
1m � � � � � � Op.jk/

mm

1

C

C

C

C

A

where

Op.jk/
ij ik

D

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

f
.jk/

ij ik

m
X

ikD1

f
.jk/

ij ik

if
m

X

ikD1

f
.jk/

ij ik
¤ 0

0 otherwise:

In addition to the estimates of P .jk/, one needs to estimate the parameters �jk . We
have seen that the multivariate Markov chain model has a stationary vector x in
Proposition 7.2. The vector x can be estimated from the sequences by computing
the proportion of the occurrence of each state in each of the sequences, denoted by

Ox D .Ox.1/; Ox.2/; : : : ; Ox.s//T :
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One would expect that

0

B

B

B

@

�11P
.11/ �12P

.12/ � � � �1sP
.1s/

�21P
.21/ �22P

.22/ � � � �2sP
.2s/

:::
:::

:::
:::

�s1P
.s1/ �s2P

.s2/ � � � �ssP
.ss/

1

C

C

C

A

Ox � Ox: (7.4)

From (7.4), it suggests one possible way to estimate the parameters � D f�jkg as
follows. In fact, by using jj:jj1 as the vector norm for measuring the difference in
(7.4), one may consider solving the following minimization problem:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

min
�

(

max
i

ˇ

ˇ

ˇ

ˇ

ˇ

"

m
X

kD1

�jk
OP .jk/ Ox.k/ � Ox.j /

#

i

ˇ

ˇ

ˇ

ˇ

ˇ

)

subject to
s

X

kD1

�jk D 1;

and
�jk � 0; 8k:

(7.5)

Problem (7.5) can be formulated as s linear programming problems as follows, see
for instance [76].

For each j :

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

min
�

wj

subject to
0

B

B

B

@

wj

wj

:::

wj

1

C

C

C

A

� Ox.j / � B

0

B

B

B

@

�j1

�j 2

:::

�js

1

C

C

C

A

;

0

B

B

B

@

wj

wj

:::

wj

1

C

C

C

A

� �Ox.j / C B

0

B

B

B

@

�j1

�j 2

:::

�js

1

C

C

C

A

;

wj � 0;

s
X

kD1

�jk D 1; �jk � 0; 8k;
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where
B D Œ OP .j1/ Ox.1/ j OP .j 2/ Ox.2/ j � � � j OP .js/ Ox.s/�:

In the next subsection, we give an example to demonstrate the construction of a
multivariate Markov chain model from two data sequences.

7.2.2 An Example

Consider the following two categorical data sequences:

S1 D f4; 3; 1; 3; 4; 4; 3; 3; 1; 2; 3; 4g

and
S2 D f1; 2; 3; 4; 1; 4; 4; 3; 3; 1; 3; 1g:

By counting the transition frequencies

S1 W 4 ! 3 ! 1 ! 3 ! 4 ! 4 ! 3 ! 3 ! 1 ! 2 ! 3 ! 4

and
S2 W 1 ! 2 ! 3 ! 4 ! 1 ! 4 ! 4 ! 3 ! 3 ! 1 ! 3 ! 1

we have

F .11/ D

0

B

B

@

0 0 2 0

1 0 0 0

1 1 1 2

0 0 2 1

1

C

C

A

and F .22/ D

0

B

B

@

0 0 2 1

1 0 0 0

1 1 1 1

1 0 1 1

1

C

C

A

:

Moreover by counting the inter-transition frequencies

S1 W 4 3 1 3 4 4 3 3 1 2 3 4

% % % % % % % % % % %
S2 W 1 2 3 4 1 4 4 3 3 1 3 1

and
S1 W 4 3 1 3 4 4 3 3 1 2 3 4

& & & & & & & & & & &
S2 W 1 2 3 4 1 4 4 3 3 1 3 1

we have

F .21/ D

0

B

B

@

1 0 2 0

0 0 0 1

0 1 3 0

1 0 0 2

1

C

C

A

; F .12/ D

0

B

B

@

0 1 1 0

0 0 1 0

2 0 1 2

1 0 1 1

1

C

C

A

:
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After making a normalization, we have the transition probability matrices:

OP .11/ D

0

B

B

@

0 0 2
5

0
1
2

0 0 0
1
2

1 1
5

2
3

0 0 2
5

1
3

1

C

C

A

; OP .12/ D

0

B

B

@

0 1 1
4

0

0 0 1
4

0
2
3

0 1
4

2
3

1
3

0 1
4

1
3

1

C

C

A

;

OP .21/ D

0

B

B

@

1
2

0 2
5

0

0 0 0 1
3

0 1 3
5

0
1
2

0 0 2
3

1

C

C

A

; OP .22/ D

0

B

B

@

0 0 1
2

1
3

1
3

0 0 0
1
3

1 1
4

1
3

1
3

0 1
4

1
3

1

C

C

A

:

Moreover we also have

Ox1 D .
1

6
;

1

12
;

5

12
;

1

3
/T and Ox2 D .

1

3
;

1

12
;

1

3
;

1

4
/T

By solving the corresponding linear programming problems (the optimal solution is
not unique in this example), one of the possible multivariate Markov chain models
for the two categorical data sequences S1 and S2 is given by

(

x.1/
nC1 D 0:5000 OP .11/x.1/

n C 0:5000 OP .12/x.2/
n

x.2/
nC1 D 0:8858 OP .21/x.1/

n C 0:1142 OP .22/x.2/
n :

7.3 Applications to Multi-product Demand Estimation

Let us consider demand estimation problems as discussed in Sect. 6.3.1. We study
customer’s sales demand of five important products of a company in a particular
year. The sales demand sequences are generated by the same customer and therefore
we expect that they should be correlated to each other. Therefore by exploring
these relationships, one can develop the multivariate Markov chain model for such
demand sequences, and hence obtain better prediction rules.

We first estimate all the transition probability matrices P .ij / by using the method
proposed in Sect. 7.2 and we also have the estimates of the state distribution of the
five products:

8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

Ox1 D .0:0818; 0:4052; 0:0483; 0:0335; 0:0037; 0:4275/T

Ox2 D .0:3680; 0:1970; 0:0335; 0:0000; 0:0037; 0:3978/T

Ox3 D .0:1450; 0:2045; 0:0186; 0:0000; 0:0037; 0:6283/T

Ox4 D .0:0000; 0:3569; 0:1338; 0:1896; 0:0632; 0:2565/T

Ox5 D .0:0000; 0:3569; 0:1227; 0:2268; 0:0520; 0:2416/T
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By solving the corresponding minimization problems through linear programming
we obtain the optimal solution:

� D Œ�jk� D

0

B

B

B

B

B

@

0:0000 1:0000 0:0000 0:0000 0:0000

0:0000 1:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000 1:0000

0:0000 0:0000 0:0000 0:4741 0:5259

0:0000 0:0000 0:0000 1:0000 0:0000

1

C

C

C

C

C

A

and the multivariate Markov chain model for these five sequences is as follows:

8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

x.1/

nC1 D P .12/x.2/
n

x.2/
nC1 D P .22/x.2/

n

x.3/

nC1 D P .35/x.5/
n

x.4/
nC1 D 0:4741P .44/x.4/

n C 0:5259P .45/x.5/
n

x.5/

nC1 D P .54/x.4/
n

where

P .12/ D

0

B

B

B

B

B

B

B

@

0:0707 0:1509 0:0000 0:2000 0:0000 0:0660

0:4343 0:4528 0:4444 0:2000 1:0000 0:3491

0:0101 0:1321 0:2222 0:2000 0:0000 0:0283

0:0101 0:0943 0:2222 0:2000 0:0000 0:0094

0:0000 0:0000 0:2000 0:0000 0:0000 0:0094

0:4747 0:1698 0:1111 0:2000 0:0000 0:5377

1

C

C

C

C

C

C

C

A

P .22/ D

0

B

B

B

B

B

B

B

@

0:4040 0:2075 0:0000 0:2000 1:0000 0:4340

0:1111 0:4717 0:3333 0:2000 0:0000 0:1321

0:0202 0:0566 0:3333 0:2000 0:0000 0:0094

0:0000 0:0000 0:0000 0:2000 0:0000 0:0000

0:0000 0:0000 0:1111 0:2000 0:0000 0:0000

0:4646 0:2642 0:2222 0:2000 0:0000 0:4245

1

C

C

C

C

C

C

C

A

P .35/ D

0

B

B

B

B

B

B

B

@

0:2000 0:0947 0:1515 0:1639 0:0714 0:2154

0:2000 0:1895 0:2727 0:2295 0:1429 0:1846

0:2000 0:0421 0:0000 0:0000 0:0000 0:0154

0:2000 0:0000 0:0000 0:0000 0:0000 0:0000

0:2000 0:0105 0:0000 0:0000 0:0000 0:0000

0:2000 0:6632 0:5758 0:6066 0:7857 0:5846

1

C

C

C

C

C

C

C

A
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P .44/ D

0

B

B

B

B

B

B

B

@

0:2000 0:0000 0:0000 0:0000 0:0000 0:0000

0:2000 0:4947 0:1389 0:0196 0:0588 0:6087

0:2000 0:0842 0:3056 0:1765 0:0588 0:1014

0:2000 0:0000 0:3056 0:5686 0:5294 0:0290

0:2000 0:0105 0:0556 0:1569 0:3529 0:0000

0:2000 0:4105 0:1944 0:0784 0:0000 0:2609

1

C

C

C

C

C

C

C

A

P .45/ D

0

B

B

B

B

B

B

B

@

0:2000 0:0000 0:0000 0:0000 0:0000 0:0000

0:2000 0:4737 0:2121 0:0328 0:0000 0:6462

0:2000 0:1053 0:2121 0:1967 0:0714 0:0923

0:2000 0:0000 0:2424 0:5410 0:5714 0:0308

0:2000 0:0105 0:0303 0:1803 0:2857 0:0000

0:2000 0:4105 0:3030 0:0492 0:0714 0:2308

1

C

C

C

C

C

C

C

A

P .54/ D

0

B

B

B

B

B

B

B

@

0:2000 0:0000 0:0000 0:0000 0:0000 0:0000

0:2000 0:4842 0:1667 0:0196 0:0588 0:6087

0:2000 0:1053 0:1667 0:1569 0:0588 0:1159

0:2000 0:0000 0:4444 0:6275 0:6471 0:0290

0:2000 0:0105 0:0278 0:1569 0:2353 0:0000

0:2000 0:4000 0:1944 0:0392 0:0000 0:2464

1

C

C

C

C

C

C

C

A

:

According to the multivariate Markov chain model, Products A and B are closely
related. In particular, the sales demand of Product A depends strongly on Product B.
The main reason is that the chemical composition of Products A and B is the same,
but they have different packaging for marketing purposes. Moreover, Products C, D
and E are closely related. Similarly, products C and E have the same product flavor,
but different packaging. It is interesting to note that even through Products D and
E have different chemical nature but similar flavor, the results show that their sales
demand are also closely related.

Next we use the multivariate Markov chain model, to make predictions on the
state Oxt at time t which can be taken as the state with the maximum probability, i.e.,

Oxt D j; if ŒOxt �i � ŒOxt �j ; 81 � i � m:

To evaluate the performance and effectiveness of our multivariate Markov chain
model, a prediction result is measured by the prediction accuracy r defined as

r D 1

T
�

T
X

tDnC1

ıt � 100 %;

where T is the length of the data sequence and

ıt D
�

1; if Oxt D xt

0; otherwise:
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Table 7.1 Prediction accuracy in the sales demand data

Product A Product B Product C Product D Product E

First-order Markov chain 46 % 45 % 63 % 51 % 53 %
Multivariate Markov chain 50 % 45 % 63 % 52 % 55 %

For the sake of comparison, we also give the results for the first-order Markov
chain model of individual sales demand sequence. The results are reported in
Table 7.1. There is noticeable improvement in prediction accuracy in Product A
while improvements are also observed in Product D and Product E. The results
show the effectiveness of our multivariate Markov chain model.

7.4 Applications to Credit Ratings Models

Credit risk analysis has long been an important topic in banking and finance. Its
importance has been greatly emphasized during the past Global Financial Crisis
(GFC) initiated by the subprime mortgage crisis in the United States. Different
models have been proposed in the literature for evaluating the creditworthiness
and likelihood of defaults of corporations, sovereigns and borrowers. There are two
strands of literature, namely, the structural firm value model pioneered by Black and
Scholes [19] and Merton [158] and the (modern) reduced-form approach developed
in Jarrow and Turbull [125]. In the structural approach, the asset value of a firm
is assumed to follow a geometric Brownian motion. Default occurs when the asset
value of the firm falls below a barrier level, namely, the default barrier. This barrier
level can be determined either endogenously or exogenously. In the reduced form
approach, defaults are exogenous events and their occurrences are described by
random point processes with certain intensity functions.

Credit ratings contain a rich source of information for evaluating creditwor-
thiness and the likelihood of default of corporations, sovereigns and borrowers.
There are two types of credit ratings, publicly available ratings and internal ratings.
Publicly available ratings are produced and regularly revised by ratings agencies.
Some major international ratings agencies include Standard & Poors, and Moodys’
and Fitch. Internal ratings are produced by firms for the purposes of internal
reference and are not publicly accessible.

Markov chain models provide a natural mathematical tool to describe the
stochastic evolution of credit ratings over time. Indeed, ratings transition matrices
presented by ratings agencies, such as Standard & Poors, come from the transition
probability matrices of Markov chains. However, it appears that many credit rating
models used in practice are based on univariate Markov chains. Consequently, the
interdependency of credit ratings of corporations from the same industry or related
industries is largely overlooked. The failure to incorporate this interdependency
relationship may lead to underestimation of risk, and this has a serious economic
consequence.
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In this section, we shall discuss a multivariate Markov chain model for describing
the interdependency of the credit ratings of several corporations from the same
industry or similar industries. The multivariate Markov chain is presented in
Sect. 7.2. In practice, it is often the case that a long credit rating data series is not
easy to obtain, so the scarcity of credit ratings data should be taken into account
when one wishes to estimate credit rating models. Here we adopt an approach based
on actuarial credibility theory to handle the scarcity of credit rating data. The key
idea of the actuarial credibility theory is to provide a method to combine two sources
of information for estimating the premiums of insurance policies. The monograph
of [31] provides a detailed discussion for credibility and many important models in
credibility.

In our present context, we apply actuarial credibility theory to estimate the credit
transition matrix in the form of a linear combination of an empirical credit transition
matrix and a prior credit transition matrix. Here the prior matrix is assigned based
on expert opinion. For example, it may be assigned based on credit transition
matrices produced by ratings agencies. The empirical matrix is evaluated based on
the observed frequencies of ratings transitions using historical ratings data. This
section is based on the materials in [187].

7.4.1 The Credit Transition Matrix

In this subsection we consider an estimate of a credit transition matrix which is
a linear combination of a prior credit transition matrix and an empirical credit
transition matrix, where the empirical matrix is calculated using the frequencies of
ratings transitions, (see Sect. 7.3). Then Proposition 7.1 tells us that there exists
a vector X with a stationary probability distribution. Using this result, we can
estimate the unknown parameters based on the stationary distributions for the credit
ratings. In what follows, we present the mathematical formulation of the estimation
method based on credibility theory and discuss how the estimation problem can be
formulated in a linear programming problem.

Let Q.jk/ be the prior credit transition matrix. The empirical estimate OP .jk/ of the
credit transition matrix can be obtained using the method in Sect. 7.2.1. We assign
the prior matrix as the transition matrix produced by Standard & Poor’s, which is
widely used as a benchmark for credit risk analysis.

For ease of illustration, we focus on the case of a single common prior transition
matrix for the credit ratings of all, possibly correlated, reference entries in a
credit portfolio. In general, one considers several different prior matrices for
different reference entities to reflect the prior belief that these reference entities are
heterogeneous in terms of their creditworthiness.

We now consider the following estimate P
.jk/
e of the credit transition probability

P .jk/ based on a linear combination of the prior matrix and the empirical matrix:

P .jk/
e D wjkQ.jk/ C .1 � wjk/ OP .jk/; j; k D 1; 2; : : : ; n; (7.6)

where 0 � wjk � 1, for each j; k D 1; 2; : : : ; n.
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From proposition 7.1,
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B

B

B

B

@

�11P
.11/
e �12P

.12/
e � � � �1nP

.1n/
e

�21P
.21/
e �22P

.22/
e � � � �2nP

.2n/
e

:::
:::

:::
:::

�n1P
.n1/
e �n2P

.n2/
e � � � �nnP

.nn/
e

1

C

C

C

C

A

Ox � Ox: (7.7)

Let
Q�1

jk D �jkwjk

and
Q�2

jk D �jk.1 � wjk/:

Then, it is easy to check that for each j; k D 1; 2; : : : ; n,

Q�1
jk C Q�2

jk D �jk:

Note that the estimation of �jk and wjk is equivalent to the estimation of Q�1
jk and

Q�2
jk . Consequently, (7.7) can be written in the following form:

0

B

B

B

@

Q�1
11Q

.11/ C Q�2
11

OP .11/ � � � Q�1
1nQ.1n/ C Q�2

1n
OP .1n/

Q�1
21Q

.21/ C Q�2
21

OP .21/ � � � Q�1
2nQ.2n/ C Q�2

2n
OP .2n/

:::
:::

:::
Q�1

n1Q
.n1/ C Q�2

n1
OP .n1/ � � � Q�1

nnQ.nn/ C Q�2
nn

OP .nn/

1

C

C

C

A

OX � OX: (7.8)

We now formulate the estimation problem of the transition probability as follows:

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

min
Q�1;Q�2

max
i

( ˇ

ˇ

ˇ

ˇ

ˇ

"

m
X

kD1

. Q�1
jkQ.jk/ C Q�2

jk
OP .jk// OX.k/ � OX.j /

#

i

ˇ

ˇ

ˇ

ˇ

ˇ

)

subject to
n

X

kD1

. Q�1
jk C Q�2

jk/ D 1; Q�1
jk � 0

and
Q�2

jk � 0; 8j; k:

(7.9)

Let

Oj D max
i

ˇ

ˇ

ˇ

ˇ

ˇ

"

m
X

kD1

. Q�1
jkQ.jk/ C Q�2

jk
OP .jk//Ox.k/ � Ox.j /

#

i

ˇ

ˇ

ˇ

ˇ

ˇ

:

Then Problem (7.9) can be formulated in a set of n linear programming problems
as in Sect. 7.1. Furthermore it is obvious that one can select the vector norm jj:jj1



190 7 Multivariate Markov Chains

instead of the vector norm jj:jj1. In this case, the resulting problem can also be
formulated as a linear programming problem. For the numerical results of the linear
programming problems for estimating credit transition matrices, we refer readers to
Siu et al. [187].

7.5 Extension to a Higher-Order Multivariate Markov Chain

In this section, we present a higher-order multivariate Markov chain model [54] for
modeling multiple categorical sequences based on the models in Sects. 6.2 and 7.2.
Here we assume that there are s categorical sequences with order n and each has m

possible states in M. In the extended model, we assume that the state probability
distribution of the j th sequence at time t D r C 1 depends on the state probability
distribution of all the sequences (including itself) at times t D r; r �1; : : : ; r �nC1.
Using the same notation as in the previous two subsections, our proposed higher-
order (nth-order) multivariate Markov chain model takes the following form [54]:

x.j /
rC1 D

s
X

kD1

n
X

hD1

�
.h/

jk P
.jk/

h x.k/

r�hC1; j D 1; 2; : : : ; s (7.10)

where

�
.h/

jk � 0; 1 � j; k � s; 1 � h � n (7.11)

and
s

X

kD1

n
X

hD1

�
.h/

jk D 1; j D 1; 2; : : : ; s:

The probability distribution of the j th sequence at time t D r C 1 depends on the
weighted average of P

.jk/

h x.k/

r�hC1. Here P
.jk/

h is the h-step transition probability
matrix which describes the h-step transition from the states in the k-th sequence at
time t D r � h C 1 to the states in the j -th sequence at time t D r C 1 and �

.h/

jk is
the weighting of this term.

From (7.10), if we let

X.j /
r D .x.j /

r ; x.j /
r�1; : : : ; x.j /

r�nC1/
T for j D 1; 2; : : : ; s

be the nm�1 vectors then one can write down the following relation in matrix form:

XrC1 �

0

B

B

B

B

@
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:::

X.s/
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C

C
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A
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B

B
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r

:::

X.s/
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C

C
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� QXr
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where

B.i i/ D

0

B

B

B

B

B

B

@

�
.n/
i i P

.i i/
n �

.n�1/
i i P

.i i/
n�1 � � � �

.2/
i i P

.i i/
2 �

.1/
i i P

.i i/
1

I 0 � � � 0 0

0 I � � � 0 0
:::

: : :
: : :

: : : 0

0 � � � 0 I 0

1

C

C

C

C

C

C

A

mn�mn

and if i ¤ j then

B.ij / D

0

B

B

B

B

B

B

@

�
.n/
ij P

.ij /
n �

.n�1/
ij P

.ij /
n�1 � � � �

.2/
ij P

.ij /
2 �

.1/
ij P

.ij /
1

0 0 � � � 0 0

0 0 � � � 0 0
:::

: : :
: : :

: : : 0

0 � � � 0 0 0

1

C

C

C

C

C

C

A

mn�mn

:

We note that each column sum of Q is not necessarily equal to one but each column
sum of P

.jk/

h is equal to one. We have the following propositions.

Proposition 7.4. (Ching et al. [54]) If �
.h/

jk > 0 for 1 � j; k � s and 1 � h � n,
then the matrix Q has an eigenvalue equal to one and the eigenvalues of Q have
modulus less than or equal to one.

Proposition 7.5. (Ching et al. [54]) Suppose that the P
.jk/

h (1 � j; k � s, 1 �
h � n) are irreducible and �

.h/

jk > 0 for 1 � j; k � s and 1 � h � n. Then there is
a vector

X D .X.1/; X.2/; : : : ; X.s//T

with
X.j / D .x.j /; x.j /; : : : ; x.j //T ;

such that

X D QX and 1x.j / D 1; for 1 � j � s

1 D .1; 1; : : : ; 1/ of length m.

The transition probabilities P h
jk can be estimated by counting the transition

frequency as described in Sect. 6.2 of Chap. 6. Moreover, we note that X is not a
probability distribution vector, but x.j / is a probability distribution vector. The above
proposition suggests one possible way to estimate the model parameters �

.h/
ij . The

key idea is to find �
.h/
ij which minimizes jjQ Ox� Oxjj under a certain vector norm jj � jj.

The estimation method is similar to those in Chap. 6. The proofs of Propositions 7.4
and 7.5 and detailed examples with an application in production planning can be
found in Ching et al. [54]. We remark that in Proposition 7.5, actually we don’t
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need to assume all P
.jk/

h to be irreducible and the condition that all �
.h/

jk are positive

can be relaxed. In fact, to achieve the same result, one just needs some P
.jk/

h to be

irreducible and some �
.h/

jk to be positive, see for instance [216].

7.6 An Improved Multivariate Markov Chain
and Its Application to Credit Ratings

The models discussed in the previous sections in this chapter admit only non-
negative weighting parameters �. In other words, only a non-negative association
is incorporated in the models presented in the previous sections. However, in many
practical situations it appears that a negative association is also observed. To cater
for this practical need, we present an improved model which can also incorporate
a negative association in our modeling framework. Application of this improved
model for describing dependency of credit ratings of several, possibly correlated,
credit entities is also discussed. The theory of this section is based on the work of
[55] and application on [69].

Before presenting the improved model, we need to introduce some notation. Let

ZtC1 D 1

m � 1
.1 � Xt / ;

where 1 is the vector of all ones; the factor .m � 1/�1 is the normalization constant;
the number of possible states m � 2.

There is a negative association between ZtC1 and Xt . If Xt increases (decreases),
ZtC1 decreases (increases). To reduce the number of model parameters, we assume
that P.ij / D I when i ¤ j , where I is an .m � m/ identity matrix.

Under the improved model, the evolution of the probability mass functions or
probability vectors of ratings of credit entities over time is governed by the following
matrix equation:
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C 1
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:::
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„ ƒ‚ …

Negative associated part

(7.12)

where

�C D

0

B

B

@

�1;1P.11/ �1;2I � � � �1;sI
�2;1I �2;2P.22/ � � � �2;sI
� � � � � � � � � � � �

�s;1I � � � �s;s�1I �s;sP.ss/

1

C

C

A

;
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and

�� D

0

B

B

@

�1;�1P.11/ �1;�2I � � � �1;�sI
�2;�1I �2;�2P.22/ � � � �2;�sI

� � � � � � � � � � � �
�s;�1I � � � �s;�sC1I �s;�sP.ss/

1

C

C

A

:

Here �i;j � 0, for i D 1; 2; : : : ; s and j D ˙1; : : : ; ˙s, and

s
X

j D�s

�i;j D 1:

In Equation (7.12), �C and �� represent the transition probability matrices for
the positive and negative associations, respectively. From the second term of (7.12),
an increase (or decrease) in Xt leads to a decrease (or increase) in XtC1. In other
words, there is a negative association between the two probability vectors Xt and
XtC1. With the normalization constant 1

m�1
, X.j /

tC1 on the left hand side of (7.12) is
a probability vector, for each j D 1; 2; : : : ; s.

The number of parameters involved here is O.sm2 C s2/, where s is the number
of credit entities in a portfolio and m is the number of rating categories. So, the
number of parameters in the improved model is less than that in the model in [187]
(i.e. O.s2m2/).

The following example illustrates how the reduction of the number of parameters
can be achieved in a practical situation. We consider a rating system consisting of
10 rating categories (i.e. m D 10). This is the number of rating categories in the
most commonly used rating system in practice. Now, we consider a credit portfolio
having 30 individual credit entities, say a portfolio of 30 corporate bonds. This is
a reasonable proxy for the size of a typical credit portfolio in practice. In this case,
the number of parameters in the improved model is 3;900, while the number of
parameters in the model considered in [50,187] is 90;000. So, we have a significant
reduction in the number of parameters by considering the improved model.

7.6.1 Convergence Property of the Model

As in the multivariate Markov chain considered in [187], the calibration method can
be developed by exploiting the existence of a unique set of stationary probability
vectors for ratings of the credit entities. In the sequel, we discuss the existence of
the stationary probability vectors under the improved model, the rate of convergence
and the method to speed up the rate of convergence. The development below follows
that in [55].

Firstly, we write the improved model in terms of the following matrix-valued
difference equation:
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XtC1 D

0

B

B

B

B

@

X.1/
tC1

X.2/
tC1
:::

X.s/
tC1

1

C

C

C

C

A

D

0

B

B

@

H1;1 H1;2 � � � H1;s

H2;1 H2;2 � � � H2;s

� � � � � � � � � � � �
Hs;1 Hs;2 � � � Hs;s

1

C

C

A

0

B

B

B

B

@

X.1/
t

X.2/
t

:::

X.s/
t

1

C

C

C

C

A

C 1
m�1

0

B

B

@

J1;�1 J1;�2 � � � J1;�s

J2;�1 J2;�2 � � � J2;�s

� � � � � � � � � � � �
Js;�1 � � � Js;�sC1 Js;�s

1

C

C

A

0

B

B

B

@

1
1
:::

1

1

C

C

C

A

� MsXt C b: (7.13)

Here Ms is defined as a hypermatrix with elements Hi;j ; b is an .s � s/ matrix with
elements being all ones;

Hij D
(

.�i;j � �i;�j

m�1
/P.i i / if i D j

.�i;j � �i;�j

m�1
/I otherwise;

and

Jij D
�

�i;�j P.i i / if i D j

�i;�j I otherwise:

We note that

XtC1 D M2
s Xt�1 C .I C Ms/b D M3

s Xt�2 C .I C Ms C M2
s /b

D MtC1
s X0 C

t
X

kD0

Mk
s b; (7.14)

where M0
s D I.

Then, from (7.14), there exists a unique set of stationary probability vectors
satisfying the matrix-valued difference equation (7.13) if jjMsjj1 < 1, where
jjMsjj1 is the supremum matrix norm. If this is the case then,

lim
t!1 Xt D lim

t!1

t
X

kD0

Mk
s b D .I � Ms/

�1b;

which is the matrix containing the stationary probability vectors for the ratings of
credit entities.
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We can also see that the rate of convergence to the set of stationary probability
vectors depends on the magnitude of jjMsjj1. In particular, the smaller jjMsjj1 is,
the quicker the convergence will be. Thus by controlling the value of jjMsjj1, the
convergence can be speeded up.

It has been shown in [55, 74] that

jjMsjj1 � max
1�k�s

8

<

:
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ˇ

ˇ

ˇ

ˇ
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ˇ
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ˇ

ˇ
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=

;

:

This means that one can control the rate of convergence by imposing an upper bound
˛ < 1 and introducing the following additional constraints:

m

ˇ

ˇ

ˇ

ˇ
�k;k � �k;�k

.m � 1/

ˇ

ˇ

ˇ

ˇ
C

X

k¤i

ˇ

ˇ

ˇ

ˇ
�k;i � �k;�i

.m � 1/

ˇ

ˇ

ˇ

ˇ
� ˛ for i D 1; 2; : : : ; s:

Clearly if a smaller value of ˛ is chosen, the rate of convergence to the stationary
probability vectors for the ratings of credit entities becomes faster. Thus, reasonably
accurate estimates for the unknown parameters can be obtained even when the
ratings dataset is short.

7.6.2 Estimation of Model Parameters

In this subsection, we present efficient methods for estimating P.jj / and �jk . For
each ratings sequence of a credit entity, we adopt the method in [50, 55] to estimate
the transition probability matrix. More precisely, given a ratings sequence, we
count the transition frequencies from one arbitrary state to the others and construct
the transition frequency matrix for the ratings sequence. Then, an estimate of
the transition probability matrix of the ratings of the entity can be obtained by
normalization. In the improved multivariate Markov chain model for ratings, we
need to estimate O.sm2/ transition frequency matrices when there are s credit
entities and the number of possible rating categories is m. The stationary probability
vectors X are estimated from the proportion of occurrence of each rating category
in each of the ratings sequences.

Based on the idea at the end of the previous section, if we take jj:jj to be jj:jj1,
then an estimate of �jk can be obtained by solving the following optimization
problem (see for instance [50, 55, 74]):

min
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i
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ˇ
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(7.15)

Here,

�jk D
�

P.jj / if j D k

I if j ¤ k:

Indeed, Problem (7.15) can be formulated as a set of s linear programming
problems, see for example [76, p. 221]
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and

A2j D � 1

m � 1
A1j :

Here A1j covers all of the rows in which each component takes one of the two
possible values, 1 and �1. Hence, A has s � 2s rows. Thus these problems can be
solved efficiently and independently. They can be solved easily using speadsheet
software such as EXCEL. This provides market practitioners with a handy way to
estimate the unknown parameters of the improved multivariate Markov chain model
for ratings.

To compare the empirical performance of various models, we adopt the Bayesian
Information Criterion (BIC) as a criterion, which is defined as below:

BIC WD �2L C q log n:

Here

L WD
s
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j D1

0

@

m
X

i0;k1;���ksD1

n
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i0;k1;��� ;ks
log l
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A ;

l WD
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s
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i0;kl
C 1
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where
n

.j /

i0;k1;k2;��� ;ks
D

X

x
.j /
nC1.i0/x

1
n.k1/x

2
n.k2/ � � � xs

n.ks/:

Note that L and l are the maximum log-likelihood function and likelihood function
of the improved model, respectively. Here, q represents the number of independent
parameters and n is the length of the ratings sequence. The “best” model is given by
the one with the smallest BIC.

7.6.3 Practical Implementation, Accuracy and Computational
Efficiency

In this section, we first provide a numerical example to illustrate the practical
implementation of the improved model and to compare its computational efficiency
with that of the model considered in [187]. Here we consider the following three
hypothetical ratings sequences, each of which has three possible rating classes:
1; 2; 3. In this case, s D 3, m D 3 and S WD fs1; s2; s3g.

A W 1; 2; 2; 1; 3; 3; 2; 3; 1; 3; 3; 2; 2; 3; 2; 1; 2; 1; 2; 2

B W 2; 2; 1; 1; 2; 1; 2; 1; 2; 2; 2; 2; 3; 2; 2; 1; 2; 1; 2; 2

C W 3; 1; 1; 2; 2; 1; 2; 3; 1; 1; 3; 3; 3; 2; 3; 2; 3; 3; 1; 2
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Table 7.2 The BIC for
different models

Models BIC

The model in (Siu et al. (2005)) 607.4
The New Model .˛ D 0:1/ 247.0
The New Model .˛ D 0:2/ 246.2
The New Model .˛ D 0:3/ 245.3
The New Model .˛ D 0:4/ 245.5
The New Model .˛ D 0:5/ 247.2
The New Model .˛ D 0:6/ 246.5
The New Model .˛ D 0:7/ 245.9
The New Model .˛ D 0:8/ 245.5
The New Model .˛ D 0:9/ 245.2
The New Model .˛� D 1:0/ 244.9

Firstly, we estimate all of the transition probability matrices P.jj / by counting the
frequencies of transitions from one rating category to the others. The estimates of
these transition probability matrices are presented as follows:

P.11/ D
0

@

0:0000 0:3750 0:1667

0:6000 0:3750 0:5000

0:4000 0:2500 0:3333

1

A ;

P.22/ D
0

@

0:1667 0:4167 0:0000

0:8333 0:5000 1:0000

0:0000 0:0833 0:0000

1

A ;

and

P.33/ D
0

@

0:3333 0:2000 0:3750

0:5000 0:2000 0:2500

0:1667 0:6000 0:3750

1

A :

We suppose that the upper bound ˛ for controlling the rate of convergence ranges
from 0:1 to 1:0, with an increment of 0:1. For each value of ˛, the estimates of
the parameters �ij ’s (i; j D 1; 2; 3) can be computed by solving the set of linear
programming problems. In particular, we need to solve three linear programming
problems since we have three ratings sequences.

As mentioned previously, we adopt the BIC for model selection. We compute
the BIC of the improved model with different values of ˛ and the BIC of the model
considered in [187]. The results are reported in Table 7.2.

From Table 7.2, the “optimal” model is the improved model with ˛� D 1:0.
This “optimal” model is also better than the model considered in [187] in terms of
fitting the hypothetical ratings data. This may be the consequence of the existence of
negative associations among the three hypothetical ratings sequences. The optimal
value ˛� D 1:0 is also the most appropriate one to accommodate the given length
of the ratings sequences according to the BIC.
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When the “optimal” value of ˛� D 0:6, the estimates of �ij ’s (i; j D 1; 2; 3) are
given by:

0

@

�1;1 �1;2 �1;3 �1;�1 �1;�2 �1;�3

�2;1 �2;2 �2;3 �2;�1 �2;�2 �2;�3

�3;1 �3;2 �3;3 �3;�1 �3;�2 �3;�3

1

A

D
0

@

0:2146 0:1599 0:1101 0:3094 0:0876 0:1184

0:0000 0:4707 0:0000 0:0000 0:3383 0:1910

0:2094 0:0000 0:0157 0:0000 0:3246 0:4503

1

A ;

M1 D
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0:0000 0:0225 0:01000 0:1161 0:0000 0:0000 0:0509 0:0000 0:0000

0:0359 0:0225 0:0299 0:0000 0:1161 0:0000 0:0000 0:0509 0:0000

0:0240 0:0150 0:0200 0:0000 0:0000 0:1161 0:0000 0:0000 0:0509

0:0000 0:0000 0:0000 0:0503 0:1256 0:0000 �0:0955 0:0000 0:0000

0:0000 0:0000 0:0000 0:2512 0:1507 0:3015 0:0000 �0:0955 0:0000

0:0000 0:0000 0:0000 0:0000 0:0251 0:0000 0:0000 0:0000 �0:0955

0:2094 0:0000 0:0000 �0:16230 0:0000 0:0000 �0:0698 �0:0419 �0:0785

0:0000 0:2094 0:0000 0:0000 �0:1623 0:0000 �0:1047 �0:0419 �0:0524

0:0000 0:0000 0:2094 0:0000 0:0000 �0:1623 �0:0349 �0:1257 �0:0785

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

and

b1 D .0:2868; 0:3312; 0:2551; 0:1942; 0:4902; 0:1096; 0:3668; 0:3762; 0:4193/T :

We remark that the computational time of the model considered in [187] is 0:11 s,
while the computation time of the improved model with ˛ D 1:0 is 0:125 s. So, in
this example, the computational times of the two models are comparable.

7.7 Summary

In this chapter we first discuss a multivariate Markov chain model with estimation
methods based on solving a system of linear programming problems. The model
is then applied to a multi-product demand estimation problem and to modelling
the interdependency of credit ratings. Then we discuss various extensions of the
multivariate Markov chain model including a higher-order multivariate Markov
chain model and an improved model incorporating a negative association. Appli-
cation of the improved model for modeling the interdependency in credit ratings
and its practical implementation, accuracy, as well as computational efficiency are
discussed.
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7.8 Exercise

1. Write a computer program to solve the above linear programming problems (7.9).
2. Prove Proposition 7.4.
3. Prove Proposition 7.5.
4. Given two categorical data sequences as follow:

S1 W 1; 2; 2; 3; 2; 2; 1; 2; 1; 2; 3; 1; 2; 1; 2; 3

and

S2 W 1; 2; 1; 1; 2; 1; 3; 2; 2; 2; 2; 1; 2; 2; 2; 1:

Construct a multivariate Markov chain model discussed in Sect. 7.2 by using the
Euclidean norm jj:jj2 to find the parameters.



Chapter 8
Hidden Markov Chains

8.1 Introduction

Hidden Markov models (HMMs) have been applied to many real-world
applications. Usually HMMs only deal with the first-order transition probability
distribution among the hidden states, see for instance Sect. 1.4. Moreover, the
observable states are affected by the hidden states but not vice versa. In this chapter,
we study both higher-order hidden Markov models and interactive HMMs in which
the hidden states are directly affected by the observed states. We will also develop
estimation methods for the model parameters in both cases.

The remainder of this chapter is organized as follows. In Sect. 8.2, we present
a higher-order hidden Markov model. In Sect. 8.3, we discuss a class of double
higher-order hidden Markov models. In Sect. 8.4, we discuss an interactive HMM.
In Sect. 8.5, the interactive HMM is then applied to modeling portfolio credit risk.
Then finally, a summary will be given to conclude this chapter in Sect. 8.6.

8.2 Higher-Order HMMs

In this section, we present a higher-order Hidden Markov Model (HMM) [60].
HMMs have become increasingly popular in the last few decades. Since HMMs
are very rich in mathematical structure, they can form the theoretical basis in a wide
range of applications such as speech recognition [175] and computer version [33].
A standard HMM is usually characterized by the following elements [175]:

1. N , the number of states in the model. Although the states are hidden, for many
practical applications, there are often physical significance to the states. We
denote the individual states as

S D fS1; S2; : : : ; SN g;
and the state at the length t as qt .

W.-K. Ching et al., Markov Chains, International Series in Operations Research
& Management Science 189, DOI 10.1007/978-1-4614-6312-2 8,
© Springer Science+Business Media New York 2013
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2. M , the number of distinct observation symbols (or states) for the hidden states.
The observation symbols correspond to the physical output of the system being
modeled. We denote the individual symbols as

V D fv1; v2; : : : ; vM g:
3. The state transition probability distribution

A D faij g

where

aij D P.qtC1 D Sj jqt D Si/; 1 � i; j � N:

4. The observation probability distribution in state j , B D fbj .k/g, where

bj .k/ D P.Ot D vkjqt D Sj /; 1 � j � N; 1 � k � M:

5. The initial state distribution ˘ D f�i g where

�i D P.q1 D Si /; 1 � i � N:

Given appropriate values of N; M; A; B and ˘ , the HMM can be used as a
generator to give an observation sequence

O D O1O2 : : : OT

where each observation Ot is one of the symbols from V, and T is the number of
observations in the sequence. For simplicity, we use the compact notation

� D .A; B; ˘/

to indicate the complete parameter set of the HMM. According to the above speci-
fication, very often a first order Markov process is used in modeling the transitions
among the hidden states in a HMM. The main difference between the traditional
HMM and a higher-order HMM is that in the hidden layer, the state transition
probability is governed by the mth order higher-order Markov model

ait�mC1;:::;itC1
D P.qtC1 D SitC1

jqt D Sit ; : : : ; qt�mC1 D Sit�mC1
/:

We assume that the distribution ˘ of initial m states is given by

�i1;i2;:::;im D P.q1 D Si1 ; q2 D Si2; : : : ; qm D Sim/:
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Here we will present solutions to the three problems for higher-order HMMs. Recall
that they are practical problems in the traditional HMMs (see Sect. 1.4).

• Problem 1 Given the observation sequence

O D O1O2 : : : OT

and a higher-order HMM, how does one efficiently compute the probability of
the observation sequence?

• Problem 2 Given the observation sequence

O D O1O2 : : : OT

and a higher-order HMM, how does one choose a corresponding state sequence

Q D q1q2 : : : qT

which is optimal in a certain sense (e.g. in the sense of maximum likelihood)?
• Problem 3 Given the observation sequence

O D O1O2 : : : OT

and a higher-order HMM, how does one choose the model parameters?

8.2.1 Problem 1

For Problem 1, we calculate the probability of the observation sequence,

O D O1O2 : : : OT ;

given the higher-order HMM, i.e., P ŒOj��. One possible way of doing this is
through enumerating each possible state sequence of length T . However, this
calculation is computationally infeasible even for small values of T and N . We
apply the forward-backward procedure [11] to calculate this probability of the
observation sequence. We define the forward variable

˛t .it�mC1; : : : ; it /

as follows:

˛t .it�mC1; : : : ; it / D P.O1; : : : ; Ot ; qt�mC1 D Sit�mC1
; : : : ; qt D Sit j�/;
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where m � t � T , i.e., the conditional probability that the subsequence of the first
t observations and the subsequence of the last m hidden states ending at time t are
equal to

v1 : : : vt and Sit�mC1
: : : Sit

respectively, and are given by the model parameters �. We see that if we can obtain
the values of

˛T .iT �mC1; : : : ; iT / 8 iT �mC1; : : : ; iT ;

then it is obvious that P ŒOj�� can be obtained by summing up all the values of

˛T .iT �mC1; : : : ; iT /:

It is interesting to note that the values of ˛T .iT �mC1; : : : ; iT / can be obtained by the
following recursive equation and the details are given as follows:

(F1) Initialization: ˛m.i1; i2; : : : ; im/ D �i1;i2;:::;im �
mY

j D1

bij .vj /.

(F2) Recursive Equation: ˛tC1.it�mC2; it�mC3; : : : ; itC1/ D
NX

it�mC1D1

˛t .it�mC1; : : : ; it / � P.OtC1j�; qtC1 D SitC1
/�

P.qtC1 D SitC1
j�; qt�mC1 D Sit�mC1

; : : : ; qt D Sit //

D
NX

it�mC1D1

˛t .it�mC1; : : : ; it / � ait�mC1it ;itC1
bitC1

.vtC1/:

(F3) Termination: P.Oj�/ D
NX

iT �mC1;:::;iT D1

˛T .iT �mC1; : : : ; iT /.

The initiation step and the recursion step calculate the forward probabilities as
the joint probability of hidden states and initial observations. The last step gives
the desired calculation of P ŒOj�� as the sum of the terminal forward variables
˛T .iT �mC1; : : : ; iT /.

In a similar manner, a backward variable ˇt .i1; i2; : : : ; im/ can be defined as
follows: ˇt .i1; i2; : : : ; im/ D

P.OtCm : : : OT jqt D Sit ; : : : ; qtCm�1 D SitCm�1
; �/; 0 � t � T � m:

(B1) Initialization: ˇT �t .i1; : : : ; im/ D 1, 0 � t � m � 1, 1 � i1; : : : ; im � N .
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(B2) Recursive equation: ˇt .i1; i2; : : : ; im/ D
NX

itCmD1

P.OtCmC1 : : : OT jqtC1 D SitC1
; : : : ; qtCm�1 D SitCm�1

; qtCm D SitCm
; �/�

P.OtCmjqtCm D SitCm
; �/ � P.qtCm D SitCm

jqt D Sit ; : : : ; qtCm�1 D SitCm�1
; �/

D
NX

kD1

bk.OtCm/ˇtC1.i2; : : : ; im; k/ � ai2;:::;im;k:

We note that in the backward algorithm, ˇT �t .i1; i2; : : : ; im/ to be 1.

8.2.2 Problem 2

In Problem 2, we attempt to uncover the whole hidden sequence given the
observations, i.e., to find the most likely state sequence. In practical situations, we
use an optimality criteria to solve this problem. The most widely used criterion
to find the “best” sequence is by maximizing P ŒQj�; O�. This is equivalent to
maximizing P.Q; Oj�/. We note that

P.Qj�; O/ D P.Q; Oj�/

P.Oj�/
:

The Viterbi algorithm [204] is a technique for finding “the most likely” hidden
sequence

Q D fq1; q2; : : : ; qT g
for a given observation sequence

O D fO1; O2; : : : ; OT g:

Here we need to define the following quantity:

ıt .it�mC1; : : : ; it / D max
q1;:::;qt�m

P.q1 D Si1; : : : ; qt D Sit ; O1; : : : ; Ot j�/;

for m � t � T and ıt .it�mC1; : : : ; it /. It is the best score (highest probability) along
a single best state sequence at time t , which accounts for the first t observations and
ends in state Sit . By induction, we have

ıtC1.it�mC2; : : : ; itC1/

D max
1�qt�mC1�N

fıt .it�mC1; : : : ; it / � ait�mC1;:::;itC1
g � bitC1

.OtC1/: (8.1)
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To retrieve the state sequence, one needs to keep track of the argument max-
imized (8.1) for each t and it�mC1, : : :, it . This can be done via the array
�tC1.it�mC2; : : : ; itC1/. The complete procedure for finding the best state sequence
is as follows:

(U1) Initialization:

ım.i1; : : : ; im/ D P.q1 D Si1 ; : : : ; qm D Sim; O1; : : : ; Omj�/

D P.q1 D Si1 ; : : : ; qm D Sim j�/ �
mY

j D1

P.Oj j�; qj D Sij /

D �i1;i2;:::;im

mY

j D1

bij .vj /; 1 � i1; i2; : : : ; im � N:

We also set �m.i1; : : : ; im/ D 0.
(U2) Recursion:

ıtC1.it�mC2; : : : ; itC1/

D max
q1;:::;qt�mC1

P.qtC1 D SitC1
; OtC1j�; q1 D i1; : : : ; qt D it ; O1; : : : ; Ot / �

P.q1 D Si1; : : : ; qt D Sit ; O1; : : : ; Ot j�/

D max
1�qt�mC1�N

ıt .it�mC1; : : : ; it / �

P.OtC1j�; q1 D Si1; : : : ; qtC1 D SitC1
; O1; : : : ; Ot / �

P.qtC1 D SitC1
j�; q1 D Si1 ; : : : ; qt D Sit ; O1; : : : ; Ot /

D max
1�qt�mC1�N

ıt .it�mC1; : : : ; it / � P.OtC1j�; qtC1 D SitC1
/ �

P.qtC1 D SitC1
j�; qt�mC1 D Sit�mC1

; : : : ; qt D Sit /

D max
1�qt�mC1�N

fıt .it�mC1; : : : ; it / � ait�mC1;:::;itC1
g � bitC1

.vtC1/:

For m C 1 � t � T and 1 � itC1 � N , we have

�tC1.it�mC2; : : : ; itC1/

D argmax1�qt�mC1�N fıt .it�mC1; : : : ; it / � ait�mC1;:::;itC1
g:

(U3) Termination

P � D max
1�qT �mC1;:::;qT �N

fıqT �mC1;:::;qT g

.q�
T �mC1; : : : ; q�

T / D argmax1�qT �mC1;:::;qT �N fıqT �mC1;:::;iT g
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8.2.3 Problem 3

In Problem 3, we attempt to adjust the model parameters � by maximizing the
probability of the observation sequence given the model. Here we choose � such
that P ŒOj�� is maximized with the assumption that the distribution ˘ of the initial
m states is known by using the EM algorithm. Define

C.�; �/ D
X

Q

P.QjO; �/ log P.O; Qj�/:

The EM algorithm includes two main steps, namely E-step, calculating the function
C.�; �/ and the M-step, maximizing C.�; �/ with respect to �. Now, we define
�t .i1; i2; : : : ; imC1/ as follows:

�t .i1; i2; : : : ; imC1/ D P.qt D Si1; qtC1 D Si2; : : : ; qtCm D SimC1
jO; �/:

We can write down the expression of �t .i1; i2; : : : ; imC1/ in terms of ˛.�/ and ˇ.�/
that are computed in the previous two sub-sections:

�t .i1; i2; : : : ; imC1/

D bimC1
.OtCm/P ŒOtCmC1 : : : OT jqtC1 D Si2; : : : ; qtCm D SimC1

; �� �
P.qtCm D SimC1

jqt D Si1 ; qtC1 D Si2 ; : : : ; qtCm�1 D Sim; �� �
P ŒO1O2 : : : OtCm�1; qt D Si1 ; qtC1 D Si2 ; : : : ; qtCm�1 D Sim j�/

D ˛tCm�1.i1; i2; : : : ; im/ai1;:::;imC1
bimC1

.OtCm/ˇtC1.i2; i3; : : : ; imC1/:

Therefore we obtain

�t .i1; i2; : : : ; imC1/ D P.qt D Si1 ; qtC1 D Si2; : : : ; qtCm D SimC1
jO; �/

D ˛tCm�1.i1; i2; : : : ; im/ai1;:::;imC1
bimC1

.OtCm/ˇtC1.i2; ie; : : : ; imC1/

P ŒOj��
:

Next we define

�t .i1; i2; : : : ; ik/ D
NX

ikC1D1

: : :

NX

imC1D1

�t .i1; i2; : : : ; imC1/:

If we sum �t .i1; i2; : : : ; imC1/ over the index t , we get a quantity which can be
interpreted as the expected number of times that the state sequence Si1Si2 � � � SimC1

occurred. Similarly, if we sum �t .i1; i2; : : : ; im/ over t , we get a quantity which can
be interpreted as the expected number of times that the state sequence Si1Si2 � � � Sim

occurred. Hence, a set of re-estimation formulae is given as follows:
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

�t .i1/ D
NX

i2D1

NX

i3D1

: : :

NX

imC1D1

�t .i1; i2; : : : ; imC1/;

�t .i1; i2/ D
NX

i3D1

: : :

NX

imC1D1

�t .i1; i2; : : : ; imC1/;

:::

�t .i1; i2; : : : ; im/ D
NX

imC1D1

�t .i1; i2; : : : ; imC1/;

�i1 D �1.i1/;

�i1i2 D �1.i1; i2/;
:::

�i1i2:::im D �1.i1; i2; : : : ; im/;

Ai1i2:::imC1
D

T �mX

tD1

�t .i1; i2; : : : ; imC1/;

Ai1i2:::im D
NX

imC1D1

Ai1i2:::imC1
;

ai1;:::;imC1
D Ai1i2:::imC1

=

NX

imC1D1

Ai1i2:::imC1
;

Ej .vk/ D
T �mX

tD1; such that Ot Dvk

�t .j /;

bj .vk/ D Ej .vk/=

MX

kD1

Ej .vk/:

8.2.4 The EM Algorithm

In this subsection, we discuss the convergence of the EM algorithm. We begin with
the following lemma.

Lemma 8.1. Given pi ; qi � 0 such that

X

i

pi D
X

i

qi D 1;

then X

i

pi log
pi

qi

� 0

and the equality holds if and only if pi D qi for all i .
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Proof. Suppose that pi ; qi � 0 and

X

i

pi D
X

i

qi D 1;

then we have

�
X

i

pi log
pi

qi

D
X

i

pi log
qi

pi

�
X

i

pi .
qi

pi

� 1/

D
X

i

.qi � pi /

D 0:

This is true because we have the following inequality

log x � x � 1 for x � 0

and the equality holds if and only if x D 1. Hence the result follows.

Now, suppose we have a model with parameter set � and we want to obtain
a better model with parameter set �. Then one can consider the log likelihood as
follows:

log P ŒOj�� D
X

Q

log P ŒO; Qj��:

Since

P ŒO; Qj�� D P ŒQjO; ��P ŒOj��;

we get

log P ŒOj�� D log P ŒO; Qj�� � log P ŒQjO; ��:

By multiplying this with P ŒQjO; �� and summing over Q, we get the following

log P ŒOj�� D
X

Q

P ŒQjO; �� log P ŒO; Qj�� �
X

Q

P ŒQjO; �� log P ŒQjO; ��:

We denote

C.�; �/ D
X

Q

P ŒQjO; �� log P ŒO; Qj��

then we have

log P ŒOj�� � log P ŒOj�� D C.�; �/ � C.�; �/

C
X

Q

P ŒQjO; �� log
P ŒQjO; ��

P ŒQjO; ��
:
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The last term of the right-hand-side is the relative entropy of P ŒQjO; �� relative
to P ŒQjO; �� which is always non-negative by Lemma 8.1.

Hence we have

log P ŒOj�� � log P ŒOj�� � C.�; �/ � C.�; �/

and the equality holds only if

� D �

or if

P ŒQjO; �� D P ŒQjO; ��

for some other � ¤ �. By choosing

� D arg max
�0

C.�; �0/

one can always make the difference non-negative. Thus the likelihood of the new
model is greater than or equal to the likelihood of the old model. In fact, if a
maximum is reached then � D � and the likelihood remains unchanged. Therefore
it can be shown that the EM algorithm converges to a (local or global) maximum.

Proposition 8.2. The EM algorithm converges to a (local or global) maximum.

8.2.5 Heuristic Method for Higher-Order HMMs

The conventional model for an mth order Markov model has O.N mC1/ unknown
parameters (transition probabilities) where N is the number of states. The major
problem in using this kind of model is that the number of parameters (transition
probabilities) increases exponentially with respect to the order of the model. This
large number of parameters discourages the use of higher-order Markov models
directly. In this subsection, we develop an efficient estimation method for building
a higher-order HMM when the observation symbol probability distribution B is
known.

We consider the higher-order Markov model discussed in Chap. 6 whose number
of states is linear in m. Our idea is to approximate an nth order Markov model of
the demand as follows:

QtCm D
mX

iD1

�iPi QtCm�i (8.2)

where QtCi is the state probability distribution vector at time .t C i/. In this model
we assume that QtCnC1 depends on QtCi (i D 1; 2; : : : ; n) via the matrices Pi and
the parameters �i . One may relate Pi to the i th step transition probability matrix for
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the hidden states. In the model, the number of parameters is O.mN 2/ whereas the
conventional nth order Markov model has O.N mC1/ parameters to be determined.

Given the hidden state probability distribution, the observation probability
distribution is given by

Yt D BXt (8.3)

where B is the emission probabilities matrix. Hence (8.2) and (8.3) form a higher-
order HMM.

For Model (8.2), in Chap. 6 we have proposed efficient methods to estimate Ai

and �i . Given an observed sequence of fXt gT
tD1, Ai is estimated by first counting

the i -step transition frequency from the observed data sequence and then by a
normalization to get the transition probabilities. In Chap. 6, we have proved that

lim
t!1 Xt D Z and Z D

mX

iD1

�iPi Z

where Z can be estimated from fXt gT
tD1 by first counting the occurrence frequency

of each state and then by a normalization. We considered solving �i by the following
minimization problem:

min

�����Z �
mX

iD1

�i Pi Z

�����

subject to
mX

iD1

�i D 1 and �i � 0:

It can be shown easily that if jj:jj is taken to be jj:jj1 or jj:jj1 then the above problem
can be reduced to a linear programming problem and hence can be solved efficiently.

In a higher-order HMM with known emission probabilities B and observation
data sequence

O1O2 : : : OT ;

how does one choose Ai and �i so as to build a higher-order HMM? We note that
by (8.3), the stationary probability distribution vector for the observation symbols is
given by W D BZ. Therefore if W can be estimated and B is given, the probability
distribution vector Z for the hidden states can be obtained. For the stationary vector
Z, the first-order transition probability matrix A for the hidden states is then given by

A D Z.1; 1; : : : ; 1/T (8.4)

(noting that AZ D vecZ). With this idea, we propose the following steps to
construct a higher-order HMM.
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Step 1: The l th element of W is approximated by

1

T

TX

iD1

IOi Dvl
:

Step 2: From (8.3), we expect .W�BZ/ to be close to the zero vector. Therefore
we consider solving Z by minimizing

jjW � BZjj1:

Step 3: Find the most probable hidden sequence Q1, Q2, : : :, QT based on the
observation sequence

O1; O2; : : : ; OT ;

the matrix A is computed by (8.4).

Step 4: With the most probable hidden sequence

Q1; Q2; : : : ; QT ;

we can estimate Pi by counting the number of the transition frequency of the
hidden states and then by a normalization.

Step 5: Solve �i by solving

min

�����Z �
mX

iD1

�i Pi Z

�����
1

subject to
mX

iD1

�i D 1 and �i � 0:

The advantage of our proposed method is that one can solve the model
parameters efficiently with reasonable accuracy.

8.3 The Double Higher-Order Hidden Markov Model

In this section, we present a discrete model for extracting information about the
hidden or unobservable states from two observation sequences. The observations in
each sequence not only depend on the hidden state information, but also depend on
the hidden state’s previous observations. It is clear that both the dynamics of hidden
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and observation states are required to model higher-order Markov chains. We call
these kinds of models Double Higher-order Hidden Markov Models (DHHMMs).

The model can be described as follows. We write T for the time index set

f0; 1; 2; : : :g

of the model. Let fVtgt2T be an unobservable process representing the hidden states
over different time periods. We assume that fVt gt2T is an nth-order discrete-time
time-homogeneous Markov chain process with the state space

V D fv1; v2; : : : ; vM g:

The state transition probabilities matrix A D fa.jtCn/g of the nth-order Markov
chain fVt gt2T is given by

a.jtCn/ D P.VtCn D vjtCn
jVt D vjt ; : : : ; VtCn�1 D vjtCn�1

/

1 � jt ; : : : ; jtCn�1 � M: (8.5)

To determine the probability structure for the nth-order Markov chain fVtgt2T
uniquely, we need to specify the initial state conditional probabilities ˘ D f�.ij /g
as follows:

�.jk/ D P.Vk D vjk
jV1 D vj1; V2 D vj2 ; : : : ; Vk�1 D vjk�1

/; 1 � k � n:

(8.6)

Let fIt gt2T for a stochastic process, where it is assumed to be a .l; n/-order
double hidden Markov chain process. Their corresponding states are given by
fitgt2T . Let

It D .It ; It�1; : : : ; It�lC1/

and

it D .it ; it�1; : : : ; it�lC1/:

Then, we assume that the transition probabilities matrix

B D fbit ;v.itC1/g

of the process fIt gt2T and when It D it and the hidden state VtC1 D v. The initial
distribution ˘ for fIt gt2T should be specified. Given appropriate values for n, M ,
I , A, l , ˘ and B , the DHHMM can be adopted to describe the generator that drives
the realization of the observable sequence

I D I1I2 : : : IT ;
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where T is the number of observations in the sequence. In order to determine the
DHHMM for our applications one can apply similar method of maximum likelihood
estimation and the EM algorithm discussed in Sect. 8.2. A detailed discussion of the
model and method of estimation with applications to the extraction of unobservable
states of an economy from observable spot interest rates and credit ratings can be
found in Siu et al. [188].

8.4 The Interactive Hidden Markov Model

In this section, we propose an Interactive Hidden Markov Model (IHMM) where the
transitions of hidden states depend on the current observable states. The IHHM is a
generalization of the HMM discussed in Chap. 4. We note that this kind of HMM
is different from classical HMMs where the next hidden states are governed by the
previous hidden states only. An example is given to demonstrate IHMM. We then
extend the results to give a class of general IHMMs.

8.4.1 An Example

Suppose that we are given a categorical data sequence (in steady state) of the volume
of transactions as follows:

1; 2; 1; 2; 1; 2; 2; 4; 1; 2; 2; 1; 3; 3; 4; 1:

Here 1=high transaction volume, 2= medium transaction volume, 3=low transaction
volume and 4=very low transaction volume. Suppose there are two hidden states:
A (bull market period) and B (bear market period). In period A, the probability
distribution of the transaction volume is assumed to follow

.1=4; 1=4; 1=4; 1=4/:

In period B, the probability distribution of the transaction volume is assumed to
follow

.1=6; 1=6; 1=3; 1=3/:

In the proposed model, we assume that hidden states are unobservable but the
transaction volume are observable. We would like to uncover the hidden state by
modelling the dynamics with a Markov chain.

In the Markov chain, the states are

A; B; 1; 2; 3; 4:
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We assume that when the observable state is i then the probabilities that the hidden
state is A and B are given by ˛i and 1 � ˛i (depending on i ) respectively in next
time step. The transition probability matrix governing the Markov chain is given by

P1 D

0
BBBBBBB@

0 0 1=4 1=4 1=4 1=4

0 0 1=6 1=6 1=3 1=3

˛1 1 � ˛1 0 0 0 0

˛2 1 � ˛2 0 0 0 0

˛3 1 � ˛3 0 0 0 0

˛4 1 � ˛4 0 0 0 0

1
CCCCCCCA

:

8.4.2 Estimation of Parameters

In order to define the IHMM, one has to estimate the model parameters ˛1; ˛2; ˛3

and ˛4 from an observed data sequence. One may consider the following two-step
transition probability matrix as follows:

P 2
1 D

0
BBBBBBB@

˛1C˛2C˛3C˛4

4
1 � ˛1C˛2C˛3C˛4

4
0 0 0 0

˛1C˛2

6
C ˛3C˛4

3
1 � ˛1C˛2

6
� ˛3C˛4

3
0 0 0 0

0 0 1
6

C ˛1

12
1
6

C ˛1

12
1
3

� ˛1

12
1
3

� ˛1

12

0 0 1
6

C ˛2

12
1
6

C ˛2

12
1
3

� ˛2

12
1
3

� ˛2

12

0 0 1
6

C ˛3

12
1
6

C ˛3

12
1
3

� ˛3

12
1
3

� ˛3

12

0 0 1
6

C ˛4

12
1
6

C ˛4

12
1
3

� ˛4

12
1
3

� ˛4

12

1
CCCCCCCA

:

Using the same trick as in Chap. 4, one can extract the one-step transition
probability matrix of the observable states from P 2

1 as follows:

QP2 D

0
BB@

1
6

C ˛1

12
1
6

C ˛1

12
1
3

� ˛1

12
1
3

� ˛1

12
1
6

C ˛2

12
1
6

C ˛2

12
1
3

� ˛2

12
1
3

� ˛2

12
1
6

C ˛3

12
1
6

C ˛3

12
1
3

� ˛3

12
1
3

� ˛3

12
1
6

C ˛4

12
1
6

C ˛4

12
1
3

� ˛4

12
1
3

� ˛4

12

1
CCA:

However, in this case, we do not have a closed form solution for the stationary
distribution of the process. To estimate the parameter ˛i , we first estimate the one-
step transition probability matrix from the observed sequence. This can be done
by counting the transition frequencies of the states in the observed sequence and
we have

OP2 D

0
BB@

0 4
5

1
5

0
1
2

1
3

0 1
6

0 0 1
2

1
2

1 0 0 0

1
CCA:
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We expect that

QP2 � OP2

and hence ˛i can be obtained by solving the following minimization problem:

min
˛i

jj QP2 � OP2jj2F (8.7)

subject to

0 � ˛i � 1:

Here jj:jjF is the Frobenius norm, i.e.

jjAjj2F D
nX

iD1

nX

iD1

A2
ij :

This is equivalent to solving the following four independent minimization problems
(i)–(iv) and they can be solved in parallel. This is an advantage of the estimation
method. We remark that one can also consider other matrix norms for the objective
function (8.7), let us say jj:jjM1 or jj:jjM

1

and they may result in linear programming
problems.

(i) ˛1: min
0�˛1�1

f.1

6
C ˛1

12
/2 C .

1

6
C ˛1

12
� 4

5
/2 C .

1

3
� ˛1

12
� 1

5
/2 C .

1

3
� ˛1

12
/2g;

(ii) ˛2: min
0�˛2�1

f.1

6
C ˛1

12
� 1

2
/2 C .

1

6
C ˛1

12
� 1

3
/2 C .

1

3
� ˛1

12
/2 C .

1

3
� ˛1

12
� 1

6
/2g;

(iii) ˛3: min
0�˛3�1

f.1

6
C ˛1

12
/2 C .

1

6
C ˛1

12
/2 C .

1

3
� ˛1

12
� 1

2
/2 C .

1

3
� ˛1

12
� 1

2
/2g;

(iv) ˛4: min
0�˛4�1

f.1

6
C ˛1

12
� 1/2 C .

1

6
C ˛1

12
/2 C .

1

3
� ˛1

12
/2 C .

1

3
� ˛1

12
/2g.

Solving the above optimization problems, we have

˛�
1 D 1; ˛�

2 D 1; ˛�
3 D 0; ˛�

4 D 1:

Hence we have

P2 D

0

BBBBBBB@

0 0 1=4 1=4 1=4 1=4

0 0 1=6 1=6 1=3 1=3

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1

CCCCCCCA

(8.8)
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and

P 2
2 D

0

BBBBBBB@

3=4 1=4 0 0 0 0

2=3 1=3 0 0 0 0

0 0 1=4 1=4 1=4 1=4

0 0 1=4 1=4 1=4 1=4

0 0 1=6 1=6 1=3 1=3

0 0 1=4 1=4 1=4 1=4

1

CCCCCCCA

: (8.9)

8.4.3 Extension to the General Case

The method can be extended to a general case of m hidden states and n observable
states. We note the one-step transition probability matrix of the observable states is
given by

QP2 D

0

BBB@

˛11 ˛12 � � � ˛1m

˛21 ˛22 � � � ˛2m

:::
:::

:::
:::

˛n1 ˛m2 � � � ˛nm

1

CCCA

0

BBB@

p11 p12 � � � p1n

p21 p22 � � � p2n

:::
:::

:::
:::

pm1 pm2 � � � pmn

1

CCCA; (8.10)

i.e.

Œ QP2�ij D
mX

kD1

˛ikpkj i; j D 1; 2; : : : ; n:

Here we assume that ˛ij are unknowns and the probabilities pij are given. Suppose
ŒQ�ij is the one-step transition probability matrix estimated from the observed
sequence. Then for each fixed i , ˛ij ; j D 1; 2; : : : ; m can be obtained by solving
the following constrained least squares problem:

min
˛ik

8
<

:

nX

j D1

 
mX

kD1

˛ikpkj � ŒQ�ij

!2
9
=

;

subject to
mX

kD1

˛ik D 1

and

˛ik � 0 for all i; k:
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The idea of the IHMM presented in this subsection is further extended to address
the following applications and problems in Ching et al. [66].

1. IHMM is applied to some practical data sequences in sales demand data
sequences.

2. There are only a few works on modeling the non-linear behavior of categorical
time series that can be found in the literature. In the continuous-state case,
the threshold auto-regressive model is a well-known approach. The idea is to
provide a piecewise linear approximation to a non-linear autoregressive time
series model. This is achieved by dividing the state space into several regimes
via the threshold principle. The IHMM provides a first-order approximation of
the non-linear behavior of categorical time series by dividing the state space of
the Markov chain process into several regimes.

8.5 The Binomial Expansion Model for Portfolio Credit
Risk Modulated by the IHMM

The binomial expansion model for portfolio credit risk is a simple and intuitive
technique for describing defaults in a credit portfolio. It is popular in the banking
and finance industries. The key idea of the binomial expansion model is to describe
the number of defaults from a credit portfolio, for a particular period of time as a
binomially distributed random variable. The credit portfolio has a finite number of
consistent entities (or credit). It is implicit in this distributional assumption that

1. The reference entities are homogeneous in the sense that their probabilities of
defaults are the same.

2. The common probability of defaults remains the same over time.
3. The defaults of the reference entities are independent to each other.

Indeed, when the size of the portfolio becomes large and the common probability
of defaults becomes small, the number of defaults in the large credit portfolio will
approximately follow a Poisson distribution. From this asymptotic relationship, the
relationship between the binomial expansion model for portfolio credit risk and the
(top-down) reduced-form credit risk model is revealed. Note that the (top-down)
reduced-form model means modeling defaults at a portfolio level using the reduced-
form (intensity-based) credit risk model. Another reduced-form credit risk model is
a bottom-up one, where defaults are modeled by random point processes at the level
of individual reference entities and a certain aggregation procedure is then used to
describe defaults at a portfolio level.

Despite its simplicity and popularity, the independence and homogeneity as-
sumptions in the binomial expansion model can hardly be justified by empirical
experience. This motivates us to consider an extension of the binomial expansion
model, where the probability of default of each reference entity is modulated by an
IHMM. Another extension of the binomial expansion model was given in [209].
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In this section, we discuss the binomial expansion model for portfolio credit risk
modulated by the IHMM. This model can incorporate the impact of different risk
states on the probability of defaults, time-varying probability of defaults and the
dependency of defaults, of the reference entities.

Suppose there are m hidden common risk states to all of the reference entities
in a credit portfolio. For example, these entities could be corporate bonds issued by
firms in the same sector, or related sectors. We assume that there are n entities in
the portfolio. In other words, the number of surviving entities in the portfolio at the
beginning of the first period equal n, (i.e., S0 D n).

We consider a discrete-time economy with a time parameter set T WD
f0; 1; � � � ; T g. To describe uncertainty, we define a complete probability space
.˝;F ; P /, where P is a real-world probability measure. The probability space is
rich enough to model all sources of uncertainty in our modeling framework.

Let X WD fXt; t 2 T g denote a hidden sequence of random variables defined on
.˝;F ; P / with state-space

S WD fs1; s2; : : : ; smg;

where si 2 Rm, for i D 1; 2; : : : ; m.
We interpret the states of X as the common risk states of the entities in the

portfolio. In particular, “1” represents the lowest risk state and “m” represents the
highest risk state. Again, without loss of generality, we identify the state-space S to
be the set fe1; e2; : : : ; emg of standard unit vectors in Rm. This set of standard unit
vectors represents the orthornormal basis in the Hilbert space Rm. In the sequel, we
model the state process X by an IHMM model.

Let fSt ; t 2 T g be a stochastic process defined on .˝;F ; P /, where St

represents the number of surviving entities at the end of the t th period, for each
t 2 T . Then, for each t 2 T nf0; 1g and each k D 0; 1; 2; : : : ; St�2, the transition
probabilities of the hidden risk state process X are specified as below:

aij .k/ D P.Xt D ej jXt�1 D ei ; Mt�1 D k/

and

A.k/ D Œaij .k/�1�i;j �m:

Here fMt; t 2 T g is a stochastic process defined on .˝;F ; P / and Mt represents
the number of defaults in the t th period. From the transition probabilities we can
see that the feedback effect of the number of default entities in the portfolio in
the previous time period on the common hidden risk state of the consistent entities
in the current time period is incorporated. Intuitively, if the number of defaults in
the portfolio in the previous period is large, the common hidden risk state of the
portfolio in the current period will be large.
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Let F S WD fFS
t ; t 2 T g be the P -completed natural filtration generated by

the survival process S , where, for each t 2 T , FS
t is the 	-field generated by the

survival process S up to and including time t augmented by the P -null sets in F .
For each t 2 T , conditional on FS

t , MtC1 takes values in the set f0; 1; 2; : : : ; Stg,
since the number of defaulting entities in the current time period cannot exceed the
number of surviving entities in the previous time period.

Let h�; �i be the scalar, (or inner), product in Rm. We can then define the
probability of default for each consistent entity in the portfolio at time t as follows:


t WD 
.t; Xt / WD h‚; Xt i D
mX

iD1


i hXt; ei i;

where

‚ WD .
1; 
2; : : : ; 
m/ 2 Rm; 
i 2 .0; 1/ for i D 1; 2; : : : ; m;

and


1 < 
2 < � � � < 
m:

This is consistent with the assumption that “1” is the lowest risk state and “m” is the
highest risk state.

For each t 2 T , given FS
t and Xt , the conditional probability distribution of

MtC1 under P is given by the following regime-switching binomial distribution
modulated by the IHMM:

P.MtC1 D j jXt ;FS
t / D P.MtC1 D j jXt ; St / (8.11)

D
�

St

j

�
.h‚; Xt i/j .1 � h‚; Xti/St �j

D
mX

iD1

�
St

j

�
.
i /

j .1 � 
i /
St �j hXt ; eii; (8.12)

for each j D 1; 2; : : : ; St , where

�
St

j

�
is the number of combinations of j objects

among St objects.
The following example provides an illustration of the model. The version of

the binomial expansion model presented in the example is an extension to that of
Giampieri et al. [105] in the sense that the IHMM is used to incorporate the feedback
effect.



8.5 The Binomial Expansion Model for Portfolio Credit Risk Modulated by the IHMM 221

8.5.1 Examples

Consider the situation that the hidden risk state takes two possible values, namely,
“N” (normal risk) and “E” (enhanced risk). In the normal risk state, the number of
observed defaults in each time step is modeled by a binomial expansion model with
the default probability of a bond being equal to PN . In the enhanced risk state, let
PE denote the default probability of a bond. Here PE > PN , which means that the
probability of the default of a bond in the enhanced risk state is higher than that in
the normal risk state.

Then, in the normal state N , given the number of surviving bonds at the current
time is k, the conditional probability distribution of the number of defaults in the
next period is:

P.mjN k/ D
�

k

m

�
.PN /m.1 � PN /k�m; m D 1; 2; : : : ; k:

In the enhanced state E , the corresponding probability distribution is

P.mjEk/ D
�

k

m

�
.PE/m.1 � PE/k�m:

In the following example, we shall define an augmented Markov chain associated
with the binomial expansion model modulated by an IHMM with two hidden risk
states. The state-space of the augmented Markov chain is formed by both hidden risk
states and the observable number of defaults. We obtain the transition probability
matrix of the augmented Markov chain, which provides a complete description for
the probabilistic behavior of transitions of both observable states and hidden states.
The transition probability matrix also plays a key role for the estimation of the
unknown parameters of the IHMM.

Consider the binomial expansion model in the above example again. Suppose
there are two surviving bonds at the beginning of the first period, i.e., S0 D 2. In this
case, there are three observable states 0; 1 and 2, while there are six unobservable
states (or more precisely, partially unobservable), namely, N 2; N1; N 0; E2; E1 and
E0. Here, N 2 represents that the credit risk is normal and there are two surviving
bonds and E0 means that the credit risk is enhanced and there is no surviving bond.
We shall describe the probabilistic behavior of the transitions of both observable
states and unobservable states by an augmented Markov chain with the following
nine states:

fN 2; N1; N 0; E2; E1; E0; 2; 1; 0g:
We further suppose that when the observable state is k (k D 0; 1; 2), the
probabilities that the hidden state is N and E in next time step are given by ˛k

and 1 � ˛k , respectively.



222 8 Hidden Markov Chains

Then, the transition probability matrix governing the augmented Markov
chain is:

P2 D

0

BBBBBBBBBBBBB@

0 0 0 0 0 0 P.0jN 2/ P.1jN 2/ P.2jN; 2/

0 0 0 0 0 0 0 P.0jN1/ P.1jN1/

0 0 0 0 0 0 0 0 P.0jN 0/

0 0 0 0 0 0 P.0jE2/ P.1jE2/ P.2jE2/

0 0 0 0 0 0 0 P.0jE1/ P.1jE1/

0 0 0 0 0 0 0 0 P.0jE0/

˛2 0 0 1 � ˛2 0 0 0 0 0

0 ˛1 0 0 1 � ˛1 0 0 0 0

0 0 ˛0 0 0 1 � ˛0 0 0 0

1

CCCCCCCCCCCCCA

: (8.13)

Suppose

PN D 0:15 and PE D 0:3:

Then, the transition probability matrix is

P2 D

0

BBBBBBBBBBBBB@

0 0 0 0 0 0 0:7225 0:2550 0:0225

0 0 0 0 0 0 0 0:8500 0:1500

0 0 0 0 0 0 0 0 1:000

0 0 0 0 0 0 0:4900 0:4200 0:0900

0 0 0 0 0 0 0 0:7000 0:3000

0 0 0 0 0 0 0 0 1:000

˛2 0 0 1 � ˛2 0 0 0 0 0

0 ˛1 0 0 1 � ˛1 0 0 0 0

0 0 ˛0 0 0 1 � ˛0 0 0 0

1

CCCCCCCCCCCCCA

:

8.5.2 Estimation of the Binomial Expansion Model
Modulated by the IHMM

To illustrate how to use the above method to estimate the binomial expansion
model modulated by the IHMM, we first consider the situation where PN and PE

are given. To define the IHMM for the hidden risk states, one must first estimate
˛ D .˛0; ˛1; ˛2/ from the observed sequence of the default data. We consider the
3�3 sub-matrix related to the observable states of the two-step transition probability
matrix P 2

2 as follows: QP2 D
 

˛2P.0jN; 2/ C .1 � ˛2/P.0jN; 2/ ˛2P.1jN; 2/ C .1 � ˛2/P.1jN; 2/ ˛2P.2jN; 2/ C .1 � ˛2/P.2jN; 2/

0 ˛1P.0jN; 1/ C .1 � ˛2/P.0jN; 1/ ˛1P.1jN; 1/ C .1 � ˛2/P.1jN; 1/

0 0 1

!
:
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Suppose PN D 0:15 and PE D 0:3. Then,

QP2 D
0

@
0:2325˛2 C 0:4900 �0:1650˛2 C 0:4200 �0:0675˛2 C 0:0900

0:0000 0:1500˛1 C 0:7000 �0:1500˛1 C 0:3000

0:0000 0:0000 1:0000

1

A:

Note that ˛0 is not important in the model and can be assumed to be 0. We also
notice that P.0jN 0/ D P.0jE0/ D 1.

To estimate the parameters ˛i .i D 1; 2/ given PN and PE , we must first
estimate the one-step transition probability matrix from the observed sequence of
default data. This can be done by counting transition frequencies among the states
in the observed sequence of default data and then follow by a normalization (see,
for example, [59, 155]). Suppose that the estimated transition probability matrix is
given by:

OP2 D
0

@
3
4

1
4

0

0 3
4

1
4

0 0 1

1

A:

Note that QP2 � OP2. Consequently, ˛i can be estimated by solving the following
minimization problem:

min
˛i

jj QP2 � OP2jj2F (8.14)

subject to the constraints:

0 � ˛i � 1; i D 1; 2 :

Here jj:jjF represents the Frobenius norm. Solving the above optimization problem,
we obtain

˛�
1 D 0:3333 and ˛�

2 D 0:9602:

This then gives:

P2 D

0
BBBBBBBBBBBBB@

0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:7225 0:2550 0:0225

0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:8500 0:1500

0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 1:0000

0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:4900 0:4200 0:0900

0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:7000 0:3000

0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000 1:0000

0:9602 0:0000 0:0000 0:0398 0:0000 0:0000 0:0000 0:0000 0:0000

0:0000 0:3333 0:0000 0:0000 0:6667 0:0000 0:0000 0:0000 0:0000

0:0000 0:0000 0:0000 0:0000 0:0000 1:0000 0:0000 0:0000 0:0000

1
CCCCCCCCCCCCCA

:
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The general situation where both PN and PE are unknown can be handled using
a bi-level programming technique (see [70], Appendix A therein).

8.5.3 Numerical Examples and Comparison

In this subsection, we present the estimation results of the IHMMs using the
observed default data in [105]. In [105], Giampieri et al. applied the HMM to
the quarterly bond default data of four sectors (consumer, energy, media and
transportation) in the United States, taken from Standard & Poors’ ProCredit6.2
database. The data set covers the period from January 1981 to December 2002.
The total number of bonds in January 1981 was 281 while the total number of bonds
in December 2002 was 222. For the convenience of comparison, we extracted the
credit default data and also the most likely hidden risk state directly from the figures
in [105]. We then applied our IHMM to the extracted data. Comparisons were
made and the results are reported in Figs. 8.1–8.8. The details of the computational
procedures are given below.

Now, we need to set the initial probability for each sector and for each model.
We assume that the initial probability matrices of the consumer sector for both the
IHMM and the HMM are the same and that the common probability matrix is:

P .0/ D
�

1=6 1=6 1=6 1=6 1=6 1=6 0 0 0 0 0 0 0

0 0 0 0 0 0 1=7 1=7 1=7 1=7 1=7 1=7 1=7

�
: (4.1)

We recall that the number of observable states is equal to the maximum number
of defaults observed plus one in the IHMM. The initial probability matrices of the
energy sector and the transportation sector for both the IHMM and the HMM are
supposed to be the same and the common probability matrix is:

P .0/ D
�

1=3 1=3 1=3 0 0 0

0 0 0 1=3 1=3 1=3

�
(4.2)

The initial probability matrices of the media sector for both the IHMM and the
HMM are assumed to be the same and the common probability matrix is:

P .0/ D
�

1=4 1=4 1=4 1=4 0 0 0 0

0 0 0 0 1=4 1=4 1=4 1=4

�
(4.3)

Figures 8.1–8.8 depict the results of the most likely hidden risk state extracted
from the IHMM and also those extracted from the figures in [105] using the ob-
served default data in the consumer/service sector, the energy and natural resources
sector, the leisure time/media sector and the transportation sector respectively. There
are 13, 6, 8 and 6 observable states in the consumer/service sector, the energy and
natural resources sector, the leisure time/media sector and the transportation sector
respectively.
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Fig. 8.1 Consumer/service sector (HMM in [105]) (Taken from [70])
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Fig. 8.2 Consumer/service sector (IHMM) (Taken from [70])
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Fig. 8.3 Energy and natural resources sector (HMM in [105]) (Taken from [70])
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Fig. 8.4 Energy and natural resources sector (IHMM) (Taken from [70])
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Fig. 8.5 Leisure time/media sector (HMM in [105]) (Taken from [70])
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Fig. 8.6 Leisure time/media sector (IHMM) (Taken from [70])
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Fig. 8.7 Transportation sector (HMM in [105]) (Taken from [70])
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Fig. 8.8 Transportation sector (IHMM) (Taken from [70])
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Table 8.1 Prediction accuracy in the sales demand data

IHMM HMM in [105]

Sectors Total Default ˛ PN PE q p PN PE

Consumer 1,041 251 0.63 0.0022 0.0075 0.95 0.81 0.0026 0.0159
Energy 420 71 0.68 0.0015 0.0085 0.95 0.88 0.0014 0.0099
Media 650 133 0.50 0.0015 0.0085 0.96 0.83 0.0027 0.0194
Transport 281 59 0.63 0.0017 0.0153 0.97 0.78 0.0025 0.0223

From Figs. 8.1–8.8, we can see that our IHMM is more sensitive in detecting the
changes in the hidden risk states than the HMM in [105] for the consumer/service
sector, the energy and natural resources sector, the leisure time/media sector and
the transportation sector. This reveals that the incorporation of the feedback effect
by the IHMM can improve the ability in detecting the changes in the hidden risk
states. As expected, the IHMM gives a threshold-type classification of the hidden
risk states. For example, the IHMM classifies those periods having six or more
defaults as enhanced risk in the consumer/service sector. The threshold values for
the remaining three sectors are 3; 4 and 3 defaults respectively. For the HMM,
generally speaking, it is unlikely to have two transitions of hidden risk states in
three consecutive transitions. Therefore, the HMM might not be adaptive to the
rapid changes of hidden risk states. This is consistent with the numerical examples
in Figs. 8.1–8.8.

We then apply the binomial expansion model modulated by the IHMM to the
default data again. In this case, since the number of model parameters ˛i is much
more than the number of available data points, we assume that ˛i D ˛, for all i , in
the estimation. Based on the observed default data and the hidden risk state process
for each sector extracted by our IHMM [43] the likelihood function, or the joint
probability distribution, for the hidden risk states with the observed default data can
be obtained in the following form:

˛P .1 � ˛/QP R
N .1 � PN /S P T

E .1 � PE/U : (4.4)

Here P; Q; R; T and U can be obtained from the observed default data. The
estimates of all model parameters are then obtained by maximizing the above
likelihood function (4.4).

The parameter estimates of the binomial expansion models, modulated either
by the IHMM or HMM, for the four industry sectors are presented in Table 8.1.
Under the binomial expansion model modulated by the HMM, the hidden risk state
is assumed to follow a first-order Markov chain having the following transition
probability matrix:

�
q 1 � q

1 � p p

�
:

Here q is the probability of remaining in the normal risk state while p represents
the probability of remaining in the enhanced risk state. We observe that the default
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probabilities under the enhanced risk, state estimated using the binomial expansion
model modulated by the HMM, are always significantly greater than those estimated
by the binomial expansion model modulated by IHMM. It can also be observed that
the default probabilities under the normal risk state obtained by both of the models
are relatively consistent with each other.

We considered the IHMM and a binomial expansion model modulated by an
IHMM for modeling the occurrence of defaults of bonds issued by firms in the
same sector. The main idea of the two models is to assume that the transitions
of the hidden risk states of the sector depend on the current observed number of
bonds defaulting within the sector. We presented an efficient estimation method for
the model parameters and an efficient method for extracting the most likely hidden
risk state process. We conducted empirical studies on the models and compared the
hidden risk state process extracted from the IHMM model with that extracted from
the HMM using the real default data from Giampieri et al. [105]. We found that the
incorporation of the interactive or feedback effect can provide a more sensitive way
to detect the transitions in the hidden risk states.

8.6 Summary

In this chapter, we presented several frameworks for hidden Markov models
(HMMs). These frameworks include the Higher-order Hidden Markov Model
(HHMM), the Interactive Hidden Markov Model (IHMM) and the Double Higher-
order Hidden Markov Model (DHHMM). For both HHMM and IHMM, we present
both methods and efficient algorithms for the estimation of model parameters.
Applications of these models for extracting economic information from observed
interest rate and credit ratings data and for extending the binomial expansion model
for portfolio credit risk analysis are discussed.

8.7 Exercises

1. Derive the conditional probability distribution of MtC1 in (8.11) given FS
t and

Xt under P if Xt is an hidden Markov chain.
2. Derive the transition probability matrix P2 in (8.13) of the augmented Markov

chain.
3. Write a computer program (use EXCEL) to solve the minimization prob-

lem (8.14).
4. Use a bi-level programming technique to estimate ˛1, ˛2 and P2 in (8.14) when

both PN and PE are unknown.
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