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Preface

Street maps and transportation networks are of fundamental importance in a wealth
of applications. In the past, the production of street maps required expensive field
surveying and labor-intensive post-processing. Proprietary data vendors such as
NAVTEQ (now Nokia), TeleAtlas (now TomTom), and Google therefore dominated
the market. In recent years volunteered geographic information (VGI) efforts such
as OpenStreetMap (OSM) have complemented commercial map datasets. They
provide map coverage especially in areas that are of less commercial interest.
VGI efforts however still require dedicated users to author maps using specialized
software tools. Lately on the other hand, the commoditization of GPS technology,
its integration in mobile phones, and the advent of low-cost fleet management and
positioning applications have triggered the generation of vast amounts of tracking
data. As a size indicator one can consider the contribution of tracking data in
OpenStreetMap, which is steadily increasing and currently amounts to 2.6 trillion
points. Besides the use of such data in traffic assessment and forecasting, i.e., map-
matching vehicle trajectories to road networks to obtain travel times, there has been
a recent surge of actual map construction algorithms that derive not only travel time
attributes but actual road network geometries from tracking data.

The ambition of this book is to provide the reader with an introduction to
map construction algorithms. Providing a research overview is a challenging task
since map construction is a very active research field. We address this conundrum
by identifying and focusing on three emerging categories of map construction
algorithms. For each category we present the general algorithmic idea and a high-
level description of the respective algorithms. For this book to also serve as a starting
point for map construction research, an in-depth discussion of relevant algorithms
is essential. Here, we selected three respective methods, one for each category of
algorithms. Devoting one chapter per method, we provide a detailed description
that can serve as a basis for subsequent research.

A major challenge in the research community is to compare the performance and
to evaluate the quality of competing algorithms. The outcome of map construction
is a map dataset that should be close to an actual map data geometry. The quality
of an algorithm can thus be measured by the accuracy of its respective result.
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viii Preface

Visual inspection has been the most common evaluation approach throughout the
literature since it gives an intuitive way of assessing the quality of a map. Parts
of this book are dedicated to showcasing map construction results from different
algorithms to provide the reader with a simple means to assess the strengths and
weaknesses of map construction. Only a few recent works incorporate quantitative
distance measures to assess the quality of map construction results. The cross-
comparison of different algorithms remains rare, since algorithms and constructed
maps are generally not publicly available. In addition, there is a lack of benchmark
data and the quantitative evaluation with suitable distance measures is in its infancy.
This book discusses the range of existing methods to assess the quality of the
constructed maps. These methods are not only discussed in terms of their theoretical
characteristics but are also used with different tracking datasets to quantify the
quality of the produced maps.

The datasets used in the evaluation were created by tracking vehicle fleets in
three large cities. We used datasets from different cities to cover diverse roads (i.e.,
highways and secondary roads), different sampling rates, and different scales.

In addition to providing a comprehensive comparison of map construction
algorithms, we make the mentioned datasets, map construction algorithms and
outputs, as well as the evaluation methods publicly available on the Internet at http://
www.mapconstruction.org/. We have established this Web site as a repository for
map construction data and algorithms, and we invite other researchers to contribute
by uploading code and benchmark data supporting their map construction work. We
expect that such a central repository will encourage a culture of sharing and will
enable the development of improved map construction algorithms.

Organization of This Book

This book seeks to outline the basic principles of map construction algorithms.
It deals with the concepts, techniques, and specifically algorithms that have been
developed in recent years. An introductory chapter is the basic reference point for
all types of readers including practitioners, scientists, and graduate students. The
reader will gain an overview of the research ambition so as to also assess the
potential of map construction algorithms in her respective field. Beyond covering
basic categorization and overview, subsequent chapters give an in-depth analysis
of specific techniques. This discussion of map construction algorithms as well as
evaluation methods targets researchers interested in advancing the field. Those chap-
ters in connection with the accompanying Web page http://www.mapconstruction.
org/ allow for a quick assessment of the state of the art in map construction. The
reader is able to download source code and run the algorithms using provided
example datasets based on instructions detailed in a user guide chapter in this book.
The interested reader will find, at the end of each chapter, a section devoted to
bibliographic notes. The book is organized in nine chapters, whose content is as
follows.

http://www.mapconstruction.org/
http://www.mapconstruction.org/
http://www.mapconstruction.org/
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• Chapter 1 gives an overview of map construction algorithms and groups them
into three main categories.

• Chapter 2 describes the TraceBundle algorithm as a proponent of intersection
linking algorithms in detail.

• Chapter 3 gives a description of an incremental track insertion algorithm that
utilizes the Fréchet distance.

• Chapter 4 presents an example of a density-based map construction algorithm
and showcases the use of a pipeline with multiple intermediate steps.

• Chapter 5 visualizes a range of trajectory datasets, reference maps, and map
construction results.

• Chapter 6 introduces a range of methods to assess the quality of the constructed
maps.

• Chapter 7 is devoted to an experimental evaluation and to establish general
performance characteristics of the three algorithms.

• Chapter 8 discusses nontraditional uses for map construction algorithms, i.e.,
scenarios in which constructing a “map” would provide further insight into the
data.

• Chapter 9 provides a user guide for the three map construction algorithms
described in detail in this book. The guide shows how to use the actual code
and to produce maps based on included trajectory data.

The book has several potential audiences. The first audience includes interested
practitioners from the geospatial data management community trying to use map
construction as a means to simplify and aggregate trajectory datasets. This work
will have respective data mining algorithms as its ultimate goal, i.e., to perform
data analysis on massive amounts of trajectory data. Another audience consists of
graduate students and researchers interested in extending the current state of the art
in map construction research. This includes, for example, computational geometry
researchers pursuing the map construction challenge from a theoretical perspective
and aiming for algorithms that provide quality guarantees. We tried as much as
possible to cater to both audiences by having overview and example chapters
as well as an in-depth discussion of specific methods and specific experimental
results. Practitioners will be more interested in Chaps. 1, 5, 8, and 9, which
provide an overview of map construction algorithms, visualize some results, discuss
new application areas, and provide a user guide, respectively. A more detailed
discussion of the algorithms is provided in Chaps. 1–4, with evaluation measures
and experimental results being discussed in Chaps. 6 and 7, respectively. In addition,
the dedicated Web page and respective user guide of Chap. 9 should allow the reader
to start working with the various algorithms right away.
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Chapter 1
Map Construction Algorithms

Abstract Map construction methods automatically produce and/or update street
map datasets using vehicle tracking data. Enabled by the ubiquitous generation of
geo-referenced tracking data, there has been a recent surge in map construction
algorithms coming from different computer science domains. This chapter gives
a comprehensive overview and comparison of the various algorithms by identifying
and focusing on three emerging categories of map construction algorithms. For each
category, the general algorithmic idea and a high-level description of the respective
algorithms are presented. The overview is complemented by a detailed discussion
of several representative algorithms in the following chapters.

1.1 Introduction

The production of street maps requires expensive field surveying and labor-intensive
post-processing. Over the last several years, volunteered geographic information
(VGI) [18] efforts such as OpenStreetMap (OSM) [20, 27] have complemented
commercial map datasets. Still, they require dedicated users to author maps using
specialized software tools. At the same time, the ubiquity of GPS positioning
combined with the wealth of mobile applications generates now vast amounts of
tracking data. As a size indicator one can consider the contribution of tracking
data in OpenStreetMap, which currently amounts to 2.6 trillion points [28].
Besides the use of such data in traffic assessment and forecasting [15], i.e., map-
matching vehicle trajectories to road networks to obtain travel times [7], there has
been a recent surge of actual map construction algorithms that derive not only
travel time attributes but actual road network geometries from tracking data, e.g.,
[1–3, 5, 6, 8, 9, 11–14, 16, 17, 19, 21–23, 25, 31–33, 35, 36]. A comprehensive
comparison of map construction algorithms that also includes an experimental
quality assessment can be found in [4]. An example of a constructed map is given in
Fig. 1.1, which shows (a) the vehicle trajectories collected for Berlin in gray color
and (b) the respective constructed map using the algorithm of [22] in black color
overlayed on an OpenStreetMap background map shown in gray color.

This chapter gives an overview of the state-of-the-art of map construction
algorithms. Sketches of some representative methods are provided for three cat-
egories of algorithms: (1) Point Clustering, (2) Incremental Track Insertion, and
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a

b

Fig. 1.1 Vehicle tracking data vs constructed map overlaid on ground-truth. (a) Vehicle tracking
data—Berlin. (b) Constructed map (in black) overlaid on ground-truth (in gray)

(3) Intersection Linking. The algorithms discussed include the recent algorithms by
Ahmed and Wenk [3], Ge et al. [17], Karagiorgou and Pfoser [22], Cao and Krumm
[9], Davies et al. [13], Edelkamp and Schrödl [14], and Biagioni and Eriksson [6].
Subsequent chapters focus one the details of three specific methods, one for each
category.

The map construction problem is defined as follows: Given a set of input tra-
jectories, where each trajectory is a sequence of measurements. Each measurement
consists of a point (latitude/longitude or .x; y/-coordinates after suitable projection),
a time stamp, and optionally additional information such as vehicle heading or
speed. The desired output is to construct a street map, which is generally modeled
as some sort of an embedded graph.
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1.2 A Word on Maps

Depending on the desired application and granularity, there are many possible
models for street maps. The basic model is a geometric graph, where vertices
describe intersections and edges represent streets. Typically, the graph is embedded
in the plane and it is often assumed to be planar (although this does not model
bridges). A common model is an undirected geometric graph, where each vertex is
embedded as a point in the plane and each edge is a polygonal curve that connects
two vertices.

Depending on the application, an intersection can be modeled as a single vertex
embedded as a point in the plane, or it could be a set of vertices possibly annotated
with turn restrictions, or it could be a region. An edge can be modeled as an abstract
connection between vertices, as a (polygonal) curve embedded in the plane, as a set
of curves to model multiple lanes, and an edge might be directed to model one-way
streets.

The map construction algorithms in the literature generally model the maps as
undirected embedded planar graphs or different variants of directed graphs. But
often, an undirected graph is computed as a first step and additional information such
as edge directions, number of lanes, turn restrictions, and mean speed are computed
in an additional post-processing step, e.g. [6, 9, 13, 14, 31].

Later chapters, cf. Chap. 6 on quality measures for map comparison and Chap. 7
for experiments and comparisons, focus on a common street map representation
based on undirected embedded graphs, although some algorithms may produce
some additional attributes.

1.3 Types of Map Construction Algorithms

There exist several different approaches in the literature for constructing street
maps from tracking data. These can be organized into the following categories: (1)
Point clustering, which includes k-means algorithms, density-based methods, and
approaches based on neighbourhood complexes; (2) Incremental track insertion;
and (3) Intersection linking. The different approaches, as well as representative
algorithms for each category, are described in the following.

1.4 Point Clustering

Map construction algorithms in this general category assume that the input is a set
of points, and the points are then clustered in different ways to obtain intersections
or street segments that together describe the overall street map. The input point set
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either comprises the set of all raw input measurements, or a dense sample of all
input trajectories. Here, the input trajectories are assumed to be continuous curves
obtained from interpolating (usually piecewise-linearly) between measurements.

The point clustering techniques can be reduced to three types of methods for
constructing a street map. One approach (cf. [14]) initially clusters the points to
generate intersections and then computes the connecting segments as centerlines
based on the trajectory points connecting the respective intersection clusters. Other
approaches, such as density-based methods, compute the street map in one sweep.
The set of points are interpreted as a skeleton image of the road network. The street
map is computed as the set of centerlines derived from this image using, e.g., kernel
density estimates.

The first approach type, spearheaded by Edelkamp and Schrödl [14], employs
the k-means algorithm to cluster the input point set, using distance measures (e.g.,
Euclidean distance) and possibly also vehicle heading of the measurement, as a
condition to introduce seeds at fixed distances along a path. Their map construction
algorithm incorporates new algorithms for road segmentation, map-matching, and
lane clustering. In [31] this approach was used to refine an existing map rather than
building it entirely from scratch. In their short paper [19], Guo et al. make use of
statistical analysis of GPS trajectories to extract a center line representation of a
street, assuming that the GPS data follows a symmetric 2D Gaussian distribution.
This assumption may become unrealistic, especially in error-prone environments.
Worrall et al. [35] compute point clusters based on location and heading, and in
a second step link these clusters together using non-linear least-squares fitting.
They emphasize compression of the input trajectories to infer a digitized road map
and present their results only for small datasets. They are mostly concerned with
topological elements and not with connected way points. Agamennoni et al. [2]
present a machine-learning method to consistently build a representation of the map
mostly in dynamic environments such as open-pit mines. They focus on estimating
a set of principal curves from the input trajectories to represent the constructed map.
Liu et al. [25] first cluster line segments based on proximity and direction, and then
use the resulting point clusters and fit polylines to them, to extract road segments.

Another approach first transforms the input point set into a discretized density,
using, for example, kernel density estimates. Most of these density-based algorithms
function well either when the data is frequently sampled (i.e., once per second)
[11], or when there is a lot of redundancy [6, 13, 32, 33]. A similar approach to
[6] is presented in Liu et al. [25]. Generally, density-based algorithms have a hard
time overcoming the problem of noisy samples when they accumulate in an area.
Recently, Wang et al. [34] addressed the problem of map updates by applying their
approach to OpenStreetMap data using a density-based approach.

In the computational geometry community, map construction algorithms have
been proposed that cluster the input points using local neighborhood properties by
employing Voronoi diagrams, Delaunay triangulations [12], or other neighborhood
complexes such as the Vietoris-Rips complex [1, 10, 17]. All these algorithms
assume a densely sampled input point set, and they provide theoretical quality
guarantees for the constructed output map under certain assumptions on the



1.4 Point Clustering 5

underlying street map and the input trajectories. Aanjaneya et al. [1] view street
maps as metric graphs, and they focus on computing the combinatorial structure
by computing an almost isometric space with lower complexity. However, they do
not compute an explicit embedding of vertices and edges. Chen et al. [12] focus
on detecting “good” street portions in the map and connect them subsequently. The
theoretical quality guarantees, however, assume dense point sample coverage and
error bounds and make assumptions on the road geometry. Ge et al. [17] and Chazal
et al. [10] employ the Reeb graph to reconstruct the branching structure. This tool
allows the authors to provide topological quality guarantees. Chazal et al. [10] also
use metric graphs to model the problem, and they formulate quality guarantees in
terms of the Gromov-Hausdorff distance between metric spaces.

1.4.1 Biagioni and Eriksson

Biagioni and Eriksson [6] describe a map construction pipeline that begins with
a point clustering-based algorithm that uses density estimation. Their algorithm
processes the density function at various thresholds to compute successive versions
of an undirected skeleton graph. Subsequently they map-match the input trajectories
onto the skeleton in order to clean up noise and to add additional information to
the graph, replacing undirected edges with one directed edge per direction, as well
as turn lanes at vertices. Just as in [6], for evaluation purposes in Chap. 6 the final
undirected topology-refined graph is used as the output. An example output is shown
in Fig. 1.2.

1.4.2 Davies et al.

The algorithm by Davies et al. [13] is a classical density-based map construction
algorithm. It first computes for each grid cell the density of trajectories that pass

Fig. 1.2 Density-based map construction output after refinement. (a) Density. (b) Topology-
refined graph
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a b c

Fig. 1.3 Density-based map construction algorithm. (a) Blurred trajectory histogram. (b) Con-
tours. (c) Centerlines, graph

< dmax 

a b

Fig. 1.4 Point clustering-based map construction algorithm—adapted from [14]. (a) Input trajec-
tories, clusters, and segments. (b) Centerlines, refined graph

through it (cf. the example of Fig. 1.3a). Then it computes the contour of the
resulting bit map (Fig. 1.3b), and it uses the Voronoi diagram of the contour to
compute a center line representation followed by additional cleanup and assignment
of edge directions (Fig. 1.3c). The final output is a directed graph in which each
edge is labeled as directed or bidirected.

1.4.3 Edelkamp and Schrödl

Edelkamp and Schrödl [14] were the first to propose a map construction approach
based on the k-means method. Their point clustering algorithm creates road
segments based on tracking data, represents the center line of the road using a
fitted spline and performs lane finding. The lanes are found by clustering trajectories
based on their distance from the road center line, see Fig. 1.4 for an illustration. The
final graph is directed, with a directed edge per lane.
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1.4.4 Ge et al.

The algorithm by Ge et al. [17] is a point clustering algorithm that applies
topological tools to extract the underlying undirected graph structure. The main
idea of this algorithm is to decompose the input data into sets, each corresponding
to a single branch in the underlying graph. The authors assume that the input
point set is densely sampled, and they compute a two-dimensional neighborhood
complex K, such as the Vietoris-Rips complex, on the input points. This requires
only the distance matrix of the point set as input. Then, for a given “height”
function f W K ! R, they consider the Reeb graph Rf , which intuitively captures
a topologically equivalent skeletonization of the complex. Each level set f�1.r/ D
fp 2 K j f .p/ D rg, for r 2 R, may have multiple connected components. The Reeb
graph Rf is the quotient space of K where points in the same connected component
of a level set are identified. The Reeb graph thus models the connectivity of the
connected components of the level sets of f , and hence it captures a one-dimensional
graph structure in a natural way.

Figure 1.5 shows an example of a simplicial complex K and a Reeb graph Rf

for the height function f .x; y/ D y. In the paper, the authors consider an intrinsic
height function by fixing an arbitrary base point b 2 K and defining f to map
every point in K to its geodesic distance to b. Finally, there is a canonical way
to measure importance of features in the Reeb graph, which allows them to easily
simplify the resulting graph. Runtime guarantees are provided, as well as partial
quality guarantees for correspondence of cycles. They compared street-maps as sets
of cycles. If a cycle in one map does not correspond to a cycle in another map, then
obviously a street or a turn is missing in the second map. An embedding for the
edges is then obtained by using a principal curve algorithm [24] that fits a curve to
the points contributing to the edge.

Fig. 1.5 An example of a
simplicial complex K and a
Reeb Rf with respect to the
height function f .x; y/ D y.
The level set f �1.s/ has two
connected components, while
f �1.r/ has one connected
component, as illustrated by
the horizontal segments in the
complex K

K Rf
f

s

r
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1.4.5 Aanjaneya et al.

Aanjaneya et al. [1] present a point clustering-based map construction approach that
models the problem as a metric reconstruction problem. As input they are given a
metric space .XI ; dI/, which is assumed to be close to an underlying original metric
graph .XO; dO/. The task is to compute a reconstructed metric graph .XR; dR/ that
has the same topology as XO and a map � W XI ! XR that approximately preserves
distances. In practice, the input space .XI ; dI/ is constructed from the set of input
point measurements by computing a weighted local neighborhood graph, such as
the one-skeleton of the Vietoris Rips complex. This defines dI via shortest paths in
the graph.

The reconstruction algorithm classifies all input measurements from XI into
edge points and branch points. This is done by analyzing the number of connected
components of the graph XI within an annulus around each input measurement;
if there are two components it is an edge point, otherwise it is a branch point.
Essentially, vertices of the reconstructed metric graph XR are formed from con-
nected components of branch points, and edges are formed from connected com-
ponents of edge points. Here, the metric dR is defined by assigning to each edge
the diameter of the connected component. The authors then prove that if XI is
close to an original metric graph XO then the reconstructed XR is homeomorphic
to XO and distances are approximately preserved. These results depend on several
input parameters as well as on several assumptions, including a dense sampling of
XI and an approximate correspondence between XI and XO. As such, the authors
provide the first quality guarantees for a map construction algorithm. The model
of the graphs, however, is an undirected graph that has a distance associated with
each edge, but interestingly an embedding for the vertices and edges is not explicitly
computed, although it can be extracted from the algorithm.

1.5 Incremental Track Insertion

Algorithms in this category construct a street map by incrementally inserting tracks
into an initially empty map [26], often making use of map-matching ideas [29].
Distance measures and vehicle headings are also used to perform additions and
deletions during the incremental construction of the map. Intuitively, these methods
use the first track as a base map and refine it incrementally by adding more tracks.
With each insertion, new map detail is added and the existing geometry is updated
using interpolation.

One of the first algorithms in this category [30] clusters the tracks in order
to refine an existing map, but not to compute a new map from scratch. Cao and
Krumm [9] first introduce a clarification step in which they modify the input tracks
by applying physical attraction to group similar input tracks together. Then they
incrementally insert each track by using local criteria such as distance and direction.
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More details of their algorithm are provided in Sect. 1.5.2. Bruntrup et al. [8]
propose a spatial clustering-based algorithm that requires high quality tracking
data (sampling rate and positional accuracy). The work in [36] discusses a map
update algorithm based on spatial similarity. It uses a method similar to GPS trace
merging to continuously refine existing road maps. Ahmed and Wenk [3] present an
incremental method that employs the Fréchet distance to partially match the tracks
to the map. The algorithm is described in more detail in Sect. 1.5.1.

1.5.1 Ahmed and Wenk

The algorithm by Ahmed and Wenk [3] is a simple and practical incremental track
insertion algorithm. It models the street map as an undirected embedded graph and
uses one parameter " to model the error associated with the GPS trajectories and
with the street width. The insertion of one trajectory proceeds in three steps. The first
step performs a partial map-matching of the trajectory to the partially constructed
map in order to identify matched portions and unmatched portions, see Fig. 1.6a for
an example. This partial map-matching is based on a variant of the Fréchet distance.
For matched portions the Fréchet distance of the sub-curve to the map is at most
", and for unmatched portions the Fréchet distance of the sub-curve to the map is
greater than ".

In the second step, the unmatched portions of the trajectory are then inserted into
the partially constructed map, which requires creating new vertices and creating
and splitting edges. In a third step, the already existing edges in the map, that are
covered by the matched portions of the trajectory, are updated using a minimum-link
algorithm to compute a new representative edge. See Fig. 1.6b for an example of the
graph after inserting the trajectory. Note that the last step is only needed to provide
a guaranteed bound on the complexity of the output map; in the implementation
of this algorithm that is used in Chap. 7, this last step has been omitted. Ahmed
and Wenk also give theoretical quality guarantees for the output map computed by

Fig. 1.6 Incremental track
insertion algorithm. The
matched portions of the
trajectory are shown in lighter
shade, and the unmatched
portions in darker shade. (a)
Existing graph and trajectory
to be inserted. (b) Graph after
inserting the trajectory
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Trajectory 1 
Trajectory 2 
Trajectory 3 

a b

Fig. 1.7 The incremental track insertion algorithm—adapted from [9]. (a) Three input trajectories.
(b) Merged graph

their algorithm, which include a one-to-one correspondence between well-separated
“good” portions of the underlying map and the output map, with a guaranteed
Fréchet distance between those portions.

1.5.2 Cao and Krumm

This incremental track insertion approach models the street map as a directed
embedded graph with one directed edge per direction. It proceeds in two stages.
In the first stage, simulation of physical attraction is used to modify the input tracks
to group portions of the tracks that are similar together. This results in a cleaner
dataset in which track clusters are more pronounced and the two differently directed
portions of a road segment are more separated. This much cleaner data is then used
as the input for a fairly simple incremental track insertion algorithm. This algorithm
makes local decisions based on distance and direction to insert an edge or vertex
and either merges the vertex onto an existing edge, or adds a new edge and vertex.

Figure 1.7 gives a respective map construction example. The three trajectories of
Fig. 1.7a are used to incrementally build the graph in Fig. 1.7b by (1) either merging
nodes to existing nodes if the distances are small and the directions of the trajectories
match (nodes in boxes), or (2) by creating new nodes and edges otherwise (nodes in
circles).

1.6 Intersection Linking

The intersection linking approach emphasizes the correct detection of intersection
vertices. As opposed to other map construction approaches, the intersection vertices
are detected first and in a second step the vertices are linked together with edges.
Intersections are identified based on movement characteristics (speed, direction) or
point density. The intersections are then linked by interpolating the geometry of
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the connecting trajectories. Fathi and Krumm [16] provide an approach that detects
intersections by using a prototypical detector trained on ground-truth data from an
existing map. This approach works best for frequently sampled data (1–5 s) and
grid-like road networks.

The method by Karagiorgou and Pfoser [22] relies on detecting changes in
the direction of movement to infer intersection nodes, and then “bundling” the
trajectories around them to create the map edges. It uses less frequently sampled
data (> 30 s) and produces street maps for arbitrary road network geometries.

1.6.1 Fathi and Krumm

The map construction algorithm by Fathi and Krumm [16] was one of the first to
construct a map from intersection nodes. An intersection is a location where more
than two edges connect to each other. To detect intersections, one has to determine if
an arbitrary location on the map is an intersection or not by examining closeby GPS
trajectories. This approach uses a shape descriptor that can discriminate between
intersections and non-intersections and that can be represented as a feature vector.
The shape descriptor captures the local distribution and direction of trajectory
edges in a circle around all candidate trajectory points. The circle consists of a
set of annular sections to essentially rasterize the incident edges with respect to
the trajectory point. Each section of the circle can be thought of as a histogram
bin. For each incident edge, a point is added to the bin the edge passes through.
Mapping the bins of each shape descriptor to a vector, one can compute a classifier
based on all the feature vectors provided by the training examples, i.e., from a
known road network. Roads connecting intersections are derived from trajectories
by choosing the minimum-distance trajectory connecting the two intersection nodes.
The locations of the detected intersections are further refined by iteratively matching
the model (detected intersections and roads) to the data (GPS trajectories) to obtain
a transformation that allows one to readjust the model and to obtain preciser road
map geometries. The authors show that the detected intersections deviated from
their ground-truth intersections by approximately 4.6 m.

1.6.2 Karagiorgou and Pfoser

The algorithm by Karagiorgou and Pfoser [22] is a heuristic approach that “bundles”
trajectories around intersection nodes. It represents the street map as a directed
embedded graph in which each edge is labeled as directed or bi-directed.

The main contribution of the so-called TraceBundle algorithm is its methodology
to derive intersection nodes. It relies on detecting changes in movement to cluster
“similar” nodes. A node at which a change in direction and speed occurs is
considered a turn indicator. Turn clusters are then produced based on (1) the
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Fig. 1.8 The TraceBundle algorithm [22]. (a) Intersection nodes. (b) Compacting links

spatial proximity and (2) the turn type of a set of turn indicators. The centroid
of a turn cluster then becomes an intersection node. Links between intersection
nodes are derived by compacting the trajectories connecting the intersection nodes.
Figure 1.8 visualizes the steps of the algorithm. Figure 1.8a shows the constructed
intersection nodes as black stars. The constituting turn clusters are shown as x and o
markers. Figure 1.8b shows the links between intersection nodes as black lines. The
constituting trajectories are shown as dashed lines.

The TraceBundle algorithm has three tunable parameters: angular difference,
speed and spatial proximity. Angular difference is the relative change of the vehicle
direction measured in degrees. The speed threshold indicating turning vehicles
is measured in km/h. This is an empirical maximum threshold to separate high-
speed turns from turns at intersections. The spatial proximity distance threshold for
clustering turn clusters into intersection nodes is measured in meters.
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Chapter 2
TraceBundle Map Construction Algorithm

Abstract This chapter presents the TraceBundle algorithm, which is a
representative of the intersection linking category of map construction algorithms.
The main approach is to first detect intersection nodes, then “bundle” trajectories
around them in order to construct edges. Changes in movement direction and speed
are used as turn indicators, and similar turns are combined to form intersection
nodes. In an improved version of the algorithm the hierarchical nature of the road
network is considered and different road categories are taken into account. By
segmenting the trajectories based on speed, hierarchical road network layers are
derived which are then combined into a single network. Segmentation also addresses
the challenges imposed by noisy, low-sampling rate trajectories and provides for a
mechanism for accommodating incremental map updates.

2.1 Introduction

This section presents a map construction algorithm that takes vehicle tracking
data in the form of trajectories as input and produces a directed embedded
road network graph. The presented TraceBundle algorithm emphasizes the correct
detection of intersection nodes and the linking of these nodes both in terms of
connectivity and actual geometry. Intersections are identified based on movement
characteristics (speed, direction) and point density. The intersections are then linked
by interpolating the geometry of the connecting trajectories. The name TraceBundle
derives from “trace”, an alternative label for trajectories, and “bundle” to capture the
basic intuition behind the algorithm. TraceBundle bundles redundant trajectory data
and can handle road networks of arbitrary geometries. It also extracts road category
information for each road segment.

TraceBundle falls into the category of trace clustering map construction algo-
rithms. In the literature, algorithms in this category either follow map matching [8]
or heuristic approaches by aggregating GPS trajectories into an incrementally-built
road network [7]. Distance measures and vehicle heading are also used to perform
additions and deletions to the map. An early approach in that respect uses trace
clustering to refine an existing road network, but not to actually construct one from
scratch [9]. In [2], a method is presented to eliminate noise in GPS traces, while
[3] provide an approach that detects intersections by using a prototypical detector
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trained on ground-truth data from an existing map. This approach works best for
well-aligned road networks and with frequently sampled data, e.g, with a sampling
frequency of 5 s. Bruntrup et al. [1] and Liu et al. [6] construct a road network,
but require accurate data and high sampling rates (every 1 s). Zhang et al. [10]
use a method similar to GPS trace merging to continuously refine existing road
maps. The methods proposed in [4, 5] and presented in this chapter differ from the
aforementioned approaches in that they focus on preserving the connectivity of the
underlying road network. This is achieved by clustering the trajectories based on
intersection indicators (turn samples) and speed profiles.

2.2 TraceBundle Algorithm

The following algorithm relies on a heuristic method to detect turns and derive in-
tersections from the trajectory data. The map is constructed by bundling trajectories
that connect the same intersection nodes. In addition, road categories are derived
based on the amount of data that is available for particular road network portions,
i.e., on the traversal frequency. Figure 2.1 plots trajectories with the principal roads
of the actual road network being (at least visually) evident.

The algorithm proceeds in three essential steps: (1) identify intersections, i.e., use
turns in vehicle trajectories as indicators for intersections, (2) connect intersections,
i.e., create edges between intersections by using trajectories, and (3) extract the
compacted network graph, i.e., compact the edges to create a meaningful road
network graph.

Fig. 2.1 Trajectories of a Berlin taxi fleet
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Algorithm 2.1. Identify intersections
Input: A set of trajectories T
Output: A set of intersection nodes I

1 begin

2 P ;� Position samples in one trajectory
3 PS ;� Turn samples
4 PC ;� Turn clusters
5 I ;� Intersection nodes
6 ˛, v, dc, di � Angle, speed and distance thresholds
7 � Process all position samples in all trajectories
8 while TŒi� ¤ null do
9 P TŒi�� Position samples of a single trajectory

10 ap  AngularDiff.PŒi� 1�;PŒi�;PŒiC 1�/� Angular Difference

11 vp  ıx.PŒi� 1�;PŒi�/
ıt.PŒi� 1�;PŒi�/ � Mean speed

12 if ap > ˛ and vp < v then
13 PS:insert.PŒi�;TurnType.PŒi�//� Turn sample
14 end
15 end
16 � Cluster turn samples into turn clusters
17 PC ClusterTurns.PS; dc/

18 � Cluster turn clusters into intersection nodes
19 I ClusterIntersections.PC; di/

20 end

2.2.1 Turns and Intersections

Given a vehicle trajectory, turns are used to detect intersection nodes of the road
network. The position samples are grouped into turn clusters by using specific
turn indicators that indicate changes of the vehicle’s movement in terms of speed
and direction. Then the turn clusters are grouped to form intersection nodes. The
algorithm to identify intersections in the trajectory data is given in Algorithm 2.1.

2.2.1.1 Turn Indicators

From a common-sense understanding of vehicular movement it is evident that when
a vehicle turns it (1) reduces its speed and (2) changes its direction. The presented
algorithm uses 40 km/h as a reduced speed indicator in combination with a change
of direction. Figure 2.2 gives an example of a trajectory showing position samples
and the respective direction vectors. A direction threshold of 15ı was experimentally
established as a suitable choice for road networks. In Algorithm 2.1, all trajectories
are scanned in a position-by-position and an edge-by-edge manner (lines 9–16). All
position samples that satisfy both turn conditions (lines 11 and 12) are recorded as
turn samples (line 14).
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Fig. 2.2 Angular difference

357.4 degrees

42.5 degrees

42.5 degrees

68.8 degrees

Fig. 2.3 Turn model

2.2.1.2 Clustering Turns

A turn model is used to cluster samples from different trajectories in order to derive
intersections. The turn model that is used for this algorithm describes all possible
movement patterns at an intersection node by the angle with respect to the positive
x-axis centered at the intersection. The turn samples are classified by using eight
types of turns as shown in Fig. 2.3.

All discovered turn samples are categorized according to the corresponding
turn identifier of the model. The turn samples can then be grouped according
to (1) spatial proximity and (2) turn similarity. Choosing a proximity threshold
of 50m, agglomerative hierarchical clustering is used to derive turn clusters
(cf. Algorithm 2.1, Line 18). The location of a turn cluster is the centroid of the
position samples in the cluster. Figure 2.4a shows the computed result for three
roads that meet at an intersection.
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Fig. 2.4 Computing intersection nodes. An odd turn type is indicated by an � symbol and an even
turn type by an ı symbol. Color is used to distinguish turn types further, yellow for 1 and 2, orange
for 3 and 4, red for 5 and 6, and black for 7 and 8. Intersection nodes are indicated by a gray �.
(a) Computing turn clusters from position samples. (b) Computing intersection nodes from turn
clusters. (c) Connecting intersection nodes (Color figure online)
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2.2.1.3 Intersection Nodes

Turn clusters represent the aggregated view of a turn type in relation to a specific
intersection. This also means that one intersection is captured by more than one turn
cluster. Consider here the example of Fig. 2.4b that shows two intersections nodes
(� symbol) and a number of turn clusters supporting each (ı and � symbols).

To derive intersection nodes, agglomerative hierarchical clustering is used on the
set of turn cluster locations with an empirically established distance threshold of
25m. Note that the distance threshold of 25m was experimentally established, and
therefore it is lower than the threshold used for establishing turn clusters since the
position of a cluster is already located near a turn. Experiments showed that a greater
threshold would produce fewer intersections and a smaller threshold would produce
too many intersection nodes. For each generated intersection node two properties are
recorded. The weight of the node is the total number of trajectories that contributed
samples to this intersection and the permitted maneuvers are defined as the set of
turn types that have been “seen” by the contributing trajectories. An example of turn
clusters and intersection nodes is shown in Fig. 2.4b.

2.2.2 Connecting Intersection Nodes

So far in the entire map construction process, isolated intersection nodes have been
created. Now they need to be linked using the raw trajectory data. A benefit of
computing intersection nodes from turn samples is that for each intersection node
the trajectories that computed samples to it are known. This knowledge is exploited
to establish edges that link the intersection nodes to form a road network. The
algorithm to connect intersection nodes is given in Algorithm 2.2.

For each intersection node i the incident trajectories are recorded by essentially
scanning all trajectories. The result of this step is a linkage of intersection nodes by
means of raw trajectory portions. Essentially, a road network is created consisting
of nodes (intersections) with edges (trajectory portions).

Assuming that the position samples of the trajectories have been tagged as turn
samples with a reference to the intersection nodes they contribute to, performing a
linear scan of all trajectories reveals the respective portions of the trajectories that
connect turn samples, and, hence, intersection nodes (Algorithm 2.2, Lines 5–12).

Generally, two connected intersection nodes will typically be connected by
multiple trajectories. In terms of network geometry, redundant edges, referred to
as edge samples, between intersection nodes are added. Merging these edges will be
the next step. To compute the geometry of an edge based on the recorded samples,
a sweep-line algorithm is used to merge the edge samples. Given a set of edge
samples, each consisting of a set of points, for each point an average position based
on the normal distance of the points to all other edge samples is computed and the
point of the edge sample is translated to this average position. The edge geometry
is then the ordered sequence of the adjusted points of all edge samples. Figure 2.5a
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Algorithm 2.2. Connect intersection nodes using trajectories
Input: Set of trajectories T and intersection nodes I
Output: A set of edges E

1 begin
2 ES ;� Edge samples
3 � Identify intersection sequences from trajectories
4 foreach t 2 T do
5 foreach p 2 t do
6 foreach i 2 I do
7 � In constituting position sample
8 if p 2 i:samples./ then
9 � Record current node i and previous intersection node i0

10 � along with connecting trajectory portion
11 ES:add.fi; i0; p; : : : ; p0g/
12 end
13 end
14 end
15 end
16 � Edges = merged edge samples
17 E ES:sweepMerge./
18 end

*

*
a

b

Fig. 2.5 Edge samples. (a) Edge samples between two intersections. (b) Average positions of
edges samples
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shows a set of edge samples (gray) that connect two intersection nodes marked by
an �. The points of the edge samples are marked by an �. Horizontal thin lines
indicate points at which the normal distance to edge samples is measured and the
average position is computed. Figure 2.5b shows a close up of two edge samples
and respective points.

In addition to the geometry, for each edge (1) its weight is computed as the
number of constituting edge samples and (2) its width is derived as the maximum
spatial extent of the edge samples. In general, the number of generated intersection
nodes depends highly on the parameter setting of the algorithm, i.e., choosing
lower or higher threshold values will generate more or fewer intersection nodes,
respectively. The parameters need to be tuned to the network and the data in
question.

2.2.3 Compacting Edges

So far the constructed road network consists of intersection nodes that are connected
by edges, which have been derived from trajectories that turn at these intersections.
Figure 2.4c shows how intersection nodes are connected by various trajectories. It
also shows that trajectories that “pass through”, i.e., do not turn at the intersection,
have so far not been considered. In this compacting step of the map construction
algorithm, the geometry of existing edges is adjusted using these additional
trajectories. They generate new edge samples that need to be merged with the
existing edges. This compacting step of the map construction algorithm is shown
in Algorithm 2.3.

First, all existing edges are sorted according to their length (Algorithm 2.3,
Line 1) so as to process longer edges first as they are more significant for edge
construction. Then, in order to identify trajectory portions, and thus new edges
samples that are close to existing edges, the algorithm uses a buffer region around
the examined edge and retrieves all intersecting trajectories. (Algorithm 2.3, Line
7). The size of the buffer region is determined by the width of the respective edge as
described in Sect. 2.2.2. In addition to the buffer region, a threshold for the absolute
value of the difference of direction angles is used to assess direction similarity.
Experiments established 45ı to be an adequate threshold value. Figure 2.6a shows
the buffer region (black) of an edge. The examined edge is shown in dark gray and
respective portions of other candidate edges are shown in light gray.

For each examined edge only similar trajectory portions are recorded as edges
samples. Here, the algorithm also handles partial similarity, i.e., a trajectory portion
not being similar to the entire edge but only a portion of it. As such an edge sample
can be located at the beginning, the end, or the middle of an edge, the respective
trajectory portion is split (Algorithm 2.3, Line 14).
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Algorithm 2.3. Compact edges
Input: Set of existing edges E, set of trajectories T
Output: Updated edges E�

1 begin
2 E E:sort./� Sort edges by length
3 ES ;� Edge samples
4 Angle� Direction threshold
5 foreach e 2 E do
6 foreach t 2 T do
7 ES:add.e:buffer.t;Angle//
8 foreach es 2 ES do
9 if e:contains.es/ then

10 e:update.e:sweepMerge.es//
11 end
12 else
13 � Partial overlap esin; esout  es:split.e/
14 ES:add.esout/

15 e:update.e:sweepMerge.esin//

16 end
17 end
18 end
19 end
20 end

Fig. 2.6 Road network
refinement—compacting
edges. (a) Edge, edge
samples and buffer region.
(b) Updated edge

buffer region

examined edge

resulting edge

a

b



24 2 TraceBundle Map Construction Algorithm

Finally, edge samples are merged with existing edges following the approach of
Sect. 2.2.2. The method is applied to all generated edges samples (partial or whole,
Algorithm 2.3, Lines 10 and 16). Updated edges also update their weight and width
adding the number and extent of the merged edges samples.

2.2.4 Post-Processing

While the road extraction algorithm so far has already created a road network graph,
the following heuristic post-processing step further improves the quality of the
result. The basic idea in the presented map construction algorithm is the use of
turns to identify turn clusters, which in turn create intersection nodes. Trajectories
are recorded by sampling the motion. In the case of turns this is especially critical, in
that a position sample might create turn clusters well in advance, or after the actual
turn and hence introduce additional intersections. This phenomenon is referred to
as triangular intersections. To detect such triangular intersections, edge weights are
analyzed in relation to geometric properties of the road network. Let ei and ej be two
edges incident to the same intersection node, and let wi and wj be their respective
weights. Then �i;j D wi=wj is defined as their relative weight. Now, the aim is
to detect triangular configurations of three edges e1; e2; e3 where two sides have
relatively high relative weights in relation to the third side, i.e., �1;2 � �1;3 and
�1;2 � �2;3, see Fig. 2.7 for an example.

Following a statistical analysis, an edge may be eliminated provided that both
high relative weight ratios are > 0:7 and the low relative weight ratio is < 0:6.
Thus, an edge ek is eliminated if �i;j > 0:7 ^ �i;k > 0:7 ^ �j;k < 0:6. This heuristic
is used to further improve the map construction results.

Fig. 2.7 Triangular intersections. Edges with high relative weight are shown in darker color (red)
and with low relative weight are shown in lighter color (yellow) (Color figure online)
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2.3 TraceConflation Algorithm

The basic TraceBundle algorithm can be improved when considering the semantics
of movement. Not all roads are equal and road categories, besides speed, also
determine the actual road geometry. Major roads, also due to higher speeds, facilitate
a different type of movement than neighborhood roads. The former has fewer
changes in direction than the latter. Considering these aspects of movement, the
proposed TraceConflation algorithm constructs a road network in a layered fashion
based on segmenting the trajectory data using speed categories. The process involves
three steps: (1) the segmentation of trajectories, i.e., splitting the input dataset of
trajectories into subsets of (sub-)trajectories according to their characteristics, (2)
the construction of the network layers, i.e., processing each subset to identify nodes
and edges of the network, and (3) the conflation of the network layers, i.e., merging
the generated layers to produce the complete map.

2.3.1 Segmentation of Trajectories

A main challenge when inferring a movement network from raw GPS trajectories
is that the data is often noisy and heterogeneous (GPS errors, missing values,
different sampling rates, different speeds, etc.). Thus, treating all the input data
equally, inevitably introduces inaccuracies in the result. This problem is addressed
by splitting the trajectories into subsets according to movement speed. In this
way each subset can be treated separately, e.g., by refining the parameters of the
map inference algorithm accordingly. The aim is to derive different (but probably
overlapping) portions of the network with higher accuracy, which then need to be
merged in order to produce the complete network. Hence, this process leads to a
layered construction of the network.

Three speed categories (“slow”, “medium”, “fast”) are considered and used
to classify the trajectories accordingly. Notice that typically an object may have
moved with different speeds across different parts of the trajectory. In this case
the trajectory needs to be split into sub-trajectories, with each one assigned to the
corresponding speed category subset. To categorize the trajectories, first a speed
value is assigned to each segment of a trajectory. This value is computed by dividing
the segment length by its duration. Assigning each segment to the corresponding
speed category might, however, lead to a high degree of fragmentation. Consider
the cases of slowing vehicles due to intersections, traffic lights, and obstacles. To
avoid such fragmentation, a sliding window query is used and replaces the speed
value of each segment by the mean value computed over a series of consecutive
segments (Algorithm 2.4, Line 7). The splitting and classification of sub-trajectories
is performed using these averaged values. The process is outlined in Algorithm 2.4.
For each line segment li of a trajectory t, its mean speed is computed for a sliding
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Algorithm 2.4. Segment trajectories according to speed profiles
Input: A set of trajectories T
Output: Sets of segmented trajectories C

1 begin

2 foreach t 2 T do
3 foreach li 2 t do
4 � Average speed,˙w segments
5 v.li/ Mean.v.li�w/; : : : ; v.liCw//

6 k Category.v.li//� Determine category
7 Ck:add.li/� Assign segment to respective category Ck

8 end
9 end

10 end

window of width ˙w segments (Algorithm 2.4, Line 6). Then the segment is
assigned to the corresponding category Ck according to the minimum and maximum
speed of each category (cf. Lines 7 and 8 in Algorithm 2.4).

2.3.2 Construction of Network Layers

The next step is to use the trajectory portions that have been classified to construct
the respective layers of the road network. This can be accomplished using an
improved version of the TraceBundle algorithm.

This trace-based map construction algorithm employs heuristics to identify
intersection nodes and “bundles” trajectories connected to them. Intersection nodes
are clustered based on changes in movement. Such changes represent turns and
are identified as changes in direction and speed. Clustering these turns based on
(1) spatial proximity and (2) turn type results in turn clusters. Intersection nodes
are then derived by clustering turn clusters based on proximity. Connecting the
trajectories to intersection nodes and compacting them allows one to derive edges
and consequently the entire geometry of the road network.

The clustering in the TraceBundle is based on two criteria, proximity and angle
difference. TraceBundle allows only for one set of static parameters for both criteria.
With different road types this often leads to erroneous clusters, e.g., generating
multiple nodes for a single intersection, or generating a single node for multiple
nearby intersections. To overcome this problem, a proximity-based expansion
algorithm around turn samples based on turn similarity is used. The algorithm is
detailed in Algorithm 2.5. It uses a segmented set of trajectories as input.

In a first step, all position samples are evaluated as to whether they represent
turn samples based on a change of direction, adding them to the set of turn samples.
The data recorded includes also the incoming and outgoing direction of the motion
captured by the trajectory with respect to the specific turn sample (cf. Lines 10–16
in Algorithm 2.5).
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Algorithm 2.5. Find intersections
Input: A set of trajectories T
Output: A set of Intersection nodes I

1 begin

2 S ;� Turn samples
3 C ;� Turn clusters
4 I ;� Intersection nodes
5 ˛max � Angle difference threshold
6 d � Proximity threshold
7 � Position samples! turn samples
8 foreach t 2 T do
9 foreach pi 2 t do

10 ˛d  AngularDiff.pi�1; pi; piC1/

11 if ˛d < ˛max then
12 ˛in  Angle.pi�1; pi/� Incoming angle
13 ˛out  Angle.pi; piC1/� Outgoing angle
14 S:add.pi; ˛in; ˛out/

15 end
16 end
17 end
18 � Turn samples! turn clusters
19 foreach s 2 S do
20 if s … C:samples./ then
21 � Not yet considered
22 NN.p/ S:findNN.s; d/� Find neighboring, similar samples
23 c:add.ComputeTurnCluster.s;NN.p///
24 end
25 end
26 � Turn clusters! intersection nodes
27 foreach c 2 C do
28 if c … I:clusters.// then
29 NN.c/ C:findNN.c/
30 I:add.ComputeIntersections.c;NNc//

31 end
32 end
33 end

This information is used to compute the directional similarity of turn samples.
Samples that show a similar motion in terms of absolute direction and that are
spatially close form turn clusters. The turn clusters are constructed bottom up by
finding for each turn sample the set of nearest-neighbor samples considering also
direction similarity. A threshold distance d (set to 25m in the experiments) is used.
Experiments showed that many turn clusters effectively have a radius much smaller
than d, since turn samples of similar direction are either clustered together, or much
farther away (relating to different intersections). The turn clustering approach is
captured in Lines 20–23 of Algorithm 2.5.
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Fig. 2.8 Clustering of turn
samples

Turn clusters stemming from different movement directions (left turn vs. right
turn), but relating spatially to the same intersection, now need to be grouped together
to produce one intersection node. Intersections are derived by scanning all turn
clusters with respect to spatial coverage, i.e., smaller clusters if contained, will be
absorbed by larger ones (cf. Lines 26–28 in Algorithm 2.5). Experiments showed
this to be a very effective approach [5].

Figure 2.8 illustrates the outcome by contrasting an output from the TraceBundle
algorithm with the current approach. Figure 2.9a shows how the clustering using
static parameters in TraceBundle erroneously places nodes between actual intersec-
tions. Figure 2.9b shows the new approach with nodes being placed more accurately.

2.3.3 Conflation of Network Layers

The final step in TraceConflation is the fusion of the generated network layers
into a single road network. The road network is constructed incrementally starting
with higher speed layers and adding lower speed layers. The intuition for this is
that higher speed layers correspond to major roads and they are generated more
accurately, considering their more regular movement patterns and fewer GPS errors.

Fusing two network layers consists of (1) finding intersection node correspon-
dences between the different network layers, (2) introducing new intersection nodes
in existing edges of a higher layer, and (3) introducing new edges of lower layers
for the uncommon portions of the road network.
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a

b

Fig. 2.9 Map construction—contrasting approaches. (a) Turn samples clustering in TraceBundle.
(b) Turn samples clustering in TraceConflation

Figure 2.10 gives an example of this conflation process using the example of
the Berlin dataset. Figure 2.10a shows the three maps that were constructed after
segmenting the entire trajectory dataset of Fig. 2.1. Gray lines link the various
connection points between the constructed networks. The final result is shown in
Fig. 2.10b.

Starting with the fast and the medium network, common nodes are identified
using spatial proximity. A threshold of 10m was experimentally determined to be a
good choice for determining if two nodes in the respective networks represent the
same intersection [5].

The next step involves introducing new intersections in existing edges, e.g., in the
fast network an edges exists, but the medium network has additional intersection
nodes. Using a buffer region around intersection nodes of lower layers (e.g.,
medium) intersection nodes that are close to existing edges are identified. These
new intersection nodes are then mapped to an existing edge to effectively split it.

Finally, new edges for uncommon portions of the layered network are added, e.g.,
an edge of the medium network missing in the fast network. Here, edges of lower
layers are introduced by connecting them to previously introduced intersection
nodes. Any intersection node that has not been introduced yet, since not connected
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Fig. 2.10 Combining multiple network layers. (a) Fast-medium-slow network—Berlin. (b) Com-
pletely constructed map—Berlin
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to the higher network, will be added as well. This accounts also for the case of
adding complete (local) road network portions. A result of applying this conflation
algorithm to road network layers is shown in Fig. 2.10.

2.4 Visual Summary

To simply showcase the result of the map construction algorithm in question,
consider the example given in Fig. 2.11. Figure 2.11a shows the vehicle trajectories
collected for Berlin in gray color (same figure as in Fig. 2.1). In Fig. 2.11b black
lines indicate the constructed map and gray lines show the actual road network based
on the OpenStreetMap dataset.

a

b

Fig. 2.11 Vehicle tracking data vs. constructed map overlaid on ground-truth OSM data.
(a) Vehicle tracking data—Berlin. (b) Constructed map (in black) overlaid on ground-truth
(in gray)
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Chapter 3
Fréchet Distance-Based Map Construction
Algorithm

Abstract This chapter presents an incremental track insertion algorithm for map
construction that is based on partial map-matching of the trajectories to the graph.
The Fréchet distance is used as part of the map-matching algorithm and to provide
quality guarantees for the constructed map. One of the contributions of this work
is to separate edge regions from vertex regions when providing quality guarantees,
and to specify the extent of these regions. The algorithm itself is easy to implement
and it can compute non-planar road configurations, such as bridges, if altitude
information is provided with the trajectory measurements. While the description
complexity of the computed road geometries can be guaranteed to be small when
using a simplification algorithm, in practice the algorithm provides good results
even without simplifying or merging trajectory portions that correspond to the same
road segment.

3.1 Introduction

There are several different classes of algorithms to construct a road network from a
set of input trajectories. The algorithm presented in this chapter is the incremental
track insertion algorithm by Ahmed and Wenk [2], which incrementally adds one
trajectory at a time to a road network. The advantage of using the continuous
structure of the input trajectories is that the shape of the road segments (edges) in the
reconstructed road network is preserved. The algorithm uses a new partial variant of
map-matching based on the Fréchet distance, which is a distance measure suitable
for comparing shapes of continuous curves. Quality guarantees for the constructed
road network are provided in terms of the Fréchet distance, and in terms of edge
regions and vertex regions. The output of the algorithm is an undirected embedded
graph. If the input trajectories are embedded in the two-dimensional plane, then the
output graph will be a planar embedded graph. But if the trajectories are embedded
in three dimensions, i.e., with altitude information for each measurement, then the
algorithm computes non-planar road configurations such as bridges.

The authors prove that there is a one-to-one correspondence with bounded
complexity between well-separated portions of the original and the reconstructed
edges. However, giving quality guarantees for portions of the graph where edges
come close together, in particular in regions around vertices, is a much more
challenging task. They provide the first attempt at reconstructing vertex regions and
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providing quality guarantees, without assuming very clean and extremely densely
sampled data. They reconstruct intersections as sets of vertices within bounded
regions (vertex regions), where the size of each set is bounded by the degree and the
region is bounded by the minimum incident angle of the streets at that intersection.
They can then guarantee that if the vertices are sufficiently far apart so that the vertex
regions do not overlap, then the vertices of each region correspond to exactly one
vertex in the original graph.

Map construction can be seen as a new type of geometric reconstruction problem
in which the task is to extract the underlying geometric structure described by
a set of movement-constrained trajectories, or in other words to reconstruct a
geometric domain that has been sampled with continuous curves that are subject to
noise. As a finite sequence of time-stamped position samples, each input trajectory
represents a finite noisy sample of a continuous curve. While there are many
map construction algorithms in the literature [5, 7, 10, 11, 14–17], most presented
solutions are of a heuristic nature and do not provide quality guarantees. In the
computational geometry community, however, there are several algorithms for the
map construction problem that provide various kinds of quality guarantees. Chen
et al. [9] reconstruct “good” portions of the edges (streets) and provide connectivi-
ties between these sections. They bound the complexity of the reconstructed graph
and they guarantee a small directed Hausdorff distance between each original and
corresponding reconstructed edge. Ge et al. [12] employ a topological approach
by modeling the reconstructed graph as a Reeb graph. They define an intrinsic
function which respects the shape of the simplicial complex of a given unorganized
data point set, and they provide partial theoretical guarantees that there is a one-
to-one correspondence between cycles in the original graph and the reconstructed
graph. Aanjaneya et al. [1] view street networks as metric graphs and they prove
that their reconstructed structure is homeomorphic to the original street network.
Their main focus is on computing an almost isometric space with lower complexity,
therefore they focus on computing the combinatorial structure but they do not
compute an explicit embedding of the edges or vertices. Chazal et al. [8] also
provide an algorithm for constructing metric graphs. They use a Reeb graph variant,
the ˛-Reeb graph, and prove quality guarantees in terms of the Gromov-Hausdorff
distance between the underlying metric graph and the constructed metric graph. The
embedding is obtained from the Mapper algorithm for visualizing Reeb graphs [18].
All these map construction algorithms are point clustering approaches, in the sense
that they consider the input as an unorganized set of measurement points and then
they compute a neighborhood complex such as the Vietoris-Rips complex to serve
as the input to their algorithms. The algorithm presented in this chapter is different
in that it uses a track insertion approach but still provides quality guarantees.
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3.2 Problem Statement and Data Model

Consider an underlying original graph (street network) Go D .Vo;Eo/, modelled as
an embedded undirected graph in R

2 or R3. Let T be an input set of trajectories.
Each trajectory is a sequence of measurements in R

2 or in R
3, and it is assumed

to have sampled a connected sequence of edges in Go (street-path). The error
associated with each trajectory is modelled by a single precision parameter ". Given
an input set T of trajectories, which are assumed to be polygonal curves, and a
precision parameter " > 0, the map construction task is to compute an undirected
reconstructed graph G D .V;E/ embedded in R

2 or R3 that represents all curves
in the set. The algorithm in this chapter guarantees that a well-separated portion of
each edge in Eo corresponds to a sub-curve of an edge in E, and each vertex in Vo

corresponds to a set of vertices in V .
Vo and V are assumed to be sets of vertices with degree > 2 and each edge is

represented as a polygonal curve. It is also assumed that Go is fully sampled, i.e.,
for each street � 2 Eo there is a sampled sub-curve in the input curve set, T . Each
edge of Go is referred to as a street.

An input trajectory is a finite sequence of time-stamped position samples, which
represents a finite noisy sample of a continuous curve. Generally, the measurements
of the position samples are only accurate within certain bounds (measurement
error), and the movement transition in between position samples can be modeled
with varying accuracies depending on the application (sampling error). For this
algorithm, the trajectories are modelled as piecewise linear curves, and of particular
consideration will be trajectories of vehicles driving on a street network. In this
case, the input curves in fact sample an !=2-fattening of a street-path, where ! is the
street width. The r-fattening of a point set A is the Minkowski sum Ar D A˚B.0; r/,
where B.x; r/ is the closed ball of radius r centered at x.

The single precision parameter " captures the different kinds of noise as well
as the street width. The algorithm uses the Fréchet distance [3] to measure the
similarity between the shape of an input curve and a street-path. For two planar
curves f ; g W Œ0; 1� ! R

2, the Fréchet distance ıF is defined as

ıF.f ; g/ D inf
˛;ˇWŒ0;1�!Œ0;1� max

t2Œ0;1� kf .˛.t// � g.ˇ.t//k

where ˛; ˇ range over continuous and non-decreasing reparametrizations, and k:k
denotes the Euclidean norm. By dropping the requirement on ˛ and ˇ to be non-
decreasing, one obtains a distance measure that is called the weak Fréchet distance.
An intuitive definition of the Fréchet distance is the minimum leash length that
allows a man to walk on one curve and the dog on the other curve from the beginning
of the curves to the end, both are allowed to control their speeds, but not allowed to
backtrack.

To define the well-separability of streets, the following definition from [9] is
used.
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Definition 3.1 (˛-Good). A point p on G is ˛-good if B.p; ˛/ \ G is a one-
dimensional curve starting and ending at the boundary of B.p; ˛/. A point p is ˛-bad
if it is not ˛-good. A curve is ˛-good if all points on it are ˛-good.

3.3 Assumptions

The correctness of the algorithm depends on the following assumptions that are
made about the original graph and the input data, see Figs. 3.1 and 3.2.

1. Assumptions on Go:

(a) Each street has a well-separated portion which is 3"-good. This is referred
to as a good section.

(b) If for two streets �1; �2 there are points p1 2 �1 and p2 2 �2 with distance
� 3", then �1 and �2 must share a vertex v0, and the sub-curves �1Œp1; v0�
and �2Œp2; v0� have Fréchet distance � 3" and they are fully contained in
B.v0; 3"= sin˛/. Here ˛ D †p1v0p2, see Fig. 3.1b.

From both assumptions follows that the minimum distance between two intersec-
tions is at least 3"= sin˛1 C 3"= sin˛2, see Figs. 3.1a and 3.2. Assumption 1(a)
states the minimum requirement to justify the existence of a street based on it
being well-separated from other streets. Assumption 1(b) requires streets that are
close together to converge to a vertex, and it discards streets that are close but do
not share a vertex, because the input curves do not clearly distinguish between
such streets. Note that the bound 3"= sin˛ can be large for small values of ˛.
So, the assumptions allow streets to be close together for a long time but restrict
them to go far off once they are close to a vertex.

2. Assumptions on the Input Data:

(a) Each input curve is within Fréchet distance "=2 of a street-path in Go.
(b) All input curves sample an acyclic path in Go.

Assumption 1a.

p1

p2

v0

γ1
γ2

α = � p1v0p2

3ε

Assumption 1b.

a b

Fig. 3.1 Assumptions on the original graph. (a) Good sections on streets are marked as bold.
(b) Visual illustration of Assumption 1b
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p1

p2

v0

γ1
γ2

α = � p1v0p2

p1

p2

v0α = � p1v0p2

3ε/ sinα

3ε

Fig. 3.2 Assumptions 1a and 1b imply minimum distance of 3"= sin˛

Assumption 2(a) ensures that the street-path and the corresponding input curve have
to be similar. Assumption 2(b) ensures that, during an incremental construction
algorithm, the first curve in T that represents a new edge does not sample a cycle.
The algorithm in fact only needs the unmatched portion (defined in Sect. 3.4) to
sample an acyclic path. And even if it samples a cyclic path, such a cycle can be
split in order to maintain this assumption.

Note that if a curve is well-sampled then the sampled curve is naturally within a
bounded Fréchet distance of the original curve, which fulfills Assumption 2(a). In
particular, for the test data of vehicle trajectories, the GPS device error is generally
bounded. Also, data obtained from OpenStreetMap is generally sampled every
second, and it captures every feature of the shape of the original street very well.

3.4 Free Space Diagrams and Map-Matching

The algorithm employs the concept of the free space F" and the free space surface
FS" to identify clusters of sub-curves which sample the same street-path. For two
planar curves f ; g W Œ0; 1� ! R

2, and " > 0, free space is defined as F".f ; g/ WD
f.s1; s2/ 2 Œ0; 1�2j kf .s1/ � g.s2/k � "g. The free space diagram FD".f ; g/ is the
partition of Œ0; 1�2 into regions belonging or not belonging to F".f ; g/, see Fig. 3.3.
In [3] it has been shown that ıF.f ; g/ � " if and only if there exists a curve within
F" from the lower left corner to the upper right corner, which is monotone in both
coordinates, see Fig. 3.3 for an illustration.

The free space surface FS".G; t/ for a graph G D .V;E/ and a curve t (trajectory)
is a collection of free space diagrams FD".e; t/ for all e 2 E glued together
according to the adjacency information of G, see Fig. 3.4. Note that the free space
in FS".G; t/ could be disconnected if the graph G is not connected.

The algorithm combines the idea of map matching and partial curve matching in
order to map a curve partially to a graph. Buchin et al. [6] solved a partial matching
for two curves by finding a monotone shortest path on a weighted FD" from lower
left to upper right end point, where free space (white region) has weight 0 and
non-free space (black region) has weight 1, see Fig. 3.5a. Alt et al. [4] solved the
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f

g

ε

g

f

Fig. 3.3 FD" for two polygonal curves f ; g. A monotone path is drawn in the free space

Fig. 3.4 FS" for a graph G and a curve t. An example path � is shown in dashed and a t-monotone
path in FS" is highlighted in bold

map-matching problem of matching a curve t to a graph by finding a t-monotone
path in the free space of FS" from any left to any right end point. Here, the path is
not allowed to penetrate the black region. Note that a path in FS" corresponds to a
path � in the graph, see Fig. 3.4. In the map construction setting one needs to find
a t-monotone shortest path on the weighted free-space surface from any left end
point to any right end point. However, finding such a shortest path on a weighted
non-manifold surface is hard. Moreover, as the path can begin and end at any left
or right end point, in some cases such a path does not provide the desired mapping,
see Fig. 3.5a. The bold path is the desired one but the shortest path, with respect to
Euclidean distance, is the dashed one.

3.5 Incremental Map Construction Algorithm

The incremental approach of this map construction algorithm is to insert one
trajectory at a time into the graph, until all trajectories have been inserted. Each
trajectory insertion step can be divided into two phases. The first phase (steps 1
and 2) computes a reconstructed graph, while the second phase (step 3) compresses
the complexity of that graph. The simplicity of the algorithm relies on analyzing
connectivity properties of the free space surface for the current trajectory and the
current partially reconstructed graph, under the assumptions on the original graph
and the input curves that are described in Sect. 3.3.
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Fig. 3.5 Partially similar f and g. (a) M".f ; g/ D f.f Œa0; a1�; gŒb0; b1�/; .f Œa1; a2�; null/; .null;
gŒb1; b2�/; .f Œa2; a3�; gŒb2; b3�/g. (b) Adding the unmatched portion of f as an edge. (c) Go is shown
in dashed and G in bold

Algorithm 3.1 shows the iterative map construction algorithm, where Gi D
.Vi;Ei/ is the graph after the i-th iteration.

The total worst case runtime for adding the i-th trajectory ti 2 T is
O.niNi�1 C kc C .Ni�1 C ni/

2 log.Ni�1 C ni// D O..Ni�1 C ni/
2 log.Ni�1 C ni//,

where Ni�1 is the complexity of Gi�1, ni is the complexity of ti, and kc is the number
of created edges. A variant of the map construction algorithm runs only steps 1
and 2, which results in an improved runtime of O.niNi�1 C kc/ D O.niNi�1/. An
implementation of this simplified variant is used in the experiments in Chap. 7.
Step 3 lowers the complexity of the constructed edges by applying a minimum-link
chain stabbing algorithm [13]. This ensures that the complexity of a constructed
edge depends only on the complexity of the original street rather than on the
complexity of the input curves.

Step 1: Compute Curve-Graph Partial Mapping M1:5".ti;Gi�1/

The algorithm first breaks the trajectory into matched and unmatched portions by
computing a curve-graph partial mapping.
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Algorithm 3.1. Iterative map construction
Input: A set of trajectories T D ft1; : : : ; tmg
Output: A constructed graph G D .V;E/

1 G0 D .;;;/
2 for i 1 to m do
3 � Insert trajectory ti
4 Step 1: Compute curve-graph partial mapping M1:5".ti;Gi�1/

5 foreach .tiŒaj�1; aj�;X/ 2 M1:5".ti;Gi�1/ do
6 Gi  Gi�1

7 if X DD null then
8 � Add edge to Gi for the unmatched portion tiŒaj�1; aj�

9 Step 2: Create/split edges and create vertices
10 end
11 else
12 � Update eŒstart; end� in Gi with matched portion tiŒaj�1; aj�

13 Step 3: Compute minimum-link representative edge
14 end
15 end
16 end
17 return Gm

Definition 3.2. Let t W Œ0; 1� ! R
d, be a curve and G D .V;E/ be a graph in

R
d, for d D 2 or d D 3. The curve-graph partial mapping M".t;G/ consists of

pairs .tŒaj�1; aj�;X/ where 0 D a0 � a1 � : : : � ak D 1 such that every sub-
curve tŒaj�1; aj� in a partition tŒa0; a1; : : : ; ak� of t is either mapped to a portion X D
eŒstart; end� of an edge e 2 E with ıF.tŒaj�1; aj�; eŒstart; end�/ � " or X D null if
no such edge exists. Here, edges are assumed to be polygonal curves parameterized
over Œ0; 1� and 0 � start � end � 1. A sub-curve is called a matched portion if
it has a non-null mapping, and an unmatched portion otherwise. We assume that
all unmatched portions as well as all matched portions along the same edge are
maximal.

At the beginning of this step, the algorithm computes a partial mapping
M1:5".ti;Gi�1/ which minimizes the total length of unmatched portions of ti. For
this, FS1:5".ti;Gi�1/ is computed first, and then the white regions are projected
onto the curve ti. The union of all the white intervals on ti, or equivalently on the
parameter space Œ0; 1�, induces a partition tiŒa0; a1; : : : ; akuCkc � of ti into maximal
white intervals and black intervals; the latter fill the gap between non-overlapping
white intervals. This defines matched portions .tiŒaj�1; aj�; eŒstart; end�/ for white
intervals, and unmatched portions .tiŒaj�1; aj�; null/ for black intervals.

Note that the objective for the partial mapping to minimize the total length of
unmatched portions of ti is one-sided. This corresponds to computing a shortest
monotone path in FS1:5".ti;Gi�1/ that minimizes the total length of the unmatched
portions along the curve ti. Such a desired shortest path in the free space surface is
therefore allowed to go through the black region along the graph direction without
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adding any additional cost. Hence, the length of the path is measured only within
the unmatched portion and only along the curve direction.

The projection approach to consider white and black intervals only is justified
by Assumption 1(a) and (b) on the street network, which ensure that no two streets
are closer than 3" to each other or otherwise they would have to share a vertex. This
implies that for each tiŒaj�1; aj� that samples a portion of a good section that no more
than one eŒstart; end� can exist, and hence eŒstart; end� is uniquely defined for each
matched portion.

This step outputs the curve-graph partial mapping as a list of black and white
interval/edge pairs, ordered by the interval start points on ti. Such a list can be
computed in O.niNi�1/ total time.

Step 2: Create/Split Edges and Create Vertices

In this step of the algorithm a new edge is created, in constant time, for each
unmatched portion .tiŒaj�1; aj�; null/ 2 M1:5".ti;Gi�1/. By construction, the previous
and next intervals of a black interval are either null (the interval is the first or last
element in the list) or white. Assume them to be non-null, because only in this case
a vertex has to be created. Let .tiŒaj�2; aj�1�; eprevŒstart; end�/ be the mapped pair for
the previous interval, and let .tiŒaj; ajC1�; enextŒstart0; end0�/ be the pair for the next
interval. Then u D eprevŒend� and v D enextŒstart0� are points on the polygonal curves
eprev and enext, respectively. If start > 0 then u is inserted into Vi as a new vertex,
and if end0 < 1 then v is inserted as a new vertex. Otherwise they already exist as
vertices in Vi. Note that multiple vertices might be created for a single vertex in the
original graph, see Fig. 3.5c. Then the three steps below are executed to split the
existing edges and to create a new edge for the unmatched trajectory portion.

1. Split eprev into eprevŒ0; end� (ending in u) and eprevŒend; 1� (starting at u).
2. Split enext into enextŒ0; start0� (ending in v) and enextŒstart0; 1� (starting at v).
3. Insert uı tiŒaj�1; aj�ıv as an edge into Ei, where ı denotes concatenation. Hence,

the unmatched trajectory portion is connected to Gi at vertices u and v.

For example, in Fig. 3.5a, consider g as an edge in Gi�1 and f as ti. Figure 3.5b shows
the addition of the unmatched portion of f as an edge in the graph; here eprev D enext:

Step 3: Compute Minimum-Link Representative Edge

After finishing steps 1 and 2, a graph has successfully been constructed for tra-
jectories t1; : : : ; ti, which could be considered the output graph already. The purpose
of this step is to reduce the complexity of the matched portions by computing
a minimum-link representation for each .tiŒaj�1; aj�;X/ 2 M1:5".ti;Gi�1/, where
X ¤ null.

The problem statement is as follows: Given two polygonal curves f ; g which both
have bounded Fréchet distance to another polygonal curve � such that ıF.�; f / � "

and ıF.�; g/ � "=2, the task is to find a minimum-link representative curve e for
� such that ıF.�; e/ � ". This is accomplished by first constructing a combined
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vertex-sequence v1; : : : ; vs of vertices of f and g by following a monotone path
in the free space of FD1:5".f ; g/. Let � 0 be the polygonal curve associated with
this sequence. According to Lemma 3.1 below, it holds that ıF.�; �

0/ � 2". Then
the minimum-link algorithm by Guibas et al. [13] is run on the sequence of balls
B.v1; 2"/; : : : ;B.vs; 2"/, with the additional restriction that the vertices of the output
curve must lie within g"=2. While the resulting path e obtained by this modified
algorithm might not be the minimum-link path for this particular sequence of balls,
the complexity of the resulting polygonal curve is at most the complexity of the
original curve � , since .� 0/2", f " and g"=2 all contain � . Using the triangle inequality
it can be proven that ıF.e; �/ � ".

In step 3 of the algorithm, the edges of Gi are updated for each white interval
with the minimum-link curve computed by the algorithm described above, where
the polygonal curve f corresponds to eŒstart; end� and g corresponds to tiŒaj�1; aj�.
The time complexity to compute such a path is O.n2 log n/, where n is the number of
vertices in � 0. The total runtime to update all edges when inserting the i-th trajectory
is O..Ni�1 C ni/

2 log.Ni�1 C ni//.

Lemma 3.1. Let f and g be curves that sample a curve � such that ıF.f ; �/ � "

and ıF.g; �/ � "=2. Then any curve � 0 comprised of vertices of f and g based on
their order of a monotone path in the free space of FD1:5".f ; g/ has ıF.�; �

0/ � 2".

3.6 Quality Analysis

Lemma 3.2 in this section states that if an input curve t 2 T samples a good section
of a street or a street-path, then that street-path is unique in the original graph Go.
It can be proven using a loop invariant that, if every edge in a path has exactly one
good section, then after adding the i-th curve ti, the reconstructed graph Gi preserves
all paths of Gi

o. Here, preserving a path means that all good sections have Fréchet
distance at most " to the original street, and all vertices lie in the vertex region around
the original vertices. And Gi

o is the sub-graph of Go fully sampled by t1; : : : ; ti.

Lemma 3.2. For each t 2 T there exists a mapping Mı.t;Go/Df.tŒ0; a1�; �1Œb0; 1�/;
.tŒa1; a2�; �2Œ0; 1�/; : : : .tŒak�1; 1�; �kŒ0; bk�/g for "=2 � ı < 2:5". And for k � 3 if t
samples a good section of �1 and �k then �1 ı �2 ı �3 ı : : : ı �k is unique, otherwise
�2 ı �3 ı : : : ı �k�1 is unique.

3.6.1 Recovering Good Sections

Lemma 3.3 below provides a quality guarantee for good sections of streets. If a
street � 2 Eo is sampled by a set of input curves T� D ft1; t2; : : : ; tkg, then it is
shown that the map construction algorithm presented in this chapter reconstructs
each good section of � as one edge e 2 E.
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Lemma 3.3. For each edge � 2 Eo, if ˇ is a good section of � and there exists
a non-empty set of input curves T� D ft1; t2; : : : ; tkg � T such that for every
ti 2 T� , ıF.tiŒstarti; endi�; �/ � "=2, then there exists only one e 2 E such that
ıF.eŒstart; end�; ˇ/ � " and the complexity of eŒstart; end� is at most the complexity
of ˇ.

Proof. The proof follows from the construction of the curve-graph partial mapping
M1:5".ti;Gi�1/. When the first curve of the set is added to the graph, it is identified
as an unmatched portion. And after that, all other sub-curves that sample � will
be identified as matched portions. Once the first matched portion is processed
(i.e., for the second curve in T� ), the minimum-link curve is computed which
ensures the minimum complexity and which has Fréchet distance at most " from the
original street. Thus, all the other sub-curves will also appear as matched portions
in M1:5".ti;Gi�1/, that means for all ti 2 T� that sample ˇ only one edge will be
created in the graph. ut

3.6.2 Bounding Vertex Regions

The following provides a description of the vertex region, Rv0 , for reconstructed
vertices around the original vertex, v0. The analysis is performed for a three-way
intersection, but it can easily be extended to an arbitrary n-way intersection.

Consider three streets �1, �2 and �3 incident to a vertex v0. Let v31 and v13 be the
farthest pair of points from v0 on �1 and �3 such that d.v13; v

3
1/ � 3", see Fig. 3.6a.

Here, †v13v0v31 D ˛3, and according to Assumption 1(b), the line segments v0v31
and v0v13 are fully contained in B.v0; 3"= sin˛3/.

a b

Fig. 3.6 A three-way intersection. (a) Three streets �1; �2; �3 incident to vertex v0. (b) Different
angles ˛1; ˛2; ˛3
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For a three-way intersection there can be several input curves that sample three
different street-paths going through v0, and in order to reconstruct the vertex only
two of them that sample two different street-paths are needed. Depending on which
two input curves are used in which order, the reconstructed vertex can be in a
different location in the vertex region. Note that although the constructed map is
undirected, the input curves are sequences of samples and thus have directions.
Therefore each street-path can be sampled by two input curves with opposite
directions. For analysis purposes, a minimal collection of sets of input trajectories
is defined, such that each set describes a region, and the union of these region
forms Rv0 .

The first set T1 contains trajectories ti and tj for i < j, where ti samples street-
path �1 D �1 ı �2 and tj samples �2 D �2 ı �3. From Assumption 2(a) follows
that ıF.ti; �1/ � "=2 and ıF.tj; �2/ � "=2. In the i-th iteration, ti is inserted into
Gi�1 as an edge e, and in the j-th iteration tj is considered. To compute M1:5".tj;Gj/,
the intersection of t1:5"j and e is computed and a vertex at the intersection point
is created which defines the mapping of a partition point of a matched and an
unmatched portion of tj. By construction, e could lie anywhere within �"1 and tj
could lie anywhere within �"=22 . The intersection region that contains all possible
intersections is �"1 \ �2"2 . Since vertices are created only on the boundaries of the
intersection region, no vertices are created if the street-paths are closer than 1:5"
from each other, so the region defined by T1 is Rv0.T1/ D .�"1 \ �2"2 / n .�"1 \ �"2/,
see Fig. 3.7a. Each such set contains two input trajectories, and for a three-way
vertex there are six sets, T1; : : : ;T6. The vertex region Rv0 is then the union
Rv0 D Rv0.T1/ [ : : : [ Rv0.T6/, see Fig. 3.7b for an example.

The above analysis can be extended to an arbitrary �-way intersection, where
there are �.��1/=2 possible paths and r D .�.��1/=2/Š=.�.��1/=2�.��1//Š sets
of input curves are involved. The vertex region is then defined as Rv0 D Rv0.T1/ [
: : : [ Rv0.Tr/:

v0
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v1

v3
v0

′

π1 π2
α

v0

v0
′

a
b

c

v0

v2

v1

v3

a b

Fig. 3.7 The vertex region of a three-way intersection. (a) Three way intersection region
considering only T1. (b) The shaded region is R.v0/



3.7 Visual Summary 45

Lemma 3.4. If v00 2 R.v0/ is the farthest point from a vertex v0 2 Vo with degree
�, then " � d.v0; v00/ � "= sin˛

p
5C 4 cos˛, where ˛ D mini ˛i.

Proof. In Fig. 3.7a, when considering the triangle 4v0ab one obtains v0b D v0a=
cos.�=2 � ˛/ D 2"= sin˛. And when considering 4v00bc one obtains bc D
cv00= tan˛ D "= tan˛. From this follows that d.v; v0/ D

q
.v0c/2 C .v00c/2 Dq

"2C..2"C" cos˛/= sin˛/2D
p
"2=sin˛2.5C 4 cos˛/ D "= sin˛

p
5C 4 cos˛:

ut

3.7 Visual Summary

Figure 3.8 shows an example output of the map construction algorithm from this
chapter for vehicle trajectories collected for Berlin.

a

b

Fig. 3.8 Vehicle tracking data vs. constructed map from OpenStreetMap overlaid on ground-truth.
(a) Vehicle tracking data—Berlin. (b) Constructed map (in black) overlaid on ground-truth map
(in gray)
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Chapter 4
Density-Based Map Construction Pipeline

Abstract This chapter presents a density-based algorithm pipeline to construct a
road map from a set of input trajectories. In the first step of the pipeline a data
density function is computed and an undirected skeleton graph is constructed using
grayscale skeletonization of the density. In several different steps the pipeline then
uses the trajectory data to refine the topology and the geometry of the graph using
the continuous information represented in the trajectories. Additional information
including edge directions, lanes, and turn lanes are also added to the graph in these
later steps.

4.1 Introduction

As discussed in Chap. 1, there are several different output models and several
different map construction approaches in the literature. This chapter presents the
map construction pipeline by Biagioni and Eriksson [2], which is a density-based
point clustering algorithm with several unique features. The authors have made the
implementation of their algorithm (all steps except the last one) publicly available,
see for example http://www.mapconstruction.org/. The first step is to compute a
density function from a point representation of the input trajectories, similar to a
kernel density estimate. From this density, a skeleton is computed that is modelled
as an undirected planar graph. This approach is common in density-based map
construction algorithms [3, 4, 11], and such a skeleton could be interpreted as a
valid output of a map construction algorithm already. The remaining steps of the
pipeline then use the continuity of the trajectories to clean up various kinds of noise
and to add additional information to the graph such as edge directions, lanes, and
turn lanes.

The algorithm pipeline thus exemplifies the use of (1) density-based map
construction algorithms, (2) gray-scale skeletonization akin to image processing
approaches, (3) different map construction output models, and (4) the combination
of point-wise methods with trajectory-based methods to infer more detailed topo-
logical and directional map information.

© Springer International Publishing Switzerland 2015
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Fig. 4.1 Steps of the map construction pipeline

4.2 Map Construction Pipeline

For the map construction task a set of trajectories is given as input, and the goal is
to compute a street map that represents all trajectories. Each trajectory is a sequence
of measurements, where each measurement consists of a point (latitude/longitude or
.x; y/-coordinate after suitable projection), a time stamp, and optionally additional
information such as vehicle heading or speed. A street map is generally modelled as
some sort of an embedded graph. The presented map construction pipeline generally
works in the geographic coordinate system using latitude/longitude as coordinates,
but during some steps it uses a grid-mapping into Euclidean space.
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The map construction pipeline by Biagioni and Eriksson [2] proceeds in four
steps. See Fig. 4.1 for a summary. The first two steps, (1) Density estimation and (2)
Skeleton computation, can be seen together as a density-based map construction
algorithm on its own that outputs an undirected planar geometric graph as the
street map. This undirected graph is referred to as the skeleton. Each trajectory is
represented as a sequence of latitude/longitude measurements that are interpolated
with “straight line” segments. For the density estimation step, the bounding box of
all input measurements is computed in geographic coordinates, and is then mapped
to Euclidean coordinates using an equirectangular projection. (This may also be
referred to as “unprojected”.) The density is then computed in Euclidean coordinates
from a histogram on a 1�1m2 pixel grid, considering all points along the polygonal
lines described by the trajectories. Then a multi-level grayscale skeletonization
algorithm is performed on this density map to obtain a set of skeleton pixels, and
finally an undirected embedded planar graph is extracted to form the skeleton graph.
These two steps are explained in more detail in Sect. 4.3.

In the remaining two steps, (3) Topology refinement and (4) Geometry
refinement, several passes are made over the skeleton graph to reduce topological
and geometric noise, and to add lanes, lane directions, and turn lanes. Here, the
continuous trajectory information is used to infer valid (directed) transitions within
the skeleton graph. A hidden Markov model-based map-matching algorithm is used
to map the trajectories onto the skeleton in order to perform these refinements. In
the geometry refinement step the polygonal shape of each edge is adjusted using
a k-means clustering algorithm, and turn lanes are added at each intersection to
represent valid transitions as well as the geometric shapes of the underlying turn
lanes. These two steps are explained in more detail in Sect. 4.4. The final graph
is an embedded directed graph with multiple lanes as well as a traffic flow-based
intersection geometry with turn lanes. Figure 4.2 illustrates the steps of the pipeline
on an example.

4.3 Density Estimation and Skeleton Computation

The first two steps of the pipeline, (1) Density estimation and (2) Skeleton
computation, take as input a set of trajectories, and produce an undirected skeleton
graph as the output, representing an initial draft of the underlying road network that
has been travelled by the trajectories. After computing the bounding box of all input
measurements, the latitude/longitude geographic coordinates are trivially mapped
(“unprojected”) into the Euclidean plane. Then a histogram is computed on a
1 � 1m2 pixel grid, counting the number of trajectories that pass through each
pixel. For this, the trajectories are piecewise linearly interpolated between the
measurements. In order to account for noise and road width, the histogram is then
convolved with a Gaussian kernel with � D 8:5m. This smoothed histogram is
an approximation of a kernel density estimate. In the literature, several different
approaches have been used to generate densities from the trajectory data [3, 4, 11,
12]. And any other desired density estimation algorithm could be used for this step.

For a given density function over the bounding box domain, the goal of the
second step is to compute a skeleton graph by first identifying skeleton pixels
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Fig. 4.2 An example illustrating the steps of the map construction pipeline. (a) Raw data.
(b) Density. (c) Skeleton. (d) Topology-refined graph

and later inferring the adjacency structure between vertices. Identifying skeleton
pixels is in principle a grayscale skeletonization task. Skeletonization, or thinning,
of both binary and grayscale images has been extensively studied in the literature,
see [8, 9, 14] and see [7, 10] for surveys. Algorithms for binary thinning include
erosion-based approaches, medial axis computation, or topological approaches [5].
As part of the map construction pipeline, Biagioni and Eriksson describe a multi-
pass thresholding algorithm that uses the binary thinning algorithm by Zhang and
Suen [15] for a decreasing sequence of thresholds. The thinning algorithm itself
is an iterative erosion algorithm based on local pixel neighborhoods. Overall, the
multi-pass algorithm results in a set of pixels gradually added to the skeleton, in
perceived order of higher to lower importance. The gray-scale skeleton, an image
representation of the skeleton pixels with intensities taken from the computed
trajectory density function, is used in step (3) below.

Finally, the set of skeleton pixels are used as input for a graph extraction
module. Following the “combustion” technique from [11], pixels are classified into
intersection pixels based on local neighborhood patterns of pixels. Then these pixels
are used as seeds for multiple traversals to identify connected components of inter-
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section pixels, and of edge pixels, and each such connected component describes a
vertex or an edge, respectively. The embedding for the vertices is computed as the
average location of the vertex-pixels. For each edge, the traversal already generates
a sequence of edge-pixels, which can be interpreted as a very dense polygonal
curve yielding an embedding for the edge. This curve is, however, simplified to
a polygonal curve with fewer pixels using the Douglas-Peucker algorithm [6].
The output is an undirected embedded graph representing the skeleton, including
pointers to pixels that comprise each vertex or edge, as well as the density recorded
in the density function for each pixel.

4.4 Refinement Steps

4.4.1 Topology Refinement

In the (3) Topology refinement step, the undirected skeleton graph is now refined
and enhanced by using the continuous trajectory information to infer edge directions
and local graph topology. This consists of several sub-steps as follows.

(a) Density-aware map-matching: First, the input trajectories are map-matched
onto the skeleton graph using an adaptation of the hidden Markov model-based
map-matching algorithm by Thiagarajan et al. [13]. Instead of using uniform
transition probabilities, the density information of the grayscale skeleton is used
to compute a weight for each edge, that is proportional to the average density
of the pixels on that edge. This yields for every input trajectory a path in the
skeleton graph that the input trajectory most likely travelled, hence mapping
each trajectory to several traversed edges in the graph. It also determines the
direction in which the edge is traversed by the trajectory.

(b) Edge pruning: At this point, the graph is considered to be a directed graph.
Now, spurious directed edges are pruned by discarding all directed edges with
at most one traversed trajectory. For this, only those trajectories are counted
for which the portion that has been mapped to the edge is close enough to the
edge, according to an RMSD distance that maps sampled trajectory points to
the closest point on the edge.

(c) Vertex merging: After the initial graph extraction it may happen that the
topology of intersection vertices has not been correctly extracted. A degree-4
vertex, for example, may be represented as two adjacent degree-3 vertices, see
Fig. 4.3. The algorithm therefore loops through all short edges, and considers
merging the two adjacent vertices by collapsing the edge. The merged vertex
location is the average of the original vertex locations. This merge is only
performed, if this does not decrease the number of well-matched trajectories.
That is, for each trajectory portion that used to be mapped to an edge incident
to one of the two original vertices, an RMSD distance is computed that maps
sampled trajectory points to the closest point on a new edge incident to the
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a b

Fig. 4.3 Merging of two intersection vertices. (a) Intersection before merging. (b) Intersection
after merging

merged vertex. And only if this “deformation distance” is small enough the
vertex merge is performed.

(d) Traversal-aware map-matching: At this point the input trajectories are map-
matched once more onto the current pruned graph. The transition probabilities
for the hidden Markov model are this time determined for each edge by the
number of trajectories that traversed this edge during the first map-matching
step (a). This forces trajectories, that used to be mapped to edges that have now
been deleted, to be rerouted to other edges.

(e) Edge pruning: Another round of edge pruning is performed, using the same
algorithm as in step (b). The idea is that the first pruning breaks spurious cycles,
which then introduces new spurious spurs, and these spurs will be pruned in the
second step.

The directed embedded graph obtained after the topology refinement is then
considered as a possible output of this algorithm. It is used in the experiments
conducted in the paper [2], and it is the final output of the code provided with
the paper.

4.4.2 Geometry Refinement

The final (4) Geometry refinement step uses the k-means algorithm twice to adjust
the embedding of the directed roads, and it adds directed turn lanes and straight
lanes for a more detailed representation of intersection vertices. It consists of the
following two sub-steps.

(a) K-means refinement: The k-means algorithm is an iterative point clustering
algorithm that repeatedly takes a set of k points as the initial set of cluster
means, assigns each input point to its closest mean, and then updates the
cluster means by calculating the mean of all points assigned to one particular
mean. Biagioni and Eriksson apply this idea to adjust the overall geometry, i.e.,
embedding, of the constructed road network. Each directed edge in the current
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a b

Fig. 4.4 Geometry refinement. (a) After k-means refinement. (b) With added turn lanes and
straight lanes

graph, that is embedded as a polygonal curve, is uniformly sampled with points
at a certain specified distance. Intersection vertices are represented as single
points. Then each measurement from the input trajectories is assigned to the
closest sample point, but only those sample points are eligible that lie on the
edge that the measurement was matched to during the map-matching in step
(d) above. (For this purpose, intersection points are considered to be part of
incident edges.) Then the location of each sample point is updated to be the
mean of all measurements assigned to it. For bidirected roads this results in a
better separation of the two parallel directed edges with one polygonal curve for
each direction. The intersection geometry, however, looks somewhat degenerate
since it is represented using a single point, see Fig. 4.4a.

(b) Turn lanes: In order to add a more accurate representation of the observed
traffic flow at each intersection, all pairwise edge transitions at an intersection
are considered that have been witnessed by at least one input trajectory. Then
the k-means refinement from (a) above is run, using measurements from those
trajectory portions that have been map-matched into one of the transition
edges. This results in a new representation of an intersection “vertex” as a
set of individual turn lanes and straight lanes, which are attached to the graph
edges at a constant offset. See Fig. 4.4b for an example of such an intersection
refinement.

4.5 Visual Summary

Each step of the pipeline produces a different intermediate map construction result.
The implementation that has been provided by the authors does not include the
geometry refinement step. An example of the output of the algorithm pipeline is
shown in Fig. 4.5. The input data consists of 889 tracks with a total length of
2869 km obtained from university shuttle buses covering an area of 7 � 4:5 km2 in
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Fig. 4.5 Map construction result after the topology refinement step of Biagioni and Eriksson’s [2]
pipeline. (a) Raw data. (b) Constructed map

Chicago [1, 2]. The tracks range from 100 to 363 position samples, with a sampling
rate of 1–29 s and an average speed of 33:14 km/h.
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Chapter 5
Datasets

Abstract The best way to get an impression of the capabilities of the various map
construction algorithms is to visualize constructed maps side-by-side with the input
trajectory data. This chapter showcases map construction results from three different
cities and also presents the characteristics of the respective datasets.

5.1 Maps and Trajectories

The performance of map construction algorithms is judged by the quality of
the map data they produce. To showcase the performance of the algorithms,
trajectory datasets from Chicago (USA), Athens (Greece), and Berlin (Germany)
were selected. The respective portions of the maps covered by the trajectory data
used in the map construction experiments are shown in Figs. 5.1, 5.2, and 5.3,
respectively. The map excerpts are based on OpenStreetMap data [9] and visualized
using Toner style maps [11]. Essentially, the ultimate goal for map construction has
to be to generate these map datasets based on large amounts of trajectory data. To
also quantify this challenge, Table 5.1 gives the number of nodes and edges that
comprise those map excerpts. The Chicago map covered by the trajectories consists
of 11,801 edges and 9429 vertices. It covers an area of 7 � 4:5 km2. The edges
have a length of 61 km. The underlying Athens map portion consists of 3436 edges
and 2694 vertices. It covers an area of 2:6 � 6 km2. The edges have a length of
193 km. Finally, Berlin consists of 6839 edges and 5894 vertices. It covers an area
of 6 � 6 km2. The edges have a length of 360 km.

The respective trajectory datasets used in this book to showcase and to assess the
performance of the various map construction algorithms are shown in Fig. 5.4.

The Chicago dataset [2, 3] consists of 889 tracks with a total length of 2869 km
(average: 3:22 km and standard deviation: 894m) obtained from university shuttle
buses covering an area of 7 � 4:5 km2; the tracks range from 100 to 363 position
samples, with a sampling rate of 1–29 s (average: 4 s and standard deviation: 4 s) and
an average speed of 33 km/h. The Athens dataset consists of 129 tracks with a total
length of 443 km (average: 3:82 km and standard deviation: 1:45 km) obtained from
school buses covering an area of 2:6�6 km2; the tracks range from 13 to 47 position
samples, with a sampling rate of 20–30 s (average: 34 s and standard deviation: 32 s)

© Springer International Publishing Switzerland 2015
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Fig. 5.1 Overview maps and covered areas. (a) Chicago overview map. (b) Chicago covered area

and an average speed of 20 km/h. The Berlin dataset consists of 26,831 tracks with a
total length of 41,116 km (average: 1:53 km and standard deviation: 635m) obtained
from a taxi fleet covering an area of 6 � 6 km2; the tracks comprise from 22 up to
58 position samples, with a sampling rate of 15–127 s (average: 42 s and standard
deviation: 39 s) and an average speed of 35 km/h. Although covering a similar-sized
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Fig. 5.2 Overview maps and
covered areas. (a) Athens
overview map. (b) Athens
covered area

network, the Berlin dataset is two orders of magnitude larger than the Chicago
and Athens trajectory data. As such, Berlin presents the biggest map construction
challenge for our algorithms.

While other publicly available GPS-based vehicle tracking datasets exist, e.g.,
GeoLife [12] and OpenStreetMap GPX track data [10], the selected range covers
the various types of existing datasets produced by different types of vehicles, at
varying sampling rates and representing different network sizes.
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Fig. 5.3 Overview maps and
covered areas. (a) Berlin
overview map. (b) Berlin
covered area

5.2 Constructed Maps

Ideally, map construction algorithms use the trajectories of Fig. 5.4 and produce the
maps shown in Figs. 5.1, 5.2, and 5.3, respectively.
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Table 5.1 Statistics for datasets used

Tracking Sampling Trajectory Speed

data Trajectories rate (s) length (km) (km/h)

Athens 129 34 443 20

Berlin 26,831 42 41,116 35

Chicago 889 4 2,869 33

OSM network Vertices Edges Length (km) Area (km2)

Athens 2,694 3,436 193 2:6� 6
Berlin 5,894 6,839 360 6� 6
Chicago 9,429 11,801 61 7� 4:5

The following showcase the map construction results for a range of algorithms
discussed in previous chapters. In all visualizations, the OpenStreetMap-derived
ground-truth maps are shown in light gray and the generated maps are overlayed
in black.

Each of the algorithms uses specific parameter settings. The values of clustering
parameters for Ahmed and Wenk’s algorithm [1] are 90m, 170m and 80m for
Athens, Berlin and Chicago, respectively. For Cao and Krumm’s algorithm [4] the
clustering parameter is 20m [4] and the minimum angular difference between two
streets at any intersection is 45ı. For Edelkamp and Schrödl’s algorithm [6] the
minimum separation between streets is 50m and the minimum angular difference
between two streets at any intersection is 45ı. For the density-based algorithms by
Biagioni and Eriksson [3] and by Davies et al. [5] the minimum density threshold is
set to 50m and 16m, respectively. For Karagiorgou and Pfoser’s algorithm [8] the
values of direction, speed and proximity to extract intersection nodes and to merge
trajectories into links are 15ı, 40 km/h and 25m, respectively. All constructed maps
were evaluated in Chap. 7 using the distance measures described in Chap. 6.

A summary of the complexities of the constructed maps is shown in Table 5.2.
Here, the number of vertices includes vertices of degree two (which may lie on
a polygonal curve describing a single edge), the number of edges refers to the
number of undirected line segments between these vertices, and the total length
refers to the total length of all undirected line segments. It appears that density-
based point clustering algorithms such as Biagioni and Eriksson [3] and Davies
et al. [5] produce maps with lower complexity (fewer number of vertices and edges)
but often fail to reconstruct streets that are not traversed frequently enough by the
input tracks. In particular, the maps constructed by Davies et al.’s algorithm are very
small. On the other hand, the algorithm by Ge et al. [7] subsample all tracks to create
a much denser output set, hence the complexity of their constructed maps is always
higher.

Map construction algorithms based on incremental track insertion, such as
Ahmed and Wenk [1] and Cao et al. [4] fail to cluster tracks together when the
variability and error associated with the input tracks is large. As a result, the
constructed street maps contain multiple edges for a single street, which implies
larger values in the total edge length column in Table 5.2.
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a
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c

Fig. 5.4 Tracking data. (a) Chicago. (b) Athens. (c) Berlin
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Table 5.2 Complexities of
the generated maps

Length

Generated map Vertices Edges (km)

Athens

Ahmed 344 378 35

Biagioni 391 398 22

Cao 20 14 3

Davies 209 227 2

Edelkamp 526 1037 197

Ge 1936 1993 23

Karagiorgou 660 637 35

Berlin

Ahmed 1322 1567 164

Biagioni 5711 5738 184

Ge 15,450 16,136 183

Karagiorgou 2542 2262 161

Chicago

Ahmed 1195 1286 34

Biagioni 303 322 24

Cao 2092 2948 78

Davies 1277 1310 14

Edelkamp 828 1247 83

Ge 5893 6672 37

Karagiorgou 596 558 26

Several examples of generated maps are shown in Figs. 5.5–5.9 for the datasets of
Chicago, Athens and Berlin. Since not all algorithms produced results for all maps,
examples of the smaller Chicago and Athens maps are showcased in Figs. 5.5–5.8.
It can be clearly seen that the coverage and quality of the constructed map varies
considerably. Four examples for the Berlin map are also given in Fig. 5.9. More and
continuously updated examples can be found on http://www.mapconstruction.org/.
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Fig. 5.5 Constructed maps
(in black) overlayed on
ground-truth map (in gray)
for Chicago, part 1.
(a) Ahmed. (b) Biagioni.
(c) Cao. (d) Davies
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Fig. 5.6 Constructed maps
(in black) overlayed on
ground-truth map (in gray)
for Chicago, part 2.
(a) Edelkamp. (b) Ge.
(c) Karagiorgou
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Fig. 5.7 Constructed maps
(in black) overlayed on
ground-truth map (in gray)
for Athens, part 1. (a) Ahmed.
(b) Biagioni. (c) Cao.
(d) Davies
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Fig. 5.8 Constructed maps
(in black) overlayed on
ground-truth map (in gray)
for Athens, part 2.
(a) Edelkamp. (b) Ge.
(c) Karagiorgou
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Fig. 5.9 Constructed maps
(in black) overlayed on
ground-truth map (in gray)
for Berlin. (a) Ahmed.
(b) Biagoni. (c) Ge.
(d) Karagiorgou
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Chapter 6
Quality Measures for Map Comparison

Abstract Map construction algorithms are usually evaluated by comparing the
constructed map to a ground-truth map. In this chapter, several quality measures that
have been used for map comparison are described. While these quality measures are
related to the comparison of abstract graphs, map comparison is a more specialized
problem since the common spatial embedding is a key property of road networks
that captures the similarity of travel. The distance measures generally work for
undirected or directed embedded graph models, and they include partial distances
that match the constructed graph to a subset of the ground-truth. The general
approaches include point set-based distances, path-based distances, and distances
that compare the local topology of the graphs. In addition to distance measures,
the concept of local distance signatures is introduced in order to visualize local
differences and to locate the cause of large distances.

6.1 Introduction

Map construction algorithms in the literature are usually evaluated by comparing
the constructed map to a ground-truth map. While street map data is available from
professional vendors or from open sources such as OpenStreetMap, it is tricky,
however, to restrict existing ground-truth maps in an unbiased way to cover only
the portion that has been traversed by the input set of trajectories. Some quality
measures therefore consider a partial matching of the reconstructed map to a larger
ground-truth map that is a superset of the desired output.

Quality measures between two street maps are closely related to comparing
graphs. While graph comparison algorithms are usually based on structural prop-
erties of the graphs, such as their degree distribution, or their local connectivity
properties, they ignore any spatial embedding of the graphs. The spatial embedding,
however, is a key property of road networks since the similarity of travel over two
road networks is intimately tied to the specific spatial embedding.

In this chapter a street map is modeled as an undirected geometric planar graph
embedded in the plane. That means, each vertex is embedded as a point in the plane,
each edge is a curve in the plane, and no two embedded edges intersect. Some of
the presented distance measures can also be applied to directed geometric graphs. In
the literature, these are the two most common street map models. Note that planarity
of the graph is often assumed, even though this does not allow to model bridges or

© Springer International Publishing Switzerland 2015
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overpasses. Additional information such as multiple lanes, turn restrictions, mean
speed, etc. are sometimes computed in an additional post-processing step, see
e.g. [7, 8, 11, 12, 21], but an undirected (or sometimes directed) embedded graph is
usually computed as a first step.

In this chapter, five different quality measures are presented: The directed and
undirected Hausdorff distances [4], the path-based distance [3], the shortest path-
based distance [17], the graph sampling-based distance [6], and the local homology
distance [1]. Each quality measure captures different properties of the graphs. In
addition to measuring the quality of a map construction algorithm with a single
distance value, the concept of local distance signatures is presented. This allows
one to locate the differences in the two graphs, and it can be used to produce heat
maps on the graphs to visualize those differences. A comprehensive comparison of
map construction algorithms that also includes an experimental quality assessment
can be found in [2].

6.2 Ground-Truth Maps

There are two key ingredients for evaluating the quality of a constructed map: (1)
the availability of an adequate ground-truth map G as part of the benchmark data
and (2) a quality measure used to evaluate the similarity between the constructed
map C and the ground-truth map G.

There are essentially two cases of what can be considered as a ground-truth map
G. Ideally, G is the underlying map consisting of all streets, and only those streets,
that have been traversed by the entities that generated the set of input tracks. If such
a G was available, then a suitable quality measure would compare C to all of G
and in the ideal case C would equal G. However, in practice, it is hard to obtain an
unbiased ground-truth map that exactly corresponds to the coverage of the tracking
data. This non-trivial task has been addressed in the past by pruning the ground-
truth either manually, by proximity to the tracking data, or by map-matching the
tracking data to the map [6, 7, 17, 18]. This results in graph topologies influenced
by human judgment, or by cropping behaviors of different pruning algorithms, and
hence clearly introduces an undesired bias.

On the other hand, it is much easier to obtain an unbiased ground-truth map that
contains a superset of all the streets covered by the input tracks. Good examples are
street maps available from proprietary vendors, or from OpenStreetMap. Therefore,
if G is a superset, some asymmetric quality measures attempt to partially match
C to G. In the most general scenario, however, the constructed map C may even
contain additional streets that are not present in G. This may be due to newly
constructed roads, additional roads of other road categories (small neighborhood
roads for example), or simply due to inconsistencies of the coverage of G and C.
In general, it may therefore be desirable to design symmetric distance measures that
match large portions of C and G but neither one of them entirely.
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6.3 Quality Measures

In the graph theory literature, there are various distance measures for comparing two
abstract graphs that do not necessarily have a geometric embedding [10, 16, 20].
Most closely related to street map comparison are the subgraph isomorphism prob-
lem and the maximum common isomorphic subgraph problem, both of which are
NP-complete. These however rely on one-to-one mappings of graphs or subgraphs,
and they do not take any geometric embedding into account. Graph edit distance
[15, 22] is a way to handle noise by seeking a sequence of edit operations to
transform one graph into the other, however it is NP-hard as well. Cheong et al.
[9] consider a graph edit distance for geometric graphs (embedded in two different
coordinate systems, however), and also show that it is NP-hard to compute.

For comparing street maps, distance measures based on point sets, sets of paths,
or based on local topology have been proposed. A street map is modeled as an
undirected (planar) graph embedded in the plane. Point set-based distance measures
treat each graph as the set of points in the plane that is covered by the embedding
of its vertices and edges. The idea is then to compute a distance between the two
point sets. A straightforward distance measure for point sets are the directed and
undirected Hausdorff distances [4]. The main drawback of such an approach is that
it does not use the topological structure of the graph. Biagioni and Eriksson [6, 18]
use two distance measures that essentially both use a variant of a partial one-to-one
matching that is based on sampling both graphs densely. The two distance measures
compare the total number of matched sample points to the total number of sample
points in the graph, thus providing a measure of how much of the graph has been
matched. They do require though to have as input a ground-truth graph that closely
resembles the underlying map and not a superset.

For path-based distance measures on the other hand, the underlying idea is to
represent the graphs by sets of paths, and then to define a distance measure based on
distances between the paths. This captures some of the topological information in
the graphs and paths are of importance for street maps in particular since the latter
are often used for routing applications for which similar connectivity is desirable.
Mondzech and Sester [19] use shortest paths to compare the suitability of two
road networks for pedestrian navigation by considering basic properties such as
respective path length. Karagiorgou and Pfoser [17] also use shortest paths, but with
the main goal to assess the similarity of road network graphs. Computing random
sets of start and end nodes, the computed paths are compared using discrete Fréchet
distance and the average vertical distance. Using those sets of distances, a global
network similarity measure is derived. Ahmed et al. [3] cover the networks to be
compared with paths of link-length k and map-match the paths to the other graph
using the Fréchet distance. In another effort, Ahmed et al. [1] compare the local
topology of the two graphs. They introduce a local homology distance measure that
uses the bottleneck distance between persistence diagrams. Note that Biagioni and
Eriksson’s sampling-based distance measure [6, 18] also aims at capturing the local
topology using discrete point sets.
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Both the local homology distance and the path-based distance apply the concept
of local signature to identify how and where two graphs differ. Locally, the set of
paths through a vertex, or the persistence diagrams of sub-graphs within a small
region around a vertex can be compared efficiently, and the results can be visualized
as a heat map on one of the graphs to identify and highlight local differences in the
graphs.

6.3.1 Directed Hausdorff Distance

The directed Hausdorff distance between two compact sets of points A;B is defined

as
�!
dH.A;B/ D maxa2A minb2B d.a; b/. Here, d.a; b/ is usually the Euclidean

distance between two points a and b. Intuitively, the directed Hausdorff distance
assigns to every point a 2 A its nearest neighbor b 2 B and takes the maximum of
all distances between assigned points. In order to compare two graphs, each graph
is identified as the set of points that is covered by the embedding of all its vertices
and edges. If the directed Hausdorff distance from graph C to graph G is at most ",
this means that for every point on any edge, or vertex of C there is a point on G at
distance at most ". Or equivalently, every point of C is contained in the Minkowski
sum of G with a disk of radius "; the Minkowski sum intuitively “fattens” G by
“drawing” each of its edges with a thick circular pen. This distance measure gives
a notion about spatial distance for graphs. If C is the constructed graph and G is
the ground-truth, the smaller the distance from C to G, the closer the graph C to G.
If desired, a symmetric variant of this distance can be computed, the (undirected)

Hausdorff distance is defined as dH.A;B/ D maxf�!dH.A;B/;
�!
dH.B;A/g.

6.3.2 Path-Based Distance

For the path-based distance [3], the embedded graphs are represented as sets of
paths. The distance between two such path sets is defined as their directed Hausdorff
distance, and for the underlying distance between paths the authors used the Fréchet
distance between paths. For curves f ; g W Œ0; 1�!R

d, the Fréchet distance is defined
as

ıF.f ; g/ D inf
˛;ˇWŒ0;1�!Œ0;1� max

t2Œ0;1�
d.f .˛.t//; g.ˇ.t///;

where ˛; ˇ range over continuous, surjective and non decreasing reparametrizations.
A common intuition is to explain the Fréchet distance as the minimum leash length
required such that a man and dog can continuously walk on the two curves from
beginning to end in a monotonic way.
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Definition 6.1 (Path-Based Distance). Let C and G be two planar geometric
graphs, and let �C � ˘C and �G � ˘G, where ˘G is the set of all paths in G.
The directed path-based distance between these path sets is defined as:

�!
dpath.�C; �G/ D max

pC2�C
min

pG2�G
ıF.pC; pG/:

The undirected version of the distance dpath.�C; �G/ is defined to be the maximum of

the two directional distances
�!
dpath.�C; �G/ and

�!
dpath.�G; �C/, similar to the undi-

rected Hausdorff distance. Like the Hausdorff distance, the path-based distance is

not symmetric, i.e.,
�!
dpath.�C; �G/ ¤ �!

dpath.�G; �C/. This anti-symmetry, however,
is desirable if G is the ground-truth that covers a superset of what should be covered
by constructed map C.

Ideally, �C and �G should be the set of all paths in C and G; either starting in
vertices or in the interior of an edge. However, such a set would be exponential

or even infinite in size. In [3] the authors showed that
�!
dpath.�C; �G/ can be

approximated using
�!
dpath.˘

3
C; ˘G/ in polynomial time using the map-matching

algorithm of [5], if C consists of vertices with degree � 4 and the vertices are
well-separated. These results are shown by mapping each short path individually
from C to G, and then performing surgery to glue the paths together and bound the
distortion that arises. See Fig. 6.1 for an example. Here, ˘C is the set of all paths
and ˘3

C is the set of all link-3 paths of C. A link-k path consists of k edges, where
vertices of degree two in the graph are not counted as vertices.

The local signature of an edge e 2 C is defined as 	e D �!
dpath.˘Ce; ˘G/, where

˘Ce is a set of paths that contains e. Based on the value of these signatures, one can
identify which streets of C are very similar to the streets of G and which are not.

The degree assumption on G is only a technical requirement for the theoretical
quality guarantees, and the authors have shown [3] that even if the graph does not
satisfy the assumptions, it is possible to compare graphs and locate differences
between graphs using local signatures computed based on the path-based distance

Fig. 6.1 Graph C is shown in solid lines and graph G in dashed lines. Link-length three paths in
C such as v0; v1; v2; v3 have corresponding paths in G. By performing surgery on these, a path in
G can be constructed that corresponds to the link-length four path v0; v1; v2; v3; v4 in C
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measure. The authors also showed that it suffices to compute
�!
dpath.˘

1
C; ˘H/ and�!

dpath.˘
2
C; ˘G/ in order to identify differences (missing streets/turns), which are

most common in street-maps.

Similar to directed Hausdorff distance, the lower the value of
�!
dpath.˘C; ˘G/ the

more closely the constructed map C resembles the ground-truth map G.

6.3.3 Shortest Path-Based Distance

The quality of constructed maps can be assessed by indirectly comparing them to
ground-truth maps using the shortest path-based distance as proposed by Kara-
giorgou et al. [17]. A random set of origin-destination pairs is used to compute a
respective set of shortest paths in both the constructed and the ground-truth map.
Assuming a perfect map construction result, the shortest paths of the constructed
map should match the path in the ground-truth map. Since constructed maps
typically do not match the ground-truth map, the degree of dissimilarity of the
shortest paths is an indicator of the quality of the constructed map.

Before being able to compute shortest paths, one needs to establish the ground-
truth map, i.e., a subset of the road network that corresponds to the coverage of
the trajectory data used to construct a map. The ground-truth map is found by
initially creating buffer regions around all edges of the complete road network.
These “fattened” edges are then intersected with the trajectory data. The ground-
truth map consists then of all edges whose buffer regions contain at least one
trajectory segment.

Given the constructed map C and the ground-truth map G, a random set of
origin-destination pairs is chosen and respective shortest paths are computed in
the C and G, respectively. The geometric difference/similarity between the sets of
shortest paths is used to assess the similarity between C and G, and thus the quality
of the constructed network. To compare the shortest paths the discrete Fréchet
distance and the average vertical distance measures are used. The discrete Fréchet
distance considers all corresponding walks and minimizes the maximum distance,
while the average vertical distance considers a single walk but takes all distances
along the paths into account by summarizing them in an average. This approach
enables one to measure the similarity for sets of extended paths in the road networks
instead of individual edges. And note that if connections in one graph are missing
in the other graph, this will result in a worse distance measure. Thus, this distance
provides a means to evaluate the connectivity of the constructed network C. The
more “similar” the shortest paths in the constructed network C are to the ground-
truth network G, the higher also the quality of the network in terms of topology and
connectivity. The results of this shortest path comparison can be assessed by plotting
the distance of all paths against each other and can be summarized by computing
average distances for a set of paths for the two networks that are compared.
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Fig. 6.2 For the graph
sampling-based distance the
sampled points on the dark
graph need to be matched to
sampled points on the light
graph using a one-to-one
bottleneck matching. The
seed location is marked with
a star

6.3.4 Graph Sampling-Based Distance

Biagioni and Eriksson [6] introduce a graph sampling-based distance measure in
order to evaluate the geometry and the topology of the constructed maps represented
by graphs. The main idea is as follows. Starting from a random street location,
explore the topology of the graphs by placing point samples on each graph during
a graph traversal outward within a maximum radius. This produces two sets of
locations, which are essentially spatial samples of a local graph neighborhood.
These two point sets are compared using one-to-one bottleneck matching [14] and
counting the unmatched points in each set. See Fig. 6.2 for an illustration. Note
that the graph traversal can take directions of edges into account if desired; in [6]
the authors apply this distance measure to directed graphs, while in [7] the authors
apply it to undirected graphs.

The sampling process is repeated for several random seed locations. For
the bottleneck matching, the sample points on one graph can be considered as
“marbles” and on the other graph as “holes”. The algorithm considers one-to-
one matchings between the point-sets and only allows points to be matched
that are at a distance less than a given threshold. Intuitively, if a marble lands
close to a hole it falls in, marbles that are too far from a hole remain where
they land, and holes with no marbles nearby remain empty. If one of the
graphs is the ground-truth, this difference represents the accuracy of the other
graph. Counting the number of unmatched marbles and empty holes quantifies
the accuracy of the generated road network with respect to the ground-truth
according to two scores. The first score is the proportion of spurious marbles,
spurious D spurious_marbles= .spurious_marbles C matched_marbles/ and
the second score is the proportion of missing locations or empty holes, where
missing D empty_holes= .empty_holes C matched_holes/.

To produce a combined performance measure from these two values, the well-
known F-score is used, which is computed as follows:
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F-score D 2 � precision � recall

precision C recall

where, precision D 1 � spurious and recall D 1 � missing. The higher the F-score,
the closer is the match. Sampling the graphs locally is important as it captures the
connectivity of the graphs at a very detailed level and thus allows for the topological
similarity to be measured. The modified variant presented in [7] ignores parts of
the road network where no correspondence could be found between generated and
ground-truth networks.

6.3.5 Local Homology Distance

Ahmed et al. [1] present a distance measure that is based on comparing the local
persistent homology of two graphs.

Let G be a graph embedded in the plane. While the homology of G describes the
connected components as well as the cycles and branching structures present in the
graph, it cannot distinguish between different sizes of components and cycles. To
capture the topology of G at different scales, the graph is continuously thickened
until all cycles are filled in. This results in a filtration, i.e., a sequence of growing
topological spaces. One can think of this thickening process as parameterized by
time. During this process new cycles can appear and existing cycles can disappear. A
thickened graph at time t can be described by the sublevel set ŒGi�

t WD d�1Gi
..�1; t�/

of the Euclidean distance function dGWR2 ! R in the plane. Here, dG.p/ is defined
as the distance from p to the point closest to it in G. The time at which a cycle
appears is called the birth of a cycle, and the time at which a cycle is filled in is
called the death of a cycle. The persistent homology then defines a set of birth-death
pairs, which are obtained from homology generators over the whole thickening
process (filtration). These birth-death pairs are plotted in a persistence diagram.
Each such pair is referred to as a feature, and the difference between birth and death
is called its persistence. Cycles with high persistence can be interpreted as important
homological features of the road network.

For two given graphs G1;G2 embedded in the plane, let P.G1/ and P.G2/

be their persistence diagrams, which each are a set of points in the plane. The
goal is now to find a correspondence between the homological features in the two
diagrams. The idea is to find a one-to-one correspondence between the points in
the diagrams, however for technical reasons a matching to the diagonal with equal
birth and death time is allowed (these correspond to cycles that appear and then
immediately disappear). A popular distance measure used for comparing persistence
diagrams is the bottleneck distance W1.P.G1/;P.G2// WD inff jjp � f .p/jj1,
where f WP1 ! P2 ranges over all bijections; see [13, Chap. VII]. See Fig. 6.3
for an example of two graphs, their persistence diagrams, and the pairing of the
persistence points with respect to the bottleneck distance.
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a

b

Fig. 6.3 Two examples of local homology distance. The local portions of two graphs (solid and
dashed) on the left, and their persistence diagrams on the right. Persistence points are paired with
solid lines. (a) Large local homology distance. (b) Small local homology distance

In order to capture local features, this distance between persistence diagrams is
applied to local portions of the graph. For a given radius r > 0 and a point x in the
plane, let P1;r.x/ be the persistence diagram of the portion of G1 within the ball of
radius r centered at x. P2;r.x/ is defined analogously for G2. Then the local distance
signature  rWR2 ! R is defined by  r.x/ D W1.P1;r.x/;P2;r.x//. This signature
is then used to define the local homology distance as

dLH
r .G1;G2/ D

Z

R2

w.x/ r.x/ dx;

where wWR2 ! R is a non-negative weight function that integrates to unity.
The local homology distance thus captures local topological similarity between
the graphs and integrates over the whole plane in order to capture all local
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Fig. 6.4 A finite cover of
disks covering the plane

neighborhoods. Computationally, the integral is discretized by covering R
2 with

a finite cover of disks, which yields the following discrete formulation

1

N

NX
iD1

 r.xi/;

where N is the number of balls in the cover. Figure 6.4 shows an example of such
a cover.

6.4 Local Distance Signatures

A distance measure reduces the differences between two maps to a single value,
which is useful when assessing and comparing the quality of multiple constructed
maps. A related objective to measuring the quality of the constructed map is to
identify where the constructed map C differs from the ground-truth map G. This
requires a means to localize differences and visualize them. One approach is to
define a local distance signature. For a given point p (or vertex, or edge) on one
graph, p defines local neighborhoods in the graph and the other graph, and the
signature of p is the distance between the two local graph portions. Since the local
portions are defined via points on the graph, a heat map can be plotted on the graph
in order to visualize the local distance signature at different points on the graph such
as shown in the example of Fig. 6.5.

The concept of local distance signature has been employed for two distance
measures, the path-based distance [3] (cf. Sect. 6.3.2) and the local homology
distance [1] (cf. Sect. 6.3.5). For the path-based distance, the point p defines the set
of short paths through p, and for the local homology distance the point p defines a
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Fig. 6.5 The color-coded
street map is overlayed on the
gray street map. Colors show
the heat map of the local
distance signature of the local
homology distance

graph neighborhood, which is used to compute and compare persistence diagrams.
Figure 6.5 shows an example for the local homology distance. The algorithm to
compute the graph sampling-based distance [7] can also be naturally adapted to
compute local distance signatures, if initial seeds are taken to be points on one of
the graphs.

6.5 Comparison of Distance Measures

All the distance measures described in Sect. 6.3 capture different properties of
graphs. Based on the desired type of similarity, different distance measures can be
employed. For example, if one is interested in ensuring that shortest paths in the
two graphs are similar, requiring that independent queries produce similar routes,
then the shortest path-based distance would be a good choice [17, 19]. If the basic
spatial displacement between the two graphs is of importance, without necessarily
considering any kind of topology or path similarity, then the directed Hausdorff
distance [4] would be appropriate.

On the other hand, the graph sampling-based distance [7] and the local homology
distance [1] maximize the use of local topology in comparing graphs. Note that
the path-based distance combines topology, connectivity, and spatial similarity
by considering all paths. The graph sampling-based distance [7] may, due to the
employed sampling strategy, fail to identify local differences. Figure 6.6 shows an
example in which the dotted graph has a broken connection in the gray square
region, but the graph topology allows all edges to be traversed and sampled
nevertheless, and hence the resulting sampled point sets are similar. The path-
based distance [3] on the other hand exploits every adjacency transition around a
vertex and therefore verifies connectivity. The local homology distance [1] considers
continuous cycles and would therefore also detect the different topologies of the two
graphs.

Among the presented distance measures, only the graph sampling-based dis-
tance [7] ensures one-to-one correspondence between portions (point samples) of
the graphs. Therefore, missing streets or extra edges are reflected in the overall
score as well as in the local signatures.
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Fig. 6.6 Graph G (dotted
edges) overlayed on H (gray).
G and H differs in the shaded
squared region. The distance
measure in [7] fails to capture
the broken connection in G,
as there is always detour
available to reach every edge
and sample it
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Chapter 7
Evaluation

Abstract Although a visual inspection allows for a simple intuitive assessment
of map construction results, providing a quantifiable assessment of the quality has
been a considerable challenge. This chapter summarizes the results of a study that
compares three map construction algorithms for three different datasets and using
four quality measures. The results illustrate the strengths and limitations of the
algorithms representing three distinct categories of map construction approaches.

7.1 Introduction

This chapter showcases map construction experiments that were conducted for
a range of algorithms, datasets, and evaluation measures described in previous
chapters, with the aim to assess the quality of the constructed maps. Three map
construction algorithms, each representing a distinct category of map construction
approaches, were used in the experiments: The density-based point clustering
algorithm by Biagioni and Eriksson [6], the incremental track insertion algorithm
by Ahmed and Wenk [1], and the intersection linking algorithm by Karagiorgou
and Pfoser [7]. The implementations use C, Java, Python, and Matlab, and are
available on http://www.mapconstruction.org/. For evaluation purposes, only the
underlying undirected graph representations that were computed by the algorithms
were used; any additional information such as directions or other annotations were
dropped. The data sets used for the experiments consist of trajectory data from
Chicago, Athens, and Berlin, as well as map excerpts from OpenStreetMap data [8],
as described in Chap. 5. The quality measures used for evaluation are the directed
Hausdorff distance [4], the path-based distance [3], the shortest path-based distance
[7], the graph sampling-based distance [5], and the local homology distance [2].
The experiments have been performed by the authors and the implementations have
been made available on http://www.mapconstruction.org/. Given (1) the differences
in code base, (2) the goal to construct small-scale maps from GPS trajectories, and
(3) the fact that all implementations are academic prototypes, the characteristics of
the algorithms were not assessed by means of a performance study or theoretical
analysis. The running times of the algorithms range from 10 min to 20 h for smaller
data sets such as for the Chicago dataset. And for the larger data sets such as the
Berlin dataset, the running times range from 2 h to 4 d.

© Springer International Publishing Switzerland 2015
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7.2 Path-Based Distance and Directed Hausdorff Distance

For the path-based distance all paths of link-length 3 were generated for each
constructed map. For each path, a map-matching was performed to compute the
Fréchet distance between the path and the ground-truth map. The minimum,
maximum, median, and average of all the obtained distances were computed. The
d%-distances, defined as the maximum of the distances after removing the d%
largest distances (“outliers”), were also computed. The directed Hausdorff distance
was computed from the constructed maps to the ground-truth maps. Here each
map is considered as the set of all points covered by the vertices and edges of its
embedding. The results are summarized in Table 7.1. The maps constructed using
the algorithms by Karagiorgou and Pfoser [7] and by Biagioni and Eriksson [6]
generally have the best path-based distance.

For further analysis of the results, the Chicago dataset was selected as it was
one of the first datasets used in respective comparison studies. From Table 7.1 one
can see that the path-based distance and the directed Hausdorff distance are smaller
for the generated maps by Biagioni and Eriksson and by Karagiorgou and Pfoser
compared to maps generated using other algorithms. Although the algorithm of
Ahmed and Wenk produces maps with good coverage, their path-based distances
are larger. This may be due to the fact that the implementation does not include the
last step of their algorithm which would compute a minimum-link representative
edge. Such a more aggressive averaging technique should help cope with noise in
the input tracks.

To illustrate the appropriateness of the path-based distance, consider the path in
Fig. 7.1 from the map generated by Biagioni and Eriksson. This is an example where
the Fréchet distance is more effective than any point-based distance. As Fréchet
distance ensures continuous mapping, the whole path needs to be matched with the
bottom horizontal edge of the ground-truth map. The Fréchet distance for this path
is 71m. For the same path, the Hausdorff distance is 53m, as this only requires
for each point on the path to have a point on the graph close-by. Thus, in order to
evaluate the connectivity of a map, the Fréchet distance is more suitable than any
point-based measure.

In addition, if desired one can discard outliers by computing the d%-distance.
Figure 7.2 shows the distribution of both the path-based distance and the directed
Hausdorff distance for the map constructed by Biagioni and Eriksson. In both cases,
a very small number of paths have the maximum distance, and the distances for
most of the paths are distributed within a small range. Removing only 5% of the
outliers (largest distances) brings the path-based distance from 71m (max) to 38m
and the directed Hausdorff distance from 53m (max) to 25m.

Figure 7.3 uses the local distance signature of the path-based distance to visualize
the distances in the maps. For each edge, a set of all link-length 3 paths containing
this edge are considered, and the path-based distance of this path-set is computed
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Fig. 7.1 A path with Fréchet distance greater than Hausdorff distance

and mapped onto the graph, where smaller distances are visualized in lighter shades
and larger distances in darker shades. Such visual representation helps to identify
areas in the constructed map that have larger distance to the ground-truth map.

7.3 Shortest Path-Based Distance

Another approach to the evaluation of constructed maps is using the shortest path-
based distance proposed by Karagiorgou and Pfoser [7]. Here, a random set of
corresponding origin-destination pairs is chosen in both the constructed and the
ground-truth maps, and the shortest paths from origin to destination are computed
in the respective maps. For an ideal map construction result, the shortest paths of
the constructed map should match the paths in the ground-truth map. The larger the
mismatch however, the larger is the dissimilarity between the maps. This experiment
computes 500 shortest paths for randomly chosen pairs of origin and destination
nodes. The discrete Fréchet distance and the average vertical distance are used to
compare the resulting paths in the respective maps. The experiments use the ground-
truth maps from the datasets that are presented in Chap. 5. A first impression on
how different constructed maps affect respective shortest paths is given in Fig. 7.4.
Given a specific origin and destination in the Chicago map, the computed shortest
path is 3:66 km long in the ground-truth map (black dotted line). The respective
shortest paths in the three generated maps are shown in red (solid, lighter line). In
the map generated by Ahmed and Wenk’s algorithm, the shortest path is 4:67 km
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Fig. 7.2 Distributions of individual path distances for Biagioni—Chicago. (a) Path-based dis-
tance. (b) Directed Hausdorff distance

long (a discrete Fréchet distance with respect to the ground-truth map of 65m
and an average vertical distance of 21m). The respective results for the other
algorithms are 3:71 km (36m, 5m) for Biagioni and Eriksson, and 3:73 km (21m,
5m) for Karagiorgou and Pfoser. The shortest paths in the constructed maps are not
always similar to the shortest paths in the respective ground-truth maps as in the
case of Ahmed and Wenk (Fig. 7.4a), the resulting shortest path shows significant
deviations. This result is in line with the path-based measure of Sect. 7.2, where also



90 7 Evaluation

4.43 4.435 4.44 4.445 4.45 4.455 4.46 4.465 4.47
4.6345

4.635

4.6355

4.636

4.6365

4.637
x 106

x 106

x 105

x 105
4.43 4.435 4.44 4.445 4.45 4.455 4.46 4.465 4.47

4.6345

4.635

4.6355

4.636

4.6365

4.637

a

b

Fig. 7.3 Reconstructed graph overlayed on ground-truth map (light gray) for the Chicago dataset.
Based on link-length three paths, edges in lighter shades have smaller path-based distance and
darker shades have larger distance. (a) Biagioni. Plotted distances range between 3m and 71m.
(b) Ahmed. Plotted distances range between 7m and 201m
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Fig. 7.4 Examples of shortest paths for the Chicago dataset. (a) Ahmed. (b) Biagioni. (c)
Karagiorgou

Biagioni and Eriksson and Karagiorgou and Pfoser produced the best constructed
maps.

The shortest path experiments are summarized in Table 7.2. The first column
shows the percentage (%) of shortest paths that in each case could be computed,
i.e., an algorithm might produce an accurate, but incomplete map and hence not
all origin-destination pairs and thus shortest paths can be computed in this map.
The second and third column show the two different distance measures (discrete
Fréchet distance and average vertical distance) used to compare the resulting paths.
The fourth column gives the min, max, and average length of the computed shortest



92 7 Evaluation

Ta
bl

e
7.

2
Sh

or
te

st
pa

th
-b

as
ed

di
st

an
ce

m
ea

su
re

ev
al

ua
tio

n
su

m
m

ar
y

D
is

cr
et

e
Fr

éc
he

t
A

ve
ra

ge
ve

rt
ic

al
Sh

or
te

st
pa

th
-b

as
ed

G
en

er
at

ed
Fo

un
d

di
st

an
ce

(m
)

di
st

an
ce

(m
)

di
st

an
ce

(k
m

)

m
ap

(%
)

m
in

m
ax

av
g

st
dd

ev
m

in
m

ax
av

g
st

dd
ev

m
in

m
ax

av
g

st
dd

ev

A
th

en
s

A
hm

ed
97

.6
13

23
4

96
62

6
91

38
24

1.
28

5.
72

3.
11

1.
84

B
ia

gi
on

i
94

.2
7

21
4

84
50

4
80

28
21

0.
79

5.
23

2.
97

1.
41

K
ar

ag
io

rg
ou

96
.8

7
21

2
81

48
3

81
27

20
0.

78
5.

21
2.

95
1.

39

B
er

li
n

A
hm

ed
93

.2
21

46
9

19
1

12
3

12
23

1
12

1
63

1.
56

5.
88

3.
49

1.
96

B
ia

gi
on

i
91

.8
20

46
1

18
9

12
1

10
22

3
11

7
60

1.
46

5.
74

3.
41

1.
97

K
ar

ag
io

rg
ou

93
.8

18
42

8
18

3
11

2
8

20
9

10
6

58
1.

32
5.

67
3.

27
1.

84

C
hi

ca
go

A
hm

ed
99

.8
13

20
8

97
56

6
92

43
19

1.
21

6.
95

4.
45

2.
04

B
ia

gi
on

i
98

.6
4

98
40

27
2

49
20

13
0.

89
6.

03
3.

76
1.

57

K
ar

ag
io

rg
ou

99
.2

4
10

3
41

28
2

50
21

14
0.

90
6.

05
3.

82
1.

59



7.4 Graph Sampling-Based Distance 93

paths. For example, for the Berlin data set, Ahmed and Wenk’s algorithm constructs
a map for which the generated shortest paths have a min, max, and average discrete
Fréchet distance of 21m, 469m, and 191m, respectively.

An aspect not captured by these distances are missing paths due to limited map
coverage. Karagiorgou and Pfoser’s algorithm constructs maps that have both good
coverage and high path similarity. Consider for example the case of Berlin, which
shows good coverage (93.8 %) and overall a small distance measures. This indicates
similar paths and thus a constructed map similar to the ground-truth map.

Overall, shortest path sampling provides an effective means for assessing the
quality of constructed maps as it not only considers similarity, but also the coverage
of constructed maps.

7.4 Graph Sampling-Based Distance

The source code for computing the graph-sampling based distance has been
provided by the authors of [5], and it was modified to use Euclidean distance
as the data uses projected coordinate systems. The algorithm that computes this
distance has four parameters: (1) sampling density, how densely the map should be
sampled (marbles for generated map and holes for ground-truth map), 5m is used;
(2) matched distance, the maximum distance between a matched marble-hole pair,
this distance is varied from 10m to 120m; (3) maximum distance from root, the
maximum distance from a randomly selected start location for the traversal, 300m
is used; and (4) number of runs, the number of start locations to consider, 1000
is used. In the implementation, a seed location is selected in the plane and then a
corresponding set of start locations for traversal in each graph is selected within a
matched distance from the seed. Both graphs are traversed within maximum distance
from the root to the seed, and then the union of all traversed edges is sampled based
on the sampling density specified to produce a set of sample points. A larger matched
distance might yield a larger number of sample points. To make the comparison of
all generated maps consistent, a sequence of random locations for each dataset was
generated and the first 1000 locations were used from the same sequence for each
algorithm for which both maps (ground-truth and constructed) had correspondences
within a matched distance. When two maps are very similar, they should have very
few unmatched marbles and holes, which implies the precision, recall and F-score
values should be very close to 1. In this case, as a superset of the ground-truth map
was used, there should be a large number of unmatched holes, which implies lower
recall and F-score values than in [5], but still the relative comparison of F-score
values should provide an idea of whether an algorithm performs better than another.

The values for matched distance were chosen up to 120m, to be consistent with
the error associated with the input data. As mentioned in [5], some areas in the
Chicago dataset show errors well above 100m.
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Fig. 7.5 Comparison of F-scores for the Chicago dataset

Figure 7.5 shows F-score values for the Chicago dataset for different generated
maps. As the ground-truth is essentially a superset of the actual ground-truth
covered by the tracking dataset, a larger matched distance decreases the number
of unmatched marbles by matching these with available holes that probably are not
part of the actual ground-truth. A higher recall value yields a higher F-score, which
does not necessarily reflect better-quality maps (cf. maps in Chap. 5) such as in the
case of Ahmed.

Figure 7.5 shows that the performance based on F-score declines for Biagioni
and Eriksson and Karagiorgou and Pfoser with increasing matched distance. In
investigating the reason of this unexpected behavior, it is found that although
precision increases with increasing matched distance, the recall declines for these
two algorithms; and smaller recall indicates a larger number of unmatched sample
points in the ground-truth (empty holes). The constructed maps in Chap. 5 show that
these two algorithms reconstruct fewer streets than other algorithms, which means
they produce a smaller number of marbles to match with a larger number of holes. It
was explained earlier in this subsection how the total number of holes might increase
with the choice of a larger matched distance.

Hence, Table 7.3 shows the precision values instead of F-score and recall.
According to precision values, the algorithms by Biagioni and Eriksson and by
Karagiorgou and Pfoser perform best for dataset of Chicago, which is consistent
with the findings using the other three distance measures.
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Table 7.3 Precisions for
matched distance 10 m, 40 m,
70 m, 100 m

Precision value

Generated (for varying matched distance)

map 10 40 70 100

Athens

Ahmed 0.265 0.442 0.503 0.579

Biagioni 0.450 0.586 0.662 0.727

Karagiorgou 0.343 0.489 0.561 0.647

Berlin

Ahmed 0.123 0.326 0.422 0.485

Biagoni 0.239 0.510 0.551 0.586

Karagiorgou 0.294 0.590 0.633 0.649

Chicago

Ahmed 0.312 0.563 0.658 0.738

Biagioni 0.491 0.699 0.730 0.775

Karagiorgou 0.602 0.740 0.751 0.801

Table 7.4 Local homology
distance evaluation

Generated Bottleneck

map distance

Athens

Ahmed 23.5

Biagioni 24.3

Karagiorgou 23.2

7.5 Local Homology Distance

The map construction algorithms were evaluated using the local homology distance
for maps constructed from the Athens dataset. A disk cover of 19,845 disks of radius
100m each was computed for the bounding box of the data. After computing the
bottleneck distance between the persistence diagrams for the graphs in each disk,
the average is computed as an overall measure. It is observed that based on the
local homology distance, Karagiorgou is the closest to the ground-truth map with a
distance of 23:2m, Ahmed and Biagoni follow with distances of 23:5 and 24:2m,
respectively. Table 7.4 summarizes the results.

The local differences between two maps are illustrated using local distance
signatures. These are computed by sampling each edge of one of the maps and
creating a set of disks with sample points as centers, such that the union of disks
covers the map. Then the local homology distance is computed for each disk, and
each line segment on the graph is colored based on the average distance of the disks
centered at the two endpoints of that line segment.

Figure 7.6 shows a comparison of a map constructed by the Karagiorgou
and Pfoser algorithm (gray) with the map constructed by Biagioni and Eriksson
algorithm (color-coded). The sampling density used to sample points from the
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a b

Fig. 7.6 Comparison of two generated maps of the Athens data set. The thicker gray map is
Karagiorgou and the color-coded map is Biagioni. The lighter shades in the Biagioni map
correspond to sections of the graph that have small signatures, and the darker parts correspond
to large signatures. (a) Local homology distance. (b) Local homology distance, detailed view

Biagioni map is 5 m and the radius of each disk is 25m. The lighter and darker
shades represent smaller and larger distances, respectively. The local homology
signature captures missing intersections, as illustrated in the detailed view of the
signatures.

7.6 Summary

The best way to compare the constructed maps is in terms of coverage and accuracy.
Here, it appears that density-based point clustering algorithms such as Biagioni
and Eriksson’s algorithm produce maps with lower complexity (fewer number
of vertices and edges) and often fail to reconstruct streets that are not traversed
frequently enough by the input trajectories. On the other hand, incremental track
insertion algorithms such as Ahmed and Wenk’s algorithm subsample all tracks to
create a much denser output set, hence the complexity of their constructed maps
is always higher. On the other hand, they fail to cluster tracks together when
the variability and error associated with the input tracks is large. As a result, the
constructed street maps contain multiple edges for a single street, which implies a
larger constructed, but not necessarily more accurate road network.

In terms of map quality and accuracy, the maps reconstructed using the algo-
rithms by Karagiorgou and Pfoser and by Biagioni and Eriksson generally have the
smallest path-based and directed Hausdorff distances and their constructed maps
can be considered more accurate. Although the algorithm by Ahmed and Wenk
produces maps with good coverage and provide quality guarantees, their path-based
distances are larger, since they employ less aggressive averaging techniques that
would help cope with noise in the input tracks. In an effort to assess both accuracy
and coverage, the shortest path-based distance shows for some algorithms good map
quality, but at the same time only limited coverage. In this evaluation, Karagiorgou
and Pfoser’s produces maps that have both good coverage and high path similarity.
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An overall observation to be made based on the experiments is that map
construction algorithms tend to produce either accurate maps, or maps with good
coverage, but not both. The algorithm of Karagiorgou and Pfoser, however seems to
be a good compromise, in that it produces maps of good coverage and accuracy at
the same time.
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Chapter 8
New Directions

Abstract Map construction algorithms are useful beyond GPS-derived trajectory
datasets. This chapter gives some examples of early-stage research towards novel
applications. In recent years an ever increasing amount of social media data has
become available. When considering the geospatial dimension of this data, using
geocoded tweets for example, one can unveil location-based “stories” by means of
geo-semantic extraction of a network of interest as described in this chapter. For
eye tracking data, researchers use map construction techniques to recreate a user’s
“visual” trace based on positional snapshots. The result is used to study different
optical representation concepts, such as distractions, content layout, and usability.

8.1 Social Media Tracking Data

An important resource in today’s mapping efforts, especially for use in mobile nav-
igation devices, is an accurate collection of point-of-interest (POI) data. However,
by only considering isolated locations in current datasets, the essential aspect of
how these POIs are connected is overlooked. The objective is to take the concept
of POIs to the next level by computing networks of interest (NOIs) that encode
different types of connectivity between POIs and that capture a person’s type of
movement and behavior while visiting these POIs [11]. This new concept of NOIs
has a considerable application potential, including traffic planning, geomarketing,
urban planning, and the creation of sophisticated location-based services, such
as personalized travel guides and recommendation systems. Currently, the only
datasets that consider connectivity of locations are road networks, which connect
intersection nodes by means of road links purely on a geometric basis. POIs
however, encode both geometric and semantic information (where and what) and
it is not entirely obvious how to create meaningful links between them. Here, a
network of interest is proposed to capture both geometric and semantic information
by analyzing social media in the form of spatial check-in data. The concept of
check-ins is used as a generic term for users actively volunteering their presence
at a specific location. Existing road maps and POIs encode mostly geometric
information and consist of street maps, but may also include subway maps, bus
maps, and hiking trail maps. Such datasets can be derived from (GPS-based)
geometric trajectories using map construction algorithms. This case also exploits
so-called behavioral trajectories. They are obtained from social media in the form

© Springer International Publishing Switzerland 2015
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of spatial check-in data, such as geocoded tweets from Twitter. Similar to GPS
tracking, the user contributes a position sample by checking in at a specific location.
The main challenge arises from the fact that trajectories derived from geocoded
tweets are typically quite sparse since individuals tend to publish their positions only
at discrete occasions. However, by combining and analyzing time and location of
such data, it is possible to construct event-based trajectories, which can then be used
to analyze user mobility and to extract visiting patterns of places. The expectation
towards behavioral trajectories is that by integrating them into a NOI, the resulting
dataset will go beyond a homogeneous transportation network and will provide a
means to construct an actual depiction of human interest and motion dependent
on user context and independent of transportation means. Early maps were traces of
people’s movements in the world, depicting representations of people’s experiences.
NOIs on the other hand aim to fuse different qualities of such trace datasets obtained
through intentional efforts (e.g., social media, Web logs) or unintentional efforts
(e.g., routes from their daily commutes, check-in data) to provide for a consequent
modern map equivalent.

In the following, a new algorithm is introduced to address the challenge of
extracting a geosemantic network of interest from noisy, low-sampled geocoded
tweets. The algorithm first segments the input dataset based on sampling rate and
movement characteristics and then infers the respective network layers. To fuse the
different network layers into a NOI, the concept of network hubs is used to align the
different layers.

8.1.1 A Network of Interest

The goal is to construct a network of interest that reveals the movement behavior
of users. This network of interest is a directed graph G D .V;E/, where the
vertices V indicate important locations and the edges E important links between
vertices according to observed user movements. In particular, two major aspects
of the network of interest are interesting. The geometric NOI aspect provides a
representation of how users actually move across various locations, thus preserving
the actual geometry of the movement. The semantic NOI aspect represents the
qualitative aspect of the network by identifying significant locations and links
between them. These two aspects are treated as different layers of the same network
of interest. In the following, the steps for constructing these layers and fusing them
to produce the final network of interest are described.

8.1.2 Segmentation of Trajectories

Behavioral trajectories, as in this case derived from geocoded tweets, contain data
to construct both the geometric and the semantic layer of a network of interest.
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Conceptually, users tweet when they stroll around as well as when they commute
in the morning. While all these tweets will result in behavioral trajectories, some
of them depict actual movement paths, while others simply are tweets sent sparsely
throughout the day. In what follows, the input data is separated into two subsets
in order to extract the trajectories corresponding to the respective layer. The sparse
subsets of the data are helpful in identifying significant locations and the denser
subsets can be used to capture more fine-grained patterns of user movement.
Users with frequent check-ins produce trajectories with high sampling rates, which
provide a means to derive a geometric NOI layer. Low sampling rates on the other
hand only allow to reason about abstract movement, which will be used to derive a
semantic NOI layer.

With a focus on an urban scenario and transportation means, initially the mean
speed is used to filter the trajectories and then the duration between samples is used
to determine “abstract” and “concrete” movement. Figure 8.1a shows the trajectories
classified by different sampling rates using the example of geocoded tweets for
London. Using a heatmap coloring schema, concrete and abstract movements are
shown in blue and red, respectively.

8.1.3 Geometric Layer Construction

The geometric NOI layer is constructed from frequently sampled trajectories. The
algorithm follows a modified map construction approach (cf. [8, 9]) by (1) initially
clustering position samples to derive network nodes, (2) linking nodes by means of
edges derived from trajectories, and finally (3) refining the edge geometry.

To derive network nodes, the DBSCAN clustering algorithm [7] is used with a
distance and a minimum-number-of-samples threshold. The segmented trajectories
are used to create edges between the network nodes. The edges represent averaged
trajectory geometries as two nodes can be connected by different trajectories.
Finally, a reduction step is applied to simplify the constructed network. Edges of
longer duration (difference of node timestamps) are reconstructed by using edges of
shorter duration if their geometries exhibit similarity. Figure 8.2 shows an example
of edges before and after the reduction step. Part of the larger geometry has been
substituted with a more detailed geometry.

8.1.4 Semantic Layer Construction

The semantic NOI layer is constructed from trajectories with low sampling rates.
Since such trajectories potentially cover large distances in between position sam-
ples, reconstructing the actual movement is difficult. By applying the DBSCAN
clustering algorithm, a set of nodes is extracted that corresponds to the hubs of the
semantic layer.
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Fig. 8.1 Twitter trajectories and OSM network—London. (a) Twitter trajectories. Blue depicts
“slow”, red depicts “fast”. (b) Respective OSM network (Color figure online)

Performing a linear scan of the trajectories reveals the respective trajectory
portions that connect sets of nodes constituting hubs. Here, no reduction step is
applied as the edge geometries of the semantic layer are too abstract, i.e., this layer
represents a network with lower spatial accuracy, but with greater semantic value.
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Fig. 8.2 Network reduction example. The constructed network is shown in dark gray and the
underlying OSM road network in light gray. (a) Before reduction. (b) After reduction

8.1.5 Network Hubs

Hubs are POIs that users frequently depart from and arrive at. In particular, specific
indicators for hubs are the number of constituting position samples stemming from
many different users over extended time periods. DBSCAN is used to cluster
relevant position samples using a distance and a minimum-number-of-samples
threshold. The centroids of the resulting clusters are the candidate hubs. A candidate
hub is included in the final set if it has a large number of incoming and outgoing
edges at the same time. These conditions are used to ensure that the identified hubs
correspond to places where a sufficiently large number of users frequently depart
from and/or arrive at.

8.1.6 Layer Fusion

The final part of the process comprises the fusion of the geometric and semantic NOI
layers. The NOI is constructed by starting with the semantic layer and merging the
geometric layer into it. The intuition for this is that the semantic layer corresponds
to a geometrically abstract, but semantically richer user movement that contains
relevant transportation hubs. The geometric layer corresponds to a less semantic,
but a more accurate depiction of movement, which can be used to fill in the gaps
in the semantic layer. The fusion of these layers should result in a comprehensive
movement network.

The fusion task involves (1) finding hub correspondences among the different
network layers and (2) adding new links to the semantic layer for the uncommon
portions of the NOI. Any remaining nodes of the geometric layer that have not been
merged yet since they are not connected to the semantic layer are added in the end.
A result of applying this conflation algorithm is shown in Fig. 8.3. Indicated are the
circled hub correspondences between the semantic layer, the geometric layer, and
the resulting fused network of interest.
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Fig. 8.3 Fused network—London
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Fig. 8.4 Networks of interest. The constructed network is shown in black and the ground-truth
network in light gray. (a) Network of interest—London. (b) Network of interest—New York

An overview of the quality of the constructed network of interest can be obtained
by visual inspection, i.e., by comparing the network of interest to the ground-truth
public transportation network and looking for similarities and differences. Fig-
ure 8.4 shows the NOIs of the cities of London (Fig. 8.4a) and New York (Fig. 8.4b).
It is evident that, especially for the case of New York, the constructed NOI lines up
well with the transportation network and identifies major hubs.
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8.2 Eye Tracking Data

Eye tracking is a widely used methodology in many scientific fields, as it reveals
important findings about the human cognitive processes during the observation
of a visual stimulus. In cartographic research, eye tracking is a valuable tool in
experiments related to the study of map reading and cartographic design evaluation.
An important element of eye movement analysis is the visualization of eye tracking
data using gaze traces of multiple subjects in an experiment. The eye tracking
data results in one gaze trace per subject, and the goal is to compute an “average”
common gaze trace for all the subjects. A common gaze trace is useful in the study
of various optical representation concepts, such as the assessment of the effects of
alternative contour line attributes, distractions, abstraction levels, and the study of
visual interfaces and their usability in general. This section describes an approach
based on map construction algorithms to construct a common gaze trace.

8.2.1 Visualizing Eye Tracking Data

Due to the large amount of collected data, simply plotting the set of all gaze
traces, however, will not reveal their common geometry. Therefore, visualization
techniques are usually applied after clustering the eye tracking samples in fixations
and saccades. A typical visualization is the scan path graph, where fixations are
depicted as circles whose radii are related to their duration and saccades are
shown as line segments connecting fixations. Other visualization techniques include
heat maps and scan path graphs that also include additional trace attributes such
as timestamps and the number of fixations [4]. The idea of using polylines to
reconstruct gaze traces in eye tracking research has been discussed before in [5].
This work establishes saccade deviation indicators for automated eye tracking
analysis and compares gaze traces to a benchmark user to determine where and
by how much the participants deviated from the expected scan path. Generally,
the reconstruction of a common gaze trace is useful for the study of cartographic
concepts as it depicts the trace that is actually perceived by multiple subjects.

The following reports on initial work on constructing a common gaze trace from
multiple sequential raw eye tracking data samples [2]. The nodes of the constructed
polyline contain information about the duration of fixations or other statistical
values, which can also be attributed to line segments that represent saccadic
movements. The motivation for the approach discussed in the following stems
from map construction algorithms originally used to reconstruct road maps from
GPS trajectories. Several such methods rely on trajectory clustering. Some of the
algorithms in the literature [7, 12] operate on point data and do not take the temporal
aspect into consideration. Others infer curved paths using k-means clustering of
raw tracking data along with distance measures [6], or transform tracking data to
discretized images using a data density function. These methods work well for
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frequently sampled and redundant tracking data [3], but are sensitive to noise.
Other approaches, relying on computational geometry techniques [1] use highly
accurate tracking data. The final category involves trace-clustering approaches that
derive a connected road network from vehicle trajectories [8] of different movement
types. The present approach [10] applies such a technique to eye tracking data to
automatically extract “hubs” and to construct a polyline that corresponds to the
observed geometry of cartographic lines.

8.2.2 Common Gaze Trace Construction

This common gaze trace construction algorithm takes eye tracking data obtained
from user experiments as input and computes a common gaze trace represented by a
polyline. Figure 8.5 shows the raw eye tracking data from three subjects, the contour
line that the subjects have been asked to follow, and the raw individual gaze traces,
one for each subject.

Fig. 8.5 Eye tracking data from three subjects. The contour line that the subjects have been asked
to follow is shown in blue. The gaze samples are shown in three shades of gray, one for each
subject. The individual gaze traces are shown in red. (a) Eye tracking samples and contour line.
(b) Individual gaze traces and contour line (Color figure online)
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Fig. 8.6 Hubs and constructed gaze trace. The contour line that the subjects have been asked
to follow is shown in blue. The gaze trace samples are shown in gray and the hubs in red. The
constructed common gaze trace is shown in red. (a) Identified trace samples, hubs, and contour
line. (b) Constructed common gaze trace and contour line (Color figure online)

The algorithm proceeds in three steps: (1) identify hubs, (2) identify edges that
connect hubs, and (3) compute the edge geometry based on gaze traces. A hub
represents the spatial fixation that the eye creates near an area of interest. Indicators
for hub identification are the number of different users and the coverage of an
extended area of focus. The algorithm takes the eye tracking data as input and
determines the k-nearest neighbors (k-NN) of each sample. These samples are
filtered by the number of users and clustered using the DBSCAN algorithm. The
centroids of the resulting clusters then constitute the hubs. Figure 8.6a shows
the hubs computed for the data from Fig. 8.5.

Edges between hubs are established by using the individual gaze traces. Since
each hub represents a cluster of samples, a simple edge is created between two hubs
for each individual gaze trace that connects samples in the two hubs. While the
edges connecting hubs at this point are simple line segments, their actual geometry
is then computed based on a set of gaze trace portions that are within a buffer region
of each edge. The geometry of each edge is adjusted using the edge compacting step
of the TraceBundle algorithm (cf. Algorithm 2.3 in Chap. 2). In this specific case,
the algorithm computes a mean edge geometry based on the adjusted samples of the
“bundle” of gaze traces that run between the two hubs. Figure 8.6 shows an example
of the contour line that the subjects have been asked to follow, the extracted hubs
(red crosses), and the constructed common gaze trace. What can be observed is that
the constructed common gaze trace does not match the cartographic data in areas
where no eye tracking samples are available.
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Chapter 9
Resources

Abstract This chapter introduces resources that complement the scientific
discussion of map construction algorithms and provide the interested researcher
with the simplest possible means to start experimenting with map construction
algorithms. The Map Construction Web Portal and its content are briefly discussed
and user guides are provided for several map construction algorithms.

9.1 Map Construction Web Portal

The ambition of this book is to provide the reader with an introduction to map
construction algorithms. Since map construction is a very active research field, this
book can only capture a snapshot of the start-of-the-art in this field. To stand the
test of time, the authors have established the web site http://www.mapconstruction.
org/ as a repository for map construction data and algorithms, and other researchers
are invited to contribute by uploading code and benchmark data supporting their
map construction algorithms. The expectation is that such a central repository will
encourage a culture of sharing and will enable the development of improved map
construction algorithms.

Currently the site (cf. Fig. 9.1) contains a list of map construction papers, source
code, and data. The list of map construction algorithms includes links to the papers,
presentations and also source code. The authors also make the three new benchmark
datasets (Chicago, Berlin, Athens), map construction outputs (visualizations) as well
as the source code for various evaluation measures available.

9.2 User Guides

What follows are some brief notes on how to use the algorithms by Ahmed and
Wenk [1], Biagioni and Eriksson [2], and Karagiorgou and Pfoser [3]. This should
allow the interested reader to repeat the experiments discussed in this book.

© Springer International Publishing Switzerland 2015
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Fig. 9.1 Map construction portal web page

9.2.1 Ahmed and Wenk

The algorithm by Ahmed and Wenk [1] has been implemented in Java, using a
projected coordinate system for the trajectories. The implementation includes partial
map-matching and insertion of new edges, but not the minimum-link averaging of
existing edges. The code constructs an undirected embedded graph as output, and
if altitude information is available for the position samples it is able to produce
non-planar graphs.

Input file format

The algorithm accepts the following input formats.

Format 1: The HAS_ALTITUDE parameter should be set to FALSE for this input
format type. The input trajectories are given as <x y timestamp>.
Example:
482785.9 4216659.1 49039.0
483396.7 4216956.2 49069.0

Format 2: The HAS_ALTITUDE parameter should be set to TRUE for this input
format type. The input trajectories are given as <x y z timestamp>.
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Example:
482785.9 4216659.1 0.0 49039.0
483396.7 4216956.2 0.0 49069.0

Output file format

The constructed map output consists of two files: vertex.txt and edges.txt.

The vertex file format is <vertexid,x,y,z>.
Example:
0, 482785.9, 4216659.1, 0.0
1, 483396.7, 4216956.2, 0.0
2, 483693.2, 4216953.1, 0.0

The edge file format is <edgeid,vertexid1,vertexid2>.
Example:
1, 0, 0
2, 0, 234
3, 1, 127

Running the program

1. Download the code from http://www.mapconstruction.org/.
2. In order to run the code one has to choose the following parameters:

• INPUT_PATH—path to the folder which has the trajectory files.
• OUTPUT_PATH—path where the output will be written to.
• EPS—epsilon in meters.
• HAS_ALTITUDE—true if the trajectory file has altitude information, false

otherwise.
• ALT_EPS—minimum altitude difference in meters to be identified as two

different streets.

3. After choosing the parameters, the program itself can be executed in two ways
using Java.

Option 1: Execute script_to_run.sh directly from a shell. Edit this file
to choose parameters.

Option 2: Import MapConstruction as a project in Eclipse and run it by
passing the parameters as program arguments in the following order:
INPUT_PATH OUTPUT_PATH EPS HAS_ALTITUDE ALT_EPS.

Contacts

For questions and bug reports, please email Mahmuda Ahmed (mahmu-
daahmed@gmail.com) or Carola Wenk (cwenk@tulane.edu).

http://www.mapconstruction.org/
http://dx.doi.org/mahmudaahmed@gmail.com
http://dx.doi.org/cwenk@tulane.edu
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9.2.2 Biagioni and Eriksson

The algorithm by Biagioni and Eriksson [2] has been implemented as a pipeline
in Python. The implementation includes only density estimation, skeleton
computation, and topology refinement, but not the final geometry refinement.
Each step of the pipeline produces a different intermediate map construction result,
with the final output being a directed embedded graph.

Input file format

The code takes latitude/longitude coordinates as input, and the trajectory files
need to be in the format <id,lat,lng,timestamp,previous_id,
next_id>.
Example:
1, 52.514445, 13.389166, 2262324.0, None, 2
2, 52.514168, 13.383055, 2262386.0, 1, 3
3, 52.513615, 13.380001, 2262459.0, 2, 4

Output file format

The output of this algorithm consists of one file, and an edge is represented as a
sequence of latitude longitude pairs. An empty line represents the end of an edge.
The output file is in the following format: <lat,lng>.
Example: 52.5112871499, 13.3867129606
52.5111781395, 13.3867512188

52.5111781395, 13.3867512188
52.5112871499, 13.3867129606

Running the program

The following Python libraries have to be installed in order to run the code for this
algorithm: cython, numpy, scipy, PIL (or Pillow), opencv and rtree.

1. Download the code from http://www.cs.uic.edu/bin/view/Bits/Software.
2. Create density (kde.png) from trips:

python kde.py -p
trips/02_GPX_Tracks_valid_flat_text_james/

3. Create gray-scale skeleton (skeleton.png) from the density:
python skeleton.py kde.png skeleton.png

4. Extract map database (skeleton_maps/skeleton_map_1m.db) from grayscale
skeleton
python graph_extract.py skeleton.png
bounding_boxes/bounding_box_1m.txt
skeleton_maps/skeleton_map_1m.db

http://www.cs.uic.edu/bin/view/Bits/Software
http://dx.doi.org/skeleton.png
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5. Map-match trips onto map database
python graphdb_matcher_run.py -d
skeleton_maps/skeleton_map_1m.db -t
trips/02_GPX_Tracks_valid_flat_text_james/ -o
trips/matched_02_GPX_Tracks_valid_flat_text_james/

6. Prune map database with map-matched trips, producing pruned map database
(skeleton_maps/skeleton_map_1m_mm1.db)
python process_map_matches.py -d
skeleton_maps/skeleton_map_1m.db -t
trips/matched_02_GPX_Tracks_valid_flat_text_james/
-o skeleton_maps/skeleton_map_1m_mm1.db

7. Refine topology of pruned map, producing refined map
(skeleton_maps/skeleton_map_1m_mm1_tr.db)
python refine_topology.py -d
skeleton_maps/skeleton_map_1m_mm1.db -t
skeleton_maps/skeleton_map_1m_mm1_traces.txt -o
skeleton_maps/skeleton_map_1m_mm1_tr.db

8. Map-match trips onto refined map
python graphdb_matcher_run.py -d
skeleton_maps/skeleton_map_1m_mm1_tr.db -t
trips/02_GPX_Tracks_valid_flat_text_james/ -o

trips/matched_02_GPX_Tracks_valid_flat_text_james_mm1_tr/

9. Prune refined map with map-matched trips, producing pruned refined map database
(skeleton_maps/skeleton_map_1m_mm2.db)
python process_map_matches.py -d
skeleton_maps/skeleton_map_1m_mm1_tr.db -t
trips/matched_02_GPX_Tracks_valid_flat_text_james_mm1_tr/

-o skeleton_maps/skeleton_map_1m_mm2.db

10. Convert pruned refined map database to text file (final_map.txt)
python streetmap.py graphdb
skeleton_maps/skeleton_map_1m_mm2.db final_map.txt

Contacts

For questions and bug reports, please email James Biagioni (jbiagi1@uic.edu) or
Jakob Eriksson (jakob@uic.edu).

http://dx.doi.org/jbiagi1@uic.edu
http://dx.doi.org/jakob@uic.edu
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9.2.3 Karagiorgou and Pfoser

The algorithm by Karagiorgou and Pfoser [3] has been implemented in Matlab.

Input file format

The code takes projected coordinates as input and the input files need to be in the
following format: <x y timestamp>.
Example:
483389.0 4207889.6 47019.0
483422.3 4207877.3 47049.0

Output file format

The output of this algorithm consists of two files tracebundle_vertices.txt
and tracebundle_edges.txt. The vertex file format is <vertexid,x,y>.
Example:
1, 484682.083645, 4216742.764901
2, 484795.314682, 4216860.778676
3, 484657.964168, 4216610.040074

The edge file format is <edgeid,vertexid1,vertexid2>.
Example:
1, 458, 409, 1
2, 1, 458, 0
3, 3, 8, 0

Running the program

1. Download the code from http://www.mapconstruction.org/.
2. The source code lies in the /source directory.
3. Add the /source and the /libraries directories to the current working

path of MATLAB.
4. Run the intersection_nodes_extraction.m file.
5. Run the tracebundle.m file.

Contacts

For questions and bug reports, please email Sophia Karagiorgou (karagior@imis.
athena-innovation.gr or Dieter Pfoser (dpfoser@gmu.edu).

http://www.mapconstruction.org/
http://dx.doi.org/karagior@imis.athena-innovation.gr
http://dx.doi.org/dpfoser@gmu.edu
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directed Hausdorff distance, 34, 72, 74, 76, 81,

85–89, 96
discrete Fréchet distance, 73, 76, 88, 89, 91–93

E
edge pruning, 49, 51, 52
embedded graph, 3, 9, 10, 15, 33, 35, 47, 48,

51, 52, 71–74, 78, 112, 114

F
Fréchet distance, 9, 10, 33, 35–37, 41–43, 74,

76, 86, 88

G
gaze trace, 106–108
geocoded tweets, 100, 101
geometric graph, 3, 48, 71, 73, 75
geometric layer, 101, 103
geometry refinement, 48, 49, 52, 53, 114
good section, 34, 36, 41–43
GPS, 1, 4, 37, 99, 100
GPS data, see GPS
GPS trace, see GPS trajectory
GPS trajectory, 4, 9, 11, 15, 16, 25, 59, 85, 99,

100, 106
graph sampling-based distance, 72, 77, 81, 85,

93
Gromov-Hausdorff distance, 5, 34
ground-truth, 2, 11, 16, 31, 45, 61, 64–68,

71–78, 80, 86, 88–90, 93–95, 105

H
Hausdorff distance, 72–75, 86
hub, see network hub

I
incremental track insertion, 1, 3, 8–10, 33, 37,

61, 96
intersection linking, 2, 3, 10, 15, 16, 19–24
intersection node, 3, 4, 10–12, 15–22, 24–29,

34, 51–53, 61, 99, 116
intersection region, 44
intersection vertex, see intersection node

K
k-means clustering, 48, 52, 53, 106
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L
local distance signature, 71, 74, 75, 79–81, 96
local homology distance, 72–74, 78–81, 85, 95
local signature, see local distance signature

M
map-matched, see map-matching
map-matching, 1, 4, 8, 9, 33, 38, 48, 51–53, 72,

75, 86, 115
matched portion, 9, 40, 41, 43
metric graph, 5, 8, 34
minimum-link, 9, 39–43, 86, 112

N
network hub, 100–103, 105, 107, 108
network layer, 15, 25, 26, 28, 30, 31, 100, 103
network of interest, 99–101, 103, 105
NOI, see network of interest

O
OpenStreetMap, 1, 4, 31, 37, 45, 57, 59, 61, 71,

72, 85

P
path-based distance, 71–76, 80, 81, 85–87, 89,

96
persistence diagram, 73, 74, 78, 79, 95
persistent homology, 78
POI, see point of interest
point clustering, 1, 3–8, 34, 61, 96
point of interest, 99, 100

R
Reeb graph, 5, 7, 34

S
segmentation, 4, 15, 25, 26, 29, 100, 101
segmented, see segmentation
semantic layer, 100–103
shortest path-based distance, 72, 76, 81, 85, 88,

92, 96
signature, see local distance signature
skeleton, 4, 5, 8, 47, 48, 50, 51, 114

T
topological, 4, 5, 7, 8, 34, 47, 48, 50, 73, 78, 79,

81
topology, see topological
topology refinement, 48–52, 54, 114, 115
trace clustering, 15
TraceBundle, 11
TraceConflation, 25
trajectory, 20
turn cluster, 11, 12, 18, 19, 24, 27
turn model, 18
turn sample, 16–18, 20, 26–29
tweets, see geocoded tweets

U
unmatched portion, 9, 37, 39–41, 43, 44

V
volunteered geographic information, 1
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