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Preface

Distributed sensor networks have been discussed for more than 30 years, but the vision of wireless sen-
sor networks has been brought into reality only by the recent advances in wireless communications and 
electronics, which have enabled the development of low-cost, low-power and multi-functional sensors that 
are small in size and communicate over short distances. Today, cheap, smart sensors, networked through 
wireless links and deployed in large numbers, provide unprecedented opportunities for monitoring and 
controlling homes, cities, and the environment. In addition, networked sensors have a broad spectrum 
of applications in the defence area, generating new capabilities for reconnaissance and surveillance as 
well as other tactical applications. 

Localization (location estimation) capability is essential in most wireless sensor network applications. 
In environmental monitoring applications such as animal habitat monitoring, bush fire surveillance, water 
quality monitoring and precision agriculture, the measurement data are meaningless without an accu-
rate knowledge of the location from where the data are obtained. Moreover, the availability of location 
information may enable a myriad of applications such as inventory management, intrusion detection, 
road traffic monitoring, health monitoring, reconnaissance and surveillance.

Wireless sensor network localization techniques are used to estimate the locations of the sensors 
with unknown positions in a network using the available a priori knowledge of positions of, typically, 
a few specific sensors in the network and inter-sensor measurements such as distance, time difference 
of arrival, angle of arrival and connectivity. Sensor network localization techniques are not just trivial 
extensions of the traditional localization techniques like GPS or radar-based geolocation techniques. 
They involve further challenges in several aspects: (1) a variety of measurements may be used in sensor 
network localization; (2) the environments in which sensor networks are deployed are often complicated, 
involving urban environments, indoor environments and non-line-of-sight conditions; (3) wireless sen-
sors are often small and low-cost sensors with limited computational capabilities; (4) sensor network 
localization techniques are often required to be implemented using available measurements and with 
minimal hardware investment; (5) sensor network localization techniques are often required to be suit-
able for deployment in large scale multi-hop networks; and (6) the choice of sensor network localization 
techniques to be used often involves consideration of the trade-off among cost, size and localization 
accuracy to suit the requirements of a variety of applications. It is these challenges that make localiza-
tion in wireless sensor networks unique and intriguing.

This book is intended to cover the major techniques that have been widely used for wireless sensor 
network localization and capture the most recent developments in the area. It is based on a number of 
stand-alone chapters that together cover the subject matter in a fully comprehensive manner. However, 
despite its focus on localization in wireless sensor networks, many localization techniques introduced 
in the book can be applied in a variety of wireless networks beyond sensor networks. 
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The targeted audience for the book includes professionals who are designers and/or planners for 
wireless localization systems, researchers (academics and graduate students), and those who would like 
to learn about the field. Although the book is not exactly a textbook, the format and flow of information 
have been organized such that it can be used as a textbook for graduate courses and research-oriented 
courses that deal with wireless sensor networks and wireless localization techniques. 

ORGANIZATION

This book consists of 18 chapters. It begins with an introductory chapter that covers the basic principles 
of techniques involved in the design and implementation of wireless sensor network localization systems. 
A focus of the chapter is on explaining how the other chapters are related to each other and how topics 
covered in each chapter fit into the architecture of this book and the big picture of wireless sensor network 
localization. The other chapters are organized into three parts: measurement techniques, localization 
theory, and algorithms, experimental study and applications.

Measurement techniques are of fundamental importance in sensor network localization. It is the type 
of measurements employed and the corresponding precision that fundamentally determine the estima-
tion accuracy of a localization system and the localization algorithm being implemented by this system. 
Measurements also determine the type of algorithm that can be used by a particular localization system. 
The part on Measurement Techniques includes Chapters II-V, which discuss various aspects of measure-
ment techniques used in sensor network localization. Chapter II introduces a common framework for 
analysing the information content of various measurements, which can be used to derive localization 
bounds for integration of any combination of measurements in the network. Chapter III discusses chal-
lenges in time-of-arrival measurement techniques and methods to overcome these challenges. A focus 
of the chapter is on the identification of non-line-of-sight conditions in time-of-arrival measurements 
and the corresponding mitigation techniques. Chapter IV gives a detailed discussion on the impact of 
various factors, that is, noise, clock synchronization, signal bandwidth and multipath, on the accuracy 
of signal propagation time measurements. Chapter V features a thorough discussion on a number of 
practical issues involved in the use of received signal strength (RSS) measurements. In particular, it 
focuses on the device calibration problem and its impact on localization.

Chapters VI-XV give an in-depth discussion of the fundamental theory underpinning sensor network 
localization and various localization approaches. Chapter VI gives a detailed overview of various tools 
in graph theory and combinatorial rigidity, many of which are just recently developed, to characterize 
uniquely localizable networks. A network is said to be uniquely localizable if there is a unique set of loca-
tions consistent with the given data, that is, location information of a few specific sensors and inter-sensor 
measurements. Chapter VII presents a class of computationally efficient sequential algorithms based on 
graph theory for estimating sensor locations using inaccurate distance measurements. Chapter VIII presents 
several centralized and distributed localization algorithms based on multidimensional scaling techniques 
for implementation in regular and irregular networks. Chapters IX-XI feature a thorough discussion on 
theoretical and practical issues involved in the design and implementation of RSS-based localization 
algorithms. Chapter IX focuses on localization in indoor wireless local area network (WLAN) environ-
ments and presents a RSS-based localization system for indoor WLAN environments. The localization 
problem is formulated as a multi-hypothesis testing problem and an algorithm is developed using this 
algorithm to identify in which region the sensor resides. A solid theoretical discussion of the problem 
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is provided, backed by experimental validations. Chapter X first presents an analytical framework for 
ascertaining the attainable accuracy of RSS-based localization techniques. It then summarizes the issues 
that may affect the design and deployment of RSS-based localization systems, including deployment 
ease, management simplicity, adaptability and cost of ownership and maintenance. With this insight, the 
authors present the “LEASE” architecture for localization that allows easy adaptability of localization 
models. Chapter XI surveys and compares several RSS-based localization techniques from two broad 
categories: point-based and area-based. It is demonstrated that there are fundamental limitations for 
indoor localization performance that cannot be transcended without using qualitatively more complex 
models of the indoor environment, for example, modelling every wall, desk or shelf, or without adding 
extra hardware in the sensor node other than those required for communication, e.g., very high frequency 
clocks to measure the time of arrival. Chapter XII presents a machine learning approach to localization. 
The applicability of two learning methods, the classification method and the regression model, to RSS-
based localization is discussed. Chapter XIII presents another paradigm for robust localization based 
on the use of identifying codes, a concept borrowed from the information theory literature with links to 
covering and superimposed codes. The approach is reported to be robust and suitable for implementa-
tion in harsh environments. Chapters XIV and XV consider the evaluation of localization algorithms. 
Chapter XIV introduces a methodological approach to the evaluation of localization algorithms. The 
authors argue that algorithms should be simulated, emulated (on test beds or with empirical data sets) 
and subsequently implemented in hardware, in a realistic WSN deployment environment, as a complete 
test of their performance. Chapter XV looks at evaluation of localization algorithms from a different 
perspective and takes an analytical approach to performance evaluation. In particular, the authors ad-
vocate the use of the Weinstein-Weiss and extended Ziv-Zakai lower bounds for evaluating localization 
error, which overcome the problem in the widely used Cramer-Rao bound that the Cramer-Rao bound 
relies on some idealizing assumptions not necessarily satisfied in real systems.

Chapters XVI, XVII, and XVIII discuss the applications of localization techniques in tracking and 
sensor network routing. Chapter XVI discusses algorithms and solutions for signal processing and filter-
ing for localization and tracking applications. The authors explain some practical issues for engineers 
interested in implementing tracking solutions and their experiences gained from implementation and 
deployment of several such systems. Chapter XVII presents an experimental study on the integration of 
Wi-Fi based wireless mesh networks and Bluetooth technologies for detecting and tracking travelling 
cars and measuring their speeds for road traffic monitoring in intelligent transportation systems. Chap-
ter XVIII discusses an interesting aspect of the geographic routing problem. The authors propose the 
use of virtual coordinates, instead of physical coordinates, of sensors for improved geographic routing 
performance.  This chapter motivates us to think beyond the horizon of localization and invent smarter 
ways to label sensors and measurement data from sensors to facilitate applications that do not rely on 
the knowledge of physical locations of sensors.

Guoqiang Mao
University of Sydney, Australia

Barış	Fidan
National	ICT	Australia,	Australia	&	Australian	National	University,	Australia
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AbsTRAcT

Localization	is	an	important	aspect	in	the	field	of	wireless	sensor	networks	that	has	attracted	significant	
research	interest	recently.	The	interest	in	wireless	sensor	network	localization	is	expected	to	grow	fur-
ther with the advances in the wireless communication techniques and the sensing techniques, and the 
consequent proliferation of wireless sensor network applications. This chapter provides an overview 
of	various	aspects	involved	in	the	design	and	implementation	of	wireless	sensor	network	localization	
systems.	These	can	be	broadly	classified	into	three	categories:	the	measurement	techniques	in	sensor	
network	localization,	sensor	network	localization	theory	and	algorithms,	and	experimental	study	and	
applications	of	sensor	network	localization	techniques.	This	chapter	also	gives	a	brief	introduction	to	
the other chapters in the book with a focus on explaining how these chapters are related to each other 
and	how	topics	covered	in	each	chapter	fit	into	the	architecture	of	this	book	and	the	big	picture	of	wire-
less	sensor	network	localization.	

INTRODUcTION

Distributed sensor networks have been discussed for more than 30 years, but the vision of wireless sensor 
networks (WSNs) has been brought into reality only by the recent advances in wireless communica-
tions and electronics, which have enabled the development of low-cost, low-power and multi-functional 
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sensors that are small in size and communicate over short distances. Today, cheap, smart sensors, net-
worked through wireless links and deployed in large numbers, provide unprecedented opportunities for 
monitoring and controlling homes, cities, and the environment. In addition, networked sensors have a 
broad spectrum of applications in the defence area, generating new capabilities for reconnaissance and 
surveillance as well as other tactical applications (Chong & Kumar, 2003). 

 Localization (location estimation) capability is essential in most WSN applications. In environmental 
monitoring applications such as animal habitat monitoring, bush fire surveillance, water quality moni-
toring and precision agriculture, the measurement data are meaningless without an accurate knowledge 
of the location from where the data are obtained. Moreover, the availability of location information 
may enable a myriad of applications such as inventory management, intrusion detection, road traffic 
monitoring, health monitoring, reconnaissance and surveillance. 

WSN localization techniques are used to estimate the locations of the sensors with initially unknown 
positions in a network using the available a priori knowledge of positions of a few specific sensors in 
the network and inter-sensor measurements such as distance, time difference of arrival, angle of arrival 
and connectivity.  Sensors with the a priori known location information are called anchors and their 
locations can be obtained by using a global positioning system (GPS), or by installing anchors at points 
with known coordinates, etc. In applications requiring a global coordinate system, these anchors will 
determine the location of the sensor network in the global coordinate system. In applications where a 
local coordinate system suffices (e.g., in smart homes, hospitals or for inventory management where 
knowledge like in which room a sensor is located is sufficient), these anchors define the local coordinate 
system to which all other sensors are referred. Because of constraints on the cost and size of sensors, 
energy consumption, implementation environment (e.g., GPS is not accessible in some environments) 
and the deployment of sensors (e.g., sensors may be randomly scattered in the region), most sensors do 
not know their own locations. These sensors with unknown location information are called non-anchor 
nodes and their coordinates need to be estimated using a sensor network localization algorithm. In 
some other applications, e.g., for geographic routing in WSN, where there are no anchor nodes and also 
knowledge of the physical location of a sensor is unnecessary, people are more interested in knowing 
the position of a sensor relative to other sensors. In that case, sensor localization algorithms can be used 
to estimate the relative positions of sensors using inter-sensor measurements. The obtained estimated 
locations are usually a reflected, rotated and translated version of their global coordinates.

In this chapter, we provide an overview of various aspects of WSN localization with a focus on the 
techniques covered in the other chapters of this book. These chapters can be broadly classified into three 
categories: the measurement techniques in sensor network localization, sensor network localization	theory 
and algorithms, and experimental	study	and	applications	of	sensor	network	localization techniques. 

The rest of the chapter is organized as follows. In Section MEASUREMENT TECHNIQUES, mea-
surement techniques in WSN localization and the basic principle of localization using these measurements 
are discussed. These measurements include angle-of-arrival (AOA) measurements, distance related 
measurements and received signal strength (RSS)	profiling	techniques. Distance related measurements 
are further classified into one-way propagation time and roundtrip propagation time measurements, the 
lighthouse approach to distance measurements, RSS-based distance measurements, time-difference-of-
arrival (TDOA) measurements and connectivity measurements. In Section LOCALIZATION THEORY 
AND ALGORITHMS, fundamental theory underpinning WSN localization algorithms and some fun-
damental problems in WSN localization are discussed with a focus on the use of graph theory in WSN 
localization. Later in this section, a set of major localization algorithms are discussed. Section EXPERI-
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MENTAL STUDIES AND APPLICATIONS OF WSN LOCALIZATION discusses implementation 
of WSN localization techniques and their use in a number of areas, e.g., intelligent transportation and 
WSN routing. The aim of each of these three later sections is to provide an overall review of its topic 
and to give brief introduction of the relevant chapters of the book.

MEAsUREMENT TEcHNIQUEs 

WSN localization relies on measurements. There are many factors that affect the choice of the algorithm 
to be used for a specific application and the accuracy of the estimated locations, to name but a few, the 
network architecture, the average node degree (i.e., the average number of neighbours per sensor), the 
geometric shape of the network area and the distribution of sensors in that area, sensor time synchroniza-
tion and the signalling bandwidth among the sensors. However, it is the type of measurements employed 
and the corresponding precision that fundamentally determine the estimation accuracy of a localization 
system and the localization algorithm being implemented by this system. Measurements also determine 
the type of algorithm that can be used by a particular localization system.

In a typical WSN localization system, the available measurements can often be related to the coor-
dinates of sensors using the following generic formula:

( )= +Y h X e 

where Y is the vector of all measurements, X contains the true coordinate vectors of sensors whose loca-
tions are to be estimated and e is the vector of measurement errors. If the distribution of measurement 
errors fe is known, the estimated locations of sensors can be obtained using the maximum likelihood 
approach by minimizing an optimization criterion:

( )( )( )ˆ ˆarg min log ef= −X Y h X  

A particular cost function related to this optimization criterion is the Fisher	Information	Matrix
 ( ) ( )( ) ( )( )( )log logT

e eE f f= ∇ − ∇ −X XJ X Y h X Y h X  

where ( )( )log ef∇ −X Y h X  is the partial derivative of ( )( )log ef −Y h X  with respect to X evaluated 
at X. 

A common technique that has been widely used to evaluate the location accuracy that can be expected 
from measurements is the Cramer-Rao bound. The Cramer-Rao lower bound is given by

( ) ( )( ) ( )1ˆ ˆ ˆ T
Cov E −= − − ≥X X X X X J X  

The Cramer-Rao bound is valid for any unbiased estimator of sensor locations and gives the best 
performance that can be achieved by an unbiased location estimator. Therefore it is a valuable tool for 
analysing the information content of various measurements.  Chapter II - Measurements Used in Wire-
less Sensor Networks Localization features a thorough discussion on this topic. It establishes a common 
framework for analysing the information content of various measurements, which can be used to derive 
localization bounds for integration of any combination of measurements in the network.
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Measurement techniques in WSN localization can be broadly classified into three categories: AOA 
measurements, distance related measurements and RSS	profiling	techniques. Next, we introduce these 
three categories in more detail.

Angle-of-Arrival Measurements 

The AOA measurements are also known as the bearing measurements or the direction of arrival mea-
surements. The AOA measurements can usually be obtained from two categories of techniques: those 
making use of the receiver antenna’s amplitude response and those making use of the receiver antenna’s 
phase response. In addition to the directivity of the antenna (Cheng, 1989), the accuracy of AOA mea-
surements are affected by other environmental factors like shadowing and multipath, and the later effect 
may make the transmitter look like located at a different direction of the receiver.

The first category of AOA measurements is widely known as beamforming and it is based on the 
anisotropy in the reception pattern (Cheng, 1989) of an antenna. The size of the measurement unit can 
be comparatively small with regards to the wavelength of the signals. Figure 1 shows the beam pattern 
of a typical anisotropic antenna. When the beam of the receiver antenna is rotated electronically or me-
chanically, the direction corresponding to the maximum signal strength is taken as the direction of the 
transmitter. The accuracy of the measurements is determined by the sensitivity of the receiver and the 
beam width. Using a rotating beam has the potential problem that the receiver cannot differentiate the 
signal strength variation caused by the varying amplitude of the transmitted signal and the signal strength 
variation caused by the anisotropy in the reception pattern. This problem can be dealt with by using a 
second non-rotating and omnidirectional antenna at the receiver. The impact of varying signal strength 
can be largely removed by normalizing the signal strength received by the rotating anisotropic antenna 
with respect to the signal strength received by the non-rotating omnidirectional antenna. Alternatively, 
one may also use multiple stationary antennas with known, anisotropic antenna patterns to overcome 
the difficulty caused by the varying signal strength problem. Comparing the signal strength received 
from each antenna at the same time, together with the knowledge of their antenna patterns, leads to an 
estimate of the transmitter direction, even when the signal strength changes (Koks, 2005). 

Figure	1.	The	horizontal	antenna	pattern	of	a	typical	anisotropic	antenna	in	polar	coordinates
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The other category of AOA measurement techniques is widely known as phase interferometry and 
it derives the AOA measurements from the measurements of the phase differences in the arrival of a 
wave front (Rappaport, Reed, & Woerner, 1996). A large receiver antenna (relative to the wavelength 
of the transmitter signal) or an antenna array is typically required when using this technique. Figure 2 
shows an antenna array of N elements. The adjacent antennas are separated by a fixed distance d. For a 
transmitter far away from the antenna array, its distance to the kth antenna can be approximated by

0 coskR R kd≈ −          (1)

where R0 is the distance between the transmitter and the 0th antenna and q is the direction of the trans-
mitter viewed from the antenna array. The transmitter signal received by the adjacent antennas will 
have a phase difference of cos2 d  with l being the wavelength of the transmitter signal. Therefore 
the AOA of the transmitter with respect to the antenna array can be derived from the measurements of 
the phase differences. The accuracy of the AOA measurements obtained using this approach is usually 
not affected by high signal-to-noise-ratio (SNR) but this approach may fail in the presence of strong 
co-channel interference and/or multipath signals (Rappaport, Reed, & Woerner, 1996).

The accuracy of AOA measurements is limited by the directivity of the antenna and the measurements 
are further complicated by the presence of shadowing and multipath in the measurement environment. 
A major challenge in AOA measurements is therefore the accurate estimation of AOA in the presence 
of multipath and shadowing. AOA measurements rely on a direct line-of-sight (LOS) path between the 
transmitter and the receiver. A multipath component from the transmitter signal may appear as a signal 
coming from an entirely different direction and consequently causes a very large error in the AOA 
measurement. 

Multipath problems in AOA measurements have been usually addressed using maximum likelihood 
(ML) algorithms (Rappaport, Reed, & Woerner, 1996). Depending on the assumptions being made about 
the statistical characteristics of the transmitter signals, i.e., whether the structure of the transmitter signal 
is known or unknown to the receiver, these ML algorithms can be further classified into deterministic 
(Agee, 1991; Halder, Viberg, & Kailath, 1993; Jian, Halder, Stoica, & Viberg, 1995) and stochastic 
(Biedka, Reed, & Woerner, 1996; Bliss & Forsythe, 2000; Ziskind & Wax, 1988) ML algorithms. 

Yet another class of AOA estimation techniques, which relies on the presence of a multi-antenna array 
that is composed of, say, N antennas at the receiver, is based on the so-called subspace-based algorithms 
(Paulraj, Roy, & Kailath, 1986; Roy & Kailath, 1989; Schmidt, 1986; Tayem & Kwon, 2004). The most 
well known methods in this category are MUSIC	(multiple	signal	classification) and ESPRIT	(estimation	
of signal parameters by rotational invariance techniques) (Paulraj et al., 1986; Roy & Kailath, 1989). 
The measured transmitter signal received at the N antennas of the receiver antenna array is considered 
as a vector in N dimensional space. A correlation matrix is formed utilizing the N signals received at 
the antennas of the receiver antenna array. By using an eigen-decomposition of the correlation matrix, 
the vector space is separated into signal and noise subspaces. Then the MUSIC algorithm searches for 
nulls in the magnitude squared of the projection of the direction vector onto the noise subspace. The 
nulls are a function of angle-of-arrival, from which AOA can be estimated. Other techniques that have 
been developed based on the MUSIC algorithms include Root-MUSIC (Barabell, 1983), a polynomial 
rooting version of MUSIC which improves the resolution capabilities of MUSIC,  WMUSIC (Kaveh 
& Bassias, 1990), a weighted norm version of MUSIC which also gives an extension in the resolution 
capabilities to the original MUSIC. ESPRIT (Paulraj et al., 1986; Roy & Kailath, 1989) is based on the 
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estimation of signal parameters via rotational invariance techniques. It uses two displaced subarrays of 
matched sensor doublets to exploit an underlying rotational invariance among signal subspaces for such 
an array. A comprehensive experimental evaluation of MUSIC, Root-MUSIC, WMUSIC, Min-Norm 
(Kumaresan & Tufts, 1983) and ESPRIT algorithms can be found in (Klukas & Fattouche, 1998). A 
significant number of AOA measurement techniques have been developed which are based on MUSIC 
and ESPRIT, to cite but two, see e.g., (Klukas & Fattouche, 1998; Paulraj et al., 1986). Readers may refer 
to (Schell & Gardner, 1993) for a detailed discussion on AOA measurement techniques. 

Chapter III - Overview of RF Localization Sensing Techniques and TOA-Based Positioning for 
WSNs provides further discussion on AOA measurements using antenna arrays, and gives the Cramer-
Rao lower bound on AOA estimation error. The lower bound is determined by the SNR of the received 
signal from the transmitter, the carrier frequency of the transmitter and the number of antenna elements 
of the antenna array.

In R2, AOA measurements from a minimum of two receivers can be used to estimate the location of 
the transmitter. However in the presence of measurement errors, more than two AOA measurements will 
be needed for accurate location estimate. In the presence of measurement errors, AOA measurements 
from more than two receivers will not intersect at the same point. This is illustrated in Figure 3.

Denote by [ ], T
t t tx y=X  the true coordinate vector of the transmitter whose location is to be estimated 

from AOA measurements [ ]1, , T
N= 

, where N is the total number of receivers. Let [ ], T
i i ix y=X  

be the known coordinate vector of the ith receiver associated with the ith AOA measurement ai. Denote 
by ( ) ( ) ( )1 , ,t t N t=   X X X  the AOA vector of the transmitter located at xt from the receiver 
locations, i.e., ( ) { }  ( 1, , )i t i N∈ X  is related to xt  and xi by

( )tan t i
i t

t i

y y
x x

−
=

−
X          (2)

Figure	2.		An	illustration	of	AOA measurements using an antenna array of N antennas
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In the presence of measurement errors, the measured AOA vector α consists of the true bearing vec-
tor corrupted by noise [ ]1, , T

Ne e= e , which is usually assumed to be additive zero mean Gaussian 
noise with covariance matrix { }1, , Ndiag= S , i.e.,

( )t= +X e          (3)

The transmitter location can then be estimated using an ML estimator as follows:

( ) ( )1ˆ ˆ ˆarg min
T

t t t
−   = − −   X X S X       (4)

When the receivers are identical and much closer to each other than to the transmitter, the variances 
of AOA measurement errors can be considered as equal, i.e., 2 2 2

1 N= = = . The nonlinear op-
timization problem in Equation (4) can be solved by a Newton-Gauss iteration (Gavish & Weiss, 1992; 
Torrieri, 1984), which requires an initial estimate of the transmitter location close to its true location. If 
additional information, such as the measurement errors being small or rough estimates of the distances 
between the transmitter and the receivers, is available a priori, techniques like the Stanfield approach 
(Stanfield, 1947) can be used to simplify the optimization problem in Equation (4) and an analytical 
solution to ˆ

tX  can be obtained directly. We refer the readers to (Gavish & Weiss, 1992; Torrieri, 1984) 
for more detailed discussions on this topic.

Distance Related Measurements 

Measurements that can be classified into the category of distance related measurements include propa-
gation time based measurements, i.e., one-way propagation time measurements, roundtrip propagation 

Figure	3.	 	 In	 the	presence	of	measurement	errors,	AOA measurements from three receivers will not 
intersect at the same point
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time measurements and TDOA measurements; RSS based measurements; and connectivity measure-
ments. Another interesting approach to distance measurements, which does not fall into any of the above 
categories, is the lighthouse approach (Romer, 2003). 

One-Way Propagation Time Measurements

The principle of one-way propagation time measurements is straightforward: measuring the difference 
between the sending time of a signal at the transmitter and the receiving time of the signal at the receiver. 
Given this time difference measurement and the propagation speed of the signal in the media, the dis-
tance between the transmitter and the receiver can be obtained. Time delay measurement is a relatively 
mature field. The most widely used method for obtaining time delay measurement is the generalized	
cross-correlation method (Carter, 1981, 1993; Knapp & Carter, 1976).

A major challenge in the implementation of one-way propagation time measurements is that it requires 
the local time at the transmitter and the local time at the receiver to be accurately synchronized. Any 
difference between the two local times will become the bias in the one-way propagation measurement. 
At the speed of light, a very small synchronization error of 1ns will translate into a distance measurement 
error of 0.3m. The accurate synchronization requirement may add to the cost of sensors, by demanding 
a highly accurate clock, or increase the complexity of the sensor network, by demanding a sophisticated 
synchronization algorithm. This disadvantage makes one-way propagation time measurements a less 
attractive option in WSNs.

In addition to using an accurate clock for each sensor or using a sophisticated synchronization algo-
rithm, an interesting approach has been proposed in the literature which overcomes the synchronization 
problem (Priyantha, Chakraborty, & Balakrishnan, 2000) based on the observation that the speed of sound 
in the air is much smaller than the speed of light or radio-frequency (RF) signal in the air. A combina-
tion of RF and ultrasound hardware is used in the technique. On each transmission, a transmitter sends 
an RF signal and an ultrasonic pulse at the same time. The RF signal will arrive at the receiver earlier 
than the ultrasonic pulse. When the receiver receives the RF signal, it turns on its ultrasonic receiver 
and listens for the ultrasonic pulse. The time difference between the receipt of the RF signal and the 
receipt of the ultrasonic signal is used as an estimate of the one-way acoustic propagation time. This 
method gives fairly accurate distance estimate at the cost of additional hardware and complexity of the 
system because ultrasonic reception suffers from severe multipath effects caused by reflections from 
walls and other objects. This method is referred to as time-difference-of-arrival (TDOA) measurement, 
i.e., measurement of the difference between the arrival times of RF signal and ultrasonic signal, in some 
papers as well as some chapters in this book. However it should be noted that it is different from the 
TDOA measurements discussed later in this chapter and in most papers on geolocation.

Roundtrip Propagation Time Measurements

Roundtrip propagation time measurements measure the difference between the time when a signal is 
sent by a sensor and the time when the signal returned by a second sensor comes back to the original 
sensor. Since the same local clock is used to compute the roundtrip propagation time, there is no syn-
chronization problem. The major error source in roundtrip propagation time measurements is the delay 
required for handling the signal in the second sensor. This internal delay is either known via a priori 
calibration, or measured and sent to the first sensor to be subtracted. A technique that can be used to 
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overcome the above internal delay problem involves the cooperation of the two sensors in the measure-
ments. First sensor A sends a signal to sensor B at sensor A’s local time tA1, the signal arrives at sensor 
B at sensor B’s local time tB1. After some delay, sensor B sends a signal to sensor A at sensor B’s local 
time tB2, together with the time difference 2 1B Bt t− . The signal arrives at sensor A at sensor A’s local 
time tA2. Then sensor A is able to compute the round-trip-time using ( ) ( )2 1 2 1A A B Bt t t t− − − . Because 
the computation only needs the difference between two local time measurements at sensor A and the 
difference between two local time measurements at sensor B, no synchronization problem exists. The 
internal delay in the second sensor B is also removed in the round-trip time measurements. A detailed 
discussion on circuitry design for roundtrip propagation time measurements can be found in (McCrady, 
Doyle, Forstrom, Dempsey, & Martorana, 2000).

In addition to the synchronization error, the accuracy of both one-way and roundtrip propagation 
time measurements is affected by noise, signal bandwidth, non-line-of-sight (NLOS) and multipath. 
Recently, ultra-wide band (UWB) signals have started to be used for accurate propagation time mea-
surements (Gezici et al., 2005; Lee & Scholtz, 2002). A UWB signal is a signal whose bandwidth to 
centre frequency ratio is larger than 0.2 or a signal with a total bandwidth of more than 500 MHz. In 
principle, UWB can achieve higher accuracy because its bandwidth is very large and therefore its pulse 
has a very short duration. This feature makes fine time resolution of UWB signals and easy separation 
of multipath signals possible. 

Chapter III - Overview of RF Localization Sensing Techniques and TOA-Based Positioning for 
WSNs first discusses time of arrival (TOA) measurement techniques and challenges in the measure-
ments. The chapter then focuses on the identification of NLOS conditions in TOA measurements and 
techniques that can be used to mitigate the performance impact of NLOS conditions.

Chapter IV - RF Ranging Methods and Performance Limits for Sensor Localization gives a detailed 
discussion on the impacts of various factors, including noise, clock synchronization, signal bandwidth 
and multipath, on the accuracy of propagation time measurements. The chapter also features a discus-
sion on the characteristics of some deployed systems.

In R2, measured distances from a non-anchor node to three non-collinear anchors determine three 
circles whose centres are at the three anchors and radii are the associated measured distances respectively. 
When there is no measurement error, the three circles intersect at a single point which is the location 
of the non-anchor node. In the presence of measurement errors, the three circles do not intersect at a 
single point. A large number of approaches have been developed to estimate the location of the non-
anchor node in such noisy cases. Assuming the measurement errors are additive zero mean Gaussian 
noises, for a non-anchor node at unknown location Xt with noise-contaminated distance measurements 

1, ,
T

Nd d  
 

d =  to N anchors at known locations 1, , NX X , an ML formulation of the location es-
timation problem is given by

( ) ( )1ˆ ˆ ˆarg min
T

t
−   = − −   

 

t tX d X d S d X d       
(5)

where ( ) 1
ˆ ˆ ˆ|| ||, , || ||

T

t t N = − − td X X X X X and S is the covariance matrix of the distance measure-
ment errors. This minimization problem can be solved using ML techniques similar to those discussed 
in the previous section.  

 In real applications the situation is much more complicated. Some challenges that can be encoun-
tered in distance-based localization include: the distance measurement error may be neither additive 
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nor Gaussian noises; the measured distances may be biased; a non-anchor node may have to derive its 
location from the estimated locations (containing errors) of its neighbouring non-anchor nodes instead of 
anchors; if a non-anchor node is a neighbour of a set of nodes which are almost collinear, the non-anchor 
node may not be able to uniquely determine its location estimate; the network topology may be irregular, 
not to mention the challenge of designing a computationally efficient localization algorithm for large 
scale networks. It is these challenges that make distance-based localization problem both challenging 
and intriguing. The other chapters of this book explore various aspects of distance-based localization 
problems and lead readers to establish a solid understanding in both distance-based localization and 
localization using other types of measurements.

Time-Difference-of-Arrival Measurements 

Time-difference-of-arrival (TDOA) measurements measure the difference between the arrival times of 
a transmitter signal at two receivers respectively. In R2, denote the coordinates of the two receivers by 
Xi and Xj, and the coordinates of the transmitter by Xt. The measured TDOA ijt∆  is related to the loca-
tions of the two receivers by

( )1 || || || ||ij i j t i t jt t t
c

∆ = − = − − −X X X X       (6)

where ti  and tj are the arrival times of the transmitter signal at receivers i and j respectively and c is 
the propagation speed of the transmitter signal. Assuming the receiver locations are known and the 
two receivers are perfectly synchronized, Equation (6) defines one branch of a hyperbola on which the 
transmitter must lie. The foci of the hyperbola are at the locations of the receivers i and j. In a system 
of N receivers, there are N−1 linearly independent TDOA measurements, hence N−1 linearly indepen-
dent equations like (6). In R2, TDOA measurements from a minimum of three receivers are required to 
uniquely determine the location of the transmitter. This is illustrated in Figure 4.

The accuracy of TDOA measurements is affected by the synchronization error between receivers 
and multipath. The accuracy and temporal resolution capabilities of TDOA measurements will improve 
when the separation between receivers increases because this increases differences between times of 
arrival. Readers are referred to (C. K. Chen & Gardner, 1992; Rappaport, Reed, & Woerner, 1996; Schell 
& Gardner, 1993) for more detailed discussion.

In the presence of measurement errors and assuming that the errors are in the form of additive zero 
mean Gaussian noise, in a system of N receivers, the TDOA equations can be written compactly in 
matrix form as

∆ ∆t = X + e          (7) 

w h e r e  21 31 1, , , T
Nt t t∆ ∆ ∆ ∆     

t = ,  
1 2 1

1 , ,
T

t t t t Nc
∆ − − − − − −  X = X X X X X X X X  

and  e  = [e 21, . . . ,e N 1]  w ith  e j1 be i ng  the  measu rement  e r ror  of  
1jt∆ .  Def i n i ng 

( ) 1 2 1
1ˆ ˆ ˆ ˆ ˆ, ,

T

Nc
 − − − − − − f X = X X X X X X X X , an ML formulation of the location estima-

tion problem using TDOA measurements is:

( ) ( )1ˆ ˆ ˆarg min
T

t
−   = ∆ − ∆ −   

 X t f X S t f X       (8)



  11

Introduction to Wireless Sensor Network Localization

where S is the covariance matrix of TDOA measurement errors. Equation (8) however is in a very 
complicated form. In order to obtain a reasonably simple estimator, f(X) can be linearized around a 
reference point X0 using Taylor series:

( ) ( ) ( )( )0 0 0≈ + −f X f X f' X X X
       

            (9)

where f'(X0) is the partial derivative of f(X) with respect to X evaluated at X0. A recursive solution to 
the maximum likelihood estimator can then be obtained (Torrieri, 1984):

( ) ( )( ) ( ) ( )( )
1

1 1
, 1 , , , , ,

ˆ ˆ ˆ ˆ ˆ ˆT T

t k t k t k t k t k t k

−
− −

+ = + ∆ −X X f' X S f' X f' X S t f X    (10)

This method obviously relies on a good initial guess of the transmitter location.  Furthermore, the 
method can result in significant location estimation errors in some situations due to geometric delu-
sion of precision (GDOP) effects. GDOP describes situation in which a relatively small measurement 
error can cause a large location estimation error because the transmitter is located on a portion of the 
hyperbola far away from the receivers (Bancroft, 1985; Rappaport, Reed, & Woerner, 1996). There are 
many other approaches presented in the literature on TDOA based location estimation and we refer 
readers to (Abel, 1990; Chan & Ho, 1994; Crippen & Havel, 1988; Dogancay, 2005; B. T. Fang, 1990; 
Smith & Abel, 1987) 

Received Signal Strength Measurements

Received signal strength (RSS) measurements estimate the distances between neighbouring sensors 
from the received signal strength measurements between the two sensors (Bergamo & Mazzini, 2002; 
Elnahrawy, Li, & Martin, 2004; Madigan et al., 2005; Niculescu & Nath, 2003; Patwari et al., 2005). 
Most wireless devices have the capability of measuring the received signal strength.

Figure	4.	Two	intersecting	branches	of	two	hyperbolas	obtained	by	TDOA measurements from three 
receivers uniquely determine the location of the transmitter
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The wireless signal strength received by a sensor from another sensor is a monotonically decreas-
ing function of their distance. This relationship between the received signal strength and distance is 
popularly modelled by the following log-normal model:

( ) ( )0 0 10
0

[ ] [ ] 10 logr p
dP d dBm P d dBm n X
d

 
= − + 

 
     (11)

where ( )0 0 [ ]P d dBm  is a reference power in dB milliwatts at a reference distance d0 from the transmitter, 
np is the path loss exponent that measures the rate at which the received signal strength decreases with 
distance, and Xs is a zero mean Gaussian distributed random variable with standard deviation s and it 
accounts for the random effect caused by shadowing. Both np and s are environment dependent. The path 
loss exponent np is typically assumed to be a constant however some measurement studies suggest the 
parameter is more accurately modelled by a Gaussian random variable or different path loss exponent 
should be used for a receiver in the far-field region of the transmitter or in the near-field region of the 
transmitter. Given the model and model parameters, which are obtained via a priori measurements, the 
inter-sensor distances can be estimated from the RSS measurements.  Localization algorithms can then 
be applied to these distance measurements to obtain estimated locations of sensors. 

Chapter V - Calibration and Measurement of Signal Strength for Sensor Localization features a 
thorough discussion on a number of practical issues involved in the use of RSS measurements for dis-
tance estimation. The chapter focuses on device effects and modelling problems which are important for 
the implementation of RSS-based distance estimation but are not well covered in the literature. These 
include transceiver device manufacturing variations, battery effects on transmit power, nonlinearities 
in the circuit, and path loss model parameter estimation. Measurement methodologies are presented 
to characterize these effects for wireless sensors and suggestions are made to limit impact of these ef-
fects.

Note that in addition to the log-normal model many other models have also been proposed in the 
literature which can better describe the wireless signal propagation characteristic for signals within 
a specific frequency spectrum in a specific environment, for example Longley-Rice model, Durkin’s 
model, Okumuran model, Hata model and wideband PCS microcell model for outdoor environments, 
and Ericsson multiple breakpoint model, attenuation factor model and the combined use of site specific 
propagation models and graphical information system databases for radio signal prediction in indoor 
environments (Rappaport, 2001).   

Yet another interesting technique to estimate the distance between an optical receiver and an optical 
transmitter is the lighthouse approach reported in (Romer, 2003). The lighthouse approach estimates the 
distance between an optical receiver and a transmitter of a parallel rotating optical beam by measuring 
the time duration that the receiver dwells in the beam. A parallel optical beam is a beam whose beam 
width is constant with respect to the distance from the rotational axis of the beam. It is the characteristic 
of the parallel beam that the time the optical receiver dwells in the beam is inversely proportional to the 
distance between the optical receiver and the rotational axis of the beam enables the distance measure-
ments. A major advantage of the lighthouse approach is the optical receiver can be of a very small size 
and low cost, thus making the idea of “smart dust” possible. However the transmitter may be large and 
expensive. The approach also requires a direct LOS between the optical receiver and the transmitter. 



  13

Introduction to Wireless Sensor Network Localization

Connectivity Measurements

Connectivity measurements are possibly the simplest measurements. In connectivity measurements, a 
sensor measures which sensors are in its transmission range. Such measurements can be interpreted as 
binary distance measurements, i.e., either another particular sensor is within the transmission range of 
a given sensor or it is outside the transmission range of that sensor.  

A sensor being in the transmission range of another sensor defines a proximity constraint between 
these two sensors, which can be exploited for localization. In its simplest form, a non-anchor sensor 
being a neighbour of three anchors means the non-anchor sensor is very close to the three anchors and 
many algorithms then use the centroid of the three anchors as the estimated location of the non-anchor 
sensor. In the later section, we shall give a more detailed discussion of connectivity-based localization 
algorithms in large scale networks.

RSS Profiling Measurements 

Above, we have mentioned some techniques to estimate the distances between sensors from RSS 
measurements. Localization algorithms can then be applied to these distance measurements to obtain 
estimated locations of sensors. The implementation of such localization techniques however faces two 
major challenges: first the wireless environments, especially indoor wireless environments, are very 
complicated. It is often difficult to determine the best model for RSS-based distance estimation. Second, 
the determination of model parameters is also a difficult task. Such difficulties can be overcome using 
another category of localization techniques, namely the RSS	profiling-based	localization	techniques 
(Bahl & Padmanabhan, 2000; Krishnan, Krishnakumar, Ju, Mallows, & Gamt, 2004; Prasithsangaree, 
Krishnamurthy, & Chrysanthis, 2002; Ray, Lai, & Paschalidis, 2005; Roos, Myllymaki, & Tirri, 2002), 
which estimate sensor location from RSS measurements directly.

The RSS profiling-based localization techniques works by first constructing a form of map of the 
signal strength behaviour of anchor nodes in the coverage area. The map is obtained either offline by a 
priori measurements or online using sniffing devices (Krishnan et al., 2004) deployed at known loca-
tions. The RSS profiling-based localization techniques have been mainly used for location estimation 
in wireless local area networks (WLANs), but they would appear to be attractive also for WSNs. 

In RSS profiling-based localization systems, in addition to anchor nodes (e.g., access points in WLANs) 
and non-anchor nodes, a large number of sample points, e.g., sniffing devices or a priori chosen locations 
at which the RSS measurements from anchors are to be obtained before the localization of non-anchor 
nodes starts, are distributed throughout the coverage area of the sensor network. At each sample point, 
a vector of signal strengths is obtained, with the kth entry corresponding to the signal strength received 
from the kth  anchor at the sample point. Of course, many entries of the signal strength vector may be 
zero or very small, corresponding to anchor nodes at larger distances (relative to the transmission range) 
from the sample point. The collection of all these vectors provides (by extrapolation in the vicinity of the 
sample points) a RSS map of the whole region. The collection constitutes the RSS map, and it is unique 
with respect to the anchor locations and the environment. The model is stored in a central location. By 
referring to the RSS map, a non-anchor node can estimate its location using the RSS measurements 
from anchors by either choosing the location of the sample point, whose signal strength vector is the 
closest match of that of the non-anchor node, to be its location, or derive its estimated location from the 



14  

Introduction to Wireless Sensor Network Localization

locations of a set of sample points whose signal strength vectors better match that of the non-anchor 
node than other sample points.

In this section, a number of measurement techniques and the basic principles of location estimation 
using these measurements are discussed. Which measurement technique to use for location estimation 
will depend on the requirements of the specific application on localization accuracy, cost and complex-
ity of localization algorithms. Typically, localization algorithms based on AOA and propagation time 
measurements are able to achieve better accuracy than localization algorithms based on RSS measure-
ments. However, that improved accuracy is achieved at the expense of higher equipment cost. Also the 
high nonlinearity and complexity in the observation model, i.e., the equation relating the coordinates 
of sensors to measurements, of AOA and TDOA measurements make them a less attractive option than 
distance measurements for location estimation in large scale multi-hop wireless sensor networks.

sENsOR NETWORK LOcALIZATION THEORY AND ALGORITHMs

In this section, we give a brief introduction to some fundamental theories in sensor network localiza-
tion and major sensor network localization algorithms as well as introducing the relevant chapters of 
the book.

Graph Theory and its Applications in sensor Network Localization

The task of WSN localization algorithms is to estimate the locations of sensors with initially unknown 
location information, i.e., the non-anchors, by using a priori knowledge of the locations of a few sen-
sors, i.e., anchors, and inter-sensor measurements such as distance, AOA, TDOA and connectivity. A 
fundamental question in sensor network localization is whether a solution to the localization problem 
is unique. The network, with the given set of anchors, non-anchors and inter-sensor measurements, is 
said to be uniquely	localizable if there is a unique set of locations consistent with the given data. Graph 
theory has been found to be particularly useful for solving the above problem of unique localization. 
Graph theory also forms the basis of many localization algorithms, especially for the category of distance-
based localization problem, noting that it has been used to study the localization problem using other 
types of measurements, e.g., TDOA and AOA measurements, as well.

The task of distance-based localization problem is to estimate the locations of non-anchors using the 
known locations of anchors and inter-sensor distance measurements. A graphical model for distance-
based localization problem can be built by representing each sensor in the network uniquely with a 
vertex and vice versa. An edge exists between two vertices if the distance between the corresponding 
sensors is known. Note that there is always an edge between two vertices representing two anchors 
as the distance between two anchors can be obtained from their known locations. The obtained graph 
G(V,E) with V  being the set of vertices and E being the set of edges is called the underlying graph of 
the sensor network. Details of graph theoretical representations of WSNs and their use in localization 
can be found in Chapter 6- Graph Theoretic Techniques in the Analysis of Uniquely Localizable 
Sensor Networks.

In rigid graph theory, a mapping : dp V → ℜ  ( { }3,2∈d ), assigning a location in Rd to each vertex 
of graph G = (V, E), is called a d−dimensional representation of G. With this definition the localization 
problem can be seen as finding the correct representation of the underlying graph of the WSN that 
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is consistent with the given data. Given a graph G = (V, E) and a representation p of it, the pair (G, 
p) is called a framework. A particular graph property associated with unique localizability of sensor 
networks is global rigidity: A framework (G, p) is called globally rigid if every framework (G, p1) 
satisfying 1 1( ) ( ) ( ) ( )p i p j p i p j− = −  for any vertex pair i, j ∈ V, which are connected by an edge 
in E, also satisfies the same equality for any other vertex pairs that are not connected by an edge. A 
relaxed form of global rigidity is rigidity: A framework (G, p) is rigid if there exists a sufficiently small 
positive constant ep such that every framework (G, p1) satisfying 

1( ) ( ) pp i p i− <  for all i ∈ V and 
1 1( ) ( ) ( ) ( )p i p j p i p j− = −  for any vertex pair i, j ∈ V, which are connected by an edge in E, satisfies 
1 1( ) ( ) ( ) ( )p i p j p i p j− = −  for any other vertex pairs that are not connected by a single edge as well. 

If the framework (G, p) formed by the underlying graph G of a WSN and its correct representation p is 
not rigid, there are an infinite number of solutions to the localization problem that are consistent with 
the given data.

If the framework (G, p) formed by the underlying graph G of a WSN and its correct representation 
p is globally rigid, the sensor network with at least three non-collinear anchors in R2 or four non-
coplanar anchors in R3 is uniquely localizable. If a framework (G, p) is rigid but not globally rigid, there 
exist two types of discontinuous deformations that can prevent finding a unique representation of G 
consistent with the information of anchor node positions and distance measurements: flip	ambiguities 
and discontinuous	flex	ambiguities. In flip	ambiguities in Rd (d ∈ {2,3}), a vertex (sensor) v has a set of 
neighbours which span a (d−1)-dimensional subspace, e.g., v has only d neighbours, in R2 v has a set of 
neighbours located on a line, or in R3 v has a set of neighbours located on a plane, which leads to the 
possibility of the neighbours forming a mirror through which v can be reflected. In discontinuous	flex	
ambiguities in Rd (d ∈ {2,3}), the removal of an edge or a set of edges allows the remaining part of the 
graph to be flexed to a different realization (which cannot be obtained from the original realization by 
translation, rotation or reflection) such that the removed edge can be reinserted with the same length. 
Figure 5 shows an example of flip ambiguity and discontinuous flex ambiguity in R2 . Note that in 
Figure 5.(a) and 5.(b), both the figure on the left side and the figure on the right side satisfy the same 
set of distance constraints but the locations of vertices are different, which means the associated sensor 
network is not uniquely localizable. 

Using graph theory, we can identify necessary conditions as well as sufficient conditions that need 
to be satisfied by the underlying graph of a sensor network in order for the network to be uniquely lo-
calizable. Chapter VI gives a detailed overview of this topic, providing various results in graph theory 
to characterize uniquely localizable networks in two dimensions. Conditions required for the sensor 
network to be uniquely localizable are discussed and techniques to test the unique localizability are 
introduced. While the focus of the chapter is 2-dimensional distance-based localization, the authors also 
consider sensor networks with mixed distance and AOA measurements as well as unique localizability 
of 3-dimensional networks.

Note that the unique localizability conditions mentioned above are independent of the specific local-
ization algorithm being used. Furthermore, the above discussion has been carried out without consid-
ering measurement errors. The problem becomes more complicated when the effects of measurement 
errors are considered. For example, it has become a common knowledge that in R2  in the presence of 
measurement errors, a non-anchor node connected to a set of two or more anchors which are exactly or 
almost collinear, the non-anchor node is likely to have flip	ambiguity problem. However we are yet to 
establish an accurate knowledge in the area, i.e., given the measurement error distribution and anchor 
locations, how to compute the probability that the non-anchor’s location estimation be contaminated by 
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flip ambiguity error? The problem is further complicated in a large scale network where the non-anchor 
node may have to rely on the inaccurate location estimates of its non-anchor neighbours to estimate its 
own location. Therefore the analysis on unique localizability can be used to label those sensors with 
large errors in their location estimates so that those errors do not propagate to the rest of the network. 

It is worth noting that flip ambiguity and discontinuous flex ambiguity problems do not necessarily 
occur in every sensor network. The probability of occurrence of ambiguities is generally smaller in dense 
networks where the average number of neighbours per node is high. However when such ambiguities 
occur, they generally cause a large error in the location estimate of a non-anchor node. This error may 
further propagate to other non-anchor nodes when they use the estimated location of the non-anchor node 
to determine their own locations. Therefore the performance impact of flip ambiguity and discontinuous 
ambiguity on sensor network localization may be significant. This has been validated by a number of 
analytical and simulation studies including some of our own work.

Graph theory has also been used to characterize large scale networks in which the design of an ef-
ficient localization algorithm is possible. The computational complexity of localization algorithms is an 
important consideration in the localization of large scale networks and the computational complexity of 
distance-based localization algorithms in large scale networks has been investigated in the literature (As-
pnes et al., 2006; Eren et al., 2004; Saxe, 1979). In general, the computational complexity of localization 
algorithms is exponential in the number of sensor nodes (Saxe, 1979). Nevertheless, there is a category of 
networks where the design of efficient localization algorithms is possible. Specifically, if the underlying 
graph of the network is a bilateration, trilateration or quadrilateration graph, it is possible to design 
localization algorithms whose computational complexity is polynomial (and on occasions linear) in the 
number of sensor nodes (Aspnes et al., 2006; Cao, Anderson, & Morse, 2005; Eren et al., 2004).

Figure	5.	An	illustration	of	the	flip	and	discontinuous	flex	ambiguity	in	2D:	(a)	Flip	ambiguity:	The	
neighbours of vertex v4, v1, v2 and v3 are on the same line. Vertex v4	can	be	reflected	across	the	line	
on which vertices v1, v2 and v3 locate to a new position without violating the distance constraints. (b) 
Discontinuous	flex	ambiguity:	Removing	the	edge	between	v3 and v4, the vertices v1, v2, v3 and v4	can be 
moved continuously to other positions while maintaining the length of the edges between them. When 
these vertices move to positions such that the edge between v3 and v4 can be reinserted with the same 
length, we obtain a new graph. Both the graph on the left side and the graph on the right side satisfy 
the same set of distance constraints.
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A graph G = (V,E) is called a bilateration graph if there exists an ordering of vertices 1 2, , , Vv v v , 
termed bilaterative ordering, such that (i) the edges (v1, v2), (v1, v3), (v2, v3) are all in E, (ii) each vertex 
vi for 1,,5,4 −= Vi 

 is connected to (at least) two of the vertices in 121 ,,, −ivvv  , and (iii) the vertex 
Vv  is connected to (at least) three of the vertices 121 ,,, −Vvvv  . The symbol V  denotes the cardinality 

of set V. If the underlying graph of a network is a bilateration graph, an efficient sequential localization 
algorithm can be designed for the network (J. Fang, Cao, Morse, & Anderson, 2006). The concepts of 
trilateration graphs and quadrilateration graphs are defined analogously. Note that trilateration and 
quadrilateration graphs are necessarily bilateration graphs as well. We refer readers to the above refer-
ence and Chapter VII - Sequential Localization with Inaccurate Measurements for more detailed 
discussions on this topic. Chapter VII further presents an efficient sequential algorithm for estimating 
sensor locations using inaccurate distance measurements. The algorithm is based on the above graph 
theory concepts; the authors have further developed existing work by demonstrating that it is possible 
to design a computationally efficient sequential localization algorithm for networks whose underlying 
graphs are not necessarily bilateration graphs.

sensor Network Localization Algorithms

Centralized vs. Distributed Localization

Based on the approach of processing the individual inter-sensor measurement data, localization algo-
rithms can be broadly classified into two categories: centralized	algorithms and distributed algorithms. 
In centralized algorithms, all the individual inter-sensor measurements are sent to a single central pro-
cessor where the estimated locations of non-anchor nodes are computed; while in distributed algorithms 
each node (or a group of nodes in close proximity to each other) estimate its (their) own location(s) 
using inter-sensor measurements and the location information collected from its (their) neighbours. 
Major approaches for designing centralized algorithms include multidimensional scaling (MDS), lin-
ear programming and stochastic	optimization approaches. Some well-known distributed localization 
algorithms include the “DV-hop” and “DV-distance” algorithms (Niculescu & Nath, 2001), a number 
of other algorithms based on the above two algorithms (Chris Savarese & Rabaey, 2002; C. Savarese, 
Rabaey, & Beutel, 2001), and the nonparametric belief propagation algorithms (Ihler, Fisher, Moses, & 
Willsky, 2005) and its variants (Fox, Hightower, Lin, Schulz, & Borriello, 2003). The “sweep” category 
of sequential algorithms reported in Chapter VII also represents a promising direction in the develop-
ment of distributed algorithms, which may offer an optimum balance between localization accuracy 
and computational efficiency in large scale sensor networks.

Centralized and distributed distance-based localization algorithms can be compared from several 
perspectives, including location estimation accuracy, implementation and computational complexities, 
and energy consumption. 

Distributed localization algorithms are generally considered to be more computationally efficient and 
easier to implement in large scale networks. However in certain networks where centralized information 
architecture already exists, such as road traffic monitoring and control, environmental monitoring, health 
monitoring, and precision agriculture monitoring networks, the measurement data of all the nodes in 
the network need to be collected and sent to a central processor unit. In such a network the individual 
sensors may be of limited computational capability; it is convenient to piggyback localization related 
measurements to other measurement data and send them together to the central processing unit. There-



18  

Introduction to Wireless Sensor Network Localization

fore a centralized localization algorithm appears to be a natural choice for such networks with existing 
centralized information architecture.

In terms of location estimation accuracy, centralized algorithms are likely to provide more accurate 
location estimates than distributed algorithms. One of the reasons is the availability of global informa-
tion in centralized algorithms. However centralized algorithms suffer from the scalability problem and 
generally are not feasible to be implemented for large scale sensor networks. Other disadvantages of 
centralized algorithms, as compared to distributed algorithms, are their requirement of higher compu-
tational complexity and lower reliability due to accumulated information inaccuracies/losses involved 
in multihop transmission from individual sensors to the centralized processor over a WSN.

On the other hand, distributed algorithms are more difficult to design because of the potentially 
complicated relationship between local behaviour and global behaviour. That is, algorithms that are lo-
cally optimal may not perform well globally. Optimal distribution of the computation of a centralized 
algorithm in a distributed implementation in general remains an open research problem. Error propaga-
tion is another potential problem in distributed algorithms. Moreover, distributed algorithms generally 
require multiple iterations to arrive at a stable solution. This may cause the localization process to take 
longer time than the acceptable in some cases. 

From the perspective of energy consumption, the individual amounts of energy required for each 
type of operation in centralized and distributed localization algorithms in the specific hardware and the 
transmission range setting needs to be considered. Depending on the setting, the energy required for 
transmitting a single bit could be used to execute 1,000 to 2,000 instructions (Chen, Yao, & Hudson, 
2002). Centralized algorithms in large networks require each sensor’s measurements to be sent over 
multiple hops to a central processor, while distributed algorithms require only local information exchange 
between neighbouring nodes. Nevertheless, in distributed algorithms, many such local exchanges may 
be required, depending on the number of iterations needed to arrive at a stable solution. A comparison of 
the communication energy efficiencies of centralized and distributed algorithms is provided in (Rabbat 
& Nowak, 2004), where it is concluded that in general, if in a given sensor network and distributed algo-
rithm, the average number of hops to the central processor exceeds the necessary number of iterations, 
then the distributed algorithm will be more energy-efficient than a typical centralized algorithm.

Finally it is worth noting that the separation between distributed localization algorithms and central-
ized localization algorithms can sometimes be blurred. Any algorithm for distributed localization can 
always be applied to centralized problems. Distributed versions of centralized algorithms can also be 
designed for certain applications. A typical way of designing distributed versions of centralized algo-
rithms involves dividing the entire network into several overlapping regions; implementing centralized 
localization algorithms in each region; then stitching these local maps for each region together by using 
common nodes between overlapping regions to form a global map (Capkun, Hamdi, & Hubaux, 2001; Ji 
& Zha, 2004; Oh-Heum & Ha-Joo, 2008). Such techniques may offer an optimum tradeoff between the 
advantages and disadvantages of centralized and distributed algorithms discussed above. A particular 
example of such techniques is multidimensional scaling-based localization, which is discussed further 
in the next subsection. 

In the rest of this section, we give a brief introduction to each major localization technique.

Multidimensional Scaling Algorithms 

The Multidimensional Scaling (MDS) technique can find its basis in graph theory and was originally 
used in psychometrics and psychophysics. It is often used as part of exploratory data analysis or infor-
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mation visualization technique that displays the structure of distance-like data as a geometric picture. 
The typical goal of MDS is to create a configuration of points in one, two, or three dimensions, whose 
inter-point distances are “close” to the known (and possibly inaccurate) inter-point distances. Depending 
on the criteria used to define “close”, many variants of the basic MDS exist. MDS has been applied in 
many fields, such as machine learning and computational chemistry. When used for localization, MDS 
utilizes connectivity or distance information between sensors for location estimation.

Typical procedure of MDS algorithms involves first computing the shortest paths (i.e., the least 
number of hops) between all pairs of nodes. If distances between all pairs of sensors along the shortest 
path connecting two nodes are known, the distance between the two nodes along the shortest path can 
be computed. This information is used to construct a distance matrix for MDS, where the entry (i, j) 
represents the distance along the shortest path between nodes i and j. If only connectivity information 
is available, the entry (i, j)  then represents the least number of hops between nodes i and j. Then MDS 
is applied to the distance matrix and an approximate value of the relative coordinates of each node is 
obtained. Finally, the relative coordinates are transformed to the absolute coordinates by aligning the 
estimated relative coordinates of anchors with their absolute coordinates. The location estimates obtained 
using earlier steps can be refined using a least-squares (LS) minimization. 

The basic form of MDS is a centralized localization technique and may only be used in a regular 
network where the distance between two nodes along the shortest path is close to their Euclidean distance. 
However several variants of the basic MDS algorithm are proposed which allow the implementation of 
MDS technique in distributed environment and in irregular networks. 

Chapter VIII - MDS-Based Localization provides a more detailed discussion on MDS localization 
techniques and presents several network localization methods based on these techniques. The chapter 
first introduces the basics of MDS techniques, and then four algorithms based on MDS:  MDS-MAP(C),	
MDS-MAP(P),	MDS-Hybrid and RangeQ-MDS. MDS-MAP(C) is a centralized algorithm. MDS-MAP(P) 
is a variant of MDS-MAP(C) for implementation in distributed environment. It has better performance 
than MDS-MAP(C) in irregular networks. MDS-Hybrid considers relative location estimation in an 
environment without anchors. RangeQ-MDS uses a quantized RSS-based distance estimation technique 
to achieve more accurate localization than algorithms using binary measurements of connectivity only 
(i.e., two nodes are either connected or not connected).

Linear Programming Based Localization Techniques 

Many distance-based or connectivity-based localization problems can be formulated as a convex opti-
mization problem and solved using linear and semidefinite programming (SDP) techniques (Doherty, 
Pister, & El Ghaoui, 2001). Semidefinite programs are a generalization of the linear programs and have 
the following form
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where [ ]1 2, , , T
NX = X X X  and [ ], T

k k kx y=X  represents the coordinate vector of node k. The quanti-
ties A, B, c and Fk are all known. The inequality in (12) is known as a linear matrix inequality (LMI). 

If only connectivity information is available, a connection between nodes i and j can be represented 
by a “radial constraint” on the node locations: i j R− ≤X X   with R being the transmission range of 
wireless sensors. This constraint is a convex constraint and can be transformed into an LMI to be used 
in (12). A solution to the coordinates of the non-anchor nodes satisfying the “radial constraints” can 
be obtained by leaving the objective function cTX blank and solving the problem. Obviously there may 
be many possible coordinates of the non-anchor nodes satisfying the constraints, i.e., the solution may 
not be unique. If we set the entry of c corresponding to xk (or yk ) to be 1 (or -1) and all other elements 
of c to be zero, the problem becomes a constrained maximization (or minimization) problem, which 
gives respectively the maximum (or minimum) value of xk  (or yk) satisfying the constraints in (12).  A 
rectangular box bounding the location estimates of the non-anchor node k can be obtained from these 
lower and upper bound on xk  and yk. The detailed connectivity-based localization algorithm is reported 
in (Doherty et al., 2001).

The above SDP formulation of the connectivity-based localization problem can be readily extended 
to incorporate distance measurements (Doherty et al., 2001). In (Biswas & Ye, 2004) the distance-based 
localization problem is used in a quadratic form and solved using SDP. In (Liang, Wang, & Ye, 2004) 
gradient search is used to fine tune the initial estimated locations obtained using SDP and improves the 
accuracy of localization.

Note that different linear programming techniques have been used in various chapters of this 
book.

Stochastic Optimization Based Localization Techniques

The stochastic optimization approach provides an alternative formulation and solution of the distance-based 
localization problem using combinatorial optimization notions and tools. One of the most widely used 
tools in this approach is the simulated annealing (SA) technique (Kannan, Mao, & Vucetic, 2005). 

SA is a technique for combinatorial optimization problems. The SA algorithm exploits an analogy 
between the way in which a metal cools and freezes into a minimum energy crystalline structure (the 
annealing process) and the search for a minimum in a more general system. It is a generalization of 
the Monte Carlo method. It transforms a poor, unordered solution into a highly optimized, desirable 
solution. This principle of SA technique with an analogous set of “controlled cooling” operations was 
used in the combinatorial optimization problems, such as minimizing functions of multiple variables, to 
obtain a highly optimized, desirable solution (Kirkpatrick, Gelatt, & Vecchi, 1983). We refer the readers 
to (Kannan et al., 2005; Kannan, Mao, & Vucetic, 2006) for a more detailed description of the design 
of a SA algorithm for distance-based localization problems.

A properly designed SA has the advantage that it is robust against being trapped into a false local 
minimum. However SA is also well-known to be very computationally demanding. 

The DV-Hop and DV-Distance Localization Algorithms

The DV(distance vector)-hop algorithm (Niculescu & Nath, 2001) utilizes the connectivity measure-
ments to estimate locations of non-anchor nodes. The algorithm starts with all anchors broadcasting 
their locations to other nodes in the network. The messages are propagated hop-by-hop and there is a 
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hop-count in the message. Each node maintains an anchor information table and counts the least num-
ber of hops that it is away from an anchor. When an anchor receives a message from another anchor, it 
estimates the average distance of one hop using the locations of both anchors and the hop-count, and 
sends it back to the network as a correction factor. When receiving the correction factor, a non-anchor 
node is able to estimate its distance to anchors and performs trilateration to estimate its location if its 
distances to at least three anchors are available. 

The DV-distance algorithm is similar to the DV-hop algorithm except that it includes measured 
distances into the localization process. The main idea in the DV-distance algorithm is the propagation 
of measured distance among neighbouring nodes instead of hop count.

Since the proposal of the DV-hop and DV-distance algorithms, many other algorithms based on es-
sentially the same principle were proposed which aims to improve the performance of the basic DV-hop 
and DV-distance algorithms under various conditions, e.g., in irregular networks or when there are ad-
ditional information such as node distribution available. We refer interested readers to (Chris Savarese 
& Rabaey, 2002; Shang, Ruml, Zhang, & Fromherz, 2004) for more detailed discussion.

Statistical Location Estimation Techniques

In the early part of this chapter, we have mentioned in a number of places the use of the ML estimator 
for localization under various types of measurements. Denote the coordinator vectors of non-anchor 
nodes by X and the vector of all inter-sensor measurements by Z. Denote by f(Z) the distribution of 
Z so that ( )|f Z X  is the conditional probability of Z when the non-anchor nodes are at X. The ML 
estimator is given by

( )ˆ
ˆ ˆarg max |f=

X
X Z X         (13)

When the inter-sensor measurements can be modelled by the sum of their respective true values 
and additive Gaussian noises with zero mean and the same variance, the ML estimator is equivalent 
to an LS estimator. When the variances of additive Gaussian noises are different, the ML estimator is 
equivalent to a weighted LS estimator. All three estimators, i.e., the ML estimator, the LS estimator 
and the weighted LS estimator, have been widely used in both centralized and distributed localization 
algorithms.

Occasionally we may have prior knowledge on the possible locations of non-anchor nodes. In that 
case, the maximum	a	posteriori	(MAP)	estimator can be used, which utilizes the prior knowledge on 
non-anchor nodes’ locations to obtain a more accurate estimate. Denote the a priori known distribution 
of the non-anchor nodes by g(X). The MAP estimator is given in the following:

( ) ( )ˆ
ˆ ˆ ˆarg max |f g=

X
X Z X X         (14)

Note that the MAP estimator of X coincides with the ML estimator when the non-anchor nodes 
have equal probability to be distributed anywhere in the sensor network area, i.e., g(X) is a constant 
function.

 The above estimators have often been used to obtain a point estimate of the non-anchors’ locations. 
In some applications, we are interested in knowing in which region a non-anchor node is located. Such 
knowledge is often useful in asset management for example. Both the ML estimator and the MAP 
estimator can be altered to generate such location information. Assume that the entire network area is 
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divided into M regions and each region is labelled by ,1kL k M≤ ≤ . Denote by g(Lk)  the a priori known 
probability that a non-anchor node is located in Lk . Denote by ( )| kf LZ  the conditional probability 
of Z when the non-anchors node is in Lk . The region in which the non-anchor node is located given the 
measurements Z can be estimated using the MAP estimator as:

( ) ( )
,1

arg max |
i

k i iL i M
L f L g L

≤ ≤
= Z        (15)

An ML estimate of the region in which the non-anchor is located can be obtained analogously. Chap-
ter IX - Statistical Location Detection provides more detailed discussions on the topic and presents a 
localization algorithm in indoor WLAN environment based on the same principle as that in Equation 
(15). 

A recent statistical approach in distributed sensor network localization is the use of Bayesian	filter-
based	localization techniques (Kwok, Fox, & Meila, 2004). Different from other localization techniques 
whose outputs are deterministic estimates of non-anchors’ locations, Bayesian filters probabilistically 
estimate sensors’ locations from noisy measurements. The outputs of Bayesian filters are probability 
distributions of the estimated locations conditioned on all available sensor data. Such probability dis-
tribution is known as belief representing uncertainty in estimated locations. Bayesian filter-based local-
ization techniques are often implemented as iterative algorithms which iteratively update and improve 
such beliefs as localization process proceeds and more accurate knowledge about the neighbouring 
sensors become available. This process is known as belief propagation. In (Ihler et al., 2005), based 
on the Bayesian filters, the sensor network localization problem is formulated as an inference problem 
on a graphical model and a variant of belief	propagation	(BP) techniques, the so-called nonparametric 
belief	propagation	(NBP) algorithm, is applied to obtain an approximate solution to the sensor locations. 
The NBP idea is implemented as an iterative local message exchange algorithm, in each step of which 
each sensor node quantifies its “belief” about its location estimate, sends this belief information to its 
neighbours, receives relevant messages from them, and then iteratively updates its belief using Bayes’ 
formula. The iteration process is terminated only when some convergence criterion is met about the 
beliefs and location estimates of the sensors in the network. Because of the difficulty both in obtaining 
an analytical expression of the belief function and in updating the belief function analytically, particle 
filters (Kwok et al., 2004) are often used to represent beliefs numerically by sets of samples, or particles. 
The main advantages of the NBP algorithm and the use of particle filters are its easy implementation in a 
distributed fashion and sufficiency of a small number of iterations to converge. Furthermore it is capable 
of providing information about location estimation uncertainties and accommodating non-Gaussian 
measurement errors. These advantages make the approach particularly attractive in non-linear systems 
with non-Gaussian measurement errors. 

RSS-Based Localization Techniques

Chapters IX-XI of this book give a thorough discussion on various aspects involved in the design and 
implementation of RSS-based localization systems. The number of chapters in this book, the number of 
research papers in the area and the number of deployed systems on RSS-based localization techniques 
properly reflects the huge interest in the research community and industry on the techniques. As men-
tioned previously in this chapter, RSS-based localization techniques can only provide a coarse-grained 
estimate of sensor locations. However almost every wireless device has the capability of performing 
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RSS measurements and RSS-based localization techniques meet the exact demand from industry on 
localization solutions with minimal hardware investment. It is this feature of RSS-based localization 
techniques that drives the tremendous interest in their research and developments.

As mentioned above, Chapter IX presents an RSS-based localization system for indoor WLAN 
environments. The entire network area is divided into several regions and the algorithm identifies the 
region in which the non-anchor node resides. The localization problem is formulated as a multi-hypothesis 
testing problem and the authors provide an asymptotic performance guarantee of the system. The au-
thors further investigate the optimal placement of anchor nodes in the system. The optimal placement 
problem is formulated as a mixed integer linear programming problem and a fast algorithm is presented 
for solving the problem. Finally the proposed techniques are validated using testbed implementations 
involving MICAz motes manufactured by Crossbow.

Chapter X - Theory and Practice of Signal Strength-Based Localization in Indoor Environments 
starts with a brief overview of indoor	localization	techniques and then focuses on RSS-based techniques 
for indoor wireless deployments using 802.11 technology. The authors present an analytical framework 
that aims to ascertain the attainable accuracy of RSS-based localization techniques. It provides answers 
to questions like “Is there any theoretical limit to the localization accuracy using techniques based on 
signal strength?”. The approach is based on the analysis of a-regions in location space: If the probability 
that the observed signal strength at the receiver is due to a transmitter located inside a certain region 
is a, then this certain region is called an a-region. The definition of a-region leads to an analytical ap-
proach for characterizing uncertainties in RSS-based localization. Several properties of the uncertain-
ties are established, including that uncertainty is proportional to the variance in signal strength. This 
observation has resulted in several algorithms which aim at improving localization performance by 
reducing the variance. The authors also summarize issues that may affect the design and deployment of 
RSS-based localization systems, including deployment ease, management simplicity, adaptability and 
cost of ownership and maintenance. With this insight, the authors present the “LEASE” architecture for 
localization that allows easy adaptability of localization models. The chapter concludes with a discus-
sion of some open issues in the area. 

Chapter XI - On a Class of Localization Algorithms Using Received Signal Strength surveys and 
compares several RSS-based localization techniques from two broad categories: point-based and area-
based. In point-based localization, the goal is to return a single point estimate of the non-anchor node’s 
location while in area-based localization the goal is to return the possible locations of the non-anchor 
node as an area or a volume. The authors find that individual RSS-based localization techniques have 
similar limited performance in localization error (i.e., the distance between the estimated location and 
the true location) and reveal the empirical law that using 802.11 technology, with dense sampling and a 
good algorithm, one can expect a median localization error of about 3 m; with relatively sparse sampling, 
every 6 m, one can still get a median localization error of 4.5 m. Therefore it can be concluded that there 
are fundamental limitations in indoor localization performance that cannot be transcended without us-
ing qualitatively more complex models of the indoor environment, e.g., models considering every wall, 
desk or shelf, or by adding extra hardware in the sensor node above that required for communication, 
e.g., very high frequency clocks to measure the TOA. The authors also briefly describe a sample core 
localization system called GRAIL	(General	purpose	Real-time	Adaptable	Localization), which can be 
integrated seamlessly into any application that utilizes radio positioning via simple Application Program 
Interfaces (APIs). The system has been used to simultaneously localize multiple devices running 802.11 
(WiFi), 802.15.4 (ZigBee) and special customized RollCallTM radios.
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Localization Techniques Based on Machine Learning and Information Theory

In the earlier part of this section, we have mentioned some widely used WSN localization approaches 
and introduced the relevant chapters of this book. There exist other less conventional approaches in the 
literature as well, which complement the above widely used approaches, especially by providing alterna-
tive localization solutions suitable for various specific application domains and settings. Chapters XII 
and XIII of this book present two such approaches. 

Chapter XII - Machine Learning Based Localization presents a machine learning approach to 
localization. Machine learning is an information science field, studying algorithms that improve auto-
matically through experience. It is concerned with the design and development of algorithms and tech-
niques that allow computers or computing systems to “learn” rules and patterns out of massive data sets 
automatically, using certain computational and statistical tools of regression, detection, classification, 
pattern recognition, and data cleaning as well as convex optimization techniques.  Two key concepts 
used in machine learning are kernels, which can be considered as systems that describe similarities 
between objects, and support vector machines, supervised learning methods used for regression and 
classification. Machine learning has been used in a number of areas including syntactic pattern recog-
nition, search engines, medical diagnosis, bioinformatics, object recognition in computer vision, game 
playing and robot locomotion.

Chapter XII discusses the application of machine learning methods to WSN localization based on 
formulation of the localization problem (i) as a classification problem and (ii) as a regression problem. 
Both problem definitions are RSS-based, and RSS measurements from anchors at various sample points 
distributed inside the sensor network area are used as training data for the support vector machines. In 
the classification problem based approach, the sensor network area is partitioned into (overlapping or 
non-overlapping) geographical regions, and a set of classes are defined to represent membership to these 
regions. Using RSS measurements received from anchors at the non-anchor node and rules established 
from the training data, the classes attached to the non-anchor node location estimate, which represent 
the regions where the non-anchor node is estimated to lie, are found. If the found classes are more than 
one then the localization algorithm returns the centroid of the intersection of the regions corresponding 
to these classes as the location estimate of the non-anchor node. If only a single class is found, then the 
location estimate is determined as the centroid of the corresponding region. The regression problem 
based approach exploits the correlation between the RSS measurements from anchors at the non-anchor 
node and the RSS measurements from anchors at sampling points. The non-anchor node is estimated 
to be at the centroid of the sampling points whose RSS measurements have the highest correlation with 
those of the non-anchor node.

Chapter XIII - Robust Localization Using Identifying Codes presents a different paradigm for 
robust WSN localization based on identifying codes, a concept borrowed from the information theory 
literature with links to covering and superimposed codes. The approach involves choosing a set of 
discrete sampling points and transmitters in a given region such that each discrete sampling point is 
covered by a distinct set of transmitters. The location of a non-anchor node is estimated to be at the loca-
tion of the discrete sampling point, which is covered by the same set of transmitters as the non-anchor 
node. The major challenges involved in using this approach are choosing the set of transmitters and 
finding good and robust identifying codes. The chapter presents the basics of robust identifying codes, 
use of these codes in WSN localization, design and analysis of an identifying code based algorithm, 
and implementation of the proposed algorithm on a test bed at Boston University involving a 33mx76m 
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indoor region (fourth floor of the Photonics building) and four transmitters (anchors). The identifying 
codes-based approach has the simplifying advantage that a non-anchor node only needs to know the 
set of transmitters it can detect in order to infer its location. This feature makes the approach robust to 
spurious connections or sensor failures and suitable for implementation in harsh environments, at the 
expense of reduced localization accuracy.

 
Evaluation of Localization Algorithms

It is often the case that a number of solutions exist for solving the same localization problem. A question 
naturally arises is how to evaluate and compare the performance of various localization solutions.

Evaluating the performance of localization algorithms is important for both researchers and prac-
titioners, either when validating a new algorithm against the previous state of the art, or when choos-
ing existing algorithms which best fit the requirements of a given WSN application. However, there is 
currently no agreement in the research and engineering community on the criteria and performance 
metrics that should be used for the evaluation and comparison of localization algorithms. Neither there 
exists a standard methodology which takes an algorithm through modelling, simulation and emulation 
stages, and into real deployment. Part of the problem lies in the large number of factors that may affect 
the performance of a localization algorithm, including but not limited to: the type of measurements 
being used and measurement errors, the distributions of anchor and non-anchor nodes, the density 
of network nodes which is usually measured by the average node degree, the geometric shape of the 
network area, whether or not there is any prior knowledge of the network, the wireless environment 
in which the localization technique is being deployed, the presence of NLOS conditions. Quite often 
a localization algorithm performing well in one scenario, e.g., in regular networks, does not deliver a 
good performance in another scenario, e.g., in irregular networks. A localization algorithm delivering an 
excellent performance in simulation environment may also not perform satisfactorily in real deployment. 
All these phenomena highlight the importance of building a scientific methodology for the evaluation 
of localization algorithms.

Chapter XIV - Evaluation of Localization Algorithms addresses the above challenges by introducing 
a methodological approach to the evaluation of localization algorithms. The chapter contains a discussion 
of evaluation criteria and performance metrics, which is followed by statistical/empirical simulation 
models and parameters that affect the performance of the algorithms and hence their assessment. Two 
contrasting localization studies are presented and compared with reference to the evaluation criteria 
discussed throughout the chapter. The chapter concludes with a localization algorithm development cycle 
overview: from simulation to real deployment. The authors argue that algorithms should be simulated, 
emulated (on test beds or with empirical data sets) and subsequently implemented in hardware, in a 
realistic WSN deployment environment, as a complete test of their performance. It is hypothesised that 
establishing a common development and evaluation cycle for localization algorithms among researchers 
will lead to more realistic results and viable comparisons.

Chapter XV - Accuracy Bounds for Wireless Localization Methods looks at evaluation methods 
for localization systems from a different perspective and takes an analytical approach to performance 
evaluation. The authors argue that evaluation methods for localization systems serve two purposes.  
First, they allow a network designer to determine the achievable performance of a localization system 
from a given network configuration and available measurements prior to the deployment of the system. 
Second, these tools can be used to evaluate the performance of an existing localization system to see if 
the potential location accuracy is being achieved or if further improvements are possible. 
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The authors present several methods for calculating performance bounds for node localization in 
WSNs. The authors point out that the widely used Cramer-Rao bound relies on several assumptions: 
(i) The environment is an LOS radio propagation environment; (ii) The location estimator is unbiased; 
(iii) No prior information on node’s location is available. Obviously, not all these assumptions are valid 
in real applications. Indeed, most distance-based, AOA-based and TDOA-based location estimators are 
biased which makes the second assumption invalid. The authors advocate the use of the Weinstein-Weiss 
and extended Ziv-Zakai lower bounds to address the above problems. These bounds remain valid under 
NLOS conditions and can also use all available information for bound calculations.  It is demonstrated 
that these bounds are tight to actual estimator performance and may be used to determine the available 
accuracy of location estimation from survey data collected in the network area.

EXPERIMENTAL sTUDIEs AND APPLIcATIONs OF WsN LOcALIZATION

The earlier sections of this chapter and correspondingly Chapters II-XV have largely focused on mea-
surement techniques, theoretical backgrounds, and algorithm design for WSN localization. Nevertheless, 
there exist various other issues to consider in order to guarantee that an actual real-time WSN localiza-
tion system works properly and performs well. The amount and the type of these issues in general differ 
for different application domains and tasks. Chapters XVI-XVIII of this book present three different 
WSN localization application studies exemplifying such further issues.   

Chapter XVI - Experiences in Data Processing and Bayesian Filtering Applied to Localization 
discusses algorithms and solutions for signal processing and filtering for localization and location 
tracking applications. Here, the term location tracking is used for estimation of the trajectory of an 
object based on sequential measurements. As opposed to localization in static networks in which sensor 
locations do not change with time, location tracking techniques are developed to meet the demand (in 
a large number of application domains) for knowledge of the time-varying location of a moving object, 
which can be a vehicle, a robot, a mobile sensor unit, a human operator, etc. 

Chapter XVI explains some practical issues for engineers interested in implementing location tracking 
solutions and their experiences gained from implementation and deployment of several such systems. 
In particular, the chapter introduces the data processing solutions found appropriate for commonly used 
sensor types, and discusses the use of Bayesian filtering for solving position tracking problem. The use 
of particle filters is recommended as a flexible solution appropriate for tracking in non-linear systems 
with non-Gaussian measurement errors. Finally the authors also give a detailed discussion on the design 
of some of the indoor and outdoor position tracking systems they have implemented, highlighting major 
design decisions and experiences gained from test deployments. Note that, the basics of Bayesian filters 
and particle filters and their use in location estimation in static networks have been introduced in the 
subsection Stochastic	Optimization	Based	Localization	Techniques above, and Chapter XVI features a 
more detailed introduction to Bayesian and particle filters as well as Kalman	filters, focusing more on 
their application in location tracking.

Chapter XVII - A Wireless Mesh Network Platform for Vehicle Positioning and Location Tracking 
presents an experimental study on the integration of Wi-Fi based wireless mesh networks and Bluetooth 
technologies for detecting and tracking travelling cars and measuring their speeds. The authors propose 
a wireless platform for these purposes and deploy a small-scale network of four access points to validate 
the proposal. The platform employs RSS measurements and is shown to be able to track cars travelling 
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at speeds of 0 to 70 km/h. The platform is found to be cost-effective and is envisaged to be a significant 
contribution to intelligent transportation systems for road traffic monitoring.

The availability of physical locations enables a myriad of applications, as exemplified extensively 
throughout this book. A particular application domain that benefits from the availability of location 
information is sensor network routing. Specifically the prospects brought by recent developments in 
WSN localization have sparked interest on a category of routing algorithms, known as geographical 
routing (D. Chen & Varshney, 2007). Geographic routing utilizes the location information of sensors to 
make routing decisions. It does not require the establishment or maintenance of routes from sources to 
destinations. Sensor nodes do not need to store routing tables. These features make geographic routing 
an attractive option for routing in large scale sensor networks.

Chapter XVIII - Beyond Localization: Communicating Using Virtual Coordinator discusses 
an interesting aspect of the geographic routing problem and question: for the purpose of improved 
geographic routing, whether it would be more efficient to label sensors by information other than their 
physical locations. Specifically the chapter advocates labelling sensors by their virtual coordinates, 
which are not related to their physical coordinates, and let the geographic routing algorithm use these 
virtual coordinates for routing. The concept of virtual coordinates is based on the notion of greedy 
embedding. A greedy embedding of a geometric graph (G,p) is the geometric graph (G,p’) that has the 
same underlying graph G, i.e., the same edges interconnecting the same set of vertices,  but having the 
vertices placed at different coordinates (p’) such that greedy routing always functions when sending a 
message between arbitrarily chosen nodes. Greedy routing refers to a simple geographic routing scheme 
in which a node always forwards a packet to the neighbour that has the shortest distance to the destina-
tion. The use of virtual coordinates greatly facilitates geographic routing and removes void areas which 
have been a major hurdle in the implementation of geographic routing algorithms. The authors then 
present an algorithm that assigns virtual coordinates to sensors and the algorithm has been validated 
by both simulations and experiment.

Chapter XVIII reveals some insight that may be of interest for some applications currently using 
the physical location information of sensors. Physical locations of sensors can, to a large extent, be 
considered as a means to label sensors. It is possibly the most intuitive and useful way of labelling the 
sensors so that people know where the sensors are located and where the measured information by sen-
sors comes from. Location information cannot be replaced by other information in many applications. 
However, in some applications which do not necessarily need to know the physical location of sensors 
but rely on some sort of sensor labels for identification of sensors or supporting the correct functioning 
of the application, there may be more efficient ways to label sensors that facilitate the application. It is 
in this sense that Chapter XVIII motivates us to think beyond the horizon of localization. 
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AbsTRAcT 

Wireless sensor networks (WSN)	localization	relies	on	measurements.	Availability	of,	and	the	informa-
tion content in, these measurements depend on the network architecture, connectivity, node time syn-
chronization	and	the	signaling	bandwidth	between	the	sensor	nodes.	This	chapter	addresses	wireless	
sensor networks measurements in a general framework based on a set of nodes, where each node either 
emits or receives signals. The emitted signal can for example be a radio, acoustic, seismic, infrared or 
sonic wave that is propagated in a certain media to the receiver. This general observation model does 
not	make	any	difference	between	localization	of	sensor	network	nodes	or	unknown	objects,	or	whether	
the	nodes	or	objects	are	stationary	or	mobile.	The	information	available	for	localization	in	wireless 
cellular networks (WCN)	is	in	literature	classified	as	direction	of	arrival	(DOA),	time	of	arrival	(TOA),	
time difference of arrival (TDOA) and received signal strength (RSS).	This	chapter	generalizes	these	
concepts to the more general wireless sensor networks.

INTRODUcTION

Distributed sensor networks have been widely discussed for more than 30 years, but it is with more 
recent advances in hardware and processing capabilities that the vision of the wireless sensor networks 
can become a reality. In general, the ambition is to perform fusion of the information provided by the 
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distributed sensors (Luo and Kay, 1989, Jayasimha et al., 1991, Wesson et al., 1981, Yemini, 1978, Aky-
ildiz et al., 2002). One important wireless sensor networks research area concerns localization of objects 
moving within the coverage, or monitoring, area of the network. Applications include surveillance of 
both military and civilian areas and passages. Sensor networks are often deployed without knowledge 
of the exact sensor locations. Furthermore, sensor nodes might be mobile to some extent. Therefore, 
localization of individual nodes is also important. The scope of this chapter is measurements useful for 
all kinds of localization.

Wireless sensor network localization is in many ways similar to positioning in wireless cellular 
networks. This is particularly true when it comes to network-assisted positioning, where the network 
elements in the cellular network observe measurements related to the position of the mobile terminal. 
Some related surveys include (Caffery and Stuber, 1998, Zhao, 2002, Drane et al., 1998, Sun et al., 2005, 
Sayed et al., 2005, Pahlavan et al., 2002, Gustafsson and Gunnarsson, 2005, Deblauwe, 2008). In recent 
years, however, cellular network positioning has become more and more mobile-centric, where the mo-
biles perform the measurements, and the network either provides necessary information, or completes 
parts of the positioning calculations. Despite this fact, the generic measurements are still similar, which 
is evident after a direct comparison between this chapter and (Gustafsson and Gunnarsson, 2005). One 
can also consider wireless cellular networks as a special case of wireless sensor networks when it comes 
to localization in networks. Therefore, wireless cellular networks are used to some extent to exemplify 
wireless sensor network concepts.

The outline of the chapter is as follows. We start with explaining the main principles of WSN 
measurements in terms of a simple but generic transmitter-receiver model. This leads to a separation 
into waveform, time and power observations. The availability and limitations of these are discussed in 
terms of network architecture. Then more specific signal models are defined such as direction of arrival 
(DOA), time of arrival (TOA) and received signal strength (RSS), and properties in practice and typical 
performance values are discussed. Error modeling is discussed, and Gaussian mixture models (GMM) 
are considered as a generally applicable model. The potential estimation accuracy in terms of position 
root mean square error is discussed and related to fundamental and computable lower bounds, which 
can be used to evaluate network configuration. Aspects like routing protocols, information reporting 
protocols, signaling protocols, radio interface design, power consumption, etc. are all challenging parts 
of wireless sensor networks, but are not within the scope of this chapter.

GENERAL ObsERVATION MODELs

We start with a high level characterization of a wireless sensor network (WSN), and proceed with more 
detailed sensor models. An as generic vocabulary as possible will be used, and the particular application 
dependent notation will be introduced later on.

The WSN consists in general of nodes i	=	1,	.	.	.	,M positioned at pi
t at time t. A general observation 

model of a signal sj(t) emitted from node j and received at node i with an amplification aij(t) and a delay 
τij observed in noise wij(t) is: 

( ) ( ) ( ) ( )ij ij j
i

ij
jr t t s ta w t− +=        (0.1)

A node can in this context be characterized with the following properties:
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• The node either emits (target or emitter) a signal sj(t) or receives (sensor or receiver) a signal rj(t) 
at some frequency in some medium, or both. Examples include radio waves propagated with the 
speed of light, acoustic waves propagated with the speed of sound, seismic waves propagated in 
the earth or sonic waves propagated in water. The delay τij depends on the propagation time among 
other things.

• A node is either a sensor node, which can act as both a target and a sensor, or an unknown object, 
which can only act as a target.

• The node can be known to be stationary or moving implying a constant or time-varying pi
t.

• The node can have known or unknown position pi
t at each time instant.

• One emitting and one receiving node can be anything between perfectly synchronized and com-
pletely unsynchronized. The same applies to two emitting nodes or two receiving nodes. The time 
index t refers to the time reference of the receiving node i, and synchronization errors between 
node i and j are included in τij.

• The communication between two nodes (two emitters or two receivers or one of each) can be wired 
or wireless, and the bandwidth can be low or high.

• The emitted wave may propagate directly to the receiver (line of sight) or be subject to multipath 
effects. These effects have impact on both the amplification aij(t) and the delay τij.

These properties mean that the problems of determining the location of the sensor node itself, or 
of a different sensor node or an unknown object are equivalent and can be described with the same 
framework. Figure 1 shows an example of a WSN, where each sensor node consists of a microphone, 
a geophone and a magnetometer. The sensor nodes are stationary with known position. They have a 
fairly low bandwidth in their wireless communication links, and they are synchronized to an accuracy 
of a few milliseconds. The target node, on the other hand, is a moving vehicle with unknown position 

Figure	1.	The	sensor	nodes’+’	in	a	WSN overlayed on an aerial photo and sampled positions ‘o’ of the 
unknown object (target node)
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and on its way it is emitting acoustic and seismic waves. Depending on the type of vehicle, the range 
of these waves differs between some ten meters to some hundred meters.

The difference of a wireless sensor network and a sensor network in general is the assumption that at 
least two nodes exchange information using a wireless link and thus are subject to bandwidth limitations 
and non-trivial synchronization. Depending on sensor capabilities and the nodes’ synchronization and 
communication capabilities, three different types of observations can be distinguished:

• Waveform observations. A highly capable sensor node is able to operate on the signal waveform 
sj(t), and this observation can be shared with other nodes if bandwidth allows. This is only mean-
ingful when these nodes are synchronized at an accuracy comparable to the inverse waveform 
frequency. Sensors very close to each other (in the order of half a wavelength) can form a sensor 
array and correlate the phase of the emitted signal to get a direction of arrival estimates. For sen-
sors further separated, there will be an integer problem in the ambiguity of the number of periods 
that may be resolved by merging other information.

• Timing observations. If a known or easily distinguished signature is embedded in the signal, 
the sensor can correlate the signal with the signature to accurately estimate time of arrival t-τij. 
The timing estimation accuracy depends on the signature as well as the sensor capability. This is 
meaningful only if the sensor is synchronized either with the emitting node or another receiving 
node. In the former case, an absolute distance can be computed and in the latter case a relative 
distance follows. Geometrically, these two cases constrain the position to a circle or a hyberbolic 
function.

• Power observations. Another possibility is that the sensor estimates the received signal power 
(received signal strength - RSS) ||rij(t)||2. In essence, this means integrating the received signal 
power within a certain frequency band during an integration interval to estimate the received 
signal energy during the time interval. If the emitted power is known, RSS provides coarse range 
information. Otherwise, two or more sensors can compare their RSS observations to eliminate 
the unknown emitted power.

These three types are discussed and exemplified further below. However, first implications from the 
sensor network architecture and classification are addressed. 

WIRELEss sENsOR NETWORK ARcHITEcTUREs AND cLAssIFIcATIONs

The characteristics and behavior of a wireless sensor network is very much dependent on the architec-
ture, organization and connectivity. A rather loosely connected ad-hoc network typically has different 
properties compared to a strictly hierarchical network. Handling and processing of time-related mea-
surements are facilitated if the sensor nodes have a common time reference. The localization problem 
of unknown object positions is more challenging if the sensor node positions are unknown and time 
varying compared to if they are known and fixed. 

Architecture and connectivity

A network with a rather strict architecture will be referred to as a hierarchical network as illustrated by 
Figure 2a. Conversely, networks with a loose architecture as in Figure 2b are denoted anarchical (Wes-
son et al., 1981). The target node for the aggregated sensor information is referred to as the sink.
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In a hierarchical network sensor nodes may be associated to more potent nodes known as cluster 
heads (C.-C. Shen et al., 2001) or processing elements (Jayasimha et al., 1991). Depending on the size of 
the sensor network, such clustering may be organized over multiple levels in a hierarchical fashion. The 
many low complexity, low power sensors with little processing power are placed in the bottom, while 
sensors with increasing complexity and processing power are found higher in the hierarchy. Information 
from child nodes may be aggregated, fused and refined by parent nodes before being passed upwards in 
the hierarchy. Furthermore, the cluster heads on the highest level distribute the information to the sink, 
where the final analysis and visualization take place. Connections are primarily established between 
child nodes and associated parent node, even though connections within the cluster is also possible. 
The strict hierarchy enables a prompt and reliable information transport. Wireless cellular networks are 
typically strictly hierarchical networks. 

 In an anarchical network, the sensors are loosely organized, and the sensor capability is typically 
more equal. The set of the sensors are popularly denoted the sensor	field (Akyildiz et al., 2002), or smart 
dust (Kahn et al., 1999). The information may be aggregated and fused in some or all of the sensor 
nodes, before passing it on in the sensor field. Also the sink may be a node in the sensor field, but typi-
cally with somewhat better processing capabilities. Essentially all connections can be seen as volatile, 
and a connection between two nodes may be a multi-hop connection with several node to node links in 
sequence. Loosely organized networks with volatile communications links are often referred to as mesh 
networks (Akyildiz and Wang, 2005). Mechanisms such as self-configuration and self-organization (a 
new node finds its place in the network, and the network-wide connectivity establishes automatically), 
and self-healing (the connectivity is re-established after some disruptive event) are important compo-
nents of the mesh network.

Sharing waveform observation between nodes is most probably only plausible in hierarchical net-
works. Distribution of timing and power observations should on the other hand be possible in any type 
of network, provided that the connection bandwidth between the nodes is sufficient.

Time synchronization

In a distributed environment such as wireless sensor networks there may be no central synchronized time 
reference that regulates the activities of each node. Instead, each node manages its own time reference. 

Figure	2.	Two	wireless	sensor	network	architecture	examples.	(a)	Hierarchical	network	with	clusters	of	
sensors	associated	to	cluster	heads.	(b)	Anarchical	network	with	sensors	loosely	organized	in	a	sensor	
field.
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Most of the sensor measurements, both with respect to localization and relative distances, but also with 
respect to a general sensor observation, need to be associated with a common time reference in order 
to be properly fused together. If the time synchronization in the wireless sensor network is acceptable, 
then node-pairs can exchange information and measurements and readily use the information for lo-
calization. Waveform observations require the highest synchronization accuracy, timing observation 
intermediate accuracy and power observation the crudest accuracy. Synchronization inaccuracies can 
be included in the delay distribution in (0.1).

Network time synchronization protocols used over the fixed network are not applicable, due to the 
volatile and possibly time varying connectivity and the clock drift of the low complexity sensor devices. 
One tractable approach is to consider one node as the node with the time reference, and use adjustment 
mechanisms to gradually synchronize the sensor network. Such schemes are surveyed in (Jayasimha et 
al., 1991, Elson and Römer, 2003, Sivrikaya and Yener, 2004) and the results indicate that they provide 
accurate synchronization in the order of 10 μs. Recent advances provide algorithms that operate without 
a specific node as time reference (Solis et al., 2006, Schenato and Gamba, 2007) something that is very 
important for robustness reasons.

sensor Node Location Information

Some nodes in the wireless sensor network may have known positions, either constant or time-varying. 
For example, the location information can be provided locally by some external location system such 
as GPS. Nodes with known position are referred to as anchor nodes, and nodes with unknown position 
consequently non-anchor nodes (Luo et al., 2006). 

The wireless sensor network may consist of only non-anchor nodes. Then some sort of cooperative 
localization scheme (Patwari et al., 2005) is a necessity. The communication to support self-localization 
of sensor nodes can be either interactive or non-interactive (Luo et al., 2006). The interactive support 
means that all the nodes actively participate in the localization by signaling and sharing information 
(bidirectional connectivity), while in case of non-interactive support, most of the nodes passively observe 
other objects and beacons (unidirectional connectivity). These mechanisms may be supported by signals 
(e.g. pilot signals) broadcasted continuously or at least regularly from some nodes, which then act as 
beacons (Sun et al., 2005). Another way of exciting the self-localization mechanisms in non-interactive 
sensor networks is by observing the same mobile and unknown object both in time and in space and 
share the information with other nodes. This could be seen as a calibration phase.

In hierarchical networks, the existence of anchor nodes is quite plausible. Furthermore, an anchor 
node that acts as a beacon is denoted a landmark node (similar to a lighthouse) (Niculescu, 2004). Cluster 
head nodes become central and important, and this motivates that such nodes are relatively potent and 
deployed with care. This could include a determination of the exact node position. When some sensor 
locations are known as is likely in hierarchical networks, methods based on relative position measure-
ments are available (N. Patwari et al., 2003). Other self-localization schemes include (Niculescu, 2004, 
Langendoen and Reijers, 2003, Savarese et al., 2001, Coates, 2004, Galstyan et al., 2004). 

In some applications, the signal propagation speed is significantly higher than the velocity of an 
unknown object or a moving sensor node. This is the case for radio frequency signals. However, when 
the measurement signal is seismic or audible then the delay between signal emission to signal observa-
tion cannot be neglected.
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sPEcIFIc ObsERVATION MODELs

The notation assumes a two-dimensional position, pi
t = (Xi

t , Y
i
t)

T , but can be extended to higher dimen-
sions. Depending on whether one, two or three nodes have to collaborate to form an observation, the 
following notation will be used:

( )
( , )
( , , )

i i i
t type t t
ij i j ij
t type t t t
ijk i j k ijk
t type t t t t

y h p e
y h p p e
y h p p p e

= +
= +
= +         (0.2)

Waveform Observations

Observing the full frequency band of a signal requires a quite capable sensor. For example, a mes-
sage sent over radio is typically encoded to a base band signal, which then is modulated onto a carrier 
frequency of much higher frequency than the base band signal. The typical processing of the measure-
ments includes correlation of waveform observations from different, spatially close, sensors. This is 
popularly referred to as sensor arrays. It could be instructive to consider observations from the different 
sensors as one sensor observation from a sensor array. As already mentioned, one application of the 
sensor array measurement at node i is direction-of-arrival estimation relative another node j. 

Essentially all signal frequencies and media are possible. The nonlinear measurement function is 
given by

( , )ij i j ij
t DOA t t ty h p p e= +          (0.3)

Furthermore, the direction-of-arrival angle can be calculated as

angle( )i j
DOA t th p p= −          (0.4)

Timing Observations

For signals with a known or detectable signature or fingerprint, timing information can be obtained by 
correlating the signal with the signature. The signature can be a pilot or a training sequence transmitted 
from a radio base station or node. Compared to a waveform observation, the signature is typically part 
of the base band signal. It can also be a detectable impulse in the signal, for example from a gun shot 
in an acoustic signal or from an explosion in a seismic signal. A similar signature can be the arrival of 
a message sent from a different location.

The accuracy depends mainly on the signature properties, but also on the processing capabilities of 
the sensor. One typical application of timing observations is time-of-arrival estimation

( , )ij i j ij
t TOA t t ty h p p e= +               (0.5)

If both nodes i and j have the same time reference, the time of signal transmission tj and reception ti 
combined can be related to the relative distance if the signal propagation speed of the medium v is 
known:
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( )i j i j
t tp p v t t− = −   (0.6)

In a message-oriented implementation, it could be easier to instead measure the round-trip time from 
time of transmission ti

tran and time of response reception ti
resp. If the processing time tj

proc at the other 
node j is included in the response message, the following holds

resp tran proc( )
2

i j i i j
t t

vp p t t t− = − −
  (0.7)

The uncertainty in (0.6) is dominated by the difference in time references at the two locations, while the 
uncertainty in (0.7) depends on the time of arrival estimation of the response at node i and the accuracy 
of the processing time estimation at the other node j.

Hence, the nonlinear time-of-arrival measurement modeling can be summarized as

.i j
TOA t th p p= −   (0.8)

As discussed for time-of-arrival measurements, a different or uncertain time reference can be trouble-
some. If the ambiguity in time-references tj

ref and tk
ref between two nodes j and k is known or can be 

resolved at some node or location, then time-difference-of-arrival measurements can become useful

( , , )ijk i j k ijk
t TDOA t ty h p p p e= +   (0.9)

A signal emitted (received) from node i and received (emitted in parallel) at nodes j and k at times 
tij and tik, respectively, leads to the following observation

( )i j i k ij ik j k
t t t t ref refp p p p t t t t v− − − = − + −   (0.10)

The uncertainty et
ijk depends both on the time-of-arrival estimation accuracies et

ij and et
ik as well as the 

time synchronization accuracy between the locations.
The nonlinear time-difference-of-arrival measurement is thus characterized by

.i j i k
TDOA t t t th p p p p= − − −   (0.11)

If two of these positions are known, the position of the third is constrained to a hyperbolic function, 
whose asymptotes define a direction of arrival. This indicates a close relation of relative range informa-
tion and angle information. Note the generality of this setup. Any of the three nodes can be the one to 
be located, and there is a duality between emitting and receiving. The distinguishing feature here is 
that exactly two nodes are synchronized, or the difference in time references is known somewhere in 
the sensor network.

Similar equations based upon relative distances also appear when considering measurements based 
on interferometrics (M. Maroti et. al, 2005). In such a case, two nodes A and B transmit pure sine waves 
at two close frequencies fA > fB, and two other nodes C and D measure and filter the total received signal 
power and estimate the absolute phase offset ν = φA - φB. It has been shown that the relative phase offset 
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νC - νD is proportional to a combination of relative distances, provided that the frequencies are close 
enough and the relative node distances are short enough, compared to the travel time of the signals:

( ), , ,ABCD A B C D ABCD
t IF t t t tty eh p p p p= +   (0.12)

( ), , ,A B C D A D B D B C
IF t t t t t t t t t t t t

A Ch p p p p p p p p p p p p= − − − + − − −  (0.13)

Power Observations

Power observations are typically obtained by integrating the signal power over a certain time interval. 
The signal may be low-pass or band-pass filtered before calculating the signal power to capture the 
power in the frequency band where the signal is expected to reside. This means that the power signal 
sample interval is orders of magnitude longer than the signature sequences.

The observed power is related to the relative distance between two nodes

( )ij i j ij
t RSS t t ty h p p e= − +   (0.14)

Radio frequency signals, acoustic signals, seismic signals, radar signals etc have in common that 
the emitted signal strength 0

iP  (bar denotes here and in the sequel power in linear scale) at node i ap-
proximately decays exponentially with distance in linear scale. For example, this is observed for radio 
signals in e.g. (Okumura et al., 1968, Hata, 1980). Hence, the received signal strength ijP  at node j can 
be modeled as

0 .ijnij i i j
t tP P p p

−
= −              (0.15)

The corresponding relation in logarithmic scale is

0 log( )ij i i j
ij t tP P n p p= − −   (0.16)

where ‘log’ denotes the natural logarithm. It is a matter of taste whether a model in linear or in logarith-
mic scale is selected. One aspect is that the uncertainty eij

t with good approximation can be modeled as 
Gaussian when the received signal strength measurement equation is in logarithmic scale (Okumura et 
al., 1968, Hata, 1980). Equations (0.15) and (0.16) yield two alternative non-linear functions

, 0

, 0

log( )

.ij

i i j
RSS log ij t t

ni i j
RSS lin t t

h P n p p

h P p p
−

= − −

= −   (0.17)

Figure 3 illustrates acoustic and seismic sensor signals, whose propagation can be described with 
(0.17) at good accuracy. Furthermore, Figure 4 shows WiMax radio signal RSS measurements as a 
function of logarithmic distance. Again, the observation model in (0.17) fits data well.

Scanning radar was mentioned as a means of estimating directions above. It is also an example of 
power measurements where the received radar signal power is determined. In this case, the transmitted 
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power is known, the distance is round-trip, but the uncertainty comes from the propagation properties 
and the radar cross section of the object.

In wireless cellular networks, received signal strength (or quality) measurements are integral parts of 
the mobility management, which aims at ensuring that the mobiles are connected to the most favorable 
base station over time. The pilot signal strengths are estimated, and it is possible in some standards to 
inform the mobiles about the pilot transmission power.

Observations Related to Digital Maps

The power observations model in the previous section only models the exponential decay with dis-
tance of the power. The main reason for deviations from this model is due to diffraction and reflection 
phenomena. If a reliable signal propagation tool is available, or if some effort is spent scanning the 
observation area, this information could be aggregated into a database, which can be seen as a digital 
map with a measurement model

( )i i i
t MAP t ty h p e= +   (0.18)

The observed or predicted values associated with a specific position pi and different nodes j can be seen 
as a fingerprint for this position. The map information could be received signal strength measurements 
at all possible locations in the area as discussed for indoor localization in (Chen and Kobayashi, 2002, 
Kaemarungsi and Krishnamurthy, 2004). In this case, the nonlinear measurement function depends on 
at least two node positions ( , )j i j

MAP t th p p . As another example, an object could travel along the trajec-
tory in Figure 2 during a measurement campaign, while all sensor nodes measure the received signals 
as is emitted from the object. This information could be stored in a database and subsequent sensor 
observations can be correlated to the map information. 

Figure	3.	Received	sensor	energy	in	log	scale	Pij	versus	log	range	 ||log(|| )i j

t tp p− ,	together	with	a	fitted	
linear	relation	as	modeled	in	(0.14).	The	estimated	path	loss	exponent	nij	is	2.3	and	2.6	respectively,	and	
the	model	error	standard	deviation	0.56	and	0.60	respectively.	If	a	dB	scale	is	used,	then	these	values	
scale	by	a	factor	of	10/log(10),	which	yields	model	error	standard	deviations	of		2.4	and	2.6	dB.
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It could also be a digital map of walls in an area, and the distance to the walls in different directions 
are measured at node i. Similarly, it could be a digital road map (Gustafsson et al., 2002), where the 
measurement is the distance to the road which should be zero for road-bound mobility. Another example 
is a map of sea depths (bathymetry map), and the corresponding measurement is a depth measurement 
(Karlsson and Gustafsson, 2003). This means that the nonlinear measurement function depends only 
on one node position hMAP(pt

i).

Position and Attitude Observations

Sensor observations for self-localization include local sensors measurements directly related to the 
position of the same node. A direct position estimate can simply be expressed as

i i i
t t ty p e= +   (0.19)

and may be available from an external system such as the Global Positioning System.  Typical GPS 
accuracy without differential support is in the order of 5-10 m. However, this could be significantly 
improved with differential support of some kind. The non linear measurement equation for position 
estimates is thus

i
POS th p=   (0.20)

Note that GPS positioning can be incorporated either as a position estimate with estimated error statis-
tics, or as separate timing estimates relative to the GPS satellites.

It is also possible that inertial measurement units (IMU) are available at certain nodes, providing 
attitude and acceleration information. Such measurements can be modeled as 

Figure	4.	Radio	signal	received	signal	strength	 in	 log	scale	versus	 log	range,	 together	with	a	fitted	
linear	relation	as	modeled	in	(0.14).	The	estimated	path	loss	exponent	nij	is	2.3,	and	the	estimated	error	
distribution	is	Gaussian	with	standard	deviation	0.70	(corresponding	to	3	dB).	Data	from	a	Wimax	radio	
network deployment in Brussels kindly provided by Mussa Bshara.
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( , )i i i i
t IMU t t ty h p p e= +    (0.21)

Measurement Error Modeling

In all specific measurement models, the measurement noise is additive. A first and convenient approxi-
mation is that the measurement is unbiased and the noise is white and Gaussian with a standard devia-
tion se. Appropriate accuracy levels depend on both the type of measurement, as well as the network 
architecture and classification as discussed in the previous sections.

Waveform Observations

Geometrically, the spatial resolution of the intersection of two perfectly complementing AOA measure-
ments is limited to 2dAsin(α/2), where α is the angular resolution and dA is the distance between the 
antennas. For α = 30◦, this means 36% of dA. Approximately 5º - 10º can be considered appropriate.

Timing Observations

One key contributor to the measurement noise is the time reference inaccuracy between two nodes. 
Very exact time reference can be obtained by using a GPS receiver. Otherwise, one has to rely on dif-
ferent distributed time synchronization mechanisms. Furthermore, the timing determination accuracy 
depends on the resolution of the reference signal. In GSM, one training sequence bit corresponds to 554 
m, and the timing accuracy is a fraction in the same order. In WCDMA the accuracy may be down to 
0.5 chip of the scrambling code corresponding to an accuracy of 20 m. For radio frequency signals, the 
time reference accuracy needs to be less than 1 µs, but for audible signals can be far cruder since it is 
the accuracy relative the travel time of the signal that matters.

Power Observations

The received signal strength model describes signal propagation in a desert environment without inter-
fering objects. The latter may result in diffraction and reflections, depending on the relation between 
the signal wavelength and the size of the objects. This shadow fading gives an additive component with 
4-12 dB standard deviations. As has been discussed above, the accuracy of the power measurements 
can be improved by the use of well-predicted or measured power level maps. In such a case, the error 
standard deviation can be less than 3 dB.  

Error Distributions and Correlations in More Detail
 
A generally applicable assumption is that the measurement error is Gaussian with a probability density 
function

( ) ( )0,E tp e N=   (0.22)
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This may be valid, provided that the measurement is based on a signal that has traveled along the 
line-of-sight (LoS) between the nodes. In a non-LoS situation, the measurement will get a positive bias 
μ and probably another (larger) variance sNLOS

( ) ( ),E t NLOSp e N=   (0.23)

The problem here is that we cannot easily detect NLOS. One solution is to use robust algorithms. 
Another approach is to model the error distribution with a mixture, for instance the two-mode Gaussian 
mixture model (GMM)

( ) ( ) ( ) ( )0, 1 ,E t LOS NLOS NLOSp e N N+ −=   (0.24)

where (α, µNLOS, sLOS, sNLOS) are free parameters in the distribution. Here, et falls in the LOS distribution 
with probability α and the NLOS distribution with probability 1 − α. Algorithms based on this distribu-
tion will automatically be more robust than algorithms that do not model NLOS.

Furthermore, the errors may be correlated over time and space. For example, the diffraction and 
reflection phenomena that cause most of the line-of-sight errors for power measurements are strongly 
correlated to the terrain. One modeling approach (M. Gudmundson 1991) considers distance dependent 
measurement errors and is based on the introduction of a decorrelation distance ddc after which the error 
correlation has dropped to e-1. As an approximation, the correlation is only based on the position of one 
node i, typically the one of an unknown object

( ) /( ), ( ) dci i dcorr e p e p e− ∆=+ ∆            (0.25)

sensor Observations in summary

Table 1 summarizes the discussed sensor observations. Note that the quality of the sensor information 
depends not only on the noise variance, but also on the size and variation in h(p). The sensor informa-
tion included in the measurements is further discussed in the next section.

FUNDAMENTAL PERFORMANcE bOUNDs

Consider now the set of all available measurements as a vector y, and all positions to be estimated as a 
vector p. The total signal model can then be written

( )y h p e= +   (0.26)

This is the basic measurement relation for localization services.
Firstly, a nonlinear least squares (NLS) optimization routine can be applied to get a position esti-

mate ˆ NLSp . Secondly, if the noise covariance R=cov(e)  is known, the weighted nonlinear least squares 
(WNLS) estimate ˆWNLSp  can be computed. Finally, if the noise distribution pE is known, the maximum 
likelihood (ML) approach applies, which gives ˆMLp . In general, the position estimate can be obtained 
by minimizing an optimization criterion
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ˆ arg min ( )
p

p V p=   (0.27)

where the different optimization routines are obtained by the following criteria

( ) ( )
( ) ( )

( )

1

( ) ( ) ( )

( ) ( ) ( )

( ) log ( )

T
NLS

T
WNLS

ML E

V p y h p y h p

V p y h p R y h p

V p p y h p

−

= − −

= − −

= −   (0.28)

The estimates come with an estimation uncertainty, whose second order moment is represented by 
a covariance matrix P. Increasing the amount of considered knowledge in the estimation step, improves 
the estimation accuracy and reduces the estimation error covariance. In general 

PNLS >	PWNLS >	PML  (0.29)

For the user, the position root mean square error (RMSE) in meters is a useful measure. It includes 
estimation errors both due to the covariance and bias errors. RMSE can be lower bounded by the cova-
riance matrix using the inequality

2 2ˆ ˆ ˆRMSE ( ) ( )E tr Co  ( )vo oX X Y Y p = − + − ≥    (0.30)

where po denotes the true position. It should be noted that the covariance matrix may not be feasible 
to compute, because it is either not straightforward to express, or it may need an excessive number of 
computations.

A more challenging question is how small the covariance, and thus the RMSE, can be for a given 
sensor network constellation and measurement characteristics. Such a bound is provided by the Cramer-
Rao Lower Bound (CRLB) for unbiased estimators. This bound is expressed in terms of the Fisher 

Type of Measurement Nonlinear Measurements Accuracy

Direction of arrival angle( )i j
DOA t th p p= − 5º - 10º

Time of arrival i j
TOA t th p p= − 5 – 100 m

Time difference of arrival i j i k
TDOA t t t th p p p p= − − − 10 – 60 m

Interferometrics
IF t t t t

A D B
t t t

D A
t

B C Ch p p p p p p p p= − − − + − − − 0.1 – 1 m

Received signal strength
, 0 log( )i i j

RSS log ij t th P n p p= − −

, 0
ijni i j

RSS lin t th P p p
−

= −

4 – 12 dB

Digital map information ( , )j i j
MAP t th p p (RSS MAP 3dB)

Position estimates
Inertial sensors

i
POS th p=

( , )i i
INS t th p p 

5 – 20 m (GPS)

Table	1.	Mathematical	notation	of	available	sensor	observations	in	wireless	sensor	networks	described	
by the non-linear location dependency htype, such that y = htype	+	e
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Information Matrix (FIM) (Kay, 1993). CRLB has been analyzed thoroughly in the literature, primarily 
for DOA, TOA and TDOA (Botteron et al., 2004b, Botteron et al., 2004a, Botteron et al., 2002, Botteron 
et al., 2001, Patwari et al., 2003, Koorapaty et al., 1998), but also for RSS (Weiss, 2003, Koorapaty, 
2004) and with specific attention to the impact from non-line-of-sight (Qi and Kobayashi, 2002b, Qi 
and Kobayashi, 2002a).

The 2 × 2 Fisher Information Matrix J(p) is defined as

( )( ) E log ( ( )) log ( ( ))

d log ( ( )) d log ( ( ))log ( )

 

( )
d d

T
p E p E

E E
p E

J p p y h p p y h p

p y h p p y h pp y h p
X Y

= ∇ − ∇ −

− − ∇ − =  
 

 (0.31)

where p=(X,Y)T  the two-dimensional position vector and pE(y-h(p)) the likelihood given the error dis-
tribution pE of the measurement uncertainty.

In case of Gaussian measurement error distributions pE(e)=	N(0,R(p)), the FIM equals

1( ) ( ) ( ) ( )
( ) ( )

T

p

J p H p R p H p
H p h p

−=
= ∇   (0.32)

Table 2 summarizes the involved expressions for h(p) and its gradient for range and direction mea-
surements with focus on location i.

In the general case with non-Gaussian error distributions, numerical methods are needed to evaluate 
the CRLB. The larger the gradient H(p), or the smaller the measurement error, the more information is 
provided from the measurement, and the smaller potential estimation error.
Information is additive, so if two measurements are independent, the corresponding information ma-
trices can be added. This is easily seen for instance from (0.32) for HT = (H1

T, H2
T) and R being block 

Method h(p) ( )( ) h pH p
p

∂
=

∂

DOA
jij

2 2,
( ) ( )

ij ij

ij ij
Y X

D D
 −
 
 

 

TOA ijD ,
ij ij

ij ij
X Y
D D

 
 
 

 

TDOA ij ikD D− ,
ij ik ij ik

ij ik ij ik
X X Y Y
D D D D

 
− − 

 

   

RSS
0 log( )i i j

ijP n p p− −

0
ijni i j

t tP p p
−

−

2 2,
( ) ( )

 
ij ij

ij ij
ij ij

n X n Y
D D

 − −
  
 

 

0 0
2 2,

( ) ( )ij ij

i ij i ij
ij ij
n nij ij

P n X P n Y
D D+ +

 − −
  
 

 

Table	2.	Analytical	expressions	related	to	some	measurements	related	to	the	location	i and corresponding 
gradients, where ij i jX X X= − , ij i jY Y Y= −  2 2( ) ( )ij ij ijD X Y= +   ( )angleij i j

t tp p= − .
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diagonal, in which case we can write J = J1	+	J2. Plausible approximate scalar information measures 
are the trace of the FIM and the smallest eigenvalue of FIM

mintr ( ) ( ), (   ) mitr eign ( )J p J p J p J p 

  (0.33)

The former information measure is additive as FIM itself, while the latter is an under-estimation 
of the information useful when reasoning about whether the available information is sufficient or not. 
Note that in the Gaussian case with a diagonal measurement error covariance matrix, the trace of FIM 
is the squared gradient magnitude.

The Cramer-Rao Lower Bound is given by

1ˆ ˆ ˆ( ) ( )( ) ( )E Cov o o T op p p p p J p−= − − ≥   (0.34)

The CRLB holds for any unbiased estimate of ˆ tp . The lower bound may not be an attainable bound. 
It is known that asymptotically in the information, the ML estimate is 1ˆ ~ ( , ( ))o op p J p−

  (Lehmann, 
1991) and thus reaches this bound, but this may not hold for finite amount of inaccurate data.

The right hand side of (0.34) gives an idea of how suitable a given sensor node configuration is for 
localization e.g. of an unknown object. It can also be used for deployment design, e.g. where to place 
the sensor nodes in order to enable pre-determined localization accuracy, given the sensitivity of the 
sensors. However, it should always be kept in mind though that this lower bound is quite conservative 
and relies on many assumptions. In practice, the root mean square error (RMSE) is perhaps of more 
importance. This can be interpreted as the achieved position error in meters. The CRLB implies the 
following bound:

2 2 1ˆ ˆ ˆRMSE ( ) ( ) (E tr Co ) t (v  ) ro o oX X Y Y p J p− = − + − ≥ ≥   (0.35)

The first inequality becomes an equality for unbiased estimates. If RMSE requirements are specified, 
it is possible to make the sensor network denser until (0.35) indicates that the amount of information 
provided from the sensor nodes is enough.

A Geometric Example

Consider the scenario in Figure 5, where four sensor nodes are placed in the positions (-1,0), (1,0), (0,-
1) and (0,1), respectively. Each node measures the arrival time of a transmitted signal from an unknown 
position (either a sensor node or an unknown object), using accurate and synchronized clocks. If the 
transmitter is also synchronized, the signal propagation time can be computed, which leads to a TOA 
measurement. Propagation time corresponds to a distance, which leads to the distance circles around 
each receiver in Figure 5 (upper left). If the transmitter is unsynchronized, each pair of receivers can 
compute a time-difference of arrival TDOA. This leads to a hyperbolic function where the transmitter 
can be located (Fang, 1990, Spirito and Mattioli, 1998).

The RMSE lower bounds from (0.35) for the TOA and TDOA measurements in this example are 
plotted in Figure 5 (lower plots). They indicate estimation accuracy limits spatially depending on the 
actual position of a sensor node or an unknown object. The level curves are scaled by se, so a range 
error with standard deviation of 100 meter will in the most favorable position lead to a position estima-
tion error of 100 meter. A bit counterintuitive, TDOA and TOA give the same performance close to the 
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Figure	5.	First	 row:	Example	 scenario	with	 four	 sensor	node	placed	 in	a	 square,	 and	 there	 is	 one	
transmitter	at	(1.2,1).		With	TOA	measurements,	each	receiver	measurement	constrains	the	transmitter	
position to a circle, while with TDOA measurements, each pair of receiver measurements constrains the 
transmitter	position	to	a	hyperbola.	Second	row:	RMSE lower bound implied by the CRLB for TOA and 
TDOA, respectively, measurements. The unit is scaled to the measurement standard deviation.

origin. To explain this, note that if all signals arrive simultaneously to all receivers, the transmission 
time does not add any information.

sUMMARY

This chapter addresses generic models of sensor observations in a wireless sensor network (WSN) by 
dividing these into detailed waveform observations, less detailed timing observations and much less 
detailed power observations. This view is well established in wireless cellular networks (WCN), though 
a more general framework was presented that besides radio waves also covers WSN with acoustic, 
seismic, sonic, infrared waves in different media as air, water and ground. A careful investigation as-
sociates these observation types to the more traditional measurement related to range, relative range 
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and angle between nodes. A WSN is characterized by its architecture, connectivity, interactivity, the 
degree of synchronization and the available bandwidth in the wireless links, and these are also the main 
factors for which sensor observations that are plausible and can be shared between nodes and the kind 
of information that can be computed from the received signals.

A framework for analyzing the information content of various observations was also presented, 
that can be used to derive localization bounds for integrating any combination of observations in the 
network.
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AbsTRAcT

This	chapter	discusses	localization	in	WSNs	specifically	focusing	on	the	physical	limitations	imposed	
by	the	wireless	channel.	Location	awareness	and	different	methods	for	localization	are	discussed.	Par-
ticular attention is given to indoor TOA based ranging and positioning systems. Various aspects of WSN 
localization	are	addressed	and	performance	results	for	cooperative	schemes	are	presented.

INTRODUcTION

Wireless sensor networks are ideal candidates for data gathering and remote sensing purposes in vari-
ous environments, where the communications between the sensors mostly take place in a distributed 
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manner (Akyildiz et al., 2002). Data obtained by individual sensors are relayed to a central station for 
further processing and logging. Usually, information obtained through a sensor needs to be associated 
with the location of each sensor which necessitates the localization of sensors within certain accuracy 
(Patwari et al., 2005). Since primary purpose of sensor networks is to gather information on environ-
mental changes such as temperature, pressure or humidity, it is almost always required to determine 
the coordinates of a specific sensor so that the appropriate steps can be taken in a more effective way 
in the case of emergencies. As a matter of fact, about 13.3% of the recent scientific WSN publications 
focus on target tracking and localization aspects as mentioned by Sohraby et al. (2007).

Owing to their small form factor and low-power consumption, WSNs have found numerous applica-
tions in both civil and military use. In the civil domain, applications can be further divided into various 
categories like environmental, health related, commercial and public safety applications. Environmental 
applications may include fire/flood detection/prevention (Pathan et al., 2006), crop quality detection, 
field surveying; health related applications may be listed as patient/doctor/instrument tracking inside 
hospitals, elderly care and remote monitoring of biological data (Cypher et al., 2006); commercial ap-
plications might be inventory control, product tracking in warehouses (Rohrig & Spieker, 2008) and 
remote product quality assessment. For military applications, the use of WSNs is also important in 
rough terrain conditions where a centralized communication system may be too costly to build (Mer-
rill et al., 2003). Soldier and mine tracking, as well as intelligence gathering can be some applications 
in this domain.

As it can be seen from a sample of applications in each field, location and tracking capability is an 
important aspect of WSNs that need to be considered and developed further. A number of researchers 
studied positioning using sensor nodes and investigated the performance of algorithms and presented 
theoretical bounds in WSNs (Bulusu et al., 2000; Niculescu et al., 2001; Savarese et al., 2001; Savvides 
et al., 2001; Doherty et al., 2001; Chang & Sahai, 2004; Kanaan et al., (2006a, 2006c)). The positioning 
capability can be implemented using different sensing technologies like ultrasonic waves as in the Ac-
tive Bat system proposed by Ward et al. (1997) or using RF or both as in the Cricket system (Priyantha 
et al., 2000). By using sound waves, researchers have been able to obtain cm. accuracy; however, these 
systems are only suitable for very small areas like a single office environment and are not intended for 
outdoor or indoor/outdoor hybrid node localization. In the latter case, RF solutions are generally preferred 
since quick deployment is possible and hardware and various ranging/localization algorithms that can 
be directly applied are widely available. Nevertheless, due to the nature of RF propagation, ranging/
localization accuracy is not on par with solutions using sound waves. Later in this chapter we will cover 
the basics of RF channel and how it affects the performance of localization in various environments. 

Figure 1 shows a typical setup for a WSN with location capability. Here, the sensor nodes are able 
to communicate with each other as well as pre-deployed anchor nodes whose coordinates are known in 
advance. At this point, it might be appropriate to present the two methods of WSN localization. Sensor 
node localization can take place in a centralized or a distributed manner.

In centralized localization, individual sensors relay their ranging estimates from the anchors to a 
central processing station where the localization algorithm is implemented. In the centralized approach, 
the processing station has the knowledge of each location requesting node and hence network topology 
can easily be associated with the geographical positions of the sensor nodes. Drawbacks of this method 
include traffic congestion and computational complexities, especially for larger sensor networks.

In distributed positioning, the sensors get ranging estimates from the anchors and try to localize 
themselves. After they have performed localization they might act as pseudo-anchors so that other nodes 
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might benefit from these nodes for their own position fixing. Most of the time, pseudo-anchors will have 
estimation quality based on how many anchors they captured during localization and link quality for 
each individual anchor connection (Kanaan, 2006b). The estimation quality might be used in order to 
inform the end user of the overall quality factor of a particular node position. Distributed localization 
is most suited for large networks where central processing might be a limiting factor for the application 
being considered and when efficient energy utilization is required.

The performance of localization for WSNs depends mostly on the availability and quality of individual 
links between sensors and the anchors. The geographical distribution of the nodes with respect to each 
other also plays an important role in positioning accuracy. As the connectivity of a WSN increases, more 
reliable estimates can be obtained. The connectivity may be considered as a measure of how robust the 
WSN against node failures is. The number of alternative routes for relaying information from a specific 
node to the destination is directly proportional to connectivity. A high node density, as described by 
nodes per unit area, would primarily lead to high connectivity since nodes will be able to detect RF 
signals from their neighbors. On the other hand, if the nodes are sparsely connected, connectivity will 
be less hence nodes might not be able to obtain accurate position fixes due to lack of ranging informa-
tion. Hence a high node density will provide better localization performance. A detailed analysis will 
be presented relating the node density to localization performance as well as performance bounds for 
the cooperative localization.

The overall organization of the chapter is as follows: The second section gives an overview of location 
awareness and a typical localization system. The third section presents the distance/position estimation 
metrics along with their achievable performance bounds and also the mapping techniques. Also part of 
this section is a brief overview of dynamic tracking and monitoring. The fourth section focuses on the 
TOA based ranging and localization and the challenges associated with it. The fifth section introduces 
and discusses the methods that can be used in the absence of DP conditions, particularly non-direct-path 
exploitation and cooperative localization. The sixth section presents the two studies showing the effect 
of various parameters on WSN localization. The seventh presents the practical implementation issues 
related to the implementation of WSN localization and finally the eighth section provides a conclusion 
for the chapter.

Figure	1.	Typical	WSN	setup
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LOcATION AWARENEss

The question “where” might seem simple at first but the answer might not. Throughout the centuries, 
mankind has always tried to find the right answer to this question in his quest for exploring new lands 
and navigating the unknown seas. The first sailors relied on particular water currents, landmarks and 
positions of the celestial bodies to navigate through the waters. With the discovery of compass about 
700 years ago, mariners were able to identify their directions. However, the need to get precise position 
and navigation, primarily for military reasons, led the nations and researchers to develop systems closer 
to achieving this goal. After the first developments in radio navigation starting in the first half of the 
20th century (Schroer, 2003), the first successful implementation of such a system came in the form of 
a global positioning system or GPS, developed by the US military. In its 40 years of development and 
maturity, GPS has become a reliable location finding and tracking system for use not only by military 
but also by civilian world. Today, after various advancements in the field such as differential-GPS 
(DGPS) and Wide Area Augmentation System (WAAS) typical commercial grade GPS receivers can 
achieve accuracies of 1-5m with DGPS and 3 meters with WAAS. Study by  Blomenhofer et. al (1994) 
reports DGPS accuracies in the centimeter range. Higher end geodetic and surveying GPS units using 
carrier phase, dual frequency methods and sophisticated algorithms can achieve centimeter and even 
sub-centimeter accuracy through GPS ambiguity resolution techniques (Kim & Langley, 2000; Poling 
& Zatezalo, 2002). Following GPS, other countries also started their own satellite positioning projects 
(EU’s Galileo and Russia’s GLONASS (Zaidi & Suddle, 2006)). Owing to its accurate positioning 
capability, most industries rely on GPS and the position information obtained via GPS (such as anchor 
node position information) serves as reference for other small scale localization systems.

Although GPS is a proven and reliable technology, it falls short of expectations for some terrestrial 
applications where the GPS signals cannot be detected due to obstructions. Satellite signals are attenu-
ated heavily through the atmosphere and further obstruction by trees, heavy fog or manmade structures 
such as building tops prevent this system to be useful especially for densely populated urban settlements 
and inside buildings. In order to overcome this issue, researchers turned their attention to land-based 
positioning and tracking systems for situations that cannot make use of satellite signals. 

After the proliferation of cellular based radio communications systems, FCC mandated mobile phones 
be located within a certain accuracy (FCC, 1999). According to this report, mobile operators should 
be able to locate phones with 50m accuracy 67% of the time and 150m accuracy 95% of the time for 
handset based positioning, and 100m accuracy 67% of the time and 300m 95% of the time for network 
based positioning.

The fundamentals of locating and tracking RF emitting devices differ greatly from those of data 
communications. In communications, information is transferred from one entity to another and the 
information carrier might be RF, sound or light. A single link, as long as it is reliable, will be enough to 
transfer data between the entities. However, locating a device whose location is completely unknown 
requires a completely different approach than transmitting data. 

Localization might be realized in two ways:

• Geometric methods (Trilateration, triangulation, hyperbolic methods)
• Fingerprinting methods (Signal mapping)

Geometric methods include techniques that can locate or track devices based on signal properties 
that are estimated. TOA/TDOA, RSS and AOA are examples of geometric measurement techniques.
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Fingerprinting methods require a two-phase approach. In the first phase (also called the off-line 
phase), a database is formed based on signal parameters and this database is utilized in the second phase 
to estimate the location. Nearest-neighbor mapping and artificial neural networks are examples of such 
methods (Dasarathy, 1991; Heidari et al., 2007b; Nerguizian et al., 2006; Kanaan & Pahlavan, 2004a).

Overview of a Localization system

A typical localization system consists of mobile terminals (nodes in case of a WSN) that need to be lo-
cated/tracked, beacon or anchors serving as reference points, a central processing station that implements 
the positioning algorithm and keeps track of all the terminals as well coordinates data communications 
and a higher layer system that shows the results of positioning or tracking like an LCD panel. Figure 2 
shows the components of such a localization system. The system might use different ranging metrics 
for obtaining the position information. The most common of these metrics are RSS, TOA/TDOA and 
AOA. RSS and TOA might be considered as ranging metrics since ranging information can be obtained 
from these signal parameters. The nodes will need at least three ranging estimates from different an-
chors to be able to obtain a position fix. In the case of AOA, two different AOA estimates from two 
anchors will suffice to obtain a location fix. More details will be given for each of these techniques in 
the coming sections.

DIsTANcE/POsITION EsTIMATION METRIcs

As mentioned in the previous section, a localization system needs to obtain range estimates from fixed 
anchors or reference points in order to estimate the location of a node. Ranges estimates can be obtained 
using different metrics. RSS and TOA/TDOA are examples of such techniques.

RSS: After the RF signal is transmitted by a transmitter, its energy experiences loss that is proportional 
to the distance signal travels. A common model based on single-path radio propagation is given by

Figure	2.	High	level	architecture	of	a	typical	positioning	system
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10( ) ( ) 10 logr tP dB P dB d= −         (1)

where Pr (dB) and Pt (dB) denote the received and transmitted signal powers in dB. α is the distance-
power gradient and is dependent on the propagation environment. For free space, α	= 2. A wide range 
of values are possible for α, i.e. for a brick construction office environment α is reported to be 3.9 or 
for a laboratory environment with metal-faced partitioning it is found to be 6.5 (Pahlavan & Levesque, 
2005).

Other empirical models have also been developed based on extensive measurements in various 
environments. Motley (1988) proposed a path-loss model for multi-floor buildings. Technical working 
group of TIA/ANSI JTC recommended an indoor path loss model (JTC, 1994) for PCS applications. 
Apart from the indoor model, the same group proposed micro and macro-cellular models for outdoor 
applications. Other popular models for outdoor environments are the Okumura (1968), Hata (1980) and 
COST231 (1991) models.

Either by using the simple radio-propagation or the more complicated empirical models, distance 
information can be obtained from the received signal power given the transmitted signal power. Although 
this method can be easily applied since almost all RF wireless devices can report received signal strength, 
its accuracy is not always acceptable due to the stochastic variation of the channel. The path loss models 
discussed in this section are deterministic models that do not consider the fading and shadowing effects. 
At any time instant, the signal level experiences slow and fast fading caused by local scatterers and the 
movement of the receiver node. Slow fading is also called Shadow fading and it is generally modeled as 
a zero-mean normal variable, X(dB), in the logarithmic scale. Hence shadows are generally log-normally 
distributed. The probability density function (pdf) for the log-normal distribution is given as: 
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where µ and s are the mean and standard deviation respectively.
Hence the received power can be given as

10( ) ( ) 10 logr tP dB P dB d X= − +        (3)

Due to this fluctuating behavior of received signal power, accurate ranging measurements are not 
always possible hence leading to lower accuracy position estimation. In fact, the accuracy of such esti-
mation is lower bounded by its Cramer-Rao lower bound (CRLB). CRLB basically specifies the lower 
bound on the variance of estimation. For the simplistic RSS model this bound has been given by Qi and 
Kobayashi (2003) as:

(ln10)
10

sh
RSS d≥          (4) 

Here, σRSS is the standard deviation of RSS estimation, σsh is the variance for shadow fading, d is the 
actual distance between the transmitter and the receiver and α is the power-distance gradient. 

AOA: AOA information from two different anchors might be used to determine the position of a node 
by using triangulation as shown in Figure 3. AOA estimation is also referred to as direction-of-arrival 
(DOA) estimation, direction finding or bearing estimation in many contexts and has been researched 
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extensively in the literature (Cedervall & Moses, 1997; Krim & Viberg, 1996; Kumaresan & Tufts, 1983; 
Li et al., 1995; Stoica & Sharman, 1990; Tewfik & Hong, 1992). A common method for AOA estimation 
is by using special structures called uniform linear arrays (ULA) (Schelkunoff, 1943). The n elements 
of an ULA with spacing d can be used to estimate the direction of arrival of a RF signal based on the 
following relation:

arcsin c t
d
∆ =  

 
         (5)

where θ is the angle at which the signal is impinging upon the ULA, c is the speed of light, Δt is the 
time difference between the arrivals of the signal at consecutive array elements and d is the spacing 
between consecutive elements.

To achieve finer results by using a certain antenna array configuration one can employ super-resolu-
tion techniques. Although various methods are available in literature, most common ones are MUSIC 
(Schmidt, 1986) and ESPRIT (Roy & Kailath, 1989) and their variations (Rao & Hari, 1989; Ottersten 
et al., 1991). Kuchar et al. (2002) report angular estimation variance of 1º with 0dB SNR and down to 
0.01º with SNRs of about 40 dB. 

The performance bounds for AOA estimation can also be studied to derive the CRLB. The bound 
for AOA is formulated to be (Tingley, 2000)

 02
2 sin( )AOA

c T

c BN
N f AA

≥
∆

        (6)

where sAOAis the standard deviation for AOA estimation, c is the speed of light, B is the bandwidth of 
the signal, N0	is the noise spectral density, N is the number of elements of the ULA, Δ is the spacing 
between the elements, A is the channel coefficient. AT and fc are respectively the amplitude and carrier 
frequency of the source signal x(t) denoted as

( ) cos 2T cx t A f t=          (7)

The SNR of the signal can be expressed as
2 2

0

TA ASNR
BN

=           (8)

Figure	3.	Triangulation	of	a	node	by	two	anchors
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so we can rewrite (6) as 

2
2 sin( )AOA

c

c
N f SNR

≥
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        (9) 

From (9), it can be seen that the CRLB is inversely proportional to the number of elements N, fc and 
SNR. Thus having a high SNR and high frequency signal like an Ultra-Wide-Band (UWB) signal as 
well as a high number of array elements give higher resolution AOA estimation. Oppermann et al., 2004 
give an overview of UWB signals and their applications.

TOA: Another distance estimation method is the TOA method in which the range is estimated based 
on the time the signal spends traveling from the transmitter to the receiver. Since the speed of RF propa-
gation is very well known in both free space and air, it gives a direct estimation of the distance between 
the transmitter and the receiver once the travel time is estimated. When TOA systems are considered, 
the only important parameter that needs to be estimated correctly in a multipath propagation environ-
ment is the TOA of the LOS path or the direct-path (DP). Other multipath components are not important 
for ranging and localization purposes except for the cases when the DP is not available. This condition 
will be investigated in detail in the section Challenges for the TOA based Systems. The basic equation 
needed to obtain the distance is given as

DPd c=           (10)

where d is the distance estimate, τDP is the TOA of the DP and c is the speed of light. Accurate TOA 
estimation needs perfect synchronization between the clocks of the transmitter and the receiver. Clock 
synchronization might be achieved by regular data exchange between the transmitter and the receiver or 
an additional anchor for correcting the clock bias. Although 3 anchors are necessary to obtain position, 
a 4th anchor will be needed for time correction. This method is readily applied for the GPS in which a 
4th satellite is used to compensate for the receiver clock bias. The TOA location estimation is depicted 

Figure	4.	Trilateration	of	a	node	by	three	anchors	(RSS and TOA)
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in Figure 4 where a perfect synchronization is assumed between the transmitters and the receiver. Same 
procedure also applies to the RSS method in which individual distance estimates are also used for posi-
tion fixing. The dotted circles denote the uncertainty in range estimation hence leading to an area for 
the possible location of the receiver between the three estimation circles, rather than a single point.

Several methods are available to estimate the TOA. The traditional methods of estimation are the 
inverse Fourier transform (IFT) and maximum-likelihood (ML) estimations. The latter one is also called 
the cross-correlation method. 

In the IFT method, observed frequency domain channel response is transformed into time-domain to 
obtain the time-response of the channel (Figure 5). The delay value of the DP is then used to calculate 
the distance.

The ML method assumes the following signal model for the estimation of TOA (Li, 2003).

( ) ( ) ( )r t s t w t= − +          (11) 

Here r(t) is the received signal, s(t) is the transmitted signal, τ is the delay and w(t) is noise modeled 
as AWGN. The signal at the receiver is basically a delayed version of the signal plus noise. ML dictates 
that maximum possible cross-correlation of the transmitted and the received signal occurs at the actual 
delay of the signal shown as (Li, 2003; Knapp & Carter, 1976)
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∫          (12)

To obtain the delay estimate, τ is varied over a range of delay values and the value of τ that gives the 
maximum of the cross-correlation (or equivalently makes the derivative of the cross-correlation equal 
to 0) becomes the distance estimate. A block diagram is also given in Figure 6 to show the implementa-
tion of this method.

In the case of single path TOA estimation as applied to (11), CRLB is computed to be 
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       (13) 

where 2
D̂
 is the variance of TOA estimate, B = f2	– f1,  f0	= ( f2	+	f1)	/	2	and T0	is the observation time. 

From (13), it is easy to see that the bound is inversely proportional to the SNR, the signal bandwidth 
and observation time.

Figure	5.	IFT	operation	for	obtaining	CIR
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Similar to the AOA case, super-resolution methods might be used to extract indistinguishable peaks 
from the channel response in time-domain. This method has been shown to be effective in both wide-
band and narrow band TOA estimation methods (Li & Pahlavan, 2004; Dumont et al., 1994) making 
these methods superior to traditional ML and cross-correlation methods.

TDOA: TDOA, also known as hyperbolic positioning, is a method whereby the receiver calculates 
the differences in the TOAs from different RPs. By using this method the clock biases between the 
transmitters and receivers are automatically removed, since only the differences between the TOAs from 
two transmitters are only considered. The estimation using TDOA is shown in Figure 7.

Mapping Techniques

Fingerprinting or mapping techniques are also widely studied for their robustness in terms of performance 
and some advantages in comparison to geometric methods. The fingerprinting methods employ a two-
step approach. The first step involves the construction of the signal map for a desired environment (also 
called the offline phase), the second step is the actual positioning step (online phase). These techniques 

Figure	6.	ML	TOA	estimation	(reproduced	from	(Li,	2003))

Figure	7.	Hyperbolic	positioning	of	a	node	by	three	anchors	(TDOA)
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inherently capture all environment related propagation effects like multipath, shadowing, scattering etc 
and hence might be used for applications where geometric methods fall short of expectations. However 
due to extensive measurement and mapping involved in this approach, it might not be preferred for large 
areas where it may not be feasible. Additionally the structural changes in the environment might neces-
sitate remapping for the affected regions of the database (Bahl & Padmanabhan, 2000; Nerguizian et 
al., 2006; Steiner et al., 2008). The two most commonly used mapping methods are the RSS mapping 
and CIR mapping. In RSS mapping, a receiver terminal is taken to almost every feasible part of an area 
that is intended to be mapped and signal power from multiple anchors are recorded into the database. 
Once mapping is done, actual positioning is obtained by comparing the RSS in online phase to one of 
the mapped points. The algorithms employed for this purpose are mostly k-NN algorithms (Dasarathy, 
1991; Hatami & Pahlavan, 2005). Another application is the mapping of CIR for desired locations. The 
unique characteristics of the CIR, such as rms delay spread, average power… etc might then be used 
for comparison (Heidari et al., 2007b; Nerguizian et al., 2006). The same paper also discusses the use 
of neural networks for position estimation.

Overall comparison for Different Localization Methods

Geometric Methods Advantages Disadvantages

RSS   
 
 

- Simple to implement (most wireless devices 
report power)
- Not sensitive to timing and RF bandwidth

- Not accurate
- Requires models specific to application case and 
environment

AOA - Only requires 2 anchors for localization - DP blockage and multipath affects accuracy
- Requires use of antenna arrays/smart antennas
- Accuracy is dependent on RF bandwidth

TOA/TDOA - Accurate ranging/localization can be 
obtained
- Can be scaled to a multitude of applications

- Accuracy is dependent on RF bandwidth
- DP blockage might cause large errors 

Mapping Methods - Captures all channel related parameters 
hence resilient to DP blockage  

- Requires extensive database construction/training

Tracking and Dynamic Monitoring

Most of the time, the nodes to be located are mobile and hence it becomes essential to determine the 
location of these mobile nodes periodically. This real-time periodic location update is also called 
“tracking”. Tracking keeps a history of the location information and hence is considered as a dynamic 
methodology for the localization problem. As opposed to blind positioning, which is based either on 
geometric or fingerprinting method and which basically requires locating the node without any prior 
position information, tracking makes use of location history to estimate the future positions. This might 
be obtained by various methods. The most popular of these approaches is to employ a Kalman Filter 
(Kalman, 1960), which is a recursive filter that estimates the state of a system in the presence of noisy 
measurements. However, for most systems that do not exhibit linear behavior, Kalman filtering is not 
an effective solution. For these non-linear systems other types of filtering such as Extended Kalman 
Filtering (EKF) (Haykin, 2002) and Unscented Kalman Filtering (UKF) (Julier & Uhlmann, 1997) are 
preferred. EKF is particularly useful for nonlinear but differentiable systems. It is a first order approxi-
mation for the nonlinear filtering problem. UKF, on the other hand is applicable to highly nonlinear 
systems and produces more accurate results than EKF. Another advantage of UKF over EKF is that 
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UKF does not require the computation of Jacobians that are needed for EKF. Hence it is more practical 
from an implementation point of view. 

Another method is to use dead reckoning (Beauregard, 2006; Randell et al., 2003) which estimates 
the future position based on current speed, bearing and elapsed time. Inertial navigation systems are 
based on this principle. Even though these systems might obtain estimates for incomplete measure-
ments, error propagation is a major concern for prolonged duration of information absence. Hence these 
tracking methods should be complemented with other true positioning approaches for a more complete 
positioning system design.

TOA-bAsED RANGING AND LOcALIZATION

Due to recent advances in UWB signaling and hardware and its potential for accurate ranging, TOA 
based ranging systems utilizing UWB signals have gained particular popularity (Lee & Scholtz, 2002; 
Gezici et al., 2005; Qi et al.; 2004). On the other hand, the knowledge gained by the implementation and 
challenges of the now widely used GPS system has been instrumental in the advancement of these TOA 
systems. The following parts of this section will particularly focus on the TOA-based systems.

Peak Detection strategies for TOA based systems

In this part, we present the two most commonly used methods for obtaining ranging measurements, 
which have also been outlined by Denis et al. (2003). In the following, τsel denotes the estimated TOA.

Detection of the First Peak

This method relies on the detection of the first available peak in the CIR. As long as the first path power 
is above the detection threshold of the system, the method gives the best possible results for ranging. 
However, accurate detection depends on high SNR (mostly DDP conditions) which is not always pos-
sible. The path decision can be expressed as

{ | arg min }sel i p
p

i= =         (14)

where τp is the TOA for the pth path.

Detection of the Strongest Peak

In this method, the path with the strongest power is detected and its TOA is considered as the ranging 
estimate between the transmitter and the receiver. Detecting the strongest peak is easily implementable 
when compared with the first method; however ranging accuracy is not always acceptable since the 
strongest path may not always be the DP. Most practical receivers implementing this method are S-rake 
receivers (Oppermann et al., 2004). Path decision in this case is

{ | arg max }sel i p
p

i P= =         (15)

where Pp is the power of the pth path.
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challenges for the TOA-based systems

One major challenge facing the high precision TOA systems is the obstruction of the DP in the chan-
nel profile. Since the DP is the true indicator of the range between the transmitter and the receiver, its 
obstruction by various means such as metallic or thick concrete walls will lead to substantial ranging 
errors. This particular obstruction of the DP leads to a specific channel impairment that has been named 
as the undetected direct path (UDP) condition (Pahlavan et al., 1998; Wylie & Holtzman, 1996). To 
understand the effects of DP obstruction, it is convenient to consider the commonly used mathemati-
cal expression for channel impulse response at this point. This model takes into account the multipath 
components (MPCs) that arrive at the receiver via different propagation mechanisms such as reflection, 
transmission or scattering and is given as:
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h t t e
=

= −∑         (16)

where h denotes the CIR, L is the number of MPCs, βi is the gain(amplitude), τi is the TOA and φi is the 
angle (phase) of the ith arriving path respectively. The DP might be characterized as the path having gain 
β1, TOA τ1 and phase φ1. In this case the range between the receiver and the transmitter will be

1d c=            (17)

When the DP is blocked or cannot be detected, the indirect paths will be detected giving rise to 
substantial ranging errors. Figure 8 and Figure 9 below, show real world example channel profiles for 
both DDP and UDP obtained using a 1GHz bandwidth UWB signal. In the DDP case there is only 50cm 
of ranging error that can be attributed to the limited bandwidth (multipath error) of the signal, whereas 
the UDP case (by inserting a metallic shield in between the transmitter and receiver) introduces more 
than 2m of ranging error for the same setup.

Figure	8.	Sample	DDP	channel	profile



  67

Localization Algorithms and Strategies for Wireless Sensor Networks

Next, we will present a new study on the detection of UDP conditions. The method presented here 
tries to estimate the occurrence of UDP condition hence necessary actions might be taken to mitigate 
the errors associated with UDP regions by employing proper adjustments to ranging data.

UDP Identification

Another open problem in the field of localization and positioning is the problem of identification of the 
channel profiles which exhibit unexpected large ranging errors. In traditional localization the distance 
measurements from different RPs were incorporated into the localization algorithm without mitigating 
the effects of ranging error. Therefore, the accuracy of the localization system would degrade drasti-
cally when problem of UDP occurred. This part investigates different techniques for identification of 
these channel profiles (UDP identification) with large ranging errors. We have used propagation pa-
rameters of the wireless channel and observed channel profile at the receiver side to decide whether a 
channel profile is in UDP conditions (Heidari et al., (2007a, 2007b)). To illustrate the effectiveness of 
such identification of channel profiles with UDP conditions, we set up an experiment with very limited 
number of RPs and compared the performance of the traditional algorithm with the proposed algorithm 
based on UDP identification. In the proposed algorithm we suggest to adjust the value of the distance 
measurement once a channel profile is identified to be in UDP conditions. The adjustment is performed 
by subtracting a correction value from the distance measurement (Heidari et al., (2007a, 2007b)). The 
amount of the correction value is determined based on predefined distributions of the ranging error in 
the typical environments similar to the building under study.

As discussed in the previous sections, the most important and distinguishing parameter in TOA-based 
localization system is the presence of the DP component. Detecting the DP component results in accurate 
ranging estimate of the true distance between the antenna pair. On the other hand, the erroneous estima-
tion of the distance of the antenna pair results in large ranging error observed by the localization system 
and drastically degrades the performance of such systems. Therefore, we face two hypotheses:

Figure	9.	Sample	UDP	channel	profile
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where H0 denotes the DDP hypothesis, which indicates that the channel profile can effectively be used 
for localization, and H1 denotes the UDP hypothesis, which indicates that the channel profile is not ap-
propriate for being used for localization purposes.

There are two types of metrics being extracted from channel profile which can be utilized in iden-
tification of UDP conditions. The first class of metrics, is the time delay characteristics of the channel 
profile, while the second class deals with power characteristics of the channel profile. We can also utilize 
a hybrid metric, consists of time and power, in order to classify the receiver location.

Time Metrics

Delay information encrypted in the channel profile is our first time metric to investigate. Amongst all 
of the delay metrics the mean excess delay of the channel profile is the easiest to find and perhaps the 
most effective metric, relatively, to efficiently identify the UDP conditions. We used a Ray-Tracing (RT) 
database for modeling the different distributions of mean excess delay in this section. Mean excess 
delay is defined as the
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where î and ai represent the TOA and complex amplitude of the ith detected path, respectively, and 
Lp represents the number of detected peaks. Conceptually, it can be observed that profiles with higher 
mean excess delay are more likely to be UDP conditions.

Power Metrics

RSS is a simple metric that can be measured easily and it is measured and reported by most wireless 
devices. For example, the MAC layer of IEEE 802.11 WLAN standard provides RSS information from 
all active access points (APs) in a quasi-periodic beacon signal that can be used as a metric for localiza-
tion (Kanaan et al., 2006b)
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For identification, we used r = −Ptot which is referred to as power loss. It can be observed that profiles 
with higher power loss are more likely to be UDP conditions.

Hybrid Time/Power Metric

Although, each time or power metric can be used individually to identify the class of receiver locations, 
but one can form a hybrid metric to achieve better results in identification of the UDP conditions. Here, 
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we propose to use a hybrid metric consisting of TOA of DP component and its respective power as the 
metric to identify the UDP conditions. Mathematically

hyb FDP FDPP= −          (21)

where zhyb represents the metric being extracted. It can be shown that the desired metric can be best 
modeled with Weibull distribution.

Binary Hypothesis Testing

Knowledge of the statistics of τm, r, and zhyb  enables us to identify the UDP conditions. In order to do 
so binary likelihood ratio tests can be performed to select the most probable hypothesis (Heidari et al., 
2007a). For this purpose, we picked a random profile and extracted its respective metrics. The likelihood 
function of observed RMS delay spread,τmi, for DDP condition can then be described as

0 r 0( | ) P ( | )
i im mL H H=         (22)

Similarly, the likelihood function of observed mean excess delay, τmi , for UDP condition can be 
described as

1 r 1( | ) P ( | )
i im mL H H=         (23)

The likelihood ratio function of τm can then be determined as
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The defined likelihood ratio functions are the simplified Bayesian alternative to the traditional hy-
pothesis testing. The outcome of the likelihood ratio functions can be compared to a certain threshold, 
i.e. unity for binary hypothesis testing, to make a decision
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Similar procedure takes place to obtain the other likelihood ratio functions. Each of the above likeli-
hood ratio tests can individually be applied for UDP identification of an observed channel profile. The 
outcome of the likelihood ratio test being greater than unity indicates that the receiver location is more 
likely to be a DDP condition and can appropriately be used in localization algorithm while the outcome 
less than unity indicates that the profile is, indeed, more likely to belong to UDP class of receive loca-
tion; hence, the estimated dFDP has to be remedied before being used in the localization algorithm. 

To use the likelihood functions more effectively, we can combine the functions and form a joint 
likelihood function. Using the distributions obtained from RT database for UDP identification we can 
exploit τm ,r and zhyb  distributions and their respective parameters obtained from RT channel profiles to 
form the joint density function. Assumption of the independence of the likelihood functions leads to a 
suboptimal combined likelihood function defined as
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( , , ) ( ) ( ) ( )m hyb m hybr rΛ = Λ Λ Λ        (26)

For the simulation of the accuracy of the UDP identification we set up a small experiment that con-
sisted all the RT channel profiles existing in our database. We used channel profiles, including the ones 
used for obtaining the parameters, for UDP identification and recorded the percentage of accuracy of 
each method. The results of the accuracy of the likelihood hypothesis tests, individually and as a joint 
distribution, are summarized in Table 1.

It can be observed that the accuracy of using individual metrics for identification of UDP conditions 
is about 70% while combining the metrics for UDP identification can achieve 90% of accuracy.

LOcALIZATION AND TRAcKING IN THE AbsENcE OF DIREcT PATH

The previous part introduced the concept of UDP condition and its effect on the TOA estimation prob-
lem. Furthermore, a study describing the identification of UDP has also been given in order to predict 
the occurrence of such conditions in order to mitigate the errors associated with it. In this part we will 
focus on methods that try to alleviate the UDP problem by the exploitation of indirect paths in regions 
of UDP  and the concept of cooperative localization for a WSN. 

Exploiting Non-Direct Paths

The existence and detectability of DP is essential for accurate ranging estimates in TOA based systems 
as stated earlier. However, since the availability of DP cannot be guaranteed for typical indoor localiza-
tion systems, other alternatives should be considered to improve ranging accuracy. One of them is to 
exploit the multipath components in the channel. 

Multipath components might be used to remedy UDP conditions if they exhibit steady behavior in 
the region of interest. Figure 10 illustrates the basic principle underlying the relationship between the 
TOA of the direct path and a path reflected from a wall, for a simple two path scenario. As the mobile 
receiver moves along the x-axis, the change in the distance in that direction is related to the length of the 
DP by cos DPdx dl= . As the geometry of the  shows, for the reflected path we also have cos

nP
dx dl= . 

Therefore, we can calculate the change in the length of the direct path from the change in the reflected 
path, using

cos
cosnDP Pdl dl=    or   

cos( ) ( )
cosnDP Pd TOA d TOA=      (27)

Table	1.	Accuracy	of	the	likelihood	hypothesis	test

Likelihood Ratio Correct Decision

τm 70.85 %

r 67.06 %

zhyb 
69.73 %

( , , )m hybrΛ 89.29 %
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In other words, knowing the angle, β, between the arriving path and direction of movement and the 
angle, α, between the direction of movement and the DP, we can estimate the changes in the TOA of 
the DP from changes in the TOA of the reflected path. A study based on this principle is introduced by 
Akgul & Pahlavan (2007).

In order to use a path other than the DP for tracking the location, we should be able to identify that 
path among all other paths, and the number of reflections for that path should remain the same in the 
region of interest. In the simple two path model shown in Figure 10, the second path consistently reflects 
from one wall as we move along the region and hence we can identify that path easily because it is the 
only path other than the DP. Since both conditions hold for the second path, the behavior of the TOA 
of that path, shown in Figure 10-b, is smooth and we can use it for tracing the DP. In realistic indoor 
scenarios, in the absence of direct path, we have numerous other paths to use and the simplest paths to 
track are the first detected path (FDP) and the strongest path (SP).

With regard to channel behavior, we need to look into the principles underlying this behavior to 
learn how to remedy the situation. The basic problem is path-indexing changes, and the rate of path 
indexing exchange is a function of number of paths in the impulse response. The number of paths can 
be reduced by restricting the AOA of the received signal using a sectored antenna.  Using sectored 
antennas to restrict the AOA provides two benefits: (I) it reduces the number of multipath components 
and hence reduces the path index crossing rate, facilitating improved tracking of specific paths in the 
channel profile; (II) it allows a means for estimating the angle of the arriving path needed in (27). Figure 
11 shows the behavior of the SP at a receiver using sectored antenna with a variety of aperture angles. 
Details of this setup have been outlined by Pahlavan et al., 2006.

Figure 11 shows the ideal behavior of different paths without bandwidth considerations as a receiver 
moves along the left segment of the rectangular route. The blue line shows the actual distance and the 
blue line with star marker shows the behavior of the FDP, which in this case is also the strongest path.  
The receiver starts in a DDP condition, then moves to a UDP region, and then returns to another DDP 
area. In the DDP regions the DP, FDP and the SP are the same and the range estimate is accurate and 
consistent (steady).  In the UDP region, the FDP, which is also the SP, remains steady for short periods 
but due to the path index changes of the FDP it cannot maintain its steadiness and it experiences about 
ten transitions of the path index or reflection scenario for the FDP. This high rate of transitions is due 

Figure	10.	(a)	Basic	two	path	reflection	environment;	(b)	Relation	between	the	TOA of multipath and 
DP
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to the large number of multipath components and we can reduce these components by using sectored 
antennas to limit the AOA of the paths.

Figure 11 also shows the behavior of the SP in three neighboring 5 degree sectors along a UDP 
region. These are three of the 72 ideal 5 degree sectors assumed in this example. The SP at the start of 
the UDP region is in sector 61, and then it moves to sectors 62 and 63.  As the SP moves among these 
sectors it has a steady behavior with no change in path index, which we can use for the detection of the 
TOA of the DP.  

The discussion above shows the potential for the implementation of ranging using non-direct paths 
with an ideal sectored antenna with 5 degrees aperture angle for each sector and a simple algorithm 
which traces the strongest path as it moves from one sector to the next neighboring sector. Development 
of more practical algorithms to implement this concept with finite bandwidth and realistic antennas will 
require significant additional research.

cooperative Localization

Background

The previous sections have provided an understanding of the different traditional approaches to the 
localization problem. It is evident that the localization accuracy depends on the ranging metric, deploy-
ment environment (which affects the ranging error statistics), and the relative geometry of the sensor 
node to the anchors. The major difference between traditional localization and WSN localization is 
cooperative localization. Cooperative localization refers to the collaboration between sensor nodes to 
estimate their location information. In traditional wireless networks, nodes can only range to specific 
anchors. As a result, nodes that are beyond the coverage of sufficient anchors fail to obtain a location 
estimate. In a cooperate WSN, however, nodes do not need to have a single-hop connection to anchors 
in order to localize. Cooperative localization makes propagating range information throughout the net-

Figure	11.	UDP	region



  73

Localization Algorithms and Strategies for Wireless Sensor Networks

work possible. Due to random deployment in a WSN, some parts of the network may still be isolated or 
may not have the required number of connections to nearby nodes (hence ill-connected), which further 
introduces limitations in position estimation. Obviously, increasing the sensor node density can reduce 
the probability of isolated sub-networks, but this approach has its own limitations. With increased range 
information cooperative localization has the following advantages: The first is that the coverage of the 
anchor nodes to the sensor nodes increases substantially compared the traditional counterpart. Second, 
the increased range information between the nodes allows for improvements in localization accuracy. 

In two-dimensional localization we need at least three links or connections to reference terminals 
with known locations. These links may have different qualities of estimate for the distance between the 
reference and target terminals, depending on the availability of direct path in the channel. In cooperative 
precise localization in multipath-rich environments, we simply avoid ranging estimates reported from 
the links with UDP conditions. In other words the redundant information provided by the additional 
reference points is used to reduce the localization error.  This situation is common in ad-hoc and sensor 
networks where we have a fixed infrastructure of known reference points for positioning and a number 
of mobile users in the area. When we want to locate a mobile terminal, in addition to the distances from 
the respective fixed reference points, we can also use the relative distances from other mobile users. We 
refer to this approach as cooperative localization since the localization is conducted through a coop-
erative method. A similar approach is also used for general localization in sensor and ad-hoc network 
when we have a limited number of dispersed references and a number of ad-hoc sensor terminals with 
less than an adequate number of connections to reference points (Savares et al., 2001; Savvides et al., 
2005). For general localization, we only need the whereabouts of the terminals and the literature in that 
field does not address the large error caused by UDP conditions. The concept introduced in this part 
uses the redundancy of the links embedded in the sensor and ad-hoc network environments to achieve 
precise indoor localization.  

Figure 12 shows a positioning scenario with three reference transmitters in a selected office build-
ing and a loop-route scenario. The transmitter TX-1 located in a large laboratory on the left side of the 
building has UDP conditions caused by the RF-isolation chamber in 40% of locations around the loop, 
transmitter TX-2 located in the small office on upper parts of the building layout, covers the entire loop 
without any UDP location, and transmitter TX-3 located in the lower corridor has around 50% UDP 
conditions around the loop caused by the elevator. The route estimation-1 in Figure 12 shows the results 
of location estimation using the traditional least square algorithm (Pahlavan et al., 2006) with the three 
known reference transmitters along the loop. Whenever the direct path is present, for example in the 
lower and right hand routes, the DME is small. As we have one or two UDP conditions for our three 
links to the references, for example in the upper route, the DME is substantially large. This observation 
suggests that whenever direct path is available for all links we can achieve precise localization, but as 
soon as one of the links loses the direct path we have large localization errors. In other words, if we 
avoid UDP conditions we can achieve precise positioning. Therefore, if we have more than the minimum 
number of references, assuming we can detect the UDP conditions, we can avoid links with UDP and 
achieve precise localization. A method of UDP detection and identification will also be presented at 
the end of this chapter.

To demonstrate the effectiveness of this approach, we consider an example where we have two other 
RPs, transmitter TX-4 and transmitter TX-5, which are located in good positions, where each has three 
direct path connections to the main reference transmitters. As shown in Figure 12, when we use the 
three main reference transmitters to estimate the location of transmitter TX-4 and transmitter TX-5 we 
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have very good estimated locations for them. In an ad-hoc sensor environment we can assume that our 
target receiver moving along the loop route can also measure its distances from transmitter TX-4 and 
transmitter TX-5. In this particular example, as shown in the figure, these ranging estimates are also 
very accurate because they are based on the availability of the direct path. The route estimation-2 in 
Figure 12 shows the estimate of location for the mobile terminal as it moves along the loop when it uses 
the estimated locations of transmitter TX-4 and transmitter TX-5 and the actual location of transmitter 
TX-2 to locate itself with the traditional least squares algorithm. As shown in Figure 12, our estimates 
are now substantially more accurate. The drastic improvement in the accuracy of localization is a result 
of avoiding UDP conditions and taking advantage of the redundancy of the ad-hoc sensor networks to 
achieve precise cooperative localization.

In the above example, we showed the potential advantage of using the redundancy in sensor and ad-
hoc networks to achieve precise cooperative positioning. In practice, we need to develop algorithms for 
implementation of this concept. These algorithms need the intelligence to discover the quality of ranging 
estimates and possibly occurrence of the UDP conditions to use them for positioning. The algorithms 
for general cooperative localization first suggested in (Savares et al., 2001) and later on discussed in 
the follow up literature (Gezici et al., 2005; Savvides et al., 2005) are not applicable to our approach. 
We need new algorithms to address specific methods to handle the behavior of the DME errors in the 
absence of direct path, which is reported by Alavi and Pahlavan (2006). We have to find techniques 
for relating a quality of estimate to each ranging and positioning estimate in order to develop precise 
cooperative localization algorithms for sensor and ad-hoc networks. These algorithms should take 
advantage of redundancy to avoid unreliable reference sources and achieve robust precise localization. 
More research in this area is needed for the design of algorithms that take account of different radio 
propagation conditions.

Figure	12.	Cooperative	localization
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Challenges Facing WSN Localization Algorithms

The major challenges facing WSN localization can be categorized into network and channel parameters. 
When considering network parameters, localization is usually constrained by the size (i.e., the number 
of nodes and anchors), the topology, and the connectivity of the network. Anchors or beacons are sensor 
nodes that are aware of their locations (usually through GPS or pre-programmed during setup) and they 
are necessary for WSN applications that require localization with respect to an absolute global frame of 
reference, e.g., GPS. Network connectivity is determined by node density, which is usually defined as the 
number of nodes in a meter square (nodes/m2). A network with a high node density exhibits improved 
localization performance compared to a sparse network. A study related to localization performance vs. 
node density will be presented after this section. Furthermore, in sparse WSNs there is a high probability 
of ill-connected or isolated nodes and in such cases localization accuracy can be degraded substantially. 
Therefore, it is always favorable to increase the node density (higher connectivity information means 
a lower probability of ill-connected networks) to improve the accuracy of localization. However, with 
increased sensor nodes, the error propagates and accumulates from one hop to the next, which can be a 
serious problem in WSN localization algorithms. Error propagation in WSN localization is the accumu-
lation of errors in estimated sensor node positions in each iterative step. When a node transforms into 
an anchor, the error in the range estimates used in the localization process impacts its position estimate. 
When other nodes in the network use this newly transformed anchor, the position error will propagate 
to the new node. Therefore, in several iterative steps, error propagation can substantially degrade the 
localization performance. Finally, the topology and geometric relation between nodes will further add 
limitations to the localization performance. 

The second and most limiting factor affecting WSN localization is the wireless RF channel. Effective 
cooperative localization hinges on the RF ranging technology and its behavior in the deployed environ-
ment. For example, deploying hundreds of nodes in outdoor environments faces different challenges as 
opposed to trying to locate sensors inside a building. WSNs in indoor areas, particularly, face severe 
multipath fading and harsh radio propagation environments, which causes large ranging estimation errors 
that impact localization performance directly. To develop practical and accurate cooperative localization 
algorithms, the behavior of the wireless channel must be investigated and incorporated. Specifically, the 
localization algorithms used to determine the position must be able to assess the quality of the ranging 
estimates and integrate that information into the localization process.

Performance

The performance of WSN localization algorithms can be determined through very well established 
CRLB analysis that has recently attracted attention from different scholars and researchers. The defini-
tions of the bound and thus the analytical derivation involved are similar, but they usually differ in their 
assumptions about the characteristics of the corrupting noise. The details of these different approaches 
for computing the CRLB are beyond the scope of the chapter and the interested reader can find more 
details in (Larsson, 2004; Savvides et al., 2005; Chang & Sahai, 2006). Due to its simplicity and ap-
plicability to sensor networks, we now provide an overview of CRLB analysis provided by Savvides et 
al. (2005) for unbiased estimate of the sensor positions. Although this is not the case in certain environ-
ments, such as indoors, it provides, nonetheless, a very important analytical foundation for analyzing 
the localization performance in WSNs.
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For known anchor locations 1 1[ , , , , , ]T
N N M N N Mx x y y+ + + +=   , we wish to estimate the unknown 

locations of sensor nodes, 1 1[ , , , , , ]T
N Nx x y y=  

. The CRLB provides a lower bound on the error 
covariance matrix for an unbiased estimate of è (Savvides et al., 2005). For a given estimate of the sen-
sor locations ˆ and Gaussian range measurement noise z, the Fisher Information Matrix (FIM) can be 
represented by (Savvides et al. 2005)
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where ( ) is the vector of the actual distances between the sensor nodes corresponding to available 
K measurements. FIM for the specific PDF in  can be written as
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where ( )G  contains the partial derivatives of ( ). The CRLB is then given by
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 =            (31)

More detailed implementation of the CRLB expression can be found in Savvides et al. (2005).
WSN algorithms should then compare the localization performance to the widely available CRLB 

analysis in literature. One important note here is that both the bound and the algorithm performance rely 
mainly on the statistics of the ranging error. Although sensor density and geometry have an impact on 
the performance, the statistics of the ranging error specifically provides the main challenge for accurate 
localization. If the ranging error assumptions taken into the algorithm and the CRLB analysis do not 
reflect the actual behavior of the propagation channel, both the algorithm performance and the bound 
will be non-realistic. For the indoor ranging scenarios where range estimates are not just corrupted by 
zero mean Gaussian noise (a positive bias can corrupt the TOA measurements) we will need to analyze 
CRLB for biased estimates. In the presence of such biases, the Generalized-CRLB (G-CRLB) can be 
obtained instead and it has been derived for traditional wireless networks by Van Trees (1968) and for 
indoor WSNs by Qi et al. (2006). A detailed treatment of this problem is available by Alsindi & Pahla-
van (2008).

A sTUDY OF RP DENsITY AND MsE PROFILING ON WsN LOcALIZATION

In this section, we will be investigating the effects of various parameters that are related to localization 
in sensor networking.

In the first part, we will be showing how RP density affects the localization performance by using 
two different localization algorithms.
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Effects of RP Density on TOA-based UWb Indoor Positioning systems

The performance of UWB indoor positioning systems based on TOA techniques is generally affected 
by the density of RPs, as well as UDP conditions. For a fixed number of RPs, the performance of some 
indoor positioning algorithms tends to degrade as the size of the area is increased, i.e. the RP density is 
decreased. In this part, we evaluate the effects of RP density on the performance of different position-
ing algorithms in the presence of empirical distance measurement error (DME) models derived from 
UWB measurements in typical indoor environments. We then present functional relationships between 
RP density and positioning mean-square error (MSE) for these algorithms. These relationships can be 
used for more effective indoor positioning system design and deployment. Finally, we investigate the 
effects of bandwidth with respect to improving the performance of these algorithms. 

In addition to the inherent stochastic variations of the channel (which can induce distance measure-
ment error, or DME), the indoor environment itself also does not necessarily stay static. Indoor areas can 
be remodeled, made larger, or portions of it can be rebuilt with different building materials. This will 
change the RP density and by extension, the estimation accuracy that we can obtain from the network 
used for positioning. The RP density, denoted by ρ, can be viewed as a measure of the number of RPs 
per unit area, and is defined as:

/N A=           (32)

where N is the number of RPs covering a given indoor area, and A is the size of the area, generally given 
in m2. It is noted in a prior work by Kanaan and Pahlavan (2004b) that given a fixed	number of RPs, the 
performance of certain positioning algorithms tends to degrade as the size of the area to be covered is 
increased (i.e the RP density is decreased). This observation makes intuitive sense since the DP will be 
attenuated more as the distance between the RP and the sensor is increased. This will give rise to more 
DME which, in turn, will lead to degraded location estimation performance. Although the effects of RP 
density on location estimation accuracy has been known, the exact nature of the functional relationship 
between these two quantities has not, to the best of our knowledge, been formulated to date. This raises 
a valid question: why is it important to characterize this relationship? The answer fundamentally lies in 
the fact that different indoor positioning applications have different requirements for estimation accuracy. 
For example, in a commercial application (such as inventory tracking in a warehouse), low accuracy 
might be acceptable. However, in a public-safety or military application (such as keeping track of the 
locations of firefighters or soldiers within a building), much higher accuracy would be needed. This 
implies that the RP densities required for these two application domains would be different. Knowledge 
of the functional relationship between RP density and estimation accuracy enables a system designer to 
figure out how many RPs are required to meet a given accuracy target, thereby results in a cost-effective 
network deployment. 

The manner in which RP density affects positioning accuracy depends principally on two factors: 
the particular algorithm used for the location estimation, and the DME model. The basic contribution 
of this paper is to explore these kinds of relationships for different positioning algorithms, both to get 
an insight into their performance, and also to provide a useful tool for designers of indoor positioning 
networks. In addition to addressing the above-mentioned issues, this part also extends the study re-
ported by Kanaan and Pahlavan (2004b) in two important ways. First, the performance evaluations we 
undertake are based on DME models obtained from empirical UWB measurements in a typical indoor 
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area, rather than models derived from ray-tracing simulations. Second, since the DME also depends 
on bandwidth (Alavi & Pahlavan, 2003), we also explore the impact of bandwidth on the performance 
of a given algorithm. 

The relationship between RP density and positioning accuracy has been studied, mainly for ad-hoc 
sensor networks. Savarese et al. (2001) have studied positioning in distributed ad-hoc sensor networks 
through cooperative ranging. The paper by Chintalapudi et al. (2004) studies the effects of density 
of RPs on ad-hoc positioning algorithms employing both distance and bearing measurements. While 
these works have identified the relationship between positioning accuracy and RP density, they have not 
explicitly presented that relationship mathematically. Also, the DME models used in these studies are 
generally very simple. Here, we seek to explore the functional dependency of the positioning accuracy 
(as expressed by the mean square error or MSE) on RP density in the presence of DME models based 
on empirical measurements within actual indoor environments. 

UDP conditions generally occur in cases where there are multiple walls and/or metallic objects be-
tween the transmitter and the receiver. As a result, the DP can experience severe fading (Pahlavan et al., 
2002). It has also been observed that UDP conditions tend to occur along coverage boundaries or areas 
with coverage deficiencies (Alavi et al., 2005). As mentioned above, UDP occurs only on occasion and 
when it does, it is the dominant source of error for distance measurements. However, the DDP error is 
always present. Based on extensive UWB measurements, a DME model is introduced by Alavi et al. 
(2005). The model is given by: 
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where ˆ
id  is the observed distance measurement from the i-th RP, and ξDDP,w and ξUDP,w are random vari-

ables that characterize the DDP and UDP-based DME respectively. The distributions of ξDDP,w and ξUDP,w 
have been observed to be Gaussian and dependent on bandwidth, i.e, ξDDP,w = N(mDDP,w;	σ
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 DDP,w for ξDDP,w and σ2 UDP,w for ξUDP,w) are a function of the system bandwidth, 

w, used to make the TOA-based distance measurements (hence the subscript w). The parameters for the 
distributions, as a function of the bandwidth w, are listed in Table 2. 

Additionally, it has been determined through measurements that the probability of UDP occurrence 
PUDP,w increases as the bandwidth is increased (Alavi et al., (2005). Observations indicate that PUDP,w 
values also depend on the actual distance between the transmitter and the receiver. Specifically, 
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The error modeling introduced here is detailed by Alavi et al. (2005). This model can be compared 
to the work by Alavi & Pahlavan (2003) and has a fundamentally different approach. Alavi & Pahla-
van’s model (2003) was developed based on Ray-Tracing results and categorized the conditions of the 
channel as Line-of-sight / Obstructed line-of-sight (LOS/OLOS), assuming that in the OLOS case, we 
always have the UDP case. However, the introduced DME model is based on UWB measurement data 
and classification of the channel as DDP and UDP, as this approach reflects the behavior of the indoor 
channel in a more realistic manner.
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Algorithms

We investigate the effects of RP density on the performance of two algorithms using simulations: the 
Closest-Neighbor with TOA Grid (CN-TOAG) (Kanaan & Pahlavan, 2004a), and the Davidon LS al-
gorithm (Davidon, 1968).

CN-TOAG Algorithm

In essence, the CN-TOAG algorithm estimates the location of the sensor S, by minimizing the follow-
ing objective function: 

( )2
2 2
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k k kk
f x y d x X y Y

=
= − − + −∑      (35)

where (Xk;	Yk) is the location of the k-th RP, dk is the observed distance measurement from the k-th 
RP and (x;	y) is the unknown location of the sensor to be estimated. The estimated location is the one 
that minimizes (35). In order to find the minimum, one needs to solve the following partial differential 
equation:

( , ) ( , ), 0f x y f x y
x y

 
= 

 
        (36)

Due to the complexity of f(x;	y) in (35), it is not feasible to solve (36) analytically. Therefore, the 
CN-TOAG algorithm tries to solve it numerically using the concept of a TOA grid (Kanaan & Pahlavan, 
2004a). The size of the grid, as given by the spacing between grid points, h, is a major determinant 
of performance for this algorithm. Specifically, values of h below a certain value can result in better 
performance than the LS algorithm (Kanaan & Pahlavan, 2004a).

Davidon Least-Squares Algorithm

The particular instance of the LS algorithm that has been used for our evaluations is the one by Davidon 
(1968), which attempts to minimize the objective function:

Table	2.	Parameters	for	DDP	and	UDP-based	DME

w(MHz) 500 1000 2000 3000

mDDP,w (m) 0.21 0.09 0.02 0.004

σDDP,w (cm) 26.9 13.6 5.2 4.5

mUDP,w (m) 1.62 0.96 0.76 0.88

σDDP,w (cm) 80.87 60.45 71.53 152.21

PUDP_far,w 0.33 0.62 0.74 0.77

PUDP_close,w 0.06 0.06 0.07 0.12
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in an iterative manner using the following relation:

1 ( )k k k kg+ = −x x H x          (38)

where Hk represents an approximation to the inverse of the Hessian of f(x), G(x), which is defined as:
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G x          (39)

and g(x) is the gradient of f(x), defined as:

( ) ( )( ) ,f fg
x y

 
=  

 

x xx         (40)

The following relation defines when the computations will be terminated:

1 1( ( )) ( ( ))T
k k k kg g+ += x H x         (41)

so that the iterations will stop when ηk ≤	ε, where ε	is a small tolerance value.

simulation Platform

Figure 13 shows the general system scenario, where a regular grid arrangement of RPs is assumed to be 
available. The use of the regular grid arrangement for the RPs is common in indoor wireless networks, 
as this approach often provides adequate coverage (Unbehaun, 2002). We also note that this system 
scenario is a fundamental building block for certain indoor ad-hoc sensor networks, and could be a con-
sidered a realistic deployment scenario for such scenarios (Stoleru & Stankovic, 2004). The important 
parameter that determines performance is not the absolute number of RPs, but the ratio of the number 
of RPs to the area, as given by (32).

Here, we consider varying sizes of L for each algorithm. By varying the room size while keeping the 
number of RPs fixed at each of the four corners, we evaluate the performance of positioning algorithms 
as a function of RP density in the scenario and also show the effect of system bandwidth on overall 
performance. Synchronization mismatch between the transmitter and receiver is assumed to be small. 
For each algorithm, a total of 5000 uniformly distributed random sensor locations are simulated for 
different bandwidth values and for varying room dimensions. In line with the FCC’s formal definition 
of UWB signal bandwidth as being equal to or more than 500 MHz (FCC, 2002), we will present our 
results for bandwidths of 500, 1000, 2000, and 3000 MHz. Once a sensor is randomly dropped in the 
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area, the actual distance measurements, di, from each RP at the corners are individually corrupted 
with DME, as given in (33). The corrupted distance measurements are then fed into the positioning 
algorithm to get the position estimate. As noted by Kanaan & Pahlavan (2004a), the performance of the 
CN-TOAG algorithm is dependent on the size of the TOA grid, as determined by the bin size, h, which 
for the purposes of this study, was fixed at 0.3125 m.

Results

The results are shown in Figure 14, Figure 15, and Figure 16 . From the Figure 14 and Figure 15 we can 
immediately see that as the node density is increased, the MSE decreases. This is an expected result, 
since a finer installation of the RPs will reduce the probability of the occurrence of UDP conditions and 
hence will result in better positioning accuracy. Another important observation is that as the bandwidth 
of the system is increased, the estimation accuracy is also increased with the exception of 3 GHz. In-
creasing the system bandwidth provides a better time resolution, thereby ensuring accurate estimation 
of the TOA of the DP. However, increasing the bandwidth beyond a certain point (2000 MHz in this 
case) also gives rise to increased probability of UDP conditions due to the faster attenuation of higher 
bandwidth signals. In Figure 16, we compare the performance of LS and CN-TOAG as a function of 
RP density using a system bandwidth of 2000 MHz. This bandwidth was arbitrarily selected, since 
it appears to be the bandwidth where both algorithms perform best. The results clearly indicate that 
CN-TOAG has better performance, particularly for higher values of ρ. Since CN-TOAG is based on the 
concept of a TOA grid, increasing ρ	(i.e. decreasing the area) for a fixed bin size h brings the grid points 
closer together. This, in turn, places a much tighter bound on the positioning error for CN-TOAG. By 
examining the results of the simulation, we can derive a mathematical relation between RP density and 
MSE by applying a third order polynomial fit to the results. Our choice of the third order polynomial 
was simply influenced by the fact such a fit showed better agreement with simulation results than, say, 
a second-order fit. We have chosen to derive these relations on the basis of Monte-Carlo simulations, 

Figure	13.	General	system	scenario
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rather than analytically, in order to be able to compare and contrast the performance of the LS and CN-
TOAG algorithms. It is certainly possible to derive these relations analytically for the LS algorithm, but 
not necessarily for CN-TOAG due to the complexity of the objective function of (35). These relations 
can be a valuable tool in determining the RP density for a required positioning accuracy. The 3rd order 
polynomial is given as:

3 2
3 2

1 0MSE a a a a= + + +         (42)

where ai (i ∈	{1,2,3,4}) denote the polynomial coefficients. Table 3 and Table 4 show the coefficient val-
ues for the two algorithms. These values are dependent on the DME model used; however, we note that 
the DME model parameters are still representative of typical indoor environments. A simple numerical 

Figure	14.	Performance	of	LS	algorithm

Figure	15.	Performance	of	CN-TOAG	algorithm
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Figure	16.	Performance	of	CN-TOAG	and	LS	for	2000	MHz

Table	3.	Coefficients	of	the	3rd	degree	polynomial	fit	for	LS	algorithm

w(MHz) a3 a2 a1 a0
500 -1.20e+07 2.69e+05 -1.98e+03 7.7776

1000 -4.53e+06 1.00e+05 -749.52 3.2647

2000 -4.36e+06 93645 -662.95 2.4484

3000 -1.72e+07 3.60e+05 -2427.4 7.8446

Table	4.	Coefficients	of	the	3rd	degree	polynomial	fit	for	CN-TOAG	algorithm

w(MHz) a3 a2 a1 a0
500 -1.15e+07 2.42e+05 -1771 7.0203

1000 -4.61e+06 97736 -725.22 3.1171

2000 -3.51e+06 76142 -557.93 2.2317

3000 -1.04e+07 2.34e+05 -1728.7 6.4152

example illustrates how these relations could be used. Suppose we have a 900 m2 indoor area where we 
would like to implement a positioning system using CN-TOAG at a bandwidth of 1 GHz, and we would 
like the MSE to be no more than 1.5 m2. Referring to Figure 15, we see that the corresponding value of 
ρ	should be no less than 0.004. Using our knowledge of the size of the area, the value of ρ, and (32), we 
see that we need to have a minimum of 4 RPs in order to ensure satisfactory performance.

conclusions

In this part, we have investigated the performance of two indoor positioning algorithms and compared 
their performance as a function of RP density and system bandwidth. We also presented mathemati-



84  

Localization Algorithms and Strategies for Wireless Sensor Networks

cal relations between RP density and achievable MSE and showed how they can be used to ensure the 
required performance with a given indoor positioning network scenario. 

The second part focuses on an analysis tool called MSE profiling developed to benchmark the per-
formance of an indoor positioning system in the presence of UDP conditions.

Performance benchmarking of TOA-based UWb Indoor Geolocation systems 
Using MSE Profiling

The presence of UDP conditions presents significant challenges for TOA-based indoor geolocation, 
since it introduces major errors into distance measurements. Therefore, it is critical to characterize the 
performance of indoor geolocation systems in the presence of UDP conditions. Until now, however, 
there has been no standard method of performance benchmarking for such cases. Towards that end, we 
present an analysis tool, known as the MSE Profile, that can aid in this task. We use the MSE Profile 
to analyze the performance of two TOA-based geolocation algorithms and show how the MSE Profile 
can be used to gain insight into their performance, in the presence of DME models derived from UWB 
measurements. 

The accuracy of the location estimate can be viewed as a measure of the Quality of Service (QoS) 
provided by the geolocation system. Different location-based applications will have different require-
ments for accuracy. In a military or public-safety application (such as keeping track of the locations of 
fire-fighters or soldiers inside a building), high accuracy is desired. In contrast, lower accuracy might be 
acceptable for a commercial application (such as inventory control in a warehouse). In such cases, it is 
essential to be able to answer questions like: “what is the probability of being able to obtain an MSE of 
1 m2 from an algorithm x in any building configuration?” or “what algorithm should be used to obtain 
an MSE of 0.1 cm2 in any building configuration?”. Answers to such questions will heavily influence 
the design, operation and performance of indoor geolocation systems. Here, we propose the use of the 
MSE	Profile	to answer these kinds of questions and illustrate its use with examples. 

Although indoor geolocation is a relatively new area, there is a large body of literature on perfor-
mance analysis of geolocation systems in general. A number of researchers have studied geolocation 
systems intended primarily for outdoor deployments. A number of different performance metrics have 
been defined and used. Foy (1976) used the covariance matrix of the position estimation error as a per-
formance metric for the evaluation of Taylor-Series algorithm for geolocation. Torrieri (1984) formally 
defined and used the circular error probability (CEP), which is a measure of the uncertainty in the loca-
tion estimate x̂, relative to its mean, E{x̂}. The calculation of the CEP is, in general, quite complicated. 
This issue can be alleviated by making suitable approximations. However, from a QoS perspective, the 
most we can say after calculating the CEP is that the estimate is likely to be within x̂+CEP	with prob-
ability 1/2. The CEP, therefore, will only be of limited use in answering the types of questions given 
in the previous section. The work of Deng and Fan (2000) and others working in the E-911	field bears 
the closest resemblance to our work in the sense that it considers the CDF of the MSE in order to assess 
the performance of outdoor cellular positioning systems in relation to E-911 requirements outlined by 
the FCC. However, this cannot be directly applied to our work, as we specifically consider the effect 
of varying UDP conditions on UWB indoor geolocation system performance. Therefore, to the best of 
our knowledge, our approach to performance analysis of such systems is unique.

Given the variability of the indoor propagation conditions, it is possible that the distance measure-
ments performed by some of the RPs will be subject to DDP errors, while some will be subject to UDP-
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based errors. The DDP/UDP errors can be observed in various combinations. For example, the distance 
measurements performed by RP-1 in Figure 13 may be subject to UDP-based DME, while the measure-
ments performed by the other RPs may be subject to DDP-based DME; we can denote this combination 
as UDDD. Other combinations can be considered in a similar manner. Since the occurrence of UDP 
conditions is random, the performance metric used for the location estimate (such as the MSE) will also 
vary stochastically and depends on the particular combination observed. For the four-RP case shown 
in Figure 13, it is clear that we will have the following distinct combinations: UUUU, UUUD, UUDD, 
UDDD, and DDDD. Each of these combinations can be used to characterize a different type of building 
environment. The occurrence of each of these combinations will give rise to a certain MSE value in the 
location estimate. This MSE value will also depend on the specific algorithm used. There may be more 
than one way to obtain each DDP/UDP combination. If UDP conditions occur with probability Pudp, then 
the overall probability of occurrence of the i-th combination, Pi can be generally expressed as:

, ,

,

(1 )udp i udp iN N N
i udp udp

udp i

N
P P P

N
− 

= − 
 

       (43)

where N is the total number of RPs (in this case four), and Nudp,i is the number of RPs where UDP-based 
DME is observed. Combining the probabilities, Pi, with the associated MSE values for each combina-
tion we can obtain a discrete CDF of the MSE. We call this discrete CDF the MSE	Profile. In the next 
section, we will illustrate the use of the MSE Profile with examples.

The algorithms used in this part have already been introduced in the first part. Hence, the results 
will be presented after introducing the simulation platform.

simulation Platform

We consider the system scenario in Figure 13 with L = 20 m for each algorithm. A total of 1000 uni-
formly distributed random sensor locations are simulated for different bandwidth values. Similar to the 
previous study, we will present our results for bandwidths of 500, 1000, 2000, and 3000 MHz. For each 
bandwidth value we also simulate different combinations of UDP and DDP-based DMEs for each RP, 
specifically UUUU, UUUD, UUDD, UDDD, DDDD. Once a sensor is randomly placed in the simulation 
area, each RP calculates TOA-based distances to it. The calculated distances are then corrupted with UDP 
and DDP-based DMEs in accordance with (33). The positioning algorithm is then applied to estimate 
the sensor location. Based on 1000 random trials, the MSE is calculated for each bandwidth value and 
the corresponding combinations of UDP and DDP-based DMEs. The probability of each combination 
is also calculated. For example, take the combination UUUU for a bandwidth of 3000 MHz, where two 
of the RPs are assumed to be far from the sensor, and the other two are assumed to be close. Using the 
values for Pudp,close, and Pudp,far, we can obtain the probability of the combination as 0.0085. The means 
(denoted by mDDP,w for ξDDP,w and mUDP,w for ξUDP,w) and standard deviations (denoted by σ2

 DDP,w for ξDDP,w 
and σ2

 UDP,w for ξUDP,w) are a function of the system bandwidth used to make the TOA-based distance 
measurements. The parameters for the distributions, as a function of the bandwidth w, are listed in Table 
2. As noted by Kanaan & Pahlavan (2004a), the performance of the CN-TOAG algorithm is dependent 
on the size of the TOA grid, as determined by the the bin size, h, which for the purposes of this study, 
was varied between 1.25 m down to 0.3125 m for a total of three different values.
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Results

The results are shown in Figure 17, Figure 18, Figure 19 and Figure 20. Figure 17 and Figure 18 show 
the MSE Profiles for the LS and CN-TOAG algorithms respectively. From these plots, we observe that 
as the bandwidth increases from 500 MHz to 2000 MHz, the range of MSE Profile values gets smaller. 
This correlates with the findings of Alavi and Pahlavan (2006), where it has been observed that the 
overall DME goes down over this specific range of bandwidths. Above 2000 MHz, however, the MSE 
Profile becomes wider as a result of increased probability of UDP conditions (Alavi & Pahlavan, 2006), 
which increases the overall DME. This, in turn, translates into an increase in the position estimation 
error for both algorithms. Using the MSE Profile, we can gain insight into the MSE behavior of a given 

Figure	17.	MSE	profile	for	the	LS	algorithm

Figure	18.	MSE	profile	for	the	CN-TOAG	algorithm
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Figure	19.	Average	MSE	comparison:	LS	vs	CN-TOAG

Figure	20.	Variance	comparison:	LS	vs	CN-TOAG

algorithm under varying amounts of UDP (i.e. different building configurations) by calculating the mean 
and the variance of the MSE for a given bandwidth value. The results of these calculations are shown 
as a function of bandwidth in Figure 19 and Figure 20. These results clearly indicate that CN-TOAG 
can outperform LS as long as h	≤	0.3125 m. In addition, there appears to be an optimal bandwidth for 
both algorithms where the average MSE is minimum. Our results indicate that this bandwidth value is 
1000 MHz. 

conclusions

In the second part, we proposed the use of the MSE Profile to gauge the performance of any indoor 
geolocation algorithm under a variety of building conditions. The MSE Profile has been defined as 
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the CDF of the MSE given the varying severity of UDP conditions across different building environ-
ments. We also showed that the MSE Profile can be used for performance benchmarking of different 
TOA-based indoor geolocation algorithms. We have illustrated its use in analyzing the performance of 
two algorithms: CN-TOAG and LS. We found that the performance exhibited by both algorithms is in 
line with previously reported observations on DME behavior. For the scenario and system bandwidths 
considered, we demonstrated that CN-TOAG can outperform LS as long as the number of points in the 
grid (as determined by the parameter h) is large enough. Specifically, we noted that h needs to be about 
0.3125 m for the case of a 20m x 20m area in order for CN-TOAG to outperform LS. We also showed that 
bandwidth of operation of both algorithms needs to be about 1000 MHz in order to guarantee optimal 
performance across different building configurations.

IMPLEMENTATION AND PRAcTIcAL IssUEs

Even though no particular emphasis is given to a certain type of technology for the implementation 
of previous approaches in order to keep the methodology robust and applicable to a broad range of 
systems, certain aspects of practicality and candidate technologies need to be considered. The success 
of TOA/TDOA based methods depend primarily on the availability and the quality of RF detection 
hardware. Although most common systems such as the IEEE 802.11 WLANs and 802.15.4 are not pri-
marily designed for ranging and localization applications, studies exist that show the feasibility of using 
TOA/TDOA positioning using these systems. The study by Yamasaki et al. (2005) report a positioning 
accuracy of 2.4m in the 67th percentile with a 802.11b system employing TDOA. The important aspect 
of AP synchronization is also discussed in this work. Similarly, Duan et al. (2007) report a range es-
timation error of less than 30cm using the 802.15.4a WPAN standard. The choice of 802.15.4a is also 
suitable for applications requiring low-power and low cost. Ma et al. (2005) discuss the power aspects 
of a 802.15.4 based WSN. The UWB PHY layer of 802.15.4a also offers very precise ranging. Hence, 
802.15.4a would be a good candidate system for the implementation of TOA based localization using 
WSNs. However, considering the limited computing power on the 802.15.4 nodes, direct implementa-
tion of various algorithms may not be feasible. For this reason, a central computing station (a regular 
laptop or a PC) with the required technical specs such as memory and CPU speed might be needed to 
complement the 802.15.4 WSN in order to evaluate the algorithms discussed previously.

cONcLUsION

In this chapter, we presented various aspects of RF and TOA-based localization as applied to WSNs. The 
challenges of the RF channel have been presented along with their impact on localization algorithms. 
Particular attention has been given to wireless channel impairments and indoor TOA based systems. 
The general characteristics of a WSN localization system are discussed and a CRLB expression is also 
given for the performance of cooperative localization. Methods of remedying underlying wireless chan-
nel impairments have been discussed in the context of multipath exploitation along with cooperative 
localization and UDP detection. 
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KEY TERMs

Throughout this chapter the words anchor, reference point, transmitter have been used interchangeably. 
Likewise node, sensor, sensor node, receiver have been used interchangeably.

ANSI  American National Standards Institute
AOA  Angle-of-Arrival
AP   Access Point
AWGN  Additive White Gaussian Noise
CDF  Cumulative Distribution Function
CEP  Circular Error Probability
CIR  Channel Impulse Response
CN-TOAG Closest Neighbor Time-of-Arrival
CRLB  Cramer Rao Lower Bound
DDP   Detected Direct Path
DGPS  Differential Global Positioning System
DME  Distance Measurement Error



  95

Localization Algorithms and Strategies for Wireless Sensor Networks

DOA  Direction-of-Arrival
DP   Direct Path
EKF  Extended Kalman Filter
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
FCC  Federal Communications Commission
FDP  First Detected Path
FIM  Fisher Information Matrix
GLONASS GLObal NAvigation Satellite System
GPS  Global Positioning System
IFT   Inverse Fourier Transform
JTC  Joint Technical Committee
LOS  Line-of-Sight
LS   Linear Squares
MAC  Medium Access Control
ML   Maximum Likelihood
MPC  Multipath Component
MSE  Mean Squared Error
MUSIC  Multiple Signal Classification
OLOS  Obstructed-Line-of-Sight
PCS  Personal Communication System
QoS  Quality-of-Service
RF   Radio Frequency
RMS  Root Mean Square
RP   Reference Point
RSS  Received Signal Strength
RT   Ray Tracing
SNR  Signal-to-Noise Ratio
SP   Strongest Path
TDOA  Time-Difference-of-Arrival
TIA  Telecommunication Industry Association
TOA   Time-of-Arrival
UDP   Undetected Direct Path
UKF  Unscented Kalman Filter
ULA  Uniform Linear Array
UWB  Ultra-Wideband
WAAS  Wide Area Augmentation System
WLAN  Wireless Local Area Network
WSN  Wireless Sensor Network
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AbsTRAcT

Localization	or	geolocation	of	wireless	sensors	usually	requires	accurate	estimates	of	the	distance	between	
nodes	in	the	network.	RF	ranging	techniques	can	provide	these	estimates	through	a	variety	of	methods	
some of which are well suited to wireless sensor networks. Noise and multipath channels fundamentally 
limit the accuracy of range estimation, and a number of other implementation related phenomena further 
impact accuracy. This chapter explores these effects and selected mitigation techniques in the context 
of low power wireless systems.

INTRODUcTION

In this chapter we will discuss techniques for estimating the range between wireless sensor nodes using 
radio frequency (RF) measurements. Localization is a two part process that can roughly be divided into 
a phase where the relationships between nodes are estimated (range or angle) and a phase where these 
relationships are used to estimate locations of the devices. RF ranging, one of the options for the first 
phase, will be the topic of this chapter. In particular, RF time of flight methods where RF propagation 
time is estimated will be considered in depth. Other ranging methods (ultrasonic, sonic, light) have been 
proposed and tested but they are all limited from widespread adoption. Ultrasonic and sonic signals have 
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limited range and do not pass through obstacles well when compared to RF signals. Acoustic systems 
also require the addition of speakers and microphones that are cumbersome for most applications. Light 
based systems require line of sight and are typically directional. Radios are pervasive in WSNs, and 
adding an accurate ranging feature would enable location aware networks in ways that are not possible 
using other technologies (Pahlavan, 2002).

Ranging accuracy is limited by noise, multipath channel effects, clock synchronization, clock frequency 
accuracy, and sampling artifacts. Fundamental performance limits exist due to these error sources, and 
these limits will be discussed qualitatively and mathematically. Signal bandwidth is an important factor 
when considering performance limits, and the impact of varying bandwidth will be shown. 

Ranging methods will be discussed in the context of how well they meet application requirements 
for accuracy, energy consumption, latency, and useful range, and these requirements will be based on 
sample wireless sensor network applications. The major commercial application is asset tracking and 
management in factories, hospitals and other large spaces, and some commercial systems are available 
for these applications. Other applications including network configuration will be considered. 

A number of RF based ranging systems have been proposed and implemented. The most common 
is the Global Positioning System (GPS), but others including cellular phone based systems are also 
widespread. Currently, ultra-wideband techniques are starting to be demonstrated along with more 
advanced narrowband techniques. The methods used and performance capabilities and limitations in 
selected systems will be discussed. 

APPLIcATION REQUIREMENTs

The requirements of a localization system are dependent on the application. This section will discuss 
a few applications to determine requirements on accuracy, latency, useful range, and infrastructure 
complexity of a ranging system. The accuracy requirement is defined to be the maximum error between 
true and estimated position that is acceptable for some percent of all estimates. For example, if 80% 
of estimates must be accurate to within 2 m, then 20% of measurements can have larger error. It is 
important to understand that localization is probabilistic in that the environment among other factors 
randomly degrades the accuracy of a measurement. Latency is the time it takes from when a request for 
a location update is made to when the update is presented to the user for a single device in the network. 
The range requirement is roughly how large of a sphere must one make around any node to find at least 
4 other nodes or infrastructure points in 3D and 3 infrastructure points in 2D. Infrastructure require-
ments impact the cost of a network, and this impact can be considered qualitatively. 

Relationship between Range Accuracy and Location Accuracy

Location accuracy requirements are in terms of difference from estimated location to true loca-
tion as opposed to range accuracy. Localization algorithms and network geometries differ in how 
ranging accuracy translates to location accuracy, and many range based localization methods are 
presented in this book. In order to address the link between location and range accuracy, we apply 
a common method of range based location estimation: the maximum likelihood estimate (MLE) 
of the location based on a set of range estimates. The MLE of the location is found by calculating 
probability density function (PDF) of the location based on each range estimate, multiplying the 
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PDFs together for each range estimate, and finding the point where the resulting joint probability is 
maximized. Consider the case where the PDF of the location given a range estimate is given by f(r-
est|rtrue). If n independent range estimates (rest1

, rest2
,...,restn

) are used to find the MLE of the location, 
then the joint probability distribution of the location is given by the product of the individual PDFs, 

∏=
i

trueestest iii
rrflrf )|()|}({

where l is the location. When )|}({ lrf
iest  is maximized, the corresponding location is the MLE. Fig-

ures 1 and 2 show the results of a random simulation of one simple 2D case when  f(r est|rtrue) is normally 
distributed with parameters (μ=rest, σ). In Figure 1 the cumulative distribution function (CDF) of the 
location error normalized to the root mean square (RMS) ranging error is plotted when there are 3, 4 
and 5 reference points. In Figure 2 the CDF of the location error normalized to the worst case ranging 
error is plotted. When more than 3 reference nodes are available, performance improves significantly 
especially when compared to the worst case ranging error. From this simulation two conclusions result: 
1) increasing the density of nodes with known location is important for improving accuracy; 2) ranging 
accuracy and location accuracy are very similar. Although the location accuracy can be better or worse 
than the ranging accuracy depending on the conditions and localization algorithm used, we will assume 
that location error is equal to the RMS ranging error for simplicity. 

Asset Tracking

In the hospital environment, equipment, staff and patients could all be tagged to increase the efficiency 
and safety of the healthcare environment. There are many cases in which hospitals own many extra 
pieces of equipment in hopes of ensuring that the appropriate items can be located and used quickly. 
Despite this preventive measure much time is often wasted searching for equipment. Because wasted 
time is so costly in terms of both dollars and care, this environment would benefit significantly by lo-
cation aware devices. Everything must be monitored occasionally without tight latency requirements, 

Figure	1.		CDF	of	location	error	normalized	by	
the RMS ranging error

Figure	2.	CDF	of	location	error	normalized	by	the	
worst case ranging error
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but short latency updates of specific items are required. Accuracy must be good enough to ensure that 
the correct room is shown almost all of the time. Given that a typical hospital room is about 4 by 7 m, 
accuracy of better than 1.5m ensures the correct room is indicated 80% of the time. Alarms or query 
targets must be localized within a few seconds, and only one or two devices may be in a room. In order 
to ensure enough connectivity for localization, a range of 15 m is required. 

Large Data Collection Network Configuration 

A primary cost of deploying a large scale wireless sensor network is the installation of nodes and record-
ing node locations. Localization systems can reduce this cost by determining the locations of devices 
after deployment. Latency requirements are minimal in that it is acceptable for the initial network con-
figuration to take hours to complete. The scale of many industrial campuses requires long ranges in the 
hundreds of meters but accuracy requirements depend on the location of the device. Devices outdoors 
can be located with less accuracy and longer range, and indoor devices are more densely populated and 
require the typical 1.5 m accuracy.

security 

Security systems such as radio frequency identification (RFID) operated systems are commonly used 
to grant privileges (e.g. room and building access), and localization systems will be able to enhance 
these capabilities. If the correct person or people are in the correct rooms, privileges can be granted or 
revoked to ensure a secure environment for sensitive information, prison populations and many other 
situations. Latency must be on the scale of a second, and accuracy must ensure correct room identifica-
tion (Anjum, 2005).

Summary of Specifications for Ranging Systems 

Location accuracy, latency, range and infrastructure complexity are quite consistent across a broad 
spectrum of applications. For most networks, inter-node ranges are a few tens of meters and accuracy of 
1.5 m with latency of a few seconds provides a robust solution. Much higher accuracy may be required 
in some applications not discussed here, but it isn’t all that common. Infrastructure points, or nodes, 
can vary in cost by orders of magnitude depending on the ranging method used, and reducing the cost 
of these points is important to a successful location aware wireless sensor network. 

Table	1.	Summary	of	ranging	specifications	for	typical	indoor	and	outdoor	sensor	networks

Specification Value Conditions

Accuracy 1.5 m 80% of estimates indoors

5 m 80% of estimates outdoors

Range >15 m Indoors, through walls

100 m Outdoors, line of sight

Latency < 5 s Including data relay across network 

Infrastructure Cost Low
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AccURAcY LIMITs

The achievable accuracy of ranging systems is limited by four primary factors which are noise, time 
synchronization, sampling artifacts, and multipath channel effects. These factors introduce random, time 
and spatially varying errors into the estimate resulting in reduced accuracy. Frequency accuracy between 
the devices involved in the measurement can also impact ranging system accuracy significantly. Each 
effect can dominate the error under different circumstances, and a system must be designed so that the 
combination of these effects does not degrade accuracy beyond useful limits. Because the introduced 
errors are stochastic, the errors can never be eliminated, but it is possible that measurement techniques 
can be used to mitigate these effects. 

Noise 

Noise and interference introduce unknown errors into measurements. The effect of white noise processes 
such as thermal and electronic noise is well understood and can be quantified. A range measurement 
degraded only by noise is limited in accuracy by the signal energy to noise ratio at the receiver and the 
occupied bandwidth. 

A ranging system suffers in low signal to noise ratio (SNR) environments because the exact time of 
an event cannot be resolved precisely. In a simple example “edge detection” ranging system, the ranging 
signal is a step function sent by the transmitter at t =	0 and the receiver measures the time of the rising 
edge it observes. When this signal is received, the edge time may be detected slightly early or slightly 
late due to noise added to the signal. For RF measurements radio waves move at the speed of light (c = 
3×10 8 m/s) meaning that a distortion of just 10ns results in 3m of measurement error. The speed of this 
rising edge at the receiver is proportional to the bandwidth of the communications system, and wider 
bandwidth typically results in better performance. Because the noise amplitude increases as the square 
root of bandwidth and the signal transition speed increases linearly with bandwidth, a faster rising edge 
is more tolerant to noise. This qualitative understanding of how SNR and bandwidth affect the noise 
performance of ranging is useful, but a quantitative limit of ranging accuracy in a noisy environment 
is needed. 

The mathematical expression that links SNR and bandwidth together to give a bound on ranging 
performance can be derived from the Cramér-Rao lower bound (CRB). The CRB can be calculated for 
any unbiased estimate of an unknown parameter. Van Trees (1968) discusses ranging as a parameter 
estimation problem studied in the context of radar and sonar applications, and the CRB under a variety 
of conditions has been calculated.  For the prototype “edge detection” ranging system discussed earlier, 
the CRB can be used to calculate a lower bound for the variance of the estimate for the range, r̂,  as

0

2
2
ˆ 2

0

11
(2 )

 
 ≥ +
 
 
 

sr E
SN

c
EB
N

        (3)

where  2
r̂   is the variance of the range estimate, c is the speed of light, B is the occupied signal bandwidth 

in Hertz, and Es/N0 is the signal energy to noise density ratio. The SNR is related to Es/N0 in that

BtN
E

P
PSNR

s

s

n

s

0

==          (4)



  101

RF Ranging Methods and Performance Limits for Sensor Localization

where Ps is the signal power, Pn is the noise power, ts is the signal duration during which the bandwidth, 
B, is occupied. The concepts of occupied bandwidth and signal duration are important as illustrated by 
our step function example. The maximum bandwidth of the signal is set by the transmitter filter, and 
increasing the receiver’s filter bandwidth does not increase the bandwidth used by the signal. Similarly, 
ts is not simply the length of time that the signal was observed at the receiver but the length of time that 
the signal was observed when it was doing anything meaningful (such as changing in value).  In the 
case of this step function, a small window of time contains nearly all of the useful information about the 
transition, and observing the signal for a longer period time contributes almost no additional informa-
tion.  In this example and in many common signals, the bandwidth and duration are tied together such 
that tsB	≈	1. Therefore, the Es/N0 ratio is approximately equal to the SNR. By exchanging the locations 
of the factors in (4), 
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one advantage of having a Bts  product greater than unity becomes clear. Signals with this property 
would exhibit better noise performance at lower SNR values. One class of signals that exhibit this 
property are pseudorandom number (PN) sequences that result in long duration while retaining the 
same bandwidth as the constituent sub-symbols. These sub-symbols are called chips to differentiate 
them from bits (information) and symbols (collections of bits). Taking advantage of signals with 1>st B  
improves noise performance, but it comes at the cost of increased signal processing. Often there is no 
other way to improve noise performance (i.e. fixed transmitter output power and receiver noise floor), 
and the signal processing cost is acceptable. For a fixed signal energy and noise density, increasing the 
bandwidth provides significant improvements in noise performance. This fact is one argument for in-
creasing the bandwidth of RF based ranging systems, but the bandwidth required to achieve reasonable 
noise performance is not very large (Lanzisera, 2008). 

One common example can be found in GPS. The C/A (course acquisition or civilian) signal in GPS 
uses a PN sequence modulated with binary phase shift keying (BPSK) at 1.023×106 chips/s. At a receiver 
on the ground, the observed SNR is typically -20dB, the bandwidth occupied is about 2MHz, and there 
are 1023 chips per symbol (Kaplan, 2005). This is all the information required to determine the best 
case noise performance of GPS. First we calculate Es/N0  through the application of (5):
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This accuracy is close to what GPS routinely provides, but this range estimate is updated at 1kHz 
in the above calculation, and the typical user uses systems that update at less than 10 Hz. This can be 
used to reduce the variance by a factor of 100 resulting in 22

ˆ )6.0( m
GPSr ≥ . GPS users are accustomed 

to accuracy of better than 5m (80% of trials) in open, flat terrain suggesting that the noise limit is not 
obtained or that other factors are reducing accuracy. In this case, approaching the CRB is possible 



102  

RF Ranging Methods and Performance Limits for Sensor Localization

because of the high value of  Es/N0 and the signal design, but random atmospheric effects contribute 
the majority of the remaining error. The P (precise or military) GPS signal is broadcast at two differ-
ent carrier frequencies so that these atmospheric effects can be estimated and removed which greatly 
enhances accuracy. It is also worth noting that 1+ Es/N0 term contributes very little to the CRB, and it 
is commonly ignored for Es/N0»1. 

GPS provides a good reference for looking at other ranging systems because it is familiar and has 
some characteristics in common with communications systems, but it has significant differences as 
well. In typical wireless communications systems, the distances traveled are much less, and atmospheric 
effects are not significant. In addition, narrowband systems have signal SNR that is large such that, 
when coupled with processing gain, high values of  Es/N0 result.  These high values for  Es/N0 allow the 
CRB to be nearly achieved in many systems, but the CRB is not a tight bound at low  Es/N0 (Van Trees, 
1968). If the desired error variance is not achievable directly, averages of multiple measurements will 
yield improved results. GPS occupies a 2MHz bandwidth which is comparable to the common IEEE 
802.15.4 radios used in WSNs, but GPS signals are broadcast at a single carrier frequency. WSN radios 
are usually frequency agile, and information from different frequencies can be used to improve ranging 
performance (Lanzisera, 2006). 

The CRB can also be improved through the use of additional bandwidth. Ultra wideband (UWB) 
technologies are being developed partially to provide accurate ranging capability to wireless systems.  
A UWB signal is defined to be a signal that either uses at least 500MHz or that occupies as much band-
width as half the signal’s center frequency. The use of 500MHz of bandwidth and an  Es/N0 of -10dB 
yield a CRB of

2
26

1.0
128

2
ˆ )1(

1.0)105002(
)1()103(

mr =
⋅×⋅

+×
≤

Although the CRB may not be achievable at this low value for Es/N0, small bounds are possible. This 
promise, along with superior performance in multipath environments (to be discussed later), has driven 
much interest in UWB for extremely accurate location systems.

Both bandwidth and Es/N0 play significant roles in determining noise limited performance. Figure 3 
shows the CRB as a function of bandwidth for Es/N0 of 10 dB and 26 dB. Signals with tsB products of 
10 to over 1000 are commonly used enabling large Es/N0 in communication systems. It is interesting to 
note that that noise alone does not prevent 1 m accuracy for bandwidths of a few megahertz or more. 

Time synchronization

RF time of flight measurement systems must be able to estimate the time of transmission and arrival 
using a common time base for accurate measurements. When two wireless devices, A and B perform 
range estimation, the most straightforward method is for A to send a signal at t = 0 and for B to start 
a timer at  t = 0 and stop it when it receives the signal sent by A. The value of the timer at B is equal 
to the time of flight (TOF). If the clocks are not perfectly time synchronized, however, and B’s notion 
of  t = 0 is offset in time from A’s, then this offset, Δt, directly adds a bias to the measurement. Time 
synchronized wireless networks are typically synchronized to on the order of 1μs resulting in errors 
of up to 300m, but high power and expensive systems can achieve time synchronization of better than 
10ns or 3m. This method is shown in Figure 4a.
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If A and B have full duplex radios, that is, they can transmit and receive at the same time, then a 
two way or round trip measurement can be made. A sends a signal to B at a carrier frequency fc1 and B 
translates this signal to a different carrier frequency fc2 and retransmits that signal in real time. The signal 
is received back at A at fc2 such that A can compare the signal it is receiving from B to the signal it is 
sending to B. By measuring the delay between these two signals, the round trip TOF, RTˆ , is estimated, 
and the range estimate is 

2
ˆRTc ⋅ . This method is shown in Figure 4b.

Most WSN nodes do not have full duplex radios because they are more complicated and expensive 
than half duplex transceivers. Many other wireless systems are half duplex as well (e.g. wireless LAN 
and GSM), and the round trip method can be adapted for these systems. A round trip method known as 
two way time transfer (TWTT) has been developed to improve time synchronization between wireless 
base stations after the first communications satellites were launched, and it provides both range estima-
tion and improved time synchronization capability (Kirchner, 1991). This method, shown in Figure 4c, 
allows the time offset between A and B to be ignored. Both A and B are responsible for measuring a 
time delay accurately using a local clock. A must measure the time that it takes for the signal it sends 
to return to it, and B must measure the time that the signal spends at B accurately. If the time A sends 
the signal is tsA, the time B receives the signal from A is trB, the time B replies to A is tsB,  the time A 
receives the signal is back from B is trA such that tsA < trB <tsB < trA then A measures tA = trA – tsA and B 
measures tB = tsB – trB. By combining these two measurements together both the time of flight (τ) and 
clock offset ( t̂∆ ) can be estimated. 
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Figure	3.	Cramér	Rao	Lower	Bound	as	a	function	of	bandwidth	for	10dB	and	26dB		Es/N0. Common radio 
standards	used	in	wireless	sensor	networks	such	as	IEEE	802.15.1	(Bluetooth),	IEEE	802.15.4	(Zigbee	
and	others),	and	wireless	LAN	(802.11a/b/g)	are	shown.	Ultra-wideband	(UWB)	radios	with	more	than	
500MHz	of	bandwidth	have	excellent	noise	performance,	but	even	a	few	megahertz	of	bandwidth	can	
enable	the	1.5m	accuracy	required	for	most	applications.
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This or related methods are used with less accurate hardware to provide the rough time synchroniza-
tion common in wireless systems. 

One problem with two way ranging is that the measurement takes place over a relatively long period 
of time such that if the reference clock frequencies at the two nodes are not identical, an unknown bias 
can be added to the signal. In WSN nodes, inexpensive crystals are used where the frequency differ-
ence from crystal to crystal may be 100ppm or more across commercial temperature ranges. This clock 
frequency offset (also called clock drift) error must be mitigated in some fashion (Lanzisera, 2006). 
Consider a system where the time spent sending a ranging signal is 100µs and the time spent changing 
from transmit to receive mode is 200µs, and the time spent receiving the returned ranging signal is 
100µs. Over this 400µs time, a clock frequency mismatch of just 10ppm would result in about 1m of 
estimation error. The clock frequency offset can be measured, and then the clock frequency can either 
be corrected to match within bounds or the resulting error can be calculated and subtracted from the 

Figure	4.	Three	methods	of	performing	time	of	flight	ranging	measurements:	(a)	time	of	arrival	which	
is	susceptible	to	clock	offset	Δt;	(b)	full	duplex	two	way	ranging;	(c)	half	duplex	two	way	ranging	called	
two way time transfer
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estimate later. Many methods have been used to measure frequency offsets in wireless systems, and 
we summarize one simple method here. This method is to run a counter over a long period of time to 
measure the offset. One node sends a start packet to the second node and starts a local timer, and the 
second node starts a local timer when it receives this packet. After waiting a sufficiently long time, the 
timer at the first node expires, and it sends a stop packet. The second node receives this stop packet, 
stops its timer, and compares the value left on the timer to the expected value (zero if the counter is 
counting down). This difference is a measure of the clock offset. The minimum time between packets, 
Twait can be calculated as follows: 

xo
wait f

T
∆

≥
1

          (8)

where Δ is the required matching , and fxo is the crystal frequency. For a 20MHz crystal and a system 
requiring 10ppm accuracy, Twait must be great than 5ms. This process is rather long but very simple, and 
other methods trade complexity for time savings.  

sampling Artifacts

Ranging systems estimate the time of arrival of a signal and compare that time with the time the signal 
was transmitted to calculate the time of flight and thus the range.  It is commonly assumed that ranging 
accuracy is limited to c/fs where fs is the receiver sampling rate (Richards, 2005). This limit is known 
as range binning, and it can impact resolution if steps are not taken to mitigate its impact. A common 
implementation is to estimate the time of arrival using a matched filter that is sampled at the signal 
bandwidth resulting in time resolution of 1/B. This sampling adds error to the estimate because the 
estimate space is divided up into range bins that are c/B wide. The error associated with this process is 
uniformly distributed inside the range bin. By using the variance of the uniform distribution, the impact 
of sampling can be found (Hoel, 1971).
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In the case of the GPS example, with sampling at 1/B the variance due to sampling can be calcu-
lated. 
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This results in a range resolution of 43 m. In GPS, this coarse estimate is filtered (averaged) to improve 
the resolution, and a feedback loop can be used to null out the sampling error while the receiver tracks 
the satellites (Kaplan, 2005).  Using just averaging, over 1500 measurements are required to achieve a 
variance of (1m)2. These methods are not realistic for many wireless sensor network applications where 
extremely low power consumption and therefore duty cycle is required. An accurate range estimate 
must be made in a short period of time. To reduce the sampling error, the signal can be over sampled. 
Figure 5 shows the CRB for a 2 MHz bandwidth signal with Es/N0 of 26 dB, the standard deviation of 
the range error due to sampling, and the combined effect of both error sources as a function of sam-
pling frequency. This plot shows that with a 2 MHz bandwidth, the required sampling rate to ensure 
that the error is not dominated by sampling is over 70 MHz. It is clear that one must sample very fast 
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to have the error dominated by the CRB rather than sampling. As the CRB improves due to increased 
bandwidth, the sampling speed required remains higher than twice the signal bandwidth down to Es/
N0 of about 3 dB.  

If the signal is sampled above Nyquist ( fs>2B), then the entire information content of the signal is 
captured in the sampling process (Oppenheim, 1975). Therefore, it is possible to extract better time 
resolution than σsample. In Figure 6, a signal is shown along with dots representing the samples of that 
signal that is band limited to a 2 MHz bandwidth. This signal is sampled at 10 Msps which is above 
the Nyquist rate of 4 Msps, but the sample rate still is far too low to achieve the CRB. The range bins 
are 100ns (30m) wide in this case where as the CRB from Figure 3 is only 3.5ns (1.1m) demonstrating 
a dramatic resolution reduction. Looking at the time of the zero crossing, it is clear that even a linear 
interpolation between the two adjacent samples would improve the estimate of that zero crossing loca-
tion significantly. A major challenge is that many systems would need to perform this interpolation in 
real time increasing system complexity and power consumption beyond reasonable limits. 

A round trip time of flight method known as code modulus synchronization (CMS) that takes ad-
vantage of Nyquist sampling has demonstrated its ability to approach the CRB while maintaining low 
sampling rates.  CMS emulates a full duplex ranging system where the repeating node is retransmitting 
the signal that it is receiving from the first node without any delay. In CMS, however, half duplex radios 
such as those used in wireless sensor networks are used so the delay between reception and retransmis-
sion must be managed carefully. CMS as implemented uses a short PN code modulating an RF carrier 
as the ranging signal. Figure 7 shows the basic operation of CMS for a time of flight of zero. When 
the time of flight is greater than zero the Node B and Node A Receive lines would each be circularly 
shifted to the right by an amount equal to the time of flight and twice the time of flight respectively. 
For example, a range of 9m would have a time of flight of 30ns. The second line would be shifted by 
30ns and the Node A receive line would be shifted by 60ns but the chip period may be 500ns, and it 
is acceptable that the shifts are much smaller than the chip period. The first node, A, generates a local 
code that is synchronized with a local clock called the event clock that has the same period as the PN 

Figure	5.	A	comparison	of	range binning due to sampling error and the Cramér Rao bound on noise 
limited	ranging	for	a	2	MHz	bandwidth	with	a	Es/N0	of	26	dB.	The	sampling	rate	required	is	much	higher	
than required by sampling theory to achieve noise limited resolution.
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Figure	6.	An	above	Nyquist	sampled	waveform	is	shown	with	the	sample	points	marked	in	an	example	
of sample based range	binning.	An	interpolation	between	points	enables	 time	resolution	of	 the	zero	
crossing	far	better	than	1/B	and	1/fs	reducing	the	size	of	the	range	bins	significantly.

code. This code is used to modulate the carrier and is transmitted to the second node, B. B has a local 
event clock with the same period as at A, but the phase of the clocks are offset. As a result, B knows 
the length of the incoming PN code. B samples and demodulates this signal, and exactly one circularly 
shifted copy of the code is stored in memory. The system can accumulate multiple copies of the code in 
order to improve SNR, but they are all exactly one copy of the code that is circularly shifted in exactly 
the same way as the other received copies. At this point, B has a local copy of the code that is an aver-
age of multiple receptions and that is circularly shifted due to the event clock phase offsets between 
A and B. After A has sent a predetermined number of code copies and B has received some of these 
copies, the transceivers switch states, and B is now the source of the code. Starting on its event clock 
rising edge, it transmits the circularly shifted code it received back to A. On the next rising edge of its 

Figure	7.	Code	modulus	synchronization	(CMS) achieves noise limited ranging performance through 
interpolation	of	data	points	in	an	non-real	time	time	of	flight	(TOF)	estimation	phase,	and	this	figure	
shows	the	case	where	the	TOF	is	zero.	Non-zero	TOF	would	result	in	sub-chip	width	circular	shifts	to	
the signals on the node B and node A receive signals. CMS is a two way ranging technique that emulates 
a	full	duplex	ranging	system	(Figure	4b)	to	eliminate	clock	synchronization	errors.
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event clock, A starts to record exactly one copy of the code. Again, A can accumulate multiple copies 
to improve SNR. Because of the roundtrip nature of the system, the circular shift that occurred going 
from A to B is exactly undone going from B to A. After A has received and accumulated the desired 
number of code copies, the transceivers are shut off, and all of the real time processing is completed. 
A then computes the cross correlation between the code it recorded and the code that it sent, and zero 
code offset exists if the time of flight is zero. Because this system relies on sampling the signal at or 
above Nyquist, the received code can be interpolated to improve resolution up to the noise limit of the 
system. The correlation and code offset estimation are not done in real time enabling the computation 
to be done at any time using any method the user desires. This system can achieve the CRB in a single 
measurement as long as the sampling rate of the received code is above Nyquist, substantially improving 
over other two way ranging methods (Lanzisera, 2008). 

Multipath channel Effects

When a ranging system has been well designed, it often still fails to achieve the expected performance 
because the measurement is not taken in free space. In real environments the RF signals bounce off 
objects in the environment causing the signal to arrive at the receiving antenna through multiple paths 
as shown in Figure 8. In this figure, the direct path is obstructed by walls, but the other paths are not. 
This is common indoors, and it is likely that the non-direct paths have higher power than the direct 
path (Spencer, 2000). The communication environment is called the channel, and multipath channels 
not only vary by the type of environment (office building, residential or outdoors) but are specific to 
the geometry of the transmitter and receiver in that environment. The channel is often time varying 
resulting in a multipath environment that changes from one time to another. For narrowband radios like 
those common in wireless sensor networks, moving one transceiver by just a fraction of a wavelength 
(12cm at 2.4GHz) will cause the receiver to see what looks like an entirely new multipath environment 
because the paths will interfere constructively or destructively differently. The path length change is 
referenced to the wavelength of the RF making these small changes have large effects. The speed that 
the channel changes depends on how quickly objects are moving in that environment.  Slower objects 

Figure	8.	A	multipath	environment	that	exhibits	a	common	condition.	The	direct	path	(Pd) which is to 
be	estimated	for	ranging	is	obstructed	and	heavily	attenuated	while	the	reflected	paths	(Pm1,	Pm2) have 
much higher signal power.



  109

RF Ranging Methods and Performance Limits for Sensor Localization

result in slower changes to the channel. This typically means that indoor channels change more slowly 
than outdoor channels, and the time it takes for the channel to change significantly is called the coher-
ence time, tc, of the channel. The value of tc is roughly c/(2fv) where c is the speed of light, f is the carrier 
frequency, and v is the speed of the fastest moving object in the environment. Recall that the wavelength 
of radio waves, λ, is c/f, and a more intuitive form of tc is λ /(2v) where it is clear that the time it takes to 
move a half wavelength corresponds to the coherence time (Tse, 2005). A series of measurements that 
take much less than tc to complete can be used together as if the channel was time invariant over those 
measurements. This fact is useful when attempting to reduce the impact of multipath because multiple 
measurements taken at different frequencies can be used together. Because this interference effect is 
closely tied to the wavelength, changing carrier frequency even by 1% or less can dramatically affect 
the apparent multipath environment in narrowband systems. This can be easily observed by considering 
the received signal strength (RSS) profile across carrier frequency in an indoor environment as shown 
in Figure 9 (Werb 2005). At some carrier frequencies, the signal is in deep fade (destructive interfer-
ence), while at others it has much higher signal strength (constructive interference). Without knowing 
the channel characteristics, knowledge of the RSS at one frequency tells you nothing about the RSS at 
another frequency. Wider bandwidth signals suffer less from this effect, and the bandwidth required to 
combat this is related to the time difference between the first and last significant path arrivals known as 
the delay spread, td. The coherence bandwidth, Wc, is approximately 1/(2πtd) and it is the bandwidth over 
which the channel can be considered to be flat (either in deep fade or not, for example). If the bandwidth, 
B, is much larger than Wc  the signal does not depend on carrier frequency to the same extent as a signal 
with a bandwidth less than Wc  (Tse, 2005). Typical delay spreads for indoor channels are between 10ns 
and 100ns yielding coherence bandwidths between 1 MHz and 20 MHz. Outdoors, the delay spread can 
be up to microseconds, significantly reducing Wc . In RF ranging systems, the inter-path delay, tΔp, is 
more important than the delay spread, however, because short inter-path delays can significantly impact 
ranging accuracy. Indoors, inter-path delays of 5ns to 10ns are very common and must be resolved if 
accuracy is to be better than ∆⋅ pc t  (Van Trees, 1968).

In a multipath environment, the receiver must somehow choose or estimate the direct path length and 
ignore the other paths. If a receiver can determine when only the first path arrives, then this will be the 
shortest distance and desired estimate. If the system is not able to resolve the individual paths, then the 
estimate is blurred by the multipath effects resulting in measurement error. In this case, if the receiver 

Figure	9.	Received	signal	strength	verses	frequency	measured	in	a	line	of	sight	multipath	channel	with	
a	2MHz	RF	bandwidth.	The	significant	changes	in	signal	strength	show	that	changing	carrier	frequency	
changes	the	apparent	multipath	environment	significantly.	Adapted	from	Werb	(2005).
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has an estimate of the channel impulse response, it can calculate the bias caused by the multipath chan-
nel and subtract the bias from its estimate. This leads to two classes of multipath mitigation methods: 
1) resolving the direct path through increased bandwidth, or 2) estimating the channel response and 
using this information to improve or generate a range estimate. 

In the first case, the ability to resolve the response of the multipath channel is directly linked to the 
bandwidth of the signal. Inter-path delays, t Δp, separated by more than 1/B in time are resolvable and 
paths separated by less are generally not. To resolve paths that are separated by 1m or more, a band-
width of at least 300MHz is required which shows a significant advantage of UWB systems. Using 
bandwidths in excess of 500MHz enables accuracy better than 1m in many cases, but this accuracy is 
not always achieved (Shah, 2005). Sometimes there is line of sight between the transmitter and receiver, 
or, in other cases, the direct path is attenuated somewhat by obstacles but still reaches the receiver with 
sufficient strength to be resolved, resulting in acceptable accuracy. When the direct path is too weak 
compared to other paths, however, a secondary path will be chosen to estimate the range resulting in 
an over estimate. In indoor environments, 10% to 20% of all measurements will fall into this category, 
but some environments are worse and a direct path is rarely available. True line of sight paths are not 
very common indoors, and most indoor channels will have a few strong paths spread across a few tens 
of nanoseconds (Spencer, 2000). Localization systems typically mitigate the severe cases of obstructed 
ranging by adding extra devices to “see” the obstructed areas and through localization algorithms that 
reject large ranging errors.  

The second mitigation strategy relies on estimating the impact of the multipath environment on the 
range estimate and then subtracting off this error. This method is used when the signal bandwidth is 
too small to sufficiently resolve the multipath environment, and it is somewhat analogous to channel 
equalization. There are two critical steps to this method: 1) estimating the channel frequency/impulse 
response and 2) estimating the impact the channel has on the range estimate. Each step can be completed 
in different ways, and the solutions fall into the family of super-resolution algorithms. A super resolution 
algorithm is one that attempts to provide range resolution that is better than c/B (Dickey, 2001).  If the 
impulse response can be estimated to include the static offset due to the time of flight, then the range 
can be estimated directly from the impulse response. If the impulse response is estimated with the first 
path always being at a delay of zero, then some other ranging method must also be used. One method 
to estimate the channel impulse response is to send a modulated signal that consists of a sequence of 
chips (Nefedov, 2000). Recall that the inter-path delay is a few nanoseconds compared to the chip dura-
tion of 100’s of ns to μs, and the chip width used must typically be shorter in time than the features to 
be resolved. A super-resolution technique resolves features that would be too close together in time to 
be resolved normally. If the signal sent is x, the channel impulse response is h, and the received signal 
is y, then 

nhxy ~+*=

Where * denotes convolution, and ñ is complex noise. This can be rewritten in the frequency do-
main. 

)()()()( NHXY +=

If the signal to noise ratio is large, and the spectrum of the transmitted signal (including the trans-
mitter frequency response) is known, then H(ω) can be approximated.
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This approximation is only valid in sufficiently high SNRs, and noise causes significant problems in 
super-resolution estimation methods.  Y(ω) is calculated by taking the Fourier transform of the received 
signal, and X(ω) is a system parameter known a priori. Once H(ω) has been estimated, h(t) must be 
estimated. The inverse Fourier transform will solve this problem, but a number of substantially more 
complicated algorithms exist that provide better time resolution. Examples of such algorithms include 
Multiple Signal Classification (MUSIC) and matrix-pencil methods that have been developed for use 
in imaging and radar systems (Dharamdial, 2003; Song, 2004; Pahlavan, 2002). These algorithms 
achieve time resolution that is up to ten times better than the Fourier transform method when the SNR 
is high enough. Due to the narrowband nature of many radios used in WSNs (i.e. IEEE 802.15.4’s 2MHz 
bandwidth), a resolution enhancement of even ten times may be insufficient to provide reasonable ac-
curacy. Once the channel estimate has been made, an additional algorithm to estimate the impact of the 
estimated channel on a ranging measurement using TOF techniques (i.e. TWTT) can be used. Such an 
algorithm can include, to some degree, the effect of paths buried inside the estimated channel response, 
resulting in a good estimate of the range error. This error can be subtracted from the estimated range 
to achieve a better range estimate. 

summary of Performance Limits

In wireless sensor networks, the devices are resource and power limited, and efforts should be made to 
reduce the time the radio is active and reduce the amount of signal processing while preserving perfor-
mance. The above discussions show that signal bandwidth is a system parameter of high importance. 
Increasing signal bandwidth improves noise and multipath performance linearly with bandwidth. The 
bandwidth required to achieve very fine resolution in a Gaussian white noise environment is far smaller 
than that required to achieve equivalent resolution in a typical indoor multipath environment, and the 
techniques to improve multipath performance are far more computationally intensive than those to 
combat noise. Many measurements in indoor environments will not have a resolvable direct path us-
ing any method or bandwidth, and the resulting range estimate will be highly inaccurate. Localization 
algorithms must deal gracefully with range measurements that are widely inaccurate some of the time. 
Methods to deal with other error sources such as synchronization and sampling exist and should be 
applied to minimize energy while maximizing performance. Although ultra-wideband systems are 
sure to provide high range resolution, the energy cost of data communication over an ultra-wideband 
radio remains very high compared to narrowband radios. Therefore, ranging methods that use small 
bandwidths are critical to many low power wireless networks, and methods to improve range accuracy 
given fixed, small bandwidths are an unsolved problem. 

DEPLOYED sYsTEMs

The localization problem has seen widespread attention in the research community, and a number of 
RF range based methods have been proposed and implemented. Location information has significant 
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value as represented by the E911 location requirements for cell phones (along with similar requirements 
around the globe) and the commercial tracking systems available. This section provides a brief survey of 
ranging techniques that could be applied to wireless sensor systems. Important characteristics of systems 
are the noise performance, suitability for indoor use, cost, and infrastructure requirements. 

Received signal strength Range Estimation 

The RF received signal strength (RSS) has been used as a surrogate for range measurement in many 
systems. In free space, the power of an RF signal can be calculated using the Friis transmission formula 
(Ulaby, 2004).

2)/4( R
PP tx

rx =

The received power, Prx, decreases as the range, R, squared, and there is a unique correspondence 
between RSS and range. Real environments have multipath channels, however, and the signal power 
does not behave predictably. Other models have been proposed such as the popular 1/Rα model where 
the signal power now decreases as one over distance to the power α. Alpha is a fitting parameter that 
is environmentally dependent and is usually between 1 and 4. These models are unreliable because the 
power does not decrease monotonically with range and passing through walls causes sudden drops in 
power over short distances. The multipath environment causes areas of constructive and then deconstruc-
tive interference so that a user’s location will be uncorrelated with signal power. This effect is frequency 
dependent as well, so a measurement at one carrier frequency will be uncorrelated with a measurement 
at another carrier frequency. Even if this multipath effect could be successfully mitigated, the effect of 
wall and obstacle attenuation prevents this method from providing reliable range estimates (Cheng, 2005). 
Figure 10 shows a plot of the received signal strength verses distance for an indoor environment. The 
same signal strength corresponds to more than half of the useful range of the radio, and this accuracy 
is typical for these systems. Range estimation error, when it can be quantified, is typically proportional 
to range such that short range measurements may be accurate within a few meters, and longer range 
measurements are less accurate. RSS measurement for ranging is often considered a near verses far 
technique that can provide some information regarding proximity but less about true range. 

Most radios include a received signal strength indicator (RSSI), and the measurement is available 
to the user without any additional hardware or power costs which explains the technique’s popularity. 
Because the RF ranging problem is challenging, RSS based techniques have received tremendous at-
tention, and many RSS based localization systems have been proposed and implemented with varying 
degrees of success at turning poor range estimates into accurate location estimates. 

Some RSS based systems use RSS “fingerprinting” techniques rather than RSS for ranging and 
achieve improved accuracy. The RSS at different carrier frequencies is recorded for many locations in 
the network through a site survey at the time of network deployment. In normal use the network tries 
to match the measured RSS of a mobile node with the fingerprint map it has stored to estimate location. 
Accuracy of these methods can be a few meters, but changes in the environment (an open door that was 
closed) can cause significant errors in location estimates (Lorincz, 2006).
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Global Positioning system

The most widespread RF localization scheme is the global positioning system (GPS). A constellation 
of at least 24 GPS satellites orbit the earth and constantly transmit unique signals. User receivers take 
four or more of these signals and use them to estimate values for position and time. GPS has a coarse/
acquisition signal (C/A code) that is used for civilian uses and to aid in the synchronization to the pre-
cise (P) code used by the military. The P code is encrypted to prevent general use, and is called the 
P(Y) code in the encrypted state. C/A code users generally enjoy location accuracy of better than 10 m 
on the ground with slightly less accuracy in the vertical direction as long as they have a clear view of 
the sky without any significant multipath effects. Because the C/A code only occupies about 2MHz of 
bandwidth at a single carrier frequency, multipath can greatly degrade performance. The received signal 
power on the ground is extremely low making it difficult to receive the signal when a clear view of the 
sky is unavailable (Kaplan, 2005). GPS receivers have become much lower power in recent years, but 
they still consume tens of milli-Joules for the first fix. The SiRFstarIII is a low power receiver with good 
low received signal power performance and consumes 50 mW typically while taking 5 s to provide a 
location after power on. With assistance from a cellular phone network, this fix can take 1 s, but now 
the cellular phone radio will dominate the energy consumption (SiRF, 2008). Given that many WSN 
applications require location updates at much lower rates than the 1Hz typical of GPS, GPS is far from 
power optimized. The price of the GPS units is also high due to the complexity associated with signal 
acquisition and processing. 

Time Difference of Arrival 

Time difference of arrival (TDOA) is a powerful and commonly used technique that relies on time 
synchronized infrastructure to estimate the range of a mobile device. The most common scenario is 

Figure	10.	Received	signal	strength	plotted	verses	distance.	A	best	fit	does	not	capture	the	large	devia-
tion of data points showing that models with unique correspondence between range and signal power 
cannot provide reasonable accuracy. 
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where the mobile device transmits a signal that is simultaneously received by multiple base stations. 
These base stations estimate the time of arrival of the signal and compare the estimates among multiple 
stations to estimate the user location. For each receiver pair, a TDOA estimate can be made, and 3 pairs 
are required to determine a location. As seen in Figure 11, the time difference of arrival at the three 
base stations is a function only of the unknown distances. When the three measurements are made, a 
system of three equations with three unknowns results enabling the ranges to be calculated. The primary 
advantage of this system is that a mobile unit can be very simple because all of the complexity is at 
the base station. The disadvantage is that time synchronized infrastructure is required which increases 
cost and complexity of the overall network. Accuracy is linked not only to the environment but to the 
density of base stations thus requiring large numbers of expensive base stations to cover a network. As 
a rule of thumb, the density of base stations for TDOA must be four times the density required for data 
coverage. This technique enables the use of simple mobile devices that can periodically send a ranging 
signal to be detected by the always-on infrastructure providing a low energy location on schedule or on 
demand. This technique is not limited to a particular bandwidth or multipath mitigation scheme, and 
can provide highly accurate or poor performance indoors depending on the implementation.  Three 
commercial systems will be discussed briefly below. 

GSM Cellular Phone Networks

Time difference of arrival (TDOA) localization in GSM cellular phone networks has been standard-
ized as part of GSM since 1999 (GSM 03.71 1999 and 2001). In the 1999 version, the handset sends 
network access packets that are received by three or more base stations which use TDOA to estimate 
the position of the handset. The 2001 version requires that the handset measure the time difference of 
arrival of signals sent from base stations. Location accuracy depends heavily on the number of base 
stations within communication range. In urban environments it is common to be able to communicate 

Figure	11.	Time	difference	of	arrival	(TDOA)	uses	time	synchronized	infrastructure	nodes	(B,C,D)	to	
simultaneously measure the time of arrival of a signal transmitted by A. Because the transmission time, 
ttA,	is	unknown,	the	time	differences	between	arrivals,	Δt,	can	be	used	to	setup	three	equations	to	solve	
for the three unknown ranges (dAB, dAC, and dAD).
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with more than three, and accuracy of better than 100m is common. When only two or less base sta-
tions are available, estimates can be many 100’s of meters off resulting in an unreliable system. Due to 
the widespread coverage of cellular systems, cellular based localization can provide location accuracy 
to within a single building in areas where GPS access is denied such as indoors or in urban canyons. 
Room level accuracy is not possible with this technology because GSM is a very narrowband system 
with limited frequency diversity. Performance may improve as wider bandwidth 3G devices become 
more common and these methods are applied to the newer technologies. The power consumption and 
cost of cellular radios is very high when compared to the inexpensive and low power radios typically 
used in WSN (Sahi, 2002).

ANSI 371.1 RTLS (Wherenet, Inc)

ANSI 371.1 is a standard that specifies physical layer requirements and location accuracy for a real time 
location system (RTLS) that is based on the system developed and marketed by WhereNet, Inc. This is 
a 2.4 GHz direct sequence spread spectrum (DSSS) based system that consists of time synchronized 
base stations and low complexity tags that can be programmed to send a signal at regular intervals. The 
tag location is estimated using time difference of arrival, and the base stations are mounted on either 
the ceilings of manufacturing facilities or on tall posts for outdoor networks. The tags are programmed 
to send localization signals at regular intervals, and multi-year lifetimes are achievable when location 
updates occur every few minutes. The 60 MHz bandwidth localization signal is transmitted in the 2.4 
GHz band and contains the tag’s ID as well as a small payload that can be filled by user applications to 
transmit fault conditions or to send other brief messages.  In one example deployment over a 280,000 m2 
outdoor facility, an access point was mounted to a post approximately every 90m to ensure localization 
accuracy of within 3m. This network was deployed just like a traditional wireless LAN starting with 
a site survey followed by access point installation. A full trial of the system was completed within 75 
days of the start of the site survey showing both that deployments are quick on the scale of industrial 
automation but are also slow and expensive compared to what is expected in the WSN space. With a 
reported accuracy of 3m and a bandwidth of 60 MHz, it is clear that the accuracy is not limited by 
noise. Multipath effects common in the industrial environment cause significant accuracy degradation, 
and a fairly complex system with powerful, centralized base stations is required to provide reasonable 
performance (Wherenet, 2008)

Ubisense UWB Localization

Ubisense developed and markets an UWB based localization system that combines TDOA and angle of 
arrival (AoA) measurements to estimate tag location. The tags are equipped with 802.11b transceivers 
for data communication and proprietary UWB transmitters for localization. The tags are capable of 
operating at very low duty cycles to enable multi-year battery lifetimes and typically operate by sending 
UWB signals at regular intervals for localization. The base stations are complicated devices consisting 
of an array of UWB antennas that are used to estimate the angle of arrival of the UWB signal. These 
antennas are attached to UWB receivers that precisely estimate the time of arrival of the incoming sig-
nal before this information is passed to a central server where the location estimation occurs. In typical 
deployments, location accuracy of 15cm has been reported, and the UWB signal occupies 2GHz of 
RF bandwidth. The location accuracy is equal to c/B suggesting that the system bins incoming signals 
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into 1/B bins allowing the direct (first) path to be resolved whenever there is a direct path signal. Just 
as with any ranging system, this excellent accuracy is not achieved when there is no direct path. The 
site survey process attempts to determine ideal base station positions to reduce the number of locations 
in which this occurs. Only two base stations must be within range of the tag due to the combination of 
AoA and TDOA resulting in a lower base station density than would be required otherwise. As with all 
systems relying on time synchronized and wired infrastructure, the installation process is protracted 
and expensive (Ubisense, 2008).

Radio Interferometric Positioning system

Radio interferometric positioning system (RIPS) is an idea that uses the effect of interference between RF 
signals that are closely spaced in frequency to estimate position. This technique is not strictly a ranging 
technique as discussed in this chapter because a large number of ranges between nodes are estimated 
simultaneously using many measurements across the network. Four nodes are needed to perform an 
interferometric measurement under this scheme as shown in Figure 12, and at least 6 nodes are required 
to achieve network localization. To take a measurement, four loosely time synchronized devices within 
range of one another negotiate an operation. Two of the devices transmit unmodulated carrier signals 
that are separated by a very small frequency offset of about 1kHz. The signals interfere at the receivers 
to generate a signal that has a time varying envelope at the difference frequency. This envelope can be 
measured by using the RSSI on the radio, and the relative phase difference, φ, between the envelopes 
at the two receivers is recorded. This phase contains information regarding the distance between the 
four nodes in that carrierACBCBDAB dddd /)(2 −+−= . Once enough measurements are collected to 
fully define the problem, all of the ranges and locations can be calculated simultaneously. This scheme 
does not require precise time synchronization or significant signal processing, but it does require radios 
with highly precise control over the transmitted RF carrier frequency limiting its applicability to a small 
subset of available radios. In an open, outdoor space, RIPS has achieved accuracy of a few centimeters 
over ranges of many tens of meters. The primary drawback to this system is that it intrinsically relies on 
the carrier phase to estimate range, and the carrier phase is a strong function of multipath propagation. 
As a result, the system is largely unusable indoors due to poor accuracy (Maroti, 2005). 

Two Way Ranging

In many WSN applications, time synchronized infrastructure is too expensive or time consuming to 
deploy. As discussed in the clock synchronization section, two way ranging techniques can be imple-
mented to eliminate the effects of unknown time offset, and a few systems using these methods of two 
way ranging have been proposed.  

Two Way Time Transfer

Two way time transfer (TWTT) was first proposed in the 1960’s to provide better time synchronization 
between ground stations using the first communications satellite links, and the method was discussed 
earlier in this chapter.  By performing many TWTT measurements over a period of time, time synchro-
nization and time of flight estimates could be made accurate to within a few nanoseconds. This method 
has recently been proposed for use in UWB ranging systems where the Es/N0 values are low enough 
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such that matched filter sampling is sufficient to achieve the CRB. Some systems have been published 
showing accuracy of c/B, but no low power systems have been demonstrated. Recent work on low power 
UWB transceivers have reduced power consumption compared to their high data rate counterparts, but 
the receivers still consume a great deal of power and/or communicate over just a meter or two of range . 
Although the accuracy of UWB ranging systems is quite good, the power consumption and complexity 
of these devices are very high. Narrowband 802.15.4 radios can turn on their radio, transmit a full packet 
(150B total) tens of meters, receive an acknowledgement and shut down in about 5ms. The radio consumes 
about 20mW during this time for a total 100μJ of energy per packet. When everything is considered, it 
is not clear that a viable wireless sensor network UWB communication system will be developed in the 
near future that can compete with this low energy consumption and reasonable range.

ISO/IEC WD 24730-5 (Nanotron Technologies)

The ranging system implemented by Nanotron Technologies and standardized under ISO/IEC WD 
24730-5 uses Chip Spread Spectrum (CSS) over an 80MHz bandwidth in the 2.4GHz band. CSS is a 
form of linear frequency modulation that can have tsB>1, and chirp pulses have been widely used in 
radar because they exhibit excellent spectral occupancy and correlation properties (Richards, 2005). 
They also propose a two way ranging method called Symmetric Double Sided-Two Way Ranging (SDS-
TWR) to combat the effects of frequency reference mismatch at the two cooperating nodes. SDS-TWR 

Figure	12.	The	Radio	Interferometric	Positioning	System	uses	the	interference	between	two	RF	Signals	
closely spaced in frequency to generate a varying envelope that can be measured using the received 
signal strength indicator in a radio. The phase offset, φ ,between two envelopes at two nodes is a func-
tion	of	the	unknown	distances.	Adapted	from	Maroti	(2005).
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measures the round trip TOF between two nodes twice. A signal is sent from node A to B back to A, 
and then a signal is sent from B to A and back to B. The resulting estimates are averaged, and the effect 
of the reference clock frequency offset is eliminated because the two measurements have the same bias 
in magnitude but opposite in sign. This method is simple in implementation but it increases the required 
signal processing because the range must be estimated twice. In order to offset the costs associated with 
SDS-TWR, ranges can be taken as simple round trip measurements or even as TDOA measurements 
depending on how the system and infrastructure is configured. Nanotron reports location accuracy for a 
typical indoor office building to be 2m showing that accuracy is limited by multipath. Because roundtrip 
measurements are possible, fixed location nodes can be added cheaply to improve location accuracy in 
difficult areas. Available devices are reasonably low power while providing peer to peer, infrastructure 
free ranging capability with sufficient accuracy for many applications. The devices are also capable of 
data communication for a complete RF solution for WSNs (Nanotron, 2008). 

Ranging system comparison

The ranging systems and methods presented in this section compare to the performance and specifica-
tion wish list of good accuracy, low energy consumption, low node cost, and no infrastructure require-
ments.

Commercially, limited options exist for RF range measurement in WSNs. Table 2 summarizes avail-
able options in both the commercial and research sphere, and the numerical information is provided to 
give a rough estimate of typical performance. In the evaluation of any system (ranging or localization) 
accuracy cannot be simply expressed as a single number because estimates are impacted by random 
environmental parameters resulting in estimates with random error as discussed in this chapter, yet 
this table provides an approximate comparison of techniques. Most available systems are extremely 
limited in accuracy or require significant and costly infrastructure, but it is clear that progress has been 
made in enabling real time localization in wireless networks. Significant research is ongoing in this 
area to develop adequate, low power ranging systems. This comparison should provide insight into the 
capabilities, limitations, and challenges of RF ranging systems and show that local area RF ranging is 
an open problem for research. 

sUMMARY 

This chapter has provided an overview of the important factors that influence RF ranging system ac-
curacy. A number of techniques and systems designed to address these factors have been presented in 
order to provide an understanding of issues at hand. 

Fundamental Limits

The fundamental limits to performance are the result of noise and finite bandwidth in multipath envi-
ronments, but accuracy is almost always limited by multipath induced error rather than noise. Indoors, 
most systems are limited to resolving multiple paths that are spaced by less than 1/(2B) in time, but 
super resolution and sampling aware techniques can improve accuracy to better than c/(2B) in range. 
Predicting error in multipath environments requires knowledge of the channel impulse response as 
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well as the characteristics of the transmitter and receiver making high performance ranging systems 
challenging to design. 

Narrowband vs. Wideband

Most research on RF ranging has relied on increasing bandwidth as much as possible to obtain reason-
able ranging accuracy. Wide bandwidth is a good thing to have to improve accuracy in a variety of 
environments, but it is not the only solution. Multipath mitigation schemes for narrowband radios have 
been proposed that enable good accuracy, and it is likely that both wideband and narrowband systems 
will see broad application. In systems requiring the best accuracy, wider bandwidth is a good choice. For 
general applications, however, the additional energy costs may limit the application of UWB and other 
wideband systems. Narrowband radios will likely remain cheaper to design (and therefore purchase), 
cheaper in energy consumption per packet, and widespread in wireless sensor networks. 

conclusions

Ranging systems for low power systems have just started to be developed, and the field is open for new 
ideas and improvements. Significant work remains to provide the ideal ranging platform for wireless 
sensor networks, but some systems can provide reasonable performance for a number of applications. 
The future promises to provide truly location aware wireless networks, and RF ranging is critical for 
widespread use. 
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AbsTRAcT

A number of practical issues are involved in the use of measured received signal strength (RSS) for 
purposes	of	localization.	This	chapter	focuses	on	device	effects	and	modeling	problems	which	are	not	
well covered in the literature, such as transceiver device manufacturing variations, battery effects on 
transmit power, nonlinearities in RSSI circuits, and path loss model parameter estimation.  The authors 
discuss both the negative impacts of these effects and inaccuracies, and adaptations used by particular 
localization	algorithms	to	be	robust	to	them,	without	discussing	any	algorithm	in	detail.		The	authors	
present	measurement	methodologies	to	characterize	these	effects	for	wireless	sensor	nodes,	and	report	
the results from several calibration experiments to quantify each discussed effect and modeling issue.

INTRODUcTION

Signal-strength based localization can be deceptively simple. Receivers are generally capable of mea-
suring and reporting to higher layers information about received signal strength, so it can seem like it 
should be easy to take these measurements and use them directly in a localization algorithm.  Significant 
research has developed algorithms for localization, assuming that measured signal strength has already 
been converted into distance estimates, and little research discusses the details of how to perform those 
conversions.  
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Multipath fading in radio channels is universally regarded to be the main degradation to RSS-based 
location estimates, and rightfully so – significant shadowing and small-scale fading caused by the chan-
nel is largely unavoidable and unpredictable.  Beyond that, however, there can be severe degradations 
caused by a lack of understanding of the non-idealities of the measurement process, and inaccurate 
knowledge of channel parameters.  If RSS-based localization is to be attempted, a designer must be 
able to characterize and cope with these non-idealities and imperfect knowledge.

This chapter is written to present real-world calibration and non-linearity problems in RSS mea-
surements and how to deal with them.  We follow RSS-based localization from the transmitter to the 
receiver, and in multiple stages in the receiver, as shown in Figure 1.  The intended audience is anyone 
who intends to implement or has already implemented RSS-based localization algorithms which are to 
operate well in real-world deployments.  We present our work in RSS-based localization algorithms only 
briefly.   We have found that the experience of accurately using measured signal strength, in general, is 
as challenging as the localization algorithm itself.  

Our chapter is organized as follows.  First, in section PROPAGATION EFFECTS, we relate some of 
the literature on path loss models as a function of distance and the effects of shadowing and multipath 
fading.  Then, in section DEVICE EFFECTS, we discuss a method for accurately characterizing transmit 
power as a function of device settings and battery voltage, and receiver RSSI values as a function of the 
particular device performing the measurement.  The transmit power characteristics are necessary to 
translate measured RSS into accurate path loss values.  The receiver characterization reveals the details 
of the nonlinearities in measured RSSI. Then, section CHANNEL EXPERIMENTS WITH POWER 
CONTROL describes a protocol and algorithm for transmit power control, to avoid RSSI saturation 
without sacrificing node connectivity. Thirdly, the section titled RANGING USING MEASURED 
PATH LOSS discusses the conversion of path loss, calculated using the results of the DEVICE EF-
FECTS section, into an estimate of range.  Finally, a section called RSS-BASED LOCALIZATION 
ALGORITHMS discusses how the lessons discussed in this chapter apply in our RSS-based location 
algorithm implementation.

Figure	1.	RSS-based	localization	requires	characterization	of	both	the	transmitter	and	receiver,	and	
the ability to convert measured RSSI	into	path	loss	prior	to	input	into	a	localization	algorithm.	Path	
loss estimation requires knowing transmitter parameters and may require feedback to the transmitter 
to control its transmit power.
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PROPAGATION EFFEcTs

Multipath fading, shadowing, and antenna effects cause great variations in the measured RSS in real-
world environments, degrading its ability to produce accurate distance or position estimates.  This section 
serves to emphasize these well-reported effects in order to position the importance of studying device 
effects on measured RSS.  As we delve deeper into device effects which cause RSS errors, we will be 
able to position them in context to the larger problem of RSS-based position estimation.

Path losses, on average, increase with distance – the increase is due to “large-scale” path loss (Hash-
emi, 1993), which are proportional to , where  is a path loss exponent, and d is the path 
length.  But the path loss between two radios at particular positions is very much a function of the objects 
in the environment between them and the position and orientation of the antennas.  Movement on the 
order of centimeters or changing channel from one frequency to another can cause dramatic path loss 
differences because of “multipath fading” or “small-scale fading”.

Indoor environment propagation effects are particularly a problem for localization. As defined in 
Pahlavan, Li, and Makela (2002), when the line-of-sight path arrives with more power than any other 
multipath, it is called a dominant line-of-sight (DLOS) link.  In indoor environments, only receivers 
in a small area around the transmitter are found to be likely to be DLOS.  Most areas indoors have an 
LOS path shadowed by walls and objects; this shadowing decreases the received power, and the RSS 
becomes dominated mostly by multipath power from many different directions.  Besides being impacted 
by shadowing, these situations are more strongly affected by small-scale fading because many multipath 
signals contribute to the received signal.  When more multipath signals arrive from more directions, the 
statistics of small-scale fading change from Ricean to Raleigh and thus become more severe (Rappaport, 
1996).  Further, as we will discuss in more detail in the “Distance Estimation Equations” section, the 
errors in distance estimates are multiplicative; thus are more severe at longer path lengths.  In short, the 
fading problems increase as the distance between the transmitter and receiver increases.  

It is important to note that shadowing is not solely a degradation for RSS-based localization sys-
tems.  RSS fingerprinting algorithms (as described in the “RF Fingerprinting Algorithms” section) take 
advantage of the fact that shadow fading is a feature-rich, spatially-correlated random field which is 
mostly stationary over time.  By recording this field and using it to match measurements to a location, 
RF fingerprint-based algorithms exploit location-specific shadowing variations to benefit localization.  
In such systems, it is only small-scale fading and the change in shadow fading which degrade localiza-
tion algorithms.

Errors in RSS measurements also come from the fact that real-world antennas have directionality 
and the orientation of a node is not known a priori. This is exacerbated by objects to which devices are 
attached – anything metal or mostly water (people) would block RF propogation in its direction, at-
tenuating the signal by as much as 15 dB.  King et. al. (2006) have found that these antenna orientation 
issues are important to measure in calibration of RSS fingerprint-based localization systems, as will be 
discussed in the “RF Fingerprinting Algorithms” section.  Generally, multipath arrive at a receiver from 
many directions, and the measured RSS will depend on the powers of the multipath which arrive in the 
same direction as the directionality of the antenna.  Algorithms such as King et. al. (2006) actually use 
the antenna directionality to estimate the device orientation in addition to its position.
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DEVIcE EFFEcTs

Simple wireless devices can measure and report a quantized measurement of the received signal strength 
(RSS) of a received packet.  This measurement of RSS is typically referred to as the received signal 
strength indicator (RSSI).  For localization purposes, we actually require the path loss, that is, the actual 
dB loss experienced between transmitter and receiver antennas, which is related to distance between 
the two antennas.   It is not trivial to convert RSSI into path loss.  In this section, we show how wireless 
nodes can be calibrated so that RSSI measurements can be converted into path losses. 

Path loss Lij, in dB, on a link between transmitter j and receiver i is defined here to be the difference 
between the dBm transmit power PT and the dBm received power PR, 

Lij = PT − PR

In this section, we detail how transmit power and received power are functions of the device char-
acteristics, parameter settings, and battery voltage.

This section does not propose that all nodes should be characterized and calibrated for purposes of 
system deployment.  However, it is often important to calibrate one set of nodes for research and devel-
opment purposes.  It is critical to know how much devices vary and thus how much is lost when devices 
are not calibrated, even if we have no intention of deploying systems of calibrated nodes.

We intend to characterize two device characteristics that make measured RSSI vary:

• Transmit power device variations
• Transmit power battery variations
• Receiver RSSI circuit device variations

We show calibration measurements for the Crossbow Mica2 sensor in this chapter, but other wireless 
sensor modules can also be calibrated using this basic procedure.  

Transmit Power Device Variations

Typically, the transmit power of a radio IC can be set among a discrete set of possible power levels.  For 
wireless sensors, the need to conserve energy makes this a key requirement for the radio IC.  When 
nodes are communicating at short range, it will conserve energy to transmit at a lower power.  In ad-
dition, in interference-limited networks, reducing transmit power to the minimum required level helps 
reduce interference and allow higher communications rates.  When nodes are transmitting at different 
power levels, it will be critical to know exactly what transmit power is being sent so that path loss Lij 
(above) can be computed.  And, as we will show, transmit powers may vary from device to device even 
for the same nominal “power level” and battery voltage, due to manufacturing variations.  

Transmit power differences between nodes are to blame for many of the asymmetric links in sensor 
networks, that is, when node i can be received at node j, but node j cannot be received at node i.  Exten-
sive analysis is reported by Zuniga and Krishnamachari (2007).  Similar to the communications case, an 
asymmetric link can cause difficulties for a sensor localization algorithm. Some localization algorithms 
would not collect data on an asymmetric links because of the lack of a bidirectional communications 
link – data collection and exchange protocols could fail on that link.  Zuniga and Krishnamachari (2007) 
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report a variance of transmit power of 6 (dB)2.  This variation includes the effects of battery variations 
and device variations.

To provide a controlled measurement-based quantification of transmit power variation, we present 
measurements of a set of Crossbow Mica2 nodes, which use the TI/ChipCon CC1000 radio IC.  Our 
calibration experiment is shown in the block diagram in Figure 2. The calibration procedure can be 
described in the following steps:

• Each node is powered from a variable DC power supply set to 3.0 V so that we can study the 
transmit power variation separately from battery variation.

• Each node is programmed to periodically transmit data packets at a specified transmit power 
code.

• A node is RF shielded by placing it in an aluminum box, and its RF output port is connected via 
RF/coaxial cable to a spectrum analyzer (Agilent E4405B) in peak power mode, as shown in Figure 
2.

• While connected, the transmit power code of the node is changed from one to the next and the 
measured transmit power is recorded for each.

Table 1 reports the transmit power values (in dB) for the different transmit power codes for the 
particular device under test. In the experimental process, we kept the transmit frequency at 903 MHz. 

We have characterized multiple transmitters in order to consider the variations between devices.  The 
transmit power calibration values for sixteen different Mica2 nodes are plotted in Figure 3 as a function 
of transmit power code.  There is noticeably higher variance in transmitted power between devices at 
low transmit powers.  The largest variation is at the lowest transmit power level, for which transmit 
power varies from -29.1 dBm to -32.7 dBm, a difference of 3.6 dB.  But, over all transmit power levels, 
the standard deviation of the transmit power ranges from 0.15 to 0.91 dB, for an overall RMS standard 
deviation of 0.45 dB.  On the whole, we have that the difference between the average and the actual 
transmit power for a given device is random with standard deviation 0.45 dB.

Transmit Power Variation with battery Voltage

However, this is the device variation, without considering the battery voltage.  As time passes, the bat-
tery power is drained, and the voltage produced by the battery reduces.  At some point, when the battery 
voltage becomes too low, the sensor, or the radio will fail.  But before failure, changes in battery voltage 

Figure	2.	Block	diagram	for	transmitter	calibration
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affect the transmitted power.  In fact, the power that a transmit amplifier can produce is proportional 
to the square of the battery voltage.  An amplifier has an efficiency, which relates to how much of the 
battery power can be converted to RF transmit power.  In general, we can consider the transmit power, 
PT, as a function of battery voltage Vbatt, 

      (1) 

where PT (V0) is the transmit power measured at a reference voltage, V0, and a is an efficiency constant.  
For our measurements, we used a reference voltage of V0 = 3.0 Volts. 

To characterize the transmit power as a function of battery voltage, we tested multiple Mica2 
nodes using a modification of the test procedure shown Figure 2, in which we changed the DC voltage 
provided by the variable DC power supply in the range of about 2.4 to 3.3 Volts.  At each tested DC 
voltage, we recorded the transmit power on the spectrum analyzer.  The results are shown in Figure 4 
for two of the nodes.   For the linear model above, the value of a is calculated to be 0.67.  This value is 

Table	1.	Transmit	power	vs.	transmit	power	code	for	Mica2	device	under	test

Power Code 
(hex)

Output Power 
(dBm)

Power Code 
(hex)

Output Power 
(dBm)

Power Code 
(hex)

Output Power 
(dBm)

0x02 -31.00 0x0B -14.71 0x70 -5.23

0x03 -26.56 0x0C -13.30 0x80 -3.94

0x04 -23.84 0x0D -12.64 0x90 -3.09

0x05 -21.56 0x0F -11.22 0xB0 -1.42

0x06 -19.92 0x40 -9.99 0xC0 -0.94

0x07 -18.33 0x50 -8.08 0xF0 -0.37

0x08 -16.97 0x60 -6.49 0xFF -0.03

0x09 -15.94

Figure	3.	Transmit	power	in	dB	vs.	transmit	power	code	for	16	different	Mica2	devices
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largely constant across nodes.  So, while the value of PT (V0) is not the same between nodes, the slope 
of the transmit power as a function of battery voltage near 3.0 Volts may be approximated as identical 
between nodes.

Discussion

Since devices do vary, even with identical devices, it is clear that in a large-scale sensor localization 
system, device transmit powers will differ from their stated, nominal, values.  An important question 
is, how are localization algorithms affected by these random transmit power variations?   In the “Non-
parametric Localization Algorithms” section, we discuss one type of algorithm which can be robust to 
transmit power variations, due to its use of RSS differences.  

We also mention existing analytical analysis reported by Patwari and Hero (2006) which reports the 
Bayesian Cramèr-Rao bound (CRB) on coordinate estimator variance when the transmit powers are 
random.  The bound provided by the Bayesian CRB is useful because it is independent of algorithm; any 
estimator will have root mean-squared error (RMSE) greater than its bound.  In this analysis, the transmit 
powers of each device was assumed to be random, and Gaussian, with a given standard deviation.  The 
increase of the bound is reported to describe the performance degradation caused by not knowing the 
exact transmit power.  From the example numerical results, for a standard deviation of transmit power 
of 1 dB, the bound on RMSE increases by 1-3% (depending on the setup).   However, a key finding of 
the bound analysis is that the two bi-directional measurements on a link (both Lij and Lji) must both be 
used in the localization algorithm; it is not sufficient to average the two together, ,  and use 
only that average.  When using only the link bi-directional average, an algorithm is no longer able to 
adaptively estimate node transmit powers, and the RMSE bound increases much more dramatically, as 
much as 25% when the standard deviation of transmit power is 5 dB.  In sum, the impact of transmit 
power variations can be severe, but only when the standard deviation of transmit power is high. Algo-
rithms could be designed to adaptively estimate each node’s deviation from its nominal transmit power 

Figure	4.	Transmit	power	in	dBm	as	a	function	of	the	battery	voltage.	The	solid	line	indicates	the	best	
fit	to	the	linear	model,	with	a	=	0.67.
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and then adjust the coordinate estimate as a result.  For example, use the difference values, , 
for all j, to estimate the deviation of the transmit power of node i from its nominal value. 

Receiver RssI circuit Device Variations

Assuming that calibrations described in past two sections are complete, we know very accurately the 
transmit power of a calibrated node, given its transmit power code and battery voltage.  Now, we can 
proceed to use a fully characterized transmitter to calibrate a receiver’s RSSI characteristic.  This process 
will allow us to accurately translate the measured RSSI in Volts to the actual path loss in the channel.

We show in this section that wireless sensors report an RSSI which has a non-linear relationship 
with received power.  For some range of RSSI, we can make a linear approximation, but we then must 
be careful when using signal strength measurements that the receiver is operating in a linear region of 
RSSI.  In this section, we report characterization of the Crossbow Mica2 mote, which uses the CC1000 
radio IC, but we have also observed the non-linear characteristic on the Crossbow TelosB mote (with a 
CC2420).  We believe that, in general, inexpensive radios are not designed to achieve linear measure-
ments of received power, because communications applications generally do not require it.

In our measurements, we input a known received power in dBm into a device and record the RSSI 
value in Volts.  We do this using the experimental setup in Figure 5, designed to provide a known received 
power, and to remove the effects of RF leakage.  The mote 1 in Figure 5 is placed in a RF shielded box 
and programmed to transmit with known transmit power code (0x0F) and known battery voltage (3.0V) 
from a power supply.  From the results presented already, we know that this node transmits -11.22 dBm 
with these settings (from Table 1).  We choose from among several SMA-connectorized attenuators, 
with a range of attenuation values, to achieve the desired link loss.  Inside a second shielded box we 
place mote 2, which has the receiver under test, and is connected to the output of the attenuators via an 
SMA to MMCX cable.  A third Mica2 node is programmed to receive the measured data from mote 2 
and to communicate it to a laptop.  

Figure 6 shows the recorded RSSI values from the experiment for a wide range of received power 
values.  The results show two critical lessons for the use of measured signal strength:

• At high received power (-50 dBm and above) the RSSI values saturate, and do not have a 
linear relationship with the actual received power.  Although it is very possible for two proximate 

Figure	5.	Block	diagram	for	receiver	calibration
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nodes to record a received power at or above -50 dBm, it is not useful for the purpose of accurately 
measuring link path loss.

• At power levels below -90 dBm, packets are not correctly demodulated. Thus path loss in-
tegers are not reported for received power levels below -90 dBm.  However, we note that in the 
above calibration setup, if RF shielding is not done properly, and RF power leakage is allowed to 
circumvent the attenuators (possibly from poorly connected, or low quality cables), you would 
receive packets, and for this node, the RSSI would be around 0.85 V.  If a second non-linear region 
exists at the bottom right (at low received power) of Figure 6, then it is likely that RF leakage is 
the problem.

For the values in the linear range (-50 to -90 dBm) we calculate a linear fit. This linear fit for this 
node’s receiver is given by

       (2)

where RSSI is the path loss integer reported by the receiver, and PR is the actual received power.  This 
measured result is slightly different from the result listed on the CC1000 data sheet, which had reported 
that the PR = –51.3 RSSI – 49.2  in dBm (as cited in Whitehouse, Karlof, and Culler, 2007).  We do 
not know how the data sheet formula was determined, so our best guess regarding the 5-6 dB offset is 
that it is due to RF front end differences prior to the CC1000 radio IC in the tested device (the Mica2) 
compared to the device used in the CC1000 manufacturer calibration tests.

We note also that other research has been conducted to characterize receiver differences for com-
munications applications.  Zuniga and Krishnamachari (2007) also included characterization of receiver 
noise floor.  The analysis uses the noise floor power value in order to determine whether or not a packet 
received at a given power can be demodulated or not.  Such a model only requires one parameter, the 
noise floor, while our analysis for localization purposes must characterize the function of received 

Figure	6.	Measured	RSSI	value	vs.	actual	received	power	for	a	tested	Mica2	node,	and	a	linear	fit	for	
the data points which do not experience saturation
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power vs. RSSI value.  Zuniga and Krishnamachari (2007) find that this receiver noise floor value has 
a variance of 3 (dB)2.

In the “linear” region of the measured characteristic of Figure 6, there is some small non-linearity 
in the Mica2 RSSI characteristic. The actual received power in the 0.25 V < RSSI < 0.35 V range is 
slightly higher than the linear fit, while the actual received power in the 0.45 V < RSSI < 0.6 V range is 
slightly lower than the linear fit.  We find this consistent across Mica2 nodes.  We believe this is specific 
to the Mica2 implementation, but that other radio ICs will also see small non-linearities.  The standard 
deviation of error in the linear fit, for the data recorded in the linear region, is about 1.1 dB.  

Discussion

Point (1.) above deserves extra emphasis, because it indicates a key requirement for use of signal strength 
between nearby nodes.  Intuitively, one might expect that recorded RSSI is most accurate when there 
are short distances between nodes.  However, this is not true if the nodes are transmitting at high power 
levels.  In fact, if nodes are to be deployed densely, nodes must turn down their transmit power!  This 
is counter-intuitive, since lower transmit power results in lower signal to noise ratio, and shorter range.  
However, for purposes of path loss measurement and path loss-based ranging, very high received pow-
ers saturate the receiver and make the measured RSSI uninformative.

Nodes should not turn down their power at the expense of node connectivity. The large-scale experi-
ments in Whitehouse, Karlof, and Culler (2007) show that localization performance degrades quickly 
when the connectivity degrades.  By lowering the transmit power or by lowering the antennas closer to 
the ground (which increases path losses) the experiments reduce connectivity and show that an algo-
rithm’s ability to localize is quickly lost.

Point (2.) also is critical to understand why observed received powers are sometimes higher than 
predicted by a path loss model at long distances.  This saturation is a “observation bias”: we can only 
measure received power if it is above a threshold (about -90 dBm in Figure 6).  Assume that at a given 
distance, our best propagation model says that the average received power should be below the thresh-
old.  But we can only measure received powers above the threshold.  Thus when we report an average 
experimental received power for nodes separated by that distance, it will be above the threshold.  This 
effect introduces bias into localization algorithms (Costa, Patwari, and Hero, 2006).

summary

We have used calibration in two ways: to enable high accuracy path loss measurements, and to quantify 
the errors caused by uncalibrated nodes. Transmitter power outputs variations have a standard devia-
tion from 0.15 to 0.91 dB at the highest and lowest transmit power level, respectively.  Transmit power 
levels change about 1 dB between new batteries to dead batteries. Receiver RSSI can be used to indicate 
received power, and as long as the RSSI is in the linear region, we can expect it to contribute 1 dB of 
standard deviation to our measurement.  In total, since variances add, the overall standard deviation of 
error due to device non-characterization could be as little as 1.4 to 1.7 dB.  This, again, assumes that the 
average device characteristic is well known, and that receivers are operating in the linear region.

This standard deviation of error may have minimal impact on some common applications.  For example, 
for ranging, the multipath fading and shadowing variances will far outweigh this non-characterization 
error variance.  Thus we do not suggest device calibration as a necessary procedure for all applications.  
However, we must ensure that received powers are not in the saturation range of the receiver.
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cHANNEL EXPERIMENTs WITH POWER cONTROL

One main lesson learned from the device calibration work is that accurate RSS-based ranging and 
localization should take place when the received power does not reach either of two extremes.  The 
received power must be high enough to demodulate packets, but not so high power as to place them 
in their saturation region.  In the first extreme, if the RSSI of all neighbors’ packets are measured to 
below  about .13 V, it will be very difficult to distinguish the actual received power (in particular when 
device variations are taken into account), and all neighbors will seem equally close to the receiver.  At 
the other extreme, if neighbors’ packets arrive with power near or below the receiver threshold, then we 
are missing packets from neighbors, and we will not do as good of a job in localization as we could.  

To some extent, these problems can be controlled by changing the transmit power.  The Mica2 node 
has a transmit power range of about 30 dB, and in general, wireless sensors have the ability to change 
their transmit power over a wide range. By lowering the transmit power to its minimum it is possible to 
completely avoid the first extreme, in which received powers are too high.  We have run many localiza-
tion experiments with a node density of 10-20 nodes per square meter with the transmit power set to 
its lowest power setting, and see good results from our RSS-based localization algorithm, described in 
Patwari, Agrawal, and Hero (2006).  However, when transmit powers are set higher, measured RSSI 
values are nearly identical, regardless of path length. In the second extreme, with the transmit power 
set to its highest, we can run localization experiments with long distances of 10-20 m between nodes, 
as long as each node is within communication range of a few other nodes. 

However, we cannot limit WSN localization to situations in which local node densities are well 
known prior to deployment.  In this section, we introduce a simple closed-loop power control protocol 
and algorithm to automatically avoid the two extremes of low and high received powers.

Protocol

In order to obtain feedback regarding its transmit power, a node must learn from its neighbors.  Given 
that node i can communicate with K nodes,  j1, j2, …, jK, we denote the neighbor set of node i as Hi = 
{ j1, j2, …, jK }.  In this power control protocol, node i transmits feedback to each node j∈Hi regarding 
the RSSI node i measured during reception of packets from j.  We denote this as RSSIji, and it is the 
measured RSSI at node i for the packet transmitted by node j. With this notation, the “power control 
packet” transmitted by node i has contents shown in Figure 7.

Each node, each round, transmits one power control packet to provide feedback to its K nearest 
neighbors regarding its measured RSSI values.  In our experiments, we use K = 12.

Figure	7.	Power	control	packet	transmitted	by	node	i
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Algorithm

When node i receives any power control packet, it searches in the list of j’s neighbors, i1, i2, …, iK, to find 
its own node number.  If i is a neighbor of j, then it records RSSIj,i as an “incoming RSSI” from node 
j.  It must collect each incoming RSSI value from the power control packet of one of its neighbors.  To 
aggregate them, node i then averages all RSSI values on record to calculate its mean incoming RSSI.  
This value summarizes the feedback received from all of its neighbors.

The decision about the transmit power, in this algorithm, is solely a threshold test on the mean in-
coming RSSI.  We have two rules:

• If the mean incoming RSSI is less than 0.25 V, reduce the transmit power.
• If the mean incoming RSSI is greater than 0.6 V, increase the transmit power.

The transmit power is raised or lowered by one transmit power code at a time.  Note that at low or 
very high RSSI, we cannot predict how changing the transmit power code will impact the mean incom-
ing RSSI, because of the nonlinear effects of either RSSI saturation or nodes being out-of-range.  Thus 
we do not believe that an optimal transmit power can be directly computed.

Results

We implemented the above transmit power control algorithm and ran it to show that the above simple 
algorithm is able to adapt the transmit powers in a sensor network to an appropriate level. In an experi-
ment, we program a group of 16 nodes to run the power control algorithm described above.  This program 
initializes at a transmit power code 0x0F, which from Table 1, corresponds to a transmit power of -11 
dBm.  Then, we place the 16 nodes on a carpeted floor in a 2 m by 2 m square area.  These nodes are at 
a high density, so many of the received powers are initially higher than -50 dBm, within the non-linear 
RSSI region we wish to avoid.  Clearly, the transmit powers should be reduced.

We watch how the sensors respond and change their transmit power code at each iteration, or “sequence 
number”, of the algorithm.  Nodes transmit packets with a sequence number which is incremented after 
each transmission.  Note also that nodes use a slow frequency hopping, so the frequency changes with 

Figure	8.	(a)	Transmit	power	code	and	(b)	mean	incoming	RSSI vs. sequence number, recorded by nodes 
one and two during the power control experiment
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each transmission.  Our base unit does not synchronize fast enough to receive packets in the first few 
sequence numbers.  First, we observe in Figure 8(b) how the mean incoming RSSI value is initially as low 
as 0.1 V.  While this value is below 0.25 V, the transmit power decrements each sequence number.  The 
mean incoming RSSI is noisy during this time, because it is re-initialized each time the transmit power 
is changed.  During each time period, it may hear from a large number of neighbors, but since packet 
reception rates are approximately in the 70-80% range, we will hear from a random subset each time, 
which leads to a large variation in the mean incoming RSSI over time.  There is also a noticeable delay 
in the control loop, which leads to the asymptotic mean incoming RSSI approaching a value around 0.4 
V, rather than the threshold of 0.25 V.  This is due to the latency introduced by frequency hopping.  

summary

One major difficulty with RSS-based ranging is the nonlinear effect at close range, and the lack of con-
nectivity at low node densities.  Instead of a constant transmit power, we use an adaptive power control 
algorithm to set the transmit power to an acceptable value.  Assuming that we have performed the transmit 
calibration procedure (discussed in the earlier section) on a few of the nodes, we will be able to program 
the nodes to compute path loss from the RSSI and the known transmit powers of its neighbors.

RANGE-FREE LOcALIZATION FROM MEAsURED PATH LOss

Up until this point, we have only talked about accurately computing measured path losses on links.  
Much of the sensor network localization algorithm literature deals with range-based localization algo-
rithms, which require converting path loss measurements into a distance estimate prior to estimating the 
node coordinates.  However, there is a significant interest in localization without such conversion; these 
“range-free” algorithms can provide useful characteristics compared to range-based localization.  

In this section, we discuss three types of algorithms which do not require distance estimates.  These 
three types are:

• Connectivity-based localization
• Non-parametric RSS-based localization 
• RF fingerprint-based localization 

connectivity-based Localization

Localization methods which use only whether or not two nodes can communicate are called proxim-
ity or connectivity-based methods.  Connectivity is effectively a binary quantization of the received 
power, since digital communications receivers are largely unable to receive packets when the received 
power is below a receiver threshold.  Thus two nodes are either “in-range” or “out-of-range”.  The 
threshold between the two may be the actual physical limits of the radio, or may be set to some other 
pre-determined RSSI value.  Range-free algorithms are excellent low-maintenance and low-setup cost 
localization systems for applications where the highest accuracy is not required.  In some applications, 
knowing that a receiver is in-range of one or more known-location transmitters is more than enough 
location information.  Several algorithms have been proposed for use with connectivity, including Bu-
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lusu, Heidemann, and Estrin (2000), and Niculescu and Nath (2001).  They range from simply finding 
the centroid of the coordinates of in-range nodes (Bulusu et. al., 2000) to using the shortest-path hop 
count as a distance metric (Niculescu and Nath, 2001).

The main problem with range-free localization is that quite a bit of information is lost by quantiz-
ing the RSSI into one bit.  In our theoretical analysis, we found that we should expect at least a 50% 
increase in standard deviation of localization error compared to using unquantized RSSI values, even  
if the threshold is set optimally (Patwari and Hero, 2003).  

Non-Parametric Localization Algorithms

Non-parametric RSS-based localization algorithms directly use RSSI measurements. Ecolocation (Ye-
davalli, Krishnamachari, Ravulla, and Srinivasan, 2005) and ROCRSSI (Liu, Wu, and He 2004) are 
algorithms which use the order information of the path loss values at node i, when the path loss values 
are sorted from smallest to largest.  Then, these algorithms constrain the distance between node i and 
its closest neighbor to be less than the distance to its 2nd closest neighbor, which must be less than the 
distance to its 3rd closest neighbor, and so on.  These constraints graphically imply concentric circles, 
for the closest to the furthest neighbor.  The Ecolocation algorithm finds a region for each sensor which 
best meets the simultaneous constraints imposed by all the neighbor distance orderings.  However, the 
full solution can be computationally complex because of the large number of simultaneous constraints, 
and is a centralized algorithm. The APIT method of He, Huang, Blum, Stankovic, and Abdelzahar 
(2003) similarly reduces the area of possible location, in its case, by testing each set of three nodes to 
see whether the device-to-be-located is within, or outside of, the  triangular area formed by the three 
nodes.  The APIT triangle test requires only a comparison of path loss  measurements between neighbor-
ing nodes, but it assumes a relatively high density of anchor nodes (or anchor nodes with high transmit 
power) compared to the APS method of Niculescu and Nath (2001).

RF Fingerprinting Algorithms

In RF fingerprint-based algorithms, the RSS between a node and many fixed access points are recorded, 
and used together as a vector “fingerprint” of the location of the node (King et. al.,  2006, and Bahl and 
Padmanabhan, 2000).  This method, prior to deployment, takes thorough measurements of the finger-
print of a test node moved to every possible location in the area of deployment (e.g., in a building), and 
possibly facing each direction at that location.  At each location and facing direction, the fingerprint of 
the test node is recorded and stored in a database. The localization algorithm, once deployed, simply 
searches for the closest measurement in the database – that measurement’s location is estimated to be the 
current node location.  This notion of “closest” is a function of the measured RSSI values (e.g., Euclidean 
distance between RSSI vectors in Bahl and Padmanabhan (2000)).  The chosen distance metric may be 
optimal for certain statistical error model (e.g., the Euclidean distance metric for Gaussian errors), so 
an RF fingerprinting algorithm makes an implicit assumption about the statistical model for path loss 
measurements.  The RF fingerprinting algorithm does avoid significant other modeling requirements 
of distance-based localization algorithms.

Clearly, RF fingerprinting methods require a huge investment of time prior to deployment, and a 
large fixed infrastructure – two requirements not typically present for environmental wireless sensor 
networks.  However, for sensor systems which operate in buildings where other WiFi backbones exist, 
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RF fingerprinting methods can provide a high-accuracy, large scale localization system.  RF finger-
printing methods have been commercialized for the active RFID / real-time location systems (RTLS) 
market segment, and companies such as Ekahau, Inc. and AeroScout, Inc. deploy such systems.  As 
time passes and the arrangement of a building interior changes (e.g., every 3 months), such systems 
require re-measurement of the fingerprint database to keep accuracy high.  Current research efforts 
show promise in the reduction of measurement requirements to build the database, for example, as in 
Fang, Lin, and Lin (2008).

Discussion

These three types of range-free algorithms require only relative notions of path loss, and thus do not 
require a conversion to distance.  In all methods, measured RSSI is either compared to a threshold or 
to other RSSI measurements.  When all nodes transmit at identical power levels, the RSSI can be used 
directly.  But when transmit powers differ, either purposefully due to power control or simply due to 
device variations, RSSI should be converted to path loss to see the full benefits of the proposed non-
parametric localization algorithms.

Non-parametric localization algorithms do eliminate the need to estimate distance from path loss.  
As will be discussed in the following sections, distance estimation requires additional knowledge of  
environmental propagation characteristics, which can be difficult to accurately provide to a general-
purpose localization system.  

RANGE-bAsED LOcALIZATION FROM MEAsURED PATH LOss

Despite advances in “range-free” algorithms, there is often a need to use a distance-based location algo-
rithms. When sensor networks are deployed where little infrastructure exists, and thus RF fingerprinting 
approaches will not work, there are often benefits to having an explicit range estimate in localization 
algorithms.  For distributed wireless sensor network localization, there are many examples of range-
based localization algorithms in the literature.

Another argument for including range estimation is that, while there is a clear delineation in the litera-
ture between range-based and range-free algorithms, practical deployed localization systems will often 
benefit from using a mix of both types of algorithms.  For example, range-free localization algorithms 
may gain from the use of range estimates as a consistency check.  Similarly, range-based algorithms 
will likely need a method for online local determination of propagation and device parameters, which 
at one extreme, is no different than non-parametric localization approaches.  

In this section, we present a discussion of the conversion of path loss to distance between two nodes.  
This conversion requires models for path loss, which is not only a function of distance, but many other 
environmental and propagation effects.  We first present these distance and noise models, and then 
present information about estimators of distance given measured path loss.

Exponential Decay Model

The most common model for the ensemble mean of path loss at a particular distance between transmit-
ter and receiver is that path loss is linearly proportional to the logarithm of that distance (Rappaport, 
1996, and Hashemi, 1993).  This proportionality is typically written as follows:
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        (3)

where L0 is the path loss at a reference distance d0, and np is called the path loss exponent, and the E[Lij] 
indicates the expected value.  Here, path loss is expressed in dB, which is 10 times the log base 10 of the 
linear multiplicative channel loss. The values of L0 and np are dependent on the environment in which 
the sensors are deployed.  

The model of (3) assumes no site-specific knowledge.  In situations where we know the positions of 
the two nodes and the environmental obstructions in between them (interior or exterior walls, floor losses, 
trees, buildings, etc.), we could estimate the mean loss much more accurately.  For example, Durgin, 
Rappaport, and Xu (1998) models each type of obstruction in the path as an attenuator with a constant 
loss, and estimates these constants from a set of measurements.  For the purposes of localization in WSN, 
site-specific information may be limited.  When it is available, it introduces sharp discontinuities in the 
path loss as a function of the two node coordinates, making optimization-based algorithms fail.  However, 
such models have made impact in RSS fingerprint-based localization by allowing fingerprint measure-
ments to be interpolated, and thus requiring much less dense manual measurements (Zhu, 2006).

We also note that the model of (3) is often bifurcated into “near-field” and “far-field” cases (Feuerstein, 
Blackard, Rappaport, Seidel, and Xia, 1994).  Within the near-field, which is defined as within the first 
Fresnel zone, the model of (3) is an approximation with a relatively low path loss exponent.  Beyond the 
first Fresnel zone, there tends to be more significant destructive multipath interference and the effec-
tive path loss exponent increases.  As a result, more complete path loss vs. distance models are called 
“piecewise linear” path loss models and include two (or possibly more)  log-linear functions of 
(3) for use with different ranges of dij.  Within RSS-based localization systems, a piecewise linear path 
loss model requires more parameters to be estimated, but could provide more accurate localization, in 
particular from very short-range or very long-range RSS measurements.  For WSN with sometimes 
high densities, sensors can often be in each others’ near-field.

Noise: Frequency-selective Fading and shadowing

Clearly, the measured path loss has other contributions which are not a function of distance.  If measured 
path loss  at all times on all links, we would have no problem estimating distance and we 
would be able to calculate it exactly.  The measured  suffers from fading and shadowing, which are 
commonly lumped together and called “fading error” or “noise”.  These errors are severe, much more 
significant than the 1 dB standard deviations of measurement or characterization error which we’ve 
been discussing so far.  We refer to fading error on the link between i and j as Yij, and the shadowing 
loss on the link as Xij.  Then,

        (4) 

where E[Lij] is given in Equation (3).
There are several key points about the model in (4) that allow us to analyze RSS-based localiza-

tion.
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• The shadowing loss Xij can be well approximated as Gaussian, since it is expressed in dB (Rap-
paport, 1996).  Shadowing losses in linear terms are multiplicative, but in dB are additive.  Thus, 
by a central limit theorem argument, the dB total loss after interaction with multiple attenuators 
can be considered to be Gaussian.  In linear terms, this distribution is called log-normal.

• Fading errors are due predominantly to frequency-selective fading.  The arriving multipath compo-
nents add together, each with a phase and amplitude, and a phase that is a function of the frequency.  
At some frequencies, the phases are opposite and cancel, and we experience a “frequency null”.  At 
other frequencies, the phases are such that amplitudes add constructively.  At one frequency, the 
fading error Yij has a non-Gaussian distribution such as a Raleigh or Ricean (when loss expressed 
in linear terms).

We note that frequency selective fading can be reduced by performing wideband measurements.  With 
narrowband radios, this translates into frequency hopping in order to make measurements at multiple 
different frequencies.  When these frequencies are separated by more than the correlation bandwidth 
of the channel, we can expect the experienced fading losses to be uncorrelated (Rappaport, 1996).  For 
example, both Mica2 and 802.15.4-compatible radios can be designed to switch frequencies. We suggest 
operating a slow frequency hopping protocol when using narrowband radios, in which sensors measure 
RSSI with their neighbors sequentially across a list of different frequencies.  In our implementation 
(Patwari and Agrawal, 2006), we hop over 16 frequencies over the range of 900-928 MHz, and nodes 
save only an averaged path loss measurement.  We find significant improvement in measured path loss 
when averaging, compared to without averaging.  In general, for the average of N uncorrelated frequency 
measurements, we expect the standard deviation of Yij to reduce by a factor of .  Note that this 
average does little to reduce the variance of Xij; small percentage frequency changes do not significantly 
change the attenuation experienced due to obstructions.

The distribution of Lij, due to these two contributions, has both similarities and differences from 
the Gaussian distribution.  Although Xij is approximately Gaussian, Yij may or may not be Gaussian.  
When averaging over many different frequencies, it can be argued that Yij will also be approximately 
Gaussian as well by another central limit argument.  However, a Ricean or Rayleigh random variable 
converted to dB units will have noticeably heavier tails than the Gaussian distribution.

We can quantify from experiments how well the Gaussian assumption holds.  For example, mea-
surements of RSS from (Patwari, Wang, and O’Dea 2002) are used to test the Gaussian assumption in 
Figure 9.  These measurements were of path loss in a narrow-band channel, and did not do any frequency 
averaging.  First, we computed the fading error by subtracting  from the path loss measurements Lij.  
This fading error is then compared to the a unit-variance Gaussian distribution in a quantile-quantile 
plot, shown in Figure 9.  If the data were exactly Gaussian, the data points would lie in a diagonal line.  
Within the -2 to +2 quantiles, the data lie very close to a Gaussian distribution.  But, the extreme values 
of the measured fading errors show heavier tails, indicating the non-Gaussian nature of fading errors.  

Another measurement set reported in (Patwari, Hero, Perkins, Correal, and O’Dea, 2003) showed 
similar results for RSS fading errors.  In fact, it was reported that the RSS modeling error could be more 
accurately described as a Gaussian mixture, that is, one in which a large majority of data is described 
as Gaussian with one (smaller) variance, and a small fraction of the data is described as Gaussian 
with a different (larger) variance.  Such a mixture distribution would explain the heavier tails seen in 
RSS fading errors.  The work of Whitehouse, Karlof, Woo, Jiang, and Culler (2005),  advocate using 
empirical cumulative distribution functions (CDFs) of measurement data directly as the distribution of 
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fading errors. Such CDFs could improve the accuracy of studies which use simulation to quantify the 
performance of RSS localization.

Mixture and empirical heavy-tailed distributions are analytically more difficult to deal with, but they 
motivate “robust estimation” of localization.  Robust estimators down-weight or eliminate data points 
which seem inconsistent with other data.  One example is to eliminate triplets of ranges which do not 
meet the triangle inequality, or distances among four nodes which do not meet the “robust quadrilateral” 
requirement (Moore, Leonard, Rus, and Teller, 2004).  Such algorithms can eliminate some of the worst 
distance estimates.

We also note that in simulation, that shadowing errors experienced on different links (i,j) are taken 
to be independent and identically distributed, even though this is not a realistic assumption (Patwari, 
Wang, and O’Dea, 2002).  In real life, the shadowing on different links may be correlated if the links 
are shadowed by the same obstructions.  For example, two links passing through the same concrete wall 
would experience similar shadowing.  In general, two links which cover similar ground may experience 
correlated shadowing (Agrawal and Patwari, 2008).

Parameter Estimation

While we know that fading and shadowing will cause range errors when using a general path loss 
model such as (3), we also must have an accurate estimate for the parameters of the model in order to 
estimate distance.  For (3), there are two parameters, L0 and np, which are functions of the environment 
of deployment. One main difficulty in range estimation is determining these two parameters.  In our 
implementations, we conduct measurements in the environment of interest, which allow us to estimate 
these parameters.  This is a significant task.  Current research is evaluating algorithms to adaptively 
estimate the two parameters, which would be a huge benefit to quick deployment of RSS-based local-
ization systems, and would be essential for mobile sensor networks which may periodically change 
environment.  One such adaptive approach is presented in (Li, 2006), which simultaneously estimates 
coordinates and the path loss exponent.

Figure	9.	Fading	and	shadowing	losses	on	RSS	measurements	reported	in	(Patwari,	Wang,	and	O'Dea,	
2002)	compared	to	a	zero-mean,	unit	variance	Gaussian	distribution	in	a	quantile-quantile	plot.		Data	
shows	agreement	between	-2	to	+2	quantiles,	but	somewhat	heavier	tails.	
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Without adaptive parameter estimation, we can, and often do, perform deployment experiments to 
determine path loss parameters.  Typically, we would perform one deployment experiment in the envi-
ronment of interest, which would then allow us to estimate the values of L0 and np.  

We must be aware that such experiments will also result in parameter estimates which are noisy. In 
order to demonstrate the variation in channel parameter estimates, we perform 15 deployment experi-
ments in one single area, only changing the arrangement of the objects in that area between experi-
ments.  In this series of experiments, we arrange 16 Mica2 nodes on the floor in an empty classroom in 
an Engineering building on the University of Utah campus, after first removing all existing furniture 
from the room.  The nodes are placed in a four by four grid, with grid points each four feet (1.2 meters).  
We generate a “random” arrangement of objects for each experiment by placing obstructions as dictated 
by a randomized Matlab script.  For ease of use, our obstructions are ten cardboard boxes wrapped in 
aluminum foil.  These are significant RF reflectors, if not attenuators.  Since each experiment ran with 
identical quantity and quality of objects in the environment, we would intuitively expect the path loss 
model parameters to be identical.  

During each experiment, we capture path loss integers, averaged over 16 frequencies (to which sen-
sors hop during a slow frequency hopping protocol).  In this experiment, all sensors use the same known 
transmit power code.  Since we know the actual coordinates, we can plot the measured RSSI vs. actual 
distance.   Then, we use linear regression to find the best linear fit between RSSI and distance.  These 
linear fits are plotted in Figure 10.  Finally, over all 15 experiments, we find the average linear fit, which 
is also plotted in Figure 10.  We could have equivalently plotted a linear fit with path loss in dB using 
the known transmit power, reported battery voltages, and receiver characteristics of the nodes involved 
in the measurements, but have chosen to plot the direct RSSI measurement for simplicity.

Discussion

At short range, there can be significant variations in the estimated path loss parameters – at 1 meter (0 
dB meters), the standard deviation in RSSI is 4, which corresponds to approximately 1 dB.  At longer 
distances, the standard deviation is in the range of 0.01 to 0.02 V RSSI, or 0.5 to 1 dB path loss.  Al-

Figure	10.	Linear	proportionality	estimated	in	15	deployment	experiments	between	log	of	distance	and	
RSSI value, and the average proportionality over all experiments
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though these numbers are not severe, it is possible that the particular environment measured is not going 
to characterize that environment for all time.  We would recommend that more than one deployment 
experiment be performed in order to robustly characterize an environment.  In general, as we mentioned 
at the start of the “Parameter Estimation” section, it may be critical for large-scale deployments to use 
an algorithm which estimates model parameters and coordinates simultaneously, so that the specific 
environment in which deployed sensors is modeled appropriately.

Distance Estimation Equations

Assuming that path loss parameters have been estimated for the environment of interest, we can estimate 
distance from path loss.  Solving (4) for dij, 

 
        (5)

As it turns out, this equation for  is also the maximum likelihood estimator (MLE) of distance 
given measured path loss Lij and measured parameters L0 and np.  This means that as the noise reduces 
towards zero (as fading errors lessen), this estimator is efficient, that is, its variance approaches the lower 
bound on the variance of an unbiased estimator.  Clearly, the MLE has favorable features.  However, the 
MLE is a biased estimator of distance in this case.  As pointed out in Patwari, Hero, Perkins, Correal, 
and O’Dea (2003), given the discussed Gaussian distribution for Lij,

,     where        (6)

For typical channel parameters (Rappaport 1996), C is between 1.08 and 1.2, adding 8-20% bias to 
the range estimate.  Motivated by (6), we might also estimate distance dij as,

        (7)

in order to remove the bias in the distance estimate.  We denote this “bias-removed” estimator as .  
The choice between (5) and (7) is left to the system designer – it is often the case that the localization 
algorithm introduces other biases, which may counteract the bias in Equation (5).  However, if it does 
not, the use of (7) may reduce the localization errors in the algorithm.

Moreover, it is critical to note that when using RSS-based range estimates, the nodes separated by 
the shortest distances are going to produce the most accurate range estimates.  Equivalently, longer 
distances will measure distance estimates which have higher variance.  Intuitively, we can see that at 
longer range, the same error in measured RSSI will correspond to a larger distance error.  For example, 
consider Figure 10.  The conversion between RSSI and log distance is linear, but if log distance is high, 
then a change in log distance results in more linear distance change than at a low log distance.  From 
another perspective, we can look at the variance of the MLE estimate of distance from (5),

         (8)
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This shows that the standard deviation of the distance estimate is directly proportional to the actual 
distance.  For example, if C = 1.15 and the actual distance is 1 meter, using (6) we would observe a 
standard deviation of the MLE range estimate of 0.77 meters -- but for an actual distance of 10 meters, 
we would expect a standard deviation of 7.7 meters.  Clearly while 77 cm error may be acceptable, a 
range error of 7.7 meters would be very severe.

A good localization algorithm would use this relationship to strongly down-weight range estimates 
to distant neighbors and instead emphasize range estimates between nearby neighbors.  Further, it 
quantifies the notion that RSS will be most accurate at short range, as we expect from the discussion in 
the “Propagation Effects” section.

DIscUssION

There are clearly many issues that negatively impact RSS-based localization, and it is easy to criticize 
or neglect the capabilities of RSS in localization without considering its capabilities and successes.  In 
terms of commercial application, we have mentioned deployments of indoor localization systems us-
ing RF fingerprint-based algorithms, and there have also been successful commercial deployments by 
AwarePoint, Inc., which use a WSN-like mesh network of nodes and use distance-based algorithms to 
estimate node locations.   

In terms of research literature, there have been a number of algorithms proposed and studied which 
consider the effects of ranging error and device inaccuracies.  We have mentioned many such refer-
ences in the text, and many good reviews of RSS-based localization algorithms exist in the literature, 
for example, Elnahraway, Li, and Pahlavan (2004). 

This chapter is not intended to discuss the wide literature on localization algorithms, which may be 
the subject of many chapters of this book.  Instead, we reiterate major lessons learned during device 
calibration and path loss model parameter estimation to recommend several simple adaptations which 
RSS-based location algorithms can take in order to improve their robustness and accuracy:

• Use of slow frequency hopping and averaging RSSI over frequency to reduce frequency-selective 
fading effects,

• Use of transmit power control to avoid the two opposite extreme problems of RSSI saturation and 
lack of connectivity,

• If transmit powers are known to have high variation, do not average bi-directional path losses Lij 
and Lji and instead use their differences to estimate the transmit power of each node. 

• Down-weighting of the range estimates to the furthest neighbors (or equivalently emphasis given 
to nearest neighbors’ range estimates),

• Adaptive estimation or learning of path loss parameters in the local environment of the deployment 
when using distance-based algorithms,

• Non-parametric approaches which compare signal strength measurements to each other, rather 
than to estimate distances directly.

For each of these bullet points, some existing literature has been discussed in this chapter.  Future 
research in algorithms will be critical to achieve the best possible RSS-based localization performance 
without large deployment expense.  Researchers and developers with experience in the measurement 
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and calibration of received signal strength will be best able to understand the interactions between real-
world measurements of RSS and localization algorithms.

cONcLUsION

While signal strength may be a highly desirable measurement for sensor self-localization algorithms, it 
is not necessarily straight-forward to obtain measurements which can be used to estimate sensor loca-
tion to the best degree possible.  We have presented a calibration procedure which can be used with any 
wireless sensor, and shown the results of one such set of calibration experiments.  Critically, deployed 
sensor location systems must localize based on path loss rather than RSSI or received power, since the 
transmit power of sensors may vary. We have motivated key location system adaptations which may be 
used to reduce measurement and thus localization errors, for example, transmit power control to reduce 
the problem of RSSI saturation; and frequency hopping to reduce multipath fading error.  We discuss 
both distance-based estimation and range-free estimation, in particular adaptations which eliminate 
modeling requirements or transmit power variation effects.  Using these methods, we can maximize the 
ability of signal strength measurements to provide accurate inputs into localization algorithms, such as 
those described within this book.

AcKNOWLEDGMENT

This material is based in part upon work supported by the National Science Foundation under CAREER 
grant ECCS-0748206 and CyberTrust grant CNS-0831490. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the 
views of the National Science Foundation.

REFERENcEs

Agrawal, P., & Patwari, N. (2008). Correlated	Link	Shadow	Fading	in	Multi-hop	Wireless	Networks, (Tech 
Report arXiv:0804.2708v2), arXiv.org. Retrieved 18 Apr 2008 from http://arxiv.org/abs/ 0804.2708v2

Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An In-Building RF-Based User Location and 
Tracking System. In	Proc.	19th	International	Conference	on	Computer	Communications	(Infocom), 2, 
775–784.

Bulusu, N.,  Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small 
devices.  IEEE	Personal	Communications,	7(5), 28-34.

Costa, J., Patwari, N., & Hero, A. O. (2006). Distributed weighted-multidimensional scaling for node 
localization in sensor networks. ACM	Trans.	Sensor	Networks,	2(1), 39-64.

Durgin, G., Rappaport, T. S., & Xu, H. (1998).  Measurements and models for radio path loss and 
penetration loss in and around homes and trees at 5.85 GHz.  IEEE	Trans.	Communications,	46(11), 
1484-1496.



144  

Calibration and Measurement of Signal Strength for Sensor Localization

Elnahraway, E., Li, X., & Martin, R. P. (2004). The limits of localization using RSS. In	Proceedings	of	
the	2nd	Intl.	Conf.	on	Embedded	Networked	Sensor	Systems	(pp. 283-284), Baltimore, MD.

Fang, S.-H.,  Lin, T.-N., & Lin, P.-C. (2008), Location Fingerprinting In A Decorrelated Space. IEEE 
Trans.	Knowledge	and	Data	Engineering,	20(5), 685-691.

Feuerstein, M. J., Blackard, K. L., Rappaport, T. S., Seidel, S. Y., & Xia, H. H. (1994). Path loss, delay 
spread, and outage models as functions of antenna height for microcellular system design. IEEE Trans. 
Vehicular	Technology,	43(3), 487-498.

Hashemi, H. (1993). The indoor radio propagation channel. Proc.	IEEE,	81(7), 943–968.

He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization 
schemes for large scale sensor networks. In	Proc.	9th	Intl.	Conf.	on	Mobile	Computing	and	Networking	
(Mobicom’03), (pp. 81-95), San Diego, CA. 

King, T., Kopf, S., Haenselmann, T., Lubberger, C., & Effelsberg, C. W. (2006). COMPASS: A Proba-
bilistic Indoor Positioning System Based on 802.11 and Digital Compasses. In	Proc.	1st	ACM	Intl.	
Workshop	on	Wireless	Network	Testbeds,	Experimental	Evaluation	&	Characterization	(WiNTECH), 
(pp. 34-40), Los Angeles, USA.

Krishnamachari, B. (2006). Networking Wireless Sensors.Cambridge University Press.

Li, X. (2006). RSS-Based Location Estimation with Unknown Pathloss Model. IEEE Trans. Wireless 
Communications,	5(12), 3626-3633.

Liu, C., Wu, K., & He, T. (2004). Sensor localization with ring overlapping based on comparison of 
received signal strength indicator.  In	Proc.	IEEE	Mobile	Ad-hoc	and	Sensor	Systems	(MASS), (pp. 
516–518).

Moore, D., Leonard, J., Rus, D., & Teller, S. (2004). Robust distributed network localization with noisy 
range measurements. In	Proc.	2nd	Intl	Conf.	Embedded	Networked	Sensor	Systems, (pp. 50-61), Bal-
timore, MD.  

Niculescu, D., & Nath, B. (2001). Ad Hoc Positioning System (APS). In	Proc.	IEEE	Global	Communica-
tions	Conference	(GLOBECOM	‘01),	3, 1734- 1743.

Pahlavan, K., Li, X., & Makela, J. P. (2002) Indoor geolocation science and technology. IEEE Commu-
nications	Magazine,	40(2), 112-118.

Patwari, N., Wang, Y., & O’Dea, R. J. (2002). The Importance of the Multipoint-to-Multipoint Indoor 
Radio Channel in Ad Hoc Networks. In	Proceedings	of	the	IEEE	Wireless	Communication	and	Net-
working	Conference	(WCNC’02), 2, 608-612, Orlando FL.

Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’Dea, R. J. (2003). Relative Location Estima-
tion in Wireless Sensor Networks. IEEE	Trans.	Signal	Processing,	51(8), 2137-2148.

Patwari, N., & Hero, A. O. (2003). Using proximity and quantized RSS for sensor localization in wire-
less networks. In	Proc.	2nd	ACM	Intl.	Conf.	Wireless	Sensor	Networks	and	Applications	(WSNA	‘03) 
(pp. 20-29), San Diego, CA.



  145

Calibration and Measurement of Signal Strength for Sensor Localization

 Patwari, N., Agrawal, P., & Hero, A. O. (2006). Demonstrating Distributed Signal Strength Location 
Estimation.	In	Proc.	Fourth	Intl.	Conf.	Embedded	Networked	Sensor	Systems	(SenSys’06), (pp. 353-
354), Boulder, CO.

Patwari, N., & Hero, A.O. (2006).  Signal strength localization bounds in ad hoc & sensor networks 
when transmit powers are random.		In	Proceedings	of	the	Fourth	IEEE	Workshop	on	Sensor	Array	and	
Multichannel	Processing	(SAM-2006) (pp. 299-303), July 12-14, 2006, Waltham, MA. 

Rappaport, T. S. (1996). Wireless	Communications:	Principles	and	Practice. Englewood Cliffs, NJ: 
Prentice-Hall.

Whitehouse, K., Karlof, C., Woo, A., Jiang, F., & Culler, D. (2005). The effects of ranging noise on 
multihop localization: an empirical study. In	Proc.	4th	Intl.	Symp.	Information	Processing	in	Sensor	
Networks	(IPSN’05) (pp. 73-80), April 24 - 27, 2005 Los Angeles, California. 

Whitehouse, K., Karlof, C., & Culler, D. (2007). A practical evaluation of radio signal strength for 
ranging-based localization. SIGMOBILE Mob. Comput.	Commun.	Rev.	11(1), 41-52.

Yedavalli, K., Krishnamachari, B., Ravula, S., & Srinivasan, B. (2005). Ecolocation: a sequence based 
technique for RF localization in wireless sensor networks.	In	Proc.	4th	Intl.	Symp.	Information	Process-
ing in Sensor Networks, (pp. 285-292), Los Angeles, CA.

Zhu, J. (2006).  Indoor/Outdoor	Location	of	Cellular	Handsets	Based	on	Received	Signal	Strength.		
Doctoral dissertation, Georgia Tech, Atlanta.  Retrieved Aug 12, 2008, from http:// etd.gatech.edu/
theses/available/etd-05182006-154920/

Zuniga, M. Z., & Krishnamachari, B. (2007). An analysis of unreliability and asymmetry in low-power 
wireless links. ACM	Trans.	Sensor	Networks,	3(2), 1-7.



146  

Chapter VI
Graph Theoretic Techniques 
in the Analysis of Uniquely 

Localizable Sensor Networks
Bill Jackson

University of London, UK

Tibor Jordán
Eötvös University, Hungary

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbsTRAcT

In	the	network	localization	problem	the	goal	is	to	determine	the	location	of	all	nodes	by	using	only	par-
tial information on the pairwise distances (and by computing the exact location of some nodes, called 
anchors). The network is said to be uniquely	localizable	if	there	is	a	unique	set	of	locations	consistent	
with the given data. Recent results from graph theory and combinatorial rigidity made it possible to 
characterize	uniquely	localizable	networks	in	two	dimensions.	Based	on	these	developments,	extensions,	
related	optimization	problems,	algorithms,	and	constructions	also	became	tractable.	This	chapter	gives	
a detailed survey of these new results from the graph theorist’s viewpoint.

INTRODUcTION

In the network localization problem the locations of some nodes (called anchors) of a network as well 
as the distances between some pairs of nodes are known, and the goal is to determine the location of all 
nodes. This is one of the fundamental algorithmic problems in the theory of wireless sensor networks and 
has been the focus of a number of recent research articles and survey papers, see for example (Aspnes 
et al., 2007; Eren et al., 2004; Mao et al., 2007; So & Ye, 2007).

A natural additional question is whether a solution to the localization problem is unique. The net-
work, with the given locations and distances, is said to be uniquely	localizable if there is a unique set 
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of locations consistent with the given data. The unique localizability of a two-dimensional network, 
whose nodes are ‘in generic position’, can be characterized by using results from graph rigidity theory. 
In this case unique localizability depends only on the combinatorial properties of the network: it is de-
termined completely by the distance graph of the network and the set of anchors, or equivalently, by the 
grounded graph of the network and the number of anchors. The vertices of the distance and grounded 
graph correspond to the nodes of the network. In both graphs two vertices are connected by an edge 
if the corresponding distance is explicitly known. In the grounded graph we have additional edges: all 
pairs of vertices corresponding to anchor nodes are adjacent. The grounded graph represents all known 
distances, since the distance between two anchors can be obtained from their locations. Before stating 
the basic observation about unique localizability we need some additional terminology. It is convenient 
to investigate localization problems with distance information by using frameworks, the central objects 
of rigidity theory. 

A d-dimensional framework (also called geometric graph or formation) is a pair (G, p), where G = 
(V,E) is a graph and p is a map from V to Rd. We consider the framework to be a straight line realiza-
tion of G in Rd. Two frameworks (G, p) and (G, q) are equivalent if corresponding edges have the same 
lengths, that is, if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all pairs u, v with uv ∈ E, where ||.|| denotes the 
Euclidean norm in Rd. Frameworks (G, p), (G, q) are congruent if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds 
for all pairs u, v with u, v ∈ V . This is the same as saying that (G, q) can be obtained from (G, p) by an 
isometry. We shall say that (G, p) is globally rigid, or that (G, p) is a unique	realization of G, if every 
framework which is equivalent to (G, p) is congruent to (G, p), see Figure 1. 

The next observation shows that the theory of globally rigid frameworks is the mathematical back-
ground which is needed to investigate the unique localizability of networks. 

Theorem 1. (Aspnes et al., 2006; So & Ye, 2007) Let N be a network in Rd consisting of m anchors 
located at positions p1, ..., pm and n−m ordinary nodes located at pm+1, ..., pn. Suppose that there are at 
least d+1 anchors in general position. Let G be the grounded graph of N and let p = (p1, ..., pn). Then the 
network is uniquely localizable if and only if (G, p) is globally rigid. 

We shall give a survey of the current status of the theory of globally rigid graphs and frameworks, 
focusing on the most relevant cases of two and three-dimensional frameworks, but stating results for 
higher dimensions, wherever possible. We will assume that the reader is familiar with the basic terms 
of graph theory. Readers who are not can find them in the Appendix. 

Figure	1.	Two	realizations	of	the	same	graph	G	in	R2:	F1 is globally	rigid;	F2 is not since we can obtain 
a	realization	of	G	which	is	equivalent	but	not	congruent	to	F2	by	reflecting	p2 in the line through p1, p5, 
p3.
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Generic Frameworks

It is a hard problem to decide if a given framework is globally rigid. Indeed Saxe (1979) has shown that 
this problem is NP-hard even for 1-dimensional frameworks. Further hardness results can be found in 
(Aspnes et al., 2004), see also (Aspnes et al., 2006; Yemini, 1979). The problem becomes more tractable, 
however, if we assume that there are no algebraic dependencies between the coordinates of the points 
of the framework. 

A framework (G, p) is said to be generic if the set containing the coordinates of all its points is alge-
braically independent over the rationals. (A set {a1, a2,..., at} of real numbers is algebraically independent 
over the rationals if, for all non-zero polynomials with rational coefficients p(x1, x2, . . . , xt), we have p(a1, 
a2,...,at) ≠ 0.) Restricting to generic frameworks gives us two important ‘stability properties’. The first 
is that, if (G, p) is a globally rigid d-dimensional generic framework then there exists an e > 0 such that 
all frameworks (G, q) which satisfy ||p(v)−q(v)|| < e  for all v ∈ V are also globally rigid, see for example 
(Cheung & Whiteley, 2008). The second, which follows from a recent result of Gortler et al. (2007), 
is that if some d-dimensional generic realization of a graph G is globally rigid, then all d-dimensional 
generic realizations of G are globally rigid. We will return to this in the last section.

RIGIDITY AND GLObAL RIGIDITY OF GRAPHs

Rigidity, which is a weaker property of frameworks than global rigidity, plays an important role in the 
exploration of the structural results of global rigidity as well as in the corresponding algorithmic prob-
lems. Intuitively, we can think of a d-dimensional framework (G, p) as a collection of bars and joints 
where vertices correspond to joints and each edge to a rigid bar joining its end-points. The framework 
is rigid if it has no continuous deformations. Equivalently, and more formally, a framework (G, p) is 
rigid if there exists an e  > 0 such that, if (G, q) is equivalent to (G, p) and ||p(v) − q(v)|| < e  for all v ∈ 
V , then (G, q) is congruent to (G, p). 

Rigidity, like global rigidity, is a generic property of frameworks, that is, the rigidity of a generic 
realization of a graph G depends only on the graph G and not the particular realization. We say that the 
graph G is rigid, respectively globally rigid or uniquely	realizable, in Rd if every (or equivalently, if 
some) generic realization of G in Rd is rigid, respectively globally rigid. 

The problem of characterizing when a graph is rigid in Rd has been solved for d = 1, 2. A graph is 
rigid in R if and only if it is connected. The characterization of rigid graphs in R2 is a result of Lovász 
and Yemini (1982), which we will return to in the fourth section. We refer the reader to (Graver et al., 
2003; Whiteley, 1996) for a detailed survey of the rigidity of d-dimensional frameworks. 

A similar situation holds for global rigidity: the problem of characterizing when a generic framework 
is globally rigid in Rd has also been solved for d = 1, 2. A generic framework (G, p) is globally rigid in R 
if and only if either G is the complete graph on two vertices or G is 2-connected. The characterization 
for d = 2 uses the following general result of Hendrickson. We say that G is redundantly rigid in Rd if 
G −e is rigid in Rd for all edges e of G. 

Theorem 2. (Hendrickson, 1992) Let (G, p) be a generic framework in Rd. If (G, p) is globally rigid 
then either G is a complete graph with at most d + 1 vertices, or G is (d + 1)-connected and redundantly 
rigid in Rd. 
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Hendrickson conjectured that the necessary conditions for global rigidity of generic frameworks 
given in Theorem 2 are also sufficient. When d = 1, this follows from the above mentioned characteriza-
tions of rigidity and global rigidity. Counterexamples to Hendrickson’s conjecture were constructed by 
Connelly (1991) for all d ≥ 3. The remaining open case, d = 2, was settled by the following result, which 
incorporated earlier results from (Connelly, 2005; Hendrickson, 1992) and a new inductive construction 
for the family of 3-connected redundantly rigid graphs (see in the section on inductive constructions). 

Theorem 3. (Jackson & Jordán, 2005) Let (G, p) be a 2-dimensional generic framework. Then (G, p) is 
globally rigid if and only if either G is a complete graph on two or three vertices, or G is 3-connected 
and redundantly rigid in R2. 

Note that the characterizations of globally rigid generic frameworks for d = 1, 2 depend only on the 
structure of the underlying graph and hence imply the above mentioned result that global rigidity is a 
generic property in Rd, for the special cases when d = 1, 2.

MATROIDs

A matroid is an abstract structure which extends the notion of linear independence of vectors in a vector 
space. We will see that many of the rigidity properties of a generic framework (G, p) are determined by 
an associated matroid defined on the edge set of G. We first need some basic definitions. We refer the 
reader to the books (Recski, 1989; Schrijver, 2003) for more information on matroids. 

A matroid is an ordered pair M= (E, I) where E is a finite set, and I is a family of subsets of E, called 
independent sets, which satisfy the following three axioms. 

(M1) Ø∈I, 
(M2) if I ∈ I and D ⊆ I then D ∈ I,
(M3) for all F ⊆ E, the maximal independent subsets of F have the same cardinality. 

The fundamental example of a matroid is obtained by taking E to be a set of vectors in a vector space 
and I to be the family of all linearly independent subsets of E. 

Given a matroid M = (E, I), the cardinality of a maximum independent subset of a set F	⊆ E is defined 
to be the rank of F and denoted by r(F). The rank of E is referred to as the rank of M. A base of M is a 
maximum independent subset of E. A subset of E which is not independent is said to be dependent. A 
circuit of M is a minimal dependent subset of E. The matroid M is said to be connected if every pair of 
elements of E are contained in a circuit.  

Given a graph G = (V, E), we may define a matroid M = (E, I) by letting I be the family of all edge 
sets of forests in G. The rank of a set F ⊆ E is given by r(F) = |V | − k(F), where k(F) denotes the num-
ber of connected components in the graph (V, F). A base of M is the edge set of a forest which has the 
same number of components as G. A circuit of M is the edge set of a cycle of G, and M is connected if 
and only if G is 2-connected. This matroid is called the cycle matroid of G. 
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Rigidity Matrices and Matroids

Let (G, p) be a d-dimensional realization of a graph G = (V,E). The rigidity matrix of the framework 
(G, p) is the matrix R(G, p) of size |E|×d|V |, where, for each edge e = vivj ∈ E, in the row correspond-
ing to e, the entries in the two columns corresponding to vertices i and j contain the d coordinates of 
(p(vi)−p(vj)) and (p(vj)−p(vi)), respectively, and the remaining entries are zeros. See (Graver et al., 2003; 
Whiteley, 1996) for more details. The rigidity matrix of (G, p) defines the rigidity matroid of (G, p) on 
the ground set E where a set of edges F ⊆ E is independent if and only if the rows of the rigidity matrix 
indexed by F are linearly independent. Any two generic d-dimensional frameworks (G, p) and (G, q) 
have the same rigidity matroid. We call this the d-dimensional rigidity matroid Rd(G) of the graph G. 
We denote the rank of Rd(G) by rd(G).

As an example, consider a 1-dimensional framework (G, p). In this case, the rows of R(G, p) are just 
scalar multiples of a directed incidence matrix of G. It is well known that a set of rows in this matrix is 
independent if and only if the corresponding edges induce a forest in G. Thus R1(G) is the cycle matroid 
of G. 

Gluck (1975) characterized rigid graphs in terms of their rank. 

Theorem 4. (Gluck, 1975)  Let G = (V,E) be a graph. Then G is rigid in Rd if and only if either |V | ≤ d 
+ 1 and G is complete, or |V | ≥ d + 2 and rd(G) = d|V | − (

2
1+d ). 

This characterization does not give rise to a polynomial algorithm for deciding whether a graph is 
rigid in Rd. The problem is that to compute rd(G) we need to determine the rank of the rigidity matrix 
of a generic realization of G in Rd. There is no known polynomial algorithm for calculating the rank of 
a matrix in which the entries are linear functions of algebraically independent numbers. 

We say that a graph G = (V,E) is M-independent in Rd if E is independent in Rd(G). Knowing when 
subgraphs of G are M-independent allows us to determine the rank of G (and hence determine whether 
G is rigid), since we can construct a base for Rd(G) by greedily constructing a maximal independent set 
of Rd(G). This follows from axiom (M3) which guarantees that an independent set which is maximal 
with respect to inclusion is also an independent set of maximum cardinality. For example, when d = 1, 
we have seen that a subgraph is independent if and only if it is a forest. Thus we can determine the rank 
of G by greedily growing a maximal forest F in G. By Theorem 4, G is rigid if and only if F has |V |−1 
edges, i.e. F is a spanning tree of G.

THE 2-DIMENsIONAL RIGIDITY MATROID

Subsequent sections of this chapter will mainly be concerned with the case when d = 2. We will assume 
that this is the case unless specifically stated otherwise, and suppress the subscript d accordingly. 

We first describe the characterization of M-independent graphs due to Laman (1970). For X ⊆ V let 
iG(X) denote the number of edges in G[X], that is, in the subgraph induced by X in G. 

Theorem 5. (Laman, 1970) A graph G = (V,E) is M-independent if and only if iG(X) ≤ 2|X | − 3 for all 
X ⊆ V with |X | ≥ 2. 
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The following characterization of rigid graphs due to Lovász and Yemini, which can be deduced from 
Theorems 4 and 5, is a slight reformulation of Corollary 4 in (Lovász & Yemini, 1982), see also Corol-
lary 2.5 in (Jackson & Jordán, 2005). A cover of G = (V,E) is a collection χ= {X1,X2, ...,Xt} of subsets of 
V such that {E(X1),E(X2), ...,E(Xt)}partitions E, where E(X) denotes the set of edges in G[X]. 

Theorem 6. (Lovász & Yemini, 1982) Let G = (V,E) be a graph. Then G is rigid if and only if for all 
covers χ of G we have ∑X∈χ (2|X | − 3) ≥ 2|V | − 3. 

Theorem 6 is illustrated in Figure 2. 
A graph G = (V,E) is minimally rigid, or isostatic, if G is rigid, but G − e is not rigid for all e ∈ E. 

Theorems 4 and 5 imply that G is minimally rigid if and only if iG(X) ≤ 2|X | − 3 for all X ⊆ V with |X | 
≥ 2 and |E| = 2|V | − 3. Other characterizations for minimally rigid graphs have been given by Lovász 
and Yemini (1982) (for each e ∈ E, the graph obtained from G by adding a new edge parallel to e is the 
union of two edge disjoint spanning trees), and by Crapo (1990) (G contains three trees such that their 
edge sets partition E, each vertex in V is incident to exactly two of the trees, and the vertex sets of any 
two non-tivial subtrees that belong to different trees are different.) Note that if G is rigid, then the edge 
sets of the minimally rigid spanning subgraphs of G form the bases in the rigidity matroid of G.

Given a graph G = (V,E), a subgraph H = (W,C) is said to be an M-circuit (also called rigidity circuit 
or generic cycle) in G if C is a circuit (i.e. a minimal dependent set) in R (G). In particular, G is an M-
circuit if E is a circuit in R (G). For example, K4, K3,3 plus an edge, and K3,4 are all M-circuits, see Figure 
3. Using Theorem 5 we may deduce: 

Lemma 7. Let G = (V,E) be a graph. The following statements are equivalent.
(a)  G is an M-circuit.
(b)  |E| = 2|V | − 2 and G − e is minimally rigid for all e ∈ E.
(c) |E| = 2|V |−2 and iG(X) ≤  2|X |−3 for all X ⊆ V with 2 ≤ |X | ≤ |V |−1.

Figure	2.	Let	X1 = {v1, v2, v5, v6},	X2 = {v3, v4, v7, v8},	X3 ={v6, v7, v9, v10},	X4 = {v2, v3},	 and	 	  = 
{X1,X2,X3,X4}.	Then	χ	is	a	cover	of	G.	Furthermore	∑ X∈	χ	(2|X|	−	3)	=	16<	17=	2|V	|	−	3	so	G	is	not	
rigid	by	Theorem	6.	
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Recall that a graph G = (V,E) is redundantly rigid if G − e is rigid for all e ∈ E. Equivalently, a graph 
G is redundantly rigid if and only if G is rigid and each edge of G belongs to an M-circuit of G. If G is 
redundantly rigid then |E| ≥  2|V | − 2 with equality only if G is an M-circuit. 

We say that a graph G is M-connected if R (G) is connected i.e. every pair of edges of G belongs to 
an M-circuit. We will see that this property has important implications for global rigidity. The graph 
K3,m, for m ≥ 4, is an example of an M-connected graph. It is minimally M-connected in the sense that 
deleting any of its edges results in a graph which is no longer M-connected. Note that K3,m is an M-circuit 
only when m = 4.

The facts that M-circuits are rigid and the union of two rigid graphs with at least two vertices in 
common is rigid imply that M-connected graphs are rigid. Since every edge of an M-connected graph 
belongs to an M-circuit, we have: 

Lemma 8. Every M-connected graph is redundantly rigid. 

On the other hand, sufficiently connected redundantly rigid graphs are M-connected. 

Theorem 9. Every 3-connected redundantly rigid graph is M-connected (Jackson & Jordan, 2005).

In fact M-connected graphs can be characterized as redundantly rigid graphs which have no vertex 
cut sets of a certain type, see Theorem 3.7 in (Jackson & Jordán, 2005;). Note that Theorems 3, 9, and 
Lemma 8 imply that a graph is globally rigid if and only if it is either a complete graph on at most three 
vertices or is both 3-connected and M-connected.

Decompositions

We define a rigid component of a graph G = (V,E) to be a maximal rigid subgraph of G. It is known (see 
for example Corollary 2.14 in (Jackson & Jordán, 2005)), that any two rigid components of G intersect 
in at most one vertex and hence that the edge sets of the rigid components of G partition E. 

It is also known that any two maximal redundantly rigid subgraphs of a graph G can have at most one 
vertex in common, and hence are edge disjoint, see (Jackson & Jordán, 2005). Defining a redundantly 
rigid component of G to be either a maximal redundantly rigid subgraph of G, or a subgraph induced 
by an edge which belongs to no M-circuit of G, we deduce that the redundantly rigid components of G 
partition E. Since each redundantly rigid component is rigid, this partition is a refinement of the parti-
tion of E given by the rigid components of G. 

Figure	3.	Three	examples	of	M-circuits:	G1 is K4 and G3 is K3,3	plus	an	edge
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We may further define an M-component of G to be either a maximal M-connected subgraph of G, 
or a subgraph induced by an edge which belongs to no M-circuit of G. We again have the property that 
any two M-components of G can have at most one vertex in common, and hence are edge-disjoint, see 
(Jackson & Jordán, 2005). Since the M-components of G are redundantly rigid by Lemma 8, the partition 
of E given by the M-components is a refinement of the partition given by the redundantly rigid compo-
nents and hence a further refinement of the partition given by the rigid components, see Figure 4.

The partitions of E described above have a stronger matroid property. We say that a matroid M = 
(E, I) is the direct sum of two matroids M1 =(E1, I1) and M2 = (E2, I2) if E is the disjoint union of E1 
and E2 and 

I = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}.

The rigidity matroid of a graph G is the direct sum of the rigidity matroids of either the rigid compo-
nents of G, the redundantly rigid components of G, or the M-components of G. Furthermore, the vertex 
sets of the components in each of the above decompositions form a cover of G which minimizes the 
sum in Theorem 6. This minimum value is equal to the rank of R2(G). 

It is an open problem to determine the maximal ‘globally rigid components’ of vertices of a graph. 
We will return to this problem in the section on globally linked pairs.

INDUcTIVE cONsTRUcTIONs

One of the most useful tools in the analysis of (global) rigidity properties of a family of graphs is an 
inductive construction. In this section we will describe such constructions for rigid graphs and globally 
rigid graphs. 

Let H be a graph. The operation 0-extension (or vertex addition, or Henneberg operation of type I) 
adds a new vertex v to G and two edges vu, vw with u ≠ w. The operation 1-extension (or edge-split, or 

Figure	4.	This	graph	G	is	rigid	so	has	exactly	one	rigid	component.	It	has	three	redundantly rigid com-
ponents,	consisting	of	G	−	z	and	the	remaining	two	copies	of	K2.	It	has	five	M-components:	each	of	the	
three copies of K4, and the remaining two copies of K2. 
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Henneberg operation of type II) subdivides an edge uw of G by a new vertex v and adds a new edge vz 
for some z ≠ u,w. An extension is either a 0-extension or a 1-extension, see Figure 5. The next lemma 
follows easily from Theorem 5. 

Lemma 10. Let H be a minimally rigid graph and let G be obtained from H by an extension. Then G 
is minimally rigid. 

The following result gives a converse. 

Theorem 11. (Jackson & Jordán, 2005) Let G be minimally rigid and let H be a minimally rigid subgraph 
of G. Then G can be obtained from H by a sequence of extensions. 

By choosing H to be the subgraph induced by an arbitrary edge of G we obtain the following con-
structive characterization of minimally rigid graphs (called the Henneberg construction, see (Laman, 
1970; Tay & Whiteley, 1985)). 

Theorem 12. (Tay & Whiteley, 1985) A graph is minimally rigid if and only if it can be obtained from 
K2 by a sequence of extensions. 

As an immediate corollary we deduce that a graph is rigid if and only if it can be obtained from K2 
by extensions and edge additions. 

The analogue of Lemma 10 for global rigidity is as follows. 

Theorem 13. (Jackson et al., 2006) Let H be a globally rigid graph with at least four vertices and let G 
be obtained from H by a 1-extension. Then G is globally rigid. 

A slightly weaker result was previously obtained by Connelly (2005), who showed that if G can be 
obtained from K4 by a sequence of 1-extensions then G is globally rigid. His result was a key step in 

Figure	5.	The	extension	operations
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the characterization of globally rigid graphs. The other key ingredient was an inductive construction of 
3-connected M-connected graphs from (Jackson & Jordán, 2005). Combining both results we obtain 

Theorem 14. (Jackson & Jordán, 2005) A graph with at least four vertices is globally rigid if and only 
if it can be obtained from K4 by a sequence of 1-extensions and edge additions. 

Given a graph G = (V,E), an edge uv ∈ E, and a bipartition F1, F2 of the edges incident to v in G − uv, 
the vertex splitting operation on edge uv at vertex v replaces the vertex v by two new vertices v1 and v2, 
replaces the edge uv by three new edges uv1, uv2, v1v2, and replaces each edge wv ∈ Fi by an edge wvi, i 
= 1, 2, see Figure 6. The vertex splitting operation is said to be non-trivial if F1, F2 are both non-empty, 
or equivalently, if each of the split vertices v1, v2 has degree at least three. 

It is known that vertex splitting preserves rigidity (Whiteley, 1990; Whiteley, 1996). Theorem 3 can 
be used to show that it also preserves global rigidity. 

Theorem 15. (Jordán & Szabadka, in press) Let H be a globally rigid graph and let G be obtained from 
H by a non-trivial vertex splitting. Then G is also globally rigid. 

Inductive constructions can also be used in the problem where a graph G is given and the goal is to 
construct (a non-generic) globally rigid realization of G. Given a graph G = (V,E) we say that a 1-extension 
on the edge uw and vertex t is a triangle-split if {ut,wt} ⊆ E (that is, if u,w, t induce a triangle of G). A 
graph will be called triangle-reducible if it can be obtained from K4 by a sequence of triangle-splits. It is 
easy to check that triangle-reducible graphs are 3-connected M-circuits. A polynomial time construction 
for a globally rigid realization of a triangle-reducible graph is given in (Jordán & Szabadka, in press). 

The only other known result on the construction of globally rigid realizations is the following. A 
d-dimensional trilateration ordering of a graph G = (V,E) is an ordering (v1, v2, ..., vn) of V for which 
the first d + 1 vertices are pairwise adjacent and at least d + 1 edges connect each vertex vj , d + 2 ≤ j 
≤ n, to the set of the first j − 1 vertices. The graph G is a d-dimensional trilateration graph if it has a 
d-dimensional trilateration ordering. It is shown in (Aspnes et al., 2006) that a d-dimensional trilatera-
tion graph G is globally rigid in Rd, and a construction for a globally rigid realization is given in (Eren 

Figure	6.	The	vertex	splitting	operation	on	edge	uv	at	vertex	v
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et al., 2004). Note that 2-dimensional trilateration graphs satisfy |E| ≥ 3|V | − 6, while triangle-reducible 
graphs are sparser: they have 2|V |−2 edges, which is the smallest possible number in a globally rigid 
graph in R2. 

sPEcIAL FAMILIEs OF GRAPHs

Graphs of Large Minimum Degree

We may obtain a sufficient condition for global rigidity in terms of the minimum degree of G. The lower 
bound on the minimum degree in the next theorem is best possible, as shown by two complete graphs 
of equal size with two vertices in common. 

Theorem 16. Let G = (V,E) be a graph on n ≥ 4 vertices with δ(G) ≥ 
2

1+n , where δ(G) denotes the 
minimum degree in G. Then G is globally rigid. 

We sketch the proof of Theorem 16. By Theorem 3 it suffices to show that G is 3-connected and 
redundantly rigid. If n ≤ 4 then G is complete, so we may suppose that n ≥ 5. The hypothesis that δ(G) 
≥ (n + 1)/2 implies that G cannot have a vertex cut of size less than three and hence G is 3-connected. 
For a contradiction suppose that H = G − e is not rigid for some e ∈ E. Let C be a rigid component of H 
with as few vertices as possible. Put D = H − V (C). The facts that distinct rigid components of H can 
share at most one vertex and δ(G) ≥ 

2
1+n , imply that |V (D)| ≥ 4 and |V (C)| ≤ 

2
1−n . Since C is a rigid 

component of H, each vertex of D is adjacent to at most one vertex of C in H by Lemma 10. Since δ(G) 
≥ 

2
1+n , this implies that δ(D) ≥ 

2
3−n  and all but at most two non-adjacent vertices of D have degree at 

least 
2

1−n . Hence we may construct a graph D* with δ(D*) ≥ 
2

1−n  by adding at most one edge to D. 
Since |V (C)| ≥  2, we have |V (D)| ≤  n−2. We may now use induction on n to deduce that D* is globally 
rigid. Since |V (D)| ≥  4, D* is redundantly rigid and hence D is rigid. Since |V (C)| ≤ 

2
1−n  and δ(G) ≥ 

2
1+n , each vertex of C is adjacent to at least one vertex of D in H, and all but at most two non-adjacent 

vertices of C are adjacent to at least two vertices of D. We may now use Lemma 10 to deduce that H is 
rigid, a contradiction. 

Three-dimensional analogues of Theorem 16 are given in (Berger et al., 1999). 

Highly connected Graphs

Lovász and Yemini (1982) proved that 6-connected graphs are redundantly rigid. Combining this with 
Theorem 3, we may deduce that the same degree of connectivity suffices to give global rigidity. 

Theorem 17. (Jackson & Jordán, 2005) Let G be 6-connected. Then G is globally rigid. 

An infinite family of 5-connected non-rigid graphs given in (Lovász & Yemini, 1982) shows that 
the hypothesis on vertex connectivity in both the Lovász-Yemini theorem and Theorem 17 cannot be 
reduced from six to five. On the other hand, Jackson et al. (2007) show that the connectivity hypothesis 
can be replaced by a slightly weaker hypothesis of ‘essential 6-vertex-connectivity’ which allows vertex 
cuts of size four or five as long as they only separate one or at most three vertices, respectively, from 
the rest of the graph. 
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Jackson and Jordán (2008/a) show that the connectivity hypothesis can be weakened in a more sub-
stantial way and still guarantee the rigidity and global rigidity of the graph. To this end we define the 
following form of mixed vertex and edge connectivity. Let G = (V,E) be a graph. A pair (U,D) with U 
⊆ V and D ⊆ E is a mixed cut in G if G − U − D is not connected. We say that G is 6-mixed-connected 
if 2|U|+|D| ≥  6 for all mixed cuts (U,D) in G. Equivalently, G is 6-mixed-connected if G is 6-edge-
connected, G − v is 4-edge-connected for all v ∈ V , and G−{u, v} is 2-edge-connected for all pairs u, v 
∈ V . It follows that 6-vertex-connected graphs are 6-mixed-connected and 6-mixed-connected graphs 
are 3-vertex-connected. 

Theorem 18. (Jackson & Jordán, 2008/a) Let G = (V,E) be a 6-mixed-connected graph. Then G − e is 
globally rigid for all e ∈ E. 

The final result of this subsection observes that an even weaker connectivity condition is sufficient 
to imply that 4-regular graphs are globally rigid. A graph G = (V,E) is said to be cyclically k-edge-
connected if, for all X ⊆ V such that G[X] and G[V −X] both contain cycles, we have at least k edges 
from X to V − X. 

Theorem 19. (Jackson et al., 2007) Let G = (V,E) be a cyclically 5-edge-connected 4-regular graph. 
Then G is globally rigid. 

Examples of 4-regular 4-connected graphs and 5-regular 5-connected graphs which are not globally 
rigid are given in Theorem 20 (c),(d) below. 

Vertex Transitive Graphs

Vertex transitive graphs which are rigid or globally rigid were characterized by Jackson, Servatius, and 
Servatius. 

Theorem 20. (Jackson et al., 2007) Let G = (V,E) be a connected k-regular vertex transitive graph on n 
vertices. Then G is not globally rigid if and only if one of the following holds: 
(a)  k = 2 and n ≥  4. 
(b)  k = 3 and n ≥  6. 
(c)  k = 4 and G has a 3-factor F consisting of s disjoint copies of K4 where s ≥  3. 
(d)  k = 5 and G has a 4-factor F consisting of s disjoint copies of K5 where s ≥  6. 

As a corollary they determine all vertex transitive graphs which are rigid but not globally rigid. 

Corollary 21. (Jackson et al., 2007) There are exactly four vertex transitive graphs which are rigid but 
not globally rigid. These are K3,3, the triangular prism, the graph obtained from 2C4 by replacing each 
vertex by a copy of K4, and the graph obtained from K6 by replacing each vertex by a copy of K5. 

(The triangular prism is the 3-regular graph consisting of two disjoint triangles joined by three edges. 
The graph 2C4 is the 4-regular graph obtained from a cycle on four vertices by replacing each edge by 
two parallel edges.) 
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Random Graphs

We consider three different models of random graphs. Throughout this subsection, we assume that all 
logarithms are natural. 

Our first model is the Erdős-Rényi model of random graphs. Let G(n, p) denote the probability space 
of all graphs on n vertices in which each pair of vertices is joined by an edge with independent prob-
ability p, see (Bollobás, 1985). A sequence of graph properties An holds asymptotically almost surely, 
or a.a.s. for short, in G(n, p) if limn→∞ PrG(n,p)(An) = 1. 

Theorem 22. (Jackson et al., 2007) Let G ∈ G(n, p), where p = (log n+k log log n+w(n))/n, and limn→∞ 
w(n) = ∞. 
(a)  If k = 2 then G is a.a.s. rigid. 
(b)  If k = 3 then G is a.a.s. globally rigid. 

The bounds on p given in Theorem 22 are best possible since if G ∈ G(n, p) and p = (log n + k log 
log n + c)/n for any constant c, then G a.a.s. does not have minimum degree at least k, see (Bollobás, 
1985). 

Our second model is of random regular graphs. Let Gn,d denote the probability space of all d-regular 
graphs on n vertices chosen with the uniform probability distribution. (We refer the reader to (Bollobás, 
1985) for a mathematical procedure for generating the graphs in Gn,d.) Since globally rigid graphs on at 
least four vertices are redundantly rigid, the only globally rigid graphs in G(n, d) for d ≤  3 are K2, K3, 
and K4. The situation changes drastically for d ≥  4. 

Theorem 23. (Jackson et al., 2007) If G ∈ Gn,d and d ≥  4 then G is a.a.s. globally rigid. 

Our third model is of geometric random graphs. Let Geom(n, r) denote the probability space of all 
graphs on n vertices in which the vertices are distributed uniformly at random in the unit square and 
all pairs of vertices of distance at most r are joined by an edge. Suppose G ∈ Geom(n, r). Li et al. (2003) 
have shown that if nπr2 = log n + (2k − 3) log log n + w(n) for  k ≥  2 a fixed integer and limn→∞ w(n) = ∞, 
then G is a.a.s. k-connected. As noted by Eren et al. (2004), this result can be combined with Theorem 
17 to deduce that if nπr2 = log n + 9 log log n + w(n) then G is a.a.s. globally rigid. We do not know if 
this result is best possible. However, it is also shown in (Li et al., 2003) that if nπr2 = log n + (k − 1) log 
log n + c for any constant c, then G is not a.a.s. k-connected. Thus, if nπr2 = log n + 2 log log n + c for 
any constant c, then G is not a.a.s. 3-connected, and hence is not a.a.s. globally rigid. 

Unit Disk Graphs

A unit disk framework (with radius R) is a framework (G, p) for which uv ∈ E(G) if and only if ||p(u)−p(v)|| 
≤  R. A graph G is called a unit disk graph if there is a unit disk realization of G. The family of unit disk 
graphs is a natural model for sensor networks in which the distance between two nodes is known if and 
only if this distance is at most the sensing radius R of the nodes. It is NP-hard to test whether a graph is 
a unit disk graph (Breu & Kirkpatrick, 1998), and it is also NP-hard to test whether a unit disk frame-
work is globally rigid (Aspnes et al., 2006). However, it may be possible to use the unit disk property 
of a unit disk framework (G, p) and bounds on the radius to deduce necessary or sufficient conditions 
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which imply that (G, p) is globally rigid in the sense that it is a unique realization of G, with the given 
edge lengths, as a unit disk framework. This is a largely unexplored area of research. 

squares of Graphs

The square G2 of a graph G is obtained from G by adding a new edge uv for each pair u, v ∈ V (G) of 
distance two in G. For example, if we double the sensing radius of a unit disk framework with distance 
graph G, the augmented distance graph will contain its square G2. This operation makes a network, 
whose underlying graph is 2-edge-connected, uniquely localizable. 

Theorem 24. (Anderson et al., 2007) Let G be a 2-edge-connected graph. Then G2 is globally rigid.

GLObALLY LINKED PAIRs AND UNIQUELY LOcALIZAbLE NODEs

Even if a network is not uniquely localizable, the location of some of its vertices, or the distance between 
some additional pairs of vertices, may be uniquely determined by the distance graph of the network and 
the set of anchors. This can be modelled as follows.

A pair of vertices {u, v} in a d-dimensional framework (G, p) is globally linked in (G, p) if, in all 
equivalent frameworks (G, q), we have ||p(u) −p(v)|| = ||q(u)−q(v)||. Thus (G, p) is globally rigid if and 
only if all pairs of vertices of G are globally linked in (G, p). When d = 1, it can be seen that a pair of 
vertices {u, v} is globally linked in a generic framework (G, p) if and only if there are two openly dis-
joint uv-paths in G. Thus global linkedness is a generic property for 1-dimensional frameworks. Unlike 
global rigidity, however, ‘global linkedness’ is not a generic property in Rd when d ≥  2. Figures 7 and 
8 give an example of a pair of vertices in a rigid graph G which is globally linked in one 2-dimensional 
generic realization, but not in another: the global linkedness of {u, v} depends on the lengths of the 
edges incident with vertex w. We say that a pair of vertices {u, v} is globally linked in a graph G in Rd 
if it is globally linked in all generic d-dimensional frameworks (G, p).

We will assume henceforth in this section that d = 2 and supress specific reference to this value of 
d. We first give a necessary condition for two vertices in a framework to be globally linked. Given two 
vertices x, y in a graph G, let κG(x, y) denote the maximum number of pairwise openly disjoint xy-paths 
in G. 

Lemma 25. (Jackson et al., 2006) Let (G, p) be a generic framework, x, y ∈ V (G), xy ∉ E(G), and sup-
pose that κG(x, y) ≤ 2. Then {x, y} is not globally linked in (G, p).

This necessary condition is also sufficient when G is an M-connected graph. 

Theorem 26. (Jackson et al., 2006) Let G = (V,E) be an M-connected graph and x, y ∈ V . Then {x, y} 
is globally linked in G if and only if κG(x, y) ≥  3. 

Theorem 26 has the following immediate corollary for graphs which are not necessarily M-con-
nected. 
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Corollary 27. (Jackson et al., 2006) Let G = (V,E) be a graph and x, y ∈ V . If either xy ∈ E, or there is 
an M-component H of G with {x, y} ⊆ V (H) and κH(x, y) ≥  3, then {x, y} is globally linked in G. 

We conjecture that the converse is also true. 

Conjecture 28. (Jackson et al., 2006) Let G = (V,E) be a graph and x, y ∈ V . Then {x, y} is globally 
linked in G if and only if either xy ∈ E, or there is an M-component H of G with {x, y} ⊆ V (H) and 
κH(x, y) ≥  3. 

Corollary 27 can be used to identify large ‘globally linked sets of vertices’ in a graph G. A globally 
rigid cluster of G is a maximal subset of V in which all pairs of vertices are globally linked in G. By 
Corollary 27, the vertex sets of the 3-connected ‘cleavage units’, (sometimes called 3-connected compo-
nents or 3-blocks), see in Section 3 of Jackson and Jordán (2005), of the M-components of G are globally 
linked sets in G. The truth of Conjecture 28 would imply that the vertex sets of these cleavage units 
(and the pairs of adjacent vertices not included in these units) are precisely the globally rigid clusters of 
G. Note that the vertices of a globally rigid cluster of G need not induce a globally rigid subgraph in G. 
For example, the maximal globally rigid subgraphs of the graph G in Figure 9 are the six copies of K3 
and the remaining four copies of K2.

Figure	7.	Two	equivalent	realizations	of	a	rigid	graph	G	which	show	that	the	pair	{u,	v}	is	not	globally	
linked in G

Figure	8.	Another	realization	(G,	p)	of	the	rigid	graph	G	of	Figure	7.	The	pair	{u,	v}	is	globally	linked	
in	(G,	p)	since	the	lengths	of	the	edges	uw,	vw	preclude	the	flipping	of	vertex	v	about	the	line	containing	
vertices x and y.
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On the other hand, G has three cleavage units, a copy of the wheel on six vertices and two copies of 
K4. The globally rigid clusters of G are precisely the vertex sets of these three cleavage units. 

We next consider another generalization of global rigidity, unique localizability, which also has direct 
applications in sensor network localization, see (Goldenberg et al., 2005). Let (G, p) be a generic frame-
work with a designated set P ⊆ V (G) of vertices. We say that a vertex v ∈ V (G) is uniquely	localizable 
in (G, p) with respect to P if whenever (G, q) is equivalent to (G, p) and p(b) = q(b) for all vertices b ∈ P, 
then we also have p(v) = q(v). We can think of P as the set of pinned vertices (or anchor nodes in a sen-
sor network). Vertices in P are, by definition, uniquely localizable. It is easy to observe that if v ∈ V −P 
is uniquely localizable then |P| ≥  3 and there exist three openly disjoint paths from v to P (c.f. Lemma 
25). As was the case for global linkedness, unique localizablity is not a generic property. Consider the 
graph given in Figures 7 and 8. If we pin the set P = {u, x, y} in the framework of Figure 8, then v is 
uniquely localizable with respect to P. This is not the case if we pin the same set in Figure 7. Thus the 
unique localizablity of v with respect to P depends on the lengths of the edges incident with w. 

We say that v is uniquely	localizable in the graph G with respect to P, if v is uniquely localizable with 
respect to P in all generic frameworks (G, p). Let G+K(P) denote the graph obtained from G by adding 
all edges bb′ for which bb′ ∉ E and b,	b′ ∈ P. The following lemma is easy to prove. 

Lemma 29. (Jackson et al., 2006) Let G = (V,E) be a graph, P ⊆ V and v ∈ V −P. Then v is uniquely 
localizable in G with respect to P if and only if |P| ≥  3 and {v, b} is globally linked in G + K(P) for all 
(or equivalently, for at least three) vertices b ∈ P. 

Lemma 29 and Theorem 26 imply the following characterization of uniquely localizable vertices 
when G + K(P) is M-connected. 

Theorem 30. (Jackson et al., 2006) Let G = (V,E) be a graph, P ⊆ V and v ∈ V − P. Suppose that G+K(P) 
is M-connected. Then v is uniquely localizable in G with respect to P if and only if |P| ≥ 3 and κ(v, b) 
≥  3 for all b ∈ P. 

Similarly, Lemma 29 and Conjecture 28 would imply the following characterization of uniquely 
localizable vertices in an arbitrary graph. 

Figure	9.	An	M-connected	graph	G	with	three	‘cleavage	units’.	The	pairs	{u,	v}	and	{x,	y}	are	globally	
linked
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Conjecture 31. (Jackson et al., 2006) Let G = (V,E) be a graph, P ⊆ V and v ∈ V	−P. Then v is uniquely 
localizable in G with respect to P if and only if |P| ≥  3 and there is an M-component H of G + K(P) 
with P + v ⊆ V (H) and κH(v, b) ≥  3 for all b ∈ P. 

Theorems 26 and 30 imply that the sets of globally linked pairs and uniquely localizable vertices can 
be determined for M-connected graphs. Conjectures 28 and 31 would extend this to all graphs. 

We close this section by noting that if (G, p) is a generic realization of an M-connected graph G, then 
we can obtain a representative of each distinct congruence class of frameworks which are equivalent 
to (G, p) by iteratively applying the following operation to (G, p): choose a 2-vertex-cut {u, v} of G and 
reflect some, but not all, of the components of G − {u, v} in the line through the points p(u) and p(v), 
see (Jackson et al., 2006). Thus, even though a network with an M-connected grounded graph may not 
be uniquely localizable, all possible sets of locations can be obtained from one set of feasible locations 
in a simple manner. 

OPTIMAL sELEcTION OF ANcHORs

Throughout this section, we will again restrict our attention to the 2-dimensional case. Consider the 
following optimization problem: 

Given the set of known distances in a network and a cost function on the nodes, make the network 
uniquely localizable by designating a minimum cost set of anchor nodes.

Theorems 1 and 3 imply that, for generic networks, we may reformulate the above problem in the 
following purely combinatorial form: 

Given a graph G = (V,E) and a function c : V → R+, find a set P ⊆ V , |P| ≥  3, for which G + K(P) is 
globally rigid, and c(P) = Σv∈P c(v) is minimum. 

For example, suppose that G is the graph obtained from a complete graph on four vertices {a, b, c, 
d} by adding two vertices {u, v} and two edges {du, uv}, and let the cost function be constant. Then an 
optimal anchor set has cardinality four, and must contain the vertices {u, v} as well as two vertices from 
the set {a, b, c}. Efficient approximation algorithms for solving this problem were obtained by Fekete 
and Jordán, using techniques from matroid optimization. 

Theorem 32. (Fekete & Jordán, 2006; Fekete & Jordán, 2008) There is a polynomial time 5/2-ap-
proximation algorithm for the problem of finding a minimum cost anchor set which makes a generic 
framework globally rigid.

DIsTANcEs AND DIREcTIONs

In this section we consider the unique localizability of sensor networks in which some, or all, of the 
constraints concern the direction, or bearing, between pairs of nodes rather than the distance. We first 
look at the simpler case when all constraints are direction constraints. 
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Direction constraints

Let (G, p) and (G, q) be two d-dimensional realizations of a graph G. We say that (G, p) and (G, q) are 
direction equivalent (also called parallel) if p(u) − p(v) is a scalar multiple of q(u) − q(v) for all uv ∈ E. 
We say that (G, p) and (G, q) are direction congruent if there exists a scalar λ and a vector t such that 
q(v) = λp(v)+t for all v ∈ V . (This is equivalent to saying that (G, q) can be obtained from (G, p) by a 
translation and dilation.) We call (G, p) globally direction rigid (or tight) if every framework which is 
direction equivalent to (G, p) is direction congruent to (G, p). 

The fact that the direction constraint is a linear constraint enabled Whiteley to characterize globally 
direction rigid d-dimensional frameworks in terms of the rank of their `direction rigidity matrix'. He 
then used this result to obtain a combinatorial characterization for the generic case. The following result 
can be derived from Theorem 8.2.2 in (Whiteley, 1996).

Theorem 33. (Whiteley, 1996) Let (G, p) be a d-dimensional generic framework. Then (G, p) is globally 
direction rigid if and only if 

( )∑
∈

−−
X

dXd 1  ≥ d|V | − d − 1

for all covers c of G. 

Note that the characterization of 2-dimensional globally direction rigid generic frameworks given 
by Theorem 33 is identical to the characterization of 2-dimensional rigid generic frameworks given 
in Theorem 6. On the other hand, there are three important differences between the cases when all 
constraints are directions and all constraints are lengths. The direction problem can be solved for all d, 
whereas the length problem has been solved only when d = 1, 2. Furthermore, there is no need to assume 
that the framework is generic to solve the direction problem and there is no distinction between ‘local 
behaviour’ and ‘global behaviour’ in the direction problem. Theorem 33 implies that a d-dimensional 
generic sensor network in which positions of some anchor nodes and directions between some pairs of 
nodes are known is uniquely localizable if and only if there are at least two anchor nodes and the un-
derlying ‘direction graph’ of the network satisfies the condition on covers given in Theorem 33. Further 
results on sensor networks with direction constraints can be found in (Eren, 2007; Katz et al., 2007). 

Mixed constraints

We consider sensor networks in which either distances, directions, or both, are known for some pairs 
of vertices. The unique localization problem for such networks seems to be at least as hard as that for 
networks with only distance constraints so we will restrict our attention to the 2-dimensional case (di-
rection constraints are meaningless in one dimension). 

A mixed graph is a graph together with a bipartition D ∪ L of its edge set. We refer to edges in D 
as direction edges and edges in L as length edges. A mixed framework (G, p) is a mixed graph G = 
(V ;D,L) together with a map p : V → R2. Two mixed frameworks (G, p) and (G, q) are equivalent if 
p(u)−p(v) is a scalar multiple of q(u)−q(v) for all uv ∈ D and ||p(u) −p(v)|| = ||q(u) −q(v)|| for all uv ∈ L. 
The mixed frameworks (G, p) and (G, q) are congruent if there exists a vector t ∈ R2 and λ ∈ {−1, 1} 
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such that q(v) = λp(v) + t for all v ∈ V . This is equivalent to saying that (G, q) can be obtained from (G, 
p) by a rotation by 0 or 180 degrees and a translation. The mixed framework (G, p) is globally rigid if 
every framework which is equivalent to (G, p) is congruent to (G, p). It is rigid if there exists an e > 0 
such that every framework (G, q) which is equivalent to (G, p) and satisfies )()( vqvp −  < e  for all v 
∈ V , is congruent to (G, p).

Servatius and Whiteley (1999) developed a rigidity theory for mixed frameworks analogous to that 
for ‘distance constrained’ frameworks. One may construct a |D ∪ L| × 2|V | mixed rigidity matrix for a 
mixed framework (G, p) and use its rows to define the mixed rigidity matroid of (G, p). A generic mixed 
framework is rigid if and only if its rigidity matrix, or matroid, has rank 2|V | − 2. It follows that the rigidity 
of mixed frameworks is a generic property and we may define a mixed graph G to be rigid if every, or 
equivalently, if some, generic realization of G is rigid. All generic realizations of a mixed graph G have 
the same mixed rigidity matroid and this matroid is defined to be the mixed rigidity matroid of G. 

Minimally rigid mixed graphs were characterized by Servatius and Whiteley (1999). For a set X of 
vertices in a mixed graph G we use D(X) and L(X) to denote the set of direction, resp. length edges in 
G[X]. 

Theorem 34. (Servatius & Whiteley, 1999) Let G = (V ;D,L) be a mixed graph with |D ∪ L| = 2|V | − 2. 
Then G is rigid if and only if for all X ⊆ V with |X| ≥  2 
i(X) ≤ 2|X | − 2 when D(X)≠ Ø≠ L(X),
and
i(X) ≤ 2|X | − 3 otherwise.

Their result implies the following characterization of rigid mixed graphs. 

Theorem 35. Let G = (V ;D,L) be a mixed graph. Then G is rigid if and only if for all covers χ of G we 
have 22)( −≥∑ ∈ VXfX , where f(X) = 2|X | − 2 if D(X) ≠ Ø ≠ L(X), and f(X) = 2|X | − 3 otherwise.

The problem of characterizing when a generic mixed framework (G, p) is globally rigid is still an 
open problem. We have, however, been able to obtain some partial results. In order to state these in terms 
of graphs we define a mixed graph G to be globally rigid if all generic realizations of G are globally 
rigid. (It is not known whether global rigidity of mixed frameworks is a generic property. Thus there 
may exist mixed graphs which have both a globally rigid generic realization and a non-globally rigid 
generic realization.)

Figure	10.	Two	equivalent	realizations	of	the	same	mixed graph. Solid (dashed) edges indicate length 
(resp. direction) constraints. 
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We first give a necessary condition for global rigidity, which is analogous to the ‘3-connectedness 
condition’ of Theorem 3. It uses the following concept. Let G be a 2-connected mixed graph. A 2-separa-
tion of G is a pair of subgraphs G1,G2 such that G = G1 ∪ G2, |V (G1) ∩ V (G2)| = 2 and V (G1) − V (G2) ≠ 
Ø ≠ V (G2) − V (G1). The 2-separation is direction balanced if both G1 and G2 contain a direction edge. 
We say that G is direction balanced if all 2-separations of G are direction balanced. 

Theorem 36. (Jackson & Jordán, 2008/b) Every globally rigid mixed graph is 2-connected and direc-
tion balanced. 

Rigidity is also a necessary condition for global rigidity. Redundant rigidity, however, is no longer 
necessary. To see this consider a minimally rigid mixed graph G with exactly one length edge e. Then G 
satisfies the hypotheses of Theorem 34, and hence G − e satisfies the hypotheses of Theorem 5. Theorem 
33 now implies that G	−	e is globally direction rigid, which in turn implies that the mixed graph G is 
globally rigid. On the other hand, G	−	f is not rigid for all edges f of G. 

We next give a result on 1-extensions which is analogous to Theorem 13. The operation 1-extension 
(on edge uw and vertex z) for a mixed graph G deletes an edge uw and adds a new vertex v and new 
edges vu, vw, vz for some vertex z ∈ V (G), with the provisos that at least one of the new edges has the 
same type as the deleted edge and, if z	=	u, then the two edges from z to u are of different type. 

Theorem 37. (Jackson & Jordán, 2008/c) Let H be a globally rigid mixed graph with at least three 
vertices and let G be obtained from H by a 1-extension on an edge uw. If H	−	uw is rigid, then G is 
globally rigid. 

In mixed graphs, a special kind of 0-extension also preserves global rigidity. 

Theorem 38. (Jackson & Jordán, 2008/c) Let G and H be mixed graphs with |V (H)| ≥  2. Suppose that 
G can be obtained from H by a 0-extension which adds a vertex v incident to two direction edges. Then 
G is globally rigid if and only if H is globally rigid. 

Note that if G is obtained by a 0-extension then G is not redundantly rigid. 
We can use Theorems 37 and 38 to show that a special family of generic mixed frameworks are 

globally rigid. We say that a mixed graph G = (V ;D,L) is a mixed M-circuit if D ≠ Ø ≠ L and D ∪ L is 
a circuit in the mixed rigidity matroid of G. Theorem 34 can be used to characterize mixed M-circuits 
and, in particular, show that mixed M-circuits are 2-connected. We recently showed that the other neces-
sary condition for global rigidity given in Theorem 36 is also sufficient to imply that mixed M-circuits 
are globally rigid.

Theorem 39. (Jackson & Jordán, 2008/b) Let G be a mixed M-circuit. Then G is globally rigid if and 
only if G is direction balanced. 

We close this section by noting that we can characterize global rigidity in all dimensions for mixed 
graphs in which every pair of adjacent vertices is connected by both a length and a direction edge. 
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Theorem 40. (Jackson & Jordán, 2008/b) Let G be a mixed graph in which every pair of adjacent ver-
tices is connected by both a length and a direction edge, and (G, p) be a generic realization of G in Rd. 
Then (G, p) is globally rigid if and only if G is 2-connected.

ALGORITHMs

The structural results presented in this chapter give rise to efficient combinatorial algorithms for testing 
different localizability properties of generic networks and for solving a number of related algorithmic 
problems in the plane. Here we simply list the basic questions and refer the reader to the references below. 
The combinatorial characterizations lead us to two kinds of problems. How can we decide whether a 
given graph G = (V,E) is rigid, redundantly rigid, or M-connected? How can we test if G is 3-connected, 
identify its ‘cleavage units’, or find its 2-vertex-cuts? 

The solution for the questions in the first group boils down to the existence of an efficient subroutine 
for checking if a set of edges satisfies the count in Theorem 5, that is, whether it is M-independent in the 
rigidity matroid (c.f. last paragraph of the section on matroids). This subroutine can be implemented in 
O(|V |2) time by using various alternating path algorithms: methods from matching theory (Hendrickson, 
1992), network flows (Imai, 1985), matroid optimization (Gabow & Westermann, 1992), and graph ori-
entations (Berg & Jordán, 2003/b; Hendrickson & Jacobs, 1997) have been used for this job. By using 
additional algorithmic techniques, each of these properties can be tested in O(|V |2) time. 

The connectivity related questions of the second group can be solved in O(|V | + |E|) time (Hopcroft 
& Tarjan, 1973). 

HIGHER DIMENsIONAL REsULTs

Although most of the known results on globally rigid graphs are concerned with the two dimensional 
case, some of them extend to higher dimensions, leading to partial results on the unique localizability 
of 3-dimensional networks. The main tool for working with higher dimensional global rigidity is the 
‘stress matrix’, which was introduced by Connelly (1982) and plays a similar role for global rigidity as 
the rigidity matrix does for rigidity. Indeed, we will see that the global rigidity of a generic framework 
can be characterized in terms of the rank of a stress matrix in much the same way as Theorem 4 char-
acterizes rigidity in terms of the rank of the rigidity matrix. Although the 3-dimensional case is of most 

Figure	11.	A	direction	balanced	mixed	M-circuit
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practical interest, all the results we know for the 3-dimensional case extend to d-dimensions, and we 
will present them in this context. 

Let G = (V,E) be a graph and (G, p) be a realization of G in Rd. For each v ∈ V , let E(v) be the set of 
edges of G which are incident to v. An equilibrium stress, or self-stress, for (G, p) is a map ω : E → R 
such that, for each v ∈ V , ∑ ∈=

=−
)(

0))()()((
vEuve

vpupe . We associate a symmetric |V |×|V | stress 
matrix Ω with each equilibrium stress ω for (G, p) as follows. For each distinct u, v ∈ V , the entry in 
row u and column v of Ω is −ω(e) if e = uv ∈ E and zero otherwise. The diagonal entries of Ω are then 
chosen so that its row and column sums are equal to zero. Connelly (1982) proved that the rank of Ω 
is at most |V | − d − 1 and that having a stress matrix with this maximum possible rank is a sufficient 
condition for the global rigidity of a generic framework. 

Theorem 41. (Connelly, 2005) Let G = (V,E) be a graph and (G, p) be a generic realization of G in Rd. 
If (G, p) has an equilibrium stress ω such that the associated stress matrix Ω has rank |V |−d−1, then (G, 
p) is globally rigid. 

Connelly (2005) conjectured that this condition is also a necessary condition for the global rigidity 
of a generic framework (G, p) when G is not complete. His conjecture was recently verified by Gortler, 
Healy and Thurston. 

Theorem 42. (Gortler et al., 2007) Let G = (V,E) be a graph and (G, p) be a globally rigid generic realiza-
tion of G in Rd. Then either G is a complete graph on at most d + 1 vertices, or (G, p) has an equilibrium 
stress ω such that the associated stress matrix Ω has rank |V | − d − 1. 

Theorem 42 implies that global rigidity in Rd is a generic property. It also gives rise to a random-
ized algorithm for checking whether a graph is globally rigid in Rd , see (Gortler et al., 2007) for more 
details. 

Theorem 41 implies the result of Connelly mentioned in the section on inductive constructions: if a 
graph can be obtained from K4 by a sequence of 1-extensions, then it is globally rigid in R2. In fact, Con-
nelly used Theorem 41 to obtain a d-dimensional version of this result. A d-dimensional	1-extension	of a 
graph G subdivides an edge uw with a new vertex v and then adds d−1 new edges vzi, 1 ≤ i ≤ d − 1, with 
u ≠zi ≠ w and zi ≠zj for 1 ≤ i < j ≤ d − 1. Connelly (2005) showed that the property that a d-dimensional 
generic framework has a stress matrix of maximum rank is preserved by a d-dimensional 1-extension 
of the underlying graph. Combining this with Theorem 42 we obtain the following d-dimensional ver-
sion of Theorem 13. 

Theorem 43. Let H be a graph with at least d + 2 vertices and let G be obtained from H by a d-dimensional 
1-extension. If H is globally rigid in Rd then G is globally rigid in Rd. 

As a special case, we obtain the result of Connelly (2005) that if a graph can be obtained from Kd+2 
by a sequence of d-dimensional 1-extensions, then it is globally rigid in Rd. 

Cheung and Whiteley conjecture that a d-dimensional version of the vertex splitting operation also 
preserves global rigidity in d-dimensions. Given a graph G, edges uiv ∈ E for 1 ≤ i ≤ d − 1, and a bi-
partition F1, F2 of the edges incident to v in G − {u1v, u2v, . . . , ud−1v}, the d-dimensional vertex splitting 
operation replaces the vertex v by two new vertices v1 and v2 and a new edge v1v2, replaces each edge 
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uiv by two new edges uiv1, uiv2 for 1 ≤ i ≤ d − 1, and replaces each edge wv ∈ Fi by an edge wvi, for i = 
1, 2. The d-dimensional vertex splitting operation is said to be non-trivial if F1, F2 are both non-empty, 
or equivalently, if each of the split vertices v1, v2 has degree at least d + 1. 

Conjecture 44. (Cheung & Whiteley, 2008) If H is a globally rigid graph in Rd and G is obtained from 
H by a non-trivial d-dimensional vertex splitting operation, then G is globally rigid in Rd. 

Theorem 15 verifies the 2-dimensional version of Conjecture 44. It is open for d ≥ 3. Cheung and 
Whiteley (2008) discuss several additional conjectures on globally rigid graphs in higher dimensions.
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APPENDIX

In what follows we introduce the basic graph theoretical notions that are used in this chapter. For more 
details see for example (Bondy & Murty, 2008). 

A graph G = (V,E) consists of two sets V and E. The elements of V are called vertices (or nodes). 
The elements of E are called edges. Each edge e ∈ E joins two vertices from V , which are called the 
endvertices of e. The notations V(G) and E(G) are also used for the vertex- and edge-sets of a graph G. 
If vertex v is an endvertex of edge e then v is said to be incident with e and e is incident with v. A vertex 
v is adjacent to vertex u if they are joined by an edge. A graph is simple if the pairs of endvertices of 
its edges are pairwise distinct. With the exception of the mixed graphs in the section on distance and 
direction constraints, all graphs considered in this chapter will be simple. 

The degree of a vertex v in a graph G, denoted by dG(v), is the number of edges incident with v. A 
graph is regular if every vertex is of the same degree. It is k-regular if every vertex is of degree k. 

A path in a graph G from vertex u to vertex v is an alternating sequence of vertices and edges, which 
starts and ends with u and v (which are its initial and final vertices, respectively), and for which consecu-
tive elements are incident with each other and no internal vertex is repeated. A cycle is a path which 
contains at least one edge and for which the initial vertex is also the final vertex. A graph is connected 
if between every pair of vertices there is a path. 

A subgraph of a graph G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). In a graph G the induced 
subgraph on a set X of vertices, denoted by G[X], has X as its vertex set and it contains every edge of G 
whose endvertices are in X. A subgraph H is a spanning subgraph if V (H) = V (G). A component of a 
graph G is a maximal connected subgraph. A k-factor of a graph G is a k-regular spanning subgraph. 

The operation of deleting a vertex set X ⊆ V (G) from a graph G removes the vertices in X from V 
(G) and also removes every edge which has an endvertex in X from E(G). The resulting graph is denoted 
by G − X (or G − x, if X = {x} is a single vertex). The operation of deleting an edge set F ⊆ E(G) from 
a graph G removes the edges in F from E(G). The resulting graph is denoted by G−F (or G−f, if F	= 
{ f} is a single edge). 

A forest is a graph without cycles and a tree is a connected forest. A spanning tree of a graph G is 
a spanning subgraph which is a tree. 

A graph is a complete graph if each pair of its vertices is joined by an edge. A complete graph on n 
vertices is denoted by Kn. A graph is bipartite if its vertices can be partitioned into two sets in such a 
way that no edge joins two vertices in the same set. A complete bipartite graph is a bipartite graph in 
which each vertex in one partite set is adjacent to all vertices in the other partite set. If the two partite 
sets have cardinalitites m and n, then this graph is denoted by Km,n. A graph G on n vertices is a wheel, 
denoted by Wn, if it has an induced subgraph which is a cycle on n − 1 vertices and the remaining vertex 
is joined to all vertices of this cycle. 



  173

Graph Theoretic Techniques in the Analysis of Uniquely Localizable Sensor Networks

A k-vertex-cut in a graph G is a set X ⊆ V (G) of k vertices for which G	−	X is not connected. A 
k-edge-cut is a set F ⊆ E(G) of k edges for which G	−	F is not connected. A graph is called k-vertex-
connected (or k-connected) if it has at least k + 1 vertices and contains no l-vertex-cut for l ≤  k − 1. A 
graph is k-edge-connected if it contains no l-edge-cuts for l ≤  k − 1. 

Two paths are called openly disjoint if they have no common internal vertex. They are called edge 
disjoint if they have no common edge. A fundamental theorem of Menger states that if u and v are non-
adjacent vertices in graph G then the smallest integer k for which there is a k-vertex-cut X in G such that u 
and v are in different components of G	−	X is equal to the maximum number of pairwise openly disjoint 
paths from u to v. The edge disjoint version of Menger’s theorem is as follows. For any pair of vertices 
u, v in G the smallest integer k for which there is a k-edge-cut F in G such that u and v are in different 
components of G−F is equal to the maximum number of pairwise edge disjoint paths from u to v. 

An isomorphism between two graphs G and H is a vertex bijection φ : V (G) → V (H) such that uv ∈ 
E(G) if and only if φ(u) φ (v) ∈ E(H). A graph automorphism is an isomorphism of the graph to itself. 
The orbit of a vertex u of a graph G is the set of all vertices v ∈ V (G) such that there is an automorphism 
φ  such that φ (u) = v. A graph is vertex-transitive if all the vertices are in the same orbit. 

The incidence matrix of a graph G = (V,E) is an |E|×|V | matrix I where the entry in the row of edge 
e and vertex v is equal to 1 if e is incident with v, and 0 otherwise. The directed incidence matrix of G 
is obtained from I by replacing exactly one of the two 1’s in each row of I by −1. 
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AbsTRAcT

The	sensor	network	localization	problem	with	distance	information	is	to	determine	the	positions	of	all	
sensors in a network given the positions of some sensors and the distances between some pairs of sen-
sors. In this chapter the authors present a sequential algorithm for estimating sensor positions when only 
inaccurate distance measurements are available, and they use experimental evaluation to demonstrate 
network instances on which the algorithm is effective.

INTRODUcTION

In many situations where wireless sensor networks are used, only the positions of some of the sensors 
are known, and the positions of the remaining sensors must be inferred from the known locations and 
available inter-sensor distance measurements. More formally, consider n sensors in the plane labelled 1 
through n, where the positions of some sensors are known, and the measured distances between some 
pairs of sensors are known. The sensors with known positions are called anchors. Since ranging devices 
are never exact, we consider the following model for the type of distance measurements obtained. For 
each inter-sensor distance measurement d~, we assume that an accuracy guarantee denoted by ε > 0 of 
d~ is given such that the actual inter-sensor distance is within ε of the measured distance d~. Obviously, 
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sensor positions are generally not uniquely determined by inaccurate distance measurements.  In Moore 
et al.(2004) and Priyantha et al. (2003), it is pointed out that it is more important to obtain position 
estimates which reflect the general layout of the actual sensor positions, rather than simply position 
estimates which induce inter-sensor distances within some desired tolerance of the given inter-sensor 
distance measurements. In Priyantha et al. (2003), a modified spring based relaxation method is used 
to obtain sensor estimates, and it is shown via experimental evaluations that the estimated positions 
reflect the general layout of the actual sensor positions. Our work is most closely related to Moore et al. 
(2004) where the aim was to compute position estimates for subnetworks called “robust quadrilaterals” 
with correctness guarantees. More specifically, an algorithm is given which assigns position estimates 
to the sensors in a robust quadrilateral only if the position estimates can be guaranteed to be free of 
“flip ambiguities” with high probability Moore et al. (2004).

Roughly speaking, position estimates are desired so that the configuration of the estimated positions 
are approximately congruent to that of the actual positions. We capture this notion using the concept of 
“correctly oriented” position estimates which we define as follows. For two points p and q in R2, let l(p,q) 
denote the line segment with endpoints p and q. For m≥	4 sensors labelled 1 through m and }m,...,1{i ∈
let pi denote the position of sensor i, and let qi denote the estimated position of sensor i. The estimated 
positions q1,..., qm are said to be correctly oriented if for all distinct }m,...,1{l,k,j,i ∈ , the line seg-
ments l(pi,, pj) and l(pk, pl) intersect if and only if the line segments l(qi,, qj) and l(qk, ql) intersect.  As 
an illustration, suppose sensors 1, 2, 3 and 4 are positioned at p1, p2, p3	and p4 respectively as shown in 
Figure 1(a) and 1(b).  For each sensor i, let qi and q’i denote two estimated positions of sensor i. Suppose 
qi for i=1,2,3,4 are as shown in Figure 1(a), and q’i are as shown in Figure 1(b). It is easy to see that {q1, 
q2, q3, q4} are correctly oriented while {q’1, q’2, q’3, q’4} are not correctly oriented.

In Section Correctly Oriented Position Estimates, we will demonstrate that correctly oriented position 
estimates can be used to deduce important geometric properties of the configuration of the actual sen-
sor positions. The key difficulty however lies in determining if a set of position estimates are correctly 
oriented without knowing the corresponding actual sensor positions. In this work we will propose a 
position estimation algorithm for computing position estimates with error bounds, and give a sufficient 
condition on the position estimates and the corresponding error bounds for the position estimates to be 
correctly oriented.

In Anderson et al. (2007) a sequential localization algorithm for exact distance measurements was 
proposed in which the sensors of the network are processed one by one in a pre-determined order. That 

Figure	1.	(a)	Correctly	oriented	position	estimates,	(b)	Position	estimates	which	are	not	correctly	ori-
ented
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work was extended in Fang et al. (2006), Goldenberg et al. (2006) and Fang et al. (2008) to a sequential 
localization algorithm called Sweeps again for the case of exact distance measurements. In this chapter, 
we present an algorithm based on Sweeps, which we call modified Sweeps, for estimating sensor posi-
tions of a network when only inaccurate distance measurements can be obtained. In modified Sweeps, 
we aim to give correctness guarantees on estimated positions and characterize position estimates which 
are oriented correctly. More specifically, for each position estimate p computed by modified Sweeps, an 
error bound e(p) is also computed such that the maximum distance between the position estimate p and 
the actual position is at most e(p). The error bounds can be used by the final application to determine 
which sensor estimates are precise enough to be useful. More importantly, we will use the error bounds 
to give a sufficient condition for the position estimates to be correctly oriented, for as will be shown 
in Section Correctly Oriented Position Estimates, position estimates which are correctly oriented can 
be used to deduce geometric properties of the configuration of actual sensor positions. We note that 
however not all sensors are assigned position estimates even when the average degree of the network 
exceeds six. Like the algorithms proposed in Moore et al. (2004) and Anderson et al. (2007), modified 
Sweeps is a sequential algorithm in the sense that the sensors are processed one by one in some order. 
As was shown in Moore et al. (2004) and Anderson et al. (2007), the notion of processing sensors in a 
particular order can be used to gain important insight into the graphical characterization of networks 
whose positions or position estimates can be computed efficiently. In Section Efficiently Localizable 
Networks, we will give the  graphical characterization of some networks for which modified Sweeps 
can be used to efficiently compute position estimates.

In Section Experimental Evaluations, we discuss the performance of modified Sweeps on a network 
of 100 sensors randomly deployed in a unit square. A noisy distance measurement is generated for each 
pair of sensors within a specified sensing radius. Roughly speaking, a distance measurement with a 
guaranteed accuracy of ε is “noisier” than a distance measurement with a guaranteed accuracy δ when 
δ	<	ε. In general, we note that the number of sensors for which a position estimate is obtained increases 
with the average degree of the network, and as expected, the error bound associated with each posi-
tion estimate increases as distance measurements become noisier. However, even for the case where 
the guaranteed accuracy of each distance measurement d is 8% of d, the respective error bounds of the 
position estimates is on average  less than 1/6 of the sensing radius. The trade-off however is that only 
~55% of the sensors are assigned position estimates.

HIGH LEVEL DEscRIPTION OF MODIFIED sWEEPs

In this section, we give a high level description of modified Sweeps and illustrate some key aspects of 
the algorithm via examples. A candidate regions set of a sensor is a set consisting of a finite number 
of regions in the plane with the property that the actual position of the sensor is in one of the regions, 
and the regions are either all polygons or all disks.  We call each region in a candidate regions set of a 
sensor a candidate region of the sensor. We say that a candidate region of a sensor is false if the region 
does not contain the sensor’s position. When the candidate regions set of a sensor consists of only one 
region, say with diameter d, then the centroid of the region must be within at most distance d/2 from 
the sensor’s actual position. Obviously, it is most desirable to obtain for each sensor a candidate regions 
set which consists of just one candidate region with a  “small” diameter.

Roughly speaking, modified Sweeps first computes a candidate regions set for each sensor by pro-
cessing the sensors one by one in some order, and then refines each candidate regions set by process-
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ing the sensors in an ordering different from the previous ordering. More specifically, to determine a 
candidate regions set for each sensor, an ordering of the sensors is first determined so that the anchors 
precede all other sensors in the ordering, and each non-anchor sensor has at least one “predecessor” in 
the ordering. A predecessor of a sensor is any other sensor preceding it in the ordering such that the 
measured distance between the two sensors is obtained. Assuming such an ordering exists, the algo-
rithm “sweeps” through the network by processing the sensors sequentially according to the ordering, 
beginning with the first non-anchor sensor in the ordering. For each non-anchor sensor, a candidate 
regions set is computed for the sensor using the measured distances between the sensor and its prede-
cessors, and the candidate regions sets, or known positions, of its predecessors. Once the last sensor 
in the ordering is processed, a candidate regions set will have been computed for each sensor. We call 
this first “sweep” a candidate regions set generating sweep. Once a candidate regions set has been 
computed for each sensor, subsequent “refining” sweeps are performed to remove, if possible, regions 
from each candidate regions set so as to obtain a candidate regions set of fewer elements. To perform 
a refining sweep, an ordering distinct from the one used to perform the previous sweep is determined, 
and the sensors are again processed sequentially according to the new ordering. In the following, we 
will use singleton to refer to a set consisting of exactly one element. For each non-anchor sensor v with 
a non-singleton candidate regions set, the candidate regions sets of v’s predecessors, and the measured 
distances between v and its predecessors, are used to identify, if possible, those candidate regions of 
sensor v which do not contain v’s actual position. More specifically, for each sensor, the minimum and 
maximum distances between the sensor’s candidate regions and the candidate regions of its predecessors 
in the new ordering are used as a means of identifying false candidate regions of the sensor. The false 
candidate regions are then removed from the candidate regions set of the sensor to obtain a candidate 
regions set of fewer elements. Note that when two candidate regions are both disks or both polygons, 
the minimum and maximum distances between them are efficient to compute.

A sensor is localized if its candidate regions set consists of a point, i.e. a region with diameter zero. 
As noted previously, exact positions in general cannot be computed when distance measurements are 
inaccurate. Hence, the desired outcome for each sensor is that after a finite number of sweeps through 
the network, the candidate regions set of the sensor contains just one candidate region with a “small” 
diameter. Whether this will be the case will depend on the geometry of the configuration of the actual 
sensor positions. In Section Experimental Evaluations, we will show that for randomly deployed networks 
of 100 sensors, it is possible to obtain singleton candidate regions sets with error bounds less than 1/6 
of the sensing range. In the following two sections, we will give examples of using modified Sweeps to 
estimate sensor positions in two simple networks. Although the networks are simple, they illustrate the 
two key aspects of modified Sweeps, namely generating and refining candidate regions sets.

Generating candidate Regions sets

For a pair of sensors i and j in a network, let dij denote the actual distance between the sensors, and if 
the measured distance between them is obtained, let ijd~  denote the measured distance, and let εij denote 
the guaranteed accuracy of ijd~ . By definition, if the measured distance ijd~  is obtained for sensors i and 
j, then the actual distance dij between i and j must be within εij of the measured distance:

dij∈ [ ijd~  − εij , ijd~  +	εij]         (1)



178  

Sequential Localization with Inaccurate Measurements

Consider the network of four sensors labelled a,b,c,v and positioned at points π(a), π(b), π (c) and π 
(v) respectively, so that no three of the sensor positions are collinear. The sensors labelled a, b and c 
are anchors, and suppose distance measurements avd~ , bvd~  and cvd~  are obtained. Using the guaranteed 
accuracies of the distance measurements, we get the following:

dav ∈ [ avd~ −	εav , avd~ +	εav], dbv ∈ [ bvd~ −	εbv, bvd~ +	εbv],  dcv ∈ [ cvd~ −	εcv, cvd~ +	εcv]  (2)      

The network is denoted by the graph shown in Figure 2 where each vertex corresponds to the sensor 
of the same label, and two vertices are adjacent if either the corresponding sensors are both anchors, or 
the distance measurement between the sensors is obtained.

An ordering of the sensors is first determined so that the anchors precede all other sensors, and each 
non-anchor sensor has at least one predecessor. One such ordering is a,b,c,v, and the predecessors of 
sensor v are a, b and c since the distance measurements between sensor v and anchors a,b,c are given. 
For x∈{a,b,c}, let Ax denote the ring centered at π(x) with inner radius xvxvd~ −  and outer radius xvxvd~ + . 
From (2) it follows that π(v)∈Aa ∩ Ab ∩ Ac. Suppose the three rings intersect as shown in Figure 3a.

The rings’ intersection can be approximated by a disk D which contains Aa ∩ Ab ∩ Ac as shown in 
Figure 3b. Clearly, π(v)∈ D, so the singleton set containing just D is a candidate regions set for sensor 
v. Ideally, D would be a disk with the least diameter that contains the common intersection of the three 
rings. However, modified Sweeps does not require this. In our implementation of modified Sweeps, we 
use an efficient algorithm to compute an approximating polygon which contains the ring intersection. 
Although the computed polygon is by no means the polygon of the least diameter which contains the 
ring intersection, experimental evaluations indicate that it is adequate in the sense that it yields posi-
tion estimates for a non-trivial number of non-anchor sensors with reasonable error bounds. We discuss 
implementation details in Section Experimental Evaluations.

In the network above, it may have seemed redundant to approximate the common intersection of 
the three rings by a disk. In the next section we consider a network of five sensors, three of which are 
anchors, for which no ordering exists so that each of the non-anchor sensors has three anchors as prede-
cessors. We use such a network to illustrate a refining sweep and in the process justify the assumption 
that candidate regions are constrained to be either disks or polygons.

Figure	2.	Sensors	a,	b	and	c	are	anchors
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Refining Sweep

Consider the network which consists of five sensors labelled a,b,c,u,v and positioned at points π(a), π(b), 
π(c), π(u) and π(v) respectively, so that no three of the sensor positions are collinear. Sensors labelled a, b 
and c are anchors, and measurements aud~ , bud~ , avd~ , cvd~  and uvd~  are obtained. The network is denoted by 
the graph in Figure 4. Note that even when the distance measurements are exact, neither the positions 
of sensor u nor v are uniquely determined by their distances to the anchors alone. Let εau, εbu, εav, εcv and 
εuv denote the guaranteed accuracies of aud~ , bud~ , avd~ , cvd~  and uvd~  respectively.

Using the measured distances and the corresponding guaranteed accuracies, we get:
 

dxu ∈ [ xud~  − εxu  , xud~ +	εxu], for all x ∈ {a, b}                      (3)   

dxv ∈ [ xvd~  − εxv , xvd~ + εxv], for all x ∈ {a, c}                        (4) 

Figure	3.	Rings	intersection

Figure	4.	Sensors	a,	b	and	c	are	anchors
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duv ∈ [ uvd~  − εuv , uvd~ +	εuv]         (5) 

An ordering of the sensors is first determined so that the anchors precede all other sensors, and 
each non-anchor sensor has at least one predecessor. One such ordering is a,b,c,u,v. Since u is the first 
non-anchor sensor, the first “sweep” begins by determining a candidate regions set for sensor u. Let Aa 
denote the ring centered at π(a) with inner radius aud~  −	εau and outer radius aud~ +	εau, and let Ab denote 
the ring centered at π(b) with inner radius  bud~  −	εbu  and outer radius bud~  +	εbu. It follows from (3) that 
π(u) ∈ Aa ∩ Ab. Suppose the two rings intersect in two disjoint regions as shown in Figure 5a.

For reasons we will soon make clear, a disk approximation of the ring intersection is computed. The 
disk approximation is required to contain all the regions of intersection, and consists of two disjoint disks, 
each containing one of the contiguous regions of intersection. Ideally, the disk approximation would be 
two disks with the smallest diameters whose union contains the regions of intersection; however, the 
modified Sweeps algorithm does not require this. A valid disk approximation is shown in Figure 5b, and 
let Du and D’u denote the two disks. Note that Du and D’u are disjoint, and each of Du and D’u contains 
one of the contiguous regions of intersection. Obviously, π(u) ∈ Du  D’u, and the set consisting of Du 
and D’u is a candidate regions set for sensor u. In the limit case of exact distance measurements, the two 
rings will actually be circles and intersect in at most two points, in which case the disk approximation 
of the intersection region should simply be the set of intersection points.

The candidate regions set for sensor v is computed in the same way as that for sensor u. Let A’a de-
note the ring centered at π(a) with inner radius avd~  −	εav and outer radius avd~  +	εav, and let A’c  denote the 
ring centered at π(c) with inner radius cvd~  −	εcv  and outer radius cvd~  +	εcv. It follows from (4) that π(v) 
∈ A’a ∩ A’c. Suppose the two rings intersect at two disjoint regions as shown in Figure 6a. As shown 
in Figure 6b, let Dv and D’v denote the two disks in the disk approximation. Clearly, the set consisting 
of Dv and D’v is a candidate regions set for sensor v. In the actual modified Sweeps algorithm, the can-
didate regions set of sensor u is also used in the computation of the candidate regions set for sensor v 
since u is a predecessor of v in the chosen ordering. However, we skip this step in an effort to keep this 
example simple.

Since both computed candidate regions sets consist of more than one disjoint regions, a refining 
sweep will be performed to identify false candidate regions in each of the candidate region sets. We 

Figure	5.	Intersection	of	two	rings,	and	its	disk	approximation
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first describe the underlying idea behind identifying false candidate regions of a sensor. Let D1 and D2 
be either two disks or two polygons in the plane, and let dmin( D1, D2) denote the minimum among all 
distances between a point in D1 and a point in D2:

dmin (D1, D2)=minp1 ∈ D1, p2 ∈ D2║ p1− p2 ║                       (6)

Let dmax( D1, D2) denote the maximum among all distances between a point in D1 and a point in D2:

dmax (D1, D2)= maxp1 ∈ D1, p2 ∈ D2║ p1− p2 ║                        (7)

Clearly, if π(u)∈ D1 and π(v)∈ D2, then it must be the case that duv∈ [dmin( D1, D2), dmax( D1, D2)]. 
Moreover, from (5), we have that duv ∈ [ uvd~  −	εuv, uvd~  +	εuv], which implies [dmin( D1, D2), dmax( D1, D2)] 
and  [ uvd~  −	εuv, uvd~  +	εuv] cannot be disjoint when π(u)∈ D1 and π(v)∈ D2.

Without loss of generality, suppose	π (v) ∈ Dv and π (u) ∈ Du. The crux of the modified Sweeps 
algorithm is based on the simple observation that if π (v) ∈  D*, where D* is a candidate region in the 
candidate regions set of sensor v, then there must be at least one candidate region D in the candidate 
regions set of sensor u, namely the candidate region which contains π (u), such that:

[dmin (D*, D), dmax (D *, D)] ∩[ uvd~  − εuv , uvd~ + εuv] ≠ Ø           (8)

In other words, if for some candidate region D* in the candidate regions set of v, we have that

[dmin (D *, D ), dmax(D*, D)] ∩ [ uvd~ −	εuv , uvd~ +	εuv ] = Ø      (9)

for all disks D in the candidate regions set of u, then it cannot be the case that π (v) ∈  D*. In this 
case D* can be removed from the candidate regions set of v, and the resulting set is again guaranteed 
to be a candidate regions set of sensor v. Note also that the minimum (maximum) among all distances 

Figure	6.	Intersection	of	two	rings,	and	its	disk	approximation
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between a point in one region in the plane and another region in the plane is particularly easy to compute 
when the regions are either both disks or both polygons. In the case of two disjoint disks, the minimum 
and maximum distances between the disks can be obtained by first drawing the line containing the 
centers of both disks. The line intersects the boundaries of the two disks at four points, and the distance 
between the closest pair of those points is the minimum distance between the two disks, and the dis-
tance between the furthest pair of those points is the maximum distance between the two disks. In the 
case of two disjoint polygons, the two points, each belonging to one of the polygons, which induce the 
minimum (maximum) distance between the polygons must lie on the boundaries of the polygons which 
are straight line segments. Hence, the minimum and maximum distances between two polygons can be 
obtained by computing the minimum and maximum distances between pairs of straight line segments. 
When the regions are not confined to be disks or polygons, the computation is more complicated. Hence, 
in order to keep the computations simple and efficient, candidate regions sets are required to consist of 
either all disks or all polygons.

Recall that {Du, D’u} and {Dv, D’v} are the candidate regions sets computed for u and v respectively 
in the first sweep. To refine the candidate regions set computed for sensor v, we process the sensors in 
the ordering u,v,a,b,c. Only sensor v is processed in this “refining sweep” since it is the only non-anchor 
sensor with a predecessor, namely sensor u, in the new ordering. Suppose the disks Du, D’u, Dv, and D’v 
are positioned in the plane as shown in Figure 7.

If εuv is not too “large,” then it is easy to see that [dmin(D’v, Du),dmax(D’v, Du)] and [dmin(D’v, D’u),dmax(D’v, 
D’u)] are both disjoint from the interval  [ uvd~  –εuv , uvd~ + εuv]. As shown above, the previous imply D’v can-
not contain π(v) and so can be removed from the candidate regions set of v to obtain the new candidate 
regions set { Dv } of v. Removing D’v  from the candidate regions set of v provides a refinement of the 
candidate regions set of v in that the set of points in its candidate regions set is strictly reduced while 
still retaining the property that the remaining disks contain the sensor’s actual position. A set consisting 
of a finite number of elements from R is said to be  algebraically independent over the rationals if its 
elements do not satisfy a non-zero polynomial equation with rational coefficients. In other words, a set 

Figure	7.	Candidate	regions	sets	of	sensors	u	and	v
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consisting of i real numbers x1,...,xi is algebraically independent over the rationals if there does not exist a 
non-zero polynomial equation (with rational coefficients) in i variables which is satisfied by x1,...,xi. The 
positions of a network’s sensors are said to be generic if the set consisting of the position coordinates 
is algebraically independent over the rationals. When distance measurements are exact and the sensor 
positions are generic, it can be shown that [dmin(D’v, Du),dmax(D’v, Du)] and [dmin(D’v, D’u),dmax(D’v, D’u)] 
are always disjoint from the interval [ uvd~  –εuv , uvd~ + εuv] , and so D’v can be removed to obtain a smaller 
candidate regions set for v (Fang et al. (2006)).

After the refining sweep, {Du, D’u} and {Dv } are the new candidate regions sets of u and v respec-
tively. A different ordering is now chosen so as to refine the candidate regions set of sensor u. Let the 
ordering be v, u, a, b, c. Again, if εuv is not too large, then it will be the case that [dmin(D’u, Dv),dmax(D’u, 
Dv)]  is disjoint from the interval [ uvd~  –εuv , uvd~ + εuv] . If this holds, then D’u  cannot contain π(u), so D’u 
can be removed from the candidate regions set of u. The sum of the diameters of the disks in the result-
ing set is strictly reduced while retaining the property that at least one of the disks contains π(u), thus 
refining the position estimate of sensor u.

Whether smaller candidate region sets of sensors u and v can be obtained depends on the   configu-
ration of the actual sensor positions, the distance measurements, and the guaranteed accuracies of the 
distance measurements. Intuitively, and as have been confirmed by experimental evaluations, the more 
accurate the distance measurements are, i.e. as εij→ 0 for each measured distance ijd~ , the more likely it 
is that the candidate regions sets can be refined to be a singleton. In the limit case where distance mea-
surements are exact, and the sensor positions are generic, it is easy to see that the candidate region sets 
computed for  sensors u and v in the first sweep must each consist of two points. Furthermore, each of 
the candidate region sets can be refined to be a singleton candidate region set in the subsequent refining 
sweeps. In other words, if distance measurements are exact, then the two refining sweeps will remove all 
but the actual position from the candidate regions set of each sensor, and thus localize the network. 

GLObAL RIGIDITY AND LOcALIZAbILITY 

A multi-point p={p1,...,pn} in d-dimensional space is a set of n points in Rd labelled p1,...,pn.  A multi-point 
is said to be generic if the set consisting of the coordinates of its points is algebraically independent over 
the rationals. Because we are only concerned with networks in the plane, we will henceforth restrict 
our attention to the case of d=2. A graph with vertex set V and edge set E  is denoted by (V, E). A point 
formation in R2 of n points at a multi-point p={p1,...,pn} consists of p and a simple undirected graph G 
with vertex set V={1,...,n}, and is denoted by (G, p). If (i, j) is an edge in G, then the length of edge (i, j) 
in the point formation (G, p) is the distance between pi and pj. Two point formations with the same graph 
have the same edge lengths if the length of each edge in the graph is the same in both point formations. 
Two point formations with the same graph are congruent if all inter-vertex distances are the same.

A point formation (G,p) in R2 is globally rigid in R2 if every other point formation in the plane with 
the same graph and edge lengths is congruent to (G,p).  For any multi-point p={p1,...,pn}  in R2 and ε	>0, 
let Bp(ε) denote the set of all multi-points q={q1,...,qn} in R2 where║ pi−qi║ < ε for all i ∈{1,...,n}. A graph 
G is said to be globally rigid in R2 if there exist multi-point p in R2 and ε	>0 such that (G, q) is globally 
rigid in R2 for all q∈ Bp(ε). It is known that if a multi-point p in R2 is generic, then the point formation 
(G,p) is globally rigid in R2 if and only if G is globally rigid in R2 [6,7]. A number of efficient algorithms, 
such as Pebble Game, can be used for determining if a graph is globally rigid in R2 [6,7,8].
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A network with n sensors is modelled by a point formation (G,p) where each sensor corresponds to 
exactly one vertex of G, and vice versa, with (i,j) being an edge of G if the sensors corresponding to i 
and j are both anchors or if i and j are distinct and the distance measurement between the correspond-
ing sensors is obtained, and p={p1,...,pn}	where pi  is the position of the sensor corresponding to vertex i. 
We say that G is the graph of the network, and p is the multi-point of the network. We will restrict our 
attention to those networks with generic multi-points. In particular, this implies no two sensors occupy 
the same point and no three sensors are collinear in the networks we consider.

A network in which all distance measurements are exact is localizable if there corresponds exactly 
one position to each non-anchor sensor so that the given inter-sensor distances are satisfied. We consider 
the natural extension of this definition to networks with inaccurate distance measurements where com-
puting exact sensor positions is (in general) impossible. We say that a network of n sensors positioned at 
π(1),...,	π	(n) respectively is localizable	with precision ρ if for all points p1,...,pn ∈ R2 where pi =	π (i) for 
all anchors i and ║ pi−pj║∈ ( ijd~  − εij, ijd~  + εij) for each distance measurement ijd~ , we have that ║ pi−π(i)║ 
≤  ρ for all i ∈{1,...,n}. When distance measurements are exact, a network is localizable if and only if 
the network has three anchors and the graph of the network is globally rigid in R2. When the distance 
measurements in a network are inaccurate, it is straightforward to show from the definitions that:

Lemma 1. If the graph of a network is not globally rigid in R2, then there exists ρ >0 such that the net-
work is not localizable with precision ρ. 

MODIFIED sWEEPs

We first give the terms and definitions to be used in defining the modified Sweeps algorithm. In the 
following, let N be a network of n sensors labelled 1 through n where each sensor i is positioned at π(i).  
Let G=(V,E) denote the graph of N where V={1,...,n}, and each vertex i corresponds to sensor i. For 
each vertex v, let N(v) denote the set of vertices adjacent to v in G. We assume there are at least three 
anchors and that G is connected. For each (i,j) ∈ E where at least one of i or j is a non-anchor sensor, 
let  ijd~  denote the distance measurement obtained between sensors i and j, and let dij denote the actual 
distance between sensors i and j, i.e. dij =║ π(i)	−	π(j)║. For each measured distance ijd~ , let εij denote the 
guaranteed accuracy of the measured distance. This implies that for each (i,j) ∈ E,  dij ∈ [ ijd~ −ε, ijd~ +ε]. 
To avoid degenerate cases, we will assume that εij < ijd~  for all measured distance ijd~ .

A mapping α	has as its domain a non-empty subset U of V, and for each element u in U, α(u) is either 
a disk or polygon in the plane. Given any mapping α with domain U, α is called a disk mapping if α(u) 
is a disk for all u∈U , and a polygon mapping if α(u) is a polygon for all u∈U. For mapping α, let Δ (α) 
denote the domain of α. Two mappings α and β are said to be consistent with each other, and we write α 
~ β, if  for all u∈ Δ (α)∩ Δ (β), α and β map u to the same region in the plane. Two mappings are always 
consistent if their domains are disjoint. For any positive integer k, consider a collection of k pairwise 
consistent mappings α1,...,	αk which are either all disk mappings or all polygon mappings. Let uk(α1,..., 
αk ) denote the mapping with domain i∈{1,...,k}	 Δ (αi) whose restriction to Δ (αi) is equal to αi for each 
i∈{1,...,k}. For  a disk or  polygon P in the plane, let centroid(P) denote the centroid of the convex hull of 
the points in P, and let radius(P) denote the maximum distance between centroid(P)  and the boundary 
of P. Note that centroid(P)  and radius(P) are easy to compute since P is constrained to be either a disk 
or polygon. For positive reals d and ε, let A(P, d,	ε) denote the ring centered at centroid(P)  with outer 
radius d+ε+radius(P), and inner radius d−ε−radius(P) if d−ε−radius(P)>0, and zero otherwise.
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Consider sensor v and suppose that the measured distances between v and sensors u1,..., um are known. 
For i∈{1,...,m}, let di denote the measured distance between sensor v and sensor ui, and let εi denote the 
accuracy guarantee of di. Now suppose α1,..., αm are m pairwise consistent mappings such that ui∈Δ(αi) 
and v∉ Δ(αi) for each i∈{1,...,m}. The mappings α1,..., αm are also required to be either all disk mappings 
or all polygon mappings. Assuming ∩i∈{1,...,m} A(αi (ui),di,	εi)≠ Ø, any collection of disks or polygons in 
the plane containing ∩i∈{1,...,m} A(αi (ui), di,	εi) can be considered a candidate regions set of sensor v under 
the assumption that region αi (ui) contains the position of ui for each i∈{1,...,m}. We define the set M(α1,..., 
αm,v, u1,..., um) with the goal of keeping track of the candidate regions of sensor v assuming the position 
of each ui  is contained in the region αi (ui). If in fact each αi (ui) does contain the position of ui , then 
∩i∈{1,...,m} A(αi (ui),di,	εi) is non-empty. However, if some αi (ui),  i∈{1,...,m}, does not  contain the position 
of ui , then ∩i∈{1,...,m} A(αi (ui),di,	εi) may be the empty set.  

Clearly ∩i∈{1,...,m} A(αi (ui), di,	εi)  consists of either zero, one or more contiguous regions. If ∩i∈{1,...,m} 
A(αi (ui), di,	εi) = Ø, then M(α1,..., αm,v, u1,..., um)  is defined to be Ø:

M(α1,..., αm,v, u1,..., um) =  Ø        (10)

If ∩i∈{1,...,m} A(αi (ui), di,	εi)  consists of one contiguous region, then let Pv be any region in the plane 
which contains ∩i∈{1,...,m} A(αi (ui), di,	εi). If ∩i∈{1,...,m} A(αi (ui), di,	εi) is a point, then Pv is required to be 
that point. If α1,..., αm are all disk (polygon) mappings, then we require that Pv be a disk (polygon). When 
∩i∈{1,...,m} A(αi (ui), di,	εi) is not a point, then in keeping with the desire to compute “small” candidate re-
gions for each sensor, Pv would ideally be the disk or polygon with the smallest diameter which contains 
∩i∈{1,...,m} A(αi (ui), di,	εi). However, the modified Sweeps algorithm does not require this to be so. In the 
instance of the modified Sweeps algorithm we implemented, we used a simple algorithm to determine a 
polygon containing ∩i∈{1,...,m} A(αi (ui), di,	εi) which has been shown to be both computationally efficient 
and adequate in our experimental evaluations on randomly deployed networks. Let β denote the map-
ping with domain {v}∪ i∈{1,...,m} Δ(αi). Let β(v) be Pv, and for i∈{1,...,m}	 and each u∈	Δ(αi), define	β(u)= 
αi (u). Note that β is well defined since αi, i∈{1,...,m}, are pairwise consistent, and β, α1,...,	αm are either 
all disk mappings or all polygon mappings. Let M(α1,..., αm, v, u1,..., um) be:

       
M(α1,..., αm,v, u1,..., um)={β}        (11)

Note that m being greater than or equal to three will not guarantee that ∩i∈{1,...,m} A(αi (ui), di,	εi) 
consists of one contiguous region. In Figure 8 below, the ring with the dotted boundary and the ring 
with the solid line boundary intersect in two disjoint regions, and the ring with the solid interior has 
a non-empty intersection with both of those regions. Hence, the three rings intersect in two disjoint 
contiguous regions.

If ∩i∈{1,...,m} A(αi (ui), di,	εi)  consists of two or more disjoint regions, then let Pv1 and Pv2 be any two  
regions whose union contains ∩i∈{1,...,m} A(αi (ui), di,	εi). If α1,..., αm are all disk (polygon) mappings, then 
we require that Pv1 and Pv2 both be disks (polygons). In keeping with our desire to obtain "small" can-
didate regions for each sensor,  Pv1 and Pv2 would ideally be disjoint regions with the smallest possible 
diameters whose union contains the regions of intersection. However, the modified Sweeps algorithm 
does not require this to be so. If ∩i∈{1,...,m} A(αi (ui), di,	εi)  consists of two points, then we require that Pv1 
and Pv2 be the two points. Let β1 and β2  denote mappings both with domain {v}∪ i∈{1,...,m} Δ(αi) defined 
as follows. Let	β1 (v) be Pv1, β2 (v) be Pv2, and for i∈{1,...,m}	 and each u∈ Δ(αi), let	β1	(u)=	αi (u) and β2 
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(u)=	αi (u). Note that β1 and β2 are well defined since αi, i∈{1,...,m}, are pairwise consistent, and β1, β2, 
α1,...,	αm are either all disk mappings or all polygon mappings. Let M(α1,..., αm, v, u1,..., um) be:

M(α1,..., αm, v, u1,..., um) ={	β1, β2}        (12)

Modified Sweeps will use M to compute candidate regions sets of sensors.
Let P1 and P2 be either two disks or two polygons in the plane. Let min(P1, P2) and max(P1, P2) denote 

the minimum and maximum distance, respectively, between P1 and P2.  Note that it is computationally 
efficient to determine min(P1, P2) and max(P1, P2)  since P1 and P2 are either both disks or both polygons. 
Let I(P1, P2) denote the real line interval with left endpoint min(P1, P2) and right endpoint max(P1, P2).

Algorithm 

In the following, we give an algorithm which computes for each sensor v a sequence of sets S(v, i), i = 1, 
2, .... such that each S(v,i) consists of a finite number of mappings and {α	(v)	|	α	∈ S (v, i)} is a candidate 
regions set for sensor v.

Let [v] = v1, v2, v3,..., vn be an ordering of the vertices of G where v1, v2, v3 are anchors. For vi, i∈{1,2,3}, 
let αi be the mapping with domain {vi} where αi (vi) is the known position of vi. We require that αi, 
i∈{1,2,3}, be either all disk mappings, or all polygon mappings. A point in the plane is considered  a 
degenerate disk (polygon) with diameter zero. For i∈{1,2,3}, let S(vi, 1) be defined as:

S(vi, 1) = {	αi },    i∈{1,2,3}											 	 	 	 	 	 	 (13)

The sets S(vi, 1), i > 3, are computed iteratively as follows. For vi, i > 3,, let u1,...,um denote the verti-
ces adjacent to vi in G and which precedes vi in the ordering v1,..., vn: N(vi) ∩ { v1,..., vi−1 } = { u1,...,um}. 
Define S(vi, 1) using M as :

Figure	8.	Three	rings	intersecting	in	two	disjoint	regions
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=      (14)

                                                                                                                                  
Roughly speaking, S(vi,	1)	is the set of mappings “storing” the candidate regions of sensor vi cor-

responding to each combination of candidate regions of vi’s predecessors in the ordering. It is easy to 
see that each S(v, 1) consists of a finite number of disk (polygon) mappings, and for each sensor v, the 
set {α(v)	|	α	∈	S(v,	1)	}	is a candidate regions set for sensor v. We call S(v, 1)  a  candidate mapping set 
of sensor v and we call {α(v)	|	α	∈	S(v,	1)	}  the candidate regions set of sensor v obtained	by	the	first	
sweep.

Suppose for some k ≥ 1 that S(v, k), v ∈V, have been computed, and that for each sensor v, the set {α(v)	
|	α	∈	S(v,	k)	} is a finite candidate regions set for sensor v. Let u1,..., un be any ordering of the vertices of 
G such that at least one vertex ui is adjacent to some vertex uj where j<i, and all vertices v where S(v, k)  
is a singleton precede all vertices u where S(u, k)  is not a singleton. For each vertex ui, let P(ui) denote 
the set of vertices adjacent to ui in G and which precede ui in the ordering u1,..., un: P(ui)= N(ui) ∩ {u1,..., 
ui−1}. Let s denote the number of vertices v for which S(v, k) is a singleton. For i∈{1,...,s}, define:

S(ui,	k+1)	=	S(ui, k)         (15)

For i∈{s+1,...,n}, if P(ui)=Ø, then define:

S(ui,	k+1)	= S(ui, k)                                                 (16)

Now suppose P(ui) is non-empty. Recall that for each w∈	P(ui), iwud~  is the measured distance between 
sensors ui and w, and εwui  is the guaranteed accuracy of iwud~ . The underlying idea behind obtaining S(ui, 
k+1) from S(ui, k) and S(w,	k+1), w∈ P(ui), is as follows. By assumption, the set {α(ui)	|	α	∈ S(ui,	k)} is a 
candidate regions set of sensor ui. Let P be any candidate region of sensor ui from the set. Suppose that 
for all w∈ P(ui), {α(w)	|	α	∈S(w,k+1)}, is a candidate regions set of w. This implies that for all w∈ P(ui), 
there is a region Pw* in {α(w)	|	α∈S(w,	k+1)} which contains the position of w. Suppose that for some 
sensor  w∈ P(ui) that I(P,P’)	is disjoint from [ iwud~ –	εwui , iwud~ +	εwui] for all P’∈	{α(w)	|	α	∈	S(w,k+1)}. This 
implies P cannot contain the position of sensor ui, for if P did contain the position of sensor ui, then I(P, 
Pw*) is not disjoint from [ iwud~ –	εwui , iwud~ +	εwui]. In this case we say that P is an	identified false candidate 
region of sensor ui. To obtain the set S(ui,	k+1), we remove  all mappings β from S(ui, k) where β(ui) is 
an identified false candidate region of sensor ui. Since only mappings β where β(ui) is a false candidate 
region of ui is removed from S(ui, k) to obtain S(ui,	k+1), it follows that {α(ui) | α ∈ S(ui,	k+1)} must still 
be a candidate regions set for sensor ui. In the following, for notational convenience, let w1,...,wm be the 
elements of P(ui), and define S(ui,	k+1) as:

},m,...,1{j)1k,w(S),k,u(S|),...,,(u{)1k,u(S jjim11mi ∈∀+∈∈=+ +

},,...,,{,~ m1∈∀

≠+− ]d~,d~[))w(),u((I uiwjuiwjuiwjuiwjjji    Ø  }}m,...,1{j ∈∀    (17)

Since each S(v, k),  v∈ V, consists of a finite number of elements, it follows from equation 17 that S(v, 
k+1) must also consist of a finite number of elements. Furthermore, for each sensor v the set {α(v) | α∈ 
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S(v,	k+1)} is a candidate regions set for sensor v. We call {α (v) | α∈ S(v,	k+1)} the candidate regions set 
of sensor v obtained by the (k+1)th sweep, and we call S(v,	k+1) a candidate mapping set of sensor v. It 
is easy to see that for each sensor v, the candidate regions set of sensor v obtained by the (k+1)th sweep 
is a subset, not necessarily proper, of the candidate regions set of sensor v obtained by the kth sweep.

Suppose that for sensor v and some k ≥ 1 that S(v, k) has been computed, and S(v, k) is a singleton. Let 
α be the mapping in S(v, k).  Furthermore, suppose there exist u,w∈ Δ(α) where distance measurements 

uvd~  and wvd~  are obtained, i.e. u,w∈ N(v), and A(α(u),	 uvd~ ,	εuv) ∩ A(α(w),	 wvd~ ,	εwv) consists of two disjoint 
regions such that α(v) contains just one of those regions. When the previous hold, the position estimate 
of sensor v is taken to be the centroid of α(v) and the error bound is taken to be radius(α(v)).

The order in which the sensors are processed in the first sweep can be a determining factor in the 
diameter of the candidate regions in each of the generated candidate region sets, and the number of 
regions in the set. This is because each sensor’s candidate region sets is computed using the candidate 
regions sets of its neighbors preceding it in the orderings, and the distance measurements between itself 
and those neighbors. Intuitively, candidate regions with small diameters can be obtained for a sensor if 
the sensor has at least two neighbors preceding it in the ordering such that the distance measurements 
between the sensor and those neighbors have small accuracy guarantees and the candidate regions of 
those neighbors are also small. An ordering can also be chosen “on the go.” For example, suppose we 
have sensors a,b,c,u,v,w where a,b,c are anchors. The anchors always comprise the first three sensors in 
the ordering. Suppose the graph of the network is as shown in Figure 9 below. So anchors a and c are 
neighbors of sensor u, anchors a and b are neighbors of sensor v, and anchor a and sensors u and v are 
neighbors of sensor w. Furthermore, suppose εav, εbv, εaw and εvw  are “small” as compared to εuc. One 
way to order the sensors on the go is as follows. Since sensor v has distance measurements with small 
accuracy guarantees to two sensors with known positions, sensor v can be ordered as the first sensor 
to follow the anchors. If the candidate regions set computed for sensor v consists of candidate regions 
with “small” diameters, then sensor w has two distance measurements with small accuracy guarantees 
to two sensors with either exact positions or candidate regions with small diameters. Hence, let sensor 
w be the next sensor in the ordering following sensor v. Furthermore, if εuw is small, then there is a clear 
advantage in placing w in front of u in the first ordering.

In the following, we give a heuristic for choosing an ordering for generating candidate regions sets 
based on the factors discussed above. Given the distance measurement ijd~  between sensors i and j with 
accuracy guarantee εij, let pij=	εij/ ijd~ . Let the anchors be the sensors which precede all others in the order-
ing. Suppose the first ith sensors in the ordering has already been chosen, where i ≥ 3, and denote the 
ordering thus far by v1,....,vi. Let W denote the set of all sensors which are not in the ordering thus far. 
To choose the i+1th sensor, let U denote the set of all sensors in W which are adjacent to two or more 
sensors in { v1,....,vi}. If U  is empty, then let vi+1 be the sensor v∈W such that v is a neighbor of some vj, 
j	≤	i, and pvvj is less than or equal to all other pxy where x∈W and y=vk for some k≤	i. Otherwise, if U is 
not empty, then let vi+1 be a sensor u∈U such that the average of puvj, vj ∈ { v1,....,vi}∩N(u), is less than or 
equal to the average of pwvj , vj ∈{ v1,....,vi}∩N(w), for all w∈U.

cORREcTLY ORIENTED POsITION EsTIMATEs

In this section, we introduce the concept of “correctly oriented” position estimates, and demonstrate that 
a set of correctly oriented position estimates can be used to deduce geometric properties of the configu-
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ration of the corresponding actual sensor positions. We then give a sufficient condition on the position 
estimates and their corresponding error bounds for the position estimates to be correctly oriented.

Consider in the plane a set of four sensors labelled 1,2,3,4 such that no three sensors are collinear. For 
{1,2,3,4}i ∈ , let pi and qi denote the actual and estimated position of sensor i respectively, and suppose 

the estimated positions are correctly oriented and no three of the estimated positions are collinear. Let 
H(1) denote the region of the plane which does not contain p1 and is bounded by the line segment  l(p2,, 
p3) and the two half-lines both with origin at p1, and containing the points p2 and p3, respectively. The 
regions H(2),	H(3) are defined analogously. See Figure 10 for an illustration of H(1) which is the region 
of the plane bounded by the dotted lines.

Suppose the actual position of sensor 4 lies in H(1). Clearly,  p4 lies in H(1) if and only if the line 
segments l(p1,, p4) and l(p2,, p3) intersect. Since q1, q2, q3, q4 are correctly oriented, it follows that l(p1,, 
p4) intersects l(p2,, p3) if and only if l(q1,, q4) intersects l(q2,,q3). Therefore, using the estimated positions, 
it can be determined if the actual position of sensor 4 lies in H(1). By similar reasoning, the estimated 
positions can be used to determine if p4 lies in H(2) and H(3). If the actual position of sensor 4 does not 
lie in any of the H(i), {1,2,3}i ∈ , then the actual position of one of the sensors must lie in the convex hull 
determined by the actual positions of the other three sensors. Hence, a set of correctly oriented sensor 
position estimates can be used to deduce certain geometric properties of the configuration of actual 
sensor positions. However, the difficulty lies in determining if a set of position estimates are correctly 
oriented without knowing the corresponding actual sensor positions.     

In the following, we will give a sufficient condition for a set of position estimates to be correctly 
oriented. We begin by defining a quadrilateral given two circles in the plane. Let Ci and Cj be two 
circles in the plane centered at qi and qj respectively, and let Q(Ci, Cj) denote the quadrilateral defined 
as follows. Let l denote the line segment obtained by extending the line segment l(qi, qj) to Ci and Cj as 
shown in Figure 11a. So l is the line passing through qi and qj and whose endpoints are on Ci and Cj. 
Let Ti denote the line tangent to Ci at the endpoint of l on Ci, and define Tj similarly. Lines Ti and Tj are 
denoted in bold in Figure 11a. Let li denote the line passing through qi and which is also perpendicular 
to l. Clearly, li intersects Ci at exactly two points, which we denote by si1 and si2. Similarly, if lj denotes 
the line passing through qj which is perpendicular to l, then lj must intersect Cj at exactly two points, 
which we denote by sj1 and sj2. Without loss of generality, suppose si1 and sj1 lie on the same side of line 

a

b

c

u

v

w
Figure	9.	a,	b	and	c	are	anchors
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segment l. Let TL denote the line passing through si1 and sj1, and let TR denote the line passing through si2 
and sj2. Lines TL and TR are denoted in bold in Figure 11a. It is easy to see that Ti and Tj are parallel, but 
that neither Ti and Tj are parallel to the two lines TL and TR. So let c1 and c2 be the two points where TL  
intersects with Ti and Tj, and let c3 and c4 be the two points where TR intersects with Ti and Tj. Let Q(Ci, 
Cj) denote the convex hull of the four intersection points c1, c2, c3, c4 as shown in Figure 11b.

Consider t > 3 sensors u1,..., ut with estimated positions q1,..., qt respectively. For i∈ {1,...,t}, let ei denote 
the error bound of qi, and let Di and Ci  denote respectively the disk  and circle in the plane centered at 
qi with radius ei. Consider the  following condition on the geometry of C1,..., Ct:

Condition 1. For all distinct i ,j ,k ,l∈ {1,...,t}, the quadrilaterals Q(Ci, Cj) and Q(Ck, Cl) are either disjoint, 
or Q(Ci, Cj) and Q(Ck, Cl) intersect in a quadrilateral Q such that Q is disjoint from each of the circles 
Ci, Cj, Ck, Cl, and if e and e’ are opposite edges of Q, then both edges are contained in the interior of 
Q(Ci, Cj) or Q(Ck, Cl).

 
Figure 12 shows the relative positions of four circles Ci, Cj, Ck  and Cl in the plane which satisfy Con-

dition 1. If Condition 1 is satisfied by Ci, i∈{1,...,t}, then the position estimates q1,..., qt  must be correctly 
oriented. The proof of this is straightforward and relies upon the observation that if quadrilaterals  Q(Ci, 
Cj) and Q(Ck, Cl) are disjoint, then no line segment with endpoints in Ci and Cj can intersect any line 
segment with endpoints in Ck and Cl. If Q(Ci, Cj) and Q(Ck, Cl) are not disjoint, and they satisfy Condi-
tion 1, then the opposite is true, i.e. given a line segment with endpoints in Ck and Cl, and a line segment 
with endpoints in Ci and Cj, the two line segments must intersect. Assuming Condition 1 holds, then  
for all distinct i, j, k, l ∈{1,...,t}, if q’i ∈ Di, q’ j ∈ Dj, q’k ∈ Dk and q’l ∈ Dl, then l(q’i, q’ j) intersects l(q’k 
, q’l) if and only if l(qi, qj) intersects l(qk , ql). The previous implies q1,..., qt must be correctly oriented 
since for each i∈{1,...,t}, the actual position of sensor ui  is contained in Di.

EFFIcIENTLY LOcALIZAbLE NETWORKs

As we have noted previously, whether a position estimate of some desired precision can be computed by 
modified Sweeps for a sensor depends on the geometry of the configuration of actual sensor positions, 
the accuracy of the distance measurements, and the graph of the network. This observation applies to any 

Figure	10.	The	region	H(1)
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Figure	11.	Q(Ci, Cj)

    (a)         (b)

Q

Q(Ci, Cj)
Q(Ck, Cl)

Ci

Cj

Ck

Cl

Figure	12.	Four	circles	satisfying	Condition	1
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localization algorithm when distance measurements are inaccurate. For a general network, it is difficult 
to characterize the conditions under which a sufficiently accurate position estimate can be computed for 
each sensor. Furthermore, the characterization of efficiently localizable networks is far from complete 
even for the case of exact distance measurements. Hence, we will give the graphical characterization 
of some networks whose positions can be determined exactly and efficiently for the limit case of exact 
distance measurements. For such networks, it follows by a simple continuity argument that there are 
sufficiently small guaranteed accuracies εij >0 for each measured distance ijd~  such that  modified Sweeps 
can be used to compute a position estimate for each sensor which has a “small” error bound. A key 
component of the modified Sweeps algorithm is its sequential nature whereby sensors are processed 
in some order. As will be illustrated below, the notion of processing sensors in some order enables the 
graphical characterization of networks for which modified Sweeps can be used to efficiently compute 
position estimates in the limit as εij →0 for each measured distance ijd~ .

A graph is said to have a trilateration ordering if its vertices can be ordered as u1, u2, u3,..., un so 
that u1, u2, u3 induce a complete subgraph, and each ui, i>3, is adjacent to at least three vertices uj where 
j<i. In Anderson et al. (2007) it was shown that localizable networks whose graphs have trilateration 
orderings can be efficiently localized, i.e. in a number of operations that is polynomial in the number 
of sensors. It is straightforward to show that such networks  can also  be efficiently localized by modi-
fied Sweeps in one sweep. In the following, we give a graphical characterization of a class of networks 
which can be efficiently localized but whose graphs do not necessarily have trilateration orderings. 
Suppose the network N has n>4 sensors and that the vertices of its graph G can be ordered as v1, v2, 
v3,..., vn so that v1, v2, v3 correspond to anchors, and that each vi, i>3, is adjacent to vertices vi-1 and vi-2. 
Furthermore, for each vi, where either i=n or 3<i<n and i is odd, vi is also adjacent to some vj where 
j	≠	i-3 and j is either odd or j≤	3. We call such an ordering an augmented triangulation ordering. If G 
has an augmented triangulation ordering, then G must be globally rigid. This implies any network with 
a generic multi-point, three anchors, and whose graph has an augmented triangulation ordering must 
be localizable. Furthermore, G can have an augmented triangulation ordering without possessing any 
trilateration orderings. To see this note that if G has a trilateration ordering then G must have at least 
3(n-3)+3 edges since each vertex following the first three vertices in the ordering must be adjacent to 
at least three vertices preceding it. Suppose G has an augmented triangulation ordering where each vi, 
where i<n and i is even, is adjacent to exactly two vertices preceding it, and each vj where j is either equal 
to n or j is odd, is adjacent to exactly three vertices preceding it. In this case G has (5(n-3)/2)+3 edges 
when n is odd and (5(n-4)/2) +6 when n is even. In either case, G would have less than the minimum 
number of edges required for a trilateration ordering.

Suppose an augmented triangulation ordering v1, v2, v3,..., vn of G is chosen to compute the first sweep 
in modified Sweeps. In other words, v1, v2, v3,..., vn is the ordering used in computing S(v,1), v∈ V. In this 
case, each S(v,1), v∈ V, contains at most two mappings, and S(vi,1) where i is odd must be a singleton. 
This implies N can be efficiently localized by modified Sweeps since the computational complexity of 
modified Sweeps is entirely dependent on the size of the sets generated during each sweep. Since an 
augmented triangulation ordering is not necessarily a trilateration ordering, the previous also implies 
that N can be efficiently localized by modified Sweeps even if its graph G does not have any trilatera-
tion orderings.
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EXPERIMENTAL EVALUATIONs

In our experimental evaluations, we used Matlab to first generate a random network of 100 nodes using 
three input parameters R, m and η, where R is the sensing range, m is the number of anchors, and η is the 
noise factor. Sensor positions are randomly generated from the distribution that is uniformly distributed 
on the 1-by-1 two dimensional space, and m of those sensors are randomly chosen to be anchors. For 
each pair of sensors within sensing range R a noisy distance measurement is generated using the input 
parameter noise factor η. More specifically, η is specified to be between zero and one, and for each pair 
of sensors within sensing range, a distance measurement d~is generated such that the actual inter-sensor 
distance d is within η	∙d~of the generated distance measurement, i.e. |dd~| −  ≤ η	∙d~. The limit case of 
exact distance measurements corresponds to when noise factor η is zero: |dd~| −  = 0. In other words, 
the guaranteed accuracy of each generated distance measurement is η	 ∙100  percent of the distance 
measurement. Roughly speaking this corresponds to the notion that the distance measurement between 
two sensors become less accurate as the distance between the two sensors increase. For reasons we 
will specify below, we will also consider a class of networks such that distance measurements between 
particular pairs of sensors within sensing range are not generated.

For ease of implementation, we used convex polygons, as opposed to just general polygons, to ap-
proximate ring intersection regions since convex polygons are particularly easy to manipulate. We 
compute the convex polygon approximation of ring intersections by means of a simple algorithm using 
tangent lines and convex hulls. More specifically, consider the intersection region of two rings that 
intersect in two disjoint regions as shown in Figure 13. Each intersection region is comprised of four 
arcs which we denote by a1, a2, a3, and a4.  Without loss of generality, suppose ai,is disjoint from ai+2	
for i=1,2. Note that each arc lies on either the inner or outer circle of one of the two rings. If arc ai lies 
on the outer circle of one of the rings, then let Ti denote a line that is tangent to the arc at roughly the 
midpoint of the arc. If arc ai lies on the inner circle of one of the rings, then let Ti denote the line passing 
through the endpoints of ai. See Figure 13 below for an illustration. For i=1,2,3, let ti denote the point 
where Ti and Ti+1 intersects, and let t4 denote the point where T4 and T1	intersects. We obtain a convex 
polygon which contains one of the contiguous regions of the ring intersection by taking the convex hull 
of t1, t2, t3, and t4.

We evaluated modified Sweeps on networks whose graphs have “augmented bilateration” orderings. 
A graph is said to have a bilateration ordering if its vertices can be ordered so that v1, v2, v3	 induce a 
complete subgraph, and each vi, i>3, is adjacent to at least two vertices vj where j<i. A network’s graph 
is said to have an augmented bilateration ordering if it has a bilateration ordering v1,..., vn where v1,..., 
vm are the m≥	3 anchors and if vi, i>m, is only adjacent to two vertices vj where j<i, then vi must also be 
adjacent to vi+1 where vi+1 is adjacent to at least two vertices vj where j<i	and at least one of which is not 
adjacent to v_i. If a graph has at least one augmented bilateration ordering, but no such ordering is also 
a trilateration ordering, then we say that the graph’s augmented bilateration orderings are untrilater-
able. In our evaluations, we consider both networks whose graphs have augmented bilateration order-
ings, and untrilaterable augmented bilateration orderings. The ordering chosen for the first sweep is an 
augmented bilateration ordering of the network, and we use a simple connectivity based procedure for 
obtaining such an ordering. We begin by labelling the m≥	3 anchors to be v1,..., vm. Assuming the order-
ing determined thus far is v1,..., vi where i≥	m, the i+1th sensor in the ordering is determined as follows. 
If v is any sensor that is not in the ordering and v is the neighbor of three or more sensors vj where j<	
i+1, then we let v be the i+1th sensor in the ordering. Otherwise, if there is a pair of sensors u and v 
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such that u and v are neighbors and each of u and v is adjacent to two sensors v_j where j <i+1, and v is 
adjacent to at least one sensor v_ j, j < i+1, which is not adjacent to v_i, then we let u and v be the i+1th 
and i+2th sensors in the ordering. Let  P(v,1), v∈ V, denote the set of sensors adjacent to v and preced-
ing v in the ordering of the first sweep. We implemented a slightly altered version of modified Sweeps 
in that if S(v,1) is a singleton for some v∈ V, then each S(u,1),  u ∈	P(v,1), is refined using S(v,1)  before 
proceeding with the first sweep. More specifically, if α is the mapping in the singleton S(v,1), then for 
each u ∈	P(v,1), S(u,1) is refined using S(v,1) by removing all mappings β from S(u,1) where β(u)	≠	α(u). 
After S(u,1), u ∈	P(v,1), have each been refined by S(v,1), each {γ(u) | γ ∈ S(u,1)} remains a candidate 
region set for sensor u. Using this slightly altered version of modified Sweeps, we sweep through the 
network only once, i.e. by only computing S(v,1), v ∈ V. Theoretically, similar results can be obtained by 
sweeping through the network multiple times using the original modified Sweeps algorithm. However, 
for evaluation purposes, we have found the altered implementation to be more computationally efficient 
and the computed error bounds on the position estimates were reasonable.

We now discuss two scenarios in detail. First, networks of 100 sensors are generated whose graphs 
have an augmented bilateration ordering for which the input parameters are as follows: sensing range 
R=0.2, number of anchors m=15, and noise factor η = 0.08. We averaged the results of modified Sweeps 
over 100 randomly deployed instances of such networks with the aforementioned parameters. Since 
there are 15 anchors, there are a total of 85 non-anchor sensors. We found that on average 47 of the 85 
non-anchor sensors are assigned a position estimate, and the average error bound was 0.0303, which is 
less than 1/6 of the sensing range. Hence, on average, the actual position of a sensor can be guaranteed 
to be within 0.0303 of its estimated position. The average of the distance between each position estimate 
and the actual sensor position, did not exceed 0.02, and was in general far less than the average error 
bound. As expected, when the noise factor is decreased to 0.05, more sensors on average are assigned 
position estimates, and the corresponding error bounds are also lower.

Figure	13.	Convex	polygon	approximation	of	ring	intersection

T1
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We next considered networks of 100 sensors whose graphs have only untrilaterable augmented 
bilateration orderings. The input parameters used to generate the networks are identical as those used 
to generate networks in the previous scenario: sensing range R=0.2, number of anchors m=15, and a 
noise factor of η = 0.08. However, after the network is generated, the sensors which are adjacent to more 
than two anchors are identified, and for each such sensor, distance measurements are generated only 
between the sensor and two of the anchors the sensor is adjacent to. If the graph of the resulting network 
contains an augmented bilateration ordering, then the ordering can be guaranteed to be untrilaterable. 
The results are averaged over 100 instances of randomly deployed networks with the aforementioned 
parameters and whose graphs have only untrilaterable augmented bilateration orderings. For these 
networks, less sensors on total are assigned position estimates by Sweeps as compared  to the previ-
ous scenario. More specifically, 40 of the sensors, as opposed to the previous 47, are assigned position 
estimates. The average error bound of the position estimates was 0.0366, which is just slightly higher 
than the previous scenario.

Generally speaking, we found that as the sensing range or the number of anchors of the network 
increased, the number of sensors for which a position estimate was computed increased. To illustrate 
this trend, we considered networks of 100 sensors whose graphs have an augmented bilateration order-
ing for which the input parameters are: sensing range R=0.2, and noise factor η = 0.05. By varying the 
number of anchors, we see what effect this has on the number of sensors for which a position estimate 
was computed and on the average error bound of the position estimates. We found the most meaningful 
results to occur when 10-25 anchors were used. There is a significant amount of variation in the case 
when there are less than 10 anchors, due to the fact that the sample size is too small. Twenty simulations 
were run for each of the following cases: 10 anchors, 15 anchors, 20 anchors and 25 anchors, and aver-
aged in the Monte Carlo method. In Figure 14, we see an increase in the number of sensors for which 
a position estimate is computed as the number of anchors increases from 10 to 25. In Figure 15, we see 
that the mean error decreases from 0.0054 to 0.004 as the number of anchors increases from 10 to 25, 
which is what we expect.

cONcLUsION

In this chapter we presented a sequential algorithm called modified Sweeps for estimating sensor posi-
tions of a network when only inaccurate distance measurements and some anchor positions are available. 
If a position estimate p is computed for a sensor, then an error bound e(p) is also computed so that the 
actual position of the sensor can be guaranteed to be within distance e(p) of the estimated sensor posi-
tion. We define the concept of correctly oriented position estimates, and show by example that a set of 
correctly oriented estimated sensor positions can be used to deduce certain geometric properties of the 
configuration of actual sensor positions. We also give a sufficient condition on the estimated positions 
and the corresponding error bounds in order to guarantee that the estimated positions are correctly ori-
ented. We show by experimental evaluations that for randomly deployed networks whose graphs have 
an augmented bilateration ordering, modified Sweeps is able to assign positions to more than half of 
the non-anchor sensors, and furthermore, the error bounds of the estimated positions are small as com-
pared to the sensing range. As we noted in the experimental evaluations section, the orderings in which 
sensors are processed are determined by a simple method using only connectivity. For future work, we 
will evaluate the algorithm using different techniques for determining orderings. In particular, we are 
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Figure	14.	Anchors	vs.	number	of	sensors	with	estimated	positions

Figure	15.	Anchors	vs.	mean	error	bound

interested in those methods that take into account the guaranteed accuracies of distance measurements. 
We also aim to extend the proposed algorithm to a decentralized setting and carry out more extensive 
experimental evaluations using actual sensor data.
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AbsTRAcT

The	authors	present	several	network	node	localization	methods	that	are	based	on	multidimensional	scal-
ing (MDS)	techniques.	Four	algorithms	are	introduced:	MDS-MAP(C),	MDS-MAP(P),	MDS-Hybrid, 
and RangeQ-MDS. MDS-MAP(C)	is	a	centralized	algorithm	that	simply	applies	MDS to estimate node 
positions. In MDS-MAP(P),	a	local map is built at each node of the immediate vicinity, then these maps 
are merged together to form a global map. MDS-Hybrid uses MDS-MAP(C)	to	relatively	localize	Nr 
reference	nodes.	Then,	an	absolute	localization	method	uses	these	Nr nodes as anchors	to	localize	the	
rest	of	the	network.	Finally,	RangeQ-MDS assumes the absence of an RSSI-distance mapping function. 
It	uses	a	quantized	RSSI-based distance estimation technique (called RangeQ) to achieve more precise 
hop distances than other range-free approaches do. While MDS-MAP(C),	MDS-MAP(P),	and	MDS-
Hybrid can be range-aware or range-free, RangeQ-MDS is partially range-aware.

INTRODUcTION

The multidimensional scaling (MDS) technique has its origins in psychometrics and psychophysics. It 
is often used as part of exploratory data analysis or information visualization. It is related to principal 
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component analysis, factor analysis, and cluster analysis. MDS has been applied in many fields, such 
as machine learning (Tenenbaum et al., 2000) and computational chemistry (Glunt et al., 1993). When 
used for localization, MDS takes full advantage of connectivity or distance information between nodes 
that have yet to be localized, unlike previous approaches.

In this chapter, we present four MDS-based localization methods for wireless sensor networks. The 
first method, called MDS-MAP(C) (Shang et al., 2004), is a simple centralized approach that builds a 
global map using classical MDS. Like many existing methods, MDS-MAP(C) works well on networks 
with relatively uniform node density, but less well on more irregular networks, where the shortest-path 
distance between two nodes does not correspond well to their Euclidean distance.

To tackle this difficult problem, we present MDS-MAP(P) (Shang et al., 2004). It is more complicated 
than MDS-MAP(C) because it builds for each node a local map of the small sub-network in the node’s 
vicinity and then merges (patches) the local maps together to form a global map. This method avoids 
using shortest-path distances between far away nodes, and thus the smaller local maps constructed 
using local information are more accurate. Another advantage of the method is that it can be easily 
performed in a distributed fashion, which makes it appropriate for large-scale networks. A refinement 
step that uses minimum-squares minimization can be added to either MDS-MAP(C) or MDS-MAP(P) 
to improve the solution computed by MDS. We call the resulting methods MDS-MAP(C,R) and MDS-
MAP(P,R), respectively.

In relative localization, nodes use the distance measurements to estimate their positions relative to 
some coordinate system. In absolute localization, a few nodes, called anchors (Savarese et al., 2001), 
need to know their absolute positions, and all the other nodes are absolutely localized in the anchors’ 
coordinate system. Due to the relatively high computational cost of MDS-MAP(C) and MDS-MAP(P), 
MDS-Hybrid is a relative localization algorithm that looks for a higher degree of granularity in terms 
of the performance-cost tradeoff  than other localization algorithms. MDS-Hybrid, which is based on 
SHARP proposed by Ahmed et al. (2005), selects a number Nr of reference nodes. Then, MDS-MAP(C) 
relatively localizes these reference nodes using the distance information between them. Finally, an 
absolute localization method (M) localizes the rest of the network relative to the coordinate system of 
the reference nodes. Choosing Nr and M depends on both the application and the interest, either good 
performance, low cost, or somewhere in between.

We consider the node localization problem under two different scenarios. In the first, only connectivity 
(or proximity) information is available. Each node only knows what nodes are nearby, but not how far 
away these neighbors are or in what direction they lie. We call this scenario range-free localization. In the 
second scenario, the proximity information is enhanced by knowing the distances, perhaps with limited 
accuracy, between neighboring nodes. This is called range-aware localization. While MDS-MAP(C), 
MDS-MAP(P), and MDS-Hybrid can be range-free or range-aware, the RangeQ-MDS algorithm uses 
a sorted RSSI Partial Range Information (PRI)-based quantization scheme, called RangeQ (Li et al., 
2006), to improve the range estimation accuracy when distance information is not available.

Through simulation studies on regular as well as irregular networks, we show the improvement in 
localization performance the four methods presented can achieve.

PRObLEM FORMULATION

The network is represented as a connected undirected graph G = (V, E), where V is the set of sensor 
nodes, of which there exist A⊂V special nodes (called anchors) with known positions, and E is the set of 
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edges connecting neighboring nodes. For the range-free case, the edges in the graph correspond to the 
connectivity information. For the range-aware case, the edges are associated with values corresponding 
to the estimated distances.

Given a network graph of n nodes and estimated distances P between some pairs of nodes (let pij 
represent the estimated distance between nodes i and j), the localization problem is to find the coordinates 
X = (X1, X2, …, Xn) of the nodes such that the Euclidean distances between the estimated positions of 
the nodes equal P, i.e., dij = pij for available pij, where 

2jiijd XX −= . When the estimates pij are just 
the connectivity or inaccurate local distance measurements, usually there is no exact solution to the over-
determined system of equations. Thus the localization problem is often formulated as an optimization 
problem that minimizes the sum of squared errors. This optimization problem is generally non-convex 
with many local minima. Traditional local optimization techniques, such as the Levenberg-Marquardt 
method, require good initial points in order to produce good solutions. Global search methods such as 
simulated annealing or genetic algorithms are generally too slow.

There are two possible outputs when solving the localization problem. One is a relative map and the 
other is an absolute map. The task of finding a relative map is to find an embedding of the nodes into 
either two- or three-dimensional space that results in the same neighbor relationships as the underly-
ing network. Such a relative map can provide correct and useful information even though it does not 
necessarily include accurate absolute coordinates for each node. Relative information may be all that is 
obtainable in situations in which powerful sensors or expensive infrastructure cannot be installed, or 
when there are not enough anchors present to uniquely determine the absolute positions of the nodes. 
Furthermore, some applications only require relative positions of nodes, such as some direction-based 
routing algorithms (Royer and Toh, 1999; Yu et al., 2001). Sometimes, however, an absolute map is 
required. The task of finding an absolute map is to determine the absolute geographic coordinates of all 
the nodes. This is needed in applications such as geographic routing and target discovering and tracking 
(Chu et al., 2002; Intanagonwiwat et al., 2000; Johnson and Maltz, 1996; Karp and Kung, 2000).

Before we describe the details of the methods presented, we first introduce MDS, and then describe 
the simulation setup for our experiments.

MULTIDIMENsIONAL scALING (MDs)

Multidimensional scaling (MDS) is a method for visualizing dissimilarity data. For example, instead 
of knowing the latitude and longitude of a set of cities, we may only know their inter-city distances. 
The typical goal of MDS is to create a configuration of points in one, two, or three dimensions, whose 
inter-point distances are “close” to the original dissimilarities. The different variants of MDS use dif-
ferent criteria to define “close”. These points represent the set of objects, and so a plot of the points can 
be used as a visual representation of their dissimilarities. Recently, MDS has been successfully applied 
to the problem of node localization in wireless sensor networks.

basics of MDs Models

MDS models are defined by specifying how the given similarity data pij between two objects i and j 
are mapped into distances dij of an m-dimensional MDS configuration X consisting of all objects. The 
mapping is specified by a representation function, f : pij → dij(X), which specifies how the similarity 
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data should be related to the distances. In practice, one usually does not attempt to strictly satisfy f. 
Rather, what is sought is a configuration whose distances satisfy f as closely as possible. The condition 
“as closely as” is quantified by a badness-of-fit measure or loss function. The loss function is a math-
ematical expression that aggregates the representation errors, eij = f(pij) – dij(X), over all pairs (i, j). A 
normalized sum-of-squares of these errors define stress, the most common loss function in MDS.

Assume that measures of similarity, for which we use the general term proximity, pij , are given for 
each pair (i, j) of n objects. MDS attempts to represent proximities by distances among the points (rep-
resenting the objects) of an m-dimensional configuration X, the MDS space. Given a Cartesian space, 
one can compute the distance between any two points i and j. The Euclidean distance between points i 
and j in a two-dimensional configuration X is computed by the following formula:

,)( 11
2

22
2 )  (  )  (X jijiij xxxxd −+−=
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MDS maps proximities pij into the corresponding distances dij(X) of an MDS space X. That is,  f: 
pij → dij(X). The distances dij(X) are unknowns, and MDS finds a configuration X of a predetermined 
dimensionality m on which the distances are computed. The function f, on the other hand, can be either 
completely specified or restricted to come from a particular class of functions.

Empirical proximities always contain noise due to measurement imprecision. Hence, one should not 
insist, in practice, that f(pij) = dij(X), but rather that f(pij) ≈ dij(X), where “≈” can be read as “as equal as 
possible”. Computerized procedures for finding an MDS representation usually start with some initial 
configuration and improve it by moving around its points in small steps (iteratively) to approximate the 
ideal model relation f(pij) = dij(X) more and more closely. A squared error of representation is defined 
by
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Summing  2
ije  over all pairs (i, j) yields a badness-of-fit measure for the entire MDS representation, 

raw stress sr,
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In weighted MDS, positive weights wij are added into the stress function as follows:

.)]()([)( 2∑
>

−=
ji

ijijijr dpfw XX

When working with missing data, wij is set to 1 if pij is known and 0 if pij is missing.

classical MDs

The basic idea of classical MDS (Gower, 1966 and Torgerson, 1952) is to assume that the dissimilarities 
are distances and then find coordinates that explain them. Moreover, a linear transformation model is 
assumed, i.e., dij = a + bpij. The distances D are determined so that they are as close to the proximities 
P as possible. There are a variety of ways to define “close”. A common one is a least-squares defini-
tion, which is used by classical metric MDS. In this case, we define I(P) = D + E, where I(P) is a linear 
transformation of the proximities, and E is a matrix of errors (residuals). Since D is a function of the 
coordinates X, the goal of classical MDS is to calculate X such that the sum of squares of E is minimized. 
In classical MDS, the coordinates X can be computed from P through singular value decomposition 
(SVD) on the double centered squared P. Double centering a matrix is subtracting the row and column 
means of the matrix from its elements, adding the grand mean and multiplying by –1/2.

Let Xn×m be the matrix of coordinates of the points. Each row i of X gives the coordinates of point i 
on m dimensions, i.e., xi1, xi2, …, xim. The squared Euclidean distance is defined by
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Let D(2)(X) denote the matrix of squared distances. For example, when X contains the coordinates 
of three points in two dimensions, D(2)(X) can be represented as
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where xa is column a of matrix X and c is a vector that has elements ∑ =

m
a iax

1
2 , the diagonal elements of 

XX’. The matrix B = XX’ is called a scalar product matrix.
The problem here is to arrive at a scalar product matrix B given a matrix of squared distances D(2). 

Since distances do not change under translations, we assume that X has column means equal to 0. Mul-
tiplying the left and the right sides of Eq. (1) by the centering matrix J = I – n–1 11’ and by the factor 
–½ gives

            (2)
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The first two terms are zero because centering a vector of ones yields a vector of zeros (1’ J = 0). The 
centering around B can be removed because X is column centered, and hence so is B. The operation in 
Eq. (2) is called double centering. To find the MDS coordinates from B, we factor

B by eigendecomposition, QΛQ’ = (QΛ1/2)(QΛ1/2)’ = XX’. In classical scaling, the D(2) matrix is re-
placed by the squared dissimilarities Δ(2).

The procedure for classical scaling is summarized as follows:

• Compute the matrix of squared dissimilarities Δ(2).
• Apply double centering to this matrix:

 
.JJB )2(
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• Compute the eigendecomposition of BΔ=QΛQ’
• Let m be the dimensionality of the solution, Λ+ the matrix of the first m eigenvalues greater than 

zero, and Q+ the first m columns of Q. Then, the coordinate matrix of classical scaling is given by 
X = Q+Λ+

1/2.

Classical scaling minimizes the loss function (strain),
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Localization Using MDs

Imagine a small cloud of colored beads suspended in mid-air. To characterize the arrangement, one 
could measure the straight-line distance between each pair of beads. If the cloud were shattered and 
the beads fell to the floor, one could imagine trying to recreate the arrangement based on the recorded 
inter-point distances. One would try to determine a location for each bead such that the distances in 
the new arrangement matched the desired distances. This recreation process is exactly the problem that 
MDS solves. Intuitively, it is clear that while the O(n2) distances will be more than enough to determine 
O(n) coordinates, the result of MDS will be an arbitrarily rotated and flipped version of the true original 
layout because the inter-point distances make no reference to any absolute coordinates.
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MDS can be seen as a set of data analysis techniques that display the structure of distance-like data 
as a geometrical picture (Borg and Groenen, 1997). As shown formally in the previous subsection, 
MDS starts with one or more distance (or similarity) matrices that are presumed to have been derived 
from points in a multidimensional space. It is usually used to find a placement of the points in a low-
dimensional space, usually two- or three-dimensional, where the distances between points resemble the 
original similarities. By visualizing objects as points in a low-dimensional space, the complexity in the 
original data matrix can often be reduced while preserving the essential information.

There are many types of MDS techniques. They can be classified according to whether the similarity 
data is qualitative (non-metric MDS) or quantitative (metric MDS). They can also be classified accord-
ing to the number of similarity matrices and the nature of the MDS model. Classical MDS uses one 
matrix. Replicated MDS uses several matrices, representing distance measurements taken from several 
subjects or under different conditions. Weighted MDS uses a distance model which assigns a different 
weight to each dimension. Finally, there is a distinction between deterministic and probabilistic MDS. 
In deterministic MDS, each object is represented as a single point in a multidimensional space, whereas 
in probabilistic MDS each object is represented as a probability distribution over the entire space.

We focus on classical metric MDS in this chapter. Classical metric MDS is the simplest case of 
MDS: the data is quantitative and the proximities of objects are treated as distances in a Euclidean space 
(Torgerson, 1965). The goal of metric MDS is to find a configuration of points in a multidimensional 
space such that the inter-point distances are related to the provided proximities by some transformation 
(e.g., a linear transformation). If the proximity data were measured without error in a Euclidean space, 
then classical metric MDS would exactly recreate the configuration of points. In practice, the technique 
tolerates error gracefully, due to the overdetermined nature of the solution. This is very helpful when 
we apply it to localization, as our distance estimates can be very rough indeed. Because classical metric 
MDS has an analytical solution, it can be performed efficiently on large matrices.

In non-metric (also called ordinal) MDS (Shepard, 1962), the goal is to establish a monotonic re-
lationship between inter-point distances and the desired distances. Instead of trying to directly match 
the given distances, one is satisfied if the distances between the points in the solution fall in the same 
ranked order as the corresponding distances in the input matrix. The advantage of non-metric MDS is 
that no assumptions need to be made about the underlying transformation function. The only assump-
tion is that the data is measured at the ordinal level. Just as classical MDS, non-metric MDS can also 
be applied to the localization problem. By adopting a more flexible model, the effects of a few highly 
incorrect measurements might be more easily tolerated.

A thorough analysis of the localization error bounds has been done (Shang et al., 2004). The local-
ization problem has been treated as an estimation problem. The Cramér-Rao error bounds have been 
derived when the distances between all nodes were used, which was the case for MDS. However, a 
detailed analysis of error bounds is beyond the scope of this chapter.

sIMULATION sETUP

In the experiments reported, we assess the average-case performance of the localization methods pre-
sented by simulation on Matlab 7.0 on 2-dimensional networks of at least 100 nodes deployed inside a 
10r × 10r square field, where r is the placement unit length. Two example scenarios are shown in Figure 
1: (a) regular networks – 200 nodes are randomly placed in a 10r × 10r square and (b) irregular network 
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– 160 nodes are randomly placed in an area of C shape within a 10r × 10r square.  Circles represent 
sensor nodes and lines represent connections between nodes that are within communication range of 
each other. The radio range is 1.5r, where r is the placement unit length. The average node degrees of 
the two problems are 12.1 and 11.5, respectively. For each type of networks, the algorithms are run on 
at least 30 randomly-generated network instances.

All nodes are assumed to have the same radio range R, which is modeled as a circle with a predefined 
radius. We do not consider models of non-uniform radio propagation or widely varying ranging errors. 
Hence, all communications are assumed to be bidirectional, i.e., if node i can communicate with node 
j, then node j can communicate with node i. The average node degree (average number of neighbors) is 
controlled by specifying R. The errors of position estimates are normalized to R (i.e., 50% position error 
means half of the range of the radio). The resulting average node degree is a function of both R, network 
type (topology), and number of nodes. For example, a 200-node regular network with R equal to 1.5r 
has an average node degree of 12.1. A 160-node irregular network with R equal to 1.5r has an average 
node degree of 11.5. The distance measure is modeled as the true distance blurred with Gaussian noise. 
Assume the true distance is d and the standard deviation of the range error is er, then the measured 
distance d̂  is a random value drawn from the normal distribution d(1+N(0,er)). For simplicity, we will 
refer to er by just “range error” throughout this chapter.

MDs-MAP(c) AND MDs-MAP(c,R)

The simplest MDS-based localization method is MDS-MAP(C). It builds a global map using a single 
application of classical MDS. The parameter “C” refers to “centralized”, as the connectivity informa-
tion of the network is sent to a central location where the computation is carried out. The method with 
additional refinement to MDS-MAP(C) is called MDS-MAP(C,R), where the parameter “R” is for 
“refinement”.

Figure	1.	Two	example	problems	similar	to	those	in	simulation
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Algorithm

MDS-MAP(C) consists of three steps as follows.

• Compute the shortest paths between all pairs of nodes in the region of consideration. The shortest 
path distances are used to construct the distance matrix D for MDS.

• Apply MDS to D, retaining the first 2 (or 3) largest eigenvalues and eigenvectors to construct a 
2-D (or 3-D) relative map.

• Given sufficient anchor nodes (3 or more for 2-D, 4 or more for 3-D), transform the relative map 
to an absolute map based on the absolute positions of anchors.

In step 1, we first assign distances to the edges in the graph. When the distance of a pair of neighbor 
nodes is known, the value of the corresponding edge is the measured distance. When we only have 
connectivity information, a simple approximation is to assign to all edges the value 1 multiplied by the 
transmission range. Then, a shortest-path algorithm, such as Dijkstra’s or Floyd’s, can be applied to 
find the shortest path between all pairs of nodes. The time complexity is O(n3), where n is the number 
of nodes.

In step 2, classical MDS is applied directly to the distance matrix. The core of classical MDS is 
singular value decomposition, which has complexity of O(n3). The result of MDS is a relative map that 
gives a location to each node. Although these locations may be accurate relative to one another, the entire 
map will be arbitrarily rotated, translated, and flipped relative to the true node positions.

In step 3, the relative map is transformed through a linear transformation, which may include scaling, 
rotation, and reflection. The goal is to minimize the sum of the squares of the errors between the true 
positions of the anchors and their transformed positions in the MDS map. Computing the transforma-
tion parameters takes O(m3) time, where m is the number of anchors. Applying the transformation to 
the whole relative map takes O(n) time.

In MDS-MAP(C,R), the following refinement step is added between steps 2 and 3 of MDS-MAP(C) 
to improve the relative map.

• Using the position estimates of nodes in the MDS solution as an initial solution, apply least-squares 
minimization to improve the match between the measured distances between neighboring nodes 
and their distances in the solution.

Our formation of the refinement is more general than previous methods (Savarese et al., 2002; Sav-
vides et al., 2002) in two ways: (1) In addition to the information between 1-hop neighbors, informa-
tion between multihop neighbors is also used, but with different weights. (2) Instead of refining the 
coordinates of one node at a time while all other nodes remain fixed, the coordinates of all nodes in the 
relative map are variables in a single optimization. We use a refinement range Rref , defined based on 
hops, to specify how much information is considered. Rref = 1 means only information between 1-hop 
neighbors are used, Rref = 2 means information of nodes within two hops is used, and so on. Different 
values of Rref offer a trade-off between computational cost and solution quality.

An important advantage of our refinement approach is that MDS can provide better starting points 
for the least-squares minimization than other triangulation-based or heuristic methods (Savvides et 
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al., 2002). The least-squares minimization problem is high-dimensional and has lots of local minima. 
Random starting points usually lead to very bad solutions. MDS is good at finding the right general 
topology of a network, which corresponds to a starting point in the basin of attraction of an optimal or 
near-optimal solution.

More formally, let (xi,yi), i = 1, …, N, represent the coordinates of the N nodes in a 2-D local map, dij 
the Euclidean distance between two nodes i and j in a candidate solution, and pij the measured proximity 
between nodes i and j. When only proximity information is available, pij = 1 if i and j are 1-hop neigh-
bors. When distance measurements between 1-hop neighbors are available, pij is the distance between i 
and j if they are 1-hop neighbors or the shortest path distance if i and j are further apart. The objective 
of the refinement step is

∑ −
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where wij are the weights. 

For a 2-D n-node network, the problem has 2n variables and no constraints. The Jacobian can be 
computed analytically. In our experiments, we use the Levenberg-Marquardt method (“lsqnonlin” in 
Matlab’s optimization toolbox) to solve the problem. Usually only the first few iterations of “lsqnonlin” 
give significant improvement. Thus, the maximum number of iterations is set to a small number, such 
as 20. Although this local optimization algorithm is fast, it is considerably slower than classical MDS. 
For 100-node networks, it is more than an order of magnitude slower. For larger networks, the time 
difference becomes larger.

Illustrative Examples

Figure 2 shows the results of the range-free versions of MDS-MAP(C) and MDS-MAP(C,R) on a regular 
network example. Four random anchor nodes, denoted by asterisks, are used to estimate the transfor-
mation to absolute coordinates. The circles represent the true locations of the nodes and the solid lines 
represent the errors of the estimated positions from the true positions. The longer the line, the larger the 
error is. The average errors of MDS-MAP(C) and MDS-MAP(C,R) are 0.67r and 0.35r, respectively, 
where the field in which the nodes are placed measures 10r by 10r.

When distances between one-hop neighbors are known, the result of MDS-MAP(C) can be improved. 
Figure 3 shows results on the same network, but when distances between one-hop neighbors are known 
with 5% range error. The estimates of MDS-MAP(C) based on the same 4 anchor nodes have an average 
error of 0.25r, much better than the result when using connectivity only (0.67r). The result after refine-
ment in MDS-MAP(C,R) is excellent. The average error is reduced to 0.06r, where r is the placement 
unit length and is set to 1 in the experiments.

Irregular topologies are much harder than uniform topologies. Figure 4 shows sample results on the 
irregular network example. Again, there are four random anchor nodes. The result of MDS-MAP(C) 
is poor. Although the result of MDS-MAP(C,R) is better than that of MDS-MAP(C), it is much worse 
than its result on the uniform example. MDS-MAP(C) does not work well because the shortest-path 
distance between two nodes in different wings of the network is much larger than their actual Euclidean 
distance. The error of MDS-MAP(C) using connectivity information is very large, 2.4r. The refinement 
in MDS-MAP(C,R) is useful and reduces the error to 0.55r.
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Experimental Results

In the experiments reported here, 200-node regular networks and 160-node irregular networks are used. 
Moreover, we set the refinement range Rref to 2 and the weights wij to 1 when i and j are one hop apart 
(see Eq. (5)). When the two nodes i and j are two hops apart, we tried several values for the weights wij, 
and the value 1/4 worked the best. 

For regular networks, Figure 5 shows the performance of MDS-MAP(C) as a function of average node 
degree and number of anchors, using 4, 6, or 10 random anchors. Position estimates by MDS-MAP(C) 
have an average error under 100%R in scenarios with just 4 anchor nodes and an average node degree 
level of 8.9 or greater. On the other hand, when the average node degree is low, e.g., 5.9, the errors can 
be large. Having good estimates of the distances between neighbors leads to much better solutions when 
the average node degree is high. When the average node degree is 12.2 or greater, the errors are about 
half of those by the range-free version. On the other hand, when the average node degree is low, e.g., 

Figure	2.	Results	of	range-free	MDS-MAP(C)	(left)	and	range-free	MDS-MAP(C,R)	(right)	on	a	regular	
network	example.	Anchors	are	*'s.	Average	errors	are	0.67r	and	0.35r,	respectively.

Figure	3.	Results	of	range-aware MDS-MAP(C)	(left)	and	range-aware MDS-MAP(C,R)	(right)	on	a	
regular	network	example.	Anchors	are	*'s.	Average	errors	are	0.25r	and	0.06r,	respectively.
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5.9, knowing the local distance does not help much. More experimental results will be shown compared 
to the performance of MDS-MAP(P) in the next section.

The refinement in MDS-MAP(C,R) improves the solutions significantly. The result can be misleading 
because it seems that the refinement is the most important and does all the work. This is not the case. 
From a random starting point, the refinement usually doesn’t do much and just returns a bad solution, 
because there are many local minima. Thanks to MDS, the relative map often has the right topology, 
which corresponds to a good starting point in the same basin as the optimal or near-optimal solution. 
This is why the refinement performs so well.

MDs-MAP(P) AND MDs-MAP(P,R)

MDS-MAP(C) and MDS-MAP(C,R) do not work well on irregular networks because they rely on 
shortest-path distance estimation, which can have large errors for remote nodes. Another problem with 

Figure	4.	Results	of	range-free	MDS-MAP(C)	(left)	and	range-free	MDS-MAP(C,R)	(right)	on	an	ir-
regular	network	example.	Average	errors	are	2.4r	and	0.55r,	respectively.

Figure	 5.	Results	 of	MDS-MAP(C):	 range-free	 (left)	 and	 range-aware	 (right)	 on	 200-node	 regular	
networks.
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these centralized methods is that they can not be applied easily to large networks, for which reading out 
the connectivity and distance information is potentially prohibitive. In such cases, in-network computa-
tion of coordinates would be much more attractive. MDS-MAP(P) addresses both of these problems.

MDS-MAP(P) is more complicated than MDS-MAP(C). It builds many local maps and then patches 
them together to form a global map. This method relies on local information and avoids using the distance 
estimation between remote nodes. As we will show, it achieves better results on irregular networks. 
Another benefit of MDS-MAP(P) is that it can be easily executed in a distributed fashion. When we 
add refinement to improve the global map, we call the method MDS-MAP(P,R).

Algorithm

In MDS-MAP(P), individual nodes simultaneously compute their own local maps using their local 
information. Then these maps can be incrementally merged to form a global map. The steps of MDS-
MAP(P) are as follows.

• Set the range for local maps, Rlm. For each node, neighbors within Rlm hops are involved in building 
its local map. We use Rlm = 2 in our experiments.

• For each node, apply MDS-MAP(C,R) to the nodes within range Rlm to generate its local map.
• Merge local maps. Local maps can be merged in various ways. We use a simple strategy: first 

randomly pick a node and start with its local map; then merge in the maps of neighboring nodes 
one by one. Each time, we choose the neighbor to merge whose local map shares the most nodes 
with the current map. Thus, the initial local map grows by incorporating other local maps and can 
eventually cover the entire network.

• Given sufficient anchor nodes (3 or more for 2-D, 4 or more for 3-D), transform the relative map 
to an absolute map based on the absolute positions of anchors.

Two maps are merged together based on the coordinates of their common nodes. The best linear 
transformation (minimizing discrepancy errors) is computed to transform the coordinates of the common 
nodes in one map to those in the other map. Given the coordinates of common nodes in maps A and B 
as matrices XA and XB, a linear transformation (translation, reflection, orthogonal rotation, and scaling) 
of XB to best conform to XA is determined. The “goodness-of-fit” criterion is the sum of squared errors, 
i.e., 2)(min ABT XXT − , where )(⋅T  is the linear transformation.

This method allows for parallel and distributed implementations in several ways. First, the com-
putation of local maps can be done locally at each node in parallel with the others. Second, the local 
maps can be merged in parallel in different parts of the network. Because the method does not require 
anchor nodes in order to build a relative map of a sub-network, it can be applied to many sub-networks 
in parallel. Third, the computation of absolute maps from anchor nodes could be applied to relative lo-
cal maps and thus also be distributed in the network. For example, as soon as three or more anchors are 
present in a sub-network, an absolute map could be computed. Furthermore, all local maps bordering on 
this absolute map could be absorbed in parallel into that map using the merger step. For large networks 
and a sufficient number of anchor nodes, it should never be necessary to compute a single global map 
anywhere. Distributed map merging has a number of benefits, including more balanced computation 
and communication among the nodes, faster construction of the global map, and distribution of map 
information in the network at multiple levels of granularity, giving the opportunity for better flexibility 
and robustness.
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The amount of error generated when two maps are merged depends on several factors, including the 
accuracy of the two maps and the number of common nodes. The error will propagate when a linear 
sequence of maps are merged. In dense networks, the adjacent local maps usually have many common 
nodes, and thus the error introduced in merging is small. In MDS-MAP(P,R), a refinement step is added 
between steps 3 and 4 of to improve the global relative map.

Illustrative Examples

Using the two example problems from Figure 2, we illustrate the performance of MDS-MAP(P) and 
MDS-MAP(P,R). Figures 6 and 7 show the results on a regular network example for the range-free and 
range-ware scenarios. Using connectivity information only (range-free), the average error of MDS-
MAP(P) is 0.40r, about 60% of the error of MDS-MAP(C) in Figure 2, and slightly worse than MDS-
MAP(C,R). After refinement, the error of MDS-MAP(P,R) is 0.31r, better than that of MDSMAP(C,R). 
Using local distances, MDS-MAP(P) and MDS-MAP(P,R) obtain much better results. The error of 
MDS-MAP(P) is 0.16r, better than the 0.25r error of MDS-MAP(C) in Figure 3. After refinement, the 
error of MDS-MAP(P,R) is 0.06r, at the level of the distance estimation errors.

Figure 8 shows sample results on the irregular placement example for the range-aware case. The 
solution of MDS-MAP(P) (error 0.72r) is quite reasonable. The solution of MDS-MAP(P,R) is even 
better (error 0.29r).

Experimental Results

Similar to the experiments done with MDS-MAP(C), 200-node regular networks and 160-node irregu-
lar networks are used. Figures 9 and 10 show the performance of MDS-MAP(P) and MDS-MAP(P,R) 
compared to MDS-MAP(C) and MDS-MAP(C,R) for regular networks. The errors are plotted against 
the average node degree. The radio range (R) goes from 1.25r to 2.5r, in increments of 0.25r, which leads 
to average node degrees of 8.9, 12.2, 16.4, 20.9, 25.9, and 31.1. Three or ten random anchors are used.

Figure	6.	Results	of	range-free	MDS-MAP(P)	(left)	and	range-free	MDS-MAP(P,R)	(right)	on	a	regular	
network	example.	Average	errors	are	0.40r	and	0.31r,	respectively
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When using only connectivity information, MDS-MAP(P) is consistently better than MDS-MAP(C), 
more than 10%R better when the average node degree is low. MDS-MAP(C,R) and MDS-MAP(P,R) 
have comparable results and are better than MDS-MAP(P). Although more anchors lead to better 
results, the improvement with more than 6 anchors is small. For the range-free scenario, MDS-MAP 
algorithms are much better than the convex optimization approach in (Doherty et al., 2001) when the 
number of anchor nodes is low. For example, with 4 to 10 anchors in a 200-node random network, the 
convex optimization approach has an average estimation error of more than twice the radio range when 
the average node degree is 8.9 and above. The results are also better than Hop-TERRAIN (Savarese 
et al., 2002), especially when the number of anchors is small. For example, with 4 anchors (2% of the 
network) and an average node degree 12.2, MDS-MAP(P) using connectivity information only has an 
average error of about 27%R, whereas Hop-TERRAIN has an average error of about 90%R.

Figure	7.	Results	of	range-aware MDS-MAP(P)	(left)	and	range-aware MDS-MAP(P,R)	(right)	on	a	
regular	network	example.	Average	errors	are	0.16r	and	0.06r,	respectively

Figure	8.	Results	of	range-aware MDS-MAP(P)	(left)	and	range-aware MDS-MAP(P,R)	(right)	on	an	
irregular	network	example.	Average	errors	are	0.72r	and	0.29r,	respectively
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Using local distances with 5% error improves the performance of the MDS-MAP algorithms. Their 
errors are about half of those obtained using only proximity information. MDS-MAP(P) is comparable 
to MDS-MAP(C,R) and MDS-MAP(P,R) when the average node degree is 12.2 and above. MDS-MAP 
succeeds in localizing a higher fraction of the nodes in a network than most previous methods. MDS-
MAP localizes all nodes in a connected network. In our experiments, when the average node degree is 
12.2 or more, the network is usually a connected graph and all nodes are located.

Irregular topologies are much harder than uniform topologies and previous methods reported very 
poor results on them (Niculescu and Nath, 2001). Figures 11 and 12 show the performance of the MDS-
MAP algorithms on the C-shaped irregular networks. The radio ranges (R) are from 1.25r to 2.5r, in 
increments of 0.25r, which leads to average node degrees of 8.8, 12.0, 15.4, 19.2, 23.1, and 27.1. MDS-
MAP(P) performs very well on these irregular networks, especially when the average node degree is 
12.0 or more, finding solutions just slightly worse than those returned by MDS-MAP(C,R) and MDS-
MAP(P,R). The results of MDS-MAP(P,R) are slightly better than those of MDS-MAP(C,R).

Figure	9.	Performance	of	range-free	MDS-MAP	methods	for	regular	networks	with	3	(left)	and	10	(right)	
anchors	for	different	values	of	average	node	degree	(horizontal	axis)

Figure	10.	Performance	of	range-aware MDS-MAP	methods	for	regular	networks	with	3	(left)	and	10	
(right) anchors	for	different	values	of	average	node	degree	(horizontal	axis)
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On networks with similar average node degrees, the results of MDS-MAP(C) on the irregular net-
works are worse than those on the uniform networks. In contrast, MDS-MAP(C,R), MDS-MAP(P), and 
MDS-MAP(P,R) perform well when the average node degree is relatively high. Having accurate esti-
mates of local distances does not improve the performance of MDS-MAP(C), but helps MDS-MAP(P) 
and MDS-MAP(P,R) tremendously. As pointed out earlier, this is because the shortest-path distance 
between two nodes does not correspond well to their Euclidean distance. This has a greater impact on 
the centralized solution than on the distributed (patched) one. The results of MDS-MAP(P) and MDS-
MAP(P,R) are very close, indicating that the refinement step in MDS-MAP(P,R) does not do much.

MDs-HYbRID

Different relative and absolute localization methods have different performance and cost. The performance 
may be expressed by the localization error, which is either the average distance between the estimated 
and the true positions of a node in case of absolute localization or the average difference between the 

Figure	11.	Performance	of	range-free	MDS-MAP	methods	for	irregular	networks	with	3	(left)	and	10	
(right) anchors	for	different	values	of	average	node	degree	(horizontal	axis)

Figure	12.	Performance	of	range-aware MDS-MAP	methods	for	irregular	networks	with	3	(left)	and	10	
(right) anchors	for	different	values	of	average	node	degree	(horizontal	axis)
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true and the estimated distances between nodes in relative localization. The cost may be measured by 
the localization delay or by the energy consumption. It is important when part of, or all, the nodes are 
moving. In this case, the localization process needs to be performed periodically or, at least, more than 
once. This makes the cost of localization, along with the performance, an important factor in choosing 
which method to use.

Performance-cost Metric

MDS-Hybrid uses the weighted sum of localization accuracy and cost as a metric to evaluate localiza-
tion. This metric is called Performance-Cost	Metric (PCM). For absolute localization, the localization 
error may be computed as the average distance between the estimated and the true locations of all 
nodes. For relative localization, the resulting network is subject to translation, rotation, and reflection. 
Therefore, instead of using the same definition, the average estimated distances between all pairs of 
nodes are computed and compared to the corresponding true distances. Priyantha et al. (2003) proposed 
a performance metric that they refer to as the Global Energy Ratio (GER). GER is defined as:
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where eij is the difference between the true distance dij and the distance in the algorithm’s result ijd̂ , 
ijijijij ddde /)ˆ(ˆ −= , and N is the number of nodes. We believe that taking the square root of the whole 

fraction represents the root-mean-square error in a better way. In addition, we normalize this error by 
the radio range (R) of a node. Therefore, to measure the localization error, we introduce the Global 
Distance Error (GDE) defined as:
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Thus, the Performance-Cost Metric (PCM) may be defined as:

CGDEPCM )1( −+⋅=         (4)

where 10 ≤≤  represents the degree of interest in the localization error as an evaluation criterion, and 
C is the localization cost defined as follows.

21 )( cNNcNC rr −+=         (5)

where Nr is the number of reference nodes localized with MDS-MAP(C), and c1 and c2 are the average 
costs of localizing one node using MDS-MAP(C) and method M, respectively, normalized by the initial 
energy at every node. Assuming that c1 = kc2 for some real k > 0, Eq. (5) yields

])1([2 rNkNcC −+=         (6)
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Substituting (6) in (4) gives

])1()[1(2 rNkNcGDEPCM −+−+⋅=       (7)

Algorithm

MDS-Hybrid consists of three phases: selecting reference nodes, localizing reference nodes, and local-
izing non-reference nodes. Three design parameters are associated with this method. First, how many 
reference nodes to use. Second, how to select them. Finally, whether to use as anchors all reference 
nodes or only the nearest n reference nodes. Determining these parameters to reach the required point 
of operation depends on the performance and the cost of both MDS-MAP(C) and M.

Phase 1: Selecting Reference Nodes

Since the performance of some absolute localization algorithms depends on the placement of the an-
chors (Shang e. al., 2004), we consider two approaches of selecting reference nodes: random and outer 
(along the outer perimeter of the network). The random selection can be done in a distributed way using 
nodes’ IDs. For example, Nr nodes with the smallest IDs can be selected using distributed algorithms. 
For the outer selection, we extend the algorithm used by Priyantha et al. (2003), keeping it distributed. 
First, four nodes 1, 2, 3, and 4 are selected roughly at the corners of the network using only the dis-
tance measurements. Then, the algorithm proceeds iteratively, doubling the number of selected nodes 
with every iteration, till all the Nr nodes are selected. The algorithm is described below.  For a simple 
description of the algorithm, we assume that Nr = 2m, for some integer  Nm lg2 ≤ . Assume that dij 
is the shortest-path distance between nodes i and j.

1. Initialize two vectors S and S’ of size Nr each to be empty.
2. Select a random node 0. This can be achieved by selecting the node with the smallest ID due to 

the random deployment.
3. Select reference node 1 such that d01 is maximized. S[1] ← 1.
4. Select reference node 2 such that d12 is maximized. S[3] ← 2.
5. Select reference node 3 such that (d13+d23) is maximized. S[2] ← 3.
6. Select reference node 4 such that d34 is maximized. S[4] ← 4..
7.	 l ← 4.
8. Repeat until size of S = Nr.
       Repeat for i=1 to (l–1)
           Select reference node k ∉S’ such that (dki+dk(i+1)) is maximized.
           S’[2i–1] ← S[i], S’[2i] ← k
     End
     Select reference node k ∉S’ such that (dk1+dkl) is maximized.
     S’[2l–1] ← S[l], S’[2l] ← k.
     S ← S’, l ← 2l
 End
9. Return S
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Phase 2: Localizing Reference Nodes

MDS-MAP(C) is used to relatively localize the reference nodes selected in phase 1. Although it can 
give good results, it suffers from the high cost of computation to achieve a good solution. A relative 
map of the reference nodes is constructed. The work done by Rao et al. (2003) shows how the distance 
information can be exchanged between nodes in the case of outer reference nodes. The performance of 
MDS-MAP(C) is presented in section 4 of this chapter. Figure 13 illustrates the performance of MDS-
MAP(C), expressed by GDE, under different conditions of ranging errors, average node degrees, and 
network topologies. In general, the localization error decreases with increasing average node degree. 
This is the case until the range error reaches some point beyond which the error may decrease if the 
average node degree is increased. The reason for that, as explained by Langendoen and Reijers (2003), 
is that a node will have more neighbors from which it can select the next hop on the shortest path. For 
large ranging errors, a node will prefer the shortest measured distance; this will underestimate the 
Euclidean distance, resulting in large localization errors for large average node degrees when the rang-
ing error is beyond some value. For the isotropic networks, the localization error increases with larger 
ranging error, which is intuitive. On the other hand, it is hard to correlate the localization error and the 
ranging error in case of anisotropic networks, where MDS performs poorly. This is simply because the 
shortest-path distance becomes a bad approximation to the Euclidean distance.

Phase 3: Localizing Non-Reference Nodes

The result of phases 1 and 2 is a set of nodes with known coordinates in some coordinate system. In this 
phase, an absolute localization method M is used to localize the rest of the network using the reference 
nodes as anchors.

In our simulation of this phase, we used the DV-distance version of the APS method developed by 
Niculescu and Nath (2001). Each node uses the shortest-path distance information to estimate its dis-
tances to anchors. Then, it performs multilateration to estimate its position. APS has the advantages of 
simplicity and low cost. However, MDS-MAP(C) outperforms APS for most of the network conditions 
(Shang et al., 2004). The APS method has the following steps:

1. Reference nodes broadcast their positions throughout the network to all nodes. 
2. Each reference node k receives the positions (aj,bj), j=1, ..., Nr, of all reference nodes and also com-

putes the shortest-path distance pkj to each reference node.
3. Each reference node k computes its distance correction value, ck. 
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 where 22 )()( jkjkkj bbaad −+−=  is the Euclidean distance between reference nodes k and 
j.

4. For each unknown node i, compute the shortest-path distance pij, j=1, ..., Nr, to all reference nodes. 
To estimate the position of node i, perform multilateration based on all reference nodes as fol-
lows.
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a. A system of quadratic equations of two variables is formed.

 
222 )()()( ijsjiji pcbyax =−+−             (8)

 where s is the closest reference node to node i, i.e., pis ≤ pij for j = 1, ..., Nr.
b. The system of equations (8) is linearized by subtracting one equation, e.g., the first one, from 

the rest.
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 for j = 2, ..., Nr.
c. The linear system (9) is solved. Then, using the solution as the initial point, the nonlinear 

system in (8) is solved using least-squares minimization.

Figure	13.	Performance	of	MDS-MAP(C)	expressed	by	GDE	for	regular	networks	(left)	and	irregular	
networks	(right)	for	different	values	of	average	node	degree	(horizontal	axis)

Figure	14.	MDS-Hybrid	phase	1:	selecting	reference	nodes.	This	could	be	randomly	(left)	or	along	the	
outer perimeter of the network (right). Circles represent reference nodes.
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Illustrative Examples

We illustrate the operation of MDS-Hybrid by two concrete phase-by-phase examples for regular net-
works: one for random selection of reference nodes and one for outer selection. Figure 14 shows the 
result of phase 1 using 15 reference nodes selected randomly (left) and along the outer perimeter of the 
network (right). Circles represent reference nodes selected, and ×’s represent regular nodes. In phase 
2, MDS-MAP(C) is applied to estimate the positions of reference nodes. Figure 15 shows the result of 
this phase, during which a coordinate system is created. The estimated networks were reflected and/or 
rotated to be easily compared to the true networks in Figure 14. Range error = 5%.

In the final phase, APS is used to localize the rest of the networks using the reference nodes as 
anchors. Figure 16 shows the result of this phase. Again, the estimated networks were reflected and/or 
rotated to be easily compared to the true networks in Figure 14. APS uses all reference nodes. Range 
error = 5%, α	= 0.8, c2 = 0:005, and k = 1.5, as in Eq. (7).

Experimental Results

Experiments have been done based on the simulation setup explained earlier in this chapter with 100-
node networks, and the results reported are the median of 100 runs. Figure 17 gives sample results for 
regular networks where only the nearest 4 reference nodes are used and for both random and outer 
selection of reference nodes. It is for a 5% range error, k=1.5, c2 = 0.005, and α = 0.8 (see Eq. (7)). The 
point of the minimum PCM is the required point of operation if we are 80% interested in a good ac-
curacy and 20% in a low cost (α = 0.8). Table 1 summarizes the values of the three design parameters 
associated with MDS-Hybrid that give the minimum PCM using APS for method M. An entry (F,S,H) 
is an ordered triple that represents F reference nodes, S of them were used by APS as anchors (A for 
all and T for nearest 4), and they were selected using the H method (L for random and O for outer). We 
note the following:

Figure	15.	Result	of	MDS-Hybrid,	phase	2.	GDE	is	0.0944	for	random	selection	(left)	and	0.2154	for	
outer selection (right).
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1. There is no entry that has the value 100 for the number of reference nodes. Thus, MDS-Hybrid is 
better than MDS-MAP(C).

2. For irregular networks, the results are the best for the smallest number of reference nodes (5 and 
10). This is because MDS-MAP(C) performs poorly for irregular networks, as shown in Figure 
18.

3. For regular networks, using all reference nodes is preferred to using only the nearest 4. This is due 
to the nature of the topology and the fact that using more anchors by APS gives more accurate 
position estimates.

4. For irregular networks with high average node degrees, using the nearest 4 reference nodes is bet-
ter than using all of them because of the shortest-path problem discussed earlier. For low average 
node degrees, both approaches are close, and using all reference nodes might be better in order to 
tolerate the poor shortest-path distances.

Figure	16.	Result	of	MDS-Hybrid,	phase	3.	For	random	reference	nodes	(left),	overall	GDE	=	0.1439.	
For	outer	reference	nodes	(right),	overall	GDE	=	0.1634.

Figure	17.	Performance	of	MDS-Hybrid for regular networks with random (left) and outer (right) selec-
tions	of	reference	nodes.	Only	the	nearest	4	reference	nodes	are	used.	Range	error	=	5%,	α	=	0.8,	c2 = 
0.005,	and	k	=	1.5,	as	in	Eq.	(5).
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5. APS performs slightly better for outer placement of reference nodes. However, this performance 
might be degraded by the poorly estimated long distances to reference nodes. Therefore, we see 
both the random and the outer selection of reference nodes in case of regular networks. For the 
irregular networks, the outer selection is usually better because of the small number of reference 
nodes that would give a lower PCM.

RANGEQ-MDs

MDS-MAP(C), MDS-MAP(P), and MDS-Hybrid use the shortest-path distances for range-aware 
localization and the shortest-hop count multiplied by the range for range-free localization. RangeQ-
MDS still uses the shortest-hop count, but each hop distance is obtained by the range quantization 
process. RangeQ-MDS is a partially range-aware localization algorithm that is based on Partial Range 
Information (PRI) presented by Li et al. (2004). PRI is defined as any type of measurement which is 

Average Node Degree
Range Error (%)

5 10 15

R
eg

ul
ar

6.3 (15,A,O) (15,A,O) (15,A,O)

10.4 (20,A,L) (10,A,L) (15,A,L)

15.5 (15,A,L) (5,A,O) (5,A,L)

21.3 (20,A,L) (10,A,O) (5,T,O)

Ir
re

gu
la

r

7.6 (5,A,O) (10,A,L) (5,A,O)

12.1 (5,T,O) (5,T,L) (5,A,O)

17.0 (5,T,O) (5,T,O) (5,T,O)

21.8 (5,T,O) (5,T,O) (5,T,O)

Figure	18.	Performance	of	MDS-Hybrid for irregular networks with random (left) and outer (right) 
selections	of	reference	nodes.	All	reference	nodes	are	used.	Range	error	=	5%,	α	=	0.8,	c2	=	0.005,	and	
k	=	1.5,	as	in	Eq.	(5).

Table	 1.	Design	 parameters	 for	MDS-Hybrid's minimum PCM	 for	 both	 regular	 and	 irregular	 net-
works
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monotonically increasing or decreasing and has an unknown or environment-dependent one-to-one 
relationship with the range measurement. It is called partial range information because these types of 
measurement can not be easily converted to accurate distance measurement due to the unknown exact 
mapping, yet the PRI	values can correspond to the distance values based on their monotonic one-to-one 
relationship. It can be utilized in any range-free localization algorithms to improve their performance. 
One of the PRI examples is Received Signal Strength Indication (RSSI), which is a measure of the RF 
energy received. 

Although wireless sensor systems usually have available RSSI readings, this information has not 
been effectively used for localization purposes.  The RangeQ-MDS algorithm uses a sorted RSSI quan-
tization scheme, called RangeQ, to improve the range estimation accuracy when distance information 
is not available. The output of this scheme is the distance matrix D, using which MDS is applied to 
obtain position estimates, resulting in a partially-range-aware method (Li et al., 2004). The performance 
of RangeQ-MDS for various sensor networks is shown with experimental results from our extensive 
simulation with a realistic radio model.

sorted RssI Quantization

Received signal strength indication (RSSI) is a measure of the RF energy received and is closely related 
to the range. RSSI is supported by sensor node hardware, such as the Berkeley motes (Whitehouse and 
Culler, 2002). For localization purposes, the information provided by RSSI or similar types of measure-
ments can be used to improve the accuracy of range-free localization algorithms.

The concept of sorted RSSI quantization is similar to that of image quantization in image processing, 
except that the quantization is not from continuous RSSI to discrete RSSI. The process of sorted RSSI 
quantization starts with sorting RSSI readings to obtain a sorted range list. It then applies a quantizer 
on the list to generate a range estimation. In the quantization process, range level represents the number 
of measurable range units in a hop, which is similar to the gray level representing the intensity of a pixel 
in a gray-level image. The number of range levels in range quantization is referred to as range-level 
resolution. For example, the range-level resolution in range-free localization algorithms is s = 1 since 
each 1-hop connection has one range level with the same range-level value. After obtaining the RSSI 
values, the sorted RSSI quantization algorithm follows two steps to assign a range value for each 1-hop 
connection as follows.

Step 1: Sorting RSSI Values

Let Ni be the set of all 1-hop neighboring nodes to node i in a randomly-deployed sensor network and 
pij the RSSI value between node i and node j ϵ Ni. In this step, all pij values are sorted in an ascending 
order by their values, and all nodes in Ni are rearranged accordingly. The result is an ordered node list 
Li of all neighboring nodes to node i.

Step 2: Quantization

The goal of this step is to estimate the distance of each 1-hop connection. The range-free versions of 
MDS-MAP(C) and MDS-MAP(P) set all the 1-hop distances to the same value, i.e., the radio range R 
or a distance correction obtained by dividing the summation of the true shortest-path distance by the 
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summation of the shortest-hop count of a number of anchors. In the sorted RSSI quantization scheme, 
and for node i, a hop is divided into si sub-unit hops of size ui each, where ui	=	R/si. The number of sub-
unit hops si is called range-level resolution. Each 1-hop connection to node i is assigned a range-level 
value of ui, 2ui, · · ·, or siui. If the assignment is correct, it obtains a range-level value closer to the true 
distance for each 1-hop connection than R as in MDS-MAP(C) and MDS-MAP(P).  RangeQ-MDS 
assumes there is no available mapping function between the received RSSI and the corresponding 
distance to a neighboring node. Therefore, the problem left unsolved is to find an effective distance 
distribution model so that the number of nodes falling into each range level Rij of node i, ( j = 1, 2, …, 
si) can be estimated with the help of the range order obtained from Step 1. For each node i, let the size 
of its neighboring node ordered list Li be ni. The quantization process involves dividing the maximum 
1-hop range (R) into si smaller quantities of size ui each and then assigning an appropriate quantized 
range-level value, Rij, to each neighbor in Li. With range-level resolution si, Li is divided into si clusters 
with mij nodes in the j-th cluster Cij for node i, where i

s
j ij nmi =∑ =1 . The range-level value for each node 

k ∈Cij is set to Rij = jui.
We use an area-proportional model shown in Figure 19 to assign a certain number of nodes from the 

sorted list into each range level. The area-proportional model estimates the distribution of nodes in the 
neighborhood. Assuming that the nodes are randomly distributed, we know that the nodes are equally 
likely to fall into any spot in a circle with radius R. For node i, we cut the whole circle into si annuli of 
equal width. The expected number of nodes falling into the j-th annulus is

22

2 )12(
)(
)12(

i

i

ii

ii
ij s

nj
us

unj
m

−
=

−
=

Therefore, the expected numbers of nodes falling into the si-th’s annuli are

2222

)12(
,,

)12(
,,

3
,

i

ii

i

i

i

i

i

i

s
ns

s
nj

s
n

s
n −−



Algorithm and Experimental Results

The pair-wise distance obtained by RangeQ is more like an estimated shortest-path distance except 
that the 1-hop range estimation itself is not provided by the hardware but provided by RangeQ instead. 
Simulation results show that the performance of RangeQ-MDS is between those of range-free and range-
aware algorithms. Compared to MDS-MAP(C) and MDS-MAP(P), RangeQ-MDS is better than the 
range-free version of MDS when the range error is less than 35% of the radio range R, and better than 
the range-aware version of MDS when the error is more than about 16% of the radio range, as shown 
in Figure 20, where R is set to 1.75r. RangeQ range estimation is more accurate than both range-free 
and range-aware when the range error is between 15% and 35% of radius. Figure 21 shows that the 
accuracy performance ranking of all the 6 listed algorithms from best to worst follows MDS-Range, 
MDS-RamgeQ, APS-Range, APS-RangeQ, APS-Hop and MDS-Hop.
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Error Analysis

In addition to the localization accuracy comparison, we also use the Cramér-Rao Lower Bound (CRLB) 
model to formulate the error of RangeQ range estimation technique (Shi et al., 2005). Let dij be the true 
distance between sensor nodes i and j. That is,

22 )()( jijiij yyxxd −+−=

The power Pj (dBm) transmitted by device i and received at device j can be formulated as

°
° ∆

−= ij
pi

d
nPP 10log10

Figure	19.	Area-proportional	model	for	the	RangeQ-MDS algorithm

Figure	20.	Performance	of	RangeQ-MDS
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where °P  (dBm) is the received power at the reference distance °∆ . Typically, °∆  = 1 meter, and °P  is 
calculated from the free space loss formula (Rappaport, 2002). The path-loss exponent np depends on 
the environment, with typical value between 2 and 4.

Patwari and Hero III (2003) claim that the power loss has a log-normal distribution with if np  is a 
fixed constant. The experimental results supporting their claim are 946 pair-wise RSSI measurements 
with a DS-SS transmitter and receiver in a network of 44 device locations. In the quantile-quantile plot 
of comparing the distribution of

)log10( 10
°

° ∆
−− ij

pi
d

nPP

(i.e., the attenuation of the channel) to the Gaussian distribution, they match well in the middle part. At 
both ends, however, they do not match well. A more realistic assumption is that both the environment 
variance and the measurement errors affect the received power. We assume that np  is a Gaussian random 
variable, i.e., ),( 2

pnp Nn ≈  and the measurement error is Gaussian noise, ),0( 2
pnN . The assumption 

that np  can be modeled as a Gaussian random variable is supported by a few researchers’ work. Based 
on the data obtained by Seidel and Rappaport (1992), the mean of np  is 3. Ghassemzadeh et al. (2002) 
find that the path loss exponent np  follows normal distribution based on 300,000 frequency response 
profiles measured in 23 homes. For an outdoor environment, the work of Walden and Rowsell (2005) 
also shows that the distribution of np  over the range 100 m to 2 km appears to be Gaussian in shape.

Figure 22 is a comparison of localization variance of six localization algorithms: range-free MDS-
MAP(C) (MDS-HOP in the figure’s legend), range-aware MDS-MAP(C) (MDS in the figure’s legend), 
range-free APS (APS-HOP), range-aware APS, RangeQ-MDS, and RangeQ-APS. The last one uses 
APS for localization along with the RangeQ scheme. The Cramer-Rao Lower Bound of the localization 
variance is also plotted. The figure shows that range-aware MDS-MAP(C) gives the best localization 
precision among the six algorithms, and RangeQ-MDS performs better than the range-free versions of 
APS and MDS-MAP(C). MDS-MAP(C) is also very close to CRB. 

cONcLUsION

We presented four MDS-based approaches for localization in wireless sensor networks, namely: MD-
MAP(C), MDS-MAP(P), MDS-Hybrid, and RangeQ-MDS. We considered the localization problem 
under two difference scenariso: range-free and range-aware. In the first one, only proximity information 
is available to a sensor node, i.e., neighboring nodes. In the second scenario, distance measurements 
is assumed to be available between sensor nodes. MDS-MAP(C) and MDS-MAP(P) work well with 
mere connectivity information. It can also incorporate distance information when it is available. The 
strength of the MDS-MAP methods is that they can be used when there are few or no anchor nodes. 
Previous methods often require well-placed anchors to work well. Extensive simulations using various 
network topologies and different levels of ranging error show that the MDS-MAP methods are effective 
and surpasses previous methods.

Because MDS-MAP methods are expensive in terms of computational cost, we proposed an approach 
to relative localization referred to as MDS-Hybrid. This approach tries to combine the advantages of 
absolute and relative localization methods. It starts by selecting a number of reference nodes in the net-
work based on some criterion. Then, MDS-MAP(C) is used to relatively localize the reference nodes. 
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These nodes are used as anchors for an absolute localization algorithm to localize the rest of the network. 
We select the APS method for the absolute localization part. Simulation results show that MDS-Hybrid 
helps in choosing the required point of accuracy and cost. Moreover, it achieve a better performance 
than using MDS-MAP(C) in order to localize the whole network.

We presented the RangeQ-MDS localization algorithm. It is based on the RangeQ method used for 
RSSI quantization. While requiring only local PRI measurements, the partially range-aware RangeQ-
MDS localization algorithm is found to be effective. In addition to being distirbuted, it can improve 
localization accuracy of previous range-free methods by up to 50%. It performs better than both the 
previous range-free and range-aware algorithms when the range error is between 15% and 35% of the 
radio range. Simulation results show the effectiveness of RangeQ-MDS on range estimation and lo-
calization. We analyzed the variance of localization errors using Cramer-Rao Lower Bound and have 

Figure	21.	Performance	comparison	of	RangeQ-MDS, MDS,	and	APS

Figure	22.	Comparison	between	6	localization	algorithms	along	with	the	Cramer-Rao	lower	bound	on	
the	localization	variance
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studied the effects of network parameters on localization accuracy with considering errors caused by 
the variance of environment factor np .
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AbsTRAcT

The	authors	present	a	unified	stochastic	localization	approach	that	allows	a	wireless	sensor	network	
to determine the physical locations of its nodes with moderate resolution, especially indoors. The area 
covered	by	the	wireless	sensor	network	is	partitioned	into	regions;	the	localization	algorithm	identifies	the	
region	where	a	given	sensor	resides.	The	localization	is	performed	using	an	infrastructure	of	stationary	
clusterheads	that	receive	beacon	packets	periodically	transmitted	by	the	given	sensor.	The	localization	
algorithm	exploits	the	statistical	characteristics	of	the	beacon	signal	and	treats	the	localization	prob-
lem as a multi-hypothesis testing problem. The authors provide an asymptotic performance guarantee 
for the system and use this metric to determine the optimal placement of the infrastructure nodes. The 
placement problem is NP-hard	and	they	leverage	special-purpose	algorithms	from	the	theory	of	discrete	
facility	location	to	solve	large	problem	instances	efficiently.	They	also	show	that	localization	decisions	
can be taken in a distributed manner by appropriate collaboration of the clusterheads. The approach is 
validated in a Boston University testbed.
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INTRODUcTION

Localization – determining the approximate physical position of a user/device on a site – can be seen 
as an important enabling service in Wireless Sensor Networks (WSNs). The Global Positioning System 
(GPS) (Hofmann-Wellenhof et al. 1997) provides an effective localization technology outdoors and its 
popularity and the host of location-based services it has spawned is a testament to the importance of 
location information. The GPS technology though is unreliable in downtown urban areas and not func-
tional indoors. Moreover, GPS receivers are expensive and power-hungry making them inappropriate 
for many WSN applications that emphasize very low-cost low-power sensor nodes.

A reliable indoor localization service would be extremely useful and would give rise to a plethora 
of innovative applications including: asset and personnel tracking in hospitals, warehouses, and other 
large complexes; locating faulty sensors in building automation applications; intelligent audio players 
in self-guided museum tours; intelligent maps for large malls and offices, smart homes (Hodes et al. 
1997, Priyantha et al. 2000); as well as surveillance, military and homeland security related applications. 
Moreover, a location detection service is an invaluable tool for counter-action and rescue (Meissner et 
al. 2002) in disaster situations.

For these reasons, localization has received widespread attention in the literature and many approaches 
have been developed. A large class of localization systems uses special hardware (e.g., infrared sensors, 
ultrasound) which necessitates the deployment of a special-purpose WSN just for this purpose. Several 
related works are described in the following section. We are instead interested in a localization approach 
that can use WSN features found in virtually all existing platforms. Specifically, all WSN nodes carry a 
radio to communicate with each other. That radio is often rather rudimentary and the only information 
on the received RF signals one can obtain is signal strength. Received signal strength depends on the 
location of the transmitting sensor and the objective is to exploit this information to reveal the trans-
mitter’s location. At the same time, we are interested in an approach that is general enough to exploit 
additional RF or other information that could be obtained with more sophisticated hardware, for instance 
signal angle-of-arrival and signal time-of-flight. As we will see, we are able to deal with any vector of 
available observations about the transmitting sensor.

The approach we develop in this work starts with a “discretization” of the localization problem by 
splitting the coverage area into a set of regions. The problem is to determine the region where a sensor 
node we seek resides. Quantities like signal strength are highly variable indoors due to the dynamic 
character of the environment leading to multipath and fading in the propagation of RF signals. For 
example, the propagation environment inside a building is highly complex and dynamic as there are 
multiple reflections, doors that may be open or shut, and people (acting as RF energy absorbers and 
reflectors) that are constantly moving. 

To accommodate this level of variability it is critical that we use a stochastic	characterization	of 
signal strength or other RF characteristics the localization system may rely upon. To that end, we will 
associate a probabilistic description of observations to every region-clusterhead pair. In some cases, 
e.g., for small regions, a single probability density function (pdf) of observations may suffice to char-
acterize observations about a sensor in a certain region as received at a specific clusterhead. In other 
cases, especially when the region is large, a family of pdfs may be necessary to accurately represent 
observations anywhere in the region. A pdf family is intended to provide robustness with respect to the 
position of the sensor within a region and can be constructed from measurements taken from locations 
within the region. This flexible stochastic characterization of observations, ranging from a single pdf 
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to a sufficiently rich family of pdfs combines earlier localization approaches we have developed (Ray et 
al. 2006, Paschalidis and Guo 2007). Once we have these probabilistic descriptors we can think of the 
localization problem as a hypothesis testing problem where we have to match observations to a single 
pdf or a pdf family. In the latter case, the problem is known as a composite hypothesis testing prob-
lem. To make decisions we will rely on likelihood ratio tests which we show to be optimal in a certain 
asymptotic sense. Our optimal approach increases the accuracy more than 3 times over an alternative 
approach; cf. Section “TESTBED AND EXPERIMENTAL RESULTS”. Further, note that we are in-
terested in locating the current position of a node; we do not assume any mobility model and as such 
do not attempt to predict/estimate any mobility pattern.

An advantage of the approach we advance is that we are able to characterize the performance of the 
localization system, quantified by the probability of error. In particular, we obtain the dominant exponent 
of this probability as the number of observations grows large. Having a meaningful performance metric 
enables us to pose the following design question: How should clusterheads be placed to minimize the 
probability of error? We study this optimal deployment/WSN-design problem which turns out to be 
NP-complete. However, we leverage results from the theory of discrete facility location and present an 
efficient algorithm that can solve reasonably large instances.

An important consideration in WSNs is whether the localization algorithm can run in a distributed 
manner by appropriate in-network processing. We demonstrate that one can organize the necessary com-
putations so that clusterheads make observations and take local decisions which get processed as they 
propagate through the network of clusterheads. The final decision reaches the gateway and, as we show, 
there is no performance cost compared to a centralized approach. We have implemented our approach 
in a testbed installed at a Boston University (BU) building, and our experimental results establish that 
we can achieve accuracy that is, roughly, on the same order of magnitude as the radius of our regions. 
This is, in fact, the best possible accuracy one can expect from a discretized system that turns localiza-
tion into the problem of identifying the sensor’s region. We report experimental results from our testbed 
showing great promise in using an approach of this type in a practical setting.

The rest of this chapter is organized as follows. We first discuss related work. In PROBLEM FOR-
MULATION, we introduce our system model. In MATHEMATICAL FOUNDATION we introduce 
the mathematical underpinnings of hypothesis testing. In the same section we review the standard 
hypothesis testing problem, study the composite binary hypothesis testing problem, establish an opti-
mality condition for the test we propose, and obtain bounds on the error exponents which allow us to 
optimize performance. In OPTIMUM CLUSTERHEAD PLACEMENT we consider the WSN design 
problem and present a fast algorithm for solving it in an efficient manner. In LOCALIZATION DECI-
SIONS we develop the distributed decision approach and compare it to a centralized one. Results from 
an implementation of our approach in the testbed are reported in TESTBED AND EXPERIMENTAL 
RESULTS. Final remarks are in CONCLUSIONS.

RELATED WORK

Several non-GPS location detection systems have been proposed in the literature. One class of local-
ization systems is “deterministic” and as in (Bahl et al. 2000) compares the mean signal strength from 
a sensor to a pre-computed signal-strength map of the coverage area. This approach though, may be 
unreliable indoors due to the significant variability of the RF signal landscape (due to multipath, fading, 
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etc.). A similar system is SpotOn (Hightower et al. 2000). The Nibble system improves up on RADAR 
by taking the probabilistic nature of the problem into account (Castro et al. 2001). A similar approach 
is also found in (Yong Wu et al. 2007). Another class of systems uses trilateration or stochastic trilat-
eration techniques as in (Patwari et al. 2003) where signal strength measurements are used to estimate 
the distance and location. These techniques assume a model describing how signal strength reduces 
with distance (path loss formula) and the modeling error can lead to inaccuracies. In the experimental 
results we report in this chapter, our approach is shown to significantly reduce the mean error distance 
compared to stochastic trilateration techniques. In (Patwari et al. 2008), a more accurate path loss model 
including correlated shadow loss and non-shadow loss was introduced. In (Battiti et al. 2003), the location 
detection problem is cast in a statistical learning framework to enhance the models. In (Lasse Klingbeil 
et al. 2008), a sequential Monte Carlo simulation technique was introduced to estimate the location and 
motion of a mobile sensor. The Monte Carlo techniques require some information about the mobility 
model or probability of a node’s location at a given time; we assume neither. Performance trade-off and 
deployment issues are explored in (Prasithsangaree et al. 2002). References to many other systems can 
be found in the homepage of (Youssef 2008).

In addition to the related work, the works presented in this chapter not only describe and evaluate a 
localization system, but also characterize the performance, outline optimization approaches and propose 
a distributed decision making algorithm.

PRObLEM FORMULATION

In this section we introduce our system model. Consider a WSN deployed in a site for localization pur-
poses. The reader may assume the site to be the interior of a building. We divide the site into N regions 
denoted by an index set L= {L1,…,LN}. There are M distinct positions B={B1,…,BM} at which we can place 
the fixed infrastructure nodes we call clusterheads.

Let a sensor be located in region l∈L. A series of packets broadcast by the sensor are received by the 
clusterheads (not necessarily all of them) which observe certain physical quantities associated with each 
packet. In most existing WSN platforms the observed physical quantities are just the received signal 
strength indicator (RSSI), which is related to the voltage observed at the receiver’s antenna circuit.

Let y(i) denote the vector of observations by a clusterhead at position B(i) corresponding to a packet 
broadcasted by the sensor. These observations are assumed to be random. To simplify the analysis we 
will assume that the observations take values from a finite alphabet 1 |Σ|Σ = { , , } , where | |Σ  de-
notes the cardinality of ∑. In practice, this is indeed the case since WSN nodes report quantized RSSI 
measurements. A series of n consecutive observations are denoted by ( ) ( )

1 , ,i i
ny y

 and are assumed 
independent and identically distributed (i.i.d.) conditioned on the region the sensor node resides. This 
assumption is well justified for fairly dynamic sites where the various radio-paths between the receiver 
and the transmitter change rapidly; for typical indoor sensor networks observations separated by a few 
seconds can be i.i.d. Observations made by different clusterheads at about the same time need not be 
independent.

With every clusterhead-region pair (Bi, Lj) we associate a family of pdfs ( ) |
( )i

jY
p y  where Y(i) denotes 

the random variable corresponding to observations y(i) at clusterhead Bi when the transmitting sensor is 
in some location within Lj. Here, j j∈Ω  is a vector in some space Ωj parameterizing the pdf family. 
We allow the possibility that for some (typically small) regions the pdf family degenerates into a single 



234  

Statistical Location Detection

pdf. We will be writing ( ) |
( )i

jY L
p y  in that case. Such a pdf can be obtained by using measurements at a 

single position within the region and constructing an empirical distribution. For larger regions, a single 
pdf may not be an appropriate representation for all positions within the region. As we will see, we 
will use measurements at a few locations (or even a single one) within Lj but we will associate to these 
measurements a family of pdfs parametrized by θj . For example, one could obtain an empirical pdf 
from the measurements and associate with Lj pdfs with the same shape as the empirical pdf and a mean 
lying in some interval centered at the empirical mean.

Given a family of pdfs for every pair (Bi, Lj) we are interested in placing K	≤	M clusterheads at posi-
tions in B and use observations by them to determine the region in which a sensor node resides. To that 
end, we will (i) characterize the performance of the localization system in terms of the probability of 
error, (ii) develop an algorithm for placing clusterheads that provides guarantees for the probability of 
error, and (iii) develop approaches for determining the sensor location in a distributed manner.

MATHEMATIcAL FOUNDATION

In this section we take the clusterhead locations as given and formulate the hypothesis testing problem 
for determining the location of sensors. First we describe the simpler case where there is only one pdf 
associated with each location. Then we expand on the case of composite hypothesis testing where there 
are more than one pdf per region.

binary Hypothesis Testing

Suppose we place clusterheads in K out of the M available positions in B. Without loss of generality let 
these positions be B1,…,BK. Suppose also that a sensor is in some location l∈L  and transmitting packets. 
As before, let y(i) be the vector of observations at each clusterhead	i	=	1,	…,K; we write y = (y(1), …, y(K)) 
for the vector of observations at all K clusterheads. These observations are random; let Y denote the 
random variable corresponding to y and | ( )

jY Lp y  the pdf of Y conditional on the sensor being in location 
Lj∈L . Observations y(i) and y(j) made at the same instant need not be independent. If they are, however, 
it follows that (1) ( )

(1) ( )
| | |

( ) ( ) ( )Kj j j

K
Y L Y L Y L

p y p y p y=  . Suppose that the clusterheads make n consecutive 
observations y1, …, yn, which are assumed i.i.d. Based on these observations we want to determine the 
location l of the sensor.

The problem at hand is a standard N-ary hypothesis testing problem. It is known that the maximum 
a posteriori probability (MAP) rule is optimal in the sense of minimizing the probability of error. More 
specifically, we declare l = Lj if

| 1 |
1, ,

arg max[ ( ) ( )]
i ii Y L Y L n

i N
j p y p y

=
=



        (1)

(ties are broken arbitrarily), where πi denotes the prior probability that the sensor is in location Li. 
Next we turn our attention to binary hypothesis testing for which tight asymptotic results on the 

probability of error are available. These results will be useful in establishing performance guarantees 
for our proposed clusterhead placement later on.

Suppose that the sensor’s position is either Li or Lj . A clusterhead located at Bk makes n i.i.d. obser-
vations ( ) ( )

1 , ,k k
ny y

. Let
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( ) ( )| |
( ) log[ ( ) / ( )]k k

i j
ijk Y L Y L

X y p y p y=

be the log-likelihood ratio. Define

( )( ) log E [ ]ijk

j

X y
ijk L eΛ =          (2)

The expectation is taken with respect to the density ( ) |
( )k

jY L
p y . It follows that

( ) ( )
1

| |
( ) log ( ) ( )dk k

i j
ijk Y L Y L

p y p y y
∞ −

−∞
Λ = ∫        (3)

The function ( )ijkΛ  is the log-moment generating function of the random variable Xijk, hence convex 
(see Dembo and Zeitouni 1998, Lemma 2.2.5 for a proof). Let dijk be the Fenchel-Legendre transform 
(or convex dual) of ( )ijkΛ  evaluated at zero, i.e.,

[0,1]
sup [ ( )]ijk ijkd
∈

= −Λ .         (4)

dijk is the so called Chernoff information or distance (it is nonnegative, symmetric, but it does not satisfy 
the triangle inequality) between the densities ( ) |

( )k
iY L

p y  and ( ) |
( )k

jY L
p y  (Dembo and Zeitouni 1998 § 3.4, 

Chernoff 1952).
Consider next the probability of error in this binary hypothesis testing problem when we only use 

the observations made by clusterhead Bk. Suppose we make decisions optimally and let Sn denote the 
optimal decision rule (i.e., a mapping of ( ) ( )

1 , ,k k
ny y  onto either “accept Li” or “accept Lj”). We have two 

types of errors with probabilities

P [  rejects  ] ,      P [  rejects  ]
j i

n n
n L j n L iS L S L= =       (5)

The first probability is evaluated under ( ) |
( )k

jY L
p y  and the second under ( ) |

( )k
iY L

p y . The probability of 
error, ( )e

nP , of the rule Sn is simply ( )e
n i n j nP = + . Large deviations asymptotics for the probability 

of error under the optimal rule Sn have been established by (Chernoff 1952, Dembo and Zeitouni 1998 
Corollary 3.4.6) and are summarized in the following theorem.

Theorem IV.1 (Chernoff’s bound) If 0 < πi < 1, then

( )1 1 1lim log lim log lim log e
n n n ijkn n n

P d
n n n→∞ →∞ →∞

= = = −

In other words, all these probabilities approach zero exponentially fast as n grows and the exponen-
tial decay rate equals the Chernoff distance dijk. Intuitively, these probabilities behave as ( ) ijkndf n e− for 
sufficiently large n, where f(n) is a slowly growing function in the sense that lim (log ( )) / 0n f n n→∞ = . In 
the sequel, we will often consider the asymptotic rate according to which probabilities approach zero as 
n → ∞. We will use the term exponent to refer to the quantity lim (1/ ) log [ ]n n P→∞ ⋅  for some probability 
P[•]; if the exponent is d then the probability approaches zero as e−nd. When the Maximum Likelihood 
(ML) rule is optimal (i.e., prior probabilities of the hypotheses are equal), we have
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Theorem IV.2 Suppose 1/   i N i= ∀ . Then ( ) ijknde
nP e−≤  for all n.

The proof is given in Appendix A. Note the interesting fact that Chernoff distances, and thus the 
exponents of the probability of errors do not depend on the priors πi. This observation is important since 
prior probabilities are not within the control of the system designer, but conditional pdfs are.

The Chernoff distances between the joint densities of the data observed by all the clusterheads 
can be defined similarly by replacing ( ) |

( )k
iY L

p y  and ( ) |
( )k

jY L
p y  by | ( )

iY Lp y  and | ( )
jY Lp y , respectively. The 

clusterhead placement problem consists of choosing the placement so as to maximize these Chernoff 
distances. However, the optimum clusterhead placement that maximizes distances between the joint 
densities turns out to be a nonlinear problem with integral constraints. It quickly becomes intractable 
with increasing problem size and the optimum clusterhead placement for realistic sites cannot be com-
puted using such a formulation. Optimization of the clusterhead placement in our formulation, on the 
other hand, reduces to a linear optimization problem (although still with integral constraints), for which 
large problem instances can be solved within reasonable time. For the resultant placement, we derive 
bounds on the probability of error of the decision rule that uses joint distributions.

binary composite Hypothesis Testing

We now consider the case where regions i and j have an associated pdf family ( ) |
( )k

iY
p y  and ( ) |

( )k
jY

p y , 
respectively, corresponding to observations at clusterhead Bk (qj and qi depend on k as well but we elect 
to suppress this dependence in the notation for simplicity). The clusterhead makes n i.i.d. observations 

( ), ( ) ( )
1( , , )k n k k

ny y y= 

 from which we need to determine the region Li vs. Lj. We will be using the notation 
( ) ( )

( ), ( )
| |1

( ) ( )k k
i i

nk n k
lY Yl

p y p y
=

= ∏ .
The problem at hand is a binary composite hypothesis testing problem for which the so called 

Generalized	Likelihood Ratio Test (GLRT) is commonly used. The GLRT compares the normalized 
generalized log-likelihood ratio

( )

( )

( ),
|( ),

( ),
|

sup ( )1( ) log
sup ( )

ki i i

kj j j

k n
Yk n

ijk k n
Y

p y
X y

n p y
∈Ω

∈Ω

=

to a threshold λ and declares Li whenever

( ), ( ), ( ),
, { | ( ) }k n GLRT k n k n

ijk n ijky S y X y∈ = ≥

and Lj otherwise. Note that in the case one of the pdf families, say the one corresponding to the (Bk, Li) 
clusterhead-region pair, is a singleton ( ) |

( )k
iY L

p y  the supremum in the numerator is moot. When both 
pdf families are singletons GLRT becomes the standard LRT and a threshold λ = 0 should be used. 
There are two types of error (referred to as type I and type II, respectively) associated with a decision 
with probabilities

( ), ( ),
, , , ,P [ ],      P [ ]

j i

GLRT k n GLRT GLRT k n GLRT
ijk n ijk n ijk n ijk ny S y S= ∈ = ∉
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where [ ]
j

P ⋅  (resp. [ ]
i

P ⋅ ) is a probability evaluated assuming that y(k),n is drawn from ( ) |
( )k

jY
p y  (resp. 

( ) |
( )k

iY
p y ). We use a similar notation and write ,

S
ijk n and ,

S
ijk n for the error probabilities of any other test 

that declares Li whenever y(k),n is in some set Sijk,n.
Since we have two probabilities of error we can not minimize both at the same time. A natural ob-

jective is to minimize one (type II) subject to a constraint on the other (type I). This is known as the 
generalized	Neyman-Pearson	optimality criterion and is given below.

Definition 1
Generalized Neyman-Pearson (GNP) Criterion: We will say that the decision rule {Sijk,n} is optimal 
if it satisfies

,
1limsup log ( ) ,      S

ijk n j j j
n n→∞

< − ∀ ∈ Ω        (6)

and	maximizes ,
1limsup log ( )S

ijk n i
n n→∞

−  uniformly for all i i∈Ω .

Zeitouni et al. have established conditions for the optimality of the GLRT in a Neyman-Pearson sense 
for general Markov sources. The analysis in (Zeitouni et al. 1992) is carried out for the case where one 
hypothesis corresponds to a single pdf and the other to a pdf family. We provide a generalization to the 
situation of interest where both hypotheses correspond to a family of pdfs. We will establish a necessary 
and sufficient condition for the GLRT to satisfy the GNP criterion.

Let us introduce some additional notation, which is common in information theory. For any sequence of 
observations yn=(y1,…,yn), the empirical measure (or type) is given by 1 | |( ( ), , ( ))n n ny y y

L L L Σ= 
, where

1

1( ) 1{ },       1, ,| |,n

n

i j iy
j

L y i
n =

= = = Σ∑ 

and 1{∙} denotes the indicator function. We will denote the set of all possible types of sequences of length 
n by { |  for some }n

n
n y

L L y= =  and the type class of a probability law ν	by ( ) { | }n
n n

n y
T y L= ∈Σ = , where 

∑n denotes the cartesian product of ∑ with itself n times. Let

| |

1
( ) ( ) log ( )i i

i
H

Σ

=

= −∑
be the entropy of the probability vector ν and

| |

1

( )( || ) ( ) log
( )

i
i

i i

D
Σ

=

= ∑ ,

the divergence or relative entropy of ν with respect to another probability vector μ.
Lemma 3.5.3 in (Dembo and Zeitouni 1998) states that it suffices to consider functions of the empirical 
measure when trying to construct an optimal test (i.e., the empirical measure is a sufficient statistic). 
Let 

j
P  denote the probability law induced by ( ) |

( )k
jY

p ⋅ . Considering hereafter tests that depend only on 
ny

L , the so called generalized Hoeffding test (Hoeffding 1965) that accepts Li when y(k),n is in the set

*
, { | inf ( || ) }n j

j

n
ijk n y

S y D L P= ≥ ,
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and accepts Lj otherwise, is optimal according to the GNP criterion. The following lemma generalizes 
Hoeffding’s result and a similar result in (Zeitouni et al. 1992); the proof is in Appendix B.

Lemma IV.3 The	generalized	Hoeffding	test	satisfies	the	GNP	criterion.

Next, we will determine the exponent of 
*

, ( )S
ijk n i . Define the set

{ | inf ( || ) }
j

j
ijkA Q D Q P= < .

We have
*

( ),
( ), *

, ,( ) [ ] [ ]k ni i

S k n
ijk n i ijk n ijk ny

P y S P L A L= ∉ = ∈ ∩ .

Due to Sanov’s theorem (Dembo and Zeitouni 1998, Chap. 2)

* *

, ,
1 1inf ( || ) limsup log ( ) liminf log ( ) inf ( || )

oi i
ijk ijk

S S
ijk n i ijk n iQ A n Q An

D Q P D Q P
n n∈ →∞ ∈→∞

≤ − ≤ − ≤        (7)

where o
ijkA  denotes the interior of Aijk. Since Aijk is an open set the upper and lower bounds match and 

inf ( || )
ijk iQ A D Q P∈  is the exponent of 

*

, ( )S
ijk n i .

The following theorem establishes a necessary and sufficient condition for the optimality of GLRT 
under the GNP criterion. The proof is omitted; we refer the interested reader to (Paschalidis and Guo 
2007).

Theorem IV.4 The GLRT with a threshold λ is	asymptotically	optimal	under	the	GNP	criterion,	if	and	
only if

inf ( || ) inf ( || )
i i

ijk ijkQ C Q A
D Q P D Q P

∈ ∈
≥         (8)

for all θi, where

{ | inf ( || ) inf ( || )} inf ( || )}
j i j

j i j
ijkC Q D Q P D Q P D Q P= − < ≤ .

Furthermore, assuming that (8) is in effect

,
1liminf log ( ) ,    GLRT

ijk n j j jn n→∞
− ≤ − ∀ ∈Ω       (9)

, i
1liminf log ( ) inf ( || ),   .

i
ijk

GLRT
ijk n i in Q A

D Q P
n→∞ ∈

− ≤ − ∀ ∈Ω      (10)

Although, Thm. IV.4 is an interesting theoretical result, in practice it is not trivial to verify whether 
condition (8) is satisfied or not. To that end, the following theorem derives bounds on the type I and 
type II error probability exponents in the absence of condition (8).
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Theorem IV.5 The GLRT with a threshold λ satisfies

,
1liminf log ( ) ,    GLRT

ijk n j j jn n→∞
− ≤ − ∀ ∈Ω       (11)

, i
1liminf log ( ) inf ( || ),   .

i
ijk

GLRT
ijk n i in Q D

D Q P
n→∞ ∈

− ≤ − ∀ ∈Ω      (12)

where

{ | inf ( || ) inf ( || )} }.
j i

j i
ijkD Q D Q P D Q P= − <

Proof:	For ( ),
,

k n GLRT
ijk ny S∈

( ) ( )

( ), ( ), ( ), ( ),

i j

( ), ( ),

( ), ( ),
| |

1 1logsup ( ) logsup ( )
   = sup[ ( ) ( || )] sup[ ( ) ( || )]

   = inf ( || ) inf ( || )

k ki i j ji j

k n k n k n k ni j

k n k ni j
i j

k n k n
Y Y

y y y y

y y

p y p y
n n

H L D L P H L D L P

D L P D L P

∈Ω ∈Ω≤ −

− − − − −

− +    (13)

This implies that ( ),
,

k n GLRT
ijk ny S∈  is equivalent to ( ),k n

ijky D∉ .
Next note that the right hand side of (13) is upper bounded by ( ),inf ( || )k n j

j
y

D L P  which implies that 
( ), *

,
k n

ijk ny S∈  as well. It follows that *
, ,( ) ( )GLRT

ijk n j ijk n j≤  which establishes that the GLRT satisfies (11) 
due to Lemma IV.3.

To compute the type II exponent note that

( ), ( ),
, ,( ) [ ] [ ]

i i

GLRT k n GLRT k n
ijk n i ijk n ijkP y S P y D= ∉ = ∈

An immediate application of Sanov’s theorem (Dembo and Zeitouni 1998, Chap. 2) yields (12).  █

Determining the Optimal Threshold 

It can be seen from (11) and (12) that the exponent of the type I error probability is increasing with λ 
but the exponent of the type II error probability is nonincreasing with λ. We have no preference on the 
type of error we make, thus, we would like to balance the two exponents and determine the value of λ at 
which they become equal. In this subsection we detail how this can be done and obtain a *

ijk that bounds 
the worst case (over Ωj and Ωi) exponents of the type I and type II error probabilities. To simplify the 
exposition we will be assuming that Ωj and Ωi are discrete sets; this is also the case in the experimental 
setup we describe later on.

Let us consider the exponent of the type II GLRT error probability (cf. (12)):

( , ) min ( || )
iijk i QZ D Q P=

s.t. m in ( || ) min ( || )
j j i i
D Q P D Q P− ≤ ,



240  

Statistical Location Detection

which is equivalent to

          ( , ) min ( || )
s.t. m in ( || ) ( || )    

i

j j i

ijk i Q

i

Z D Q P
D Q P D Q P

=
− ≤ ∀       (14)

The worst case exponent over i i∈Ω  is given by

( ) min ( , )
i

ijk ijk iZ Z= .

Note that Zijk(λ) is nonincreasing in λ, and limλ→∞ Zijk(λ) = 0. Assuming that Zijk(0)	>	0, there exists 
a * 0ijk >  such that * *( )ijk ijk ijkZ = . Furthermore, both error probability exponents in (11) and (12) are no 
smaller than *

ijk.
Now consider the clusterhead at Bk observing y(k),n and seeking to distinguish between Li and Lj . The 

clusterhead has the option of using the GLRT by comparing Xjik(y
(k),n) to the threshold *

ijk, or comparing 
Xjik(y(k),n) to a threshold *

jik that can be obtained in exactly the same way as *
ijk. Let

* *ˆ max{ , }ijk ijk jikd =          (15)

and set ( , ) ( , )i j i j=  if *
jik is the maximizer above; otherwise set ( , ) ( , )i j j i= . Define the maximum 

probability of error as

( )
,  ,  ,max{max ( ), max ( )}

j i

e GLRT GLRT
ijk n i jk n j i jk n iP = .

The discussion above leads to the following proposition.

Proposition IV.6 Suppose that the GLRT at clusterhead Bk compares ( ),
 ( )k n

i jkX y  to ˆ
ijkd . The maximum 

probability	of	error	satisfies

( )
,

1 ˆlimsup e
ijk n ijk

n
P d

n→∞
≤ − .

One of the challenges computing ˆ
ijkd  is that the problem in (14) is nonconvex. This may not be an 

issue when there are relatively few possible values of θj and θi but for large sets Ωj and Ωi  computing 
ˆ

ijkd  becomes expensive. To address this issue, we will next develop a lower bound to Zijk(λ,	θi) using 
nonlinear duality.

Let ( , )ijk iZ  be the optimal value of the dual of (14); by weak duality it follows that ( , ) ( , )ijk i ijk iZ Z≥  
We have

0
( , ) max[min min[ ( || ) ( || ) ( || )] ]

i i i i
ji i i i

ijk i j iQ
Z D Q P D Q P D Q P

≥
= + − −∑ ∑ ∑

By simple algebra, we have

| |

0 1
( , ) max[min min[ ( ) log( ( ) ( ))] ]

i
ji i

ijk i r r rQ r
Z Q Q A

Σ

≥ =

= −∑ ∑     (16)
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where 
( )

( ) ( )

|

| |

( )1( )
( ) ( )

i

k
i

k kii j

rY
r

r rY Y

P
A

P P

 
 = ⋅
 
 

∏ . 

Note that the optimization over Q is convex and the optimization over i is concave, thus, this problem 
can be solved efficiently. In fact, the optimization over Q can be solved analytically yielding

| |

1

1 1( ) , 1, ,| |
( ) ( )l

rl r

Q l
A A

Σ

=

 
= = Σ 

 
∑ 

.

( , )ijk iZ   is convex and nonincreasing in	λ for all	θi. Furthermore, the exponent of the type II GLRT error 
probability is no smaller than ( ) min ( , )

iijk ijk iZ Z= . Note that  ( )ijkZ  is also nonincreasing in λ, and 
lim ( ) 0ijkZ→∞ = . Assuming that ( ) 0ijkZ > , there exists a * 0ijk >  such that * *( )ijk ijk ijkZ = . Furthermore, 
both error probability exponents in (11) and (12) are no smaller than *

ijk
Following the same line of development as before, set

* *max{ , }ijk ijk jikd =          (17)

and define ,i j , and ( )
,

e
ijk nP  in the same way as earlier. It can be seen that ˆ

ijk ijkd d≥ . We arrive at the fol-
lowing proposition which provides a weaker but more easily computable probabilistic guarantee on the 
probability of error.

Proposition IV.7 Suppose that the GLRT at clusterhead Bk compares ( ),
 ( )k n

i jkX y  to ijkd . The maximum 
probability	of	error	satisfies

( )
,

1limsup e
ijk n ijk

n
P d

n→∞
≤ − .

OPTIMUM cLUsTERHEAD PLAcEMENT

In this section, we focus on how to place the K	≤	M clusterheads at positions in B to facilitate localiza-
tion. We start by considering the multiple hypothesis testing problem of identifying the region l∈L in 
which the sensor we seek resides.

Multiple composite Hypothesis Testing

We assume, without loss of generality, that we have placed clusterheads in positions B1,…,BK, each one 
making n i.i.d. observations ( ), ( ) ( )

1( , )k n k k
ny y y=  . Let dijk be the GLRT threshold obtained in the previous 

section for each region pair (i, j),	i	<	j, and clusterhead k. Specifically, dijk is the Chernoff distance if we 
compare regions each with a single pdf associated to observations at Bk; in that case as we explained 
earlier we apply the LRT decision rule. If however, one of the hypothesis is composite, i.e., there is a pdf 
family associated with at least one of the two regions, then we apply the GLRT and the error exponent 
is obtained from either (15), or (17), depending on which optimization problem we elect to solve.
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We make N−1 binary decisions with the LRT or GLRT rule to arrive at a final decision. Specifically, 
we first compare L1 with L2 to accept one hypothesis, then compare the accepted hypothesis with L3, and 
so on and so forth. For each one of these Li vs. Lj decisions we use a single clusterhead Bk as detailed in 
the previous section and the exponent of the corresponding maximum probability of error is bounded 
by dijk. All in all we make N	−1 binary hypothesis decisions.

clusterhead Placement

Our objective is to minimize the worst case probability of error. To that end, for every pair of regions 
Li and Lj we need to find a clusterhead that can discriminate between them with a probability of error 
exponent larger than some e and then maximize e . This is accomplished by the mixed integer linear 
programming problem (MILP) formulation of Figure 1.

In this formulation, the decision variables are xk, yijk, and e  where k	=	1,…,M,	i,	j	=1,…,N,	i	<	j. xk is 
the indicator function of a clusterhead been placed at position Bk. Equation (19) represents the constraint 
that K clusterheads are to be placed. Constraint (22) enforces that for every region pair there exist a 
clusterhead k with dijk larger than e . Let * *,k ijkx y , and  * (k	=	1,	.	.	.	,M,	i,	j	=	1,	.	.	.	,N,	i	<	j) be an optimal 
solution of this MILP. Although this problem is NP-hard (Ray et al. 2006), it can be solved efficiently 
for sites with more than 100 locations by using a special purpose algorithm proposed in the sequel.

The next proposition establishes a useful property for the optimal solution and value of the MILP in 
Figure 1. In preparation for that result consider an arbitrary placement of K clusterheads. More specifi-
cally, let Y be any subset of the set of potential clusterhead positions B with cardinality K. Let x(Y ) = 
(x1(Y ), . . . , xM(Y )) where xk(Y ) is the indicator function of Bk being in Y . Define:

, 1, , | ( ) 1
      

( ) min max
k

ijki j N k x Y
i j

Y d
= =

<

=


         (25)

We can interpret | ( ) 1max
kk x Y ijkd=  as the best decay rate for the probability of error in distinguishing 

between locations Li and Lj from some clusterhead in Y . Then e(Y) is simply the worst pairwise decay 
rate.

Figure	1.	Clusterhead	placement	MILP	formulation
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Proposition V.1 For	any	clusterhead	placement	Y we have

* ( )Y≥           (26)

Moreover, the selected placement achieves equality; i.e.,

*

*

, 1, , | 1
      

min max
k

ijki j N k x
i j

d
= =

<

=


         (27)

Proof: Consider the placement Y and let

,
| ( ) 1

1, if  arg max
   , , , .

0, otherwise,
k

ijk
k x Yijk

k d
y i j i j k=

== ∀ < ∀


If more than one yijk are 1 for a given pair (i, j), we arbitrarily set all but one of them to 0 to satisfy 
Eq. (20). Then

*

, , | ( ) 11
min min max ( ).

k

M

ijk ijk ijki j i j k x Yki j i j

d y d Y
=

=< <

= =∑

Observe that x(Y ), yijk’s (as defined above), and e(Y) form a feasible solution of the MILP in Figure 1. 
Clearly, the value of this feasible solution can be no more than the optimal e*, which establishes (26).

Next note that (22) is the only constraint on e . So, we have

*

* * *

, ,1 | 1

min min
k

M M

ijk ijk ijk ijki j i jk k xi j i j

d y d y
= =< <

= =∑ ∑  .       (28)

The second equality is due to (21). The final observation is that the right hand side of the above is 
maximized when

*
,*

| 1
1, if  arg max

  , , .
0, otherwise,

k

ijk
k xijk

k d
y i j i j k=

== ∀ < ∀


(Again, at most one *
ijky  is set to 1 for a given (i, j) pair.) Thus, an optimal solution satisfies the above. 

This, along with (28) establishes (27). █
As before, *| 1

max
k

ijkk x
d

=
 is the best decay rate for the probability of error in distinguishing between 

locations Li and Lj from some clusterhead in the set Y*. Then e* is simply the worst such decay rate over 
all pairs of locations. Moreover, according to Proposition V.1, this worst decay rate is no worse than the 
corresponding quantity e(Y) achieved by any other clusterhead placement Y.

Efficient Computation of the Proposed MILP

In this section, we propose an algorithm that solves the MILP presented in Figure 1 faster than a general 
purpose MILP-solver such as CPLEX (CPLEX 8.0 2002). Our approach is to construct an alternate for-
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mulation of the proposed MILP first, and then solve it using an iterative algorithm. The computational 
advantage of this approach lies in the fact that we solve a feasibility problem in each iteration that con-
tains only O(M) variables and O(N2) constraints instead of O(N2M) variables and O(N2M) constraints 
that appear in the formulation in Figure 1, and thus can be solved much faster.

Alternate Formulation

Let us sort the dijk’s, in nonincreasing order, and let bijk denote the index of dijk. We let equal distances 
have the same index. Note that bijk is a positive integer upper bounded by MN(N	−	1)/2. Now consider 
the MILP problem shown in Figure 2. This problem is actually the MILP formulation of the vertex K 
-center problem (Daskin 1995). The following proposition establishes that the formulations of Figure 
1 and Figure 2 are indeed equivalent.

Proposition V.2 Suppose (s*, t*,	π*) is	an	optimal	solution	to	the	problem	in	Figure	2.	Then	(x* =s*, y* 
= t*, * * *

*
i j k

d= ) is an optimal solution to the MILP	problem	in	Figure	1,	where	(i*, j*, k*) is such that
* * *

*
i j k

b = .

Proof: A proof analogous to the one of Prop. V.1 establishes

*

*

, | 1
max min

k
ijki j k s

i j

b
=

<

=           (29)

Let (i*, j*, k*) be such that * * *
*

i j k
b= . Then, * * *

* * * * *( , , ) ( , , )
i j k

x y s t d=
 
is an optimal solution of the 

MILP problem in Figure 1. To that end, observe that x*, y* satisfy constraints (19)–(21), (23) and (24). 
Moreover, since bijk was defined as the index of dijk, Eqs. (29) and (27) imply the optimality of * * *( , , )x y ; 
namely, the min-max of the dijk’s is equivalent to the max-min of their rank.  █

Figure	2.	Equivalent	formulation	of	the	MILP	of	Figure	1
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We remark that it is also true that there is a corresponding optimal solution to the problem of Figure 2 
for every optimal solution to the problem of Figure 1.

Iterative Algorithm

Proposition V.2 allows us to solve the problem of Figure 2 instead of the problem of Figure 1. So we will 
concentrate on the former. Our approach is to solve this problem by an iterative feasibility algorithm 
along the lines proposed in (Daskin 1995). In particular, we use a slightly modified version of a two-
phase algorithm proposed in (IIhan et al. 2006, Ozsoy et al. 2005).

The core idea of the iterative algorithm is to solve the feasibility problem shown in Figure 3. The 
problem of Figure 3 depends on a parameter θ by the following equation:

{1,  if ,
0, otherwise. 

ijk
ijk

bc ≤=          (41)

Intuitively, θ represents the index of some dijk distance in the nonincreasingly sorted list that we 
initially created, and the feasibility problem checks whether all pairs of locations can be distinguished 
(by at least one clusterhead) with an error exponent greater than or equal to the dijk distance pointed 
by θ. If not, θ is increased, which means that it now points to a smaller dijk distance, and the process is 
repeated. At termination, θ, which corresponds to the largest feasible dijk distance, provides the optimal 
value of the problem in Figure 2. The formal iterative algorithm is shown in Figure 4. It is clear that 
this algorithm terminates in a finite number of steps. In particular, if	θ	=	MN(N	−1)/2, we see that cijk = 
1 for all i, j, k, and the feasibility conditions of problem of Figure 3 are trivially satisfied. Next we show 
that at termination, we obtain the optimal solution to the problem of Figure 2.

Proposition V.3 Let	θ* be	the	value	of	θ when	the	algorithm	of	Figure	4	terminates	and	w* the optimal 
solution	to	problem	of	Figure	3	at	the	last	iteration.	Then	s* = w* induces an optimal solution to the 
problem	of	Figure	2	with	optimal	objective	function	value	π*	=	θ*.

Proof: First note that at the last iteration, for any i, j (i < j), there exists at least one k such that *
ijkb =  

with w*
k = 1; otherwise the problem is infeasible. Next we construct a feasible solution (s*, t*, π*) to the 

problem of Figure 2 as follows. Given a pair (i, j), we select one k such that *
ijkb =  with * 1kw = . Then 

we set * 1ijkt =  and  * 0ijlt =  for any l ≠ k. We repeat this process for all pairs (i, j). Finally, we set s* = 

Figure	3.	The	feasibility	problem.	cijk’s	are	defined	by	Eq.	(41)
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w* and π*	=	θ*. Then, the triplet (s*, t*, π*) satisfies all the constraints of the problem of Figure 2 and is 
therefore a feasible solution.

Next we prove the optimality of (s*, t*, π*) by contradiction. Suppose that there exists a feasible solu-
tion ( , , )s t   to the problem of Figure 2 such that *< . Then according to the algorithm in Figure 4, 
there is a step where = . This implies that the corresponding problem of Figure 3 was infeasible; 
otherwise the algorithm would not have increased the value of θ beyond . However, since ( , , )s t   is 
feasible for the problem of Figure 2 we have 

| 1
  ,

k
ijk ijkk s

b t i j i j
=

≥ ∀ <∑






,

which implies that for all (i, j) with	i	<	j there exists at least one k with 1ks =  such that ijkb ≤ . Hence, 
w s=  is feasible for the problem of Figure 3 when = . We arrived at a contradiction.    █

To expedite the convergence in the actual implementation, we use the two-phase algorithm shown 
in Figure 5. In the first part (LP	phase), we construct the linear programming (LP) relaxation of the 
problem of Figure 3 by replacing the binary constraint (40) by 

[0,1],   1, ,kw k M∈ ∀ =           (42)

Then we solve the relaxed problem and compute the smallest integer θ=θ0 such that the LP relaxation 
is feasible. In the second part (IP	phase), we compute θ* by executing the iterative algorithm starting 
from θ	=	θ0, but this time we solve the integer programming problem instead of the LP relaxation. The 
important difference between our algorithm and the algorithm proposed in (IIhan et al. 2006, Ozsoy 
et al. 2005) is that we employ binary search both in the LP-phase and IP-phase whereas the authors of 
(IIhan et al. 2006, Ozsoy et al. 2005) use linear search in the LP-phase. Our use of binary search in 
the IP-phase further decreases the computation time for large problem instances almost by an order of 
magnitude.

Performance Guarantee

We will use the decision rule outlined in the beginning of this section and for every region pair (i, j) 
we will rely on the best positioned clusterhead *

ijk
B  to make the corresponding decision. The following 

theorem establishes a performance guarantee.

Proposition V.4 Let x*, y* be an optimal solution of the MILP	in	Figure	1	with	corresponding	optimal	
value e*.	Place	clusterheads	according	 * *{ | 1}k kY B x= =  and for every (i, j) select one clusterhead with 

Figure	4.	Iterative	feasibility	algorithm
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index *
ijk  so that *

* 1
ijijk

y = . Then, the worst case probability of error for the decision rule described in the 
beginning of this section, ( ),e opt

nP  ,	satisfies

( ), *1limsup log e opt
n

n
P

n→∞
≤ −  .        (43)

Proof:	Recall the results of Theorem. IV.1 and Propositions IV.6 and IV.7 for the case where dijk is de-
fined either by (4), (15), or by (17), respectively. Define ( , )i j  as in the previous section. The clusterhead 
with index *

ijk  will use the GLRT which compares 
*

*
ij

( ),
 jk

( )ijk n
i

X y   to  *
ijijk

d , thus, achieving a maximum 
probability of error with exponent no smaller than *

ijijk
d . Now, for every i and j ≠ i define En(i, j) as the 

event that the GLRT employed by the clusterhead at *
ijk

B  will decide Lj under 
i

P . For all 0n >  and large 
enough n we have 

**( )
( )[error] [ ( , )] ( 1)

nijkij n

i i

n d
n

nj i
j i

P P E i j e N e
− +

− +

≠
≠

≤ ≤ ≤ −∑

 .

The 2nd inequality above is due to Thm. IV.1 or Props. IV.6, or IV.7 and the last inequality above is 
due to (27). Since the bound above holds for all I we obtain (43).    █

LOcALIZATION DEcIsIONs

In this section we consider the implementation of the decision rule described in the previous section. 
We assume that the WSN has a single gateway. We seek to devise a distributed localization algorithm 
in order to minimize the information that needs to be exchanged between clusterheads and the gateway. 
The primary motivation is that in WSNs communication is, in general, more expensive than processing. 
For the remainder of this section we will assume that the clusterheads and the gateway form a connected 
network. Otherwise, one can simply add a sufficient number of relays.

Figure	5.	Two-phase	iterative	feasibility	algorithm
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centralized Approach

We first describe a naive, centralized, approach. Every clusterhead observes ( ), ( ) ( )
1( , , )k n k k

ny y y=   and 
transmits this information to the gateway. The clusterheads do not need to store anything and perform 
no processing; they are simple sensors that transmit their measurements. Letting S1 the message size 
(in bits) needed to encode the measurement ( )k

ly  , for some l, the total amount of information that needs 
to be transported is O(S1nK) bits. Each one of these bits has to be sent over multiple hops to reach the 
gateway; in the worst case over K hops. Thus, the worst case communication cost is O(S1nK2) bits. Once 
this information is received, the gateway can apply the decision rule discussed in the previous section 
to identify the region at which the sensor in question resides.

Distributed Approach

In this subsection we describe a distributed implementation for the decision rule. We start with an arbitrary 
pair of regions, say L1 vs. L2. The clusterhead at *

1,2k
B  based on the observations *

12( ),k ny  uses the GLRT to 
make the decision; let 

1l
L  be the hypothesis accepted. The clusterhead at *

1,2k
B  sends the information that l1 

is accepted to the clusterhead at *
,31lk

B  which follows up with the decision 
1l

L  vs. L3, and so on and so forth. 
Let now 

il
L  denote the hypothesis accepted at stage i of the algorithm, for i	=	1,…	,N	−	1, where we set 

l0 = 1. At the i-th stage, the clusterhead at *
,( 1)1l iik

B
+−

 makes the decision 
1il

L
−
 vs. Li+1 and sends the result to 

the clusterhead at *
,( 2)l iik

B
+

, where the clusterhead at *
,( 1)1l NNk

B
+−

 is the gateway. All in all this procedure takes 
N−1 stages and 

1Nl
L

−
 is the final accepted hypothesis.

Each clusterhead is responsible for a set of region pairs and needs to store the corresponding pdfs 
and thresholds dijk as well as the necessary information to decide where to forward its decision. At every 
stage i = 1,	.	.	.	,N−1 it takes O(n) work to perform the GLRT, yielding an overall O(nN) processing 
effort distributed to the K clusterheads. In terms of communication cost, N−1 messages get exchanged 
each consisting of O(logN) bits needed to encode the decision. Each of these messages can, in the 
worst case, be sent over O(K) hops if two distant clusterheads need to communicate, yielding an overall 
worst case communication cost of O(KN logN). However, one can sequence the regions in such a way 
that geographically close regions are close in the sequence. As a result, it will often be the case that 
clusterheads responsible for region pairs close in the sequence will be geographically close resulting 
in messages between clusterheads traveling a few hops. It follows that the overall communication cost 
will often be O(NlogN). 

Based on the preceding analysis, Table 1 compares the centralized and distributed approaches. In 
the distributed case we report both the best and worst case in terms of the communication cost based on 
the discussion in this subsection. Some observations are in order. The total processing cost is the same 
for both approaches but in the distributed case the work is distributed among the K clusterheads. To 
compare the communication costs note that typically K = O(N) to ensure reasonable performance (e.g., 
one clusterhead for a fixed number of regions). Moreover, S1 is the message size for the raw measure-
ments at a clusterhead corresponding to a packet sent from the transmitting sensor, while n can be large 
enough (e.g., 20-30) so that the probability of error becomes small enough. It follows that O(NlogN) is 
much preferable to O(S1nK2).

Note that both the centralized and the distributed approach guarantee the performance of the system 
obtained in Prop. V.4, i.e., the savings from the distributed approach come with no performance loss.
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TEsTbED AND EXPERIMENTAL REsULTs

Next, we provide experimental results from a localization testbed we have installed at Boston University 
(BU) see Figure 6. We have appropriately named our system the Boston	University	Statistical	Localiza-
tion System (BLoc) (http://pythagoras.bu.edu/bloc/index.html). The testbed has a web interface through 
which one can poll a specific WSN node (identified by an ID). The system responds with a building 
floor map like the one shown in Figure 7 highlighting the room number and the region where the node 
was found.

The testbed uses MICAz motes manufactured by Crossbow Inc. We covered 16 rooms and corridors 
and defined 60 regions. Within each region we placed a mote on some furniture or on the wall. These 60 
positions make up the set B of possible clusterhead positions. Hence, in our testbed N = M = 60 and Bj 
can be thought as the center of Lj . All 60 motes are connected to a base MICAz through a mesh network. 
The base mote is docked on a programming board which is connected to a laptop acting as a server.

The experimental validation of our localization approach can be divided into the five phases outlined 
in Figure 8. Phase 1 can be carried out automatically by scheduling the motes so that when one is broad-
casting the others are listening. For Phase 2 we construct our pdf databases by measuring 200 packets 
for each pair of motes sent over two frequency channels and with two different power levels. The pdfs 

Table	1.	Comparing	the	centralized	and	distributed	approaches

Figure	6.	Floor	plan	for	the	bestbed
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were estimated by histograms, and for each pdf we define an interval ˆ̂[ , ]jk jk jk jkm m m m− +  and select 
points θj,1,…, θj,R in this interval. We construct the family ( ) |

{ ( ), }k
j

j jY
P y ∈Ω  so that the l-th member 

has the same shape as ( ) |
( )k

jY B
P y  but a mean equal to θj,l, for l = 1,…,R. ˆ jkm  is selected appropriately so 

that the union over j, k of the intervals ˆ̂[ , ]jk jk jk jkm m m m− +  is maximized and there is no overlap. In the 
optimal placement obtained in Phase 4 we used 12 clusterheads to achieve a small enough probability 
of error and have some built-in redundancy in the clusterhead network.

We obtained results for three versions of the localization system. We made 100 localization tests in 
positions spread within the covered area. Each test used 20 packets (RSSI measurements) broadcasted 
by the mote to be located (5 over each channel and power level pair for the 2F2P cases described below). 
In Version 1 the mote we want to locate transmits packets at a single frequency and a single power 
level and the system uses the GLRT (we write 1F1P − G to indicate Ver. 1 in Figure 9) to determine the 
region where the mote resides based on RSSI observations at the clusterheads. In Version 2 (denoted 
by 2F2P −G) RSSI observations are made for packets transmitted in two different frequencies and 
two different power levels and the GLRT is again used. Version 3 (denoted by 2F2P − L) is identical to 
Version 2 but the LRT rather than the GLRT is used where every region is represented by just the pdf 
observed in Phase 1 (rather than a pdf family). For each Version 1–3 results are reported in Figure 9(a)–
(c), respectively. In each of these figures we plot the histogram of the error distance (in inches) based 
on 100 trials. If the system identifies region Lj as the one where the transmitting mote is located then 
the error distance is defined as the distance between the transmitting mote and Bj . For each system we 
also report the corresponding mean error distance ( eD ). We stress that for each trial the location of the 
transmitting mote is randomly selected and is almost never the one at which RSSI measurements have 
been made in Phase 1.

Figure	7.	A	sample	response	from	BLoc

Figure	8.	Phases	of	the	experimental	validation
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The results show that the 2F2P−G system, which exploits frequency and power diversity, outper-
forms the 1F1P−G system. Clearly, RSSI measurements at multiple power and frequency levels contain 
more information about the transmitter location. Also, the 2F2P−G system outperforms the 2F2P −L 
system which uses the standard LRT decision rule. This demonstrates that, as envisioned, the GLRT 
provides robustness leading to better performance. The issue with the LRT is that a single pdf can not 
adequately represent a relatively large region. We also note that the total coverage area was 5258 feet2, 
that is, about 87 feet2 per region. With a mean error distance of eD = 8 feet the mean area of “confusion” 

Figure	9.	Results	for	various	versions	of	the	system
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was 82 = 64 feet2. From these results it is evident that we were able to achieve accuracy on the same 
order of magnitude as the mean area of a region. That is, the system was identifying the correct or a 
neighboring region most of the time. Put differently, we can say that the achieved mean error distance 
is about the same as the radius of a region, defined as radius = area (for our experiments 87 = 9.3 
feet which is in fact larger than the mean error distance of 8 feet). We used a clusterhead density of 1 
clusterhead per 5258/12 = 438 feet2. Note that our system is not localizing based on “proximity” to a 
clusterhead; one clusterhead corresponds to about 5 regions thus resulting in cost savings compared to 
proximity-based systems that need a higher density of observers.

For comparison purposes, we also used the same testbed and the exactly same tests with the stochastic 
trilateration method of (Patwari et al. 2003). (Patwari et al. 2003) assumes that the RSSI (in db) at Bk 
when the mote at Bj is transmitting, say ( ) | jY k B , is a random variable with a Gaussian distribution. The 
mean of RSSI satisfies the path loss formula ( )

0 10 0| 10 log ( / )k
j p kjY B Y n= − , where zij is the distance 

between Bk and Bj and z0 is a normalizing constant. From prior measurements we obtained np = 3.65 and 
Y0 = −48.62 dBm for z0 = 3 feet. The location estimation is obtained by maximum likelihood estima-
tion. Applying this method and using our clusterheads in the exactly same position as before resulted 
in a mean error distance of 341.72 inches (29 feet) which is much larger (a factor of 3.6) than the 8 feet 
obtained by our method.

These results raised the question whether smaller regions can lead to better accuracy. To that end, 
we placed 12 motes on a table (two rows of 6 motes each). Two neighboring motes in one row (or in one 
column) were 6 inches apart. We defined a 36 inches2 region around each mote and followed the exactly 
same procedure as before. The results of this “small scale” localization experiment are in Figure 9(d)–
(f). As before frequency and power diversity improve performance. Here, however, the GLRT does not 
make a difference compared to LRT and this is because every region is small enough. With the LRT 
we can achieve a mean error distance of 9.26 inches, that is, we can again achieve an accuracy on the 
same order of magnitude as the mean area of a region.

cONcLUsION

We have presented a unified robust and distributed approach for locating the area (region) where sensors 
of a WSN reside. We posed the problem of localization as a multiple hypothesis testing problem and 
proposed a combined LRT- or GLRT-based decision rule depending on the appropriate probabilistic 
characterization of a region.

We developed asymptotic results on the type I and type II error exponents which are critical in posing 
and solving the problem of optimally placing a given number of clusterheads to minimize the probability 
of error. We devised a mixed integer linear programming formulation to determine the optimal clusterhead 
placement, and a fast algorithm for solving it. We evaluated the scalability of the proposed MILP as well 
as the quality of the resultant placement. Our implementation of the proposed fast algorithm shows that 
the proposed MILP is capable of solving realistic problems within reasonable time-frames. Furthermore, 
we proposed a distributed approach to implement our localization algorithm and demonstrated that this 
can lead to savings in the communication cost compared to a centralized approach.

We validated our approach using testbed implementations involving MICAz motes manufactured 
by Crossbow. Our experimental results demonstrate that a combined LRT- and GLRT-based system 
provides significant robustness (and improved performance) compared to a simpler LRT-based system. 
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Furthermore, our approach leads to significantly improved accuracy compared to a stochastic trilatera-
tion technique like the one in (Patwari et al. 2003). We showed that we can achieve an accuracy on the 
same order of magnitude as the mean radius, which is the best possible accuracy one can achieve with 
a discrete system. As a result, smaller regions (and more clusterheads) lead to better accuracy but at 
the expense of more initial measurements (training) and a higher equipment cost. This provides a rule 
of thumb for practical systems: define as small regions as possible given a tolerable amount of initial 
measurements and cost.
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AbsTRAcT

In	this	chapter,	the	authors	concentrate	on	signal	strength-based	localization	in	indoor	wireless	networks,	
with	emphasis	on	802.11	networks.	The	authors	briefly	summarize	some	architectures	and	approaches	
researchers have taken to address this problem. They then present some insight into theoretical limits 
to location accuracy, and identify that the issues driving research work in this area will not only be 
location accuracy but other factors like deployment ease, management simplicity, adaptability, and cost 
of	ownership	and	maintenance.	With	this	insight,	they	present	the	LEASE	architecture	for	localization	
that	allows	easy	adaptability	of	localization	models.	The	chapter	discusses	the	use	of	Bayesian	networks	
for	localization	and	presents	a	zero-configuration	Bayesian	localization	algorithm	that	simplifies	the	
maintenance	of	the	model.	Although	presented	in	the	context	of	signal	strength-based	localization	in	
indoor environments, the concepts are general enough to be applicable to sensor, ad hoc, mesh, and 
infrastructure-based deployments. They conclude with some open issues.

INTRODUcTION

Indoor wireless networks, especially 802.11-based wireless systems, are increasingly being deployed. 
Looking beyond simple untethered network access, services based on end-user location information 
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provide compelling benefits, and in some cases satisfy regulatory concerns. Examples of such services 
include location-aware content delivery, emergency location, presence-enabled applications, services 
using location-based resource management, and location-based access control. 

The techniques used for localization will depend on the constraints imposed on the problem, and the 
underlying technology being used. For example, base stations in outdoor wireless (e.g., cellular) networks 
are controlled by the service provider and have specialized hardware and software. The endpoints may 
have service provider-specific software as well. In contrast, indoor wireless networks are built using 
off-the-shelf components (e.g., access points) and endpoints that are more open (e.g., laptops). Clearly, 
these two environments present different constraints for localization, and hence the architecture and 
techniques needed for localization in these environments would differ.  Sensor networks usually consist 
of low-power, low-bandwidth components and these impose additional constraints on the techniques 
employed.

Localization is of value in both wired and wireless environments. In this chapter, we concentrate 
on wireless localization, and more specifically on indoor wireless environments. A commercially at-
tractive option for localization in some scenarios is the Global Positioning System (GPS). Usually, GPS 
technology works well outdoors but has problems in indoor environments. Furthermore, GPS receivers 
form a closed platform and are co-resident with the device being located. In typical indoor environ-
ments, the devices used are general-purpose and do not necessarily have GPS receivers. Therefore, we 
look at localization aided by the wireless technology itself, namely the classes of techniques that can be 
used in radio networks. We then concentrate on localization in indoor wireless networks, specifically 
networks based on IEEE 802.11. 

In radio networks, four classes of techniques have generally been used for localization, as depicted 
in Figure 1. These techniques are based on different features of the radio signal: angle of arrival, time 
of arrival, time difference of arrival, and received signal strength. The first is a technique using angles 
or an angulation technique. The other three are based on distances and thus are lateration techniques. 
With each technique, the location may be obtained directly by employing geometry, by using scene 
analysis techniques, or by probabilistic methods. These techniques have been used in many application 
contexts, e.g., navigation, radar, cellular communication systems, and robotics. An overview of the ap-
plication of these techniques and others for indoor localization can be found in Hightower and Borriello 
(2001) and Pahlavan et al. (2002). An overview of localization in CDMA cellular systems is available 
in Caffrey and Stuber (1998).

Some of the techniques mentioned above require capabilities not typically found in off-the-shelf 
components used in indoor wireless communications. In general, time-of-arrival and time-difference-
of-arrival techniques require an accurate time reference. This is usually available in systems such as 
cellular communications since an accurate time reference is needed for proper communication as well. 
Special equipment – such as multiple directional antennas or an antenna with a steerable beam – is 
needed to measure the angle of arrival. Other systems such as Cricket described in Priyantha et al. 
(2000) require special co-located radio and ultrasound transceivers. 

Our emphasis in this chapter is on localization in indoor wireless networks, and specifically, techniques 
for localization in 802.11-based wireless networks. As mentioned earlier, the capabilities mentioned above 
are not available in typical off-the-shelf components used for indoor wireless networks. For example, 
with 802.11 systems the typical time reference available is of the order of 100ns1, which is insufficient 
for accurate location based on time of arrival or time difference of arrival. The special requirements 
for localization via angle of arrival, time of arrival, and time difference of arrival methods make signal 
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strength-based approaches more attractive for indoor wireless localization. In signal strength-based 
localization, the received signal strength measurements from several transmitters are used as the basis 
for localization. The topic of signal strength-based localization has seen a lot of interesting work and 
many techniques have been proposed, experimentally verified (e.g., in Bahl and Padmanabhan (2000a), 
Krishnan et al. (2004), Ladd et al. (2002),  Prasithsangaree et al. (2002), Roos et al. (2002), Saha et al. 
(2003), Youssef et al. (2003)), and analytically studied (e.g., in Elnahrawy et al. (2004), Krishnakumar 
and Krishnan (2005), Malaney (2004)). 

The rest of the chapter is organized as follows.  First, we provide an overview of the various tech-
niques used for wireless localization. We then concentrate on signal strength-based localization, and 
discuss both experimental techniques and theoretical work in this area. Other issues that are important 
in practice, including deployment and maintenance cost, and research work addressing these concerns 
are considered next. We conclude with open issues.

LOcALIZATION IN WIRELEss NETWORKs: A bRIEF OVERVIEW

Localization is a much-studied topic in the context of radar, cellular WAN and many other technolo-
gies. Even if we restrict ourselves to indoor localization, there are many approaches to the problem, as 
surveyed in Hightower and Borriello (2001), Nerguizian et al. (2001) and Pahlavan et al. (2002). While 
most of this chapter concentrates on signal-strength based localization techniques, it is instructive to 
briefly understand systems based on other approaches: specifically, time of arrival, angle of arrival, time 
difference of arrival, and proximity and we present them in this section. 

Figure	1.	Different	techniques	used	for	wireless	location
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All the work described in subsequent sections focuses on localization in a plane.  In many practi-
cal situations, one would like to have at least a quantized estimate of location in the third dimension.  
Although this issue has not been studied extensively, we outline some initial attempts at dealing with 
this in a later section.

systems Using Time of Flight

Global Positioning Satellite (GPS) navigation system is a very well-known example of localization sys-
tems. This system uses the time-of-flight of radio signals to perform lateration. Its performance indoors 
can be problematic due to signal propagation issues. When used outdoors, GPS provides an accuracy 
of 1-5 meters (only with differential correction; see e.g., USDOT (2002) and Moore et al. (2002)) over 
95% of the time. In this chapter sequel, we use “accuracy of x units (y %)” to indicate an accuracy of x 
units y % of the time. The time of flight approach is difficult to use in indoor wireless systems due to a 
lack of an accurate time reference in commercially available network interface cards. For example, as 
pointed out earlier, with 802.11 wireless systems, the typical time reference available is of the order of 
100ns, which is insufficient for accurate location based on time of arrival or time difference of arrival. 
However, in Günther and Hoene (2005), the authors present a technique to increase the resolution by 
using multiple delay measurements and applying statistical techniques to improve the accuracy.

systems Using Angle of Arrival

Obtaining angle-of-arrival information requires directional antennas or advanced signal processing. This 
is usually not available in typical off-the-shelf mobile terminals. The use of angle-of-arrival information 
indoors is also problematic due to the effects of multipath propagation. There may be situations where 
the signal that is registered is not the direct, line-of-sight signal, but a reflected one. This could introduce 
significant error in the location measurement. However, this technique can be and is used outdoors with 
satisfactory results. Some examples are emergency E911 service in North American wide-area cellular 
systems and VHF omnidirectional ranging used in flight navigation. An indoor positioning system 
using angle of arrival is described in Niculescu and Nath (2003). Based on simulations, they report 
positioning error as a fraction of communication range and as such it cannot be directly compared with 
experimental results reported for other methods.

systems Using Time Difference of Arrival

A good example of a system using time-difference-of-arrival information is the Long Range Navigation 
(LORAN) system (see Sonnenberg (1988)) used by ships and aircraft. This was the main navigation 
system used by marine craft before the advent of GPS navigation systems. If the position of two LORAN 
transmitters is known, then the receiver is positioned somewhere on a hyperbolic curve between the 
transmitters where the time difference of received signals is constant. Using another pair of transmit-
ters with at least one different transmitter, the position can be determined as the intersection of two 
hyperbolic curves.  The Active Bat system described in Harter et al. (1999) employs time difference of 
arrival in a different fashion than above to compute ranges and perform multi-lateration. In this system, 
the entities to be tracked carry tags that emit an ultrasonic pulse to a grid of ceiling mounted receivers. 
This pulse is sent as a response to a request sent by a controller using radio frequency signals. When 
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the controller sends a request to the tag, it simultaneously sends a reset signal to the ceiling receivers 
using a wired network. The ceiling receivers use the time between the reset signal from the controller 
and the ultrasound signal from the tag to compute a range value to the tag. These are then sent to the 
controller, which then performs multi-lateration. This system has an accuracy of  9cm (95%). The Cricket 
system described in Priyantha et al. (2000) is similar, but does not require ceiling-mounted receivers 
or a central controller. The mobile terminals act as receivers and also perform timing and computation 
functions. In their evaluation, the Cricket system estimates location within a 4ft x 4ft (1.2m x 1.2m) 
cell every time.

systems Using Proximity

One of the earliest reported indoor location systems is the Active Badge system described in Want et al. 
(1992). This system used mobile diffuse infrared transmitters and a fixed grid of receivers. There is no 
angulation or lateration involved; location is determined via proximity. It locates objects at the granularity 
of the size of a typical room. Many commercially available avalanche transceivers (see e.g., EN282:1997 
(1997)) used by backcountry skiers are also based on proximity information. Another example of a 
proximity-based location system is the RFID system, which is becoming increasingly popular. These 
systems use an RFID tag, active or passive, on the entity being tracked. An active tag can transmit its 
ID when in the vicinity of an RFID reader. When a passive tag is in the vicinity of reader, it reflects the 
incident RF energy with its own ID information superimposed on it. This information can be used to 
infer the location of the tagged terminal. These tags can be usually read from a range of 3ft (0.9m) for 
passive tags to 20ft (1.6m) for active ones. 

sYsTEMs FOR AD HOc AND WIRELEss sENsOR NETWORKs

It is instructive to understand, at a high level, the general principles used in localization in wireless sen-
sor networks.  Wireless sensor networks are a special class of ad hoc networks and have been an active 
area of investigation and continue to be so. The interested reader is referred to the survey in Akyildiz 
et al. (2002) for an introduction. These networks typically operate in environments where there is no 
available infrastructure and it is desirable to minimize centralized processing and control. In these 
systems, all mobile terminals have similar sensors and processing capabilities. In such environments, 
localization techniques that do not depend on an infrastructure are needed. By exchanging information 
with their neighbors and engaging in distributed computing, the mobile terminals converge to an esti-
mate of nearby objects’ positions. These techniques use some combination of proximity, triangulation, 
and scene analysis.

There is a wealth of literature on localization in wireless sensor networks that is beyond the scope 
of this chapter. What follows is a brief introduction to this substantial literature. 

Systems using proximity have been described in Bulusu et al. (2000). In that paper, it is assumed 
that there are a fixed number of reference nodes arranged in a regular mesh which transmit a periodic 
beacon signal with period T.  These nodes have an overlapping coverage region.  The localization tech-
nique is based on connectivity. The beacon transmissions of the reference nodes are synchronized such 
that there is exactly one beacon from each reference node in any time interval T.   A node listens for a 
specified time interval t and computes a connectivity metric that is the ratio of the number of beacon 
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transmissions heard from a reference node to the total number of beacons transmitted by that node in 
that interval.  If this ratio exceeds a threshold, then that reference node is considered connected to the 
node being localized.  The location of the node is then computed as the centroid of the locations of all 
the reference nodes that are connected to this node.

A more general method using connectivity-induced constraints is due to Doherty et al. (2001). This 
method removes the constraint of a regular mesh for reference nodes and introduces a more generic 
constraint model.  As before, the locations of a few reference nodes are assumed to be known. If two 
nodes are in communication, the distance between them is constrained to be less than or equal to the 
radio range of the terminals. Given the known locations and the communication graph (i.e., who can hear 
whom), the problem of localization is converted to a feasibility problem of satisfying all the constraints 
imposed by the communication graph. This formulation requires centralized processing. 

Unlike the systems considered above, the SpotON system described in Hightower et al. (2000) uses 
lateration based on measured distance between low-cost radio tags where the measurement is based 
on received signal strength information. The use of received signal strength for localization will be 
elaborated in the rest of the chapter.  Some other examples of localization systems for wireless sensor 
networks may be found in Albowicz et al. (2001), He et al. (2003), and Savvides et al. (2001).

UsING REcEIVED sIGNAL sTRENGTH FOR LOcALIZATION

Our emphasis in this chapter, as described earlier, is signal strength-based localization. We now outline 
the general principles used in signal strength-based localization and categorize techniques to help in 
understanding them.  It is to be noted that these principles apply as well to systems using signal strength 
for localization in wireless sensor networks.  In this case, some of the sensor nodes are at known loca-
tions, thus taking on the role of access points in indoor WLAN environments.  In the sequel, it is to be 
understood that wherever there is a reference to access points, it could be substituted by transmitters 
in a sensor network.

Please refer to Figure 2 for an explanation of terms used in this section. The access points (or sensor 
transceivers) are marked as APi. The profiled signal strength vector at location i is si whose components 
are the received signal strengths (a deterministic value or a random variable with a specified distribu-
tion) from the different access points. For example, si,1 is the received signal strength at location i from 
the access point AP1. 

We classify localization techniques along two dimensions:  one is based on the nature of the computa-
tional technique used and the other is based on where the measurements are collected.  More specifically, 
computational techniques are classified as deterministic or probabilistic while measurements may be 
collected at the client or by the infrastructure. We elaborate on these classifications below. 

Deterministic and Probabilistic Techniques

In one approach, the received signal strength measurements can be used to determine the range to the 
transmitter (based on propagation models) and then for localization via multi-lateration. Another ap-
proach is to build an a priori radio signal strength map of the region under consideration and determine 
location based on the measured signal strengths using some optimization criterion. For example, the 
minimum euclidean distance in the signal-strength vector space can be used as the optimization criterion 
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as described in Bahl and Padmanabhan (2000a). We call such techniques deterministic. As described in 
Rappaport (1996), the received signal strength is a random process that may be modeled by a log-normal 
distribution. Based on this fact, many probabilistic approaches have been proposed. In these approaches, 
a signal strength probability distribution based on profiling measurements is determined on a lattice of 
locations superimposed upon the area under consideration. When attempting to determine the unknown 
location of a terminal, the received signal strength measurement is estimated using probabilistic methods 
such as maximum likelihood estimation. Instead of profiling, it is possible to postulate a propagation 
model and estimate the posterior distribution of the parameters and the location based on the measure-
ments and a specified prior distribution. All such techniques may be termed probabilistic.

1. Deterministic techniques: One example of deterministic techniques is RADAR described in Bahl 
and Padmanabhan (2000a). Earlier, Christ and Godwin (1993) proposed a conceptually similar 
technique using custom hardware and non-802.11 radios. In RADAR, the area under consideration 
is divided into cells and a radio profile is obtained. The radio profile assigns a signal strength 
vector to each cell; the components of the vector are the measured received signal strengths from 
fixed radio access points. To determine the location, various flavors of nearest neighbor algorithms 
are employed. In Bahl and Padmanabhan (2000a), a multi-lateration approach is also described. 
In this approach, the profiling data is used to compute the parameters of a propagation model. 
The computed model is used to convert received signal strength measurements into range values. 
Subsequently, multi-lateration is used to estimate the location. The authors report an accuracy of 
2.9-4.3m (50%).

Figure	2.	Basic	elements	of	analysis	based	on	received	signal	strength
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2. Probabilistic techniques: Several types of probabilistic techniques have been proposed in the 
literature. One class of techniques requires profiling; see for example, Ladd et al. (2002). In this 
approach, signal strength measurements are made for profiling purposes. However, each cell is as-
signed a probability distribution for the signal strength values instead of a single vector value. The 
measured signal strength value and the prior distributions are then used to compute a maximum 
likelihood estimate of the location. Other estimators could also be used, e.g., the mean value of 
a Bayesian posterior distribution (based on an assumed prior distribution for the location). Other 
probabilistic approaches may be found in Abnizova et al. (2001) and Myllymäki et al. (2001). A 
system using probabilistic techniques is the HORUS system described in Youssef and Agrawala 
(2005), Youssef et al. (2003), and Youssef and Agrawala (2004a), which has as its goals high ac-
curacy and low computation. Location clustering is used to reduce computational burden. This 
system addresses the causes of wireless channel variations to improve accuracy. Signal strength 
distributions instead of single values are used in its radio map. The reported accuracy of the sys-
tem in Youssef et al. (2003) is 7ft (2.1m) (90%) and 3.5ft (1.1m) (50%). In Youssef and Agrawala 
(2004b), an argument is provided to show that probabilistic techniques can provide better accuracy 
than deterministic ones.

Another class of probabilistic techniques does not require any prior profiling. In this case, measure-
ments from multiple terminals are used to estimate all their locations simultaneously. This is done by 
assuming a parameterized propagation model and estimating both the parameters of the model and the 
locations of the terminals simultaneously. This technique has the added advantage that it automatically 
adapts to changing radio environments. Recently, the use of Bayesian networks to perform this compu-
tation has been reported in Madigan et al. (2005). An earlier example of the use of Bayesian networks 
for location is the Nibble system described in Castro et al. (2001). Nibble was used only to localize the 
radio terminal at room-level granularity as opposed to a more accurate estimate of the actual location 
described in Madigan et al. (2005). Also, Nibble locates terminals individually whereas the method in 
Madigan et al. (2005) estimates the location of multiple terminals simultaneously.

client- vs. Infrastructure-based systems

Another way to group the techniques is based on where the signal strength measurements are made: at 
the terminal being located or at other terminals in the network, e.g. sensors, sniffers or access points. 
We call these client-based and infrastructure-based techniques respectively. 

In this grouping, techniques such as RADAR and those described in Ladd et al. (2002), Myllymäki 
et al. (2001) will fall into the client-based group. An infrastructure-based system called LEASE was 
described in Krishnan et al. (2004) and further developed in Ganu et al. (2004), and is outlined in a later 
section. Note that most infrastructure-based techniques can be deployed as client-based techniques. 
Similarly, several client-based techniques can be adapted to be infrastructure-based. The main issue in 
such adaptations is the amount of data needed by the technique to build its models.

In Table 1, we present a 2 x 2 matrix that groups some of the reported techniques based on received 
signal strength measurements according to these two classifications: deterministic/probabilistic and 
client-based/infrastructure-based.
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LOcALIZATION AccURAcY 

As pointed out earlier, the fact that received signal strength (RSS)-based techniques can be implemented 
using existing hardware (off-the-shelf) makes them extremely attractive, leading to significant research 
in RSS-based localization. Even though signal strength measurements are available for “free,” they are 
not the easiest to use. Multi-path propagation in indoor environments makes working with signal strength 
measurements challenging. The terminals and associated network cards are also heterogeneous, adding 
to the complexity of the problem. There is also the issue of the correct metrics to use when analyzing 
location accuracy. For example, is distance error the correct metric? Or, is it a room level accuracy that 
is desired? Notwithstanding these issues, the median estimation error has traditionally been popular 
amongst researchers in experimental studies of localization. 

Several techniques have been proposed and experimentally evaluated for localization using signal 
strength. For example, as mentioned earlier, the RADAR system from Bahl and Padmanabhan (2000a) 
exhibited a localization accuracy of 2.9-4.3m (50%) and Youssef et al. (2003) reported an accuracy of 
7ft (2.1m) (90%).  The accuracy of the LEASE system from Krishnan et al. (2004) was 7-15ft (2.1-4.5m) 
(50%).  However, these studies were done in different experimental environments.  

Recently, some interesting studies have compared various techniques on the same experimental test 
bed (see Elnahrawy et al. (2004) and references therein). A noteworthy observation was presented in 
Elnahrawy et al. (2004): over a range of algorithms, approaches, and environments, there appeared to 
be limits to achievable localization accuracy. In particular, a median localization error of 10ft (3m) and 
97th percentile of 30ft (9.1m) was generally observed. More specifically, the focus in Elnahrawy et al. 
(2004) is on area-based algorithms that trade accuracy (the likelihood that an object is within an area) for 
precision (the size of the returned area). The authors present and evaluate three area-based algorithms, 
determining accuracy and precision at the distance and room level. Using data from two sites (a university 
building and an industrial setting), they show that a wide range of area-based algorithms have similar 
fundamental performance. They then compare against point-based algorithms – specifically choosing 
the algorithms from Bahl and Padmanabhan (2000a) and Roos et al. (2002) (with some possible vari-
ants) as representative of deterministic and probabilistic strategies respectively. A key result was that 
the proposed area-based and chosen point-based techniques had “striking similarity” in performance 
graphs (apart from some Bayesian techniques that had lesser localization accuracy).

Client-based Infrastructure-based

Deterministic Bahl and Padmanabhan (2000a) – RADAR
Prasithsangaree et al. (2002) Krishnan et al. (2004) – LEASE 

Probabilistic

Youssef et al. (2003)
Youssef and Agrawala (2004a) – HORUS
Madigan et al. (2005) – Bayesian Nets
Abnizova et al. (2001)

Madigan et al. (2005) – Bayesian Nets
Castro et al. (2001) - Nibble

Table	1.	Grouping	of	localization	techniques
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To understand if there was something more fundamental that dictated the similarity in localization 
accuracy results, they studied uncertainty probability density functions along the x and y axes gener-
ated from their Bayesian network. The wide distributions observed, especially in the industrial data set, 
were indicative of a high degree of uncertainty, which they concluded was more fundamental rather 
than an artifact of the techniques alone. They also allude to results from Battiti et al. (2002) that found 
that a host of learning approaches had similar performance to maximum likelihood estimation (as in 
Roos et al. (2002)).

An interesting question raised by these studies is: “Is there any theoretical limit to the localization 
accuracy using techniques based on signal strength?”  To understand this, we present an analytical 
framework that tries to ascertain the attainable accuracy of such techniques.

ANALYTIcAL UNDERsTANDING OF sIGNAL sTRENGTH-bAsED 
LOcALIZATION

There is limited analytical work attempting to understand the fundamental issues governing localization 
accuracy. We present below a synopsis of technical work dealing with this issue. 

In Youssef and Agrawala (2004b), the authors developed an analytical framework for calculating the 
average distance error and the probability of error in location. They showed that probabilistic decision 
techniques can provide more accurate localization than deterministic ones, since unlike deterministic 
techniques, probabilistic methods can take into account that the signal strength vector is not always 
symmetric and identical at all locations. In Krishnakumar and Krishnan (2005), the authors analyzed 
the fundamental limits of the accuracy of localization using signal strength measurements. The received 
signal strength is a stochastic variable due to the effect of multi-path propagation. The main intuition in 
Krishnakumar and Krishnan (2005) was to recognize that a variation in measured signal strength due 
to change in location is indistinguishable from a variation due to shadowing. Hence, any decision rule 
will map a set of locations in the neighborhood of a point (x,y) to the point (x,y). Intuitively, this is the 
uncertainty in the location estimate caused by signal variance. The main idea was to define a quantity 
that captured this uncertainty in localization and derive an expression for this quantity under very gen-
eral assumptions by mapping uncertainty in signal strength space to location uncertainty in the (x,y) 
plane. Various features of uncertainty were then analyzed, and also specifically for a log-linear radio 
propagation model. The lower bound derived matched favorably with experimental work providing an 
analytical explanation for the observations in Elnahrawy et al. (2004). We now provide more details of 
this work.

Theoretical Accuracy Limits 

Assume that a signal strength vector s of dimension n is used to locate a terminal. This vector can be 
determined, for example, from n access points, sniffers or sensors, depending on whether a client-based 
or infrastructure-based deployment is used. The received signal strength is a stochastic variable due to 
multi-path propagation. As explained in Rappaport (1996), the logarithm of the received signal strength 
can be modeled as a normal distribution around a mean value with variance si

2, ni ≤≤1 . The si can 
be different from the shadowing variance if filtered signal strength measurements are used. A common 
method to deal with short-term variations in signal strength due to fast fading is to use the median of a 
few uncorrelated measurements. It is reasonable to assume that the individual components of the sig-
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nal strength vector s are independent and that the mean signal strength at a location is a differentiable 
function over a region of interest. 

The approach in Krishnakumar and Krishnan (2005), summarized in Figure 3, is to define an 
a-region in location space such that the total probability that the observed signal strength is due to an 
emitter located at some point in the region is a. (There may be more than one such region satisfying the 
condition.) As shown in the figure, let T  be a mapping from location to mean signal strength. Restrict-
ing attention to the cases when T is one-to-one (e.g., when propagation loss is a monotonic function of 
distance from the emitter as with inverse exponential propagation functions) and when signal variance 
distribution is symmetric, we can compute the characteristics of the a-region in location space by map-
ping it to the signal space and then back to the location space. 

To do this, one first computes the characteristics of the hypervolume in signal strength space centered 
on the mean signal strength vector that encloses a probability mass of a. It is shown that the hypervol-
ume is a hyperellipsoid with semi-axes Rnσi, where Rn is a scaling factor related to the confidence level a. 
This relationship is given by

( )
( )2/

2/,2/ 2

n
Rn n

Γ
Γ

= ,

where Γ( · , · ) is the incomplete gamma function. Given a and n, the equation above can be used to 
compute Rn. (Details of this derivation appear in Krishnakumar and Krishnan (2005), Appendix II.)

Clearly, there is a mapping between location and mean signal strength. In practice, for signal strength 
estimation techniques to work, this mapping has some properties; e.g., each location maps to a mean signal 
strength vector. Using the nature of the region in signal strength space as derived earlier, the analysis 
then derives the structure of the uncertainty in location. In particular, it is shown that the uncertainty 
region in the (x, y) plane is an ellipse whose equation is 022 =+++ dcxybyax , where

Figure	3.	Mapping	uncertainty	in	signal	strength	space	to	uncertainty	in	location
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and T = {ti,j} is the Jacobian of the mapping T  from location to mean signal strength measurements. The 
mapping T is an n x 2 matrix. In particular, xst ii ∂∂= /1, , and yst ii ∂∂= /2, , where si is the ith component 
of the signal strength vector s.

Properties of the Uncertainty Region

Several interesting properties of the uncertainty region can be determined once its structure is known. 
The semi-major axis, semi-minor axis and their geometric mean are quantities of interest. In Krishna-
kumar and Krishnan (2005), they are defined to be the upper, lower, and mean uncertainty, respectively, 
and shown to be bounded quantities. The maximum uncertainty over the convex hull bounded by the 
access points for various configurations was studied assuming a log-linear radio propagation model. 
Several interesting characteristics that were observed are summarized here. For example, the variation in 
uncertainty when the APs (transmitters) are at the vertices of an equilateral triangle or a regular square, 
both inscribed in a circle of radius 100 units, is shown in Figure 4. The figures show the contours of 
equal uncertainty on the surface and their projections on the (x, y)-plane.

There are several open problems in understanding and analytically determining the properties of 
uncertainty in the region of the convex hull bounded by the APs. For example, it appears that there 
is at least one location of locally minimum uncertainty in the convex hull of the AP locations. Is this 
always so, and is an analytical expression for the location and values of such minima obtainable? Is 
there a provable number of such minima in the convex hull region? What happens when the APs are 
not uniformly located? And so on.

The expressions also led to other fundamental observations. For example, for confidence levels 
above 0.8 (i.e., a > 0.8) while keeping all other quantities unchanged, the uncertainty increases dispro-
portionately. Under simplifying assumptions, it is shown that uncertainty is proportional to the vari-
ance in signal strength. This dependence is important to understand because it is a factor that can be 
influenced by the localization algorithm. Several algorithms effectively reduce this variance to improve 
the localization performance. This may be achieved by using multiple samples as described in Bahl 
and Padmanabhan (2000a) and Krishnan et al. (2004), probabilistic techniques as described in Ladd 
et al. (2002) and Youssef et al. (2003), or autoregressive models as described in Youssef and Agrawala 
(2004a). The tradeoff between computational complexity and the method used for variance reduction 
must be understood when considering the use of a technique.

The deployment of APs or sniffers affects the attainable accuracy in determining location. It is, 
therefore, important to understand this relationship. The analysis example in Krishnakumar and Krish-
nan (2005) shows that if APs are added to the same area, the uncertainty decreases. However, if the 
area of coverage is increased while increasing the number of APs, the minimum uncertainty increases 
or remains stable in some cases. The evaluation of the variation of minimum uncertainty for different 
AP/sniffer placement strategies is an interesting open issue. Uncertainty is also related to the circular 
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probability; the reader is referred to Krishnakumar and Krishnan (2005) for more details omitted from 
this summarization.

Experimental Validation

It is instructive to use actual measurements from an indoor 802.11b network to calculate the parameters 
needed to compute minimum uncertainty. This was done in Krishnakumar and Krishnan (2005), where 
the computed minimum uncertainty was compared to the reported median errors in the experimental 
literature. Details may be found in the original reference. Considering an 802.11b network where 3 APs are 
located at the vertices of an equilateral triangle of side 150 ft (45.7m), the minimum uncertainty location 
is at the centroid of the triangle and is computed to be approximately 4.5ft (1.4m), using non-preprocessed 

Figure	4.	Max.	uncertainty	(in	ft)	in	the	region	enclosed	by	n	APs;	a	=	0.75,	and	σi =	0.707,	∀i (reprinted 
with	permission	from	Krishnakumar,	A.S.,		and	Krishnan,	P.,	On	the	Accuracy	of	Signal	Strength-Based	
Location	Estimation	Techniques.	Proceedings	of	the	2005	IEEE	Infocom	Conference,	©	2005	IEEE).

n	=	3

n	=	4
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signal measurements to compute variance. This computed minimum uncertainty compares favorably 
with the reported median error values in the experimental literature, e.g., RADAR (≈ 2.9m) (Bahl and 
Padmanabhan (2000a)), LEASE (2.1 – 4.5m) (Krishnan et al. (2004)), HORUS (≈ 1.1m) (Youssef et al. 
(2003)). Therefore, the uncertainty appears to be a realistic indicator of the median error. The lower 
value using the probabilistic technique in Youssef et al. (2003) could be attributed to the preprocessing 
of the measurements leading to a lower signal variance and to the smaller distance between the APs. 
This corroborates in a different way some of the observations in Elnahrawy et al. (2004).  

Experimental results obtained from systems with widely varying parameters are difficult to compare. 
Elnahrawy et al. (2004) address this problem by comparing them on the same platform. An alternative 
is to evaluate the effect of the various algorithms on the raw parameters that feed into the uncertainty 
computation and determine how the lower bound will be affected as was done in Krishnakumar and 
Krishnan (2005).

An Analysis Using cramér-Rao bounds

Motivated by a security aspect of localization, a lower-bound on the variance of the position of a node 
in the 2-dimensional plane is derived in Malaney (2004). In the application considered by Malaney, 
terminals are equipped with a GPS system and report their location. However, the terminals may not 
be trusted to report accurate location information. The problem here is to verify if the supplied location 
information seems trustworthy, based on the network’s own internal signal strength measurements. The 
problem becomes one of verifying rather than determining the location of a terminal.

In trying to assess if a claimed location by a terminal is indeed feasible given the network’s signal 
strength measurements, Malaney used the Cramér-Rao bound to compute the lower bound on the lo-
calization variance. The location reported by the terminal, signal strength measurements made by the 
network, and the lower-bound on localization variance are then used to compute the confidence level 
of the location reported by the terminal. While the form of the analysis in Krishnakumar and Krishnan 
(2005) has parallels to the analysis in Malaney (2004) and Malaney’s analysis effectively computes a 
lower-bound on the localization accuracy, the use of the technique in Malaney (2004) is for different 
purposes and the two analyses are not the same. Malaney’s analysis technique is summarized here in 
the spirit of being another method to measure and use localization accuracy estimates that can also be 
used to evaluate localization estimators.

Specifically, in Malaney (2004), the author assumes the log-normal distribution for received signal 
strength. By then writing the expression for distribution of signal strength received at a point (x0, y0) from 
a node at position (xi, yi), Malaney derives an expression to calculate the terms of the Fisher information 
matrix. If b denotes ( )( )210ln/10k , where σ is the standard deviation of the shadowing (in dB), and k is 
the environment-dependent path-loss exponent, the Fisher matrix turns out to be:
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where di refers to the distance from the node of unknown position (x0, y0)  to a node of known position (xi, 
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Malaney then computes the inverse of the Fisher matrix, and the sum of the diagonal terms of this matrix 
provides the Cramér-Rao bound on the variance of the position of a node in the 2-dimensional plane. 
This quantity, 2

CR, is derived to be
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The estimate computed above is used to determine if a terminal is misrepresenting its location by 
verifying the best estimate of the actual position using the derived Cramér-Rao bound, and, more im-
portantly, figuring out how many standard deviations the terminal is away from its claimed position. It 
is assumed that authorized nodes could pick up the signal strength readings from the terminal and these 
could be employed by the algorithm for detecting violations.

MANAGING THE cOMPLEXITY OF DEPLOYMENT AND OPERATION

In addition to the aspects previously considered that focused on localization accuracy, there are other 
issues to be taken into account.  One such issue is the effect of model variation with environmental 
changes and the need to adapt the models to preserve localization accuracy.  Another is the cost and 
topology of deployment to obtain the best coverage at the least cost. The sections that follow expand 
upon these topics.

Adaptation to Environmental changes

In this subsection, the cost and complexity of building and maintaining the model in changing envi-
ronments is considered. Even in normal office environments, changing environmental, building, and 
occupancy conditions could have an effect on signal propagation models as observed in Bahl et al. 
(2000b). This variation could be due to environmental changes such as rearranged furniture, seasonal 
occupancy changes, or structural changes such as addition or removal of temporary walls. More rapid 
changes may be expected in dynamic environments such as an operational warehouse with moving 
forklifts. It is a challenge to keep the model adapted so that the results remain reasonably accurate. 
Moves, additions, and changes of transmitters may also require the model to be rebuilt. The models are 
difficult to maintain and update if purely static techniques are used. We discuss techniques to deal with 
this problem in this section. Additionally, as pointed out in Smailagic et al. (2001), profiling involves 
an upfront cost and effort to deployment, and adds to the complexity of maintaining the model. In this 
context, one seeks simple non-parametric models that can be built with little or no profiling and achieve 
localization accuracy comparable to techniques that profile the site extensively. This is discussed in the 
next subsection on zero profiling techniques. 

The complexity of building and maintaining the model was identified in Bahl et al. (2000b) and 
Smailagic et al. (2001). In indoor environments, multi-path propagation is accommodated by using an 
appropriate exponent in the inverse power law propagation model. This exponent has to be determined 
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experimentally. The exponent could change over time due to changes in the physical environment of 
the site. Even if a propagation model is not used explicitly, an equivalent underlying radio map has to 
be determined. This map is also time-variant as with the propagation model. Some techniques have 
been attempted to address this problem. In Bahl et al. (2000b), an appropriate model from a database 
of models was chosen based on the reference signal strength seen between access points. The model 
building problem was tackled to some extent in Smailagic et al. (2001) where a specific functional rela-
tionship between signal strength and distance was generated empirically for their site. In practice, the 
measured signal strength contours are usually anisotropic, unlike the circularly symmetric functions 
used in Smailagic et al. (2001). In Pandey et al. (2005), a client-assisted data collection scheme to ad-
dress the issue of dynamically updating the information needed for the radio profile is presented. Their 
system uses sniffers and client software to build a database of signal strength maps that are continually 
updated. 

The LEASE system to address the model adaptation issue was presented in Krishnan et al. (2004). 
The LEASE system comprises three main components: stationary emitters (SEs), sniffers, and a loca-
tion estimation engine (LEE). In Figure 5 we show a possible office site floor with some access points 
(APs/transmitters), SEs, and sniffers. The LEE can be located anywhere in the network. 

The SEs in the LEASE system are standard, inexpensive wireless transmitters that emit a few packets 
occasionally. The SEs are of small form factor and usually battery-powered. The sniffers sniff on the 
wireless medium, cycling through a set of specified frequencies and listen for all communication from 
wireless clients and SEs. They record the received signal strength (RSS) from them. This information 
is sent to the LEE. The LEE also needs the coordinates of the SEs which could be broadcast by the SE. 
Using the SEs as “fixed points” of known location, a localization model is built by the LEE as needed, 
based on the RSS from the SEs.   In a sensor network, different sensors could take on the roles of SEs 
or sniffers.

The LEE builds a model for each sniffer as follows. First, it smoothes the data points, e.g., using a 
generalized additive model (GAM) (see Hastie and Tibshirani (1990)).  Second, a synthetic model is 
generated. The site is divided into small grids (e.g., grids of 3ft × 3ft (0.9m × 0.9m) cells). Using Akima 
splines (see Akima (1996a), Akima (1996b) and Akima (1970)) the smoothed values obtained from the 
GAM are interpolated to estimate the RSS at each grid center. The synthetic model for the specific 
sniffer is the generated RSS-grid information with an estimated RSS for each grid point. Repeating the 
above technique for each of the n deployed sniffers, gives a set of grids for the site, where each grid has 
an associated n-vector of estimated RSS. This n-vector corresponds to the profiled RSS from each AP 
as seen at each grid point, assuming the APs and sniffers are co-located. The LEE also uses absence of 
a signal in localization. This is useful since the absence narrows the search area by indicating that the 
point in question is far away from the sniffer. A variation of the nearest-neighbor algorithm is used for 
matching the received client RSS vector to the model.

One main result in Krishnan et al. (2004) was that for an office site of size 30,000 sq ft. (2,787 sq. m), 
with only 12 SEs, a median error of 15ft (4.5m) can be obtained. Increasing the number of SEs does reduce 
the error further; e.g., with 104 SEs, the median error was just 7ft (2.1m). Different sites also exhibited 
different accuracies. The authors also motivated a normalized error metric that takes into account the 
work done in building the model, the localization errors, how dynamic the signal environment is, etc. 
They showed that the LEASE technique is efficient in terms of the normalized error metric. 
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Zero-Profiling Techniques

Localization systems that make use of an explicit propagation model, or a radio map of the region of 
coverage, require initial profiling. This can be a labor-intensive process. Although automated systems 
to perform this measurement have been reported in the literature (e.g., Hills and Schlegel (2004)), it still 
represents an additional cost for deployment. This brings up the feasibility of zero-profiling techniques. 
As the name implies, these techniques will require no profiling and can be deployed out-of-the-box. As 
such, they can be used to advantage for the following purposes: a) adaptation in dynamic environments, 
and b) lowering the cost of deployment. One such technique making use of Bayesian networks was de-
scribed in Madigan et al. (2005). While this approach does not require profiling, it is computationally 
expensive and needs further work to be suitable for real-time operation. This remains an interesting 
area of research. We briefly describe the Bayesian approach below.

In Madigan et al. (2005), instead of trying to locate a single terminal, the model tries to simultaneously 
locate a set of terminals. By appropriately exploiting signal strength information from a collection of 
terminals, it is shown that the localization for the entire set can be improved. The model is particularly 
relevant as the number of wireless terminals increases. The methodology uses hierarchical Bayesian 
graphical models (see Gelman et al. (2003) and Spiegelhalter and Lauritzen (1990)) for wireless localiza-
tion. The study demonstrates that a hierarchical Bayesian approach, incorporating physical knowledge 
about the nature of Wi-Fi signals, can provide accurate location estimates without any location informa-
tion in the training data, leading to a truly adaptive, zero-profiling technique for localization.

A graphical model is a multivariate statistical model embodying a set of conditional independence 
relationships. A graph displays the independence relationships. The vertices of the graph correspond to 
random variables and the edges encode the relationships. In the Bayesian framework, model parameters 
are random variables and appear as vertices in the graph. When some variables are discrete and others 
continuous, or when some of the variables are latent or have missing values, a closed-form Bayesian 
analysis generally does not exist. Analysis then requires either analytic approximations of some kind 

Figure	5.	A	possible	office	site	with	components	of	the	LEASE	system
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or simulation methods. The Markov chain Monte Carlo (MCMC) simulation method as described in 
Spiegelhalter and Lauritzen (1990) can be used for this purpose.

We illustrate this formulation with an example. Figure 6 shows the Bayesian network graph for the 
problem under consideration. An arrow leading from a to b implies that b is dependent on a. In this 
model, X and Y are the location coordinates to be estimated.  Di is the range to the transmitter i, Si is 
the received signal strength from transmitter i, bij is a coefficient in the propagation model for signal 
transmission from transmitter i and τi is the precision of the normal distribution used to model signal 
strength variation.  Here, the observed quantities are the signal strengths and the quantities to be esti-
mated are the position coordinates X and Y.  In the process of estimation, the model variables bij and 
Di are estimated as well.  To complete the model, each node should be assigned a conditional density 
given its parents. As an example, in Figure 6 we could specify2:

X ~ uniform(0,L)
Y ~ uniform(0,W)
Si ~ N(bi0 + bi1 log Di , τi), i = 1,2,3,
bi0 ~ N(0,0.001), i = 1,2,3,
bi1 ~ N(0,0.001), i = 1,2,3.

Here, L and W are the length and width of the rectangular area under consideration.  The signal 
strength (measured on a logarithmic scale) decays approximately linearly with the logarithm of distance.  
The notation N(µ, τ) indicates a normal distribution with mean µ and precision τ.  If we have prior in-
formation about the values of bi0 and bi1, they could be incorporated via the mean value. 

The model shown in Figure 6 treats the model parameter set for each transmitter as independent 
from each other.  While this is quite general, it can also be computationally expensive.  Although the 
propagation model of each transmitter has different model parameters, we could model them all as 
stochastic variables that are identically distributed with a common mean and variance (or equivalently, 
precision).  This is a hierarchical model and can simplify the computational burden without sacrificing 
predictive accuracy.  The Bayesian network graph for the hierarchical model is shown in Figure 7.  For 
additional details and experimental results, the reader is referred to Madigan et al. (2005).

Deployment for coverage and Localization 

The location of the transmitters and the powers at which they transmit are chosen to satisfy certain ob-
jectives in any deployment. Most common is a minimum-cost deployment that ensures signal strength 
above a certain threshold over the service area, i.e. coverage. Another criterion could be the minimiza-
tion of communication cost as in Kasetkasem and Varshney (2001). Other considerations may come into 
play. For example, for adequate coverage it may be desired that at any given point in the coverage area 
at least two transmitters with adequate signal strength be visible. Maximum coverage at minimum cost 
has been the main metric in wireless network deployment.  There is a wealth of literature on placement 
optimization for coverage in wireless sensor networks, see for example, Meguerdichian et al. (2001) 
and Zou and Chakrabarty (2004).  

However, a deployment that satisfies this criterion may not be optimal for localization, and may in fact 
be inadequate.  As an example, visibility of three transmitters at any point is required for localization. 
Consider a long, rectangular area to be covered, as in Figure 8. From a coverage perspective, a line of 
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transmitters running down the middle parallel to the long side would be optimal, and will minimize the 
amount of signal leaked to the outside. However, this is not a good configuration for localization, since 
there is no way to disambiguate locations that are symmetrically situated about this axis of transmitters. 
For example, the location of the two terminals shown in Figure 8 can not be disambiguated.  Placement 
optimization for localization has not been studied as extensively as that for coverage. Joint optimiza-
tion for coverage and localization is even less studied.  An example can be found in Chakrabarty et al. 
(2002).  This remains an interesting topic for further research.

Figure	6.	Bayesian	network	graph	for	localization

Figure	7.	Graph	of	a	hierarchical	Bayesian	network	for	the	localization	problem
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OTHER IssUEs IN LOcALIZATION

Apart from the problem of deployment for coverage and localization described earlier, there are other 
issues in signal strength-based localization that have not been studied extensively and present opportu-
nities for research.  Three categories of issues are summarized below.

Dealing with the Third Dimension

While most researchers have concentrated on locating a terminal on a building floor (i.e., two dimensional 
localization), there is in fact a third dimension that may be discrete, namely, which floor the terminal 
is on. One could call this “2.5-D” localization. The common assumption is that a floor attenuates a 
signal significantly and that the strongest signal will be from the floor on which the terminal resides. 
However, the problem is that the strongest signal may not be seen from a transmitter on the same floor. 
As an example, consider a transmitter at the bottom of an open stairwell and a terminal at the top of 
the stairwell. 

A heuristic for floor estimation was described in Krishnan et al. (2004). The main idea was to take 
into account all visible transmitters (or sniffers that can see transmissions from a terminal). The heuristic 
uses modified majority logic to estimate the floor. The 2.5D localization problem is an interesting one 
that the reader may want to pursue. 

security considerations

Security is a major concern in the deployment of wireless networks. While many of the security problems 
with WEP encryption etc. have been addressed by newer standards such as IEEE 802.11i (2005), there 
are a class of problems that arise when location is used for security purposes. For example, access control 
may be based on location. In these situations, the integrity of the data used to perform the estimation 
becomes very important. In the case of RSS-based methods, this means the integrity of RSS measure-
ments. If client-based reporting is used, it is possible for a malicious terminal to report false values and 
thus spoof its location. This problem can be alleviated by using methods where the measurements are 
obtained by sniffers, sensors or similar components. Another approach to evaluating the integrity of 
client-reported data may be found in Malaney (2004). 

T1 

Terminal2 

Terminal1 

Axis of Symmetry 

T2  T 3 

Figure	8.	Deployment	for	coverage	leading	to	ambiguity	in	location
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Even if such methods are used, a client terminal using directional antennas can throw off the local-
ization algorithm. A malicious terminal could use a directional antenna to project itself into a secure 
space. While it can be easy to determine that a directional antenna is being used inside the region of 
coverage, such use is difficult to determine without additional equipment when the malicious terminal 
is located outside the coverage area. The use of a small number of reflector antennas located on the 
periphery of the building, facing outside, could address this issue. To our knowledge, this has not been 
investigated. 

Management

While management is also a cost of ownership issue, there are some interesting questions in management 
that need to be noted. Does the architecture require additional components to be deployed (hardware 
and software)? If so, what is the method to manage these components? Does the scheme depend on fail-
safe operation of these components? Is the security of the solution adequately addressed? We believe 
that several of these questions have not been adequately addressed in current work and represent an 
opportunity for future research in this area.

cONcLUsION 

In this chapter, we have given a brief overview of indoor localization techniques. We focused in particular 
on received signal strength-based techniques for indoor wireless deployments using 802.11. Some of 
the techniques may be applied to other radio technologies also, e.g., Bluetooth. We summarized work 
that dealt with theoretical limits to accuracy of localization using received signal strength, including 
some experimental results. We presented techniques used to adapt to changing environments, and a 
zero-profiling Bayesian approach for localization. We have listed several other research issues in this 
area, including deployment, floor estimation, security and management. 

This chapter is intended as an overview of signal strength-based localization, the research issues 
and some results obtained by various researchers. It is not intended to be a comprehensive survey of 
the vast literature in this area.
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ENDNOTEs

1 This applies to 802.11b/g.  The chip rate used by 802.11b is 11 times the symbol rate due to the use 
of 11-chip Barker codes.  Given that the symbol rate is 1 MHz, this leads to a chip rate of 11 MHz 
and hence a clock period of about 91ns.  Hence the limitation.  Since commercially available chips 
support both b and g, we use the 100ns figure.

2 Although bi0	  is non-zero, the distribution assumes a zero mean value indicating a total lack of 
knowledge about the location of the terminal. As the measurement data are incorporated and 
posterior distributions are calculated, the distribution will become centered on the actual mean 
value.  If prior knowledge is available, as in tracking situations, it can be incorporated by using 
an appropriate mean value in the prior distribution for bi0.
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INTRODUcTION 

Location information is essential for many emerging applications, ranging from a diverse set of areas 
including asset tracking, workflow management, and physical security. Sensor networks offer an unprec-
edented potential for realizing many of these applications. Combined with a localization system, sensor 
nodes can be attached to objects and people and continuously track their locations. Those locations, 
when communicated back to a network backend, can then be utilized for functions such as controlling 
access to spaces, making decisions for workflow, or managing inventory. 

Outdoors, the location information can be easily obtained using Global Positioning System (GPS) 
units. However, often it is not feasible to attach a GPS unit to each sensor, because of the additional cost 

AbsTRAcT 

This chapter discusses radio-based positioning. It surveys and compares several received signal strength 
localization	approaches	from	two	broad	categories:	point-based	and	area-based.	It	also	explores	their	
performance and means to improve it. It describes GRAIL	-	a	sample	positioning	system.	It	finally	con-
cludes	with	a	brief	discussion	of	sensor	applications	that	utilize	location	information.	
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to the sensor node, or because localization with GPS consumes considerable power. Also, GPS does not 
work well indoors because there is no clear line of sight to the satellites, and many applications must 
run in indoor environments. 

For stationary sensors, a straightforward approach to localization is to simply store their positions 
during deployment. However, in many situations the node is mobile and the entire network is dynamic. 
Thus a localization system is necessary to track the positions of the sensor nodes and objects they are 
attached to. 

This chapter will survey research on positioning the sensor nodes using the received signal strength 
(RSS) of wireless packet transmissions. Given that all modern radio chipsets include the hardware 
necessary to measure and report the signal strength of received packets, there is a tremendous cost and 
deployment advantage to re-using the existing RSS infrastructure of the communication network for 
localization purposes. However, additional hardware, such as ultrasound, can also be added to sensor 
nodes. The cost/performance tradeoffs and the impacts of additional localization resources in the sensor 
network are not well understood, and are the subjects of ongoing investigation. 

We begin with a broad survey of existing localization approaches and algorithms. We then briefly 
discuss the causes of positioning uncertainty and how such uncertainty can be expressed in a mean-
ingful and useful way for the higher-level applications. We will then describe two methods of location 
presentation along with their pros and cons: single-point localization and area-based localization. In the 
former, a single (x,y) spatial location is returned while in the latter a regular or irregular area is returned, 
for example an ellipse versus a set of tiles. We will elaborate on sample representative algorithms from 
each class. 

We include a brief evaluation of the various approaches. We show how random and systematic 
variations in the signal strength affect the performance. Our basic performance metric is the accuracy 
of the returned position, i.e., how far it is from the true location of the sensor, along with variants of 
this metric. We also discuss methods and guidelines to improve the localization performance, such as 
optimally placing anchors in the environment. 

We then describe a general infrastructure for indoor localization called the GRAIL system and show 
how the different approaches we discuss fit into such a system. We will briefly list some development 
and deployment issues. Finally, we conclude by discussing current and emerging applications of sensors 
that leverage the location information. 

LOcALIZATION APPROAcHEs 

The numerous approaches to localization defy a simple taxonomy. However, there are only a handful 
of overall strategies and approaches. In all cases anchors or landmarks, i.e., sensor or gateway nodes 
with known locations are needed at some point in the process. 

Aggregate approaches position sensors using a collection of measurements from a large number of 
nodes. In contrast, individual approaches use information between a single sensor and a set of land-
marks. 

Orthogonal to the number of sensors participating in the process is the algorithmic approach used. 
Lateration approaches use some function of distance between the sensors and the landmarks. In contrast, 
Scene matching approaches match sensor observations to known maps and do not require any concept 
of direct physical distance in the algorithm. 
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When using lateration, the distances could be derived directly from a signal strength decay function, 
or more indirectly through hop counts (Niculescu et al., 2001). Using the actual sensed data, however, 
the resulting set of distance equations often has no exact solution, and so approximations must be found. 
Finding the best approximation is often difficult. A classic approach minimized the residual using least 
squares, as described in (Patwari et al., 2005). However, the problem can be generalized to viewing the 
system of distance constraints as an optimization problem, and then applying a range of optimization 
solvers (Dohertyl et al., 2001). Another approach views the sensor observations as existing in a high 
dimensional observational space and uses multi-dimensional scaling to estimate the positions in the 
lower-dimensional physical space (Shang et al., 2003). A further set of lateration approaches averages 
the coordinates of the landmarks observed by a sensor, either averaging the entire set, or selectively 
averaging overlapping regions (He et al., 2003; Stolero et al., 2004). 

Matching algorithms can be generalized to a classic matching learning problem: given a known 
signal map and a set of observations, the localization system must derive the position on the map that 
best fits the observed data. Characterizing localization as matching thus opens the door to a wealth of 
machine learning approaches, including neural networks, Bayesian matching, and maximum likelihood 
estimation (Elnahrawy et al., 2004). 

Figure 1 and Equation 1 show an example aggregate lateration approach that uses hop count. Node 
C computes its distance to landmark A, d, by multiplying the average hop distance, lavg, over the net-
work by 2 hops (n = 2). It repeats for all the landmarks (grey nodes) then uses lateration to compute its 
position. 

d = n × lavg                                                                (1) 

Rather than using hop-counts, individual lateration must use another form of distance estimation to 
the landmarks. The following equation is a sample propagation model that translates signal strength, ssij, 
in dBm units, from sensor i to landmark j, to the distance between them, dij. The propagation parameters, 
ai, and bi, are unique for each environment and may even vary from one landmark j to another. 

Figure	1.	An	aggregate	localization	scenario.	Landmark	nodes	are	plotted	in	grey.	Node	C	is	two	hops	
away from node A. 
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ssij =ai	+	bi × log dij                                               (2)

Where 

2 2( ) ( )= − + −ij i j i jd x x y y         (3)

Typically, least squares estimation is then used to compute the unknown coordinates (xi,yi). Once 
at least 3 landmarks in two dimensions (4 in 3 dimensions) are known, a sensor node can trilaterate 
(i.e., use 3 landmarks) its position. Figure 2 shows an example network. Node B computes its distance 
to each landmark Ai using the measured signal to each landmark and Equation 2 with corresponding 
propagation parameters. 

Aggregate approaches are practical only in dense networks, because they are often built on explicit 
proximity and isotropy assumptions (Niculescu et al., 2001). In most scenarios those assumptions do 
not hold. The sensor network can be sparse following irregular shape, which yields large errors in the 
position estimates. In the remainder of the chapter, we will therefore explore additional individual scene 
matching and lateration-based approaches. 

UNcERTAINTIEs AND OFFLINE TRAINING 

Following Equations 2, 3 and assuming that signals travel with no obstructions, the unknown coordi-
nates of any sensor node can be computed precisely and directly by translating radio ranges to distances 
using lateration. The environments where sensor networks are often deployed are however challenging, 
especially indoors. The radio signal suffers attenuations and distortions because of obstructions that 
absorb, reflect, refract or scatter the signals causing multipath effects. The distances to signals computed 
using equations 2, 3 are therefore inaccurate. Using lateration on those estimates directly will yield 
highly erroneous positions. 

Scientists have thus opted for machine learning theory to map a set of radio signal strengths to a 
spatial position with high confidence along with a level of uncertainty. Next section describes an array 
of representative approaches.

Broadly speaking, there are two families of strategies. The first family uses a signal strength to dis-
tance function. These rely on estimating the electromagnetic wave properties to compute the distance 
to known anchors from the observed signal strength, similar to Equation 3. The second family assumes 
the mapping can be completely arbitrary in that the received signal strength has no direct relationship 
with neighboring points or distance to the transmitting sensors, i.e., strictly scene matching. 

Both families follow what is so called offline	training	and online	localization	phases. Training data 
is collected during the offline phase and then applied during the online phase to infer the unknown 
position of the mobile sensor. The training data generally correlates the distance from the mobile sensor 
node to the anchor node (i.e., landmark) with the strength of the (received/transmitted) signal, i.e., the 
radio range. It can be in the form of a discrete training set or a continuous gridded map. 

Training set 

A training set, T, consists of a set of empirically measured signal strength fingerprints	from the n an-
chors in the network along with the m locations where they were collected. A fingerprint at a location, 
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i, with coordinates (xi,yi), is the set of average received signal strength, sij, from each anchor j. Typically, 
it is computed from a series of k signal strength samples collected at that location. A default value for 
sij is usually assigned in a fingerprint if no signal is received from anchor j at a location i. That is, T = 
{[(xi,yi), si1, si2,…, sin]}, i =1 ... m.

The sensor node to be localized collects a set of received signal strengths (RSS). An RSS is similar 
to a fingerprint in that it contains a mean signal strength for each anchor j, j = 1... n. An RSS may also 
maintain a standard deviation of the sample set at each location i and anchor j, σij. The collection of 
training points forms the training set. 

Gridded Map 

Some localization approaches require a continuous map of fingerprints over the two-dimensional local-
ization space. An approximation is to build a grid of regular simple shapes such as tiles that describe 
the expected fingerprint for the area described by the tile. The tiles can be tiny or coarse. A direct 
measurement of the fingerprint for each tile is expensive in terms of time and labor costs. Additional 
signal strength to location points may be interpolated, however, from a set of discrete training points 
in order to form the gridded map. 

Specifically, a surface fitting approach is used to interpolate a fingerprint at each tile from a training 
set that would be similar to an observed one. Several approaches in the literature can be utilized for 
the interpolation such as splines. A map Mi, for each anchor node, i , i = 1... n, is built independently 
using the discrete observed training fingerprints for that anchor. It was found that the observed training 
points’ spacing need only to follow a uniform distribution rather than have precise spacing (Elnahrawy 
et al., 2004). 

Figure 3 shows a sample gridded map. This map was built using triangle-based linear interpola-
tion in an indoor office building. In this approach the two-dimensional area is divided into triangular 
regions. The locations of the observed training points serve as the triangles’ vertices. The expected 
signal strengths in intermediate locations (or tile) are then linearly interpolated using the “height” of 
the triangle at the center of the tile. This approach also naturally extends to volumes. Notice how the 

Figure	2.	An	individual	localization	scenario.	Landmarks	are	placed	around	the	network,	plotted	in	grey.	
Node B computes the distance di from each landmark Ai using the range to distance function. 
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signal is distorted and does not follow regular circular shapes as would be expected in a free space area 
where the signal decays uniformly with distance in all the directions.

ALGORITHMs 

Localization algorithms are classified based on their output into two classes: point-based and area-based. 
In point-based localization, the goal is to return a single point for the sensor node while in area-based 
the goal is to return the possible locations of the sensor as an area or volume (areas and volumes are 
interchangeable from our perspective) (Elnahrawy et al., 2004). The area could be a regular shape such 
as a circle or an ellipse, or an irregular shape such as a set of tiles or a cloud of points. Figure 4 shows 
the various representations. The true location of the node is marked as a star. 

This section gives an overview of various individual localization approaches from each class. There 
is generally a myriad of algorithms in literature on this topic, which stemmed out of long research over 
the past years. The algorithms selected here span broad techniques that proved practical and useful 
from surveying the references (Elnahrawy et al., 2004; Bahl et al., 2000; Youssef et al., 2003; Youssef 
et al., 2004; Battiti et al., 2002; Moore et al., 2004; Fang et al., 2005; Savvides et al., 2001; Lorincz et 
al., 2006; Hazas et al., 2003; Priyantha et al., 2000; Want et al., 1992; Krishnan et al., 2004; Ladd et al., 
2002; Roos et al., 2002; Smailagic et al., 2002; Lim et al., 2006). They are intended to overview strate-
gies rather than drill down into detail. The reader is therefore encouraged to pursue the references for 
further explanation. 

Point-based Algorithms 

Point-based approaches can be further categorized as deterministic or statistical. In deterministic lo-
calization the sensor’s RSS is matched against the training data set using a systematic deterministic 
strategy. The localization output is the coordinates of the closest matching point in the set. For statis-
tical localization the matching is done probabilistically. This section sketches two major point-based 
algorithms, one from each category. 

Figure	3.	A	sample	interpolated	radio	map	for	an	anchor	node.	The	dots	show	the	actual	observed	train-
ing point locations while the square in the middle show the true location of the anchor. 
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Deterministic Localization 

A sample deterministic point-based algorithm we discuss here is the nearest neighbor approach. The 
strategy is to return the location of the closest fingerprint to the RSS fingerprints in the training data. 
It uses Euclidean distance in “signal space” as the deterministic measurement function. It views the 
fingerprints as points in an N-dimensions space, where each anchor node forms a dimension. Specifi-
cally, it computes the signal distance between each fingerprint vector in the radio signal map and the 
measured fingerprint for the localized sensor. It then picks the vector with the minimum distance and 
returns its coordinates as the estimated sensor’s location (Bahl et al., 2000). 

This approach is sometimes referred to in literature as the RADAR approach. Other versions of 
this approach return the average position (centroid) of the top k closest vectors; i.e., averaged RADAR 
algorithm. For example if k = 2, it takes the closest two candidates and returns the mid-point on the 
floor between them. A disadvantage of deterministic approaches is that they require a large number of 
training points to perform adequately. To compensate for a small training set gridded signal maps are 
used as discussed before, e.g., as in a variant of RADAR called gridded RADAR (Bahl et al., 2000; 
Elnahrawy et al., 2004). 

Statistical Localization 

Many statistical approaches have been devised within the context of point-based localization. They range 
from applying simple Bayes’ rule and maximum-likelihood estimation to sophisticated support vector 
machines (Battiti et al., 2002; Youssef et al., 2003; Ladd et al., 2002; Roos et al., 2002). They generally 
map the problem of localizing sensors to a probability inference problem. First, a statistical model of 
the RSS as well as some system and environment parameters is constructed during the training phase. 
The model is then used during the online phase to infer the unknown sensor’s position. 

Figure	4.	Different	localization	outputs:	Point	(top	left),	ellipse	or	circle	(top	right),	tiles	(bottom	left),	
and cloud (bottom right). The ground truth is marked as a black star. 
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Let us elaborate on an example probabilistic approach that applies Bayes’ rule. Signals received 
from the different anchors are assumed to be independent. For each anchor j, j = 1... n, the received 
signal strengths at each (xi,yi) in the training data is sij. Using Bayes’ rule, the probability of being at 
each fingerprint’s location in the training data given the received signal vector of the sensor, ( )l ljS s= , is 
computed as follows. 

( \ ) ( )( \ )
( )

l i i
i l

l

P S L P LP L S
P S

×
=         (4)

However, ( )lP S  is a constant c. Moreover, given there is no prior knowledge about the exact sensor’s 
location, it is assumed that it is equally likely to be at any location, i.e., ( ) ( ), ,i jP L P L i j= ∀ . Therefore, 
Equation 4 is rewritten as: 

( \ ) ( \ )i l l iP L S c P S L= ×          (5)

Without having to know the value c, the location in the training 
max max arg max, ( ( \ ))

i l iL L P S L=
 is re-

turned. Specifically, ( \ )l iP S L  is computed for every fingerprint i in the training set and the location of 
the highest probability candidate is returned as the predicted location. This approach hence inherently 
requires large enough training sets. Variants of the approach may return the midpoint of the top two or 
an average of top k candidates. 

Area-based Algorithms 

We discussed that environmental effects impact localization and introduce fundamental uncertainty in 
the estimated position. Area-based approaches are better able to utilize and describe this uncertainty as 
compared to point-based approaches (Elnahrawy et al., 2004). Specifically, they provide an understanding 
of the localization confidence in a more natural and intuitive manner, where the term confidence is used 
loosely to refer to the positioning certainty. Hence, the larger the returned area, the less confidence we 
have in placement of the sensor in a particular location because many probable locations are included 
in the returned result. These approaches are also able to adjust the localization confidence by control-
ling the size of the returned area. Point-based approaches have difficulty describing such a trade-off 
systematically to the higher-level applications or users. A second advantage is that an area can naturally 
be mapped into a set of directions to search for the sensor in relation to the likelihood of its presence 
in the area, for example by beginning the search in the most likely area then continually expanding to 
the next most likely area and so on. 

Figure 5 shows two example returned areas for a floor. The areas are shown by a dark color. The 
true location of the sensor is shown as a “*”. The smallest circumscribing circles and rectangles are also 
shown. Figure 5(a) shows the localization can contain the sensor to an area the size of a single room 
while in Figure 5(b); the localization is more diffuse, in this case spanning two rooms. 

The circumscribing circles show that augmenting a point with a distance to describe the uncertainty, 
in point-based localization, would likely return a much larger area than a strictly area-based approach. 
Returning rectangles, while reducing the inaccuracy of circles, no longer fits the definition of a point-
based approach, however. 
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Simple Point Matching 

Simple Point Matching (SPM) finds the set of those tiles whose signal strengths fall within a threshold 
of the received signal for each anchor node independently. Specifically, for each anchor j, j = 1... n, it 
“matches” all fingerprints 1 1( ,..., )l l nS s s=  from the floor tiles (Elnahrawy et al., 2004). The matching 
tiles for each anchor j are computed by adding an expected “noise” level q to its received signal ljS , and 
then returning all the area tiles that fall within the expected threshold ± q.     

 It then returns the area formed by intersecting all matched tiles from the individual anchors’ tile sets. 
A gridded training map is used (Elnahrawy et al., 2004). The approach is eager, i.e., it finds the fewest 
most probable tiles by starting with a very low q. It then incrementally increases it by trying 2q, 3q, .., 
until an intersection is found. Even in the worst case, a non-empty intersection will result, although q 
may expand to the dynamic range of signal readings. The value q is usually bounded by the standard 
deviation of the signals in the localization environment. 

SPM is a Maximum Likelihood Estimation approach that assumes the anchor nodes are totally 
independent. Specifically, to localize a sensor i, the set of received signals between each anchor j and 
the sensor during a time window is estimated by a Gaussian distribution centered around the average 
measured signal ljS  with variance equals to (slj)

2.
Therefore, a (1− α) 100% confidence interval for the estimator is as follows, where 

2

z  is a constant 
that depends on α, e.g., it equals 1.96 for a 95% confidence interval of the estimator

 

Figure	5.	Sample	areas	returned	by	area-based	presentation,	specifically	SPM,	versus	single-point	based	
presentation. The true location is marked by a “*”.
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2
lj ljs z± ×  .

For single-mode distributions, such as Gaussian, increasing the confidence level, (1 − α), increases 
the width of the estimator’s interval at the cost of adding less probable values to it. That is, less con-
fidence is indeed better in our context; since higher probability values are the only ones included in 
the interval. Although the Gaussian approximation assumption may not be true in general, it has been 
proven effective in practice. 

In SPM, the noise level 
2

ljz ×  corresponds to SPM eagerly attempts to find the appropriate (low-

est) confidence level (1−α) for each anchor j that yields an overall non-empty area. It assumes that, for 
each j, the collected fingerprint follows a Gaussian distributions with a standard deviation q, equals to 
the highest σij, among all the fingerprints in T. Therefore, it starts searching by adding a noise level of 
qj, then 2qj, and so on, till a non-empty overall area is found. 

Area Based Probability 

The Area-Based Probability (ABP-	α) algorithm returns a set of tiles bounded by a probability, α that the 
object is within the returned area. The probability is also called the confidence, and it is an adjustable 
parameter. ABP’s approach to finding the tile set is to compute the likelihood of a received signal vector 
matching a fingerprint for each tile, and then normalizing these likelihoods given the prior conditions: 
(1) the sensor must be in the localization floor, and (2) all tiles are a-priori equally likely. ABP then 
returns the top probability tiles whose sum matches the desired confidence. The confidence controls 
the accuracy (error) versus the precision (size of returned area) tradeoff, both terms will be defined in 
more detail later in this chapter. ABP thus stands on a more formal mathematical foundation than SPM 
(Elnahrawy et al., 2004). 

Similar to SPM, signals received from different anchors are assumed to be independent. Using Bayes’ 
rule, ABP computes the probability of being at each tile’s location, Li, on the floor given the fingerprint 
vector of the sensor using Equations 4, 5 as before, ( \ )l iP S L . The exact probability is then computed 
for every tile/location rather than returning the location (tile) max max arg max, ( ( \ ))

i l iL L P S L=
.

ABP extends the statistical point based approach discussed above by its final step where it computes 
the actual probability density of the sensor for each tile given that the sensor must be at exactly one 
tile, i.e., 

1
( \ ) 1L

i li
P L S

=
=∑ . Using the resulting density, ABP returns the top probability tiles up to its 

confidence, α, i.e., the top probability tiles/locations such that their overall probability is ≥ confidence.   
Useful values of α have a wide dynamic range between 0.5 and less than 1. While a confidence of 1 
returns all the tiles on the floor, picking a useful α is not difficult because in practice some tiles have 
a much higher probability than the others, while at the same time the difference between these high-
probability tiles is small. 

Bayesian Networks 

Bayes nets are graphical models that encode dependencies and relationships among a set of random 
variables. The vertices of the graph correspond to the variables and the edges represent dependencies 
(Gelman et al., 2004). A Bayes net can be utilized to encode the relationship between the received sig-
nal and its location based on the signal-versus-distance propagation model described above. The initial 
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parameters of the model are assumed to be unknown, and the training data is then used to compute a 
probabilistic model for each of the specific parameters. Various Bayesian networks have been designed 
and tested for localization. They differ in their complexity and assumptions. Here we describe a basic 
simple model as in Figure 6. 

Each random variable sj, j	=	1...	n denotes the expected signal strength from the corresponding 
anchor node or landmark j. The values of these random variables depend on the Euclidean distance 
Dj between the landmark’s location, (xj,yj), and the location where the signal sj is measured (x,y). The 
baseline expected value of sj follows a signal propagation model sj = b0j	+	b1j × logDj, where b0j, b1j are 
the parameters specific to each landmark j in that environment. The distance 2 2( ) ( )j j jD x x y y= − + −  
in turn depends on the location (x,y) of the measured signal. The network accounts for noise and outliers 
by modeling the expected value, sj, as a probabilistic distribution around the above propagation model, 
with some variance, τj.

Using the training fingerprints T and the fingerprint vector of the sensor, the network then learns the 
specific values for all the unknown parameters b0j, b1j,	τj and the joint distribution of the (x,y) location 
of the sensor. In general, there is no closed form solution for the returned joint distribution of the (x,y) 
location. A simulator such as Markov Chain Monte Carlo is used to draw samples from the joint density 
for (x,y) (Madigan et al., 2005; Kleisouris et al., 2006; Heckerman et al., 1995). Samples that give, e.g., 
a 95% confidence on the density are mapped to tiles and returned as the estimated area. A substantive 
drawback of this approach is that it yields a large number of disconnected tiles. Although the tiles are 
concentrated around the most likely location, the scatter is substantial and can interfere with higher-level 
functions (Madigan et al., 2005; Elnahrawy et al., 2004). 

LOcALIZATION PERFORMANcE 

There have been many experiments that compare and contrast different individual localization algorithms 
and how they perform. Detail and in depth evaluations can be found in the references, e.g., (Elnahrawy 
et al., 2004; Battiti et al., 2002). Due to the limited space, the goal of this section is rather to conclude 
the performance one would expect when using such a positioning approach based on those extensive 
studies. It first describes the evaluation metrics usually used for assessment. 

Figure	6.	A	simple	Bayesian	network	used	for	localization
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Evaluation Metrics 

A traditional metric to assess the performance of point-based localization is the localization	error. This 
is the distance from the true location, i.e., the ground truth, of the sensor and the estimated location. 
There are many ways to express this metric. Scientists usually use the error CDF (Cumulative Density 
Function) to plot the error along with the corresponding probability of obtaining it. Figure 7 depicts a 
sample error CDF curve for a hypothetical approach. As shown the approach yields an error less than 
10 feet 80% of the time. For area-based systems two metrics are used; accuracy and precision. The ac-
curacy is a generalization of localization	error	to areas. It is the distance between the true position of 
the sensor and the returned area. It is quantified using CDFs of the order statistics such as the median 
distance. Precision	describes the size of the area. A point is hence infinitely precise, but may not be 
very accurate. On the other hand, the area containing the entire scope of the localization system (e.g., 
a whole building) would have a high accuracy but poor precision. Accuracy and precision are useful 
utilities to quantitatively describe the performance of different localization approaches by observing the 
impact of increased precision (i.e., less area) on accuracy (Bahl et al., 2000; Battiti et al., 2002; Madigan 
et al., 2005; Hand et al., 2001). 

Localization Error 

Outdoors, signals travel with no or little obstruction following the free space model. The variance and 
the attenuations are minimal and the localization error is negligible. Indoor environments, on the other 
hand are more challenging with obstacles everywhere. Researchers have hence focused on studying 
the performance of indoor localization rigorously. Figure 8 shows sample performance of those indi-
vidual approaches described earlier in the Algorithms Section along with their variants in an indoor 
environment. The error CDFs are plotted. For area-based approaches the median accuracy CDF is used 
for the comparison. The individual curves are not labeled, as the goal is to show that they have simi-
lar performance. Although area-based approaches are better at describing uncertainty, their absolute 
performance is similar to point-based approaches. No existing approach has a substantial advantage in 
terms of localization performance.

A general rule of thumb is that using radio received signal strengths with much sampling one can 
expect a median error of roughly 10 feet and with relatively sparse sampling, every 20 feet, one can still 
get median errors of 15 feet1. Researchers therefore concluded that there are fundamental limitations 
in indoor localization’s performance that cannot be transcended without qualitatively more complex 
models of the indoor environment, for example by modeling every wall, desk or shelf, or by adding extra 
hardware in the sensor node above that required for communication, for example, very high frequency 
clocks to measure the time of arrival (Battiti et al., 2002; Elnahrawy et al., 2004; Kaemarungsi et al., 
2004). 

Anchor Placement 

Placement of the anchor nodes (i.e., landmarks) in the environment also has an impact on the localization 
performance (Chen et al., 2006; Krishnakumar et al., 2005). The problem is generally an optimization 
problem with the goal of finding the anchor placement that minimizes the error between the true posi-
tions of the sensors and the estimated positions. 
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Linear placement of anchors is the worst layout because the confusion along the other dimension will 
never get resolved, causing large errors. A uniform deployment in contrast is intuitive and practical. 
Comparing the error between the two scenarios showed that the latter improves the localization error 
and makes indoor localization less sensitive to the environment noise and biases. In terms of localiza-
tion metrics the error CDFs, e.g., similar to the one shown in Figure 7, shift up and to the left compared 
to their counterparts when using linear anchor placement. 

Researchers found that optimal anchor placement follows some simple and symmetric patterns that 
are easy to achieve. They derived some guidelines that are easy to follow when deciding about placing 
anchors. The placement patterns should follow simple shapes such as squares and equilateral triangles, 
or enclosing of them. Complex shapes such as pentagons or hexagons have been shown not to be optimal. 
Figure 9 shows the patterns for 3, 4, 5, 6, and 7 anchors. Generalization to higher number of anchors 
is straightforward. It is important to take into consideration the physical constraints of the environ-
ment where the network is deployed. A slight deviation from the guidelines in the form of stretching or 
shrinking the shapes has been shown to be tolerable. 

Figure	7.	Sample	Error	CDF.	The	x-axis	is	the	error	while	the	y-axis	is	the	probability.	The	crossing	
lines	mean	that	80%	of	the	time	the	distance	error	is	less	than	or	equals	to10	feet.	

Figure	8.	Error	across	a	wide	variety	of	point-and	area-based	approaches.	The	CDFs	are	clustered	
which shows similar performance. 
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A sAMPLE LOcALIZATION sYsTEM 

We showed that individual radio range-based localization approaches have similar limited performance 
with respect to the localization error. They generally differ however in their applicability to a certain 
localization scenario or an environment. For example, they vary in how much training they require to 
achieve a decent performance, how long it takes to compute the estimates (i.e., complexity), how many 
sensors can be localized simultaneously (i.e., scalability), the ability to compute consistent positions 
(i.e., outliers), and tolerance to measurement errors and biases. In order to understand these deploy-
ment issues it helps to think of the core localization approach as a piece of the higher-level applications 
(LaMarca et al., 2005; Savvides et al., 2001; Chen et al., 2008). We therefore briefly describe a sample 
core localization system called GRAIL (General purpose Real-time Adaptable Localization) (Source-
Forge, 2008; Chen et al., 2008). GRAIL can be integrated seamlessly into any application that utilizes 
radio positioning via simple Application Program Interfaces (APIs). It has been used to simultaneously 
localize multiple devices running 802.11 (WiFi), 802.15.4 (ZigBee) and special customized RollCall

TM 

radios (InPoint Systems, 2008). 
GRAIL has the following key properties: (1) General Purpose, it supports positioning of a variety of 

physical modalities, networks or radios, devices and algorithms. Specifically, it localizes any wireless 
device that transmits packet data. It adopts a centralized approach in order to be able to localize a diverse 
set of radios. Specifically, the inherent anchor-based localization strategy eliminates the need to install 
special software on the devices to be localized, e.g., sensors, and therefore enables rapid integration of 
any radio device. (2) Real-time, it can localize stationary and mobile sensors in real time. (3) Adaptable 
to indoor noise and multi-path effects. (4) Indoors, GRAIL was originally designed to scale in indoor 
environments. It naturally works in outdoor environments however. 

Figure	9.	Layout	for	optimal	anchor	placement.	As	the	number	of	anchors	increases	from	3	up	the	place-
ment takes simple triangle or square shapes and then enclosing of them. 
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A Localization scenario 

To understand how a specific localization algorithm fits into a system let us describe a typical localiza-
tion scenario within GRAIL. The localization process starts once a transmitter (i.e., a sensor) in the 
network transmits packets. The anchor nodes continuously monitor the radio traffic at the packet-level. 
They timestamp the observed packets and extract the value of the observed physical property, i.e., the 
received signal strength in this case. The anchors then forward these values along with other header 
information to a central entity called the server. The server collects traffic data from all the anchor 
nodes in real time and aggregates those values into fingerprints. It then sends those aggregates to an 
instance of a solver. The solver entity utilizes a “localization approach” to estimate the locations. It uses 
an implementation of a localization approach along with some training data and information about the 
localization environment (anchor placement, for example). Once the localization estimates are computed 
it sends them to the server. The process ends when the locations are stored in the database or dissemi-
nated back to the network nodes. 

GRAIL components 

Figure 10 shows the main components of GRAIL: transmitters, landmarks, the server, solvers, the 
database, and the web server. The transmitters, landmarks and solvers correspond to the sensor nodes, 
anchors, and localization approaches in our context. We give a brief overview of each of the components 
and their functionality next. 

Much like the Hypertext Transfer Protocol (HTTP) used on the web and the Transaction Language 
1 (TL1) used as a standard protocol in the telecommunications equipment industry, all communications 
between the system components use a simple text-based protocol over TCP sockets. The reader may 
refer to the references for a detailed description. 

Figure	10.	Overall	architecture	for	the	GRAIL system
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• Transmitter: Any device transmitting radio packets that needs to be localized. 
• Landmark: These are the anchor nodes. They passively monitor the existing network traffic and 

forward the raw data or a summary to the server. Limiting the role of the anchors in the system or 
network to traffic monitoring enables scalability because regular unsophisticated nodes can easily 
work as anchors. 

• Database: The database is a repository for storing the hard state of the GRAIL system. Specifically, 
it maintains the localization results, fingerprints computed from data samples, anchor information, 
environment information, and the transmitters in the network. 

• Web Server: The web server provides a front-end to the GRAIL system. It provides simple au-
thentication and means to interact with users, e.g., to view location estimates, adjust the system 
parameters or settings. A set of APIs is also provided to support any potential higher-layer ap-
plication built on top of the core localization. 

• Server: The localization server is a centralized moderator that collects data samples from the land-
marks, summarizes and cleans them, and then passes the data to solvers to compute the unknown 
positions. The server interacts with a web server as a user interface. It is responsible for storing 
all the related traffic information and the estimated positions in the database. 

• Solver: A solver is an implementation of one or more localization approach. It computes the lo-
cation estimates and sends the results back to the server. GRAIL’s architecture is flexible in that 
multiple different solvers can run simultaneously against a single server, which can improve the 
overall localization accuracy and allow for load balancing. The server or the user can control which 
approach to use at every localization attempt depending on the environment, the number of nodes, 
the training data and so on. 

cONcLUsION AND APPLIcATIONs 

In this chapter we surveyed a set of localization approaches and algorithms for sensor networks. An 
important conclusion we can draw is that no existing approach or algorithm has been shown to be the 
best, or even good enough, for most applications. The primary reason is that the location-based services 
and applications built on top of the localization system are still in their infancy. Until there are more 
widespread and longer deployments of applications using sensor networks, the performance require-
ments and resulting cost/performance tradeoffs will not be well understood. 

Helping to fill the applications gap are commercial products and solutions that have recently emerged 
targeting different markets, including wireless security, access control, and workflow management 
in health-care and industrial plants (Aeroscout, 2008; Ekahau Inc., 2008; Kordinate, 2008; Newbury 
Networks, 2008; Airtight Networks, 2008). While the mapping from the spatial location to application 
function is straightforward in security-related applications it is not as intuitive in the latter ones. The 
general idea is to improve the cost of operation by attaching sensors to employees, inventory and equip-
ment in factories, and additionally caregivers and patients in hospitals. Activities are detected using 
proximity information from the estimated position and higher-level decisions are taken or actions are 
made accordingly. For example, if a doctor and a nurse are both localized in the same room as a patient 
then it will be concluded that this patient is getting treated. If a high traffic of workers has moved within 
proximity of a factory machine then it might be an indication of a machinery breakdown, and so on. 
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As an example illustrating the unknown cost-performance tradeoffs, we can consider a healthcare 
application measuring the productivity of caregivers by measuring activity using location as the base 
input. In this application, sensors attached to caregivers are mobile and may not form a dense network. 
Individual lateration approaches are hence very applicable and have better cost-performance, than say, 
an aggregate approach requiring a high sensor density. Also, the sensor lifetime might only be on the 
order of a few hours, for example, the length of one shift. However, sensor cost and form factors are 
critical variables to obtaining good data, as people misplace sensors, or fail to wear them if they are 
too bulky or look strange. 

We are still in exciting times with regards to sensor networks and their applications. Location is one 
critical piece of the puzzle that has yet to be solved. 
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AbsTRAcT

A	vast	majority	of	 localization	 techniques	proposed	 for	sensor	networks	are	based	on	 triangulation	
methods	in	Euclidean	geometry.	They	utilize	the	geometrical	properties	of	the	sensor	network	to	infer	
the sensor locations. A fundamentally different approach is presented in this chapter. This approach is 
based on machine learning, in which the authors work directly on the natural (non-Euclidean) coordi-
nate systems provided by the sensor devices. The known locations of a few nodes in the network and the 
sensor readings can be exploited to construct signal-strength or hop-count based function spaces that 
are useful for learning unknown sensor locations, as well as other extrinsic quantities of interest. They 
discuss	the	applicability	of	two	learning	methods:	the	classification	method	and	the	regression	method.	
They show that these methods are especially suitable for target tracking applications

INTRODUcTION

A sensor node knows its location either via a built-in GPS-like device or a localization technique. A 
straightforward localization approach is to gather the information (e.g., connectivity, pair-wise distance 
measure) about the entire network into one place, where the collected information is processed centrally 
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to estimate the nodes’ locations using mathematical algorithms such as Semidefinite Programming 
(Doherty et al.  (2001)) and Multidimensional Scaling (Shang et al. (2003)).

Many techniques attempt localization in a distributed manner. The relaxation-based techniques 
(Savarese et al. (2001), Priyantha et al. (2003)) start with all the nodes in initially random positions and 
keep refining their positions using algorithms such as local neighborhood multilateration and convex 
optimization. The coordinate-system stitching techniques (Capkun et al. (2001), Meertens & Fitzpatrick 
(2004), Moore et al. (2004)) divide the network into overlapping regions, nodes in each region being 
positioned relatively to the region’s local coordinate system (a centralized algorithm may be used here). 
The local coordinate systems are then merged, or “stitched”, together to form a global coordinate system. 
Localization accuracy can be improved by using a set of nodes with known locations, called the beacon 
nodes, and extrapolate unknown node locations from the beacon locations (Bulusu et al. (2002), Savvides 
et al. (2001), Savvides et al. (2002), Niculescu & Nath (2003a), Nagpal et al. (2003), He et al. (2003)).

Most current techniques assume that the distance between two neighbor nodes can be measured, 
typically via a ranging procedure. In this procedure, various information can be used to help estimate 
pair-wise distance, such as Received Signal Strength Indication (RSSI) (Whitehouse (2002)), Time Dif-
ference of Arrival (TDoA) (Priyantha (2005), Kwon et al. (2004)), or Angle of Arrival (AoA) (Priyantha 
et al. (2001), Niculescu & Nath (2003a)). Other range measurement methods can be found in (Priyantha 
(2001b), Savvides et al. (2001b), Priyantha (2005b), Lee & Scholtz (2002), Gezici et al. (2005)).

To avoid the cost of ranging, range-free techniques have been proposed (Bulusu et al. (2002), Me-
ertens & Fitzpatrick (2004), He et al. (2003),  Stoleru et al. (2005), Priyantha et al. (2005)). APIT (He 
et al. (2003)) assumes that a node can hear from a large number of beacons. Spotlight (Stoleru et al. 
(2005)) requires an aerial vehicle to generate light onto the sensor field. (Priyantha et al. (2005)) uses a 
mobile node to assist pair-wise distance measurements until a “global rigid” state can be reached where 
the sensor locations can be uniquely determined. DV-Hop (Niculescu & Nath (2003b)) and Diffusion 
(Bulusu et al. (2002), Meertens & Fitzpatrick (2004)) are localization techniques requiring neither rang-
ing nor external assisting devices. 

All the aforementioned techniques use Euclidean geometrical properties to infer the sensor nodes’ 
locations. Recently, a number of techniques that employ the concepts from machine learning have been 
proposed (Brunato & Battiti (2005), Nguyen et al. (2005), Pan et al. (2006), Tran & Nguyen (2006), 
Tran & Nguyen (2008), Tran & Nguyen (2008b)). The main insight of these methods is that the topol-
ogy implicit in sets of sensor readings and locations can be exploited in the construction of possibly 
non-Euclidean  function spaces that are useful for the estimation of unknown sensor locations, as well 
as other extrinsic quantities of interest. Specifically, one can assume a set of beacon nodes and use them 
as the training data for a learning procedure. The result of this procedure is a prediction model that will 
be used to localize the sensor nodes of previously unknown positions. 

Consider a sensor node S whose true (unknown) location is (x, y) on a 2-D field. There are more than 
one way we can learn the location of this node. For example, we can model the localization problem as 
a classification problem (Nguyen et al. (2005), Tran & Nguyen (2006), Tran & Nguyen (2008)). Indeed, 
we can define a set of classes (e.g., A, B, and C as in Figure 1) that represent geographic regions chosen 
appropriately in the sensor network area. We then run a classification procedure to decide the member-
ship of S in these classes. Based on these memberships, we can localize S. For example, in Figure 1, if 
the output of the classification procedure is that S is a member of class A, of B, and of C, then S must be 
in the intersectional area A ∩ B ∩ C. 
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We can also solve the localization problem as a regression problem (Pan et al. (2006), Tran & Nguyen 
(2008b)). We can use a regression tool to infer the Euclidean distances between S and the beacon nodes 
based on the signal strengths that S receives from these nodes, or when S cannot hear directly from 
them, based on the hop-count distances between S and these nodes. After these distances are learned, 
trilateration can be used to estimate the location of S. Alternatively, we can apply a regression tool that 
maps the signal strengths S receives from the beacon nodes directly to a location. One such a tool was 
proposed by (Pan et al. (2006)), which is based on Kernel Canonical Correlation Analysis (Hardoon et 
al. (2004)).

Compared to geometric-based localization techniques, the requirements for the learning-based tech-
niques to work are modest. Neither ranging measurements nor external assisting devices are needed. The 
only assumption is the existence of a set of beacon nodes at known locations. The information serving 
as input to the learning can be signal strengths (Nguyen et al. (2005), Pan et al. (2006)) or hop-count in-
formation (Tran & Nguyen (2006), Tran & Nguyen (2008)), which can be obtained easily at little cost.

The correlation between the signal-strength (and/or hop-count) space and the physical location space 
is generally non-linear. It is also usually not possible to know a priori, given a sensor node, the exact 
features that uniquely identify its location. A versatile and productive approach for learning correlations 
of this kind is based on the kernel methods for statistical classification and regression (Scholkopf & 
Smola (2002)). Central to this methodology is the notion of a kernel function, which provides a gener-
alized measure of similarity for any pair of entities (e.g., sensor locations, sensor signals, hop-counts). 
The functions that are produced by the kernel methods (such as support vector machines and kernel 
canonical correlation analysis) are sums of kernel functions, with the number of terms in the sum equal 
to the number of data points.  Kernel methods are examples of nonparametric statistical procedures – 
procedures that aim to capture large, open-ended classes of functions.

Given that the raw signal readings in a sensor network implicitly capture topological relations among 
sensor nodes, kernel methods would seem to be particularly natural in the sensor network setting.  In 
the simplest case, the signal strength/hop-count would itself be a kernel function. More generally, and 
more realistically, derived kernels can be defined based on the signal strength/hop-count matrix.  In 
particular, inner products between vectors of received signal strengths/hop-counts can be used in ker-
nel methods.  Alternatively, generalized inner products of these vectors can be computed – this simply 
involves the use of higher-level kernels whose arguments are transformations induced by lower-level 
kernels.  In general, hierarchies of kernels can be defined to convert the initial topology provided by the 

Figure	1.	If	we	can	define	a	set	of	classes	that	represent	geographic	regions,	a	sensor	node’s	location	
can be estimated based on its memberships in these classes

 
(x, y) 

A B 
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raw sensor readings into a topology more appropriate for the classification or regression task at hand. 
This can be done with little or no knowledge of the physical sensor model.

In this chapter, we describe localization techniques that build on kernel-based learning methods for 
classification and regression/correlation analysis.

NOTATIONs AND AssUMPTIONs

We consider a wireless sensor network of N nodes {S1, S2, …, SN} deployed in a 2-D geographic area [0, 
D]2  (D > 0). (Here, we assume two dimensions for simplicity, though the techniques to be presented 
can work with any dimensionality.) We assume the existence of k beacon nodes {S1, S2, …, Sk} with 
known location (k < N). We will devise learning-based algorithms where an estimate can be made for 
the location of each remaining node {Sk+1, Sk+2, …, SN}. 

We assume that the network is connected and an underlying routing protocol exists to provide a path 
path(Si, Sj) to navigate from any sensor node Si to any other Sj, whose hop-count distance (or distance, in 
short) is denoted by hc(Si, Sj). If the routing protocol defines this path to be the shortest path in hop-count 
from Si to Sj, the distance hc(Si, Sj) is the least number of hops between them. The sensor coverage is not 
necessarily uniform; hence, path(Si, Sj) may not equal path(Sj, Si) and hc(Si, Sj) may not equal hc(Sj, Si). 
Also, we denote by ss(Si, S) the signal strength a sensor node S receives from each beacon Si. 

If the network is small enough that any sensor node can hear directly from a majority of the beacons, 
we can use signal-strength information to estimate the locations for sensor nodes. In practice, however, 
there is a large class of sensor networks where a node may hear directly from just a few beacons and 
there may be nodes that do not hear directly from any beacon node. For this type of networks, we learn 
to estimate the locations based on hop-count information rather than signal-strength information. 

Before we present the details in the next sections, the localization procedure is summarized as fol-
lows:

1. The beacon nodes communicate with each other so that for each beacon node Si we can obtain the 
following k-dimensional distance vector

 hi =  ( hc(S1, Si) hc(S2, Si) ... hc(Sk, Si) )

 or, for the case of a small network, the k-dimensional signal-strength vector

 si =  ( ss(S1, Si) ss(S2, Si) ... ss(Sk, Si) )

2. One beacon node is chosen, called the head beacon, to collect all these vectors from the beacon 
nodes and run a learning procedure (regression or classification). After the learning procedure, the 
prediction model is broadcasted to all the nodes in the network. Furthermore, each beacon node 
broadcasts a HELLO message to the network also.

3. As a result of receiving the HELLO message from each beacon, each sensor node Sj ∈ {Sk+1, Sk+2, 
…, SN} computes the following k-dimensional distance vector

 hj =  ( hc(S1, Sj) hc(S2, Sj) ... hc(Sk, Sj) )
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 or, for the case of a small network, the k-dimensional signal-strength vector

 sj =  ( ss(S1, Sj) ss(S2, Sj) ... ss(Sk, Sj) )

 The sensor node then applies the prediction model it has obtained previously to this distance (or 
signal-strength) vector to estimate the node’s location.

LOcALIZATION bAsED ON cLAssIFIcATION

As we mentioned in the Introduction section, the localization problem can be modeled as a classification 
problem. The idea was initiated in (Nguyen et al. (2005)). Generally, the first two steps are as follows:

• Class definition: Define a set of classes {C1, C2, …}, with each class Ci being a geographical region 
in the sensor network area

• Training data: Because the beacon locations are known, the membership of each beacon node in 
each class Ci is known. The distance (or signal-strength) vector of each beacon node serves as its 
feature vector. The feature vector and membership information serves as the training data for the 
classification procedure on class Ci

We then run the classification procedure to obtain a prediction model. This model is used to estimate 
for each given sensor node S and class Ci the membership of S in class Ci. As a result, we can determine 
the area in which S is located. To solve the classification problem, it is proposed in (Nguyen et al. (2005), 
Tran & Nguyen (2006), Tran & Nguyen (2008)) that we use Support Vector Machines (SVM), a popular 
and efficient machine learning method (Cortes & Vapnik (1995)). Specifically, these techniques use 
binary SVM classification methods – the traditional form of SVM. A brief background on binary SVM 
classification is presented below and then how it is used for sensor localization.

binary SVM Classification

Consider the problem of classifying data in a data space U into a class G or not in class G. Suppose that 
k data points u1, u2, ..., uk, are given, called the training points, for which the corresponding member-
ships in class G are known. We need to predict whether a new data point u is in G or not. This problem 
is called a binary classification problem.

Support Vector Machines (SVM) (Boser et al. (1992), Cortes & Vapnik (1995)) is an efficient method 
to solve this problem. Central to this method is the notion of a kernel function K:  U × U → R that 
provides a measure of similarity between two data points in U. For the case of finite data space (e.g., 
location data of nodes in a sensor network), this function must be symmetric and the k×k matrix [K(ui, 
uj)]  (i, j ∈ {1, 2, …, k})  must be positive semi-definite (i.e., has non-negative eigenvalues). 

Given such a kernel function K, according to Mercer’s theorem (cf., Scholkopf & Smola (2002)), there 
must exist a feature space in which the kernel K acts as the inner product, i.e., )'(),()',( uuuuK ΦΦ=  
for some mapping Φ (u). Suppose that we associate with each training data point ui a label li to rep-
resent that li = 1 if ui ∈ G and -1 otherwise. The idea is to find a hyperplane in the feature space, that 
maximally separates the training points in class G from those not in G. For this purpose, the SVM 
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and related kernel-based algorithms find a linear function buwuhK −Φ= )(,)(  in the feature space, 
where the vector w and parameter b are chosen to maximize the margin, or distance between the paral-
lel hyperplanes that are as far apart as possible while still separating the training data points. Thus, if 
the training data points are linearly separable in the feature space, we need to minimize w  subject to 

)(1 iKi uhl−  ≤ 0 for all 1	≤ i ≤ k. 
Solving the above minimization problem requires the knowledge about the feature mapping Φ(u). 

Fortunately, by the Representer Theorem (cf., Scholkopf & Smola (2002)), the function hK can be ex-
pressed in terms of the kernel function K only
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for an optimizing choice of coefficients ai. Using this dual form, to find the function hK(u), we solve the 
following maximization problem:
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that  lihK(ui)   =  1 for all  i  with 0		<		ai
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the support vectors. The decision rule to classify a data point u is:  u ∈ G  iff  sign(hK(u))   =  1, where 
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Under standard assumptions in statistical learning, SVM is known to yield bounded (and small) 
classification error when applied to the test data. The SVM method presented above is the 1-norm soft 
margin version of SVM. There are several extensions to this method, whose details can be found in 
(Boser et al. (1992), Cortes & Vapnik (1995)).

The main property of the SVM is that it only needs the definition for a kernel function K that repre-
sents a similarity measure between two data points. This is a nice property because other classifier tools 
usually require a known feature vector for every data point, which may not be available or derivable in 
many applications. In our particular case of a sensor network, it is impossible to find the features for 
each sensor node that uniquely and accurately identify its location. However, we can provide a similar-
ity measure between two sensor nodes based on their relationships with the beacon nodes. Thus, SVM 
is highly suitable for the sensor localization problem.

Class Definition

There are more than one way to define the classes {C1, C2, …}. For example, as illustrated in (Nguyen et 
al. (2005)), each class Ci can be an equi-size disk in the sensor network area such that any point in the 
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sensor field must be covered by at least three such disks. Thus, after the learning procedure, if a sensor 
node S is found to be a member of three classes Ci, Cj, and Ck, the location of S is approximated as the 
centroid of the intersectional area Ci ∩ Cj ∩ Ck. 

Using the above disk partitioning method, or any method requiring that any point in the sensor 
network field be covered by two or more regions represented by classes, the number of classes in the 
learning procedure is dependant on the field dimension and could be very high. Alternatively, (Tran & 
Nguyen (2006), Tran & Nguyen (2008)) propose the LSVM technique which partitions the sensor net-
work field using a fixed number of classes, thus independent of the network field dimension (LSVM is 
the abbreviation for Localization based on SVM). Hereafter, unless otherwise mentioned, the technique 
we describe is LSVM. As illustrated in Figure 2, LSVM defines (2M-2) classes as follows, where M = 
2m for some m determined later:

 
•	 M-1 classes for the X-dimension {cx1, cx2, ..., cxM-1}, each class  cxi  containing nodes with the x-

coordinate x	<		iD/M 
•	 M-1 classes for the Y-dimension {cy1, cy2, ..., cyM-1}, each class  cyi  containing nodes with the y-

coordinate y	<		iD/M

We need to solve (2M-2) binary classification problems. Each solution, corresponding to a class cxi (or 
cyi), results in a SVM prediction model that decides whether a sensor node belongs to this class or not. 
If the SVM learning predicts that a node S is in class cxi+1 but not class  cxi, and in class  cyj+1  but not 
class  cyj, we conclude that  S  is inside the square cell  [iD/M, (i+1)D/M]	× [ jD/M,	( j+1)D/M]. We then 
simply use the cell’s center point as the estimated position of node S (see Figure 3). If the above predic-
tion is indeed correct, the location error (i.e., Euclidean distance between true location and estimated 
location) for node S is at most 

2M
D

. However, every SVM is subject to some classification error, and 
so a challenge is to maximize the probability that S is classified into its true cell, and, to minimize the 
location error in the case that S is classified into a wrong cell (Tran & Nguyen (2008)).

Kernel Function

The kernel function K(Si, Sj) provides a measure for similarity between two sensor nodes Si and Sj. We 
define the kernel function as a Radial Basis Function because of its empirical effectiveness (Chang & 
Lin (2008)):

 

0 1 2 i 2m 

Class cxi 

x < iD/2m 

D 

Not in class cxi 

Figure	2.	Definition	of	class	cxi	(i	=	1,	2,	…,	2
m-1)
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where γ is a constant to be computed during the cross-validation phase of the training procedure, and 
hi the k-dimensional distance vector of sensor node Si  with the j-th entry of the vector representing the 
hop-count distance from Si to beacon node Sj. More examples for the kernel function are discussed in 
(Nguyen et al. (2005)).

Training Data

For each binary classification problem (for a class c ∈ {cx1, cx2, ..., cxM-1, cy1, cy2, ...,  cyM-1}), the training 
data is the set of beacon nodes with corresponding labels {l1, l2, ..., lk}, where li = 1  if beacon node Si 
belongs to class c and -1 otherwise.

Now that the training data and kernel function have been defined for each class c, we can solve the 
SVM optimization problem aforementioned to obtain {a1

*, a2
*, ..., ak

*} and b*. We then use the decision 
function hK(.) to decide whether a given node S is in class c:
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The training procedure is implemented as follows. The head beacon obtains the hop-count vector 
and location of each beacon. Then, it runs the SVM training procedure (e.g., using a SVM software 
tool like libsvm (Chang & Lin (2008)) on all (2M-2) classes cx1, cx2, ..., cxM-1, cy1, cy2, ..., cyM-1 and, for 
each class, computes the corresponding b* and the information (i, liai

*). This information is called the 
SVM model information. This model information is used to predict the location of any sensor given its 
distance vector.

Figure	3.	Localization	of	a	node	based	on	its	memberships	in	regions	cxi and cyj

 

cxi cxi+1 

cyj 

cyj+1 
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Location Estimation

Let us focus on the classification along the X-dimension. LSVM organizes the cx-classes into a binary 
decision tree, illustrated in Figure 4. Each tree node is a cx-class and the two outgoing links represent 
the outcomes (0: “not belong”, 1: “belong”) of classification on this class. The classes are assigned to the 
tree nodes such that if the tree is traversed in the in-order order {left-subtree→ parent→ right-subtree}, 
the result is the ordered list cx1→ cx2 → ... → cxM-1. Given this decision tree, each sensor node S can 
estimate its x-coordinate using the following algorithm:

Algorithm:	X-dimension	localization	
Estimate	the	x-coordinate	of	sensor	node	S:
	 1.	Initially,	i			=			M/2		(start	at	root	of	the	tree		cxM/2 )
	 2.	IF	(SVM predicts  S  not in class  cxi)
	 -							IF	(cxi  is a leaf node – i.e., having no child decision node) 
	 	 							RETURN		x’(S)			=		(i	-	1/2	)D/M	
 -   ELSE Move to left-child  cxj  and set  i   =   j 
	 3.	ELSE
	 -							IF	(cxi		is	a	leaf	node)	RETURN		x’(S)			=		(i	+	1/2)D/M	
 -       ELSE Move to right-child  cxt  and set  i   =   t 
	 4.	GOTO	Step	2
	 5.	END

Similarly, a decision tree is built for the Y-dimension classes and each sensor node S estimates its 
y-coordinate y’(S) based on the Y-dimension	localization	algorithm (like the X-dimension	localization	
algorithm). The estimated location for node S, consequently, is (x’(S), y’(S)). Using these algorithms, the 
localization of a node requires visiting log2M nodes of each decision tree, after each visit the geographic 

Figure	4.	Decision	tree:	m	=	4

cx8

cx4

cx5cx3cx1 cx7

cx12

cx6cx2

cx13cx11cx9 cx15

cx14cx10

0

0

0 0 0 0

1

1

1

1

1 11

0

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

D/2 D0 D/22D/23

D/M



  311

Machine Learning Based Localization

range that contains node S downsizing by a half. The parameter M (or m) controls the precision of the 
localization.

SVM is subject to error and so is LSVM. Let e  be the worst-case SVM classification error when 
SVM is applied to solve the (2M-2) binary classification problems, each regarding one of the classes 
{cx1,	cx2, …, cxM-1, cy1,	cy2, …, cyM-1}. For each class c, a misclassification occurs when SVM predicts that 
a sensor node is in c but in fact the node is not, or when SVM predicts that the node is not in c but the 
node actually is. The SVM classification error corresponding to class c is the ratio between the number 
of sensor nodes for which SVM predicts correctly to the total number of all sensor nodes. In (Tran & 
Nguyen (2008)), it is shown that for a uniformly distributed sensor network field, the location error 
expected for any node is bounded by
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The location error expectation Eu decreases as the SVM error e gets smaller. Figure 5 plots the error 
expectation Eu for various values of e. There exists a choice for m (no larger than 8) that minimizes the 
error expectation. In a real-world implementation, it is recommended that we use this optimal m. A nice 
property of SVM is that e is typically upper-bounded and under certain assumptions on the choice of the 
kernel function, the bound diminishes if the training size gets sufficiently large. In the evaluation study 
of (Tran & Nguyen (2008)), when simulated on a network of 1000 sensors with non-uniform coverage, 
of which 5% serves as beacon nodes, the error e is no more than 0.1. This is one example showing that 
SVM offers a high accuracy when used to classify the sensor nodes into their correct classes. Later in 
this chapter more evaluation results are presented to demonstrate the localization accuracy of LSVM.

LOcALIZATION bAsED ON REGREssION

Trilateration is a geometrical technique that can locate an object based on its Euclidean distances from 
three or more other objects. In our case, to locate a sensor node we do not know its true Euclidean 
distances from the k beacon nodes. We can use a regression tool (e.g., libsvm (Chang & Lin (2008))) to 
learn about these distances using hop-count information. The beacon leader constructs a linear regres-
sion function f: N → R with the following training data

f(hc(Si, Sj)) = d(Si, Sj) for all i, j ∈ {1, 2, …, k}

where d(Si, Sj) is the Euclidean distance between Si and Sj. Once this regressor f is computed, it is broadcast 
to all the sensor nodes. Since each node receives a HELLO message from each beacon, the former can 
compute its distance vector and apply the regressor f to compute its location (Tran & Nguyen (2008b)). 
A similar approach, but applied on signal-strength data, was considered by (Kuh & Zhu (2006), Zhu & 
Kuh (2007), Kuh & Zhu (2008)). Kuh & Zhu uses least squares SVM regression to solve the localization 
problem with beacon locations as training data. This involves solving a system of linear equations. To 
achieve sparseness, a procedure is used to choose the support vectors based on training data error. 

If the network is sufficiently small, each sensor node can hear from all the beacon nodes. It is ob-
served that if two nodes Si and Sj receive similar signal strengths from the beacon nodes, and, if the 
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number of beacons is large enough (at least 3), these nodes should be near each other in the physical 
space.   Thus, one could be able to exploit directly the high correlation statistics between the similarity 
of signal strengths and that of sensor locations. This insight was observed by (Pan et al. (2006)), who 
proposed to use Kernel Canonical Correlation Analysis (KCCA) (Akaho (2001), Hardoon et al. (2004)) 
for the regression that maps a vector in the signal-strength space to a location in the physical space. We 
briefly present KCCA below and then how it is used for the localization problem.

Kernel canonical correlation Analysis (KccA)

KCCA is an efficient non-linear extension of Canonical Correlation Analysis (CCA) (Hotelling (1936), 
Hardoon et al. (2004)). Suppose that there are two sets of multidimensional variables, s = (s1, s2, …, 
sk) and t = (t1, t2, …, tk). CCA finds two canonical vectors, ws and wt, one for each set such that the 
correlation between these two sets under the projections, ( )ksss swswswa ,,...,,,, 21=  and  

( )kttt twtwtwb ,,...,,,, 21=  is maximized (the correlation is defined as 

ba
ba

bacor
,

),( = ). 

While CCA only exploits linear relationship between s and t, its extension using kernels KCCA can 
work with non-linear relationships. KCCA defines two kernels, Ks for the s space and Kt for the t space. 
Each kernel Ks (or Kt) represents implicitly a feature vector space Φs (or Φt) for the corresponding variable 
s (or t). Then, a mapping that maximizes the correlation between s and t in the feature space is found 
using the kernel functions only (requiring no knowledge about Φs and Φt).

Figure	5.	Upper	bound	on	the	expectation	of	worst-case	location	error	under	various	values	of	SVM 
classification	error	(epsilon	e). A lower SVM error corresponds to a lower-appearing curve.
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KccA for Localization

(Pan et al. (2006)) applies KCCA to find a correlation-maximizing mapping from the signal-strength 
space to the physical location space (because the relationship is non-linear, KCCA is more suitable than 
CCA).  Firstly, two kernel functions are defined, a Gaussian kernel Ks for the signal space 

)exp(),(
2

jijis ssssK −−=

and a Matern kernel Kt for the location space
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where v is a smoothness parameter, Γ(v) the gamma function, and Kv(.) the modified Bessel function of 
the second kind.  The signal strengths between the beacon nodes and their location form the training 
data. In other words, the k instances (s1, t1), (s2, t2), …, (sk, tk), where (si, ti) represents the signal-strength 
vector and the location of beacon node Si, serve as the training data.

After the training is completed, suppose that q pairs of canonical vectors (ws1, wt1), (ws2, wt2), …, 
(wsq, wtq) are found. The choice for q is flexible. Technically, more than one pair of canonical vectors 
can be found recursively in such a way that a newly found pair must be orthogonal to the previous pair 
and maximally correlate the canonical variates resulted from the previous pair. Thus, q can be chosen 
as large as we can find a new pair of canonical vectors that improves the correlation according to the 
previous pair by a significant margin (which can be defined by some threshold).

A sensor node S ∈ {Sk+1, Sk+2, …, SN}  is localized as follows:

• Compute the signal-strength vector s of sensor node S: s = (ss(S1, S), ss(S2, S), …, ss(Sk, S)
• Compute the projection of 

 ( )swsswsswssP q ,,...,,,,)( 21=

• Choose from the set of beacon nodes m nodes {Si} whose projections {P(si)} are nearest to P(s). 
The distance metric used is a weighted Euclidean distance where the weights are obtained from 
the KCCA training procedure and the canonical vectors wt1, wt2, …, wtq

• Compute the location for S as the centroid position of these m neighbors

EVALUATION REsULTs

This section presents some evaluation results that demonstrate the effectiveness of the learning-based 
approach to the sensor localization problem. The main overhead for this approach is the training proce-
dure. It involves communication among the beacon nodes to obtain their distance (or signal-strength) 
vectors. Then, the head beacon collects this information to run the SVM, resulting in a prediction model 
which is then broadcast to all the nodes in the network. The location estimation procedure at each node 
consists of only a small number of comparisons and simple computations. Thus, the approach is fast 
and simple.
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In the following, we show the location error results for LSVM – the classification based technique 
that uses the hop-count information to learn the sensor nodes’ locations. These results are extracted 
from the evaluation study presented in (Tran & Nguyen (2008)). The evaluation results for the other 
learning-based techniques can be found in (Tran & Nguyen (2008b)) (regression-based localization using 
hop-count information), (Nguyen et al. (2005)) (classification-based localization using signal strength) 
and (Pan et al. (2006)) (regression-based localization using signal strength).

In (Tran & Nguyen (2008)), LSVM is compared to Diffusion (Bulusu et al. (2002), Meertens & 
Fitzpatrick (2004)). Diffusion is an existing technique that does not require ranging measurements and 
also uses beacon nodes with known locations. Unlike LSVM, Diffusion is not based on machine learn-
ing. In Diffusion, each sensor node’s location is initially estimated as a random location in the sensor 
network area. Each node, a sensor node or a beacon node, then repeatedly exchanges its location esti-
mate with its neighbors and uses the centroid of the neighbors’ locations as the new location estimate. 
This procedure after a number of iterations will converge to a state where each node does not improve 
its location estimate significantly.

Consider a network of 1000 sensor nodes located in a 100m by 100m 2-D area. The selection of the 
beacon nodes among the sensor nodes is based on uniform distribution. The communication radius 
for each node is 10m. Five different beacon populations are considered: 5% of the network size (k = 
50 beacons), 10% (k = 100 beacons), 15% (k = 150 beacons), 20% (k = 200 beacons), and 25% (k = 250 
beacons). The algorithms in the libsvm software kit (Chang & Lin (2008)) are used for SVM classifica-
tion. The parameter m is set to 7 (i.e., M = 128).

Figure 6 shows that LSVM is more accurate than Diffusion. In this study, node locations are uniformly 
distributed in the network area. Diffusion converges after 100 iterations (Diff-100). It does not improve 
when more iterations are run, 1000 iterations (Diff-1000) or 10,000 iterations (Diff-10000). The differ-
ence between the two techniques is the most noticeable when the number of beacons is small (k = 50) 
and decreases as more beacon nodes are used. In any case, even when k = 50 (only 5% of the network 
serve as beacon nodes), the location error for an average node using LSVM is always less than 6m.

Another nice property of LSVM is that it distributes the error fairly across all the nodes.  As an 
example, Figure 7 shows the localization results for the case k = 50. In this figure, a line connects the 

Figure	6.	LSVM	vs.	diffusion:	Average	location	error	with	various	choices	for	the	number	of	beacons
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true location and the estimated location for each node. It can be observed that Diffusion suffers severely 
from the border problem: nodes near the border of the network area are poorly localized. LSVM does 
not incur this problem.

Many networking protocols such as routing and localization suffer from the existence of coverage 
holes or obstacles in the sensor network area.  (Tran & Nguyen (2008)) also shows that even so, LSVM 
remains much better than Diffusion. For example, with the sensor network placement shown in Figure 8, 
where there is a big hole of radius 25m centered at position (50, 50). Table 1 shows that LSVM improves 
the location error over Diffusion by at least 20% in all measures (average, worst, standard deviation) 
under every beacon population size.

Figure	7.	Diffusion	(1000	iterations,	left)	vs.	LSVM	(right):	A	line	connects	the	true	location	and	the	
estimated	location	of	each	sensor	node	(total	1000	nodes,	50	beacon	nodes)
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APPLIcATION TO TARGET TRAcKING

An appealing feature of the presented learning-based approach is that the localization of a sensor node 
can be done independently from that of another sensor node. The training procedure involves the beacon 
nodes only, whose result is a prediction model any sensor node can use to localize itself without knowl-
edge about other nodes. This feature is suitable for target tracking in a sensor network where, to save 
cost, not every sensor node needs to run the localization algorithm; only the target needs to be localized.  
For example, consider a target tracking system with k beacon nodes deployed at known locations. When 
a target T occurs in an area and is detected by a sensor node ST, the detecting node reports the event to 
the k beacon nodes. The distance vector [hc(ST, Si)] (i	=	1,	2,	…,	k) is forwarded to the sink station who 
will use the prediction model learned in the training procedure to estimate the location of target T.

An important issue in the learning-based approach is that its accuracy depends on the size of the 
training data; in our case, the number of beacon nodes. However, in many situations, the beacon nodes 
are deployed incrementally, starting with a few beacon nodes and gradually with more. In other cases, 
the set of beacon nodes can also be dynamic. The beacon nodes that are made available to a sensor 
node (or target) under localization may change depending on the location of this node (or target). We 
need a solution that learns based on not only the current measurements but also the past. For example, 
reconsider the target tracking system mentioned above. When a target is detected, sending the event to 
all the beacon nodes can be very costly. Instead, the detecting node reports the event to a few, possibly 
random, beacon nodes. Learning based on the current measurements (signal strengths or hop-counts) 
may be inaccurate because of the sparse training data, but as the target moves, by combining the past 
learned information with the current, we can better localize the target. Sequential prediction techniques 
(Cesa-Bianchi & Lugosi (2006)) can be helpful for this purpose.

(Letchner et al. (2005)) propose a localization technique aimed at such dynamism of the beacon nodes. 
The technique is based on a hierarchical Bayesian model which learns from signal strengths to estimate 
the target’s location. It is able to incorporate new beacon nodes as they appear over time. Alternatively, 
(Oh et al. (2005)) consider a challenging problem of multiple-target tracking by Markov chain Monte 
Carlo inference in a hierarchical Bayesian model. Recently, (Pan et al. (2007)) address the problem of 

Figure	8.	A	big	coverage	hole	at	the	middle	of	the	network	area
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not only locating the mobile target but also dynamically located beacon locations. The solution proposed 
in (Pan et al. (2007)) is based on online and incremental manifold-learning techniques (Law & Jain 
(2006)) which can utilize both labeled and unlabeled data that come sequentially.

Both (Letchner et al. (2005)) and (Pan et al. (2007)) learn from signal strength information, thus suit-
able for small networks where measurements of direct signals from the beacons are possible. The ideas 
could be applicable to a large network where hop-count information is used in the learning procedure 
rather than signal strengths. The effectiveness, however, has not been evaluated. Investigation in this 
direction would be an interesting problem for future research.

sUMMARY

This chapter provides a nonconventional perspective to the sensor localization problem. In this perspec-
tive, sensor localization can be seen as a classification problem or a regression problem, two popular 
subjects of Machine Learning. In particular, the presented localization techniques borrow the ideas 
from kernel methods. 

The learning-based approach is favored for its simplicity and modest requirements. The localization 
of a node is independent from that of others. Also, past information is useful in the learning procedure 
and, therefore, this approach is highly suitable for target tracking applications where the information 
about the target at each time instant is partial or sparse, insufficient for geometry-based techniques to 
work effectively.

Although the localization accuracy can improve as more training data is available, collecting large 
training data or having many beacon nodes results in significant processing and communication over-
head. A challenge for future research is to reduce this overhead.  Also, it would be interesting to make 
one or more beacon nodes mobile and study how learning can be helpful in such an environment.
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AbsTRAcT

Various real-life environments are exceptionally harsh for signal propagation, rendering well-known 
trilateration	techniques	(e.g.	GPS)	unsuitable	for	localization.		Alternative	proximity-based	techniques,	
based on placing sensors near every location of interest, can be fairly complicated to set up, and are 
often sensitive to sensor failures or corruptions.  The authors propose a different paradigm for robust 
localization	based	on	 identifying codes, a concept borrowed from the information theory literature.  
This chapter describes theoretical and practical considerations in designing and implementing such 
a	localization	infrastructure,	together	with	experimental	data	supporting	the	potential	benefits	of	the	
proposed technique.

PRObLEM sTATEMENT

Dense indoor or urban settings, underwater or underground systems, and many emergency environments 
typically exhibit signal propagation properties that are extremely difficult to predict. Within these envi-
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ronments, signal strength or time-of-flight measurements do not accurately convey distance information, 
often due to spurious multi-path effects, occlusions, or noise that is very hard to characterize or model.  
As a result, traditional trilateration techniques, such as the Global Positioning System (GPS), are very 
hard to adapt to such systems without significant and often catastrophic error. 

In practice, many schemes for localization in such environments are proximity-based, meaning that 
the location of an object is determined by the closest sensor. Generally, these systems are based on short 
range sensing techniques such as infrared in the Active Badge system (Want, Hopper, Falcao, & Gibbons, 
1992), ultrasound (combined with RF) in the Cricket system (Priyantha, Chakraborty, & Balakrishnan, 
2000), Bluetooth in (Aalto, Göthlin, Korhonen, & Ojala, 2004), and radio frequency identification - RFID 
in the LANDMARK system (Ni, Liu, Lau, & Patil, 2005). Some of these approaches utilize several 
nearby sensors to make the localization more accurate, but the underlying system organization remains 
proximity-based, so that the sensing area must be divided into similarly-sized regions, typically with 
minimal intersection. Properly setting up such systems can be fairly complicated, and the localization 
provided can be sensitive to sensor failures or corruptions, as well as interferences due to the significant 
environment changes that might take place.

Another approach to localization involves careful measurement and mapping of signal features within 
the coverage area. These methods are commonly referred to as fingerprinting, since a specific location 
region is identified by a unique set of features (i.e. a fingerprint) of the sensed signal. One of the most 
common fingerprinting techniques is based on the signal strength (or signal to noise ratio) of a received 
RF signal. Systems such as RADAR (Bahl & Padmanabhan, 2000), SpotOn (Hightower, Borriello, & 
Want, 2000), and Nibble (Castro, Chiu, Kremenek, & Muntz, 2001) map the signal strength received from 
several beacons onto a coverage area in order to train a probabilistic localizer. Other similar systems 
focus on commercially used communication standards to provide localization services, such as Wi-Fi 
(Ladd et al., 2002), and Groupe Spécial Mobile - GSM (Varshavsky, de Lara, Hightower, LaMarca, & 
Otsason, 2007). These systems usually perform with relatively high accuracy, although they require 
careful and complex planning. There are also inherent issues with robustness in such systems, since 
signal strength or signal to noise ratio are susceptible to the radio frequency - RF propagation channel, 
and can vary considerably with small changes within the environment, especially in the environments 
considered.

The performance of a location detection system can be characterized by many measures: resolution, 
responsiveness (delay until detection), etc. For many applications an important performance measure 
is the probability of correctly determining the region in which a target is located (i.e. the correctness 
of the system). For example, within the context of emergency response systems, correctness is usually 
much more important than resolution: to locate a trapped victim, it is usually sufficient to know her 
general location (e.g. floor and room); on the other hand, sending rescuers to the wrong location in an 
emergency situation can be deadly. 

Motivated by these applications, localization schemes have been proposed that are based on identify-
ing codes (Ray, Starobinski, Trachtenberg, & Ungrangsi, 2004), a concept borrowed from information-
theory with links to coverings and superimposed codes. In this approach, only a small subset of sensors 
is activated as beacons. The subset is chosen so that its sensors have an identification	property, meaning 
that a unique (or identifying) collection of these beacons can be detect at any location of interest, with 
specific regard to physical proximity.  As such, a user can identify its location by simply tallying which 
beacons it can detect.

These systems benefit from heterogeneous sensor placements, and often require significantly fewer 
sensors to cover a localization area. Moreover such localization can be made robust to spurious con-
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nections or sensor failures through the judicious addition of redundant sensors. In general, identifying 
codes based localization can be viewed as a particular case of fingerprinting where the sensed feature is 
a binary variable indicating whether a particular beacon is detected. Therefore, identifying codes based 
localization is expected to be simpler and have much higher robustness than traditional fingerprinting 
methods, although at the expense of reduced localization accuracy.  This tradeoff is advantageous to a 
number of harsh environments.

Outline

In this chapter we provide a survey of the literature relevant to identifying-code based localization.  
Specifically, we describe theoretical and practical considerations in the proper design and setup of such 
a system within a harsh environment, including:

•	 Finding good codes: Presenting provably good approximation algorithms for finding robust iden-
tifying codes of arbitrary graphs.

•	 Robustness: Providing means of protecting a localization network against unanticipated changes 
in topology or signal propagation path.

•	 Distributed computation: Presenting distributed methods of determining robust identifying codes 
in a sensor network.

Throughout the work, we provide the advantages and shortcomings of identifying-code localization, 
supported by theoretical results and simulations on Erdos-Renyi graphs and geometric random graphs, 
and experiments on a testbed on the fourth floor of the Photonics center at Boston University. 

bAsIc DEFINITIONs

Consider a graph G with vertex set V.  A neighborhood of a vertex v in V consists of all vertices adjacent 
to v together with v itself.  An identifying code on the graph is defined to be a subset C  ⊆ V with the 
property that each neighborhood of the graph consists of a unique collection of vertices in C.  

Figure 1 depicts an identifying code of a seven-vertex graph (labeled a through g).  The identifying 
code consists of four highlighted vertices {a,b,c,d}, which we shall call codewords; the unique intersec-
tion of each neighborhood with the code is denoted in braces next to the node. For example, vertex g 
has neighbors {a,d,e,f,g}, of which a and d are codewords; no other neighborhood contains exactly the 
set {a,d}, meaning that, within the parameters of our model, a user that detect beacons from a and d 
can safely assume that it is at location g.  

A minimum or an optimal identifying code of a given graph is defined to be an identifying code with 
the smallest possible number of vertices for that graph.

ALGORITHMs

An identifying code based localization system divides the coverage area into a finite set of regions, and 
reports a point in this region as the location for a given target (see Figure 2). 
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The system operates in either or both of two modes, location service or location tracking, which are 
equivalent (up to implementational details).  In the first mode, the system periodically broadcasts identity 
(ID) packets from designated beacons, which an observer can harvest to determine his location. In the 
location tracking mode, an observer transmits his ID and the system determines his location from the 
sensors receiving the ID.

In the system’s design process a set of points is selected for a given coverage area. Then transmit-
ting beacons are placed on a subset of these points, based on their RF-connectivity, in a manner cor-
responding to an identifying code. This placement guarantees that each point is covered by a unique set 
of transmitters. Thus, an observer can determine its location from the unique collection of ID packets 
that it receives.

In summary, identifying codes based localization involves:

1. Choosing a set of discrete points and transmitters in a given region such that each point is covered 
by a distinct set of transmitters (optimization of the transmitters’ locations should be considered 
as a separate step)

g
a

b

c

d

e

f

{a,b}
{a,d}

{a,b,c}

{c,b}{c,d}

{d}

{d,b}

Figure	1.	An	example	of	an	identifying	code	on	a	graph.	The	vertices	are	labeled	by	letter	a…g,	with	
codewords corresponding to highlighted vertices.

Figure	2.	An	office	location	detection	plan.	The	continuous	office	area	is	quantized	into	finite	regions	
a,…,f	(left).	The	RF	connectivity	between	the	regions	is	shown	by	black	arrows	(right).
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2. Resolving the location of a sensor to be the discrete point covered by the same set of transmit-
ters.

Example

The following example illustrates the identifying-code location-detection approach in more detail. Con-
sider the points a,…,f on a simple office floor plan illustrated in Figure 2, and let the RF connectivity 
among these points be represented by the arrows in Figure 2 (right); in other words, there is an arrow 
from position a to position b if and only if b can receive an RF signal transmitted by a. Given such con-
nectivity information between every pair of points, our objective is to build a system using a minimum 
number of transmitters that allows an observer to infer his location at any point in {a,…,f}.   We thus 
place four wireless transmitters at positions a,b,c and d, with each transmitter periodically broadcasting 
a unique ID. We assume that packet collisions are avoided by an appropriate medium access control 
(e.g., simple randomization or a full-scale protocol) and that the observer collects received packets over 
a (small) amount of time.  

For example, in Figure 1, an observer in the region of point e would receive IDs from the transmit-
ters at position c and d.  We shall denote by IC(x) the set of IDs received at a given position x under a 
set C of beacons as the identifying set of x. If the identifying set of each point in the graph is unique, 
then targets can be correctly located at these points using a table lookup of the packet IDs received. The 
reader can simply verify that all identifying sets are unique in our example.

In general, we model a physical environment by a graph of vertices and edges; its vertices model 
locatable regions and its edges connect regions with RF connectivity. Figure 1 shows the modeling graph 
for the office floor plan in Figure 2. The problem of finding the minimum number of transmitters is thus 
translated into the problem of finding the minimum identifying code over the RF connectivity graph. 

In the next subsections we provide some algorithms for approximating the minimum identifying 
codes, with tight performance guarantees. 

Identifying codes in Arbitrary Graphs: First Attempt

In the most general situation, finding a minimum size identifying code for arbitrary undirected and 
directed graphs was proven to be NP complete in (Charon, Hudry, & Lobstein, 2003). Therefore, rather 
than looking for an optimal solution, in this section we focus on polynomial time approximations for 
constructing identifying codes.

An algorithm for generating irreducible identifying codes was first suggested in (Ray, Ungrangsi, 
Pellegrinin, Trachtenberg, & Starobinski, 2003). The irreducibility property means that the deletion 
of any codeword (an element in the identifying code) results in a code that is no longer an identifying 
code. Since adding codewords to an identifying code results in another identifying code, the algorithm 
starts with the trivial1 identifying code - the entire set of vertices of the graph, and at each iteration it 
removes a vertex in a predetermined order a, until the code is no longer identifying.
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Algorithm 1 : ID-CODE(G,a)   (Ray et al., 2003)
Given a graph G=(V,E) and a list of vertices a do:

set1)  C =V
for2)  each x∈a, D = C \ {x} do
       3) if D is an identifying code then  C=D 
return4)  C

 
Clearly, the algorithm ID-CODE generates irreducible codes and therefore it always converges to a lo-
cal minimum. However, it turns out that these local minima can be arbitrarily far (O(|V|)) from a global 
one, as was shown in (Moncel, 2006). Still, ID-CODE performs well on random graphs, and different 
heuristics for selecting the ordering list a were suggested in (Ray et al., 2003), showing a benefit in 
removing first vertices of too low or too high degree. 

In the next section we describe a more methodical approach that leads to a polynomial time approxi-
mation for the minimum identifying code problem, with provable performance guarantees. 

Identifying codes and the set cover Problem

Since their introduction in 1998 identifying codes have been linked to many well studied problems 
in coding theory and computer science, but these fundamental links have only recently matured into 
polynomial time approximations. In (Laifenfeld, Trachtenberg, & Berger-Wolf, 2006) the minimum 
identifying code and the minimum set cover problems were first tied together to yield a provably good 
approximation, which we shall now describe.

Let U be a base set of m elements and let S be a family of subsets of U. A cover C ⊆ S is a family 
of subsets whose union is U. The set cover problem, one of the oldest and most studied NP-complete 
problems, asks to find a cover C of smallest cardinality.

The set cover problem admits the following greedy approximation (GreedySetCover): at each step, 
and until exhaustion, choose the heretofore unselected set in S that covers the largest number of uncov-
ered elements in the base set. The performance ratio of the greedy set cover algorithm has also been 
well-studied. The classic results of Lovasz and Johnson (see e.g. (Johnson, 1974)) showed that

m
s

s
ln

min

greedy ≤ ,          (1)

where smin, sgreedy are the minimum and the greedy covers sizes, and m is the size of the base set. The 
example in Figure 3 actually shows an instance of a family of problems that attains this bound. 

In order to link the set cover and identifying code problems together we need some additional defi-
nitions. 

A ball, B(v), is defined as the set of the immediate neighbors of v including v itself. A vertex v is 
said to distinguish between a pair of vertices (u,	z) if exactly one of them is a member of the its ball, 
i.e., |B (v)∩{u, z}| = 1. Clearly any code, C, that includes v, satisfies IC(u) ≠IC(z); and furthermore (by the 
definition of an identifying code) a code C is identifying if its members distinguish between all pairs 
of distinct vertices in the graph2. We shall use U to denote the set of all pairs of distinct vertices, i.e., 
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U = {(u, z) | u ≠ z ∈ V }, and let the distinguishing set of a vertex v ∈ V be the set of all vertex pairs (u, 
z) ∈ U it distinguishes:

δv = {(u, z) ∈U :  | B (v) ∩ {u, z}| = 1}.       (2)

We are now ready to introduce the ID-CENTRAL algorithm.

Algorithm 2 : Cgreedy ←ID- CENTRAL (G)   (Laifenfeld et al., 2006)
Given a graph G=(V,E) and the set cover heuristic GreedySetCover (U,S) do:

Compute 1)  ∆={δv |v∈V}
C2)	 ← GreedySetCover (U, ∆ )
Output3)  Cgreedy← {v | δv∈ C}

To see why Cgreedy is an identifying code, we observe that the set cover heuristic of Step 2 produces 
a set of distinguishing sets which cover all distinct pairs of vertices, or in other words a set of vertices 
that distinguish between all possible vertex pairs. 

Figure 4 shows an example of ID-CENTRAL(G) on a graph G consisting of a 10 node ring; in our 
case, the algorithm produces the optimum identifying code, although the outcome may vary depending 
on the node labeling scheme and the manner of breaking ties. In the example of Figure 4, ties are broken 
in favor of vertices of lower label.

Figure	3.	A	set	cover	problem	example	with	m=14	elements	(dots)	and	a	family	of	5	subsets	S ={S1,…,S5}	
(rectangles).	The	minimum	set	cover	is	of	size	smin=2,	C ={S1,S2},	and	the	greedy	set	cover	is	of	size	
sgreedy=3,	Cgreedy={S3,S4,S5}.

S3S4S5

S2

S1

Figure	4.	Demonstration	of	the ID-CENTRAL	for	10	nodes	ring,	starting	on	the	left.	Nodes	are	labeled	
1	to	10	clockwise	(the	labels	appear	in	the	inner	perimeter).	Solid	squares	represent	codewords,	and	
the	distinguishing	sets	sizes,	obtained	from	the	greedy	set-cover	(GreedySetCover) appear in the outer 
perimeter. The resultant identifying code (right) can be shown to be optimal. (Laifenfeld, Trachtenberg, 
Cohen,	&	Starobinski,	2008).	
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The following theorem follows straightforwardly from Equation (1) and the fact that there are 







2
n  

distinct vertex pairs (n=|V|).

Theorem 1
For	any	given	graph	G	of	n	vertices	 ID- CENTRAL generates	 identifying	code	of	 size	cgreedy that 
satisfies

n
c

c
ln2

min

greedy ≤ ,

where cmin	is	the	size	of	a	minimum	identifying	code.	

In fact the work in (Laifenfeld et al., 2006; Laifenfeld & Trachtenberg, 2008) shows that the perfor-
mance guarantee of Theorem 1 is also tight (up to a small factor), namely:

Theorem 2 (Laifenfeld et al., 2006 ; Laifenfeld & Trachtenberg, 2008)
There exists a family of graphs and arbitrary small e>0,	for	which	the	ID- CENTRAL generates iden-
tifying	code	of	size	cgreedy such that

n
c

c
ln)1(

min

greedy −≥ .

Furthermore, using hardness of approximation results for the set cover problem, these results were 
extended to show that no polynomial time algorithm can approximate the minimum identifying code 
with a guarantee better than (1-e)ln n under common complexity assumptions. 

Similar but weaker results were later obtained in (Suomela, 2007; Gravier, Klasing, & Moncel, 2006), 
where the identifying codes problem was also linked to the minimum dominating set problem. Other 
algorithms for approximating the minimum identifying code were also suggested in the literature. In 
fact, an algorithm suggested in (Laifenfeld et al., 2006; Laifenfeld & Trachtenberg, 2008) based on a 
test cover approximation achieves the hardness of approximation bound within a small additive factor, 
guaranteeing performance ratio of 1+ln n.

Towards a Practical Location Detection Algorithm: Robust Identifying codes

Robustness of the location detection system can be critical to many applications. For instance in emer-
gency location detection systems typical corruptions include:

1. Destruction of ID-transmitting beacons  (e.g., collapse, fire/water).
2. Radio path changes (e.g., structural disintegration, object movements).
3. Spectrum saturation due to significant communications.

In the previous section we described techniques for constructing identifying codes with as few 
codewords as possible. This framework inherently provides some amount of robustness, since a point 
may be covered by sensors located far away, thereby creating spatial diversity. However, in practice, 
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the identifying set received by an observer might fluctuate due to environmental conditions, and thus 
we seek to guarantee that the scheme works even if the received identifying set differs minimally from 
the original. In this section we describe a generalization of identifying codes, first suggested in (Ray 
et al., 2003), that achieves this goal by guaranteeing to be robust in the face of spurious fluctuations in 
observed identifying sets. 

Definition 1 
An identifying code C over a given graph G=(V,E) is said to be r-robust if  A⊕IC(v) ≠ B⊕IC(u)  for all 
u,v ∈ V, and A,B⊆ C with |A|,|B|≤ r.    We use the symbol ⊕  to denote the symmetric difference (i.e., 
A⊕B=(A\ B) ∪ (B \ A)).

Simply stated, an identifying code is r-robust if the addition or deletion of up to r codewords (IDs) 
around any vertex does not change its identifying capability. Alternatively, we may determine the ro-
bustness of a code C by measuring the minimum symmetric difference between the identifying sets of 
any two vertices, dmin(C)=minu,v ∈ V |IC(v) ⊕IC(u)|.

We thus have the following theorem as a straightforward application of the definitions.

Theorem 3 
A code C is r-robust if and only if  dmin(C) ≥ 2r +1

A straightforward extension to ID-CODE can generate r-robust identifying codes, but with the same lack 
of a performance guarantee. Instead, robust identifying codes were linked to the set multi-cover problem 
in (Laifenfeld, Trachtenberg, Cohen, & Starobinski, 2007). The minimum set k-multicover problem is a 
natural generalization of the minimum set cover problem, in which one is given a pair (U, S) and seeks the 
smallest subset of S that covers every element in U at least k times. The set multicover problem admits a 
similar greedy heuristic to the set cover problem, GreedySetMultiCover: in each iteration select the set 
which covers the maximum number of non k-multicovered elements. It is well known (Vazirani, 2001) that 
the performance guarantee of this heuristic is upper bounded by 1+lna, where a is the largest set’s size. 

Algorithm 3 : Ccentral ←rID- CENTRAL (G,r)     (Laifenfeld et al., 2007)
Given a graph G=(V,E), a non-negative integer r, and the set multicover 
heuristic GreedySetMultiCover (U,S,k) do:

Compute 1)  ∆={δv |v∈V}
C2)	 ← GreedySetMultiCover (U, ∆ ,2r+1)
Output3)  Ccentral← {v | δv∈ C}

The correctness of Algorithm 3 is guaranteed in Step 2) where GreedySetMultiCover generates a 
multicover of distinguishing sets that distinguish every pair of vertices at least 2r+1 times, or in other 
words |IC(v) ⊕IC(u)|≥2r+1 for all (v, u) ∈ U.

The following theorem follows from the well known performance bound of the greedy set multicover 
heuristic, and the fact that the size of the most distinguishing vertex (a vertex whose identifying set is 
of maximal size) is ( ))()((max vBnvBVv −= ∈ .
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Theorem 4
For	any	given	graph	G	of	n	vertices,	rID-CENTRAL generates	an	identifying	code	of	size	ccentral that 
satisfies

1ln
min

central +≤
c

c
.

rID-CENTRAL requires the knowledge of the entire graph in order to operate. It was observed 
in (Ray et al., 2003) and (Laifenfeld & Trachtenberg, 2005) that an r-robust identifying code can be 
built in a localized manner, where each vertex only considers its two-hop neighborhood.  The resulting 
localized identifying codes are discussed next, and the approximation algorithm we derive is utilized 
to construct the distributed algorithm of the next section. In the heart of the localized identifying code 
lies the observation that nodes, which are the neighbors of a codeword, must differ in their identifying 
set (by at least one element) from nodes that are not. Therefore if every node is in the neighborhood of 
some codeword, then it is enough to require that only the nodes in every such neighborhood have unique 
identifying sets. Equivalently, if the code is a dominating set3, then only the pairs of nodes that are two 
hops apart need to be considered in Algorithms 2 or 3 to guarantee it to be identifying. In the following 
we cement this observation with some additional technical definitions and lemmas. 

Let G = (V, E) be an undirected graph, we define the distance metric ρ(u, v) to be the number of edges 
along the shortest path from vertex u to v. The ball of radius l around v is denoted B(v; l) and defined to 
be {w∈ V | ρ(w, v)≤l }. So far we encountered balls of radius l=1, which we simply denoted by B(v).

Recall that a vertex cover (or dominating set) is a set of vertices, S, such that every vertex in V is in 
the ball of radius 1 of at least one vertex in S. We extend this notion to define an r-dominating set to be 
a set of vertices Sr such that every vertex in V is in the ball of radius 1 of at least r vertices in Sr.

Lemma 1 
Given a graph G=(V, E), an (r+1)-dominating set C is also an r-robust identifying code if and only if 
every pair (u, v) ∈	U	such	that	ρ(u,	v)	≤	2	is	distinguished	by	at	least	by	2r	+	1	codewords	in	C.

Lemma 1 can serve as the basis for an algorithm for a robust identifying code problem based on the 
greedy set multicover heuristic, similarly to Algorithm 3.  The main difference is that we will restrict 
the basis elements to vertex pairs that are at most two hops apart, and we then need to guarantee that 
the resulting code is still r-dominating.

Towards this end we define U2 ={ (u, v)  | ρ(u, v)≤2 }, the set of all pairs of vertices (including (v,v)) 
that are at most two hops apart. Similarly, we will localize the distinguishing set δv to U2 as follows:

δv
2 =( δv ∩ U2) ∪ {(u, u) | u ∈ B(v)},        (3)

The resulting localized identifying code approximation is thus given by Algorithm 4 and can be 
shown in a similar manner to provide an r-robust identifying code for any graph that admits one.
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Algorithm 4 : Clocal ←rID- LOCAL (G,r)    (Laifenfeld et al., 2007)
Given a graph G=(V,E), a non-negative integer r, and the set multicover heuristic 
GreedySetMultiCover (U,S,k) do:

Compute 1)  U2 and ∆2={δv
2 |v∈V}

C2)	 ← GreedySetMultiCover (U2, ∆2 ,2r+1)
Output3)  Clocal← {v | δv

2∈ C}

An example of rID-LOCAL(G,0), where G is a 10 nodes ring is shown in Figure 5 . Comparing to 
ID-CENTRAL of Figure 4 it can be observed that the two differ in the sizes of their distinguishing 
sets. rID-LOCAL considers only pairs of nodes that are at most two hops apart, and therefore the initial 
size of the distinguishing sets is smaller. This also affects the iterations to follow, resulting in a larger 
identifying code.

Theorem 5
Given a graph G=(V,E) of n vertices, the performance ratio of rID- LOCAL	is	upper	bounded	by:

1ln
min

local +≤
c
c

,

where γ= maxv∈V |B(v)|(|B(v;3)|-|B(v)|+1).

Proof: The proof derives from the performance guarantee of the greedy set multicover algorithm, which 
is upper bounded by 1+ln a  for a maximum set size a.

The size of δv
2 is |B(v)|(|B(v;3)|-|B(v)|+1), which, at its maximum, can be applied to this performance 

guarantee to complete the proof.        
Roughly speaking this performance bound is similar to the bound we derived for the centralized 

algorithm, when the size of the largest B(v;3) is of the order of the number of vertices, n. However, when 
|B(v;3)| is much smaller, the performance bound of Theorem 5 can be  significantly tighter.

Note that although Algorithm 4 “localizes” the set of vertices pairs, U2, it is not a distributed algo-
rithm, since it still requires a central entity to select the most distinguishing codeword at each iteration. 
In the next section we present a distributed implementation of the identifying code localized approxima-

Figure	5.	Demonstration	of	the rID-LOCAL	for	10	nodes	ring,	and	r=0,	starting	on	the	left.	Nodes	are	
labeled	1	to	10	clockwise	(the	labels	appear	in	the	inner	perimeter).	Solid	circles	represent	codewords,	
and	the	distinguishing	sets	sizes,	obtained	from	the	greedy	set-multicover	(GreedySetMultiCover) appear 
in the outer perimeter. 
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tion. The following lemma supplements Lemma 1 by providing additional “localization”. At the heart 
of this lemma lies the fact that each codeword distinguishes between its neighbors and the remaining 
vertices.

Lemma 2
The distinguishing sets δv

2 and δu
2 are disjoint for every pair (u, v) with ρ(u,v)>4.

Proof: Clearly, δv
2 includes all vertex pairs (x, y) ∈ U2 where x is a neighbor of v and y is not.  More 

precisely, (x, y) ∈ δv
2 if

x ∈ B(v)   and   y ∈ (B(x;2) \ B(v)).        (4)

Moreover, for all such (x,y), ρ(x,y)≤ 3 and ρ(y,v)≤ 3. On the other hand, for (x’,y’) ∈ δu
2 with ρ(u,v)>4, 

either x’ or y’ must be a neighbor of u, and hence of distance >3 from v. Thus, δv
2 and δu

2 are disjoint. 
Lemma 2 implies that, when applying the localized algorithm, a decision to choose a codeword only 

affects decisions on vertices within four hops; the algorithm is thus localized to vicinities of radius 
four.

IMPLEMENTATIONs

Several parallel algorithms exist in the literature for the set cover problem and for more general covering 
integer programs (e.g. (Rajagopalan & Vazirani, 1998)). There are also numerous distributed algorithms 
for finding a minimum (connected) dominating set based on set cover and other well-known approxi-
mations such as linear programming relaxation (e.g. (Bartal, Byers, & Raz 1997)). Unfortunately, the 
fundamental assumption of these algorithms is that the elements of the basis set are independent com-
putational entities (i.e. the nodes in the network); this makes it non-trivial to apply them in our case, 
where elements correspond to pairs of nodes that can be several hops apart. Moreover, we assume that 
the nodes are energy constrained so that reducing communications is very desirable, even at the expense 
of longer execution times and reduced performance.

We next provide two distributed algorithms first devised in (Laifenfeld et al., 2007). The first is 
completely asynchronous, guarantees a performance ratio of at most 1+ ln γ,  and requires Θ(cdist) itera-
tions at worst, where cdist is the size of the identifying code returned by the distributed algorithm and  
γ= maxv∈V |B(v)|(|B(v;3)|-|B(v)|+1). The second is a randomized algorithm, which requires a coarse syn-
chronization, guarantees a performance ratio of at most 1+ ln γ, and for some arbitrarily small e>0 op-
erates within ( )1

2
1 −

++
K

K

nO K  time slots (resulting in ( )|)4;(|maxdist vBcO Vv∈  messages). K≥2 is a design 
parameter that trades between the size of the resulting r-robust identifying code and the required number 
of time slots to complete the procedure.

In the next subsection we describe the setup and initialization stages that are common to both dis-
tributed algorithms.



  333

Robust Localization Using Identifying Codes

setup and Initialization

We assume that every vertex (node) is pre-assigned a unique serial number and can communicate reli-
ably and collision-free (perhaps using higher-layer protocols) over a shared medium with its immediate 
neighborhood. Every node can determine its neighborhood from the IDs on received transmissions, and 
higher radius balls can be determined by distributing this information over several hops. In our case, 
we will need to know G(v;4) the subgraph induced by all vertices of distance at most four from v.

Our distributed algorithms are based on the fact that, by definition, each node v can distinguish 
between the pairs of nodes which appear in its corresponding distinguishing set δv

2 given in Equation 
(3). This distinguishing set is updated as new codewords are added to the identifying code being con-
structed, C; their presence is advertised by flooding their four-hop neighborhood.

The Asynchronous Algorithm rID-AsYNc

The state diagram of the asynchronous distributed algorithm is shown in Figure 6. All nodes are initially 
in the unassigned state, and transitions are effected according to messages received from a node’s four-
hop neighborhood. Two types of messages can accompany a transition: assignment and declaration 
messages, with the former indicating that the initiating node has transitioned to the assigned state, and 
the latter being used to transmit data.  Both types of messages also include five fields: the type, which 
is either “assignment” or “declaration”, the ID identifying the initiating node, the hop number, the it-
eration number, and data, which contains the size of the distinguishing set in the case of a declaration 
message.

Following the initialization stage, every node declares its distinguishing set’s size. As a node’s dec-
laration message propagates through its four hop neighborhood, every forwarding node updates two 
internal variables, IDmax and δmax, representing the ID and size of the most distinguishing node (ties are 
broken in favor of the lowest ID).  Hence, when a node aggregates the declaration messages initiated 
by all its four hop neighbors (we say that the node reached its end-of-iteration event), IDmax should hold 
the most distinguishing node in its four hop neighborhood. A node that reaches end-of-iteration event 
transitions to either the wait-for-assignment state or to the final assigned state depending on whether 
it is the most distinguishing node.

The operation of the algorithm is completely asynchronous; nodes take action according to their 
state and messages received. During the iterations stage, nodes initiate a declaration message only if 

Figure	6.	Asynchronous	distributed	algorithm	 (rID-ASYNC)	 simplified	 state	diagram	 in	node	v∈V 
(Laifenfeld	et	al.,	2007)
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they receive an assignment message or if an updated declaration (called an unassignment message) is 
received from the most distinguishing node of the previous iteration. All messages are forwarded (and 
their hop number is increased) if the hop number is less than four. To reduce communications load, a 
mechanism for detecting and eliminating looping messages should be applied.

Every node, v, terminates in either an “unassigned” state with |δv
2|=0 or in the “assigned” state. 

Clearly, nodes that terminate in the “assigned” state constitute a localized r-robust identifying code.

Algorithm 5 : Cgreedy ←rID-ASYNC (G,r) (Laifenfeld et al., 2007)
Given G=(V,E) with vertices labeled by ID, a non-negative integer r, do at every node v∈V:

Precompute 1)  
Compute a. δv

2 
Initiate a declaration message and set b. state = unassigned
Set c. IDmax=ID(v), δmax=|δv

2|.
Iteration2) 

Increment a. hop(ms) and forward all messages of hop(ms)<4.
if received an b. assignment message with state≠assigned then

Update i. δv
2 by removing all pairs covered 2r+1 times.

Initiate a declaration message and set ii. state = unassigned.
Perform iii. Comp(ID(v),|δv

2|).
if c. state=waitfor-assignment and received an unassignment message then

Initiate a declaration message and set i. state = unassigned.
Perform ii. Comp(ID(v),|δv

2|).
if received a declaration message d. ms with state≠assigned then perform Comp 
(ID(ms),data(ms))
if e. end-of-iteration reached then,

if i. IDmax=ID(v) and |δv
2|>0 then state=assigned, initiate an assignment 

message.
Otherwise ii. IDmax=ID(v), δmax=0, and state=waitfor-assignment.

Comp (id, δ):        if δmax <δ or (δmax =δ and IDmax>id)  then δmax =δ, IDmax=id.

We illustrate the operation of rID-ASYNC (0,G) over a simple ring topology of 10 nodes in Figure 7. 
The nodes are labeled from 1 to 10 clockwise. Solid squares represent assigned vertices (or codewords), 
and the size of the distinguishing sets and the value of IDmax, at the end of each iteration, appear in the 
outer perimeter, separated by a comma. The network is shown at the end of the first iteration in the 
upper left subfigure, where all nodes have evaluated their distinguishing sizes and communicated them 
to their 4-hop neighborhoods. We can see that all nodes can distinguish up to 9 pairs, and that all but 
node 6 have concluded node 1 to be the most distinguishing (IDmax =1) by the rule that lower labels take 
precedence. Since node 6 is just outside B(1;4) it concludes that node 2 is the most distinguishing in its 
4 hop neighborhood. Note that theoretically node 6 could have assigned itself to be a codeword without 
loss in performance since it is more than 4 hops away from node 1.

At the start of iteration 2 (subfigure 2a) node 1 transmits an assignment message that gets propagated 
in B(1;4) (shown as solid arrows). The assignment message transitions all the nodes in its way from 
wait-for-assignment to unassigned state and triggers them to reevaluate their distinguishing set sizes 
and send declaration messages. One half of node 2 declaration message is shown by the dashed arrows. 
This declaration message reaches node 6 when it is still in the wait-for-assignment state. Since node 6 
is awaiting an assignment message from node 2, this declaration message serves as an unassignment 
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message and transitions node 6 to the unassigned state and invokes a declaration message that is shown 
as dashed arrows in subfigure 2b, which makes the rest of the nodes to conclude that node 6 is the most 
distinguishing. Iterations 3 to 6 operate in a similar manner and are shown in the bottom of Figure 7. In 
total rID-ASYNC returns an identifying code of size 6 - only one node more than a minimum one. The 
outcome of rID-ASYNC is heavily dependent on the way nodes resolve ties and therefore is sensitive 
to nodes relabeling; however the performance guarantee of the theorem of the next subsection holds 
for any such arrangement.

Performance Evaluation

Theorem 6
The algorithm rID-ASYNC requires Θ(cdist) iterations and has a performance ratio

1ln
min

dist +≤
c
c  ,

where γ= maxv∈V |B(v)|(|B(v;3)|-|B(v)|+1).

The first part of the Theorem follows from the fact that it performs exactly as the localized identi-
fying code algorithm and the fact that only the most distinguishing set in a four hop neighborhoods is 
assigned to be a codeword. To see the number of iterations of the algorithm, we first note that in each 
iteration at least one codeword is assigned. The case of a ring topology (Figure 7) demonstrates that, in 
the worst case, exactly one node is assigned per iteration. It follows that the amount of communications 

Figure	7.	Operation	of	rID-ASYNC	over	a	ring	of	10	nodes,	labeled	from	1	to	10	clockwise	(displayed	in	
the	inner	perimeter),	and	r=0.	Solid	squares	represent	assigned	vertices,	and	the	size	of	the	distinguish-
ing set and the value of IDmax at the end of each iteration appear in the outer perimeter, separated by a 
comma.	The	iteration	number	appears	at	the	upper	left	corner	of	each	subfigure.	The	path	of	assignment	
(declaration)	messages	is	shown	by	solid	(dashed)	arrows.	(Laifenfeld	et	al.,	2008).
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required in the iteration stage is ( )|)4;(|maxdist vBc Vv∈Θ , which can be a significant load for a battery 
powered sensor network. This can be significantly reduced if some level of synchronization among the 
nodes is allowed.

In the next section we suggest a synchronized distributed algorithm that eliminates declaration 
messages altogether.

A Low-communications Randomized Algorithm rID-sYNc

In this subsection we assume that a coarse time synchronization among vertices within a neighbor-
hood of radius four can be achieved. In particular, we will assume that the vertices maintain a basic 
time slot, which is divided into L subslots. Each subslot’s duration is longer than the time required for 
a four hop one-way communication together with synchronization uncertainty and local clock drift. 
After an initialization phase, the distributed algorithm operates on a time frame, which consists of F	
slots arranged in decreasing fashion from sF to s1. In general, F should be at least as large as the largest 
distinguishing set (e.g. F=n(n-1)/2 will always work). Frame synchronization within a neighborhood of 
radius four completes the initialization stage.

The frame synchronization enables us to eliminate all the declaration messages of the asynchronous 
algorithm. Recall that the declaration messages were required to perform two tasks: (i) determine the 
most distinguishing node in its four hop neighborhood, and (ii) form an iteration boundary, i.e. end-of-
iteration event. The second task is naturally fulfilled by maintaining the slot synchronization. The first 
task is performed using the frame synchronization: every node maintains a synchronized slot counter, 
which corresponds to the size of the current most distinguishing node. If the slot counter reaches the 
size of a node’s distinguishing set, the node assigns itself to the code. The subslots are used to randomly 
break ties.

Iteration Stage

Each iteration takes place in one time slot, starting from slot sF. During a slot period, a node may trans-
mit a message ms indicating that it is assigning itself as a codeword; the message will have two fields: 
the identification number of the initiating node, id(ms), and the hop number, hop(ms).   A node assigns 
itself to be a codeword if its assignment time, which refers to a slot as and subslot l, has been reached.  
Every time an assignment message is received, the assignment slot as of a node is updated to match 
the size of its distinguishing set; the assignment subslot is determined randomly and uniformly at the 
beginning of every slot.
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Algorithm 6 : Cgreedy ←rID-SYNC (G,r)    (Laifenfeld et al., 2007)
Given a graph G=(V,E) with vertices labeled by ID, a non-negative integer r, do at every node 
v∈V:

Precompute 1)  
Compute a. δv

2, set as=|δv
2|.

Set: b. slot=sF, subslot = L, state = unassigned
Iteration2) 

while state≠assigned and slot≥s1 do,
l a. = random({1,...,L})
if received assignment message, b. ms then update δv

2	by removing all pairs cov-
ered 2r+1 times and set as=|δv

2|.
elseif c. subslot=l and slot=as then transmit an assignment message, 
state=assigned.

We illustrate in Figure 8 in the next page the operation of rID-SYNC (0,G)  over a simple ring topol-
ogy of 10 nodes. The nodes are labeled from 1 to 10 clockwise. Solid circles represent assigned vertices 
(or codewords), and the size of the distinguishing sets and the value of L, at the end of each iteration, 
appear in the outer perimeter, separated by a comma. The network is shown at the end of slot 9 in the 
upper left subfigure, where all nodes have evaluated their distinguishing set sizes and selected randomly 
a transmission sub-slot from L-1 to 0.

We can see that all nodes can distinguish up to 9 pairs, and that node 3 was the first to transmit its 
assignment message as it selected the largest subslot number. This message is spread through its 4 hop 
neighborhood preventing other nodes from assigning themselves. However, since node 8 is just outside 

Figure	8.	Operation	of	rID-SYNC	over	a	ring	of	10	nodes,	labeled	from	1	to	10	clockwise	(displayed	in	
the	inner	perimeter)	for	r=0	and	L=10	(top)	and	L=3	(bottom).	Solid	squares	represent	assigned	verti-
ces,	and	the	size	of	the	distinguishing	set	and	randomly	selected	subslot,	l,	at	the	end	of	each	iteration,	
appear in the outer perimeter, separated by a comma. The slot number appears at the upper left corner 
of	each	subfigure.	Dashed	arrows	represent	assignment	messages.	(Laifenfeld	et	al.,	2008).
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B(3;4) it is free to assign itself as indicated in the subfigure. Note this fundamental difference from 
rID-ASYNC where in a similar situation node 8 wouldn’t be assigned (see Figure 7). rID-SYNC stays 
idle for the next 5 slots where nodes keep rough synchronization using their internal clocks. The as-
signment processes resumes at slots 4 and 2 to conclude the procedure returning an identifying code of 
size 6 - only one node more than a minimum one. Similarly to rID-ASYNC, the outcome of rID-SYNC 
can vary depending on the way nodes resolve ties and therefore is sensitive to the random selection of 
subslots. The bottom of Figure 8 shows a run with a small number of subslots (L=3), which due to large 
amount of over-assignments returns a relatively large code. Nevertheless, the performance guarantee of 
the theorem below holds for any combination of random selections of subsets and labeling.

Performance Evaluation

Algorithm rID-SYNC requires at most O(n2) slots (O(Ln2) subslots), though it can be reduced to O(Lγ) 
if the maximum size of a distinguishing set is propagated throughout the network in the precomputa-
tion phase.  The communications load is low (i.e. O(cdist maxv∈V  |B(v;4)|)), and includes only assignment 
messages, which are propagated to four hop neighborhoods.

In the case of ties, rID-SYNC can provide a larger code than gained from the localized approximation. 
This is because ties in the distributed algorithm are broken arbitrarily, and there is a positive probability 
(shrinking as the number of subslots L increases) that more than one node will choose the same subslot 
within a four hop neighborhood. As such, the L is a design parameter, providing a tradeoff between 
performance ratio guarantees and the runtime of the algorithm as suggested in the following theorem.

Theorem 7
For	asymptotically	large	graphs, rID-SYNC guarantees (with high probability) a performance ratio 
of

1ln
min

dist +≤
c
c

 ,

where γ= maxv∈V |B(v)|(|B(v;3)|-|B(v)|+1). The algorithm also requires ( )1
2

1 −
++

K
K

nO K  subslots to complete 
for design parameter K≥2 and arbitrarily small e>0.

Proof: If no more than K tied nodes assign themselves simultaneously on every assignment slot, then 
we can upper bound the performance ratio by a factor K of the bound in Theorem 5, as in the theorem 
statement. We next determine the number of subslots L needed to guarantee theabove assumption as-
ymptotically with high probability.

Let P(K) denote the probability that  no more than K tied nodes assign themselves in every assign-
ment slot. Clearly, P(K)≥(1-p(K))cdist, where p(K) is the probability that, when t nodes are assigned 
independently and uniformly to L subslots, there are at least K<t assignments to the same subslot. One 
can see that

( )K
LK
teLtKp ≤)(

for e being the natural logarithm and based on the assumption that 1<LK
te .
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Let t=cdist=n (this only loosens the bound) and 1
2
−
++

= K
K

nL K
e . Then,
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sIMULATIONs AND EXPERIMENTs

In this section we provide the advantages and shortcomings of identifying-code localization, through 
simulations on Erdos-Renyi random graphs and geometric random graphs, and experiments on a test-
bed on the fourth floor of the Photonics center at Boston University.

Random Graphs

Erdos-Renyi random graphs and random geometric graphs were studied recently in the context of 
identifying codes. In (Moncel, Frieze, Martin, Ruszink, & Smyth, 2005) it was shown that for asymp-
totically large random graphs, any subset of a certain threshold size (roughly logarithmic in the size of 
the graph) is almost surely an identifying code. It was also shown that the threshold is asymptotically 
sharp, meaning that the probability of finding an identifying code of slightly smaller size approaches 
zero. Extension of this result to robust identifying graphs was provided in (Laifenfeld, 2007), where it 
was further shown that with relatively small addition of codewords (doubly logarithmic in n) identifying 
codes become r-robust in large random graphs.

Unit disk geometric random graphs (GRGs), in which vertices are placed uniformly at random on a 
two-dimensional plane and where two vertices are adjacent if their Euclidian distance is less than a unit, 
were studied in the context of identifying codes in (Muller & Sereni, 2007). GRGs are commonly used 
to model ad-hoc wireless networks as well as large scale sensor networks. Unlike large Erdos-Renyi 
random graphs, it has been shown in (Muller & Sereni, 2007) that most of the large unit-disk GRGs do 
not possess identifying codes.

We have simulated all of the identifying code algorithms described and applied them to both Erdos-
Renyi random graphs with different edge probabilities, and to two dimensional GRGs with different 
nodes densities. We use the average size of the resulting identifying code as a performance measure. For 
the case of r = 0 (i.e., simple identifying code) the simulation results are compared to a combinatorial 
lower bound derived by Karpovsky et al. (1998), and the asymptotic result of Moncel et al. (2005).

Figure 9 compares ID-CENTRAL to ID-CODE and the combinatorial lower bound. It can be ob-
served that ID-CENTRAL demonstrates a significant improvement over ID-CODE. It should also be 
noted that the curves for basically any algorithm should converge very slowly to Moncel’s asymptotic 
result as n grows, and this is illustrated in Figure 11. This apparently slow convergence rate suggests that 
there is a lot to gain from using the suggested algorithms, even for reasonably large networks (Moncel 
et al., 2005). The results of the centralized r-robust identifying code algorithm, rID-CENTRAL, are 
shown in Figure 10 versus the theoretical results of (Laifenfeld, 2007). The tradeoff between the increase 
in robustness and the increase in the code’s size is evident. Note that there is a pretty close agreement 
between the theoretical result of (Laifenfeld, 2007) and the simulations. However, as r increases the 
asymptotic theoretical assumptions no longer hold (for a fixed n) and the two results diverge.

Figure 12 shows the simulation results for the localized (rID-LOCAL) and distributed (rID-SYNC) 
algorithms compared to the centralized one. Recall that the performance of the asynchronous algorithm, 
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Figure	10.	Centralized	r-robust	identifying codes algorithm, rID-CENTRAL, (solid) and the asymp-
totic	bound	(Laifenfeld,	2007)	(dotted)	for	128	nodes	random	graphs	with	different	edge	probabilities	
(Laifenfeld,	2007).

rID − ASYNC, is identical to the localized approximation, and the simulation results of the localized 
algorithm nearly match the results of the centralized algorithm (rID-CENTRAL). Divergence is evi-
dent for low edge probabilities where it is harder to find a dominating set. Recall that there is a tradeoff 
between performance and the runtime of the synchronized distributed algorithm, rID − SYNC. The 
smaller the number of subslots parameter, L, the shorter the runtime and the larger the degradation in 
performance due to unresolved ties. Degradation in performance is also more evident when ties are 
more likely to happen, i.e., when the edge probability approaches 0.5. 

Figure	9.	Average	identifying	code	size	generated	by	ID-CODE and ID-CENTRAL	algorithms	for	128	
nodes	random	graphs	with	different	edge	probabilities	(Laifenfeld	&	Trachtenberg,	2008),	in	comparison	
to	a	combinatorial	lower	bound	of	(Karpovsky,	Chakrabarty,	&	Levitin,	1998),	and	asymptotic	bound	
of	(Moncel	et	al.,	2005).
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Figure	12.	Average	identifying	code	size	of	the rID − CENTRAL, rID − LOCAL, and rID − SYNC 
with	different	number	of	subslots	parameter,	L,	for	128	nodes	random	graphs	with	different	edge	prob-
abilities	(Laifenfeld	et	al.,	2007).

Figure	11.	Normalized	(by	log(n)) average	size	of	the	identifying	code	returned	by	ID-CODE  and ID-
CENTRAL	for	random	graphs	with	edge	probability	p	=	0.1,	and	various	numbers	of	vertices	(Laifenfeld	
&	Trachtenberg,	2008).

Figure 13 and Figure 14 show the codewords fraction (from the total number of nodes) for GRGs 
using the localized and distributed approaches, and the fraction of such graphs admitting an identify-
ing code. It also presents the largest fraction of indistinguishable nodes obtained in the simulation. As 
can be seen the localized and distributed algorithms (with L = 10) yield very similar code sizes. The 
fraction of graphs admitting identifying codes is rather small (less than half the graphs) even for high 
node densities; an observation that matches the theoretical results of (Muller & Sereni, 2007). However, 
the sizes of the undistinguishable sets of vertices (undistinguishable set is a set of vertices that have a 
common identifying set) are relatively small, as indicated in Figure 14, suggesting that the resolution 
of the localization system can still be high, since most of the undistinguishable sets are within a small 
geometrical proximity with high likelihood. Therefore, from the location detection perspective, iden-
tifying codes provide an adequate solution, in spite of the technical fact that most of the geometrical 
random graphs do not possess identifying codes. 
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Figure	15.	The	Experimental	testbed	–	4th	floor	of	the	Photonics	building	in	Boston	University.	The	reso-
lution	(0-70	feet)	of	the	location	detection	system	with	a	90%	confidence	level.	Stars	are	transmitters;	
plain	circles	are	locatable	points	(Ray	et	al.,	2004).	

Figure	14. Fraction	of	graphs	admitting	an	identifying	code,	and	maximum	fraction	of	indistinguishable	
nodes	for	GRGs	with	different	node	densities	(nodes	per	unit	area)	(Laifenfeld	et	al.,	2007).	

Figure	13.	Codeword	fraction	(out	of	all	nodes)	for	the	localized	(rID − LOCAL) and distributed (rID 
− SYNC) algorithms for GRGs with different nodes densities (nodes per unit area) (Laifenfeld et al., 
2007).
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Experimental Testbed 

A basic experimental testbed was developed in (Ray et al., 2004) to verify the location detection scheme, 
and in particular the rID-CODE algorithm. The testbed is located on the 4th floor of the Photonics Building 
at Boston University and is depicted in Figure 15. The white circles represent 10 discrete positions selected 
on the floor, and the test bed included five laptop computers equipped with IEEE 802.11 transceivers; 
four of them as transmitters and the fifth one as the receiver. In order to determine whether two points 
are connected, a simple thresholding scheme was employed. Specifically, each transmitter transmits 40 
packets per second and two points are considered connected if the number of packets received during 
a sample interval exceeds a certain threshold. 

The resultant connectivity graph for the testbed is shown in Figure 16. The solution produced by the 
ID-CODE algorithm results in a placement of the transmitters at positions (0; 1; 2; 3) (correspondingly 
identified in Figure 15 by stars). The identifying sets for each position are shown in Figure 16.

The location detection system was evaluated by dividing the floor plan into a grid, where each grid 
location represents a 10 by 10 sq.ft. area. At each grid location, the packet arrival rate from all transmitters 
was recorded as a vector of the form (n0; n1; n2; n3), where ni represents the number of packets received 
from transmitter i during a 1 second sample interval. 60 such measurements were taken with different 
antenna orientations to average out long-term fading variability in the RF channel. The receiver’s location 
was determined to be one of the positions of Figure 16 if its corresponding identifying set matched the 
received identifying set4. If no matching identifying set could be found then the location was determined 
to be the predefined position whose identifying set was the closest (in terms of Hamming distance) to 
the received identifying set, where ties are broken arbitrarily.  

The resolution achieved with this testbed location detection system is depicted in the contour map 
shown in Figure 15. Resolution is defined as the (Euclidean) distance between the location resolved by 
the system and the actual user’s location. In the figure, the resolution varies from 0 ft. to 70 ft. A lighter 
shade corresponds to a higher resolution. The confidence level is 90%, i.e., at each position, at least 90% 
of the samples achieve the shown resolution. Although the system consists of only four transmitters, 
it achieves a reasonable resolution, most of the time within 50 ft. As expected, the resolution becomes 

Figure	16. The connectivity graph of the testbed and its identifying code. The bold circles denote the 
codewords	(transmitters)	(Ray	et	al.,	2004).
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coarser in areas that are distant from any of the discrete measurement points. We note here that experi-
ments recently run on the moteLab testbed at Harvard University (Chao, 2008) reveal similar qualitative 
results. Moreover, due to the higher density of transmitters at moteLab, the worst-case resolution was 
found to be about 10 ft.   

 As a basis of comparison, the resolution obtained with a simple proximity-based scheme was also 
evaluated; a user resolves his location to be that of his “closest” transmitter, that is, the transmitter from 
which it correctly receives the largest number of packets. Figure 17 shows the cumulative distribution 
function (CDF) of the resolution for identifying code based location detection system and the proximity-
based system. It can be observed that a larger number of positions are within a given error distance in 
the identifying codes based system than in the proximity-based system. This non-negligible gain in 
resolution is achieved through the sole use of identifying code techniques, and, thus, illustrates how 
judicious use of coding-theoretic approaches can contribute to improving the performance of location-
detection systems.

cONcLUsION

We have described a localization method for environments with challenging signal transmission proper-
ties (e.g., indoor, urban, or underground areas), based on a new identifying code paradigm. Our work has 
demonstrated that this fundamental concept, borrowed from information theory and theoretical computer 
science, can be effectively applied to our problem, and we have provided results, in the form of experi-
ments and simulation, to demonstrate this.  We have further provided a survey of existing algorithms 
for generating identifying codes, making them robust to underlying uncertainty, and distributing their 
computation throughout a network.

Figure	17.	Cumulative	distribution	function	of	the	resolution	achieved	in	two	location	detection	systems	
(Ray	et	al.,	2004)
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ENDNOTEs

1 This algorithm applies only to those graphs that admit an identifying code.  Some graphs, such as 
the complete graph, do not.

2 This condition becomes sufficient if the empty set is a valid identifying set.
3 A dominating set or a vertex cover is a set of vertices that the union of their balls is equal to the 

entire set of vertices.
4 The received identifying set was obtained by thresholding the vector  (n0;	n1;	n2;	n3) at that lo-

cation, namely a transmitter was assumed to be a member of the received identifying set if the 
number of its received packets exceeded a certain threshold.
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AbsTRAcT

This	chapter	introduces	a	methodological	approach	to	the	evaluation	of	localization	algorithms.	The	
chapter	contains	a	discussion	of	evaluation	criteria	and	performance	metrics	followed	by	statistical/
empirical simulation models and parameters that affect the performance of the algorithms and hence 
their	assessment.	Two	contrasting	localization	studies	are	presented	and	compared	with	reference	to	
the	evaluation	criteria	discussed	throughout	the	chapter.	 	The	chapter	concludes	with	a	localization	
algorithm	development	cycle	overview:	 from	simulation	 to	real	deployment.	The	authors	argue	 that	
algorithms should be simulated, emulated (on test beds or with empirical data sets) and subsequently 
implemented in hardware, in a realistic Wireless Sensor Network (WSN) deployment environment, as 
a complete test of their performance. It is hypothesised that establishing a common development and 
evaluation	cycle	for	localization	algorithms	among	researchers	will	lead	to	more	realistic	results	and	
viable comparisons.
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INTRODUcTION

Evaluating the relative performance of localization algorithms is important for researchers, either when 
validating a new algorithm against the previous state of the art, or when choosing existing algorithms 
which best fit the requirements of a given WSN application. However, there is a lack of unification in 
the WSN field in terms of localization algorithm evaluation and comparison. In addition, no standard 
methodology exists to take an algorithm through modelling, simulation and emulation stages, and into 
real deployment. As a result it can be hard to quantify exactly how and under what circumstances one 
algorithm is better than another. Moreover, deciding what performance criteria localization algorithms 
are to be compared or evaluated against is important for the success of the resulting implementation 
given that different applications will have differing needs. 

Since localization algorithms are expected to be used in real applications, it is not conclusive to verify 
their performance in simulation only. The authors here argue that algorithms should be emulated (on 
test beds or with empirical data sets) and subsequently implemented in hardware, in a realistic WSN 
deployment environment, as a complete test of their performance.

In this chapter, performance evaluation metrics are discussed alongside three criteria – localization 
accuracy, cost, and coverage. Given that WSNs are typically constrained in terms of node/network 
lifetime and per-node computational resources, addressing these constraints leads to trade-offs in the 
performance of localization algorithms. For example, if maximising localization accuracy is the foremost 
priority, specific hardware may have to be added to each sensor node, increasing node size, cost and 
weight. Conversely, if the hardware available is already determined, then the application expectations 
with respect to performance criteria (such as accuracy) must be adjusted accordingly.

The chapter is structured as follows: a discussion of the various performance criteria and evaluation 
metrics that are readily used in the analysis of localization algorithms is first presented.  Next, representa-
tive topologies that affect performance criteria are given, followed by simulation models and parameters 
that affect the performance of localization algorithms. A case study is presented, outlining an acoustic 
monitoring sensor network with high accuracy constraints enforced by application requirements. This 
case study is contrasted with an example where scalability and longer network lifetime are required at 
the expense of complexity and localization accuracy. Finally, the chapter  closes with a brief discussion 
on the development cycle of a localization algorithm, from simulation to real deployment.

It should be noted that although this chapter makes particular emphasis on simulation and comparison 
of range-based localization algorithms, many of the metrics and techniques described are applicable to 
other approaches, such as Angle of Arrival (AoA) based algorithms, for example.

EVALUATION cRITERIA

Whilst the intuitive measure of the performance of a localization algorithm may be to show how well 
it can estimate positions of nodes compared to the known ground truth (to the degree of accuracy re-
quired by the WSN application, as discussed further below), localization algorithms are also subject to 
the general constraints of wireless networked sensing. It follows that a broader set of evaluation crite-
ria for localization algorithms are needed (and are useful to both developers and users of localization 
algorithms), examples of which are accuracy, cost, coverage, robustness and scalability. These criteria 
reflect the constraints already mentioned - computational limitations, power constraints, unit cost and 
network scalability. 
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Some evaluation criteria are binary in nature: algorithms either have a specific property or they do 
not (for example, they are self-configuring or not; they are anchor free or not). Classifications and bi-
nary criteria can be used by researchers to narrow the set of existing algorithms to evaluate against, or 
to choose from. For example, one may only consider distributed, anchor-free, range based localization 
algorithms, immediately limiting the number of algorithms to compare to.  Some evaluation criteria and 
trade-offs however, need quantification and qualification. These are described below in more detail, and 
questions are posed that might be useful to the algorithm or WSN application designer in establishing 
a given algorithm’s performance.

scalability

Can the localization algorithm scale from less than ten nodes to hundreds, or even thousands? Moreover, 
is it necessary from the WSN application standpoint for the algorithm to hold this property?

A centralised localization algorithm will typically aggregate all input data at a central, more capable 
sink to carry out processing; this represents a single point of error, and potential bottleneck for network 
communication. In contrast, a distributed localization algorithm’s execution is shared throughout the 
network with no reliance on a central sink. However, centralised algorithms are conceptually simple 
and easier to implement in cases where it is known that the network will be small and will not increase. 
By comparison, distributed algorithms are harder to develop and deploy, but may be advantageous for 
researchers if the network does not have a simple logical topology (i.e. a tree of nodes sending data to 
a sink), and will need to support a large number of nodes (tens to hundreds). Theoretically, scalability 
is an important general consideration; however in actual deployment for specific applications this is 
not necessarily an overriding one (primarily due to the relatively small numbers of nodes that will be 
deployed and the amount of effort it takes to deploy them).

Accuracy

How well do the positions estimated by the algorithm match the known, ground truth positions? How 
well has the WSN application been specified in terms of its minimal localization accuracy needs?

One may think that positional accuracy compared to ground truth is the over-riding goal of a good 
localization algorithm. On reflection, this is largely application-dependent - different WSN applications 
will have different requirements on the resolution of the accuracy. Consider a tracking application – the 
estimated positions of nodes in the network directly affect the accuracy of the tracking. The granular-
ity of the required accuracy may be a ratio of the inter-node spacing. For example, if the average node 
spacing is 100m, up to 1m error may be acceptable. However, if the average node spacing is 0.5 m, the 
same error level is clearly unacceptable.

Resilience to Error and Noise

How well can the localization algorithm deal with errors and noise in the input data? 
It is important to understand how well the localization algorithm will perform without an accurate 

or full set of input data. Some algorithms, for example classical multi-dimensional scaling, used by 
Shang et al (2003) assume measurements from every node to every other for the localization algorithm 
to converge, which is an overbearing assumption given the realities of most deployment environments.  
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Evaluation should show how measurement noise, bias or uncorrelated error in the input data affects the 
algorithm’s performance, and also establish the number of nodes that can actually be localized. Errors in 
measurement are particularly important to consider when adapting a localization algorithm that assume 
2D to work for 3D applications (a common assumption in the research community). For example, a simple 
multilateration computation in 3D is far more sensitive to noisy/inaccurate measurements than its 2D 
counterpart, due to the extra degree of freedom (the Z axis). Convergence in 3D may then result in flips 
and reflections of the estimated coordinate, as observed by Allen et al. (2006) and shown in Figure 1.

coverage

How much of the network can be localized by the algorithm, given a specific network topology/deploy-
ment? 

Some algorithms may have problems localizing the whole network if nodes do not have enough 
neighbours (“enough” is specific to the details of the algorithm) in terms of connectivity or distance 
constraints/estimates. Coverage may relate to the physical network density, i.e. one may be more likely to 
get 100% localization coverage in a densely deployed network. In addition, it is worth considering how 
easy it is to add another node to the network after the initial localization algorithm has completed.

cost

How expensive is the algorithm in terms of power consumption, time taken to localize a node, com-
munication and pre-deployment set-up (i.e. need for, and number of anchors)? 

There are several parameters which one could classify as “individual costs”, such as per-node 
hardware or software cost, power consumption required to complete node localization, time taken to 
converge on a network wide localization solution, and amount of communication required (messages/
data transmitted). An algorithm which can minimise several cost constraints is likely to be desirable if 
maximising network lifetime is a primary deployment goal. For example, an algorithm may focus on 

Figure	1.	Using	multilateration	to	estimate	unknown	positions	in	3D	with	noisy	range	measurements
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minimising communication and complex processing to achieve quick convergence, but at the expense 
of the overall accuracy.

Discussion

Clearly, the perfect localization algorithm would provide suitably accurate results (relative to the scale 
requirements of the application), in a simple and decentralised way, with low communication and process-
ing overhead, whilst allowing incremental addition of nodes, and requiring zero anchor nodes. However, 
all existing and possibly future algorithms will most likely have to trade these criteria off against one 
another. For example, is it better to increase memory footprint and processing time for accuracy, or use 
a simpler algorithm and reduce positional estimation accuracy and time taken? Deployment practice 
and expertise indicate that trade-offs are best resolved when intimately related to the specifics of the 
class of applications that the particular WSN is deployed to address. The quantitative measurements 
required to understand these trade-offs are described in the next section.

LOcALIZATION ALGORITHM EVALUATION, cOMPARIsON AND METRIcs

In order to address quantitatively how well a localization algorithm might perform against the criteria 
described in the previous section, a set of metrics are available. This section breaks down accuracy, cost 
and coverage and describes well known metrics or common measures used in their evaluation.

Accuracy Metrics

The basic goal of the localization accuracy metric is to show how well matched the ground truth and 
estimated positions are. Accuracy is likely to be related to measurement noise, bias, accuracy and preci-
sion in the input data provided to the localization algorithm. The accuracy metrics described below are 
separated into those which use ground truth as comparison, and those which do not. Throughout this 
section, it is assumed that a WSN is composed of n sensor nodes deployed over a given area.

Metrics with Ground Truth

Globally, the positions determined by a localization algorithm represent a geometrical layout of the 
physical positions of the sensors. This layout must be compared to the ground truth, or known layout of 
the sensors. It is important therefore that not only the error between the estimated and real position of 
each node is minimised, but also that the geometric layout determined by the algorithm matches well 
the original geometric layout.

Mean Absolute Error
The simplest way to describe localization performance is to determine the residual error between the 
estimated and actual node positions for every node in the network, sum them and average the result. 
Broxton et al (2006) do this using the mean absolute error metric (MAE), which, for each of n nodes 
in the network, calculates the residual between the node’s estimated )ˆ,ˆ,ˆ( iii zyx  and actual ),,( iii zyx  
coordinates. This is shown in (1):
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The resulting metric represents the average positional error in the network, aggregating individual 
residual errors into one statistic. The MAE computation has much similarity to root mean square 
(RMS) error, a commonly used calculation to measure the difference (or residual) between predicted 
and observed values. Slijepcevic et al (2002) also note that whilst knowing the mean absolute error 
is important in some cases, it is also beneficial to know the maximum error exhibited in the position 
estimation, as shown in (2).
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FROB
A slightly different approach is taken by Efrat et al (2006) who use the FROB (Frobenius) metric. In 
this case, the residual error between all n nodes in the network is calculated. It is assumed that the es-
timated and actual inter-node distances have already been determined. The Frobenius metric is shown 
in (3), where ijd̂  and dij are the estimated and ground truth distances respectively and n is the number 
of nodes in the network.
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FROB essentially determines the RMS of the total residual error, which represents the global quality 
of the localization algorithm. 

GER and GDE
As discussed briefly at the start of this section, it is important for the accuracy metric to reflect not only 
the positional error in terms of distance, but also in terms of the geometry of the network localization 
result. If only average node position error is used, there is no sense of the correctness of the relative 
geometry of the network – it is entirely possible that for a given localization result the average error 
metric is low, but the actual layout created by the algorithm does not match well the physical layout of 
the network. This problem was identified by Priyantha et al (2003), and addressed by defining the Global 
Energy Ratio (GER) metric, shown in (4).
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The distance error between nodes )ˆ( ijij dd −  is normalised by the known distance between the two 
nodes (dij), making the error a percentage of the known distance. (One should notice the similarity 
between GER and FROB – note that FROB does not normalise the distances, and takes the RMS). 
Ahmed et al (2005) note that the GER metric does not exactly reflect RMS error. They address this by 
defining an accuracy metric which better reflects the RMS error calculation, called Global Distance 
Error (GDE), shown in (5).
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GDE takes the RMS error over the network of n nodes and normalises it using the constant R. In 
Ahmed et al’s context, R represents average radio range, meaning the localization results are represented 
as a percentage of the average distance nodes can communicate over.

 
ARD
Gotsman and Koren (2005) derive another quality metric called Average Relative Deviation (ARD), 
shown in (6). ARD is simply the normalised average of the estimate, rather than the RMS error.
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The individual distances are normalised in this case by the shorter of the two distances (either the 
estimated or ground truth), which may not always be the known distance (as in GDE and GER).

BAR
The BAR metric by Efrat et al (2006) is a measure of how well the estimated positions of nodes that sit 
on the boundary of the localized network match the actual positions. It is in essence the sum-of-squares 
normalised error taken from matching the estimated boundary with the actual boundary. This metric 
may be useful as an alternative to GER, in cases where the topology formed does not seem to match well 
the actual topology, even though the distance error metrics indicate it should. In this case, the average 
error is not helpful, as the metric can be diluted by high error variance across the network. BAR is used 
as the minimisation metric for the Iterative Closest Points (ICP) algorithm which matches estimated 
and actual boundary points. A BAR metric is computed for each iteration of the ICP algorithm (Zhang, 
1992), giving a measurement of how well the two boundaries match. When the change in the BAR met-
ric is negligible, ICP has determined the best alignment possible. The BAR metric therefore represents 
how well the outer geometry matches, and can potentially give insight into where the problems lie for 
a particular localization algorithm.

Girod (2005) uses a similar technique to compare the shape of a localized network, irrespective of 
translation, scale and rotation.  He defines a four-step approach influenced by the Procrustes method 
of characterising shape, and uses it to measure estimation fit with ground truth. Firstly, a scaling factor 
between the real and estimated topologies is established; the maps are then translated and scaled rela-
tive to the origin, which is defined as the node closest to the centroid of the estimated topology. The 
estimated topology is then rotated according the angular offsets between nodes, and finally translated 
by the average distance between estimated and ground truth points. Average error can now be taken 
using any of the metrics we have previously described (MAE, GER, GDE, etc). Whilst both Girod and 
Efrat’s approaches take into account the shape of the network, BAR needs only a subset of the nodes on 
the boundary to contribute towards the computation; Girod’s method uses all nodes in the network.
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Metrics without Ground Truth

The accuracy metrics above rely on prior knowledge of the actual node position and physical network 
topology in order to evaluate the localization quality and error. In realistic, un-positioned WSN deploy-
ments, this information is not known, and so measurement of error must be determined relative to what 
information is available. For example – if we assume a range-based localization algorithm where nodes 
measure distance between one another and their positions are estimated based on this information, a 
metric not using ground truth must compare the measured ranges with the ranges derived from the 
estimated positions. Unlike the ground truth metrics above, this means that only the actual measured 
distances can be compared with localization derived ranges. Toward this aim, Girod (2005) defines an 
average distance error metric, shown in (7). In this case, the estimated distance between two nodes i 
and j is subtracted from the observed range Rij between them.
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Başaran (2006) suggests a FROB similar metric, called SPFROB (shortest-path FROB), based on the 
shortest path between two nodes, rather than Euclidean distance. This metric is potentially useful for 
multi-hop localization algorithms which infer distance by the estimated shortest path from a node to an 
anchor, such as the ad-hoc positioning system (APS) by Niculescu and Nath (2001).

cost Metrics

Cost metrics relate to how “expensive” it is for localization to be carried out. These costs are related to the 
traditional constraints of wireless networked sensing devices – low power operation, low computational 
capability, and redundancy through scale and density. Cost is an important trade-off against accuracy, 
and is often motivated by realistic application requirements, which are discussed in more detail at the 
end of the metrics section. As such, cost metrics are typically used to evaluate the trade-offs that are 
not addressed by positional error and coverage. Several common metrics are described below, along 
with how they may be determined.

Anchor to Node Ratio

Minimising the number of anchors in the network is desirable from an equipment (cost, power usage) 
or deployment point of view. For example, using anchors that can estimate position through the Global 
Positioning System (GPS) will require extra hardware which is both expensive and power-hungry, thus 
limiting the node lifetime. Similarly, pre-defining anchor positions may be hard if the supposed deploy-
ment mechanism is random placement (i.e. nodes being thrown from a vehicle).  The anchor to node 
ratio is simply the number of anchors in the network divided by the number of nodes. This metric will 
typically be used to investigate the trade-off on the accuracy of the localization algorithm, i.e. as the 
percentage of anchors decreases, how does this affect the accuracy, and the percentage of nodes that 
can be localized? In anchor based localization algorithms, one must also consider the placement and 
density of anchors – this is discussed in the Coverage Section further in the Chapter. When using few 
anchors, Nagpal et al (2003) find that dense networks (on average 15 neighbours per node) are required 
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to provide relatively accurate localization results, but that this accuracy is bounded by the method used 
to estimate inter–node distance (in their case radio range).

Communication Overhead

Since radio communication is assumed to be a large consumer of power relative to the overall consump-
tion of a wireless sensor node, minimising communication overhead is paramount in maximising the 
potential network lifetime. Communication overhead will most likely be measured either by actual power 
consumed or number of packets transmitted to achieve the localization goal. For example, Langendoen 
et al (2003) use the average number of packets sent per node; power consumption can be derived from 
this if one knows the cost of sending a single packet (as is discussed in more detail in Modelling Sec-
tion). This metric will typically be evaluated with respect to the scaling of the network – how does 
communication cost increase as the network increases in size?

Power Consumption

The proportion of available power that a node spends on localization can affect its lifetime (and the 
network lifetime). Power consumption will be a combination of the power used to perform local opera-
tions and the power used to send and receive messages associated with localization. The more complex 
the local processing for localization is, the longer it will take the node to process. As above, this metric 
will also typically be evaluated with respect to scaling of the network – how does power consumption 
increase as the network increases in size?

Algorithmic Complexity

Standard notions of computational complexity in time and space (i.e. big O notation) can be used as 
comparison metrics for the relative cost of localization algorithms. For example, as a network increases 
in size, a localization algorithm with O(n3) complexity is going to take a longer time to converge than an 
O(n2) algorithm. The same is true for space complexity – as the number of nodes increases, the amount 
of RAM needed (either per node, or centrally) is going to increase at a particular rate; algorithms which 
require less memory (comparatively) at a given scale may be preferable. This may help motivate a trade-
off between centralised and decentralised algorithms – i.e. the centralised approach might be better 
in some cases if the per-node memory footprint becomes too large as the network scales (this would 
obviously be offset with the communication overhead).

Convergence Time

Measuring the time taken for both initial measurement gathering and localization algorithm convergence 
can both provide important comparison metrics. Time taken will most likely be evaluated against net-
work size. For example – how does time taken to gather measurements or localize the network increase 
as the network increases in size? On the other hand, even for applications with fixed numbers of nodes, 
a network that takes a long time to localize may be useless if the application requires rapid deployment 
and processing immediately related to node positions, such as tracking of a moving target. Similarly, 
if one or more of the nodes in the network are mobile, the time taken to update position may not reflect 
the current physical state of the network – i.e. positional information may have become stale.
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If the localization algorithm is based on non-linear optimisation, there may also be a trade-off to 
be made between accuracy and convergence time – the extra time taken and energy expended to get a 
slightly more accurate solution may not be beneficial.

Hybrid Metrics

Hybrid metrics encourage the evaluation of trade-offs in localization algorithms by combining several 
individual metrics into one composite metric. The way in which the metrics are combined will vary 
from one hybrid metric to another – one such example is the performance cost metric by Ahmed et al 
(2005).

Performance Cost Metric (PCM)

The performance cost metric (PCM) is a simple hybrid metric where performance cost C and localization 
error GDE are weighted by a parameter α, as shown in (8). This weighting is determined by the relative 
importance the evaluation wishes to place on the relevant components of the metric.

CGDEPCM )1()( −+=         (8)

Here, GDE (Global Distance Error) localization accuracy metric is a variant of GER, as described in 
the previous section. The cost aspect C of the PCM metric is described by the average per-node energy 
required to complete the localization (although one could imagine it being any quantitative cost met-
ric).  In deciding whether to use hybrid metrics instead of individual performance metrics, researchers 
should establish whether the values determined by the hybrid approach represent a fair or meaningful 
comparison.

coverage Metrics

Some localization algorithms may not be able to localize all of the nodes in the network. Coverage is 
simply a measure of the percentage of nodes in the deployed network that can be successfully localized, 
regardless of the localization accuracy (which is described by previous metrics). However, density of 
deployment, as well as placement of anchors can have effects on coverage results for different localiza-
tion algorithms. The effects and their evaluation and are discussed in the following subsections.

Density

The specific approaches that localization algorithms take can directly affect coverage. This can have 
different implications for anchor based and anchor free localization algorithms. For example, the robust 
localization algorithm proposed by Moore et al (2004) is an anchor free localization algorithm, based 
on range estimates between nodes. In order for a node to be considered a candidate for localization, 
there must be sufficient range estimates between the node and its neighbours to satisfy certain rigid-
ity constraints (to protect against positional ambiguities which adversely affect localization results). If 
the density of the deployment is low, it may be impossible to localize many nodes. Figure 2 shows the 
relationship between node density, number of anchors and localization error for a multi-hop localization 



358  

Evaluation of Localization Algorithms

algorithm with random topology (Basaran et al, 2008). As the average node density increases, neighbor 
nodes generate more information, which can potentially improve localization performance with respect 
to localization error. Localization algorithms focusing on denser networks should bear in mind that radio 
traffic, number of message collisions and energy consumption of the nodes will also increase with the 
increasing average node density in the sensor network.

In anchor free localization algorithms, density is measured simply by the average number of neigh-
bours a node has, as in AFL by Priyantha (2003) and the robust localization algorithm proposed by 
Moore (2004). Density can be used to determine the minimum neighbour density required for 100% 
localization coverage, or for an acceptable level of accuracy.

With reference to anchor based localization algorithms, Bulusu et al (2001) investigate the effects of 
anchor placement on localization (discussed further below), evaluating mean and median error improve-
ment against anchor density (or degree) per square metre, given a random placement strategy. Similarly, 
in work on partially localizable networks, Goldenberg et al (2005) examine the percent of localizable 
nodes in the network as the number anchors increases. The authors measure anchor density in terms of 
average anchors a node has either in its effective radio communication or measurement region.

Anchor Placement

The position of anchors in the network may have a considerable impact on localization error, especially 
if the localization algorithm assumes that anchors are uniformly or randomly positioned in fixed loca-
tions. Assumptions about a pre-defined anchor placement scheme do not take into account environmental 
factors, terrain (that can affect placing of anchors), and signal propagation conditions, as well as optimal 
anchor placement. The geometry of anchor nodes with respect to any un-localized nodes in the network 
can have a varying effect on the accuracy of resulting position estimates. This effect is notably observed 
in GPS systems, where positional accuracy is seen to decrease when GPS satellites are closer to one 

Figure	2.	The	change	in	the	Frobenius	error	on	a	random	grid	topology	for	different	node	densities	and	
increasing number of anchors
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another. The Geometric Dilution Of Precision (GDOP) metric is used in GPS systems to describe the 
geometric “strength” of the GPS satellites’ current positions with respect to the target, and thus can give 
an indication of whether the accuracy is likely to be good (a small value), or bad (a large value).

Savvides et al (2005) use a GDOP metric to investigate anchor placement in WSNs, using the metric 
to find the ideal anchor geometry. They conclude that a convex hull of anchors surrounding un-localized 
nodes is the most favourable configuration for minimising the effects of geometry on localization ac-
curacy.

It is worth noting that some localization algorithms iteratively localize nodes. As a consequence, 
geometrically significant nodes (i.e. nodes that might allow others to be localized) may not themselves 
be localized, which could result in low a coverage percentage. Complimentary to this position, Bulusu 
et al (2002) hypothesise anchor placement needs to be adaptive in the face of noisy and unpredictable 
environmental conditions, proposing and evaluating two simple, mobility based proximity algorithms 
for incremental anchor placement.

Mobile anchors (or beacons) could also potentially be used to supplement coverage or reduce the 
number of anchors necessary. A mobile beacon based Bayesian approach to localizing network nodes 
has been proposed by Sichitiu (2004), and mobility models for simulation are discussed in the Models 
section of this Chapter.

Evaluating Coverage

In evaluating coverage performance for localization algorithms, researchers must be prepared to try 
various placement scenarios/strategies for nodes and anchors, as well as various densities. One can evalu-
ate how the accuracy improves as either the number of anchor nodes or neighbours per node increases. 
Bulusu et al (2002) note that increasing the anchor density does not necessarily guarantee more accurate 
localization or better coverage; there is essentially a “saturation point” after which no additional gains 
in accuracy can be made. This is supported by the results shown in Figure 2. Therefore, localization 
algorithms should be investigated not only with respect to the fewest anchors that can be used, but also 
the point at which anchors give little or no improvement.

In addition, excessively noisy, biased or missing input data may cause the localization algorithm to 
behave in unpredictable ways, and may reduce coverage. Therefore as part of understanding coverage, 
a localization algorithm should also be evaluated with respect to its resilience in the face of varying 
amounts of measurement noise, as in Langendoen (2003).

Discussion

Accuracy, cost and coverage represent trade-offs for localization algorithms. This is a consequence of 
localization algorithms usually needing to be optimised toward a set of specific constraints, such as low 
power operation, speed of localization, scalability or a maximum positional error. A good understanding 
of trade-offs is important in the context of localization, as it is in general for WSN application design. For 
example, deploying a network with a large number of anchors is expensive, and requires a large amount 
of careful placement, especially to guarantee coverage. However, in attempting to minimise or remove 
entirely the need for anchors, a localization algorithm may compromise its accuracy and simplicity; 
anchor-free localization algorithms are frequently centralised (even the robust localization algorithm 
proposed by Moore et al (2004) requires a central phase), and framed as non-linear optimisation or 
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minimisation problems, such as Girod et al (2006), Gotsman and Koren (2005). These approaches may 
not be tractable to run directly on resource constrained nodes.

It has been shown that accuracy metrics based on average position error may not capture the accuracy 
of the layout geometry. This is especially true for anchor-free localization algorithms. It has also been 
shown that the cost of a localization algorithm can take many forms, and can be highly dependent on 
the application requirements the WSN is designed and deployed to address. Coverage is greatly affected 
by placement of nodes in the network, be they anchors or regular nodes.

In creating new metrics for algorithm comparison, the designer must carefully consider the perfor-
mance metrics that need to be addressed. Hybrid metrics can be useful if more than one metric must be 
analysed at the same time, and it makes sense to evaluate them together. Otherwise, using individual 
metrics to isolate specific aspects of localization performance is a fine way to evaluate and compare 
localization algorithms.

The first step toward fully evaluating a localization algorithm is to use the metrics presented in this 
section and apply them in simulation, along with relevant parameters that best represent the WSN ap-
plication scenario. These matters are addressed in the next section.

EVALUATING LOcALIZATION PERFORMANcE: REPREsENTATIVE 
TOPOLOGIEs AND sIMULATION MODELs

Evaluation and comparison of localization algorithms can be performed at various scales and using 
various metrics, as discussed in the previous section. Because real life deployments are expensive and 
difficult to scale to large numbers, simulation is a relatively easy and highly available tool to validate 
the performance of localization algorithms. It allows comparative performance evaluation for different 
environmental models and requirements imposed by the application domain. It also allows researchers 
to test the robustness of localization algorithms against variable conditions such as ranging error, vari-
ous network topologies, anchor densities, and numbers of nodes. Simulations can also allow individual 
characteristics of algorithms to be isolated and evaluated by factoring out or simplifying real-world 
effects. However, statistical models used in localization simulations can make unrealistic assumptions 
about the ranging characteristics of deployment environments, which may result in misleading or incor-
rect results that only come to light during final deployment.

Measuring the performance of a localization algorithm via simulation requires a simulation en-
vironment and input parameters that are derived either from statistical models or empirically. The 
accuracy and achievable precision of localization algorithms strongly depends on the accuracy of the 
models used in the derivation of these input parameters, making this one of the over-riding limitations 
of simulation. There are a number of general purpose and localization specific simulators that can be 
used to evaluate and compare algorithms, including ns-2, OmNet++, and RiST (Reichenbach 2006). 
Some of these simulators have support for mobility and mobile radio communication, which can aid 
localization simulation.

This section presents some commonly used component models and building blocks for localization 
techniques.  First, representative network topologies are introduced. This is followed by a presentation 
of a set of models for: inter-node ranging, noisy radio communication links, and energy consumption. 
The potential effect of ranging irregularities on localization performance is discussed, as well as other 
parameters that affect performance (such as node density, anchor/beacon placement, and mobility).
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Topologies

Defining ground truth node deployment topologies in simulations can play an important role when com-
paring the performance of localization algorithms. For example, uniform grid, C-shape and ring-shape 
topologies can induce effects on localization algorithms that compromise their accuracy. There are es-
sentially two main categories of sensor network topology, even and random. Even topologies distribute 
sensor nodes (and anchors) over the deployment area in an exact grid, whilst random topologies perturb 
individual nodes positions on the grid with random noise (with some predetermined range and variance). 
Figure 3 shows examples of both topologies. The results collected from the exact grid topology (Figure 
3.a) are useful because they are visually simple – it is clear to see deviations in position estimation caused 
by the localization algorithm. Random topologies, however, better reflect the deployment scenarios in 
real-world environments (nodes cannot necessarily be placed uniformly). This is also because sensor 
networks may be deployed in locations where manual placement is either limited (e.g. in a thick forest) or 
almost impossible (e.g. inside a volcano). In these cases, it is generally assumed that nodes are randomly 
dropped from some deployment vehicle, and uniform placement cannot be guaranteed.

For these reasons, random network topologies are generally more popular for involved simulation 
and comparison studies.  Topologies can be further sub-classed (regular and irregular topologies) ac-
cording to the regularity of their placement densities and shapes.

Regular Topologies

In regular topologies (such as those shown in Figure 3), nodes are typically uniformly distributed over 
an area as a grid. This has the advantage that average node density in each part of the deployment area 
is relatively consistent. Many well known multi-hop localization algorithms, such as APS by Niculescu 
and Nath (2001), estimate the shortest-path distances (in terms of actual distances or number of hops) 
between sensor nodes and derive an overall Euclidean distance from this to estimate position. Such 
algorithms, when evaluated in simulation using regular topologies, may appear to be highly accurate, 
or at least have bounded error. However, this is not sufficient to prove the general effectiveness of a 
localization algorithm; regular topologies do not necessarily accurately reflect realistic deployment 
scenarios due to the variety of geographical factors that may restrict placement of sensor nodes.

Irregular Topologies 

In these topologies, the shortest-path distances between nodes can deviate greatly from the actual 
Euclidian distances between nodes, and individual node density in a region may deviate greatly from 
the average density of the WSN. C-shaped, L-shaped and ring-shaped topologies are typical irregular 
topology examples, and represent irregular deployment configurations that applications may find them-
selves constrained by. Therefore, such topologies are generally employed to compare and stress various 
attributes of localization algorithms. In Figure 4 two types of C-shape topologies are presented. Note 
that in Figure 4, the difference between the Euclidian distance and the shortest-path distance between 
certain nodes can be large. As a result, individual errors in the localization algorithm may accumulate, 
resulting in large overall localization errors. 

These simple topologies may be combined to generate either larger or more complex sensor network 
topologies. Obviously, a localization algorithm is more robust and generally usable when it generates 
accurate results for these types of topologies.
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Third Dimension in Topologies

Today, most of the localization studies tend to ignore or trivialize the third dimension in topology setup 
and simulation. However, the third dimension is unavoidable in most real-life deployment scenarios and, 
unfortunately, introduces additional complexities to the localization algorithms, as examined by Ghosh 
(2007). For instance, in a network deployed on a hill or mountain, geographical obstacles hinder the 
radio communication among nodes. In such scenarios, a node may experience better packet reception 
but worse transmission rates compared with nodes on higher ground. This increases the percentage of 
asymmetric links, which may therefore affect communication and ranging assumptions.

Ranging Models

Ranging is the process of estimating the inter-node distance or angle using one or more modalities 
(for example signal strength or acoustic time of flight). In simulation, a widely used ranging modality 
is radio signal strength, but other modalities include acoustic time of flight (ultrasonic or audible) and 
ultra-wide band (UWB), as discussed by Yu (2004). All ranging techniques approximate the distance 
between nodes, therefore error related to measurement accuracy, multi-path effects and non-line of 
sight is expected.

Noisy Disk Model

An accurate, sensible ranging model is a critical aspect of a range or angle-based localization algorithm. 
The noisy disk, where a node can emit ranging signals to all neighbors within a maximum range R (the 
radius of the disk), is a commonly used ranging model in simulation. The model has two components: 
noise and connectivity. The noise component indicates the distribution of error, which is added to the 
actual distance (e.g., Gaussian, uniform) to form the estimated distance. The connectivity component 
indicates the maximum distance dmax between two nodes at which a distance estimate can be obtained. 

Figure	3.	Even	and	random	topology	examples

  a) Even grid                                                           b) Random uniform
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For example, using Gaussian noise (with variance s), the Noisy Disk defines the distance estimate ijd̂  
between nodes i and j in terms of the true distance dij as:
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The Noisy Disk model with no noise component (i.e., it only models the connectivity between nodes) 
is also known as the Unit Disk model. In simulations, range data used in distance estimations are usually 
generated from a parametric function of a theoretical propagation model. The level of the detail of the 
propagation model used is particularly important. Insufficient details can produce unrealistic error in 
estimations. Unfortunately, even detailed theoretical models may be significantly different from estima-
tions made in real life deployments because of hardware and environmental ranging irregularities.

Whitehouse et al (2005) have proposed an alternative simulation technique – Statistical Emulation, 
where data for simulation is generated by randomly drawing measurements from an empirical data set 
(discussed further in the range irregularity section). Reichenbach et al (2006) have also proposed a tool 
using defective observations as input thus enabling more realistic simulations. Theoretical propagation 
models are briefly discussed below.

Radio Propagation

In radio models, the received signal strength is usually represented with the following formula, mea-
sured in decibels:

Received	Signal	Strength	=	Sending	Power	–	Path	Loss	+	Fading		 	 	 (10)

The Sending	Power of a node is determined by the battery status and the type of transmitter, amplifier 
and antenna. Path	Loss describes the signal’s energy loss as it propagates to the receiver. Path loss can 
be calculated using different physical models. The “Free Space Model” assumes the ideal propagation 

Figure	4.	Example	irregular	topologies

          a) Even C-shape                                                                         b) Random uniform C-shape
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condition: that there is only one clear line-of-sight path (LOS) between the transmitter and receiver with 
no obstacles nearby to cause reflection or diffraction. The path loss is modeled as being proportional 
to the square of the distance between the transmitter and receiver, and also proportional to the square 
of the frequency of the radio signal. This model accounts for the propagation distance between sender 
and receiver using a fixed formula for signal loss, and does not include hardware specific factors such 
as the gain of the antennas used at the transmitter and receiver, nor any loss associated with mechanical 
imperfections.

The ‘Two-Ray-Ground Reflection Model’ considers antenna orientation and distance from ground for 
both the transmitter and receiver, performing detailed radio ray tracing to estimate reflection of signals. 
This model is known to give more accurate predictions at a long distance than the free space model. 
However it does not perform as well at short distance due to the oscillation caused by the constructive 
and destructive combination of the two rays. In the case where distance between nodes is small, the 
free space model may be preferred.

The effects of reflection, diffraction and scattering of signals as they hit obstacles will influence the 
free propagation of signals, leading to observation errors at the receiving node. These effects cause an 
exponential decay on the signal strength with respect to distance. Signal strength is also assumed to be 
log-normally distributed for a given distance d. The log-normal shadowing path loss model which is the 
most commonly used radio propagation model in WSN simulations is given as follows: 
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Where	Pr(d) is the received power for distance d and Pr(d0) is the received power for a reference 
distance d0. β is the path loss exponent (rate at which signal decays). X is a Gaussian random variable 
with zero mean and standard deviation σ. β and σ are obtained through curve fitting of empirical data. 
To approximate a communication link with the shadowing model, Ramadurai and Sichitiu (2003) sug-
gest a simple approach to calculate the distance using a certain radio propagation model and introduce 
a random error E to the calculated distance. 

Acoustic Ranging

A useful model for acoustic ranging error (audible or ultrasonic) proposed by Girod (2005) can be given 
as follows:

ijijestactij NXddR ++−=          (12)

In (12), dact is the actual distance between nodes i and j, dest is the estimated distance and Xij is a 
Gaussian random variable with zero mean and standard deviation σ. Nij is a fixed bias, which is present 
only when line-of-sight is blocked. This model represents the basic error components that one finds 
in acoustic ranging – a non-line of sight bias component and a Gaussian error component. Xij can be 
reduced by repeated observations but Nij needs to be filtered at higher layers. 

Ultra Wide Band Ranging

An UWB radio ranging system has the ability to resolve multi-path components of the wireless propa-
gation channel with extremely high time resolution. A standardized UWB channel model for IEEE 
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802.15.3a is claimed to best match the empirical measurements (Lee, 2002; Yu, 2004; Forrester, 2003). 
Additionally, Shah et al. (2005) has shown UWB ranging can be used to devise algorithms robust for 
both LOS and NLOS environments. The impulse response of the UWB channel model is: 
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where ak,l and Tk,l are the multipath gain and delay of the kth ray in the lth cluster, respectively. Tl repre-
sents the delay of the lth cluster and X indicates the log-normal shadowing effect. Detailed distribution 
functions of different variables in can be found in Forrester (2003).

Range Irregularities

Aforementioned range models assume circular propagation ranges, whereas in reality propagation ranges 
tend to have an irregular shape. Range irregularity is one of the main sources of asymmetric links in 
WSNs. Irregularities are caused by three main factors, relative to the ranging model: device properties, 
propagation medium and environmental factors. Device properties include the antenna type, the trans-
mission power, antenna gains, receiver sensitivity, receiver threshold and the Signal-Noise Ratio (SNR). 
Propagation medium properties include the medium type and background noise and environmental fac-
tors include attributes such as the temperature of the environment and obstacles within the deployment 
area (Zhou et al., 2004).  As an example, the radiated pattern of the inverted-F antenna installed in the 
widely-used ChipCon CC2420 radio (Andersen, 2007) is very obviously non-isotropic. Therefore, it is 
clear that simple radio models that assume a perfect, spherical radio range cannot accurately predict or 
describe real-world radio characteristics.  

Range irregularity models aim to reduce the discrepancy between the simulation and real-world 
results; two such examples are described below. 

Statistical Emulation: Acoustic or Radio Ranging Irregularities

Whitehouse and Culler (2006) identified four different types of empirical ranging irregularities arising 
from empirical ultrasound/radio range data, which they use to extend the Noisy Disk model (as men-
tioned previously in this chapter). They define the ranging irregularities as:

• Extreme overestimates: An excess of range estimates that are larger than the true distance by 
more than two standard deviations. 

• Extreme underestimates: An excess of range estimates that are smaller than the true distance by 
more than two standard deviations. 

• Long-range proficiency: The existence of range estimates between nodes farther than nominal 
range dmax. 

• Short-range deficiency: The existence of range failures between nodes closer than nominal range 
dmax.

The authors then study five stages of ranging models, each incorporating more ranging irregularity 
detail than the previous one:
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• Model 1) Noisy Disk (No irregularities)
• Model 2) Model 1 + Extreme Overestimates
• Model 3) Model 2 + Extreme Underestimates 
• Model 4) Model 3 + Long-range proficiency 
• Model 5) Model 4 + Short-range deficiency 

Whitehouse and Culler use their empirical ranging data to generate ranging irregularities in simu-
lation, proposing a technique they call Statistical Emulation. The authors find that small variations in 
ranging model can cause large variations in localization error for several algorithms.

RIM: Radio Irregularity Model

Zhou et al (2004) establish a radio model for simulation, called the Radio Irregularity Model (RIM). 
From experimental results, they assign the following properties to radio sensing hardware:

• Non-isotropic: The radio signal from a transmitter has different path loss in different direc-
tions. 

• Continuous variation: The signal path loss varies continuously with incremental changes of the 
propagation direction from a transmitter. 

• Heterogeneity: Differences in hardware calibration and battery status lead to different signal 
sending powers, hence different received signal strengths.

RIM enhances radio models by approximating these three main properties of radio signals. To reflect 
the two main properties of radio irregularity, namely non-isotropic and continuous variation, Zhou et 
al (2004) adjust the previously mentioned path loss formula of (10) with two new parameters: the De-
gree of Irregularity (DOI) and Variance of Sending Power (VSP). DOI is the maximum received signal 
strength percentage variation per unit degree change in the direction of radio propagation. When the 
DOI is set to zero, there is no range variation, and the communication range is a perfect sphere. When 
it is increased, the communication range becomes more and more irregular. The path loss formula is 
adjusted as follows:

Path	Loss	DOI = Ki	Path	Loss        (14)

Ki is a coefficient to represent the difference in path loss in different directions, and α is a random 
number between -1 and 1, which is generated according to the Weibull distribution (Devore, 1982). 
Specifically, Ki is the ith degree coefficient, which is calculated as follows:
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where K0 – K359 ≤ DOI
Based on (15), 360 Ki values for 360 different directions can be generated by randomly fixing direction 

as the starting direction represented by i=0. The second parameter, Variance of Sending Power (VSP) 
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is defined as the maximum percentage variance of the signal sending power among different devices. 
The signal sending power is adjusted as follows:

Sending	PowerVSP	=	Sending	Power	(1	+	α	VSP)      (16)

In (16), Zhou et al (2004) assume that the variance of sending power follows a Normal distribution, 
which is broadly used to measure the variance caused by the hardware, and α is a random number between 
0 and 1. With these two new parameters, DOI and VSP, the RIM model is formulated as follows:

Received	Signal	Strength	=	Sending	PowerVSP	-	Path	Loss	DOI +	Fading    (17)

The authors implement the RIM model in GloMoSim, discovering that the radio irregularity has a 
greater impact on the routing layer than the underlying link layer.

The ranging models presented in this section affect the accuracy of the estimated distances between 
nodes. However, as previously discussed in this chapter, other characteristics of localization algorithms 
should be evaluated, such as running time, coverage, total energy or communication cost.

 
communication Models

Bartelli et al. (2007) stated that many recently proposed localization algorithms have both distributed 
and range based characteristics. For these classes of localization algorithms, there is a dependency on 
the reliable communication of local neighborhood information in the network. Therefore, simulation 
and emulation evaluations of these algorithms require an adequate link abstraction. For example, a node 
running a distributed localization algorithm may want to collect neighborhood information in order 
to determine its relative position. Other nodes will most likely be performing the same tasks, causing 
simultaneous packet transmissions, and therefore collisions. Because the communication overhead of a 
localization algorithm affects both the running time and energy cost, it is important to model links well 
in evaluating these metrics. For example, an algorithm which generates a lot of traffic will most likely 
cause problems in a large network, and may significantly reduce the network lifetime unless properly 
coordinated.

Packet Reception Ratio (PRR), which is a function of the distance between transmitter and receiver, 
can be used to model the link, as described by Zuniga et al (2005). An alternative is to use a statisti-
cal model. A commonly used packet loss abstraction for wireless link layer simulation is a two state 
Markov model called the Gilbert-Elliott channel. The loss process is determined by the current state 
of a discrete time stationary binary Markov process. It is assumed that no packets are lost in a ‘good 
state’ Sg while all packets are lost in the ‘bad state’ Sb. The stationary probability of a channel being in 
the bad state is:

)/()( +=bSP          (18)

where a = Pgb and β = Pbg denote transition probabilities between Sg and Sb, and vice versa, respectively. 
Thus, the average packet error probability of the channel is:

))(1()( bgbbs SPPSPPP −+=         (19)
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where Pb and Pg are the error probabilities in bad and good states respectively. The state transition 
diagram for a Gilbert-Elliot channel is given in Figure 5. (18) may also be used to model instant node 
failures in a localization simulation similarly, where Sb denotes the failure state of a node and Sg denotes 
the non-failure state. In the failure state, all packets sent to the node are lost regardless of the wireless 
channel state.

Power consumption Model

Measuring the energy cost of a localization algorithm relies on the battery model used. A commonly 
used model is referenced by De Marco (2006) – when the sensor transmits k bits, the radio circuitry 
consumes kPTxTB energy, where PTx is the power required to transmit a bit which lasts in TB seconds. By 
adding the radiated power Pt(d), the energy cost ETx

)(),( dPTkPdkE tBTxTx +=         (20)

The model is completed in (21) by adding the term Erx for the reception of packets as well as trans-
mission: 

BRxtBTxRxTx TkPdPTkPdkEdkEdkE ++=+= )(),(),(),(     (21)

PRx is the power required to correctly receive (demodulate and decode) one bit. In addition to this, 
the energy consumption model for a single sensor can be enhanced by considering a duty cycle, which 
may be useful for extremely low power localization algorithms. In this model, a node can be in three 
operational states each draining different amounts of energy from the battery; active state in which the 
node is either transmitting/receiving/sensing data, idle state in which the receiver is on and the node is 
waiting for an activity to be triggered and sleep state in which the node cannot take part in any network 
activity (from Chiasserini and Garetto 2004). Incorporating these models can help researchers account 
not only for the number of packets sent by a particular localization algorithm in simulation, but also the 
power consumption of the packet transmission, and implications of duty cycling.

simulating Mobility

As mobility can have an impact on the whole network performance in various ways, the model used in 
simulating the behavior of mobile beacons throughout the simulation is also important. The performance 

Figure	5.	The	Gilbert-Elliott	channel	model
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of the algorithm can vary significantly with different mobility models used for mobile entities. It is even 
possible to get different performance when the same mobility model is used with different parameters. 
Widely used wireless network simulators such as ns-2, GloMoSim, Qualnet, or Opnet support various 
mobility models. However, it is important to use a mobility model that most closely matches the expected 
real-world scenario. In a localization simulation, if the expected real-world mobility scenario is unknown 
then researchers should experiment with several of the available mobility models. Camp (2002) suggests 
that if an entity mobility model is desired, this can be well modeled by the Random Waypoint Mobility 
model, the Random Walk Mobility model or the Gauss-Markov Mobility model.

Discussion

This section has described various models that can be used for the evaluation of localization algorithms 
in simulation. However, simplistic assumptions made by these models can affect the overall performance 
and realism of a simulation. Using models derived from empirical results may be useful in addressing 
these issues, by informing statistical models. In order to evaluate individual aspects of localization 
algorithms, researchers may wish to iteratively add complexity to simulations. For example evaluation 
may start with simple radio and ranging models as well as simple deployment topologies, and progress 
to adding more complex power measurements and a variety of empirically modeled ranging modali-
ties. This allows not only isolation of relevant components (accuracy being paramount initially), but 
a more thorough validation at several levels. This moves the simulation into a more realistic domain, 
preparing researchers to implement and evaluate the localization algorithm with realistic hardware in 
real environments. In the next section, a case study is presented showing how the real-life, application 
related requirements on localization can lead to tensions in performance criteria.

cAsE sTUDY

Given that requirements of WSN applications vary to a large degree with respect to localization, it is 
not easy to choose a general, representative case study for localization algorithm performance evalua-
tion. The case study chosen here describes a localization system developed by Girod et al (2006). The 
system is anchor-free, highly accurate over relatively large distances (~4cm 2D positional error at tens 
of metres), and requires low node densities. The system was deployed and demonstrated with 10 nodes 
across an 80 x 50m area. 

The platform requirements and localization techniques employed are described in this section, and 
the constraints associated with the localization algorithm together with the trade-offs in performance 
toward fitting application requirements. A different application is considered as a counter point to il-
lustrate the variety of application specific demands that affect localization and localization algorithms. 
The reader should note that in this section, we refer to the localization of a WSN as self-localization, 
and the localization of non WSN events of interest as source	localization.

Acoustic source Localization 

The Acoustic Embedded Networked Sensing Box (ENSBox) platform designed by Girod et al (2006) is 
a capable platform to support distributed acoustic sensing (see Figure 6). Acoustic sensing applications 
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remain a persistent challenge in wireless sensing as they imply high data rates and are a rich source of 
challenging problems relating to source and self localization, for example Ali (2007) and Allen (2008). 
Relatively high processing power is needed in order to locally process data and reduce network over-
head. 

The primary motivator for the design of the ENSBox was a class of scientific localization applications 
– namely the source localization of animals and birds, based on their vocalizations. Such applications 
enable species census, classification and behaviour studies to be performed. For source localization, the 
ENSBox node employs four microphones per node as a local array, in a tetrahedral configuration over a 
12cm2 area. A network of ENSBoxes allows the use of beam crossing techniques for source localization, 
where nodes individually estimate direction of arrival (DoA) of animal vocalizations using the time-
difference of arrival (TDoA) of the signals at each microphone. This is possible as the acoustic signals 
are coherent across the node’s array of four microphones. Network wide position estimations can then 
be made by triangulating the DoA observations. (The lack of coherency of wide-band acoustic signals 
over tens of metres means that it is difficult to reliably determine the ‘start’ of the signal at each node, 
meaning the use of TDoA for position estimation will not yield accurate enough results).

Using the Acoustic ENSBox for source localization requires self-localization to be performed to a 
high accuracy. Girod envisages the network being used to surround a target at 30-50m spacing (target 
to node). As such, he sets the self-localization accuracy requirements to be ±0.5m positional estimation 
and ±1 degree orientation estimation. This is sufficient to keep the source localization positional error 
within the bounds of the state of the art (±2.5 degrees for the most comparable system to an ENSBox 
network). Because DoA estimates are used in source localization, it is important that the geometry of 
the physical topology estimated by the self-localization algorithm be consistent with the actual physical 
topology. Actual distance error is not as important, given that for DoA triangulation, it is the angles 
between nodes that must be accurate, hence the topology need only be correct to a scaling factor. The 
average node density requirements of such an application are not clear, although a minimum of three 
nodes is required to remove ambiguity of the location of the acoustic event in two dimensions. Given 

Figure	6.	The	Acoustic	ENSBox’s	compact	microphone	array.	The	four	microphones	are	arranged	in	a	
tetrahedral	configuration	over	a	12cm2 area.
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that nodes can potentially be deployed over any terrain, it is important that the localization algorithm 
works well in 3D as well as 2D.

The self-localization solution the Acoustic ENSBox employs is based on acoustic time of flight (ToF) 
and direction of arrival (DoA) estimation, employing an iterative non-linear least squares minimisation 
multilateration algorithm (NLLS). The ENSBox nodes are equipped with omni-directional speakers to 
emit pseudo-noise ranging chirps from; nodes chirp at known times in a sequence, and estimate ToF 
ranges from each other. DoA estimates are based on an approximate six way cross correlation of the 
ranging chirp across the four audio channels. The ToF and DoA estimates are used as constraints in the 
NLLS algorithm, which is carried out in a centralised manner – all nodes report ranges to one elected 
leader, who performs the localization computation.

The NLLS self-localization algorithm works best when its system of equations is over constrained 
(that is, there are many range and angle measurements per node). This means that erroneous measure-
ments can be removed at certain points during the position estimation process through outlier rejection 
procedures. These rejections are based on heuristics such as residual error between two nodes’ range 
estimates and residual error between estimated position and estimated range. Node orientations are 
iteratively estimated between NLLS iterations by averaging the error between observed DoA and angle 
based on the NLLS result. Convergence is assumed when residual error for different aspects (yaw, 
pitch, roll, range) falls below an empirically determined threshold. Sometimes, this means that under 
constrained systems do not converge. 

Girod notes that raw residual error is not sufficient to detect outliers from the linear system formed 
as part of the NLLS localization algorithm. Therefore, in order to remove outliers, the localization algo-
rithm makes use of studentized residuals (where residual error is divided by an estimate of its standard 
deviation), a common method of detecting outliers in statistics. Outlier detection is performed after the 
algorithm has converged, so that the most outlying residual can be removed as a constraint from the 
linear system. This will potentially enhance the overall localization result, and can be iterated while 
the algorithm still converges. Girod observes that: 1) average residual error itself is not a good metric 
to determine a bad fit of coordinates (when ground truth is not available), and in his experiments, 2) 
that there was not an obvious relationship between average residual error and average positional error. 
However, there was seemingly a relationship between under-constrained nodes and positional error, 
pointing to a potential metric which can account for average residual error and under-constrained nodes, 
although average constraint density is not likely to be sufficient on its own.

Over several experiments in different, semi-obstructed environments, ten nodes were localized with 
an average 2D error of between 4.4cm and 11.1cm over an 80 x 50m area. The average 3D error was 
between 26.0cm and 57.3cm – this difference was due to a lack of variation in the Z axis for localization 
experiments. In practice, it is sometimes possible to make use of a 2D solution by adjusting the pith 
and roll of the nodes such that their local arrays are approximately planar. This is useful if the user’s 
confidence in the 3D solution is low.

Evaluation

The self-localization system alone will now be examined with respect to the performance criteria estab-
lished earlier in this chapter – scalability, accuracy, cost and coverage. It has been established at the start 
of this section that the dominating requirements with respect to the application under discussion here 
are geometrical accuracy and robustness to ranging error, and that the system meets these requirements 
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by taking advantage of the hardware required for the application. In terms of scalability, although the 
algorithm is anchor free, the processing it performs is centralised, and comes at a large computational 
cost. The assumption in this case is that the number of nodes deployed will not be so large to take an 
unreasonable amount of time for the algorithm to converge on a solution (order of minutes). The algo-
rithmic complexity in this case is O(N3), which precludes the use of this algorithm for large networks.

In terms of cost, the localization system is expensive – requiring high sample rate audio. The platform 
has plentiful resources (64MB RAM, 400 MHz ARM CPU), use of which comes at the expense of a 
shorter battery life. The hardware expense is understandable in the context of the application – acoustic 
source localization requires multiple microphones, computationally expensive signal processing tech-
niques and data sampled at high rates. The components that aid the localization – time synchronisation 
and node-to-node state sharing – require constant communication (at least 1 packet every 4 seconds per 
node), which is not conducive to low power operation. The system is highly accurate, more than meet-
ing its positional requirement in 2D (worst case 10cm error) and just going over 0.5m error in 3D, due 
to the local array configuration (as previously noted). Special care is given to robust behaviour, but the 
cost for this is a high number of measurements for each node – the localization algorithm requires an 
over constrained linear system to remove outliers. In a topology where the number of range measure-
ments per node is low, outliers are likely to become difficult to remove, or even identify; this is likely 
to be encountered in larger networks. Because the localization algorithm is computed centrally with all 
measurements, coverage is either 0 or 100%; the algorithm either converges on a result or it does not. 
This is clearly a problem for scalability.

To conclude, in maximising the accuracy and resilience to measurement noise, the localization 
system becomes constrained in scalability and unconstrained in cost (power usage, message sending, 
and computational complexity). This is intuitive if one imagines the criteria in tension – one cannot 
be maximised without affecting the others. This would seem to limit the generality of the localization 
approach, but one could argue that any self-localization motivated by a specific application (rather than 
application class) will make similar optimisations to maximise performance.

Counterpoint

As a simple, brief counterpoint, and with the aim to bring the points discussed so far into a sharper focus, 
the requirements of a different application are compared to see to what extent the previous localization 
procedure would suit them. In this motivating example, a WSN network is deployed over a forest in 
order to monitor it for potential fire events. Nodes in the network acquire temperature and humidity 
data as part of the calculation of the Fire Weather Index, to help predict dangerous areas for fires. This 
prediction is intended as an “early warning” system and the network will localize areas in the forest 
which are highly likely to have fires (as well as detecting fires when they occur). 

Forest fires usually occur in summer, and it is envisaged that the network will be deployed before and 
removed (or replaced) after summer, hence needing a minimum lifetime of at least 6 months continuous 
operation. Since the deployment area is not likely to be dangerous at deployment times, it can be assumed 
that nodes will be manually deployed, but that terrain surveying processed are too expensive for the size 
of the network. The individual constraints on the localization performance are discussed below.

Scale and Density
This network is likely to be far larger than the acoustic sensing network, in terms of number of nodes 
required and area to be covered. The network is required to be dense in terms of communication – be-
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tween 10 and 20 neighbours on average is ideal to ensure reliable multi-hop communication paths and 
allow for duty cycling. Deploying 20 nodes over every 100m by 100m area is likely to be sufficient to 
maintain at least an average degree of 10 per node.

The fire must be related to an actual physical position, so there must be at least some nodes in the 
network which are GPS-enabled. However, it is unreasonable for each node to be equipped with GPS, 
as there is a strong likelihood that it will be rendered useless under the forest canopy. Therefore nodes 
equipped with GPS could be deployed around the edges of the forest, acting as anchors when required. 
These nodes would not necessarily have to have the same sensing capabilities as the general network, 
and as such could be used only when required for localization.

Cost
Network life-time must also be maximised, meaning that radio communication must be kept to a mini-
mum. Ideally, nodes will be duty cycled to take advantage of the deployment density. Additionally, when 
considering concrete solutions to the forest fire application, hardware cost becomes a factor, meaning 
that it is not only the power consumption cost that must be considered, but also the per-unit cost. The 
overall cost of the network will limit how many nodes can be purchased, and so accurate ranging hard-
ware will most likely have to be traded off for simpler, cheaper ranging approaches which are not extra 
to the application functionality of the system, such as RSSI ranging for example.

Accuracy
Fire event localization is unlikely to be performed in the same way as acoustic localization. The reso-
lution requirement of a fire’s geographical location is related to the type of material on the forest floor 
and how flammable it is. Estimating the fire position could be as coarse as the nearest 100m, and still 
acceptable.

Coverage
Attaining 100% coverage is important for this application. If any nodes exist in the network which are 
capable of flagging fire events, but that have not been localized, the network is not meeting its applica-
tion goals.

Summary

To summarise, the overriding constraints in this application are cost (node price and power consump-
tion), network lifetime and scalability. In order to meet these constraints, it is likely that the network 
will have to compromise on accuracy. This accuracy trade-off is likely to be manifested in a simple 
ranging mechanism – highly accurate ranging approaches such as audible acoustic or ultrasonic time 
of flight represent an extra expense which the nodes cannot justify. In this case, a distributed algorithm 
would seem to be the best approach. It would not have to be anchor free, although the anchor density 
would most likely be low, and at a low duty cycle.

It is clear that the approach that the Acoustic ENSBox network uses would not work for the forest fire 
application – the hardware is too heavy weight to deal with the constraints of the application, and the 
battery life is not suitable for a long-lived application. The NLLS localization algorithm is too specific 
to apply to this network, where no angle of arrival measurements could be taken. Also, the computation 
of the algorithm is not scalable without modification.
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A LOcALIZATION ALGORITHM DEVELOPMENT cYcLE 

The development and evaluation of a localization algorithm should be considered in its entirety – this 
implies theoretical modelling and simulation as well as real-life validation of the algorithm. Each stage of 
the development should characterise and validate a specific aspect of the algorithm. Simulation validates 
how the algorithm can operate under controlled, simulated conditions – this verifies that the algorithm 
functions correctly. Emulation verifies that the algorithm can work correctly using empirical data that 
reveals conditions which are hard to simulate. Realistic validation shows that the algorithm can work in 
target environments and with the hardware platforms which are being targeted to support it.

Whitehouse et al (2004) propose that whilst simulation is different from real-world performance, one 
would expect it to be indicative (within some error bound of empirical results) and decisive (an algorithm 
which performs best in simulation should perform best in reality). Therefore, when one is evaluating 
a localization algorithm against others, one must make sure it performs better in both simulation and 
realistic deployment.

The verification and validation of a localization algorithm at each of the four stages (modelling, 
simulation, emulation and deployment) becomes more expensive in terms of (at least) time and cost as 
we approach real-life deployment. The value of simulation/emulation comes forth with respect to scal-
ability and low cost of entry for researchers – there are no embedded hardware requirements.

simulation

Researchers can use simulation to simplify some of the difficulties of real deployment (time synchronisa-
tion, for example) such that any algorithmic flaws can be isolated at an early stage. For this reason, it is 
not sensible to try to start with in-situ deployment without simulation verification. Environments such as 
Matlab, ns-2, OmNet++, Ptolemy and EmStar would be used to simulate the performance of localization 
algorithms. Different simulation environments allow lesser or greater control over node and network 
parameters relevant to localization. Simulators such as ns-2 and OmNet++ aim to provide the user with 
accurate models of wireless propagation and protocol performance, providing a high level language in 
which to implement simulations. Their wide academic use is desirable for consistency between institu-
tions in a way custom simulators cannot guarantee. Custom simulators can be designed in a variety 
of languages (Java, C and its variants). Ptolemy provides a hugely powerful framework for modelling, 
simulation and design of embedded systems using graphical techniques to create state machines, akin 
to Matlab’s Simulink. Development frameworks like EmStar allow researchers to develop end-to-end 
wireless sensing systems, allowing the same code to be used for simulation, emulation and deployment. 
Hardware specific simulators, such as TOSSIM and AVRORA can be used when accurate profiling is 
required (in power consumption analysis, for example). There also exist localization specific simulators, 
such as Silhouette by Whitehouse (2004, 2006) and SeNeLEx, RiST by Reichenbach (2006).

These environments do not need to be used in isolation, of course – measurements and observations 
derived from one could be used as set-up parameters in another, or to help inform custom simulation 
software.

Emulation

Using empirical data to inform simulation parameter values, rather than purely calculating them (for 
example, ranging or communication data) represents an addition to the realism of a simulation. Em-
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pirical data sets can capture some of the environment-specific effects that simple models cannot. The 
Statistical Emulation method proposed by Whitehouse et al (2004), is an example of gathering a data 
trace in-situ, and using it to power a realistic localization simulation (thus making it an emulation). Part 
of the challenge of performing this type of emulation is gathering a data set which represents the envi-
ronment in sufficient detail. Whitehouse (2004) gathered range data using 20 ultrasound enabled nodes 
that have been arranged in such a way that all ranges between 0.5m and 4.5m (at 0.25cm intervals) can 
be measured. This captures environmental specific problems, such as non-estimates (range could not 
be measured) and node-to-node ranging variations (induced by electronic or mechanical differences 
between nodes). Whitehouse uses this range data set in his Matlab based Silhouette localization software 
to investigate its effects on the performance of several localization algorithms, comparing the results 
with pure simulation and finding a disparity between the two. Similarly, real connectivity data can be 
gathered from a test bed and pushed into a simulation, creating an emulated system.

One of the most powerful emulation frameworks to date is EmStar (Girod et al., 2007). EmStar al-
lows the user to perform simulation, emulation and real deployment using the same framework. This 
means code developed and simulated can be cross-compiled and tested on real embedded hardware. 
This approach is advantageous as there is a reduction in the amount of porting required. EmStar allows 
network connectivity to be emulated in real-time using test bed data, making it a powerful tool for 
transitioning to real hardware from simulation through emulation.

Real Life Deployment

The strength of using test beds lays in actually being able to run algorithms on real hardware, and 
gather non-simulated data. This can be particularly useful for testing radio communication, for example. 
However, creating localization test beds can often be difficult because algorithms are affected by en-
vironmental context. Ranging mechanisms will most likely work differently indoors and outdoors, for 
example if signal strength is being used to determine range or location. Evaluating an algorithm on a 
test bed in a different environment than the application targets may give an incorrect indication of the 
algorithm’s performance.

Real life deployment of a localization algorithm on hardware in an indicative environment (i.e. similar 
to where the real network will be deployed) is the most important evaluation of a localization algorithm. 
Unfortunately, it is also the most time consuming, costly, and error prone aspect of localization evaluation. 
An in-situ evaluation of a localization algorithm will most likely be as demanding as a real deployment 
of the network in terms of planning, deployment equipment and time taken to deploy. 

The deployment phase of localization algorithm evaluation is also the most error prone and unpre-
dictable, so researchers should have a detailed plan of how and what data needs to be gathered. The 
aim should not be to perform a large amount of testing, but to have well directed and easily planned 
experimentation. Software will most likely need to be adapted to work correctly in the field, and worst 
case scenarios (what to do if pretty much everything fails) should be planned for. Several days should 
be set aside for deployment, with the understanding that the likelihood is high that things will not work 
as expected first time.

cONcLUsION

When evaluating localization algorithms, it is difficult to separate the issues arising from actual deploy-
ments from theoretical drawbacks and constraints of various algorithms. From a theoretical perspective, 
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it is desirable to have an algorithm that is independent of the ranging technique used and platform ca-
pability, as well as being robust to the deployment environment and generic with respect to application 
requirements.

Given that a WSN is deployed for some realistic, physical monitoring and processing aim, the local-
ization algorithm designer should always have some set of motivating applications in mind, throughout 
the design process. These can be general classes of applications such as tracking and location awareness 
or very specific, clearly specified applications such as forest fire monitoring and animal call localiza-
tion. Different applications will place different weightings on the various criteria discussed at the start 
of this chapter – scalability, accuracy, coverage and cost.

In conclusion, evaluating localization algorithms is not to be underestimated by researchers. In order 
to fully evaluate a localization algorithm, its performance must be tested in simulation, emulation and 
realistic environments. Both the design and development process for new localization algorithms and 
the process of selecting a “best fit” algorithm for a particular application requires consideration of the 
trade-offs between accuracy, cost, coverage and scalability the localization system needs to achieve. 
Although simulation is the least costly and most used tool for evaluating algorithms within the WSN 
domain, with respect to localization researchers must be aware of the limitations of purely simulated 
models, especially for radio communication and inter-node distance estimation.

The use of metrics to describe the quality of localization is important for all evaluation criteria, but 
possibly most notably for accuracy evaluation. Using Euclidean error is the simplest, but not always the 
most telling way of measuring how well a localization solution “fits” ground truth. Also, when ground 
truth is not available, an equivalent metric must be found which tells the user how well the localization 
estimate matches the initial constraints (such as inter-node spatial estimates).

Considering the domain’s state-of-the-art, being able to instantiate a specific localization algorithm 
is still not an easy thing to do. Even after choosing a localization algorithm that is most suitable for the 
motivating application, it is likely that researchers will still have to implement it on specific hardware 
(with relevant ranging measurement mechanisms, if applicable) before being able to evaluate its per-
formance.
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AbsTRAcT

Node	localization	is	an	important	issue	for	wireless	sensor	networks	to	provide	context	for	collected	
sensory	data.		Sensor	network	designers	need	to	determine	if	the	desired	level	of	localization	accuracy	
is	achievable	from	their	network	configuration	and	available	measurements.		The	Cramér-Rao lower 
bound is used extensively for this purpose. This bound is loose since it uses only information from 
measurements in its calculations.  Information, such as that from the sensor selection process, is not 
considered.  In addition, non-line-of-sight radio propagation causes the regularity conditions of the 
Cramér-Rao lower bound to be violated. This chapter demonstrates the Weinstein-Weiss and extended 
Ziv-Zakai	lower	bounds	for	localization	error	which	remain	valid	with	non-line-of-sight	propagation.		
These bounds also use all available information for bound calculations.  It is demonstrated that these 
bounds are tight to actual estimator performance and may be used determine the available accuracy of 
location estimation from survey data collected in the network area.

INTRODUcTION

To provide context for data collected by wireless sensor networks, it is necessary for the sensor net-
work to supply accurate location information for its component sensor nodes (Sheu et al. 2006). To this 
end, several algorithms and sensor types have been developed for sensor node localization in these 
networks (Patwari et al. 2003; Ray et al. 2006).  These proposed localization systems have been shown 
to provide excellent localization accuracy for the sensor nodes and mobile terminals in these networks. 
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The remainder of this book describes the design and use of several of these algorithms. However, an 
important issue for a network designer is to determine what sensors and network topologies are required 
to achieve the necessary level of localization accuracy for their application. To make these design deci-
sions, tools are required for analytically evaluating the performance of different localization systems 
with different sensor positions.

The purpose of this chapter is to describe tools for the accuracy analysis of localization systems 
for wireless sensor networks. The chapter will focus on localization systems based on base stations at 
known positions making measurements of the radio signals from the sensor nodes. It should be noted 
that while this chapter describes only radio-based measurements for localization within sensor net-
works, the mathematical tools are easily applied to other measurements such as acoustic-based distance 
measurements.

Evaluation methods for localization systems serve two purposes.  First, they allow a network designer, 
prior to the creation of the senor network, to obtain a quantitative bound on how well the localization 
of sensor nodes can be performed with given types of localization measurements and with different 
geometric arrangements of the measuring base stations.  A network designer can then determine which 
of a set of possible network designs will achieve the required localization accuracy for their applica-
tion. Second, these tools can be used to evaluate the performance of an existing localization system to 
see if all the potential location accuracy is being achieved or if further improvements are possible. The 
tools help to quantify the cost and accuracy tradeoffs of different component choices in a localization 
system’s design.

In the radiolocation literature, there have been several figures of merit proposed for localization 
accuracy such as the Circular Error Probable (CEP) and the Geometric Dilution of Precision (GDOP) 
(Torrieri 1984; Tekinay et al. 1998).  These figures of merit provide useful information for the analysis of 
the performance of location systems, but these values are difficult to calculate for  localization systems 
coping with multipath or non-line-of-sight (NLoS) radio propagation.  In Line-of-Sight (LoS) radio 
propagation, radio signals travel directly on the shortest straight line path from the node to be located 
to the measuring base stations, whereas during NLoS radio propagation this path is obstructed and the 
signal is reflected and diffracted during propagation from the target node to the measuring base stations.  
NLoS propagation complicates the localization problem since the signal characteristics are not only a 
function of the node and base station locations but also a function of the location of obstructions in the 
propagation environment.

To provide accuracy information for localization in the presence of multipath and NLoS propagation, 
figures of merit have been derived in the localization literature such as the Cramér-Rao lower bound on 
the mean square error of the location estimates. The local Cramér-Rao lower bound has been derived for 
localization in the presence of multipath and random NLoS radio propagation and used to evaluate the 
performance of many localization systems (Qi et al. 2002; Botteron et al. 2004). This bound provides an 
excellent method of evaluating the effects of the locations of the base stations and measurement noise 
levels on localization accuracy. A difficulty with the use of the Cramér-Rao lower bound as a general 
evaluation tool for localization accuracy is that it considers the current radio signal measurements as 
the only source of information on node location.  In other words, the Cramér-Rao lower bound assumes 
that the node location is a deterministic value and the localization system has no other information about 
the node location prior to the measurements.  Other sources of information, such as the sensor selection 
procedure or the measurements taken in the past, are not considered, so the Cramér-Rao lower bound is 
no longer a valid lower bound for localization systems where this information is available.
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An extension of the Cramér-Rao lower bound, known as the Bayesian Cramér-Rao lower bound, has 
been developed to manage information other than that contained in the measurements about the node’s 
location. The additional information is modeled as generating a probability density function for a node’s 
location prior to the availability of the measurements. Unfortunately, the Bayesian Cramér-Rao lower 
bound has several regularity conditions that are violated for the node localization scenarios of greatest 
interest. This chapter addresses this problem by demonstrating how the more general Weinstein-Weiss 
lower bound (Weinstein and Weiss 1988) and the Extended Ziv-Zakai lower bound (Bell et al. 1997) 
are applied to the node localization problem. The chapter demonstrates the use of these bounds for 
considering the effect of sensor selection on the localization error bounds.  It is demonstrated how, with 
the use of a motion model, a lower bound is calculated for the localization of nodes that are in motion. 
This chapter also shows how the Extended Ziv-Zakai bound is used with a measurement survey data 
set collected in a wireless sensor network’s environment to determine a measure of what localization 
accuracy is attainable for the wireless sensor network at different noise levels.

The rest of this chapter is organized as follows.  The next section gives a brief summary of the sig-
nal models used in this chapter.  The mathematical notation for the chapter is also presented. The third 
section of the chapter contains a review of the evaluation methods for localization of nodes when the 
nodes have deterministic locations.  The concepts of the CEP and GDOP are reviewed and explained.  
The fourth section of the chapter describes the Cramér-Rao lower bound on terminal localization from 
radio measurements.  The effects of sensor geometry on propagation distance measurements and the 
received signal measurements are discussed. The fifth section of the chapter describes the integration of 
prior information on node location into the bound calculations.  The Bayesian Cramér-Rao lower bound 
is described and the difficulties with its application to node localization are noted.  The more general 
bounds on terminal location, the Weinstein-Weiss and extended Ziv-Zakai bounds, are then introduced. 
The sixth section of the chapter provides examples of the lower bound calculations with a summary of 
how the bounds described in previous sections are calculated for a sample network. The last section of 
the chapter presents the conclusions of the chapter with an overview of the results.

MEAsUREMENT AND sIGNAL MODEL 

In this chapter, vectors are denoted with bold lower case letters and matrices are denoted with bold up-
per case letters. Subscripts are used to index the entries of matrices and vectors so vi is referring to the 
ith entry of vector v, while Ci,j is the jth entry of the ith row of the matrix C. Many of the variables in this 
chapter are random and they are specified in terms of their probability density functions. The function 
f(x) is the probability density function of the random vector x, and f(x | y) is the conditional probability 
density function of random vector x given the value of random vector y.

This chapter demonstrates how to calculate bounds for node localization from radio received signal 
strength (RSS), time of arrival (ToA), time difference of arrival (TDoA), or angle of arrival (AoA) mea-
surements. In this paper, the terms node and terminal are used interchangeably.  These measurements 
were selected since they are the most popular radio signal measurements for wireless node localization. 
The methods described for calculations of lower bound on localization error are applicable to other 
measurements that have been proposed for node localization, such as acoustic distance measurements 
or radio impulse response matching. 

The node location at sample time k is specified by the vector ( ) [ ( ) ( )]T
x yk p k p k=  where 

( ( ), ( ))x yp k p k  are the x and y coordinates of the node of interest. This chapter concentrates on two 
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dimensional localizations. The presented bound calculations are easily generalized to three dimensional 
localizations, if required.  The measurement vector for sample time k is denoted as z(k). The node lo-
calization is performed with measurements from m fixed location base stations at known locations. In 
wireless sensor networks, the base stations are either localized by measurements made at the time the 
sensor network is setup or these nodes are equipped with Global Position System (GPS) receivers.

For RSS, ToA, or AoA measurements, the ith entry of the measurement vector is given by

( )( ) m[ , ] ( )i
i ik k k= +z         (1)

where m[ ( ), ]ik  gives the noise free measurement for radio propagation from location ( )k  to the ith 
base station’s location specified by the vector bi, and ni(k) is the ith entry of the measurement noise vector 
n(k). To simplify later calculations, the time measurement for the ToA measurement is converted to a 
distance measurement by multiplication of the measurement by the radio signal propagation speed. 

The measurement function for unobstructed LoS propagation is specified by 

1010 log ( ) RSS measurement (dB)

m[ ( ), ] ( ) ToA measurement (m)

[ ( ) ] AoA mesurement (radians)

i

i i

i

k

k k

k

 −
= −
 ∠ −

   (2)

with v  being the Euclidean length of vector v, and a being the radio pathloss propagation constant vary-
ing from 2 to 4 in urban environments, and the [ ( ) ]ik∠ −  operator gives the angle of the difference 
vector Q(k)-bi (Steele 92). It is assumed for ToA measurements that the time of signal transmission from 
the source is known.  For TDoA measurements, each entry of the measurement vector is the difference 
between the propagation times for the measuring base station and the reference base station. Therefore, 
the TDoA measurement vector is calculated from a ToA measurement vector as TDoA ToA( ) ( )k k=z F z  
where, without loss of generality, if base station 1 is the reference base station then 1 1[ ]m m− −= −F 1 I  with 

1m−1  being an ( 1) 1m − ×  vector with all one entries and Im-1 being an ( 1) ( 1)m m− × −  identity matrix.
The measurement noise for RSS, ToA, and AoA measurements is usually specified as a zero mean 

Gaussian random vector with a covariance matrix given by Var[ ( )]k =n C. If this is the case, the mea-
surement noise vector for TDoA measurements is a zero mean vector of length m-1 with a covariance 
given by TDoA ToA T=C FC F .

These measurement equations are only provided to assist with the description of the examples later 
in the chapter.  The lower bound methods described in this chapter are not dependent on these propaga-
tion equations.

EVALUATION OF LOcALIZATION AccURAcY FOR NODEs WITH 
DETERMINIsTIc LOcATIONs

The node localization problem is specified as computing an estimate of the mobile terminal location at 
time k based on the measurements taken at time k:

ˆ ( ) e[ ( )]k k= .          (3)
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ˆ ˆ ˆ( ) [ ( ) ( )]T
x yk p k p k=  is the estimated location at sample interval k. e[ ( )]kz  is an estimator function 

which maps from measurements to estimated locations. The reader is referred to the remainder of this 
volume for more details on how to implement these functions. This chapter instead focuses on figures 
of merit and bounds on the accuracy of these functions for several measurement types.

Figures of merit that have been proposed in the previous literature for stationary target localiza-
tion are the Mean Distance Error (MDE), the Mean Square Error (MSE), the Root Mean Square Error 
(RMSE), the Geometric Dilution of Precision (GDOP), and the Circular Error Probable (CEP) (Torrieri 
1984; Tekinay et al. 1998).  These figures of merit quantify the uncertainty in the localization when the 
mobile terminal location is at a given point.  The most commonly used figures or merit for stationary 
target location accuracy are the Mean Distance Error (MDE), Mean Square Error (MSE), and Root 
Mean Square Error (RMSE). These figures of merit give quantitative values to specify the magnitude 
of localization errors.  The MDE is the mean distance of the estimated terminal location from the true 
mobile terminal location: ( ) { }2 2ˆ ˆMDE E [ ( ) ( )] [ ( ) ( )]x x y yk p k p k p k p k= − + −  where E[ ]•  is the statisti-
cal expectation operator. The MSE is the mean squared distance of the estimated terminal location 
from the true mobile terminal location: 2 2ˆ ˆMSE( ) E{[ ( ) ( )] [ ( ) ( )] }x x y yk p k p k p k p k= − + − .  RMSE is 
simply the square root of MSE: RMSE( ) MSE( )k k= .  The advantage of MDE is that its value is eas-
ily mapped to useful performance measures in the localization application domain. However, MDE is 
unfortunately difficult to calculate in analysis of estimation algorithms.  Conversely,  the MSE is easily 
calculated in theoretical work but has less correspondence to real world distances.  As a compromise, 
RMSE is often used as figure of merit. RMSE is easily calculated and its value is significant to field 
applications since it can be easily shown that  RMSE is always greater than MDE:

2

2

Var[MDE( )] 0
MSE( ) [MDE( )] 0

MSE( ) [MDE( )]
RMSE( ) MDE( ).

k
k k

k k
k k

≥
⇒ − ≥
⇒ ≥
⇒ ≥

      (4)

where Var[ ]•  is the statistical variance operator. This is a useful result for performance bound purposes, 
since bounds on RMSE are easily calculated from bounds on MSE.

Due to non-linearity in the relationship between the mobile terminal locations and the available 
measurement vectors, the magnitude of the location error is dependent on the relative location of the 
mobile terminal to the measuring base stations (Spirito 2001).  The Geometric Dilution of Precision 
(GDOP) figure of merit is useful in the analysis of the location dependence in the localization error.  
GDOP is defined as the ratio of RMSE error over the standard deviation of the measurement errors, 
given by, using the definition from (Torrieri 1984):

RMSEGDOP
Var(measurement noise)

=  .       (5)

GDOP allows for the uncertainty when the mobile is at different positions relative to the base stations 
to be specified relative to the variance of the available measurements. GDOP is useful when evaluat-
ing the choices of different measuring nodes for a given location system. A high GDOP indicates the 
geometry of measuring base station positions is inappropriate for accurate localization.
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The mobile terminal localization error can be decomposed into two parts: a bias which is a fixed 
localization error vector resulting from the non-linearity in the relationship from measurement to loca-
tion, and a random localization error vector.  Circular Error Probable (CEP) provides quantitative values 
for the magnitude of the random portion of the localization error.  CEP is defined as the radius of the 
circle which, for a given true location of the mobile terminal, contains half of the estimated locations of 
the mobile terminal (Torrieri 1984; Tekinay et al. 1998).  This is illustrated in Figure 1. These figures 
of merit have been extensively studied in the case for line-of-sight (LoS), single path radio propagation 
and several useful results are available (Torrieri 1984).  However, in more general cases, other figures 
of merit are required.  The next subsection describes the use of lower bounds on localization error as 
figures of merit.

THE cRAMéR-RAO bOUND ON TERMINAL LOcALIZATION ERROR

One factor that is lacking in the evaluation methods described in the previous section is that they do not 
give an indication of how much improvement is possible in a given mobile terminal localization system.  
This section describes methods for calculating bounds on the localization errors.  The performance of 
any localization system cannot be better than these lower bound values.  These bounds can be used as 
an indication of how much improvement can be made to a given estimator or how close a localization 
system is to providing optimal performance.

Another purpose for deriving these bounds is that they give a quantifiable measurement of how much 
information a single measurement vector, z(k), contains about the location of the mobile terminal.  This 
information measure is needed for the derivation of the bounds on the localization error for time filter-
ing of localization measurements provided later in this chapter.

A classification of some commonly used bounds for parametric estimation problems is given in Table 
1.  The Cramér-Rao bound gives a lower bound on the MSE of estimators of a deterministic parameter 
(Kay 1993).  Cramér-Rao bounds have been derived for these performance measures for location esti-
mates using ToA and TDoA measurements (Spirito 2001; Qi and Kobayashi 2002; Botteron et al. 2004).  
It should be noted that the bound in (Spirito 2001) is identical to the standard Cramér-Rao lower bound 
without using the standard Cramér-Rao lower bound derivation (Kay 1993).  The standard Cramér-Rao 
bound gives a lower bound on the MSE of unbiased localization when the node is at a given location 
θ(k):

Figure	1.	Circular	error	probable	(CEP)	definition
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2 2 1 1
1,1 2,2ˆ ˆE{[ ( ) ( )] [ ( ) ( )] | ( )} { [ ( )]} { [ ( )]}x x y yp k p k p k p k k k k− −− + − ≥ +  ,  (6)

where [ ( )]kJ  is defined as

( ) ( )( )( ) ( )( ) ( )[ ( )] E log
T

k kk f k k k  = − ∇ ∇   
J     (7)

with ( ( ) | ( ))f k kz  being the conditional probability density function of the measurement vector z(k) 
given the true location θ(k) during sample interval k. E[x | y] is the conditional expectation operator. 
The ∇ operator is defined as 

1 2

, , , .
n

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

v v v v
         (8)

The matrix [ ( )]kJ  is the Fisher information matrix of the locations given the measurements.
For the Cramér-Rao lower bound to be valid, certain necessary ‘regularity’ conditions must be satis-

fied. These ‘regularity’ conditions are that the partial derivatives within (7) exist and that the expectations 
are bounded. For the localization problem, this is equivalent to the requirement that

( )

0
E{ log[ ( ( ) | ( ))] | ( )}

0
T

k f k k k  
∇ =  

 
z       (9)

for all θ(k) (Kay, 1993). Because of these conditions, many of the bounds presented in the localization 
literature are based on three assumptions that are not unconditionally true in many environments of 
interest (Spirito 2001; Botteron et al. 2004). Each of these assumptions is addressed below.

1. Radio propagation is line-of-sight to the node. The LoS propagation assumption is used to derive 
( ( ) | ( ))f k kz  functions.  The LoS assumption means the conditional probability density function 

value for z(k) is dependent only on mobile terminal and measuring base station positions. The 
assumption of LoS propagation is not always satisfied in urban or indoor environments.  NLoS 
propagation measurements are dependent on the position of buildings and other geographic fea-
tures in the propagation environment as well as terminal and base stations positions.  In order to 
calculate bounds on the localization error during NLoS propagation, not only must the locations of 
measuring base stations and mobile terminal be known but also the geometry of obstacles to radio 

Deterministic θ(k) Random θ(k)  (Bayesian Estimation)

Restrictions on f(z(k) | θ(k)) Bound Restrictions on f(z(k), θ(k)) Bound

None Barankin (Rife et 
al., 1975)

None Weiss-Weinstein  (Weinstein and 
Weiss1988)

Extended Ziv-Zakai                  
(Bell et al. 1997)

Twice differentiable w.r.t. 
elements of θ(k) 

Cramér-Rao (Kay 
1993)

Twice differentiable w.r.t. 
elements of θ(k) 

Bayesian Cramér-Rao                   
(Van Trees 2001)

Table	1.	Partial	taxonomy	of	estimator	lower	bounds
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propagation.  When the conditional distribution of measurements is not continuous, the ‘regularity’ 
conditions of the Cramér-Rao bound are not satisfied.  NLoS propagation creates discontinuities in 
the derivatives of the conditional probability density functions of the measurements on the border 
of NLoS regions where the propagation switches from LoS to NLoS. 

 Prior work on the development of localization error bounds in the presence of both NLoS and LoS 
propagation has demonstrated that where some base stations have LoS propagation and the other 
base stations have NLoS propagation, only the measurements from LoS base stations need to be 
considered to calculate a valid Cramér-Rao lower bound (Qi and Kobayashi, 2002, Botteron et al., 
2004).  This work modeled NLoS propagation as a random effect with no correlation to a node’s 
location. In this case, the occurrence of NLoS propagation only degrades localization accuracy.  
However, in practice, NLoS propagation at some locations is deterministic as the LoS propagation 
paths to measuring base stations are blocked by large immobile objects such as walls or build-
ings.

2. The localizations are locally unbiased. For a locally unbiased estimator, ˆE[ ( ) | ( )] ( )k k k= .  
Terminal localization made using ToA or TDoA measurements are rarely unbiased because of the 
non-linear relationship of the measurement vector with the terminal location (Kim et al. 2001).  
If an expression for the bias can be calculated, it is possible to calculate a modified form of (7) 
which takes bias into account (Kay, 1993).  Unfortunately, analysis of zero memory estimators 
has shown that closed form expressions for this bias are extremely difficult, if not impossible, to 
obtain (Torrieri 1984). Such a closed form expression would be equivalent to a closed form solu-
tion to (3) which is non-trivial for any ( ( ) | ( ))f k kz  conditional probability density function of 
reasonable complexity.  It is known, that for some geometries of base station and node locations, 
the bias can be quite large in proportion to the total estimation error (Torrieri 1984; Spirito 2001). 
An example of a base station geometry resulting in a large bias is when the base stations’ locations 
are all collinear with the node location.

 This condition is separate from the condition that localization is globally unbiased, which is the 
condition that ˆE[ ( )] E[ ( )]k k= . Clearly, a locally unbiased estimator is also globally unbiased 
but the converse is not always true. For example, the trivial localization system that ˆ ( ) E[ ( )]k k=  
for all z(k) is globally unbiased but is not locally unbiased.

3. No information is available on the node location aside from the measurement vector. This 
assumption is required for the Cramér-Rao bound to be a true lower bound.  In an urban or in-
door region, base stations are located throughout the network area.  As a mobile terminal moves 
through the network area, the hand off algorithm ensures that the mobile terminal is always com-
municating with a base station that is close to its location.  Furthermore, base stations close to the 
mobile terminal are more likely to be making measurements for localization than base stations 
further away from the mobile terminal. Therefore, the base station selection for localization is 
not independent of terminal location.  These two factors indicate that the wireless sensor network 
has prior statistical knowledge of the terminal location before any measurements are made.  This 
knowledge is, in fact, the basis of Phase I of the FCC’s E911 wireless location requirement for 
cellular telephone localization, where the network can identify from which cell a user is making 
a cellular telephone call (Federal Communications Commission, 1996).  

The two largest problems for the calculation of localization error bounds are the unknown bias in 
the location estimates, and the existence of information on mobile terminal position available prior to 
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the localization. The next section will describe how lower bounds on localization error are calculated 
in this case.

LOWER bOUNDs ON LOcATION EsTIMATION ERROR WITH PRIOR 
INFORMATION

If information on the node location is available before the localization procedure begins, then a Bayesian 
localization procedure with localization MSE that is lower than the Cramér-Rao bound described above 
is available. To bound this estimator, a  Bayesian lower bound on the localization error is required.  The 
most common Bayesian bound is the Bayesian Cramér-Rao Bound (BCRB) given by 

1ˆ ˆE{[ ( ) ( )][ ( ) ( )] } { [ ( )]}Tk k k k k −− − ≥        (10)

where the matrix [ ( )]kJ  is defined as

( ) ( )k k[ ( )] E{ [ log ( ( ), ( ))] }Tk f k k= − ∇ ∇J       (11)

when ( ( ), ( ))f k kz  is the joint probability density function of z(k) and θ(k) with no restrictions on the 
bias of the estimator for bound validity (Van Trees, 2001). The inequality of ≥A B indicates that the 
matrix given by = −D A B is non-negative definite. Using standard Bayesian theory, the joint prob-
ability density function is given by ( ( ), ( )) ( ( ) | ( )) ( ( ))f k k f k k f k=z  where ( ( ) | ( ))f k kz  is the 
conditional probability density function used to calculate the standard Cramér-Rao bound above.  The 
probability density function ( ( ))f k  represents the prior probability density function for the mobile 
terminal location given the selection of measuring base stations or other information. 

A useful property of the BCRB is that the effects of the measurements and the prior information are 
easily separated in terms of computation.  This separation is obtained by factoring the measurement 
conditional probability density function from the joint probability density function of the measurements 
and location:

[ ( )] [ ( )] [ ( )]D Pk k k= +J           (12)

where i f  ( ) ( )I{ [ ( )]} E{ [ log g( ( ))] }T
k kg k k= − ∇ ∇  then [ ( )] I[ ( ( ) | ( ))]D k f k k=J  and 

[ ( )] I[ ( ( ))]P k f k=J . The information matrix [ ( )]D kJ  is the statistical expectation of the standard 
Cramér-Rao bound over all possible node locations and quantifies the information from the measurement 
vector on the localization error bound and the information matrix [ ( )]P kJ  quantifies the effect of the 
prior information on the localization error bound. For stationary nodes, the source of the prior information 
represents information from the selection of base stations used for localization.  When non-stationary 
nodes are located, this prior information can also represent information from measurements in previ-
ous sample intervals. More information on this latter case is provided in a later section of this chapter. 
The computation of the BCRB for localization error using Monte Carlo integration is summarized as 
Algorithm 1. This calculation gives better approximations to the true bound as N → ∞.

Unfortunately, the BCRB does not exist for all estimation problems.  For the BCRB to be valid, two 
conditions are required (Van Trees 2001).  The first condition is that the first and second order partial 



  389

Accuracy Bounds for Wireless Localization Methods

derivatives of ( ( ), ( ))f k kz  with respect to all entries of θ(k) must be absolutely integrable with respect 
to the entries of z(k) and θ(k). The second condition is that the matrices [ ( )]D kJ  and [ ( )]P kJ must 
be invertible.

The existence of NLoS propagation creates discontinuities in the first and second partial deriva-
tives of ( ( ), ( ))f k kz  with respect to the entries of θ(k). The discontinuities occur at the boundaries 
between regions of LoS and NLoS propagation creating impulses in the partial derivatives of the joint 
probability density function.  The second order partial derivatives in (11) become unbounded, which 
makes the BCRB invalid. In addition, if the second partial derivatives of ( ( ))f k  with respect to the 
entries of θ(k)  are unbounded then the BCRB is invalidated. This condition is created for many com-
mon prior density functions. For example, if the node location is uniformly distributed over a finite 
area, the second partial derivatives of ( ( ))f k  are infinite at the boundaries of the region of support for

( ( ))f k  invalidating the BCRB. 
The BCRB provides a perfect calculation of the optimal MSE when the conditional probability density 

function ( )( ) | ( )f k k  is a multivariate Gaussian probability density function for all z(k) (Van Trees 
2001).  The non-linearity of the relationship between the measurements and terminals locations means 
that this is rarely the case for the localization problem.  However, the BCRB provides MSE bounds 
close to the actual optimal MSE when ( )( ) | ( )f k k  is well approximated by a multivariate Gaussian 
probability density function in that there exists a multivariate Gaussian probability density function, 

( ( ))Gf k  such that for some small constant e, ( ( ) | ( )) ( ( ))Gf k k f k− <  for all θ(k)  and z(k).  When 
this is not true, then the BCRB MSE bound value can be significantly lower than the true MSE.

Because of these problems, other bounds are needed to calculate a bound on the MSE for localization 
in the presence of NLOS propagation.  The discontinuities created by the presence of both LOS and 
NLOS propagation in the mobile terminal environment can be handled by either the Barankin bound, 
the Weinstein-Weiss bound or the extended Ziv-Zakai bound, as can be seen in Table 1.  The Barankin 
bound is valid for localization MSE if the mobile terminal location is deterministic.  If there exists a 
prior probability density function for θ(k), then the Weinstein-Weiss or extended Ziv-Zakai lower bounds 
are applicable.

 

1. Generate N independent samples of ( )k : t1, t2, …, tN 
 has probability density function of ( ( ))k f kt  

2. Calculate ( ( ))D kJ : 

1
( ) ( )

1

1( ( )) ( ) ( ) where  E[ ( ) | ( )] k

N
k T k k

D k k
k

k k k
N

−

=
=

= = ∇∑J  

3. Calculate ( ( ))P kJ : 

( ) ( )
( )1

1( ( ))  where  = log ( ( )
k

N Tk k
P k k

kkk f k
N ==

 = − ∇ ∇ ∑J  

4. Calculate bound on localization MSE from (10). 

Algorithm	1.	Monte	Carlo	integration	calculation	of	Bayesian	Cramér-Rao	bound
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The Weinstein-Weiss Lower bound

The Weinstein-Weiss lower bound gives a lower bound on the MSE of any estimator (Wein-
stein and Weiss, 1988).  The basis of the Weinstein-Weiss bound is that for any vector function e(z(k)), 
the following inequality holds:

1E{[ ( ) e( ( ))][ ( ) e( ( ))] }Tk k k k −− − ≥ T
     (13)

where G is the matrix with entries given by

,

E{M[s , ( ), ]M[s , ( ), ]}

E{L [ ( ), ( ) , ( )]}E{L [ ( ), ( ) , ( )]}
i i j i

i j ss ji
i j

k k

k k k k k k
=

+ +

z h z h
G

z
   (14)

with H=[h1h2] for any vectors (h1,h2 ) and scalars (s1,s2). The functions sL [ ( ), ( ) , ( )]k k k+z  are 
defined as

s ( ( ), ( ) )L [ ( ), ( ) , ( )]
( ( ), ( ))

s
f k kk k k

f k k
 +

+ =  
 

zz
z

,      (15)

and the function M[s, ( ), ( ), ]k kz  is defined as

s 1 sM[s, ( ), ( ), ] L [ ( ), ( ) , ( )] L [ ( ), ( ) , ( )]k k k k k k k k−= + − −z .  (16)

All expectations are taken with respect to ( ( ), ( ))f k kz ; that is, with regards to both the measure-
ments and the mobile terminal location.  Since for any localization system ˆ( ) e( ( ))k k= , the bound in 
(13) is also a bound on the MSE of any localization system. The tightest Weinstein-Weiss lower bound is 
achieved by calculating the values of s1, s2, h1, and h2 that maximize the right hand side of (13). Finding 
the tightest bound is a computationally expensive task.

Fortunately, any set of values of s1, s2, h1, and h2 bound the estimator performance. Selecting 
s1 = s2 = 1/2 and

1 0
0 1

h  
=  

 
H           (17)

results in a bound with a very practical cost. For these values, the elements of G can be rewritten as

,

1 1, ,
2 22

1 1, ,
2 2

i j i j

i j

i j

   − − +   
   =

   
   
   

h h h h
G

h h
      (18)

with ( ), E{L [ ( ), ( ) , ( )]}ss k k k= +h z  where hi and hj designate the ith and jth respective columns 
of the matrix H. A tight bound can be found by finding the value h which maximizes (13) with the other 
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variables set as above.  The limit of this case for h→0 results in the BCRB, provided the BCRB’s condi-
tions are satisfied.  As stated above, the BCRB conditions are rarely satisfied in the wireless terminal 
localization application, but this shows that the best Weinstein-Weiss bound will be at least as tight to 
optimal localization performance as the BCRB in cases where both bounds are valid.

The special case of  μ(1/2,h) is simplified as 

            (19)

 

[ ] [ ]

[ ]

1
2

1
2

1 1
2 2

1
2

1 ( ( ), ( ) ), E
2 ( ( ), ( ))

( ( ), ( ) ) ( ( ), ( ))d ( )d ( )
( ( ), ( ))

( )

( ( ), ( ) ) ( ( ), ( )) d ( )d ( )
( )

( ( ) | ( ) ) ( ( ) ) (

f k k
f k k

f k k f k k k k
f k klk

f k k f k k k k
lk

f k k f k f

 
 +   =          

 +
=  

 
ℜ

= +

ℜ

= + +

∫ ∫

∫ ∫

zh
z

z z
z

S

z
S

z [ ]
1
2( ) | ( )) ( ( )) d ( )d ( )

( )
k k f k k k

lk ℜ
∫ ∫

S

where ( ( ))f k  is the prior probability density function for the node location with support S(k), and the 
measurement vectors are of length l. If the measurement vectors given the node locations are Gaussian 
the conditional probability density function of the measurement vector z(k) given the location θ(k) is

( ) /2 1/2 21( ( ) | ( )) 2 exp [ ( )]
2

lf k k k −

− −  = − 
 

1C
z       (20)

with the signal difference vector defined as [ ( )] ( ) E[ ( ) | ( )]k k k k= −z  where E[ ( ) | ( )]k kz  is the 
expected measurement vector given the wireless node is at position θ(k), and C is the covariance matrix 
of the measurement vector given the node position θ(k). To simplify the expressions for the Gaussian 
probability density functions, we make use of the Mahalanobis quadratic distance function defined as 

2 1T −
− =1C

x x C x (Duda et al. 01).  Substituting (20) into (19), the ( )1/ 2,h  is defined as

( ) 1 1

1 2 2
2 2

1
2

1 1, 2 exp [ ( )] [ ( ) ]
2 4

( )

[ ( ( )) ( ( ) )] d ( )d ( )

l

k k
lk

f k f k k k

− −

− −    = − + +       
ℜ

× +

∫ ∫ C C
h C z

S
 

  (21)

To simplify (21), we expand the Gaussian density functions, complete the squares, and then integrate 
to obtain
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( ) ( )
1

2
21 1, exp E[ | ] E[ ( ) | ( ) ] [ ( ( )) ( ( ) )] d ( )

2 8
( )

k k k k f k f k k
k

−

   = − − + +  
   ∫ 1C

h z
S

. 
           
            (22)

In general, except for very simple node arrangements, (22) can only be integrated numerically.
For the two dimensional localization problem, the matrix G from (18) is given by

            (23)

2

0 21 1 1 1, , , ,
2 0 2 0 2 2

01 11 , ,, 2 0 22 0
2

1 1, ,
2 2

01 1, ,
2 0 2

h h h
h h
hh

h

h h
h h
h

h

              
− −              −              

        
                 =

   −   
−      

      
    
   

   

G

2

0 01 1, ,
2 0 2 2

01 ,
2

h

h

 
 
 
 
 
 
 

       
−       

       
                . 

The matrix G from (23) is then substituted into (13) to obtain the final Weinstein-Weiss bound matrix. 
From this matrix, it is possible to calculate a lower bound on the MSE for the localization of stationary 
nodes. The calculation of the Weinstein-Weiss lower bound for localization using Monte Carlo integra-
tion is summarized in Algorithm 2.

The Weinstein-Weiss bound’s primary advantage compared to the BCRB is that it handles a wider 
variety of measurement conditional and location prior probability density functions.  It provides MSE 
bounds close to the optimal MSE values when the conditional probability density function ( ( ) | ( ))f k k  
is well approximated as a multivariate Gaussian probability density function (Van Trees and Bell 2007). 
When this approximation is not good, the Weinstein-Weiss bound is significantly less than the optimal 
MSE. This is similar to the BCRB, but the Weinstein-Weiss bound is still valid when the prior probability 
density function ( ( ))f k  has only finite support while the BCRB becomes invalid in this case. 

While the Weinstein-Weiss lower bound works well in most cases, there are some cases where it can 
be difficult to calculate, such as when a closed form for ( ( ), ( ))f k kz  is not available or it is difficult 
to integrate.  In these cases, the Extended Ziv-Zakai bound may be easier to compute.

Algorithm 2: Monte Carlo Integration of Weinstein Weiss bound

The Extended Ziv-Zakai Lower bound for Location

The Extended Ziv-Zakai lower bound provides a lower bound on the estimation error for Bayesian es-
timation based on binary detection theory (Bell et al. 1997). The calculation provides a lower bound on 
the value of T

ea R a, where ˆ ˆE{[ ( ) ( )][ ( ) ( )] }Tk k k k= − −eR . By suitable selections of the vector 
a, bounds can be calculated for all entries of the matrix Re. 

The bound is based on the binary detection problem of deciding whether a mobile terminal is located 
at position θ(k) or at position ( )k +  given the measurement vector z(k). If the greatest lower bound 
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on the probability on this decision error is given by minP [ ( ), ( ) ]k k + , then the extended Ziv-Zakai 
bound is written as

min
:

0 ( )

1 V max [ ( ( )) ( ( ) )]P [ ( ), ( ) ]d ( ) d
2 T

T

k

h f k f k k k k h
∞

=

   ≥ + + +  
    

∫ ∫e
S

a R a  .    (24)

The V[g(h)]is the so-called valley-filling function defined as ( ) ( )V g max g
x h

h x
≥

  =  . The tightest bound 
is found by performing the maximization to find the best value of δ for each value of h. However, the 
use of any vector δ  subject to T h=a  still results in valid bound, available at a reduced computational 
cost.

Standard Bayesian detection theory is used to calculate the greatest lower bound on the decision error 
(Van Trees 2001). If the prior ( ( ))f k  is uniform over a finite region and the measurement vector z(k) 
given the node location θ(k) is a Gaussian random vector with mean E[ ( ) | ( )]k kz  and a covariance 
matrix of 2m=C I  for all locations then the minimum error probability is 

min min

E[ ( ) | ( )] E[ ( ) | ( ) ]
P [ ( ), ( ) ] P [ ( ), ( ) ] erfc

2 2
el k k k k

k k k k
 − +

+ = + =  
 

z       (25)

with v  being the Euclidean length of vector v (Van Trees 2001).  Substituting (25) into (24), and then 
using a numerical integration technique, such as Monte Carlo integration, provides a general method 
for bounding localization MSE.

For a general prior probability density functions, the lower bound of (24) can be difficult to compute. 
In these cases, a looser lower bound is obtained at a much lower cost from the computation of

( )
min

:
0

V max min[ ( ( )), ( ( ) )]P [ ( ), ( ) ]d ( ) d
T

T el

h
k

h f k f k k k k h
∞

=

   ≥ + +  
    

∫ ∫e
S

a R a  (26)

Algorithm	2.	Monte	Carlo	Integration	of	Weinstein	Weiss	bound

 

1. Compute Weinstein-Weiss bound for a sweep of h values. 
a. Set H according to (17) for selected h value. 
b. Compute (1/ 2, )•  function values for entries of G from (23) using sub-algorithm 

below. 
c. Compute bound from G and H using (13) 

2. For the MSE bounds with different h values calculated in step 1, select the highest MSE as the 
Weinstein-Weiss bound. 
Sub-algorithm: Calculation of (1/ 2, )h  
a) Generate N independent samples of ( )k : t1, t2, …, tN 

  has the probability density function  ( ( ))k f kt  

b) Compute: 

( ) ( ) 1

12
21exp E[ ( ) | ] E[ ( ) | ] ( ( ) ) ( ( ) )

8
k k k k

k k k k k f k f k−

 
 = − = − = + = = +  

 C
c z

c) Compute 

( )
1

11/ 2,
N

k
kN =

= ∑h cc)     Compute
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where minP [ ( ), ( ) ]el k k +  is the optimum decision error between θ(k) and ( )k +  calculated using 
the assumption that both locations are equally likely, so min minP [ ( ), ( ) ] P [ ( ), ( ) ]el k k k k+ = +  with 

minP [ ( ), ( ) ]k k +  from (25) (Bell et al., 1997). The extended Ziv-Zakai bound calculation using Monte 
Carlo integration is summarized in Algorithm 3.

bounds for Location Accuracy from survey set Information

For complex propagation environments, such as those encountered in indoor or dense urban locations, 
simple analytical propagation models, such as those described in the second section of this chapter, do 
not adequately describe the measurement model to determine the terminal localization accuracy.  In 
these cases, the main recourse for the network designer is to collect survey points in the environment for 
the implementation of node localization.  This section shows a simple calculation that allows a network 
designer to solve for MSE bounds on the accuracy of localization in their network using a propaga-
tion survey set collected in the network area.  This calculation is based upon the extended Ziv-Zakai 
bound presented in the previous section with some modifications for the discrete nature of the survey 
set information.

Two assumptions are made about the survey set for this procedure to be valid.  It is first assumed 
that the survey set measurements are noise free, in that the survey measurement for a given location is 
the expected measurement for that location.  It is also assumed that the survey set locations are dense 
enough in the network environment to provide a good representation of the expected variation of the 
signal measurements over the network area.  In other words, these two assumptions state that it is pos-
sible to reconstruct all major features of the mean signal function E[ ( ) | ( )]k kz   from some interpola-
tion of the survey set. Both of these assumptions are standard requirements for the construction of good 
localization systems based on survey data so are not additional requirements over those of standard 
survey-based radio localization (McGuire et al., 2003a).

This bounding procedure assumes that the measurement noise distribution is identical for all loca-
tions.  This assumption is well met if a sensor selection system is used to ensure that only sensors with 

Algorithm	3.	Calculation	of	extended	Ziv-Zakai	bound

 

1. Numerically integrate [ ]
0

V g( ) d for lower bound on T
eh h h

∞

∫ a R a for a=[1 0]T 

a. ( )g( ) where  is selected to maximize ( ) subject to Th h= =  
i. Option: for a quick but looser bound, select h= where 1=a  

2. Numerically integrate [ ]
0

V g( ) d for lower bound on T
eh h h

∞

∫ a R a for a=[0 1]T 

3. Combine results from step 1 and 2 to obtain extended Ziv-Zakai bound. 

Sub-algorithm: Calculation of  ( )  
a) Generate N independent samples of ( )k : t1, t2, …, tN 
b) Compute: 

 min

min

min[ ( ( ) ), ( ( ) )]P ( ( ) , ( ) )

where P ( ( ) , ( ) ) is computed using (25).

k k el k k
k

el k k
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high signal-to-noise ratios (SNRs) are used for the localization procedure. Since using other sensors will 
contribute little to the accuracy of the system and incur a communications cost penalty, this restriction 
will be satisfied by most real world localization systems. 

By defining the non-negative random variable ˆ| ( ) ( ) |k k= − , the MSE of the estimation error is 
computed with the expression 

2

0

1E[ ] Pr d
2 2

h h h
∞  = ≥ 

 ∫ .        (27)

To use the survey points to compute a bound on the MSE, it is assumed that the survey points rep-
resent all possible locations for the nodes, and that all survey point locations are equally likely. This is 
equivalent to the expression that

Pr( ( ) ) 1/ik N= =          (28)

with i
  being the location of the ith survey point and N being the total number of survey points. The 

probability of the error distance is bounded given the node location, assuming the measurement noise 
distribution is identical for all θ(k), as

( )
:

Pr[ ] max Pr ( )| ( ( ) ( ))
i j

j i i

j e

ik ke k k
− ≥

= ≥ − ≤ − =≥ z z z z
 







    (29)

where iz and jz being the measured signals for survey points i and j, respectively. Combining (28) with 
(29), the following probability bound is created:

 
( ) ( )

:1

1Pr max Pr ( ) ( ) ( )
i j

N
j i i

j ei
e k k k

N − ≥=

≥ ≥ − ≤ − =∑ z z z z
 



  .   (30)

To obtain the final bound, equation (30) is substituted into (27) to obtain

( )( )2

:10 2

1 1E max Pr ( ) ( ) d
2 i j

N
j i i

hji
h k k k h

N

∞

− ≥=

  ≥ − ≤ − =  ∑∫ z z z z
 



   .  (31)

For the simplifying assumption of the Gaussian measurement noise of (20) with 2m=C I  then the 
probability from (30) is given by

( )( ) 2

1Pr ( ) ( ) erfc
2 2 2

i j
j i ik k k

 −
 − ≤ − = =
 
 

z z
z z z z

 



 

 .    (32)

To bound localization error using a survey set, the value of the noise covariance s2 is determined 
from measurements taken at a single location and then by substituting the survey set point locations 
and measurements into (31) using the probability from (32), a lower bound on the localization MSE is 
calculated. 

To calculate the covariance bound, a discrete version of (24) is derived to obtain
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( )
( )( )

:10 2

1 1 max Pr ( ) ( ) d
2 T j i

N
T j i i

e hji
h k k k h

N

∞

− ≥=

≥ − ≤ − =∑∫
a

a R a z z z z
 



   .  (33)

From (33) it is possible, with suitable selections of a, to calculate bounds on all entries of the squared 
error matrix, Re.

bounds on Location for Multiple Measurements

The previous sections provide bounds on the localization accuracy from a single measurement vector. 
To consider additional measurements on the localization error bound, the obvious approach is to just 
extend the measurement vector, z(k), to include the new measurements. However, an easier approach 
is available if the measurement error for the new measurements, z'(k), is independent of the old mea-
surement vector, z(k); i.e. ( ( ), '( ) | ( )) ( ( ) | ( )) ( '( ) | ( ))f k k k f k k f k k=z z .  In this case, the joint 
density of the measurements and location are 

( '( ), ( ), ( )) ( '( ) | ( )) ( ( ) | ( )) ( ( )) ( '( ) | ( )) ( ( ), ( ))f k k k f k k f k k f k f k k f k k= =z z  (34)

so that we can consider the distribution of the location given both measurements as

( '( ) | ( )) ( ( ) | ( ))( ( ) | ( ), '( ))
( '( ) | ( ))

f k k f k kf k k k
f k k

=
z

z z
 with 

( ( ), ( ))( ( ) | ( ))
( ( ))

f k kf k k
f k

=
z

. (35)

The denominators of the ratios in (35) are normalization constants and do not affect the localiza-
tion. From (35), it can be seen that the conditional probability density function of θ(k) given z(k) and 
z'(k) is a normalized product of the conditional probability density functions of ( ( ) | ( ))f k k  and 

( '( ) | ( ))f k kz . This motivates the use of a sequential estimation system where the prior probability 
density function ( ( ) | ( ))f k k  is first calculated and then θ(k)  is estimated from z'(k) using the prior 
distribution of ( ( ) | ( ))f k k . This is the basis of the Kalman filter and all other sequential estimation 
algorithms (Mendel, 1995).

For bound computations using the BCRB considering additional measurements, the decomposition 
in (12) is extended using partial derivatives of the logarithm of (35) creating the BCRB matrix:

( ( )) ( ( )) ( ( )) ( ( ))D D Pk k k k′= + +J          (36)

with the information matrices ( ( )) I[ ( ( ) | ( ))]D k f k k′ ′=J , ( ( )) I[ ( ( ) | ( ))]D k f k k=J , and 
( ( )) I[ ( ( ))]P k f k=J . Additional measurements with independent measurement errors contribute 

extra terms to the sum in (36). The information bound for the parameter θ(k)  imposed by a set of mea-
surements is just the sum of the information matrix created by the prior before measurements plus the 
information matrix for each of the measurement vectors. The bound on the MSE is then calculated by 
inverting this matrix.

An important consideration for the use of bounds is how to account for the effect of measurements 
made at different time intervals on the lower bound of localization error.  The use of measurements 
made at different times to track moving nodes is the basis of several proposed time-filtering location 
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algorithms.   These filtering algorithms include the Kalman filter (Chen, 1999, Hellebrandt and Mathar, 
1999), the Extended Kalman Filter (Liu et al., 1998), and an extended version of the Interactive Multiple 
Model (IMM) filters (McGuire et al., 2003b).

Bounds on localization error with time filtering are dependent on a description of the time evolu-
tion of the node location using a model of the node motion.  The location state of the node at sample 
interval k is given by x(k). For example, if the location state includes both the location and velocity of 
the mobile terminal, x(k) is then defined as ( ) [ ( ) ( ) ( ) ( )]T

x x y yk p k v k p k v k=x  where (px(k),py(k)) is 
the terminal position at sample time k, where (vx(k), vy(k)) is the node velocity at sample time k. If the 
estimated location state for sample interval k given measurements up to sample interval k-d is denoted 
as ˆ ( | )k k d−x , the estimation bound is denoted as

[ ][ ]{ }ˆ ˆ( | ) E ( ) ( | ) ( ) ( | ) Tk k d k k k d k k k d− ≤ − − − −P x x x x  .    (37)

If the motion model is Markovian so that if x(k) is known then x(k+1) is independent of all x(k − d) 
for d>0, then the bound on the MSE of the filtering is given by (Šimandl et al. 2001):

( ) ( )1 1[ 1| 1 ] [ 1| ] k
kk k k k− −+ + = + +P P L  ,  and      (38)

1 1 , 1 1 , 1
1 1 1 1[ ( 1| )] [ ( | ) ]k k k k k k

k k k kk k k k− + + − +
+ + + ++ = − +P O O P O O   .     (39)

The O matrices are defined as

( ) ( )1 E{ [ ln ( ( 1) | ( ))] }k T
k k k f k k+ = − ∇ ∇ +x xO x x ,      (40)

( ) ( )
, 1

1 1E{ [ ln ( ( 1) | ( ))] }k k T
k k k f k k+

+ += − ∇ ∇ +x xO x x ,     (41)

( ) ( )
1
1 1 1E{ [ ln ( ( 1) | ( ))] }k T

k k k f k k+
+ + += − ∇ ∇ +x xO x x ,  and  1, , 1

1 1[ ]k k k k T
k k

+ +
+ +=O O .  (42)

The k
kL  is defined as

( )( )E{ [ ln ( ( ) | ( ))] }k T
k k k f k k= − ∇ ∇x xL z x       (43)

with entries that can be taken from ( ( ))D kJ . If the motion model is a linear Markovian model with 
measurement and process noise given by independent Gaussian vector processes with no time depen-
dencies then equations (38)-(43) will simplify down to the well known Ricatti equations for Kalman 
filters(Mendel 1995, Brookner, 1998).  This derivation assumes that all the derivatives exist and all 
the expectations are bounded.  The basic requirement is that the BCRB exists for localization error. If 
this condition is not satisfied, then more sophisticated bound calculations are required (Bobrovsky and 
Zakai, 1975; Kerr, 1989; Bobrovsky et al., 1990; Doerschuk, 1995; Tichavský et al., 1998, Van Trees 
and Bell, 2007).  A recursion similar to (38)-(43) is also available for Weinstein-Weiss lower bounds 
(Rapoport and Oshman, 2004). These calculations are considerably more complex and well beyond the 
scope of this chapter.  
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EXAMPLEs OF LOWER bOUND cOMPUTATIONs

This section presents examples for calculation of the lower bound on two dimensional localization RMSE 
using ToA, TDoA, RSS, and AoA measurements.  The bounds are calculated for a simple network sce-
nario where the optimum Minimum Mean Square Error (MMSE) localization, ˆ ( ) E[ ( ) | ( )]k k k=  
is available and easily calculated (Mendel, 1995).  It is demonstrated that the Weinstein-Weiss and 
extended Ziv-Zakai bound calculations provide excellent measures of estimator performance for ToA, 
TDoA, AoA, and RSS measurements for two different base stations configurations with differing levels 
of GDOP.  Bounds are also calculated for a mobile terminals located in a dense urban environment.  
The successful use of the localization accuracy bounds under NLoS radio propagation conditions for 
ToA and TDoA measurements is demonstrated.  The last set of simulations demonstrate the use of the 
accuracy bounds to measure the accuracy of estimation possible for an actual indoor wireless sensor 
network using RSS measurements from an IEEE 802.11 WLAN base stations. 

For the ToA, RSS, and AoA measurements, the measurement probability density function from 
(20) is assumed with the covariance given as 2m=C I . The value of s is varied to see the estimators’ 
performance under different noise levels.

bounds for a simple Localization scenario

The simulated network environment for the first three sets of localization is shown in Figure 2. For 
these simulations, the node locations are uniformly distributed within a disk of radius Rarea. The node 
localization is performed from measurements made by m=3 base stations uniformly located on a circle 
of radius RBS with the same center as the disc for the terminal locations. The local Cramér-Rao bound 
is not valid for this localization because of the existence of a prior probability density function for node 
location. The Cramér-Rao bound would give a bound on localization error only for localization per-
formed without the use of prior information. The BCRB is not valid for this localization either because 
the finite support for the prior probability density function of the node location causes the regularity 
conditions of the bound to be violated.

Localization is performed based on RSS, ToA, or AoA measurements made by the base stations with 
the LoS propagation measurement model from (2). The first sets of simulations are ToA measurements 
performed with Rarea = RBS = 15m, which results in localization with low GDOP (Spirito, 2001). The 
RMSE for the ToA MMSE localization is compared with bounds calculated with the Ziv-Zakai and 
Weinstein-Weiss lower bound in Figure 3. It can be seen that the Ziv-Zakai lower bound provides the 
tightest bound to the optimal localization MMSE performance. 

To show the danger of inappropriate use of the BCRB, the calculated BCRB bound values are also 
shown in Figure 3.  The danger of the BCRB calculation is the calculations can still provide finite val-
ues, even though the bound is invalid, such as in this case. As can be seen in Figure 3, the BCRB MSE 
‘bound’ exceeds the optimal MSE as the mean noise power increases. The BCRB calculations for each 
θ(k) value use only the local curvature of ( ( ), ( ))f k kz  and do not include the boundary conditions. For 
the same reason, local Cramér-Rao bounds calculated near the boundaries of the region of support for 

( ( ))f k  are also invalid as they do not exclude estimated locations where ( ( )) 0f k = . The BCRB in 
this case is a lower bound on localization performed without use of the prior probability density function 

( ( ))f k  also known as Maximum Likelihood Estimation (Van Trees and Bell, 2007).
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When RBS=15 m for ToA location estimation, the posterior probability density function, ( ( ) | ( ))f k k
is well approximated by a Gaussian probability density function for most values of z(k) which results in 
the Weinstein-Weiss bounds giving good approximations to the optimal MSE for low noise power. As the 
noise power increases, the effect of the boundary conditions on estimation increases and the Gaussian 
approximation to the posterior probability density function fails due to truncation at the boundary of 
the disc, causing the Weinstein-Weiss bounds to become loose with respect to the optimal MSE. How-
ever, the extended Ziv-Zakai bound, through its optimizations, is able to better incorporate the effect 
of boundary conditions which results in a better MSE bound for higher noise levels.

Simulations are performed with ToA measurements with Rarea = 15m and RBS = 5m which results 
in a higher GDOP than the previous simulation set for nodes located outside of the base station ring.  
The RMSE of the optimal MMSE localization and the Ziv-Zakai and Weinstein-Weiss lower bounds 
are shown in Figure 4. It can be seen that the Ziv-Zakai lower bounds is again tighter to the optimal 
localization performance than the Weinstein-Weiss lower bound.  A comparison of Figure 3 and Figure 
4 reveals that the Weinstein-Weiss lower bound is nearly identical for both of these sets.  This shows 
that the Ziv-Zakai provides a better estimate of the lower bound in scenarios with localization with 
significant GDOP.  For ToA location estimation when RBS=5 m, the posterior probability density func-
tion is not well approximated as a Gaussian probability density function causing the performance of the 
Weinstein-Weiss bound to be loose with respect to the optimal MSE.

The last sets of simple localization scenario calculations were performed with LoS RSS propagation 
and LoS AoA measurements with Rarea = 15m , RBS = 5m, and a = 3. The results of the RMSE calcula-
tions are shown in Figure 5 and Figure 6.  These results show that the Ziv-Zakai lower bound and the 
Weinstein-Weiss lower bound are fairly tight for RSS-based and AoA-based node localization errors as 
well as for the ToA localization errors. The poor approximation of ( ( ) | ( ))f k k   as a Gaussian probabil-
ity density function for RSS and AoA measurements is the chief explanation for the better performance 
of the extended Ziv-Zakai bound relative to the Weinstein-Weiss bound for these cases.

bounds for Localization Error in a Dense Urban Environment

This section shows examples of the calculation for the Weinstein-Weiss lower bound calculation for 
the localization using ToA or TDoA measurements for street locations in a simulated dense urban en-

Figure	2.	Simulation	set-up
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Figure	3.	Terminal	location	with	ToA	measurements	(Rarea	=	15	m,	RBS=15	m)

Figure	4.	Terminal	location	with	ToA	measurements	(Rarea=15	m,	RBS=5	m)

Figure	5.	Terminal	location	with	RSS	measurements	(Rarea=15	m,	RBS=5	m	)
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vironment, shown in Figure 7.  Each street block is 300 m long with the streets being 20 m wide. The 
simulated node location is uniformly distributed over all street locations. The node is localized with 
measurements obtained from the m = 3 nearest base stations to the mobile terminal.  Radio propaga-
tion is either LoS or NLoS with the building blocking the LoS propagation path if the shortest distance 
straight line path between the node and the measuring base stations passes through a building block. In 
this case, the signal diffracts around corners with the noise free propagation distance for a single base 
station being dC+dr as seen in Figure 7.

The RMSE results for the approximate MMSE localization from (McGuire et al., 2003a) using  ToA 
and TDoA measurements in this environment are compared with the Weinstein-Weiss lower bound  in 
Figure 8.  For TDoA measurements, the nearest base station is used as the reference base station. These 
results show that the Weinstein-Weiss lower bound is fairly tight to the actual localization error perfor-
mance.  These results also show that excellent localization accuracy performance is available for the 
case when NLoS radio propagation is occurring, since when the 3 nearest base stations measurements 
are used for localization, only the nearest base station has LoS propagation with the other two measuring 
base stations experiencing NLoS propagation.  Note that localization error from TDoA measurements 

Figure	6.	Terminal	location	with	AoA	measurements	(Rarea=15	m,	RBS=5	m	)

Figure	7.	Dense	urban	environment
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is slightly worse than the ToA localization error.  This is due to the fact that the TDoA measurements 
contain less information than ToA measurements since the full TDoA measurement vector can be cal-
culated from the ToA measurement vector but not vice versa(Shin and Sung 2002).

survey set Estimation Lower bound

In this section, the results of the calculations for the lower bound on the localization RMSE based on 
an estimator constructed from survey points is presented.  For this experiment, RSS survey measure-
ments were collected for each of the 117 seat locations of a 10 m by 13 m lecture hall at the University 
of Victoria in British Columbia, Canada.  At each location, the RSS from 12 of the IEEE wireless local 
area network base stations for the engineering network were recorded.  It should be noted this is a pure 

Figure	8.	Weinstein-Weiss lower bound calculations

Figure	9.	RSS	survey	set	bound	calculation
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NLoS propagation environment since none of these base stations are located in the lecture hall, and 
only 3 base stations are located on the same floor as the lecture hall. 

The bound on the estimation RMSE for different standard deviations of the measurement noise is 
shown in Figure 9.  The actual standard deviation for the measurement noise for the RSS measurements 
was 2.1 dB with the resulting RMSE of the estimated location being 2.7 m and the bound on the RMSE 
is 1.49 m.  This shows that the bound is fairly tight to the localization error.

cONcLUsION

This chapter has presented several methods for calculating performance bounds for node localization 
in wireless sensor networks.  These bounds account for information available on the node location from 
the sensor selection process and consider complicating effects such as radio propagation including both 
LoS and NLoS propagation paths within the network environment.  It is also demonstrated how these 
bounds can be used to determine the location accuracy available from a given survey set.

Several bounds on localization error have been presented. When the prior probability density func-
tion for node location has infinite support and there is only LoS propagation in the network area, the 
Bayesian Cramér-Rao bound on the localization error is valid. This bound requires only a simple ad-
dition of two information matrices, each calculated via simple expectations.  However, the Bayesian 
Cramér-Rao lower bound becomes invalid when either the prior probability density function of the node 
location has only finite support or the wireless sensor network’s environment contains both LoS and 
NLoS radio propagation. The chapter presents two bounds to handle these cases, the Weinstein-Weiss 
bound and the extended Ziv-Zakai lower bound.  The Weinstein-Weiss lower bound is the easiest to ap-
ply, calculated from expectations of functions derived from the measurement and location densities with 
the optimization performed with respect to a single scalar parameter. The extended Ziv-Zakai bound 
is calculated from expectations but optimization is performed with respect to a vector of parameters 
requiring considerably more computational effort.
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AbsTRAcT

The	authors	discuss	algorithms	and	solutions	for	signal	processing	and	filtering	for	localization	and	
tracking applications in Wireless Sensor Networks. Their focus is on the experiences gained from imple-
mentation and deployment of several such systems. In particular, they comment on the data processing 
solutions found appropriate for commonly used sensor types, and discuss at some length the use of Bayes-
ian	filtering	for	solving	the	tracking	problem.	They	specifically	recommend	the	use	of	particle	filters	as	a	
flexible	solution	appropriate	for	tracking	in	non-linear	systems	with	non-Gaussian	measurement	errors.	
They also discuss in detail the design of some of the indoor and outdoor tracking systems they have 
implemented, highlighting major design decisions and experiences gained from test deployments.

INTRODUcTION

In this chapter we focus on the practical aspects of implementing Wireless Sensor Network (WSN) 
based localization and tracking solutions. We discuss different design decisions, such as the types of 
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signals used for localization and how to preprocess and filter the sensor readings before applying the 
complete localization and tracking algorithms. Mobility tracking and localization are multifaceted 
problems, which have been studied for a long time in different contexts. Many potential applications 
in the domain of WSNs require such capabilities. The need for mobility tracking is inherent in many 
surveillance, security and logistic applications. Hence, the development of robust and low-cost tech-
niques has also high practical interest in the industrial context. Vast literature exists on these topics, and 
especially theoretical underpinnings are relatively well established by now. In this chapter we will focus 
on explaining some of the practical issues for engineers who are interested in implementing tracking 
solutions. In particular, we also introduce particle filters, which are often better suited than Kalman 
filters and their variants to the real-world situations where non-linearities and/or non-Gaussian errors 
are relatively commonly encountered.   

We shall use the following terminology throughout this chapter. By localization, we mean the deter-
mination of the location of the object at a single time instant either in relative or in absolute coordinates. 
Sometimes this is performed using ranging, that is, by obtaining distance estimates to nodes or devices 
at known locations. In applications where localization in terms of a global coordinate system is necessary 
we assume the presence of, for example, differential GPS enabled anchor nodes, which then provide 
global coordinates for the sensor nodes which use local ranging or localization techniques. Finally, by 
tracking we mean the estimation of the trajectory of an object based on sequential measurements.

Due to space limitations, this chapter is naturally providing only a starting point for someone being 
interested in deploying wireless sensor based tracking systems. Our aim is to provide enough theoreti-
cal background and references to enable similar work by others, but not to provide a comprehensive 
survey of the field. Moreover, we have provided a number of examples and less emphasized practical 
lessons from our own work with deployed experimental networks. We have drawn our knowledge from 
a number of networks and deployments, and particularly from a large outdoor vehicular tracking net-
work that was semi-commercially deployed with ca. 100 surveillance nodes, and from indoor tracking 
networks which have also been using inertial tracking methods. The outdoor network was designed for 
target tracking and surveillance in the context of SMAUG-project (Ansari et al. 2007a) which considered 
tactical purpose networks. The designed indoor network, which has also common components with 
the SMAUG-network, was designed for asset tracking and ubiquitous computing purposes, tracking 
assets and doctors in hospitals being a good example application. Hence, our selection of topics has 
been heavily influenced by practical projects and from our experience on what are the key issues to be 
highlighted and take into account when building real deployed systems.  

The rest of this chapter is structured as follows: We begin by a short general discussion on major 
localization techniques followed by an overview of different signal types used in localization. We also 
discuss different sensor types available for detecting such signals. After these preliminaries, we discuss 
at some length different data processing and filtering solutions, specifically highlighting common ap-
plication scenarios and implementation considerations. The techniques considered range from filtering 
that can be carried out on individual sensor nodes all the way to Bayesian filters for data fusion and 
for solving the tracking problem using individual localizations as inputs. We then give rather detailed 
accounts on some of the systems we have developed applying the principles outlined. We discuss both 
the systems for indoor localization (for asset tracking, localization of terminals or tracking users) as 
well as for tracking vehicles.
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TEcHNIQUEs FOR LOcALIZATION AND RANGING

Before going into the discussion on data processing and filtering, we shall briefly recall the basic tech-
niques for ranging and localization. For further details of these techniques the reader is referred to the 
previous chapters of the present volume. Our focus here will be on approaches with relevance for the 
tracking systems discussed in-depth later in this chapter.

In general localization and ranging can be performed either actively or passively. In active schemes, 
the listener or the target object transmits a signal solely for the detection process. The listener associates 
this signal with the position of the object in a given coordinate space. On the other hand, passive localiza-
tion is performed based on the already present signal in the environment. Active schemes provide more 
control and flexibility in positioning and generally result in higher accuracy than the passive schemes. 
The passive systems have their relevance in environments where the detection process is to be done 
without being noticed, for example in hostile environments or where the localization is to be performed 
without altering the already existing infrastructure. Examples of systems with such constraints include 
traffic monitoring and surveillance systems.

For ranging, the main techniques considered in the following are Time of Arrival (ToA), Time Dif-
ference of Arrival (TDoA), and techniques based on signal strengths. In Time of Arrival method, also 
known as Time-of-Flight (ToF), the time duration for a particular signal in propagating from a transmit-
ter to a receiver is measured. Using the propagation speed and the traveling time, the distance between 
the transmitter and the receiver is computed. The main limitation of ToA is that it requires strict syn-
chronization between the sender and the receiver clocks. TDoA removes this restriction by employing 
two different types of signals with different propagation speeds. Most commonly used combination of 
signals is the Radio Frequency (RF) and acoustic signal pair. If td is the time between the arrival of a 
RF and an acoustic signal, then the Line-Of-Sight (LOS) distance d can be computed as

acousticRF

d

speedspeed

t
d

11
−

=  .

TDoA requires two different kinds of transceivers and is applicable only to active localization 
systems. The primary limiting factors in ranging accuracy with TDoA are the accuracy of estimation 
of these delays, clock resolution of the receiver, and changes in signal propagation speeds caused by 
environmental effects. Examples of ToA-based schemes utilizing audible sound have been developed 
by Simon et al. (2004) and Kuckertz et al. (2007) whereas an example of a TDoA-based scheme has 
been given by Whitehouse and Culler (2003). However, in TDoA-based schemes, ultrasound is usually 
preferred because of its highly directional properties and due to the fact that it causes no irritation to 
human ears. The MIT Cricket system is the most famous example here (Priyantha, 2005). Since radio 
waves cannot travel in water, ultrasonic based positioning systems are very promising in underwater 
sensor networks as well. Classically, ultrasonic based localization and tracking has been used for over 
half a century in Sound Navigation and Ranging (SONAR) (Drumheller, 1987).

Techniques based on received signal strength form another important family of passive localization 
and ranging techniques. Radio waves are one of the popular methods used in signal strength based 
schemes as virtually all the devices communicating over wireless use radio waves. The distance may 
be computed from the received signal strength or techniques utilizing signal strength maps can be used 
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for localization. For examples of systems based on these approaches see Bahl and Padmanabhan (2000) 
and Lorincz and Welsh (2007). The major limiting factor for the accuracy of ranging and localization 
systems based on radio waves is the complexity of the radio propagation environment. However, radio 
based signal strength methods are quite popular in sensor networks because no additional hardware is 
required for localization purpose as every sensor node is already equipped with a radio for communi-
cation. 

A localization technique not directly relying on ranging is Angle of Arrival (AoA). Instead of dis-
tance estimates, triangulation is used to determine the position of the target object in the coordinate 
space based on the angle of the received signal using an antenna array. Since this method requires a 
calibrated antenna array, it is usually too expensive and complicated to be used in sensor networks. 
However, in Enhanced-911 system (Federal Communications Commission), the mobile phone uses RF 
time of flight and AoA of the signals from the mobile phone to the base station towers in order to find 
the mobile phone’s location.

Another passive localization technique of importance especially in vehicular tracking is obtained 
by observing local strength of the magnetic field. A magnetic object or an object with significant per-
meability disturbs the Earth’s magnetic lines of forces. This property is used in the magnetometers to 
estimate the direction and the “magnetic content” in the object to be localized. Typical magnetometers 
are based on flux-gate, magneto-resistivity and Hall Effect. These are able to detect a changing magnetic 
field caused by a moving ferromagnetic object, rotation of a magneto-sensitive object or due to a chang-
ing electric current. These characteristics can be employed passively in a variety of applications like 
traffic monitoring, border surveillance applications etc. Magnetic sensors are not only used in detecting 
the presence of ferromagnetic objects for proximity but also for distance ranging in highly calibrated 
systems (Arora et al., 2006).

Finally, different optical and infrared (IR) sensors can be effectively used for localization purposes 
as well. Such techniques are especially appropriate for various surveillance applications and military 
usage. Both passive and active approaches are possible, depending on the requirements and the con-
straints of the scenario being considered.

DATA PRE-PROcEssING

In the previous section we described the basic localization and ranging techniques together with their 
characteristic features and requirements relevant for our applications. We shall now briefly cover the 
main approaches to data processing on sensor nodes used in various parts of the signal processing chain. 
Again, our focus is on methods we have found most useful when implementing tracking solutions.

Data calibration

Sensor readings generally depend on environmental factors such as light intensity, temperature, humidity, 
etc. The dependencies can be linear as well as non-linear. The process of compensating these effects is 
known as calibration. Depending on the type of sensor and system requirements, calibration can take 
place in various stages of the system lifecycle. Often calibration is part of the assembly process, but 
especially if the environmental factors affect the performance significantly, online calibration becomes 
necessary. As an example, we consider the TDoA based distance ranging system using a pair of radio 



410  

Experiences in Data Processing and Bayesian Filtering 

frequency and ultrasonic signals. Since the ultrasonic waves are significantly affected by temperature, 
necessary adjustments are required in the speed of the sound waves for accurate distance ranging. It is 
convenient if the dependency relationship can be approximated through a mathematical relationship as 
it allows a sensor node to simply perform a calculation to calibrate the data instead of maintaining large 
statistical tables, which may not be possible because of the limited available memory. For instance, the 
temperature dependency of the speed of ultrasonic signal can be expressed as 

v ultrasound = 331.4 + 0.6Tc [m/s] ,

where Tc is the temperature on Celsius scale.
Furthermore, as we will explain in the later sections, the ranging error grows over the real distance in 

the case of TDoA based ranging using the pair of radio and ultrasonic signals. In this case, appropriate 
re-adjustments in the distance estimates are performed, which are referred to as post-calibration. 

compensation of Unwanted constants and Long-Term Drift

In many situations, sensor readings show a constant signal level and the signal of interest overrides 
this constant level. In these situations, either a differential reading is useful which automatically nulli-
fies the DC level or the constant offset needs to be subtracted explicitly. Occasionally it is more useful 
to subtract the constant offset before the digitization of the signal so that the constant offset does not 
reduce the dynamic range of the ADC. In many of the situations, the constant offset depends on the 
sensor surroundings or post deployment conditions for a sensor network. For instance, magnetometer 
readings always possess some DC offsets depending upon the ferromagnetic content in the surroundings 
or the readings from the infrared sensors have a constant offset because of the ambient temperature. 

Figure	1.	The	deviation	of	the	measured	ranging distance over real distance, obtained from Cricket 
System. A post-calibration scheme can be applied to compensate the distance dependence errors.
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All the magnetometer based compasses require some kind of offset compensation and calibration. A 
good practice in sensor board design is to include a signal conditioning circuitry that can dynamically 
compensate the environmental effects. This can be achieved by introducing software controllable circuit 
elements. A common approach is to use a digital potentiometer based voltage divider to generate similar 
offset at an input of a differential amplifier so that the resulting static differential signal becomes zero. 
This differential signal is then amplified. 

In many sensors, a drift is developed over long periods of time. This is due to the changes in en-
vironmental conditions or the degradation of sensors. Changes in environmental conditions may, for 
instance, include the day and night effects, temperature and humidity variations and pressure differences, 
the changes in the Earth’s magnetic field strength due to its rotation etc. Long-term drifts restrict the 
capabilities of sensors completely or partially and need to be eliminated. In an outdoor vehicle tracking 
scenario, using the Honeywell’s HMC1022 magnetometer sensors (Honeywell, 2008a) it was observed 
that over periods of eight hours, the sensors gradually develop a high enough drift that the output signal 
starts to saturate. This drift can be compensated by using an exponentially moving average filter (An-
sari et al., 2007). The coefficient of the filter needs to be set according to the dynamic characteristics 
of the signal.

Finally, it is important to note that certain sensors develop anomalies over extended periods of time 
and lose their sensitivity. Some of the effects are due to the mechanical characteristics and others are due 
to the intrinsic measuring property. For example, the anisotropic magnetometer sensors have magneto-
resistive elements that remain identical in the absence of magnetic field and get aligned in the presence 
of an external magnetic field. When the sensor is exposed to strong external magnetic field over extended 
periods of time, the sensor gets magnetized and loses its sensitivity. This can be de-magnetized using 
a high current pulse, using a circuitry as described in (Honeywell, 2008a).  

Filtering of Data

In many cases, the data obtained from the sensors has more information content than desired. This 
unwanted signal is regarded as noise and is normally filtered out before amplification and digitization. 
The choice of the filter is highly related to the type of noise in the sensor and the signal characteristics 
like bandwidth, variance, amplitude, phase etc. Filter selection is also dependent upon the degree of 
the required accuracy, the computational ability and the available memory at a sensor node. There is a 
filtering delay associated with each type of filter, which is generally dependent upon the computational 
complexity and the filter taps, i.e., number of samples required to generate an output. In this context, 
iterative filtering algorithms are very attractive because of their easy realization with low computational 
overhead, especially in resource constrained embedded devices like sensor nodes. In the following, we 
describe some of the commonly used filters in sensor networks and highlight the noise types the filters 
are effective in dealing with. 

In many cases, the sensor readings contain spurious noise samples, which are uncorrelated with 
their adjacent samples. These noise samples can easily be filtered out using median	filters. For instance, 
Cricket system results in some spurious distance estimates bearing no relationship with their neighbours. 
An effective way to get rid of the unwanted samples is by applying a moving median filter (Priyantha, 
2005). Lowpass	filtering is a popular smoothing technique which can be used to attenuate the noise 
inherent in many types of waveforms in the measurement dataset. It lets through the lower frequencies 
and attenuates the higher frequencies. The cut-off frequency is chosen to be compatible with the sam-
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pling rate of the ADC and the desired band of frequencies of measured signal. Lowpass filters can be 
categorized into two main classes based on how they operate on their impulse response:

• Finite impulse response (FIR): An FIR filter is usually implemented by using a series of delays, 
multipliers, and adders to create the filter’s output. FIR filters do not use any feedback and are 
generally easy to implement.

• Infinite impulse response (IIR): An IIR filter uses feedback to keep more historical information 
active in the calculation. Its impulse response is infinite in duration. IIR filter might not be stable 
compared to FIR filters due to the feedback.

Owing to the limited memory and computational constraints, the filter coefficients used on the sensor 
nodes should be integer numbers and the order/complexity of the filter should be low. The operation of 
an 8-tap FIR filter is illustrated in the Figure 2, where the continuous line is the original measurement 
and the dashed line is the smoothed data.

A moving	average	filter is used to smooth out fluctuations in the data. It is implemented simply by 
calculating the sum of the measurements over a time window divided by the number of samples within 
the window. The Exponentially Weighted Moving Average (EWMA) approximates an arithmetic moving 
average by shifting the current estimate for the average by a constant multiple of the latest measurement. 
This can be expressed as

,)1( yzy −+←

where z	is the new measurement, y is the variable containing the approximation to the average, and a 
is a parameter between zero and one. Note that every past value of z in the time series is contained in 

Figure	2.	Results	of	applying	low	pass	filtering.	The	blue	curve	(solid	 line)	represents	 the	raw	data	
sampled from the ADC and the red curve (dashed line) shows the smoothened version after applying a 
low-pass-filter.
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each new result y, but older measurement values get exponentially weighted to insignificance as the 
series progresses. The advantage of EWMA filter over the regular moving average one is obviously that 
memory for storing only a single variable is needed.

bAYEsIAN FILTERING AND DATA FUsION

The techniques presented in the previous section are absolutely necessary for obtaining accurate indi-
vidual samples from sensors of various types. We shall now focus on techniques which can be utilized 
to estimate the behavior of a system being measured based on individual localization or ranging samples. 
We begin with a rather general introduction to sequential Bayesian filtering as a probabilistic tool to 
reason about the time-evolution of the system. We focus specifically on particle	filters due to their wide 
range of applications, and capability to cope with non-linearities and non-Gaussian measurement noises. 
Our experience with practical tracking systems has led to the conclusion that there are many situations 
where non-linearities and/or non-Gaussian errors are quite significant. Later on we shall discuss on the 
applications of these principles for various localization and tracking systems. For further details, we 
refer the reader to Arulampalam et al. (2002) and Van Trees and Bell (2007), on which the following 
exposition is also based. Another insightful survey on Bayesian filtering in location estimation is given 
in Fox et al. (2003).

basic Framework

We denote the state of the system under study at time tkby xk, where k indexes the time instances at which 
either measurements become available or prediction of the system state is desired. In general x can be 
an arbitrary vector, although in localization and tracking applications it is almost invariably the location 
of the object being tracked (or a Cartesian product of multiple location vectors in case of multi-object 
localization and tracking is performed). We focus only on the discrete-time case since this seems to 
cover all the major applications in the present field. We assume that a system model of the form

 ),( 11 −−= ttt sxfx

is known, where f is a function of the state vector and the so-called process noise s. In general f can 
be a non-linear function of its arguments, although the linear case is obviously of interest as well. We 
further assume that measurements on the system behavior are given by

),,( kkk nxhz =

where h can again be non-linear, and n is the model for measurement noise. The noise processes are 
usually assumed to be independent and identically distributed, and we shall do so here as well.

bayesian solution

We shall now apply Bayesian approach to the system and measurement models to obtain a recursive set 
of equations as a general solution to the state estimation problem. We assume that the initial state of the 
system is known in the form of a probability density p(x0). Our interest is on estimating the posterior 
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probability of the state of the system given all the measurement information, that is, obtaining a law for
)|( :1 kk zxp , where the shorthand },...,1|{:1 kizz ik ==  is used.

The usual way of writing down the solution for the Bayesian filtering problem is by means of two 
steps performed at each update time: prediction and update. In the prediction phase, the so-called 
Chapman-Kolmogorov equation is used to write the probability density function in the form

 ∫ −−−−− = .)|()|()|( 11:1111:1 kkkkkkk dxzxpxxpzxp

The first term of the integrand is known from the system model and the second term is known from 
the previous time step. As the kth measurement is performed, the estimate of the state is updated by 
applying the Bayes rule, namely by computing
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The likelihood function for the measurements is obtained from the measurement model, and the 
normalizing constant can be calculated from

∫ −− = .)|()|()|( 1:11:1 kkkkkkk dxzxpxzpzzp

The above equations give the optimal Bayesian solution to the filtering problem in a form of recursive 
formulae. Unfortunately, the exact computation of the above integrals is not feasible in the most general 
case. We shall outline two approaches that have been found especially useful in practice. First is the 
simplification of the above equations by assuming simple form of system and measurement models. 
This leads to the famous Kalman	filter and its variants. The second approach is driven by Monte Carlo 
techniques. The probability densities in the above equations can be approximated by a large sum of delta 
functions (“particles”) turning the integrals into finite sums. This leads to very powerful approximate 
solutions of the filtering problem by means of particle	filters.

Kalman Filter and its Major Variants

The simplest special case of the filtering problem is obtained by assuming that both the system model 
and the measurement model are linear functions, and that both noise models in the system description 
are Gaussian. The system model thus becomes

11 −− += kkkk sxFx  ,

where F is now a matrix. Similarly, the measurement model becomes

.kkkk nxHz +=

Let now ),|( QmxN  denote the Gaussian density with mean m and covariance matrix Q. It can be 
shown that in this case the Bayesian filtering equations are reduced to
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and Q and R denote the covariances of the process and measurement noises, respectively. These are 
the equations defining the Kalman filter, yielding the optimal solution in the case of linear system with 
Gaussian noises. These equations can be used to approximate the non-linear case as well by linearization 
(that is, by approximating the system and measurement models by their Taylor series and discarding 
the non-linear terms). This results in the Extended Kalman	filter	(EKF). The accuracy of the results 
obtained from EKF depends heavily on the approximation error made, and the structure of the true 
shape of the posterior density. As the Kalman filter always results in Gaussian posterior, even the EKF 
will have limited validity in case of highly skewed or multimodal true posteriors. Another limitation of 
Kalman filter is the assumption of Gaussian process and measurement noises. As we have seen above 
the measurement noise for many real-world sensors is non-Gaussian, calling for more advanced solu-
tions to the filtering problem.

Particle Filters

The key observation needed in the following is that any probability density can be approximated by a 
sum of delta-functions of the form

,)()(
1

∑
=

−≈
N

i

ii xxwxp

where {xi} are called particles and {wi} are weights summing to one. The accuracy of the approximation 
is mainly dependent on the shape of p and the total number of particles N. The weights are introduced to 
facilitate sampling of the points {xi}. Usually one chooses an importance density q for which generating 
samples is easy and makes weights proportional to the ratio of the true distribution and q. In the case of 
Bayesian filtering using the above representation in the recursive formulation for the density
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leads to the update rule
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for the weights, where q is a suitably chosen importance density (we shall return to the question of 
choosing q momentarily). This approach, called Sequential Importance Sampling (SIS) can be chosen 
to lead to the exact solution to the filtering equations in the limit of large N.

The SIS algorithm is relatively simple to implement, and has turned out to be practical in a number of 
applications. It does have, however, certain shortcomings the awareness of which is important. First of 
these is the so-called degeneracy problem manifesting itself in the majority of particles having weights 
approaching zero. This can be solved by resampling, that is, generating a new collection of particles and 
weights by sampling from the particle cloud approximation of the posterior distribution with weights 
giving the probabilities of the individual particles occurring in the sample.

Let us now briefly discuss the selection of the importance density q. The simplest choice would be 
to put

),|(),|( 11
i
kkk

i
kk xxpzxxq −− =

that is, choosing the importance density to simply be the prior density. The update step for weights 
is then obviously reduced to multiplication by the likelihood of the measurements, which is not only 
simple conceptually, but also implementation-wise. The drawback of this choice is that if the prior is 
highly concentrated, most of the particles will obtain very small weights and the system becomes rap-
idly degenerate. It also does not take into account the latest measurement, potentially accentuating the 
degeneracy problem. The remedies for this degeneracy are either substantial increase in the number of 
particles used, or selection of a more appropriate importance density. Choice between these alterna-
tives has to be ultimately made based on the particulars of the problem at hand, and the computational 
resources available. For a survey and comparison of different importance densities, see Simandl and 
Straka (2007).

Numerous variants of the basic particle filter concept discussed above have been presented in the 
literature. For an overview of some of the most promising of these, see Arulampalam et al. (2002). 
However, for the applications in WSN-based tracking systems we have found the presented solutions 
quite satisfactory. In the following sections we discuss in more detail two applications of particle filters, 
namely on improving accuracy of Cricket-type TDoA systems as well as performing data fusion in 
vehicular tracking. For examples of use of particle filters in solving tracking problems in other systems 
(such as Ad Hoc and cellular networks), see, for example, Mihaylova et al. (2007), Gustafsson et al. 
(2002), Thrun (2002) and Olama et al. (2006). Relevant techniques from robotics research are given in 
Howard (2006). For an earlier application of Bayesian filtering to Cricket-system using Extended Kal-
man Filters see Smith et al. (2004).

INDOOR sYsTEMs FOR LOcALIZATION

Many WSN-based localization systems have been developed for indoor applications as well as for 
outdoor scenarios. These use one of the basic principles for localization as explained in the previous 
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sections and have their own application-specific design requirements in terms of functionality, scal-
ability, performance and hardware. Representative examples for indoor localization systems include 
IR based systems like Active Badge (Want et al., 1992), radio signal based systems like MoteTrack 
(Lorincz and Welsh, 2007), ultrasonic based systems like Active Bat (Ward, Jones and Hopper, 1997) 
and combination of radio and sonic waves like Cricket system (Priyantha, 2005). Active Badge uses 
pulse width modulated IR signals and can give an accuracy of 6m. Although, IR signals inherently suffer 
from ambient interferences, Versus Information Systems Ltd. developed commercial tags for locating 
doctors in hospitals and medical centers. Active Bat sender-tags transmit an ultrasonic pulse, which is 
received by a mesh of receivers mounted on the walls and ceilings in order to perform distance ranging. 
Trilateration is applied on the distance estimates to obtain position of the transmitting tag. MoteTrack 
uses radio signal signature to estimate the position of an object. It first requires establishing a calibrated 
signal signature model of the environment, which is obtained by measurements at a number of nodes 
from known geographical points. In the following we present Cricket System (Priyantha, 2005) in detail 
as a practical example of an indoor localization system. In the later sub-sections, we would discuss how 
improved accuracy can be obtained from Cricket System by applying Bayesian filtering framework and 
by complementing it with inertial sensors.

cricket system

Cricket system is an indoor localization system, which uses inexpensive wireless sensor nodes (c.f. 
Figure 3) mounted at known positions. These nodes act as active beacons and transmit a pair of RF and 
ultrasonic signals. A Cricket node mounted on the target object, receives these signals from various 
beacons and applies TDoA based distance ranging. Since the atmospheric temperature has a significant 
influence to the speed of sound, the distance estimates obtained through the TDoA scheme must be 
calibrated to the ambient temperature conditions as described in the earlier section on Data Calibration. 
These distances are then used to find the spatial position of the object using lateration. Cricket system 
is able to determine the location of the target object within a few centimeters of accuracy.

Limitations of the cricket system

Let us look in detail what are the different constraints posed by the Cricket system:

• Cricket nodes work correctly only if a LOS path between a listener and a beacon node exists. In 
many sparsely deployed cases, this results in localization blind spots.

• Cricket nodes have a limited range of approximately 11m. The range depends upon the sensitivity 
of the ultrasonic receiver module, the detection threshold and most importantly on the power level 
of the transmitted ultrasonic pulse.

• Cricket distance ranging error increases as the actual distance between the listener and the beacon 
node is increased. The error also grows-up if the angle between the faces of listener and the beacon 
nodes increases. This has to do with the radiation characteristics of the ultrasonic transmitter and 
receiver. Beyond certain angles at a particular distance, Cricket nodes cannot compute distance 
estimates. The coverage over higher angles is limited to smaller distances. Please refer to Figure 4 
for distance ranging dependency of the Cricket system on the actual distance and the angle between 
a transmitting and receiving node.
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The localization performance of the Cricket system is dominated by the performance of the deployed 
ultrasonic sensors and their directivity and gain characteristics. When beaconing and listening nodes 
are faced directly to each other, the system can work properly up to 10 or 11 m. However, if the angle 
between beaconing and listening nodes increases, the measurements get worse and worse before it ceases 
to work at all. The larger the angle, the smaller is the operating range of the Cricket system. Near this 
limit of the maximum operating range, the measurements also get less stable and less accurate. However, 
for shorter distances, the system provides accurate and reliable distance measurements.

The system design includes various types of delays besides the signal propagation time, which limits 
the number of beacons transmitted per second and so the possible position updates per second. These 
delays are inserted in order to avoid radio and ultrasonic mutual interferences from different nodes. 
The constraints on the maximum number of beacon signals that can be transmitted per second are 
mostly imposed by the initial delay that has been put to let any stray ultrasonic pulse die down before 
the transmission of the beacon signal. 

At a particular time instant, there needs to be at least four distance estimates to uniquely compute 
the position of the object in 3-dimentional space. From the ranged distance alone, the listener node is 
unable to determine the angle to the target Cricket node and therefore cannot calibrate it. A set of Cricket 
nodes may first apply lateration to determine the position of the target node as well as the angles from 
each listener node to the target node. Depending upon the angles, post-calibration can be applied on 
the ranged distances and localization can be performed again. The post-calibration process attempts 
to compensate the ranging anomalies due to the varying strengths of the ultrasonic transmission pat-
tern at different real distances and angles. Despite the computational effort induced by the process, the 
post-calibration mechanism can in practice be iterated a few times to achieve higher accuracies. We 
also enhanced the Cricket system by filtering out non-coherent and spurious distance estimates known 
as outliers by using a moving median filter (c.f. Filtering of Data above). We found out that besides the 
low computational complexity, the choice of a moving median filter is very appropriate because of its 
high robustness, making the likelihood of sporadic noisy distance estimates very low. Furthermore, 
because of mobility the distance estimates change and can easily be adapted by a moving median filter. 
The pre-processing leads to better location estimates from the Cricket system (Ansari et	al.,	2007b) and 
as a consequence results in more accurate tracking outputs.

Figure	3.	Cricket	node
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Applying bayesian Framework on cricket Localization

As described in the previous section, Bayesian techniques can be applied on localization system to 
achieve performance gains. In the following we will describe how particle filtering can be combined to 
the Cricket system for minimizing the positioning error (Ansari et	al.,	2007b). 

In the particle filtering setup, the system maintains a set of parameters as a state vector. By model-
ing the system dynamics appropriately, a given state vector can be used to predict the state vector at 
the next measurement time step. The filtering framework carries out new measurements to correct the 
uncertainties/anomalies in the predicted state vector. Appropriate noise models are introduced to in-
corporate the uncertainties in the measurements and the system models. The system and measurement 
models may also consist of multiple models and depending upon the case, switching from one to other 
can be made.

In the following, we will give an example how particle filtering framework be applied on the Cricket 
system based localization of a toy train. We use this particular example due to its repeatability as well 
as non-trivial dynamics. However, the framework developed is general, and other dynamics and noise 
distributions for different motion dynamics can easily be included for applications in other scenarios. 
The toy train rail track is shown in Figure 5. The motion consists of two types of dynamics and is mod-
eled by Constant Velocity (CV) and Constant Turn (CT) models along the straight and curved paths, 
respectively. 

The state vector at any time instant Tk consists of the coordinate position (xk, yk) and the correspond-
ing velocity components (x˙k, y˙k) of the object. The state vector, Xk, can be expressed as Xk = [xk yk x˙k 
y˙k]

T. The system model can be written as

Figure	4.	Plot	of	the	distance	ranging	error	for	distances	between	50	cm	and	1050	cm	and	angles	be-
tween	0	degree	and	90	degrees
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Xk+1 = Fk Xk + Gk pk,

where Fk represents the transition state space matrix representing the motion dynamics of the train, Gk 
is the noise input matrix and pk is the noise vector. Here, 
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where ω represents the turn rate and has opposite direction along the two opposite curved sections. The 
noise process pk is assumed to have Gaussian distribution. The Gk is given by























=

k

k

k

k

k

T
T

T

T

G

0
0
2

0

0
2

2

2

.

The measurement model is given by

Zk = HXk + nk ,

where Zk is the measurement vector, H is the measurement matrix and nk represents the measurement 
noise process. The measurement system provides the coordinate position of the object and the angle 
information obtained from the digital compass, CMPS03. The digital compass is calibrated and gives 

Figure	5.	Trajectory	of	the	toy	train	which	exhibits	two	kinds	of	motion	dynamics.	It	can	be	represented	
by Constant Velocity (CV) model along the straight sections while Constant Turn (CT) model along the 
curved sections of the path. 
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the absolute angle information. The measurement model is therefore expressed as H(Xk) = [xk yk θ]
T. The 

measurement noise characteristics nk are found using approximation on a statistically big enough set of 
localization and angle measurements. In the above framework, there exist two motion models and it is 
necessary to switch from one model to the other appropriately. This is generally achieved by maintain-
ing a mode transition or regime switching matrix. We refer the reader to Arulampalam et al. (2002) and 
Ristic et al. (2004) for a detailed discussion on multi-modal Bayesian filtering. This approach can be in 
general visualized as parallel banks of particle filters as shown in Figure 6. 

In our simplified case with the availability of absolute angle information from the digital compass, 
we could easily decide to switch from one motion model to another by observing the change in the ab-
solute angle. More complicated model-switching logic would, of course, be necessary if such absolute 
information were not available, or the readings obtained from the sensor had significant inaccuracies. 
Especially in the latter case the accuracy of the models employed becomes critical. Noisy measurements 
with incorrect noise model can cause significant problems or delays in identifying correct dynamics. 
Also, if the behavior of the system deviates significantly from the dynamics selected the performance 
of the framework will, of course, be poor.

The particle filtering framework now estimates the posterior probability p(Xk | Zk) by Monte Carlo 
integration. After applying the above described framework on the toy train, we obtained the tracking 
results as shown in Figure 7. The plus signs in the figure indicate the location measurements and the con-
tinuous line indicates the trajectory estimated by the tracking algorithm for repeated number of rounds. 
For 358 location estimates in three complete rounds, the average RMSE (Root Mean Squared Error) is 
found to be approximately 2.8 cm, which is certainly an improvement over the localization obtained 
from Cricket system alone (A. Smith et. al., 2004). Bayesian filtering can be applied to other systems as 
well for indoor localization in sensor networks and has shown to result in improved accuracy. 

Figure	6.	Multiple	motion	models	and	switching	logic

Measurement system

CT 
Filter bank

CV
Filter bank

Regime switching logic
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Inertial Navigation

Inertial navigation can be utilized for tracking the position and orientation of a moving object without 
requiring any external frame of reference. Inertial navigation has outdoor as well as indoor applications. 
It has been widely used in the field of aviation, military systems and robotics. An inertial navigation 
system essentially consists of gyroscopes and accelerometers. By simply applying principles of Newto-
nian Physics on the accelerometer and gyroscope readings, relative position and orientation information 
of the moving object can be achieved. Accelerometer readings are used to estimate the displacement 
along different axes and the gyroscope readings give the relative change in the orientation along dif-
ferent directions. By combining the information from the accelerometers and gyroscopes, smoothened 
trajectory of the moving object can be obtained. The relative positioning information can be mapped to 
an appropriate reference scale by applying a single rigid transformation. One of the biggest problems 
of the inertial navigation is the error accumulation. Therefore, the error needs to be compensated from 
time to time. 

Besides other application areas, inertial navigation has also a good potential in sensor networks. 
This is mainly owing to the design of very low power inertial sensors that can easily be attached to 
sensor nodes. One such example is the inertial navigation sensor board prototype (Popa et al., 2008). It 
consists of STMicroelectronics’ LIS3L02AQ accelerometer and Analog Devices’ ADIS16100 gyroscope 
connected to a TelosB sensor node as shown in Figure 8.

Indoor Human Tracking Using Inertial sensors

In order to track a person using inertial sensors, the speed and direction of the motion are required. 
Human motion is characterized by several acceleration components along various directions and the 
displacement cannot simply be found out by integrating the acceleration components twice. However, 
there is a unique vertical acceleration spike associated with each single foot-step as a person walks. 
For slower and smoother steps, the acceleration components along other axes are less visible. Another 
peculiar characteristic of human motion is the foot-step size, which remains constant for a particular 

Figure	7.	Tracking	performance	of	the	toy	train	after	applying	particle	filtering	based	technique	on	the	
Cricket	localization	system	(adapted	from	Ansari	et	al.,	2007b;	©	2007	IEEE).	
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individual in his/her normal motion. Based on the inter-peak distance of the acceleration signature and 
the step-size for a particular person, his/her speed and hence displacement can be computed. 

One of the advantages of inertial navigation is its independence from external factors. However, 
inertial navigation systems tend to accumulate errors over a period of time and therefore, periodic cor-
rections are necessary. The position corrections can be applied using another system. 

Cricket system has coverage problems owing to the line-of-sight requirements but it has relatively 
high accuracy. One logical approach is to combine Cricket system with inertial navigation. The combined 
solution can solve the coverage problem by relying on the inertial navigation and the error accumulation 
can be eliminated by periodically correcting the position using the Cricket system measurements. Figure 
9 shows the localization output for Cricket system and a hybrid system, which combines inertial naviga-
tion with Cricket system. It can be observed that Cricket system alone has a high accuracy but it suffers 
from coverage problem owing to the strict line-of-sight requirements. Inertial navigation accumulates 
errors over time and the output for an arbitrary human motion is not very accurate. The combination 
of the Cricket system and inertial navigation has better accuracy than achieved by inertial navigation 
alone and the problem of blind spots is also eliminated. The improved coverage of the combined system 
is illustrated by the larger number of combined localization estimates compared to the ones obtained 
from the Cricket system alone. 

LOcALIZING AND TRAcKING VEHIcLEs

We shall now move from indoor to outdoor localization systems, focusing especially on vehicular 
localization and tracking. In particular we report on our work on the design and implementation of a 
complete, large-scale modular sensor network hardware/software platform for target tracking applications 
(Ansari et al., 2007a). In this work, the objective was to design a flexible software platform that could 
be adapted into a variety of scenarios, and to prototype it on a likewise adaptable hardware platform 
targeted for passive tracking scenarios. In the resulting design the software platform is carefully sepa-
rated from the hardware by various abstraction layers, and due to the modular design various filtering, 
data processing and communication solutions can be used in the platform according to the needs of the 
particular application. The overall hardware design is flexible as well, in the sense of not being confined 
to tracking applications with a particular target object in mind. Combination of magnetometers and 

Figure	8.	Inertial	Navigation	sensor	node	platform	(from	Popa	et	al.,	2008;	©	2008	IEEE)
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passive infrared sensors makes the platform very versatile, and we enhanced the platform further by 
developing automatic calibration features to remove the influence of environmental changes.

The sensor nodes used in the tracking system were built using the TelosB platform from Moteiv Inc. 
extended with a substantial amount of customized hardware. In particular, the nodes feature a sensor 
board consisting of two types of sensors namely passive infrared (PIR) sensors and anisotropic magneto-
resistive (AMR) sensors, as shown in Figure 10. PIR sensors detect the differential thermal energy signal 
rather than absolute values and are therefore highly suitable for tracking applications. AMR sensors 
generate an output voltage proportional to the magnetic field strength. A moving ferromagnetic object 
disturbs Earth’s magnetic field and causes the AMR sensors to generate an output signal, which is used 
for detection purposes as explained below. Low power consumption is one of the key objectives in the 

Figure	9.	Localization	output	for	Cricket	System,	inertial	navigation	and	the	combined	system	for	human	
motion	on	an	arbitrary	path	(from	Popa	et	al.,	2008;	©	2008	IEEE)

Figure	10.	Sensor	node	platform	for	vehicular	tracking	consisting	of	the	passive	infrared	sensors	and	
magnetometer	attached	to	TelosB	(from	Ansari	et	al.,	2007a;	©	2007	IEEE)
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design. The energy efficient design includes individual power control of the PIR and AMR sensors. 
The data pre-processing includes multiple phases: The output signal of the sensors is amplified using 
two-stage instrumentation amplifiers before feeding it to the ADC of the TelosB platform. The circuit 
also includes high frequency noise suppression filters as part of the signal pre-processing implemented 
in the circuitry. In order to demagnetize the AMR sensors, we included a provision for external set/
reset circuitry, which we always used before any large scale deployment setups in order to compensate 
the long term drift and loss of sensitivity of the AMR sensors. The loss of sensitivity and drifts are 
developed owing to the alignment of ferro-sensitive cells inside the sensor chip when exposed to high 
magnetic field over extended periods of time as described in the above discussion on Compensation of 
Unwanted constants and Long-term Drift.

The packaged sensor node is shown in Figure 10 together with the block diagram of its architecture 
(c.f. Figure 11). A set of four PIR sensors (called as North-West-South-East) are mounted orthogonally 
for a complete 360-degree field of view. Fresnel lenses are used to increase the sensing range but at 
the same time not losing the beam-width below 90 degrees per PIR sensor. A combination of two axis 
magnetometer (AMRa and AMRb) enables the sensor node to detect moving ferromagnetic objects in 
a field. The amplitude level from the AMR sensors is highly dependent on its orientation with respect 
to Earth’s magnetic field, the ferromagnetic material content in the surroundings and obviously on the 
strength of Earth’s magnetic lines of force. For the optimum swing of the signal, the amplified output 
of the magnetometer to be fed to the ADC should be at the midscale (around 1.5V). This is done by tun-
ing the resistance of a digital potentiometer, and hence adjusting the voltage levels at one of the inputs 
of the second stage amplifier. This calibration phase (c.f. section on Data Calibration) is a recursive 
process. Firstly, a set of 10 AMR samples are taken and the mode value is calculated. The underlying 
reason is that the probability of an outlier is very low. The mode value is converted into voltage and is 
checked whether it lies within a small window around the mid-scale voltage. Otherwise, the value of 

Figure	11.	Circuit	block	diagram	of	the	sensor	node	platform	used	for	vehicular	tracking	(from	Ansari	
et	al.,	2007a;	©	2007	IEEE)
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the potentiometer is increased or decreased accordingly by sending appropriate commands to the digital 
potentiometer over the I2C bus. The process is repeated till the voltage assumes a mid-scale value. This 
process not only prevents clipping of the signal but also enables the sensor node to calibrate automati-
cally to any environmental condition.

The software developed for the platform also follows a layered and modular design to ensure flex-
ibility. Transfer of the measurement data to gateway nodes, time synchronization, calibration etc. are 
handled in middleware tailored for the system, but mainly consisting of standard protocol solutions. 
Sensor readings themselves are processed with an FIR low-pass filter to reduce noise prior to further 
processing. The FIR filter is chosen with a cut-off frequency as depicted in the signal of interest. The filter 
components implemented in software are also designed for maximum reusability, with filter parameters 
such as type, order, cut-off frequency and filter coefficients all being adjustable according to the char-
acteristics of the incoming raw sensor readings. Another major signal processing aspect implemented 
in the software is adaptation to changes in the environment. Changes in ambient conditions and Earth’s 
magnetic field cause, for example, the magnetometer readings to drift over time. A computationally 
less intensive EWMA filter implementation is used to track the baseline of the magnetometer readings, 
which is subtracted from the filtered measurements before further processing is applied. This way a 
calibrated, zero-offset and non-clipped signal is obtained, which can be processed for the potential 
object detection purposes.

After applying the data processing techniques, the readings from AMR and PIR sensors are given 
as inputs to the vehicle detection algorithm running on each node. The algorithm relies on impulse 
integration with adjustable thresholds as illustrated in Figure 12 for the AMR sensor. The filled area 
between this curve and the thresholds (dotted lines) represents the integrated impulse value. When the 
AMR readings return to the area between the thresholds, a dwell timer is started (horizontal line). If the 
readings cross the threshold before this timer expires, the timer is reset and the integration of impulse 
continued (crosses terminating the thick timer line). When the dwell timer expires (upward arrow), the 
impulse value is compared against a pre-set value. Too small impulses are considered as noise, and 
detection is not signaled (cross over the upward arrow).

Figure	12.	Illustration	of	 the	vehicle	detection	algorithm	using	a	magnetometer	(from	Ansari	et	al.,	
2007a;	©	2007	IEEE)
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All the detection events from the individual sensor nodes are gathered on a powerful node responsible 
for further data processing. Rejection of false positives and data fusion in general is performed at this 
stage. Even though extensive filtering is applied in various parts of the system occasional noise spikes 
unavoidably still cause false detections on individual nodes, as will sudden changes in environmental 
conditions. Also detections from PIR sensors are not necessarily all related to vehicles, but might also 
arise from animals or humans passing by. Neighborhood-based fusion of the readings from both the 
AMR and PIR sensors from the whole sensor field results, however, in accurate detection. Figure 13 
illustrates the performance of the system on a small test track where a single vehicle was moving at a 
speed of approximately 50 km/h. The dots indicating localized detections were confirmed to be highly 
accurate. The figure also shows that the system did not, however, reach 100% accuracy as some of the 
events were missed. The underlying cause of this appears to be the residual unreliability in the com-
munications stack rather than the algorithms described above. With a more aggressive data protection in 
the network (such as multipath routing) we expect our design to yield highly accurate vehicle detection 
and tracking performance even in very dynamic environmental conditions.

We have also worked on distributed localization and tracking systems for vehicles utilizing particle 
filters for data fusion. Our focus has been especially on fusing tracking information obtained from 
radars with local positioning estimates of the vehicles obtained via vehicle-to-vehicle communications. 
Particle filters are an especially appropriate solution for such a scenario due to the non-linearities in 
the system model, highly non-Gaussian measurement noises of radars, as well as due to the need to 
fuse sensor readings coming from diverse sources. For further details we refer the reader to Riihijärvi 
et al., 2005.

cONcLUsION

In this chapter we discussed some of the algorithms and solutions that can be applied for data processing 
and filtering in wireless sensor networks deployed for localization and tracking applications. Following 
a short overview of the different basic localization and ranging solutions commonly applied in the field, 
we gave a short account of the basic data filtering algorithms, such as median and lowpass filters, as 

Figure	13.	Vehicle	tracking	output	(from	Ansari	et	al.,	2007a;	©	2007	IEEE)		
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well as different flavors of averaging. We then focused on Bayesian filtering as a method of choice for 
solving the tracking problem based on individual measurements. We advocate the use of particle filters 
due to their ability to handle non-linearities and non-Gaussian measurement noises, both of which ap-
pear to be common features in tracking scenarios. The increase in computational complexity induced by 
particle filters is not very high compared to, for example, usual Kalman filters, and the improvement in 
accuracy and robustness is significant. They are also not methodologically more difficult to implement 
or understand than other major Bayesian filter types. Finally, we have discussed the design of indoor 
and outdoor localization and tracking systems we have implemented based on the data processing and 
filtering solutions discussed above. 
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AbsTRAcT

Large urban areas in North America as well as many other parts of the world are experiencing un-
precedented and soaring congestion problems. It is imperative that modern societies upgrade their 
transportation systems in order to remain competitive, and maintain the high quality of life and social 
wellbeing. Current practices in Intelligent Transportation Systems (ITS) data gathering are dominated by 
the use of point detectors for surveillance, and wire-line communication networks for data transmission. 
Reliance on point detectors is losing appeal due to detector reliability issues, the cost of building and 
maintaining	detector	networks,	and	potential	traffic	disruption	during	construction	and	maintenance	of	
these	networks.	This	chapter	describes	a	novel	wireless	mesh	network	platform	for	traffic	monitoring.	
The platform uses traveling cars as data collection probes and uses wireless municipal mesh networks to 
transport sensed data. The platform assumes that cars or drivers’ mobile devices are equipped with the 
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widely	adopted	low-cost	Bluetooth	wireless	technology.	Field	trials	of	the	proposed	platform	demonstrated	
its	capability	to	track	cars	traveling	at	speeds	of	0	to	70	km/hour.	The	platform	was	able	to	track	cars	as	
they travel and turn on a typical road network. In addition, the platform was used to approximate car 
speeds through determining the change in position in a time period. The preliminary results indicated 
an	accuracy	of	±	10%-	15%.	The	chapter	describes	the	architecture,	implementation,	and	field-testing	
of the proposed platform. It also discusses aspects of large-scale deployment of the proposed platform 
to cover large geographic areas. 

INTRODUcTION

Large urban areas in North America as well as many other parts of the world are experiencing unprec-
edented and soaring congestion problems. It is imperative that modern societies upgrade their trans-
portation systems in order to remain competitive and to maintain the high quality of life and social well 
being that we rightly prize so highly. Transportation management agencies are under increasing pressure 
to adopt more innovative approaches to enhance the efficiency of existing transportation networks. 
Solutions in the form of building more roads are neither desirable nor feasible in many cases. A more 
feasible approach would be to maximize the use of the capacity already afforded by existing networks 
before expansions can be justified. 

Over the past two decades, numerous technologies and methods have been developed and deployed 
to support real-time monitoring of transportation systems (Zheng, Winstanley, Yan, & Fotheringham, 
2008). However, the installation and maintenance costs as well as the inherent limitations (e.g., power 
consumption, telemetry) of existing technologies constitute a major impediment towards implement-
ing continuous real-time monitoring in a cost-effective manner. The efficiency and economic viability 
of current monitoring practices not only have limited the deployment of such technologies, but many 
transportation agencies still do not have an effective or systematic strategy for traffic monitoring.

The “heart” of traffic monitoring lies in gathering and using real-time system information to enable 
proactive management and control of the network. Current practices in monitoring traffic systems are 
dominated by the use of point detectors for surveillance, and wire-line communication networks for data 
transmission. In most large metropolitan areas, major freeways and arteries are covered by pavement-
embedded induction loop detector stations to measure traffic volumes and speeds. Gathered information 
are typically aggregated over 20-30 seconds then transmitted over copper or fiber optic wire lines to 
the nearest operations centre. This approach is losing appeal due to detector reliability issues, the cost 
of building and maintaining detector networks, and potential traffic disruption during construction and 
maintenance operations. Modern off-road detector technologies have improved significantly over the 
past decade, resulting in new and more mature detector types based on radar, ultrasound, infrared, and 
acoustic technologies. With the inherent limitations of existing technologies, a new technology that al-
lows for cost-effective real-time and continuous monitoring of traffic systems is urgently needed.

In this chapter, we propose a novel wireless and cost-effective platform for ITS monitoring. The 
novelty of the platform lies in using traveling cars equipped with Bluetooth devices as probes for col-
lecting raw traffic data. The platform employs municipal wireless mesh network (WMN) infrastructure 
to gather and transport real-time traffic data to a centralized ITS server. The platform does not require 
installation of infrastructures which results in further cost-effectiveness by exploiting any existing 
WMN infrastructure and the wide spread use of Bluetooth devices. It is estimated that 80% of the cars 
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by 2009 will be Bluetooth enabled (Bluetooth SIG, 2006). In case a car is not Bluetooth-enabled, mobile 
Bluetooth devices in the car such as a driver’s cell phone can be used. The cost-effectiveness of the 
platform is achieved by using unlicensed wireless technologies in addition to common hardware and 
open source software for building the platform.

The use of location-based sensing technologies and wireless communication devices has been steadily 
gaining grounds in the industry because of their obvious advantages relative to point detector surveillance 
technologies. An emerging category of solutions that promises cheaper and broader network coverage 
involves the use of traveling vehicles as probes transmitting information about the surrounding traffic 
environment as they progress through the road network. As vehicles travel through major and minor 
roads, they can serve to collect and transmit valuable traffic information. 

Wireless technologies used to collect traffic data can be classified into satellite-based (e.g., Global 
Positioning System (GPS)) and terrestrial-based technologies (e.g., cellular networks, IEEE 802.11). Se-
lecting a feasible technology for a particular application would involve evaluating trade-offs between the 
cost of building data collection system, accuracy of collected data, bandwidth available for transmission, 
system capacity, and ubiquity of the technology. An overview of the most commonly used technologies 
is provided in the next section.

This chapter describes the architecture, implementation, and field-testing of a novel wireless platform 
for traffic network monitoring. Performance results of two small-scale field deployments are presented. 
In addition, considerations for large-scale deployment of the platform and the main technological, eco-
nomical, and operational factors that affect such deployments are also discussed. 

RELATED WORK 

This section summarizes the relevant literature on using wireless technologies for vehicle tracking, and 
provides a brief overview of the WMN technology as it pertains to the proposed platform.

Wireless Vehicle Tracking

In most large metropolitan areas, in order to measure traffic volumes and speeds, major freeways and 
arterials are covered by induction loop sensors that are embedded into pavements. Gathered informa-
tion are typically aggregated over 20-30 seconds and transmitted over copper or fiber optic wire lines 
to the nearest operations centre. At a typically centralized operations centre, ITS software processes 
the gathered information and produces recommendation on how to, for example, divert traffic to avoid 
congestions. These systems face many problems. Using induction loop sensors is losing appeal due to 
sensor reliability issues, cost of building and maintaining detector networks, and potential traffic dis-
ruption during construction and maintenance operations. Modern off-road detector technologies have 
improved significantly over the past decade, resulting in new and more mature detector types based on 
radar, ultrasound, infrared, and acoustic technologies. 

In general, the wireless technologies used to collect traffic data can be classified as satellite-base such 
as GPS or terrestrial-based such as cellular networks and IEEE 802.11 (i.e., Wi-Fi) technologies. There 
is typically a trade-off between cost of building a data collection system, accuracy of collected data, 
bandwidth available for transmission, system capacity and ubiquity of the technology among all these 
wireless technologies. The trade-offs indicate that no one technology is suitable for all applications.



  433

A Wireless Mesh Network Platform for Vehicle Positioning and Location Tracking 

Recently, there has been an increasing trend towards the use of terrestrial wireless systems for ve-
hicle tracking applications. Satellite-based systems, while providing high positional accuracy, require 
relatively expensive equipment to locate and communicate vehicle positions (e.g. using GPS and cellular 
communication). Terrestrial wireless technologies have the advantage of providing more bandwidth and 
two-way communication, which potentially enables richer applications and information exchange. 

GPS position information is very accurate with an error in the range of meters. Changes of the 
position within an interval of time give velocity information. However, GPS communication requires 
line-of-sight and consequently it cannot be used inside tunnels and urban areas with tall buildings (the 
urban canyon effect). 

In order to provide tracking information, GPS is typically integrated with wireless communication 
systems. GPS can be coupled with Short Message Service (SMS) wireless technology to provide vehicle 
monitoring information to a monitoring server (Al-Rousan, Al-Ali, & Darwish, 2004; Young & Skobla, 
2003). The system periodically sends location information each 5 or 10 seconds. However, the time 
taken to send an SMS message is dependent on the status of the cellular network (e.g. congestions). The 
expected massive amount of exchanged data makes the use of SMS-based systems both expensive and 
unreliable in most cases.

GPS may also be integrated with General Packet Radio Service (GPS) or Global System for Mobile 
communications (GSM) location services to support vehicle monitoring systems. In Zhang et al. (2005), 
the authors provide a comparison of using the Transmission Control Protocol and User Datagram Proto-
col to send the position information of the vehicle’s on-board GPS module to the monitoring server via 
vehicle on-board General Packet Radio Service (GPRS) module. The GPRS-based systems can provide 
accurate position of the vehicle and real time monitoring, and are generally cheaper than the SMS-based 
systems. The disadvantages of this system include the requirement for installation of GPS modules in 
the vehicles, and the high operating costs for GPRS subscription and data transmission. 

GSM-based location services were introduced in 1995 (Spirito, 2001; Broida, 2003). In general, two 
standard positioning methods can be used: (1) time of arrival and (2) enhanced observed time difference 
(E-OTD). The time of arrival method calculates the propagation period of a known signal sent by the 
mobile station (MS). This requires installation of location measurement units at each base transceiver 
station (BTS). However, this method does not require modifications to cellular handsets. The readings 
of three base transceiver stations are used to determine the location by triangulation algorithms. This 
method is known to be time-sensitive because one microsecond of timing error may result in approxi-
mately 300 meters of location error. To reduce such errors, the time difference of arrival (TDOA) method 
was proposed to enhance the accuracy of the TOA method. 

 The E-OTD method has three measurement parameters: observed time difference (OTD), real time 
difference (RTD), and geographical time difference (GTD). The OTD relies on the measurement of the 
TDOA between two BTS, the RTD is the synchronization error between two BTS (i.e. synchronization 
difference between two stations), and the GTD is the difference between the OTD and the RTD. This 
method was found to achieve errors in the range of 100 to 300 meters but it requires modifications to 
the MS to enable the OTD measurement. 

Amongst the rapidly emerging communication technologies is Dedicated Short Range Communi-
cation (DSRC) described in IEEE P1609.3/D18 (2005). DSRC systems are being designed to provide 
short-range, wireless links to transfer information between vehicles and roadside units, other vehicles, 
or portable roadside units. DSRC is anticipated to be essential to many ITS applications that improve 
traveler safety, and decrease traffic congestion. Examples of such information transfer include: traffic 
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light control, traffic monitoring, traveler alerts, automatic toll collection, traffic congestion detection, 
emergency vehicle traffic signal pre-emption and electronic inspection of moving trucks through data 
transmissions with roadside inspection facilities. 

In addition, Bluetooth has been used for indoor object tracking. Two methods that use the Received 
Signal Strength Indicator (RSSI) to track objects are described in Huang et al. (2006). Bluetooth is a 
wireless cable replacement technology. It operates in the unlicensed Industrial Scientific Medical (ISM) 
Frequency range of 2.4 GHZ. Bluetooth is designed to be a low power and low cost wireless technology. 
Bluetooth is found in many electronic devices such as cellular phones, laptops, headphone, keyboard, 
and printers. Bluetooth devices can be implemented internally in these devices or can be added as a 
separate USB dongle. There are three classes of Bluetooth devices classified based on power level which 
is directly associated with the device communication range. Class 1 has a range of 100 meters where 
class 3 only has 10 meters of range.

Several research prototypes employed alternative wireless technologies. The Place Lab project, cre-
ated by Hightower et al. (2006), had shown that using Wi-Fi hotspots and GSM-based cellular phones 
would efficiently provide vehicle location tracking in downtown of cities. Position error of the system 
was in the range of 20-30 meters even for different weather conditions. The main disadvantage cited 
was the dependence on Wi-Fi technology, which is not commonly used in portable devices, mainly due 
to the high power requirements of Wi-Fi devices and their relatively high cost compared to Bluetooth. 

Hull et al. (2006), the authors of the MIT CarTel project, developed a computing system for collecting 
and processing information from mobile sensors mounted on automobiles. An embedded system on the 
automotives interfaces with different sensors in the car and transmits the sensor information to a server 
for processing. CarTel focused on handling intermittent network connectivity inherent in WMNs. For 
that purpose, a special network stack was developed. However, since CarTel relies on GPS to collect 
location information, the platform may not perform reliably within “urban canyons.” 

Wireless Mesh Networks

Wireless Mesh Networks (WMN), also known as municipal wireless networks (Lee, Jianliang, Young-
Bae, & Shrestha, 2006; Akyildiza, Wang, & Wang, 2005; Farkas & Plattner, 2005), are posed to be a 
key infrastructure for enabling new applications in public safety, business, and entertainment. They are 
typically deployed in a quasi-stationary manner, where some mesh routers are stationary. This wireless 
infrastructure enables routing of information in a multi-hop manner. WMN nodes comprise mesh clients 
and mesh routers. Mesh clients, also known as On-Board Units (OBU), can be desktops, laptops, cel-
lular phones. Mesh routers, also known as WMN Access Points (AP), can self-configure themselves to 
automatically build the wireless infrastructure that establishes and maintains mesh connectivity. Mesh 
routers typically provide access to a fixed structure network or to the Internet. Each mesh router has a 
domain of wireless coverage. An OBU is associated with one AP at a time, as long as it is in the router 
coverage domain. OBUs can move freely and associate themselves with different mesh routers, and may 
use Bluetooth or Wi-Fi for communication with the WMN APs. Although WMNs can be used for a 
large number of applications (Spirito, 2001; Khemapech, Duncan, & Miller, 2005), a number of general 
requirements and characteristics are shared among most of these applications. These characteristics 
include geographic coverage, cost-effectiveness, scalability, fault resilience, and privacy and security 
(Ilyas & Mahgoub, 2005; Karl & Willig, 2005; Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002). 

The effectiveness of real-world WMNs for monitoring applications is determined largely by its abil-
ity to reliably cover larger areas for longer durations (Hać, 2003). WMNs may be formed by deploying 
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hundreds or thousands of APs across large geographical areas (Ahmed, Shi, & Shang, 2003). APs are 
generally designed to have sufficient intelligence to gather and disseminate data, and to exchange informa-
tion and cooperate in processing gathered data, thus enabling the monitoring of a large geographical area 
through distributed data processing and communication. WMN scalability involves ability to increase 
the size of coverage area in a manner that does not adversely affect WMN performance (Stoianov, Nach-
man, & Madden, 2007; Khemapech et al., 2005). Robustness involves ability of sensors and WMNs to 
tolerate faults or errors in operations (Cardell-Oliver, Smettem, Kranz, & Mayer, 2004). This requires 
WMN APs to have autonomous capabilities such as self-testing, self-configuring and self-healing (Yu, 
Prasanna, & Krishnamachari, 2006). The design of WMN must also incorporate security mechanisms 
in order to prevent unauthorized access and attacks (Wu & Tseng, 2007). 

The autonomy of APs simplifies WMN installation and maintenance. Routers exchange data packets 
to update their routing tables. WMNs typically implement two types of routing protocols: proactive and 
on-demand routing protocols (Huhtonen, 2004; IETF RFC3626, 2003; IETF RFC3561, 2003). Proactive 
routing protocols are table-driven. Optimized link state routing (OLSR) is a proactive and table driven 
routing protocol where APs exchange OLSR “hello” messages periodically to build and maintain the 
routing table. This dynamic method of building the table enables self-configuring of the AP’s. “Hello” 
messages advertise the one-hop interfaces of each AP. This enables each AP to find information about 
its neighboring nodes and hence allows the AP to build and maintain its routing table. Since OLSR is 
a multi-hop protocol, each node forward a message to its immediate neighbor based on the contents of 
this routing table. The periodic exchange of hello messages also enables the WMN to recover from a 
failed link or node (IETF RFC3626, 2003). Whenever a change happens in the topology of the WMN, 
control messages are propagated through the network to announce this change, and update the routing 
tables maintained in various routers. The flooding of these messages, may potentially span a very large 
part of the entire network, may be disadvantageous. 

On-demand routing protocols, or reactive protocols, do not require this flooding of update messages. 
The ad-hoc on-demand distance vector (AODV) routing protocol is an example of the reactive routing 
protocols. These protocols do not maintain routing tables for the entire network, but only requested 
routes are maintained. That is, routes are calculated only when there is a request to send data from a 
source node to a destination node. AODV maintains vectors of destinations’ routes and costs to use. 
This renders AODV as a better alternative for more static networks. In addition, AODV requires lower 
memory and processing power. 

ARcHITEcTURE AND OPERATIONs OF THE PROPOsED TRAFFIc 
MONITORING PLATFORM 

The proposed platform uses traveling cars as probes transmitting information about traffic as they prog-
ress through the road network. The proposed platform adopts a hierarchical networking architecture, 
shown in Figure 1. With this hierarchical architecture, a geographic area is divided into adjacent but 
distinct hexagonal clusters/cell. Each cell is controlled by a centralized “head.” A WMN AP is config-
ured to operate as a cluster head. It communicates with cars travelling in its geographical cell in order 
to gather application data. OBUs are sensors in the sense that they generate and transmit data to nearby 
WMN AP. APs will run software programs for gathering, and pre-processing of raw data. Only a few 
of WMN APs, called gateways, are connected to the Internet. APs exchange information to identify 
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their neighbors and identify gateway AP. WMN APs collaborate and forward collected data towards 
gateways. The WMN is used to transfer monitoring information, generated by OBU, to a centralized 
server typically at headquarters offices over the Internet. The set of OBUs represent the lowest level in 
the hierarchical network. WMN APs represent the next higher level of the hierarchy. The third level 
in the hierarchy consists of Gateways. The top most level of the hierarchy consists of the servers at the 
city headquarters. This architecture enables network as a whole to monitor a larger geographical area 
through large-scale distributed processing and communication of data performed by many devices. 

In this hierarchical architecture, different devices at different levels perform different functions. At 
the lowest level in the hierarchy, traffic and travelling cars data required for applications are gathered. 
Travelling cars equipped with Bluetooth OBU devices communicate with WMN AP. The middle layers 
in the hierarchy consist of WMN APs and Gateways that process, aggregate, and forward data, typically 
for longer distances using Wi-Fi and the Internet. The upper layers of the hierarchy consist of central-
ized servers that perform decision-support functions. A particular function may be carried out by more 
than one layer, for instance, each layer could perform a specialized role in computation (Stoianov et al., 
2007; Yu, Mokhtar, & Merabti, 2006; Toumpis & Tassiulas, 2006).

This hierarchical architecture provides operational scalability and allows for phased deployment of 
a network and for node upgrades. However, imposing a logical structure on an existing flat network 
may result in potential inefficiency. For example, organizing nodes into a hierarchy typically introduces 
overhead (e.g., execution of clustering algorithm) into the network. 

Internet

ObU

WMN  AP

WiFi

 

communication
Internet

 

Gateway

TcP/IP

 

connection
bluetooth 

communication

Figure	1,	A	reference	architecture	for	the	proposed	platform
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The network model for our platform consists of WMN AP mounted on light posts. The APs can be 
laid out at arbitrary distances depending on deployment conditions. Each AP is configured to run the 
OpenWRT Linux distribution (http://www.openwrt.org) for embedded devices. Some APs are connected 
to the Internet and are configured as gateways. In addition, all APs are configured to run OLSR. OLSR 
enables AP to automatically configure the WMN and enables self-healing in case of the failure of one 
AP. Bluetooth dongles are attached to AP through USB ports. We integrated BlueZ (http://www.bluez.
org) open-source Linux-based implementation of the Bluetooth stack in each AP. With this setup, each 
AP can communicate with other nodes using Wi-Fi and/or Bluetooth. 

BlueZ is controlled to scan the wireless medium for Bluetooth devices in proximity. We assume 
monitored cars are equipped with Bluetooth devices. We developed a Linux shell script that is capable 
of retrieving the Bluetooth (BT) address of near-by Bluetooth devices. The script gathers other infor-
mation about the detected device including the time a device is detected. The gathered information is 
then relayed to car tracking server on the Internet using TCP/IP. The route from the AP that detects 
the Bluetooth Device to the server is controlled by the WMN routing tables maintained at each AP and 
configured automatically by OLSR.

Figure 2 illustrates the communication model within the platform between Bluetooth OBU device, 
different APs, gateway and server. The OBU device in the car communicates with the Bluetooth dongle 
on the AP “Wi-Fi router with BT.” Information about this communication is extracted and saved at the 
AP using a Linux shell script. The AP collects information such as the MAC address of the detected 
device, the RSSI, the time the device was detected, and the ID of the AP that detected the device. This 
information is packaged and sent to the Internet server via the WMN. AP “Wi-Fi router with BT” sends 
an OLSR message to a neighboring AP “Wi-Fi router” that, in turn, forwards it to a neighboring AP 
“Wi-Fi gateway.” The gateway AP forwards the information using TCP/IP on the Internet where packets 
are rerouted to reach the Internet Server. The server correlates the information it receives from different 
devices and determines the location of the Bluetooth device at different times.

IMPLEMENTATION AND FIELD TEsTING OF THE PLATFORM 

In this section, we describe a small-scale deployment of the proposed platform and describe the experi-
ments carried out in order to demonstrate the capability of tracking cars. We carried out two deployments 
one at the borders of the city to avoid interferences and achieve near-ideal line of sight between sender 
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Figure	2.	Network	protocol	interactions
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and receiver; and the second deployment was in a residential area with interference and reflection from 
passing-by cars. 

APs were implemented using ASUS® WL-500g Premium AP, with a 266 MHz and 8M flash CPU, 
32M RAM, an external dipole antenna, and 2 USB 2.0 ports. Travelling cars were equipped with ultra-
slim Bluetooth V1.2 dongles with USB 2.0 and operation range of 100m with built-in antenna and 
maximum data rate of 3MB. We gather the results on the AP by running a Linux shell script. To enable 
OLSR message exchange, the OpenWRT firewall was opened at port 698 and forwarding rules were 
added to the firewall configuration files. For the purposes of preliminary experiments, we do not allow 
Bluetooth devices to establish connections with AP in order to avoid security and bluejacking issues.

In general, a major issue with Bluetooth detection of devices is the lengthy scanning period of Bluetooth 
devices. A Bluetooth device may take up to 10 seconds in order to fully detect all the Bluetooth devices 
in range. We avoided this problem by storing (caching) the information of the to-be-detected Bluetooth 
module in APs. Caching this information allows Bluetooth to detect a device without performing the 
standard time-consuming (inquiry and scan) processes. Algorithms for storing, caching, sharing, and 
managing Bluetooth address is out of the scope of this paper. It has been proven that caching Bluetooth 
information can reduce detection time by up to 90% (Sang-Hun et al., 2002).

 The signal strength, i.e. RSSI received at the AP from the Bluetooth device in the travelling car was 
measured. RSSI is a measurement of how well the device is receiving a signal and is typically measured 
in dBm. Generally, the closer the RSSI to zero the stronger the signal level received. Figure 3 and 4 show 
the RSSI levels (vertical axis) versus time (horizontal axis) as a single car travels towards, by, and away 
from an AP. In the figures, the horizontal axis represents the second at which we measured the signal 
strength. An RSSI = 0 dBm indicates that the Bluetooth device is at the closest distance from the AP. 
In contrast, an RSSI = -13 dBm indicates the Bluetooth device is out of range of the AP. 

 Figure 3 shows results for the near-ideal deployment in an environment with almost no interference 
at edges of the city. We realize that the AP started to detect the Bluetooth device at the 64th second, but 
the car actually entered into range of the AP at the 51st second – an offset of 13 seconds. This delay can 
be attributed to the slow response of Bluetooth devices in detecting new vehicles. Since the car was 
approaching the AP, the RSSI started to rise towards 0. The car became at the nearest point to the AP 
at the 81st- 83rd second. After that, the RSSI level started to decline indicating the car is travelling away 
from the AP. At the 100th second, the car physically left the Bluetooth range coverage, however the AP 

Figure	3.	The	signal	strength	of	a	traveling	car	in	a	near-ideal	environment
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still detected its signal. At the 117th second, the Bluetooth device became completely out of range from 
AP as indicated by RSSI level, an offset of 17 seconds. This offset is used to correct the measured data 
for each AP. Repeated experiments on different areas, show that the offset depends on the geographical 
area surrounding the AP.

In Figure 4, we report the results in the residential area deployment with interference from passing-
by cars and signal reflection from houses and parked cars. We realize that the AP started to detect the 
Bluetooth device at the 30th second. Before that the car was out of range of the AP because RSSI was 
about -15 dBm. Since the car was approaching the AP, the RSSI started to rise towards 0 dBm. The car 
became at the nearest point to the AP at the 33rd second. After that, the RSSI level started to decline 
indicating the car to be travelling away from the AP. We realize that for the following 7 - 8 seconds the 
Bluetooth device was in the range of the AP. In the figure, we note that Bluetooth RSSI is affected by 
radio interference from other devices and from signal reflection and refraction from cars and other objects 
in proximity. For example, the curve at the 34th, 35th, and 36th second indicates that the car is roughly 
at the same distance from the AP, which is not the case because the car was in constant movement. At 
the 37th second we realize that the signal strength indicates that the car became closer to the AP which 
was not the case. The car was actually travelling away from the AP at that instant. It is important to 
note that not all the Bluetooth dongles that we used showed such inaccuracies. We attribute this to the 
accuracy in manufacturing the dongles, in addition to the conventional signal fluctuation in complex 
environments. 

 Correlating information from the deployed 4 AP, the proposed platform can be used to identify the 
path of travelling cars and approximate car speeds. The central server maintains a database of the loca-
tion and identity of each AP. During the experiments, APs detect passing-by cars and notify the central 
server. Information about which AP the car was close to at what time is gathered at the central server. 
The central server processes this information to track travelling cars based on the time and location of 
each Bluetooth device detected by the WMN. In Figure 5 we show the map of our actual AP deployment 
in the residential area. The squares indicate the locations of the APs. The directed thick line indicates 
the path and direction followed by the car. This line is constructed at the central server by connecting 
the squares in the figure. At this stage of development, we used straight lines to connect the triangles, 
which can be extended to follow actual roads.

Our platform enables the calculation of approximate speed of the car based on the time and location 
information collected from different APs. We parsed the information collected from each AP to find 
out the time the car was closest to each AP (the second in time the RSSI received from the car was at 

Figure	4:	Signal	Strength	detected	for	a	Car	in	a	residential	area
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highest value). Before deployment, the time at each AP is synchronized with a centralized server and 
the distance between APs is measured and reported to the central server. The server calculates the aver-
age of the travelling speeds between each two APs and considers this average to be the traveling speed 
of the car in the area of deployment. Comparing the calculated speed against the actual speed the car 
traveled at we found out a 10- 15% of difference. We had the car traveling at 20, 30, 40 and 50 km/hour, 
and repeated for three times, with approximately the same approximated percentage. 

DIscUssION ON LARGE-scALE DEPLOYMENT OF THE PLATFORM

Here, we report on aspects affecting large-scale deployment of the platform, which provides a roadmap 
for expanding this work. Large-scale deployment involves units at the lowest two levels in the hierarchy, 
that is the OBU and the WMN AP levels. 

At the lowest level in the hierarchy, OBUs can transmit traffic information using standard wireless 
communication protocols, of which IEEE 802.15 (Bluetooth), 802.15.4 (ZigBee) and 802.11 (Wi-Fi) are 
the most common. Of the aspects affecting the design of OBU communication, transmission range of 
an OBU is one of the most important factors of large-scale deployment. The higher the transmission 
range of an OBU, the smaller the number of WMN AP required to cover larger geographic areas. A 
smaller transmission range is typically associated with a multi-hop architecture versus a single-hop 
architecture. 

Another factor that affects OBU design is its transmission rate. The higher the data rate offered 
by a transceiver device, the smaller the time needed to transmit a given amount of data. Higher data 
transmission rates are mandatory for vehicle tracking applications (Sarangapani, 2007) because vehicles 
typically travel at relatively higher speeds. This will allow only a few seconds for OBU-RSU data ex-
change. OBUs report data to RSU either continuously or in response to an event. With the first model, 
traffic is continuously monitored and data gathered is continuously reported to the centralized server. In 
the event-based reporting, the OBU report data if they detect the occurrence of an event or in response 

Figure	5.	Tracking	a	traveling	car	(map	courtesy	of	Google	Maps)
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to receiving a query request. A hybrid model is also possible using a combination of continuous, event-
driven and query-driven data delivery (Akkaya & Younis, 2005). 

At the next higher level of the hierarchy, large-scale deployment of WMN AP is controlled by a set 
of economical and operational factors. Economical factors include the number of AP, the unit price for 
each AP, and AP installation and maintenance cost. Operational factors include traffic flow character-
istics, coverage quality, and surrounding environment. 

The number of WMN AP is affected by several factors such as area of deployment region, nature 
of deployment region, and fault tolerance requirements. The WMN cell size is a design factor for the 
platform that depends on many factors such as AP transmission range, application type, and required 
coverage accuracy. In addition the general characteristics of the geographic cell affect WMN deployment. 
For example, downtown areas typically have higher density deployment of WMN APs as compared to 
suburban or rural areas because of the density of cars and interference from other wireless devices. The 
same applies for highways when compared to small city streets. 

In addition, WMN deployment always considers a trade-off between AP capabilities and unit price, 
and power consumption. Since a WMN contains a large number of APs, the cost of a single AP is very 
important to maintain the overall cost of the network within acceptable limits. The price of an AP is af-
fected by capabilities of its components, such as communication devices, power supplies, and processing 
units. For the communication device, for example, enhanced features include distinct communication 
address, enhanced data rates, power consumption efficiency, wider communications range, precise 
receiver sensitivity, carrier sense capabilities, RSSI, wake up radio, ultra wide band communication, 
and dynamic modulation scaling (Krishnamachari, 2005; Cheekiralla & Engels, 2005; Khemapech et 
al., 2005). 

A third economic factor to be considered is WMN installation and maintenance costs which largely 
depend on the number of nodes, mobility of sensors, and type of deployment. Deterministic deployment 
is almost always expected to have higher installation costs than random deployment. Another aspect 
of cost is whether the installation is automated or manual. The installation process may also involve 
costs for licenses, permits, insurance and labor. WMN maintenance and fault tolerance are of the most 
important network management issues. A WMN is required to provide reliable monitoring in severe 
circumstances and even if some AP fail. WMNs are, therefore, required to automatically recover and 
reconfigure themselves. WMNs are typically designed with redundancy in AP to enhance tolerance 
to faults. The number of WMN AP is affected by the redundancy level required to fulfill QoS or fault 
tolerance requirements. The higher the fault tolerance level required, the higher the redundancy level 
and the larger the number of sensors that will be required. In Gao et al. (2004), the problem of evaluat-
ing redundant sensing areas among adjacent wireless sensors was analysed and recommendations on 
the minimum and maximum number of neighbours required to provide complete redundancy were 
presented.

WMN deployment also depend on operational factors such as interference from unwanted wireless 
signals available in the environment and weather conditions affecting the WMN operation. Interference 
may come from other transmitters sending in the same frequency band at the same time. There exist 
two kinds of interference: co-channel and adjacent-channel (Khemapech et al., 2005). Weather also 
affects the deployment of WMNs. Snow and rain have an effect on packet loss with the effect of rain 
being with less severity than of snow (Stojmenovic, 2005). 
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cONcLUsION

In this chapter, we described how the integration of Wi-Fi based wireless mesh networks and Bluetooth 
technologies can be used for detecting and tracking travelling cars as well as measuring their speeds. We 
described our proof-of-concept implementation and deployment of a wireless platform for enabling this. 
The platform was able to track cars travelling at speeds of 0 to 70 km/hour. We did not test the platform 
at higher speeds which require unavailable (at the time of the experiment) WMN setups on highways. The 
tested platform was able to track cars on roads and as they travel through and make turns on different 
streets. The platform calculated car speed by correlating information gathered at different synchronized 
AP. Preliminary results indicated that speeds can be measured with ± 10%-15% accuracy. We plan to 
incorporate more advanced algorithms to enhance speed calculation accuracy in the future.

The proposed platform is cost-effective for three reasons: 1) the platform uses unlicensed wireless 
technologies; 2) it leverages investments made in municipal WMNs; 3) the platform was built on com-
mon hardware and open-source software. Using open source elements makes the developed platform 
flexible and easily modifiable by us or others. To decrease the number of units required to cover required 
parts of the city, one can use longer-range Bluetooth devices. The developed platform can be extended 
to provide many applications and services such as congestion identification and quantification, traveler 
information systems and navigation and route guidance services. This system has the potential to con-
tribute to reducing fuel consumption and air pollution by reducing traffic congestions. 

We identified the following sources of inaccuracy in this experiment due to: 1) difference in manu-
facturing of Bluetooth dongles and implementations of the Bluetooth stack; and 2) we also realized 
that signal refractions and interference can affect RSSI measurements. There are different versions of 
Bluetooth each with a different coverage area and data rates. The availability of metal objects (such as 
other cars) and other wireless signals in the spectrum affects these measurements. 

With the steep growth and expansion of WMNs and the increasing popularity of Bluetooth and 
Wi-Fi mobile devices, it is logical to predict extensions to this research. The developed system has the 
potential to use widely available and rapidly expanding components to enable new ITS services in a 
cost effective manner. Future work will include investigating more accurate algorithms for tracking 
cars and calculating their speeds, assessing the impact of device quality on and tracking cars and as 
well measure their speeds as a proxy to congestion level. We will use more complicated algorithms and 
Geographic Information Systems (GIS) information to draw more accurate tracking of the path that the 
car traveled. We believe that a large-scale deployment of the platform can track cars in urban areas such 
as downtowns where other wireless technologies are more expensive (such as GSM) or cannot operate at 
all (e.g. GPS). Our future studies will include characterizing the effect of differences in manufacturing 
of Bluetooth dongles on the accuracy of our measurements. We will also study how Bluetooth limits 
the performance of this infrastructure. In particular, we will study the effect of the delay in detecting 
a car on the ability of the infrastructure to perform as the speed of travelling car changes. We will also 
try to quantify the maximum number of cars that can be detected in a second. We also would like to 
investigate the potential of the platform for two way communications with the mobile devices. This 
will enable the gathering of traffic information from vehicles as probes and using this information to 
provide navigational services and traveler information to traveling cars, i.e. enabling each device to be 
a contributor and beneficiary at the same time. In the future, wider WMNs can be established using 
private citizens’ routers at residences and offices. Consequently, users can join online communities with 
their AP devices and benefit from the resulting information and services, provided by WMNs. 
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AbsTRAcT

This	chapter	deals	with	self-organization	and	communication	for	Wireless	Sensor	Networks	(WSNs).	It	
shows that nodes do not always need to know their true physical coordinates to be able to communi-
cate	in	an	energy-efficient	manner.	They	can	be	replaced	by	coordinates	which	are	not	related	to	their	
geographical	position,	yet	are	easier	to	obtain	and	more	efficient	when	used	by	routing	protocols.	The	
authors	start	by	analyzing	the	techniques	used	by	a	node	to	infer	its	geographical	location	from	a	small	
number of location-aware anchor nodes. They describe how nodes can use their geographical loca-
tions	to	self-organize	the	network.	The	authors	then	present	an	anchor-free	positioning	algorithm	in	
which nodes acquire virtual coordinates. Through a continuous updating process, virtual coordinates 
of neighbor nodes are brought close together. Although not related to the nodes’ geographical loca-
tion, routing using these coordinates outperforms routing using true physical coordinates. This chapter 
hence	shows	that	localization	algorithms	are	not	per	se	required	when	considering	communication	in	
a WSN. A better strategy is to use geographic routing protocols over non-physical virtual coordinates 
which are easier to obtain.
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sELF-ORGANIZING WIRELEss sENsOR NETWORKs: A PARADIGM sHIFT

Self-organization can be defined as “the emergence of system-wide functionality from simple local 
interactions between individual entities” (Prehofer & Bettstetter, 2005). As we will describe in this 
section, self-organization principles can be applied to any collection of individual entities, be it a group 
of economic agents, individual bacteria, a school of fishes, or a wireless multi-hop network.

The goal of self-organization in WSNs is to create a fully-autonomic network, which can be used 
without human intervention after deployment. From a networking point of view, it includes enabling 
network-wide communication from local simple interactions between nodes. This is, in fact, the definition 
of self-organization given above. (Mills, 2007) extended this definition by describing the design strate-
gies of self-organizing systems. In the following paragraphs, we give examples of emergent behavior 
in economics and biological systems.

Emergent behavior principles apply to economics. Every economic agent uses only local information 
to decide how to behave. Buyers know only their own preferences and their own budget constraints, 
sellers know only their own costs. Their buying and selling on markets generate market prices, contain-
ing and transmitting all information about preferences, resources and production techniques. This way, 
market prices guide economic agents in making the best use of the resources available. Adam Smith 
called the market price “the invisible hand” which leads people to behave in the interest of society even 
when they seek only their self-interest (McMillan, 2002).

Emergent behavior also applies to much simpler systems such as a colony of Escherichia coli, a type 
of bacteria. Each bacterium is provided with flagella enabling it to move. In the presence of succinate 
(a chemical component), each bacterium excretes chemical substances which serve as attractants for 
other bacteria. Whereas these unicellular beings follow simple rules, these local interactions between 
individual entities yield chemotactic pattern formation: the bacteria organize into swarm rings and ag-
gregates (Brenner, Levitov, & Budrene, 1998).

In “migrating groups of fish, ungulates, insects and birds, crowding limits the range over which 
individuals can detect one another” (Couzin, Krause, Franks, & Levin, 2005). Despite the local knowl-
edge of each bird, a flock of birds moves in a coherent way (see Figure 1). Moreover, as detailed in 
(Prehofer & Bettstetter, 2005), bird flocks exhibit all the advantageous properties of a self-organized 
system, namely adaptability (the flock changes when attacked by a bigger bird), robustness (the flock is 
still coherent even when a bird gets killed) and scalability.

  The previous paragraphs have shown examples of self-organizing entities and emergent behavior 
in economics and biological systems. We will see that WSNs have a lot in common with those systems. 
Because of the potentially very high number of nodes creating a wireless multi-hop network, the manu-
facturing cost of each individual node needs to be kept low. As a consequence, each node is capable of 
fulfilling only a limited set of tasks, and can only communicate with a limited number of close neighbor 
nodes. Hence, the concepts of emergent behavior can apply to large scale WSNs in a fashion similar to 
what the described biological systems achieve. This emergence enables extraordinary accomplishments 
by the network as a whole.

The ultimate goal of a self-organizing network is to be fully autonomic: to be deployed and used 
without any human intervention. The challenge of self-organizing a wireless multi-hop network is ex-
emplified in Figure 2. Each small white circle represents a node and edges interconnect nodes capable 
of communicating. Self-organization in such a network consists of enabling node C to send a message 
to node X, by only having nodes communicate locally with their neighbor nodes (the ones within com-
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munication range). We call routing the process of finding a sequence of nodes to relay the message 
from C to X. This process needs to happen in an energy-efficient and robust manner. Energy-efficiency 
guarantees a long network lifetime; robustness implies that communication is still possible even under 
lossy links, or when nodes move and/or (dis)appear.

Research on wireless ad-hoc networks (Tonguz & Ferrari, 2006) has yielded a number of self-orga-
nization concepts such as clustering and virtual backbones. Clustering refers to grouping nodes together 
and electing a leader node in each cluster. Routing is thereby simplified as it can be done hierarchically: 
inside a cluster on a local scale and between a small number of clusterheads on a global scale. Ideas 
developed are largely inspired by wired networks where routers are grouped into Autonomous Systems 
and IP addresses are assigned hierarchically. An excellent overview of the concepts of self-organization 
for ad-hoc networks can be found in (Theoleyre & Valois, 2007).

As stressed by (Karl & Willig, 2005) and (Dohler et al., 2007), while Wireless Sensor Networks and 
ad-hoc networks are both wireless multi-hop networks, they are different in mainly three aspects: (1) 

Figure	1.	(left)	Illustration	of	the	main	principles	of	a	self-organizing	system	borrowed	from	(Prehofer	
&	Bettstetter,	2005);	(right)	picture	of	a	starlings	flock	in	Denmark	(by	Bjarne	Winkler)

Figure	2.	Depicting	the	problem	of	self-organizing	a	wireless	multi-hop	network
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energy-efficiency is a primary goal for WSNs, (2) in most envisioned applications, the amount of data 
transported by a WSN is low and (3) all the information flows towards a limited number of destination 
nodes in WSNs. Clustering does not really answer any of these three specific WSN constraints, mainly 
because building and maintaining such a structure costs energy. A paradigm shift is thus needed when 
considering self-organization for WSNs.

In the biological examples described above, all involved entities have a notion of movement and posi-
tion. A bird in a flock knows where its neighbor birds are, and knows their relative position and heading. 
In this chapter, we describe how WSN protocols exploit location information to enable network-wide 
communication. At the end of this chapter, we propose a self-organizing protocol for WSNs which 
mimics the behavior of a swarm of biological entities.

The remainder of this chapter is organized as follows. We will first describe how location informa-
tion is used for routing in WSNs. As acquiring location information is expensive, we will detail how 
(estimated) physical coordinates can be determined, relative to a set of anchor nodes. In case the anchor 
nodes do not know their true physical coordinates, the other nodes determine non-physical coordinates. 
We will present a self-organization technique inspired by geographic routing, which uses entirely virtual 
coordinates in an anchor-free setting.

LOcATION-bAsED cOMMUNIcATION PROTOcOLs

Applications for WSNs are foreseen in a large range of domains (Culler, Estrin, & Srivastava, 2004). In 
the example case of a city-wide automated water meter reading WSN, nodes are attached to each home’s 
water meter and report the daily consumption to the local water supplier. Knowledge of the physical 
location of the water meter is not useful as long as the latter can be identified. On the other hand, when 
considering a WSN used for tracking the location of lions in a National Park, having the location of the 
sending node in a reported message is essential.

If the application requires the nodes to know their location, there is no overhead to reuse this loca-
tion information for communication purposes. This is the philosophy behind geographic routing, which 
uses the knowledge of a node’s position together with the positions of its neighbors and the destination 
node (called ‘sink node’) to elect the next hop node.

Greedy Geographic Routing Protocols

Greedy geographic routing is the simplest geographic routing protocol (Stojmenovic & Olariu, 2005). 
When a node receives a message, it relays the message to its neighbor geographically closest to the 
sink. Several definitions of proximity to the destination exist. We will use Figure 3(a) as a basis for our 
description, where node S wants to send a message to node D. Most-forward within radius considers the 
position of a node’s projection on a line between the source and the destination. In Figure 3(a), node S 
would choose A as the neighbor node closest to D. Another definition considers the Euclidian distance to 
the destination (in this case, S would choose B). Finally, a last variant, sometimes referred to as myopic 
forwarding, chooses the node with the smallest deviation from the line interconnecting the source and 
the destination (node C in Figure 3(a)).

Irrespective of the definition of proximity, greedy routing can fail. In Figure 3(b), if a message is 
sent from node A to X, it reaches X with a number of hops close to optimal. Consider now the message 
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is sent from C to X. C will send it to F, it’s neighbor closest to X. F, however, has no neighbor closer 
to X than itself; the message ends up at a local minimum, or a void area. A void area (or simply void) 
is depicted in Figure 4. It appears when a node has no neighbor closer than itself to the destination. A 
greedy geographic routing algorithm fails when it reaches a void.

The occurrence of such failures depends on the topology used. In Figure 5, we present simulation 
results obtained by randomly scattering nodes in a 1000x1000 area. Each node has a circular commu-
nication area of radius 200. We tune the number of nodes to obtain the desired average node degree (the 
average number of neighbors of all nodes in the network) and measure the delivery ratio. Results are 
averaged over 105 runs. For our simulations, the source and the sink nodes are chosen randomly - among 
connected nodes - and change at each run. A ratio equal to 1 means that all sent messages are received. 
Note that Figure 5 also shows results for other protocols which will be described later.

Delivery ratio is close to 1 for very high densities because the probability of having void areas de-
creases as the number of nodes increases. For typical WSN densities (5-10 neighbors), over 20% of sent 
messages are not received because of this flaw in the routing protocol.

Figure	3.	Greedy	geographic	routing.	 (a)	Different	ways	of	defining	distance	 to	 the	destination;	(b)	
Geographic routing may fail

Figure	4.	An	example	of	a	void area. The plain circle depicts the communication range of node S. The 
dotted circle is shown for readability only, it is centered at D and has a radius ||DS||. It shows that no 
neighbor node of S is closer than S to D.
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Geographic Routing with Guaranteed Delivery

Some geographic routing protocols guarantee delivery under the assumption of reliable links and nodes. 
The key idea of these protocols is to switch between two modes. The default mode uses the greedy ap-
proach described above. In case this mode fails, a second mode is used to circumnavigate the void area. 
Once on the other side of this void area, the greedy mode can be resumed.

Greedy-Face-Greedy (GFG) and Greedy Perimeter Stateless Routing (GPSR) (Frey & Stojmenovic, 
2006) use exactly this principle. They have been proven to guarantee delivery, which is verified in Figure 
5. Although details on geographic routing protocols are out of this chapter’s scope, the interested reader 
is referred to the excellent overview provided in (Stojmenovic & Olariu, 2005).

Note, however, that this protocol fails when the unit disk graph assumption does not hold (i.e. the 
communication areas of the nodes are not perfect circles with the same radius). We evaluate this effect 
by simulation later in this chapter.

We have seen that some applications require the nodes to know their locations. Geographic com-
munication protocols take advantage of this knowledge to perform some tasks which would be more 
expensive otherwise, such as routing. Yet, having a node know its position is expensive. The position 
of a node can be programmed manually during deployment. This, however, removes the possibility of 
randomly deploying a large number of nodes. 

Another solution is to equip each node with a positioning device (e.g. GPS). However, GPS-like 
systems have been reported to be “cost and energy prohibitive for many applications, not sufficiently 
robust to jamming for military applications, and limited to outdoor applications” (Patwari et al., 2005). 
While not completely solving the problem, reducing the portion of location-aware nodes in a network 
is a step forward. 

Figure	5.	Delivery	ratio	for	different	routing	protocols	when	using	true physical coordinates, assum-
ing a physically connected network. Note that results for the GFG	and	3rule	protocols	(which	will	be	
presented	later)	coincide	at	1,	which	is	the	best	possible	case.
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INFERRING LOcATION FROM A sET OF ANcHOR NODEs

The idea behind using anchor nodes is to only have a subset of nodes be location aware. The cost of 
location-awareness can be monetary (e.g. the cost of a GPS chip), energy-related (e.g. to power a GPS 
chip), related to man-power (e.g. manually programming a node’s position during deployment) or any 
combination thereof.

Regardless of the technique used, each anchor node is assumed to know its position (e.g. a set of 
{x,y} coordinates in a two-dimensional deployment). Non-anchor nodes will need to infer their own 
coordinates from the anchors using local measurements and localization protocols. When using anchor 
nodes, there is a clear distinction between localization (i.e. determining the physical positions in space/
plane of the nodes) and routing. The nodes in the network typically determine their coordinates first; the 
geographic routing protocol then uses this information to send a message from any node to the sink.

There are two cases. In the first one, anchor nodes are location aware, meaning that they know 
their true physical coordinates (e.g. by means of GPS). As a result, non-anchor nodes will determine 
(estimated) physical coordinates, as close as possible to their true physical ones. In the second case, 
anchor nodes do not know their true physical coordinates. Nodes will thus have relative coordinates, 
a concept defined later in the chapter, not related to their true physical coordinates.

Location-Aware Anchors

With anchor nodes knowing their true physical position, the goal of a node is to determine coordinates 
which are as close as possible to its true physical coordinates. We call these coordinates “(estimated) 
physical coordinates”. Multi-lateration may be used: if each node knows its distance to a set of anchor 
nodes, it determines its position as the intersection of the circles centered at each anchor node and with 
radius equal to the distance to this anchor node.

Whereas it is essentially the same idea as the one used by the GPS system, the main difficulty is to 
determine distances. As WSNs are multi-hop, a first approximation to the distance to an anchor node is 
the sum of distances of the individual links constituting the multi-hop shortest path. There are a number 
of techniques to measure these one-hop distances, including received signal strength (RSS) and time 
of arrival (TOA) measurement. Niculescu and Nath show that angle-of-arrival (AOA) is another valid 
technique for positioning in a wireless multi-hop network (Niculescu & Nath, 2003). Readers interested 
in positioning techniques are referred to (Patwari et al., 2005).

In a GPS-like system (Figure 6(a)), localization precision depends on the number of anchors (i.e. satel-
lites), their relative positions and the precision of distance measurements. Things are more complicated 
when applying trilateration to WSNs. First, distance measurement errors add up on a multi-hop link. 
Moreover, localization precision depends also on the alignment of nodes on this multi-hop link. As shown 
in Figure 6(b), |AX|≠|AD|+|DX| because nodes A, D and X are not aligned. This localization technique 
is used by the GPS-Free-Free (Benbadis, Friedman, Amorim, & Fdida, 2005) protocol. Localization 
accuracies of about 40m are reported on networks with an average node degree of 10 neighbors (results 
are worse with sparser networks).

Benbadis et al. (Benbadis, Obraczka, Cortes, & Brandwajn, 2007) extend these results with simula-
tions showing that the success ratio of greedy routing when using (estimated) physical coordinates is 
lower than when using true physical coordinates.
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The most critical drawback of using true or estimated physical coordinates for routing is that geo-
graphic proximity is not synonymous with electromagnetic proximity. In other words: geographically 
close nodes can not always communicate, and nodes which can communicate are not always geographi-
cally close. This rule by itself annihilates all geographic routing protocol solutions, and has been largely 
overseen. Most of the proposed protocols are evaluated by simulation. For most of them, the simulated 
propagation model is the over-simplified on/off link model. In this model, the communication area of 
each node is a perfect circle, there is no interference outside this circle, and the radius of this commu-
nication area is the same for all nodes.

Routing protocols perform well under these assumptions; yet, when confronted with a real propaga-
tion model, they fail dramatically. This is shown in (Kim, Govindan, Karp, & Shenker, 2005) for the 
GFG and GPSR routing protocols. The same observation applies to all routing protocols based only on 
true or estimated physical coordinates.

In some applications, a node needs to know its physical position in order to report to the sink node 
where the sensed event is located. Nevertheless, the idea of using this geographical position alone for 
routing purposes does not hold in the general case because of the over-simplified assumptions on the 
propagation model it conveys. Physical coordinates (determined by GPS-like hardware, manually pro-
grammed or determined relatively to anchor nodes) can not be used directly for routing purposes. A new 
localization system is needed in this case, which is related to the topology of the network.

Location-Unaware Anchors

Using location-aware anchor nodes is useful for determining (estimated) physical coordinates; while 
essential to some applications, these coordinates cannot be used as such for routing. New coordinates are 
needed, which reflect the topology of the network. We will call these coordinates “relative coordinates”. 
These can be determined by using a set of location-unaware anchor nodes.

Relative coordinates of node V are defined as a vector {V1,V2,…,VN} where Vi is the hop distance 
from the current node to anchor node I; N is the number of anchor nodes. A simple way of assigning 

Figure	6.	The	concept	of	 trilateration	applied	 to	a	GPS-like	system	(a)	and	 to	a	multi-hop	wireless	
network (b)
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these relative coordinates is to ask each anchor node to periodically broadcast a message containing 
a counter which is incremented at each hop as it propagates through the network. Note that nodes can 
learn how many anchor nodes there are by listening to these broadcasted messages. Relative coordinates 
are not related to true physical coordinates. An example topology where each node is assigned relative 
coordinates is presented in Figure 7.

Geographic routing needs a notion of distance to be functional. As will be discussed later, note that 
the resulting relative distance is not directly related to physical distance. Cao et al. (Cao & Abdelzaher, 
2004) proposed Euclidian distance as a metric of distance. In their proposal, relative distance ||D|| be-
tween nodes V={V1,V2,…,VN} and W={W1,W2,…,WN} is calculated as

∑
=

−=
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i
ii WVD
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2)(

Several aspects of the relative coordinates need to be clarified. First, several distinct nodes may end 
up having the same coordinates. We call a group of nodes with the same coordinates a “zone”. Fur-
thermore, because coordinates are not orthogonal (i.e. having more than three anchor nodes introduces 
redundancy), ||D|| is not directly related to physical distance.

Despite these specificities, using relative coordinates is a promising approach to routing in WSNs. 
Simulation results in (Cao & Abdelzaher, 2004) show that, when using relative rather than physical 
coordinates, less voids are encountered. This means that the success ratio of greedy geographic routing 
when using relative coordinates is higher than when using true physical coordinates, and hence more 
energy in the network is conserved. These results are confirmed experimentally by (Fonseca et al., 2005). 
This work serves as a proof-of-concept experiment for relative coordinate routing in WSNs.

The difficulty when using anchor nodes is to select those anchor nodes. The Virtual Coordinate As-
signment Protocol (“VCap”, Caruso, Chessa, De, & Urpi, 2006) elects anchor nodes dynamically during 

Figure	7.	An	example	 topology	where	each	node	is	assigned	relative coordinates. Each small white 
circle represents a node and edges interconnect nodes capable of communicating. A small white square 
represents an anchor node.
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an initialization phase. A distributed protocol is designed to elect a predefined number of anchor nodes, 
evenly distributed around the edge of the network. This obviates the need for manual selection.

As said above, “zones” refer to a group of nodes which have the same relative coordinates. As the 
routing protocol bases its decision on these coordinates, ties may appear inside a zone, and the protocol 
may make the wrong decision. This can cause the multi-hop transmission to fail. Liu and Abu-Ghazaleh 
address this problem (Liu & Abu-Ghazaleh, 2006) by turning each virtual coordinate into a floating 
point value, and slightly changing these coordinates as a function of the nodes’ neighborhood. The oc-
currence of ties and inconsistencies in the distances used for routing is hereby drastically reduced. To 
our knowledge, this is the first paper where a routing process using relative coordinates outperforms a 
routing process using true physical coordinates, in terms of hop count.

True physical coordinates represent the nodes’ geographical positions; relative coordinates represent 
the topological position of the nodes, i.e. their position in the connectivity graph of the network. Routing 
using true physical coordinates suffers from void areas which makes greedy geographic routing fail. 
Some geographic routing protocols can deal with void areas, but they discover paths which are potentially 
very long. When using relative coordinates, there are less void areas. As a result, routing paths can be 
shorter than when using true physical coordinates, provided the problem of “zones” is addressed.

So far, relative coordinates were obtained by counting the number of hops separating each node 
from each anchor node. The GSpring protocol (Leong, Liskov, & Morris, 2007) takes this concept one 
step further by introducing the spring model. Each link connecting two nodes is considered as a spring. 
These abstract springs have a rest length which is a function of the node’s neighborhood. If two nodes 
are closer to each other than this rest length (using the distance calculated as a function of the nodes’ 
relative coordinates), the repulsion force of the spring causes their relative coordinates to part away. 
Inversely, if the length of the abstract spring is larger than its rest length, an attraction force brings the 
nodes relatively closer together.

During initialization of GSpring, an algorithm identifies a predefined number of anchor nodes on the 
edge of the network, and initializes their relative coordinates. The relative coordinates of these nodes 
will not change, and they appear as anchors to the spring system. An iterative process causes the abstract 
springs to be elongated and shortened until the spring system converges. Simulation results show that 
using this coordinate system yields better performance (in terms of number of hops) than using true 
physical coordinates.

Using relative coordinates for routing in WSNs is a very promising approach. Because the coordinate 
system is related to the topology of the network (and not to the physical location of the nodes), using 
routing protocols on top of relative coordinates yields better performances than using true physical co-
ordinates. Moreover, relative coordinates avoid the cost of acquiring (estimated) physical coordinates.

Relative coordinates do require either a human operator to manually select the location of the anchor 
nodes, or a time-consuming and costly election protocol to perform the same task. Moreover, rotating 
anchor nodes is costly. None of the cited works answers the questions related to network dynamics. 
During the lifetime of the network, nodes – including anchor nodes – may disappear, and new nodes 
may appear. Moreover, wireless links are dynamic. The usual answer to these problems is to periodi-
cally rebuild the relative coordinate system. This is not satisfactory as coordinates may continuously 
become outdated, and periodic rebuilding may be unnecessary when there is no traffic. New solutions 
are needed.
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ANcHOR-FREE VIRTUAL cOORDINATE-bAsED sOLUTIONs

Motivation and Theoretical basis

To sum up the previous parts, some applications require each node to know (an approximation of) its 
true physical coordinates. These obtained estimated physical coordinates (using GPS, manual pro-
gramming or localization protocols) can not be used as such for routing because they are not related to 
the network topology. To answer this, a node can determine coordinates relatively to a set of location-
unaware anchor nodes. These relative coordinates can be used for routing in WSNs (outperforming 
solutions with true physical coordinates). Nevertheless, the use of relative coordinates suffers from the 
cost of electing a set of anchor nodes, and from network dynamics.

In this section, we introduce virtual coordinates. Like relative coordinates, they are not related to the 
node’s true physical coordinates, but are used for routing in WSNs. They offer solutions which perform 
significantly better than using true physical coordinates. Unlike relative coordinates, no anchor nodes are 
required for setting up virtual coordinates, and the solution elegantly copes with network dynamics.

Research on applying non-physical coordinates to wireless multi-hop nodes has been driven by 
the quest for a greedy embedding. A graph is defined as a set of vertices interconnected by edges. A 
greedy embedding of a graph is composed of the same edges interconnecting the same vertices, only 
the vertices have been placed at coordinates such that greedy routing always functions when sending a 
message between arbitrarily chosen nodes (i.e. there are no void areas).

The notion of greedy embedding was developed by Papadimitriou and Ratajczak (Papadimitriou 
& Ratajczak, 2004), who studied the special case of the Euclidian space. They provided examples of 
graphs which do not admit a greedy embedding in the Euclidean plane, yet they conjectured that every 
3-connected planar graph admits a greedy embedding in the Euclidean plane. 

Kleinberg has extended this work and shown that every connected finite graph has a greedy embed-
ding in the hyperbolic plane (Kleinberg, 2007). The underlying algorithm, however, assumes that the 
network is capable of computing a spanning tree rooted at some node. Although a fair assumption (dis-
tributed protocols for computing a spanning tree are abundant in the literature and in practice), using a 
spanning tree requires the network to maintain this structure, which may be hard and costly. Moreover, 
in theory, the worst-case path stretch (the ratio of the number of hops on a greedy route to the number 
of hops on the shortest route between the same pair of nodes) is linear in the network size.

The solution we propose does not require an initialization phase. This means it is functional as soon 
as the network is deployed. The nodes use virtual coordinates which are updated throughout the network 
lifetime. No network-wide periodic updates are needed, and the system is extremely robust against nodes 
(dis)appearing and link dynamics. The path stretch is small, typically a few percents above 1.

As the nodes’ virtual coordinates are constantly updated, there is no distinct localization phase fol-
lowed by a routing phase, as it is the case when using physical or relative coordinates. This significantly 
increases network robustness as any topological change will be reflected into the nodes’ virtual coordi-
nates immediately. This also means that localization (i.e. nodes determine their virtual coordinates) and 
routing (i.e. a geographic routing protocol uses these virtual coordinates to find a path to the destination) 
are intertwined and happen at the same time.
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Initialization and Iterative convergence Process

Let’s assume we have a planar 2-D network. Each node has two virtual coordinates (i.e. {x,y}, x and y 
being real numbers). When a node is switched on, it chooses its initial virtual coordinates randomly within 
a common given range, e.g. [0 1000]. The sink node always chooses the virtual coordinates {0,0}. 

Each time a node sends a message, it replaces its virtual coordinates with the average of its neigh-
bors’. The sink node is an exception to this rule as it never changes it virtual coordinates from {0,0}. 
Learning the virtual coordinates of its neighbors can easily be implemented as an on-demand service 
provided by the Medium Access Control (MAC) layer. As an example, such a protocol is proposed in 
(Watteyne, Bachir, Dohler, Barthel, & Augé-Blum, 2006). After updating its virtual coordinates, the 
current node appends these new virtual coordinates to the message it is about to send. Other than send-
ing these coordinates along with the message, there is no additional overhead to our approach, i.e. no 
signaling messages at the network layer.

As a message is sent over the wireless medium, all neighbors will hear the current node’s new virtual 
coordinates. If a neighbor node finds out that it is virtually closer to the current node than a minimal 
“safety distance”, it updates it own virtual coordinates in order to be at a threshold distance MinVirtual. 
After this step, no neighbor table is maintained, i.e. no long-term information is kept.

The complete process is depicted in Figure 8, which represents four nodes placed at their virtual 
coordinates. Edges interconnect nodes capable of communicating with each other. Node V has three 
neighbor nodes W, X and Y. In Figure 8(a), it wants to send a message. It learns the virtual coordinates 
of its neighbors thanks to the MAC layer and replaces its virtual coordinates with the average value of 
its neighbors’ virtual coordinates (Figure 8(b)). Node V now sends its message, appending its updated 
virtual coordinates. Node X finds out it is virtually closer to V than the threshold virtual distance Min-
Virtual, represented by a dashed circle. Node X thus updates its own virtual coordinates so as to virtually 
“slide” away from node V, until it is at virtual distance MinVirtual from it (Figure 8(c)). Note that when 
sliding away, node X remains on the same axis XV.

The nodes in the network know that the sink always chooses virtual coordinates {0,0}. As a result, 
the sink does not need to broadcast its coordinates to the entire network. This characteristic can be 
especially helpful when the sink node is relocated to another place (we will detail this case further in 
the text).

Figure	8.	The	updating	process	when	using	virtual coordinates
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Explaining Network convergence

Before presenting the performance results when using the presented virtual coordinates, we believe it 
is important to discuss the intuition behind it. As detailed in the introductory part of this chapter, self-
organization in WSN is shifting from complex to lightweight protocols. The functionality of the latter 
comes from the emergence of a network-wide behavior as a consequence of the (simple) interactions 
between neighbor nodes.

Analogies can be seen between the presented protocol and the behavior of animal swarms. In a bird 
flock, a single bird can only see its neighbor birds, and knows where they are. To keep the flock together, 
a bird moves equally close to each of its neighbors; yet, to avoid collision, it stays at a safety distance. 
The parameter MinVirtual represents this safety distance. Without it, as nodes update their virtual 
coordinates, they would get virtually closer to one another and closer to the sink. Virtual coordinates 
would take infinitely small values, which are hard to handle by the fixed-point computation unit typi-
cally found in the microprocessors/microcontrollers at the heart of wireless sensors.

The flock forms a homogeneous structure, all bird following a leader in the front (Couzin, Krause, 
Franks, & Levin, 2005). Our system adopts the same strategy. As described in the next paragraphs, the 
virtual coordinates of the nodes align, the “leader” role being played by the sink node.

Figure	9.	Witnessing	network	convergence
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To help the reader visualize the emergent behavior of our WSN, we refer to Figure 9. This figure was 
obtained by simulating the behavior of 100 nodes, randomly scattered within a two dimensional square 
space of dimensions 1000×1000; each node has a 200 unit radio range. The upper part shows the real 
graph, i.e. nodes are positioned at their true physical coordinates with edges interconnecting nodes able 
to communicate. The lower part represents the virtual graph, i.e. the same vertices and edges as in the 
upper drawing, only nodes are positioned at their virtual coordinates. We show snapshots of the virtual 
graph after 0, 100 and 500 messages have been sent (from left to right). Each of these messages is sent 
from a randomly chosen connected node (different for each message) to the sink node.

The initial virtual graph (Figure 9, lower left) looks erratic as virtual coordinates are initially chosen 
randomly. As the number of sent messages increases, the virtual coordinates of the nodes align. While 
messages flow through the network, neighbor nodes are brought virtually closer to one another. In the 
resulting linear structure, nodes topologically close to the sink node are also virtually close, and vice-
versa. Once the virtual coordinates have converged, virtual distance to the sink is hence closely related 
to the minimum number of hops to the sink. As we will see in the next paragraphs, using geographic 
routing protocols on top of these virtual coordinates yields near-optimal path length. In these simulations, 
we have used MinVirtual=40. This guard distance causes the virtual coordinates to expand, i.e. after 
500 messages, nodes are on average virtually farther away from the sink than after 100 messages.

Note that our solution supports the use of multiple sinks. Without loss of generality, let us assume 
we have two sinks in the network. Each node would now have two pairs of virtual coordinates, one for 
each sink. A sink would have fixed virtual coordinates only for “its” set of virtual coordinates. To select 
the destination sink node, a sending node uses its respective set of virtual coordinates. Note that in case 
a sink node is moved to a different geographical location, the network automatically re-converges after 
the relocation. This re-convergence does, however, come with an extra energy-expenditure.

Proving Network convergence

As shown in Figure 9, lower-left corner, the initial graph is erratic. Without loss of generality, we show 
that under the assumption that MinVirtual=0, the virtual graph converges to a linear virtual graph, i.e. 
the virtual coordinates of all nodes are on a line. We consider the network is composed of N nodes.

As depicted in Figure 10, the lines passing through the sink node and forming angles with the lower 
side of the network form a cone which contains all the nodes in the network. We define qmin and qmax as 
follows:
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Let’s consider the updating process. In particular, let’s see how qmin and qmax evolve over time. Both 
values only change if the updating process affects the node defining this angle (in Figure 10, nodes A 
and B for angles qmin and qmax, respectively). We call ξA and ξB the set of neighbor nodes of A and B, 
respectively.
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We will focus on qmin, the same analysis applies for qmax. As tan(∙) is a strictly increasing function 
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Therefore, qmin increases. A similar analysis shows that qmax decreases. We have 0lim minmax =−
∞→m

, where 
m represents the number of sent messages. Network convergence is hence achieved where the network 
converges to a linear virtual graph. This analysis still holds with MinVirtual>0. The convergence of the 
system is equivalent, only neighbor nodes are never virtually closer than MinVirtual. The cone always 
stays slightly open.

Note that neighbor nodes always have different coordinates, which is ensured by the use of Min-
Virtual. As a result, the zones problem described previously (in which several neighbor nodes have the 
same coordinates) does not exist when using virtual coordinates.

Path stretch and speed of convergence

Virtual and relative coordinates were introduced to be used by a geographic routing protocol. To in-
crease the network throughput and reduce the energy expenditure, the multi-hop path discovered by 
the routing protocol should have the smallest possible number of hops. Hence, to evaluate efficiency of 
routing protocols, path stretch is a commonly used metric. It is the number of hops obtained by a given 
protocol divided by the minimum number of hops, using the centralized Dijsktra algorithm (calculating 
the shortest possible path). A path stretch of 1 is optimal.

We present simulation results in the following paragraphs. These were obtained using the same 
parameters already described above. Each value is averaged over 105 runs and presented with a 95% 
confidence interval.

In a geographic routing protocol, voids can be met, causing the greedy approach to fail. In this case, 
a second mode is used to circumnavigate the void until the greedy mode can be resumed. As pointed 

Figure	10.	Definition	of	the	angles	used	in	the	proof



  461

Beyond Localization

out in (Kim, Govindan, Karp, & Shenker, 2005), face mode protocols such as GFG or GPSR do not 
function when the connectivity graph is not a unit disk graph, which is the case of our virtual graph. 
We therefore use the 3rule routing protocol (Watteyne, Augé-Blum, Dohler, & Barthel, 2007) together 
with virtual coordinates. In this protocol, each traversed node is asked to append its identifier in the 
packet’s header. Based on a sequence of nodes already traversed, a node can elect the next hop in a way 
that guarantees delivery.

Performances of the resulting communication architecture are compared with the GFG/GPSR 
protocols. Note that the performances of GFG/GPSR are extracted assuming all nodes have a perfect 
knowledge of their true physical coordinates. For our simulations, the source node of each message is 
chosen randomly among the nodes which are connected to the sink, and changes at each run.

Figure 11 shows how the average path stretch of the virtual coordinate setting decreases as a function 
of the number of sent messages. As messages flow through the network, virtual coordinates align and the 
path stretch decreases. After about 100 messages, using virtual coordinates turns out to be more efficient 
than using true physical coordinates. Although the speed of convergence depends on the topology of the 
network and on the message generation model, simulations show that the number of messages needed 
for convergence is roughly proportional to the depth of the network, i.e. the maximum number of hops 
between any node and the sink. Note that the path stretch of the GFG/GPSR protocols does not depend 
on the number of messages sent. An optional initialization message could speed up the convergence of 
the network. Developing such a hybrid solution is relatively straightforward.

Convergence and Energy Efficiency

Figure 12 (left) and Figure 11 have been drawn for sparse networks (average node degree of 4) and 
dense networks (average node degree of 11), respectively. Because more voids appear as a network gets 
sparser, GFG/GPSR perform worse on sparse networks than on dense ones. Performances of virtual 
coordinates degrade only slightly.

Figure	11.	Comparing	the	average	path stretch when using true physical and virtual coordinates in a 
dense	WSN	(for	an	average	node	degree	of	11)
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Figure 12 (right) depicts the cumulative average path stretch, i.e. an integration of Figure 12 (left). 
The cumulative average path stretch is proportional to the total number of messages sent, thus to the 
total energy consumed. After about 300 messages, it is more energy-efficient to use virtual coordinates 
than true physical ones, i.e. the gain in using virtual coordinates is larger than the extra cost induced 
during network ramp up.

Let us take the realistic scenario of a 100-node environmental monitoring WSN where each sensor 
reports a reading twice a day for 15 years. After 15 years, about 1 million messages will have traversed 
the network. By using virtual coordinates in such a scenario, the network saves 61.4% of the energy it 
would spend if using true physical coordinates, as multi-hop paths are shorter. This number is obtained 
by extrapolating Figure 12 (right) linearly.

Robustness against Nodes (Dis)Appearing

During the lifetime of the network, some nodes will die due to battery exhaustion or hardware failure. 
In the meantime, the network administrator may decide to add new nodes. These events should be ef-
ficiently taken into account when designing self-organization protocols for WSNs.

Figure	13.	Robustness	against	nodes	(dis)appearing

Figure	12.	Comparing	the	average	(left)	and	cumulated	(right)	path stretch when using true physical 
and virtual	coordinates	in	a	sparse	WSN	(for	an	average	node	degree	of	4)
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Let us take the extreme case of an earthquake simultaneously destroying 30% of the nodes of a 
100-node network. After the tragic event, a helicopter flies over the monitored area and randomly 
drops new nodes into the network. Simulation results of this scenario are presented in Figure 13. As 
expected, GFG/GPSR performs worse under low density, which translates into a sharp increase in the 
energy consumption of the network. Our virtual coordinate-based solution quickly adapts to the new 
situation, and converges back to a near-optimal state after nodes are removed/added. As can be seen 
on Figure 13 (right), removing or adding new nodes only has a very limited impact on the network’s 
energy consumption.

 

Figure	15.	The	impact	of	the	number	of	obstacles	(left)	and	localization	accuracy	(right)	on	the	delivery 
ratio of true physical and virtual coordinate-based solutions

Figure	14.	A	real	graph	with	10	obstacles
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Robustness against a Realistic Transmission Model

So far, all simulations were performed under the unit disk graph assumption, i.e. the communication 
area of each node is a perfect circle. We break this assumption by randomly deploying linear obstacles 
of length 100 inside the network. Their positions and orientations (horizontal or vertical) are chosen 
randomly (see Figure 14).

As shown in Figure 15 (left), the delivery ratio of the true physical coordinate-based solution degrades 
as the number of obstacles increases, whereas the virtual coordinate-based solution keeps delivering 
all sent messages.

In Figure 15 (right), we confirm results from (Kim, Govindan, Karp, & Shenker, 2005) stating that 
GFG/GPSR fails when the nodes do not know their true physical position with sufficient accuracy. 
Delivery ratio drops with positioning accuracy. We define localization accuracy as follows. When a 
node believes it is at location {x,y} with accuracy a, it means it is somewhere inside the square box with 
opposite corners at locations {x-a,y-a} and {x+a,y+a}.

Proof-of-concept Experiment

We have carried out an experiment to prove that virtual coordinates can be implemented on low-end 
sensor nodes and perform well when facing real world constraints. We have pushed the system to the 
extreme case of a fast-moving sink node traversing the network.

The experimental setting is shown in Figure 16. A 16-node network is deployed on an airfield, at 
one end of the landing strip. A base station (denoted BS) is installed at the other end and issues requests 
which can be answered by the WSN. As the WSN and the BS are too far apart to communicate directly, 
a mobile sink node (denoted MS) is mounted on a radio-controlled airplane. After receiving a request 
from the BS, the MS circles around and sends the request to the WSN which is broadcasted to all nodes 
in the WSN. The node which can answer the request sends its reply to the mobile sink using the virtual 
coordinate routing scheme described in this chapter. After receiving this reply, the MS flies to the BS 

Figure	16.	The	experimental	setting	used	for	the	proof-of-concept	experiment
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and replies to the request. The interested reader is referred to an internal research report (Watteyne, 
Barthel, Dohler, & Augé-Blum, 2008) which contains all the details about this experiment.

OPEN QUEsTIONs AND REsEARcH cHALLENGEs

The concept of self-organization has undergone a paradigm shift when applied to WSNs. Because of 
their stringent energy constraints and low-throughput, building and maintaining complex structures 
may not be applicable. Inspiration from biological systems such as animal flocks has lead to defining 
self-organization as an emergent behavior coming from simple interactions between a node and its 
direct neighbors.

Because of its natural scalability, coordinates have been used as a basis for communication in WSNs. 
The use of location-aware anchor nodes combined with appropriate localization protocols allows nodes 
to learn their (estimated) physical coordinates. Although this information is required for some applica-
tions, topology-related coordinates are more appropriate for routing. These coordinates can be learned 
relatively to location-unaware anchor nodes, and are not related to the node’s true physical coordinates. 
To avoid the election of anchor nodes and the use of costly localization protocols, this chapter has in-
troduced virtual coordinates. Using an appropriate updating algorithm triggered each time a message is 
sent, these coordinates converge to a near-optimal emerging state, which is extremely robust to network 
dynamics and realistic propagation models.

This proposal constitutes a step towards a fully autonomic network. Being able to cope with dynam-
ics of all kinds, such a network offers a deploy-and-forget experience to the end user. Only with these 
characteristics will WSNs really get ubiquitous.

A long road still lies ahead, and the work presented opens many perspectives for research. Com-
munication systems, especially self-organizing solutions, largely rely on periodic signaling messages. 
Such a pro-active system makes sense under high traffic loads. In the context of WSNs, where typical 
applications require a node to send a message only every now and then, periodically maintaining a 
structure may be too expensive as the network sits idle most of the time. An important research chal-
lenge is to investigate fully on-demand approaches.

True physical coordinates are required by the application; virtual ones are used for communication. 
As most WSNs cope with both aspects, combining true physical and virtual coordinates is essential. 
Both types of coordinates could be acquired simultaneously, reducing the signaling required. A chal-
lenging approach is to define hybrid coordinates, close enough to the nodes’ true physical coordinates, 
but useful for routing. Depending on the use, virtual coordinates could be extended to more that 2 
coordinates. The one dimensional problem could also be considered, although an extension to hybrid 
coordinates seems harder in such a setting.
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