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P r e f a c e  

Lie algebras arise naturally in various areas of mathematics and physics. 
However, such a Lie algebra is often only known by a presentation such as 
a multiplication table, a set of generating matrices, or a set of generators 
and relations. These presentations by themselves do not reveal much of 
the structure of the Lie algebra. Furthermore, the objects involved (e.g., a 
multiplication table, a set of generating matrices, an ideal in the free Lie 
algebra) are often large and complex and it is not easy to see what to do 
with them. The advent of the computer however, opened up a whole new 
range of possibilities: it made it possible to work with Lie algebras that are 
too big to deal with by hand. In the early seventies this moved people to 
invent and implement algorithms for analyzing the structure of a Lie algebra 
(see, e.g., [7], [8]). Since then many more algorithms for this purpose have 
been developed and implemented. 

The aim of the present work is two-fold. Firstly it aims at giving an 
account of many existing algorithms for calculating with finite-dimensional 
Lie algebras. Secondly, the book provides an introduction into the theory 
of finite-dimensional Lie algebras. These two subject areas are intimately 
related. First of all, the algorithmic perspective often invites a different 
approach to the theoretical material than the one taken in various other 
monographs (e.g., [42], [48], [77], [86]). Indeed, on various occasions the 
knowledge of certain algorithms allows us to obtain a straightforward proof 
of theoretical results (we mention the proof of the Poincar~-Birkhoff-Witt 
theorem and the proof of Iwasawa's theorem as examples). Also proofs that 
contain algorithmic constructions are explicitly formulated as algorithms 
(an example is the isomorphism theorem for semisimple Lie algebras that 
constructs an isomorphism in case it exists). Secondly, the algorithms can 
be used to arrive at a better understanding of the theory. Performing the 
algorithms in concrete examples, calculating with the concepts involved, 
really brings the theory to life. 

The book is roughly organized as follows. Chapter 1 contains a general 
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introduction into the theory of Lie algebras. Many definitions are given 
that are needed in the rest of the book. Then in Chapters 2 to 5 we explore 
the structure of Lie algebras. The subject of Chapter 2 is the structure of 
nilpotent and solvable Lie algebras. Chapter 3 is devoted to Cartan subalge- 
bras. These are immensely powerful tools for investigating the structure of 
semisimple Lie algebras, which is the subject of Chapters 4 and 5 (which cul- 
minate in the classification of the semisimple Lie algebras). Then in Chapter 
6 we turn our attention towards universal enveloping algebras. These are 
of paramount importance in the representation theory of Lie algebras. In 
Chapter 7 we deal with finite presentations of Lie algebras, which form a 
very concise way of presenting an often high dimensional Lie algebra. Fi- 
nally Chapter 8 is devoted to the representation theory of semisimple Lie 
algebras. Again Cartan subalgebras play a pivotal role, and help to de- 
termine the structure of a finite-dimensional module over a semisimple Lie 
algebra completely. At the end there is an appendix on associative alge- 
bras, that contains several facts on associative algebras that are needed in 
the book. 

Along with the theory numerous algorithms are described for calculating 
with the theoretical concepts. First in Chapter 1 we discuss how to present 
a Lie algebra on a computer. Of the algorithms that are subsequently 
given we mention the algorithm for computing a direct sum decomposition 
of a Lie algebra, algorithms for calculating the nil- and solvable radicals, 
for calculating a Cartan subalgebra, for calculating a Levi subalgebra, for 
constructing the simple Lie algebras (in Chapter 5 this is done by directly 
giving a multiplication table, in Chapter 7 by giving a finite presentation), 
for calculating GrSbner bases in several settings (in a universal enveloping 
algebra, and in a free Lie algebra), for calculating a multiplication table 
of a finitely presented Lie algebra, and several algorithms for calculating 
combinatorial data concerning representations of semisimple Lie algebras. 
In Appendix A we briefly discuss several algorithms for associative algebras. 

Every chapter ends with a section entitled "Notes", that aims at giving 
references to places in the literature that are of relevance to the particular 
chapter. This mainly concerns the algorithms described, and not so much 
the theoretical results, as there are standard references available for them 
(e.g., [42], [48], [77], [86]). 

I have not carried out any complexity analyses of the algorithms de- 
scribed in this book. The complexity of an algorithm is a function giving an 
estimate of the number of "primitive operations" (e.g., arithmetical opera- 
tions) carried out by the algorithm in terms of the size of the input. Now 
the size of a Lie algebra given by a multiplication table is the sum of the 
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sizes of its structure constants. However, the number of steps performed by 
an algorithm that operates on a Lie algebra very often depends not only on 
the size of the input, but also (rather heavily) on certain structural prop- 
erties of the input Lie algebra (e.g., the length of its derived series). Of 
course, it is possible to consider only the worst case, i.e., Lie algebras hav- 
ing a structure that poses most difficulties for the algorithm. However, for 
most algorithms it is far from clear what the worst case is. Secondly, from a 
practical viewpoint worst case analyses are not very useful since in practice 
one only very rarely encounters the worst case. 

Of the algorithms discussed in this book many have been implemented 
inside several computer algebra systems. Of the systems that support Lie 
algebras we mention GAP4 ([31]), LiE ([21]) and Magma ([22]). We refer to 
the manual of each system for an account of the functions that it contains. 

I would like to thank everyone who, directly or indirectly, helped me 
write this book. In particular I am grateful to Arjeh Cohen, without whose 
support this book never would have been written, as it was his idea to write 
it in the first place. I am also grateful to Gs Ivanyos for his valuable 
remarks on the appendix. Also I gratefully acknowledge the support of the 
Dutch Technology Foundation (STW) who financed part of my research. 

Willem de Graaf 
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Chapter 1 

Bas ic  c o n s t r u c t i o n s  

This chapter serves two purposes. First of all it provides an introduction 
into the theory of Lie algebras. In the first four sections we define what a 
Lie algebra is, and we give a number of examples of Lie algebras. In Section 
1.5 we discuss some generalities concerning algorithms. Furthermore, we 
describe our approach to calculating with Lie algebras. We describe how 
to represent a Lie algebra on a computer (namely by an array of structure 
constants), and we give two examples of algorithms. In subsequent sections 
we give several constructions of Lie algebras and objects related to them. 
In many cases these constructions are accompanied by a an algorithm that  
performs the construction. 

A second purpose of this chapter is to serve as reference for later chap- 
ters. This chapter contains most basic constructions used in this book. 
Therefore it has the nature of a collection of sections, sometimes without 
clear line of thought connecting them. 

1.1 Algebras- associative and Lie 

D e f i n i t i o n  1.1.1 A n  algebra is a vector space A over a f ield F together 

with a bilinear map m : A • A --+ A.  

The bilinear map rn of Definition 1.1.1 is called a multipl ication.  If A is 
an algebra and x, y E A, then we usually write x y  instead of re(x ,  y). 

Because an algebra A is a vector space, we can consider subspaces of A. 
A subspace B C A is called a subalgebra if x y  C B for all x, y C B. It is 
called an ideal if x y  and y x  lie in B for all x C A and y C B. Clearly an 
ideal is also a subalgebra. 

Let A and B be two algebras over the field F. A linear map 0:  A ~ B 
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is called a m o r p h i s m  of  algebras if O(xy) = O(x)O(y) for all x, y E A (where 
the product on the left hand side is taken in A and the product on the right 
hand side in B). The map 0 is an i s o m o r p h i s m  of algebras if 0 is bijective. 

D e f i n i t i o n  1.1.2 A n  algebra A is said to be associative i f  f o r  all e l emen t s  

x , y ,  z C A we have 

( x y ) z  = x ( y z )  (associat ive law). 

D e f i n i t i o n  1 .1 .3  An algebra L is said to be a Lie algebra i f  its mul t ip l ica-  

t ion has the fo l lowing  propert ies:  

(L1) x x  = 0 for  all x C L,  

(L2) x ( y z )  + y ( z x )  + z ( x y )  = 0 f o r  all x ,  y, z C L (Jacobi  ident i ty ) .  

Let L be a Lie algebra and let x ,y  E L. Then 0 = ( x + y ) ( x + y )  = 

x x  + x y  + y x  + yy  = x y  + yx .  So condition (L1) implies 

x y  = - y x  for all x, y C L. (1.1) 

On the other hand (1.1) implies x x  = - x x ,  or 2 x x  = 0 for all x C L. The 
conclusion is that  if the characteristic of the ground field is not 2, then 
(L1) is equivalent to (1.1). Using (1.1) we see that  the Jacobi identity is 
equivalent to ( x y ) z  + ( y z ) x  + ( z x ) y  = 0 for all x, y, z C L. 

E x a m p l e  1.1.4 Let V be an n-dimensional vector space over the field F.  
Here we consider the vector space End(V) of all linear maps from V to V. 
If a, b C End(V) then their product is defined by 

ab(v) = a(b(v) )  for all v E V. 

This multiplication makes End(V) into an associative algebra. 
For a, b C End(V) we set [a, b] = a b -  ba The bilinear map (a, b) -+ [a, b] 

is called the c o m m u t a t o r ,  or Lie bracket.  We verify the requirements (L1) 
and (L2) for the Lie bracket. First we have [a,a] = a a - a a  = 0 so that  (L1) 
is satisfied. Secondly, 

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 

a(bc - cb) - (bc - cb)a + b(ca - ac) 

- (ca - ac)b + c(ab - ba) - (ab - ba)c = O. 
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Hence also (L2) holds for the commutator. It follows that  the space of 
linear maps from V to V together with the commutator  is a Lie algebra. 
We denote it by ~[(V). 

Now fix a basis {v l , . . .  ,Vn} of V. Relative to this basis every linear 
transformation can be represented by a matrix. Let Mn(F)  be the vector 
space of all n • n matrices over F. The usual matrix multiplication makes 
Mn(F) into an associative algebra. It is isomorphic to the algebra End(V),  
the isomorphism being the map that sends a linear transformation to its 
matrix with respect to the fixed basis. Analogously we let ~[n (F) be the Lie 
algebra of all n • n matrices with coefficients in F.  It is equipped with the 
product (a, b) -+ [a, b] = a b -  ba for a, b E ~[n(F). The map that  sends a 
linear transformation to its matrix relative to a fixed basis is an isomorphism 
of I~[(V)onto l~[n(F). 

Let A be an algebra and let B C A be a subalgebra. Then B is an 
algebra in its own right, inheriting the multiplication from its "parent" A. 
Furthermore, if A is a Lie algebra then clearly B is also a Lie algebra, 
and likewise if A is associative. If B happens to be an ideal, then, by 
the following proposition, we can give the quotient space A / B  an algebra 
structure. The algebra A / B  is called the quotient algebra of A and B. 

P r o p o s i t i o n  1.1.5 Let A be an algebra and let B C A be an ideal. Let 
A / B  denote the quotient space. Then the multiplication on A induces a 
multiplication on A / B  by xfl - x--~ (where 2, denotes the coset of x C A in 
A / B ) .  Furthermore, if A is a Lie algebra, then so is A / B  (and likewise if 
A is an associative algebra). 

Proo f .  First of all we check that  the multiplication on A / B  is well defined. 
So l e tx ,  y E A a n d b l , b 2 E B .  T h e n 2 - x + b l  a n d ~ ) - y + b 2 a n d h e n c e  

Y:~ - (x + bl) (y + b2) - (x + bl)(y + b2) - xy + xb2 + bly + bib2 = ~--~y. 

Consequently the product 2~ is independent of the particular representa- 
tives of 2 and ~ chosen. 

The fact that  the Lie (respectively associative) structure is carried over 
to A / B  is immediate, rn 

Associative algebras and Lie algebras are intimately related in the sense 
that  given an associative algebra we can construct a related Lie algebra and 
the other way round. First let A be an associative algebra. The commutator  
yields a bilinear operation on A, i.e., Ix, y] = x y -  yx for all x, y C A, where 
the products on the right are the associative products of A. Let ALie be 
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the underlying vector space of A together with the product [ , ]. It is 
straightforward to check that ALie is a Lie algebra (cf. Example 1.1.4). In 
Chapter 6 we will show that every Lie algebra occurs as a subalgebra of a 
Lie algebra of the form ALie where A is an associative algebra. (This is the 
content of the theorems of Ado and Iwasawa.) For this reason we will use 
square brackets to denote the product of any Lie algebra. 

From a Lie algebra we can construct an associative algebra. Let L be a 
Lie algebra over the field F. For x C L we define a linear map 

adLx"  L ~ L 

by adLx(y)  = [x, y] for y E L. This map is called the adjoint map determined 
by x. If there can be no confusion about the Lie algebra to which x belongs, 
we also write adx in place of adLx. We consider the subalgebra of End(L) 
generated by the identity mapping together with {adx I x e L} (i.e., the 
smallest subalgebra of End(L) containing 1 and this set). This associative 
algebra is denoted by (adL)*. 

Since adx is the left multiplication by x, the adjoint map encodes parts 
of the multiplicative structure of L. We will often study the structure of a 
Lie algebra L by investigating its adjoint map. This will allow us to use the 
tools of linear algebra (matrices, eigenspaces and so on). Furthermore, as 
will be seen, the associative algebra (adL)* can be used to obtain valuable 
information about the structure of L (see, e.g., Section 2.2). 

1.2 Linear Lie algebras 

In Example 1.1.4 we encountered the Lie algebra gin(F) consisting of all 
n x n matrices over the field F. By E~ we will denote the n x n matrix 
with a 1 on position (i, j) and zeros elsewhere. If it is clear from the context 
which n we mean, then we will often omit it and write Eij in place of E~j. 
So a basis of gin (F) is formed by all Eij for 1 ~ i, j < n. 

Subalgebras of ~[n(F) are called linear Lie algebras. In this section we 
construct several linear Lie algebras. 

E x a m p l e  1.2.1 For a matrix a let Tr(a) denote the trace of a. Let a, b E 
~[n (F), then 

Tr([a, b]) - T r ( a b -  ba) - Tr(ab) - Tr(ba) - Tr(ab) - Tr(ab) - O. (1.2) 

Set Sin(F) = {a e l~[n(F) I Tr(a) - 0}, then, since the trace is a linear 
function, Sin(F) is a linear subspace of gin(F). Moreover, by (1.2) we see 
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that  [a, b] e SIn(F) if a, b e Sin(F). Hence ~[n(F) is a subalgebra of l~[n(F). 
It is called the special linear Lie algebra. The Lie algebra ~[n (F) is spanned 
by all Eij for i r j together with the diagonal matrices Eii - Ei+l,i+l for 
1 < i < n -  1. Hence the dimension of SIn(F) is n 2 - 1. 

Let V be an n-dimensional  vector space over F.  We recall tha t  a bilinear 
form f on V is a bilinear function f �9 V x V --+ F.  It is symmetric if 
f (v, w) = f (w, v) and skew symmetric if f (v, w) = - f  (w, v) for all v, w E V. 
Furthermore,  f is said to be non-degenerate if f ( v ,  w) = 0 for all w C V 
implies v - 0. For a bilinear form f on V we set 

L f  - {a e g[(V) [ f (av, w) - - f  (v, aw) for all v ,w C V}, (1.3) 

which is a linear subspace of g[(V). 

L e m m a  1.2.2 Let f be a bilinear form on the n-dimensional vector space 
V. Then L S is a subalgebra of gi(V). 

P r o o f .  For a, b C L S we calculate 

f ([a, b]v, w) - f ( (ab  - ba)v, w) - f (abv, w) - f (bay, w) 

= - f  (by, aw) + f (av, bw) - f (v, baw) - f (v, abw) = - f  (v, [a, b]w). 

So for each pair of elements a, b C L I we have that  [a, b] E L I and hence L I 
is a subalgebra of gi(V), n 

Now we fix a basis { v l , . . .  , Vn} of V. This allows us to identify V with 
the vector space F n of vectors of length n. Also, as pointed out in Example 
1.1.4, we can identify g[(V) with gin (F),  the Lie algebra of all n x n matrices 
over F.  We show how to identify L S as a subalgebra of gin(F).  Let M S 
be the n x n matr ix  with on position (i, j )  the element f(v~, vj). Then a 
straightforward calculation shows that  f (v, w) - v tMsw (where v t denotes 
the transpose of v). The condition for a C g[~(F) to be an element of L S 
translates to v t a t M f w  - - v t M f a w  which must hold for all v, w E F n. It 

follows that  a C L I if and only if a tMf  - - M f a .  
The next three examples are all of the form of L S for some non-degenerate 

bilinear form f .  

E x a m p l e  1.2.3 Let f be a non-degenerate skew symmetr ic  bilinear form 
with matr ix  
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where Il denotes the l x 1 identity matrix. We shall indicate a basis of LI.  
Let a C I~[2L(F), then we decompose a into blocks 

a -  C D 

(where A , B ,  C , D  are l x l matrices). Expanding the condition a t M f  - 

- M I a  we get B - B t, C - C t and D - - A  t. Therefore the following 
matrices consti tute a basis of L I" 

�9 A i j  - E i j  - E l + j d+ i  for 1 _< i, j _< 1 (the possibilities for A and D), 

�9 B i j  - E i , l+j  + Ej , l+i  for 1 _< i ___ j _< l (the possibilities for B),  

�9 C i j  - EL+i,j + El+j , i  for 1 _< i _< j _< 1 (the possibilities for C). 

Counting these, we find that  the dimension of L j, is 

/ ( / +  1) / ( / +  1) 
12 + + = 212 + l. 

2 2 

This Lie algebra is called the s y m p l e c t i c  L i e  a lgebra  and denoted by sp21(F). 

E x a m p l e  1.2.4 Now let V be a vector space of dimension 21 + 1. We take 
f to be a non-degenerate symmetric  bilinear form on V with matr ix  

(i0i) 0 
/l 

Accordingly we decompose a E g[2/+l (F) as 

a - -  

where c~ C F,  p, q are 1 x l matrices, u, v are 1 x 1 matrices and A, B, C, D 
are 1 x I matrices. Here the condition a t M f  - - M f a  boils down to a - -c~, 
v t - - p ,  u t - - q ,  C t - - C ,  B t - - B ,  and D - - A  t. So a basis of L f  is 
formed by the following elements: 

�9 Pi - E l , l + i  - g l + l + i , 1 ,  for 1 _< i _< l (p and v), 

�9 qi -- El,l+l+i - E l + i , i ,  for 1 <_ i <_ I (q and u), 
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�9 Ai j  - El+i , l+j  - El+l+j,l+l+i, for 1 <_ i , j  <_ 1 (A and D), 

�9 Bi j  - El+i, l+l+j - El+j,l+l+i,  for 1 <_ i < j _< 1 (B), 

�9 Cij - El+l+i,l+j - E l + l + j , l + i ,  for 1 _~ i < j _ l (C). 

In this case the dimension of L I  is 2/2 + I. The Lie algebra of this example 
is called the odd orthogonal Lie algebra and is denoted bye021+1 (F). 

E x a m p l e  1.2.5 We now construct even orthogonal Lie algebras. Let V 
be of even dimension 21 and let f be a symmetric bilinear form on V with 
matrix (o ,,) 

0 " 

Let a C gi2t(F) be decomposed in the same way as in Example 1.2.3. Then 
a C L I  if and only if A - - D  t, B - - B  t, and C - - C  t. A basis of L f  is 
constituted by 

�9 Ai j  - Ei,j  - El+j,l+i for 1 _~ i , j  ~_ 1 (A and D), 

�9 Bi i  - Ei,t+j - Ei,l+i for 1 _~ i < j _~ 1 (B), 

�9 Cij - E l + i , j -  El+j,i for 1 _~i < j _~ l, (C). 

In this case the dimension of Lf is 2/2 - 1 .  This Lie algebra is called the 
even orthogonal algebra and is denoted by o21(F). 

E x a m p l e  1.2.6 We give two more classes of subalgebras of gin(F). First 
let nn(F) be the space of all strictly upper triangular matrices. If a, b C 
nn(F),  then also ab C nn(F) and consequently [a, b] - a b -  ba E nn(F).  So 
nn(F) is a subalgebra of gin (F). It is spanned by Eij  for 1 ~_ i < j _~ n. 

Let bn(F)  be the subspace of gin(F ) consisting of all upper triangular 
matrices. Then in the same way as above it is seen that  bn (F)  is a subalgebra 
of gin(F ). It is spanned by Eij  for 1 _~ i _~ j _~ n. 

1.3 S t r u c t u r e  c o n s t a n t s  

Let A be an n-dimensional algebra over the field F with basis {Xl , . . .  , Xn}. 
For each pair (xi, x j )  we can express the product x i x j  as a linear combination 

k of the basis elements of A, i.e., there are elements cij E F such that  

XiXj - -  

n 

Ec xk 
k--1 
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k determines the multiplication On the other hand, the set of n 3 constants Qj 
n n completely. To see this, let x - }-~i=l o~ixi and y - }-~j=l/3jxj be two 

arbitrary elements of A. Then 

n n n n 

i = 1  j = l  i , j = l  i , j , k= l  

So the multiplication can be completely specified by giving a set of n 3 con- 
k These constants are called structure constants (because they stants Qj. 

determine the algebra structure of A). The next results provide a useful 
criterion for deciding whether an algebra is a Lie algebra by looking at its 
structure constants. 

L e m m a  1.3.1 Let A be an algebra with basis { X  1 , . . .  , X n } .  Then the mul- 
tiplication in A satisfies (L1) and (L2) if and only if 

X i X  i - -  0 a n d  x i x j  -~- x j x  i : O, 

and 

for 1 < i , j , k  < n. 

+ +  k(xixj) - o 

P r o o f .  Since the Jacobi identity is trilinear it is straightforward to see that  
it holds for all elements of A if and only if it holds for all basis elements of 
A. We prove that  the first two equations are equivalent to x x  - 0 for all 
x E A. First, let x - E i n = l  o t i x  i then 

n n 

i , j --1 i--1 i< j  i< j  

Conversely, suppose that  x x  - 0 for all x C A.  

Furthermore, by (1.1), x ix j  + X j X i  - -  O. 
Then certainly xixi  - O. 

D 

P r o p o s i t i o n  1.3.2 Let A be an algebra with basis { X l , . . .  , X n } .  Let the 
k f o r l  < i , j , k  < n .  T h e n A  structure constants relative to this basis be Cij _ _ 

is a Lie algebra if and only if the structure constants satisfy the following 
relations: 

k __ 0 a n d  k k cii c i j  - -  --c-ji ' (1.4) 
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n 

E m l  m l  m l  Cil Cjk + Cjl Cki -$- CklCij 
/=1 

f o r  all l ~ i , j , k , m  ~_n.  

- 0 ( 1 . 5 )  

Proof .  We use Lemma 1.3.1. Since the Xk are linearly independent x i x i  - 
k being zero. Also x i x j  + x j x i  - 0 is ~-~k ckiXk -- 0 is equivalent to all cii 

equivalent to ~-~'~k ckj xk  + E k  k k k CjiX k -- O, which is equivalent to cij + cji - 0 
for 1 ___ k < n. Finally, it is straightforward to check that (1.5) is equivalent 
t o  + + - 0 .  D 

We can describe a Lie algebra by giving a basis and the set of structure 
constants relative to this basis. This is called a mul t ip l i ca t ion  table of the 

k with Lie algebra. However, because of (1.4), we only have to list the cij 

i < j. Also the structure constants that are zero are usually not listed. 

E x a m p l e  1.3.3 Let L be a 2-dimensional Lie algebra with basis {xl,x2}. 
Then 

- + ( 1 . 6 )  

So (1.6) is a multiplication table for L. Now suppose that c~2 and c~2 are not 
both zero. If c~2 ~ 0 set yl - c~2xl + c~2x2 and y2 - (1 /c~2)x2.  Otherwise 
set Yl - - x2  and Y2 = - ( 1 / c ~ 2 ) x l .  In both cases {yl, y2} is a basis of L 
and 

- ( 1 . 7 )  

With respect to the basis {y~,y2}, (1.7) is a multiplication table for L. 

E x a m p l e  1.3.4 We calculate the structure constants of the Lie algebra 
gin (F) of Example 1.1.4. A basis of this Lie algebra is given by the set of all 
matrices Ei j  for 1 _< i , j  <_ n. We note that E i j E k l  - ~jkEil  where 5jk = 1 
if j -- k and it is 0 otherwise. Now 

[Eij, Ekl] -- E i j E k l  - E k l E i j  - 5jkEil  -- 5 l iEkj .  

E x a m p l e  1.3.5 Here we compute the structure constants of the Lie algebra 
Sin(F) of Example 1.2.1. As pointed out in Example 1.2.1, this Lie algebra 
has a basis consisting of all matrices xi j  - E i j  for 1 < i ~ j < n, together 
with hi - Eli  - Ei+l , i+l  for 1 < i _ n -  1. First of all, since the hi are all 
diagonal matrices, we have that [hi, h j ] -  O. Secondly, 

[hi,xkl] -- [Eii - E i+l , i+ l ,Ek l ]  -- ~ikEil -- 5i+l,kEi+l,1 -- ~l,iEki -~- 51,i+lEk,i+l 

~--- CiklXkl 
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where Cikt = 0, 1, 2,--1,--2 depending on i, j and k. For example Cikl = 2 if 
i = k and i + 1 = l. Finally, 

[x j, xk ] = [E j, Eke] = 5jkE L -- 5  Ekj, 

which is xil if j = k and i ~ l and - x k j  if i = l and j % k. Furthermore, if 
i = l and j = k then 

f 

- E i i  - Ejj  - ~ hi + hi+l + " "  + hj-1 
( - h i  - h j  + l " - h i -  1 

i f i  < j ,  

i f j  < i .  

E x a m p l e  1.3.6 As a special case of the previous example we consider the 
Lie algebra ~[2 (F). We set h = E l l - E 2 2 ,  x = E12 a n d y  = E21. Then 
{x, y, h} is a basis of s[2(F). A multiplication table of this Lie algebra is 
given by 

[h, x] = 2x, [h, y] = -2y ,  [x, y] = h. 

The Lie algebra ~[2(F) will play a major role in the structure theory of 
so-called semisimple Lie algebras (see Chapter 5). 

1.4 Lie algebras from p-groups 

One of the main motivations for studying Lie algebras is the connection with 
groups. Starting off with a group a Lie algebra is constructed that reflects 
(parts of) the structure of the group. In many cases it can be shown that 
questions about the group carry over to questions about the Lie algebra, 
which are (usually) easier to solve. Various constructions of this kind have 
been used, each for a specific type of group. For instance, if G is a Lie 
group, then it can be shown that the tangent space at the identity is a Lie 
algebra. This connection is for example used to study symmetry groups of 
differential equations (see [10], [67]). Also if G is an algebraic group, then 
the tangent space at the identity has the structure of a Lie algebra (see, 
e.g., [12]). Here we sketch how a Lie algebra can be attached to a p-group. 
In this case the Lie algebra is not a tangent space. But it is quite clear how 
the Lie algebra structure relates to the group structure. 

Let G be a group. Then for g, h E G we define their commutator to be 
the element 

(g, h) = g - l  h - l  gh. 

Furthermore, if H is a subgroup of G then (G, H) is the subgroup generated 
by all elements (g, h) for g C G and h E H. 
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We set ")'1 ( a )  - G, and for k >__ 1, 3'k+ 1 (a )  - (a ,  7k (a) ) .  Then ")'1 (G) >__ 
")'2(G) ___ . . .  is called the lower central series of G. If 7n(G) - 1 for some 
n > 0, then G is said to be nilpotent. 

A group G is said to be a finite p-group if G has pk elements, where 
p > 0 is a prime. For the basic facts on p-groups we refer to [40], [43]. We 
recall tha t  a p-group is necessarily nilpotent.  

For a group H we denote by H p the subgroup generated by all h p for 
h c H.  Let G be a p-group. We define a series G - N 1  (G) _> t~2(G) >__ . . .  
by 

i~n(a) - (~n- l (G) ,  a ) n m ( a )  p, 

where m is the smallest integer such that  p m >  n. This series is called 
the Jennings series of G. The next theorem is [44], Chapter  VIII, Theorem 
1.13. 

T h e o r e m  1.4.1 We have 

1. ( nm(a ) ,nn (G) )  <__ nn+m(a),  and 

2. nn(G) p < t~pn(G). 

Set Gm = ~m(G)/~m+l(G) .  Then by Theorem 1.4.1, all elements of 
Gm have order p, and Gm is Abelian. Now since any Abelian group is the 
direct product  of cyclic groups we see that  Gm is the direct product  of cyclic 
groups of order p, i.e., Gm = H1 x . . .  x Hk where Hk ~- Z / p Z .  Now fix a 

nk generator hi of Hi. Then any element in Gm can be wri t ten as h ~ l . . . h k  
where 0 < ni _< p -  1. Set Vm - F~p. Then we have an isomorphism 
am : Gm ~ Vm of Gm onto the additive group of Vm. It is given by 

rtk am(h~ ~ ''" h k ) = ( n l , . . .  ,nk).  For j > 1 we let Tj be the composit ion 

�9  j(v) - %  Gj -% 5 

where 7rj is the projection map. 
Set L = V1 @ 1/2 |  Then L is a vector space over Fp. We fix a basis 

B of L that  is the union of bases of the components  Vm. Let x, y C B be 
such that  x C ~ and y C I/). Furthermore,  let g c hi(G) and h E nj(G) be 
such that  Ti(g) = x and 7-j(h) = y respectively. Then we define 

y] - h ) ) .  

This product  is well-defined, i.e., [x, y] does not depend on the choice of 
g, h. This follows from the identity (g, f h )  - (g, h)(g, f ) ( (g ,  f ) ,  h), which 
holds for all elements f ,  g, h in any group. 
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L e m m a  1.4 .2  For  x,  y e B we have that  [x, x] - 0 and  [x, y] + [y, x] - O. 

P r o o f .  Let x E ~ and y C Vj. Let g C a i ( G )  and h E a j ( G )  be pre- images 
of respect ively x under  Ti and y under  7). T h e n  

[x,x] - ~-2i((g,g)) - T2i(1) -- 0. 

And 

[x,y] + [y,x] - T i + j ( ( g , h ) )  + ~'i+j((h, 9)) 

= Ti+j((g,  h ) (h ,  g)) 

= vi+j(1)  -- 0. 

[3 

L e m m a  1.4 .3  For  X l , X 2 , X  3 

IX3, [Xl, X2]] -- 0. 
e t3 we have [Xl, [X2,X3]] %" IX2, [X3,Xl]] %" 

P r o o f .  Suppose tha t  xi  E Vm~ for i - 1, 2, 3. 
image of xi under  ~-i for i - 1, 2, 3. Then  

Let gi E am~ (G) be a pre- 

[Xl, IX2, X3]] %"Ix2, Ix3, Xl]] %" [X3, [Xl, X2]]- 
TmlWm2-k-m3 ((gl, (g2, g3))(g2, (g3, gl))(g3, (gl, g2))). 

Now the result  follows from the fact tha t  

(gl, (g2, g3))(g2, (g3, gl))(g3, (gl, g2)) C I'g, lltl.-~m2-I-m3.-~-l (G ) 

(see [44], Chap te r  VIII ,  L e m m a  9.2). 

Now we extend the p roduc t  [ ,  ] to L • L by bilinearity. 

C o r o l l a r y  1 .4 .4  With  the produc t  [ , ] �9 L • L ~ L the vec tor  space L 

becomes a L ie  algebra. 

P r o o f .  This  follows immedia te ly  from the above lemmas (cf. L e m m a  1.3.1). 
D 

E x a m p l e  1 .4 .5  Let G be the group genera ted  by three elements gl,  g2, g3 
subject  to the relat ions (g2, g l )  - g3, (gn,gl) - (g3,g2) - 1 and g~ - 
g2 2 -- g3 and g~ - 1. The  first relat ion is the same as g2gl - glg2g3,  
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whereas the second and third relations can be wri t ten as g a g 1  - g t g a  and 
g 3 9 2  - g 2 g 3 .  These relations allow us to rewrite any word in the generators 
to an expression of the form 

�9 i2 ia ( 1 . 8 )  g~l g2 g3 �9 

Using the remaining relations we can rewrite this to a word of the form 
(1.8) where 0 _< ik _< 1. This rewrit ing process is called c o l l e c t i o n .  We 
do not discuss this process here as it is clear how it works in the example. 
For a more elaborate t rea tment  of the collection process we refer to, e.g., 
[40], [80]. Every element of G has a unique representat ion as a word (1.8) 
such tha t  ik - 0, 1. Hence G contains 2 a - 8 elements. We have 71(G) - 
G, ~2(G) - (g3} (where (9a) denotes the subgroup generated by ga) and 
7 a ( a )  - 1. The Jennings series of G is ~I(G) - G, t~2(G) - (g3) and 
~3(G) - 1. So G1 - G / ( g a )  - (01,02), where g 2 g l  - g i g 2 .  Therefore G1 = 
{ 1, ~]1, (72,9192}. Let V1 be a 2-dimensional vector space over I72 spanned by 
{el, e2}. Let ~1 "G1 --4 V1 be the morphism given by cr~ (0~) - e~ for i - 1, 2 
(so cr l ( g l g 2 )  --  e l  + e2) .  A l s o  w e  have tha t  G2 - (ga)/1 - {1, ga}. Let V2 
be a 1-dimensional vector space over F2 spanned by e3. Then  a2 " G2 --+ V2 
is given by cr2(g3) - e3. Now set L - V1 (9 V2. We calculate the Lie product  
of el and e2" 

[e l ,  e2] - -  T 2 ( ( g l ,  g2 ) )  - -  72(g3)  --  e3. 

Similarly it can be seen tha t  [el, e3] - [e2,  e3] - 0. 

1.5 On algorithms 

Here we will not give a precise definition of the notion of "algorithm" (for 
this the reader is referred to the l i terature on this subject,  e.g., [52]). For us 
"algorithm" roughly means "a list of consecutive steps, each of which can 
be performed effectively, that ,  given the input,  produces the ou tput  in finite 
t ime". So there is an algori thm known for adding na tura l  numbers,  but  not 
for proving mathemat ica l  theorems. 

We are concerned with algorithms tha t  calculate with Lie algebras. So 
we need to represent Lie algebras, and subalgebras, ideals, and elements 
thereof in such a way tha t  they can be dealt with by a computer ,  e.g., as 
lists of numbers.  For Lie algebras there are two solutions to this problem 
tha t  immediate ly  come to mind: we can represent a Lie algebra as a linear 
Lie algebra, or by a table of s t ructure  constants. We briefly describe both  
approaches. 
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L i n e a r  Lie a lgeb ras :  If L happens to be a linear Lie algebra, then we can 
present L by a set of matrices that  form a basis of it. If a and b are two 
elements of this space, then their Lie product is formed by the commutator,  
[a,b] - a .  b -  b. a. 

S t r u c t u r e  cons t an t s "  As seen in Section 1.3, an n-dimensional Lie algebra 
k f o r l < i  j , k <  can be presented by giving a list of n 3 structure constants cij _ , _ 

n, that satisfy the relations of Proposition 1.3.2. Then L is viewed as a 
(abstract) vector space with basis {x~, . . .  ,Xn} .  The Lie product of two 
elements of this space is completely determined by the structure constants. 

Let L be given as a linear Lie algebra, i.e., by a basis {al , .  �9 �9 , an} ,  where 
ai E Mr(F)  for 1 _< i _< n. Then by expressing the products [a~, aj] as linear 
combinations of the basis elements we can compute a multiplication table 
for L. The other transition, from a Lie algebra given by a table of structure 
constants to a linear Lie algebra is much harder (and will be treated in 
Chapter 6). Also for many algorithms that we will encounter, it is essential 
to know a table of structure constants for the Lie algebra. For these reasons 
we will always assume that a Lie algebra over the field F is presented by 

k a table of structure constants cij C F relative to a basis { x l , . . .  , Xn}.  An 
element x of a Lie algebra will be represented by a coefficient vector, i.e., 
a list of n elements ai  C F such that x = a l X l  + ' . .  + O~nXn. Finally, 
subspaces, subalgebras and ideals will be presented by a basis (i.e., a list of 
coefficient vectors). 

R e m a r k .  There is a third way of presenting a Lie algebra, namely by gen-  

erators  and  relat ions.  A Lie algebra presented in this way is given by a set 
of (abstract) generators X that  are subject to a set of relations R. The Lie 
algebra specified by this data is the most "general" Lie algebra generated 
by X subject to the relations in R. The theoretical notions needed for this 
are treated in Chapter 7. There algorithms will be given for calculating the 
structure constants of a Lie algebra given by generators and relations. So 
we do not lose any generality by supposing that  the Lie algebras we deal 
with are given by a multiplication table. 

In our algorithms we often need auxiliary algorithms for performing 
tasks that  are not of a Lie algebraic nature, but without which our algo- 
ri thms would not work. For example, we assume that  there are algorithms 
available for performing the elementary arithmetical operations (addition 
and multiplication) for the fields that are input to our algorithms. Also 
we assume that  elements of these fields can be represented on a computer. 
This does not pose any problems for the field of rational numbers Q, nor 
for number fields, nor for finite fields. 
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On some occasions we will use a routine that selects a random element 
from a finite set (for such routines we refer to [53]). The selection proce- 
dure is such that every element of the set has the same probability to be 
chosen. This allows randomization in our algorithms: at certain points the 
outcome of a random choice will determine the path taken in the rest of the 
algorithm. In general also the output of a randomized algorithm depends 
on the random choices made; the output may even be wrong. This is clearly 
an undesirable situation. Therefore we restrict our attention to a class of 
randomized algorithms called Las Vegas algorithms. An algorithm for com- 
puting a function f ( x )  is called Las Vegas if on input a it either computes 
f (a)  correctly with probability p > 0, or stops without producing output. 
It is also required that calls to a Las Vegas algorithm produce independent 
results. Hence if a Las Vegas algorithm is repeated then it always produces 
a correct answer. The expected number of repetitions is 1/p. 

We will frequently obtain solutions to the problems we are dealing with 
as solutions of sets of linear equations in several variables. So we need a 
routine for solving these. A straightforward method for doing that is known 
as Gaussian elimination~ which works over all fields for which we can perform 
the elementary arithmetical operations. The basic procedure is described 
in many monographs on linear algebra, see, e.g., [60]. 

The Gaussian elimination algorithm allows us to perform the basic oper- 
ations of linear algebra: constructing a basis of a subspace, testing whether 
an element lies in a subspace, constructing a basis of the intersection of 
subspaces, and so forth. 

In some cases we need a routine for factorizing polynomials over the 
input field. If this field is Q, a number field or a finite field, then there 
are algorithms for doing that. For an overview of algorithms for factorizing 
polynomials we refer to [53] and [58]. 

Sometimes we use the connections between associative algebras and Lie 
algebras to study the structure of a Lie algebra. Doing so we also need 
algorithms for calculating various objects related to an associative algebra. 
We have described some of them in Appendix A. 

Finally we describe an efficient procedure due to J. T. Schwartz for 
finding a non-zero of a multivariate polynomial. It is based on the follow- 
ing lemma; for the proof we refer to [74]. The corollary is an immediate 
consequence. 

L e m m a  1.5.1 (Schwar t z )  Let F be a field. Let f E F[X~, . . .  ,Xn] be a 
polynomial of degree d. Let ~ be a subset of F of size N.  Then the number 
of elements v - ( v l , . . .  ,Vn) of ~n such that f (v) - 0 is at most dN n-1. 
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C o r o l l a r y  1.5.2 Let f and ~t be the same as in the previous lemma. Let v 
be an element from ~t n chosen randomly and uniformly. Then the probability 
that f ( v )=  0 is at most d /N.  

Let f be as in Lemma 1.5.1. We choose a s u b s e t  ~ C F of size 2d. 
Then by selecting a random element from ~n we find a vector v such that  

1 By repeating this we find a non-zero of f ,  and f (v) ~ 0 with probability 3" 
the expected number of steps is 2. So if the ground field is large enough, 
then we have a Las Vegas algorithm for finding a non-zero of a polynomial. 

We end this section by giving two algorithms: one for constructing quo- 
tient algebras and one for constructing the adjoint map. Both are fairly 
straightforward. They also illustrate the formats that we use for describing 
algorithms in this book. We either explicitly give a list of steps that  are 
executed by the algorithm, or, in the cases where the algorithm is rather 
straightforward, we simply discuss the main ingredients, and leave the task 
of formulating a series of steps to the reader. 

The following is an algorithm that  calculates an array of structure con- 
stants of the quotient algebra L/ I ,  where I is an ideal of L. 

A l g o r i t h m  QuotientAIgebra 
Input: a finite-dimensional Lie algebra L together with an ideal I C L. 

Output: an array of structure constants for L/ I .  

Step 1 Let { y l , . . . , Y s }  be a basis of I. Select elements Z l , . . .  ,zt from the 
basis of L such that  B - {z l , . . .  ,zt, y l , . . .  ,ys} is a basis of L. 

Step 2 for 1 _< i , j  <_ t express [zi,zj] as a linear combination of elements 
from B. Let dij be the resulting coefficient vectors. 

Step 3 For 1 _< i, j _< t let eij be the vector containing the first t entries 
from dij. Return the set of all eij. 

C o m m e n t s :  We recall that the ideal I is presented by a basis. So 
the basis {y l , . . .  ,ys} is part of the input. Furthermore, all vectors are 
represented as coefficient vectors. So the Gaussian elimination procedure 
allows us to perform Step 1 and Step 2. 

Now we consider the problem of constructing the matrix of the linear 
map adx : L ~ L, relative to the basis { x l , . . .  , Xn} of L. Let x be given as 

n 
x = ~-~i=1 (~ixi, then 

n 

E E adx(xj) - O~i[Xi, Xj] --  OtiCij Xk.  
i = 1  k - 1  i = l  
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It follows tha t  the coefficients of the mat r ix  of adx are ~-~in=l o~ickij. So 
we have an algori thm AdjointMatrix tha t  for a Lie algebra L and an element 
x E L constructs  the mat r ix  of adx relative to the input  basis of L. We note 
tha t  the coefficients cq of x are immediately available since x is input  as a 
coefficient vector. 

1.6 Centra l i zers  and normal i zers  

In this section we construct  centralizers and normalizers in a Lie algebra L. 
We also give algori thms for calculating bases of these spaces. For tha t  we 
assume throughout  tha t  L has basis { x l , . . .  ,Xn} and s t ructure  constants 
ci jk relative to this basis (see Section 1.5) 

Let S be a subset of L. Then  the set 

CL(S) - {x e L ] [x,s] - 0 for all s e S)  

is called the centralizer of S in L. We prove tha t  CL(S) is a subalgebra of 
L. Let x, y C CL(S) and s C S. Then  by the Jacobi identi ty 

y],  - - [ [ y ,  x] - x] ,  y] - 0, (1 .9 )  

so tha t  [x, y] e CL (S) and CL (S) is a subalgebra of n. 
It is s t raightforward to see that  CL (S) is equal to the centralizer of K in 

L, where K is the subspace spanned by S. Therefore, in the a lgori thm for 
construct ing the centralizer we assume tha t  the input  is a basis {y l , . . .  , yt) 
of a subspace K of L, where 

n 

Y l -  E /~ l jX j .  (1.10) 
j----1 

Then  x - }-~i aixi lies in CL (K) if and only if [x, Yl] - 0 for 1 < l < t. This 
is equivalent to 

i~l /~ljCfj a i  --  0 for 1 < k < n and 1 < l < t. 
�9 j = l  

It follows that  we have nt equations for the n unknown a l , . . . ,  an.  By a 
Gaussian elimination we can solve these; and therefore we find an algori thm 
Centralizer for calculating the centralizer of a subspace K of L. 

The subset 

C(L) - {x e L ] [x, y]- 0 for all y e L} 
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is called the centre of L. We have that  the centre of L is the centralizer of 

L in itself, i.e., C(L)  - CL(L).  As [x, y] - 0 for all x C C(L)  and y C L, 
it is immediate that  C(L)  is an ideal in L. The centre is the kernel of the 

map ad" L ~ End(L) ,  i.e., 

C(L)  - {x  e L I a d z -  0}. 

So if we s tudy the s tructure of L via its adjoint map, then we lose "sight" 
of the centre. 

If C(L)  - L, then L is said to be Abelian or commutative.  
The algori thm for calculating the centralizer also yields an algori thm 

for calculating the centre. In this case the requirement for an element x - 

}-~i a ix i  to belong to C(L)  is [x, xj] - 0 for 1 _< j <_ n, which boils down to 

n 

Z CijO~ i - -  0 for 1 _< j, k <_ n. 
i = 1  

So we have n 2 equations for the n unknowns a l , . . .  , an,  which can be solved 
by Gaussian elimination. This gives us an algorithm Centre. 

Let V be a subspace of L. Then the set 

N L ( V )  - {z e L I[x, v] e V for all v E V} 

is called the normalizer  of V in L. In the same way as for the centralizer we 

can prove that  the normalizer of V in L is a subalgebra of L. If V happens 
to be a subalgebra of L, then V is an ideal in the Lie algebra N L ( V ) .  

Now we describe an algorithm for calculating the normalizer. Let V 
be the subspace of L spanned y l , . . .  ,Yt, where the yl are as in (1.10). 
Then  x - Y'~i c~ixi is an element of NL(V) if and only if there a r e  ~ l m  for 
1 _< l, rn _< t such that  

[x, yl] -- ~llyl  + . . . +  ~itYt f o r l - - 1 , . . . , t .  

This amounts  to the following linear equations in the variables c~i and flzm: 

~ljeij O t i -  /~mk~lm - - 0  for 1 _< k <_ n and 1 _< 1 _< t. 
�9 j = l  m = l  

Again by a Gaussian elimination we can solve these equations. However, 
we are not interested in the values of the film, so we throw the part  of the 
solution that  corresponds to these variables away, and we find a basis of 
N L ( V ) .  As a consequence we have an algorithm Normalizer for calculating 
the normalizer of a subspace V of L. 
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E x a m p l e  1.6.1 Let L be the Lie algebra with basis { x l , . . .  ,x5} and mul- 

t ipl icat ion table 

[x~, x~] - x~, [ ~ ,  x~] - - x ~ ,  [x~, x4] - ~ ,  [ ~ ,  ~ ]  - ~1, [~4, ~ ]  - x3. 

(As usual we only list p roducts  [xi,xj] for i < j;  and we omit  those tha t  

are 0.) We calculate a basis of the centre of L. Let x = ~ 5  i= l  O~iXi be 

an a rb i t r a ry  element of L. Then  x C C(L)  if and only if [xi, x] - 0 for 
1 <_ i <_ 5. So 0 - [xl,x] - a 4 x l - ( ~ 5 x 2 ,  from which it follows tha t  

c~4 - c~5 - 0. Then  also [x2, x] - 0. It is easily seen tha t  Ix3, x] - 0. From 
0 - [x4, x] = -c~lXl - ~ 2 x 2  + c~5x3 we infer tha t  c~1 - c~2 - c~5 - 0. Final ly  
[x5, x] = c~1x2 -c~2xl  -c~4x3, from which c~1 - c~2 - c~4 - 0. It is seen tha t  

only O~3 can be non-zero. It follows tha t  C(L)  is spanned by x3. 
5 

Let V be the subspace of L spanned by x l , x5 .  Let x = }--~.i=1 a ix i  be an 

element of L. Then  x C NL(V)  if and only if 

Ix, Xl] ---- axl  + bx5 

[X, X5] ~--- CXl -~- dxs. 

The  first of these requirements  produces a5 - 0 and a + c~4 - 0. The  second 
boils down to c -  c~2 = 0 and a l  = o~4 - -  0. Hence NL(V)  is spanned  by 

X2 ~ X3 .  

1 . 7  C h a i n s  o f  i d e a l s  

Here we construct  chains of ideals of L. First  we note that ,  in order to check 
tha t  a subspace I of L is an ideal, it suffices to prove tha t  Ix, y] E I for all 

x C L and y C I. This  follows from (1.1). 
Let L be a Lie algebra and let V, W be subspaces of L. Then  the linear 

span of the elements [v, w] for v ~ V and w C W is called the product space 

of V and W. It is denoted by IV, W]. 

L e m m a  1.7.1 Let I and J be ideals of L. Then also [I, J] is an ideal of L. 

P r o o f .  Let x C I,  y C J ,  and z E L then by the Jacobi identi ty 

[~, [~, y]] - - [ ~ ,  [y, z]] - [y, [~, ~]], 

which lies in [I, J]. Now if u e [I, J] is a linear combinat ion  of elements of 
the form Ix, y] for x C I and y C J ,  then also, by l inearity of the product ,  
for all z C L we have tha t  [z, u] is a linear combinat ion of elements of the 
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form [a, b] for a E I and b C J. So [I, J] is an ideal of L. v1 

The following is an algorithm for calculating the product space [K1,/42] 
of two subspaces K1 and / (2  of L. 

Algorithm ProductSpace 
Input: a finite-dimensional Lie algebra L together with two subspaces 

K 1 , K 2  C L, given by bases {Yl,. . .  ,Ys} and {Zl, . . .  , z t }  respectively. 
Output: a basis of the product space [K1,/(2]. 

Step 1 Compute the set A of elements [y~, zj] for 1 < i < s and 1 < j < t. 

Step 2 Calculate a maximally linearly independent subset B of A. Return 
B. 

C o m m e n t "  The set A computed in Step 1 is just a list of coefficient 
vectors. So by a Gaussian elimination, we can compute a maximally linearly 
independent subset B of A. This gives us a basis of [K1, K2]. 

Lemma 1.7.1 implies that the subspace [L, L] is an ideal of L. It is called 
the derived subalgebra of L. 

Set L 1 = L and inductively L i+1 - [L, Li]. Then by Lemma 1.7.1, L i 
is an ideal of L for i > 1. Hence L i+1 C L / for i >_ 1, i.e., the series L / is 
decreasing. The sequence 

L = L 1 D L 2 D . . . D L i D . . .  

is called the lower central series of L. If L k - 0 for some integer k > 0 
then L is called nilpotent. Furthermore, if L is nilpotent then the smallest 
integer c > 0 such that L c 7~ 0 but L c+1 - 0 is called the nilpotency 

class of L. We note that repeated application of ProductSpace gives us 
an algorithm LowerCentralSeries for calculating the lower central series and 
hence for deciding whether a given Lie algebra is nilpotent. 

Set L (1) - L and for i > 1, L (/+1) = [L(/) , L(/)]. Then by Lemma 1.7.1 
the L(0 are ideals of L for i > 1. Therefore, L (i+1) is contained in L (i). The 
sequence 

L -  L (~) D L (2) D - . -  D L (i) D . . .  

is called the derived series of L. If there is an integer d > 0 such that 
L (d) -- O, then L is said to be solvable. Just as for the lower central series 
we find an algorithm DerivedSeries for calculating the derived series; and 
hence an algorithm for deciding whether a Lie algebra is solvable or not. 

L e m m a  1.7.2 Let L be a nilpotent Lie algebra. Then L is also solvable. 
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P roof .  By induction on i we have L(0 C L i, and the statement follows. [] 

Now we define a third series of ideals. Unlike the lower central and 
derived series, this series is not descending but ascending. Put  C1 (L) - 
C(L) (the centre of L) and for i >_ 1 we define Ci+I(L) by the relation 
Ci+I(L)/Ci(L)  - C(L/Ci (L) ) .  It follows that Ci+I(L) D Ci(L), i.e., the 
series Ci (L) is increasing. The sequence 

C ( L ) -  CI(L) C C2(L) C . . .  C Ci(L) C . . .  

is called the upper central series of L. Suppose that there is an integer e > 0 
such that  Ce(L) = Ce+I(L), then the ideal Ce(L) is called the hypercentre 
of L. 

Repeated application of the algorithms Centre and QuotientAIgebra give 
us an algorithm UpperCentralSefies for calculating the upper central series. 
Here we remark that for finite-dimensional Lie algebras L the series defined 
above always stabilize at some point (i.e., there are integers c, d, e > 0 such 
that L c = L c+1, L (d) - L (d+l) and Ce(L) = Ce+I(L)). 

E x a m p l e  1.7.3 Let L be the 5-dimensional Lie algebra of Example 1.6.1. 
As seen in that example, C1 (L) is spanned by x3. In the same way it can 
be shown that C ( L / C ( L ) )  = 0 so that C2(L) = CI(L). 

The lower central and derived series of L can be read off from the multi- 
plication table. It is seen that L 2 is spanned by Xl,X2,X3 and L 3 by xl ,x2,  
and L 4 = L 3. Also L (2) -- L 2 and L (3) - 0. It follows that L is solvable, 
but not nilpotent. 

1.8 Morphisms of Lie algebras 

In this section we derive useful properties of morphisms of Lie algebras. 
Recall that a linear map 0 : A1 -+ A2 from an algebra A1 into an algebra 
A2 is a morphism of algebras if O(ab) = O(a)O(b) for all a, b E A1. If A1 and 
A2 are Lie algebras, this condition is written as 0([a, b]) = [0(a), 0(b)]. If a 
morphism of Lie algebras is bijective, then it is said to be an isomorphism 
and the two Lie algebras are called isomorphic. If this is the case, then we 
write A1 -~ A2. Furthermore, by ker(0) = {x e A1 10(x) = 0} we denote 
the kernel of 0. Also im(0) = {O(x) l x  e A1} is the image of 0. 

L e m m a  1.8.1 Let 0 �9 L1 --+ L2 be a morphism of Lie algebras. 
im(e). 

Then we 



22 Basic constructions 

P r o o f .  First note tha t  ker(0) is an ideal in L~ and that  im(0) is a subalge- 
bra of 52. Define 0" 51/ker(0) -+ im(0) by 0(x + ker(0)) - O(x). This is a 
well defined morphism of Lie algebras and it clearly is bijective. So it is an 
isomorphism and the two Lie algebras are isomorphic. [::] 

P r o p o s i t i o n  1.8.2 For a Lie algebra L with ideals I and J, the following 
statements hold. 

1. If I C J then the quotient Lie algebra J / I  is an ideal of the quotient 
Lie algebra L / I  and we have ( L / I ) / ( J / I )  ~- L / J .  

2. The quotient Lie algebra (I + J ) / J  is isomorphic to I / ( I  M J). 

P r o o f .  1. Let r : L / I  ~ L / J  be the morphism of Lie algebras mapping 
the coset x + I E L / I  to the coset x + J E L/J;  this is well defined because 
I C J .  Let x + I E  kerr  t h e n x  C J ,  and h e n c e x + I  C J / I .  Since it is 
clear tha t  J / I  C ker r we find ker r = J / I .  Now, as r is clearly surjective, 
1. follows from Lemma 1.8.1. 

2. Define the map r  I + J --+ I / ( I  M J) by r  + y) = x + (I  M J)  E 
I / ( I  M J) for x C I, y E J.  This is well defined because if x + y = x ~ + y~ for 
x ~ C I,y~ E J ,  then x - x ~ = yt _ y E I N  J,  so that  x + I N J = x ~ + I M J ,  
i.e., r  + y) = r  + y'). 

I f x E I a n d y E J a r e s u c h t h a t x + y E k e r r  S o x C J  
and hence also x + y E J .  Therefore ker r C_ J ,  and consequently ker r = J .  
Thus, 2. follows from Lemma 1.8.1. [:] 

E x a m p l e  1.8.3 Let L be a finite-dimensional Lie algebra. We consider the 
linear map ad" L --+ ~[(L). We show that  ad is a morphism of Lie algebras. 
For x, y, z C L we have 

ad[x, y](z) - [[x, y], z] - -[[y,  z], x] - [[z, x], y] (Jacobi identity) 

= [x, [y, z ] ] -  [y, Ix, z ] ] -  ( a d x - a d y -  ady .  adx)(z) - [ a d x ,  ady](z). 

The kernel of ad is C(L),  the centre of L. So by Lemma 1.8.1, we see that  
the image of ad is isomorphic to L/C(L) .  

1.9 D e r i v a t i o n s  

Let A be an algebra. A derivation d of A is a linear map d " A ~ A 
satisfying 

d(xy) - d(x)y + xd(y) for all x, y E A. 
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Let Der(A) be the set of all derivations of A. It is straightforward to check 
that Der(A) is a vector space. Furthermore, the commutator defines a 
product on Der(A), since for dl, d2 C Der(A), 

[dl ,d2](xy)  - (did2 - d2dl ) (xy )  

= d l (d2 (x ) y  + xd2(y))  - d 2 ( d l ( x ) y  + x d l ( y ) )  

= d l (d2 (x ) ) y  + d2(x )d l ( y )  + d l ( x )d2(y )  + xd l (d2 (y ) )  

- d 2 ( d l  (x ) )y  - d l  (x)d2(y)  - d2(x)d l  (y) - xd2(dl  (y)) 

= (dl (d2(x)) - d2(dl(x)))y + x(d l  (d2(y)) - d2(dl (y))) 

= [dl, d2](x)y + x[dl,  d2](y). 

Consequently the space Der(A) has the structure of a Lie algebra. 
For later use we record the so-called Leibniz formula. Let d be a deriva- 

tion of the algebra A. Then 

n 

( n '  dk (x)dn_ k (y) (Leibniz formula) (1 11) - ' 

k = 0  

which is proved by induction on n. 
Let A be a finite-dimensional algebra. We consider the problem of com- 

puting a basis of the linear Lie algebra Der(A). Let {y l , . . .  , Ym} be a basis 
of A and let ~,k (for 1 < i, j, k ~ m) be the structure constants of A relative 

m to this basis. Let d C End(A) be a linear map given by d(y~) - ~-~.j=l di jyj .  
Now d E Der(A) if and only if d(yiYj)  - d(yi)Yj  + y id(y j )  for 1 < i , j  ~ m.  
This is equivalent to 

m m m m m m 

E E ")'kdklYl- E E ")'lkj dikyl + E E 1 7ikdjkYl �9 
/ = 1  k = l  / = 1  k = l  / = 1  k = l  

And since the Yt are linearly independent, the coefficients of Yl on the left 
and right hand sides must be equal. Hence d C Der(A) if and only if 

m 

E..,/ijk dkl -- ~lkjdik -- "/~kdjk -- 0, for 1 _< i, j, l _< m. 
k = l  

Which is a system of m 3 linear equations for the m 2 variables dij. This 
system can be solved by a Gaussian elimination; as a consequence we find 
an algorithm Derivations which computes a basis of Der(A) for any algebra 
A. 

R e m a r k .  If A happens to be a Lie algebra, then by (1.1), YiYj - - y j y i .  
Therefore, d C End(A) if and only if d(yiYj)  - d(yi)Yj + y id(y j )  for 1 < i < 



24 Basic constructions 

j < m. So in this case we find m2(m + 1)/2 equations (instead of m3). 

E x a m p l e  1.9.1 Let L be a Lie algebra. Then we claim that  for x C L, the 
map adx �9 L -+ L is a derivation of L. Indeed, for y, z C L we have 

adx([y,z]) = Ix, Iv, z]] 
= - [ z ,  Ix, y]] - [y, [z, x]] (Jacobi  identi ty)  

= [Ix, v], ~] + Iv, [~, z]] 
= [adx(y) , z ]  + [y, adx(z) ] ,  

proving our claim. Derivations of the form adx are called inner. On the 
other hand, if a derivation d of L is not of this form, then d is said to be an 
outer derivation. 

1.10 (Semi)  direct  sums  

Let L1 and L2 be Lie algebras over the field F. In this section we describe 
how we can define a multiplication on the direct sum (of vector spaces) 
L1 (~ L2 extending the multiplications on L1, L2 and making L1 @ L2 into a 
Lie algebra. Let the product on L1 be denoted by [, ]1 and on L2 by [, ]2. 
Suppose we have a morphism of Lie algebras 0 : L 1  --+ Der(L2). Then this 
map allows us to define an algebra structure on the vector space L1 �9 L2 
by setting 

[Xl + X2, Yl -+- Y2] -- [Xl, Yl]1 + O(Xl)(Y2) -- O(yl)(X2) + [X2, Y212 (1.12) 

for xl, Yl E L1 and x2, Y2 C L2. (So the product [x, y] for x C L1 and y C L2 
is formed by applying the derivation O(x) to y.) 

L e m m a  1.10.1 
Lie algebra. 

The multiplication defined by (1.12) makes L1 | L2 into a 

Proo f .  Let xl C L1 and x2 E L2. Then 

[Xl -}- X2, Xl -}- X 2 ] -  [Xl,Xl]I -}-O(Xl)(X2) --O(Xl)(X2)-]-[X2,X212 -- 0. 

It suffices to check the Jacobi identity for the elements of a basis of the Lie 
algebra (cf. Lemma 1.3.1) . Construct a basis of L1 G L2 by first taking 
a basis of L1 and adding a basis of L2. Let x, y, z be three elements from 
this basis. We have to consider a few cases: all three elements are from 
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L1, two elements are from L1 (the other from L2), one element is from L1, 
no elements are from L1. The first and the last case are implied by the 
Jacobi identity on L1 and L2 respectively. The second case follows from the 
fact that 0 is a morphism of Lie algebras. And the third case follows from 
the fact that O(x) is a derivation of L2 for x E L1. (We leave the precise 
verifications to the reader). [:] 

The Lie algebra L1 @ L2, together with the multiplication defined by 
(1.12), is called the semidirect sum of L1 and L2 (with respect to 0). It is 
straightforward to see that it contains L2 as an ideal and L1 as a subalgebra. 

On the other hand, suppose that a Lie algebra L contains a subalgebra 
L1 and an ideal L2 such that as a vector space L = L1 | L2. Then for 
x E L~ and y E L2 we have adx(y) = [x, y] C L2 because L2 is an ideal. As 
a consequence adx maps L2 into itself. Furthermore, as seen in Example 
1.9.1, the map adx is a derivation of L2. Hence we have a map adL2 : 
L1 --+ Der(L2). By Example 1.8.3, adL2 is a morphism of Lie algebras. It 
is immediate that the product on L satisfies (1.12) with 0 = adL2. So L is 
the semidirect sum of L1 and L2. 

If there can be no confusion about the map 0, then the semidirect sum 
of L1 and L2 is denoted by L1 ~< L2. 

A special case of the construction of the semidirect sum occurs when we 
take the map 0 to be identically 0. Then the multiplication on L1 @ L2 is 
given by 

[xl + x2, Yl + Y2] = [xl, Yl]1 + [x2, Y212 for all Xl, Yl E L1 and x2, y2 E L2. 

The Lie algebra L1 | L2 together with this product is called the direct sum 
(of Lie algebras) of L1 and L2. It is simply denoted by L1 G L2. From the 
way in which the product on L1 | L2 is defined, it follows that L1 and L2 
are ideals in L1 �9 L2. Conversely suppose that L is a Lie algebra that is 
the direct sum of two subspaces L1 and L2. Furthermore, suppose that L1 
and L2 happen to be ideals of L. Then ILl, L2] is contained in both L1 and 
L2. Therefore ILl,L2] = 0 and it follows that L is the direct sum (of Lie 
algebras) of L1 and L2. 

E x a m p l e  1.10.2 In general a Lie algebra can be a semidirect sum in more 
than one way. Let L1 and L2 be copies of the same Lie algebra L. Let 
r  L1 --+ L2 be the algebra morphism induced by the identity on L. Define 
0 : L1 ~ Der(L2) by O(x) = adLer for x C L1. Then 0 is the composition 
of two morphisms of Lie algebras. Consequently, 0 is a morphism of Lie 
algebras and hence we can form the semidirect sum of L1 and L2 with 
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respect to 0. Denote the resulting Lie algebra by K. Now let K1 be the 
subspace of K spanned by all elements of the form x -  r for x E L1. And 
let K2 be the subspace spanned by all r for x E L1 (i.e., K2 is equal to 
L2). Then for x, y E L1, 

[~ - r  y - r  - [~, y] - e ( ~ ) ( r  + o ( y ) ( r  + [ r  r  

= [~, y] - [ r  r  + [r  r  + [ r  r  

= [~, y] - [ r  r  - Ix, y] - r  y]) .  

Hence K1 is a subalgebra of K. By a similar calculation it can be shown 
that [K1, K2] - 0 so that K1 and K2 are ideals of K. So K is the direct 
sum (of Lie algebras) of K1 and K2. 

In Section 1.15 we will give an algorithm for finding a decomposition of 
L as a direct sum of ideals. 

1.11 Automorphisms of Lie algebras 

Let L be a Lie algebra over the field F. An a u t o m o r p h i s m  of L is an isomor- 
phism of L onto itself. Since products of automorphisms are automorphisms 
and inverses of automorphisms are automorphisms, the automorphisms of 
L form a group. This group is called the a u t o m o r p h i s m  group of L; it is 
denoted by Aut(L). 

E x a m p l e  1.11.1 Let V be a finite-dimensional vector space. Let L be a 
subalgebra of ~[(V) and g E End(V) an invertible endomorphism of V. If 
g L g  -1 - L then the map x ~ gxg  -1 is an automorphism of L because 

Now let the ground field F be of characteristic 0. If d is a nilpotent 
derivation of L, i.e., d n - 0 for some integer n _ 0, then we can define its 
exponential: 

1 d2 e x p d - l + d + ~  + . . . +  
( n -  1)! 
~ d n - 1  

L e m m a  1.11.2 Let  d be a n i lpotent  der ivat ion  of  L ,  then expd is an au- 

t o m o r p h i s m  of  L.  
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Proof .  Because d is nilpotent, there is some integer n with d n - O. Now 
we calculate 

n- -1  n - 1  1 [dix ' dJy ] 
[(exp d)x, (exp d)y] - E E 

i--O j=O 

1 ) 
m = 0  i=0 

2•2 dm[x, Y] 
= m! (by (1.11)) 

m--O 

_ _ d [x'Y] 

m! 
m =0  

= (exp d)[x, y]. 

So exp d is a morphism of Lie algebras. 
The inverse of exp d is the map 

n - 1  
1 

exp( -d)  - E ( -  1)j -ft. dj. 
j=0 

It follows that expd is a bijective morphism of Lie algebras; i.e., it is an 
automorphism. D 

In particular, if adx is nilpotent then exp(adx) is an automorphism of 
L. An automorphism of this form is called inner. The subgroup of Aut(L) 
generated by all inner automorphisms is called the inner automorphism 
group. It is denoted by Int (L). 

1.12 Representations of Lie algebras 

Def in i t ion  1.12.1 Let L be a Lie algebra over the field F. A representation 
of L on a vector space V is a morphism of Lie algebras p" L -+ g[(V). 

A representation p:  L -+ g[(V) is said to be faithful if ker p = 0. 
If p : L --+ g[(V) is a representation of the Lie algebra L on the vector 

space V, then V is said to be an L-module. The representation p is said 
to define an action of L on V. If from the context it is clear which repre- 
sentation p we mean, then we also write x .  v instead of p(x)(v) .  Here the 
condition that p be a morphism of Lie algebras becomes 

[x , y ] . v  -- x .  (y .  v ) - y .  ( x .  v) for all x ,y  e L and v e V. (1.13) 
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Let p :  L --+ g[(V) and p' : L ~ g[(W) be two representations of the 
Lie algebra L. A morphism of L-modules from V to W is a linear map 
f :  V --+ W such that  p' ( x ) ( f  (v)) = f (p(x)(v))  for all v C V. If a morphism 
of L-modules f �9 V ~ W is bijective, then the representations p and p' are 
said to be equivalent. 

E x a m p l e  1.12.2 Let L be a Lie algebra. As seen in Example 1.8.3 the 
adjoint map ad : L --+ g[(L) is a morphism of Lie algebras. Hence ad is 
a representation of L. It is called the adjoint representation. In the next 
chapters we will heavily utilize the tools of representation theory to study 
the adjoint representation of a Lie algebra L. This will yield useful insights 
in the structure of L. 

Now we describe several ways of making new L-modules from known 
ones. Let L be a Lie algebra over the field F and let V and W be two 
L-modules. Then the direct sum V @ W becomes an L-module by setting 

x .  (v + w )  = x . v  + x . w  for all x C L, v E V and w C W .  

Also the tensor product  V | W can be made into an L-module by 

�9 . ( ,  | ~ )  - (~ .  v) | ~ + , | (~ .  ~) .  

We verify condition (1.13) for V | W" 

[~, y].  (v | ~ )  =([~,  y].  , )  | ~ + , | ([~, y] .  ~ )  

= ( ~ . y .  v) | ~ - ( y . ~ . , )  | ~ + 

v | ( ~ . y .  ~ )  - ~ | ( y . ~ .  ~ )  

= ~ .  (y.  (~ | ~ ) )  - y .  (x .  (~ | ~ ) ) .  

By HomE(V, W) we denote the space of all linear maps from V into W. 
This space can also be made into an L-module by setting 

( x .  f ) ( v )  -- x .  ( f ( v ) )  - f ( x .  v) for all x C L, f E HomF(V, W) and v C V. 

We leave the verification of the requirement (1.13) to the reader. 
Let V be an L-module and let W be a subspace of V that  is stable under 

L, i.e., x - w  C W for all x C L and w C W. Then W is called a submodule 
of V. In this case W is an L-module in its own right. Also, if W is a 
submodule, then the quotient space V / W  can be made into an L-module 
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by setting x - ~  - x 3, where ~ denotes the coset v + W. The space V / W  
is called the quotient module of V and W. 

The L-module V is called irreducible if it has no submodules other than  

0 and V itself. It is called completely reducible if V is a direct sum of 
irreducible L-modules. 

D e f i n i t i o n  1.12.3 Let V be a finite-dimensional L-module. 
L-submodules 

O -  Vo c V1 c . . .  c V~+~ - V 

A series of 

such that the L-modules ~ + l / V i  are irreducible for 0 < i < n is called a 
composit ion series of V with respect to the action of L. 

L e m m a  1.12.4  Let V be a finite-dimensional L-module. 
composition series. 

Then V has a 

P r o o f .  The proof is by induction on dim V. The s tatement  is trivial if 
dim V = 0 or if V is irreducible. Now suppose V is not irreducible and 
dim V > 0, and assume that  the result holds for all L-modules of dimen- 
sion less than  dim V. Let W be a maximal proper submodule  of V (such a 
submodule exists because V is not irreducible). Then by induction W has 
a composit ion series. To this series we add V and we obtain a composit ion 
series of V ( V / W  is irreducible since W is a maximal proper  submodule).  [:] 

1.13 Restricted Lie algebras 

In this section all algebras are defined over the field F of characteristic 
p > O .  

Let A be an algebra and let d be a derivation of A. We use the Leibniz 
formula (1.11), with n - p. Since all coefficients (~) are 0 for 1 _< k _< ; -  1 
we see that  

d p (xy) - d p (x)y + xd p (y). 

The conclusion is that  d p is again a derivation of A. 
Now let L be a Lie algebra over F .  Then for x C L we have that  adx is a 

derivation of L. So (adz) p is also a derivation of L, and it may happen that  
this derivation is again of the form ady for a y E L. Lie algebras L with the 

proper ty  that  this happens for all elements x of L are called restricted. 
If L is a restricted Lie algebra, then there is a map fp : L -+ L such that  

(adx) p = adfp(X). Now let c: L --+ C(L) be any map from L into its centre. 
T h e n  gp = fp + c is also a map such that  (adx) p = adgp(X). So if C(L) ~ 0, 
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there will be a huge number of such maps gp. Therefore we want to restrict 
our a t tent ion to a "nice" class of maps. In order to see what  such a class 
might look like we s tudy the case where the above phenomenon does not 
occur, namely when C(L) = O. 

First, let A be an associative algebra over F and let a, b C A. By 
ada : A -+ A we denote the map defined by ada(b) = a b -  ba. Now 

"(;) (ada)n(b) - E (_l)kakban-k, 
k=0 

(1.14) 

which is easily proved by induction. If in (1.14) we set n - p -  1, we get 
(as (Pk:) -(--1)k), 

p-1 
(ada)P-l(b) - E akbaP-l-k 

k=0 

(1.15) 

Let T be an indeterminate  and consider the polynomial  

p-1 

(Ta + b) p - TPa p + b p + E si(a, b)T i, 
i=1 

(1.16) 

where the si(a, b) are certain non-commutat ive polynomial  functions of a, b. 
We differentiate (1.16) with respect to T to obtain 

p-1 p-1 

E (Ta + b)ia(Ta + b)P-l-i = E isi(a, b)T i-1 
i=0 i=1 

By (1.15), the left-hand side of this equation is equal to ad(Ta  + b)P-l(a). 
1 times the coefficient of T i-1 in ad(Ta  + It follows that  si(a, b) is equal to ~- 

b)P-l(a). In particular,  si(a, b) is a nested commutator  in a and b. Hence 
also for x, y in a Lie algebra L the expression si(x, y) makes sense. Further- 
more, si(adx, ady) = adsi(x, y) for x, y E L, since ad is a morphism of Lie 
algebras (Example 1.8.3). 

E x a m p l e  1.13.1 First  let p = 2, then ad(Ta + b)(a) -[b,a]. So in this 
case 81 (a, b) - - [b ,  a]. Now let p -  3, then 

ad(Ta  + b)2(a) - [Ta + b, [Ta + b, a]] - [Ta + b, [b, a]] - T[a, [b, a]] + [b, [b, a]]. 

Hence sl (a, b) - [b, [b, a]] and s2(a, b) - 2[a, [b, a]]. 
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Now let x, y E L, where L is a restricted Lie algebra such that  C(L)  - O. 
Then by setting T -  1 in (1.16) and taking a - adx and b = ady we get 

p-1 
+ = + +  dy) 

i=1 
p-1 

= adfp(X) + adfp(y)  + E adsi (x ,  y) 
i=1 

p-1 

= + A(Y) + Z y)) 
i=1 

p-1 
So since C(L)  - 0 we see that  f p (x  +y)  - f p (X)+  f p ( y ) +  E i = I  8i(X, y). Fur- 
thermore,  for a E F and x C L we have (adax)  p - aPadfp(X) - adaPfp(x).  
Hence fp(aX)  - aPfp(X).  Now in a restricted Lie algebra we consider maps 
fp that  have the same properties as the map fp in the case where L has no 
centre. 

D e f i n i t i o n  1.13.2 Let L be a restricted Lie algebra over F.  
fp " L -+ L is called a p-th power mapping, or p-map i f  

Then a map 

1. (adx) p - adfp(x)  for  all x C L, 

p-1 
2. f p ( x  + y) -- fp(X) + fp(y)  + E i = I  si(x ,  y) for  x, y C L, 

J .  - 

Let L be a restricted Lie algebra over F.  If it is clear from the context 
which p-th power map fp we mean, then we also write x p instead of fp(X). 

E x a m p l e  1.13.3 Let A be an associative algebra over the field F of char- 
acteristic p > 0. Then since A is associative, we can raise its elements to the 

p-th power. Set L - ALie, the associated Lie algebra. Then for a C L we 
have a p e L. Furthermore,  by (1.14) it follows that  (ada)P(b) = ad(aP)(b). 
So L is restricted. Also by (1.16), where we set T = 1, we have that  a ~-~ a p 
is a p- th power mapping. As a consequence, any subalgebra K of L that  is 
closed under the map a ~ a p is automatical ly restricted; and the restriction 

of a ~ a p to K is a p-th power mapping. 
Now let A be an algebra over F and Der(A) the Lie algebra of all 

derivations of L. As seen at the start  of this section, d p E Der(A) for 
all d E Der(A). Hence Der(A) is a subalgebra of End(A)Lie  closed under 
the p-th power map. So Der(A) is a restricted Lie algebra. 
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Let f be a bilinear form on the vector space V. Let L S be the Lie algebra 
defined by (1.3). Let a E L S, then f ( aPv ,  w) - ( - 1 ) P f ( v ,  aPw) - - f ( v ,  aPw) 

so that  a p C L S. As a consequence L I is a restricted Lie algebra relative to 
the map a ~ a p. 

Suppose we are given a Lie algebra L over F.  In principle, when checking 
whether L is restricted or not, we would have to check whether (adx) p is an 
inner derivation of L for all x C L. However, by the next result it is enough 
to check this only for the elements of a basis of L. Furthermore,  a-priori it 
is not clear whether any restricted Lie algebra has a p-th power mapping. 
Also this is settled by the next proposition. 

P r o p o s i t i o n  1.13.4 Let  L be a Lie  algebra over the f ield F of  character is t ic  

p > O. Let  { x l ,  x 2 , . . .  } be a (possibly in f in i te)  basis of  L .  Suppose  that  there 

are yi C L for  i > 1 such that  (adxi )  p -  adyi .  Then  L has a un ique  p - th  
p 

power  mapp ing  x ~-~ x p such that  x i - yi. 

P r o o f .  We prove uniqueness. Let fp �9 L ~ L and gp �9 L -+ L be two p-th 
power mappings such that  fp(Xi )  - gp(Xi) - Yi for i > 1. Set h = fp - gp. 
Then from the definition of p-th power mapping we have h ( x  + y) - h ( x )  + 

h (y )  and h ( a x )  - a P h ( x ) ,  for x, y E L and a e F.  Hence ker h is a subspace 
of L. But xi  C ker h for all i _ 1. It follows that  h - 0 and fp - gp. 

The proof of existence is more complicated; it needs the concept of uni- 
versal enveloping algebras. We defer it to Section 6.3. [::1 

On the basis of the last proposition we formulate an algorithm for check- 
ing whether a given finite-dimensional Lie algebra is restricted. 

A l g o r i t h m  IsRestricted 
Input: a finite-dimensional Lie algebra L defined over a field of characteristic 

p > 0 .  
Output: true if L is restricted, false otherwise. 

Step 1 Select a basis {Xl , . . .  ,Xn}  of L and compute the matrices of adx i  

for 1 _< i _< n. Let V be the vector space spanned by these matrices. 

Step 2 for 1 <_ i _< n determine whether (adxi )  p C V .  If one of these is not 
in V then return false. Otherwise return true. 

Let L be a restricted Lie algebra. In order to calculate with p-th power 
mappings, we have to decide how to represent such a mapping on a com- 
puter. Proposition 1.13.4 gives a straightforward solution to this problem. 
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We can describe a p-th power mapping by giving the images of the ele- 
ments of a basis of L. Then the image of an arbitrary element of L can be 
calculated using conditions 2 and 3 from Definition 1.13.2. 

E x a m p l e  1.13.5 Let G be a finite p-group, and L be the corresponding Lie 
algebra over F = Fp as constructed in Section 1.4. Then L = V1 |  Vs, 
where Vi is isomorphic to the factor group Gi via the isomorphism ai : Gi --+ 
Vi. Now let x E Vi and let g C hi(G) be such that T i ( g )  : X (where ~-i is as in 
Section 1.4). Then by Theorem 1.4.1, gP E ~pi(G). Now we set xp = .rpi(gp). 
It can be shown that x p does not depend on the particular pre-image g 
chosen. Also it can be shown that for x C ~ we have ( a d x )  p - -  adx p. This 
together with Proposition 1.13.4 shows that L is a restricted Lie algebra. 

Now let G be the group generated by gl, g2, g3 of Example 1.4.5. Let L be 
the corresponding 3-dimensional Lie algebra over F2 with basis {el, e2, e3}. 

Then e~ - ~-2(gl 2) - e3, and similarly e 2 - e3 and e 2 - 0. Furthermore, 
using the fact that 81(a, b) --[b, a] (see Example 1.13.1) we see that 

+ = + + - + + - 

1.14 Extens ion  of the ground field 

Let L be a Lie algebra over the field F, and let/~ be an extension field of F. 
Then the structure constants of L are also elements of/~, so we can define 
a second Lie algebra L that has the same structure constants as L, but is 
defined over/~. Formally we set L - L @g I~. This space consists of finite 
sums ~-~4 Yi @ )~i, where Yi E L and Ai C F. For @ we have the following 
rules: 

(x + y )  | = x@)~ + y |  A, 

x |  (~ + # )  = x |  ~ + x |  

( a x ) | 1 6 3 1 7 4  f o r a C F ,  

~(x | ~) = x | M .  

Furthermore, the product in L is defined by [x @ )~, y @ #] - Ix, y] | ~#. Let 
{Xl, . . .  ,Xn} be a basis of L, then the rules for @ imply that every y C ], 
can be written as 

n 

Y = E A i ( x i |  w h e r e ) ~ i C F f o r l < i _ < n .  
i=1 
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It follows that  the elements X l | 1 , . . .  , Xn | 1 form a basis of L. And the 
structure constants of L relative to this basis equal the structure constants 
of L relative to the basis {x 1 , . . . ,  Xn}. 

Now let V, W be two subspaces of L; then V - V | and I/V - W @F/~ 
are subspaces of L. Let { V l , . . . , v s }  and { W l , . . . , w t }  be bases of V and 
W respectively. If we input L, V and W (with respective bases {xl | 
1 , . . .  ,xn |  {v1|  , vs@l} and {w1@1,... , wt@l}) into the algorithm 
ProductSpace then, because the structure constants of L are equal to those 
of L, we see that  this algorithm performs exactly the same operations as on 
the input L, V, W. (Solving linear equations with coefficients in F gives an 
answer with coefficients in F.) Hence 

IV | -t~, W | if'] -- [g~ W] | -if'. 

Let L (k) denote the k-th term of the derived series of L, then by the above 
discussion we have that  ],(k) _ L(k) | F. And the same holds for the terms 
of the lower central series. 

Also, the algorithm Centre solves exactly the same set of linear equations 
on input L as on input L. Hence we see that  C(L) - C(L) | b'. And 
generally, Ck(L) - Ck(L) @g F,  where Ck(L) denotes the k-th term of the 
upper central series of L. 

1.15 F i n d i n g  a d irec t  s u m  d e c o m p o s i t i o n  

Let L be a finite-dimensional Lie algebra. Then L may or may not be the 
direct sum of two or more ideals. If this happens to be the case then the 
structure of the direct summands of L may be studied independently. To- 
gether they determine the structure of L. So the direct sum decomposition 
can be a very valuable piece of information. In this section we describe an 
algorithm to compute a decomposition of L as a direct sum of indecompos- 
able ideals (i.e., ideals that  are not direct sums of ideals themselves). 

Suppose that  L - I1 @/2 is the direct sum of two ideals I1,/2 and I1 
is contained in the centre of L. Then I1 is called a central component of L. 
First we give a method for finding such a central component if it exists. 

Let J1 be a complementary subspace in C(L) to C(L) N [L, L]. Then 
as -/1 is contained in the centre of L, it is an ideal of L. Let J2 be a 
complementary subspace in L to J1 containing [L, L]. Then 

[L, J2] C [L, L] C J2 

so that  J2 is an ideal of L. Furthermore L - -/1 | J2 and -/1 is central and 
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J2 does not contain a central  component .  The conclusion is tha t  J1 is a 
maximal  central  component .  

Now we suppose tha t  C(L)  C [L, L] (i.e., t ha t  L does not have a central  

component )  and we t ry  to decompose L as a direct sum of ideals. 

We recall tha t  M n ( F )  is the associative mat r ix  algebra consisting of all 

n x n matr ices over F (cf. Example  1.1.4). From Appendix  A we recall 

t ha t  a non-zero element e C M n ( F )  is called an idempotent  if e 2 - e. 

Two idempoten t s  el and e2 are called orthogonal if el e2 = e2el = 0. An 
idempoten t  is said to be primit ive if it is not the sum of two or thogonal  
idempotents .  

P r o p o s i t i o n  1 .15 .1  Put  n -  dim L. The Lie algebra L is the direct sum 

of k (non-zero) ideals I 1 , . . . ,  Ik if  and only if  the centralizer 

CM~(F) (adL) -- {a e M n ( F )  l a .  adx - adx . a for  all x e L}  

contains k orthogonal idempotents e l , . . . ,  ek such that el + ' "  + ek is the 
identity on L and Ir - erlr for  r = 1 , . . . ,  k. Furthermore, the ideal Ir is 
indecomposable if and only if  the corresponding idempotent  er is primitive.  

P r o o f .  First  we suppose tha t  

L = I1 @ . . .  G Ik, 

where Ir is a n o n - z e r o  ideal of L for 1 __ r <_ k. For an element x C L 

we write x - Xl + . . .  + Xk, where xr C It .  Let er �9 L --+ L be defined by 

er(x) - Xr (i.e., er is the project ion onto Ir). Then  for y , z  E L we have 

erady(z)  - er[y,z] - [y,Z]r - [ y ,  Zr] - adyer(z) .  Hence er C CM,(F)(adL) .  
Also it is clear tha t  eres - 0 for r # s, and tha t  el + ' "  + ek -- 1. 

Now let e l , . . .  ,ek be k or thogonal  idempotents  in CMn(F)(adL) such 
tha t  e l + . .  "+ek 1. Then  set Ir -- erL for 1 _< r __ k. Since er 2 = er we have 

for x C Ir and y E L tha t  [y,x] - [ y ,  erX] - adyer(X) - erady(x)  - er[y,x] 
so tha t  Ir is an ideal of L. Also 

L - 1 �9 L - (el + . . .  + ek)L -- I1 + ' "  + Ik. 

Now let x C Ir M Is. Then  x = erX, and also esX = x so tha t  x = eserX -= O. 
Hence L is the direct sum of the Ir. 

If er is not pr imit ive then,  as above, we see tha t  Ir is the direct sum of 

ideals. Fur thermore ,  if Ir is the direct sum of ideals of Ir ( that  are then 
au tomat ica l ly  ideals of L), then er is not primitive.  [::] 
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T h e o r e m  1.15.2 Le t  A be the associa t ive  algebra C M ~ ( F ) ( a d L )  and  p u t  

Q = A / R a d ( A ) .  Suppose  that  L has no central  c o m p o n e n t .  T h e n  O. is 

c o m m u t a t i v e .  

Proof .  We may suppose that the ground field F is algebraically closed. 
Indeed, if F denotes the algebraic closure of F, then as seen in Section 1.14 
we have C ( L )  |  -F -- C ( L  |  F )  and [L | F ,  L | F--] -- [L, L] | F .  
Therefore also L | F has no central component. Also since a basis of 
CM,~(F)(adL)  can be calculated by solving a set of linear equations over F 

we have C M , ~ ( F ) ( a d L ) |  -- C M , ( F ) | 1 7 4  And finally Rad(A|  

F) - Rad(A) | F by Proposition A.1.3. Hence the result for L | F will 
imply the result for L. 

By Theorem A.1.5 we may write A - S @ Rad(A), where S is a semisim- 
ple subalgebra of A isomorphic to Q. We suppose that S is not commutative. 
By Theorem A.1.4, S decomposes as a direct sum of simple associative al- 
gebras that are full matrix algebras over division algebras over F.  As F is 
algebraically closed, the only division algebra over F is F itself (for a proof 
of this we refer to [69]). Hence from our assumption that S is not commu- 
tative it follows that S contains a full matrix algebra of degree at least 2. 
Now every full matrix algebra of degree >_ 2 contains a full matrix algebra 
of degree 2. It follows that S contains elements eij for 1 <_ i, j <_ 2 such 
that eijekl  -- (Sjkeil. Then 1 E A decomposes as a sum of three orthogonal 
idempotents 1 = ell + e22 + (1 - ell - e22) and the first two of these are 
certainly non-trivial. So by Proposition 1.15.1, L decomposes as a direct 
sum of ideals 

L - II  (~ I2 @ I3 

where I1 - e l l  L and I2 - e22L. Now we have maps 

f 2 1 " I 1  ~ h ,  and f12 "/2 > I1 

defined by f21 (x)  - e21x and fl2(Y) = e12y for x C I1 and y E /2. Since 
e21x =- e22e21x we see that f21 maps I1 in to/2 ,  and likewise f12 maps /2 
into 11. Furthermore f 1 2 ( f 2 1 ( x ) )  - e12e21x - e l l X  - x for x C I1. So f12 
and f21 are each others inverses. In particular they are non-singular linear 
maps. 

Because L does not have a central component we have that I1 and /2  are 
not commutative Lie algebras. So there exist x, y C I1 such that [x, y] 7t 0. 
We calculate 

f21 ([x, y]) - e21[x, y] - e21adx (y )  - adx (e21y )  - [x, e21y] - 0 
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where last equality follows from [11,/2] - 0. But since f21 is non-singular 
this implies that Ix, y] - 0 and we have reached a contradiction. The con- 
clusion is that S (and hence Q) is commutative. [::1 

A l g o r i t h m  DirectSu m Decom position 
Input" a finite-dimensional Lie algebra L. 

Output: a list of indecomposable ideals of L such that L is their direct sum. 

Step 1 Compute the centre C(L) and the derived subalgebra [L,L]. Com- 
pute a basis of a complement J in C(L) to C ( L ) N  [L, L]. Let K be a 
complement to J in L such that K contains [L, L]. 

Step 2 Set n := dim(K) and compute the centralizer A - C M n ( F ) ( a d K K  ). 

Step 3 Compute Rad(A) and set Q "= A/Rad(A) .  Compute the set of 
primitive orthogonal idempotents e l , . . .  , ek in Q such that el + " "  + 
~ k - l c Q .  

Step 4 Lift the idempotents ~1,...  , ~k to a set of orthogonal idempotents 
e l , . . . , e k  C A such that e l + - . . + e r  - 1 C A. For 1 _< r_< k set 
I~ - e~K. 

Step 5 Let {Yl, . . . ,Ym} be a basis of J and for 1 _< i _< m let Ji be the 
ideal of L spanned by Yi. Return {Jl , .  �9 �9 , Jm} U {I1 , . . .  , Ik}. 

C o m m e n t s .  If x l , . . .  ,Xn is a basis of K, then 

C M n ( F ) ( a d K  ) -- {a C Mn(F)  l a.  adKxi -- adKxi " a for 1 < i < n}, 

and hence CM~(F)(adK) can be calculated by solving a system of linear 
equations. For the calculations in the associative algebra A (calculation of 
the radical, of central idempotents and lifting them modulo the radical), we 
refer to Appendix A. We note that since Q is commutative, all idempotents 
in Q are central. Hence a set of primitive orthogonal idempotents with 
sum 1 can be found by the algorithm Centraildempotents (as described in 
Appendix A). 
R e m a r k .  A computationally difficult part of the algorithm DirectSumDe- 
composition is the calculation of the centralizer CM,,(F)(adK). The dimen- 
sion of this algebra may be substantially bigger than the dimension of K. 
So it would be desirable to have an algorithm that uses Lie algebra methods 
only. To the best of our knowledge no such algorithm exists for the general 
case. However, for the special case of semisimple Lie algebras we do have 
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an algorithm that does not "leave" the Lie algebra (see Section 4.12). 

1.16 N o t e s  

The algorithms QuotientAlgebra, AdjointMatrix, Centralizer, Centre, Normal- 
izer, ProductSpace, Derivations can be found in [7]. We have followed [71] 
for the algorithm DirectSumDecomposition. 

Usually (cf., [48], [88]), a Lie algebra of characteristic p > 0 is called 
restricted if it has a p-th power mapping. However, due to Proposition 
1.13.4 (which is taken from [48]), this is equivalent to our definition of 
restrictedness. 



Chapter 2 

On nilpotency and solvability 

In this chapter we start our study of the structure of a finite-dimensional 
Lie algebra. We examine solvable and nilpotent Lie algebras. Furthermore, 
we show that any finite-dimensional Lie algebra contains a unique maximal 
nilpotent ideal (called the nilradical), and a unique maximal solvable ideal 
(called the solvable radical). Section 2.2 is devoted to the nilradical. We 
give several characterizations of the nilradical, on the basis of which we 
formulate an algorithm for calculating the nilradical of a finite-dimensional 
Lie algebra. Section 2.3 is devoted to the solvable radical. We prove its 
existence and derive several important properties of the solvable radical. 
Using some of these in Section 2.4 we give a proof of Lie's theorem, which 
states that a linear "split" solvable Lie algebra of characteristic 0 consists 
of upper triangular matrices. 

In Section 2.5 we prove Cartan's criterion for a Lie algebra of charac- 
teristic 0 to be solvable. In Section 2.6 we prove a converse of Cartan's 
criterion, which yields an algorithm for calculating the solvable radical of 
a finite-dimensional Lie algebra of characteristic 0. Finally, in Section 2.7 
we derive an algorithm for finding a non-nilpotent element in a Lie algebra. 
This algorithm will be of major importance in Chapter 3, where we give 
algorithms for calculating a Caftan subalgebra. 

2.1 Engel's theorem 

Let L be a nilpotent Lie algebra. Then it is straightforward to see that 
adx is a nilpotent endomorphism for all x E L. This section is devoted to 
proving the converse: if adx is nilpotent for all x C L, then L is a nilpotent 
Lie algebra. 
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L e m m a  2.1.1 Let V be a finite-dimensional vector space over the field F. 
Suppose a C 9[(V) is nilpotent (i.e., a k - 0 for a k > 0). Then the endo- 

morphism ada of 9[(V) is nilpotent. 

P r o o f .  We must  prove tha t  there is an m > 0 such tha t  (ada)m(b) - 0 for 

all b C ~[(V). Because ada(b) - a b - b a ,  we have that  (ada)m(b) is a sum of 

elements of the form cijaiba j, where ciy C F and i + j - m. It follows tha t  
we can take m -  2 k -  1. [3 

P r o p o s i t i o n  2 .1 .2  Let L be a Lie subalgebra of gi(V). Suppose that all 
elements x E L are nilpotent endomorphisms; then there is a non-zero v C V 

such that x .  v - 0  for all x E L. 

P r o o f .  The proof is by induction on dim L. If dim L = 0, then the state- 

ment  is trivial. So suppose tha t  dim L > 1. By induction we may suppose 
tha t  the s ta tement  holds for all Lie algebras of dimension less than  dim L. 
Let K be a maximal  proper subalgebra of L. We consider the adjoint repre- 

sentat ion of K on L, adL" K ~ g[(L). Let x C K,  then adLx (K )  C K .  So 
K is a submodule  of L. We form the quotient module and get a represen- 

ta t ion a" K ~ g[ (L /K) .  By Lemma 2.1.1, a(x)  is ni lpotent  for all x C K.  
Therefore we can apply the induction hypothesis and we find tha t  there is 

a ~/E L / K  such tha t  a ( x ) .  f] - 0 for all x C K.  Let y be a pre-image of 

in L. Then  Ix, y] E K for all x E K.  Hence the space spanned by K and 
y is a subalgebra of L and it properly contains K.  Since K is maximal ,  we 

conclude tha t  L is spanned by K and y. 

Now let W be the space of all v C V such tha t  x .  v - 0 for all x C K.  

By induct ion W is non-zero. Also if v C W, then for x C K,  

( y .  - y .  v) + [ x , y ] . v  - 0 

because Ix, y] E K.  Hence y leaves W invariant. But  y is nilpotent,  and 

therefore there is a non-zero w C W such tha t  y .  w - 0. It follows tha t  

x - w  - 0 for all x C L. [3 

L e m m a  2 .1 .3  Let V be a finite-dimensional vector space. Let p " L -+ 
9[(V) be an irreducible representation of the Lie algebra L. Suppose that I 
is an ideal of L such that p(x) is nilpotent for all x E I. Then p(x) = 0 for 
a l l x C  I. 
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P r o o f .  Let W be the subspace of V consisting of all elements v C V such 
that  p(x)v  = 0 for all x E I. Then W r 0 by Proposition 2.1.2. Also, for 
w C W and x E I and y E L, we have 

p(x)p(y)w = p(y)p(x)w + p([x, y])w = 0 

so that  W is a non-zero L-submodule of V. Since V is irreducible, it follows 
that  W = V. [] 

P r o p o s i t i o n  2.1.4 Let p �9 L ~ 9[(V) be a f inite-dimensional represen- 

tation of the Lie algebra L. Let 0 - Vo C V1 C . . .  C Vn+l - V be a 
composition series of V with respect to L. Let I be an ideal of L. Then the 
following are equivalent: 

�9 p(x) is nilpotent for all x C I, 

�9 p(x)~/i+l C V/for  all x E I and 0 <_ i <_ n. 

P r o o f .  Suppose that  p(x) is nilpotent for all x E I. Consider the induced 
representation ai+l �9 L --+ ~ [ (~+1 /~ ) .  Then also ai+x (x) is nilpotent for all 
x C I. Hence by Lemma 2.1.3, ai+l(X) - 0, implying that  p (x )~+ l  C V/. 
The other implication is trivial. [5 

T h e o r e m  2.1.5 (Enge l )  Let L be a f inite-dimensional Lie algebra. Then 
L is nilpotent if and only if adx is a nilpotent endomorphism for all x C L. 

P r o o f .  Let 0 -  Lo C L1 C . . .  C Ln+l - L be a composition series of L 
relative to the adjoint representation of L. Suppose that  adx is nilpotent 
for all x C L. Then by Proposition 2.1.4 we have that  adx(Li+l)  C Li, for 
x C L and 0 < i < n. Hence L k C Ln_k+2 (where L k is the k-th term of 
the lower central series). It follows that  L is nilpotent. 

If L is nilpotent, then adx(L  k) C L k+l for all x C L and k > 1. Hence 
adx is nilpotent for all x C L. 0 

E x a m p l e  2.1.6 Theorem 2.1.5 yields an ad-hoc method to show that  a 
given Lie algebra L is not nilpotent, without calculating the lower cent~M 
series. The only thing we have to do is to find an x C L such that  adx 
is not nilpotent. As an example we consider the Lie algebra with basis 
{ x l , . . .  , xs} and multiplication table 

[ X l ,  x 4 ]  - = x 4 ]  = - 

[ x 3 ,  x 4 ]  - - 
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Then we see that adx4 has an eigenvalue - 2  (corresponding to the eigenvec- 
tor Xl). Hence adx4 is not nilpotent, so that L is not a nilpotent Lie algebra. 
In Section 2.7 we will give an algorithm for finding a non-nilpotent element 
in a Lie algebra L, provided that  L is not nilpotent. This automatically 
provides a way of testing whether an arbitrary Lie algebra is nilpotent. 

2.2 T h e  ni lradical  

Here we show that  an arbitrary Lie algebra contains a unique maximal 
nilpotent ideal, called the nilradical. We give two characterizations of the 
nilradical. 

L e m m a  2.2.1 Let L be a Lie algebra. I f  I and J are nilpotent ideals o] L, 
then so is I + J. 

Proo f .  Let (I  k) and ( j k )  be the lower central series of I and J respectively. 
Then because I and J are nilpotent, there is an integer t such that  I t = 
j t  _ O. Hence all m-fold brackets 

[Xl, Ix2, [... [xm-1, xm]... ]]] 

of elements of L with at least t of them from I or at least t of them from 
J are zero. Now set m - 2t and let x~ - yi + zi, where Yi E I and zi C J 
for 1 < i < m. Then [xl, [x2, ' . .  [Xm-1, Xm]"" ]] is a linear combination of 
m-fold brackets containing at least t elements from I or at least t elements 
from J.  Hence (I  + j)2t  = O. Thus I + J is nilpotent. D 

From Lemma 2.2.1 it follows that a finite-dimensional Lie algebra L 
contains a unique maximal nilpotent ideal. Indeed, suppose that  I and J 
both are maximal nilpotent ideals. Then I +  J is a nilpotent ideal containing 
b o t h I a n d  J. It follows that I + J  = I a n d I + J -  J ,  or I -  J.  The 
maximal nilpotent ideal of L is called the nilradical and denoted by NR(L). 

P r o p o s i t i o n  2.2.2 Let 0 -  Lo C L1 C . . .  C Ln+l - L be a composition 
series of L with respect to the adjoint representation of L. Then NR(L) is 
the set of all x C L such that adx(Li+l)  C Li for 0 ~ i ~ n. 

P r o o f .  Let I be the set of all x C L such that  adx(Li+l) C Li for 0 < i < n. 
Then I is an ideal of L and adx is nilpotent for all x C I. By Theorem 2.1.5 
this implies that  I is nilpotent and hence I C NR(L). If x C NR(L) then, 
by Theorem 2.1.5, adNa(L)X is nilpotent. Also, since NR(L) is an ideal, 
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adx(L) C NR(L). Hence adLx is nilpotent. Now by Proposition 2.1.4 we 
see that NR(L) C I. E] 

From Section 1.1 we recall that (adL)* denotes the associative algebra 
generated by the identity on L together with all adx for x C L. Furthermore, 
from Appendix A we recall that the radical Rad(A) of an associative algebra 
A is its unique maximal nilpotent ideal. The next proposition relates the 
radical of (adL)* to the nilradical of L. 

P r o p o s i t i o n  2.2.3 The nilradical of L is the set of x C L such that adx E 
Rad((adL)*). 

Proof .  Let 0 -  L0 C Lt C ..- C Ln+l - L be a composition series of 
L with respect to to the adjoint representation. Let N be the space of all 
a C (adL)* such that aLi+l C Li for 0 <_ i <_ n. Then N is a nilpotent ideal 
in (adL)*, and consequently, N C Rad((adL)*). Let x C NR(L), then by 
Proposition 2.2.2, adx C N. So adx lies in the radical of (adL)*. 

Let I be the set o f y  C L such that ady C Rad((adL)*). Let x E L 
and y E I, then because ad[x, y] - a d x a d y -  adyadx (see Example 1.12.2) 
we have ad[x, y] E Rad((adL)*). Therefore I is an ideal of L. Also for 
all x E I we have that adLx is nilpotent, and as a consequence adix is 
nilpotent. Hence by Engel's theorem (Theorem 2.1.5), I is nilpotent so that 
z c NR(L). D 

Using Proposition 2.2.3 we give an algorithm for calculating the nilrad- 
ical of a Lie algebra L. 

Algorithm NilRadical 
Input: a finite-dimensional Lie algebra L. 

Output" the nilradical of L. 

Step 1 Compute a basis of the associative algebra A - (adL)*. 

Step 2 Compute R -  Rad(A) (see Appendix A). 

Step 3 Compute a basis of the space of all x E L such that adx C R. Return 
this basis. 

C o m m e n t s :  The algorithm is justified by Proposition 2.2.3. We remark 
that the computation in Step 3 can be done by solving a system of linear 
equations. Furthermore, the algorithm works for Lie algebras defined over 
fields of characteristic 0 and finite fields (because over these fields we have an 
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algorithm for calculating the radical of an associative algebra, see Appendix 
A). 

E x a m p l e  2.2.4 Let L be the Lie algebra over Q with basis {Xl,X2,X3} and 
multiplication table 

[Xl ,X3]  = Xl  + X 2 ,  [X2,X3] = X2, 

(as usual we do not list products that  are zero). Denote by ai the matrix of 
adxi, then 

(i0i) (i~ (01 ~ i) a l -  0 , a 2 -  0 , a 3 -  1 - 1  . 
0 0 0 

Denote the 3 • 3-identity matrix by a0. It is straightforward to see that  the 
associative algebra A generated by a0, al,  a2, a3 is spanned by these matrices 
together with 

(Z~ a 4 - -  0 . 

0 

We use the algorithm Radical to calculate the radical of A (see Appendix 
4 A). Set a - ~ = 0  A~a~, then a C Rad(A) if and only if T r ( a a j )  - 0 for 

j = 0 , . . . , 4 .  We have that  

a 
AO -- A3 0 A1 1 
A4 -- A3 AO- A3 A I -Jr A2 �9 

0 0 AO 

Then Tr(aa i )  = 0 if i = 1, 2, 4, so we do not get any equations from there. 
However, Tr(aao)  = -2)~3 + 3Ao, and Wr(aa3) = 2 ,~3-  2Ao; so 0 = Tr(aao)  = 

Tr(aa3) implies Ao = A3 = 0. Hence Rad(A) is spanned by a l , a 2 ,  a4. We 
see that  NR(L) is spanned by Xl ,X2.  

There exist more algorithms for calculating the nilradical of a Lie al- 
gebra. However, because for the exposition of some algorithms we need 
theoretical tools introduced in Chapter 3, we defer a complete discussion to 
that  chapter. 

2.3 T h e  so lvable  radical  

We show that a finite-dimensional Lie algebra contains a unique maximal 
solvable ideal, called the solvable radical. We study the structure of this 
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ideal for linear Lie algebras of characteristic 0, such that the underlying 
module is irreducible. This leads to a third characterization of the nilradical. 
We recall that L (k) denotes the k-th term of the derived series of the Lie 
algebra L. 

Proposition 2.3.1 Let L be a Lie algebra. 

1. If  L is solvable then so are all Lie subalgebras and homomorphic ira- 
ages of L. 

2. I f  I is a solvable ideal of L such that L / I  is solvable, then L itself is 
solvable. 

3. I f  I and J are solvable ideals of L then so is I + J. 

Proof .  1. If K is a subalgebra of L, then the i-th term of the derived series 
of K is contained in the i-th term of the derived series of L. So, if L is 
solvable, then the derived series of L ends at 0 and hence the same is true 
for the derived series of K. 

Let r : L --~ L' be a morphism of Lie algebras, then [r r = 
r L]). By induction, the i-th term r (i) of the derived series of r is 
contained in r Hence, there is an i >_ 1 such that r (i) - 0, proving 
that r is solvable. 

2. As L / I  is solvable, L (m) C I for some m _> 1. Solvability of I means 
that I (n) = 0 for some n. It follows that L (re+n) = O. 

3. Consider the quotient (I + J ) / J  of I + J. According to Proposition 
1.8.2 it is isomorphic to I / ( I  N J),  which is a quotient of the solvable subal- 
gebra I, and therefore solvable by 1. Since J is also solvable, we can apply 
2. to conclude that I + J is solvable, rn 

From Proposition 2.3.1 it follows that a finite-dimensional Lie algebra 
L contains a unique maximal solvable ideal. It is called the solvable radical 
of L; we denote it by SR(L). Since any nilpotent ideal is also solvable 
(see Lemma 1.7.2), we immediately see that SR(L) contains the nilradical 
NR(L). 
R e m a r k .  Let I be a solvable ideal of the quotient algebra L / S R ( L ) .  Let J 
be the pre-image of I in L. Then by Proposition 2.3.1, J is solvable. Fur- 
thermore, J contains SR(L) so that J = SR(L). Therefore, I = 0. So we 
see that the solvable radical of L / S R ( L )  is trivial. The analogous property 
does not hold for the nilradical. 
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L e m m a  2.3.2 Let V be a f inite-dimensional vector space over a field of 
characteristic O. Let c E End(V) be given by 

C - -  

m 

 [ai, bi] 
i = 1  

where ai, bi E End(V).  Suppose that [c, bi] - 0 for 1 < i < m,  then c is 
nilpotent. 

P r o o f .  Here we use that  fact that,  since V is of characteristic 0, 
for k > 1 implies that  c is nilpotent. We have 

m m m 

c k = c k - 1 E  a i b i -  b i a i -  E ( c k - l a i ) b i -  bi(ck-lai)  -- E [ c  k-1 
i = 1  i = 1  i = 1  

k)  - 0 

ai, bi]. 

Since the trace of a commutator  is always zero, it follows that  Tr(c k) = O. [:] 

P r o p o s i t i o n  2.3.3 Let V be a f inite-dimensional vector space over a field 
of characteristic O. Let L C g[(V) be a linear Lie algebra and suppose that 
V is an irreducible L-module. Then the solvable radical of L is equal to the 
centre C (L) of L. 

P r o o f .  Because C(L)  is a solvable ideal of L it is contained in SR(L). So 
we only have to prove the reverse inclusion. This is equivalent to proving 
that  the ideal I = [L, SR(L)] is zero. 

Suppose that  I ~ 0, then I is a non-zero subalgebra of SR(L). Hence 
by Proposition 2.3.1, I is solvable. So there is an m _> 1 such that  I (m) ~ 0 
and i(m+l) _ 0. Set J - [L, i(m)]. Note that  both I and J are ideals of L 
by Lemma 1.7.1. If c C J ,  then c -  ~-]i[ai, bi], where ai E L and bi E I (m). 
Since c C I (m) and I (m) is commutative, we have [c, bi] = 0. Consequently, 
by Lemma 2.3.2, c is nilpotent. So by Lemma 2.1.3, J = 0, and it follows 
that  I (m) C C(L) .  But also I (m) C [L, SR(L)] and hence for c C I (m), there 
are ai E L and bi E SR(L) such that  c -  ~-~i[ai, bi]. Now because c E C(L) ,  
we have [c, bi] = 0. Again by Lemma 2.3.2 it follows that  c is nilpotent. 
Hence Lemma 2.1.3 implies that  I (m) = 0, and from the assumption that  
I ~ 0 we have derived a contradiction. [:] 

C o r o l l a r y  2.3.4 Let V and L be as in Proposition 2.3.3. Let x be a nilpo- 
tent endomorphism of V contained in SR(L), then x = O. 
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P r o o f .  By Proposition 2.3.3, SR(L) = C(L). Hence x spans an ideal of L. 
Lemma 2.1.3 now implies that  x - O. 0 

C o r o l l a r y  2.3.5 Let L be a finite-dimensional Lie algebra of characteristic 
O. Let R be its solvable radical. Then [L, R] C NR(L). 

P roo f .  Let 0 - L0 C L1 C .-. Ls+l - L be a composition series of L with 
respect to the adjoint representation. Let Pi" L --+ l~[(Li+l/Li) denote the 
quotient representation for 0 < i < s. Then pi(R) is a solvable ideal of 
pi(L). So by Proposition 2.3.3, pi(R) is contained in the centre of pi(L). 
But this means that  pi([L, R]) - 0, i.e., [L, R]. Li+~ C Li. So adLx is nilpo- 
tent for all x E [L, R]. In particular ad[L,R]X is nilpotent for all x E [L, R]. 
Hence, by Engel's theorem (Theorem 2.1.5) [L, R] is a nilpotent Lie algebra. 
Now since [L, R] is an ideal of L we conclude that  [L, R] C NR(L). rn 

We end this section with one more characterization of the nilradical. 

P r o p o s i t i o n  2.3.6 Let L be a finite-dimensional Lie algebra of character- 
istic O. Let A be the set of all x C SR(L) such that adsR(n)X is nilpo- 
tent. Let B be the set of all x C SR(L) such that adnx is nilpotent. Then 
NR(L) - A -  B. 

P r o o f .  It is straightforward to see that  NR(L) C A. Also if x C A, then 
[x,L] C SR(L) and hence adLx is nilpotent. So A C B. We prove that  
B C NR(L). Let 0 - L0 C L1 C . . .  C Ls+l - L be a composition se- 
ries of L with respect to the adjoint representation of L. Let x C B. Let 
ai �9 L --+ l~[(Li+l/Li) be the quotient representation. Then ai(x) is nilpo- 
tent. Hence by Corollary 2.3.4, cri(x) - O, i.e., adx(Li+l) C Li for 0 _< i _< s. 
Now by Proposition 2.2.2, x C NR(L). rn 

2.4 Lie's  t h e o r e m s  

In this section we study the structure of representations of solvable Lie 
algebras that  are "split". It turns out that,  in characteristic 0, every such 
representation is by upper triangular matrices, i.e., a split linear solvable 
Lie algebra is a subalgebra of bn(F). 

D e f i n i t i o n  2.4.1 Let L C I~[(V) be a linear Lie algebra defined over the 
field F. Then L is called split if F contains the eigenvalues of all elements 
of L. 
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P r o p o s i t i o n  2.4.2 Let L be a finite-dimensional solvable Lie algebra over 
the field F of characteristic O. Let p"  L -~ I~[(V) be a f inite-dimensional 
representation of L. Suppose that p(L) is split. I f  V is irreducible and 

dim V > 0 then V is l-dimensional.  

P r o o f .  Since L is solvable, the linear Lie algebra p(L) is also solvable 
(Proposition 2.3.1). Furthermore, V is irreducible, so by Proposition 2.3.3, 
p(L) is commutative. 

Fix an element x C L. Since p(L) is split, there is a ~ E F and a vector 
v~ C V such that p(x)v~ = )~v~. Set W = {v C V I p(x)v = ~v}, then 
W is non-zero. Also, if w C W, then for y C L, we have p(x)p(y)w = 
p(y)p(x)w = )~p(y)w. Hence W is invariant under p(L) and because V is 
irreducible, W = V. It follows that  p(x) is A times the identity on V. So 
any x E L acts as multiplication by a scalar on V. Hence any 1-dimensional 
subspace of V is an L-submodule. So dim V = 1. rn 

C o r o l l a r y  2.4.3 Let L be a f inite-dimensional solvable Lie algebra over 
the field F of characteristic O. Let p : L --+ 9[(V) be a f inite-dimensional 
representation of L. Suppose p(L) is split. Then V contains a common 

eigenvector for all p(x) for x C L. 

P r o o f .  Let O -  Vo C V1 C . . .  C Vn - V b e a c o m p o s i t i o n s e r i e s  of V 
relative to the action of L. Then by Proposition 2.4.2, V1 is 1-dimensional. 
Hence a basis vector of V1 will be a common eigenvector. [:] 

T h e o r e m  2.4.4 (Lie) Let L be a f inite-dimensional solvable Lie algebra of 
characteristic O. Let p : L ~ 9[(V) be a f inite-dimensional representation of 
L. Suppose that p(L) is split. Then there is a basis of V relative to which 

the matrices of all p(x) for x C L are all upper triangular. 

Proo f .  Let 0 = Vo C V1 C . . .  C Vn = V be acompos i t ionse r i e s  of V 
relative to the action of L. Then the quotient spaces V / / ~ - I  are irreducible 
L-modules. Hence by Proposition 2.4.2, these modules are 1-dimensional. 
Now let { V l , . . . , v n }  be a basis of V such that ~/E t ~ / ~ - i  spans ~ / ~ - 1 .  
Relative to this basis the matrix of p(x) is upper triangular for all x C L. [::1 

T h e o r e m  2.4.5 (Lie) Let L be an n-dimensional solvable Lie algebra of 
characteristic 0 such that adL(L) is split. Then there are ideals Li of L for 
O <_ i <_ n such that d i m L i - i  and O - Lo C L1 C ""  C Ln - L. 
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P r o o f .  We can take the Li to be the terms in a composit ion series of L 
relative to the adjoint representation. In the same way as in the proof of 
Theorem 2.4.4 we see tha t  dim L i / L i _ l  - 1 and the s ta tement  of the theo- 
rem follows. [:] 

2.5 A criterion for solvabil ity 

In this section we use the Jordan  decomposit ion of a linear t ransformat ion to 
derive a powerful criterion for a Lie algebra of characteristic 0 to be solvable. 
Much of the s t ructure  theory of semisimple Lie algebras in characterist ic 0 
is based on it. 

L e m m a  2.5.1 Let V be a t-dimensional vector space over the field F. Let 
x E 9[(V) and suppose that there is a basis of V relative to which the matrix 
of x is diagonal, with entries di E F on the diagonal (1 < i < t). Then there 
is a basis of 9[(V) relative to which adx is diagonal with entries d i - d j  on 
the diagonal for 1 < i, j < t. 

P r o o f .  Let { v l , . . .  , vt} be a basis of V such tha t  xvi - divi for 1 _< i < t. 
Let Ei~ be the endomorphism of V defined by Etjvk -- ~jkvi (i.e., the ma- 
trix of E{~ has a 1 on position (i, j )  and zeros elsewhere). Now adx(Ei  t.) - 
xEt j  E ~ x  = - d j ) E ~ j  and the lemma follows. - ( d i  [3 

Form Appendix  A we recall tha t  the Jordan  decomposit ion of a linear 
t ransformat ion  a is of the form a - s + n, where s is semisimple, n is 
ni lpotent  and Is, n ] -  0. 

L e m m a  2.5.2 Let V be a f inite-dimensional vector space. Let a r g[(V) 
and let a = s + n be the Jordan decomposition of a. Then add - ads + adn 
is the Jordan decomposition of add. 

P r o o f .  We must prove tha t  ads is semisimple, adn is nilpotent and tha t  ads 
and adn commute.  The lat ter  follows immediately from the fact tha t  s and 
n commute  (and [ads, adn] = ad[s, hi). Fur thermore,  Lemma 2.1.1 states 
tha t  adn is nilpotent.  Since s is semisimple, s is diagonalizable. Hence by 
Lemma 2.5.1 also ads is diagonalizable which means tha t  ads is semisimple 
(cf. Proposi t ion A.2.4). o 
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P r o p o s i t i o n  2.5.3 Let V be a f inite-dimensional vector space over the field 
F of characteristic O. Let M1 C M2 be two subspaces of ~[(V). Set A - 
{x E $[(V)I [x, M2] C M1}. Let x C A. I f  Tr(xy)  - 0  for all y E A,  then x 
is nilpotent. 

Proof .  We use the fact that x is nilpotent if and only if all its eigenvalues are 
0. So let ~1, . . .  ,An be the (not necessarily different) eigenvalues of x. We 
first prove the statement for the case where F contains all these eigenvalues. 
Let E be the Q-subspace of F spanned by the )~i (i.e., E - QAI + " "  +Q,kn). 
We prove that all linear functions f �9 E --+ Q must be identically 0. From 
this it follows that E -  0 and all eigenvalues of x are 0. 

Let f �9 E -+ Q be an arbitrary linear function. Let x - s + n be the 
Jordan decomposition of x. Since s is semisimple and )~1,... ,,~n are also 
the eigenvalues of s (Proposition A.2.6), there is a basis {v l , . . .  ,Vn} of 
V such that svi - ) ~ i v i .  Let y C t~[(V) be the endomorphism defined by 
yvi - f()~i)vi for 1 _< i _< n (i.e., the matrix of y is diagonal with f()~i) on 
the diagonal). We prove that ady can be written as a polynomial in ads 
without constant term. 

Let {E~j } be the basis of I~[(V) provided by Lemma 2.5.1. Then we have 
ads(Ei j )  - ( ~ i -  $ j )Ei j  and ady(Ei j )  - (f()~i) - f ( ~ j ) ) E i j .  Interpolating 
we find a polynomial p C F[X] without constant term and satisfying 

P(),i - ,Xj) - f (,Xi - ),j) - f (,Xi) - f (,Xj) for 1 < i, j < n. 

Since the matrix of ads is diagonal, the matrix of p(ads) is also diagonal. 
Moreover, it has diagonal entries p(Ai - Aj) - f (~)  - f (Xj)- It follows that 
the matrix of p(ads) is exactly the matrix of ady. Hence a d y -  p(ads). 

Now since ads is the semisimple part of adz (Lemma 2.5.2), we have 
that ads is a polynomial in adz without constant term (Proposition A.2.6). 
Therefore, because adx maps M2 into M1, this also holds for ads and since 
ady is a polynomial in ads without constant term, also for ady. Hence 
y C A. So 0 - Tr(xy)  - ~_,~ f ( ,~) )~ .  We apply the linear function f to this 
expression and find ~ i  f(~i) 2 - 0. But f (Ai)  C Q and hence f(Ai) - 0 for 
1 < i < n. We are done for the case where F contains all eigenvalues of x. 

For the general case let/~ be an extension of F containing all eigenvalues 
of x. Set V -  V |  and let M1 and M2 be subspaces of St(V) spanned 
by elements ml | 1 and m2 | 1 for ma E M1 and m2 C /142 respectively. 
Set A - {x E $[(V)] [x, M2] C M1 }. Then a basis of A is determined by a 
set of linear equations (analogous to the system of equations determining a 
basis for the normalizer, Section 1.6). Moreover these equations have coef- 
ficients in F and hence A - A | F. It follows that Tr((x | 1)9) - 0 for 
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all ~ C A. By the proof above it follows that  x | 1 is nilpotent. [:] 

L e m m a  2.5.4 Let V be a finite-dimensional vector space. 
gi(V). Then Tr([x, y]z) - Tr(x[y, z]). 

Let x , y , z  C 

Proof. We calculate Tr([x, y ] z )  = T r ( x y z ) - T r ( y x z )  - T r ( x y z ) - T r ( x z y )  - 

Wr(x[y, z]). 

T h e o r e m  2.5.5 ( C a r t a n ' s  c r i t e r i o n  for so lvab i l i ty )  Let V be a finite- 
dimensional vector space of characteristic O. Let L be a subalgebra of 9[(V). 
If  Tr(xy) - 0  for all x e [L, L] and y e L, then L is solvable. 

Proof .  Set A = {x E 9[(V)I [x, L] C [L,L]}. Note that  A contains L, and 
in particular [L, L]. Let u, v E L and y E A. Then according to Lemma 
2.5.4, 

W~([u, v]y) = W~(u[v, y]) = Wr([v, y]u). 

We have Iv, y] e [L,L], so by hypothesis Tr([v,y]u) = 0. Since [n,n] is 
spanned by elements of the form [u, v] it follows that  Tr(xy) - 0 for all 
x e [L, L] and y E A. Now we apply Proposition 2.5.3 with M1 = [L, L] 
and/1//2 = L and conclude that  every x in [L, L] is nilpotent. Consequently 
adx is nilpotent for all x C [L,L] (Lemma 2.1.1). In particular, ad[L,L]X 
is nilpotent for all x E [L, L]. Hence by Engel's theorem (Theorem 2.1.5), 
[L, L] is a nilpotent Lie algebra. In particular [L, L] is solvable (Lemma 
1.7.2) and consequently the same is true for L. [::] 

C o r o l l a r y  2.5.6 Let L be a finite-dimensional Lie algebra of characteristic 
0, such that Tr(adxady) - 0 for all x E [L, L] and y C L. Then L is solvable. 

Proo f .  We apply Theorem 2.5.5 to the Lie algebra adL C 9[(L). It follows 
that  adL is solvable. Since the kernel of ad is C(L) which is a solvable ideal, 
we get that  L is solvable (Proposition 2.3.1). [::1 

2.6 A character izat ion  of the  solvable  radical  

In this section we give a characterization of the solvable radical in charac- 
teristic 0. In part  this is the converse of Cartan 's  criterion. This result will 
enable us to formulate an algorithm for calculating the solvable radical of a 
Lie algebra of characteristic 0. 
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L e m m a  2.6.1 Let L be a finite-dimensional Lie algebra of characteristic 
O. Let p" L ~ g[(V) be a finite-dimensional irreducible representation of 
L. Then p([L, L] A SR(L)) - 0. 

P roof .  Set I -  [L,L] N SR(L) and let x e I. Then x - ~-~iml[yi, zi] for 
certain Yi, zi e L. Hence p(x) - ~-~iml [P(Yi), p(zi)]. Furthermore, since 
x C SR(L), we know by Proposition 2.3.3, that  p(x) commutes with p(L), 
in particular [p(x),p(zi)] = 0. Hence by Lemma 2.3.2, p(x) is nilpotent. 
Now Lemma 2.1.3 finishes the proof. 0 

L e m m a  2.6.2 Let L be a finite-dimensional Lie algebra of characteristic 
O. Let p" L --+ g[(V) be a finite-dimensional representation of L. Then all 
elements of p([L, L] N SR(L)) are nilpotent endomorphisms of V. 

Proof .  Let 0 -  V0 C V1 C . . .  C Vs+l - V be a composition series of V 
with respect to the action of L. Let x E [L, L] N SR(L), then by Lemma 
2.6.1, the induced actions of x on the quotients t~+l/Vi are all zero. Hence 
p(x)V/+l C V/for 0 _ i < s. It follows that p(x) is nilpotent. 0 

C o r o l l a r y  2.6.3 Let L be a solvable Lie algebra of characteristic O. Then 
In, L] is a nilpotent ideal o] L. 

Proof .  This follows from Lemma 2.6.2 together with Engel's theorem (The- 
orem 2.1.5). [::] 

P r o p o s i t i o n  2.6.4 Let L be a finite-dimensional Lie algebra of character- 
istic O. Then 

SR(L) - {x e L ITr(adxady) = 0 for all y e [L, L]}. 

P roo f .  Set I = {x e L I Tr(adxady ) - O f o r a l l y e [ L , L ] } .  Let 0 -  
Lo C L1 C . . .  C Ls+l - L be a composition series of L relative to the 
adjoint representation. By Lemma 2.6.2, for all u E [L,L] N SR(L), the 
endomorphism adu is nilpotent. Hence by Proposition 2.1.4, we see that  
adu(Li+l) C Li for 0 < i < s. Consequently, if x, y E L and r E SR(L), then 
ad[y, r](Li+l) C Li and hence also adx .  ad[y, r](Li+l) C Li for 0 <_ i <__ s. 
So adx-ad[y ,  r] is nilpotent. Using Lemma 2.5.4 we now calculate 

0 -- Tr(adx- ad[y, r]) - Tr(ad[x, y]. adr) - Tr(adr-  ad[x, y]). 
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It follows that SR(L) C I. 
For the other inclusion, we first prove that I is an ideal of L. Let x C I 

and y C [L, L] and z E L, then by Lemma 2.5.4, 

Tr(ad[x, z] -ady)  - Tr(adx.  ad[z, y]) - 0. 

Hence [x,z] C I so that I is an ideal of L. Let x C I and y C [I,I],  then 
in particular y C [L, L] and by definition of I, Tr(adLx.  adLy) = 0. Now 
by Cartan's criterion (Theorem 2.5.5) it follows that adLI is solvable. The 
kernel of adL : I --+ ~[(L) is an Abelian ideal of I. Hence by Proposition 
2.3.1, I is solvable which implies I C SR(L). D 

C o r o l l a r y  2.6.5 Let L be a finite-dimensional Lie algebra of characteristic 
O. Then L is solvable if and only if Tr(adx.  ady) - 0 for all x E L and 
y e [L, L] 

P roo f .  This immediately follows from Proposition 2.6.4 together with 
Corollary 2.5.6. [::] 

Let L be a Lie algebra of characteristic 0. Here we use Proposition 2.6.4 
to give a simple algorithm for calculating the solvable radical of L. 

Let { x l , . . .  , Xn} be a basis of L and let {y l , . . .  , ys} be a basis of [L, L]. 
Then by Proposition 2.6.4, x -  ~ i  c~ixi is an element of SR(L) if and only 
if 

n 

E Tr(adxi .  adyj)ai - 0 for 1 < j _< s. (2.1) 
i--1 

So we have an algorithm SolvableRadical. The input of this algorithm is 
a finite-dimensional Lie algebra L of characteristic 0. Using the algorithm 
ProductSpace we calculate a basis of [L, L]. Subsequently we calculate the 
equations (2.1) and solve them by a Gaussian elimination. 

In the case where L is defined over a field of characteristic p > 0 the 
situation is much more difficult. To tackle this case we define a series of 
ideals Rk C L by 

R1 - NR(L), Rk+l/Rk -- NR(L /Rk ) .  (2.2) 

We claim that Rk is solvable for k >_ 1. This is certainly true for k - 1. 
Suppose that Rk is solvable. We have that Rk+l/Rk is nilpotent and hence 
solvable. Therefore, by Proposition 2.3.1, Rk+l is solvable. So our claim 
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follows by induction on k. Let u be the integer such that  Ru = Ru+l. 
Then NR(L /Ru)  = O. This implies that SR(L/Ru)  = O. Indeed, set I = 
SR(L/Ru) .  I f I  ~= O, then there is an m > 0 such that  I (m) # 0 and 
I (re+l) - 0 (where I (m) denotes the m-th term of the derived series of I). 
Hence I (m) is a commutative ideal of SR(L/Ru) .  Therefore it is contained 
in NR(L/Ru) ,  implying that I (m) - O; and we derived a contradiction. 

Consequently, Ru = SR(L). 
So by using an algorithm for calculating the nilradical we find an algo- 

r i thm SolvableRadical for calculating the solvable radical of a Lie algebra, 
that  also works over the fields of characteristic p > 0 for which there are 

algorithms for calculating the nilradical. 

2.7 Finding a non-nilpotent element 

Let L be a Lie algebra. An element x E L is said to be nilpotent if the 
endomorphism adx is nilpotent. By Engel's theorem (Theorem 2.1.5), L 
contains non-nilpotent elements if and only if L is not a nilpotent Lie alge- 
bra. In this section we give an algorithm for finding a non-nilpotent element 
in L, if L is not nilpotent. It is based on the following two propositions. 

P r o p o s i t i o n  2.7.1 Let K be a proper subalgebra of L and suppose that 
adLy is nilpotent for all y 6 K.  Let x be an element of NL(K)  \ K and let 
-K be the subalgebra spanned by K together with x. Then either adLx is not 

nilpotent or adLu is nilpotent for all u E K.  

P r o o f .  First we note that  NL(K)  is strictly larger than K because adLy is a 
nilpotent linear transformation for y 6 K. Indeed, since K is a subalgebra 
of L, we have that  the adjoint representation induces a representation of 
K on L / K .  By Proposition 2.1.2, we see that  the elements of K have a 
common eigenvector (with eigenvalue 0) in L / K .  Any pre-image of this 

vector lies in NL(K)  (but not in K). 
Suppose that  adLx is nilpotent. Let y 6 K and set u = x + y. We prove 

that  ad iu  is nilpotent. First we note that ad /  �9 K -+ 9[(L) is a represen- 
tation of K.  Let O - Lo C L1 C .. .  C Ls+l - L be a composition series 
of L with respect to the action of K.  Since x 6 NL(K),  we have that  K is 
an ideal in K. Hence, by Proposition 2.1.4, adLy(Li+l) C Li for 0 ~ i _< s. 
So (adiu)mLi+l - (adLx)mLi+l mod Li. Since adLx is nilpotent it follows 
that  there is an m > 0 such that  (adLx) m =  O. Hence (adiu)m(Li+l) C Li 
for 0 < i < s. The conclusion is that  adLu is nilpotent. D 
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If we start with K = 0 and repeatedly apply Proposition 2.7.1 then 
we either find a non-nilpotent element, or after dim L steps we have that  
K = L, implying that  L is nilpotent. An element x E NL(K)  \ K can be 
found by calculating NL(K).  Alternatively, we can construct a sequence 
of elements in the following way. First we fix a basis of K. Let x be an 
element of L not lying in K. If for some basis element y of K we have that  
Ix, y] ~ K, then replace x by [x, y]. Since K acts nilpotently on L we need 
no more than dim L -  1 such replacement operations to obtain an element 
lying in NL (K) \ K. 

Proposition 2.7.1 yields an algorithm for finding a non-nilpotent element 
in L. However, if L is defined over a field of characteristic 0, then there is 
a much simpler method available. 

P r o p o s i t i o n  2.7.2 Let L be a non-nilpotent Lie algebra over a field of 
characteristic 0 with basis { x l , . . .  ,Xn}, then the set 

{ x l , . . .  ,Xn} U {x~ + xj I 1 < i < j < n} 

contains a non-nilpotent element. 

Proo f .  If L is solvable but not nilpotent then by Proposition 2.3.6 we see 
that  the nilradical of L is the set of all nilpotent elements of L. Hence there 
must be a basis element xi such that  xi is not nilpotent. On the other hand, 
if L is not solvable, then there exist basis elements xi and xj for such that  
Tr(adxi .  adxj) r 0. (Otherwise Tr(adx.  ady) = 0 for all x, y e L, implying 
that  L is solvable (Corollary 2.5.6)). From 

Tr((adxi + adxj) 2) - Tr((adxi) 2) - Tr((adxj) 2) - 

= Tr(adxi .  adxj) + Tr(adxj .  adx~) - 2Tr(adxi .  adxj) # 0 

we infer that  the elements xi, Xj and xi + Xj cannot be all nilpotent. [::] 

Propositions 2.7.1 and 2.7.2 lead to the following algorithm. 
Algorithm NonNilpotentElement 
Input: a finite-dimensional Lie algebra L. 

Output: a non-nilpotent element of L, or 0 if L is nilpotent. 

Step 1 If L is of characteristic 0, then go to Step 2, else go to Step 4. 

Step 2 Let { x l , . . .  ,xu} be abas is  of L and set A - { x l , . . .  , x n } U { x i + x j l  
1 < i  < j  < n } .  
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Step 3 For elements x C A test whether adLx is nilpotent, until a non- 
nilpotent element is found, or A is exhausted. If A contains a non- 
nilpotent element then return this element, otherwise return 0. 

Step 4 Set K = 0. 

Step 5 Find an element x C NL(K) \ K. 
return x. 

If adLx is not nilpotent, then 

Step 6 Replace K by the subalgebra spanned by K and x. 
dim L, then return 0. Otherwise go to Step 5. 

If dim K = 

2.8 N o t e s  

The algorithm for calculating the solvable radical of a Lie algebra of char- 
acteristic 0 is described in [7]. In [7], Proposition 2.2.2 together with Lie's 
theorem (Theorem 2.4.5) are used to derive an algorithm for calculating the 
nilradical of a solvable Lie algebra L of characteristic 0, such that  adL is 
split. It is based on finding a common eigenvector of the elements of adL. 
By using the algorithm for the solvable radical (in characteristic 0), this 
yields an algorithm for calculating the nilradical of a finite dimensional Lie 
algebra of characteristic 0 having a split solvable radical. 

The algorithm for calculating the nilradical given in Section 2.2 and the 
algorithm for calculating the solvable radical of a Lie algebra defined over 
a field of characteristic p > 0 are taken from [46], [73]. 

Our description of the algorithm for finding a non-nilpotent element 
follows [37]. In [7] a different (more complicated) method is described. 



Chapter 3 

Cartan subalgebras 

The adjoint representation of a Lie algebra L (see Example 1.12.2), en- 
codes its multiplicative structure (modulo the centre). This allows us to 
investigate the structure of L by investigating its adjoint representation. In 
this way the tools of linear algebra (matrices, eigenvalues et cetera) become 
available to us. We have used this successfully in Chapter 2, where most re- 
sults on the structure of solvable and nilpotent Lie algebras where obtained 
by looking at the adjoint representation. As an example we mention Lie's 
theorem (Theorem 2.4.5). 

In this chapter we restrict the adjoint representation of a Lie algebra L 
to particular subalgebras of it. Furthermore, if K is a subalgebra of L, then 
we decompose L as a direct sum of K-submodules. Of particular interest 
are those subalgebras K that yield a so-called primary decomposition. In 
Section 3.1 we first study linear Lie algebras acting on a vector space V. 
We show that a nilpotent linear Lie algebra yields a primary decomposition 
of V. Then we consider the restriction of the adjoint representation of 
a Lie algebra L to a nilpotent subalgebra K. This gives us a primary 
decomposition of L relative to K. We also describe a second decomposition 
of a vector space relative to the action of a nilpotent linear Lie algebra, 
namely the Fitting decomposition. 

In Section 3.2 we introduce Caftan subalgebras; these are nilpotent sub- 
algebras that yield a particularly interesting primary decomposition. We 
show that Cartan subalgebras exist and we give algorithms for calculating 
a Cartan subalgebra. 

The subject of Section 3.3 is the primary decomposition of L relative to a 
"split" Cartan subalgebra. In this case the primary decomposition is called 
the root space decomposition. We show how the root space decomposition 
encodes part of the multiplicative structure of L. 
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Cartan subalgebras are in general not unique, i.e., a Lie algebra usually 
has more than one Cartan subalgebra. If L is defined over an algebraically 
closed field of characteristic 0, then this non-uniqueness does not bother 
us too much since in this case all Cartan subalgebras of L are conjugate 
under the automorphism group of L. The proof of this forms the subject 
of Sections 3.4, 3.5. In Section 3.6 we show that for the case where the 
Lie algebra is solvable we may drop the assumption that  the ground field is 
algebraically closed. 

Finally in Section 3.7 we apply the theory of Cartan subalgebras and 
Fit t ing decompositions to obtain two algorithms for calculating the nilrad- 
ical. 

3.1 Primary decompositions 

In this section V will be a finite-dimensional vector space over a field F,  
and K C 9[(V) a linear Lie algebra. 

D e f i n i t i o n  3.1.1 A decomposition 

V - Vl e . . .  e 

of V into K-submodules I,~ is said to be primary if the minimum polynomial 
of the restriction of x to Vi is a power o/ an irreducible polynomial for all 
x C K and 1 < i <_ s. The subspaces V~ are called primary components. 

In general V will not have a primary decomposition relative to K.  Us- 
ing Lemma A.2.2 we derive a sufficient condition on K to yield a primary 
decomposition of V. From Appendix A we recall that  for a polynomial 
p E F[X] and x C K the space Vo(p(x)) is defined by 

y o ( p ( x ) )  - {v  e v - o for some > 0).  

P r o p o s i t i o n  3.1.2 Suppose that for all x C K and any polynomial p C 
F[X] the space Vo(p(x)) is invariant under g .  Then W has a primary 
decomposition with respect to K.  

Proo f .  The proof is by induction on the dimension of V. If every element of 
K has a minimum polynomial that is a power of an irreducible polynomial, 
then there is nothing to be proved. Otherwise there is an x C K such 
that the minimum polynomial of x has at least two distinct factors. We 
apply Lemma A.2.2 to V and the linear transformation x. It is seen that  V 
decomposes as 

v = Vo(p  e . . .  �9 
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where the Pi are the irreducible factors of the minimum polynomial of x. 
By assumption the subspaces Vo(Pi(X)) are invariant under g .  Further- 
more, the dimension of these subspaces is strictly less than dim V. Hence 
by induction they all admit a primary decomposition relative to K,  and by 
summing these we get a primary decomposition of V with respect to K.  [D 

C o r o l l a r y  3.1.3 Suppose that K is Abelian. 
decomposition relative to K.  

Then V admits a primary 

P r o o f .  Let x, y e K and let p e F[X] be a polynomial. Let v e Vo(p(x)), 
then there is a n m  > 0 s u c h t h a t p ( x ) m v  = 0 .  S i n c e x - y = y - x w e h a v e  
p(x)myv - yp(x)mv - O. As a consequence the subspace Vo(p(x)) is invari- 
ant under y and the result follows by Proposition 3.1.2. O 

It turns out that  we can generalize Corollary 3.1.3 to the case where K 
is nilpotent. To see this we need some technical lemmas. For a E End(V) 
we define a linear map d a "  End(V) --+ End(V) by d a ( b )  - a b -  ba. 

L e m m a  3 .1 .4  L e t  a C End(V). Let f = :~]~=0 ak Xk  be a univariate poly- 
nomial. Then for all b E End(V), 

f (a)b - E dia (b) ak a k - i  �9 

/=0 

P r o o f .  For k >_ 0 we prove the identity 

k 
a k b - - E  ( ~ )  dia(b)ak-i' (3.1) 

i=0 

by induction on k. For k - 0, 1, (3.1) is easily verified. Let k > 1. Assuming 
that  (3.1) holds for k and for all b C End(V), we calculate 

ak+lb = akab -- ak(ba + da(b)) 

k 

k+l 

i da(b)ak+ 
i=0 

k 

z 
i-O 

1-i 

a k-i 
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The  result now follows by a second calculation: 

n n k 

f ( a ) b - - E o l k a k b - - E  E ( ~ )  ~ 
k=0 k=0 i=0 

= E d~a(b) Olk a k-i  �9 
i=0 

[::] 

For r >_ 0 let 5r be the linear mapping on the polynomial  ring FIX] 
defined by 5r(X TM) -- (mr)Xm-r (where we set (mr) = 0 if r > m). If 

f - ~-]~=0 c~k Xk  is a polynomial,  then 

" 

5~(f) = ~ ~k X k-r 
k = r  

So the conclusion of Lemma 3.1.4 reads f (a)b  = ~-~in=o dia(b)ai(f)(a). 

L e m m a  3.1.5  Let f , g  be univariate polynomials, then we have 5r(f  g) - 

P r o o f .  
g -  X n. 

We first prove the s ta tement  for the case where f - X m and 

r ( ) ) : r ( m . ) ( )  

5i f S~-i(g r -  i 
i=0 i=0 

i=0 r -  i r 

The next to last equality follows from 

i=0 

which is proved by equating the coefficients of x r in the expression (x + 
1)m(x + 1) n - (x + 1) m+n. Now the general result follows from the linearity 

of the maps 5i. [] 

L e m m a  3.1.6  Let h,p be univariate polynomials such that h m+l divides p 
for an m > O. Then h divides 5r(p) for 0 < r < m. 
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-. 

P roo f .  The proof is by induction on m. The statement is clearly true for 
m - 0 since 50(p) = P. For the induction step write p - qh where h m 
divides q. Then we may assume that h divides (~i(q) for 0 < i < m -  1 and 
h divides 5j(p) for 0 < j < m -  1. Then by Lemma 3.1.5, 

m 

(~m(P) - (Sm(qh) - E (Si(q)(~m-i(h) 
i =0  

and hence h also divides 5m (p). 

P r o p o s i t i o n  3.1.7 Let a,b e E n d ( V )  and suppose that dn+X(b) - O. Let 
p be a polynomial, then Vo(p(a)) is invariant under b. 

Proof .  Let v C Vo(p(a)), then there is an r > 0 such that pr(a)v - O. Now 
set q -  (pr)n+l. Then by Lemma 3.1.4, 

d n 

q(a)bv = E di(b)Si(q)(a)v - E dia(b)Si(q)(a)v' 
i =0  i =0  

where d is the degree of q. By Lemma 3.1.6 we have that pr divides (Si(q) 
for 0 < i < n. Hence q(a)bv - 0 and bv C Vo(p(a)). rn 

Corollary 3.1.8 Suppose that K is nilpotent. 
composition with respect to K .  

Then V has a primary de- 

Proof .  Let c be the length of the lower central series of K (i.e., K c+1 = 0). 
Let x ,y  e K, then Ix, [x, [x, . . .  Ix, y]. . .]]]  = 0 (c factors x). This is the 
same as saying that dC(y) - 0, and Proposition 3.1.7 applies to x and y. 
The statement now follows by Proposition 3.1.2. [3 

It is easily seen that a primary decomposition is in general not unique. 
Let K C g[(V) be a 1-dimensional Lie algebra spanned by the element x. 
Suppose that in a primary decomposition of V relative to K there occurs 
a component ~ such that the restriction of x relative to ~ is the identity. 
Suppose further that dim ~ > 1. Let ~ = W1 �9 W2 be any decomposition 
of V/ into a direct sum of subspaces. Then by replacing ~ by the two 
components W1 and W2 we obtain a different primary decomposition of V 
relative to K. To avoid situations like this we "collect" the components in 
a primary decomposition. The resulting primary decomposition turns out 
to be unique. 
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D e f i n i t i o n  3 .1 .9  A primary decomposition of V relative to K is called 
collected if for any two primary components Vi and ~ (i ~ j ) ,  there is an 
x C K such that the minimum polynomials of the restrictions of x to ~ and 
Vj are powers of different irreducible polynomials. 

T h e o r e m  3 .1 .10  Let K be nilpotent. 
mary decomposition relative to K.  

Then V has a unique collected pri- 

P r o o f .  It is easy to see that  V has a collected pr imary decomposit ion with 
respect to K.  Indeed, let 

V = V1 @. . .  @ Vs (3.2) 

be a pr imary  decomposit ion of V with respect to K.  If there are two com- 
ponents V/ and ~ such tha t  for all x C K,  the min imum polynomials of 
xl�88 and xlv~ are powers of the same irreducible polynomial,  then replace 
V/ and t~ in the decomposit ion by their direct sum and obtain a pr imary  
decomposit ion with one component  less. Continuing this process we obtain 
a collected pr imary  decomposition. 

Now suppose tha t  (3.2) is collected. For x E K and 1 _< i _< s define 
p~,i to be the irreducible polynomial  such that  the min imum polynomial  of 
x restr icted to ~ is a power of Px,i. We claim that  

V~ - {v e V I for all x e K there is an m > 0 such tha t  px,i(x)m(v) - 0 } .  
(3.3) 

First  of all, V/is certainly contained in the r ight-hand side. To see the other 
inclusion, let v C V be an element of the r ight-hand side of (3.3). Write 
v - vl + . . .  + Vs where vj C ~ .  Fix a j ~: i between 1 and s and choose 
x C K such tha t  Px,i ~ Px,j (such x exist because (3.2) is collected). Then  
there is an m > 0 such that  

0 - - + . . .  + 

It follows tha t  px,i(x)mvj = 0. But also Px,j(x)nvj - 0, for some n > 0. Now 

because Px,i and Px,j are relatively prime we have vj - O. So v = vi C Vi. 
Now suppose tha t  there is a second collected pr imary  decomposition, 

v -  e . . . e w t .  

Let 1 _< i _< t be such tha t  Wi does not occur among the components  ~ .  For 
x C K,  define qx to be the irreducible polynomial  such tha t  the min imum 
polynomial  of the restriction of x to Wi is a power of qz- Let v C Wi and 
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w r i t e r -  v l + . . . + v s ,  whe rev j  C ~ .  F i x a j  between 1 and s, and let 
x C K be such that  qx ~ px,j (such an x exists because otherwise qz - px,j 
for all x C K and by (3.3), Wi - ~ ) .  Then there is an m > 0 such that  

0 -  q x ( X ) m ( V )  - -  qx(X)m(Vl)-~-'..-~-qx(x)m(vs) 

and because the Vk are invariant under x and the sum (3.2) is direct we 
infer that  qx(x)mvj - O. But also px,j(x)nvj - O. Now because qx and px,j 
are relatively prime it follows that  vj - O. If we vary j between 1 and s, 
then it is seen that  v - 0  so that  Wi - 0 .  D 

Let V = V1 @. . .  @ V~ be the collected primary decomposition of V with 
respect to K.  Let X be an indeterminate. Let x C K. If the minimum poly- 
nomial of the restriction of x to F~ is a power of X, then x acts nilpotently 
on ~ .  On the other hand, if this minimum polynomial is a power of any 
other irreducible polynomial, then x is non-singular on ~ ,  i.e., x .  Vi = ~ .  
As the pr imary decomposition is collected there is at most one component 
Vi such that  all elements x E K act nilpotently on Vi. We denote this 
component by Vo(K). Furthermore, if we let VI(K) be the sum of the 
remaining primary components, then V = Vo(K) | V1 (K) and by (3.3), 

Vo(K) - {v C V I for a l l x C K t h e r e i s a n m > 0 s u c h t h a t x m . v - 0 } .  

And also K .  V1 (K) - VI(K). The components Vo(K) and VI(K) are called 
the Fitting-null and -one  component respectively. The decomposition V = 
Vo(K) �9 V1 (K) is called the Fitting decomposition of V with respect to K.  

Now we change the setting a little bit. Let L be a finite-dimensional Lie 
algebra over the field F and let K C L be a nilpotent subalgebra of L. By 
restricting the adjoint representation of L to K we get a representation of 
K: 

adL : K  - -+  ~[(L). 

By Theorem 3.1.10 L has a unique collected primary decomposition relative 
to K.  Also L has a Fi t t ing decomposition relative to K,  which reads L = 
Lo(K) @ L1 (K), where 

Lo(K) = {y C L ! for all x E K there is a t > 0 such that  (adx)t(y) = 0}, 

and [K, LI(K)] = LI(K).  These two decompositions of L relative to K 
will be important  tools for investigating the structure of L. 

We end this section by giving an algorithm for calculating the Fitting- 
one component of a Lie algebra L relative to a nilpotent subalgebra K.  
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For a subalgebra K of L we write 

[K TM, L] = [K, [K, .- .  [K, L] . . .  ]] (m factors K). 

Then [K re+l, L] C [K TM, L] so that the subspaces [K TM, L] form a decreasing 
series. 

L e m m a  3.1.11 Let L be a finite-dimensional Lie algebra and let K C L be 
a nilpotent subalgebra. Let L = Lo(K)G L1 (K) be the Fitting decomposition 
of L with respect to g .  Let m > 1 be such that [K TM, L] - [ K  m+l, L], then 
LI (K) = [g TM, L]. 

Proof .  Since [K, L1 (K)] = L1 (K), we have 

[K r, L] = [K r, L0 (K)] + [K r, L1 (K)] = [K r, L0 (K)] + LI(K).  

From the fact that adz acts nilpotently on Lo(K) for all x E K we have 
that the series of subspaces [K r, L0(K)] form a decreasing series, ending in 0 
(Proposition 2.1.4). Hence [K TM, L] = [K re+l, L] implies [K m, L] = L1 (K). 
N 

Lemma 3.1.11 yields an easy algorithm FittingOneComponent for cal- 
culating the Fitting-one component of a Lie algebra L with respect to a 
nilpotent subalgebra K. It calculates the decreasing series of subspaces 
[Km, L] (by calls to ProductSpace). When the point is reached where 
[K TM, L] = [K re+l, L], the space [K m, L] is returned. 

3.2 Cartan subalgebras 

Throughout this section L will be a finite-dimensional Lie algebra over a field 
F. Let K be a nilpotent subalgebra of L. Suppose that adLx is a nilpotent 
linear transformation for all x C K. Then we have that Lo(K) = L and 
the primary decomposition is not very revealing. We want to avoid this 
situation as much as possible. Therefore we try to find subalgebras K 
such that Lo(K) is a small as possible. Such subalgebras are called Cartan 
subalgebras. 

Def in i t ion  3.2.1 A nilpotent subalgebra H of L is called a Cartan subal- 
gebra if Lo (H) = H. 

The next lemma provides a convenient tool for proving that a certain 
nilpotent subalgebra is a Cartan subalgebra. 
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L e m m a  3.2.2 Let H be a nilpotent subalgebra of L. 
subalgebra if and only if NL (H) = H. 

Then H is a Caftan 

Proof .  Suppose that H is a Cartan subalgebra. Let x C NL(H).  Let 
L = H @ L1 (H) be the Fitting decomposition of L with respect to H. Write 
x = h + y w h e r e h C H a n d y E L l ( H ) .  A s x E N L ( H )  we h a v e [ x , h ' ] C H  
for all h' C H. But [x, h'] = [h, h'] + [y, h'], so that [y, h'] C H N L1 (H), 
which means that [y, h ~] = 0. Since this holds for all h ~ C H we must have 
y = 0. It follows that NL(H) = H. 

Now suppose that NL(H) = H. We consider the (adjoint) action of H 
on the space Lo(H). Since H is nilpotent, Lo(H) contains H. Because H is 
stable under H we have that H acts on the quotient space Lo(H) /H.  Also 
for all h C H the restriction of adh to Lo(H) is a nilpotent transformation. 
Hence also the induced action of h C H on L o ( H ) / H  is nilpotent. Suppose 
that Lo(H) is strictly larger than H. Then by Proposition 2.1.2, it follows 
that L o ( H ) / H  contains a non-zero element 2 mapped to 0 by all elements 
of H. Let x be a pre-image of 2. Then Ix, HI C H and hence x C H. But 
that means that 2 = 0 and therefore we have Lo(H) = H. [:] 

P r o p o s i t i o n  3.2.3 Let L be a Lie algebra defined over the field F. Let F 
be an extension field of F. If H C L is a Caftan subalgebra of L, then 
[I - H | F is a Cartan subalgebra of L - L @p F. 

Proof .  As seen in Section 1.14, / t  is nilpotent. Let { x l , . . .  ,Xn} be a 
basis of L and { h i , . . .  ,hi} a basis of H. Then {xl | 1 , . . .  ,Xn | 1} and 
{hi @ 1 , . . .  , hi | 1} are bases of ], a n d / t  respectively. Now if we provide 
these bases as input to the algorithm Normalizer, then exactly the same 
equation system will be solved as when we input the bases {Xl, . . .  ,Xn} and 
{ h i , . . . ,  hi} of L and H. Hence the solution space is defined over F and 
we have that NL( / t  ) - N L ( H ) |  F -  [I. Now by Lemma 3.2.2, /~ is a 

Cartan subalgebra of L. D 

From Definition 3.2.1 it is not clear whether an arbitrary Lie algebra has 
a Cartan subalgebra. Here we prove that Lie algebras defined over a big 
field and restricted Lie algebras over a field of characteristic p > 0 possess 
Cartan subalgebras. The proofs yield algorithms for calculating a Caftan 
subalgebra. 

L e m m a  3.2.4 Let K be a nilpotent subalgebra of L. Let x E Lo(K),  then 
the primary components in the collected primary decomposition of L relative 
to K are invariant under adx. 
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P r o o f .  Let h E K. Then [h, [h, . . - [h,  x]-- .  11 = 0 and hence by Proposition 
3.1.7, we have that  the primary components of L relative to adh are invari- 
ant under adx. By (3.3) the primary components of L relative to K are 
intersections of the primary components of L relative to adh for h C K. It 
follows that  the primary components of L relative to K are invariant under 
adx. [::] 

P r o p o s i t i o n  3.2.5 Let K be a nilpotent subalgebra of L. Then 

1. Lo(K)  is a subalgebra of L, 

2. [L0(K), L, (K)] C LI(K) ,  

3. NL(Lo(K))  = Lo(K).  

Proo f .  We have that  Lo(K) is a primary component and L1 (K) is a sum 
of primary components. The first two statements now follow from Lemma 
3.2.4. Let x E L lie in NL(Lo(K)) .  Write x = x0 + Xl, where xo E Lo(K)  
and Xl e LI(K).  Then for y e Lo(K) we have Ix, y] = Ix0, y] + [Xl, y] so 
that  Ix1, y] e no(K) .  However, by statement 2., Ix1, y] e LI (K)  and hence 
Ix1, y] = 0. So Ix1, L0(g)]  = 0 and in particular [xl, K] = 0 implying that  
Xl E Lo(K).  It follows that  Xl = 0 and x E Lo(K).  D 

P r o p o s i t i o n  3.2.6 Let ~ be a subset of the field F of size at least dim L +  1. 
Let x C L and set A = L0(adx). Suppose that there is a y C A such that 
adAy is not a nilpotent linear transformation. Then there is a co E ~ such 
that L0(ad(x + c o ( y -  x))) is properly contained in A. 

Proo f .  Let L = A @ Ll(adx) be the Fitting decomposition of L rel- 
ative to the subalgebra spanned by x. Then by Proposition 3.2.5, the 
transformations adx and ady both stabilize A and Ll(adx),  hence so does 
ad(x + c ( y - x ) )  for all c C F. Let T be an indeterminate and let f (T) be the 
characteristic polynomial of ad(x + c(y - x)). Then f (T) = g(T)h(T)  where 
g is the characteristic polynomial of the restriction of ad(x + c(y - x)) to A 
and h the characteristic polynomial of the restriction of ad(x + c(y - x)) to 
Ll(adx).  Furthermore 

g(T) - T d + gl(c)T d-1 + " "  + gd(c) 

and 
h(T) = T e + hl (c)T  e-1 + ' "  + he(c), 
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where gi and hi are polynomials in c. Also, if gi r 0 then deg gi - i and 
likewise for hi. Now because adAy is not nilpotent, there is an i such that  
gi(1) ~ 0. And since A = L0(adx), we have that  he(O) ~ O. In particular gi 
and he are not the zero polynomial. Since deggihe - i  +e  < d + e  -- d imL,  
there is a co C ~ such that  gihe(co) ~ O. From he(co) ~ 0 it follows that  
L0(ad(x + c o ( y -  x))) is contained in A. From gi(co) ~ 0 it follows that  this 
containment is proper. E] 

Definition 3.2.7 An element x E L is called regular if the dimension of 
L0(adx) is minimal. I f  x e L is regular, then dim L0(adx) is called the rank 
oiL. 

Corollary 3.2.8 Suppose that L is defined over a field of size at least 
d imL + 1. Let x C L be a regular element, then L0(adx) is a Cartan 
subalgebra. 

Proo f .  Set H = L0(adx). Then by Proposition 3.2.5, H is a subalge- 
bra of L and NL(H)  - H. Also if H is not nilpotent, then by Engel's 
theorem (Theorem 2.1.5), there is an element h C H such that  adHh is 
not nilpotent. Hence, by Proposition 3.2.6, there is a co E F such that  
d imL0(ad(x + co(h - x))) < dimL0(adx).  But since x is regular, this is not 
possible. So H is nilpotent, and by Lemma 3.2.2 it is a Cartan subalgebra. [::1 

Using Proposition 3.2.6 we formulate an algorithm for calculating a Car- 
tan subalgebra of a Lie algebra defined over a big field (i.e., a field of size 
at least dim L + 1). 

Algorithm CartanSubalgebra BigField 
Input: a finite-dimensional Lie algebra L, and a subset ~t C F of size at 

least dim L + 1. 
Output: a Cartan subalgebra of L. 

Step 1 If L is nilpotent, then return L. 

Step 2 x "= NonNi lpotentElement(L) ;  

Step 3 If L0(adx) is nilpotent then return L0(adx). 

Step 4 Let y "= NonNi lpotentElement(Lo(adx)) .  F ind  a co C Q such that  
the dimension of Lo(ad(x+co(y -x ) ) )  is strictly less than dimL0(adx).  
Set x "- x + co(y - x) and go to Step 3. 
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C o m m e n t s :  This algorithm terminates because dim L0(adx) decreases 
every round of the iteration. Also by 3. of Proposition 3.2.5 and Lemma 
3.2.2, the subalgebra that is returned is a Cartan subalgebra. We note that 
every step is computable. This is clear for Steps 1 and 2. Calculating (a 
basis of ) a subalgebra of the form L0(adu) requires solving a system of 
linear equations. In Step 4, after at most dim L + 1 computations of the 
dimension of a subalgebra of the form L o ( a d ( x + c o ( y - x ) ) ) ,  we find a co E Ft 
such that d i m L o ( a d ( x + c o ( y - x ) ) )  is < dimL0(adx) (cf. Proposition 3.2.6). 

Proposition 3.2.9 Let L be a restricted Lie algebra over the field F of 
characteristic p > O. Let x ~-~ x p be a fixed p-th power mapping. Let 
K be a nilpotent subalgebra of L. Then Lo(K)  is closed under the p-th 
power mapping. Furthermore, every Cartan subalgebra of Lo(K)  is a Caftan 
subalgebra of L. 

Proof .  Set A = Lo(K)  and let x , y  E A. Then [xP, y] = (adx)P(y) which 
lies in A by 1. of Proposition 3.2.5. Hence x p E NL(A)  - A by 3. of 
Proposition 3.2.5. It follows that A is closed under the p-th power mapping 
of L. 

Let H be a Cartan subalgebra of A. Then H is nilpotent and Ao(H)  = 
H. We have to prove that Lo(H) = H. Let x E K and choose an integer 
m such that (adx)PmA = 0 (such an m exists because x acts nilpotently on 
A). Set y = x pm then, as seen above, y C A. Furthermore, [y, A] = 0 and in 
particular [y, HI = 0. So because H is a Cartan subalgebra of A, we have 
y e H. Hence Lo(H) C L0(ady) C L0(adx) and as a consequence 

Lo(H) C A L0(adx) = Lo(K)= A. 
xC K  

And it follows that Lo(H) = Ao(H)  = H, which is what we wished to prove. 
D 

The previous result yields an algorithm for computing a Cartan subal- 
gebra of a restricted Lie algebra of characteristic p > 0. 

Algorithm Carta nSubalgebra Restricted 
Input: a restricted finite-dimensional Lie algebra L of characteristic p > 0. 

Output: a Cartan subalgebra of L. 

Step 1 Set K :-- L. 

Step 2 If K is nilpotent then return K. 
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Step 3 x := NonNilpotentElement(K). Replace K by Ko(adKx) and return 
to Step 2. 

C o m m e n t s :  This algorithm terminates because the quantity dim K 
decreases every round of the iteration. Furthermore, the replacement of Step 
3 is justified by Proposition 3.2.9. We note that the p-th power mapping is 
not needed in the algorithm. It is only needed in the proof of Proposition 
3.2.9. 

Coro l l a ry  3.2.10 I f  L is defined over a field of size at least dim L + 1, or 
L is a restricted Lie algebra of characteristic p > O, then L has a Cartan 
subalgebra. 

R e m a r k .  We remark that a Lie algebra L in general has more than one 
Cartan subalgebra. Indeed, let L be the 3-dimensional Lie algebra si2(Q) 
with basis x, y, h and multiplication table 

[h, x] = 2x, [h, y] = -2y,  [x, y] = h, 

(see Example 1.3.6). Then the subalgebras of L spanned by h and x + y 
respectively are both Cartan subalgebras of L. 

3.3 T h e  root  space  d e c o m p o s i t i o n  

Let L be a Lie algebra over the field F. A Cartan subalgebra H of L is 
said to be split if F contains the eigenvalues of the adLh for all h E H (see 
also Definition 2.4.1). In this section we suppose that L has a split Cartan 
subalgebra and we let H be such a split Cartan subalgebra. 

Let 

L = H �9 L1 |  | Ls 

be the (collected) primary decomposition of L with respect to H. Let h C 
H, then the minimum polynomial of the restriction of adh to a primary 
component Li is a power of an irreducible polynomial. Since H is split, 
this irreducible polynomial is of the form X -  (~i(h), where c~i(h) is a scalar 
depending on i and h. By fixing the primary component Li, we get a 
function c~i : H --+ F. This function is called a root (because the c~i(h) are 
roots of the characteristic polynomial of adh). The corresponding primary 
component Li is called a root space. In the sequel it will be convenient to 
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index a root space by the corresponding root, i.e., 

La~ - Li - 

{x E i I f  or all h E H there is a k > 0 such that  (adh - a i (h ) ) k ( x )  -- 0}. 

The pr imary decomposit ion 

L - H @ Lal (~ ' ' "  (~ La s 

is called the root space decomposition of L. We note tha t  H = L0, the 
pr imary component  corresponding to the function a0 �9 H --+ F given by 
ao(h) - 0 for all h E H. However, usually a0 is not called a root. We let 
(I) - { h i , . . . ,  as}  be the set of non-zero roots. The next result shows how 
part  of the multiplicative structure of L is encoded in relations satisfied by 

the roots. 

P r o p o s i t i o n  3.3.1 Let a, ~ E �9 and let x E La and y E LZ. Then Ix, y] E 
L~+~ if a + ~ E (~ and [x, y] E H if a + ~ - O. In all other cases [x, y] - O. 

P r o o f .  Let h E H,  then adh is a derivation of L. 
induction on m (cf. (4.4) in Chapter  4) establishes 

A straightforward 

(adh - ( a ( h )  + ~(h)) )m([x ,  y]) - 
m 

a ( h ) ) m - i ( x ) ,  (adh - /3 (h ) ) i (y ) ] .  

And for m big enough this is 0. So if a +/3 E ~, then Ix, y] E La+Z. Also if 
a + /3  = 0, then Ix, y] E L0 - H. In all other cases a d h -  (a(h)  + ~(h))  is 
nonsingular and it follows that  [x, y] - 0 .  El 

E x a m p l e  3.3.2 Let L be the 8-dimensional Lie algebra over Q with basis 
{ x l , . . .  ,x8} and multiplication table as shown in Table 3.1. 

We compute a Caf tan  subalgebra H of L and the corresponding root 
space decomposition. First, x - xl is a non-nilpotent element and L0(adx) 
is spanned by { x l , x 4 , x 6 , x 7 } .  In this subalgebra y = x4 is not nilpotent,  so 
according to Step 4 of the algori thm CartanSubalgebraBigField we have to 
find a co E Q such that  the dimension of L o ( a d ( x + c o ( y - x ) ) )  is smaller than  
dim L0(adx). It is easily seen that  co = 1 does not work, so we try co = 2 
which does the job. The subalgebra L0(ad(2y - x)) is spanned by {Xl,X4} 
and is nilpotent (even Abelian). So we have found a Car tan  subalgebra. 
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Xl 

X2 

X3 

X4 

X5 

X6 

X7 

X8 

Xl X2 X3 X4 X5 X6 X7 X8 

0 2x2 -2x3  0 - x 5  0 0 x8 
-2x2  0 Xl 0 x8 0 0 0 
2x3 -Xl  0 0 0 0 0 x5 

0 0 0 0 --x5 --2x6 --X6 --  2x7 --x8 
X5 --X8 0 X 5 0 0 0 --X6 
0 0 0 2x6 0 0 0 0 
0 0 0 X6 + 2x7 0 0 0 0 

- x s  0 - x 5  xs x6 0 0 0 

Table 3.1" Multiplication table of a 8-dimensional Lie algebra. 

Set hi - xl and h2 - x4 and let H be the Cartan subalgebra spanned 
by hi, h2. The matrices of adhl and adh2 are easily computed and it is seen 
that  the primary decomposition of L is 

L -  H G L a l  - <x2>@L.2 - <x3}@L~ 3 - <x5>OLa4 - <x6, xT>GL~5 - <xs>, 

(where (vl, v 2 , . . . ,  Vk) denotes the space spanned by v l , . . . ,  vk). Now we 
turn our attention towards the roots c~i. Set h - Alhl + )~2h2. Then the 
matrix of the restriction of adh to La4 is 

- - , ~ 2  

0 

The minimum polynomial of this matrix is (X+2A2) 2. Hence c~4(h) = -2)~2. 
In similar fashion we determine the other roots; we have 

a l ( h ) -  2A1, a 2 ( h ) - - 2 A 1 ,  a 3 ( h ) = - Z ~ l - / ~ 2 ,  a 4 ( h ) - - 2 A 2 ,  

c~5(h) - / ~ 1  - / ~ 2 .  

We see that  OL 3 ~-Ol 5 - -  Or 4. This corresponds to the commutation relation 

[xs,  xs] = - z 6  c 

We have seen that  part of the multiplication table of a Lie algebra L 
is encoded in relations satisfied by the roots. Moreover, as will be seen in 
Chapters 4 and 5, in the special case of semisimple Lie algebras, the set of 
roots determines the entire Lie algebra structure. However, in general L 
has many Cartan subalgebras and the root space decomposition of L rel- 
ative to one Cartan subalgebra differs from the root space decomposition 
of L relative to another Cartan subalgebra. So the question presents itself 
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as to which Car tan subalgebras of L are best for our purpose of investi- 
gating the structure of L. Fortunately, in the case where L is defined over 
an algebraically closed field of characteristic 0 all Caf tan subalgebras are 
conjugate under the automorphism group of L. This means that  the root 
space decomposition of L relative to a Caftan subalgebra H1 is mapped 
onto the root space decomposition of L relative to a different Car tan  sub- 
algebra/-/2 by an automorphism. So in this case it does not mat ter  which 
Car tan subalgebra we take. The proof of this result is the subject of the 
next sections. 

3.4 Polynomial functions 

Let V be a finite-dimensional vector space over the field F with basis 

{Vl, . . .  ,Vn}. Let p :  V -+ V be a map defined by 

n n 

p ( ~  Aivi) - E p i ( A 1 , . . . ,  A~)vi (3.4) 
i=1 i=1 

where pi e F[X1 , . . .  , Xn] are polynomials. A map of this form is called a 
polynomial map. 

Let p : V -+ V be a polynomial map defined by (3.4) and let v = 
/~lVl + ' ' "  + /~nVn E V. Then we define the differential of p at v to be the 
linear map dvp : V -+ V given by 

e p( - (oxj" 
m 

#j vi 

E x a m p l e  3.4.1 Let V be a two-dimensional vector space over Q with basis 
{Vl, v2}. Then the map p : V  --+ V defined by 

+ - + + + 

is a polynomial map. Let v = A lVl + )~2V2 be an element of V. Then for 
w = #1vl + #2v2 we have 

dvp(w) = (A2#l + ()~1 + 2A2)#2)v1 + (2A1#1 + 2A2#2)v2. 

L e m m a  3.4.2 Let p : V --+ V be a polynomial map. Let t be an indetermi- 
nate. Then p(v + tw) = p(v) + tdvp(w) (mod t2). 
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n P r o o f .  Let w be given by w - ~~j=l pjVj. Let f �9 V --+ F be a poly- 
nomial function from V to F (i.e., f(~-~ Aivi) = p f ( A l , . . .  ,/~n) for a PI C 
F [ X 1 , . . .  ,Xn]). Then by Taylor's theorem in n variables (see, e.g., [30]), 
we have 

n Of (v)#j ( m o d t  2 f (v + tw) - f (v) + t E ~ ). 
j= l  

The lemma is a straightforward consequence of this. 

A subset S c V is said to be open if there is a polynomial f in the ring 
F [ X I , . . . , A m ]  such that  S = {v c V I f ( v )  ~ 0}. 

T h e o r e m  3.4.3 Let V be a vector space defined over an algebraically closed 
field F. Let p:  V --+ V be a polynomial map. Suppose that there is a v c V 
such that dvp is a surjective linear map. Let S C V be an open subset of V. 
Then the image p(S)  contains an open subset of V. 

The proof of this theorem belongs to algebraic geometry; it is beyond 
the scope of this book. For a proof we refer the reader to, e.g., [48], or [14]. 

3.5 Conjugacy of Cartan subalgebras 

Let L be a Lie algebra. From Section 1.11 we recall that  expadx is an 
automorphism of L if x C L is such that  adx is nilpotent. The group 
generated by these automorphisms is called the inner automorphism group 
of L and denoted by Int (L). 

In the rest of this section we assume that  the ground field F is alge- 
braically closed and of characteristic 0. Under this hypothesis we prove 
that  all Cartan subalgebras are conjugate under Int(L). 

Let H be a Caftan subalgebra of L and let 

L = H �9 La  I G ' ' "  @ Las 

be the root space decomposition of L with respect to H. (Note that  H is 
split as F is algebraically closed.) Set L0 = H. Let x E L ~  and y E Laj 
then by Proposition 3.3.1 we see that (adx)k(y) C Lka~+a~ if kc~i + c~j is a 

root or if it is 0, and otherwise (adx)k(y) = 0. So since there are only a 
finite number of roots we see that  (adx)k(y) = 0 for some k > 0. Also by 
a similar argument we have that  (adx)m(h) = 0 for h E H and an m > 0. 
It follows that  adx is nilpotent and hence expadx E Int(L). We let E(H) 
denote the subgroup of Int(L) generated by expadx for x E Lai, where i 
ranges from 1 to s. 
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Now let { h i , . . .  , h t , x l + l , ' - "  ,Xn} be a basis of L such that  h i , . . .  ,hi 
form a basis of H and Xl+l, .. �9 , Xn span the root spaces. Let x - }-~ti=l # ih i+  
Ein=l )~iXi be an element of L. Then we define a function PH " L -+ L by +1 

1 

pH (x) -- exp( ~l+ l adXl+ l ) " " exp( )~nadxn ) (i~_l #ihi ) 

(Note that  for fixed ,~1+1,... ,An this is an element of E(H)  acting on an 
element of H.) It is clear that  PH is a polynomial  function. We calculate 
its differential at the point h0 C H. For this let h - ~Li= 1 #ihi  and u --- 
}-~in=l+l )~ixi. Let t be an indeterminate.  Then 

pH(ho + t(h + u)) - exp( ,~l+l tadxl+l ) . . ,  exp()~ntadxn)(ho + th) 

= (1 + t ~ l + l a d X l + l ) ' "  (1 + t~nadxn)(ho + th) (mud t 2) 
n 

= ho + th + t E Aiadxi(ho) ( m o d t  2) 
i=/+1 

= ho + t(h + adu(h0)) (mud t2). 

So by Lemma 3.4.2 we see that  the differential dhoPH is the linear map 
h + u ~-+ h + [u, h0]. (Note that  PH(ho) -- ho.) 

A root c~i �9 H ~ F is a non-zero polynomial function. Hence also 
the product  f - c~l...C~s is a non-zero polynomial function. So there are 
h C H such that  f ( h )  r O. By Hreg we denote the set of all h E H such that  
f ( h )  r O. Let L I (H)  - La~ 0 . . .  (9 La~ be the Fit t ing-one component  of L 
relative to H.  We define a polynomial  function f "  L --+ F by ] ( h + u )  - f (h) 
for h C H and u E L I(H).  Then 

OH -- {h + u I h C Hreg and u E L1 (H)} 

is the open set in L corresponding to f (where "open" is defined as in 
Section 3.4). If h0 E Hreg then c~i(ho) ~ 0 for 1 < i <_ s so tha t  H = 
L0(adh0). Therefore the restriction of adh0 to L I (H)  is non-singular. So 
by the above calculation we see that  the differential dhoPH " L ~-+ L is 
surjective. Consequently, by Theorem 3.4.3, the image set pH(OH)  contains 
an open set. Now let H ~ be a second Car tan  subalgebra. Then we define 
PH' using the root space decomposit ion of L relative to H ~. And in the 
same way we see that  PH'(OH') contains an open set. But two open sets 
always have a non-empty intersection. This means that  there are g C E(H) ,  
h C Hreg, g' C E(H ' )  and h' E Hr~eg such that  g(h) - g'(h') .  But then 

g(H)  - g(Lo(adh))  - Lo(adg(h))  = Lo(adg'(h ' ))  - g ' (Lo(adh') )  - g ' (H ' ) .  
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Hence the element gl- lg E Int(L) maps H to H/. This means that  we have 
proved the following theorem. 

T h e o r e m  3.5.1 Let L be a finite-dimensional Lie algebra over an alge- 
braically closed field of characteristic O. Let H, H ~ be two Caftan subalgebras 
of L. Then there is an element g E Int(L) such that g ( H ) =  g ' .  

P r o p o s i t i o n  3.5.2 Let L be a finite-dimensional Lie algebra over a field 
of characteristic 0 (not necessarily algebraically closed). Then any Cartan 
subalgebra H of L is of the form L0(adx) where x E L is a regular element. 

P r o o f .  Let { x l , . . .  ,Xn} be a basis of L. Let F(Y1, . . .  ,Yn) be the field 
n of rational functions in n indeterminates. Put  x - ~--]i=1 ]~xi which is an 

element of L | F(Y1 , . . .  , Yn). Then the characteristic polynomial of adx 
is of the form 

d e t ( T -  adx) = T n + f l  (Y1, . . . ,  Yn) Tn-1 + " "  + fn - l (Y1 , . . .  , Yn) Tl, 

where the fi are polynomials in the Y1 , . . . ,  Yn. We see that  an element 
~-~#ixi C L is regular if and only if f n - l ( # l , . . .  ,#n) ~ 0. So since F is 
infinite we have that  L contains regular elements. 

Suppose first that  F is algebraically closed. Let y E L be regular. 
By Corollary 3.2.8 we see that  L0(ady) is a Cartan subalgebra of L. By 
Theorem 3.5.1 there is an element g E Int(L) such that  g(Lo(ady)) equals 
the given Caftan subalgebra H. Hence H = Lo(adg(y)) and g(y) is a regular 
element. 

Now we drop the assumption that  F is algebraically closed, and we 
show that  H contains regular elements. Let {h i , . . .  ,hl} be a basis of 
H. Let Y1,. . .  ,Yl be l indeterminates over F.  We consider the element 

l h - ~-~i=1Yihi which lies in L |  F(Y1, . . .  ,Y l)- Then the characteristic 
polynomial of adh is 

d e t ( T -  adh) - T n + gl(Y1, . . .  ,YI)T n-1 + " "  + gn-l (Y1, . . .  ,Y1)T 1. 

l It follows that  an element E i = I  c~ihi C H is a regular element if and only 
if gn-l(o~l,. . .  ,c~l) ~ 0. By the first part, the Cartan subalgebra H con- 
tains regular elements over the algebraic closure of F.  Hence gn-1 is not the 
zero polynomial. So, since F is infinite, there are c~1,... , c~z E F such that  
g n - l ( a l , . . .  ~ al) ~ 0 and H contains regular elements. O 
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E x a m p l e  3 .5 .3  Let L be the Lie algebra ~[2(Q) of Example  1.3.6. 
Lie algebra has basis x, y, h and multiplication table 

This 

[h, x] - 2x, [h, y] - - 2 y ,  [x, y] - h. 

A Car tan  subalgebra of L is spanned by h. Denote this Car tan  subalgebra 
by H.  Then  there are two root spaces relative to H,  spanned by x and y 
respectively. We have (adx) 3 - (ady) 3 = 0 and 

pH(aX + fly + 3"h) - (exp aadx ) ( exp  13ady) (3'h) 

l a 2  1/32 (ady)2) (h) = 3"(1 + aadx  + -~ (adx)2)(1 + 13ady + 

= -3"(2a213 + 2a)x  + 23"~y + 3'(1 + 2a~)h.  

Now a second Car tan  subalgebra H ~ is spanned by x + y. The two root 
spaces relative to H ~ are spanned by x ~ - x - y - h and y~ - x - y + h. If 
we s e t h  ~ - x + y t h e n  

[h', x'] - 2x', [h', y'] - - 2 y ' ,  [x', y'] - - 4 h ' .  

Also 

pH,(a'x' + Yy'+ ~'h')- 
1 a, 2 1 ~2(ady~)2 h ~ 3"),'(1 + a ' a d x '  + ~ (adx')2)(1 + 13'ady' + ~/J )( ) -  

3"(8a '213 ' -  2a ' )x '  + 23"/3'y' + 3 " ( 1 -  8a'/3')h' .  

To find an au tomorphism mapping H onto H ~ we need to find an element 
in the intersection of the images of PH and PH'. For example we can set 
a I = / 3  ~ = 0 and 3"~ = 1, then pH,(a~x ~ + ~ty~ + 3"~h ~) = h t. Now we have to 
find a,/3, 3' such that  pH(OLX --b 13y + 3"h) = h t. This is equivalent to 

-3"(2a2/3 + 2a) - 2-)'/3 - 1 and 3'(1 + 2a/3) - 0. 

If we set 3 ' -  1, then we see t h a t / 3 -  1, and a = - 1 .  It follows tha t  

1 
e x p ( - a d x )  exp(~ady)  (H) - -  H t. 

3.6 Conjugacy of Cartan subalgebras of solvable 
Lie algebras 

As seen in the last section, we need the ground field to be algebraically 
closed and of characteristic 0 in order to have that  all Car tan  subalgebras 
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are conjugate. However, in an important special case, where the Lie algebra 
is solvable, we can drop the assumption that the ground field be algebraically 
closed. First we need some lemmas that are of general nature. 

L e m m a  3.6.1 Let L be a finite-dimensional Lie algebra. Let K be a subal- 
gebra of L containing a subalgebra of the form L0(adx) for an x C L. Then 
NL(K)  = K.  

Proof .  We consider the vector space V = N L ( K ) / K .  Since x C K we 
have that adLx stabilizes K and NL(K); hence adLx induces a linear map 
ax : V ~ V. The characteristic polynomial of adNL(K)X is the product of 
the characteristic polynomials of adKx and ax. So because L0(adx) C K 
we see that ax has no eigenvalue 0 on V. Also x E K implies that ax maps 
NL(K)  into K, i.e., ax(V) = 0. It follows that V = 0 and we are done. [::] 

L e m m a  3.6.2 Let L1, L2 be finite-dimensional Lie algebras over a field of 
characteristic O. Let r  L1 --+ L2 be a surjective homomorphism. I f  H is a 
Cartan subalgebra of L1, then r  is a Cartan subalgebra of L2. 

Proof .  Let H k be the k-th term of the lower central series of H, and sim- 
ilarly for r  k. Then r  k - r  k) = 0 for k large enough. Hence 
r  is nilpotent. Now suppose [r r C r  for an x C L1; then 
Ix, H] C H + k e r  r Hence [x, H + k e r  r C H + k e r  r i.e., x E NL1 (H+ke r  r 
Now since the ground field is of characteristic 0, the Cartan subalgebra H 
is of the form L0(adu) for some u C L1 (Proposition 3.5.2). So by Lemma 
3.6.1 we see that x C H + ker r And consequently r C r  The con- 
clusion is that NL2(r = r  and by Lemma 3.2.2 r  is a Cartan 
subalgebra of L2. K] 

L e m m a  3.6.3 Let L1, L2 be finite-dimensional Lie algebras over a field of 
characteristic O. Let r  L1 --+ L2 be a surjective homomorphism. Let H2 
be a Cartan subalgebra of L2 and set K = r Then every Cartan 
subalgebra of K is also a Cartan subalgebra of Li.  

Proof .  Let HI be a Cartan subalgebra of K. Then HI is a nilpotent Lie 
algebra. By Lemma 3.6.2, r is a Cartan subalgebra of r  = //2. 
Hence r = //2. Suppose that [x, Hi] C H1 for an x E L1. Then 
[r C /-/2 and r E //2. It follows that x C K. But since H1 is 
a Cartan subalgebra of K we must have x C H1; so NL1 (H1) = H1. By 
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Lemma 3.2.2, H1 is a Cartan subalgebra of L1. 

Now let L be a solvable Lie algebra over a field of characteristic 0. Let 
x C [L,L], then by Lemma 2.6.2 we see that  adLx is nilpotent. Hence 
expadx is an element of the inner automorphism group Int(L). By D(L) 
we denote the subgroup of Int(L) generated by all elements expadx for 
x e [ L ,  L]. 

T h e o r e m  3.6.4 Let L be a solvable Lie algebra of characteristic O. Let 
H, H ~ be two Cartan subalgebras o/ L. Then there is a g E D(L) such that 
g(H') = H. 

P r o o f .  The proof is by induction on dim L. The case dim L = 0 is triv- 
ial. Also we may assume that  L is not nilpotent. Then L has non-trivial 
proper commutative ideals (e.g., the last non-zero term of the derived se- 
ries). Choose a non-trivial commutative ideal I of L of minimal dimen- 
sion. Then by Lemma 3.6.2, (H + I ) / I  and (H' + I ) / I  are Cartan sub- 
algebras of L/ I .  Hence by induction there is a ~ C D(L/ I )  such that  
~((H' + I ) / I )  = (H + I ) / I .  Let ~ : L ~ L / I  be the projection map. Then 

induces a group homomorphism 

r  D ( L )  > D(L/ I )  

defined by r  = exp(adr(x)) .  If x e [L,L], then r (x)  e [L / I ,L / I ]  
so r is well defined. Also because ~r is surjective we have the same for r 
It follows that  there is a gl E D(L) such that  r = g. Set H1 = gl (H' ) .  
We prove that  H1 and H are conjugate under D(L). 

First we note that  H1 is a Cartan subalgebra of L and H1 + I = H + I. So 
H1 and H are Cartan subalgebras of H + I. If H + I is properly contained in 
L, then by induction there is a g2 E D(H + I) such that  g2(H1) = H. Since 
H + I is a subalgebra of L the group D(H + I) can be viewed as a subgroup 
of D(L) (this follows from the fact that [H + I, H + I] is a subalgebra of 
[L, L]). Hence g2 lies in D(L) and we are done in this case. 

Now suppose that  L = H + I .  Let u C H be a regular element of L 
(such u exists by Proposition 3.5.2). Let 

L = H G L1 (H) 

be the Fit t ing decomposition of L with respect to H. Then since u is 
regular, adu : LI (H)  --+ L I ( H ) i s  non-singular. Let x C LI(H) ,  then 
b e c a u s e L = H + I w e c a n w r i t e x = h + a w h e r e h E  H a n d a  E I. Let 
k > 0 be an integer such that  (adu)k(H) = 0; then (adu)k(x) = (adu)k(a) 
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which lies in I since I is an ideal. So ( a d u ) k ( L i ( H ) )  C I and because 
also (adu) k is non-singular on LI(H)  we see that  n l  ( g )  C I. In particular 

[LI(H), L1 (H)] - 0. Therefore 

[L, L1 (H)] - [H + L1 (H), LI(H)] C Li (H). 

It follows that  L1 (H) is a commutative ideal of L contained in I. Because I 
is minimal we must have L~ (H) = 0 or L~ (H) = I. In the first case L = H 

and L is nilpotent, which was excluded. 
On the other hand, if L~ (H) = I, then L = H1 + I = H1 + L~ (H). So 

we can write u = h t + y where h' C H1 and y E LI(H) .  Also we can write 
y - [z,u] for some z e LI(H) .  Since [u, n l ( H ) ]  - L I ( H )  we have that  
LI (H)  C [L,L]  and g3 - expadz e D(L). Furthermore, since (adz) 2 = 0 
we have that  g3 = 1 + adz. From the fact that  L1 (H) is commutative we 

get that  [z, y] = 0. Hence 

g3(h') - g3(u  - y) - u - y + [z, u - y] - u. 

The conclusion is that  g3(H1) is a Cartan subalgebra of L having a regular 
element in common with H. Hence g3(H1)  - H .  [5 

3.7 Calculating the nilradical 

In Section 2.2 we described an algorithm for calculating the nilradical of Lie 
algebras defined over a field of characteristic 0 or over a finite field. However 
this algorithm calculates a basis of the associative algebra (adL)*. The 
dimension of that  algebra may be substantially bigger than the dimension 
of L. Therefore it is desirable to have an algorithm that  works inside the 
Lie algebra L. In this section we describe an algorithm of this kind. We 
also describe a second algorithm that  mostly works inside the Lie algebra 
(it computes the radical of an associative algebra that  is much smaller than 
(adL)*). However, they both only work over fields of characteristic 0. 

L e m m a  3.7.1 Let  L be a solvable Lie  algebra over  the f ie ld  F o f  charac-  

ter is t ic  O. Le t  d be a der i va t ion  o f  L.  T h e n  d(NR(L)) C NR(L). 

P r o o f .  Let F x  denote the 1-dimensional vector space over F with ba- 
sis x. We consider the direct sum K - F x  | L,  which is made into a 
Lie algebra by setting [c~x + yl,/~x + y2] = c~d(y2) - ~ d ( y l )  + [yl, Y2] for 
yl, y2 E L. This is a special case of the construction of a semidirect prod- 
uct in Section 1.10. Then L is an ideal in K and K / L  is commutative. 
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Hence K is solvable. Therefore by Corollary 2.6.3, [K,K] is a nilpotent 
ideal of K. And since [K, K] C L it is also a nilpotent ideal of L, i.e., 
[K, K] C NR(L). But [K, K] = [L, L] + d(L). Hence d(L) C NR(L), and in 
particular d(NR(L)) C NR(L). E] 

P r o p o s i t i o n  3.7.2 Let L be a solvable Lie algebra of characteristic O. Let 
I be an ideal of L and let M be the ideal of L (containing I) such that 
NR(L/ I )  - M / I .  Then NR(L) - NR(M).  

P roof .  First we have that NR(M) is a nilpotent Lie algebra. Furthermore, 
since M is an ideal of L we have that adx E Der(M) for all x C L. Hence by 
Lemma 3.7.1, [x, NR(M)] C NR(M) for all x e L. It follows that NR(M) 
is an ideal of L and hence NR(M) C NR(L). 

For the other inclusion we note that NR(L) C M and hence NR(L) C 
NR(M).  cl 

P r o p o s i t i o n  3.7.3 Let L be a solvable Lie algebra of characteristic O. Set 
I -  [[L, L], [L, L]]. Then NR(L / I )  - NR(L) / I .  

Proof .  First we note that by Corollary 2.6.3 we have that I C [L, L] C 
NR(L). So N R ( L ) / I  is a nilpotent ideal of L / I  hence N R ( L ) / I  C NR(L/ I ) .  

Now suppose that ~: C NR(L/I ) ;  then adL/I2 is nilpotent. Let x C L be 
a pre-image in L of 2. We claim that adLx is nilpotent. Because adL/iZc is 
nilpotent we have (adLx)m(L) C I for some m > 0. Now we set Jt - [L, L], 
and for k >_ 2, Jk -- [J1,Jk-1]. So J2 - I and (adLx)m(L) C J2. We 
show by induction on k that for k >_ 2 there is an integer sk such that 
(adLx)Sk(L) C Jk. For k - 2 we take s2 - rn. So let k _> 2, then by 
induction we have (adx)Sk(L) C Jk. Now let a E Jt and b C Jk-t ,  then 
[a, b] C Jk and by Leibniz' formula (1.11), 

t 

( t '  [(adx)i(a) (adx)t_i(b)]. (adx)t([a' b]) - E i, 
i = 0  

We take t - 2Sk. This means that if t -  i >_ Sk, then (adx)t-i(b) C Jk 
and (adx)i(a) C J1. On the other hand i f t - i  < Sk, t h e n i  > Sk so that 
(adx)i(a) E Jk and (adx)t-i(b) C J1. In both cases we see that 

[(adx)i(a), (adx)t-i(b)] e Jk+l. 

As a consequence we have that (adx)t(Jk) C Jk+l. Hence (adx)t+Sk(L) c 
Jk+l. Now because J1 is a nilpotent Lie algebra, there is a k > 0 such 
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that  Jk = 0. Hence adLx is nilpotent and x E NR(L) by Proposi t ion 2.3.6. 
Therefore �9 E N R ( L ) / I  and we are done. [::] 

P r o p o s i t i o n  3 .7 .4  Let L be a solvable Lie algebra of characteristic O. Let 
Cm(L) be the hypercentre o/ L. Then NR(L/Cm(L)) = NR(L)/Cm(L).  

P r o o f .  Let 

C(L) = CI(L) C C 2 ( L ) C . . .  C Cm(L) 

be the upper  central series of L. Just  as in the proof of Proposi t ion 3.7.3 
it can be shown that  NR(L)/Cm(L) C NR(L/Cm(L)). Now let 2 be 
an element of NR(L/Cm(L)) and let x C L be a pre-image of 2. Then 
(adnx)n(L) C Cm(L) for some n > 0. And since 

Cm(L)/Cm-1 (L) = C(L/Cm_I (L)) 

(by the definition of upper central series) we see that  adx(Cm(L)) C 0 + 
Cm-1 (L). Now, by going down the upper central series we arrive at 

(adx)m+n(L) = O. 

So x C NR(L) by Proposi t ion 2.3.6. 

P r o p o s i t i o n  3.7.5 Let L be a Lie algebra such that [[L, L], [L,L]] = 0 and 
C(L) = O. Then Cn ([L, L]) = [L, L]. 

P r o o f .  Set K = CL([L,L]), then we define a representation ~b: L --+ 9[(K) 
of L by r = [x, v] for x C L and v C K. (Because [[L,L], [L,L]] = 0 
we have that  [x, v] G CL([L,L]).) The kernel of r contains [L, L] so r  
L~ ker r is commutative.  Let 

K = Ko(r @ KI(r 

be the Fi t t ing decomposit ion of K with respect to r  Then since r  
KI(r = KI(r we have KI(C(L)) C [L,L]. Furthermore,  every el- 
ement of r acts nilpotently on Ko(C(L)). Suppose tha t  Ko(C(L)) ~ O. 
Then by Proposi t ion 2.1.2 there is a non-zero v E Ko(r such that  
r = 0. But  then v C C(L) and we have reached a contradiction. 
So Ko(C(L)) = 0 and K C [L,L]. It follows that  K = [L, L]. [] 
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P r o p o s i t i o n  3.7.6 Let L be a Lie algebra such that IlL, L], [L,L]] = 0 and 
C(L) = O. Then [L, [L, L]] = [L, L]. 

P roof .  Set K = [L, L] and let r be defined as in the proof of Proposi- 
tion 3.7.5. In the same way as seen in that proof, K = KI(r  So 
r  = K, but that is the same as [L, [L, L]] = [L, L]. D 

Now the algorithm reads as follows: 

Algorithm NilRadical 
Input: a finite-dimensional Lie algebra L of characteristic 0. 

Output: NR(L). 

Step 1 Compute the solvable radical R = SR(L). If R = 0 then return R, 
otherwise continue with R in place of L. 

Step 2 Compute the ideal I = IlL, L], [L, L]]. If I r 0 then compute (by a 
recursive call) the nilradical N of L / I  and return the inverse image of 
N in L. Otherwise proceed to Step 3. 

Step 3 Compute the hypercentre Ca(L)  of L. If Cm(L) r 0 then proceed 
as in Step 2 where Cm(L) plays the role of I. Otherwise go to Step 4. 

Step 4 Compute a basis of L of the form { X l ,  �9 �9 �9 , Xs, Yl , . . .  , Y t}  where [L, L] 
is spanned by {x l , . . .  ,Xs}. Set i := 1; 

Step 5 Let a be the matrix of the adjoint action of Yi on [L, L]. If the rank 
of a is strictly smaller than s, then compute the ideal J = ady~([L, L]). 
Compute recursively the nilradical of L / J  and let M be the ideal of 
L containing J such that NR(L /J )  = M / J .  Compute (by a recursive 
call) NR(M) and return this ideal. If the rank of a is equal to s, then 
go to Step 6. 

Step 6 Let f be the minimum polynomial of a. If f is not square-free then 
set g = f~ gcd(f, f ' ) .  Compute the ideal I = g(a). [L, L] and proceed 
as in Step 5. If f is square-free proceed to Step 7. 

Step 7 If i < t then set i equal to i + 1 and go to Step 5. 
NR(L) = [L, L]. 

Otherwise, 

C o m m e n t s :  
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Step 1 Since NR(R) = NR(L), (cf. Proposition 2.3.6) we may replace L by 
R. 

Step 2 This step is justified by Proposition 3.7.3. 

Step 3 This step is justified by Proposition 3.7.4. 

Step 5 The rank of a is not 0 by Proposition 3.7.5 (the conditions of this 
proposition are fulfilled by Steps 2 and 3). If it is less than s, then 
J = adyi([L,L]) will be an ideal of L properly contained in [L,L]. 
Hence Proposition 3.7.6 (ensuring that L/J  is not nilpotent, and hence 
M ~ L) and Proposition 3.7.2 justify the recursive calls. 

Step 6 For z, u, v E L we have 

[z, (adyi)m([u, v])] = (adyi)m([z, [u, v]]) 

which is proved by induction on m. From this it follows that the space 
h(adyi)([L,L]) is an ideal of L for every polynomial h. In particular 
g(adyi)([L, L]) is an ideal of L and it is properly contained in [L, L] 
because g(adyi) is nilpotent. 

Step 7 If i = t then all elements Yk act by a semisimple matrix on [L, L]. 
Furthermore these matrices commute. So any nilpotent element of L is 
contained in the span of x l , . . .  , xs. It follows that  NR(L) is contained 
in [L, L]. By Step 1 we have that L is solvable so that  NR(L) = [L, L]. 

E x a m p l e  3.7.7 Let L be the 5-dimensional Lie algebra over Q with basis 
{Xl,X2, X3, X4,Xs} and multiplication table 

[Xl,X5] - - ' X l ,  [X2, X5] --  Xl -~-X2, [X3, X4] : Xl ,  [X3,X5] : X3. 

Then L is solvable. Furthermore, both IlL, L], [L,L]] and C(L) are zero. 
A basis as in Step 4 of the algorithm is given by {Xl,X2, x3,Yl,Y2}, where 
Yl = x4 and Y2 - -  x 5 .  The matrix of the restriction of adyl to [L, L] is 

a --- (i0 1) 0 0 . 
0 0 

The rank of a is 1, so in Step 5 we calculate the ideal J spanned by a.[L, L] = 
(Xl/. Let zi be the image of xi in L/J  for i = 2, 3, 4, 5. Then a multiplication 
table of K1 = L/J  is 

[z2, zs] = z2, [z3, zs] - z3. 
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We calculate the nilradical of K1. The centre C(K1) is spanned by Z4. 
Set K2 = K1/C(K1);  then the centre of K2 is zero. So the hypercentre 
of K1 is equal to C(K1). Let ui be the image of zi i n / ( 2  for i = 2, 3, 5. 
Then the u's satisfy the same commutation relations as the z's. Hence 
C(K2) = ILK2, K2], [Ks, Ks]] = 0, so for the calculation of the nilradical of 
Ks we proceed to Step 4. We have that  [K2, K2] is spanned by us, u3. The 
matrix of the action of u5 on this space is 

- 1  0 (0 1) 
The minimum polynomial of this matrix is X + 1, which is square-free. By 
Step 7 we now see that  NR(K2) = [K2, K2]. By Step 3, NR(K1) is spanned 
by z2, z3, Zd. 

We now continue calculating NR(L). We left this computation in Step 5. 
We have calculated the nilradical of K1. Now M is spanned by Xl, x2, x3, Xd. 
According to Step 5, we have NR(L) = NR(M).  But M is nilpotent. So 
NR(L) = M. 

L e m m a  3.7'.8 Let L C g[(V) be a solvable linear Lie algebra of character- 
istic O. Let A be the associative algebra generated by L together with the 
identity on V. Then A /Rad(A)  is a commutative associative algebra. 

Proo f .  Let 0 = Vo C V1 C . . .  C Vs+l - V be a composition series of V 
with respect to the action of L. Then all elements of A stabilize the modules 
Vi. Let I C A be the set of all a C A such that a ~ + l  C t~ for 0 _ i < s. 
Then I is a nilpotent ideal of A and hence I C Rad(A). Because Vi+l/Vi is 
an irreducible L-module, by Proposition 2.3.3 we have that  Ix, y]. Vi+l C Vi 
for all x, y e L. Hence [x, y] C Rad(A). So the generators of A commute 
modulo Rad(A). Hence all elements of A commute modulo Rad(A). o 

T h e o r e m  3.7.9 Let L be a finite-dimensional Lie algebra of characteristic 
O. Set R = SR(L). Let H be a Cartan subalgebra of R. Let R1 = RI (H)  be 
the Fitting-one component of R relative to H. Let A denote the associative 
algebra generated by adRlh for h E H along with the identity on R1. Then 
we have 

NR(L) = R1 G {h e g ladR1 h e Rad(A)}. 

P roo f .  First we have that  R1 : IN, R1] C [R,R] C NR(L) (the second 
inclusion follows from Corollary 2.6.3). Furthermore, if h is an element of 
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H such that adR~ h E Rad(A), then adR1 h is nilpotent. Since H is nilpotent, 
there is a k > 0 such that (adRh)k(H) = 0. Hence for m big enough, 

(adRh) TM (R) = (adRh) TM (H) + (adRh) m (R1) = O. 

So adRh is nilpotent, forcing h C NR(L) (Proposition 2.3.6). So everything 
on the right hand side is contained in NR(L). 

Now let x C NR(L). Then also x E R, and consequently there are unique 
h E H and y C R1 such that x = h+y.  We must show that &dR1 h E Rad(A). 
By the Wedderburn-Malcev principal theorem (Theorem A.1.5) there is a 
semisimple subalgebra S of A such that A = S (9 Rad(A). By Lemma 3.7.8 
we have that S is commutative. Therefore any nilpotent element of S will 
generate a nilpotent ideal of S. It follows that S does not contain nilpotent 
elements. This implies that all elements of S are semisimple linear transfor- 
mations. Indeed, let a C S and let a - s +  n be its Jordan decomposition. 
Then both s ,n  C S so that n = 0. Now write adR~h = s + r where s C S 
and r E Rad(A). Then since adR~ h is nilpotent, we must have that  s = 0, 
and we are done. [:3 

On the basis of this theorem we formulate the following algorithm for 
calculating the nilradical of a Lie algebra of characteristic 0. 

Algorithm NilRadical 
Input: a finite-dimensional Lie algebra L of characteristic 0. 

Output: a basis of NR(L). 

Step 1 Calculate the solvable radical R = SR(L) of L. 

Step 2 Calculate a Cartan subalgebra H of R. 

Step 3 Set RI := FittingOneComponent(R, H) and calculate a basis of the 
associative algebra A generated by adR1 h for h E H. 

Step 4 Calculate Rad(A) and calculate the space N of all h E H such that 
adR1 h C Rad(A). 

Step 5 Return N @ R1. 

E x a m p l e  3.7.10 Let L be the 5-dimensional Lie algebra of Example 3.7.7. 
A non-nilpotent element if L is x5. We have that L0(adx5) is spanned by 
x4, x5. This subalgebra is nilpotent (even commutative) so H = L0(adx5) 
is a Cartan subalgebra of L. The Fitting-one component L1 (H) is spanned 
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by x l , x2 ,  x3. The matrices of the restrictions of adx4 and adx5 to L I ( H )  
are 

adL1 ( H ) X 4  "-- 
(! o _1) (-i _1 

0 0 and adL~(H)x5 - - 1  
0 0 0 1 

Let A be the associative algebra (with one) generated by these matrices. 
Then A is 3-dimensional. The radical of A is spanned by adLl(H)X4 along 
with 

(i 1 i) 00 
So NR(L) is spanned by xl,x2,xa,:r,4. 

Some practical experiences with the algorithms for calculating the nil- 
radical are reported in [35]. The algorithms of this section turn out to be 
markedly more efficient than the algorithm described in Section 2.2. Fur- 
thermore, the second algorithm of this section (using Cartan subalgebras) 
runs faster than the first algorithm on the examples considered in [35]. 

3.8 N o t e s  

The algorithms for calculating a Cartan subalgebra are taken from [37]. In 
that paper it is shown that these algorithms run in polynomial time. A 
different algorithm is described in [7]. There the computation of a Cartan 
subalgebra is split into two separate cases. In the first case the Lie algebra 
is semisimple. In this case a characterization of Cartan subalgebras as max- 

imal tori is used (see also Section 4.9). The resulting algorithm is somewhat 
similar in nature to the algorithms described in Section 3.2. The construc- 
tion of a maximal torus starts by constructing a semisimple element S l. A 
maximal torus containing s l is contained in the centralizer of s l. So the 
centralizer of s l is constructed. If this centralizer is not nilpotent, then it 
contains a semisimple element s2 independent from sl. Now the centralizer 
of the subalgebra generated by sl, s2 is constructed. This process repeats 
until a Cartan subalgebra is found. In the second case the Lie algebra is 
solvable. For this case a rather complicated procedure is used. Furthermore, 
it is shown that we can compute a Cartan subalgebra of any Lie algebra 
using the algorithms for these two cases. 

Also [91] contains an algorithm for calculating a Cartan subalgebra. The 
strategy used there consists of trying to find a nilpotent subalgebra K of L 
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such that Lo(K) is a proper subalgebra of L. When such a subalgebra is 
found, recursion is applied to find a Cartan subalgebra H of Lo(K) and by 
Proposition 3.2.9 (we refer to [88] for an extension of this result to charac- 
teristic 0), H is also a Cartan subalgebra of L. The algorithm starts with an 
arbitrary nilpotent subalgebra K. If Lo(K) happens to be equal to L, then 
two strategies for replacing K are possible. First of all, if the centralizer 
of K in L is bigger than K we can add an element of the complement to 
K in the centralizer and produce a bigger nilpotent subalgebra. We can 
do the same with the normalizer. However in this case, in order to get a 
nilpotent subalgebra, we must make sure that the element x of the comple- 
ment acts nilpotently on K. If this happens not to be the case then x is a 
non-nilpotent element and hence the nilpotent subalgebra K spanned by x 
will have the property that Lo(K) ~ L. 

The Lie algebra of Table 3.1 is taken from [84] (it is the Lie algebra with 
name L8,11 in that paper). The proof of Theorem 3.6.4 follows C. Chevalley 
([19]). The first algorithm for calculating the nilradical in Section 3.7 is 
based on [71]. The second algorithm is taken from [35]. 
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Chapter 4 

Lie algebras with 
non-degenerate Killing form 

The Killing form of a Lie algebra is the trace form corresponding to the ad- 
joint representation. The requirement that the Killing form of a Lie algebra 
L be non-degenerate poses strong restrictions on the structure of L. For 
instance, we will show that the solvable radical of L is zero (Section 4.2). 
Furthermore, in Section 4.3 we show that L is a direct sum of ideals that 
are simple (i.e., they have no nontrivial proper ideals). In characteristic 0 
all L-modules satisfy an analogous property, namely they are direct sums 
of irreducible submodules. This is known as Weyl's theorem (Section 4.4). 
Also all derivations of L must be of the form adx for some x E L (Section 
4.5). This fact will be used to show that the elements of L have a decom- 
position analogous to the Jordan decomposition of matrices (Section 4.6). 
In characteristic 0 this Jordan decomposition is compatible with the usual 
Jordan decomposition of linear transformations in the following sense: if 
x : Xs + Xn  is the Jordan decomposition of x C L and p : L ~ g[(V) is 
a finite-dimensional representation of L, then p(x) = p(xs) + p(Xn) is the 
Jordan decomposition of p(x). 

The subject of Section 4.7 is the so-called Levi decomposition: we prove 
that a finite-dimensional Lie algebra of characteristic 0 is the direct sum 
of its solvable radical and a subalgebra that has a non-degenerate Killing 
form. A semisimple subalgebra provided by this theorem is called a Levi 
subalgebra. 

In Section 4.9 we carry out a first investigation into the root space de- 
composition of a Lie algebra L with a non-degenerate Killing form, relative 
to a split Cartan subalgebra. Among other things we prove that any Car- 
tan subalgebra of L is commutative and consists of semisimple elements. 
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Furthermore we show that  the root spaces are all 1-dimensional. 
In Section 4.11 we use splitting and decomposing elements of a Cartan 

subalgebra H to calculate the collected primary decomposition of L with 
respect to H. We use this in Section 4.12 to formulate an algorithm for 
calculating the direct sum decomposition of L. In the next section we de- 
scribe algorithms to calculate a Levi subalgebra of a Lie algebra L. Then 
in Section 4.14 we show how a Cartan subalgebra of a Lie algebra L carries 
information about its Levi decomposition. In the last section we use this to 
formulate a different algorithm for calculating a Levi subalgebra. 

4.1 Trace forms and the Kill ing form 

Let L be a finite-dimensional Lie algebra over the field F and let p : L 
t~[(V) be a finite-dimensional representation of L. Then we define a bilinear 
form f p : L  • L ~ F by 

fp(x, y) = Tr(p(x)p(y)) for x ,y  e L. 

The form fp is called the trace form corresponding to the representation p. 
Let B - { x l , . . .  ,Xn} be a basis of L, then (fp(xi,xj))in, j=l is the matrix of 
fp relative to the basis B. The radical Sp of fp is the subspace 

Sp = {x e L l fp(x ,  y) = 0 for all y e L}. 

The form fp is said to be non-degenerate if Sp = 0. It is straightforward to 
see that  fp is non-degenerate if and only if the matrix of fp (relative to any 
basis) is nonsingular. 

L e m m a  4.1.1 Let fp be a trace form of the Lie algebra L. Then we have 
fp([x, y], z) = f p(x, [y, z]) .for all x, y, z E L. 

Proo f .  This is a consequence Lemma 2.5.4 and p being a morphism of Lie 
algebras. D 

P r o p o s i t i o n  4.1.2 Let fp be a trace form of the Lie algebra L. Then the 
radical Sp of fp is an ideal of L. Furthermore, if L is of characteristic 0 
and p is faithful, then Sp is solvable. 

Proo f .  The fact that  Sp is an ideal of L follows immediately from Lemma 
4.1.1. Now suppose that  L is of characteristic 0 and p is faithful. Let 
x e [Sp, Sp] a n d y  e Sp, t h e n x  e Sp and hence Tr(p(x)p(y)) = 0. So by 
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Cartan 's  criterion (Theorem 2.5.5), p(Sp) is solvable. 
this implies that  S o is solvable. 

Since p is faithful, 
[3 

The trace form corresponding to the adjoint representation of L is called 
the Killing form. It is denoted by aL, i.e., aL(X, y) = Tr(adLx.  adny). If it 
is clear from the context which Lie algebra we mean, we also write ~ instead 
of aL. In this chapter we will investigate the structure of Lie algebras that  
have a non-degenerate Killing form. A first result is the following. 

Lemma 4.1.3 Let L be a Lie algebra with a non-degenerate Killing form. 
Then the centre o/ L is O. 

Proo f .  Let x E C(L).  Then adx = 0, and hence a(x, y) = 0 for all y C L. 
It follows that  x = 0. rn 

As a consequence the adjoint representation ad :  L --4 gi(L) is faithful if 
the Killing form of L is non-degenerate. 

4.2 Semisimple Lie algebras 

This section contains the so-called Cartan's  criterion for semisimplicity, 
which yields a straightforward way of checking whether a given Lie alge- 
bra is semisimple. 

Definition 4.2.1 A Lie algebra L said to be semisimple if the solvable rad- 
ical SR(L) is zero. 

Proposition 4.2.2 ( C a r t a n ' s  c r i t e r i o n  for s e m i s i m p l i c i t y )  Let L be a 
Lie algebra. If  the Killing form ~ L  i8 non-degenerate then L is semisim- 
ple. Conversely, if L is semisimple and of characteristic O, then ff, L i8 
non-degenerate. 

P r o o f .  Set I = SR(L) and suppose that  I 7~ 0. Then there is an integer 
m >_ 1 such that  I (re+l) - 0 while I (m) 7 s 0 (where I (m) denotes the ru- 
th term of the derived series of I). Now let x E I (m) and let y E L. 
Then adx ady(L) C I (m). And since adx(I  (m)) C I (m+l) = 0 we have 
that  (adx ady) 2 = 0. It follows that  an(x, y) = 0 and consequently I (m) is 
contained in the radical of ~L. But this means that  I (m) - 0 and from the 
assumption that  I 7 ~ 0 we have reached a contradiction. The conclusion is 
that  I - 0 and L is semisimple. 
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Suppose that  L is semisimple and of characteristic 0. Let S~ be the rad- 
ical of n. Since SR(L) = 0 also the centre of L must be 0. Hence the adjoint 
representation of L is faithful. So by Proposition 4.1.2, S~ is a solvable ideal 
of L. Consequently S~ = 0 and ~ is non-degenerate. El 

E x a m p l e  4.2.3 Let L = s [ 2 ( F ) .  As seen in Example 1.3.6, this Lie algebra 
has basis {h, x, y} with [h, x] -- 2x, [h, y] = - 2 y  and Ix, y] = h. The matrices 
of adx, ady and adh with respect to this basis are easily computed: (0 01)(0 10) (00 0) 

a d x -  - 2  0 0 , a d y -  0 0 0 , a d h -  0 2 0 
0 0 0 2 0 0 0 0 - 2  

Then the matrix of a equals 

8 0 0 )  
0 0 4  
0 4 0  

The determinant of this matrix is -128,  hence by Proposition 4.2.2, L is 
semisimple if the characteristic of F is not 2. 

4.3 D i r e c t  s u m  d e c o m p o s i t i o n  

Definition 4.3.1 A finite-dimensional Lie algebra L is said to be simple if 
d imL > 1 and L has no ideals except 0 and L. 

If L is simple, then SR(L) = L or SR(L) = 0. In the first case we have 
that  L is solvable and [L, L] is an ideal of L not equal to L. Hence [L, L] = 0 
and L is commutative. It follows that  every l-dimensional subspace is an 
ideal of L, which is not possible because L is simple (note that  here we use 
the condition dim L > 1). Therefore SR(L) = 0. So a simple Lie algebra is 
also semisimple. 

The converse does not hold. Let K be a Lie algebra with a non- 
degenerate Killing form (so that  K is certainly semisimple by Proposition 
4.2.2)and set L = K G K  (direct sum of Lie algebras, see Section 1.10). Then 
the Killing form of L is also non-degenerate (this will follow from Lemma 
4.3.4); but L is not simple. In this section we prove that  a Lie algebra with 
non-degenerate Killing form is always of this form: a direct sum of simple 
ideals. 
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L e m m a  4.3.2 Suppose that L is a direct sum of ideals, L = I @ J. Then 
~I is the restriction of t~ L to I (and likewise for a g). 

P r o o f .  Let x ,y  E L. Then adx and ady leave the subspaces I and J 
invariant; so this also holds for adx .  ady. Hence 

t~L(X , y) = Trn(adxady) = Tri(adxxadxy) + Wrg(adjxoodjy). 

But if x E I,  then adgx-= 0, whence the lemma. [:] 

L e m m a  4.3 .3  Let L = 1 �9 J, a direct sum of ideals. Then t~L(I, J) = O. 

P r o o f .  Let x E I and y E J ,  then a d x - a d y ( L )  C I M J  = 0. Hence 

aL(x ,y)  = 0 .  [::] 

L e m m a  4.3 .4  Let L = I • J be the direct sum of two ideals I and J. Then 
gL  i8 non-degenerate if and only if t~i and g J  are non-degenerate. 

P r o o f .  Suppose g L  is non-degenerate and a1 is degenerate. Then  there 
is a n x 0  E I s u c h t h a t  n i (x0 ,y)  = 0 for a l l y  E I. For a l l z  E J w e h a v e  
aL(XO, Z) = 0 (Lemma 4.3.3). Let u E L. We write u = ul + u2 where 

Ul E I a n d u 2  E J.  ThenaL(X0,U)  =t~L(Xo ,u l )+aL(Xo ,  u2) = 0 .  SOaL 
is degenerate, a contradiction. An analogous argument  proves tha t  g j  is 
non-degenerate. 

Now suppose that  ~ I  and a j  are non-degenerate. Let x E L be such 
that  aL(x ,y)  = 0 for all y E L. Write x = Xl + x2 where xl E I,  x2 E J.  
Then using Lemmas 4.3.2 and 4.3.3 we see that  for y E I,  

0 -~- t~L(X , y )  : t~L(X 1 -Jr- X2, y)  = g L ( X l ,  y)  -- g I ( X l ,  y ) .  

Hence Xl  - -  0. Similarly it can be seen that  x2 = 0; i.e., x = 0 and ~ L  is 
non-degenerate, o 

If V C L is a subspace of L, then the set 

V • - {x E L l~L(X,y)  = 0 for all y E V} 

is called the orthogonal complement of V in L with respect to ~L. 

L e m m a  4.3.5  Let L be a finite-dimensional Lie algebra, and suppose that 
the Killing form of L is non-degenerate. Let I be an ideal of L, then the 
orthogonal complement I • of I with respect to ~L is an ideal of L and 
L = I @ I  I .  
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P r o o f .  By Lemma 4.1.1 we have that I • is an ideal in L. Set J - I N I • 
and let x, y E J.  Then for all z E L we have by Lemma 4.1.1, 

- L  y],  z )  - - L  [y, z])  - 0 

(since x E I and [y, z] E I•  And because aL is non-degenerate, [x, y ] -  0. 
So J is a solvable ideal of L and since L is semisimple (Proposition 4.2.2) we 
must have J -  0. The non-degeneracy of t~ L implies that  d i m / +  d i m / •  - 
dim L. Hence L - I ~ I • [::1 

Proposition 4.3.6 Let L be a f in i te-dimensional  Lie algebra with a non- 
degenerate Kill ing form.  Then 

L - J~ @ . . .  @ Js 

where the Jk are ideals of L that are simple (.for 1 < k ~_ s). 

P r o o f .  If L is simple, then we can take s = 1 and J1 = L. On the other 
hand, if L is not simple, then L has an ideal I not equal to L, and not zero. 
Let I • be the orthogonal complement to I with respect to aL- Then by 
Lemma 4.3.5, I • is an ideal of L and L - I @ I • By Lemma 4.3.4, g I  and 
t~i• are non-degenerate. Hence, by induction on the dimension, I and I • 
are direct sums of simple ideals. So also L is a direct sum of simple ideals. [:] 

The following proposition says that the decomposition of Proposit ion 
4.3.6 is unique. 

Proposition 4.3.7 Let L be a Lie algebra with non-degenerate Kil l ing form.  
Suppose that 

L = Jl @ ""  @ Jm and L = K I  @ ""  @ Kn 

are two decompositions of L into simple ideals. Then m = n and every ideal 
Ji is equal to an ideal K j .  

P r o o f .  Fix an index i E { 1 , . . . , m } .  We prove that  Ji is equal to an 
ideal Kj .  Set Ij  - Ji N K j  for 1 _ j < n. Then Ij  is an ideal of 
L and it is contained in both Ji and Kj .  Suppose that  Ij  ~ 0; then 
since Ji and K j  are simple, we must have Ji = Ij  = K j .  On the other 
hand, if Ij  - 0, then [Ji ,Kj] C Ij - O. So if I j  -- 0 for all j ,  then 
[Ji, L] - [Ji, g l ]  + ' "  + [Ji, Kn] - O. But this is impossible in view of 
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Lemma 4.1.3. Hence Ij ~ 0 for exactly one j. 

Given a semisimple Lie algebra L we may calculate its decomposition 
into a direct sum of simple ideals using the algorithm of Section 1.15. How- 
ever, later in this chapter (Section 4.12) we will give an algorithm especially 
designed for this case. 

4.4 Complete reducibility of representations 

In this section L is a semisimple Lie algebra over a field F of characteristic 0. 
We recall that a representation p : L -+ 9[(V) of L is completely reducible 
if V is a direct sum of irreducible submodules (see Section 1.12). The 
purpose of this section is to show that every representation of L is completely 
reducible. 

The plan of the proof is to show that if W C V is a submodule of V, 
then there is a submodule W' C V such that V = W �9 W' (and then to 
proceed by induction on the dimension). This will be proved by constructing 
projections of V onto W and W'. These are elements of HomF(V, V). 

In the sequel p : L --+ 9[(V) will be a finite-dimensional representation 
of L. For convenience we sometimes also refer to V as an L-module. From 
Section 1.12 we recall that if V, W are L-modules, then HomF(V, W) (the 
set of all linear maps from V into W) becomes an L-module by setting 

(x. r = x .  (r - r  v) for all x C L, r C HomE(V, W) and v E V. 

Also by HomL(V, W) we denote the set of all r E HomF(V, W) such that 
x - r  = 0 for all x c L. 

L e m m a  4.4.1 We have 

HomL(V, V) = {a e HomF(V, V) ][a, p(L)] = 0}. 

Furthermore, Hom/(V, V) is an associative subalgebra of HomF(V, V) con- 
taining the identity. 

Proof .  Let a E HomL(V,V), t h e n x - a  = 0 for a l l x  C L. 
equivalent to saying that for all v E V" 

But this is 

0 = = - = - 

Which is equivalent to [a, p(x)] = 0 for all x C L. 
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Let a, b C HomL(V, V) then it is s traightforward to see tha t  lab, p(L)] - 
0. Hence HomL(V, V) is a subalgebra of the associative algebra HomF(V, V). 

It evidently contains the identity. [::] 

The existence of a complementary  submodule  W ~ to W is closely related 

to the existence of idempotents  in the subalgebra HomL(V, V). 

L e m m a  4.4 .2  Le t  W be a s u b m o d u l e  o f  V .  T h e n  there is a s u b m o d u l e  

W ~ C V such  tha t  V - W • W t i f  and  only  i f  there is an i d e m p o t e n t  

e C HomL(V, V )  such  that  W ~ - ker e and  W - ime. 

P r o o f .  First  we remark  tha t  since e C HomL (V, V) we have tha t  the kernel 

and image of e are submodules  of V. 

Suppose tha t  V = W �9 W ~. An element v E V can uniquely be wri t ten  
as v = w + w ~ where w C W and w ~ C W t. Let e be the linear map  defined 
by e(v )  = e ( w  + w ' )  = w. Then e 2 = e and W = ime and W ~ = kere.  Also 

for x C L we calculate 

+ - x .  - + 

= x .  w - e ( x .  w + x .  w ' )  

= X ' W - - X ' W  - - 0 .  

Hence e E HomL(V, V). 

On the other hand suppose tha t  e C HomL (V, V) is an idempotent  with 
the listed properties.  Then  for v C V we have ev C W and v -  ev E W ~, and 
consequently V = W + W t. Let v C W N W ~ then v = eu for some u C V 
and also ev = 0. Hence v = eu = e2u = ev = 0. It follows tha t  W M W ~ = 0 

and V is the direct sum of these submodules.  D 

In the sequel we will construct  idempotents  in HomL(V, V). First  we 
will do this by construct ing a so-called C a s i m i r  opera tor  corresponding to 

the representat ion p. 

Since the representat ion p is a morphism of Lie algebras, ker p is an 
ideal of L. Hence, by Lemma 4.3.5 we see tha t  L is a direct sum of ideals 
L = ker p(~L1.  And by Lemma 4.3.4 and Proposi t ion 4.2.2, L1 is semisimple. 
Furthermore,  the restrict ion of p to L1 is faithful. Let fp : L • L ~ F be 
the trace form of p. Then by Proposi t ion 4.1.2, the restr ict ion of fp to L1 
is non-degenerate.  

Now let X l , . . .  , X m  be a basis of L1. Then, since the restr ict ion of 

fp to L1 is non-degenerate,  there is a basis y l , . . .  ,Ym of L1 such tha t  
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fp(xi, yj) -- ~ij. Now the operator 

m 

i = 1  

is called a Casimir operator corresponding to the representation p. We note 
that  Tr(cp) - Y~'~i Tr(p(xi)p(yi)) - Y~i fp(xi, Yi) = dimL1. 

P r o p o s i t i o n  4.4.3 Cp is an element of HomL(V,V) ,  i.e., [cp, p ( L ) ] -  O. 

Proo f .  Let x C L1 and define c~ik E F and ~ik C F by 

m m 

[x, xi] -- E aikXk and [x, Yi] - E ~ikYk. 
k = l  k - 1  

Then using Lemma 4.1.1 we have 

.~k - L ( [ x ,  ~ ] ,  yk) - - L ( [ ~ ,  x], yk) - - f~(x~ ,  Ix, yk]) - -Zk~.  (4.1) 

We calculate 

m 

[p(x), Cp] - E [ p ( x  ), p(xi)p(yi)] 
i = 1  

m 

= E [ p ( x ) ,  p(xi)]p(Yi) + p(xi)[p(x), P(Yi)] 
i = 1  

m 

= E c~ikp(xk)p(yi) + ~ikp(xi)P(Yk) 
i ,k=l  

m m 

= ~ aikP(xk)p(Yi) -  ~ akip(xi)P(Yk) (by (4.1)) 
i , k=l  i ,k=l  

- - 0 .  

We now find a complement W ~ of a submodule W by constructing a 
suitable idempotent in HomL (V, V). First we have a lemma dealing with a 
particular case, that  can be solved by using a Casimir operator. Then there 
is a proposition that  proves the statement in general. 

L e m m a  4.4.4 Let W be a submodule of V such that p (L)V C W.  Then 
there is a submodule W ~ C V such that V = W @ W ~. 
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P r o o f .  First  of all, if p(L) = 0, then we can take any complementary 

subspace W ~. The rest of the proof deals with the case where p(L) ~ O. 
First  we suppose that  W is irreducible. Let Cp be a Casimir operator  

corresponding to p. Let L1 be the ideal complementary to ker p. Then 
Tr(cp) = dimL1 which is non-zero because p(L) ~ O. Also there is no 
non-zero w E W such that  cpw = 0; otherwise the set of all such w is a 
non-zero submodule (this follows from Proposit ion 4.4.3) which contradicts 
the assumption that  W is irreducible. Hence the characteristic polynomial  
of the restriction of cp to W has a non-zero constant term. It follows that  
there is a polynomial  p C FIX] without  constant term such that  e = p(cp) is 
the identity on W. Since p does not have a constant term, we have eV = W.  
Hence e2V = e(eV) = eV so that  e is an idempotent.  Furthermore,  since 
cp C HomL(V, V) also e C HomL(V, V). Set W'  = ker e, then by Lemma 
4.4.2, W ~ is a submodule of V and V = W �9 W ~. 

Now if W is not irreducible, then we prove the s tatement  by induction 
on dim W. Let U C W be an irreducible submodule of W. We consider 
the L-module V/U  and denote the induced representation also by p. Now 
p(L) (V/U)  C W / U  so by induction there is a complement X / U  to W/U.  
Furthermore,  U C X is irreducible, so by the first part  of the proof there is 
a submodule W ~ C X such that  X = W ~ ~ U. Finally, V = W @ W ~. [::1 

P r o p o s i t i o n  4.4 .5  Let L be a semisimple Lie algebra of characteristic O. 
Let p :  L ~ 9[(V) be a finite-dimensional representation of L. I f  W is a 
submodule of V, then there is a submodule W ~ C V such that V = W @ W ~. 

P r o o f .  Let r : H o m F ( V , W )  --+ HomE(W,W)  be the restriction map. 
It is straightforward to see that  r is a morphism of L-modules. Also 
HomL(W, W) is contained in HomE(W, W) and furthermore L acts triv- 
ially on HomL(W, W). Set 

U = {r E HomE(V, W) ] r(r  C HomL(W, W)}. 

Then ke r r  C U and ke r r  is an L-submodule because r is a morphism of 
L-modules. If x E L and r E U, then r ( x . r  = x - r ( r  = 0. This shows that  

U is an L-module and L .  U C ker r. So by Lemma 4.4.4, there is a comple- 
mentary submodule X C U such that  U = X @ kerr .  And the restriction 

of r to X is a bijection onto HomL(W, W). Let e be the element of X such 
that  r(e) is the identity mapping on W. Then because e E HomF(V, W), 
e(V) C W.  So since e(w) = w for w E W we have e 2 = e. Let x C L, then 
because X is an L-module,  also x.e  e X .  Furthermore,  r(x.e)  = x.r(e)  = O, 
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so that x.e = 0 and e E HomL (V, V). Lemma 4.4.2 now finishes the proof, o 

T h e o r e m  4.4.6 (Weyl )  Let L be a semisimple Lie algebra of character- 
istic O. Then every finite-dimensional representation of L is completely 

reducible. 

Proof .  Let V be a finite-dimensional L-module. If V is irreducible, then 
there is nothing to prove. On the other hand, if V contains a proper sub- 
module W, then by Proposition 4.4.5, there is a submodule W' C V such 
that V - W @ W'. Now by induction on the dimension W and W' both 
split as a direct sum of irreducible submodules. Hence the same holds for 
V. D 

E x a m p l e  4.4.7 We remark that the decomposition of the L-module V into 
a direct sum of irreducible submodules in general is not unique. Let L be 
the Lie algebra si2(F), with basis {x, y, h} (see Example 1.3.6). By Example 
4.2.3, this Lie algebra is semisimple. Let V be a 4-dimensional module for 
L with basis {vl, v2, wl, w2}. We let the basis elements of L act as follows: 

h . v l = V l ,  h . v 2 = - v 2 ,  x . v 2 = v l ,  y ' v l = v 2 ,  x . v l = y . v 2 - - - 0 ,  

and 

h .  wl = wl, h .  w2 = -w2,  x . w 2  = wl, y ' w l  = w2, x "wl = y . w 2  = O. 

For c~ ~ 0 let Ua be the space spanned by vl + awl  and v2 + c~w2 and let 
Wa be the space spanned by vl -c~wl and v2 -c~w2. Then V = Ua @ Wa is 
a decomposition of V into irreducible submodules. Furthermore, if a,/5 > 0 
and c~ ~/3,  then U~ is not equal to either Uf~ or WZ (and similarly for Wa). 
So we have found an infinite series of decompositions of V into submodules. 

4 .5  A l l  d e r i v a t i o n s  are  i n n e r  

Let L be a finite-dimensional Lie algebra. Recall that a derivation d E 
Der(L) is called inner if d = adx for an element x E L. Here we show that 
for Lie algebras with non-degenerate Killing form all derivations are inner. 

L e m m a  4.5.1 Let L be a finite-dimensional Lie algebra over the field F. 
And  let r : L • L --4 F be a non-degenerate bilinear form on L. Let f : 
L --+ F be a linear function. Then there is a unique x I E L such that 

Y(y) = y) all y e L. 
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n P r o o f .  Let { x l , . . .  ,Xn}  be a basis of L. Let x f  - ~-~k=l o~kxk be an element 
of L, where the C~k are unknowns to be determined. Then f ( y )  - r  y) 
for all y C L if and only if f ( x i )  - r  xi) for 1 _< i _< n. But this is the 
same as 

n 

E r -- f ( x i )  for 1 < i < n. 
k = l  

It follows that  we have n linear equations for n unknowns c~k. Since r is 
non-degenerate, the matr ix  of this equation system is non-singular. Hence 
these equations have a unique solution. [2 

P r o p o s i t i o n  4 .5 .2  Let  L be a f in i t e -d imens iona l  Lie algebra with non- 
degenerate Kil l ing form.  Then  all derivat ions of  L are inner.  

P r o o f .  Let d C Der(L) be a derivation of L, and let x C L. Then 

[d, adx](y) - d ( a d x ( y ) ) - a d x ( d ( y ) )  - [d(x), y]+[x, d(y ) ] - [ x ,  d(y)] - [d(x), y], 

i.e., 

[d, adx] - add(x). (4.2) 

Let F be the ground field of L. Consider the linear function f �9 L --+ F 
defined by f ( y )  - T r ( d .  ady). Then by Lemma 4.5.1, there is an element 
x f  C L such that  f ( y )  - n L ( x S , y  ) for all y E L. Set e -  d -  adxs,  then 

Tr(e .  ady) - Tr(d .  ady) - Tr(adx S �9 ady) - 0 for all y E L. (4.3) 

For x, y E L we calculate 

~L(e(x ) ,  y) -- Tr(ade(x) �9 ady) 

= Tr([e, adx] . ady) (by (4.2)) 

= Tr(e .  adx .  ady) - Tr(adx-  e .  ady) 

= Tr(e .  adx .  ady) - Tr(e.  ady .  adx) 

= Tr(e .  ad[x, y]) - 0 (by (4.3)). 

Therefore, since tt; L is non-degenerate, e(x)  - 0 for all x E L, i.e., e -- 0. It 
follows that  d -  adx  f .  n 
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4.6 The Jordan decomposit ion 

Let V be a finite-dimensional vector space defined over a perfect field. As 
seen in Proposition A.2.6, for an element x E End(V) there are unique 
s, n E End(V) such that x = s + n, s is semisimple, n is nilpotent and 
[s, n] = 0. In this section we prove that a similar statement holds for Lie 
algebras over a perfect field with a non-degenerate Killing form. 

Let A be a finite-dimensional algebra over an arbitrary field F and d E 
Der(A) a derivation of A. We claim that 

( d -  ()~ + #))n(a .  b) - 

i=0 

for a,b C A and A,# E F. 

It is straightforward to check this formula by induction: 

(4.4) 

( d -  ()~ + #))n+l(a . b) - ( d -  ()~ + #)) E ( d -  )~)n-i(a) " ( d -  #)i(b) 
i=0 n(:)( ) 

-- E ( d -  ,,~)n-i+l(a) . ( d -  #)i(b) + ( d -  ,~)n-i(a) " ( d -  # ) i + l ( b )  

i=0 

_ ~ ( n + l ) i  ( d - ) ~ ) n + l - i ( a ) ' ( d - # ) i ( b ) .  

i=0 

In the rest of this section F will be a perfect field. 

L e m m a  4.6.1 Let A be a finite-dimensional algebra over F. Let d C 
Der(A) and let d - ds + dn be the Jordan decomposition of d (where ds 
is semisimple and dn is nilpotent). Then ds, dn C Der(A). 

P roof .  We prove that ds C Der(A) (then necessarily also dn C Der(A)). For 
this we may assume that the ground field is algebraically closed. Indeed, let 
F be the algebraic closure of F. Then d can also be viewed as a derivation 
of A - A | F. Let { a l , . . .  , an} be a basis of A. Now if we can prove that 
ds C Der(A) then also ds C Der(A) because the matrix of ds relative to the 
basis {al | 1 , . . .  , an | 1} is defined over F. 

Let A C F be an eigenvalue of d. We set 

A : ~ - - { a e A i ( d - ) ~ ) k ( a ) - - O  for s o m e k > O } .  
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Then ds acts as multiplication by ~ on A~ (see Proposition A.2.6). Now 
let ~, # E F be two eigenvalues of ds and let a~ and au be correspond- 
ing eigenvectors. From (4.4) it follows that A~.  Au C A~+u. Hence 
ds(a~.a~) = ()~+#)(a~.a~).  But also ds(a~) .a~+a~.ds(a~)  = ()~+#)(a~.a~).  
Since A is the direct sum of subspaces of the form A~ (Lemma A.2.2), we 
conclude that ds is a derivation of A and we are done. [::] 

P r o p o s i t i o n  4.6.2 Let L be a Lie algebra over F with non-degenerate 

Kil l ing form.  Let x E L, then there are unique xs, Xn E L such that 

x - Xs + Xn, adLXs is semisimple,  adLXn is nilpotent and [Xs, Xn] - O. 

Proof .  We consider the derivation d = adx of L. Let d = ds + dn be the 
Jordan decomposition of d. Then by Lemma 4.6.1, ds and dn are deriva- 
tions of L. Because the Killing form of L is non-degenerate, all derivations 
of L are inner (Proposition 4.5.2), and hence there are Xs, Xn E L such that 
adxs = ds and adxn - dn. As the centre of L is zero (Lemma 4.1.3) we see 
that the map ad : L --+ gi(L) is injective. So Xs and Xn are the only elements 
of L such that adxs = ds and adxn = dn. Also from adx = ad(xs + Xn) it 
follows that x = xs + Xn. Finally, [Xs, Xn] = 0 also follows directly from the 
injectivity of ad. El 

T h e o r e m  4.6.3 Let F be a field of characteristic O. Let V be a f inite-  
dimensional  vector space over F and L C gi(V) a semis imple  linear Lie 

algebra. Let x E L and let x = s + n be its Jordan decomposition, where 
s E End(V) is semis imple  and n E End(V) is nilpotent. Then s, n E L. 

Proof .  Instead of proving the statement directly we take a slight detour: 
we prove that s and n lie in a Lie algebra that is maybe bigger than L. 
Then we prove that this Lie algebra is in fact equal to L. 

Set N - Ng~(v)(L), the normalizer of L in g[(Y). By Lemma 2.5.2, 
adx - ads + adn is the Jordan decomposition of adx in End(gi(V)). Now, 
adx(L) C L and since ads and adn are polynomials in adx (Proposition 
A.2.6) we see that ads(L) C L and adn(L) C L, i.e., s and n lie in N. 

Let F be the algebraic closure of F. Set L -  L | F and V -  V | F.  
Then V is an L-module. For an L-submodule W of V we set 

L w  - {y E g[(V) i y ( W  ) C W and Tr(Yiw) = 0}. 

And we put 

L * -  N n  
W 
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m 

where the intersection is taken over all L-submodules  W of V. Note tha t  
the spaces L w  and L* are subspaces of 9[(V). Now L* is the Lie algebra we 
want. We prove tha t  it contains L (even as an ideal) and tha t  it contains s 
and n. Then  we show that  L* is equal to L. 

It is clear tha t  L C N. Secondly, L is a direct sum of simple ideals 
(Proposit ion 4.3.6). And since [K, K] = K if K is a simple Lie algebra we 
have L - [L, L]. Now because the trace of a commuta tor  is always 0 we 
see tha t  L C L w  for every L-submodule  W of V. It follows tha t  L is a 
subalgebra of L*. Also, because L* is contained in N,  we have [L, L*] C L, 
i.e., L is an ideal in L*. 

We show that  s and n are elements of L*. If x maps a subspace W of 
V into itself then, since s and n are polynomials in x, also s and n map W 
into itself. Furthermore,  Tr(s[w) - Tr(xlw ) - O. So s and n are elements 
of all Lw.  Combined with the fact tha t  s, n E N,  this leads to the desired 
conclusion. 

Finally we show tha t  L - L*. Since L* is a finite-dimensional L-module,  
by Proposi t ion 4.4.5, we may write L* - L @ M (direct sum of L-modules) .  
Because L is an ideal in L*, we have [L, M] C LC~M - O. So also [L, M] - 0. 
Now let y E M and let W be an irreducible L-submodule  of V. Let )~ be an 
eigenvalue of y on W (this exists because W is defined over F) .  Then  since 
[L, y] - 0 it is easily seen tha t  the eigenspace of ,~ is an L-submodule  of 
W. Hence, since W is irreducible, this eigenspace equals W. But y E L* so 
tha t  Tr(ylw ) = 0 and consequently A - 0. It follows tha t  y acts ni lpotently 
on W. In par t icular  y .  W is properly contained in W. But y .  W is an 
L-submodule  of W; hence y .  W - 0. Now, thanks to Weyl's theorem, V is 
the direct sum of irreducible L-submodules and hence y .  V = 0 and y = 0. 
The conclusion is tha t  M = 0 and L = L*. [::] 

C o r o l l a r y  4 .6 .4  Let L be a finite-dimensional semisimple Lie algebra over 
a field of characteristic 0 and p:  L ~ 9[(V) a finite-dimensional represen- 
tation of L. Let x E L and write x = x s + X n ,  where adxs is semisim- 
ple, adxn is nilpotent and [xs,Xn] = 0 (cf. Proposition ~.6.2). Then 
p(x) = p(Xs) + p(Xn) is the Jordan decomposition of p(x) e 9[(V). 

P r o o f .  As in the proof of Lemma 4.6.1 we may assume tha t  the ground 
field is algebraically closed. Set K = p(L) which is a semisimple subalgebra 
of I~[(V). If y C L is an eigenvector of adLxs, then p(y) is an eigenvec- 
tor of ad~p(Xs). Now L is spanned by the eigenvectors of adLxs, so K is 
spanned by the eigenvectors of adKp(xs). Hence adKp(xs) is a semisim- 
ple linear t ransformation.  Secondly, (adKp(xn))k(p(y)) -- p( (adLxn)k (y) ) 
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which is zero for k large enough. Hence adKp(Xn) is nilpotent. Finally, 
[p(xs) ,p(xn)] = p([Xs,Xn]) = 0 so p(Xs) and p(Xn) commute. 

Let p(x)  = s + n be the Jordan decomposition of p(x)  in End(V). Then 
by Theorem 4.6.3, s, n C K. Lemma 2.5.2 implies that a d g s  is semisimple 
and a d g n  is nilpotent. Hence by Proposition 4.6.2, s = Xs and n -- Xn. [:] 

There is a straightforward algorithm for computing the decomposition 
x = xs + xn of Proposition 4.6.2. First we compute the Jordan decompo- 
sition adLx = s + n (see Section A.2). Then by solving a system of linear 
equations we compute elements xs, xn E L such that adxs = s and adxn = n 
(these equations have a solution by Proposition 4.6.2). 

4.7 Levi 's  t h e o r e m  

Let L be a Lie algebra over a field of characteristic 0 and suppose that L 
is not solvable. Then L / S R ( L )  is a semisimple Lie algebra. Now Levi's 
theorem states that this semisimple Lie algebra occurs as a subalgebra of 
L. It is the analogue for Lie algebras of the theorem of Malcev-Wedderburn 
for associative algebras (Theorem A.1.5). 

T h e o r e m  4.7.1 (Levi)  Let L be a f in i te-dimensional  Lie algebra of char- 
acteristic O. I f  SR(L) 7~ L, then L contains a semisimple  subalgebra K such 

that L = K @ SR(L) (direct sum of subspaces). 

Proof .  We distinguish three cases. In the first case we assume that L has 
no ideals I such that I ~ 0 and I is properly contained in SR(L). We 
also assume that [L, SR(L)] ~ 0. From the first assumption it follows that 
[SR(L), SR(L)] = 0, because otherwise [SR(L), SR(L)] would be an ideal of 
L properly contained in SR(L). 

Now set V = HomF(L, L) (i.e., all linear maps from L into L). Since L 
is an L-module by the adjoint representation, also V can be made into an 
L-module by setting (see Section 1.12), 

(x- r  = [x, r  r y]) for x, y E L and r E V. 

We consider the following L-submodules of V: 

A = {adLx Ix e SR(L)}, 

B = {r C V Ir  ) C SR(L)and  r  0}, 

C -  {r c Y I r C SR(L) and r is multiplication by a scalar}. 
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We have C D B, and because [SR(L), SR(L)] = 0 also B D A. 
Let r be an element of C acting on SR(L) as multiplication by the 

scalar A. Then for x C L and y E SR(L) we have 

( x .  r  - [~, r  - r  y]) - Ix, ~y] - ~[~, v] - 0. (4 .5)  

Hence x .  r C B and we conclude that  L .  C C B. 
If x e SR(L),  then because [SR(L), SR(L)] = 0 we have for all y e L, 

(~. r = Ix, r  - r  y]) = [ - ~ ,  y] (a .6)  

Consequently, x .  r = ad ( -Ax) .  
So we have derived the following: 

L . C c B  and S R ( L ) . C c A .  (4.7) 

Now SR(L) .C  C A implies that  VIA is a n/SR(L)-module. It contains B/A 
as a proper  submodule.  Since L/SR(L) is semisimple, by Proposi t ion 4.4.5 
there is a complementary submodule D/A. Here D C C is the full inverse 
image so B+D = C and BND = A. Since L.C C B we have that  L/SR(L) 
must map D/A into B/A. But D/A is a complementary submodule  to B/A 
and hence L/SR(L) maps D/A to 0. By (4.7), SR(L) maps D into A, and 
consequently L .  D C A. Now choose a non-zero r in D \ A. It is not an 

element of B, so after modifying it by a scalar, we may assume that r 
is the identity on SR(L). Furthermore L .  r C A because L .  D c A. 

Set 
K = { x E L I x . r  }. 

Let x b e a n e l e m e n t  of L. Then s i n c e x . r  E A, we h a v e x . r  = ady for 
some y E SR(L). By (4.6), y .  r = - a d y ,  so that  (x + y ) .  r = 0. It follows 
that  x + y is an element of K and therefore x = (x + y) - y is an element 

of K + SR(L). Hence n = K + SR(L). 
We now show that  K N SR(L) = 0. Let x be a non-zero element of the 

intersection. Then  by (4.6) we have x .  r = a d ( - x )  and hence a d ( - x )  = 0. 
So x spans an ideal I of L lying inside SR(L), and consequently I = SR(L) 
or I = 0. If I = SR(L),  then since adx = 0 we have [L, SR(L)] = 0 which 
was excluded. So I = 0 and x = 0. The conclusion is tha t  L = K @ SR(L) 

and we are done in the first case. 
In the second case we suppose that  [L, SR(L)] = 0. Then  SR(L) = C(L) 

and adL ~- L/SR(L) (see Example 1.8.3). Hence the adjoint representation 
of L induces a representation 

p: L/SR(L) ----+ 9[(L) 
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of the semisimple Lie algebra L/SR(L).  The radical SR(L) is a nontrivial 
submodule, and hence, Proposition 4.4.5, there is a complementary sub- 
module which is the required K. 

In the final case we suppose that L has an ideal I properly contained in 
SR(L). In this case, by induction, we may assume that the theorem holds 
for all Lie algebras with a solvable radical of dimension less than dim SR(L). 

Let 
n : L ~ L / I  

be the projection map. The solvable radical of L / I  is SR(L) / I ,  so by the 
induction hypothesis, L / I  has a subalgebra K" complementary to SR(L)/ I .  
Set K ~ - r - 1  (K"). It is a subalgebra of L containing I with the property 
that K ' / I  - K" is semisimple. Therefore the radical of K ~ is I and hence, 
by induction, 

K I = I + K  

where K is a semisimple subalgebra. Now, by applying 7r -1 to L / I  = 
SR(L) / I  + K" we conclude that 

L = SR(L) + K ' =  SR(L) + I +  K = SR(L) + K. 

Furthermore, SR(L) N K = 0 because K is semisimple. The conclusion is 
that L = K @ SR(L). [:] 

Def in i t ion  4.7.2 Let L be a finite-dimensional Lie algebra of characteristic 
O. Let K be a subalgebra provided by Theorem ~. 7.1. Then K is called a 
Levi subalgebra of L. 

E x a m p l e  4.7.3 Let L be the Lie algebra with basis {Xl , . . .  ,X5} and mul- 
tiplication table as shown in Table 4.1. 

Xl 

X2 

X3 

X4 

X5 

Xl X2 X3 X4 X5 

0 2Xl - 3x4 -x2  x5 0 
-2Xl + 3x4 0 2x3 x4 -x5  

x2 -2x3 0 0 x4 
-x5  -x4  0 0 0 

0 x5 -x4  0 0 

Table 4.1: Multiplication table of a 5-dimensional Lie algebra. 

It is straightforward to see that the subspace I spanned by X4 and x5 
is a commutative ideal of L. The quotient algebra L / I  is spanned by 21, 
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22 and 23 (where 2i is the image of xi in L/I). These elements mult iply as 
follows: 

[Xl,  :~2] - -  2~1, [xl, x3] = -22 ,  [22, X3] - -  2:~3. 

By comparing with Example  1.3.6 we see L/I  ~ s [ 2 ( F ) ,  which is semisimple 
(Example 4.2.3). Hence SR(L) = I.  We t ry  to find a Levi subalgebra of L. 
A complement  to SR(L) is spanned by xl,x2, x3. Hence a Levi subalgebra 
is spanned by yl, y2, Y3, where Yi = xi + ri for certain ri C SR(L),  i.e., 

yl - x l + OLX4 + ~ X 5  

Y2 -- x2 + ")'x4 -~- 5X5 
Y3 -- x3 + ex4 ~-fix5. 

We want to determine the unknowns a , . . . ,  ~ such tha t  yl,  y2,Y3 span a 
subalgebra of L isomorphic to L/SR(L). This is satisfied if 

[Yl, Y2] = 2yl, [Yl, Y3] = -Y2, [Y2, Y3] = 2y3. 

The  first of these requirements is equivalent to 

2xl - (3 + c~)x4 + (V + fl)x5 = 2Xl + 2c~x4 + 2/~x5, 

which boils down to the equations a = - 1  and ~ = 3'. The  second require- 
ment is equivalent to 

- -X2 + s --  ]~X4 - -  - -X2 --  ~X4  --  5X5,  

i.e., 6 = - e  and V = ~- In the same way it can be seen tha t  the last re- 
quirement is equivalent to the equations ~ = 0 and 5 = - e .  These equations 
have a 2-parameter  family of solutions given by a = - 1 ,  ~ /=  0 and V = 
and e = - 6 .  

In par t icular  we see tha t  a Levi subalgebra in general is not unique. 

From Example  4.7.3 we can easily distill an algori thm for comput ing a 
Levi subalgebra in the case where SR(L) is Abelian. Later,  in Section 4.13, 
we will generalize such a procedure to an algori thm for the general case. 

4.8 E x i s t e n c e  of  a Car tan  s u b a l g e b r a  

Let L be a Lie algebra with a non-degenerate Killing form. In Section 4.9 we 
will use the pr imary  decomposit ion of L with respect to a Car tan  subalgebra 
H of L to obtain information about  the s t ructure  of L. However, if L is 
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defined over a small finite field (of size less than dimL),  then it is not clear 
whether or not L has a Cartan subalgebra. In this section we prove that  L is 
restricted, thereby ensuring that  L has a Cartan subalgebra (see Corollary 
3.2.10). From Section 1.13 we recall that a Lie algebra of characteristic 
p > 0 is said to be restricted if (adx)P is an inner derivation for all x C L. 

Proposition 4.8.1 Let L be a Lie algebra over a field of characteristic 
p > O. Suppose that the Killing form of L is non-degenerate. Then L is 
restricted. 

P r o o f .  Let x C L; then (adx) p is a derivation of L (see Section 1.13). As 
all derivations of L are inner (Proposition 4.5.2), we have that  (adx) p --- ady 
for some y E L. But this means that L is restricted. [::] 

C o r o l l a r y  4.8.2 Let L be a Lie algebra with a non-degenerate Killing form. 
Then L has a Caftan subalgebra. 

Proo f .  L is restricted (Proposition 4.8.1), hence L has a Cartan subalgebra 
(Corollary 3.2.10). O 

4 .9  F a c t s  o n  r o o t s  

If L is a Lie algebra with a non-degenerate Killing form then by Corollary 
4.8.2, L has a Cartan subalgebra. In this section L will be a Lie algebra over 
the field F with a non-degenerate Killing form. Throughout we assume that  
F is perfect. Furthermore we assume that L has a split Cartan subalgebra 
H. 

From Section 3.3 we recall that  there are functions ai : H --+ F for 
1 < i < s s u c h t h a t  

L = H �9 La 1 ~ - . "  �9 Las, 

where La~ = {x E L I for a l l h E H t h e r e i s a k > 0 s u c h t h a t  ( a d h -  
ai(h))k(x)  = 0}. This decomposition is called the root space decomposi- 
tion; the functions a/ : H --~ F are roots and the subspaces La~ are root 
spaces. 

In this section we collect a number of facts on roots and root spaces. 
These will be used in Sections 4.11 and 4.12, where we describe certain 
algorithms operating on Lie algebras with a non-degenerate Killing form. 
Moreover, the results of this section will be of vital importance for the 
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classification of semisimple Lie algebras of characterist ic 0, under taken  in 
Chapter  5. To give the flavour of the results we star t  with an example. 

E x a m p l e  4.9.1 We consider the Lie algebra L = os(Q) (see Example  
1.2.4). This Lie algebra has non-degenerate Killing form (this will follow 
from Proposi t ion 5.12.1). Now L is spanned by the elements Al l ,  A22, A12, 
A21, B12, C12, pl ,p2,  ql, q2 (notat ion as in Example  1.2.4). The  multiplica- 
tion table of L relative to this basis is shown in Table 4.2. 

A l l  

A2e 
Ale 
A21 
B12 
C12 
Pl 
P2 
ql 
q2 

All A2e Ale A21 Ble Cle pl P2 ql q2 
0 0 

0 
A12 -A21 B12 -C12 -pl  0 ql 0 

-A12 A21 B12 -C12 0 -p2 0 q2 
0 A11 - A2~ 0 0 -pc 0 0 ql 
�9 0 0 0 0 -pl  qe 0 

0 -Al l  - Ae~ -q2 ql 0 0 
�9 0 0 0 -p2 pl 
�9 �9 0 - C l ~  All A21 

�9 �9 �9 0 Ale Aee 
�9 �9 �9 0 -Ble 
. . . . . . .  

Table 4.2: Mult ipl icat ion table of L - 05(Q). 

A Car tan  subalgebra is found by applying the algori thm CartanSub- 
algebraBigField. First  x = All  is a non-nilpotent element of L. The  
subalgebra Lo(adx) is spanned by All,A22,p2, q2. This subalgebra is not 
nilpotent,  and y = A22 is a non-nilpotent element of Lo(adx).  If we set 
z = x + 2 ( y -  x) = - x  + 2y, then we see that  Lo(adz) is spanned by 
Al l ,  A22. From Table 4.2 we infer that  Lo(adz) is ni lpotent  and hence it is 
a Car tan  subalgebra. 

Let H = Lo(adz) be the Car tan  subalgebra found above. Then  H is 
Abelian and the two basis elements act diagonally on L. It follows tha t  the 
root spaces are the common eigenspaces of adAl l  and adA22. It is seen tha t  
every basis element other than  All  and A22 spans a root space and hence 
the root spaces are l-dimensional.  Let h E H,  and let a be a root. Then  
a(h) is the eigenvalue of adh on the root space corresponding to a.  Hence 
a : H -+ Q is a linear function. So the roots are elements of the dual space 
H* = {A : H --+ Q [  A is linear}. If we represent a , k  c H* by a v e c t o r  
(A(All),  A(A22)), then the roots of L relative to H are seen to be 

( 1 , - 1 ) ,  ( - 1 , 1 ) ,  (1,1), ( - 1 , - 1 ) ,  ( - 1 , 0 ) ,  ( 0 , - 1 ) ,  (1,0), (0,1). 

In par t icular  we see tha t  the set of roots spans H* and if a is a root, then 
so i s - a .  
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Let ~ = { a l , . . .  , C~s} be the set of roots. The zero function is not said 
to be a root, but the space Lo(H) = H occurs in the root space decompo- 
sition, and therefore it is often convenient to include the zero function in 
the arguments. For this reason we set ~0 = ~ U {0} (so L0 = H).  The 
first fact is an echo of Proposition 3.3.1; we repeat it here because it is of 
fundamental importance. 

R o o t  fact  1 Let a , ~  E g2 ~ and let x E La and y E L B. Then [x,y] E La+B 
if ~ + t3 E ~o, otherwise Ix, y] - O. 

R o o t  fact  2 Let a, 13 E (b ~ be such that ~ ~ -c~. Then t~L(La, L B) = O. 

Proof .  First suppose that ~ - 0. Then we have to prove that t~L(La, H)  = 
0. For this choose arbitrary xa E La and h E H. Since a :fi 0 there is 
a g E H such that a(g) r 0. Since a(g) is the single eigenvalue of the 
restriction of adg to La, we have that this restriction is a nonsingular linear 
map. Hence the same holds for (adg) k for k > 0. It follows that for any 
k > 1, there is a Yk E L~ such that xa = (adg)kyk. Now we apply Lemma 
4.1.1 k times to find 

aL(Xa, h) = aL((adg)kyk, h) = (--1)kaL(Yk, (adg)kh). 

But since H is nilpotent, this last element is 0 for k large enough. 
Now we assume that ~ ~ 0 and choose x B E L B. By the first part of 

the proof we may assume that c~ ~ 0. Let g E H be such that c~(g) ~= 0. 
As seen above there is a yl E L~ such that xa = [g, yl]. Hence, by Lemma 
4.1.1, 

We have a + ~ ~ 0 and if a +/3 E ~0 then [Yl, xB] E La+B, so that by the 
first part of the proof nL(g, [Yl, xB]) = 0. On the other hand, if a + fl ~ ~0, 
then [Yl, xB] - 0 by Root fact 1, and we reach the same conclusion. [:] 

R o o t  fact  3 Let a E r and let xa be a non-zero element of La. Then there 
is a x_a  E L - a  such that ~L (Xol, X-a) ~ O. 

Proof .  Suppose that t~L(Xa, y) = 0 for all y E L_a. Then by Root fact 2, 
t~L(Xa, L) - 0 contradicting the non-degeneracy of ~L- [:] 

R o o t  fact  4 The restriction of ~L to H is non-degenerate. 
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P r o o f .  Let h E H and suppose that  nL(h,g)  -- 0 for all g E H. By Root 
fact 2 we have that  nL(h, La) - 0 for all c~ C ~. From this it follows that  
aL(h, L) - O .  And because aL is non-degenerate we must have h -  0. [:1 

Root  fact  5 I r a  c ~,  then also - ~  C ~. 

P r o o f .  Suppose - a  ~ ~. Then by Root fact 2 we infer that  gL(La,  Lfl) - 0 
for all/3 E ~0. Hence aL(La,  L) - 0 contradicting the non-degeneracy of 
~L-  [2] 

L e m m a  4.9.2 Let V be a f inite-dimensional vector space and let K C 9[(V) 
be a commutative linear Lie algebra. Suppose that K is split. Then there is 
a basis of V relative to which the matrices of all elements of K are all in 
upper triangular form. 

P r o o f .  The proof is completely analogous to the proof of Lie's theorem 
(Theorem 2.4.4). Here we don't  need the ground field to be of characteris- 
tic 0 in order to prove a statement analogous to Proposition 2.4.2. [:1 

Root  fact  6 H is commutative (i.e., [H, H ] -  0). 

P r o o f .  Since H is nilpotent, there is an integer c > 0 such that  H c+l - 0 
w h i l e H  c % 0 .  Supposec>__ 2 a n d c h o o s e a n o n - z e r o h C  H c. Let g E H, 
then [h, g] C H c+1 - O. Hence [adh, adg] - 0 and adh, adg span a com- 
mutative and split linear Lie algebra. Let c~ E ~0 and set V - La. Then 
by Lemma 4.9.2, there is a basis of V relative to which advh  and advg 
both have upper triangular matrices (with c~(h), c~(g) on the respective di- 
agonals). So T r ( a d v h .  advg) - (dim V)t~(h)t~(g). But h C H c implies 
h E [H,H] so that  Tr(advh) - 0. But this means that  (dim V)c~(h) = 0, 
and hence T r ( a d v h .  advg) - 0. And because L is the direct sum of the 
root spaces La for c~ E ~0 we infer that Tr(adh �9 adg) = 0. Since this holds 
for any g E H, we see that  the restriction of t~L to H is degenerate, contra- 
dicting Root fact 4. D 

Now let c~ C (I) and let La be the corresponding root space. Then by 
Lemma 4.9.2 together with Root fact 6, there is a basis of La such that  for 
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h C H the matrix of adL~ h takes the form 

adL~ h - ".. 

a(h) 

(4.8) 

Let h, g C H, then by (4.8) we have 

~L(h, g) = Tr(adLh �9 adLg) = E (dimLa)a(h)a(g) .  
c~CO 

(4.9) 

R o o t  fact  7 If  h G H is such that a(h) = 0 for all a C ~, then h = O. 

Proof .  If h C H satisfies the hypothesis, then nL(h,g) ---- 0 for all g C H, 
by (4.9). Hence by Root fact 4, h = 0. [:] 

R o o t  fact  8 Let h C H, then adLh is a semisimple linear transformation. 

Proof .  By Proposition 4.6.2 there are unique hs, hn C L such that h = 
hs + hn and adLhs is semisimple and adLhn is nilpotent. (Here we use the 
assumption that the ground field is perfect.) Also, since adh = adhs + adhu 
is the Jordan decomposition of adh we have that adhs and adhn are poly- 
nomials in adh (Proposition A.2.6). Hence adhs(H) C H so that  hs E 
NL(H)  = H (the last equality is Lemma 3.2.2), and similarly hn E H. But 
because adhn is nilpotent, c~(hn) = 0 for all a C (I). Now Root fact 7 implies 
hn = O. [:] 

R o o t  fact  9 Let r C ~o and xa E La, then [h, xa] = a(h)xa for all h e H. 

Proof .  Let h C H, and let X be an indeterminate. Since adLh is semisimple 
(Root fact 8) we have that the minimum polynomial of adL~ h is X - a ( h ) .  
So on La the endomorphism adh acts as a(h) times the identity. [::] 

By H* we denote the dual space of H, i.e., 

H* - {r  H --+ F I e  is linear}. 

The space H* has the same dimension as H. Furthermore, by Root fact 9 
we see that c~(hl + h2) = c~(hl) + c~(h2) and c~(Ah) = Aa(h) for c~ C �9 and 
hl,h2, h C H and A C F. It follows that the roots are elements of H*. By 
the next fact they even span the space H*. 



4.9 Facts on roots 113 

R o o t  fact  10 There are dim H linearly independent roots. 

Proof .  Suppose that the space spanned by the roots is of strictly smaller 
dimension than H. This implies that there is a non-zero element h E H 
such that a(h) - 0 for all a E ~. Indeed, let { h i , . . .  ,hi} be a basis of 
H, and let { a l , . . .  , C~r} be a basis of the subspace of H* spanned by the 
roots. Set h = ~ i  Aihi, where the Ai are unknown scalars that are to be 
determined. Then aj(h) = 0 is equivalent to :~-~ aj(hi)A~ = 0. Collecting 
these equations for 1 _< j _< r together we get an equation system for the ),i, 
of rank r < dim H. Hence a non-zero solution can be found. This however 
contradicts Root fact 7. [::] 

The non-degeneracy of t~ L allows us to identify the spaces H* and H. 
Let a C H* then we define a corresponding element ha C H by the equation 

nL(h, ha) - a(h) for all h e H. (4.10) 

The fact that nL is non-degenerate ensures the existence and uniqueness of 
ha (see Lemma 4.5.1). So the map a ~ ha is a bijective linear map. 

E x a m p l e  4.9.3 Let L be the Lie algebra of Example 4.9.1. Set hi - All 
and h2 = A22. Then hi, h2 span a Cartan subalgebra H of L. Let a be a 
root of L relative to H. We want to calculate ha. For this set ha - ahl +bh2, 
where a, b E Q are scalars to be determined. Now (4.10) is equivalent to 
nL(hi, ha) = (~(hi) for 1 < i < 2. Hence a, b must satisfy the linear equations 

~L(hl ,hl )a  + ~ L ( h l , h 2 ) b -  a(hl )  

~n(h2, hl)a + t~L(h2, h2)b = o~(h2). 

Since hi and h2 act diagonally, t~L(hi, hj) is easily read off from the mul- 
tiplication table (Table 4.2). We have ~L(hl ,hl)  - ~L(h2, h2) - 6 and 
~L(hl,h2) - nL(h2, hl) = 0. Therefore, a -  a (h l ) / 6  and b -  c~(h2)/6. 

R o o t  fact  11 Let xa C La and x_a E L_a. Then we have [xa, x_a] - 

Proof .  Let h C H; using Lemma 4.1.1 and Root fact 9 we calculate 

nL([Xa, X-a],h) = ~L(X,, Ix_,,  hi) = a(h)~L(X, ,X-a) ,  

and using (4.10), 

h )  = h )  - 

Now the non-degeneracy of ~ L  on H (Root fact 4) gives the desired result. O 
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E x a m p l e  4.9.4 Again we let L be the Lie algebra from Example 4.9.1. 
Let a be the root corresponding to the vector (1 , -1 )  (i.e., a (Al l )  = 1 and 
a(A22) = -1) .  Then a is a root of L and A12 spans the corresponding 
root space. Furthermore A21 spans the root space corresponding to - a .  By 
Example 4.9.3 we see that 

1A 1 
ha - ~ 11 - ~A22. 

Also [A12, A21] = All -A22 .  Hence by Root fact 11, t~L(A12, A21) = 6, a 
fact which may be verified by direct calculation. 

The map a ~-+ ha gives rise to a bilinear form ( , ) in H* defined by 
(a, p) = nL(h~, hp). We have that ( , )  is a non-degenerate symmetric bilin- 
ear form in H* (this follows immediately from the corresponding properties 
of nL). We note that (a ,a)  = nL(ha, ha) = a(ha); this fact will be used 
frequently. 

E x a m p l e  4.9.5 We consider the Lie algebra L from Example 4.9.1. As in 
Example 4.9.3 we set hi = All and h2 -- A22. Using Example 4.9.3 it is 
easy to calculate (a, 13) for roots a, 13 of L. For instance let a = (1, 1) and 

= ( - 1 , - 1 ) ,  then 

1 1 1 i h 1 
(o~,~) -- ~L(ha, h~) =- t~L(-~hl + -~h2,--~hl - -~ 2) - - ~  

R o o t  fact  12 Let a C �9 be such that (a ,a)  ~ O. Set 

2ha 
h =  

and choose a non-zero x C La. Then there is a y E L - a  such that 

[h, = 2x,  [h, y] = - 2 y ,  y] = h, 

(i. e., {x, y, h} spans a subalgebra of L isomorphic to s[2(F)). 

P roof .  By Root fact 3 there is a y C L_a such that t~L(X , y) ~ O. After 
modifying y by a scalar we may assume that 

2 
y)  = 

Then by Root fact 11 it follows that Ix, y] = h. 
relations follow from a(h) = 2. 

The other two product 
v7 
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Now we prove two facts for the case where the field of definition is of 
characteristic 0. The statements also hold over fields of positive character- 
istic (not equal to 2, 3); but the proofs are considerably longer. Therefore 
we postpone the proofs for the other characteristics until Section 4.10. 

R o o t  fact  13 Assume that the ground field F is of characteristic O. Then 
( a , a )  ~- 0 for a e ~. 

P r o o f .  Let xa be a non-zero element of La. By Root fact 3 there is an 
x - a  E L - a  such that  t~.L(Xa, X-a) ~ O. After modifying x - a  by a scalar we 
may assume that  a i  (xa, x - a )  = 1. 

Now suppose that  ( a , a )  = a(ha)  = 0, then [ha, xa] = [ha,x-a] = O. 
Furthermore, by Root fact 11, [xa, x-a] = ha so that  { h a , x a , x - a }  spans a 
solvable subalgebra K of L. We consider the representation a d / :  K -+ 9[(L) 
of K.  By Lemma 2.6.2 the elements of adL[K, K] are nilpotent, in particular 
adLha is nilpotent. By Root fact 8 we see that  adLha is semisimple. The 
conclusion is that  ha = 0, which implies a = 0. So from the assumption 
(a, a) = 0 we have reached a contradiction. [:] 

R o o t  fact  14 Suppose that the ground field F is of characteristic O. Let 
a C ~, then dim La = 1 and the only integral multiples of a which are roots 
are a and - a .  

P r o o f .  For a E H* we set Lz - 0 if a ~ (I) ~ Let N be the subspace of L 
spanned by all root spaces of the form L-ka  for k >_ 1, i.e., 

N - ~]~L-ka.  
k>l 

Then by Root fact 1 we see that  N is closed under multiplication, so that  N 
is a subalgebra of L. Let xa be a non-zero element of La and let K C L be 
the subspace spanned by xa, ha together with N. By Root fact 9 it is seen 
that  adha(xa)  = a(ha)xa and i f - k a  is a root, adha(x-ka)  = - k a ( h a ) x - k a  
for X-ka E L-ka.  Hence adha maps K into itself and if we set nz = dim LZ, 
then 

Tr(adKha) = a(ha)(1 - n - a  - 2n-2a . . . .  ). (4.11) 

Choose x_a E L_a such that  t~ L (Xa, X-a) ~ 0 (such x_a exists by Root fact 
3); and after modifying x - a  by a scalar we may assume that  ~L(Xa, x - a )  = 
1. By Root fact 1 we have that  K is a subalgebra. In particular K 
is invariant under adKxa and adKx-a .  Also by Root fact 11 we have 
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that  [xa ,x-a ]  - ha. So adKha = [adgxa,  a d g x - a ]  and it is seen that  
T r ( a d g h a )  = 0. By Root fact 13 we have that  c~(h~) - (a, c~) # 0. So from 
(4.11) we infer that  1 - n_a  - 2n-2a . . . .  = 0. But this can only happen 
if n_a  - 1 and n-2a  - rt-3a - . . .  -- O. So dim L_a - 1 and -2c~,-3c~,---  
are not roots. We can replace c~ by -c~ in the above argument  and obtain 
dim L~ - 1 and 2c~, 3c~,... are not roots. [] 

4 . 1 0  S o m e  p r o o f s  f o r  m o d u l a r  f i e l d s  

In this section we prove that  the statements of Root facts 13 and 14 also 
hold over fields of positive characteristic p # 2, 3. 

Throughout  this section we assume that  F is a perfect field of charac- 
teristic p > 0 and p # 2, 3. Furthermore,  L is a Lie algebra over F with a 
non-degenerate Killing form and H is a split Car tan  subalgebra of L. We 

recall that  ~ is the set of roots of L (with respect to H).  
Let c~ C �9 be a non-zero root such that  ((~, (~) ~- 0. Then by Root  fact 

12, there are x e La, y e L_a  and h e H such that  [x, y] = h, [h, x] = 2x, 
[h, y] = - 2 y .  Let K be the subalgebra of L spanned by x, y, h. Then  the 
adjoint representation of L induces a representation adL : K --+ ~t[(L) of K.  
Representations of these kind will be one of our main tools in this section. 

P r o p o s i t i o n  4 .10.1  Let p"  K ~ ~[(V) be a f in i te-dimensional  represen- 
tation of K .  Suppose that there is a basis of V relative to which p(h) has a 
diagonal matrix. Suppose fur ther  that there is an eigenvector vo of p(h) such 
that p(x)vo - O. Set  vi - p(y)~vo for  i >_ 0 and let A E F be the eigenvalue 
corresponding to vo. Then p(h)vi  = (% - 2i)vi and p(x)v i  - i ( A -  i + 1)vi-1 

f o r i  >O. 

P r o o f .  Let v~ be an eigenvector of p(h) with eigenvalue #. Then  we 
calculate p(h)p(y)v~ = p(y)p(h)v~ +p([h, y])v~ = ( # - 2 ) p ( y ) v ~ .  Hence p(v~) 
is an eigenvector of p(h) with eigenvalue # - 2. The first equality follows 

from this. For the second equality we use induction on i. Setting v-1 = 0, 
it certainly holds for i - 0; so suppose i > 0 and p(x)vi  = i(A - i + 1)vi_l. 
Then 

p(x)vi+l  = p(x)p(y)v i  - p (y )p(x)v i  + p([x, y])vi 

= - i + + 

= - i  + 1) + - 2i) , 

-- (i -4- i)()~- i)vi. 
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So by induct ion we have the second equality. 

P r o p o s i t i o n  4 .10 .2  Let a C �9 be a non-zero root. I f  a (ha)  r O, then not 
all integral multiples of a are roots. 

P r o o f .  Set h = a ( ~ ) h a  and choose an a rb i t ra ry  non-zero x C La.  Then  

by Root  fact 12, there is an y C L - a  such tha t  

[h, x] - 2x, [h, y] - - 2 y ,  [x, y] - h. 

Hence the subspace K spanned by h, x, y is a subalgebra  of L isomorphic 

to 512(F). 
Now assume tha t  a ,  2 a , . . .  , ( p -  1)a are all roots. This  is equivalent to 

assuming that ,  - a , - 2 a , . . .  , - ( p -  1)a are all roots. Let 2 < k < p -  2 

and suppose tha t  there is a non-zero e E L - k a  such tha t  Ix, e] - 0. Then  
since y E L - k a  we have ( a d y ) p - k - l e  E La and by Root  fact 11 we see tha t  
(ady)p-ke  -- #ha for a # C F .  Now using Lemma 4.1.1, 

# a ( h a )  - #nL(ha ,  ha) - nL((ady)P-ke ,  ha) - •  (ady)P-kha)  - O, 

(the last equali ty follows from the fact tha t  (ady)2ha - 0 and p -  k > 2). 
Since a(ha)  r 0 by hypothesis ,  we have tha t  ( a d y ) p - k e -  O. 

Let u E {0, 1 , . . -  , p - k - l }  be the smallest integer such tha t  (ady)U+le - 

0. Set v0 - e and for i >_ 0, vi - (ady)ivo . Then  Vu+l - 0 and vi 7 ~ 0 for 
0 <_ i < u. Fur thermore ,  since adx(v0) = 0 we are in the s i tuat ion of 
Propos i t ion  4.10.1 with X -  - 2 k .  By Proposi t ion  4.10.1 we now have 

0 - adx(vu+l)  - (u + 1 ) ( - 2 k  - (u + 1) + 1)Vu = (u + 1 ) ( - 2 k  - U)Vu. 

And since u + 1 r 0 we see tha t  2k ~_ - u  (mod p). 
The  conclusion is tha t  if there are 0 7 ~ x E La and 0 7~ e C L - k a  for 

a k C {2 , . . .  , p -  2}, such tha t  Ix, e] = 0, then  it follows tha t  2k - - u  
(mod p) for some u e { 0 , . . . , p -  k - 1}. 

Now set fl = 2a,  then also ~(hz)  7~ 0 and by assumpt ion  all integral 
multiples of fl are roots. Therefore the above conclusion is also valid for 

p+l  ft. Let m - 2 , then  m ~ -  a. So we can tu rn  things around:  our x 
above lies in Lm~ and if in the above we take k = 2, then  the element e 
such tha t  Ix, e] = 0 lies in L_Z. So the conclusion in this case (with m 
instead of k) reads p + 1 - - t  (mod p) with t E {0, 1 .. p-1 , " ,  2 }" This  is 
clearly not possible and from the assumpt ion  tha t  there is an e C L-2a  
such tha t  [x, e] = 0 we have reached a contradict ion.  As a consequence 
adx : L_2a ~ L - a  is injective. 
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From the injectivity of adx on L - c a  it follows tha t  dim L-2a  < dim L_a  

and applying this repeatedly we get dim L_2~a < dim L_2~-la < - "  < 
dim L_2a < dim L_a .  Now take j - p -  1, then we see tha t  d im L_2a = 

dim L_a  and adx �9 L-2a  -+ L_a  is a bijection. So y - [x, e] for an e C L-2a .  
Now finally 

0 # y )  - - - 0 .  

We have reached a contradict ion and c~, 2 e , . . .  , ( p -  1)c~ are not all roots. El 

L e m m a  4 .10 .3  Let e E �9 be such that e (ha )  ~ O. Then 2e is not a root. 

P r o o f .  Suppose tha t  2e  E ~. Let r _ 2 be an integer such tha t  e ,  2 e , . . .  , r e  
are roots, but  (r + 1)e is not a root (such r exists by Proposi t ion 4.10.2). 

Then since ( p -  1)e = -c~ is a root, we must  have r _ p -  3. Let K be the 
subalgebra spanned by h, x, y where h, x, y are as in the proof of Proposi t ion 
4.10.2. Now also - c ~ , - 2 e , . . .  , - r e  are roots, but  - ( r  + 1)a is not. Set 

V - K @ L - a  �9 L -2a  0 " "  L - r a  

then by Root facts 1 and 11 we have tha t  V is stable under  adK.  Let 

0 # e C L-2a  and suppose tha t  [x, e] - 0. Set w0 - e and wi - (ady)ie. We 
are now in the s i tuat ion of Proposi t ion 4.10.1 where A - - 4 .  There  is an 

s > 0 such tha t  Ws # 0 and Ws+l = 0. By Proposi t ion 4.10.1 we calculate 
0 - adx(ws+l)  = (s + 1 ) ( - 4 -  S)Ws. Since s < r -  2 we have tha t  s + 1 ~ 0. 
Hence s = p -  4 and Ws E L_(p_2) a. But this last space does not lie in V 

and we have a contradiction. So Ix, e] # 0. 

Now set v0 - [x,e]. Then v0 e n _ a  and ~L(x,  vo) = ~L (X, [X, e]) -- 
t~L ([X, X], e) - -  O .  So by Root fact 11 we see that  [x, v0] = 0. Set vi = 
(ady)iv0 and again we are in the si tuat ion of Proposi t ion 4.10.1 where this 

t ime A -  - 2 .  There is an integer s < r such that  Vs ~ 0 and Vs+l - O. 
By Proposi t ion 4.10.1 we infer tha t  0 = adx(Vs+l) - (s + 1 ) ( - 2  - S)Vs. It 
follows tha t  s - p -  2 which is not possible in view of r < p -  3. So again 
we have a contradict ion and 2e  is not a root. El 

R o o t  f ac t  15 For a E �9 we have that (e, e)  = e (ha )  ~ 0. 

P r o o f .  Suppose tha t  e (ha )  = 0. Since ha # 0, by Root fact 7 we see tha t  
there is a ~ E �9 such tha t  ~(ha)  # 0. We claim t h a t / ~  + k e  are roots for 
k > 0 .  
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It is enough to prove tha t  fl + a is a root, for then we can continue with 
/3 + a in place of/3 (since also (/3 + a)(ha) ~ 0). Suppose t h a t / 3 +  a is not a 
root. Choose non-zero xa E La and x - a  E L - a  such tha t  ~L(Xa,X-a) = 1 
(so tha t  [xa, x -a ]  : ha by Root fact 11). Fur thermore  choose a non-zero 
x~ E L B. Then  by Root fact 1, [xa ,x~]-  O. Set vi = ( adx -a ) ix~  for i _> 0. 
Then  adxa(vi)  = i~(ha)vi-1 as is easily proved by induction. Then  because 
Vp-1 E Lz+a = 0 there is an integer k 6 {0 , . . .  , p -  2} such tha t  vk ~ 0 
while v~+~ = 0. Hence 

0 = adxa(vk+l) = (k + 1)fl(ha)vk. 

From which it follows tha t  k + 1 = 0, which is a contradiction. It follows 
tha t  (~ + /3  is a root. 

Now we prove tha t /3 (hz )  ~ 0. Suppose on the contrary tha t /3 (hz )  = 0. 
Then  

(/3 + c~)(hz+a) = (fl + a ) (hz  + ha) = 2~L(ha, hz) = 2/3(ha) ~ 0, 

and by Lemma 4.10.3, 2(a  + ~) is not a root. Now by the above, fl + 2a 
is a root. And (fl + 2a)(hg)  : 2~L(ha, hz) # 0; so by the first par t  of the 
proof (fl + 2a) + fl is a root and we have obtained a contradiction. 

Let V = a + 2/3, then 7 is not a root. Indeed, suppose tha t  7 is a root. 
We note tha t  V(ha) ~ 0 and hence by the first par t  of the proof V -  a = 2fl 
is a root. But this contradicts Lemma 4.10.3, since/3(hz) ~ 0. In the same 
way it can be seen tha t  a -  2~ is not a root. 

Let x C LZ, y C L_ 9 and h = ahz be chosen as in Root fact 12 and let 
K be the subalgebra spanned by these elements. Set 

V : La-z  �9 La (9 La+z 

then by the above V is stable under adLK. Let 0 ~ vo E La+z. Then  
v0 is an eigenvector of adh with eigenvalue (a + fl)(h) = a(h) + 2. Set 
vl = ady(v0) and v2 = (ady)2(v0). Then vl, v2 are eigenvectors of adh with 
eigenvalues a(h) and a ( h ) -  2 respectively. Now the assumptions Vl = 0 and 
v2 = 0 both  lead to contradictions. (The first assumption implies a(h) = -2  
and in the second case we have a(h) = - 1 .  In both  cases we consider a 
non-zero vector w0 C Lc~-~ and the K-module  generated by it; and in both  
cases we obtain a contradiction.) Now v3 = (ady)3v0 = 0 and Proposi t ion 
4.10.1 implies tha t  0 = adx(v3) = 3a(h)v2. Since by assumption 3 # 0 we 
must have c~(h) = 0, but  c~(h) = ao~(hz) = a~L(ha, hz) = a~(ha) ~ O. It 
follows tha t  c~(ha) ~ 0. o 
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R o o t  f ac t  16 Let  c~ C g2. T h e n  dim La 
of  c~ which are roots are -t-~. 

- 1 and the only integral mul t ip les  

P r o o f .  Since c~(ha) # 0 (Root fact 15), we can choose h , x , y  as in Root 
fact 12. Suppose tha t  dim La > 1. This implies tha t  there is a non-zero 
e C La such tha t  ~L(e,  y) = 0; so that  [e, y] = 0 (Root fact 11). a lso,  since 
2c~ is not a root by Lemma 4.10.3 we have tha t  [x,e] = 0. Now by the 
Jacobi identity, 

k, hi - k, y]] - - [ z ,  [y, q] - [y, - o. 

But this is a contradict ion since [h, e] = c~(h)e = 2e. 
Suppose tha t  kc~ is a root, where k C {2, 3 , - . -  , p -  1}. Also, since kc~ 

is a root if and only i f - k c ~  is a root (Root fact 5), we may assume that  
k C {2 3 .. p-1 , , " , 2 }" Furthermore,  by Lemma 4.10.3 we have tha t  2c~ is not 

a root So k # 2 Set/3 - P-lc~; then if ~ is a root, -c~ - 2/3 is not (Lemma 
�9 " 2 

4.10.3) But - a  is a root so tha t  /3 is not a root and k ~= p-1 Now let k 
�9 2 " 

be the smallest integer > 1 such that  kc~ is a root. Then  

p - 1  
2 < k <  

2 

Let r _> 0 be an integer such tha t  kc~, (k + 1)c~, . . . ,  (k + r)c~ are roots, but  
(k + r + 1)c~ is not a root. Then  

p - 1  
k + r <  

2 

Set V - Lka @ L(k+l)a 0 . . .  (~ L(k+r)a. Let K be the subalgebra of L 
spanned by h , x , y ;  then V is stable under adK.  Let 0 7 s vo E L(k+r)a 

and set vi = (ady)~v0 �9 Then we are once more in the si tuat ion of Propo- 
sition 4.10.1 with A - 2(k + r). Let s > 0 be the smallest integer such 
tha t  Vs ~ 0 and Vs+l - O. Then by Proposit ion 4.10.1 we calculate 
0 -- adx(Vs+l )  - ( s + l ) ( 2 k + 2 r - s ) V s .  Since s _ r, wesee tha t  s + l  # 0 and 
h e n c e 2 ( k + r ) - s  ( m o d p ) .  B u t 0 < 2 ( k + r )  < p - l a n d s _ < r <  ( p - l )  
so tha t  2(k + r) - s which is absurd in view of s ___ r. n 

4 . 1 1  S p l i t t i n g  a n d  d e c o m p o s i n g  e l e m e n t s  

Let L be a Lie algebra with a non-degenerate Killing form. In this section we 
consider the problem of computing the (collected) pr imary  decomposit ion 
of L relative to a Car tan  subalgebra H.  Throughout  we assume tha t  L is 
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defined over a perfect field F of characteristic p r 2, 3. We do not assume 
that H is split. 

The first algorithm for computing the primary decomposition that comes 
into mind is to pick an element h l C H and compute the primary decompo- 
sition of L relative to adhl. We can do this by factorizing the characteristic 
polynomial of adhl. Then for every irreducible factor fi we calculate the 
space Lo(fi(adhl)).  Now the spaces Lo(fi(adhl)) are the primary compo- 
nents of L relative to adhl (Lemma A.2.2). Then by Proposition 3.1.7 all 
components that we have obtained are invariant under adH. So we can 
continue and pick a second element h2 C H and decompose each primary 
component Lo(f~(adhl)) relative to adh2. Continuing like this we will find 
the primary decomposition of L relative to H. The problem however is to 
find a good stopping criterion: how can we ascertain that  the restrictions 
of all elements of H to a certain component have a minimum polynomial 
that is a power of an irreducible polynomial? Here we show that this can 
be achieved by looking at particular elements, namely splitting elements (if 
the ground field is big) and decomposing elements (if the ground field is 
small). If these elements have a minimum polynomial that is a power of an 
irreducible polynomial, then this will hold for all elements of H. 

Let h E H. Then all eigenvalues of the restriction of adh to H are 0 
(Root fact 6). Furthermore, since all root spaces are l-dimensional (Root 
facts 14, 16), we have that adh has no more than d i m L - d i m H +  1 different 
eigenvalues. The element h is called a splitting element if it has exactly that 
number of eigenvalues. Since adh is a semisimple linear transformation 
(Root fact 8) we have that adh has dim L -  dim H + 1 different eigenvalues 
if and only if the minimum polynomial of adh has degree dim L -  dim H + 1 
(Proposition A.2.4). Hence we have a good criterion for deciding whether or 
not an element h E H is a splitting element, without having to calculate the 
eigenvalues of adh (which might involve factorizing the minimum polynomial 
of adh over a big extension field of the ground field F).  

Let /~ be an extension field of F such that H splits over /~. Set L = 
L | We note that H can be viewed as a subset of L a n d / t  - H | is 
a Cartan subalgebra of L (Proposition 3.2.3). The Lie algebra L has a root 
space decomposition relative t o / t .  Let ~ be the set of roots of L relative 
t o / ~  and set ~0 = ~ U {0}. Let a C 0, then since H is a subset o f /~  we 
can restrict a to H and we get an F-linear function a"  H --+ F. 

The next lemma follows immediately from the definition of splitting 
element. 

L e m m a  4.11.1 We have that h E H is a splitting element if and only if 
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all elements c~(h) are different for c~ E r ~ 

P r o p o s i t i o n  4.11.2 Set N = d i m L -  d i m H  and m = N ( N  + 1)/2. Let 
{ h l , . . . , h t }  be a basis of H.  Let O < e < 1 and let ft be a subset o f f  of 
size at least m/e .  Let iX1,... ,)~l be random elements chosen uniformly and 
independently from f~. Then the probability that h = ~ )~ihi is a splitting 
element is at least 1 -  e. 

P r o o f .  
element 0 C (I)~ 
put 

Denote the elements of q) by ol1,... , Ct N .  By c~0 we denote the 
. Let X 1 , . . . ,  Xl be 1 indeterminates and for 0 _< i , j  _< N 

l 

f i j (X l , . . .  ,Xl) -- E(o l i  - ctj)(hk)Xk, 
k = l  

and set 

9 ( X l ' ' " ' X l ) - -  I I  f i j ( X l , . . . , X n ) .  
O<_i<j<_N 

Then g C [~[X1,. . .  ,Xn] is a polynomial of degree m. We claim that  
Aihi is not a splitting element if and only if g()~l, . . .  , )~l) - 0. Indeed, 

this last condition is the same as saying that there are 0 _< i < j _< N 
such that  f~j(A1, . . .  ,At) - O. But this is equivalent to c~(h) - cu(h),  
which by Lemma 4.11.1 is equivalent to h not being a splitting element. 
Now since degg - m, Corollary 1.5.2 implies that  the probability that  

g ( / ~ l , . . . ,  A I ) -  0 is less than m/lal _< D 

C o r o l l a r y  4.11.3 Let m be as in Proposition ~.11.2. I f  the size of F is 
strictly bigger than rn, then H contains splitting elements. 

P r o o f .  Choose 0 < e < 1 such that the size of F is at least m/e .  Then by 
Proposition 4.11.2 the probability that a randomly chosen element of H is 
a splitting element is not 0. Hence H contains splitting elements. D 

Proposition 4.11.2 yields a powerful randomized (Las Vegas type) algo- 
r i thm for finding a splitting element in H. 

A l g o r i t h m  Spl i t t ingElementRandom 
Input: a Lie algebra L defined over a perfect field F with a non-degenerate 

Killing form, a basis { h i , . . . ,  ht} of a Cartan subalgebra H of L and a 
subset ft of F of size at least N ( N  + 1), where N = dim L - dim H. 
Output: a splitting element of H. 
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Step 1 Select randomly and uniformly l elements ),1,... , %l from gt. 

Step 2 Compute the minimum polynomial of adLh, where h = Y~ Aihi; if it 
is of degree dim L -  dim H + 1 then return h, otherwise return to Step 
1. 

C o m m e n t s :  by Proposition 4.11.2 we see that the probability that h is 
a splitting element is at least �89 Hence we expect to find a splitting element 
in no more than two steps. 

We can also construct splitting elements by a deterministic method: 

Algorithm SplittingElementDeterministic 
Input: a Lie algebra L with non-degenerate Killing form, a Cartan subal- 

gebra H of L and a subset f~ of F of size at least m ( d i m H -  1) + 1, where 
m is as in Proposition 4.11.2. 
Output: a splitting element of H. 

Step 1 Let {h i , . . .  ,hl} be a basis of H. Denote the elements of gt by 
w l , . . .  ,wt. Set k := 1. 

i-1 for 1 <  i < / .  Step 2 Set )~i "-Wk _ _ 

Step 3 Compute the minimum polynomial of h = ~ )~ihi; if it is of degree 
dim L -  dim H + 1 then return h, otherwise set k := k + 1 and return 
to Step 2. 

C o m m e n t s :  Let g C /> IX1 , . . . ,  X1] be the polynomial in the proof of 
Proposition 4.11.2. Let Y be another indeterminate and substitute y i - 1  for 
X~ in g. This yields a polynomial in F[Y] of degree at most re(dim H -  1). 
Hence by trying at most m ( d i m H -  1) + 1 values for Y, we obtain a number 

such that g(1,~, . . .  ,~1-1) ~ 0. 
Now we turn our attention towards calculating the primary decomposi- 

tion of L relative to H. 

P r o p o s i t i o n  4.11.4 Let ho E H be a splitting element. Let X be an inde- 
terminate. Let 

L = Lo G L1 (~. . .  (~ Ls (4.12) 

be the primary decomposition of L relative to adh0. Let the primary com- 
ponent corresponding to the polynomial X be Lo. Then H = Lo and the 
decomposition (~.12) is the (collected) primary decomposition of L with re- 
spect to H.  
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Proof .  We note that H C L0 since H is nilpotent. Furthermore, Lemma 
4.11.1 implies that dimL0 = d imH,  and hence L0 = H. For h C H we 
have that adh is a semisimple linear transformation (Root fact 8). Hence 
saying that adh has a minimum polynomial that is a power of an irreducible 
polynomial is the same as saying that the minimum polynomial of adh is 
irreducible. Suppose that there is an h C H such that the restriction of adh 
to Lj has a reducible minimum polynomial f = f l f2 .  Then Lj = V1 @ 172 
where V1 = (Lj)o(f l (adh))  and V2 = ( i j )o(f2(adh)) .  Now by Proposition 
3.1.7, adh0 stabilizes both V1 and V2. Hence, since the minimum polynomial 
of the restriction of adh0 to Lj is irreducible, adv1 h0 and adv2h0 have the 
same minimum polynomial. So adh0 has an eigenvalue of multiplicity at 
least 2. But this contradicts Lemma 4.11.1. It is also clear that (4.12) is 
collected because for primary components Li ~ Lj we have that adLih0 and 
ad/~h0 have different minimum polynomials. [::1 

The conclusion is that in the case where F is a big field (of size at least 
N ( N  + 1), where N - dim L -  dim H) we have an algorithm for calculating 
the (collected) primary decomposition of L relative to H. 

Algorithm PrimaryDecom position BigField 
Input: a Lie algebra L with non-degenerate Killing form over a perfect field 

F of size at least N ( N  + 1) and a Cartan subalgebra H of L. 
Output: the (collected) primary decomposition of L relative to H. 

Step 1 Let 12 be a subset of F ofsize at least N ( N + I ) .  Calculate a splitting 
element h C H using the algorithm SplittingElementRandom. 

Step 2 Compute the irreducible factors f o , . . .  , fs of the minimum polyno- 
mial of adh. 

Step 3 For 0 < i ~ s compute the space Li = {x C L I f i (adh)x  - 0}. 
Return {Lo, . . . , Ls }. 

C o m m e n t :  In Step 1 it is of course also possible to use SplittingEIe- 
mentDeterministic, but then we must take a set ~ of a different size. 

Now we suppose that L is defined over a small finite field (i.e., so small 
that a splitting element is not guaranteed to exist). In this case we work 
with elements satisfying a weaker condition; they are called decomposing 
elements. 

Def in i t i on  4.11.5 Let V be a subspace of L stable under adH. Let Tv  be 
the associative algebra generated by 1 and adhlv for h C H. Let x C Tv 
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and let f be the minimum polynomial of x. Then x is called decomposing 
(on V) if f is reducible. And x is called good (with respect to V) if f is 
irreducible and deg f - dim Tv. 

We note that  if an element x C Tv is good, then it generates the whole 
algebra Tv. Also, since its minimum polynomial f is irreducible we see 
that  Tv is isomorphic to F(~), where ~ is a root of f .  Hence Tv is a field. 
Therefore every element of Tv has an irreducible minimum polynomial. 
Consequently, V is a primary component. On the basis of this we formulate 
an algorithm for finding the primary decomposition of L with respect to H. 

Algorithm PrimaryDecompositionSmallField 
Input: a Lie algebra L with non-degenerate Killing form, defined over a 

field F with q elements and a Cartan subalgebra H of L. 
Output: the (collected) primary decomposition of L with respect to H. 

Step 1 Set to -do ' -  {FittingOneComponent(L, H)} and primary-components:= 
{H}. 

Step 2 Let V be an element from to-do. Let Tv be the associative algebra 
over F generated by 1 and advH. 

Step 3 Let x be a random element from Tv and f the minimum polynomial 
of x. Let f l , ' " ,  fm be the irreducible factors of f .  Now there are 
three cases: 

Step 

Step 

Step 

3a In this case f is irreducible (i.e., m - 1), and deg(f)  - 
dim Tv. Then add V to primary-components and delete V from to- 
do. If at this point to-do is empty, then return primary-components. 
Otherwise (i.e., to-do is not empty) return to Step 2. 

3b Here f is irreducible, but deg(f)  < d imTv.  Then return to 
Step 3. 

3c Here f is reducible (i.e., m > 1). Then set I f / -  Vo(fi(x)) for 
1 <__ i _< m. Erase V from to-do; and add all ~ for 1 <_ i <_ m to 
to-do. Return to Step 2. 

Proposition 4.11.6 The algorithm PrimaryDecompositionSmailField termi- 
nates in a finite number of steps, and outputs the collected primary decom- 
position of L with respect to H. 

Proo f .  First we prove the correctness of the algorithm. At termination we 
have that  for every element V of the set primary-components there exists an 
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xv C Tv such that xv is good with respect to V. This implies that Tv is 
a field and every element of Tv has an irreducible minimum polynomial. 
Hence the minimum polynomial of adhly is irreducible for every h C H. So 
the decomposition returned by the algorithm is primary. We show that it is 
collected as well. Let V1, V2 be two primary components from the output. 
Suppose that for all elements h C H the minimum polynomials of adyl h 
and ady2h are equal. As seen above, TVl and Tv2 are fields. Now let h C H 
be such that adv~ h is not contained in any proper subfield of Tv~. Then 
adv~ h generates Tv~. As the minimum polynomial of adv2h is equal to the 
minimum polynomial of advl h, we see that adv2 h generates a subfield of Tv2 
isomorphic to TVl. By an analogous argument we have that Tvl contains a 
subfield isomorphic to Tv2. It follows that Tv~ and Tv2 are isomorphic fields; 
furthermore, they are both isomorphic to Tv, where V - V1 @ V2. So for 
every x C Tv the minimum polynomials of xlv ~ and x[v2 are equal. But this 
is not possible in view of Step 3c. It follows that there is an h E H such 
that the minimum polynomials of adv~ h and adv2h are different. 

To prove termination we must show that the random element x chosen 
in the algorithm is either decomposing or good with sufficiently high prob- 
ability. Let V be a subspace of L that is stable under H. Let Tv be the 
associative algebra generated by 1 and adhlv for h C H. By Root facts 6 
and 8 we have that Tv is a semisimple commutative associative algebra. So 
by Wedderburn's structure theorem (Theorem A.1.4), we have that Tv is 
the direct sum of ideals that are full matrix algebras over division algebras 
over F. But the commutativity of Tv implies that the matrix algebras con- 
sist of 1 x 1-matrices and the division algebras are field extensions of F. So 
we have 

T v  = g l  ~ . . .  e Fm 

where the Fi are finite extensions of the ground field F. 

If the minimum polynomial f of the randomly chosen element x is ir- 
reducible, then m - 1 and Tv = ]Fq,~. We estimate the probability that 
x is good. First of all, if n = 1 then all elements of Tv are good. Now 
suppose that n > 1. Let E be the subset of Tv consisting of all elements x 
of Tv that do not lie in a proper subfield of Tv. To every monic irreducible 
polynomial g of degree n over Fq corresponds a subset of n elements of E 
(namely the set of the roots of g). Also the sets corresponding to different 
monic irreducible polynomials do not intersect (because an element ~ C E 
has a unique minimum polynomial over Fq). Let Nq(n) be the number of 
monic irreducible polynomials of degree n over Fq. A well-known formula 
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reads 
i E # ( d ) q n / d  iq( ) - 

din 

where # "  N ~ {0, i l }  is the MSbius function (see for example [59], The- 
orem 3.25). Write n - a b  where b is the largest proper divisor of n. Then 
we use the fact that  #(r) >_ - 1  for all natural numbers r to estimate 

IE[ - rtNq(rt) - E #(d)qn/d 

din 
~ qn _ qb _ qb-1 . . . . .  q 

qb _ 1 
= qn  _ q 

q l "  

An element x E T v  is good if and only if x E E. And the probability that  
a randomly chosen element x C Tv lies in E is 

qb_ 1 1 1 -  1/ qb 1 
IEI  > (qn  _ q ) / q n  _ l _ > 1 -  �9 
qn  - q - 1 q n - b - 1  q --  1 --  q n - b - 1  ( q _ 1) 

And this is > 1 unless (n, q) - (2,2), but in that  case it can be checked 
! directly that  ~ > 2" 

Now let m > 1. We estimate the probability that  x is decomposing. 
First we have that  x = Xl + . . .  + X m  where xi C Fi are randomly and 
independently chosen elements. The minimum polynomial of x is the least 
common multiple of the minimum polynomials of the xi. So if x is n o t  

decomposing then all xi have the same minimum polynomial. It follows 
that  the subfields of the Fi generated by the xi are all isomorphic. Let this 
subfield be IFqn. We may suppose that all Fi are equal t o  Fan ; otherwise 
the probability that  x~ C Fan is less. Now we assume that  we have chosen 
an element xl C F1 with an irreducible minimum polynomial f of degree n. 
Because there are exactly n elements in F2 with minimum polynomial equal 
to f ,  we have that  the probability that a randomly chosen element x2 C F2 
also has minimum polynomial f is equal to 

n 1 
qn - 2 

It follows that  the probability that x is decomposing is _> 1/2. The conclu- 
sion is that  the probability that  a randomly chosen element is either good 
or decomposing is _> 1/2. Hence we expect to find such an element in at 
most two steps. [::] 
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4.12 D i r e c t  s u m  d e c o m p o s i t i o n  

Let L be a Lie algebra with a non-degenerate Killing form and a Cartan 
subalgebra H. By Proposition 4.3.6, L is a direct sum of simple ideals, 
L = J1 @ " "  @ Jr. In this section we use the primary decomposition of L 
with respect to H to find this direct sum decomposition. 

The next theorem states that  the primary decomposition of L with re- 
spect to H is compatible with the direct sum decomposition of L. 

T h e o r e m  4.12.1 Let L be a Lie algebra defined over a perfect field with a 
non-degenerate Killing form and Cartan subalgebra H and let 

L = H O L I G ' " O L s  

be the (collected) primary decomposition of L with respect to H.  Suppose 
that L decomposes as a direct sum of ideals, L = I1•I2. Then H = H1 @H2, 
where Hk is a Caftan subalgebra of Ik for k = 1, 2. Furthermore, every Li 
is contained in either I1 or I2. 

P r o o f .  By Proposition 1.15.1 there are two non-trivial orthogonal idempo- 
tents el, e2 commuting with adL such that el + e2 is the identity on L and 
Ik = ekL for k = 1,2. Hence 

H = (el + e2)H C e l H  G e2H. 

Let g E H, then as H is commutative (Root fact 6), (adh)el (g) = eladh(g) = 
0 for all h E H so elg E H = Lo(H).  Therefore we have that  el H C H and 
similarly e2H C H. So also e l H @ e 2 H  C H and hence H = e lH@e2H.  Set 
Hk = ekH for k = 1, 2; then H = H1 � 9  and Hk is a Cartan subalgebra 
of Ik for k = 1, 2. 

Let Li be a primary component, and let X be an indeterminate. We 
claim that  there is an element h E H1 U/-/2 such that  the restriction of 
adh to Li is nonsingular. Indeed, otherwise the minimum polynomial of the 
restriction of every element of a basis of H to Li would be X. This implies 
that  [H, Li] = 0 and by Lemma 3.2.2 we have Li C H, a contradiction. 
First suppose that  h E H1. Then also h E I1 so that  adh(L) C I1 and in 
particular adh(Li) C I1. Now the fact that adh is nonsingular on Li implies 
that  Li = [h, L/] C I1. In the same way h E/-/2 implies that  Li is contained 
in /2 .  [] 

This theorem implies that  the following algorithm is correct. 
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Algorithm DirectSum Decomposition 
Input: a Lie algebra L with a non-degenerate Killing form defined over a 

perfect field F of characteristic not 2, 3. 
Output: a list of the direct summands of L. 

Step 1 Compute the primary decomposition L - H | L1 0 " "  �9 Ls (Section 
4.11). 

Step 2 For 1 _< i ~_ s determine a basis of the ideal of L generated by Li. 
Delete multiple instances from the list, and return it. 

E x a m p l e  4.12.2 Let L be a Lie algebra with basis { h l , X l , y l ,  h2 ,x2 ,y2}  
and multiplication table 

[h,,xl] = 2xl [h2,xl] = 2xl 
[hi, Yl] -- - 2 y l  [h2, yl] = - 2 y l  
[h~,x2] = 2x2 [h2,x2] = -2x2 
[hi, Y2] = -2y2 [h2, y2] = 2y2 
[Xl Yl] 1 1 h2 Ix2 Y2] - 1 1 , = , - ~ h l  - -  h 2 .  -~ h l + -~ -~ 

Brackets of pairs of basis elements that are not present are assumed to 
be 0. The determinant of the matrix of the Killing form is 216, hence the 
Killing form of L is non-degenerate if the characteristic of the ground field 
F is not 2. As is easily verified, H = (hi, h2} is a Cartan subalgebra. 

First we take the ground field to be equal to Q. Then the minimum 
polynomial of ad(hl + 2h2) is X ( X  + 6)(X - 6 ) ( X  + 2)(X - 2) so that 
h l + 2h2 is a splitting element. The primary decomposition of L relative to 
ad(hl + 2h2) is 

L -- (h i ,  h2} @ (Xl} ~ (X2} ~]~ ( Y l ) ~  (Y2}" (4.13) 

Now the ideal generated by Xl is spanned by {x~, y~, (h~ +h2)/2}.  Similarly, 
the ideal generated by x2 is spanned by {x2, y2, ( h i -  h2)/2}. It follows that 
we have found the decomposition of L into simple ideals. 

The structure constants of L can also be viewed as elements of F5. So 
now we take F5 as the ground field. Then the Killing form is non-degenerate 
so that we can apply the algorithm PrimaryDecompositionSmallField. The 
Fitting-one component L1 (H) is spanned by {x~, yl,x2, y2}. The minimum 
polynomial of the restriction of ad(hl + h2) to L I ( H )  is X ( X  - 1)(X + 1). 
So h l + h2 is a decomposing element and the corresponding decomposition 
of LI(H) is 

L I ( H )  = (xl)  �9 (Yl} G (x2,Y2). 
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Now we turn our attention to the space V = (x2, y2) (the other two spaces 
are 1-dimensional and hence irreducible). The minimum polynomial of the 
restriction of ad(hl + 2h2) to V is (X - 2)(X - 3) so that  hi + 2h2 is a 
decomposing element. We again find the primary decomposition (4.13). 

E x a m p l e  4.12.3 Let L be a Lie algebra over Q with basis {Xl, . . .  ,x6} 
and multiplication table as shown in Table 4.3. This Lie algebra is a Levi 
subalgebra of the so-called eoincar~ algebra (see, e.g., [68]). 

Xl 

X2 

x3 

x4 

x5 

X6 

Xl X2 X3 X4 X5 X6 

0 0 2x4 --2x3 --2x6 2x5 
0 0 2x3 2x4 --2x~ --2x6 

--2x4 --2x3 0 0 X2 Xl 

2x3 --2x4 0 0 Xl --X2 

2x6 2x5 -x2 -Xl 0 0 
-2x5 2x6 -Xl x2 O 0 

Table 4.3" Multiplication table of a 6-dimensional Lie algebra. 

The determinant of the matrix of the Killing form is -220 so that  L is 
semisimple. A Cartan subalgebra of L is spanned by {xl, x2 }. The minimum 
polynomial of ad(xl + x2) is X ( X  2 - 4 X  + 8)(x 2 + 4X + 8). Hence xl + x2 
is a splitting element. The corresponding primary decomposition is 

L -- L1,2 G L3,4 G L5,6, 

where Li,j is the subspace spanned by {xi,  x j } .  From the multiplication 
table it follows that the ideals generated by L3,4 and L5,6 are both equal to 
L. Hence, by Theorem 4.12.1 we have that L is a simple Lie algebra. 

Now let K be the Lie algebra with basis {Xl, . . .  ,x6} and the same 
multiplication table as L, but defined over ~(i), where i 2 - -1 .  Then the 
minimum polynomial of ad(Xl + x2) has irreducible factors X, X + ( 2 -  2i), 
X + (2 + 2i). The corresponding primary decomposition is 

K -- (Xl,X2> �9 (x3 - ix4) G (x3 -t- ix4) G (x5 - ix6> G (x5 + ix6).  

Now K = I1 (~ I2 where 11 is spanned by x2 - ix1, x3 - ix4, x5 - ix6 and 12 
by x2 + i x l , x 3  + ix4, x5 + ixa. 

4.13 Comput ing  a Levi subalgebra 

In this section we consider the problem of computing a Levi subalgebra of 
a Lie algebra of characteristic 0. We give two related algorithms for doing 
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this. In subsequent sections we show that  we can make good use of a Car tan  
subalgebra to find a Levi subalgebra. 

In this section L will be a Lie algebra over a field F of characterist ic 
0 and R its solvable radical. First  we remark tha t  in the case where R is 
commutat ive  there is an easy algori thm along the lines of Example  4.7.3. 
It s tar ts  with computing a basis { x l , . . .  ,Xm} of a complement  to R in 
L. Then  we set yi = xi + ri, where ri are unknown elements of R. For 
1 <_ i <_ rn we let 2i be the image of xi in L / R .  Then  [Sci,2j] - ~ k  3'kszk �9 
We require tha t  the elements yi satisfy exactly this commuta t ion  relations 
which, because R is commutative,  is equivalent to 

m m 

[xi, rj] + [ri, xj] - E @.rk -- --[xi, xj] + E 7ijXk.k (4.14) 
k=l  k=l  

But this amounts  to linear equations for the ri, which we can solve. We 
note tha t  the equations have a solution due to Levi's theorem. 

The  algori thm for the general case is a generalization of the a lgori thm 
for the commutat ive  case. Let 

R - R 1  D R 2  D . . .  D R d D R d + I - - 0  

be a descending series of ideals of R such tha t  [Ri, Ri] C Ri+l (the derived 
series is an example).  As above, let {Xl , . . .  , Xm} be a basis of a complement  
in L to R. Then  there are 7 k E F such tha t  

m 

[xi, xj] = E 7kz i  mod R. 
k=l  

We phrase this by saying tha t  the xi span a Levi subalgebra modulo R. 
t For t - 1, 2 , . . .  we successively we construct u i E R such tha t  the elements 

y~ - xi + u it span a Levi subalgebra modulo Rt. When we arrive at t - d + 1 
we have tha t  the y~ span a Levi subalgebra modulo Rd+l = 0, i.e., they 
span a Levi subalgebra. 

Initially we set t - 1 and y~ - xi. Write Rt = Vt | Rt+l,  where Vt is 
t where a complementary  vector space. Then  iteratively set y~+l = y~ + ri ' 

t o t+l  r i E Vt. We require tha t  the Yi span a Levi subalgebra modulo R t + l ,  i.e., 
t+l  ~ t+ l l  , . g k y t + l  Yi ,Yi ] = }-~-k ij k mod Rt+l. Since [Rt, Rt] C Rt+l this is equivalent 

to 

m m 

t t + y j ]  _ t . ( 4 . 1 5 )  , , - -  - -  ~ ~ i j Y k  m o d  R t + l  

k - 1  k = l  
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t We note that since the equations are These are linear equations for the r i. 
modulo Rt+l the left-hand side as well as the right-hand side can be viewed 
as elements of Vt. So when solving the equations we can work inside this 
space. Finally we remark that by Levi's theorem applied to the Lie algebra 
L / R t + I  the equations (4.15) have a solution. 

This discussion leads to the following algorithm: 

Algorithm LeviSubalgebra 
Input" a Lie algebra L of characteristic 0, the solvable radical R and a series 

R -  R1 D . . .  D Rd+l - - 0  satisfying [Rt, Rt] C Rt+l for 1 _< t ___ d. 
Output" a Levi subalgebra of L. 

Step 1 Compute a basis {x l , . . .  ,Xm} of a complement in L to R. 
1 __ i <_ m set y} = xi. 

For 

Step 2 For 1 <_ t < d do the following 

Step2.1 Compute a complement Vt in Rt+l to Rt.  

t where t Step2.2 Set y~+l _ y~ + ri ' r i are unknown elements of Vt. 

t and solve them. Step2.3 Compute the equations (4.15) for the r i 

Step 2 Return the subalgebra spanned by the yd+l. 

When we input the derived series of R, then this is a straightforward 
algorithm to calculate a Levi subalgebra. 

Of course one could input a different a descending series. If the radical 
R happens to be nilpotent, then we can take the lower central series. In 
this case the ideals Rt satisfy the stronger property [Rt, R] C Rt+l. In 
the algorithm we always have that y~ = xi + ui, where ui C R.  Hence 
[y~, r ~ ] -  [xi, r}] mod Rt+l.  So the equations (4.15) transform into 

m m 

[xi r~] + [r~,xj] - E k t _ t t . (4.16 , v i jrk --[Yi, Y}] + E ?kyk  mod Rt+ 1 ) 
k = l  k = l  

Now by the following lemma this leads to an algorithm for the general 
case. The proof is exactly the same as the proof for the third case in the 
proof of Levi's theorem. We leave the details to the reader. 

L e m m a  4.13.1 Let K1 be the inverse image in L of a Levi subalgebra of 
L / JR ,  R]. Let K be a Levi subalgebra of K1, then K is a Levi subalgebra of 
L. 
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The radical of K1 (which is [R, n]) and the radical of L/[R, R] (which 
is R/[R, R] and hence Abelian) are nilpotent. So we can reduce the general 
case to two calls to [eviSubalgebra, where we input the lower central series 
of the Lie algebras and take the equations (4.16) instead of (4.15). We call 
this algorithm LeviSubalgebraByLCSeries. 

E x a m p l e  4.13.2 Let L be a 6-dimensional Lie algebra over the field F of 
characteristic 0 with basis {Xl,X2,X3,X4, X5,X6}. The multiplication table 
of L is displayed in Table 4.4. 

Xl 

X2 

X3 

X4 

X5 

X6 

Xl x2 x3 x4 x5 x6 
. . . . . .  

1 0 0 Xl x5 --~x6 0 

0 0 2x2 x3 -- l x6  Xl 0 

--Xl -2x2 0 2x4 x5 0 
- x5  -x3  + �89 -2x4 0 0 0 
lX6 --Xl --X5 0 0 0 

0 0 0 0 0 0 

Table 4.4: Multiplication table of a 6-dimensional Lie algebra. 

It is easily seen that  x l, x5, X6 span a nilpotent ideal R of L. Further- 
more, if we let 22, 23, 24 be the images of x2, x3, x4 in L/R then 

[22,23] -- 222, [22,24] -- 23, [23, 24] -- 224. 

Hence L/R is isomorphic to s[2(F), which is semisimple. So SR(L) - R. 
Now [R, R] is spanned by x6 so that  [[R, R], [R, R]] - 0. We perform the 
algorithm LeviSubalgebra with the derived series. 

Firstly, Xl, x5 span a complement to JR, R] in R. So we set y~ - xi for 
i - 2, 3, 4, and 

y2 
4 

- x2 + c~xl +/3x5 

- -  X3 -t- ~'Xl + (~X5 

- -  X4 + s  + ?-IX5. 

- 2y22 mod X6 is equivalent to Then the requirement [y2, y~] 

1 
2x2 + ((~ + a)Xl  --/~x5 -I- ~ (/~')' -- c~5)x6 -- 2x2 + 2C~Xl + 2/3x5 mod x6. 

Which is equivalent to the equations 5 - c~ and /3 - 0. Note that  by 
calculating modulo x6 we get rid of the non-linearity. Continuing, [y2 y2] _ 
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y32 mod x6 is equivalent to 

1 
x3 + rjxl + c~x5 + ~(/3e - c~r/- 1)x6 - x 3  -+- 7 X l  ~- (~x5 mod x6. 

This leads to the equat ions g - c~ and ~ - 7. Fur thermore ,  from [y2, y4 2] _ 

2y4 2 rood x6 we get ~ - 0 and 3' - ~. We see tha t  we can choose values 

c~ = c~o and 3' = 3'0 freely; all other  variables are then determined.  The 
solution is 

y2 _ x2 + c~oxl, y32 - x3 + 7 0 X l  + Ol0X5, Y42 - x 4  + 7 0 x 5  �9 

Now for the next step we set 

y3 _ y2 + ax6, y3 _ y2 + bx6, y34 - y~ + cx6, 

and again write down the linear equations.  First  [y3, y 3 ] _  2y3 is the same 

a s  

1~2x6 _ 2y 2 + 2ax6 2x2 + 2~0xl - ~ 

i.e., a - - ~ao.1 2 Going on like this we find b -  - �89  + a070) and c -  - 3%'1 2 

Hence the full solution reads 

1 
y 3  __ X3 _+_ 7 0 X l  -4- Ol0X5 - -  ~(1 + c~070)x6 

1 
y 3  __ X4 -~ -70X5  - -  ~ 7 2 X 6  �9 

4.14 A s tructure  theorem of Cartan subalgebras  

In this section we show tha t  a Ca r t an  subalgebra carries informat ion  on a 

Levi decomposi t ion  of L. We s tar t  with two lemmas. 

L e m m a  4 .14 .1  Let L be a Lie algebra of characteristic O. Let K be a Levi 
subalgebra of L, and let H be a Cartan subalgebra of K.  Then adLh is a 
semisimple linear transformation for h C H. 

P r o o f .  Write L = K @ R, where R is the solvable radical of L. Let 

h C H.  Then  by Root  fact 8 we have tha t  adKh is semisimple. Since R 
is an ideal we have tha t  the adjoint  representat ion of L induces a repre- 
senta t ion adR : K --+ g[(R) of K on R. Hence by Corollary 4.6.4 we infer 

tha t  adRh is semisimple. Now the min imum polynomial  of adLh is the least 
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common multiple of the minimum polynomials of adKh and adRh. Hence 
the minimum polynomial of adLh is square-free. It follows that adLh is a 
semisimple transformation. D 

L e m m a  4.14.2 Let L be a Lie algebra of characteristic O. Let S be a 
commutative subalgebra of L such that adLs is a semisimple linear trans- 
formation for s C S. Then S is contained in a Cartan subalgebra of L. 

Proof .  First we note that since all elements of adLS are simultaneously 
diagonalizable (over the algebraic closure of the ground field), we have that 
the Fitting-null component Lo(S) is equal to CL (S), the centralizer of S in 
L. Hence the Fitting decomposition of L with respect to S reads 

L = CL ( S ) � 9  LI(S). 

For s C S, let p(s) be the restriction of adLs to LI(S). Then there are no 
non-zero x C LI(S) such that p(s)x = 0 for all s E S. Hence there is an 
so C S such that p(so) is nonsingular (this can be seen by diagonalizing 
all p(s) for s in a basis of S; most linear combinations of basis elements 
have no eigenvalues that are zero). Then L0(ads0) = CL(S); and by repeat- 
edly applying Proposition 3.2.6 we see that L0(ads0) contains a subalgebra 
H = L0(adx) for a certain x C CL(S), such that H is nilpotent. But then 
NL(H) = H (Proposition 3.2.5) and hence H is a Caftan subalgebra of L 
(Lemma 3.2.2). But since H C CL(S) we have [H, S] = 0 and hence S C H 
(cf. Lemma 3.2.2). E] 

T h e o r e m  4.14.3 Let L be a Lie algebra of characteristic O. Let K be a 
Levi subalgebra of L and HI a Caftan subalgebra of K.  Then there exists a 
Cartan subalgebra H of L containing H1. Conversely, if H is any Cartan 
subalgebra of L, then there is a Levi subalgebra K of L having a Cartan 
subalgebra contained in H. 

Proof .  By Lemma 4.14.1 together with Root fact 6 we have that H1 is a 
commutative subalgebra of L such that adLh is a semisimple linear trans- 
formation for h C H1. Hence by Lemma 4.14.2 there is a Cartan subalgebra 
H of L such that H1 C H. 

Now let H be any Cartan subalgebra of L and let R be the solvable 
radical of L. Let ~ �9 L --+ L / R  be the projection map. Then by Lemma 3.6.2, 
~(H) is a Cartan subalgebra of L/R.  Now let K1 be any Levi subalgebra 
of L. Then the restriction of ~ to K1 is an isomorphism of / (1  onto L/R.  
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Hence K1 has a Cartan subalgebra H1 such that ~(H1) = ~(H).  By the first 
part  of the proof there is a Cartan subalgebra H t of L such that  H1 C H ~. 

We construct an automorphism of L mapping H ~ onto H. First of all, we 
have that  u(H)  = ~(H1) C u(H') .  But by Lemma 3.6.2, ~(H')  is a Cartan 
s u b a l g e b r a o f L / R .  So u(H')  = u(H) and hence H + R  = H ' + R .  Set 
B = H + R, then since R is an ideal, B is a subalgebra of L. Furthermore, 
B / R  is commutative so that [B,B] C R. Consequently B is a solvable 
Lie algebra. Now from Section 3.6 we recall that D(B) is the subgroup of 
Int(B) generated by all exp adBx for x E [B, B]. Also, if x C [B, B] then x C 
[L, L] N R and by Lemma 2.6.2 we see that  adLx is nilpotent. So exp adLx is 
an element of Int(L) whose restriction to B equals exp adBx. The conclusion 
is that  every element of D(B) naturally extends to an element of Int(L). 

Now by Theorem 3.6.4 there is a g' C D(B) such that  g'(H') = H. Let 
g C Int(L) be the extension of g' to an automorphism of L. Set K = g(K1); 
then K is a Levi subalgebra having a Caftan subalgebra g(H1) contained 
in H.  D 

4.15 Using Cartan subalgebras to compute Levi 
subalgebras 

In this section we put Theorem 4.14.3 to use. By this theorem any Car- 
tan subalgebra H of a Lie algebra L of characteristic 0 contains a Cartan 
subalgebra H1 of a certain Levi subalgebra of L. By Lemma 4.14.1, adLH1 
consists of semisimple linear transformations. Also if we suppose the solv- 
able radical R to be nilpotent (which by Lemma 4.13.1 we can do without 
loss of generality), then adLx is nilpotent for x C R. Hence every semisimple 
element of adH "comes from" a Levi subalgebra of L. Here we show how 
we can go after these semisimple elements directly. 

In the sequel we let L be a Lie algebra over the field F of characteristic 
0, not equal to its solvable radical R. Throughout we assume that  R is 
nilpotent. 

D e f i n i t i o n  4.15.1 A commutative subalgebra T of L is said to be toral 
if d i m T  = d imadLT and the associative algebra (adLT)*, generated by 1 
together with adLT, is commutative and semisimple. 

The first condition is included to avoid calling the centre of a Lie algebra 
toral. 
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P r o p o s i t i o n  4.15.2 Let K be a Levi subalgebra of L. Let H1 be a Caftan 
subalgebra of K.  Then H1 is a toral subalgebra of L. Put H = CL(H1), 
the centralizer of H1 in L. Then H is a Caftan subalgebra of L, and H = 
H1 G CR(H1). 

P r o o f .  Lemma 4.14.1 together with Root fact 6 imply that  HI is a commu- 
tative subalgebra of L such that adLh is a semisimple for h C H1. Also since 
K does not contain elements of the centre of L we have that  the adjoint 
representation of L is faithful on HI, hence H1 is a total subalgebra of L. 

Let x C CL(H1), then x = y + r, where y C K and r E R. So for h C HI 
we have 0 = [h, x] = [h, y] + [h, r]. But the first element is in K and the 
second in R. Therefore [h, y] = [h, r] = 0 for all h C H1. Since H1 is a Cartan 
subalgebra of K we have y E HI. It follows that  CL(H1) = HI �9 CR(H1). 

As in the proof of Lemma 4.14.2 we see that  H = CL(H1) = Lo(H1). 
Hence by Proposition 3.2.5 we have NL(H) = H. Furthermore, let H k 
denote the k-th term of the lower central series of H. Then 

H k - [H1 | CR(H1), [H1 | CR(H1),"" , [H1 @ CR(H1), H1 �9 CR(H1)] '"  ]] 

= [CR(H1), [CR(H1),'." [CR(H1), CR(H1)] '"  ]] -- CR(H1) k C R k, 

and hence H is nilpotent. Now by Lemma 3.2.2, H is a Caftan subalgebra 
of L. C] 

C o r o l l a r y  4.15.3 Let H be a Caftan subalgebra of L, then H contains a 
Cartan subalgebra H1 of a Levi subalgebra of L. Furthermore, for any such 
H1 we have that H = H1 @ CR(H1). 

P r o o f .  The first assertion follows from Theorem 4.14.3. Set H ~ = H1 @ 
CR(H1). By Proposition 4.15.2, H ~ is a Caftan subalgebra of L. We have 
to show that H ~ = H. As in the proof of Lemma 4.14.2 we have that  
H' = C L (H1)  = Lo (adhl) for a certain hi C H1. Hence hi is a regular 
element. So H and H I have a regular element in common and hence they 
are equal. D 

Now we consider the problem of calculating a toral subalgebra inside 
a given Cartan subalgebra H of L. The next proposition yields a way of 
doing this. Furthermore it states that  a maximal toral subalgebra of H is 
"almost" (possibly modulo elements of the centre of L), equal to a Cartan 
subalgebra of a Levi subalgebra of L. 
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P r o p o s i t i o n  4 .15 .4  Let H be a Caftan subalgebra of L. Let T be maximal 
(with respect to inclusion) among all total subalgebras of L contained in H. 
Then there is a Levi subalgebra K of L and a Caftan subalgebra H1 of K 

such that adLH1 = adLT and H1 C H. Let x C H and let adLx = s + n 
be the Jordan decomposition of adLx. Then there is an h C H such that 
adLh = s. 

P r o o f .  By Corollary 4.15.3 there is a Levi subalgebra K of L having a 
Car tan  subalgebra H1 such tha t  H1 C H. Furthermore,  H = HI G CR(H1). 
Let t C T and write t = h +  r where h E H1 and r E CR(H1). Then [h, r] = 0 
and adt = adh + adr.  Now adh is semisimple and adr  is nilpotent (because 
the radical R is nilpotent).  So adt = adh + adr  is the Jordan  decomposit ion 
of adt. But  adt is semisimple and hence adr  = 0. So T consists of elements 
h + r for h C HI and r lies in the centre of L. Now since T is maximal  and 
commutes with H1 it follows tha t  for all h C H1 there is an r in the centre 
of L such that  h + r C T. We conclude that  adT  = adH1. 

For the last s ta tement  write x = h + r, where h C H1 and r C R. Again 
we have that  adx = adh + adr  is the Jordan decomposit ion of adx. So by 
the uniqueness of the Jordan  decomposit ion we infer tha t  s = adh. D 

On the basis of Proposi t ion 4.15.4 we formulate an algorithm: 

A l g o r i t h m  ToralSubalgebra 
Input: a Lie algebra L of characteristic 0 such that  its solvable radical is 

nilpotent.  
Output: a toral subalgebra T of L such that  adT - adH1 for a Car tan  
subalgebra H1 of a Levi subalgebra K.  

Step 1 Set R "=SolvableRadical(L), H "=CartanSubalgebraBigField(L), and 
C "=Centre(H). 

Step 2 Let { h i , . . .  , hm} be a basis of C. For 1 _< i _< m compute the Jordan  
decomposit ion adLhi - adLsi + adLni of adLhi; where si, ni C H.  

Step 3 Let T be the span of all si for 1 __ i _< m. Return  T. 

C o m m e n t s :  Let T be maximal  among all toral subalgebras of L con- 
tained in H.  Let H1 C H be a Car tan  subalgebra of a Levi subalge- 
bra of L such tha t  adLH1 - a d L T  (cf. Proposi t ion 4.15.4). Then  since 
H - H1 @ CR(H1) (Corollary 4.15.3) we have that  HI is contained in the 
centre of H.  The same holds for T because adLT = adLH1. By Proposi t ion 
4.15.4 we see tha t  the elements si, n~ exist. We use the algori thm Jordan- 
Decomposition (see Section A.2) to compute the Jordan  decomposit ion of 
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adLhi. Then by solving a system of linear equations, we find si. (Note that 
si is not necessarily unique.) Now since adLs~ and adLni are polynomials 
in adLhi without constant term we see that si, ni commute with everything 
that commutes with hi. In particular si, ni lie in the centre of H. 

We show that the span of the si is a maximal toral subalgebra contained 
in H. Let s E H be such that adLs is semisimple. Write s = h + r where 
h E HI and r C CR (H1). Then in the same way as in the proof of Proposition 
4.15.4 we see that adLr -- O. Write h - }-~im__l c~ihi for some c~i C F. Then 
adLs -- ~-~im=l (~iadLhi - ~ i  (~iadLsi + ~-~i (~iadLni. The first summand is a 
sum of commuting semisimple transformations and hence semisimple itself. 
Similarly the second summand is nilpotent. Furthermore they commute 
with each other. Hence this is the Jordan decomposition of adLs and it 
follows that adL(}--~.i c~ini) = 0. So adLs = adLs' for some s' E T. It follows 
that s r T implies that the subalgebra generated by T together with s 
contains elements of the centre and is therefore not toral. The conclusion 
is that T is a maximal total subalgebra of H. 

Proposition 4.15.5 Let H be a Caftan subalgebra of L. Let T and K be 
as in Proposition ~.15.~. Let 

L - L 1 G " ' G L n  

be the (collected) primary decomposition of L relative to T. Write Li = 
Vi G Ri, where Ri - R N Li and Vi is a complementary subspace. Then there 
is a basis of K consisting of elements of the form vi + ri, where vi E V} and 
ri C Ri. 

Proof .  Let K = K1 • . . .  G Km be the primary decomposition of K with 
respect to T. Also R = R1G..  "@Rn is the primary decomposition of R with 
respect to T. Adding these decompositions, and taking the subspaces Ki 
and Rj such that the minimum polynomials of the restrictions of adt to Ki 
and Rj are equal for all t C T, together, we obtain the (collected) primary 
decomposition of L relative to T. Hence, if Li is not contained in R, then 
Li = Kki G Ri and it is seen that V} has a basis consisting of elements of 
the form wi + ri, where wi C Kk~ and ri E Ri, and the result follows. [::] 

Let T, Li, Vi, Ri be as in Proposition 4.15.5. Let H1 be a Cartan 
subalgebra of a Levi subalgebra K of L such that adLH1 - a d L T .  We note 
the following: 

The centralizer CL (T) occurs among the primary components of L. It 
contains H1. The root spaces of the Levi subalgebra K relative to H1 
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are contained in the other primary components. Furthermore, these 
root spaces generate K (this follows from Root fact 11). Suppose 
that L1 - C L ( T ) .  If for 2_< i_< n w e h a v e  that R/ = 0whenever 
V/ ~ 0, then it follows that the subalgebra generated by the ~ is a 
Levi subalgebra. 

�9 If we are not so fortunate, then in the equation systems (4.16), we can 
reduce the number of variables. We start with a basis x 1, . . .  , xm of a 
complement in L to R, consisting of elements of the spaces ~ .  Then 

t to in the iteration of the algorithm LeviSubalgebra we add elements r i 

xi. But by Proposition 4.15.5, we can take these elements from Rk 

where k is such that xi E Vk. 

Now we formulate an algorithm for calculating a Levi subalgebra of L, 
in the case where the radical R is nilpotent. By Lemma 4.13.1, this also 
gives an algorithm for the general case. 

A l g o r i t h m  LeviSubalgebra 
Input" a finite-dimensional Lie algebra L of characteristic 0 such that the 

solvable radical SR(L) is nilpotent. 
Output" a basis of a Levi subalgebra of L. 

Step 1 Set T "=ToralSubalgebra(L). 

Step 2 Calculate the primary decomposition L1 @... @ Ls of L with respect 
to adT. 

Step 3 Calculate spaces ~ and R4 C R such that Li - ~ �9 Ri. If Ri  = 0 
for all i such that Y~ ~ 0, then return the subalgebra generated by the 

Step 4 Take bases of the t~ together to obtain a basis x 1, . . .  , xm of a com- 
plement in L to R. Iteratively calculate the equation systems (4.16), 

t where the r i are taken from Rk, where k is such that xi E Vk. Solve 
the systems and return the resulting subalgebra. 

C o m m e n t :  for the calculation of the primary decomposition of L with 
respect to T we can proceed exactly as in the algorithm PrimaryDecompo- 
sitionSmallField; the randomly chosen element x in Step 3 is either decom- 
posing or good with high probability. We leave the details to the reader. 

E x a m p l e  4.15.6 Let L be the 6-dimensional Lie algebra of Example 4.13.2. 
Then x3 is a non-nilpotent element and H = L0(adx3) is a commutative 
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subalgebra, and hence it is a Cartan subalgebra (cf. the algorithm Cartan- 
SubalgebraBigField). Now H is spanned by xa, x6; and xa spans a maximal 
torus T. The primary decomposition of L with respect to T reads 

L = H @ L1 @ L2 G L4 �9 L5, 

where Li is spanned by xi for i = 1, 2, 4, 5. Tile primary components not 
contained in the radical are L2 and L4. We have that L2NR = L4NR = 0 and 
hence it immediately follows that they are contained in a Levi subalgebra 
of L. So the subalgebra K they generate is a Levi subalgebra. It is spanned 
by x2, x4, xa - �89 

4.16 N o t e s  

The Lie algebra of Table 4.4 is a symmetry algebra admitted by the heat 
equation (see [10], w 

The proofs in Section 4.10 (for Lie algebras over modular fields) follow 
[76]. Theorem 4.14.3 is a result of Chevalley; for the proof we followed [19]. 
For a different approach see [34]. 

The notion of splitting element appears in [27] (see also Appendix A). 
There they are elements of a semisimple associative algebra with a maximal 
number of eigenvalues. Since splitting elements of Cartan subalgebras in 
semisimple Lie algebras satisfy the analogous property, we have adopted the 
same terminology. Also elements of an associative algebra with a reducible 
minimum polynomial are called decomposable in [28]. In Section 4.11 we 
use the term decomposing to denote the same property. 

The algorithm in Section 4.13 for calculating a Levi subalgebra using the 
derived series of the solvable radical is from [71]. The algorithm LeviSubal- 
gebraBykCSeries is taken from [36]. In this paper it is also proved that this 
algorithm runs in polynomial time (since the left hand side of (4.16) does 
not depend on the output of the previous round, it can be proved that the 
coefficients of the solutions do not blow up). The algorithm for calculating 
a Levi subalgebra using the information carried by a Cartan subalgebra is 
taken from [34]. 
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Chapter 5 

The classification of the 
simple I ie algebras 

This chapter is entirely devoted to the classification of the (isomorphism 
classes of) Lie algebras with a non-degenerate Killing form defined over a 
field of characteristic 0. In this case the non-degeneracy of the Killing form 
is equivalent to L being semisimple (Proposition 4.2.2). Therefore in this 
chapter we will speak of semisimple Lie algebras, rather than of Lie algebras 
having a non-degenerate Killing form. 

When classifying Lie algebras we need a tool for deciding whether two 
Lie algebras are isomorphic or not. To this end we use structural invariants .  

A structural invariant of Lie algebras is a function 

f :  { Lie algebras } ~ { objects } 

such that for two Lie algebras L1,L2 we have that L1 -~ L2 implies f ( L 1 )  "~ 

f(L2), where ~ is some equivalence relation on the image of f .  Examples 
are the dimension of a Lie algebra (where ,,~ is just equality of integers), the 
solvable radical (where ~ is isomorphism of Lie algebras) and so on. We say 
that a structural invariant f is complete if f ( L 1 )  ~ f(L2) implies L1 ~ L2. 

We prove that the set of roots of a semisimple Lie algebra L forms a 
root system. It will be shown that the root system is a complete structural 
invariant of semisimple Lie algebras. It follows that we can classify semisim- 
ple Lie algebras by classifying their root systems. We do this by attaching 
an integral matrix to a root system, called the Cartan matrix. We will show 
that the Cartan matrix is a complete invariant of root systems. We then 
replace the Cartan matrix by a graph, the Dynkin diagram. In Section 5.9 
we show by some elementary considerations that a number of Dynkin dia- 
grams cannot exist. In the next section we then exhibit a root system for 
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each remaining Dynkin diagram (thereby showing that each such Dynkin 
diagram in fact does exist). Subsequently we construct for each root sys- 
tern �9 a semisimple Lie algebra having �9 as a root system (Sections 5.12, 
5.13, 5.15). This results in an algorithm for constructing these Lie algebras, 
given the Cartan matrix of the root system. Other algorithms that we de- 
scribe in this chapter include an algorithm for constructing a root system 
(given the Cartan matrix) (Section 5.6), an algorithm for calculating a set 
of canonical generators (Section 5.11) and an algorithm for constructing 
an isomorphism of (isomorphic) semisimple Lie algebras with split Cartan 
subalgebras (Section 5.11). In the final section we discuss the algorithmic 
problem of determining the isomorphism class of a semisimple Lie algebra 
(with maybe a non-split Cartan subalgebra). 

5 . 1  R e p r e s e n t a t i o n s  o f  5 1 2 ( F )  

Let L be a semisimple Lie algebra, and let �9 be the set of roots of L with 
respect to a split Caftan subalgebra H. Let c~ C �9 then by Root facts 
12 and 13 we see that there are x E La, y E L-a, h E H that span a 
subalgebra K of L isomorphic to s[2(F). The adjoint representation of L 
induces a representation adL : K --+ g[(L). In Section 4.10 we made good 
use of these representations to investigate the structure of Lie algebras of 
characteristic p > 0 having a non-degenerate Killing form. In characteristic 
0 however, this tool is even more powerful because the representations of 
K have a well determined structure. It is the objective of this section to 
explore that structure. 

Let F be a field of characteristic 0; and let K be the Lie algebra over F 
with basis {h, x, y} and multiplication table 

[h..] = 2. .  [h. y] = -2y.  [.. y] = h. 

(see Examples 1.3.6, 4.2.3). Let p :  K --+ ftI(V) be a finite-dimensional 
representation of K. Then by Corollary 4.6.4 together with Root fact 8 
(note that K is semisimple by Example 4.2.3, and that h spans a Cartan 
subalgebra) we have that p(h) is a semisimple linear transformation. In this 
section we assume that p(h) is split (i.e., there is a basis of V relative to 
which the matrix of p(h) is diagonal). Let k l , . . .  ,)~r C F be the distinct 
eigenvalues of p(h). Then V decomposes as 

r 

V - 0 Vai where V~ 
i = 1  

= e v I p(h)  = 
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Now let v E V~; then 

p(h)p(x )v  - p (x )p(h)v  + p([h,x])v - (;~i + 2)p(x)v,  

and hence p(x)v  E Vx~+2. A similar calculation shows that p(y)v  C V),~-2. 

Def in i t ion  5.1.1 Let ;~ be an eigenvalue of p(h). Then the space Vx is 
called a weight space and the eigenvalue )~ is called a weight. The elements 

of V~ are called weight vectors of weight )~. Furthermore, an eigenvalue )~ 

such that Vx ~ 0 and V~+2 = 0 is called a highest weight of V.  Furthermore, 
if  )~ is a highest weight, then a non-zero vector v C V~ is called a highest- 
weight vector. 

Since there are only a finite number of distinct eigenvalues (V being 
finite-dimensional), there is an eigenvalue A of p(h) such that A + 2 is not an 
eigenvalue. Hence V has at least one highest weight ,~. Let v0 C V~, then 
p(x)vo - O. Furthermore we set vi - p(y)~vo for i >_ 0. 

L e m m a  5.1.2 We have p(h)vi  - ( )~-  2i)vi and p(x)vi  - i ( h  - i + 1)Vi_l. 

P roof .  This is the same as Proposition 4.10.1. 

L e m m a  5.1.3 Let p"  K --+ gI(W) be a f ini te-dimensional  irreducible rep- 
resentation of K .  Let )~ be a highest weight of W and vo a corresponding 
highest-weight vector. Set vi - p(y)~vo for  i >_ O. Then W is spanned by the 
vi for  i >_ O; and if we set n - d i m W -  1, then ~ - n and p(h) has exactly 
n + 1 distinct eigenvalues which are n, n -  2, n -  4 , . . .  , - n  + 2 , - n .  

Proof .  By Lemma 5.1.2, the space spanned by the vi is a submodule 
of W; hence it is equal to W because W is irreducible. As W is finite- 
dimensional, there must be an n >_ 0 such that Vn+l - O. Then W is 
spanned by vo, v l , . . . ,  Vn so that n - d i m W -  1. (Note that the vi are 
linearly independent as they are eigenvectors with different eigenvalues). 
Furthermore, using Lemma 5.1.2 we calculate 

0 - p(X)Vn+l - (n + 1)(A - n)Vn. 

Hence A - n and the statement of the lemma follows by Lemma 5.1.2. [:1 

T h e o r e m  5.1.4 Let p" K --+ g[(V) be a f ini te-dimensional  representation 
of K .  Then V decomposes as a direct sum of irreducible submodules. Let 
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W be an irreducible submodule occurring in this decomposition. Then the 
eigenvalues of p(h) restricted to W are n, n - 2 ,  . . . , - n ,  where dim W = n +  
1. Furthermore, the number of summands  in the direct sum decomposition 
of V is equal to dim V0 + dim V1. 

P r o o f .  By Weyl's theorem (Theorem 4.4.6) V decomposes as a direct 
sum of irreducible submodules. Let W be an irreducible submodule of V 
and let w0 E W be a highest-weight vector of W. Set n = d i m W -  1. 
Then by Lemma 5.1.3, the eigenvalues of the restriction of p(h) to W 
are n , n -  2 , . . . , - n .  It is clear that  each such summand has either a 
1-dimensional eigenspace with eigenvalue 1, or a 1-dimensional eigenspace 
with eigenvalue 0 (but not both). Hence the last statement follows. [] 

R e m a r k .  Let p" K --+ 9[(V) be a finite-dimensional representation of K.  
Then by Theorem 5.1.4, the eigenvalues of p(h) are integers. It follows that  
our assumption that  p(h) be split is no real restriction because p(h) is al- 
ways split. 

5 .2  S o m e  m o r e  r o o t  f a c t s  

In this section we continue where we left off in Section 4.9. As before 
is the set of roots of a semisimple Lie algebra L with respect to a split 
Car tan subalgebra H. Here we prove some root facts that  pave the way 
for the (abstract) root systems. We define a vector space over the rational 
numbers that  contains all roots. This will allow us to at tach a root system 
(in a Euclidean space over the reals) to a semisimple Lie algebra. 

We recall that  for a C H* the element ha C H is defined by (4.10). 
Furthermore, we have a symmetric non-degenerate bilinear form ( , ) on 

H*, defined by (a,/3) = nL(ha, hz).  

R o o t  fact  17 Suppose a and 13 are elements of (D with ~ ~ i a .  Let r and 
q be (respectively) the largest integers for which 1 3 - r a  and 13 + qa are roots. 
Then 13 + ia is a root for - r  < i <_ q and 

( oL~ oL) 
= - r - - q .  

P r o o f .  Set 

h 
2ha 
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then, according to Root fact 12 (together with Root fact 13), there are 
x E La, y E L_a such that  x, y, h span a subalgebra Ka of L isomorphic to 
s[2 (F).  Set 

V = L ~ - r a  �9 L~- ( r -1 )a  0 " ' "  �9 L~+qa. 

Then by Root fact 1 we have that  V is a Ka-module .  For v E Lz+ia we 
calculate: 

[h, v] = (/~ + i a ) ( h ) v  = (~(h)  + 2i)v. 

Hence Lz+ia is a weight space with weight fl(h) + 2i. These weights are all 
distinct, and it is not possible that  both  0 and 1 occur as weights of this 
form, so by Theorem 5.1.4 we conclude that  V is irreducible. 

Let the highest weight of h on V be m, then by Theorem 5.1.4 the set of 
weights of h is equal to {m, m - 2 , . . . , - ( m -  2 ) , - m } .  Therefore we have 

/3(h) + 2q - m 

and 

~(h) - 2r - - m  

from which it follows tha t /3(h)  = r -  q. Now since/3(ha) - ~L(h~,  ha) (cf. 
(4.10)), we have tha t  

r - q - f l ( h ) -  (c~,c~)" 

Furthermore,  all weights m -  2j for 0 <_ j < m must occur, so all ~ + i a  are 
roots for - r  < i < q. D 

D e f i n i t i o n  5.2.1 Let c~, fl E �9 and let q, r be the largest integers such that 

fl - r a  and ~ + qa are roots. The string of roots fl - rc~, . . . , ~ + qa is called 
the c~-string containing ft. 

E x a m p l e  5.2.2 Let L be the 10-dimensional Lie algebra of Example 4.9.1. 
Let a = (1, 0) and ~ = ( -1 ,  1). Then the a-s t r ing containing fl is seen to 
be fl, fl + a,/3 + 2a. So in this case r = 0 and q = 2. Furthermore from 
Example 4.9.3 we see that  

1 
ha - ~Al l  1 1 A 

, hz - - ~ A l l  -+- ~ 22. 

And hence 
1 1 

(~, ct) -- nL(--~All  + ~A22 
1 1 

, ~ A l l )  x " -  6 
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Similarly (c~, c~) - 1/6. It follows tha t  

(~,~) _ 

2(c~,c~ ) - - 2 - r - q .  

R o o t  f ac t  18 Let ~ E �9 be a root. Then no scalar multiple of ~ is a root 
except +~. 

P r o o f .  Suppose tha t  13 - Ac~ is a root, where A r +1.  By Root  fact 14 
we may assume tha t /~  is not an integer. However, by Root  fact 17 we have 

tha t  
2(/3, ~) = 2~ 
(,~,,~) 

is an integer. So A - l k, where k is an odd integer. Fur thermore ,  since 

also -13 is a root  (Root  fact 5), we may assume tha t  k > 0. Now let 
f l -  r a , . . .  ,/3 + qa  be the (~-string containing/~.  Then  by Root  fact 17 we 
see tha t  r - q - k, and in pa r t i cu la r /3  - ic~ is a root for 0 < i _< k + q. 
Hence also 

1 k - 1  

is a root. But  by Root  fact 14 this implies tha t  c ~ -  21c~ cannot  be & root,  

which is a contradict ion.  D 

By Root  fact 10 we have tha t  �9 spans H*, so we can choose a basis 
{C~l,... ,c~t} of H* consisting of roots. Now set 

VQ - Q o~1 (~ . - .  (~ Q oq 

which is the vector space over Q spanned by a l , . . .  , al.  

R o o t  f ac t  19 For c~, ~ E H* we have 

(~, z) - ~ (~, ~)(z, ~). 
~E4~ 

P r o o f .  First  we recall tha t  (c~,/3) - t~n(ha, hz). By (4.9) and Root  fact 14 
we see tha t  

~(h~,  h,) - Z ~(h~)~(hz) - ~ (~, ~)(Z, ~) 
~EO ~E~ 

l-1 
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R o o t  fac t  20 For a, ~ E �9 we have that (~, fl) E Q. 

P r o o f .  By Root fact 17 we see that  

2(p,~) 
((7~ (7) 

is an integer for all p, a E (I). So also 

4 

(~,~) 
(2~ 2~ 
- ( . . . ) .  ( i ; ; )  

= Z 2(~, ~) .  2(~, ~) (Root fact 19) 

is an integer. It follows that  

( ~ , ~ )  - 
2(,~,/~) (~, ,~) 
( a , a )  2 

is a rational number. 

R o o t  fac t  21 The vector space VQ contains O. Furthermore, the bilinear 
form ( , )  is positive definite on VQ. 

P r o o f .  If/~ is an element of (I), then there are unique ~1, . . -  , )~l in F such 
that  

1 

-- E )~iOLi. 
i=1 

We must prove that  s E Q for 1 <_ i < 1. First we have 

1 

(~' cU) - E (c~i, aj))~i for j - 1 , . . .  , I. 
i=1 

This is a system of I equations for the 1 scalars ~i. Its matr ix  ((c~i, a j ) )  
is non-singular because a l , . . .  ,cq is a basis of H* and the form ( , ) is 
non-degenerate. Root fact 20 tells us that  the entries of this matr ix  are all 
rational, so that  the equations have a unique solution over Q. Therefore,/~ 
is an element of V(~. For a E V(~ we have by Root fact 19, 

(~, ~) = ~ (~, ~)2 
7E~ 
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which is nonnegative by Root fact 20. Furthermore,  (a, a) = 0 is equivalent 
to (a, 7) = 0 for all 7 E (I). By the definition of ( , )  this is equivalent to 
? (ha)  = 0 for all -), E ~. By Root fact 7 this implies tha t  hz = 0, i.e., a = 0. 
D 

5 . 3  R o o t  s y s t e m s  

In this section we introduce the abstract  notion of a root system in a Eu- 
clidean space. Subsequently we show that  to a semisimple Lie algebra we 
can a t tach a root system and tha t  this root system is a s t ructura l  invariant 
of semisimple Lie algebras. 

Let V be a Euclidean space, i.e., a finite-dimensional vector space over 

together  with a bilinear form 

( , ) : V •  

tha t  is positive definite and symmetric.  

D e f i n i t i o n  5.3.1 A reflection r in V is a linear map r : V ~ V that 
leaves some hyperplane P pointwise fixed, and sends each vector perpendicu- 
lar to P to its negative. The hyperplane P is called the reflecting hyperplane 

o f r .  

Let v be a non-zero element of V and let the map 

r~: V - - - ~  V 

be defined as 

~(~) - ~ - (~, v) v. 

Then  rv is the identity on Pv = {w E Y l (w ,  v) = 0}, i.e., the hyperplane 
perpendicular  to v. We also have that  rv maps every vector perpendicular  
to Pv to its negative. Hence rv is a reflection of V. Fur thermore,  it is clear 
tha t  all reflections of V are obtained in this way. 

For u, v, w C V we have 

( ~ ( ~ )  ~ u ( ~ ) )  - (v - 2(~, ~) 
, ( ~ , ~ )  ~ , ~ -  2 ( ~ ,  ~) ~) = (v ~ )  (5.1) (u, u-] ' " 

Which means tha t  the map ru leaves the bilinear form ( , ) invariant. 
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Def in i t ion  5.3.2 A subset r of V is called a root system if the following 
conditions are satisfied: 

(R1) (~ is finite, spans V and does not contain O. 

(R2) Let a C �9 and A E IR; then As E �9 if and only i ra  = +1. 

(R3) For every ~ C ~, the reflection ra leaves �9 invariant. 

(R4) For all c~, ~ E (~ the number 

is an integer. 

2(/5,~) 
( 0[. ~ 0[.) 

Defini t ion  5.3.3 Let ~2 be a root system in the Euclidean space V.  
dim V is called the rank of (~. 

Then 

L e m m a  5.3.4 Let �9 be a root system and a E ~, then ra is a bijection 
from ~p onto (~. 

2 is the identity on V. Proof .  This follows from the fact that ra 

Let L be a semisimple Lie algebra with a split Cartan subalgebra H. 
As in Section 5.2 we let (I) be the set of roots of L with respect to H 
and we let VQ be the vector space over Q spanned by (I) (cf. Root fact 
21). The restriction of the form ( , )  (which is defined on H*) to VQ has 
values in Q by Root fact 20. Moreover, by Root fact 21 the form ( , ) is 
positive definite on VQ. Set V = VQ | IR, and extend ( , ) to V by setting 
(vQA, w Q # ) = ( v , w ) Q A t ,  forv, w e V Q a n d A ,  p e R .  T h e n ( ,  ) is also 
positive definite on V. Hence V is a real Euclidean space. 

T h e o r e m  5.3.5 Let V, �9 be as above; then (~ is a root system in V. 

Proof .  (R1) is immediate. (R2) follows from Root fact 18. (R3) and (R4) 
are contained in Root fact 17. D 

E x a m p l e  5.3.6 Let V = IR 2 and put 

= {(1, 0), (0, 1), ( -1 ,  0), (0 , -1) ,  (1, 1), ( -1 ,  1), ( -1 ,  -1) ,  (1, -1)}.  
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Then �9 is the root system corresponding to the Lie algebra L of Example 
4.9.1. Set c~ = (1, 0) and ~ = (0, 1). Then in the same way as in Example 
4.9.5 we calculate 

1 
( a , a ) - ( ~ , ~ ) - ~  and (a, /3) - (~, a) - 0. 

Note that the bilinear form ( , ) is determined by this. Using this we can 
check that if) is a root system in V. 

Because the number 

occurs frequently, we abbreviate it by (~, a). 
Now let V1 and 1/2 be Euclidean spaces with root systems ~1 and if)2 

respectively. Then these root systems are called isomorphic if there is a 
bijective linear map 

f : V1-------+ V2 

such tha t  f(,I,1) = ,I,2 and (a, 3) = (f(a),f(3)) for all a,  3 C (I,~. If ~1, q'2 
are isomorphic, then we write ffl ~ if2- The next proposition implies that 
the root system is a structural invariant of semisimple Lie algebras. 

P r o p o s i t i o n  5.3.7 Let L1 and L2 be semisimple Lie algebras over F with 
root systems g21 and g22 respectively, relative to split Caftan subalgebras HI, 
H2. If L1 and L2 are isomorphic then ~1 and ~2 are isomorphic. 

Proof .  For this we may assume that the ground field is algebraically closed. 
Indeed, let F be the algebraic closure of F, then Hi | F is a Cartan subal- 
gebra of Li | F (Proposition 3.2.3) yielding the same root systems as Hi in 
Li. Let f �9 L1 ---+ L2 be an isomorphism of Lie algebras. We recall that all 
Cartan subalgebras of L2 are conjugate under the automorphism group of 
L2 (Theorem 3.5.1). So after (maybe) composing f with an automorphism 
of L2, we may assume that f (HI) - H2. We can extend f to a map from 
H~ into H~ by setting f(a)(h2)  - a ( f - l ( h 2 ) )  for a C H~' and h2 C H2. Let 

C r and let x C (Lx)a be a root vector. Then [hi,x] - a (h l )x  for all 
hi E H1 (Root fact 9), so 

[f(hl),  f(x)] -- f([hl,x]) = ~(h l ) f ( x )  - f ( a ) ( f ( h l ) ) f ( x ) ,  

i.e., f ( x )  is a root vector for f(c~). In particular f(c~) is a root. From this 
it also follows that f maps distinct roots to distinct roots so that f is a 
bijection from ~l  onto ~2. 
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Let V1, V2 be the real Euclidean spaces associated with iX) i and 02. Be- 
cause Oi spans V/we can extend f to a linear map from V1 into V2. Then 
f maps root strings to root strings, and by Root fact 17 it follows that  

(a,/3) = ( f ( a ) ,  f(~)} for a,/3 E (I)l. [[] 

It turns out tha t  the root system is a complete invariant of semisimple 
Lie algebras. This will be shown in Section 5.11. 

Let (I) be a root system and suppose that  �9 = ~1 U (I)2 where ~1, ~2 C 
are such that  ( a l , a 2 )  = 0 for all C~l E q)x and a2 G ~2. Then we say that  
q) is the direct sum of (I)l and (I)2 and we write 

q) -- ~)i G @2. 

A root system @ that  cannot be decomposed as a direct sum is called 
irreducible. 

P r o p o s i t i o n  5.3.8 Let L be a semisimple Lie algebra and let @ be the 
root system corresponding to L. Then L is a direct sum of non-zero ideals, 
L = J1 | J2 if and only if �9 = (I)l �9 ~2, where ~1 and @2 are the root 
systems of J1 and J2 respectively. 

P r o o f .  Let H be a fixed split Car tan  subalgebra of L. 
First  suppose that  L = J1 | Then by Theorem 4.12.1, H = H1 |  

where Ilk is a Car tan  subalgebra of Jk. Now let ~1 = { a l , . . .  ,a~} be the 
set of roots of J1 relative to H1 and ~2 = { ~ i , . . .  ,fit} the set of roots of 
-/2 relative to //2. We extend the functions ai and/3 j  to functions on H 
by setting ai(hx + h2) = c~i(hl) and /3 j (h l  + h2) = ~j(h2) for hi E H1 and 
h2 E/-/2. Then 

L = H1 | H2 @ La 1 G " "  | Las @ LZl |  | Lzt 

is the root space decomposit ion of L relative to H = H1 | Let c~i E (2)1 

and ~j G (I)2, then we claim that  c~i + fiN cannot be a root. Suppose it is a 
root, then it equals some ak or some ~k. Suppose that  ai + flj = ak for an 
ak G ~1. Choose an h2 G/ /2  such that  ~j(h2) r O, then 

0 = = +  j(h2) # 0, 

a contradiction. In the same way ai + ~j cannot be equal to a/3k. By an 
analogous argument  it can be shown that  a i - ~ j  cannot be a root. Now by 
Root fact 17 we see that  (c~i,~j) = 0. Hence (I) = ~1 | ~2. 

On the other hand, suppose that  �9 = (I)1 | ~2 where (I)l = { a l , . . .  , a~} 
and ~2 = {/31,... ,fit}. Furthermore (c~i, flj} = 0 for ai E @1 and ~j G ~2. 
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Also (c~i +/~j, c~i} -7 (: 0 so that  c~i + ~j ~ (I)2 and (ai + ~j,/~j) -/- 0 from which 
c~ + ~j ~ O1. It follows that  a~ + ~j is not a root for a~ C (I)1 and/~j  C r 

Let J1 be the subalgebra generated by the L ~  for ai  E r Let H1 be 
the subspace of H spanned by the ha~ (which are defined by (4.10)). Then 
by Root facts 1, 6, 9, 11 we have that  

J1 = HI @ Lal @""  @ La~. 

Furthermore,  because a~ + ~j is not a root we have that  [L~5, J~] - 0 and 
J1 is an ideal of L. Let -/2 be the subalgebra generated by L~k for/~k C r 
Then  

J2 = H2 (9 L~I @. . .  @ L~t, 

w h e r e / / 2  is spanned by the h ~ .  Also -/2 is an ideal of L and L - J1 + J2. 
Furthermore,  [J1, J 2 ] -  0 (note that  [ho,,x~5 ] - ~ j ( h o , ) X o , -  (~j,o~i)Xo, = 
0). Therefore J1 n -/2 is contained in the centre of L which means that  it is 
zero. The conclusion is that  L = J1 G -/2- F-] 

5.4 R o o t  s y s t e m s  of  rank two  

In the previous section we associated a root system to a semisimple Lie alge- 
bra. We showed that  the root system is a s tructural  invariant of semisimple 
Lie algebras. In this and subsequent sections we prepare the way for a clas- 
sification of all root systems (which will be performed in Section 5.9). For 
the moment  we abandon all thought  of Lie algebras and investigate abstract  
root systems in their own right. 

Let (I) be a root system in the Euclidean space V over R with positive 
definite bilinear form ( , ). For v C V we define the norm Ilvll of v by 
setting I lv l l -  v/(v, v). As v is a Euclidean space we have the inequality of 
Cauchy-Schwarz: 

I(v, w)l Ilvllllwll for all v ,w c V. (5.2) 

Let v, w C V. Then the angle between v and w is defined to be the real 
number  0 C [0, 7r] such that  

cos 0 - (v, w) 
Ilvllll ll" 

(Note that  by (5.2) this number  lies between - 1  and 1.) Now Let c~,~ C 
and let 0 be the angle between them. Then 

11911 (~, c~> - - 2 ,,-v7 ~ cos 0. O/) IIC~ll 
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So (a,/3) (/3, a) - 4 cos 2 0 which must be an integer because (a,/3) and (/3, a) 
are integers. Now, because 0 _< cos 2 0 _< 1, we have that  (a, 13) and (/3, a) 
have the same sign and are equal to 0, +1, +2 or +3. So Table 5.1 gives the 
only possibilities for the angle between a and/3  when a r +/3 (this rules 

out 0 -  0, 7 0 and I1~11 _> I1~11. 

7r 0 0 
1 1 

-1 -1 23 
3 

1 2 4 
-1 -2 3~ 

4 
1 3 7r 

-1 -3 56~r 
6 

IIz l12/ll ll 2 
undetermined 

1 
1 
2 
2 
3 
3 

Table 5.1" Possible angles 0 between roots a and/3. 

P r o p o s i t i o n  5.4.1 Let a and fl be two roots with a r :kfl. I f  (a, fl) > 0 
then a - / 3  is a root, and if (a,/3) < 0 then a +/3 is a root. 

Proo f .  If (a,/3) > 0 then also (a,/3) > 0. Now Table 5.1 implies that  
(a,/~) = 1 or (/3, a) = 1. In the first case we have rz (a )  = a - / ~  lies in 
(I). On the other hand, if (fl, a) = 1 then by the same argument we have 
/ 3 -  a C (I). Hence also a - / ~  = - ( / 3 -  a) lies in (I). Finally, if (a,/3) < 0 
then we apply the above argument to -/~. D 

Let a,/~ C ~. We recall that  the string of roots / 3 -  ra,  f l -  ( r -  
1 ) a , . . .  ,/3+ qa is called the a-string containing/3. The first two parts of the 
next proposition have been proved for root systems arising from semisimple 
Lie algebras. But since we are dealing with abstract root systems that  may 
not be connected to any Lie algebra, we have to prove them again. 

P r o p o s i t i o n  5.4.2 Let a, fl C �9 be two roots such that a ~ i f l .  
be the largest integers such that f l -  ra  and fl + qa are roots. Then 

Let r, q 

1. /3 + ia  are roots for - r  <_ i <_ q, 

2. r - - q - -  (fl, a),  

3. the length of the a-string containing/3 is at most 4, i.e., r + q + 1 <_ 4. 
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P r o o f .  

1. If r - q - 0, then there is nothing to prove. So suppose tha t  not 
both  r and q are 0. Suppose further that  there is an integer j with 
- r  < j  < q s u c h t h a t  f l + j c ~ i s n o t  a f o o t .  Set a - / ~ - r c ~ .  Then  
there are integers 0 _ s < t such tha t  a + sc~ and a + tc~ are roots 
while a + (s + 1)a and a + ( t -  1)c~ are not roots. Proposi t ion 5.4.1 
implies tha t  (o + sc~, c~) >_ 0 and (0 + tc~, a) _< 0. This  means tha t  

(~, (~) + (s - r)(c~, c~) >_ 0 while (fl, c~) + (t - r)(c~, c~) <_ 0. 

Mult iplying the first inequality by - 1  and adding we get ( t - s ) ( a ,  ~)  < 

O. But this is a contradict ion since a ~ O. 

2. The  reflection ra adds an integer multiple of c~ to a root, hence the c~- 
string containing fl is invariant under ra.  Furthermore,  since ra  : (I) -+ 
(I) is a bijection (Lemma 5.3.4), it also maps the c~-string containing/3 
bijectively onto itself. The  reflection ra acts as follows: 

+ = - 

From this it follows tha t  the pre-image o f / 3 -  r(~ must b e / 3  + qa. 
Hence 

- r a  = ra ( f l  + qa)  - (~  + qa)  - <fl + qa ,  a ) a .  

And this is equivalent to r - q - (~, a) .  

3. By 2. we have tha t  (fl + qa,  a)  - (3, a)  + 2q - q + r. So by Table 5.1 
we see tha t  q + r - 0,1, 2, 3. H e n c e r + q + l _ 4 .  

E x a m p l e  5.4.3 We can use Table 5.1 to classify all possible root systems 
(I) of rank 2. For tha t  choose two linearly independent  roots a and /3  from 
(I) in such a way tha t  (/~, a)  is minimal. Then (/3, a)  can only be 0 , - 1 , - 2  
or -3, and for each of these values we have a unique root system (up to 
isomorphism). They  are shown in Figure 5.1. We observe tha t  the root 
system of type B2 is the one connected to the Lie algebra of Example  4.9.1. 
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5.5 Simple systems 

B2 G2 

Figure 5.1: All possible root systems of rank 2. 

5.5 Simple systems 

In this section we will make a first step towards classifying root systems. We 
define a special type of basis consisting of roots, called simple system. Then 
in the next section we put the integers (a, ~} for a,/3 in a simple system into 
a matrix, called a Caftan matrix. We will show that a Cartan matrix is a 
complete structural invariant of root systems. This will allow us to classify 
root systems by classifying Cartan matrices. 

Let (I) be a root system in the Euclidean space V. We say that a partial 
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order  < on V is a root order if 

1. every root c~ C �9 is comparable  to zero (i.e., e i ther  c~ > 0 or c~ < 0), 

2. i f v c V i s s u c h t h a t v > 0 ,  t h e n f o r A C ~  A v > 0 i f A > 0 a n d A v < 0  
ifA < 0 ,  

3. if f o r u ,  v c V w e h a v e u < v ,  t h e n u + w < v + w f o r a l l w E V .  

Let < be a root order. We note tha t  if v < 0, then  by adding  - v  and 
apply ing  3., we get - v  > 0. 

To give an example  of a root order we first choose a basis { v l , . . .  , vl} 
of V. Let v C V, then  v can be wr i t ten  as a linear combinat ion  of the basis 
elements: 

l 

v =  E )~ivi w h e r e ~ l , . . . , ~ l E R .  
i = 1  

T h e n  v > 0 if the first non-zero Ai is positive. Also for v, w E V we set 
v > w if v - w  > 0. We have tha t  > is a total  order on V and it is clearly 
a root order. We call < the lexicographical order relative to V l , . . .  , vl. 

Now let < be a root order. A root a C �9 is said to be positive if c~ > 0, 
and  negative if c~ < 0. By ~+  we denote the set of posit ive roots  and by 
�9 - the set of negat ive roots.  Since roots are ei ther  posit ive or negative, 

= �9 + U ~ - .  Note tha t  ~ -  = - ~ + .  

D e f i n i t i o n  5 .5 .1  A root c~ is said to be simple if c~ is positive and c~ cannot 
be writ ten as a sum a = ~ + 9/ where ~, ~ E �9 are both positive. 

E x a m p l e  5 .5 .2  Let V = I~ 2 and let 

(I) = {(1, 0), (0, 1), ( - 1 ,  0), ( 0 , - 1 ) ,  (1, 1), ( - 1 ,  1), ( - 1 , - 1 ) ,  ( 1 , - 1 ) }  

be the root  sys tem of Example  5.3.6. Set c~ = (1, 0) and fl = (0, 1) and let < 
be the lexicographical  order  relative to c~,/3. Then  the posit ive roots  are seen 
to be (1, 0), (0, 1), (1, 1), and ( 1 , - 1 ) .  Fur thermore ,  (1, 0) = ( 1 , - 1 )  + (0, 1) 
and (1, 1) = (1, 0) + (0, 1). The  other  two positive roots  cannot  be wr i t t en  
as sums of positive roots; so the simple roots are (0, 1) and ( 1 , - 1 ) .  

L e m m a  5 .5 .3  Let ~ and ~ be simple roots. I f  ~ ~ 13 then ~ - / 3  is not a 
root and ((~,/5) <_ O. 

P r o o f .  Suppose tha t  c~-/~ is a root. If it is positive then  c~ = (c~-/3) +/5 and 
(~ is not simple. On the other  hand,  if it is negative, t hen /3  = - ( a  - ~) + 
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is not simple. And we have obtained a contradiction. 
now follows from Proposi t ion 5.4.1. 

The last assertion 
E] 

L e m m a  5.5 .4  Let a l , . . .  , at E V be such that (~i > 0 and (O/i, O/j) _~ 0 for 
1 ~ i ~ j ~_ n. Then these vectors are linearly independent. 

P r o o f .  Suppose that  there exists a relation ~ i  Ai(~i = 0. Wi thou t  loss of 
generality we may assume that  ~1 ~= 0. After dividing by ),1 we obtain a 
relation 

t 

0~1 -- E piO~i. 
i=2 

Now let A1 be the set of the c~i such that  #i > 0, and A2 the set of those 
cq such that  #i _~ 0. Set 

( 7 -  ~ #iOli and p -  ~_~ ~iO~i �9 
otiE/kl otiE/k2 

Then a l  = ( 7 + p .  Furthermore,  (7 ~ 0 because a l  > 0. Now ((7,p) = 
~'ij (c~i, a j )  where yij ~_ O, and because (c~i, c~j) < 0 we have ((7, p) > 0. So 

(O/1, (7) -- ((7, (7) -'~ (p, (7) > 0, 

but  also ( a l , a )  - ~--~ieA1 #i(OL1, Oli) ~ 0. And from the assumption that  
the c~i are linearly dependent we have derived a contradiction. D 

P r o p o s i t i o n  5.5.5 Let A - ( a l , . . .  , a l }  be the set of all simple roots. 
Then A is a basis of V. Moreover, if a is a positive root, then 

O l  - -  

1 

E kio~i 
i=1 

where the ki are non-negative integers. 

P r o o f .  The fact tha t  A is linearly independent follows from Lemmas 5.5.3 
and 5.5.4. 

We prove that  each positive root is a non-negative integral combination 
of the simple roots. Let c~ > 0 and suppose we already know the result for 
all roots < c~. If c~ is simple, then there is nothing to prove. Otherwise 
(~ = /~  + ")' where/~ and -), are positive roots. Then c~ - / ~  > 0 so tha t  (~ > /~  
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and likewise a > 3'. By induction, 13 and 3' can be wri t ten as linear com- 
binations of the simple roots with non-negative integral coefficients. Hence 
the same holds for c~. [3 

C o r o l l a r y  5.5.6 Let ~ be a positive root that is not simple. Then there is 
a simple root c~ such that ~ -  (~ is a root. 

P r o o f .  Let A be the set of all simple roots, and suppose that  (~, c~) <_ 0 for 
all c~ C A. Then by Lemma 5.5.4 A U {/3} is linearly independent  which is 
impossible because by Proposi t ion 5.5.5, A is a basis of V. Hence there is 
an c~ r A such that  (/3, c~) > 0. Then by Proposit ion 5.4.1, 13-c~ is a root. [3 

C o r o l l a r y  5 .5 .7  Let A -  {(~1,... ,(~L} be the set of simple roots. Let ~ be 
a root and write ~ -  ~ i  ki(~i. Then ki is an integer for 1 <_ i < 1 and either 
all ki >_O or all ki < O. 

P r o o f .  This follows at once from Proposit ion 5.5.5. 

Let A be the set of all simple roots relative to some root order <. Then 
A is called the simple system relative to <, of the root system (I). By 
Proposi t ion 5.5.5 it forms a basis of V. We remark that  (I) has no unique 
simple system of roots. Indeed, A depends on the order <. In general a 
different order yields a different simple system. 

By the next result we have that  the s tatement  of Corollary 5.5.7 char- 
acterizes simple systems. 

P r o p o s i t i o n  5.5.8 Let C~l,... ,(~l C (D, where 1 is the rank of ~, be such 
that every element of �9 can be written as a Z-linear combination of the (~i 
such that all coefficients are either non-negative or non-positive. Then there 
exists a root order < such that { a l , . . .  ,c~t} is the simple system relative to 
< oIO. 

P r o o f .  Since every root is a linear combination of the elements of A, we 
have that  A is a basis of V. Now let < be the lexicographical order of V 
defined by this basis (i.e., v = ~-~i Aic~i > 0 if the left-most non-zero hi is 
positive). Then a root ~ = ~~i kiai is positive if ki >_ 0 for all i. So A 
consists of positive roots, and clearly no c~i C A can be wri t ten as a sum of 
positive roots. Hence A is the simple system of (I) relative to <. O 

We end this section with a definition that  will be useful later on. 
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D e f i n i t i o n  5 .5 .9  Let ~ be a positive root and write ~ as an integral linear 
combination of simple roots, 

1 

i--1 

where all ki >_ O. Then the number ht(fl) l - ~-~i=1 ki is called the height of 
Z. 

5.6 C a r t a n  m a t r i c e s  

An l •  with  integer coefficients is called a Cartan matrix if there 

are vectors v l , . . .  , vl in a Eucl idean space V such tha t  

�9 C( i , j )  = (vi,vj) for 1 < i , j  < l  and 

�9 (Vi, Vj) ~ 0 for 1 _~ i ~= j < I. 

We note tha t  the vectors v l , . . .  , vl are necessarily independent  by L e m m a  
5.5.4. The  diagonal  entries of a Car t an  mat r ix  are (vi, vi) = 2. Fur ther-  
more, since (vi, vj) < 0 for i ~ j we have tha t  the off-diagonal entries are 
non-positive. Because (vi, vjl is an integer, by the same argument  as used 

in Section 5.4 we see tha t  (vi, vj) = 0 , - 1 , - 2 , - 3  for i ~ j .  

If we permute  the vectors v l , . . .  , vt, then also the corresponding Car t an  
mat r ix  will change. Let C ~ be a second Car tan  matr ix,  then  C ~ is said to be 
equivalent to C (we write C ,,~ C ~) if a pe rmuta t ion  of the vectors v l , . . .  , vl 
carries C to C ~. 

Let (I) be a root sys tem in the Euclidean space V and let A = {a l ,  �9 �9 �9 , cq} 
be a simple sys tem of (I) (relative to some root order). T h e n  L e m m a  5.5.3 
implies tha t  the mat r ix  

C--((O~i  O~j)) l i,j=l 

is a Ca r t an  matrix;  it is called a Car tan  mat r ix  of the root sys tem (I) rel- 
ative to A. The  objective of this and the next section is to show tha t  the 
root sys tem (I) and the Car t an  matr ix  C of (I) determine each other  upto  
equivalence. 

E x a m p l e  5 .6 .1  Let (I) be the root system of Example  5.5.2. Set c~1 - (0, 1) 
and c~2 - ( 1 , - 1 ) ;  then  as seen in Example  5.5.2, A1 - {c~1,c~2} forms a 
simple system for (I). By comput ing  the various root strings involving c~1 
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and c~2 and using Proposition 5.4.2, we see that  the Cartan matrix relative 
to A1 is 

( 2  - 1  / 
C1 - - 2  2 " 

However, if we set/31 - c~2 and/32 - c~1 and A2 - {/31,/32}, then the Cartan 
matrix relative to A2 is 

:) 
And these are equivalent Cartan matrices" C1 "~ C2. 

A Cartan matrix C together with the corresponding simple system A -- 
{C~l,... ,c~l} determines the root system �9 completely. In order to show 
this we give an algorithm for determining �9 from C and A. We recall that  
the height of a root is defined in Definition 5.5.9. 

Algorithm Carta n M atrixToRootSystem 
Input: a simple system A = { o ~ 1 , . . .  ,o~/}  of the root system �9 and an 

1 x / -ma t r i x  C that  is the Cartan matrix of (I) relative to A. 
Output: the set of vectors ~. 

Step 1 Set ~+ "-  A and n "-  1. 

Step 2 For all 3' E ~+ of height n and for all c~j E A we do the following: 

1. Write 

l 

- Z (5.3) 
i=1  

2. Determine the largest integer r _> 0 such that  ~ ' -  ra j  ~_ ~+. 

3. Set 
l 

q . =  - k , c ( i ,  j ) .  

i=1  

4. If q > 0 then set ~+ : -  ~+ U {'y + c~j}. 

Step 3 If in Step 2 ~+ has been enlarged, then set n := n + 1 and return 
to the beginning of Step 2. Otherwise return ~+ U - ~ + .  

Proposit ion 5.6.2 Let ~o be a root system and let A be a simple system of 
�9 with Cartan matrix  C. Then CartanMatrixToRootSystern(A,C) returns 
the set ~.  
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Proof .  Let fl be a positive root. By induction on ht(/~) we prove that after 
ht(/~) - 1 rounds of the iteration, the set �9 + will contain ft. For ht(/3) = 1 
this is clear since the roots of height 1 are the simple roots in A. 

Now suppose that ht(/3) - n  + 1 and (b + already contains the positive 
roots of height <__ n. Then by Corollary 5.5.6, we see that 13 = ~, + aj 
w h e r e v  C �9 is of height n and aj C A. So at some stage in Step 2, 
and (~j are considered. Since ~/+ aj  is a root we have that ~, r c U. We let 
~/-r (~ j , . . .  , "~ +qo~j be the aj-string containing ~. As ~/~ aj, in (5.3) there 
is some ki > 0 with i ~ j .  Hence all elements of the cu-string containing ~' 
are positive roots by Corollary 5.5.7. So by induction, the first part of the 
string, - y -  roLj , . . . ,  9/is contained in (I) +. Hence in Step 2.2 the maximal 
integer r is determined such that ~ / -  rolj is a root. Then by Proposition 
5.4.2 we have 

l l 

q -  r -  @,aj)  = r -  E ki{ai 'aJ) - r -  E kiC(i'J)" 
i=1  i--1 

Now since/~ E ~, we have q > 0 and/3 will be added to ~+. 

Also it is clear that only roots are added to ~+. Therefore after a finite 
number of steps, ~+ will contain all positive roots. Hence �9 = O + U - O  +. [::] 

C o r o l l a r y  5.6.3 Let ~1 and ~2 be root systems in the Euclidean spaces V1 
and 172 respectively. Let A1 and A2 be simple systems of respectively ~1 and 
d2 2 and let C1 and C2 be their respective Caftan matrices. Then C1 " C2 
implies ~1 ~ ~2. 

Proof .  Let A 1 - -  { o ~ 1 , . . .  ,Oi l}  and A2 - {/~1,... ,~t}. Because C1  '~  C 2  

we may suppose that A2 has been permuted in such a way that (ai, aj} = 
(~i,/3j) for 1 _< i , j  <_ l. Let f �9 V1 --+ V2 be the linear map defined by 
f (a i )  =/~i. By the algorithm CartanMatrixToRootSystem we see that 

l l 

E E c 
i=1 i=1  

In particular, the root strings in ~1 and (1)2 match. So by Proposition 5.4.2, 
we have that f is an isomorphism of root systems. [::] 
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5.7 Simple systems and the Weyl group 

The objective of this section is to show the converse of Corollary 5.6.3" 
namely that two isomorphic root systems have equivalent Cartan matrices. 
First we show that two simple systems A1 and A2 of the same root system 

can be mapped onto each other by an automorphism of (I). The desired 
result will be an easy consequence of this. In the proof we make use of 
a group of automorphisms of (I), called the Weyl group. This group is of 
paramount importance in the theory of semisimple Lie algebras. At the end 
of the section we exhibit a convenient set of generators of it. 

First we introduce one more example of a root order. For that let v0 C V 
be such that (v0, a) ~ 0 for all a E (I). As such a v0 must lie outside a finite 
number of hyperplanes, such v0 evidently exist. Now for u, v E V such that 
(u, v0) ~ (v, v0) we put u < v if (u, v0) < (v, v0). It is immediate that this 
is a root order. We say that < is the root order defined by v0. As seen 
in Section 5.5, this order defines a simple system. Conversely, let A be a 
simple system of �9 (relative to some root order). Choose v0 C V such that 
(c~, v0) > 0 for all c~ C A (from the non-degeneracy of ( , ) it follows that 
we can choose v0 such that, for example, (a, v0) = 1 for all c~ E A). Then 
by Corollary 5.5.7 it is clear that (v0, c~) ~ 0 for all c~ E ~. Hence v0 defines 
a root order. It is straightforward to see that A is the set of simple roots 
relative to this order. 

Let c~ C (I) and consider the reflection ra. By Lemma 5.3.4 together 
with (5.1) we see that r~ is an automorphism of the root system ~. Also 
products of reflections are automorphisms of (I). So it is natural to consider 
the group generated by all reflections ra for c~ E ~. This group is called the 
Weyl group; it is denoted by W(O). 

Since an element of W(O) is entirely determined by the way in which 
it acts on ~, the Weyl group W(O) can be viewed as a subgroup of the 
symmetric group on ~. In particular W(O) is finite. Furthermore, because 
the generators of W((I)) leave the inner product invariant by (5.1), the same 
holds for all elements of W(O). 

Now we fix a root order < and let A be the simple system of ~, relative 
to <. 

L e m m a  5.7.1 Let (~ E �9 be a simple root then ra permutes the set (I)+\{c~}. 

P roof .  Let ~ be a positive root distinct from c~. We must prove that ra(~) 
is again an element of (I) + \ {c~}. By Corollary 5.5.7 we have 

~EA 
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where all k 7 are non-negative integers. Because/3 cannot be a scalar multi- 
ple of a, some kTo for a ~/0 r a must be positive. Now ra(~)  = ~ -  (fl, a )a ;  
hence the coefficient of ")'0 in ra(/~) still is kT0. So ra(~)  has at least one 
positive coefficient, and  therefore it is a positive root. Also ra(~)  ~ a be- 
cause kTo > 0. [5 

Set 
1 

,6~r 

The vector p C V is called the Weyl vector. 

C o r o l l a r y  5.7.2 Let a be a simple root. Then ra (p) - p - a. 

P r o o f .  First we have 
1 1 

Z 
~e~+\~ 

Hence the corollary follows from the fact that  ra maps a to - a  and per- 
mutes the other positive roots (Lemma 5.7.1). [:3 

The next theorem implies that  the Caftan matrix does not depend on 
the simple system chosen. 

T h e o r e m  5.7.3 Let A1 and A2 be two simple sys tems of (~. Then there is 
a g C W(O) such that g(A1) - A2. 

P roo f .  Let v0 C V be such that  (a, v0) > 0 for all a C A1. Then as seen at 
the beginning of this section, A1 is the simple system of �9 relative to the 
order defined by v0. Let p be the Weyl vector corresponding to A2 (i.e., half 
the sum of the roots that  are positive relative to the order that  defines A2). 
Now choose a g e W((I)) such that  (g(vo),p) is maximal. (Because W((I)) is 
finite such a g exists.) Then for a C A2 we have 

(g(v0). p) >__ p) 
2 - 1 )  = (g(vo) ,ra(p))  (by (5.1) and ra 

= (g(vo), p -  a) (by Corollary 5.7.2) 

= (g(v0). p) - 

Hence (g(vo), a) >_ 0 for all a e A2. Furthermore, (g(vo), a) - 0 for some 
a E A2 implies that  (vo, g - l ( a ) )  - 0 which is impossible because (vo, 13) # 0 
for all fl C �9 by the choice of vo. So the order defined by g(vo) yields the 
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simple system A2. 
Hence g(A1) = A2. 

But for/~ E A1 we have (g(~),g(vo)) = (~, v0) > 0. 

C o r o l l a r y  5.7.4 Let ~1 and ~ be root systems in the Euclidean spaces 
V1 and V2 respectively. Let A 1 and A2 be simple systems of ~ and ~2 
respectively and let C1 and C2 be their respective Cartan matrices. Then 
C1 ".~ C2 if and only if ~1 ~- ~ .  

Proof .  One direction was performed in Corollary 5.6.3. For the other di- 
rection, suppose that (I)l ~ ~2. Let f : V1 --+ V~ be an isomorphism of 
root systems (i.e., a bijective linear map such that (f(c~), f (~))  = (c~, ~/ 
for c~,/~ E (I)). Then by Theorem 5.7.3, after composing f with a suitable 
element of W (~2) we may suppose that f (A 1) = A2. Hence C1 .-~ C2. [::] 

Let A be a fixed simple system of �9 and let c~ E A. Then the reflection 
ra is called a simple reflection. We show that the Weyl group W(O) is 
generated by the simple reflections. For that let W0(O) be the subgroup of 
W (~) generated by all simple reflections. 

L e m m a  5.7.5 Let ~ E �9 be a root; then there exist (~ E A and g E Wo(O) 
such that g(a) = ~. 

Proof .  First we suppose that ~ is a positive root. We use induction on the 
number ht(/~). If ht(~) = 1, then/~ E A and we can take g = 1. Suppose 
that ht(~) > 1. Then there is an a E A such that (c~, ~) > 0 (otherwise the 
set A U {~} is linearly independent by Lemma 5.5.4; and this is absurd). 
Then also (~, c~} > 0. Set ~ = r~(~) = ~ -  (~, c~}c~; then ~ is a positive root 
and ht(~,) < ht(~). So by induction there is a h E W0(O) and an a '  E A 
such that -)' = h(c~'). Hence ~ = ra(7) = rah((~') and we take g = rah. 

Now if ~ is negative, then - ~  is positive and hence - ~  = g(c~) for some 
c~ E A and g E W0(~). So ~ = g(-c~) = gra((~) and the result follows. El 

T h e o r e m  5.7.6 The Weyl group W(O) is generated by the simple reflec- 
tions. 

Proof .  Let ~ E ~, then by Lemma 5.7.5 there is a g E W0((I ') such that 
g(~) - a for some simple root c~ E A. So ra = rg(z) - grzg -1 (the last 
equality can be established by a straightforward calculation, using the fact 
that g leaves the inner product ( , )  invariant). Hence rz = g- l rag  E Wo(O) 
and the result follows. [:] 
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5 . 8  D y n k i n  d i a g r a m s  

In Section 5.7 we showed that a Cartan matrix is a complete invariant 
of root systems (Corollary 5.7.4). In particular, a classification of Cartan 
matrices will yield a classification of root systems. In this section we replace 
the Cartan matrix by a graph, called a Dynkin diagram. We show that a 
Cartan matrix and the corresponding Dynkin diagram determine each other. 
Finally in the next section we will classify Dynkin diagrams. 

Let C be a Cartan matrix and let cq , . . .  , al be elements of a Euclidean 
space V such that C(i, j) = (ai, aj) and (ai, aj) < 0 for i # j. We define 
the Dynkin diagram of C to be the graph on I points with labels a l , . . .  , al. 
Two points a{ and aj will be connected by (Oli, O~j>(O~j,Oli > -- O, 1,2,3 lines. 
If the number of such lines is greater than one, then the two elements a/ 
and aj have unequal length. In this case we put an arrow pointing from the 
longer to the shorter vector. 

E x a m p l e  5.8.1 Suppose that the Cartan matrix corresponding to the vec- 
tors O~1 ~ O~2, O~3, Ol4 is 

C 

2 -1 0 0 

O1 2 - 2  0 
- 1  2 - 1  " 
0 - 1  2 

We see that 

2(012, OL3) 
( a 2 , a 3 } =  i~33:-a- ~ : - 2 ,  

2(O~3, OL2) __ -1 .  = - 

Hence a2 is longer than a3. From this it follows that the Dynkin diagram 
of C is 

0 Q > 0 0 
0~1 oL2 0~3 014 

We show that from the Dynkin diagram we can recover the Cartan 
matrix. Let C be a Cartan matrix corresponding to the vectors a l , . . .  , cq. 
Let i # j E {1 , . . . , 1} .  Then we know that <ai ,aj)  _< 0. Let k be the 
number of lines connecting ai and aj  in the Dynkin diagram. If k - 0, 
then <ai ,a j /  = 0, and if k = 1, then ( a i , a j )  = -1 .  If k >__ 2, then a~ and 
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c~j have unequal length. From the diagram it can be determined which of 
the two is the shortest. Suppose k = 2; then (c~i,c~j) is - 1  or - 2 .  If ai 
is shorter than c~j, then (c~i,c~j) = -1 .  On the other hand, if c~i is longer 
than c~j, then (c~i, a j )  = -2 .  By a similar reasoning we see that  we can 
determine (c~i, c~j) in the case where k = 3. So from the Dynkin diagram we 
can determine the off-diagonal elements of the Cartan matrix. Furthermore 
the diagonal elements are all equal to 2. The conclusion is that  the Dynkin 
diagram determines the Cartan matrix. 

Now let �9 be a root system with Caftan matrix C. Let D be the Dynkin 
diagram of C; then we also say that  D is the Dynkin diagram of ~. Since 
the Caftan matrix is a complete invariant of root systems and the Cartan 
matrix and the Dynkin diagram determine each other we see that  a root 
system has a uniquely determined Dynkin diagram. By Proposition 5.3.8, 
a direct sum decomposition of a semisimple Lie algebra corresponds to a 
direct sum decomposition of its root system. By the next result, this in 
turn corresponds to a decomposition of the Dynkin diagram into connected 
components. 

L e m m a  5.8.2 Let �9 be a root system with Dynkin diagram D. Then ~2 = 
~1 @ g22 if and only if D can be decomposed as the union of two components 
D1 and D2 that are not connected and such that Di is the Dynkin diagram 
of ~i f o r i  = 1,2. 

P r o o f .  First suppose that  �9 = ~1 G ~2. Let A1 = {o~1, . . .  ,Ols} and 
A2 = {/~1,-.. ,/~t} be simple systems of (I)1 and (I)2 respectively. Then 
A = A1 U A2 is a simple system of (I). Let D be the Dynkin diagram of ~. 
Then the vertices of D are labelled C~l,. �9 �9 , as,/31, �9 �9 �9 ,/3t. Furthermore none 
of the c~i can be connected to a/~j. Hence D is the union of two components 
D1 and D2 that are the Dynkin diagrams of (I)l and ~2 respectively and D1 
and D2 are not connected. 

Now suppose that  D is the union of two components D1, D2 that  are 
not connected. Let A be a simple system of ~. Then A = A 1 U A2, where 
A1, A2 are non-empty and (c~,/~) = 0 for a E A1 and ~ E A2. Let C be the 
Cartan matrix corresponding to D. We apply the algorithm CartanMatdx- 
ToRootSystem on A and C. Then the positive roots that  are constructed are 
all of the form ~-~.~ k~7, where all ~, C A1 or all 7 E A2. Hence �9 - ~1 G ~2 
where Oi is the root system with simple system Ai for i = 1, 2. E:I 
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5.9 Classifying Dynkin diagrams 

In this section we classify all possible Dynkin diagrams, thereby classifying 
all possible root systems. By Lemma 5.8.2 we may restrict our attention 
to connected Dynkin diagrams. We then obtain a classification of all root 
systems that are not direct sums. All other root systems are direct sums of 
these. 

For simplicity we first drop the arrows in the Dynkin diagram. The 
resulting graph is called a Coxeter diagram. We will determine all possible 
Coxeter diagrams and than add the arrows on again. 

Let C be a Caftan matrix corresponding to the vectors a l , . . .  , al in the 
Euclidean space V. Then for 1 <_ i 7~ j <_ 1 we have 

4(Oli, Olj) 2 
= 0 , 1 , 2 , 3 ,  and (ai, a j ) < 0 .  

Now we replace ai by vi - )~iai where )~i C N is a positive number such 
that vi has length 1. Then we have the simpler conditions 

(vi, vi) = 1, 4(vi, vj) 2 -- 0, 1, 2, 3, and (vi, vj) ~ 0, (5.4) 

for 1 _< i 7~ j _< l. A set of vectors A - {Vl , . . . , v l}  in V is called an 
admissible configuration if the conditions (5.4) are satisfied. The Coxeter 
diagram of an admissible configuration A - {Vl,. . .  , vl} consists of 1 points 
labelled V l , . . . ,  vl, where the points vi and vj are connected by 4(vi, vj) 2 
edges. It is clear that the Coxeter diagram of the original Cartan matrix C 
is the same as the Coxeter diagram of A. 

We now prove a series of lemmas that will lead to the classification of the 
Coxeter diagrams of admissible configurations. The first of these lemmas is 
clear without proof. 

L e m m a  5.9.1 Let F be the Coxeter diagram of the admissible configuration 
A. Let A'  be a subset of A and let F ~ be the diagram obtained from F by 
deleting all points corresponding to the elements that are not in A ~ and all 
lines incident with them. Then A ~ is an admissible configuration and F' is 
its Coxeter diagram. 

L e m m a  5.9.2 Let A - -  {Vl,..., Vl} be an admissible system. Then the 
number of pairs vi, vj such that i < j and (vi, vj) ~ 0 is less than 1. 

Proof .  Set v - ~li= 1 vi, then 

1 

o < - 2 -l+ Z 
i--1 i<j i<j 
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Now if (vi, vj) ~ 0, then 2(vi, vj) < -1 .  It follows that there are less than 1 
such pairs. [::] 

L e m m a  5.9.3 Let F be the Coxeter diagram of the admissible configura- 
tion A. Then F contains no cycle (where a cycle is a sequence of points 
v i i , . . .  , vik such that Vij i8 connected to Vij+l and vik to vil). 

Proof .  By Lemma 5.9.1 a cycle is the Coxeter graph of an admissible con- 
figuration (drop all points not in the cycle). But this Coxeter graph violates 
Lemma 5.9.2. D 

L e m m a  5.9.4 Let F be a Coxeter diagram and v a point ofF.  Let k be the 
number of edges incident with v. Then k <_ 3. 

Proof .  Let Ul , . . .  , Uk be the points connected to v. Then (ui, uj) - 0 for 
i ~ j because of Lemma 5.9.3. Let W be the space spanned by v, Ul , . . .  , Uk. 
Extend the set {Ul, . . .  , Uk} to an orthonormal basis {u0, Ul, . . .  , Uk} of W. 
If v is orthogonal to u0, then v is in the space spanned by {Ul, . . .  ,Uk} 

k 
which is not the case. Hence (v, u0) ~ 0. Furthermore v - ~-~i=o(V, ui)ui so 
that 

k k 

uo) +E(v, il 
i--O i--1 

k 2 From this it follows that ~i=l(V,  ui) < 1 and hence ~-~i~1 4(v, ui) 2 < 4. 
We observe that 4(v, ui) 2 is the number of lines connecting v and ui. The 
result follows. [:] 

L e m m a  5.9.5 The only connected Coxeter diagram that contains a triple 
edge is 

G2" 

Proof .  This is immediate from Lemma 5.9.4. 0 

L e m m a  5.9.6 Let A be an admissible configuration with Coxeter diagram 
F. Let u 1, . . .  , Uk be elements from A that form a simple chain in F (that 
is ui is connected to Ui+l by a single edge for 1 <_ i < k -  1). Set 
A' { k -- ~ i = l  ui} t2 A \ {ul,  . . . , Uk}. Then A' is an admissible configuration. 
Furthermore, the Coxeter diagram of A' is obtained from F by shrinking the 
simple chain u l , . . .  , uk to a point. 
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P r o o f .  F r o m L e m m a  5.9.3 we have that  (ui,uj) = 0 for 1 __ i < j _~ k 
k unless j = i + 1 when 2(ui, ui+l) - - 1 .  Set u -  ~-~4=1 ui, then 

k 

(u, u) = E ( u i ,  u i ) +  ~ 2(ui, uj) = k -  ( k -  1) - 1. 
i--1 i<j 

Also an element w E A ~ is connected to at most one element ui from 
the set { u l , . . .  ,Uk} because by Lemma 5.9.3 there are no cycles. Hence 
(u, w) = (u, ui) and 4(u, w) 2 = 4(ui, w 2) - 0, 1, 2, 3. The last s ta tement  is 
immediate.  [:] 

L e m m a  5.9 .7  A Coxeter diagram does not contain a subdiagram of one of 
the following forms: 

1. 0-:- 0 - - - - - -0  . . . .  

, O: O 0 o< 
"--o 

, 
o o . . . . .  o<.... ~ 

P r o o f .  Suppose one of these is a subdiagram of a Coxeter diagram. Then 
by Lemma 5.9.1 this is a Coxeter diagram in its own right. Now we use 
Lemma 5.9.6 to shrink the simple chains to a point and obtain that  one of 

0 - - - - - -0  0 

is a Coxeter diagram. 
due to Lemma 5.9.4. 

o o<:% 
o..  I o  

However, none of these can be a Coxeter diagram 
[3 

L e m m a  5.9.8 Let F be a Coxeter diagram of an admissible configuration. 
If F is connected, then F is one of 
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Al" 0 0 " "  O 0 

L ( p , q ) "  

T(p,  q, r) . 

0 0 . . . . .  0 0 0 0 . . . .  0 0 
~t 1 U2 Up__ 1 ltp Vq Vq__ 1 V 2 V 1 

Z 
0 0 . . . .  - - - -0  0 - - - - - - 0  . . . .  0 0 
Ul u2 up-1 l Vq-1 v2 Vl 

Wr_1 

I W2 

Wl 

G2" (~ ~) 

P roof .  If F contains a triple edge, then F must be G2 by Lemma 5.9.5. So 
we may suppose that F does not contain a triple edge. 

Suppose that F contains a double edge. Then it contains no other double 
edge by Lemma 5.9.7. Also by the same lemma it does not contain a "node", 

�9 

i.e., a subdiagram of the form O ~ O- Hence F must be an L ( p ,  q). 

Now we suppose that F does not contain triple nor double edges. If F 
contains a node, then by Lemma 5.9.5 it contains only one node. Hence F 
is a T ( p ,  q, r) .  

On the other hand, if F does not contain a node, then it must be an Al 
by Lemma 5.9.3. [] 

L e m m a  5.9.9 Let  F be a C o x e t e r  d iagram o f  type L ( p ,  q). 

o/ 

�9 B L - - C , "  o o . . . . .  o o 

T h e n  F is one 

�9 F4" o o - - - - o  o 
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P q (where , vj as in the P r o o f .  Set u - Y'~-i=l iui and v = ~-~j=l jv j  tti are 
diagram of L(p, q)). For i < j we have that  (ui, uj) - 0 unless j - i + 1 
when 2(ui, ui+l) - - 1 .  Hence 

p 

(u, u) - E i2(ui' ui) + E ij2(ui, uj) - 
i = 1  i<j  

p p - 1  

E i2 - E i ( i  + 1) - p2 _ 
i = 1  i = 1  

p ( p -  1) p(p + 1) 

2 2 

And similarly 

(v v) - q(q + 1) 
' 2 

Also 4(Up, Vq) 2 - -  2, whence 

(u, v) 2 = p2q2(up, Vq) 2 --  
p2q2 

2 

Now we use the inequality of Cauchy-Schwarz, (u, v) 2 < (u, u)(v, v) to ob- 
tain 

p2q2 p(p + 1) q(q + 1) 
< 

2 2 2 

After dividing by pq and moving things around we see that  this is equivalent 
to ( p -  1 ) ( q -  1) < 2. Since both  p and q are positive, this gives tha t  either 
p = q = 2 (leading to F4) or one of p, q is equal to 1 and the other may be 
chosen arbitrari ly (all yielding a diagram of type B1 = C1). n 

L e m m a  5 .9 .10  Let F be a Coxeter diagram of type T(p, q, r), where p, q, r 
are integers > 2 (if one of them equals 1, then F is of type Al). Then F is 
o n e  o f  
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DI" O __o ! o 

E6 �9 �9 O 

ET" �9 �9 O 

E8 o �9 �9 o 

P r o o f .  Set 
p -1  q-1  r - 1  

 -EJ 3, 
i = 1  j = l  k= l  

Then u, v, w are linearly independent and z is not in the span of u, v, w (since 
the set of all ui, all vj,  all wk together with z is linearly independent) .  Let W 
be the space spanned by z, u, v, w and chose a z0 C W such that  {z0, u, v, w} 
is an orthogonal basis for W. Expressing z as a linear combination of basis 

elements we find 

(zo, ~) (~, z) (v, z) ~ (~, ~) 
~= (E:~0) z~ + (~,~i~+ (~-~ + (~,w) W. 

So that  
1 - ( z ,  z )  - ( zo ,  z )  2 

~o: zo) 
From which it follows that  

(~,z) 2 (v,z) 2 (~ ,z)  2 
(~,~) ~ (v,~) t ( ~ , ~ ) .  

' ~ ' < I .  
(~,~) (v,v) ( ~ , ~ )  

(5.5) 
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Now by an analogous argument as the one used in the proof of Lemma 5.9.9, 
we have that  (u, u) - p ( p -  1)/2. Also from the Coxeter diagram T(p,q,r) 
we have that  (u,z) 2 - ( p -  1)2/4. Hence 

(u,z) 2 _ - 1 ( 1 - 1 - ) ,  
2 v 

and similarly 

(v,z) 2 _ 1(1 _ 1) 
q 

(w,z) 2 1 1 
and (w,w) = ~ ( 1 -  -)'r 

Combining this with (5.5) we get 

1 1 1 
- + - + -  > 1. ( 5 . 6 )  
p q r 

Without  loss of generality we may assume that  p >_ q >_ r >_ 2. Then 
3 1 < 1 < ! and hence (5.6) implies r > 1 which implies r - 2. Now (5.6) 

p - - q - - r  
reduces to 

1 1 1 - +  - > - .  
p q 2 

1 > 1  2 Since ~ _ ~ we have ~ > �89 From this it follows that  q -  2, 3. 
1 If q - 2, then we see that  ~ > 0 which holds for all p >_ 2. In this case 

F is of type Dz. 
1 If q -  3, then ~ > ~ and p -  3, 4, 5, leading to E6, E7, Es. [3 

The Coxeter diagrams A/, together with those of Lemmas 5.9.9 and 
5.9.10 and G2 are all possible Coxeter diagrams. To obtain the list of all 
possible connected Dynkin diagrams, we have to put the arrows back on in 
the cases BL, Ct, F4, G2. Since the diagrams of F4 and G2 are symmetric, it 
does not matter  in which direction we point the arrow (both directions will 
yield equivalent Cartan matrices). However, in the case of B1, C1, the two 
directions are not equivalent. The conclusion is that  Table 5.2 contains the 
list of all possible connected Dynkin diagrams. We have labelled the points 
of the diagrams in Table 5.2 in order to fix a Cartan matrix corresponding 
to each diagram. 
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Al" 

Bt" 

0 
1 

0 
2 

0 
2 

1 - 1  1 

1 - 1  1 

CI 0 O ~  
1 2 

0 ~ 0 
1 - 1  l 

Dl" 0 
1 

0 
2 

l I 
0 0 

1 - 3  1 - 2  l - 1  

E6 0 0 
1 3 

2 I 
4 

0 - - - - - 0  
5 6 

ET" 
2 I 

0 
3 4 

0 0 0 
5 6 7 

Es  " 

F4 " 

G2: 

0 0 
1 3 

2 I 
4 

0 4)--------0 0 
5 6 7 8 

0 "1"- O. 0 
2 3 4 

~ ~ o  
1 2 

Table 5.2: The connected Dynkin diagrams. 

5.10 Constructing the root systems 

In the previous section we determined a list of possible root systems. That  
is to say: we took the set of all possible Dynkin diagrams and weeded out 
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those that by some elementary observations could not exist. It is however 
not yet clear that for every remaining Dynkin diagram D there exists a root 
system having D as Dynkin diagram. It is the objective of this section to 
establish this. 

Let D be a Dynkin diagram from Table 5.2, and let C be the correspond- 
ing Cartan matrix. The obvious way to show that there is a root system 
having D as its Dynkin diagram is to apply the algorithm CartanMatrixTo- 
RootSystem to C and prove that the output is a root system. However, it 
is a somewhat tedious job to describe the output of this algorithm for each 
Cartan matrix. Instead of this we will for each type describe a Euclidean 
space and a root system inside this space of that type. From this it will 
follow that by the algorithm CartanMatrixToRootSystem we can construct 
the root systems. 

Let X be one of A, B, C, D, E, F, G and 1 >_ 1 an integer (and l - 6, 7, 8 
i f X  = E, l - 4 i f X  - F a n d l -  2 i f X  - G). Then we say that X1 
is a simple type. Let V be a Euclidean space with inner product ( , ). A 
linearly independent set of vectors A - {c~1,.. . ,  c~l} C V is said to be a 
simple system of type Xl if 

( Olj , O~j ) 
= Cij for l <_ i , j  <_ l, 

where C is the Cartan matrix corresponding to the Dynkin diagram of type 
XI. 

P r o p o s i t i o n  5.10.1 Let Xl be a simple type. 
system �9 of type Xz. 

Then there exists a root 

Proof .  For each simple type Xl we give an explicit construction of a root 
system �9 inside a Euclidean space W having a Dynkin diagram of type X1. 
First we construct the root systems of types A1, B1, D1 and G2. In each 
case we work in a real Euclidean space V = N n with basis v l , . . .  , Vn and 
the usual inner product (defined by (vi, vj) = 5ij). In each case we define 
a lattice s in V {i.e., the Z-span of a basis of V). Then a root system 
in a subspace W of V is constructed as the set of all elements of s having 
prescribed lengths (and maybe satisfying some auxiliary conditions). First 
we give some general considerations that will help to show in each case that 
the conditions (R1)-(R4) of Definition 5.3.2 hold for ~. 

Since s is a lattice in V there can be only a finite number of elements 
of s at a given distance to the origin. Hence 4) is finite. It will always be 
clear that ~ spans W and does not contain 0; hence we have (R1). 
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Let c~ E �9 and suppose tha t  ~ -  Ac~ E �9 for a cer ta in  A C JR. Then  
(/~,/~) = A2(a, c~). From the requi rements  on the lengths of the e lements  

of �9 it will follow tha t  A is ei ther +1 or irrat ional .  If ,~ is i r rat ional ,  then  

Aa r  So the only mult iples  of a tha t  also lie in �9 are -t-a, and  (R2) is 
satisfied. 

In each case we will prove (R4) by individual  considerat ions.  But  then  

the reflection ra  maps  ~ in to /2 .  Fur thermore ,  the image of an e lement  of 
under  a reflection will again have the prescr ibed length by (5.1). Then  

(R3) will easily follow. 

Al" we set Y - IR 1+1 and /2 - {Y~]li+ll kivi I ki e z}. And @ - {v - 

~ i k i v i  C /2 I (v,v) = 2 a n d  ~ i k i  - 0}. Then  it is easily seen tha t  
consists of the elements  + ( v i -  vj) for 1 < i < j < 1 + 1. A simple sys tem is 

given by A -- {vl - v2, v2 - v3 , . . .  , vl - vl+l}. For the space W we s imply  
take the span of @. Since the inner p roduc ts  of e lements  of @ are integral  

and (v,v) - 2 for v E q~ we have (R4). Set v0 - Vl + v2 + ' - "  + vt+l,  then  
v C @ if and only if (v, v) - 2 and (v, vo) - 0. Now suppose v, w C @, and 

let rv be the reflection wi th  respect  to v. Then  as seen above rv(W) has the 
required length. Now since rv(w) is a linear combinat ion  of v and w, also 

(rv (w), v0) = 0. So we also have (R3). 
Bl" we set V - IR l and W - V. The  lat t ice 1: is spanned  by the basis 

vectors V l , . . . ,  vz. And (I) - {v C / 2 [  (v, v) - 1, 2}. Then  �9 consists of the 

vectors +(vi - t -v j )  for 1 < i < j _< l together  wi th  +vi for 1 < i < 1. A 

simple sys tem is A = {vl - v 2 , . . .  , vl-1 - vl, vl}. In this case (R3) and (R4) 
are clear. 

Dl" here V - R l and W - V. The  l a t t i ce /2  is defined as for Bz. In this 

case (I) - {v C E l ( v , v )  - 2}, consisting of +(vi + vj) for 1 < i < j < 1. 

A simple sys tem is given by A = {vl - v2 , . . .  , vl-1 - vl, vl-1 + vl}. Again 

(R3) and (R4) are clear. 
G2" put  V - IR 3 and v0 = Vl + Vl + v3. The  lat t ice is 

1 2 -  ki---~vi l ki E Z . 
i=1  

Fur thermore ,  (I) - {v e / 2  I (v, v) - } ,2  and (v, v0) - 0}. The  space W will 
be the span of ~. Then  

1 
r - + - v 2 ) ,  

1 1 } 
- - u 

{1 
+ - ~  (vi + vj - 2vk) I i, j, k dis t inct  ~ 
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f ~  
A simple system is A - ..v~.~ ( v l  - v 2 ) ,  ~ 3 ( - V l - ~ - 2 v 2 -  V3)~. In this c a s e  

J 

(R4) is easily checked and (R3) follows as in the case of At. 
Now we turn  our a t tent ion towards Es and F4. (Since E6,7 are subsys- 

tems of Es in a na tura l  way (cf. Lemma 5.9.1), this also gives a construct ion 
of these root systems.) In both  cases we construct  a set Q tha t  is the Z- 
span of a linearly dependent  set of vectors. So in these cases Q is not a 
lattice. The  root systems will again be defined as subsets of Q consisting of 
vectors of given lengths. Then  analogous considerations to the ones applied 
for At, Bz, DL, G2 will prove tha t  �9 is a root system. 

E8: here V - I~ 8 and W = V. Set vo - �89 + v2 + " "  + v8), and 

{ 8 8 } 
Q = kovo + E k i v i  I ki E Z and E k i  is even . 

i=1  i=1  

8 And �9 = {v e Q l(v,  v) - 2}. Let v -  ~-~i=o kivi e ~, then 

8 
1 

2 -  (v, + 5k0) 
i=1  

Set mi - k i+ko/2 for 1 _ i < 8. Ifk0 is even then all mi are integers. Hence 
the possibilities for v are +(vi 5= vj) for 1 < i < j < 8. (It is s t raightforward 
to check tha t  these elements lie in Q.) Furthermore,  if k0 is odd, then all 
mi C Z +  �89 It is seen tha t  mi - +�89 for 1 < i < 8. This means tha t  
ki = �89 (ei - k0) where ei = i l .  Hence 

8 1 8 

ki = -4k0  + ~ ~ ci. 
i=1  i=1  

8 So in order tha t  v lie in Q we must have ~ i = 1  ei - 0, •  •  But this is 
the same as saying tha t  the number  of + l ' s  must  be even. So �9 contains all 
vectors i ( v i  :t:vj) for i <_ i < j <_ 8 together with the vectors + �89  i v 2  + 
�9 " • v8) where the number  of pluses is even (and hence so is the number  
of minuses). A simple system is given by A - { l (v  1 - -  V2 - -  V3 - -  V4 - -  V5 - -  

v6 - v7 + vs), vl + v2, v2 - vl, v3 - v2, va - v3, v5 - v4, v6 - v5, v7 - v6}. It 
is s t raightforward to check tha t  all inner products  of elements of A are 
integral. Hence the same holds for the elements of ~. So we have (R4). 
Then  also (R3) is immediate.  

F4: we set V = IR 4 and W = V. Analogously to the previous case we 

put  vo = �89 + v2 + v3 + V4) and now 

4 

Q - {k0v0 + ~ kivi [ki ~ Z}. 
i=1  
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Fur thermore (I) = {v e Q I (v, v) = 1, 2}. It is easily seen that  (I) consists 
of the vectors +vi, +vi + vj and 1 (+vl  + v2 • v3 • v4). As simple system 

we can take A - {v2 - v3, v3 - v4, v4, �89 - v2 - v3 - v4)}. Then (R4) and 
(R3) are proved in the same way as for E8. 

Finally we construct  C1. For that  let �9 be the root system of type BL 
as constructed above. Then we set 

- - ! e 

Propert ies  (R1) and (R2) are immediate for ~. Also by a straightforward 
calculation we see that  for a,/3 E ~, 

So (R4) is satisfied. Finally (R3) is also settled by a short calculation. A 

~22 1 simple system of �9 is A -  { ( v l -  v 2 ) , . . . ,  ~ ( v l - 1 -  vl), vl-1 + vl}. [:] 

For algorithmic purposes we want to be able to construct root systems 
abstractly. This means that  given a type Xl we want to be able to construct  
a vector space W and a set of vectors in W that  form a root system in W, 
without  every time having to perform the explicit construction of Proposi- 
tion 5.10.1. The next two Corollaries show that  the only thing we have to 
do is call CartanMatrixToRootSystem. 

C o r o l l a r y  5 .10.2  Let X1 be a simple type. Let W be a vector space over I~ 
of dimension 1. Let A be a basis of W;  then there is a bilinear form on W 
that makes W into a Euclidean space and such that A is a simple system of 
type Xl.  

P r o o f .  Suppose A - { a l , . . .  ,aL}. A bilinear form f on W is determined 
by its values f ( a i ,  a j )  for 1 < i , j  < l. Now by Proposi t ion 5.10.1 there 
exists a Euclidean space W0 and a root system (I)0 C W0 of type Xt. Let 
( , ) 0  be the positive definite bilinear form of W0 and let A0 -- {/~1,... , fit} 
be a simple system of O0. Then we define a bilinear form ( , ) in W by 
setting (ai, aj)  - (~i, ~j)o. Since the form ( , )0 is positive definite, this 
also holds for the form we defined. Hence W is a Euclidean space and A is 
a simple system of type X1. D 

C o r o l l a r y  5 1 0 3  Let X i for l < i < m be simple types. Let O be a root 
�9 �9 l i  w 

system that is the direct sum of m irreducible root systems ~i of types X i li 
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Let C be the Caftan matrix  of �9 and set 1 = ~ li. Let W be a vector space 
of d imension 1 over IR with basis A = {c~1,... ,C~l}. Then the procedure 
CartanMatrixToRootSystem f inishes on the input C, A.  Furthermore,  there 
is an inner product on W such that (c~i, c~j} = C ( i , j ) .  

Proof .  The fact that CartanMatrixToRootSystem(C, A) finishes follows from 
the fact that it finishes when A is replaced by a simple system of (b (having 
Cartan matrix C). The second statement follows from Corollary 5.10.2. U 

5.11 Constructing isomorphisms 

In this section we clear up a point that has been left in the dark since 
Section 5.3; we prove that two semisimple Lie algebras having isomorphic 
root systems are isomorphic. The results of this section will provide a 
straightforward algorithm for constructing such an isomorphism. 

An isomorphism of two Lie algebras L1 and L2 maps a basis of L1 onto a 
basis of L2. Moreover, the isomorphism is determined by the images of the 
basis elements of L1. So instead of constructing a linear map between L1 
and L2 that is an isomorphism, we may as well construct bases B1, B2 of L1 
and L2 such that the linear map that sends B1 onto B2 is an isomorphism. 
Our plan is first to give a method for constructing a canonical basis of a 
semisimple Lie algebra, and then to prove that canonical bases provide an 
isomorphism. 

Let L be a semisimple Lie algebra with root system ~ relative to the 
split Cartan subalgebra H. Let A - { a l , . . .  , aL} be a simple system of ~. 
Then by Root  facts 12 and 13 there are elements hi - (2 / (a i ,  o~))h~ (where 
h~ is defined by (4.10)), and x~ C L~,  y~ E L . ~  Silch that [x~, y~] = h~, 
[hi, xi] - 2xi and [hi, Yi] - - 2y i .  The elements hi, xi, Yi for 1 _< i _< l satisfy 
the following commutation relations: 

hj] = 0 

[Xi, yj] = (Sij hi 

[hj, Yi] = (-c~i, cU)yi for l < i , j  < l. 

(5.7) 

The first relation follows from Root fact 6. The second one follows from the 
fact that a~ - a j  lies in ~0 _ ~ U {0} only when i - j (Lemma 5.5.3). The 
last two relations follow from the definition of hi together with the definition 
of the bilinear form ( , ). 
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D e f i n i t i o n  5.11.1 Let L be a semisimple Lie algebra with root system ~. 
Let A -  {c~1,... ,cq} be a simple system of ~. A set of non-zero elements 
{xi E La~,yi E L_a~,hi  C H I 1 <_ i <_ l} satisfying the commutat ion 
relations of (5. 7) is called a set of canonical generators of L. 

By the discussion above we see that a set of canonical generators is 
guaranteed to exist. The following algorithm provides a straightforward 
method for constructing such a set. 

Algorithm CanonicaIGenerators 
Input: a semisimple Lie algebra L, together with a simple system A -- 

{c~1,... , c~l} of the root system of L. 
Output: a canonical set of generators of L. 

Step 1 For 1 _< i < 1 do the following 

Step 1.1 Choose a non-zero xi E La i. 

Step 1.2 Determine an element Yi E L_ai 

Step 1.3 Set hi - [xi, yi]. 

such that  [[xi, yi], xi] - 2xi. 

Step 2 Return {xi, yi, hi ] 1 < i < l}. 

C o m m e n t s :  By Root fact 12 we have that there is a Yi C L_a~ satisfying 
the requirement of Step 1.2. Furthermore such an element can be found by 
solving a single linear equation in one variable. Consequently the algorithm 
terminates and the output  consists of non-zero xi C L ~ ,  Yi C L_a~ and 
hi C H such that  [xi, yi] - hi and [hi,xi] - 2xi. We have to show that  
the other relations of (4.14) are satisfied as well. For this let 2i C La~, ~]i C 

_ 

L_a~, hi E H be a canonical set of generators. Then since all root spaces 
are l-dimensional, there are s #i E F such that 2i - Aixi, ~]i - #iYi and 
consequently hi - Ai#ihi. By (5.7) we know that [hj,2i] - (ai, a j ) 2 j  for 
1 _< i, j _< l. But this is equivalent to 

)~j#j[hj,  xi] - (oli, o~j}xi. 

Setting i - j we see that )~j].tj - -  1. But then all relations of (5.7) are au- 
tomatically satisfied by the xi, yi, hi. Hence the output  is a set of canonical 
generators. 

Now we have a lemma that  will imply that a set of canonical generators 
{hi, xi, yi ] 1 <_ i <_ l} generates the whole Lie algebra L. 
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L e m m a h . 1 1 . 2  Let c~,fl E �9 be such that a + ~ E (~. Choose h , x , y  C L 
(where x e La,  y e L - a ,  h E H )  such that [h,x] = 2x, [h,y] = - 2 y ,  
[x, y] = h (cf. Root  fact  12). Let x z C L z be a non-zero root vector. Then  
Ix, xZ] ~ O. Furthermore,  let ~ -  r a , . . .  , ~ + qc~ be the c~-string containing 
1~. Then  [y, [x, x~]] = q(r + 1)x~ and Ix, [y, x~]] = (q + 1)rx~.  

P r o o f .  Let Ka be the Lie algebra spanned by h, x, y. Let V be the space 
spanned by all Lz+ka for - r  < k _< q. Then as seen in the proof of Root  
fact 17, V is an irreducible Ka-module.  Choose a non-zero vo E L~+qa and 
set vi - (ady)ivo for i > 0. Then v0 is a highest weight vector of weight 
(~ + q(~)(h) - 2q + ~(h)  = q + r (where the last equality follows from Root 
fact 17). Also Vq spans L~ and hence x~ is a non-zero multiple of Vq. By 
Lemma 5.1.2 we see that  adx(vq)  = q(r + 1)Vq_l, which is non-zero because 
q > 0. So also adx(xz)  ~ 0. Furthermore ady(adx(vq) )  = q(r + 1)Vq and 
adx(ady (vq ) )  - adx(vq+l)  - (q + 1)rVq. Since xz is a multiple of Vq the 
same holds with xz in place of Vq. [:] 

Now we are in a position to construct our basis. Fix a set of canonical 
generators h i , x i ,  yi of L. Let ~ E ~+ be a positive root. By Corollary 5.5.6 
together with a straightforward induction on ht(~) we see tha t  ~ can be 
wri t ten as a sum of simple roots 

- -  O~ i 1 -~- " ' "  - t -  O~ i k 

such that  ai~ + " "  +aim is a root for 1 _< m _< k. We abbreviate the repeated 
commuta tor  [xik, [xik_i, ["" [xi2, x i ~ ] ' "  ]]] by [x i k , . . .  , xil]. Then by Lemma 
5.11.2, [x i k , . . .  , Xil] is non-zero and hence spans L B. Now for every positive 
root ~ E (I)+ we fix a sequence i l , . . .  , ik such tha t  ~ - ai~ + " "  + aik and 
c~i~ + . . .  + aim is a root for 1 _< m _< k. Then it follows tha t  the elements 

h i , . . .  , hl , [xik , . . . , xil  ] , [Yik , " " , Yil ] 

span L. We say that  these elements form a canonical basis of L with respect 
to the simple system A and the choice of sequences i l , . . .  , ik. 

We introduce the following notation. If I = ( i l , . . .  , ik) is a sequence of 
integers, then we set 

= xi ], - 

Also we set c~i - c~il + " - +  (~i~. Now suppose that  I - ( i l , . . .  , ik)  and 
x e L commutes with xik, i.e., [x, xik] = 0. Write Ix, x1] = Ix, [xik,xj]] 
where J - ( i l , . . .  , ik-1).  Then by a straightforward application of the 
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Jacobi  identi ty we see tha t  [x, XI] - -  [ X i k ,  IX, XJ]]. 

commutes  wi th  xik , xik_~ , �9 �9 �9 , xi~ , then 

And in general, if x 

[X ,  X I ]  - -  [X ,  X i k ,  . . . , X i l  ] - -  [ X i k ,  . . . , X i s  , x ,  x i s _ l  , . . . , X i l  ]. (5.8) 

L e m m a  5 .11 .3  Let  C be the Cartan mat r i x  of  �9 with respect to A .  Let  

I - ( i l , . . .  , ik )  be a sequence such that c~i~ + ' "  + aim is a root f o r  1 <_ 
m <_ k. Let  J -  ( j l , . . .  , jk)  be a second sequence such that c~i - c~j. Then  
x1 - )~xa, where )~ E Q depends on C only. A n d  a s imi lar  s t a t e m e n t  holds 

fo r  y1 and y j .  

P r o o f .  First  we remark  tha t  since the expression of c~ as a linear combina- 

t ion of the simple roots  is unique, the sequence J can be obta ined  from I 

by pe rmut ing  the entries. 

We prove the result  by induct ion on k. If k = 1, then  we can take )~ = 1. 

So suppose tha t  k > 1. If aj~ + . . .  +cure is not a root for a cer tain m between 
1 and k, then we set ~ = O. This can be checked from the knowledge of the 

Ca r t an  mat r ix  only (by using the a lgor i thm CartanMatrixToRootSystem).  

Hence the l emma also holds in this case. 

Now we suppose tha t  all O/jl -~- "'" -~- O l j m  a r e  roots and we set s = ik. If 

also jk  = s, then we set I '  = ( i l , . . .  , i k -1 )  and likewise J '  = ( j l , . . .  , j k - 1 ) .  
By induct ion we know tha t  x i, = )~xa, where )~ C Q depends on C only. 

And therefore also x1 = )~xj and we are done with this case. 

Now suppose tha t  jk  r s. The index s must  appear  in J and  we select 

the r ight-most  jn  such tha t  jn  = s. Then  because [ys,xi] = 0 if i ~ s, 

by (5.8) we have tha t  [ys,Xj] = [ x j k , . . .  ,xj,~+ 1, [ys, [xs,xK]]] where K = 
( j n - 1 , . . .  , j l ) .  Since O/g is a root,  X g  is a non-zero root  vector in L a g .  Let 

a K -  r a s , . . .  , a K  + q(~s be the C~s-string containing (~g- We note tha t  q > 0 

since jn = s. Then  by Lemma 5.11.2 we have [Ys, [xs,xK]] = q(r  + 1)XK and 
therefore, [ys ,x j]  = q(r  + 1)[xjk , . . .  , x j ~ + l , x j ~ _ l , . . .  ,x j l ] .  Fur thermore ,  

[Xs, [ys,Xj]] = (q' + 1)r 'xg ,  where ag - r ' a s , . . .  , a j  + q'(~s is the as-s t r ing  
containing c~j. Now r '  > 0 since c~j -C~s - c~i -c~s is a root.  Hence 

1 P r ~ 

(q,+ tY , JJJ- 
/ 

q(r + 1) 
(q l_~_  1 ) r l [ X s ' X j k  ' ' ' "  ' X j n + I ' X j  n - l ' ' ' "  ' X j l ]  - 1 2 X M  

where M - ( j l , . . .  , j n - l , j n + l , . . .  , j k , s ) .  Note tha t  the integers q , r , q ' , r '  
can be de te rmined  from the Car t an  mat r ix  (cf. the a lgor i thm CartanMa- 

trixToRootSystem), so we have the same for u. Now (~M -- c~I and the last 
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index in M equals s. Hence by the first case above xz -- #XM where # 
depends on C only. It follows that  xz - )~xj with ~ - #/~,. 

For Y1 and y j  we can proceed with exactly the same arguments. E3 

P r o p o s i t i o n  5.11.4 Let L be a semisimple Lie algebra with root system ~. 
Let A -  {(~1,... , (~l} be a simple system of �9 with Caftan matrix C. Let 
h i , . . . ,  hi, x i, Y1 be a canonical basis of L. Then the structure constants of 
L with respect to this basis are rational numbers depending on C only. 

Proo f .  First [hi, hj] - 0 and for I - ( i l , . . .  ,ik) we have [hj,xi] - 
k Em_l(Olim,O~j)XI, which is easily proved by induction on k. Similarly 

[hj,y~] k 

We consider the remaining commutators [xt, xj], [xt, y j] and [yI, Y J]. 
The first and the third are similar so we deal with the first two only. Since 

adx/ -  [adxik, [adxik_l, [ ' ' "  [ adx i  2 , adXil]"" ]]] 

we see that  adxI is a linear combination of terms of the form adxsk ""  adxs~. 
Hence it is enough to prove that  adxs (x j )  and adxs(y j )  are linear combi- 
nations of basis elements, where the coefficients are in Q and depend on C 
only. 

Concerning the first commutator,  we determine from C whether c~j § as 
is a root. If yes, then we set g -  (J,s)  and [ x s , x j ] -  Axg where A C Q 
depends only on C by Lemma 5.11.3. Otherwise [xs, xj] - O. 

For the second commutator  suppose J = ( j l , . . .  , jn) and we use induc- 
tion on n. If n -  1, then we know from (5.7) that  [xs, yj~] - 5s,j~hs. Now 
suppose n > 1 and let r be such that  jr - s and j r + l , . . .  , jn ~ s (if there is 
no such r, then [xs, y j ] -  0). Set K -  ( j l , . . .  , j r - l ) ,  then using (5.8) and 
the Jacobi identity we see that  

[~,  y J] = [y j~ , . . . ,  ~j~§ [~,  [y~, y~]]] 
: [yj~,.  �9 � 9  yj~+~, [y~, [ ~ ,  yK]]] + [yj~ , . .  � 9  yj~+~, [ [ ~ ,  y~], y~]] .  

The first term of this sum is dealt with by the induction hypothesis. For the 
second term we note that  [x s, Y s ] -  hs and [hs, YK] is a linear combination 
of YM with rational coefficients determined by the Cartan matrix. [3 

A l g o r i t h m  IsomorphismOfSSLieAlgebras 
Input: semisimple Lie algebras L1, L2 with root systems ~1 and (I)2 respec- 

tively, and an isomorphism r  (I)l ---+ (I)2. 
Output: an isomorphism r  L1 --+ L2. 
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Step 1 Compute a simple system A1 - {c~1,... , al} of ~ .  

Step 2 For every positive root ~ C ~+ fix a sequence IZ - ( i l , . . .  ,ik) 
such that c~i~ + ' - "  +a i ,~  is a root for 1 <_ m <_ k and /3 - c~i. 
Compute a set of canonical generators by CanonicalGenerators(L1, A1). 
Let h i , . . .  , hi, xi~, YIz for ~ C �9 + be the corresponding canonical 
basis. 

Step 3 Set A2 = { r  r Then A2 is a simple system of ~2. 
For-~ C (I)+ set I~ - Ir By CanonicalGenerators(L2, A2)calculate 

a set of canonical generators of L2 Let h~ .. h~l x' �9 , . ,  , I~ ,YI~, f~  
be the canonical basis of L2 corresponding to/k2.  

Step 4 Return the linear map r  L1 -+ L2 that sends hi to h~, xI~ 

and yI~ to yi~(z ) 

to x ~ I~(~) 

C o m m e n t s :  Since r is an isomorphism of root systems it maps a simple 
system A1 onto a simple system A2. Also the Cartan matrix of ~1 relative 
to A1 is exactly the same as the Cartan matrix of (I)2 relative to A2. Hence 
by Proposition 5.11.4, the structure constants of L1 with respect to the 
canonical basis are exactly the same as the structure constants of L2 with 
respect to the canonical basis. Hence r is an isomorphism. 

Corollary 5.11.5 Let L1 and L2 be semisimple Lie algebras with root sys- 
tems ~1 and ~2 of rank 1. Let A1 and A2 be simple systems of ~21 and ~2 
respectively. Suppose that the Cartan matrices of ~1 with respect to A1 and 
~2 with respect to A2 are identical. Then there is a unique isomorphism 

' a n d r  1 < i  < l  r  ~ L2 such that r - h~, r - x i _ _ , 
_ h '  ' ' where {hi,xi ,  yi I 1 < i <_ l} and { i,xi,  yi I 1 < i < l} are canonical 

generators, respectively of L1 with respect to A1 and L2 with respect to A2. 

Proof .  Since the set {hi, xi, yi I 1 <_ i _ l} generates L1 there can only be 
one isomorphism satisfying the stated relations. The existence follows from 
applying IsomorphismOfSSLieAlgebras. [3 

Corollary 5.11.6 
Lie algebras. 

The root system is a complete invariant of semisimple 

Remark .  For an example of the use of the algorithm IsomorphismOfSSLieAl- 
gebras we refer to Example 5.15.11. 
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5.12 Constructing the semisimple Lie algebras 

In Sections 5.9 and 5.10 we showed that  the indecomposable root systems are 
exactly those with a Dynkin diagram occurring in Table 5.2. In the previous 
section we proved that  the root system of a simple Lie algebra is a complete 
structural  invariant. The next question is whether for each indecomposable 
root system there exists a simple Lie algebra. For this several constructions 
have been proposed. First of all it is possible to argue case-by-case, i.e., to 
go through the list of Table 5.2 and construct a simple Lie algebra for each 
diagram. It is for example possible to prove that  z[l+l (F) is a simple Lie 
algebra with a root system of type A1, and 021+l(F), sp2/(F), o21(F) are of 
types B1, Cl and Dl respectively. For proofs of these results we refer to [48]. 
A second idea is to give a uniform construction of all simple Lie algebras by 
generators and relations. This will be described in Section 7.11. 

A third approach to the problem is to construct a Lie algebra starting 
from the root system. From the root system it is easy to see what the 
dimension of the simple Lie algebra L must be and many products of basis 
elements are determined by the root system. Root facts 1 and 11, for 
example, determine commutation relations in L. After collecting as many 
obvious commutation relations as possible one can try to complete this to 
a multiplication table of L. This is the approach that  we take here. 

The idea is straightforward: given a root system �9 of rank l we define a 
Lie algebra L that  is the sum of a Cartan subalgebra H of dimension 1 and 
1-dimensional root spaces. More precisely, let A = {c~1,... , c~l} be a simple 
system of ~. Let H be an/-dimensional  vector space with basis { h i , . . .  , hi}. 

1 For c~ C �9 we set ha - ~-~i=1 kihi if o~ = ~-~li= 1 kio~i. Furthermore, for c~ E 
let La be a 1-dimensional vector space spanned by xa. Then we set 

L - H |  
aEO 

The multiplication table of L relative to the basis { h i , . . . ,  hl}U{xa I c~ E ~} 
is given by 

[hi, h i ] - 0  for 1 < i , j  < l, 

[hi,xa] - (c~,o~i)xa f o r l < i < l a n d a E ~ ,  

2 
[ x a , X - a ] - - ~ h a  for c~ E (I), 

[xa, xZ] = 0 for c~, ~ E �9 such that  c~ +/~ r �9 and ~ # -c~, 

[xa,xz] - Na,zxa+z for c~, fl E �9 such that  c~ + ~ C ~. 

(5.9) 
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Where Na,Z are constants that  are to be determined. We note that  if 
there is a semisimple Lie algebra L having �9 as root system, then L has 
basis relative to which the multiplication table is as (5.9). Indeed, let L be 
a semisimple Lie algebra with a split Cartan subalgebra H and root system 
�9 . Let A - { a l , . . . , a l }  be a simple system of(I). For 1 _< i _< l set 
hi - h a i  (where hai is defined by (4.10)). Furthermore, by Root fact 12 
together with Root fact 13, we can choose xa C La and x - a  E L - a  such 
that  [xa, x-a] - (2 / (a ,a ) )ha  and after taking - x a  instead of xa we get the 
relation of (5.9). Then Root facts 1, 6 and Equation (4.10) together with 
the definition of the bilinear form on H* imply the other brackets. 

In the sequel we determine a choice for the numbers Na,Z for each root 
system of simple type Xl. Then we check that  the multiplication table (5.9) 
satisfies the Jacobi identity. This leads to the conclusion that  (5.9) defines 
a Lie algebra. We then still need to show that  this Lie algebra is simple. 
For that  we use the following criterion for semisimplicity. 

P r o p o s i t i o n  5.12.1 Let L be a finite-dimensional Lie algebra and let H C 
L be a split A belian subalgebra such that adh is a semisimple linear trans- 

formation for h E H. For a C H* set 

La -- {x E L l adh(x ) - a(h)x  for h C H}.  

Let �9 ~ - {a e H* I L~ ~ 0}. Then 

L - ~ L a .  
a E ~  o 

Set �9 - 0 ~ \ {0}. Suppose that �9 - - 0 ,  La is 1-dimensional for a C O, 
[La, L-a] ~ O for a E �9 and H - Lo. Then L is semisimple and H is a 
Cartan subalgebra of L. 

P r o o f .  Since H - L0 = Lo(H),  we have that  H is a Cartan subalgebra 
by definition. Now let N C L be the nilradical of L. Then N is invariant 
under adH. Hence N splits as a direct sum of simultaneous eigenspaces of 
the adh for h C H. So 

N - (H M N) @ ~ ( L a  M N). 
aE<P 

First we note that  adLx is nilpotent for all x C N (Proposition 2.2.2). 
Hence, because adh is semisimple for h E H we have that  H N N - 0. Since 
La is 1-dimensional, we have La M N - 0 or La C N. Suppose that  La C N 
for an a C <I>. By a straightforward application of the Jacobi identity we see 
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that  [[La, L-a], H] = 0, implying [La, L-a] C H. And since [La, L-a] # 0 
this implies that  H M N ~ 0, which is a contradiction. It follows that  N = 0, 
and as seen in Section 2.6, the solvable radical of L is 0 as well. rn 

C o r o l l a r y  5.12.2 Let a2 be a root system and let L be a Lie algebra with a 
multiplication table of the form (5.9). Then L is semisimple. Furthermore, 
the root system of L is isomorphic to ~. 

Proo f .  The fact that  L is semisimple follows immediately from Proposi- 
tion 5.12.1. As before A = { a l , . . .  ,c~l} is a simple system of (I). Let H 
be the Cartan subalgebra spanned by { h i , . . .  ,hi}. Then the xa are root 
vectors relative to H and the corresponding root is the function given by 
hi ~-~ (~, (~i). Denote this function by c~ ~. Then the set of all c~ ~ for c~ E 
is a root system because L is semisimple. Furthermore, the map c~ ~-+ c~ ~ is 
linear and maps root strings to root strings. So it is an isomorphism of root 
systems. El 

5.13 T h e  s i m p l y - l a c e d  case  

In this section we determine a choice for the constants Na,Z in the case 
where the root system has a Dynkin diagram that  contains only simple 
edges. Such root systems are said to be simply-laced. 

Let (I) be an irreducible simply-laced root system; i.e., (I) is of type 
Al, Dr, E6, E7 or E8. Let A be a simple system of (I). Then because the 
Dynkin diagram of (I) is connected we have that  all c~ C A have the same 
length. Since multiplying the inner product by a positive scalar changes 
nothing, we may assume that  (c~, ~) = 2 for all c~ C A. 

L e m m a  5.13.1 Let a2 be a simply-laced root system with simple system A.  
Suppose that (~, c~) = 2 for c~ C A.  Then (~, ~) = 2 for all p C (~. 

Proo f .  This follows immediately from Lemma 5.7.5 together with (5.1). El 

P r o p o s i t i o n  5.13.2 Let �9 be a simply-laced root system with a simple sys- 
tem A such that (c~, c~) = 2 for all (~ C A. Let (~, ~ E (~ be such that a ~ :t=~. 
Then ~ + ~ E (~ (respectively ~ -  ~ E (~) if and only if (a,/~) = - 1  (respec- 
tively (a,/~) = 1). 
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P r o o f .  If (c~,~) = - 1  then by Proposition 5.4.1 we see that  c~ + /3  r (I). 
For the other direction suppose that c~ + fl c (I). Let / 3 -  rc~,. . .  ,/3 + qc~ 
be the c~-string containing/3. Then q > 1. Set 3' - / 3 -  ra .  Then 7, 7 + 
c~,... , ~, + (r + q)c~ is the a-str ing containing 7. By Proposition 5.4.2 we 
infer that  - ( r  + q) = (7, c~). If (7, c~) = ~=2, +3, then ~/and a have unequal 
length, which is excluded by Lemma 5.13.1. Hence by Table 5.1, we see 
that  (~, c~) = :kl, 0. But r + q _> 1. It follows that (-),, c~) = - 1  and r = 0 
and q = 1. Hence by Proposition 5.4.2 we have that  (/3, c~) = - 1 .  Since by 
Lemma 5.13.1, (/3, c~) = (/3, c~), the result follows. 

The case where c~ - / 3  E (I) can be treated similarly. [:] 

Now we define a function that  will give us the desired structure constants 
Na,Z. We assume that  (I) is a simply-laced root system with simple system 
/~ --  {Or  , Oq} such that  ((~i, c~i) = 2. By Q we denote the Z-span of A, 
i.e., 

Q -  ~ kiai [ ki ~ Z . 
i=1 

The set Q is called the root lattice of (I). 
A function e : Q x Q -+ { 1 , - 1 }  is called an asymmetry function if it 

satisfies 

e(c~ +/3, 7) - e(a,  7)e(/3, 7) (5.10) 

e(a,  3' + 5) = e(a,  7)e(a,  5) for a, ~, 7, 5 E Q, 

and 

c(c~, c~) = ( -1 )~  for a C Q. 

R e m a r k .  For a C (I), (5.11) boils down to g(a, a) - - 1 .  

(5.11) 

L e m m a  5.13.3 Asymmetry functions exist. 

P r o o f .  We start  by assigning an arrow to each edge of the Dynkin diagram. 
(We say that  we choose an orientation of the Dynkin diagram.) Then we 
set 

- 

- 1  

- 1  

i f / =  j, 
if c~i and Olj a r e  connected and 

the arrow points from c~i to c~j, 

if c~i and c~j are not connected or 

the arrow points from O~j t o  O/i, 
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and we extend e to the whole of Q • Q using condition (5.10). This means 
that 

) H e kioli, mjo~j -- 6(oLi, olj) kimj �9 
i=1 j=l i,j=~ 

So (5.10) is automatically satisfied. It remains to prove (5.11) for e. For 
that arrange the labelling of the Dynkin diagram in such a way that  ai, 
c U connected and the arrow points from c~i to c~j implies that  i < j. This 
is always possible because the Dynkin diagram contains no loops. Then 
e(o~i, O ~ j )  - -  1 i f / >  j and e(ai, O ~ j )  - -  ( -1)  (c~'aj) i f / <  j. Let c~ - ~-~li= 1 kio~i 
be an element of Q. Then 

l 
s oz) -- I I  E(~ ozj)kikj 

i,j=l 

- I I  
l<_i<j<_l 

- I I  

1 

C(OLi~ Olj )kikj " I I  g(~ ~ 
i=l 

l<_i<j<l 
= (--1)E~<j(k~a~,kJ~). (-1)E~ 1 (k~ ,k~)  

1 

i = 1  

Now the observation that 

1 (ol oz) = 
2 

1 

1 (ki c~i ki c~i) E (ki~ kjolj) + E 5 ' 
l<i<j<_l i = 1  

finishes the proof. D 

Replacing c~ by c~ +/3 in (5.11) we get 

c(c~,/~)c(/~, c~) = ( -1)  (a'z) (5.12) 

Also some easy consequences of (5.10) are 

c(O, #) = c(a, O) = 1 
(5.13) 

c ( - a ,  fl) = r f l )- i  _ r fl) and similarly for e ( a , - f l ) .  

P r o p o s i t i o n  5.13.4 Let q~ be a simply-laced irreducible root system with 
simple system A -- {c~1,... ,cq} and such that (c~,c~) - 2 for c~ C ~2. For 
c~, ~ 6 �9 such that c~ +/3 6 �9 set Na,~ = E(c~,/3). Then (5.9) defines a Lie 
algebra. 
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P r o o f .  In this case the multiplication table for L reads 

[hi, h j ] -  0 for 1 < i, j <__ l, 

[hi, x , ~ ] -  (o~, o~i)x,~ for 1 < i _<l and c~ C ~, 

[ x a , x _ a ] -  - h a  for c~ e (I), (5.14) 

[xa, xz] - 0 for c~,/~ E (I) such that  c~ + ~ r (I) and/~  ~ -c~, 

[x~, xz] - E(c~,/3)xa+z for c~, ~ E �9 such that  c~ + ~ ~ ~. 

We have to check the Jacobi identity for L. As seen in Lemma 1.3.1 it 
is enough to do this for basis elements. So let x, y, z be basis elements of L. 
If all three of them are from H then the Jacobi identity is trivially satisfied. 
So suppose that  two elements are from H, and the other element is a root 
vector, i.e., x - hi, y - hj and z - xa. Then the Jacobi identity reads: 

[[hi, hj], xa] + [[hj, xa], hi] + [[xa, hi], hj] - 0, 

and this is equivalent to -(c~, ai)(c~, c~j) + (c~, aj)((~, cq) - 0. 
Now we suppose that  one element is from H and the other two are root 

vectors. Then the Jacobi identity is 

[[hi, xa], xz] + [[xa, xz], hi] + [[xz, hi], xa] - 0. 

If c~ + ~ ~ ~0 then this holds. On the other hand, if c~ + fl ~ ~, then the 
Jacobi identity is equivalent to 

C(O~, ~)(0~, Oti) -- (0r + /~ ,  Oli)C(O~, ~) -I- (/~, O~i)C(O~, ~) -- O. 

And if/~ - -c~ then the Jacobi identity boils down to (c~,c~i)[xa,x-a] + 
- 0 .  

Consequently the Jacobi identity holds if at least one element is from 
H. Let a,/3, 7 C ~; it remains to show the Jacobi identity for xa, xz, xv. 
We may assume that  no pair of these are equal because the Jacobi identity 
is trivially satisfied in that  case. We set a = [[x~, x~], x.y], b -  [[x~, x~], xa] 
and c - [[x~, xa], xz]. 

We remark that  if none of the sums c~ + ~, c~ + ~,, fl + "), are elements 
of ~0, then a + b + c is trivially 0. So we may assume that  at least one of 
these sums lies in O0. And since permuting the vectors Xa,X~, x.~ does not 
change anything we may assume that  c~ + ~ C O0. 

First  we deal with the case where c~ + /~  - 0. This together with the 
second relation of (5.14) implies that  a - - ( 7 ,  c~)x~. We consider a few 
cases: 
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1. a ~= 7 r 4)0; in view of Proposi t ion  5.4.2 this implies tha t  (a, 7) = 0 

and a = 0. Also fl + 7 = - a  + 7 ~ (I'~ so tha t  b = 0. And since also 
c = 0 the Jacobi  identi ty is verified in this case. 

2. a + 7 = 0 or a - 7  = 0; the first possibili ty means tha t  fl = 7 and the 
second means tha t  a = 7. Hence in bo th  cases a pair  of root  vectors 

are equal and this was excluded. 

3. a + 7 C ~; this implies tha t  7 -  fl = 7 + a C ~. Hence by Propos i t ion  
5.13.2 we see tha t  7 + f l ~ O ~  H e n c e b = 0 .  A l s o c = c ( 7 ,  a ) c ( a +  
7,-a)x.~, and a = - (7 ,  a)x.~ = x.~ (by Propos i t ion  5.13.2). So the 

Jacobi ident i ty is equivalent to r a)c (a , -a )E(7 , -a )  = - 1 .  And 
since by (5.13), c ( # , - u )  = c(#, u) -1 this is easily seen to hold. 

4. a - 7  C ~; by Propos i t ion  5.13.2 this implies tha t  a + 7 ~ ~ so 
tha t  c = 0. But  f l + 7  = - c ~ + 7  E (I, f o r c i n g b =  c ( - a , 7 ) c ( - a +  
7, a)x.~. It follows tha t  in this case the Jacobi ident i ty is equivalent to 
E ( - a ,  7 ) c ( - a  + 7, a)  = 1. Now using c(#, ~)-1 = c(#, v) and (5.12) 
it is seen tha t  this is verified. 

The  conclusion is tha t  the Jacobi identi ty holds if a + fl = 0. Now we deal 

wi th  the last case where a + fl C ~. Then  a = r fl)[xa+fl,x.y]. Also 
(a  + fl, 7) = (a, 7) + (fl, 7); the two inner products  on the right hand  side 
can take the values +1,  0 so tha t  the left hand  side can be +2,  •  0. (A 
consequence of L e m m a  5.13.1 and Propos i t ion  5.13.2 is tha t  (5, c) = 0, +1 
for 5 % ~ E (I, and (5, e) = +2  if 5 = -i-e.) Again we dis t inguish a few cases: 

1. (a  + fl, 7) = 2; then ( a , 7 )  = (fl, 7) = 1. By Propos i t ion  5.13.2 this 

implies tha t  a + 7, fl + 7 are no elements of �9 and a + fl = 7. Hence 
a = b = c = O .  

2. (a  + fl, 7) = 1. Interchanging a and fl changes noth ing  so we may 
assume tha t  (a,  7) = 1 and (fl, 7) = 0. Again this forces a = b = c = 0 
since a + f l +  7 ~ ~0. 

3. ( a + f l , 7 )  = 0 .  I f ( a ,  7) = (fl, 7) = 0 t h e n a =  b =  c = 0 .  So after 
(maybe)  interchanging a and fl we may assume tha t  (a, 7) = 1 and 
(fl, 7) = - 1 .  This  means tha t  a + 7 ~ ~0 and c = 0. Also fl + 7 C ~, 

b u t a + f l + 7 ~ O  ~ S o a = b = 0 .  

4. (a  + fl, 7) = - 1 .  Here we may assume tha t  (a, 7) = - 1  and (fl, 7) = 0. 
This  immedia te ly  implies tha t  b = 0. Fur thermore ,  a + fl + 7 C 

and a = e(a, fl)c(a + fl, 7)x~+fl+ 7. Also c = ~(7, a)e(a + 7, fl)xa+fl+7. 
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After dividing by c(a,  3) and multiplying by r a)r 7) the Jacobi 
identity amounts  to 

+ 3 )  - 0. 

Using (5.12) and the values of (c~, 7) and (/3, 7) this is seen to hold. 

5. (c~+/3,7) - - 2 .  Here c ~ + 3 + 7 - 0 a n d  (c~,fl) - ( c ~ , 7 )  -( /3,7)  ') - - 1 .  
Now a - -~(c~, i3)ha+3, b - -~(/3, 7)h3+~, c - -~ (7 ,  a)ha+.y. Using 
the facts h~+~ - h~ + h~ and 7 - - a -  3 the Jacobi identity is 
equivalent to 

c(c~, 3 ) (ha  + h3) - c ( f l , - a  - 13)ha - c(-c~ - / 3 ,  c~)h3 - 0. 

By (5.12) we have that  c(c~,/3)e(3, a)  - - 1  so that  ~(/3, c~) - - e ( a , / 3 ) .  
This implies that  ~ ( / 3 , - c ~ -  3) - ~(c~, 3) and ~(-c~ - / 3 ,  c~) - c(a,/3) 
and the Jacobi identity is verified. 

The conclusion is tha t  the multiplication table of L satisfies the Jacobi iden- 
tity. D 

5.14 Diagram automorphisms 

Before constructing the other simple Lie algebras we need a short inter- 
mezzo on certain automorphisms of semisimple Lie algebras, called diagram 
automorphisms.  

Let �9 be a root system with simple system A = {c~l,. . .  ,aL}. Let D 
be the Dynkin diagram of �9 with respect to A. A bijection r  A --+ A is 
called a diagram automorphism if 

1. the number  of lines connecting c~i and c~j in D is equal to the number  
of lines connecting r and r 

2. if cq and c~j are connected in D then there is an arrow pointing from c~i 
to c U if and only if the same is true for r and r for 1 <__ i, j _< 1. 

If �9 is irreducible, then it is easily seen that  there are diagram automor- 
phisms only in the cases where (I, is simply-laced. 

E x a m p l e  5.14.1 Let (I, be a root system of type D4 with Dynkin diagram 
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o~1 o~2 
O o 

(~3 

Define a map r by r - c~3, r  c~2, r - 0~4, r  - O~1. Then 
r is a diagram automorphism. 

Let r �9 A -+ A be a diagram automorphism. Then by Z-linearity we 
can extend r to a map r �9 ~ q), i.e., 

l 1 

i = 1  i = 1  

Let L be a simple Lie algebra with root system q), and let r be a dia- 
gram automorphism. Then we have that  the Cartan matrix of �9 relative 
to c~1,... ,cq is exactly the same as the Cartan matrix of �9 relative to 
r  r Hence by Corollary 5.11.5, r extends to a unique auto- 
morphism of L. Let hi, xi, Yi be a set of canonical generators of L. Let a be 
the permutat ion of (1 , . . .  ,1) such that  r = c~a(i). Then the automor- 
phism r of L is determined by the relations 

r - ha(i), r = xa(i), r - Ya(i)- 

5 .15  T h e  n o n  s i m p l y - l a c e d  c a s e  

In this section we construct simple Lie algebras for the non-simply-laced 
root systems, i.e., for the root systems of types B1, C1, F4 and G2. The idea 
is to construct those Lie algebras as subalgebras of simple Lie algebras with 
a simply-laced root system. 

Here we consider simply-laced root systems �9 of type DL+I, A21-1, E6, 
and D4 with Dynkin diagram labelled as in Table 5.2. Furthermore we 
assume that  �9 has a simple system II such that  (a, a) - 2 for all a C II. 
As seen in Section 5.13, this implies that  (a, a) - 2 for all a C ~.  

These root systems have the following diagram automorphisms r 

1. Ol+l" r  -- ai for 1 <_ i < l - l ,  and r  = al+l and r  - al. 

2. A21-1" r  = o~21-i and r  - -  r  for 1 _< i _< l -  1, and 

3. E6" r - c~6, r = c~2, r - c~5, r - -  Ol4, (~(O~5) - -  Ol3, 

r  - -  OZl. 
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4. D4: r = 0~3, r = oL2, r = 0~4, r = oL1. 

In the sequel we let d be the order of r (i.e., d = 2 in the first three 
cases and d = 3 in the fourth case). 

Now in each case we choose an orientation of the Dynkin diagram that 
is invariant under r (i.e., if ai and aj  are connected and the arrow points 
from ai towards aj ,  then the arrow belonging to the edge connecting r 
and r  points towards r  It is straightforward to see that in each 
case it is possible to choose such an orientation. Let Q be the root lattice 
of �9 and s : Q x Q --+ { 1 , - 1 }  be the asymmetry function corresponding 
to the orientation chosen, as constructed in the proof of Lemma 5.13.3. 
Furthermore, let K be the Lie algebra with root system �9 as constructed 
in Proposition 5.13.4. We fix a basis h i , . . .  , h l , xa  (for a E ~) relative to 
which K has multiplication table (5.14). Then as seen in Section 5.14, r 
extends to a unique automorphism of K. We remark that the automorphism 
r of K also has order d (this follows from Corollary 5.11.5 together with 
the observation that Cd(xa) = xa for all simple roots a). 

L e m m a  5 . 1 5 . 1  We have (r r  = (c~, fi) and s(r r = s(c~,/~) 
for (~, ~ E q2. Furthermore r - Xr for all (~ E qJ. 

Proof .  Because r is a diagram automorphism we have that (r r = 
(a,/3} for all a,/3 C II. Because (a, a) = 2 for all a C II this implies that 
(r r = (c~,/3) for a,/3 E H. Since the simple roots span �9 this holds 
for all elements of ~. The statement about s follows from the fact that the 
orientation is r Finally, let c~ be a positive root. We argue by 
induction on ht(a).  If this number is 1, then r - xr by definition of 
r Furthermore, if ht(c~) > 1 then a = /3  + 7, where/3, 3' are positive roots 
of smaller height. But 

= c ( Z ,  

and by induction 

- = 

The desired conclusion follows. If a is negative, then we use a similar argu- 
ment. El 

From the fact that r is an automorphism it follows that the set K1 (r = 
{x c K I r = x} is a subalgebra of K. In the rest of this section we will 
show that K1(r is simple of type Bl, Cl, F4 and G2 if �9 is of type Dl+l, 
A21-1, E6 and D4 respectively. 
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Pu t  

�9 ~ = {~ e �9 I r  = ~}, 

1 (c~ + r + . . - +  q~d-l(o~)) I ol C ~ such that  r  # c~}, 

and �9 = (I)l U ~ .  Note that  r  = c~ for all a E (I,. Also for a C (I, we 
define a ~ = c~ if c~ E (I'l and in case a C (I)s we set a ' = / 3 ,  where/3 C �9 is 
such that  a -  ~(/3 + . . .  + r Note that  a '  is not uniquely defined 
for c~ C ~I's (if/3 = c / t h e n  also r = c / e t  cetera). 

For c~ E q' we set 

xa, if a E (I'l, 
Y a - -  

xa, + xr + " "  + XCe-l(a,) if a E (I's. 

(Note that  al though the choice of a ~ is ambiguous, there is no ambigui ty in 
the definition of Yd.) Furthermore La will be the 1-dimensional subspace of 
K spanned by Ya for a E (I,. Set 

= {Z c n [ r = Z} 

1 r A~ - {~ (~  + r + . . .  + (/3)) I/3 E 1I such that  r r  

and put  A = Al U As. Let H ~ C K be the Car tan  subalgebra spanned 
by h i , . . .  ,hi. Write II = {/3~,... ,/31}. We recall tha t  hz = }-~ikihi if 
13 = }-~-i kiwi C ~. So for c~ E �9 we have 

h a -  [ h a '  i f a G O t  

[ ~(ha, + - "  + h,d-l(a,)) i f a  e Os. 

We let H C K be the space spanned by all ha for a E A, and we set 

L - H |  
aCO 

L e m m a  5.15.2  We have L = K1(r  in particular L is a Lie algebra. 

P r o o f .  We note that  the inclusion L C K1 (r is clear. We prove the 
other inclusion. First we deal with the case where d = 2. For c~ C O s  set 
za - x a , -  xr Then r = - z a .  Furthermore,  the span of {Ya [c~ C 
�9 } U {za ] a COs}  is equal to the span of all xa for c~ C ~.  Also if we set 

ga - ha, - he(a,) for c~ C As, then the span of {ha I a C A} U {ga I c~ C As } 
is equal to H' .  The conclusion is that  K = L • K_I  (r where K-1  (r is the 
eigenspace of r corresponding to the eigenvMue - 1 ,  which is spanned by 
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the za and ga. It follows that  L is exactly the eigenspace of r corresponding 
to the eigenvalue 1. 

In the case where d = 3 we can apply a similar reasoning, but  here we 
have three eigenvalues: 1, ~ and ~2, where ~ is a root of X ~ + X + l .  So for c~ 
(I)s we set za - xa, + ~2xr + ~xr and wa = xa, + ~4xr + ~2Xr 
Then za and wa are eigenvectors with eigenvalues ~ and ~2 respectively. We 
do the same for the ha and again we reach the conclusion that  L = K1 (r [::] 

L e m m a  5.15.3 Let  (~' C �9 be such that  r  ~= a'. Then a' - r ~ 
f o r i > _  1. 

P r o o f .  We note tha t  r maps positive roots to positive roots and negative 
roots to negative roots. Suppose first that  d = 2, then we must show that  

= c~' - r r ~.  However, this follows immediately from r = -/3. 
Now suppose d = 3 and set/3 = c~'-  r and 7 = c~'-r Suppose 

t h a t / 3  E ~,  then 3' = _r  also lies in ~.  Suppose further t h a t / 3  is a 
positive root. Then "~ = _r is negative. Also r = 7 - / 3  is positive. 
However, ~, - / 3  is a sum of negative roots, and hence negative. We have 
reached a contradiction. If/3 is negative then we proceed in the same way. It 
follows tha t /3  ~ ~.  Finally, suppose that  ~, E ~.  Then also/3 = - r  C 
and we have a contradiction. [:] 

L e m m a  5 .15 .4  For (~ E a2 we have 

[Ya, Y-a]  - ~ - h a  i f  a e 62t 

t - d h a  i f  (~ C a2s. 

P r o o f .  If (~ E (I)t then this is clear from the corresponding commuta t ion  
relation in K.  From Lemma 5.15.3 it follows that  for c~ ~ C �9 such that  
r r c~' we have [xr xr (-a')] - 0. Using this we see that  for c~ C 62s, 

[ya, Y-a] - [xa, + x r  + xcd-l(a,), x -a ,  + x r  + Xcd-l(_a,)] 

= - h a ,  - he(a,) . . . . .  hcd-l(a,) 

= - d h  ~(a' +r162 (a'))" 

[:] 

L e m m a  5.15.5  For (~ E A and ~ C 62 we have [ha, yz] -- (t~, a ) y z ,  where 

( , ) is the i n n e r  produc t  f r o m  q2. 
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P r o o f .  If/3 r ~l then there is nothing to prove. If/3 E (I)s, then  

[ha, yZ] - [ha, xz, + . . .  + xr 

= (~,  ~ ' )x~ ,  + (~,  r162  + . . .  + (~,  r162  

1 cd-1 - (~, ~(~' + r + + (~')))(~, + . . .  + ~,~-~(~,)), 

where the last equali ty follows from the fact tha t  r  - c~ and hence 
(a, ~') - (a, r - (a, r _ . . .  (Lemma 5.15.1). [::] 

L e m m a  5 .15 .6  Let/3 C ~0 _ ~ U {0} and suppose that (c~,/3) - 0 for all 
a E A. Then ~ - O .  

P r o o f .  We prove tha t  (a~,/3) = 0 for all c~ ~ E II. This  and the non- 
degeneracy of ( , ) imply the result. 

Let c~' r II be such tha t  r  ~ c~'. Then  c~ = } (a '  + - - .  + r  e 
As. First  note tha t  r - /3, and hence (a' , /3) - (r for k _> 0 
(Lemma 5.15.1). Now 

1( ) 
0 -- (OL,/3) -- ~ (O/,/~) + (r + . ' '  + (r (O/),/~) -- (O/,/~). 

The conclusion is tha t  (/3, c~ ~) - 0 for all c~ ~ E II. 

C o r o l l a r y  5 .15 .7  L is a semisimple Lie algebra. 

P r o o f .  From L e m m a  5.15.4 it follows tha t  [La, L-a] ~ 0 for c~ E ~. Also 
by Lemmas  5.15.5 and 5.15.6 we have tha t  H - Lo(H). Final ly �9 - - ~  
and d im La - 1 for c~ C ~. The result  now follows from Propos i t ion  5.12.1. 
O 

From Corollary 5.15.7 together  with Theorem 5.3.5 it follows tha t  
(viewed inside some Euclidean space) is a root  system. We determine the 
type of ~. 

L e m m a  5 .15 .8  The set A is a simple system of ~. 

P r o o f .  By Propos i t ion  5.5.8 it is enough to show tha t  every element of 
can be wr i t ten  as a Z-l inear combinat ion of elements of A, where the 

coefficients are either all non-negative,  or all non-positive.  
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First  write II - II1 U II2, where II1 - {/3 E rI I r - ~} and II2 - 
{/3 E II I r ) ~:/~}. Let a E ~l, then also a E �9 and hence 

O l  - -  

~EII1 ~EII2 

Now from r  - a it follows tha t  

Z k , Z -  Z k~r ~ k z s  
~EII2 ~EII2 ~EII2 

Hence 

kz~ 
~El-I2 

1 (~d-1 k~ ~ (~ + r +.-- + (~)). 
~El-I2 

It follows tha t  a is a Z-linear combination of elements of A. 
Now let a E (I)s, then a - } ( a ' + - . - +  c d - l ( a ' ) ) ,  where a '  C ~.  

par t icular  we have tha t  a '  - Y~ZErI mz/~, so tha t  

1 r - ~ ~n~ + ~ ~n~(~ + r +.-.  + (~11. 
~EII1 ~EII2 

And we arrive at the same conclusion. 

In 

Let II - {/31,... ,/3m }, where m is the rank of ~; then the simple systems 

A of (I, are listed below. 

1. Dl+l" A -- {/31, . . . , /31-1,  �89 +/3L+1)}, 

2. A2t-l" A -- {�89 + /321-1 ) , . . . ,  �89 +/31+1),/31}, 

3. E6" A - -  {~2,~4, 1(~3 + ~5), I(Zl -}- ~6)}, 

4. D 4 "  /k - {1(/~ 1 ~-/3 3 -}-/~4),/~2}. 

It is s t raightforward to see that  the Dynkin diagrams of these systems 
are of types Bl, Cl, F4 and G2. The conclusion is tha t  L is a simple Lie 
algebra of type Bl, Cl, F4, G2 respectively. In part icular,  these Lie algebras 

exist. 
We end this section by giving a multiplication table of L. This will 

then lead to an algori thm for constructing the simple Lie algebras. First  
we remark tha t  in A there occur roots of two different lengths. If a G Al, 

2 then ( a , a )  - 2 and i f a  e As then ( a , a )  -- 1 if d -  2 and ( a , a )  - g 
if d - 3. Using Lemma 5.7.5 we infer tha t  the roots of �9 occur in two 
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different lengths.  For a E Ot we have (a, a)  = 2 since in tha t  case a E ~ .  
Now assume tha t  d = 2, then  for a C (I's we calculate 

1 1 1 
(a ,a )  - (-~(a' 4, r  ~ ( a '  4, r  - 1 + ~ ( a ' ,  r  

Now (a ' ,  r  < 1 so tha t  (a,  a)  < 2. Hence by L e m m a  5.7.5 we see tha t  

(a ,a )  = 1 and ( a ' , C ( a ' ) ) =  0 for a E ~s. (5.15) 

Now we deal wi th  the case where d = 3. Then  for a C ~s we have 

1 1 r + + s + + - 

2 1 1 r 
+ + 

And  again by L e m m a  5.7.5 we see tha t  

2 
( a , a )  - ~ and ( a ' , r  = ( a ' , r  - 0  for a C ~s. (5.16) 

The  longer roots in ~ are called long roots and the shorter  ones are called 
short roots.  

L e m m a  5 .15 .9  Let a,13 E �9 be such that a + (3 C r then [Y~,YB] = 
c (a ' ,  ~ ' ) ( r  4- 1)ya+z,  where r is the largest integer such that a - r f l  E a2, and 
where a', f '  C t~ are chosen such that a' + ~' E t~. 

P r o o f .  There  are three  cases to consider: bo th  a a n d / 3  are long, one of 
t hem is short  while the other  is long and bo th  are short.  If bo th  are long, 
then  (a  4,/3, a 4-/3) - 4 4- 2(a,/3) from which we see tha t  (a,/3) = - 1  and 
a 4./3 lies in ~ (by Propos i t ion  5.13.2) and is long. T h e n  by Propos i t ion  
5.13.2 a - / 3  ~ ~ and hence r - 0. So we are done in this case. 

For the other  two cases we first suppose tha t  d - 2. Let a be short  
a n d / 3  long. Then  a 4./3 is short  (for suppose tha t  ~ /=  a -t-/3 is long, then  
as seen above - ) , - / 3  is also long which is absurd) .  In this case [ya, YB] = 

[x~, 4, xr ]. By L e m m a  5.11.2 we have tha t  [ya, YB] ~ 0 so at  least 
one of a '  4-/3', r  4-/3' must  lie in ~.  But  since r - / 3 '  we see tha t  
if one of t hem lies in ~ so does the other.  Hence bo th  are elements of ~.  
Now since a + /3  - l ( a '  +/~ ' )  + �89162 +/~ ' ) ,  

- + = 

From Propos i t ion  5.13.2 we see tha t  (a ' , /3 ' )  = ( r  = - 1 .  Hence 
(a,  ~) = - 1  and ( a - / ~ ,  a -  ~) = 5. Therefore a - / 3  is not contained in @; 
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so r = 0 and the s ta tement  is verified. If a is long and fl short, then we use 
an analogous argument .  

We deal with the case where c~ and fl are both short. Then [ya, y~] = 
[xa, + xr x~, + xr and by Lemma 5.11.2 this is non-zero. Hence at 
least one of c~' + fl', c~' + r r + fl', r + r must lie in ~.  But 
this is the same as saying that  at least one of a ~ + fl~, c~ ~ + r  is an element 
of ~.  And since interchanging/3 ~ and r  changes nothing we may assume 
that  c~' + /3 '  r ~ ,  i.e., (a ' , /3 ')  = - 1 .  Using (5.15) we calculate 

(c~ + fl, c~ + fl) = 1 + (c~', r (5.17) 

The root c~ + /3  can be short or long. If it is short, then (c~', r = 0 so 
that  c~'+ r ~ �9 by Proposi t ion 5.13.2. Also (c~-/3, c~-/3) = 3 and hence 
c~-/3 ~ ~ and r = 0. Also r +~ ' )  % c~'+/3 ~ (otherwise c~+/3 would be equal 
to c~' +/3 '  and hence long). Furthermore,  c~ +/3 - �89 +/3 ' )  + 1r +/3 ' ) ,  
and 

Ivy, vz] - ~(~', Z ' ) ~ , + z ,  + ~(r  r162 - ~(~',  Z')v~+z.  

On the other hand, if c~ + fl is long, then r + ~') = c~' + ~' (if not, then 
c~ + /3  - �89 +/3 ' )  + �89162 +/3 ' )  would be short). Also from (5.17) we see 
that  (c~', r  1 so that  c~ ' - r  E ~.  From r + ~ ' ) =  c~'+/3 '  we 
easily deduce r - r = c~ ' -  r Therefore c~ - / 3  = c~ ' -  r E (I)l, 
and consequently r = 1. Finally, 

[v.,  v~] = ~(~',  ~ ' )~ . ,  +~, + ~(r  r  +~,) - 2c(~' ,  Z' )y .+~ .  

For the case where d = 3 similar arguments  can be applied. Firstly, if a is 
short and/3  is long, then a '  + ~', r  +/3 '  and r  +/3 '  are all elements 
of ~ and no Ck(a~) -- ~ is an element of ~.  So r = 0 and 

[xa, + xr + x,2(a,), x~,] - ~(c~', fl')Ya+Z- 

If c~ and /3  are both  short then again we may assume that  c~ ~ + /3  ~ E �9 and 
we use (5.16) to calculate 

2 
(a +/3,  a +/3) - g(1 + (a ' ,  r + (a ' ,  r 

Now if a + /3  is short, then (a ' ,  r + (a ' ,  r = 0. If both  terms are 
0, then r = 0 and it is s traightforward to see that  [ya, yZ] = c(a ' , /3 ' )ya+z.  
If on the other hand (a ' ,  r = - 1  and (a ' ,  r = 1, then we have 
r =  1 and 

Ivy, v~] - (~(~', ~') + ~(~', r 
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It is easily verified by inspecting ~ (here we are dealing with one root system 
only) that  (~, ~ short such that  c~+/3 is short and c~' +/3' E �9 and (~', r = 
- 1  imply c(c~', r  = ~(c~',/3'). Hence [ya, y#] = 2~(c~', ~')Ya+#. The case 
where (c~', r = 1 is analogous. 

Finally, if c~+~ is long, then (c~', r = (c~', r = 1 and a ' - r  
a ' -  r are both elements of ~. Furthermore, a '  + /3 '  E Ot and so are 
a '  - r  and a '  - r  - r (~,) (since (a'  - r r (/~,)) = 1). Hence 
r = 2 and also 

= 3 (W, 

Now Lemmas 5.15.5, 5.15.6, 5.15.9 add up to the following multiplication 
table of L: 

[ha, h#] = 0 for (~, 13 E A, 

[ha, y # ] -  (~, c~)y# for c~ E A and/3 E ~, 

[Y~, Y - a ] -  ~ - h ~  for (~ E ~l, 
( -dha for c~ E q)s, 

[y~, y#] -- 0 for c~, 13 E �9 such that  c~ + ~ r �9 and/~ # -c~, 

[y~, y#] = c(c~', # ' ) ( r  + 1)y~+# for c~, 13 E �9 such that  a + 13 E q~, 

where r > 0 is the largest integer such that  c~-  rfl E ~, 

and where (~, ~ are chosen such that  c~ ~ + #~ E ~. 

The multiplication tables (5.14) and (5.18) yield an algorithm Sim- 
pleLieAIgebra for constructing the multiplication table of a simple Lie al- 
gebra of type Xz. If Xz E {A1, Dl, E6,7,8} then we construct a root system q) 
of type X1 (by CartanMatrixToRootSystem, cf. Corollary 5.10.3). We choose 
an orientation of the Dynkin diagram of (1) and we let ~ be the corresponding 
asymmetry function. We return the multiplication table of (5.14). If on the 
other hand Xt is B1, C1, F4 or G2, then we construct a root system �9 of 
type Dl+l, A21-1, E6, D4 respectively. Let r be the diagram automorphism 
of ~. Choose an orientation of the Dynkin diagram of �9 that  is invariant 
under r and let ~ be the corresponding asymmetry function. We construct 
the set ~ = q)s U q~l and return the table of (5.18). 

E x a m p l e  5 .15.10 We use the multiplication table (5.18) to produce the 
structure constants of the Lie algebra corresponding to the root system of 
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type B2. This Lie algebra is a subalgebra of the Lie algebra of type D3. 
However, the Dynkin diagram of D3 is the same as the Dynkin diagram of 
type A3. We choose the following orientation of the Dynkin diagram of type 
A3: 

O > r ,  ~ 0 V 

C~l (~2 ~3 �9 

I t  is clear that  this orientation is invariant under the diagram au tomorphism 
of A3. The corresponding asymmetry  function is defined by e(ai,  ai)  = - 1  
for i = 1,2,3, e ( a l , a 2 )  = e(a3,a2)  = - 1  and e ( a l , a 3 )  = e ( a 3 , a l )  = 
e ( a 2 , a l )  = e(a2 ,a3)  = 1. The root system �9 is the union of 

(I)l - -  "+'{/31 - -  c t2 , /~2  - -  0~1 + oz2 + a 3 }  

and 
1 1 

- - + - + + 

A basis of L is given by 

{gl, g2, YZ~, YZ~, Y'n, YT~, Y-Zl, Y-Z~, Y-71, Y-'~2 }, 

where gl = hzl and g2 = h71. By way of example we calculate the com- 
muta tor  [Y~I, Y~2]. Note that  ")'1 + ")'2 - ~2 E ~, so if we take ~'~ - a l  and 
"y~ - a2 + a3, then "y~ + 7~ E ~.  Furthermore,  71 -~ '2  - -/31 ~ ~ so that  
r -  1. Hence 

[y~, y~2] = 2e(al ,  a2 + O~3)yz2 = -2yz~. 

Continuing like this we fill the whole table. The result is displayed in Table 
5.3. 

g l  

g2 

YZl 
Y~2 
Y~I 
Y'y2 

Y-Z2 
Y - ~  
Y-~2 

gl g2 yZ~ Y~2 Y~ Y~2 Y-Z~ Y-Z2 Y - ~  Y-~2 
0 0 2Y~1 0 --Y'Y1 Y~2 --2Y-~1 0 Y- 'n --Y-'y2 
�9 0 --YZl YZ2 Y~I 0 Y-Z~ - -Y-~2 - -Y- 'n  0 
�9 0 0 Y~2 0 - -g l  0 0 - - y - - ~  

0 0 0 0 --gl -- 2g2 --Y72 YT1 
0 --2y~2 0 Y-72 --2g2 2Y-Z1 

�9 0 y71 --Y-'~I --2YZl - - 2 g l  -- 2g2 

�9 0 0 Y-~2 0 
. . . .  0 0 0 

�9 �9 �9 0 -2y_z2 
. . . . .  

Table 5.3: Multiplication table of the simple Lie algebra of type B2. 
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E x a m p l e  5.15.11 Now that  we have two multiplication tables of the Lie 
algebra of type B2 we can use the isomorphism theorem to construct an 
isomorphism between them. Let L 1  be the Lie algebra of Example 4.9.1 
and let L2 be the one of Example 5.15.10. We use the algorithm Isomor- 
phismOfSSLieAIgebras to construct an isomorphism between them. As seen 
in Example 4.9.1 the root system of L1 is 

q~l - { (1 , -1 ) ,  ( - 1 ,  1), (1, 1), ( - 1 , - 1 ) ,  ( -1 ,  0), ( 0 , - 1 ) ,  (1, 0), (0, 1)}. 

And a simple system is A 1 - -  {Ol  1 - -  (0, 1),Ol 2 - -  (1,--1)} (Example 5.5.2). 
The space/-/2 spanned by gl, 92 is a Car tan subalgebra of L2 and the root 
system of L2 relative to H2 is 

~2 = { (2 , -1 ) ,  (0, 1), ( -1 ,  1), (1, 0), ( -2 ,  1), ( 0 , - 1 ) ,  ( 1 , - 1 ) ,  ( - 1 ,  0)} 

(Again we denote a root a c H~ by the v e c t o r  ( o L ( g l )  , o L ( g 2 ) ) ) ,  a simple 
system of ~2 is A2 - {~71 - ( -1 ,  1),rl2 = (2 , -1 )} .  The Cartan matrix of 
~1 relative to A1 is identical to the Caftan matrix of ~2 relative to A2. 
Hence the linear map sending c~i to r/i for i - 1, 2 is an isomorphism of root 
systems (cf. the proof of Corollary 5.6.3). 

Now we have to construct canonical generators of L1 and L2. For this 
we use the algorithm CanonicalGenerators. First we choose Xl - -  q2 E Ll(al) .  
Let Yl - -  #lP2 C Ll(_al),  where #1 is to be determined. The element yl is 
required to satisfy [[Xl, yl], Xl] - 2x~ and this is equivalent to - - # l q 2  = 2q2, 
i.e., #1 -- --2. Then hi = [xx,yl] - 2A22. Continuing we set x2 - Axe. 
Then Y2 - #2A2i and from [[x2,Y2],x2] - 2x2 we see that  #2 - 1. So 
h2 - A l l -  A22. In the same way we find canonical generators of L2" 

Xl - -  YT1, Y~ - -  -Y-7~, hi - 292, x~ - yz~, y~ - - y _ ~  and h~ - gl. Now 
we know already a large part  of the isomorphism; namely, we know that  
it sends X l to x~, yl to y~ and so forth. For each remaining root vector 
x z C L1 (where ~ is a positive root) we have to fix a sequence a i l , . . .  , aik 
of simple roots such that  c~i~ + . . .  + aim is a root for 1 < m < k, and 

- a i l  + " "  + aik.  In our case there are only two positive roots left and 
we can take 

( 1 , 0 ) = C ~ l + a 2  and ( 1 , 1 ) - a 2 + c ~ l + a l .  

This means that  [xl,x2] - - q l  is mapped to [xl,x~2] - -Y~2. Secondly, 
[xl, [xl,x2]] - -B12 is mapped to [x~, [xl,x~] ] - 2y~2. We do a similar 
thing for the negative roots: [yl, Y2] - - 2 p l  is mapped to [Yl, Y~] - -Y-~2 
and [yl, [yl, y2]] - 4C12 to [y~, [y~, y~]] = -2y_ /h .  
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We have constructed a linear map r  L1 ~ L2 that is necessarily an 
isomorphism. It is given by 

1 
A22 ~-~ g2, All ~-~ gl + g2, q2 ~ Y~I, A12 ~ yzl, p2 ~ ~ y - ~ ,  

1 1 
A21 ~ -y - z~ ,  ql ~-~ Y'~2, B12 ~ -2yz2, Pl ~-~ ~Y-~2, C12 ~-~ -~Y-Z2. 

5.16 The classification theorem 

In this section we summarize our efforts into a theorem. 

Def in i t ion  5.16.1 Let L be a simple Lie algebra of characteristic 0 with a 
split Cartan subalgebra. I/ the rootsystem of L is of type Xt, then L is said 
to be of type Xl. Furthermore, as simple Lie algebras with the same type 
are isomorphic (Corollary 5.11.5), we say that Xt is an isomorphism class 
of simple Lie algebras. 

T h e o r e m  5.16.2 Let F be a field of characteristic O. Then the isomor- 
phism classes of simple Lie algebras with a split Caftan subalgebra are ex- 
actly An, Bn (.for n > 2), Cn (for n > 3), On (.for n > 4), E6, ET, Es, F4 
and G2. 

Proof .  Let L be a simple Lie algebra over F with split Cartan subalgebra 
H. Let O be the root system of L with respect to H, then by Corollary 
5.11.6, ~ is upto isomorphism determined by L. Furthermore, as seen in 
Section 5.9, �9 has one of the types mentioned. Conversely let Xl be one 
of the listed types. Then by Proposition 5.10.1, there is a root system 
of type Xl. As seen in Sections 5.13 and 5.15 there is a simple Lie algebra 
over F with a split Cartan subalgebra, having a root system isomorphic to 
�9 . [::] 

5.17 Recognizing a semisimple Lie algebra 

In this section we consider the problem of deciding whether two given 
semisimple Lie algebras L1 and L2 over Q are isomorphic over the alge- 
braic closure Q of Q. If the Cartan subalgebras of L1 and L2 are split over 

then the algorithm IsmorphismOfSSkieAIgebras gives a straightforward 
method for constructing an isomorphism if the Lie algebras are isomorphic, 
and the method will break down if they are not. However, if the Cartan 
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subalgebras are not split over Q then the situation becomes more difficult. 
As an example we consider the 6-dimensional semisimple Lie algebra L of 
Example 4.12.3. We know that there is only one semisimple Lie algebra of 
dimension 6 with a split Cartan subalgebra, namely the direct sum of two 
copies of the Lie algebra with type A1. However, over Q the Cartan sub- 
algebra of L is not split and L is a simple Lie algebra. Over the algebraic 
extension Q(i) the Cartan subalgebra splits and L is seen to be isomorphic 
to the direct sum of two copies of the Lie algebra of type A1. In this case we 
manage to split the Cartan subalgebra over a rather small algebraic exten- 
sion. However, since the degree of the algebraic extension needed to split a 
polynomial of degree n is "generically" n!, we see that for larger examples 
it can become impossible to take this route. In Section 5.17.1 we describe 
a method for reducing the Lie algebra modulo a suitable prime p. We get 
a Lie algebra over a finite field and the algebraic extensions of finite fields 
are much easier to handle. We prove that (under certain conditions on the 
prime p) the modularized Lie algebra will provide us with the isomorphism 
class of the original Lie algebra. 

In Section 5.17.2 we approach the problem of deciding isomorphism of 
semisimple Lie algebras in a different way. We encode the adjoint action of a 
Cartan subalgebra of a semisimple Lie algebra in a number of polynomials. 
Then we show that L1 is isomorphic to L2 if and only if the polynomi- 
als obtained for L1 can be transformed by a change of variables into the 
polynomials corresponding to L2. 

5 .17 .1  I d e n t i f y i n g  a s e m i s i m p l e  Lie  a l g e b r a  

Let L be a semisimple Lie algebra defined over Q. Then by Propositions 
4.3.6 and 4.3.7 the Lie algebra L | Q has a unique decomposition as a 
direct sum I1 O . . .  @ Im of simple ideals. Furthermore, over Q the Caftan 
subalgebras of the Ik are split and hence the Ik fall into the classification of 
Theorem 5.16.2. Suppose that the simple ideal Ik is of type Xnk. Then we 
call Xnl +""  + Xnm the type of L. In this section we describe a method 
for obtaining the type of a semisimple Lie algebra. 

Throughout H will be a (maybe non-split) Cartan subalgebra of L. 
The idea we pursue here is to avoid working over large number fields by 
reducing the structure constants of L modulo a prime number p. Note that 
if we multiply all basis elements by a scalar A, then the structure constants 
relative to this new basis are also multiplied by )~, so that we can get all 
structure constants to be integers. Then, using an algebraic extension of F v 
if necessary, we split the Cartan subalgebra and calculate the root system 
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over the modular field. For this root system we calculate the Cartan matrix. 
We prove that this is also the Caftan matrix of the root system of L. 

In the sequel we fix a basis of L such that the structure constants relative 
to this basis are integers. Furthermore we assume that this basis contains 
a basis {hl,... , hl} of the Cartan subalgebra H. From Section 4.11 we 
recall that h0 E H is called a splitting element if the degree of the minimum 
polynomial of adLh0 is dim L- dim H + I. Now fix a splitting element 

l ho - ~-~i=I mihi of H such that mi C Z for 1 <_ i _ I (such splitting elements 
exist by Proposition 4.11.2). Let A0 be the matrix of adLh0 relative to the 
given basis of L. All entries of this matrix are integers, so we can reduce 
it modulo a prime p and obtain a matrix Ap with entries in the finite field 
Fp. If p _> 5 is a prime number not dividing the determinant of the matrix 
of the Killing form of L and such that the minimum polynomial of Ap is 
square-free and of degree dim L- dim H + I, then we call p pleasant. In the 
sequel we use a fixed pleasant prime number p. 

Let F be the smallest number field containing all eigenvalues of adLh0. 
We recall that  an algebraic number  c~ E F is called integral over Z if c~ 
satisfies an equation of the form a n + an-lOl n-1 + . . .  + ao - 0 where ai C Z 
for 0 _< i <_ n -  1. The set of all elements c~ C F that  are integral over Z is 
a ring called the ring of algebraic integers of F .  We denote it by C9 g. Then  
by [56, Chapter  I, w Proposi t ion 9] there exists a prime ideal P of (_9 F such 
tha t  P N Z - (p), where (p) denotes the ideal of Z generated by p. The  ring 

{z or cop} o F - -  ~ I x C  , yC \ P  

is called the localization of 0 g at P .  It is a local ring, which means tha t  it 
has a unique maximal  ideal Mp given by 

M p -  Y I x e P ,  y e  \ P  �9 

Since MR is a maximal  ideal, O F / M p  is a field. Fur thermore  Mp contains 
p and hence O F / M P  is of characteristic p. It follows tha t  there is an m > 0 
such tha t  o F / M p  -- Fpm, the finite field of pm elements. 

Let T denote the multiplication table of L relative to the fixed basis of 
L. So all s t ructure  constants in T are integers. Let K be a Lie algebra over 
O F with mult iplication table T. Set 

Kp - K | Fpm. 

Let r  O F --+ IFpm be the projection map. In the obvious way r carries over 
to a map from K to Kp. Let {x 1 , . . .  , Xn} be the basis of K corresponding 
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to the multiplication table T, and set xi - xi | 1 E Kp for 1 < i < n. Then 
we set 

n n 

r  aixi) - E r 
i = 1  i = 1  

Let ~ be the Killing form of K and let ~p be the Killing form of Kp. The 
structure constants of Kp are the images under r of the structure constants 
of K, and hence they lie in the prime field FB. From this it follows that 

~p(r r - r y)) for x, y C K. 

Because p is pleasant, we have that t~p is non-degenerate. 
Since the structure constants of K are the same as those of L, also the 

basis of K corresponding to these structure constants contains a basis of a 
Cartan subalgebra, which we also call H. Furthermore, since the coefficients 
of the matrix of adKh0 (relative to the basis {Xl, . . .  ,Xn}) are integers, it 
follows that the eigenvalues of the adKh0 are integral and hence contained 
in O F. The primary decomposition of K relative to adKh0 is identical to 
the root space decomposition of K relative to H (because h0 is a splitting 
element). So the whole Cartan subalgebra H of K is split. 

Let Hp be the image under r of H. Furthermore H* will be the dual 
space of H, i.e., the space of all linear maps from H into (_9 g. Since H is 
split we have that H* contains the roots of K. Let Hp be the dual of Hp. 
The map r induces a map (which we also call r 

r  

For )~" H --+ OF F an element of H* we set r162 - r Since p is 
pleasant we have that adKpr is a semisimple linear transformation. Also 
it has dim L -  dim H + 1 distinct eigenvalues, one of which is 0. Therefore 
the eigenspace relative to the eigenvalue 0 is Hp and hence the Fitting null- 
component (Kp)o(Hp) is equal to Hp. So Hp is a Cartan subalgebra of Kp. 
Let ~ be the set of roots of K relative to H and (I)p the set of roots of K~ 
relative to Hp. 

L e m m a  5.17.1 The map r maps �9 bijectively onto ~p. 

Proof .  A vector xa is a root vector (corresponding to the root a C ~) of K if 
and only if the coefficients ofxa with respect to the basis {Xl, . . .  ,Xn} satisfy 
a certain system of linear equations over O F, given by [hi, xa] - c~(hi)xa 
for 1 < i < l, where { h i , . . . , h L }  is abas i s  of H. This system has a 1- 
dimensional solution space over F. In particular it has rank n -  1. Now 
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the equat ion system which a root vector of Kp corresponding to r  must  
satisfy is exactly the image under r of the equation system corresponding 
to K and a.  It follows tha t  the rank of this equation system is at most 
n -  1 and hence there are non-zero solutions. The conclusion is tha t  r  
is a root of Kp. 

If a ~ /~ E (I, then because h0 is a split t ing element, a(ho) ~ ~(ho). 
Because p is pleasant also r  ~ r i.e., r  ~ r So the 
map r : ~ --+ (I)p is injective; moreover, it is surjective as well since �9 and 
(I)p have the same cardinality. [::] 

L e m m a  5.17.2  Let M be a Lie algebra of characteristic p >_ 5 with a non- 
degenerate Killing form. Let a, ~ be non-zero roots of M such that a + 
are not roots. Then aM(ha, hB) = O. 

P r o o f .  We recall tha t  ha, h B are defined by (4.10). Let xa, x B and x_z  
be non-zero root vectors corresponding to a , /3 , - /3 .  Since M~, M_~ are 
l -dimensional  (Root fact 16) we see that  aM(X~,X-~) ~ 0 by Root fact 
2 together with the non-degeneracy of aM. By Root fact 11, [x~,x_~] = 
aM(X~,X_~)h~ ~ O. By an application of the Jacobi identity however, 
we infer tha t  [xa, [xB,x_z] ] = 0. But this implies tha t  a(hB) = 0, i.e., 
aM(ha,hB) = 0 .  El 

P r o p o s i t i o n  5 .17 .3  Let M be as in Lemma 5.17.2. By R ~ we denote the 
set of roots of M together with zero. Let a, ~ C R ~ where ~ ~ O. Then not 
all of a, a + ~, a + 2/3, a + 3/3, a + 4/3 are elements of R ~ 

P r o o f .  Suppose tha t  all of a,  a +/3, a + 2/3, a + 3/3, a + 4~ lie in R ~ Suppose 
also tha t  one of them is zero. Note that  a + 2/3 and a + 3/~ cannot be zero 
(otherwise 2/3 or 3/~ is a root which is excluded by Root fact 16). Hence 
a = 0 or a = - f l  or a = / 3  (the last possibility might occur when p = 5). 
But the first possibility implies 2/3 = a + 2/3 is a root. The second implies 
2/3 = a + 3/3 is a root, and the last possibility entails 2/3 = a + /3  is a root. 
In all cases we reach a contradiction, so all of these roots are non-zero. 

Now suppose tha t  all of a,  a +/~,  a + 2/3, a + 3/3, a + 4/3 are non-zero 
roots. Then  ( a + 2 1 3 ) i a  and (a + 4/3) + (a + 2/3) are not roots. So by Lemma 
5.17.2 we have tha t  aM(ha+nz, ha+2Z) = 0 and aM(ha, ha+2B) = 0. This 
implies tha t  4aM(hz, ha+2Z) = 0 and hence aM(ha+2B, ha+2~) = 0. But this 
is the same as saying tha t  (a+213, a+2/3)  = 0 contradicting Root fact 15. [::] 
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From Section 4.9 we recall that  we can identify H and H* via the Killing 
form. Let a be an element of H*. Then the corresponding element ha of 
H is required to satisfy n(h~ ,h )  = a(h) for all h E H. If { h i , . . .  ,hi} is a 
basis of H and hr = a lh l  + . . .  + alhz, then we have the system of equations 

/all (~(hi, hj))  " - " . (5.19) 

al a(hl) 

Since the restriction of ap to Hp is non-degenerate (Root fact 4) we have 
that  the determinant of the matrix of this system is an integer not divisible 
by p. Let B denote the matrix (a(hi, hj)) ,  and for 1 < k < I let Bk be the 
matrix obtained from B by replacing its k-th column by the right hand side 
of (5.19). Now Cramer's rule (see, e.g., [54]) states that  the k-th coefficient 
of the solution of (5.19) is de t (Bk) /det (B) .  Hence there exists a unique 
solution over COp F. We denote the map sending a E H* to ha c H by 0. 
Also for Hp we have a similar map Op" Hp --+ H.  

L e m m a  5.17.4 We have the following identity: r o 0 = Op o r 

Proof .  By hi we denote the image of hi E H under r where { h i , . . .  , hi} 
is the basis of H contained in the basis {x l , . . .  ,Xn} of K. Choose a C H* 
and suppose that  Op(r - blot1 --~-...-~- b l ~ t l ,  where bi C Fpm. Then since 
np(r  r = r  the system of equations for the bi is just the 
image under r of the system of equations (5.19). Hence bi - r and we 
are done. El 

From Section 4.9 we recall that  a bilinear form ( , ) is defined on H* 
by (or, p) - ~(0(a), O(p)). In the same way there is a bilinear form ( , ) p  on 
H;. 

L e m m a  5.17.5 For p ,~  E H* we have r  (r r 

P roof .  The proof is by straightforward calculation" 

= 

= 

- a p ( O p ( r 1 6 2  b y  L e m m a  5 . 1 7 . 4  

= r  



212 The classification of the simple Lie algebras 

For a,  ~ E (I)p let r, q be the smallest nonnegative integers such that  
c~ - (r + 1)15 and c~ + (q + 1)t5 are not roots, and set C(c~,/3) - r - q. Then 
by Proposi t ion 5.17.3 we have that  - 3  < C(a,/~) < 3 for all c~,~ ~ ~p. 

L e m m a  5.17.6  Let ~ ,~  ~ Op. Then 2c~(h~) = C(a,~)~(h~).  

P r o o f .  By Lemma 5.17.1 there are ~/,~ ~ �9 such that  a - ~b(~'), ~ = 
r Furthermore,  if r, q are the smallest nonnegative integers such that  
c ~ -  (r + 1)/~ and c~ + (q + 1)/~ are not roots, then since r maps sums 
of roots to sums of roots, ~, - r h , . . .  ,~, + q5 is the 5-string containing 
7. Hence by Proposi t ion 5.4.2 we have that  r - q  = (~',~}. We cal- 
culate 2~(hz) - 2((~, fl)p - 2(r r = r 5)) (Lemma 5.17.5) 
= r  q)((~, ~)) - C((~,fl)~(h~). [::] 

Now we define a total  order on Op. Since the Killing form of Kp is non- 
degenerate, by Proposi t ion 4.3.6 Kp is a direct sum of simple ideals I. Since 
these ideals are simple they satisfy [I, I] = I. This implies that  [Kp, Kp] = 
Kp. Also [Hp, Hp] = 0 and [(Kp)~, (KB)~] C (Kp)~+~ for a , ~  e ~p. So Hp 
is spanned by the spaces [(Kp)a, (Kp)_a] for (~ e ~p. Now by Root fact 16, 
these spaces are 1-dimensional. So we can choose roo ts /~1 , . . .  , ~l from 4)p 
such that  the spaces [(Kp)zi , (Kp)_Zi ] for 1 < i < 1 span Hp. Let c~ CO p  
and for 1 < i <_ 1 set c~(c~) = C(a,f) i ) .  If a,  fl E Op then we define c~ > ~ if 
the first non-zero ci(c~)-  ci(13) is positive. It is immediate  that  this order is 
transitive. Suppose that  c~ :> ~ and ~ >_ c~, then we have to show tha t  c~ =/5.  
But this is the same as asserting that  ci(a) = ci(~) for 1 < i < l implies 
that  c~ = ~. For 1 < i < l let gi be a non-zero element of [(Kp)Z,, (Kp)_Z~ ]. 
Then gi is a multiple of h~ by Root fact 11. Hence by Lemma 5.17.6, 

ci((~) - ci(j3) implies that  2(~(gi) - ci(~)~i(gi) = ci(fl)~i(gi) -- 2/3(gi). As 
the gi form a basis of Hp the result follows. 

A root c~ E ~p is said to be positive if a > 0. Furthermore,  a positive 
root c~ is simple if there are no positive roots ~, 7 such tha t  (~ = /~  + ~'. We 
let Ap be the set of all simple positive roots in Op, and let A be the inverse 
image under r of Ap. Furthermore,  we call a root c~ E �9 positive if r is 
positive. Then in the same way as in the proof of Lemma 5.5.3 we see that  
for c~ ~= fl e A we have that  a -  ~ is not a root and hence (c~, fl) < 0. Then 
by Proposi t ion 5.4.1 it follows that  A is linearly independent.  Furthermore,  
in the same way as in the proof of Proposi t ion 5.5.5 it follows tha t  every 
positive root c~ ~ �9 can be wri t ten as a sum 
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where the kz are nonnegative integers. Now by Proposition 5.5.8 it follows 
that A is a simple system of ~. Finally, suppose that Ap = {il l , . . -  ,/~l}. 
Then since r maps root strings to root strings we have that the matrix 
(C(~i,~j))l<i,j<l is a Cartan matrix of �9 relative to A. 

The above results lead to the following algorithm: 

A l g o r i t h m  Type 
Input: a semisimple Lie algebra L over (~. 

Output: the type of L. 

Step 1 Calculate a Cartan subalgebra H of L (Section 3.2). 

Step 2 Extend a basis of H to a basis of L and multiply by an integer in 
order to ensure that all structure constants relative to this basis are 
integers. 

Step 3 Calculate a splitting element h0 C H having integer coefficients rel- 
ative to the basis of H used in Step 2. Select a pleasant prime p. 

Step 4 Let S be the table of structure constants obtained from the table of 
structure constants of L by reducing every constant modulo p. Let Lp 
be the Lie algebra with structure constants table S, defined over Fpm 
where m is large enough to ensure that the characteristic polynomial 
of adh0 splits into linear factors. 

Step 5 Calculate a simple system Ap inside the root system (I)p of Lp. Com- 
pute the Cartan matrix of Ap. From this matrix determine the type 
of L. 

5 .17 .2  I s o m o r p h i s m  of  s e m i s i m p l e  Lie  a l g e b r a s  

Here we present an algorithmic method to decide whether two semisimple 
Lie algebras are isomorphic. There is no attempt to construct the isomor- 
phism (if it exists) as it may only exist over a large extension of the ground 
field. 

Let L be a semisimple Lie algebra of dimension n with Cartan subalgebra 
H. Let {h i , . . .  , hl} be a basis of H. Let x l , . . .  , xl be indeterminates and 
set h = ~ x~hi which is an element of L | F ( x l , . . .  ,xl).  Let 

f ( T )  - T n + p l ( X l , . . .  ,xl)T n-1 + ' "  + p n ( X l , . . .  ,xl) 

be the characteristic polynomial of adh. Then we call f the characteristic 
polynomial of the action of H on L. 
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T h e o r e m  5.17.7 Let L1 and L2 be semisimple Lie algebras over an al- 
gebraically closed field F of characteristic O. Let Hi  and H2 be Caf tan 
subalgebras of L1 and L2, respectively. Suppose dim H1 = dim H2 = l and 
dim L1 = dim L2 - n. Let 

and 

f i ( T ) - T  n + p i ( x l , . . .  , x l ) T  n - l  W . . "  + p n ( x i , . . .  , x l )  

f2(T) - T n + ql (Yl, . . . ,Yl)T n-1 + " "  + qn(Yl, . . . , Yl) 

be the characteristic polynomials o] the action of HI  (on L1) and H2 (on 
L2), respectively. Then L1 and L2 are isomorphic if  and only i f  there is a 
transformation 

Yi --  a l i x i  + a i 2 x 2  ~ " "  ~ a i l X l  

�9 (5.20) 

~]l -- a l lX i  + al2x2 + " "  + allXl 

such that det(ai j )  ~ 0 and p i ( x l , . . .  ,xL) - q i (yl , . . .  ,Yz) for  1 <_ i < n. 

Proo f .  For i - 1, 2 let Li - Vi @ Hi be the Fitting decomposition of Li, 
where t~ is the Fit t ing one-component of Li with respect to Hi. Then ~ is 
the sum of the root spaces of Li with respect to Hi. Suppose that  L1 and 
L2 are isomorphic. Because all Cartan subalgebras of Li, L2 are conjugate 
under their respective automorphism groups (Theorem 3.5.1) there exists 
an isomorphism L1 --+ L2 mapping H1 onto H2. Let c~1,... , c~r be the roots 
of L1 and let { h i , . . .  , hi} be a basis of H1. Then 

r 

f i (T)  - T l I I ( T  - (~i(hi)xl  . . . . .  ~ i (h l )x l ) .  
i--i 

A base change of 171 does not affect the characteristic polynomial of the 
action of H1. Hence we consider the effect of a base change in Hi on 
the polynomial f l .  Suppose {h i , . . .  ,/tl} is a second basis of H1, where 
hi - ~ akihk. Then 

l l l 

T - Z ~(hJ)~J - T - ~ ( ~  a~ lh~)~  . . . . .  ~ ( Z  a ~ h ~ ) ~  
j = l  k= l  k= i  

l l 

= T - ~ (h~)  Z a l ~  . . . . .  ~(h~) Z a ~  
k = l  k--1 

- T - o~i(hl)f]l . . . . .  o~i(hl)f]l. 
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The conclusion is that  a base change of H1 corresponds exactly to a change 
of variables in the polynomials pi. So L1 - L2 implies that  there is a 
transformation of the form (5.20). 

Now suppose that  there is a transformation of the form (5.20). Let 
{h i , . . .  , hi} be a basis of H2. We define a linear map r H1 --+/-/2 by 

1 

r - E ajihj. 
j = l  

Then r induces a map (which we also call r from H~ into H~, given by 
r162 = c~(h) for c~ C H~' and h E H1. We claim that  if c~ is a root 
of L1, then r is a root of L2. To see this, note that  a root fl of L2 
corresponds to a factor 

T -  ~ ( ~ t l ) y l  . . . . .  ~([tl)Yl 
in f2. Now choose/~ such that  by the transformation (5.20) this factor is 
mapped to 

T - o~(hl)xl . . . . .  o~(hl)xt. 

Then we calculate 

1 1 l 

T - Z - T - Z a jxj . . . . .  
k = l  j = l  j = l  

1 l 

= T -  ( E  ajl~([tj))Xl . . . . .  ( E  ajl/3(ttj))xl. 
j = l  j = l  

It follows that  

l 1 

j = l  j = l  

So on a basis of H2 the functions r  and fl have the same values, forcing 
r - ft. The conclusion is that L1 and L2 have isomorphic root systems 
and hence L1 -~ L2 by Corollary 5.11.6. O 

The algorithm resulting from this is the following: 

Algorithm: ArelsomorphicSSLieAIgebras 
Input" two semisimple Lie algebras L1 and L2 over a field of characteristic 

0. 
Output" true if L1 and L2 are isomorphic over the algebraic closure of the 
ground field; false otherwise. 
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Step 1 If dim L1 ~ dimL2 then return false. Otherwise set n - dim L1. 

Step 1 Calculate Cartan subalgebras H1 and/-/2 of L1 and L2. If dim H1 
dim H2 then return false. Otherwise set 1 - dim HI. 

Step 2 Calculate the polynomials pi and qi (as in Theorem 5.17.7). 

Step 3 Introduce the variables ajk for 1 < j , k  < l and substitute yj - 
a jkx  k in the qi. Require that the resulting polynomials are equal to 

the Pi. This yields a system of polynomial equations in the variables 

ajk. 

Step 4 Now by a GrSbner basis computation we can check whether there is 
a solution over the algebraic closure of the ground field to the system 
of equations we obtained in the preceding step. If there is such a 
solution then return true, otherwise return false. 

C o m m e n t :  Let R be the polynomial ring containing the indeterminates 
ajk. Let I be the ideal of R generated by the polynomials obtained in Step 
3. By Hilbert's Nullstellensatz these polynomials have common zeros over 
the algebraic closure of the ground field if and only if I r R, i.e., if and only 
if 1 r I. Now Buchberger's algorithm for calculating a GrSbner basis of I 
presents an algorithmic method for checking whether 1 C I (see, e.g., [17], 
[23]). 

E x a m p l e  5.17.8 Let L1 be the Lie algebra of Example 4.12.2. This Lie al- 
gebra has basis { hi, Xl, yl, h2, x2, y2 } and a Cartan subalgebra H1 is spanned 
by {hi, h2}. The matrix of the restriction of ~ladhl + @adh2 to the space 
spanned by {xl ,y l ,x2,y2} is 

2~1 + 2~2 0 0 0 
0 --2(1 -- 2@ 0 0 
0 0 2~1 -- 2~2 0 " 
0 0 0 --2~ + 2~2 

It follows that the characteristic polynomial of the action of H1 on L1 is 

f l (T) - T 2 ( T -  2~1 - 2~2)(T + 2~1 + 2 @ ) ( T -  2~1 + 2@)(T + 2~1 - 2@) 

= T 6 + (-8~ 2 - 8 ~ ) T  4 + (16~ 4 - 32~2~ 2 + 16~4)T 2. 

Let L2 be the Lie algebra of Example 4.12.3. This Lie algebra has basis 
{Xl,. . .  ,x6} and a Cartan subalgebra/-/2 is spanned by xl,x2. The matrix 
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of the restriction of ~ladxl + ~2adx2 to the span of {x3,x4,xh,x6} is 

2~2 -2~1 0 0 
2~1 2~2 0 0 
0 0 -2~2 2~ 
0 0 -2~1 -2~2 

Hence the characteristic polynomial of the action of the Cartan subalgebra 
//2 of L2 is 

A(T)  = T 2 (T 2 - 4~2T 4- 4~ 2 + 4~2)(T 2 4- 4~2T + 4~12 4- 4~ 2) 

= T 6 + (8~ 2 - 8 ~ ) T  4 + (16{ 4 + 32{2~22 + 16{4)T 2 

It is easily seen that the transformation (1 = i~1, @ = ~2 transports f l  
to f2. So by Theorem 5.17.7, L1 and L2 are isomorphic over the algebraic 
closure of Q. 

E x a m p l e  5.17.9 Again let L2 be the Lie algebra of Example 4.12.3. We 
calculate the type of L2 using the algorithm Type. As seen in Example 
4.12.3, xl + x2 is a splitting element with minimum polynomial X ( X  2 - 
4X + 8)(x 2 + 4X + 8). We calculate a pleasant prime p. For that we first 
try p = 5. Over F5 the matrix of ad(xl + x2) has minimum polynomial 
X ( X  4 -  1) which factors as X ( X + I ) ( X - 1 ) ( X + 2 ) ( X - 2 ) .  So it is 
squarefree and of degree dim L2 - d i m H 2  4- 1. Furthermore 5 does not 
divide the determinant of the matrix of the Killing form of L2 (which is 
-22o). The conclusion is that p - 5 is pleasant. Moreover, over F5 the 
minimum polynomial of ad(xl + x2) splits into linear factors, so over this 
field L2 splits as a direct sum of two ideals I1 and 12, where 

I1 ---- (x5 + 2x6, x3 + 2x4,xl + 3x2), 

and 

I2 = (x3 4- 3x4,x5 + 3x6,xl + 2x2). 

The roots of 11 and I2 are easily calculated; it is seen that  the type of L2 is 
A1 + A1. 

5.18 N o t e s  

Most of the material in this chapter is fairly standard. In Sections 5.12 
to 5.15 we have followed [49]. The idea of proving the existence of the 
semisimple Lie algebras by exhibiting a choice for the constants Na,/~ was 
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also pursued in [83], where the construction was performed in a uniform 
manner for all root systems. In [18] a different construction of the Na,# is 
described. There the existence of the simple Lie algebras is assumed. It 
is shown that once the Na,# are chosen for the so-called extraspecial pairs 
(c~, ~), then all other constants N.y,5 can be determined. 

Lemma 5.17.2 and Proposition 5.17.3 as well as the ordering of Op used 
in Section 5.17.1, are taken from [76]. The algorithm Type from Section 
5.17.1 is taken from [33]. 



Chapter 6 

Universal 
algebras 

enveloping 

Universal enveloping algebras are a basic tool for studying representations of 
Lie algebras. Let L be a Lie algebra with basis {Xl,. . .  ,Xn} and let p" L 
g[(V) be a representation of L. Let x, y c L then the product p(x)p(y) is 
in general not contained in p(L). However on many occasions we compose 
the mappings p(x) and p(y) (see for instance Section 5.1). The natural 
framework for doing this is the associative algebra generated by the identity 
mapping together with p(x) for x E L. This associative algebra is called 
an enveloping algebra of L; it is denoted by p(L)*. The algebra p(L)* is 
generated by the identity together with p(xi) for 1 <_ i <__ n. Among others, 
the generators satisfy the relations p(xi)p(xj) = p(xj)p(xi)+ p([xi,xj]). 
And these relations do not depend on the particular representation p (but 
follow from the definition of the concept of representation). 

Now the universal enveloping algebra of L is the associative algebra with 
1 generated by n abstract symbols, which we also call x 1 , . . . ,  Xn, subject 
to the relations xixj - x j x i  - [ x i ,  x j ] .  Then any enveloping algebra of L is 
a quotient of the universal enveloping algebra. So in this sense it contains 
all enveloping algebras of L. 

In Section 6.1 we study ideals in the free associative algebra. We define 
a special type of generating set of an ideal called Gr6bner basis. A criterion 
for a set to be a GrSbner basis is derived. Then in Section 6.2 we define 
universal enveloping algebras and we use the criterion of Section 6.1 to prove 
the Poincar~-Birkhoff-Witt theorem that provides a convenient basis of the 
universal enveloping algebra. Also in this section we show that representa- 
tions of a Lie algebra are in one-to-one correspondence with representations 
of its universal enveloping algebra. 
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In Section 6.3 we give a criterion for a set of elements of the universal 
enveloping algebra of a Lie algebra to be a Gr5bner basis. This yields 
an algori thm for calculating a Gr5bner basis of an ideal in the universal 
enveloping algebra. Also we use this criterion to give a proof of Proposi t ion 
1.13.4 (that  contains a necessary and sufficient condition for a Lie algebra 
of characteristic p > 0 to be restricted). 

In Section 6.5 we give an algorithm for constructing a faithful finite- 
dimensional representation of a finite-dimensional Lie algebra of character- 
istic 0. By doing this we obtain a proof of Ado's theorem, which asserts 
that  such a representation always exists. Finally in Section 6.6 we prove 
the corresponding statement  for Lie algebras of characteristic p > 0, which 
is known as Iwasawa's theorem. 

6.1 Ideals in free associative algebras 

Let X = { x l , x 2 , . . .  } be a set. Then by X* we denote the set of all words 
w = xi~ xi2 "'" xik on the elements of X. This includes the empty word which 
is denoted by 1. The set X* is called the free monoid on X. It is endowed 
with a binary ope ra t i on .  : X* • X* -+ X* which is defined by u .  v = uv 
(concatenation). Furthermore,  if w = x i~x i2 . . . x ik  C X* then its degree is 
deg(w) = k. 

We say that  u C X* is a factor of v E X* if there are Wl, w2 E X* such 
that  WlUW2 = v (i.e., u is a subword of v). Also u is a left factor of v if 

v = uw2 and a right factor of v if v = WlU. 
Throughout  this section we suppose that  X* has a total  order < which 

is multiplicative (i.e., u < v implies wu < wv and uw < vw for all w C X*) 
and satisfies the descending chain condition (i.e., if wl >_ w2 >_ "." is a 
descending chain of words, then there is a k > 0 such that  Wk = Wk+l = "'" ). 
As an example we mention the deglez order <dlex. It is defined by U<dlexV 
if and only if deg(u) < deg(v) or deg(u) = deg(v) and u = wxiu' ,  v = wx jv '  
where w, u ~, v t E X* and i < j .  

Now let F be a field and let F ( X  I be the vector space spanned by 
X*. Extend the operation �9 bilinearly to F ( X ) .  Then F ( X )  becomes an 

associative algebra with 1; it is called the free associative algebra with 1 over 
F.  The elements of X* are called monomials. And for f C F ( X )  we define 
its support to be the set of all monomials that  occur in f with non-zero 
coefficient. Furthermore,  the order < yields the notion of leading monomial  
of f c F I X  }, which is the biggest element of the support  of f .  It is denoted 
by LM(f ) .  Also for a subset S C F ( X )  we set LM(S) = {LM(f)  ] f C S}. 

Let I be an ideal of F ( X ) .  We consider the problem of computing 
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inside the quotient F(X) / I .  We need a basis of F(X) / I ,  i.e., a set of 
representatives of all cosets of F(X I modulo I. This means that  we are 
looking for a set B C F ( X )  such that  B spans a complement to I in F ( X ) .  
Furthermore we need to be able to express products of basis elements as 
linear combinations of basis elements modulo I. This problem is solved by 
the set of normal words of F ( X )  modulo I, i.e., the set 

N(I) = {u e X* l u ~ LM(I)}.  

We let C(I) be the vector space spanned by N(I). 

Proposition 6.1.1 Let I C F(X) be an ideal. Then F(X) = C(I) @ I. 

P r o o f .  It is clear that  C(I)M I = 0. Let f E F(X}, then we prove that  
f = v + p  for some v C C(I) a n d p  C I. By induction we may assume 
the result for all h C F(X) such that  LM(h) < LM(f )  (by the descending 
chain condition there are only a finite number of monomials smaller than 
LM(f) ,  so induction is allowed). Write f = ) ,LM(f) + h where )~ E F and 
LM(h) < LM(f) .  Then by induction h = v + p for a v C C(I) and a p c I. 
So if LM(f )  C N(I) then we are done. However, if this is not the case then 
LM(f)  = LM(g) for some g C I. Write g = #LM(g) + h' and by induction 
the element f -  ~ ~g is equal to u + q where u C C(I )  and q E I. Therefore 

and we are done. [3 f - u + q + - f i g  

Now let f C F(X),  then by Proposition 6.1.1 f has a unique expression 
as f = v + p  for v E C(I) and p C I. The element v C C(I) is called the 
normal form of f modulo I. It is denoted by Nf i ( f ) ,  or if from the context 
it is clear which ideal we mean, by Nf(f) .  

Let u,v E C(I) and set u ,  v = Nf(uv). Then C(I) together with 
�9 becomes an algebra. It is immediate that  this algebra is isomorphic to 
F(X) / I .  So if we have a method for computing normal forms, then we can 
conveniently calculate in F(X) / I .  

Let G C g ( x )  be a set generating an ideal I of g ( x ) .  An element f 
of FIX  ) is said to be in normal form modulo G if for all g C G, LM(g) 
is not a factor of any monomial occurring in f .  As a first a t tempt  at 
calculating normal forms of elements of F(X) modulo I we consider the 
following algorithm for calculating normal forms modulo the generating set 
G. 

Algorithm NormalForm 
Input: a generating set G of an ideal I C FIX ), and an element f E FIX  ). 
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Output: an element r c F ( X )  that  is in normal form modulo G and such 
that  f - r mod I. 

Step 1 Set r " - 0 ,  h " -  f .  

Step 2 If h - 0 then return r Otherwise set u " -  LM(h) and let ~ be the 
coefficient of u in h. 

Step 3 Let g E G be such that  LM(g) is a factor of u. If there is no such g 
then set h " -  h -  ~u, r " -  r + ~u and return to Step 2. 

Step 4 Let ~ be the coefficient of LM(g) in g, and let v, w E X* be such 
that  v L M ( g ) w -  u. Set h "= h -  -fivgw. Return to Step 2. 

C o m m e n t s :  We note that  LM(h) decreases every step. So because < 
satisfies the descending chain condition, the algorithm terminates. Only 
monomials that  do not have a LM(g) as a factor for g E G are added to 
r So it is clear that  upon termination r is in normal form with respect 
to G. Furthermore,  at any stage during the algorithm we have that  f - 
h + r mod I, so at termination f - r mod I. 

We can reformulate the algorithm NormalForm as follows. Let h C F ( X )  
and let w E X* be an element of the support h such that  LM(g) is a factor of 
w for some g C G. Let u, v E X* be such that  uLM(g)v - w. Then we say 
that  h reduces to h ~, where h ~ - h -  ~ugv and )~ and # are the coefficients 
of w and LM(g) in h and g respectively. More generally, if h i , . . . ,  hk are 
such that  hi reduces to hi+l for 1 _ i _ k -  1, then we also say that  
hi reduces to hk, and we write hi -~ hk. Now the algorithm NormalForm 
basically performs a series of reduction steps, and if no further reductions 
are possible it returns what is left. 

As the following example demonstrates, this algorithm may not return 
a normal form modulo the ideal I. 

E x a m p l e  6.1.2 Let X - {x , y }  and G -  { x y -  x2 ,x  3 -  yx, y 3} and let 

the order be <dlex, with X<dlexY. So LM(G) - {xy, x3, y3}. We consider 
calculating the normal form of f -- x2y 2. Since f - x ( xy )y  we see that  f 
x3y. Continuing like this we find x3y -+ yxy  --+ yx 2. This last monomial is 
in normal form with respect to G. Hence we output  it. However, 

- ( x y  - x2)y 2 + x(y 3) - x2y 2. 

So x2y 2 lies in the ideal I generated by G, so that  N Q ( f )  = 0. Also in 
the algorithm we often have a choice of g C G such that  LM(g) is a factor 
of LM(h). In this particular case we could have made the following series 
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x 3 y  = X 2 ( X y )  --~ X 4 - -  X(X 3) ---+ x y x  ~ X 3 ~ y x  and the output is yx. 

We see that the algorithm does not give a unique output. However, in the 
following we show that if the set G has the property of being a Grbbner 
basis, then the output of NormaIForm(G, f)  is unique (and equals Nf(f)) .  

Def in i t ion  6.1.3 Let I be an ideal of F (X) .  Then G C I is called a 
GrSbner basis of I if for all f E I there is a g E G such that LM(g) is a 
factor of LM(f) .  

T h e o r e m  6.1.4 Let G C F ( X )  be a GrSbner basis of the ideal I. Then 
N( I )  is the set of all words w E X* such that for all g E G, LM(g) is 
not a factor of w. Furthermore, NormaIForm(G, f )  returns Nf/ ( f )  for all 
f E F (X) .  

Proof .  The first assertion is a direct consequence of the definition of 
arSbner  basis. Let f E F(X)  and set h = NormaIForm(G, f) .  Let w E X* 
be a monomial occurring in h. Then there is no g E G such that LM(g) 
is a factor of w. Hence by definition of GrSbner basis, w is not a leading 
monomial of an element of I. So w E N(I) .  Now from f = h m o d I i t  
follows that h = Nf(I). [::] 

Def in i t ion  6.1.5 Let G C F ( X  I, then G is called self-reduced if firstly for 
g ~ h E G we have that LM(g) is not a factor of LM(h) and secondly the 
coefficient of LM(g) in g is 1 for all g E G. 

The second condition is added to avoid cumbersome notation. This 
condition does not amount to much: if we divide all g E G by a suitable 
element Ag E F, then we obtain a set G ! satisfying the second condition and 
generating the same ideal as G. 

Let I be an ideal of F(X}  generated by G = {gl ,g2 , . . .  }. Then for 
w E X* we set 

i.e., the vector space spanned by all elements of the form ugv for u, v E X* 
and g E G such that LM(ugv) < w. Note that I<w depends on the particular 
generating set G. However, it will always be clear what generating set we 
mean. 
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T h e o r e m  6.1 .6  Let I be an ideal of F ( X )  generated by a self-reduced set 
G. Then G is a GrSbner basis of I if and only if for all gl,g2 C G and 
u , v  C X* such that LM(gl )u  = vLM(g2) we have that g l u -  vg2 E I<t, 
where t = LM(gl)u .  

P r o o f .  First  suppose tha t  G is a GrSbner basis and set f = g l u - v g 2 .  Then 
f C I ,  so Nf( f )  = 0. Fur thermore  LM(f )  < t and in the a lgor i thm Normal- 
Form we subtrac t  elements -fiwlgw2 from h until we reach 0 (cf. Theorem 

6.1.4). And for each such element we have LM(wigw2)  <_ L M ( / ) ;  hence 

f CI<t .  
Now we prove the other direction. Let f C I; then f can be wr i t ten  as 

n 

f -- E )~iuigivi 
i = 1  

for some ui, vi C X* and gi C G. We prove that  there is a g C G such tha t  
LM(g) divides LM(f ) .  Set si - LM(uigivi)  and suppose tha t  the summands  

are ordered such tha t  

81 - - 8 2 - - . . . - - 8 k  > 8k+l ~_' '" ~ 8n. 

If k - 1, then L M ( f )  - ulLM(gl )V l  and we are done. 
k > 1 and write 

So suppose tha t  

f - )~l(UlglVl - u2g2v2) + (~1 + )~2)u292v2 + 

n 

E )~iuigivi. (6.1) 
i = 3  

Set W i  - -  LM(gi); then U l W l V l  ---- U 2 W 2 V 2  �9 Now if ul = u2, then WlVl = w 2 v 2  

and it is seen tha t  the shorter of Wl, w2 is a factor of the longer one. But  

this is excluded since G is self-reduced. It follows tha t  ul ~ u2. 
Now we suppose tha t  u l is shorter than u2. In this case u2 - u lu~2 

where u~ r 1. Hence WlVl - u~2w2v2 �9 Here Vl must  be longer than  v2 
because otherwise w2 is a factor of Wl. So Vl - v~v2 where v~ ~ 1. Now by 

assumpt ion  glV~ -u2g2'  e I<wlv 1, and hence ul(glv~ - u~g2)v2 - UlglVl - 
u2g2v2 C I<ulwlvl. So we can rewrite (6.1) and obtain an expression of the 
same form where LM(ulg lV l )  has decreased (in the case where k = 2 and 

A1 + A2 = 0) or k has decreased. 
If U l is longer than  u2, then we reach the same conclusion by similar 

arguments .  So because < satisfies the descending chain condition after a 
finite number  of steps we reach an expression for of of the form (6.1) where 
k = 1 and we are done. D 
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Let G be a self-reduced generating set for an ideal I of F ( X } .  By 
Theorem 6.1.6 we see that  in order to check that  G is a Grhbner basis we 

need to verify whether g i n -  vg2 C I<t for all gl,g2 C G and u , v  C X*  
such that  t = LM(gl)U = vLM(g2). It is easily seen that  there are infinitely 

many such u, v. Indeed, set wi = LM(gi) and u = sw2, v = WlS for arbi t rary  
s E X*. Then WlU = vw2. However, if we write gi = wi + t)i, then 

glu - vg2 = ~1 sw2 - wl  s~2 = ~1 sg2 - gl s~2 (6.2) 

which lies in I<t (where t = WlSW2). As a consequence we need not be 
bothered about  u and v such that  u is longer than  or equal to w2 and v is 
longer than  or equal to Wl. The pairs (u, v) that  remain are such tha t  u is 
a proper  right factor of w2 and v is a proper left factor of Wl. And of those 
there are finitely many. 

D e f i n i t i o n  6 .1 .7  Let g~,g2 C F ( X }  and let wi = LM(gi) for  i = 1,2. 

Suppose that the coefficients of Wl, w2 in gl, g2 respectively are 1. Suppose 

fur ther  that Wl is not a factor  of w2 and w2 is not a fac tor  of wl .  Let 
u , v  C X*  be such that w l u  = vw2 and u is a proper right fac tor  of w2 

and v is a proper left fac tor  of Wl. Then the element  g lu  - vg2 is called a 

composit ion of gl and g2. 

C o r o l l a r y  6 .1 .8  Let I be an ideal of F ( X }  generated by a self-reduced set 

G. Then G is a Grhbner basis of I i f  and only i f  NormalForm(G, f )  is zero 

for  all compositions f of the elements of G. 

P r o o f .  If G is a Grhbner basis of I then NormalForm(G, f )  is zero for all 
compositions f because all such f are in I. On the other hand, let gl, g2 E G 
and set f = glu  - vg2 where u, v C X* are such that  LM(gl )u  = vLM(g2). 
Set t = LM(gl )u  = vLM(g2). If u is longer than LM(g2) (and hence v 
is longer than  LM(gl)) ,  then by (6.2), f C I<t. On the other hand, if u 
is shorter than  LM(g2) and v is shorter than  LM(gl),  then by assumption 
NormalForm(G, f )  is zero. Now in Step 4 of the algori thm we subtract  ele- 
ments of the form ~ -fiwlgw2 from the element h. But L M ( w l g w 2 )  - LM(h) < 
LM(f )  < t. After a finite number  of steps this reaches zero, hence f C I<t. 
Now by Theorem 6.1.6 we have that  G is a Grhbner basis. D 

E x a m p l e  6.1 .9  Corollary 6.1.8 yields a straightforward algori thm for com- 

put ing a Grhbner basis of an ideal I generated by a finite set G. First  of all 
we remark that  because G is finite it is straightforward to compute a finite 
self-reduced set G I generating the same ideal as G. So we may suppose that  
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G is self-reduced. Then we consider all compositions f of elements of G. If 
for such an f we have that NormalForm(G, f)  r 0, then we add this normal 
form to G. If necessary we perform some reductions to keep G self-reduced. 
If this procedure finishes, then we have a GrSbner basis. We do not describe 
this algorithm in greater detail, but illustrate it with an example instead. 
Let X = {x, y} and G - {gl - x y  - x 2, g2 - x3 - -  y x ,  g3 - y3}. As order 
we take the deglex order <dlex, where X<dlexY. First gl has no composition 
with itself, and neither with g2; but it has a composition with g3: 

gl �9 y2 _ x " g3 -- - - x2y  2. 

As seen in Example 6.1.2, NormalForm(G, f)  = yx;  so we add g4 - y x  to 
G. Now it is not difficult to check that all compositions of the elements 
g l , . . .  , g4 reduce to zero modulo G. Hence G is a GrSbner basis. 

Unfortunately however, it is by no means guaranteed that this procedure 
finishes, because a GrSbner basis might be infinite. To illustrate this let 
X = {x, y} and I the ideal of F ( X )  generated by fi -- x y x -  y x .  Here  Ix 
has a composition with itself 

f l y x  - x y  f l = x y y x  - y x y x  

which modulo fl  reduces to x y y x -  y y x .  Set f n  = xY  nx  - Y  nx ,  then the 
composition of f k  with fl reduces to fk+l (modulo f k ,  f l ) .  Hence the Gr5bner 
basis relative to <dlex is equal to the set of all fn for n > 1. 

6.2 Universal enveloping algebras 

Let L be a Lie algebra over the field F with basis B = { X l , X 2 , . . .  } (so L is 
not necessarily finite-dimensional). Let X be a set of symbols in bijection 
with B and let r �9 B -+ X realize the bijection. Extend r to a map 
r  L -+ F ( X )  by linearity. Denote the image r by 2i. Now let I be the 
ideal of F ( X )  generated by the elements 

gij - x j x i  - x i x j  - r xi]) for 1 _< i < j .  

Then the un iver sa l  enve lop ing  algebra U ( L )  of L is defined to be the quotient 
F ( X ) / I .  Let 7r " F { X )  --~ U ( L )  be the projection map, then the map 

i " L r F i X  ) - - ~  U ( L )  

maps L into U(L). 
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T h e o r e m  6.2.1 ( P o i n c a r ~ - B i r k h o f f - W i t t )  A basis of U(L) is formed by 
the monomials 

~ . . . ~ k  for k >_ 0 and il < i2 < ' "  < ik, 

(where such a monomial is understood to be 1 i] k -  0). 

P r o o f .  Let G be the generating set of I consisting of the elements gij for 
1 < i < j.  We choose the order on X* to be <dlex where Xi<dlex:~j if i < j .  
Then LM(gij) - xjxi .  We note that  G is self-reduced. We consider the 
possible compositions of elements gij and gkl. It is straightforward to see 
that  these elements can only have a composition when 2i - 21. Then for 
u -  ~k and v - ~j we have 

Now we calculate the normal form of this element modulo the elements 
of G. We note that  k < i < j; so XjXk is the leading monomial of gkj. 

Hence XjXk~i reduces to XkXjXi + r Xk])~i. The first monomial of this 
expression has xjxi  as factor so it reduces again. As a consequence in two 
steps XjXkX i reduces to 

In similar fashion x ix j x  k reduces to 

It follows that  g i j u -  Vgki reduces to 

~kr ~]) + r ~k])~ - ~r ~k]) - 
r ~ ] ) ~ j  - r x~])~k + ~jr ~k]). (6.3) 

Let V be the span of X inside F(X) .  Let v C V, then modulo G the element 
~rV - v~r reduces to r r  (v)]). This is clear if v - Xs, and for general 
v it follows by linearity. In particular we see that  (6.3) reduces modulo G 
to 

r ~]]) + r ~k], ~])  + r [~, ~]]), 

but this is zero by the Jacobi identity. The conclusion is that  all composi- 
tions of elements of G reduce to 0 modulo G. Hence by Corollary 6.1.8, G 
is a Grhbner basis of I. So the normal words of F ( X )  modulo I are those 
monomials that do not contain a LM(gij) as a factor. Now the theorem 
follows by Proposition 6.1.1. [::] 
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C o r o l l a r y  6.2.2 The map i" L --+ U(L) is injective. 

P r o o f .  By Theorem 6.2.1 the elements 2 / for  i _> 1 are linearly independent 
modulo I. Hence i is injective. D 

By the last corollary we may identify L with its image in U(L). To ease 
notation a little we denote the symbol 2/ C X also by xi. Since L can be 
viewed as a subspace of U(L) there can be no confusion as to what we mean 
by this. Furthermore, since U(L) is generated by X it is also generated by 
L. 

D e f i n i t i o n  6.2.3 Let L be a Lie algebra with basis { x l , x 2 , . . .  }. Then an 
kl .. xk~ of U(L) is called a standard monomial. element xil �9 ~n 

Let p : L -+ g[(V) be a representation of L and let A = p(L)* be the 
corresponding enveloping algebra. We extend p to a map p :  U(L) --+ A by 
setting 

m k  ) _ ) m ,  . . .  

Then p is a surjective algebra homomorphism. So A ~ U ( L ) / J  where 
J = ker p; i.e., any enveloping algebra of L is a quotient of the universal 
enveloping algebra of L. Furthermore p makes V into an U(L)-module by 
a . v  = p(a)v for a C U(L) and v C V. Also any algebra homomorphism 
U(L) ~ A whose restriction to L equals p must be equal to p since L 
generates U(L). It follows that  there is one and only one way to extend 
a representation from L to U(L). Moreover, if p : U(L) -~ g[(V) is a 
representation of U(L) then the restriction of p to L is a representation 
of L. It follows that the representations of L are in bijection with the 
representations of U(L). 

E x a m p l e  6.2.4 When calculating inside U(L) we often compute the nor- 
mal form of products of basis elements, i.e., we rewrite a product of the 
form 

nl 

as a linear combination of s tandard monomials. We do this using the al- 
gorithm NormalForm. However in this case this algorithm boils down to a 
simple procedure which we call CollectionlnUEA (in analogy with the col- 
lection algorithm for polycyclic groups, see [80]). The proof of Theorem 
6.2.1 already shows how it goes: whenever we encounter in a monomial w 
some factor of the form xjxi  with i < j,  then we replace it by xixj  and add 
the terms obtained from w by replacing the occurrence of xjxi  by [xj, xi]. 
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We do not formulate the algorithm in great detail, but illustrate it with an 
example. Let L be the 3-dimensional Lie algebra with basis {x, y, h} and 
multiplication table 

[x, y] = h, [h, x] = 2x, [h, y] = -2y .  

(See Example 1.3.6). Then in U(L),  hy = y h -  2y, and hy 2 = (hy)y  = 
(yh - 2y)y = y(hy)  - 2y 2 = y(yh  - 2y) - 2y 2 = y2h - 4y 2. By induction we 
find that hy i - y i h -  2iy i. Now let p" L -+ 9[(V) be a finite-dimensional 
representation of L and let v0 E V be a highest-weight vector of weight ), 
(see Definition 5.1.1). Set vi = p(y)ivo. Then since V is also a U(L)-module 
we can write h . v i  = hyi .vo = y i h . v o  - 2iyi .vo = ( A -  2i)vi. Which is in 
accordance with Lemma 5.1.2. 

6.3 Griibner bases in universal enveloping alge- 
bras 

Throughout this section L will be a finite-dimensional Lie algebra o~/er the 
field F with basis { x l , . . .  , x t} .  In similar fashion as in Section 6.1 we 
define the notion of a GrSbner basis of an ideal of U(L) and we show 
how to calculate a GrSbner basis. We remark that although we formu- 
late all results for finite-dimensional Lie algebras, the same proofs hold in 
the infinite-dimensional case. However in the latter case the indexing of the 
basis elements is a little tedious. 

By the Poincar4-Birkhoff-Witt theorem, a basis of U(L) is formed by the 
standard monomials xkl . . .  x kt. We define the degree of a standard mono- 

k~ .. xkt to be the number deg(m) - kl + . - .  + kt. Throughout mial r n -  x 1 �9 
this section we suppose that < is a total order of the set of standard mono- 
mials. With respect to this order we define the leading monomial  LM(f)  of 
f 6 U(L) to be the largest standard monomial occurring in f with non-zero 
coefficient. Furthermore we suppose that the order is multiplicative (i.e., if 
rnl < m2 then L M ( n m l p )  < LM(nm2p)  for all standard monomials n,p)  
and satisfies the descending chain condition (i.e., there are no infinite strictly 
decreasing chains of standard monomials) and is degree-compatible (meaning 
that deg(m) < deg(n) implies m < n). An example of such an order is the 
deglexorder<dlex.  S e t m - x k l l . . . x k t t a n d n - x ~ l . . . @ .  Thenm<dlexn 
if deg(m) < deg(n). And if the degrees of m, n are equal then m<dlexn if 
the first non-zero entry in (kl - l l , . . .  , k t -  lt) is positive. This order is 
clearly degree compatible and satisfies the descending chain condition. The 
fact that it is multiplicative follows from the following lemma. 
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L e m m a  6.3.1 Let the standard monomials  be ordered by a degree compat- 
ible order <. Let m - x kl .. x kt and n - x~ 1 " . .  xln t be standard monomials .  
Then LM(mn) = _k~ +l~ 1 " Tkt-~'lt 

~ 1  " " - - n  �9 

P r o o f .  This follows from the fact that  < is degree compatible. Indeed, 
in the collection process we substi tute occurrences of x j x i  where j > i by 

x ix j  + [xj,xi]. So the output  will consist of the monomial Xl kl+ll . . .  xt kt+lt 
plus terms of lower degree. [3 

We say that  a s tandard monomial rn is a factor of a s tandard monomial 
n if there are s tandard monomials p, q such that  LM(pmq)  - n. 

E x a m p l e  6.3.2 Let L be the 3-dimensional Lie algebra with basis {x, y, h} 
considered in Example 6.2.4. Let the order be <dlex. Then xh  is a factor 
of x y h  because x h . y  = x y h  - 2xy and the leading monomial of the last 
expression is xyh.  

Let m, n be given s tandard monomials. The next lemma gives a criterion 
by which we can decide whether m is a factor of n. It is a direct consequence 
of Lemma 6.3.1. 

L e m m a  6.3.3 Let m = Xkl 1.. .xkt t and n = x~ 1 . . . x~  t be standard monomi-  

als. Then m is a factor  of n if  and only if  ki ~ li for  1 ~ i ~_ t. 

Let G c U(L) generate the ideal I of U(L). An element f E U(L) is 
said to be in normal  form with respect to G if for all monomials m occurring 
in f there is no g C G such that  LM(g) is a factor of m. A normal  form 
of f modulo G is an element h c U(L)  such that  h is in normal form with 
respect to G and f -  h E I. The following is an algorithm for calculating a 
normal form of f E U(L)  modulo a finite set G C U(L) .  We assume that  
the elements of G are monic (i.e., the coefficient of LM(g) in g is 1 for all 
g E G). It is clear that  we can do that  without loss of generality. 

Algorithm NormalForm 
Input: a set G C U(L)  consisting of monic elements, and an element 

f C U(L) .  
Output: a normal form of f modulo G. 

Step 1 Set r " - 0 ,  h := f .  

Step 2 If h - 0 then return r Otherwise set m "-  LM(h) and let ~ be the 
coefficient of m in h. 



6.3 Gr5bner bases in universal enveloping algebras 231 

Step 3 Let g c G be such that  LM(g) is a factor of m. If there is no such 
g then set h := h -  ,~m, r := r + ~m and return to Step 2. 

Step 4 Let p, q be standard monomials such that  LM(pLM(g)q) = rn. Set 
h := h -  Apgq, and return to Step 2. 

C o m m e n t s :  We note that  by Lemma 6.3.1 it is straightforward to find 
p, q such that  LM(pLM(g)q) = rn in Step 4. The algorithm terminates 
since < satisfies the descending chain condition and LM(h) decreases every 
round of the iteration. Let I be the ideal of U(L) generated by G. Then 
throughout  the algorithm we have that  r + h = f mod I. Furthermore r is 
always in normal form modulo G. Hence at termination we have that  r is 
a normal form of f modulo G. 

We note that  we can reformulate the algorithm NormaIForm in the same 
fashion as in Section 6.1. Let G C U(L) be a set of monic elements and 
let f E U(L). Let rn be a monomial occurring in f and let g E G be such 
that  LM(g) is a factor of rn. Let >, be the coefficient of rn in f and let p, q 
be standard monomials such that  LM(pLM(g)q) = rn. Then we say that  f 
reduces to f '  modulo G, where f '  = f -  Apgq. The algorithm NormaIForm 
executes a series of reductions until no further reductions are possible and 
outputs  the remainder. 

D e f i n i t i o n  6.3.4 Let G C U(L) and let I be the ideal of U(L) generated 
by G. Then G is called a GrSbner basis if for all f E I there is a g C G 
such that LM(g) is a factor of LM(f) .  

As in Section 6.1 we define the set of normal words N(I )  as the set 
of all s tandard monomials that  do not occur as a leading monomial of an 
element of I. If we let C(I) be the span of N(I )  then U(L) = C(I)  G I 
(cf. Proposition 6.1.1). Let f C U(L) and write f = v + g where v C C(I)  
and g C I. Then v is called the normal form of f modulo I; it is denoted 
by Nf(f) .  The proof of the following proposition is completely analogous to 
the proof of Theorem 6.1.4. 

P r o p o s i t i o n  6.3.5 Let G be a Gr5bner basis of the ideal I of U(L). Then 
N( I )  is the set of all standard monomials m such that LM(g) is not a factor 
of m for all g E G. Furthermore NormaIForm(G, f )  returns Nf(f)  for all 
f E U(L). 

Now we consider calculating a GrSbner basis of an ideal I generated 
by a finite set G. We prove some results analogous to those of Section 
6.1. However, in this case we prove that  we can restrict our at tention to 
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a set of special composit ions of the elements of G. To describe those we 
let A = F [ X 1 , . . .  , Xt] be the (commutative) polynomial  ring in t variables. 

- For m -  x I �9 we set ~-(m) .-- and we extend T to a m a p  
T : U(L)  --+ A by linearity. Since the s tandard  monomials  form a basis of 

U(L)  we have tha t  ~- is bijective. Now let f l ,  f2 E U(L)  be monic and set 
u~ = T(LM(f~)) for i = 1,2. Let s be the least common mult iple of u~, u2 
and set mi - T-1 (u__Ts) for i - 1, 2. Then the S-e lement  of f l ,  f2 is defined to 

be 

S ( f l ,  f2) = m l f l  -- m2f2.  

Note tha t  since the f i  are assumed to be monic the leading monomials  cancel 

in this expression (Lemma 6.3.1). 

E x a m p l e  6 .3 .6  Let L be the 3-dimensional Lie algebra with basis {x, y, h} 

of Example  6.2.4. Let the order be <dlex and set A - F[X ,  Y, HI. Put  

f l  = x y - h  and f2 - x h - y .  Then Ul - T(LM(f l ) )  - X Y  and u2 = 
T(LM(f2)) - X H .  Furthermore  X Y H  is the least common mult iple of 

U l,U2. So m l - h and m2 - y  and 

S ( f l ,  f2) - h f l  - y f2 - h x y  - h 2 - y x h  + yx  - x y  - h. 

Now let G - {gl, g2 , . . .  } C U(L)  and let I be the ideal of U(L)  gener- 

ated by G. Let m be a s tandard  monomial.  Then we let I<m be the set of 

elements of the form 
r 

E ~kPkgik qk, 
k = l  

where Pk, qk are s tandard  monomials  such tha t  LM(Pkgikqk) < m.  Note 
tha t  I<m depends on the generat ing set G. However, it will always be clear 

what  generat ing set we mean. Let f C I<m and hi,  h2 C U(L),  then by the 

mult ipl icat ivi ty  of < it follows tha t  h l f h 2  C I<m, where m ~ - L M ( h l m h 2 ) .  

In the sequel we will use this frequently. 

L e m m a  6 .3 .7  Let G C U(L)  generate the ideal I of  U(L) .  Let  g C G 

and suppose that for  1 <_ i <_ t we have that g x i -  x ig  C I<m~, where 

mi  = L M ( g x i ) .  Then for  all standard monomials  q we have g q -  qg r I<n 

where n -  LM(gq). 

P r o o f .  The proof is by induction on deg(q). If deg(q) = 0 then the state- 
ment  is trivial, so suppose tha t  deg(q) > 0. Then q = xiq ~ for some index 
i and some s tandard  monomial  q~. By hypothesis gxi = xig + h ~ for some 

h ~ E I<m~. Hence gxiq ~ = xigq ~ + h~q ~ where h~q ~ C I<LM(miq, ). But  since 
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mi  - L M ( g x i )  we have L M ( m i q ' )  - LM(gq) so that  h'q' C I<n. Further- 
more, by induction, gql _ qlg + h", for some h" C I<r where r - LM(gql). 
Hence gq - qg + x i h "  + h~q ~ and x i h "  + h~q ~ C I<n. f-] 

P r o p o s i t i o n  6.3.8 Let  G C U ( L )  consis t  o f  m o n i c  e l emen t s  and let I be 

the ideal of  U ( L )  generated by G. Then  G is a GrSbner  basis of  I i f  and 

only i f  

1. f o r  all 91,92 E G we have that  S ( g l , g 2 )  - m l g l  - m 2 9 2  lies in I<m 

where r n -  LM(mtgl )  and 

2. f o r  all g E G and 1 < i < t we have that  g x i -  x ig  E I<m where 
r n -  L M ( g x i ) .  

P r o o f .  First  of all, if G is a GrSbner basis then all these elements reduce 
to zero modulo G because they are elements of I. In particular they lie in 
I<m where m is the appropriate s tandard monomial. 

For the other direction we first consider an element f - p l g l q l -  

P292q2 w h e r e  g l ,  92 C G a n d  P l , P 2 ,  ql ,  q2 a re  s t a n d a r d  m o n o m i a l s  such  t h a t  

L M ( p l g l q l )  - LM(p2g2q2) .  Set m -  L M ( p l g l q l ) .  By Lemma 6.3.7 we see 
that  Pigiqi = Piqigi + hi for s o m e  hi C I<m. Now set f i  - L M ( p i q i ) ,  then it 
follows that  f - f l g l -  f292 + h, for some h C I<m. Let A -  F [ X 1 , . . .  , Xt] 
be the commutative polynomial ring in t variables. And let ~- �9 U ( L )  -+ A 
be the linear map given by 7"(Xkl ~ . . . xkt t) -- Xkl ~ . . . X kt. Set ui - ~'(LM(9i)) 
and wi - ~-(fi) for i - 1,2, and let s be the least common multiple of 
ul, u2. Then WxUl - w2u2 - vs  for some v C F [ X I , . . .  ,X t ] .  Set vi - s / u i ,  

then wi - vvi .  Now put ni - ~-l (vi )  and p - ~--l(v). Then nxgl  - n 2 9 2  

is the S-element of gl and g2. Furthermore, by Lemma 6.3.1 we see that  

p h i -  f i  + f~ where LM(f[) < fi. It follows that  

f l g l  -- f292 -- (Prtl -- f~ )g l  -- (pn2 -- f2)g2 -- P ( n l g l  -- rt292) "[- ( f292 -- f ; g l ) .  

The first summand of the right hand side is in I<m by the hypothesis of the 
theorem. And since the second summand also lies in I<m, it follows that  

f ~ I < m .  
Now let f C I, then we must prove that  there is a g C G such that  

LM(g) is a factor of LM(f) .  Write 

f -  A l p l g l q l  + ' "  + ArPrgrqr 

where gi E G for 1 < i < r and pi, qi are s tandard monomials. We remark 
that  the gi are not required to be different. Set m i  - LM(p ig iq i ) .  We 
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suppose that  the summands have been ordered so that  

ml - m2 . . . .  - m k >  mk+l ~_ "'" ~_ mr. 

Now if k - 1, then LM(g~) is a factor of LM(f) .  So in this case we are done. 
On the other hand, if k > 1 then we write 

r 

f -- /~l(Plglql --P292q2) + ()~1 -~ A2)P292q2 + E AiPigiqi. 
i=3 

By the discussion above we see that  p l g l q l -  P292q2 C I<ml. Hence by 
subst i tut ing an expression for this summand as element of I<ml w e  obtain 
a different expression for f where k has decreased, or ml  has decreased (in 
case k = 2 and A1 + A2 = 0). Because < satisfies the descending chain 
condition we are done. [3 

C o r o l l a r y  6.3.9 Let G C U(L) consist of monic elements and let I be the 
ideal of U(L) generated by G. Then G is a GrSbner basis of I if and only if 
S(gl,  g2) for all gl, g2 E G and gxi - xig for g E G and 1 ~ i ~ t all reduce 
to zero modulo G. 

P r o o f .  If G is a GrSbner basis then all these elements reduce to 0 mod- 
ulo G because they are elements of I. On the other hand let gl, g2 E G 
and suppose that  S(gl,  g2) = mlgl  - m 2 9 2  reduces to zero modulo G. Set 
m = LM(mlgl ) .  Then LM(S(gl ,g2))  < rn. In the reduction process we 
subtract  elements of the form Apgq (where g E G) from S(g~, g2) such that  
LM(pgq) <_ L g ( S ( g l , g 2 ) )  < rn. Now since S(gl,g2) reduces to zero modulo 
G we have that  S(gl,g2) C I<m. For the elements of the form g x i -  xig 
we use a similar reasoning. By Proposition 6.3.8 it now follows that  G is a 
GrSbner basis. [3 

Now we have the following algorithm for calculating a Gr5bner basis of 
an ideal I generated by a finite set S. 

Algorithm GrSbnerBasis 
Input: a finite set S - { g l , . . . ,  gr} C U(L) consisting of monic elements. 

Output" a Gr5bner basis of the ideal of U(L) generated by S. 

Step 1 Set G ' = S a n d D ' - { ( g i , g j )  I 1 < i < j < r} U {(g,i) [ g C G, 1 <  
i<_t}.  
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Step 2 If D - ~ then return G. Otherwise let p be an element of D and set 
D : = D \ { p } .  

Step 3 If p - (gl, 92) for some gl, g2 C G, then set h "- S(gl,  g2). Otherwise 
p = (g,i) for some g E G and 1 < i < t; in this case we set h "= 
gxi - xig. Set h' "- NormalForm(G, h). 

Step 4 If h' ~ 0 then do the following: 

Step 4a Divide h' by the coefficient of LM(h') in h'. 

Step 4b Add to D all pairs (g, h') for g C G and (h', i) for 1 < i _ t. 

Step 4c Add h' to G. 

Return to Step 2. 

T h e o r e m  6.3.10 Let S be a finite subset of U(L) consisting of monic el- 
ements. Then GrbbnerBasis(S) terminates in a finite number of steps and 
outputs a Grbbner basis of the ideal generated by S. 

Proof .  The fact that the algorithm produces a Grbbner basis (if it ter- 
minates) follows immediately from Corollary 6.3.9. Now suppose that the 
algorithm does not terminate. Then the set G is enlarged infinitely often, 
and we obtain an infinite sequence G1 D G2 D G3 D . . . .  Furthermore Gi+l 
is obtained from Gi by adding an element hi that is in normal form with 
respect to Gi. In particular LM(g) is not a factor of LM(hi) for all g E Gi. 
For i > 1 we set Gi - {~-(LM(g)) I g C Gi} and we let Ji be the ideal 
of F[X1, . . .  ,Xt] generated by Gi. Then by Lemma 6.3.3 it follows that 
T(LM(hi)) is not divisible by any element of Gi. Now because Gi consists 
of monomials this implies that T(LM(hi)) ~ Ji. As a consequence Ji+l D Ji 
and we have obtained an infinite strictly ascending chain of ideals in the 
ring FIX1, . . .  , Xt]. But this is not possible by Hilbert's basis theorem (see 
for instance [89]). [::1 

One of the main practical problems of the algorithm for calculating a 
Grbbner basis is that the set D often grows very quickly. A huge number 
of pairs is checked, which can make the algorithm very time consuming. 
However, many of these checks do not lead to new elements of G. The next 
lemmas exhibit some pairs for which we can be certain beforehand that 
checking them would be superfluous. 

L e m m a  6.3.11 Let G C U(L) and I be as in Proposition 6.3.8. Suppose 
that for 1 <_ i <_ t and g C G we have that gxi - xig E I<m, where m - 
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LM(gxi) .  Let gl ,g2 C G be such that S (g l ,g2)  = m 2 g l -  mlg2 ,  where 

mj - LM(gj)  for  j - 1,2. Then S (g l ,g2)  c I<n, where n -  LM(m2gl ) .  

P r o o f .  Write  gj - m j  + ~j for j - 1,2. By Lemma 6.3.7 we have tha t  

S(g l ,g2)  - g lm2 - mlg2 + h where h C I<n. Fur thermore ,  

glm2 - mlg2 -- (11m2 - mlg2 -- gig2 - gig2. 

Therefore,  glm2 - m l g 2  E I<n and we are done. 

L e m m a  6 .3 .12  Let G C U(L)  and I be as in Proposition 6.3.8. Let 

gl ,g2,g3 C G and write S (g l ,g2)  = m l g l - m 2 g 2 ,  S (g l ,g3)  = n l g l - n 3 g 3  and 

S(g2,g3) = p 2 g 2 - p 3 g 3 .  Suppose that S (g l ,g3)  E I<n where n = L M ( n l g l )  
and S(g2, g3) C I<p where p = LM(p2g~). Suppose fur ther  that n and p are 

factors  of m = L M ( m l g l ) .  Then S(g l ,g2)  E I<m. 

P r o o f .  Since n and p are factors of m there are s t andard  monomials  t l ,  t2 

such tha t  m = L M ( t l n )  and m = LM(t2p). By the hypothesis  of the l emma 

we know tha t  t l S ( g l , g 3 ) -  t2S(g2,g3) c I<m. From m = L M ( m l g l )  = 
L M ( t l n )  = L M ( t l n l g l )  it follows tha t  ml  = t l n l  + h i ,  where LM(h l )  < ml .  

Similarly m = LM(m2g2) = LM(t2p2g2) implies tha t  m2 = t2P2 + h2 where 

LM(h2) < m2. We also know tha t  m = LM(t ln3g3)  and rn = LM(t2p3g3).  

Hence (t2p3 - t ln3)g3 C I<m. Now we calculate 

t l S ( g l , g 3 )  - t2S(g2, g3) - t l n l g l  - tln3g3 - t2p2g2 + t2p393 

= m l g l  - m2g2 - h lg l  + h2g2 + (t2p3 - t ln3)g3. 

It follows tha t  S(g l ,g2)  E I<m. D 

By Lemma 6.3.11 we do not have to consider S-elements  of the form 

m 2 g l - m l g 2 ,  where mi = LM(gi).  Fur thermore ,  if gl, g2, g3 are as in Lemma  
6.3.12, and we already dealt  wi th  S(g l ,g3)  and S(g2,g3),  then we can dis- 
pense wi th  checking S(g l ,  g2). 

E x a m p l e  6 .3 .13  Let L be the Lie algebra with basis {x, y , h )  and multi-  

pl icat ion table 

[x, y] = h, [h, x] = 2x, [h, y] = - 2 y .  

Let G = {gl = x 2, g2 - y2  g3 --- h2 - 1}. The s tandard  monomials  are or- 

dered by the deglex order, where X<dlexY<dlexh. We calculate a GrSbner  ba- 
sis of the ideal of U(L)  generated by G. All possible S-elements  of gl, g2, g3 
are of the form considered in Lemma 6.3.11. Therefore we do not have 
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to check them. So we look at elements of the form g x i -  x i 9 .  First  we 
have x 2 y -  y x  2 - 2 x h  + 2x  which is in normal form modulo G. So we add 

94 - x h  + x to G. The next element is x 2 h -  h x  2 - - 4 x  2, which reduces to 
0 modulo G. Now we deal with 92: Y 2x - x Y  2 - - 2 y h  + 2y  which cannot 
be reduced, so we add g5 - y h - y  to G. The element y 2 h - h y  2 - 4y 2 
reduces to 0 modulo G. Also (h 2 - 1)x - x ( h  2 - 1) is a multiple of g4 and 

( h 2 - 1 ) y - y ( h 2 - 1 )  is a multiple of 95. Now we check the S-elements contain- 
ing g4. First  S ( g l ,  g4) - h x  2 - x ( x h  + x) = 3x 2 reduces to 0. The S-element 

S(g2, 94) is of the form considered in Lemma 6.3.11 and S ( 9 3 , 9 4 )  = -394.  
Also the elements g 4 x -  xg4 and g 4 h -  hg4 give nothing new. However, 

g4Y - Yg4 - - 2 x y  + h 2 + h reduces to 96 - x y  - �89 - �89 which we add. Now 
by checking the remaining pairs it can be shown that  the set {91, . . .  , 96} 
is a Gr5bner basis. We note that  we do not need to check the S-element 

S(95, 96) once the S-elements S(94, g5) and S(g4, 96) have been dealt with 
(Lemma 6.3.12). 

We close this section with a proof of Proposi t ion 1.13.4. For this we use 
Corollary 6.3.9. Let L be a Lie algebra over the field F of characteristic 
p > 0 with basis {Xl,X2, . . .  }. Suppose that  there are yi E L for i > 1 such 
that  (adxi) p - adyi. We let I be the ideal of U ( L )  generated by the set 

a -  w I1 _< i}. 

L e m m a  6 .3 .14  T h e  se t  G is a G r S b n e r  basis o f  I .  

p 
P r o o f .  For i >_ 1 set gi = x i  - Y i ,  and define a linear map adxi �9 U ( L )  -+ 

U ( L )  by adx i ( f )  - x i f - f x i  for f E U ( L ) .  Then for x E L we have 
adx~(x) = [x i , x]  (where the product  on the right hand side is taken in 

P - x x  p by (1.14) with n p. But  also L). Furthermore,  ( a d x i ) P ( x )  - x i x 

( a d x i ) P ( x )  - [Yi, x] - y i x  - x y i .  This means that  x P x  - x x  p - y i x  - x y i ,  or 

9 i x  = xg i  for all x C L. In part icular  9 i x j  - x j g i  - O. Also for i r j ,  

S ( g i ,  gj ) -- p P -- P P x j g i  - x i gj g i x j  - x i gj 
p p 

= x i y j  -- y i x j .  

But modulo G this reduces to YiYj  - Y i Y j  = 0. Now by Corollary 6.3.9 we 
see that  G is a GrSbner basis of I. D 

By the preceding lemma we have that  the set of normal words is 

N ( I )  - {xik~ . . .  xk~ l r > 1 and 0 < ki < p }  

And a basis of the algebra A - U ( L ) / I  is formed by the cosets of the 
normal words. Let 7r" U ( L )  --+ A be the projection map and consider the 
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linear map r L J+ U(L) -~ ALie. Since the basis elements xi are linearly 
independent modulo I (they are normal words) we have that  r is injective. 
It is also a morphism of Lie algebras so r is an isomorphism of L onto the 
subalgebra ], of ALi~ spanned by the r As seen in Example 1.13.3, ALie 
is restricted and the map a ~ a p is a p-th power mapping. Furthermore 
r p - r and by Definition 1.13.2 (items 2. and 3.) it follows that  L 
is closed under the p-th power mapping of ALie. So L is restricted and as 
a consequence so is L, and there is a p-th power mapping in L satisfying 

p 
X i ~--~Yi. 

6.4 GrSbner  bases  of  left ideals 

Let L be a Lie algebra. A subspace I C U(L) is said to be a left ideal if 
au E I for all a E U(L) and all u E I. We can view U(L) as an L-module 
by setting x.  a = xa for a E U(L) and x E L. Then the left ideals of U(L) 
are the L-submodules of U(L). Hence if I is a left ideal of U(L), then the 
quotient space U(L)/I  becomes an L-module in a natural  way. It is the 
objective of this section to sketch an approach to Gr5bner bases for left 
ideals in U(L). This will provide a method for constructing a basis of the 
quotient module U(L)/I. All constructions and results are analogous to the 
results of the previous section. 

Throughout  we let < be a total order on the s tandard monomials of 
U(L). The leading monomial LM(f)  of an element f E U(L) relative to the 
order < is defined to be the largest monomial occurring in f .  We assume 
that  < is left-multiplicative (i.e., m < n implies LM(pm) < LM(pn) for 
all s tandard monomials p), satisfies the descending chain condition and is 
degree compatible. The deglex order of the previous section serves as an 
example of such an order. 

A s tandard monomial m is called a left factor of a s tandard monomial n 
if there is a s tandard monomial p such that  LM(pm) = n. By Lemma 6.3.1, 
m is a left factor of n if and only if m is a factor of n. 

An element f E U(L) is said to be in left-normal form with respect 
to a set G c U(L) if there is no s tandard monomial m occurring in f 
having LM(g) as a left factor for a g E G. Furthermore, h E U(L) is a 
left-normal form of f modulo G if h is in left-normal form with respect to 
G and f -  h E I,  where I is the left ideal of U(L) generated by G. We 
have an algorithm LeftNormalForm for calculating a left-normal form of an 
element f E U(L) modulo a set G of monic elements of U(L). It is the same 
as the algorithm NormalForm of the previous section, except for Step 4 that  
is replaced by 
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Step 4' Let p be a standard monomial such that  LM(pLM(g)) - m. 
h ' = h - ~ p g .  

Set 

Let I C U(L) be a left ideal. A set G C I is called a left-GrSbner basis of 
I if for every f C I there is a g E G such that  LM(g) is a factor of LM(f) .  
If G is a left-Gr5bner basis of I, then the algorithm LeftNormalForm(f, G) 
returns the normal form of f with respect to I. Also a s tandard monomial 
m is said to be left-normal with respect to G if there is no g C G such that  
LM(g) is a left factor of m. If G is a left-GrSbner basis of I,  then the cosets 
of the left-normal monomials with respect to G form a basis of the quotient 
U(L)/I .  

Now for calculating a left-Gr5bner basis of a left ideal generated by a 
set of monic elements of U(L) we use the same algorithm as for calculating 
a GrSbner basis of the ideal of U(L) generated by G, except that  we only 
consider the S-elements (and leave out the elements of the form gxi - xig). 
The algorithm we get is the following. 

A l g o r i t h m  LeftGrSbnerBasis 
Input: a finite set S - {g l , . . .  ,gr} C U(L) consisting of monic elements. 

Output" a left-Gr5bner basis of the left ideal of U(L) generated by S. 

Step 1 Set G "-  S and D := {(gi,gj) t 1 <_ i < j <_ r}. 

Step 2 If D - 0 then return G. Otherwise let p = (gl, g2) be an element of 
D and set D "-  D \ {p}. 

Step 3 Set h "- S(g~,g2) and h' " -  LeftNormalForm(G, h). 

Step 4 If h ~ ~: 0 then do the following: 

Step 4a Divide h ~ by the coefficient of LM(h ~) in h ~. 

Step 4b Add to D all pairs (g, h ~) for g C G. 

Step 4c Add h ~ to G. 

Return to Step 2. 

The proof that  this algorithm terminates and gives a left-GrSbner basis 
is analogous to the proof of the corresponding facts concerning the algorithm 
Gr5bnerBasis in the previous section. We leave the details to the reader. We 
note that  we can use Lemma 6.3.12 to reduce the number of S-elements 
that  need to be checked. However, Lemma 6.3.11 cannot be used in this 
case. 
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6.5 C o n s t r u c t i n g  a representat ion  of a Lie a lgebra 
of character is t ic  0 

Ado's theorem states that any finite-dimensional Lie algebra of character- 
istic 0 has a faithful finite-dimensional representation. In this section we 
describe a method for constructing such a representation for a given Lie 
algebra of characteristic 0. As a byproduct we obtain a proof of Ado's 
theorem. 

A first idea is to look at the adjoint representation of L. The kernel of 
ad is the centre C(L) of L. So for Lie algebras with a trivial centre the 
problem is solved by the adjoint representation. Therefore in the rest of 
this section we will be concerned with Lie algebras that  have a nontrivial 
centre. 

This section is divided into several subsections. In Section 6.5.1 we give 
an algorithm for constructing a tower (with certain properties) of Lie alge- 
bra extensions (where every term is an ideal in the next one) with final term 
L. A representation of the first element of the tower is easily constructed. 
Then this representation is successively extended to representations of the 
higher terms of the tower and finally to L itself. Sections 6.5.2 and 6.5.3 
focus on a single extension step. In Section 6.5.2 the vector space underlying 
the extension is described. Then in Section 6.5.3 we derive the algorithm for 
extending a representation. In Section 6.5.4 an algorithm for the construc- 
tion of a faithful finite-dimensional representation of L is given and Ado's 
theorem is obtained as a corollary. 

6 .5 .1  C a l c u l a t i n g  a s e r i e s  o f  e x t e n s i o n s  

From Section 1.10 we recall that  K >4 H denotes the semidirect sum of K 
and H. In this Lie algebra K is an ideal and H is a subalgebra. Let L be 
a finite-dimensional Lie algebra of characteristic 0. Here we describe how a 
series of subalgebras 

K1 C K2 C.. .  C Kj = NR(L )  C Kj+I C - - - C  K r - 1  = SR(L)  C K r  = L 

can be constructed such that Ki+l = Ki ~ Hi, where Hi is a subalgebra of 
Ki+l. We do this in three steps: first we deal with the case where the Lie 
algebra is nilpotent, then with the case where the Lie algebra is solvable. 
The final step consists of calculating a Levi subalgebra. For the first two 
steps we have the following algorithms. 

A l g o r i t h m  ExtensionSeriesNilpotentCase 
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Input: a nilpotent Lie algebra L over a field of characteristic 0. 
Output: subalgebras K1,K2 , . . .  ,Kn - L and H1, . . .  ,Hn-1 such that 

1. K1 is commutative, 

2. K i +  l - K i  )~ Hi ,  

3. dim H i - l f o r l < i < n - 1 .  

Step 1 Calculate the lower central series of L. Let K1 be the final term of 
this series. Set n "-  1. 

Step 2 If K n -  L then return K I , . . .  , K n , H 1 , . . .  ,Hn-l. Otherwise go to 
Step 3. 

Step 3 Let I be the unique term of the lower central series of L such that 
[L, I] C Kn, but I is not contained in Kn. 

Step 4 Let yn be an element from I \ Kn and let Hn be the subalgebra 
spanned by Yn. Set Kn+I "= Kn :~ Hn. Set n " - n  + 1 and go to Step 
2. 

A l g o r i t h m  ExtensionSeriesSolva bleCase 
Input: a solvable Lie algebra L over a field of characteristic 0. 

Output: subalgebras K1, K2 , . . .  , Km - L and H1 , . . .  , Hm-1 such that 

1. K1 is equal to the nilradical of L, 

2. K i +  1 - K i )4 H i ,  

3. dim H i - l f o r l < i < m - 1 .  

Step 1 Calculate the nilradical K1 of L. 

Step 2 Let y l , . . .  , Ym-1 span a complement to K1 in L. For 1 <_ i <_ m -  1 
let Hi be the subalgebra spanned by yi and set Ki+l - Ki >4 Hi. 
Return K1 , . . .  , Km~ Hi , .  �9 �9 , Hm-1. 

C o m m e n t s :  It is straightforward to see that the algorithms terminate. 
Let L be a solvable Lie algebra of characteristic 0. Since [L,L] C NR(L) 
(Corollary 2.3.5) the elements yi constructed in Step 2 of the algorithm for 
the solvable case satisfy [yi, L] C NR(L). So we can construct the semidirect 
sums. 
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6 . 5 . 2  T h e  e x t e n s i o n  s p a c e  

In this section we assume tha t  we are given a Lie algebra L over a field F 
of characterist ic 0 together with an ideal K and a subalgebra H such tha t  
L = K )4 H.  Star t ing with a finite-dimensional representat ion p : K ~ ~[(V) 
of K we t ry  to find a finite-dimensional representat ion a of L. Under  some 
conditions we succeed in doing this. 

Let U ( K ) ,  U ( L )  be the universal enveloping algebras of K , L  respec- 
tively. Then  U ( K )  is a subalgebra of U ( L ) .  Let a E U ( K )  and y E g .  Then  
by applying the collection process (CollectionlnUFA) we see tha t  ay  = ya  + b 

for some b C U ( K ) .  Hence ay - ya  = b E U ( K ) .  

We describe the space on which L is to be represented. This will be a 
finite-dimensional subspace of the dual space 

U(K)* - { f -  U(K)  ~ F I f is linear}. 

The  Lie algebra L acts on U(K)* in the following way. Let f be an element 
of U ( K ) *  and let x E K and y C H. Then  for a E U ( K )  we set 

(x.  f )(a)  - f (ax) 

( y .  f ) ( a )  - f ( a y -  ya) .  
(6.4) 

L e m m a  6.5.1 The equat ions  (6 .4)  make  U ( K ) *  into an L - m o d u l e .  

P r o o f .  We have to prove tha t  Ix, y]. f = x.  (y. f )  - y.  (x. f )  for all x, y E L 
and f E U ( K ) * .  It is enough to prove this for x, y in a basis of L. So put  
together a basis of K and a basis of H to obtain a basis of L. Let x, y be 
elements from this basis. If both  x, y e K,  then Ix, y ] - f ( a )  = f ( a [ x ,  y]) = 
f ( a x y  - a y x )  = x . (y . f ) ( a )  - y . (x . f ) ( a ) .  So in this case we are done. 
Secondly suppose tha t  x E K and y C H. Then  

x . (y . f ) ( a )  - y .  (x  . f ) ( a )  - f ( a x y  - y a x )  - f ( a y x  - y a x )  

= f ( a x y  - a y x )  - Ix, y] .  f (a).  

(Note tha t  [x, y] C K.)  Thirdly  suppose tha t  x, y E H.  Then  

�9 . ( y .  f ) ( a )  - y .  ( ~ .  I ) ( a )  - f ( a x y  - ~ a y  - y a z  + y ~ a )  - 

f ( a y x  - y a x  - x a y  + x y a )  

= I ( a ~ y  - a y x  + y ~ a  - x y a )  - [~, y ] .  f ( a ) .  
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Now let { x l , . . .  ,xt}  be a basis of K. From Section 6.2 we recall that  the 
representation p of K extends to a representation of the universal enveloping 
algebra U(K),  by 

_ ) k l  p(x  

Consider the map 
c" V x V* -----~U(K)* 

defined by c (v ,w*) (a )=  w*(p(a)v) for v e V, w* e V* and a e U(K).  
Let { e l , . . . ,  em} be a basis of V and let e~ be the element of V* defined 
by e;(ej) = 5ij. Then c(ei, e;)(a) is the coefficient on position (j , i)  of the 
matrix of p(a) with respect to the basis { e l , . . . ,  em}. Therefore we call an 
element c(v, w*) a coefficient of the representation p. By Cp we denote the 
image of c in U(K)*; it is called the coefficient space of p. 

Let Sp c U(K)* be the L-submodule of U(K)* generated by Cp (i.e., 
the smallest L-submodule of U(K)* that  contains Cp). Let a : L --+ g[(Sp) 
be the corresponding representation. We will call a the extension of p to 
L. Proposition 6.5.3 states some conditions that  ensure that  Sp is finite- 
dimensional. In the proof we need a lemma that  is of independent interest. 
We recall that  the codimension of an ideal I of an algebra A is the number 
d i m A / I .  

L e m m a  6.5.2 Let K be a Lie algebra over a field F with basis { x l , . . .  , xt}. 
An ideal I of U(K) is of finite codimension if and only if for 1 < i < t there 
is a univariate polynomial pi E F[X] such that pi(xi) E I. 

P r o o f .  Suppose that  I is of finite codimension. By ~i we denote the image 
ofxi  in U ( K ) / I .  For 1 < i <_ t let Pi be the minimum polynomial of~i. Then 
pi(xi) E I. For the other direction suppose that  deg(pi) = di. Then modulo 

k l  . .  xkt t I any standard monomial can be reduced to a s tandard monomial x 1 �9 
such that  ki < di for 1 < i < t. But there is only a finite number of these; 
hence the set of normal words N(I )  is finite and I is of finite codimension. [3 

Also we need the concept of nilpotency ideal. Let K be a finite dimen- 
sional Lie algebra, and let p-  K --+ g[(V) be a finite-dimensional represen- 
tat ion of K.  If I is an ideal of K such that  p(x) is a nilpotent linear trans- 
formation for all x C I, then I is called a nilpotency ideal of K with respect 
to p. Let 0 - Vo C V1 C .. .  C Vs+l = V be a composition series of V with 
respect to the action of K. Set I - {x E K Ip(x)Vi+l C Vi for 0 < i < s}. 
Then I is an ideal of L; furthermore, by Proposition 2.1.4, I is a nilpotency 
ideal of K with respect to p. Now let Y be a nilpotency ideal of K with 



244 Universal enveloping algebras 

respect to p. Then by Proposition 2.1.4, J C I. It follows that  I contains 
all nilpotency ideals of K with respect to p. For this reason I is called the 
largest nilpotency ideal of K with respect to p. We denote it by Np(K).  

P r o p o s i t i o n  6.5.3 Let L = K )4 H and let p : K ~ 9[(V) be a finite- 
dimensional representation of K such that [H,K] C Np(K).  Let a :  L --+ 
9[(Sp) be the extension of p to L. Then Sp is finite-dimensional and Np(K) C 
Na(L).  Furthermore, if L is solvable and adKy is nilpotent for all y C H, 
then H C Na(L).  

P r o o f .  Let 0 -  V0 C V1 C . . .  C Vs+l - V be a composition series of V 
with respect to the action of K.  Let I -  {a C U(K) I p(a) - 0} be the 
kernel of p (viewed as a representation of U(K)) ,  and 

J -  {a C U(K)  l p(a)Vi+l c ~ for 0 _~ i _~ s}. 

Then J is an ideal of U(K) and I C J. Now I has finite codimension (since 
U ( L ) / I  ~- p(K)*) and hence so has J.  Now from Lemma 6.5.2 it follows 
that  js+l also has finite codimension. Set 

W -  { f  C U(K)* I f ( J  s+l) - O }  

then W is finite-dimensional as js+l has finite codimension. We claim that  

W is stable under the action of L. First let x E K,  then for f E W and 
a C js+l we have x .  f (a)  - f (ax )  - 0 since js+l is an ideal of U(K).  
Second let y E H. For a E U(K)  we define ady(a) - y a -  ay. Then ady is a 
derivation of U(K) extending the usual map ady" K --+ K.  Now ady(K)  C 
Np(K) C J; so since K generates U(K) we see that  ady(U(K))  C J, whence 
ady(J  s+l) C js+l.  Consequently for f E W and a E js+l we have that  

y .  f (a) - f (ay - ya) - O. Our claim is proved. 
Now let c(v, w*) be a coefficient of p, then c(v, w*)(I) - O. But js+l C I 

so that  c(v, w*) C W. Therefore Cp C W and because W is an L-module 
also Sp C W. And since W is finite-dimensional the same holds for Sp. 

We prove that  Np(K) is an ideal in L. By the definition of largest 
nilpotency ideal we see that  Np(K) - J M K. But [H, J N K] C [H,K] C 
Np(K).  And this implies that  Np(K) is an ideal in L. Now let x C Np(K),  
then also x C J so that  x s+l E js+l. Let f E Sp then a(x) s+l.  f (a)  - 
f ( a x  s+l) which is zero because f C W and ax s+l C gs+l. Therefore No(K) 
is a nilpotency ideal of i with respect to a, i.e., Np(K) C N~(L). 

Suppose that  L is solvable and adKy is nilpotent for all y C H. Let 
y C H. Again we consider the derivation ady of U(K).  Since ady acts 



6.5 Constructing a representation of a Lie algebra of characteristic 0 245 

nilpotently on K, by the Leibniz formula (1.11) we see that ady is lo- 
cally nilpotent on U(K) (meaning that for every a E U(K) there is a 
k a > 0 such that (ady)k~(a) -- 0). This implies that ady acts nilpotently 
on the finite-dimensional space U ( K ) / J  ~+1, i.e., there is an N > 0 such 
that (ady)N(U(K)) C j~+l. Then a(y) N .  f (a)  = 0 for all f E Sp and 
a C U(K).  The conclusion is that or(x) is nilpotent for all x C Np(K) U H. 
Let M be the Lie algebra spanned by Np(K) along with H. We note that 
M is an ideal of L. In particular M is a solvable Lie algebra. Suppose that 
the ground field is algebraically closed. Then by Lie's theorem (Theorem 
2.4.4) there is a basis of Sp relative to which the matrices of a(x) are upper 
triangular for all x E M. Hence a(x) is strictly upper triangular for all 
x C Np(K) U H. The conclusion is that a(x) is strictly upper triangular for 
all x C M. If the ground field is not algebraically closed, then we tensor 
everything with the algebraic closure of the ground field and arrive at the 
same conclusion. It follows that M is a nilpotency ideal of L with respect 
to a, so that M C N~(L). D 

6.5.3 Extending a representation 

Throughout this section L = K >4 H and p : K -+ 9[(V) is a finite- 
dimensional representation of K such that [H,K] C Np(g) .  Furthermore, 
a : L --+ 9[(Sp) will be the extension of p to L. By Proposition 6.5.3, Sp is 
finite-dimensional. 

In this section we give an algorithm to construct a finite-dimensional 
representation of L. If p is faithful and H is 1-dimensional, then the rep- 
resentation of L will also be faithful. The key to the algorithm will be the 
following proposition. 

P r o p o s i t i o n  6.5.4 Suppose that p is a faithful representation of K.  Then 
cr is faithful on K.  Furthermore, if H is 1-dimensional, then a is a faithful 
representation of L or there is an element ~1 E K such that y -  ~1 lies in the 
centre C(L) of L, where y is an element spanning H. 

Proof .  Let x be a non-zero element of K. Then p(x) 5r 0 and hence there 
are v G V and w* C V* such that 

0 7s w* (p(x)v) - a(x) .  c(v, w*)(1). 

Hence a(x) r 0 for all x C K so that cr is faithful on K. 
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Suppose tha t  H is l -dimensional  and let y C H span H.  Suppose further 
tha t  a is not faithful on L. This means that  there is a relation 

= 0 ,  

for some ~ E K,  i.e., a(y) = a(~).  Then for all x C K we have 

= = [ o ( y ) ,  = 

Since a is faithful on K,  this implies that  [~), x] = [y, x]; but  this means tha t  
[y - ~, g ]  = 0. Also a([y, y - ~]) = 0 and because [y, y - ~] E g we have 
that  it is 0. The conclusion is tha t  y -  ~ E C(L). 0 

Now the idea of the algori thm is straightforward. Suppose tha t  H = (y) 
is l-dimensional.  If there is an element 9 E K such tha t  y -  f] E C(L) 
then we can easily construct  a representat ion of L. If on the other hand, 
there is no such 9, then a will be a faithful representat ion of L. If H is not 
l -dimensional  then we have no guarantee that  a is faithful. However in the 
next section it will become clear that  this does not bother  us too much. 

We consider the problem of calculating a basis of Sp. We do this by 
letting the elements of L act on Cp. By the next lemma we only have to 
consider the action of the elements of H for this. 

L e m m a  6.5.5 Let Yl , . . .  ,Ys be a basis of H. Then Sp is spanned by the 
elements 

kl ks 
Yl " " Ys " f 

where kq > O (l ~ q ~ s) and f E Cp. 

P r o o f .  Let { x l , . . .  , xt} be a basis of K.  Then by the theorem of Poincar~- 
Birkhoff-Witt ,  Sp is spanned by all elements of the form 

for f E Cp. Now for x E K we have x .  c(v, w*) = c(p(x)v, w*) and hence 
Cp is a U(K)-module .  This implies that  Sp is spanned by elements of the 
form 

f 

The next problem is how to do linear algebra inside Sp. Since the am- 
bient space U(K)* is infinite-dimensional this is not immediate ly  straight- 
forward. We need to represent each element of Sp as a row vector (of finite 
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length); then we can use Gaussian elimination to calculate a basis of Sp 
and calculate matrices of endomorphisms of Sp and so on. We solve this 
problem by taking a finite set B of s tandard monomials and representing 
an element f C Sp by the vector (f(b))bEB. We must choose B such that  
linearly independent elements of Sp yield linearly independent row vectors. 
We shall call such a set B a discriminating set for Sp. Since Sp is finite- 
dimensional discriminating sets for Sp exist and a minimal discriminating 
set consists of dim Sp s tandard monomials. 

Now we formulate an algorithm for extending the representation p to L. 
There are two cases to be considered; the general case and the case where 
H = (y) and there is a ~ E K such that  y -  (i E C(L). In the second case 
we can easily construct a faithful representation of L. In the general case 
we construct the extension of p to L. Then by Proposition 6.5.4 we always 
obtain a faithful representation of L in the case where H is l-dimensional. 
For greater clarity we formulate the algorithm using a subroutine that  treats 
the general case. We first state the subroutine. 

Algorithm GeneralExtension 
Input: L = K ~ H and a representation p : K  ---+ ~[(V) such that  [H, K] C 
Np(K). 
Output: the extension ~ : L  -+ 9[(Sp). 

Step 1 Calculate a set of s tandard monomials B = { m l , . . .  , mr} that  form 
a basis of a complement to ker p in U(K). 

Step 2 Calculate a basis of Cp using B as discriminating set and set d := 

max deg mi. 

Step 3 Let Bd be the set of all s tandard monomials m such that  deg(m) <_ d. 

Step 4 Calculate a basis of Sp, using Bd as discriminating set. 

Step 5 Calculate the action of the elements of a basis of L on Sp. If this 
yields a representation of L, then return that  representation. Other- 
wise set d := d + 1; and go to Step 4. 

Comments: The algorithm is straightforward. It calculates a basis of 
Sp and the matrices of the corresponding representation. For want of a 
bet ter  method we use a rather crude way of finding a discriminating set Bd. 
First we consider the space Cp. We have 

= ( p ( a ) v ) ,  
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so we can describe a function in Cp by giving its values on the monomials mi 
constructed in Step 1. Now we let Bd be the set of all monomials of degree 
_ d. Initially we set d equal to the maximum degree of a monomial  mi, 
ensuring that  all these elements will be contained in Bd. Using Lemma 6.5.5 
we calculate a basis of Sp, representing each function on the set Bd. Then 
we calculate the matrices of the action of the elements of a basis of L. If 
this yields a representation of L then we are done. Otherwise we apparent ly  
did not calculate all of Sp in the preceding step. This means that  Bd is 
not a discriminating set for S 0. So in this case we set d " -  d + 1 and go 
through the process again. Since Sp is finite-dimensional, the procedure will 
terminate.  (Note that  once we find in Step 5. a space that  is an L-module 

it must be equal to Sp since it contains Cp.) We can refine this a little by 
calculating a much smaller set of monomials in Step 5. In that  step we know 
a basis of our space and we can restrict to a set of s tandard  monomials of 
cardinality equal to the dimension of this space. 

Now we state the routine that  also treats the special case. We recall that  
E~ denotes the n x n-matr ix  with a 1 on position (i, j )  and zeros elsewhere. 

A l g o r i t h m  Extend Representation 
Input: L = K >~ H and a representation p : K  --+ g[(V) such that  [H, K] C 

N,(K). 
Output: a representation a : L  --4 g[(W). 

Step 1 If H is spanned by a single element y and there is an element ~ E K 

such that  y -  ~1 E C(L) then do the following: 

p.n+2 Step la  Set n " - d i m ( V ) .  Set a ( y -  [1):= ~n+l,n+2" 

Step lb For x in a basis of K let a(x) be the n + 2 x n + 2-matrix of 
which the n x n-submatr ix  in the top left corner is p(x), and the 

rest of the entries are 0. 

Step lc Return  a. 

Otherwise re turn GeneralExtension(L, p). 

P r o p o s i t i o n  6.5 .6  Let L - K >~ H and let p" K ~ g[(V) be a representa- 
tion of K such that [H,K] C Np(K).  Then ExtendRepresentation(L,p) re- 
turns a finite-dimensional representation (7 of L such that Np(K) C N~(L). 
Also if p is faithful and H is 1-dimensional, then (7 is a faithful representa- 
tion of L. 

P r o o f .  First we suppose that  (7 is constructed in Steps la., lb. of the 
algorithm. We remark that  finding a ~ such that  y -  [J E C(L) amounts  to 
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solving a system of linear equations. Also since y - ~ E C(L) we have that  
the map a is a representation of L. It is obviously finite-dimensional and 
G(x) is nilpotent for all x E Np(K).  Since [y, Np(K)] - [~, Np(K)] C Np(K) 
we see that  Np(K) is an ideal of L. Therefore, Np(K) C N~(L). On the 
other hand, if a is constructed by GeneralExtension then these properties 
follow from Proposition 6.5.3. 

Finally suppose that  p is faithful and H is 1-dimensional. If a is con- 
structed in Steps la., lb., then a is obviously faithful on L. And if a is 
constructed by GeneralExtension then a is faithful by Proposition 6.5.4. [:] 

6 .5 .4  A d o ' s  theorem 

Here we formulate algorithms for calculating a faithful finite-dimensional 
representation of a Lie algebra L of characteristic 0. We treat the cases 
where L is nilpotent and solvable separately. 

Algorithm Representation NilpotentCase 
Input a nilpotent Lie algebra L of characteristic 0. 

Output: a finite-dimensional faithful representation a of L, such that  a(x) 
is nilpotent for all x E L. 

Step 1 Let [K1, . . .  ,Kn,  H1, . . .  ,Hn-1] be the output  of ExtensionSeries- 
NilpotentCase with input (L). 

p s+l for 1 < Step 2 Let {Xl,... ,Xs} be a basis of K1 and set pl(xi) "- ~1,i+1 
i < s .  

Step 3 For 2 <_ i <_ n set Pi "=ExtendRepresentation(Ki,p~_l). 

Step 4 Return Pn. 

Lemma 6.5.7 Let L be a nilpotent Lie algebra of characteristic O, then 
RepresentationNilpotentCase on input L returns a faithful finite-dimensional 
representation a of L such that a(x) is nilpotent for all x E L. 

Proo f .  By induction we show that for 1 _< i _< n we have that  Pi is a 
faithful finite-dimensional representation of Ki such that  pi(x) is nilpotent 
for all x E Ki. This is certainly true for i - 1. Now assume that  i > 1. 
Then Ki - Ki-1 >~ Hi - l ;  and since by induction, Npi_ 1 (Ki-1) - Ki-1 we 
have that  [Hi-l ,Ki-1] C Npi_ l(Ki_l) .  By Proposition 6.5.6 we see that  
K i-1 - Np~_l (K i - l )  C Np~ (K i). Let yi-1 be an element spanning H i - i  
(note that  the Hj are all 1-dimensional in this case). We show that  pi(Yi-1) 
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is nilpotent. If Pi is constructed in Steps la., lb. of the algorithm ExtendRep- 
resentation, then Pi(yi-1) = Pi(yi-1 - yi-1) + pi(yi-1). Both summands on 
the right hand side are nilpotent and commute, hence pi(yi-1) is nilpotent. 
On the other hand, if fli is constructed by GeneralExtension, then pi(yi-1) is 
nilpotent by Proposition 6.5.3. Now in exactly the same way as in the last 
part of the proof of Proposition 6.5.3 it follows that Ki-1 + Hi-1 C Npi (Ki), 
i.e., pi(x) is nilpotent for all x E Ki. Also Pi is faithful by Proposition 6.5.6. 
D 

Algorithm RepresentationSolva bleCase 
Input: a solvable Lie algebra L of characteristic 0. 

Output: a finite-dimensional faithful representation a of L, such that a(x) 
is nilpotent for all x C NR(L). 

Step 1 Let [K1,.. .  ,Km, H1, . . .  ,Hm-1] be the output of ExtensionSeries- 
SolvableCase with input (L). 

Step 2 Let al be the output of RepresentationNilpotentCase(K1). 

Step 3 For 2 <_ i _< rn set 0i "-ExtendRepresentation(Ki,ai_l). 
Step 4 Return Om. 

Lemma 6.5.8 Let L be a solvable Lie algebra of characteristic 0, then Rep- 
resentationSolvableCase on input L returns a faithful finite-dimensional rep- 
resentation 0 of L such that a(x) is nilpotent for all x C NR(L). 

Proof .  By induction we show that for 1 _< i _< rn we have that ai is a 
faithful finite-dimensional representation of Ki such that ai(x) is nilpo- 
tent for all x C NR(L). For i - 1 this follows from Lemma 6.5.7 as 
K1 - NR(L). Now suppose that i > 1, then Ki - Ki-1 >4 Hi - l ,  and 
by Corollary 2.3.5 we have that [Hi-l ,Ki-1] C NR(L). But by induction, 
NR(L) C N~_~ (K~_~). Hence the hypothesis of Proposition 6.5.6 is satis- 
fied. It follows that NR(L) C N~i(Ki ), and that 0i is faithful. D 

Algorithm Representation 
Input: a Lie algebra L of characteristic 0. 

Output: a finite-dimensional faithful representation a of L, such that a(x) 
is nilpotent for all x C NR(L). 

Step 1 (Catch nilpotent and solvable cases.) If L is nilpotent, then return 
the output of RepresentationNilpotentCase on input L. If L is solvable, 
then return the output of RepresentationSolvableCase with input (L). 
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Step 2 Calculate the solvable radical R and a Levi subalgebra S of L. 

Step 3 Let r/ be output  of RepresentationSolvableCase(R). Let p be the 
output  of Extend Representation with input L and r/. Return the direct 
sum of p and the adjoint representation of L. 

T h e o r e m  6.5.9 Let L be a a finite-dimensional Lie algebra of characteris- 
tic O. Then Representation(L) returns a faithful representation a of L, such 
that a(x) is nilpotent for all x E NR(L). 

P roo f .  Firstly, if a is output in Step 1, then this follows from Lemmas 
6.5.7 and 6.5.8. If L is not solvable, then L = R >4 S. We note that  
by Proposition 2.3.6, NR(L) = NR(R). So by Lemma 6.5.8 we have that  
NR(L) C N~(R). Using Corollary 2.3.5, we now see that  IS, R] C Nv(R). 
Therefore, by Proposition 6.5.6, p is a finite-dimensional representation of 
L. In this case S is not 1-dimensional, so p is constructed by GeneralEx- 
tension. Therefore, by Proposition 6.5.4, p is faithful on R. In particular, 
p is faithful on the centre C(L) of L. But then it follows that  the direct 
sum of p and the adjoint representation of L is faithful on L. Further- 
more, by Proposition 6.5.6, p(x) is nilpotent for all x E NR(L). Also adx 
is nilpotent for all x E NR(L). Hence a(x) is nilpotent for all x C NR(L). 

C o r o l l a r y  6.5.10 ( A d o ' s  t h e o r e m )  Let L be a finite-dimensional Lie al- 
gebra over a field of characteristic zero. Then L has a faithful finite- 
dimensional representation. Moreover, a representation can be constructed 
such that the elements of the nilradical of L are represented by nilpotent 
endomorphisms. 

E x a m p l e  6.5.11 Let L be the 5-dimensional Lie algebra of characteristic 
0 with basis {Xl , . . .  ,Xh} and multiplication table 

[X3, X4] --  X2, IX3, Xh] = Xl ,  IX4, Xh] --  X3- 

This is a nilpotent Lie algebra and the final term of its lower central series 
is spanned by Xl,X2,X3. So we set K1 = (xl ,x2,x3),  K2 = K1 >4 (x4} and 
K3 = K2 >4 (Xh). A representation Pl of K1 is easily constructed by setting 
pl(xl)  - E42, pl(x2) - E43 and pl(x3) - E44 �9 Then the only s tandard 
monomials p for which pl(P) is non-zero are 1,Xl,X2,X3. So any coefficient 
will yield zero when applied to any other monomial. Denoting the function 
that  assigns to a matrix the coefficient on position (i, j)  by cij we see that  
there are four coefficient functions. First there is Cll : U(L) -+ F defined 
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by c1~(1) = 1 a n d  c11(p) --- 0 if p is a s t a n d a r d  m o n o m i a l  not  equa l  to 1. 

Second  we have c12 given by c12(Xl) = 1 and  c12(p) = 0 if p # Xl. T h i r d  

a n d  f o u r t h  we have c13 and  c14 t h a t  sat isfy c13(x2)  = 1 a n d  c13(P) = 0 if 

p # x2 a n d  cl4 (x3) = 1 a n d  c14 = 0 if p ~ x3. So Cp~ is 4 -d imens iona l .  

Now we let X4 a c t  o n  C p l .  By i n d u c t i o n  it is s t r a i g h t f o r w a r d  to e s t ab l i sh  

t h a t  X4Xr~  - -  X ~ X 4  - - m x 2 x ~  -1  a n d  hence  

x k x l x m x 4 1  2 3 k l m k _ / + l  m - 1  - -  X 4 X l  X 2 X  3 - -  m x l  x 2 x 3 . 

k /+1  m - 1  �9 k 1 m Set ak,l ,m -- m x l x  2 X 3 , t h e n  for f C U ( K 1 )  we have  X 4 "  f ( x l x 2 x  3 ) -- 

f ( a k J , m ) .  Since ak,l,m is never  1 we see t h a t  x4"Cl l  = 0. F u r t h e r m o r e  akJ ,m 

is also never  x l  or x3 i m p l y i n g  t h a t  x 4 " c l 2  = x 4 " c l 4  = 0. However ,  if we 

set k = 1 = 0 a n d  m = 1, t h e n  ak,l,m = x2. Th i s  m e a n s  t h a t  x4 �9 c13(x3) = 

c13 (x2) = 1. As a consequence  x4"c13 = c14. So Cpl is s t ab le  u n d e r  the  ac t ion  

of  x4, i.e., Spl = Cpl. Th i s  yields a r e p r e s e n t a t i o n  P2 o f / { 2 .  By  the  above  

we see t h a t  p2(x4) - E 4 Also for f C U(K1)*  we have x l  . f ( x l x 2 x 3 ) _ k  l m 4,3" 
f t  k + l  1 - - m  [x I x 2 x  3 ) f rom which  it follows t h a t  Xl "Cll - x1"c13 = Xl "Cl4 - 0 a n d  

X l ' C l 2  = Cll. For  x2, x 3 we use a s imi lar  a r g u m e n t  a n d  we conc lude  t h a t  

p2(x l )  - E42, p2(x2) - E43 a n d  p2(x3) - E44 ( the  s ame  ma t r i c e s  as for p l ) .  

We p e r f o r m  the  final ex tens ion .  T h e  s t a n d a r d  m o n o m i a l s  p E U ( K 2 )  

such  t h a t  p2(p) is non-ze ro  are  1 , x l , x 2 ,  x3,  x4,  x 3 x 4  ( p 2 ( x 3 x 4 )  = p2(x2)) .  So 

the  coefficients are  c11, c12, c13, c14, c43 where  

Cll(1) = 1 and  0 for all o the r  m o n o m i a l s  

C l 2 ( X l )  - -  1 a n d  0 for all o the r  m o n o m i a l s  

cl3 (x2) = c13 (x3x4) = 1 and  0 for all o the r  m o n o m i a l s  

c14(x3) = 1 a n d  0 for all o the r  m o n o m i a l s  

c43(x4) = 1 and  0 for all o the r  monomia l s .  

We let x5 act  on the  5 -d imens iona l  space  Cp2 s p a n n e d  by the  coefficients.  

F i r s t  by some i n d u c t i o n  a r g u m e n t s  we see t h a t  

k 1 m n X5 x k  1 l m n _  X l x 2 x  3 X 4 x 5  - -  X 2 X  3 X 4 

n x  1 x 2  x 4 - -  x 1 x 2  
1 m n - 2  k + l  l m - 1  

X 3 X 4 ~ m x  1 x 2 x  3 x ~ .  

We d e n o t e  the  expres s ion  on the  r ight  h a n d  side by b k , l , m , n .  T h e n  for f C 

U(K2)*  we have X h - f ( x k x ~ x ~ x ' ~ )  -- f (bk , l ,m ,n) .  Since bk,l,m,n is never  1, 

Xh'Cl l  = 0. F u r t h e r m o r e  b k , l , m , n  - -  X l  if and  only  if k = 1 = n = 0 a n d  m = 1 

so Xh 'Cl2(x3)  = Cl2(Xl) = 1 a n d  x5"c12 = cl4. In  s imi lar  fash ion  x5"c14 = c43. 
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Also bk , l ,m,  n is x2 or X 3 X 4  if and only if k - l = m - 0 and n - 2, in which 

case bk,l,m,n -- 2x3x4--x2.  So x5.c13(x24) - c13(2x3x4-x2)  - 1. This yields 
a function g ' U ( g 2 )  --+ F not contained in Cp2; it is defined by g(x24) - 1 
and g(p) - 0 for all s tandard  monomials  p r x 2. Since bk,Z,m,n is never x4 

or x 2 we have tha t  X5 "C43 - -  x 5 " g  - -  O. It follows tha t  Sp2 is 6-dimensional. 
We leave it to the reader to write down the matrices of the corresponding 
representat ion of L. 

6.6 T h e  t h e o r e m  of  Iwasawa 

In the preceding section we proved Ado's theorem, s ta t ing tha t  any finite- 
dimensional  Lie algebra of characteristic 0 can be obtained as a linear Lie 
algebra. In this section we prove the corresponding result for Lie algebras 

of characterist ic p > 0, which is known as Iwasawa's theorem. 

Throughout  F will be a field of characteristic p > 0. We recall tha t  a 
polynomial  of the form 

c~oX pm+ c~lX pro-1 + . . .  + c~mX 

is called a p-polynomial. 

L e m m a  6.6.1 Let L be a f inite-dimensional Lie algebra over F.  Let x E L, 
then there is a monic p-polynomial f e F[X] such that f ( a d x ) -  0. 

P r o o f .  Let g be the min imum polynomial  of adz. Suppose tha t  the degree 

of g is d. Then  for 0 <_ i _< d we write 

X p~ - gqi + ri 

where deg(ri) < d. Now since the space of polynomials  of degree < d is d, 

the polynomials  ri are linearly dependent.  So there are ,~0, �9 �9 �9 , ~a such tha t  
d 

~ -~ i=0 /~ i r i  - - O .  T h i s  m e a n s  t h a t  

d d 

Z 
i=0 i=0 

So g is a factor of a p-polynomial  f .  After dividing by a suitable scalar we 

may assume tha t  f is monic. Finally, because g divides f ,  we have tha t  
/ ( a d z )  - 0. n 

Now let L be a finite-dimensional Lie algebra over the field F with  basis 

{x 1 , . . . ,  Xn}. For 1 <_ i <_ n let fi C FIX] be a monic p-polynomial  such 
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tha t  f i (adxi)  = 0. Set G = {fl(Xl) ,  �9 . .  ,fn(Xn)} which is a subset of U(L).  
Let I be the ideal of U(L) generated by G. 

L e m m a  6.6.2  The set G is a GrSbner basis of I. 

P r o o f .  We claim tha t  f i (x i)  commutes with all elements of U(L).  For this it 
is enough to show that  f i (x i)  commutes with all elements of L. For a C U(L) 
let ada be the derivation of U(L) given by ada(b) = a b -  ba for b C U(L).  
By (1.14) with n = p it follows that  (ada)P(b) = a P b -  ba p = adaP(b) 
for b C U(L).  So (ada) p = ada p. By a straightforward induction this 

implies (ada) p~ - ada pk. In particular,  for y E L we have adf i (x i ) (y)  - 
f i (adxi) (y)  = 0, i.e. f i (x i )  commutes with every y E L and our claim is 
proved. 

Now we show tha t  G is a GrSbner basis. Firstly, f i ( x i ) x j  - x j f i ( x i )  = 0 

by the claim above. Write f i (x i)  - x pm~ + ~(x i ) .  Then 

p m j  I" p m j  �9 

S ( f i f j ) - xj f i - -pm~ - xPii ''' , x i fj - ]ixj fj 

But modulo G this reduces to - ] i ( x i ) f j ( x j )  + f i ( x i ) ~ ( x j )  - O. By Corol- 
lary 6.3.9 it now follows tha t  G is a GrSbner basis of I. [:] 

As in the proof of the preceding lemma write f i (x i)  - x pmi +~(x i ) .  Then 
by Lemma 6.6.2 it follows tha t  the set of normal words of U(L) modulo I is 

N ( I )  - {xik~ . . . xkr  l r > 1 and 0 < ki < pmi} 
~ r  - -  - -  ~ 

And a basis of the algebra A = U ( L ) / I  is formed by the cosets of the normal  
words. Let 7r : U(L) ~ A be the projection map and consider the linear 

map r L -~ U(L) -5> ALie. Then by the same argument  as we used at the 
end of Section 6.3 we have that  r is an isomorphism of L onto its image 
in ALie. We identify L with its image and we let p : L -+ ~[(A) be the 
map given by p(x)(b) = xb for x C L, b C A (where the product  on the 
right hand side is taken in A). Then  p([x, y])(b) = [x, y]b = ( x y -  yx)b = 
(p(x)p(y) - p(y)p(x))b. Hence p s a representat ion of L. Also since A has 
an identity this representat ion is faithful. So we have proved the following 
theorem. 

T h e o r e m  6.6.3  ( I w a s a w a )  Let L be a finite-dimensional Lie algebra of 
characteristic p > O. Then L has a faithful finite-dimensional representa- 
tion. 
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R e m a r k .  We can easily transform the proof of Iwasawa's theorem into an 
algorithm Representation for Lie algebras L of characteristic p > 0. For every 
basis element xi of L we calculate a p-polynomial fi such that fi(adxi) = O. 
Then we form the algebra A spanned by the normal words N(I )  modulo the 
ideal I of U(L) generated by the elements f~(x~). Finally we calculate the 
matrices of the left multiplication of xi on A. However, since the dimension 
of A will generally be huge, this is not a practical algorithm. To the best 
of our knowledge the problem of finding an algorithm for constructing a 
finite-dimensional faithful representation of manageable dimension for a Lie 
algebra of characteristic p > 0 is still open. 

6.7 N o t e s  

Grbbner bases for commutative polynomial rings were invented by B. Buch- 
berger ([15], [16], [17]). In [9] the concept of Grbbner basis was extended 
to noncommutative associative algebras (see also [64], [65]). The proof of 
the Poincare!-Bikhoff-Witt theorem by the use of Grbbner bases was given 
in [9]. For a different approach we refer to [42], [48]. 

Grbbner bases for left ideals in universal enveloping algebras were intro- 
duced in [1]. In [50] Grbbner bases for so-called solvable polynomial rings 
were described. Universal enveloping algebras are an example of solvable 
polynomial rings. This last paper also describes Grbbner bases for two- 
sided ideals. Lemmas 6.3.11 and 6.3.12 are to the best of our knowledge 
not contained elsewhere in the literature, they are however, straightforward 
translations of the corresponding statements for commutative polynomial 
rings (see, e.g., [65]). Proposition 1.13.4 and Theorem 6.6.3 are contained 
in [48]. However, the approach to these results via Grbbner bases, is as far 
as we know not described elsewhere. 

The algorithms of Section 6.5 are taken from [34]. The proof of Propo- 
sition 6.5.3 follows [13]. In general we do not know any bounds on the 
dimension of the representation output by Representation(L). In [34] it is 
proved that for a nilpotent Lie algebra of dimension n and nilpotency class 
c the dimension of the resulting representation is bounded above by (n+q. 

~, c ] 
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Chapter 7 

Finitely presented Lie 
algebras 

Let L be a Lie algebra and X C L a set of elements of L. The Lie algebra 
generated by X is defined to be the smallest subalgebra of L containing X. 

E x a m p l e  7.0.1 Let L = s[3(F) (see Example 1.2.1). Set 

(i 0 (i Z) x -  1 y -  0 . 
0 0 

Let K be the subspace of L spanned by {x, y, Ix, y], [y, Ix, y]] }. Then a small 
calculation shows that  K is closed under the Lie bracket, so that  K is a 
subalgebra of L. Furthermore, K contains x, y and it is clear that  any 
subalgebra of L that  contains x and y must also contain K. Hence K is the 
Lie algebra generated by x and y. 

Let X = {Xl,X2, X3,... } be a subset of the Lie algebra L. Then the Lie 
algebra K generated by X is spanned by elements of the form 

x~, [~, ~j], [[~, ~j], ~k], [~, [xj, xk]], [[[~, ~j], xk], ~] , - . .  

i.e., by all bracketed expressions in the xi C X .  It follows that  the mul- 
tiplicative structure of K is described by a set of relations that  are sat- 
isfied by the xi .  For example, in Example 7.0.1 we have the relation 
[x, [x, y ] ] -  3[x, y] = 0. The form and number of such relations will de- 
pend on the Lie algebra L and the subset X. However, in all cases we have 
the identities 
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(L1) [a,a] = 0 f o r a l l a C K ,  

(L2) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c e K. 

In this chapter we study Lie algebras generated by a set of elements. For 
this we want to treat the relations that depend on the particular Lie algebra 
L separately form the relations following from (L1) and (L2) that  hold in 
any Lie algebra. If we concentrate on the latter relations and forget about 
the first, then we get the concept of free Lie algebra. In Section 7.1 we 
formally define the concept of free Lie algebra. If we take a free Lie algebra 
and impose some relations on the generators, then we get a so-called finitely 
presented Lie algebra. This is the subject of Section 7.2. A large part of the 
rest of the chapter is devoted to describing algorithms for finding a basis 
of a finitely presented Lie algebra. In Sections 7.3 and 7.4 an algorithm for 
this task is described that works inside the free algebra. It enumerates a 
basis of a finitely presented Lie algebra, and therefore it will only terminate 
if this Lie algebra is finite-dimensional. 

It is also possible to work directly inside the free Lie algebra. For that 
we need a basis of the free Lie algebra. This is the subject of Sections 
7.5, 7.6 and 7.7, where we describe the so-called Hall sets, which form a 
class of bases of the free Lie algebra. In Section 7.8 we give two examples 
of Hall sets. These are then used in Section 7.9 to give an algorithm for 
reducing elements of the free Lie algebra modulo other elements of the free 
Lie algebra. In Section 7.10 we prove a theorem due to A. I. Shirshov, 
giving an algorithm for calculating a Gr5bner basis of an ideal in a free Lie 
algebra. This algorithm is only guaranteed to terminate if a finite GrSbner 
basis exists. This gives us one more algorithm for calculating a basis of 
a finitely-presented Lie algebra. Section 7.11 contains an application of 
the theory of finitely presented Lie algebras. We prove a theorem by J.-P. 
Serre, describing the semisimple Lie algebras of characteristic 0 as finitely 
presented Lie algebras. 

7.1 Free Lie algebras 

Let X be a set. We construct a Lie algebra generated by X, satisfying no 
relations other than (L1) and (L2). 

Let M(X) be the set inductively defined as follows: 

1. X C M(X),  

2. if m, n e M(X) ,  then also the pair (m, n) e M(X).  
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The set M ( X )  is called the free magma on X. It consists of all bracketed 
expressions on the elements of X. On M ( X )  we define a binary operation 
�9 " M ( X )  • M ( X )  ~ M ( X )  by m . n -  (m, n) for all m, n C M(X) .  

For m C M ( X )  we define its degree recursively" deg(m) - 1 if m E X 
and deg(m) - deg(rn') + deg(rn") if m - (m', rn"). So the degree of an 
element m E M ( X )  is just the number of elements of X that occur in m 
(counted with multiplicities). For an integer d _> 1 we let Md(X) be the 
subset of M ( X )  consisting of all m E M ( X )  of degree d. Then 

M ( X )  - [.J 
d>l  

Let F be a field and let A(X)  be the vector space over F spanned by 
M(X) .  If we extend the binary operation on M ( X )  bilinearly to A(X),  then 
A(X)  becomes a (non-associative) algebra; it is called the free algebra over 
F on X. Let f E A(X); if also f C M(X) ,  then f is said to be a monomial. 
For f E A(X)  we define deg(f) to be the maximum of the degrees of m 
where m runs over all m C M ( X )  that occur in f with non-zero coefficient. 

Let I0 be the ideal of A(X)  generated by all elements 

(m, m) for m e M(X) ,  

(m, n ) +  (n, m) for m, n e M(X) ,  (7.1) 

(m, (n,p)) + (n, (p,m)) + (p, (re, n)) for m,n ,p  e M(X) .  

Set L(X)  - A(X) / Io .  Let B be a basis of L(X)  consisting of (images 
of) elements of M(X) .  Then it is immediate that we have (x,x) - O, 
(x ,y)+(y ,x)  - 0 and (x, (y,z))+(y, (z,x))+(z,  (x,y)) - O for allx, y ,z  e B. 
By Lemma 1.3.1 it follows that the relations (L1) and (L2) hold for all 
elements of L(X)  so that L(X)  is a Lie algebra. Therefore we will use the 
bracket to denote the product in L(X),  i.e., if 5, b are two elements of L(X)  
(representing the cosets of a, b C A(X)),  then [5, b] will represent the coset 
o fa .b .  

Def ini t ion  7.1.1 
X. 

The Lie algebra L(X)  is called the free Lie algebra on 

E x a m p l e  7.1.2 Let X - {x} be a set consisting of one element. Then 
because (x,x) C I0, we have that L(X)  is 1-dimensional, with basis {~}. 

Let u " A ( X )  --+ L(X)  be the projection map. 
contained in A(X), the map 

Since X is naturally 

i ' X  ) A(X)  rr) L(X)  
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maps X into L (X). 

L e m m a  7.1.3 Let K be a Lie algebra and let r �9 X ~ K be a map from X 
into K.  Then there exists a unique morphism of Lie algebras r L ( X )  -+ K 
such that r o i - r 

Proof .  Let r  A ( X )  --+ K be the linear map defined by r - r  for 
x C X and r  = [r r for a, b e A(X), (where [ ,  ]g denotes 
the product in K). Then r is a morphism of algebras. Furthermore, for 
a E A ( X )  we have r  a) = [r r = 0 and similarly for the Jacobi 
identity. Hence r = 0 so that r induces a morphism from L ( X )  into 
K, which we also denote by r Suppose that there is a second morphism 
r  L ( X )  --+ K such that r o i = r Then r and r coincide on i (X)  and 
because i (X) generates L (X), we must have r = r D 

L e m m a  7.1.4 The set i (X)  is linearly independent. In particular i is in- 
jective. 

Proof .  Suppose that there are x 1, . . .  , X m  C X such that 

+ . . .  + - 0 (7.2) 

for some ) , 1 , . . . ,  ~m C F. Let K be the 1-dimensional Lie algebra, with 
underlying vector space F. For 1 __ k _< m let Ck " X -+ K be the map that 
sends Xk to 1 and all other elements of X to 0. Then by Lemma 7.1.3, there 
are morphisms Ck " L(X)  ~ K such that Ck o i - r By applying Ck to 
(7.2) we see that Ak -- 0. As a consequence i (X)  is linearly independent. D 

P r o p o s i t i o n  7.1.5 Let K be a Lie algebra generated by X C K.  Let L ( X )  
be the free Lie algebra on X .  Then there is a surjective morphism r �9 
L ( X )  -+ g .  

Proof .  Let r  X -+ K be the identity mapping. Then by Lemma 7.1.3 
there is a morphism of Lie algebras r  L ( X )  ~ K such that r o i - r 
Furthermore, r is surjective because X generates K. D 

By Lemma 7.1.4 we may identify X with its image in L(X) .  Therefore 
we will view X as a subset of L(X) .  Then X generates the free Lie algebra 
L(X) .  Furthermore, it is the most general Lie algebra generated by X in 
the sense that every Lie algebra generated by X is a homomorphic image 
of L ( X )  (Proposition 7.1.5). 
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7.2 Finitely presented Lie algebras 

In Section 1.5 we discussed two ways of representing a Lie algebra on a 
computer: by matrices and by an array of structure constants. Here we 
describe a third way, namely by generators and relations. 

Let L be a Lie algebra generated by a set X C L. Then by Proposition 
7.1.5 there is a surjective morphism r  L(X) -+ L. Set I - ker(r then 
by Lemma 1.8.1 we have that  L ~- L(X)/ I .  The conclusion is that  any Lie 
algebra is isomorphic to a free Lie algebra modulo an ideal. 

Now let X be a finite set and let I C L(X) be an ideal generated by a 
finite set R C L(X). Then the Lie algebra L - L ( X ) / I  is said to be finitely 
presented. The pair (X, R) is called a finite presentation of L, and we write 
L -  (X I R >. 

It is easily seen that any finite-dimensional Lie algebra is finitely pre- 
sented. Indeed, let L be a finite-dimensional Lie algebra and let X = 
{x l , . . .  , Xn} be a basis of L. Then L is generated by X. Let 

n 

ixi, E c xk 
k = l  

be the multiplication table of L. Set R - {[xi, x j ] -  ~-~=1 ckjxk I 1 < i, j < 
n} C L(X). Then we have that  L = ( X I R ) .  

In Section 1.5 we elected the representation by structure constants as 
our preferred way of representing a Lie algebra. The algorithms given sub- 
sequently operate on Lie algebras that are given by an array of structure 
constants. However, sometimes the natural way to represent a Lie alge- 
bra is by a finite presentation. So the question presents itself whether we 
can produce a table of structure constants for a finitely presented Lie al- 
gebra. First of all we note that  a finitely presented Lie algebra can be 
infinite-dimensional (indeed, any free Lie algebra on a finite set is finitely 
presented). So the best we can hope for is to have an algorithm that  con- 
structs a multiplication table for a finitely presented Lie algebra L whenever 
L happens to be finite-dimensional. The objective of the next sections is to 
give such an algorithm. 

7.3 GrSbner bases in free algebras 

Let L - L ( X ) / I  be a finitely presented Lie algebra. Then L is also equal 
to the quotient A ( X ) / J  where J is the ideal of A(X) generated by the pre- 
images in A(X) of the generators of I together with the generators of I0 
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(7.1). In analogy with Sections 6.1, 6.3 we use an order < on the monomials  
of A(X)  and a Grhbner  basis to calculate a set of normal  monomials which 
forms a set of coset representatives for the elements of A ( X ) / J .  

In this section we s tudy ideals of the free algebra A(X)  in general. 
Throughout  J will be an ideal of A(X)  generated by ai E A(X)  for i > 1 
(so we may have an infinite generating set). We first introduce some ma- 
chinery tha t  allows us to describe elements of J .  Let a - ( m l , . . .  , mk) be 
a sequence of elements of the free magma M ( X ) ,  and let ~ - ( d l , . . .  , dk) 
be a sequence (of length equal to the length of a) of letters d{ C {/, r}. Set 
a - (a, (~), then we call a an appliance. The integer k is called the length of 
Cg. 

For an appliance a we define a map Pa �9 M ( X )  --+ M ( X )  in the following 
way. If k - 0, then Pa(m) = m for all m C M(X) .  On the other hand, 

i f k  > 0, then we set ~ -  ( ( m 2 , . . . , m k ) , ( d 2 , . . . , d k ) ) .  If dl - l, then 
Pa(m) - Pz((ml ,m)) ,  and Pa(m) - P~((m, ml)) if d l  --- r .  S o  the map 
corresponding to an appliance consists of a series of multiplications and the 
letter di determines whether  we multiply from the left or the right by mi. 
Finally we extend the map Pa to a map Pa �9 A(X)  -+ A(X)  by linearity. 

E x a m p l e  7.3.1 Let X - { x ,  y ,  z }  and set a - (x ,  (y ,  z ) ,  z )  a n d  5 - (/ ,  r, r ) ,  

and a -  (a,(~). Then  Pa(m) = (((x, m), (y,z)),z) for m E M(X) .  

Now a general element f of J will be of the form 

f = ,~lVal (ai~) + " "  + ArPa~(ai~). (7.3) 

An element m l c  M ( X )  is called a factor of m2 C M ( X )  if there is an 
appliance a such tha t  m2 - Pa (ml) .  

Throughout  this section < will be a total  order on M ( X )  tha t  is mul- 
tiplicative (i.e., m < n implies (re,p) < (n,p) and (p, m) < (p, n) for all 
p C M(X)) .  Fur thermore  we assume that  < satisfies the descending chain 
condition, i.e., if m l  _> m 2  >_ m 3  >_ . . .  is a descending chain of monomials 
then there is a k > 0 such tha t  mk -- mj for j >_ k. Such an order can for 
instance be constructed by fixing it arbi trar i ly on X,  and by postula t ing 
tha t  deg(m) < deg(n) implies m < n. Fur thermore  the elements of equal 
degree are ordered lexicographically, i.e., if deg(m) - deg(n) > 1 (so tha t  
m - ( m ' , m " )  and n = (n ' ,n" ) )  then m < n if m'  < n'  or (m' - n '  and 
m II ~ n t t ) .  

As usual, the leading monomial  L g ( f )  of f C A(X)  is the largest mono- 
mial occurring in f with non-zero coefficient. Since < is multiplicative we 
have tha t  L M ( P a ( f ) )  - P a ( L g ( f ) )  for any appliance a and f E A(X) .  
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Set LM(J)  - {LM(f) I f e J}. Then N(J )  - {m e M ( X )  ! m r 
LM(J)} is called the set of normal monomials of A(X)  modulo J. Let 
C(J) be the span of N(J)  inside A(X) .  Then by a completely analogous 
argument to the one used in the proof of Proposition 6.1.1 we have that 
A(X)  - C(J) | J. And this means that the cosets of the elements of N(J )  
form a basis of A ( X ) / J .  Also for f E A(X)  there are unique v E C(J)  and 
g c J such that f = v + g. The element v is called the normal form of f 
modulo J; it is denoted by Nf j ( f ) ,  or by Nf(f)  if it is clear which ideal we 
mean. 

As a first at tempt at calculating the normal form of f C A(X)  modulo 
J we reduce f modulo the generators of J. Let G C A(X)  and f E A(X)  
then f is called reduced modulo G if for all g C G we have that LM(g) is 
not a factor of any monomial occurring in f with non-zero coefficient. If 
f is not reduced modulo G, then there is a monomial m in occurring in 
f ,  and an element g E G and an appliance (~ such that Pa(LM(g)) - m. 
Let ~ be the coefficient of m in f and # the coefficient of LM(g) in g. Set 
h = f - -fiPa(g). We say that f reduces modulo G in one step to h. More 

generally, we say that f reduces to f~ modulo g if there exist f l , . . . ,  fk 
such that f - f l ,  f~ - fk and fi reduces modulo g in one step to fi+l for 
1 _< i <__ k -  1. Because < satisfies the descending chain condition we have 
that any maximal sequence of reduction steps finishes in a finite number of 
steps with an element that is reduced modulo G. 

Def in i t ion  7.3.2 A set G c A(X)  generating an ideal J is called a Gr6bner 
basis if for all f E J there is a g C G such that LM(g) is a factor of LM(f) .  

P r o p o s i t i o n  7.3.3 Let G be a GrSbner basis for the ideal J of A(X) .  Then 
N(J )  is the set of all monomials m C M ( X )  such that for all g C G, LM(g) 
is not a factor of m. Also if f E A(X)  reduces to f '  C A(X)  modulo G, 
where f '  is reduced modulo G, then f ' =  Nf(f) .  

P roof .  The first statement is a direct consequence of the definition of 
Gr5bner basis. Since G is a GrSbner basis, f~ is reduced modulo J,  i.e., 
f '  E C(I).  Furthermore, f ' -  f mod J and therefore f ' -  Nf(f) .  [:] 

Def in i t ion  7.3.4 A set G -  {al, a2,. . .  } C A(X)  is said to be self-reduced 
if LM(ai) is no factor of LM(aj) for i ~ j. 

We remark that if G is a finite subset of A(X) ,  then by successively 
reducing the elements of G modulo each other we can compute a finite set 
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G ~ such tha t  G t is self-reduced and generates the same ideal as G. The  rest 

of this section is devoted to showing tha t  a self-reduced set is a GrSbner  

basis. 

L e m m a  7.3 .5  Let ml ,  m2 E M ( X )  be such that m l  is not a factor of m2 
and m2 is not a factor of m l. Suppose that there are appliances (~, ~ such 
that P a ( m l )  = Pz(m2) .  Then m2 is a factor of Pa(n) and ml  is a factor 
of Pz( ) for n M(X). 

P r o o f .  First  we note tha t  the lengths of c~ and /~ are at least 1, since 

otherwise one of ml ,  m2 would be a factor of the other  one. Let ~ - (0, 5), 

where 0 - ( P l , . . .  ,Pk) and 5 - ( d l , . . . ,  dk). For 0 __ i _< k we set 

~i  -- ( ( P l , . . .  ,Pi),(dl,... ,di)) 

and ni = Pzi (m2) (so tha t  no = m2). Now ml  is not a factor of no, but  it is 

a factor of rtk. So there is an index i > 0 such tha t  m l  is not a factor of hi-1 

but  ml  is a factor of hi. We have tha t  ni = (n i - l ,p i )  or ni = (Pi, h i - l ) .  
And since ni ~ ml  (otherwise m2 would be a factor of m l )  we have tha t  ml  

must  be a factor of Pi and hence ml  is a factor of Pz(n)  for all n in M ( X ) .  
The proof  for P~ is similar. [] 

L e m m a  7 .3 .6  Let m C M ( X )  and let ~ ~ ~ be appliances such that 
Pa(m) - P~(m). Then m is a factor of P~(n) and of P~(n) for all n C 
M ( X ) .  

P r o o f .  Let k and l be the lengths of c~ and ~ respectively. If one of 

them is zero, then the other  must  be zero as well and c~ = ~. So k and 

1 are bo th  non-zero. We prove the s ta tement  by induct ion on k + 1. Sup- 

pose tha t  c~ = ( a l ,~ l )  and /~ = (02,(~2), where 01 = ( m l , . . .  , ink) and 
02 = ( n l , . . .  ,nl) .  Write Pa(m) = (a,b); then m k =  a or mk = b. First  
suppose tha t  m k =  a. If also nL = a then we can erase the last element 

from c~ a n d / ~  and obta in  two appliances c~ ~, ~ of smaller length tha t  also 

satisfy the hypothesis  of the lemma. So we can conclude by induction.  On 

the other  hand,  if nl = b, then a = Pz,(m) w h e r e / ~  is obta ined  f rom/~  

by erasing nl. Hence m is a factor of ink and in the same way, m is a 
factor of nl. As a consequence m is a factor of Pa(n) and of Pz(n)  for all 

n C M ( X ) .  The proof  for the case where mk = b is completely analogous. O 

Now we tu rn  to our ideal J generated by ai for i _> 1. If m C M ( X )  then 
by J<m we denote the subspace of J consisting of all elements of the form 

)~1P~1 (ail) + . . .  + )~rP~r(air) such tha t  LM(P~j(ai j ) )  < m for 1 < i _< r. 
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L e m m a  7.3 .7  Let bl, b2 be generators of J and set mi = LM(bi) for i - 
1,2. If  bl ~ b2 then we assume that ml  is not a factor of m2 andre2 is 
not a factor of ml .  Let al,C~2 be two appliances such that m -  P a l ( m l ) -  
Poe 2 (gJ~2). Then Poel (bl) - Pet2 (52) E ,]~m- 

P r o o f .  First  we deal with the case where bl ~r b2. Then  by Lemma 7.3.5 
we have tha t  m2 is a factor of Pal (n) and ml  is a factor of Pa2(n) for 
all n E M ( X ) .  So m is a bracketed expression containing rni and m2 as 
subexpressions. Furthermore,  Pal (n) is obtained from rn by replacing one 
occurrence of mx in m at position pl by n. Similarly, there is a position p2 
in m such that  P~2 (n) is obtained from m by replacing the m2 at p2 by n. 
Now we define a function Pm" A ( X )  x A ( X )  --+ A(X) .  Let nl ,  n2 E M ( X ) ;  
then Pro(hi,n2) is obtained from m by replacing ml  at position pl in m by 
n l, and replacing the m2 at position p2 by n2. Fur thermore  the function 
Pm is extended to the whole of A ( X )  x A ( X )  by bilinearity. 

To ease notat ion a little we suppose tha t  the coefficient of mi in bi 
is 1 (it is obvious tha t  we can do this without  loss of generality). Set 
b i -  b ~ -  m~ f o r / -  1,2. And let PI ,P2"  A ( X )  -+ A ( X )  be functions 
defined by P l (n )  - Pm(n,-b2)  and P2(n) - Pm(-b l , n ) .  Then  P1 and P2 
are linear combinations of functions P'I for appliances 7. Also we have tha t  
Pa~ (n) - Pm(n, m2) and P,~2(n) - Pm(ml ,n) .  So 

- P  (b2) + - m 2 )  - P m ( m l .  

=Pro(b1, m2) - Pm(ml,  b2). 

And 

P1 (bl) - P2(b2) =Pm(ml , -b2 )  + Pm(bl ,-b2)  - Pm(-b l ,m2)  - P m ( - b l ,  b2) 

=Pro(m1,-52) - Pm(-b l ,  m2). 

Hence Pal (bl) - Pa2(b2) - P l ( b l ) -  P2(b2). Furthermore,  Pi(bi) C J<m. 
Now we consider the case where bl - b2. If in addit ion a l  = a2 then 

there is nothing to prove. So suppose that  a l  -~ a2, and set q - ml  - m2. 
Then  Pal (q) - Pa2 (q). By Lemma 7.3.6, q is a factor of Pa~ (n) and of 
P~2 (n) for all n E M ( X ) .  Hence we can proceed as above. [~ 

P r o p o s i t i o n  7.3.8 Let G - { a l , a 2 , . . .  } C A ( X )  be a self-reduced set. 
Then G is a Grhbner basis. 

P r o o f .  Let J be the ideal of A ( X )  generated by G. Let f C J and write 

f - + . . .  + 
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where c~1,... ,C~r are certain appliances. We show tha t  there is a g E G 
such tha t  LM(g) is a factor of LM(f ) .  Set nj - LM(Pa~ (aij)). We suppose 
tha t  the summands  have been ordered such that  the leading monomials are 
in decreasing order, i.e., 

m = nl  . . . . .  nk > n k + l  ~_ "'" ~_ hr .  

If k - 1, then LM(f )  - LM(Pal  (all)) - Pal (LM(ail))  and there is nothing 
to prove. So assume that  k > 1. Then by Lemma 7.3.7 we have tha t  

Pal (ai~ ) - Pa2 (ai2) E J<m. Fur thermore  

r 

f -- )~ l (Pal(a i l ) -  Pa2(ai2))+ (~1 + A2)Pa2(ai2)+ E A k P a k ( a i k )  �9 
k = 3  

Since the first term of this expression is in J < m  w e  can write it as a linear 
combination of P~k (aik) such that  LM(P~k (aik)) < m. Hence we find a new 
expression for f where the term rn has decreased (in the case where k = 2 
and /~1 -~- /~2 = 0), or the number  k has decreased. Now because < satisfies 
the descending chain condition, we can conclude by induction. [:] 

7.4 Construct ing  a 
algebra 

basis of a finitely presented Lie 

In this section we use the results of the preceding section to describe an 
algori thm for calculating a basis of a finitely presented Lie algebra, tha t  is 
finite-dimensional. 

Let X be a finite set and let R - { r l , . . .  , rs} be a finite subset of the 
free Lie algebra L(X) .  Let I be the ideal of L(X)  generated by R and set 
L - L ( X ) / I .  Let ~ " A ( X )  --+ L (X)  be the projection map. For 1 _< i __ s 
we let hi E A ( X )  be such tha t  ~(hi) - ri. Then we let J C A ( X )  be the 
ideal generated by the set G consisting of the generators of I0 (7.1) together 
with the hi. Then  A ( X ) / J  ~- L. Hence we are in the si tuat ion considered in 
Section 7.3. We have an ideal J of A(X)  generated by an infinite number  of 
generators,  and supposing tha t  the quotient A ( X ) / J  is finite-dimensional, 
we want to construct  a basis of it. By Proposit ions 7.3.3 and 7.3.8 this is 
easy as soon as we have found a self-reduced generating set for J .  This is 
not immediately s traightforward as J is generated by an infinite number  of 
elements. 

In the sequel we suppose tha t  the monomials in M ( X )  are ordered by 
an order < tha t  is not only multiplicative and satisfies the descending chain 
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condition, but is also degree compatible, i.e., deg(m) < deg(n) implies m < 
n for all m, n E M ( X ) .  

We recall that  Mk(X)  is the set of all m C M ( X )  such that  deg(m) = k, 
and we set 

Gk = {g E G ] deg(g) < k}. 

We let Jk c A(X)  be the ideal generated by Gk. Note that  Gk is a finite set. 
So by doing successive reductions of the elements of Gk we can calculate a 
self-reduced set G~ that  also generates Jk. Set 

L M ( J k ) -  {LM(f)  I f e Jk}, 

and for k, l > 0, let Bk,1 be the set of all m E Mk(X)  that  are not contained 
in LM(J/). It is straightforward to see that  J - [.Jl>0 Jz. Hence, since 
A ( X ) / J  is finite-dimensional there are ko, lo >_ 0 such that  Bko+lJo = O. 
Now since Jl C Jl+l, also Bko+l,l = (3 for 1 _> 10. In the sequel we let 1 be 
the smallest number such that  l > 10, l > 2k0 + 1 and such that  hi E G1 for 
1 < i < s .  We set 

B = ~ B~,l. 
l<i<k0 

In the sequel we prove that  Jl = J, thereby proving that  J is generated by 
G1. Since G1 is finite this allows us to calculate a self-reduced generating 
set for J.  

L e m m a  7.4.1 Let m C Md+I(X), then modulo elements of Jd+l, m can 
be written as a linear combination of elements of the form (n,x) where 
n E Md(X) and x E X .  

Proo f .  This is trivial if d = 0. So suppose that  d > i and m = (m', m"). We 
prove the lemma by induction on deg(m"). If m" E X then there is nothing 
to prove. So suppose that  m " -  (a, y) for a, y E M ( X ) .  Furthermore, by 
induction (note that  Jk C Jd+l whenever k 5 d + 1) we may assume that  
y e X. Since Jd+l contains all relations of the form (p, q) + (q, p) such that  
deg(p) + deg(q) < d + 1 and all Jacobi identities of degree < d + 1 we can 
write modulo Jd+l, 

y)) - ( ( y , , ; ) ,  a ) +  a), y). 

The second summand is of the required form. Also, since deg(a) < deg(m"), 
by induction the first summand can be written as a linear combination of 
elements of the required form. [:] 
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L e m m a  7.4.2 Let f E A(X);  then modulo JL, f can be written as a unique 
linear combination of elements from B. 

P r o o f .  We prove the s tatement  by induction on LM(f) ;  as < satisfies the 
descending chain condition the induction is correct. We note tha t  B is the 
set of normal monomials of degree _< k0 of A(X)  modulo Jl. From this 
follows uniqueness. Set m - LM(f)  and write f - Am + f .  First suppose 
that  deg(m) _< k0. By induction f is modulo JL equal to a linear combination 
of elements of B. So if m C B then the same holds for f .  On the other 
hand, if m ~ B, then m reduces modulo Jl to an element g C A(X) .  Since 
< is degree compatible also deg(LM(g)) __ k0. Hence by induction g can 
modulo Jt be wri t ten as a linear combination of elements of B and therefore 
so can f .  

If deg(m) - k0 + 1 then m C LM(JI) and again we can reduce ra 
to an element g C A(X)  modulo Jl. Because < is degree compatible,  
deg(LM(g)) _< k0 + 1 and again we conclude by induction. 

If k0 + 1 < deg(m) ___ 2k0 + 1, then using Lemma 7.4.1 we can write 
m modulo Jl as a linear combination of elements of the form (n, x), where 
deg(n) - d e g ( m ) -  1 and x C X. By induction, we can write n modulo 
Jl as a linear combination of elements of B. So m reduces modulo Jl to a 
linear combination of elements p such that  deg(p) _< k0 + 1. But above we 
have seen that  such a p can be reduced to a linear combination of elements 
of B modulo Jr. 

Finally suppose that  deg(m) > 2k0 + 1 and m - (m', m").  By induction 
m ~ and m" reduce modulo Jl to linear combinations of elements in B. So 
m can modulo Jl be rewrit ten as a linear combination of elements of the 
form (a, b) where a, b E B. But since deg((a, b)) _< 2k0 these expressions all 
reduce modulo J1 to linear combinations of the elements of B. [::] 

We abbreviate the left hand side of the Jacobi identity on a, b, c by 
Jac(a,  b, c), i.e., 

Jac(a, b, c) - (a, (b, c)) + (b, (c, a)) + (c, (a, b)). 

L e m m a  7.4.3 Let K be an ideal of A(X)  containing all (ml ,m2)+(m2,  ml)  
for ml,  m2 C M ( X ) .  Suppose that Jac(x, m, n) = 0 (mod K) for all m, n C 
M ( X ) ,  and all x C X .  Then J a c ( p , m , n )  = 0 ( m o d K )  for all m, n,p C 
M ( X ) .  

P r o o f .  The proof is by induction on deg(p). If deg(p) - 1, then there 
is nothing to prove. If deg(p) > 1, then p - (a, b). Using induction and 
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relations (ml, m2) - - (m2 ,  ml) (mod K) we calculate modulo K, 

((a, b), (m, n)) - - ((b, (m, n)),  a) - (((m, n), a), b) 

=((.~. (~. b)), a) + ((~, (b, -~)). a) 

+ (((n. a). rn). b) + (((a. m). n). b) 
= - (((n, b), a), m) - ((a, m),  (n, b)) 

- (((b, m),  a), n) - ((a, n), (b, m))  

- ((m, b), (n, a)) - ((b, (n, a)), m) 

- ((n, b), (a, m))  - ((b, (a, m)) ,  n) 

= - (((n, b), a) + (b, (n, a)), m) - (((b, m), a) + (b, (a, m)), n) 

=((n,  (a, b)), m) - ((m, (a, b)), n). 

Hence Jac(p, m, n) - 0 (mod K). 

Now let p,q e M(X) .  Then by Lemma 7.4.2, (p, q ) +  (q,p) can modulo 
Jz be written as a linear combination of elements (p', q ' )+ (q',p') where 
p t  q~ C B. But since 1 >_ 2k0 + 1 all these elements lie in J1. Also by Lemma 
7.4.2, modulo J1 all elements Jac(x, m, n) for x C X and m,n  C M(X)  
can be written as linear combinations of elements of the form Jac(x, m ~, n~), 
where m ~,n ~ E B. But s incel  > 2 k 0 + l  all those elements are in Jl- So 
J1 satisfies the hypothesis of Lemma 7.4.3. It follows that  J1 contains all 
elements Jac(p, m, n) for all p, m, n C M(X) .  Also J1 contains (a pre-image 
of) R. The conclusion is that all generators of J lie in Jz, i.e., Jl - J. So B 
is the set of normal monomials of A(X) modulo J and hence B is a basis 
of A ( X ) / J .  Furthermore a self-reduced generating set G~l of J1 will be a 
Gr6bner basis of J (Proposition 7.3.8). It follows that B is the set of all 
monomials m such that deg(m) < k0 and LM(g) is not a factor of m for all 

We summarize our findings in the following algorithm. 
A l g o r i t h m  FpLieAIgebra 
Input: a finite set X and a finite subset R C L(X).  
Output: a basis of L ( X ) / I  where I is the ideal generated by R. 

Step 1 Let J be the ideal of A(X) generated by a pre-image of R together 
with the elements (7.1). Set l ' -  1 and repeat the following: 

Step la  Calculate a self-reduced generating set G' 1 of Jl. 

Step lb For 1 _< k _< 1 calculate the set Bk,l of monomials rn E M ( X )  
of degree k such that LM(b) is not a factor of rn for all b C G' z. 
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Step lc If there is a k C {1, . . .  , 1 -  1} such that Bk+l,1 -- O then go 
to Step 2. Otherwise increase 1 by 1 and return to Step la. 

Step 2 Increase 1 such that Jt contains a pre-image of R in A(X). 
t -  max(2k + 1,/). 

Set 

Step 3 Calculate a self-reduced generating set G~ of Jr. Calculate the set 
B of all monomials m in M(X) of degree _ k such that LM(b) is not 
a factor of m for b E G~. Return B. 

R e m a r k .  This algorithm can easily be extended so as to produce a mul- 
tiplication table of L(X)/I. Indeed, any product of elements of B can be 
reduced (uniquely) modulo the elements of G~ to a linear combination of 
the elements of B. 

E x a m p l e  7.4.4 Let X = {x, y}, R = {[x, Ix, y]] - Ix, y], [y, [y, [x, y]]]} (as 
usual we use the brackets [ ,  ] to denote the product in L(X)). While 
performing the algorithm it is much more convenient to use the anticom- 
mutativity relations (m, m) = 0 and (m, n) + (n, m) = 0 directly to reduce 
expressions to a convenient form, than to put them into the ideal first. So 
in the ideal we only consider (pre-images) of the elements o R together with 
the Jacobi identities. 

By anticommutativity we immediately have that Jac(m, n, p) - 0  if any 
two of m, n, p are equal. It follows that the Jacobi identity of lowest degree is 
Jac(x, y, (x, y)). So we consider the set G4 consisting of this Jacobi identity 
together with the elements of R. We have 

j~c(~,  y, (~, y)) - (~, (y, (~, y))) + (y, ((x, y), ~)) + ((~, y), (~, y)). 

The last summand is zero by anticommutativity. The second summand is 
equal to - (y ,  (x, (x,y))) which is equal to - (y ,  (x,y)) by the first relation 
in R. So the self-reduced set G~ generating the same ideal as G4 is 

c~ - ( (x, (~, y)) - (~, y), (y, (y, (~, y))), (~, (y, (~, y))) - (y, (~, y)) }. 

Now we enumerate the basis elements of A(X) upto degree 4 modulo the 
elements in G~. By anticommutativity we see that these are x, y, (x, y), 
(y, (x, y)) (an element of degree 4 is the product of an element of degree 1 
and an element of degree 3, but all those elements are leading monomials of 
elements of G~). Therefore B4,4 - 0. So we set t - 7 and reduce all elements 
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of G7. We only have to consider Jacobi identities of those monomials that  
do not already reduce modulo G~. The first of these is 

j~c(~, y, (y, (~, y))) - (z, (y, (y, (x, y)))) + (y, ((~, (~, y)), ~)) 
+ ((y, (~, ~)), (x, y)). 

The first two summands reduce to zero modulo G~. Hence only the last 
summand remains. Using this, the Jacobi identities Jac(x, (x, y), (y, (x, y))) 
and Jac(y, (x, y), (y, (x, y))) reduce to zero. So G~ consists of the elements 
of G~ together with ((y, (x, y)), (x, y)). Hence B - {x, y, (x, y), (y, (x, y))} 
is a basis of L(X) / I  where I is the ideal of L(X) generated by R. 

7 . 5  H a l l  s e t s  

Let X be a set. We know that  the free Lie algebra L(X) is spanned by 
(the image of) the set M(X) of all bracketed expressions in the elements 
of X. However, this set is by no means linearly independent. Indeed, 
all elements of the form (m, m) are zero and also the Jacobi identity yields 
linear dependencies. If we want to calculate in L(X) then we need a basis of 
this algebra (i.e., a set of coset representatives of A(X) modulo the ideal I0) 
and a way of rewriting a product of basis elements as a linear combination 
of basis elements. A solution to this problem is formed by the so-called Hall 
sets. In this section we define the concept of Hall set. Then in subsequent 
sections we prove that  a Hall set yields a basis of the free Lie algebra. An 
algorithm for rewriting an element of M(X) as a linear combination of the 
elements of a Hall set will be part of this proof. 

Let < be a total order on M(X). Relative to < we define a set H C 
M(X) by 

X C H ,  

if hi,h2 E M(X) then (hi, h2) c H if and only if hi,h2 E H and 

hi < h2, 

h l C X O r h l - ( a , b )  w i t h b > h 2 .  

(7.4) 

(7.5) 

A set satisfying these requirements is called a quasi-Hall set. The order 
< is said to be a Hall order if (hi,h2) < h2 for all hi,h2 E H such that  
(hi, h2) E H. In that  case H is called a Hall set. 

E x a m p l e  7.5.1 Hall orders are easily constructed. Inside each set Md(X) 
the order is chosen arbitrarily. Furthermore, if m, n C M(X) have different 
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degrees, then m < n if and only if deg(m) > deg(n). Then (hi, h2) < h2 for 
all hi, h2 C M(X). So < is a Hall order. 

We note that  a Hall order defines a unique Hall set. Using conditions 
(7.4) and (7.5) we formulate an algorithm for recognizing whether a given 
element of M(X) lies in a given Hall set. We stress that  we do not need 
to know all elements of the Hall set for this; we only need to be able to 
calculate the order of elements of the Hall set. 
A l g o r i t h m  IsHallElement 
Input: a Hall order _< on M(X) and an element h E M(X). 

Output" true if h is in the Hall set corresponding to <, false otherwise. 

Step 1 If h C X then return true. 

Step 2 Write h -  (h', h"). If IsHallElement(_<,h') or IsHallElement(_<, h") is 
false then return false. 

Step 3 If h' _> h" then return false. 

Step 4 If h' C X then return true. Otherwise write h' - (a, b) and if b < h" 
then return false. Otherwise return true. 

C o m m e n t s :  The two recursive calls in Step 2 finish and give the correct 
output  by induction on the degree. Then the fact that the initial call gives 
the correct output  is a direct consequence of (7.4), (7.5). 

We also have an algorithm for calculating the elements of a Hall set upto 
a given degree. 
A l g o r i t h m  HallSet 
Input: a finite set X and a Hall order < on M(X) and a number d > 0. 

Output" all elements of the Hall set corresponding to < upto degree d. 

Step 1 Set H "-  X and k "-  2. 

Step 2 If k - d + 1 then return H, otherwise go to Step 3. 

Step 3 Compute the set S of all pairs (h, g) C H • H such that  deg(h) + 
d e g ( g ) -  k and IsHallElement(_<, (h,g)) =true. 

Step 4 Set H - -  H U S, k - -  k + 1 and return to Step 2. 

E x a m p l e  7.5.2 Let X - {x, y}. We construct the Hall set H upto degree 
4 corresponding to a Hall order as in Example 7.5.1. That  is we fix the order 
arbitrarily for elements of equal degree and if h, g have unequal degree then 
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h < g if and only if deg(h) > deg(g). First we choose x < y. Then (x, y) 
is the only element of degree 2 in H. And necessarily (x,y) < x < y. 
Continuing, ((x, y), x) and ((x, y), y ) a r e  the elements of degree 3 of H. We 
choose ((x, y ) , x )  < ((x, y), y). Then the elements of degree 4 of H are 
(((x, y), x), x), (((x, y), y), x) and (((x, y), y), y). 

7.6 S t a n d a r d  s e q u e n c e s  

In this section we fix a set X and a Hall set H C M ( X )  relative to the Hall 
order <. The elements of H will be called Hall elements.  If a Hall element 
h E H does not lie in X, then by h ~ and h" we will denote its left and right 
factor (so h = (h ' ,h") ) .  

The elements of X are called letters. From Section 6.1 we recall that  X* 
is the set of all words in the elements of X. In this section we make a first 
step towards proving that  a Hall set forms a basis of the free Lie algebra. We 
study standard sequences of Hall elements and establish a bijection between 
decreasing standard sequences and words in X*. In the next section this 
bijection will be used to prove that  a Hall set is linearly independent. 

D e f i n i t i o n  7.6.1 A sequence of Hall elements s -  ( h i , . . . ,  hn) where n > 
1 is called a standard sequence if  for  1 ~ i < n we have either hi C X or 
h i -  (h~,h~') with h~' > h i + l , . . .  ,hn.  

E x a m p l e  7.6.2 A sequence of letters is always standard. A sequence 
( h i , . . .  , hn) is said to be decreasing if hi >_ h2 >_ . "  >_ hn. Any de- 
creasing sequence of Hall elements s - ( h i , . . . ,  hn) is standard. Indeed, if 
h / -  (h~, h~') then because < is a Hall order we have h~' > hi >_ h i + l , . . . ,  hn. 

If a s tandard sequence of Hall elements is not decreasing, then we apply 
a series of rewriting steps in order to make it decreasing. 

D e f i n i t i o n  7.6.3 Let s - (hi,. . .  , h n )  be a standard sequence of Hall ele- 
ments.  A rise of s is an index i such that hi < hi+l. 

Let s - ( h i , . . .  ,hn)  be a s tandard sequence. Suppose that  s is not 
decreasing, and let i be the right-most rise of s. Then we say that  s reduces 
in one step to s' where s ' -  ( h i , . . .  , h i - l ,  (hi, h i+ l ) , h i+2 , . . .  ,hn) .  

L e m m a  7.6.4 The sequence s ~ is a standard sequence of Hall elements.  

Proo f .  First we prove that  (hi, hi+i) is a Hall element. Certainly hi and 
h/+l are elements of H. Also h / <  h/+l because i is a rise of s. Furthermore, 
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if hi is not an element  of X,  then  hi - (h~, h~') and h~' > hi+l because  s is 

a s t anda rd  sequence. So, by (7.5), (hi, hi+l) is a Hall element.  

Now we prove tha t  s I is s tandard .  Firs t  we have hi+l >_ h i + 2 , . . . ,  hn 
because i is the r ight -most  rise of s. Secondly, for j - 1 , . . .  , i - 1 we have 

~! > h j + l , . . ,  hi+l (because s is s t andard)  tha t  e i ther  hj is a letter,  or hj _ 
> (hi, hi+l) (because < is a Hall order).  The  conclusion is tha t  

II 
hj > h i + l , . . .  , h i - l ,  (hi, hi+l), hi+2, . . .  , hu. 

So s / is s tandard .  [:] 

Let s and t be two s t anda rd  sequences of Hall elements,  then we say tha t  

s reduces to t if there  are s t anda rd  sequences S l , . . .  ,sk such tha t  sl  - s, 

Sk -- t and si reduces to Si+l in one step for 1 _< i _< k -  1. 

L e m m a  7 .6 .5  Let s be a standard sequence of Hall elements. Then s re- 
duces to a decreasing standard sequence in a finite number of steps. 

P r o o f .  We use induct ion  on the length of s. If s has length 1, then  s is 
obviously decreasing. Now suppose tha t  s has length n. If s has no rises 

then  s is decreasing. On the other  hand,  if s has rises, then  s reduces in one 
step to a sequence s t of length n -  1. By induct ion s ~ reduces to a decreasing 

s t anda rd  sequence, hence so does s. [2 

The  reduct ion  process makes a sequence shorter  and the degree of some 

of its e lements  bigger. We consider an inverse process tha t  we call unpacking; 
after a finite number  of steps it arrives at a sequence of letters.  Let s = 
( h i , . . .  ,hn) be a s t anda rd  sequence such tha t  not all of its e lements  lie 
in X.  Let hr be the left-most element of s tha t  does not lie in X.  Then  

h~ - (h~, h~) and set s' - ( h i , . . .  , hr -1 ,  h~r, h~, h r + l , . . .  , hn). We say tha t  
s unpacks in one step to s ~. 

L e m m a  7 .6 .6  Let s be a standard sequence of Hall elements that unpacks 
in one step to s ~. Then s ~ is a standard sequence of Hall elements. 

P r o o f .  Let s and s' be as above. Fi rs t ly  h~r C X or h~r - (a,b) and 
b _> h~ (by definition of Hall set) _> h r + l , . . .  ,hn (because s is a s t anda rd  
sequence). Also h~ C X or h~ - (a,b) and b > h~ (because > is a H a l l  

order) > h r + l , . . .  ,hn. E] 
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P r o p o s i t i o n  7 .6 .7  Let s be a decreasing sequence of Hall elements. Denote  
by tk the standard sequence of Hall elements obtained f rom s by k unpacking 
steps (to - s). Then tk reduces to tk-1 in one step for  k >_ 1. 

P r o o f .  We prove the s tatement  by induction on k. First  let k - 1. We 
obtain t~ from to by replacing a Hall element (h~r, hT) by the two elements 
h'r, h 7. Since to is decreasing we have that  the right-most rise of tl  occurs 
at the position of h'r, h 7. Hence tl reduces in one step to to. 

Now suppose k > 1. By induction we know that  t k reduces to tk-1 
in one step. We prove that  tk+l reduces to t k in one step. Write tk-1 = 
( h i , . . .  , h r , h r + l , . . .  ,hn)  where hr - (h~r, hT) is the left-most element not 
in X. Then 

t k  - -  (hi,... ,hr-l,h' r ,  h T ,  h r + l ,  . . . , h n )  

and h~r < h 7 is the right-most rise of tk (by induction), i.e., the subsequence 
h r + l , . . .  , hn is decreasing. We prove that  tk+l reduces to tk in one step by 
considering a few cases: 

1. h~r, h~r ' C X; here the left-most element in tk that  is not in X,  will occur 
after h 7 and because the subsequence start ing with hr+l is decreasing, 
t k + l  reduces to t k .  

2. h~r e X but  h 7 not. Then h 7 = (a,b) and 

tk+l -- ( h i , . . .  , hit, a, b, hr+l, . . . , hn), 

and b _> h r + l , . . .  ,hn (because tk is a s tandard sequence). So the 
right-most rise of tk+l occurs at the position of a, b. 

3. h~ is not in X.  Then h~ - (a, b) and 

tk+l = ( h i , . . .  , hr-1,  a, b, h~', hr+l, . . . , hn), 

and as ((a,b),h~r ') is a Hall element, we have b _> h~ _> h~+ l , . . .  ,hn 
and the right-most rise in tk+l occurs at a, b. 

In all cases we see that  tk+l reduces in one step to tk and we are done. D 

Let ~ :  M ( X )  - -+ X* be defined as follows: ~(x) = x for x C X,  and 
~((t ' ,  t")) = ~ ( t ' )~ ( t " )  for (t', t") C M ( X )  \ X .  The word ~(t) is called the 
foliage of t. Furthermore,  if s = ( h i , . . .  , hn) is a sequence of Hall elements, 
then the foliage of s is defined by ~(s) = qo(hl) . . ,  g)(hn). 

P r o p o s i t i o n  7.6.8 For every word w C X* there is a unique decreasing 
standard sequence of Hall elements s such that qo(s) - w .  
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P r o o f .  Let w = x l . . . X p  be an element of X* and let s = ( x l , . . .  ,Xp) be 
the corresponding s tandard  sequence of Hall elements. By Lemma 7.6.5, 
s reduces to a decreasing s tandard  sequence t in a finite number  of steps. 

Furthermore,  from the definition of the reduction process, we see that  ~(t)  = 

Suppose that  there are two decreasing s tandard sequences t and t t such 
that  ~(t) = ~(t ' )  = w. Then we unpack both  t and t' to the sequences of 
letters s and s ~ respectively. By the definition of the unpacking process we 

see that  ~(s) = 9~(t) = 9~(t') = ~(s ' ) ,  so that  s = s'. But by Proposi t ion 
7.6.7 this implies that  t = #. [7 

The following corollary is an immediate consequence of Proposi t ion 
7.6.8. 

C o r o l l a r y  7.6.9 Let hi, h2 C H then hi ~: h2 if and only if ~(hl )  ~ ~(h2). 

Corollary 7.6.9 implies that  every Hall element h corresponds to a unique 
Hall word w = ~p(h). If from the context it is clear which Hall set H we 
mean, then we call a word of the form u = ~(h) for h C H a Hall word. 

7.7 A Hal l  set  p r o v i d e s  a bas is  

Let F be a field. From Section 6.1 we recall that  F(X)  is the associative 
algebra spanned by X*; it is called the free associative algebra on X.  

Recall that  the free algebra A(X)  is the algebra spanned by all elements 
of M ( X )  (where M ( X )  is the free magma on X).  We define a linear map 

P:  A(X)  ---+ F(X)  

by defining it on the basis M ( X ) :  P(x) = x for x C X and P((a,b)) = 
P(a)P(b) - P(b)P(a). An element of the image of P is called a Lie polyno- 
mial. 

E x a m p l e  7 .7 .1  Let X = {x, y} and set m = (x, ((x, y), y)). Then the Lie 
polynomial  corresponding to m is xxyy - 2xyxy + 2yxyx - yyxx. 

We fix a Hall set H C M ( X ) .  We let P act on sequences of Hall elements 
in the obvious way; for s = ( h i , . . .  , hn) a sequence of Hall elements, we set 
P ( s ) = P ( h l ) ' " P ( h n ) .  

T h e o r e m  7.7.2 The set of all P(s) where s runs through all decreasing 
standard sequences of Hall elements forms a basis of F (X) .  
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P r o o f .  First  we prove that  every word w E X* can be wri t ten as a linear 
combination of elements of the form P(s) where s is a decreasing s tandard  
sequence of Hall elements. 

Let t = (hi , . . .  , hn) be a sequence of Hall elements. Suppose that  t is 
not decreasing and let i be the right-most rise of t, i.e., hi < hi+l. Then we 
set 

p(t) = ( h i , . . .  , hi-l,  hi+l, hi, hi+2,... , hn). 
f! Then p(t) is again a s tandard  sequence" if hi+l ~- X then hi+ 1 > hi+l 

(because > is a Hall order) > hi. Furthermore,  if t reduces in one step to t ~ 
then we set 

)~(t) = t' = (hi , . . .  ,hi- l ,  (hi, hi+l),hi+2,... ,hn). 

Now we define the derivation tree D(t) of t to be the tree with root labelled 
t and D()~(t)) and D(p(t)) as left and right subtrees. Furthermore,  if t is 
decreasing, then its derivation tree only consists of the root labelled t. 

We claim that  the derivation tree of t is always finite. We prove this by 
induction on the pair v(t) = (n, I{(i,j) l i  < j and hi < hi}l). These pairs 
are ordered lexicographically: ( n l , r l )  < (n2,r2) if nl  < n2 or nl  = n2 and 
rl < r2. If t is decreasing, then D(t) only consists of the root labelled t. Now 
suppose that  t is not decreasing. Then v()~(t)) < v(t) and v(p(t)) < v(t). 
So by induction D()~(t)) and D(p(t)) are finite, and hence D(t) is finite. 

By the definition of P it is seen that  P(t) = P()~(t)) + P(p(t)). Hence 
P(t) equals the sum of P(t') where t' runs through the leaves of the deriva- 
tion tree of t. Fur thermore these t ~ are decreasing s tandard  sequences. 

Let w = x l . . ' x r  be a word in X*. Let t = ( x l , . . .  ,x~) be the corre- 
sponding s tandard  sequence. Then w = P(t) which by the above is equal 
to a sum of P(t ~) where the t ~ are decreasing s tandard sequences of Hall ele- 
ments. So the elements P(s), where s runs through the decreasing s tandard  

sequences of Hall elements, span F ( X  I. 
In order to prove that  the elements P(s) are linearly independent  we 

may assume that  the set X is finite. Let F(XId denote the subspace of 
F(X} spanned by all words of degree d. Let s = ( h i , . . .  , hn) be a s tandard  
sequence of Hall elements and set d(s) = deg(hl)  + - - - +  deg(hn). Then it 
is s traightforward to see that  P(s) C F(X}d(s ). Now by Proposi t ion 7.6.8, 
the number  of decreasing s tandard  sequences s such that  d(s) = d is equal 
to the number  of basis elements of F(XId. Furthermore,  by the above the 
elements P(s) where s is a decreasing s tandard sequence such that  d(s) = d 
span F(X}d. Hence this set must be linearly independent,  o 



278 Finitely presented Lie algebras 

From Section 7.1 we recall that  L(X) = A(X)/Io, where I0 is the ideal 
of A(X) generated by the elements (7.1). It is straightforward to see that  
P(Io) = 0; hence P can be viewed as a linear map from L(X) into F(X). 
We recall that  7r : A(X) ~ L(X) is the projection map. 

Corollary 7.7.3 The set n(H) is linearly independent in L(X). 

P r o o f .  By Theorem 7.7.2 we even have that the set P(n(H)) is linearly 
independent in F(X). So 7r(H) must also be linearly independent in L(X). 
[:] 

We will write a finite linear combination of Hall elements as 

E ol hh, 
hEH 

where it is understood that  O~ h - -  0 for all but a finite number of h C H. 
Let m be an element of M(X). We give an algorithm that  computes a 

linear combination of Hall elements a - ~-~heH ahh such that  r (a )  = 7r(m). 
We suppose that  the Hall set H is defined relative to the Hall order < (and 
that  our routine has access to this order). 
Algorithm RewriteMagmaElement 
Input: an element m E M(X). 

Output" a linear combination a - Eheg (~hh with such that  r (a )  -- ~(m). 

Step 1 If IsHallElement(<, m)=true  then return m. 

Step 2 If either m' or m" is no Hall element, then le t  EhEH ~hh be the out- 
put of RewriteMagmaElementon input m ~ a n d  EgEH 7gg the output  of 
RewriteMagmaElement on input m". For each element (h, g) E M(X) 
such that ~h~/g ~ 0 perform the algorithm RewriteMagmaElement and 
multiply the coefficients of the output  by ~h~g; r e t u r n  the sum of the 
results. 

Step 3 If m', m" c H then 

3a if m ~ > m" then le t  EhEH ~hh be the output  of RewriteMagmaEle- 
ment with input (m", m~). R e t u r n  EhEH--~hh. 

3b if m ~ = m" then return 0. 

3c if m' < m" then write m ' =  (a,b) and set nl := ((a,m"),b) and 
n2 := (a, (b, m")). For nl and n2 perform RewriteMagmaElement; 
collect the outputs  together and return the result. 
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E x a m p l e  7.7.4 Before proving that this algorithm terminates with the 
correct output we give an example. For this let H be the Hall set of Example 
7.5.2. We rewrite the element m - (y, ((x, y), x)). Set m ' -  y and m" = 
( (z ,y) ,x) .  Then m' and m" are Hall elements so we arrive in Step 3. Since 
m' > m" we are in Step 3a. We rewrite the element n = (((x, y) ,x) ,  y). 
Now n ~ < n", but n ~ - (a, b) with b < n". So we consider the elements 
nl - -  (((X, y), y), X) and n2 = ((x,y), (x,y)) and rewrite them. First, since 
n2 is of the form (p, p) it is reduced to 0. Secondly n2 is a Hall element so it 
is not rewritten. So the output is - ( ( (x ,  y), y), x) (where the - is left over 
from Step 3a where we entered the recursion). 

L e m m a  7.7.5 Let m -  ( m ' , m " )  C M ( X )  be such that m ' , m "  E H.  

Then on input m the algorithm RewriteMagmaElement terminates in a fi- 
nite number of steps and the output is a linear combination of Hall elements 

- " < max(re'  m"). mi (m~, m~') such that deg(mi) = deg(m) and m i _ , 

Proof .  We use induction on the tuple ( d e g ( m ) , m a x ( m ' , m " ) ) ;  where these 
tuples are ordered lexicographically: (d~, m~) < (d2, m2) if and only if either 
dl < d2 or dl - d2 and m l < m2. This is a well-ordering, so we can apply 
induction. 

We may assume that (m', m") ~ H since otherwise the lemma is trivial. 
Because m', m" C H we end up in Step 3. First suppose that m' > m", i.e., 
we are in Step 3a. Then we perform the algorithm on the input (m", m'). 
This time we arrive at Step 3c. Below we prove that this step terminates 
and gives output satisfying the requirements of the lemma. So in this case 
we are done. Furthermore, if m' - m" then the algorithm returns 0 and the 
requirements on the output are trivially fulfilled. 

Now we assume that m' < m", i.e., we are in Step 3c. We must prove 
that the algorithm terminates on the inputs n l  and n2. First we observe 
that b < m" because otherwise m E H which is excluded. 

We now investigate what happens if we perform the algorithm on the 
input nl - ((a, m"), b). First if nl is a Hall element, then in Step 1 it is 
returned and there is nothing to prove. Now suppose that it is not a Hall 
element. If (a, m") is a Hall element then (a, m") < m" as < is a Hall order. 
Also b < m", so that max((a, m"), b) < m " -  max(re', m"). Therefore, by 
induction, RewriteMagmaElement terminates on input n l  and returns the 
correct output. On the other hand, if (a, m") is not a Hall element, then 
in Step 2 the element (a, m") is rewritten. Since deg((a, m")) < deg(m), 
by induction we conclude that (a, m") is rewritten as a sum }-~h ~hh where 
deg(h) - deg(a) + deg(m") and h" __ max(a, m") - m" for all h such that 
~h ~ 0. Next we perform the algorithm on each element (h, b) where h is 
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such that  ~h 7(= 0. Fix such a Hall element h. We have deg(h, b) - deg(m). 
But h < h" (since < is a Hall order) < m" and also b < m". Hence 
max(h, b) < m" and by induction the element (h, b) is rewritten as ~-~g "),gg 
with deg(g) - d e g ( h ) +  deg(b) and g" < max(h,b) for all g such that 
7g % 0. So deg(g) - deg(a) + d e g ( m " ) +  deg(b) - deg(m). Furthermore, 
since h < m" and b < m" also g" < m" - max(m ~, m ' ) .  The conclusion 
is that  the output of the call to RewriteMagmaFlement on the input nl is 
a linear combination of Hall elements g such that deg(g) - deg(m) and 
g" _< max(re',  m"). 

Now we consider n2 - (a, (b, m")). First suppose that  (b, m") is a Hall 
element. Then a < b (since (a, b) e H) < m" (since (b, m") E H). Also 
(b, m") < m". So max(a, (b, m")) < m" - max(re', m"). Hence by in- 
duction, on input n2, RewriteMagmaFlement terminates with the correct 
output. On the other hand, if (b, m") r H, then we proceed as with nl. 
Collecting the output of the two calls to RewriteMagmaFlement together we 
obtain a linear combination of Hall elements satisfying the requirements of 
the lemma. [::] 

T h e o r e m  7.7.6 Let m C M ( X )  be arbitrary. Then RewdteMagmaElement 
terminates on input M with output f such that ~(f)  - ~(m). 

Proof .  First, if deg(m) -- 1 then the statement is trivial. So suppose that 
m = (m ~, m"). If m ~, m" E H then the call terminates by Lemma 7.7.5. On 
the other hand, if one of m r, m" is not a Hall element then in Step 2 it is 
rewritten. These calls terminate by induction on the degree. Now for each 
pair (h, g) the algorithm is performed again (where h is from the output of 
the rewriting of m ~ and g from the output of the rewriting of m"). However, 
in this case h, g E H so by Lemma 7.7.5 also these calls terminate. 

It is straightforward to see that ~(f)  = ~(m) because all transformations 
performed in the algorithm leave this value unchanged. Indeed, Step 2 is 
justified by bilinearity of the product in A(X).  In Step 3a we use the relation 
~((m', m")) = - ~ ( ( m " ,  m')). In Step 3b we use that ~((m',  m')) = 0. And 
Step 3c is justified by the Jacobi identity: u((a, b), m") = u((a, m"), b) + 
7r(a, (b, m")). [:] 

Corollary 7.7.7 Let H be a Hall set in M ( X )  then u(H) is a basis of the 
free Lie algebra L(X) .  

Proof .  Corollary 7.7.3 states that 7r(H) is linearly independent. And by 
Theorem 7.7.6 we see that every element of L(X)  is a linear combination of 
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7r(h) for h E H. [:3 

7.8 Two examples  of Hall orders 

Let X be a set. In this section we give examples of Hall orders that  can be 
used in conjunction with the algorithm ]sHallElement, i.e., Hall orders which 
allow methods for deciding whether h l < h2 for hi, h2 in the corresponding 
Hall set. 

Let < be a total order on X*. Let <1 be any order on M ( X )  such that  
m <'  n whenever ~(m) < ~(n) for m, n C M ( X ) .  Then we say that  <1 is 
an extension of < to M ( X ) .  Let H C M ( X )  be the quasi-Hall set relative 
to <1. If ~(h l )~(h2)  < ~(h2) for all hi ,h2 E H such that  (hi ,h2)  E H,  then 
it is clear that  <1 is a Hall order and H is a Hall set. But then by Corollary 
7.6.9 we see that the function ~ :  H --+ X* is injective. So the order of the 
elements of H is determined by the order < on X*. But for constructing 
the elements of H we only need to know the order of the elements of H (cf. 
the algorithms HalISet and IsHallElement). It turns out that  the order of 
elements of M ( X )  whose order is not determined by <, is irrelevant for the 
construction of H. Hence < determines a unique Hall set in M ( X ) .  This 
justifies the following definition. 

D e f i n i t i o n  7.8.1 Let < be a total order on X*.  Let <1 be an extension 
of < to M ( X )  and let H be the quasi-Hall set corresponding to <1. I f  

~(hl)~(h2)  < ~(h2) for all h i ,h2  C H such that (hi,h2) C H,  then < is 
said to be a Hall order on X*.  

Our first example of a Hall order on X* will be the lexicographical order. 

E x a m p l e  7.8.2 ( L e x i c o g r a p h i c a l  o r d e r )  Let X = {xx, x2 , . . .  } be a set. 
The lexicographical order <lex on X* is defined as follows. For two words 
Wl, w2 C X* we have wl <le• w2 if and only if either w2 - Wl u for some non- 
empty word u C X* (i.e., Wl is a proper left factor of w2) or Wl - uxivl  and 
w2 = uxjv2 where u, Vl, v2 E X* and i < j (i.e., on the left-most position 
where wl and w2 differ, the entry in wl is the smaller one). The proof of 
the following lemma is straightforward. 

L e m m a  7.8.3 Let u, v E X* such that u <lex V. Then w u  <lex WV f o r  all 
w C X*.  Furthermore, if u is not a left factor of v, then also uw <lex vw 
for all w E X*.  
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L e m m a  7 .8 .4  T h e  order  <lex is a Ha l l  o rder  on X * .  L e t  w be a H a l l  word.  

I f  y is a p r o p e r  n o n - e m p t y  r igh t  f a c t o r  o f  w ( i .e . ,  w - x y  f o r  a n o n - e m p t y  

x E X * ) ,  t h e n  w <lex Y. 

P r o o f .  Firs t  we remark  tha t  the first s ta tement  follows from the second. 

Let <1 be any extension of <lex to M ( X ) .  Let H be the quasi-Hall  set 
corresponding to <1. Let h E H be such tha t  w - ~a(h). We prove by 

induct ion  on deg(h) tha t  W<lexY for all proper  non-empty  right factors y of 
w. This  is tr ivial  if deg(h) - 1, so suppose tha t  deg(h) > 1, i.e., h - (h', h"). 

Set u - ~a(h !) and v = ~a(h"). We claim tha t  u ~- v. This  is clear if u C X.  
So suppose tha t  u r X and u - v. Then  h I - (a,b) wi th  b >1 h", but  

~a(b) ~= ~(h")  so ~a(b) _lex ~a(h") - v. Now u - v implies tha t  ~a(b) is a right 

factor of v, so by induct ion V<lexCfl(b), and we have reached a contradict ion.  
Now from u ~ v it follows tha t  U<lexV because h E H.  

We dis t inguish three cases. First  suppose tha t  y is longer t han  v. Then  

y - u " v  where u" is such tha t  u - u l u "  for a non-empty  u I C X*.  Then  by 

induct ion  u <lex u" and since u is not a left factor of u" ,  w - u v  <lex u " v  - 

y. In the second case y is equal to v. First  suppose tha t  u is a left factor of 

v, i.e., v = u v  I. Then  by induct ion v <lex v I and w - u v  <lex u v  I - v.  Also, 

if u is not a left factor of v, then from U<lexV we see tha t  w - uv<lexV .  

Final ly suppose tha t  y is shorter  than  v. Then  v - v~y and by induct ion 

v <lex Y. Fur thermore ,  above we have shown tha t  w - u v  <lex v and hence 

W ~lex Y. [] 

Let H be the Hall set corresponding to <lex, then the elements ~a(h) for 
h C H are called L y n d o n - S h i r s h o v  words.  

L e m m a  7 .8 .5  L e t  H be the  Ha l l  se t  c o r r e s p o n d i n g  to <lex. A n o n - e m p t y  

word  w C X *  is a Ha l l  w o r d  i f  a n d  on ly  i f  .for all f a c t o r i z a t i o n s  w - x y  

where  x ,  y E X *  are n o n - e m p t y ,  we have  W<lexY. 

P r o o f .  Let w be a Hall word and write w = x y ,  where x, y are non-empty.  

Then  by L e m m a  7.8.4, we see tha t  W<lexY. For the other  direct ion suppose 

tha t  W<lexY for all proper  non-empty  right factors y of w. By induct ion  on 
the degree of w we prove tha t  this implies tha t  w is a Hall word. This  is 

tr ivial  if deg(w) = 1, so suppose tha t  deg(w) > 1. Let v be the smallest  

non-empty  proper  right factor of w and write w = uv .  We show tha t  bo th  
u and v are Hall words. 

Let v2 be a proper  non-empty  right factor of v. Then  V<lexV2 because 
v2 is also a right factor of w and v is the smallest of those. So by induct ion 
we have tha t  v is a Hall word. Now let u2 be a non-empty  proper  right 
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factor of u. Suppose tha t  U2<lex v. This means tha t  U2<lexV<lexU2 v (as 
v is the smallest right factor of w). This can only happen  if u2 is a left 
factor of v, i.e., v = u2v ~. But then u2v ~<lexu2v, which implies tha t  v ~<lexv, 
contradict ing the fact tha t  v is the smallest right factor of w. The  conclusion 

is tha t  u2 >_lex v. Therefore U<lexUV = W<lexV _<lex u2. Hence by induction 
u is a Hall word. 

Let hi,h2 E H be such tha t  ~ (h l )  = u and ~(h2) = v. Because 
U<lexUV = W<lexV we have tha t  hi < h2, where < is any extension of 
<le• to M ( X ) .  Also, if hi ~ X,  then hi - (h~,h~). We write u - u'u" 

for the corresponding factorization of u. Then  as seen above, u" _>lex v. It 
follows tha t  (hi, h2) E H and w is a Hall word. [] 

C o r o l l a r y  7.8.6 Let H be as in Lemma 7.8.5. Let u, v be Hall words with 

U<lexV, then uv is a Hall word. 

P r o o f .  The  proof is straightforward,  using Lemma 7.8.5 as well as the proof 
of Lemma 7.8.4. [::] 

Let H be the Hall set relative to <lex. Let w be a Hall word. The  proof of 
Lemma 7.8.5 suggests a s traightforward algori thm to find the corresponding 
element of H.  Let v be the smallest proper non-trivial  right factor of w and 
write w = uv. Then  as seen in the proof of Lemma 7.8.5, u and v are Hall 
words. So recursively we can determine h~,h" E H such tha t  ~(h  ~) = u 
and ~(h")  = v. Now the proof of Lemma 7.8.5 shows tha t  (h ' ,h" )  C H.  
Fur thermore,  ~((h ' ,  h")) = w. We call this algori thm BracketingOfHallWord. 

E x a m p l e  7 .8 .7  ( R e v e r s e  l e x i c o g r a p h i c a l  o r d e r )  We define the order 

~Rlex on X*. Let wl, w2 E X* then wl <mex w2 if and only if wl = uw2 
(i.e., w2 is a proper  right factor of wl),  or wl = VlXiU and w2 = v2xju  where 
Vl, v2, u E X* and i < j .  We call <mex the reverse lexicographical order. 

This order is trivially a Hall order on X*, as p(h l )~ (h2 )<mex~(h2 )  for all 
h i ,h2  C M ( X ) .  

We note tha t  the reverse lexicographical order in general does not yield 
the same Hall set as the lexicographical order. Let X = { x , y , z }  with 
x < y < z. Then  ((x, y), (x, z)) is a Hall element with respect to <lex, but  
not with respect to <Rlex. Also (y, (x, (x, z))) is a Hall element with respect 

to ~Rlex but  not with respect to ~lex. 

We now characterize the words ~(h) for h in the Hall set corresponding 
to the order <me• The  proof of the following lemma is straightforward.  
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L e m m a  7 .8 .8  Let u , v  E X *  be non-empty  words. I f  U <Rlex V then 

uw <mex vw for  all w C X * .  Also i f  v is not  a right fac tor  of  u, then 

WU <Rlex WV f o r  all w C X * .  

P r o p o s i t i o n  7 .8 .9  Let H be the Hall set corresponding to '~Rlex. Let w C 

X*  be a non -emp ty  word. Then w is a Hall word i f  and only i f  for  each 

fac tor iza t ion  w = uv where u, v are non-empty  we have w >Rlex U. 

P r o o f .  We say tha t  a word x has proper ty  Q if for each factor izat ion x = yz  

with  y, z are non-empty  we have x ~Rlex Y. 

We claim tha t  for x, y C X* tha t  have Q and are such tha t  X<RlexY we 

have tha t  a = x y  has Q. For this let a = uv where u, v are non-empty.  

Firs t  suppose tha t  u is longer than  x, i.e., u = xu  ~. T h e n  since y has Q we 

have Y~Rlex ul. By L e m m a  7.8.8 together  wi th  the fact t ha t  y is not a right 

factor of u ~ we have xy~RlexXU I, i.e., a~RlexU. 
Suppose tha t  u = x; then  u<RlexY. If u = u~y, then  because in this case 

u has Q, U>Rlex ut and by L e m m a  7.8.8, uy>RlexUty -- u. On the other  hand  

if u = UlXiZ and y = y l x j z  where i < j ,  then  U<RlexUy -- a. 
Finally, suppose tha t  u is shor ter  t han  x, i.e., x = ux  ~. T h e n  since x 

has Q, X>RlexU. But  by the above, X y > R l e x X  SO also xy>RlexU. In all three 

cases we have a>RlexU. We conclude tha t  a has Q. 

Let w = ~a(h) for some h C H; we prove tha t  w has p rope r ty  Q by 

induct ion  on deg(h).  If deg(h) = 1 then w tr ivial ly has Q. Now suppose 

deg(h) > 1, i.e., h = (h ' , h " )  and hence w = x y  where x = ~a(h') and 

y = ~a(h'). By induct ion  bo th  x and y have Q. Fur thermore ,  since h C H,  

we have tha t  X<RlexY- Hence by the above claim, w has Q. 
For the other  direct ion suppose tha t  w has Q. Let u be the  biggest 

left factor of w (in the order <Rlex)- If u ~ is a left factor of u then  it is 

also a left factor of w and  hence U>alex ul. It follows tha t  u has Q. Let 

v C X* be such tha t  w = uv. Let y be a proper  left factor of v. T h e n  uy 

is a left factor of w and hence U>RlexUy. Now suppose tha t  Y>RlexU. This  

implies tha t  Uy<RlexU<RlexY. But  this is only possible if u = u~y. This  

means  tha t  uy<RlexUty, from which we have tha t  U<Rlex ul. But  this is not 

possible because u has Q. So y ~Rlex U. Now V>RlexUV ~- W>RlexU, where 
the second inequal i ty  follows from the fact tha t  w has Q. Hence we have 

tha t  V>RlexY. The  conclusion is tha t  also v has Q. 

We prove tha t  w = ~a(h) for an h C H by induct ion on the length of 

w. The  s t a t emen t  is t r ivial  if w C X so suppose tha t  the length  of w is 
bigger t han  1. T h e n  by the above we may write w = uv where bo th  u 

and  v have Q and  U<alexV. So by induct ion u = ~a(hl) and  v = ~(h2)  for 
some h i , h 2  C H.  Now by induct ion  on deg(h l )  we prove tha t  this, together  
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with U<RlexV implies that  uv = ~(h) for some h E H.  If u C X,  then 
(hi, h2) C H by (7.4). If u ~ X then hi - (h~, h~ ~) and if ~(h~ ~) _>Rlex v then 
also (hi, h2) C H. In both  cases we are done. So suppose that  ~(h~t)<mexV 
and set u" - ~(h~). Then (by the first part  of the proposition) also u" 
has Q, so by induction u"v - ~(g) for some g C H. Fur thermore  if we 

set u ~ - ~(h~) then UIIV>RlexUlUIIV  - -  W>Rlex ul, where the first inequality 
follows from the definition of >Rlex and the second by the fact tha t  w has 
Q. So again by induction u~u"v = ~(h)  for some h E H and we are done. E:] 

C o r o l l a r y  7 .8 .10 Let H be the Hall set corresponding to <Rlex, and let 

u, v be Hall words with U<mexV. Then uv is a Hall word. 

P r o o f .  Let x be a proper left factor of uv. We show that  U V > R l e x  x .  

First  suppose that  x = u. If v is not a right factor of u then V>RlexU 
implies U V > R l e x U .  On the other hand, if u = u~v for some non-empty u ~ 
then ut<mexU by Proposi t ion 7.8.9. Hence by Lemma 7.8.8 we see that  

u : UlV<RlexUV; SO in this case we are done. Now if x is a proper  left factor 
of u, then X<me• (by Proposit ion 7.8.9) <me~UV. Also if x is longer than  
u, then x = ux I where x t is a proper left factor of v. Hence Xl<Rlex v by 
Proposi t ion 7.8.9, and since v is not a right factor of x ~, by Lemma 7.8.8 we 

have ux t<Rlexuv. Now by Proposit ion 7.8.9 uv is a Hall word. [] 

Let H be the Hall set relative to <Rlex, and let w be a Hall word. The 
proof of Proposi t ion 7.8.9 suggests a way of implementing BracketingOfHall- 
Word in this case. Let u be the biggest left factor of w and write w = uv. 

Then by the proof of Proposi t ion 7.8.9, u and v are both  Hall words. So re- 

cursively we can determine hi ,h2  C H such that  u = ~(h l )  and v = ~(h2). 

If hi C X,  or hi - (h~, h~ ~) with h~ >_mex h2, then (hi, h2) C H and we are 
done. If h~<mexh2, then write u ' -  ~(h~) and u " -  ~(h~). We determine 
gl,g2 C H such that  ~(gl)  = u' and ~(g2) = u"v, and we re turn to the 
beginning, with gl, g2 in place of h2, h2. 

7.9 R e d u c t i o n  in L(X) 
In this section we describe an algorithm to reduce elements of L ( X )  mod- 

ulo a set G C L ( X ) .  We let H be a Hall set relative to <lex or to <mex- 
Throughout  we also denote the Hall order on H by ~lex or ~Rlex- Since the 
projection 7r: H ~ L ( X )  is injective (Corollary 7.6.9), H can be viewed 
as a subset of L ( X ) .  Moreover H forms a basis of L ( X )  (Corollary 7.7.7). 
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The algorithm RewriteMagmaElement yields an algorithmic method for cal- 
culating the product [g, hi for g, h C H. 

Let <R be a total order on H. Relative to this order every element a E 
L ( X )  has a leading monomial, which is the biggest element of H occurring 
in a. It is denoted by LM(a). We say that <R is a reduction order if <R is 
multiplicative (i.e., a <R b for a, b C H implies LM([a, c]) <R LM([b, c]) and 
LM([c, a]) <R LM([c, b]) for all c C H ) and satisfies the descending chain 
condition (i.e., there is no infinite strictly decreasing chain of elements of 
H).  We note that the Hall orders <lex and (Rlex are not reduction orders. 
In the Hall set corresponding to <lex we have, for example, the infinite 
decreasing chain (x, y), ((x, y), y), (((x, y), y), y) . . . .  

Now we construct a reduction order on H; we do this separately for the 
case where H is defined relative to <Rlex and for the case where H is defined 
relative to <lex. We recall that P : A ( X )  -+ F ( X )  is the map assigning a 
Lie polynomial to every element of A ( X )  as defined in Section 7.7. 

L e m m a  7.9.1 Let H be the Hall set corresponding to <Rlex. Let h E H 
and set w = ~(h) .  Then P(h)  is equal to w plus a linear combination of 
smaller words having the same degree as w. Also let hl <Rlexh2 E H and 
set wi = ~(hi) .for i = 1,2. Then P ( ( h l , h 2 ) )  is equal to wlw2 plus a linear 
combination of smaller words. 

Proof .  The proof is by induction on deg(h). If deg(h) = 1 then the result 
is trivial, so suppose that deg(h) > 1. Then h = (h ' ,h")  and we write 
w = w~w '' for the corresponding factorization of w. Then by induction we 
have 

P(h') - w' + E C~uU and P(h") = w" + E ~vV, 
tt ~ Rlex wl  V ~ Ftlex Wll 

where all words occurring in the sums have the same degree as w t and w" 
respectively. Hence 

P(h)  - P ( h ' ) P ( h " )  - P ( h " ) P ( h ' )  

V ~ Rlex Wll U ~ Rlex wl  U ~ l:tlex Wl ~V'~ Rlex Wll 

E E E 
U ~ RlexWt V ~ Rlex Wll U ~ RlexWt ~V~ RlexWll 

OLu ]~v U V 

Olu ~v V~. 

First we have that w'w" = w. Let w~v be a term from the second sum, 
where V<mexW". Since deg(v) = deg(w"), w" cannot be a right factor of v. 
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Hence by Lemma 7.8.8, we see that  W l V < R l e x W l W  I! - -  W. The terms in the 
second and third sum are dealt with in the same way. Also W l l W l < R l e x W l  

(by definition of <mex) <mexW~W '' (by Proposition 7.8.9). Furthermore, by 
analogous arguments we see that  the terms in the remaining sums are all 
<alexW"W ~. The first statement of the lemma follows. For the second state- 
ment we use the first and proceed by completely analogous arguments. E] 

Let H be the Hall set corresponding to <Rlex. Then we define the order 
<R as follows. If deg(h) < deg(g), then h <R g. On the other hand, if 
deg(h) = deg(g) then h <R g if ~(h)<mex~(g).  By Corollary 7.6.9 this 
defines <R for all elements of H. In the sequel, when we write LM(a) for 
some a C L(X),  we mean the leading monomial of a relative to <R. 

L e m m a  7.9.2 Let H be the Hall set corresponding to <Rlex. Let u , v  be 

Hall words such that U<RlexV. Let h ,g  E H be such that 99(h) - u and 

~a(g) = v. Then ~a(LM([h,g])) - uv. 

Proo f .  We recall that  I0 is the ideal of A ( X )  generated by the elements 
(7.1). Since P(Io)  = 0 we can view P as a map P :  L ( X )  ~ F ( X ) .  Fur- 
thermore, P([h,g]) = P ( ( h , g ) ) .  From Lemma 7.9.1 it now follows that  
P([h, g]) is equal to uv plus a linear combination of smaller words. Set 
h0 = LM([h, g]). Then by Lemma 7.9.1, and the linearity of P we see that  
~a(h0) is the biggest word (in the order <mex) occurring in P([h, g]). Hence 
~ ( h o  ) = u v .  D 

Proposition 7.9.3 Let H be the Hall set corresponding to <Rlex- Then <R 
is a reduction order on H .  

Proo f .  Let h <R g E H and f C H. We show that  LM([h,f])  <R 
LM([g,/]) .  If deg(h) < deg(g) then this is clear. So suppose that  deg(h) - 
deg(g). Then h<Rlexg. First suppose that  g<Rlexf. Then using Lemma 
7.9.2 we see that  ~a(LM([h,/])) = ~a(h)~a(f)<mex~a(g)~a(f) = ~a(LM([g, f])). 
Secondly suppose that  h<ale•  Then we write u - ~(h), v - ~a(g) 
and w - ~( f ) .  We show that  UW<RlexWV. If v is not a right factor of w then 
this follows from W<RlexV. If v is a right factor of w, then we write w - wlv. 

Since w is a Hall word, by Proposition 7.8.9, W>Rlex wl. But w is not a right 
factor of w ~ so also W > R l e x U W  t. Hence by Lemma 7.8.8, W V > R l e x U W t V  --  UW. 

It follows that  ~(LM([h,f ] ) )  = u w < R l e x W V  --  ~(LM([g, / ] ) ) .  Finally, if 
f<alexh,  then ~a(LM([h,/])) = ~a( f )~(h)<mex~a( f )~(g)  = ~a(LM([g, f])). In 
all cases we have ~(LM([h, f]))<mex~(LM([g, f])), implying LM([h, f]) <R 
LM([g, f]). 
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Because [f,h] = - [h ,  f] and [f,g] = -[g,  f] we also have LM([f,  h]) <R 
LM([f,g]).  So <R is multiplicative. It is evident that  <R satisfies the de- 
scending chain condition. The conclusion is that  dR is a reduction order. 
D 

L e m m a  7.9.4 Let H be the Hall set corresponding to dlex- Let h E H 
and set w = ~(h) .  Then P(h)  is equal to w plus a linear combination of 

bigger words having the same degree as w. Also let h l<lexh2 E H and set 

wi = ~fl(hi) for i = 1,2. Then P ( ( h l , h 2 ) )  is equal to wlw2 plus a linear 

combination of bigger words. 

P r o o f .  Let w be a Hall word and write w = uv. Then using Lemma 7.8.5 
we see that  U V d l e x V d l e x V U .  Using this we proceed in exactly the same way 
as in the proof of Lemma 7.9.1. [:] 

Let H be the Hall set corresponding to dlex- Then we define the order 
<R as follows. If deg(h) < deg(g), then h <R g. On the other hand, if 
deg(h) = deg(g) then h dR g if ~(h)>lex~(g). 

L e m m a  7.9.5 Let H be the Hall set corresponding to dlex. Let u, v be Hall 

words such that U<lexV. Let h, g E H be such that ~(h)  = u and ~(g) = v. 
Then ~(LM([h, g])) = uv. 

P r o o f .  The proof is analogous to the proof of Lemma 7.9.2. Again set 
h0 = LM([h, g]). This time we prove that  ~(h0) is the smallest word (in the 
order <lex) occurring in P([h, g]). This implies that  h0 is the biggest Hall 
element (in the order dR) occurring in [h, g]. [:] 

P r o p o s i t i o n  7.9.6 Let H be the Hall set corresponding to dlex. Then <R 
is a reduction order on H.  

P r o o f .  The proof is analogous to the proof of Proposition 7.9.3. Let 
h <R g C H, and f C H. If deg(h) < deg(g), then clearly LM([h, f]) <R 
LM([g, f]). So suppose that  deg(h) = deg(g). This implies that  g<lexh. 
The difficult case is where g<lexf<lexh. Write u -- ~(h), v -- ~(g) and 
w - ~ ( f ) .  We have to show that  WU>lexVW. This is clear if v is not a left 
factor of w, as VdlexW. If v is a left factor of w, then we write w = vw ~. By 
Lemma 7.8.5, W<lexW ~, and therefore vw<lexVW ~. But vw is no left factor 
of vw ~ and hence V W d l e x V W l U  : WU. E] 
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Let G C L(X) ,  and let J C L(X) be the ideal generated by G. We 
describe elements of J in a fashion analogous to the one used in Section 7.3. 
Let a = ( h i , . . .  ,hk) be a sequence ofelements of H, and let ~ = ( d l , . . .  ,dk) 
be a sequence (of length equal to the length of a) of letters d~ C {/, r}. Set 
(~ = (a, (~), then we call (~ an appliance. The integer k is called the length of 
a. For an appliance c~ we define a map P~:  L(X) -+ L(X) in the following 
way. I f k  = 0, then P~(a) = a for all a C L(X). On the other hand, 

if k > 0, then we set /~ = ( ( m 2 , . . . , m k ) , ( d 2 , . . . , d k ) ) .  I f d l  = l, then 
Pa(a) = Pz([hl,  a]), and Pa(a) = Pz([a, hi]) if dl = r. 

Let g, h C H. Then g is said to be a factor of h if there is an appliance a 
such that  LM(Pa(g))  = h. Let G C L(X) ,  and f C L(X). Then f is said to 
be in normal form modulo G if no Hall element occurring in f has a LM(g) 
as a factor for g C G. Furthermore, u C L(X) is said to be a normal form 
of f modulo G if u is in normal form modulo G and f = u mod I,  where 
I is the ideal of L(X) generated by G. Now we formulate an algorithm 
NormalForm, analogous to the ones of Chapter  6. An element f E L(X) is 
called monic if the coefficient of LM(f)  in f is 1. 

Algorithm NormalForm 
Input: a set G C L(X) consisting of monic elements, and an element 

f C L(X). 
Output: a normal form of f modulo G. 

Step 1 Set r := 0, a := f .  

Step 2 If a = 0 then return r Otherwise set h := LM(a) and let A be the 
coefficient of h in a. 

Step 3 Let g C G be such that  LM(g) is a factor of h. If there is no such g 
then set a := a -  Ah, r := r + Ah and return to Step 2. 

Step 4 Let a be an appliance such tha t  LM(Pa(LM(g)) )  = h. 
a -  (g). 

Set a := 

C o m m e n t s :  The algorithm terminates since < satisfies the descending 
chain condition and LM(a) decreases every round of the iteration. Let I 
be the ideal of L(X) generated by G. An invariant of the algorithm is the 
relation r + a = f mod I. Furthermore r is always in normal form modulo 
G. Hence at termination we have that  r is a normal form of f modulo G. 

We reformulate the algorithm NormalForm in the same fashion as in 
Section 6.1. Let G c L(X) be a set consisting of monic elements and let 
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a C L ( X ) .  Suppose tha t  there is a g C G such tha t  LM(g) is a factor of 
h, where h is a Hall element occurring in a. Let c~ be an appliance such 

tha t  LM(Pa(LM(g) ) )  - h. Let ~ be the coefficient of h in a. Then  we say 
tha t  a reduces modulo G to b - a -  )~Pa(g). More generally we say tha t  

a reduces modulo G to b if there are C l , . . . ,  ck E L ( X )  such tha t  Cl - a, 

Ck -- b and ci reduces modulo G to Ci+l for 1 _ i _ k -  1. Because <R 
satisfies the descending chain condition, any maximal  sequence of reduction 
steps finishes with an element tha t  cannot be reduced further.  

The problem with the algori thm NormalForm and the reduct ion proce- 

dure is tha t  in general it is difficult to determine whether  a given g E H is a 
factor of a given h C H.  However, in the case where the Hall set is defined 

relative to <lex or  <alex we have a criterion for deciding this. 
Let H be a Hall set and let u be a Hall word, i.e., u - ~(h) for some 

h C H.  Suppose tha t  h ~ X,  i.e., h - (h~,h"). Then the factorization 

u - v w  where v - ~(h ' )  and w - 99(h") is called the s t a n d a r d  f a c t o r i z a t i o n  

of  U. 

L e m m a  7 .9 .7  Le t  H be the Hal l  set  corresponding  to <Rlex or  to <lex- Let  

u, v be two Hal l  words.  I f  u ~ X then  u = x y  will  be its s t a n d a r d  f a c t o r i z a -  

t ion.  Suppose  that  v is a subword  of  u. T h e n  there are three poss ib i l i t ies:  v 

is a left  f a c t o r  o f  u,  v is a subword  of  x ,  v is a subword  o f  y.  

P r o o f .  First  we prove the s ta tement  for the case where H is defined relative 

to <alex. Suppose tha t  v is not a subword of x or of y. Then  v - VlV2 where 

Vl and v2 are non-empty words such tha t  x - w l v l  and y - v2w2 for some 

wl,  w2 C X*. By Proposi t ion 7.8.9 we have Y>RlexV2 and since y is not a 
right factor of v2, also Y>RlexVlV2. Now for x we have tha t  x - W l V l  where 

Vl is a n o n - e m p t y  left  f a c t o r  o f  v and  i f  x = ab is the s t a n d a r d  f a c t o r i z a t i o n  

o f  x ,  t hen  b _>Rlex Y (the last inequality follows from (7.5)). We prove tha t  
from this it follows tha t  Wl is empty, by induction on the length of x. First  

if x E X,  then Wl is empty  because Vl is not. So suppose tha t  the length 
of x is > 1. First  suppose tha t  Wl is longer than or equal to a, i.e., b -  b~vl 

for some b ~ C X*. By the definition of <Rlex we have Vl >_Rlex b and hence 
Vl _>Rlex Y. But  because Vl is a left factor of v, by Proposi t ion 7.8.9 we 

see tha t  V~RlexVl, and as Y~RlexV, also Y~RlexVl, a contradiction. So wl is 
shorter  than  a, i.e., a - w l a  ~ where a t is a non-empty left factor of v and if 

a - cd is the s tandard  factorization of a, then d ~Rlex b ~Rlex Y. So a has 
the same proper ty  as x. Therefore, by induction we have tha t  Wl is empty. 

If H is defined relative to <lex, then we use the same line of argument .  
In this case, from b -  b~vl we deduce y _<lex b<lexVl (by L e m m a  7.8.5; b 
is a Hall word) <lexV (because Vl is a left factor of v). But  also Y>lexV2 
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(because v2 is a left factor of y) >lexV (by Lemma 7.8.5). So we reach the 
same contradiction. E:] 

L e m m a  7.9.8 Let H be the Hall set corresponding to <Rlex or  to <lex.  Let 
g, h E H;  then g is a factor of h if and only if ~(g) is a subword of ~(h) .  

P r o o f .  First  we prove the lemma for the case where H is defined relative 

to <alex- Set u - ~(g) and v - ~(h).  Suppose first that  u is a subword of 
v. By Lemma 7.9.7 we may assume that  v - uv'. Let w i , . . . ,  Ws be Hall 
words such that  w i ' . ' w s  - v'. (Note that  these exist as the letters of v' are 

Hall words.) By Corollary 7.8.10 we may assume that  wi ~Rlex W2 ~>Rlex 

" '"  >__Rlex Ws. For 1 < i _< s let hi E H be such tha t  ~(hi) - wi. Set 
fk -- [[[g, h l ] ,h2] . . .  ,hk]. By induction on k we prove that  ~(LM(fk))  - 
U W l . . . w k .  This is clear for k - 0. So suppose k > 0 and ~(LM(fk))  = 

U W l ' ' ' W  k. Set Uk -- u w i ' ' ' W k  and Vk = Wk+l" ' 'ws .  Then v = UkVk~ and 

Wk+l _>Rlex ws _>mex Vk (because ws is a right factor ofvk) >RlexttkVk>Rlexttk 
(by Proposi t ion 7.8.9). Hence U k < R l e x W k +  1 and by Lemma 7.9.2 we have 

that  ~(LM(fk+i ) )  = u w i ' " W k + i .  Therefore ~(LM(fs) )  - uv' and by 
Corollary 7.6.9 we see that  LM(fs)  - h. 

Now suppose that  g is a factor of h. Then there is an appliance c~ such 
that  LM(Pa(g))  - h. Hence ~(LM(Pa(g)) )  = ~(h). We prove by induction 
on the length of a that  ~(LM(Pa(g)) )  contains ~(g) as a subword. This is 
trivial if the length of c~ is 0, so suppose that  the length of c~ is > 0. Write 

c~ = ( ( h i , . . .  ,hk),  ( d l , . . .  ,dk)),  and set ~ - ( ( h i , . . .  , h k - i ) ,  ( d l , . . .  ,dk-1)).  
Set t) = LM(Pz(g)) .  By induction ~(~) contains ~(g) as a subword. But 
LM(Pa(g))  - LM([hk,~]), and by Lemma 7.9.2 we see that  ~(LM([hk,~])) 
contains ~(~) as a subword and we are done. 

If H is defined relative to <lex then we use the same line of argument.  

In this case, in the first half of the proof, we deduce Wk+i >_lex Ws>lexV (by 

Lemma 7.8.5) >lexU k. [3 

The proof of Lemma 7.9.8 yields an algori thm for computing an appli- 
ance c~ such that  LM(Pa)(g)  = h. 
Algorithm Appliance 
Input: g,h E H. 
Output: an appliance a such that LM(Pa(g)) = h if g is a factor of h, fail 
otherwise. 

Step 1 (Catch some trivial cases.) If g - h then return the empty appliance. 
If h E X,  and g ~ h then return fail. 



292 Finitely presented Lie algebras 

Step 2 Set u := ~(g) and v := ~(h).  If u is not a subword of v then re turn  

fail; else go to Step 3. 

Step 3 Let v = ab be the s tandard  factorization of v, where a = ~(h  ~) and 
b = ~(h") .  If u is a subword of a then le t /3  = (a, 5) be the output  

of Appliance(g, h~). Add h" to a and add the letter r to (~ and output  

the result. If u is a subword of v, then we let ~ = (a, 5) be the ou tput  
of Appliance(g, h"), and we proceed in the same way, this t ime adding 
h ~ to a and l to 5. If u is not a subword of u nor a subword of v, then 

go to Step 4. 

Step 4 Write v = uv ~ and calculate Hall words wl >_ w2 >_ "" >_ Ws such 
tha t  v~= wl ""Ws. Let h i , . . .  ,hs be elements of H such tha t  ~(hi)  = 

wi. Re turn  ( ( h i , . . .  ,hs),  ( r , . . .  , r ) ) .  

C o m m e n t s :  By Lemma  7.9.7, we have tha t  u is either a subword of a, 

a subword of b or a left factor of v (longer than  a). In the first two cases we 
use a recursive call. In the second case (Step 4) we perform the construct ion 

of the proof of L e m m a  7.9.8. The Hall words W l , . . .  , w~ can be calculated 
as follows. Write v ~ = xi~ " " x i t  for certain xik E X. Star t  with the s tandard  
sequence s = (x i~ , . . .  ,xi t) ,  and apply the reduction procedure of Section 

7.6 to arrive at a decreasing s tandard  sequence having the same foliage. 

7.10 GrSbner  bases  in free Lie algebras 

Let X be a set. Throughout  this section we let H be the Hall set in M ( X )  
relative to <]ex or to <Rlex. As in the previous section we also view H as a 
subset of L(X),  of which it forms a basis. As shown in Section 7.9, a reduc- 
tion order <R on H exists. In this section we take all leading monomials  

relative to a fixed reduction order <R. 

Let I C L(X)  be an ideal of L(X).  We define the set of normal mono- 
mials N(I )  of L(X)  modulo I to be the set of all h C H such tha t  h is 

not a leading monomial  of an element of I.  If we let C(I) be the span of 
N ( I ) ,  then L(X)  = C(I)@ I (cf. Proposi t ion 6.1.1). This implies tha t  the 

cosets of the normal  monomials  span L(X) / I .  Also for f E L(X)  we define 

N Q ( f )  = u, where u is the unique element of C(I) such tha t  f = u + g for 

a g C I .  
Now let G C L(X)  and let I be the ideal of L(X) generated by G. Then  

we say tha t  G is a GrSbner basis of I if for all f E I there is a g E G such 
tha t  LM(g) is a factor of LM(f ) .  As in Section 6.1, it is s t ra ightforward to 
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show that  reduction of an element f C L ( X )  modulo a GrSbner basis of I 

always yields a unique result, which is NfI ( f ) .  
, 

In this section we establish a sufficient condition for a set G c L ( X )  to 
be a GrSbner basis of I. This condition is similar to the condition obtained 
in the associative case (Corollary 6.1.8). The next result will enable us to 
construct compositions of two elements of L ( X ) .  

P r o p o s i t i o n  7.10.1 Let  hi ,h2 E H and suppose that ~ ( h l )  = uv  and 

~(h2) = vw,  where v is non-empty .  Then  u v w  is a Hall word. 

P r o o f .  First we deal with the case where H is defined relative to <Rlex. 
Let Q be the property of the proof of Proposition 7.8.9. Then by that  
proposition the words uv  and vw  both have Q. From this it follows that  
U<mexV<mexW. We show that  u v w  has Q. For that  let x be a left factor 
of uvw .  First we suppose that  x = uv.  Now by Proposition 7.8.9 we have 
V<mexVW and by Lemma 7.8.8 (vw is not a right factor of v), uv<RlexUVW. 

Now suppose that  x is shorter than uv. Then by Proposition 7.8.9 and by 
the previous case, X~RlexUV~RlexUVW. Finally suppose that  x is longer than 
uv,  i.e., x = u v x  I. Then v x  ~ is a left factor of vw and hence v x  ~ <PdexVW. Now 
by Lemma 7.8.8 (vw is not a right factor of v x  ~) we see that  u v x  ~<Rlexuvw. 

It follows that  u v w  has Q and by Proposition 7.8.9 we are done. 

If H is defined relative to <lex then we use analogous arguments. In 
this case we show that  for all proper non-trivial right factors y of u v w  we 
have uvw<lexY.  First suppose that  y = vw.  By Lemma 7.8.5, uV<le• 

and as uv  is not a left factor of v, also uvw<lexVW = y. If y is shorter 
than vw,  then Y>lexVW (by Lemma 7.8.5) >lexUVW (aS seen above). Finally, 
if y is longer than vw,  then y = y~vw and y~v is a proper right factor of 
uv.  Hence by Lemma 7.8.5, uv<lexy~V and since uv is not a left factor of 
ylv,  we have UVW<lexylVW -- y. Now by Lemma 7.8.5, u v w  is a Hall word. D 

Let gl, g2 E L ( X )  and set h~ = LM(g~) and h2 = LM(g2). Suppose that  
the coefficients of hi,  h2 in gl, g2 respectively are 1. Suppose further that  
~(hl )  = uv  and ~(h2) = vw,  where v is non-empty. Then by Proposit ion 
7.10.1, u v w  is a Hall word. Furthermore, it contains both uv  and v w  as 
subwords. Let h C H be such that  ~(h) = uvw.  Then by Lemma 7.9.8, 
hi, h2 both are factors of h. Let a l ,  a2 be two appliances, as found by the 
algorithm Appliance, such that  LM(Pa~(h~))  = h for i = 1,2. Then the 
element 

(gl)  - g . :  (g2) 

is called a composi t ion of gl and g2. 
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Let I c L (X)  be an ideal of L(X)  generated by the set { g i l i  > 1}. Let 
h C H, then by I<R h we denote the subspace of I spanned by elements of 
the form ~ 1P~1 (gil) + " "  + AsPas (gis), where the ak are appliances such that  
LM(Pak (gik)) <R h. Note that  this depends on the particular generating 
set G. Usually it will be clear what generating set we mean; however, if we 
want to stress the dependency on G, then we also write I<~h(G) in place of 

I(Rh. 
A set G c L (X)  is said to be self-reduced if for any pair gl, g2 C G we 

have that  LM(gl) is not a factor of LM(g2), and the coefficient of LM(g) in 
g i s l  for a l l g c G .  

T h e o r e m  7.10.2 ( S h i r s h o v )  Let I C L(X)  be an ideal of L (X)  generated 
by the set G C L(X) .  Suppose that G is self-reduced. Suppose that all 
compositions Pal (gl) - Pa2 (g2) of elements gl, g2 of G lie in I< Rh (G), where 
h = LM(Pa~ (gl)) = LM(Pa2 (g2)). Then G is a Grhbner basis of I. 

P r o o f .  First we prove the theorem for the case where H is defined relative 
to <Rlex- On X* we use an order which we also denote by <R. It is defined 
in an analogous way to the order <R on H. If u, v C X* have different 
degrees, then u <R v if and only if deg(u) < deg(v). If deg(u) = deg(v), 
then u <R v if and only if U<RlexV. We note that <R is multiplicative (cf. 
Lemma 7.8.8), and satisfies the descending chain condition. In the sequel 
leading monomials of elements of F(X)  are taken relative to this order. 

We use the map P : L(X)  --+ F(X)  that  assigns to each element of 
L(X)  its Lie polynomial. Let J be the ideal of F(X)  generated by P(G). 
We show that  P(G) is a Grhbner basis of J.  For this we use Theorem 6.1.6. 
Let f l ,  f2 E P(G) and let u, v E X* be such that  LM(f l )u  = vLM(f2) = w. 
We have to show that  f l u -  vf2 E J<Rw. If v is longer than LM(fl ) ,  or 
equal to LM(f2), then f l u -  v f2 E J<Rw by a calculation analogous to 
(6.2). Now suppose that  v is shorter than LM(fl) .  Then LM(fl)  = VVl and 
LM(f2) = VlU for a non-empty vl C X*. Let gi E G be such that  fi = P(gi) 
for i = 1,2. By Lemma 7.9.1 we have LM(fi) = ~(LM(gi)). So gl,g2 have 
a composition. Let a l ,  c~2 be appliances (found by the algorithm Appliance) 
such that  Pa~ (gl) - Pa2 (g2) is the composition of gl and g2 corresponding 

to the decomposition LM(fl)  = VVl and LM(f2) = vlu. 
We claim that  P(gl)u - P ( P ~  (gl)) = ~-~i )~iaiP(gl)bi, where the ~i are 

certain scalars and ai, bi E X* are such that LM(aiP(gl)bi) <R w. Since 
L g ( f l )  is a left factor of LM(f l )u  we have Pa~ (gl) = [[[gl,hl],h2],'" ,hk] 
where hi E H are such that  ~a(h~)-..~(hk) = u. But this means that  
P(PaI (gl)) is a linear combination of elements of the form 

P(hi~) " " P(hit)P(gl)P(hit+~) "" P(hik). 
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The leading monomial of P(Pa~ (gl)) is LM(/1)u. We note that this word 
only occurs in P(gl)P(hl) '"  P(hk) (cf. Lemma 7.9.1). So 

P(gl)u - P(Pal (gl))  = P(gl)(U - P ( h l ) - - .  P(hk)) + E #iaiP(gl)bi, 
i 

where 5i, bi C X* are such that LM(hiP(gl)bi) <R w. By Lemma 7.9.1 we 
see that the leading monomial of P ( h l ) . . .  P(hk) is u. Therefore P(gl)(U- 
P ( h l ) - . - P ( h k ) )  is a linear combination of elements P(gl)a, where a e X* 
is such that LM(P(gl)a) <R w, and our claim follows. In the same way we 
can show that vP(g2)- P(Pa2 (g2)) = ~-~-i ~iciP(g2)di, where ci, di E X* are 
such that LM(ciP(g2)di) <R w. 

It follows that 

P ( g l ) u  - v P ( g 2 )  = P ( P a l  ( g l ) )  - P(Pa2(g2)) + 

E AiaiP(gl)bi - E ~iciP(g2)di, 
i i 

where the last two sums on the right-hand side are in J<Rw. Further- 
more, P(Pal (gl))-P(Pa2(g2)) = P(Pal (gl)-Pa2(g2)). But by assumption 
P~I (gl)-Pa2(g2) lies in I<Rh, where h = LM(Pa~ (gl))- Therefore the image 
under P of this element lies in J<Rw by Lemma 7.9.1. 

Now by Theorem 6.1.6, P(G) is a Grhbner basis of J. This implies that 
G is a Grhbner basis of I. Indeed, let a C I, then P(a) E J. Hence there is 
a g e G such that LM(P(g)) is a factor (i.e., a subword) of LM(P(a)) .  But 
by Lemma 7.9.1, LM(P(g)) = ~(aM(g)) and likewise for LM(P(a)) .  So by 
Lemma 7.9.8, LM(g) is a factor of LM(a). Hence G is a Grhbner basis of I. 

If H is defined relative <lex, then we use analogous arguments. In 
this case the order <R is defined as follows. If u, v C X* have different 
degrees, then u <R v if and only if deg(u) < deg(v). Furthermore, if 
deg(u) = deg(v), then u <R v if and only if U > l e x  v .  [:] 

Now let G C L(X) and let gl,g2 c G. Suppose that gl,g2 have a 
composition c = Pal (gl ) -Pa2 (g2) and set h = LM(Pal (gl)) = LM(Pa2 (g2)). 
Then the composition c is called useless if there is a g3 E G such that LM(g3) 
is a factor of h. Otherwise the composition c is called useful. 

L e m m a  7.10.3 Let G,I be as in Theorem Z10.2. Suppose that G is self- 
reduced. Suppose that all useful compositions Pax ( g l ) - P a 2  (g2) of elements 

a Grhbner basis of I. 
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P r o o f .  We use the notat ion of the proof of Theorem 7.10.2. Again we prove 

tha t  the set P(G)  is a Grbbner basis of J .  For tha t  let f l ,  f2 C P(G)  and 

suppose tha t  they have the composit ion c = f l u l - u 2 f 2 .  Set w = L M ( f l u l ) .  

We must  show tha t  c E I<Rw. If there is no f3 C P(G)  such tha t  LM(f3) is 
a factor of w, then this is already done in the proof of Theorem 7.10.2. So 

suppose tha t  there is such an f3 in P(G) .  Write wi = LM(fi)  for i = 1, 2, 3. 

T h e n w l  = u2v and w2 - vul  for some v ~= 1. Also we know tha t  w3 is 

a factor of u2vul ,  so we may write u2vul = xw3y where x, y E X*. If x 
is longer than,  or equal to u2, then w3 is a factor of vul  = w2, which is 
excluded as G is self-reduced. So x is shorter than u2. In the same way we 
see tha t  y is shorter than  U l. So there are a, b ~ 1 such tha t  w3 = avb and 

u2 = xa and u l = by. Now we calculate 

f lu1 -- u2f2 -- f lby  - xaf2 

= ( f l  b - x f3 )y  + x ( f3y  - el2).  

Now f i b -  x f3 is a composit ion of f l  and f3, and the degree of z = LM(f lb)  
is str ict ly less than  deg(w). (Note tha t  y ~ 1, as otherwise w2 is a factor of 

w3.) So by induction on the degree we may assume tha t  f i b -  x f3 C I<Rz, 
and similarly for the composit ion f 3 Y -  a f2. But then it follows tha t  

f l u 1 -  u2f2 C I<Rw. D 

C o r o l l a r y  7 .10 .4  Let G c L ( X )  be a self-reduced set generating an ideal 
I of L ( X ) .  Then G is a Grbbner basis of I if and only if every useful 
composition of any pair o.f elements of G reduces to zero modulo G. 

P r o o f .  Using Lemma  7.10.3 the proof is completely analogous to the proof 
of Corollary 6.1.8. [::] 

These results lead to an algori thm for comput ing a Grbbner basis of an 
ideal generated by G C L ( X ) .  In this a lgori thm we need a subrout ine tha t  
given a set G C L ( X )  computes a self-reduced set M C L ( X )  generat ing 
the same ideal as G. We first s ta te  this subroutine.  

Algorithm InterReduce 
Input" a finite set G C L ( X ) .  

Output: a finite set M C L(X) ,  where M is self-reduced and generates the 
same ideal as G. 

Step 1 Set M - -  G. 
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Step 2 Denote the elements of M by g l , . . .  , gs. For 1 _< i _< s replace gi in 
M by NormalForm(M \ {gi}, gi) (and if necessary divide by a scalar to 
ensure that the coefficient of the leading monomial is 1). 

Step 3 If M is unchanged in Step 2., then return M. Otherwise return to 
Step 2. 

Comments: We show that the algorithm terminates. Let (h i , . . .  ,hs) 
be the s-tuple of leading monomials of the elements of M. We order these 
s-tuples lexicographically. If M is changed in Step 2., then this s-tuple 
decreases. However, this cannot happen infinitely often because <R satisfies 
the descending chain condition. So after a finite number of rounds the 
algorithm terminates. It is straightforward to see that at termination the 
set M is self-reduced. It also generates the same ideal as the initial set G 
because the replacement operation of Step 2. does not change this. 

Lemma 7.10.5 Let a C L(X) be a finite set generating an ideal I of L(X). 
Set G ' -  InterReduce(G). Let h E H; then I<Rh(G ) C I<Rh(G' ). 

Proof .  Let M1 = { g l , . . .  ,gs} C L(X) and let M2 be the set obtained 
from M1 by replacing gi by g~ - NormalForm(M1 \ {gi},gi). Then g~ = 
gi--}-~km=l #kPzk (gJk), where LM(Pzk (gJk)) <- LM(gi). Let c~ be an appliance 

�9 p ,  ! m such that P~(gi) C I<Rh(M1 ) Now P~(9i) - o~(gi)+~-~k=l #kPa(P~k(gjk)) 
which lies in I<Rh(M2 ). It follows that I<Rh(M1 ) C I<Rh(M2 ), and hence 
also I<Rh(a ) C I<Rh(a' ). [3 

Now the algorithm for calculating a Grhbner basis reads as follows. 

Algorithm GrhbnerBasis 
Input: a finite set G C L(X). 

Output: a Grhbner basis of the ideal of L(X) generated by G. 

Step 1 (Initialization.) Set M1 "-InterReduce(G). Set D "- {(gl,g2) lgl 
g2EM1}.  S e t k ' - l .  

Step 2 (Choose pair from D.) If D - O then return Mk. 
P = (gl, g2) be an element of D and set D "- D \ {p}. 

Otherwise let 

Step 3 (Process compositions.) If gl and g2 do not have a useful compo- 
sition, then return to Step 2. Otherwise, for all useful compositions 
c -  P ~  ( g l ) - P ~  (g2) of gl, g2 do the following: 
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Step 

Step 

Step 

3a Let g be the result of reducing c modulo Mk. If g ~ 0, then 
divide g by the coefficient of LM(g) in r, and perform Steps 3b., 
and 3c. 

3b Add to D all pairs (f, g) for f C Mk. 

3c Add g to Mk and set Mk+l := InterReduce(Mk). (Where in 
Step 2. of the algorithm InterReduce the set D is also changed. If 
in this step a gi is replaced by g~, then all pairs in D containing 
a gi are erased and to D are added all pairs (f, g~) for f C M.) 
Set k := k + 1. 

Return to Step 2. 

C o m m e n t s :  We remark that  an element f C L(X) can never form a 
composition with itself. Otherwise ~(LM(f) )  = uvu for some non-empty 
u E X*. We show that  there can be no Hall word of this form. First suppose 
that H is defined relative to ~Rlex. Then u is a right factor of uvu, so that  
uvu<mexU. Now by Proposition 7.8.9, uvu cannot be a Hall word. If H 
is defined relative to <lex, then we use a similar argument, this time uvu 
cannot be a Hall word by Lemma 7.8.5. So in the set D we do not have to 
include pairs of the form (g, g). 

Suppose that  the algorithm terminates, and denote the output  by M. 
Let f l ,  f2 C M and suppose that  they have a useful composition c - 
P ~  (fl)  - P ~ 2 ( f 2 ) .  At some point in Step 3., this composition is consid- 
ered. So c lies in some I<Rh(Mk) , where h = LM(Pal (fl)) .  Therefore, by 
Lemma 7.10.5, c also lies in I<Rh(Ml) for 1 > k and hence also in I<Rh(M ). 
So by Lemma 7.10.3, M is a Grhbner basis of the ideal I generated by G. 
However, it is by no means guaranteed that  the algorithm terminates, as 
an ideal may not have a finite Grhbner basis. Indeed, there is no algorithm 
for deciding whether or not two arbitrary elements of an arbitrary finitely 
presented Lie algebra are equal (this is a result by G. P. Kukin, [55], see 
also [85]). In particular there can be no algorithm that computes a finite 
Grhbner basis of an arbitrary ideal in L(X). 

On the other hand, if the ideal generated by G has a finite Grhbner 
basis, then the question arises whether the algorithm GrhbnerBasis will find 
it on input G. The next lemma guarantees this as long as we choose the 
pairs from the set D in such a way that every pair that  is added to the set 
will be processed after a finite number of steps. (We could, for instance let 
D be an ordered list, and take the pairs from the beginning of the list, and 
add the pairs at the end of it.) 
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L e m m a  7.10.6 let G C L(X) ,  and let I C L (X)  be the ideal generated 
by G. Suppose that I has a finite Grbbner basis. Suppose further that the 
elements p in Step 2. of the algorithm GrbbnerBasis are chosen in such a 
way as to ensure that every element that is added to the set D (in Steps 
3b. and 3c.) is processed after a finite number of steps. Then the algorithm 
GrbbnerBasis terminates. 

Proof .  Set M - [.Jk>l Mk, and let G be the set of all g E M such that no 
LM(f)  is a factor of LM(g) for f E M \ {g}. Let h E H, then we claim that 
I<Rh(Mk ) C I<Rh(G ) for k > 1. Let g l , . . .  ,g~ E Mk and set 

f --/~lgal (gl) -Jr-'"-~ ~sPas (gs), (7.6) 

where the c~ are appliances such that LM(Pa~(gi)) <R h. We show that 
f E I<ah(G). I fg i  E G for 1 < i _< s, then we are done. On the other 
hand, suppose that a gi r I<Rh(G). Then gi is replaced at least once in 
the algorithm InterReduce. Suppose that this happens in the transition 
from Ml to Ml+l. By g~ denote the output of the routine NormalForm 
that replaces gi. As at any stage during the algorithm InterReduce the 
leading monomials of the elements of M differ (the input to the algorithm 
certainly has this property, and it is preserved during the algorithm), we 
have that in the first round of NormalForm, gi is reduced modulo an element 
a such that LM(a) <R LM(g~). This implies that g~ can be written as 
a sum gi = g~ + #lP/~l(fl) + "'" + #rPl~r(fr), where the fk E Ml+l and 
LM(fk) <R LM(gi) and LM(P/~ k (fk)) <_R LM(gi) for 1 <_ k < r. Now if 
we substitute this expression into (7.6) we get a different expression for f .  
However, since < R satisfies the descending chain condition we have that such 
reductions cannot happen infinitely often. Therefore after a finite number 
of steps we reach a stable situation, f - ~-~.j tJj PTj (ej) where the ej are  never 

reduced. This means that the ej E G and therefore f E I<Rh(G). 
Now I<ah(Mk) C I<Rh(G ) for all h E H implies that the ideal gen- 

erated by Mk (which is I) is a subset of the ideal generated by G. This 
means that the ideal generated by G is equal to I. Furthermore, we claim 
that G is a Grbbner basis of I. First of all, it is clear that G is self- 
reduced. Let gl,g2 E G and suppose that they have a useful composition 
c = Pal (gl) - Pa2 (g2). Then at some point during the algorithm c is consid- 
ered. So there is a k > 0 such that c E I<Rh(Mk), where h = LM(Pal (gl)). 
Therefore c E I<Rh(G ). So by Lemma 7.10.3, G is a Grbbner basis of I. 
Now let S - { f l , . . .  , fn} be a finite Grbbner basis of I. Then for 1 <__ j <_ n 
there is a gj E G such that LM(gj) divides LM(fj).  Let 1 > 0 be such that 
gj E Mt for 1 _< j _< n. Then for all f E I there is a g E Ml such that LM(g) 
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divides LM(f ) .  Hence M1 is a finite GrSbner basis. 

E x a m p l e  7 .10 .7  Let X = {x,y} and rl = [x,[x,y]] - [x,y] and r2 = 
[[x, y], y], y], and R = {rl,  r2 } (note that  this presentat ion equivalent to the 
one used in Example  7.4.4). Let I C L(X)  be the ideal generated by R. We 
use the Hall set relative to <lex with X<lexY. We see that  r l  and r2 have a 
composition, namely 

y],  y] - 

Using the algori thm RewriteMagmaEleme,t,  [[[x, [x,y]],y],y] is rewri t ten 
as [x, [[[x, y], y], y]] + [[x, y], [[x, y], y]] - [[[x, y], y], y]. So the composit ion 
equals [[x, y], [Ix, y], y]] - [[[x, y], y], y]. The last term of this element re- 
duces to zero modulo r2. The first term cannot be reduced so we add 
r3 = [Ix, y], [Ix, y], y]]. Now rl  and r3 have the composit ion [rl, [[x, y], y]] - 
Ix, r3], which rewrites to [Ix, [[x, y], y]], [x, y]] - [Ix, y], [Ix, y], y]]. The last 
te rm reduces to zero modulo r3. The first term has [x, [x, y]] as a fac- 
tor. We have [[rl, y], Ix, y]] = [[x, [[x, y], y]], [x, y]] + [[x, y], [[x, y], y]] so that  
[[x, [[x, y], y]], Ix, y]] reduces to -[[x,  y], [[x, y], y]], which reduces to zero mod- 
ulo r3. The elements r l ,  r2, r3 have no further compositions, and hence 
G = {rl ,  r2, r3} is a GrSbner basis of the ideal generated by r l ,  r2. Now we 
enumerate  the basis elements of the quotient, i.e., the normal  monomials  of 
L(X)  modulo I. These are exactly those Hall elements tha t  do not have a 
leading monomial  of an element of G as a factor. It is s traightforward to 
see that  {x, y, [x, y], [[x, y], y]} are the normal  monomials upto degree 3. In 
degree 4 we have the monomials  [x, [[x, y], y]] and [[[x, y], y], y]. The first one 
has LM(r l )  as a factor and the second one has LM(r2) as factor. We also 
do not get any monomials  of degree 5 and 6. Now by induction we show 
that  all Hall elements of degree at least 7 have a LM(ri) as a factor. Let 
h = (h I, h ' )  be a Hall element of degree at least 7. Then either h ~ or h ~ has 
degree between 4 and deg(h) - 1. But all monomials of those degrees have 
a LM(ri)  as a factor. So we have the same for h. The conclusion is tha t  the 
quotient is 4-dimensional. Reducing products  of basis elements modulo G 
we can write down a mult ipl ication table of it. 

7.11 Presen ta t ions  of the s imple  Lie algebras  of 
character is t ic  zero 

The objective of this section is to prove a theorem by J.-P. Serre tha t  gives 
a construction of any semisimple Lie algebra with a split Car tan  subalgebra 
of characteristic zero as a finitely presented Lie algebra. 
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Let C be a Car tan  matr ix  (cf. 
1 •  and let 

Section 5.6). Suppose tha t  C is an 

X - { h i , . . .  , hi, x l , . . .  , xl, Yl, . .  �9 , Yl} 

be a set of 31 symbols. We use the lexicographic order <lex where 

hi ~lex " " " ~lexhl~lexXl ~lex " " " ~lexXl~lexYl''" ~lexYl. 

As seen in Section 7.8 this order defines a Hall set in M ( X ) .  
Throughout  we will denote the entry of C on position (i, j) by cij. In 

the free Lie algebra L(X)  we consider the following elements- 

Pij --[hi, hj] for i < j ,  

q i = [ x i , Y i ] - h i f o r  1 < i ~ l ,  

rij - [ x i ,  yj] for i ~= j ,  

8ij - [ h i ,  x j ] -  cjixj for 1 _~ i , j  < l, 
tij - [hi,Yj] + cjiyj for 1 ~_ i , j  _~ 1. 

Note tha t  if L is a semisimple Lie algebra having a root system �9 with Car- 
tan mat r ix  C then the relations above are satisfied by the canonical genera- 
tors of L (see Section 5.11). Let R be the set of all elements pij, qi, rij, sij, tij. 

L e m m a  7.11.1 The set R is a Grhbner basis in L (X)  with respect to the 
order  ~lex. 

P r o o f .  It is evident tha t  R is a self-reduced set. So we must  prove tha t  
all compositions of the elements of R reduce to zero modulo R. First  we 
see tha t  Pij and 8jk have the composition ~ 3 i j , X k ] -  [hi, sjk]. Rewrit ing 
this as a linear combination of Hall elements we have tha t  this is equal 

to [[hi,xk],hj] + ckj[hi,xk]. But modulo R this reduces to --ckickjxk + 
CkjCkiXk -- O. Also Pij and tjk form a composition, but  this one reduces to 
zero in a similar way. 

Now sij and qj have the composition [sij, y j ] -  [hi, qj]. After rewrit ing 
this is equal to [[hi, yj], xj]-cj i[xj ,  yj]+[hi, hj] which reduces to -cji[Yj, x j ] -  
cji[xj, yj] = 0. The elements sij and rjk (where j ~= k) have the composi- 

tion [sij, Yk] - [hi, rjk], which after rewrit ing equals [[hi, Yk], xj] -- cji[xj, Yk]. 
This reduces to Cki[Xj, Yk] -  cji[xj, Yk] which reduces to zero modulo R as 
j ~= k. There  are no further compositions between the elements of R, so by 
Corollary 7.10.4 we conclude tha t  R is a Grhbner basis. 0 

Now let I be the ideal of L(X)  generated by R and set K - L ( X ) / I .  
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T h e o r e m  7.11.2 We have K = Ky@Kh@Kx (direct sum of vector spaces), 
where Kx is isomorphic to the free Lie algebra generated by Xl, . . .  , xz and 
Ky is isomorphic to the free Lie algebra generated by y l , . . .  ,yl. Further- 
more, Kh is an A belian subalgebra spanned by the images of hi in K .  

Proof .  As before we use the Hall set corresponding to <lex. The cosets of 
the normal Hall elements modulo I form a basis of K. Furthermore, since 
R is a Grhbner basis of I (Lemma 7.11.1), the normal Hall elements are 
exactly those that do not have a LM(r) as a factor for r E R. We claim 
that a normal Hall element m is either composed entirely of letters xi or 
entirely of letters Yi or entirely of letters hi. We prove this by induction on 
deg(m). It is certainly true if deg(m) = 1. So suppose that deg(m) >_ 2, 
i.e., m - (m ~, m ' )  and the result holds by induction for m ~ and m ' .  First 
suppose that m ~ is composed entirely from letters hi and m" entirely from 
letters xi. Let hi be the last letter from ~(m t) and xj  the first letter from 
r Then by Lemma 7.9.8 [hi, xj] is a factor of m and m is not normal; 
so we have reached a contradiction. For the other cases we use a similar 
argument and the claim follows. 

Now any Hall element m consisting entirely of letters hi reduces to 0 
modulo R if deg(m) > 1. It follows that the only normal monomials of this 
type are the generators h i , . . .  , hi. Furthermore, no Hall element consisting 
entirely of letters xi or entirely of letters yi has a LM(r) for an r E R as a 
factor. As a consequence they are all normal, and the theorem follows. [:] 

By Theorem 7.11.2, the images of the hi, xi, Yi are linearly independent 
in K, and we denote these images also by hi, xi, yi. For 1 __ i ~ j < 1 set 

O~ ~- (&dxi)-cji+l(xj) 

O~ --(adyi)-c~'+l(yj) .  

Then 0 + E Kx and O~ C Ky. 

L e m m a  7.11.3 We have [Yk, Oi+j] ---- 0 and [Xk, O[j] -- 0 for 1 ~ k ~ l. 

+ 
Proof .  We prove [Yk, Oij] -- 0; the proof of the other identity is similar. 
First suppose that k ~ i, then [yk,xi] -- 0 by relation rik. Hence also 
[adyk, adxi] = 0, so that 

adyk(adxi) -cyi+l (xj) : (adxi)-cj~+ladyk(xj) .  (7.7) 

If k ~ j then (7.7) is zero by relation rjk. On the other hand, if k - j ,  then 
using relations qj and sij we see that (7.7) is equal to 

- ( adxi ) -cJi + l ( hj ) = cij ( adxi ) -cji ( xi ) . 
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Now if cji = 0 then also cij = 0 (because C is a Cartan matrix) and hence 
this is zero. If cji ~ O, then - c j i  > 0 and hence (adxi)-cj~(xi)  = O. 

Now suppose k = i. By induction the following identity is seen to hold 
in the universal enveloping algebra U ( K )  

n n n - 1  yixi = xi Yi - nxi  hi - 
n ( n -  1) n - 1  

CiiX i 

The adjoint representation of K extends to a representation of U ( K )  (cf. 
Section 6.2). So using cii = 2 we have 

adyi (adxi)-c~i +1 (xj)  - 

( ( a d x i ) - c ~ + l a d y i - ( - c j i +  l ) ( a d x i ) - C ~ a d h i + ( - c j i +  l )c j i (adxi)-cJ~)  (xj) .  

The first term of this expression gives zero as i ~= j.  So using adhi(x j )  = 
cj ixj  we get 

adyi(0i +) - ( - c j i ( - c j i  + 1) + ( - c j i  + 1)c j i ) (adx i ) -c j i (x j )  - O. 

[::] 

Set H = Kh, the Abelian subalgebra of K spanned by h i , . . .  ,hi. Let 
H* denote the dual space o f H .  F o r a  E H* set K~ = {z C K I [h,z] = 
a(h)z  for all h E H}. If K~ ~ 0 then a is said to be a weight and K~ is a 
weight space. Furthermore an element 0 ~: z E Kz is said to be a weight 
vector of weight 6. 

Let c~i E H* be given by c~i(hj) = cij. Then ai is a weight of K and xi 
is a weight vector of weight c~i. Furthermore, the yi are weight vectors of 
weight -c~i. 

L e m m a  7.11.4 Let Kx,  Ky be as in Theorem 7.11.2. Let m be a monomial  
in Kx (i.e., m is a bracketed expression in the xi)  and n a monomial  in Ky 
(i.e., n is a bracketed expression in the Yi). Then m , n  are weight vectors 
of certain weights am, an. Furthermore am, an are linear combinations of 
the (~i where the coefficients are non-negative integral numbers in the case 
of am and non-positive integral numbers in the case of an. 

P r o o f .  The generators xi of Kx are weight vectors of weight c~i. Further- 
more, if u, v are weight vectors of weights a and p respectively, then [u, v] 
is a weight vector of weight a + p. This follows by a straightforward appli- 
cation of the Jacobi identity. From this the statements for m follow. The 



304 Finitely presented Lie algebras 

argument for n is analogous. 

Let J+  be the ideal of Kz generated by the 0 +, and J -  the ideal of Ky 

generated by the 0~. 

L e m m a  7.11.5 J+, J -  are ideals of K.  

P r o o f .  Let M + be the ideal of K generated by the 0 +. It is clear that 

J+  C M+;  we prove that  M + C 7 +. The adjoint representation of K 
extends to a representation of U(K) .  So M + is spanned by the spaces 
U ( K ) .  0 +. Using the Poincar~-Birkhoff-Witt theorem (Theorem 6.2.1), 

we see that  M + is spanned by the elements 5:h~). 0 +, where 5: E U(Kx),  

+ - 0  C U(H) and ~) C U(Ky).  Now by Lemma 7.11.3 we s e e  that  ~].Oij 

for all s tandard monomials ~) C U(Ky) except ~ -  1. Furthermore h .  0 + is 

proportional to 0 + by Lemma 7.11.4. The conclusion is that  M + is spanned 

by the elements ~ . 0  + for 2 C U(Kz) .  But this implies M + C J+.  The 

argument for J -  is similar, o 

Now set J = J+  �9 J - ;  then J is an ideal of K by Lemma 7.11.5. Put  
L = K / J .  Since H n J  = 0 we can identify the space H C K with a 
subspace of L, which we also denote by H. So L = N + @ H @ N - ,  where 
N + - K z / J  + a n d g -  - K y / J - .  I f a  C H* then we set L~ = {z e L I 
[h,z] = cr(h)z for all h C H}. A function a such that La ~ 0 is called a 
weight, in which case La is a weight space. In the same way as for K we 
have that  N + is the sum of weight spaces corresponding to weights that  
are Z-linear combinations of the ai where the coefficients are non-negative, 
and similarly for N -  where the coefficients are always non-positive. In the 
sequel we denote the images of xi, hi, yi in L also by xi, hi, yi. 

L e m m a  7.11.6 The elements xi, hi, Yi E L for 1 <_ i < l are linearly inde- 
pendent. 

Proo f .  As L = N + | H | N -  and xi C N +, hi C H and Yi C N - ,  it is 
enough to show that the hi are linearly independent, the xi are linearly inde- 
pendent and the yi are linearly independent. First of all the hi are linearly 
independent in L since J n H = 0. Also [hi, xi] = 2xi, [hi, yi] = -2y i  and 
[xi, Yi] = hi. So the subalgebra of L spanned by the three elements xi, yi, hi 
is a homomorphic image of s[2(F). The kernel of this homomorphism is not 
all of s[2(F) because hi r 0. So since s[2(F) is a simple Lie algebra we have 
that the kernel is 0 and therefore also xi, yi are non-zero in L. Suppose 
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tha t  the xi are linearly dependent ,  and let t be minimal  such tha t  there 
are A1, At C F such tha t  not all of them are zero and }-~t ~ i X i  - -  O. �9 ' ' ~  i = 1  
Then  ,~t r 0 and hence there are #i E F such tha t  z t -  Y'~=~ #iz i .  Now let 
h E H be such tha t  c~t(h) r c~i(h) for some i C { 1 , . . . ,  t -  1} (such h exists 

�9 - -  - -  ~ - ' ~ i = 1  c t t ( h ) # i x i .  But also as c~i r c~j for i r j )  Then  [h, xt] c~t(h)zt t-1 
[h, :ct] - t-1 ~-~- i=1  # i o L i ( h ) x i .  So we get a non-trivial  linear combinat ion of the 
first t -  1 vectors zi to be zero. This however contradicts the minimali ty  
of t and the zi are linearly independent.  By a similar argument  we decide 
tha t  the Yi are linearly independent ,  and we are done. [:] 

We recall tha t  an endomorphism a of a (possibly infinite-dimensional) 
vector space V is called locally nilpotent if for all v C V there is a k > 0 
such tha t  a k .  v -  O. 

L e m m a  7 .11 .7  The endomorphisms adxi, adyi of L are locally nilpotent. 

P r o o f .  Let Y~ be the space of all z C L such tha t  (adx~)k(z) -- 0 for some 
k > 0. By the Leibniz formula (1.11) we have that  ~ is a subalgebra of L. 
Fur thermore  since 0 + - 0 in L, xj C Vi for 1 <_ j _< 1. Also by relations 
qi, 7"ij and 8ij we have yj E Vi for 1 _< j <__ I. Hence also hj - [xj, yj] E ~ .  
It follows tha t  ~ contains the generators of L and hence l~ = L. The  ar- 
gument  for Yi is similar, n 

Fix a generator xi; we define a linear map exp(adxi)  �9 L ~ L. Let u C L, 
then by Lemma 7.11.7, there is an integer ku such tha t  (adxi) k~+l - 0, and 
we set 

k~ 1 (adxi)m(u) e x p ( a d x i ) ( u ) -  E -~. 
m = 0  

It is obvious tha t  exp(adxi)  is a linear map on L; moreover it is an auto- 
morphism of L (of. Section 1.11). 

We recall tha t  c~i E H* is given by oLi(hj) = Cij. Since C is nonsingular,  
a l , . . .  ,c~l are linearly independent.  By Corollary 5.10.3, the algori thm 
CartanMatrixToRootSystem finishes on input C and {c~1,... , al}. Let �9 be 
the output  and let V be the vector space over IR spanned by c~1, . . . ,  c~l. 
Then  by Corollary 5.10.3, there is an inner product  ( , ) on V such tha t  

2(cti,c~j)(aj,c~j) - -  Cij for 1 <_ i, j <_ 1. We fix such an inner product ,  to be used in 

the sequel. We have tha t  ~ is a root system in V with Car tan  mat r ix  C. 
From Section 5.3 we recall tha t  for c~ C �9 there is a reflection r~ of V 

given by rc~(v) = v -  (v, c~}c~. The group generated by all reflections r~ for 
c~ E �9 is called the Weyl group W(q)) of q> (Section 5.7). We recall tha t  
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W((I)) leaves ( , )  invariant. Set A = {(~1,... , al}, then A is a simple system 
of (I). We recall tha t  W((I)) is generated by the reflections ra i (Theorem 
5.7.6). We note that  for a C V we have (7(hi) = ((7, cu}. For (7 = c~i this is 
obvious as oli(hj) -- cij. The general case follows by linearity. 

L e m m a  7.11.8  Let (7,p be weights of  L and suppose that there is a g E 
W((I)) such that g((7) = p. Then dimL~ = dimLp.  

P r o o f .  We note that  since all weights are linear combinations of the c~i 
with integer coefficients they all lie in the real space spanned by the roots. 
In part icular  the Weyl group acts on them. It is enough to show the 
lemma when g - rai for some i. The general s ta tement  will then follow 
by Theorem 5.7.6. Set Ti -- ( e x p ( a d x i ) ) ( e x p ( a d -  y i ) ) ( exp (adx i ) ) .  Then 
7i is an au tomorphism of L. Furthermore,  a short calculation shows that  
Ti(hj) -- h j - c i j h ~ .  From this it follows that  T~ stabilizes H and ~2(hj)  = hi ,  
so that  v ~ l ( h )  -- Ti(h) for all h E H. Now let z E Lp, then for h E H, 
[h, ~-i(z)] - ~'i([Ti(h),z]) -- p(Ti(h))~'i(z). So ~'i(z) lies in the weight space 
belonging to pTi. We know that  rag(a) - p. So for 1 <_ j <_ l, pTi(hj)  -- 

rai ((7)(hi - c i j h i )  - ( 7 ( h i ) - c i j ( 7 ( h i ) -  ((7, (~i )~i(hj )  ~- ((7, o~i}cijt~i(hi) - (7(hj) 
(in the last equality we have used (7(hi) - ((7, ai)).  It follows that  ~i maps 
Lp into L~. Similarly Ti maps La into Lp. Therefore dim L~ = dim Lp. 0 

L e m m a  7.11.9  d imLai  - 1 and dimLkai  - 0  i f  k ~ i l ,  0. 

P r o o f .  The corresponding facts for K are clear since the elements xi are 
weight vectors for the ai and a weight vector for kai  must be of the form 
[[xi ,xi] , . . .  ,xi] (k factors xi) ,  but these are always zero. Now the lemma 
follows from Lemma 7.11.6. [::] 

L e m m a  7 .11 .10  I f  ~ E ~ ,  then d i m L a  - 1. 

P r o o f .  This follows from Lemmas 5.7.5, 7.11.8, and 7.11.9. 

L e m m a  7 .11.11 Let a - ~li= 1 Aiai where the )~i E I~. Suppose that e 
is not  a mult iple of  a root. Then there is a g G W((I)) such that g(a)  - 

l 
~ i = 1  #ic~i where at least one #i > 0 and at least one #i < O. 

P r o o f .  As before V is the vector space over I~ spanned by (I). For u C V 
we denote the hyperplane perpendicular  to u by Pu (i.e., the set of all 
w C V such that  (u,w) - 0). As a is not a multiple of a root we have 
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tha t  Pa is not contained in any Pa for c~ E ~. Choose a v E P~ not ly- 
ing in any Pa. Choose a g E W(O) such tha t  (g(v),p) is maximal,  where 
p _ 1 ~-~a>0 c~ is the Weyl vector (see Section 5.7). Then  exactly in the 
same way as in the proof of Theorem 5.7.3 we have tha t  (g(v), a i )  > 0 for 
1 < i < I. W r i t e g ( a )  L - ~-~i=1 #ic~i. Then by the choice of v we see tha t  

0 - (v, a) = (g(v), g(a)) - ~-~.zi= 1 #i(g(v), (~i). This can only happen  if at 
least one coefficient # / i s  > 0 and at least one # / i s  < 0. [::] 

L e m m a  7 .11 .12  d i m L a  = 0 if a ~ (~. 

P r o o f .  We may assume tha t  a is a linear combination of the c~i with inte- 
ger coefficients (otherwise dim La = 0). The case where a is a multiple of a 
root is taken care of by Lemma 7.11.9. Otherwise by Lemma 7.11.11, there 
is a g E W((I)) such tha t  g(a) 1 - ~-~i=1 #iai where at least one #i > 0 and 
at least one #i < 0. But this implies tha t  dim Lg(~) = 0 and therefore by 
Lemma 7.11.8, d imL~  - 0. [3 

Let c~ E �9 be a root and set ~ = ra~ (a). Then  fl is also a root and the 
au tomorphism Ti from the proof of Lemma 7.11.8 maps La onto LZ. Let 
xa E La and x_a  E L_a  and suppose tha t  [xa ,x -a ]  is a non-zero element 
of H.  Set x+z = 7i(x+a) Then [xz, x_z] = 7"i([xa,x-a]) is also a non-zero 
element of H.  Now [xi, Yi] = hi so for the simple roots ai  we have tha t  
[La~, L-a~] is non-zero and is contained in H.  By Lemma 5.7.5 we have the 
corresponding s ta tement  for all roots a E ~. By Proposi t ion 5.12.1 it now 
follows tha t  L is a semisimple Lie algebra. Fur thermore  L has root system 
�9 . We summarize  our findings in the following theorem. 

T h e o r e m  7 .11 .13  ( S e r r e )  Let C be an 1 • l- Caftan matrix. Let 

X - - { h l , . . .  , h l , x l , . . .  , x l , y l , . . .  ,y/} 

be a set of 31 symbols. Let I be the ideal of L ( X )  generated by the elements 
Pij, qi, rij, 8ij, tij, 0 +, 8~. Then L = L ( X ) / I  is a finite-dimensional 
semisimple Lie algebra with a split Caftan subalgebra and a root system 
having Caftan matrix C. 

This theorem together with the algorithms from Section 7.4 and from 
Section 7.10 gives one more algori thm for constructing the semisimple Lie 
algebras of characterist ic 0. 
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E x a m p l e  7.11.14 Set 

6 - ( 2  2 2 1 ) ,  

i.e., the Cartan matrix belonging to the root system of type B2. Set X = 
{hi, h2, xa, x2, yl, y2}. Then the relations Pij, qi, rij, sij, tij, 0 +, O~ amount 
to the following: 

[hl,h2], 
[Xl, y l ] - h i ,  [Xl, y2], 
[x2, Y2] - h2, [x2, Yl], 
[hi, x x ] -  2Xl, [hi, Yl]-~- 2y1, 
[hi,x2] + 2x2, [hl, Y2]-  2y2, 
[h2, xl] + Xl, [h2,Yl]- Yl, 
[h2, x2]-  2x2, [h2, Y2] + 2y2, 

[Yl, [Yl, [Yl, Y2]]], [Y2, [Y2, Yl]]" 
It is straightforward to see that  the basis elements other than those in X 

can only be [Xl, x2], [Xl, [xl, x2]], [yl, y2] and [yl, [yl, y2]]. So the only thing 
we have to do is check the Jacobi identity for these basis elements. Doing 
this we will complete the multiplication table. For instance 

JaC(yl ,Xl ,X2) : [yl, Ix1, x2]]-n t- [Xl, [x2, yl]] q-[x2, [yl, Xl]]. 

The second term of this sum reduces to zero and the third term to -2x2.  
We obtain [Yl, [xl,x2]] = 2x2, giving the product of the basis elements yl 
and [Xl,X2]. Also 

Jac(hl ,Xl ,X2)  = In1, [Xl, x2]]-+-[Xl, [x2, hi]]-+-[x2, [hi, Xl]]. 

The second summand reduces to 2[Xl,X2] and the third to -2[xl ,x2] .  So 
we get [hl, [Xl,X2]] - 0. Now we see that  also Jac (h l ,y l ,  [Xl,X2]) - 0. 
Continuing like this we fill the multiplication table. There are no Jacobi 
identities that  lead to linear dependencies among the basis elements. Hence 
we construct a 10-dimensional Lie algebra, isomorphic to the Lie algebras 
of Examples 4.9.1 and 5.15.10. 

7.12 N o t e s  

Sections 7.3 and 7.4 closely follow [38]. In [57] a similar algorithm is de- 
scribed to the one of Section 7.4. In that  paper the authors concentrate on 
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finding a multiplication table of a finitely-presented Lie algebra. The proof 
is combinatorial. 

A particular instance of the problem of constructing a multiplication 
table of a finitely presented Lie algebra, is the problem of constructing 
a nilpotent quotient of a finitely presented Lie algebra. Here the set of 
relations R is homogeneous, in the sense that  for all r C R we have that  all 
monomials occurring in r have the same degree dr. Let X be the generating 
set and let L be the finitely presented Lie algebra (X I R). Given an integer 
c > 0 the problem is to construct the Lie algebra L/L c+1, where L c+1 is 
the c + l-st term of the lower central series of L. We note that  this can be 
done using an algorithm like the one of Section 7.4. We have to modify the 
algorithm given there so that  every monomial of degree > c is automatically 
reduced to 0. We note that  all the relations appearing in the ideal I0 are 
homogeneous. Furthermore, if we reduce a homogeneous element modulo 
a set of homogeneous elements, the result will be homogeneous again, and 
of the same degree as the original element (if it is not zero). Therefore the 
elements of a GrSbner basis will also be homogeneous. It follows that  we 
can calculate the elements of a Gr5bner basis that  are of a certain degree 
d, simply by taking all relations of degree d and inter-reducing them. We 
refer to [41], [87] for a more elaborate treatment of this problem. 

Hall bases originated in a paper of M. Hall Jr., [39]. Our definition of 
Hall bases follows [72]; it is a generalization of the original definition of Hall. 
The material of Sections 7.6 and 7.7 is (with a slight variation) taken from 
[72] (see also [62]). 

GrSbner bases and reduction in L(X) were invented by A. I. Shirshov 
([79]). Note that  this means that  GrSbner bases for ideals of L(X) were 
invented well before the corresponding concept in associative algebras. The 
proof of Theorem 7.10.2 is based on [4]. Lemma 7.10.6 is a direct translation 
of the same result in the associative case (see [64], [65]). 

The proof of Lemma 7.11.1 follows [11]. For the proof of Serre's theorem 
we have followed [42] and [78]. Let X~ be a simple type and let C be a 
corresponding Cartan matrix. Let I be the ideal from Theorem 7.11.13. 
Then it is of interest to construct a GrSbner basis of I. For the simple types 
Al, Bl, Cl, Dr, this is done in [11]. 
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Chapter 8 

Representations of 
semisimple Lie algebras 

In this chapter we study finite-dimensional representations of semisimple 
Lie algebras of characteristic 0 with a split Cartan subalgebra. We fix some 
notation, to be used throughout this chapter. First of all, L will be a finite- 
dimensional semisimple Lie algebra over a field F of characteristic 0, with 
split Cartan subalgebra H. Furthermore, q) will be the set of roots of L with 
respect to H. In ~ we fix a simple system A = { a l , . . .  ,al} and ~+, O-  
are the sets of positive respectively negative roots of ~. Relative to A we 
have a set of canonical generators x l , . . .  , x l , h l , . . .  ,hi, Yl , . . .  , Yl satisfying 
the relations (5.7). From Section 4.9 we recall that on H* we have a non- 
degenerate symmetric bilinear form ( , )  defined by (A, p) = t~L(h~, ht~ ). For 
A, p C H* we set 

�9 

Then oLi(hj) = {c~i,c~j) (cf., (5.7)). And because {,  ) is linear in its first 
argument we have more generally, A(hj) = {~, c~j} for ~ E H*. 

We have that L decomposes as L = N -  @ H @ N +, where N - , N  + 
are the direct sums of the root spaces corresponding to the negative and 
positive roots respectively. We note that N -  is generated by y l , . . .  , Yl and 
N + by x l , . . .  ,xl (cf. Lemma 5.11.2). 

In Section 8.1 we show that a finite-dimensional L-module V is spanned 
by common eigenvectors of the Cartan subalgebra H. Furthermore, this 
holds over any field of characteristic 0 as the eigenvalues of the hj are inte- 
gers. These eigenvectors are called weight vectors. The function assigning 
to each element of H the eigenvalue of its restriction to an eigenspace, is 
called a weight. These functions are of paramount importance throughout 
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the chapter. We define an order on the set of weights, and we show that an 
irreducible finite-dimensional representation has a unique maximal weight, 
called the highest weight. 

In Section 8.2 we describe Verma modules, which can be viewed as uni- 
versal highest-weight modules. This gives us a construction of a highest- 
weight module for every dominant weight. 

In Section 8.3, we collect a few facts on weights. These are used in the 
rest of the chapter. In Section 8.4 we prove that any irreducible highest- 
weight module over L must be finite-dimensional, thus obtaining a classi- 
fication of the irreducible finite-dimensional L-modules (and because any 
L-module is completely reducible (Theorem 4.4.6), a classification of all 
finite-dimensional L-modules). 

In the rest of the chapter we derive methods for calculating with the 
weights of a representation. In Section 8.5 we describe how we represent 
weights for the purpose of computing with them. Sections 8.6 to 8.9, and 
Section 8.11 are devoted to algorithms for computing the weights of an 
irreducible L-module, and their multiplicities. The subject of Section 8.10 
are two formulas due to H. Weyl. The first of these is important primarily 
for theoretical reasons. The second however gives us an efficient algorithm 
for calculating the dimension of an irreducible L-module. In Section 8.12 we 
consider the problem of decomposing the character of the tensor product of 
two irreducible L-modules into a sum of irreducible characters. We derive 
three formulas for performing this task. Finally in Section 8.13 we briefly 
consider the problem of computing so-called branching rules. 

8.1 The  weights  of a representat ion 

Let r : L --+ g[(V) be a finite-dimensional representation of L. Let h C H. 
Root fact 8 states that adLh is semisimple. So Corollary 4.6.4 implies that 
also r is a semisimple linear transformation. In the sequel we assume 
that r  is split over F, i.e., that g contains all eigenvalues of the r 
for h C H. Let V = V1 @ . . .  G Vs be the (collected) primary decomposition 
of V relative to r  (cf. Theorem 3.1.10). Let h C H, then the minimum 
polynomial of r �88 is irreducible (since r is semisimple). So as r  
is split, we have that r188 is multiplication by a scalar #i(h).  Now the 
functions #i : H --+ F are called weights. 

Def in i t ion  8.1.1 Let )~ E H*. Then )~ is called a weight of V if  the space 
V~ = {v C V I r  = )~(h)v for  all h C H }  is non-zero. In that case a 
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v E V~ is called a weight vector of weight )~ and V~ is called the weight space 
of weight )~. 

Let P(V)  denote the set of all weights of V, i.e., P(V)  - {~ e H* I 
V~ ~= 0}. Then V is the direct sum of the weight spaces V~ for A C P(V) .  

An element )~ C H* is said to be integral if (A, ai /  C Z for 1 < i < l 
(note that  this depends on the choice of the simple system A that  we fixed 
at the outset). As (A, aj) - )~(hj), we have that  )~ is integral if and only if 
)~(hj) E Z for l < j < l. 

Now fix j e { 1 , . . . ,  l} and let Kj be the subalgebra of L spanned by 
xj, hj, yj. Then Kj is isomorphic to s[2(F). By restricting r V turns into 
a Kj-module,  and the )~(hj) are the eigenvalues of r  for A G P(V) .  So 
by Theorem 5.1.4, )~(hj) is an integer for all A E P(V).  The conclusion is 
that  all A C P(V)  are integral. As a consequence our assumption that  F 
contains all eigenvMues of r for h E H turns out to be unnecessary since 
this holds for all fields of characteristic 0. 

By P C H* we denote the set of all integral functions in H*. On P we 
l define a partial order < by A < # if # - A  - ~ i=1  kiai with all ki nonnegative 

integers. The transitivity of this order is clear; we prove that  A < # and 
1 # _< A imply )~ = #. From the first inequality we have # - A  - }-~'~i=1 kiai and 

1 from the second A - # -  ~-~i=1 miai .  S o 0 -  i t - A + / k - t t -  ~-~ti=l(ki+mi)ai. 
Since the ai are linearly independent, ki + mi = 0 for all i, and because 
ki, mi > 0, we have ki = mi - 0. We note that  not all elements of P are 
necessarily comparable with the order <. The difference of two elements 
from P might, for example, not be a linear combination of ai with integral 
coefficients. 

L e m m a  8.1.2 Let a E �9 and let xa be a non-zero element of the root space 
La. Let ~ C P(V) .  Then r C V~+a. 

Proo f .  The proof is settled by a short calculation. For v C V~ and h C H 
we have 

r162 - r162 + r xa])v 

= ()~(h) + a(h))r 

From Lemma 8.1.2 it follows that  r  maps weight spaces into weight 
spaces. Furthermore, if a is a positive root and r C Vu, then # > A. 
This leads to the following definition. 
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Def in i t ion  8.1.3 An element )~ E P ( V )  is called a highest weight of V if 
for all v C V~ we have that r  - 0 for all a E �9 + and root vectors 
xa c La. In this case a non-zero vector v E V~ is called a highest-weight 
vector. 

We remark that V must have highest weights since V is finite-dimensional. 
Let Kj  again be the subalgebra of L spanned by xj,  hi, yj, and let )~ C 

P ( V )  be a highest weight. Then )~(hj) is a highest weight of V (viewed as 
Kj-module) in the sense of Definition 5.1.1. So by Theorem 5.1.4, A(hj) >_ O. 
Now an element A E P is called dominant if (A, c~j) >_ 0 for 1 __ j _< l. The 
set of all dominant weights in P is denoted by P+. So every highest weight 
of V is integral and dominant. 

In order to study the role played by the highest weights of a represen- 
tation we broaden our perspective somewhat and we let V be an L-module 
that is not necessarily finite-dimensional. From Section 6.2 we recall that 
the representation of L afforded by V can uniquely be extended to U(L), 
making V into a U(L)-module. Now the L-module V is called a highest- 
weight module over L with highest weight A, if there is a weight vector 
v~ E V of weight A such that 

xa . v ) ,  - 0 for all positive roots a and vectors x a  C L a ,  and 

U(L) . v)~ - Y. 

(8.1) 
(8.2) 

L e m m a  8.1.4 Let V be a highest-weight module over L with highest weight 
)~. Then 

v-@v, 

Furthermore, dim V~ = 1 and dim V~ is finite for all # ~ P ( V ) .  

Proof .  Let v~ C V be a highest-weight vector of weight ~. We recall that 
L decomposes as L - N -  G H @ N +. So by the Poincar~-Birkhoff-Witt 
theorem, U(L) is spanned by monomials of the form a - h a  + where a - ,  a +, h 
are standard monomials in U ( N - ) ,  U ( N  +) and U(H) respectively. Hence 
by (8.2) V is spanned by all a - h a + . v ~ .  Now by (8.1), a + . v ~  - 0 unless 
a + - 1. Furthermore h . v ~  is proportional to v~. The conclusion is that 
V is spanned by vectors of the form a - . v ~ .  By Lemma 8.1.2, any such 
vector lies in a weight space V~, where # - ~ -  ~-~li=l kic~i, where the ki are 
nonnegative integers for 1 ___ i __ I. In particular # __ )~. Consequently V 
is the sum of its weight spaces V~, where # _< )~. That  this sum is direct 
is proved as follows. Let vi be a non-zero weight vector of weight #i and 
suppose that s ~--~i=1 tivi = 0 for some ti E F such that not all of them are 
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zero. We prove by induction on s that all ti must be zero. If s = 1 then 
this is trivial. If s > 1 then we may suppose that ts ~ O. Hence we have 

s--1 a relation Vs = ~-'~i=l sivi. Let h E H be such that #s(h) ~ #i(h) for 
some i E {1, . . .  , s -  1}. By applying h twice to the relation for Vs we get 

s--1 ~'~=1 ( # s -  #~)(h)sivi - 0 and by induction this implies that the si are zero. 
Also any vector a - . v ~  will never lie in V~ unless a -  = 1, so dim V~ = 1. 

Finally, for any given # the number of linear combinations ~li= 1 kiai such 

that # - )~-  ~-~'~li= 1 kioLi is finite. Hence dim V~ < oc. 

T h e o r e m  8.1.5 Let V be a finite-dimensional irreducible L-module. Then 
V has a unique highest weight )~ E P+. Furthermore, V is a highest-weight 
module over L with highest weight ~. 

Proof .  Choose a A E P(V)  maximal with respect to the order <, and let 
0 ~ v~ E V~. Then x a . v ~  - 0 for all positive c~ by Lemma 8.1.2. Also 
U(L).v;~ = V since V is irreducible. So V is a highest-weight module with 
highest weight ),. Hence by Lemma 8.1.4, all weights tt E P(V)  are ~_ ~. So 
if there is one more highest weight, say )~, then ~ _< )~. By applying the 
above reasoning to ~' we see that ~ <_ ~'. It follows that ~ = ~'. [::l 

8.2 V e r m a  m o d u l e s  

In the previous section we showed that every irreducible finite-dimensional 
L-module V is a highest-weight module with respect to a unique highest 
weight A E P+. In this section we show that to every dominant weight 

E P+ corresponds an irreducible L-module V(A) of highest weight )~. Then 
in Section 8.4 we prove that such a module is necessarily finite-dimensional, 
thereby obtaining a one-to-one correspondence between irreducible finite- 
dimensional representations of L and elements of P+. 

Let )~ E P+. Then a highest-weight module M(,~) of highest weight 
)~ is called a Verma module if for any highest-weight module V over L 
with highest weight A there is a surjective homomorphism of L-modules 
T : M()~) --+ V. In other words, any highest-weight module for L with 
highest weight A is a quotient of M(A). 

The universal enveloping algebra U(L) is made into an L-module by 
x .  a = xa for x E L,a  E U(L). For c~ E (I) fix a root vector xa E La. Let 
B()~) be the submodule generated by the xa for all positive roots a together 
with h -  )~(h) �9 1 for h E H (i.e., B(A) is the left ideal of U(L) generated 
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by these elements). Set M(A) = U(L)/B(A) (quotient of L-modules). Let 
vA E M(A) be the image of 1. It is straightforward to see that the generators 
of B(A) form a left-Grhbner basis of B(A) (see Section 6.4). Therefore 
1 ~ B(A) and vA # 0. Furthermore vA is a highest-weight vector of weight 
A. Hence M(A) is a highest-weight module for L with highest weight A. We 
note that M(A) is infinite-dimensional. Indeed, the generators of B(A) form 
a left-Grhbner basis for B(A). Therefore the vectors 

H xk~c~ V A 

c~>0 

where the ks are non-negative integers, form a basis of M(A). 
Now let V be any highest-weight module over L with highest weight A. 

Set A = {a E U(L) ] a .V~  = 0}. T h e n A  is an L-submoduleofU(L)  
containing B(A). Now A is the kernel of the surjective morphism of L- 
modules U(L) ~ V that sends 1 E U(L) to a fixed highest-weight vector 
of V. So V ~- U(L)/A and hence there is a surjective homomorphism of 
L-modules T : M(A) ~ V. The conclusion is that M(A) is a Verma module 
of highest weight A. 

Now suppose that there is a second Verma module MI(A) with high- 
est weight A. Then there are surjective homomorphisms of L-modules, 
T1 : M(A) --+ MI(A) and T 2 : MI(A) --+ M(A). For all weights # we have 
TI(M(A)~)  ---- MI(A)~ and similarly for T 2. S o  d imM(A),  = dimMl(A), ,  
and it follows that TI and T2 are bijective. As a consequence M(A) and 
MI(A) are isomorphic L-modules. So upto isomorphism there exists a 
unique Verma module M(A) of highest weight A. 

L e m m a  8.2.1 M(A) contains a unique maximal proper L-submodule M'(A). 

Proof .  Any proper L-submodule of M(A) does not contain the span of the 
highest-weight vector of M(A) (otherwise this submodule is equal to M(A) 
by (8.2)). So the sum of all proper submodules is again proper, and the 
lemma follows. O 

Now set V(A) = M(A)/M'(A) (quotient of L-modules), where M'(A) 
is the unique maximal proper L-submodule of M(A). Then V(A) is an 
irreducible highest-weight module over L of highest weight A. Let V be 
an irreducible highest-weight module over L with highest weight A. Then 
Y ~- M ( A ) / W  for some L-submodule W of M(A). But then W C M'(A). 
If W ~ M'(A), then Y contains the image of M'(A) as a non-zero proper 
submodule. But this is impossible because V is irreducible. Hence W - 
M'(A) and V -~ V(A). We have proved the following proposition. 
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P r o p o s i t i o n  8.2.2 Let ;~ E P+.  Then up to isomorphism there exists a 

unique irreducible highest-weight module V()~) over L with highest weight )~. 

8.3 Integral functions and the Weyl group 

In this section we leave the area of representation theory for a moment 
to collect some facts on the set P of integral functions. These will be of 
paramount importance in the remainder of this chapter. 

Throughout this section V will be the vector space over I~ spanned by 
the set of roots (I). From Section 5.3 we recall that V is a Euclidean space 
relative to the bilinear form ( , ). 

For 1 _< i _< 1 let Ai E P satisfy the equations 

()~i,  Olj} - -  5 i j  f o r  j - 1 , . . .  , I .  (8.3) 

If we express )~i as a linear combination of the ai, then we see that 
the matrix of the equation system that the coefficients must satisfy, is the 
Cartan matrix of (I). In particular this matrix is nonsingular and (8.3) has 
a unique solution over R. In particular Ai C V. Note that the )~i are 
necessarily dominant. They are called the fundamenta l  dominant  weights. 

L e m m a S . 3 . 1  Let )~ C P,  and set m j  - (;k,(~j) for  1 <_ j < 1. Then 
)~ - m l)~1 + ' "  + ml)~l. In particular )~ E P+ if and only if  m j  >_ 0 for  
l<_j<l. 

Proof .  We calculate 

1 

i=1 

! 

i--1 

= ()~, c~j)  - -  m j  = O. 

1 So also ( A - ~ i = l m i i ~ i , c u )  - 0 for 1 < j < l. 
degenerate, ~ -  y~l i=1 mi)~i - O. 

B e c a u s e ( ,  ) i s  non- 
rn 

By Lemma 8.3.1 we see that P is a lattice in V. It is called the weight 
lattice of V. We recall that the root lattice Q is the set of all integral linear 
combinations of the simple roots. For all roots a E �9 we have that {a, c~i) 
is an integer. So P contains the root lattice Q. 

From Section 5.3 we recall that for c~ C �9 we have a reflection ra : V --+ V 
defined by ra(a) = a -  (a,c~)c~. Furthermore, the group generated by all 
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reflections ra is called the Weyl group; it is denoted by W(O) (Section 
5.7). By a straightforward calculation we see that  rai()~j) - ikj - 5 i ja i  for 
1 <_ i , j  <_ l. So since the ra~ generate W(O) (Theorem 5.7.6) we have that  
W (~) leaves P invariant. 

2 _ 1 for every reflection ra. So the inverse of a product  We note that  ra 
r~r~ . . . r~ is r.y . . . r~ra .  

L e m m a  8.3.2 Let  ~ 1 , . . .  , ~t C A be (not  necessar i ly  d i s t inc t )  s imple  roots. 

Se t  gi = rz~. I f  g l " " g t - l ( ~ t )  is a negat ive  root, then  there is an s E 

{1 , . . .  , t -  1} such  that  gl " " g t  - gl " " g s - l g s + l " " g t - 1 .  

P r o o f .  Set "yi - gi+l" " ' g t - l ( ~ t )  for 0 <_ i __ t -  2 and ' ~ t - - 1  - -  /~ t"  Then  
0'0 < 0 and "~t-1 ~ 0. Now let % for some s > 0 be the first positive root 
in this sequence. Then g s ( % )  - %-1 < 0. So gs maps a positive root to a 
negative one. Now Lemma 5.7.1 states that  gs permutes the positive roots 
other than/3s.  So we must have % - /~s .  Since g E W((I)) leaves the inner 
product  ( , ) invariant, by a short calculation it can be established that  
grag  -1 = rg(a) for (~ C (I). Using this we calculate 

(gs+l""" g t - 1 ) g t ( g t - l " "  gs+l) -- rgs+l...gt_l(Zt) 

-- r~/8 -- r ~  -- gs. 

Now if we subst i tute  this expression for gs into g l " " g t  we arrive at the 
desired result. O 

Let g C W((I)). Then by Theorem 5.7.6 we may write g - gl " " g t ,  where 
gi - rz~ for some/~i E A. This expression for g is said to be reduced if t is 
minimal among all ways of writing g as a product  of simple reflections. 

Corollary 8.3.3 Let  g - gl  " " g t  be a product  of  e l emen t s  gi - rz~, ~i C A ,  

and suppose  that  this express ion  is reduced. T h e n  g(~ t )  is a negat ive  root. 

P r o o f .  Suppose that  g(~ t )  > 0. Then g l ' " g t - l ( ~ t )  = - g ( ~ t )  < O. Now 
by Lemma 8.3.2 we can write g as a shorter product  of simple reflections 
and we have derived a contradiction. [::1 

L e m m a  8.3.4  Let  A , #  C P+ and let g C W(O) be such  that  g()~) - #.  

T h e n  )~ - #.  

P r o o f .  Let 9 - g l ' " g t  be a reduced expression for g where gi - rz~, 
~i C A. We prove the lemma by induction on t. If t -- 0 then g = 1 and 
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there is nothing to prove. 
have 9(~ t )  < 0 so that 

So suppose that t > 0. By Corollary 8.3.3 we 

0 < Z t ) -  g(Z,))= _< 0. 

As a consequence (A,/3t) - 0; so rzt (A) = ),. 
grit  - g l " " g t - 1  and we conclude by induction. 

Hence grzt (,k) - #. But 
F-] 

T h e o r e m  8.3.5 Each element # E P is conjugate under W(O) to exactly 
one element of P+. 

Proof .  First we show that there is a ~ C P+ conjugate to #. For that write 
# = m1~1 + ' "  + m ~ ,  where m j  = (#, (~j) (Lemma 8.3.1). If all m j  ~ 0 
then # E P+ and there is nothing to prove. On the other hand, if there is a 
j such that mj < 0, then set #1 - r a t  (#) - # -  mjolj. We have that #1 > # 
and #1 is conjugate to # under W(O). Continuing like this we construct a 
series 

# - - ~ 0  < # 1 < # 2  < ' ' "  

of weights conjugate to #. But W(O) is finite and as a consequence # only 
has a finite number of conjugates. It follows that after a finite number of 
steps we have found a dominant weight conjugate to #. 

Now we prove uniqueness. For that suppose that there are two domi- 
nant weights ~1,~2 conjugate to #, i.e., there are 91,92 C W(O) such that 

-1(A1) = A2, and by Lemma 8.3.4 we g i (# )  -- )~i for i = 1,2. Then 9291 
conclude that ~1 = ~2 [:] 

The proof of Theorem 8.3.5 gives us an algorithm for finding a dominant 
weight conjugate under the Weyl group to a given weight. We call this al- 
gorithm ConjugateDominantWeight. It takes as input the Weyl group W(O) 
and a weight # = mlA1 + " . - +  mlA1. If all mj  >__ 0, then # is returned. 
Otherwise we determine a j such that mj  < 0, replace # by # -  m j a j  and 
continue. 

L e m m a  8.3.6 Let c~1,... , al be linearly independent vectors in a Euclidean 
space W such that (c~i, aj)  <_ 0 for  i ~ j .  Let v C W be such that (v, c~i) >_ 0 

1 for  1 < i < 1. Then v -- ~-~i=1 aiai where ai >_ O. 

Proof .  The proof is by induction on 1. Let w E W be the unique vector sat- 
isfying (w, c~i) - 5il for 1 <_ i <_ l. Then w is perpendicular to c~1,. . . ,  c~l-1 
and hence {c~1,.. . ,  c~l-1, w} forms a basis of W. Write v - ~-~Li- ~ bi(~i + cw 
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1 - 1  and set v0 - ~ ~ i = 1  biai. For i - 1 , . . .  , l -  1 we have 0 _< (v, ai) - (vo, ai).  
So by induct ionbi  >_ 0 for 1 _< i _ I - 1 .  Also0_< (v, at) - (v0, a t ) + c  
and since (v0, at) _< 0 we have c _> 0. Now write w - ~-~.li= 1 ciai - u +c ta l .  
Then 0 < (w,w) - (w,u) + ct = ct, i.e., ct > 0. Also for i -  1 , . . . , I -  1 we 
have (w, ai)  - 0 implying (u, a i ) +  ct(at, ai) - 0, from which (u, ai) __ 0. 
By induction this implies ci >_ 0 for 1 _< i < 1 - 1, and we are done. D 

L e m m a  8 .3 .7  Let )~ C P+ be a dominant  weight. 
dominant  weights # C P+ such that # < ~ is finite. 

Then the number of 

P r o o f .  Write ~ -  ~-~ti: 1 siai  and # -  ~-~ti: 1 t iai  where si, ti E Q. Further- 
more, si, ti are non-negative by Lemma 8.3.6 (cf. Lemma 5.5.3). However, 
since ~ > # all s i -  ti are non-negative integers. Hence there are only finitely 
many possibilities for the ti. [] 

From Section 5.7 we recall that  

1 p- E 
c~E~I,+ 

is the Weyl vector. 

L e m m a  8 .3 .8  p - -  ~-~li= 1 )~i. 

P r o o f .  Let ai be a simple root. Corollary 5.7.2 states that  rai (p) - p - a i .  
Hence ( p - a i  ai) - ( r , , (p)  r 2 (ai)) - (p, rai(ai))  - ( p , - a i )  This means 

~ &i 

that  2(p, c~) - (c~i, c~i), i.e., (p,c~i) - 1. Now by Lemma 8.3.1 we get the 
result. [::] 

P r o p o s i t i o n  8.3.9 Let ~ E P+ be a dominant  integral funct ion.  Then 
g(A) < ~ for  all g C W((I)). Let W~ be the stabilizer of ~ in W((I)), i.e., the 
subgroup of W((I)) consisting of all g E W((I)) such that g(A) = A. Then W~ 
is generated by the simple reflections rai for  ai C A such that ()~, ai) = 0. 

P r o o f .  Write gi -- rai and let g - g i l " " g i t  be a reduced expression for g. 
We may assume that  g ~ 1, i.e., that  t > 0. For 1 _< s _  t consider the 

element As - gis ""g i t  (A)- We calculate 

- . . .  

= �9 �9 �9 
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But by Corollary 8.3.3 we have that  gi t ' "g i~_ i  (ais_i) is a negative root. 
So g i t ' "g i~  (ai~_~) is a positive root and (,ks, aid_l) >_ O. Therefore %s-i = 
A s -  mais_~ where m >_ 0. From this it follows that  g(A) _< A. Furthermore, 
g(%) = ,k implies that  (A, a~)  = 0 for 1 < s <_ t. This implies the second 
statement of the proposition. [3 

8.4 Finite dimensionality 

In this section we show that  any irreducible highest-weight module over L 
is necessarily finite-dimensional. We start with a lemma. 

L e m m a  8.4.1 Let xi, Yi, hi for 1 < i <_ 1 be a set o /canonical  generators 
o / L  and set 

7i = exp(adxi )exp( -ady i )exp(adxi ) .  

Then Ti (hj) = hj - <ai, aj)  hi. 

P r o o f .  The proof is by straightforward calculation. 
exp(adxi ) (h j )  = hj - a i (h j )x i .  Secondly, 

First we have that  

e x p ( - a d y i ) ( h j  - a i (h j )x i )  - hj - a i (h j )x i  - a i (h j )h i .  

And finally 

exp(adxi ) (h j  - a i (h j )x i  - a i (hj ) )  = hj - a i (h j )h i  

implying the result. [:l 

T h e o r e m  8.4.2 Let A E P+ be a dominant weight. Let V be an irre- 
ducible highest-weight module over L with highest weight A. Then V is 
finite-dimensional. Furthermore, the set of weights P ( V )  is stable under 
W((I)) and dim V~ = dim Vg(,) /or  # E P ( V )  and g E W((I)). 

P r o o f .  Let v~ E V be a highest-weight vector with weight %. We recall 
that  x l , . . .  ,xl, h i , . . .  , h i , y 1 , . . .  ,Yl are the canonical generators of L. Set 
mi = (A, ai> and ui - y m i + l ' v ~ .  We claim that  ui = 0 for 1 < i < l. First, 

mi-t- if j # i, then [xi, yj] = 0 and hence x j . u i  = Yi l x j  .v~ = O. By induction 
on n it is straightforward to prove the following identity in U(L)" 

n+l ~ n+l_ 
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So x i . u i  - ym i+ lx i ' v ) ,  + ( m i +  1 ) ) ~ ( h i ) y n ' v ) , - m i ( m i +  1)yn'v~, which is zero 
because A(hi)  - m i .  Consequently x j . u i  - 0 for 1 < j < l, and because 
the x j  generate N +, also N + "ui - O. But this implies that  ui - 0 because 
otherwise ui is a highest-weight vector of weight #i - ~ - (mi  + 1)ai. By 
Lemma 8.1.4 this implies that  )~ _ #i, a contradiction. 

For 1 < i < l we let /4/ be the subalgebra of L spanned by xi ,  hi, yi. 

Then K i  is isomorphic to s[2(F) and by restricting the representation of 
L, V becomes a Ki-module. Now let Wi C V be the subspace spanned by 
v~, y i . v ~ , . . .  , y m i ' v ~ .  Then Wi is stable under the action of Yi by our claim 
above. Furthermore, calculations as those in the proof of Proposition 4.10.1 
show that  Wi is also stable under xi and hi. So Wi is a finite-dimensional 
Ki-module contained in V. 

Now we show that  V is a sum of finite-dimensional Ki-submodules of V. 
Let V ~ be the sum of all finite-dimensional Ki-submodules of V. Then by the 
above, V ~ ~ 0. Let W be a finite-dimensional Ki-submodule of V. Let W be 
the span of W together with all subspaces of the form xa" W for root vectors 
xa C La, where a ranges over ~. Then since x i x a . w  - x a x i . w + [ x i , x a ] . w  

we have that  W is stable under xi.  Similarly W is stable under hi and yi, 

and therefore it is a finite-dimensional Ki-submodule of V. In particular, 
W c W. So if w E W, then also xa" w c W, and since the xa generate L, 
we have that  V ~ is an L-submodule of V. It follows that  V -  V t. 

Now let w C V, then by the above, w lies in some finite-dimensional 
Ki-submodule of V. But xi and yi act nilpotently on such modules (cf. 
Lemma 5.1.2). Hence xi and Yi are locally nilpotent on V. We define the 
endomorphisms exp(xi) and exp(yi) as follows. Let u E V, then there is 
an integer ku > 0 such that  _k~+l k~ l x  r x i . u  -- 0. Set e x p ( x i ) ( u )  = E r = 0  ~ i . u .  

Then exp(xi) is a linear map. The map exp(yi) is defined similarly. The 
endomorphisms exp(xi), exp(yi) are bijective as their inverses are exp( -x i ) ,  

exp(-y i ) .  
Now let r denote the representation of L afforded by V. Set 

7-/-- exp adr exp -adr  exp adr 

and 

~ = exp r exp - r  exp r 

Then T~ is an automorphism of the Lie algebra r (cf. Section 1.11). 
Denote by lz~ and rz~ the left and right multiplication by r  which 
are endomorphisms of 9[(V). Then lz~ and rx~ are locally nilpotent (since 
r  is a locally nilpotent linear transformation) and they commute. Hence 
expadr  = exp(lx~ + r-z~) = exp(lx~) exp(r_x~) = lexpx~" rexp-x~, from 
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which it follows that  e x p r 1 6 2 1 6 2  -1 
all z C L. This however implies that  

- e x p ( a d r 1 6 2  for 

Ti(r ?~i(~(Z)?~i -1 for all z e L. (8.4) 

By Lemma 8.4.1 we have that  Ti(r  = r - ( c q ,  oLjlr ). By (8.4) 
this implies that  r - rl ir  + (oLi, o~j)r which for i = j boils 
down to r - - ~ i r  Using this we calculate for v E V~, 

r " v - 0TiC(hi) + (oLi, oLj)r " v 

= (# (h j )  - (oLi, oLj)#(hi))~Ti'v 

= (# (h i )  - (#, o~i)oLi(hj))~Ti'v 

(where the last equality follows from #(hi )  - (#, hi)) .  As a consequence ~?i'v 
lies in the weight space corresponding to rai(#).  Since W((I)) is generated 
by the r ~  (Theorem 5.7.6) we see that  P ( V )  is stable under W((I)). Also 
since ~i is nonsingular we have dim V~ - dim Vr, i (~) and the same holds for 
g C W((I)) in place of ra~ by Theorem 5.7.6. 

Let A be the set of all # C P+ such that  # _ ~. Then by Lemma 8.3.7, A 
is finite. Furthermore let B be the set of all g(#) for g E W(O) and # C A. 
Then B is finite since W((I)) is. But by Theorem 8.3.5 together with the 
fact that  P ( V )  is stable under W((I)), P ( V )  C B.  So P ( V )  is finite and by 
Lemma 8.1.4, V is finite-dimensional. [:] 

C o r o l l a r y  8.4.3 There is a bijection between the set P+ and the set of 
( i somorphism classes of)  irreducible f in i t e -d imens iona l  L-modules .  

P r o o f .  By Theorem 8.1.5, every finite-dimensional irreducible L-module 
has a unique highest weight in P+. Also if ), E P+, then by Proposition 
8.2.2, there is a unique irreducible highest-weight module V having )~ as 
highest weight. And by Theorem 8.4.2 V is finite-dimensional. D 

8.5 On representing the weights 

We want to calculate with the set of weights of an L-module V. For this 
we need a compact format for representing a weight )~ E H*. We do this 
by taking the list of coefficients of A relative to the basis of fundamental  
weights )~1,... , )~l. This means that  we represent )~ as a vector ( n l , . . .  ,hi) 
where the ni are such that  )~ = ~-,i ni)~i. We note that  by Lemma 8.3.1, we 
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have ni = )~(hi), where the hi come from a set of canonical generators of L 
that we fixed at the start. We call the set {(A(hl) , . . .  ,A(hl)) I A E P(V)} 
the set of weight-coordinate vectors of V relative to h i , . . .  , hr. This set does 
not only depend on L and V, but also on various choices that are made. 
First we choose a Cartan subalgebra H C L. This Cartan subalgebra gives 
us a root system (I). Then in that root system we choose a fundamental 
system A -- {c~1,... ,c~}. This determines the hj as 

2haj 
hj = ((~j,aj)" 

Finally we list the hj in a certain order, which gives us the weight-coordinate 
vectors ( )~(h l ) , . . . ,  A(ht)). Now the question presents itself as to what ex- 
tend the set of weight-coordinate vectors of an L-module V depends on 
these choices. 

The hi come from a set of canonical generators xi, Yi, hi (1 _< i _< l). 
! ! ! 

Let xi, yi, hi be a second set of canonical generators. Then by Corollary 
5.11.5 there is a g 6 Aut(L) such that g(hi) = h~. Now let r  L -+ g[(V) 
denote the representation of L afforded by V, and suppose that there is 
a bijective linear map T �9 V -+ V such that r  T(v) - T(r V) 
for all x E L and v 6 V (i.e., the representations r and r o g of L are 
equivalent). Let v~ 6 V be a weight vector of weight )~ relative to the hi 
(i.e., r - )~(hi)vx). Then r = T(r -- )~(hi)T(V)~). 
So T(V~) is a weight vector relative to the h}. Denote the corresponding 
weight by # (note that # might lie in the dual space of a different Cartan 
subalgebra); then #(h~) = s The conclusion is that the existence of the 
map T implies that the set of weight-coordinate vectors (A(hl) , . . .  , X(hl)) of 
V with respect to h i , . . .  , ht is equal to the set of weight-coordinate vectors 
of V with respect to h~, . . .  , h' l. By the next lemma we can always find such 
a map T if g is an inner automorphism. 

L e m m a  8.5.1 Let r  L --+ g[(V) be a f inite-dimensional representation of 
L. Let g be an inner automorphism of L. Then there is a bijective linear 
map T"  Y ~ Y such that r  T(V) = 7"(r V) for all x E n and 
v E V .  

Proof .  First suppose that g = exp(adx), where x E L is such that  adLx 
is nilpotent. Then by Corollary 4.6.4 we have that r is also nilpotent. 
Now set T -- exp(r Then it is straightforward to see that 

exp(adr162 = Tr -1 for z E L 
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(cf. the proof of Theorem 8.4.2). Using this we calculate r  - 
exp(adr162 - ~-r --1. So ~-(r - r  -- 
r  Since T is clearly bijective we are done for the case where 
g - exp(adx). Now if gl, g2 correspond to the maps ~1, ~'2, then it is straight- 
forward to see that  gig2 corresponds to T1T2. So because Int(L) is generated 
by elements of the form exp(adx), we get the result in general. [::1 

Let H denote the Cartan subalgebra containing the h/. Suppose that  
also the h~ E H, i.e., the automorphism g mapping the h / t o  the h~ maps H 
into itself. The hi correspond to the simple system A = {c~1,... , al} of the 
root system (I). Let A ' - -  { c ~ , . . . ,  c~} be the simple system corresponding 
to the h~. Then A' is also a simple system of (I). Furthermore we may 
suppose that  the Car tan matrix of (I) relative to A' is equal to the Car tan 
matrix of (I) relative to A (cf. Corollary 5.7.4). By Theorem 5.7.3 there is 
a a C W((I)) such that  a(A) = A'. We show that  this implies that  there is 

' By Theorem 5.7.6 an inner automorphism ga of L such that  ga(hj )  - hi.  
we may assume that  a = rak for some ~k E A. Set 

~-k - exp(adxk)exp( -adyk)exp(adxk) .  

! Then by Lemma 8.4.1, Tk(hj) = h j -  ((~k, a j )hk .  Now the hj are the unique 
elements of H satisfying c~(h~) = (c~,c~), and this is equal to (c~/,c~j) 
(because of our assumption on the Cartan matrices of (I) relative to A and 
A'). We calculate 

C~(Tk(hj)) -- (~(hj  - ( ( ~ k ,  c~j)hk) 

= r~ k ( (~) (h j )  - (~i(hj) - (~i, ~ j ) .  

Which implies that  7k(hj)  -- h~. And therefore, by Lemma 8.5.1 we have 
that  the set of weight-coordinate vectors of V relative to the h / i s  equal to 
the set of weight-coordinate vectors of V relative to the h~. 

Now suppose that  the h~ belong to a different Car tan subalgebra H' .  
Suppose further that  the ground field is algebraically closed. (This does not 
make much difference as V -  V | F is a module over L = L @F F,  and 
the set of weight-coordinate vectors of V relative to h/@ 1 is equal to the 
set of weight-coordinate vectors of V relative to the h/.) Then by Theorem 
3.5.1 there is a g C Int(L) such that  g(H)  = H' .  Now by Lemma 8.5.1 the 
set of weight-coordinate vectors of V relative to the h/ is the same as the 
set of weight-coordinate vectors of V relative to the g(hi) .  Hence we are in 
the situation considered above; and it follows that  if the g(hi)  correspond 
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to a different simple system than the h~, then the set of weight-coordinate 
vectors relative to the g ( h i )  is equal to the set of coordinate vectors relative 
to the h~. 

The conclusion that we draw from this is that the set of weight-coordinate 
vectors does not depend on the particular Cartan subalgebra H of L which 
we choose, and neither does it matter which simple system A in the corre- 
sponding root system we choose. So the only thing that matters is the order 
in which we list the hi. If the Dynkin diagram does not have any diagram 
automorphisms, then we can fix this order by fixing the Caftan matrix. 
However, if the Dynkin diagram does allow automorphisms, then this is 
not enough. Indeed, by way of example let L be the simple Lie algebra of 
type A2. Let xl, x2, Yl, Y2, hi, h2 be a fixed set of canonical generators. Let 
A = {al,c~2} be the corresponding simple system. Let #i E H* for i = 1,2 
be defined by # i ( h j )  = ~ij. So #1 is represented by the coordinate vector 
(1,0) and #2 by (0, 1). Then the L-module V~ with highest weight #~ is 
not equivalent to the L-module V2 with highest weight #2. However, if we 
interchange C~l and c~2 (and hence also hi and h2), then ~1 is represented 
by (0, 1) and #2 by (1, 0). Furthermore, the Cartan matrix of �9 relative to 
c~1, c~2 is equal to the Cartan matrix of �9 relative to c~2, c~1. So in this case 
we also have to fix the order of the simple system A in order to give the 
representation of weights by means of coordinate vectors a meaning. 

8.6 Computing orbits of the Weyl group 

When computing with the weights of a representation we often want the 
orbit of a given weight under the action of the Weyl group. This is due to 
Theorem 8.4.2: if # is a weight of V, then so are all elements of the orbit 
W(O) �9 #. Furthermore, for all elements of a fixed orbit the dimension of 
the corresponding weight space is the same. 

By Theorem 5.7.6, W(O) is generated by the simple reflections ra~. The 
action of these simple reflections on the weight lattice is easily written down: 
ra~ ()~j) - )~j -(~ijc~i. So by conventional techniques for computing the orbit 
of a point under the action of a finite group, we can calculate the orbit. 
However, in this case we can utilize the structure of the Weyl group to give 
a much more efficient method. For this we need some results on the length 
of a Weyl group element. 

Write gi - r ~  for 1 _ i _ l. Let g C W(~) and write g - g i ~ ' " g i ~ .  If 
s is minimal among all ways of writing g as a product of simple reflections 
(i.e., if this expression for g is reduced), then we say that the l eng th  of g 
is s; and we write t~(g) - s. We define the length of the identity to be 0. 
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Also for g E W(O) we let n(g) be the number  of positive roots a such tha t  

g(a)  is a negative root. 

L e m m a  8.6.1 Let g E W ( ~ )  and let (~i E A be a simple root. If  g(ai) > O, 
then n(gra~) - n ( g ) +  1. On the other hand, if g(ai) < O, then n(gra~) = 

- 1 .  

P r o o f .  By Lemma 5.7.1, rai permutes  the positive roots other than  c~i. 
Fur thermore  r~i maps c~i to -c~i. The  lemma follows from this. [::1 

P r o p o s i t i o n  8 .6 .2  For g E W(O) we have i(g) = n(g). 

P r o o f .  Suppose / (g )  = r and write g = gil ""gir.  We prove the theorem by 
induction on r. For r = 0 the s ta tement  is trivial, so we suppose tha t  r > 0. 
By Corollary 8.3.3, g(air) < 0; so by Lemma 8.6.1, n(grai~) --- n ( g ) -  1. 
Also i(grai~) = t~(gil "'" gig_l) - l ( g ) -  1. Therefore by induction we have 

n(g) - 1 = t~(g) - 1; which is the same as n(g) = ~(g). o 

C o r o l l a r y  8 .6 .3  Let g E W ( ~ )  be such that g(A) = A. Then g = 1. 

P r o o f .  For such a g we have g(O+) = ~+.  Hence n(g) = 0, and by Propo- 

sition 8.6.2, also ~(g) = 0. O 

C o r o l l a r y  8 .6 .4  There is a unique element go E W ( O )  such that g0(A) = 

- A .  Moreover, g2 = 1 and ~(go) - [~+1.  

P r o o f .  By Proposi t ion 5.5.8, - A  is a simple system of ~. So by Theorem 
5.7.3 there is a go E W ( ~ )  such tha t  g0(A) = - A .  The  uniqueness of this 
go follows from Corollary 8.6.3. This corollary also implies tha t  go 2 = 1. 
Finally, the length of go is equal to the number  of positive roots by Propo- 
sition 8.6.2. D 

The unique element go of Corollary 8.6.4 is called the longest element of 

Now let A E P+ be a dominant  weight. Then  by W ( ~ ) .  A we denote the 

orbit of A under the action of W(~) .  Let # E W ( O ) .  A and let g E W(O)  
be an element of minimal  length such tha t  g()~) = #. Let r be the length of 
g. Then  we also say tha t  the length of # is r, and we write ~(#) = r. 
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L e m m a  8.6.5 Let )~ ~ P+ be a dominant weight and let it ~ W ( ~ ) .  A. 
Then the length of it is equal to the number of positive roots (~ such that 
(~, ~) < o. 

P r o o f .  Let g E W ( ~ )  be an element of minimal length such that  g(A) - #. 
Let (~ C ~+ be such that  (A,g-l(c~)) - 0. We claim that  this implies 
that  g-l(c~) > 0. We write c~ as a linear combination of simple roots with 
non-negative integral coefficients. If g-l(c~) is negative, then it is a linear 
combination of simple roots with non-positive integral coefficients. As A is 
dominant ,  (~, g-l((~)) _ 0 implies that  (~, c~i) - 0 for all c~i appearing in this 
expression for g-l(c~) with non-zero coefficient. Furthermore,  g(c~i) < 0 for 
at least one such c~i. By Lemma 8.3.2 this means that  g(gra~) < t~(g)- l .  But 
since (A, c~i) - 0 we have that  ra~()~) - )~, and therefore gra~()~) - #. And 
as g was chosen to be of minimal length, we have reached a contradiction. 

This implies tha t  for any positive root c~ we have that  g-l(c~) < 0 if and 
only if (A,g-l(c~)) < 0. But this is equivalent to (# , a )  < 0. It follows that  
the number  of positive roots c~ such that  (c~, #) < 0 is equal to n(g-~);  and 
by Proposi t ion 8.6.2, this is equal to t~(g -1) - t~(g). D 

C o r o l l a r y  8.6.6 Let )~, # be as in Lemma 8.6.5. Write # -  nl)~l + ' - - n l A l  
(linear combination of the fundamental weights). Let ra~ be a simple reflec- 
tion. Then 

g ( r ~  (#))  - ~(#) + 1 i f  ni > O, 

e ( ~ ,  (~))  - e ( , )  i l  n~ - o, 

e ( ~ ,  (~))  - e ( , )  - 1 i f  ni < o. 

P r o o f .  First of all, i f n i  = 0 t h e n r a i ( # )  = #. I f n i  > 0 then we count 
the number  of positive roots a such that  (rai (#), a) = (#, ra~ (a)) < 0. By 
Lemma 5.7.1, ra~ permutes the positive roots other than (~i. So the number 
of c~ > 0 such that  c~ ~ c~i and (ra~ (#), a) < 0 is the same as the number 
of c~ > 0 such that  c~ ~ c~i and (#, c~) < 0. Furthermore,  ni > 0 means that  
(#,c~i) > 0; but  then (#,r~((~i))  < 0. So t~(rai(#)) = t~(#)+ 1. For the 
remaining case we use a similar argument.  D 

Let A C P+. It is straightforward to see that  the number  of roots a > 0 
such that  (a, #) = 0 is equal for all # E W ( O ) .  )~. We denote this number 
by n0(A). Let go be the longest element of W(O). Then using Lemma 8.6.5 
we see that  

e ( g 0 ( ~ ) )  - e ( g 0 )  - ~ 0 ( ~ )  - e ( ~ ) .  (8.5) 



8.6 Computing orbits of the Weyl group 329 

Since ~(g0) >_ 0 we conclude that the highest length obtained in the orbit of 
is ~(g0)-n0(A) (which is the length of go(),)). Furthermore, the weights of 

length k are the images under go of the weights of length ~(go) -no( )~) -k .  So 
using the action of the single element go, we only have to calculate half the 
orbit of ~. We note that the action of go is easy to calculate. Since g0(A) = 
- A  we have that go((~j) - -(~a(j), where a is a permutation of (1 , . . .  ,l). 
Let # = nl/~1 + " "  + ntAt be a weight and write go (#) = ml)~l + " "  + mt At. 
Then using Lemma 8.3.1 and the fact that g2 = 1, we calculate 

So we only need to calculate the permutation a once, and then the action 
of go is easily written down. 

The idea of the algorithm for calculating the orbit )~. W(O), where 
)~ E P+, is now straightforward. We start with the weight A, which is the 
only weight in the orbit of length 0. Then supposing we know all weights of 
length k, we calculate the weights of length k + 1 using Corollary 8.6.6: if 
# = m l)~1 + " "  + mt)~t is a weight of length k and mi > 0 for a certain index 
i, then ra~(#) is a weight of length k + 1. However, it may happen that 
ra~ (#) - raj (u) for two weights #, u of length k. So when building the set 
of weights of length k + 1 we have to discard those weights that we already 
have constructed. As the number of weights of a certain length can be high, 
deciding whether or not we already constructed a particular weight, may 
become a lengthy task. By the next result however we can dispense with 
this search operation. 

P r o p o s i t i o n  8.6.7 Let )~ E P+ be a dominant weight. By Ek we denote 

the weights of the orbit W((I)). ~ of length k. Then for every # = m l)~l + 
�9 -" + mls E Ek+l there is a unique weight v E s such that 

1. ra~ (L,) = # for a simple reflection ra~, 

2. m j  ~_O f o r i  < j  < l .  

Proof .  Let i be the index such that mi < 0 and mj ~_ 0 for j > i (note that 
such an index exists because A is the only dominant weight of the orbit). 
Set u = ra~(#); then u C/:k by Corollary 8.6.6. So u is a weight satisfying 
the listed requirements. Now suppose that there is a second weight ~ such 
that r~t(~) -- # and mj  ~ 0 for j > t. Write 77 = pl/~l + " "  + Pill. Then by 
Corollary 8.6.6, Pt > 0. But then mt = pt - 2pt = - p t  < 0. It follows that 
t = i and r /=  r,. K] 
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So by Proposition 8.6.7 each weight v of length k has a uniquely defined 
set of successors of length k + 1. This is used in the following algorithm. 

A l g o r i t h m  WeylOrbit 
Input: a weight ~ E P and the Weyl group W(O) generated by the simple 

reflections ra~ and with longest element go. 
Output: the orbit W(O) �9 ~. 

Step 1 (Trivial case.) If ~? is zero then return {~?}. 

Step 2 Set )~ "= ConjugateDominantWeight(W(O),r/). 
7~ "-  {g0(A)}. Set k - - 0 .  

Set s "= {A} and 

Step 3 Set s "--O. For each L,-  mlAl + ' "  mlAl E s and each index i 
such that mi > 0 do the following: 

Step 3a Set # "-ra~(~),  and write # -  ~ nj)~j. 
Step 3b If nj >_ 0 for j > i, then add # to s 

Step 4 Set 7k+1 "-- g0(s 

Step 5 If 7k+1 -- s or the length of the weights in 7k+1 is k + 2, then 
return the union of the sets s and 7~ for 1 _< j _< k + 1. Otherwise 
set k "= k + 1 and return to Step 3. 

C o m m e n t s :  The sets s 7k contain the weights of length k and t~(g0)- 
n0(A) - k respectively. Steps 3a. and 3b. are justified by Proposition 8.6.7. 
If at a certain point the sets s Tk "meet" (in the sense that the length of 
an element of 7~ is at most one bigger than the length of an element of s 
then we have found all elements of the orbit and we return the result. 
R e m a r k .  As the Weyl group can be very large also the number of weights 
of a certain length can be large. However, for some applications it is only 
necessary to loop through the weights in a certain orbit. In these cases it 
is not necessary to store them all. Using Proposition 8.6.7 an algorithm 
that does not use much memory can be devised for this. For each weight of 
length k the proposition defines a unique set of successors of length k + 1. 
So the orbit can be viewed as a tree, with the dominant weight A at its root. 
Now using only a small stack of weights we can loop through this tree, for 
example using the technique known as depth-first search (see, e.g., [75]). 

The algorithm WeyIOrbit has proved to be very efficient in practice. We 
refer to [81], [82] for an account of practical experiences with the algorithm. 
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8.7 Calculating the weights 

In this section we describe algorithms for calculating the set of all weights 
that occur in a given highest-weight module V over L, with highest weight 
 EP+. 

L e m m a  8.7.1 Let V be an irreducible highest-weight module over L with 
highest weight A. Let # E P ( V )  and a E (~. Let r, q be the largest integers 
such that # - r a , #  + qa E P ( V ) .  Then all # + ia E P ( g )  for - r  <_ i ~_ q. 
Furthermore, r - q - (#I (~). 

Proof .  Let W be the space spanned by all V~+ia for - r  < i < q. By 
Root facts 121 13 there are x E Lal y E L-a1 h E H spanning a subalgebra 
Ka of L isomorphic to s[2(F). By Lemma 8.1.2, W is a Ka-submodule of 
V. On W the element h has eigenvalues (p + ia)(h) - # ( h ) +  2i. Now 
by the representation theory of si2(F) (Theorem 5.1.4) the eigenvalues of h 
occur in strings with difference 2. So all of # + ia  must be weights of V for 
- r ~ i ~ _ q .  

Let ra denote the reflection corresponding to a. By Theorem 8.4.2 we 
know that the image of a weight of V under ra is also a weight. Now 
r~(# + ia) = ra(#) - ia. So the image of # + qa must be # - ra .  But this 
implies r - q - <ttl a). Zl 

Let V be an irreducible highest-weight module over L of highest weight 
~. Then by Lemma 8.1.4 the weights of V are of the form tt - s  kiai 

I i = 1  " 

The number l ~i=1 ki is called the level of the weight #. We have an algorithm 
for computing the weights of a highest-weight module with highest weight 

that is completely analogous to the algorithm CartanMatrixToRootSystem 
for computing the root system given the simple roots and a Cartan matrix. 
We start with the highest weight A (which is the only weight of level 0). 
Supposing that the weights of level n are computed we compute the weights 
of level n + 1 in the following way. Let # be a weight of level n and ai E A. 
Let q be the largest integer such that # + qai is a weight of V (we can 
determine this since the weights of level _~ n are known). Set r - q + (#1 cq}. 
Then if r > 0 we add # -  ai to the set of weights. If we do not find any 
weights of level n + 11 then we stop and output the result. Otherwise we 
set n "-  n + 1 and continue. We call this algorithm WeightsOfHWModule. 

L e m m a  8.7.2 On input A E P+ the algorithm WeightsOfHWModule re- 
turns the set P ( V ) ,  where V is the highest-weight module over L with highest 
weight A. 
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P r o o f .  It is clear tha t  the output  consists of elements of P(V) (cf. Lemma 
8.7.1). We have to prove tha t  every element of P(V) is constructed.  Let 
)~ 7/= # E P(V),  then we claim that  there is a simple root cq E A such 
that  # + ai  E P(V).  Indeed, otherwise N + .  V~ = 0 as the root-spaces L~ i 
generate N +. This means tha t  # is a highest weight of V, which contradicts  
the choice of #. Now by induction on the level of a weight, # + ai  already 
has been computed.  Therefore also # is constructed during the algorithm. [2 

If we are only interested in the dominant  weights of a highest-weight 
module, then we can use a different s t rategy based on the following propo- 
sition. 

P r o p o s i t i o n  8 .7 .3  Let V be an irreducible highest-weight module over L 
with highest weight )~. Let # E P+ be a dominant integral linear function 
different from )~. Then # E P(V) if and only if there is a positive root 
c~ E (~+ such that # + (~ E P(V) N P+. 

P r o o f .  First  suppose tha t  # E P(V).  Then there is a root (~ > 0 such tha t  
# + o~ E P(V) (otherwise # is a highest weight of V, which is excluded by 
Theorem 8.1.5). If # + (~ E P+ then we are done. But if # + c~ ~ P+, then 
there is a (~i E A such tha t  (# + (~, (~i) < 0 (this follows immediate ly  from 
Lemma 8.3.1). Now since also ra , (#  + a)  E P(V) we see by Lemma 8.7.1 
tha t  # + c~ + (~i E P(V).  Because # E P+ we have (#, (~i) _> 0 and hence 
(c~, cq) < 0. Therefore c~ + c~i is a root (Proposit ion 5.4.1). Now we replace 
c~ by c~ + c~i and repeat.  Since P(V) is finite after a finite number  of steps 
we find a ~ E (I)+ such tha t  # + ~ E P ( V ) N  P+. 

Now suppose tha t  there is an c~ > 0 such that  # + c~ E P ( V ) N  P+. We 
show tha t  # E P(U). Set # = # + c~. Then (/5, c~) = (#, c~)+ (c~, c~) > 0 since 
# E P+. Hence (#,c~) > 0. Furthermore,  r a (#)  = # -  (#,c~)c~ also lies in 
P(V) so in part icular ,  by Lemma 8.7.1, # = # -  a E P(V).  [2 

The procedure based on this proposit ion works as follows. Again we s tar t  
with the highest weight ~. Then  in the i teration for every dominant  weight # 
computed we compute  the differences #-c~ for c~ > 0. If such a difference is a 
dominant  weight, then we add it to the set. If no more weights are found this 
way, then we stop. We call this procedure D~176 
Of course, after having found the dominant  weights we can calculate all 
weights by comput ing the orbits of the dominant  ones under the Weyl group. 

E x a m p l e  8 .7 .4  Let L be the simple Lie algebra of type G2, with root 
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system (b. Suppose tha t  the Car tan  matr ix  of (b is 

2 - 1  
- 3  2 ) "  

Let a l ,  a2 be the simple roots. The  other positive roots are a l  +a2 ,  2al-~-oL2, 
3a1 + a2, 3a l  + 2a2. The  fundamental  weights are given by solving the 

systems of linear equations (Ai, aj) - 5ij. This yields A1 - 2a l  + OL2 and 
>,2 - 3a l  + 2oL2. In our calculations we express every vector as a linear 

combinat ion of the fundamenta l  weights. We have tha t  a l  = 2),1 - A 2  and 

O~2 : --3AI + 2 ~ 2 .  

Let V be the highest-weight module over L of highest weight ), - A1 + A2. 
We calculate the weights of level 1, using the algori thm Weights0fHWMod- 
ule. We have tha t  ) , -  a l  and A -  oL2 are the only possible weights of level 
1. In bo th  cases q = 0 and r = q + <),, ai)  = 1; so bo th  are weights of V. 
Now we determine the weights of level 2. First  we t ry  A -  2a1. We have 
A -  a l  = --A1 + 2A2, so <A-  a l , a l )  = --1. Fur thermore  A -  a l  + a l  = A is 
a weight of V. So in the algori thm WeightsOfHWModule we have q - 1 and 
r = 0 and therefore A -  2a2 is not a weight. In the same way it can be seen 
tha t  A -  2a2 is not a weight. But  ( A -  a l ,  a2> = 2. In this case q = 0 and 
hence r = 2 and we see tha t  A -  a l  - a 2  is a weight of V. We have now 
determined all weights of levels 0, 1, 2. Continuing like this we can find all 

weights of V. 
We determine the dominant  weights of V using the procedure Domi- 

nantWeightsOfHWModule. First  A -  ol I and A -  a2 are not dominant ,  but  
A--(O/I-~-0~2) -- 2A1, A--(2al +a2) = A2, A--(3al +2a2) = A1 are. In the next 
step we find one more dominant  weight, namely A - ( 3 a l  + 2 a 2 ) - ( 2 a 1  -~-OL2) - -  

0. After this one we find no more and we have determined all dominant  

weights of V. 

8.8 The multiplicity formula of Freudenthal 

Let V be an irreducible highest-weight module over L with highest weight 
A. Then  for an element # E P we set m~ - dim V~, where this number  is 
defined to be zero if # ~ P(V) .  The number  m~ is called the multiplicity of 
#. By Lemma 8.1.4 we know that  m~ = 1. The  following theorem expresses 
m~ in terms of m~, where #'  > It, enabling us to compute  m t, recursively. 

Theorem 8.8.1 (Freudenthal's multiplicity formula) Let V be an ir- 
reducible highest-weight module over L with highest weight A. Then for 
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# E P we have 

(( ~ + p, ~ + p) - (~ + p , .  + p))~n.  
oo 

- 2 + j . ,  . ) m . § 1 7 6  

aEq~+ j = l  

In the proof we use a par t icular  element of the universal enveloping 

algebra U(L). Let x l , . . .  ,Xn and Yl , . . .  ,Yn be bases of L tha t  are dual 
with respect to the Killing form, i.e. tCL(xi,Yj) = (fij Set c - ~-~,n �9 i =  1 x i Y i  

which is an element U(L). Then exactly in the same way as in the proof of 
Proposi t ion 4.4.3 we see that  [c, L] = 0 in U(L). Since L generates U(L) this 
means tha t  c lies in the centre of U(L). The element c is called a universal 
Casimir element. 

P r o o f .  Let g l , . . .  ,gl be an or thonormal  basis of H with respect to the 
Killing form aL (i.e., gL(gi, gj) = 5ij). Furthermore,  Root fact 3 implies 
that  there are root vectors xa E La for a E �9 such tha t  aL(Xa, X-a) = 1. 
So by Root fact 11, [xa,x_a] = ha (where ha is defined by (4.10)). Let r 

denote the representat ion afforded by r Then  

r 1 6 2  - r 1 6 2  r  (s.6) 

Now the bases 

{gl , - - .  , gl, Xa for a E (I)} 

and 

{ g l , . . . , g l , x - a  for a E ~} 

are dual with respect to ~ L .  S o  

C - -  

l 

i=1  hE(I) 

is a universal Casimir element. As seen above, [c,L] - 0 in U(L), so 
since the representat ion r extends to a representat ion of U(L) we have 
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that  [r r - 0. We calculate, 

1 

r - ~ r + Z r162 
i--1 aEr 

1 

= Z r + ~ r162176 ~ r162 
i--1 c~Er aEr 

1 

-- E r + E r  + 2 E r162 (by (8.6/) 
i--1 c~E(I)+ aE~+ 

l 

= ~ r + 2r + 2 ~ r162 
i--1 aE~+ 

(8.7) 

Let v~ be a highest-weight vector. Then 

l 

i=I 

= ((:~, :~) + 2(~, p))v~ 

= ()~,)~ + 2p)v),. 

So v~ is an eigenvector of r with eigenvalue (A,A + 2p). Now since 
[r r = 0 we have that  the eigenspace of r corresponding to this 
eigenvalue is a non-zero L-submodule of V. So as V is irreducible we see 
that  r acts on Y as multiplication by (/~, A + 2p). 

If a is a linear transformation of V, and U is a subspace stable under a 
then Trva will denote the trace of the restriction of a to U. So 

Trv, r - ()~,)~ + 2p)mu. 

But by using (8.7) we arrive at 

T~v.r - (~, ,  + 2p).~, + 2 ~ W~v. r162 
aE~+ 

And hence 

((~,~ + 2p) - ( . , .  + 2p)).~. - 2 ~ W~v.r162 
aE,I,+ 
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Now we use the following fact from linear algebra: if a �9 U -+ W and 

b" W --. U are two linear maps, then Tru(ba) - Trw(ab).  So 

Wrv. r162 - W~v.+o r162 
=Trv,+. (r r162 (by (8.6)) 
= (it + a)(h . )mt~+a + T r v . + .  r162 

We repeat  this and use the fact tha t  V~+ja - 0 for big j to arrive at 

(:K) 

Trv, r 162  - E ( i t  + jo~, a)m~+ja.  
j=l 

And this implies the formula. 

In order to be able to use Freudenthal 's  formula we must  show tha t  the 
factor on the left-hand side is non-zero. This is achieved by the next two 
lemmas. 

L e m m a  8.8 .2  Let it C P +  and let ~, - g- l ( i t )  for some g C W((I)). 
( .  + p , .  + p) <_ (~ + p ,~  + p). 

Then 

P r o o f .  We calculate 

(~ + p, v + p) - (g(v + p), g(~ + p)) - (p + g(p), it + g(p)) 

= (~ + p, ~ + p) - 2(~,  p -  g (p) ) .  

Now by Lemma  8.3.8 and Proposi t ion 8.3.9 we see that  p - g ( p )  >_ O. Hence 
(~ ,p  - g(p)) > o. D 

L e m m a  8.8 .3  Let V be an irreducible highest-weight module over L with 
highest weight ~. Then we have ()~ + p, )~ + p) > (# + p, # + p) for # E P ( V )  
such that A ~ #. 

P r o o f .  Since every weight is conjugate to a dominant  one (Theorem 8.3.5), 

we may, by Lemma 8.8.2, assume that  p C P+. Since # is not the highest 
weight of V we have tha t  p + c~ C P ( V )  for some c~ E A. Fix such an c~ C A 
and set u = p + c~; then 
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The right hand side of this expression is strictly positive since it + p E P+ 
by Lemma 8.3.8. Now let ~ be an element of P+ conjugate under W(~)  to 
y, then by Lemma 8.8.2 we get 

( ,  + p , ,  + p) < ( .  + p , -  + p) _< + p, + p). 

If ~ = A we are done. Otherwise we replace it by ~ and continue. Since P(V) 
is finite we arrive at a situation where ~] = A after a finite number of steps. [5 

From Lemma 8.8.3 it follows that  the left-hand side of Freudenthal 's 
formula vanishes only if m~ = 0. So since we know the multiplicity of the 
highest weight A we can use this formula to calculate the weights and their 
multiplicities of an irreducible highest-weight module for L. 

E x a m p l e  8.8.4 Let L, (I) be as in Example 8.7.4. After (maybe) modifying 
the bilinear form by a scalar (note that  as the form appears on both the left- 
hand and the right-hand side of Freudenthal's formula, this does not affect 
the result) we may assume that  (o~1,o~1)- 2. Now since {a2, al} - - 3 ,  we 
have that  2(a2, a l )  = - 2 ,  i.e., ( a l , a2 )  = -1 .  Finally from (al,a2} = -1  
it follows that  (a2, a2) - 2 This means that  (A1,A1) - 2 (A1),2) - 1 

�9 3 ~  ~ 

(A2, A2) = 2 (where the Ai are the fundamental weights, as calculated in 
Example 8.7.4). 

Now let V be the irreducible highest-weight module over L with highest 
weight A = /~1 ~- ,~2. Since p = A1 + A1 (Lemma 8.3.8) we have A + p = 
2(A1 + A2) and (A + p, A + p) - ~ .  We know that  the weights of V are of 
the form A -  kick1- k20~2 for kl, k2 ~ 0. We calculate the multiplicity of the 
weight it = A - a l  = - A l + 2 A 2 .  First of all, (it+p, it+p) = 18. Furthermore, 
the sum on the right-hand side of Freudenthal's formula consists of only one 

1 Consequently - 1. term, namely (#'~-O~1, O~l)m~..~-o~ 1 and this equals 5" m~-~l  

We can of course continue calculating weights and multiplicities using 
Freudenthal 's formula. However, by Theorem 8.4.2 we have that  g(it) has 
the same multiplicity as It for all g C W((I)). So in general it is a good 
idea after having calculated the multiplicity of a weight, to calculate the 
orbit of the weight under W(O) (using the techniques of Section 8.6). This 
way we only have to calculate the multiplicities of the dominant weights 
with Freudenthal 's formula; the other weights all lie in the orbit of some 
dominant weight. 
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8 . 9  M o d i f y i n g  F r e u d e n t h a l ' s  f o r m u l a  

Let V be the irreducible highest-weight module over L of highest weight A. 
In this section we modify Freudenthal 's formula so as to reduce the work 
needed for computing the weight multiplicities of V. We start with a lemma. 

L e m m a  8.9.1 Let V be an irreducible highest-weight module of L. Let 

it E P ( V )  and a C ~,  then 

o o  o o  

- ~ ( ~  - j . ,  . )~n._ j .  = ~ ( ~  + j . ,  . )~n.+j .  + (~, ~),%. 
j = l  j = l  

P roo f .  We let xa be as in the proof of Theorem 8.8.1. Again we let r denote 
the representation of L afforded by V and we use Tru(ba) - Trw(ab)  for 
linear maps a -  U -+ W and b" W ~ U. Hence 

T r y .  r162 - T,:v._o r162  

= Trv,_~ ( r 1 6 2  - r  (by (8.6)) 

= - ( ~  - ~, ~)m._~ + W~v._o r162 

From this we have that  
oo 

j = l  

By (8.6) however, T r y , r 1 6 2  T r y , r 1 6 2  Trv, r  Now 
using the expression for Try, r162  derived in the proof of Theorem 
8.8.1, we arrive at the statement of the lemma. [2 

Let # be a weight of V and consider the term (# + j a ,  ~)mt~+ja appearing 
in Freudenthal 's formula. Let g be an element of the stabilizer of # in 
W(~) .  Then by Theorem 8.4.2, mtt+ja - mt~+jg(a ). So since g leaves 
the inner product ( , ) invariant, we have (# + j g (a ) ,g (a ) )m~+jg(a)  = 
(it + joL, o~)mtt+j a. As a consequence we only have to calculate the terms 
(it + joL, ol)mtt+j a for representatives a of each orbit in �9 of the stabilizer 
of it. We note that  by Proposition 8.3.9, the stabilizer of it in W((I)) is 
generated by ra i where ai C A is such that  (ai, it) = O. 

Let I be a subset of {1, . . .  , 1}. Let OI be the subset of �9 consisting of 
all roots that are linear combinations of the c~i with i E I. Then (I) I is & 
root system in its own right, with simple system {c~i I i C I}. By Wi we 
denote the subgroup of W(O) generated by rai for i E I. Then Wi is the 
Weyl group of ~I.  
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For I C {1, . . .  ,/} let W i- be the group generated by WI along with -1 .  
By W/.c~ we denote the orbit of W / c o n t a i n i n g  a (and similarly for Wi.c~). 
Let c~ C �9 and set O - W  7 . a .  I f a  E ~I,  t h e n - c ~ C  W i ' c ~ a n d h e n c e  

l O - Wi.c~. Now suppose that  c~ r  and write c~ = ~-~'~i=1 kiai. Then there 
l 

is a n i 0  ~ I s u c h t h a t  kio ~ 0 .  L e t / 3 C  W i ' a a n d w r i t e / 3 - ~ i = l m i a i .  
Then mio - kio and consequently WI" (~ is entirely contained in �9 + (if 
c~ > 0) or entirely contained in ~ -  (if c~ < 0). So O = WI" c~[.J-Wx �9 a, 
where the union is disjoint. 

P r o p o s i t i o n  8.9.2 Let V be an irreducible highest-weight module over L 
with highest weight ~. Let # C P(V) ,  and let I C { 1 , . . . ,  l} be such that rai 
for i E I generate the stabilizer of # in W(O) (cf. Proposition 8.3.9). Let 
0 1 , . . .  , Or be the orbits of W[- inside ~. For 1 <_ i <_ r let "~i be a positive 
root lying in Oi. Then 

) mr, r ( (~  ~ + p) - (# + + p) - ~ ]Oil E ( #  + j~/i, 9/i)mu+j~. + P, P, # 
i--1 j--1 

P roo f .  We suppose that  the first s orbits are contained in ~ t  and the other 
orbits not. Then O1 U-- .  t_J Os - ~I. For i < s we have Oi - Wt '~/ i  and 
for i > s, Oi - WI'~/i t 2 -WI '~ / i  (disjoint union). Using Lemma 8.9.1 it is 
straightforward to see that  Freudenthal 's formula is equivalent to 

c ~  

(~, ~ + 2p)~n, - Z Z (" + J~' ~)'~,+J~ + (" ' ) '~ '"  (S.S) 
aE<I, j = l  

For g C W1 we have (# + jg(a) ,  g(a))  - (# + j a ,  a) and m,+jg(a) = m,+ja.  
So dividing �9 into disjoint Wi-orbits we see that  the double sum of (8.8) is 
equal to 

8 C<3 

E IwI" 9/il E (#  + jTi, 7i)mu+j~, + 
i=1 j=~ 

r c~3 

Iw. . ~ 1 Z  ((" + Y~, ~ ) ~ . + ~  + (" - J~' - ~ ) ~ . - ~ , )  
i = s + l  j = l  

Now by Lemma 8.9.1 this is equal to 

8 OO 

IWI " 9/il ~ ( #  + j~/i, ~/i)mu+j~ + 
i : 1  j : l  

IWt " 7il 2 E (  # + jTi, 9/i)m,+j~ + (#, 7i)mu �9 
i = s + l  j = l  
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Now we collect the coefficients of m~ together. In the first summand there 
are none, and in the second sum the coefficient of m~ is 

r 

i--s+l aEO+\r aEO+ 

(In the first equality we have used the fact that Wt '7 i  C ~+, and that these 
orbits exhaust ~+ \ ~+. In the second equality we have used (#, c~j) - 0 for 
j E I.) Now since 21WI. 7 i l -  IOil for i >_ s + 1 we arrive at the formula of 
the proposition. El 

R e m a r k .  If I is empty, then the group W /  only consists of two elements 
and each orbit is of the form {• In that case the formula of Proposition 
8.9.2 reduces to Freudenthal's formula as given in Theorem 8.8.1. So we 
benefit most of Proposition 8.9.2 if the group W~ is large, i.e, if there are 
many simple roots c~i such that (c~i, #) - 0 .  

Proposition 8.9.2 gives us an algorithm for calculating the multiplicities 
of the dominant weights of the highest-weight module V with highest weight 
A. Using the algorithm DominantWeightsOfHWModule we calculate the set 
D of dominant weights of V. We order the set D according to increasing 
level. Then dealing with the weights in D in the order in which they appear 
in D, we calculate m u for # C D. First we determine the set I of indices 
i such that (#, ai) = 0. Furthermore, we calculate the orbits of W 7 in ~. 
Then we use the formula of Proposition 8.9.2. Let (# + jvi ,  7i)m#+j~i be 
a term occurring in this formula. If # + jvi  is dominant, then we already 
know its multiplicity because the level of # + jvi  is smaller than the level 
of #. On the other hand, if # + jTi is not dominant, then we calculate 
the dominant weight u conjugate to it under W(O) (using the algorithm 
ConjugateDominantWeight). Since by Proposition 8.3.9, g(u) <_ u for g C 
W(~)  we see that # < # + jv i  <_ v. So the level of L, is smaller than the level 
of # and therefore we already know the multiplicity of ~,. Furthermore, by 
Theorem 8.4.2, the multiplicity of # + jvi is equal to the multiplicity of ~,. 
We call this algorithm DominantWeightMultiplicities. 
R e m a r k .  Once the multiplicities of the dominant weights have been com- 
puted, the other multiplicities follow. Indeed, by Theorem 8.3.5, any weight 
is conjugate to a dominant weight, and by Theorem 8.4.2 conjugate weights 
have equal multiplicity. 
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E x a m p l e  8.9.3 Again we consider the Lie algebra L of type G2 of Example 
8.8.4. We let V be the highest-weight module with highest weight A - 
AI+A2. As seen in Example 8.7.4, the dominant weights of V are A = AI+A2, 
A--aI--OL2 ~- 2AI, A--2al--a2 = A2, A--3al--2a2 = AI, A--5OLI --30L2 -" O. 
We have that ra~ (A1) --  --A1 -{- A2 and ra2(A2) -- 3A1 - A2 (ra~(Aj) = Aj if 
j ~t i). 

Supposing that we know that the multiplicities of the weights 2A1 and 
),2 are both 2 we calculate the multiplicity of ),1. The stabilizer of >,1 in 
W(~)  is generated by r~2, so we set I - {2}. The orbits of W /  in ~ are 
:k{al, a l  + a2}, •  q-{2al + a2} and i ( 3 a l  § a2, 3al  + 2a2}. As orbit 
representatives we choose a l ,  a2, 2a1 + a2 and 3a l  + a2. We calculate the 
contribution of the term of a l  to the sum on the right hand side of the 
formula of Proposition 8.9.2. We have that a l  - 2 A 1 -  A2. So the term 
for j = 1 becomes (3A1 - ),2, 2A1 - A2)m3~,-x2. Now u = 3A1 - A2 is not 
dominant, so we calculate the dominant weight to which it is conjugate by 
the algorithm ConjugateDominantWeight. We have (u, a2) - - 1  < 0 so we 
se t  Vx ---- r a 2 ( v  ) ~-- )~2 which is dominant. Therefore m3x~-x2 = m~2 = 2. 
The inner product evaluates to 1 so the term for j - 1 contributes 2 to the 

5 . Now sum. For j = 2 we get (5)~1 -- 2A2, 2A1 -- A2)m5A1-2A2 -- ~mbAx-2A2 
5A1 - 2A1 is conjugate to A1 + A2 so that mbA,-2A2 -- 1. For j - 3 we have 
A1 + 3al  = 7A1 - 3A2. This weight is conjugate to the dominant weight 
2A1 + A2, which is not a weight of V. So we need not go further with the 
term of a l .  The W/-orb i t  containing a t  has size 4, so we have to multiply 
the contribution of a t  by 4. We leave calculating the contributions of a2, 
2al + a2, 3a l  -+-a2 to the reader. Also we have (A 1 + p,/~1 -[-P) : ~'~- Using 
this we arrive at 

5 8 
10m~ = 4 ( 2 + ~ ) + 2 . 4 + 2 . ~ + 4 . 3 = 4 0 .  

The conclusion is that m ~  - 4. In a similar way we can determine the 
multiplicity of the weight 0; we get m0 -- 4. So we have calculated the 
multiplicities of all dominant weights of P(V), and hence by taking their 
orbits under W(~)  we get the multiplicities of all weights of V. Multiplying 
the multiplicities of the dominant weights by the sizes of their orbits we see 
that the dimension of V is 64. 

8.10 Weyl's formulas 

We recall that P is the set of weights; it consists of all elements of the 
form t ~ = 1  niAi where ni E Z, and A1,... , Al are the fundamental weights. 
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We note that  the set P is a group under addition. In this section ]Ir will 
denote the group algebra of P over the real numbers, i.e., Iir is the set of 
all elements E ~ E P  ClZe~, where c~ E I~ and % - 0 for all but finitely many 

# E P.  On ]tCJ ~ we have a multiplication given by e ~.  e I' - e ~+~. This 
multiplication makes RP into a commutative associative algebra with one 
(the identity element be inge~ Set ei - e ~ for 1 < i < l. Let # E P+ 

l (the set of dominant weights), then # - ~i=1 niAi where ni >_ O. Hence 
e~ _ elnl.. ,  e~. It follows that  the linear span of the e~ for # E P+ is 
a subalgebra of ItCP isomorphic to the polynomial ring ~ [X1 , . . .  , Xl]. We 
denote this subalgebra by ]tCJ~+. If a E ~ is an arbitrary element, then we 

rl can write a = (e~l . . -e l  )- lb,  where ri >_ 0 and b lies in Iir From this 
it follows that  ]lCJ ~ does not have zero-divisors (i.e., there are no non-zero 
a, b E ~ such that  a b -  0). 

Now let V be a finite-dimensional module over the semisimple Lie alge- 
bra L. Then V is the direct sum of weight spaces V~ for # E P.  We set 
m~ = dim V~. Then 

Xv = ~ m~, e~' 
~EP 

is called the formal character of V. In this section we will obtain a formula 
for Xv if V is an irreducible highest-weight module over L with highest 
weight A. 

The Weyl group W((I)) acts on ~J~ by g(e ~') - egO'). It is straightforward 
to see that  g(e~e ~) = g(e~)g(d ') so that g is an automorphism of I f~ for all 
g E W((I)). For g E W((I)) let the sign of g be the determinant of the action 
of g on the space spanned by the roots. Since the eigenvalues of a reflection 
are i l ,  and W((I)) is generated by reflections, the sign of g E W((I)) is +1. 
We denote the sign of g by sn(g). Note that  the sign of a reflection is - 1 .  
An element a E ]lCJ ~ is called symmetric if g(a) = a for all g E W((I)), and it 
is called alternating if g(a) = sn(g)a for all g E W((I)). 

E x a m p l e  8.10.1 The character Xv of an L-module V is symmetric by 
Theorem 8.4.2. Set 

Q = e-P 1-[ (ea - 1) = e p H (1 - e - a ) .  
a>O a>O 

Let a/ E A be a simple root. Then by Corollary 5.7.2, r~ i (p) - p -  a/. 
Furthermore, by Lemma 5.7.1, r~i permutes the positive roots other than 
ai and it sends a / t o  -a~.  So 

r~(Q)  - ( ~  r o (e~ - l ) )  ( e -~  - l )e-Pe~ - -Q" 
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Consequently r,,(Q) - sn(ra,)(Q), and since the ra, generate W(O) this 

means that  Q is alternating. 

Set 
a -  E sn(g)g 

gEW(~) 

which is a linear transformation of I ~ .  For h E W(O) we calculate 

o h -  E sn(g)gh=(sn(h))-I E sn(gh)gh=sn(h)a. 
gew(r gew(r 

And in the same way we see that ha = sn(h)a. Hence for a E IRP and 
h E W(O) we have h(a(a)) = sn(h)a(a) and therefore a(a) is alternating. 
Furthermore, if a E IRP is alternating, then a(a) = ~-~-geW(r 2a - 
IW(O)la. As a consequence any alternating element is of the form a(a) for 
an a E IRP. This means that any alternating element a can be expressed as 

a linear combination of the form 

E cua(eU)" (8.9) 
#EP 

But ah - i a ,  so the e ~ in (8.9) can be replaced by a W(r 
It follows that any alternating element can be expressed as a linear com- 
bination of the form (8.9), where the # are from P+ (cf. Theorem 8.3.5). 
Suppose that for such a # we have (#, hi/ = 0 for some simple root hi. 
Then r~i(#) = # and hence a(e ~) = -arai(e ~) = -a(eU), and therefore 
a(eU) = 0. So if a E I i~ is alternating, then by applying the operator 

1 iw(e)la to a we obtain an expression for a of the form (8.9). By replacing 

the e" by a conjugate under the Weyl group (if necessary) we obtain an 
expression for a of the form (8.9) where (#, c~i) > 0 for all # occurring in 

the expression, and all simple roots c~i. 

Proposition 8.10.2 Q -  a(eP). 

Proof .  We have that Q is a linear combination of terms of the form e u 
where # - p -  ~-~a>0 ~ac~ where ca is 0 or 1. Now any conjugate of such a 
# under W (~) has the same form. Indeed, since the ra~ generate W(O) it 
is enough to show that rai (#) is again of the same form. But because ra~ 
permutes the positive roots other than ai (Lemma 5.7.1) we have 
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If ~a~ - 1, then  77a~ = - 1  and 5a~ - 0. And if ~a~ - 0, then  ~a~ - 0 and 
~ai - 1. 

Since Q is a l ternat ing,  after applying the opera tor  1 iw(~)l a to Q, we 
get an expression for Q of the form (8.9) where all # are of the form # = 

P - ~-~a>0 cac~. Since any W(O)-con juga te  of such a # is of the same form, 
we may assume tha t  (#,c~i) > 0 for 1 < i _< I. Wri te  # - p - ~  where 

- )-~a>0 cac~ = )--~li= 1 kiai ,  where the ki are non-negat ive integers. T h e n  
0 < {#, c~i) - (p, c~i) - (~, c~i) = 1 - (rl, c~i) (aft L e m m a  8.3.8) and  since 
(~, hi)  E Z we have tha t  (r~, hi)  < 0. Therefore,  

l l 
1 

0 < - = < 0 .  

i = 1  i = 1  

And it follows tha t  77 = 0 and Q - ~a(e p) for some ~ E l~. But  

~ew(~) 

By Propos i t ion  8.3.9 together  wi th  L e m m a  8.3.8 it follows tha t  g(p) ~ p 
unless g = 1, and  if g ~ 1, then  g(p) < p. So a(e  p) = e p + ~-~,<p c , e  t'. But  
from the definition of Q it follows tha t  Q = e p + ~-~,<p d~e ~. Therefore  
must  be 1 and Q = a(ep).  

Let W be the real Eucl idean space spanned  by the roots. We consider 
the tensor  p roduc t  W | ] l~ .  The  elements of ~ act on this space by 

a 

i i 

for a, bi E ]RP and vi E W. Also we use a bil inear map  ( , ) �9 W | ~ x 
W | ~ --+ I~P given by 

(v @ a, w | b) - (v, w)ab 

where the brackets  on the r igh t -hand  side denote the bil inear form on W.  
We have the relat ions (c(v | a), w @ b) - c(v | a, w @ b) - (v | a, c(v | b)) 
f o r a ,  b, c E ~  a n d v ,  w E W .  

The  gradient  of ] t ~  is the linear map  G "  ~ --+ W | ] t~  given by 
G(e ~) = # | e ~. Fur thermore ,  the Laplacian of ~ is the l inear map  
A �9 ~ --+ 1t~ defined by A (e t') = (#, #) e ' .  We calculate 

G(e)~et, ) - G(e),+t,) _ ()~ + # ) @  e)'e t~ 

= )~ | e )'et~ + # | e ~ e t~ 

= e~G(e ~') + e)'G(et~). 
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So since G is linear we have G(ab) = aG(b) + bG(a) for all a, b E I ~ .  Also 

A(e e.) - + . ,  ), + 

= (A, A)e)~e t~ + 2(A, #)e'Xe" + (#, #)e'Xe t~ 

= e"A(e ~) + 2(X | e ~, # | e") + e~A(et~). 

And because (A | e ~, # | e") = (G(e x), G(e tt)) we see, by linearity, that  

A(ab) - aA(b) + bA(a) + 2(G(a), G(b)) for all a, b E I ~ .  (8.10) 

Now we let V be an irreducible highest-weight module over L with highest 
weight A. Since Y~'~ac~ a - 0 we have also Y ~ c ~  (P, a )m~ = 0. Hence, using 
(8.8) we see that  Freudenthal 's  formula is equivalent to 

(:x) 

(A, A + 2p)m~ - E E (# + ja' a)mt~+Ja + (#'#)mt~" 
aE~ j=0 

We multiply the left-hand side and the right-hand side by e t' and sum over 
# E P,  to obtain 

oo 

#EP c~Er j=0 

(8.11) 

Now 

H (ea- 1)= H(ea- 1) H(e-a- 1)= eQ2 
a E O  a > O  a >O 

where e = 1, or e = - 1 .  We multiply (8.11) by eQ 2 and obtain 

c(A, A + 2p)xuQ 2 - e A ( x v ) Q  2 = 
O(3 

E E E (# + ja, a)mt~+ja(et~+a - e  t~) H (eft - 1). 
a E O  p E P  j = 0  fl~=a 

(8.12) 

Now fix an a E ~. For a moment forgetting about the factor l-I~r fl - 1), 
the coefficient of e t~+a in the expression on the right of (8.12) equals 

oo o(3 

E ( #  + jo~,o~)mt~+ja -- E (  # + (j + 1)a, a)mt~+(j+l)a - - ( # ,  o~)mt~. 
j =0 j =0 
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Consequently, the right-hand side of (8.12) is equal to 

H (d - = 

c~Er fl#a ,uEP 

( ~ ( a | 1 7 4  - 
flr #E P 

(eG(Q2), G(Xv)) - 2e(QG(Q),  a ( x u ) ) .  

So (8.12) is equivalent to ()~,)~+2p)xvQ2-Q2A(xv) - 2Q(G(Q),  G ( x v ) ) .  
Since Q ~ 0 and 1I~ does not contain zero-divisors we may divide this re- 
lation by Q. Using (8.10) we get 

()~, A + 2 p ) x v Q  - Q A ( x v )  = A ( Q x v )  - Q A ( x v )  - x v A ( Q ) .  

If we set f = Q x v ,  then this means that (,~, A + 2p) f  - A ( f )  - X v A ( Q ) .  
But by Proposition 8.10.2, Q = Y~gEw(~)sn(g) eg(p) and since (g(p), g(p)) - 
(p, p) this implies that  A(Q)  = (p, p)Q. Therefore 

(~ + p,~ + p ) f  -- A ( f ) .  

Now Xv - E # E P  m~ e~ and Q = ~-~gEw(r By multiplying 
these expressions we see that x v Q  is a linear combination of terms of the 
form e#+g(p). We calculate 

A(e#+g(p)) -- (# + g(P) ,#  + g(p) )e  #+g(p) 

= (g-1 (#) + p, g-1 (#) + p)eU+g(p). 

So e ~+g(p) is an eigenvector of A with eigenvalue ( g - l ( ~ )  + p , g - l ( # )  + 
p). Above we saw that  f is an eigenvector of A with eigenvalue (~ + 
p, ~ + p). So since eigenvectors belonging to different eigenvalues are linearly 
independent, we have that  f is a linear combination of elements e I~+g(p) such 
that (g- l (#)  + p, g - l ( # )  + p) _ ()~ + p, ,~ + p). But by Lemma 8.8.3 this 
implies that  g - l (# )  _ ,~ and hence f is a linear combination of elements 
eg(~+p). 

Since the elements of W((I)) act as automorphisms of ~ we have that  a 
product of a symmetric element and an alternating element is alternating. 

1 a ( f )  So because In particular, f is alternating. As a consequence f - Iw(r �9 

a(e g(~)) - a(e ~) for all g E W((I)), we see that 

f - 77a(e~+p) - ~7 ~ sn(g)e a(~+p) 
gEw(~) 
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for some r/E I~ Now by Proposition 8.3.9 together with Lemma 8.3.8 we 
have that g(), + p) < A + p if g r 1. Hence the coefficient of e ~+p in f is 
~?. But the coefficient of e ~+p in xvQ is 1. Therefore r / -  1 and we have 
proved the following theorem. 

T h e o r e m  8.10.3 (Weyl ' s  cha rac t e r  formula)  Let V be an irreducible 
highest-weight module over L with highest weight A. Then 

Xv E sn(g)eg(P)- E sn(g)eg(~+P)" 
dEw(C) dEW(C) 

T h e o r e m  8.10.4 (Weyl ' s  d imens ion  formula)  Let V be as in Theorem 
8.10.3. Then 

dimV = U (a,A +p)  p) 

Proof .  By ~[[t]] we denote the ring of formal power series over ]R in the 
indeterminate t. It is the set of all formal expressions )--~i>0 ai ti where ai E 
JR. We consider the homomorphism { �9 ]I([[t]] --+ R given by ~(~i>0 ai ti) - 
a0. Also for # e It~ we have a linear map ~ "  ~ --+ lR[[t]] defined by 

f~(e ~) = exp(A, #)t = E ~. ((A, #)t) k 
k=0 

Since exp(vh t+~2t) = exp(~lt) exp(~2t) we have that ~ is a homomorphism, 
i,e., ~(e~e ~) = ~(e~)~(eV). Now because Xv - Y~eg  m~ e~ we see that 
~u(XV) : E#EP m~ exp(#, v)t. Therefore ~(~v(Xv)) = E#eP  mt~ -- dim V. 

Now we apply ~{v to Weyl's character formula. First we calculate 

r E sn(g)exp(g(#),v)t 
dew(c) 

= E sn(g) exp(g - l (v ) ,# ) t  
dew(c) 

= 
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Using this and Proposition 8.10.2 we calculate 

a>O 

= exp(-p,  #It H (exp(a, #)t - 1) 
a>O 

= i ~  (exp ~1 (a, #)t - exp - 21 (a, #)t) . 
a > 0  

So if we apply ~p to Weyl's character formula we get 

1 1 
~p(Xv) I I  (exp ~(a, p)t  - e x p - ~ ( a ,  p)t) = 

a > o  

1-i (exp ~1 (a, A + p)t  - exp - 21 (a, A + p)t) .  
a ) 0  

(8.13) 

But 

1 l(a,  )t) (H(a  #))t k O(t  k+l H (exp ~(a, #)t - e x p - ~  # = , + ), 
a > 0  a > 0  

where k is the number of positive roots. So if we divide (8.13) by t k we get 

6 (x- )  H p) + o(t) = 1-[ + p) + o(0. 
a > 0  a > 0  

To this expression we apply the homomorphism r which gives us Weyl's 
dimension formula. [::] 

Weyl's character formula could in principle be used to obtain the char- 
acter of an irreducible highest-weight module. However, the sum over the 
Weyl group and the need to divide two elements of ~ make this formula 
rather difficult to use. To obtain the character of an irreducible highest- 
weight module, Freudenthal's formula is much more practical. However, 
Weyl's dimension formula provides us with an efficient algorithm for ob- 
taining a polynomial p ( X 1 , . . .  , X l )  such that p ( n l , . . .  , nl) is the dimension 
of the highest-weight module with highest weight A = n: A1 + "'" + nlAl. 

Algorithm DimensionPolynomial 
Input" a semisimple Lie algebra L with root system �9 of rank l. 
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Output  a polynomial p ( X 1 , . . . ,  XI) such that  p ( n l , . .  �9 nz) is the dimension 
of the irreducible highest-weight module over L with highest weight A - 

n l / ~ l  + ' "  + nl/~l. 

Step 1 Set p "-  11 and for each positive root a do the following: 

Step la  Write a - ~-].li= 1 k i o ~ i  . 

Step lb Multiply p by the polynomial 

i=1 ki(Xi + 1)(ai, ai) 
1 

~-~i= l ]r ( O~i , (Yi ) 

C o m m e n t s :  Set A - X1A1 + . . .  + XiAt, which is an element of the 
1 vector space R(X1 , . . .  , X1) | RP. Let a - }-~i=1 kiai be a positive root. 

l Since p -  ~ i = i  Ai we have that  

(A + p, a) ~-~t ki(Xi + 1)(ai ai) i=1  

(p, 

E x a m p l e  8.10.5 Let L be the simple Lie algebra of type G2 of Example 
8.8.4. Since in Weyl's dimension formula the form ( , ) appears both in the 
numerator  and in the denominator, nothing changes if we multiply it by a 
positive scalar. So we may use the values of ( , ) as given in Example 8.8.4. 
Then the polynomial we get is 

(X1 + 1)(X2 + 1) 
X1 + 1 + 3(X2 + 1) 2(X1 + 1 ) +  3(X2 + 1) 

4 5 
2(X1 + 1 ) +  2(X2 + 1)2(xl  + 1 ) +  4(X2 + 1) 

4 6 

If we take X 1  - -  1 and X2 - 1, then we get 64, in accordance with Example 
8.9.3. 

8.11 T h e  formulas  of  K o s t a n t  and R a c a h  

Let A C P+ be a dominant weight, and let V be the irreducible highest- 
weight module over L with highest weight A. In this section we derive two 
more formulas for the multiplicity mu = dim V~ of a weight p C P. 

Let # C P,  then by p(p) we denote the number of ways of writing 
# = ~ > 0  k~a, where the ks are non-negative integers. So p(0) = 1, and 
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p(#) = 0 if # cannot be written as a linear combination of positive roots 
with non-negative integer coefficients. 

We consider the series ~-~t, cg P(#) et*, which satisfies the identity 

E P(#)et' - H (1 + ea + e2a + " "  )" 
pEP a>0 

But (1 - e a ) - I  _ 1 + e a + e 2a + . . . ,  and hence 

(tL~Epp(#)eP) (17>o( l -- ea) ) --1. (8.14) 

Let ~ �9 ItCJ ) --+ ]RP be the automorphism given by ~(e p) - e -p. We apply 
to the left-hand side and the right-hand side of Weyl's character formula 

and multiply by e p to get 

(Empe-P)(E~w(Sn(g)eP-g(P)) - Esn(g)eP-g(~+P). (8.15) 
pEP g ) gEW((I)) 

By Proposition 8.10.2, Y~gEW(O)sn(g) eg(p) -- ep 1-Ia>0( 1 - e -a )  �9 To this 
relation we apply the automorphism ~ and obtain 

E sn(g)eP-g(P) = H (  1 - 
gEW(~) ~>0 

We substi tute this in (8.15), multiply on the left and on the right by 
EpEP P(#) ep, and use (8.14) to obtain 

E m p e - P -  ( E~w(o sn(g)eP-g(;~+P)) ( E p ( # ) e  p) 
pEP g ) \pEP 

- E E sn(g)P(#)eP+P-g()'+P)" 
pEP gEW((I)) 

Now by comparing the coefficient of e -p on the left and the right we 
obtain the following theorem. 

T h e o r e m  8.11.1 ( K o s t a n t )  Let )~ E P+ be a dominant weight and let V 
be the irreducible highest-weight module over L with highest weight )~. Then 
the multiplicity of the weight # E P is given by 

rrt# - E  
gEW(~) 

sn(g)p(g(  + p) - , --  p ) .  
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The next lemma contains a useful recursion formula for the numbers 
p(#). 

L e m m a  8.11.2 Let 0 r # E P be a non-zero weight. Then 

- -  E 
l#gCW(q))  

sn(g)p(# - p + g(p)). 

Proof .  Set ), - 0, and let V be the irreducible highest-weight module over 
L with highest weight ;~. Then m _ ,  = 0 and hence by Theorem 8.11.1, 

E s - ( 9 ) p ( 9 ( p )  + - p)  - 0 .  

And this implies the lemma. 

P r o p o s i t i o n  8.11.3 (Racah) Let ~ C P+ and V be as in Theorem 8.11.1. 
Then the multiplicity of the weight # C P is given by 

mtL = -- E sn(h)rntL+P-h(o) " 

Proof .  By combining Theorem 8.11.1 and Lemma 8.11.2 we get 

?Tb# ~- E E 
tr 9eW(~) 

sn(g)sn(h)p(g(ik + p) - # -  p -  p + h(p)). 

However, by using Kostant's formula again we have that the right-hand side 
is equal to 

- Z sn(h)mu+p-h(P)" 
~r 

[3 

We can use Racah's formula to calculate weight multiplicities in a man- 
net similar to Freudenthal's formula. That  is we start with the multiplicity 
of the highest weight ~, and when computing the multiplicity of tt 5r ~ of 
level n we assume that the multiplicities of the weights of levels 0 , . . .  , n -  1 
are known. We note that by Proposition 8.3.9 together with Lemma 8.3.8 
we have that p > h(p) for all 1 r h E W(~).  So tt + p -  h(p) > #, and by 
assumption we already know m~+p-h(p). 

Both Kostant's and Racah's formula can be used to calculate the weight 
multiplicities of an irreducible highest-weight module. We refer to [5] for a 
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discussion of practical experiences with these formulas. In this paper the 
authors conclude that  the formulas by Freudenthal and Racah are more 
efficient than Kostant 's  formula because of the need to calculate the values 
of the function p for the latter formula. Furthermore, the size of the Weyl 
group increases rapidly when the rank of the root system increases. Because 
of this Freudenthal 's formula is usually more efficient than Racah's formula 
when the rank of the root system is bigger than 3. 

8.12 D e c o m p o s i n g  a tensor  product  

Let A C P+ and let V be the irreducible highest-weight module over L with 
highest weight A. The formal character of V, Xv is also denoted by X~. 
Because X~ is the character of an irreducible L-module, we say that  X~ is 
an irreducible character. 

Let A1, A2 C P+, and let V1, V2 the highest-weight modules over L with 
highest weights A1, A2 respectively. The character of V1 @ V2 is XA1 + XA2. 
So taking the direct direct sum of L-modules corresponds to taking the sum 
of their characters. Let V be any finite-dimensional L-module. Then V is 
completely reducible (Theorem 4.4.6). This means that  V decomposes as a 
direct sum of irreducible L-modules 

where Vi en~ denotes the direct sum of ni copies of the irreducible module 
~ .  Hence the character Xv of V can be written as a sum 

X V  - -"  n l X . ~  1 - '~  " " " -~- n s x ) ~  s 

where the Ai is the highest weight of Vi. Also if A C P+, then X~ - A + 
~-]~<A m~ eu. Hence characters belonging to different irreducible highest- 
weight modules are linearly independent. So the expression of Xv as a sum 
of irreducible characters is unique. It follows that the decomposition of 
Xv as a sum of irreducible characters gives us the number of irreducible 
components of V together with their highest weights. 

There is a straightforward method for decomposing the character of V 
as a sum of irreducible characters. As before, by P(V) we denote the set 
of weights of V. From the knowledge of the character of V we can obtain 
this set. Let p E P(V) be a weight that is maximal with respect to the 
order _~ defined in Section 8.1. Let va C V be a weight vector of weight 
#. Then x~.v~ = 0 for all roots a > 0. Hence # is the highest weight of 
an irreducible submodule W of V. So we have obtained the highest weight 
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of one irreducible component of V. By Proposition 4.4.5 there is an L- 
submodule U C V such that  V = U | W. Now the character Xu of W can 
be found by Freudenthal 's formula. Then ) iu = ) i v -  )i~, and we continue 
the process with ) iv  in place of X v .  After a finite number of steps we will 
have found the decomposition of )iv into irreducible characters. We call 
this algorithm DecompositionBySuccessiveSubtractions. 
Remark. It is possible to make the algorithm DecompositionBySucces- 
siveSubtractions somewhat more efficient by starting with the dominant part  
of the character ) i v  (i.e., Y~t, eP+ mt'et ')" Then by a call to DominantWeight- 
sOfHWModule we only compute the dominant part  of the characters )i~ 
which we subtract  from ) iv .  

Let V1, 1/2 be irreducible highest-weight modules of L, then the tensor 
product 1/1 | 1/2 is also an L-module (cf. Section 1.12). However 1/1 @ 1/2 is 

i be a weight vector of weight #i in Vi for generally not irreducible. Let v~ 
2 )__ ( h . v ~ l ) |  2 _~_ 1 |  h 2 ) _  i - 1, 2. Let h E H, then h.  (V~l | v~2 v~2 vpt 1 -v~2 

1 | 2 is a weight vector in 1/1 | V2 (#1 +#2)(h)(v~l  | It follows that  v m v ~  
of weight P l -~- #2. So the weights of V1 | 1/2 are exactly the sums of the 
weights of 1/1 and 1/2. Therefore, if we set V = 1/1 | 1/2, then the character 
of V is given by 

E 1 2 e#l +tt2 
)iV ~ ~rY~'~l ~Yl'~2 '~ 

t*l ,/*2 EP 

i where by m ~  we denote the multiplicity of #i in Vi for i - 1, 2. Hence 
) i v  = )il)i2, where X~ is the character of Vi for i = 1, 2. So knowing the 
characters of V1 and 1/2 we can easily obtain the character of VI| Then by 
applying the algorithm to decompose ) i v  by successive subtractions, we can 
obtain the highest weights of the modules occurring in the decomposition 
of V1 | 1/2 as a direct sum of irreducible L-modules. However, this can be a 
lengthy process as the dimension of 1/1 @ V2 (which is equal to dim 1/1 dim V2) 
is generally much bigger than the dimensions of Vi, V2. It is the objective of 
this section to describe several other methods by which we can obtain the 
decomposition of the character of V1 @ 1/2 into irreducible characters. 

Let ),1,),2 and )il, )i2 be the highest weights and the characters of the 
highest-weight modules V1,1/2 respectively. Set V = V1 | 1/2 and write 

(8.16) 
:kEP+ 

This is the decomposition of X v  that  we are after. The number nx is called 
the mul t ip l i c i t y  of )i~ in ) iv .  We multiply (8.16) by ~-]geW(O)sn(g) eg(p) and 
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apply Weyl's character formula (Theorem 8.10.3) to get 

m# sn(g)eg(A2+P) -- E rts E sn(g)eg(A+P) 
9 ) )~EP+ gEW(O) 

where m~l denotes the multiplicity of it E P in V1. We use Kostant 's  formula 

�9 1 in the first term on the left-hand (Theorem 8.11 1) for the multiplicities mu 

side. Furthermore we set n~ - 0 if )~ ~ P+ and take the summation on the 
right to run over all )~ E P. Doing this we obtain 

gEw(~) 
sn(g)P(g()~l + p ) - i t - p ) e t ~ )  (gE~W(O) sn(g)eg(~2+P)) - 

E n~ E sn(g)eg(~+P)" 
)~EP gEW(~) 

But this is the same as 

E E 
#EP g,hEW(O) 

sn(gh)p(g()~l + p) - it - p)et~+h(~2+p) = 

E n~ E sn(g)eg(~+P) 
~EP aEW(~) 

On the left we substi tute A - it + h()~2 + p ) -  p, and on the right it - 
g(s + p) - p. We get 

E E sn(gh)p(g( )~1 + P) + h()~2 + p) - )~ - 2p)e )~+p = 
)~EP g,hEW(~) 

E E sn(g)ng-l(ta+P)-pela+P-- E E sn(g)ng(#+P)-P err+p" 
ttEP gEW((I)) #EP gEW((I)) 

Comparing the coefficients of e )~+p on both sides we obtain 

E sn(gh)p(g()~l+p)+h()~2+p)-A-2p) - E sn(g)ng()~+p)_p = 
g,hEW(O) gEW(O) 

n~ + E sn(g)ng(~+p)_p. 

Now if)~ E P+, then also A + p E P+. But then g(A + p) ~ P+ i fg  ~ 1 by 
Theorem 8.3.5. Hence in that case also g(A + p ) - p  r P+ and ng(~+p)_p -- O. 
So on the right-hand side we only have the term n~, and we have proved 
the following theorem. 
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T h e o r e m  8.12.1 (S te inberg)  Let )~1, )~2 be the highest weights of the irre- 
ducible highest-weight modules V1 and 1/2 respectively. Then the multiplicity 
of A E P+ in the character of V1 | V2 is given by 

E 
g,hEW(O) 

sn(gh)p(g(Xl + p )+  h()~2 + p ) -  )~-  2p). 

P r o p o s i t i o n  8.12.2 (Racah)  Let )~l, A2, V1,1/2 and n~ be as in Theorem 
1 the multiplicity of ~ in V1. Then 8.12.1. For u E P we denote by m u 

rt),-- E 
heW(O) 

sn(h)ml),+p_h(),2+p). 

Proof .  By Theorem 8.12.1 we have 

n), - E sn(gh)p(g(A1 + p) + h(A2 + p) - A - 2p) 
g,heW(O) 

- E sn(h) E s n ( g ) p ( g ( ) ~ l + p ) - ( . X + p - h ( A 2 + P ) ) - P ) .  
heW(O) geW(O) 

But by Kostant's formula (Theorem 8.11.1), this is equal to 

E 
heW(O) 

1 sn(h)m~+p-h(~2+p) " 

Now we describe a third formula for decomposing a tensor product. For 
tt E P we define s(tt) E {0, +1} as follows. If there is a 1 ~ g C W(~) such 
that g(#) = #, then s(#) = 0. Otherwise we let g E W(O) be such that 
g(#) C P+ (note that such a g is uniquely determined because, in this case, 
there are no elements in W(q)) that stabilize #); and we set s(#) = sn(g). 
Also for # C P we denote the unique element of P+ to which # is conjugate 
by {#}. 

P r o p o s i t i o n  8.12.3 (Klymik)  Let ),1,A2 and V1, V2 be as in Theorem 
8.12.1. Let X1,X2 be the characters of V1,1/2 respectively. Let m~ denote 
the multiplicity of # in 1/1. Then 

I~G P 
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P roof .  First we note that if L, C P is such that s(L,) r 0, then {~,}-p  e P+. 
Indeed, if s(L,) r 0 then the stabilizer of L, in W((I)) is trivial. But then the 
stabilizer of g(L,) in W((I)) is trivial for all g r W(O), and in particular, the 
stabilizer of {L,} is trivial. Hence for no simple root c~i we have ({L,}, c~i) = 0. 
Therefore (u, c~} > 0 for all simple roots c~, and {~,} - p  is dominant. So 
all {# + ,~2 + P} - p appearing on the right are dominant weights. 

From Section 8.10 we recall that a(u) - ~gew(e)sn(g)  eg(u)" Multiply 
~1~2 by or(p) and use Weyl's character formula (Theorem 8.10.3) to get 

iueP geW((I)) 
sn(g)eg(P+~X2)). (8.17) 

By Theorem 8.4.2 we see that }-~,eP role" - Y'~,cP m~ eg(tt) for any arbi- 
trary g C W((I)). Furthermore, if for u E P there is a g C W(O) such 
that g(~,) = L,, then there is a reflection r~ that stabilizes u. To see this 
we note that there is a h e W(O) such that h(L,) E P+. Furthermore, 
hgh -1 stabilizes h(L,) so by Proposition 8.3.9 there is a simple root c~i such 
that (c~, h(u)) = 0. Hence the reflection corresponding to h-~(c~i) stabilizes 
L,. From Section 8.10 we recall that ah(v) = sn(h)cr(L,) for all h r W(O) 
and ~, C P. So if we take h to be a reflection stabilizing y we see that 
a(L,) = 0. It follows that a(u) = 0 for all u such that S(L,) = 0. On the 
other hand, if s(L,) r 0, then let g r W(O) be such that g(u) C P+. Then 
cr(~,) = sn(g)a(g(v)) = s(v)cr({u}). Using this we see that the right-hand 
side of (8.17) is equal to 

_ 1 ( / t + ~ 2  + P )  E E sn(g)mleg(P+~2+tO- E mt~cr 
geW((I)) peP #eP 

= E m # 1 8 ( #  + )~2 + p)cr({# + )~2 + P}) 
#GP 

And again using Weyl's character formula, this is equal to 

E 
#EP 

m~s(# + )~2 + P)X{~+~2+p}-pa(P). 

After canceling a(p) the desired formula follows. [:] 

Both Steinberg's formula and Racah's formula give a formula for the 
multiplicity of a weight in the character of VI| (whereas Klymik's formula 
gives the decomposition of the character of the tensor product directly). So 
to be able to use these formulas we need a finite set of dominant weights 
that contains all weights that have non-zero multiplicity in the character of 
V1 | V2. This is provided by the next lemma. 
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L e m m a  8.12.4 Let/~1,/~2 and V1, 1/2 be as in Theorem 8.12.1. Let A be a 
weight of V1 @ V2. Then A is of the form it + A2, for some it E P(V1). 

Proof .  We recall that n~ denotes the multiplicity of X~ in the character of 
V1 | V2. From the proof of Proposition 8.12.3 we have the following identity 

#CP 

But using the fact that X1X2 is the character of 1/1 | V2 and Weyl's char- 
acter formula we have X1X2a(p) - EAEP+ n),x~a(p) - Y]~cP+ n)~a(A + p). 
Therefore we get 

E n~a(A + p) = E m l s ( #  + A2 + p)a({# + A2 + p}). (8.18) 
AGP+ #CP 

We want to compare the coefficients of e ~+p on both sides of this equation. 
However the braces on the right-hand side are inconvenient in this respect. 
We describe how to remove them. First of all, if # + A2 is dominant, then 
so is # + A2 + p and hence the braces can be removed. Now suppose that 
it + ),2 is not dominant. We may also suppose that the stabilizer of # + A2 + p 
in W(O) is trivial since otherwise s(# + A2 + p) = 0. Since # + A2 is not 
dominant there is a simple root ai such that (# + A2, ai) < 0. Also since 
A2 is dominant, (A2, ai) >_ O. Let p,q be such that rai(#) = # + pal and 
rai (A2) = A2 - q a i .  Then because (# + A2, a/} < 0 and (A2, ai) >_ 0 we have 
p > q >__ 0. Set #1 = it + (p - q - 1)ai, then ra~ (it + A2 + p) = it I + A2 + p. We 
note that itl E P(V1) by Lemma 8.7.1. And #1 r P because the stabilizer 
o f # + A 2  + p  is trivial. Since {#1 + A 2 + p }  = { # + A 2 + p }  we may 
replace {# + A2 + p} in (8.18) by {itx + A2 + p}. Because it1 > it and also 
the stabilizer of pl + A2 + p is trivial, we arrive, after a finite number of 
such replacement steps at a weight itk such that itk + A2 is dominant and 
#k + A2 + p = h(# + A2 + p) for some h G W(O). We denote itk by #'. Then 
(8.18) is equivalent to 

n x a ( ~  + p) - 
~cP+ pEP 

#+)~2 dominant 

+ + + + + p). 

ttEP 
#+A2 not dominant 

If A C P+ is such that n~ > 0, then e ~+p appears on the left with coefficient 
nx. (We note that a(A + p) has only one term e ~ with # dominant, namely 
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e ~+p. This follows from Theorem 8.3.5.) 
only if A = # + A2 for some It C P(V1). 

On the right this term appears 
E3 

Now both Steinberg's and Racah's formula give an algorithm Decom- 
poseCharacterTensorProduct for decomposing the character of the tensor 
product V1 | V2. First we calculate the set A = {# + )~2 I # C P(V1) and # + 
A2 dominant}. Then for each A E A we calculate n~ using the formula. 
Steinberg's formula is rather difficult to use in practice because of the dou- 
ble sum over the Weyl group. However, Racah's formula has proven to be 
efficient in practice. We refer to [6] for a discussion of practical experiences 
with Racah's formula. 

Now also Klymik's formula provides a method for DecomposeCharac- 
terTensorProduct. This formula does not involve the Weyl group at all. 
Furthermore, we can efficiently loop through the weights of V1 by first cal- 
culating the dominant part  of the character of V1 (by the algorithm Domi- 
nantWeightsOfHWModule), and then looping through the orbit of each dom- 
inant weight by the algorithms described in Section 8.6. For this reason 
Klimyk's formula has proven to be very efficient in practice (see [82]). 

E x a m p l e  8.12.5 Let L be the simple Lie algebra of type G2 (cf. Example 
8.7.4). Let A1, A2 be as in Example 8.8.4, i.e., the fundamental  weights. 
Let V1, V2 be the highest-weight modules over L with highest weights A1, A2 
respectively. We decompose the character of the tensor product V1 | V2 
using Klymik's formula. Using Freudenthal 's formula we see that  V1 has 
two dominant weights, namely (1, 0) and (0, 0), both of multiplicity 1. So 
the weights of V1 are the elements of the orbit of (1, 0) together with (0, 0). 
A little calculation shows that  the orbit of (1, 0) is 

W(O) - (1 ,  0) = {(1, 0), ( -1 ,  1), (2 , -1 ) ,  ( -2 ,  1), ( 1 , -1 ) ,  ( -1 ,  0)}. 

So V1 has dimension 7. Now we run through the weights of V1, for each 
weight # calculating m~s(# + A2 + P)X{t,+~2+p}-p" First Set # - (1, 0), 
then # + A2 + p = (2, 2), which is dominant. Hence s(# + )~2 + p) = 1. 
So the character we obtain is the irreducible character belonging to the 
weight (1,1). Now let # = ( -1 ,1 ) .  T h e n # + ~ 2 + p  = (0,3). But this 
is stabilized by ra 1 and hence s(# + )~2 + p) = 0 so that  this weight does 
not give us a character. Going on like this we see that  the only characters 
we get are those belonging to the weights (2, 0) and (1, 0). Also if we set 
# = ( -2 ,1 ) ,  t h e n # + ) ~ 2 + p  = ( -1 ,3 ) .  Now r a l ( - 1 , 3 )  = (1,2) so that  
s (#+)~2+p)  = -1 .  So this contributes the character belonging to (0, 1) with 
multiplicity - 1 .  However, if we set # = (0, 0) then we get the same character 
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with multiplicity 1. So these characters cancel and we have decomposed that  
character of 1/1 | 1/2 as 

X(1,1) -}- X(2,0) -}- X(1,0)- 

8.13 Branching rules 

Let K, L be semisimple Lie algebras over an algebraically closed field of 
characteristic 0. Let H be a fixed Cartan subalgebra of L (which is neces- 
sarily split). Furthermore, suppose that  there is an injective morphism of 
Lie algebras f : K --+ L. Such a map is called an embedding of K in L. 
Let V be the irreducible highest-weight module over L with highest weight 
)~. Let r denote the representation of L afforded by V. Then r o f is a 
representation of K and hence V is also a K-module. Now in general V is 
reducible as K-module.  So the character Xv of V (viewed as K-module) 
can be written as a sum 

Xv = nlx),~ + ' "  + nsx),~, (8.19) 

where the X),~ are irreducible characters (of irreducible K-modules).  Now 
the splitting of V as K-module is called branching and the decomposition 
of its character (8.19) the corresponding branching rule. It is the objective 
of this section to describe an algorithm for computing the branching rule, 
given L, K, f and V. 

Two embeddings fl ,  f2 : K --+ L are said to be equivalent if for any 
representation r of L, the representations r and r of K are equivalent. 
Equivalent embeddings yield the same branching rule, so we may replace a 
given embedding by an equivalent one. 

L e m m a  8.13.1 Let f : K --+ L be an embedding of K into L. Let H be a 
Cartan subalgebra of L and HK a Cartan subalgebra of K.  Then there is 
an embedding f '  : K -+ L such that f '  is equivalent to f and f ' (HK)  C H. 

Proo f .  Let h C HK, then adKh is a semisimple linear transformation (Root 
fact 8). Now we consider the representation adL o f : K --+ ~[(L), given by 
adL o f (x ) (y )  = [f(x), y], for x C K and y C L. Then by Corollary 4.6.4, 
also adLf(h) is a semisimple linear transformation. Also H is commuta- 
tive (Root fact 6), so f ( H )  is a commutative subalgebra of L consisting 
of semisimple elements. Hence by Lemma 4.14.2, f ( H )  is contained in a 
Cartan subalgebra H ~ of L. 

By Theorem 3.5.1 there is a g C Int(L) such that  g(H') = H. We show 
that  the embedding g o f is equivalent to f .  For that  let r : L --+ ~i(V) 



360 Representations of semisimple Lie algebras 

be a representation of L. We have to show that the representations 4)o f 
and r o (g o f)  of K are equivalent. But by Lemma 8.5.1 we have that 
the representations r and r o g of L are equivalent, so certainly r o f and 
r o (g o f)  are equivalent. [:3 

Now by Lemma 8.13.1 we may assume that the embedding f of K into 
L maps a Cartan subalgebra HK of K into the given Cartan subalgebra H 
of L. From now on we omit the map f and think of K as a subalgebra of 
L, and of HK as a subalgebra of H. 

Let p be a weight of V (viewed as L-module) with weight space V,. 
Then since HK C H, Vtt is also a weight space of V viewed as K-module. 

! ! ! 
Let xi, Yi, hi for 1 _< i _< r be canonical generators of K, where h~ C HK. 
Also let xi, Yi, hi for 1 < i _< 1 be canonical generators of L, where hi C H. 
Then we represent a weight p as a row vector (# (h i ) , . . .  ,#(hi)).  However, 
when we view V as a K-module, then we represent # as the row vector 
( # ( h ~ ) , . . . ,  p(h~r)). Now because the hi for a basis of H, there are constants 
Pij such that h ~ -  }--~l j= l Pij hj and hence 

l 

j = l  

It follows that by applying the matrix (pij) to the weights of V (viewed as 
L-module), we get the weights of V viewed as K-module. Therefore the 
matrix (pij) is called the projection matrix. These considerations lead to 
the following algorithm. 

Algorithm BranchingRule 
Input: semisimple Lie algebras K, L with split Cartan subalgebras HK, H, 

an embedding f : K  --+ L such that f ( H K )  C H, and an L-module V. 
Output: the decomposition of the character of V when viewed as a K- 
module. 

' ' ' hi of K, L respec- Step 1 Calculate canonical generators xi, Yi, hi and xi, yi, 
tively, such that h{ C HK and hi E H. 

Step 2 Calculate the projection matrix p. 

Step 3 Calculate the set of weights ft of V (viewed as L-module). 

Step 4 By applying p to each element of ft obtain the character Xv of the 
K-module V. Decompose Xv using the algorithm Decompositiongy- 
SuccessiveSubtractions, and return the result. 
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C o m m e n t s :  We note that computing the projection matrix can be done 
by solving r systems of linear equations, where r = dim HK. Furthermore it 
needs to be done once for every embedding f : K ~ L; it can then be used 
for every L-module V. Also in the algorithm we only need the character of V 
(viewed as L-module). So instead of V we can also input its highest weight. 
Then using the techniques of Section 8.9, we can compute the character of 
V. 

8.14 N o t e s  

Proposition 8.6.2 and the algorithm WeylOrbit are due to D. M. Snow ([81]). 
Proposition 8.7.3 as well as most material in Section 8.9 is drawn from [63]. 
Racah's formulas (Propositions 8.11.3 and 8.12.2) are contained in [70], [5], 
[6]. Klymik's formula appears in [51]; see also [82]. The algorithm for 
calculating branching rules in Section 8.13 largely follows [66]; see also [61]. 

Many algorithms discussed in this chapter have been implemented in 
the computer algebra package LiE (see [21]). In this package many more 
algorithms for dealing with root systems, weights and Weyl groups have 
been implemented. 
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Appendix A 

On associative algebras 

Associative algebras occur naturally when studying the structure of Lie 
algebras. Examples can be found in Sections 1.1, 1.15, 2.2, 3.7, 4.11. Apart 
from being of use for exploring the structure of Lie algebras, associative 
algebras are also interesting in their own right, and their structure has 
been an object of intensive study. In this appendix we collect parts of 
the structure theory of associative algebras. Furthermore we sketch some 
algorithms for calculating the structure of an associative algebra. 

An important  example of an associative algebra is the algebra Mn (F) 
of n x n matrices over the field F. A subalgebra of an M n ( F )  is said to 
be a l i near  associative algebra. Many associative algebras that  occur in our 
discussions will be linear. 

Let A be an associative algebra. An element e E A is said to be an 
i d e n t i t y  e l e m e n t  if ea = ae = a for all a E A. It is straightforward to 
see that  such an element (if it exists) is unique. The algebra A is said to 
be an algebra with one if A has an identity element. In many cases we 
will restrict our attention to algebras with one. However if the associative 
algebra A does not have a one, then we can embed it into an algebra with 
one in the following way. Let B0 be a l-dimensional vector space spanned 
by the element e0. Set B = B0 �9 A; where the multiplication on B extends 
the one of A and furthermore beo = eob = b for all b E B. Then B is an 
associative algebra with one; it is called the D o r r o h  e x t e n s i o n  of A. Using 
Dorroh extensions we can often translate results for algebras with one to 
algebras without a one. 

In Section A.1 we show that a finite-dimensional associative algebra has 
a unique maximal nilpotent ideal, called the radical. We give a characteri- 
zation of the radical in the case where the ground field is of characteristic 
0. This leads to an algorithm for calculating a basis of the radical. We also 
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formulate Wedderburn's structure theorem for semisimple associative alge- 
bras. Finally we prove the Wedderburn-Malcev principal theorem (which 
is an analogue of Levi's theorem) for associative algebras generated by a 
single element. This proof is used in Section A.2 where we study associative 
algebras generated by a single element. We show that such an algebra has 
a system of orthogonal primitive idempotents with sum 1. Also we describe 
the Jordan decomposition of a linear transformation, and we give an algo- 
rithm for calculating this decomposition for a given linear transformation. 
In Section A.3 we study central idempotents in a semisimple algebra. These 
central idempotents yield a decomposition of the algebra into a direct sum 
of simple ideals. We sketch an algorithm for calculating a set of primitive 
orthogonal and central idempotents with sum 1. We also show how to lift 
these idempotents modulo the radical, in case the algebra is not semisimple. 

A.1 Radical and semisimplicity 

A finite-dimensional associative algebra N is said to be nilpotent if there 
is an m > 0 such that ail ai2. . .ai ,~ = 0 for all aik E N. Let A be a 
finite-dimensional associative algebra. In the same way as for Lie algebras 
(cf. Section 2.2) it can be proved that the sum of two nilpotent ideals of 
A is a nilpotent ideal of A. From this it follows that A contains a unique 
maximal nilpotent ideal. It is called the radical of A, and denoted by 
Rad(A). If the ground field is of characteristic zero, then we have the 
following characterization of the radical of linear algebras that contain an 
identity element. 

P r o p o s i t i o n  A.1.1 Let A be a f ini te-dimensional linear associative algebra 
with one over a field of characteristic O. Then 

Rad(A) - {x e A I T r ( x y  ) - 0 for all y e A}.  

Proof .  Set I - {x e A I T r ( x y  ) = 0 for all y e A}. Let x e Rad(A). Then 
xy  E Rad(A) for all y C A and therefore xy  is nilpotent. Hence Tr(xy)  - 0  
for all y E A, i.e., x E I. To prove the other inclusion we first show that all 
elements of I are nilpotent. Let x C I, then since Tr(xy)  - 0 for all y E A 
we have Tr(x n) - 0 for n > 1. Because the ground field is of characteristic 
0 this implies that x is nilpotent. Also it is straightforward to see that I is 
an ideal of A. Now any associative algebra consisting entirely of nilpotent 
elements must be nilpotent (this can be seen by analogous arguments to 
those used to prove Engel's theorem in Section 2.1). So I is a nilpotent 
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ideal of A and hence I -  Rad(A). 

Let A be a finite-dimensional associative algebra. For x in A we define 
a linear map ~(x)" A --+ A by ~(x)(y) - xy (left multiplication). If we want 
to make clear which algebra we mean we also write ~A(X) in place of t~(x). 
Using Proposition A.1.1 we can now characterize the radical of an arbitrary 
associative algebra with one of characteristic 0. 

P r o p o s i t i o n  A.1.2 Let A be a finite-dimensional associative algebra with 
one defined over a field of characteristic O. Then 

Rad(A) - {x e A ] Tr(g(xy)) - 0  for all y e A}. 

Proof .  The map t~A �9 A ~ End(A) is a faithful representation of A because 
A contains an identity element. So t~(A) -~ A and therefore the statement 
follows from Proposition A.1.1. [::] 

On the basis of Propositions A.1.1 and A.1.2 we can formulate an algo- 
ri thm Radical for calculating the radical of an associative algebra of char- 
acteristic 0. If the algebra is linear then we use Proposition A.1.1 to give 
us a set of linear equations for the basis elements of the radical. If A is not 
linear then we use Proposition A.1.2 to the same end. This algorithm does 
in general not work for associative algebras defined over a field of charac- 
teristic p > 0. For this case there are other algorithms available. However, 
discussing these would lead us too far afield and therefore we refer to the 
literature ([20], [45], [46], [47], [73]). 

A finite-dimensional associative algebra A is said to be semisimple if 
Rad(A) = 0. Let A be an associative algebra; then A/Rad(A)  is semisimple. 
This implies that if I is a nilpotent ideal of A such that A / I  is semisimple, 
then I = Rad(A). We recall that a field F is said to be perfect if F is of 
characteristic 0, or F is of characteristic p > 0 and Fp = F.  

P r o p o s i t i o n  A.1.3  Let A be a finite-dimensional associative algebra de- 
fined over a perfect field F. Let F be an extension field of F, then Rad(A | 
k) - R d(A)OF P. 

Proof .  We note that if A is defined over a field of characteristic 0, then 
this follows from Proposition A.1.2, because this result gives the radical as 
the solution space of a set of linear equations over F. More generally, let 
{ r l , . . .  ,rm} be a basis of Rad(A). Then { r l @ l , . . .  , rm |  is the basis of a 
nilpotent ideal I of A | Furthermore, (A | F)/I ~- (A/Rad(A))  @F F. 
Because F is perfect, A/Rad(A)  is a separable algebra (see [69, w But 
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this implies that ( A / R a d ( A ) ) |  is a semisimple algebra ([69, w The 
conclusion is that  I - Rad(A |  [:] 

The algebra A is called simple if A has no ideals other than 0 and 
A. A simple associative algebra with one is necessarily also semisimple. 
As an example of a simple associative algebra with one we mention the full 
matrix algebra Mn (F). Now by the next theorem, all semisimple associative 
algebras are obtained by taking direct sums of full matrix algebras. We recall 
that  a division algebra over F is an associative algebra R over F with one 
such that  for all x C R there is a y C R such that xy  = 1. A commutative 
division algebra is a field. For a proof of the next theorem we refer to [69]. 

T h e o r e m  A.1 .4  ( W e d d e r b u r n )  Let A be a f inite-dimensional associa- 
tive algebra with one over a field F.  Then A decomposes as a direct sum of 
ideals where every ideal is isomorphic to a full matrix algebra over a division 
algebra, i. e. , 

A ~ Mnl (R1) G . . .  G Mns (Rs) 

where ni > 1 and the Ri are division algebras over F.  

By the next theorem, the semisimple algebra A / R a d ( A )  can be identified 
as a subalgebra of A. It is analogous to Levi's theorem for Lie algebras. We 
prove this theorem for the case where A is generated by a single element, 
because we will need this proof later on. For the proof of the general case 
we refer to [69]. 

Theorem A.1.5  ( W e d d e r b u r n - M a l c e v  principal theorem) Let F be 
a perfect field and let A be a f inite-dimensional associative algebra with one 
over F.  Then A has a subalgebra S such that A = S ~ Rad(A). 

P r o o f .  (For the case where A is generated by a single element.) Suppose 
that  A is generated by the element a. Let fa C F[X] be the minimum 
polynomial of a, and let 

kl kr 
f ~ = P l  ""P~ 

be the factorization of fa into distinct irreducible polynomials Pi. We sup- 
pose that  the Pi have leading coefficient 1 and that  deg(pi) > 0 for 1 _< i _< r. 
First suppose that  all k~ = 1. Let b E Rad(A). Then b - p(a) for some 
polynomial p C F[X]. Furthermore b k - pk(a) -- 0 for some k > 0. Hence 
fa divides pk. But since all ki - 1 this implies that fa divides p and hence 
b = 0. So in this case Rad(A) = 0 and we are done. 

Now we suppose that  ki > 1 for some ki. Set h - P l ' " P r  and b -  
h(a). Let I be the ideal of A generated by b. We show that  I - Rad(A). 
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Set n = maxk i ,  then b n - hn(a) - 0 so b i s  nilpotent.  Now since A is 

commutat ive ,  also I is ni lpotent  and hence I C Rad(A).  By ~ we denote 

the image of a in A / I .  Let hi be the min imum polynomial  of ~. We have 

h(~) = 0 so tha t  hi divides h. But  also hi (a) C Rad(A) so tha t  hi ( a )  N - -  0 

for some N > 0. As a consequence fa is a factor of h N and this implies 

tha t  hi - h. Hence the min imum polynomial  of a generator of A / I  is a 
product  of distinct irreducibles. As argued above this implies tha t  A / I  is 
semisimple, so tha t  Rad(A) - I.  

Now we construct  an element a ~ E A such tha t  h(a ~) - 0 and a - 

a' mod Rad(A).  For this we s tar t  with the element a~ - a. Then  h(a l )  - 

0 mod Rad(A) and a - a~ mod Rad(A).  Now inductively we suppose tha t  
we have constructed an element ak E A such tha t  h(ak)  = 0 mod Rad(A) k 

and a - ak mod Rad(A).  We set ak+l -- ak + rk, where rk C Rad(A) k is to 
be determined so tha t  h(ak+l)  = 0 rood Rad(A) k+l. According to Taylor 's  

theorem for polynomials  we have 

h(ak+l)  -- h(ak + rk) -- h(ak) + h ' (ak)rk  + gr~, 

(where ~ denotes derivation, and g is a polynomial  in ak and rk). Now since 
F is perfect and h is square-free we have tha t  gcd(h, h ~) - 1. This means 

tha t  there are polynomials  p, q C FIX]  such tha t  ph  + qh ~ - 1. We set 

rk -- - -h(ak )q(ak ), then rk C Rad(A) k. Also 

h(ak+l)  -- h(ak) + h ' (ak)rk  mod Rad(A) k+l 

= h(ak) - h ' (ak )q(ak)h(ak)  mod Rad(A) k+l 

= ph2(ak)  mod Rad(A) k+x - 0 mod Rad(A) k+l. 

Since Rad(A) is ni lpotent  we will find the required element a ~ after a finite 
number  of steps. Because the min imum polynomial  of ~ is h, the min imum 

polynomial  of a ~ is h as well. Hence the subalgebra of A generated by a ~ is 
isomorphic to A / R a d ( A ) .  D 

A.2 Algebras generated by a single element 

Let V be a finite-dimensional vector space defined over the field F .  We 

recall tha t  End(V)  is the set of all linear maps a : V --+ V. In this section 

we s tudy (associative) subalgebras of End(V),  tha t  are generated by a single 
element. 

Let A be an associative algebra. An element e C A is called an idempo- 
tent  if e is non-zero and e 2 = e. Two idempotents  ex, e2 are called orthogonal 
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if el e2 - e2el - 0. It is straightforward to see that  the sum of orthogonal  
idempotents  is again an idempotent.  An idempotent  is said to be pr imi t i ve  

if it is not the sum of orthogonal idempotents.  

L e m m a  A.2 .1  Let  a C End(V) and let A be the associative algebra (with 

one) generated by a. Let  fa be the m i n i m u m  polynomial  of  a and suppose 
that 

f a  - -pk l l  " ' 'pkrr  

is the fac tor i za t ion  of  fa into irreducible factors ,  such that Pi has leading 

coeff icient 1 and pi ~ pj  f o r  1 < i, j <_ r. Then  A contains  r orthogonal 

p r imi t i ve  idempoten t s  e l , . . .  , e~ such that pki~ (a)ei = 0 and el + . ' .  + er - 1. 

kj ki P r o o f .  For 1 <_ i < r let qi be the product  of all factors pj  except Pi , i.e., 

pk~l ki-1 ki+l kr qi = " " P i - l P i + l  " " P r  �9 

Then since gcd(q l , . . .  , qr) - 1 there are polynomials h i , . . .  , hr such that  

h lq l  + ' "  + hrqr - 1. Set ei - hiqi(a) for 1 _~ i _~ r. Then  el + - ' .  + er - 1. 

Also for i ~ j we have eiej - h ih jq iq j (a )  - 0 since fa divides qiqj. Hence 

2 
- e i (e l  + . . .  + er) - ei e i �9 

Furthermore,  pk~ (a)ei -- h ~ f ~ ( a )  - O. Finally we show that  the idempotents  
ei are primitive. Suppose that  ei -- x + y, where x and y are orthogonal  
idempotents  in A. Then, since x, y E A, there are polynomials g, h E F[X]  

such that  x = g(a) and y -  h(a) .  Also eix  = ( x +  y ) x  - x and likewise 
eiy - y. Now from x y  - 0 it follows that  gh(a)  - 0 so fa divides gh. This 
implies that  Pi divides g or Pi divides h. If Pi divides g then there is an 
m > 0 such that  (qig)m(a)  = O. But x = g(a) = eig(a) = hiqig(a)  which 
entails x TM - 0, contradicting the assumption that  x is an idempotent .  If 

Pi divides h then we get a contradiction in the same way. Therefore ei is a 
primitive idempotent.  [:] 

R e m a r k .  (Notation as in Lemma A.2.1.) Let X be an indeterminate  and 

suppose that  fa - Pl""  "Pr, where Pi - X -  hi.  Suppose further that  
cq ~ c U if i r j .  In this case we can get the idempotents  via the Lagrange 

polynomials .  The i-th Lagrange polynomial is defined to be 

r 

A , ( x )  - H x - 
(~i -- (~k a=l,kr 
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Now let y l , . . .  ,yr be r arbi t rary  elements of the ground field. Then  the 
polynomial  

g - A l y l  + " "  + ArYr 

is the unique polynomial  of degree r -  1 such that  g(ai)  - Y i  for 1 ~_ i ~_ r. 
Taking all Yi equal to 1, this implies that  ~-~i Ai - 1. So if we set ei - Ai(a), 
then el + . ' .  + er - 1. Also eiej - 0 for i ~ j ,  and hence the ei are orthog- 
onal idempotents.  

We describe how the factors of the minimum polynomial  of a E End(V) 
are related to a decomposition of V into a direct sum of subspaces invariant 

under a. For a univariate polynomial  p E FIX] put 

Vo(p(a)) - {v e V Ip(a)mv - 0 for an m > 0}. 

L e m m a  A.2 .2  Let a, fa, Pi and ki for  1 ~_ i ~_ r be as in L e m m a  A.2.1.  
Then V decomposes as a direct sum of subspaces that are invariant  under 
a~ 

V - Vo(pl(a)) |  G Vo(Pr(a)). 

Furthermore, the m i n i m u m  polynomial of the restriction of a to Vo(pi(a)) 
is pkg. 

P r o o f .  Let v C Vo(pi(a)). Then there is an m > 0 such that  pi(a)mv = O. 
So pi(a)m(av)  = api(a)mv = 0 and consequently Vo(Pi(a)) is invariant under 
a .  

Let e l , . . .  ,er be the primitive orthogonal idempotents  provided by 
Lemma A.2.1. Then since el + . . -  + er = 1, 

V -  (el + . . .  + e ~ ) V -  e l V  + . . .  + e~V. 

This sum is direct because for y C e iV Clej V we have y = eiu = ejv for some 
u, v C V; and as ei is an idempotent,  we obtain y - eiu - e2u = eiejv - O. 
Also, because ei is a polynomial  in a the space e iV is invariant under  a. 
Now we prove that  Vo(pi(a)) = eiV. Let y c eiV,  i.e, y = eiz. Then by 
Lemma A.2.1, pkii(a)y -- pkii(a)eiz -- 0 and y e Vo(Pi(a)). On the other 
hand suppose that  y E Vo(pi(a)). Then y = yl + " "  + Yr where yj C e jV .  
Furthermore,  there is an m > 0 such that  

0 -- p r ~ ( a ) y  -- p r ~ ( a ) y  1 -~-. . . -~- p ~ ( a ) y r  
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and p'~(a)yj E e jV  since e jV  is invariant under a. Because V is the direct 
sum of these spaces every pm(a)yj  - O. But since, as we just proved, 

nj m nj  e j Y  C Vo(Pj(a)), also pj (a)yj = 0 for some nj > 0. Because Pi and pj 
are relatively prime this implies yj - 0  for j # i and we are done. 

Let g~ be the minimum polynomial of the restriction of a to Vo(p~(a)), 
for 1 ~ i < r. Then since Vo(Pi(a)) - e lY  and pk'(a)eiz  -- 0 for all z E V, 

ki we conclude that  Pi (a)y - 0 for all y C Vo(pi(a)). So gi divides pk~ and 
li consequently gi - Pi where li < ki. Now let g be the product of the gi for 

1 < i  < r .  F o r x C  V w r i t e x = x l + . . - + x r  wherex i  E Vo(pi(a)). Then 
g(a)x = g(a)xl  + . . .  + g(a)Xr -- 0, so that  g(a) - O. Hence fa divides g, 
forcing li > k~. [~ 

D e f i n i t i o n  A.2 .3  Let V be a vector space defined over a perfect field F.  
A linear transformation a E End(V) is called semisimple if the associative 
subalgebra of End(V) generated by a is a semisimple algebra. 

Proposition A.2 .4  Let V be a vector space defined over a perfect field 
F. Let a E End(V). Then a is semisimple if and only if the m in imum 
polynomial fa of a is square-free. I f  fa splits into linear factors over F,  
then a is semisimple if and only if there is a basis of V relative to which the 
matrix of a is diagonal. 

P r o o f .  Let A be the associative algebra generated by a. Suppose that  A 
is semisimple. If fa is not square-free, then fa = g2h where g ,h  C FIX] 
are polynomials with leading coefficients 1 and g # 1. Set p = gh, then 
p(a) 2 - 0. Let I be the ideal of A generated by p(a), then every element of 
I is of the form q(a)p(a), where q C F[X]. Hence 12 = 0 and I is a nonzero 
nilpotent ideal. But this contradicts the assumption on A. 

On the other hand, suppose that fa is square-free. Let b C Rad(A), 
then b = p(a) for a p C F[X] and b k = 0. Hence pk(a) = 0, so fa divides 
pk. Since fa is square-free this can only happen if fa divides p. But then 
b = p(a) = 0. As a consequence, Rad(A) = 0 and A is a semisimple algebra. 

Suppose that  f a ( X )  = (X  - A1)"" ( X -  At) is the factorization of fa 
into linear factors. Suppose that  a is semisimple so that  all these factors 
are distinct. Then by Lemma A.2.2, 

V - Vo(a - ) ~ 1 "  1) @. . .  �9 Vo(a - At" 1), 

and the minimum polynomial of the restriction of a to Vo(a - )~i" 1) equals 
X - ) ~ i .  Hence a acts as ),i.1 on Vo(a-)~i.1). It follows that  a acts diagonally 
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on V. On the other hand, suppose that  there is a basis of V with respect 
to which the matr ix  of a is diagonal. Then the minimum polynomial  is the 
product  of X - )~i, where Ai runs over the set of (distinct) diagonal elements 
of a. So fa is square-free. El 

C o r o l l a r y  A.2 .5  Let V, F be as in Proposition A.2.4. Let a, b C End(V) 
be two semisimple linear transformations. Furthermore, assume that a and 
b commute (i.e., a b -  ba). Then a + b is semisimple. 

P r o o f .  For this we may suppose that  the ground field is algebraically closed. 
Indeed, a, b are also semisimple elements of End(V |  F) ,  where F is the 
algebraic closure of F.  Then there is a basis of V with respect to which a 
acts diagonally. Let )~ be an eigenvalue of a, and V;~ = {v C V I a .  v = )~v} 
the corresponding eigenspace. Then V~ is stable under b since a and b com- 
mute. Furthermore,  the restriction of b to V~ is also semisimple. Hence 
there is a basis of V), with respect to which b acts diagonally. Adding these 
bases together for all eigenspaces V), of a, we obtain a basis of V relative 
to which both  a and b act diagonally. Hence also a + b acts diagonally, and 
therefore a + b is semisimple. 77 

P r o p o s i t i o n  A .2 .6  Let V be a finite-dimensional vector space over the 
perfect field F. Let a C End(V) and let A be the associative algebra with 
one generated by a. Then there are s, n C A such that 

1. s and n are polynomials in a without constant term, 

2. s is semisimple, 

3. n is nilpotent, 

~ . a - s + n .  

Also, if  fa - p k l . . . p k r  is the m in imum polynomial of a (where Pi is irre- 

ducible for 1 ~_ i <_ r). Then fs - P l " ' P r  is the m in imum polynomial of s. 
Furthermore, if a -  sl + nl ,  where Sl is semisimple and nl  is nilpotent and 
[s l ,nl]  - 0, then sl - s and nl  - n. 

P r o o f .  We let a ~, h and ak for k _> 1 be as in the (partial) proof of Theorem 
A.1.5. Pu t  s - a I and n - a -  s. The s tatement  about  the min imum 
polynomial  of s is contained in the (partial) proof of Theorem A.1.5. Hence 
by Proposi t ion A.2.4 it follows that  s is semisimple. Furthermore,  n is 
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nilpotent because a = s mod Rad(A),  and therefore n C Rad(A).  We show 

that  there are polynomials f ,  g without  constant term such that  s = f ( a )  
and n = g(a). First  of all, if the minimum polynomial  of a has a constant  

term, then we are done because in that  case we can write 1 as a polynomial  

in a wi thout  constant term. If the minimum polynomial  of a does not have 

a constant  term, then also the polynomial  h has no constant  term. From 

this it follows that  all ak axe polynomials in a without  constant term. Hence 

the same holds for the element a'. 

As a = Sl + n:  = s + n we have Sl - s = n - hi .  Since s and n are 
polynomials in a and Sl, nl  commute with a, they also commute with s and 
n. In part icular  n and n: commute. Hence n -  n: is nilpotent.  Also s and 

s: commute and since sums of commuting semisimple t ransformations are 

semisimple (Corollary A.2.5), we have that  Sl - s is semisimple. So Sl - s 

is bo th  semisimple and nilpotent and hence must be zero. [:] 

D e f i n i t i o n  A . 2 . 7  Let V and a be as in Proposition A.2.6. The decompo- 
sition a = s + n provided by Proposition A.2 .6  is called the Jordan  decom- 

position of a. 

The (partial) proof of Theorem A.1.5 gives us an algori thm for calculat- 

ing the Jordan  decomposit ion of a linear t ransformation 

Algorithm JordanDecomposition 
Input: an endomorphism a of a finite-dimensional vector space, defined over 

a perfect field. 
Output: a tuple (s, n) such that  a = s + n is the Jordan decomposit ion of 
a .  

Step 1 Let fa be the min imum polynomial  of a and let h be the product  of 

the irreducible factors of fa. 

Step 2 Compute  polynomials p, q such that  ph + qh' - 1. Set ak :-- a. 

Step 3 If h(ak) = 0 then re turn (ak, a -- ak). 

Step 4 Set ak :-- ak -- hq(ak) and re turn to Step 3. 

C o m m e n t s :  The polynomial  h in Step 1 can be computed by dividing 
fa by gcd(fa, fa~). The proofs of Theorem A.1.5 and Proposi t ion A.2.6 show 

that  the ou tput  is the Jordan decomposit ion of a. 
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A.3 Central idempotents 

Let A be an associative algebra with one. We say that  an idempotent 
e E A is central if e lies in the centre of A. Now let A be a semisimple 
associative algebra. By Wedderburn's structure theorem A decomposes as 
A = A1 @ . . .  G As,  where the Ai are simple ideals of A. So the identity 
element uniquely decomposes as 1 = el + . "  + es, where ei E Ai.  This 

2 implies that  eiej - 0 and hence ei - el(el + " "  + es) - e i , so that  the ei 

are orthogonal idempotents. Furthermore, 

A = (el + . . .  + es)A = e l A  + . . .  + e , A  

and since eiA C Ai we have that  eiA = Ai. This also implies that  eia = a 

for all a E Ai. Now for a E A we write a = al + ' . "  + as where ai E Ai,  

and calculate eia = eiai - ai and similarly aei = ai. Therefore ei is central. 
Also it is clear that  ei is not the sum of two other orthogonal idempotents 
that  are central, because otherwise Ai would split as a direct sum of ideals. 
So the decomposition of A as a direct sum of simple ideals gives us a set 
of orthogonal primitive and central idempotents with sum 1. Conversely, 
such a set of idempotents leads to a decomposition of A into a direct sum 
of simple ideals. We summarize this in the following proposition. 

Proposition A.3.1 Le t  A be a semisimple  associative algebra with one. 

Then A decomposes as a direct sum of simple ideals 

A = A1 G ' "  @ A~ 

if  and only if  there is a set of central pr imi t ive  and orthogonal idempotents  

e l , . . .  , es E A such that el + . . .  + es = 1 and Ai = eiA.  

Let A be a semisimple associative algebra with one over the field F.  It 
is the objective of this section to describe an algorithm for calculating a set 
of central primitive and orthogonal idempotents in A. 

An algorithm for calculating the centre of A can be formulated analo- 
gously to the algorithm Centre for Lie algebras. So let T be the centre of 
A. Then T is a commutative associative algebra containing no nilpotent 
elements. (Indeed, any nilpotent element of T generates a nilpotent ideal 
of A.) In particular, T is a semisimple algebra itself. So by Wedderburn's  
structure theorem we have that  T decomposes T = T1 @ ' . .  @ Tr, where Ti is 
isomorphic to a full matrix algebra defined over a division algebra over F. 
But Ti is commutative, and hence Ti is isomorphic to an algebra of 1 x 1- 
matrices over a division algebra, i.e., Ti is a division algebra over F.  Now 
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the commutativi ty of Ti implies that  Ti is a field, so Ti is a field extension 
of F.  

The left-multiplication on T provides a faithful representation of T as T 
has an identity. Hence T is isomorphic to a linear algebra of rn • m-matrices 
over F,  where m - dim T. So we may think of T as an algebra consisting 
of rn • m-matrices. Since T is commutative and consists of semisimple 
elements we have that  these matrices are simultaneously diagonalizable over 
the algebraic closure F of F.  This means that  there is an m • m-matr ix  
with coefficients in F such that  xtx -1 is in diagonal form for all t E T. For 
1 _< i _< rn we define the F-linear function ai �9 T --+ F by letting ai(t)  be 
the coefficient on position (i, i) of xtx -1. We note that  ai ~ a j  if i ~ j 
because the dimension of T is equal to the number of distinct ai. 

An element to E T is said to be a splitting element if to generates T. 

L e m m a  A.3 .2  Suppose that the ground field F contains at least m ( m - 1 )  + 1 2 

elements, then T has splitting elements. 

P r o o f .  An element to C T is a splitting element if and only if ai(to) r aj(to) 
for i ~ j .  Indeed, the dimension of the algebra generated by to is equal to 
the number of distinct eigenvalues of to. And this number is equal to dim T 
if and only if ai(to) ~ aj(to) for i ~ j.  Now let { t l , . . .  , tm} be a basis of T 
and for i < j define polynomials 

m 

, x m )  - - , j ) ( t k ) X k .  

k = l  

m(m--1) 
We let g be the product of all fij Then 9 has degree The lemma 

�9 2 " 

follows now from the observation that  to - }-~km=l Aktk is a splitting element 
if and only if g ( ) ~ l , .  �9 �9 , A m )  r O. [5] 

The proof of this lemma yields a straightforward Las Vegas algorithm for 
finding a splitting element if the ground field is big. Let g be the polynomial 
from the proof of Lemma A.3.2. Let f~ be a subset of F of size at least 
re(m-l) and set to m - -  ~ - ] ~ i = 1 / ~ k t k  where the Ak are randomly chosen from 2E ' 
9t (with uniform distribution). As seen in the proof of Lemma A.3.2, to 
is a splitting element if and only if 9 (A1 , . . . ,  Am) = 0. So by Corollary 
1.5.2, the probability that  to is a splitting element is at least 1 - e. In the 
algorithm we select a random element to with coefficients from ~. Then we 
check whether to generates T. If so, then we output  t0, otherwise we select 
a second element and continue. By making the set ~ big we can make the 
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probability that a randomly chosen element to is not a splitting element 
arbitrarily small. 

The proof of Lemma A.2.1 shows how to calculate a set of primitive 
orthogonal idempotents with sum 1 in T, knowing a splitting element to. 
Let fto be the minimum polynomial of to and let fto - p l""  "Pr be the 
factorization of fto into irreducible factors. Let q/ be the product of all 
factors pj except p/. Then we calculate polynomials h i , . . . ,  hr such that 
hlq l  + ' "  + hrqr = 1. Set ei = hiqi(a), then the proof of Lemma A.2.1 
shows that the e /a re  primitive orthogonal idempotents with sum 1. 

If A is defined over a small field, then the centre T may not contain 
splitting elements. In this case we rather work with decomposing and good 

elements (cf. Definition 4.11.5). An element t C T is decomposing if the 
minimum polynomial of t factors as a product of at least two distinct factors 
(of degree greater than 1). If S C T is a subalgebra, then s E S is called 
good with respect to S if s generates S and the minimum polynomial of s 
is irreducible. A decomposing element leads to a decomposition of T as a 
sum of two or more ideals (by calculating idempotents in the same way as 
from a splitting element). A good element with respect to a subalgebra S 
shows that S is simple. Exactly as in the proof of Proposition 4.11.6 we 
can show that a random element s E S is either decomposing or good with 
probability at least �89 Now using an algorithm analogous to PrimaryDe- 
compositionSmalIField we can decompose T into the direct sum of its simple 
ideals, and this gives us a set of primitive orthogonal idempotents with sum 
1. The conclusion is that we have an algorithm for calculating a set of 
central primitive and orthogonal idempotents in any semisimple associative 
algebra. We call this algorithm Centralldempotents. 

Suppose that A is not semisimple and set S = A / R a d ( A ) .  Suppose that 
we have found a set {el,.  �9 �9 , er } of primitive central and orthogonal idempo- 
tents in S. By the Wedderburn-Malcev principal theorem, S is isomorphic 
to a subalgebra of A. Hence there are primitive orthogonal idempotents 
e l , . . .  , er E A with sum 1, such that e /mod  Rad(A) = ei. We describe an 
algorithm for finding the e/, given the ~/. 

L e m m a  A.3.3  Let ~ be an idempotent  in S.  

idempotent  e E A such that e mod Rad(A) = ~. 
Then we can construct  an 

Proof .  Let e0 E A be such that e0 mod Rad(A) = ~. Then e~ - e0 mod 
Rad(A) so that no - e2o- eo E Rad(A) and consequently no is nilpotent. 
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2 q Hence there is an integer q such tha t  n o - 0. Now recursively set 

e i + l  - -  e i  -~- n i  - -  2 e i n i  

n i + l  - -  e i + l e i + l  - -  e i + l .  

We note tha t  all ei, n i  lie in the commutat ive  subalgebra E0 of A generated 
2 ~ by e0. Let Mi be the ideal of E0 generated by n o . A short calculation shows 

tha t  n i + l  - 4 n ~ -  3n~.  Hence by induction on i we see tha t  ni  - 0 rood M i .  

Therefore ei+l  - ei mod Mi, and in particular,  ei+l - eo rood Rad(A).  We 
conclude tha t  nq - 0 and eqeq - eq and the s ta tement  follows. E] 

R e m a r k .  A small calculation shows tha t  ei+l - -2e~ + 3e~. Now if we 

calculate the Jordan  decomposit ion of e0 (using the a lgor i thm JordanDe- 

composition), then we get the same recursion. It follows tha t  the a lgor i thm 
contained in the proof of Lemma A.3.3 constructs the Jordan  decomposit ion 
of e0. 

P r o p o s i t i o n  A . 3 . 4  L e t  ~ 1 , . . .  , er be p r i m i t i v e  o r t h o g o n a l  i d e m p o t e n t s  in  

S w i th  s u m  1 C S .  T h e n  we can c o n s t r u c t  p r i m i t i v e  o r t h o g o n a l  i d e m p o t e n t s  

e l , . . .  , e r  i n  A s u c h  tha t  e i  mod Rad(A) - e i  f o r  1 ~_ i <_ r ,  a n d  e l  + " .  + 

e r - - l E A .  

P r o o f .  For brevity we set R - Rad(A).  The proof is by induct ion on r. 
The case where r -  1 is covered by Lemma A.3.3. Suppose tha t  r > 1 and 

tha t  we have constructed primitive orthogonal idempotents  e l , . . .  , e r - 1  in 

A such tha t  ei mod R = ~i for 1 _ i _< r -  1. We describe how to construct  
er. Let @r be a pre-image of er in A. Set 

E - e l  -Jr- " ' "  dr e r - l ~  

and 

e = er -- E er - e r E  + E er E .  

We have E~r - 0 rood R and ~rE - 0 rood R, so tha t  e - er rood R and 
hence e 2 - e mod R. Now let er be the idempotent  in A provided by the 
procedure in the proof of Lemma  A.3.3 (where we s tar t  with e0 = e). So 
er - er mod R. Since E 2 - E we have tha t  E e  - e E  - O, and because er 

is a polynomial  in e wi thout  constant  term, it follows tha t  E e r  - e r E  - O. 

By the induction hypothesis we have e i E  - E e i  = ei for 1 <_ i <_ r -  1. 
H e n c e  e r e i  - -  e r E e i  - -  0 a n d  s i m i l a r l y  e i e r  - O. 

Finally we show tha t  the idempotents  ei must have sum 1 E A. Since 
ei - ei mod R and the ei have sum 1 in S we see tha t  el + . ' .  + er - 1 + u,  
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for some u E R. But the left-hand side of this expression is an idempotent. 
So (1 + u) 2 - 1 + u. But this is equivalent to u 2 + u - 0. Which implies 
u -  0 (in view of u E R). [:] 

A.4 Note s  

Proposition A.I.1 first appeared in [25]. It was used by Friedl and Rdnyai 
([29], [73]) to give an algorithm for computing the radical of an associative 
algebra of characteristic 0. These papers also contain an algorithm for com- 
puting the radical of an algebra defined over a finite field. Furthermore, 
the authors show that  the complexity of this algorithm is polynomial. Also 
[20] contains a polynomial time algorithm for calculating the radical of an 
algebra defined over a finite field. In [47] algebras are considered that  are 
defined over fields of the form Fq(Xl,... ,xm). An algorithm for calculating 
the radical is given that  runs in polynomial time, if the number of indeter- 
minates, m, is a constant. 

Splitting elements were introduced by W. Eberly ([26], [27], [28]). In 
these references full matrix algebras Mn(F) are considered, and an element 
a E Mn (F) is defined to be a splitting element if its minimal polynomial is 
squarefree and of degree n (note that our definition is a special case of this). 
In [27] splitting elements are used to calculate the decomposition of an as- 
sociative algebra into a direct sum of simple ideals. A second application of 
splitting elements can be found in [3], where algorithms are given to decom- 
pose a module over a finite group into a direct sum of irreducible modules. 
Our presentation here is different from the ones in the above references, in 
order to stress the similarities with splitting elements in Cartan subalgebras 
(Section 4.11). Decomposing elements appear in [28] (where they are called 
decomposable elements). Other algorithms for computing idempotents and 
decompositions of algebras can be found in [24] (for commutative Artinian 
algebras over finite fields), [32] (over finite fields and the field ~ of ratio- 
nal numbers; in the latter case lifting of idempotents over a finite field is 
used) [29], [73] (over finite fields, using a splitting procedure that  has some 
similarity to the approach with decomposing elements). 

The algorithm for finding the Jordan decomposition of a linear trans- 
formation is taken from [2]. In this paper the authors also show that  the 
complexity of the algorithm is polynomial. The algorithm for lifting idem- 
potents is taken from [90]. 
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(adL)*, 3 
A1 ~ A2 (isomorphic algebras), 18 
ALie, 3 
C(L) (centre), 15 
C ,,~ C ~ (equivalence of Cartan ma- 

trices), 136 
CL(S) (centralizer), 14 
Ci (L) (term of the upper central 

series), 18 
Cp (coefficient space), 205 
H* (dual space of H), 95 
L i (term of the lower central se- 

ries), 17 
L (i) (term of the derived series), 

17 
Lo(K) (Fitting-zero component), 

54 
L1 (K) (Fitting-one component), 54 
L1 ~< L2, 21 
LI, 4 
Md(Z), 218 
Mn(F), 2 
NL(V) (normMizer), 15 
Np(K) (largest nilpotency ideal), 

205 
P(V), 262 
P+ (dominant weights), 263 
V(A), 266 
Vo(K) (Fitting-zero component), 

54 
Vo(p(a)), 310 
111 (K) (Fitting-one component), 54 
V~ (weight space), 262 
X* (free monoid), 186 
[V, W] (product space of V and 

W), 16 
[ , ] , 2  

Aut (L), 22 
Der(A), 19 
End(V), 2 
HomF(V, W), 24 
HomL (If, W) (endomorphisms com- 

muting with the action of 
L), 80 

LM(f) (leading monomial), 186, 
193, 222, 241 

Nf(f) (normal form), 187, 195,222 
NR(L) (nilradical), 36 
~+ (positive roots), 134 
~ -  (negative roots), 134 
(I'l ~- ~2 (isomorphic root systems), 

129 
~l | ~2 (direct sum of root sys- 

tems), 129 
SR(L) (solvable radical), 38 
Tr(a) (trace of a linear transfor- 

mation), 4 
adx, 3 
<dlex, 186, 193 
g(g) (length of g), 274 
F(X} (free associative algebra), 186 
ht (/3) (height of/3), 136 
im(0) (image of a morphism), 18 
~n, ~ (Killing form), 76 
ker(0) (kernel of a morphism), 18 
(X[R) (finitely presented Lie al- 

gebra), 220 
{~, a), 128 
bn(F), 6 

2 

2 
.n(Y), 6 
02/+1(F), 6 
021 (F), 6 
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491 ,  274 
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S-element, 195 
c~-string containing ~, 125, 131 
p-map, 26 
p-th power mapping, 26 

Abelian Lie algebra, 15 
action of a Lie algebra on a vector 

space, 23 
adjoint map, 3 
adjoint representation, 24 
admissible configuration, 143 
Ado's theorem, 212 
algebra, 1 

associative, 1 
Lie, 2 

alternating element, 287 
appliance, 221, 243 
associative law, 2 
automorphism of a Lie algebra, 22 

bilinear form, 4 
branching rule, 301 

canonical basis, 155 
canonical generators, 153 
Cartan matrix, 136 
Cartan's criterion for semisimplic- 

ity, 77 
Cartan's criterion for solvability, 

43 
Casimir operator, 81 

universal, 280 
central component, 29 
centralizer, 14 
centre, 15 
coefficient of a representation, 205 
commutative Lie algebra, 15 
commutator, 2 
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completely reducible module, 24 
composition, 190, 247 

useful, 249 
useless, 249 

composition series, 24 
Coxeter diagram, 143 

decomposing element, 105, 315 
deglex order, 186, 193 
degree compatible order, 193 
degree of free magma elements, 218 
derivation, 19 

inner, 20 
outer, 20 

derived series, 17 
derived subalgebra, 17 
descending chain condition, 186, 

193, 221,241 
diagram automorphism, 164 
direct sum 

of L-modules, 24 
of Lie algebras, 21 
root systems, 129 

dominant integral linear function, 
263 

Dorroh extension, 305 
Dynkin diagram, 141 

Engel's theorem, 35 
equivalence 

of L-modules, 23 
of Cartan matrices, 136 

even orthogonal Lie algebra, 6 

faithful representation, 23 
finite presentation, 220 
finitely presented Lie algebra, 220 
Fitting decomposition, 54 
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Fitting-null component, 54 
Fitting-one component, 54 
foliage, 232 
formal character, 287 
free algebra, 218 
free associative algebra, 186 
free Lie algebra, 219 
free magma, 218 
free monoid, 186 
Freudenthal's multiplicity formula, 

28O 
fundamental dominant weights, 266 

Gr6bner basis 
in a free algebra, 222 
in a free associative algebra, 

188 
in a free Lie algebra, 246 
in a universal enveloping alge- 

bra, 195 
left, 201 

Hall order, 229 
Hall set, 229 
Hall word, 233 
height of a root, 136 
highest weight, 122, 263 
highest-weight module, 263 
highest-weight vector, 122, 263 
hypercentre, 18 

ideal, 1 
idempotent, 309 

central, 313 
orthogonal, 309 
primitive, 309 

inner automorphism, 23 
inner automorphism group, 23 
integral linear function, 262 
irreducible 

character, 295 
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module, 24 
rootsystem, 129 

isomorphism 
of algebras, 1 
of root systems, 129 

Iwasawa's theorem, 215 

Jacobi identity, 2 
Jordan decomposition, 312 

Killing form, 76 
Klymik's formula, 298 
Kostant's formula, 294 

largest nilpotency ideal, 205 
Las Vegas algorithm, 12 
leading monomial, 186, 193 
left-normal form, 201 
Leibniz formula, 19 
length of a Weyl group element, 

274 
letters, 230 
level of a weight, 278 
Levi subalgebra, 89 
Levi's theorem, 87 
lexicographical order, 237 
Lie bracket, 2 
Lie polynomial, 233 
Lie's theorem, 41 
linear 

associative algebra, 305 
Lie algebra, 4 

longest element in a Weyl group, 
275 

lower central series, 17 
Lyndon-Shirshov words, 238 

module, 23 
morphism 

of L-modules, 23 
of algebras, 1 
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multiplication, 1 
multiplication table, 8 
multiplicative order, 186, 193, 221, 

241 
multiplicity of a weight, 280 

negative root, 134 
nilpotency class, 17 
nilpotency ideal, 205 
nilpotent 

associative algebra, 306 
element, 45 
Lie algebra, 17 

nilradical, 36 
non-degenerate bilinear form, 4 
normal monomials, 222, 246 
normal words, 186, 195 
normalizer, 15 

odd orthogonal Lie algebra, 6 

Poincar~-Birkhoff-Witt theorem, 191 
polynomial map, 62 
positive root, 134 
primary components, 50 
primary decomposition, 50 
product space, 16 
projection matrix, 302 

quasi-Hall set, 229 
quotient algebra, 3 
quotient module, 24 

Racah's formula, 294, 297 
radical of an associative algebra, 

306 
rank of a Lie algebra, 57 
rank of a root system, 128 
reduced expression (for a Weyl group 

element), 267 
reduction, 187, 195 
reduction order, 241 

reflecting hyperplane, 127 
reflection, 127 
regular element, 57 
representation of a Lie algebra, 23 
restricted Lie algebra, 25 
reverse lexicographical order, 239 
root, 60 

long, 170 
short, 170 

root lattice, 160 
root order, 132 

lexicographical, 134 
root space, 60 
root space decomposition, 60 
root system, 127 

self-reduced set, 188, 222, 247 
semidirect sum, 21 
semisimple 

associative algebra, 307 
Lie algebra, 77 
linear transformation, 311 

Serre's theorem, 259 
Shirshov's theorem, 247 
sign of an element of the Weyl group, 

287 
simple 

Lie algebra, 77 
reflection, 140 
root, 134 
system of roots, 135 
type, 150 

simply-laced root system, 160 
solvable Lie algebra, 17 
solvable radical, 38 
special linear Lie algebra, 4 
split 

Cartan subalgebra, 59 
linear Lie algebra, 40 

splitting element, 102, 314 
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standard factorization, 244 
standard monomial, 192 
standard sequence, 230 
Steinberg's formula, 297 
structural invariant, 121 

complete, 121 
structure constants, 7 
subalgebra, 1 
submodule, 24 
symmetric element, 287 
symplectic Lie algebra, 5 

toral subalgebra, 115 
Trace form, 76 
type of a semisimple Lie algebra, 

175 

upper central series, 18 

Verma module, 265 

weight, 122, 255, 262 
weight lattice, 266 
weight space, 122, 255, 262 
weight vector, 122, 255, 262 
weight-coordinate vectors, 272 
Weyl group, 139 
Weyl vector, 139 
Weyl's character formula, 291 
Weyl's dimension formula, 291 
Weyl's theorem, 83 
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AdjointMatrix, 14 
Appliance, 245 
ArelsomorphicSSLieAlgebras, 182 
BracketingOfHallWord, 239, 240 
BranchingRule, 302 
CanonicalGenerators, 154 
Carta n MatrixToRootSystem, 137 
CartanSubalgebra BigField, 58 
Carta nSubalgebra Restricted, 59 
Centralldempotents, 315 
Centralizer, 15 
Centre, 15 
CollectionlnUAE, 193 
Conj ugateDominantWeight, 268 
Decom poseC h a ra cte rTe nsor P rod uct, 

3O0 
Decom position ByS u ccessiveS u btractions, 

296 
Derivations, 20 
DerivedSeries, 17 
DimensionPolynomial, 292 
DirectSumDecomposition, 31,108 
Domina ntWeightsOfHWMod ule, 279 
Extend Representation, 209 
ExtensionSeriesNilpotentCase, 203 
ExtensionSeriesSolva bleCase, 203 
FittingOneComponent, 55 
Gr6bnerBasis, 198, 250 
HallSet, 229 
InterReduce, :250 
IsHallElement, 229 
IsRestricted, 27 
IsomorphismOfSSLieAlgebras, 157 
JordanDecomposition, 312 
LeftGr6bnerBasis, :201 
LeftNormalForm, 201 
LeviSu balgebra ByLCSeries, 112 

LeviSubalgebra, 111, 118 
LowerCentralSeries, 17 
NilRadical, 36, 70, 73 
NonNilpotentElement, 46 
NormalForm, 187, 194, 243 
Normalizer, 16 
PrimaryDecom position BigField, 

104 
PrimaryDecompositionSmallField, 

105 
ProductSpace, 17 
QuotientAlgebra, 13 
Radical, 307 
Representation N ilpotentCase, 210 
RepresentationSolvableCase, 211 
Representation, 211,215 
RewriteMagmaElement, 235 
SimpleLieAlgebra, 172 
SolvableRadical, 45 
SplittingElementDeterministic, 103 
SplittingElementRandom, 103 
ToralSubalgebra, 116 
Type, 180 
UpperCentralSeries~ 18 
WeightsOfHWModule, 278 
WeylOrbit, 277 
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