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Preface

Lie algebras arise naturally in various areas of mathematics and physics.
However, such a Lie algebra is often only known by a presentation such as
a multiplication table, a set of generating matrices, or a set of generators
and relations. These presentations by themselves do not reveal much of
the structure of the Lie algebra. Furthermore, the objects involved (e.g., a
multiplication table, a set of generating matrices, an ideal in the free Lie
algebra) are often large and complex and it is not easy to see what to do
with them. The advent of the computer however, opened up a whole new
range of possibilities: it made it possible to work with Lie algebras that are
too big to deal with by hand. In the early seventies this moved people to
invent and implement algorithms for analyzing the structure of a Lie algebra
(see, e.g., [7], [8]). Since then many more algorithms for this purpose have
been developed and implemented.

The aim of the present work is two-fold. Firstly it aims at giving an
account of many existing algorithms for calculating with finite-dimensional
Lie algebras. Secondly, the book provides an introduction into the theory
of finite-dimensional Lie algebras. These two subject areas are intimately
related. First of all, the algorithmic perspective often invites a different
approach to the theoretical material than the one taken in various other
monographs (e.g., [42], [48], [77], [86]). Indeed, on various occasions the
knowledge of certain algorithms allows us to obtain a straightforward proof
of theoretical results (we mention the proof of the Poincaré-Birkhoff-Witt
theorem and the proof of Iwasawa’s theorem as examples). Also proofs that
contain algorithmic constructions are explicitly formulated as algorithms
(an example is the isomorphism theorem for semisimple Lie algebras that
constructs an isomorphism in case it exists). Secondly, the algorithms can
be used to arrive at a better understanding of the theory. Performing the
algorithms in concrete examples, calculating with the concepts involved,
really brings the theory to life.

The book is roughly organized as follows. Chapter 1 contains a general
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introduction into the theory of Lie algebras. Many definitions are given
that are needed in the rest of the book. Then in Chapters 2 to 5 we explore
the structure of Lie algebras. The subject of Chapter 2 is the structure of
nilpotent and solvable Lie algebras. Chapter 3 is devoted to Cartan subalge-
bras. These are immensely powerful tools for investigating the structure of
semisimple Lie algebras, which is the subject of Chapters 4 and 5 (which cul-
minate in the classification of the semisimple Lie algebras). Then in Chapter
6 we turn our attention towards universal enveloping algebras. These are
of paramount importance in the representation theory of Lie algebras. In
Chapter 7 we deal with finite presentations of Lie algebras, which form a
very concise way of presenting an often high dimensional Lie algebra. Fi-
nally Chapter 8 is devoted to the representation theory of semisimple Lie
algebras. Again Cartan subalgebras play a pivotal role, and help to de-
termine the structure of a finite-dimensional module over a semisimple Lie
algebra completely. At the end there is an appendix on associative alge-
bras, that contains several facts on associative algebras that are needed in
the book.

Along with the theory numerous algorithms are described for calculating
with the theoretical concepts. First in Chapter 1 we discuss how to present
a Lie algebra on a computer. Of the algorithms that are subsequently
given we mention the algorithm for computing a direct sum decomposition
of a Lie algebra, algorithms for calculating the nil- and solvable radicals,
for calculating a Cartan subalgebra, for calculating a Levi subalgebra, for
constructing the simple Lie algebras (in Chapter 5 this is done by directly
giving a multiplication table, in Chapter 7 by giving a finite presentation),
for calculating Grobner bases in several settings (in a universal enveloping
algebra, and in a free Lie algebra), for calculating a multiplication table
of a finitely presented Lie algebra, and several algorithms for calculating
combinatorial data concerning representations of semisimple Lie algebras.
In Appendix A we briefly discuss several algorithms for associative algebras.

Every chapter ends with a section entitled “Notes”, that aims at giving
references to places in the literature that are of relevance to the particular
chapter. This mainly concerns the algorithms described, and not so much
the theoretical results, as there are standard references available for them
(e.g., [42], 48], [77], [86]).

I have not carried out any complexity analyses of the algorithms de-
scribed in this book. The complexity of an algorithm is a function giving an
estimate of the number of “primitive operations” (e.g., arithmetical opera-
tions) carried out by the algorithm in terms of the size of the input. Now
the size of a Lie algebra given by a multiplication table is the sum of the
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sizes of its structure constants. However, the number of steps performed by
an algorithm that operates on a Lie algebra very often depends not only on
the size of the input, but also (rather heavily) on certain structural prop-
erties of the input Lie algebra (e.g., the length of its derived series). Of
course, it is possible to consider only the worst case, i.e., Lie algebras hav-
ing a structure that poses most difficulties for the algorithm. However, for
most algorithms it is far from clear what the worst case is. Secondly, from a
practical viewpoint worst case analyses are not very useful since in practice
one only very rarely encounters the worst case.

Of the algorithms discussed in this book many have been implemented
inside several computer algebra systems. Of the systems that support Lie
algebras we mention GAP4 ([31]), LiE ([21]) and Magma ([22]). We refer to
the manual of each system for an account of the functions that it contains.

I would like to thank everyone who, directly or indirectly, helped me
write this book. In particular [ am grateful to Arjeh Cohen, without whose
support this book never would have been written, as it was his idea to write
it in the first place. I am also grateful to Gabor Ivanyos for his valuable
remarks on the appendix. Also I gratefully acknowledge the support of the
Dutch Technology Foundation (STW) who financed part of my research.

Willem de Graaf
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Chapter 1

Basic constructions

This chapter serves two purposes. First of all it provides an introduction
into the theory of Lie algebras. In the first four sections we define what a
Lie algebra is, and we give a number of examples of Lie algebras. In Section
1.5 we discuss some generalities concerning algorithms. Furthermore, we
describe our approach to calculating with Lie algebras. We describe how
to represent a Lie algebra on a computer (namely by an array of structure
constants), and we give two examples of algorithms. In subsequent sections
we give several constructions of Lie algebras and objects related to them.
In many cases these constructions are accompanied by a an algorithm that
performs the construction.

A second purpose of this chapter is to serve as reference for later chap-
ters. This chapter contains most basic constructions used in this book.
Therefore it has the nature of a collection of sections, sometimes without
clear line of thought connecting them.

1.1 Algebras: associative and Lie

Definition 1.1.1 An algebra is a vector space A over a field F together
with a bilinear map m : A x A — A.

The bilinear map m of Definition 1.1.1 is called a multiplication. If A is
an algebra and z,y € A, then we usually write zy instead of m(z,y).

Because an algebra A is a vector space, we can consider subspaces of A.
A subspace B C A is called a subalgebra if zy € B for all z,y € B. It is
called an ideal if zy and yz lie in B for all z € A and y € B. Clearly an
ideal is also a subalgebra.

Let A and B be two algebras over the field F. A linear map §: A — B
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is called a morphism of algebras if 8(zy) = 6(z)0(y) for all z,y € A (where
the product on the left hand side is taken in A and the product on the right
hand side in B). The map @ is an isomorphism of algebras if 8 is bijective.

Definition 1.1.2 An algebra A is said to be associative if for all elements
z,y,z2 € A we have

(zy)z = x(yz) (associative law).

Definition 1.1.3 An algebra L is said to be a Lie algebra if its multiplica-
tion has the following properties:

(L) zz =0 for allz € L,

(Ly) z(yz) + y(zz) + z(xy) = 0 for all z,y,z € L (Jacobi identity).

Let L be a Lie algebra and let z,y € L. Then 0 = (z + y)(z + y) =
zT + 2y + yT + yy = 2y + yz. So condition (L;) implies

zy = —yz for all z,y € L. (1.1)

On the other hand (1.1) implies zz = —zz, or 2z = 0 for all z € L. The
conclusion is that if the characteristic of the ground field is not 2, then
(Ly) is equivalent to (1.1). Using (1.1) we see that the Jacobi identity is
equivalent to (zy)z + (y2)z + (2z)y =0 for all z,y,z € L.

Example 1.1.4 Let V be an n-dimensional vector space over the field F.
Here we consider the vector space End(V') of all linear maps from V to V.
If a,b € End(V) then their product is defined by

ab(v) = a(b(v)) for allv € V.
This multiplication makes End(V') into an associative algebra.
For a,b € End(V) we set [a,b] = ab— ba The bilinear map (a,b) — [a, b]
is called the commutator, or Lie bracket. We verify the requirements (L)

and (Lg) for the Lie bracket. First we have [a,a] = aa —aa = 0 so that (L)
is satisfied. Secondly,

(a,[b,c]] + [b,[c,a]] + (¢, [a, b]] =

a(bc — cb) — (be — cb)a + b(ca — ac)
— (ca — ac)b + c(ab — ba) — (ab — ba)c = 0.
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Hence also (Lg) holds for the commutator. It follows that the space of
linear maps from V to V together with the commutator is a Lie algebra.
We denote it by gl(V).

Now fix a basis {v1,... ,un} of V. Relative to this basis every linear
transformation can be represented by a matrix. Let M,(F) be the vector
space of all n x n matrices over F. The usual matrix multiplication makes
M, (F) into an associative algebra. It is isomorphic to the algebra End(V),
the isomorphism being the map that sends a linear transformation to its
matrix with respect to the fixed basis. Analogously we let gl,,(F') be the Lie
algebra of all n x n matrices with coefficients in F. It is equipped with the
product (a,b) — [a,b] = ab — ba for a,b € gl,(F). The map that sends a
linear transformation to its matrix relative to a fixed basis is an isomorphism
of gl(V) onto gl (F).

Let A be an algebra and let B C A be a subalgebra. Then B is an
algebra in its own right, inheriting the multiplication from its “parent” A.
Furthermore, if A is a Lie algebra then clearly B is also a Lie algebra,
and likewise if A is associative. If B happens to be an ideal, then, by
the following proposition, we can give the quotient space A/B an algebra
structure. The algebra A/B is called the quotient algebra of A and B.

Proposition 1.1.5 Let A be an algebra and let B C A be an ideal. Let
A/B denote the quotient space. Then the multiplication on A induces a
multiplication on A/B by Ty = Ty (where T denotes the coset of x € A in
A/B). Furthermore, if A is a Lie algebra, then so is A/B (and likewise if
A is an associative algebra).

Proof. First of all we check that the multiplication on A/B is well defined.
Solet z,y € A and by,by € B. Then Z =z + b; and § = y + b2 and hence

g =(z+b1) (y+b2) = (z+b1)(y + b2) = 2y + zb2 + b1y + brby = T7.

Consequently the product Zj is independent of the particular representa-
tives of Z and ¢ chosen.

The fact that the Lie (respectively associative) structure is carried over
to A/B is immediate. n

Associative algebras and Lie algebras are intimately related in the sense
that given an associative algebra we can construct a related Lie algebra and
the other way round. First let A be an associative algebra. The commutator
yields a bilinear operation on A, i.e., [z,y] = 2y —yz for all z,y € A, where
the products on the right are the associative products of A. Let Ap; be
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the underlying vector space of A together with the product [, ]. It is
straightforward to check that Ap;, is a Lie algebra (cf. Example 1.1.4). In
Chapter 6 we will show that every Lie algebra occurs as a subalgebra of a
Lie algebra of the form Ay;. where A is an associative algebra. (This is the
content of the theorems of Ado and Iwasawa.) For this reason we will use
square brackets to denote the product of any Lie algebra.

From a Lie algebra we can construct an associative algebra. Let L be a
Lie algebra over the field F'. For z € L we define a linear map

adpz: L — L

by adpz(y) = [z,y] for y € L. This map is called the adjoint map determined
by z. If there can be no confusion about the Lie algebra to which z belongs,
we also write adz in place of ad;,z. We consider the subalgebra of End(L)
generated by the identity mapping together with {adz | z € L} (i.e., the
smallest subalgebra of End(L) containing 1 and this set). This associative
algebra is denoted by (adL)*.

Since adz is the left multiplication by x, the adjoint map encodes parts
of the multiplicative structure of L. We will often study the structure of a
Lie algebra L by investigating its adjoint map. This will allow us to use the
tools of linear algebra (matrices, eigenspaces and so on). Furthermore, as
will be seen, the associative algebra (adL)* can be used to obtain valuable
information about the structure of L (see, e.g., Section 2.2).

1.2 Linear Lie algebras

In Example 1.1.4 we encountered the Lie algebra gl (F') consisting of all
n x n matrices over the field F. By E7; we will denote the n x n matrix
with a 1 on position (4, j) and zeros elsewhere. If it is clear from the context
which n we mean, then we will often omit it and write E;; in place of E{;
So a basis of gl,,(F) is formed by all E;; for 1 <1, <n.

Subalgebras of gl,,(F) are called linear Lie algebras. In this section we
construct several linear Lie algebras.

Example 1.2.1 For a matrix a let Tr(a) denote the trace of a. Let a,b €
gl (F), then

Tr([a, b]) = Tr(ab — ba) = Tr(ab) — Tr(ba) = Tr(ab) — Tr(ab) =0. (1.2)

Set sl,(F) = {a € gl,(F) | Tr(a) = 0}, then, since the trace is a linear
function, sl,(F) is a linear subspace of gl,(F). Moreover, by (1.2) we see
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that [a,b] € sl,(F) if a,b € sl,,(F). Hence sl,(F) is a subalgebra of g, (F).
It is called the special linear Lie algebra. The Lie algebra sl,(F') is spanned
by all E;; for ¢ # j together with the diagonal matrices Ej; — Eii1i+1 for
1 < < n—1. Hence the dimension of sl,,(F) is n? — 1.

Let V be an n-dimensional vector space over F. We recall that a bilinear
form f on V is a bilinear function f : V x V — F. It is symmetric if
fv,w) = f(w,v) and skew symmetricif f(v,w) = —f(w,v) forallv,w € V.
Furthermore, f is said to be non-degenerate if f(v,w) = 0 for all w € V
implies v = 0. For a bilinear form f on V we set

L;={a€gl(V)] flav,w) = —f(v,aw) for all v,w € V'}, (1.3)
which is a linear subspace of gl{(V).

Lemma 1.2.2 Let f be a bilinear form on the n-dimensional vector space
V. Then Ly is a subalgebra of gl(V').

Proof. For a,b € Ly we calculate

f([a,blv,w) = f((ab — ba)v,w) = f(abv,w) — f(bav,w)
= —f(bw,aw) + f(av,bw) = f(v,baw) — f(v,abw) = —f(v, [a, blw).

So for each pair of elements a,b € Ly we have that [a,b] € Ly and hence Ly
is a subalgebra of gl(V). U

Now we fix a basis {vi,... ,v,} of V. This allows us to identify V' with
the vector space F™ of vectors of length n. Also, as pointed out in Example
1.1.4, we can identify gl(V) with gl,,(F), the Lie algebra of all n xn matrices
over F. We show how to identify Ly as a subalgebra of gl (F). Let M;
be the n x n matrix with on position (4,5) the element f(v;,v;). Then a
straightforward calculation shows that f(v,w) = v!M;w (where v' denotes
the transpose of v). The condition for a € gl,(F) to be an element of Ly
translates to vtathw = —v‘Mfaw which must hold for all v,w € F™. It
follows that a € Ly if and only if a* My = —Mj a.

The next three examples are all of the form of L for some non-degenerate
bilinear form f.

Example 1.2.3 Let f be a non-degenerate skew symmetric bilinear form

with matrix
(0 I
My = (—Il 0)’
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where I; denotes the [ x [ identity matrix. We shall indicate a basis of L.
Let a € gly(F), then we decompose a into blocks

_ (A B
“=\c p
(where A, B,C, D are | x | matrices). Expanding the condition a'M; =

—Mya we get B = B!, C = C! and D = —A". Therefore the following
matrices constitute a basis of Ly:

o Ay = Eij — Ejqj 4 for 1 <1,j <! (the possibilities for A and D),

® Bjj = FE;;+;+ Ej4; for 1 <i < j <! (the possibilities for B),

o Cij = Eiyi;+ By, for 1 <i < j <1 (the possibilities for C).
Counting these, we find that the dimension of Ly is

(+1) M+

=20 +1.
2 2 +

2+

This Lie algebra is called the symplectic Lie algebra and denoted by sp,;(F).

Example 1.2.4 Now let V be a vector space of dimension 2/ + 1. We take
f to be a non-degenerate symmetric bilinear form on V with matrix

1
Mi= |0
0

where a € F, p,q are 1 x | matrices, u,v are [ X 1 matrices and 4, B,C,D

are [ x [ matrices. Here the condition ath = —Ma boils down to a = —a,

vt = —p, ul = —q, C' = —C, Bt = =B, and D = —A". So a basis of L; is

formed by the following elements:
® p;=E111i — Ejp1440, for 1 <i <1 (p and v),

® g =E1 114 — By, for 1 <i <1 (g and u),
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o Aij = E11i145 — Eppi4ji4144 for 1 <4,5 <1 (A and D),
® Bij=FEiyii4145 — Bigjiqiqs, for 1 <i < j <1 (B),
® Cij = Erp14i145 — Eiy144,144, for 1 <i < j <1 (0).

In this case the dimension of Ly is 212 4+ 1. The Lie algebra of this example
is called the odd orthogonal Lie algebra and is denoted by o9y (F).

Example 1.2.5 We now construct even orthogonal Lie algebras. Let V
be of even dimension 2/ and let f be a symmetric bilinear form on V with

matrix
(0 I
Mf_(ll 0).

Let a € gly(F) be decomposed in the same way as in Example 1.2.3. Then
a € Ly ifand only if A = —D!, B = —B!, and C = —C". A basis of Ly is
constituted by

® Aij =Eij — Eiyjuyi for 1 <i,5 <1 (A and D),
® Bij=FEij— Ejifor 1 <i<j<I(B),
o Cij=Epij— Eyjfor 1 <i<j <, (C)

In this case the dimension of Ly is 212 — |. This Lie algebra is called the
even orthogonal algebra and is denoted by og;(F).

Example 1.2.6 We give two more classes of subalgebras of gl,(F). First
let n,(F) be the space of all strictly upper triangular matrices. If a,b €
n,(F), then also ab € n,(F) and consequently [a,b] = ab — ba € n,(F). So
n,(F) is a subalgebra of gl,(F). It is spanned by E;; for 1 <i <j <n.

Let b, (F) be the subspace of gl,(F) consisting of all upper triangular
matrices. Then in the same way as above it is seen that b, (F') is a subalgebra
of gl,,(F). It is spanned by E;; for 1 <i < j <n.

1.3 Structure constants
Let A be an n-dimensional algebra over the field F' with basis {z1,... ,zp}.

For each pair (z;, z;) we can express the product z;z; as a linear combination
of the basis elements of A, i.e., there are elements cfj € F such that

n
oy — k
;x5 = Cijﬂjk.
k=1
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On the other hand, the set of n® constants cf; determines the multiplication
completely. To see this, let « = Y., o;z; and y = 2?21/81‘371‘ be two
arbitrary elements of A. Then

n n n n
k
Y = (Z Ozil‘i)(ZﬁjZEj): Z a,ﬂjzimj = Z aiﬂjcijxk.
=1 7=1 i,j=1 1,7,k=1

So the multiplication can be completely specified by giving a set of n3 con-
stants cfj These constants are called structure constants (because they
determine the algebra structure of A). The next results provide a useful
criterion for deciding whether an algebra is a Lie algebra by looking at its

structure constants.

Lemma 1.3.1 Let A be an algebra with basis {z1,... ,zn}. Then the mul-
tiplication in A satisfies (L) and (L) if and only if

z;x; =0 and z;xj +xjT; =0,
and
zi(zjzg) + zj(@pxs) + Tp(wiz5) = 0
for1 <i,5,k <n.
Proof. Since the Jacobi identity is trilinear it is straightforward to see that
it holds for all elements of A if and only if it holds for all basis elements of

A. We prove that the first two equations are equivalent to zz = 0 for all
z € A. First, let £ = 31" | a;z; then

n n
T = E Qi TTj = E a%xixi + E Q05 TT5 + E QO T = 0.
1,5=1 i=1 i< i<

Conversely, suppose that zz = 0 for all z € A. Then certainly z;z; = 0.
Furthermore, by (1.1), z;z; + z;z; = 0. O

Proposition 1.3.2 Let A be an algebra with basis {z1,... ,zn}. Let the
structure constants relative to this basis be c‘fj for 1 <i,5,k <n. Then A
15 a Lie algebra if and only if the structure constants satisfy the following
relations:

& =0 and cfj = —cfi, (1.4)
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n
> epely + ek + cich; = 0 (1.5)
=1
foralll1 <5, k,m <n.

Proof. We use Lemma 1.3.1. Since the z; are linearly independent z;z; =
>k cfxp = 0 is equivalent to all cfi being zero. Also z;xz; + z;z; = 0 is
equivalent to 3, cfj:vk + > cfimk = 0, which is equivalent to ci-cj + c?i =0
for 1 < k < n. Finally, it is straightforward to check that (1.5) is equivalent
to zi(zjz) + 5 (zkes) + zk(zizi) = 0. O

We can describe a Lie algebra by giving a basis and the set of structure
constants relative to this basis. This is called a multiplication table of the
Lie algebra. However, because of (1.4), we only have to list the cfj with
1 < 7. Also the structure constants that are zero are usually not listed.

Example 1.3.3 Let L be a 2-dimensional Lie algebra with basis {z1,z2}.
Then

[£1, 2] = clae1 + ¢y, (1.6)
So (1.6) is a multiplication table for L. Now suppose that ci, and ¢, are not
both zero. If ¢}y # 0 set y1 = clozy + cdym2 and yo = (1/cfy)z2. Otherwise

set y1 = —z9 and yo = —(1/c3y)z1. In both cases {y1,y2} is a basis of L
and

[y1,92] = y1. (1.7)
With respect to the basis {y1,y2}, (1.7) is a multiplication table for L.

Example 1.3.4 We calculate the structure constants of the Lie algebra
gl,,(F) of Example 1.1.4. A basis of this Lie algebra is given by the set of all
matrices E;; for 1 < 1,5 < n. We note that E;;Ey = 0;4Ey where d;; =1
if j = k and it is 0 otherwise. Now

(Eijy Eri] = EijEp — EnEij = 653 Eqy — 01 Eyj-

Example 1.3.5 Here we compute the structure constants of the Lie algebra
sl,(F) of Example 1.2.1. As pointed out in Example 1.2.1, this Lie algebra
has a basis consisting of all matrices z;; = E;; for 1 <1 # j < n, together
with h; = By — Ejt1441 for 1 <4 <n— 1. First of all, since the h; are all
diagonal matrices, we have that [h;, h;] = 0. Secondly,

(hi, Zrt] = [Bis — Eigr i1, Eri] = 6inBa — di1 6 Bit1 — 01i ki + 6141 Bk i1

= CiklTkl
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where ¢;5y = 0,1,2,—1, —2 depending on ¢, j and k. For example ¢;5; = 2 if
¢t =k and ¢ + 1 = [. Finally,

(Zij: Te] = [Eij, Bl = 06 Bi — 61 By,

which is z;; if j = k and ¢ # | and —xy; if i =1 and j # k. Furthermore, if
t=10and j =k then

hi +hiz1+---+hj_ ifi <y,
[-Tijyxkl] — Ei‘ _ Ejj — 1 1+1 7—1 . .

—hj—h]‘+1—-'-—hi_1 lfj<7,.
Example 1.3.6 As a special case of the previous example we consider the
Lie algebra slo(F). We set h = Ey; — Eo, = Ej2 and y = Eo;. Then
{z,y,h} is a basis of slo(F). A multiplication table of this Lie algebra is
given by

[h,ﬂ?] = 2z, [h‘ay] = -2y, [f,y] = h.

The Lie algebra sly(F) will play a major role in the structure theory of
so-called semisimple Lie algebras (see Chapter 5).

1.4 Lie algebras from p-groups

One of the main motivations for studying Lie algebras is the connection with
groups. Starting off with a group a Lie algebra is constructed that reflects
(parts of) the structure of the group. In many cases it can be shown that
questions about the group carry over to questions about the Lie algebra,
which are (usually) easier to solve. Various constructions of this kind have
been used, each for a specific type of group. For instance, if G is a Lie
group, then it can be shown that the tangent space at the identity is a Lie
algebra. This connection is for example used to study symmetry groups of
differential equations (see [10], [67]). Also if G is an algebraic group, then
the tangent space at the identity has the structure of a Lie algebra (see,
e.g., [12]). Here we sketch how a Lie algebra can be attached to a p-group.
In this case the Lie algebra is not a tangent space. But it is quite clear how
the Lie algebra structure relates to the group structure.

Let G be a group. Then for g,h € G we define their commutator to be
the element

(9.h) = g~'h""gh.

Furthermore, if H is a subgroup of G then (G, H) is the subgroup generated
by all elements (g,h) for g € G and h € H.
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We set v1(G) = G, and for k > 1, 1441(G) = (G, vx(G)). Then 11(G) >
v2(G) > - -+ is called the lower central series of G. If v,(G) = 1 for some
n > 0, then G is said to be nilpotent.

A group G is said to be a finite p-group if G has p* elements, where
p > 0 is a prime. For the basic facts on p-groups we refer to [40], [43]. We
recall that a p-group is necessarily nilpotent.

For a group H we denote by HP the subgroup generated by all AP for
h € H. Let G be a p-group. We define a series G = £1(G) > k2(G) > -+-
by

kn(G) = (kn-1(G), G)km(G)?,

where m is the smallest integer such that pm > n. This series is called
the Jennings series of G. The next theorem is [44], Chapter VIII, Theorem
1.13.

Theorem 1.4.1 We have
1. (km(G), kn(G)) < kpnem(G), and
2. kn(G)P < Kpn(G).

Set G, = km(G)/Em+1(G). Then by Theorem 1.4.1, all elements of
G have order p, and G, is Abelian. Now since any Abelian group is the
direct product of cyclic groups we see that G, is the direct product of cyclic
groups of order p, i.e., G, = Hy X --- x Hy where Hy, = Z/pZ. Now fix a
generator h; of H;. Then any element in G, can be written as h7* hZ’“
where 0 < n; < p-—1. Set V,,, = F‘;. Then we have an isomorphism
om : Gy — Vp, of Gy, onto the additive group of V. It is given by
om (i -+ h*) = (n1,... ,nk). For j > 1 we let 7; be the composition

Tjilﬁj(G)lrL)Gjﬁ—)Vj

where 7; is the projection map.

Set L=V ®Vo®---. Then L is a vector space over F,. We fix a basis
B of L that is the union of bases of the components V,,,. Let z,y € B be
such that x € V; and y € V;. Furthermore, let g € £;(G) and h € £;(G) be
such that 7;,(g) = = and 7;(h) = y respectively. Then we define

[z, 9] = 751 ((g, h)).

This product is well-defined, i.e., [z,y] does not depend on the choice of
g,h. This follows from the identity (g, fh) = (g,h)(g, f)((g, f),h), which
holds for all elements f, g, h in any group.
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Lemma 1.4.2 For z,y € B we have that [z,z] =0 and [z,y] + [y, z] = 0.
Proof. Let z € V; and y € V;. Let g € x;(G) and h € k;(G) be pre-images
of respectively z under 7; and y under 7;. Then
[z, 2] = m2i((g,9)) = 72:(1) = 0.
And
(2201 + [, = T5((9, ) + 731 (( )
= TH-]((gah)(hag))
= Ti+;(1) = 0.

Lemma 1.4.3 For z1,z9,23 € B we have [z1,[T2,z3]] + (22, [z3,21]] +
[.'1,‘3, [$1,.’L‘2]] = 0.

Proof. Suppose that z; € Vj,, for i = 1,2,3. Let g; € Ky, (G) be a pre-
image of x; under 7; for ¢ = 1,2,3. Then
[z1, [z2, z3]] + [z2, [£3, 1] + (23, [z1, 22]] =
T +ma+ms ((91, (92, 93)) (92, (93, 91)) (g3, (91, 92)))-

Now the result follows from the fact that

(91, (92,93))(92, (93, 91))(93, (91, 92)) € Emy+ma+ms+1(G)
(see [44], Chapter VIII, Lemma 9.2). o

Now we extend the product [, | to L x L by bilinearity.

Corollary 1.4.4 With the product [ , | : L x L — L the vector space L
becomes a Lie algebra.

Proof. This follows immediately from the above lemmas (c¢f. Lemma 1.3.1).
O

Example 1.4.5 Let G be the group generated by three elements g1, g2, g3

subject to the relations (g2,91) = g3, (93,91) = (g3,92) = 1 and ¢f =

g3 = g3 and gg = 1. The first relation is the same as g291 = 919293,
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whereas the second and third relations can be written as g3g1 = ¢1g3 and
9392 = g2g3. These relations allow us to rewrite any word in the generators
to an expression of the form

91 g g5 (1.8)

Using the remaining relations we can rewrite this to a word of the form
(1.8) where 0 < 4 < 1. This rewriting process is called collection. We
do not discuss this process here as it is clear how it works in the example.
For a more elaborate treatment of the collection process we refer to, e.g.,
[40], [80]. Every element of G has a unique representation as a word (1.8)
such that 7, = 0,1. Hence G contains 2% = 8 elements. We have v1(G) =
G, 72(G) = (g3) (where (g3) denotes the subgroup generated by g¢3) and
v3(@) = 1. The Jennings series of G is k1(G) = G, k2(G) = (g3) and
k3(G) = 1. So G1 = G/{g3) = (g1, 2), where §2g1 = §1g2. Therefore G, =
{1,381, 92,9192}. Let V} be a 2-dimensional vector space over Fy spanned by
{e1,e2}. Let o1 : G; — V) be the morphism given by o1(g;) = e; for i = 1,2
(s0 01(g192) = €1 + e2). Also we have that Gy = (g3)/1 = {1,93}. Let V,
be a 1-dimensional vector space over Fy spanned by e3. Then o3 : Go — Vs
is given by 02(g3) = e3. Now set L = V; & Vo. We calculate the Lie product
of e; and eg:

le1,e2] = Ta((g1, 92)) = T2(g3) = e3.

Similarly it can be seen that [e;, e3] = [e2,e3] = 0.

1.5 On algorithms

Here we will not give a precise definition of the notion of “algorithm” (for
this the reader is referred to the literature on this subject, e.g., [52]). For us
“algorithm” roughly means “a list of consecutive steps, each of which can
be performed effectively, that, given the input, produces the output in finite
time”. So there is an algorithm known for adding natural numbers, but not
for proving mathematical theorems.

We are concerned with algorithms that calculate with Lie algebras. So
we need to represent Lie algebras, and subalgebras, ideals, and elements
thereof in such a way that they can be dealt with by a computer, e.g., as
lists of numbers. For Lie algebras there are two solutions to this problem
that immediately come to mind: we can represent a Lie algebra as a linear
Lie algebra, or by a table of structure constants. We briefly describe both
approaches.
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Linear Lie algebras: If L happens to be a linear Lie algebra, then we can
present L by a set of matrices that form a basis of it. If a and b are two
elements of this space, then their Lie product is formed by the commutator,
[, =a-b—-b-a.
Structure constants: As seen in Section 1.3, an n-dimensional Lie algebra
can be presented by giving a list of n3 structure constants ci-“j forl1 <4,5,k <
n, that satisfy the relations of Proposition 1.3.2. Then L is viewed as a
(abstract) vector space with basis {zi,...,z,}. The Lie product of two
elements of this space is completely determined by the structure constants.
Let L be given as a linear Lie algebra, i.e., by a basis {a1, ... ,a,}, where
a; € M,(F) for 1 < i < n. Then by expressing the products [a;, a;] as linear
combinations of the basis elements we can compute a multiplication table
for L. The other transition, from a Lie algebra given by a table of structure
constants to a linear Lie algebra is much harder (and will be treated in
Chapter 6). Also for many algorithms that we will encounter, it is essential
to know a table of structure constants for the Lie algebra. For these reasons
we will always assume that a Lie algebra over the field F is presented by
a table of structure constants cf]- € F relative to a basis {z1,...,z,}. An
element z of a Lie algebra will be represented by a coefficient vector, i.e.,
a list of n elements o; € F such that x = eyzy + -+ + apzy,. Finally,
subspaces, subalgebras and ideals will be presented by a basis (i.e., a list of
coeflicient vectors).

Remark. There is a third way of presenting a Lie algebra, namely by gen-
erators and relations. A Lie algebra presented in this way is given by a set
of (abstract) generators X that are subject to a set of relations R. The Lie
algebra specified by this data is the most “general” Lie algebra generated
by X subject to the relations in R. The theoretical notions needed for this
are treated in Chapter 7. There algorithms will be given for calculating the
structure constants of a Lie algebra given by generators and relations. So
we do not lose any generality by supposing that the Lie algebras we deal
with are given by a multiplication table.

In our algorithms we often need auxiliary algorithms for performing
tasks that are not of a Lie algebraic nature, but without which our algo-
rithms would not work. For example, we assume that there are algorithms
available for performing the elementary arithmetical operations (addition
and multiplication) for the fields that are input to our algorithms. Also
we assume that elements of these fields can be represented on a computer.
This does not pose any problems for the field of rational numbers Q, nor
for number fields, nor for finite fields.
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On some occasions we will use a routine that selects a random element
from a finite set (for such routines we refer to [53]). The selection proce-
dure is such that every element of the set has the same probability to be
chosen. This allows randomization in our algorithms: at certain points the
outcome of a random choice will determine the path taken in the rest of the
algorithm. In general also the output of a randomized algorithm depends
on the random choices made; the output may even be wrong. This is clearly
an undesirable situation. Therefore we restrict our attention to a class of
randomized algorithms called Las Vegas algorithms. An algorithm for com-
puting a function f(z) is called Las Vegas if on input a it either computes
f(a) correctly with probability p > 0, or stops without producing output.
It is also required that calls to a Las Vegas algorithm produce independent
results. Hence if a Las Vegas algorithm is repeated then it always produces
a correct answer. The expected number of repetitions is 1/p.

We will frequently obtain solutions to the problems we are dealing with
as solutions of sets of linear equations in several variables. So we need a
routine for solving these. A straightforward method for doing that is known
as Gaussian elimination, which works over all fields for which we can perform
the elementary arithmetical operations. The basic procedure is described
in many monographs on linear algebra, see, e.g., [60].

The Gaussian elimination algorithm allows us to perform the basic oper-
ations of linear algebra: constructing a basis of a subspace, testing whether
an element lies in a subspace, constructing a basis of the intersection of
subspaces, and so forth.

In some cases we need a routine for factorizing polynomials over the
input field. If this field is Q, a number field or a finite field, then there
are algorithms for doing that. For an overview of algorithms for factorizing
polynomials we refer to [53] and [58].

Sometimes we use the connections between associative algebras and Lie
algebras to study the structure of a Lie algebra. Doing so we also need
algorithms for calculating various objects related to an associative algebra.
We have described some of them in Appendix A.

Finally we describe an efficient procedure due to J. T. Schwartz for
finding a non-zero of a multivariate polynomial. It is based on the follow-
ing lemma; for the proof we refer to [74]. The corollary is an immediate
consequence.

Lemma 1.5.1 (Schwartz) Let F be a field. Let f € F[X1,...,X,] be a
polynomial of degree d. Let Q2 be a subset of F of size N. Then the number
of elements v = (vq,... ,v,) of Q™ such that f(v) = 0 is at most AN" 1.
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Corollary 1.5.2 Let f and Q be the same as in the previous lemma. Let v
be an element from Q" chosen randomly and uniformly. Then the probability
that f(v) =0 is at most d/N.

Let f be as in Lemma 1.5.1. We choose a subset 2 C F of size 2d.
Then by selecting a random element from Q" we find a vector v such that
f(v) # 0 with probability % By repeating this we find a non-zero of f, and
the expected number of steps is 2. So if the ground field is large enough,
then we have a Las Vegas algorithm for finding a non-zero of a polynomial.

We end this section by giving two algorithms: one for constructing quo-
tient algebras and one for constructing the adjoint map. Both are fairly
straightforward. They also illustrate the formats that we use for describing
algorithms in this book. We either explicitly give a list of steps that are
executed by the algorithm, or, in the cases where the algorithm is rather
straightforward, we simply discuss the main ingredients, and leave the task
of formulating a series of steps to the reader.

The following is an algorithm that calculates an array of structure con-
stants of the quotient algebra L/I, where I is an ideal of L.

Algorithm QuotientAlgebra
Input: a finite-dimensional Lie algebra L together with an ideal I C L.
Output: an array of structure constants for L/I.

Step 1 Let {y1,...,ys} be a basis of I. Select elements zi, ...,z from the
basis of L such that B = {z1,... ,2,%1,... ,¥s} is a basis of L.

Step 2 for 1 < 4,5 <t express [z, 2;] as a linear combination of elements
from B. Let d;; be the resulting coefficient vectors.

Step 3 For 1 < 4,5 <t let e;; be the vector containing the first ¢ entries
from d;;. Return the set of all e;;.

Comments: We recall that the ideal I is presented by a basis. So
the basis {y1,...,ys} is part of the input. Furthermore, all vectors are
represented as coefficient vectors. So the Gaussian elimination procedure
allows us to perform Step 1 and Step 2.

Now we consider the problem of constructing the matrix of the linear
map adz : L — L, relative to the basis {z;,... ,z,} of L. Let x be given as
T =3y az; then

adz(z;) = Y gl ) =) (Z 0‘1“%) k-
i=1

k=1 \i=1
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It follows that the coefficients of the matrix of adz are >, , aicfj. So
we have an algorithm AdjointMatrix that for a Lie algebra L and an element
z € L constructs the matrix of adz relative to the input basis of L. We note
that the coefficients o; of x are immediately available since z is input as a

coefficient vector.

1.6 Centralizers and normalizers

In this section we construct centralizers and normalizers in a Lie algebra L.
We also give algorithms for calculating bases of these spaces. For that we
assume throughout that L has basis {z1,... ,z,} and structure constants
ci-“j relative to this basis (see Section 1.5).

Let S be a subset of L. Then the set
Cr(S)={zeL|[z,s]=0forall se S}

is called the centralizer of S in L. We prove that C1(S) is a subalgebra of
L. Let z,y € C(S) and s € S. Then by the Jacobi identity

[z, 9], s] = —[ly, 5], 2] — [[s,7],9) = 0, (1.9)

so that [z,y] € CL(S) and CL(S) is a subalgebra of L.

It is straightforward to see that C1(S) is equal to the centralizer of K in
L, where K is the subspace spanned by S. Therefore, in the algorithm for
constructing the centralizer we assume that the input is a basis {y1,... ,y}
of a subspace K of L, where

n
Yy = Z)\ljxj. (1.10)
j=1

Then z = ), oyz; lies in C(K) if and only if [z,y;] = 0 for 1 <! <¢. This
is equivalent to

n n
Z Zx\ljcfj ;=0 forl1<k<nand1<I<t
i=1 7=1

It follows that we have nt equations for the n unknown «y,... ,a,. By a
Gaussian elimination we can solve these; and therefore we find an algorithm
Centralizer for calculating the centralizer of a subspace K of L.

The subset

C(Ly={zeL|[z,yj=0foralyelL}



18 Basic constructions

is called the centre of L. We have that the centre of L is the centralizer of
L in itself, i.e., C(L) = Cr(L). As [z,y]=0forallz € C(L)and y € L,
it is immediate that C(L) is an ideal in L. The centre is the kernel of the
map ad : L — End(L), i.e,

C(L)={z € L|adz = 0}.

So if we study the structure of L via its adjoint map, then we lose “sight”
of the centre.

If C(L) = L, then L is said to be Abelian or commutative.

The algorithm for calculating the centralizer also yields an algorithm
for calculating the centre. In this case the requirement for an element z =
Y-, a;z; to belong to C(L) is {z,z;] = 0 for 1 < j < n, which boils down to

n
Zcfjaizo for 1 < 5,k <n.

i=1

So we have n? equations for the n unknowns oy, ... , @y, which can be solved
by Gaussian elimination. This gives us an algorithm Centre.
Let V be a subspace of L. Then the set

N(V)={zeL|[z,v)] eV forallveV}

is called the normalizer of V in L. In the same way as for the centralizer we
can prove that the normalizer of V in L is a subalgebra of L. If V happens
to be a subalgebra of L, then V is an ideal in the Lie algebra Np(V).

Now we describe an algorithm for calculating the normalizer. Let V
be the subspace of L spanned yi,...,y;, where the y; are as in (1.10).
Then ¢ = Y, a;z; is an element of Ny (V') if and only if there are 8, for
1 <I,m <t such that

[z,w) = Bnyr +-+- + Buye fori=1,...,t.
This amounts to the following linear equations in the variables «; and Gyy,:

n n t
Z )\ljcfj ai—Z)\mkﬁlmzo forl1<k<nand1<I<t.
1

i=1 \j= m=1

Again by a Gaussian elimination we can solve these equations. However,
we are not interested in the values of the 8, so we throw the part of the
solution that corresponds to these variables away, and we find a basis of
N (V). As a consequence we have an algorithm Normalizer for calculating
the normalizer of a subspace V of L.
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Example 1.6.1 Let L be the Lie algebra with basis {z,... ,Z5} and mul-
tiplication table

[.’1:1,164] = X, [2131,:65] = —T9, [Ig,z4] = T9, [:1:2,.’1:5] = T1, [CL’4,.’L‘5] = I3.

(As usual we only list products [z;,z;] for ¢ < j; and we omit those that
are 0.) We calculate a basis of the centre of L. Let z = o a;z; be
an arbitrary element of L. Then z € C(L) if and only if [z;,z] = 0 for
1<i<5 So0 = [r,z] = aszy — asze, from which it follows that
ay = a5 = 0. Then also [z2,z] = 0. It is easily seen that [z3,2] = 0. From
0 = [z4, 2] = —a1 1 — @222 + asx3 we infer that oy = ag = a5 = 0. Finally
[z5,2] = @129 ~ au®1 — aax3, from which a; = oy = a4 = 0. It is seen that
only a3 can be non-zero. It follows that C'(L) is spanned by z3.

Let V be the subspace of L spanned by z;,z5. Let . = Z?Zl o;x; be an
element of L. Then z € N1 (V) if and only if

[z, z1] = az1 + bzs

[z, z5] = cz1 + ds.

The first of these requirements produces as = 0 and a+ a4 = 0. The second
boils down to ¢ — ag = 0 and oy = ay = 0. Hence Ny (V) is spanned by
9, T3

1.7 Chains of ideals

Here we construct chains of ideals of L. First we note that, in order to check
that a subspace I of L is an ideal, it suffices to prove that [z,y] € I for all
z € L and y € I. This follows from (1.1).

Let L be a Lie algebra and let V, W be subspaces of L. Then the linear
span of the elements [v, w] for v € V and w € W is called the product space
of V and W. Tt is denoted by [V, W].

Lemma 1.7.1 Let I and J be ideals of L. Then also [I,J] is an ideal of L.

Proof. Let z € I, y € J, and z € L then by the Jacobi identity

[2, [z, y]] = =[z, [y, 21| - [y, [z, «ll;

which lies in [I, J]. Now if u € [I,J] is a linear combination of elements of
the form [z,y] for z € I and y € J, then also, by linearity of the product,
for all z € L we have that [z,u] is a linear combination of elements of the
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form [a,b] for a € I and b € J. So (I, J] is an ideal of L. a

The following is an algorithm for calculating the product space [K7, K]
of two subspaces K| and K5 of L.

Algorithm ProductSpace

Input: a finite-dimensional Lie algebra L together with two subspaces
Ky, K, C L, given by bases {y1,... ,ys} and {z1,... , 2} respectively.
Output: a basis of the product space [K1, K»].

Step 1 Compute the set A of elements [y;, z;] for 1 <i<sand 1 <5<t

Step 2 Calculate a maximally linearly independent subset B of A. Return
B.

Comment: The set A computed in Step 1 is just a list of coefficient
vectors. So by a Gaussian elimination, we can compute a maximally linearly
independent subset B of A. This gives us a basis of (K1, Ks]|.

Lemma 1.7.1 implies that the subspace [L, L] is an ideal of L. It is called
the derived subalgebra of L.

Set L' = L and inductively L't! = [L, L. Then by Lemma 1.7.1, L*
is an ideal of L for ¢ > 1. Hence L‘t! ¢ L* for i > 1, i.e., the series L is
decreasing. The sequence

L=L'D2L*>---DL'>--

is called the lower central series of L. If L*¥ = 0 for some integer k£ > 0
then L is called nilpotent. Furthermore, if L is nilpotent then the smallest
integer ¢ > 0 such that L¢ # 0 but L°*! = 0 is called the nilpotency
class of L. We note that repeated application of ProductSpace gives us
an algorithm LowerCentralSeries for calculating the lower central series and
hence for deciding whether a given Lie algebra is nilpotent.

Set L) = I and for ¢ > 1, LG+ = [L) L®)]. Then by Lemma 1.7.1
the L) are ideals of L for i > 1. Therefore, L+ is contained in L®). The
sequence

L-_—L(l) DL(2) DEEE DL(l) DEEE

is called the derived series of L. If there is an integer d > 0 such that
L@ = 0, then L is said to be solvable. Just as for the lower central series
we find an algorithm DerivedSeries for calculating the derived series; and
hence an algorithm for deciding whether a Lie algebra is solvable or not.

Lemma 1.7.2 Let L be a nilpotent Lie algebra. Then L is also solvable.
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Proof. By induction on i we have L(® C L?, and the statement follows. O

Now we define a third series of ideals. Unlike the lower central and
derived series, this series is not descending but ascending. Put C;(L) =
C(L) (the centre of L) and for i > 1 we define Cj;1(L) by the relation
Cit1(L)/Ci(L) = C(L/Ci(L)). It follows that C;11(L) D Ci(L), i.e., the
series C;(L) is increasing. The sequence

C(L)=C(L)yC Cy(L) C--- C Ci(L) C -

is called the upper central series of L. Suppose that there is an integer e > 0
such that Co(L) = Cey1(L), then the ideal Cc(L) is called the hypercentre
of L.

Repeated application of the algorithms Centre and QuotientAlgebra give
us an algorithm UpperCentralSeries for calculating the upper central series.
Here we remark that for finite-dimensional Lie algebras L the series defined
above always stabilize at some point (i.e., there are integers c,d,e > 0 such
that L¢ = L°+!, L&) = L4+ and Cy(L) = Cey1(L)).

Example 1.7.3 Let L be the 5-dimensional Lie algebra of Example 1.6.1.
As seen in that example, C1(L) is spanned by z3. In the same way it can
be shown that C(L/C(L)) = 0 so that C2(L) = Cy(L).

The lower central and derived series of L can be read off from the multi-
plication table. It is seen that L? is spanned by 1,22, z3 and L3 by z1, 29,
and L* = L3. Also L(® = L2 and L® = 0. It follows that L is solvable,
but not nilpotent.

1.8 Morphisms of Lie algebras

In this section we derive useful properties of morphisms of Lie algebras.
Recall that a linear map 6 : Ay — Ay from an algebra A; into an algebra
Aj is a morphism of algebras if 8(ab) = 0(a)8(b) for all a,b € A,. If A; and
Aj are Lie algebras, this condition is written as 6([a,b]) = [0(a),8(b)]. If a
morphism of Lie algebras is bijective, then it is said to be an isomorphism
and the two Lie algebras are called isomorphic. If this is the case, then we
write A; = Ay. Furthermore, by ker(d) = {z € A, | 8(z) = 0} we denote
the kernel of 6. Also im(6) = {6(z) | z € A1} is the image of 6.

Lemma 1.8.1 Let 8 : Ly - Lo be a morphism of Lie algebras. Then we
have L1/ ker(6) = im(6).
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Proof. First note that ker(#) is an ideal in L; and that im(#) is a subalge-
bra of Ly. Define 8 : L,/ ker(6) — im(#) by 8(z + ker(6)) = (z). This is a
well defined morphism of Lie algebras and it clearly is bijective. So it is an
isomorphism and the two Lie algebras are isomorphic. |

Proposition 1.8.2 For a Lie algebra L with ideals I and J, the following
statements hold.

1. If I C J then the quotient Lie algebra J/I is an ideal of the quotient
Lie algebra L/I and we have (L/I)/(J/I) = L/J.

2. The quotient Lie algebra (I + J)/J is isomorphic to I/(INJ).

Proof. 1. Let ¢ : L/I — L/J be the morphism of Lie algebras mapping
the coset z + I € L/I to the coset = +J € L/J; this is well defined because
IcJ. Let z+ I € kerg, then £ € J, and hence z + I € J/I. Since it is
clear that J/I C ker ¢, we find ker ¢ = J/I. Now, as ¢ is clearly surjective,
1. follows from Lemma, 1.8.1.

2. Definethemap v : I+J = I/(INJ) by p(z+y)=z+(INJ)E
I/(INJ)forz € I,y € J. This is well defined because if z +y = 2’ + ¢/ for
gelyed thenec—2' =y ~yelInd,sothatz+INJ=2"+1INJ,
Le., P(z +y) =@ +y').

Ifz €I andy€ Jaresuch that z+y € keryp, thenz € INJ. Sox € J
and hence also z+y € J. Therefore ker ¢ C J, and consequently kery = J.
Thus, 2. follows from Lemma 1.8.1. O

Example 1.8.3 Let L be a finite-dimensional Lie algebra. We consider the
linear map ad : L — gl(L). We show that ad is a morphism of Lie algebras.
For z,y,z € L we have

adle,4](2) = [[z,], 2| = ~[[y, 2}, 2] - [[2],) (Jacobi identity)
=[z,[y,2]] - [y, [z, 2]] = (adz - ady — ady - adz)(z) = [adz, ady](2).

The kernel of ad is C(L), the centre of L. So by Lemma 1.8.1, we see that
the image of ad is isomorphic to L/C(L).

1.9 Derivations

Let A be an algebra. A derivation d of A is a linear map d : A — A
satisfying
d(zy) = d(z)y + zd(y) for all z,y € A.



1.9 Derivations 23

Let Der(A) be the set of all derivations of A. It is straightforward to check
that Der(A) is a vector space. Furthermore, the commutator defines a
product on Der(A), since for dy,ds € Der(A),

[di,do](zy) = (didy — dadi)(zy)
= di{da(2)y + zd2(y)) — d2(di(2)y + zdi1(y))
= di(da(2))y + da(2)di(y) + di(z)d2(y) + zd1(d2(y))
—da(d1(z))y — di(z)da(y) ~ da(z)d1(y) — zda(d1(y))
(di(d2(2)) — da(di(x)))y + z(di(da(y)) — d2(di(y)))
[d1, da](z)y + z[d1, da](y)-

Consequently the space Der(A) has the structure of a Lie algebra.
For later use we record the so-called Leibniz formula. Let d be a deriva-
tion of the algebra A. Then

n

d*(zy) = Z (Z) d*(z)d"*(y) (Leibniz formula), (1.11)
k=0

which is proved by induction on n.

Let A be a finite-dimensional algebra. We consider the problem of com-
puting a basis of the linear Lie algebra Der(A). Let {y1,... ,ym} be a basis
of A and let 'yfj (for 1 <1, 4,k < m) be the structure constants of A relative
to this basis. Let d € End(A) be a linear map given by d(y;) = Z;”zl dijy;-
Now d € Der(A) if and only if d(y;y;) = d(y:)y; + vid(y;) for 1 < i,5 < m.
This is equivalent to

m m m m m m
DD =D Y iy + DY vk
I=1 k=1 =1 k=1 =1 k=1

And since the y; are linearly independent, the coefficients of y; on the left
and right hand sides must be equal. Hence d € Der(A) if and only if

m
Z'szjdkl — Yhjdik — Yigdje =0, for 1 < 4,5, <m.
k=1

Which is a system of m® linear equations for the m? variables di;. This
system can be solved by a Gaussian elimination; as a consequence we find
an algorithm Derivations which computes a basis of Der(A) for any algebra
A.

Remark. If A happens to be a Lie algebra, then by (1.1), v;y; = —y;¥u:.
Therefore, d € End(A) if and only if d(y;y;) = d(y:)y; + vid(y;) for 1 <i <
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4 < m. So in this case we find m?(m + 1)/2 equations (instead of m3).

Example 1.9.1 Let L be a Lie algebra. Then we claim that for z € L, the
map adz : L — L is a derivation of L. Indeed, for y, 2 € L we have

adz([y, 2]) [z, [y, 2]

1z, [z,y]] = [y, [z, z]] (Jacobi identity)
([z,y], 2] + [y, [, 2]]
[adz(y), 2] + [y, adz(2)],

I

i

1

il

proving our claim. Derivations of the form adz are called inner. On the
other hand, if a derivation d of L is not of this form, then d is said to be an
outer derivation.

1.10 (Semi)direct sums

Let Ly and Lo be Lie algebras over the field F. In this section we describe
how we can define a multiplication on the direct sum (of vector spaces)
Ly @ L, extending the multiplications on L1, Ly and making L; & L, into a
Lie algebra. Let the product on L; be denoted by [, ]; and on Ly by [, 2.
Suppose we have a morphism of Lie algebras 6 : L1 — Der(Ly). Then this
map allows us to define an algebra structure on the vector space L; @ Lo
by setting

(21 + 22,91 + yo] = [21,31]1 + 0(21) (32) — O(y1)(z2) + [z2, 2] (1.12)

for 1,y € Ly and z2,y2 € Ly. (So the product {z,y] for z € L) and y € Ls
is formed by applying the derivation 8(z) to y.)

Lemma 1.10.1 The multiplication defined by (1.12) makes L1 @ L into a
Lie algebra.

Proof. Let 7 € Ly and 29 € Ly. Then
[£1 4+ 2,21 + 2] = [z1, 311 + O(z1)(22) — O(21)(22) + [22, 2]2 = 0.

It suffices to check the Jacobi identity for the elements of a basis of the Lie
algebra (cf. Lemma 1.3.1) . Construct a basis of Ly & L2 by first taking
a basis of L; and adding a basis of Ly. Let z,y,z be three elements from
this basis. We have to consider a few cases: all three elements are from
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L, two elements are from Ly (the other from Ls), one element is from L,
no elements are from L;. The first and the last case are implied by the
Jacobi identity on L; and Lg respectively. The second case follows from the
fact that # is a morphism of Lie algebras. And the third case follows from
the fact that 6(x) is a derivation of L, for z € L. (We leave the precise
verifications to the reader). O

The Lie algebra Li @ Lo, together with the multiplication defined by
(1.12), is called the semidirect sum of L; and Ly (with respect to 6). It is
straightforward to see that it contains Lo as an ideal and L; as a subalgebra.

On the other hand, suppose that a Lie algebra L contains a subalgebra
L; and an ideal Ls such that as a vector space L = L; @ Ly. Then for
z € L and y € Ly we have adz(y) = [z,y] € Lo because Ly is an ideal. As
a consequence adx maps Lo into itself. Furthermore, as seen in Example
1.9.1, the map adz is a derivation of L. Hence we have a map ady, :
Ly — Der(Ly). By Example 1.8.3, ady, is a morphism of Lie algebras. It
is immediate that the product on L satisfies (1.12) with § = ady,. So L is
the semidirect sum of L; and Ls.

If there can be no confusion about the map 6, then the semidirect sum
of Ly and L is denoted by Lj x Lo.

A special case of the construction of the semidirect sum occurs when we
take the map € to be identically 0. Then the multiplication on Ly @ Ly is
given by

(1 + 22,1 + yol = [z1,11]1 + [22,y9]2 for all z1,y1 € Ly and z2,y2 € Lo.

The Lie algebra L @ Lo together with this product is called the direct sum
(of Lie algebras) of L; and Ls. It is simply denoted by L; & Lo. From the
way in which the product on Li & L9 is defined, it follows that L; and Lo
are ideals in L; @ Lo. Conversely suppose that L is a Lie algebra that is
the direct sum of two subspaces L; and Lo. Furthermore, suppose that L,
and Lo happen to be ideals of L. Then [L;, Lo] is contained in both L; and
Ly. Therefore (L1, L] = 0 and it follows that L is the direct sum (of Lie
algebras) of Ly and L.

Example 1.10.2 In general a Lie algebra can be a semidirect sum in more
than one way. Let L; and Ly be copies of the same Lie algebra L. Let
¢ : Ly — Lo be the algebra morphism induced by the identity on L. Define
0: Ly — Der(Ly) by 8(x) = ad,¢(z) for z € L;. Then 6 is the composition
of two morphisms of Lie algebras. Consequently, 8 is a morphism of Lie
algebras and hence we can form the semidirect sum of Ly and Lo with
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respect to . Denote the resulting Lie algebra by K. Now let K; be the
subspace of K spanned by all elements of the form z — ¢(z) for x € L;. And
let K9 be the subspace spanned by all ¢(z) for z € L; (i.e., K is equal to
L3). Then for z,y € Ly,

[z — ¢(z),y — ¢(y)] = [z, ] 0(z)(d(y)) + 0(y) (#(z)) + [8(z), H(y)]
= [z, 9] — [#(z), 6(y)] + [$(y), d(2)] + [¢(2), B(y)]
- [.’E,y] [ (.’17) ( )] [x,y] - ¢([CL',yD

Hence K is a subalgebra of K. By a similar calculation it can be shown
that [K;, K2] = 0 so that K; and K, are ideals of K. So K is the direct
sum {of Lie algebras) of K; and K.

In Section 1.15 we will give an algorithm for finding a decomposition of
L as a direct sum of ideals.

1.11 Automorphisms of Lie algebras

Let L be a Lie algebra over the field F. An automorphism of L is an isomor-
phism of L onto itself. Since products of automorphisms are automorphisms
and inverses of automorphisms are automorphisms, the automorphisms of
L form a group. This group is called the automorphism group of L; it is
denoted by Aut(L).

Example 1.11.1 Let V be a finite-dimensional vector space. Let L be a
subalgebra of gl(V) and g € End(V) an invertible endomorphism of V. If
gLg™! = L then the map z — gzg~! is an automorphism of L because
lgzg™", 9yg™'] = gayg™! — gyxg™' = glz,ylg™".

Now let the ground field F be of characteristic 0. If d is a nilpotent
derivation of L, i.e., d" = 0 for some integer n > 0, then we can define its
exponential:

1
expd=1+d+§d2+-~~+

Lemma 1.11.2 Let d be a nilpotent derivation of L, then expd is an au-
tomorphism of L.
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Proof. Because d is nilpotent, there is some integer n with d® = 0. Now
we calculate

1.
[(expd)z, (expd)y] = aalde 'yl
i=0 j=0 J:
2n—2 m 1
- (Z m z“)
m=0 \i=0
2n—2
d"|z,
=y Ty gy 1)
m!
m=0
n—1
d™|z,
=Y oY (expa)iay)
m=0 ’
So expd is a morphism of Lie algebras.
The inverse of expd is the map
n—1 1.
exp(—d) = Z(—I)Jﬁdj.
j=0

It follows that expd is a bijective morphism of Lie algebras; i.e., it is an
automorphism. O

In particular, if adz is nilpotent then exp(adz) is an automorphism of
L. An automorphism of this form is called inner. The subgroup of Aut(L)
generated by all inner automorphisms is called the inner automorphism
group. 1t is denoted by Int(L).

1.12 Representations of Lie algebras

Definition 1.12.1 Let L be a Lie algebra over the field F. A representation
of L on a vector space V 1is a morphism of Lie algebras p : L — gl(V).

A representation p : L — gl(V) is said to be faithful if ker p = 0.

If p: L — gl(V) is a representation of the Lie algebra L on the vector
space V, then V is said to be an L-module. The representation p is said
to define an action of L on V. If from the context it is clear which repre-
sentation p we mean, then we also write z - v instead of p(z)(v). Here the
condition that p be a morphism of Lie algebras becomes

Z,yl v=z-(y-v)—y-(z-v)forallz,ye Landv e V. (1.13)
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Let p: L — g(V) and p' : L — gl(W) be two representations of the
Lie algebra L. A morphism of L-modules from V to W is a linear map
f:V — W such that p'(z)(f(v)) = f(p(z)(v)) for all v € V. If a morphism
of L-modules f : V — W is bijective, then the representations p and p’ are
said to be equivalent.

Example 1.12.2 Let L be a Lie algebra. As seen in Example 1.8.3 the
adjoint map ad : L — gl(L) is a morphism of Lie algebras. Hence ad is
a representation of L. It is called the adjoint representation. In the next
chapters we will heavily utilize the tools of representation theory to study
the adjoint representation of a Lie algebra L. This will yield useful insights
in the structure of L.

Now we describe several ways of making new L-modules from known
ones. Let L be a Lie algebra over the field F and let V and W be two
L-modules. Then the direct sum V @& W becomes an L-module by setting

z-(vtw)=z-v+zr-wlrallze L,veVand w e W.
Also the tensor product V ® W can be made into an L-module by
z-(v@uw)=(z-v)Qw+v® (z-w).
We verify condition (1.13) for VQ W:

(2,1 (0 @ w) =([2,5] - v) B w+v® ([z,9] - w)
=(z-y-v)Quw—(y-z-v)Qw+
v®(z-y-w)—v®(y -z w)
2y (WO w) ~y- (z- (v Bw)).

By Homp(V, W) we denote the space of all linear maps from V into W.
This space can also be made into an L-module by setting

(- filv)=z-(f(v))— f(z-v) forall z € L, f € Homp(V,W) and v € V.

We leave the verification of the requirement (1.13) to the reader.

Let V be an L-module and let W be a subspace of V that is stable under
Lyie,z-weWforallz € L and w € W. Then W is called a submodule
of V. In this case W is an L-module in its own right. Also, if W is a
submodule, then the quotient space V/W can be made into an L-module
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by setting z - © = T -0, where ¥ denotes the coset v + W. The space V/W
is called the quotient module of V and W.

The L-module V is called irreducible if it has no submodules other than
0 and V itself. It is called completely reducible if V is a direct sum of
irreducible L-modules.

Definition 1.12.3 Let V be a finite-dimensional L-module. A series of
L-submodules
0=V0CV1C"'CVn+1=V

such that the L-modules Vi41/V; are irreducible for 0 < i < n is called a
composition series of V' with respect to the action of L.

Lemma 1.12.4 Let V be a finite-dimensional L-module. Then V has a
composition series.

Proof. The proof is by induction on dimV. The statement is trivial if
dimV = 0 or if V is irreducible. Now suppose V is not irreducible and
dimV > 0, and assume that the result holds for all L-modules of dimen-
sion less than dim V. Let W be a maximal proper submodule of V (such a
submodule exists because V' is not irreducible). Then by induction W has
a composition series. To this series we add V' and we obtain a composition
series of V' (V/W is irreducible since W is a maximal proper submodule). O

1.13 Restricted Lie algebras

In this section all algebras are defined over the field F' of characteristic
p>0.

Let A be an algebra and let d be a derivation of A. We use the Leibniz
formula (1.11), with n = p. Since all coefficients (fc’) are0for 1<k<p-1
we see that

& (zy) = P (z)y + zd”(y).

The conclusion is that dP is again a derivation of A.

Now let L be a Lie algebra over F. Then for z € L we have that adz is a
derivation of L. So (adz)? is also a derivation of L, and it may happen that
this derivation is again of the form ady for a y € L. Lie algebras L with the
property that this happens for all elements z of L are called restricted.

If L is a restricted Lie algebra, then there is a map f, : L — L such that
(adz)? = adfp(z). Now let ¢ : L — C(L) be any map from L into its centre.
Then g, = fp +c is also a map such that (adz)? = adg,(z). So if C(L) # 0,
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there will be a huge number of such maps g,. Therefore we want to restrict
our attention to a “nice” class of maps. In order to see what such a class
might look like we study the case where the above phenomenon does not
occur, namely when C(L) = 0.

First, let A be an associative algebra over F' and let a,b € A. By
ada : A = A we denote the map defined by ada(b) = ab — ba. Now

) (b) = ~ (n —1)*akpam '
(ada)™(b) kz:%(’“)( 1)kakb (1.14)

which is easily proved by induction. If in (1.14) we set n = p — 1, we get
(as (P11) = (=1)),

(ada)P~Y( Zakba” 1-k (1.15)

Let T be an indeterminate and consider the polynomial

p—1
(Ta+b)P =TPa? + ¥ + Y _ si(a,b)T", (1.16)
=1

where the s;(a, b) are certain non-commutative polynomial functions of a, b.
We differentiate (1.16) with respect to T' to obtain

p-1 p—1
> (Ta+b)'a(Ta+ by~ = isi(a,b)T"
1=0 i=1

By (1.15), the left-hand side of this equation is equal to ad(T'a + b)?~1(a).
It follows that si(a,b) is equal to 1 times the coefficient of %! in ad(T'a +
b)?~1(a). In particular, s;(a,b) is a nested commutator in a and b. Hence
also for z,y in a Lie algebra L the expression s;(z,y) makes sense. Further-
more, s;(adz,ady) = ads;(z,y) for z,y € L, since ad is a morphism of Lie
algebras (Example 1.8.3).

Example 1.13.1 First let p = 2, then ad(Ta + b)(a) = [b,a]. So in this
case s1(a,b) = [b,a]. Now let p = 3, then

ad(Ta+b)?(a) = [Ta+b,[Ta+b,a]] = [Ta+b,[b,a]] = Tla, [b,a]] + b, [b, a]].

Hence s;(a,b) = [b, [b,a]] and s2(a,b) = 2[a, [b, a]].
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Now let z,y € L, where L is a restricted Lie algebra such that C(L) = 0.
Then by setting T =1 in (1.16) and taking a = adz and b = ady we get

p—1
(adz + ady)? = (adz)? + (ady)? + Z si(adz, ady)
i=1
p-
= adfp(z) + adfp(y) + Z:adsZ z,Y)

=ad(fp +fp +Zszmy

So since C(L) = 0 we see that f,(z+y) = f,(z)+ fo(y) + 721 si(z,y). Fur-
thermore, for & € F and z € L we have (adaz)P = oPadfp(z) = ado? fy(z).
Hence fp(ox) = of f,(x). Now in a restricted Lie algebra we consider maps
fp that have the same properties as the map f;, in the case where L has no
centre.

Definition 1.13.2 Let L be a restricted Lie algebra over F. Then a map
fo: L — L is called a p-th power mapping, or p-map if

1. (adz)? = adfp(z) for allz € L,

2. folz +y) = fp(z) + foly +22181xy)f07“xy€[/
3. fplazx) = o? fp(z).

Let L be a restricted Lie algebra over F. If it is clear from the context
which p-th power map f, we mean, then we also write 2 instead of fy(z).

Example 1.13.3 Let A be an associative algebra over the field F' of char-
acteristic p > 0. Then since A is associative, we can raise its elements to the
p-th power. Set L = Ay, the associated Lie algebra. Then for a € L we
have a? € L. Furthermore, by (1.14) it follows that (ada)?(b) = ad(a?)(b).
So L is restricted. Also by (1.16), where we set T' = 1, we have that a — a?
is a p-th power mapping. As a consequence, any subalgebra K of L that is
closed under the map a — a? is automatically restricted; and the restriction
of a — a? to K is a p-th power mapping.

Now let A be an algebra over F and Der(A4) the Lie algebra of all
derivations of L. As seen at the start of this section, d° € Der(A) for
all d € Der(A). Hence Der(A) is a subalgebra of End(A)g;. closed under
the p-th power map. So Der(A) is a restricted Lie algebra.
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Let f be a bilinear form on the vector space V. Let L be the Lie algebra
defined by (1.3). Let a € Ly, then f(aPv,w) = (=1)* f(v,a?w) = — f (v, aPw)
so that a? € Ly. As a consequence L is a restricted Lie algebra relative to
the map a — aP.

Suppose we are given a Lie algebra L over F. In principle, when checking
whether L is restricted or not, we would have to check whether (adz)? is an
inner derivation of L for all z € L. However, by the next result it is enough
to check this only for the elements of a basis of L. Furthermore, a-priori it
is not clear whether any restricted Lie algebra has a p-th power mapping.
Also this is settled by the next proposition.

Proposition 1.13.4 Let L be a Lie algebra over the field F' of characteristic
p>0. Let {z1,z2,...} be a (possibly infinite) basis of L. Suppose that there
are y; € L for © > 1 such that (adz;)P = ady;. Then L has a unique p-th
power mapping x + zP such that ¥ = y;.

Proof. We prove uniqueness. Let fp: L — L and g, : L — L be two p-th
power mappings such that fp(z;) = gp(z;) = y; for i > 1. Set h = f, — gp.
Then from the definition of p-th power mapping we have h(z +y) = h(z) +
h(y) and h(az) = oPh(z), for z,y € L and a € F. Hence ker h is a subspace
of L. But z; € kerh for all ¢ > 1. It follows that h =0 and f, = g,.

The proof of existence is more complicated; it needs the concept of uni-
versal enveloping algebras. We defer it to Section 6.3. a

On the basis of the last proposition we formulate an algorithm for check-
ing whether a given finite-dimensional Lie algebra is restricted.

Algorithm IsRestricted

Input: a finite-dimensional Lie algebra L defined over a field of characteristic
p>0.

Output: true if L is restricted, false otherwise.

Step 1 Select a basis {z1,... ,z,} of L and compute the matrices of adz;
for 1 <17 < n. Let V be the vector space spanned by these matrices.

Step 2 for 1 < i < n determine whether (adx;)? € V. If one of these is not
in V then return false. Otherwise return true.

Let L be a restricted Lie algebra. In order to calculate with p-th power
mappings, we have to decide how to represent such a mapping on a com-
puter. Proposition 1.13.4 gives a straightforward solution to this problem.
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We can describe a p-th power mapping by giving the images of the ele-
ments of a basis of L. Then the image of an arbitrary element of L can be
calculated using conditions 2 and 3 from Definition 1.13.2.

Example 1.13.5 Let G be a finite p-group, and L be the corresponding Lie
algebra over F' = [F,, as constructed in Section 1.4. Then L=V, ®--- @ Vs,
where V; is isomorphic to the factor group G; via the isomorphism o; : G; —
Vi. Now let z € V; and let g € k;(G) be such that 7;,(g) = = (where 7; is as in
Section 1.4). Then by Theorem 1.4.1, g € kp;(G). Now we set 2P = 7p;(g?).
It can be shown that zP does not depend on the particular pre-image g
chosen. Also it can be shown that for z € V; we have (adx)? = adz?. This
together with Proposition 1.13.4 shows that L is a restricted Lie algebra.

Now let G be the group generated by g1, g2, g3 of Example 1.4.5. Let L be
the corresponding 3-dimensional Lie algebra over Fy with basis {ej, eq,€3}.
Then e? = 75(g?) = e3, and similarly e2 = e3 and €3 = 0. Furthermore,
using the fact that s;(a,b) = [b, a] (see Example 1.13.1) we see that

(e1 +e2)? = €2 + e+ s1(e1,e2) = e3 +e3+ e3 = es.

1.14 Extension of the ground field

Let L be a Lie algebra over the field F, and let F' be an extension field of F.
Then the structure constants of L are also elements of F, so we can define
a second Lie algebra L that has the same structure constants as L, but is
defined over F. Formally we set L = L @ F. This space consists of finite
sums Y . y; ® A, where y; € L and \; € F. For ® we have the following
rules:

4+ RA=2XA+y® A,
@A +pu)=z@1+zQyu,
(ax)®@A=zxQa\ fora€F,
Mz ®u) =z M.
Furthermore, the product in L is defined by [z ® A,y ® p] = [z, y] ® \u. Let

{z1,... ,zn} be a basis of L, then the rules for ® imply that every y € L
can be written as

n
yzzx\i(mi@)l) where \; € F for 1 <i < n.
i=1
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It follows that the elements 71 ® 1,... ,z, ® 1 form a basis of L. And the
structure constants of L relative to this basis equal the structure constants

of L relative to the basis {z,... ,z,}. 5 } 5 3
Now let V, W be two subspaces of L; then V = V@pF and W = W®p F
are subspaces of L. Let {v1,...,vs} and {wy,... ,w} be bases of V and

W respectively. If we input L, V and W (with respective bases {z; ®
L...,z,®1}, {u1®1,... ,0s®1} and {w; ®1,... ,w:®1}) into the algorithm
ProductSpace then, because the structure constants of L are equal to those
of L, we see that this algorithm performs exactly the same operations as on
the input L, V, W. (Solving linear equations with coefficients in F' gives an

answer with coefficients in F'.) Hence
[V®FF~',W®FF] = [V, W] ®Fl*:'.

Let L(*) denote the k-th term of the derived series of L, then by the above
discussion we have that L*) = L®!) @  F. And the same holds for the terms
of the lower central series.

Also, the algorithm Centre solves exactly the same set of linear equations
on input L as on input L. Hence we see that C(L) = C(L) ® F. And
generally, Cx(L) = Cx(L) ®F F, where Cx(L) denotes the k-th term of the
upper central series of L.

1.15 Finding a direct sum decomposition

Let L be a finite-dimensional Lie algebra. Then L may or may not be the
direct sum of two or more ideals. If this happens to be the case then the
structure of the direct summands of L may be studied independently. To-
gether they determine the structure of L. So the direct sum decomposition
can be a very valuable piece of information. In this section we describe an
algorithm to compute a decomposition of L as a direct sum of indecompos-
able ideals (i.e., ideals that are not direct sums of ideals themselves).
Suppose that L = I); & I, is the direct sum of two ideals I;,I> and I;
is contained in the centre of L. Then I; is called a central component of L.
First we give a method for finding such a central component if it exists.
Let J; be a complementary subspace in C(L) to C(L) N {L,L]. Then
as Jj is contained in the centre of L, it is an ideal of L. Let J; be a
complementary subspace in L to J; containing [L, L]. Then

[L, JQ] C [L,L] C Jo

so that Jo is an ideal of L. Furthermore L = J; & J> and Jj is central and
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Jo does not contain a central component. The conclusion is that J; is a
maximal central component.

Now we suppose that C(L) C [L, L] (i.e., that L does not have a central
component) and we try to decompose L as a direct sum of ideals.

We recall that M, (F) is the associative matrix algebra consisting of all
n X n matrices over F' (cf. Example 1.1.4). From Appendix A we recall
that a non-zero element e € M,(F) is called an idempotent if ¢* = e.
Two idempotents e; and ey are called orthogonal if ejes = ese; = 0. An
idempotent is said to be primitive if it is not the sum of two orthogonal
idempotents.

Proposition 1.15.1 Put n = dim L. The Lie algebra L is the direct sum
of k (non-zero) ideals I, ... , Iy if and only if the centralizer

Cu,p)(adL) = {a € My(F) | a-adz = adz - a for all x € L}

contains k orthogonal idempotents eq,... ,ex such that e; + --- + ey s the
identity on L and I, = eI, forr = 1,... k. Furthermore, the ideal I, is
indecomposable if and only if the corresponding idempotent e, is primstive.

Proof. First we suppose that
L:I]_@"‘@Ik”

where I. is a non-zero ideal of L for 1 < r < k. For an element z € L
we write £ = 21 + - - - + x, where =, € I,. Let e, : L — L be defined by
er(z) = z, (ie., e, is the projection onto I,). Then for y,z € L we have
erady(2) = e;[y, 2] = [y, 2], = [y, 2;] = adye,(z). Hence e, € Cpy,(r)(adL).
Also it is clear that e,e; = 0 for 7 # s, and that e; + -+ + e = 1.

Now let ey, ... ,ex be k orthogonal idempotents in Cyy, () (adL) such
that e;+---+ex = 1. Thenset I, = e, L for1 <r < k. Since ef = e, we have
for £ € I, and y € L that [y, z] = [y, e,z] = adye,(z) = erady(z) = e [y, z]
so that I, is an ideal of L. Also

L=1-L=(e1+ - +e)L=05L+ -+ 1.

Now let x € I, N I;. Then z = e,z, and also e,z = z so that z = e;e,z = 0.
Hence L is the direct sum of the I,.

If e, is not primitive then, as above, we see that I, is the direct sum of
ideals. Furthermore, if I, is the direct sum of ideals of I, (that are then
automatically ideals of L), then e, is not primitive. g
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Theorem 1.15.2 Let A be the associative algebra Cpp,(ry(adLl) and put
Q = A/Rad(A). Suppose that L has no ceniral component. Then Q is
commutative.

Proof. We may suppose that the ground field F is algebraically closed.
Indeed, if F denotes the algebraic closure of F, then as seen in Section 1.14
we have C(L) ®p F = C(L ®f F) and [L ®r F,L ®F F] = [L,L) ®F F.
Therefore also L ® F has no central component. Also since a basis of
Cu,(r)(adL) can be calculated by solving a set of linear equations over F
we have CMn(p)(adL)®pF = CMn(F)®FF(adL®FF)- And finally Rad(A®Fr
F) = Rad(A) ®F F by Proposition A.1.3. Hence the result for L ® p F will
imply the result for L.

By Theorem A.1.5 we may write A = S@®Rad(A), where S is a semisim-
ple subalgebra of A isomorphic to Q. We suppose that S is not commutative.
By Theorem A.1.4, S decomposes as a direct sum of simple associative al-
gebras that are full matrix algebras over division algebras over F. As F is
algebraically closed, the only division algebra over F' is F itself (for a proof
of this we refer to [69]). Hence from our assumption that S is not commu-
tative it follows that S contains a full matrix algebra of degree at least 2.
Now every full matrix algebra of degree > 2 contains a full matrix algebra
of degree 2. It follows that S contains elements e;; for 1 < 4,57 < 2 such
that e;jex; = djxey;. Then 1 € A decomposes as a sum of three orthogonal
idempotents 1 = e1; + e + (1 — €17 — e92) and the first two of these are
certainly non-trivial. So by Proposition 1.15.1, L decomposes as a direct
sum of ideals

L=LolLol

where I} = e;; L and Iy = eg3 L. Now we have maps
f21 : Il b d Ig, and f12 : IQ — 11

defined by fo1(z) = ea1z and fi2(y) = e1py for £ € I) and y € I>. Since
€21T = e99€91T We see that fo; maps I; into I3, and likewise fi2 maps Io
into I;. Furthermore f12(fo1(r)) = ejzea1z = eynz = z for x € I1. So fi2
and fo1 are each others inverses. In particular they are non-singular linear
maps.

Because L does not have a central component we have that I and I, are
not commutative Lie algebras. So there exist z,y € I; such that [z,y] # 0.
We calculate

f2([z,y]) = eafz,y] = egradz(y) = adz(eay) = [z,e21y] =0
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where last equality follows from [I},I5] = 0. But since fo; is non-singular
this implies that [z,y] = 0 and we have reached a contradiction. The con-
clusion is that S (and hence Q) is commutative. a

Algorithm DirectSumDecomposition
Input: a finite-dimensional Lie algebra L.
Output: a list of indecomposable ideals of L such that L is their direct sum.

Step 1 Compute the centre C(L) and the derived subalgebra [L, L]. Com-
pute a basis of a complement J in C(L) to C(L)N[L, L]. Let K be a
complement to J in L such that K contains [L, L].

Step 2 Set n := dim(K) and compute the centralizer A = Cyy, (py(adk K).
Step 3 Compute Rad(4) and set @ := A/Rad(A). Compute the set of

primitive orthogonal idempotents &1,... , & in @} such that & +--- +
é&k=1€qQ.

Step 4 Lift the idempotents €;,... ,&; to a set of orthogonal idempotents
€1,... 6 € Asuchthat e +---+e, =1 € A For1 <r <k set
I, =¢.K.

Step 5 Let {y1,... ,ym} be a basis of J and for 1 < 7 < m let J; be the
ideal of L spanned by y;. Return {Jy,... ,Jn}U{l,..., Ik}

Comments: If z1,... ,z, is a basis of K, then
Cum,(r)(adK) = {a € Myp(F) | a-adgz; = adgz; - a for 1 <4 <n},

and hence Cy,(py(adK) can be calculated by solving a system of linear
equations. For the calculations in the associative algebra A (calculation of
the radical, of central idempotents and lifting them modulo the radical), we
refer to Appendix A. We note that since @) is commutative, all idempotents
in @ are central. Hence a set of primitive orthogonal idempotents with
sum 1 can be found by the algorithm Centralldempotents (as described in
Appendix A).

Remark. A computationally difficult part of the algorithm DirectSumDe-
composition is the calculation of the centralizer Cpy,(ry(adK). The dimen-
sion of this algebra may be substantially bigger than the dimension of K.
So it would be desirable to have an algorithm that uses Lie algebra methods
only. To the best of our knowledge no such algorithm exists for the general
case. However, for the special case of semisimple Lie algebras we do have
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an algorithm that does not “leave” the Lie algebra (see Section 4.12).

1.16 Notes

The algorithms QuotientAlgebra, AdjointMatrix, Centralizer, Centre, Normal-
izer, ProductSpace, Derivations can be found in [7]. We have followed [71]
for the algorithm DirectSumDecomposition.

Usually (cf., [48], [88]), a Lie algebra of characteristic p > 0 is called
restricted if it has a p-th power mapping. However, due to Proposition
1.13.4 (which is taken from [48]), this is equivalent to our definition of
restrictedness.



Chapter 2

On nilpotency and solvability

In this chapter we start our study of the structure of a finite-dimensional
Lie algebra. We examine solvable and nilpotent Lie algebras. Furthermore,
we show that any finite-dimensional Lie algebra contains a unique maximal
nilpotent ideal (called the nilradical), and a unique maximal solvable ideal
(called the solvable radical). Section 2.2 is devoted to the nilradical. We
give several characterizations of the nilradical, on the basis of which we
formulate an algorithm for calculating the nilradical of a finite-dimensional
Lie algebra. Section 2.3 is devoted to the solvable radical. We prove its
existence and derive several important properties of the solvable radical.
Using some of these in Section 2.4 we give a proof of Lie’s theorem, which
states that a linear “split” solvable Lie algebra of characteristic 0 consists
of upper triangular matrices.

In Section 2.5 we prove Cartan’s criterion for a Lie algebra of charac-
teristic 0 to be solvable. In Section 2.6 we prove a converse of Cartan’s
criterion, which yields an algorithm for calculating the solvable radical of
a finite-dimensional Lie algebra of characteristic 0. Finally, in Section 2.7
we derive an algorithm for finding a non-nilpotent element in a Lie algebra.
This algorithm will be of major importance in Chapter 3, where we give
algorithms for calculating a Cartan subalgebra.

2.1 Engel’s theorem

Let L be a nilpotent Lie algebra. Then it is straightforward to see that
adz is a nilpotent endomorphism for all z € L. This section is devoted to
proving the converse: if adz is nilpotent for all z € L, then L is a nilpotent
Lie algebra.
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Lemma 2.1.1 Let V be a finite-dimensional vector space over the field F.
Suppose a € gl(V) is nilpotent (i.e., a* = 0 for a k > 0). Then the endo-
morphism ada of gl(V') is nilpotent.

Proof. We must prove that there is an m > 0 such that (ada)™(b) = 0 for
all b € gl(V'). Because ada(b) = ab — ba, we have that (ada)™(b) is a sum of
elements of the form c;;aba’, where ¢ij € F and i + j = m. It follows that
we can take m = 2k — 1. O

Proposition 2.1.2 Let L be a Lie subalgebra of gl(V). Suppose that all
elements x € L are nilpotent endomorphisms; then there is a non-zerov € V
such that x-v =0 for all x € L.

Proof. The proof is by induction on dim L. If dim L = 0, then the state-
ment is trivial. So suppose that dim L > 1. By induction we may suppose
that the statement holds for all Lie algebras of dimension less than dim L.
Let K be a maximal proper subalgebra of L. We consider the adjoint repre-
sentation of K on L, ady, : K — gl(L). Let z € K, then ad z(K) C K. So
K is a submodule of L. We form the quotient module and get a represen-
tation o : K — gl(L/K). By Lemma 2.1.1, o(z) is nilpotent for all z € K.
Therefore we can apply the induction hypothesis and we find that there is
a g € L/K such that o(z) -7 =0 for all z € K. Let y be a pre-image of 3
in L. Then [z,y] € K for all z € K. Hence the space spanned by K and
y is a subalgebra of L and it properly contains K. Since K is maximal, we
conclude that L is spanned by K and y.

Now let W be the space of all v € V such that z-v =0 for all z € K.
By induction W is non-zero. Also if v € W, then for z € K,

- (y-v)=y-(z-v)+[z,y]-v=0

because [z,y] € K. Hence y leaves W invariant. But y is nilpotent, and
therefore there is a non-zero w € W such that y - w = 0. It follows that
z-w=20forall z € L. a

Lemma 2.1.3 Let V be a finite-dimensional vector space. Let p : L —
gl(V) be an irreducible representation of the Lie algebra L. Suppose that I
is an ideal of L such that p(z) is nilpotent for all x € I. Then p(z) =0 for
allz e l.
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Proof. Let W be the subspace of V consisting of all elements v € V such
that p(z)v = 0 for all z € I. Then W # 0 by Proposition 2.1.2. Also, for
weW and z € I and y € L, we have

p(@)p(y)w = p(y)p(z)w + p([z,y))w =0

so that W is a non-zero L-submodule of V. Since V is irreducible, it follows
that W = V. O

Proposition 2.1.4 Let p : L — gl(V) be a finite-dimensional represen-
tation of the Lie algebra L. Let 0 = V C V1 C -+ C Vo1 =V be a
composition series of V with respect to L. Let I be an ideal of L. Then the
following are equivalent:

e p(z) is nilpotent for all x € I,

o plx)Vipn CVforallz €l and 0 <i < n.

Proof. Suppose that p(z) is nilpotent for all z € I. Consider the induced
representation 0,41 : L — gl(V;4+1/V;). Then also 041 (z) is nilpotent for all
z € I. Hence by Lemma 2.1.3, ;41(z) = 0, implying that p(z)Vi41 C Vi.
The other implication is trivial. u

Theorem 2.1.5 (Engel) Let L be a finite-dimensional Lie algebra. Then
L is nilpotent if and only if adz is a nilpotent endomorphism for all x € L.

Proof. Let 0 = Ly C Ly C --- C Lpy1 = L be a composition series of L
relative to the adjoint representation of L. Suppose that adz is nilpotent
for all z € L. Then by Proposition 2.1.4 we have that adz(L;4+1) C L, for
z € Land0<4<n Hence L¥ C L,_j,o (where L* is the k-th term of
the lower central series). It follows that L is nilpotent.

If L is nilpotent, then adz(L*) C L**! for all z € L and k > 1. Hence
adz is nilpotent for all z € L. |

Example 2.1.6 Theorem 2.1.5 yields an ad-hoc method to show that a
given Lie algebra L is not nilpotent, without calculating the lower central
series. The only thing we have to do is to find an z € L such that adz
is not nilpotent. As an example we consider the Lie algebra with basis
{z1,... ,z5} and multiplication table

(1, 24) = 221, [22, 23] = 21, (@2, 4] = %2, [72,25] = —73,

(3, 24) = 3, [23,25] = 2.
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Then we see that adz4 has an eigenvalue —2 (corresponding to the eigenvec-
tor z1). Hence adz4 is not nilpotent, so that L is not a nilpotent Lie algebra.
In Section 2.7 we will give an algorithm for finding a non-nilpotent element
in a Lie algebra L, provided that L is not nilpotent. This automatically
provides a way of testing whether an arbitrary Lie algebra is nilpotent.

2.2 The nilradical

Here we show that an arbitrary Lie algebra contains a unique maximal
nilpotent ideal, called the nilradical. We give two characterizations of the
nilradical.

Lemma 2.2.1 Let L be a Lie algebra. If I and J are nilpotent ideals of L,
then so is I + J.

Proof. Let (I*) and (J*) be the lower central series of I and J respectively.
Then because I and J are nilpotent, there is an integer ¢ such that I' =
J* = 0. Hence all m-fold brackets

[z1, [z2, [ - - [Tm—1-Tm] - . ]]]

of elements of L with at least ¢ of them from I or at least ¢ of them from
J are zero. Now set m = 2t and let z; = vy; + 2, where y; € [ and z; € J

for 1 <¢ < m. Then [z1,[z2, - [Tm-1,Zm] --]] is a linear combination of
m-fold brackets containing at least ¢ elements from I or at least ¢ elements
from J. Hence (I + J)? = 0. Thus I + J is nilpotent. o

From Lemma 2.2.1 it follows that a finite-dimensional Lie algebra L
contains a unique maximal nilpotent ideal. Indeed, suppose that I and J
both are maximal nilpotent ideals. Then I+ J is a nilpotent ideal containing
both I and J. It follows that I +J =T and I +J = J, or I = J. The
maximal nilpotent ideal of L is called the nilradical and denoted by NR(L).

Proposition 2.2.2 Let 0 = Ly C Ly C -+- C Loy = L be a composition
series of L with respect to the adjoint representation of L. Then NR(L) is
the set of all v € L such that adz(Liy1) C L; for 0 < < n.

Proof. Let I be the set of all z € L such that adz(L;;1) C L; for 0 <¢ < n.
Then I is an ideal of L and adz is nilpotent for all x € I. By Theorem 2.1.5
this implies that I is nilpotent and hence I C NR(L). If # € NR(L) then,
by Theorem 2.1.5, adyr(z)y is nilpotent. Also, since NR(L) is an ideal,
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adz(L) € NR(L). Hence adpz is nilpotent. Now by Proposition 2.1.4 we
see that NR(L) C I. O

From Section 1.1 we recall that (adL)* denotes the associative algebra
generated by the identity on L together with all adz for # € L. Furthermore,
from Appendix A we recall that the radical Rad(A) of an associative algebra
A is its unique maximal nilpotent ideal. The next proposition relates the
radical of (adL)* to the nilradical of L.

Proposition 2.2.3 The nilradical of L is the set of x € L such that adz €
Rad((adL)*).

Proof. Let 0 = Ly C Ly C --- C Lyy; = L be a composition series of
L with respect to to the adjoint representation. Let N be the space of all
a € (adL)* such that aL;y; C L; for 0 < ¢ < n. Then N is a nilpotent ideal
in (adL)*, and consequently, N C Rad((adL)*). Let 2 € NR(L), then by
Proposition 2.2.2, adz € N. So adz lies in the radical of (adL)*.

Let I be the set of y € L such that ady € Rad((adL)*). Let z € L
and y € I, then because ad[z,y] = adzady — adyadz (see Example 1.12.2)
we have ad[z,y] € Rad((adL)*). Therefore I is an ideal of L. Also for
all z € I we have that adyz is nilpotent, and as a consequence adjz is
nilpotent. Hence by Engel’s theorem (Theorem 2.1.5), I is nilpotent so that
I C NR(L). a

Using Proposition 2.2.3 we give an algorithm for calculating the nilrad-
ical of a Lie algebra L.

Algorithm NilRadical
Input: a finite-dimensional Lie algebra L.
Output: the nilradical of L.

Step 1 Compute a basis of the associative algebra A = (adL)*.
Step 2 Compute R = Rad(A) (see Appendix A).

Step 3 Compute a basis of the space of all z € L such that adz € R. Return
this basis.

Comments: The algorithm is justified by Proposition 2.2.3. We remark
that the computation in Step 3 can be done by solving a system of linear
equations. Furthermore, the algorithm works for Lie algebras defined over
fields of characteristic 0 and finite fields (because over these fields we have an
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algorithm for calculating the radical of an associative algebra, see Appendix
A).

Example 2.2.4 Let L be the Lie algebra over Q with basis {z, 22,23} and
multiplication table

[:Elax.?»] =2 + T2, [1’.2713] = T2,

(as usual we do not list products that are zero). Denote by a; the matrix of
adx;, then

00 1 00 0 -1 0 0
ai=[00 1),a={00 1|,a3=-1 -1 0
000 000 0 0 0

Denote the 3 x 3-identity matrix by ag. It is straightforward to see that the
associative algebra A generated by ag, a1, as, a3 is spanned by these matrices
together with

000

ay = 1 00

000
We use the algorithm Radical to calculate the radical of A (see Appendix
A). Set a = 31, Mia;, then a € Rad(A) if and only if Tr(aa;) = 0 for
7 =20,...,4. We have that

)\0—-/\3 0 /\1
a=|As—X3 A=Az A1+ Ao
0 0 Ao

Then Tr(aa;) =0 if i = 1,2,4, so we do not get any equations from there.
However, Tr(aag) = —2A3+3Xg, and Tr(aaz) = 2A3 —2Xg; so 0 = Tr(aap) =
Tr(aas) implies A\g = A3 = 0. Hence Rad(A) is spanned by aj,as,as. We
see that NR(L) is spanned by z, z5.

There exist more algorithms for calculating the nilradical of a Lie al-
gebra. However, because for the exposition of some algorithms we need
theoretical tools introduced in Chapter 3, we defer a complete discussion to
that chapter.

2.3 The solvable radical

We show that a finite-dimensional Lie algebra contains a unique maximal
solvable ideal, called the solvable radical. We study the structure of this
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ideal for linear Lie algebras of characteristic 0, such that the underlying
module is irreducible. This leads to a third characterization of the nilradical.
We recall that L(¥) denotes the k-th term of the derived series of the Lie
algebra L.

Proposition 2.3.1 Let L be a Lie algebra.

1. If L is solvable then so are oll Lie subalgebras and homomorphic im-
ages of L.

2. If I is a solvable ideal of L such that L/I is solvable, then L itself is
solvable.

3. If I and J are solvable ideals of L then so is I + J.

Proof. 1. If K is a subalgebra of L, then the i-th term of the derived series
of K is contained in the i-th term of the derived series of L. So, if L is
solvable, then the derived series of L ends at 0 and hence the same is true
for the derived series of K.

Let ¢ : L — L' be a morphism of Lie algebras, then [¢(L),#(L)] =
#([L, L)). By induction, the i-th term ¢(L)® of the derived series of ¢(L) is
contained in ¢(L(®). Hence, there is an i > 1 such that ¢(L)¥) = 0, proving
that ¢(L) is solvable.

2. As L/I is solvable, L(™ ¢ I for some m > 1. Solvability of I means
that I™ = 0 for some n. It follows that L(m+™) =0,

3. Consider the quotient (I + J)/J of I + J. According to Proposition
1.8.2 it is isomorphic to I/(I N J), which is a quotient of the solvable subal-
gebra I, and therefore solvable by 1. Since J is also solvable, we can apply
2. to conclude that I + J is solvable. a

From Proposition 2.3.1 it follows that a finite-dimensional Lie algebra
L contains a unique maximal solvable ideal. It is called the solvable radical
of L; we denote it by SR(L). Since any nilpotent ideal is also solvable
(see Lemma 1.7.2), we immediately see that SR(L) contains the nilradical
NR(L).
Remark. Let I be a solvable ideal of the quotient algebra L/SR(L). Let J
be the pre-image of I in L. Then by Proposition 2.3.1, J is solvable. Fur-
thermore, J contains SR(L) so that J = SR(L). Therefore, I = 0. So we
see that the solvable radical of L/SR(L) is trivial. The analogous property
does not hold for the nilradical.
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Lemma 2.3.2 Let V be a finite-dimensional vector space over a field of
characteristic 0. Let ¢ € End(V') be given by
m
c= Z[aia bl]

=1

where a;,b; € End(V). Suppose that [c,b]] = 0 for 1 < i < m, then c s
nilpotent.

Proof. Here we use that fact that, since V' is of characteristic 0, Tr(ck) =0
for £ > 1 implies that c is nilpotent. We have

m m

m
k= k! Zaibi — ba; = Z(ck“lai)b,- — bi(ck_lai) = Z[ck‘lai, bi].
i=1

1=1 i=1

Since the trace of a commutator is always zero, it follows that Tr(ck) = 0. O

Proposition 2.3.3 Let V be a finite-dimensional vector space over a field
of characteristic 0. Let L C gl(V) be a linear Lie algebra and suppose that
V is an irreducible L-module. Then the solvable radical of L is equal to the
centre C(L) of L.

Proof. Because C(L) is a solvable ideal of L it is contained in SR(L). So
we only have to prove the reverse inclusion. This is equivalent to proving
that the ideal I = [L,SR(L)] is zero.

Suppose that I # 0, then I is a non-zero subalgebra of SR(L). Hence
by Proposition 2.3.1, I is solvable. So there is an m > 1 such that Itm) = ¢
and I+ = 0. Set J = [L,1(™)]. Note that both I and J are ideals of L
by Lemma 1.7.1. If ¢ € J, then ¢ = }_;[a;, b;], where a; € L and b; € Im),
Since ¢ € I™ and I™) is commutative, we have [c,b;] = 0. Consequently,
by Lemma, 2.3.2, ¢ is nilpotent. So by Lemma 2.1.3, J = 0, and it follows
that 1™ < C(L). But also I™ C [L,SR(L)] and hence for ¢ € I™) | there
are a; € L and b; € SR(L) such that ¢ = }_,[a;, b;]. Now because ¢ € C(L),
we have [c,b;] = 0. Again by Lemma 2.3.2 it follows that c is nilpotent.
Hence Lemma 2.1.3 implies that I(™) = 0, and from the assumption that
I # 0 we have derived a contradiction. |

Corollary 2.3.4 Let V and L be as in Proposition 2.3.3. Let z be a nilpo-
tent endomorphism of V' contained in SR(L), then z = 0.
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Proof. By Proposition 2.3.3, SR(L) = C(L). Hence z spans an ideal of L.
Lemma 2.1.3 now implies that z = 0. d

Corollary 2.3.5 Let L be a finite-dimensional Lie algebra of characteristic
0. Let R be its solvable radical. Then [L,R] C NR(L).

Proof. Let 0 = Lo C L; C ---Lyy; = L be a composition series of L with
respect to the adjoint representation. Let p; : L — gl(L;41/L;) denote the
quotient representation for 0 < 7 < s. Then p;(R) is a solvable ideal of
pi(L). So by Proposition 2.3.3, p;(R) is contained in the centre of p;(L).
But this means that p;([L, R]) = 0, i.e., [L, R]- Li+1 C L;. So adpz is nilpo-
tent for all z € [L, R]. In particular adj;, gz is nilpotent for all z € [L, R].
Hence, by Engel’s theorem (Theorem 2.1.5) [L, R] is a nilpotent Lie algebra.
Now since [L, R] is an ideal of L we conclude that [L, R] C NR(L). O

We end this section with one more characterization of the nilradical.

Proposition 2.3.6 Let L be a finite-dimensional Lie algebra of character-
istic 0. Let A be the set of all x € SR(L) such that adggr(r)x is nilpo-
tent. Let B be the set of all x € SR(L) such that adpz is nilpotent. Then
NR(L) = A= B.

Proof. It is straightforward to see that NR(L) C A. Also if x € A, then
[z,L] C SR(L) and hence adyz is nilpotent. So A C B. We prove that
B C NR(L). Let 0 = Ly C Ly C --- C Lgy1 = L be a composition se-
ries of L with respect to the adjoint representation of L. Let z € B. Let
o; : L = gl(L;41/L;) be the quotient representation. Then o;(z) is nilpo-
tent. Hence by Corollary 2.3.4, o;(z) = 0, i.e., adz(L;41) C Lifor 0 <1 < s.
Now by Proposition 2.2.2, z € NR(L). O

2.4 Lie’s theorems

In this section we study the structure of representations of solvable Lie
algebras that are “split”. It turns out that, in characteristic 0, every such
representation is by upper triangular matrices, i.e., a split linear solvable
Lie algebra is a subalgebra of b, (F').

Definition 2.4.1 Let L C gl(V) be a linear Lie algebra defined over the
field F. Then L is called split if F contains the eigenvalues of all elements
of L.
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Proposition 2.4.2 Let L be a finite-dimensional solvable Lie algebra over
the field F of characteristic 0. Let p : L — gl(V) be a finite-dimensional
representation of L. Suppose that p(L) is split. If V is irreducible and
dimV > 0 then V is 1-dimensional.

Proof. Since L is solvable, the linear Lie algebra p(L) is also solvable
(Proposition 2.3.1). Furthermore, V is irreducible, so by Proposition 2.3.3,
p(L) is commutative.

Fix an element x € L. Since p(L) is split, there is a A € F' and a vector
vy € V such that p(z)vy = dvy. Set W = {v € V | p(x)v = Iv}, then
W is non-zero. Also, if w € W, then for y € L, we have p(z)p(y)w =
p(y)p(x)w = Ap(y)w. Hence W is invariant under p(L) and because V is
irreducible, W = V. It follows that p(z) is A times the identity on V. So
any x € L acts as multiplication by a scalar on V. Hence any 1-dimensional
subspace of V is an L-submodule. So dimV = 1. O

Corollary 2.4.3 Let L be a finite-dimensional solvable Lie algebra over
the field F of characteristic 0. Let p : L — gl(V) be a finite-dimensional
representation of L. Suppose p(L) is split. Then V contains a common
eigenvector for all p(z) for x € L.

Proof. Let 0 =V, C V; C --- C V, = V be a composition series of V
relative to the action of L. Then by Proposition 2.4.2, V; is 1-dimensional.
Hence a basis vector of V] will be a common eigenvector. i

Theorem 2.4.4 (Lie) Let L be a finite-dimensional solvable Lie algebra of
characteristic 0. Let p: L — gl(V) be a finite-dimensional representation of
L. Suppose that p(L) is split. Then there is a basis of V relative to which
the matrices of all p(z) for x € L are all upper triangular.

Proof. Let 0 =V, C Vi C --- C V,, = V be a composition series of V
relative to the action of L. Then the quotient spaces V;/Vi_ are irreducible
L-modules. Hence by Proposition 2.4.2, these modules are 1-dimensional.
Now let {v1,...,v,} be a basis of V such that 9; € V;/Vi_, spans V;/V;_1.
Relative to this basis the matrix of p(z) is upper triangular for all z € L. O

Theorem 2.4.5 (Lie) Let L be an n-dimensional solvable Lie algebra of
characteristic 0 such that adp (L) is split. Then there are ideals L; of L for
0<i<nsuchthatdimL; =i and0=LoCL, C---CL,=0L.
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Proof. We can take the L; to be the terms in a composition series of L
relative to the adjoint representation. In the same way as in the proof of
Theorem 2.4.4 we see that dim L;/L;_y = 1 and the statement of the theo-
rem follows. 0

2.5 A criterion for solvability

In this section we use the Jordan decomposition of a linear transformation to
derive a powerful criterion for a Lie algebra of characteristic 0 to be solvable.
Much of the structure theory of semisimple Lie algebras in characteristic 0
is based on it.

Lemma 2.5.1 Let V be a t-dimensional vector space over the field F. Let
z € gi(V') and suppose that there is a basis of V relative to which the matriz
of « is diagonal, with entries d; € F on the diagonal (1 < i <t). Then there
is a basis of gl(V) relative to which adx is diagonal with entries d; — d; on
the diagonal for 1 <4,j <t.

Proof. Let {vy,... ,v:} be a basis of V such that zv; = djv; for 1 <4 <t
Let Ef; be the endomorphism of V' defined by Eluy = d;xv; (i.e., the ma-
trix of E!; has a 1 on position (4,5) and zeros elsewhere). Now adx(Efj) =
zE}; — Eix = (d; — dj) E}; and the lemma follows. o

Form Appendix A we recall that the Jordan decomposition of a linear
transformation a is of the form ¢ = s + n, where s is semisimple, n is
nilpotent and [s,n] = 0.

Lemma 2.5.2 Let V be a finite-dimensional vector space. Let a € g{(V)
and let a = s +n be the Jordan decomposition of a. Then ada = ads + adn
s the Jordan decomposition of ada.

Proof. We must prove that ads is semisimple, adn is nilpotent and that ads
and adn commute. The latter follows immediately from the fact that s and
n commute (and [ads,adn] = ad[s,n]). Furthermore, Lemma 2.1.1 states
that adn is nilpotent. Since s is semisimple, s is diagonalizable. Hence by
Lemma 2.5.1 also ads is diagonalizable which means that ads is semisimple
(cf. Proposition A.2.4). d
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Proposition 2.5.3 Let V be a finite-dimensional vector space over the field
F of characteristic 0. Let M, C M, be two subspaces of gl(V). Set A =
{zeglV)|[z,M2) C M1}. Let z € A. If Tr(zy) =0 for ally € A, then z
1s nilpotent.

Proof. We use the fact that z is nilpotent if and only if all its eigenvalues are
0. So let A1,..., A, be the (not necessarily different) eigenvalues of z. We
first prove the statement for the case where F' contains all these eigenvalues.
Let E be the Q-subspace of F spanned by the X; (i.e., E = QA +---+Q)y).
We prove that all linear functions f : F — Q must be identically 0. From
this it follows that £ = 0 and all eigenvalues of z are 0.

Let f : E — Q be an arbitrary linear function. Let £ = s + n be the
Jordan decomposition of z. Since s is semisimple and Aj,..., A, are also
the eigenvalues of s (Proposition A.2.6), there is a basis {vi,... ,vn} of
V such that sv; = M\wv;. Let y € gl(V) be the endomorphism defined by
yv; = f(Mi)v; for 1 <@ < n (i.e., the matrix of y is diagonal with f();) on
the diagonal). We prove that ady can be written as a polynomial in ads
without constant term.

Let {E;;} be the basis of g{(V') provided by Lemma 2.5.1. Then we have
ads(E;;) = (A — Aj)Ej; and ady(E;;) = (f(A) — f(X;))Eij. Interpolating
we find a polynomial p € F{X] without constant term and satisfying

PAi = A5) = f(Ai = Aj) = (X)) — f(xy) for 1 < 4,5 < m.

Since the matrix of ads is diagonal, the matrix of p(ads) is also diagonal.
Moreover, it has diagonal entries p(A; — A;) = f(X;) — f(};). It follows that
the matrix of p(ads) is exactly the matrix of ady. Hence ady = p(ads).
Now since ads is the semisimple part of adz (Lemma 2.5.2), we have
that ads is a polynomial in adz without constant term (Proposition A.2.6).
Therefore, because adz maps M» into M, this also holds for ads and since
ady is a polynomial in ads without constant term, also for ady. Hence
y€ A So0="Tr(zy) =5, f :)Ai. We apply the linear function f to this
expression and find ), f(\;)* = 0 But f(X\;) € Q and hence f(X;) = 0 for
1 <i<n. We are done for the case where F contains all eigenvalues of z.
For the general case let F' be an extension of F containing all eigenvalues
of z. Set V =V ® F and let M, and M be subspaces of gl(V) spanned
by elements m; ® 1 and ms ® 1 for m; € My and mg € My respectively.
Set A = {z € gi(V) | [z, Ms] C M,}. Then a basis of A is determined by a
set of linear equations (analogous to the system of equations determining a
basis for the normalizer, Section 1.6). Moreover these equations have coef-
ficients in F and hence A = A ®p F. It follows that Tr((z ® 1)§) = 0 for
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all § € A. By the proof above it follows that 2 ® 1 is nilpotent. O

Lemma 2.5.4 Let V be a finite-dimensional vector space. Let z,y,z €
gl(V). Then Tx([z,y]z) = Tr(z[y, 2]).

Proof. We calculate Tx([z, y]z) = Tr(zyz)—Tr(yzz) = Tr(zyz)—Tr(zzy) =
Tr(zfy, 2]). a

Theorem 2.5.5 (Cartan’s criterion for solvability) Let V be a finite-
dimensional vector space of characteristic 0. Let L be a subalgebra of gl(V').
If Tr(zy) =0 for allz € [L,L] and y € L, then L is solvable.

Proof. Set A= {z € gi(V) | [z, L] C [L, L]}. Note that A contains L, and
in particular [L,L]. Let u,v € L and y € A. Then according to Lemma
2.54,

Tr([u, v]y) = Tr(ulv, y]) = Tr([v, ylu).

We have [v,y] € [L, L], so by hypothesis Tr([v,yJu) = 0. Since [L, L] is
spanned by elements of the form [u,v] it follows that Tr(zy) = 0 for all
z € [L,L} and y € A. Now we apply Proposition 2.5.3 with M; = [L, L]
and My = L and conclude that every z in [L, L] is nilpotent. Consequently
adz is nilpotent for all z € [L, L] (Lemma 2.1.1). In particular, ad(g, 1z
is nilpotent for all z € [L, L]. Hence by Engel’s theorem (Theorem 2.1.5),
[L,L] is a nilpotent Lie algebra. In particular [L, L] is solvable (Lemma
1.7.2) and consequently the same is true for L. a

Corollary 2.5.6 Let L be a finite-dimensional Lie algebra of characteristic
0, such that Tr(adzady) = 0 for allz € [L,L] andy € L. Then L is solvable.

Proof. We apply Theorem 2.5.5 to the Lie algebra adL C gl(L). It follows
that adL is solvable. Since the kernel of ad is C'(L) which is a solvable ideal,
we get that L is solvable (Proposition 2.3.1). m|

2.6 A characterization of the solvable radical

In this section we give a characterization of the solvable radical in charac-
teristic 0. In part this is the converse of Cartan’s criterion. This result will
enable us to formulate an algorithm for calculating the solvable radical of a
Lie algebra of characteristic 0.
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Lemma 2.6.1 Let L be a finite-dimensional Lie algebra of characteristic
0. Let p: L — gl(V) be a finite-dimensional irreducible representation of
L. Then p([L, L] N SR(L)) = 0.

Proof. Set I = [L,L]NSR(L) and let z € I. Then z = Y », [y, 2] for
certain y;,z; € L. Hence p(z) = Y. 1* [p(¥:), p(2;)]. Furthermore, since
z € SR(L), we know by Proposition 2.3.3, that p(z) commutes with p(L),
in particular [p(z),p(2;)] = 0. Hence by Lemma 2.3.2, p(x) is nilpotent.
Now Lemma 2.1.3 finishes the proof. O

Lemma 2.6.2 Let L be a finite-dimensional Lie algebra of characteristic
0. Let p: L — gl(V) be a finite-dimensional representation of L. Then all
elements of p([L, L] " SR(L)) are nilpotent endomorphisms of V.

Proof. Let 0 = Vp C V} C --- C Vs41 = V be a composition series of V
with respect to the action of L. Let z € [L,L] N SR(L), then by Lemma
2.6.1, the induced actions of x on the quotients V;11/V; are all zero. Hence
p(x)Viz1 C V; for 0 < i < s. It follows that p(z) is nilpotent. a

Corollary 2.6.3 Let L be a solvable Lie algebra of characteristic 0. Then
[L, L] is a nilpotent ideal of L.

Proof. This follows from Lemma, 2.6.2 together with Engel’s theorem (The-
orem 2.1.5). O

Proposition 2.6.4 Let L be a finite-dimensional Lie algebra of character-
wstic 0. Then

SR(L) = {z € L | Tr(adzady) =0 for all y € (L, L}}.

Proof. Set I = {z € L | Tr(adzady) = Oforally € [L,L]}. Let 0 =
Ly C Ly C --- C Lgyy = L be a composition series of L relative to the
adjoint representation. By Lemma 2.6.2, for all v € [L,L] N SR(L), the
endomorphism adu is nilpotent. Hence by Proposition 2.1.4, we see that
adu(Li;1) C L; for 0 <4 < s. Consequently, if z,y € L and 7 € SR(L), then
ad[y,r](Li+1) C L; and hence also adz - ad[y,r|(Li+1) C L; for 0 < ¢ < s.
So adz - ad[y, r] is nilpotent. Using Lemma 2.5.4 we now calculate

0 = Tr(adz - ad[y, r]) = Tr(ad[z,y] - adr) = Tr(adr - ad[z, y]).
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It follows that SR(L) C I.
For the other inclusion, we first prove that I is an ideal of L. Let z € I
and y € [L,L] and z € L, then by Lemma 2.5.4,

Tr(ad[z, 2] - ady) = Tr(adz - ad[z, y]) = 0.

Hence [z,2] € I so that I is an ideal of L. Let x € I and y € [I, 1], then
in particular y € [L, L] and by definition of I, Tr(adzz - adpy) = 0. Now
by Cartan’s criterion (Theorem 2.5.5) it follows that adI is solvable. The
kernel of ady, : I — gl(L) is an Abelian ideal of I. Hence by Proposition
2.3.1, I is solvable which implies I C SR(L). o

Corollary 2.6.5 Let L be a finite-dimensional Lie algebra of characteristic
0. Then L is solvable if and only if Tr(adz - ady) = 0 for all x € L and
y € [L, L]

Proof. This immediately follows from Proposition 2.6.4 together with
Corollary 2.5.6. O

Let L be a Lie algebra of characteristic 0. Here we use Proposition 2.6.4
to give a simple algorithm for calculating the solvable radical of L.

Let {z1,... ,2Z,} be a basis of L and let {y1,... ,ys} be a basis of [L, L].
Then by Proposition 2.6.4, z = Y, a;z; is an element of SR(L) if and only
if

n
Z'I‘r(adxi ~adyj)oy =0 for 1 <j <s. (2.1)

=1

So we have an algorithm SolvableRadical. The input of this algorithm is
a finite-dimensional Lie algebra L of characteristic 0. Using the algorithm
ProductSpace we calculate a basis of [L, L]. Subsequently we calculate the
equations (2.1) and solve them by a Gaussian elimination.

In the case where L is defined over a field of characteristic p > 0 the
situation is much more difficult. To tackle this case we define a series of
ideals Ry C L by

Ry =NR(L), Rg41/Rx = NR(L/Ry). (2:2)

We claim that Ry is solvable for £ > 1. This is certainly true for £ = 1.
Suppose that Ry is solvable. We have that Ry1/Ry is nilpotent and hence
solvable. Therefore, by Proposition 2.3.1, Ry is solvable. So our claim
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follows by induction on k. Let u be the integer such that R, = Ryy1.
Then NR(L/R,) = 0. This implies that SR(L/R,) = 0. Indeed, set I =
SR(L/Ry). If I # 0, then there is an m > 0 such that I™ # 0 and
Im+1) — 0 (where 1™ denotes the m-th term of the derived series of I).
Hence I'™ is a commutative ideal of SR(L/R,). Therefore it is contained
in NR(L/R,), implying that I™ = 0; and we derived a contradiction.
Consequently, R,, = SR(L).

So by using an algorithm for calculating the nilradical we find an algo-
rithm SolvableRadical for calculating the solvable radical of a Lie algebra,
that also works over the fields of characteristic p > 0 for which there are
algorithms for calculating the nilradical.

2.7 Finding a non-nilpotent element

Let L be a Lie algebra. An element z € L is said to be nilpotent if the
endomorphism adz is nilpotent. By Engel’s theorem (Theorem 2.1.5), L
contains non-nilpotent elements if and only if L is not a nilpotent Lie alge-
bra. In this section we give an algorithm for finding a non-nilpotent element
in L, if L is not nilpotent. It is based on the following two propositions.

Proposition 2.7.1 Let K be a proper subalgebra of L and suppose that
ady is nilpotent for ally € K. Let T be an element of N.(K) \ K and let
K be the subalgebra spanned by K together with x. Then either adpz is not
nilpotent or adpu is nilpotent for all u € K.

Proof. First we note that Ny (K) is strictly larger than K because adpy is a
nilpotent linear transformation for y € K. Indeed, since K is a subalgebra
of L, we have that the adjoint representation induces a representation of
K on L/K. By Proposition 2.1.2, we see that the elements of K have a
common eigenvector (with eigenvalue 0) in L/K. Any pre-image of this
vector lies in N (K) (but not in K).

Suppose that adyz is nilpotent. Let y € K and set u = 2 +y. We prove
that ad u is nilpotent. First we note that ady, : K — gl(L) is a represen-
tation of K. Let 0 = Ly C L; C --- C Lgy1 = L be a composition series
of L with respect to the action of K. Since z € Ni(K), we have that K is
an ideal in K. Hence, by Proposition 2.1.4, adpy(Ls4+1) C L; for 0 <z <'s.
So (adzu)™L;;, = (adyz)™Liy; mod L;. Since adpz is nilpotent it follows
that there is an m > 0 such that (adrz)™ = 0. Hence (adpu)™(Lit+1) C L;
for 0 < ¢ < s. The conclusion is that adyu is nilpotent. O
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If we start with K = 0 and repeatedly apply Proposition 2.7.1 then
we either find a non-nilpotent element, or after dim L steps we have that
K = L, implying that L is nilpotent. An element z € N (K) \ K can be
found by calculating Ny (K). Alternatively, we can construct a sequence
of elements in the following way. First we fix a basis of K. Let = be an
element of L not lying in K. If for some basis element y of K we have that
[z,y] € K, then replace z by [z,y]. Since K acts nilpotently on L we need
no more than dim L — 1 such replacement operations to obtain an element
lying in N, (K) \ K.

Proposition 2.7.1 yields an algorithm for finding a non-nilpotent element
in L. However, if L is defined over a field of characteristic 0, then there is
a much simpler method available.

Proposition 2.7.2 Let L be a non-nilpotent Lie algebra over a field of
characteristic 0 with basis {z1,... ,z,}, then the set

{z1,- sz} U{zi+ ;|1 <i < j<n}
contains a non-nilpotent element.

Proof. If L is solvable but not nilpotent then by Proposition 2.3.6 we see
that the nilradical of L is the set of all nilpotent elements of L. Hence there
must be a basis element z; such that z; is not nilpotent. On the other hand,
if L is not solvable, then there exist basis elements z; and z; for such that
Tr(adz; - adz;) # 0. (Otherwise Tr(adz - ady) = 0 for all z,y € L, implying
that L is solvable (Corollary 2.5.6)). From

Tr((adz; + adz;)?) — Tr((adz;)?) — Tr((adz;)?) =
= Tr(adz; - adz;) + Tr(adz; - adz;) = 2Tr(adz; - adz;) # 0

we infer that the elements z;, «; and z; + z; cannot be all nilpotent. a

Propositions 2.7.1 and 2.7.2 lead to the following algorithm.
Algorithm NonNilpotentElement
Input: a finite-dimensional Lie algebra, L.
Output: a non-nilpotent element of L, or 0 if L is nilpotent.

Step 1 If L is of characteristic 0, then go to Step 2, else go to Step 4.

Step 2 Let {z1,... ,2z,} beabasisof L and set A = {z1,... ,zp}U{zi+z; |
1<i<j<n}.
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Step 3 For elements z € A test whether adyz is nilpotent, until a non-
nilpotent element is found, or A is exhausted. If A contains a non-
nilpotent element then return this element, otherwise return 0.

Step 4 Set K = 0.

Step 5 Find an element x € N (K)\ K. If adyz is not nilpotent, then
return r.

Step 6 Replace K by the subalgebra spanned by K and z. If dimK =
dim L, then return 0. Otherwise go to Step 5.

2.8 Notes

The algorithm for calculating the solvable radical of a Lie algebra of char-
acteristic 0 is described in [7]. In [7], Proposition 2.2.2 together with Lie’s
theorem (Theorem 2.4.5) are used to derive an algorithm for calculating the
nilradical of a solvable Lie algebra L of characteristic 0, such that adL is
split. It is based on finding a common eigenvector of the elements of adL.
By using the algorithm for the solvable radical (in characteristic 0), this
yields an algorithm for calculating the nilradical of a finite dimensional Lie
algebra of characteristic 0 having a split solvable radical.

The algorithm for calculating the nilradical given in Section 2.2 and the
algorithm for calculating the solvable radical of a Lie algebra defined over
a field of characteristic p > 0 are taken from [46], [73].

Our description of the algorithm for finding a non-nilpotent element
follows [37]. In [7] a different (more complicated) method is described.



Chapter 3

Cartan subalgebras

The adjoint representation of a Lie algebra L (see Example 1.12.2), en-
codes its multiplicative structure (modulo the centre). This allows us to
investigate the structure of L by investigating its adjoint representation. In
this way the tools of linear algebra (matrices, eigenvalues et cetera) become
available to us. We have used this successfully in Chapter 2, where most re-
sults on the structure of solvable and nilpotent Lie algebras where obtained
by looking at the adjoint representation. As an example we mention Lie’s
theorem (Theorem 2.4.5).

In this chapter we restrict the adjoint representation of a Lie algebra L
to particular subalgebras of it. Furthermore, if K is a subalgebra of L, then
we decompose L as a direct sum of K-submodules. Of particular interest
are those subalgebras K that yield a so-called primary decomposition. In
Section 3.1 we first study linear Lie algebras acting on a vector space V.
We show that a nilpotent linear Lie algebra yields a primary decomposition
of V. Then we consider the restriction of the adjoint representation of
a Lie algebra L to a nilpotent subalgebra K. This gives us a primary
decomposition of L relative to K. We also describe a second decomposition
of a vector space relative to the action of a nilpotent linear Lie algebra,
namely the Fitting decomposition.

In Section 3.2 we introduce Cartan subalgebras; these are nilpotent sub-
algebras that yield a particularly interesting primary decomposition. We
show that Cartan subalgebras exist and we give algorithms for calculating
a Cartan subalgebra.

The subject of Section 3.3 is the primary decomposition of L relative to a
“split” Cartan subalgebra. In this case the primary decomposition is called
the root space decomposition. We show how the root space decomposition
encodes part of the multiplicative structure of L.
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Cartan subalgebras are in general not unique, i.e., a Lie algebra usually
has more than one Cartan subalgebra. If L is defined over an algebraically
closed field of characteristic 0, then this non-uniqueness does not bother
us too much since in this case all Cartan subalgebras of L are conjugate
under the automorphism group of L. The proof of this forms the subject
of Sections 3.4, 3.5. In Section 3.6 we show that for the case where the
Lie algebra is solvable we may drop the assumption that the ground field is
algebraically closed.

Finally in Section 3.7 we apply the theory of Cartan subalgebras and
Fitting decompositions to obtain two algorithms for calculating the nilrad-
ical.

3.1 Primary decompositions

In this section V will be a finite-dimensional vector space over a field F|
and K C gl(V) a linear Lie algebra.

Definition 3.1.1 A decomposition
V=W& &V

of V into K -submodules V; is said to be primary if the minimum polynomial
of the restriction of x to V; is a power of an irreducible polynomial for all
z € K and 1 <1< s. The subspaces V; are called primary components.

In general V will not have a primary decomposition relative to K. Us-
ing Lemma A.2.2 we derive a sufficient condition on K to yield a primary
decomposition of V. From Appendix A we recall that for a polynomial
p € F[X] and z € K the space Vy(p(z)) is defined by

Vo(p(z)) = {v eV | p(z)"(v) = 0 for some r > 0}.

Proposition 3.1.2 Suppose that for all x € K and any polynomial p €
F[X] the space Vo(p(z)) is invariant under K. Then V has a primary
decomposition with respect to K.

Proof. The proof is by induction on the dimension of V. If every element of
K has a minimum polynomial that is a power of an irreducible polynomial,
then there is nothing to be proved. Otherwise there is an z € K such
that the minimum polynomial of x has at least two distinct factors. We
apply Lemma A.2.2 to V and the linear transformation x. It is seen that V'
decomposes as

V =Wp) e & Volps(z))
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where the p; are the irreducible factors of the minimum polynomial of z.
By assumption the subspaces Vy(p;(z)) are invariant under K. Further-
more, the dimension of these subspaces is strictly less than dimV. Hence
by induction they all admit a primary decomposition relative to K, and by
summing these we get a primary decomposition of V' with respect to K. O

Corollary 3.1.3 Suppose that K is Abelian. Then V admits o primary
decomposition relative to K.

Proof. Let z,y € K and let p € F[X] be a polynomial. Let v € Vy(p(z)),
then there is an m > 0 such that p(z)™v = 0. Since z -y = y - £ we have
p(z)™yv = yp(z)™v = 0. As a consequence the subspace Vy(p(z)) is invari-
ant under y and the result follows by Proposition 3.1.2. O

It turns out that we can generalize Corollary 3.1.3 to the case where K
is nilpotent. To see this we need some technical lemmas. For a € End(V)
we define a linear map d, : End(V) — End(V) by da(b) = ab — ba.

Lemma 3.1.4 Let a € End(V). Let f = Y p_, X" be a univariate poly-
nomial. Then for all b € End(V),

ron-Fan(Eul())

Proof. For k > 0 we prove the identity

akb = zk: <’;> di (b)ak 1, (3.1)

=0

by induction on k. For k¥ = 0,1, (3.1) is easily verified. Let £ > 1. Assuming
that (3.1) holds for £ and for all b € End(V), we calculate

aF b = aFab = a*(ba + d, (b))

(35 (oo 5 (o

k+1

Z; (k ‘; 1) di (b)ak 1=,

1=
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The result now follows by a second calculation:

a)b = Zaw’%—ZZ( )oz,cdz bt

k=0 i=0
_ ; £ (b) (; - (’Z) ak—i).

]

For r > 0 let 6, be the linear mapping on the polynomial ring F[X]
defined by & (X™) = (T)X™ " (where we set (M) =0ifr > m). If
f=>h0 apX* is a polynomial, then

n

()= o (’“) X+

k=r

So the conclusion of Lemma 3.1.4 reads f(a)b= Y. o d-(6)8;(f)(a).

Lemma 3.1.5 Let f,g be univariate polynomials, then we have 6:(fg) =
Y i=0 6i(f)or—i(g)-

Proof. We first prove the statement for the case where f = X™ and
g=X"

gw)&_i(g) -y (m) ( " i) JRSe—

i=0
_r " (m n n+m _r n
=X Z(z)(T—z):< r )Xm+n = & (X™).
i=0

The next to last equality follows from

()= 007)

which is proved by equating the coefficients of z" in the expression (z +
1)™(z+1)" = (z+1)™*". Now the general result follows from the linearity
of the maps §;. a

Lemma 3.1.6 Let h,p be univariate polynomials such that h™! divides p
for an m > 0. Then h divides 8,(p) for 0 <r < m.
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Proof. The proof is by induction on m. The statement is clearly true for
m = 0 since &(p) = p. For the induction step write p = gh where A™
divides q. Then we may assume that b divides d;(¢) for 0 <7 <m — 1 and
h divides §;(p) for 0 < j <m — 1. Then by Lemma 3.1.5,

m
mp —5 Zéz
=0

and hence h also divides d,,(p). O

Proposition 3.1.7 Let a,b € End(V) and suppose that d2T1(b) = 0. Let
p be a polynomial, then Vy(p(a)) is invariant under b.

Proof. Let v € Vy(p(a)), then there is an r > 0 such that p"(a)v = 0. Now
set ¢ = (p”)"*!. Then by Lemma 3.1.4,

O PEACL v—zd’ (5)61(0)(a

where d is the degree of q. By Lemma 3.1.6 we have that p" divides 6;(q)
for 0 < i < n. Hence g(a)bv = 0 and bv € Vy(p(a)). O

Corollary 3.1.8 Suppose that K is nilpotent. Then V has a primary de-
composition with respect to K.

Proof. Let c be the length of the lower central series of K (i.e., Ketl = 0).

Let z,y € K, then [z,[z,[z, - [z,y]---]]] = 0 (c factors z). This is the
same as saying that dS(y) = 0, and Proposition 3.1.7 applies to z and y.
The statement now follows by Proposition 3.1.2. O

It is easily seen that a primary decomposition is in general not unique.
Let K C gl(V) be a 1-dimensional Lie algebra spanned by the element .
Suppose that in a primary decomposition of V relative to K there occurs
a component V; such that the restriction of z relative to V; is the identity.
Suppose further that dimV; > 1. Let V; = Wy & Wy be any decomposition
of V; into a direct sum of subspaces. Then by replacing V; by the two
components W, and Wy we obtain a different primary decomposition of V'
relative to K. To avoid situations like this we “collect” the components in
a primary decomposition. The resulting primary decomposition turns out
to be unique.
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Definition 3.1.9 A primary decomposition of V relative to K is called
collected if for any two primary components V; and V; (i # j), there is an
x € K such that the minimum polynomials of the restrictions of x to V; and
Vj are powers of different irreducible polynomials.

Theorem 3.1.10 Let K be nilpotent. Then V has a unique collected pri-
mary decomposition relative to K.

Proof. It is easy to see that V has a collected primary decomposition with
respect to K. Indeed, let

V=Vié& -6V (3.2)

be a primary decomposition of V' with respect to K. If there are two com-
ponents V; and V; such that for all z € K, the minimum polynomials of
z|y; and x|y, are powers of the same irreducible polynomial, then replace
V; and V; in the decomposition by their direct sum and obtain a primary
decomposition with one component less. Continuing this process we obtain
a collected primary decomposition.

Now suppose that (3.2) is collected. For z € K and 1 < ¢ < s define
Pz to be the irreducible polynomial such that the minimum polynomial of
z restricted to V; is a power of p; ;. We claim that

Vi={v eV |forall z€ K there is an m > 0 such that p; ;(z)™(v) = 0}.
(3.3)

First of all, V; is certainly contained in the right-hand side. To see the other
inclusion, let v € V be an element of the right-hand side of (3.3). Write
v = v +--- +vs where v; € V;. Fix a j # i between 1 and s and choose
r € K such that p;; # p;; (such z exist because (3.2) is collected). Then
there is an m > 0 such that

0= pz,i(x)mv = pm,i(x)mvl +--- 4+ pz,i(x)mvs-

It follows that p; ;(x)™v; = 0. But also p; j(z)"v; = 0, for some n > 0. Now
because p;; and p; ; are relatively prime we have v; = 0. Sov = v; € V;.
Now suppose that there is a second collected primary decomposition,

V:W1€B®Wt

Let 1 < ¢ <t be such that W; does not occur among the components V;. For
z € K, define ¢, to be the irreducible polynomial such that the minimum
polynomial of the restriction of z to W; is a power of q;. Let v € W; and
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write v = vy + -+ + vs, where v; € V;. Fix a j between 1 and s, and let
z € K be such that g; # p; ; (such an z exists because otherwise g; = py ;
for all z € K and by (3.3), W; = V;). Then there is an m > 0 such that

0= gz(2)"(v) = gu(2)™(v1) + -+ + gz (2)™ (vs)

and because the Vi are invariant under z and the sum (3.2) is direct we
infer that g;(z)™v; = 0. But also p; ;(z)"v; = 0. Now because g, and py ;
are relatively prime it follows that v; = 0. If we vary j between 1 and s,
then it is seen that v = 0 so that W; = 0. |

Let V=V, &---®V; be the collected primary decomposition of V with
respect to K. Let X be an indeterminate. Let £ € K. If the minimum poly-
nomial of the restriction of z to V; is a power of X, then z acts nilpotently
on V;. On the other hand, if this minimum polynomial is a power of any
other irreducible polynomial, then z is non-singular on V;, ie., 2 -V, = V..
As the primary decomposition is collected there is at most one component
Vi such that all elements z € K act nilpotently on V;. We denote this
component by Vo(K). Furthermore, if we let V1(K) be the sum of the
remaining primary components, then V = V5(K) ® Vi(K) and by (3.3),

Vo(K) ={ve V| forall z € K there is an m > 0 such that z™ - v = 0}.

And also K - V)(K) = V1(K). The components Vp(K) and V(K are called
the Fitting-null and -one component respectively. The decomposition V' =
Vo(K) @ Vi(K) is called the Fitting decomposition of V with respect to K.

Now we change the setting a little bit. Let L be a finite-dimensional Lie
algebra over the field F' and let K C L be a nilpotent subalgebra of L. By
restricting the adjoint representation of L to K we get a representation of
K:

ady, : K — gl(L).
By Theorem 3.1.10 L has a unique collected primary decomposition relative

to K. Also L has a Fitting decomposition relative to K, which reads L =
Lo(K) (&2} Ll(K), where

Lo(K) = {y € L | for all z € K there is a t > 0 such that (adz)*(y) = 0},

and [K,Li(K)] = L;(K). These two decompositions of L relative to K
will be important tools for investigating the structure of L.

We end this section by giving an algorithm for calculating the Fitting-
one component of a Lie algebra L relative to a nilpotent subalgebra K.
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For a subalgebra K of L we write
[K™ L] = [K,[K,- - [K,L]---]] (m factors K).

Then [K™*! L] C [K™, L] so that the subspaces [K™, L] form a decreasing
series.

Lemma 3.1.11 Let L be a finite-dimensional Lie algebra and let K C L be
a nilpotent subalgebra. Let L = Lo(K)® L1(K) be the Fitting decomposition
of L with respect to K. Let m > 1 be such that [K™, L] = [K™*!, L], then
Li(K) =[K™, L].

Proof. Since [K,L;(K)] = L1(K), we have
(K7, L) = [K", Lo(K)] + [K", L1(K)] = [K", Lo(K)] + L1 (K).

From the fact that adz acts nilpotently on Lo(K) for all z € K we have
that the series of subspaces [K", Lo(K)] form a decreasing series, ending in 0
(Proposition 2.1.4). Hence [K™, L] = [K™*!, L] implies [K™, L] = Li(K).
g

Lemma 3.1.11 yields an easy algorithm FittingOneComponent for cal-
culating the Fitting-one component of a Lie algebra L with respect to a
nilpotent subalgebra K. It calculates the decreasing series of subspaces
[K™,L] (by calls to ProductSpace). When the point is reached where
[K™, L] = [K™*!, L], the space [K™, L] is returned.

3.2 Cartan subalgebras

Throughout this section L will be a finite-dimensional Lie algebra over a field
F. Let K be a nilpotent subalgebra of L. Suppose that adzx is a nilpotent
linear transformation for all x € K. Then we have that Lo(K) = L and
the primary decomposition is not very revealing. We want to avoid this
situation as much as possible. Therefore we try to find subalgebras K
such that Lo(K) is a small as possible. Such subalgebras are called Cartan
subalgebras.

Definition 3.2.1 A nilpotent subalgebra H of L is called a Cartan subal-
gebra if Lo(H) = H.

The next lemma provides a convenient tool for proving that a certain
nilpotent subalgebra is a Cartan subalgebra.
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Lemma 3.2.2 Let H be a nilpotent subalgebra of L. Then H is a Cartan
subalgebra if and only if Np(H) = H.

Proof. Suppose that H is a Cartan subalgebra. Let z € Np(H). Let
L = H® L(H) be the Fitting decomposition of L with respect to H. Write
z=h+y where h € H and y € Li(H). As z € Ny (H) we have [z,h'] € H
for all ' € H. But [z,h'] = [h,h'] + [y, k'], so that [y,h'] € HN Li(H),
which means that [y, 4] = 0. Since this holds for all A’ € H we must have
y = 0. It follows that Np(H) = H.

Now suppose that N(H) = H. We consider the (adjoint) action of H
on the space Lo(H). Since H is nilpotent, Lo(H) contains H. Because H is
stable under H we have that H acts on the quotient space Lo(H)/H. Also
for all h € H the restriction of adh to Lo(H) is a nilpotent transformation.
Hence also the induced action of h € H on Lo(H)/H is nilpotent. Suppose
that Lo(H) is strictly larger than H. Then by Proposition 2.1.2, it follows
that Lo(H)/H contains a non-zero element Z mapped to 0 by all elements
of H. Let z be a pre-image of Z. Then [z, H] C H and hence z € H. But
that means that & = 0 and therefore we have Lo(H) = H. ad

Proposition 3.2.3 Let L be a Lie algebra defined over the field F'. Let F
be an extension field of F. If H C L is a Cartan subalgebra of L, then
H = H ®p F is a Cartan subalgebra of L = L Qp F.

Proof. As seen in Section 1.14, H is nilpotent. Let {z1,...,z,} be a
basis of L and {hy,... ,h;} a basis of H. Then {z1®1,... ,2, ® 1} and
{h1®1,... ,h; ® 1} are bases of L and H respectively. Now if we provide
these bases as input to the algorithm Normalizer, then exactly the same
equation system will be solved as when we input the bases {z1,... ,z,} and
{h1,...,h} of L and H. Hence the solution space is defined over F' and
we have that NL(I:I) = Ny(H) ®p F = H. Now by Lemma 3.2.2, Hisa
Cartan subalgebra of L. d

From Definition 3.2.1 it is not clear whether an arbitrary Lie algebra has
a Cartan subalgebra. Here we prove that Lie algebras defined over a big
field and restricted Lie algebras over a field of characteristic p > 0 possess
Cartan subalgebras. The proofs yield algorithms for calculating a Cartan
subalgebra.

Lemma 3.2.4 Let K be a nilpotent subalgebra of L. Let x € Lo(K), then
the primary components in the collected primary decomposition of L relative
to K are invariant under adz.



66 Cartan subalgebras

Proof. Let h € K. Then [h,[h,--- [h,z]---]] = 0 and hence by Proposition
3.1.7, we have that the primary components of L relative to adh are invari-
ant under adz. By (3.3) the primary components of L relative to K are
intersections of the primary components of L relative to adh for h € K. It
follows that the primary components of L relative to K are invariant under
adz. i

Proposition 3.2.5 Let K be a nilpotent subalgebra of L. Then
1. Lo(K) is a subalgebra of L,
2. [Lo(K), Li(K)] C Li(K),
3. Nip(Lo(K)) = Lo(K).

Proof. We have that Lo(K) is a primary component and L;(K) is a sum
of primary components. The first two statements now follow from Lemma
3.2.4. Let z € L lie in N(Lo(K)). Write z = z¢ + 1, where 2y € Lo(K)
and z; € L1(K). Then for y € Lo(K) we have [z,y] = [zo,y] + [z1,y] so
that [z1,y] € Lo(K). However, by statement 2., [z1,y] € L1(K) and hence
[z1,y] = 0. So [z1, Lo(K)] = 0 and in particular [z;, K] = 0 implying that
z1 € Lo(K). It follows that z; = 0 and z € Ly(K). O

Proposition 3.2.6 Let () be a subset of the field F of size at least dim L+41.
Let £ € L and set A = Lg{adz). Suppose that there is a y € A such that
ad Ay s not a nilpotent linear transformation. Then there is a cg € Q such
that Lo(ad(z + co(y — z))) is properly contained in A.

Proof. Let L = A @ Li(adz) be the Fitting decomposition of L rel-
ative to the subalgebra spanned by z. Then by Proposition 3.2.5, the
transformations adz and ady both stabilize A and L;(adx), hence so does
ad(z+c(y—x)) for allc € F. Let T be an indeterminate and let f(7") be the
characteristic polynomial of ad(z +c(y —z)). Then f(T) = g(T)h(T) where
g is the characteristic polynomial of the restriction of ad(z + ¢(y — z)) to 4
and h the characteristic polynomial of the restriction of ad(z + ¢(y — z)) to
Li(adz). Furthermore

9(T) =T+ g1 (AT + - + ga(c)

and
R(T) =T+ h1 ()T + - + he(c),
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where g; and h; are polynomials in ¢. Also, if g; # 0 then degg; = ¢ and
likewise for h;. Now because ad 4y is not nilpotent, there is an ¢ such that
9i(1) # 0. And since A = Ly(adz), we have that h.(0) # 0. In particular g;
and h, are not the zero polynomial. Since degg;he =i+e < d+e=dimlL,
there is a ¢y € € such that g;h.(cy) # 0. From he(cp) # 0 it follows that
Ly(ad(z + co(y — ))) is contained in A. From g;(co) # 0 it follows that this
containment is proper. a

Definition 3.2.7 An element © € L is called regular if the dimension of
Lo(adz) is minimal. If z € L is regular, then dim Lo(adx) is called the rank
of L.

Corollary 3.2.8 Suppose that L is defined over a field of size at least
dimL + 1. Let z € L be a regular element, then Lo(adz) is a Cartan
subalgebra.

Proof. Set H = Lo(adz). Then by Proposition 3.2.5, H is a subalge-
bra of L and Ny (H) = H. Also if H is not nilpotent, then by Engel’s
theorem (Theorem 2.1.5), there is an element h € H such that adgh is
not nilpotent. Hence, by Proposition 3.2.6, there is a ¢g € F such that
dim Lo(ad(z + ¢p(h — z))) < dim Lg(adz). But since z is regular, this is not
possible. So H is nilpotent, and by Lemma 3.2.2 it is a Cartan subalgebra. O

Using Proposition 3.2.6 we formulate an algorithm for calculating a Car-
tan subalgebra of a Lie algebra defined over a big field (i.e., a field of size
at least dim L + 1).

Algorithm CartanSubalgebraBigField

Input: a finite-dimensional Lie algebra L, and a subset Q@ C F of size at
least dim L + 1.

Output: a Cartan subalgebra of L.

Step 1 If L is nilpotent, then return L.
Step 2 z := NonNilpotentElement(L);
Step 3 If Lo(adz) is nilpotent then return Lg(adz).

Step 4 Let y := NonNilpotentElement(Ly(adz)). Find a ¢y € Q2 such that
the dimension of Ly(ad(z+co(y—1))) is strictly less than dim Ly (adz).
Set  :=z + ¢o(y — z) and go to Step 3.
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Comments: This algorithm terminates because dim Lo(adz) decreases
every round of the iteration. Also by 3. of Proposition 3.2.5 and Lemma
3.2.2, the subalgebra that is returned is a Cartan subalgebra. We note that
every step is computable. This is clear for Steps 1 and 2. Calculating (a
basis of ) a subalgebra of the form Lg(adu) requires solving a system of
linear equations. In Step 4, after at most dim L + 1 computations of the
dimension of a subalgebra of the form Ly(ad(z+co(y—z))), wefind a cy € Q
such that dim Ly(ad(z+co(y—z))) is < dim Lo(adz) (cf. Proposition 3.2.6).

Proposition 3.2.9 Let L be o restricted Lie algebra over the field F' of
characteristic p > 0. Let x — zP be a fized p-th power mapping. Let
K be a nilpotent subalgebra of L. Then Lo(K) is closed under the p-th
power mapping. Furthermore, every Cartan subalgebra of Lo(K) is a Cartan
subalgebra of L.

Proof. Set A = Lo(K) and let z,y € A. Then [zP,y] = (adz)P(y) which
lies in A by 1. of Proposition 3.2.5. Hence z? € Np(A) = A by 3. of
Proposition 3.2.5. It follows that A is closed under the p-th power mapping
of L.

Let H be a Cartan subalgebra of A. Then H is nilpotent and Ay(H) =
H. We have to prove that Lo(H) = H. Let z € K and choose an integer
m such that (adz)?™ A = 0 (such an m exists because z acts nilpotently on
A). Set y = zP™ then, as seen above, y € A. Furthermore, [y, A] = 0 and in
particular [y, H] = 0. So because H is a Cartan subalgebra of A, we have
y € H. Hence Ly(H) C Lo(ady) C Lo(adz) and as a consequence

Lo(H) C () Lo(adz) = Lo(K) = A.
zeK
And it follows that Lo(H) = Ag(H) = H, which is what we wished to prove.
O

The previous result yields an algorithm for computing a Cartan subal-
gebra of a restricted Lie algebra of characteristic p > 0.

Algorithm CartanSubalgebraRestricted
Input: a restricted finite-dimensional Lie algebra L of characteristic p > 0.
Output: a Cartan subalgebra of L.

Step 1 Set K := L.

Step 2 If K is nilpotent then return K.
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Step 3 z := NonNilpotentElement(K). Replace K by Ky(adgz) and return
to Step 2.

Comments: This algorithm terminates because the quantity dim K
decreases every round of the iteration. Furthermore, the replacement of Step
3 is justified by Proposition 3.2.9. We note that the p-th power mapping is
not needed in the algorithm. It is only needed in the proof of Proposition
3.2.9.

Corollary 3.2.10 If L is defined over a field of size at least dim L + 1, or
L is a restricted Lie algebra of characteristic p > 0, then L has a Cartan
subalgebra.

Remark. We remark that a Lie algebra L in general has more than one
Cartan subalgebra. Indeed, let L be the 3-dimensional Lie algebra sl3(Q)
with basis z, y, h and multiplication table

[h,ﬂ?] = 2z, [h'7y] = -2y, ["an] = h,

(see Example 1.3.6). Then the subalgebras of L spanned by h and z + y
respectively are both Cartan subalgebras of L.

3.3 The root space decomposition

Let L be a Lie algebra over the field F. A Cartan subalgebra H of L is
said to be split if F' contains the eigenvalues of the adph for all h € H (see
also Definition 2.4.1). In this section we suppose that L has a split Cartan
subalgebra and we let H be such a split Cartan subalgebra.

Let

L=HoL @& - -®L;

be the (collected) primary decomposition of L with respect to H. Let h €
H, then the minimum polynomial of the restriction of adh to a primary
component L; is a power of an irreducible polynomial. Since H is split,
this irreducible polynomial is of the form X — a;(h), where «;(h) is a scalar
depending on ¢ and h. By fixing the primary component L;, we get a
function «; : H — F. This function is called a root (because the «;(h) are
roots of the characteristic polynomial of adh). The corresponding primary
component L; is called a root space. In the sequel it will be convenient to
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index a root space by the corresponding root, i.e.,

Loy, =L; =
{z € L|for all h € H there is a k > 0 such that (adh — a;(h)k(z) = 0}.

The primary decomposition
L=H®Ly ® - D L,

is called the root space decomposition of L. We note that H = Ly, the
primary component corresponding to the function ap : H — F given by
ag(h) = 0 for all h € H. However, usually o is not called a root. We let
® = {aj,... a5} be the set of non-zero roots. The next result shows how
part of the multiplicative structure of L is encoded in relations satisfied by
the roots.

Proposition 3.3.1 Let o, 3 € ® and let © € Lo and y € Lg. Then [z,y] €
Loip ifa+B € ® and [z,y] € H if a+ 3 =0. In all other cases [z,y] = 0.

Proof. Let h € H, then adh is a derivation of L. A straightforward
induction on m (cf. (4.4) in Chapter 4) establishes

(adh — (a(h) + BR)™ (i, ) =
3 ("‘) [(adh — (k)™ (z), (adh — B(R) (3)].

4 1
1=0

And for m big enough this is 0. So if a + 3 € @, then [z,y] € Layp. Also if
a+ 8 =0, then [z,y] € Ly = H. In all other cases adh — (a(h) + B(h)) is
nonsingular and it follows that [z,y] = 0. O

Example 3.3.2 Let L be the 8-dimensional Lie algebra over Q with basis
{z1,... ,zs} and multiplication table as shown in Table 3.1.

We compute a Cartan subalgebra H of L and the corresponding root
space decomposition. First, z = z, is a non-nilpotent element and Lo(adz)
is spanned by {x1, 24, s, z7}. In this subalgebra y = z4 is not nilpotent, so
according to Step 4 of the algorithm CartanSubalgebraBigField we have to
find a ¢y € Q such that the dimension of Lo(ad(z+co(y—))) is smaller than
dim Lo(adzx). It is easily seen that ¢y = 1 does not work, so we try ¢o = 2
which does the job. The subalgebra Lo(ad(2y — z)) is spanned by {z1,z4}
and is nilpotent (even Abelian). So we have found a Cartan subalgebra.
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T T I3 T4 Is Ig 7 g
Ty 0 2ty —2zg3 0 —I5 0 0 zg
o | —2x9 0 Ty 0 Tg 0 0 0
T3 2.733 -] 0 0 0 0 0 Iy
T4 0 0 0 0 —r5 —21g —Ig—2r7 —Ig
Iy Ty —Ig 0 Ty 0 0 0 —Tg
Tg 0 0 0 2xg 0 0 0 0
Ty 0 0 0 T¢ + 2x7 0 0 0 0
I —Is 0 —Ts5 s Tg 0 0 0

Table 3.1: Multiplication table of a 8-dimensional Lie algebra.

Set hy = z1 and ho = z4 and let H be the Cartan subalgebra spanned
by A1, hy. The matrices of adhy and adhy are easily computed and it is seen
that the primary decomposition of L is

L= HG}LOA = ($2>®La2 = (‘7"3)@[’013 = (335)@11(14 = ($6,$7)®La5 = (.’Eg),

(where (v, va,...,vk) denotes the space spanned by v1,...,v;). Now we
turn our attention towards the roots a;. Set A = A1hy + Aghs. Then the
matrix of the restriction of adh to L, is

—2Xa =X
0 —2Xx2 /)’
The minimum polynomial of this matrix is (X +2X2)2. Hence as(h) = —2Xs.
In similar fashion we determine the other roots; we have

Otl(h) = 2/\1, OéQ(h) = -—2)\1, ag(h) = —>\1 - )\2, a4(h) = ——2)\2,
0(5(}7,) = )\1 — /\2.

We see that a3z + a5 = a4. This corresponds to the commutation relation
[1115,.’138] = —ZIg € La4.

We have seen that part of the multiplication table of a Lie algebra L
is encoded in relations satisfied by the roots. Moreover, as will be seen in
Chapters 4 and 5, in the special case of semisimple Lie algebras, the set of
roots determines the entire Lie algebra structure. However, in general L
has many Cartan subalgebras and the root space decomposition of L rel-
ative to one Cartan subalgebra differs from the root space decomposition
of L relative to another Cartan subalgebra. So the question presents itself
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as to which Cartan subalgebras of L are best for our purpose of investi-
gating the structure of L. Fortunately, in the case where L is defined over
an algebraically closed field of characteristic 0 all Cartan subalgebras are
conjugate under the automorphism group of L. This means that the root
space decomposition of L relative to a Cartan subalgebra H; is mapped
onto the root space decomposition of L relative to a different Cartan sub-
algebra Hs by an automorphism. So in this case it does not matter which
Cartan subalgebra we take. The proof of this result is the subject of the
next sections.

3.4 Polynomial functions

Let V be a finite-dimensional vector space over the field F' with basis
{vi,... ,up}. Let p: V — V be a map defined by

n n
p(z Aivi) = Zpi(/\l, D L (3.4)
i=1 =1
where p; € F[X1,...,X,] are polynomials. A map of this form is called a

polynomial map.

Let p : V — V be a polynomial map defined by (3.4) and let v =
Avy + -+ + Apu, € V. Then we define the differential of p at v to be the
linear map dyp : V — V given by

dup(i pivi) = zn: (i(;ﬁ,)

i=1 ‘j=1

Hj)vi-
(Xk=Ak)

Example 3.4.1 Let V be a two-dimensional vector space over (Y with basis
{v1,v2}. Then the map p: V — V defined by

PAL1 + Aguz) = (At hg + A3)vr + (A% + A2)wy

is a polynomial map. Let v = Ajv; + Agvy be an element of V. Then for
w = p1v + Wave we have

dyp(w) = (Aop1 + (A1 + 2X2)po)vr + (2A1p1 + 2Xop2)ve-

Lemma 3.4.2 Letp: V — V be a polynomial map. Let t be an indetermi-
nate. Then p(v + tw) = p(v) + tdyp(w) (mod #2).
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Proof. Let w be given by w = 377 ; pjv;. Let f : V — F be a poly-
nomial function from V' to F' (i.e., f(3° Aivi) = ps(A1,..., ) for a py €
F[X1,...,Xys]). Then by Taylor’s theorem in n variables (see, e.g., [30]),
we have

n
flv+tw) = flv) + tj; -88—;—]7(1));1]- (mod t2).
The lemma is a straightforward consequence of this. a

A subset S C V is said to be open if there is a polynomial f in the ring
F[Xy,...,Xyn] such that S = {v € V| f(v) # 0}.

Theorem 3.4.3 Let V be a vector space defined over an algebraically closed
field F. Letp:V — V be a polynomial map. Suppose that there is a v € V
such that d,p is a surjective linear map. Let S C V be an open subset of V.
Then the image p(S) contains an open subset of V.

The proof of this theorem belongs to algebraic geometry; it is beyond
the scope of this book. For a proof we refer the reader to, e.g., [48], or {14].

3.5 Conjugacy of Cartan subalgebras

Let L be a Lie algebra. From Section 1.11 we recall that expadz is an
automorphism of L if z € L is such that adx is nilpotent. The group
generated by these automorphisms is called the inner automorphism group
of L and denoted by Int(L).

In the rest of this section we assume that the ground field F' is alge-
braically closed and of characteristic 0. Under this hypothesis we prove
that all Cartan subalgebras are conjugate under Int(L).

Let H be a Cartan subalgebra of L and let

L=H®Ly @ & Lq,

be the root space decomposition of I with respect to H. (Note that H is
split as F' is algebraically closed.) Set Ly = H. Let z € Ly, and y € Lq;
then by Proposition 3.3.1 we see that (adz)*(y) € Liato; if ko + cj is a
root or if it is 0, and otherwise (adz)¥(y) = 0. So since there are only a
finite number of roots we see that (adz)*(y) = 0 for some k > 0. Also by
a similar argument we have that (adz)™(h) = 0 for h € H and an m > 0.
It follows that adz is nilpotent and hence expadzr € Int(L). We let E(H)
denote the subgroup of Int(L) generated by expadz for z € L,,, where i
ranges from 1 to s.
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Now let {h1,... ,h;, i1, ,zn} be a basis of L such that hy,... ,hy
form a basis of H and x4, ... , z, span the root spaces. Let z = 25:1 pihi+
Z?:Hl Aix; be an element of L. Then we define a function py : L — L by

I
pu(z) = exp(Ng1adziyy) - - - exp(Apadzy) (Z ,uihi).

=1

(Note that for fixed A\jy1,...,A, this is an element of E(H) acting on an
element of H.) It is clear that py is a polynomial function. We calculate
its differential at the point hg € H. For this let h = Y., psh; and u =
Y izi41 Aizi- Let ¢ be an indeterminate. Then

pr(ho + t(h + u)) = exp(Ajprtadz;y ) - - - exp(Antadey,) (ko + th)
= (1 + thy1adzsr) - (1 + thpadzy,)(ho + th)  (mod t2)

n
=ho+th+t Y Nadzi(ho) (mod t?)
i=l+1
= ho + t(h + adu(hg)) (mod t?).

So by Lemma 3.4.2 we see that the differential dp,py is the linear map
h+u— h+ [u, ho]. (Note that PH(ho) = h().)

A root o; : H — F is a non-zero polynomial function. Hence also
the product f = a; - a; is a non-zero polynomial function. So there are
h € H such that f(h) # 0. By Hyeg we denote the set of all h € H such that
f(h) #0. Let Li(H) = Lo, @ -+ ® Lq, be the Fitting-one component of L
relative to H. We define a polynomial function f : L — F by f(h+u) = f(h)
for h € H and u € L;(H). Then

Oy ={h+u|h € Hyeg and u € Li(H)}

is the open set in L corresponding to f (where “open” is defined as in
Section 3.4). If hg € Hye then o;(ho) # 0 for 1 < 7 < s so that H =
Ly(adhg). Therefore the restriction of adhg to Li(H) is non-singular. So
by the above calculation we see that the differential dp,pg : L — L is
surjective. Consequently, by Theorem 3.4.3, the image set py(Op) contains
an open set. Now let H' be a second Cartan subalgebra. Then we define
pg using the root space decomposition of L relative to H'. And in the
same way we see that py(Op) contains an open set. But two open sets
always have a non-empty intersection. This means that there are g € E(H),
h € Hyeg, ¢ € E(H') and K’ € H],, such that g(h) = ¢'(h'). But then

reg

g(H) = g(Lo(adh)) = Lo(adg(h)) = Lo(adg'(h')) = ¢'(Lo(adh’)) = g'(H').
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Hence the element ¢’ g € Int(L) maps H to H’'. This means that we have
proved the following theorem.

Theorem 3.5.1 Let L be a finite-dimensional Lie algebra over an alge-
braically closed field of characteristic 0. Let H, H' be two Cartan subalgebras
of L. Then there is an element g € Int(L) such that g(H) = H'.

Proposition 3.5.2 Let L be a finite-dimensional Lie algebra over a field
of characteristic 0 (not necessarily algebraically closed). Then any Cartan
subalgebra H of L is of the form Lo(adz) where x € L is a regular element.

Proof. Let {z,...,z,} be a basis of L. Let F(Y1,...,Y},) be the field
of rational functions in n indeterminates. Put z = Z?zl Y;z; which is an
element of L @ F(Y1,...,Y,). Then the characteristic polynomial of adz
is of the form

det(T — adz) = T" + f1(Y1,..., Yo) T L+ oo 4 foa(Y3,... , V)T

where the f; are polynomials in the Y3,...,Y,;. We see that an element
> wiz; € L is regular if and only if f,_;(#1,... ,n) # 0. So since F' is
infinite we have that L contains regular elements.

Suppose first that F is algebraically closed. Let y € L be regular.
By Corollary 3.2.8 we see that Lg(ady) is a Cartan subalgebra of L. By
Theorem 3.5.1 there is an element g € Int(L) such that g(Lo(ady)) equals
the given Cartan subalgebra H. Hence H = Ly(adg(y)) and g(y) is a regular
element.

Now we drop the assumption that F' is algebraically closed, and we
show that H contains regular elements. Let {hy,...,h;} be a basis of
H. Let Yy,...,Y; be | indeterminates over F. We consider the element
h = Zézl Y;h; which lies in L ®p F(Y7,...,Y;). Then the characteristic
polynomial of adh is

det(T —adh) = T" + g;(Y1,..., Y)T" ' + - 4 gny(Ya,... , V)T

It follows that an element Zi’:l a;h; € H is a regular element if and only
if gn—i(ay,... ;) # 0. By the first part, the Cartan subalgebra H con-
tains regular elements over the algebraic closure of F. Hence g,_; is not the
zero polynomial. So, since F is infinite, there are e, ... ,a; € F such that
gn—i(01,... ,00) # 0 and H contains regular elements. a
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Example 3.5.3 Let L be the Lie algebra sl2(Q) of Example 1.3.6. This
Lie algebra has basis z, y, h and multiplication table

[h,z] = 2z, [h,y] = =2y, [z,y] = h.

A Cartan subalgebra of L is spanned by h. Denote this Cartan subalgebra
by H. Then there are two root spaces relative to H, spanned by z and y
respectively. We have (adz)? = (ady)® = 0 and

pu(az + By + vh) = (exp cadz)(exp Bady)(vh)
= 4(1 + aadz + %aQ(adx)Q)(l + Bady + %ﬂ2(ady)2)(h)
= —y(2028 + 2a)z + 270y + y(1 + 2aB8)h.

Now a second Cartan subalgebra H' is spanned by z + y. The two root
spaces relative to H' are spanned by 2’ =z —y—handy =z —y+h. If
we set h' =z + y then

[h',2'] =22, [0 ] = -2¢, [z,y] = —4h'.
Also
pH'(al.'El _+_ ﬂ,y, + ’Y/h,) —_
1 1
¥ (1 + o’adz’ + 5a”(adgc')?)u + flady’ + 5ﬂ’2(au1y’)2)(h') =
v (828 —2d )z’ +2v' 8y ++'(1 — 8/ BN

To find an automorphism mapping H onto H’' we need to find an element
in the intersection of the images of py and pg/. For example we can set
o = =0and v =1, then pg (s’ + 'y ++'h’') = h'. Now we have to
find «, B, such that py(az + By + vh) = A'. This is equivalent to

—v(26%8 + 2a) = 2y8 =1 and v(1 + 2a8) = 0.

If we set v = 1, then we see that 8 = %, and a = —1. It follows that
1
exp(—adm)exp(ﬁady)(H) =H'
3.6 Conjugacy of Cartan subalgebras of solvable

Lie algebras

As seen in the last section, we need the ground field to be algebraically
closed and of characteristic 0 in order to have that all Cartan subalgebras
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are conjugate. However, in an important special case, where the Lie algebra
is solvable, we can drop the assumption that the ground field be algebraically
closed. First we need some lemmas that are of general nature.

Lemma 3.6.1 Let L be a finite-dimensional Lie algebra. Let K be o subal-
gebra of L containing a subalgebra of the form Lg(adz) for an z € L. Then
Ni(K)=K.

Proof. We consider the vector space V = Np(K)/K. Since z € K we
have that ad;z stabilizes K and Np(K); hence adyz induces a linear map
az : V = V. The characteristic polynomial of ady, (k) is the product of
the characteristic polynomials of adgz and a,. So because Ly(adz) C K
we see that a, has no eigenvalue 0 on V. Also z € K implies that a; maps
Ni(K) into K, i.e., az(V) = 0. It follows that V = 0 and we are done. O

Lemma 3.6.2 Let Ly, Ly be finite-dimensional Lie algebras over a field of
characteristic 0. Let ¢ : Ly — Lo be a surjective homomorphism. If H is a
Cartan subalgebra of L1, then ¢(H) is a Cartan subalgebra of Lo.

Proof. Let H* be the k-th term of the lower central series of H, and sim-
ilarly for ¢(H)*. Then ¢(H)* = $(H*) = 0 for k large enough. Hence
¢(H) is nilpotent. Now suppose [#(z), p(H)] C ¢(H), for an z € L;; then
[z, H] C H+ker ¢. Hence [z, H+ker ¢] C H+kerd, i.e., z € Ny, (H+ker ¢).
Now since the ground field is of characteristic 0, the Cartan subalgebra H
is of the form Lg(adu) for some u € Ly (Proposition 3.5.2). So by Lemma
3.6.1 we see that z € H + ker ¢. And consequently ¢(z) € ¢(H). The con-
clusion is that Np,(¢(H)) = ¢(H) and by Lemma 3.2.2 ¢(H) is a Cartan
subalgebra of Lo. O

Lemma 3.6.3 Let Ly, Ly be finite-dimensional Lie algebras over a field of
characteristic 0. Let ¢ : Ly — Lo be a surjective homomorphism. Let Ho
be a Cartan subalgebra of Lo and set K = ¢~ '(Hy). Then every Cartan
subalgebra of K is also a Cartan subalgebra of L.

Proof. Let H; be a Cartan subalgebra of K. Then H; is a nilpotent Lie
algebra. By Lemma 3.6.2, ¢(H1) is a Cartan subalgebra of ¢(K) = Hj.
Hence ¢(H,) = H,. Suppose that [z, H1] C H; for an z € Ly. Then
[p(x), H2] C Hy and ¢(z) € Hy. It follows that z € K. But since H; is
a Cartan subalgebra of K we must have x € Hy; so Ny, (H;) = H,. By
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Lemma 3.2.2, H; is a Cartan subalgebra of L;. O

Now let L be a solvable Lie algebra over a field of characteristic 0. Let
z € [L,L], then by Lemma 2.6.2 we see that adpz is nilpotent. Hence
exp adz is an element of the inner automorphism group Int(L). By D(L)
we denote the subgroup of Int(L) generated by all elements expadz for
z € [L, L]

Theorem 3.6.4 Let L be a solvable Lie algebra of characteristic 0. Let
H,H' be two Cartan subalgebras of L. Then there is a g € D(L) such that
g(H') =H.

Proof. The proof is by induction on dim L. The case dim L = 0 is triv-
ial. Also we may assume that L is not nilpotent. Then L has non-trivial
proper commutative ideals (e.g., the last non-zero term of the derived se-
ries). Choose a non-trivial commutative ideal I of L of minimal dimen-
sion. Then by Lemma 3.6.2, (H + I)/I and (H' + I)/I are Cartan sub-
algebras of L/I. Hence by induction there is a § € D(L/I) such that
g((H'+I)/I)=(H+1I)/I. Let m: L — L/I be the projection map. Then
7 induces a group homomorphism

¢ : D(L) — D(L/I)

defined by ¢(expadz) = exp(adn(z)). If z € [L, L], then n(z) € [L/1,L/I)
so ¢ is well defined. Also because 7 is surjective we have the same for ¢.
It follows that there is a g; € D(L) such that ¢(g;) = §. Set H; = g1(H’).
We prove that H; and H are conjugate under D(L).

First we note that H; is a Cartan subalgebra of L and H;+I = H+1. So
H; and H are Cartan subalgebras of H+1. If H+1 is properly contained in
L, then by induction there is a go € D(H + I) such that g2(H;) = H. Since
H + I is a subalgebra of L the group D(H +I) can be viewed as a subgroup
of D(L) (this follows from the fact that [H + I, H + I] is a subalgebra of
(L, L]). Hence g5 lies in D(L) and we are done in this case.

Now suppose that L = H + I. Let u € H be a regular element of L
(such u exists by Proposition 3.5.2). Let

L=H®aL (H)

be the Fitting decomposition of L with respect to H. Then since u is
regular, adu : Li(H) — Li(H) is non-singular. Let x € L;(H), then
because L = H 4 I we can write z = h + a where h € H and a € I. Let
k > 0 be an integer such that (adu)*(H) = 0; then (adu)*(z) = (adu)*(a)
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which lies in I since I is an ideal. So (adu)*(L(H)) C I and because
also (adu)* is non-singular on Li(H) we see that Li(H) C I. In particular
[L1(H), L1(H)] = 0. Therefore

(L, Li(H)] = [H + Li(H), L (H)] C L1 (H).

It follows that L (H) is a commutative ideal of L contained in I. Because I
is minimal we must have Li(H) = 0 or L;(H) = I. In the first case L = H
and L is nilpotent, which was excluded.

On the other hand, if L;(H) = I, then L = Hy + I = Hy + L1(H). So
we can write u = h' +y where &’ € H; and y € L1(H). Also we can write
y = [z,u] for some 2z € Li(H). Since [u,L1(H)] = Li(H) we have that
Li(H) C [L,L] and g3 = expadz € D(L). Furthermore, since (adz)? =0
we have that g3 = 1 + adz. From the fact that L;(H) is commutative we
get that [z,y] = 0. Hence

g3(F) =gs(u—y) =u—-y+[zu—yl =u

The conclusion is that g3(H;) is a Cartan subalgebra of L having a regular
element in common with H. Hence g3(H;) = H. u

3.7 Calculating the nilradical

In Section 2.2 we described an algorithm for calculating the nilradical of Lie
algebras defined over a field of characteristic 0 or over a finite field. However
this algorithm calculates a basis of the associative algebra (adL)*. The
dimension of that algebra may be substantially bigger than the dimension
of L. Therefore it is desirable to have an algorithm that works inside the
Lie algebra L. In this section we describe an algorithm of this kind. We
also describe a second algorithm that mostly works inside the Lie algebra
(it computes the radical of an associative algebra that is much smaller than
(adL)*). However, they both only work over fields of characteristic 0.

Lemma 3.7.1 Let L be a solvable Lie algebra over the field F of charac-
teristic 0. Let d be a derivation of L. Then d(NR(L)) C NR(L).

Proof. Let Fz denote the 1-dimensional vector space over F' with ba-
sis z. We consider the direct sum K = Fz & L, which is made into a
Lie algebra by setting [az + y1, Bz + y2] = ad(y2) — Bd(y1) + [y1,y2] for
y1,y2 € L. This is a special case of the construction of a semidirect prod-
uct in Section 1.10. Then L is an ideal in K and K/L is commutative.
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Hence K is solvable. Therefore by Corollary 2.6.3, [K, K] is a nilpotent
ideal of K. And since [K,K]| C L it is also a nilpotent ideal of L, i.e.,
[K,K] C NR(L). But [K,K] =[L, L] +d(L). Hence d(L) C NR(L), and in
particular d(NR(L)) C NR(L). o

Proposition 3.7.2 Let L be a solvable Lie algebra of characteristic 0. Let
I be an ideal of L and let M be the ideal of L (containing I) such that
NR(L/I) = M/I. Then NR(L) = NR(M).

Proof. First we have that NR(M) is a nilpotent Lie algebra. Furthermore,
since M is an ideal of L we have that adz € Der(M) for all z € L. Hence by
Lemma 3.7.1, [z, NR(M)] C NR(M) for all z € L. It follows that NR(M)
is an ideal of L and hence NR(M) C NR(L).

For the other inclusion we note that NR(L) C M and hence NR(L) C
NR(M). a

Proposition 3.7.3 Let L be a solvable Lie algebra of characteristic 0. Set
I=[[L,L],[L,L]]. Then NR(L/I)=NR(L)/I.

Proof. First we note that by Corollary 2.6.3 we have that I C [L,L] C
NR(L). So NR(L)/I is a nilpotent ideal of L/I hence NR(L)/I C NR(L/I).

Now suppose that Z € NR(L/I); then ad ;% is nilpotent. Let z € L be
a pre-image in L of Z. We claim that adpz is nilpotent. Because ady ;7 is
nilpotent we have (ad;z)™(L) C I for some m > 0. Now we set J; = [L, L],
and for k > 2, Jy = [J1,Jk-1]. So Jo = I and (adpz)™(L) C Jo. We
show by induction on k that for k¥ > 2 there is an integer sx such that
(adpz)®*(L) C Jg. For k = 2 we take s3 = m. So let £ > 2, then by
induction we have (adz)®¢(L) C Ji. Now let a € J; and b € Jg_y, then
[a,b] € Ji and by Leibniz’ formula (1.11),

t

(adz)*([a, b)) = Z (f) [(adx)i(a), (ad:v)t"i(b)].

1=0

We take t = 2s;. This means that if t — ¢ > sg, then (adz)!"(b) € J
and (adx)i(a) € J1. On the other hand if t — 7 < si, then 7 > si so that
(adz)'(a) € Ji, and (adz)!~*(b) € J;. In both cases we see that

[(adz)'(a), (adz)'"*(b)] € Jrs1-

As a consequence we have that (adz)!(J;) C Jx41. Hence (adz)'*5¢(L) C
Jk+1. Now because Jj is a nilpotent Lie algebra, there is a £ > 0 such
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that J, = 0. Hence adyz is nilpotent and x € NR(L) by Proposition 2.3.6.
Therefore £ € NR(L)/I and we are done. u

Proposition 3.7.4 Let L be a solvable Lie algebra of characteristic 0. Let
Cm (L) be the hypercentre of L. Then NR(L/Cy, (L)) = NR(L)/Cpn(L).

Proof. Let
C(L) = Cy(L) C Cy(L) C -+~ C C(L)

be the upper central series of L. Just as in the proof of Proposition 3.7.3
it can be shown that NR(L)/Cpn(L) C NR(L/Cwn(L)). Now let T be
an element of NR(L/Cy,(L)) and let z € L be a pre-image of z. Then
(adrz)™(L) C Cpy(L) for some n > 0. And since

Cm(L)/Crm-1(L) = C(L/Cp1(L))

(by the definition of upper central series) we see that adz(Cp (L)) C 0+
Cm-1(L). Now, by going down the upper central series we arrive at

(adz)™™(L) = 0.

So € NR(L) by Proposition 2.3.6. d

Proposition 3.7.5 Let L be a Lie algebra such that [[L, L],[L,L]] = 0 and
C(L) =0. Then Cr([L,L]) =[L, L].

Proof. Set K = CL([L, L]), then we define a representation ¢ : L — gl(K)
of L by ¢(z)(v) = [z,v] for z € L and v € K. (Because [[L, L],[L,L]] = 0
we have that [z,v] € CL([L, L]).) The kernel of ¢ contains [L, L] so ¢(L) =
L/ ker ¢ is commutative. Let

K = Ko(¢(L)) & K1 ($(L))

be the Fitting decomposition of K with respect to ¢(L). Then since ¢(L) -
K1 (¢(L)) = Ki(¢(L)) we have Ky (¢(L)) C [L,L]. Furthermore, every el-
ement of ¢(L) acts nilpotently on Ky(¢(L)). Suppose that Ko(¢p(L)) # 0.
Then by Proposition 2.1.2 there is a non-zero v € Ko(¢(L)) such that
#(L)v = 0. But then v € C(L) and we have reached a contradiction.
So Ko(#(L)) =0 and K C [L, L). It follows that K = [L, L]. o
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Proposition 3.7.6 Let L be a Lie algebra such that [[L, L],[L, L]] = 0 and
C(L) =0. Then [L,[L,L)] = [L, L)].

Proof. Set K = [L,L] and let ¢ be defined as in the proof of Proposi-
tion 3.7.5. In the same way as seen in that proof, K = Ki(¢(L)). So
#(L) - K = K, but that is the same as [L,[L, L]] = [L, L]. O

Now the algorithm reads as follows:

Algorithm NilRadical
Input: a finite-dimensional Lie algebra L of characteristic 0.
Output: NR(L).

Step 1 Compute the solvable radical R = SR(L). If R = 0 then return R,
otherwise continue with R in place of L.

Step 2 Compute the ideal I = [[L, L}, [L, L]]. If I # 0 then compute (by a
recursive call) the nilradical N of L/I and return the inverse image of
N in L. Otherwise proceed to Step 3.

Step 3 Compute the hypercentre C,,(L) of L. If Cry(L) # 0 then proceed
as in Step 2 where C;,,(L) plays the role of I. Otherwise go to Step 4.

Step 4 Compute a basis of L of the form {z1,... ,Zs,y1,..- ,y:} where [L, L]
is spanned by {z1,... ,zs}. Set i:=1;

Step 5 Let a be the matrix of the adjoint action of y; on [L, L]. If the rank
of a is strictly smaller than s, then compute the ideal J = ady;([L, L]).
Compute recursively the nilradical of L/J and let M be the ideal of
L containing J such that NR(L/J) = M/J. Compute (by a recursive
call) NR(M) and return this ideal. If the rank of a is equal to s, then
go to Step 6.

Step 6 Let f be the minimum polynomial of a. If f is not square-free then
set g = f/ged(f, f'). Compute the ideal I = g(a) - [L, L] and proceed
as in Step 5. If f is square-free proceed to Step 7.

Step 7 If ¢ < t then set i equal to i + 1 and go to Step 5. Otherwise,
NR(L) = [L, L.

Comments:
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Step 1 Since NR(R) = NR(L), (cf. Proposition 2.3.6) we may replace L by
R.

Step 2 This step is justified by Proposition 3.7.3.
Step 3 This step is justified by Proposition 3.7.4.

Step 5 The rank of a is not 0 by Proposition 3.7.5 (the conditions of this
proposition are fulfilled by Steps 2 and 3). If it is less than s, then
J = ady;([L, L]) will be an ideal of L properly contained in [L, L].
Hence Proposition 3.7.6 (ensuring that L/J is not nilpotent, and hence
M # L) and Proposition 3.7.2 justify the recursive calls.

Step 6 For z,u,v € L we have

[z, (ady:)™ ([u, v))] = (ady:)™([z, [u, v]})

which is proved by induction on m. From this it follows that the space
h(ady;)([L, L]) is an ideal of L for every polynomial h. In particular
g(ady;)([L, L]) is an ideal of L and it is properly contained in (L, L]
because g(ady;) is nilpotent.

Step 7 If ¢ = t then all elements y; act by a semisimple matrix on [L, L].
Furthermore these matrices commute. So any nilpotent element of L is
contained in the span of z1,... ,z,. It follows that NR(L) is contained
in [L, L]. By Step 1 we have that L is solvable so that NR(L) = [L, L].

Example 3.7.7 Let L be the 5-dimensional Lie algebra over Q with basis
{z1, 2, z3, 24,25} and multiplication table

(1, 25] = 21, [22,25] = 21 + @2, [z3,24] = 71, [73,25] = T3.

Then L is solvable. Furthermore, both [[L, L],[L,L]] and C(L) are zero.
A basis as in Step 4 of the algorithm is given by {z1,z2,%3,y1,y2}, where
y1 = x4 and yo = 5. The matrix of the restriction of ady; to [L, L] is

00 -1
a=10 0 O
00 O

The rank of a is 1, so in Step 5 we calculate the ideal J spanned by a-[L, L] =
(z1). Let z; be the image of z; in L/J for i = 2,3,4,5. Then a multiplication
table of K} = L/J is

[22,25] = 22, [23,25) = 23.
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We calculate the nilradical of K;. The centre C(K) is spanned by zs.
Set K9 = K,/C(K1); then the centre of Ko is zero. So the hypercentre
of K; is equal to C(K;). Let u; be the image of z; in Ky for i = 2,3,5.
Then the u’s satisfy the same commutation relations as the 2’s. Hence
C(K3) = [[K2, K2],[K2, K2]] = 0, so for the calculation of the nilradical of
K we proceed to Step 4. We have that [K9, K| is spanned by u2, u3. The
matrix of the action of us on this space is

-1 0
(0 2)
The minimum polynomial of this matrix is X + 1, which is square-free. By
Step 7 we now see that NR(K3) = [K>2, K»]. By Step 3, NR(K) is spanned
by 22, 23, 24.

We now continue calculating NR(L). We left this computation in Step 5.
We have calculated the nilradical of K;. Now M is spanned by z,, 2,23, Z4.
According to Step 5, we have NR(L) = NR(M). But M is nilpotent. So
NR(L) = M.

Lemma 3.7.8 Let L C gl(V') be a solvable linear Lie algebra of character-
istic 0. Let A be the associative algebra generated by L together with the
identity on V. Then A/Rad(A) is a commutative associative algebra.

Proof. Let 0 =V C V; C -+ C V5411 = V be a composition series of V'
with respect to the action of L. Then all elements of A stabilize the modules
V;. Let I C A be the set of all a € A such that aV;y; C V; for 0 < ¢ < s.
Then I is a nilpotent ideal of A and hence I C Rad(A). Because V;11/V; is
an irreducible L-module, by Proposition 2.3.3 we have that [z,y]- Vi1 C V;
for all z,y € L. Hence [z,y] € Rad(4). So the generators of A commute
modulo Rad(A). Hence all elements of A commute modulo Rad(A). a

Theorem 3.7.9 Let L be a finite-dimensional Lie algebra of characteristic
0. Set R = SR(L). Let H be a Cartan subalgebra of R. Let Ry = Ry(H) be
the Fitting-one component of R relative to H. Let A denote the associative
algebra generated by adp,h for h € H along with the identity on Ry. Then
we have

NR(L) = R, @ {h € H | adg,h € Rad(A4)}.

Proof. First we have that Ry = [H,R;] C [R,R] C NR(L) (the second
inclusion follows from Corollary 2.6.3). Furthermore, if h is an element of
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H such that adp, h € Rad(A), then adg, h is nilpotent. Since H is nilpotent,
there is a k > 0 such that (adgrh)*(H) = 0. Hence for m big enough,

(adgrh)™(R) = (adgh)™ (H) + (adgh)™(R1) = 0.

So adgrh is nilpotent, forcing h € NR(L) (Proposition 2.3.6). So everything
on the right hand side is contained in NR(L).

Now let ¢ € NR(L). Then also z € R, and consequently there are unique
h € H and y € Ry such that £ = h+y. We must show that adg, h € Rad(A).
By the Wedderburn-Malcev principal theorem (Theorem A.1.5) there is a
semisimple subalgebra S of A such that A = S & Rad(A). By Lemma 3.7.8
we have that S is commutative. Therefore any nilpotent element of S will
generate a nilpotent ideal of S. It follows that S does not contain nilpotent
elements. This implies that all elements of S are semisimple linear transfor-
mations. Indeed, let a € S and let a = s + n be its Jordan decomposition.
Then both s,n € S so that n = 0. Now write adg,h = s + 7 where s € §
and r € Rad(A). Then since adg, b is nilpotent, we must have that s = 0,
and we are done, d

On the basis of this theorem we formulate the following algorithm for
calculating the nilradical of a Lie algebra of characteristic 0.

Algorithm NilRadical
Input: a finite-dimensional Lie algebra L of characteristic 0.
Output: a basis of NR(L).

Step 1 Calculate the solvable radical R = SR(L) of L.
Step 2 Calculate a Cartan subalgebra H of R.

Step 3 Set R;:= FittingOneComponent(R, H) and calculate a basis of the
associative algebra A generated by adg, h for h € H.

Step 4 Calculate Rad(A) and calculate the space N of all A € H such that
adpg, h € Rad(4).

Step 5 Return N & R;.

Example 3.7.10 Let L be the 5-dimensional Lie algebra of Example 3.7.7.
A non-nilpotent element if L is z5. We have that Lg(adzs) is spanned by
z4,%5. This subalgebra is nilpotent (even commutative) so H = Ly(adzs)
is a Cartan subalgebra of L. The Fitting-one component L, (H) is spanned
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by z1,z9,z3. The matrices of the restrictions of adz4 and adzs to L;(H)
are

00 -1 -1 -1 0
adLl(H)u =10 0 0 and adLl(H)x5 = 0 -1 0
00 0 0 0 -1

Let A be the associative algebra (with one) generated by these matrices.
Then A is 3-dimensional. The radical of A is spanned by ady, g)z4 along
with
010
0 00
0 00
So NR(L) is spanned by z1,z2, T3, Z4.

Some practical experiences with the algorithms for calculating the nil-
radical are reported in [35]. The algorithms of this section turn out to be
markedly more efficient than the algorithm described in Section 2.2. Fur-
thermore, the second algorithm of this section (using Cartan subalgebras)
runs faster than the first algorithm on the examples considered in (35].

3.8 Notes

The algorithms for calculating a Cartan subalgebra are taken from [37]. In
that paper it is shown that these algorithms run in polynomial time. A
different algorithm is described in [7]. There the computation of a Cartan
subalgebra is split into two separate cases. In the first case the Lie algebra
is semisimple. In this case a characterization of Cartan subalgebras as maz-
imal tori is used (see also Section 4.9). The resulting algorithm is somewhat
similar in nature to the algorithms described in Section 3.2. The construc-
tion of a maximal torus starts by constructing a semisimple element s;. A
maximal torus containing s, is contained in the centralizer of s;. So the
centralizer of s; is constructed. If this centralizer is not nilpotent, then it
contains a semisimple element s; independent from s;. Now the centralizer
of the subalgebra generated by s1, s is constructed. This process repeats
until a Cartan subalgebra is found. In the second case the Lie algebra is
solvable. For this case a rather complicated procedure is used. Furthermore,
it is shown that we can compute a Cartan subalgebra of any Lie algebra
using the algorithms for these two cases.

Also [91] contains an algorithm for calculating a Cartan subalgebra. The
strategy used there consists of trying to find a nilpotent subalgebra K of L
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such that Lo(K) is a proper subalgebra of L. When such a subalgebra is
found, recursion is applied to find a Cartan subalgebra H of Ly(K) and by
Proposition 3.2.9 (we refer to [88] for an extension of this result to charac-
teristic 0), H is also a Cartan subalgebra of L. The algorithm starts with an
arbitrary nilpotent subalgebra K. If Ly(K) happens to be equal to L, then
two strategies for replacing K are possible. First of all, if the centralizer
of K in L is bigger than K we can add an element of the complement to
K in the centralizer and produce a bigger nilpotent subalgebra. We can
do the same with the normalizer. However in this case, in order to get a
nilpotent subalgebra, we must make sure that the element z of the comple-
ment acts nilpotently on K. If this happens not to be the case then z is a
non-nilpotent element and hence the nilpotent subalgebra K spanned by z
will have the property that Lo(K) # L.

The Lie algebra of Table 3.1 is taken from [84] (it is the Lie algebra with
name Lg 11 in that paper). The proof of Theorem 3.6.4 follows C. Chevalley
({(19]). The first algorithm for calculating the nilradical in Section 3.7 is
based on [71]. The second algorithm is taken from [35].
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Chapter 4

Lie algebras with
non-degenerate Killing form

The Killing form of a Lie algebra is the trace form corresponding to the ad-
joint representation. The requirement that the Killing form of a Lie algebra
L be non-degenerate poses strong restrictions on the structure of L. For
instance, we will show that the solvable radical of L is zero (Section 4.2).
Furthermore, in Section 4.3 we show that L is a direct sum of ideals that
are simple (i.e., they have no nontrivial proper ideals). In characteristic 0
all L-modules satisfy an analogous property, namely they are direct sums
of irreducible submodules. This is known as Weyl’s theorem (Section 4.4).
Also all derivations of L must be of the form adz for some z € L (Section
4.5). This fact will be used to show that the elements of L have a decom-
position analogous to the Jordan decomposition of matrices (Section 4.6).
In characteristic 0 this Jordan decomposition is compatible with the usual
Jordan decomposition of linear transformations in the following sense: if
T = s + T, is the Jordan decomposition of z € L and p: L — gl(V) is
a finite-dimensional representation of L, then p(z) = p(zs) + p(zyn) is the
Jordan decomposition of p(x).

The subject of Section 4.7 is the so-called Levi decomposition: we prove
that a finite-dimensional Lie algebra of characteristic 0 is the direct sum
of its solvable radical and a subalgebra that has a non-degenerate Killing
form. A semisimple subalgebra provided by this theorem is called a Levi
subalgebra.

In Section 4.9 we carry out a first investigation into the root space de-
composition of a Lie algebra L with a non-degenerate Killing form, relative
to a split Cartan subalgebra. Among other things we prove that any Car-
tan subalgebra of L is commutative and consists of semisimple elements.
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Furthermore we show that the root spaces are all 1-dimensional.

In Section 4.11 we use splitting and decomposing elements of a Cartan
subalgebra H to calculate the collected primary decomposition of L with
respect to H. We use this in Section 4.12 to formulate an algorithm for
calculating the direct sum decomposition of L. In the next section we de-
scribe algorithms to calculate a Levi subalgebra of a Lie algebra L. Then
in Section 4.14 we show how a Cartan subalgebra of a Lie algebra L carries
information about its Levi decomposition. In the last section we use this to
formulate a different algorithm for calculating a Levi subalgebra.

4.1 Trace forms and the Killing form

Let L be a finite-dimensional Lie algebra over the field F and let p : L —

gl(V') be a finite-dimensional representation of L. Then we define a bilinear
form f,: L x L — F by

fo(z,y) = Tr(p(z)p(y)) for z,y € L.

The form f, is called the trace form corresponding to the representation p.
Let B = {z1,... ,zn} be a basis of L, then (f,(z,z;))7;=, is the matriz of
fp relative to the basis B. The radical S, of f, is the subspace

Sp={z€L| fy(z,y)=0forally e L}

The form f, is said to be non-degenerate if S, = 0. It is straightforward to
see that f, is non-degenerate if and only if the matrix of f, (relative to any
basis) is nonsingular.

Lemma 4.1.1 Let f, be a trace form of the Lie algebra L. Then we have
follz,y), 2) = folz, [y, 2]) for all z,y,z € L.

Proof. This is a consequence Lemma 2.5.4 and p being a morphism of Lie
algebras. |

Proposition 4.1.2 Let f, be a trace form of the Lie algebra L. Then the
radical S, of f, is an ideal of L. Furthermore, if L is of characteristic 0
and p is faithful, then S, is solvable.

Proof. The fact that S, is an ideal of L follows immediately from Lemma
4.1.1. Now suppose that L is of characteristic 0 and p is faithful. Let
z € [S,,S,) and y € S,, then z € S, and hence Tr(p(z)p(y)) = 0. So by
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Cartan’s criterion (Theorem 2.5.5), p(S,) is solvable. Since p is faithful,
this implies that S, is solvable. o

The trace form corresponding to the adjoint representation of L is called
the Killing form. It is denoted by kp, i.e., kr(z,y) = Tr(adyz - adry). If it
is clear from the context which Lie algebra we mean, we also write « instead
of K. In this chapter we will investigate the structure of Lie algebras that
have a non-degenerate Killing form. A first result is the following.

Lemma 4.1.3 Let L be a Lie algebra with a non-degenerate Killing form.
Then the centre of L is 0.

Proof. Let z € C(L). Then adz = 0, and hence s(z,y) =0 for all y € L.
It follows that z = 0. O

As a consequence the adjoint representation ad : L — gl(L) is faithful if
the Killing form of L is non-degenerate.

4.2 Semisimple Lie algebras

This section contains the so-called Cartan’s criterion for semisimplicity,
which yields a straightforward way of checking whether a given Lie alge-
bra is semisimple.

Definition 4.2.1 A Lie algebra L said to be semisimple if the solvable rad-
ical SR(L) is zero.

Proposition 4.2.2 (Cartan’s criterion for semisimplicity) Let L be a
Lie algebra. If the Killing form ki, is non-degenerate then L is semisim-
ple. Conwversely, if L is semisimple and of characteristic 0, then K is
non-degenerate.

Proof. Set I = SR(L) and suppose that I # 0. Then there is an integer
m > 1 such that I(™+D) = 0 while 1™ # 0 (where I™ denotes the m-
th term of the derived series of I). Now let 2 € I™ and let y € L.
Then adz ady(L) ¢ I™. And since adz(I(™) c I™+) = 0 we have
that (adz ady)? = 0. It follows that ky(z,y) = 0 and consequently I (m) jg
contained in the radical of k7. But this means that 1™ = 0 and from the
assumption that I # 0 we have reached a contradiction. The conclusion is
that I = 0 and L is semisimple.



92 Lie algebras with non-degenerate Killing form

Suppose that L is semisimple and of characteristic 0. Let S, be the rad-
ical of k. Since SR(L) = 0 also the centre of L must be 0. Hence the adjoint
representation of L is faithful. So by Proposition 4.1.2, S, is a solvable ideal
of L. Consequently S, = 0 and « is non-degenerate. a

Example 4.2.3 Let L = sl3(F). As seen in Example 1.3.6, this Lie algebra
has basis {h, z, y} with [h, z] = 2z, [h,y] = —2y and [z,y] = h. The matrices
of adz, ady and adh with respect to this basis are easily computed:

0 01 0 -1 0 0 0 O
adz=+t -2 0 0 J,ady=| 0 0 O J,adh=| 0 2 O
0 00 2 0 0 0 0 -2
Then the matrix of k equals
8 00
0 0 4
0 40

The determinant of this matrix is —128, hence by Proposition 4.2.2, L is
semisimple if the characteristic of F is not 2.

4.3 Direct sum decomposition

Definition 4.3.1 A finite-dimensional Lie algebra L is said to be simple if
dimL > 1 and L has no ideals except 0 and L.

If L is simple, then SR(L) = L or SR(L) = 0. In the first case we have
that L is solvable and [L, L] is an ideal of L not equal to L. Hence [L,L] =0
and L is commutative. It follows that every 1-dimensional subspace is an
ideal of L, which is not possible because L is simple (note that here we use
the condition dim L > 1). Therefore SR(L) = 0. So a simple Lie algebra is
also semisimple.

The converse does not hold. Let K be a Lie algebra with a non-
degenerate Killing form (so that K is certainly semisimple by Proposition
4.2.2)and set L = K@K (direct sum of Lie algebras, see Section 1.10). Then
the Killing form of L is also non-degenerate (this will follow from Lemma
4.3.4); but L is not simple. In this section we prove that a Lie algebra with
non-degenerate Killing form is always of this form: a direct sum of simple
ideals.
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Lemma 4.3.2 Suppose that L is a direct sum of ideals, L =1& J. Then
K1 1s the restriction of k1, to I (and likewise for k).

Proof. Let z,y € L. Then adz and ady leave the subspaces I and J
invariant; so this also holds for adz - ady. Hence

kr(z,y) = Trp(adzady) = Try(ad;zadry) + Try(ad jzadsy).

But if € I, then adjz = 0, whence the lemma. a

Lemma 4.3.3 Let L=1® J, a direct sum of ideals. Then kr(I,J) =0.

Proof. Let z € I and y € J, then adx - ady(L) C INJ = 0. Hence
kr(z,y) = 0. O

Lemma 4.3.4 Let L = I® J be the direct sum of two ideals I and J. Then
k1 s non-degenerate if and only if k1 and k; are non-degenerate.

Proof. Suppose k1 is non-degenerate and x; is degenerate. Then there
is an zg € I such that xr(zo,y) = 0 for all y € I. For all z € J we have
kr(zo,2z) = 0 (Lemma 4.3.3). Let u € L. We write v = u; + uz where
uy € I and uy € J. Then kr(zg,u) = kL(z0,u1) + £r.(20,u2) = 0. So K,
is degenerate, a contradiction. An analogous argument proves that «; is
non-degenerate.

Now suppose that x; and ks are non-degenerate. Let z € L be such
that kr(z,y) = 0 for all y € L. Write z = z; + 22 where 21 € I, 22 € J.
Then using Lemmas 4.3.2 and 4.3.3 we see that for y € I,

0= kr(2,y) = 6r(z1 + 22,9) = £1.(21,9) = K1(21,9)-
Hence z; = 0. Similarly it can be seen that zo = 0; i.e., z = 0 and &, is
non-degenerate. a
If V C L is a subspace of L, then the set
Vi={xeL|ry(z,y)=0foralycV}

is called the orthogonal complement of V in L with respect to xr.

Lemma 4.3.5 Let L be a finite-dimensional Lie algebra, and suppose that
the Killing form of L is non-degenerate. Let I be an ideal of L, then the
orthogonal complement I+ of I with respect to ki is an ideal of L and
L=I®I*.
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Proof. By Lemma 4.1.1 we have that I+ is an ideal in L. Set J = I NI+,
and let x,y € J. Then for all z € L we have by Lemma 4.1.1,

KL([.’L',y],Z) = K'L(I? [y7z]) =0

(since z € I and [y, 2] € I*). And because «, is non-degenerate, [z,y] = 0.
So J is a solvable ideal of L and since L is semisimple (Proposition 4.2.2) we
must have J = 0. The non-degeneracy of xy, implies that dim I + dim I+ =
dimL. Hence L = I @ I't. a

Proposition 4.3.6 Let L be a finite-dimensional Lie algebra with a non-
degenerate Killing form. Then

L=J1® - -&Js
where the Ji are ideals of L that are simple (for 1 <k < s).

Proof. If L is simple, then we can take s = 1 and J; = L. On the other
hand, if L is not simple, then L has an ideal I not equal to L, and not zero.
Let I+ be the orthogonal complement to I with respect to xr. Then by
Lemma 4.3.5, I'1 is an ideal of L and L = I ® I*. By Lemma 4.3.4, x; and
kyo are non-degenerate. Hence, by induction on the dimension, I and I+
are direct sums of simple ideals. So also L is a direct sum of simple ideals. O

The following proposition says that the decomposition of Proposition
4.3.6 is unique.

Proposition 4.3.7 Let L be a Lie algebra with non-degenerate Killing form.
Suppose that

L=Ji®  --®J, and L=K,®---d K,

are two decompositions of L into simple ideals. Then m = n and every ideal
J; is equal to an ideal K.

Proof. Fix an index 7 € {1,...,m}. We prove that J; is equal to an
ideal K;. Set I; = JiNK; for 1 < j < n. Then [; is an ideal of
L and it is contained in both J; and K;. Suppose that I; # 0; then
since J; and K are simple, we must have J; = I; = Kj;. On the other
hand, if I; = 0, then [J;,K;] C I; = 0. Soif I; = 0 for all j, then
Ji, L] = [J;, K1] + --- + [J;, Kp] = 0. But this is impossible in view of
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Lemma 4.1.3. Hence I; # 0 for exactly one j. a

Given a semisimple Lie algebra L we may calculate its decomposition
into a direct sum of simple ideals using the algorithm of Section 1.15. How-
ever, later in this chapter (Section 4.12) we will give an algorithm especially
designed for this case.

4.4 Complete reducibility of representations

In this section L is a semisimple Lie algebra over a field F’ of characteristic 0.
We recall that a representation p : L — gl(V') of L is completely reducible
if V is a direct sum of irreducible submodules (see Section 1.12). The
purpose of this section is to show that every representation of L is completely
reducible.

The plan of the proof is to show that if W C V is a submodule of V,
then there is a submodule W’ C V such that V = W @ W' (and then to
proceed by induction on the dimension). This will be proved by constructing
projections of V onto W and W’. These are elements of Homg(V, V).

In the sequel p : L — gi(V') will be a finite-dimensional representation
of L. For convenience we sometimes also refer to V' as an L-module. From
Section 1.12 we recall that if V, W are L-modules, then Homp(V, W) (the
set of all linear maps from V into W) becomes an L-module by setting

(z-@)(v) =z (¢(v)) — ¢(z-v) for all z € L, $ € Homp(V,W) andv € V.

Also by Homy(V,W) we denote the set of all ¢ € Homp(V, W) such that
z-¢p=0forallz e L.

Lemma 4.4.1 We have
Homy(V,V) = {a € Homp(V,V) | [a, p(L)] = 0}.

Furthermore, Homp(V, V) is an associative subalgebra of Homp(V, V') con-
taining the identity.

Proof. Let a € Homy(V,V), then z-a = 0 for all z € L. But this is
equivalent to saying that for all v € V:

0=(z-a)(v) =z (av) — a(z - v) = p(z)a(v) — ap(z)(v).

Which is equivalent to [a, p(z)] = 0 for all z € L.
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Let a,b € Hom(V, V) then it is straightforward to see that [ab, p(L)] =
0. Hence Homy (V, V) is a subalgebra of the associative algebra Homp(V, V).
It evidently contains the identity. a

The existence of a complementary submodule W' to W is closely related
to the existence of idempotents in the subalgebra Homp (V, V).

Lemma 4.4.2 Let W be a submodule of V. Then there is a submodule
W' C V such that V.= W @& W' if and only if there is an idempotent
e € Homy(V,V) such that W' = kere and W = ime.

Proof. First we remark that since e € Homy,(V, V) we have that the kernel
and image of e are submodules of V.

Suppose that V = W @& W’. An element v € V can uniquely be written
as v = w + w' where w € W and w’ € W’. Let e be the linear map defined
by e(v) = e(w + w') = w. Then e? = e and W = ime and W’ = kere. Also
for £ € L we calculate

(z-e)(w+w) =z (e(w+w)) —elx (w+w'))
=z-w—e(lz-w+z W)

=z-w—z-w=0

Hence e € Hom, (V, V).

On the other hand suppose that e € Homp(V, V) is an idempotent with
the listed properties. Then for v € V we have ev € W and v —ev € W', and
consequently V. =W + W’. Let v € W N W' then v = eu for some u € V
and also ev = 0. Hence v = eu = e?u = ev = 0. It follows that W NW' =0
and V is the direct sum of these submodules. O

In the sequel we will construct idempotents in Homg(V,V). First we
will do this by constructing a so-called Casimir operator corresponding to
the representation p.

Since the representation p is a morphism of Lie algebras, ker p is an
ideal of L. Hence, by Lemma 4.3.5 we see that L is a direct sum of ideals
L = ker p& L. And by Lemma 4.3.4 and Proposition 4.2.2, L, is semisimple.
Furthermore, the restriction of p to L; is faithful. Let f,: L x L — F be
the trace form of p. Then by Proposition 4.1.2, the restriction of f, to L
is non-degenerate.

Now let z1,...,2,, be a basis of L;. Then, since the restriction of
fp to L; is non-degenerate, there is a basis yi,... ,ym of L; such that
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fo(Zi,yj) = 6;;. Now the operator

m
cp =Y p(xi)p(yi)
i=1
is called a Casimir opemtor corresponding to the representation p. We note

that Tr(cy) = 3; Tr(p(zi)p(yi)) = X2, fo(2i, ¥s) = dim Ly.
Proposition 4.4.3 ¢, is an element of Homp(V,V), i.e., [ep, p(L)] = 0.
Proof. Let z € Ly and define oy, € F and B, € F by

m m

[£,2:] =Y anzi and [z,5:] =) Bikys-

k=1 k=1

Then using Lemma 4.1.1 we have
air = follz @il v) = = Follzi aly k) = —Folei [2,06]) = =Bk (41)

We calculate

[p(z), ¢, = ), p(z:) p(i)]

Ms HMS

lo(@), p(2:)]p(ys) + p(zi)[p(2), p(yi)]

(T
—

Il

aikp(zi)p(yi) + Birp(zi) p(Yk)

i,k=1
m
= > curplzi)p Z agip(z:)p(yr) (by (4.1))
i,k=1 i,k=1

I

O

We now find a complement W' of a submodule W by constructing a
suitable idempotent in Homy,(V, V). First we have a lemma dealing with a
particular case, that can be solved by using a Casimir operator. Then there
is a proposition that proves the statement in general.

Lemma 4.4.4 Let W be a submodule of V such that p(L)V C W. Then
there is a submodule W' C V such that V=W @ W'.
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Proof. First of all, if p(L) = 0, then we can take any complementary
subspace W'. The rest of the proof deals with the case where p(L) # 0.

First we suppose that W is irreducible. Let c, be a Casimir operator
corresponding to p. Let L; be the ideal complementary to ker p. Then
Tr(c,) = dim L, which is non-zero because p(L) # 0. Also there is no
non-zero w € W such that c,w = 0; otherwise the set of all such w is a
non-zero submodule (this follows from Proposition 4.4.3) which contradicts
the assumption that W is irreducible. Hence the characteristic polynomial
of the restriction of ¢, to W has a non-zero constant term. It follows that
there is a polynomial p € F[X] without constant term such that e = p(c,) is
the identity on W. Since p does not have a constant term, we have eV = W.
Hence €2V = e(eV) = eV so that e is an idempotent. Furthermore, since
¢, € Homp(V,V) also e € Hom(V,V). Set W' = kere, then by Lemma
4.4.2, W' is a submodule of Vand V=W o W'.

Now if W is not irreducible, then we prove the statement by induction
on dimW. Let U C W be an irreducible submodule of W. We consider
the L-module V/U and denote the induced representation also by p. Now
p(L)(V/U) C W/U so by induction there is a complement X/U to W/U.
Furthermore, U C X is irreducible, so by the first part of the proof there is
a submodule W’ C X such that X = W/ @ U. Finally, V=W W'. D

Proposition 4.4.5 Let L be a semisimple Lie algebra of characteristic 0.
Let p: L — gl(V) be a finite-dimensional representation of L. If W is a
submodule of V, then there is a submodule W' CV such thatV =W o W'

Proof. Let r : Homp(V,W) — Homp(W,W) be the restriction map.
It is straightforward to see that r is a morphism of L-modules. Also
Homp (W, W) is contained in Homp(W, W) and furthermore L acts triv-
ially on Homp (W, W). Set

U = {¢ € Homp(V,W) | r(¢) € Homy (W, W)}.

Then kerr C U and kerr is an L-submodule because r is a morphism of
L-modules. If z € L and ¢ € U, then r(z-¢) = z-r(¢) = 0. This shows that
U is an L-module and L-U C kerr. So by Lemma 4.4.4, there is a comple-
mentary submodule X C U such that U = X @ kerr. And the restriction
of r to X is a bijection onto Homp (W, W). Let e be the element of X such
that r(e) is the identity mapping on W. Then because e € Hompg(V, W),
e(V) C W. So since e(w) = w for w € W we have e? = e. Let z € L, then
because X is an L-module, also z-e € X. Furthermore, r(z-e) = z-r(e) =0,
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so that z-e = 0 and e € Homy,(V, V). Lemma 4.4.2 now finishes the proof. O

Theorem 4.4.6 (Weyl) Let L be a semisimple Lie algebra of character-
istic 0. Then every finite-dimensional representation of L is completely
reducible.

Proof. Let V be a finite-dimensional L-module. If V is irreducible, then
there is nothing to prove. On the other hand, if V' contains a proper sub-
module W, then by Proposition 4.4.5, there is a submodule W’ C V such
that V = W @ W’. Now by induction on the dimension W and W’ both
split as a direct sum of irreducible submodules. Hence the same holds for
V. a

Example 4.4.7 We remark that the decomposition of the L-module V" into
a direct sum of irreducible submodules in general is not unique. Let L be
the Lie algebra slo(F), with basis {z, y, h} (see Example 1.3.6). By Example
4.2.3, this Lie algebra is semisimple. Let V be a 4-dimensional module for
L with basis {v1,v2,w;,ws}. We let the basis elements of L act as follows:

h-vi=vy, hovo=—vy, T Vo =0y, Yyrv1 =y, -V =y-v2 =0,
and
h-wi=wy, h-wy=—wy, T-wy=wy, y-w =wg, T -wy =y -wz=0.

For a # 0 let U, be the space spanned by v, + aw;, and vz + cws and let
W, be the space spanned by v; — aw; and vo — awy. Then V = U, @ Wy, is
a decomposition of V into irreducible submodules. Furthermore, if o, 3 > 0
and a # 3, then U, is not equal to either Ug or Wg (and similarly for W,).
So we have found an infinite series of decompositions of V' into submodules.

4.5 All derivations are inner

Let L be a finite-dimensional Lie algebra. Recall that a derivation d €
Der(L) is called inner if d = adz for an element z € L. Here we show that
for Lie algebras with non-degenerate Killing form all derivations are inner.

Lemma 4.5.1 Let L be a finite-dimensional Lie algebra over the field F.
And let ¢ : L x L — F be a non-degenerate bilinear form on L. Let f :
L — F be a linear function. Then there is a unique ty € L such that

fy) = ¢(zy,y) for ally € L.
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Proof. Let {z1,... ,z,} beabasisof L. Let zy = > ;_; a4z be an element
of L, where the oy are unknowns to be determined. Then f(y) = ¢(z¢,y)
for all y € L if and only if f(z;) = ¢(zf,z;) for 1 <4 < n. But this is the
same as

Zfb(%,xi)ak = f(z;) for 1 < i< n.
k=1

It follows that we have n linear equations for n unknowns ag. Since ¢ is
non-degenerate, the matrix of this equation system is non-singular. Hence
these equations have a unique solution. a

Proposition 4.5.2 Let L be a finite-dimensional Lie algebra with non-
degenerate Killing form. Then all derivations of L are inner.

Proof. Let d € Der(L) be a derivation of L, and let z € L. Then
[d, ada](y) = d(ade(y))—ade(d(y)) = [d(z), 4]+, dy))~ [z, dw)] = [d(e), y],
ie.,

[d,adz] = add(z). (4.2)
Let F be the ground field of L. Consider the linear function f : L — F
defined by f(y) = Tr(d - ady). Then by Lemma 4.5.1, there is an element
zy € L such that f(y) = ki (zy,y) for ally € L. Set e = d — adzy, then

Tr(e - ady) = Tr(d - ady) — Tr(adzy - ady) =0 for ali y € L. (4.3)

For z,y € L we calculate

Tr(ade(z) - ady)
= Tr([e,adz] - ady) (by (4.2))

kL (e(z),y)

(
Tr(e - adz - ady) — Tr(adz - e - ady)
Tr(e - adz - ady) — Tr(e - ady - adz)
Tr(e - ad[z,y]) =0 (by (4.3)).

Therefore, since x;, is non-degenerate, e(z) =0 for all x € L, ie., e = 0. It
follows that d = adz;. 0O
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4.6 The Jordan decomposition

Let V be a finite-dimensional vector space defined over a perfect field. As
seen in Proposition A.2.6, for an element z € End(V) there are unique
s,n € End(V) such that z = s + n, s is semisimple, n is nilpotent and
[s,n] = 0. In this section we prove that a similar statement holds for Lie
algebras over a perfect field with a non-degenerate Killing form.

Let A be a finite-dimensional algebra over an arbitrary field F’ and d €
Der(A) a derivation of A. We claim that

d—(A+u)"(a-b) =

f: (’;) (d—N""ia) - (d — p)i(h) fora,be Aand \p€F. (4.4)

1=0

It is straightforward to check this formula by induction:

@= 0t =@= s 3 (7) =A@ @-w'e)
=0

. Z (1) (@= 2@ @y + (@2 a) - (@ -'0))

n+1

=) (” ; 1) (d = N1 ) - (d - p)i(b):

1=0

In the rest of this section F' will be a perfect field.

Lemma 4.6.1 Let A be a finite-dimensional algebra over F. Let d €
Der(A) and let d = dg + d, be the Jordan decomposition of d (where dg
is semisimple and dy, is nilpotent). Then ds,d, € Der(A).

Proof. We prove that d; € Der(A) (then necessarily also d,, € Der(A)). For
this we may assume that the ground field is algebraically closed. Indeed, let
F be the algebraic closure of F. Then d can also be viewed as a derivation
of A= A®F. Let {a1,... ,a,} be a basis of A. Now if we can prove that
ds € Der(A) then also ds € Der(A) because the matrix of ds relative to the
basis {a; ® 1,... ,a, ® 1} is defined over F.

Let A € F be an eigenvalue of d. We set

Ay={a€ A|(d-NF¥@a)=0 for some k > 0}.
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Then d; acts as multiplication by X on Ay (see Proposition A.2.6). Now
let A\, € F be two eigenvalues of d; and let a) and a, be correspond-
ing eigenvectors. From (4.4) it follows that Ay - A, C Axy,. Hence
ds(ax-a,) = (A+p)(ar-a,). Butalso ds(ayr)-a,+ayr-ds(a,) = (Ap)(ar-a,).
Since A is the direct sum of subspaces of the form Ay (Lemma A.2.2), we
conclude that d; is a derivation of A and we are done. O

Proposition 4.6.2 Let L be a Lie algebra over F with non-degenerate
Killing form. Let x € L, then there are unique Zs,zp, € L such that
T =T, + Ty, adpzs is semisimple, ad;,z, is nilpotent and [z, z,] = 0.

Proof. We consider the derivation d = adx of L. Let d = ds + d,, be the
Jordan decomposition of d. Then by Lemma 4.6.1, d; and d, are deriva-
tions of L. Because the Killing form of L is non-degenerate, all derivations
of L are inner (Proposition 4.5.2), and hence there are z,,z, € L such that
adz; = ds and adz, = d,. As the centre of L is zero (Lemma 4.1.3) we see
that the map ad : L — gI(L) is injective. So x5 and z,, are the only elements
of L such that adz, = ds and adz, = d,. Also from adz = ad(zs + z,) it
follows that z = z5 + z,,. Finally, [z,,z,] = 0 also follows directly from the
injectivity of ad. .|

Theorem 4.6.3 Let F be a field of characteristic 0. Let V be a finite-
dimensional vector space over F and L C gl(V) a semisimple linear Lie
algebra. Let x € L and let x = s + n be its Jordan decomposition, where
s € End(V) is semisimple and n € End(V') is nilpotent. Then s,n € L.

Proof. Instead of proving the statement directly we take a slight detour:
we prove that s and n lie in a Lie algebra that is maybe bigger than L.
Then we prove that this Lie algebra is in fact equal to L.

Set N = Ngyv)(L), the normalizer of L in gl(V). By Lemma 2.5.2,
adz = ads + adn is the Jordan decomposition of adz in End(gi{(V')). Now,
adz(L) C L and since ads and adn are polynomials in adz (Proposition
A.2.6) we see that ads(L) C L and adn(L) C L, i.e., s and n lie in N.

Let F be the algebraic closure of F. Set IL=L®rFandV =V Q®fpF.
Then V is an L-module. For an L-submodule W of V we set

Ly ={y€g(V)|y(W)CW and Tr(ylw) =0}

And we put
L*=Nn(}Lw),
w
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where the intersection is taken over all L-submodules W of V. Note that
the spaces Ly and L* are subspaces of gl(V). Now L* is the Lie algebra we
want. We prove that it contains L (even as an ideal) and that it contains s
and n. Then we show that L* is equal to L.

It is clear that L C N. Secondly, L is a direct sum of simple ideals
(Proposition 4.3.6). And since [K, K] = K if K is a simple Lie algebra we
have L = [L,L]. Now because the trace of a commutator is always 0 we
see that I C Ly for every L-submodule W of V. It follows that L is a
subalgebra of L*. Also, because L* is contained in N, we have [L, L*] C L,
i.e., L is an ideal in L*.

We show that s and n are elements of L*. If z maps a subspace W of
V into itself then, since s and n are polynomials in z, also s and n map W
into itself. Furthermore, Tr(s|w) = Tr(z|w) = 0. So s and n are elements
of all Lyy. Combined with the fact that s,n € N, this leads to the desired
conclusion.

Finally we show that L = L*. Since L* is a finite-dimensional L-module,
by Proposition 4.4.5, we may write L* = L & M (direct sum of L-modules).
Because L is an ideal in L*, we have [L, M] C LNM = 0. So also [L, M] = 0.
Now let y € M and let W be an irreducible L-submodule of V. Let A be an
eigenvalue of y on W (this exists because W is defined over F). Then since
[L,y] = 0 it is easily seen that the eigenspace of X is an L-submodule of
W. Hence, since W is irreducible, this eigenspace equals W. But y € L* so
that Tr(y|w) = 0 and consequently A = 0. It follows that y acts nilpotently
on W. In particular y - W is properly contained in W. But y - W is an
L-submodule of W; hence y - W = 0. Now, thanks to Weyl’s theorem, V is
the direct sum of irreducible L-submodules and hence y -V = 0 and y = 0.
The conclusion is that M =0 and L = L*. t

Corollary 4.6.4 Let L be a finite-dimensional semisimple Lie algebra over
a field of characteristic 0 and p : L — gl(V) a finite-dimensional represen-
tation of L. Let x € L and write x = zs + ©,, where adzs is semisim-
ple, adz, is nilpotent and [zs,z,] = 0 (c¢f. Proposition 4.6.2). Then
p(x) = p(zs) + p(zn) is the Jordan decomposition of p(x) € gl(V).

Proof. As in the proof of Lemma 4.6.1 we may assume that the ground
field is algebraically closed. Set K = p(L) which is a semisimple subalgebra
of gi(V). If y € L is an eigenvector of adjzs, then p(y) is an eigenvec-
tor of adgp(zs). Now L is spanned by the eigenvectors of ad;z,, so K is
spanned by the eigenvectors of adgp(z;). Hence adgp(z;) is a semisim-
ple linear transformation. Secondly, (adgp(zn))*(o(y)) = p((adrzs)*(y))
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which is zero for k£ large enough. Hence adgp(z,) is nilpotent. Finally,
(o(zs), p(zn)] = p([zs, zn]) = 0 s0 p(z;) and p(z,) commute.

Let p(z) = s+ n be the Jordan decomposition of p(z) in End(V). Then
by Theorem 4.6.3, s,n € K. Lemma 2.5.2 implies that adg s is semisimple
and adgn is nilpotent. Hence by Proposition 4.6.2, s = z; and n = z,. O

There is a straightforward algorithm for computing the decomposition
T = zs5 + xn, of Proposition 4.6.2. First we compute the Jordan decompo-
sition adrz = s + n (see Section A.2). Then by solving a system of linear
equations we compute elements g, £, € L such that adz; = s and adz, =n
(these equations have a solution by Proposition 4.6.2).

4.7 Levi’s theorem

Let L be a Lie algebra over a field of characteristic 0 and suppose that L
is not solvable. Then L/SR(L) is a semisimple Lie algebra. Now Levi’s
theorem states that this semisimple Lie algebra occurs as a subalgebra of
L. Tt is the analogue for Lie algebras of the theorem of Malcev-Wedderburn
for associative algebras (Theorem A.1.5).

Theorem 4.7.1 (Levi) Let L be a finite-dimensional Lie algebra of char-
acteristic 0. If SR(L) # L, then L contains a semisimple subalgebra K such
that L = K & SR(L) (direct sum of subspaces).

Proof. We distinguish three cases. In the first case we assume that L has
no ideals I such that I # 0 and I is properly contained in SR(L). We
also assume that [L,SR(L)] # 0. From the first assumption it follows that
[SR(L),SR(L)] = 0, because otherwise [SR(L), SR(L)] would be an ideal of
L properly contained in SR(L).

Now set V = Homp(L, L) (i.e., all linear maps from L into L). Since L
is an L-module by the adjoint representation, also V can be made into an
L-module by setting (see Section 1.12),

(z-¢)(y) = [z,¢(y)] — &([z,y]) for z,y € Land p € V.

We consider the following L-submodules of V:

A={adpzr |z € SR(L)},
B ={¢ eV |¢(L)CSR(L) and ¢(SR(L)) = 0},
C={¢e€V|¢(L)CSR(L) and ¢|sg(z) is multiplication by a scalar}.



4.7 Levl’s theorem 105

We have C D B, and because [SR(L),SR(L)] = 0 also B D A.
Let ¢ be an element of C acting on SR(L) as multiplication by the
scalar A. Then for z € L and y € SR(L) we have

(z- ) () = [z, 6 ()] — da((z,y]) = [z, Ay] — Alz, 4] = 0. (4.5)

Hence z - ¢) € B and we conclude that L -C C B.
If z € SR(L), then because [SR(L),SR(L)] = 0 we have for all y € L,

(- o) (W) = [z, 62(¥)] — da([z, 9]) = [-Az, 9] (4.6)

Consequently, z - ¢y = ad(—Az).
So we have derived the following:

L-CcB and SR(L)-C C A. 4.7

Now SR(L)-C C A implies that C/4 is a L/SR(L)-module. It contains B/A
as a proper submodule. Since L/SR(L) is semisimple, by Proposition 4.4.5
there is a complementary submodule D/A. Here D C C is the full inverse
image so B+D = C and BND = A. Since L-C C B we have that L/SR(L)
must map D/A into B/A. But D/A is a complementary submodule to B/A
and hence L/SR(L) maps D/A to 0. By (4.7), SR(L) maps D into A, and
consequently L - D C A. Now choose a non-zero ¢ in D \ A. It is not an
element of B, so after modifying it by a scalar, we may assume that 1|sr(z)
is the identity on SR(L). Furthermore L - ¢ C A because L - D C A.
Set
K={zeL|z ¢ =0}

Let z be an element of L. Then since z -4 € A, we have z -1 = ady for
some y € SR(L). By (4.6), y - ¢ = —ady, so that (z +y) -4 = 0. It follows
that z + y is an element of K and therefore z = (z + y) — y is an element
of K + SR(L). Hence L = K + SR(L).

We now show that K N SR(L) = 0. Let z be a non-zero element of the
intersection. Then by (4.6) we have z - ¢ = ad(—z) and hence ad(~z) = 0.
So « spans an ideal I of L lying inside SR(L), and consequently I = SR(L)
or I = 0. If I = SR(L), then since adz = 0 we have [L,SR(L)] = 0 which
was excluded. So I =0 and £ = 0. The conclusion is that L = K @ SR(L)
and we are done in the first case.

In the second case we suppose that [L, SR(L)] = 0. Then SR(L) = C(L)
and adL = L/SR(L) (see Example 1.8.3). Hence the adjoint representation
of L induces a representation

p: L/SR(L) — gi(L)
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of the semisimple Lie algebra L/SR(L). The radical SR(L) is a nontrivial
submodule, and hence, Proposition 4.4.5, there is a complementary sub-
module which is the required K.

In the final case we suppose that L has an ideal I properly contained in
SR(L). In this case, by induction, we may assume that the theorem holds
for all Lie algebras with a solvable radical of dimension less than dim SR(L).

Let

n:L— LJ/I
be the projection map. The solvable radical of L/I is SR(L)/I, so by the
induction hypothesis, L/I has a subalgebra K" complementary to SR(L)/I.
Set K' = n~'(K"). It is a subalgebra of L containing I with the property
that K'/I = K" is semisimple. Therefore the radical of K’ is I and hence,
by induction,

K'=I+K

where K is a semisimple subalgebra. Now, by applying 7! to L/I =
SR(L)/I + K" we conclude that

L=SR(L)+ K'=SR(L) + I + K =SR(L) + K.

Furthermore, SR(L) N K = 0 because K is semisimple. The conclusion is
that L = K @ SR(L). O

Definition 4.7.2 Let L be a finite-dimensional Lie algebra of characteristic
0. Let K be a subalgebra provided by Theorem 4.7.1. Then K is called a
Levi subalgebra of L.

Example 4.7.3 Let L be the Lie algebra with basis {z,... ,z5} and mul-
tiplication table as shown in Table 4.1.

T ) T3 T4 Z5
7 0 21 — 34 —T3 s 0
Ty | —2x; + 34 0 203 T4 —Ts
3 I —2z3 0 0 T4
Ty —T5 —X4 0 0 0
Ty 0 Ts —T4 0 0

Table 4.1: Multiplication table of a 5-dimensional Lie algebra.

It is straightforward to see that the subspace I spanned by z4 and z5
is a commutative ideal of L. The quotient algebra L/I is spanned by Zi,
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T and Z3 (where Z; is the image of z; in L/I). These elements multiply as
follows:
(Z1,Z2] = 28y, [E1,Z3] = — %9, (T2, T3] = 273.

By comparing with Example 1.3.6 we see L/I = sly(F), which is semisimple
(Example 4.2.3). Hence SR(L) = I. We try to find a Levi subalgebra of L.
A complement to SR(L) is spanned by zi,x,,z3. Hence a Levi subalgebra
is spanned by y1, Y9, y3, where y; = x; + r; for certain r; € SR(L), i.e.,

Y1 = 21 + azs + Bzs
Y2 = To + ¥4 + 675
Y3 = 3 + €x4 + NT5.

We want to determine the unknowns a,... ,7n such that y;,y2,y3 span a
subalgebra of L isomorphic to L/SR(L). This is satisfied if

[y1,92] = 241, [y1,43] = —y2, [y2,93] = 2ys.

The first of these requirements is equivalent to
221 — 3+ a)zs + (v + B)zs = 221 + 2az4 + 20xs,

which boils down to the equations @ = —1 and 8 = 7. The second require-
ment is equivalent to

—T2 + €x5 — BTy = —T9 — YT4 — 0T,

ie, § = —e and v = 8. In the same way it can be seen that the last re-
quirement is equivalent to the equations 7 = 0 and 6 = —e. These equations
have a 2-parameter family of solutions given by « = -1, n =0 and y =
and € = —4.

In particular we see that a Levi subalgebra in general is not unique.

From Example 4.7.3 we can easily distill an algorithm for computing a
Levi subalgebra in the case where SR(L) is Abelian. Later, in Section 4.13,
we will generalize such a procedure to an algorithm for the general case.

4.8 Existence of a Cartan subalgebra

Let L be a Lie algebra with a non-degenerate Killing form. In Section 4.9 we
will use the primary decomposition of L with respect to a Cartan subalgebra
H of L to obtain information about the structure of L. However, if L is
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defined over a small finite field (of size less than dim L), then it is not clear
whether or not L has a Cartan subalgebra. In this section we prove that L is
restricted, thereby ensuring that L has a Cartan subalgebra (see Corollary
3.2.10). From Section 1.13 we recall that a Lie algebra of characteristic
p > 0 is said to be restricted if (adz)P is an inner derivation for all z € L.

Proposition 4.8.1 Let L be a Lie algebra over a field of characteristic
p > 0. Suppose that the Killing form of L is non-degenerate. Then L 1is
restricted.

Proof. Let z € L; then (adz)? is a derivation of L (see Section 1.13). As
all derivations of L are inner (Proposition 4.5.2), we have that (adz)? = ady
for some y € L. But this means that L is restricted. a

Corollary 4.8.2 Let L be a Lie algebra with a non-degenerate Killing form.
Then L has a Cartan subalgebra.

Proof. L is restricted (Proposition 4.8.1), hence L has a Cartan subalgebra
(Corollary 3.2.10). a

4.9 Facts on roots

If L is a Lie algebra with a non-degenerate Killing form then by Corollary
4.8.2, L has a Cartan subalgebra. In this section L will be a Lie algebra over
the field F with a non-degenerate Killing form. Throughout we assume that
F is perfect. Furthermore we assume that L has a split Cartan subalgebra
H.

From Section 3.3 we recall that there are functions o; : H — F for
1 <1 < s such that

L:H@Lal @"’@Lasa

where Lo, = {z € L | forall h € H there is a k > 0 such that (adh —
a;(h))¥(z) = 0}. This decomposition is called the root space decomposi-
tion; the functions «; : H — F are roots and the subspaces L,; are root
spaces.

In this section we collect a number of facts on roots and root spaces.
These will be used in Sections 4.11 and 4.12, where we describe certain
algorithms operating on Lie algebras with a non-degenerate Killing form.
Moreover, the results of this section will be of vital importance for the
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classification of semisimple Lie algebras of characteristic 0, undertaken in
Chapter 5. To give the flavour of the results we start with an example.

Example 4.9.1 We consider the Lie algebra L = 05(Q) (see Example
1.2.4). This Lie algebra has non-degenerate Killing form (this will follow
from Proposition 5.12.1). Now L is spanned by the elements A;;, Aga, Ao,
A2y, By, Ci2, p1,02,q1,¢2 (notation as in Example 1.2.4). The multiplica-
tion table of L relative to this basis is shown in Table 4.2.

Ain Ax A A2y By C12 1 P2 Q g2
A 0 0 A2 —Axn Bis —Ch2 —-p1 0 q 0
Az . 0 —An An B -Ci2 0 —P2 0 gz
A12 . . 0 Au — A22 0 0 —p2 0 0 q1
A : . . 0 0 0 0 —-p1 q2 0
B12 ’ . ’ . 0 —-A11 - A22 —q2 qQ1 0 0
C’12 . . . . . 0 1] 0 —p2 D1
P . . . . . . 0 —-Ci Ann Az
pe . . . . . . . 0 Ain Ago
a . . . . . . . . 0 —Bn
qz . . . . . . . . . 0

Table 4.2: Multiplication table of L = 05(Q).

A Cartan subalgebra is found by applying the algorithm CartanSub-
algebraBigField. First z = A;y; is a non-nilpotent element of L. The
subalgebra Lo(adz) is spanned by A;;, A22,p2,q2. This subalgebra is not
nilpotent, and y = Aso is a non-nilpotent element of Lo(adz). If we set
z =1+ 2y —z) = —z + 2y, then we see that Ly(adz) is spanned by
Aq1, Ao. From Table 4.2 we infer that Lo(adz) is nilpotent and hence it is
a Cartan subalgebra.

Let H = Lg(adz) be the Cartan subalgebra found above. Then H is
Abelian and the two basis elements act diagonally on L. It follows that the
root spaces are the common eigenspaces of adA;; and adAg,. 1t is seen that
every basis element other than A;; and A, spans a root space and hence
the root spaces are 1-dimensional. Let h € H, and let o be a root. Then
a(h) is the eigenvalue of adh on the root space corresponding to . Hence
o H — @ is a linear function. So the roots are elements of the dual space
H* ={X:H — Q| A is linear}. If we represent a A\ € H* by a vector
(AM(A11), A(A22)), then the roots of L relative to H are seen to be

(L_l)» (-171)7 (171)’ (—17—'1)’ (_Lo)a (Oa_l)v (LO)’ (071)

In particular we see that the set of roots spans H* and if « is a root, then
so is —a.
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Let ® = {ay,... , s} be the set of roots. The zero function is not said
to be a root, but the space Lo(H) = H occurs in the root space decompo-
sition, and therefore it is often convenient to include the zero function in
the arguments. For this reason we set ®° = ® U {0} (so Ly = H). The
first fact is an echo of Proposition 3.3.1; we repeat it here because it is of
fundamental importance.

Root fact 1 Let o, 3 € ®° and let z € L, and y € Lg. Then [z,y] € La+g
if o+ B € ®°, otherwise [z,y] = 0.

Root fact 2 Let o, 8 € ®° be such that 8 # —c. Then x1,(Lq, Lg) = 0.

Proof. First suppose that 3 = 0. Then we have to prove that k1 (Lqy, H) =
0. For this choose arbitrary z, € L, and h € H. Since a # 0 there is
a g € H such that a(g) # 0. Since a(g) is the single eigenvalue of the
restriction of adg to L, we have that this restriction is a nonsingular linear
map. Hence the same holds for (adg)* for k& > 0. It follows that for any
k > 1, there is a yx € Lo such that 2, = (adg)¥ys. Now we apply Lemma
4.1.1 k times to find

kr(Za,h) = k1 ((adg)*yx, h) = (—l)knL(yk, (adg)*h).

But since H is nilpotent, this last element is 0 for k large enough.

Now we assume that 8 # 0 and choose zg € Lg. By the first part of
the proof we may assume that a # 0. Let g € H be such that a(g) # 0.
As seen above there is a y; € L, such that z, = [g,71]. Hence, by Lemma
4.1.1,

ki(za, ) = k((g, 11], 28) = KL(g, [11,25])-

We have a + 3 # 0 and if a + 3 € ®° then [y1,z5] € Lats, so that by the
first part of the proof x1(g, [y1, zg]) = 0. On the other hand, if o+ 3 ¢ o0,
then [y;, 23] = 0 by Root fact 1, and we reach the same conclusion. O

Root fact 3 Let a € ® and let z, be a non-zero element of L,. Then there
isa T_q € L_q such that kK (Tq,2-0) # 0.

Proof. Suppose that k1 (z4,y) = 0 for all y € L_,. Then by Root fact 2,
kL(Za, L) = 0 contradicting the non-degeneracy of kr. O

Root fact 4 The restriction of k1, to H is non-degenerate.
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Proof. Let h € H and suppose that k1(h,g) = 0 for all ¢ € H. By Root
fact 2 we have that k1(h,Ly) = 0 for all @ € ®. From this it follows that
kr(h, L) = 0. And because k, is non-degenerate we must have h =0. O

Root fact 5 If o € ®, then also —a € .

Proof. Suppose —a ¢ ®. Then by Root fact 2 we infer that x1,(Lqa, Lg) =0
for all B € ®°. Hence k1 (Lq,L) = 0 contradicting the non-degeneracy of
KL. g

Lemma 4.9.2 Let V be a finite-dimensional vector space and let K C gl(V)
be a commutative linear Lie algebra. Suppose that K is split. Then there is
a basis of V relative to which the matrices of all elements of K are all in
upper triangular form.

Proof. The proof is completely analogous to the proof of Lie’s theorem
(Theorem 2.4.4). Here we don’t need the ground field to be of characteris-
tic 0 in order to prove a statement analogous to Proposition 2.4.2. a

Root fact 6 H is commutative (i.e., [H,H] =0).

Proof. Since H is nilpotent, there is an integer ¢ > 0 such that H¢t! =0
while H¢ # 0. Suppose ¢ > 2 and choose a non-zero h € H¢. Let g € H,
then [h,g] € H*! = 0. Hence [adh,adg] = 0 and adh, adg span a com-
mutative and split linear Lie algebra. Let o € ®° and set V = L,. Then
by Lemma 4.9.2, there is a basis of V relative to which adyh and adyyg
both have upper triangular matrices (with a(h), a(g) on the respective di-
agonals). So Tr(advh - adyg) = (dimV)a(h)a(g). But h € H® implies
h € [H, H] so that Tr(adyh) = 0. But this means that (dim V)a(h) = 0,
and hence Tr(adyh - adyg) = 0. And because L is the direct sum of the
root spaces L, for a € ®° we infer that Tr(adh - adg) = 0. Since this holds
for any g € H, we see that the restriction of x;, to H is degenerate, contra-
dicting Root fact 4. u

Now let @ € @ and let L, be the corresponding root space. Then by
Lemma 4.9.2 together with Root fact 6, there is a basis of L, such that for
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h € H the matrix of ad;_h takes the form

a(h) *
adp h = (4.8)
0 a(h)

Let h,g € H, then by (4.8) we have

kr(h,g) = Tr(adph - adrg) = Y (dim La)a(h)a(g). (4.9)
acd

Root fact 7 If h € H is such that a(h) =0 for all « € ®, then h = 0.

Proof. If h € H satisfies the hypothesis, then xz(h,g9) =0 for all g € H,
by (4.9). Hence by Root fact 4, h = 0. O

Root fact 8 Let h € H, then adph is a semisimple linear transformation.

Proof. By Proposition 4.6.2 there are unique hs, h, € L such that h =
hs + hy, and adph; is semisimple and ady A, is nilpotent. (Here we use the
assumption that the ground field is perfect.) Also, since adh = adh, +adh,
is the Jordan decomposition of adh we have that adhs; and adh, are poly-
nomials in adh (Proposition A.2.6). Hence adh,(H) C H so that h, €
Ni(H) = H (the last equality is Lemma 3.2.2), and similarly h,, € H. But
because adh,, is nilpotent, a(h,) = 0 for all « € &. Now Root fact 7 implies
hy, =0. O

Root fact 9 Let o € ®° and z, € Ly, then [h,zo) = a(h)z, for allh € H.

Proof. Let h € H, and let X be an indeterminate. Since ady,h is semisimple
(Root fact 8) we have that the minimum polynomial of ady_h is X — a(h).
So on L, the endomorphism adh acts as «(h) times the identity. 0

By H* we denote the dual space of H, i.e.,
H*={¢: H— F| ¢ is linear}.

The space H* has the same dimension as H. Furthermore, by Root fact 9
we see that a(hi + ha) = a(hy) + a(he) and a(Ah) = Aa(h) for o € ® and
hi,ho,h € H and ) € F. It follows that the roots are elements of H*. By
the next fact they even span the space H*.
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Root fact 10 There are dim H linearly independent roots.

Proof. Suppose that the space spanned by the roots is of strictly smaller
dimension than H. This implies that there is a non-zero element h € H
such that a(h) = 0 for all @ € ®. Indeed, let {hy,...,h;} be a basis of
H, and let {ay,...,a,} be a basis of the subspace of H* spanned by the
roots. Set h = ) . A\;h;, where the ); are unknown scalars that are to be
determined. Then a;(h) = 0 is equivalent to Y, a;(h;)A; = 0. Collecting
these equations for 1 < j < r together we get an equation system for the X;,
of rank r < dim H. Hence a non-zero solution can be found. This however
contradicts Root fact 7. d

The non-degeneracy of k1, allows us to identify the spaces H* and H.
Let o € H* then we define a corresponding element h, € H by the equation

kr{h,hy) = o(h) forall h € H. (4.10)
The fact that xj, is non-degenerate ensures the existence and uniqueness of

hs (see Lemma 4.5.1). So the map ¢ — h, is a bijective linear map.

Example 4.9.3 Let L be the Lie algebra of Example 4.9.1. Set h; = Ay
and hg = Agg. Then Ay, hy span a Cartan subalgebra H of L. Let o be a
root of L relative to H. We want to calculate h,,. For this set h, = ah+bhg,
where a,b € Q are scalars to be determined. Now (4.10) is equivalent to
kL (hi, he) = alh;) for 1 < ¢ < 2. Hence a, b must satisfy the linear equations

kr(hy, hy)a+ kp(hi, ha)b = a(hy)
kL (h2, h1)a + kr(hg, h2)b = a(hs).

Since hy and hy act diagonally, xr(h;, h;) is easily read off from the mul-
tiplication table (Table 4.2). We have kr(hi,h1) = kp(ho,h2) = 6 and
kL (h1,hs) = kL (hg, h1) = 0. Therefore, a = a(h1)/6 and b = a(hs)/6.

Root fact 11 Let o, € L, and z_, € L_o. Then we have [24,2_4] =
’iL(maa-T—a)ha-

Proof. Let h € H; using Lemma 4.1.1 and Root fact 9 we calculate
KL([Za, T-al, h) = KL(Ta, [T-0, h]) = a(h)kL(Ta, T-a),
and using (4.10),
KL(EL(Zay T—a)has h) = 6L(Ta, T—a)KL(ha, h) = a(R)EL(Za, T—a)-

Now the non-degeneracy of kz, on H (Root fact 4) gives the desired result. O



114 Lie algebras with non-degenerate Killing form

Example 4.9.4 Again we let L be the Lie algebra from Example 4.9.1.
Let a be the root corresponding to the vector (1,—1) (i.e., (A1) =1 and
a{Ag) = —1). Then « is a root of L and Ajs spans the corresponding
root space. Furthermore A, spans the root space corresponding to —a. By
Example 4.9.3 we see that

L
6

Also [AIQ,AQI] = Aj; — Agy. Hence by Root fact 11, K)L(A12,A21) =6, a
fact which may be verified by direct calculation.

1
ha = -An — EA22-

The map o ~ h, gives rise to a bilinear form ( , ) in H* defined by
(o,p) = kL(hs, hp). We have that (, ) is a non-degenerate symmetric bilin-
ear form in H* (this follows immediately from the corresponding properties
of k1). We note that (0,0) = kp(hg,hs) = o(hs); this fact will be used
frequently.

Example 4.9.5 We consider the Lie algebra L from Example 4.9.1. As in
Example 4.9.3 we set hy = Aj; and hy = Ass. Using Example 4.9.3 it is
easy to calculate («, 8) for roots a, 3 of L. For instance let o = (1,1) and
8= (-1,-1), then

1 1 1 1 1
(047 ﬂ) - HL(ha,hﬂ) = fﬁL(ghl + ghzv —ghl - 6h2) = —5

Root fact 12 Let o € @ be such that (o, ) # 0. Set

2,
 (ea)

and choose a non-zero x € L,. Then there is a y € L_, such that
[h,.’L‘] = 2z, [h,y] = -2y, [xvy] = h,
(i.e., {z,y,h} spans a subalgebra of L isomorphic to sly(F)).

Proof. By Root fact 3 there is a y € L_o such that x(z,y) # 0. After
modifying y by a scalar we may assume that

kr(z,y) = @)

Then by Root fact 11 it follows that [z,y] = h. The other two product
relations follow from «(h) = 2. a
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Now we prove two facts for the case where the field of definition is of
characteristic 0. The statements also hold over fields of positive character-
istic (not equal to 2,3); but the proofs are considerably longer. Therefore
we postpone the proofs for the other characteristics until Section 4.10.

Root fact 13 Assume that the ground field F is of characteristic 0. Then
(a,a) #0 for a € .

Proof. Let z, be a non-zero element of L,. By Root fact 3 there is an
T_q € L_q such that kp(zq,2-q) # 0. After modifying x_, by a scalar we
may assume that k1 (zq,2-o) = 1.

Now suppose that (o, @) = a(hy) = 0, then [hy, zo] = [ha,Z—a] = 0.
Furthermore, by Root fact 11, [z4,Z_4] = hq S0 that {hqg, Za, T_o} spans a
solvable subalgebra K of L. We consider the representation ady, : K — gi(L)
of K. By Lemma 2.6.2 the elements of ad [ K, K] are nilpotent, in particular
adzh, is nilpotent. By Root fact 8 we see that adph, is semisimple. The
conclusion is that h, = 0, which implies &« = 0. So from the assumption
(a, @) = 0 we have reached a contradiction. a

Root fact 14 Suppose that the ground field F is of characteristic 0. Let
o € @, then dim Ly = 1 and the only integral multiples of o which are roots
are o and —ao.

Proof. For 0 € H* we set L, = 0 if o € ®°. Let N be the subspace of L
spanned by all root spaces of the form L_g, for k > 1, i.e.,

N = @L_,m.

E>1

Then by Root fact 1 we see that N is closed under multiplication, so that N
is a subalgebra of L. Let z, be a non-zero element of L, and let K C L be
the subspace spanned by z,, h, together with N. By Root fact 9 it is seen
that adhe (z4) = a(hq)Te and if —ka is a root, adhg (2 -ka) = —ka(ha)T—ka
for £_po € L_gq. Hence adh, maps K into itself and if we set ng = dim Lg,
then

Tr(adgha) = a(ha)(l — Neg — 2n_9g — - ). (4.11)

Choose z_q € L_, such that k,(z4,2-4) # 0 (such z_, exists by Root fact
3); and after modifying z_, by a scalar we may assume that 1 (zq,Z—q) =
1. By Root fact 1 we have that K is a subalgebra. In particular K
is invariant under adgz, and adgz_,. Also by Root fact 11 we have
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that [24,7_4] = ha- So adxh, = [adgz,,adgz_o] and it is seen that
Tr(adghe) = 0. By Root fact 13 we have that a(h,) = (@, @) # 0. So from
(4.11) we infer that 1 —n_, — 2n_9s — -+ = 0. But this can only happen
ifn_g=landn_g9y=n_3,=...=0. SodimL_, =1 and —2a,—3a,---
are not roots. We can replace a by —« in the above argument and obtain
dim L, = 1 and 2a, 3, - - - are not roots. 0O

4.10 Some proofs for modular fields

In this section we prove that the statements of Root facts 13 and 14 also
hold over fields of positive characteristic p # 2, 3.

Throughout this section we assume that F is a perfect field of charac-
teristic p > 0 and p # 2,3. Furthermore, L is a Lie algebra over F with a
non-degenerate Killing form and H is a split Cartan subalgebra of L. We
recall that @ is the set of roots of L (with respect to H).

Let a € ® be a non-zero root such that (@, a) # 0. Then by Root fact
12, there are z € Ly, y € L_, and h € H such that [z,y] = h, [h,z] = 2z,
[h,y] = —2y. Let K be the subalgebra of L spanned by z,y,h. Then the
adjoint representation of L induces a representation ady : K — gl(L) of K.
Representations of these kind will be one of our main tools in this section.

Proposition 4.10.1 Let p : K — gl(V) be a finite-dimensional represen-
tation of K. Suppose that there is a basis of V relative to which p(h) has a
diagonal matriz. Suppose further that there is an eigenvector vy of p(h) such
that p(z)vo = 0. Set v; = p(y)*vg for i > 0 and let A € F be the eigenvalue
corresponding to vg. Then p(h)v; = (A — 2i)v; and p(z)v; =i(A — i+ 1)v
fori>0.

Proof. Let v, be an eigenvector of p(h) with eigenvalue p. Then we

calculate p(h)p(y)v. = p(y)p(h)vu+p([k, y))vu = (1—2)p(y)vu. Hence p(vy)
is an eigenvector of p(h) with eigenvalue p — 2. The first equality follows

from this. For the second equality we use induction on . Setting v_; =0,
it certainly holds for 7 = 0; so suppose i > 0 and p(z)v; = ¢(A ~ i + 1)v;—;.
Then

p(x)viry = p(z)p(y)v; = p(y)p(z)vi + p([z, y])v;
=i(A — i+ 1)p(y)vi-1 + p(h)v;
= (i(A—1+1)+ X —2i)
= (i + D)\ = i)vs.
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So by induction we have the second equality. O

Proposition 4.10.2 Let « € ® be a non-zero root. If alhy) # 0, then not
all integral multiples of o are roots.

Proof. Set h = a—%ha and choose an arbitrary non-zero ¢ € L,. Then
by Root fact 12, there is an y € L_, such that

(h,z] = 2z, [h,y] = -2y, [z,y] = h.

Hence the subspace K spanned by h,z,y is a subalgebra of L isomorphic

to slo(F).
Now assume that «,2q, ..., (p — 1)« are all roots. This is equivalent to
assuming that, —a,—2a,... ,—(p — 1)a are all roots. Let 2 < k < p-—2

and suppose that there is a non-zero e € L_g, such that [z,e] = 0. Then
since y € L_g, we have (ady)P"*~le € L, and by Root fact 11 we see that
(ady)P~*e = phg for a p € F. Now using Lemma, 4.1.1,

ualhy) = pkp(ha, he) = mL((ady)”_ke, ha) = k1 (e, (ady)”_kha) =0,

(the last equality follows from the fact that (ady)?h, = 0 and p — k > 2).
Since a(hq) # 0 by hypothesis, we have that (ady)?*e = 0.

Let u € {0,1,--- ,p—k—1} be the smallest integer such that (ady)**le =
0. Set vy = e and for i > 0, v; = (ady)*vg. Then vy; = 0 and v; # 0 for
0 < 4 < u. Furthermore, since adz(vg) = 0 we are in the situation of
Proposition 4.10.1 with A = —2k. By Proposition 4.10.1 we now have

0 = adz(vyt1) = (u+ 1)(-=2k — (u + 1) + v, = (u + 1)(—2k — u)vy.

And since u + 1 # 0 we see that 2k = —u (mod p).

The conclusion is that if there are 0 #2 x € L, and 0 # e € L_g, for
ake{2...,p—2}, such that [z,e] = 0, then it follows that 2k = —u
(mod p) for some u € {0,... ,p—k — 1}.

Now set 8 = 2a, then also 3(hg) # 0 and by assumption all integral
multiples of 8 are roots. Therefore the above conclusion is also valid for
B. Let m = %1, then mB3 = a. So we can turn things around: our z
above lies in Ly, and if in the above we take k = 2, then the element e
such that [z,e] = 0 lies in L_g. So the conclusion in this case (with m
instead of k) reads p+ 1 = —t (mod p) with ¢ € {0,1,... ,2 }. This is
clearly not possible and from the assumption that there is an e € L_g,
such that [z,e] = 0 we have reached a contradiction. As a consequence
adz : L_94 — L_, is injective.
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From the injectivity of adx on L_g,, it follows that dim L_9, < dim L_,
and applying this repeatedly we get dimL_o;, < dimL_gj-1, < -+ £
dimL._9, € dimL_,. Now take j = p — 1, then we see that dimL_g, =
dimL_, and adz : L_94 — L_, is a bijection. Soy = [z,e] foran e € L_g,.
Now finally

0 # kr(z,y) = Kz, [z,€]) = k([z,z],€) = 0.

We have reached a contradiction and ¢, 2¢, . .. , (p—1)a are not all roots. O

Lemma 4.10.3 Let o € ® be such that a(hy) # 0. Then 2« is not a root.

Proof. Suppose that 2a € ®. Let r > 2 be an integer such that «, 2¢, . .. ,ra
are roots, but (7 + 1)a is not a root (such r exists by Proposition 4.10.2).
Then since (p — 1)a = —a is a root, we must have r < p—3. Let K be the
subalgebra spanned by h, z,y where h, z,y are as in the proof of Proposition
4.10.2. Now also —a, —2¢, ... , —ra are roots, but —(r + 1}« is not. Set

V=KL _ ,®L _95a® ---L_qo

then by Root facts 1 and 11 we have that V is stable under adK. Let
0 # e € L_54 and suppose that [z,e] = 0. Set wy = e and w; = (ady)’e. We
are now in the situation of Proposition 4.10.1 where A = —4. There is an
s > 0 such that ws # 0 and wy41 = 0. By Proposition 4.10.1 we calculate
0 = adz(wsy1) = (s+ 1)(—4 — s)w;. Since s < r —2 we have that s+1 # 0.
Hence s = p — 4 and w, € L_(p_3)o- But this last space does not lie in V
and we have a contradiction. So [z,e] # 0.

Now set vy = [z,€¢]. Then vy € L_, and kr(z,v0) = ki(z,[z,€]) =
kr([z,z],e) = 0. So by Root fact 11 we see that [z,v9] = 0. Set v; =
(ady)*vg and again we are in the situation of Proposition 4.10.1 where this
time A = —2. There is an integer s < r such that v; # 0 and vs4; = 0.
By Proposition 4.10.1 we infer that 0 = adz(vsy1) = (s + 1)(—2 — s)vs. It
follows that s = p — 2 which is not possible in view of r < p — 3. So again
we have a contradiction and 2« is not a root. 0O

Root fact 15 For a € ® we have that (o, a) = a(hy) # 0.

Proof. Suppose that a(h,) = 0. Since hy # 0, by Root fact 7 we see that
there is a 3 € ® such that 8(h,) # 0. We claim that 8 + ka are roots for
k> 0.
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It is enough to prove that 8+ « is a root, for then we can continue with
B+ « in place of S (since also (8+ a)(hy) # 0). Suppose that G+ a is not a
root. Choose non-zero z, € L, and z_, € L_, such that Ky (4, 2_4) =1
(so that [z, Z_q) = he by Root fact 11). Furthermore choose a non-zero
zg € Lg. Then by Root fact 1, [z4,25] = 0. Set v; = (adz_q)'zg for i > 0.
Then adzq(v;) = iB(hq)vi~1 as is easily proved by induction. Then because
Vp-1 € Lgiq = 0 there is an integer k& € {0,... ,p — 2} such that v # 0
while vg41 = 0. Hence

0 = adza(vksr) = (k + 1)8(ha)vs.

From which it follows that k¥ + 1 = 0, which is a contradiction. It follows
that o + 8 is a root.

Now we prove that G(hg) # 0. Suppose on the contrary that 3(hg) = 0.
Then

(B4 e)(hgta) = (B+ a)(hg + ha) = 261 (ha, hg) = 2B(ha) # 0,

and by Lemma 4.10.3, 2(« + ) is not a root. Now by the above, 8 + 2«
is a root. And (8 + 2a)(hg) = 2k1(ha, hg) # 0; so by the first part of the
proof (8 + 2a) + 8 is a root and we have obtained a contradiction.

Let v = a + 20, then v is not a root. Indeed, suppose that « is a root.
We note that y(hy) # 0 and hence by the first part of the proof vy — a = 23
is a root. But this contradicts Lemma 4.10.3, since 8(hg) # 0. In the same
way it can be seen that a — 20 is not a root.

Let z € Lg, y € L_g and h = ahg be chosen as in Root fact 12 and let
K be the subalgebra spanned by these elements. Set

V= La—ﬁ ® L, ® La+ﬂ

then by the above V is stable under ad; K. Let 0 # vy € Lot+s. Then
vo is an eigenvector of adh with eigenvalue (o + B)(h) = a(h) + 2. Set
vy = ady(vg) and ve = (ady)?(vg). Then vy, vq are eigenvectors of adh with
eigenvalues a(h) and a(h) —2 respectively. Now the assumptions v; = 0 and
vy = 0 both lead to contradictions. (The first assumption implies a(h) = —2
and in the second case we have a(h) = —1. In both cases we consider a
non-zero vector wg € L,_g and the K-module generated by it; and in both
cases we obtain a contradiction.) Now v3 = (ady)®vg = 0 and Proposition
4.10.1 implies that 0 = adz(v3) = 3a(h)vy. Since by assumption 3 # 0 we
must have a(h) = 0, but a(h) = aa(hs) = akr(ha, hg) = aB(he) # 0. It
follows that a(hy) # 0. a
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Root fact 16 Let « € ®. Then dim L, = 1 and the only integral multiples
of a which are roots are ta.

Proof. Since a(h,) # 0 (Root fact 15), we can choose h,z,y as in Root
fact 12. Suppose that dim L, > 1. This implies that there is a non-zero
e € L, such that s (e,y) = 0; so that [e,y] = 0 (Root fact 11). Also, since
2cv is not a root by Lemma 4.10.3 we have that [z,e] = 0. Now by the
Jacobi identity,

[e,h] = [e, [J:, yl] = |z, [yv e]] - [yv [e> x]] =0.

But this is a contradiction since [k, €] = a(h)e = 2e.

Suppose that ka is a root, where k € {2,3,--- ,p — 1}. Also, since ka
is a root if and only if —ka is a root (Root fact 5), we may assume that
ke{23,- - ,p—;l}. Furthermore, by Lemma 4.10.3 we have that 2a is not
aroot. Sok # 2. Set 8 = ’;—la; then if 3 is a root, —a = 203 is not (Lemma
4.10.3). But —a is a root so that 5 is not a root and k # L;l Now let &
be the smallest integer > 1 such that k« is a root. Then

p—1
2<k< —
Let r > 0 be an integer such that ko, (k + 1)a, ..., (k + )« are roots, but
(k+ 7+ 1) is not a root. Then
p—1
k+r< T
Set V = Lka ® Likt1)a @ -+ @ L(k1r)o- Let K be the subalgebra of L
spanned by h,z,y; then V is stable under adK. Let 0 # vo € L(xir)a
and set v; = (ady)'vg. Then we are once more in the situation of Propo-
sition 4.10.1 with A = 2(k + r). Let s > 0 be the smallest integer such
that vs # 0 and vs41 = 0. Then by Proposition 4.10.1 we calculate
0 = adz(vs41) = (s+1)(2k+2r—s)vs. Since s < 7, we see that s+1 # 0 and
hence 2(k +7) = s (mod p). But 0 < 2(k+r)<p—lands<r<(p—1)
so that 2(k + r) = s which is absurd in view of s < r. O

4.11 Splitting and decomposing elements

Let L be a Lie algebra with a non-degenerate Killing form. In this section we
consider the problem of computing the (collected) primary decomposition
of L relative to a Cartan subalgebra H. Throughout we assume that L is
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defined over a perfect field F' of characteristic p # 2,3. We do not assume
that H is split.

The first algorithm for computing the primary decomposition that comes
into mind is to pick an element h; € H and compute the primary decompo-
sition of L relative to adh;. We can do this by factorizing the characteristic
polynomial of adhy. Then for every irreducible factor f; we calculate the
space Lo(fi(adhi)). Now the spaces Lo(f;(adh,)) are the primary compo-
nents of L relative to adh; (Lemma A.2.2). Then by Proposition 3.1.7 all
components that we have obtained are invariant under adH. So we can
continue and pick a second element hy € H and decompose each primary
component Lo(f;(adhy)) relative to adhy. Continuing like this we will find
the primary decomposition of L relative to H. The problem however is to
find a good stopping criterion: how can we ascertain that the restrictions
of all elements of H to a certain component have a minimum polynomial
that is a power of an irreducible polynomial? Here we show that this can
be achieved by looking at particular elements, namely splitting elements (if
the ground field is big) and decomposing elements (if the ground field is
small). If these elements have a minimum polynomial that is a power of an
irreducible polynomial, then this will hold for all elements of H.

Let h € H. Then all eigenvalues of the restriction of adh to H are 0
(Root fact 6). Furthermore, since all root spaces are 1-dimensional (Root
facts 14, 16), we have that adh has no more than dim L —dim H +1 different
eigenvalues. The element A is called a splitting element if it has exactly that
number of eigenvalues. Since adh is a semisimple linear transformation
(Root fact 8) we have that adh has dim L — dim H + 1 different eigenvalues
if and only if the minimum polynomial of adh has degree dim L —dim H + 1
(Proposition A.2.4). Hence we have a good criterion for deciding whether or
not an element h € H is a splitting element, without having to calculate the
eigenvalues of adh (which might involve factorizing the minimum polynomial
of adh over a big extension field of the ground field F).

Let F be an extension field of F such that H splits over F. Set L =
L®p F. We note that H can be viewed as a subset of L and H = HQpFis
a Cartan subalgebra of L (Proposition 3.2.3). The Lie algebra L has a root
space decomposition relative to H. Let ® be the set of roots of L relative
to H and set ®° = U {0}. Let o € ®, then since H is a subset of H we
can restrict o to H and we get an F-linear function o: H — F.

The next lemma follows immediately from the definition of splitting
element.

Lemma 4.11.1 We have that h € H is a splitiing element if and only if
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all elements a(h) are different for o € ®°.

Proposition 4.11.2 Set N = dimL —dim H and m = N(N +1)/2. Let
{h1,... s hi} be a basis of H. Let 0 < € < 1 and let Q be a subset of F of
size at least m/fe. Let Ay, ..., N be random elements chosen uniformly and
independently from Q. Then the probability that h = ) A\;h; is a splitting
element is at least 1 — e.

Proof. Denote the elements of ® by «i,...,any. By ap we denote the
element 0 € ®°. Let X;,... , X; be | indeterminates and for 0 < i,5 < N
put
l
Fii(Xn, 0 X)) =Y (ou — o) (he) X,
k=1
and set

g(Xi,..,.Xx)= [ (X Xn)

0<i<j<N

Then g € F[XI,... , Xn] is a polynomial of degree m. We claim that
>~ Aihi is not a splitting element if and only if g(Ay,..., ;) = 0. Indeed,
this last condition is the same as saying that there are 0 < 1 < 5 < N
such that f;;(A1,...,A\) = 0. But this is equivalent to o;(h) = «a;(h),
which by Lemma 4.11.1 is equivalent to h not being a splitting element.
Now since degg = m, Corollary 1.5.2 implies that the probability that
9(A1,-.. ;A1) =0 is less than m/|Q] <. o

Corollary 4.11.3 Let m be as in Proposition /.11.2. If the size of F is
strictly bigger than m, then H contains splitting elements.

Proof. Choose 0 < ¢ < 1 such that the size of F is at least m/e. Then by
Proposition 4.11.2 the probability that a randomly chosen element of H is
a splitting element is not 0. Hence H contains splitting elements. |

Proposition 4.11.2 yields a powerful randomized (Las Vegas type) algo-
rithm for finding a splitting element in H.

Algorithm SplittingElementRandom

Input: a Lie algebra L defined over a perfect field F' with a non-degenerate
Killing form, a basis {hq,...,h;} of a Cartan subalgebra H of L and a
subset Q of F' of size at least N(N + 1), where N = dim L — dim H.
Output: a splitting element of H.
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Step 1 Select randomly and uniformly ! elements Aq,... , X from .

Step 2 Compute the minimum polynomial of adgh, where h = > A;h;; if it
is of degree dim L —dim H + 1 then return h, otherwise return to Step
1.

Comments: by Proposition 4.11.2 we see that the probability that A is
a splitting element is at least % Hence we expect to find a splitting element
in no more than two steps.

We can also construct splitting elements by a deterministic method:

Algorithm SplittingElementDeterministic

Input: a Lie algebra L with non-degenerate Killing form, a Cartan subal-
gebra H of L and a subset Q of F of size at least m(dim H — 1) + 1, where
m is as in Proposition 4.11.2.
Output: a splitting element of H.

Step 1 Let {h1,...,h;} be a basis of H. Denote the elements of Q by
Wiy ... Wi Set k= 1.

Step 2 Set \; = w;'c"l for1 <i<L

Step 3 Compute the minimum polynomial of h = 3 A;hy; if it is of degree
dim L — dim H + 1 then return h, otherwise set k := k + 1 and return
to Step 2.

Comments: Let g € F[X1,... ,Xi] be the polynomial in the proof of
Proposition 4.11.2. Let Y be another indeterminate and substitute Y*~! for
X; in g. This yields a polynomial in F[Y] of degree at most m(dim H — 1).
Hence by trying at most m(dim H — 1) +1 values for Y, we obtain a number
¢ such that g(1,¢,... ,¢51) #0.

Now we turn our attention towards calculating the primary decomposi-
tion of L relative to H.

Proposition 4.11.4 Let hg € H be a splitting element. Let X be an inde-
terminate. Let

L=LyoL1®-- &L, (4.12)

be the primary decomposition of L relative to adhg. Let the primary com-
ponent corresponding to the polynomial X be Ly. Then H = Lo and the
decomposition (4.12) is the (collected) primary decomposition of L with re-
spect to H.
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Proof. We note that H C Ly since H is nilpotent. Furthermore, Lemma
4.11.1 implies that dim Ly = dim H, and hence Lo = H. For h € H we
have that adh is a semisimple linear transformation (Root fact 8). Hence
saying that adh has a minimum polynomial that is a power of an irreducible
polynomial is the same as saying that the minimum polynomial of adh is
irreducible. Suppose that there is an h € H such that the restriction of adh
to L; has a reducible minimum polynomial f = fifo. Then L; = V) @& V2
where Vi = (L;)o(f1(adh)) and V, = (L;)o(f2(adh)). Now by Proposition
3.1.7, adhg stabilizes both V| and V;. Hence, since the minimum polynomial
of the restriction of adhg to L; is irreducible, ady; ho and ady; ko have the
same minimum polynomial. So adhg has an eigenvalue of multiplicity at
least 2. But this contradicts Lemma 4.11.1. It is also clear that (4.12) is
collected because for primary components L; # L; we have that ady, hy and
adp; ho have different minimum polynomials. 0

The conclusion is that in the case where F is a big field (of size at least
N(N +1), where N = dim L — dim H) we have an algorithm for calculating
the (collected) primary decomposition of L relative to H.

Algorithm PrimaryDecompositionBigField

Input: a Lie algebra L with non-degenerate Killing form over a perfect field
F of size at least N(N + 1) and a Cartan subalgebra H of L.

Output: the (collected) primary decomposition of L relative to H.

Step 1 Let  be a subset of F of size at least N(N+1). Calculate a splitting
element h € H using the algorithm SplittingElementRandom.

Step 2 Compute the irreducible factors fo, ... , fs of the minimum polyno-
mial of adh.

Step 3 For 0 < i < s compute the space L; = {z € L | fi(adh)z = 0}.
Return {Lg,...,Ls}.

Comment: In Step 1 it is of course also possible to use SplittingEle-
mentDeterministic, but then we must take a set Q of a different size.

Now we suppose that L is defined over a small finite field (i.e., so small
that a splitting element is not guaranteed to exist). In this case we work
with elements satisfying a weaker condition; they are called decomposing
elements.

Definition 4.11.5 Let V be a subspace of L stable under adH. Let Ty be
the associative algebra generated by 1 and adhly for h € H. Let t € Ty
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and let f be the minimum polynomial of . Then x is called decomposing
(on V') if f is reducible. And x is called good (with respect to V) if f is
irreducible and deg f = dim Ty.

We note that if an element z € Ty is good, then it generates the whole
algebra Ty . Also, since its minimum polynomial f is irreducible we see
that 7y is isomorphic to F(£), where £ is a root of f. Hence Ty is a field.
Therefore every element of Ty has an irreducible minimum polynomial.
Consequently, V is a primary component. On the basis of this we formulate
an algorithm for finding the primary decomposition of L with respect to H.

Algorithm PrimaryDecompositionSmallField

Input: a Lie algebra L with non-degenerate Killing form, defined over a
field F' with ¢ elements and a Cartan subalgebra H of L.
Output: the (collected) primary decomposition of L with respect to H.

Step 1 Set to-do:= {FittingOneComponent(L, H)} and primary-components:=

{H}.

Step 2 Let V be an element from to-do. Let Ty be the associative algebra
over F' generated by 1 and ady H.

Step 3 Let z be a random element from Ty and f the minimum polynomial
of z. Let fi,---, fin be the irreducible factors of f. Now there are
three cases:

Step 3a In this case f is irreducible (i.e., m = 1), and deg(f) =
dimTy. Then add V to primary-components and delete V from to-
do. If at this point to-do is empty, then return primary-components.
Otherwise (i.e., to-do is not empty) return to Step 2.

Step 3b Here f is irreducible, but deg(f) < dim7y. Then return to
Step 3.

Step 3¢ Here f is reducible (i.e., m > 1). Then set V; = Vu(fi(x)) for
1 <4 < m. Erase V from to-do; and add all V; for 1 < i < m to
to-do. Return to Step 2.

Proposition 4.11.6 The algorithm PrimaryDecompositionSmallField termi-
nates in a finite number of steps, and outputs the collected primary decom-
position of L with respect to H.

Proof. First we prove the correctness of the algorithm. At termination we
have that for every element V of the set primary-components there exists an
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zy € Ty such that zy is good with respect to V. This implies that Ty is
a field and every element of Ty has an irreducible minimum polynomial.
Hence the minimum polynomial of adhly is irreducible for every h € H. So
the decomposition returned by the algorithm is primary. We show that it is
collected as well. Let V7, V5 be two primary components from the output.
Suppose that for all elements h € H the minimum polynomials of ady, h
and ady, h are equal. As seen above, Ty, and Ty, are fields. Now let h € H
be such that ady, h is not contained in any proper subfield of Ty,. Then
ady; h generates Ty;. As the minimum polynomial of ady,h is equal to the
minimum polynomial of ady; h, we see that ady,h generates a subfield of Ty,
isomorphic to Ty,. By an analogous argument we have that 7y, contains a
subfield isomorphic to Ty,. It follows that Ty, and Ty, are isomorphic fields;
furthermore, they are both isomorphic to Ty, where V = V| @ V5. So for
every z € Ty the minimum polynomials of z|y, and x|y, are equal. But this
is not possible in view of Step 3c. It follows that there is an h € H such
that the minimum polynomials of ady; h and ady, s are different.

To prove termination we must show that the random element z chosen
in the algorithm is either decomposing or good with sufficiently high prob-
ability. Let V be a subspace of L that is stable under H. Let Ty be the
associative algebra generated by 1 and adh|y for h € H. By Root facts 6
and 8 we have that Ty is a semisimple commutative associative algebra. So
by Wedderburn’s structure theorem (Theorem A.1.4), we have that Ty is
the direct sum of ideals that are full matrix algebras over division algebras
over F. But the commutativity of Ty, implies that the matrix algebras con-
sist of 1 x 1-matrices and the division algebras are field extensions of F. So
we have

TV=F1€B“‘®Fm

where the F; are finite extensions of the ground field F.

If the minimum polynomial f of the randomly chosen element z is ir-
reducible, then m = 1 and Ty = F,». We estimate the probability that
z is good. First of all, if n = 1 then all elements of Ty are good. Now
suppose that n > 1. Let E be the subset of Ty consisting of all elements z
of Ty that do not lie in a proper subfield of Ty. To every monic irreducible
polynomial g of degree n over [, corresponds a subset of n elements of £
(namely the set of the roots of g). Also the sets corresponding to different
mouic irreducible polynomials do not intersect (because an element ¢ € E
has a unique minimum polynomial over F;). Let Ny(n) be the number of
monic irreducible polynomials of degree n over F,. A well-known formula
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reads

Nom) = = 3" (@)™
dln

where p : N — {0,£1} is the Mobius function (see for example [59], The-
orem 3.25). Write n = ab where b is the largest proper divisor of n. Then
we use the fact that p(r) > —1 for all natural numbers r to estimate

|E| =nlNg(n) = Y p(d)g"*

din
e
b
_ " _ g —1
= q qq~—1'

An element z € Ty is good if and only if z € E. And the probability that
a randomly chosen element z € Ty lies in E is
b b
-1 - 1
q —1 1 1-1/q 51

|E|
> n__ 3 00 n — —_ [ A _——
P (¢" —q q—1 )/q gl g—1 ~ g b1(g—1)

And this is > % unless (n,q) = (2,2), but in that case it can be checked
directly that |q£n| > %

Now let m > 1. We estimate the probability that z is decomposing.
First we have that £ = z; + --- + z,,, where z; € F; are randomly and
independently chosen elements. The minimum polynomial of z is the least
common multiple of the minimum polynomials of the z;. So if z is not
decomposing then all z; have the same minimum polynomial. It follows
that the subfields of the F;j generated by the z; are all isomorphic. Let this
subfield be F;». We may suppose that all F; are equal to Fyn; otherwise
the probability that z; € Fy» is less. Now we assume that we have chosen
an element 2, € F; with an irreducible minimum polynomial f of degree n.
Because there are exactly n elements in F5 with minimum polynomial equal
to f, we have that the probability that a randomly chosen element xz € F»
also has minimum polynomial f is equal to
n 1
— <z
q" ~ 2
It follows that the probability that z is decomposing is > 1/2. The conclu-
sion is that the probability that a randomly chosen element is either good
or decomposing is > 1/2. Hence we expect to find such an element in at
most two steps. a
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4.12 Direct sum decomposition

Let L be a Lie algebra with a non-degenerate Killing form and a Cartan
subalgebra H. By Proposition 4.3.6, L is a direct sum of simple ideals,
L=J @ &J,. In this section we use the primary decomposition of L
with respect to H to find this direct sum decomposition.

The next theorem states that the primary decomposition of L with re-
spect to H is compatible with the direct sum decomposition of L.

Theorem 4.12.1 Let L be a Lie algebra defined over a perfect field with a
non-degenerate Killing form and Cartan subalgebra H and let

L=HoL & - -®L,

be the (collected) primary decomposition of L with respect to H. Suppose
that L decomposes as a direct sum of ideals, L = [y®I;. Then H = H{®H,,
where Hy is a Cartan subalgebra of Iy for k = 1,2. Furthermore, every L;
18 contained in either Iy or I.

Proof. By Proposition 1.15.1 there are two non-trivial orthogonal idempo-
tents e;, ep commuting with adL such that e; + ey is the identity on L and
I = e L for k = 1,2. Hence

H= (g +e)H CerH®eyH.

Let g € H, then as H is commutative (Root fact 6), (adh)e;(g) = e;adh(g) =
Oforall h € H so e;g € H = Ly(H). Therefore we have that ey H C H and
similarly eoH C H. So also e H®esH C H and hence H = e; H ® ey H. Set
Hy = exH for k = 1,2; then H = H; & Hy and Hy is a Cartan subalgebra
of Iy for k= 1,2.

Let L; be a primary component, and let X be an indeterminate. We
claim that there is an element h € H; U Hs such that the restriction of
adh to L; is nonsingular. Indeed, otherwise the minimum polynomial of the
restriction of every element of a basis of H to L; would be X. This implies
that [H,L;] = 0 and by Lemma 3.2.2 we have L; C H, a contradiction.
First suppose that A € H,. Then also h € I so that adh(L) C I and in
particular adh(L;) C I;. Now the fact that adh is nonsingular on L; implies
that L; = [h, L;] C I;. In the same way h € Hy implies that L; is contained
n Ip. O

This theorem implies that the following algorithm is correct.
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Algorithm DirectSumDecomposition

Input: a Lie algebra L with a non-degenerate Killing form defined over a
perfect field F' of characteristic not 2, 3.
Output: a list of the direct summands of L.

Step 1 Compute the primary decomposition L = H® L1 ®---& L, (Section
4.11).

Step 2 For 1 € 7 < s determine a basis of the ideal of L generated by L;.
Delete multiple instances from the list, and return it.

Example 4.12.2 Let L be a Lie algebra with basis {hy, 1,91, h2,Z2,¥2}
and multiplication table

[hl, .’1:1] = 2171 [hz, .’L'l] = 2.’171
h,11] = —2y1 fha, ] = =2y
[h1 , IL'Q] = 2352 [hz, Iz] = —2.’L’2
(hi,y2) = —2ys  |ha,y2] = 2y2
e, 1) = fhit+ihy [22,92) = $hy— tha.

Brackets of pairs of basis elements that are not present are assumed to
be 0. The determinant of the matrix of the Killing form is 2'6, hence the
Killing form of L is non-degenerate if the characteristic of the ground field
F is not 2. As is easily verified, H = (hy, hy) is a Cartan subalgebra.

First we take the ground field to be equal to @. Then the minimum
polynomial of ad(h; + 2h9) is X (X + 6)(X — 6)(X + 2)(X — 2) so that
hy + 2h is a splitting element. The primary decomposition of L relative to
ad(hy + 2h2) is

L = (h1,h2) ® (z1) ® (z2) ® (y1) ® (y2)- (4.13)

Now the ideal generated by z, is spanned by {z1,y1, (h1 +he)/2}. Similarly,
the ideal generated by x5 is spanned by {z2, y2, (h1 —h2)/2}. It follows that
we have found the decomposition of L into simple ideals.

The structure constants of L can also be viewed as elements of F5. So
now we take 5 as the ground field. Then the Killing form is non-degenerate
so that we can apply the algorithm PrimaryDecompositionSmallField. The
Fitting-one component L;(H) is spanned by {z1,y1,z2, y2}. The minimum
polynomial of the restriction of ad(hy + he) to Li(H) is X(X — 1)(X + 1).
So hi + ho is a decomposing element and the corresponding decomposition
of Ll(H) is

Li(H) = (z1) @ (1) © (€2,v2).
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Now we turn our attention to the space V = (z3,y2) (the other two spaces
are 1-dimensional and hence irreducible). The minimum polynomial of the
restriction of ad(h; + 2hg) to V is (X — 2)(X — 3) so that hy + 2k is a
decomposing element. We again find the primary decomposition (4.13).

Example 4.12.3 Let L be a Lie algebra over Q with basis {z,... ,z¢}
and multiplication table as shown in Table 4.3. This Lie algebra is a Levi
subalgebra of the so-called Poincaré algebra (see, e.g., [68]).

I T2 T3 T4 Ts Te
Ty 0 0 2z4 —2x3 —2x6 25
I 0 0 2.’123 2I4 —2.’E5 —2.’56
I3 —21!4 —21:3 0 0 T9 I
I 2(1)3 —21‘4 0 0 T —T9
Ty 2:1,‘6 2.’L‘5 —Z2 —Z1 0 0
Te —2.’1)5 21‘6 —I I 0 0

Table 4.3: Multiplication table of a 6-dimensional Lie algebra.

The determinant of the matrix of the Killing form is —22° so that L is
semisimple. A Cartan subalgebra of L is spanned by {z,z2}. The minimum
polynomial of ad(z; + z3) is X (X2 —4X +8)(z? +4X +8). Hence z; + z2
is a splitting element. The corresponding primary decomposition is

L=1Li>®L34® Lsg,

where L;; is the subspace spanned by {z;,z;}. From the multiplication
table it follows that the ideals generated by L3 4 and Ls¢ are both equal to
L. Hence, by Theorem 4.12.1 we have that L is a simple Lie algebra.

Now let K be the Lie algebra with basis {z1,... ,z6} and the same
multiplication table as L, but defined over Q(i), where 2 = —1. Then the
minimum polynomial of ad(zx; + z2) has irreducible factors X, X + (2 — 2i),
X % (2 4 2i). The corresponding primary decomposition is

K = <$1,$2> D <:L‘3 - ’i:L‘4) @ (z3 + i$4> & <£E5 —izg) D {x5 + ’i:L‘s).

Now K = I} ® I, where I; is spanned by z2 — iz1, 23 — i24, 25 — 16 and Ip
by z9 + iz, 23 + ix4, 5 + 1T6.
4.13 Computing a Levi subalgebra

In this section we consider the problem of computing a Levi subalgebra of
a Lie algebra of characteristic 0. We give two related algorithms for doing
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this. In subsequent sections we show that we can make good use of a Cartan
subalgebra to find a Levi subalgebra.

In this section L will be a Lie algebra over a field F' of characteristic
0 and R its solvable radical. First we remark that in the case where R is
commutative there is an easy algorithm along the lines of Example 4.7.3.
It starts with computing a basis {z1,...,zm,} of a complement to R in
L. Then we set y; = z; + 74, where r; are unknown elements of R. For
1 < i< m we let Z; be the image of z; in L/R. Then [Z;,%;] = >, 'yfji'k.
We require that the elements y; satisfy exactly this commutation relations
which, because R is commutative, is equivalent to

m m
[@i,rs) + [ri 2] = > Vb = —[za 2] + Y Vjox: (4.14)
k=1 k=1

But this amounts to linear equations for the r;, which we can solve. We
note that the equations have a solution due to Levi’s theorem.

The algorithm for the general case is a generalization of the algorithm
for the commutative case. Let

RZleRQD'“DRdDRd_H:O

be a descending series of ideals of R such that [R;, R;] C R;41 (the derived
series is an example). As above, let {z1,... ,2n,} be a basis of a complement
in L to R. Then there are 7% € F such that

m
[zi, 2] = Z'yszz mod R.
k=1

We phrase this by saying that the z; span a Levi subalgebra modulo R.
For t = 1,2,... we successively we construct u! € R such that the elements
y! = z; +u! span a Levi subalgebra modulo R;. When we arrive at t = d+1
we have that the yf span a Levi subalgebra modulo R4y = 0, ie., they
span a Levi subalgebra.

Initially we set t = 1 and y! = z;. Write R, = V; @ Ryy1, where V; is
a complementary vector space. Then iteratively set y/™' = y! + rf, where
rt € V;. We require that the yg“ span a Levi subalgebra modulo R4, i.e.,
Wit vt = g vkt mod Reyy. Since [Ry, Ry] C Ry this is equivalent
to

m m
et + [rfyl] = S akrh = —lwh ] + ) vEf mod Rypr. (4.15)
k=1 k=1
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These are linear equations for the rf. We note that since the equations are
modulo Ry the left-hand side as well as the right-hand side can be viewed
as elements of V;. So when solving the equations we can work inside this
space. Finally we remark that by Levi’s theorem applied to the Lie algebra
L/R:41 the equations (4.15) have a solution.

This discussion leads to the following algorithm:

Algorithm LeviSubalgebra

Input: a Lie algebra L of characteristic 0, the solvable radical R and a series
R=R; D - D Ry1 = 0 satisfying [R;, R¢] C Rey1 for 1 <t < d.

Output: a Levi subalgebra of L.

Step 1 Compute a basis {z1,...,Zy} of a complement in L to R. For
lgigmsety}:xi.

Step 2 For 1 <t < d do the following

Step2.1 Compute a complement V; in Ry;1 to Ry.

Step2.2 Set y!*t! = y! + rf, where r! are unknown elements of V;.

Step2.3 Compute the equations (4.15) for the r} and solve them.

Step 2 Return the subalgebra spanned by the yf*l.

When we input the derived series of R, then this is a straightforward
algorithm to calculate a Levi subalgebra.

Of course one could input a different a descending series. If the radical
R happens to be nilpotent, then we can take the lower central series. In
this case the ideals R; satisfy the stronger property [R;, R| C Rit1. In
the algorithm we always have that y¢ = z; + u;, where u; € R. Hence
[y}, 78] = [2i,75] mod Ryy1. So the equations (4.15) transform into

m m
[zi,rE) + [r}, 23] — Z’yf]-r,tc = —[yi, vi] + Z'yf]yfc mod Ry ;. (4.16)
k=1 k=1

Now by the following lemma this leads to an algorithm for the general
case. The proof is exactly the same as the proof for the third case in the
proof of Levi’s theorem. We leave the details to the reader.

Lemma 4.13.1 Let K be the inverse image in L of a Levi subalgebra of
L/[R,R]. Let K be a Levi subalgebra of K, then K is a Levi subalgebra of
L.
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The radical of K; (which is [R, R]) and the radical of L/[R, R] (which
is R/[R, R] and hence Abelian) are nilpotent. So we can reduce the general
case to two calls to LeviSubalgebra, where we input the lower central series
of the Lie algebras and take the equations (4.16) instead of (4.15). We call
this algorithm LeviSubalgebraByL CSeries.

Example 4.13.2 Let L be a 6-dimensional Lie algebra over the field I of
characteristic 0 with basis {z1, 2,3, Z4,Z5,26}. The multiplication table
of L is displayed in Table 4.4.

Iy 9 I3 T4 Is Tg
I 0 0 Ty Ty —%356 0
T2 0 0 2r9 T3 — —%1176 T 0
T3 | —11 —2x9 0 214 s 0
T4 | —x5 —xz3+ %$6 —2x4 0 0 0
Iy %.Tﬁ —T1 —I5 0 0 0
6 0 0 0 0 0 0

Table 4.4: Multiplication table of a 6-dimensional Lie algebra.

It is easily seen that x,zs,z¢ span a nilpotent ideal R of L. Further-
more, if we let Ty, T3, 4 be the images of z9,z3,24 in L/R then

(T2, T3] = 2%y, [T2,%4] = T3, [T3,T4] = 2Z4.

Hence L/R is isomorphic to sla(F), which is semisimple. So SR(L) = R.
Now [R, R] is spanned by zg so that [[R, R],[R, R]] = 0. We perform the
algorithm LeviSubalgebra with the derived series.
Firstly, 21, 5 span a complement to [R, R] in R. So we set y} = =z; for
1=2,3,4, and
y3 = T2 + azy + B3
y% = z3+ yI1 + 05

Y3 = T4 + €21 + 1%s.
Then the requirement [yZ, 93] = 2y2 mod zg is equivalent to
1
2z + (6 + a)zy — Bzs + 5(ﬁfy — ad)xg = 2x9 + 2ax1 + 25 mod 6.

Which is equivalent to the equations § = « and § = 0. Note that by
calculating modulo zg we get rid of the non-linearity. Continuing, [y3, y3] =
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y3 mod zg is equivalent to
1
T3 +nx + azs + E(ﬁe —an — Dzg = z3 + y21 + drs mod xg.

This leads to the equations § = o and 5 = . Furthermore, from [y3,y3] =
2y7 mod ¢ we get € = 0 and v = 7. We see that we can choose values
a = ap and 77 = gy freely; all other variables are then determined. The
solution is

yg = Tg + Ty, 1/32, = x3 + Y21 + QpTs, yi = z4 + Y0Zs5.
Now for the next step we set
Y3 = y3 + azs, Y3 = y3 + bze, yi = ¥4 + cze,

and again write down the linear equations. First [y3,y3] = 2u3 is the same
as

1
2z + 2091 — §a§$6 = 2y% + 2azxg,

ie.,a= —%a%. Going on like this we find b = —%(1 + apy) and ¢ = — 275
Hence the full solution reads

3 _ 1,
Yo = Ty + X1 4a0m6
3 1
Y3 = T3 + YoT1 + QpT5 — 5(1 + apv0)T6

3 _ 1,
Yy = T4 +Y0T5 1'70-'1:6-

4.14 A structure theorem of Cartan subalgebras

In this section we show that a Cartan subalgebra carries information on a
Levi decomposition of L. We start with two lemmas.

Lemma 4.14.1 Let L be a Lie algebra of characteristic 0. Let K be a Levi
subalgebra of L, and let H be a Cartan subalgebra of K. Then adprh is a
semisimple linear transformation for h € H.

Proof. Write L = K @ R, where R is the solvable radical of L. Let
h € H. Then by Root fact 8 we have that adgh is semisimple. Since R
is an ideal we have that the adjoint representation of L induces a repre-
sentation adg : K — gl(R) of K on R. Hence by Corollary 4.6.4 we infer
that adrh is semisimple. Now the minimum polynomial of ady % is the least
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common multiple of the minimum polynomials of adgh and adgh. Hence
the minimum polynomial of ad;h is square-free. It follows that adph is a
semisimple transformation. O

Lemma 4.14.2 Let L be a Lie algebra of characteristic 0. Let S be a
commutative subalgebra of L such that adps is a semisimple linear trans-
formation for s € S. Then S is contained in a Cartan subalgebra of L.

Proof. First we note that since all elements of adpS are simultaneously
diagonalizable (over the algebraic closure of the ground field), we have that
the Fitting-null component Ly(S) is equal to C(S), the centralizer of S in
L. Hence the Fitting decomposition of L with respect to S reads

L =CL(S)® Li(S).

For s € S, let p(s) be the restriction of adps to L;(S). Then there are no
non-zero x € L;(S) such that p(s)z = 0 for all s € S. Hence there is an
50 € S such that p(sg) is nonsingular (this can be seen by diagonalizing
all p(s) for s in a basis of S; most linear combinations of basis elements
have no eigenvalues that are zero). Then Lg(adsp) = Cr(S); and by repeat-
edly applying Proposition 3.2.6 we see that Lo(adsg) contains a subalgebra
H = Ly(adz) for a certain z € C(S), such that H is nilpotent. But then
Ny (H) = H (Proposition 3.2.5) and hence H is a Cartan subalgebra of L
(Lemma 3.2.2). But since H C CL(S) we have [H,S] = 0 and hence S C H
(cf. Lemma 3.2.2). O

Theorem 4.14.3 Let L be a Lie algebra of characteristic 0. Let K be a
Levi subalgebra of L and Hy a Cartan subalgebra of K. Then there ezists a
Cartan subalgebra H of L containing Hy. Conversely, if H is any Cartan
subalgebra of L, then there is a Levi subalgebra K of L having a Cartan
subalgebra contained in H.

Proof. By Lemma 4.14.1 together with Root fact 6 we have that H; is a
commutative subalgebra of L such that adph is a semisimple linear trans-
formation for h € H;. Hence by Lemma 4.14.2 there is a Cartan subalgebra
H of L such that H; C H.

Now let H be any Cartan subalgebra of L and let R be the solvable
radical of L. Let 7 : L — L/R be the projection map. Then by Lemma 3.6.2,
7(H) is a Cartan subalgebra of L/R. Now let K; be any Levi subalgebra
of L. Then the restriction of 7 to K; is an isomorphism of K, onto L/R.
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Hence K has a Cartan subalgebra H; such that 7(H;) = w(H). By the first
part of the proof there is a Cartan subalgebra H' of L such that H; C H'.
We construct an automorphism of L mapping H' onto H. First of all, we
have that n(H) = n(H;) C n(H'). But by Lemma 3.6.2, 7(H') is a Cartan
subalgebra of L/R. So n(H') = m(H) and hence H + R = H' + R. Set
B = H + R, then since R is an ideal, B is a subalgebra of L. Furthermore,
B/R is commutative so that [B,B] C R. Consequently B is a solvable
Lie algebra. Now from Section 3.6 we recall that D(B) is the subgroup of
Int(B) generated by all expadpz for z € [B, B]. Also, ifz € [B, B] thenz €
[L, LN R and by Lemma 2.6.2 we see that ad,z is nilpotent. So expadz is
an element of Int(L) whose restriction to B equals exp adgz. The conclusion
is that every element of D(B) naturally extends to an element of Int(L).
Now by Theorem 3.6.4 there is a ¢’ € D(B) such that ¢'(H') = H. Let
g € Int(L) be the extension of ¢’ to an automorphism of L. Set K = g(K;);
then K is a Levi subalgebra having a Cartan subalgebra g(H;) contained
in H. a

4.15 Using Cartan subalgebras to compute Levi
subalgebras

In this section we put Theorem 4.14.3 to use. By this theorem any Car-
tan subalgebra H of a Lie algebra L of characteristic 0 contains a Cartan
subalgebra H; of a certain Levi subalgebra of L. By Lemma 4.14.1, ad; H;
consists of semisimple linear transformations. Also if we suppose the solv-
able radical R to be nilpotent (which by Lemma 4.13.1 we can do without
loss of generality), then ady z is nilpotent for z € R. Hence every semisimple
element of adH “comes from” a Levi subalgebra of L. Here we show how
we can go after these semisimple elements directly.

In the sequel we let L be a Lie algebra over the field F' of characteristic
0, not equal to its solvable radical R. Throughout we assume that R is
nilpotent.

Definition 4.15.1 A commutative subalgebra T of L is said to be toral
if dimT = dimad;T and the associative algebra (adpT)*, generated by 1
together with ad; T, is commutative and semisimple.

The first condition is included to avoid calling the centre of a Lie algebra
toral.
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Proposition 4.15.2 Let K be a Levi subalgebra of L. Let Hy be a Cartan
subalgebra of K. Then H,y is a toral subalgebra of L. Put H = Cr(H,),
the centralizer of Hy in L. Then H is a Cartan subalgebra of L, and H =
H o CR(Hl).

Proof. Lemma 4.14.1 together with Root fact 6 imply that H; is a commu-
tative subalgebra of L such that adzh is a semisimple for h € Hy. Also since
K does not contain elements of the centre of L we have that the adjoint
representation of L is faithful on Hy, hence H; is a toral subalgebra of L.

Let z € C(H,), thenz = y+r, where y € K and r € R. So for h € H;
we have 0 = [h,z] = [h,y] + [h,7]. But the first element is in K and the
second in R. Therefore [h,y] = [h,7] = 0forall h € H;. Since H; is a Cartan
subalgebra of K we have y € H;. It follows that C(Hy) = H; ® Cr(H)).

As in the proof of Lemma 4.14.2 we see that H = C(H;) = Lo(H,).
Hence by Proposition 3.2.5 we have Ny(H) = H. Furthermore, let H*
denote the k-th term of the lower central series of H. Then

H* = [H, & Cr(H1),[H1 ® Cr(Hi), - ,[H1 & Cr(H;), Hi & Cr(H1)]---]]
= [Cr(H1),[Cr(H1), - [Cr(H1),Cr(H1)) -] = Cr(H1)* C RF,

and hence H is nilpotent. Now by Lemma 3.2.2, H is a Cartan subalgebra
of L. O

Corollary 4.15.3 Let H be a Cartan subalgebra of L, then H contains a
Cartan subalgebra Hy of a Levi subalgebra of L. Furthermore, for any such
Hy we have that H = Hy & Cr(H,).

Proof. The first assertion follows from Theorem 4.14.3. Set H' = H; &
Cr(H;). By Proposition 4.15.2, H' is a Cartan subalgebra of L. We have
to show that H' = H. As in the proof of Lemma 4.14.2 we have that
H' = Cp(H1) = Lo(adhy) for a certain h; € H;. Hence hy is a regular
element. So H and H' have a regular element in common and hence they
are equal. O

Now we consider the problem of calculating a toral subalgebra inside
a given Cartan subalgebra H of L. The next proposition yields a way of
doing this. Furthermore it states that a maximal toral subalgebra of H is
“almost” (possibly modulo elements of the centre of L), equal to a Cartan
subalgebra of a Levi subalgebra of L.
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Proposition 4.15.4 Let H be a Cartan subalgebra of L. Let T be mazimal
(with respect to inclusion) among all toral subalgebras of L contained in H.
Then there is a Levi subalgebra K of L and a Cartan subalgebra H; of K
such that adpH; = ad;T and Hy C H. Let x € H and let adpz = s+ n
be the Jordan decomposition of adpz. Then there is an h € H such that
adLh = S.

Proof. By Corollary 4.15.3 there is a Levi subalgebra K of L having a
Cartan subalgebra H; such that H; C H. Furthermore, H = H; & Cr(H,).
Let t € T and write t = h+r where h € Hy and r € Cg(H;). Then [h,r] =0
and adt = adh + adr. Now adh is semisimple and adr is nilpotent (because
the radical R is nilpotent). So ad¢ = adh + adr is the Jordan decomposition
of adt. But adt is semisimple and hence adr = 0. So T consists of elements
h+r for h € H; and 7 lies in the centre of L. Now since 7' is maximal and
commutes with Hy it follows that for all h € H; there is an r in the centre
of L such that h +r € T. We conclude that adT = adH;.

For the last statement write x = h + 7, where h € H; and r € R. Again
we have that adz = adh + adr is the Jordan decomposition of adz. So by
the uniqueness of the Jordan decomposition we infer that s = adh. a

On the basis of Proposition 4.15.4 we formulate an algorithm:

Algorithm ToralSubalgebra

Input: a Lie algebra L of characteristic 0 such that its solvable radical is
nilpotent.

Output: a toral subalgebra T of L such that adT = adH; for a Cartan
subalgebra H; of a Levi subalgebra K.

Step 1 Set R :=SolvableRadical(L), H :=CartanSubalgebraBigField(L), and
C :=Centre(H).

Step 2 Let {h1,... ,hn} beabasisof C. For 1 <1 < m compute the Jordan
decomposition adph; = adps; + adyn; of adph;; where s;,n; € H.

Step 3 Let T be the span of all s; for 1 <4 < m. Return T.

Comments: Let T be maximal among all toral subalgebras of L con-
tained in H. Let H; C H be a Cartan subalgebra of a Levi subalge-
bra of L such that adyH; = ad;T (cf. Proposition 4.15.4). Then since
H = H, & Cr(H,) (Corollary 4.15.3) we have that H; is contained in the
centre of H. The same holds for T because ad; T = adp H;. By Proposition
4.15.4 we see that the elements s;,n; exist. We use the algorithm Jordan-
Decomposition (see Section A.2) to compute the Jordan decomposition of
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adph;. Then by solving a system of linear equations, we find s;. (Note that
s; is not necessarily unique.) Now since adps; and adpn, are polynomials
in adph; without constant term we see that s;,n; commute with everything
that commutes with h;. In particular s;, n; lie in the centre of H.

We show that the span of the s; is a maximal toral subalgebra contained
in H. Let s € H be such that adys is semisimple. Write s = h + r where
h € Hyandr € Cr(H;). Then in the same way as in the proof of Proposition
4.15.4 we see that adyr = 0. Write h = ¥, o;h; for some o; € F. Then
adps =3 aqadphy = Y, azadrs; + Y, asadpn;. The first summand is a
sum of commuting semisimple transformations and hence semisimple itself.
Similarly the second summand is nilpotent. Furthermore they commute
with each other. Hence this is the Jordan decomposition of adys and it
follows that adz (3", a;n;) = 0. So adps = adrs’ for some s’ € T. It follows
that s ¢ T implies that the subalgebra generated by T together with s
contains elements of the centre and is therefore not toral. The conclusion
is that T is a maximal toral subalgebra of H.

Proposition 4.15.5 Let H be a Cartan subalgebra of L. Let T and K be
as in Proposition 4.15.4. Let

L:Ll@...@Ln

be the (collected) primary decomposition of L relative to T. Write L; =
Vi® R;, where R; = RN L; and V; is a complementary subspace. Then there
is a basis of K consisting of elements of the form v; +r;, where v; € V; and
r; € R;.

Proof. Let K = K| & --- & K, be the primary decomposition of K with
respect to T'. Also R = R, ®---® R, is the primary decomposition of R with
respect to T'. Adding these decompositions, and taking the subspaces K;
and R; such that the minimum polynomials of the restrictions of adt to K;
and R; are equal for all ¢ € T, together, we obtain the (collected) primary
decomposition of L relative to 7. Hence, if L; is not contained in R, then
L; = Ky, ® R; and it is seen that V; has a basis consisting of elements of
the form w; 4 r;, where w; € Ky, and r; € R;, and the result follows. O

Let T, L;, V;, R; be as in Proposition 4.15.5. Let H; be a Cartan
subalgebra of a Levi subalgebra K of L such that ad; H; = adpT. We note
the following:

e The centralizer Cr(T') occurs among the primary components of L. It
contains H;. The root spaces of the Levi subalgebra K relative to H;
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are contained in the other primary components. Furthermore, these
root spaces generate K (this follows from Root fact 11). Suppose
that Ly = Cp(T). If for 2 < 1 < n we have that R; = 0 whenever
Vi # 0, then it follows that the subalgebra generated by the V; is a
Levi subalgebra.

o If we are not so fortunate, then in the equation systems (4.16), we can
reduce the number of variables. We start with a basis z1,... ,z, of a
complement in L to R, consisting of elements of the spaces V;. Then
in the iteration of the algorithm LeviSubalgebra we add elements r! to
z;. But by Proposition 4.15.5, we can take these elements from Ry
where k is such that z; € V.

Now we formulate an algorithm for calculating a Levi subalgebra of L,
in the case where the radical R is nilpotent. By Lemma 4.13.1, this also
gives an algorithm for the general case.

Algorithm LeviSubalgebra

Input: a finite-dimensional Lie algebra L of characteristic 0 such that the
solvable radical SR(L) is nilpotent.

Output: a basis of a Levi subalgebra of L.

Step 1 Set T :=ToralSubalgebra(L).

Step 2 Calculate the primary decomposition L &®---@® L, of L with respect
to adT.

Step 3 Calculate spaces V; and R; C Rsuch that L; = V;® R;. If R; =0
for all ¢ such that V; # 0, then return the subalgebra generated by the
Vi.

Step 4 Take bases of the V; together to obtain a basis z1,... ,zm, of a com-
plement in L to R. Iteratively calculate the equation systems (4.16),
where the r} are taken from Ry, where k is such that z; € V. Solve
the systems and return the resulting subalgebra.

Comment: for the calculation of the primary decomposition of L with
respect to T' we can proceed exactly as in the algorithm PrimaryDecompo-
sitionSmallField; the randomly chosen element z in Step 3 is either decom-
posing or good with high probability. We leave the details to the reader.

Example 4.15.6 Let L be the 6-dimensional Lie algebra of Example 4.13.2.
Then z3 is a non-nilpotent element and H = Lg(adz3) is a commutative
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subalgebra, and hence it is a Cartan subalgebra (cf. the algorithm Cartan-
SubalgebraBigField). Now H is spanned by z3,zs; and x3 spans a maximal
torus T. The primary decomposition of L with respect to T reads

L=H®L ®Ly® Ly Ls,

where L; is spanned by z; for ¢+ = 1,2,4,5. The primary components not
contained in the radical are Ly and Ly. We have that LoNR = LyNR = 0 and
hence it immediately follows that they are contained in a Levi subalgebra
of L. So the subalgebra K they generate is a Levi subalgebra. It is spanned
by z9, 24, T3 — %xﬁ.

4.16 Notes

The Lie algebra of Table 4.4 is a symmetry algebra admitted by the heat
equation (see [10], §4.2.4).

The proofs in Section 4.10 (for Lie algebras over modular fields) follow
[76]. Theorem 4.14.3 is a result of Chevalley; for the proof we followed [19].
For a different approach see [34].

The notion of splitting element appears in [27] (see also Appendix A).
There they are elements of a semisimple associative algebra with a maximal
number of eigenvalues. Since splitting elements of Cartan subalgebras in
semisimple Lie algebras satisfy the analogous property, we have adopted the
same terminology. Also elements of an associative algebra with a reducible
minimum polynomial are called decomposable in [28]. In Section 4.11 we
use the term decomposing to denote the same property.

The algorithm in Section 4.13 for calculating a Levi subalgebra using the
derived series of the solvable radical is from [71]. The algorithm LeviSubal-
gebraBylL CSeries is taken from [36]. In this paper it is also proved that this
algorithm runs in polynomial time (since the left hand side of (4.16) does
not depend on the output of the previous round, it can be proved that the
coefficients of the solutions do not blow up). The algorithm for calculating
a Levi subalgebra using the information carried by a Cartan subalgebra is
taken from [34].
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Chapter 5

The classification of the
simple Lie algebras

This chapter is entirely devoted to the classification of the (isomorphism
classes of) Lie algebras with a non-degenerate Killing form defined over a
field of characteristic 0. In this case the non-degeneracy of the Killing form
is equivalent to L being semisimple (Proposition 4.2.2). Therefore in this
chapter we will speak of semisimple Lie algebras, rather than of Lie algebras
having a non-degenerate Killing form.

When classifying Lie algebras we need a tool for deciding whether two
Lie algebras are isomorphic or not. To this end we use structural invariants.
A structural invariant of Lie algebras is a function

f :{ Lie algebras } — { objects }

such that for two Lie algebras Ly, L, we have that L; = Lo implies f{L;) ~
f(Ls), where ~ is some equivalence relation on the image of f. Examples
are the dimension of a Lie algebra (where ~ is just equality of integers), the
solvable radical (where ~ is isomorphism of Lie algebras) and so on. We say
that a structural invariant f is complete if f(L1) ~ f(Le) implies L = Lo.

We prove that the set of roots of a semisimple Lie algebra L forms a
root system. It will be shown that the root system is a complete structural
invariant of semisimple Lie algebras. It follows that we can classify semisim-
ple Lie algebras by classifying their root systems. We do this by attaching
an integral matrix to a root system, called the Cartan matrix. We will show
that the Cartan matrix is a complete invariant of root systems. We then
replace the Cartan matrix by a graph, the Dynkin diagram. In Section 5.9
we show by some elementary considerations that a number of Dynkin dia-
grams cannot exist. In the next section we then exhibit a root system for
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each remaining Dynkin diagram (thereby showing that each such Dynkin
diagram in fact does exist). Subsequently we construct for each root sys-
tem ® a semisimple Lie algebra having ¢ as a root system (Sections 5.12,
5.13, 5.15). This results in an algorithm for constructing these Lie algebras,
given the Cartan matrix of the root system. Other algorithms that we de-
scribe in this chapter include an algorithm for constructing a root system
(given the Cartan matrix) (Section 5.6), an algorithm for calculating a set
of canonical generators (Section 5.11) and an algorithm for constructing
an isomorphism of (isomorphic) semisimple Lie algebras with split Cartan
subalgebras (Section 5.11). In the final section we discuss the algorithmic
problem of determining the isomorphism class of a semisimple Lie algebra
(with maybe a non-split Cartan subalgebra).

5.1 Representations of sly(F)

Let L be a semisimple Lie algebra, and let ® be the set of roots of L with
respect to a split Cartan subalgebra H. Let o € ® then by Root facts
12 and 13 we see that there are z € Ly, y € L_s, h € H that span a
subalgebra K of L isomorphic to slo(F). The adjoint representation of L
induces a representation ady : K — gl(L). In Section 4.10 we made good
use of these representations to investigate the structure of Lie algebras of
characteristic p > 0 having a non-degenerate Killing form. In characteristic
0 however, this tool is even more powerful because the representations of
K have a well determined structure. It is the objective of this section to
explore that structure.

Let F be a field of characteristic 0; and let K be the Lie algebra over F'
with basis {h,z,y} and multiplication table

[h,.’l,‘] = 2z, [h'v y] = -2y, [.T,y] = h,

(see Examples 1.3.6, 4.2.3). Let p : K — gl(V) be a finite-dimensional
representation of K. Then by Corollary 4.6.4 together with Root fact 8
(note that K is semisimple by Example 4.2.3, and that h spans a Cartan
subalgebra) we have that p(h) is a semisimple linear transformation. In this
section we assume that p(h) is split (i.e., there is a basis of V relative to
which the matrix of p(h) is diagonal). Let Aq,..., A, € F be the distinct
eigenvalues of p(h). Then V decomposes as

,
V= @V,\i where V), = {v € V' | p(h)v = \v}.

i=1
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Now let v € V),; then

p(R)p(z)v = p(z)p(h)v + p([h, z])v = (X + 2)p(2)v,
and hence p(z)v € V), 12. A similar calculation shows that p(y)v € Vi, _2.

Definition 5.1.1 Let A be an eigenvalue of p(h). Then the space V) is
called o weight space and the eigenvalue X is called a weight. The elements
of Vi are called weight vectors of weight \. Furthermore, an eigenvalue X
such that V) # 0 and V12 = 0 is called o highest weight of V. Furthermore,
if A is a highest weight, then a non-zero vector v € V) is called a highest-
weight vector.

Since there are only a finite number of distinct eigenvalues (V' being
finite-dimensional), there is an eigenvalue A of p(h) such that A+ 2 is not an
eigenvalue. Hence V has at least one highest weight A. Let vy € V), then
p(z)vy = 0. Furthermore we set v; = p(y)*vg for i > 0.

Lemma 5.1.2 We have p(h)v; = (A — 20)v; and p(z)v; = i(A — i+ LDv;_1.

Proof. This is the same as Proposition 4.10.1. o

Lemma 5.1.3 Let p: K — gl(W) be a finite-dimensional irreducible rep-
resentation of K. Let A be a highest weight of W and vy a corresponding
highest-weight vector. Set v; = p(y)ivy fori > 0. Then W is spanned by the
v; for i > 0; and if we set n = dimW — 1, then A = n and p(h) has ezactly
n + 1 distinct eigenvalues which are n,n —2,n—4,... ,—n+2,—n.

Proof. By Lemma 5.1.2, the space spanned by the v; is a submodule
of W; hence it is equal to W because W is irreducible. As W is finite-
dimensional, there must be an n > 0 such that v,,; = 0. Then W is
spanned by vg,vi,... ,v, so that n = dimW — 1. (Note that the v; are
linearly independent as they are eigenvectors with different eigenvalues).
Furthermore, using Lemma 5.1.2 we calculate

0= p(@)vnr1 = (n +1)(A — n)u,.

Hence A = n and the statement of the lemma follows by Lemma 5.1.2. O

Theorem 5.1.4 Let p: K — gl(V) be a finite-dimensional representation
of K. Then V decomposes as a direct sum of irreducible submodules. Let
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W be an irreducible submodule occurring in this decomposition. Then the
eigenvalues of p(h) restricted to W are n,n—2,... ,—n, where dimW = n+
1. Furthermore, the number of summands in the direct sum decomposition
of V is equal to dim Vy + dim V7.

Proof. By Weyl’s theorem (Theorem 4.4.6) V decomposes as a direct
sum of irreducible submodules. Let W be an irreducible submodule of V'
and let wg € W be a highest-weight vector of W. Set n = dimW — 1.
Then by Lemma 5.1.3, the eigenvalues of the restriction of p(h) to W
are n,n — 2,...,—n. It is clear that each such summand has either a
1-dimensional eigenspace with eigenvalue 1, or a 1-dimensional eigenspace
with eigenvalue 0 (but not both). Hence the last statement follows. O

Remark. Let p: K — gl(V) be a finite-dimensional representation of K.
Then by Theorem 5.1.4, the eigenvalues of p(h) are integers. It follows that
our assumption that p(h) be split is no real restriction because p(h) is al-
ways split.

5.2 Some more root facts

In this section we continue where we left off in Section 4.9. As before ®
is the set of roots of a semisimple Lie algebra L with respect to a split
Cartan subalgebra H. Here we prove some root facts that pave the way
for the (abstract) root systems. We define a vector space over the rational
numbers that contains all roots. This will allow us to attach a root system
(in a Euclidean space over the reals) to a semisimple Lie algebra.

We recall that for « € H* the element h, € H is defined by (4.10).
Furthermore, we have a symmetric non-degenerate bilinear form ( , ) on
H*, defined by (a, 8) = k1(hq, hg).

Root fact 17 Suppose a and (3 are elements of ® with 8 # ta. Let r and
q be (respectively) the largest integers for which B —ra and §+ g are roots.
Then 3+ i« is a root for —r <1 < q and

2(B,a)
— =7 —q.
(o, @)
Proof. Set
b= 2ha
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then, according to Root fact 12 (together with Root fact 13), there are
T € Lo, y € L_, such that z,y, h span a subalgebra K, of L isomorphic to
5[2(F). Set

V= L,B—ra D Lﬁ——(r——l)a S D Lﬂ+qa'

Then by Root fact 1 we have that V is a K,-module. For v € Lg ;, we
calculate:

[h,v] = (B + ia)(h)v = (B(h) + 2i)v.

Hence Lg.;, is a weight space with weight B(h) + 2i. These weights are all
distinct, and it is not possible that both 0 and 1 occur as weights of this
form, so by Theorem 5.1.4 we conclude that V is irreducible.

Let the highest weight of h on V' be m, then by Theorem 5.1.4 the set of

weights of h is equal to {m,m — 2,... ,—(m — 2), —-m}. Therefore we have
B(h) +2¢ =m

and
B(h) —2r = —m

from which it follows that B(h) = r — q. Now since 8(hq) = k1(hg, ko) (cf.
(4.10)), we have that

r-q=pm =722

Furthermore, all weights m — 27 for 0 < § < m must occur, so all 8+ i« are
roots for —r < i < gq. O

Definition 5.2.1 Let o, 3 € ® and let g, be the largest integers such that
B—ra and B+ qga are roots. The string of roots B—ra, ... ,B+qa is called
the a-string containing 8.

Example 5.2.2 Let L be the 10-dimensional Lie algebra of Example 4.9.1.
Let o = (1,0) and 8 = (—1,1). Then the a-string containing § is seen to
be 3,8 + &, 0 + 2. So in this case r = 0 and ¢ = 2. Furthermore from
Example 4.9.3 we see that

1 1 1
ho = EAlla hg = “gAll + 5A22-
And hence
(Bya) = kr( 1A +1A 1A )——1
) =KL 6 11 6 22,6 1) = 6
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Similarly (o, @) = 1/6. It follows that

,8.)

(2, )

=-2=7r—gq.

Root fact 18 Let a € ® be a root. Then no scalar multiple of o is a root
except La.

Proof. Suppose that 8 = Aa is a root, where A # £1. By Root fact 14
we may assume that A is not an integer. However, by Root fact 17 we have

that
2(6,a)

(@) =2\

is an integer. So A = %k, where k is an odd integer. Furthermore, since
also —f is a root (Root fact 5), we may assume that £k > 0. Now let
B—ra,...,B+ qa be the a-string containing 3. Then by Root fact 17 we
see that r - ¢ = k, and in particular § — i« is a root for 0 < i < k +g.
Hence also

1 k—1

—a=0f—-—a

%= P~
is a root. But by Root fact 14 this implies that o = 2%(1 cannot be a root,
which is a contradiction. o

By Root fact 10 we have that ® spans H*, so we can choose a basis
{ai1,...,} of H* consisting of roots. Now set

ybIZ(@(11@"49(2al
which is the vector space over Q spanned by ay,... ,a.

Root fact 19 For o, 8 € H* we have
(@,8) = 3 (@) (B,7).

vEP

Proof. First we recall that («,3) = £1(hq, hg). By (4.9) and Root fact 14
we see that

ha’hﬁ) j{:’y 253(0’7)(ﬂ’7)

ved YEP
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Root fact 20 For o, 3 € ® we have that (o, 5) € Q.

Proof. By Root fact 17 we see that

2(p, 0)

(0,0)

is an integer for all p,0 € ®. So also

4 2a 2a
(@) <(a,a)’ (04701))
2(v,a) 2(v,«a
= Z ((; 2 ((a’y,a)) (Root fact 19)
v€Q

is an integer. It follows that

2e,f) (@)

(O[, /8) = (a, Oé) 9

is a rational number. O

Root fact 21 The vector space Vg contains ®. Furthermore, the bilinear
form (, ) is positive definite on Vg.

Proof. If 8 is an element of ®, then there are unique A1,... ,A; in F such

that l
ﬂ = Z )\1041
i=1

We must prove that A\; € Q for 1 <7 < [. First we have

l

(,3, Oéj) = Z(Ozi,aj))\i forj =1,... ,l.

i=1

This is a system of [ equations for the [ scalars A;. Its matrix ((ay, o))
is non-singular because ai,...,qq is a basis of H* and the form ( , ) is
non-degenerate. Root fact 20 tells us that the entries of this matrix are all
rational, so that the equations have a unique solution over Q. Therefore, 3
is an element of V. For o € V we have by Root fact 19,

(0,0) =D (o)’

y€®
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which is nonnegative by Root fact 20. Furthermore, (0,0) = 0 is equivalent
to (o,7) = 0 for all ¥ € ®. By the definition of (, ) this is equivalent to
~v(hs) = 0 for all v € ®. By Root fact 7 this implies that h, =0, i.e., 0 = 0.
O

5.3 Root systems

In this section we introduce the abstract notion of a root system in a Eu-
clidean space. Subsequently we show that to a semisimple Lie algebra we
can attach a root system and that this root system is a structural invariant
of semisimple Lie algebras.

Let V be a Euclidean space, i.e., a finite-dimensional vector space over
R together with a bilinear form

(,):VxV—R

that is positive definite and symmetric.

Definition 5.3.1 A reflection r in V is a linear map r : V — V that
leaves some hyperplane P pointwise fized, and sends each vector perpendicu-
lar to P to its negative. The hyperplane P is called the reflecting hyperplane

of r.

Let v be a non-zero element of V' and let the map

ry:V —V
be defined as ( )
2(w, v
ry(w) =w— (0.0) v.

Then r, is the identity on P, = {w € V | (w,v) = 0}, i.e., the hyperplane
perpendicular to v. We also have that r, maps every vector perpendicular
to P, to its negative. Hence r, is a reflection of V. Furthermore, it is clear
that all reflections of V are obtained in this way.

For u,v,w € V we have

2(v,u) 2(w,u)
(u,u) B (u,u) u)

(ru(v), ry(w)) = (v - = (v, w). (5.1)

2

Which means that the map 7, leaves the bilinear form (, ) invariant.



5.3 Root systems 151

Definition 5.3.2 A subset ® of V is called a root system if the following
conditions are satisfied:

(R1) @ is finite, spans V and does not contain 0.
(R2) Let a € ® and ) € R; then Mo € ® if and only if A = £1.

(R3) For every a € @, the reflection v, leaves ® invariant.

(R4) For all o, € O the number

is an integer.

Definition 5.3.3 Let ® be a root system in the Euclidean space V. Then
dimV is called the rank of ®.

Lemma 5.3.4 Let ® be a root system and o € ®, then r, is a bijection
from @ onto ®.

Proof. This follows from the fact that r2 is the identity on V. O

Let L be a semisimple Lie algebra with a split Cartan subalgebra H.
As in Section 5.2 we let ® be the set of roots of L with respect to H
and we let Vg be the vector space over Q spanned by ® (cf. Root fact
21). The restriction of the form (, ) (which is defined on H*) to Vg has
values in Q by Root fact 20. Moreover, by Root fact 21 the form ( , ) is
positive definite on V. Set V = Vp @ R, and extend (, ) to V by setting
(v@Aw®pu) = (v,w) ® A for v,w € Vg and A\, g € R Then (, ) is also
positive definite on V. Hence V is a real Euclidean space.

Theorem 5.3.5 Let V,d be as above; then ® is a root system in V.

Proof. (R;) is immediate. (Ry) follows from Root fact 18. (R3) and (R4)
are contained in Root fact 17. o

Example 5.3.6 Let V = R? and put

¢ = {(170)’ (07 1)a (_170)7 (Oa _1)7 (la 1)7 (_1v 1)a ('_L —1)’ (17 —1)}‘
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Then & is the root system corresponding to the Lie algebra L of Example
4.9.1. Set o = (1,0) and 8 = (0,1). Then in the same way as in Example
4.9.5 we calculate

() =(6,8) == and (o,B)=(B,a)=0.

R— S| =

Note that the bilinear form ( , ) is determined by this. Using this we can
check that ® is a root system in V.

Because the number
2(3, )

(e, )

occurs frequently, we abbreviate it by (3, a).

Now let V; and V5 be Euclidean spaces with root systems ®, and &,
respectively. Then these root systems are called isomorphic if there is a
bijective linear map

f Vi — VQ

such that f(®1) = ®2 and (@, 3) = (f(a), f(B)) for all a,B € &;. If &1, &2
are isomorphic, then we write ®; = ®,. The next proposition implies that
the root system is a structural invariant of semisimple Lie algebras.

Proposition 5.3.7 Let Ly and Lo be semisimple Lie algebras over F with
root systems ® and ®q respectively, relative to split Cartan subalgebras H,
Hy. If Ly and Lo are isomorphic then ®, and ®9 are isomorphic.

Proof. For this we may assume that the ground field is algebraically closed.
Indeed, let F be the algebraic closure of F, then H; ®F F is a Cartan subal-
gebra of L; ® p F (Proposition 3.2.3) yielding the same root systems as H; in
L;. Let f: Ly — Lo be an isomorphism of Lie algebras. We recall that all
Cartan subalgebras of Ly are conjugate under the automorphism group of
Ly (Theorem 3.5.1). So after (maybe) composing f with an automorphism
of Ly, we may assume that f(H;) = H,. We can extend f to a map from
H} into H} by setting f(a)(ha) = a(f~(hs)) for @ € H} and hy € Hy. Let
a € ®; and let z € (L), be a root vector. Then [h,z] = a(h;)z for all
h1 € Hy (Root fact 9), so

[F(h), f(@)] = f([h1, 2]) = a(h) f(z) = f(e)(f(h1))f (),

ie., f(z) is a root vector for f(a). In particular f(c) is a root. From this
it also follows that f maps distinct roots to distinct roots so that f is a
bijection from ®; onto ®,.



5.3 Root systems 153

Let V;, V5 be the real Euclidean spaces associated with ®; and ®;. Be-
cause ®; spans V; we can extend f to a linear map from V; into V5. Then
f maps root strings to root strings, and by Root fact 17 it follows that

(o, ) = (f(a), £(B)) for o, f € . O

It turns out that the root system is a complete invariant of semisimple
Lie algebras. This will be shown in Section 5.11.

Let ® be a root system and suppose that ® = ®; U®y where &1, %, C ®
are such that (o, a2) = 0 for all @; € ®; and az € 3. Then we say that
® is the direct sum of ®; and &5 and we write

b=, P,y

A root system ® that cannot be decomposed as a direct sum is called
wrreducible.

Proposition 5.3.8 Let L be a semisimple Lie algebra and let ® be the
root system corresponding to L. Then L is a direct sum of non-zero ideals,
L =J,®Js if and only if ® = &) & $o, where &1 and P2 are the root
systems of J1 and Jo respectively.

Proof. Let H be a fixed split Cartan subalgebra of L.

First suppose that L = J; @ Jo. Then by Theorem 4.12.1, H = H, @ Ho,
where Hy, is a Cartan subalgebra of J,. Now let @1 = {ay,... , (s} be the
set of roots of J; relative to H; and ®; = {f1,... ,0:} the set of roots of
Jo relative to Hy. We extend the functions «; and f; to functions on H
by setting c;(h1 + h2) = a;(h1) and ﬂj(hl + hy) = ﬂj(hg) for hy € Hy and
ho € Hy. Then

L=H1€BH2€BLQIEB"'@LQSEBLﬂl@-'-EBLgt

is the root space decomposition of L relative to H = H; @ Hy. Let o; € 9
and §; € P9, then we claim that o; + 8; cannot be a root. Suppose it is a
root, then it equals some oy, or some [;. Suppose that o; + 85 = oy for an
ay € ®1. Choose an hy € Hy such that 3;(hs) # 0, then

0 = ay(ha) = a;(he) + Bj(h2) # 0,

a contradiction. In the same way «; + [; cannot be equal to a ;. By an
analogous argument it can be shown that ¢; — §; cannot be a root. Now by
Root fact 17 we see that (o, ;) = 0. Hence & = &1 @ P.

On the other hand, suppose that ® = ®; @ ®3 where ®; = {a1,... , 05}
and @ = {f1,... ,B}. Furthermore (o, 3;) = 0 for oy € @1 and B; € P2.
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Also (a; + Bj, 04) # 0 so that a; + §; € P, and (a; + G5, ;) # 0 from which
a; + fB; & ®1. It follows that «; + f; is not a root for a; € @1 and §; € 5.

Let J; be the subalgebra generated by the Lo, for a; € ®,. Let Hy be
the subspace of H spanned by the ho, (which are defined by (4.10)). Then
by Root facts 1, 6, 9, 11 we have that

J1=H1@La1®"'®Las-

Furthermore, because o; + f; is not a root we have that [Lg, Ji] = 0 and
Ji is an ideal of L. Let Jy be the subalgebra generated by Lg, for §;, € ®.
Then

Jo=Hy®Lg @--- D Lg,,

where Hy is spanned by the hg].. Also Jy is an ideal of L and L = J; + Js.
Furthermore, [Jy, J2] = 0 (note that [hq,,zs,] = Bj(ha;)Ta; = (Bj, i)za;, =
0). Therefore J; N J» is contained in the centre of L which means that it is
zero. The conclusion is that L = J, & Js. a

5.4 Root systems of rank two

In the previous section we associated a root system to a semisimple Lie alge-
bra. We showed that the root system is a structural invariant of semisimple
Lie algebras. In this and subsequent sections we prepare the way for a clas-
sification of all root systems (which will be performed in Section 5.9). For
the moment we abandon all thought of Lie algebras and investigate abstract
root systems in their own right.

Let @ be a root system in the Euclidean space V over R with positive
definite bilinear form ( , ). For v € V we define the norm ||v|| of v by
setting [|v]| = /(v,v). As V is a Euclidean space we have the inequality of
Cauchy-Schwarz:

[(v,w)| < ||v||||w| for all v,w € V. (5.2)

Let v,w € V. Then the angle between v and w is defined to be the real
number 6 € [0, 7] such that

(v, w)

llvllflw]”

(Note that by (5.2) this number lies between —1 and 1.) Now Let o, 5 € @
and let # be the angle between them. Then

280 I8
o) =Taa) = 2al

cosf =
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So (e, BY{(B, @) = 4 cos? § which must be an integer because {a, 3) and (3, )
are integers. Now, because 0 < cos?f < 1, we have that (o, 3) and (3, @)
have the same sign and are equal to 0, £1, +2 or +3. So Table 5.1 gives the
only possibilities for the angle between o and 8 when a # £ (this rules
out 6 = 0,7) and ||B]| = ||e].

(,8) [ By [ 0 [ 18I/l
0 0 % | undetermined
1 1 z 1
3
-1 -1 %’f 1
1 2 ?gr 2
-1 2 |3 2
1 3 |z 3
-1 3 | & 3

Table 5.1: Possible angles § between roots o and f3.

Proposition 5.4.1 Let a and 3 be two roots with a # £8. If (o, ) > 0
then oo — 0 is a root, and if (o, 8) < 0 then a + 3 is a root.

Proof. If (a,3) > 0 then also {(a,3) > 0. Now Table 5.1 implies that
(a,8) =1 or (B,a) = 1. In the first case we have rg(a) = o — 3 lies in
®. On the other hand, if (3,a) = 1 then by the same argument we have
B —ca € ®. Hence also a — 3 = —(8 — ) lies in ®. Finally, if (¢, 3) < 0
then we apply the above argument to —f. o

Let o, € ® We recall that the string of roots 8 — re, 8 — (r —
a,...,B8+qa is called the a-string containing 3. The first two parts of the
next proposition have been proved for root systems arising from semisimple
Lie algebras. But since we are dealing with abstract root systems that may
not be connected to any Lie algebra, we have to prove them again.

Proposition 5.4.2 Let o, € ® be two roots such that o # 5. Let r,q
be the largest integers such that B —ra and B+ qa are roots. Then

1. B+ ia are roots for —r < i < g,
2. T_q:</87a>;

3. the length of the a-string containing ( is at most 4, t.e., r+q+1 < 4.
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Proof.

1. If r = ¢ = 0, then there is nothing to prove. So suppose that not
both r and ¢ are 0. Suppose further that there is an integer j with
—r < j < q such that 8 + jo is not a root. Set 0 = 8 — ra. Then
there are integers 0 < s < t such that ¢ + sa and o + ta are roots
while 0 + (s + 1)a and o + (¢ — 1) are not roots. Proposition 5.4.1
implies that (o + sa, @) > 0 and (0 + te, @) < 0. This means that

(B,a) + (s —r)(a,a) >0 while (8,a)+ (t —r)(a,a) <0.

Multiplying the first inequality by —1 and adding we get (t—s)(a, a) <
0. But this is a contradiction since a # 0.

2. The reflection r, adds an integer multiple of « to a root, hence the a-
string containing (3 is invariant under r,. Furthermore, since r, : ® —
® is a bijection (Lemma 5.3.4), it also maps the a-string containing 3
bijectively onto itself. The reflection r, acts as follows:

ra(8 + ia) = ro(B) — ia.

From this it follows that the pre-image of § — ra must be § + ga.
Hence

B —ra=rq(B+qa)=(B+qa) — (B+qa,ax)a.
And this is equivalent to r — g = {3, a).

3. By 2. we have that {3+ qo, a) = (3, ) +2g = ¢+ r. So by Table 5.1
we see that ¢+ 7 =0,1,2,3. Hencer+q¢+1 < 4.

Example 5.4.3 We can use Table 5.1 to classify all possible root systems
® of rank 2. For that choose two linearly independent roots o and 3 from
® in such a way that (8, @) is minimal. Then (8, ) can only be 0, -1, -2
or -3, and for each of these values we have a unique root system (up to
isomorphism). They are shown in Figure 5.1. We observe that the root
system of type Bs is the one connected to the Lie algebra of Example 4.9.1.
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A1 X A1 Ag

B2 G2

Figure 5.1: All possible root systems of rank 2.

5.5 Simple systems

In this section we will make a first step towards classifying root systems. We
define a special type of basis consisting of roots, called simple system. Then
in the next section we put the integers («, 3) for a, § in a simple system into
a matrix, called a Cartan matrix. We will show that a Cartan matrix is a
complete structural invariant of root systems. This will allow us to classify
root systems by classifying Cartan matrices.

Let ® be a root system in the Euclidean space V. We say that a partial
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order < on V is a root order if
1. every root a € ® is comparable to zero (i.e., either @ > 0 or o < 0),

2. ifv € Vissuch that v > 0, thenfor A€ R, Av > 0if A > 0 and Av <0
if A <0,

3. ifforu,v €V wehaveu < v,thenu+w<v+wforallw eV,

Let < be a root order. We note that if v < 0, then by adding —v and
applying 3., we get —v > 0.

To give an example of a root order we first choose a basis {vy,... ,v}
of V. Let v € V, then v can be written as a linear combination of the basis

elements:
!

v = Z/\ivi where A\,... , Ny €R.
i=1

Then v > 0 if the first non-zero \; is positive. Also for v,w € V we set
v > w if v —w > 0. We have that > is a total order on V' and it is clearly
a root order. We call < the lexicographical order relative to vy,... ,v;.

Now let < be a root order. A root a € ® is said to be positive if o > 0,
and negative if « < 0. By &' we denote the set of positive roots and by
®~ the set of negative roots. Since roots are either positive or negative,
® =&+ Ud~. Note that &~ = -+,

Definition 5.5.1 A root a is said to be simple if v is positive and o cannot
be written as a sum a = 3+ v where 8,y € ® are both positive.

Example 5.5.2 Let V = R? and let

¢ = {(1’0)’ (0’ 1)7 (—1,0), (0’ _1)5 (17 l)a (_1’ 1)7 (—la _1)’ (la —1)}

be the root system of Example 5.3.6. Set @ = (1,0) and 8 = (0,1) and let <
be the lexicographical order relative to «, 3. Then the positive roots are seen
to be (1,0), (0,1), (1,1), and (1, —1). Furthermore, (1,0) = (1,—1) +(0,1)
and (1,1) = (1,0) + (0,1). The other two positive roots cannot be written
as sums of positive roots; so the simple roots are (0,1) and (1, —1).

Lemma 5.5.3 Let a and 8 be simple roots. If & # 3 then a — 3 is not a
root and (a, 3) < 0.

Proof. Suppose that a—( is a root. If it is positive then a = (a— )+ and
« is not simple. On the other hand, if it is negative, then 8 = —(a— )+«
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is not simple. And we have obtained a contradiction. The last assertion
now follows from Proposition 5.4.1. a

Lemma 5.5.4 Let a1,...,04 € V be such that o; > 0 and (o4,05) <0 for
1 <i# 5 <n. Then these vectors are linearly independent.

Proof. Suppose that there exists a relation Y, \;a; = 0. Without loss of
generality we may assume that A\; # 0. After dividing by A; we obtain a

relation
¢
o = Z Hi Gy
i=2

Now let A; be the set of the «; such that u; > 0, and Ay the set of those
a; such that p; < 0. Set

o= Z wio; and p= Z 178

;€D a; €EAs

Then oy = o + p. Furthermore, o # 0 because a3 > 0. Now (o,p) =
> Vij(04, o) where v;; < 0, and because (o, o) < 0 we have (o, p) > 0. So

(al’g) = (U’ 0) + (,0, U) > Oa

but also (a1,0) = ZaieAl pi(ar, ;) < 0. And from the assumption that
the a; are linearly dependent we have derived a contradiction. O

Proposition 5.5.5 Let A = {a1,...,q;} be the set of all simple roots.
Then A is a basis of V. Moreover, if a is a positive root, then

l
o = Z k,‘ai
=1

where the k; are non-negative integers.

Proof. The fact that A is linearly independent follows from Lemmas 5.5.3
and 5.5.4.

We prove that each positive root is a non-negative integral combination
of the simple roots. Let o > 0 and suppose we already know the result for
all roots < «a. If « is simple, then there is nothing to prove. Otherwise
o = 4y where 3 and v are positive roots. Then o — 3 > 0 so that a > 3
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and likewise @ > 7. By induction, 8 and v can be written as linear com-
binations of the simple roots with non-negative integral coefficients. Hence
the same holds for a. o

Corollary 5.5.6 Let 3 be a positive root that is not simple. Then there is
a simple root o such that B3 — « is a root.

Proof. Let A be the set of all simple roots, and suppose that (3,a) <0 for
all @« € A. Then by Lemma 5.5.4 A U {#} is linearly independent which is
impossible because by Proposition 5.5.5, A is a basis of V. Hence there is
an a € A such that (3,) > 0. Then by Proposition 5.4.1, 8—a is aroot. O

Corollary 5.5.7 Let A = {ay,... ,q} be the set of simple roots. Let 3 be
a root and write 8 =Y, kjo;. Then k; is an integer for 1 < i <1 and either
all ki >0 or all k; < 0.

Proof. This follows at once from Proposition 5.5.5. a

Let A be the set of all simple roots relative to some root order <. Then
A is called the simple system relative to <, of the root system ®. By
Proposition 5.5.5 it forms a basis of V. We remark that ¢ has no unique
simple system of roots. Indeed, A depends on the order <. In general a
different order yields a different simple system.

By the next result we have that the statement of Corollary 5.5.7 char-
acterizes simple systems.

Proposition 5.5.8 Let aq,... ,0q € ®, where | is the rank of @, be such
that every element of ® can be written as a Z-linear combination of the o;
such that all coefficients are either non-negative or non-positive. Then there
exists a root order < such that {a1,... ,a;} is the simple system relative to
< of ®.

Proof. Since every root is a linear combination of the elements of A, we
have that A is a basis of V. Now let < be the lexicographical order of V'
defined by this basis (ie., v = ), Aoy > 0 if the left-most non-zero ); is
positive). Then a root 8 = 3, k;q; is positive if k; > 0 for all i. So A
consists of positive roots, and clearly no a; € A can be written as a sum of
positive roots. Hence A is the simple system of ® relative to <. 0O

We end this section with a definition that will be useful later on.
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Definition 5.5.9 Let 8 be a positive root and write 3 as an integral linear
combination of simple roots,

!
B=Y ki
i=1

where all k; > 0. Then the number ht(3) = 22:1 k; is called the height of
B.

5.6 Cartan matrices

An [ x l-matrix with integer coefficients is called a Cartan matriz if there
are vectors vy, ... ,v; in a Euclidean space V' such that

e C(i,7) = (vs,v;) for 1 < 4,5 <land
o (v,v;) <0forl<is#j<l

We note that the vectors vy, ... ,v; are necessarily independent by Lemma
5.5.4. The diagonal entries of a Cartan matrix are (v;,v;) = 2. Further-
more, since (v;,v;) < 0 for ¢ # j we have that the off-diagonal entries are
non-positive. Because (v;,v;) is an integer, by the same argument as used
in Section 5.4 we see that (v;,v;) =0,-1,-2, -3 for ¢ # j.

If we permute the vectors v1, ... ,v;, then also the corresponding Cartan
matrix will change. Let C’ be a second Cartan matrix, then C” is said to be
equivalent to C (we write C' ~ C') if a permutation of the vectors vy, ...,
carries C to C'.

Let ® be a root system in the Euclidean space V and let A = {o,... , oy}
be a simple system of ® (relative to some root order). Then Lemma 5.5.3
implies that the matrix

C= ((ai’ aj>)§,j:1

is a Cartan matrix; it is called a Cartan matrix of the root system @ rel-
ative to A. The objective of this and the next section is to show that the
root system ® and the Cartan matrix C of ® determine each other upto
equivalence.

Example 5.6.1 Let ¢ be the root system of Example 5.5.2. Set a; = (0,1)
and az = (1,—1); then as seen in Example 5.5.2, Ay = {a1, a2} forms a
simple system for ®. By computing the various root strings involving oy



162 The classification of the simple Lie algebras

and ag and using Proposition 5.4.2, we see that the Cartan matrix relative

to A is
2 -1
e-(% 7).

However, if we set 51 = ap and B2 = a; and Ay = {f1, B2}, then the Cartan

matrix relative to As is
2 =2
(7).

And these are equivalent Cartan matrices: C; ~ Co.

A Cartan matrix C together with the corresponding simple system A =
{e1,...,q} determines the root system ® completely. In order to show
this we give an algorithm for determining ® from C and A. We recall that
the height of a root is defined in Definition 5.5.9.

Algorithm CartanMatrixToRootSystem

Input: a simple system A = {a,...,o} of the root system ® and an
[ x l-matrix C that is the Cartan matrix of ® relative to A.
Output: the set of vectors ®.

Step 1 Set ®* := A and n:=1.
Step 2 For all v € ®* of height n and for all &; € A we do the following:
1. Write

l
y= Z kia. (5.3)
i=1
2. Determine the largest integer r > 0 such that v — ra; € ®7.

3. Set t
g=r-) kC(i,j).
=1

4. If ¢ > 0 then set &1 := &t U {y + a;}.

Step 3 If in Step 2 ®* has been enlarged, then set n := n + 1 and return
to the beginning of Step 2. Otherwise return ®*+ U —&*.

Proposition 5.6.2 Let & be a root system and let A be a simple system of
® with Cartan matriz C. Then CartanMatrixToRootSystem(A, C) returns
the set ®.
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Proof. Let 3 be a positive root. By induction on ht(3) we prove that after
ht(3) — 1 rounds of the iteration, the set ®* will contain 8. For ht(3) = 1
this is clear since the roots of height 1 are the simple roots in A.

Now suppose that ht(8) = n + 1 and ®* already contains the positive
roots of height < n. Then by Corollary 5.5.6, we see that 8 = v + a;
where v € @ is of height n and o; € A. So at some stage in Step 2, v
and «; are considered. Since vy + «; is a root we have that v # ;. We let
Y—raj,...,7+qa; be the aj-string containing v. As vy # a;, in (5.3) there
is some k; > 0 with ¢ # j. Hence all elements of the a;-string containing -y
are positive roots by Corollary 5.5.7. So by induction, the first part of the
string, v — ray, ... ,7y is contained in ®*. Hence in Step 2.2 the maximal
integer r is determined such that v — ra; is a root. Then by Proposition
5.4.2 we have

l i

g=r—(n,05)=r = ki{ai,05) =1 = > _kiC(i,3).

i=1 =1

Now since 8 € ®, we have ¢ > 0 and § will be added to ®+.

Also it is clear that only roots are added to ®*. Therefore after a finite
number of steps, ®* will contain all positive roots. Hence ® = ®Tu—~&*. O

Corollary 5.6.3 Let ®; and ®, be root systems in the Euclidean spaces Vi
and Va respectively. Let Ay and Ay be simple systems of respectively @, and
By and let C1 and Cy be their respective Cartan matrices. Then Cy ~ Co
implies ®; = Ps.

Proof. Let Ay = {oy,...,} and Ay = {f1,...,0:;}. Because C; ~ (-
we may suppose that A, has been permuted in such a way that (o, o) =
(Bi,B5) for 1 < 4,5 < I. Let f : V3 = V; be the linear map defined by
f(ai) = B;. By the algorithm CartanMatrixToRootSystem we see that

! !
Zkiai € P = Zkzﬂi € ®s.
=1 i=1

In particular, the root strings in ®; and ®» match. So by Proposition 5.4.2,
we have that f is an isomorphism of root systems. O
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5.7 Simple systems and the Weyl group

The objective of this section is to show the converse of Corollary 5.6.3:
namely that two isomorphic root systems have equivalent Cartan matrices.
First we show that two simple systems A, and Ay of the same root system
® can be mapped onto each other by an automorphism of . The desired
result will be an easy consequence of this. In the proof we make use of
a group of automorphisms of ®, called the Weyl group. This group is of
paramount importance in the theory of semisimple Lie algebras. At the end
of the section we exhibit a convenient set of generators of it.

First we introduce one more example of a root order. For that let vy € V
be such that (vg, ) # 0 for all @ € . As such a vy must lie outside a finite
number of hyperplanes, such vy evidently exist. Now for u,v € V such that
(u,v0) # (v,v0) we put u < v if (u,v9) < (v,v9). It is immediate that this
is a root order. We say that < is the root order defined by vy. As seen
in Section 5.5, this order defines a simple system. Conversely, let A be a
simple system of @ (relative to some root order). Choose vy € V such that
(a,v9) > 0 for all @ € A (from the non-degeneracy of ( , ) it follows that
we can choose vy such that, for example, (a,v9) = 1 for all @ € A). Then
by Corollary 5.5.7 it is clear that (vo, ) # 0 for all « € ®. Hence vy defines
a root order. It is straightforward to see that A is the set of simple roots
relative to this order.

Let @ € ® and consider the reflection 7,. By Lemma 5.3.4 together
with (5.1) we see that r, is an automorphism of the root system ®. Also
products of reflections are automorphisms of ®. So it is natural to consider
the group generated by all reflections r,, for « € ®. This group is called the
Weyl group; it is denoted by W(®).

Since an element of W(®) is entirely determined by the way in which
it acts on @, the Weyl group W(®) can be viewed as a subgroup of the
symmetric group on ®. In particular W(®) is finite. Furthermore, because
the generators of W(®) leave the inner product invariant by (5.1), the same
holds for all elements of W(®).

Now we fix a root order < and let A be the simple system of ®, relative
to <.

Lemma 5.7.1 Leta € ® be a simple root then ro permutes the set @\ {a}.

Proof. Let 3 be a positive root distinct from a. We must prove that r4(5)
is again an element of ®* \ {a}. By Corollary 5.5.7 we have

,B:Zkyy

v€A
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where all £, are non-negative integers. Because ( cannot be a scalar multi-
ple of o, some k., for a vy # « must be positive. Now ro(8) = 8 — (6, a)o;
hence the coefficient of g in 74(8) still is k,. So 74(8) has at least one
positive coefficient, and therefore it is a positive root. Also r4(8) # a be-
cause k., > 0. O

Set

1
:525.

Bedt

The vector p € V is called the Weyl vector.

Corollary 5.7.2 Let « be a simple root. Then ro(p) =p— .

p:%a—ké Z B.

gedt\a

Proof. First we have

Hence the corollary follows from the fact that r, maps a to —a and per-
mutes the other positive roots (Lemma 5.7.1). O

The next theorem implies that the Cartan matrix does not depend on
the simple system chosen.

Theorem 5.7.3 Let Ay and As be two simple systems of . Then there is
a g € W(®) such that g(A;) = A,.

Proof. Let vg € V be such that (a,vg) > 0 for all « € A;. Then as seen at
the beginning of this section, Ay is the simple system of ® relative to the
order defined by vy. Let p be the Weyl vector corresponding to A (i.e., half
the sum of the roots that are positive relative to the order that defines Ay).
Now choose a g € W(®) such that (g(vg), p) is maximal. (Because W(®) is
finite such a g exists.) Then for & € As we have

(9(vo), p) = (rag(vo), p)

9(w),ra(p)) (by (5.1) and rj =1)
g(vo),p — a) (by Corollary 5.7.2)
(

9(va),p) — (g(v0), @)

Hence (g(vp), ) > 0 for all @ € A,. Furthermore, (g(vg), ) = 0 for some
o € Ay implies that (vg, g7 () = 0 which is impossible because (vy, 3) # 0
for all # € ® by the choice of vg. So the order defined by g¢(vg) yields the

(
= (
= (
= (
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simple system Ay. But for 8 € A; we have (g(8),g9(vo)) = (B,v0) > 0.
Hence g(A;) = As. o

Corollary 5.7.4 Let ®, and ®2 be root systems in the Fuclidean spaces
Vi and V, respectively. Let A1 and Ag be simple systems of ®, and @
respectively and let Cy and Co be their respective Cartan matrices. Then
C1 ~ Cy if and only if &1 = O,

Proof. One direction was performed in Corollary 5.6.3. For the other di-
rection, suppose that ®; = ®,. Let f : Vi — V5 be an isomorphism of
root systems (i.e., a bijective linear map such that (f(a), f(8)) = (a, )
for @, 8 € ®). Then by Theorem 5.7.3, after composing f with a suitable
element of W(®;3) we may suppose that f(A;) = Ag. Hence C; ~ Cy. O

Let A be a fixed simple system of ® and let & € A. Then the reflection
7o is called a simple reflection. We show that the Weyl group W(®) is
generated by the simple reflections. For that let Wy(®) be the subgroup of
W(®) generated by all simple reflections.

Lemma 5.7.5 Let 8 € ® be a root; then there exist « € A and g € Wy(P)
such that g(a) = B.

Proof. First we suppose that 3 is a positive root. We use induction on the
number ht(3). If ht(8) = 1, then 8 € A and we can take g = 1. Suppose
that ht{8) > 1. Then there is an & € A such that (a, 3) > 0 (otherwise the
set A U {8} is linearly independent by Lemma 5.5.4; and this is absurd).
Then also (5,a) > 0. Set v = ro(8) = 8 — (B, a)a; then 7 is a positive root
and ht(y) < ht(8). So by induction there is a h € Wy(®) and an o’ € A
such that v = h(a’). Hence 8 = r4(7) = roh(a’) and we take g = rqh.
Now if 3 is negative, then —f3 is positive and hence —8 = g(«) for some
a € A and g € Wy(®). So 8 = g(—a) = gra(a) and the result follows. O

Theorem 5.7.6 The Weyl group W(®) is generated by the simple reflec-
tzons.

Proof. Let § € ®, then by Lemma 5.7.5 there is a ¢ € Wy(®) such that
9(B) = a for some simple root @ € A. So rq = 14 = grpg~! (the last
equality can be established by a straightforward calculation, using the fact
that g leaves the inner product ( , ) invariant). Hence rg = g~lrag € Wy(®)
and the result follows. O
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5.8 Dynkin diagrams

In Section 5.7 we showed that a Cartan matrix is a complete invariant
of root systems (Corollary 5.7.4). In particular, a classification of Cartan
matrices will yield a classification of root systems. In this section we replace
the Cartan matrix by a graph, called a Dynkin diagram. We show that a
Cartan matrix and the corresponding Dynkin diagram determine each other.
Finally in the next section we will classify Dynkin diagrams.

Let C be a Cartan matrix and let aq, ... , o be elements of a Euclidean
space V such that C(i,7) = (a;, o) and (04,;) < 0 for i # j. We define
the Dynkin diagram of C to be the graph on [ points with labels a1, ... , ;.
Two points o; and «; will be connected by (i, oj){a;, 0;) = 0,1,2,3 lines.
If the number of such lines is greater than one, then the two elements o
and o; have unequal length. In this case we put an arrow pointing from the
longer to the shorter vector.

Example 5.8.1 Suppose that the Cartan matrix corresponding to the vec-
tors aq, a9, a3,y is

2 -1 0 O
-1 2 =2 0
C= 0 -1 2 -1
O 0 -1 2
We see that
2(0z,a3)
o9, a3) = ——-2= = =2,
(o2 00) = 4 )
2(@3,0[2)
oz, 09) = — = —1.
(a3, a2) o)

Hence a9 is longer than o3. From this it follows that the Dynkin diagram
of C is

O——0C——10—0

oy 02 a3 Q4
We show that from the Dynkin diagram we can recover the Cartan
matrix. Let C be a Cartan matrix corresponding to the vectors ay,... , 0.
Let ¢+ # j € {1,...,l}. Then we know that (o, ;) < 0. Let k be the
number of lines connecting «; and «; in the Dynkin diagram. If & = 0,
then (o4, ;) = 0, and if £ = 1, then (o, ;) = —1. If £ > 2, then «; and
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a; have unequal length. From the diagram it can be determined which of
the two is the shortest. Suppose k¥ = 2; then (o, ;) is —1 or —2. If o
is shorter than «;, then (a;,a;) = —1. On the other hand, if ¢; is longer
than o;, then (q;, ;) = —2. By a similar reasoning we see that we can
determine (¢, @;) in the case where k = 3. So from the Dynkin diagram we
can determine the off-diagonal elements of the Cartan matrix. Furthermore
the diagonal elements are all equal to 2. The conclusion is that the Dynkin
diagram determines the Cartan matrix.

Now let ® be a root system with Cartan matrix C. Let D be the Dynkin
diagram of C; then we also say that D is the Dynkin diagram of ®. Since
the Cartan matrix is a complete invariant of root systems and the Cartan
matrix and the Dynkin diagram determine each other we see that a root
system has a uniquely determined Dynkin diagram. By Proposition 5.3.8,
a direct sum decomposition of a semisimple Lie algebra corresponds to a
direct sum decomposition of its root system. By the next result, this in
turn corresponds to a decomposition of the Dynkin diagram into connected
components.

Lemma 5.8.2 Let ® be a root system with Dynkin diagram D. Then ® =
@1 ® D, if and only if D can be decomposed as the union of two components
D1 and Dy that are not connected and such that D; is the Dynkin diagram
of ®; fori=1,2.

Proof. First suppose that ® = ®; ® ®;. Let Ay = {e,... ,0s} and
Ay = {B1,...,B:} be simple systems of ®; and ®; respectively. Then
A = A; U Aj is a simple system of ®. Let D be the Dynkin diagram of ®.
Then the vertices of D are labelled ay, ... , a4, 01, ... , Bt. Furthermore none
of the a; can be connected to a 3;. Hence D is the union of two components
D; and D, that are the Dynkin diagrams of ®; and ®; respectively and D
and Dy are not connected.

Now suppose that D is the union of two components Dy, D that are
not connected. Let A be a simple system of ®. Then A = A; U Ay, where
Ay, As are non-empty and (o, 3) = 0 for @ € A; and 3 € A;. Let C be the
Cartan matrix corresponding to D. We apply the algorithm CartanMatrix-
ToRootSystem on A and C. Then the positive roots that are constructed are
all of the form 27 k,7y, where all y € A or all ¥ € Ay. Hence @ = &, © 2
where ®; is the root system with simple system A; for ¢ = 1,2. O
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5.9 Classifying Dynkin diagrams

In this section we classify all possible Dynkin diagrams, thereby classifying
all possible root systems. By Lemma 5.8.2 we may restrict our attention
to connected Dynkin diagrams. We then obtain a classification of all root
systems that are not direct sums. All other root systems are direct sums of
these.

For simplicity we first drop the arrows in the Dynkin diagram. The
resulting graph is called a Cozeter diagram. We will determine all possible
Coxeter diagrams and than add the arrows on again.

Let C be a Cartan matrix corresponding to the vectors ay,... ,q; in the
Euclidean space V. Then for 1 <14 # j <[ we have

4(ai,aj)2
(e, 05) (e, 05)
Now we replace a; by v; = A\;a; where )\; € R is a positive number such
that v; has length 1. Then we have the simpler conditions

(’Ui,’l)i) = 17 4(Uia'uj)2 = 03 17233, and (Uiavj) S 01 (54)

for 1 <4 # 35 <1l A setof vectors A = {v1,...,v} in V is called an
admissible configuration if the conditions (5.4) are satisfied. The Coxeter
diagram of an admissible configuration A = {vy,... ,v} consists of [ points
labelled vy,... ,v;, where the points v; and v; are connected by 4(v;,v5)?
edges. It is clear that the Coxeter diagram of the original Cartan matrix C
is the same as the Coxeter diagram of A.

We now prove a series of lemmas that will lead to the classification of the
Coxeter diagrams of admissible configurations. The first of these lemmas is
clear without proof.

=0,1,2,3, and (a,q;) <0.

Lemma 5.9.1 Let T be the Cozeter diagram of the admissible configuration
A. Let A be a subset of A and let T’ be the diagram obtained from I' by
deleting all points corresponding to the elements that are not in A’ and all
lines incident with them. Then A’ is an admissible configuration and I" is
its Coxeter diagram.

Lemma 5.9.2 Let A = {v1,...,u} be an admissible system. Then the
number of pairs v;,v; such that ¢ < j and (v;,v;) # 0 is less than [.
Proof. Set v = 22:1 v;, then

l

0< (’U,’U) = Z(Ui’vi) +2Z(’U1‘,Uj) =[+ Z2(vi,vj).

i=1 i<j i<j
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Now if (v;,v;) # 0, then 2(v;,v;) < —1. It follows that there are less than [
such pairs. O

Lemma 5.9.3 Let T be the Cozeter diagram of the admissible configura-
tion A. Then T contains no cycle (where a cycle is a sequence of points
Viys--- Vi, such that v;; is connected to v;, ., and v;, to v;, ).

Proof. By Lemma 5.9.1 a cycle is the Coxeter graph of an admissible con-
figuration (drop all points not in the cycle). But this Coxeter graph violates
Lemma 5.9.2. O

Lemma 5.9.4 Let I be a Cozeter diagram and v a point of I'. Let k be the
number of edges incident with v. Then k < 3.

Proof. Let uy,... ,us be the points connected to v. Then (u;,u;) = 0 for
i # j because of Lemma 5.9.3. Let W be the space spanned by v, u1, ... , uk.
Extend the set {u,... ,ux} to an orthonormal basis {ug, us,... ,ux} of W.
If v is orthogonal to ug, then v is in the space spanned by {ui,...,ux}

which is not the case. Hence (v, ) # 0. Furthermore v = Zfzo(v, U; )y SO

that
k

k

1=(0,0) = Y (v,u)? = (v,u0)* +Y_(v,u)”.
=0 i=1

From this it follows that 3 (v,u;)? < 1 and hence 35, 4(v,u;)? < 4.

We observe that 4(v,ui)2 is the number of lines connecting v and u;. The

result follows. O

Lemma 5.9.5 The only connected Cozeter diagram that contains a triple
edge is
G2t =0

Proof. This is immediate from Lemma 5.9.4. O

Lemma 5.9.6 Let A be an admissible configuration with Cozeter diagram
I'. Let uy,...,ur be elements from A that form a simple chain in T' (that
is u; s connected to u;41 by a single edge for 1 < i < k—1). Set
A = {Zle uwi} UA\ {u1,... ,ux}. Then A’ is an admissible configuration.
Furthermore, the Cozeter diagram of A’ is obtained from T’ by shrinking the
simple chain uy,... ,ur to a point.
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Proof. From Lemma 5.9.3 we have that (u;,u;) =0for 1 <i<j <k

unless j =7 + 1 when 2(u;, u;41) = —1. Set u = Ef:l u;, then
k
(u) =) (uius) + 3 2uiyu) =k~ (k—1) = 1.
=1 1<J

Also an element w € A’ is connected to at most one element u; from

the set {uj,...,ux} because by Lemma 5.9.3 there are no cycles. Hence
(u,w) = (u,u;) and 4(u, w)? = 4(u;,w?) = 0,1,2,3. The last statement is
immediate. a

Lemma 5.9.7 A Cozeter diagram does not contain a subdiagram of one of
the following forms:

. o&=—o—0o— -+ —0o—D0

Proof. Suppose one of these is a subdiagram of a Coxeter diagram. Then
by Lemma 5.9.1 this is a Coxeter diagram in its own right. Now we use
Lemma 5.9.6 to shrink the simple chains to a point and obtain that one of

=

is a Coxeter diagram. However, none of these can be a Coxeter diagram
due to Lemma 5.9.4. a

Lemma 5.9.8 Let [ be a Cozeter diagram of an admissible configuration.
If T is connected, then I' is one of
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A o—o0— —0—0
Lp.9): o—o0— - —o0—oc—0o—0—  —0—=0
Uy Uo Up—-1 Up Vq ’Uq_l (] v

O—O0— —0—0
Uy U2 V2 U1
T(p,q7):
wa
wi
Ga: =0

Proof. If T contains a triple edge, then I" must be G2 by Lemma 5.9.5. So
we may suppose that I does not contain a triple edge.

Suppose that I' contains a double edge. Then it contains no other double
edge by Lemma 5.9.7. Also by the same lemma it does not contain a “node”,

i.e., a subdiagram of the form O—L—C Hence T must be an L(p, q).

Now we suppose that I" does not contain triple nor double edges. If I'
contains a node, then by Lemma 5.9.5 it contains only one node. Hence I

isaT(p,q,r).
On the other hand, if I’ does not contain a node, then it must be an A4,
by Lemma 5.9.3. o

Lemma 5.9.9 Let I’ be a Cozeter diagram of type L(p,q). Then I is one
of

'Bl:Cl: O— O e — (00

* Fy: o o—0—0
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Proof. Set u = ¥ iu; and v = Y7_, ju; (where u;,v; are as in the
diagram of L(p,q)). For ¢ < j we have that (u;,u;) = 0 unless j = ¢+ 1
when 2(u;, u;1) = —1. Hence

P

(u,u) = ZiQ(UuUi) + Ziﬂ(uz',uj) =
1=1 1<J
P p—1
9 " o plp=1) plp+1
Zz —Zz(z-i—l)—p— 5 = 5
1=1 =1
And similarly
1
(v,v) = alg + )

2

Also 4(up, vy)? = 2, whence

2.2
pq
(U,U)2 = p2q2(upavq)2 = 2

Now we use the inequality of Cauchy-Schwarz, (u,v)? < (u,u)(v,v) to ob-
tain

P’ P+ D) alg+ 1)
2 2 2

After dividing by pq and moving things around we see that this is equivalent
to (p — 1){g — 1) < 2. Since both p and q are positive, this gives that either
p = q = 2 (leading to Fy) or one of p,q is equal to 1 and the other may be
chosen arbitrarily (all yielding a diagram of type B; = Cp). a

Lemma 5.9.10 Let I" be a Cozeter diagram of type T(p,q,r), where p,q,r
are integers > 2 (if one of them equals 1, then T is of type A;). Then T is
one of
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o
Oo—o0
o)
o)

Er: o0—o0
Es: o—o——o—&—I—o——o
Proof. Set

p-1 q-1 r—1
U= Ziui, v = Zjvj, w = kak.
i=1 j=t k=1

Then u, v, w are linearly independent and z is not in the span of u, v, w (since
the set of all u;, all vj, all wy together with z is linearly independent). Let W
be the space spanned by z,u,v,w and chose a zp € W such that {29, u,v, w}
is an orthogonal basis for W. Expressing z as a linear combination of basis
elements we find

— (ZO,Z) (ua z) (’I),Z) (’U),Z)
(z0, 20) 0 (u,u) (v,v) (w, w)

So that
_(20,2) | (w,2)° | (1,2)° | (w,2)?

1=(z,2)= .
52 = Gz T ) T o) T w,w)

From which it follows that
(v, 2)? | (v,2)?  (w,2)?

(wu) * (v,0)  (w,w)

<1 (5.5)
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Now by an analogous argument as the one used in the proof of Lemma 5.9.9,
we have that (u,u) = p(p —1)/2. Also from the Coxeter diagram T'(p, q,r)
we have that (u,z)? = (p — 1)?/4. Hence

(w2 1, 1
oy ~ 2 )

and similarly

ool e 22 _lg 1)
2 q

Combining this with (5.5) we get

1 1 1
—+-+->1 (5.6)
p q T

Without loss of generality we may assume that p > ¢ > r > 2. Then
% < % < + and hence (5.6) implies 2 > 1, which implies r = 2. Now (5.6)
reduces to

+->

-
=
DO =

Since % > % we have % > % From this it follows that ¢ = 2, 3.

If ¢ = 2, then we see that ;7 > 0 which holds for all p > 2. In this case
T is of type Dj.

If ¢ =3, then % > % and p = 3,4, 5, leading to Fg, E7, Es. O

The Coxeter diagrams A;, together with those of Lemmas 5.9.9 and
5.9.10 and G are all possible Coxeter diagrams. To obtain the list of all
possible connected Dynkin diagrams, we have to put the arrows back on in
the cases By, Cy, Fy, Go. Since the diagrams of Fy and G2 are symmetric, it
does not matter in which direction we point the arrow (both directions will
yield equivalent Cartan matrices). However, in the case of By, C}, the two
directions are not equivalent. The conclusion is that Table 5.2 contains the
list of all possible connected Dynkin diagrams. We have labelled the points
of the diagrams in Table 5.2 in order to fix a Cartan matrix corresponding
to each diagram.
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Ap:

Cr:

FEy:

Fy:

o—O 0—0
1 2 -1 1
o—o— —Ca =0
1 2 -1 1
o—0
1 2 -1 1

II
o—o— O0—0——0
1 2 1-3 1-2 1-1

2I

O—O0——O0—0—0
1 3 4 5 6

=0
I—%

e
=0
INTe)

3 4
QI

Oo—0 O O O—0O0—=O
1 3 4 ) 6 7 8
O——C—=0—0
1 2 3 4
=0
1 2

Table 5.2: The connected Dynkin diagrams.

5.10 Constructing the root systems

In the previous section we determined a list of possible root systems. That
is to say: we took the set of all possible Dynkin diagrams and weeded out
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those that by some elementary observations could not exist. It is however
not yet clear that for every remaining Dynkin diagram D there exists a root
system having D as Dynkin diagram. It is the objective of this section to
establish this.

Let D be a Dynkin diagram from Table 5.2, and let C be the correspond-
ing Cartan matrix. The obvious way to show that there is a root system
having D as its Dynkin diagram is to apply the algorithm CartanMatrixTo-
RootSystem to C and prove that the output is a root system. However, it
is a somewhat tedious job to describe the output of this algorithm for each
Cartan matrix. Instead of this we will for each type describe a Euclidean
space and a root system inside this space of that type. From this it will
follow that by the algorithm CartanMatrixToRootSystem we can construct
the root systems.

Let X be one of A,B,C,D,E,F,G and ] > 1 an integer (and | = 6,7, 8
fX=EIl=4ifX =Fand!l=2if X = (). Then we say that X|
is a simple type. Let V be a Euclidean space with inner product (, ). A
linearly independent set of vectors A = {a,... ,qq} C V is said to be a
simple system of type X, if

2(0[7;, Ol])

(@) =Cy for1<4,5 <],
‘ARt

where C is the Cartan matrix corresponding to the Dynkin diagram of type
X;.

Proposition 5.10.1 Let X; be a simple type. Then there exists a root
system @ of type X|.

Proof. For each simple type X; we give an explicit construction of a root
system @ inside a Euclidean space W having a Dynkin diagram of type X;.
First we construct the root systems of types A;, B;, D; and G3. In each
case we work in a real Euclidean space V = R* with basis v,... ,v, and
the usual inner product (defined by (v;,v;) = d;;). In each case we define
a lattice £ in V (i.e., the Z-span of a basis of V). Then a root system &
in a subspace W of V is constructed as the set of all elements of £ having
prescribed lengths (and maybe satisfying some auxiliary conditions). First
we give some general considerations that will help to show in each case that
the conditions (R;)-(R4) of Definition 5.3.2 hold for .

Since £ is a lattice in V' there can be only a finite number of elements
of £ at a given distance to the origin. Hence ® is finite. It will always be
clear that ® spans W and does not contain 0; hence we have (R;).
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Let o € ® and suppose that 3 = Aa € ® for a certain A € R. Then
(8,8) = A(a,a). From the requirements on the lengths of the elements
of ® it will follow that A is either +1 or irrational. If A is irrational, then
Aa € L. So the only multiples of o that also lie in ® are ta, and (R3) is
satisfied.

In each case we will prove (R4) by individual considerations. But then
the reflection r, maps ® into £. Furthermore, the image of an element of
® under a reflection will again have the prescribed length by (5.1). Then
(R3) will easily follow.

Ay weset V.=R* and £ = {SH ks | ki € Z). And @ = {v =
Yikivi € L] (v,v) = 2and Y, k; = 0}. Then it is easily seen that &
consists of the elements +(v; —v;) for 1 <4 < j <1+ 1. A simple system is
given by A = {v; — vy,v9 — v3,... ,v; — v;41}. For the space W we simply
take the span of ®. Since the inner products of elements of ® are integral
and (v,v) =2 for v € ® we have (R4). Set vy = vy +v2 + -+ + vi41, then
v € @ if and only if (v,v) = 2 and (v,v9) = 0. Now suppose v,w € ®, and
let 7, be the reflection with respect to v. Then as seen above r,(w) has the
required length. Now since r,(w) is a linear combination of v and w, also
(ry(w),vg) = 0. So we also have (R3).

B;: weset V=R and W = V. The lattice £ is spanned by the basis
vectors vy,...,v;. And ® = {v € L | (v,v) =1,2}. Then ® consists of the
vectors £(v; £ v;) for 1 < i < j <[ together with v; for 1 <i <[ A
simple system is A = {v; —vy,... ,v_1 —v;, v }. In this case (R3) and (R4)
are clear.

Dy;: here V. =R and W = V. The lattice £ is defined as for B;. In this
case ® = {v € L | (v,v) = 2}, consisting of £(v; £ v;) for 1 <¢ < j < 1.
A simple system is given by A = {v; —vy,... ,v1-1 — v, U1 + v;}. Again
(R3) and (Ry4) are clear.

Go: put V =R3 and vg = v; + v; + v3. The lattice is

{Zk —u; | ki eZ}

Furthermore, ® = {v € L | (v,v) = ,2 and (v,v9) = 0}. The space W will
be the span of ®. Then

1

== {—\}—ﬁ(vl — v9), —3(1}2 —v3), %(vl —1)3)} U

1 o .
+ {%(vz + v —2ug) | 4,5,k dlstmct} .
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A simple system is A = {%(vl — 1), %(—vl + 209 — ’113)}. In this case
(Ry) is easily checked and (R3) follows as in the case of A;.

Now we turn our attention towards Eg and Fy. (Since Fg 7 are subsys-
tems of Eyg in a natural way (cf. Lemma 5.9.1), this also gives a construction
of these root systems.) In both cases we construct a set () that is the Z-
span of a linearly dependent set of vectors. So in these cases () is not a
lattice. The root systems will again be defined as subsets of () consisting of
vectors of given lengths. Then analogous considerations to the ones applied
for Ay, By, D;, Gy will prove that ® is a root system.

Eg: here V=R and W = V. Set vy = %(vl +vo + -+ + vg), and

8 8
Q= {kg’Uo + Zkivi | ki € Z and Zki is even} .

i=1 i=1

And @ ={ve Q| (v,v) =2} Let v = Z?:o k;v; € @, then
i 1
2= = ;4 =ko)%
(U,’U) ;(kz + 2 0)

Set m; = k;j+ko/2 for 1 <1 < 8. If kg is even then all m; are integers. Hence
the possibilities for v are +(v; £ v;) for 1 <7 < j < 8. (It is straightforward
to check that these elements lie in ().) Furthermore, if kg is odd, then all
m; € Z + % It is seen that m; = :i:% for 1 < 7 < 8. This means that
ki = %(ez — ko) where ¢; = +1. Hence

8 1 8
Zki = —4ky + 5261
=1 =1

So in order that v lie in Q we must have S5, ¢ = 0,44, +8. But this is
the same as saying that the number of +1’s must be even. So @ contains all
vectors +(v; £ v;) for 1 <4 < j < 8 together with the vectors ﬂ:%(ivl +uot
.-+ vg) where the number of pluses is even (and hence so is the number
of minuses). A simple system is given by A = {%(vl — Vg — V3 — Vg — Vg —
Vg — U7 + Ug), V1 + U2,Vp — U1,V3 — V2,V4 — U3, V5 — U4, Vg — Us, V7 — Vg}. It
is straightforward to check that all inner products of elements of A are
integral. Hence the same holds for the elements of ®. So we have (Ry).
Then also (R3) is immediate.

Fy: weset V=R and W = V. Analogously to the previous case we
put vg = %(vl + vg + v3 + v4) and now

4
Q = {kovo + Zkiﬂi | k; € Z}.

i=1
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Furthermore ® = {v € Q | (v,v) = 1,2}. It is easily seen that ® consists
of the vectors wv;, v; + v; and %(ivl + v9 + v3 = v4). As simple system
we can take A = {vg — v3,v3 — v4, V4, %(vl — vy —v3 —vy4)}. Then (R4) and
(R3) are proved in the same way as for Fg.

Finally we construct C;. For that let ¥ be the root system of type B;
as constructed above. Then we set

Properties (R;) and (R3) are immediate for ®. Also by a straightforward
calculation we see that for o, 8 € P,

2(8,0) _ 2(B,a)

() (B,B)
So (R4) is satisfied. Finally (Rj3) is also settled by a short calculation. A
simple system of @ is A = {%(vl —v9),... ,%(vl_l —y),v_1+u}. O

For algorithmic purposes we want to be able to construct root systems
abstractly. This means that given a type X; we want to be able to construct
a vector space W and a set of vectors in W that form a root system in W,
without every time having to perform the explicit construction of Proposi-
tion 5.10.1. The next two Corollaries show that the only thing we have to
do is call CartanMatrixToRootSystem.

Corollary 5.10.2 Let X; be a simple type. Let W be a vector space over R
of dimension l. Let A be a basis of W ; then there is a bilinear form on W
that makes W into a Euclidean space and such that A is a simple system of
type X;.

Proof. Suppose A = {aq,... ,o}. A bilinear form f on W is determined
by its values f(aj, ;) for 1 < 4,5 < l. Now by Proposition 5.10.1 there
exists a Euclidean space Wy and a root system ®; C Wy of type X;. Let
(', )o be the positive definite bilinear form of Wy and let Ay = {61,... , 0}
be a simple system of ®;. Then we define a bilinear form ( , ) in W by
setting (i, a;) = (B, Bj)o. Since the form ( , )o is positive definite, this
also holds for the form we defined. Hence W is a Euclidean space and A is
a simple system of type X;. a

Corollary 5.10.3 Let Xlii for 1 < i < m be simple types. Let ® be a root
system that is the direct sum of m irreducible root systems ®; of types Xli,»
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Let C be the Cartan matriz of ® and setl = 1;. Let W be a vector space
of dimension | over R with basis A = {ay,...,u}. Then the procedure
CartanMatrixToRootSystem finishes on the input C,A. Furthermore, there
is an inner product on W such that (o4, ;) = C(3, 7).

Proof. The fact that CartanMatrixToRootSystem(C, A) finishes follows from
the fact that it finishes when A is replaced by a simple system of ® (having
Cartan matrix C). The second statement follows from Corollary 5.10.2. O

5.11 Constructing isomorphisms

In this section we clear up a point that has been left in the dark since
Section 5.3; we prove that two semisimple Lie algebras having isomorphic
root systems are isomorphic. The results of this section will provide a
straightforward algorithm for constructing such an isomorphism.

An isomorphism of two Lie algebras L; and Ly maps a basis of L onto a
basis of Ly. Moreover, the isomorphism is determined by the images of the
basis elements of L;. So instead of constructing a linear map between L,
and Lo that is an isomorphism, we may as well construct bases By, Bz of L)
and L9 such that the linear map that sends B; onto B is an isomorphism.
Our plan is first to give a method for constructing a canonical basis of a
semisimple Lie algebra, and then to prove that canonical bases provide an
isomorphism.

Let L be a semisimple Lie algebra with root system & relative to the
split Cartan subalgebra H. Let A = {a,... ,¢} be a simple system of ®.
Then by Root facts 12 and 13 there are elements h; = (2/(w;, @;))ha, (Where
hq, is defined by (4.10)), and x; € Lq,, yi € L_q, stch that [z;,y] = hs,
[hi, z;) = 2z; and [h;, y;] = —2y;. The elements h;, z;,y; for 1 <1 < satisfy
the following commutation relations:

[hi
[z
[
[

The first relation follows from Root fact 6. The second one follows from the
fact that a; — «; lies in % = ® U {0} only when ¢ = j (Lemma 5.5.3). The
last two relations follow from the definition of h; together with the definition
of the bilinear form ( , ).

Gl
Pl
<37

(5.7)

zaa])fl:z

alaa])yl for1 <45 <1l

0
] = dih
(a
(=
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Definition 5.11.1 Let L be a semisimple Lie algebra with root system ®.
Let A = {ai,... ,aq} be a simple system of ®. A set of non-zero elements
{zi € Lo, yi € L_g,,hi € H | 1 <1 < I} satisfying the commutation
relations of (5.7) is called a set of canonical generators of L.

By the discussion above we see that a set of canonical generators is
guaranteed to exist. The following algorithm provides a straightforward
method for constructing such a set.

Algorithm CanonicalGenerators

Input: a semisimple Lie algebra L, together with a simple system A =
{e,... ,a} of the root system of L.
Output: a canonical set of generators of L.

Step 1 For 1 < ¢ <! do the following

Step 1.1 Choose a non-zero z; € Ly, .
Step 1.2 Determine an element y; € L_,, such that {[z;, y], ;] = 2z;.
Step 1.3 Set h; = [z, y4].

Step 2 Return {z;,y;,h; | 1 <1 <}

Comments: By Root fact 12 we have that thereisa y; € L_,, satisfying
the requirement of Step 1.2. Furthermore such an element can be found by
solving a single linear equation in one variable. Consequently the algorithm
terminates and the output consists of non-zero z; € Lo, ¥; € L_,, and
h; € H such that [z;,y;] = h; and [h;,z;] = 2z;. We have to show that
the other relations of (4.14) are satisfied as well. For this let Z; € L,,,§; €
L_ai,f_zi € H be a canonical set of generators. Then since all root spaces
are l1-dimensional, there are \;, u; € F such that Z; = A\zy, §; = piy; and
consequently h; = \;p;h;. By (5.7) we know that [h;,7;] = (o, ;)T for
1 <¢,j <. But this is equivalent to

Ajpglhg, x5] = (o, o) ;.

Setting ¢ = j we see that A;ju; = 1. But then all relations of (5.7) are au-
tomatically satisfied by the z;,y;, h;. Hence the output is a set of canonical
generators.

Now we have a lemma that will imply that a set of canonical generators
{hi,zi,yi | 1 < i <1} generates the whole Lie algebra L.
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Lemma 5.11.2 Let o, 8 € ® be such that a + 8 € ®. Choose h,z,y € L
(where £ € Lo, y € L_o, h € H) such that [h,z] = 2z, [h,y] = —2y,
[z,y] = h (¢f. Root fact 12). Let x5 € Lg be a non-zero root vector. Then
[z, zg] # 0. Furthermore, let § —ra, ..., + qo be the a-string containing
B. Then [y, [z, zg]] = q(r + 1)zg and [z, [y, zg]] = (¢ + 1)rzp.

Proof. Let K, be the Lie algebra spanned by h,z,y. Let V be the space
spanned by all Lgyx, for —r < k < ¢g. Then as seen in the proof of Root
fact 17, V is an irreducible K,-module. Choose a non-zero vp € Lg4e and
set v; = (ady)’wp for i > 0. Then vy is a highest weight vector of weight
(B4 qa)(h) =29+ B(h) = g+ r (where the last equality follows from Root
fact 17). Also vg spans Lg and hence zg is a non-zero multiple of vg. By
Lemma 5.1.2 we see that adz(vq) = ¢(r + 1)vs~1, which is non-zero because
g > 0. So also adz(zg) # 0. Furthermore ady(adz(vg)) = ¢(r + 1)vy and
adz(ady(ve)) = adz(vgs1) = (¢ + 1)rv,. Since zg is a multiple of v, the
same holds with z3 in place of v,. |

Now we are in a position to construct our basis. Fix a set of canonical
generators h;, z;,y; of L. Let 3 € ® be a positive root. By Corollary 5.5.6
together with a straightforward induction on ht(3) we see that 8 can be
written as a sum of simple roots

B=ai + -+

such that a;, +- - -+a;,, is aroot for 1 < m < k. We abbreviate the repeated

commutator [z;, , [Zi,_,, [ - [%i, %3] - - - )] bY [24y5 - - - »%i;). Then by Lemma
5.11.2, [z;,,... ,zi,] is non-zero and hence spans Lg. Now for every positive
root 8 € ®T we fix a sequence i1,... i such that 8 = a5, + -+ ¢;, and

a; + -+, is aroot for 1 <m < k. Then it follows that the elements

h’l’“' 7hl7[mika"' 7$i1]a[y’ika"' ayil]

span L. We say that these elements form a canonical basis of L with respect
to the simple system A and the choice of sequences i1,... ,ik.

We introduce the following notation. If I = (71,... ,ix) is a sequence of
integers, then we set

[ = [xlkv 7‘7;1'1]’ and Yyr = [ylka 7yi1]'

Also we set a; = a;; + -+ + o, . Now suppose that I = (i1,... ,%) and
z € L commutes with z;,, ie., [z,z,] = 0. Write [z,z7] = [z, [z;,,27]]
where J = (i1,...,i¢_1). Then by a straightforward application of the
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Jacobi identity we see that [z,z;] = [z;,,[z,2zs]]. And in general, if =
commutes with z;,,z;,_,...,z;,, then
[z,21) = [, %y, -« Tiy ] = [Bigs oo 2 Tigy & Tig_ys - Ty - (5.8)

Lemma 5.11.3 Let C be the Cartan matriz of ® with respect to A. Let
I = (i1,...,ik) be a sequence such that a;, + --- + «;,, 15 a root for 1 <
m < k. Let J = (41,--- , k) be a second sequence such that ay = cy. Then
z; = Azy, where A € Q depends on C only. And a similar statement holds

for yr and yy.

Proof. First we remark that since the expression of « as a linear combina-
tion of the simple roots is unique, the sequence J can be obtained from [
by permuting the entries.

We prove the result by induction on k. If kK = 1, then we can take A = 1.
So suppose that k > 1. If o, +- - -+, is not a root for a certain m between
1 and k, then we set A = 0. This can be checked from the knowledge of the
Cartan matrix only (by using the algorithm CartanMatrixToRootSystem).
Hence the lemma, also holds in this case.

Now we suppose that all @, +--- + ¢, are roots and we set s = ig. If
also jr = s, then we set I' = (41,... ,ix_;) and likewise J' = (j1,... ,Jk-1)-
By induction we know that z;; = Az where A € Q depends on C only.
And therefore also z; = Az ; and we are done with this case.

Now suppose that j, # s. The index s must appear in J and we select
the right-most 7, such that j, = s. Then because [ys,z;] = 0 if ¢ # s,
by (5.8) we have that [ys,z5] = [2j,,... ,Zjps1» [Us) [Ts: Tk ]]] Where K =
(Jn-1,--- ,J1)- Since ay is a root, Tk is a non-zero root vector in L, . Let
0K —TQs, ... ,aK +qas be the ag-string containing a . We note that ¢ > 0
since j, = s. Then by Lemma 5.11.2 we have [y,, [zs, zk]] = ¢(r+1)zk and
therefore, [ys,zs] = q(r + 1){zj,,... ,Zjuir1>Tju_rr--- 125 ). Furthermore,
[@s, [ys, z4]] = (¢ + 1)r'zy, where ay — Tag, ... ,ay + ¢ is the a,-string
containing ay. Now 7’ > 0 since oy — a; = ay — «; is a root. Hence

. T
= 10 y ,:E pnd
J (q/ + 1)’,'/ S yS J
q(r +1)
_(q’ " 1)T,[xs,xjk,...  Tjnirs Ljnrre - 2 Tjy] = VEM
where M = (j1,.-. ,9n—1,ns1,--- ,Jjk,S). Note that the integers q,7,¢', 7’

can be determined from the Cartan matrix (cf. the algorithm CartanMa-
trixToRootSystem), so we have the same for v. Now ajs = o and the last
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index in M equals s. Hence by the first case above z; = pxps where p
depends on C only. It follows that z; = Az; with A\ = p/v.
For y; and y; we can proceed with exactly the same arguments. O

Proposition 5.11.4 Let L be a semisimple Lie algebra with root system ®.
Let A = {ay,... ,oq} be a simple system of ® with Cartan matriz C. Let
hi,...  hy,zr,y1 be a canonical basis of L. Then the structure constants of
L with respect to this basis are rational numbers depending on C only.

Proof. First [h;,h;] = 0 and for I = (iy,...,1) we have [hj,z7] =

an:l(ozim,aj)zl, which is easily proved by induction on k. Similarly

k
[hjs yr] = = 3ot (@i, @)y
We consider the remaining commutators [z7,zs], [zr,ys] and [yr,ys)-
The first and the third are similar so we deal with the first two only. Since

ada;l = [adxik, [adxik_l, [ e [adxiz, adxil] e ]]]

we see that adz; is a linear combination of terms of the form adz;, - - - adzs;, .
Hence it is enough to prove that adz,(z;) and adzs(ys) are linear combi-
nations of basis elements, where the coeflicients are in Q and depend on C
only.

Concerning the first commutator, we determine from C whether ay + a;
is a root. If yes, then we set K = (J,s) and [z5,25] = Azx where A € Q
depends only on C by Lemma 5.11.3. Otherwise [z5,z 7] = 0.

For the second commutator suppose J = (j1,... ,jn) and we use induc-
tion on n. If n = 1, then we know from (5.7) that [zs,y;,] = &5, hs. Now
suppose n > 1 and let r be such that j, = s and j.11,... ,Jn # s (if there is
no such r, then [z,,y;] = 0). Set K = (J1,...,7r—1), then using (5.8) and
the Jacobi identity we see that

[msvyf] = [yjn7 s s Yhegs [xs, [ysayK']H
= [yjn’ SRRy ) IR [ysv [Sﬂs,me + [yjn’ e Y [[$s7y3]1yK]]'

The first term of this sum is dealt with by the induction hypothesis. For the
second term we note that [z, y,] = hs and [hs,yk] is a linear combination
of yar with rational coefficients determined by the Cartan matrix. i

Algorithm IsomorphismOfSSLieAlgebras

Input: semisimple Lie algebras Ly, Ly with root systems ®, and ®4 respec-
tively, and an isomorphism ¢ : ®; — ®s.

Output: an isomorphism ¢ : L1 — Lo.
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Step 1 Compute a simple system A; = {ay,... ,a;} of $.

Step 2 For every positive root 3 € ® fix a sequence Iy = (i1,... ,ix)
such that a;; + - + a;, isaroot for 1 < m < k and 8 = ;.
Compute a set of canonical generators by CanonicalGenerators(L;, Ay).
Let hy,... by, zpy,y1, for B € @ be the corresponding canonical
basis.

Step 3 Set Ay = {¢(a1),... ,¥(ay)}. Then Ay is a simple system of ®,.
For v € ®F set I, = Iy-1(,)- By CanonicalGenerators(Ls, Ay) calculate
a set of canonical generators of Ly. Let hY,... ,hj, :v’17,y’[7, for v € ®F
be the canonical basis of Ly corresponding to As.

Step 4 Return the linear map ¢ : Ly — Ly that sends h; to hf, 2, to xl’w(s)
and yr, to yllww) for B € ®}.

Comments: Since 1) is an isomorphism of root systems it maps a simple
system A onto a simple system As. Also the Cartan matrix of ®; relative
to A; is exactly the same as the Cartan matrix of @2 relative to A,. Hence
by Proposition 5.11.4, the structure constants of L; with respect to the
canonical basis are exactly the same as the structure constants of Ly with
respect to the canonical basis. Hence ¢ is an isomorphism.

Corollary 5.11.5 Let Ly and Ly be semisimple Lie algebras with root sys-
tems ®1 and ®9 of rank . Let Ay and Ay be simple systems of ®1 and $o
respectively. Suppose that the Cartan matrices of ®1 with respect to Ay and
@, with respect to A are identical. Then there is a unique tsomorphism
é: Ly — Lo such that ¢(h;) = hi, ¢(z:) = 7} and ¢(y;) =y, for 1 <4 <,
where {h;,z;,y; | 1 < 4 < 1} and {h},z},y, | 1 < i < 1} are canonical
generators, respectively of Ly with respect to Ay and Lo with respect to As.

Proof. Since the set {h;,zi,y; | 1 < i <1} generates L; there can only be
one isomorphism satisfying the stated relations. The existence follows from
applying IsomorphismOfSSLieAlgebras. (.

Corollary 5.11.6 The root system is a complete invariant of semisimple
Lie algebras.

Remark. For an example of the use of the algorithm IsomorphismOfSSLieAl-
gebras we refer to Example 5.15.11.
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5.12 Constructing the semisimple Lie algebras

In Sections 5.9 and 5.10 we showed that the indecomposable root systems are
exactly those with a Dynkin diagram occurring in Table 5.2. In the previous
section we proved that the root system of a simple Lie algebra is a complete
structural invariant. The next question is whether for each indecomposable
root system there exists a simple Lie algebra. For this several constructions
have been proposed. First of all it is possible to argue case-by-case, i.e., to
go through the list of Table 5.2 and construct a simple Lie algebra for each
diagram. It is for example possible to prove that sl ;(F') is a simple Lie
algebra with a root system of type A;, and 09,41 (F), spo(F), 09i(F') are of
types Bj, C; and D respectively. For proofs of these results we refer to [48].
A second idea is to give a uniform construction of all simple Lie algebras by
generators and relations. This will be described in Section 7.11.

A third approach to the problem is to construct a Lie algebra starting
from the root system. From the root system it is easy to see what the
dimension of the simple Lie algebra L must be and many products of basis
elements are determined by the root system. Root facts 1 and 11, for
example, determine commutation relations in L. After collecting as many
obvious commutation relations as possible one can try to complete this to
a multiplication table of L. This is the approach that we take here.

The idea is straightforward: given a root system ® of rank [ we define a
Lie algebra L that is the sum of a Cartan subalgebra H of dimension [ and
1-dimensional root spaces. More precisely, let A = {a1,... ,a;} be a simple
system of ®. Let H be an [-dimensional vector space with basis {hy,... , b}
For a € ® we set hy = Zi:l kih; if a = Zé:l k;c;. Furthermore, for a € ®
let L, be a l-dimensional vector space spanned by z,. Then we set

L=He@ L.
acd

The multiplication table of L relative to the basis {hi,... ,h}U{zs | @ € ®}
is given by

[hi,h;] =0 for1<4,j<I,
[hi, 2o] = (@, a)zq for1 <i<land a € ®,

[Ta, T o] = — he for o€ @, (5.9)

(a,a)
[Za,zg] =0 for @, € ® such that a+ 8 ¢ ® and 8 # —a,
(o, 28] = Noptorp for a,8 € ® such that a+ 3 € ®.
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Where N, g are constants that are to be determined. We note that if
there is a semisimple Lie algebra L having ¢ as root system, then L has
basis relative to which the multiplication table is as (5.9). Indeed, let L be
a semisimple Lie algebra with a split Cartan subalgebra H and root system
®. Let A = {aj,... ,oq} be a simple system of ®. For 1 < i < [ set
hi = hq, (where hq, is defined by (4.10)). Furthermore, by Root fact 12
together with Root fact 13, we can choose o, € L, and z_, € L_, such
that (24, Z_a) = (2/(a, @))he and after taking —z, instead of z, we get the
relation of (5.9). Then Root facts 1, 6 and Equation (4.10) together with
the definition of the bilinear form on H* imply the other brackets.

In the sequel we determine a choice for the numbers N, g for each root
system of simple type X;. Then we check that the multiplication table (5.9)
satisfies the Jacobi identity. This leads to the conclusion that (5.9) defines
a Lie algebra. We then still need to show that this Lie algebra is simple.
For that we use the following criterion for semisimplicity.

Proposition 5.12.1 Let L be a finite-dimensional Lie algebra and let H C
L be a split Abelian subalgebra such that adh is a semisimple linear trans-
formation for h € H. For a € H* set

Ly, ={z € L|adh(z) = a(h)z for h€ H}.

Let 8% = {a € H* | Ly # 0}. Then

L= @La.

acdl

Set & = ®°\ {0}. Suppose that ® = ~®, L, is l-dimensional for « € D,
[LayL_o]) # 0 for a € ® and H = Ly. Then L is semisimple and H is a
Cartan subalgebra of L.

Proof. Since H = Ly = Lo(H), we have that H is a Cartan subalgebra
by definition. Now let N C L be the nilradical of L. Then N is invariant
under adH. Hence N splits as a direct sum of simultaneous eigenspaces of
the adh for h € H. So

N=(HnN)oPELaNN).
acd

First we note that adyz is nilpotent for all z € N (Proposition 2.2.2).
Hence, because adh is semisimple for h € H we have that HN N = 0. Since
L, is 1-dimensional, we have L,NN =0 or L, C N. Suppose that L, C N
for an o € ®. By a straightforward application of the Jacobi identity we see
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that [[Ly, L_o], H] = 0, implying [Lg, L-o] C H. And since [Lg, L_g] # 0
this implies that H NN # 0, which is a contradiction. It follows that N = 0,
and as seen in Section 2.6, the solvable radical of L is 0 as well. a

Corollary 5.12.2 Let ® be a root system and let L be a Lie algebra with a
multiplication table of the form (5.9). Then L is semisimple. Furthermore,
the root system of L is isomorphic to ®.

Proof. The fact that L is semisimple follows immediately from Proposi-
tion 5.12.1. As before A = {a1,...,¢} is a simple system of ®. Let H
be the Cartan subalgebra spanned by {hi,...,h}. Then the z, are root
vectors relative to H and the corresponding root is the function given by
h; = (o, ;). Denote this function by /. Then the set of all &' for & € &
is a root system because L is semisimple. Furthermore, the map « — ¢/ is
linear and maps root strings to root strings. So it is an isomorphism of root
systems. (W

5.13 The simply-laced case

In this section we determine a choice for the constants N, g in the case
where the root system has a Dynkin diagram that contains only simple
edges. Such root systems are said to be simply-laced.

Let ® be an irreducible simply-laced root system; ie., ® is of type
A;, Dy, Eg, E7 or Eg. Let A be a simple system of ®. Then because the
Dynkin diagram of @ is connected we have that all & € A have the same
length. Since multiplying the inner product by a positive scalar changes
nothing, we may assume that (o, a) =2 for all a € A.

Lemma 5.13.1 Let ® be a simply-laced root system with simple system A.
Suppose that (a,a) =2 for a € A. Then (3,8) =2 for all B € ®.

Proof. This follows immediately from Lemma 5.7.5 together with (5.1). O

Proposition 5.13.2 Let ® be a simply-laced root system with a simple sys-
tem A such that (a,a) =2 for alla € A. Let o, 8 € @ be such that o # £f3.
Then a+ 3 € @ (respectively a — 3 € ®) if and only if (o, 3) = —1 (respec-
tively (o, 8) = 1).
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Proof. If (a,3) = —1 then by Proposition 5.4.1 we see that a + 3 € ®.
For the other direction suppose that « + 8 € ®. Let 8 — ra,... 8+ qo
be the a-string containing 5. Then ¢ > 1. Set v = § — ra. Then v,y +
a,...,7+ (r+ g)a is the a-string containing 7. By Proposition 5.4.2 we
infer that —(r +¢q) = (v, ). If {y,a) = £2,43, then v and « have unequal
length, which is excluded by Lemma 5.13.1. Hence by Table 5.1, we see
that (y,a) = £1,0. But r + ¢ > 1. It follows that (y,a) = ~1 and r =0
and ¢ = 1. Hence by Proposition 5.4.2 we have that (8, a) = —1. Since by
Lemma 5.13.1, (8, ) = (8, a), the result follows.

The case where a — 3 € ® can be treated similarly. a

Now we define a function that will give us the desired structure constants
N, 5. We assume that @ is a simply-laced root system with simple system
A = {ai,... ,q} such that (a;, ;) = 2. By @ we denote the Z-span of A,

ie.,
l
Q= {Zkiai | ki EZ}.
=1

The set Q is called the root lattice of ®.
A function € : @ x Q — {1,—1} is called an asymmetry function if it
satisfies

ela+ B,7) = ela,7)e(B,7)

(5.10)
e,y +6) = e(a, v)e(a, 6)  for @, 8,7,6 € Q,

and
ela,a) = (—1)%(“"") for a € Q. (6.11)

Remark. For a € @, (5.11) boils down to (@, ) = —1.

Lemma 5.13.3 Asymmetry functions exist.

Proof. We start by assigning an arrow to each edge of the Dynkin diagram.
(We say that we choose an orientation of the Dynkin diagram.) Then we
set
-1 ifi=j,
~1 if o; and o; are connected and
E(Oéi,aj) = the arrow points from a; to oy,
1 if a; and o are not connected or

the arrow points from a; to o,
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and we extend ¢ to the whole of Q@ x @ using condition (5.10). This means
that

{ ! !

Zk,—ai,ijaj = H 6(ai,aj)kimf.

i=1 j=1 ij=1
So (5.10) is automatically satisfied. It remains to prove (5.11) for e. For
that arrange the labelling of the Dynkin diagram in such a way that «,
a; connected and the arrow points from «; to o; implies that ¢ < j. This
is always possible because the Dynkin diagram contains no loops. Then
e(cu, o) = 1ifi > j and e(ay, 05) = (=1)@%) if § < j. Let v = Y5_; kit
be an element of ). Then

1
€(a,a) = H E(Qiaaj)kikj

,j=1
l
— kik; k?
- H €(ai,aj) R Hs(ai’ai) *
1<i<y<i =1
— H ( kk](a,,a]) H (al,al
1<i<j<l

= (_1)Zi<j(ki0ti,k‘ja]‘) . (—1)& 3kio ki)

Now the observation that
l

1 1
-2—(04, a) = Z (ks kjoy) + Z E(kiaivkiai)

1<i<j<l i=1

finishes the proof. a

Replacing a by a + £ in (5.11) we get
el B)e(B, @) = (—1)(F). (5.12)

Also some easy consequences of (5.10) are

£(0,8) = ¢(a,0) =1

e(—a,B) = e(a, )" =e(e, B) and similarly for e(a, —f3). (5:13)

Proposition 5.13.4 Let ® be a simply-laced irreducible root system with
simple system A = {oq,... ,01} and such that (a,) = 2 for o € ®. For
a,f € ® such that a« + f € ® set Ny g = (e, ). Then (5.9) defines a Lie
algebra.
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Proof. In this case the multiplication table for L reads

hi k) =0 for1<i,j<lI,
[hi,za] = (@, @)z, for 1 <7<l and a€ P,
[Za,ZT—a] = —hy fora € ®, (5.14)
[€a,zg] =0 for a,8 € ® such that o+ 8 ¢ ® and § # —a,
[Za,zg] = e(, B)2ayp for @, B € ® such that o + 5 € &.

We have to check the Jacobi identity for L. As seen in Lemma 1.3.1 it
is enough to do this for basis elements. So let z,y, z be basis elements of L.
If all three of them are from H then the Jacobi identity is trivially satisfied.
So suppose that two elements are from H, and the other element is a root
vector, i.e., T = h;, y = h; and z = z,. Then the Jacobi identity reads:

[[Bis ki za] + ([h), za), il + [[Ta, hil, ] = 0,

and this is equivalent to —(«, a;)(a, a;) + (o, o) (@, ;) = 0.
Now we suppose that one element is from H and the other two are root
vectors. Then the Jacobi identity is

[[hivma]’xﬁ] + [[.’L‘a,.’L'g], hi] + [["Eﬂ’ hi]’xa] =0.

If  + 3 ¢ ®° then this holds. On the other hand, if o + 3 € ®, then the
Jacobi identity is equivalent to

e(a, B)(, i) — (o + B, ai)e(a, B) + (B, ai)e(e, B) = 0.

And if B = —a then the Jacobi identity boils down to (o, a;)[za,z_q] +
(—a, ai)|[za,z-0) = 0.

Consequently the Jacobi identity holds if at least one element is from
H. Let o, 8,7 € ®; it remains to show the Jacobi identity for z,, zg, z,.
We may assume that no pair of these are equal because the Jacobi identity
is trivially satisfied in that case. We set a = [[z4, 23], 24], b = [[£3, 2+], Za]
and ¢ = [[zy, To], 23]

We remark that if none of the sums a + 3, @ + v, 8 + v are elements
of ¥, then a + b + c is trivially 0. So we may assume that at least one of
these sums lies in ®°. And since permuting the vectors z, zg,z, does not
change anything we may assume that o 4 8 € ®°.

First we deal with the case where « + = 0. This together with the
second relation of (5.14) implies that a = —(v,a)z,. We consider a few
cases:
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1. o +v ¢ ®% in view of Proposition 5.4.2 this implies that (a,y) = 0
and a = 0. Also B+~ = —a+7v & ®°, so that b = 0. And since also
¢ = 0 the Jacobi identity is verified in this case.

2. a+~v =0 or a—+ = 0; the first possibility means that 3 = v and the
second means that o = . Hence in both cases a pair of root vectors
are equal and this was excluded.

3. a+v € @, this implies that v — 8 = v+ « € . Hence by Proposition
5.13.2 we see that v+ 3 ¢ ®°. Hence b = 0. Also ¢ = ey, a)e(a +
¥, —a)z, and a = —(y,a)z, = z, (by Proposition 5.13.2). So the
Jacobi identity is equivalent to e(v, @)e(a, —a)e(y, —a) = —1. And
since by (5.13), e(u, —v) = &(u,v)! this is easily seen to hold.

4. a — v € ®; by Proposition 5.13.2 this implies that o +v &€ @ so
that c = 0. But 8+v = —a+v € ® forcing b = e(—a,y)e(—a +
v, a)z~. It follows that in this case the Jacobi identity is equivalent to
e(—a,v)e(—a + v,a) = 1. Now using e(u, )™ = e(y,v) and (5.12)
it is seen that this is verified.

The conclusion is that the Jacobi identity holds if « + 8 = 0. Now we deal
with the last case where o + 38 € ®. Then a = e(o, 8)[za+p, 4] Also
(a+ B,7) = (a,7) + (B,7); the two inner products on the right hand side
can take the values £1,0 so that the left hand side can be +2,+1,0. (A
consequence of Lemma 5.13.1 and Proposition 5.13.2 is that (d,€¢) = 0,+1
for § # ¢ € ® and (6,¢) = £2 if § = +e.) Again we distinguish a few cases:

L. (o + B,7) = 2; then (a,7) = (8,7) = 1. By Proposition 5.13.2 this
implies that a + v, 8 + v are no elements of ® and o+ 3 = 7. Hence
a=b=c=0.

2. (e + B,v) = 1. Interchanging a and  changes nothing so we may
assume that (a,y) = 1 and (8,7v) = 0. Again thisforcesa=b=c=0
since a + B + v & ®°.

(a4 B,v) =0. If (a,y) = (B,y) = 0 then a = b = c = 0. So after
(maybe) interchanging « and 8 we may assume that (a,y) = 1 and
(8,7) = —1. This means that a +v € ®® and ¢ = 0. Also 3+ v € ?,
but a+B+7¢® Soa=b=0

4. (a+8,7) = —1. Here we may assume that (o,y) = —1 and (5,7) =0
This immediately implies that b = 0. Furthermore, o +8+v € ®

and a = e(a, B)e(a+ B,Y)Tatg+y- Also c=e(y,a)e(a+7, B)Tatfiy-
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After dividing by ¢(a, 3) and multiplying by (7, @)e(3, ) the Jacobi
identity amounts to

e(y,a)e(a, ) +€(B,7)e(, B) = 0.
Using (5.12) and the values of (a,~y) and (8,7) this is seen to hold.

5. (a+8,7) = —2. Here a+B+v =0and (o, 8) = (a,y) = (B,7) = - L.
Now a = —¢(a, B)ho+8, b = —€(8,7)hg4y, ¢ = —€(7, @)hayy. Using
the facts h,y, = h, 4+ h, and v = —a — [ the Jacobi identity is
equivalent to

5(a713)(ha + h’ﬂ) - 5(137 - — ﬂ)ha - E(—Ol - ﬁ, Ol)hﬂ =0.

By (5.12) we have that e(a, 8)e(8, @) = —1 so that e(8, ) = —¢(e, §).
This implies that (8, —a — 8) = (o, B) and e(—a — B,a) = ¢(a, B)
and the Jacobi identity is verified.

The conclusion is that the multiplication table of L satisfies the Jacobi iden-
tity. m]

5.14 Diagram automorphisms

Before constructing the other simple Lie algebras we need a short inter-
mezzo on certain automorphisms of semisimple Lie algebras, called diagram
automorphisms.

Let ® be a root system with simple system A = {ay,...,0;}. Let D
be the Dynkin diagram of @ with respect to A. A bijection ¢ : A = A is
called a diagram automorphism if

1. the number of lines connecting ¢; and «; in D is equal to the number
of lines connecting ¢(a;) and ¢(a;),

2. if o; and a; are connected in D then there is an arrow pointing from o;
to a; if and only if the same is true for ¢(a;) and ¢(«;), for 1 < 4,5 < L.

If @ is irreducible, then it is easily seen that there are diagram automor-
phisms only in the cases where ® is simply-laced.

Example 5.14.1 Let ® be a root system of type D4 with Dynkin diagram
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) 85 Qg

Define a map ¢ by ¢(a1) = a3, ¢laz) = a2, ¢(as) = o4, #(eq) = a1. Then
¢ is a diagram automorphism.

Let ¢ : A — A be a diagram automorphism. Then by Z-linearity we
can extend ¢ toamap ¢: ® — 9, ie.,

! !
¢ ki) = D ki(ai).
i=1 1=1

Let L be a simple Lie algebra with root system @, and let ¢ be a dia-
gram automorphism. Then we have that the Cartan matrix of ® relative
to ai1,...,q is exactly the same as the Cartan matrix of @ relative to
é(aq),...,¢(ey). Hence by Corollary 5.11.5, ¢ extends to a unique auto-
morphism of L. Let h;, z;,y; be a set of canonical generators of L. Let o be
the permutation of (1,...,l) such that ¢(a;) = a,(;y. Then the automor-
phism ¢ of L is determined by the relations

d(hi) = hoiy, (@) = To(iy, B(Yi) = Yoliy-

5.15 The non simply-laced case

In this section we construct simple Lie algebras for the non-simply-laced
root systems, i.e., for the root systems of types By, C;, Fy and G3. The idea
is to construct those Lie algebras as subalgebras of simple Lie algebras with
a simply-laced root system.

Here we consider simply-laced root systems ¥ of type Dj+1, A2i—1, Ee,
and D4 with Dynkin diagram labelled as in Table 5.2. Furthermore we
assume that ¥ has a simple system II such that (a,@) = 2 for all a € I
As seen in Section 5.13, this implies that (o, a) =2 for all ¢ € ¥.

These root systems have the following diagram automorphisms ¢:

L. Diyy: ¢(ai) = aj for 1 <4 <11, and (o) = cupr and ¢loyi1) = o

2. Ag1: dloy) = ag_; and dlag_;) = ¢(ey) for 1 <3 <1 -1, and
Plau) = ey

3. Eg: ¢(a1) = as, Plag) = ay, dlaz) = as, dlas) = as, ¢plas) = as,
¢(06) = Q.
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4. Dy: ¢play) = a3, ¢(a2) = ag, dlas) = a4, ¢p(as) = a.

In the sequel we let d be the order of ¢ (i.e., d = 2 in the first three
cases and d = 3 in the fourth case).

Now in each case we choose an orientation of the Dynkin diagram that
is invariant under ¢ (i.e., if @; and o; are connected and the arrow points
from o; towards «;, then the arrow belonging to the edge connecting ¢(«;)
and ¢(a;) points towards ¢(a;)). It is straightforward to see that in each
case it is possible to choose such an orientation. Let @ be the root lattice
of ¥ and € : Q@ x Q — {1,—1} be the asymmetry function corresponding
to the orientation chosen, as constructed in the proof of Lemma 5.13.3.
Furthermore, let K be the Lie algebra with root system ¥ as constructed
in Proposition 5.13.4. We fix a basis hi,... ,h;, 2o (for @ € ) relative to
which K has multiplication table (5.14). Then as seen in Section 5.14, ¢
extends to a unique automorphism of K. We remark that the automorphism
¢ of K also has order d (this follows from Corollary 5.11.5 together with
the observation that ¢%(z,) = x, for all simple roots a).

Lemma 5.15.1 We have (¢(a), $(8)) = (o, B) and e(¢p(a), #(B)) = e(a, B)
for a,B € U. Furthermore ¢(zq) = Ty(a) for all a € V.

Proof. Because ¢ is a diagram automorphism we have that (¢(a), #(8)) =
(o, B) for all a, 8 € II. Because (o, ) = 2 for all @ € II this implies that
(¢p(a), ¢(B)) = (a, B) for a, 8 € TI. Since the simple roots span ¥ this holds
for all elements of ¥. The statement about ¢ follows from the fact that the
orientation is ¢-invariant. Finally, let ¢ be a positive root. We argue by
induction on ht(e). If this number is 1, then ¢(zo) = 24(4) by definition of
¢. Furthermore, if ht(a) > 1 then a = 8 + vy, where (3, are positive roots
of smaller height. But

#([zp,24]) = (B, 1) (244

and by induction

[P(z8), B(xy)] = [Zg(8)s Tg(y)] = €(D(B), G(V))Tp(54)-

The desired conclusion follows. If « is negative, then we use a similar argu-
ment. O

From the fact that ¢ is an automorphism it follows that the set K;(¢$) =
{r € K | ¢(xz) = z} is a subalgebra of K. In the rest of this section we will
show that K;(¢) is simple of type B;, C;, Fy and Gg if ¥ is of type Dp,1,
Agi—1, Eg and Dy respectively.
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Put
& ={ae¥|¢(a) =a},
1

&, = {E(a +la)+ - +¢¥Ha) |a €T such that @) # a},
and ¢ = ¢, U ®,. Note that ¢(a) = « for all &« € ¢. Also for a € ¢ we
define o =  if € ®; and in case & € &, we set o/ = 3, where G € U is
such that @ = L(8+ --- + ¢471(B)). Note that & is not uniquely defined
for « € @, (if § = ' then also ¢(B) = o' et cetera).

For a € ¢ we set

Ty if a € ¥y,
Yo = .
“ To/ + Ty + - + Tyi-1(ar) if a € ®,.

(Note that although the choice of ¢ is ambiguous, there is no ambiguity in
the definition of y,.) Furthermore L, will be the 1-dimensional subspace of
K spanned by y, for a € ®. Set

Ay ={B eIl| ¢(B) = B}

Ay = {G(A+0() + -+ B) | FET such that 4(5) # 6,

and put A = A;UA,. Let H' C K be the Cartan subalgebra spanned
by hi,... k. Write II = {81,...,0}. We recall that hg = ) . k;h; if
B=>,kifs €¥. Sofor a € ® we have

hat if @ € Py
ha =1 :
E(h‘a' +"‘+h¢d—1(al)) ifaed,.

We let H C K be the space spanned by all b, for « € A, and we set

L=Ho@ L.
acd

Lemma 5.15.2 We have L = K (¢); in particular L is a Lie algebra.

Proof. We note that the inclusion L C K;(¢) is clear. We prove the
other inclusion. First we deal with the case where d = 2. For a € ®; set
Za = To/ — Tg(a'). Then ¢(zq) = —2,. Furthermore, the span of {ya | @ €
@} U {zq | @ € ®5} is equal to the span of all z, for a € ¥. Also if we set
9o = ho — hy(ory for a € A, then the span of {ha | @ € AYU{ga | @ € Ag}
is equal to H'. The conclusion is that K = L& K_1(¢) where K_;(¢) is the
eigenspace of ¢ corresponding to the eigenvalue —1, which is spanned by
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the z, and g,. It follows that L is exactly the eigenspace of ¢ corresponding
to the eigenvalue 1.

In the case where d = 3 we can apply a similar reasoning, but here we
have three eigenvalues: 1, ¢ and (2, where ¢ is a root of X?+X+1. Sofora €
b, weset 2o =0 + §2x¢(a/) +(Zg2(o) and wo = Tor + C4$¢(a') + <2x¢2(a,).
Then 2, and w, are eigenvectors with eigenvalues ¢ and ¢? respectively. We
do the same for the h, and again we reach the conclusion that L = K;(¢). O

Lemma 5.15.3 Let o € ¥ be such that ¢(c’) # o'. Then o — ¢*(d/) ¢ ¥
fori>1.

Proof. We note that ¢ maps positive roots to positive roots and negative
roots to negative roots. Suppose first that d = 2, then we must show that
B =cd —¢(c¢) ¢ . However, this follows immediately from ¢(8) = —8.
Now suppose d = 3 and set 3 = o — (/) and v = o’ — ¢*(’). Suppose
that 8 € ¥, then v = —¢*(8) also lies in ¥. Suppose further that § is a
positive root. Then v = —¢?(f) is negative. Also ¢(8) =y — B is positive.
However, v — 3 is a sum of negative roots, and hence negative. We have
reached a contradiction. If 3 is negative then we proceed in the same way. It
follows that 3 ¢ ¥. Finally, suppose that v € ¥. Then also § = —¢(y) € ¥
and we have a contradiction. a

Lemma 5.15.4 For a € ® we have
[ ] . —hgy if o € Oy
YarlU=el =) _ghe ifac ..

Proof. If @ € ®; then this is clear from the corresponding commutation
relation in K. From Lemma 5.15.3 it follows that for o' € ¥ such that
¢(a') # o we have [Z4i(ar)s Tgi(—ary] = 0. Using this we see that for € 5,
[ya’ y—a] = [‘Ta’ + Tola'y """ + Lgd-1(a)y T—a! + Zp(-a') """ + xd;d—l(—a’)]
= —ha/ — h'd)(a’) — e — h¢d—1(a/)

= —dhé(a/+¢(al)+...+¢d_l(a')).

Lemma 5.15.5 For a € A and 8 € ® we have [hq,ys] = (8, )y, where
(, ) is the inner product from .
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Proof. If 8 € ®; then there is nothing to prove. If § € ®,, then

[ha, yg) = [ha,zp + - + -’L'd,d—l(lgl)]
= (o, B + (o, $(B8))z gy + -+ + (0, 6°7H(B)) 2 ga-1 (1)

= (a, 2(6’ + () + -+ T HB)) (@p 4+ Tgar(an),

where the last equality follows from the fact that ¢(a) = « and hence

(, B) = (a, 9(B)) = (a, $*(B)) = ... (Lemma 5.15.1). i

Lemma 5.15.6 Let 8 € ®° = ® U {0} and suppose that (o, B) = 0 for all
a€A. Then 8 =0.

Proof. We prove that (¢/,8) = 0 for all ¢’ € II. This and the non-
degeneracy of (, ) imply the result.

Let o € II be such that ¢(c/) # /. Then o = 3(/ +--- +¢* (o)) €
A;. First note that ¢(8) = B, and hence (¢!, ) = (¢*(c/),B) for k > 0
(Lemma 5.15.1). Now

0= (8) = 3 ((o'.8) + (Ba').B) + -+ (#* (), 6)) = (@, ).

The conclusion is that (8,¢') =0 for all @' € I a

Corollary 5.15.7 L is a semisimple Lie algebra.

Proof. From Lemma 5.15.4 it follows that [Lq,L_s) # 0 for o € ®. Also
by Lemmas 5.15.5 and 5.15.6 we have that H = Ly(H). Finally ® = —&
and dim L, = 1 for a € ®. The result now follows from Proposition 5.12.1.
a

From Corollary 5.15.7 together with Theorem 5.3.5 it follows that &
(viewed inside some Euclidean space) is a root system. We determine the
type of ®.

Lemma 5.15.8 The set A is a simple system of ®.

Proof. By Proposition 5.5.8 it is enough to show that every element of
® can be written as a Z-linear combination of elements of A, where the
coefficients are either all non-negative, or all non-positive.
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First write I = II; U Iy, where II; = {8 € I1 | ¢(8) = B} and II; =
{Bell| ¢(B) # B}. Let a € ¥, then also a € ¥ and hence

o= :E: kgﬂ-+ j{: kﬂﬁ

gelly Bellz

Now from ¢(a) = « it follows that

S kb= kso(B) = > kst*(B) =

BETl, Bellsy BEell,

Hence .
D ksB= Y ks (B+R(B)+ -+ 4" (B)).
Bellz BEIl;
It follows that « is a Z-linear combination of elements of A.
Now let & € @, then a = (o’ + -+ + ¢?7'(c)), where o/ € ¥. In
particular we have that o’ = 3 5.y mgf3, so that

a= Y mgb+ Y mag(8+9(8) + -+ 44 (9)).

Belly Bell2

And we arrive at the same conclusion. 0O

Let I = {f1,... , Bm}, where m is the rank of ¥; then the simple systems
A of @ are listed below.

1. Diyi: A= {B1,...,Bi_1, 5(B + Bis1)},

2. Ag—y: A={3(B1 + Bu-1),--- »3(Bi=1 + Bin1), B},
3. Eg: A= {fa,Bs,5(Bs+Bs), 5(B1 + Bs)},

4. Dg: A = {3(B1 + B3 + Ba), Ba}.

It is straightforward to see that the Dynkin diagrams of these systems
are of types B;, C;, Fy and G5. The conclusion is that L is a simple Lie
algebra of type By, Cy, Fy, G respectively. In particular, these Lie algebras
exist.

We end this section by giving a multiplication table of L. This will
then lead to an algorithm for constructing the simple Lie algebras. First
we remark that in A there occur roots of two different lengths. If o € Ay,
then (a,a) = 2 and if & € A, then (a,a) = 1if d = 2 and (o, ) = %
if d = 3. Using Lemma 5.7.5 we infer that the roots of ® occur in two
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different lengths. For o € ®; we have (o, @) = 2 since in that case a € U.
Now assume that d = 2, then for o € ®, we calculate

(,0) = (5( + $(), 5 (e +9(a'))) =1+ (el plal).

Now (o/, ¢(a’)) <1 so that (o, ) < 2. Hence by Lemma 5.7.5 we see that
(¢,@) =1 and (d/,¢(a’)) =0 fora€ ®,. (5.15)

Now we deal with the case where d = 3. Then for oo € ®; we have

(@ + () +¢*()) =

2 1,
§+§(a,¢(a))+

o

(2,00 = (5(0/ + (o) + ¢(a),

Wl —

And again by Lemma 5.7.5 we see that
2
(a,a) = 3 and (o, () = (,$*()) =0 foraec®,  (5.16)

The longer roots in ® are called long roots and the shorter ones are called
short roots.

Lemma 5.15.9 Let o,3 € ® be such that a + 8 € ®©, then [ya,yg] =
e(d, B'Y(r+1)ya+g, where r is the largest integer such that a—rB € ®, and
where o/, 3/ € U are chosen such that o + ' € U.

Proof. There are three cases to consider: both « and 3 are long, one of
them is short while the other is long and both are short. If both are long,
then (o + B3, a + ) = 4 + 2(a, B) from which we see that (o, 3) = —1 and
a + 3 lies in ¥ (by Proposition 5.13.2) and is long. Then by Proposition
5.13.2 o — 8 € ¥ and hence r = 0. So we are done in this case.

For the other two cases we first suppose that d = 2. Let « be short
and S long. Then « + f is short (for suppose that v = « + 3 is long, then
as seen above v — (3 is also long which is absurd). In this case [yq,ys] =
[Tor + Ty(ar), Tp]. By Lemma 5.11.2 we have that [ys,ys) # 0 so at least
one of & + /', ¢(c’) + B must lie in ¥. But since ¢p(B') = B’ we see that
if one of them lies in ¥ so does the other. Hence both are elements of U.
Now since a + 8 = (o’ + ') + 1o(a + ),

W Yl = (', B)zar 5 +€(P(), BB N2 g 45y = (s B) Y-

From Proposition 5.13.2 we see that (o/,3) = (#(¢/),) = —1. Hence
(a,8) = —1 and (a — B,a — B) = 5. Therefore o — /3 is not contained in ®;
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so 7 = 0 and the statement is verified. If « is long and [ short, then we use
an analogous argument.

We deal with the case where o and 3 are both short. Then [y, y3] =
[Tar + Ty(ary, Tp + Ty(ay] and by Lemma 5.11.2 this is non-zero. Hence at
least one of & + 3/, & + @(8'), ¢(a') + B, ¢(a') + ¢(4') must lie in ¥. But
this is the same as saying that at least one of &'+, o/ +¢(') is an element
of ¥. And since interchanging 8’ and ¢(f3') changes nothing we may assume
that o/ + 8 € ¥, i.e., (o/,8') = —1. Using (5.15) we calculate

(a+B,a+B) =1+ (,6(8)). (5.17)

The root o + 3 can be short or long. If it is short, then (¢, #(3')) = 0 so
that o’ +¢(8') ¢ ¥ by Proposition 5.13.2. Also (a—3,a— ) = 3 and hence
a—f3 ¢ ®andr = 0. Also ¢(a’+0') # o’ +' (otherwise a+ 3 would be equal
to o + 3’ and hence long). Furthermore, a + 8 = (¢! + 8') + 3¢(c/ + ),
and

[Yar Ys] = €(, B)Tar 40 + (D), p(B))Tp(ar 151y = (', ) Yarp-

On the other hand, if o + 3 is long, then ¢(a’ + 3') = o' + ' (if not, then
a+pB=1%1a +p8)+ ié(d + B') would be short). Also from (5.17) we see
that (o/,#(8')) = 1 so that o/ — ¢(B') € ¥. From ¢(a’ + ') =o' + 3 we
easily deduce ¢(a’ — @¢(8')) = o — $(B'). Therefore a—f =o' —$(F') € ¥y,
and consequently 7 = 1. Finally,

[Warys] = e(a, B)zar 4 + e(d(), 6(B)) T (1) = 26(s )Yt -

For the case where d = 3 similar arguments can be applied. Firstly, if « is
short and 3 is long, then o + ', ¢(c') + ' and ¢*(c’) + B’ are all elements
of ¥ and no ¢*(a’) — A is an element of ¥. So r = 0 and

[Far + To(a) + Tg2(ar), Tp] = €0, B)asp-

If a and 3 are both short then again we may assume that ¢ + ' € ¥ and
we use (5.16) to calculate

(@t BiatB) = 21+ (o, $(5) + (o, #(8).

Now if a + 3 is short, then (o, $(3')) + (&, $2(8')) = 0. If both terms are
0, then r = 0 and it is straightforward to see that [ya,ys] = €(', 8)Ya+s-
If on the other hand (¢/,¢(3')) = —1 and (¢/,¢%(8')) = 1, then we have
r =1 and

[Waryg) = (e(, B) + e(, $(B))) yars-
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It is easily verified by inspecting ® (here we are dealing with one root system
only) that «, B short such that a+3 is short and o/ +3' € ¥ and (¢, ¢(5')) =

—1 imply e(o/, $(8')) = (e, §'). Hence [ya,ys] = 26(c, B')ya+p- The case
where (¢, #(8')) = 1 is analogous.

Finally, if o+ 3 is long, then (¢, ¢(3')) = (<, ¢*(0')) = 1 and &/ — ('),
o — ¢?(B') are both elements of ¥. Furthermore, o/ + 3 € ®; and so are
o — $(8) and o — §(F) — (B (since (o — H(8), $*(8')) = 1). Hence

r = 2 and also
[yavyﬂ] = 35(alvﬂ’)ya+ﬂ‘
O

Now Lemmas 5.15.5, 5.15.6, 5.15.9 add up to the following multiplication
table of L:

[ha,hg) =0 for a,B € A,
(ha,ys) = (B,a)yg fora€ Aand S €D,
—hg for a € ¢,
[Warsy—o] = {—dha for a € @,
[Ya,ys] =0 for a,3 € ® such that « + 3 & ® and 8 # —a,
Warys) = e, B)(r + 1)yaspg for o, B € ® such that a + S € @,
where r > 0 is the largest integer such that o —rf8 € @,
and where o, 8’ are chosen such that o/ + 5 € U.

[

(5.18)

The multiplication tables (5.14) and (5.18) yield an algorithm Sim-
pleLieAlgebra for constructing the multiplication table of a simple Lie al-
gebra of type X;. If X; € {A;, D;, E¢ 73} then we construct a root system ®
of type X, (by CartanMatrixToRootSystem, cf. Corollary 5.10.3). We choose
an orientation of the Dynkin diagram of ® and we let ¢ be the corresponding
asymmetry function. We return the multiplication table of (5.14). If on the
other hand X; is By, C;, Fy or G9, then we construct a root system ¥ of
type Diy1, Agi—1, Es, Dy respectively. Let ¢ be the diagram automorphism
of . Choose an orientation of the Dynkin diagram of ¥ that is invariant
under ¢ and let € be the corresponding asymmetry function. We construct
the set ® = &, U ®; and return the table of (5.18).

Example 5.15.10 We use the multiplication table (5.18) to produce the
structure constants of the Lie algebra corresponding to the root system of
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type By. This Lie algebra is a subalgebra of the Lie algebra of type Ds.
However, the Dynkin diagram of Dj is the same as the Dynkin diagram of

type As. We choose the following orientation of the Dynkin diagram of type
A3:

O—=>—0—<-0
03] (65) a3 .

It is clear that this orientation is invariant under the diagram automorphism
of As. The corresponding asymmetry function is defined by e(a;, ) = —1
for i = 1,2,3, e(ar,a2) = e(az,as) = —1 and e(a,a3) = elas,a1) =
e(ag, o) = e{ag,a3) = 1. The root system ® is the union of

Q) =2{fi =y, =01+ a2+ a3}

and . )
O =x{y = 5(01 +a3),72 = 5(01 + 202 + a3)}.

A basis of L is given by

{917927 Y1 YB2r Y Yy Y-8 Y-8 Y—v1r Y—72 }a

where g; = hg, and g = h,,. By way of example we calculate the com-
mutator [y,,,y,,]. Note that v +y2 = B2 € @, so if we take v} = o1 and
¥y = a2 + ag, then 7| +v5 € U. Furthermore, 1 — y2 = —f1 € ® so that
r = 1. Hence

(Y7 Yre] = 2e(0n, 02 + a3)yp, = —2up,.

Continuing like this we fill the whole table. The result is displayed in Table
5.3.

91 92 Y Y8  Ym Y2 Y-8, Y-82 Y- Y-v2
g1 0 0 2yﬂ1 0 ~Yn Yo —2?/—31 0 Y-m “Y-v2
g2 ' 0 —YUs Yp: Y 0 Y-8 —Y-82 —Y-m 0
s | - - 0 0 yy 0 -0 0 0 ~Y-m
Y | - - : 0 0 0 0 1 =292 —Yy Yn
Yy, . . - 0 —2yg, 0 Y—v2 —2g2 2y_s,
Yo | 0 : : 0 Yn ~Y-m  ~2s 201 — 252
Y-8, . . . . . . 0 0 Yo 0
yog, | - - . i . . . 0 0 0
Yoy . . . . . . . . 0 —2y_ﬂ2
Y .. . . . . . . . 0

Table 5.3: Multiplication table of the simple Lie algebra of type Bs.
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Example 5.15.11 Now that we have two multiplication tables of the Lie
algebra of type Bs we can use the isomorphism theorem to construct an
isomorphism between them. Let L, be the Lie algebra of Example 4.9.1
and let Ly be the one of Example 5.15.10. We use the algorithm lsomor-
phismOfSSLieAlgebras to construct an isomorphism between them. As seen
in Example 4.9.1 the root system of L; is

®1 = {(17 _1)7 (_15 1)’ (la 1)’ (_17 _l)a (_170)’ (Oa —1)’ (1’0)5 (05 1)}

And a simple system is Ay = {a; = (0,1),a0 = (1,—1)} (Example 5.5.2).
The space Hs spanned by g1, g2 is a Cartan subalgebra of Ly and the root
system of Lo relative to Hy is

(I>2 = {(25 _1)’ (07 1)7 (_17 1)’ (15 0)7 (—27 l)a (07 —1)’ (1’ —1)7 (—1’0)}

(Again we denote a root a € Hj by the vector (a(g1),a(g2))). A simple
system of @9 is Ag = {m = (=1,1),m2 = (2,—1)}. The Cartan matrix of
P, relative to A; is identical to the Cartan matrix of @4 relative to As.
Hence the linear map sending «; to n; for ¢ = 1,2 is an isomorphism of root
systems (cf. the proof of Corollary 5.6.3).

Now we have to construct canonical generators of Ly and Lo. For this
we use the algorithm CanonicalGenerators. First we choose 1 = ¢ € Ll(al).
Let y1 = p1p2 € Ly(_q,), where p is to be determined. The element y; is
required to satisfy [[z1,11], 1] = 2z, and this is equivalent to —p1q2 = 2go,
ie., ui = —2. Then h; = [z1,y1] = 242. Continuing we set o = Ais.
Then y2 = p2Ag; and from [[z9,y9],22] = 2z2 we see that puz = 1. So
he = A11 — Ags. In the same way we find canonical generators of Ly:
Ty =Yy, Yy = ~Yomy, My = 292, 75 = yg,, Yo = —y-p, and hy = g1. Now
we know already a large part of the isomorphism; namely, we know that
it sends z; to z}, 1 to y; and so forth. For each remaining root vector
zg € L1 (where [ is a positive root) we have to fix a sequence oy, ... , 0,
of simple roots such that o;, + --- + @, is a root for 1 < m < k, and
B = a4 + -+ + ;.. In our case there are only two positive roots left and
we can take

(1,0) =1 +a2 and (1,1) =as+a; +oy.

This means that [z1,z9] = —q; is mapped to [z],2)] = —y,,. Secondly,
(@1, [z1,22]] = —Bi2 is mapped to [z}, [z}, z5]] = 2yg,- We do a similar
thing for the negative roots: [y1,ys] = —2p; is mapped to [y}, ¥5] = —y—v,
and [y1, [y1,42]] = 4C1a to [y, (11, 5] = —2y—p,-
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We have constructed a linear map ¢ : L; — Lo that is necessarily an
isomorphism. It is given by

1
A22 = go, All = g1 +g27 q2 — Y~yis Al? — Yz, D2 — Ey—-’ylv

1 1
Ao1 & —Y_pg,, Q1 7 Yy, B2z = —2yg,, p1 — Y- Cia = —5Y-p

5.16 The classification theorem

In this section we summarize our efforts into a theorem.

Definition 5.16.1 Let L be a simple Lie algebra of characteristic 0 with a
split Cartan subalgebra. If the rootsystem of L is of type X, then L is said
to be of type X;. Furthermore, as simple Lie algebras with the same type
are isomorphic (Corollary 5.11.5), we say that X, is an isomorphism class
of simple Lie algebras.

Theorem 5.16.2 Let F be a field of characteristic 0. Then the isomor-
phism classes of simple Lie algebras with a split Cartan subalgebra are ez-
ac”y An; BTL (fOT n 2> 2)7 Cn (fOT n > 3)7 Dn (fOT' n 2 4)7 E67 E7; EB} F4
and Gs.

Proof. Let L be a simple Lie algebra over F with split Cartan subalgebra
H. Let ® be the root system of L with respect to H, then by Corollary
5.11.6, @ is upto isomorphism determined by L. Furthermore, as seen in
Section 5.9, ® has one of the types mentioned. Conversely let X; be one
of the listed types. Then by Proposition 5.10.1, there is a root system &
of type X;. As seen in Sections 5.13 and 5.15 there is a simple Lie algebra
over F' with a split Cartan subalgebra, having a root system isomorphic to
d. o

5.17 Recognizing a semisimple Lie algebra

In this section we consider the problem of deciding whether two given
semisimple Lie algebras L; and Ly over Q are isomorphic over the alge-
braic closure Q of Q. If the Cartan subalgebras of L and Ly are split over
Q then the algorithm IsmorphismOfSSLieAlgebras gives a straightforward
method for constructing an isomorphism if the Lie algebras are isomorphic,
and the method will break down if they are not. However, if the Cartan
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subalgebras are not split over @ then the situation becomes more difficult.
As an example we consider the 6-dimensional semisimple Lie algebra L of
Example 4.12.3. We know that there is only one semisimple Lie algebra of
dimension 6 with a split Cartan subalgebra, namely the direct sum of two
copies of the Lie algebra with type A;. However, over Q the Cartan sub-
algebra of L is not split and L is a simple Lie algebra. Over the algebraic
extension (Q(z) the Cartan subalgebra splits and L is seen to be isomorphic
to the direct sum of two copies of the Lie algebra of type A;. In this case we
manage to split the Cartan subalgebra over a rather small algebraic exten-
sion. However, since the degree of the algebraic extension needed to split a
polynomial of degree n is “generically” n!, we see that for larger examples
it can become impossible to take this route. In Section 5.17.1 we describe
a method for reducing the Lie algebra modulo a suitable prime p. We get
a Lie algebra over a finite field and the algebraic extensions of finite fields
are much easier to handle. We prove that (under certain conditions on the
prime p) the modularized Lie algebra will provide us with the isomorphism
class of the original Lie algebra.

In Section 5.17.2 we approach the problem of deciding isomorphism of
semisimple Lie algebras in a different way. We encode the adjoint action of a
Cartan subalgebra of a semisimple Lie algebra in a number of polynomials.
Then we show that L; is isomorphic to Ly if and only if the polynomi-
als obtained for L; can be transformed by a change of variables into the
polynomials corresponding to Lo.

5.17.1 Identifying a semisimple Lie algebra

Let L be a semisimple Lie algebra defined over Q. Then by Propositions
4.3.6 and 4.3.7 the Lie algebra L ® Q has a unique decomposition as a
direct sum I; @ - - - & I, of simple ideals. Furthermore, over Q the Cartan
subalgebras of the I are split and hence the I} fall into the classification of
Theorem 5.16.2. Suppose that the simple ideal Iy is of type X, . Then we
call X, + -+ + X,,,, the type of L. In this section we describe a method
for obtaining the type of a semisimple Lie algebra.

Throughout H will be a (maybe non-split) Cartan subalgebra of L.
The idea we pursue here is to avoid working over large number fields by
reducing the structure constants of L modulo a prime number p. Note that
if we multiply all basis elements by a scalar ), then the structure constants
relative to this new basis are also multiplied by A, so that we can get all
structure constants to be integers. Then, using an algebraic extension of I,
if necessary, we split the Cartan subalgebra and calculate the root system
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over the modular field. For this root system we calculate the Cartan matrix.
We prove that this is also the Cartan matrix of the root system of L.

In the sequel we fix a basis of L such that the structure constants relative
to this basis are integers. Furthermore we assume that this basis contains
a basis {hi1,...,h;} of the Cartan subalgebra H. From Section 4.11 we
recall that ko € H is called a splitting element if the degree of the minimum
polynomial of adphg is dimL — dimH + 1. Now fix a splitting element
ho = 2221 m;h; of H such that m; € Z for 1 < ¢ <1 (such splitting elements
exist by Proposition 4.11.2). Let Ay be the matrix of adzhg relative to the
given basis of L. All entries of this matrix are integers, so we can reduce
it modulo a prime p and obtain a matrix A, with entries in the finite field
Fp. If p > 5 is a prime number not dividing the determinant of the matrix
of the Killing form of L and such that the minimum polynomial of A4, is
square-free and of degree dim L — dim H + 1, then we call p pleasant. In the
sequel we use a fixed pleasant prime number p.

Let F be the smallest number field containing all eigenvalues of adyhg.
We recall that an algebraic number a € F is called integral over Z if o
satisfies an equation of the form a” + ap_10" 1 + - +ag = 0 where a; € Z
for 0 < i < n—1. The set of all elements o € F that are integral over Z is
a ring called the ring of algebraic integers of F. We denote it by OF. Then
by [56, Chapter I, §3, Proposition 9] there exists a prime ideal P of OF such
that PNZ = (p), where (p) denotes the ideal of Z generated by p. The ring

ng{glxeop,yEOF\P}

is called the localization of OF at P. It is a local ring, which means that it
has a unique maximal ideal Mp given by

Mp={§|xeP,ye(9F\P}-

Since Mp is a maximal ideal, (9,1“; /Mp is a field. Furthermore Mp contains
p and hence Og /Mp is of characteristic p. It follows that there is an m > 0
such that OF/Mp = F,m, the finite field of p™ elements.

Let T denote the multiplication table of L relative to the fixed basis of
L. So all structure constants in T' are integers. Let K be a Lie algebra over
(95 with multiplication table T'. Set

Kp = K@o; Fpm.

Let ¢ : OF — F,= be the projection map. In the obvious way ¢ carries over
to a map from K to Kp. Let {z1,... ,z,} be the basis of K corresponding
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to the multiplication table T', and set Z; = z; ® 1 € K, for 1 <4 < n. Then

we set n .
¢ aiw) =Y $lai) i,
i=1 i=1

Let x be the Killing form of K and let x, be the Killing form of K,. The
structure constants of K, are the images under ¢ of the structure constants
of K, and hence they lie in the prime field ,. From this it follows that

rp(¢(z), p(y)) = d(x(z,y)) for 2,y € K.

Because p is pleasant, we have that &, is non-degenerate.

Since the structure constants of K are the same as those of L, also the
basis of K corresponding to these structure constants contains a basis of a
Cartan subalgebra, which we also call H. Furthermore, since the coeflicients
of the matrix of adghy (relative to the basis {z1,... ,z,}) are integers, it
follows that the eigenvalues of the adghg are integral and hence contained
in OF. The primary decomposition of K relative to adghg is identical to
the root space decomposition of K relative to H (because hg is a splitting
element). So the whole Cartan subalgebra H of K is split.

Let H, be the image under ¢ of H. Furthermore H* will be the dual
space of H, i.e., the space of all linear maps from H into O%. Since H is
split we have that H™ contains the roots of K. Let Hj be the dual of H,,.
The map ¢ induces a map (which we also call ¢)

¢:H" — H,.

For A\ : H — OF an element of H* we set ¢(\)(p(h)) = ¢(A(h)). Since p is
pleasant we have that adg,¢(ho) is a semisimple linear transformation. Also
it has dim L — dim H + 1 distinct eigenvalues, one of which is 0. Therefore
the eigenspace relative to the eigenvalue 0 is Hj, and hence the Fitting null-
component (Kp)o(Hp) is equal to H,. So H), is a Cartan subalgebra of K.
Let ® be the set of roots of K relative to H and ®, the set of roots of K
relative to Hp.

Lemma 5.17.1 The map ¢ maps ® bijectively onto @y,

Proof. A vector z, is a root vector (corresponding to the root a € ®) of K if
and only if the coefficients of z, with respect to the basis {z1, ... ,z,} satisfy
a certain system of linear equations over O%, given by [hi, o] = a(h;)ze
for 1 <4 <[, where {hy,...,h;} is a basis of H. This system has a 1-
dimensional solution space over F. In particular it has rank n — 1. Now
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the equation system which a root vector of K, corresponding to ¢(a) must
satisfy is exactly the image under ¢ of the equation system corresponding
to K and «. It follows that the rank of this equation system is at most
n — 1 and hence there are non-zero solutions. The conclusion is that ¢(c)
is a root of K.

If  # B € ® then because hy is a splitting element, a(hy) # B(ho).
Because p is pleasant also ¢(a(hg)) # ¢(8(ho)), ie., d(e) # ¢(6). So the
map ¢ : & = &, is injective; moreover, it is surjective as well since ® and
®,, have the same cardinality. O

Lemma 5.17.2 Let M be a Lie algebra of characteristic p > 5 with a non-
degenerate Killing form. Let a, 8 be non-zero roots of M such that o + 3
are not roots. Then rkp(hq,hg) = 0.

Proof. We recall that hy, hg are defined by (4.10). Let z4, T5 and z_g
be non-zero root vectors corresponding to «,3,—f. Since Mg, M_g are
1-dimensional (Root fact 16) we see that kpr(zg,z_3) # 0 by Root fact
2 together with the non-degeneracy of kps. By Root fact 11, [xg,2_5] =
km(zg,z_g)hs # 0. By an application of the Jacobi identity however,
we infer that [z, [zs,2_g]] = 0. But this implies that a(hg) = 0, ie.,
NM(ha,h,g) =0. 0

Proposition 5.17.3 Let M be as in Lemma 5.17.2. By R® we denote the
set of roots of M together with zero. Let o, 3 € R?, where 8 # 0. Then not
all of o, + B, + 2B, + 38, o + 43 are elements of RY.

Proof. Suppose that all of o, a+ 8, a+23, a+30, a+4p lie in R®. Suppose
also that one of them is zero. Note that a + 283 and & + 33 cannot be zero
(otherwise 28 or 33 is a root which is excluded by Root fact 16). Hence
a=0ora=—0Fora=/ (the last possibility might occur when p = 5).
But the first possibility implies 28 = « + 20 is a root. The second implies
20 = a+ 30 is a root, and the last possibility entails 26 = a + 3 is a root.
In all cases we reach a contradiction, so all of these roots are non-zero.
Now suppose that all of o, + 8, + 28, a + 30, + 43 are non-zero
roots. Then (a+23)+a and (a+408) £ (a+206) are not roots. So by Lemma
5.17.2 we have that kpr(hatas, hatr2g) = 0 and kpr(hqg, hat2s) = 0. This
implies that 4kp7(hg, has2s) = 0 and hence Kar(ha+28, hat+2s) = 0. But this
is the same as saying that («+28, «+28) = 0 contradicting Root fact 15. O
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From Section 4.9 we recall that we can identify H and H* via the Killing
form. Let o be an element of H*. Then the corresponding element h, of
H is required to satisfy k(hys,h) = o(h) for all h € H. If {hy,... Iy} isa
basis of H and h, = ajh; + - - -+ a;hy, then we have the system of equations

a o(hy)

(K(hi, hy)) (5.19)

a‘l o (}ll)

Since the restriction of s, to Hp is non-degenerate (Root fact 4) we have
that the determinant of the matrix of this system is an integer not divisible
by p. Let B denote the matrix (k(h;,h;)), and for 1 < k <1 let By be the
matrix obtained from B by replacing its k-th column by the right hand side
of (5.19). Now Cramer’s rule (see, e.g., [54]) states that the k-th coefficient
of the solution of (5.19) is det(By)/det(B). Hence there exists a unique
solution over Og. We denote the map sending ¢ € H* to h, € H by 6.
Also for H, we have a similar map 6, : H; — H.

Lemma 5.17.4 We have the following identity: ¢ o § = 6, 0 ¢.

Proof. By h; we denote the image of h; € H under ¢, where {hq,... ,h;}
is the basis of H contained in the basis {z;,... ,z,} of K. Choose 0 € H*
and suppose that 0,(¢(c)) = bihy + - - - + bjhy, where b; € Fpm. Then since
kp(P(x), d(y)) = ¢(k(z,y)), the system of equations for the b; is just the
image under ¢ of the system of equations (5.19). Hence b; = ¢(a;) and we
are done. O

From Section 4.9 we recall that a bilinear form ( , ) is defined on H*
by (o, p) = £(6(c),0(p)). In the same way there is a bilinear form ( , ), on
H.

P

Lemma 5.17.5 For p,oc € H* we have ¢((a,p)) = ($(0), d(p))p-
Proof. The proof is by straightforward calculation:
#((a,0)) = ¢(x(6(0),6(p)))
= rp(¢(6(0)), 4(6(p)))

( b
= Kp(Op(¢(0)),6p(¢(p))) by Lemma 5.17.4
= (& )
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For a,8 € @, let r,q be the smallest nonnegative integers such that
a—(r+1)8 and « + (g + 1)B are not roots, and set C(a, 5) = r —q. Then
by Proposition 5.17.3 we have that —3 < C(a, 8) < 3 for all o, 8 € ®,.

Lemma 5.17.6 Let o, 8 € ®,. Then 2a(hg) = C(a,[)B(hg).

Proof. By Lemma 5.17.1 there are 7,0 € ® such that a = ¢(v), 8 =
¢(8). Furthermore, if 7, q are the smallest nonnegative integers such that
a— (r+ 1) and a + (¢ + 1)8 are not roots, then since ¢ maps sums
of roots to sums of roots, v — rd,... ,v + ¢é is the §-string containing
v. Hence by Proposition 5.4.2 we have that r — ¢ = (v,0). We cal-
culate 2a(hg) = 2(a,8)p = 2(¢(7),4(9))p, = #(2(7,6)) (Lemma 5.17.5)

= ¢((r — q)(4,0)) = C(a, B)B(hg). o

Now we define a total order on ®,. Since the Killing form of K, is non-
degenerate, by Proposition 4.3.6 K, is a direct sum of simple ideals I. Since
these ideals are simple they satisfy [I,I] = I. This implies that [K,, K| =
Kp. Also [Hp, Hp] = 0 and [(Kp)a, (Kp)s] C (Kplatp for o, f € ®p. So H,
is spanned by the spaces [(Kp)a, (Kp)-o] for a € ®,. Now by Root fact 16,
these spaces are 1-dimensional. So we can choose roots f,... , 8 from @,
such that the spaces [(K})g,,(Kp)_p,] for 1 < <[ span H,. Let o € @,
and for 1 <1 <[set ¢ci(a) = C(a, ;). If o, B € §p then we define o > g if
the first non-zero ¢;(@) — ¢;(8) is positive. It is immediate that this order is
transitive. Suppose that a > 8 and 8 > «, then we have to show that a = .
But this is the same as asserting that ¢;(@) = ¢;(8) for 1 <4 < [ implies
that & = 3. For 1 <14 <[ let g; be a non-zero element of [(K),)g,, (Kp)-g,]-
Then g; is a multiple of hg, by Root fact 11. Hence by Lemma 5.17.6,
ci(@) = ¢;(B) implies that 2a(g;) = ci(@)Bi(9:) = ci(B)Bi(gi) = 26(gi). As
the g; form a basis of H), the result follows.

A root a € ®, is said to be positive if o > 0. Furthermore, a positive
root « is simple if there are no positive roots 3,~ such that a = 3+ v. We
let A, be the set of all simple positive roots in ®,, and let A be the inverse
image under ¢ of A,. Furthermore, we call a root o € ® positive if ¢(a) is
positive. Then in the same way as in the proof of Lemma 5.5.3 we see that
for @ # B € A we have that a — 3 is not a root and hence (o, 8) < 0. Then
by Proposition 5.4.1 it follows that A is linearly independent. Furthermore,
in the same way as in the proof of Proposition 5.5.5 it follows that every
positive root a € ® can be written as a sum

a:EkBﬂ

BeA
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where the kg are nonnegative integers. Now by Proposition 5.5.8 it follows
that A is a simple system of ®. Finally, suppose that A, = {f1,..., 0}
Then since ¢ maps root strings to root strings we have that the matrix
(C(Bs, B5))1<i,j<i 18 a Cartan matrix of @ relative to A.

The above results lead to the following algorithm:

Algorithm Type
Input: a semisimple Lie algebra L over Q.
Output: the type of L.

Step 1 Calculate a Cartan subalgebra H of L (Section 3.2).

Step 2 Extend a basis of H to a basis of L and multiply by an integer in
order to ensure that all structure constants relative to this basis are
integers.

Step 3 Calculate a splitting element hy € H having integer coefficients rel-
ative to the basis of H used in Step 2. Select a pleasant prime p.

Step 4 Let S be the table of structure constants obtained from the table of
structure constants of L by reducing every constant modulo p. Let L,
be the Lie algebra with structure constants table S, defined over F,m
where m is large enough to ensure that the characteristic polynomial
of adhg splits into linear factors.

Step 5 Calculate a simple system Ay, inside the root system @, of L,. Com-
pute the Cartan matrix of A,. From this matrix determine the type
of L.

5.17.2 Isomorphism of semisimple Lie algebras

Here we present an algorithmic method to decide whether two semisimple
Lie algebras are isomorphic. There is no attempt to construct the isomor-
phism (if it exists) as it may only exist over a large extension of the ground
field.

Let L be a semisimple Lie algebra of dimension n with Cartan subalgebra
H. Let {hy,... ,h} be a basis of H. Let z1,... ,%; be indeterminates and
set h =Y z;h; which is an element of L ® F(z1,...,z;). Let

() =T"+pi(z1,... ,ml)T"—1 + o+ a1, 2y)

be the characteristic polynomial of adh. Then we call f the characteristic
polynomial of the action of H on L.
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Theorem 5.17.7 Let Ly and Lo be semisimple Lie algebras over an al-
gebraically closed field F of characteristic 0. Let Hy and Hy be Cartan
subalgebras of Ly and Lo, respectively. Suppose dim H; = dim Hy = [ and
dimL; =dimLs =n. Let

fl(T) =T" +p1(:c1,... ,.’L‘[)Tn_l +--- +pn(a:1,... ,.Z‘l)

and
@) =T"+qy,... . y)T" "+ + qulyr,---,u)

be the characteristic polynomials of the action of Hy (on Li) and Hy (on
Ly), respectively. Then Ly and Lo are isomorphic if and only if there is a
transformation

Y1 = anci+appry+ -+ ayz
(5.20)
Y o= anzytapra+ -+ oy

such that det(a;;) # 0 and pi(z1,... ,21) = ¢i(J1,... ,71) for 1 < i< n.

Proof. For i = 1,2 let L; = V; & H; be the Fitting decomposition of L;,
where V; is the Fitting one-component of L; with respect to H;. Then V; is
the sum of the root spaces of L; with respect to H;. Suppose that L; and
Ly are isomorphic. Because all Cartan subalgebras of Ly, Ly are conjugate
under their respective automorphism groups (Theorem 3.5.1) there exists
an isomorphism L; — Ls mapping Hy onto Hs. Let oy,... ,a, be the roots
of Ly and let {hy,... ,h;} be a basis of H;. Then

fl(T) = Tl H(T - a,-(hl)xl — = ai(hl)wl).

i=1

A base change of V] does not affect the characteristic polynomial of the
action of Hy. Hence we consider the effect of a base change in H; on
the polynomial f;. Suppose {hi,...,h} is a second basis of Hj, where
’_li = Zakihk. Then

! I !
T -3 ailhy)z; =T — i} ambe)or — - — ai(d | aphy)z,
i=1 k=1 k=1
! !
=T —ai(h1) Y akzs — - — 0a(h) Y aieay
k=1 k=1
=T —o5(h)ih — -+ — cilh) g
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The conclusion is that a base change of H; corresponds exactly to a change
of variables in the polynomials p;. So L; = L, implies that there is a
transformation of the form (5.20).

Now suppose that there is a transformation of the form (5.20). Let
{h1,... .} be a basis of Hy. We define a linear map ¢ : H; — Hj by

Then ¢ induces a map (which we also call ¢) from HY into Hj, given by
d(a)(¢p(h)) = a(h) for « € H} and h € H,. We claim that if « is a root
of Ly, then ¢(a) is a root of Ly. To see this, note that a root 8 of Lo
corresponds to a factor

T — Bh)yr — - — B()y:

in fy. Now choose 3 such that by the transformation (5.20) this factor is
mapped to
T —afh)zr =+ — alh)z
Then we calculate
! !

l
T - Bhr)ge =T — B(hy) Zalm == B(R) Y e
k=1

It follows that

Zaﬂﬁ }_7/ Za]z = z))

So on a basis of Hy the functions ¢(a) and 8 have the same values, forcing
¢(a) = B. The conclusion is that L; and Ly have isomorphic root systems
and hence L = Ly by Corollary 5.11.6. g

The algorithm resulting from this is the following:

Algorithm: ArelsomorphicSSLieAlgebras

Input: two semisimple Lie algebras L and Lo over a field of characteristic
0.

Output: true if L; and Lo are isomorphic over the algebraic closure of the
ground field; false otherwise.
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Step 1 If dim L, # dim L then return false. Otherwise set n = dim L.

Step 1 Calculate Cartan subalgebras H; and Hy of L and Lo. If dim H; #
dim Ho then return false. Otherwise set | = dim H;.

Step 2 Calculate the polynomials p; and ¢; (as in Theorem 5.17.7).

Step 3 Introduce the variables aj; for 1 < j,k < [ and substitute §; =
Y ajkxy in the ¢;. Require that the resulting polynomials are equal to
the p;. This yields a system of polynomial equations in the variables

Qg

Step 4 Now by a Grobner basis computation we can check whether there is
a solution over the algebraic closure of the ground field to the system
of equations we obtained in the preceding step. If there is such a
solution then return true, otherwise return false.

Comment: Let R be the polynomial ring containing the indeterminates
ajk. Let I be the ideal of R generated by the polynomials obtained in Step
3. By Hilbert’s Nullstellensatz these polynomials have common zeros over
the algebraic closure of the ground field if and only if I # R, i.e., if and only
if 1 ¢ I. Now Buchberger’s algorithm for calculating a Grébner basis of 1
presents an algorithmic method for checking whether 1 € I (see, e.g., [17],
[23]).

Example 5.17.8 Let L; be the Lie algebra of Example 4.12.2. This Lie al-
gebra has basis {hy, z1, y1, ho, T2, y2} and a Cartan subalgebra H; is spanned
by {h1,h2}. The matrix of the restriction of {;adh; + (2adhs to the space
spanned by {z1,y1,Z2,y2} is

2C1 + 2¢o 0 0 0
0 —2¢1 — 2(» 0 0
0 0 2¢, — 2( 0
0 0 0 —2¢1 + 2¢2

It follows that the characteristic polynomial of the action of Hy on L, is

FT) =THT - 261 ~ 26)(T + 261 + 26)(T — 261 + 20)(T + 2¢1 — 2(2)
=T5 + (=8¢} — 8¢2)T* + (16¢{ — 32¢2¢3 + 16¢3)T>.

Let Ly be the Lie algebra of Example 4.12.3. This Lie algebra has basis
{z1,... ,z6} and a Cartan subalgebra Hs is spanned by z1,z2. The matrix
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of the restriction of ¢;adz; + £2adzs to the span of {3, 4,75, 26} is

26 26 0 0
21 2 0 0
0 0 =26 26
0 0 26 2%

Hence the characteristic polynomial of the action of the Cartan subalgebra
H2 of L2 is

fa(T) = T*(T? — 46T + 46} + 4€3)(T? + 46T + 467 + 4€3)
TO + (867 — 8¢3)T* + (16¢] + 3263¢3 + 16¢5)T°

It is easily seen that the transformation ¢; = i£1, (o = & transports f;
to fo. So by Theorem 5.17.7, L; and Ls are isomorphic over the algebraic
closure of Q.

Example 5.17.9 Again let Lo be the Lie algebra of Example 4.12.3. We
calculate the type of Ly using the algorithm Type. As seen in Example
4.12.3, z1 + z2 is a splitting element with minimum polynomial X (X 2 _
4X + 8)(2? + 4X + 8). We calculate a pleasant prime p. For that we first
try p = 5. Over Fs the matrix of ad(z; + z2) has minimum polynomial
X(X* — 1) which factors as X(X + 1)(X — 1)(X + 2)(X — 2). So it is
squarefree and of degree dim Ly — dim Hy + 1. Furthermore 5 does not
divide the determinant of the matrix of the Killing form of Lo (which is
—229). The conclusion is that p = 5 is pleasant. Moreover, over Fs the
minimum polynomial of ad(z, + z2) splits into linear factors, so over this
field L, splits as a direct sum of two ideals I; and I, where

I = (I5 + 2x6, 23 + 214,21 + 3:1:2),

and
I, = <:133 + 3z4, x5 + 3z, 1 + 21:2).

The roots of I and I, are easily calculated; it is seen that the type of L is
A+ Ay

5.18 Notes

Most of the material in this chapter is fairly standard. In Sections 5.12
to 5.15 we have followed [49]. The idea of proving the existence of the
semisimple Lie algebras by exhibiting a choice for the constants N, g was
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also pursued in [83], where the construction was performed in a uniform
manner for all root systems. In [18] a different construction of the N, s is
described. There the existence of the simple Lie algebras is assumed. It
is shown that once the N, g are chosen for the so-called extraspecial pairs
(o, B), then all other constants N, 5 can be determined.

Lemma 5.17.2 and Proposition 5.17.3 as well as the ordering of ®, used
in Section 5.17.1, are taken from [76]. The algorithm Type from Section
5.17.1 is taken from [33].



Chapter 6

Universal enveloping
algebras

Universal enveloping algebras are a basic tool for studying representations of
Lie algebras. Let L be a Lie algebra with basis {z1,... ,z,} andlet p: L —
gl(V) be a representation of L. Let z,y € L then the product p(z)p(y) is
in general not contained in p(L). However on many occasions we compose
the mappings p(z) and p(y) (see for instance Section 5.1). The natural
framework for doing this is the associative algebra generated by the identity
mapping together with p(z) for z € L. This associative algebra is called
an enveloping algebra of L; it is denoted by p(L)*. The algebra p(L)* is
generated by the identity together with p(z;) for 1 < ¢ < n. Among others,
the generators satisfy the relations p(z;)p(z;) = p(z;)p(zi) + p([z:, 25])-
And these relations do not depend on the particular representation p (but
follow from the definition of the concept of representation).

Now the universal enveloping algebra of L is the associative algebra with
1 generated by n abstract symbols, which we also call z1,...,Z,, subject
to the relations z;z; — z;z; — [;,z;]. Then any enveloping algebra of L is
a quotient of the universal enveloping algebra. So in this sense it contains
all enveloping algebras of L.

In Section 6.1 we study ideals in the free associative algebra. We define
a special type of generating set of an ideal called Grobner basis. A criterion
for a set to be a Grobner basis is derived. Then in Section 6.2 we define
universal enveloping algebras and we use the criterion of Section 6.1 to prove
the Poincaré-Birkhoff-Witt theorem that provides a convenient basis of the
universal enveloping algebra. Also in this section we show that representa-
tions of a Lie algebra are in one-to-one correspondence with representations
of its universal enveloping algebra.
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In Section 6.3 we give a criterion for a set of elements of the universal
enveloping algebra of a Lie algebra to be a Grobner basis. This yields
an algorithm for calculating a Grobner basis of an ideal in the universal
enveloping algebra. Also we use this criterion to give a proof of Proposition
1.13.4 (that contains a necessary and sufficient condition for a Lie algebra
of characteristic p > 0 to be restricted).

In Section 6.5 we give an algorithm for constructing a faithful finite-
dimensional representation of a finite-dimensional Lie algebra of character-
istic 0. By doing this we obtain a proof of Ado’s theorem, which asserts
that such a representation always exists. Finally in Section 6.6 we prove
the corresponding statement for Lie algebras of characteristic p > 0, which
is known as Iwasawa’s theorem.

6.1 Ideals in free associative algebras

Let X = {z1,29,...} be a set. Then by X* we denote the set of all words
W = T; Tj, - - - T;, on the elements of X. This includes the empty word which
is denoted by 1. The set X* is called the free monoid on X. It is endowed
with a binary operation - : X* x X* — X* which is defined by u-v = uv
(concatenation). Furthermore, if w = z;,z;, - -- z;, € X* then its degree is
deg(w) = k.

We say that u € X* is a factor of v € X* if there are w;, w2 € X* such
that wjuwy = v (i.e., u is a subword of v). Also u is a left factor of v if
v = uwq and a right factor of v if v = wiu.

Throughout this section we suppose that X* has a total order < which
is multiplicative (i.e., u < v implies wu < wv and uw < vw for all w € X*)
and satisfies the descending chain condition (ie., if wg > wy > -+ is a
descending chain of words, then there is a k > 0 such that wg = wg4; =+ ).
As an example we mention the deglez order <giex. It is defined by u<giexv
if and only if deg(u) < deg(v) or deg(u) = deg(v) and u = wzu', v = wz;v'
where w,u/,v' € X* and i < j.

Now let F' be a field and let F(X) be the vector space spanned by
X*. Extend the operation - bilinearly to F(X). Then F(X) becomes an
associative algebra with 1; it is called the free associative algebra with 1 over
F. The elements of X* are called monomials. And for f € F(X) we define
its support to be the set of all monomials that occur in f with non-zero
coefficient. Furthermore, the order < yields the notion of leading monomial
of f € F(X), which is the biggest element of the support of f. It is denoted
by LM(f). Also for a subset S C F{X) we set LM(S) = {LM(f) | f € S}.

Let I be an ideal of F(X). We consider the problem of computing
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inside the quotient F(X)/I. We need a basis of F(X)/I, i.e., a set of
representatives of all cosets of F(X) modulo I. This means that we are
looking for a set B C F(X) such that B spans a complement to I in F(X).
Furthermore we need to be able to express products of basis elements as
linear combinations of basis elements modulo I. This problem is solved by
the set of normal words of F{X) modulo I, i.e., the set

N({I)={ue X" |ugLM()}.
We let C(I) be the vector space spanned by N(I).

Proposition 6.1.1 Let I C F(X) be an ideal. Then F(X)=C(I)®I.

Proof. It is clear that C(I) NI = 0. Let f € F({X), then we prove that
f = v+ p for some v € C(I) and p € I. By induction we may assume
the result for all h € F(X) such that LM(h) < LM(f) (by the descending
chain condition there are only a finite number of monomials smaller than
LM(f), so induction is allowed). Write f = ALM(f) + h where A € F and
LM(h) < LM(f). Then by induction h=v+pforav € C(I) and ap € I.
So if LM(f) € N(I) then we are done. However, if this is not the case then
LM(f) = LM(g) for some g € I. Write g = uLM(g) + h’ and by induction
the element f — %g is equal to u + q where u € C(I) and ¢ € I. Therefore

f=u+q+%g and we are done. o

Now let f € F(X), then by Proposition 6.1.1 f has a unique expression
as f =v+pforve C(I) and p € I. The element v € C(I) is called the
normal form of f modulo I. Tt is denoted by Nf;(f), or if from the context
it is clear which ideal we mean, by Nf(f).

Let u,v € C(I) and set u * v = Nf(uv). Then C(I) together with
* becomes an algebra. It is immediate that this algebra is isomorphic to
F(X)/I. So if we have a method for computing normal forms, then we can
conveniently calculate in F(X)/I.

Let G C F(X) be a set generating an ideal I of F(X). An element f
of F(X) is said to be in normal form modulo G if for all g € G, LM(g)
is not a factor of any monomial occurring in f. As a first attempt at
calculating normal forms of elements of F(X) modulo I we consider the

following algorithm for calculating normal forms modulo the generating set
G.

Algorithm NormalForm
Input: a generating set G of an ideal I C F(X), and an element f € F(X).
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Output: an element ¢ € F(X) that is in normal form modulo G and such
that f = ¢ mod I.

Step 1 Set ¢:=0, h:= f.

Step 2 If A = 0 then return ¢. Otherwise set u := LM(h) and let A be the
coefficient of u in h.

Step 3 Let g € G be such that LM(g) is a factor of u. If there is no such g
then set h := h — Au, ¢ := ¢ + Ju and return to Step 2.

Step 4 Let p be the coefficient of LM(g) in g, and let v,w € X* be such
that vyLM(g)w = u. Set h := h — ﬁvgw. Return to Step 2.

Comments: We note that LM(h) decreases every step. So because <
satisfies the descending chain condition, the algorithm terminates. Only
monomials that do not have a LM(g) as a factor for g € G are added to
¢. So it is clear that upon termination ¢ is in normal form with respect
to G. Furthermore, at any stage during the algorithm we have that f =
h + ¢ mod I, so at termination f = ¢ mod I.

We can reformulate the algorithm NormalForm as follows. Let h € F(X)
and let w € X* be an element of the support h such that LM(g) is a factor of
w for some g € G. Let u,v € X* be such that uLM(g)v = w. Then we say
that h reduces to h', where b’ = h — 2ugv and X and y are the coefficients
of w and LM(g) in h and g respectively. More generally, if h;,... , hy are
such that h; reduces to hj;q for 1 < ¢ < k — 1, then we also say that
h1 reduces to hg, and we write h; — hy. Now the algorithm NormalForm
basically performs a series of reduction steps, and if no further reductions
are possible it returns what is left.

As the following example demonstrates, this algorithm may not return
a normal form modulo the ideal I.

Example 6.1.2 Let X = {z,y} and G = {zy — 2% 2% — yz,y®} and let
the order be <gex, With z<giexy. So LM(G) = {xy,z3,33}. We consider
calculating the normal form of f = z?y?. Since f = z(zy)y we see that f —
z3y. Continuing like this we find z3y — yzy — yz?. This last monomial is
in normal form with respect to G. Hence we output it. However,

—(zy — 2y + 2(y®) = 2%

So z?y? lies in the ideal I generated by G, so that Nf;(f) = 0. Also in
the algorithm we often have a choice of g € G such that LM(g) is a factor
of LM(h). In this particular case we could have made the following series
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3y = 2%(zy) - 2* = 2(z®) - zyz — 2 > yz and the output is yz.

We see that the algorithm does not give a unique output. However, in the
following we show that if the set G has the property of being a Grébner
basis, then the output of NormalForm(G, f) is unique (and equals Nf(f)).

Definition 6.1.3 Let I be an ideal of F(X). Then G C I is called a
Grobuer basis of I if for all f € I there is a g € G such that LM(g) is a
factor of LM(f).

Theorem 6.1.4 Let G C F(X) be a Grobner basis of the ideal I. Then
N(I) is the set of all words w € X* such that for all g € G, LM(g) is
not a factor of w. Furthermore, NormalForm(G, f) returns Nf;(f) for all

f e F(X).

Proof. The first assertion is a direct consequence of the definition of
Grébner basis. Let f € F(X) and set h = NormalForm(G, f). Let w € X*
be a monomial occurring in h. Then there is no g € G such that LM(g)
is a factor of w. Hence by definition of Grobner basis, w is not a leading
monomial of an element of I. So w € N(I). Now from f = hmod I it
follows that A = Nf(I). a

Definition 6.1.5 Let G C F(X), then G is called self-reduced if firstly for
g # h € G we have that LM(g) is not a factor of LM(h) and secondly the
coefficient of LM(g) in g is 1 for all g € G.

The second condition is added to avoid cumbersome notation. This
condition does not amount to much: if we divide all g € G by a suitable
element Ay € F, then we obtain a set G’ satisfying the second condition and
generating the same ideal as G.

Let I be an ideal of F(X) generated by G = {g1,92,...}. Then for
w € X* we set

Iy = {Z Aitigk, Vs | ui,v; € X* such that u,LM(g,)v; < w} ,

7

i.e., the vector space spanned by all elements of the form ugv for ,v € X*
and g € G such that LM(ugv) < w. Note that I, depends on the particular
generating set G. However, it will always be clear what generating set we
mean.
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Theorem 6.1.6 Let I be an ideal of F{X) generated by a self-reduced set
G. Then G is a Grébner basis of I if and only if for all g1,92 € G and
u,v € X* such that LM(g1)u = vLM(g2) we have that giu — vgs € Iy,
where t = LM(g1)u.

Proof. First suppose that G is a Grobner basis and set f = gyu—wvge. Then
f €1, so Nf(f) = 0. Furthermore LM(f) < ¢ and in the algorithm Normal-
Form we subtract elements ﬁwl gws from h until we reach 0 (cf. Theorem
6.1.4). And for each such element we have LM(w;gwz) < LM(f); hence
f €l

Now we prove the other direction. Let f € I; then f can be written as

n
f= g,
i=1

for some u;,v; € X* and g; € G. We prove that there is a g € G such that
LM(g) divides LM(f). Set s; = LM(u;g;v;) and suppose that the summands
are ordered such that

§1 =82 =...=8k > Sk41 > " = Sp-

If £k = 1, then LM(f) = u;LM(g;)v; and we are done. So suppose that
k > 1 and write

n
f = A(v1g1v1 — uagav2) + (A1 + A2)u2gave + Z AiUigivi- (6.1)
i=3

Set w; = LM(g;); then ujwyv; = ugwove. Now if u; = ug, then wyvy = wavs
and it is seen that the shorter of wq,w; is a factor of the longer one. But
this is excluded since G is self-reduced. It follows that u, # us.

Now we suppose that u; is shorter than us. In this case ug = wuu)
where ul, # 1. Hence wyv; = ubwqve. Here v; must be longer than v,
because otherwise ws is a factor of wy. So v; = vjvy where v{ # 1. Now by
assumption g;v] — uhge € Iy, and hence u1(g1v] — uhge)vz = U191v1 —
u292V2 € Ty w v, SO we can rewrite (6.1) and obtain an expression of the
same form where LM(u1g;v;) has decreased (in the case where £ = 2 and
A1 + A2 = 0) or k has decreased.

If u, is longer than ug, then we reach the same conclusion by similar
arguments. So because < satisfies the descending chain condition after a
finite number of steps we reach an expression for of of the form (6.1) where
k =1 and we are done. a
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Let G be a self-reduced generating set for an ideal I of F(X). By
Theorem 6.1.6 we see that in order to check that G is a Grobner basis we
need to verify whether gju — vgy € I for all g;,¢92 € G and u,v € X*
such that ¢ = LM(g;)u = vLM(g2). It is easily seen that there are infinitely
many such u,v. Indeed, set w; = LM(g;) and u = swa, v = w; s for arbitrary
s € X*. Then wiu = vwy. However, if we write g; = w; + g;, then

g1u — vgy = §15W2 — W18G2 = J1592 — 91592 (6.2)

which lies in I; (where t = wyswe). As a consequence we need not be
bothered about u and v such that u is longer than or equal to wo and v is
longer than or equal to wi. The pairs (u,v) that remain are such that u is
a proper right factor of wy and v is a proper left factor of w;. And of those
there are finitely many.

Definition 6.1.7 Let g1,92 € F(X) and let w; = LM(g;) for i = 1,2.
Suppose that the coefficients of wy,wa in g1,g2 respectively are 1. Suppose
further that wy s not a factor of we and wo is not o factor of wi. Let
u,v € X* be such that wiu = vwy and u is a proper right factor of we
and v is a proper left factor of wi. Then the element giu — vgs s called a
composition of g; and go.

Corollary 6.1.8 Let I be an ideal of F(X) generated by a self-reduced set
G. Then G is a Grobner basis of I if and only if NormalForm(G, f) s zero
for all compositions f of the elements of G.

Proof. If G is a Grobner basis of I then NormalForm(G, f) is zero for all
compositions f because all such f are in I. On the other hand, let g;,¢92 € G
and set f = gju — vgy where u,v € X* are such that LM(g;)u = vLM(ga).
Set t = LM(g1)u = vLM(g2). If u is longer than LM(g2) (and hence v
is longer than LM(g;)), then by (6.2), f € I<;. On the other hand, if u
is shorter than LM(g2) and v is shorter than LM(g1), then by assumption
NormalForm(G, f) is zero. Now in Step 4 of the algorithm we subtract ele-
ments of the form %wl gws from the element h. But LM(w;gws) = LM(h) <
LM(f) < t. After a finite number of steps this reaches zero, hence f € I;.
Now by Theorem 6.1.6 we have that G is a Grobner basis. a

Example 6.1.9 Corollary 6.1.8 yields a straightforward algorithm for com-
puting a Grobner basis of an ideal I generated by a finite set G. First of all
we remark that because G is finite it is straightforward to compute a finite
self-reduced set G’ generating the same ideal as G. So we may suppose that
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G is self-reduced. Then we consider all compositions f of elements of G. If
for such an f we have that NormalForm(G, f) # 0, then we add this normal
form to G. If necessary we perform some reductions to keep G self-reduced.
If this procedure finishes, then we have a Grobner basis. We do not describe
this algorithm in greater detail, but illustrate it with an example instead.
Let X = {z,y} and G = {g = zy — 2%, 9> = 2° — yz,935 = y*}. As order
we take the deglex order <gjex, where £<gjexy. First g; has no composition
with itself, and neither with go; but it has a composition with g3:
g1y’ — - g3 = —a’y’.

As seen in Example 6.1.2, NormalForm{G, f) = yz; so we add g4 = yz to
G. Now it is not difficult to check that all compositions of the elements
g1,--- ;94 reduce to zero modulo G. Hence G is a Grobner basis.

Unfortunately however, it is by no means guaranteed that this procedure
finishes, because a Grébner basis might be infinite. To illustrate this let
X = {z,y} and I the ideal of F(X) generated by fi = zyz — yx. Here f
has a composition with itself

NHyz — zy fr = zyyr — yzyz

which modulo f; reduces to zyyr — yyz. Set f, = zy"z — y"z, then the
composition of fi with fj reduces to fx; (modulo fi, f;). Hence the Grobner
basis relative to <qiex is equal to the set of all f, for n > 1.

6.2 Universal enveloping algebras

Let L be a Lie algebra over the field F with basis B = {z1,z2,...} (so L is
not necessarily finite-dimensional). Let X be a set of symbols in bijection
with B and let ¢ : B — X realize the bijection. Extend ¢ to a map
¢ : L — F(X) by linearity. Denote the image ¢(z;) by Z;. Now let I be the
ideal of F(X) generated by the elements

Gij =TT — Ti%; — (15([.’[,‘],.’51]) for1 <i<y.

Then the universal enveloping algebra U(L) of L is defined to be the quotient
F(X)/I. Let = : F(X) — U(L) be the projection map, then the map

i L -2 F(X) 5 U(L)

maps L into U(L).
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Theorem 6.2.1 (Poincaré-Birkhoff-Witt) A basis of U(L) is formed by
the monomials

:i:’lllj':::k for k>0 and iy <ig <--- < i,

(where such a monomial is understood to be 1 if k =0).

Proof. Let G be the generating set of I consisting of the elements g;; for
1 <14 < j. We choose the order on X* to be <gex Where T;<gexZ; if ¢+ < J.
Then LM(g;;) = Z;%;. We note that G is self-reduced. We consider the
possible compositions of elements g;; and gy;. It is straightforward to see
that these elements can only have a composition when z; = Z;. Then for
u = Zr and v = Z; we have

GijU — VGki = T;T5T; — TiZ; Tk — O[5, %)) Tk + Zj0([2i, Tk])-

Now we calculate the normal form of this element modulo the elements
of G. We note that k¥ < i < j; so Z;T; is the leading monomial of gy;.
Hence Z;Z;Z; reduces to ZxZ;Z; + ¢([z;, 24])Z;. The first monomial of this
expression has Z;Z; as factor so it reduces again. As a consequence in two
steps T;ZZ; reduces to

IxZi%; + Ted([z5, m]) + o[z, zk]) Ts-
In similar fashion Z;Z;Z reduces to
ZxZiZ; + Zid([z, zx]) + @([i, Tk]) T

It follows that g;;u — vg; reduces to

Ted([zj, i) + D25, z])Zi — Zig([z5, Th]) —
d([zi, 2))Z5 — ([, z:)) Tk + Tj0([2i, 7k)).  (6.3)

Let V be the span of X inside F'(X). Let v € V, then modulo G the element
&,v — v, reduces to ¢([z,, ¢ (v)]). This is clear if v = Z;, and for general
v it follows by linearity. In particular we see that (6.3) reduces modulo G
to
P([zilzs, z])) + S{lz5, ze], z3]) + ¢, (26 z4])),

but this is zero by the Jacobi identity. The conclusion is that all composi-
tions of elements of G reduce to 0 modulo G. Hence by Corollary 6.1.8, G
is a Grobner basis of I. So the normal words of F(X) modulo I are those
monomials that do not contain a LM(g;;) as a factor. Now the theorem
follows by Proposition 6.1.1. u
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Corollary 6.2.2 The map i: L — U(L) is injective.

Proof. By Theorem 6.2.1 the elements Z; for ¢ > 1 are linearly independent
modulo I. Hence i is injective. u

By the last corollary we may identify L with its image in U(L). To ease
notation a little we denote the symbol Z; € X also by z;. Since L can be
viewed as a subspace of U(L) there can be no confusion as to what we mean
by this. Furthermore, since U(L) is generated by X it is also generated by
L.

Definition 6.2.3 Let L be a Lie algebra with basis {z1,%2,...}. Then an

element xfll xf: of U(L) is called a standard monomial.

Let p: L — gl(V) be a representation of L and let A = p(L)* be the
corresponding enveloping algebra. We extend p to a map p: U(L) - A by

setting
m my

p(‘z‘il '..',L‘ik ):p(xll

™ plai )™
Then p is a surjective algebra homomorphism. So A = U(L)/J where

= ker p; i.e., any enveloping algebra of L is a quotient of the universal
enveloping algebra of L. Furthermore p makes V into an U(L)-module by
a-v = pla)v for a € U(L) and v € V. Also any algebra homomorphism
U(L) — A whose restriction to L equals p must be equal to p since L
generates U(L). It follows that there is one and only one way to extend
a representation from L to U(L). Moreover, if p : U(L) — gl(V) is a
representation of U(L) then the restriction of p to L is a representation
of L. It follows that the representations of L are in bijection with the
representations of U(L).

Example 6.2.4 When calculating inside U(L) we often compute the nor-
mal form of products of basis elements, i.e., we rewrite a product of the

form
my

e, 01,
11

z ™
iy J1

€T -..a’; jl

- T

as a linear combination of standard monomials. We do this using the al-
gorithm NormalForm. However in this case this algorithm boils down to a
simple procedure which we call CollectionlnUEA (in analogy with the col-
lection algorithm for polycyclic groups, see [80]). The proof of Theorem
6.2.1 already shows how it goes: whenever we encounter in a monomial w
some factor of the form z;z; with ¢ < j, then we replace it by z;z; and add
the terms obtained from w by replacing the occurrence of z;z; by [z}, z;].
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We do not formulate the algorithm in great detail, but illustrate it with an
example. Let L be the 3-dimensional Lie algebra with basis {z,y,h} and
multiplication table

[z,y] = h, [h,z] =2z, [h,y] = —2y.

(See Example 1.3.6). Then in U(L), hy = yh — 2y, and hy? = (hy)y =
(yh — 2y)y = y(hy) ~ 2y° = y(yh — 2y) — 24> = y?h — 4. By induction we
find that hy® = y*h — 2iy’. Now let p : L — gi(V) be a finite-dimensional
representation of L and let vy € V' be a highest-weight vector of weight A
(see Definition 5.1.1). Set v; = p(y)*vg. Then since V is also a U(L)-module
we can write k- v; = hy' - vy = y*h - vy — 263" - vg = (A — 24)v;. Which is in
accordance with Lemma 5.1.2.

6.3 Grobner bases in universal enveloping alge-
bras

Throughout this section L will be a finite-dimensional Lie algebra over the
field F' with basis {z1,...,7:}. In similar fashion as in Section 6.1 we
define the notion of a Grébner basis of an ideal of U(L) and we show
how to calculate a Grobner basis. We remark that although we formu-
late all results for finite-dimensional Lie algebras, the same proofs hold in
the infinite-dimensional case. However in the latter case the indexing of the
basis elements is a little tedious.

By the Poincaré-Birkhoff-Witt theorem, a basis of U(L) is formed by the
standard monomials :1:’1“ :vf‘ We define the degree of a standard mono-
mial m = 2% ... 2% to be the number deg(m) = k1 + - - - + k;. Throughout
this section we suppose that < is a total order of the set of standard mono-
mials. With respect to this order we define the leading monomial LM(f) of
f € U(L) to be the largest standard monomial occurring in f with non-zero
coefficient. Furthermore we suppose that the order is multiplicative (i.e., if
my < mg then LM(nmp) < LM(nmsyp) for all standard monomials 7, p)
and satisfies the descending chain condition (i.e., there are no infinite strictly
decreasing chains of standard monomials) and is degree-compatible (meaning
that deg(m) < deg(n) implies m < n). An example of such an order is the
deglex order <gjox. Set m = w’fl mft and n = xlll a:ltt Then m<qjexn
if deg(m) < deg(n). And if the degrees of m,n are equal then m<gjexn if
the first non-zero entry in (ky ~ l1,... ,k — ;) is positive. This order is
clearly degree compatible and satisfies the descending chain condition. The
fact that it is multiplicative follows from the following lemma.
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Lemma 6.3.1 Let the standard monomials be ordered by a degree compat-

ible order <. Let m = z’f‘ zkt andn =gb -2k be standard monomials.

Then LM(mn) = g ... ghetle,

Proof. This follows from the fact that < is degree compatible. Indeed,
in the collection process we substitute occurrences of z;z; where j > ¢ by
z;z; + [zj,2;]. So the output will consist of the monomial £t ... ghe+h
plus terms of lower degree. o

We say that a standard monomial m is a factor of a standard monomial
n if there are standard monomials p, ¢ such that LM{pmg) = n.

Example 6.3.2 Let L be the 3-dimensional Lie algebra with basis {z,y, h}
considered in Example 6.2.4. Let the order be <giex. Then zh is a factor
of zyh because zh - y = zyh — 21y and the leading monomial of the last
expression is zyh.

Let m, n be given standard monomials. The next lemma gives a criterion
by which we can decide whether m is a factor of n. It is a direct consequence
of Lemma 6.3.1.

Lemma 6.3.3 Let m =z ... 2 and n = 2! - 2!t be standard monomi-

als. Then m is a factor of n if and only if k; < {; for 1 <i <t.

Let G C U(L) generate the ideal I of U(L). An element f € U(L) is
said to be in normal form with respect to G if for all monomials m occurring
in f there is no g € G such that LM(g) is a factor of m. A normal form
of f modulo G is an element h € U(L) such that A is in normal form with
respect to G and f — h € I. The following is an algorithm for calculating a
normal form of f € U(L) modulo a finite set G C U(L). We assume that
the elements of G are monic (i.e., the coefficient of LM(g) in g is 1 for all
g € G). It is clear that we can do that without loss of generality.

Algorithm NormalForm
Input: a set G C U(L) consisting of monic elements, and an element

feU).

Output: a normal form of f modulo G.

Step 1 Set ¢:=0, h:= f.

Step 2 If h = 0 then return ¢. Otherwise set m := LM(h) and let A be the
coeflicient of m in h.
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Step 3 Let g € G be such that LM(g) is a factor of m. If there is no such
g then set h := h — Am, ¢ := ¢+ Am and return to Step 2.

Step 4 Let p,q be standard monomials such that LM(pLM(g)q) = m. Set
h := h — Apgq, and return to Step 2.

Comments: We note that by Lemma 6.3.1 it is straightforward to find
p,q such that LM(pLM(g)g) = m in Step 4. The algorithm terminates
since < satisfies the descending chain condition and LM (k) decreases every
round of the iteration. Let I be the ideal of U(L) generated by G. Then
throughout the algorithm we have that ¢ + h = f mod I. Furthermore ¢ is
always in normal form modulo G. Hence at termination we have that ¢ is
a normal form of f modulo G.

We note that we can reformulate the algorithm NormalForm in the same
fashion as in Section 6.1. Let G C U(L) be a set of monic elements and
let f € U(L). Let m be a monomial occurring in f and let g € G be such
that LM(g) is a factor of m. Let A be the coefficient of m in f and let p,q
be standard monomials such that LM(pLM(g)q) = m. Then we say that f
reduces to f' modulo G, where f' = f — Apgq. The algorithm NormalForm
executes a series of reductions until no further reductions are possible and
outputs the remainder.

Definition 6.3.4 Let G C U(L) and let I be the ideal of U(L) generated
by G. Then G is called a Grébner basis if for all f € I there is a g € G
such that LM(g) is a factor of LM(f).

As in Section 6.1 we define the set of normal words N(I) as the set
of all standard monomials that do not occur as a leading monomial of an
element of 1. If we let C(I) be the span of N(I) then U(L) = C(I) &I
(cf. Proposition 6.1.1). Let f € U(L) and write f = v + g where v € C(I)
and g € I. Then v is called the normal form of f modulo I; it is denoted
by Nf(f). The proof of the following proposition is completely analogous to
the proof of Theorem 6.1.4.

Proposition 6.3.5 Let G be a Grobner basis of the ideal I of U(L). Then
N(I) is the set of all standard monomials m such that LM(g) is not a factor
of m for all g € G. Furthermore NormalForm(G, f) returns Nf(f) for all

feU(L).

Now we consider calculating a Grébner basis of an ideal I generated
by a finite set G. We prove some results analogous to those of Section
6.1. However, in this case we prove that we can restrict our attention to
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a set of special compositions of the elements of G. To describe those we

let A= F[X},...,X] be the (commutative) polynomial ring in ¢ variables.
For m = z¥ ... 2/ we set 7(m) = X¥ ... X} and we extend 7 to a map

7 :U(L) — A by linearity. Since the standard monomials form a basis of
U(L) we have that 7 is bijective. Now let f1, fo € U(L) be monic and set
u; = 7(LM(f;)) for ¢ = 1,2. Let s be the least common multiple of wu;,uy
and set m; = T“l(uii) for i = 1,2. Then the S-element of fi1, f is defined to
be

S(f1, f2) = m1fr —mafo.

Note that since the f; are assumed to be monic the leading monomials cancel
in this expression (Lemma, 6.3.1).

Example 6.3.6 Let L be the 3-dimensional Lie algebra with basis {z,y, h}
of Example 6.2.4. Let the order be <gex and set A = F[X,Y, H]. Put
fi =zy—hand f = zh —y. Then u; = 7(LM(f1)) = XY and uy =
7(LM(f2)) = XH. Furthermore XY H is the least common multiple of
u1,u2. So m; = h and mo = y and

S(f1, f2) = hfi —yfo = hay — h? — yzh + yz = zy — h.

Now let G = {g1,g2,...} C U(L) and let I be the ideal of U(L) gener-
ated by G. Let m be a standard monomial. Then we let I.,, be the set of
elements of the form

T
> AkPrGiy ks
k=1

where pg,qr are standard monomials such that LM(pgg;, gx) < m. Note
that I.,, depends on the generating set G. However, it will always be clear
what generating set we mean. Let f € I, and h;, hg € U(L), then by the
multiplicativity of < it follows that k) fhg € I<py where m' = LM(himhy).
In the sequel we will use this frequently.

Lemma 6.3.7 Let G C U(L) generate the ideal I of U(L). Let g € G
and suppose that for 1 < i < t we have that gz; — ;9 € I<p,, where
m; = LM(gz;). Then for all standard monomials q we have gq — qg € I«
where n = LM(gq).

Proof. The proof is by induction on deg(q). If deg(g) = 0 then the state-
ment is trivial, so suppose that deg(q) > 0. Then ¢ = z;¢’ for some index
i and some standard monomial ¢'. By hypothesis gz; = z;g + h’ for some
k' € Icpm,. Hence gziq' = zi9q' + h'q’ where h'q’ € I in(m;q)- But since
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m; = LM(gz;) we have LM(m;q’') = LM(gq) so that A'¢’ € I.,. Further-
more, by induction, g¢' = ¢'g + h”, for some h” € I., where r = LM(gq).
Hence gqg = qg + z;h" + h'q’ and z;h" + h'q' € I, a

Proposition 6.3.8 Let G C U(L) consist of monic elements and let I be
the ideal of U(L) generated by G. Then G is a Grobner basis of I if and

only if

1. for all g1,92 € G we have that S(g1,92) = m1g; — mags lies in Iy,
where m = LM(m1gy) and

2. forallg € Gand 1 < i <t we have that gz; — ;9 € Iy where
m = LM(gz;).

Proof. First of all, if G is a Grobner basis then all these elements reduce
to zero modulo G because they are elements of I. In particular they lie in
Iy, where m is the appropriate standard monomial.

For the other direction we first consider an element f = pigiq1 —
P292q2 where g1,92 € G and py,p9, q1, g2 are standard monomials such that
LM(p191g1) = LM(p2g2q2). Set m = LM(p1g1¢1). By Lemma 6.3.7 we see
that p;giq; = p;qigi + h; for some h; € I,,. Now set f; = LM(piq;), then it
follows that f = f1g1 — foga + h, for some h € Ip,. Let A = F[Xy,...,X}]
be the commutative polynomial ring in ¢ variables. And let 7: U(L) — A
be the linear map given by T(zlfl xft) = X{“l o XF Set w; = T(LM(g;))
and w; = 7(f;) for i = 1,2, and let s be the least common multiple of
uy,u2. Then wiu; = woug = vs for some v € F[Xy,... ,X:]. Set v; = s/u;,
then w; = vy;. Now put n; = 771(v;) and p = 77}(v). Then ni1g; — nago
is the S-element of g; and gy. Furthermore, by Lemma 6.3.1 we see that
pni = f; + f] where LM(f!) < fi. It follows that

hgi = fage = (pn1 — f1)g1 — (pn2 — fo)g2 = p(nigL — nag2) + (f292 — figr)-

The first summand of the right hand side is in I,, by the hypothesis of the
theorem. And since the second summand also lies in Iy, it follows that
f€lem.

Now let f € I, then we must prove that there is a ¢ € G such that
LM(g) is a factor of LM(f). Write

f=Mpigiqi + - + Arprgrgr

where g; € G for 1 < i < r and p;, ¢; are standard monomials. We remark
that the g; are not required to be different. Set m; = LM(p;g:q;). We
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suppose that the summands have been ordered so that
M =My =... =Mk > Miy1 =+ = My,

Now if k = 1, then LM(g;) is a factor of LM(f). So in this case we are done.
On the other hand, if £ > 1 then we write

i
f=M(Pr19101 — P2g2g2) + (A1 + A2)pagagz + D Aibigids-
=3

By the discussion above we see that pigiqn — p2g2q2 € I<m,. Hence by
substituting an expression for this summand as element of I.,,, we obtain
a different expression for f where k has decreased, or m; has decreased (in
case k = 2 and A\ + Ao = 0). Because < satisfies the descending chain
condition we are done. [

Corollary 6.3.9 Let G C U(L) consist of monic elements and let I be the
ideal of U(L) generated by G. Then G is a Gréobner basis of I if and only if
S(g1,92) for all 1,92 € G and gz; — ;9 for g € G and 1 <1 <t all reduce
to zero modulo G.

Proof. If G is a Grobner basis then all these elements reduce to 0 mod-
ulo G because they are elements of I. On the other hand let g;,920 € G
and suppose that S(g1,g2) = mig1 — mage reduces to zero modulo G. Set
m = LM(mig1). Then LM(S(g1,92)) < m. In the reduction process we
subtract elements of the form Apgq (where g € G) from S(g1,g2) such that
LM(pgq) < LM(S(g1,92)) < m. Now since S(g1, g2) reduces to zero modulo
G we have that S(g1,92) € I<m. For the elements of the form gz; — z;9
we use a similar reasoning. By Proposition 6.3.8 it now follows that G is a
Groébner basis. O

Now we have the following algorithm for calculating a Grobner basis of
an ideal I generated by a finite set S.

Algorithm GrobnerBasis
Input: a finite set S = {g1,...,9,} C U(L) consisting of monic elements.
Output: a Grébner basis of the ideal of U(L) generated by S.

Step 1 Set G := S and D := {(gi,9;) |1 <i<j<r}U{(g,9)|g€G, 1<
i < t).
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Step 2 If D = @ then return G. Otherwise let p be an element of D and set
D := D\ {p}.

Step 3 If p = (g1, g2) for some gy, g2 € G, then set h := S(g1,g2). Otherwise
p = (g,i) for some g € G and 1 < ¢ < t; in this case we set h :=
gz; — x;g. Set h' := NormalForm(G, h).

Step 4 If A’ # 0 then do the following:

Step 4a Divide b’ by the coefficient of LM(A') in A'.
Step 4b Add to D all pairs (g,h') for g € G and (h',7) for 1 <i <t
Step 4¢ Add A’ to G.

Return to Step 2.

Theorem 6.3.10 Let S be a finite subset of U(L) consisting of monic el-
ements. Then GrobnerBasis(S) terminates in a finite number of steps and
outputs a Grobner basis of the ideal generated by S.

Proof. The fact that the algorithm produces a Grobner basis (if it ter-
minates) follows immediately from Corollary 6.3.9. Now suppose that the
algorithm does not terminate. Then the set G is enlarged infinitely often,
and we obtain an infinite sequence G; 2 Gz 2 G3 2 - --. Furthermore Gi41
is obtained from G; by adding an element h; that is in normal form with
respect to G;. In particular LM(g) is not a factor of LM(h;) for all g € Gj.
For i > 1 we set G; = {7(LM(g)) | g € G;} and we let J; be the ideal
of F[X1,...,X;] generated by G;. Then by Lemma 6.3.3 it follows that
7(LM(h;)) is not divisible by any element of G;. Now because G; consists
of monomials this implies that 7(LM(h;)) & J;. As a consequence J;1 2 J;
and we have obtained an infinite strictly ascending chain of ideals in the
ring F[X1,...,X;|. But this is not possible by Hilbert’s basis theorem (see
for instance [89]). 0

One of the main practical problems of the algorithm for calculating a
Grobner basis is that the set D often grows very quickly. A huge number
of pairs is checked, which can make the algorithm very time consuming.
However, many of these checks do not lead to new elements of G. The next
lemmas exhibit some pairs for which we can be certain beforehand that
checking them would be superfluous.

Lemma 6.3.11 Let G C U(L) and I be as in Proposition 6.3.8. Suppose
that for 1 < i <t and g € G we have that gx; — ;9 € I, where m =
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LM(gz;). Let g1,92 € G be such that S(g1,92) = mag1 — mige, where
m; = LM(g;) for j =1,2. Then S(g1,92) € I<n, where n = LM(maq1).

Proof. Write g; = m; + g; for j = 1,2. By Lemma 6.3.7 we have that
S(g1, 92) = g1me — my1g2 + h where h € I.,,. Furthermore,

gima — migs = gi1my — Mige = §192 — 9192-

Therefore, gymo — myge € I, and we are done. O

Lemma 6.3.12 Let G C U(L) and I be as in Proposition 6.3.8. Let
91,92,93 € G and write S(g1, g2) = m1g1—magz, S(g1,93) = n1g1 —n3g3 and
S(g2,93) = pag2 — p3gs. Suppose that S(g1,93) € I<n where n = LM(n1g1)
and S(g2,93) € I<p, where p = LM(p2gs). Suppose further that n and p are
factors of m = LM(myg1). Then S(g1,92) € I<pm.

Proof. Since n and p are factors of m there are standard monomials ¢;, 2
such that m = LM(¢;n) and m = LM(¢9p). By the hypothesis of the lemma
we know that t15(g1,93) — 125(g2,93) € I<m. From m = LM(mig1) =
LM(t1n) = LM(t1n1g;) it follows that mi = tyny +hy, where LM(h;) < m;.
Similarly m = LM(mgg2) = LM(topage) implies that mo = t2py + ho where
LM(hs) < my. We also know that m = LM(¢1n3g3) and m = LM(t2p3g3).
Hence (tops — ting)gs € I<;m. Now we calculate

t15(91,93) — t2S(g2,93) = tinigr — tinags — t2page + topsgs
= myg; — mage — hig1 + hage + (tap3 — tin3)gs.

It follows that S(g1,92) € Icm. o

By Lemma, 6.3.11 we do not have to consider S-elements of the form
mag; —migs, where m; = LM(g;). Furthermore, if g1, g2, g3 are as in Lemma
6.3.12, and we already dealt with S(g;,93) and S(g2,93), then we can dis-
pense with checking S(g;,92).

Example 6.3.13 Let L be the Lie algebra with basis {z,y, h} and multi-
plication table
[l’,y] = h" [ha$] = 2$a [hvy] = “2y

Let G = {g; = 22,92 = y%,g3 = h? — 1}. The standard monomials are or-
dered by the deglex order, where z<qiexy<diexh- We calculate a Grobner ba-
sis of the ideal of U(L) generated by G. All possible S-elements of g1, g2, g3
are of the form considered in Lemma 6.3.11. Therefore we do not have
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to check them. So we look at elements of the form gx; — z;9. First we
have z2y — yz? = 2zh + 2z which is in normal form modulo G. So we add
gs = zh +z to G. The next element is 2h — ha? = —422, which reduces to
0 modulo G. Now we deal with go: 32z — zy? = ~2yh + 2y which cannot
be reduced, so we add g5 = yh —y to G. The element y2h — hy? = 44°
reduces to 0 modulo G. Also (h? — 1)z — z(h? — 1) is a multiple of g4 and
(h2—1)y—y(h%=1) is a multiple of g5. Now we check the S-elements contain-
ing g4. First S(g1,94) = ha? — z(zh+2z) = 322 reduces to 0. The S-element
S5(g2,94) is of the form considered in Lemma 6.3.11 and S(g3,94) = —3g4.
Also the elements g4z — zgs4 and g4h — hgs give nothing new. However,
94y —ygs = —2xy + h? 4 h reduces to gs = Ty — %h — %, which we add. Now
by checking the remaining pairs it can be shown that the set {g1,... ,g6}
is a Grobner basis. We note that we do not need to check the S-element
S(gs,96) once the S-elements S(g4,g5) and S(g4,gs) have been dealt with
(Lemma 6.3.12).

We close this section with a proof of Proposition 1.13.4. For this we use
Corollary 6.3.9. Let L be a Lie algebra over the field F' of characteristic
p > 0 with basis {z1,22,...}. Suppose that there are y; € L for ¢ > 1 such
that (adz;)? = ady;. We let I be the ideal of U(L) generated by the set
G={z] —yi|1<i}.

Lemma 6.3.14 The set G is a Grobner basis of 1.

Proof. For ¢ > 1 set g; = z¥ — y;, and define a linear map adz; : U(L) —
U(L) by adz;(f) = zif — fz; for f € U(L). Then for x € L we have
adz;(z) = [z;, 2] (where the product on the right hand side is taken in

L). Furthermore, (adz;)P(z) = zf'z — zz? by (1.14) with n = p. But also
(adz;)P(z) = (i, 7] = ¥z — zy;. This means that zz — 2zl = y;z — zy;, or

giT = zg; for all z € L. In particular g;z; — z;g; = 0. Also for i # j,
S(9i,95) = g — 2fg; = gixl] — 27g;
= 2Yj — YiTj-

But modulo G this reduces to y;y; — y;y; = 0. Now by Corollary 6.3.9 we
see that G is a Grébner basis of 1. o

By the preceding lemma we have that the set of normal words is
N(I) = {a:fll xf: |»>1and 0 <k; <pj.

And a basis of the algebra A = U(L)/I is formed by the cosets of the
normal words. Let 7 : U(L) — A be the projection map and consider the
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linear map ¢ : L 5 U(L) 5 Apse. Since the basis elements z; are linearly
independent modulo I (they are normal words) we have that ¢ is injective.
It is also a morphism of Lie algebras so ¢ is an isomorphism of L onto the
subalgebra LofA Lie spanned by the ¢(x;). Asseen in Example 1.13.3, Ar;,
is restricted and the map a + aP is a p-th power mapping. Furthermore
&(z;)? = ¢(y;) and by Definition 1.13.2 (items 2. and 3.) it follows that L
is closed under the p-th power mapping of Az. So L is restricted and as
a consequence so is L, and there is a p-th power mapping in L satisfying

6.4 Grobner bases of left ideals

Let L be a Lie algebra. A subspace I C U(L) is said to be a left ideal if
au € I for all a € U(L) and all u € I. We can view U(L) as an L-module
by setting z - a = za for a € U(L) and z € L. Then the left ideals of U(L)
are the L-submodules of U(L). Hence if I is a left ideal of U(L), then the
quotient space U(L)/I becomes an L-module in a natural way. It is the
objective of this section to sketch an approach to Grobner bases for left
ideals in U(L). This will provide a method for constructing a basis of the
quotient module U(L)/I. All constructions and results are analogous to the
results of the previous section.

Throughout we let < be a total order on the standard monomials of
U(L). The leading monomial LM(f) of an element f € U(L) relative to the
order < is defined to be the largest monomial occurring in f. We assume
that < is left-multiplicative (i.e., m < n implies LM(pm) < LM(pn) for
all standard monomials p), satisfies the descending chain condition and is
degree compatible. The deglex order of the previous section serves as an
example of such an order.

A standard monomial m is called a left factor of a standard monomial n
if there is a standard monomial p such that LM(pm) = n. By Lemma 6.3.1,
m is a left factor of n if and only if m is a factor of n.

An element f € U(L) is said to be in left-normal form with respect
to a set G C U(L) if there is no standard monomial m occurring in f
having LM(g) as a left factor for a ¢ € G. Furthermore, h € U(L) is a
left-normal form of f modulo G if h is in left-normal form with respect to
G and f — h € I, where I is the left ideal of U(L) generated by G. We
have an algorithm LeftNormalForm for calculating a left-normal form of an
element f € U(L) modulo a set G of monic elements of U(L). It is the same
as the algorithm NormalForm of the previous section, except for Step 4 that
is replaced by
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Step 4’ Let p be a standard monomial such that LM(pLM(g)) = m. Set
h = h — Apg.

Let I C U(L) be a left ideal. A set G C I is called a left-Grobner basis of
I if for every f € I there is a g € G such that LM(g) is a factor of LM(f).
If G is a left-Grobner basis of I, then the algorithm LeftNormalForm(f, G)
returns the normal form of f with respect to I. Also a standard monomial
m is said to be left-normal with respect to G if there is no ¢ € G such that
LM(g) is a left factor of m. If G is a left-Grobner basis of I, then the cosets
of the left-normal monomials with respect to G form a basis of the quotient
U(L)/I.

Now for calculating a left-Grobner basis of a left ideal generated by a
set of monic elements of U(L) we use the same algorithm as for calculating
a Grobner basis of the ideal of U(L) generated by G, except that we only
consider the S-elements (and leave out the elements of the form gz; — x;g).
The algorithm we get is the following,

Algorithm LeftGrobnerBasis
Input: a finite set S = {g1,...,9-} C U(L) consisting of monic elements.
Output: a left-Grobner basis of the left ideal of U(L) generated by S.

Step 1 Set G:=S and D := {(g;,9;) | 1 <i<j<r}

Step 2 If D = 0 then return G. Otherwise let p = (g1, ¢92) be an element of
D and set D := D\ {p}.

Step 3 Set h:= S(g1,92) and A’ := LeftNormalForm(G, h).
Step 4 If A’ # 0 then do the following:

Step 4a Divide b’ by the coefficient of LM(h') in A'.
Step 4b Add to D all pairs (g, h') for g € G.
Step 4c Add A’ to G.

Return to Step 2.

The proof that this algorithm terminates and gives a left-Grobner basis
is analogous to the proof of the corresponding facts concerning the algorithm
GrobnerBasis in the previous section. We leave the details to the reader. We
note that we can use Lemma 6.3.12 to reduce the number of S-elements
that need to be checked. However, Lemma 6.3.11 cannot be used in this
case.



240 Universal enveloping algebras

6.5 Constructing a representation of a Lie algebra
of characteristic 0

Ado’s theorem states that any finite-dimensional Lie algebra of character-
istic 0 has a faithful finite-dimensional representation. In this section we
describe a method for constructing such a representation for a given Lie
algebra of characteristic 0. As a byproduct we obtain a proof of Ado’s
theorem.

A first idea is to look at the adjoint representation of L. The kernel of
ad is the centre C(L) of L. So for Lie algebras with a trivial centre the
problem is solved by the adjoint representation. Therefore in the rest of
this section we will be concerned with Lie algebras that have a nontrivial
centre.

This section is divided into several subsections. In Section 6.5.1 we give
an algorithm for constructing a tower (with certain properties) of Lie alge-
bra extensions (where every term is an ideal in the next one) with final term
L. A representation of the first element of the tower is easily constructed.
Then this representation is successively extended to representations of the
higher terms of the tower and finally to L itself. Sections 6.5.2 and 6.5.3
focus on a single extension step. In Section 6.5.2 the vector space underlying
the extension is described. Then in Section 6.5.3 we derive the algorithm for
extending a representation. In Section 6.5.4 an algorithm for the construc-
tion of a faithful finite-dimensional representation of L is given and Ado’s
theorem is obtained as a corollary.

6.5.1 Calculating a series of extensions

From Section 1.10 we recall that K x H denotes the semidirect sum of K
and H. In this Lie algebra K is an ideal and H is a subalgebra. Let L be
a finite-dimensional Lie algebra of characteristic 0. Here we describe how a
series of subalgebras

KiCKyC---CKj=NR(L)CKj;; C---CK,.1=SR(L)C K, =1L

can be constructed such that K;,; = K; x H;, where H; is a subalgebra of
K;11. We do this in three steps: first we deal with the case where the Lie
algebra is nilpotent, then with the case where the Lie algebra is solvable.
The final step consists of calculating a Levi subalgebra. For the first two
steps we have the following algorithms.

Algorithm ExtensionSeriesNilpotentCase
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Input: a nilpotent Lie algebra L over a field of characteristic 0.
Output: subalgebras K1, K>,... ,K, =L and Hy,... ,H,_; such that

1. K is commutative,
2. Kiy1 = K; x Hy,
3.dmH,=1for1<i<n-1.

Step 1 Calculate the lower central series of L. Let K; be the final term of
this series. Set n := 1.

Step 2 If K, = L then return K,,... ,K,, Hy,... ,H,_1. Otherwise go to
Step 3.

Step 3 Let I be the unique term of the lower central series of L such that
[L,I] C Kp, but I is not contained in Kj,.

Step 4 Let y, be an element from I\ K, and let H, be the subalgebra
spanned by y,. Set K,y := K, X Hy,. Set n:=n+ 1 and go to Step
2,

Algorithm ExtensionSeriesSolvableCase
Input: a solvable Lie algebra L over a field of characteristic 0.
Output: subalgebras K1, Ks,... ,K,, = L and Hy,... , Hy_1 such that

1. K; is equal to the nilradical of L,
2. Kit1 = K; x H;,
J.dmH;, =1for1 <i<m-~-1.

Step 1 Calculate the nilradical K of L.

Step 2 Let y1,... ,Ym—1 Span a complement to Ky in L. For 1 <i{<m -1
let H; be the subalgebra spanned by y; and set K, = K; x H;.
Return K4,... Ky, Hy,... ,Hpy_1.

Comments: It is straightforward to see that the algorithms terminate.
Let L be a solvable Lie algebra of characteristic 0. Since [L, L] C NR(L)
(Corollary 2.3.5) the elements y; constructed in Step 2 of the algorithm for
the solvable case satisfy [y;, L] C NR(L). So we can construct the semidirect
sums.
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6.5.2 The extension space

In this section we assume that we are given a Lie algebra L over a field F’
of characteristic 0 together with an ideal K and a subalgebra H such that
L = KxH. Starting with a finite-dimensional representation p : K — gl(V)
of K we try to find a finite-dimensional representation ¢ of L. Under some
conditions we succeed in doing this.

Let U(K),U(L) be the universal enveloping algebras of K, L respec-
tively. Then U(K) is a subalgebra of U(L). Let a € U(K) and y € H. Then
by applying the collection process (CollectionInUEA) we see that ay = ya+b
for some b € U(K). Hence ay — ya = b € U(K).

We describe the space on which L is to be represented. This will be a
finite-dimensional subspace of the dual space

UK) ={f:U(K)— F| f is linear}.

The Lie algebra L acts on U(K)* in the following way. Let f be an element
of U(K)* and let z € K and y € H. Then for a € U(K) we set

(6.4)

&=
Sy

)(a) = f(ay ~ ya).
Lemma 6.5.1 The equations (6.4) make U(K)* into an L-module.

Proof. We have to prove that [z,y]-f =z-(y-f)—y-(z-f) forallz,y € L
and f € U(K)*. It is enough to prove this for z,y in a basis of L. So put
together a basis of K and a basis of H to obtain a basis of L. Let z,y be
elements from this basis. If both z,y € K, then [z,y] - f(a) = f(a[z,y]) =
flazy —ayz) =z - (y- f)(a) —y - (z- f)(a). So in this case we are done.
Secondly suppose that £ € K and y € H. Then

z-(y- f)la) —y- (z- f)(a) = flazy — yaz) — f(ayz — yaz)
= flazy — ayz) = [z,y] - f(a).
(Note that [z,y] € K.) Thirdly suppose that z,y € H. Then
z-(y-fla) —y-(z- f)(a) = flazy — zay — yaz + yza) —
f(ayz — yaz — zay + zya)
= f(azy — ayz + yza — zya) = [z,y] - f(a).

]
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Now let {z1,...,z:} be a basis of K. From Section 6.2 we recall that the
representation p of K extends to a representation of the universal enveloping
algebra U(K), by

p(ah - zft) = plz)® - plze)*.

Consider the map
c:VxV*—UK)

defined by c(v,w*)(a) = w*(p(a)v) for v € V, w* € V* and a € U(K).
Let {ei1,... ,em} be a basis of V and let e} be the element of V* defined
by e} (ej) = 8;;. Then c(ei,e;‘»)(a) is the coefficient on position (j,7) of the
matrix of p(a) with respect to the basis {e1,... ,en}. Therefore we call an
element c(v, w*) a coefficient of the representation p. By C, we denote the
image of ¢ in U(K)*; it is called the coefficient space of p.

Let S, C U(K)* be the L-submodule of U(K)* generated by C, (i.e.,
the smallest L-submodule of U(K)* that contains C,). Let o : L — gl(S,)
be the corresponding representation. We will call o the eztension of p to
L. Proposition 6.5.3 states some conditions that ensure that S, is finite-
dimensional. In the proof we need a lemma, that is of independent interest.
We recall that the codimension of an ideal I of an algebra A is the number
dim A/I.

Lemma 6.5.2 Let K be a Lie algebra over a field F with basis {z1,... ,%¢}.
An ideal I of U(K) is of finite codimension if and only if for 1 < ¢ <t there
is a ungvariate polynomial p; € F[X] such that p;(z;) € I.

Proof. Suppose that I is of finite codimension. By Z; we denote the image
ofz; inU(K)/I. For 1 <1 < tlet p; be the minimum polynomial of Z;. Then
pi(x;) € I. For the other direction suppose that deg(p;) = d;. Then modulo
I any standard monomial can be reduced to a standard monomial xlfl - xf‘
such that k; < d; for 1 <4 < t. But there is only a finite number of these;
hence the set of normal words N (I) is finite and I is of finite codimension. O

Also we need the concept of nilpotency ideal. Let K be a finite dimen-
sional Lie algebra, and let p : K — gl(V') be a finite-dimensional represen-
tation of K. If I is an ideal of K such that p(z) is a nilpotent linear trans-
formation for all z € I, then I is called a nilpotency ideal of K with respect
top. Let 0=V, C V] C--- C Vyy1 =V be a composition series of V' with
respect to the action of K. Set I = {z € K | p(z)Viz1 C V; for 0 <14 < s}
Then 7 is an ideal of L; furthermore, by Proposition 2.1.4, I is a nilpotency
ideal of K with respect to p. Now let J be a nilpotency ideal of K with
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respect to p. Then by Proposition 2.1.4, J C I. It follows that I contains
all nilpotency ideals of K with respect to p. For this reason T is called the
largest nilpotency ideal of K with respect to p. We denote it by N,(K).

Proposition 6.5.3 Let L = K x H and let p : K — gl{(V) be a finite-
dimensional representation of K such that [H, K] C N,(K). Leto : L —
9l(S,) be the extension of p to L. Then S, is finite-dimensional and N,(K) C
Ny(L). Furthermore, if L is solvable and adiy is nilpotent for all y € H,
then H C Ny(L).

Proof. Let 0 = Vy C Vi C --- C Vi1 = V be a composition series of V
with respect to the action of K. Let I = {a € U(K) | p(a) = 0} be the
kernel of p (viewed as a representation of U(K)), and

J={a€U(K)|p(a)Viy; CV; for 0 <17 < s}.

Then J is an ideal of U(K) and I C J. Now [ has finite codimension (since
U(L)/I = p(K)*) and hence so has J. Now from Lemma 6.5.2 it follows
that J**! also has finite codimension. Set

W= {f € UK)" | f(J°*)) =0}

then W is finite-dimensional as J**! has finite codimension. We claim that
W is stable under the action of L. First let £ € K, then for f € W and
a € J*T! we have z - f(a) = f(az) = 0 since J**! is an ideal of U(K).
Second let y € H. For a € U(K) we define ady(a) = ya —ay. Then ady is a
derivation of U(K) extending the usual map ady : K — K. Now ady(K) C
N,(K) C J;sosince K generates U(K) we see that ady(U(K)) C J, whence
ady(J*T!) C J*t1. Consequently for f € W and a € J**! we have that
y- f(a) = f(ay — ya) = 0. Our claim is proved.

Now let c(v, w*) be a coefficient of p, then c(v,w*)(I) = 0. But J**1 C I
so that c(v,w*) € W. Therefore C, C W and because W is an L-module
also S, C W. And since W is finite-dimensional the same holds for S,,.

We prove that N,(K) is an ideal in L. By the definition of largest
nilpotency ideal we see that N,(K) = JN K. But [H,JNK] C [H,K] C
N,y(K). And this implies that N,(K) is an ideal in L. Now let z € N,(K),
then also z € J so that z°*! € J**!. Let f € S, then o(z)*™! - f(a) =
f(az®*t') which is zero because f € W and az**! € J*T!. Therefore N,(K)
is a nilpotency ideal of L with respect to o, i.e., Ny(K) C Ny(L).

Suppose that L is solvable and adgy is nilpotent for all y € H. Let
y € H. Again we consider the derivation ady of U(K). Since ady acts
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nilpotently on K, by the Leibniz formula (1.11) we see that ady is lo-
cally nilpotent on U(K) (meaning that for every a € U(K) there is a
ks > 0 such that (ady)*=(a) = 0). This implies that ady acts nilpotently
on the finite-dimensional space U(K)/J**!, i.e., there is an N > 0 such
that (ady)¥(U(K)) c J**'. Then o(y)N - f(a) = 0 for all f € S, and
a € U(K). The conclusion is that o(z) is nilpotent for all z € N,(K)U H.
Let M be the Lie algebra spanned by N,(K) along with H. We note that
M is an ideal of L. In particular M is a solvable Lie algebra. Suppose that
the ground field is algebraically closed. Then by Lie’s theorem (Theorem
2.4.4) there is a basis of S, relative to which the matrices of o(z) are upper
triangular for all € M. Hence o(z) is strictly upper triangular for all
z € N,(K)U H. The conclusion is that o(z) is strictly upper triangular for
all z € M. If the ground field is not algebraically closed, then we tensor
everything with the algebraic closure of the ground field and arrive at the
same conclusion. It follows that M is a nilpotency ideal of L with respect
to o, so that M C N,(L). a

6.5.3 Extending a representation

Throughout this section L = K x H and p : K — gl(V) is a finite-
dimensional representation of K such that [H, K] C N,(K). Furthermore,
o : L — gl(S,) will be the extension of p to L. By Proposition 6.5.3, S, is
finite-dimensional.

In this section we give an algorithm to construct a finite-dimensional
representation of L. If p is faithful and H is 1-dimensional, then the rep-
resentation of L will also be faithful. The key to the algorithm will be the
following proposition.

Proposition 6.5.4 Suppose that p is a faithful representation of K. Then
o is faithful on K. Furthermore, if H is 1-dimensional, then o is a faithful
representation of L or there is an element § € K such that y — § lies in the
centre C(L) of L, where y is an element spanning H.

Proof. Let z be a non-zero element of K. Then p(z) # 0 and hence there
are v € V and w* € V* such that

0 # w*(p(z)v) = () - c(v, w*)(1).

Hence o(z) # 0 for all z € K so that o is faithful on K.
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Suppose that H is 1-dimensional and let y € H span H. Suppose further
that o is not faithful on L. This means that there is a relation

a(y) —o(g) =0,

for some y € K, i.e., o(y) = o(¢). Then for all z € K we have

o([9,2]) = [0(§),0(2)] = [o(y), o(x)] = o([y, z]).

Since o is faithful on K, this implies that [§, z] = [y, z]; but this means that
lvy—9, K] =0. Also o([y,y — g]) = 0 and because [y,y — ] € K we have
that it is 0. The conclusion is that y — § € C(L). ad

Now the idea of the algorithm is straightforward. Suppose that H = (y)
is 1-dimensional. If there is an element § € K such that y — § € C(L)
then we can easily construct a representation of L. If on the other hand,
there is no such g, then ¢ will be a faithful representation of L. If H is not
1-dimensional then we have no guarantee that o is faithful. However in the
next section it will become clear that this does not bother us too much.

We consider the problem of calculating a basis of §,. We do this by
letting the elements of L act on C,. By the next lemma we only have to
consider the action of the elements of H for this.

Lemma 6.5.5 Let y,... ,ys be a basis of H. Then S, is spanned by the
elements

yfl...yfs.f
where kg >0 (1< g<s)and f € C,.

Proof. Let {z1,...,z:} be a basis of K. Then by the theorem of Poincaré-
Birkhoff-Witt, S, is spanned by all elements of the form

y{cl yfs 'ZElll“‘.Tét .f

for f € C,. Now for £ € K we have z - c(v,w*) = c(p(z)v,w*) and hence
C, is a U(K)-module. This implies that S, is spanned by elements of the
form

k ks
yll...ys .f_
O

The next problem is how to do linear algebra inside S,. Since the am-
bient space U(K)* is infinite-dimensional this is not immediately straight-
forward. We need to represent each element of S, as a row vector (of finite
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length); then we can use Gaussian elimination to calculate a basis of S,
and calculate matrices of endomorphisms of S, and so on. We solve this
problem by taking a finite set B of standard monomials and representing
an element f € S, by the vector (f(b))sep. We must choose B such that
linearly independent elements of S, yield linearly independent row vectors.
We shall call such a set B a discriminating set for S,. Since S, is finite-
dimensional discriminating sets for S, exist and a minimal discriminating
set consists of dim S, standard monomials.

Now we formulate an algorithm for extending the representation p to L.
There are two cases to be considered; the general case and the case where
H = (y) and there is a § € K such that y —§ € C(L). In the second case
we can easily construct a faithful representation of L. In the general case
we construct the extension of p to L. Then by Proposition 6.5.4 we always
obtain a faithful representation of L in the case where H is 1-dimensional.
For greater clarity we formulate the algorithm using a subroutine that treats
the general case. We first state the subroutine.

Algorithm GeneralExtension

Input: L = K x H and a representation p : K — gl(V) such that [H, K] C
N,(K).

Output: the extension o : L — gl(S,).

Step 1 Calculate a set of standard monomials B = {m,... ,m,} that form
a basis of a complement to ker p in U(K).

Step 2 Calculate a basis of C, using B as discriminating set and set d :=
max deg m;.

Step 3 Let By be the set of all standard monomials m such that deg(m) < d.
Step 4 Calculate a basis of S,, using By as discriminating set.

Step 5 Calculate the action of the elements of a basis of L on S,. If this
yields a representation of L, then return that representation. Other-
wise set d :=d + 1; and go to Step 4.

Comments: The algorithm is straightforward. It calculates a basis of
S, and the matrices of the corresponding representation. For want of a
better method we use a rather crude way of finding a discriminating set By.
First we consider the space C,. We have

c(v,w")(a) = w*(p(a)v),
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so we can describe a function in C), by giving its values on the monomials m;
constructed in Step 1. Now we let By be the set of all monomials of degree
< d. Initially we set d equal to the maximum degree of a monomial m;,
ensuring that all these elements will be contained in By. Using Lemma 6.5.5
we calculate a basis of S, representing each function on the set By. Then
we calculate the matrices of the action of the elements of a basis of L. If
this yields a representation of L then we are done. Otherwise we apparently
did not calculate all of S, in the preceding step. This means that By is
not a discriminating set for S,. So in this case we set d := d + 1 and go
through the process again. Since S,, is finite-dimensional, the procedure will
terminate. (Note that once we find in Step 5. a space that is an L-module
it must be equal to S, since it contains C,.) We can refine this a little by
calculating a much smaller set of monomials in Step 5. In that step we know
a basis of our space and we can restrict to a set of standard monomials of
cardinality equal to the dimension of this space.

Now we state the routine that also treats the special case. We recall that
E;; denotes the n x n-matrix with a 1 on position (s, j ) and zeros elsewhere.

Algorithm ExtendRepresentation

Input: L = K x H and a representation p : K — gl(V) such that [H, K] C
N,(K).

Output: a representation o : L — gl(W).

Step 1 If H is spanned by a single element y and there is an element y € K
such that y — g € C(L) then do the following:
Step 1la Set n := dim(V). Set o(y — g) := E:Iinﬂ'
Step 1b For z in a basis of K let o(z) be the n + 2 x n 4 2-matrix of
which the n x n-submatrix in the top left corner is p(z), and the
rest of the entries are 0.

Step 1c Return o.

Otherwise return GeneralExtension(L, p).

Proposition 6.5.6 Let L = K x H and let p: K — gl(V') be a representa-
tion of K such that [H, K| C N,(K). Then ExtendRepresentation(L, p) re-
turns a finite-dimensional representation o of L such that N,(K) C N, (L).
Also if p is faithful and H is 1-dimensional, then ¢ is a faithful representa-
tion of L.

Proof. First we suppose that o is constructed in Steps la., 1b. of the
algorithm. We remark that finding a § such that y — § € C(L) amounts to
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solving a system of linear equations. Also since y — § € C(L) we have that
the map o is a representation of L. It is obviously finite-dimensional and
o(z) is nilpotent for all z € N,(K). Since [y, N,(K)] = [§, No(K)] C Ny(K)
we see that N,(K) is an ideal of L. Therefore, N,(K) C Ny(L). On the
other hand, if ¢ is constructed by GeneralExtension then these properties
follow from Proposition 6.5.3.

Finally suppose that p is faithful and H is 1-dimensional. If o is con-
structed in Steps la., 1b., then o is obviously faithful on L. And if o is
constructed by GeneralExtension then ¢ is faithful by Proposition 6.5.4. O

6.5.4 Ado’s theorem

Here we formulate algorithms for calculating a faithful finite-dimensional
representation of a Lie algebra L of characteristic 0. We treat the cases
where L is nilpotent and solvable separately.

Algorithm RepresentationNilpotentCase

Input: a nilpotent Lie algebra L of characteristic 0.

Output: a finite-dimensional faithful representation o of L, such that o(z)
is nilpotent for all z € L.

Step 1 Let [Ki,...,Ky,Hy,...,H,_1] be the output of ExtensionSeries-
NilpotentCase with input (L).

Step 2 Let {z1,... ,7s} be a basis of K; and set pi(z;) := Efﬂrl for 1 <
1 < 8.

Step 3 For 2 <14 < n set p; :=ExtendRepresentation(K;,p;-1).

Step 4 Return py,.

Lemma 6.5.7 Let L be a nilpotent Lie algebra of characteristic 0, then
RepresentationNilpotentCase on input L returns a faithful finite-dimensional
representation o of L such that o(z) is nilpotent for all z € L.

Proof. By induction we show that for 1 < 7 < n we have that p; is a
faithful finite-dimensional representation of K; such that p;(z) is nilpotent
for all z € K;. This is certainly true for ¢ = 1. Now assume that ¢ > 1.
Then K; = K;_1 x H;_1; and since by induction, N, (K;—1) = K;—1 we
have that [H;_1,K;_1] C N,_,(K;-1). By Proposition 6.5.6 we see that
Ki—1 = N,,_,(K;-1) C N, (K;). Let yi—1 be an element spanning H;
(note that the H; are all 1-dimensional in this case). We show that p;(y;—1)
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is nilpotent. If p; is constructed in Steps la., 1b. of the algorithm ExtendRep-
resentation, then p;(y;—1) = pi(yi—1 — Ji—1) + pi(¥i—1). Both summands on
the right hand side are nilpotent and commute, hence p;(y;—1) is nilpotent.
On the other hand, if p; is constructed by GeneralExtension, then p;(y;-1) is
nilpotent by Proposition 6.5.3. Now in exactly the same way as in the last
part of the proof of Proposition 6.5.3 it follows that K;_; + H;_1 C N,,(K;),
i.e., p;(z) is nilpotent for all x € K;. Also p; is faithful by Proposition 6.5.6.
O

Algorithm RepresentationSolvableCase

input: a solvable Lie algebra L of characteristic 0.

Output: a finite-dimensional faithful representation o of L, such that o(z)
is nilpotent for all z € NR(L).

Step 1 Let [K,...,Kmn, Hy,... ,Hpn_1] be the output of ExtensionSeries-
SolvableCase with input (L).

Step 2 Let o, be the output of RepresentationNilpotentCase(K7).
Step 3 For 2 < i < m set o; :=ExtendRepresentation(K;,0;_1).

Step 4 Return opy,.

Lemma 6.5.8 Let L be a solvable Lie algebra of characteristic 0, then Rep-
resentationSolvableCase on input L returns a faithful finite-dimensional rep-
resentation o of L such that o(x) is nilpotent for all x € NR(L).

Proof. By induction we show that for 1 < 7 < m we have that o; is a
faithful finite-dimensional representation of K; such that o;(z) is nilpo-
tent for all z € NR(L). For ¢ = 1 this follows from Lemma 6.5.7 as
K, = NR(L). Now suppose that 7« > 1, then K; = K;_; x H;_;, and
by Corollary 2.3.5 we have that [H;_1, K;_1] C NR(L). But by induction,
NR(L) C N,,_,(K;_;). Hence the hypothesis of Proposition 6.5.6 is satis-
fied. It follows that NR(L) C Ny, (K;), and that o; is faithful. O

Algorithm Representation

Input: a Lie algebra L of characteristic 0.

Output: a finite-dimensional faithful representation ¢ of L, such that o(z)
is nilpotent for all z € NR(L).

Step 1 (Catch nilpotent and solvable cases.) If L is nilpotent, then return
the output of RepresentationNilpotentCase on input L. If L is solvable,
then return the output of RepresentationSolvableCase with input (L).
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Step 2 Calculate the solvable radical R and a Levi subalgebra S of L.

Step 3 Let 1 be output of RepresentationSolvableCase(R). Let p be the
output of ExtendRepresentation with input L and 1. Return the direct
sum of p and the adjoint representation of L.

Theorem 6.5.9 Let L be a a finite-dimensional Lie algebra of characteris-
tic 0. Then Representation(L) returns a faithful representation o of L, such
that o(z) is nilpotent for all x € NR(L).

Proof. Firstly, if o is output in Step 1, then this follows from Lemmas
6.5.7 and 6.5.8. If L is not solvable, then L = R x S. We note that
by Proposition 2.3.6, NR(L) = NR(R). So by Lemma 6.5.8 we have that
NR(L) C Ny(R). Using Corollary 2.3.5, we now see that [S, R] C Ny(R).
Therefore, by Proposition 6.5.6, p is a finite-dimensional representation of
L. In this case S is not 1-dimensional, so p is constructed by GeneralEx-
tension. Therefore, by Proposition 6.5.4, p is faithful on R. In particular,
p is faithful on the centre C(L) of L. But then it follows that the direct
sum of p and the adjoint representation of L is faithful on L. Further-
more, by Proposition 6.5.6, p(x) is nilpotent for all z € NR(L). Also adz
is nilpotent for all x € NR(L). Hence o(z) is nilpotent for all z € NR(L). O

Corollary 6.5.10 (Ado’s theorem) Let L be a finite-dimensional Lie al-
gebra over a field of characteristic zero. Then L has a faithful finite-
dimensional representation. Moreover, a representation can be constructed
such that the elements of the nilradical of L are represented by nilpotent
endomorphisms.

Example 6.5.11 Let L be the 5-dimensional Lie algebra of characteristic
0 with basis {z1,... ,z5} and multiplication table

[z3,24] = 22, [3,25] = 71, [T4,75] = T3.

This is a nilpotent Lie algebra and the final term of its lower central series
is spanned by z,z2,73. So we set K1 = (x1,z2,73), Ko = K| % (z4) and
K3 = Ky x (z5). A representation p; of K; is easily constructed by setting
p1(z1) = E}y, p1(z2) = Efy and py(23) = Ef;. Then the only standard
monomials p for which p;(p) is non-zero are 1,1, 2, z3. So any coefficient
will yield zero when applied to any other monomial. Denoting the function
that assigns to a matrix the coefficient on position (i, j) by c¢;; we see that
there are four coefficient functions. First there is ¢y : U(L) — F defined
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by ¢11(1) = 1 and ¢11(p) = 0 if p is a standard monomial not equal to 1.
Second we have ¢y given by c12(z;) = 1 and ¢12(p) = 0 if p # z;. Third
and fourth we have c¢)3 and cy4 that satisfy cj3(z2) = 1 and ci3(p) = 0 if
p # w2 and ci4(z3) = 1 and ¢4 = 0 if p # z3. So C,, is 4-dimensional.

Now we let z4 act on C,,. By induction it is straightforward to establish
that 2425 = 2’z — mxgmgn'l and hence

chebaPry — zyabeba? = makalad ™t
Set aym = mzfzsT L then for f € U(K;)* we have 4 - f(z¥zha]) =

f(akm). Since ag i m, is never 1 we see that z4 - ¢;1 = 0. Furthermore a1
is also never z; or z3 implying that z4 - ¢19 = z4 - ¢c14 = 0. However, if we
set Kk =1=0and m =1, then ag;,, = z2. This means that z4 - c13(x3) =
c13(z2) = 1. As a consequence z4-c13 = c14. S0 Cp, is stable under the action
of x4, i.e., S, = C,,. This yields a representation p; of K3. By the above
we see that po(x4) = 23 Also for f € U(K))* we have z1 - f(zhzba) =
f(ac’f“méx?) from which it follows that 2, -¢11 = z1-¢13 = 21 -¢14 = 0 and

-c12 = ¢11. For z9,r3 we use a similar argument and we conclude that
pg(ml) = E},, p2(z9) = Ei4 and po(z3) = Ej, (the same matrices as for p;).

We perform the final extension. The standard monomials p € U(Kj)
such that po(p) is non-zero are 1, z1, T, T3, T4, 3Z4 (p2(2324) = p2(x2)). So
the coefficients are ¢y, ¢12, €13, €14, 43 Where

o

11(1) = 1 and 0 for all other monomials

cio(zy 1 and 0 for all other monomials
C14

(
(
c13(z2) = ¢c13(r314) = 1 and 0 for all other monomials
(
(z4) = 1 and 0 for all other monomials.

)
)

z3) = 1 and 0 for all other monomials
)

C43\Ty¢

We let x5 act on the 5-dimensional space C,, spanned by the coefficients.
First by some induction arguments we see that

¥abaPates — psababala? =
n k+1 1
na¥rbrPtigi=! (2> i ePal =2 4 maltaha D e}
We denote the expression on the right hand side by bg jm n. Then for f €
U(K32)* we have z5 - f(z¥zbaTa?) = f(bkimm). Since bgimyn is never 1,

z5-c11 = 0. Furthermore by, , = 21 ifand onlyifk =l =n=0andm =1
80 z5-c12(23) = c12(z1) = 1 and z5-c12 = c14. Insimilar fashion z5-c14 = ¢43.
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Also by ymn is 29 or z3z4 if and only if k =1 =m = 0 and n = 2, in which
case bk mn = 2324 — To. S0 T5-c13(22) = €13(27374 — z2) = 1. This yields
a function g : U(K3) — F not contained in C,,; it is defined by g(z3) =1
and g(p) = 0 for all standard monomials p # :EZ. Since bgjm,n is never x4
or xi we have that =5 - c43 = x5 - g = 0. It follows that S,, is 6-dimensional.
We leave it to the reader to write down the matrices of the corresponding
representation of L.

6.6 The theorem of Iwasawa

In the preceding section we proved Ado’s theorem, stating that any finite-
dimensional Lie algebra of characteristic 0 can be obtained as a linear Lie
algebra. In this section we prove the corresponding result for Lie algebras
of characteristic p > 0, which is known as Iwasawa’s theorem.

Throughout F' will be a field of characteristic p > 0. We recall that a
polynomial of the form

Oé()Xpm + OqX'pm_1 +toanX
is called a p-polynomial.

Lemma 6.6.1 Let L be a finite-dimensional Lie algebra over F. Letz € L,
then there is a monic p-polynomial f € F[X] such that f(adz) = 0.

Proof. Let g be the minimum polynomial of adz. Suppose that the degree
of g is d. Then for 0 < i < d we write
XV = ggi +1;

where deg(r;) < d. Now since the space of polynomials of degree < d is d,
the polynomials r; are linearly dependent. So there are Xy, ... , Ag such that
Z;jzo X;r; = 0. This means that

d , d
D NXT =g> M.
i=0 i=0

So g is a factor of a p-polynomial f. After dividing by a suitable scalar we
may assume that f is monic. Finally, because g divides f, we have that
f(adz) = 0. O

Now let L be a finite-dimensional Lie algebra over the field F' with basis
{#1,...,z,}. For 1 <4 < nlet f; € F[X] be a monic p-polynomial such
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that f;(adz;) = 0. Set G = {f1(z1),... , fa(zn)} which is a subset of U(L).
Let I be the ideal of U(L) generated by G.

Lemma 6.6.2 The set G is a Grébner basis of 1.

Proof. We claim that f;(z;) commutes with all elements of U(L). For this it
is enough to show that f;(z;) commutes with all elements of L. For ¢ € U(L)
let ada be the derivation of U(L) given by ada(b) = ab — ba for b € U(L).
By (1.14) with n = p it follows that (ada)?(b) = aPb — ba? = adaP(b)
for b € U(L). So (ada)? = adaP. By a straightforward induction this
implies (abda)”lc = ade®. In particular, for y € L we have adfi(z;)(y) =
fi(adz;)(y) = 0, i.e. fi(z;) commutes with every y € L and our claim is
proved.

Now we show that G is a Grobner basis. Firstly, fi(z;)z; —; fi(z;) =0
by the claim above. Write fi(z;) = z¥ = + fi(z;). Then

S f))=a8  fi—al " fy = fi =2l S
= filza] | 2l f(z)).
But modulo G this reduces to — f;(x;) f;(z;) + fi(zi) fj(z;) = 0. By Corol-
lary 6.3.9 it now follows that G is a Grobner basis of I. a

As in the proof of the preceding lemma write f;(z;) = =¥ ™ +fi(z;). Then
by Lemma 6.6.2 it follows that the set of normal words of U(L) modulo [ is

N(I) ={zf---zf |r>1and 0 <k <p™}.

And a basis of the algebra A = U(L)/I is formed by the cosets of the normal
words. Let 7 : U(L) — A be the projection map and consider the linear

map ¢: L % U(L) 5 Ari. Then by the same argument as we used at the
end of Section 6.3 we have that ¢ is an isomorphism of L onto its image
in Ar;e. We identify L with its image and we let p : L — gl(A) be the
map given by p(z)(b) = zb for £ € L, b € A (where the product on the
right hand side is taken in A). Then p([z,y])(b) = [z,y]b = (zy — yz)b =
(p(z)p(y) — p(y)p(z))b. Hence p s a representation of L. Also since A has
an identity this representation is faithful. So we have proved the following
theorem.

Theorem 6.6.3 (Iwasawa) Let L be a finite-dimensional Lie algebra of
characteristic p > 0. Then L has a faithful finite-dimensional representa-
tion.
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Remark. We can easily transform the proof of Iwasawa’s theorem into an
algorithm Representation for Lie algebras L of characteristic p > 0. For every
basis element x; of L we calculate a p-polynomial f; such that f;(adz;) = 0.
Then we form the algebra A spanned by the normal words N (I) modulo the
ideal I of U(L) generated by the elements f;(z;). Finally we calculate the
matrices of the left multiplication of z; on A. However, since the dimension
of A will generally be huge, this is not a practical algorithm. To the best
of our knowledge the problem of finding an algorithm for constructing a
finite-dimensional faithful representation of manageable dimension for a Lie
algebra of characteristic p > 0 is still open.

6.7 Notes

Grobner bases for commutative polynomial rings were invented by B. Buch-
berger ([15], [16], [17]). In [9] the concept of Grobner basis was extended
to noncommutative associative algebras (see also [64], [65]). The proof of
the Poincaré-Bikhoff-Witt theorem by the use of Grobner bases was given
in [9]. For a different approach we refer to [42], [48].

Grobner bases for left ideals in universal enveloping algebras were intro-
duced in [1]. In [50] Grdbner bases for so-called solvable polynomial rings
were described. Universal enveloping algebras are an example of solvable
polynomial rings. This last paper also describes Grobner bases for two-
sided ideals. Lemmas 6.3.11 and 6.3.12 are to the best of our knowledge
not contained elsewhere in the literature, they are however, straightforward
translations of the corresponding statements for commutative polynomial
rings (see, e.g., [65]). Proposition 1.13.4 and Theorem 6.6.3 are contained
in [48]. However, the approach to these results via Grobner bases, is as far
as we know not described elsewhere.

The algorithms of Section 6.5 are taken from [34]. The proof of Propo-
sition 6.5.3 follows [13). In general we do not know any bounds on the
dimension of the representation output by Representation(L). In {34] it is
proved that for a nilpotent Lie algebra of dimension n and nilpotency class

¢ the dimension of the resulting representation is bounded above by (7).
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Chapter 7

Finitely presented Lie
algebras

Let L be a Lie algebra and X C L a set of elements of L. The Lie algebra
generated by X is defined to be the smallest subalgebra of L containing X.

Example 7.0.1 Let L = sl3(F) (see Example 1.2.1). Set

10 0 010

z=10 1 0 y=10 0 1

0 0 -2 000
Let K be the subspace of L spanned by {z,y, [z,y], [y, [z, y]]}. Then a small
calculation shows that K is closed under the Lie bracket, so that K is a
subalgebra of L. Furthermore, K contains x,y and it is clear that any

subalgebra of L that contains x and y must also contain K. Hence K is the
Lie algebra generated by z and y.

Let X = {z1,z9,23,...} be a subset of the Lie algebra L. Then the Lie
algebra K generated by X is spanned by elements of the form

Tis [xivmj]’ [[xi’xj]amk]v [miv[xj’xk]]v [[[xi’xj]’xk]aml]v"'

i.e., by all bracketed expressions in the z; € X. It follows that the mul-
tiplicative structure of K is described by a set of relations that are sat-
isfied by the z;. For example, in Example 7.0.1 we have the relation
[z,[z,y]] — 3[z,y] = 0. The form and number of such relations will de-
pend on the Lie algebra L and the subset X. However, in all cases we have
the identities
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(Ly) [a,a] =0 for all a € K,
(L2) [a,[b,c]] + [b, [c,a]] + [¢,[a,b]] =0 for all a,b,c € K.

In this chapter we study Lie algebras generated by a set of elements. For
this we want to treat the relations that depend on the particular Lie algebra
L separately form the relations following from (L;) and (Ly) that hold in
any Lie algebra. If we concentrate on the latter relations and forget about
the first, then we get the concept of free Lie algebra. In Section 7.1 we
formally define the concept of free Lie algebra. If we take a free Lie algebra
and impose some relations on the generators, then we get a so-called finitely
presented Lie algebra. This is the subject of Section 7.2. A large part of the
rest of the chapter is devoted to describing algorithms for finding a basis
of a finitely presented Lie algebra. In Sections 7.3 and 7.4 an algorithm for
this task is described that works inside the free algebra. It enumerates a
basis of a finitely presented Lie algebra, and therefore it will only terminate
if this Lie algebra is finite-dimensional.

It is also possible to work directly inside the free Lie algebra. For that
we need a basis of the free Lie algebra. This is the subject of Sections
7.5, 7.6 and 7.7, where we describe the so-called Hall sets, which form a
class of bases of the free Lie algebra. In Section 7.8 we give two examples
of Hall sets. These are then used in Section 7.9 to give an algorithm for
reducing elements of the free Lie algebra modulo other elements of the free
Lie algebra. In Section 7.10 we prove a theorem due to A. I. Shirshov,
giving an algorithm for calculating a Grobner basis of an ideal in a free Lie
algebra. This algorithm is only guaranteed to terminate if a finite Grébner
basis exists. This gives us one more algorithm for calculating a basis of
a finitely-presented Lie algebra. Section 7.11 contains an application of
the theory of finitely presented Lie algebras. We prove a theorem by J.-P.
Serre, describing the semisimple Lie algebras of characteristic 0 as finitely
presented Lie algebras.

7.1 Free Lie algebras

Let X be a set. We construct a Lie algebra generated by X, satisfying no
relations other than (L;) and (Lo).
Let M(X) be the set inductively defined as follows:

1. X C M(X),

2. if m,n € M(X), then also the pair (m,n) € M(X).
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The set M(X) is called the free magma on X. It consists of all bracketed
expressions on the elements of X. On M (X) we define a binary operation
S M(X) x M(X) - M(X) by m-n= (m,n) for all m,n € M(X).

For m € M(X) we define its degree recursively: deg(m) =1ifm € X
and deg(m) = deg(m’) + deg(m”) if m = (m/,m"). So the degree of an
element m € M(X) is just the number of elements of X that occur in m
(counted with multiplicities). For an integer d > 1 we let My(X) be the
subset of M(X) consisting of all m € M(X) of degree d. Then

M(X) = | My(X).
a>1

Let F be a field and let A(X) be the vector space over F' spanned by
M(X). If we extend the binary operation on M (X) bilinearly to A(X), then
A(X) becomes a (non-associative) algebra; it is called the free algebra over
Fon X. Let f € A(X); if also f € M(X), then f is said to be a monomial.
For f € A(X) we define deg(f) to be the maximum of the degrees of m
where m runs over all m € M(X) that occur in f with non-zero coefficient.

Let Iy be the ideal of A(X) generated by all elements

(m,m) for m € M(X),
(m,n) + (n,m) for m,n € M(X), (7.1)
(m, (n,p)) + (n, (p,m)) + (p, (m,n)) for m,n,p € M(X).

Set L(X) = A(X)/I,. Let B be a basis of L(X) consisting of (images
of) elements of M(X). Then it is immediate that we have (z,z) = 0,
(z,y)+(y, ) = 0and (z, (y,2))+(y, (2, 7)) +(2, (z,y)) = 0forallz,y,z € B.
By Lemma 1.3.1 it follows that the relations (L;) and (L) hold for all
elements of L(X) so that L(X) is a Lie algebra. Therefore we will use the
bracket to denote the product in L(X), i.e., if @, b are two elements of L(X)
(representing the cosets of a,b € A(X)), then [a,b] will represent the coset
of a-b.

Definition 7.1.1 The Lie algebra L(X) is called the free Lie algebra on
X.

Example 7.1.2 Let X = {z} be a set consisting of one element. Then
because (z,z) € Iy, we have that L(X) is 1-dimensional, with basis {Z}.

Let m : A(X) — L(X) be the projection map. Since X is naturally
contained in A(X), the map

it X — A(X) 5 L(X)
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maps X into L(X).

Lemma 7.1.3 Let K be a Lie algebra and let 1y : X — K be a map from X
into K. Then there exists a unique morphism of Lie algebras ¢ : L(X) — K
such that poi = 1.

Proof. Let ¢ : A(X) — K be the linear map defined by ¢(z) = ¥(z) for
z € X and ¢(a - b) = [¢(a), p(b)]k, for a,b € A(X), (where [, ]k denotes
the product in K). Then ¢ is a morphism of algebras. Furthermore, for
a € A(X) we have ¢(a - a) = [¢(a), #(a)]x = 0 and similarly for the Jacobi
identity. Hence ¢(Iy) = 0 so that ¢ induces a morphism from L(X) into
K, which we also denote by ¢. Suppose that there is a second morphism
¢' : L(X) — K such that ¢' o4 = 4. Then ¢ and ¢’ coincide on 7(X) and
because i(X) generates L(X), we must have ¢ = ¢'. a

Lemma 7.1.4 The set i(X) is linearly independent. In particular i is in-
Jective.

Proof. Suppose that there are z1,... , 2, € X such that
AMi(zy) + -+ Api(zm) =0 (7.2)

for some Aq,..., )\, € F. Let K be the 1-dimensional Lie algebra, with
underlying vector space F. For 1 < k < m let ¥4 : X — K be the map that
sends xx to 1 and all other elements of X to 0. Then by Lemma 7.1.3, there
are morphisms ¢y : L(X) — K such that ¢, o1 = ;. By applying ¢ to
(7.2) we see that Ay = 0. As a consequence 7(X) is linearly independent. O

Proposition 7.1.5 Let K be a Lie algebra generated by X C K. Let L(X)
be the free Lie algebra on X. Then there is a surjective morphism ¢ :
L(X)-> K.

Proof. Let ¢ : X — K be the identity mapping. Then by Lemma 7.1.3
there is a morphism of Lie algebras ¢ : L(X) — K such that ¢ o¢ = ¢.
Furthermore, ¢ is surjective because X generates K. o

By Lemma 7.1.4 we may identify X with its image in L(X). Therefore
we will view X as a subset of L(X). Then X generates the free Lie algebra
L(X). Furthermore, it is the most general Lie algebra generated by X in
the sense that every Lie algebra generated by X is a homomorphic image
of L(X) (Proposition 7.1.5).
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7.2 Finitely presented Lie algebras

In Section 1.5 we discussed two ways of representing a Lie algebra on a
computer: by matrices and by an array of structure constants. Here we
describe a third way, namely by generators and relations.

Let L be a Lie algebra generated by a set X C L. Then by Proposition
7.1.5 there is a surjective morphism ¢ : L(X) — L. Set I = ker(¢), then
by Lemma 1.8.1 we have that L = L(X)/I. The conclusion is that any Lie
algebra is isomorphic to a free Lie algebra modulo an ideal.

Now let X be a finite set and let I C L(X) be an ideal generated by a
finite set R C L(X). Then the Lie algebra L = L{X)/I is said to be finitely
presented. The pair (X, R) is called a finite presentation of L, and we write
L= (X|R).

It is easily seen that any finite-dimensional Lie algebra is finitely pre-
sented. Indeed, let L be a finite-dimensional Lie algebra and let X =
{z1,...,zn} be a basis of L. Then L is generated by X. Let

n
e, 23] = ) ki
k=1

be the multiplication table of L. Set R = {[z;,z;] — Y 51 cfja:k |1<4,57<
n} C L(X). Then we have that L = (X | R).

In Section 1.5 we elected the representation by structure constants as
our preferred way of representing a Lie algebra. The algorithms given sub-
sequently operate on Lie algebras that are given by an array of structure
constants. However, sometimes the natural way to represent a Lie alge-
bra is by a finite presentation. So the question presents itself whether we
can produce a table of structure constants for a finitely presented Lie al-
gebra. First of all we note that a finitely presented Lie algebra can be
infinite-dimensional (indeed, any free Lie algebra on a finite set is finitely
presented). So the best we can hope for is to have an algorithm that con-
structs a multiplication table for a finitely presented Lie algebra L whenever
L happens to be finite-dimensional. The objective of the next sections is to
give such an algorithm.

7.3 Grobner bases in free algebras

Let L = L(X)/I be a finitely presented Lie algebra. Then L is also equal
to the quotient A(X)/J where J is the ideal of A(X) generated by the pre-
images in A(X) of the generators of I together with the generators of Iy



262 Finitely presented Lie algebras

(7.1). In analogy with Sections 6.1, 6.3 we use an order < on the monomials
of A(X) and a Grobner basis to calculate a set of normal monomials which
forms a set of coset representatives for the elements of A(X)/J.

In this section we study ideals of the free algebra A(X) in general.
Throughout J will be an ideal of A(X) generated by a; € A(X) for i > 1
(so we may have an infinite generating set). We first introduce some ma-
chinery that allows us to describe elements of J. Let 0 = (my,... ,my) be
a sequence of elements of the free magma M(X), and let § = (di, ... ,dx)
be a sequence (of length equal to the length of o) of letters d; € {I,r}. Set
a = (0,4), then we call @ an appliance. The integer k is called the length of
o.

For an appliance o we define a map P, : M(X) — M(X) in the following
way. If k = 0, then P,(m) = m for all m € M(X). On the other hand,
if £ > 0, then we set 8 = ((ma,...,mg),(da,... ,dx)). If dy = [, then
P,(m) = Pg((my,m)), and P,(m) = Pg((m,m1)) if d; = r. So the map
corresponding to an appliance consists of a series of multiplications and the
letter d; determines whether we multiply from the left or the right by m;.
Finally we extend the map P, to a map P, : A(X) — A(X) by linearity.

Example 7.3.1 Let X = {z,y, 2} and set ¢ = (z, (y, 2),2) and & = (I, 7,7),
and a = (0,6). Then Py(m) = (((z,m), (y, 2)),2) for m € M(X).

Now a general element f of J will be of the form
f = /\1Pa1 (ail) + -4 /\rPar (air). (73)

An element m; € M(X) is called a factor of mo € M(X) if there is an
appliance a such that mo = P,(m,).

Throughout this section < will be a total order on M(X) that is mul-
tiplicative (i.e., m < n implies (m,p) < (n,p) and (p,m) < (p,n) for all
p € M(X)). Furthermore we assume that < satisfies the descending chain
condition, i.e., if m; > mo > ms > ... is a descending chain of monomials
then there is a k > 0 such that my = m; for j > k. Such an order can for
instance be constructed by fixing it arbitrarily on X, and by postulating
that deg(m) < deg(n) implies m < n. Furthermore the elements of equal
degree are ordered lexicographically, i.e., if deg(m) = deg(n) > 1 (so that
m = (m',m") and n = (n/,n")) then m < n if m" < n’ or (M’ = n’ and
m// < nll).

As usual, the leading monomial LM(f) of f € A(X) is the largest mono-
mial occurring in f with non-zero coefficient. Since < is multiplicative we
have that LM(P,(f)) = P.(LM(f)) for any appliance a and f € A(X).
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Set LM(J) = {LM(f) | f € J}. Then N(J) = {m € M(X) | m &
LM(J)} is called the set of normal monomials of A(X) modulo J. Let
C(J) be the span of N(J) inside A(X). Then by a completely analogous
argument to the one used in the proof of Proposition 6.1.1 we have that
A(X)=C(J)® J. And this means that the cosets of the elements of N(.J)
form a basis of A(X)/J. Also for f € A(X) there are unique v € C(J) and
g € J such that f = v + g. The element v is called the normal form of f
modulo J; it is denoted by Nf;(f), or by Nf(f) if it is clear which ideal we
mean.

As a first attempt at calculating the normal form of f € A(X) modulo
J we reduce f modulo the generators of J. Let G C A(X) and f € A(X)
then f is called reduced modulo G if for all ¢ € G we have that LM(g) is
not a factor of any monomial occurring in f with non-zero coefficient. If
f is not reduced modulo G, then there is a monomial m in occurring in
f, and an element ¢ € G and an appliance « such that P,(LM(g)) = m.
Let A be the coefficient of m in f and u the coefficient of LM(g) in g. Set
h=f-— ﬁPa(g). We say that f reduces modulo G in one step to h. More
generally, we say that f reduces to f’ modulo g if there exist fi,..., fx
such that f = f1, f' = fr and f; reduces modulo ¢ in one step to f;4; for
1 <7 <k —1. Because < satisfies the descending chain condition we have
that any maximal sequence of reduction steps finishes in a finite number of
steps with an element that is reduced modulo G.

Definition 7.3.2 A set G C A(X) generating an ideal J is called a Grobner
basis if for all f € J there is a g € G such that LM(g) is a factor of LM(f).

Proposition 7.3.3 Let G be a Grébner basis for the ideal J of A(X). Then
N(J) is the set of all monomials m € M(X) such that for all g € G, LM(g)
is not a factor of m. Also if f € A(X) reduces to ' € A(X) modulo G,
where f' is reduced modulo G, then f' = Nf(f).

Proof. The first statement is a direct consequence of the definition of
Grobner basis. Since G is a Grobner basis, f is reduced modulo J, i.e.,
f' € C(I). Furthermore, f' = f mod J and therefore f' = Nf(f). O

Definition 7.3.4 A set G = {a1,02,... } C A(X) is said to be self-reduced
if LM(a;) is no factor of LM(a;) for i # j.

We remark that if G is a finite subset of A(X), then by successively
reducing the elements of G modulo each other we can compute a finite set
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G’ such that G’ is self-reduced and generates the same ideal as G. The rest
of this section is devoted to showing that a self-reduced set is a Grobner
basis.

Lemma 7.3.5 Let my,mo € M(X) be such that my is not a factor of ma
and mg is not a factor of my. Suppose that there are appliances «, B such
that P,(my) = Pg(mg). Then mq is a factor of Py(n) and my is a factor
of P3(n) for alln € M(X).

Proof. First we note that the lengths of @ and B are at least 1, since
otherwise one of m;, my would be a factor of the other one. Let 3 = (o, d),
where ¢ = (p1,... ,px) and § = (dy,... ,dg). For 0 < <k we set

Bi = ((p1y--- > i), (d1,... ,di))

and n; = Pg,(m2) (so that ng = mg). Now m; is not a factor of ng, but it is
a factor of ny. So there is an index ¢ > 0 such that m; is not a factor of n;_;
but m; is a factor of n;. We have that n; = (n;_1,p;) or n; = (p;,ni-1).
And since n; # m; (otherwise mo would be a factor of m;) we have that m;
must be a factor of p; and hence m; is a factor of Pg(n) for all n in M(X).
The proof for P, is similar. a

Lemma 7.3.6 Let m € M(X) and let o # [ be appliances such that
P,(m) = Pg(m). Then m is a factor of Po(n) and of Ps(n) for all n €
M(X).

Proof. Let k£ and { be the lengths of o and [ respectively. If one of
them is zero, then the other must be zero as well and @ = 8. So k£ and
[ are both non-zero. We prove the statement by induction on k + [. Sup-
pose that o = (01,6;) and B8 = (09,082), where o1 = (my,... ,mg) and
oy = (n1,...,ny). Write Py(m) = (a,b); then mg = a or my = b. First
suppose that m; = a. If also n; = a then we can erase the last element
from o and 8 and obtain two appliances o', 8" of smaller length that also
satisfy the hypothesis of the lemma. So we can conclude by induction. On
the other hand, if n; = b, then a = Py (m) where §' is obtained from S
by erasing n;. Hence m is a factor of m; and in the same way, m is a
factor of n;. As a consequence m is a factor of P,(n) and of Pg(n) for all
n € M(X). The proof for the case where my = b is completely analogous. O

Now we turn to our ideal J generated by a; for i > 1. If m € M(X) then
by J<m we denote the subspace of J consisting of all elements of the form
APy (a3,) + -+ Ap Py, (ai,) such that LM(Py;(a;;)) <m for 1 <i <.
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Lemma 7.3.7 Let by, by be generators of J and set m; = LM(b;) for ¢ =
1,2. If by # by then we assume that my is not a factor of ma and mo is
not a factor of my. Let ay,aq be two appliances such that m = Py, (my) =

Py, (ma). Then Py, (b1) — Pa,(b2) € Jem.

Proof. First we deal with the case where b; # by. Then by Lemma 7.3.5
we have that mq is a factor of Py, (n) and m, is a factor of Py,(n) for
all n € M(X). So m is a bracketed expression containing m; and m2 as
subexpressions. Furthermore, P, (n) is obtained from m by replacing one
occurrence of m; in m at position p; by n. Similarly, there is a position ps
in m such that P,,(n) is obtained from m by replacing the my at ps by n.
Now we define a function P, : A(X) x A(X) — A(X). Let n1,ne € M(X);
then Py, (n1,ng) is obtained from m by replacing m; at position p; in m by
n1, and replacing the my at position py by no. Furthermore the function
P, is extended to the whole of A(X) x A(X) by bilinearity.

To ease notation a little we suppose that the coefficient of m; in b
is 1 (it is obvious that we can do this without loss of generality). Set
bi = b; —m; for i = 1,2. And let P;, P, : A(X) — A(X) be functions
defined by Py(n) = P, (n,—by) and Py(n) = Py(—b1,n). Then P, and P
are linear combinations of functions P, for appliances . Also we have that
Py, (n) = Pp(n,mg) and Py, (n) = Py (m1,n). So

Py (b1) = Pay(b2) =Py (my, ma) + Pp(by,ma) — Prn(my, ma) — Pp(my, bs)
=Py (b1, mz) — Pm(ma, by).
And
Py(by) — Py(b2) =Pp(mi, —=b2) + P (b1, —b2) — Pr(—b1,m32) — Pr{—by,b2)
:Pm(mh —I—)?) - Pm(—511m2)-

Hence P,, (b1) — Pa,(b2) = Py (b)) — Pa(b2). Furthermore, P;(b;) € Jopm.
Now we consider the case where b; = bo. If in addition a; = ag then
there is nothing to prove. So suppose that a; # a2, and set ¢ = m; = ma.
Then P,,(q) = P,,(¢). By Lemma 7.3.6, g is a factor of Py, (n) and of
P,,(n) for all n € M(X). Hence we can proceed as above. o

Proposition 7.3.8 Let G = {aj,a2,...} C A(X) be a self-reduced set.
Then G is a Grébner basis.

Proof. Let J be the ideal of A(X) generated by G. Let f € J and write

f= )‘1PC!1 (ail) +- 4 ATPQr(air)7
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where ai,...,q, are certain appliances. We show that there isa g € G
such that LM(g) is a factor of LM(f). Set n; = LM(P,, (a;;)). We suppose
that the summands have been ordered such that the leading monomials are
in decreasing order, i.e.,

M=TN] =... =Nk > Ngyl > 2 M.

If £ = 1, then LM(f) = LM(Py, (a;,)) = Pa, (LM(a;,)) and there is nothing
to prove. So assume that k > 1. Then by Lemma 7.3.7 we have that
Py, (ai,) — Pay(aiy) € Jom. Furthermore

£ = M (P (@iy) = Pay(aiy)) + (A1 + A2) Pog(@iy) + Y APy (as)-
k=3

Since the first term of this expression is in J.,, we can write it as a linear
combination of P, (a;,) such that LM(P,, (a;,)) < m. Hence we find a new
expression for f where the term m has decreased (in the case where k = 2
and A; + Ay = 0), or the number k has decreased. Now because < satisfies
the descending chain condition, we can conclude by induction. a

7.4 Constructing a basis of a finitely presented Lie
algebra

In this section we use the results of the preceding section to describe an
algorithm for calculating a basis of a finitely presented Lie algebra, that is
finite-dimensional.

Let X be a finite set and let R = {r;,... ,rs} be a finite subset of the
free Lie algebra L(X). Let I be the ideal of L(X) generated by R and set
L =L(X)/I. Letn:A(X)— L(X) be the projection map. For 1 <1: <'s
we let h; € A(X) be such that w(h;) = r;. Then we let J C A(X) be the
ideal generated by the set G consisting of the generators of Iy (7.1) together
with the h;. Then A(X)/J = L. Hence we are in the situation considered in
Section 7.3. We have an ideal J of A(X) generated by an infinite number of
generators, and supposing that the quotient A(X)/J is finite-dimensional,
we want to construct a basis of it. By Propositions 7.3.3 and 7.3.8 this is
easy as soon as we have found a self-reduced generating set for J. This is
not immediately straightforward as J is generated by an infinite number of
elements.

In the sequel we suppose that the monomials in M (X) are ordered by
an order < that is not only multiplicative and satisfies the descending chain
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condition, but is also degree compatible, i.e., deg(m) < deg(n) implies m <
n for all m,n € M(X).
We recall that My (X) is the set of all m € M(X) such that deg(m) = k,
and we set
Gr ={g € G | deg(g) < k}.

We let J, C A(X) be the ideal generated by G. Note that Gy, is a finite set.
So by doing successive reductions of the elements of G we can calculate a
self-reduced set G} that also generates Ji. Set

LM(Ji) = {LM(f) | f € Ji},

and for k,l > 0, let By be the set of all m € M (X) that are not contained
in LM(J;). It is straightforward to see that J = J;5Ji. Hence, since
A(X)/J is finite-dimensional there are kg,lg > 0 such that Bgyy1, = 0.
Now since J; C Jiy41, also Byyy1, = 0 for I > lp. In the sequel we let [ be
the smallest number such that [ > ly, [ > 2kg + 1 and such that h; € G| for

1 <4< s We set
B= |J By

1<i<ko
In the sequel we prove that J; = J, thereby proving that J is generated by

G,. Since G| is finite this allows us to calculate a self-reduced generating
set for J.

Lemma 7.4.1 Let m € My1(X), then modulo elements of Jg11, m can
be written as a linear combination of elements of the form (n,z) where
n € My(X) and z € X.

Proof. Thisis trivial ifd = 0. So suppose that d > 1 and m = (m',m"). We
prove the lemma by induction on deg(m"). If m” € X then there is nothing
to prove. So suppose that m” = (a,y) for a,y € M(X). Furthermore, by
induction (note that J; C Jy.1 whenever k < d + 1) we may assume that
y € X. Since Jy4; contains all relations of the form (p, g) + (g, p) such that
deg(p) + deg(q) < d + 1 and all Jacobi identities of degree < d + 1 we can
write modulo Jy.1,

(', (a,9)) = ((y,m), a) + ((m', ), ).

The second summand is of the required form. Also, since deg(a) < deg(m”),
by induction the first summand can be written as a linear combination of
elements of the required form. 0
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Lemma 7.4.2 Let f € A(X); then modulo Jy, f can be written as a unique
linear combination of elements from B.

Proof. We prove the statement by induction on LM(f); as < satisfies the
descending chain condition the induction is correct. We note that B is the
set of normal monomials of degree < ky of A(X) modulo J;. From this
follows uniqueness. Set m = LM(f) and write f = Am + f. First suppose
that deg(m) < kg. By induction f is modulo J; equal to a linear combination
of elements of B. So if m € B then the same holds for f. On the other
hand, if m ¢ B, then m reduces modulo J; to an element g € A(X). Since
< is degree compatible also deg(LM(g)) < ko. Hence by induction g can
modulo J; be written as a linear combination of elements of B and therefore
so can f.

If deg(m) = kg + 1 then m € LM(J;) and again we can reduce m
to an element ¢ € A(X) modulo J;. Because < is degree compatible,
deg(LM(g)) < ko + 1 and again we conclude by induction.

If kg +1 < deg(m) < 2ko + 1, then using Lemma 7.4.1 we can write
m modulo J; as a linear combination of elements of the form (n,z), where
deg(n) = deg(m) — 1 and z € X. By induction, we can write n modulo
J; as a linear combination of elements of B. So m reduces modulo J; to a
linear combination of elements p such that deg(p) < ko + 1. But above we
have seen that such a p can be reduced to a linear combination of elements
of B modulo Jj.

Finally suppose that deg(m) > 2ky+1 and m = (m/,m”). By induction
m’ and m” reduce modulo J; to linear combinations of elements in B. So
m can modulo J; be rewritten as a linear combination of elements of the
form (a,b) where a,b € B. But since deg((a,b)) < 2kq these expressions all
reduce modulo J; to linear combinations of the elements of B. O

We abbreviate the left hand side of the Jacobi identity on a,b,c by
Jac(a, b, c), i.e.,

Jac(a, b, ¢) = (a, (b,¢)) + (b, (c,a)) + (¢, (a,b)).

Lemma 7.4.3 Let K be an ideal of A(X) containing all (m1, mg)+(mg, my)
for my,me € M(X). Suppose that Jac(z,m,n) =0 (mod K) for all m,n €
M(X), and all z € X. Then Jac(p,m,n) = 0 (mod K) for all m,n,p €
M(X).

Proof. The proof is by induction on deg(p). If deg(p) = 1, then there
is nothing to prove. If deg(p) > 1, then p = (a,b). Using induction and
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relations (m;,m2) = —(mg,m;) (mod K) we calculate modulo K,
((a,b), (m,n)) = = ((b, (m,n)), a) — (((m,n),a),b)
=((m, (n,b)),a) + ((n, (b,m)),a)
+ (((n, a),m), b) + (((a,m),n), b)
= —(((n,b),a),m) — ((a,m), (n, b))
— (((b,m), a),n) - ((a,n), (b,m))
— ((m, b), (n,a)) = ((b, (n, a)), m)
= ((n,0), (a,m)) — ((b, (a,m)), n)
== (((n,b),a) + (b, (n,a)),m) — (((b,m), a) + (b, (a,m)),n)
=((n, (a,b)),m) — ((m, (a,b)),n)

Hence Jac(p,m,n) =0 (mod K). O

Now let p,q € M(X). Then by Lemma 7.4.2, (p,q) + (g,p) can modulo
J; be written as a linear combination of elements (p’,q') + (¢',p’) where
o', q € B. But since [ > 2ky+ 1 all these elements lie in J;. Also by Lemma
7.4.2, modulo J; all elements Jac(z,m,n) for z € X and m,n € M(X)
can be written as linear combinations of elements of the form Jac(z,m’, n'),
where m’,n' € B. But since [ > 2kg + 1 all those elements are in J;. So
J; satisfies the hypothesis of Lemma 7.4.3. It follows that .J; contains all
elements Jac(p, m,n) for all p,m,n € M(X). Also J; contains (a pre-image
of) R. The conclusion is that all generators of J lie in J, i.e., Jy = J. So B
is the set of normal monomials of A(X) modulo J and hence B is a basis
of A(X)/J. Furthermore a self-reduced generating set G of J; will be a
Grobner basis of J (Proposition 7.3.8). It follows that B is the set of all
monomials m such that deg(m) < ko and LM(g) is not a factor of m for all
g€ G

We summarize our findings in the following algorithm.
Algorithm FpLieAigebra
Input: a finite set X and a finite subset R C L(X).
Output: a basis of L(X)/I where I is the ideal generated by R.

Step 1 Let J be the ideal of A(X) generated by a pre-image of R together
with the elements (7.1). Set [ := 1 and repeat the following:

Step la Calculate a self-reduced generating set G of J;.

Step 1b For 1 < k <[ calculate the set By of monomials m € M (X)
of degree k such that LM(b) is not a factor of m for all b € G|.
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Step lc If there is a k € {1,...,] — 1} such that By, = @ then go
to Step 2. Otherwise increase | by 1 and return to Step la.

Step 2 Increase ! such that J; contains a pre-image of R in A(X). Set
t = max(2k + 1,1).

Step 3 Calculate a self-reduced generating set G} of J;. Calculate the set
B of all monomials m in M(X) of degree < k such that LM(b) is not
a factor of m for b € G}. Return B.

Remark. This algorithm can easily be extended so as to produce a mul-
tiplication table of L(X)/I. Indeed, any product of elements of B can be
reduced (uniquely) modulo the elements of G} to a linear combination of
the elements of B.

Example 7.4.4 Let X = {z,y}, R = {(z,[z,v]] — [, 9], [y, [y, [z, ¥]]]} (as
usual we use the brackets [ , | to denote the product in L(X)). While
performing the algorithm it is much more convenient to use the anticom-
mutativity relations (m,m) = 0 and (m,n) + (n,m) = 0 directly to reduce
expressions to a convenient form, than to put them into the ideal first. So
in the ideal we only consider (pre-images) of the elements o R together with
the Jacobi identities.

By anticommutativity we immediately have that Jac(m,n,p) = 0 if any
two of m, n, p are equal. It follows that the Jacobi identity of lowest degree is
Jac(z,y, (z,y)). So we consider the set G4 consisting of this Jacobi identity
together with the elements of R. We have

Jac(z,y, (z,y)) = (z, (y, (z, 1)) + (v, ((z,9),2)) + ((z,9); (2, 9))-

The last summand is zero by anticommutativity. The second summand is
equal to —(y, (z, (z,y))) which is equal to —(y, (z,y)) by the first relation
in R. So the self-reduced set G/, generating the same ideal as G4 is

Gil = {(‘Tv (:Ea y)) - (.’L‘, y)a (y7 (ya (‘Tay)))v (.’I), (ya (iE,y))) - (ya (337?/))}

Now we enumerate the basis elements of A(X) upto degree 4 modulo the
elements in Gj. By anticommutativity we see that these are z, y, (z,y),
(y, (z,y)) (an element of degree 4 is the product of an element of degree 1
and an element of degree 3, but all those elements are leading monomials of
elements of G;). Therefore B 4 = (). So we set t = 7 and reduce all elements
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of G7. We only have to consider Jacobi identities of those monomials that
do not already reduce modulo G. The first of these is

Jac(z,y, (v, (z,9))) = (=, (v, (v, (z,9)))) + (v, (3, (z,9)), 7))
+ (9, (z,9)), (z,9))-

The first two summands reduce to zero modulo GY. Hence only the last
summand remains. Using this, the Jacobi identities Jac(z, (z, ), (y, (z,y)))
and Jac(y, (z,y), (v, (z,y))) reduce to zero. So G% consists of the elements

of G together with ((y, (z,9)), (z,y)). Hence B = {z,y, (z,y), (v, (z,9))}
is a basis of L(X)/I where I is the ideal of L(X) generated by R.

7.5 Hall sets

Let X be a set. We know that the free Lie algebra L(X) is spanned by
(the image of) the set M(X) of all bracketed expressions in the elements
of X. However, this set is by no means linearly independent. Indeed,
all elements of the form (m,m) are zero and also the Jacobi identity yields
linear dependencies. If we want to calculate in L(X) then we need a basis of
this algebra (i.e., a set of coset representatives of A(X) modulo the ideal Ij)
and a way of rewriting a product of basis elements as a linear combination
of basis elements. A solution to this problem is formed by the so-called Hall
sets. In this section we define the concept of Hall set. Then in subsequent
sections we prove that a Hall set yields a basis of the free Lie algebra. An
algorithm for rewriting an element of M (X) as a linear combination of the
elements of a Hall set will be part of this proof.

Let < be a total order on M(X). Relative to < we define a set H C
M(X) by

X CH, (7.4)
if hy,ho € M(X) then (hy, hs) € H if and only if hi,hy € H and
hl < hQ, (75)

hi€eXor h, = (a,b) with b > ho.

A set satisfying these requirements is called a quasi-Hall set. The order
< is said to be a Hall order if (hy,hy) < ho for all hy,hg € H such that
(h1,h2) € H. In that case H is called a Hall set.

Example 7.5.1 Hall orders are easily constructed. Inside each set My(X)
the order is chosen arbitrarily. Furthermore, if m,n € M(X) have different
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degrees, then m < n if and only if deg(m) > deg(n). Then (h1, h2) < ho for
all hy,ho € M(X). So < is a Hall order.

We note that a Hall order defines a unique Hall set. Using conditions
(7.4) and (7.5) we formulate an algorithm for recognizing whether a given
element of M(X) lies in a given Hall set. We stress that we do not need
to know all elements of the Hall set for this; we only need to be able to
calculate the order of elements of the Hall set.

Algorithm IsHallElement
Input: a Hall order < on M(X) and an element A € M(X).
Output: true if b is in the Hall set corresponding to <, false otherwise.

Step 1 If h € X then return true.

Step 2 Write h = (h', h”). If IsHallElement(<, A’) or IsHallElement(<, h"') is
false then return false.

Step 3 If A’ > k" then return false.

Step 4 If b’ € X then return true. Otherwise write A’ = (a,b) and if b < h”
then return false. Otherwise return true.

Comments: The two recursive calls in Step 2 finish and give the correct
output by induction on the degree. Then the fact that the initial call gives
the correct output is a direct consequence of (7.4), (7.5).

We also have an algorithm for calculating the elements of a Hall set upto
a given degree.

Algorithm HallSet
Input: a finite set X and a Hall order < on M(X) and a number d > 0.
Output: all elements of the Hall set corresponding to < upto degree d.

Step 1 Set H := X and k := 2.
Step 2 If k = d + 1 then return H, otherwise go to Step 3.

Step 3 Compute the set S of all pairs (h,g) € H x H such that deg(h) +
deg(g) = k and IsHallElement(<, (h, g)) =true.

Step 4 Set H:= HUS, k:= k + 1 and return to Step 2.

Example 7.5.2 Let X = {z,y}. We construct the Hall set H upto degree
4 corresponding to a Hall order as in Example 7.5.1. That is we fix the order
arbitrarily for elements of equal degree and if b, g have unequal degree then
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h < g if and only if deg(h) > deg(g). First we choose z < y. Then (z,y)
is the only element of degree 2 in H. And necessarily (z,y) < ¢ < y.
Continuing, ((z,y),z) and ((z,y),y) are the elements of degree 3 of H. We
choose ((z,y),z) < ((z,y),y). Then the elements of degree 4 of H are

(((z,9),2),2), (((2,y),),2) and (((2,7),1),y)-

7.6 Standard sequences

In this section we fix a set X and a Hall set H C M(X) relative to the Hall
order <. The elements of H will be called Hall elements. If a Hall element
h € H does not lie in X, then by &' and " we will denote its left and right
factor (so h = (K, h")).

The elements of X are called letters. From Section 6.1 we recall that X*
is the set of all words in the elements of X. In this section we make a first
step towards proving that a Hall set forms a basis of the free Lie algebra. We
study standard sequences of Hall elements and establish a bijection between
decreasing standard sequences and words in X*. In the next section this
bijection will be used to prove that a Hall set is linearly independent.

Definition 7.6.1 A sequence of Hall elements s = (hy,... ,hn) where n >
1 45 called a standard sequence if for 1 < i < n we have either h; € X or
hi = (h;,h;’) with h;’ > h‘i+1a .o ,hn.

Example 7.6.2 A sequence of letters is always standard. A sequence
(h1,... ,hy) is said to be decreasing if hy > ho > -+ > h,. Any de-
creasing sequence of Hall elements s = (hy,... ,hy) is standard. Indeed, if
h; = (h!, hY) then because < is a Hall order we have h! > h; > hit11,... , hn.

17"

If a standard sequence of Hall elements is not decreasing, then we apply
a series of rewriting steps in order to make it decreasing.

Definition 7.6.3 Let s = (hy,... ,hy) be a standard sequence of Hall ele-
ments. A rise of s is an indez i such that h; < hijy,.

Let s = (hy,...,hy) be a standard sequence. Suppose that s is not
decreasing, and let i be the right-most rise of s. Then we say that s reduces
in one step to s’ where s’ = (hy,... ,hi—1, (i, hiz1), hivay .. ha).

Lemma 7.6.4 The sequence s’ is a standard sequence of Hall elements.

Proof. First we prove that (h;, h;1) is a Hall element. Certainly h; and
hiy1 are elements of H. Also h; < h;,| because i is a rise of s. Furthermore,
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if h; is not an element of X, then h; = (h}, h}') and A} > h;41 because s is
a standard sequence. So, by (7.5), (h;, hi+1) is a Hall element.

Now we prove that s’ is standard. First we have hj+1 > hiyo,... by
because i is the right-most rise of s. Secondly, for j = 1,... ,7 — 1 we have
that either h; is a letter, or h;’ > hj41,... ,hip1 (because s is standard)

> (hi, hit1) (because < is a Hall order). The conclusion is that
By > hjt1,... s hicy, (hiyhict)s hivas oo B
So s is standard. O

Let s and ¢ be two standard sequences of Hall elements, then we say that
s reduces to t if there are standard sequences si,... , s such that s; = s,
sk =t and s; reduces to s;;1 in one step for 1 <i <k - 1.

Lemma 7.6.5 Let s be a standard sequence of Hall elements. Then s re-
duces to a decreasing standard sequence in a finite number of steps.

Proof. We use induction on the length of s. If s has length 1, then s is
obviously decreasing. Now suppose that s has length n. If s has no rises
then s is decreasing. On the other hand, if s has rises, then s reduces in one
step to a sequence s’ of length n —1. By induction s’ reduces to a decreasing
standard sequence, hence so does s. i

The reduction process makes a sequence shorter and the degree of some
of its elements bigger. We consider an inverse process that we call unpacking;
after a finite number of steps it arrives at a sequence of letters. Let s =
(h1,...,hy) be a standard sequence such that not all of its elements lie
in X. Let h, be the left-most element of s that does not lie in X. Then
hy = (h;,h!) and set s’ = (h1,... ,hr—1, Bl B Bryr, ..., hy). We say that
s unpacks in one step to s'.

Lemma 7.6.6 Let s be a standard sequence of Hall elements that unpacks
in one step to s'. Then s' is a standard sequence of Hall elements.

Proof. Let s and s’ be as above. Firstly h. € X or hl. = (a,b) and
b > h! (by definition of Hall set) > hy41,...,h, (because s is a standard
sequence). Also h! € X or b = (a,b) and b > h! (because > is a Hall
order) > hry1,y... , by O
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Proposition 7.6.7 Let s be a decreasing sequence of Hall elements. Denote
by t the standard sequence of Hall elements obtained from s by k unpacking
steps (tg = s). Then ty, reduces to ty_; in one step for k > 1.

Proof. We prove the statement by induction on k. First let £ = 1. We
obtain ¢, from ty by replacing a Hall element (h[., h!) by the two elements

h;., h!. Since ty is decreasing we have that the right-most rise of ¢; occurs
at the position of h.,h. Hence t; reduces in one step to to.

Now suppose £ > 1. By induction we know that ¢; reduces to fx_;
in one step. We prove that ¢;,, reduces to tx in one step. Write t;_; =
(hiy-.. yhr hyy1, ..., hy) where h, = (AL, h") is the left-most element not
in X. Then

t = (hla"' 7h7‘—17h;7h;’ah”r+17"‘ ’hn)

and h;, < h! is the right-most rise of ¢; (by induction), i.e., the subsequence
hry1,... , hp is decreasing. We prove that t;,1 reduces to t; in one step by
considering a few cases:

1. hlL,h! € X; here the left-most element in ¢ that is not in X, will occur
after h) and because the subsequence starting with h,,; is decreasing,
tk+1 reduces to t.

2. hl € X but h! not. Then A/ = (a,b) and
tk-H = (hl,... ,h;‘,a,b, hr+1,~-- ,h,n),

and b > hyqq,...,h, (because t; is a standard sequence). So the
right-most rise of £;,; occurs at the position of a,b.

3. h;. is not in X. Then k! = (a,b) and
tk-!—l = (h'l,"' ah'T—17aab7 h;'l7h1‘+11"‘ 7h’”)7

and as ((a,b),h]) is a Hall element, we have b > h!! > hy41,... ,hy
and the right-most rise in tx; occurs at a,b.

In all cases we see that ;41 reduces in one step to tx and we are done. 0O

Let ¢ : M(X) — X* be defined as follows: ¢(z) = z for z € X, and
o((t', ")) = p(t)p(t") for (#,") € M(X)\ X. The word ¢(t) is called the
foliage of t. Furthermore, if s = (hy,... , hy,) is a sequence of Hall elements,
then the foliage of s is defined by ¢(s) = @(h1) - - - @(hp).

Proposition 7.6.8 For every word w € X* there is a unique decreasing
standard sequence of Hall elements s such that o(s) = w.
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Proof. Let w = z1...z, be an element of X* and let s = (z1,... ,xp) be
the corresponding standard sequence of Hall elements. By Lemma 7.6.5,
s reduces to a decreasing standard sequence t in a finite number of steps.
Furthermore, from the definition of the reduction process, we see that p(t) =
o(s) = w.

Suppose that there are two decreasing standard sequences ¢ and ¢’ such
that ¢(t) = ¢(t') = w. Then we unpack both ¢ and ¢’ to the sequences of
letters s and s’ respectively. By the definition of the unpacking process we
see that ¢(s) = ¢(t) = ¢(¥') = ¢(s'), so that s = s’. But by Proposition
7.6.7 this implies that ¢ = ¢'. O

The following corollary is an immediate consequence of Proposition
7.6.8.

Corollary 7.6.9 Let hy,ho € H then hy # ho if and only if p(h1) # p(h2).

Corollary 7.6.9 implies that every Hall element h corresponds to a unique
Hall word w = @(h). If from the context it is clear which Hall set H we
mean, then we call a word of the form u = ¢(h) for h € H a Hall word.

7.7 A Hall set provides a basis

Let F be a field. From Section 6.1 we recall that F(X) is the associative

algebra spanned by X*; it is called the free associative algebra on X.
Recall that the free algebra A(X) is the algebra spanned by all elements

of M(X) (where M(X) is the free magma on X). We define a linear map

P:A(X) — F(X)

by defining it on the basis M(X): P(x) = z for ¢ € X and P((a,b)) =
P(a)P(b) — P(b)P(a). An element of the image of P is called a Lie polyno-
mial.

Example 7.7.1 Let X = {z,y} and set m = (z,((z,y),y)). Then the Lie
polynomial corresponding to m is zzyy — 2zyxry + 2yzyr — yyTT.

We fix a Hall set H C M(X). We let P act on sequences of Hall elements

in the obvious way; for s = (hy,... , h,) a sequence of Hall elements, we set
P(s) = P(h1) - P(hy).

Theorem 7.7.2 The set of all P(s) where s runs through all decreasing
standard sequences of Hall elements forms a basis of F(X).
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Proof. First we prove that every word w € X* can be written as a linear
combination of elements of the form P(s) where s is a decreasing standard
sequence of Hall elements.

Let ¢ = (h1,... ,h,) be a sequence of Hall elements. Suppose that ¢ is
not decreasing and let ¢ be the right-most rise of ¢, i.e., h; < k1. Then we
set

p(t) = (hl, e ,hi_l,hi+1,hi,hi+2, v ,hn).

Then p(t) is again a standard sequence: if h;y1 ¢ X then R}, > hi
(because > is a Hall order) > h;. Furthermore, if ¢ reduces in one step to ¢’
then we set

A(t) =¢ = (hl,. coyhicq, (hi,hi+1),hi+2,. .. ,hn).

Now we define the derivation tree D(t) of t to be the tree with root labelled
t and D(A(t)) and D(p(t)) as left and right subtrees. Furthermore, if ¢ is
decreasing, then its derivation tree only consists of the root labelled £.

We claim that the derivation tree of ¢ is always finite. We prove this by
induction on the pair v(t) = (n,|{(i,7) | 1 < j and h; < h;}|). These pairs
are ordered lexicographically: (n;,r;) < (ng,r2) if n1 < ng or ny = ng and
r1 < ro. Ift is decreasing, then D(t) only consists of the root labelled t. Now
suppose that ¢ is not decreasing. Then v(A(t)) < v(t) and v(p(t)) < v(t).
So by induction D(A(t)) and D(p(t)) are finite, and hence D(t) is finite.

By the definition of P it is seen that P(t) = P(A(t)) + P(p(t)). Hence
P(t) equals the sum of P(t') where t' runs through the leaves of the deriva-
tion tree of ¢t. Furthermore these t' are decreasing standard sequences.

Let w = z1---z, be a word in X*. Let t = (z1,... ,2,) be the corre-
sponding standard sequence. Then w = P(t) which by the above is equal
to a sum of P(t') where the ¢’ are decreasing standard sequences of Hall ele-
ments. So the elements P(s), where s runs through the decreasing standard
sequences of Hall elements, span F(X).

In order to prove that the elements P(s) are linearly independent we
may assume that the set X is finite. Let F(X)q denote the subspace of
F(X) spanned by all words of degree d. Let s = (hy,... ,hy) be a standard
sequence of Hall elements and set d(s) = deg(h1) + - - - + deg(hyn). Then it
is straightforward to see that P(s) € F(X)g). Now by Proposition 7.6.8,
the number of decreasing standard sequences s such that d(s) = d is equal
to the number of basis elements of F(X)4. Furthermore, by the above the
elements P(s) where s is a decreasing standard sequence such that d(s) = d
span F(X)4. Hence this set must be linearly independent. i
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From Section 7.1 we recall that L(X) = A(X)/Iy, where Iy is the ideal
of A(X) generated by the elements (7.1). It is straightforward to see that
P(Iy) = 0; hence P can be viewed as a linear map from L(X) into F(X).
We recall that 7 : A(X) — L(X) is the projection map.

Corollary 7.7.3 The set w(H) is linearly independent in L(X).

Proof. By Theorem 7.7.2 we even have that the set P(w(H)) is linearly
independent in F(X). So w(H) must also be linearly independent in L(X).
O

We will write a finite linear combination of Hall elements as

Z aph,

heH

where it is understood that ap = 0 for all but a finite number of h € H.
Let m be an element of M(X). We give an algorithm that computes a

linear combination of Hall elements a = 3,y @b such that m(a) = 7(m).

We suppose that the Hall set H is defined relative to the Hall order < (and

that our routine has access to this order).

Algorithm RewriteMagmaElement

Input: an element m € M(X).

Output: a linear combination a = ¥, aph with such that m(a) = w(m).

Step 1 If IsHailElement(<, m)=true then return m.

Step 2 If either ' or m"” is no Hall element, then let 3,z Brh be the out-
put of RewriteMagmaElementon input m’ and deH Y49 the output of
RewriteMagmaElement on input m”. For each element (h,g) € M(X)
such that 8,7y, # 0 perform the algorithm RewriteMagmaElement and
multiply the coefficients of the output by S7y; return the sum of the
results.

Step 3 If m',m"” € H then
3a if m' > m" then let 3, p ph be the output of RewriteMagmakEle-
ment with input (m”,m’). Return ),y —0sh.
3b if m' = m"” then return 0.

3c if m' < m” then write m’ = (a,b) and set n, := ((a¢,m”),b) and
ng = (a, (b,m")). For n; and ng perform RewriteMagmaElement;
collect the outputs together and return the result.
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Example 7.7.4 Before proving that this algorithm terminates with the
correct output we give an example. For this let H be the Hall set of Example
7.5.2. We rewrite the element m = (y, ((z,y),z)). Set m' = y and m" =
((z,y), 7). Then m' and m" are Hall elements so we arrive in Step 3. Since
m' > m” we are in Step 3a. We rewrite the element n = (((z,y),),y)-
Now n' < n”, but n' = (a,b) with b < n”. So we consider the elements
ny = (((z,v),¥),z) and no = ((z,v), (z,y)) and rewrite them. First, since
ny is of the form (p, p) it is reduced to 0. Secondly n, is a Hall element so it
is not rewritten. So the output is —(((z,y),y),z) (where the — is left over
from Step 3a where we entered the recursion).

Lemma 7.7.5 Let m = (m',m") € M(X) be such that m',m" € H.
Then on input m the algorithm RewriteMagmaElement terminates in a fi-
nite number of steps and the output is a linear combination of Hall elements
m; = (m},m}) such that deg(m;) = deg(m) and m] < max(m',m").

Proof. We use induction on the tuple (deg(m), max(m’,m")); where these
tuples are ordered lexicographically: (d;,m1) < (d2,my) if and only if either
dy < dy or di = dy and m; < my. This is a well-ordering, so we can apply
induction.

We may assume that (m’,m”) ¢ H since otherwise the lemma is trivial.
Because m’,m"” € H we end up in Step 3. First suppose that m' > m”, i.e.,
we are in Step 3a. Then we perform the algorithm on the input (m”,m’).
This time we arrive at Step 3c. Below we prove that this step terminates
and gives output satisfying the requirements of the lemma. So in this case
we are done. Furthermore, if v’ = m” then the algorithm returns 0 and the
requirements on the output are trivially fulfilled.

Now we assume that m’ < m”, i.e., we are in Step 3c. We must prove
that the algorithm terminates on the inputs n; and ny. First we observe
that b < m” because otherwise m € H which is excluded.

We now investigate what happens if we perform the algorithm on the
input n; = ({(a@,m”),b). First if n; is a Hall element, then in Step 1 it is
returned and there is nothing to prove. Now suppose that it is not a Hall
element. If (a,m"”) is a Hall element then (a, m") < m" as < is a Hall order.
Also b < m”, so that max((a,m"),b) < m” = max(m/,m"). Therefore, by
induction, RewriteMagmaElement terminates on input n; and returns the
correct output. On the other hand, if (a,m”) is not a Hall element, then
in Step 2 the element (a,m") is rewritten. Since deg((a,m")) < deg(m),
by induction we conclude that (a,m'”) is rewritten as a sum ), Brh where
deg(h) = deg(a) + deg(m”) and A" < max(a,m") = m"” for all h such that
Br # 0. Next we perform the algorithm on each element (h,b) where h is
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such that 85 # 0. Fix such a Hall element h. We have deg(h,b) = deg(m).
But h < h" (since < is a Hall order) < m” and also b < m”. Hence
max(h,b) < m" and by induction the element (h,b) is rewritten as ), v,9
with deg(g) = deg(h) + deg(b) and ¢’ < max(h,b) for all g such that
vy # 0. So deg(g) = deg(a) + deg(m”) + deg(b) = deg(m). Furthermore,
since h < m” and b < m” also ¢" < m" = max(m',m"). The conclusion
is that the output of the call to RewriteMagmaElement on the input 7 is
a linear combination of Hall elements g such that deg(g) = deg(m) and
g// < max(m/’m//)_

Now we consider ny = (a, (b,m")). First suppose that (b,m") is a Hall
element. Then a < b (since (a,b) € H) < m” (since (b,m") € H). Also
(b,m") < m”. So max(a, (b,m")) < m” = max(m',m"”). Hence by in-
duction, on input ny, RewriteMagmaElement terminates with the correct
output. On the other hand, if (b,m") ¢ H, then we proceed as with n;.
Collecting the output of the two calls to RewriteMagmaElement together we
obtain a linear combination of Hall elements satisfying the requirements of
the lemma. O

Theorem 7.7.6 Let m € M(X) be arbitrary. Then RewriteMagmaElement
terminates on input M with output f such that w(f) = w(m).

Proof. First, if deg(m) = 1 then the statement is trivial. So suppose that
m = (m',m"). f m',m"” € H then the call terminates by Lemma 7.7.5. On
the other hand, if one of m’,m” is not a Hall element then in Step 2 it is
rewritten. These calls terminate by induction on the degree. Now for each
pair (h, g) the algorithm is performed again (where h is from the output of
the rewriting of m' and g from the output of the rewriting of m"). However,
in this case h,g € H so by Lemma 7.7.5 also these calls terminate.

It is straightforward to see that 7(f) = n(m) because all transformations
performed in the algorithm leave this value unchanged. Indeed, Step 2 is
justified by bilinearity of the product in A(X). In Step 3a we use the relation
a((m',m")) = —x((m”,m')). In Step 3b we use that n((m’,m’)) =0. And
Step 3c is justified by the Jacobi identity: m((a,b),m”) = n((a,m"),b) +
w(a, (b,m™)). O

Corollary 7.7.7 Let H be a Hall set in M(X) then w(H) is a basis of the
free Lie algebra L(X).

Proof. Corollary 7.7.3 states that «(H) is linearly independent. And by
Theorem 7.7.6 we see that every element of L(X) is a linear combination of
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n(h) for h € H. =

7.8 Two examples of Hall orders

Let X be a set. In this section we give examples of Hall orders that can be
used in conjunction with the algorithm IsHallElement, i.e., Hall orders which
allow methods for deciding whether h; < hy for A1, ho in the corresponding
Hall set.

Let < be a total order on X*. Let <’ be any order on M (X) such that
m <' n whenever p(m) < p(n) for m,n € M(X). Then we say that <'is
an eztension of < to M(X). Let H C M(X) be the quasi-Hall set relative
to <. If w(h1)p(he) < @(hg) for all hi, hy € H such that (hy,hs) € H, then
it is clear that <’ is a Hall order and H is a Hall set. But then by Corollary
7.6.9 we see that the function ¢ : H — X* is injective. So the order of the
elements of H is determined by the order < on X*. But for constructing
the elements of H we only need to know the order of the elements of H (cf.
the algorithms HallSet and IsHallElement). It turns out that the order of
elements of M (X) whose order is not determined by <, is irrelevant for the
construction of H. Hence < determines a unique Hall set in M (X). This
justifies the following definition.

Definition 7.8.1 Let < be a total order on X*. Let <' be an extension
of < to M(X) and let H be the quasi-Hall set corresponding to <'. If
o(h1)p(he) < plhe) for all hy,he € H such that (h1,h2) € H, then < is
said to be a Hall order on X*.

Our first example of a Hall order on X* will be the lexicographical order.

Example 7.8.2 (Lexicographical order) Let X = {z1,z2,...} beaset.
The lexicographical order <), on X* is defined as follows. For two words
wi, w2 € X* we have w; <jex wo if and only if either wy = w;u for some non-
empty word w € X* (i.e., w; is a proper left factor of we) or wy = uz;v; and
wy = uz;vy where u,v1,v2 € X* and i < j (i.e., on the left-most position
where w; and wy differ, the entry in w; is the smaller one). The proof of
the following lemma is straightforward.

Lemma 7.8.3 Let u,v € X* such that u <jex v. Then wu <jex wv for all
w € X*. Furthermore, if u is not a left factor of v, then also uw <jex VW
for all w e X*.
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Lemma 7.8.4 The order <oy is a Hall order on X*. Let w be a Hall word.
If y is a proper non-empty right factor of w (i.e., w = zy for a non-empty
z € X*), then w <pex ¥.

Proof. First we remark that the first statement follows from the second.
Let <' be any extension of <jex to M(X). Let H be the quasi-Hall set
corresponding to <’. Let h € H be such that w = ¢(h). We prove by
induction on deg(h) that w<ey for all proper non-empty right factors y of
w. This is trivial if deg(h) = 1, so suppose that deg(h) > 1, i.e., h = (K, h").
Set u = @(h') and v = @(h"). We claim that u # v. This is clear if u € X.
So suppose that v € X and v = v. Then A’ = (a,b) with b >’ A", but
©o(b) # (h") 50 (b) >lex ©w(h") = v. Now u = v implies that ¢(b) is a right
factor of v, so by induction v<ex¢(b), and we have reached a contradiction.
Now from u # v it follows that u<v because h € H.

We distinguish three cases. First suppose that y is longer than v. Then
y = u"v where v” is such that u = u'u” for a non-empty u' € X*. Then by
induction u <jex 6" and since u is not a left factor of u”, w = wv <oy v''v =
. In the second case y is equal to v. First suppose that u is a left factor of
v, i.e., v = uv'. Then by induction v <jex v' and w = wv <jex uv’ = v. Also,
if u is not a left factor of v, then from u<xv we see that w = uv<exv.
Finally suppose that y is shorter than v. Then v = v'y and by induction
v <jex ¥. Furthermore, above we have shown that w = uv <jx v and hence
W <lex Y- =

Let H be the Hall set corresponding to <jex, then the elements ¢(h) for
h € H are called Lyndon-Shirshov words.

Lemma 7.8.5 Let H be the Hall set corresponding to <iex. A non-empty
word w € X* is a Hall word if and only if for all factorizations w = w1y
where T,y € X* are non-empty, we have w<iexy.

Proof. Let w be a Hall word and write w = zy, where z,y are non-empty.
Then by Lemma 7.8.4, we see that w<jexy. For the other direction suppose
that w<ecy for all proper non-empty right factors y of w. By induction on
the degree of w we prove that this implies that w is a Hall word. This is
trivial if deg(w) = 1, so suppose that deg(w) > 1. Let v be the smallest
non-empty proper right factor of w and write w = uv. We show that both
u and v are Hall words.

Let vs be a proper non-empty right factor of v. Then v<., vy because
v is also a right factor of w and v is the smallest of those. So by induction
we have that v is a Hall word. Now let us be a non-empty proper right
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factor of u. Suppose that us<jexv. This means that us<jexv<jexuzv (as
v is the smallest right factor of w). This can only happen if uy is a left
factor of v, i.e., v = usv'. But then ugv’'<)exuov, which implies that v'<jexv,
contradicting the fact that v is the smallest right factor of w. The conclusion
is that uy >jex v. Therefore u<exut = W<jex¥ Kjex U2. Hence by induction
u is a Hall word.

Let hy,ho € H be such that ¢(h;) = u and @(h2) = v. Because
U<jexU = wW<lexv We have that hy < hg, where < is any extension of
<iex to M{X). Also, if hy & X, then h; = (h,h]). We write v = u'v”
for the corresponding factorization of u. Then as seen above, u” > v. It
follows that (h1,hq) € H and w is a Hall word. o

Corollary 7.8.6 Let H be as in Lemma 7.8.5. Let u,v be Hall words with
u<lexV, then uv is a Hall word.

Proof. The proof is straightforward, using Lemma, 7.8.5 as well as the proof
of Lemma 7.8.4. a

Let H be the Hall set relative to <jex. Let w be a Hall word. The proof of
Lemma 7.8.5 suggests a straightforward algorithm to find the corresponding
element of H. Let v be the smallest proper non-trivial right factor of w and
write w = uv. Then as seen in the proof of Lemma 7.8.5, u and v are Hall
words. So recursively we can determine A',h” € H such that p(h') = u
and p(h") = v. Now the proof of Lemma 7.8.5 shows that (h',h") € H.
Furthermore, ¢((h', ")) = w. We call this algorithm BracketingOfHallWord.

Example 7.8.7 (Reverse lexicographical order) We define the order
<Riex On X*. Let w1, wy € X* then w; <plex wo if and only if w; = vwe
(i.e., wy is a proper right factor of w1 ), or wy = viz;u and we = voz;u where
v1,v2,u € X* and ¢ < . We call <gjex the reverse lexicographical order.
This order is trivially a Hall order on X*, as ¢(h;)p(h2)<mlex(h2) for all
hi,he € M(X).

We note that the reverse lexicographical order in general does not yield
the same Hall set as the lexicographical order. Let X = {z,y,z} with
z <y < z. Then ((z,y), (z,2)) is a Hall element with respect to <jex, but
not with respect to <gjex. Also (y, (z, (z,2))) is a Hall element with respect
to <Rlex but not with respect to <jex.

We now characterize the words o(h) for A in the Hall set corresponding
to the order <gjex. The proof of the following lemma is straightforward.
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Lemma 7.8.8 Let u,v € X* be non-empty words. If u <giex v then
uw <Rlex YW for all w € X*. Also if v is not a right factor of u, then
wu <plex WY for all w € X*.

Proposition 7.8.9 Let H be the Hall set corresponding to <gpjex. Let w €
X* be a non-empty word. Then w is a Hall word if and only if for each
factorization w = uv where u,v are non-empty we have w >Rlex U.

Proof. We say that a word z has property Q if for each factorization z = yz
with y, z are non-empty we have £ >Riex V.

We claim that for z,y € X* that have @) and are such that z<gjexy we
have that a = zy has . For this let ¢ = uv where u,v are non-empty.
First suppose that u is longer than x, i.e., u = zu/. Then since y has Q we
have y>giext’. By Lemma 7.8.8 together with the fact that y is not a right
factor of v’ we have Ty>RiexZU’, 1.€., A>RlexU-

Suppose that u = x; then u<gjexy. If u = u'y, then because in this case
u has Q, u>Riextt’ and by Lemma 7.8.8, uy>Riext'y = u. On the other hand
if u = u1z;2z and y = y1z;2 where ¢ < j, then u<giexuy = a.

Finally, suppose that v is shorter than z, i.e., z = uz’. Then since
has @, £>Riexu. But by the above, zy>Riex® 50 also zy>riexu. In all three
cases we have a>Rgiexu. We conclude that a has Q.

Let w = ¢(h) for some h € H; we prove that w has property ¢ by
induction on deg(h). If deg(h) = 1 then w trivially has ). Now suppose
deg(h) > 1, i.e., h = (h/,h") and hence w = xy where z = @(h') and
y = ¢(h"). By induction both z and y have Q. Furthermore, since h € H,
we have that z<gjey. Hence by the above claim, w has Q.

For the other direction suppose that w has Q. Let u be the biggest
left factor of w (in the order <giex). If u' is a left factor of w then it is
also a left factor of w and hence u>Rgjext’. It follows that u has Q. Let
v € X* be such that w = uv. Let y be a proper left factor of v. Then uy
is a left factor of w and hence u>Rjexuy. Now suppose that y>giex. This
implies that uy<riex¥<Riexy. But this is only possible if 4 = u'y. This
means that uy<giexu'y, from which we have that u<gjexu’. But this is not
possible because u has Q. So ¥ <Riex U. NOW U>RlexUV = W>RlexY, Where
the second inequality follows from the fact that w has Q. Hence we have
that v>Riexy. The conclusion is that also v has Q.

We prove that w = @(h) for an h € H by induction on the length of
w. The statement is trivial if w € X so suppose that the length of w is
bigger than 1. Then by the above we may write w = uv where both u
and v have Q and u<pgjexv. So by induction u = ¢(h;) and v = @(hg) for
some hi,hy € H. Now by induction on deg(h;) we prove that this, together
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with u<gexv implies that uv = @(h) for some h € H. If v € X, then
(h1,hg) € H by (7.4). If u & X then hy = (h], hY) and if p(hY) >Riex v then
also (hy,hg) € H. In both cases we are done. So suppose that ¢(h!)<giexv
and set u” = (k). Then (by the first part of the proposition) also u”
has @, so by induction v"v = ¢(g) for some g € H. Furthermore if we
set u' = @(h)) then v"v>Riext/uv = W>Rexu’, where the first inequality
follows from the definition of >gjex and the second by the fact that w has
@. So again by induction v'u"v = ¢(h) for some h € H and we are done. O

Corollary 7.8.10 Let H be the Hall set corresponding to <mex, and let
u,v be Hall words with u<pjexv. Then uv is a Hall word.

Proof. Let z be a proper left factor of uv. We show that uv>giexz.
First suppose that z = u. If v is not a right factor of u then v>Rglexu
implies uv>giextt. On the other hand, if u = /v for some non-empty '’
then u'<gjextt by Proposition 7.8.9. Hence by Lemma 7.8.8 we see that
u = u'v<Rlexuv; 50 in this case we are done. Now if z is a proper left factor
of u, then £<gjexu (by Proposition 7.8.9) <gjexuv. Also if z is longer than
u, then z = uz’ where 7’ is a proper left factor of v. Hence z'<gjexv by
Proposition 7.8.9, and since v is not a right factor of 2, by Lemma 7.8.8 we
have uz'<gjexuv. Now by Proposition 7.8.9 uwv is a Hall word. O

Let H be the Hall set relative to <giex, and let w be a Hall word. The
proof of Proposition 7.8.9 suggests a way of implementing BracketingOfHall-
Word in this case. Let u be the biggest left factor of w and write w = uw.
Then by the proof of Proposition 7.8.9, v and v are both Hall words. So re-
cursively we can determine hj, ho € H such that u = ¢(h;) and v = @(hg).
If hy € X, or hy = (h], hY) with h{ >Riex ho, then (h1, hg) € H and we are
done. If hY<giexh2, then write u' = @(h]) and u" = @(h{). We determine
91,92 € H such that ¢(g1) = v’ and p(g2) = u"v, and we return to the
beginning, with g1, go in place of ho, ho.

7.9 Reduction in L(X)

In this section we describe an algorithm to reduce elements of L(X) mod-
ulo a set G C L(X). We let H be a Hall set relative to <jgx 0r t0 <Rjex-
Throughout we also denote the Hall order on H by <jex Or <Rlex- Since the
projection 7 : H — L(X) is injective (Corollary 7.6.9), H can be viewed
as a subset of L(X). Moreover H forms a basis of L(X) (Corollary 7.7.7).
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The algorithm RewriteMagmaElement yields an algorithmic method for cal-
culating the product [g,h] for g,h € H.

Let <p be a total order on H. Relative to this order every element a €
L(X) has a leading monomial, which is the biggest element of H occurring
in a. It is denoted by LM(a). We say that <g is a reduction order if <pg is
multiplicative (i.e., a <g b for a,b € H implies LM([a, c]) <g LM([b, c]) and
LM([c,a]) <r LM([c,b]) for all c € H ) and satisfies the descending chain
condition (i.e., there is no infinite strictly decreasing chain of elements of
H). We note that the Hall orders <jx and <Rjex are not reduction orders.
In the Hall set corresponding to <j.x we have, for example, the infinite
decreasing chain (z,y), ((z,),9), (((z,¥),v),9) - - -

Now we construct a reduction order on H; we do this separately for the
case where H is defined relative to <gjex and for the case where H is defined
relative to <jex. We recall that P : A(X) — F(X) is the map assigning a
Lie polynomial to every element of A(X) as defined in Section 7.7.

Lemma 7.9.1 Let H be the Hall set corresponding to <pjex- Let h € H
and set w = p(h). Then P(h) is equal to w plus a linear combination of
smaller words having the same degree as w. Also let hi<giexhe € H and
set w; = @(h;) for i = 1,2. Then P((h1,hs2)) is equal to wywe plus a linear
combination of smaller words.

Proof. The proof is by induction on deg(h). If deg(h) = 1 then the result
is trivial, so suppose that deg(h) > 1. Then h = (h',h”) and we write

w = w'w” for the corresponding factorization of w. Then by induction we

have

P(h) =w' + Z ayu and P(R") =w" + Z By,

u<RlexW’ v<RlexW"’

where all words occurring in the sums have the same degree as w' and w"
respectively. Hence

P(h) = P(K)P(K") — P(h")P(K)
=wuw" + Z Byw'v + Z ayuw” + Z 0y By uv

V<RlexW” u<RlexW’ u<RiexW ,U<RIexW"
n_ 1 !
—w'w' - E o'y — E Byvw' — E oy Byvu.
u<RlexW’ v<Rlex W’ u<RlexW’ U<RlexW"’
First we have that w'w” = w. Let w'v be a term from the second sum,

where v<gjexw”. Since deg(v) = deg(w"), w" cannot be a right factor of v.



7.9 Reduction in L{X) 287

Hence by Lemma 7.8.8, we see that w'v<gjexw'w” = w. The terms in the
second and third sum are dealt with in the same way. Also w"w' <gpjexyw’
(by definition of <gjex) <riexw'w” (by Proposition 7.8.9). Furthermore, by
analogous arguments we see that the terms in the remaining sums are all
<RlexWw'. The first statement of the lemma follows. For the second state-

ment we use the first and proceed by completely analogous arguments. O

Let H be the Hall set corresponding to <gjex. Then we define the order
<g as follows. If deg(h) < deg(g), then h <g g. On the other hand, if
deg(h) = deg(g) then h <g g if p(h)<riexp(g). By Corollary 7.6.9 this
defines <p for all elements of H. In the sequel, when we write LM(a) for
some a € L(X), we mean the leading monomial of a relative to <g.

Lemma 7.9.2 Let H be the Hall set corresponding to <gpiex. Let u,v be
Hall words such that u<piexv. Let h,g € H be such that o(h) = u and
©(g) =v. Then o(LM([h,g])) = uv.

Proof. We recall that I is the ideal of A(X) generated by the elements
(7.1). Since P(Iy) = 0 we can view P as a map P : L(X) — F(X). Fur-
thermore, P(lh,g]) = P((h,g)). From Lemma 7.9.1 it now follows that
P([h,g]) is equal to uv plus a linear combination of smaller words. Set
ho = LM([h, g]). Then by Lemma 7.9.1, and the linearity of P we see that
¢(ho) is the biggest word (in the order <gjex) occurring in P([h, g]). Hence
w(ho) = uv. O

Proposition 7.9.3 Let H be the Hall set corresponding to <giex- Then <g
15 a reduction order on H.

Proof. Let h <gp g € H and f € H. We show that LM([h, f]) <r
LM([g, f]). If deg(h) < deg(g) then this is clear. So suppose that deg(h) =
deg(g). Then h<pgiexg. First suppose that g<priexf. Then using Lemma
7.92 we see that @(LM([h, £1)) = @(h)e(f)<miexp(9)e(f) = (LM (g, £1)).
Secondly suppose that h<gjexf<Rriexg- Then we write u = ¢(h), v = (g)
and w = ¢(f). We show that uw<gjexwv. If v is not a right factor of w then
this follows from w<gjexv. If v is a right factor of w, then we write w = w'v.
Since w is a Hall word, by Proposition 7.8.9, w>Riexw’. But w is not a right
factor of w’ so also w>Rjexuw’. Hence by Lemma 7.8.8, wv>Riexuw'v = uw.
It follows that @(LM([h, f])) = uw<pexwv = @(LM([g, f])). Finally, if
£ <wtexh, then @(LM([h, £)) = @(£)(h)<wiex(£)e(g) = w(LM((g, f])). In
all cases we have p(LM([h, f]))<riexp(LM([g, f])), implying LM([k, f]) <r
LM(lg, f))-
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Because [f,h] = —[h, f] and [f, g] = —[g, f] we also have LM([f, h]) <r
LM([f,g]). So <g is multiplicative. It is evident that <p satisfies the de-
scending chain condition. The conclusion is that <g is a reduction order.
a

Lemma 7.9.4 Let H be the Hall set corresponding to <iex. Let h € H
and set w = @(h). Then P(h) is equal to w plus a linear combination of
bigger words having the same degree as w. Also let hi<jexho € H and set
w; = @(h;) for i = 1,2. Then P((hy,hg)) is equal to wiwy plus a linear
combination of bigger words.

Proof. Let w be a Hall word and write w = wv. Then using Lemma 7.8.5
we see that wv<jexv<jexvu. Using this we proceed in exactly the same way
as in the proof of Lemma 7.9.1. o

Let H be the Hall set corresponding to <jex. Then we define the order
<g as follows. If deg(h) < deg(g), then h <p g. On the other hand, if
deg(h) = deg(g) then h <g g if p(h)>1exp(9)-

Lemma 7.9.5 Let H be the Hall set corresponding to <jex. Let u,v be Hall
words such that u<iexv. Let h,g € H be such that p(h) = u and p(g) = v.
Then o(LM([h,g])) = uv.

Proof. The proof is analogous to the proof of Lemma 7.9.2. Again set
ho = LM([h, g]). This time we prove that ¢(hg) is the smallest word (in the
order <jex) occurring in P([h,g]). This implies that hg is the biggest Hall
element (in the order <pg) occurring in [k, g]. o

Proposition 7.9.6 Let H be the Hall set corresponding to <jex. Then <p
15 a reduction order on H.

Proof. The proof is analogous to the proof of Proposition 7.9.3. Let
h <rg € H,and f € H. If deg(h) < deg(g), then clearly LM([A, f]) <r
LM([g, f]). So suppose that deg(h) = deg(g). This implies that g<ijexh.
The difficult case is where g<jexf<iexh. Write u = ¢(h), v = ¢(g) and
w = o(f). We have to show that wu>evw. This is clear if v is not a left
factor of w, as v<j;w. If v is a left factor of w, then we write w = vw'. By
Lemma 7.8.5, w<jexw’, and therefore vw<exvw'. But vw is no left factor
of vw' and hence vw< e vw'u = wu. i
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Let G C L(X), and let J C L(X) be the ideal generated by G. We
describe elements of J in a fashion analogous to the one used in Section 7.3.
Let o = (hy,... , hx) be a sequence of elements of H, and let § = (dy,... ,dg)
be a sequence (of length equal to the length of o) of letters d; € {l,r}. Set
a = (0,4), then we call @ an appliance. The integer k is called the length of
a. For an appliance o we define a map P, : L(X) — L(X) in the following
way. If k& = 0, then P,(a) = a for all a € L(X). On the other hand,
if k > 0, then we set 8 = ((mo,... ,mg), (do,... ,dg)). If di =1, then
Py(a) = Pg([h1,a]), and Py(a) = Ps([a, h]) if d1 = .

Let g,h € H. Then g is said to be a factor of h if there is an appliance o
such that LM(P,(g)) = h. Let G C L(X), and f € L(X). Then f is said to
be in normal form modulo G if no Hall element occurring in f has a LM(g)
as a factor for g € G. Furthermore, u € L(X) is said to be a normal form
of f modulo G if u is in normal form modulo G and f = v mod I, where
I is the ideal of L(X) generated by G. Now we formulate an algorithm
NormalForm, analogous to the ones of Chapter 6. An element f € L(X) is
called monic if the coefficient of LM(f) in f is 1.

Algorithm NormalForm
Input: a set G C L(X) consisting of monic elements, and an element
f e L(X).

Output: a normal form of f modulo G.

Step 1 Set ¢:=0,a:= f.

Step 2 If @ = 0 then return ¢. Otherwise set h := LM(a) and let A be the
coefficient of A in a.

Step 3 Let g € G be such that LM(g) is a factor of k. If there is no such g
then set a := a — Ah, ¢ := ¢ + Ah and return to Step 2.

Step 4 Let o be an appliance such that LM(P,(LM(g))) = h. Set a :=
a — AP,(g).

Comments: The algorithm terminates since < satisfies the descending
chain condition and LM(a) decreases every round of the iteration. Let I
be the ideal of L(X) generated by G. An invariant of the algorithm is the
relation ¢ + a = f mod I. Furthermore ¢ is always in normal form modulo
G. Hence at termination we have that ¢ is a normal form of f modulo G.

We reformulate the algorithm NormalForm in the same fashion as in
Section 6.1. Let G C L(X) be a set consisting of monic elements and let
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a € L(X). Suppose that there is a ¢ € G such that LM(g) is a factor of
h, where h is a Hall element occurring in a. Let o be an appliance such
that LM(P,(LM(g))) = h. Let A be the coefficient of k in a. Then we say
that a reduces modulo G to b = a — AP,(g). More generally we say that
a reduces modulo G to b if there are cy,... ¢, € L(X) such that ¢; = a,
¢y = b and ¢; reduces modulo G to ¢;4; for 1 < i < k — 1. Because <p
satisfies the descending chain condition, any maximal sequence of reduction
steps finishes with an element that cannot be reduced further.

The problem with the algorithm NormalForm and the reduction proce-
dure is that in general it is difficult to determine whether a given g € H is a
factor of a given h € H. However, in the case where the Hall set is defined
relative to <jex Or <Rjex We have a criterion for deciding this.

Let H be a Hall set and let u be a Hall word, i.e., u = p(h) for some
h € H. Suppose that h ¢ X, i.e., h = (h',h"). Then the factorization
u = vw where v = ¢(h') and w = (k") is called the standard factorization
of w.

Lemma 7.9.7 Let H be the Hall set corresponding to <Rriex 0T t0 <iex. Let
u,v be two Hall words. If u ¢ X then u = zy will be its standard factoriza-
tion. Suppose that v is a subword of u. Then there are three possibilities: v
is a left factor of u, v is a subword of x, v is a subword of y.

Proof. First we prove the statement for the case where H is defined relative
to <Rlex- Suppose that v is not a subword of z or of y. Then v = v vy where
vy and vz are non-empty words such that z = wyv; and y = vowy for some
wi,wy € X*. By Proposition 7.8.9 we have y>Rgiexv2 and since y is not a
right factor of vs, also y>Rgjexv1v2. Now for  we have that x = wyv; where
v1 15 a non-empty left factor of v and if x = ab is the standard factorization
of z, then b >Rjex ¥ (the last inequality follows from (7.5)). We prove that
from this it follows that w; is empty, by induction on the length of z. First
if z € X, then w, is empty because v; is not. So suppose that the length
of z is > 1. First suppose that w, is longer than or equal to a, i.e., b = b'vy
for some b’ € X*. By the definition of <gjex We have v; >Riex b and hence
V1 ZRlex Y- But because v, is a left factor of v, by Proposition 7.8.9 we
see that v>Riexv1, and as y>Riex?, also y>Riexv1, a contradiction. So wy is
shorter than a, i.e., a = wya’ where o’ is a non-empty left factor of v and if
a = cd is the standard factorization of a, then d >Riex b >Riex Y- S0 a has
the same property as z. Therefore, by induction we have that w, is empty.

If H is defined relative to <jex, then we use the same line of argument.
In this case, from b = b'v; we deduce y <jex b<iexv1 (by Lemma 7.8.5; b
is a Hall word) <jexv (because vy is a left factor of v). But also y>|eve
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(because vq is a left factor of y) >)exv (by Lemma 7.8.5). So we reach the
same contradiction. O

Lemma 7.9.8 Let H be the Hall set corresponding to <gplex or to <iex. Let
g,h € H; then g is a factor of h if and only if p(g) is a subword of p(h).

Proof. First we prove the lemma for the case where H is defined relative
to <mlex- Set u = ¢(g) and v = ¢(h). Suppose first that u is a subword of
v. By Lemma 7.9.7 we may assume that v = uv'. Let wi,...,ws be Hall
words such that wy - - - w; = v’. (Note that these exist as the letters of v’ are
Hall words.) By Corollary 7.8.10 we may assume that w; >Riex W2 >Rlex

- >Rlex Ws- For 1 < 4 < s let h; € H be such that ¢(h;) = w;. Set
fx = [llg, h1], he] - -+ , hx]. By induction on k& we prove that o(LM(fi)) =
uw; - - - wg. This is clear for K = 0. So suppose k > 0 and ¢(LM(fx)) =
uwy - - Wk, Set ug = uw; -+ - wg and vy = wgyq -+ ws. Then v = ugvg, and
Wk+1 ZRlex Ws ZRlex Uk (because wy is a right factor of vg) > RiextkVk > RlexUk
(by Proposition 7.8.9). Hence ug<pjexwrs1 and by Lemma 7.9.2 we have
that o(LM(fx+1)) = uw;---wgyy. Therefore o(LM(f)) = uv' and by
Corollary 7.6.9 we see that LM(f;) = h.

Now suppose that g is a factor of h. Then there is an appliance a such
that LM(P,(g)) = h. Hence p(LM(Py(g))) = ¢(h). We prove by induction
on the length of o that ¢(LM(P,(g))) contains ¢(g) as a subword. This is
trivial if the length of « is 0, so suppose that the length of o is > 0. Write
a=((h1,... ,hg),(d1,... ,di)),and set B = ((h1,... ,hxg—1),(d1,-.. ,dk-1))-
Set § = LM(Pg(g)). By induction ¢(g) contains ¢(g) as a subword. But
LM(Pa(g)) = LM([hk, g]), and by Lemma 7.9.2 we see that o(LM([hg, §]))
contains ¢(g) as a subword and we are done.

If H is defined relative to <jex then we use the same line of argument.
In this case, in the first half of the proof, we deduce wgy1 >ex Ws>1exv (by
Lemma 7.8.5) >exu. O

The proof of Lemma 7.9.8 yields an algorithm for computing an appli-
ance o such that LM(Py)(g) = h.
Algorithm Appliance
Input: g,h € H.
Output: an appliance a such that LM(P,(g)) = h if g is a factor of h, fail
otherwise.

Step 1 (Catch some trivial cases.) If g = h then return the empty appliance.
If h € X, and g # h then return fail.
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Step 2 Set u := ¢(g) and v := @(h). If u is not a subword of v then return
fail; else go to Step 3.

Step 3 Let v = ab be the standard factorization of v, where a = ¢(h’) and
b = (k). If u is a subword of a then let § = (o,d) be the output
of Appliance(g, h’'). Add h" to o and add the letter r to § and output
the result. If u is a subword of v, then we let 8 = (o, §) be the output
of Appliance(g, "), and we proceed in the same way, this time adding
h' to o and [ to 4. If u is not a subword of u nor a subword of v, then
go to Step 4.

Step 4 Write v = uv' and calculate Hall words wy > wy > --- > w; such
that v' = w --- w,. Let hq,... ,hs be elements of H such that ¢(h;) =
w;. Return ((hy,... ,hs),(r,...,7)).

Comments: By Lemma 7.9.7, we have that u is either a subword of a,
a subword of b or a left factor of v (longer than a). In the first two cases we
use a recursive call. In the second case (Step 4) we perform the construction

of the proof of Lemma 7.9.8. The Hall words wi,... ,ws can be calculated
as follows. Write v’ = z;, - - - z;, for certain z;, € X. Start with the standard
sequence s = (z;,,... ,%;,), and apply the reduction procedure of Section

7.6 to arrive at a decreasing standard sequence having the same foliage.

7.10 Grobner bases in free Lie algebras

Let X be a set. Throughout this section we let H be the Hall set in M (X)
relative 10 <jex Or t0 <Rjex. As in the previous section we also view H as a
subset of L(X), of which it forms a basis. As shown in Section 7.9, a reduc-
tion order <r on H exists. In this section we take all leading monomials
relative to a fixed reduction order <p.

Let I C L(X) be an ideal of L(X). We define the set of normal mono-
mials N(I) of L(X) modulo I to be the set of all h € H such that A is
not a leading monomial of an element of I. If we let C(I) be the span of
N(I), then L(X) = C(I) ® I (cf. Proposition 6.1.1). This implies that the
cosets of the normal monomials span L(X)/I. Also for f € L(X) we define
Nf;(f) = u, where u is the unique element of C(I) such that f = u + g for
agel.

Now let G C L{X) and let I be the ideal of L(X) generated by G. Then
we say that G is a Grobner basis of I if for all f € I there is a ¢ € GG such
that LM(g) is a factor of LM(f). As in Section 6.1, it is straightforward to
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show that reduction of an element f € L(X) modulo a Grobner basis of T
always yields a unique result, which is Nf;(f).

In this section we establish a sufficient condition for a set G C L(X) to
be a Grobner basis of I. This condition is similar to the condition obtained
in the associative case (Corollary 6.1.8). The next result will enable us to
construct compositions of two elements of L(X).

Proposition 7.10.1 Let h1,hs € H and suppose that ¢(h1) = uv and
@(h2) = vw, where v is non-empty. Then vvw is a Hall word.

Proof. First we deal with the case where H is defined relative to <gjex-
Let @ be the property of the proof of Proposition 7.8.9. Then by that
proposition the words uv and vw both have (). From this it follows that
U<RlexV<RlexW. We show that uvw has Q. For that let z be a left factor
of uvw. First we suppose that £ = uv. Now by Proposition 7.8.9 we have
v<giexvW and by Lemma 7.8.8 (vw is not a right factor of v), uv<piexuvW.
Now suppose that z is shorter than uv. Then by Proposition 7.8.9 and by
the previous case, T<RriexUV<RlexUVwW. Finally suppose that z is longer than
uw, i.e., T = uvz’. Then vz’ is a left factor of vw and hence vz’ <gjexvw. Now
by Lemma 7.8.8 (vw is not a right factor of vz') we see that uvz’ <gjexuvw.
It follows that uvw has @ and by Proposition 7.8.9 we are done.

If H is defined relative to <j, then we use analogous arguments. In
this case we show that for all proper non-trivial right factors y of uvw we
have uvw<|exy. First suppose that y = vw. By Lemma 7.8.5, uv<jexv,
and as uv is not a left factor of v, also uwwvw<xvw = y. If y is shorter
than vw, then y>evw (by Lemma 7.8.5) >jexuvw (as seen above). Finally,
if y is longer than vw, then y = y'vw and y'v is a proper right factor of
uwv. Hence by Lemma 7.8.5, uv<jey'v and since uv is not a left factor of
y'v, we have uvw<jexy'vw = y. Now by Lemma 7.8.5, uvw is a Hall word. O

Let g1,92 € L(X) and set h;y = LM(g;) and hy = LM(g2). Suppose that
the coefficients of hq, ho in g1, g2 respectively are 1. Suppose further that
w(h1) = uv and ¢(hy) = vw, where v is non-empty. Then by Proposition
7.10.1, wvw is a Hall word. Furthermore, it contains both uv and vw as
subwords. Let h € H be such that ¢(h) = uvow. Then by Lemma 7.9.8,
hi1,ha both are factors of h. Let a1, oy be two appliances, as found by the
algorithm Appliance, such that LM(P,, (h;)) = h for ¢ = 1,2. Then the
element

Py, (g1) — Pay(92)

is called a composition of g, and go.
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Let I C L(X) be an ideal of L(X) generated by the set {g; | i > 1}. Let
h € H, then by I, we denote the subspace of I spanned by elements of
the form A1 Py, (gi, )+ - -+ As Pa, (gi, ), where the oy, are appliances such that
LM(Pa,(9i,)) <r h. Note that this depends on the particular generating
set G. Usually it will be clear what generating set we mean; however, if we
want to stress the dependency on G, then we also write I ,(G) in place of
Icph.

A set G C L(X) is said to be self-reduced if for any pair g1,92 € G we
have that LM(g;) is not a factor of LM(g), and the coefficient of LM(g) in
gis 1 for all g € G.

Theorem 7.10.2 (Shirshov) Let I C L(X) be an ideal of L(X) generated
by the set G C L(X). Suppose that G is self-reduced. Suppose that all
compositions Py, (g1) — Pa,(g2) of elements g1, g2 of G lie in I ,1(G), where
h = LM(P,,(91)) = LM(Pa,(g2)). Then G is a Grobner basis of I.

Proof. First we prove the theorem for the case where H is defined relative
to <Rlex- On X* we use an order which we also denote by <pg. It is defined
in an analogous way to the order <g on H. If u,v € X* have different
degrees, then u <g v if and only if deg(u) < deg(v). If deg(u) = deg(v),
then u <g v if and only if u<pjexv. We note that <g is multiplicative (cf.
Lemma 7.8.8), and satisfies the descending chain condition. In the sequel
leading monomials of elements of F(X) are taken relative to this order.

We use the map P : L(X) — F(X) that assigns to each element of
L(X) its Lie polynomial. Let J be the ideal of F(X) generated by P(G).
We show that P(G) is a Grobner basis of J. For this we use Theorem 6.1.6.
Let f1, fo € P(G) and let u,v € X* be such that LM(f1)u = vLM(f2) = w.
We have to show that flu — vfy € Jcpw. If v is longer than LM(f1), or
equal to LM(f3), then fiu — vfs € Jcpw by a calculation analogous to
(6.2). Now suppose that v is shorter than LM(f;). Then LM(f1) = vv; and
LM(f,) = viu for a non-empty v; € X*. Let g; € G be such that f; = P(g;)
for i = 1,2. By Lemma 7.9.1 we have LM(f;) = ¢(LM(g;)). So g1, g2 have
a composition. Let ay,as be appliances (found by the algorithm Appliance)
such that Py, (g1) — Pa,(g2) is the composition of g; and go corresponding
to the decomposition LM(f;) = vvl and LM(fq) = vlu

We claim that P(g;)u — P(Py, (g1)) = >_; AiaiP(g1)b;, where the A; are
certain scalars and a;,b; € X * are such that LM(a;P(g1)b;) <r w. Since
LM(f1) is a left factor of LM(f))u we have Py, (g1) = [[[g1, h1], hal, - -+, hi]
where h; € H are such that ¢(hy)---¢(hg) = u. But this means that
P(P,,(g1)) is a linear combination of elements of the form

P(h’n)P(h'lt)P(gl)P(hu-H)P(hlk)
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The leading monomial of P(P,,(g:1)) is LM(f1)u. We note that this word
only occurs in P(g1)P(hy)--- P(hg) (cf. Lemma 7.9.1). So

Plgvyu — P(Pa,(01)) = Plg1)(u = P(1) - P(hi)) + 3 i Plon)bi

where &;,b; € X* are such that LM(a;P(g1)b;) <g w. By Lemma 7.9.1 we
see that the leading monomial of P(h;)--- P(hy) is u. Therefore P(g1)(u —
P(hy)--- P(hg)) is a linear combination of elements P(g;)a, where a € X*
is such that LM(P(g1)a) <g w, and our claim follows. In the same way we
can show that vP(g2) — P(Pa,(g2)) = Y, viciP(92)d;, where ¢;,d; € X™ are
such that LM(c; P(go)d;) <gr w.

It follows that

P(g1)u — vP(g2) = P(Pa, (1)) — P(Pay(g2)) +
Z Aiai P(g1)b; — Z vic;i P(g2)d;,

where the last two sums on the right-hand side are in Jc,,. Fuarther-
more, P(Pal (91)) ‘"P(Paz (92)) = P(Pal (gl) — Fo, (92))' But by assumption
Py, (91) — Pay(g2) lies in I ., where h = LM(P,, (91))- Therefore the image
under P of this element lies in J,,, by Lemma 7.9.1.

Now by Theorem 6.1.6, P(G) is a Grébner basis of J. This implies that
G is a Grobner basis of I. Indeed, let a € I, then P(a) € J. Hence there is
a g € G such that LM(P(g)) is a factor (i.e., a subword) of LM(P(a)). But
by Lemma 7.9.1, LM(P(g)) = ¢(LM(g)) and likewise for LM(P(a)). So by
Lemma 7.9.8, LM(g) is a factor of LM(a). Hence G is a Grébner basis of 1.

If H is defined relative <jex, then we use analogous arguments. In
this case the order <p is defined as follows. If u,v € X* have different
degrees, then v <g v if and only if deg(u) < deg(v). Furthermore, if
deg(u) = deg(v), then u <g v if and only if u>ev. O

Now let G C L(X) and let g;,9o € G. Suppose that g;,g2 have a
composition ¢ = Py, (91)—P,,(g2) and set h = LM(Pq, (91)) = LM(Pa,(g2))-
Then the composition c is called useless if there is a g3 € G such that LM(g3)
is a factor of h. Otherwise the composition c is called useful.

Lemma 7.10.3 Let G,I be as in Theorem 7.10.2. Suppose that G is self-
reduced. Suppose that all useful compositions P,,(g1) — Pa,(92) of elements
g1,92 of G lie in I ,p, where h = LM(P,, (g1)) = LM(Pa,(g2)). Then G is
a Grobner basis of I.
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Proof. We use the notation of the proof of Theorem 7.10.2. Again we prove
that the set P(G) is a Grobner basis of J. For that let fi, fo € P(G) and
suppose that they have the composition ¢ = fiu; —uafs. Set w = LM(fiuq).
We must show that ¢ € I . If there is no f3 € P(G) such that LM(f3) is
a factor of w, then this is already done in the proof of Theorem 7.10.2. So
suppose that there is such an f3 in P(G). Write w; = LM(f;) for ¢ = 1,2,3.
Then w; = u9v and wy = vu; for some v # 1. Also we know that w; is
a factor of upvu;, so we may write ugvu; = rwsy where z,y € X*. If ¢
is longer than, or equal to u,, then ws is a factor of vu; = we, which is
excluded as G is self-reduced. So z is shorter than us. In the same way we
see that y is shorter than u;. So there are a,b # 1 such that w3 = avb and
uo = za and u; = by. Now we calculate

frur —uafa = fiby — zafo
= (fib—zf3)y + z(fsy — af2).

Now fib—zf3 is a composition of f; and f3, and the degree of z = LM( f,b)
is strictly less than deg(w). (Note that y # 1, as otherwise ws is a factor of
w3.) So by induction on the degree we may assume that f1b —zf3 € I,
and similarly for the composition fsy — afs. But then it follows that
fiur —uafr € I o -

Corollary 7.10.4 Let G C L(X) be a self-reduced set generating an ideal
I of L(X). Then G is a Grébner basis of I if and only if every useful
composition of any pair of elements of G reduces to zero modulo G.

Proof. Using Lemma 7.10.3 the proof is completely analogous to the proof
of Corollary 6.1.8. O

These results lead to an algorithm for computing a Grobner basis of an
ideal generated by G C L(X). In this algorithm we need a subroutine that
given a set G C L(X) computes a self-reduced set M C L(X) generating
the same ideal as G. We first state this subroutine.

Algorithm [nterReduce

Input: a finite set G C L(X).

Output: a finite set M C L(X), where M is self-reduced and generates the
same ideal as G.

Step 1 Set M :=G.
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Step 2 Denote the elements of M by ¢1,...,9s. For 1 <¢ < s replace g; in
M by NormalForm(M \ {g;}, gi) (and if necessary divide by a scalar to
ensure that the coefficient of the leading monomial is 1).

Step 3 If M is unchanged in Step 2., then return M. Otherwise return to
Step 2.

Comments: We show that the algorithm terminates. Let (hy,... ,hs)
be the s-tuple of leading monomials of the elements of M. We order these
s-tuples lexicographically. If M is changed in Step 2., then this s-tuple
decreases. However, this cannot happen infinitely often because <pg satisfies
the descending chain condition. So after a finite number of rounds the
algorithm terminates. It is straightforward to see that at termination the
set M is self-reduced. It also generates the same ideal as the initial set G
because the replacement operation of Step 2. does not change this.

Lemma 7.10.5 Let G C L(X) be a finite set generating an ideal I of L(X).
Set G' = InterReduce(G). Let h € H; then I« p(G) C I o0 (G').

Proof. Let My = {¢1,...,9s} C L(X) and let My be the set obtained
from M; by replacing g; by gi = NormalForm(M; \ {¢:}, ;). Then g; =
9i— Y peq 1k P, (95, ), where LM(Pg, (g5,)) < LM(g;). Let a be an appliance
such that Py(g;) € I pn(My). Now Po(g:) = Pa(Qé)*’ZZnﬂ U'kPa(Pﬂk (gjk))a
which lies in I ,(Ms). It follows that I n(Mi) C I<,n(M3), and hence
also I p(G) C I (G"). O

Now the algorithm for calculating a Grobner basis reads as follows.

Algorithm GrobnerBasis
Input: a finite set G C L(X).
Output: a Grobner basis of the ideal of L(X) generated by G.

Step 1 (Initialization.) Set M; := InterReduce(G). Set D := {(g1,92) | g1 #
gs € Ml} Set k :=1.

Step 2 (Choose pair from D.) If D = () then return M. Otherwise let
P = (g1,92) be an element of D and set D := D\ {p}.

Step 3 (Process compositions.) If g; and g do not have a useful compo-
sition, then return to Step 2. Otherwise, for all useful compositions
¢ = Pa,(g1) — Pay(g2) of g1, g2 do the following:
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Step 3a Let g be the result of reducing ¢ modulo M. If g # 0, then
divide g by the coefficient of LM(g) in r, and perform Steps 3b.,
and 3c.

Step 3b Add to D all pairs (f, g) for f € M.

Step 3¢ Add g to My and set My, := InterReduce(My). (Where in
Step 2. of the algorithm InterReduce the set D is also changed. If
in this step a g; is replaced by g;, then all pairs in D containing
a g; are erased and to D are added all pairs (f,g;) for f € M.)
Set k: =k + 1.

Return to Step 2.

Comments: We remark that an element f € L(X) can never form a
composition with itself. Otherwise ¢(LM(f)) = uvu for some non-empty
u € X*. We show that there can be no Hall word of this form. First suppose
that H is defined relative to <gjex- Then u is a right factor of uvu, so that
uvu<plexu. Now by Proposition 7.8.9, uvu cannot be a Hall word. If H
is defined relative to <jey, then we use a similar argument, this time uovu
cannot be a Hall word by Lemma 7.8.5. So in the set DD we do not have to
include pairs of the form (g, g).

Suppose that the algorithm terminates, and denote the output by M.
Let fi,fo € M and suppose that they have a useful composition ¢ =
Py, (f1) — Pay(f2). At some point in Step 3., this composition is consid-
ered. So c lies in some I (M), where h = LM(Pq,(f1)). Therefore, by
Lemma, 7.10.5, c also lies in I »(M;) for | > k and hence also in I, (M).
So by Lemma 7.10.3, M is a Grobner basis of the ideal I generated by G.
However, it is by no means guaranteed that the algorithm terminates, as
an ideal may not have a finite Grobner basis. Indeed, there is no algorithm
for deciding whether or not two arbitrary elements of an arbitrary finitely
presented Lie algebra are equal (this is a result by G. P. Kukin, [55], see
also [85]). In particular there can be no algorithm that computes a finite
Grobner basis of an arbitrary ideal in L(X).

On the other hand, if the ideal generated by G has a finite Grobner
basis, then the question arises whether the algorithm GrobnerBasis will find
it on input G. The next lemma guarantees this as long as we choose the
pairs from the set D in such a way that every pair that is added to the set
will be processed after a finite number of steps. (We could, for instance let
D be an ordered list, and take the pairs from the beginning of the list, and
add the pairs at the end of it.)
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Lemma 7.10.6 let G C L(X), and let I C L(X) be the ideal generated
by G. Suppose that I has a finite Grobner basis. Suppose further that the
elements p in Step 2. of the algorithm GrobnerBasis are chosen in such a
way as to ensure that every element that is added to the set D (in Steps
3b. and 3c.) is processed after a finite number of steps. Then the algorithm
GrébnerBasis terminates.

Proof. Set M = |J;~; M, and let G be the set of all g € M such that no
LM(f) is a factor of LM(g) for f € M\ {g}. Let h € H, then we claim that
Icon(My) C Ic,n(G) for k> 1. Let g1,... ,9s € My and set

f= A1P¢)c1(91)"f""‘*‘/\sPcvzs(!]s)a (7.6)

where the o; are appliances such that LM(P,,(¢;)) <g h. We show that

f €I n(G). Ifgi € Gforl<i<s, then we are done. On the other
hand, suppose that a g; & I,4(G). Then g; is replaced at least once in
the algorithm InterReduce. Suppose that this happens in the transition
from M; to M;;1. By g; denote the output of the routine NormalForm
that replaces g;. As at any stage during the algorithm InterReduce the
leading monomials of the elements of M differ (the input to the algorithm
certainly has this property, and it is preserved during the algorithm), we
have that in the first round of NormalForm, g; is reduced modulo an element
a such that LM(a) <p LM(g;). This implies that g; can be written as
a sum g; = g; + mPs (f1) + -+ + prPs,(fr), where the fi € M;;, and
LM(fx) <gr LM(g;) and LM(PBk(fk)) <r LM(g;) for 1 < k < r. Now if
we substitute this expression into (7.6) we get a different expression for f.
However, since < satisfies the descending chain condition we have that such
reductions cannot happen infinitely often. Therefore after a finite number
of steps we reach a stable situation, f = 3, v; Py, (e;) where the e; are never
reduced. This means that the e; € G and therefore f € I Rh(@_).

Now I¢pn(Mg) C I<pp(G) for all h € H implies that the ideal gen-
erated by M (which is I) is a subset of the ideal generated by G. This
means that the ideal generated by G is equal to I. Furthermore, we claim
that G is a Grobner basis of I. First of all, it is clear that G is self-
reduced. Let g1,g2 € G and suppose that they have a useful composition
¢ = Py,(91) — Pay(g2). Then at some point during the algorithm c is consid-
ered. So there is a k > 0 such that ¢ € I 5(My), where h = LM(Pq,(g1))-
Therefore ¢ € I<,4(G). So by Lemma 7.10.3, G is a Grobner basis of .
Now let S = {fi1,..., fn} be a finite Grobner basis of I. Thenfor 1 < j <n
there is a g; € G such that LM(g;) divides LM(f;). Let [ > 0 be such that
g; € My for 1 < j < n. Then for all f € I there is a g € M; such that LM(g)
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divides LM(f). Hence M, is a finite Grébner basis. O

Example 7.10.7 Let X = {z,y} and r, = [z,[z,y]] — [z,y] and rp =
[[z,y],y],y], and R = {r1,r2} (note that this presentation equivalent to the
one used in Example 7.4.4). Let I C L(X) be the ideal generated by R. We
use the Hall set relative to <jex With z<jexy. We see that r1 and ro have a
composition, namely
[[n,y],y] - [:1:,7‘2].

Using the algorithm RewriteMagmaElement, [[[z,[z,y]],y],y] is rewritten
as [z,([[z,y), y],y]] + [z, y], [[z,v],4]] — [[[z,v],9],y]. So the composition
equals [[z,y], [[z,y],y]] — l[[z,y],¥],¥]. The last term of this element re-
duces to zero modulo ry. The first term cannot be reduced so we add
r3 = [[z,y], [z, y],y]]- Now r; and r3 have the composition [ri, [z, y],y]] —
[z, 73], which rewrites to [z, [[z,y],v]], [z, ¥]] — [z, ¥}, [[z,y],¥)]- The last
term reduces to zero modulo r3. The first term has [z, [z,y]] as a fac-
tor. We have [[r1, ), [z,v]] = [z, [{z,], ]} [5,]] + [[&, ], [z, 4} ] so that
[z, [z, y], y]], [z, y]] reduces to —[[z, y], [z, y], y]], which reduces to zero mod-
ulo r3. The elements r{,ry,r3 have no further compositions, and hence
G = {r1,re,r3} is a Grobner basis of the ideal generated by r1,72. Now we
enumerate the basis elements of the quotient, i.e., the normal monomials of
L(X) modulo I. These are exactly those Hall elements that do not have a
leading monomial of an element of G as a factor. It is straightforward to
see that {z,y, [z,y], [[z,y],y]} are the normal monomials upto degree 3. In
degree 4 we have the monomials [z, [[z, ], y]] and [[[z, y], y], y]. The first one
has LM(r;) as a factor and the second one has LM(ry) as factor. We also
do not get any monomials of degree 5 and 6. Now by induction we show
that all Hall elements of degree at least 7 have a LM(r;) as a factor. Let
h = (k', h") be a Hall element of degree at least 7. Then either A’ or A" has
degree between 4 and deg(h) — 1. But all monomials of those degrees have
a LM(r;) as a factor. So we have the same for 4. The conclusion is that the
quotient is 4-dimensional. Reducing products of basis elements modulo G
we can write down a multiplication table of it.

7.11 Presentations of the simple Lie algebras of
characteristic zero
The objective of this section is to prove a theorem by J.-P. Serre that gives

a construction of any semisimple Lie algebra with a split Cartan subalgebra
of characteristic zero as a finitely presented Lie algebra.
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Let C be a Cartan matrix (cf. Section 5.6). Suppose that C is an
{ x [-matrix and let

X = {hla--' ,hlvxla'-' sy T Y1, - 7yl}
be a set of 3l symbols. We use the lexicographic order <jex where
h1<iex * <texP1<1exT1<lex * * * <iexTi<tex Y1 * * * <lexYi-

As seen in Section 7.8 this order defines a Hall set in M (X).
Throughout we will denote the entry of C' on position (¢,7) by ¢;;. In
the free Lie algebra L(X) we consider the following elements:

pij = [hi, hy] for i < 7,
gi = [i,ys] — hy for 1 <i <1,
rij = [zi,y;] for i # j,
Sij = [hi,iﬂj] — CjiT for 1 <1,5 <|,
tij = [he,y;] +ciy; for 1 < 4,5 < 1.

Note that if L is a semisimple Lie algebra having a root system @ with Car-
tan matrix C' then the relations above are satisfied by the canonical genera-
tors of L (see Section 5.11). Let R be the set of all elements p;;, g;, ij, Sij, tij-

Lemma 7.11.1 The set R is a Grobner basis in L(X) with respect to the
order <jex.

Proof. It is evident that R is a self-reduced set. So we must prove that
all compositions of the elements of R reduce to zero modulo R. First we
see that p;; and s;; have the composition [psj, k] — [hs, sjk). Rewriting
this as a linear combination of Hall elements we have that this is equal
to ([hi, zk], hj] + ckjlhi,zx). But modulo R this reduces to —cpickjzx +
CkjckiTk = 0. Also p;; and ¢, form a composition, but this one reduces to
zero in a similar way.

Now s;; and ¢; have the composition [s;;, ;] — [hi,¢;]. After rewriting
this is equal to [[hs, y;], ;] —cjilz4, yj]+[hs, h;] which reduces to —cj;[y;, 25—
cjilzj,y;] = 0. The elements s;; and rj; (where j # k) have the composi-
tion {s;5, yx] — [hs, 7jk), which after rewriting equals [[h;, yk), 2;] — cji[z;, Yx)-
This reduces to ck;[z;, yx] — ¢ji[z;, y&] which reduces to zero modulo R as
j # k. There are no further compositions between the elements of R, so by
Corollary 7.10.4 we conclude that R is a Grobner basis. O

Now let I be the ideal of L(X) generated by R and set K = L(X)/I.
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Theorem 7.11.2 We have K = K,®@K,® K, (direct sum of vector spaces),
where K is isomorphic to the free Lie algebra generated by x1,... ,z; and
K, is isomorphic to the free Lie algebra generated by yi,... ,y;. Further-
more, K}, is an Abelian subalgebra spanned by the images of h; in K.

Proof. As before we use the Hall set corresponding to <jex. The cosets of
the normal Hall elements modulo I form a basis of K. Furthermore, since
R is a Grobner basis of I (Lemma 7.11.1), the normal Hall elements are
exactly those that do not have a LM(r) as a factor for r € R. We claim
that a normal Hall element m is either composed entirely of letters z; or
entirely of letters y; or entirely of letters h;. We prove this by induction on
deg(m). It is certainly true if deg(m) = 1. So suppose that deg(m) > 2,
i.e., m = (m/,m") and the result holds by induction for m’ and m". First
suppose that m’ is composed entirely from letters h; and m” entirely from
letters ;. Let h; be the last letter from ¢(m') and z; the first letter from
#(m"). Then by Lemma 7.9.8 [h;, z;] is a factor of m and m is not normal;
so we have reached a contradiction. For the other cases we use a similar
argument and the claim follows.

Now any Hall element m consisting entirely of letters A; reduces to 0
modulo R if deg(m) > 1. It follows that the only normal monomials of this
type are the generators hy,... ,h;. Furthermore, no Hall element consisting
entirely of letters z; or entirely of letters y; has a LM(r) for an r € R as a
factor. As a consequence they are all normal, and the theorem follows. 0O

By Theorem 7.11.2, the images of the h;, z;,y; are linearly independent
in K, and we denote these images also by h;, z;,y;. For 1 <i# j <[ set

9;‘]7 = (adz;) "%t (z;)
0;; = (adys) "%+ (y5).

Then 93]'- € K, and Bi']- € K.

Lemma 7.11.3 We have [yk,();;] =0 and [z4,0,] =0 for 1 <k <L

i)
Proof. We prove [yk,H;*JT] = 0; the proof of the other identity is similar.
First suppose that k # ¢, then [yg,z;] = O by relation rj;. Hence also
[adyg, adz;] = 0, so that

adyx(adz;) "9t (z,) = (adz;) "9 adyk(z;). (7.7)

If k # j then (7.7) is zero by relation ;5. On the other hand, if k£ = j, then
using relations g; and s;; we see that (7.7) is equal to

—(adz;) "9t (h;) = cij(adz;) ™9 (z).
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Now if ¢;; = 0 then also ¢;; = 0 (because C is a Cartan matrix) and hence
this is zero. If ¢;; # 0, then —c;; > 0 and hence (adz;)~%(x;) = 0.

Now suppose k = i. By induction the following identity is seen to hold
in the universal enveloping algebra U(K)

_ nin—1 _

yiz} = zfy; —nzp " hy — -(2—)01290? '

The adjoint representation of K extends to a representation of U(K) (cf.
Section 6.2). So using c;; = 2 we have

adyi(adxi)“cf"ﬂ(scj) =

((ad:v,-)_cfiJ”ladyi—(—c]ﬁ—l)(adxi)_cj"adhi+(~cj¢+l)cji(admi)"cf') (.’L‘J)

The first term of this expression gives zero as 7 # j. So using adh;(z;) =
Cj; x5 we get

adyi(ajj'-) = (—Cji(—-Cji + 1)+ (—Cji + 1)Cj,')(a,d.’1,‘i)_cji (w]) = 0.

a

Set H = K}, the Abelian subalgebra of K spanned by hi,... ,h;. Let
H* denote the dual space of H. For 0 € H* set K, = {z € K | [h,z] =
o(h)z for all h € H}. If K, # 0 then o is said to be a weight and K, is a
weight space. Furthermore an element 0 # z € K, is said to be a weight
vector of weight o.

Let a; € H* be given by «a;(h;) = ¢;;. Then o; is a weight of K and z;
is a weight vector of weight ;. Furthermore, the y; are weight vectors of
weight —a;.

Lemma 7.11.4 Let K, K, be as in Theorem 7.11.2. Let m be a monomial
in K; (i.e., m is a bracketed expression in the z;) and n a monomial in K,
(i.e., n is a bracketed expression in the y;). Then m,n are weight vectors
of certain weights oy, 0pn. Furthermore o, on are linear combinations of
the a; where the coefficients are non-negative integral numbers in the case
of o and non-positive integral numbers in the case of oy,.

Proof. The generators z; of K, are weight vectors of weight ¢;. Further-
more, if u,v are weight vectors of weights o and p respectively, then [u,v]
is a weight vector of weight o 4 p. This follows by a straightforward appli-
cation of the Jacobi identity. From this the statements for m follow. The
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argument for n is analogous. u

Let J* be the ideal of K, generated by the 0;; ,and J~ the ideal of K,
generated by the 6.

Lemma 7.11.5 J*,J~ are ideals of K.

Proof. Let M™ be the ideal of K generated by the 01'; It is clear that
Jt C MY, we prove that M+ C J*. The adjoint representation of K

extends to a representation of U(K). So M is spanned by the spaces
U(K) - 9:; Using the Poincaré-Birkhoff-Witt theorem (Theorem 6.2.1),

we see that M7 is spanned by the elements Zhj - 9;;, where T € U(K;),

h € U(H) and §j € U(K,). Now by Lemma 7.11.3 we see that - 6, = 0
for all standard monomials § € U(K,) except § = 1. Furthermore h- 9;;- is
proportional to 03]7 by Lemma 7.11.4. The conclusion is that M is spanned
by the elements - 6 for & € U(K,). But this implies M* C J*. The
argument for J~ is similar. a

Now set J = J* & J~; then J is an ideal of K by Lemma 7.11.5. Put
L = K/J. Since HNJ = 0 we can identify the space H C K with a
subspace of L, which we also denote by H. So L = N* & H & N—, where
Nt = K;/J" and N~ = K,/J~. If 0 € H* then we set L, = {z € L |
[h,2] = o(h)z for all h € H}. A function o such that L, # 0 is called a
weight, in which case L, is a weight space. In the same way as for K we
have that N* is the sum of weight spaces corresponding to weights that
are Z-linear combinations of the «; where the coefficients are non-negative,
and similarly for N~ where the coefficients are always non-positive. In the
sequel we denote the images of x;, h;,y; in L also by z;, hi, y;.

Lemma 7.11.6 The elements z;, h;,y; € L for 1 <14 <1 are linearly inde-
pendent.

Proof. AsL=Nt®oH®N andz; € N*", h e Handy; € N7, it is
enough to show that the h; are linearly independent, the x; are linearly inde-
pendent and the y; are linearly independent. First of all the h; are linearly
independent in L since J N H = 0. Also [hj, z;] = 2z;, [hi, y:] = —2y; and
[i,y:] = hi. So the subalgebra of L spanned by the three elements z;, y;, h;
is a homomorphic image of sf5(F). The kernel of this homomorphism is not
all of sl (F) because h; # 0. So since sla(F) is a simple Lie algebra we have
that the kernel is (0 and therefore also z;,y; are non-zero in L. Suppose
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that the z; are linearly dependent, and let ¢ be minimal such that there
are Aj,...,A: € F such that not all of them are zero and Zle Xiz; = 0.
Then A; # 0 and hence there are u; € F such that z; = Zf;% ixi. Now let
h € H be such that a;(h) # o;(h) for some i € {1,... ,t — 1} (such h exists
as a; # aj for i # 7). Then [h,z;] = ap(h)z; = 3221 ap(h)piz;. But also
[h, 23] = 32621 psci(h)ai. So we get a non-trivial linear combination of the
first ¢ — 1 vectors z; to be zero. This however contradicts the minimality
of t and the z; are linearly independent. By a similar argument we decide
that the y; are linearly independent, and we are done. a

We recall that an endomorphism a of a (possibly infinite-dimensional)
vector space V is called locally nilpotent if for all v € V there isa k£ > 0
such that af - v = 0.

Lemma 7.11.7 The endomorphisms adz;, ady; of L are locally nilpotent.

Proof. Let V; be the space of all z € L such that (adz;)*(z) = 0 for some
k > 0. By the Leibniz formula (1.11) we have that V; is a subalgebra of L.
Furthermore since 6;; =0in L, z; € V;for 1 <j <[ Also by relations
gi,7ij and si; we have y; € V; for 1 < j < 1. Hence also h; = [z;,y;] € V;.
It follows that V; contains the generators of L and hence V; = L. The ar-
gument for y; is similar. (]

Fix a generator x;; we define a linear map exp(adz;) : L — L. Let u € L,
then by Lemma 7.11.7, there is an integer k,, such that (adz;)**! = 0, and

we set
ku
1

exp(adz;)(u) = Z m(adxi)m(u).
m=0
It is obvious that exp(adz;) is a linear map on L; moreover it is an auto-
morphism of L (cf. Section 1.11).

We recall that a; € H* is given by «;(h;) = ¢;;. Since C' is nonsingular,
aq,...,q are linearly independent. By Corollary 5.10.3, the algorithm
CartanMatrixToRootSystem finishes on input C' and {a1,... ,q}. Let @ be
the output and let V' be the vector space over R spanned by aq,...,q.

Then by Corollary 5.10.3, there is an inner product ( , ) on V such that

%Z%%L)l = ¢;; for 1 < 4,5 <. We fix such an inner product, to be used in

the sequel. We have that ® is a root system in V with Cartan matrix C.
From Section 5.3 we recall that for & € ® there is a reflection v, of V

given by rq(v) = v — (v,a)a. The group generated by all reflections r, for

a € @ is called the Weyl group W(®) of & (Section 5.7). We recall that
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W(®) leaves (, ) invariant. Set A = {ay,... ,q;}, then A is a simple system
of ®. We recall that W(®) is generated by the reflections ro; (Theorem
5.7.6). We note that for o € V we have o(h;) = (0, 0;). For 0 = q; this is
obvious as a;(h;) = c;;. The general case follows by linearity.

Lemma 7.11.8 Let o,p be weights of L and suppose that there is a g €
W(®) such that g(o) = p. Then dimL, = dimL,.

Proof. We note that since all weights are linear combinations of the o;
with integer coeflicients they all lie in the real space spanned by the roots.
In particular the Weyl group acts on them. It is enough to show the
lemma when g = r,, for some i. The general statement will then follow
by Theorem 5.7.6. Set 7; = (exp(adz;))(exp(ad — y;))(exp(adz;)). Then
7; i1s an automorphism of L. Furthermore, a short calculation shows that
7i(h;) = hj—ci;jh;. From this it follows that 7; stabilizes H and 12(hj) = hj,
so that 77 '(h) = 7 (h) for all h € H. Now let z € L,, then for h € H,
[h, 7i(2)] = 1([:(h), 2]) = p(7i(h))7i(2). So 7i(z) lies in the weight space
belonging to p7;. We know that ra,(0) = p. So for 1 < j < I, pri(hj) =
Ta; (0)(hj —ciihi) = o(hy) —cijo(hi) — (o, ai)ai(hj) + (0, ai)cijai(hi) = o(hy)
(in the last equality we have used o(h;) = (o, a;)). It follows that 7; maps
L, into Ly. Similarly 7; maps L, into L,. Therefore dim L, = dimL,. 0O

Lemma 7.11.9 dim L,, =1 and dim Lg,, = 0 if k # £1,0.

Proof. The corresponding facts for K are clear since the elements z; are
weight vectors for the «; and a weight vector for ka; must be of the form
([ziyzi), - .. ,zi] (k factors z;), but these are always zero. Now the lemma
follows from Lemma 7.11.6. O

Lemma 7.11.10 Ifa € @, then dim L, = 1.
Proof. This follows from Lemmas 5.7.5, 7.11.8, and 7.11.9. a

Lemma 7.11.11 Let o = Zﬁzl)\iai where the \; € R. Suppose that o
is not a multiple of a root. Then there is a g € W(®) such that g(o) =
22:1 uicy where at least one p; > 0 and at least one p; < 0.

Proof. As before V is the vector space over R spanned by ®. For u € V
we denote the hyperplane perpendicular to u by P, (i.e., the set of all
w € V such that (u,w) = 0). As o is not a multiple of a root we have
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that P, is not contained in any P, for o € ®. Choose a v € P, not ly-
ing in any P,. Choose a g € W(®) such that (g(v), p) is maximal, where
P = 33 4s0@ is the Weyl vector (see Section 5.7). Then exactly in the
same way as in the proof of Theorem 5.7.3 we have that (g(v), ;) > 0 for
1 <14 < 1. Write g(o) = Z£=1 pic;. Then by the choice of v we see that
0 = (v,0) = (g9(v),9(0)) = Zézlui(g(v),ai). This can only happen if at
least one coefficient p; is > 0 and at least one p; is < 0. a

Lemma 7.11.12 dimL, =0 if o ¢ ®.

Proof. We may assume that o is a linear combination of the o; with inte-
ger coefficients (otherwise dim L, = ). The case where ¢ is a multiple of a
root is taken care of by Lemnma 7.11.9. Otherwise by Lemma 7.11.11, there
isa g € W(®) such that g(o) = 2221 uic; where at least one p; > 0 and
at least one p; < 0. But this implies that dim Ly,) = 0 and therefore by
Lemma 7.11.8, dim L, = 0. O

Let a € ® be a root and set 8 = ro,(«). Then 3 is also a root and the
automorphism 7; from the proof of Lemma 7.11.8 maps L, onto Lg. Let
ZTq € Lo and z_, € L_, and suppose that [z4,2_4] is a non-zero element
of H. Set x4+g = 7(2+o) Then [zg,2_g] = 7i([2a, T-a]) is also a non-zero
element of H. Now [z;,y;] = h; so for the simple roots a; we have that
[La;s L—q,] is non-zero and is contained in H. By Lemma 5.7.5 we have the
corresponding statement for all roots a € ®. By Proposition 5.12.1 it now
follows that L is a semisimple Lie algebra. Furthermore L has root system
®. We summarize our findings in the following theorem.

Theorem 7.11.13 (Serre) Let C be an l x I-Cartan matriz. Let

X =Ahy,... ,h,Z1,. o0 20 Y1, -+ 5 ULY

be a set of 3l symbols. Let I be the ideal of L(X) generated by the elements
Pij, G Tijs Sij, tij, 617’]'., 6;;- Then L = L(X)/I is a finite-dimensional
semisimple Lie algebra with a split Cartan subalgebra and a root system @
having Cartan matriz C.

This theorem together with the algorithms from Section 7.4 and from
Section 7.10 gives one more algorithm for constructing the semisimple Lie
algebras of characteristic 0.
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2 -1
°=(% %)
1.e., the Cartan matrix belonging to the root system of type B,. Set X =

{h1,h2,21,%2,y1,y2}. Then the relations pij,qi,rij,sij,tij,t?;;,ﬁi; amount
to the following;:

Example 7.11.14 Set

[h1, hal,

[a"l’yl]—hla [1517?/2]7
[z2,y2) — ha, (T2, 1],
[h1,21] — 221, [h1,y1] + 211,
[R1, z2] + 23, [h1,Y2] — 292,
[ho, ®1] + 1, [h2,y1] — y1,
[hQ? .'L'Q] - 21‘2, [h'27 y?] + 21/2,
[ivl, [371, [131,562]]], [182, [162,%1]],
[y, [y, [y, 2]l 2 [ye, i)

It is straightforward to see that the basis elements other than those in X
can Only be [:Ela $2]7 [mla [11:1,.’132]], [yhy?] and [yla [yl,?J?]]- So the Only thlng
we have to do is check the Jacobi identity for these basis elements. Doing
this we will complete the multiplication table. For instance

Jac(y1, z1,22) = [y1, [21, 22]] + [21, [22, 1] + [22, [y1, 21])-

The second term of this sum reduces to zero and the third term to —2z,.
We obtain [y, [z1, 22]] = 2z9, giving the product of the basis elements y;
and [z1,z2]. Also

Jac(hl,:vl,xQ) = [hl, [xl,.’l,‘g]] + [1131, [.’L‘Q, h]” + [.’EQ, [h],.’IIl]].

The second summand reduces to 2[z;,z9] and the third to —2[z},zs]. So
we get [h1,[z1,22]] = 0. Now we see that also Jac(hy,y1,[z1,22]) = 0.
Continuing like this we fill the multiplication table. There are no Jacobi
identities that lead to linear dependencies among the basis elements. Hence
we construct a 10-dimensional Lie algebra, isomorphic to the Lie algebras
of Examples 4.9.1 and 5.15.10.

7.12 Notes

Sections 7.3 and 7.4 closely follow [38]. In [57] a similar algorithm is de-
scribed to the one of Section 7.4. In that paper the authors concentrate on
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finding a multiplication table of a finitely-presented Lie algebra. The proof
is combinatorial.

A particular instance of the problem of constructing a multiplication
table of a finitely presented Lie algebra, is the problem of constructing
a nilpotent quotient of a finitely presented Lie algebra. Here the set of
relations R is homogeneous, in the sense that for all 7 € R we have that all
monomials occurring in r have the same degree d,. Let X be the generating
set and let L be the finitely presented Lie algebra (X | R). Given an integer
¢ > 0 the problem is to construct the Lie algebra L/L¢*!, where L¢! is
the ¢ + 1-st term of the lower central series of L. We note that this can be
done using an algorithm like the one of Section 7.4. We have to modify the
algorithm given there so that every monomial of degree > c is automatically
reduced to 0. We note that all the relations appearing in the ideal Iy are
homogeneous. Furthermore, if we reduce a homogeneous element modulo
a set of homogeneous elements, the result will be homogeneous again, and
of the same degree as the original element (if it is not zero). Therefore the
elements of a Grobner basis will also be homogeneous. It follows that we
can calculate the elements of a Grébner basis that are of a certain degree
d, simply by taking all relations of degree d and inter-reducing them. We
refer to [41], [87] for a more elaborate treatment of this problem.

Hall bases originated in a paper of M. Hall Jr., [39]. Our definition of
Hall bases follows [72]; it is a generalization of the original definition of Hall.
The material of Sections 7.6 and 7.7 is (with a slight variation) taken from
[72] (see also [62]).

Grébner bases and reduction in L(X) were invented by A. I. Shirshov
([79]). Note that this means that Grobner bases for ideals of L(X) were
invented well before the corresponding concept in associative algebras. The
proof of Theorem 7.10.2 is based on [4]. Lemma 7.10.6 is a direct translation
of the same result in the associative case (see [64], [65]).

The proof of Lemma 7.11.1 follows [11]. For the proof of Serre’s theorem
we have followed {42] and [78]. Let X; be a simple type and let C be a
corresponding Cartan matrix. Let I be the ideal from Theorem 7.11.13.
Then it is of interest to construct a Grobner basis of I. For the simple types
A;, By, Cy, Dy, this is done in [11].
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Chapter 8

Representations of
semisimple Lie algebras

In this chapter we study finite-dimensional representations of semisimple
Lie algebras of characteristic 0 with a split Cartan subalgebra. We fix some
notation, to be used throughout this chapter. First of all, L will be a finite-
dimensional semisimple Lie algebra over a field F of characteristic 0, with
split Cartan subalgebra H. Furthermore, ® will be the set of roots of L with
respect to H. In & we fix a simple system A = {a,... ,o} and &%, &~
are the sets of positive respectively negative roots of ®. Relative to A we
have a set of canonical generators z1,... ,x,hy,... , b, y1, ... , Y satisfying
the relations (5.7). From Section 4.9 we recall that on H* we have a non-
degenerate symmetric bilinear form ( , ) defined by (A, 1) = & (ha, hy). For
A u € H* we set
_2p
<)\,N> - N
(1y 1)

Then a;(h;) = (@i, ;) (cf., (5.7)). And because ( , ) is linear in its first
argument we have more generally, A(h;) = (X, o) for A € H*.

We have that L decomposes as L = N~ @& H & N*, where N-,N*
are the direct sums of the root spaces corresponding to the negative and
positive roots respectively. We note that N~ is generated by y1,... ,4 and
N* by z1,...,7; (cf. Lemma 5.11.2).

In Section 8.1 we show that a finite-dimensional L-module V is spanned
by common eigenvectors of the Cartan subalgebra H. Furthermore, this
holds over any field of characteristic 0 as the eigenvalues of the h; are inte-
gers. These eigenvectors are called weight vectors. The function assigning
to each element of H the eigenvalue of its restriction to an eigenspace, is
called a weight. These functions are of paramount importance throughout
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the chapter. We define an order on the set of weights, and we show that an
irreducible finite-dimensional representation has a unique maximal weight,
called the highest weight.

In Section 8.2 we describe Verma modules, which can be viewed as uni-
versal highest-weight modules. This gives us a construction of a highest-
weight module for every dominant weight.

In Section 8.3, we collect a few facts on weights. These are used in the
rest of the chapter. In Section 8.4 we prove that any irreducible highest-
weight module over L must be finite-dimensional, thus obtaining a classi-
fication of the irreducible finite-dimensional L-modules (and because any
L-module is completely reducible (Theorem 4.4.6), a classification of all
finite-dimensional L-modules).

In the rest of the chapter we derive methods for calculating with the
weights of a representation. In Section 8.5 we describe how we represent
weights for the purpose of computing with them. Sections 8.6 to 8.9, and
Section 8.11 are devoted to algorithms for computing the weights of an
irreducible L-module, and their multiplicities. The subject of Section 8.10
are two formulas due to H. Weyl. The first of these is important primarily
for theoretical reasons. The second however gives us an efficient algorithm
for calculating the dimension of an irreducible L-module. In Section 8.12 we
consider the problem of decomposing the character of the tensor product of
two irreducible L-modules into a sum of irreducible characters. We derive
three formulas for performing this task. Finally in Section 8.13 we briefly
consider the problem of computing so-called branching rules.

8.1 The weights of a representation

Let ¢ : L — gl(V) be a finite-dimensional representation of L. Let h € H.
Root fact 8 states that ad;h is semisimple. So Corollary 4.6.4 implies that
also ¢(h) is a semisimple linear transformation. In the sequel we assume
that ¢(H) is split over F, i.e., that F' contains all eigenvalues of the ¢(h)
forhe H. Let V=V, & --- @& V; be the (collected) primary decomposition
of V relative to ¢(H) (cf. Theorem 3.1.10). Let h € H, then the minimum
polynomial of ¢(h)|y; is irreducible (since ¢(h) is semisimple). So as ¢(H)
is split, we have that ¢(h)|y, is multiplication by a scalar p;(h). Now the
functions p; : H — F are called weights.

Definition 8.1.1 Let A € H*. Then X is called a weight of V if the space
Vi ={v e V| ¢(h)v = AMh)v for all h € H} is non-zero. In that case a
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v € V) s called a weight vector of weight A and V), is called the weight space
of weight \.

Let P(V) denote the set of all weights of V, i.e., P(V) = {A € H* |
Vy # 0}. Then V is the direct sum of the weight spaces V) for A € P(V).

An element A € H* is said to be integral if (A, ;) € Z for 1 < i <[
(note that this depends on the choice of the simple system A that we fixed
at the outset). As (X, ;) = A(h;), we have that ) is integral if and only if
Mhj)eZfor1 <j <L

Now fix j € {1,...,l} and let K; be the subalgebra of L spanned by
zj, hj,y;. Then K is isomorphic to sla(F). By restricting ¢, V turns into
a Kj-module, and the A(h;) are the eigenvalues of ¢(h;) for A € P(V). So
by Theorem 5.1.4, A(h;) is an integer for all A € P(V). The conclusion is
that all A € P(V) are integral. As a consequence our assumption that F
contains all eigenvalues of ¢(h) for h € H turns out to be unnecessary since
this holds for all fields of characteristic 0.

By P C H* we denote the set of all integral functions in H*. On P we
define a partial order < by A < pif u— X = Zé:l k;a; with all k; nonnegative
integers. The transitivity of this order is clear; we prove that A < u and
g < Aimply A = p. From the first inequality we have y—\ = 2221 k;co; and
from the second A\—p = 22:1 micg. S00=p—A+A—p = Zizl(kﬁ—mi)ai.
Since the «; are linearly independent, k; + m; = 0 for all 4, and because
ki,m; > 0, we have k; = m; = 0. We note that not all elements of P are
necessarily comparable with the order <. The difference of two elements
from P might, for example, not be a linear combination of o; with integral
coefficients.

Lemma 8.1.2 Let a € ® and let 2, be a non-zero element of the root space
Ly. Let X € P(V). Then ¢(z4)Vx C Vita-

Proof. The proof is settled by a short calculation. For v € V), and h € H
we have

P(R)d(za)v = d(za)d(R)v + ¢([h, Ta])v
= (A(h) + a(h))(za)v.

a
From Lemma 8.1.2 it follows that ¢(z,) maps weight spaces into weight

spaces. Furthermore, if a is a positive root and ¢(zq)Vy C V,, then p > A
This leads to the following definition.
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Definition 8.1.3 An element A € P(V) is called a highest weight of V if
for all v € V) we have that ¢(z,)v = 0 for all « € &1 and root vectors
Zo € Lq. In this case a non-zero vector v € V) is called a highest-weight
vector.

We remark that V' must have highest weights since V' is finite-dimensional.

Let K; again be the subalgebra of L spanned by z;, hj,y;, and let A €
P(V) be a highest weight. Then A(h;) is a highest weight of V' (viewed as
Kj-module) in the sense of Definition 5.1.1. So by Theorem 5.1.4, A(h;) > 0.
Now an element A € P is called dominant if (A\,a;) >0 for 1 < j < 1. The
set of all dominant weights in P is denoted by P,. So every highest weight
of V is integral and dominant.

In order to study the role played by the highest weights of a represen-
tation we broaden our perspective somewhat and we let V be an L-module
that is not necessarily finite-dimensional. From Section 6.2 we recall that
the representation of L afforded by V can uniquely be extended to U(L),
making V into a U(L)-module. Now the L-module V is called a highest-
weight module over L with highest weight A, if there is a weight vector
vy € V of weight A such that

Zqo - vy = 0 for all positive roots o and vectors £, € L,, and (8.1)
U(L) vy =V (8.2)

Lemma 8.1.4 Let V be a highest-weight module over L with highest weight

A. Then
V=V,
<A

Furthermore, dim V) = 1 and dimV,, is finite for all p € P(V).

Proof. Let vy € V be a highest-weight vector of weight A. We recall that
L decomposes as L = N~ @& H & N*t. So by the Poincaré-Birkhoff-Witt
theorem, U(L) is spanned by monomials of the form a~™ha™ where a=,a™, h
are standard monomials in U(N~), U(N*) and U(H) respectively. Hence
by (8.2) V is spanned by all a"ha't - v5. Now by (8.1), a* - vy = 0 unless
at = 1. Furthermore h - vy is proportional to vy. The conclusion is that
V is spanned by vectors of the form ¢~ - vy. By Lemma 8.1.2, any such
vector lies in a weight space V,,, where pp = A — 25:1 kja;, where the k; are
nonnegative integers for 1 < 7 < [. In particular g < A. Consequently V
is the sum of its weight spaces V), where < A. That this sum is direct
is proved as follows. Let v; be a non-zero weight vector of weight u; and
suppose that > 7, t;u; = 0 for some ¢; € F such that not all of them are
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zero. We prove by induction on s that all #; must be zero. If s = 1 then
this is trivial. If s > 1 then we may suppose that ¢; # 0. Hence we have
a relation vy = Zf;ll siv;. Let h € H be such that ps(h) # pi(h) for
some i € {1,...,s— 1}. By applying h twice to the relation for v; we get

.;;11 (s — pi)(h)s;v; = 0 and by induction this implies that the s; are zero.

Also any vector a~ - vy will never lie in V), unless ™ = 1, so dim V) = 1.
Finally, for any given yx the number of linear combinations 22:1 kic; such
that p =X — 22:1 ki is finite. Hence dim V), < co. o

Theorem 8.1.5 Let V be a finite-dimensional irreducible L-module. Then
V has a unique highest weight A € P,. Furthermore, V is a highest-weight
module over L with highest weight .

Proof. Choose a A € P(V) maximal with respect to the order <, and let
0 # vy € Vi. Then z, - vy = 0 for all positive & by Lemma 8.1.2. Also
U(L) - vy = V since V is irreducible. So V is a highest-weight module with
highest weight X\. Hence by Lemma 8.1.4, all weights u € P(V)) are < A. So
if there is one more highest weight, say A’, then A’ < A. By applying the
above reasoning to ) we see that A < ). It follows that A = X a

8.2 Verma modules

In the previous section we showed that every irreducible finite-dimensional
L-module V is a highest-weight module with respect to a unique highest
weight A € P,. In this section we show that to every dominant weight
A € P, corresponds an irreducible L-module V() of highest weight A\. Then
in Section 8.4 we prove that such a module is necessarily finite-dimensional,
thereby obtaining a one-to-one correspondence between irreducible finite-
dimensional representations of L and elements of P, .

Let A € P,. Then a highest-weight module M (XA) of highest weight
A is called a Verma module if for any highest-weight module V' over L
with highest weight A there is a surjective homomorphism of L-modules
T : M()) = V. In other words, any highest-weight module for L with
highest weight A is a quotient of M(\).

The universal enveloping algebra U(L) is made into an L-module by
z-a =za for z € Lya € U(L). For a € ® fix a root vector o € Lo. Let
B()) be the submodule generated by the z,, for all positive roots o together
with & — A(h) - 1 for A € H (i.e., B(}) is the left ideal of U(L) generated
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by these elements). Set M(A) = U(L)/B()\) (quotient of L-modules). Let
vx € M(A) be the image of 1. It is straightforward to see that the generators
of B(A) form a left-Grobner basis of B(A) (see Section 6.4). Therefore
1 & B()\) and vy, # 0. Furthermore v, is a highest-weight vector of weight
A. Hence M()) is a highest-weight module for L with highest weight A\. We
note that M ()) is infinite-dimensional. Indeed, the generators of B(\) form
a left-Grobner basis for B(\). Therefore the vectors

k
[ % v

a>0

where the k, are non-negative integers, form a basis of M(A).

Now let V' be any highest-weight module over L with highest weight A.
Set A = {a € U(L) |a-Vy, =0} Then A is an L-submodule of U(L)
containing B()). Now A is the kernel of the surjective morphism of L-
modules U(L) — V that sends 1 € U(L) to a fixed highest-weight vector
of V. So V = U(L)/A and hence there is a surjective homomorphism of
L-modules 7 : M(A\) — V. The conclusion is that M()) is a Verma module
of highest weight A.

Now suppose that there is a second Verma module M;()) with high-
est weight A\. Then there are surjective homomorphisms of L-modules,
11 : M(A) = My(\) and 75 : My(A) — M()). For all weights 1 we have
T1(M(N)y) = My(A), and similarly for 2. So dim M(A), = dim M;(\),,
and it follows that 71 and 7, are bijective. As a consequence M () and
M;i()) are isomorphic L-modules. So upto isomorphism there exists a
unique Verma module M ()) of highest weight A.

Lemma 8.2.1 M()) contains a unique mazimal proper L-submodule M'()\).

Proof. Any proper L-submodule of M () does not contain the span of the
highest-weight vector of M()\) (otherwise this submodule is equal to M ()
by (8.2)). So the sum of all proper submodules is again proper, and the
lemma follows. =

Now set V(A) = M(A\)/M'()\) (quotient of L-modules), where M'(})
is the unique maximal proper L-submodule of M()X). Then V(}) is an
irreducible highest-weight module over L of highest weight A\. Let V be
an irreducible highest-weight module over L with highest weight A. Then
V = M(XA)/W for some L-submodule W of M()\). But then W < M'()).
If W # M’'(X), then V contains the image of M'()\) as a non-zero proper
submodule. But this is impossible because V is irreducible. Hence W =
M'()\) and V = V()). We have proved the following proposition.
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Proposition 8.2.2 Let A € P.. Then up to isomorphism there exists a
unique irreducible highest-weight module V(\) over L with highest weight .

8.3 Integral functions and the Weyl group

In this section we leave the area of representation theory for a moment
to collect some facts on the set P of integral functions. These will be of
paramount importance in the remainder of this chapter.

Throughout this section V' will be the vector space over R spanned by
the set of roots ®. From Section 5.3 we recall that V is a Euclidean space
relative to the bilinear form ( , ).

For 1 <i <1 let \; € P satisfy the equations

()\i,a]‘> = (5,‘]' for ] = l, ce ,l. (83)

If we express \; as a linear combination of the «;, then we see that
the matrix of the equation system that the coefficients must satisfy, is the
Cartan matrix of ®. In particular this matrix is nonsingular and (8.3) has
a unique solution over R. In particular A; € V. Note that the X; are
necessarily dominant. They are called the fundamental dominant weights.

Lemma 8.3.1 Let A € P, and set m; = (A« ) for 1 < j < 1. Then
A =myA + - +myN. In particular X € Py if and only if mj > 0 for
1<j<l.

Proof. We calculate

! !
<)‘ - Zmlkzaa‘ﬁ = <>‘7a]> - Zm1<)‘zaa]>
i=1 i=1
= (A,aj) —m; = 0.
So also (A — Zl miAi,e;) = 0 for 1 < j < I. Because ( , ) is non-

i=1

degenerate, A — 22:1 m;A; = 0. O

By Lemma 8.3.1 we see that P is a lattice in V. It is called the weight
lattice of V. We recall that the root lattice () is the set of all integral linear
combinations of the simple roots. For all roots o € ® we have that (@, a;)
is an integer. So P contains the root lattice Q.

From Section 5.3 we recall that for « € ® we have areflectionry : V — V
defined by 7,(0) = 0 — {0,a)a. Furthermore, the group generated by all
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reflections r, is called the Weyl group; it is denoted by W(®) (Section
5.7). By a straightforward calculation we see that rq,(A;) = A; — 8;;0 for
1 <4,j <1 So since the r,, generate W(®) (Theorem 5.7.6) we have that
W (®) leaves P invariant.

We note that 72 = 1 for every reflection r,. So the inverse of a product
TaTg Ty I8 Ty - TgTg.

Lemma 8.3.2 Let f3;,...,0; € A be (not necessarily distinct) simple roots.
Set g; = rg,. If g1---g—1(B:) is a negative root, then there is an s €
{1,...,t =1} such that g1+~ g: = g1+~ gs—1gs+1 " Gt-1-

Proof. Set v; = git1---g1—1(6) for 0 < i <t -2 and 4_; = B;. Then
Y < 0 and ;-1 > 0. Now let v, for some s > 0 be the first positive root
in this sequence. Then g;(v;) = vs_1 < 0. So gs maps a positive root to a
negative one. Now Lemma 5.7.1 states that gs permutes the positive roots
other than B;. So we must have y; = ;. Since g € W(®) leaves the inner
product ( , ) invariant, by a short calculation it can be established that
grag™! =1y for o € ®. Using this we calculate

(gs+1 - 9t-1)9¢(Gt—1-" " gs+1) = Tget1ge—1(Bt)
=Ty, =T8; = Gs-

Now if we substitute this expression for gs into g; ---g; we arrive at the
desired result. O

Let g € W(®). Then by Theorem 5.7.6 we may write g = g; - - - g¢, where
gi = rp, for some §3; € A. This expression for g is said to be reduced if ¢ is
minimal among all ways of writing g as a product of simple reflections.

Corollary 8.3.3 Let g = g --- g+ be a product of elements g; = r3,, f; € A,
and suppose that this expression is reduced. Then g(;) is a negative root.

Proof. Suppose that g(8;) > 0. Then g;---g:-1(8:) = —g(B) < 0. Now
by Lemma 8.3.2 we can write g as a shorter product of simple reflections
and we have derived a contradiction. )

Lemma 8.3.4 Let A\, € P, and let g € W(®) be such that g(\) = p.
Then A = p.

Proof. Let g = g1---g; be a reduced expression for g where g; = rg,,
B; € A. We prove the lemma by induction on ¢. If ¢ = 0 then ¢ = 1 and
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there is nothing to prove. So suppose that ¢ > 0. By Corollary 8.3.3 we
have g(5;) < 0 so that

0< (A 6) = (9(A),9(8e)) = (1, 9(Br)) < 0.

As a consequence (X, 3;) = 0; so r5,(A\) = A. Hence grg,(A) = p. But
grg, = g1+ - gi—1 and we conclude by induction. 0

Theorem 8.3.5 Each element yu € P is conjugate under W(®) to exactly
one element of P,.

Proof. First we show that there is a A € P, conjugate to u. For that write
p=miA + -+ + my);, where m; = (u,0;) (Lemma 8.3.1). Ifall m; > 0
then p4 € P and there is nothing to prove. On the other hand, if there is a
J such that mj; <0, then set u1 = ro; (1) = p—mjo;. We have that u; >
and p; is conjugate to y under W(®). Continuing like this we construct a
series

u:l]l0<’u1<u2<

of weights conjugate to u. But W(®) is finite and as a consequence p only
has a finite number of conjugates. It follows that after a finite number of
steps we have found a dominant weight conjugate to p.

Now we prove uniqueness. For that suppose that there are two domi-
nant weights A, A2 conjugate to u, i.e., there are g1,g2 € W(®) such that
gi(p) = \; for i = 1,2. Then gggl'l(kl) = )9, and by Lemma 8.3.4 we
conclude that Ay = Ay O

The proof of Theorem 8.3.5 gives us an algorithm for finding a dominant
weight conjugate under the Weyl group to a given weight. We call this al-
gorithm ConjugateDominantWeight. It takes as input the Weyl group W(®)
and a weight g = myA; 4+ -+ + myA. If all my > 0, then p is returned.
Otherwise we determine a j such that m; < 0, replace u by g — mja; and
continue.

Lemma 8.3.6 Let ay,... ,oq be linearly independent vectors in a Euclidean
space W such that (a;, ;) <0 fori # j. Let v € W be such that (v,0;) > 0
for1<i<l. Thenv= Eizl a;o; where a; > 0.

Proof. The proof is by induction on I. Let w € W be the unique vector sat-
isfying (w, ;) = d; for 1 <4 <. Then w is perpendicular to aq,... ,q_1
and hence {a1,... ,q;_1,w} forms a basis of W. Write v = Zi;i bia; + cw
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and set vy = Zi;} bia;. Fori=1,...,1 —1 we have 0 < (v, ;) = (vo, ).
So by induction b; > 0 for 1 < i <1 —1. Also 0 < (v,0q) = (vo,q) + ¢
and since (vg, ;) < 0 we have ¢ > 0. Now write w = 2221 oy = U+ ¢ay.

Then 0 < (w,w) = (w,u) + ¢ = ¢, e, ¢ >0. Alsofori=1,...,1 -1 we
have (w, ;) = 0 implying (u, ;) + ¢;(ay, ;) = 0, from which (u,a;) > 0.
By induction this implies ¢; > 0 for 1 <1 <! — 1, and we are done. O

Lemma 8.3.7 Let A € P, be a dominant weight. Then the number of
dominant weights pu € Py such that p < A is finite.

Proof. Write A = Zizl s;0; and p = 22:1 t,o; where s;,t; € Q. Further-
more, s;,t; are non-negative by Lemma 8.3.6 (cf. Lemma 5.5.3). However,
since A > p all s; —¢; are non-negative integers. Hence there are only finitely

many possibilities for the ¢;. o

From Section 5.7 we recall that

p=%za

acdt

is the Weyl vector.

Lemma 8.3.8 p=Y\_ ).

Proof. Let o; be a simple root. Corollary 5.7.2 states that ro,;(p) = p— ;.
Hence (p — iy, i) = (ro;(p), 72, (04)) = (p,70;(c)) = (p, —c). This means
that 2(p, ;) = (a4, ®;), i.e., (p,a;) = 1. Now by Lemma 8.3.1 we get the

result. 0

Proposition 8.3.9 Let A\ € P, be a dominant integral function. Then
g(A) < X for all g € W(®). Let Wy be the stabilizer of X in W(®), i.e., the
subgroup of W(®) consisting of all g € W(®) such that g(A\) = X. Then W)
is generated by the simple reflections o, for a; € A such that (A, «;) = 0.

Proof. Write g; = ro, and let g = g;, - - - g;, be a reduced expression for g.
We may assume that g # 1, i.e., that ¢ > 0. For 1 < s < ¢ consider the
element A = g;, - -- g;,(A). We calculate

(/\5704718_1) = (gis e 'g’it)" O‘is-1)
= (A 9i - 91, (0i,_y))-
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But by Corollary 8.3.3 we have that g;, ---gi,_;(as,_,) is a negative root.
So gi, - gi,(cy,_,) is a positive root and (Xs, a;,_,) > 0. Therefore A\;_; =
As —may,_, where m > 0. From this it follows that g(A) < A. Furthermore,
g(A) = X implies that (A, e;,) = 0 for 1 < s < t. This implies the second
statement of the proposition. O

8.4 Finite dimensionality

In this section we show that any irreducible highest-weight module over L
is necessarily finite-dimensional. We start with a lemma.

Lemma 8.4.1 Let x;,y;, ki for 1 <i <1 be a set of canonical generators
of L and set
7; = exp{adz;) exp(—ady;) exp(adz;).

Then Ti(h]’) = hj - (ai,aj)hi.

Proof. The proof is by straightforward calculation. First we have that
exp(adx;)(h;) = h; — o;(h;)z;. Secondly,

exp(—adyi)(hj - ai(h]')ilii) = hj - ai(hj)a:i - ai(hj)hi.
And finally
exp(ada:i)(hj - ozi(hj)mi - ai(h]-)) = hj - Ozi(hj)hi

implying the result. a

Theorem 8.4.2 Let A € P, be a dominant weight. Let V be an irre-
ducible highest-weight module over L with highest weight \. Then V is
finite-dimensional. Furthermore, the set of weights P(V') is stable under
W(®) and dim V), = dim V() for p € P(V) and g € W(D).

Proof. Let vy € V be a highest-weight vector with weight A. We recall

that z1,... ,z, hy,... ,hy,y1,... ,y are the canonical generators of L. Set
m; = (A, ;) and u; = y:"i+1 -vy. We claim that u; = 0 for 1 <4 < [. First,
m;+1

if j # 4, then [z;,y;] = 0 and hence z; - u; = y; "™ z; - vy = 0. By induction
on n it is straightforward to prove the following identity in U(L):

ziyt ™t =y 4+ (n+ Dylh; — nin + Dyl
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So z;-u; = yzn"“a:i oy + (mi+ 1) A(hy )y -va —m;(m;+1)y? -vy, which is zero
because A(h;) = m;. Consequently z; -u; = 0 for 1 < j <[, and because
the z; generate N*, also N* - u; = 0. But this implies that u; = 0 because
otherwise u; is a highest-weight vector of weight u; = A — (m; + 1)ay. By
Lemma 8.1.4 this implies that A < u;, a contradiction.

For 1 < i < | we let K; be the subalgebra of L spanned by z;, h;, y;.
Then K; is isomorphic to sly(F) and by restricting the representation of
L, V becomes a K -module. Now let W; C V be the subspace spanned by
Un ¥ Ur,-- - Yi -ua. Then W is stable under the action of y; by our claim
above. Furthermore, calculations as those in the proof of Proposition 4.10.1
show that W; is also stable under z; and h;. So W; is a finite-dimensional
K;-module contained in V.

Now we show that V is a sum of finite-dimensional K;-submodules of V.
Let V' be the sum of all finite-dimensional K;-submodules of V. Then by the
above, V' # 0. Let W be a finite-dimensional K;-submodule of V. Let W be
the span of W together with all subspaces of the form z,-W for root vectors
ZTo € Lo, where o ranges over ®. Then since £;Zq W = ToTi-w+ [, zo] - w
we have that W is stable under z;. Similarly W is stable under h; and y;,
and therefore it is a finite-dimensional K;-submodule of V. In particular,
W CcV'. Soif we V', then also z, - w € V', and since the z, generate L,
we have that V' is an L-submodule of V. It follows that V = V.

Now let w € V, then by the above, w lies in some finite-dimensional
K;-submodule of V. But z; and y; act nilpotently on such modules (cf.
Lemma 5.1.2). Hence z; and y; are locally nilpotent on V. We define the
endomorphisms exp(z;) and exp(y;) as follows. Let u € V, then there is
an integer k, > 0 such that mf““ u=0. Set exp(z;)(u) = ZT “0 T,ZL‘
Then exp(z;) is a linear map. The map exp(y;) is defined similarly. The
endomorphisms exp(z;), exp(y;) are bijective as their inverses are exp(—z;),
exp(—yi)-

Now let ¢ denote the representation of L afforded by V. Set

7; = exp ad(z;) exp —adp(y;) exp adp(x;)

and
i = exp (z;) exp —(y;) exp #(z:).

Then 7; is an automorphism of the Lie algebra ¢(L) (cf. Section 1.11).
Denote by 1, and ry, the left and right multiplication by #(z;), which
are endomorphisms of gi(V). Then l;, and r,, are locally nilpotent (since
¢(z;) is a locally nilpotent linear transformation) and they commute. Hence
expadd(z;) = exp(ly, +1-z,) = exp(ly;) exp(r_z;) = lexpz; * Texp —z;, from
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which it follows that exp ¢(z;)¢(2)(exp ¢(z;)) ™! = exp(adg(zi))(¢(z)) for
all z € L. This however implies that

7i(4(2)) = nid(2)n; ! for all z € L. (8.4)

By Lemma 8.4.1 we have that 7,(¢(h;)) = ¢(hj) — (@i, a5)¢(hs). By (8.4)
this implies that ¢(h;)n; = mi¢(h;) + (a4, a;)p(hi)n;, which for ¢ = j boils
down to ¢(h;)ni = —mié(h;). Using this we calculate for v € V,,

d(hi)mi - v = (mp(hy) + (e, ) p(Bi)i) - v
= (pu(hy) = {0, o) p(hi))mi -
= (ulhy) — (u, o) (hy))mi -

(where the last equality follows from p(h;) = (u, @;)). As a consequence 7;-v
lies in the weight space corresponding to 74, (1). Since W(®) is generated
by the ro, (Theorem 5.7.6) we see that P(V) is stable under W(®). Also
since n; is nonsingular we have dim V, = dim Vi, (1) and the same holds for
g € W(@) in place of ro, by Theorem 5.7.6.

Let A be the set of all u € P, such that 4 < A. Then by Lemma 8.3.7, A
is finite. Furthermore let B be the set of all g(u) for g € W(®) and p € A.
Then B is finite since W(®) is. But by Theorem 8.3.5 together with the
fact that P(V) is stable under W(®), P(V) C B. So P(V) is finite and by
Lemma 8.1.4, V is finite-dimensional. |

v
v

Corollary 8.4.3 There is a bijection between the set P, and the set of
(isomorphism classes of ) irreducible finite-dimensional L-modules.

Proof. By Theorem 8.1.5, every finite-dimensional irreducible L-module
has a unique highest weight in P,. Also if A € P, then by Proposition
8.2.2, there is a unique irreducible highest-weight module V having A as
highest weight. And by Theorem 8.4.2 V is finite-dimensional. O

8.5 On representing the weights

We want to calculate with the set of weights of an L-module V. For this
we need a compact format for representing a weight A € H*. We do this
by taking the list of coefficients of A relative to the basis of fundamental
weights Ay,..., ;. This means that we represent A as a vector (n1,...,n)
where the n; are such that \ = Zz n;\;. We note that by Lemma 8.3.1, we
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have n; = A(h;), where the h; come from a set of canonical generators of L
that we fixed at the start. We call the set {(A(h1),...,A(R)) | A € P(V)}
the set of weight-coordinate vectors of V relative to hy, ... , h;. This set does
not only depend on L and V, but also on various choices that are made.
First we choose a Cartan subalgebra H C L. This Cartan subalgebra gives
us a root system ®. Then in that root system we choose a fundamental

system A = {o,... ,a;}. This determines the h; as
hj = 2he;
(o, 05)

Finally we list the h; in a certain order, which gives us the weight-coordinate
vectors (A(h1),...,A(h)). Now the question presents itself as to what ex-
tend the set of weight-coordinate vectors of an L-module V' depends on
these choices.

The h; come from a set of canonical generators z;,y;, h; (1 < i < 1).
Let z;,y., h] be a second set of canonical generators. Then by Corollary
5.11.5 there is a g € Aut(L) such that g(h;) = h]. Now let ¢ : L — gl(V)
denote the representation of L afforded by V, and suppose that there is
a bijective linear map 7 : V' — V such that ¢(g(z)) - 7(v) = 7(¢(z) - v)
for all z € L and v € V (i.e., the representations ¢ and ¢ o g of L are
equivalent). Let vy € V be a weight vector of weight A relative to the h;
(ie., ¢(hi)-vx = A(hs)va). Then ¢(g(h:))-7(va) = 7(d(hi)-vr) = A(hi)7(v))-
So 7(vy) is a weight vector relative to the .. Denote the corresponding
weight by p (note that p might lie in the dual space of a different Cartan
subalgebra); then p(h}) = A(h;). The conclusion is that the existence of the
map 7 implies that the set of weight-coordinate vectors (A(hy),... , A(hy)) of
V with respect to hi,... , h; is equal to the set of weight-coordinate vectors
of V with respect to hf,... , hj. By the next lemma we can always find such
a map 7 if g is an inner automorphism.

Lemma 8.5.1 Let ¢ : L — gl(V) be a finite-dimensional representation of
L. Let g be an inner automorphism of L. Then there is a bijective linear
map 7 : V. = V such that ¢(g9(z)) - 7(v) = 7($(z) - v) for all z € L and
veV.

Proof. First suppose that ¢ = exp(adz), where z € L is such that adyz
is nilpotent. Then by Corollary 4.6.4 we have that ¢(z) is also nilpotent.
Now set 7 = exp(¢(x)). Then it is straightforward to see that

exp(adé(z))(#(2)) = T¢p(2)77 forz€ L



8.5 On representing the weights 325

(cf. the proof of Theorem 8.4.2). Using this we calculate ¢(exp(adz)(z)) =
exp(ad(x))(9() = Té(z)r~L. So T(#(x)(v) = d(expladz)(z))T(v) =
#(g9(z))r(v). Since 7 is clearly bijective we are done for the case where
g = exp(adz). Now if g1, g2 correspond to the maps 71, 72, then it is straight-
forward to see that g; g2 corresponds to 772. So because Int(L) is generated
by elements of the form exp(adz), we get the result in general. o

Let H denote the Cartan subalgebra containing the h;. Suppose that
also the h} € H, i.e., the automorphism g mapping the h; to the A, maps H
into itself. The h; correspond to the simple system A = {a;,... ,oq} of the
root system ®. Let A’ = {a,... ,qa]} be the simple system corresponding
to the hl. Then A’ is also a simple system of ®. Furthermore we may
suppose that the Cartan matrix of ® relative to A’ is equal to the Cartan
matrix of ¢ relative to A (cf. Corollary 5.7.4). By Theorem 5.7.3 there is
a 0 € W(®) such that o(A) = A’. We show that this implies that there is
an inner automorphism g, of L such that g,(h;) = h;. By Theorem 5.7.6
we may assume that o = r,, for some ap € A. Set

7, = exp(adzy) exp(—adyy) exp(adzy).

Then by Lemma 8.4.1, 74(h;) = h; — (o, ;) hg. Now the h; are the unique
elements of H satisfying a’(h’ ) = {aj,¢}), and this is equal to (o, ;)
(because of our assumption on the Cartan matrices of @ relative to A and

A'). We calculate

g (1(hy)) = ofi(hj — (o, ;) hy)
= aj(h;) — ar(hy){a}, o)
= 1o, () (hy) = ai(hj) = (i, o).

Which implies that 74 (h;) = h}. And therefore, by Lemma 8.5.1 we have
that the set of weight-coordinate vectors of V relative to the h; is equal to
the set of weight-coordinate vectors of V relative to the k.

Now suppose that the h] belong to a different Cartan subalgebra H'.
Suppose further that the ground field is algebraically closed. (This does not
make much difference as V = V ®f F is a module over L = L @p F, and
the set of weight-coordinate vectors of V relative to h; ® 1 is equal to the
set of weight-coordinate vectors of V relative to the h;.) Then by Theorem
3.5.1 there is a g € Int(L) such that g(H) = H'. Now by Lemma 8.5.1 the
set of weight-coordinate vectors of V relative to the h; is the same as the
set of weight-coordinate vectors of V relative to the g(h;). Hence we are in
the situation considered above; and it follows that if the g(h;) correspond



326 Representations of semisimple Lie algebras

to a different simple system than the A}, then the set of weight-coordinate
vectors relative to the g(h;) is equal to the set of coordinate vectors relative
to the Al

The conclusion that we draw from this is that the set of weight-coordinate
vectors does not depend on the particular Cartan subalgebra H of L which
we choose, and neither does it matter which simple system A in the corre-
sponding root system we choose. So the only thing that matters is the order
in which we list the h;. If the Dynkin diagram does not have any diagram
automorphisms, then we can fix this order by fixing the Cartan matrix.
However, if the Dynkin diagram does allow automorphisms, then this is
not enough. Indeed, by way of example let L be the simple Lie algebra of
type A;. Let z1, 22,41, y2, b1, ha be a fixed set of canonical generators. Let
A = {a1, az} be the corresponding simple system. Let p; € H* for i = 1,2
be defined by u;(h;) = d;5. So p; is represented by the coordinate vector
(1,0) and p9 by (0,1). Then the L-module V; with highest weight p; is
not equivalent to the L-module V5 with highest weight uo. However, if we
interchange a; and a2 (and hence also hy and hs), then p, is represented
by (0,1) and g2 by (1,0). Furthermore, the Cartan matrix of ® relative to
a1,y is equal to the Cartan matrix of ® relative to as, 1. So in this case
we also have to fix the order of the simple system A in order to give the
representation of weights by means of coordinate vectors a meaning.

8.6 Computing orbits of the Weyl group

When computing with the weights of a representation we often want the
orbit of a given weight under the action of the Weyl group. This is due to
Theorem 8.4.2: if u is a weight of V, then so are all elements of the orbit
W(®) - p. Furthermore, for all elements of a fixed orbit the dimension of
the corresponding weight space is the same.

By Theorem 5.7.6, W(®) is generated by the simple reflections r,,. The
action of these simple reflections on the weight lattice is easily written down:
Ta; (Aj) = Aj — dija;. So by conventional techniques for computing the orbit
of a point under the action of a finite group, we can calculate the orbit.
However, in this case we can utilize the structure of the Weyl group to give
a much more efficient method. For this we need some results on the length
of a Weyl group element.

Write g; = 7o, for 1 < i <[. Let g € W(®) and write g = g;, - -+ gi,. If
s is minimal among all ways of writing g as a product of simple reflections
(i-e., if this expression for g is reduced), then we say that the length of g
is s; and we write £(g) = s. We define the length of the identity to be 0.
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Also for g € W(®) we let n(g) be the number of positive roots o such that
g(a) is a negative root.

Lemma 8.6.1 Let g € W(®) and let ; € A be a simple root. If g(o;) > 0,
then n(gra,) = n(g) + 1. On the other hand, if g(a;) < 0, then n(gro,) =

n(g) — 1.

Proof. By Lemma 5.7.1, r,, permutes the positive roots other than ;.
Furthermore r,, maps o; to —a;. The lemma follows from this. O

Proposition 8.6.2 For g € W(®) we have £(g) = n(g)-

Proof. Suppose £(g) = r and write g = g;, - - - gi.. We prove the theorem by
induction on r. For r = 0 the statement is trivial, so we suppose that r > 0.
By Corollary 8.3.3, g(cs,) < 0; so by Lemma 8.6.1, n(gra,,) = n(g) — L.
Also £(gra; ) = £(gi, -+ gi,_,) = £(g) — 1. Therefore by induction we have
n(g) — 1 = £(g) — 1; which is the same as n(g) = ¢(g). ad

Corollary 8.6.3 Let g € W(®) be such that g(A) = A. Then g=1.

Proof. For such a g we have g(®*) = ®*. Hence n(g) = 0, and by Propo-
sition 8.6.2, also £(g) = 0. O

Corollary 8.6.4 There is a unique element go € W(®) such that go(D) =
~A. Moreover, g2 = 1 and £(go) = |®T].

Proof. By Proposition 5.5.8, —A is a simple system of ®. So by Theorem
5.7.3 there is a gg € W(®) such that go(A) = —A. The uniqueness of this
go follows from Corollary 8.6.3. This corollary also implies that g§ = 1.
Finally, the length of gy is equal to the number of positive roots by Propo-
sition 8.6.2. O

The unique element gy of Corollary 8.6.4 is called the longest element of
W(®).

Now let A € P, be a dominant weight. Then by W(®) - A we denote the
orbit of A under the action of W(®). Let up € W(®) - X and let g € W(®)
be an element of minimal length such that g(\) = p. Let r be the length of
g. Then we also say that the length of p is 7, and we write £(u) = 7.
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Lemma 8.6.5 Let A € P, be a dominant weight and let 1 € W(®) - \.
Then the length of p is equal to the number of positive roots o such that
(a,p) <0.

Proof. Let g € W(®) be an element of minimal length such that g(\) = p.
Let @ € ®* be such that (A\,g"!(a)) = 0. We claim that this implies
that g~ '(a) > 0. We write « as a linear combination of simple roots with
non-negative integral coefficients. If g~1(«a) is negative, then it is a linear
combination of simple roots with non-positive integral coefficients. As A is
dominant, (A, ¢~!(c)) = 0 implies that (A, ;) = 0 for all o; appearing in this
expression for g7!(a) with non-zero coefficient. Furthermore, g(c;) < 0 for
at least one such «;. By Lemma 8.3.2 this means that £(gry,) < ¢(g)—1. But
since (A, ;) = 0 we have that r,,(A) = A, and therefore grq; (A) = 4. And
as g was chosen to be of minimal length, we have reached a contradiction.

This implies that for any positive root o we have that g7 '(a) < 0 if and
only if (X,¢g7!(c)) < 0. But this is equivalent to (i, ) < 0. It follows that
the number of positive roots a such that (o, 1) < 0 is equal to n(g~!); and
by Proposition 8.6.2, this is equal to £(g~!) = £(g). a

Corollary 8.6.6 Let \, it be as in Lemma 8.6.5. Write p =nih +---mX
(linear combination of the fundamental weights). Let ro, be a simple reflec-
tion. Then

E(ra, (1)) = €(p) + 1 if n; > 0,
£ro, (1)) = €(p) if ni =0,
Ura, () = €(p) — 1 if n; <0.

Proof. First of all, if n; = 0 then ry, () = p. If n; > 0 then we count
the number of positive roots a such that (ro, (1), @) = (4,7¢,(a)) < 0. By
Lemma 5.7.1, ro, permutes the positive roots other than o;. So the number
of @ > 0 such that @ # «; and (ra, (@), @) < 0 is the same as the number
of a > 0 such that & # o; and (i, @) < 0. Furthermore, n; > 0 means that
(s, ;) > 0; but then (p,74,(a;)) < 0. So (rq;(n)) = €(u) + 1. For the
remaining case we use a similar argument. a

Let A € P;. It is straightforward to see that the number of roots a > 0
such that (a,u) = 0 is equal for all p € W(®) - A. We denote this number
by ng(A). Let g be the longest element of W(®). Then using Lemma 8.6.5
we see that

£(go(1)) = £(g0) —mo(A) — £(u)- (8.5)
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Since £(go) > 0 we conclude that the highest length obtained in the orbit of
A is £(go) —no(A) (which is the length of go(})). Furthermore, the weights of
length k are the images under gq of the weights of length £(go) —no(A) —k. So
using the action of the single element go, we only have to calculate half the
orbit of A. We note that the action of gg is easy to calculate. Since go(A) =
—A we have that go(aj) = —a,(;), where o is a permutation of (1,...,D).
Let g = nyAy + -+ -+ n\; be a weight and write go(p) = miA1 + - +myA.
Then using Lemma, 8.3.1 and the fact that g2 = 1, we calculate

mj = (go(k), a5) = (1, go(@)) = — (1, Ao (5)) = —Tg(j)-

So we only need to calculate the permutation o once, and then the action
of gy is easily written down.

The idea of the algorithm for calculating the orbit A - W(&®), where
A € P, is now straightforward. We start with the weight A, which is the
only weight in the orbit of length 0. Then supposing we know all weights of
length k, we calculate the weights of length & + 1 using Corollary 8.6.6: if
p = miA; +---+my); is a weight of length k and m; > 0 for a certain index
i, then 74, (1) is a weight of length k + 1. However, it may happen that
Ta; (1) = Ta; (v) for two weights y, v of length k. So when building the set
of weights of length k + 1 we have to discard those weights that we already
have constructed. As the number of weights of a certain length can be high,
deciding whether or not we already constructed a particular weight, may
become a lengthy task. By the next result however we can dispense with
this search operation.

Proposition 8.6.7 Let A € P, be a dominant weight. By L we denote
the weights of the orbit W(®) - \ of length k. Then for every p = miA; +
<o+ myN € Liyq there is a unique weight v € Ly, such that

1. ro,(v) = p for a simple reflection rq,,
2. m; >0 fori<j<lI.

Proof. Let i be the index such that m; < 0 and m; > 0 for j > 4 (note that
such an index exists because A is the only dominant weight of the orbit).
Set v = 14, (1); then v € L by Corollary 8.6.6. So v is a weight satisfying
the listed requirements. Now suppose that there is a second weight 1 such
that 74, (n) = p and m; > 0 for j > t. Write n = p1A1 +- -+ +pAi. Then by
Corollary 8.6.6, p; > 0. But then m; = p; — 2p; = —p¢ < 0. It follows that
t=1and n=v. O
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So by Proposition 8.6.7 each weight v of length & has a uniquely defined
set of successors of length k£ + 1. This is used in the following algorithm.

Algorithm WeylOrbit

Input: a weight 7 € P and the Weyl group W(®) generated by the simple
reflections r,, and with longest element gg.

Output: the orbit W(®) - 7.

Step 1 (Trivial case.) If i is zero then return {n}.

Step 2 Set A := ConjugateDominantWeight(W(®),7). Set Ly := {A} and
To := {go(A)}. Set k:=0.

Step 3 Set Liy := 0. For each v =m A\ +---my\ € Li and each index ¢
such that m; > 0 do the following;:

Step 3a Set i :=rq,(v), and write p = Y njA;.
Step 3b If n; > 0 for j > i, then add p to Lyy;.

Step 4 Set Txt1 := go(Lr+1)-

Step 5 If Tyy1 = Li41, or the length of the weights in ;. is k + 2, then
return the union of the sets £; and 7; for 1 < j < k + 1. Otherwise
set k:= k + 1 and return to Step 3.

Comments: The sets Ly, T; contain the weights of length k and £(gp) —
ng(A) — k respectively. Steps 3a. and 3b. are justified by Proposition 8.6.7.
If at a certain point the sets Lx, T “meet” (in the sense that the length of
an element of 7y is at most one bigger than the length of an element of L),
then we have found all elements of the orbit and we return the result.
Remark. As the Weyl group can be very large also the number of weights
of a certain length can be large. However, for some applications it is only
necessary to loop through the weights in a certain orbit. In these cases it
is not necessary to store them all. Using Proposition 8.6.7 an algorithm
that does not use much memory can be devised for this. For each weight of
length k the proposition defines a unique set of successors of length &k + 1.
So the orbit can be viewed as a tree, with the dominant weight X at its root.
Now using only a small stack of weights we can loop through this tree, for
example using the technique known as depth-first search (see, e.g., [75]).

The algorithm WeylOrbit has proved to be very efficient in practice. We
refer to [81], [82] for an account of practical experiences with the algorithm.
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8.7 Calculating the weights

In this section we describe algorithms for calculating the set of all weights
that occur in a given highest-weight module V over L, with highest weight
AEP,.

Lemma 8.7.1 Let V be an irreducible highest-weight module over L with
highest weight X\. Let u € P(V) and o € ®. Let r,q be the largest integers
such that p —ra,p+qa € P(V). Then all u+ia € P(V) for —r <1i <q.
Furthermore, r — q = (u, @).

Proof. Let W be the space spanned by all Vo for —r < i < q. By
Root facts 12, 13 there are € Ly, y € L4, h € H spanning a subalgebra
K, of L isomorphic to slp(F). By Lemma 8.1.2, W is a K,-submodule of
V. On W the element h has eigenvalues (1 + ia)(h) = p(h) + 2i. Now
by the representation theory of slo(F) (Theorem 5.1.4) the eigenvalues of h
occur in strings with difference 2. So all of  + i must be weights of V' for
—r<i:1<g.

Let 7, denote the reflection corresponding to a. By Theorem 8.4.2 we
know that the image of a weight of V under r, is also a weight. Now
To(p + i) = ro(p) — ia. So the image of 1 + g must be g — ra. But this
implies r — q¢ = {(p, @). a

Let V be an irreducible highest-weight module over L of highest weight
A. Then by Lemma 8.1.4, the weights of V are of the form p = /\—Zézl k.
The number Z£=1 k; is called the level of the weight ;. We have an algorithm
for computing the weights of a highest-weight module with highest weight
A that is completely analogous to the algorithm CartanMatrixToRootSystem
for computing the root system given the simple roots and a Cartan matrix.
We start with the highest weight A (which is the only weight of level 0).
Supposing that the weights of level n are computed we compute the weights
of level n +1 in the following way. Let u be a weight of level n and «; € A.
Let ¢ be the largest integer such that y + ga; is a weight of V' (we can
determine this since the weights of level < n are known). Set 7 = ¢+ (u, ;).
Then if » > 0 we add p — o; to the set of weights. If we do not find any
weights of level n + 1, then we stop and output the result. Otherwise we
set n:=n + 1 and continue. We call this algorithm WeightsOfHWModule.

Lemma 8.7.2 On input A\ € P, the algorithm WeightsOfHWModule re-
turns the set P(V'), where V is the highest-weight module over L with highest
weight A.
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Proof. It is clear that the output consists of elements of P(V) (cf. Lemma
8.7.1). We have to prove that every element of P(V) is constructed. Let
A # p € P(V), then we claim that there is a simple root a; € A such
that 4o + o; € P(V). Indeed, otherwise Nt -V, = 0 as the root-spaces L,
generate N*. This means that u is a highest weight of V', which contradicts
the choice of . Now by induction on the level of a weight, 4 + «; already
has been computed. Therefore also i is constructed during the algorithm. O

If we are only interested in the dominant weights of a highest-weight
module, then we can use a different strategy based on the following propo-
sition.

Proposition 8.7.3 Let V be an irreducible highest-weight module over L
with highest weight X. Let u € P, be a dominant integral linear function
different from X\. Then u € P(V) if and only if there is a positive root
a € ®* such that u+a € P(V)( Ps.

Proof. First suppose that ;4 € P(V). Then there is a root a > 0 such that
p+ a € P(V) (otherwise u is a highest weight of V', which is excluded by
Theorem 8.1.5). If 4 + @ € P, then we are done. But if 4 + o € Py, then
there is a o; € A such that (4 + «, ;) < 0 (this follows immediately from
Lemma 8.3.1). Now since also rq, (1 + @) € P(V) we see by Lemma 8.7.1
that p + a + a; € P(V). Because u € P, we have (i, ;) > 0 and hence
(o, a3) < 0. Therefore a + «; is a root (Proposition 5.4.1). Now we replace
a by a + «; and repeat. Since P(V) is finite after a finite number of steps
we find a 8 € ®* such that u + 3 € P(V)( Py.

Now suppose that there is an o > 0 such that p+ « € P(V)[Py. We
show that p € P(V). Set iz = p+a. Then (z,¢) = (p, &) + (o, ) > 0 since
p € P. Hence (i,a) > 0. Furthermore, ro(i2) = & — (@i, a)a also lies in
P(V) so in particular, by Lemma 8.7.1, p = i — a € P(V). O

The procedure based on this proposition works as follows. Again we start
with the highest weight A. Then in the iteration for every dominant weight u
computed we compute the differences p—a for a > 0. If such a difference is a
dominant weight, then we add it to the set. If no more weights are found this
way, then we stop. We call this procedure DominantWeightsOfHWModule.
Of course, after having found the dominant weights we can calculate all
weights by computing the orbits of the dominant ones under the Weyl group.

Example 8.7.4 Let L be the simple Lie algebra of type G2, with root
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system ®. Suppose that the Cartan matrix of @ is

2 -1
(5 2)
Let 1, g be the simple roots. The other positive roots are o +az2, 2011+,
3a; + a9, 3o + 2as. The fundamental weights are given by solving the
systems of linear equations (\;,a;) = d;;. This yields A1 = 2a; + and
Ao = 3a; + 20». In our calculations we express every vector as a linear
combination of the fundamental weights. We have that oy = 2X\ — Ao and
o9 = —3>\1 + 2)\2.

Let V be the highest-weight module over L of highest weight A = A1 +As.
We calculate the weights of level 1, using the algorithm WeightsOfHWMod-
ule. We have that A — a; and A — ay are the only possible weights of level
1. In both cases ¢ = 0 and r = g+ (), ;) = 1; so both are weights of V.
Now we determine the weights of level 2. First we try A — 2a;. We have
A—aq = =M1 +2Xg, 50 (A —ay,a1) = —1. Furthermore A —a; + a1 = Ais
a weight of V. So in the algorithm WeightsOfHWModule we have ¢ = 1 and
r = 0 and therefore A — 20y is not a weight. In the same way it can be seen
that A — 20y is not a weight. But (A — a1, @2) = 2. In this case ¢ = 0 and
hence r = 2 and we see that A — o) — oz is a weight of V. We have now
determined all weights of levels 0,1,2. Continuing like this we can find all
weights of V.

We determine the dominant weights of V using the procedure Domi-
nantWeightsOfHWModule. First A — oy and A — o are not dominant, but
A— (o +a9) = 221, A— (201 +ag) = Ag, A— (301 +2a2) = Ay are. In the next
step we find one more dominant weight, namely A— (301 +2a2)—(201 +ag) =
0. After this one we find no more and we have determined all dominant
weights of V.

8.8 The multiplicity formula of Freudenthal

Let V be an irreducible highest-weight module over L with highest weight
A. Then for an element p € P we set m, = dimV),, where this number is
defined to be zero if 4 & P(V). The number m,, is called the multiplicity of
. By Lemma 8.1.4 we know that m) = 1. The following theorem expresses
m,, in terms of m, where y' > i, enabling us to compute m,, recursively.

Theorem 8.8.1 (Freudenthal’s multiplicity formula) Let V' be an ir-
reducible highest-weight module over L with highest weight A. Then for
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€ P we have

((A+p,/\+p) (u+p,u+p> _222N+3aamu+ﬂ1
acdt j=1

In the proof we use a particular element of the universal enveloping
algebra U(L). Let z1,...,z, and yi,...,yn be bases of L that are dual
with respect to the Killing form, i.e., L (z;,y;) = 0ij. Set ¢ = Y1, Ty
which is an element U(L). Then exactly in the same way as in the proof of
Proposition 4.4.3 we see that [c, L] = 0 in U(L). Since L generates U(L) this
means that c lies in the centre of U(L). The element c is called a universal
Casimir element.

Proof. Let g¢1,...,q be an orthonormal basis of H with respect to the
Killing form «y, (i.e., £(gi,g;) = 6ij). Furthermore, Root fact 3 implies
that there are root vectors z, € Lo for a € ® such that K1(zq, T_a) = L.
So by Root fact 11, [T, ZT_a] = ha (Where h, is defined by (4.10)). Let ¢
denote the representation afforded by ¢. Then

$(20)P(%—0) = ¢(T-a)P(za) + ¢(ha)- (8.6)

Now the bases

{91,-.. ,91,%a for a € 9}

and

{91,--.,91,2_q for a € @}

are dual with respect to kr. So

c= Zg, + Zwax_a,

acd

is a universal Casimir element. As seen above, [c,L] = 0 in U(L), so
since the representation ¢ extends to a representation of U(L) we have
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that [¢(c), ¢(L)] = 0. We calculate,

l

45( ) Z 91)2 + Z d’ Ia $—a)

i=1 acd
!
Z #(g:) 2+ Z $(zq ¢($_ Z ¢($—a)¢(-'17a)
i=1 acdt acdt
!
Z $(9:)° + D $lha) +2 Y $(z-a)d(za) (by (8.6))
acdt aedt
!
=5 "0(g)? +20(h) +2 Y Pla_a)d (8.7)
i=1 acdt

Let vy be a highest-weight vector. Then

l
dlc) -vy = <Z Mgi)? + 2,\(hp))vA

i=1
= (A ) +2(X, p))va
= (A, X + 2p)uy.

So vy is an eigenvector of ¢(c) with eigenvalue (A, A + 2p). Now since
[¢(c),¢(L)] = 0 we have that the eigenspace of ¢(c) corresponding to this
eigenvalue is a non-zero L-submodule of V. So as V is irreducible we see
that ¢(c) acts on V' as multiplication by (X, A + 2p).

If a is a linear transformation of V', and U is a subspace stable under a
then Trya will denote the trace of the restriction of a to U. So

Try, (c) = (A A+ 20)m

But by using (8.7) we arrive at

Trv, ¢(c) = (. i+ 20)my +2 ) Try, d(a—a)d(za).
acdt
And hence

(MA+20) = (o +20))my =2 Y Try, $(2-a)p(Ta).
acdt
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Now we use the following fact from linear algebra: if a : U — W and
b: W — U are two linear maps, then Try(ba) = Try (ab). So

va,‘¢($—a)¢($a) = TrVu+a A(To)P(T—0)
=Try, ., (¢(ha) + d(z-a)9(za)) (by (8.6))
= (p+ a)(ha)mu+a + TrV“+a¢(I—a)¢($a)-

We repeat this and use the fact that V,,1;o = 0 for big j to arrive at

[o ]
Trv Pz _q (u+jo,a muﬂa
=1

And this implies the formula. g

In order to be able to use Freudenthal’s formula we must show that the
factor on the left-hand side is non-zero. This is achieved by the next two
lemmas.

Lemma 8.8.2 Let u € Py and let v = g~ !(u) for some g € W(®). Then
(+pv+p) < (n+p,u+p).

Proof. We calculate

(v+pv+p)=(g(v+p),9(v+p) = (+9(p), 1+ 9(p))
={(p+p,p+p)—2(up-9(p)

Now by Lemma 8.3.8 and Proposition 8.3.9 we see that p—g(p) > 0. Hence
(1, p = g(p)) 2 0. O

Lemma 8.8.3 Let V be an irreducible highest-weight module over L with
highest weight X. Then we have (A+p, A+ p) > (u+ p,pp 4 p) for u € P(V)
such that X # p.

Proof. Since every weight is conjugate to a dominant one (Theorem 8.3.5),
we may, by Lemma 8.8.2, assume that u € P,. Since u is not the highest
weight of V' we have that p+a € P(V) for some o € A. Fixsuchan o € A
and set v = u + «; then

v+pv+p) —(u+p,p+p)=2p+pa)+(a,a).
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The right hand side of this expression is strictly positive since y + p € P4
by Lemma 8.3.8. Now let 7 be an element of P, conjugate under W(®) to
v, then by Lemma 8.8.2 we get

(b+pp+p) <(W+pv+p)<(n+tpn+p).

If n = X\ we are done. Otherwise we replace u by 17 and continue. Since P(V)
is finite we arrive at a situation where n = X after a finite number of steps. O

From Lemma 8.8.3 it follows that the left-hand side of Freudenthal’s
formula vanishes only if m, = 0. So since we know the multiplicity of the
highest weight A we can use this formula to calculate the weights and their
multiplicities of an irreducible highest-weight module for L.

Example 8.8.4 Let L, ® be as in Example 8.7.4. After (maybe) modifying
the bilinear form by a scalar (note that as the form appears on both the left-
hand and the right-hand side of Freudenthal’s formula, this does not affect
the result) we may assume that (a;,a;) = % Now since {9, 1) = —3, we
have that 2(az, 1) = =2, ie., (01,03) = —1. Finally from (a;,09) = —1
it follows that (ag, ) = 2. This means that (A, A1) = %, (A, A) = 1,
(A2, A2) = 2 (where the X; are the fundamental weights, as calculated in
Example 8.7.4).

Now let V be the irreducible highest-weight module over L with highest
weight A = A\; + Ao. Since p = A} + A\; (Lemma 8.3.8) we have A + p =
2001+ Xg) and (A + p, A+ p) = %. We know that the weights of V' are of
the form A — k1 — koarg for k1, ks > 0. We calculate the multiplicity of the
weight 4 = A—a; = —A\1+2)\y. First of all, (u+p, u+p) = 18. Furthermore,
the sum on the right-hand side of Freudenthal’s formula consists of only one
term, namely (-0, )M ytq, and this equals % Consequently my_q, = 1.

We can of course continue calculating weights and multiplicities using
Freudenthal’s formula. However, by Theorem 8.4.2 we have that g(u) has
the same multiplicity as p for all g € W(®). So in general it is a good
idea after having calculated the multiplicity of a weight, to calculate the
orbit of the weight under W(®) (using the techniques of Section 8.6). This
way we only have to calculate the multiplicities of the dominant weights
with Freudenthal’s formula; the other weights all lie in the orbit of some
dominant weight.
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8.9 Modifying Freudenthal’s formula

Let V be the irreducible highest-weight module over L of highest weight A.
In this section we modify Freudenthal’s formula so as to reduce the work
needed for computing the weight multiplicities of V. We start with a lemma.

Lemma 8.9.1 Let V be an irreducible highest-weight module of L. Let
uw€ P(V) and o € D, then

o0 (o ¢]
- Z(ﬂ' - ja, a)mp—ja = Z(/" + jaa a)m/H-ja + (lu‘7 a)m/t'
i=1 =1
Proof. We let z, be as in the proof of Theorem 8.8.1. Again we let ¢ denote
the representation of L afforded by V and we use Try(ba) = Trw (ab) for
linear maps a: U — W and b: W — U. Hence

TTV,‘d)(iL'a)d’(m—a) = TrV,L_c.(ﬁ(-T—a)¢($a)
=Try,_, (¢(za)p(z-0) — $(ha)) (by (8.6))
=—(p—a,a)my_q + T‘rvu_aqs(ma)¢(x—a)-

From this we have that

o]
Try, ¢(Za)p(T—a) = = Y (1 — J&t, Q)y—ja-
i=1
By (8.6) however, Try, ¢(za)$(z—o) = Try, $(T—a)$(za) + Try, ¢(ha). Now
using the expression for Try, ¢(2_q)¢(2s) derived in the proof of Theorem
8.8.1, we arrive at the statement of the lemma. O

Let i be a weight of V and consider the term (p+ja, a)m, 4 jo appearing
in Freudenthal’s formula. Let g be an element of the stabilizer of u in
W(®). Then by Theorem 8.4.2, mutjo = Myijga)- SO since g leaves
the inner product ( , ) invariant, we have (1 + jg(a),g(@))m, jga) =
(1 + ja,@)mytja. As a consequence we only have to calculate the terms
(1 + jo,@)myy jo for representatives o of each orbit in @ of the stabilizer
of 1. We note that by Proposition 8.3.9, the stabilizer of p in W(®) is
generated by r,, where a; € A is such that (g, u) = 0.

Let I be a subset of {1,... ,l}. Let ®; be the subset of ® consisting of
all roots that are linear combinations of the o; with i € I. Then ®; is a
root system in its own right, with simple system {c; | ¢ € I}. By W we
denote the subgroup of W(®) generated by rq, for ¢ € I. Then Wi is the
Weyl group of ®;.



8.9 Modifying Freudenthal’s formula 339

For I C {1,...,1} let W[ be the group generated by Wy along with —1.
By W; -a we denote the orbit of W~ containing « (and similarly for W7 - a).
Let @ € ® and set O = W - . If @ € &, then —a € W - o and hence
O = W;-«a. Now suppose that a ¢ ®; and write o = 25:1 k;c;. Then there
is an 4o & I such that k;, # 0. Let 8 € W, - and write 8 = Y b_; mics.
Then m;, = ki, and consequently Wj - « is entirely contained in ot (if
a > 0) or entirely contained in ®~ (if « < 0). So O = Wr-alJ-Wr-«,
where the union is disjoint.

Proposition 8.9.2 Let V be an irreducible highest-weight module over L
with highest weight . Let p € P(V), and let I C {1,... ,l} be such that ry,
for i € T generate the stabilizer of u in W(®) (cf. Proposition 8.3.9). Let
O1,...,0; be the orbits of W inside ®. For 1 <i <7 lety; be a positive
root lying in O;. Then
s [0 o]
((/\ +pA+p)—(p+ppu+ p)) mu =Y 10l Y (1 + 5% %) Mo -

i=1 j=1
Proof. We suppose that the first s orbits are contained in ®; and the other
orbits not. Then O; U---U O, = ®;. For i < s we have O; = Wy - ; and
for i > s, O; = Wy -+, U—Wj -+ (disjoint union). Using Lemma 8.9.1 it is
straightforward to see that Freudenthal’s formula is equivalent to

x
MA+20)m, =D (u+jo, )mygja + (1 p)mu.  (8.8)
acd j=1

For g € W1 we have (u+ jg(a),9(a)) = (p+jo, o) and my, 4 jo(a) = Myt ja-
So dividing ® into disjoint Wj-orbits we see that the double sum of (8.8) is
equal to

8 oo
Z (Wi - il Z(M + 5% Yi) Mty +
i=1 j=1

T oo
STAWE w0+ 570 Y Mg+ (1 = 575 =¥ Tumj) -
i=s+1 j=1
Now by Lemma 8.9.1 this is equal to

s o0
Do IWrwl Y+ 5% iy ek +
=1 j=1

.
> Wil ( Z 1+ G W) Mg + (M,%)mu)

i=s+1
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Now we collect the coefficients of m,, together. In the first summand there
are none, and in the second sum the coefficient of m,, is

Z IWI : '7i|(:ua'7i) = Z (/l"a) = Z (/l”a) = Z(Nap)'

i=s+1 acd+\&] aedt

(In the first equality we have used the fact that W;-y;, C ®*, and that these
orbits exhaust @\ ;. In the second equality we have used (u, ;) =0 for
j € 1.) Now since 2|W; - v;| = |O;| for i > s + 1 we arrive at the formula of
the proposition. |

Remark. If I is empty, then the group W, only consists of two elements
and each orbit is of the form {+a}. In that case the formula of Proposition
8.9.2 reduces to Freudenthal’s formula as given in Theorem 8.8.1. So we
benefit most of Proposition 8.9.2 if the group W, is large, i.e, if there are
many simple roots «; such that (a;, p) = 0.

Proposition 8.9.2 gives us an algorithm for calculating the multiplicities

of the dominant weights of the highest-weight module V" with highest weight
A. Using the algorithm DominantWeightsOfHWModule we calculate the set
D of dominant weights of V. We order the set D according to increasing
level. Then dealing with the weights in D in the order in which they appear
in D, we calculate m, for u € D. First we determine the set I of indices
i such that (i, ;) = 0. Furthermore, we calculate the orbits of W, in ®.
Then we use the formula of Proposition 8.9.2. Let (i + 7V, %i)Mu+tjy be
a term occurring in this formula. If 4 + jv; is dominant, then we already
know its multiplicity because the level of p + j; is smaller than the level
of u. On the other hand, if u + jv; is not dominant, then we calculate
the dominant weight v conjugate to it under W(®) (using the algorithm
ConjugateDominantWeight). Since by Proposition 8.3.9, g(v) < v for g €
W (®) we see that u < p+j7v; < v. So the level of v is smaller than the level
of 4 and therefore we already know the multiplicity of v. Furthermore, by
Theorem 8.4.2, the multiplicity of u + j7; is equal to the multiplicity of v.
We call this algorithm DominantWeightMultiplicities.
Remark. Once the multiplicities of the dominant weights have been com-
puted, the other multiplicities follow. Indeed, by Theorem 8.3.5, any weight
is conjugate to a dominant weight, and by Theorem 8.4.2 conjugate weights
have equal multiplicity.
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Example 8.9.3 Again we consider the Lie algebra L of type G of Example
8.8.4. We let V be the highest-weight module with highest weight A =
A1+A2. Asseen in Example 8.7.4, the dominant weights of V are A = Aj+Mg,
A—al—ag = 2)\1, )\—2a1—a2 = )\2, /\—3051—202 = )\1, )\—5a1—3a2 =0.
We have that 74, (A1) = —A1 + A2 and 74, (X2) = 3A1 — A2 (ro, (X)) = A if
j#i)

Supposing that we know that the multiplicities of the weights 2A; and
X2 are both 2 we calculate the multiplicity of A\;. The stabilizer of A; in
W(®) is generated by ry,, so we set I = {2}. The orbits of W; in ® are
t{on, 1 +az}, £{as}, £{201 + a3} and £{3a; + ag, 301 + 202}. As orbit
representatives we choose ay, ag, 2a; + a2 and 3a; + as. We calculate the
contribution of the term of a; to the sum on the right hand side of the
formula of Proposition 8.9.2. We have that oy = 2A;1 — A2. So the term
for j = 1 becomes (3A; — Ag,2A1 — A2)mgy, —x,. Now v = 31 — Az is not
dominant, so we calculate the dominant weight to which it is conjugate by
the algorithm ConjugateDominantWeight. We have (v,a3) = —1 < 0 so we
set v; = 7q,(r) = A2 which is dominant. Therefore msy,_x, = my, = 2.
The inner product evaluates to 1 so the term for j = 1 contributes 2 to the
sum. For j = 2 we get (5A; — 22,21 — Aa)misy, 2, = g—’m5>\1_2>‘2. Now
9A1 — 21 is conjugate to A; 4+ Ag so that msy, 2y, = 1. For j = 3 we have
A + 3a1 = TA; — 3X2. This weight is conjugate to the dominant weight
21 + A2, which is not a weight of V. So we need not go further with the
term of a;. The W -orbit containing «; has size 4, so we have to multiply
the contribution of a; by 4. We leave calculating the contributions of oy,
203 + o, 3a; + a3 to the reader. Also we have (A +p, A\ +p) = 23(—3. Using
this we arrive at

10m, =4(2+-§-)+2-4+2'§+4-3=40.

The conclusion is that my;, = 4. In a similar way we can determine the
multiplicity of the weight 0; we get my = 4. So we have calculated the
multiplicities of all dominant weights of P(V'), and hence by taking their
orbits under W(®) we get the multiplicities of all weights of V. Multiplying
the multiplicities of the dominant weights by the sizes of their orbits we see
that the dimension of V is 64.

8.10 Weyl’s formulas

We recall that P is the set of weights; it consists of all elements of the
form Z£=1 n;A; where n; € Z, and Ay,... , A; are the fundamental weights.
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We note that the set P is a group under addition. In this section RP will
denote the group algebra of P over the real numbers, i.e., RP is the set of
all elements > ucp Cue”, where ¢, € Rand ¢, =0 for all but finitely many
g € P. On RP we have a multiplication given by e* - e# = e*#. This
multiplication makes RP into a commutative associative algebra with one
(the identity element being e®). Set ¢; = e’ for 1 < i < I. Let u € P,
(the set of dominant weights), then u = Zé:l n;A; where n; > 0. Hence
et = ef'---¢". It follows that the linear span of the e# for u € Py is
a subalgebra of RP isomorphic to the polynomial ring R[X7,... ,X;]. We
denote this subalgebra by RP, . If a € RP is an arbitrary element, then we
can write a = (e]'---¢]')"1b, where r; > 0 and b lies in RP;. From this
it follows that RP does not have zero-divisors (i.e., there are no non-zero
a,b € RP such that ab = 0).

Now let V be a finite-dimensional module over the semisimple Lie alge-
bra L. Then V is the direct sum of weight spaces V, for p € P. We set

my = dimV),. Then
Xxv =) myet
HeP
is called the formal character of V. In this section we will obtain a formula
for xy if V is an irreducible highest-weight module over L with highest
weight .

The Weyl group W{®) acts on RP by g(e#) = €9 (W) 1t is straightforward
to see that g{e*e#) = g(e*)g(e*) so that g is an automorphism of RP for all
g € W(®). For g € W(®) let the sign of g be the determinant of the action
of g on the space spanned by the roots. Since the eigenvalues of a reflection
are +1, and W(®) is generated by reflections, the sign of g € W(®) is £1.
We denote the sign of g by sn(g). Note that the sign of a reflection is —1.
An element a € RP is called symmetric if g(a) = a for all g € W(®), and it
is called alternating if g(a) = sn(g)a for all g € W(®).

Example 8.10.1 The character xy of an L-module V is symmetric by
Theorem 8.4.2. Set

Q=¢e"’ H(e” —1)=¢ H(l —e %).
a>0 a>0

Let a; € A be a simple root. Then by Corollary 5.7.2, rq,(p) = p — 0.
Furthermore, by Lemma 5.7.1, r,, permutes the positive roots other than
«; and it sends o; to —q;. So

@ = ( IT -0 -neen = -a.

o #a>0
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Consequently 74,(Q) = sn(rq,)(Q), and since the ro, generate W(®) this
means that @ is alternating.

Set

o= Y su(g)g

geW(®)

which is a linear transformation of RP. For h € W(®) we calculate

oh = Z sn(g)gh = (sn(h))™! E sn(gh)gh = sn(h)o.

gEW(2) geEW(®)

And in the same way we see that ho = sn(h)o. Hence for a € RP and
h € W(®) we have h(o(a)) = sn(h)o(a) and therefore o(a) is alternating.
Furthermore, if a € RP is alternating, then o(a) = X jcw(a) sn(g)?a =
|W (®)|a. As a consequence any alternating element is of the form o(a) for
an a € RP. This means that any alternating element a can be expressed as
a linear combination of the form

Z cuo(e?). (8.9)

HEP

But oh = +o, so the e* in (8.9) can be replaced by a W(®)-conjugate.
It follows that any alternating element can be expressed as a linear com-
bination of the form (8.9), where the p are from P, (cf. Theorem 8.3.5).
Suppose that for such a y we have (u,q;) = 0 for some simple root o;.
Then rq, (1) = p and hence o(e#) = —ore,(e#) = —o(e), and therefore
o(e*) = 0. So if a € RP is alternating, then by applying the operator
ch to a we obtain an expression for a of the form (8.9). By replacing
the e# by a conjugate under the Weyl group (if necessary) we obtain an
expression for a of the form (8.9) where (u,a;) > 0 for all p occurring in
the expression, and all simple roots «;.

Proposition 8.10.2 Q = o(e”).

Proof. We have that Q is a linear combination of terms of the form e*
where o = p — )50 el Where g4 is 0 or 1. Now any conjugate of such a
p under W(®) has the same form. Indeed, since the ro; generate W(®) it
is enough to show that 74, (1) is again of the same form. But because 7o,
permutes the positive roots other than @; (Lemma 5.7.1) we have

Tai(P“Z%a)=p—ai—Znaa=p—Zéaa.

a>0 a>0 a>0
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If £, = 1, then s, = —1 and &5, = 0. And if 4, = 0, then 7,, = 0 and
0o; = 1.

Since @ is alternating, after applying the operator W}Eﬂa to @, we
get an expression for @ of the form (8.9) where all y are of the form p =
P = D a0 Ea. Since any W(®)-conjugate of such a p is of the same form,
we may assume that (u,0;) > 0 for 1 < 4 < [. Write 4 = p — 1 where
N=2a>0Ea® = Y ;_; kic;, where the k; are non-negative integers. Then
0 < {uy0i) = (pyos) — (n, ) = 1 — (n,4) (cf. Lemma 8.3.8) and since
(n, a;) € Z we have that (, ;) < 0. Therefore,

)
0< (mm) = ki(n, o) = ki, 0a)(n, o) < 0.
=1

1
And it follows that n = 0 and Q = £o(e?) for some £ € R. But

o(e?) = Z sn(g)ed®).
gEW(®)
By Proposition 8.3.9 together with Lemma 8.3.8 it follows that glp)y #p
unless g = 1, and if g # 1, then g(p) < p. So o(e?) = e + 2o u<pCuct. But
from the definition of Q it follows that Q = e” + Z” <pdu€”. Therefore &
must be 1 and Q = o(e”). o

N =
i

Let W be the real Euclidean space spanned by the roots. We consider
the tensor product W ®g RP. The elements of RP act on this space by

a- (Zw@bi) =Zvi®abz‘
; i

for a,b; € RP and v; € W. Also we use a bilinear map (, ) : W Qg RP x
W ®r RP — RP given by

(v®a,w®b) = (v,w)ab

where the brackets on the right-hand side denote the bilinear form on W.
We have the relations (c(v ® a),w ® b) = c(v ® a,w ®b) = (v ® a,c(v @ b))
for a,b,c € RP and v,w € W.

The gradient of RP is the linear map G : RP — W ®g RP given by
G(e*) = p ® e*. Furthermore, the Laplacian of RP is the linear map
A :RP — RP defined by A(e*) = (i, p)e”. We calculate

G(etet) = G(eMH) = (A + p) ® etet
= Qe + u@etet
= elG(ed) + G (et).
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So since G is linear we have G(ab) = aG(b) + bG(a) for all a,b € RP. Also

A(ere?) = (A + p, A+ p)etet
= (M A)eret + 200 p)ete? + (u, p)ete”
= ehA(e?) +2(A @ e}, 4 ® e) + P A(eH).
And because (A ® €*, u ® e*) = (G(e*), G(e*)) we see, by linearity, that

A(ab) = aA(b) + bA(a) + 2(G(a),G(b)) for all a,b € RP. (8.10)

Now we let V' be an irreducible highest-weight module over L with highest
weight A. Since )5 o = 0 we have also ), .4 (1, @)m, = 0. Hence, using
(8.8) we see that Freudenthal’s formula is equivalent to

(o ¢]
M +20)my, = D> (u+ jor, e)mugjo + (1, mymy.
acd j=0

We multiply the left-hand side and the right-hand side by e# and sum over
¢ € P, to obtain

o0
WA +20xv = AV) + D) ) D (n+joa)mujeet.  (8.11)
HEP ac®d j=0

Now

[Te-n=T]E -0 -1 =

acd a>0 a>0

where € = 1, or ¢ = —1. We multiply (8.11) by éQ? and obtain

e(MA+20)xv QR — eA(xv)Q? =

DD e+ doa)mypalerte —et) [ (€f —1). (8.12)

acd ucP j=0 BFa

Now fix an o € ®. For a moment forgetting about the factor [] ﬁ?ﬁa(eﬂ - 1),
the coefficient of e#* in the expression on the right of (8.12) equals

o0 (o 0]
St G @mpje — 3 (1 + G+ Dy @)myy sna = (4 2)my.
j=0 j=0
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Consequently, the right-hand side of (8.12) is equal to

> I - De Y- mulp, et =

acP fa UEP

(Seoe [T -0, nome) =

acd B#a ueP

(eG(Q%),G(xv)) = 2¢(QG(Q), G(xv)).-

So (8.12) is equivalent to (A, A+2p)xv Q*—Q*A(xv) = 2Q(G(Q), G(xv))-
Since  # 0 and RP does not contain zero-divisors we may divide this re-
lation by Q. Using (8.10) we get

(AMA+20)xvQ - QA(xv) = A(Qxv) — QA(xv) — xvA(Q).

If we set f = Qxv, then this means that (A\, X + 20)f = A(f) — xvA(Q).
But by Proposition 8.10.2, Q = dew(q,) sn(g)e?®) and since (g(p), g(p)) =
(p, p) this implies that A(Q) = (p, p)Q. Therefore

(A+pA+0)f =A(f).

Now xv = ZueP myet and Q = dew@) sn(g)es®). By multiplying
these expressions we see that yy Q@ is a linear combination of terms of the
form e#9(0), We calculate

A4 = (4 + g(p), 1+ 9(p)) e T
= (971 (W) + g7 (W) + p)et O,

So e#+9(9) is an eigenvector of A with eigenvalue (g71(i) + p,g~ (p) +
p). Above we saw that f is an eigenvector of A with eigenvalue (\ +
p, A+p). So since eigenvectors belonging to different eigenvalues are linearly
independent, we have that f is a linear combination of elements e#+9(9) such
that (97 (u) + p, g7 (1) + p) = (A + p,A + p). But by Lemma 8.8.3 this
implies that g™*(u) = A and hence f is a linear combination of elements
e9(A+p)

Since the elements of W(®) act as automorphisms of RP we have that a
product of a symmetric element and an alternating element is alternating.
In particular, f is alternating. As a consequence f = ]'VWITDT[U( f)- So because

o(e9™) = g(et) for all g € W(®), we see that

f=no(et)=n Y sn(g)es®?
gEW (@)
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for some n € R Now by Proposition 8.3.9 together with Lemma 8.3.8 we
have that g(A + p) < A+ p if g # 1. Hence the coefficient of e**? in f is
n. But the coefficient of e**? in xyQ is 1. Therefore n = 1 and we have
proved the following theorem.

Theorem 8.10.3 (Weyl’s character formula) Let V be an irreducible
highest-weight module over L with highest weight A. Then

xv Y sn(g)e?® = > sn(g)esOtP).

JEW(®) gEW(2)

Theorem 8.10.4 (Weyl’s dimension formula) Let V be as in Theorem
8.10.8. Then

dimV = H (o, )\+p).
a>0

Proof. By R[[t]] we denote the ring of formal power series over R in the
indeterminate ¢. It is the set of all formal expressions Zz>0 a;t* where a; €
R. We consider the homomorphism ¢ : R[[t]] — R given by ((3 ;5 ait® ') =
ao. Also for 4 € RP we have a linear map ¢, : RP — R[[t]] defined by

o0

() = exph )t = 3 2 (O 1)

k=0

Since exp(nit+n2t) = exp(mt) exp(nat) we have that ¢, is a homomorphism,

ie., (u(e*e”) = ¢u(e*)Cu(e?). Now because xy = > ucp Mue” we see that

Colxv) = ZueP my, exp(u, v)t. Therefore {((.(xv)) = ZueP my =dimV.
Now we apply ((, to Weyl’s character formula. First we calculate

Go(e) = Y sn(g)exp(g(u),v)t

9EW(®)
= Y sn(g)exp(g™(v), )t
geEW(2)

= (uo(e”).
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Using this and Proposition 8.10.2 we calculate

Cpa(e”) = (ﬂa(ep)

= Cule™) [] Gule® - 1)

a>0
= exp(—p, )t [ [ (exp(e )t — 1)
a>0
= TT (exp 5 (e )t — exp 3 at, )0).

a>0

So if we apply ¢, to Weyl’s character formula we get

Go0cv) T] (exp 5003t — exp 3 (a0 p)t) =
a>0

I] texp %(a, X+ p)t — exp —%(a, A+p)t). (8.13)
a>0

But

T (exp 5 (o )t = exp — (e ) = ([ (a0 ) + O+,
a>0 a>0

where k is the number of positive roots. So if we divide (8.13) by t* we get

GOv) [T (@ p) +0() = [J (@A + ) + O().

a>0 a>0

To this expression we apply the homomorphism (, which gives us Weyl’s
dimension formula. 0

Weyl’s character formula could in principle be used to obtain the char-
acter of an irreducible highest-weight module. However, the sum over the
Weyl group and the need to divide two elements of RP make this formula
rather difficult to use. To obtain the character of an irreducible highest-
weight module, Freudenthal’s formula is much more practical. However,
Weyl’s dimension formula provides us with an efficient algorithm for ob-
taining a polynomial p(X1,... , X;) such that p(n,,... ,n;) is the dimension
of the highest-weight module with highest weight A = nj\; + --- + m .

Algorithm DimensionPolynomial
Input: a semisimple Lie algebra L with root system @ of rank I.
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Output: a polynomial p(Xj, ... , X;) such that p(ny, ... ,n;) is the dimension
of the irreducible highest-weight module over L with highest weight A =
MAL + -+ g

Step 1 Set p := 1, and for each positive root « do the following:
Step la Write o = Eé:l kio.
Step 1b Multiply p by the polynomial

i il X + 1) (@i, 04)

b k(e )

Comments: Set A = X1\ + --- + X;\;, which is an element of the
vector space R(X1,...,X;) Qg RP. Let a = 2221 k;a; be a positive root.
Since p = Zﬁ:l A; we have that

A +p0) _ Bicy k(X + 1) (s, )

(p7 a) Eﬁ:l ki(aia a;)

Example 8.10.5 Let L be the simple Lie algebra of type G2 of Example
8.8.4. Since in Weyl’s dimension formula the form ( , ) appears both in the
numerator and in the denominator, nothing changes if we multiply it by a
positive scalar. So we may use the values of ( , ) as given in Example 8.8.4.
Then the polynomial we get is

(X1 +1)(X + 1) +1+f(X2+1)2(X1 +1) ;3()(2 +1)
2(X1+1) +2(Xo+ 1) 2(z1 + 1) +4(X2 + 1)

4 6

If we take X; = 1 and X5 = 1, then we get 64, in accordance with Example
8.9.3.

8.11 The formulas of Kostant and Racah

Let A € P, be a dominant weight, and let V be the irreducible highest-
weight module over L with highest weight A\. In this section we derive two
more formulas for the multiplicity m, = dimV,, of a weight u € P.

Let 4 € P, then by p(u) we denote the number of ways of writing
B = D450 kat, where the k, are non-negative integers. So p(0) = 1, and
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p(p) = 0 if u cannot be written as a linear combination of positive roots
with non-negative integer coefficients.
We consider the series 3 - p p(u)e#, which satisfies the identity

Zp(p)e“ = H(1+ea+e2a+...).

HeP a>0

But (1 —e®)"! =1+e*+¢e2* 4 ..., and hence

<Z p(,u)e") (H(l - ea)> =1. (8.14)

nepP a>0

Let £ : RP — RP be the automorphism given by £(e#) = e #. We apply
€ to the left-hand side and the right-hand side of Weyl’s character formula
and multiply by e to get

(Zmue““)< Z Sn(g)ep—y(p)> = Z sn(g)ep—g(z\ﬂ). (8.15)
HeP gEW(®) geW (@)

By Proposition 8.10.2, }° .y s)sn(g )ed) = eP[[,50(1 — e™®). To this
relation we apply the automorphism ¢ and obtain

Z sn(g)er™9() = H(l —e%).

geEW () a>0

We substitute this in (8.15), multiply on the left and on the right by
> uepP(p)e*, and use (8.14) to obtain

= 3, o) ()

HeP gEW () HeP
= Z Z sn(g)p(p)ettr—9te)
HEP gEW (D)

Now by comparing the coefficient of e on the left and the right we
obtain the following theorem.

Theorem 8.11.1 (Kostant) Let A € P, be a dominant weight and let V
be the irreducible highest-weight module over L with highest weight \. Then
the multiplicity of the weight u € P is given by

my =Y sn(g)plg(\ + p) — p— p).

geEW(2)
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The next lemma contains a useful recursion formula for the numbers
().

Lemma 8.11.2 Let 0 # p € P be a non-zero weight. Then

p(w)=— Y su(gp(u—p+g(p))

1#geW (D)

Proof. Set A =0, and let V be the irreducible highest-weight module over
L with highest weight A\. Then m_, = 0 and hence by Theorem 8.11.1,

> sn(g)plg(p) + n—p) =0,

gEW(®)

And this implies the lemma. a

Proposition 8.11.3 (Racah) Let A € P, and V be as in Theorem 8.11.1.
Then the multiplicity of the weight p € P is given by

My = — Z sn(h) Myt p—h(p)-
1£hEW (D)

Proof. By combining Theorem 8.11.1 and Lemma 8.11.2 we get

my=— Y. Y sng)sn(h)p(g(h+p) — p—p—p+ h(p)).

1£heW(D) geW (@)

However, by using Kostant’s formula again we have that the right-hand side

is equal to
= Y (W)
1£heW(®)

O

We can use Racah’s formula to calculate weight multiplicities in a man-
ner similar to Freudenthal’s formula. That is we start with the multiplicity
of the highest weight A, and when computing the multiplicity of u # A of
level n we assume that the multiplicities of the weights of levels 0,... ,n—1
are known. We note that by Proposition 8.3.9 together with Lemma 8.3.8
we have that p > h(p) for all 1 # h € W(®). So u+ p— h(p) > p, and by
assumption we already know m, ,_4(,)-

Both Kostant’s and Racah’s formula can be used to calculate the weight
multiplicities of an irreducible highest-weight module. We refer to [5] for a



352 Representations of semisimple Lie algebras

discussion of practical experiences with these formulas. In this paper the
authors conclude that the formulas by Freudenthal and Racah are more
efficient than Kostant’s formula because of the need to calculate the values
of the function p for the latter formula. Furthermore, the size of the Weyl
group increases rapidly when the rank of the root system increases. Because
of this Freudenthal’s formula is usually more efficient than Racah’s formula
when the rank of the root system is bigger than 3.

8.12 Decomposing a tensor product

Let A € P, and let V be the irreducible highest-weight module over L with
highest weight A. The formal character of V', xy is also denoted by x».
Because yx is the character of an irreducible L-module, we say that y) is
an irreducible character.

Let A}, A2 € Py, and let V1, V5 the highest-weight modules over L with
highest weights A;, Ag respectively. The character of Vi & V5 is xa, + Xx,-
So taking the direct direct sum of L-modules corresponds to taking the sum
of their characters. Let V be any finite-dimensional L-module. Then V is
completely reducible (Theorem 4.4.6). This means that V decomposes as a
direct sum of irreducible L-modules

V — Vl@nl ®.”®VS®TI.§,

where VfB"" denotes the direct sum of n; copies of the irreducible module
Vi. Hence the character xy of V can be written as a sum

Xv =1n1Xx, 0 F 1)),

where the ); is the highest weight of V;. Also if A € Py, then x) = A +
> u<x™ue”. Hence characters belonging to different irreducible highest-
weight modules are linearly independent. So the expression of xy as a sum
of irreducible characters is unique. It follows that the decomposition of
xv as a sum of irreducible characters gives us the number of irreducible
components of V' together with their highest weights.

There is a straightforward method for decomposing the character of V
as a sum of irreducible characters. As before, by P(V) we denote the set
of weights of V. From the knowledge of the character of V' we can obtain
this set. Let u € P(V) be a weight that is maximal with respect to the
order < defined in Section 8.1. Let v, € V be a weight vector of weight
p. Then z4 - v, = 0 for all roots & > 0. Hence u is the highest weight of
an irreducible submodule W of V. So we have obtained the highest weight
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of one irreducible component of V. By Proposition 4.4.5 there is an L-
submodule U C V such that V = U & W. Now the character x, of W can
be found by Freudenthal’s formula. Then xy = xv — Xy, and we continue
the process with xy in place of xy. After a finite number of steps we will
have found the decomposition of xy into irreducible characters. We call
this algorithm DecompositionBySuccessiveSubtractions.

Remark. It is possible to make the algorithm DecompositionBySucces-
siveSubtractions somewhat more efficient by starting with the dominant part
of the character xv (iLe., 3}, ,cp, myue”). Then by a call to DominantWeight-
sOfHWModule we only compute the dominant part of the characters x,
which we subtract from yv.

Let V1, Vs be irreducible highest-weight modules of L, then the tensor
product V; ® V2 is also an L-module (cf. Section 1.12). However V; @ V; is
generally not irreducible. Let ”fn be a weight vector of weight p; in V; for
i=1,2. Let h € H, then h- (v}, ®va2) =(h-v,)®v2, +v), @ (h-v},) =
(1 +u2)(h)(v}“ ®v52). It follows that v}“ ®v32 is a weight vector in V1 @ V;
of weight p; + p2. So the weights of V; ® V5 are exactly the sums of the
weights of V; and V5. Therefore, if we set V = V; ® V5, then the character
of V is given by

=D mm,et

p1,u2€P

where by mf“ we denote the multiplicity of u; in V; for i = 1,2. Hence
XV = X1X2, Where x; is the character of V; for i = 1,2. So knowing the
characters of V; and V2 we can easily obtain the character of V1®V5. Then by
applying the algorithm to decompose x1 by successive subtractions, we can
obtain the highest weights of the modules occurring in the decomposition
of V1 ® V; as a direct sum of irreducible L-modules. However, this can be a
lengthy process as the dimension of V; ® V5 (which is equal to dim V3 dim V3)
is generally much bigger than the dimensions of Vi, V5. It is the objective of
this section to describe several other methods by which we can obtain the
decomposition of the character of V; @ V4 into irreducible characters.

Let A1, A2 and x1, x2 be the highest weights and the characters of the
highest-weight modules V7, V5 respectively. Set V =V, ® V2 and write

XV =X1X2 = 3 TaXa- (8.16)
AEPy

This is the decomposition of xy that we are after. The number n) is called
the multiplicity of x in xy. We multiply (8.16) by deW(tb) sn(g)e?®) and
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apply Weyl’s character formula (Theorem 8.10.3) to get

o A S

nepP gEW(d) AEP, 9EW (P

where m}t denotes the multiplicity of u € P in V;. We use Kostant’s formula
(Theorem 8.11.1) for the multiplicities m}t in the first term on the left-hand
side. Furthermore we set ny = 0 if A € P, and take the summation on the
right to run over all A € P. Doing this we obtain

(Z > su(gplg( +p) - u—p)e“>( > sn(g)eg(’\”p)):

HEP geW(®) gEW (d)

Zn,\ Z sn(g)ed o)

AEP  geW(®)

But this is the same as

D> s 91 +p) — p— pletthiRete) —

HEP g, heW(cb)
Zn,\ Z sn(g)ed(Mte),
AEP gEW(9)

On the left we substitute A\ = u + h(\y + p) — p, and on the right u =
9(A 4+ p) — p. We get

> Z (9001 +0) + h(da +p) = A~ 2p)M* =

AEP g heW(®
Z Z sn(g)ng~1 (44 p)— p€” p_z Z sn(g)ng(ytp)—p€H P
LEP geW(®) neP geW(9)

Comparing the coefficients of e**? on both sides we obtain

Y. sulghplgha+0)+h(atp)~A=20) = 3 sn(g)ngaip—p =
g,heW(d) gEW(D)

ny+ Z Sn(g)ng(z\+p)—p'
1#geW(d)

Now if A € Py, then also A + p € P,. But then g(\ + p) € PLifg#1by
Theorem 8.3.5. Hence in that case also g(A+p)—p & Py and Ng(atp)—p = 0.
So on the right-hand side we only have the term n), and we have proved
the following theorem.
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Theorem 8.12.1 (Steinberg) Let A1, Ao be the highest weights of the irre-
ducible highest-weight modules Vi and Vs respectively. Then the multiplicity
of A € Py in the character of V1 ® V, is given by

n= . sa(gh)p(g(h + p) + h(Ae + p) — A — 2p).
g,heW(®)

Proposition 8.12.2 (Racah) Let \j, A3, V1, V2 and ny be as in Theorem
8.12.1. For v € P we denote by m) the multiplicity of v in Vy. Then

ny = Z Sn(h)mi+p—h(/\2+p)‘
hEW(®)

Proof. By Theorem 8.12.1 we have

na= Y sn(gh)p(g(h +p) +h(de + p) — A —2p)

g,heEW(P)
= Y sa(h) Y sn(g)p(g(h +p) — (A +p— k(A2 + ) — p)-
heW(@) 9EW(®)

But by Kostant’s formula (Theorem 8.11.1), this is equal to

Z sn(h)m,l\+p-h(>\z+p)'
heEW(®)

O

Now we describe a third formula for decomposing a tensor product. For
u € P we define s(u) € {0,%1} as follows. If there is a 1 # g € W(®) such
that g(u) = p, then s(u) = 0. Otherwise we let g € W(®) be such that
g(u) € P, (note that such a g is uniquely determined because, in this case,
there are no elements in W(®) that stabilize u); and we set s(p) = sn(g).
Also for 1 € P we denote the unique element of Py to which p is conjugate

by {p}.

Proposition 8.12.3 (Klymik) Let A\, Xy and V1,V2 be as in Theorem
8.12.1. Let x1,x2 be the characters of Vi, Vo respectively. Let m}i denote
the multiplicity of u in V1. Then

Xix2 = D mLs(i+ Aa + P)X (s Ao o) —p-
HEP
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Proof. First we note that if v € P is such that s(v) # 0, then {v} —p € P,.
Indeed, if s(v) # 0 then the stabilizer of v in W(®) is trivial. But then the
stabilizer of g(v) in W(®) is trivial for all g € W(®), and in particular, the
stabilizer of {v'} is trivial. Hence for no simple root a; we have ({v},a;) = 0.
Therefore (v, ;) > 0 for all simple roots «;, and {v} — p is dominant. So
all {g + A2 + p} — p appearing on the right are dominant weights.

From Section 8.10 we recall that o(v) = deW@) sn(g)ed™). Multiply
X1Xx2 by o(p) and use Weyl’s character formula (Theorem 8.10.3) to get

xix20(p) = x10(p + A2) = (D_mle*)( Y sn(g)e?® ). (8.17)
neP gEW (D)

By Theorem 8.4.2 we see that 3 p met = D uep m}‘eg(") for any arbi-
trary ¢ € W(®). Furthermore, if for v € P there is a ¢ € W(®) such
that g(v) = v, then there is a reflection r, that stabilizes v. To see this
we note that there is a h € W(®) such that h(v) € P;. Furthermore,
hgh~! stabilizes h(v) so by Proposition 8.3.9 there is a simple root ¢; such
that (a;, h(v)) = 0. Hence the reflection corresponding to h~!(c;) stabilizes
v. From Section 8.10 we recall that oh(v) = sn(h)o(v) for all h € W(®)
and v € P. So if we take h to be a reflection stabilizing v we see that
o(v) = 0. It follows that o(v) = 0 for all v such that s(v) = 0. On the
other hand, if s(v) # 0, then let g € W(®) be such that g(v) € Py. Then
a(v) = sn(g)o(g(v)) = s(v)a({v}). Using this we see that the right-hand
side of (8.17) is equal to

Z an me9”+’\2+“) Zmou+)\2+p)

geW (@) neP nerP

=Y mhs(u+ X2+ p)o({u+ X2+ p}).
nepP

And again using Weyl’s character formula, this is equal to

Z m,,s(p + Aa + P)X{utra+p}—p0(P)-
per

After canceling o(p) the desired formula follows. o

Both Steinberg’s formula and Racah’s formula give a formula for the
multiplicity of a weight in the character of V; ®V; (whereas Klymik’s formula
gives the decomposition of the character of the tensor product directly). So
to be able to use these formulas we need a finite set of dominant weights
that contains all weights that have non-zero multiplicity in the character of
Vi ® V. This is provided by the next lemma.
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Lemma 8.12.4 Let A\, Ay and V1, Vs be as in Theorem 8.12.1. Let X be a
weight of Vi ® Va. Then X is of the form p+ o, for some u € P(Vy).

Proof. We recall that n, denotes the multiplicity of x in the character of
V1 ® Va. From the proof of Proposition 8.12.3 we have the following identity

xix20(p) = ) mys(u+ de + p)o({n + A2 + p}).
neP

But using the fact that xqx2 is the character of V1 ® V3 and Weyl’s char-

acter formula we have x1x20(p) = >25cp, maxao(p) = Yorep, MA0(A+p).
Therefore we get

> oA +p) =D mys(p+ e+ p)o({p + X2+ p}). (8.18)
AePy pepP

We want to compare the coefficients of e**? on both sides of this equation.
However the braces on the right-hand side are inconvenient in this respect.
We describe how to remove them. First of all, if y + A2 is dominant, then
$0 i p + A2 + p and hence the braces can be removed. Now suppose that
@+ Az 1s not dominant. We may also suppose that the stabilizer of p+ Ao +p
in W(®) is trivial since otherwise s(u + A2 + p) = 0. Since p + A2 is not
dominant there is a simple root «; such that (u + A2,;) < 0. Also since
A2 is dominant, (A2, ;) > 0. Let p,q be such that ro, () = ¢ + po; and
Ta;(A2) = A2 — ga;. Then because (1 + A, ;) < 0 and (Mg, o) > 0 we have
p>q>0. Set pg = p+(p—q—1)a;, then o, (p+ A2 +p) = p1+ A2 +p. We
note that p; € P(V7) by Lemma 8.7.1. And p; # p because the stabilizer
of u+ Ay + p is trivial. Since {u1 + A2 + p} = {u + A2 + p} we may
replace {yt + A2 + p} in (8.18) by {u1 + A2 + p}. Because pu; > p and also
the stabilizer of u, + Ae + p is trivial, we arrive, after a finite number of
such replacement steps at a weight py such that pg + A2 is dominant and
gk + A2+ p = h(+ Ag + p) for some h € W(®). We denote p by p'. Then
(8.18) is equivalent to

domo+p) = Y. mis(u+ e +p)o(p+ e +p)
AEP, nepP
p+A2 dominant
+ Z my,s(p+ Az + p)o(u' + g + p).
ueP

#+A2 not dominant

If A € P, is such that ny > 0, then e**# appears on the left with coefficient
ny. (We note that o(\ + p) has only one term e* with 1 dominant, namely
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e’MP. This follows from Theorem 8.3.5.) On the right this term appears
only if A = 1 + Ay for some p € P(V}). o

Now both Steinberg’s and Racah’s formula give an algorithm Decom-
poseCharacterTensorProduct for decomposing the character of the tensor
product V; ® V5. First we calculate the set A = {u+ Ay | p € P(V1) and p+
A2 dominant}. Then for each A € A we calculate ny using the formula.
Steinberg’s formula, is rather difficult to use in practice because of the dou-
ble sum over the Weyl group. However, Racah’s formula has proven to be
efficient in practice. We refer to (6] for a discussion of practical experiences
with Racah’s formula.

Now also Klymik’s formula provides a method for DecomposeCharac-
terTensorProduct. This formula does not involve the Weyl group at all.
Furthermore, we can efficiently loop through the weights of V; by first cal-
culating the dominant part of the character of Vi (by the algorithm Domi-
nantWeightsOfHWModule), and then looping through the orbit of each dom-
inant weight by the algorithms described in Section 8.6. For this reason
Klimyk’s formula has proven to be very efficient in practice (see [82]).

Example 8.12.5 Let L be the simple Lie algebra of type G (cf. Example
8.7.4). Let A, A2 be as in Example 8.8.4, i.e., the fundamental weights.
Let V1, V2 be the highest-weight modules over L with highest weights A1, Ag
respectively. We decompose the character of the tensor product V; ® V;
using Klymik’s formula. Using Freudenthal’s formula we see that V) has
two dominant weights, namely (1,0) and (0,0), both of multiplicity 1. So
the weights of V] are the elements of the orbit of (1,0) together with (0,0).
A little calculation shows that the orbit of (1,0) is

W(@) ' (1’0) = {(1’0)’ (—la 1)a (27 _1)7 (*2a 1)a (1’ —1)’ (—1’ 0)}

So V| has dimension 7. Now we run through the weights of V;, for each
weight p calculating ms(u + A2 + P)X{u+ro+p}—p- First Set u = (1,0),
then u 4+ Ao + p = (2,2), which is dominant. Hence s(u + A2 + p) = 1.
So the character we obtain is the irreducible character belonging to the
weight (1,1). Now let u = (—1,1). Then p + A2 + p = (0,3). But this
is stabilized by r,, and hence s(u + A + p) = 0 so that this weight does
not give us a character. Going on like this we see that the only characters
we get are those belonging to the weights (2,0) and (1,0). Also if we set
p=(—2,1), then g+ As + p = (-1,3). Now ro,(—1,3) = (1,2) so that
s(pp+A2+p) = —1. So this contributes the character belonging to (0,1) with
multiplicity —1. However, if we set u = (0,0) then we get the same character
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with multiplicity 1. So these characters cancel and we have decomposed that
character of V| ® V5 as

X(1,1) T X(2,0) T X(1,0)-

8.13 Branching rules

Let K,L be semisimple Lie algebras over an algebraically closed field of
characteristic 0. Let H be a fixed Cartan subalgebra of L (which is neces-
sarily split). Furthermore, suppose that there is an injective morphism of
Lie algebras f : K — L. Such a map is called an embedding of K in L.
Let V be the irreducible highest-weight module over L with highest weight
A. Let ¢ denote the representation of L afforded by V. Then ¢ o f is a
representation of K and hence V is also a K-module. Now in general V is
reducible as K-module. So the character xy of V (viewed as K-module)
can be written as a sum

XV =11X0 0+ X, (8.19)

where the x, are irreducible characters (of irreducible K-modules). Now
the splitting of V' as K-module is called branching and the decomposition
of its character (8.19) the corresponding branching rule. It is the objective
of this section to describe an algorithm for computing the branching rule,
given L, K, f and V.

Two embeddings fi,fo» : K — L are said to be equivalent if for any
representation ¢ of L, the representations ¢o f; and ¢o fo of K are equivalent.
Equivalent embeddings yield the same branching rule, so we may replace a
given embedding by an equivalent one.

Lemma 8.13.1 Let f : K — L be an embedding of K into L. Let H be a
Cartan subalgebra of L and Hg a Cartan subalgebra of K. Then there is
an embedding f': K — L such that f' is equivalent to f and f'(Hg) C H.

Proof. Let h € Hg, then adgh is a semisimple linear transformation (Root
fact 8). Now we consider the representation ady o f : K — gl(L), given by
adg o f(z)(y) = [f(z),y], for z € K and y € L. Then by Corollary 4.6.4,
also ady f(k) is a semisimple linear transformation. Also H is commuta-
tive (Root fact 6), so f(H) is a commutative subalgebra of L consisting
of semisimple elements. Hence by Lemma 4.14.2, f(H) is contained in a
Cartan subalgebra H' of L.

By Theorem 3.5.1 there is a g € Int(L) such that g(H') = H. We show
that the embedding g o f is equivalent to f. For that let ¢ : L — gi(V)
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be a representation of L. We have to show that the representations ¢ o f
and ¢ o (go f) of K are equivalent. But by Lemma 8.5.1 we have that
the representations ¢ and ¢ o g of L are equivalent, so certainly ¢ o f and
¢ o (go f) are equivalent. a

Now by Lemma 8.13.1 we may assume that the embedding f of K into
L maps a Cartan subalgebra Hg of K into the given Cartan subalgebra H
of L. From now on we omit the map f and think of K as a subalgebra of
L, and of Hg as a subalgebra of H.

Let u be a weight of V' (viewed as L-module) with weight space V..
Then since Hx C H, V), is also a weight space of V' viewed as K-module.
Let z},y!, h} for 1 < i < r be canonical generators of K, where h; € Hg.
Also let z;,y;, h; for 1 < ¢ <! be canonical generators of L, where h; € H.
Then we represent a weight p as a row vector (u(hy),...,u(hi)). However,
when we view V as a K-module, then we represent p as the row vector
(u(h}),... ,u(hl)). Now because the h; for a basis of H, there are constants
pij such that b} = Z;:ﬂ)z‘jhj and hence

1
u(hy) = pyp(hy).
7j=1

It follows that by applying the matrix (p;;) to the weights of V' (viewed as
L-module), we get the weights of V viewed as K-module. Therefore the
matrix (p;;) is called the projection matriz. These considerations lead to
the following algorithm.

Algorithm BranchingRule

Input: semisimple Lie algebras K, L with split Cartan subalgebras Hy, H,
an embedding f : K — L such that f(Hg) C H, and an L-module V.
Output: the decomposition of the character of V when viewed as a K-
module.

Step 1 Calculate canonical generators z/, y., h; and x;,y;, h; of K, L respec-
tively, such that h} € Hg and h; € H.

Step 2 Calculate the projection matrix p.
Step 3 Calculate the set of weights Q of V (viewed as L-module).

Step 4 By applying p to each element of 2 obtain the character xy of the
K-module V. Decompose xy using the algorithm DecompositionBy-
SuccessiveSubtractions, and return the result.
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Comments: We note that computing the projection matrix can be done
by solving r systems of linear equations, where r = dim Hg. Furthermore it
needs to be done once for every embedding f : K — L; it can then be used
for every L-module V. Also in the algorithm we only need the character of V
(viewed as L-module). So instead of V we can also input its highest weight.
Then using the techniques of Section 8.9, we can compute the character of
V.

8.14 Notes

Proposition 8.6.2 and the algorithm WeylOrbit are due to D. M. Snow ([81]).
Proposition 8.7.3 as well as most material in Section 8.9 is drawn from [63].
Racah’s formulas (Propositions 8.11.3 and 8.12.2) are contained in [70}, [5],
[6]. Klymik’s formula appears in [51]; see also [82]. The algorithm for
calculating branching rules in Section 8.13 largely follows [66]; see also [61].

Many algorithms discussed in this chapter have been implemented in
the computer algebra package LiE (see [21]). In this package many more
algorithms for dealing with root systems, weights and Weyl groups have
been implemented.
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Appendix A

On associative algebras

Associative algebras occur naturally when studying the structure of Lie
algebras. Examples can be found in Sections 1.1, 1.15, 2.2, 3.7, 4.11. Apart
from being of use for exploring the structure of Lie algebras, associative
algebras are also interesting in their own right, and their structure has
been an object of intensive study. In this appendix we collect parts of
the structure theory of associative algebras. Furthermore we sketch some
algorithms for calculating the structure of an associative algebra.

An important example of an associative algebra is the algebra M, (F)
of n x n matrices over the field F. A subalgebra of an My (F) is said to
be a linear associative algebra. Many associative algebras that occur in our
discussions will be linear.

Let A be an associative algebra. An element e € A is said to be an
identity element if ea = ae = a for all @ € A. It is straightforward to
see that such an element (if it exists) is unique. The algebra A is said to
be an algebra with one if A has an identity element. In many cases we
will restrict our attention to algebras with one. However if the associative
algebra A does not have a one, then we can embed it into an algebra with
one in the following way. Let By be a 1-dimensional vector space spanned
by the element eg. Set B = By @ A; where the multiplication on B extends
the one of A and furthermore bey = egb = b for all b € B. Then B is an
associative algebra with one; it is called the Dorroh eztension of A. Using
Dorroh extensions we can often translate results for algebras with one to
algebras without a one.

In Section A.1 we show that a finite-dimensional associative algebra has
a unique maximal nilpotent ideal, called the radical. We give a characteri-
zation of the radical in the case where the ground field is of characteristic
0. This leads to an algorithm for calculating a basis of the radical. We also
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formulate Wedderburn’s structure theorem for semisimple associative alge-
bras. Finally we prove the Wedderburn-Malcev principal theorem (which
1s an analogue of Levi’s theorem) for associative algebras generated by a
single element. This proof is used in Section A.2 where we study associative
algebras generated by a single element. We show that such an algebra has
a system of orthogonal primitive idempotents with sum 1. Also we describe
the Jordan decomposition of a linear transformation, and we give an algo-
rithm for calculating this decomposition for a given linear transformation.
In Section A.3 we study central idempotents in a semisimple algebra. These
central idempotents yield a decomposition of the algebra into a direct sum
of simple ideals. We sketch an algorithm for calculating a set of primitive
orthogonal and central idempotents with sum 1. We also show how to lift
these idempotents modulo the radical, in case the algebra is not semisimple.

A.1 Radical and semisimplicity

A finite-dimensional associative algebra N is said to be nilpotent if there
is an m > 0 such that a; a4, ---a;, = 0 for all a;, € N. Let A be a
finite-dimensional associative algebra. In the same way as for Lie algebras
(cf. Section 2.2) it can be proved that the sum of two nilpotent ideals of
A is a nilpotent ideal of A. From this it follows that A contains a unique
maximal nilpotent ideal. It is called the radical of A, and denoted by
Rad(A). If the ground field is of characteristic zero, then we have the
following characterization of the radical of linear algebras that contain an
identity element.

Proposition A.1.1 Let A be a finite-dimensional linear associative algebra
with one over a field of characteristic 0. Then

Rad(A) = {z € A| Tr(zy) = 0 for all y € A}.

Proof. Set I = {z € A| Tr(zy) =0 for all y € A}. Let z € Rad(A). Then
zy € Rad(A) for all y € A and therefore zy is nilpotent. Hence Tr(zy) = 0
for all y € A, i.e., z € I. To prove the other inclusion we first show that all
elements of I are nilpotent. Let z € I, then since Tr(zy) = 0 for all y € A
we have Tr(z") = 0 for n > 1. Because the ground field is of characteristic
0 this implies that z is nilpotent. Also it is straightforward to see that I is
an ideal of A. Now any associative algebra consisting entirely of nilpotent
elements must be nilpotent (this can be seen by analogous arguments to
those used to prove Engel’s theorem in Section 2.1). So I is a nilpotent
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ideal of A and hence I = Rad(A). a

Let A be a finite-dimensional associative algebra. For z in A we define
a linear map £(z) : A — A by £(z)(y) = zy (left multiplication). If we want
to make clear which algebra we mean we also write £4(z) in place of £(z).
Using Proposition A.1.1 we can now characterize the radical of an arbitrary
associative algebra with one of characteristic 0.

Proposition A.1.2 Let A be a finite-dimensional associative algebra with
one defined over a field of characteristic 0. Then

Rad(A) = {z € A | Tr({(zy)) =0 for all y € A}.

Proof. The map £4 : A — End(A) is a faithful representation of A because
A contains an identity element. So 4(A) = A and therefore the statement
follows from Proposition A.1.1. o

On the basis of Propositions A.1.1 and A.1.2 we can formulate an algo-
rithm Radical for calculating the radical of an associative algebra of char-
acteristic 0. If the algebra is linear then we use Proposition A.1.1 to give
us a set of linear equations for the basis elements of the radical. If A is not
linear then we use Proposition A.1.2 to the same end. This algorithm does
in general not work for associative algebras defined over a field of charac-
teristic p > 0. For this case there are other algorithms available. However,
discussing these would lead us too far afield and therefore we refer to the
literature ([20], [45], [46], [47], [73]).

A finite-dimensional associative algebra A is said to be semisimple if
Rad(A) = 0. Let A be an associative algebra; then A/Rad(A) is semisimple.
This implies that if I is a nilpotent ideal of A such that A/I is semisimple,
then T = Rad(A). We recall that a field F is said to be perfect if F' is of
characteristic 0, or F' is of characteristic p > 0 and F? = F.

Proposition A.1.3 Let A be a finite-dimensional associative algebra de-
fined over a perfect field F. Let F be an extension field of F, then Rad(AQp
F) =Rad(4) ®p F.

Proof. We note that if A is defined over a field of characteristic 0, then
this follows from Proposition A.1.2, because this result gives the radical as
the solution space of a set of linear equations over F. More generally, let
{r1,... ,7m} be a basis of Rad(A). Then {r1®1,... ,rm®1} is the basis of a
nilpotent ideal I of A®p F'. Furthermore, (A®F F)/I (A/Rad(A))®F F.
Because F is perfect, A/Rad(A) is a separable algebra (see [69, §10.7]). But



366 On associative algebras

this implies that (A/Rad(A))®p F~is a semisimple algebra ([69, §10.6]). The
conclusion is that I = Rad(A ®p F'). o

The algebra A is called simple if A has no ideals other than 0 and
A. A simple associative algebra with one is necessarily also semisimple.
As an example of a simple associative algebra with one we mention the full
matrix algebra M,,(F). Now by the next theorem, all semisimple associative
algebras are obtained by taking direct sums of full matrix algebras. We recall
that a division algebra over F is an associative algebra R over F' with one
such that for all z € R there is a y € R such that zy = 1. A commutative
division algebra is a field. For a proof of the next theorem we refer to [69].

Theorem A.1.4 (Wedderburn) Let A be a finite-dimensional associa-
tive algebra with one over a field F. Then A decomposes as a direct sum of
ideals where every ideal is isomorphic to a full matriz algebra over a division
algebra, i.e.,

A= M, (R)&®- - ® My, (R;)

where n; > 1 and the R; are division algebras over F.

By the next theorem, the semisimple algebra A/Rad(A) can be identified
as a subalgebra of A. It is analogous to Levi’s theorem for Lie algebras. We
prove this theorem for the case where A is generated by a single element,
because we will need this proof later on. For the proof of the general case
we refer to [69].

Theorem A.1.5 (Wedderburn-Malcev principal theorem) Let F be
a perfect field and let A be a finite-dimensional associative algebra with one
over F. Then A has a subalgebra S such that A = S @ Rad(A).

Proof. (For the case where A is generated by a single element.) Suppose
that A is generated by the element a. Let f, € F[X] be the minimum
polynomial of a, and let
fa=pY' - pfr

be the factorization of f, into distinct irreducible polynomials p;. We sup-
pose that the p; have leading coefficient 1 and that deg(p;) > Ofor 1 <i <.
First suppose that all &, = 1. Let b € Rad(A). Then b = p(a) for some
polynomial p € F[X]. Furthermore b* = p*(a) = 0 for some k£ > 0. Hence
fa divides p*. But since all k; = 1 this implies that f, divides p and hence
b = 0. So in this case Rad(A) = 0 and we are done.

Now we suppose that k; > 1 for some k;. Set h = p;---p, and b =
h(a). Let I be the ideal of A generated by b. We show that I = Rad(A).
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Set n = maxk;, then b" = h"(a) = 0 so b is nilpotent. Now since A is
commutative, also I is nilpotent and hence I C Rad(A). By @ we denote
the image of a in A/I. Let h; be the minimum polynomial of a. We have
h(@) = 0 so that hy divides h. But also h(a) € Rad(A) so that hy(a)N =0
for some N > 0. As a consequence f, is a factor of hY and this implies
that h; = h. Hence the minimum polynomial of a generator of A/l is a
product of distinct irreducibles. As argued above this implies that A/I is
semisimple, so that Rad(4) = I.

Now we construct an element @' € A such that h(a’) = 0 and a =
o’ mod Rad(A). For this we start with the element a; = a. Then h{a,) =
0 mod Rad(A) and a = a; mod Rad(A). Now inductively we suppose that
we have constructed an element a;, € A such that h(ax) = 0 mod Rad(A)*
and a = ay mod Rad(A). We set ag,, = ag + ri, where 7 € Rad(A)* is to
be determined so that h(ax;) = 0 mod Rad(A)¥+1. According to Taylor’s
theorem for polynomials we have

h(aky1) = hlag + ) = h(ag) + ' (ag)ry, + gr,%,

(where ' denotes derivation, and g is a polynomial in a; and ). Now since
F is perfect and h is square-free we have that gcd(h,h') = 1. This means
that there are polynomials p,q € F[X] such that ph + gh’ = 1. We set
re = —h(ak)g(ag), then ry € Rad(A)*. Also

h(agy1) = h(ag) + A (ag)ry, mod Rad(A)FH!
= h(ax) — h'(ax)q(ax)h(ar) mod Rad(A4)**!
= ph?*(a;) mod Rad(A4)*' = 0 mod Rad(A4)*+!.

Since Rad(A) is nilpotent we will find the required element o’ after a finite
number of steps. Because the minimum polynomial of @ is A, the minimum
polynomial of @' is h as well. Hence the subalgebra of A generated by o’ is
isomorphic to A/Rad(A). o

A.2 Algebras generated by a single element

Let V be a finite-dimensional vector space defined over the field F. We
recall that End(V') is the set of all linear maps a : V — V. In this section
we study (associative) subalgebras of End(V'), that are generated by a single
element.

Let A be an associative algebra. An element e € A is called an idempo-
tent if e is non-zero and e? = e. Two idempotents e}, e are called orthogonal
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if e;eg = epe; = 0. It is straightforward to see that the sum of orthogonal
idempotents is again an idempotent. An idempotent is said to be primitive
if it is not the sum of orthogonal idempotents.

Lemma A.2.1 Let a € End(V) and let A be the associative algebra (with
one) generated by a. Let f, be the minimum polynomial of a and suppose
that

fa :pllcl "'pfr

18 the factorization of f, into irreducible factors, such that p; has leading
coefficient 1 and p; # pj for 1 < i,j < r. Then A contains r orthogonal

primitive idempotents ey, ... ,e, such that pfi (a)e; =0 ande;+---+e = 1.
Proof. For 1 < < r let ¢; be the product of all factors pf" except pfi, ie.,

ki k; T
q; = plfl . .pi—llpi-ljil . .pf .
Then since ged(qy,... ,¢-) = 1 there are polynomials hq,... ,h, such that
higi1+---+hrg- = 1. Set e; = hjg;(a) for 1 <7 <r. Thene;+---+e = 1.
Also for ¢ # j we have e;je; = h;hjgig;(a) = 0 since f, divides ¢;q;. Hence

ei=eiler+--+e)=el

Furthermore, pfi(a)ei = hifs(a) = 0. Finally we show that the idempotents
€; are primitive. Suppose that e; = z + y, where z and y are orthogonal
idempotents in A. Then, since z,y € A, there are polynomials g, h € F[X]
such that £ = g(a) and y = h(a). Also ¢;z = (z + y)z = z and likewise
e;y = y. Now from zy = 0 it follows that gh(a) = 0 so f, divides gh. This
implies that p; divides g or p; divides h. If p; divides g then there is an
m > 0 such that (g;g)™(a) = 0. But z = g(a) = e;jg(a) = h;gig(a) which
entails £™ = 0, contradicting the assumption that r is an idempotent. If
p; divides h then we get a contradiction in the same way. Therefore e; is a
primitive idempotent. o

Remark. (Notation as in Lemma A.2.1.) Let X be an indeterminate and
suppose that f, = py---p,, where p; = X — «;. Suppose further that
a; # a; if i # j. In this case we can get the idempotents via the Lagrange
polynomials. The i-th Lagrange polynomial is defined to be

. X —ag
MO = [ =—=
k=1kzi b Ok
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Now let y1,...,y, be r arbitrary elements of the ground field. Then the
polynomial
g=My+-+ Ay,

is the unique polynomial of degree r — 1 such that g(a;) = y; for 1 <i <r.
Taking all y; equal to 1, this implies that Y, A; = 1. So if we set e; = A;(a),
then e; +--- + e, = 1. Also e;e; = 0 for 4 # j, and hence the e; are orthog-
onal idempotents.

We describe how the factors of the minimum polynomial of ¢ € End(V)
are related to a decomposition of V' into a direct sum of subspaces invariant
under a. For a univariate polynomial p € F[X] put

Vo(p(a)) = {v € V| p(a)™v = 0 for an m > 0}.

Lemma A.2.2 Let a, f,, p; and k; for 1 <1 < r be as in Lemma A.2.1.
Then V decomposes as a direct sum of subspaces that are invariant under
a7

V = Vo(pi(a)) & --- & Vo(pr(a)).

Furthermore, the minimum polynomial of the restriction of a to Vo(p;i(a))
.k
is p;t.

Proof. Let v € Vy(pi(a)). Then there is an m > 0 such that p;(a)™v = 0.
So pi(a)™(av) = ap;(a)™v = 0 and consequently Vj(p;(a)) is invariant under
a.

Let ej,...,e, be the primitive orthogonal idempotents provided by
Lemma A.2.1. Then since ey +-+-+e, =1,

V=(e1+ - +e)V=eV+---+eV.

‘This sum is direct because for y € e;V Ne;V we have y = e;u = e;v for some
u,v € V; and as e; is an idempotent, we obtain y = e;u = e?u = e;e;v = 0.
Also, because e; is a polynomial in a the space e;V is invariant under a.
Now we prove that Vy(p;(a)) = ¢;V. Let y € ¢;V, i.e, y = e;z. Then by
Lemma A.2.1, pf"(a)y = pf"(a)eiz = 0 and y € Vo(pi(a)). On the other
hand suppose that y € Vy(pi(a)). Then y = y; +--- + y, where y; € ¢;V.
Furthermore, there is an m > 0 such that

0 = pi"(a)y = p{*(a)yr + - -- + p{"(a)yr
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and p{"(a)y; € e;V since e;V is invariant under a. Because V is the direct
sum of these spaces every p; 7*(a)y; = 0. But since, as we just proved
e;V C Vo{p;(a)), also p] "(a)y; = 0 for some n; > 0. Because p* and p]

are relatively prime this implies y; = 0 for j # ¢ and we are done.

Let g; be the minimum polynomial of the restriction of a to Vy(p;i(a)),
for 1 <4 < r. Then since Vy(pi(a)) = e;V and pf" (a)e;z =0for all z € V,
we conclude that pfi (a)y = 0 for all y € Vy(pi(a)). So g; divides pfi, and
consequently g; = péi where l; < k;. Now let g be the product of the g; for
1<e<r. Forzx €V writex =z, +--- + z, where z; € Vy(pi(a)). Then
g(a)x = g(a)z1 + --- + g(a)z, = 0, so that g(a) = 0. Hence f, divides g,
forcing I; > k;. m|

Definition A.2.3 Let V be a vector space defined over a perfect field F.
A linear transformation a € End(V) is called semisimple if the associative
subalgebra of End(V') generated by a is a semisimple algebra.

Proposition A.2.4 Let V be a vector space defined over a perfect field
F. Let a € End(V). Then a is semisimple if and only if the minimum
polynomial f, of a is square-free. If f, splits into linear factors over F,
then a is semisimple if and only if there is a basis of V relative to which the
matriz of a is diagonal.

Proof. Let A be the associative algebra generated by a. Suppose that A
is semisimple. If f, is not square-free, then f, = g°h where g,h € F[X]
are polynomials with leading coefficients 1 and g # 1. Set p = gh, then
p(a)? = 0. Let I be the ideal of A generated by p(a), then every element of
I is of the form g(a)p(a), where ¢ € F[X]. Hence I? = 0 and I is a nonzero
nilpotent ideal. But this contradicts the assumption on A.

On the other hand, suppose that f, is square-free. Let b € Rad(A),
then b = p(a) for a p € F[X] and b* = 0. Hence p*(a) = 0, so f, divides
p*. Since f, is square-free this can only happen if f, divides p. But then
b= p(a) = 0. As a consequence, Rad(A4) = 0 and A is a semisimple algebra.

Suppose that fo(X) = (X — A1)+ (X — \;) is the factorization of f,
into linear factors. Suppose that a is semisimple so that all these factors
are distinct. Then by Lemma A.2.2,

V=VW@-X 1)@ - &Va-X-1),

and the minimum polynomial of the restriction of a to Vy(a — A; - 1) equals
X —A;. Hence a acts as A\;-1 on Vy(a—A;-1). It follows that a acts diagonally
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on V. On the other hand, suppose that there is a basis of V' with respect
to which the matrix of a is diagonal. Then the minimum polynomial is the
product of X — )\, where \; runs over the set of (distinct) diagonal elements
of a. So f, is square-free. g

Corollary A.2.5 Let V, F be as in Proposition A.2.4. Let a,b € End(V)
be two semisimple linear transformations. Furthermore, assume that a and
b commute (i.e., ab = ba). Then a + b is semisimple.

Proof. For this we may suppose that the ground field is algebraically closed.
Indeed, a,b are also semisimple elements of End(V ®F F), where F is the
algebraic closure of F'. Then there is a basis of V' with respect to which a
acts diagonally. Let X\ be an eigenvalue of @, and V) = {v € V | a- v = Iv}
the corresponding eigenspace. Then V), is stable under b since a and b com-
mute. Furthermore, the restriction of b to V) is also semisimple. Hence
there is a basis of V), with respect to which b acts diagonally. Adding these
bases together for all eigenspaces V) of a, we obtain a basis of V relative
to which both a and b act diagonally. Hence also a + b acts diagonally, and
therefore a + b is semisimple. o

Proposition A.2.6 Let V be a finite-dimensional vector space over the
perfect field F. Let a € End(V') and let A be the associative algebra with
one generated by a. Then there are s,n € A such that

1. 5 and n are polynomials in ¢ without constant term,
2. s is semisimple,

3. n s nilpotent,

4. a=3s+n.

Also, if f, = p'fl --«pkr is the minimum polynomial of a (where p; is irre-
ducible for 1 <i <r). Then fs = p1---p, is the minimum polynomial of s.
Furthermore, if a = s1 +ny, where sy is semisimple and n; s nilpotent and
[s1,n1] =0, then $1 = s and ny = n.

Proof. We let o', h and ay, for k > 1 be as in the (partial) proof of Theorem
A.15. Put s = @’ and n = a — 5. The statement about the minimum
polynomial of s is contained in the (partial) proof of Theorem A.1.5. Hence
by Proposition A.2.4 it follows that s is semisimple. Furthermore, n is
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nilpotent because a = s mod Rad(A), and therefore n € Rad(A). We show
that there are polynomials f,g without constant term such that s = f(a)
and n = g(a). First of all, if the minimum polynomial of a has a constant
term, then we are done because in that case we can write 1 as a polynomial
in a without constant term. If the minimum polynomial of a does not have
a constant term, then also the polynomial h has no constant term. From
this it follows that all a; are polynomials in a without constant term. Hence
the same holds for the element a'.

Asa = sy +n; =s+n we have s; — s = n—mny. Since s and n are
polynomials in ¢ and s1,n; commute with g, they also commute with s and
n. In particular n and n; commute. Hence n — n; is nilpotent. Also s and
s1 commute and since sums of commuting semisimple transformations are
semisimple (Corollary A.2.5), we have that s; — s is semisimple. So s; — s
is both semisimple and nilpotent and hence must be zero. a

Definition A.2.7 Let V and a be as in Proposition A.2.6. The decompo-
sition a = s + n provided by Proposition A.2.6 is called the Jordan decom-
position of a.

The (partial) proof of Theorem A.1.5 gives us an algorithm for calculat-
ing the Jordan decomposition of a linear transformation

Algorithm JordanDecomposition

Input: an endomorphism a of a finite-dimensional vector space, defined over
a perfect field.

Output: a tuple (s,n) such that a = s + n is the Jordan decomposition of
a.

Step 1 Let f, be the minimum polynomial of a and let & be the product of
the irreducible factors of f,.

Step 2 Compute polynomials p, q such that ph + gh' = 1. Set a;, := a.
Step 3 If h(ax) = 0 then return (ax,a — ag).
Step 4 Set ay := ax — hg{ay) and return to Step 3.

Comments: The polynomial 4 in Step 1 can be computed by dividing
fa by ged(fa, fL). The proofs of Theorem A.1.5 and Proposition A.2.6 show
that the output is the Jordan decomposition of a.
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A.3 Central idempotents

Let A be an associative algebra with one. We say that an idempotent
e € A is central if e lies in the centre of A. Now let A be a semisimple
associative algebra. By Wedderburn’s structure theorem A decomposes as
A=A & - d A,, where the A; are simple ideals of A. So the identity
element uniquely decomposes as 1 = e; + --- + e5, where e; € A;. This
implies that e;e; = 0 and hence e; = e;(e; + -+ + e5) = €7, so that the ¢;
are orthogonal idempotents. Furthermore,

A=(e1+ - +e)A=e A+ - +e,A

and since e;A C A; we have that e;A = A;. This also implies that e;a = a
for all a € A;. Now for a € A we write a = a1 + -+ + a5 where a; € A;,
and calculate e;a = e;a; = a; and similarly ae; = a;. Therefore ¢; is central.
Also it is clear that e; is not the sum of two other orthogonal idempotents
that are central, because otherwise A; would split as a direct sum of ideals.
So the decomposition of A as a direct sum of simple ideals gives us a set
of orthogonal primitive and central idempotents with sum 1. Conversely,
such a set of idempotents leads to a decomposition of A into a direct sum
of simple ideals. We summarize this in the following proposition.

Proposition A.3.1 Let A be a semisimple associative algebra with one.
Then A decomposes as a direct sum of simple ideals

A:Al@...@As

if and only if there is a set of central primitive and orthogonal idempotents
€1,...,65s € A such thate; +---+e; =1 and A; = ¢;A.

Let A be a semisimple associative algebra with one over the field F. It
is the objective of this section to describe an algorithm for calculating a set
of central primitive and orthogonal idempotents in A.

An algorithm for calculating the centre of A can be formulated analo-
gously to the algorithm Centre for Lie algebras. So let T be the centre of
A. Then T is a commutative associative algebra containing no nilpotent
elements. (Indeed, any nilpotent element of T generates a nilpotent ideal
of A.) In particular, T is a semisimple algebra, itself. So by Wedderburn’s
structure theorem we have that T decomposes T = Ty & - - ® Ty, where T; is
isomorphic to a full matrix algebra defined over a division algebra over F.
But T; is commutative, and hence T; is isomorphic to an algebra of 1 x 1-
matrices over a division algebra, i.e., T; is a division algebra over F. Now
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the commutativity of T; implies that T} is a field, so T; is a field extension
of F.

The left-multiplication on T provides a faithful representation of T' as T'
has an identity. Hence T is isomorphic to a linear algebra of m x m-matrices
over F, where m = dimT. So we may think of T as an algebra consisting
of m x m-matrices. Since T is commutative and consists of semisimple
elements we have that these matrices are simultaneously diagonalizable over
the algebraic closure F of F. This means that there is an m x m-matrix
with coefficients in F such that xtz~! is in diagonal form for all t € T. For
1 < i < m we define the F-linear function o; : T — F by letting a;(t) be
the coefficient on position (i,i) of rtz~!. We note that a; # a; if i # j
because the dimension of T is equal to the number of distinct ;.

An element ¢y € T is said to be a splitting element if to generates T'.

Lemma A.3.2 Suppose that the ground field F' contains at least ﬂ"QL—_l—)—i—l
elements, then T has splitting elements.

Proof. Anelement ty € T is a splitting element if and only if a;(to) # a;(to)
for 7 # j. Indeed, the dimension of the algebra generated by g is equal to
the number of distinct eigenvalues of ¢5. And this number is equal to dim T
if and only if o;(tg) # a;(to) for ¢ # j. Now let {t1,... ,tm} be a basis of T
and for ¢ < j define polynomials

fij(Xla s aXm) = Z(Oli - Otj)(tk)Xk.
k=1

We let g be the product of all f;;. Then g has degree —'ﬂné—_l-)- The lemma
follows now from the observation that tg = Y ;. ; Atk is a splitting element
if and only if g(A1,... ,Am) #0. a

The proof of this lemma yields a straightforward Las Vegas algorithm for
finding a splitting element if the ground field is big. Let g be the polynomial
from the proof of Lemma A.3.2. Let 2 be a subset of F' of size at least
m(glg—l), and set tg = Y i*; Axtk, where the A are randomly chosen from
Q (with uniform distribution). As seen in the proof of Lemma A.3.2, tg
is a splitting element if and only if g(A;,... ,A\n) = 0. So by Corollary
1.5.2, the probability that ¢y is a splitting element is at least 1 — . In the
algorithm we select a random element t; with coefficients from (2. Then we
check whether t; generates T. If so, then we output tp, otherwise we select

a second element and continue. By making the set € big we can make the
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probability that a randomly chosen element £ is not a splitting element
arbitrarily small.

The proof of Lemma A.2.1 shows how to calculate a set of primitive
orthogonal idempotents with sum 1 in 7', knowing a splitting element %,.
Let f;, be the minimum polynomial of ¢y and let fy, = p1---pr be the
factorization of f;, into irreducible factors. Let ¢; be the product of all
factors p; except p;. Then we calculate polynomials Ay, ... ,h, such that
higv + -+ + hrgr = 1. Set e; = hjq;(a), then the proof of Lemma A.2.1
shows that the e; are primitive orthogonal idempotents with sum 1.

If A is defined over a small field, then the centre T' may not contain
splitting elements. In this case we rather work with decomposing and good
elements (cf. Definition 4.11.5). An element ¢ € T is decomposing if the
minimum polynomial of ¢ factors as a product of at least two distinct factors
(of degree greater than 1). If § C T is a subalgebra, then s € S is called
good with respect to S if s generates S and the minimum polynomial of s
is irreducible. A decomposing element leads to a decomposition of T" as a
sum of two or more ideals (by calculating idempotents in the same way as
from a splitting element). A good element with respect to a subalgebra S
shows that S is simple. Exactly as in the proof of Proposition 4.11.6 we
can show that a random element s € S is either decomposing or good with
probability at least % Now using an algorithm analogous to PrimaryDe-
compositionSmallField we can decompose T' into the direct sum of its simple
ideals, and this gives us a set of primitive orthogonal idempotents with sum
1. The conclusion is that we have an algorithm for calculating a set of
central primitive and orthogonal idempotents in any semisimple associative
algebra. We call this algorithm Centralldempotents.

Suppose that A is not semisimple and set S = A/Rad(A4). Suppose that
we have found a set {€,... ,é&.} of primitive central and orthogonal idempo-
tents in S. By the Wedderburn-Malcev principal theorem, S is isomorphic
to a subalgebra of A. Hence there are primitive orthogonal idempotents
e1,-..,er € A with sum 1, such that e; mod Rad(A) = &;. We describe an
algorithm for finding the e;, given the &;.

Lemma A.3.3 Let € be an idempotent in S. Then we can construct an
tdempotent e € A such that e mod Rad(A) =e.

Proof. Let ey € A be such that ey mod Rad(A) = & Then ef = e mod
Rad(A) so that ng = €3 — ey € Rad(A) and consequently ng is nilpotent.
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Hence there is an integer g such that n2’ = 0. Now recursively set

€i+1 = €; +n; — 2e;n;,
N+l = €i+1€i+1 — €i41-

We note that all e;, n; lie in the commutative subalgebra Ey of A generated
by eg. Let M; be the ideal of Ey generated by ngl. A short calculation shows
that n;4 1 = 4n§’ — 3nz2. Hence by induction on i we see that n; = 0 mod M;.
Therefore e,y = e; mod M;, and in particular, e;+; = ¢y mod Rad(A). We
conclude that n, = 0 and ejeqy = ¢4 and the statement follows. m|

Remark. A small calculation shows that e;4; = —26? + 3612. Now if we
calculate the Jordan decomposition of ey (using the algorithm JordanDe-
composition), then we get the same recursion. It follows that the algorithm
contained in the proof of Lemma A.3.3 constructs the Jordan decomposition
of €q.

Proposition A.3.4 Let €1,...,& be primitive orthogonal idempotents in
S with sum 1 € S. Then we can construct primitive orthogonal idempotents
€1,--. e tn A such that e; mod Rad(A) =¢; for 1 <i<r,ande; +---+
er=1€ A.

Proof. For brevity we set R = Rad(A4). The proof is by induction on r.
The case where r = 1 is covered by Lemma A.3.3. Suppose that r > 1 and
that we have constructed primitive orthogonal idempotents e1,... ,e,_1 in
A such that e; mod R = ¢; for 1 <4 < r — 1. We describe how to construct
er. Let é, be a pre-image of &, in A. Set

E=e+--te—u,

and
e=é-— Fé. —¢.F+ Eé,.E.

We have Fé, = 0 mod R and é.F = 0 mod R, so that e = & mod R and
hence e? = e mod R. Now let e, be the idempotent in A provided by the
procedure in the proof of Lemma A.3.3 (where we start with eg = €). So
er = & mod R. Since E? = E we have that Ee = ¢E = 0, and because e,
is a polynomial in e without constant term, it follows that Fe, = ¢, E = 0.
By the induction hypothesis we have ¢;E = Fe; = ¢; for 1 < i < r —1.
Hence e,e; = e, Ee; = 0 and similarly e;e, = 0.

Finally we show that the idempotents e; must have sum 1 € A. Since
e; = & mod R and the &; have sum 1 in S we see that e; +-+- +¢e, = 1 +u,
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for some u € R. But the left-hand side of this expression is an idempotent.
So (1 +u)? = 1+ u. But this is equivalent to u? + v = 0. Which implies
u =0 (in view of u € R). a

A.4 Notes

Proposition A.1.1 first appeared in [25]. It was used by Friedl and Rényai
([29], [73]) to give an algorithm for computing the radical of an associative
algebra of characteristic 0. These papers also contain an algorithm for com-
puting the radical of an algebra defined over a finite field. Furthermore,
the authors show that the complexity of this algorithm is polynomial. Also
[20] contains a polynomial time algorithm for calculating the radical of an
algebra defined over a finite field. In [47] algebras are considered that are
defined over fields of the form F,(z1,... ,T,,). An algorithm for calculating
the radical is given that runs in polynomial time, if the number of indeter-
minates, m, is a constant.

Splitting elements were introduced by W. Eberly ([26], [27], [28]). In
these references full matrix algebras M,,(F) are considered, and an element
a € M, (F) is defined to be a splitting element if its minimal polynomial is
squarefree and of degree n (note that our definition is a special case of this).
In [27] splitting elements are used to calculate the decomposition of an as-
sociative algebra into a direct sum of simple ideals. A second application of
splitting elements can be found in [3], where algorithms are given to decom-
pose a module over a finite group into a direct sum of irreducible modules.
Our presentation here is different from the ones in the above references, in
order to stress the similarities with splitting elements in Cartan subalgebras
(Section 4.11). Decomposing elements appear in [28] (where they are called
decomposable elements). Other algorithms for computing idempotents and
decompositions of algebras can be found in [24] (for commutative Artinian
algebras over finite fields), [32] (over finite fields and the field Q of ratio-
nal numbers; in the latter case lifting of idempotents over a finite field is
used) [29], [73] (over finite fields, using a splitting procedure that has some
similarity to the approach with decomposing elements).

The algorithm for finding the Jordan decomposition of a linear trans-
formation is taken from [2]. In this paper the authors also show that the
complexity of the algorithm is polynomial. The algorithm for lifting idem-
potents is taken from [90].
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(adL)*, 3

A1 = A, (isomorphic algebras), 18

Apie, 3

C(L) (centre), 15

C ~ C' (equivalence of Cartan ma-
trices), 136

Cr(S) (centralizer), 14

C;(L) (term of the upper central
series), 18

C, (coefficient space), 205

H* (dual space of H), 95

L (term of the lower central se-
ries), 17

L® (term of the derived series),
17

Lo(K) (Fitting-zero component),
54

L,(K) (Fitting-one component), 54

L1 x Lo, 21

My(X), 218

M, (F), 2

Ny (V) (normalizer), 15

N,(K) (largest nilpotency ideal),
205

P(V), 262

P, (dominant weights), 263

V()), 266

Vo(K) (Fitting-zero component),
54

Vo(p(a)), 310

V1(K) (Fitting-one component), 54

V) (weight space), 262

X* (free monoid), 186

[V,W] (product space of V and
W), 16

[, 12

Aut(L), 22

Der(A), 1

End(V),

Homp(V, W)

Homp (V, W) (endomorphlsms com-
muting with the action of
L), 80

LM(f) (leading monomial), 186,
193, 222, 241

Nf(f) (normal form), 187, 195, 222

NR(L) (nilradical), 36

®* (positive roots), 134

&~ (negative roots), 134

o, = , (isomorphic root systems),
129

&, ® @&, (direct sum of root sys-
tems), 129

SR(L) (solvable radical), 38

Tr(a) (trace of a linear transfor-
mation), 4

adz, 3

<dlex, 186, 193

¢(g) (length of g), 274

F(X ) (free associative algebra), 186

( ) (height of 3), 136

im(#) (image of a morphism), 18

kL, £ (Killing form), 76

ker(6) (kernel of a morphism), 18

(X | R) (finitely presented Lie al-
gebra), 220

(B,a), 128

bn(F), 6

g[(V) 2
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sl (F), 4

5p2l(F)? 5

Rad(A4), 306

p(L)* (enveloping algebra), 185
ck .6

i

m,, (multiplicity of 1), 280
n(g), 274

(Ll)a 2

(Lo), 2
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S-element, 195

a-string containing 3, 125, 131
p-map, 26

p-th power mapping, 26

Abelian Lie algebra, 15
action of a Lie algebra on a vector
space, 23
adjoint map, 3
adjoint representation, 24
admissible configuration, 143
Ado’s theorem, 212
algebra, 1
associative, 1
Lie, 2
alternating element, 287
appliance, 221, 243
associative law, 2
automorphism of a Lie algebra, 22

bilinear form, 4
branching rule, 301

canonical basis, 155
canonical generators, 153
Cartan matrix, 136
Cartan’s criterion for semisimplic-
ity, 77
Cartan’s criterion for solvability,
43
Casimir operator, 81
universal, 280
central component, 29
centralizer, 14
centre, 15
coefficient of a representation, 205
commutative Lie algebra, 15
commutator, 2

completely reducible module, 24
composition, 190, 247
useful, 249
useless, 249
composition series, 24
Coxeter diagram, 143

decomposing element, 105, 315
deglex order, 186, 193
degree compatible order, 193
degree of free magma elements, 218
derivation, 19

inner, 20

outer, 20
derived series, 17
derived subalgebra, 17
descending chain condition, 186,

193, 221, 241

diagram automorphism, 164
direct sum

of L-modules, 24

of Lie algebras, 21

root systems, 129
dominant integral linear function,

263

Dorroh extension, 305
Dynkin diagram, 141

Engel’s theorem, 35
equivalence

of L-modules, 23

of Cartan matrices, 136
even orthogonal Lie algebra, 6

faithful representation, 23

finite presentation, 220

finitely presented Lie algebra, 220
Fitting decomposition, 54
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Fitting-null component, 54

Fitting-one component, 54

foliage, 232

formal character, 287

free algebra, 218

free associative algebra, 186

free Lie algebra, 219

free magma, 218

free monoid, 186

Freudenthal’s multiplicity formula,
280

fundamental dominant weights, 266

Grobner basis

in a free algebra, 222

in a free associative algebra,
188

in a free Lie algebra, 246

in a universal enveloping alge-
bra, 195

left, 201

Hall order, 229

Hall set, 229

Hall word, 233

height of a root, 136

highest weight, 122, 263
highest-weight module, 263
highest-weight vector, 122, 263
hypercentre, 18

ideal, 1
idempotent, 309
central, 313
orthogonal, 309
primitive, 309
inner automorphism, 23
inner automorphism group, 23
integral linear function, 262
irreducible
character, 295

module, 24

rootsystem, 129
isomorphism

of algebras, 1

of root systems, 129
Iwasawa’s theorem, 215

Jacobi identity, 2
Jordan decomposition, 312

Killing form, 76
Klymik’s formula, 298
Kostant’s formula, 294

largest nilpotency ideal, 205

Las Vegas algorithm, 12

leading monomial, 186, 193

left-normal form, 201

Leibniz formula, 19

length of a Weyl group element,
274

letters, 230

level of a weight, 278

Levi subalgebra, 89

Levi’s theorem, 87

lexicographical order, 237

Lie bracket, 2

Lie polynomial, 233

Lie’s theorem, 41

linear

associative algebra, 305
Lie algebra, 4

longest element in a Weyl group,
275

lower central series, 17

Lyndon-Shirshov words, 238

module, 23
morphism
of L-modules, 23
of algebras, 1
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multiplication, 1

multiplication table, 8

multiplicative order, 186, 193, 221,
241

multiplicity of a weight, 280

negative root, 134
nilpotency class, 17
nilpotency ideal, 205
nilpotent

associative algebra, 306

element, 45

Lie algebra, 17
nilradical, 36
non-degenerate bilinear form, 4
normal monomials, 222, 246
normal words, 186, 195
normalizer, 15

odd orthogonal Lie algebra, 6

Poincaré-Birkhoff-Witt theorem, 191
polynomial map, 62

positive root, 134

primary components, 50

primary decomposition, 50

product space, 16

projection matrix, 302

quasi-Hall set, 229
quotient algebra, 3
quotient module, 24

Racah’s formula, 294, 297

radical of an associative algebra,
306

rank of a Lie algebra, 57

rank of a root system, 128

reduced expression (for a Weyl group
element), 267

reduction, 187, 195

reduction order, 241

reflecting hyperplane, 127
reflection, 127
regular element, 57
representation of a Lie algebra, 23
restricted Lie algebra, 25
reverse lexicographical order, 239
root, 60

long, 170

short, 170
root lattice, 160
root order, 132

lexicographical, 134
root space, 60
root space decomposition, 60
root system, 127

self-reduced set, 188, 222, 247
semidirect sum, 21
semisimple

associative algebra, 307

Lie algebra, 77

linear transformation, 311
Serre’s theorem, 259
Shirshov’s theorem, 247
sign of an element of the Weyl group,

287

simple

Lie algebra, 77

reflection, 140

root, 134

system of roots, 135

type, 150
simply-laced root system, 160
solvable Lie algebra, 17
solvable radical, 38
special linear Lie algebra, 4
split

Cartan subalgebra, 59

linear Lie algebra, 40
splitting element, 102, 314
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standard factorization, 244
standard monomial, 192
standard sequence, 230
Steinberg’s formula, 297
structural invariant, 121
complete, 121
structure constants, 7
subalgebra, 1
submodule, 24
symmetric element, 287
symplectic Lie algebra, 5

toral subalgebra, 115
Trace form, 76

type of a semisimple Lie algebra,

175
upper central series, 18
Verma module, 265

weight, 122, 255, 262

weight lattice, 266

weight space, 122; 255, 262
weight vector, 122, 255, 262
weight-coordinate vectors, 272
Weyl group, 139

Wey! vector, 139

Weyl's character formula, 291
Weyl’s dimension formula, 291
Weyl’s theorem, 83
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AdjointMatrix, 14
Appliance, 245
ArelsomorphicSSLieAlgebras, 182
BracketingOfHallWord, 239, 240
BranchingRule, 302
CanonicalGenerators, 154
CartanMatrixToRootSystem, 137
CartanSubalgebraBigField, 58
CartanSubalgebraRestricted, 59
Centralldempotents, 315
Centralizer, 15
Centre, 15
CollectionlnUAE, 193
ConjugateDominantWeight, 268
DecomposeCharacterTensorProduct,
300
DecompositionBySuccessiveSubtractions,
296
Derivations, 20
DerivedSeries, 17
DimensionPolynomial, 292
DirectSumDecomposition, 31, 108
DominantWeightsOfHWModule, 279
ExtendRepresentation, 209
ExtensionSeriesNilpotentCase, 203
ExtensionSeriesSolvableCase, 203
FittingOneComponent, 55
GrobnerBasis, 198, 250
HallSet, 229
InterReduce, 250
IsHallElement, 229
IsRestricted, 27
IsomorphismOfSSLieAlgebras, 157
JordanDecomposition, 312
LeftGrobnerBasis, 201
LeftNormalForm, 201
LeviSubalgebraByLCSeries, 112

LeviSubalgebra, 111, 118
LowerCentralSeries, 17
NilRadical, 36, 70, 73
NonNilpotentElement, 46
NormalForm, 187, 194, 243
Normalizer, 16
PrimaryDecompositionBigField,
104
PrimaryDecompositionSmallField,
105
ProductSpace, 17
QuotientAlgebra, 13
Radical, 307
RepresentationNilpotentCase, 210
RepresentationSolvableCase, 211
Representation, 211, 215
RewriteMagmaElement, 235
SimpleLieAlgebra, 172
SolvableRadical, 45
SplittingElementDeterministic, 103
SplittingElementRandom, 103
ToralSubalgebra, 116
Type, 180
UpperCentralSeries, 18
WeightsOfHWModule, 278
WeylOrbit, 277
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